
Chapter 11
p-adic Measure and Kummer’s Congruence

In modern number theory, the p-adic method or p-adic way of thinking plays an
important role. As an example, there are objects called p-adic L-functions which
correspond to the Dirichlet L-functions, and in fact the natural setup to understand
the Kummer congruence described in Sect. 3.2 is in the context of the p-adic
L-functions. To be precise, a modified version (by a suitable “Euler factor”) of
Kummer’s congruence guarantees the existence of the p-adic L-function.

To discuss this aspect fully is beyond the scope of this book, but in this chapter we
explain the p-adic integral expression of the Bernoulli number and prove Kummer’s
congruence using it. Interested readers are advised to read books such as Iwasawa
[51], Washington [100], Lang [66].

We assume the basics of p-adic numbers. For this we refer readers to Serre [83,
Ch. 1] or Gouvea [37]. The results in this chapter are not used in other chapters.

11.1 Measure on the Ring of p-adic Integers and the Ring
of Formal Power Series

In this section we review the general correspondence between measures on the ring
of p-adic integers Zp and the ring of formal power series. We use this setup in the
next section to define the Bernoulli measure on Zp and to express Bernoulli numbers
as integrals. This expression turns out to be very useful in proving Kummer’s
congruence relation.

Let Qp be the algebraic closure of the field Qp of p-adic numbers. The p-adic
absolute value j j of Qp (normalized by jpj D 1=p) is extended uniquely to Qp . We
use the same notation j j for this extension. Then Qp is not complete with respect
to this absolute value, and the completion is denoted by Cp . The absolute value j j
also extends naturally to Cp . Let Op be the ring of integers of Cp:

Op D fx 2 Cp j jxj � 1g:
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184 11 p-adic Measure and Kummer’s Congruence

Remark 11.1. Like the complex number field C, the field Cp is complete and
algebraically closed. To do analysis in the p-adic setting, we need this big field.

First we review the general theory of measures on Zp .
Denote the Z-module Z=pnZ by Xn and the canonical map from XnC1 to Xn by

�nC1, so �nC1 W XnC1 ! Xn is defined by

x mod pnC1Z 7�! x mod pnZ:

The system of pairs .Xn; �n/ gives a projective system and we have the projective
limit lim � Xn :

lim � Xn D
{
.xn/ 2

Y

n�1
Xn j �nC1.xnC1/ D xn

}
:

The ring of p-adic integers Zp is identified with this projective limit lim � Xn .

Definition 11.2 (Measure on Zp). A set of functions � D f�ng1nD1 is called an
Op-valued measure on Zp if the following two conditions are satisfied:

(i) Each �n is an Op-valued function on Xn, �n W Xn �! Op .
(ii) For any n 2 N and x 2 Xn, the distribution property

�n.x/ D
X

y2XnC1

�nC1.y/Dx

�nC1.y/

holds.

The set of Op-valued measures on Zp is denoted by M.Zp;Op/ . This has an
Op-module structure. Further, the norm of � D f�ng 2 M.Zp;Op/ is defined as

k�k D sup
n2N; x2Xn

j�n.x/j:

Also, the Op-module of continuous Op-valued functions on Zp is denoted by
C.Zp;Op/, and the norm k'k of an element ' 2 C.Zp;Op/ is defined by

k'k D sup
x2Zp

j'.x/j:

For ' 2 C.Zp;Op/ and � D f�ng 2 M.Zp;Op/ , the integral on Zp is defined by

Z

Zp
'.x/d�.x/ D lim

n!1

pn�1X

rD0
'.r/�n.r/:
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(We use the abbreviated notation �n.r/ for �n.r mod pn/. A similar abbreviation
will be used in the following.) The convergence of the limit on the right-hand side
is guaranteed by the following estimate: when n < m, we have

ˇ̌
ˇ
pn�1X

rD0
'.r/�n.r/ �

pm�1X

lD0
'.l/�m.l/

ˇ̌
ˇ

D
ˇ̌
ˇ̌
pn�1X

rD0

�
'.r/�n.r/ �

pm�n�1X

qD0
'.r C pnq/�m.r C pnq/

� ˇ̌
ˇ

D
ˇ̌
ˇ
pn�1X

rD0

0

@
pm�n�1X

qD0
.'.r/ � '.r C pnq// �m.r C pnq/

1

A
ˇ̌
ˇ

� max
r; q

j'.r/ � '.r C pnq/j k�k:

For each natural number k, the binomial polynomial

 
t

k

!
D t .t � 1/ � � � .t � k C 1/

kŠ

in t is a continuous function on Zp .
To � D f�ng 2 M.Zp;Op/ we associate f 2 OpŒŒX�� in the following manner.

Set � D OpŒŒX��, �n D ..1 C X/p
n � 1/� and consider the projective system

f.�=�n;$n/g by the natural map $n W �=�n �! �=�n�1. Define fn.X/ 2
�=�n by

fn.X/ D
pn�1X

rD0
�n.r/.1CX/r D

pn�1X

rD0

rX

kD0
�n.r/

 
r

k

!
Xk D

pn�1X

kD0
cn;kX

k:

Here we understand that the equalities are mod�n and put

cn;k D
pn�1X

rD0
�n.r/

 
r

k

!
:

Since we have

.$nfn/.X/ D $n

0

@
pn�1X

rD0
�n.r/.1CX/r

1

A
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D $n

0

@
pn�1�1X

r 0D0

p�1X

lD0
�n.r

0 C pn�1l/.1CX/r
0

.1CX/p
n�1l

1

A

D
pn�1�1X

r 0D0
�n�1.r 0/.1CX/r

0

D fn�1.X/;

the system .fn/ is an element in the projective limit lim ��=�n . Now we have the

isomorphism

� Š lim ��=�n; � 3 g 7�! .gn/ 2 lim ��=�n;

where, for g 2 �, the system .gn/ is given by gn D g mod �n. Through this
isomorphism, the above ffng corresponds to f 2 � by

f .X/ D
1X

mD0
cmX

m;

where

cm D lim
n!1

pn�1X

rD0
�n.r/

 
r

m

!

D
Z

Zp

 
x

m

!
d�.x/:

We therefore have obtained a map from M.Zp;Op/ to OpŒŒX��. An important
fact is that this map gives a natural isomorphism between M.Zp;Op/ and the ring
of formal power series OpŒŒX��, often referred to as the Iwasawa isomorphism. The
way to associate a measure to an element in OpŒŒX�� is described as follows.

For f D P1
mD0 cmXm 2 OpŒŒX��, define � D f�ng by

�n.r/ D 1

pn

X

�p
nD1

��rf .� � 1/ .r 2 Xn/; (11.1)

the sum running over all pn-th roots � of 1. Since j� � 1j < 1, f .� � 1/ converges.
For each m � 0, we have

1

pn

X

�p
nD1

��r .� � 1/m D 1

pn

X

�p
nD1

mX

jD0
��r

 
m

j

!
.�1/m�j �j

D
X

0�j�m
j�r mod pn

 
m

j

!
.�1/m�j :
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So this is contained in Op . In particular, if pn > r > m, then this is zero. When � is
a primitive p�-th root of 1 (� � 1), the equality

j� � 1j'.p�/ D jpj .' is the Euler function/

holds and hence

j.� � 1/mj D jpm='.p�/j:
From this, we conclude that pe divides the quantity

X

0�j�m
j�r mod pn

 
m

j

!
.�1/m�j

for e D m=�.pn/ � n. Therefore,

�n.r/ D
1X

mD0
cm

0

@ 1

pn

X

�p
nD1

��r .� � 1/m
1

A

is convergent and the value is in Op . To check the distribution property (ii) of the
measure, we need to calculate the following value:

X

y2XnC1; �nC1.y/Dx
�nC1.y/ D

X

a mod p

�nC1.x C pna/

D 1

pnC1
X

�p
nC1D1

0

@
X

a mod p

��.xCpna/
1

A f .� � 1/:

Using the identity

X

a mod p

��pna D
{
0 if �p

n ¤ 1;

p if �p
n D 1

for a pnC1-th root � of 1, we have
X

a mod p

�p
nC1D1

��x�pna D p
X

�p
nD1

��x;

so we have

X

y2XnC1

�nC1.y/Dx

�nC1.y/ D �n.x/
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which is to be proved. If we define the formal power series Qf 2 OpŒŒX��

corresponding to this measure defined as before, then the coefficients c0k of Xk of
this series are given by

c0k D lim
n!1

pn�1X

rD0
�n.r/

 
r

k

!

D lim
n!1

1X

mD0
cm

pn�1X

rD0

 
r

k

!
X

0�j�m
j�r mod pn

 
m

j

!
.�1/m�j :

We fix k. To calculate the coefficient of cm in the expression of c0k in the right-hand
side above, we fix m. We have

�
r
k

� D 0 for k > r so we may assume that k � r .
Taking n big enough, we assume that m < pn. Then, if j � r mod pn for some j
with 0 � j � m, we have j D r since we also have 0 � r � pn � 1 by definition.
So we may assume that k � r D j � m. So the coefficient of cm is given by

mX

rDk

 
r

k

! 
m

r

!
.�1/m�r D

m�kX

iD0

 
m � k
i

! 
m

k

!
.�1/m�k�i D

{
1 if m D k;

0 if m ¤ k:

Hence we have c0k D ck . So we have Qf D f and two mappings are inverse with
each other and we see that the set M.Zp;Op/ of Op-valued measures and the space
of formal power series OpŒŒX�� are bijective.

More precisely, we can introduce a product for both spaces and show that these
are isomorphic as Op algebras, as given in the following theorem whose complete
proof is omitted (see e.g. Lang [66, Ch.4]).

For two measures �; � 2 M.Zp;Op/, we define an Op-valued function .���/n
on Xn by

.� � �/n.x/ D
pn�1X

yD0
�n.y/�n.x � y/ .x 2 Xn/: (11.2)

Then � � � D f.� � �/ng becomes an element of M.Zp;Op/. We call this a
convolution product of � and �. The set M.Zp;Op/ becomes an Op algebra by
this product � � �.

Theorem 11.3 (Iwasawa isomorphism). Between the space M.Zp;Op/ of Op-
valued measures and the ring of formal power series OpŒŒX��, there is an Op

algebra isomorphism P W M.Zp;Op/ �! OpŒŒX�� given by

M.Zp;Op/ 3 � D f�ng P7�!f .X/ D
1X

mD0
cmX

m 2 OpŒŒX��:
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Here, cm is determined by �:

cm D
Z

Zp

 
x

m

!
d�.x/;

and conversely �n is determined by f :

�n.x/ D 1

pn

X

�p
nD1

��xf .� � 1/:

For convenience of the description below, we recall Mahler’s1 theorem giving
the necessary and sufficient condition for an Op-valued function on Zp to be
continuous.

Theorem 11.4. The function ' W Zp �! Op is continuous if and only if it can be
written as

'.x/ D
1X

nD0
an

 
x

n

!
; an 2 Op; janj �! 0:

If this is the case, the coefficients an are uniquely determined by ' and given by

an D
nX

kD0
.�1/n�k

 
n

k

!
'.k/:

We omit the proof (cf. Lang [66, §4.1]).
If we use Theorem 11.4, we can understand a part of Theorem 11.3 more

intuitively as follows. Fix x0 2 Z. Denote by ' the characteristic polynomial of
x0 C pnZp . Then by the definition of the p-adic measure, we see easily that

Z

Zp
'.x/d�.x/ D �n.x0/:

So if we replace '.x/ by the expansion '.x/ D P1
mD0 am

�
x
m

�
in Theorem 11.4, we

have

�n.x0/ D
1X

mD0
amcm D

1X

mD0
cm

mX

kD0
.�1/m�k

 
m

k

!
'.k/:

1Kurt Mahler (born on July 26, 1903 in Krefeld, Prussian Rhineland—died on February 25, 1988
in Canberra, Australia).
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Now, for any � with �p
n D 1, we have

1X

mD0
cm.� � 1/m D

1X

mD0
cm

mX

kD0

 
m

k

!
.�1/m�k�k:

Since '.k/ D 1 if k � x0 mod pn and '.k/ D 0 otherwise, we have

1

pn

X

�p
nD1

��x0
1X

mD0
cm.� � 1/m D

1X

mD0
cm

mX

kD0

 
m

k

!
.�1/m�k'.k/:

So we get the expression of �.x/ by f in Theorem 11.3.
We describe here several useful properties of the correspondence P in Theo-

rem 11.3 between measures and formal power series. Let the maximal ideal of Op be

P D fz 2 Op j jzj < 1g:

For z 2 P , define the function .1C z/x in x by

.1C z/x WD
1X

nD0

 
x

n

!
zn:

By Mahler’s theorem, .1 C z/x is a continuous function of x 2 Zp . When x is a
non-negative integer, this definition of .1 C z/x coincides with the usual binomial
expansion. We have the relation

.1C z/x.1C z/x
0 D .1C z/xCx0

.x; x0 2 Zp/: (11.3)

This is obvious for x; x0 2 N, and the general case for x; x0 2 Zp follows from the
fact that the set N of natural numbers is dense in Zp .

In the following, we list several properties of measures and corresponding power
series, which will be used later.

Property (1). Let z 2 P . If � corresponds to f (i.e. P� D f ), then

f .z/ D
Z

Zp
.1C z/x d�.x/:

In particular, by putting z D 0,

f .0/ D
Z

Zp
d�.x/:
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Proof. Writing f .X/ D
1X

nD0
cnX

n , we have by Theorem 11.3

Z

Zp
.1C z/x d�.x/ D

Z

Zp

1X

nD0

 
x

n

!
zn d�.x/

D
1X

nD0
zn
Z

Zp

 
x

n

!
d�.x/

D
1X

nD0
cnzn D f .z/:

ut
We call the map 	 from C.Zp;Op/ to Op a bounded linear functional on

C.Zp;Op/ if the following conditions (i), (ii) are satisfied:

(i) For any '; '0 2 C.Zp;Op/ and any a; b 2 Op ,

	.a' C b'0/ D a	.'/C b	.'0/:

(ii) There exists a positive constant M > 0 such that for any ' 2 C.Zp;Op/,

j	.'/j � Mk'k:

The norm of 	 is defined by

k	k D sup
'2C.Zp;Op/

'¤0

j	.'/j
k'k :

Let 	 be a bounded linear functional on C.Zp;Op/. For x 2 Xn D Z=pnZ, write
the characteristic function of x C pnZp as 'x; n. If we put

�n.x/ D 	.'x; n/;

then � D f�ng is an Op-valued measure on Zp (i.e. � 2 M.Zp;Op/). Conversely,
given � D f�ng 2 M.Zp;Op/, if we put

	.'/ D
Z

Zp
'.x/ d�.x/;
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then 	 is a bounded linear functional on C.Zp;Op/. This correspondence between
	 and � is easily seen to be one to one.

Moreover, for h 2 C.Zp;Op/ and � 2 M.Zp;Op/ , the map

' 7�!
Z

Zp
'.x/h.x/ d�.x/; .' 2 C.Zp;Op//

is a bounded linear functional on C.Zp;Op/. Let h� be the corresponding measure.
It is an interesting problem to compute the formal power series corresponding to the
measure h� when � corresponds to f D P� 2 OpŒŒX��. Properties (2) and (3)
below give examples of this correspondence.

For f 2 OpŒŒX��, put

.Uf /.X/ D f .X/ � 1

p

X

�pD1
f .�.1CX/ � 1/: (11.4)

Since

1

p

X

�pD1
.�.1CX/ � 1//l 2 ZpŒX�

for non-negative integers l , we have Uf 2 OpŒŒX��.

Property (2). Let f 2 OpŒŒX�� and �f be the corresponding measure. Also, let  
be the characteristic function of Z�p . Then the formal power series corresponding
to the measure  �f is Uf , i.e.,  �f D �Uf . More precisely, we have for any
' 2 C.Zp;Op/

Z

Zp
'.x/ .x/ d�f .x/ D

Z

Zp
'.x/ d�Uf .x/:

This can also be written as
Z

Z�
p

'.x/ d�f .x/ D
Z

Zp
'.x/ d�Uf .x/:

Proof. Write the power series corresponding to the measure �f as g. When z 2 P ,
by Property (1) we have

g.z/ D
Z

Zp
.1C z/x .x/ d�f .x/:

Let � be a pth root of 1. Regarding  also as a function on Z=pZ via  .a mod
p/ D  .aC pZp/, and putting
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O .�/ D 1

p

X

a2Z=pZ

 .a/��a;

(Fourier transform on Z=pZ) we have

 .a/ D
X

�pD1
O .�/�a

by a simple calculation (inverse Fourier transform). Since

O .�/ D
{

� 1
p

if � ¤ 1;
p�1
p

if � D 1;

by the definition of  , we obtain

g.z/ D
Z

Zp
.1C z/x .x/ d�f .x/

D
Z

Zp
.1C z/x

X

�pD1
O .�/�x d�f .x/

D
X

�pD1
O .�/

Z

Zp
.1C z/x�x d�f .x/

D
X

�pD1
O .�/

Z

Zp

�
1C .�.1C z/ � 1/

�x
d�f .x/

D
X

�pD1
O .�/f .�.1C z/ � 1/ D f .z/ � 1

p

X

�pD1
f .�.1C z/ � 1/:

This shows g D Uf . (Here we define the power �x for x 2 Zp by

�x D .1C � � 1/x D
1X

nD0

 
x

n

!
.� � 1/n:

If we choose a 2 Z so that x � a 2 pZp , we have �x D �a.) ut
Define the differential operator D on the ring of formal power series OpŒŒX�� by

D D .1CX/DX; where DX D d

dX
:
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Property (3). For f 2 OpŒŒX��, the power series corresponding to the
measure x�f is Df . Hence the power series corresponding to the measure
xk�f .k natural number/ is Dkf and the equalities

Z

Zp
xk d�f .x/ D

Z

Zp
d�Dkf .x/ D .Dkf /.0/

hold.

Proof. It is enough to show this when k D 1. Let g 2 OpŒŒX�� be the power series
corresponding to the measure x�f . By Property (1), we have for z 2 P

g.z/ D
Z

Zp
x.1C z/x d�f .x/:

Put f .X/ D P1
nD0 anXn; g.X/ D P1

nD0 bnXn. Using

X

 
X

n

!
D .nC 1/

 
X

nC 1

!
C n

 
X

n

!

and Theorem 11.3, we have

bn D
Z

Zp

 
x

n

!
d�g.x/ D

Z

Zp

 
x

n

!
x d�f .x/

D .nC 1/

Z

Zp

 
x

nC 1

!
d�f .x/C n

Z

Zp

 
x

n

!
d�f .x/

D .nC 1/anC1 C nan:

On the other hand, Df is computed as

.Df /.X/ D ..1CX/DXf /.X/

D .1CX/.a1 C 2a2X C � � � C nanX
n�1 C � � � /

D
1X

nD0
..nC 1/anC1 C nan/X

n:

This gives g D Df . ut
In general, for a power series f .X/, we define a new power series f �.Z/ in Z

by setting X D eZ � 1:

f �.Z/ D f .eZ � 1/: (11.5)
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For example, when

f .X/ D .1CX/a D
1X

nD0

 
a

n

!
Xn;

we have

f �.Z/ D eaZ D
1X

nD0

anZn

nŠ
:

Note the identity

.Dk
Zf
�/.0/ D .Dkf /.0/ (11.6)

since

DZf
�.Z/ D .1CX/DXf .X/ D Df.X/:

The next property is the basis of the fact that the isomorphism P in Theorem 11.3
is an Op algebra isomorphism.

Property (4). Let the measures �; � correspond respectively to the power series
f; g 2 OpŒŒX�� (i.e., � D �f ; � D �g). Then the power series corresponding to
the convolution � � � is fg:

�f � �g D �fg:

Proof. By Eq. (11.1), we have

�n.r/ D 1

pn

X

�p
nD1

��rf .� � 1/;

�n.k � r/ D 1

pn

X

�p
nD1

��kCrg.� � 1/:

Substituting this into the right-hand side of (11.2), we obtain

.� � �/n.k/ D
pn�1X

rD0

1

pn

X

�p
nD1

��rf .� � 1/ 1
pn

X


p
nD1


�kCrg.
 � 1/

D 1

pn

X

�

X




f .� � 1/g.
 � 1/
�k � 1
pn

pn�1X

rD0
.
=�/r
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D 1

pn

X

�

f .� � 1/g.� � 1/��k

D �fg; n.k/:

Here � and 
 run through all pn-th roots of 1. From this, Property (4) follows. ut

11.2 Bernoulli Measure

We define a specific measure called the Bernoulli measure. Recall that the first
Bernoulli polynomial is by definition equal to

B1.x/ D x � 1

2
:

In the following, p denotes an odd prime. For each natural number n and x 2 Xn D
Z=pnZ, set

En.x/ D B1

�{
x

pn

}�
;

where in the right-hand side, we regard x as an integer representing x mod pn, and
for w 2 R, fwg is the real number satisfying 0 � fwg < 1 and w � fwg 2 Z (the
fractional part of w). Then E D fEng is a measure on Zp but is not Op-valued. We
modify this as follows in order to have an Op-valued measure. Take an invertible
element c in Zp (i.e. c 2 Z�p ), and for x 2 Xn D Z=pnZ, let

Ec;n.x/ D En.x/ � cEn.c�1x/:

We understand c�1x as an element in Xn D Z=pnZ. It is easy to see that Ec D
fEc;ng is an Op-valued measure. We call this the Bernoulli measure.

Proposition 11.5. (1) The formal power series corresponding to the Bernoulli
measure Ec is given by

fc.X/ D 1

X
� c

.1CX/c � 1 :

(2) Let k be a natural number. For c 2 Z�p with ck ¤ 1, we have

Bk

k
D .�1/k
1 � ck

Z

Zp
xk�1 dEc:

In particular, if p � 1 − k, then Bk=k 2 Z.p/.
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Proof.(1) Since c 2 Z�p , we see fc 2 ZpŒŒX��, the first two terms of fc.X/ being

fc.X/ D c � 1
2

C 1 � c2
12

X C � � � :

Let � D f�ng be the measure on Zp corresponding to fc by Theorem 11.3. For
r 2 Xn D Z=pnZ we have

�n.r/ D 1

pn

X

�p
nD1

��rfc.� � 1/

D 1

pn
fc.0/C 1

pn

X

�p
nD1; �¤1

��r
�

1

� � 1 � c

�c � 1
�
:

Now we use Lemma 8.5 on p. 110. For �p
n D 1; � ¤ 1 and f D pn, the lemma

gives

1

�c � 1 D 1

f

f �1X

jD1
j�cj

since .c; p/ D 1. By this, if we choose l so that cl � k mod pn; 0 � l < pn,
we obtain

1

f

X

�p
nD1; �¤1

��k
c

�c � 1 D c

f 2

X

�p
nD1

��k
f �1X

jD1
j�cj � c.f � 1/

2f

D cl

f
� c.f � 1/

2f

D c

{
c�1k
pn

}
� c

2
C c

2f

and by substituting this into the formula for �n.r/ above and noting that fc.0/ D
.c � 1/=2, we have

�n.r/ D c � 1
2f

C
�{

r

pn

}
� 1

2
C 1

2f
� c

{
c�1r
pn

}
C c

2
� c

2f

�

D
�{

r

pn

}
� 1

2

�
� c

�{
c�1r
pn

}
� 1

2

�
:

By the definition of the Bernoulli measure, we conclude �n.r/ D Ec;n.r/, i.e.,
� D Ec and the power series corresponding to Ec is fc .

The proof of (2) goes as follows. By Property (3) and Eq. (11.6) we have
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Z

Zp
xk�1 dEc D .Dk�1fc/.0/ D .Dk�1

Z f �c /.0/:

Here by definition (11.5), we have

f �c .Z/ D fc.e
Z � 1/ D 1

eZ � 1 � c

ecZ � 1

D
1X

nD1
.1 � cn/.�1/nBnZ

n�1

nŠ
;

so we have

.Dk�1
Z f �c /.0/ D .1 � ck/.�1/k Bk

k

and thus
Z

Zp
xk�1 dEc D .1 � ck/.�1/k Bk

k
:

This gives (2). ut

11.3 Kummer’s Congruence Revisited

The “right” formulation of Kummer’s congruence is the following.

Theorem 11.6. Suppose p is an odd prime.

(1) Assume that m is a positive even integer such that p � 1 − m. Then Bm=m 2
Z.p/.

(2) Let a be a positive integer, and m and n positive even integers satisfying m �
n mod .p � 1/pa�1 and m 6� 0 mod .p � 1/. Then we have

.1 � pm�1/Bm
m

� .1 � pn�1/Bn
n

mod pa:

To prove this, we need the following integral expression of the Bernoulli number,
a refined version of Proposition 11.5 (2).

Proposition 11.7. Let k be a positive even integer and take c 2 Z�p . Then we have

.1 � ck/.1 � pk�1/Bk
k

D
Z

Z�
p

xk�1 dEc:
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Proof. The power series that corresponds to the Bernoulli measure Ec is fc in
Proposition 11.5. As in (11.4), define from fc a new power series g by

g.X/ D Ufc.X/ D fc.X/ � 1

p

X

�pD1
fc.�.1CX/ � 1/:

We have g 2 OpŒŒX�� and so we let � D �g be the measure on Op obtained from g.
By Property (2) on p. 192 we have

Z

Z�
p

xk�1 dEc D
Z

Zp
xk�1 d�:

Further, using Property (3) on p. 194 and (11.6) one sees

Z

Zp
xk�1 d� D .Dk�1g/.0/ D .Dk�1

Z g�/.0/:

We compute the value .Dk�1
Z g�/.0/ . First,

g�.Z/ D 1

eZ � 1 � c

ecZ � 1 � 1

p

X

�pD1

�
1

�eZ � 1 � c

�cecZ � 1
�
:

Here, since

1

p

X

�pD1

1

�X � 1 D 1

Xp � 1 ;

we get

g�.Z/ D 1

eZ � 1 � c

ecZ � 1 �
�

1

epZ � 1 � c

ecpZ � 1
�

D
1X

kD0
.1 � ck/.�1/k Bk

kŠ
Zk�1 �

1X

kD0
.1 � ck/.�1/k Bk

kŠ
.pZ/k�1

D
1X

kD1
.1 � ck/.1 � pk�1/.�1/k Bk

kŠ
Zk�1:

Hence if k is even we have

.Dk�1
Z g�/.0/ D .1 � ck/.1 � pk�1/Bk

k
;

and the proposition is established. ut
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Proof of Theorem 11.6. The first assertion is already given in Theorem 3.2, but we
give here an alternative proof for that too. Since we assumed m 6� 0 mod p � 1, we
can take c 2 Z such that .c; p/ D 1 and cm 6� 1 mod p. For instance one may take
a primitive root mod p. From the proposition above, we have

.1 � cn/.1 � pn�1/Bn
n

D
Z

Z�
p

xn�1 dEc

and

.1 � cm/.1 � pm�1/Bm
m

D
Z

Z�
p

xm�1 dEc:

The assumption m � n mod .p � 1/pa�1 gives cn�m � 1 mod pa , and since we
assumed .1�cm; p/ D 1, we have also .1�cn; p/ D 1. SinceEc is an Op measure,
the above integral values are in Op and we see that Bn=n and Bm=m 2 Z.p/. Since
xm�1 � xn�1 mod pa if x 2 Z�p , and since Ec is an Op-valued measure, we have

.1 � cn/
�
.1 � pn�1/Bn

n
� .1 � pm�1/Bm

m

�
2 paOp:

The left-hand side being contained in Zp , we conclude

.1 � pn�1/Bn
n

� .1 � pm�1/Bm
m

2 paZp:

This proves the theorem. ut
Theorem 3.2 is a corollary of Theorem 11.6. Indeed, if a < m � n, then by

Theorem 11.6, we have

.1 � pm�1/Bm
m

� .1 � pn�1/Bn
n

D .1 � pm�1/
�
Bm

m
� Bn

n

�
C Bn

n
.pn�m � 1/pm�1

� 0 mod pa:

Since p�1 − n, we have Bn=n 2 Z.p/ by Theorem 11.6. Since a � m�1, we have
pm�1Bn=n 2 paZ.p/. Hence we have

Bm

m
� Bn

n
� 0 mod pa:
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Exercise 11.8. Give an example of an odd prime p and integers 2 � a D m < n

such that the congruence in Theorem 3.2 does not hold. Check that for the same
choice of a, n, m and p, the congruence of Theorem 11.6 surely holds.
Hint: For example, put p D 5, a D m D 2 and n D 22 and use the following
values:

B2 D 1

6
; B22 D 854513

138
:

Exercise 11.9. Show that the Bernoulli number Bn is given by the limit (p-adic
limit in Qp)

lim
m!1

1

pm

pm�1X

iD0
in:

(For a function f W Zp ! Qp with a suitable condition, the limit

lim
m!1

1

pm

pm�1X

iD0
f .i/

is sometimes referred to as the Volkenborn integral of f over Zp . See [94, 95] for
details.)
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