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Preface

Two subjects are treated in this book. The main subject is the theory of Bernoulli
numbers, which are a series of rational numbers that appear in various contexts of
mathematics, and the other subject is the related theory of zeta functions, which are
very important in number theory. We hope that these are enjoyable subjects both for
amateur mathematics lovers and for professional researchers. There are easy parts
as well as difficult parts in this book, but we believe that, according to the taste of
the readers, they can enjoy at least some parts of this attractive mathematics. Since
the logical relations between the chapters are rather loose and not a straight course
from the beginning to the end, it would still be worthwhile for readers who pick
only some chapters which fit their tastes and background knowledge. As far as we
know, books whose main subject is Bernoulli numbers are rare. Some parts of this
book consist of rather standard number theory, but our expositions on these subjects
are not always so standard, and some parts are completely new and have not been
written in any reference before.

Now, there are many numbers in the world which have names, but what is a
Bernoulli number? In high-school we learn the formula for the sum of the integers
from 1 to n. Or maybe the formula of the sum of squares 12 C 22 C � � � C n2 is
also written in the standard textbooks for high schools. But if we make the powers
bigger, for example, if we take

16 C 26 C � � � C n6;

then what kind of formula can we have? It seems that many people hit upon this kind
of question and it often happens that ambitious high-school students try and find the
solution. In fact, the formula was already known for any power at the beginning
of the eighteenth century. (See Chap. 1, p. 2.) Bernoulli introduced some special
numbers to express this formula. These are the Bernoulli numbers. (For a more
precise history, see Chap. 1.) In this book, this formula of the sum of powers appears
in various places. In fact, in this book, four alternative proofs of this formula will be
given in different places (cf. Sects. 1.2, 4.3, 5.2, 8.3).
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vi Preface

Well, is it so interesting to give this formula of the sum of powers? Indeed it is.
But if the meaning of Bernoulli numbers were only this, we would not have written
this book. The real meaning of Bernoulli numbers lies in a different place. Let’s
look at the following formulas:

1C 1

22
C 1

32
C 1

42
C 1

52
C 1

62
C � � � D �2

6
;

1C 1

24
C 1

34
C 1

44
C 1

54
C 1

64
C � � � D �4

90
;

1 � 1

3
C 1

5
� 1

7
C 1

9
� 1

11
C 1

13
� � � D �

4
:

(You can find the proofs in Corollary 4.12, p. 61, and Theorem 9.6, p. 148.) At
first glance, these kinds of formulas could give you a mysterious impression, since
a regular sum of simple rational numbers suddenly changes into a transcendental
number like � . The left-hand sides of these formulas are values at some special
points of so-called zeta functions, or L-functions, which are another important
subject of the book. An example of zeta functions is given by

�.s/ D 1C 1

2s
C 1

3s
C 1

4s
C 1

5s
C 1

6s
C � � � :

Here the sum is regarded as a function with respect to the complex variable s. This
function is called the Riemann zeta function. The left-hand sides of the first two
formulas above are the values of �.s/ at s D 2 and s D 4, namely �.2/ and �.4/. The
right-hand sides are related to Bernoulli numbers and generalized Bernoulli numbers
(see below). The true reason that Bernoulli numbers are indispensable for number
theory lies in this type of relation with special values (values at special points) of
zeta functions. A huge number of functions called zeta functions appear in number
theory, and they always contain very important information. We can even say that
there appears a different zeta function for each important number theoretical object.
The zeta functions which are related to Bernoulli numbers are just a part of them.
But still they have something to do with many number theoretical phenomena. For
example, they are connected with a kind of volume in non-Euclidean geometry, with
dimension formulas of spaces of modular forms, and with the number of equivalence
classes of quadratic forms (class number formula), and they appear as constant terms
of Eisenstein series, which are important in the theory of automorphic forms. Also
they are related to the number theory of cyclotomic fields, that is, the systems of
numbers obtained by adjoining the roots of unity to the rational numbers. If we
wanted to explain all of this, we would need several more books, so it is not possible
to do it here, but we have tried to give some hints about those relations.

Now, for the reader’s convenience, we sketch the content of each chapter.
Comments below written in parentheses will not be explained in this book in detail.
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In Chap. 1, after explaining the history of how Bernoulli numbers were intro-
duced and giving the definition of Bernoulli numbers using recurrence relations,
we prove the formula for the sum of powers of consecutive natural numbers.
In Chap. 2, we give a formula to write down Bernoulli numbers in a simple
way. There we use Stirling numbers, whose definition is comparatively simple. In
Chap. 3, we will prove the Clausen–von Staudt theorem which gives information
on the denominators of Bernoulli numbers, and also Kummer’s congruence which
gives a congruence relation between Bernoulli numbers. (This latter theorem is
needed when we define p-adic zeta functions.) In Chap. 4, we define generalized
Bernoulli numbers associated to Dirichlet characters. (Through this extension,
the connection with quadratic fields and cyclotomic fields will appear.) Also the
Bernoulli polynomials (a system of polynomials similar to the generating function
of Bernoulli numbers) are defined, and as an application, we give a second proof
of the formula of the sum of powers. The formula expressing the values of the
Riemann zeta function at even positive integers by Bernoulli numbers is also given
here. In Chap. 5, we give the Euler–Maclaurin summation formula, which is very
useful to evaluate sum of values of functions at integers. In the coefficients of this
formula, Bernoulli numbers or Bernoulli polynomials appear. As an application, the
analytic continuation of the Riemann zeta function to the whole plane is proved
and the values of the Riemann zeta function at non-positive integers are beautifully
expressed by Bernoulli numbers. In Chap. 6, the relation between ideals of a
quadratic field and quadratic forms is given and a relation between the generalized
Bernoulli numbers and the class numbers of positive definite quadratic forms is
explained. In Chap. 7, a congruence relation between the class number of imaginary
quadratic fields and the Bernoulli numbers will be given. In Chap. 8, Gauss sums
are introduced and then formulas to describe various sums of the roots of unity with
characters by Gauss sums and generalized Bernoulli numbers are given. Here we
get a third proof of the formula for sums of powers. In Chap. 9, L-functions will
be introduced by modifying the usual definition of the Riemann zeta function by
adjoining characters; then their functional equation is shown by using a contour
integral expression. We will also give a formula to describe values at non-positive
integers of L-functions in terms of generalized Bernoulli numbers. This formula
gives a “raison d’être” for the generalized Bernoulli numbers. In Chap. 10, among
the zeta functions of prehomogeneous vector spaces, we pick an example which
apparently does not seem so simple but can be shown to be a very easy function.
(This is an example connected with the appearance of Bernoulli numbers in the
dimension formula for modular forms.) In Chap. 11, we give an alternative proof of
Kummer’s congruence by consideringp-adic measures. (This has a deep connection
with p-adic L-functions.) In Chap. 12, we review the fact that Bernoulli numbers
appear in the Taylor expansion of the (co)tangent function, and ask what would
emerge if we replace the (co)tangent with elliptic functions (a well-worn device
to generalize phenomena on trigonometric functions), and explain the theory of
Hurwitz numbers. In Chap. 13, we show the analytic continuation of the Barnes
multiple zeta function, which is a generalization of the Hurwitz zeta function, and
explain relations between their special values and Bernoulli polynomials. We also
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show the functional equation of the double zeta functions in the same way as in
Chap. 9. In Chap. 14, we define poly-Bernoulli numbers, which are obtained by
replacing the usual generating function of Bernoulli numbers by polylogarithm
functions. In an Appendix by Don Zagier, some “curious and exotic” identities for
Bernoulli numbers are given.

As explained above, Bernoulli numbers are related with a great many things.
But Bernoulli numbers do not have so many of their own problems to be solved,
except for a few very difficult problems. So, maybe there exist few mathematicians
who study only Bernoulli numbers. Since the situation is like that, there are not
many books similar to this one, and it was not so easy to have a perspective on
the wide range of relations for Bernoulli numbers. Although the present authors
are specialists of number theory, we dare not say we are specialists of Bernoulli
numbers. This book consists partly of quotations from the papers by authors
who occasionally encountered Bernoulli numbers from their different interests,
and partly of various memoranda (namely these are observations which are not
necessarily very original results worthy to be written as careful scientific papers,
but rather lightly checked, interestingly interpreted, or calculated for fun and worth
being taken note of so as not to be forgotten). And this kind of connection is
indeed the usual common connection of mathematicians to the Bernoulli numbers.
In this sense, we believe that this book is useful for any reader who is interested in
mathematics.

The original edition of this book was published in Japanese by Makino Publisher
in Japan in 2001. We would like to give our sincere thanks to Professor Don B.
Zagier for recommending us enthusiastically to write this English version based
on that Japanese book, for recommending this book to Springer-Verlag to be
published, and also for writing the nice Appendix. We would like to thank Springer-
Verlag for publishing this book, in particular Dr. Joachim Heinze of Springer
and Ms. Chino Hasebe and Mr. Masayuki Nakamura of Springer Tokyo for their
valuable help for the arrangement, and Dr. Alexander Weisse for his help with TeX.
We would also like to thank anonymous referees of the English version for a lot
of valuable comments. We would like to give our deep thanks to Mr. Suenobu
Makino, the owner of Makino Publishers, who originally suggested us the theme
of Bernoulli numbers and recommended to write the book in Japanese. Without his
recommendation, the Japanese version would not have appeared. Tsuneo Arakawa,
one of the co-authors for the Japanese version, passed away on October 3, 2003 at
the age of 54 before this English project started. Since some parts of this book are
based on his Japanese manuscript, we would like to keep his name as one of the
authors. The second- and the third-named authors express their profound regret and
sadness over the early death of Tsuneo Arakawa.

November 2013 The Authors
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Chapter 1
Bernoulli Numbers

1.1 Definitions: Introduction from History

In his posthumous book Ars Conjectandi [16] published in 1713 (the law of large
numbers in probability theory is stated in this book), Jakob Bernoulli1 introduced
the Bernoulli numbers in connection to the study of the sums of powers of
consecutive integers 1k C 2k C � � � C nk . After listing the formulas for the sums
of powers

nX

iD1
i D n.nC 1/

2
;

nX

iD1
i2 D n.nC 1/.2nC 1/

6
;

nX

iD1
i3 D

�
n.nC 1/

2

�2
; : : :

up to k D 10 (Bernoulli expresses the right-hand side without factoring), he gives
a general formula involving the numbers which are known today as Bernoulli
numbers. Bernoulli then explains how these numbers are determined inductively,
and emphasizes how his formula ((1.1) below) is useful for computing the sum
of powers. He claims that he did not take “a half of a quarter of an hour” to
compute the sum of tenth powers of 1 to 1;000, which he computed correctly as
91409924241424243424241924242500.

Using modern notation, his formula is written as

nX

iD1
ik D

kX

jD0

 
k

j

!
Bj

nkC1�j

k C 1 � j

0

@D 1

k C 1

kX

jD0

 
k C 1

j

!
Bjn

kC1�j
1

A ; (1.1)

1Born on December 27, 1654 in Basel, Switzerland—died on August 16, 1705 in Basel,
Switzerland. Jakob is the eldest among the mathematicians in the famous Bernoulli family. It
is said that Jakob, his younger brother Johann (born on July 27, 1667 in Basel, Switzerland—
died on January 1, 1748 in Basel, Switzerland), and his second son, Daniel (born on February 8,
1700 in Groningen, Netherlands—died on March 17, 1782 in Basel, Switzerland) are the most
distinguished among them.

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__1, © Springer Japan 2014
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2 1 Bernoulli Numbers

where
�
k
j

�
is the binomial coefficient

 
k

j

!
D k.k � 1/.k � 2/ � � � .k � j C 1/

j Š
;

and Bj is the number determined by the recurrence formula

kX

jD0

 
k C 1

j

!
Bj D k C 1; k D 0; 1; 2; : : : :

It is this Bj that is subsequently called a Bernoulli number,2 and is the main theme
of this book.

Bernoulli does not give symbols for B0 and B1, and he writes A;B;C;D; : : :
for B2n. As we will see later, B2nC1 D 0 except for B1. In his book, the right-hand
side of (1.1) is written as

1

c C 1
ncC1 C 1

2
nc C c

2
Anc�1 C c:c � 1:c � 2

2:3:4
Bnc�3 C

c:c � 1:c � 2:c � 3:c � 4
2:3:4:5:6

Cnc�5 C c:c � 1:c � 2:c � 3:c � 4:c � 5:c � 6
2:3:4:5:6:7:8

Dnc�7

C � � � ;

where c D k.
We would like to mention here that, in the book called Katsuyo Sanpo (“essentials

of the art of calculation”) by the outstanding Japanese mathematician Takakazu
Seki,3 published also posthumously, in 1712 (and thus 1 year before Bernoulli!), the
formula for the sums of powers and the inductive definition of the Bernoulli numbers
are given. His formula and definition are completely the same as Bernoulli’s.

2It was apparently de Moivre (Abraham, born on May 26, 1667 in Vitry-le-Francois, Champagne,
France—died on November 27, 1754 in London, England) who first called this number a Bernoulli
number in the book Miscellanea analytica de seriebus et quadraturis (London, 1730). De Moivre
is famous for de Moivre’s formula in trigonometry.
3Born in 1642(?) in Kohzuke(?), Japan—died on October 24, 1708 in Edo, Japan. He is usually
considered Japan’s greatest mathematician of the Edo period (1600–1857, when the country
was closed to essentially all foreign contact). Hardly anything is known about his mathematical
education, and he seems to have been largely self-taught. He served under the shoguns Tsunashige
Tokugawa and Ienobu Tokugawa, occupying the post of Controller of the Treasury Office, and
wrote several treatises in higher mathematics. Apart from discovering Bernoulli numbers simul-
taneously with or before Bernoulli, he discovered determinants and the rules for calculating them
simultaneously with or before Leibniz, solved extraordinarily difficult problems of elimination
theory for systems of polynomial equations in many variables, and began a study of calculation
procedures for the arc of a circle that was continued and completed by his disciple Katahiro Takebe
with the discovery of infinite series expansions for various trigonometric functions.
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Seki refers to B0;B1; B2; : : : as Shusuu (which means “numbers to be taken”) of the
first order, second order etc., labeling odd indexed B2nC1 as well. It is not widely
known that Seki independently found the Bernoulli numbers, but the collected works
of Seki [84] have been published and the volume contains an English translation
of each article. A reproduction of Seki’s table giving the formula for the sums of
powers in terms of binomial coefficients and “Seki–Bernoulli numbers”, together
with a translation into modern notation, is given as Figs. 1.1 and 1.2.

Neither Seki nor Bernoulli explains in much detail how to deduce the formula
(1.1). Prior to their work, the formula for the sums of powers was discussed in
Academia Algebrae by Faulhaber.4 He obtained the result saying that, when k is
odd, the quantity

Pn
iD1 ik is a polynomial in n.nC1/

2
D Pn

iD1 i , (the first example

being
Pn

iD1 i3 D �Pn
iD1 i

�2
), whereas when k is even,

Pn
iD1 ik is divisible

by n.nC1/.2nC1/
6

D Pn
iD1 i2 as polynomials in n, and the quotient is again a

polynomial in
Pn

iD1 i . But apparently he did not reach the Bernoulli numbers.
These facts discovered by Faulhaber were rediscovered by Jacobi5 [52], who gave
a rigorous proof. We shall provide a proof of the formula (1.1) in the next section.
As for the results of Faulhaber, we only formulate them and do not give proofs,
leaving them to the literature. We mention here that a very extensive bibliography
on Bernoulli numbers, compiled by Karl Dilcher, is available online [28].

Let us now give the definition of the Bernoulli numbers again. We follow Seki
and Bernoulli, and define them using a recurrence formula. The Bernoulli numbers
may also be defined by using a generating function. We will see in the next section
that these definitions are equivalent.

Definition 1.1 (Bernoulli numbers). Define Bn .n D 0; 1; 2; : : : / inductively by
the formula

nX

iD0

 
nC 1

i

!
Bi D nC 1 .n D 0; 1; 2; : : : /: (1.2)

Let us compute Bn for small n. For n D 0 we have

B0 D 1:

Putting n D 1 in the formula (1.2) we have

B0 C 2B1 D 2;

from which we obtain

B1 D 1

2
.2 � B0/ D 1

2
:

4Johann Faulhaber (born on May 5, 1580 in Ulm, Germany—died in 1635 in Ulm, Germany).
5Carl Gustav Jacob Jacobi (born on December 10, 1804 in Potsdam, Prussia (now Germany)—died
on February 18, 1851 in Berlin, Germany).
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Fig. 1.1 Katsuyou Sanpou, Seki’s tabular presentation of the power-sum formula, written not in
Chinese characters but using the notation of Sangi or counting rods. The table (which is reproduced
here with a 90ı rotation) contains each of the ingredients of the formula in parentheses in Eq. (1.1):
The number designated by “power” in the translation overleaf is the k of this formula, the binomial
coefficients are tabulated in the “Pascal’s triangle” in the right part of the table (D left part in the
translation), the Bernoulli numbers Bj are given on the left (the right in the English translation),
the missing coefficient

�
kC1
kC1

�
in (1.1) corresponds to the crossed out “1” at the beginning of each

column of the Pascal triangle, and the “denominator” is the number k C 1 by which the whole
expression has to be divided at the end of the calculation
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Fig. 1.2 Katsuyou Sanpou
(English translation, reflected
with respect to the original)

Putting n D 2 in (1.2) we have

B0 C 3B1 C 3B2 D 3;

from which we obtain

B2 D 1

3
.3� B0 � 3B1/ D 1

6
:

Similarly, putting n D 3 in (1.2), we have

B0 C 4B1 C 6B2 C 4B3 D 4;

which gives

B3 D 1

4
.4 � B0 � 4B1 � 6B2/ D 0:
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Table 1.1 Bernoulli numbers

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Bn 1 1
2

1
6

0 � 1
30

0 1
42

0 � 1
30

0 5
66

0 � 691
2730

0 7
6

0 � 3617
510

0 43867
798

Putting n D 4 in (1.2), we have

B0 C 5B1 C 10B2 C 10B3 C 5B4 D 5;

which gives

B4 D 1

5
.5 � B0 � 5B1 � 10B2 � 10B3/ D � 1

30
;

and so on. Table 1.1 is the list of Bernoulli numbersBn up to n D 18. It follows from
the definition that Bn is a rational number. Mathematical software packages such as
Mathematica and Maple include the algorithm for computing Bernoulli numbers,
and it is not hard to obtain several hundred Bn’s in a moment.

Remark 1.2. There is another convention on Bernoulli numbers: B1 D � 1
2

and
everything else is the same. We adopt the first definition because this is the original
definition of Seki and Bernoulli for one thing, and it is better suited to the special
values of the Riemann zeta function for another, that is, the formula in Theorem 5.4
is valid also for m D 1. Although the difference is minuscule, we call readers’
attention to it.

SinceBn D 0 for every odd n greater than 1 (we prove this later), it is not difficult
to translate formulas from one definition to the other by replacing Bn by .�1/nBn.

1.2 Sums of Consecutive Powers of Integers
and Theorem of Faulhaber

In this section we first prove the Seki–Bernoulli formula (1.1) for the sum

Sk.n/ WD
nX

iD1
ik (k; n integers, k � 0; n � 1):

Then we will state Faulhaber’s theorem and give a recurrence formula for Bernoulli
numbers at the end of this section.

Before going into the proof, let us give several explicit formulas for Sk.n/:

S0.n/ D n;

S1.n/ D n2

2
C n

2
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D 1

2
n.nC 1/;

S2.n/ D n3

3
C n2

2
C n

6

D 1

6
n.nC 1/.2nC 1/;

S3.n/ D n4

4
C n3

2
C n2

4

D 1

4
n2.nC 1/2;

S4.n/ D n5

5
C n4

2
C n3

3
� n

30

D 1

30
n.nC 1/.2nC 1/.3n2 C 3n � 1/;

S5.n/ D n6

6
C n5

2
C 5n4

12
� n2

12

D 1

12
n2.nC 1/2.2n2 C 2n � 1/;

S6.n/ D n7

7
C n6

2
C n5

2
� n3

6
C n

42

D 1

42
n.nC 1/.2nC 1/.3n4 C 6n3 � 3nC 1/:

For the proof, we first see immediately that

S0.n/ D n:

Let k � 1. From the binomial theorem we obtain

.mC 1/kC1 �mkC1 D
kX

jD0

 
k C 1

j

!
mj :

Putting m D 1; 2; : : : ; n, and summing over all m, we obtain

.nC 1/kC1 � 1 D
kX

jD0

 
k C 1

j

!
Sj .n/:
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From this we have

Sk.n/ D 1

k C 1

⎧
⎨

⎩
.nC 1/kC1 � 1 �

k�1X

jD0

 
k C 1

j

!
Sj .n/

⎫
⎬

⎭
:

Putting k D 1; 2; : : : in this formula, we obtain

S1.n/ D n2

2
C n

2
; S2.n/ D n3

3
C n2

2
C n

6
; : : : :

By induction we see that

Sk.n/ is a polynomial of degree k C 1 in n, whose leading term is
1

k C 1
nkC1.

Our objective is to write down this polynomial explicitly.
Consider the polynomial Sk.x/.D 1

kC1x
kC1 C � � � / obtained by replacing

the variable n by x. In general, two polynomials f .x/; g.x/ are identical if
f .n/ D g.n/ for all positive integers n. By definition we have

Sk.nC 1/� Sk.n/ D .nC 1/k .n D 1; 2; 3; : : : /:

Thus, we obtain

Sk.x C 1/� Sk.x/ D .x C 1/k:

Putting x D 0, and using Sk.1/ D 1, we have

Sk.0/ D 0:

This yields the constant term of Sk.x/. The other coefficients may be obtained
from the derivatives S.j /k .0/; 1 � j � k. Taking the derivative of the relation
Sk.x C 1/� Sk.x/ D .x C 1/k , we obtain

S 0k.x C 1/� S 0k.x/ D k.x C 1/k�1: (1.3)

Putting x D 0; 1; 2; : : : ; n � 1, and adding them all, we have

S 0k.n/ � S 0k.0/ D kSk�1.n/:

This holds for any positive integer n. If we let S 0k.0/ D bk (b0 D 1), then we have
the relation

S 0k.x/ D kSk�1.x/C bk:
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Taking the derivatives of both sides, we have

S 00k .x/ D kS 0k�1.x/: (1.4)

Putting x D 0, we have

S 00k .0/ D kbk�1:

Taking the derivative of (1.4) once again, and using (1.4), we have

S 000k .x/ D kS 00k�1.x/ D k.k � 1/S 0k�2.x/:
Putting x D 0, we have

S 000k .0/ D k.k � 1/bk�2:

Similarly, taking the derivatives successively, we obtain

S
.j /

k .0/ D k.k � 1/ � � � .k � j C 2/bk�jC1 .2 � j � k C 1/:

Finally, we have

Sk.x/ D
kC1X

jD0

S
.j /

k .0/

j Š
xj

D
kC1X

jD1

1

k C 1

 
k C 1

j

!
bk�jC1xj .S

.0/

k .0/ D 0/

D 1

k C 1

kX

jD0

 
k C 1

j

!
bj x

kC1�j :

Since Sk.1/ D 1, we obtain, by putting x D 1 in the above formula, the recurrence
formula

k C 1 D
kX

jD0

 
k C 1

j

!
bj ;

which is nothing but the recurrence for the Bernoulli numbers. We therefore
conclude bj D Bj . In view of the identity

1

k C 1

 
k C 1

j

!
D 1

k C 1 � j

 
k

j

!
;

we obtain (1.1). ut
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Remark 1.3. If we set S 0k.x � 1/ D Bk.x/ (Bk.x/ D xk C � � � ), it follows from
(1.3) and (1.4) that

Bk.x C 1/� Bk.x/ D kxk�1; B 0k.x/ D kBk�1.x/:

This Bk.x/ is called the kth Bernoulli polynomial, which leads to various appli-
cations. We will give its definition and some properties in Sect. 4.3 (p. 55). The
formula for sums of consecutive powers may be obtained easily from the Bernoulli
polynomial. We will show it in Sect. 4.3.

Let us prove the fact that Bk D 0 for odd k greater than 1 using the polynomial
Sk.x/. We will prove this fact later more easily using the generating function, but
we prove it here because we need to use it before that.

Proposition 1.4. If n is an odd integer greater than or equal to 3, then Bn D 0.
As a consequence, .�1/nBn D Bn for all positive integers n except for n D 1.

Proof. Suppose k � 1. Putting x D �1 in the formulaSk.xC1/�Sk.x/ D .xC1/k
and using the fact Sk.0/ D 0, we obtain Sk.�1/ D 0. Thus, by putting x D �1 in
the formula

.k C 1/Sk.x/ D
kX

jD0

 
k C 1

j

!
Bj x

kC1�j ;

we obtain

kX

jD0

 
k C 1

j

!
.�1/jBj D 0:

If we subtract this from the recurrence formula in the definition of Bernoulli
numbers

kX

jD0

 
k C 1

j

!
Bj D k C 1;

then only odd indexed terms remain and we have

2

Œ k�1
2 �X

jD0

 
k C 1

2j C 1

!
B2jC1 D k C 1;

where Œx� stands for the greatest integer less than or equal to x. Since B1 D 1=2, the
term for j D 0 in the left-hand side cancels with the right-hand side, and we obtain
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Œ k�1
2 �X

jD1

 
k C 1

2j C 1

!
B2jC1 D 0 .k � 3/:

Putting k D 3; 5; 7; : : : , we obtain Bk D 0 inductively for all odd k � 3. ut
Next, we state Faulhaber’s theorem.

Theorem 1.5. Let k � 1 and set

u D n.nC 1/ .D 2S1.n//; v D n.nC 1/.2nC 1/ .D 6S2.n//:

Then we have

S2kC1.n/ D u2

2k C 2

k�1X

iD0
A
.k/
i uk�1�i

and

S2k.n/ D v

.2k C 1/.2k C 2/

k�1X

iD0
.k C 1 � i/A.k/i uk�1�i ;

where A.k/i is a number determined by the formula

A
.k/
0 D 1; A

.k/
i D � 1

k C 1 � i
i�1X

jD0

 
k C 1 � j
k C j � 2i

!
A
.k/
j .1 � i � k � 1/:

(For k C j � 2i < 0, we put
�
kC1�j
2iC1�2j

� D 0.)

For the proof we refer to [30] and [60]. We encourage readers to attempt to prove
it by themselves.

Before ending this section we prove an amusing recurrence formula for Bernoulli
numbers using Sk.x/ [55].

In the defining recurrence formula for Bernoulli numbers (1.2), if we move the
right-hand side to the left, and use the fact that .�1/iBi D Bi for i ¤ 1 and
B1 D 1=2, then we obtain

nX

iD0
.�1/i

 
nC 1

i

!
Bi D 0 (1.5)

for n � 1. Now, we define fBn D .nC 1/Bn. Then, we have
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Theorem 1.6. For n � 1, we have

nX

iD0
.�1/i

 
nC 1

i

!
ABnCi D 0:

Remark 1.7. Though this formula is similar to (1.5), it requires only half the number
of terms to compute eB2n (and thus B2n).

Proof. From the binomial theorem we have

xnC1.1 � x/nC1 D
nC1X

iD0
.�1/i

 
nC 1

i

!
xnCiC1:

Taking the derivatives of both sides with respect to x, we have

.nC 1/
�
xn.1 � x/nC1 � xnC1.1 � x/n� D

nC1X

iD0
.�1/i

 
nC 1

i

!
.nC i C 1/xnCi :

From this we have

.nC 1/xn.1 � x/n.1 � 2x/ D .�1/nC1.2nC 2/x2nC1

C
nX

iD0
.�1/i

 
nC 1

i

!
.nC i C 1/xnCi : (1.6)

Putting x D .1C y/=2 in this formula, we have

l.h.s. D �.nC 1/

�
1C y

2

�n �
1 � y

2

�n
y

D �2�2n.nC 1/y.1 � y2/n

D �2�2n.nC 1/

nX

iD0
.�1/i

 
n

i

!
y2iC1:

We put x D 1; 2; : : : ; m in (1.6), add them up, and use the equations

mX

xD1
y2iC1 D

mX

xD1
.2x � 1/2iC1 D S2iC1.2m/ � 22iC1S2iC1.m/

to obtain
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� 2�2n.nC 1/

nX

iD0
.�1/i

 
n

i

!
�
S2iC1.2m/ � 22iC1S2iC1.m/

�

D .�1/nC1.2nC 2/S2nC1.m/C
nX

iD0
.�1/i

 
nC 1

i

!
.nC i C 1/SnCi .m/:

Since this holds for all positive integersm, we can use the same argument as before
to conclude that the formula obtained by replacingm by x,

� 2�2n.nC 1/

nX

iD0
.�1/i

 
n

i

!
�
S2iC1.2x/ � 22iC1S2iC1.x/

�

D .�1/nC1.2nC 2/S2nC1.x/C
nX

iD0
.�1/i

 
nC 1

i

!
.nC i C 1/SnCi .x/;

holds as a formula for polynomials. We take the derivative of both sides of this
with respect to x and set x D 0. The desired formula follows from the facts
that S 0k.0/ D Bk (previous section), that the term for i D 0 in the left-hand side
vanishes due to the fact 2S 01.0/ � 2S 01.0/ D 0, and that Bk D 0 for odd k � 3

(Proposition 1.4). ut

1.3 Formal Power Series

We have defined Bernoulli numbers by a recurrence formula. However, it is also
common to define Bernoulli numbers using the generating function

tet

et � 1
D
1X

nD0
Bn
tn

nŠ
: (1.7)

For the other definition of Bn we mentioned in Remark 1.2 in Sect. 1.1, we need to
replace the left-hand side by t

et�1 D tet

et�1 � t . In fact, the generating function is very
useful for the study of various properties of Bernoulli numbers.

In this section we will explain fundamental facts about formal power series for
those who are not familiar with such objects. In the next section we will prove the
above formula as Theorem 1.12. Those who are not familiar with abstract algebra
are advised to take a glance at the next section and see how computations go before
reading this section.

Let R be a commutative integral domain with unit (written 1). (Although we
write in this general fashion, readers may think of R as the rational number field
Q for the time being. In this book R is either Q, or its finite extension, except
for Chap. 11, where we need p-adic numbers. A commutative integral domain is
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a commutative ring with the property that ab D 0 implies a D 0 or b D 0.)
A formal sum

1X

nD0
ant

n D a0 C a1t C a2t
2 C a3t

3 C � � �

with an indeterminate t and coefficients in R is called a formal power series with
coefficients in R, and the set of all such formal power series is denoted by RŒŒt ��.
Two formal power series are defined to be equal if and only if all coefficients of tn

coincide. Typical examples which will appear in this book are (taking R D Q)

et D
1X

nD0

tn

nŠ
D 1C t

1Š
C t2

2Š
C t3

3Š
C � � �

and

log.1C t/ D
1X

nD1
.�1/n�1 t

n

n
D t � t2

2
C t3

3
� � � � :

These are Taylor expansions of complex functions ex and log.1Cx/ around x D 0,
regarded as formal sums. We use the notation et ; log.1 C t/, but these are nothing
but the formal power series of the right-hand sides, and we will not consider them
as functions in t .

The sum and the product of two formal power series are defined to be

1X

nD0
ant

n C
1X

nD0
bnt

n D
1X

nD0
.an C bn/t

n

and

� 1X

nD0
ant

n

�
�
� 1X

nD0
bnt

n

�
D
1X

nD0
cnt

n; cn D
nX

iD0
ai bn�i :

The product is defined using the distributive law formally, and the first few terms of
it are

.a0 C a1t C a2t
2 C a3t

3 C � � � / � .b0 C b1t C b2t
2 C b3t

3 C � � � /
D a0b0 C .a0b1 C a1b0/t C .a0b2 C a1b1 C a2b0/t

2

C .a0b3 C a1b2 C a2b1 C a3b0/t
3 C � � � :

It is readily verified that RŒŒt �� is a commutative ring with unit. The zero element
and the unit are the formal power series

0C 0 � t C 0 � t2 C 0 � t3 C � � �
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and

1C 0 � t C 0 � t2 C 0 � t3 C � � � ;
respectively. They are denoted simply by 0 and 1, respectively. The set of formal
power series all of whose coefficients are 0 except for the constant term is naturally
identified with R. Furthermore, regarding a polynomial P.t/ with coefficients in
R as a formal power series whose coefficients an are 0 when n is greater than the
degree of P.t/, we can consider RŒt� as a subring of RŒŒt ��. The definitions of the
sum and the product of RŒŒt �� are natural generalizations of those of polynomials.

Since we assume that R is an integral domain, RŒŒt �� is also an integral domain.
Namely, we have

Proposition 1.8. The ring RŒŒt �� does not have a zero divisor (the product of
two non-zero elements is again non-zero). In particular, if A ¤ 0 and AB D
AC .A;B;C 2 RŒŒt ��/, then B D C .

Proof. Let A D a0 C a1t C a2t
2 C a3t

3 C � � � and B D b0 C b1t C b2t
2 C b3t

3 C
� � � be non-zero elements, and let ak; bl be the first non-zero coefficients. Then the
coefficient ckCl of tkCl in A � B D c0 C c1t C c2t

2 C � � � is

ckCl D a0bkCl C a1bkCl�1 C � � � C akbl C � � � C akCl�1b1 C akCl b0 D akbl :

Since R is an integral domain, ckCl D akbl is not 0. Thus A � B is not 0.
If AB D AC , then A.B�C/ D 0, which implies A D 0 or B �C D 0. Thus, if

A ¤ 0, then we have B D C . ut
Proposition 1.9. A formal power series

P1
nD0 antn is invertible in RŒŒt �� if and

only if the constant term a0 is invertible.

Proof. If
P1

nD0 antn is invertible, i.e., if there exists a formal power seriesP1
nD0 bntn such that .

P1
nD0 antn/ � .P1nD0 bntn/ D 1, then the constant term a0b0

of the product must be 1, and thus a0 is invertible. Conversely, suppose that a0 is
invertible. We define bn 2 R .n � 0/ by

b0 D a�10 and bn D �a�10 �
nX

iD1
aibn�i .n � 1/;

and we compute the product .
P1

nD0 antn/ � .P1nD0 bntn/. Then, we have a0b0 D 1

and
Pn

iD0 aibn�i D 0 for n � 1. This shows that
P1

nD0 bntn is the multiplicative
inverse of

P1
nD0 antn. ut

We denote by A.0/ the constant term of a formal power series A.t/. As we
mentioned before, a formal power series is not a function and we do not generally
replace t by any special value. However, replacing t by 0 is always valid, and we
use this notation exceptionally for this case.
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Next, we show that we can define an infinite sum of elements of RŒŒt �� under
certain conditions. Let fAk.t/g1kD1 ; Ak.t/ D P1

iD0 a
.k/
i t i be an infinite family of

formal power series. Suppose that these series satisfy the condition

for each i , there exist only finitely many k such that a.k/i ¤ 0.

In other words, if we write Ak.t/ D a
.k/
nk t

nk C .higher-order terms/ .a.k/nk ¤ 0/, we
have nk ! 1 as k ! 1. Then we define A1 CA2 C A3 C � � � to be

A1 CA2 C A3 C � � � D
1X

iD0
ai t

i ;

where

ai D
1X

kD1
a
.k/
i :

In short, we take the sum of the coefficients in a common degree, and the above
condition ensures that each sum is a finite sum.

As a special case, we can define the “substitution” of a formal power series
with vanishing constant term into another formal power series. Namely, if A.t/ DP1

iD0 ai t i , and B.t/ D P1
iD1 bi t i .B.0/ D b0 D 0/, then we can give a meaning

to the expression

A.B.t// D
1X

iD0
ai .B.t//

i ;

because, from b0 D 0, the polynomial ai .B.t//i begins at least in the degree i term,
and the family

{
ai .B.t//

i
}1
iD0 satisfies the above condition. As an easy example,

we have

e�t D 1C .�t/
1Š

C .�t/2
2Š

C .�t/3
3Š

C � � �

D 1 � t

1Š
C t2

2Š
� t3

3Š
C � � �

and

log.1 � t/ D log.1C .�t// D �t � .�t/2
2

C .�t/3
3

� � � �

D �t � t2

2
� t3

3
� � � � :

The identities

elog.1Ct / D 1C t
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and

log.1C .et � 1// D t

can be considered as the identities obtained by substituting one formal power series
to the other. (We will give proofs of these identities after Remark 2.7 on p. 33.)

We can also compute the reciprocal of a formal power series with constant term 1

by “substitution”. First we remark that the reciprocal of 1 � t is 1C t C t2 C � � � :

1

1 � t
D 1C t C t2 C � � � :

We can see this by computing the product .1�t/.1CtCt2C� � � /. Now, let 1CB.t/
be a formal power series with constant term 1. Then B.t/ is a formal power series
without constant term (B.0/ D 0), and thus the reciprocal of 1 C B.t/ can be
computed by

1

1CB.t/
D 1

1 � .�B.t// D 1C .�B.t//C .�B.t//2 C � � � :

As an example, we compute the first few Bernoulli numbers using (1.7). Since

et � 1 D t C t2

2Š
C t3

3Š
C t4

4Š
C t5

5Š
C � � �

D t

�
1C t

2
C t2

6
C t3

24
C t4

120
C � � �

�
;

we have

1�
1C t

2
C t 2

6
C t 3

24
C t 4

120
C � � �

� D 1 �
�
t

2
C t2

6
C t3

24
C t4

120
C � � �

�

C
�
t

2
C t2

6
C t3

24
C t4

120
C � � �

�2

�
�
t

2
C t2

6
C t3

24
C t4

120
C � � �

�3

C
�
t

2
C t2

6
C t3

24
C t4

120
C � � �

�4
C � � �

D 1 � t

2
C t2

12
C 0 � t3 � t4

720
C � � � :
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From this we have

tet

et � 1
D et � 1�

1C t
2

C t 2

6
C t 3

24
C t 4

120
C � � �

�

D
�
1C t C t2

2
C t3

6
C t4

24
C � � �

��
1 � t

2
C t2

12
C 0 � t3 � t4

720
C � � �

�

D 1C t

2
C t2

12
C 0 � t3 � t4

720
C � � � :

Thus, we have B0 D 1; B1 D 1
2
; B2 D 1

6
; B3 D 0; B4 D � 1

30
; : : : .

In this “substitution” operation, the following proposition gives the “inverse”.

Proposition 1.10. For a formal power series A.t/ D a0 C a1t C a2t
2 C � � � , there

exists a formal power series B.t/ such that

B.0/ D 0; A.B.t// D t

if and only if

a0 D 0 and a1 is invertible.

In this caseB.t/ is unique, and we haveB.A.t// D t . In other wordsA.t/ andB.t/
are inverse to each other with respect to composition.

Proof. If B.t/ D b1t C b2t
2 C � � � exists and satisfies A.B.t// D t , then by

comparing the constant terms and the degree 1 terms, we have a0 D 0 and a1b1 D 1.
This shows that the condition is necessary.

Conversely, suppose that A.t/ satisfies a0 D 0 and a1 is invertible. We would
like to determine the coefficients of B.t/ D b1t C b2t

2 C b3t
3 C � � � satisfying

A.B.t// D t . We first see from the coefficient of t that a1b1 D 1. Since a1 is
invertible, we put b1 D a�11 . For n � 2, the coefficient of tn in A.B.t// equals the
coefficient of tn in

a1.B.t//C a2.B.t//
2 C a3.B.t//

3 C � � � C an.B.t//
n

since there is no term tn after this due to the fact that B.0/ D 0. This can be
written as

a1bn C .polynomial in a2; a3; : : : ; an; b1; b2; : : : ; bn�1/:

If b1; b2; : : : ; bn�1 are already determined, then we can determine bn uniquely from
the fact that the above formula equals 0 and a1 is invertible. This proves the existence
as well as the uniqueness of B.t/.
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The B.t/ obtained in this way satisfies B.0/ D 0, and b1 is invertible. We thus
see that there is a C.t/ (C.0/ D 0) such that

B.C.t// D t:

Then we substitute C.t/ for t in the formula t D A.B.t//, and use the fact that
B.C.t// D t to get

C.t/ D A.B.C.t/// D A.t/:

Thus, we have

B.A.t// D t:

ut
The formulas we mentioned earlier,

elog.1Ct / � 1 D t and log.1C .et � 1// D t;

can be interpreted as saying log.1 C t/ and et � 1 are inverse to each other with
respect to composition.

The derivative of formal power series
P1

nD0 antn, written d
dt

�P1
nD0 antn

�

(or .
P1

nD0 antn/0), is defined formally by term-by-term differentiation:

d

dt

 1X

nD0
ant

n

!
D
1X

nD1
nant

n�1 D a1 C 2a2t C 3a3t
2 C 4a4t

3 C � � � :

For example, .et /0 D et , and .log.1 C t//0 D 1 � t C t2 � t3 C � � � D 1
1Ct .

This definition satisfies the usual rule of derivatives regarding sum and product.
We give a proof of the product rule .f .t/g.t//0 D f 0.t/g.t/ C f .t/g0.t/. Let
f .t/ D P1

nD0 antn, and g.t/ D P1
nD0 bntn. Then

.f .t/g.t//0 D
 1X

nD0

 
nX

iD0
aibn�i

!
tn

!0
D
1X

nD1

 
n

nX

iD0
ai bn�i

!
tn�1

D
1X

nD1

 
nX

iD0
iai bn�i C

nX

iD0
.n � i/ai bn�i

!
tn�1

D
1X

nD1

 
nX

iD1
iai bn�i

!
tn�1 C

1X

nD1

 
n�1X

iD0
ai .n � i/bn�i

!
tn�1

D f 0.t/g.t/C f .t/g0.t/:
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Also, whenR � Q, the integral
Z t

0

1X

nD0
ant

n dt is defined formally by term-by-term

integration:

Z t

0

1X

nD0
ant

n dt D
1X

nD0
an
tnC1

nC 1
D a0t C a1

t2

2
C a2

t3

3
C a3

t4

4
C � � � :

In order to treat the generating function of Bernoulli numbers, it is convenient
to generalize formal power series to Laurent6 series (with a finite number of terms
with negative powers).

Definition 1.11. The set of formal Laurent series with coefficients in R,

1X

iD�N
ai t

i .for some integer N/;

is denoted by R..t//.

The sum and the product in R..t// are defined in the same way as in RŒŒt �� and with
these operations R..t// is a commutative integral domain that contains RŒŒt �� as a
subdomain. Also,

P1
iD�N ai t i is invertible inR..t// if and only if the first non-zero

coefficient a�N is invertible. These can be proved in the same way as in the proof of
Propositions 1.8 and 1.9. In particular, ifR is a field, then so is R..t//. Furthermore,
the formal derivative and integral (when R � Q) are also defined, and the quotient
rule .f .t/=g.t//0 D .f 0.t/g.t/ � f .t/g0.t//=g.t/2 holds. This follows from the
product rule. (Put f .t/=g.t/ D h.t/, and take the derivative of f .t/ D g.t/h.t/.)

1.4 The Generating Function of Bernoulli Numbers

Theorem 1.12. Let Bn .n D 0; 1; 2; : : : / be the Bernoulli numbers. We have the
following formula in Q..t//:

tet

et � 1
D
1X

nD0
Bn
tn

nŠ
:

As a matter of fact, the right-hand side belongs to QŒŒt ��, but we consider the
quotient of the formal power series tet by et � 1 in Q..t//.

6Pierre Alphonse Laurent (born on July 18, 1813 in Paris, France—died on September 2, 1854 in
Paris, France).
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Proof. It is sufficient to show .
P1

nD0 Bn t
n

nŠ
/.et � 1/ D tet . The formula in question

is obtained by dividing both sides by et � 1. From the definition of the product of
formal power series we have

 1X

nD0
Bn
tn

nŠ

!
.et � 1/ D

 1X

nD0

Bn

nŠ
tn

! 1X

nD1

tn

nŠ

!

D
1X

nD1

 
n�1X

iD0

Bi

i Š

1

.n � i/Š

!
tn

D
1X

nD1

 
n�1X

iD0

 
n

i

!
Bi

!
tn

nŠ
:

From the recurrence formula (1.2) we have
Pn�1

iD0
�
n
i

�
Bi D n for all n � 1. Thus

we have

1X

nD1

 
n�1X

iD0

 
n

i

!
Bi

!
tn

nŠ
D
1X

nD1

tn

.n � 1/Š
D tet ;

which concludes the proof. ut
Remark 1.13. Conversely, if we define Bn by the formula in the above theorem,
then we have

 1X

nD0
Bn
tn

nŠ

!
.et � 1/ D tet :

Expanding the left-hand side as in the above proof, and comparing it with the right-
hand side, we obtain the recurrence formula (1.2). This shows that Definition 1.1
and the definition using the generating function in Theorem 1.12 are equivalent.

Using the generating function, we can give a simpler proof of Proposition 1.4.

Proposition 1.14 (Proposition 1.4 revisited). If n is an odd integer greater than
or equal to 3, then Bn D 0.

Proof. It suffices to show that the formal power series tet

et�1 � t
2

does not have any
odd-degree terms. Since we have

tet

et � 1 � t

2
D t.et � 1C 1/

et � 1 � t

2
D t

et � 1
C t

2

and

.�t/e�t
e�t � 1

� .�t/
2

D �t
1 � et

C t

2
D t

et � 1 C t

2
;



22 1 Bernoulli Numbers

tet

et�1 � t
2

is invariant under the substitution t ! �t . This shows that the coefficients
of odd-degree terms are all 0. ut

Looking at Bn for even n in Table 1.1, we see that they are non-zero and, from
B2 on, the signs alternate. This may be seen from the formula for the value of the
Riemann zeta function �.s/ D P1

nD1 1
ns

at positive even integers (replace k by 2k
on p. 61) (4.4):

�.2k/ D .�1/k�1
2

.2�/2k

.2k/Š
B2k .k � 1/:

But here, we give a direct proof using the following recurrence formula for the
Bernoulli numbers due to Euler7 [33].

Proposition 1.15.

.2nC 1/B2n D �
n�1X

mD1

 
2n

2m

!
B2mB2.n�m/ .n � 2/:

Proof. By the previous proposition, if we subtract the term of degree 1 from the
generating function of the Bernoulli numbers, we obtain the generating function of
even indexed B2n:

tet

et � 1
� t

2
D
1X

nD0
B2n

t2n

.2n/Š
:

Let f .t/ be the left-hand side. Taking the derivative of f .t/ as was explained on
p. 19, we have

f .t/ � tf 0.t/ D f .t/2 � t2

4
:

Substituting
P1

nD0 B2n t2n

.2n/Š
for f .t/, we have

1X

nD0
.1 � 2n/B2n

t2n

.2n/Š
D
1X

nD0

 
nX

mD0

 
2n

2m

!
B2mB2.n�m/

!
t2n

.2n/Š
� t2

4
:

7Leonhard Euler (Born on April 15, 1707 in Basel, Switzerland—died on September 18, 1783 in
St. Petersburg, Russia).
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Comparing the coefficients of both sides, we have

.1 � 2n/B2n D
nX

mD0

 
2n

2m

!
B2mB2.n�m/

for n � 2. Since the terms form D 0 andm D n yield 2B2n, we subtract them from
both sides. Multiplying by �1, we obtain the formula in the proposition. ut
Corollary 1.16. For n � 1, we have .�1/n�1B2n > 0.

Proof. We prove this by induction. For n D 1, B2 D 1
6
> 0. Suppose that the

proposition is true for all integers less than n. By multiplying the formula in the
proposition by .�1/n�1, we get

.2nC 1/ � .�1/n�1B2n D
n�1X

mD1

 
2n

2m

!
.�1/m�1B2m.�1/n�m�1B2.n�m/:

The right-hand side is positive by assumption. Thus, .�1/n�1B2n > 0, which settles
the proof. ut

To conclude this chapter, we give expansions of tan x and cotx as alternative
generating functions for Bernoulli numbers.

Proposition 1.17. The Taylor expansion of tan x and the Laurent expansion of cotx
around x D 0 are

tanx D
1X

nD1
.�1/n�1.22n � 1/22nB2n x

2n�1

.2n/Š
;

cotx D 1

x
C
1X

nD1
.�1/n22nB2n x

2n�1

.2n/Š
:

The right-hand sides converge for jxj < �
2

and 0 < jxj < � , respectively.

Proof. The formal power series f .t/ in Proposition 1.15 can be written as f .t/ D
t
2

coth. t
2
/, where coth t D etCe�t

et�e�t is the hyperbolic cotangent. Replacing t by x, we
have

x

2
coth

�x
2

�
D
1X

nD0
B2n

x2n

.2n/Š
;

which is regarded as the Laurent expansion of coth. x
2
/. Replacing x by 2ix .i Dp�1/, dividing both sides by x, and using the fact i coth.ix/ D cotx, we obtain

the Laurent expansion of cotx. From the duplication formula for cotx which reads

cot 2x D 1

2
.cot x � tan x/ ;
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we have

tan x D cotx � 2 cot.2x/:

This shows that the Taylor expansion of tanx can be obtained from the expansion of
cotx. As for the radii of convergence, we see it from the fact that the poles nearest
to 0 are located at ˙�=2 and ˙� , respectively. ut
Remark 1.18. The coefficient of x2n�1

.2n�1/Š in the Taylor expansion of tan x,

Tn WD .�1/n�1.22n � 1/22nB2n
2n

;

is sometimes called the tangent number. It is a positive integer. The fact that it is
positive is seen from Corollary 1.16. We will prove that it is an integer in Remark 7.6
on p. 98. Knuth and Buckholtz [61] give another proof of this fact and a method to
compute Bernoulli numbers using Tn. See also Exercise 3.6 in Chap. 3.

Exercise 1.19. Compute the Bernoulli numbers Bn up to n D 12 by using
Theorem 1.6.

Exercise 1.20. Guess any pattern of prime numbers appearing in denominators of
Bernoulli numbers. (This is one of the topics covered in Chap. 3.)

Exercise 1.21. Compute the first several terms of the formal power series elog.1Ct /
and log.1C .et � 1// using the definition of composition.

Exercise 1.22. Prove the quotient rule

.f .t/=g.t//0 D .f 0.t/g.t/ � f .t/g0.t//=g.t/2

of formal Laurant series.

Exercise 1.23. Compute first several tangent numbers Tn, and check that they are
positive integers.



Chapter 2
Stirling Numbers and Bernoulli Numbers

In this chapter we give a formula that describes Bernoulli numbers in terms of
Stirling numbers. This formula will be used to prove a theorem of Clausen and
von Staudt in the next chapter. As an application of this formula, we also introduce
an interesting algorithm to compute Bernoulli numbers.

We first summarize the facts on Stirling numbers. Those Stirling numbers we
need in this chapter are of the second kind, but we also introduce Stirling numbers
of the first kind, which will be needed later.1

2.1 Stirling Numbers

We first define the Stirling numbers of the second kind, restricting ourselves to the
case where a combinatorial meaning can be given. We adopt Knuth’s notation [59].

Definition 2.1 (Stirling numbers of the second kind (Stirling’s subset
numbers)).

For positive integers n and m, define

{
n

m

}

WD the number of ways to divide a set of n elements into m
nonempty sets.

(Knuth proposes to read this as “n subset m”.)

1According to Knuth [59], Stirling (James, born in May, 1692 in Garden, Scotland—died on
December 5, 1770 in Edinburgh, Scotland) first introduced the second kind. The names “first kind”
and “second kind” are due to Nielsen (Niels, born on December 2, 1865 in Orslev, Denmark—died
on September 16, 1931 in Copenhagen, Denmark), who first used these names in his book on the
Gamma function [73, §26].

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__2, © Springer Japan 2014
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For example, there are seven ways to divide the set {1, 2, 3, 4} into two non-
empty sets:

f1g [ f2; 3; 4g; f2g [ f1; 3; 4g; f3g [ f1; 2; 4g; f4g [ f1; 2; 3g;
f1; 2g [ f3; 4g; f1; 3g [ f2; 4g; f1; 4g [ f2; 3g:

Thus,
{
4
2

} D 7.
From the definition,

{
n
m

} D 0 if m > n. Also, from the definition we have the
recurrence formula:

{
nC 1

m

}

D
{

n

m � 1

}

Cm

{
n

m

}

: (2.1)

This formula can be proved in the same way as in the combinatorial proof of the
relation of binomial coefficients:

�
nC1
m

� D �
n

m�1
� C �

n

m

�
. Suppose we divide a set

of n C 1 elements into m sets. We look at one particular element. If this element
forms a set by itself, there are

{
n

m�1
}

ways to divide the remaining n elements into
m � 1 sets. If this element belongs to a set with other elements, there are

{
n
m

}
ways

to divide other n elements into m sets, and there are m ways to put this particular
element into one of these sets, and thus there arem

{
n
m

}
ways altogether.

We now proceed to define
{
n

m

}
by the recurrence formula (2.1) for any integers

m and n.

Definition 2.2 (Stirling numbers of the second kind (general case)). For any

integers n and m, define

{
n

m

}

by the recurrence formula (2.1) with the initial

conditions

{
0

0

}

D 1, and

{
n

0

}

D
{
0

m

}

D 0 . n, m ¤ 0 /.

From (2.1), if we know two out of three values
{
nC1
m

}
,
{

n

m�1
}
, and

{
n

m

}
, we can

determine the third except for the case m D 0, where we cannot dividem
{
n
m

}
bym.

In this case the value
{
n

0

} D 0 is already given in the definition. We give the values of
{
n
m

}
for �7 � m; n � 7 in Table 2.1 on p. 27. It is easy to see how all values of

{
n
m

}

are determined from the initial conditions, considering how the positions .nC1;m/,
.n;m � 1/, and .n;m/ are located in the table.

The new definition of
{
n
m

}
coincides with the previous combinatorial definition

when n;m > 0. To see this, it suffices to verify
{
n
1

} D 1 .n � 1/ and
{
1
m

} D
0 .m � 2/ under the new definition. Since these values are obvious under the old
definition, and the recurrence formulas are the same for both definitions, the claim
follows. We put m D 1 in (2.1) to obtain

{
nC 1

1

}

D
{
n

0

}

C
{
n

1

}

:
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Table 2.1

{
n

m

}

mnn �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21
5 0 0 0 0 0 0 0 0 0 0 0 0 1 15 140
4 0 0 0 0 0 0 0 0 0 0 0 1 10 65 350
3 0 0 0 0 0 0 0 0 0 0 1 6 25 90 301
2 0 0 0 0 0 0 0 0 0 1 3 7 15 31 63
1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
�1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
�2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
�3 0 0 0 0 1 3 2 0 0 0 0 0 0 0 0
�4 0 0 0 1 6 11 6 0 0 0 0 0 0 0 0
�5 0 0 1 10 35 50 24 0 0 0 0 0 0 0 0
�6 0 1 15 85 225 274 120 0 0 0 0 0 0 0 0
�7 1 21 175 735 1624 1764 720 0 0 0 0 0 0 0 0

Putting n D 0 in this formula, we obtain
{
1
1

} D 1. Also, since
{
n
0

} D 0, we have
{
nC1
1

} D {
n
1

}
, and thus

{
n
1

} D 1 .n � 1/. Similarly,
{
1
m

} D 0 .m � 2/ can be verified
by putting n D 0 in (2.1).

Remark 2.3. Logically, we only need Definition 2.2. However, in order to make the
meaning clearer, we began with Definition 2.1.

We now define the Stirling numbers of the first kind.

Definition 2.4 (Stirling numbers of the first kind (Stirling’s cycle numbers)).
For positive integers n andm, define

�
n

m

	
WD number of permutations of n letters .elements of the sym-

metric group of degree n/ that consist of m disjoint cycles.

.We read “n cyclem”./

An element of the symmetric group of degree n (the group of all permutations
(bijections) of the set f1; 2; : : : ; ng) can be decomposed uniquely into the product
of disjoint cycles. (See any textbook of group theory, for example [42, Chap. I,
Th. 6.3].) Among the permutations of n letters, we count the number of permutations
that decompose into m disjoint cycles (including the cycles of length 1), and that
is


n
m

�
. For example, the permutations of four letters that decompose into two

disjoint cycles are
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.1/.2 3 4/; .1/.2 4 3/; .2/.1 3 4/; .2/.1 4 3/;

.3/.1 2 4/; .3/.1 4 2/; .4/.1 2 3/; .4/.1 3 2/;

.1 2/.3 4/; .1 3/.2 4/; .1 4/.2 3/:

Thus,
h
4
2

i
D 11.

It follows immediately from the definition that


n
n

� D 1 (only the identity),


n
1

� D
.n � 1/Š (number of n-cycles).

The Stirling numbers of the first kind satisfy the recurrence formula

�
nC 1

m

	
D
�

n

m � 1

	
C n

�
n

m

	
: (2.2)

We can see this in the same way as before. A permutation of n C 1 letters may fix
the letter n C 1. In this case the letter n C 1 forms a cycle by itself, and there are


n
m�1

�
permutations of the remaining n letters that decompose into m � 1 disjoint

cycles. A permutation that moves the letter n C 1 can be obtained by inserting the
letter n C 1 in one of the m disjoint cycles in the decomposition of permutations
of n letters. There are j ways to form a cycle of length j C 1 out of a cycle of
length j by inserting another letter. Therefore, there are n ways to insert the letter
nC1, and thus there are in total n



n
m

�
permutations that move the letter nC1. This

shows (2.2).
Just as we did for the Stirling numbers of the second kind, we define



n
m

�
for any

m and n as follows.

Definition 2.5 (Stirling numbers of the first kind (general case)). For any

integers n and m, define

�
n

m

	
by the recurrence formula (2.2) with the initial

conditions

�
0

0

	
D 1, and

�
n

0

	
D
�
0

m

	
D 0 . n, m ¤ 0 /.

Table 2.2 shows the values of


n
m

�
in the same range as Table 2.1. Readers will

certainly notice the remarkable relations between these two tables. As Knuth asserts,
there is only one kind of Stirling number, and the recurrence formulas (2.1) and (2.2)
are essentially the same formula (see the next proposition).

We list some formulas which Stirling numbers satisfy. There are more formulas,
but we only list the ones we need later in this book. For others, see [38] for example.

Proposition 2.6.

.1/

�
n

m

	
D

{�m
�n

}

:

.2/ xn D
nX

mD0

{
n

m

}

xm .n � 0/;
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Table 2.2
h n
m

i

mnn �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21
5 0 0 0 0 0 0 0 0 0 0 0 0 1 15 175
4 0 0 0 0 0 0 0 0 0 0 0 1 10 85 735
3 0 0 0 0 0 0 0 0 0 0 1 6 35 225 1624
2 0 0 0 0 0 0 0 0 0 1 3 11 50 274 1764
1 0 0 0 0 0 0 0 0 1 1 2 6 24 120 720
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
�1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
�2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
�3 0 0 0 0 1 3 1 0 0 0 0 0 0 0 0
�4 0 0 0 1 6 7 1 0 0 0 0 0 0 0 0
�5 0 0 1 10 25 15 1 0 0 0 0 0 0 0 0
�6 0 1 15 65 90 31 1 0 0 0 0 0 0 0 0
�7 1 21 140 350 301 63 1 0 0 0 0 0 0 0 0

where xm stands for

xm D x.x � 1/.x � 2/ � � � .x �mC 1/ .m > 0/; x0 D 1:

.3/ xn D .�1/n
nX

mD0
.�1/m

�
n

m

	
xm:

.4/

�
x
d

dx

�n
D

nX

mD1

{
n

m

}

xm
�
d

dx

�m
.n � 1/:

.5:1/ Form, n � 0,
X

l�0
.�1/l

{
n

l

} �
l

m

	
D .�1/mım;n:

.5:2/ Form, n � 0,
X

l�0
.�1/l

�
n

l

	{
l

m

}

D .�1/mım;n:

Here, ım;n stands for Kronecker’s delta; i.e., ım;n D 1 for m D n and ım;n D 0 for
m ¤ n. The sums on the left-hand sides of .5.1/ and .5.2/ are finite sums.
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.6/ Form, n � 0,

{
n

m

}

D .�1/m
mŠ

mX

lD0
.�1/l

 
m

l

!
ln:

.7/
.et � 1/m

mŠ
D
1X

nDm

{
n

m

}
tn

nŠ
.m � 0/:

.8/
tm

.1 � t/.1 � 2t/ � � � .1 �mt/
D
1X

nDm

{
n

m

}

tn .m � 1/:

.9/
.� log.1 � t//m

mŠ
D
1X

nDm

�
n

m

	
tn

nŠ
.m � 0/:

Proof. (1) Write an;m D {�m
�n

}
. It suffices to verify that an;m satisfies the same

recurrence formula with the same initial conditions as those for


n
m

�
. It is easy

for the initial conditions. In the recurrence formula (2.1), replacing m by �n
and n by �m, we have

{�mC 1

�n
}

D
{ �m

�n � 1

}

� n
{�m

�n
}

:

Adding n
{�m
�n

}
to both sides, we have

{�mC 1

�n
}

Cn
{�m

�n
}

D
{ �m

�n � 1

}

:

This implies an;m�1 C nan;m D anC1;m, which is nothing but the recurrence
formula (2.2).

(2) We use the same strategy. Namely, write xn D Pn
mD0 an;mxm, and verify that

an;m satisfies the same recurrence formula as
{
n
m

}
within the range m; n � 0

and the same initial conditions. It is easy for the initial conditions (put a0;m D 0

.m > 0/). From xmC1 D xm.x �m/ and xm � x D xmC1 Cmxm, we have

nC1X

mD0
anC1;mxm D xnC1 D xn � x

D
nX

mD0
an;mx

m � x
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D
nX

mD0
an;m.x

mC1 Cmxm/

D
nC1X

mD1
an;m�1xm C

nX

mD0
man;mx

m:

Comparing the coefficients of xm of both sides, we obtain the recurrence
formula (2.1). (Here, we put an;�1 D an;nC1 D 0.)

(3) is similarly proved and we omit it.
(4) We prove it by induction. For n D 1, both sides equal x d

dx
. Suppose the formula

is true for n. Then

�
x
d

dx

�nC1
D
�
x
d

dx

� nX

mD1

{
n

m

}

xm
�
d

dx

�m

D x

nX

mD1

{
n

m

} 
mxm�1

�
d

dx

�m
C xm

�
d

dx

�mC1!

D
nX

mD1
m

{
n

m

}

xm
�
d

dx

�m
C

nX

mD1

{
n

m

}

xmC1
�
d

dx

�mC1

D
nC1X

mD1

�
m

{
n

m

}

C
{

n

m � 1

}�
xm
�
d

dx

�m

D
nC1X

mD1

{
nC 1

m

}

xm
�
d

dx

�m
:

(To prove the next-to-last equality, we use
{
n

nC1
} D 0 and

{
n
0

} D 0.) This shows
that the formula is true for nC 1.

(5) We prove it using (2) and (3). For (5.1), we put the formula

xl D .�1/l
lX

mD0
.�1/m

�
l

m

	
xm

obtained by replacing n by l in (3) into the formula

xn D
nX

lD0

{
n

l

}

xl ;
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which is obtained by replacingm by l in (2). Then we have

xn D
nX

lD0

{
n

l

}

.�1/l
lX

mD0
.�1/m

�
l

m

	
xm

D
nX

mD0
.�1/m

nX

lDm
.�1/l

{
n

l

} �
l

m

	
xm:

Comparing the coefficients on both sides, we obtain (5.1). The formula (5.2)
can be obtained by substituting (2) into (3).

(6) We prove it by verifying that the right-hand side satisfies the recurrence formula
for

{
n

m

}
. Denote the right-hand side by an;m once again. It is easy to see that

a0;0 D 1 and an;0 D 0 for n � 1. (Define 00 D 1.) If n D 0, and m � 1, thenPm
lD0.�1/l

�
m

l

� D .1�1/m D 0. Thus, we have a0;m D 0. As for the recurrence
formula, we verify it as follows:

man;m C an;m�1

D .�1/m
.m � 1/Š

mX

lD0
.�1/l

 
m

l

!
ln C .�1/m�1

.m � 1/Š
m�1X

lD0
.�1/l

 
m � 1
l

!
ln

D .�1/m
.m � 1/Š

mX

lD0
.�1/l

{ 
m

l

!
�
 
m � 1

l

!}

ln

D .�1/m
.m � 1/Š

mX

lD0
.�1/l l

m

 
m

l

!
ln

D .�1/m
mŠ

mX

lD0
.�1/l

 
m

l

!
lnC1

D anC1;m:

One can prove (6) more naturally using the difference calculus. See for example
[53, §58].

(7) First, note that the right-hand side of (7) can be expressed as the sum from
n D 0. (If n < m, then

{
n
m

} D 0.) Substitute (6) into the right-hand side and
simplify:

r.h.s D
1X

nD0

{
.�1/m
mŠ

mX

lD0
.�1/l

 
m

l

!
ln

}
tn

nŠ

D .�1/m
mŠ

mX

lD0
.�1/l

 
m

l

! 1X

nD0

.lt/n

nŠ

!
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D .�1/m
mŠ

mX

lD0
.�1/l

 
m

l

!
elt

D .�1/m
mŠ

.1 � et /m

D .et � 1/m
mŠ

D l.h.s.

It can also be proved by writing .et � 1/m=mŠ D P1
nDm an;m t

n

nŠ
, and verifying

that an;m satisfies the same recurrence formula as
{
n
m

}
.

(8) Denote the right-hand side by fm. From the recurrence formula (2.1) for
{
n
m

}
,

we have (noting that
{
n
m

} D 0 for n < m)

fm D
1X

nDm

{
n

m

}

tn

D
1X

nDm

�{
n � 1
m � 1

}

Cm

{
n � 1

m

}�
tn

D t

1X

nDm�1

{
n

m� 1

}

tn Cmt

1X

nDm

{
n

m

}

tn

D tfm�1 Cmtfm:

Thus, fm D t
1�mt fm�1. From

{
n
1

} D 1 .n � 1/, we havef1 D t
1�t , which shows

that fm is equal to the left-hand side of (8).
(9) Writing .� log.1� t//m=mŠ D P1

nDm an;m t
n

nŠ
, and taking the derivatives of both

sides, we have

.� log.1 � t//m�1

.m � 1/Š � 1

1 � t D
1X

nDm
an;m

tn�1

.n � 1/Š :

From this we have

1X

nDm�1
an;m�1

tn

nŠ
D .1 � t/

1X

nDm
an;m

tn�1

.n � 1/Š :

This shows that an;m satisfies the same recurrence formula as


n
m

�
. It is easy to

verify the initial conditions. ut
Remark 2.7. Sometimes the Stirling numbers are defined by the formulas (2) and
(3) in this proposition.
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Using (5.1) and (7) in this proposition, we give a proof of the formulas that were
left unproved in the previous chapter (p. 17). We give a proof of

log.1C .et � 1// D t:

Once this is proved, the converse

elog.1Ct / � 1 D t

follows from Proposition 1.10. (Of course, we can prove it similarly using (9) in this
proposition.)

log.1C .et � 1// D
1X

mD1
.�1/m�1 .e

t � 1/m
m

D
1X

mD1
.�1/m�1.m � 1/Š

1X

nD0

{
n

m

}
tn

nŠ

D
1X

nD0

 1X

mD1
.�1/m�1

�
m

1

	{
n

m

}!
tn

nŠ

�
.m � 1/Š D

�
m

1

	�

D
1X

nD0
.�1/n�1ı1;n t

n

nŠ

D t:

2.2 Formulas for the Bernoulli Numbers Involving
the Stirling Numbers

A formula expressing the Bernoulli numbers as a finite sum involving the Stirling
numbers of the second kind has been known at least since Kronecker2 [62]. (See
also an account of von Staudt in Sect. 3.3.) By Proposition 2.6 (6), the Stirling
numbers can be expressed as a finite sum involving only the binomial coefficients.
Therefore, the Bernoulli numbers can be expressed as an elementary (i.e., involving
only binomial coefficients and simple polynomials) double sum. Gould [36] studied
various historical sources for analogous formulas, and he concluded that, at least
until around 1970, the very fact that there are closed finite formulas (without
involving infinite sums and integrals) for the Bernoulli numbers was not widely
known. He also conjectures that there is no “elementary” (in the above sense)

2Leopold Kronecker (born on December 7, 1823 in Liegnitz, Prussia (now Legnica, Poland)—died
on December 29, 1891 in Berlin, Germany).
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formula for the Bernoulli numbers expressed as a finite single sum. As far as we
know, such a formula has not been discovered.

We prove the following formula.

Theorem 2.8.

Bn D .�1/n
nX

mD0

.�1/mmŠ{n
m

}

mC 1
.n � 0/:

Proof. Rewriting the generating function of Bn as

tet

et � 1
D t

1� e�t
D � log .1 � .1 � e�t //

1 � e�t ;

and substituting 1 � e�t .D t C � � � / for t in � log.1 � t/ D P1
mD1 t

m

m
, we have

1X

nD0
Bn
tn

nŠ
D � log .1 � .1 � e�t //

1 � e�t

D
1X

mD1

.1 � e�t /m�1
m

D
1X

mD0

.�1/m.e�t � 1/m
mC 1

D
1X

mD0

.�1/mmŠ
mC 1

1X

nDm

{
n

m

}
.�t/n
nŠ

(Proposition 2.6 (7))

D
1X

nD0
.�1/n

 
nX

mD0

.�1/mmŠ{n
m

}

mC 1

!
tn

nŠ
:

Comparing the coefficients of
tn

nŠ
on both sides, we obtain the formula. ut

Remark 2.9. By Proposition 2.6 (6), we can also write

Bn D .�1/n
nX

mD0

1

mC 1

mX

lD0
.�1/l

 
m

l

!
ln:

Proposition 2.10 (A variation of Theorem 2.8).

Bn D
nX

mD0

.�1/mmŠ{nC1
mC1

}

mC 1
.n � 0/:
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Proof. We can prove this by computing the generating function on the right-hand
side. Here, we use Theorem 2.8. From the recurrence formula (2.1) for the Stirling
numbers we have

{
nC1
mC1

} D {
n
m

} C .mC 1/
{

n
mC1

}
, and thus

r.h.s. D
nX

mD0

.�1/mmŠ �{n
m

} C .mC 1/
{

n

mC1
}�

mC 1
:

On the other hand, since
h
mC1
1

i
D mŠ, it follows from Proposition 2.6 (5.1) that

nX

mD0

.�1/mmŠ.mC 1/
{

n
mC1

}

mC 1
D

nX

mD0
.�1/m

�
mC 1

1

	{
n

mC 1

}

D ı1;n:

Hence, the right-hand side of the proposition equals

nX

mD0

.�1/mmŠ{n
m

}

mC 1
C ı1;n D .�1/nBn C ı1;n:

(Theorem 2.8.) For n D 1, this formula equals �B1 C 1 D 1
2

D B1. For n ¤ 1, it
equals .�1/nBn, which coincides with Bn due to Proposition 1.4 on p. 10. ut

This proposition can be interpreted as the following algorithm, which first
appeared in the study of multiple zeta values at non-positive integers by S. Akiyama
and Y. Tanigawa [2]. First, define the 0th row by 1, 1

2
, 1
3
, 1
4
, 1
5
; : : : . (We count the

number starting from 0 instead of 1 for convenience.) Then, we define the first row
by 1 � .1 � 1

2
/, 2 � . 1

2
� 1

3
/, 3 � . 1

3
� 1

4
/; : : : . In general, if we denote by an;m the

mth entry of the nth row, define the mth entry of the .n C 1/st row anC1;m by
.m C 1/ � .an;m � an;mC1/. In other words, we take the difference of the adjacent
entries and multiply by (position of the entry C1), and place them in the next row.
Then, the leftmost entries of the rows, 1, 1

2
, 1
6
, 0, � 1

30
; : : : , are nothing but the

Bernoulli numbers.
Taking Proposition 2.10 into account, it suffices to show the following proposi-

tion to prove this fact.

Proposition 2.11. Given a0;m .m D 0; 1; 2; : : : /, define an;m .n � 1/ by

an;m D .mC 1/ � .an�1;m � an�1;mC1/ .n � 1;m � 0/:

Then,

an;0 D
nX

mD0
.�1/mmŠ

{
nC 1

mC 1

}

a0;m:
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1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
6

1
6

3
20

2
15

5
42

3
28

7
72

0 1
30

1
20

2
35

5
84

5
84

− 1
30

− 1
30 − 3

140 − 1
105 0

0 − 1
42

− 1
28

− 4
105

1
42

1
42

1
140

0 1
30

− 1
30

Proof. We use the generating function

gn.t/ D
1X

mD0
an;mt

m:

By the recurrence formula for an;m, we have for n � 1

gn.t/ D
1X

mD0
.mC 1/.an�1;m � an�1;mC1/tm

D d

dt
.

1X

mD0
an�1;mtmC1/� d

dt
.

1X

mD0
an�1;mC1tmC1/

D d

dt
.tgn�1.t// � d

dt
.gn�1.t/ � an�1;0/
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D gn�1.t/C .t � 1/ d
dt
.gn�1.t//

D d

dt
..t � 1/gn�1.t//:

Thus, if we put .t � 1/gn.t/ D hn.t/, we have

hn.t/ D .t � 1/ d
dt
.hn�1.t// .n � 1/:

From this we obtain

hn.t/ D
�
.t � 1/ d

dt

�n
.h0.t//:

It follows from Proposition 2.6 (4) (with x replaced by t � 1) that

hn.t/ D
nX

mD0

{
n

m

}

.t � 1/m
�
d

dt

�m
h0.t/:

Putting t D 0, we have

�an;0 D
nX

mD0

{
n

m

}

.�1/mmŠ.a0;m�1 � a0;m/

D
n�1X

mD0

{
n

mC 1

}

.�1/mC1.mC 1/Ša0;m �
nX

mD0

{
n

m

}

.�1/mmŠa0;m

D �
nX

mD0
.�1/mmŠa0;m

�
.mC 1/

{
n

mC 1

}

C
{
n

m

}�

D �
nX

mD0
.�1/mmŠ

{
nC 1

mC 1

}

a0;m:

This proves the formula in the proposition. ut
Remark 2.12. We note that, if we use instead the algorithm

anC1;m D .mC 1/ � .an;mC1 � an;m/;

we obtain Bernoulli numbers with the other convention (B1 D 1
2
).

Exercise 2.13. Prove the following.

(1)
{
n
m

} D 0 when mn < 0.
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(2)
{�1
�m

} D .m � 1/Š for m D 1; 2; 3; : : :.

(3)
{
nC1
n

} D { �n
�n�1

} D n.nC1/
2

for n D 0; 1; 2; : : :.

Exercise 2.14. Formulate the statements corresponding to the previous exercise for
the Stirling numbers of the first kind, and prove them.

Exercise 2.15. Prove the formula elog.1Ct / � 1 D t for the composition of formal
power series by using Proposition 2.6 (9).

Exercise 2.16. Prove the following formula for the sum of powers:

nX

iD1
ik D

nX

jD0
j Š

{
k

j

} 
nC 1

j C 1

!
:

Exercise 2.17. Compute the first several Bn using the formula in Theorem 2.8.

Exercise 2.18. In the Akiyama–Tanigawa triangle (on p. 37), what are the numbers
next to the leftmost entries?



Chapter 3
Theorem of Clausen and von Staudt,
and Kummer’s Congruence

3.1 Theorem of Clausen and von Staudt

The denominators of the Bernoulli numbers can be completely determined. This is
due to Clausen1 [26] and von Staudt2 [96]. More precisely, the “fractional part” of
Bn is given by the following theorem. This result gives a foundation for studying
p-adic properties of the Bernoulli numbers. It also plays a fundamental role in the
theory of p-adic modular forms through the Eisenstein3 series [82].

Theorem 3.1. For n D 1 and for any even integer n � 2, Bn can be written as

Bn D �
X

pWprime
p�1jn

1

p
C Cn .Cn is an integer/:

Here, the sum runs over all the prime numbers p such that p � 1 divides n. (For
integers a and b, the symbol a j b means that a divides b, and a − b means that a
does not divide b.)

Proof. The statement is clearly true for n D 1. Let n be an even integer greater
than or equal to 2. Since the numerator of each term .�1/mmŠ{n

m

}
=.m C 1/ in the

right-hand side of the formula in Theorem 2.8 is an integer, the only prime numbers

1Thomas Clausen (born on January 16, 1801 in Snogebaek, Denmark—died on May 23, 1885 in
Dorpat, Russia (now Tartu, Estonia)).
2Karl Georg Christian von Staudt (born on January 24, 1798 in Imperial Free City of Rothenburg
(now Rothenburg ob der Tauber, Germany)—died on June 1, 1867 in Erlangen, Bavaria (now
Germany).
3Ferdinand Gotthold Max Eisenstein (born on April 16, 1823 in Berlin, Germany—died on October
11, 1852 in Berlin, Germany).

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__3, © Springer Japan 2014
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that contribute to the denominator of Bn are divisors of mC 1. It follows from this
that a prime number p such that p > nC 1 cannot be a divisor of the denominator
of Bn.

First suppose thatmC 1 is a composite number, and letmC 1 D ab, 1 < a; b <
m. If a ¤ b, then ab divides mŠ, and thus .�1/mmŠ{n

m

}
=.m C 1/ is an integer.

If a D b and 2a � m, then a and 2a divide mŠ, and thus a2 D m C 1 divides mŠ.
This implies that .�1/mmŠ{n

m

}
=.m C 1/ is an integer. If a D b and 2a > m, then

2a � mC 1, and thusmC 1 D a2 � 2a � mC 1. This implies a2 D 2a, or a D 2.
In this case m D 3, and this term appears when n � 3. In this case (n even), from
Proposition 2.6 (6) on p. 30 we have

.�1/mmŠ
{
n

m

}

D
3X

lD0
.�1/l

 
3

l

!
ln

D 0� 3C 3 � 2n � 3n

� 1� .�1/n � 0 mod 4:

(For integers a; b and a natural number4 n, if nj.a � b/, then we say that a is
congruent to b modulo n, and we write a � b mod n. If n − .a � b/, then we
write a 6� b mod n.) This shows that .�1/mmŠ{n

m

}
=.mC 1/ is an integer. We have

thus shown that ifmC1 is a composite number, .�1/mmŠ{n
m

}
=.mC1/ is an integer.

Next, suppose that mC 1 equals a prime number p. Since p � 1 � n, it follows
from Proposition 2.6 (6) that

.�1/mmŠ
{
n

m

}

D
p�1X

lD0
.�1/l

 
p � 1
l

!
ln

�
p�1X

lD0
ln mod p (since

�
p�1
l

� � .�1/l mod p)

�
{�1 mod p if p � 1 divides n,

0 mod p if p � 1 does not divide n.
(3.1)

The last congruence can be seen as follows. If p � 1 divides n, then the fact thatPp�1
lD0 ln � p � 1 � �1 mod p follows from Fermat’s5 Little Theorem; i.e.,

lp�1 � 1 mod p if l and p are relatively prime. If p � 1 does not divide n,
then choose c such that cn 6� 1 mod p (for example, a primitive root modp).
When l runs from 1 through p � 1, cl mod p also runs from the classes of 1
through p � 1, and thus we have

Pp�1
lD0 .cl/n � Pp�1

lD0 ln. Therefore, we have

4Throughout the book, the term “natural number” means a positive integer.
5Pierre de Fermat (born on August 17, 1601 in Beaumont-de-Lomagne, France—died on January
12, 1665 in Castres, France).
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.cn � 1/
Pp�1

lD0 ln � 0 mod p, and
Pp�1

lD0 ln � 0 mod p. We thus see that if
m C 1 D p, .�1/mmŠ{n

m

}
=.mC 1/ is an integer if p � 1 does not divide n. If, on

the other hand, p � 1 divides n, then .�1/mmŠ{n
m

}
=.mC 1/ is not an integer but the

above congruence shows that it becomes an integer if we add 1
p

to it. This completes
the proof. ut

The theorem of Clausen and von Staudt completely describes the denominators
of Bernoulli numbers. Then how about the numerators? Not much is known about
this. Here we briefly explain the notion of (ir)regular primes, which are related to
the numerators of Bernoulli numbers.

A prime p is said to be regular if p does not divide any of the numerators of the
Bernoulli numbers B2;B4; : : : ; Bp�3. Otherwise p is called irregular. According
to Kummer, p is regular if and only if the class number of the pth cyclotomic field
Q.�p/ is not divisible by p (cf. Washington [100, §5.3]). It is well known that this
work of Kummer originated from his attempt to solve Fermat’s last theorem. For
this topic, see [31] or [79].

For instance, there are only three irregular primes less than 100: 37; 59; 67.
Kummer determined (by hand!) all irregular primes less than or equal to 163, and
moreover determined the indices of Bn whose numerators are divisible by a given
irregular prime. The next few irregular primes after 67 are 101; 103; 131; 149; 157,
and pD 157 is the first prime which divides two of the numerators of
B2;B4; : : : ; Bp�3 (see the table in [100] for irregular primes p less than 4,001
and indices of Bernoulli numbers divisible by p).

3.2 Kummer’s Congruence

The goal of this section is to prove the following theorem, which plays a crucial role
in the arithmetic of cyclotomic fields and the theory of p-adic L-functions. For a
prime numberp, we denote by Z.p/ the ring of rational numbers whose denominator
is prime to p. Using such a ring, it is easy to describe how many times p divides the
numerator of a rational number, or decide whether or not two rational numbers are
congruent modulo a power of p. The set of invertible elements, Z�.p/, of the ring Z.p/
is the set of rational numbers whose numerator and denominator are both relatively
prime to p. For two elements x and y, we say that the congruence relation x � y

mod pa holds if the numerator of x � y is divisible by pa.

Theorem 3.2. Let p be an odd prime.

(1) Suppose n is a positive even integer not divisible by p � 1. Then we have

Bn

n
2 Z.p/:
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(2) Let a � 1 be a natural number and m; n be two even integers that satisfy
a C 1 � m � n. Suppose that m and n are not divisible by p � 1, and that
n � m mod .p � 1/pa�1. Then we have

Bn

n
� Bm

m
mod pa:

If we remove the condition m � a C 1, then the above congruence relation
does not hold in general (except for the case a D 1, where m � a C 1 gives no
restriction) and a certain correction is necessary (see Theorem 11.6 on p. 198 for a
more precise statement). This corrected version is what is known today as Kummer’s
congruence. However, the version that Kummer6 himself gave was different (except
when a D 1) from these theorems we are presenting (see [64]). The formulation of
Kummer’s congruence seems to have been changed since a natural interpretation
of the congruence by p-adic integrals was discovered. Kummer’s own proof is
elementary, and we can derive the above congruence relation using his method. The
complete form of the congruence will be proved using a p-adic integral in Chap. 11.

We first prove the following lemma.

Lemma 3.3. Let p be an odd prime number, and let '.t/ 2 Z.p/ŒŒt ��; r; s 2 Z.p/.
Develop the formal power series obtained by substituting ert � est D .r � s/t C
.r2�s2/

2
t2 C � � � for t in '.t/ W

'.ert � est / D
1X

nD0
An
tn

nŠ
:

Then we have An 2 Z.p/, and for any m; a .m � a � 1/, the congruence

AmC.p�1/pa�1 � Am mod pa

holds.

Proof. Write '.t/ D P1
kD0 aktk . Then, we have

'.ert � est / D
1X

kD0
ak.e

rt � est /k

D
1X

kD0
ak

kX

hD0
.�1/h

 
k

h

!
ert.k�h/esth

D
1X

kD0

kX

hD0
.�1/hak

 
k

h

!
e.r.k�h/Csh/t :

6Ernst Eduard Kummer (born on January 29, 1810 in Sorau, Brandenburg, Prussia (now
Germany)—died on May 14, 1893 in Berlin, Germany).
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We obtain Am by taking the derivativem times with respect to t , and putting t D 0:

Am D
1X

kD0

kX

hD0
.�1/hak

 
k

h

!
.r.k � h/C sh/m:

Since .ert � est /k begins with the term tk , the sum with respect to h in the above
formula equals 0 if k > m. Thus, the above sum with respect to k is a finite sum.

Replacing m by mC .p � 1/pa�1, and subtracting Am, we have

AmC.p�1/pa�1 � Am

D
1X

kD0

kX

hD0
.�1/hak

 
k

h

!
.r.k � h/C sh/m..r.k � h/C sh/.p�1/pa�1 � 1/:

If r.k � h/C sh is divisible by p, then since m � a, .r.k � h/C sh/m is divisible
by pa. If r.k � h/ C sh is not divisible by p, then .r.k � h/ C sh/.p�1/pa�1 � 1

is divisible by pa since the order of .Z=paZ/� is .p � 1/pa�1. In either case the
right-hand side is divisible by pa, and thus

AmC.p�1/pa�1 � Am mod pa

holds. ut
Proof (of Theorem 3.2). For a natural number c ¤ 1 relatively prime to p, consider

'.t/ D 1

t
� c

.1C t/c � 1 :

Since c 2 Z�.p/, the expression

.1C t/c � 1

c
D t C c � 1

2
t2 C � � �

belongs to Z.p/ŒŒt ��, and it is invertible in Z.p/..t// (at the end of Sect. 1.3 on p. 20).
From

c

.1C t/c � 1 D 1

t
� c � 1

2
C c2 � 1

12
t C � � � ;

we have '.t/ 2 Z.p/ŒŒt ��. Since

t

et � 1
D tet

et � 1
� t D 1 � t

2
C
1X

nD2
Bn
tn

nŠ
;
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we have

'.et � 1/ D 1

et � 1 � c

ect � 1
D 1

t

�
t

et � 1
� ct

ect � 1
�

D �1 � c

2
C
1X

nD2

�
.1 � cn/

Bn

n
� tn�1

.n � 1/Š

�
:

Thus it follows from the lemma (r D 1; s D 0) that .1�cn/Bn
n

2 Z.p/, and if n � m

mod .p � 1/pa�1, then

.1 � cn/Bn
n

� .1 � cm/
Bm

m
mod pa:

Here, we choose c to be a primitive root modulo p (c mod p is a generator of
.Z=pZ/�). If n is not divisible by p � 1, then m is not divisible by p � 1, and
we have 1 � cn; 1 � cm 2 .Z=paZ/� with 1 � cn � 1 � cm mod pa. This gives
Bn
n
; Bm
m

2 Z.p/ and the congruence in the theorem. ut

3.3 Short Biographies of Clausen, von Staudt and Kummer

Thomas Clausen, an astronomer and a mathematician, was born on January 16, 1801
in Snogbæk, Denmark.7 He was educated by a local pastor Georg Holst before he
got a position as an assistant at the Altona observatory, where Schumacher8 was the
head. He then moved to the Joseph von Utzschneider Optical Institute in Munich as
the successor to Fraunhofer,9 who is famous for “Fraunhofer lines” in physics and
optics. In 1842, he was appointed observer at the Dorpat observatory in Russia, and
there he remained until his retirement in 1872. The Copenhagen Academy awarded
Clausen a prize for his work on the determination of the orbit of the 1770 comet
(published in Astronomische Nachrichten in 1842). Bessel10 highly praised this

7The description in this section is based on Biermann [17, 18], Noether [74], Hensel [40], and
Lampe [65].
8Heinrich Christian Schumacher (born on September 3, 1780 in Bramstedt, Germany—died in
1850). His first degree was in law, and after that he studied astronomy under Gauss and became
an astronomer. He launched the journal Astronomische Nachrichten, which is famous for the
contributions of Abel and Jacobi on the theory of elliptic functions, as the managing editor.
Incidentally, Abel once met Clausen during his stay in Hamburg (cf. [19]).
9Joseph von Fraunhofer (born on March 6, 1787 in Straubing, Germany—died on June 7, 1826 in
Munich, Germany).
10Friedrich Wilhelm Bessel (born on July 22, 1784 in Minden, Westphalia (now Germany)—died
on March 17, 1846 in Königsberg, Prussia (now Kaliningrad, Russia)), an astronomer, who is
famous for the Bessel function.
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work. In 1854 he received through Gauss11 a corresponding membership from the
Göttingen Academy. In 1856 he received the same class of membership from the St.
Petersburg Academy. Clausen published approximately 150 papers on a multitude
of subjects. Still today one sees his name in such terms as Clausen’s identity12 in
the theory of hypergeometric series [23], and Clausen’s function (a variant of the
dilogarithm function) [24]. Also, he computed � up to 250 decimal places,13 and
found the prime factorization of the sixth Fermat number 22

6 C 1.14 The actual
factorization is 22

6 C 1 D 274177 � 67280421310721 and, as Clausen commented,
the second factor of this is the largest prime number known to that day (letter to
Gauss on January 1, 1855). He wrote to his friend and astronomer C. A. F. Peters
in Königsberg that he had found a new method of factoring a large number, and as
an example he wrote .1017 � 1/=9 D 2071723 � 5363222357, which was not known
before and had taken some interest in connection to the period length of the periodic
decimal of 1=p. However, he never published his “new method” and we have no
idea what kind of method he had found.

Clausen never married, and died on May 23, 1885 in Dorpat, now Tartu in
Estonia.

Karl Georg Christian von Staudt was born on January 24, 1798 in Rothenburg-
ob-der-Tauber, Germany, as a son of a wealthy family. From 1818 to 1822, von
Staudt studied mathematics at Göttingen under Gauss. He was also interested in
astronomy (at that time Gauss was also the head of the observatory), and, as early
as in 1820, he computed the positions of Mars and the asteroid Pallas, and in 1821
he computed the orbit of a comet. The accuracy of the computation was highly
praised (described as an “outstanding proficiency”) by his master Gauss. He had
been holding positions as a high-school teacher at Würzburg and Nürnberg until he
was appointed professor at Erlangen in 1835, where he remained throughout his life.

His main contribution in mathematics is in Geometrie der Lage (1847, Geometry
of Position), which is the title of his book and is now called projective geometry. As
for Bernoulli numbers, he discovered not only the theorem introduced in Sect. 3.1
[96, found independently of Clausen], but also, according to Noether15 [74], several
other results including the formula in Theorem 2.8 (p. 35) and even Kummer’s

11Johann Carl Friedrich Gauss (born on April 30, 1777 in Brunswick, Duchy of Brunswick (now
Germany)—died on February 23, 1855 in Göttingen, Hanover (now Germany)).
12
2F1.˛; ˇ; ˛C ˇC 1

2
I x/2 D 3F2

�
2˛;2ˇ;˛Cˇ

˛CˇC
1
2 ;2˛C2ˇ

I x
�

13It was correct up to 248 decimal places. This was the world record from 1847 to 1853. For a
history of computation of � , see for example [13].
14 Fermat conjectured that all the numbers of the form 22

n C 1 (which are called Fermat numbers)
are prime. This is true for n � 4, but Euler showed in 1732 that this is not the case for n D 5 by
giving the factorization. As of November 2013, it is known that every Fermat number 22

n C 1 with
5 � n � 32 is not prime. (Complete factorization is known up to n D 11.)
15Max Noether (born on September 24, 1844 in Mannheim, Germany—died on December 13,
1921 in Erlangen, Germany).
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congruence (modulo prime number case). He presented these results in two papers16

submitted to Erlangen University on the occasion of becoming a member of the
senate and the faculty. These results, however, caught no attention because, as
Noether put it, von Staudt was so modest and did not care about the circulation of
the papers (cf. [88] for the contents of these two papers). He also published a paper
[97] on a proof of the “fundamental theorem on algebra” of Gauss (Clausen also
wrote a paper on the same subject [25]). He wrote up a paper one week before his
death, while suffering from asthma. He died on June 1, 1867. Noether quotes from
the funeral address the passage “his endurance, prepared for the lifelong effort, not
for months or years, to pursue a distinct goal”, which he thinks describes well the
character of von Staudt.

Ernst Eduard Kummer was born on January 29, 1810 in Sorau, Germany
(now Zary, Poland). Kummer entered the Gymnasium in Sorau in 1819 and
the University of Halle in 1828. He soon gave up his original study, Protestant
theology, under the influence of the mathematics professor Scherk17 and applied
himself to mathematics. In 1831 he received a prize for his essay on the question
posed by Scherk: “De cosinuum et sinuum potestatibus secundum cosinus et sinus
arcuum multiplicium evolvendis”.18 Kummer taught from 1832 until 1842 at the
Gymnasium in Liegnitz (now Legnia, Poland), mainly mathematics and physics.
His students during this period included Kronecker and Joachimsthal,19 both of
whom became interested in mathematics through Kummer’s encouragement and
stimulation. In particular, the influence of Kummer upon Kronecker was enormous
and they became lifelong friends. One can see the fragments of their friendship in
their correspondence collected in Kummer’s Werke.

The subjects of Kummer’s mathematical study are rather clearly divided accord-
ing to the periods. The first is in function theory, the second in number theory
and the third in geometry. His period of Gymnasium teaching coincided with his
creative period in function theory. The most important was the famous paper on
the hypergeometric series [63]. Kummer sent this paper to Jacobi, which led to his
scientific connection with Jacobi and with Dirichlet.20 In 1839, through Dirichlet’s
proposal, Kummer became a member of the Berlin Academy of Sciences, and in
1840, he married Ottilie Mendelssohn, a cousin of Dirichlet’s wife.21 (She died in
1848 and later Kummer married Bertha Cauer.) On the recommendation of Dirichlet
and Jacobi, Kummer was appointed full professor at the University of Breslau (now

16Under the same title “De numeris Bernoullianis”, Erlangen, 1845.
17Heinrich Ferdinand Scherk (born on October 27, 1798 in Poznan, Poland—died on October 4,
1885 in Bremen, Germany), he also wrote a paper on Bernoulli numbers [81].
18“On expansions of powers of cosine and sine by cosine and sine with their arguments multiplied.”
19Ferdinand Joachimsthal (born on March 9, 1818 in Goldberg, Prussian Silesia (now Zlotoryja,
Poland)—died on April 5, 1861 in Breslau, Germany (now Wroclaw, Poland)).
20Johann Peter Gustav Lejeune Dirichlet (born on February 13, 1805 in Düren, French Empire
(now Germany)—died on May 5, 1859 in Göttingen, Hanover (now Germany)).
21Dirichlet’s wife Rebecca Mendelssohn is a younger sister of the composer Felix Mendelssohn.
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Wroclaw, Poland) in 1842. His second period of research, dominated especially by
number theory and lasting approximately 20 years, began about this time.

In 1855, Gauss died and Dirichlet left Berlin to succeed him at Göttingen. In the
same year Kummer was appointed professor at Berlin to succeed Dirichlet.

In his third period, starting from around 1860, he studied geometry, his most
famous work being the study of the quartic surface known today as the Kummer
surface. (He also published papers on the arithmetic of cyclotomic fields until the
mid 1870s.)

Kummer’s popularity as a professor, based not only on the clarity of his lectures
but on his charm and sense of humor as well, attracted a great number of students.
Kummer was first Gutachter for 39 dissertations at Berlin. Of his doctoral students,
seventeen later became university teachers, several of them famous mathematicians:
Fuchs,22 du Bois-Reymond,23 Gordan,24 Bachmann,25 Schwarz26 (Kummer’s son
in law), Cantor,27 Schönflies.28 Kummer was also second Gutachter for thirty
dissertations at Berlin.

He retired in 1883 and was succeeded by Fuchs. Kummer died on May 14 in
1893, 10 years after his retirement.

Exercise 3.4. Compute the integer Cn in Theorem 3.1 for several n. What is the
first n such that Cn ¤ 1? (Note that limn!1 jCnj D 1 because Cn is very close
to Bn.)

Exercise 3.5. Suppose n is even and n � 4. Prove the following.

(1) 2Bn 2 Z.2/.
(2) The congruence 2Bn � 1 mod 4 holds. Hint: Use the formula in Theorem 2.8

and look at each term on the right modulo 4.

Exercise 3.6. Use Theorems 3.1 and 3.2 (1) to prove that the tangent number Tn at
the end of Chap. 1 is an integer.

22Lazarus Immanuel Fuchs (born on May 5, 1833 in Moschin, Prussia (now Poznan, Poland)—died
on April 26, 1902 in Berlin, Germany).
23Paul David Gustav du Bois-Reymond (born on December 2, 1831 in Berlin, Germany—died on
April 7, 1889 in Freiburg, Germany).
24Paul Albert Gordan (born on April 27, 1837 in Breslau, Germany (now Wroclaw, Poland)—died
on December 21, 1912 in Erlangen, Germany).
25Paul Gustav Heinrich Bachmann (born on June 22, 1837 in Berlin, Germany—died on March
31, 1920 in Weimar, Germany).
26Karl Herman Amandus Schwarz (born on January 25, 1843 in Hermsdorf, Silesia (now
Poland)—died on November 30, 1921 in Berlin, Germany).
27Georg Ferdinand Ludwig Philipp Cantor (born on March 3, 1845 in St. Petersburg, Russia—died
on January 6, 1918 in Halle, Germany).
28Arthur Moritz Schönflies (born on April 17, 1853 in Landsberg an der Warthe, Germany (now
Gorzów, Poland)—died on May 27, 1928 in Frankfurt am Main, Germany).



Chapter 4
Generalized Bernoulli Numbers

In this chapter we introduce generalized Bernoulli numbers and Bernoulli
polynomials. Generalized Bernoulli numbers are Bernoulli numbers twisted by
a Dirichlet character, which we define at the beginning of the first section. Bernoulli
polynomials are generalizations of Bernoulli numbers with an indeterminate. These
two generalizations are related, and they will appear in various places in the
following chapters.

4.1 Dirichlet Characters

Let us define a Dirichlet character as a map from the set of integers Z to the set of
complex numbers C.

Definition 4.1. Let f be a natural number. A function � W Z �! C is called a
Dirichlet character modulo f if it satisfies the following three conditions:

(i) � is multiplicative; i.e. �.ab/ D �.a/�.b/ for any a; b 2 Z.
(ii) The value of �.a/ only depends on a mod f ; i.e. �.a C bf / D �.a/ for any

a; b 2 Z.
(iii) If .a; f / D 1, then �.a/ ¤ 0, and if .a; f / ¤ 1, then �.a/ D 0. Here, .a; f /

stands for the greatest common divisor of a and f .

In particular, the function �0 defined by

�0.a/ D
{
1 .a; f / D 1;

0 .a; f / ¤ 1

satisfies the three conditions. We call this the trivial character (modulo f ).

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__4, © Springer Japan 2014
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For a natural number f , let '.f / be the number of integers from 1 to f which
are relatively prime to f . This is called the Euler (totient) function. If a is an integer
relatively prime to f , then we have

a'.f / � 1 mod f:

This is known as Euler’s theorem in elementary number theory. For a proof see for
example Ireland and Rosen [50].

A Dirichlet character � modulo f satisfies the following properties.

Lemma 4.2. (1) If a � 1 mod f , then �.a/ D 1.
(2) If .a; f / D 1, then �.a/'.f / D 1.
(3)

X

a mod f

�.a/ D
{
'.f / if � D �0 (trivial character),
0 if � ¤ �0.

The summation is taken over all representatives a modulo f .

Proof. (1) Putting b D 1 in condition (i), we have �.a/ D �.a/�.1/. If a �
1 mod f , then we have �.a/ ¤ 0 from (iii). Thus, we have �.1/ D 1, which in
turn implies �.a/ D 1 from (ii).

(2) Suppose .a; f / D 1. From Euler’s theorem we have a'.f / � 1 mod f . Thus,

�.a/'.f / D �.a'.f // D �.1/ D 1:

(3) Since '.f / is the number of a mod f such that .a; f / D 1, the assertion
holds if � is the trivial character. If � is not the trivial character, then there
exists b such that �.b/ ¤ 0; 1. If we put S D P

a mod f �.a/, then we have
�.b/S D P

a mod f �.b/�.a/ D P
a mod f �.ba/. When a runs through all

the representatives modf , so does ba since .b; f / D 1. Thus, the sum on the
right equals S . This implies .1��.b//S D 0 and hence S D 0, as 1��.b/ ¤ 0.

ut
We note that a Dirichlet character defines naturally by definition a character of

the multiplicative group .Z=f Z/�.
Now suppose f 0 j f , and let �0 be a Dirichlet character modulo f 0. If � satisfies

�.a/ D �0.a/ if .a; f / D 1;

then we say that � is defined modf 0. For a Dirichlet character � modulo f , the
smallest f 0 such that � is defined modf 0 is called the conductor of �, and is
written as f�. By definition, f� is a divisor of f .

Definition 4.3 (primitive character). A Dirichlet character � modulo f is called
primitive if f D f�.
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Let � be a Dirichlet character modulo f . Since�.�1/2 D �..�1/2/ D �.1/ D 1,
we see that �.�1/ D ˙1.

A Dirichlet character with �.�1/ D 1 is called an even character. A character
with �.�1/ D �1 is called an odd character. Given a Dirichlet character �, we
define the complex conjugate character � by

�.a/ D �.a/;

where �.a/ stands for the complex conjugate of �.a/. We have f� D f�.

Example 4.4. Define �j W Z �! C .j D 0; 1; 2; 3/ as follows.
If .a; 2/ ¤ 1 .i.e. 2ja/, then �j .a/ D 0 .j D 0; 1; 2; 3/. When a is odd, for each
a mod 8, �.a/ is given in the following table:

�na 1 mod 8 3 mod 8 5 mod 8 7 mod 8

�0.a/ 1 1 1 1

�1.a/ 1 1 �1 �1
�2.a/ 1 �1 �1 1

�3.a/ 1 �1 1 �1

Then, �j .j D 0; 1; 2; 3/ are all the Dirichlet characters modulo 8. The character �0
is the trivial character with f�0 D 1 and �1, �2 are primitive characters modulo 8,
but �3.D �1�2/ is not primitive, with f�3 D 4.

4.2 Generalized Bernoulli Numbers

Given a Dirichlet character � modulo f , the generalized Bernoulli numbers Bn;�
are defined by using the generating function

fX

aD1

�.a/teat

ef t � 1 D
1X

nD0
Bn;�

tn

nŠ
:

In the following we assume f > 1 and � is not the trivial character unless otherwise
stated.

Since we have the expansion

teat

ef t � 1
D 1

f
C
�
a

f
� 1

2

�
t

C
�
a2

f
� a C f

6

�
t2

2
C
�
a3

f
� 3a2

2
C a f

2

�
t3

6
C � � � ;
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it follows from Lemma 4.2 (3) that

B0;� D 0;

B1;� D 1

f

fX

aD1
�.a/a;

B2;� D 1

f

fX

aD1
�.a/a2 �

fX

aD1
�.a/a;

B3;� D 1

f

fX

aD1
�.a/a3 � 3

2

fX

aD1
�.a/a2 C f

2

fX

aD1
�.a/a:

A similar formula for Bn;� is given as

Bn;� D f n�1
fX

aD1
�.a/Bn .a=f / ; (4.1)

where Bn.x/ is the Bernoulli polynomial, which will be defined in the next section.
(See Remark 4.10 (2) in the next section.)

We have seen that all the Bernoulli numbers with odd indices greater than 1 are 0.
For generalized Bernoulli numbers we have the following.

Proposition 4.5. Let � be a non-trivial character. Then, for any n satisfying
.�1/n�1 D �.�1/, we have Bn;� D 0. In other words, if � is an even character,
then Bn;� with odd indices n are 0; if � is an odd character, then Bn;� with even
indices n are 0.

Proof. Since � is non-trivial, we can rewrite the generating function as follows:

f�1X

aD1

�.a/teat

ef t � 1 D
f�1X

aD1

�.f � a/te.f �a/t
ef t � 1

D �.�1/
f�1X

aD1

�.a/te�at

1 � e�f t

D �.�1/
f�1X

aD1

�.a/.�t/ea.�t /
ef .�t / � 1 :

It follows immediately from this that the generating function is an even function if
�.�1/ D 1, and an odd function if �.�1/ D �1. ut
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Remark 4.6. For any n satisfying .�1/n D �.�1/, it is known thatBn;� is non-zero.
This can be seen as follows. From Theorem 9.6 on p. 148, Bn;� is non-zero if and
only if L.n; �/ is non-zero. We can prove L.n; �/ ¤ 0 using the Euler product
formula for the L-function with n > 1. The fact that L.1; �/ ¤ 0, i.e., B1;� ¤ 0 for
all �, is essentially equivalent to Dirichlet’s theorem on prime numbers in arithmetic
progressions. Dirichlet proved his theorem using the class number formula. See
Dirichlet [29] or Serre [83, Chap. 6].

4.3 Bernoulli Polynomials

Bernoulli polynomials are often defined by means of a generating function. Here,
we define them in a different manner.1 Their generating function will be given in
Proposition 4.9 (5).

First, define a Q-linear map I W QŒx� ! QŒx� from the polynomial ring QŒx� to
itself by

I.f / D
Z xC1

x

f .y/ dy .f .x/ 2 QŒx�/

(difference of the primitive function). Since we see immediately that

I.xn/ D 1

nC 1

�
.x C 1/nC1 � xnC1

� D xn C .lower terms/;

the matrix representing I with respect to the basis 1; x; x2; x3; : : : of QŒx� is an
upper triangular matrix with the diagonal components 1. In particular, I is invertible.
We thus define the Bernoulli polynomials as follows.

Definition 4.7. Define the Bernoulli polynomials Bn.x/ (n D 0; 1; 2; : : : ) by

Bn.x/ WD I�1.xn/:

In other words, Bn.x/ is the unique polynomial satisfying

I.Bn.x// D
Z xC1

x

Bn.y/ dy D xn:

Because of the form of I.x/, Bn.x/ is a monic polynomial (a polynomial in which
the coefficient of the highest-degree term is 1) of degree n with coefficients in Q.

1This was suggested by Don Zagier.
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Example 4.8.

B0.x/ D 1; B1.x/ D x � 1

2
; B2.x/ D x2 � x C 1

6
; B3.x/ D x3 � 3

2
x2 C 1

2
x;

B4.x/ D x4 � 2x3 C x2 � 1

30
; B5.x/ D x5 � 5

2
x4 C 5

3
x3 � 1

6
x:

Proposition 4.9. (1) Bn.1/ D Bn .n � 0/. Also, if n ¤ 1 , then Bn.0/ D
Bn.1/ D Bn.

(2) Bn.x C 1/� Bn.x/ D nxn�1 .n � 0/.
(3) B 0n.x/ D nBn�1.x/ .n � 1/.
(4) Bn.1 � x/ D .�1/nBn.x/ .n � 0/.
(5) (Generating function)

1X

nD0
Bn.x/

tn

nŠ
D text

et � 1 : (4.2)

(6) (Explicit formula with Bernoulli numbers)

Bn.x/ D
nX

jD0
.�1/j

 
n

j

!
Bj x

n�j :

(7)

k�1X

iD0
Bn

�
x C i

k

�
D k1�nBn.kx/ .k � 1/:

Proof. (2) It is obtained by differentiating the defining equation
Z xC1

x

Bn.y/ dy D
xn with respect to x.

(3) It follows from (2) that

Z xC1

x

B 0n.y/
n

dy D 1

n
.Bn.x C 1/� Bn.x// D xn�1:

Thus, it follows from the definition that

B 0n.x/
n

D Bn�1.x/;

or

B 0n.x/ D nBn�1.x/:



4.3 Bernoulli Polynomials 57

(4) Since we have

Z xC1

x

Bn.1�y/ dyD �
Z �x

1�x
Bn.y/ dyD

Z 1�x

�x
Bn.y/ dyD .�x/n D .�1/nxn;

it follows from the definition that .�1/nBn.1 � x/ D Bn.x/.
(5) Applying I to the coefficient of each term of the left-hand side of (4.2), we haveP

nD0 xn tn=nŠ D ext as formal power series in t . On the other hand, regarding
the right-hand side of (4.2) as a formal power series, and applying I term by
term, we have I.text=.et � 1// D tI.ext /=.et � 1/ because of the linearity.
Furthermore, since we have

I.ext / D
Z xC1

x

eyt dy D e.xC1/t � ext

t
D et � 1

t
ext ;

we see I.text=.et � 1// D ext . The injectivity of I implies that both sides are
equal.

(1) The first half of (1) can be seen by putting x D 1 in (5) and by using the
generating function of Bernoulli numbers (Theorem 1.12 on p. 20). Putting
x D 0 in (2), we see that Bn.1/ D Bn.0/ for n ¤ 1. The second half of the
assertion follows from this and the first half.

(6) We compute the product t=.et �1/�ext on the right-hand side of the generating
function (4.2). Since

t

et � 1
D .�t/e�t
e�t � 1

D
1X

nD0
.�1/nBn t

n

nŠ
;

we have

t

et � 1
� ext D

 1X

nD0
.�1/nBn t

n

nŠ

! 1X

nD0

.xt/n

nŠ

!

D
1X

nD0

0

@
nX

jD0
.�1/j

 
n

j

!
Bjx

n�j
1

A tn

nŠ
:

This proves the formula (6).
(7) We have

Z xC1

x

k�1X

iD0
Bn

�
y

k
C i

k

�
dy D

k�1X

iD0

Z xC1

x

Bn

�
y C i

k

�
dy

D
k�1X

iD0

Z xC1Ci
k

xCi
k

Bn.y/ kdy
�
yCi
k

! y
�
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D k

Z x
kC1

x
k

Bn.y/ dy

D k
�x
k

�n D k1�nxn:

From this we have

k�1X

iD0
Bn

�
x

k
C i

k

�
D k1�nBn.x/:

The formula is obtained by letting x ! kx. ut
Remark 4.10. (1) As we mentioned in Remark 1.3 on p. 10, it is easy to prove the

formula for the sum of powers ((1.1) on p. 1) using the Bernoulli polynomials.
Replacing n by k C 1 in Proposition 4.9 (2), we have

xk D 1

k C 1
.BkC1.x C 1/� BkC1.x// :

Putting x D 1; 2; : : : ; n, and adding them all up, we have

nX

iD1
ik D 1

k C 1
.BkC1.nC 1/� BkC1.1// :

We then use Proposition 4.9 (1), (4), (6) to obtain

BkC1.nC 1/� BkC1.1/ D .�1/kC1BkC1.�n/ � BkC1

D .�1/kC1
kC1X

jD0
.�1/j

 
k C 1

j

!
Bj .�n/kC1�j � BkC1

D
kX

jD0

 
k C 1

j

!
Bjn

kC1�j :

Since 1
kC1

�
kC1
j

� D �
k
j

�
1

kC1�j , the formula (1.1) follows.
(2) The formula (4.1) which expresses generalized Bernoulli numbers in terms of

Bernoulli polynomials is obtained as follows. In (4.2) replace x by a=f and t
by f t . Then we obtain

teta

ef t � 1 D 1

f

1X

nD0
Bn.a=f /

.f t/n

nŠ
:
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Thus, we have

1X

nD0
Bn;�

tn

nŠ
D

fX

aD1

�.a/teta

ef t � 1 D
fX

aD1
�.a/

1

f

1X

nD0
Bn.a=f /

.f t/n

nŠ

D
1X

nD0

fX

aD1
�.a/Bn.a=f /

f n�1tn

nŠ
:

Comparing coefficients, we obtain

Bn;� D f n�1
fX

aD1
�.a/Bn.a=f /:

Next we take up a beautiful formula involving Bernoulli polynomials. For any
real number x, we denote by Œx� the greatest integer less than or equal to x. This is
sometimes called the Gauss symbol .

Theorem 4.11. Let k be a natural number. The formula

Bk.x � Œx�/ D � kŠ

.2�i/k

X

n2Z
n¤0

e2�inx

nk
(4.3)

holds for all real numbers x if k � 2; it holds for all real numbers x 62 Z, if k D 1.
Here, the sum is taken for all integers different from 0. If k D 1, the infinite sum on
the right-hand side should be understood as

lim
N!1

NX

nD�N
n¤0

e2�inx

n
:

If k � 2, then the right-hand side of (4.3) converges absolutely and uniformly with
respect to x.

Proof. Let 0 < x < 1. Decompose the function

f .�/ D ex�

e� � 1

into partial fractions as a meromorphic function in �. This f .�/ has poles at
� D 2�in .n 2 Z/ and all of them are of order 1. The residue at � D 2�in is
given by

lim
�!2�in.� � 2�in/f .�/ D lim

t!0 t � e
x.tC2�in/

etC2�in � 1
D e2�inx:
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LetN be a sufficiently large natural number, and putR D 2�.NC1=2/. LetCN be a
square path passing through four corner pointsRCiR; �RCiR; �R�iR; R�iR
in this order in the �-plane. If t is a point inside CN such that t ¤ 2�in .n 2 Z/,
then it follows from the residue theorem that

Z

CN

f .�/

� � t
d� D 2�i

 
f .t/C

NX

nD�N

e2�inx

2�in� t

!

D 2�i

 
f .t/ � 1

t
�

NX

nD�N
n¤0

e2�inx

t � 2�in

!
:

As N ! 1, one can show that

Z

CN

f .�/

� � t
d� ! 0:

Therefore, if 0 < jt j < 2� , we have

f .t/ D 1

t
C lim

N!1

NX

nD�N
n¤0

e2�inx

t � 2�in

D 1

t
� lim
N!1

NX

nD�N
n¤0

e2�inx

2�in
�
1 � t

2�in

�

D 1

t
� lim
N!1

NX

nD�N
n¤0

e2�inx

2�in

1X

kD1

�
t

2�in

�k�1
:

Since the sum

1X

nD�1
n¤0

1X

kD2

e2�inx

.2�in/k
tk�1

converges absolutely, the above formula becomes

f .t/ D 1

t
� lim
N!1

NX

nD�N
n¤0

e2�inx

2�in
�

1X

nD�1
n¤0

1X

kD2

e2�inx

.2�in/k
tk�1:
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Since the generating function (4.2) of Bernoulli polynomials can be regarded as the
Taylor expansion of text =.et � 1/ at t D 0 for each real number x, we have

f .t/ D
1X

kD0
Bk.x/

tk�1

kŠ
:

Thus, comparing the coefficients, we obtain

B1.x/ D � lim
N!1

NX

nD�N
n¤0

e2�inx

2�in
;

Bk.x/ D �kŠ
1X

nD�1
n¤0

e2�inx

.2�in/k
.k � 2/:

Since the sum on the right-hand side converges uniformly over the closed interval
Œ0; 1� if k � 2, and sinceBk.x/ is continuous in the same interval, the above formula
holds in Œ0; 1�. Furthermore, the right-hand side is periodic with respect to x with
period 1. Thus, (4.3) is obtained by extending the left-hand side. ut

From this theorem we can obtain the values of the Riemann zeta function at
positive even integers. (The Riemann zeta function will be treated in the next
section.)

Corollary 4.12. Let k be an even integer greater than or equal to 2. Then we have

1X

nD1

1

nk
D �1

2

Bk

kŠ
.2�i/k: (4.4)

For example,

1X

nD1

1

n2
D �2

6
;

1X

nD1

1

n4
D �4

90
;

1X

nD1

1

n6
D �6

945
;

1X

nD1

1

n8
D �8

9450
; etc:

Proof. It suffices to put x D 0 in the theorem. The left-hand side is equal toBk from
Proposition 4.9 (1). Since the right-hand side is twice the sum over the positive n
since k is even, the formula in question holds. ut
Remark 4.13. The formula in the theorem can be rewritten as follows.

(1) If k is even,

Bk.x � Œx�/ D 2.�1/k=2�1kŠ
1X

nD1

cos 2�nx

.2�n/k
:
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(2) If k is odd,

Bk.x � Œx�/ D 2.�1/.kC1/=2kŠ
1X

nD1

sin 2�nx

.2�n/k
: (4.5)

Here, we assume x is not an integer if k D 1.

Theorem 4.11 has an interesting application.2 Let us consider the special values
of the following zeta function. Let a, b be integers different from 0, and let p, q, r
be positive even integers. Define

S.p; q; r I a; b/ D
X

m¤0; n¤0
amCbn¤0

1

mpnq.amC bn/r
:

Here, the sum runs over all integersm; n satisfyingm ¤ 0; n ¤ 0; amC bn ¤ 0.

Proposition 4.14. Let p; q; r be positive integers. Then, we have

��p�q�r S.p; q; r I a; b/ 2 Q:

Proof. Define l D �.am C bn/. We can express S.p; q; r I a; b/ as an integral as
follows (we use the notation e.w/ D e2�iw):

S.p; q; r I a; b/ D
X

m; n; l2Z
m; n; l¤0; amCbnClD0

1

mpnqlr

D
X

m; n; l2Z
m; n; l¤0

Z 1

0

e..amC bnC l/x/

mpnqlr
dx

D
Z 1

0

X

m; n; l2Z
m; n; l¤0

e..amC bnC l/x/

mpnqlr
dx

D
Z 1

0

X

m2Z
m¤0

e.amx/
mp

X

n2Z
n¤0

e.bnx/
nq

X

l2Z
l¤0

e.lx/
lr

dx:

Here, we used the fact that the series
P

m¤0 e.amx/=mp converges uniformly over
the closed interval Œ0; 1�, because p; q; r � 2. Using the formula (4.3), we have

2This is based on a lecture of Don Zagier at Kyushu University in 1999.
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S.p; q; r I a; b/D .�1/ pCqCr�2
2 .2�/pCqCr

pŠqŠrŠ

Z 1

0

Bp.ax�Œax�/Bq.bx�Œbx�/Br .x/ dx:

Thus, the value of the integral is a rational number (recall that the Bernoulli
polynomial is a polynomial with rational coefficients), and the assertion of the
proposition follows. ut
Example 4.15. (p D q D r D 2, a D b D 1.) From the above formula,

S.2; 2; 2I 1; 1/ D .2�/6

8

Z 1

0

B2.x/
3 dx:

Integration by parts using B 01.x/ D 1; B 02.x/ D 2B1.x/ gives

Z 1

0

B2.x/
3 dx D

Z 1

0

B 01.x/B2.x/3 dx

D 

B1.x/B2.x/

3
�1
0

�
Z 1

0

6B1.x/
2B2.x/

2 dx

D B3
2 � 2

Z 1

0

�
B1.x/

3
�0
B2.x/

2 dx

D B3
2 � 2 
B1.x/3B2.x/2

�1
0

C 8

5

Z 1

0

�
B1.x/

5
�0
B2.x/ dx

D B3
2 � 1

2
B2
2 C 8

5



B1.x/

5B2.x/
�1
0

� 16

5

Z 1

0

B1.x/
6 dx

D B3
2 � 1

2
B2
2 C 1

10
B2 � 16

35



B1.x/

7
�1
0

D 1

22 � 33 � 5 � 7 :

Thus, we have

S.2; 2; 2I 1; 1/ D 2�6

33 � 5 � 7 :

Exercise 4.16. For a non-trivial character � modulo f > 1, write B4;� and B5;� byPf
aD1 �.a/ai with i D 1, 2, 3, 4, 5.

Exercise 4.17. Prove that the Bernoulli polynomial Bn.x/ for odd n > 1 is always
divisible by x.x � 1

2
/.x � 1/.



Chapter 5
The Euler–Maclaurin Summation Formula
and the Riemann Zeta Function

Aside from the formula for the sum of powers, the most basic topics in which
Bernoulli numbers appear is the Euler–Maclaurin1 summation formula and the
values of the Riemann zeta function at integer arguments. In this chapter we survey
these topics.

5.1 Euler–Maclaurin Summation Formula

The Euler–Maclaurin summation formula gives a very effective tool for evaluating
a sum of values of a function at integers.

Theorem 5.1. Let a and b be integers satisfying a � b, and let M be a natural
number. Suppose f .x/ is an M times continuously differentiable function2 over
Œa; b�. Then, we have

bX

nDa
f .n/ D

Z b

a

f .x/dxC1

2
.f .a/Cf .b//C

M�1X

kD1

BkC1
.k C 1/Š

.f .k/.b/� f .k/.a//

� .�1/M
MŠ

Z b

a

BM .x � Œx�/f .M/.x/dx:

Here, BkC1 is the Bernoulli number and BM.x/ is the Bernoulli polynomial, and
the sum on the right-hand side is understood to be 0 if M D 1.

1Colin Maclaurin (born in February 1698 in Kilmodan, Cowal, Argyllshire, Scotland—died on
June 14, 1746 in Edinburgh, Scotland).
2Differentiable M times and the M th derivative is continuous.

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__5, © Springer Japan 2014
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Remark 5.2. (1) Regard f .n/ as the area of a rectangle whose base is the interval
Œn � 1

2
; n C 1

2
� and whose height is f .n/. Then the sum of the first two terms

on the right-hand side is the first approximation, so to say. The next term can
be seen as the higher approximation in terms of the data at the end points of the
interval.

(2) If we use the values of the Riemann zeta function at negative integers �.�k/ D
�BkC1=.k C 1/, which will be proved later, then the formula looks like

bX

nDa
f .n/ D

Z b

a

f .x/dxC1

2
.f .a/Cf .b//�

M�1X

kD1

�.�k/
kŠ

.f .k/.b/�f .k/.a//

� .�1/
M

MŠ

Z b

a

BM.x�Œx�/f .M/.x/dx:

Proof. Let g.x/ be anM times continuously differentiable function on Œ0; 1�. Since
B1.x/ D x � 1=2, we have B 01.x/ D 1. Thus, using integration by parts, we have

Z 1

0

g.x/dx D ŒB1.x/g.x/�
1
0 �

Z 1

0

B1.x/g
0.x/ dx

D 1

2
.g.1/C g.0// �

Z 1

0

B1.x/g
0.x/ dx:

Iterating integration by parts using Bk.x/ D B 0kC1.x/=.k C 1/ (Proposition 4.9 (3)
on p. 56), we obtain

Z 1

0

g.x/dx D 1

2
.g.1/C g.0// � 1

2



B2.x/g

0.x/
�1
0

C 1

2

Z 1

0

B2.x/g
00.x/ dx

D 1

2
.g.1/C g.0// � 1

2



B2.x/g

0.x/
�1
0

C 1

2 � 3


B3.x/g

00.x/
�1
0

� 1

2 � 3
Z 1

0

B3.x/g
000.x/ dx

D � � � � � �

D 1

2
.g.1/C g.0//C

M�1X

kD1

.�1/k
.k C 1/Š



BkC1.x/g.k/.x/

�1
0

C .�1/M
MŠ

Z 1

0

BM.x/g
.M/.x/ dx:

Now, if k � 2, then Bk.0/ D Bk.1/ D Bk (Proposition 4.9 (1)) and .�1/kBk D Bk
(Proposition 1.4 on p. 10). Thus, we have
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Z 1

0

g.x/dx D 1

2
.g.1/C g.0// �

M�1X

kD1

BkC1
.k C 1/Š

.g.k/.1/� g.k/.0//

C .�1/M
MŠ

Z 1

0

BM.x/g
.M/.x/ dx:

Therefore,

1

2
.g.1/C g.0// D

Z 1

0

g.x/dx C
M�1X

kD1

BkC1
.k C 1/Š

.g.k/.1/� g.k/.0//

� .�1/M
MŠ

Z 1

0

BM .x/g
.M/.x/dx:

Now, we take f .xCn/ (a � n � b�1) for the function g.x/. Since the function
BM.x � Œx�/, which is obtained by extending BM.x/ from the interval Œ0; 1� to the
entire real line by periodicity, satisfies BM.x � n/ D BM.x � Œx�/ for any integer n
and n � x � nC 1, we obtain

1

2
.f .nC 1/C f .n// D

Z nC1

n

f .x/dx C
M�1X

kD1

BkC1
.k C 1/Š

.f .k/.nC 1/� f .k/.n//

� .�1/M
MŠ

Z nC1

n

BM.x � Œx�/f .M/.x/dx:

The formula in the theorem is obtained by adding up the above formula from n D a

to n D b � 1 and then adding 1
2
.f .a/C f .b// to both sides. ut

5.2 The Riemann Zeta Function

The exponential function ez with the complex variable z is defined by the formula

ez D 1C z C z2

2Š
C � � � C zn

nŠ
C � � � :

The power series on the right-hand side converges absolutely for any z 2 C, and
thus it is a holomorphic function over the entire z-plane. From the formula for the
product of two power series, we have the exponential law

ezCw D ezew:

In particular, for x, y 2 R, we have Euler’s formula

exCiy D exeiy D ex.cosy C i sin y/:
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For any positive real number a, the complex power as for s 2 C is defined by

as D es loga:

Its absolute value is given by

jas j D e� log a;

where � D Re.s/.
Let s be a complex number. Consider the sum

NX

nD1

1

ns
D 1C 1

2s
C � � � C 1

N s
:

Here, ns is a complex power of n just defined above. Let f W .0;1/ ! C be the
function defined by

f .x/ D x�s :

We apply the Euler–Maclaurin summation formula to this f .x/ with a D 1; b D N .
The k-th derivative of f is given as

f .k/.x/ D .�s/.�s � 1/ � � � .�s � k C 1/x�s�k

D .�1/ks.s C 1/ � � � .s C k � 1/x�s�k:

Also, if s ¤ 1, then we have

Z N

1

x�sdx D 1

s � 1
�
1 � 1

N s�1

�
:

It follows from Theorem 5.1 that for s ¤ 1

NX

nD1

1

ns
D 1

s � 1

�
1 � 1

N s�1

�

C 1

2

�
1C 1

N s

�
C

M�1X

kD1

BkC1
k C 1

�
 
s C k � 1

k

!�
1 � 1

N sCk

�

�
 
s CM � 1

M

!Z N

1

BM.x � Œx�/x�s�M dx; (5.1)

where
�
x
i

�
is the binomial coefficient x.x � 1/ � � � .x � i C 1/=iŠ, and we used the

fact .�1/kBkC1 D �BkC1. If s D 1, then it follows from
R N
1
x�1 dx D logN that



5.2 The Riemann Zeta Function 69

NX

nD1

1

n
D logN C 1

2

�
1C 1

N

�
C

M�1X

kD1

BkC1
k C 1

�
1 � 1

N 1Ck

�

�
Z N

1

BM .x � Œx�/x�1�Mdx: (5.2)

As an application of these formulas, we obtain the following elementary result.

Proposition 5.3. (1) The series
1X

nD1

1

ns
converges absolutely if Re.s/ > 1, and the

series
1X

nD1

1

n
diverges.

(2) Let faN g be the sequence defined by aN D
NX

nD1

1

n
�logN . Then faN g converges.

The limit � D lim
N!1aN is called Euler’s constant.3 For any natural numberM ,

we have

� D
M�1X

kD0

BkC1
k C 1

�
Z 1

1

BM.x � Œx�/

xMC1
dx:

In particular, setting M D 1, we have

� D 1 �
Z 1

1

x � Œx�

x2
dx: (5.3)

Proof. (1) Let Re.s/ D � . Since
NX

nD1

ˇ̌
ˇ̌ 1
ns

ˇ̌
ˇ̌ D

NX

nD1

1

n�
, by putting s D � , M D 1

in formula (5.1), we obtain

NX

nD1

1

n�
D 1

� � 1
�
1 � 1

N��1

�
C 1

2

�
1C 1

N�

�
��

Z N

1

B1.x�Œx�/x���1 dx:

Since � > 1, both 1=N��1 and 1=N� converge to 0 as N ! 1. As for the
integral in the last term, first note that the function BM.x � Œx�/ is bounded
since 0 � x � Œx� � 1. Thus, if

Z 1

1

x���1 dx D lim
N!1

Z N

1

x���1 dx (5.4)

3It is unknown whether � D 0:5772156649015328606065120900824 � � � is an irrational number
or not.
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converges, then so does

Z N

1

BM .x � Œx�/x���1 dx

as N ! 1. The integral (5.4) converges since if � > 0, we have

lim
N!1

Z N

1

x���1 dx D lim
N!1

1

�

�
1 � 1

N�

�
D 1

�
:

Summing it all up, we see that
1X

nD1

1

ns
converges absolutely if � > 1. Also, the

fact that
1X

nD1

1

n
diverges follows immediately from (5.2).

(2) It follows from the formula (5.2) that

aN D
NX

nD1

1

n
� logN D 1

2

�
1C 1

N

�
C

M�1X

kD1

BkC1
k C 1

�
1 � 1

N 1Ck

�

�
Z N

1

BM.x � Œx�/x�1�Mdx:

Similarly to (1), the last integral converges, and thus faN g converges.
Letting N ! 1, we obtain

� D lim
N!1 aN D 1

2
C

M�1X

kD1

BkC1
k C 1

�
Z 1

1

BM .x � Œx�/x�1�M dx

D
M�1X

kD0

BkC1
k C 1

�
Z 1

1

BM.x � Œx�/x�1�M dx:

(Here we used B1 D 1=2.) If M D 1, then we have B1.x � Œx�/ D x � Œx� � 1
2

and

Z 1

1

dx

x2
D
�
� 1
x

	1

1

D 1:

Thus, we have

� D 1

2
�
Z 1

1

x � Œx� � 1
2

x2
dx

D 1 �
Z 1

1

x � Œx�

x2
dx:

ut
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The famous Riemann4 zeta function �.s/ is defined for all complex numbers s
satisfying Re.s/ > 1 by

�.s/ D
1X

nD1

1

ns
:

As we have already seen, the infinite series on the right-hand side converges
absolutely for Re.s/ > 1. If � is a positive number greater than 1, then this series
converges uniformly in Re.s/ � � , and thus it is a holomorphic function of s in
Re.s/ > 1. Let us study properties of �.s/, using the summation formula (5.1).
Suppose Re.s/ > 1, and let N ! 1 in (5.1). Then,

1X

nD1

1

ns
D 1

s � 1 C 1

2
C

M�1X

kD1

BkC1
k C 1

�
 
s C k � 1

k

!
(5.5)

�
 
s CM � 1

M

!Z 1

1

BM .x � Œx�/x�s�M dx:

Now, take the difference between (5.1) and (5.5). Then, for Re.s/ > 1, we have

�.s/�
NX

nD1

1

ns
D 1

s � 1 � 1

N s�1 � 1

2N s
C

M�1X

kD1

BkC1
k C 1

�
 
s C k � 1

k

!
� 1

N sCk

�
 
s CM � 1

M

!Z 1

N

BM .x � Œx�/x�s�M dx: (5.6)

Since the integral of the right-hand side converges absolutely in the region Re.s/ >
1 � M , the formula (5.6) gives an analytic continuation of �.s/ to a meromorphic
function in the region Re.s/ > 1 � M . In other words, �.s/ can be extended to
Re.s/ > 1 � M through the formula (5.6). Since M can be any natural number,
�.s/ has an analytic continuation to the entire s-plane as a meromorphic function.
It also follows from (5.6) that its only pole is a simple pole located at s D 1, and the
residue at s D 1 equals 1.

We summarize all this, and find the values of �.s/ at integers less than or equal
to 0.

Theorem 5.4. (1) The function �.s/ has an analytic continuation to the entire
s-plane as a meromorphic function, is holomorphic if s ¤ 1, and has a pole
of order 1 at s D 1 with residue 1.

4Georg Friedrich Bernhard Riemann (born on September 17, 1826 in Breselenz, Germany—died
on July 20, 1866 in Selasca, Italy).
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(2) Let m be a positive integer. The value of �.s/ at s D 1 �m is given by

�.1 �m/ D �Bm
m
:

Proof. Since we have already seen (1), we prove (2). If s D 1 � m, taking M in
(5.6) with M � m, the binominal coefficient in front of the integral on the right-
hand side vanishes. This implies that �.1�m/ is expressed as a finite sum. Our goal
is to express it in a simpler form. In (5.6), let s D 1 � m, and M D m. Then we
have

�.1�m/�
NX

nD1
nm�1 D � Nm

m
� Nm�1

2
C

m�1X

kD1

BkC1
.k C 1/Š

� .1 �m/.2�m/ � � � .k �m/ �Nm�k�1: (5.7)

If m D 1, then there is no term of summation, and

�.0/ D
NX

nD1
1 �N � 1

2
D �1

2
D �B1:

Suppose m � 2. Now, by using the formulas .1 � m/.2 � m/ � � � .k � m/ D
.�1/kkŠ�m�1

k

�
, 1
kC1

�
m�1
k

� D 1
m�k�1

�
m�1
kC1

�
if k < m � 1, and .�1/kBk D Bk for

k � 2, we have

m�1X

kD1

BkC1
.k C 1/Š

� .1 �m/.2�m/ � � � .k �m/ �Nm�k�1

D
m�1X

kD1
.�1/k BkC1

k C 1

 
m � 1

k

!
Nm�k�1

D
m�2X

kD1
.�1/k

 
m � 1

k C 1

!
BkC1

Nm�k�1

m � k � 1
C .�1/m�1 Bm

m

D
m�1X

kD2
.�1/k�1

 
m � 1

k

!
Bk
Nm�k

m � k
C .�1/m�1 Bm

m

D �
m�1X

kD2

 
m � 1

k

!
Bk
Nm�k

m � k
� Bm

m
:

Therefore, the right-hand side of (5.7) equals

�
m�1X

kD0

 
m � 1

k

!
Bk
Nm�k

m � k � Bm

m
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(since B0 D 1; B1 D 1=2). On the other hand, from the formula for the sum of
powers (1.1) on p. 1, we have

NX

nD1
nm�1 D

m�1X

kD0

 
m � 1
k

!
Bk
Nm�k

m � k : (5.8)

Thus, from (5.7) we have the formula

�.1�m/ D �Bm
m
:

ut
Remark 5.5. The value in (2) was first given by Euler ([32], see also Weil5 [103]).
The values of the Riemann zeta function at positive even integers in Corollary 4.12
(p. 61)

�.2k/ D .�1/k�1
2

B2k

.2k/Š
.2�/2k .k 2 N/

were also computed first by Euler (ibid.). There is not much known about the values
at positive odd integers. It is conjectured that all �.2k C 1/ are transcendental
numbers.6 Apéry7 [5] proved that �.3/ is an irrational number, and Rivoal [80]
proved that there are infinitely many irrational numbers among �.2k C 1/ .k D
1; 2; 3; : : :/ (For more recent results, see [99].)

Remark 5.6. The formula (5.8) for the sum of powers can also be obtained using the
Euler–Maclaurin summation formula (Theorem 5.1). Indeed, the sum

PN
nD1 nm�1

can be obtained by letting f .x/ D xm�1, a D 1, and b D N in the summation
formula.

Exercise 5.7. Use (5.6) (N D M D 1) and (5.3) to prove

lim
s!1

�
�.s/� 1

s � 1

�
D �:

Exercise 5.8. Use (5.6) (N D M D 1) to deduce the formula

�.s/ D �s
Z 1

0

x � Œx� � 1
2

xsC1
dx

5André Weil (born on May 6, 1906 in Paris, France—died on August 6, 1998 in Princeton, USA).
6Since � is a transcendental number [71], �.2k/ are all transcendental numbers.
7Roger Apéry (born on November 14, 1916 in Ruen, France—died on December 18, 1994 in Caen,
France).
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which is valid for �1 < Re.s/ < 0.

Exercise 5.9. Use the previous exercise and the formula (proved in Chap. 4, (4.5))

x � Œx� � 1

2
D �

1X

nD1

sin 2�nx

�n

to deduce the functional equation of the Riemann zeta function

�.s/ D �2ss�s�1	 .�s/ sin
�s

2
�.1� s/:

(This way of proof is rigorously described in Chap. 2.1 in [90]. We give a different
proof of (the symmetric form of) the functional equation in Chap. 9.)

Exercise 5.10. Carry out the computation suggested in Remark 5.6.



Chapter 6
Quadratic Forms and Ideal Theory
of Quadratic Fields

There are close relations between Bernoulli numbers and quadratic fields or
quadratic forms. In order to explain those, we give a survey of the ideal theory
of quadratic fields and quadratic forms. Since Gauss, it is well known that there is a
deep relation between the ideal theory of quadratic fields (i.e. quadratic extensions
of the rational number field) and integral quadratic forms. This is obvious for
specialists, but textbooks which explain this in detail are rare. In most textbooks,
they treat the correspondence of ideals only in the case of maximal orders (the
ring of all integers) for which the description is simple and easy. This is very
disappointing. We cannot see the whole picture of the theory of quadratic forms by
such a restricted treatment and sometimes it causes misunderstanding. We need the
full description of this kind of relation when we explain later the relation between
L-functions of prehomogeneous vector spaces and the Bernoulli numbers. So it
would be a good chance to try to explain the full relation here.

6.1 Quadratic Forms

For integers a, b, c and variables x, y, we call the homogeneous polynomial

Q.x; y/ D ax2 C bxy C cy2

of degree two an integral binary quadratic form (or a quadratic form for short, since
we treat only the integral and binary case in this book). In particular, in case a, b, c
are mutually coprime (namely the greatest common divisor, g.c.d., of a, b, c is one),
we say Q.x; y/ is primitive. If we define the matrix S by

S D
�
a b=2

b=2 c

�
;

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__6, © Springer Japan 2014
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then we can write

Q.x; y/ D .x; y/S

�
x

y

�
:

Often this expression helps easy understanding. A symmetric matrix like S whose
diagonal components are integers and the other components are half-integers1 is
called a half-integral symmetric matrix. We denote by L� the set of all half-integral
symmetric matrices of order two:

L� D
{�

a b=2

b=2 c

�
I a; b; c 2 Z

}

:

This set corresponds bijectively to the set of all integral (binary) quadratic forms.

When the corresponding quadratic form .x; y/S

�
x

y

�
is primitive, we say that S is

primitive. We consider the following groups of integral matrices:

GL2.Z/ D fg 2 M2.Z/I det.g/ D ˙1g;
SL2.Z/ D fg 2 M2.Z/I det.g/ D 1g;

whereM2.Z/ is the set of all integral 2�2matrices. The group SL2.Z/ is called the
(full) modular group and this is the subgroup of GL2.Z/ of index two. The group
GL2.Z/ (and hence also SL2.Z/) acts on L� from the right by

L� 3 S 7! det.�/ t �S� 2 L� .� 2 GL2.Z//:

Two elements of L� or the corresponding quadratic forms are said to be SL2.Z/-
equivalent, or just equivalent, when they belong to the same SL2.Z/-orbit under this
action. Two elements of L� are said to be GL2.Z/-equivalent when they belong to
the same GL2.Z/ orbit by the above action. (In some books, SL2.Z/-equivalence
is called a proper equivalence, but we do not add the word “proper” for this in this
book). Usually we call the number b2 � 4ac D � det.2S/ the discriminant of the
quadratic form. We denote this number by D.S/. It is obvious that D.S/ � 0

or 1 mod 4. On the other hand, if D is an integer such that D � 0 or 1 mod 4,
there exists S 2 L� such that D.S/ D D. The discriminant is invariant by the
action of GL2.Z/. The cases where D is a square (i.e. a square of integers, e.g.
0, 1, 4, 9 . . . ) are exceptional, so in this chapter, we assume that D is not a square
unless otherwise stated. We fix such a non-square integerD � 0 or 1 mod 4 and put
L�.D/ D fS 2 L�ID.S/ D D;S primitiveg. Then it is known that both SL2.Z/-
equivalence classes andGL2.Z/-equivalence classes inL�.D/ are finite. (The proof

1Here half-integers mean their doubles are integers.
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of the finiteness of the class number and an explicit formula for the class number
will be given later.) When D.S/ > 0, we call these numbers of equivalence classes
the class number and the class number in the wide sense of quadratic forms of
discriminant D for SL2.Z/-equivalence and for GL2.Z/ equivalence, respectively.
When D.S/ < 0, we have ac > 0, and this means that S is positive definite

or negative definite. We denote by L�C.D/ the subset of positive definite quadratic
forms of L�.D/ and by L��.D/ negative definite forms. When D.S/ < 0, we say
that the number of SL2.Z/ equivalence classes in L�C.D/ the class number of the
quadratic forms of discriminantD. In this case, the number of GL2.Z/ equivalence
classes in L�.D/ and the number of SL2.Z/ equivalence classes in L�C.D/ are the
same. Indeed this is proved as follows. Any S 2 L��.D/ is GL2.Z/ equivalent to

an element of L�C.D/ since for � D
�
1 0

0 �1
�

, we have det.�/t �S� D � t �S� 2
L�C.D/. If S1 and S2 2 L�C.S/ are GL2.Z/ equivalent and S2 D det.�/t�S1� for
� 2 GL2.Z/, then since S2 and t �S1� are positive definite, we have det.�/ > 0,
hence det.�/ D 1, and S1 and S2 are SL2.Z/ equivalent.

6.2 Orders of Quadratic Fields

Now we review the theory of quadratic fields, but there are many books describing
this theory, so here we write only briefly. Also, we describe the theory mostly from
the viewpoint of quadratic forms. In some parts this makes our explanation more
complicated. But this is still useful since this kind of explanation is seldom found in
books nowadays.

When m is a non-square integer, we say that K D Q.
p
m/ D Q C Q

p
m is a

quadratic field. When m > 0, we call K a real quadratic field and when m < 0, we
call it an imaginary quadratic field. Ifm has a square factor, we can bring this factor
outside the square root, so we can assume thatm is an integer without square factor.
We assume this from now on. An element˛ in this fieldK satisfying ˛2Cb˛Cc D 0

for some rational integers b, c (i.e. integers in the usual sense) is called an integer
of K . The set Omax of all integers in K form a ring. If we put

! D
⎧
⎨

⎩

1Cpm
2

if m � 1 mod 4;
p
m otherwise,

(6.1)

then one can show Omax D Z C Z!. The ring Omax is called the maximal order (or
the ring of all integers) of Q.

p
m/.

If we define the linear map ˛ ! ˛ of ˛ 2 K to ˛ 2 K as Q-vector space by
aC b

p
m D a � b

p
m (a, b 2 Q), which is called a conjugation, then this is an

automorphism as a field. For any element ˛ of K , we write N.˛/ D ˛˛, T r.˛/ D
˛ C ˛, the former is called the norm and the latter the trace of the element ˛.
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We put DK D .! � !/2 D T r.!/2 � 4N.!/ and call it the discriminant, or the
fundamental discriminant ofK . More concretely we haveDK D m ifm � 1 mod 4
andDK D 4m otherwise.

The maximal order Omax is neither a principal ideal domain, nor a unique
factorization domain in general, so it is known that we cannot define a useful prime
factor decomposition of elements ofOmax. But if we consider ideals ofOmax instead
of elements, any ideal of Omax is factored uniquely into a product of prime ideals
of Omax. This fact is a direct consequence of the fact that Omax is a Dedekind
domain. But sometimes it is useful to treat subrings of Omax consisting only of a
part of integers. For example, it is inevitable to treat such rings when we consider the
correspondence with quadratic forms. But such subrings are not Dedekind domains
in general, and we must keep in mind that the prime ideal decomposition does not
hold for such rings in general. Now any subring O of Omax containing 1 is a free
Z-module since any subgroup of a finitely generated free abelian group is free by
the fundamental theorem of finitely generated abelian groups. When the rank of O
is two, we call it simply an order. Let us describe all such rings.

Lemma 6.1. Let ! be as in (6.1). For an arbitrary natural number f , we put

Of D Z C f!Z:

Then this is an order of Q.
p
m/. Conversely, for any orderO of Q.

p
m/, there exists

a natural number f such that O D Of .

Proof. To show that Z C f!Z is an order, we must show that this is a subring. This
is shown by the following calculation.

.f!/2 D
⎧
⎨

⎩

f .f!/C m � 1

4
f 2 if m � 1 mod 4;

f 2m otherwise.

Conversely, if O is an order, then since it is of rank 2, the ring O contains an element
which does not belong to Z. So there is an integer a and non-zero integer b such
that a C b! 2 O. Since we have 1 2 O by definition, we have a 2 O so b! 2 O.
We take the smallest positive integer f among those b such that b! 2 O. All the
other such b are divisible by f . Indeed, for b such that b! 2 O, we divide b by f
and write b D f x C b0; x 2 Z; 0 � b0 < f . Then we have b0! D .b � f x/! D
b! � x.f!/ 2 O. By our choice of f , we must have b0 D 0, and b is divisible
by f . Hence we have O D Z C f!Z D Of . ut
Orders Of for different f are different rings. If f and f 0 are natural numbers, then
it is easy to see that Of 0 	 Of if and only if f jf 0. This ring can be also written as

Of D Z C fOmax:
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We call f the conductor of the order Of . The conductor of an order is 1 if and
only if it is maximal. We define the discriminant of the order Of by DKf

2. It is
conventional to call non-zero ideal a of Of simply an ideal of Of . Since an ideal a
is a submodule of Of , it is a free Z-module, but since it is also a module over Of ,
the rank is two. So the ring Of =a is a finite ring. The size of this finite ring is called
the norm of a and denoted by N.a/. We describe the free basis over Z of the ideal
a of Of more concretely. We say that an ideal a is primitive if it cannot be written
as a D lb for any integer l > 1 and any ideal b of Of .

Lemma 6.2. For any ideal a of Of , there exist positive integers a, e, d with
�a=2 � d < a=2 such that

a D Za C Z.d C ef!/:

Here the integers a, b, d are uniquely determined by a. If a is a primitive ideal, then
we have e D 1 and the norm of a is a.

Proof. For a while, we take an arbitrary ideal a of Of and do not assume that it is
primitive. Since the module Of =a is a finite module, there is some natural number
m such thatm1 2 a and we have a\Z ¤ 0. So we take the smallest positive rational
integer a in a. Then it is clear that aZ D a \ Z. On the other hand, we denote by
e the smallest positive integer among those y such that x C yf! 2 a for some
integer x. We take d 2 Z such that d C ef! 2 a. Then we can conclude that

a D Za C Z.d C ef!/:

This can be seen as follows. First, if x C yf! 2 a for some x, y 2 Z, then y is
divisible by e. Indeed, if y D eq C r with 0 � r < e and 0 � q, then we have
x C yf! � q.d C ef!/ D .x � qd/ C rf! 2 a. Here if r ¤ 0, it contradicts
the definition of e, so we have r D 0. Hence there is an integer z such that .x C
yf!/ � z.d C ef!/ D x � zd 2 Z \ a, which is a multiple of a. Hence we have
a D Za C Z.d C ef!/. By adding a multiple of a to d C ef! if necessary, we
may assume that d satisfies �a=2 � d < a=2. If we take a, e and d as above,
then it is clear by our choice that the integers a, d , e are uniquely determined by
the ideal a. Now we show that if a is primitive in addition, then we have e D 1

in the above. Indeed, since a is an ideal of Of , we have f!a 	 a and hence
af! 2 a. So we have af! D xa C y.d C fe!/ for some integers x, y. This
means a D ye and xa C yd D 0. So a=e D y 2 Z and d=e D �x 2 Z.
So if we put b D Z.a=e/ C Z.d=e C f!/, then we have a D eb. Since a is an
ideal of Of , we have e.˛b/ D ˛a 	 a D eb, and hence we have ˛b 	 b. So
b is also an ideal of Of . Since we assumed that a is primitive, we have e D 1.
Since Of D Z C Zf! D Z C Z.d C f!/ and a D Za C Z.d C f!/, we have
Of =a Š Z=aZ and the norm of the primitive ideal a is a. ut

We call .a; d C ef!/ in the above lemma the standard basis of the ideal a.
Although we described the standard basis of an ideal above, we are not claiming
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that the module M D Za C Z.d C f!/ is always an ideal for any random choice
of a, d 2 Z. The moduleM is an Of -ideal only when a, d , f satisfy some special
conditions. We shall describe these conditions below.

Lemma 6.3. The moduleM D Za C Z.d C f!/ is an ideal of Of if and only if

ajN.d C f!/:

This is equivalent to saying that there exists an integer c such that

b2 � f 2DK D 4ac;

where we put b D T r.d C f!/.

Proof. All we need to do is to examine the condition f!M 	 M . We have f! �
a D .�d/aC a.d C f!/ 2 M . As for f!.d C f!/, we have

f!.d C f!/ D .d C T r.f!//.d C f!/ �N.d C f!/: (6.2)

So this belongs to M if and only if N.d C f!/ is divisible by a. Since we have

b2 � f 2DK D .2d C f T r.!//2 � f 2.T r.!/2 � 4N.!//

D 4.d2 C df T r.!/C f 2N.!//

D 4N.d C f!/;

this is equivalent to say that

b2 � f 2DK D 4ac

for some c 2 Z. ut
Remark 6.4. (1) Notation being the same as in the last lemma, we have

d C f! D b C p
D

2
;

where D D f 2DK : the discriminant of Of .
(2) The norm a of a primitive ideal and the conductor f might not be coprime. For

example, the module Z5 C Z5
p
2 is a primitive ideal of the order O5 of the

quadratic field K D Q.
p
2/ with conductor 5 and its norm is 5. We can write

Z5C Z5
p
2 D 5.Z C Z

p
2/, but Z C Z

p
2 is not an ideal (nor a subset) of O5.

For an ideal a of Of , the ring fx 2 KI xa 	 ag is a subring of Omax which
contains Of , so it is Of 0 for some divisor f 0 of f . When this coincides with Of ,
that is, when f D f 0, we say that a is a proper Of -ideal. (In the usual ring theory,
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the term proper ideal is often used to indicate the ideal which is not the whole
ring itself. Note that our usage here is different from that.) Next, we shall see the
condition that a primitive ideal of Of is a proper Of -ideal.

Lemma 6.5. For a primitive ideal a of Of , we write a D ZaC Z.d C f!/ by the
standard basis and define integers b, c as in Lemma 6.3. Then the ideal a is a proper
Of -ideal if and only if gcd of a, b, c is one.

Proof. Assume that a is an Of 0 module for a divisor f 0 of f . If a is an Of 0

module, then af 0! 2 a, hence we have af 0! D xa C y.d C f!/. Comparing
the coefficients, we see a D y.f=f 0/ and xa C yd D 0. But since a > 0,
we have y ¤ 0 and so d D �x.f=f 0/. Hence we have a; d 2 .f=f 0/Z. So
bf 0=f D df 0=f C f 0T r.w/ 2 Z and b 2 .f=f 0/Z. Multiplying the Eq. (6.2) in
the proof of Lemma 6.3 by f 0=f , we have

f 0!.d C f!/ D .f 0d=f C f 0T r.!//.d C f!/ � acf 0=f:

Since f 0!.d C f!/ 2 a, we have cf 0=f 2 Z, i.e. c 2 f=f 0Z. So if f 0 < f ,
then the g.c.d. of a, b, c is bigger than one. Conversely, assume that n is the greatest
common divisor of a, b, c. We first show that n always divides f . Indeed, write
a D na0, b D nb0, c D nc0. Then b2 � 4ac D n2.b20 � 4a0c0/ D f 2DK . If DK

is odd, then DK does not contain any square factor, so we have njf . If DK is even,
then DK D 4m, where m � 2 or 3 mod 4 and m is square-free. If n is odd, then
by the same reason as before, we have njf . Assume n is even and n D 2n0. Then
we have n0jf . If f=n0 is odd, then .f=n0/2m � 2 or 3 mod 4 but this is equal to
b20 � 4a0c0 which is 0 or 1 mod 4 and we have a contradiction. So f=n0 is even
and we have njf . So if we assume that n > 1 and define f 0 by nf 0 D f , then
f 0 < f and a, b, c 2 .f=f 0/Z. Then we also have d 2 .f=f 0/Z. Indeed we have
.f=f 0/jb D T r.d C f!/ D 2d C f T r.!/ and .f=f 0/2jac D N.d C f!/ D
d2 C 2df T r.!/C f 2N.!/. So we see that .f=f 0/2 divides

.2dCf T r.!//2�2.d2C2df T r.!/Cf 2N.!/ D 2d2Cf 2.T r.!/2�2N.!//:

Since f=f 0 divides f , we have .f=f 0/2j2d2. So we have .f=f 0/jd . So we have
a, b, c, d 2 .f=f 0/Z. Hence we see that af 0! D .af 0=f /f! D �a.df 0=f / C
.af 0=f /.d C f!/ 2 a and f 0!.d C f!/ D .df 0=f /Cf 0T r.!//.d Cf!/f! �
ac.f 0=f / 2 a, so a is an ideal of Of 0 . ut
Lemma 6.6. If the discriminant of a quadratic form ax2 C bxy C cy2 is not a
square, then there exists a quadratic field K and a natural number f such that
b2 � 4ac D f 2DK .

Proof. We have b2 � 4ac � 0 mod 4 or 1 mod 4. So we can write b2 � 4ac D
2ef 2

0 m0 for some odd natural number f0, some odd number m0 with no square
factor and some non-negative integer e. If e D 0 then m0 � 1 mod 4. Since
we assumed that b2 � 4ac is not a square, the field K D Q.

p
m0/ is quadratic

and DK D m0. Then DK and f D f0 satisfy the demand. If e ¤ 0, then
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b2 � 4ac � 0 mod 4, so we have e � 2. If e is odd, then put K D Q.
p
2m0/.

Then we haveDK D 8m0 and f D 2.e�3/=2f0 satisfies the demand. If e is even, put
K D Q.

p
m0/. Ifm0 � 1 mod 4 then we haveDK D m0, and then put f D 2e=2f0.

If m0 � 3 mod 4 then we have DK D 4m0 and put f D 2.e�2/=2f0. These satisfy
the demand of the lemma. ut

This lemma suggests that there is a deep relation between binary quadratic forms
and quadratic fields. For each proper primitive ideal a of an order of a quadratic
field, using a, b, c of Lemma 6.3, we define a quadratic formQa by

Qa.x; y/ D ax2 C bxy C cy2:

We can also write this as

Qa.x; y/ D N.a/�1N
 
xa C y

b C p
D

2

!
D aN

 
x C y

b C p
D

2a

!
:

Here we put D D b2 � 4ac, and a and bCpD
2

D d C f! form a basis of a.
Now in order to see relations between equivalence classes of quadratic forms

with some equivalent classes of ideals of a quadratic order, we give the following
definitions. We say that two proper Of -ideals a and b are equivalent in the wide
sense if there exists ˛ 2 K� such that a D .˛/b. If N.˛/ > 0 in the above in
addition, we say that a and b are equivalent in the narrow sense. Here the condition
N.˛/ > 0 is satisfied automatically if K is an imaginary quadratic field. If K is a
real quadratic field, then taking �˛ instead of ˛ if necessary, we may replace the
condition N.˛/ > 0 by the condition ˛ > 0 and ˛ > 0. Actually this is the usual
definition which fits into the general theory. The number of equivalence classes in
the wide (narrow) sense of proper Of -ideals is called the class number in the wide
(narrow) sense of Of . It is common to call the number of equivalence classes in the
wide sense just the class number. IfK is an imaginary quadratic field, the definition
in the narrow sense and that in the wide sense are the same, as we saw already.

Now letK be a quadratic field and letDK be the fundamental discriminant ofK .
Let f be a natural number. We define a mapping from the set of proper primitive
ideals a of Of to the set of quadratic forms by settingQa.x; y/ D ax2CbxyCcy2
by using the standard basis such that a D Za C Z.d C f!/, where we define b, c
by b D 2d C T r.!/, N.d C f!/ D ac. Since the standard basis is unique, this is
a well-defined mapping from ideals.

This mapping does not give a bijective mapping of proper primitive ideals to
primitive quadratic forms. But we can prove the following claim.

Theorem 6.7. WhenK is an imaginary quadratic field, that is, ifDK < 0, then the
above mapping induces a bijective correspondence between the set of equivalence
classes in the narrow sense of proper Of ideals to the set of SL2.Z/-equivalence
classes of positive definite primitive quadratic forms with discriminant f 2DK . If
K is a real quadratic field, that is, if DK > 0, then this gives a bijection from



6.2 Orders of Quadratic Fields 83

the set of equivalence classes in the narrow (wide) sense of proper Of ideals to
the set of SL2.Z/-equivalence (GL2.Z/-equivalence) classes of indefinite primitive
quadratic forms with discriminant f 2DK .

Proof. For simplicity, we write L.D/ D L�.D/ if D > 0 and L.D/ D L�C.D/
if D < 0. We denote by L.D/= 
 the set of GL2.Z/ equivalence classes in L.D/
and by L.D/= � the set of SL2.Z/ equivalence classes. Since any Of ideal is
equivalent (both in the wide sense and narrow sense) to the primitive ideal, it is
sufficient to consider primitive ideals. For a given proper primitive Of ideal, we
define a, b, c as before. Then since .a; b; c/ D 1, the quadratic form Qa.x; y/ D
ax2 C bxy C cy2 is primitive and the discriminant of Qa is f 2DK . By our choice
of the standard basis of a, we have a > 0. So if D.S/ < 0, then Qa.x; y/ is
positive definite. So the mapping a to Qa.x; y/ induces mappings to L.D/= 

and to L.D/= �. We first show that this mapping is surjective. Take a primitive
quadratic formQ.x; y/ D ax2CbxyCcy2. If this is positive definite, then we have
a > 0 automatically. If this is indefinite, then we might have a < 0, but changing the
quadratic form by SL2.Z/ equivalence, we may assume that a > 0. This is proved
as follows. Assume that a < 0. For a given x, y, we have 4a.ax2 C bxy C cy2/ D
.2ax C by/2 C .4ac � b2/y2. We have 4ac � b2 < 0 by the assumption that the
quadratic form is indefinite. We fix an integer y such that jaj=pb2 � 4ac < y.
Choosing x suitably, we can assume that 2ax C by is in any set of representatives
modulo 2a. So we can assume that j2ax C byj � jaj. So we have .2ax C by/2 �
.b2 � 4ac/y2 < 0 for some x. This means that there exists .x; y/ 2 Z2 such
that ax2 C bxy C cy2 > 0. This property still holds if we divide x, y by the
g.c.d. of x and y, so we may assume that x and y are coprime. We can take an
element A of SL2.Z/ such that .x; y/ is the first row of A. So the (1,1) component

of A
�

a b=2
b=2 c

�
tA is positive. This proves the assertion. We assume a > 0 from

now on. LetD be the discriminant ofQ, that is,D D b2�4ac D f 2DK . Since we
have .f T r.!//2 D f 2.DK C4N.!//, we have .f T r.!//2 � f 2DK � b2 mod 4
and we have b � f T r.!/ mod 2. So if we define d by b D 2d C f T r.!/, then

a D Za C Z.d C f!/ D Za C Z
b C p

D

2

is a proper primitive ideal of Of since we assumed gcd.a; b; c/ D 1. This d might
not satisfy the condition �a=2 � d < a=2, but changing b to b0 D b � 2ak for
some k, we see that d0 D d �ak satisfies the condition. So we take k 2 Z such that
�a=2 � d0 D d � ak < a=2. If we define b0 D b � 2ak and c0 D c � bk C ak2,
then b20 � 4ac0 D f 2Dk and we have ac0 D N.d0 C f!/, b0 D 2d0 C f T r.!/.
So we have a D Za C Z.d0 C f!/. We have

Qa.x; y/ D a0x
2 C b0xy C c0y

2

D a.x � ky/2 C b.x � ky/y C cy2;
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so this is SL2.Z/ equivalent (a fortiori, GL2.Z/-equivalent) to Q.x; y/. So the
mapping to L.D/= 
 or L.D/= � is surjective. Next we see that these mappings
to L.D/= 
 and L.D/= � induce well defined mappings from ideal classes in the
wide sense and in the narrow sense, respectively. Write two proper primitive Of

ideals by standard bases as ai D Zai C Z.bi C p
D/=2, where D D b2i � 4ai ci

(i D 1, 2), and assume that a2 D a1˛ for some ˛ 2 Q.
p
D/�. Then there exists

A 2 GL2.Z/ such that .a2; .b2 C p
D/=2/ D .a1˛; .b1 C p

D/˛=2/A. Since we
have

 
a2

b2C
p
D

2

a2
b2�
p
D

2

!
D
 
a1

b1C
p
D

2

a1
b1�
p
D

2

!�
˛ 0

0 ˛

�
A;

we have a2 D a1N.˛/ det.A/. Writing .X; Y / D .x; y/ tA, we also have

a2.a2x
2 C b2xy C c2y

2/ D N

 
a2x C b2 C p

D

2
y

!

D a1N.˛/.a1X
2 C b1XY C c1Y

2/

D a2 det.A/.a1X
2 C b1XY C c1Y

2/:

Since ai > 0 for i D 1, 2, we have N.˛/ det.A/ > 0. So we are done. Next
we see that the mapping is injective. For two primitive proper Of ideals a1 D
Za1 C Z.d1 C f!/ and a2 D Za2 C Z.d2 C f!/, we define

Qa 1.x; y/ D a1x
2 C b1xy C c1y

2 D a�11 N.a1x C .d1 C f!/y/ and

Qa 2.x; y/ D a2x
2 C b2xy C c2y

2 D a�12 N.a2x C .d2 C f!/y/;

as before. Assume that Qa 2.x; y/ D det.A/Qa 1 ..x; y/A/ for some A 2 GL2.Z/.
We define !1, !2 2 K D Q.

p
DK/ by

.!1; !2/ D .a1; d1 C f!/ tA D
 
a1;

b1 C p
D

2

!
tA:

and put ˛ D a2=!1. We will show that a2 D ˛a1 and det.A/N.˛/ > 0. Since

a1x C .d1 C f!/y D .x; y/

�
a1

d1 C f!

�
, and A

�
a1

d1 C f!

�
D
�
!1

!2

�
, we have

Qa 1..x; y/A/ D a�11 N
�
.x; y/A

�
a1

d1 C f!

��
D a�11 N.x!1 C y!2/

D a�11 .x2N.!1/C xyT r.!1!2/C y2N.!2//:



6.2 Orders of Quadratic Fields 85

Since this is equal to det.A/Qa1 .x; y/, we have

N.!1/ D det.A/a1a2 and T r.!1!2/ D det.A/a1b2:

So we have

N.˛/ det.A/ D det.A/a22=N.!1/ D a2=a1 > 0: (6.3)

Now, since A 2 GL2.Z/, we have a1 D Z!1 C Z!2. So we have a1˛ D
Za2 C Z.a2!2=!1/. So it is sufficient to show that a2!2=!1 D d2 C f!. We have
a2!2=!1 D a2!2!1=N.!1/ D det.A/!2!1=a1. We must calculate !2!1. Taking
the conjugate of the definition of !i , we have

�
!1; !2
!1; !2

�
D
�
a1; d1 C f!

a1; d1 C f !

�
tA:

So taking the determinant, we have

�!1!2 C !2!1 D det.A/a1f .! � !/:
So adding!1!2C!1!2 D det.A/b2a1 D det.A/a1.2d2CT r.f!// to the both sides
and dividing by 2, we have !2!1 D det.A/a1.d2 C f!/ D .N.!1/=a2/.d2 C f!/.
So we have a2 D a1˛. Hence a1 and a2 are equivalent in the wide sense, and if
det.A/ D 1, then equivalent in the narrow sense. Hence the mapping is injective.

ut
When DK > 0, the equivalences of proper Of -ideals in the wide sense and in

the narrow sense are the same if and only if there exists " 2 O�f withN."/ D �1, as
we can see easily. We give the corresponding fact in the case of symmetric matrices
(or quadratic forms) in the following proposition.

Proposition 6.8. Assume that D D f 2DK is positive and is not a square. Assume
that for S1, S2 2 L�.D/ we have S2 D � tBS1B for some B 2 GL2.Z/ with
det.B/ D �1. Then there exists C 2 SL2.Z/ such that S2 D tCS1C if and only if
there exists " 2 O�f such that N."/ D �1.

Proof. We may assume that S1 and S2 are primitive. First we assume the existence
ofC . Then if we writeA D BC�1 2 GL2.Z/, then we have det.A/ D �1 and S1 D
det.A/ tAS1A. We have shown in the proof of the last theorem that S1 is SL2.Z/
equivalent to a matrix S in L.D/ corresponding to a quadratic form Qa.x; y/ for
some primitive Of proper ideal a D Za C Z.d C f!/. Now we put .!1; !2/ D
.a; dCf!/A and ˛ D a=!1, and apply the argument of the proof of the last theorem
for a1 D a2 D a. Then by (6.3) we haveN.˛/ < 0 and we have a˛ D a. Since a is a
properOf -ideal, we have ˛ 2 Of . We also have a D a˛�1, so ˛�1 2 Of andN.˛/
and N.˛�1/ are integers. So we have N.˛/ D �1 and ˛ 2 O�f . Conversely, if there
exists 
 2 O�f with N.
/ D �1, then we have a
 D a. If we define A 2 GL2.Z/ by

.a; d C f!/
 D .a; d C f!/A;
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then det.A/ D N.
/ D �1 and Qa..x; y/A/ D det.A/Qa.x; y/, that is, AStA D
det.A/S . Assuming that S1 D PStP for P 2 SL2.Z/, C D PAP�1 satisfies the
condition in the proposition. ut
Example 6.9. (1) If we put K D Q.

p
m/ and a D ZmC Z

p
m, then Qa.x; y/ D

jmj�1N.jmjx C y
p
m/ D jmjx2 � sgn.m/y2.

(2) We take K D Q.
p�5/. For an ideal a D 3Z C .1 C p�5/Z of Omax D

Z C Z
p�5, we have Qa.x; y/ D 3x2 C 2xy C 2y2. On the other hand, for

Omax D .1/ itself, we have Q.1/ D x2 C 5y2. Any primitive quadratic form
with discriminant �20 is equivalent to one of these two.

Remark 6.10. In the above, we did not treat negative definite quadratic forms. But
this causes no problem since all these can be obtained by multiplying �1 to the
positive definite ones. On the other hand, we excluded primitive quadratic forms
with square discriminant. These quadratic forms are (as far as discriminant is not
zero) very special quadratic forms in various senses. (For example, the volume of
the fundamental domain with respect to the unit group (the automorphism group)
is not finite etc.) We would like to omit such details, but at least we try to give a
classification of equivalence classes below.

Let Q.x; y/ D ax2 C bxy C cy2 be a primitive quadratic form and assume that
b2 � 4ac D f 2 for a positive integer f . First we see that we may assume a D 0 by
replacingQ by an equivalent quadratic form. Indeed, if a ¤ 0, then noting that the
equation ax2 C bx C c D 0 has a solution x D .�b ˙ f /=2a, we denote by e the
g.c.d. of �b C f and 2a and define x0, y0 by �b C f D x0e and 2a D y0e. Then
x0 and y0 are coprime and there exist w0; z0 2 Z such that x0w0 � y0z0 D 1. Since

we have a
�
x0
y0

�2 C b
�
x0
y0

�
C c D 0, we get ax20 C bx0y0 C cy20 D 0 and

�
x0 y0

z0 w0

��
a b=2

b=2 c

��
x0 z0
y0 w0

�
D
�
ax20 C bx0y0 C cy20 �

� �
�

D
�
0 �
� �

�
:

So we can assume that Q.x; y/ D bxy C cy2 up to SL2.Z/-equivalence. If the
discriminant of Q is 0, then b is also 0, and by the assumption that it is primitive,
we have c D ˙1. It is easy to see that the quadratic forms y2 and �y2 are not
SL2.Z/-equivalent but and GL2.Z/-equivalent. So we classified the case where the
discriminant is zero. From now on, we assume that the discriminant is not zero. We

consider an element A D
�
˛ ˇ

� ı

�
2 GL2.Z/ which maps bxy C cy2 to quadratic

forms whose coefficient of x2 is 0. Since

tA

�
0 b=2

b=2 c

�
A D

�
b˛� C c�2 �

� �
�
;

we should have � D 0 or b˛ C c� D 0. Since b and c are coprime, we have z,
w 2 Z such that bz C cw D ˙1. So such an A is given either by
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A D ˙
�
c z

�b w

�
or ˙

�
1 z
0 ˙1

�
:

with det.A/ D ˙1. For the former one, if we take bz C cw D 1, then we have
det.A/ D 1 and

tA

 
0 b=2

b=2 c

!
A D

 
0 �b.bz C cw/=2

�b.bz C cw/=2 bzw C cw2

!
D det.A/

 
0 �b=2

�b=2 w

!
;

so we can choose a representative of SL2.Z/ equivalence classes such that b > 0.
On the other hand, we have

�
1 0

z 1

��
0 b=2

b=2 c

��
1 z
0 1

�
D
�
0 b=2

b=2 c C bz

�

so we can take c among representatives modulo b. We have

�
�
1 0

0 �1
��

0 b=2

b=2 c

��
1 0

0 �1
�

D
�
0 b=2

b=2 �c
�
:

So representatives of SL2.Z/-equivalence classes and GL2.Z/-equivalence classes
with discriminant f 2 ¤ 0 .f > 0/ can be taken in the set of the following matrices:

�
0 f=2

f=2 c

�

with 0 � c � f � 1 and 0 � c � f=2, respectively. The fact that these are not
equivalent with each other can be seen easily by the above calculation. In particular,
the number of SL2.Z/- or GL2.Z/- equivalence classes of quadratic forms with a
fixed square discriminant is finite. The number of SL2.Z/ equivalence classes is f ,
and if we restrict to the primitive classes, the number is '.f /, where '.f / is the
Euler function. The case where the discriminant is not a square will be explained in
the next section.

6.3 Class Number Formula of Quadratic Forms

In this section, first we prove the finiteness of the class number (the number of
equivalence classes) of primitive quadratic forms. As we mentioned in the last
section, this is equivalent to the finiteness of the class number (in the narrow sense or
in the wide sense) of quadratic orders Of , which are not necessarily maximal. Next
we state a formula of the class numbers (in the wide sense) of quadratic orders. (The
proof is postponed until Chap. 10.) As we saw in the last section, the class number
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in the narrow sense is easily obtained from the one in the wide sense. Actually, once
we know the class number formula for the maximal order, the class number of an
arbitrary order is determined. The reason for this can be explained if we use group-
theoretic language, but in Chap. 10, we will give a different direct proof using zeta
functions.

Proposition 6.11. The number of SL2.Z/ equivalence classes of binary primitive
quadratic forms of a given discriminant is finite. In particular, the class number of
binary primitive quadratic forms with discriminant f 2DK is finite.

Proof. We already explained the case where the discriminant is square. So, here
we treat only those with discriminant f 2DK , where K is a quadratic field and DK

is the fundamental discriminant of K . We fix f 2DK now and we consider only
those quadratic forms which have this number as discriminant. We say first that any
primitive quadratic form is equivalent to ax2 C bxy C cy2 with jbj � jaj � jcj.
Indeed, we take a quadratic form ax2 C bxy C cy2 so that jaj, the absolute value
of the coefficient of x2, is the smallest among those equivalent to the original
one. Then by the transformation .x; y/ ! .�y; x/, the coefficient x2 becomes c,
so by our choice of a, we have jaj � jcj. For some integer m 2 Z, we have
�jaj � b � 2ma � jaj. So, changing the quadratic form to the equivalent one by the
transformation .x; y/ ! .x�my; y/, we have a.x�my/2 Cb.x�my/yC cy2 D
ax2 C .b � 2am/xy C .c � bmC am2/y2, we may assume that �jaj � b � jaj
from the first. So we can assume that jbj � jaj � jcj. (In particular, if DK < 0, we
may assume that the quadratic form is positive definite, so we have jbj � a � c.)
On the other hand, we have b2 � 4ac D f 2DK by definition, so we have

4jacj � b2 � j4ac � b2j D f 2jDK j:

But since b2 � a2, a2 � jacj, we have 3a2 � 4jacj � b2 � f 2jDK j. So jaj �p
f 2jDK j=3. It is obvious that there is only a finite number of such integers a.

Hence the number of b is also finite by jbj � jaj and c D .b2 � f 2DK/=4a is also.
Hence the assertion is proved. ut

LetDK be the fundamental discriminant of a quadratic field and putD D f 2DK .
We denote by h.D/ the class number in the wide sense of the order Of of the
quadratic field K D Q C Q!. To describe the class number formula, we introduce
the quadratic residue symbol. For an odd prime p and an integer a, the quadratic

residue symbol
�
a
p

�
with respect to p is defined as follows.

�
a

p

�
D

⎧
⎪⎪⎨

⎪⎪⎩

1 if a 62 pZ and there exists x 2 Z such that x2 � a mod p,

�1 if a 62 pZ and there is no x 2 Z such that x2 � a mod p,

0 if a 2 pZ:

The following three relations are known as the reciprocity law of the quadratic
residue symbols.
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(1) For odd primes p, q, we have

�
q

p

��
p

q

�
D .�1/.p�1/.q�1/=4:

(2) For an odd prime p, we have

��1
p

�
D .�1/.p�1/=2:

(3) For an odd prime p, we have

�
2

p

�
D .�1/.p2�1/=8:

The proof will be omitted here. (See e.g. [83].)
For the fundamental discriminant DK of a quadratic field and a prime p, we

define the notation �K.p/ by

�K.p/ D

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�
DK
p

�
if p is an odd prime,

1 if p D 2 andDK � 1 mod 8,

�1 if p D 2 andDK � 5 mod 8,

0 if p D 2 andDK � 0 mod 4:

We also define �K.1/ D 1 and

�K.�1/ D
{
1 if DK > 0,

�1 if DK < 0:

Moreover, if u is an integer and if u D ˙pe11 � � �perr is a prime factor decomposition
of u, we put �K.u/ D �K.˙1/�K.p1/e1 � � ��K.pr/er . Actually, by using the
reciprocity law and other things, one can show that �K.u/ depends only on
u mod DK . We omit the details of the proofs of this fact (cf. [107, §5]). The function
�K prolonged in this way is a primitive Dirichlet character modulo jDK j. It is
common to write this character as

�
DK

u

�
. So in this book, we sometimes use this

notation instead of �K .
Now we can write down the class number formula by using the notation

�K.u/ D �
DK

u

�
. When DK > 0, by Dirichlet, it is known that O�max D f˙1g �

f"nIn 2 Zg for some " 2 O�max with " ¤ ˙1. This " is called the fundamental unit
of K .
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Theorem 6.12. (1) The class number of the quadratic field K with discriminant
DK is given by

h.DK/ D

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� w

DK

jDK j�1X

uD1

�
DK

u

�
u if DK < 0,

log."/
DK�1X

uD1

�
DK

u

�
log.sin.u�=DK// if DK > 0.

Here w is the half of the number of units of Omax and whenDK > 0, we denote
by " the fundamental unit of K .

(2) The class number of the order Of of K with discriminant D D f 2DK is
given by

h.D/ D h.DK/f

ŒO�max W O�f �
Y

pjf

�
1 � 1

p

�
DK

p

��
:

Here for any ring R, the notationR� means the group of all units of R.

As we mentioned before, the class number in the narrow sense can be easily
obtained by this formula, and the class number of primitive quadratic forms also.
The proof of the class number formula will be given in Chap. 10 when K is an
imaginary quadratic field. WhenK is a real quadratic field, the proof will be omitted
from this book.

The class numbers of imaginary quadratic fields have a relation to the Bernoulli
numbers. Indeed, if we put �.u/ D �

DK
u

�
, then by Sect. 4.2, we have

B1;� D 1

DK

jDK j�1X

uD1
�.u/u; (6.4)

so if DK < 0, we see

h.DK/ D �wB1;�: (6.5)

In particular, if p is a prime such that p � 3 mod 4 and p > 3, then it is shown
by using (6.4) and the reciprocity law of quadratic residues that the class number
h.�p/ of Q.

p�p/ is given by

h.�p/ D � 1
p

p�1X

uD1

�
u

p

�
u: (6.6)

By the above formula, we see that h.D/ D 1 for D D �3, �4, �7, �8,
�11, �19, �43, �67 and �163. It is known that there are no other (fundamental
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discriminants of) imaginary quadratic fields such that h.DK/ D 1. Even if we take
the non-maximal orders of imaginary quadratic fields into account, there are only
four more orders with class number one, namely D D �12, �16, �27 and �28. In
contrast to this, it is conjectured that there are infinitely many real quadratic fields
with class number one,2 but no proof is known.

Remark 6.13. For S1 and S2 2 L�.D/, we can also define an equivalence class by
S2 D tAS1A for someA 2 GL2.Z/. If S1 andS2 are SL2.Z/ equivalent in the sense
we defined before, then of course these are equivalent in the above sense. But the
equivalences S2 D tA1S1A1 and S2 D � tA2S1A2 for some A1 and A2 2 GL2.Z/
with det.A1/ D det.A2/ D �1 are different conditions in general. For example, for
two symmetric matrices S1, S2 2 L�.12/ given by

S1 D
�
3 0

0 �1
�

and S2 D
�
1 0

0 �3
�
;

there do not exist A 2 GL2.Z/ such that S2 D tAS1A. This can be seen from the
fact that the diophantine equation a2 � 3b2 D �1 does not have integer solutions.
On the other hand, each corresponds to the symmetric matrix obtained from the
standard basis of 3ZCp

3Z or ZCZ
p
3. Since

p
3.ZCZ

p
3/ D 3ZCp

3Z, these
ideals are equivalent in the wide sense. In fact, we have

�
�
0 1

1 0

��
3 0

0 �1
��

0 1

1 0

�
D
�
1 0

0 �3
�
;

so we have S2 D det.A/tASA for A D
�
0 1

1 0

�
2 GL2.Z/. We will give one more

example. Take S3, S4 2 L�.23/ given by

S3 D
�
3 1=2

1=2 2

�
and S4 D

�
3 �1=2

�1=2 2

�
:

Then we have

S4 D
�
1 0

0 �1
�
S3

�
1 0

0 �1
�

but there exists noA 2 GL2.Z/ such that S4 D det.A/ tAS3A. Indeed if there exists
such A, then since S3 and S4 are positive definite, we should have det.A/ > 0.
Then comparing diagonal components of both sides, we see that we should have
A D ˙12. This is a contradiction since .1; 2/ components do not coincide for
A D ˙12. We explain shortly the difference between SL2.Z/ equivalence and the
equivalence in the above sense. For any S1 2 L�.D/, define

2In Section 304 of his book on number theory, Disquisitiones Arithmeticae [35], Gauss stated his
speculation on this and also his reasonable insight on the relation to the size of fundamental units.
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S2 D
�
1 0

0 �1
�
S1

�
1 0

0 �1
�
:

If S2 is SL2.Z/ equivalent to S1, then S1 (or the corresponding SL2.Z/ equivalence
class, or ideal or class in the narrow sense) is called ambig. In this case, for any
S 2 L�.D/ such that S D tAS1A for some A 2 GL2.Z/, we see that S
is SL2.Z/ equivalent to S1. So there is no difference between two equivalences.
In the case when S2 is not SL2.Z/ equivalent to S1, then the GL2.Z/ equivalence
class which contains S1 contains two different SL2.Z/ equivalent classes. To count
the equivalence classes of L�.D/ up to the equivalence that S2 D tAS1A for
A 2 GL2.Z/, we must count ambig classes, which is a part of the genus theory
of Gauss. Since this is complicated in general, we do not explain this theory in this
book. (See [29]. See also Exercises 6.21 and 10.25.)

Exercise 6.14. For a square-free integerm, show that 1 and ! in (6.1) gives a basis
of the maximal order Omax of Q.

p
m/.

Exercise 6.15. Show that the quadratic form Q.x; y/ D x2 C bxy C cy2 with
discriminantD is equivalent to the following quadratic form.

x2 � D
4
y2 if b is even,

x2 C xy C 1�D
4
y2 if b is odd.

Exercise 6.16. (1) Let a D Za C Z bCpD
2

be a proper primitive ideal of order Of

of discriminant D D f 2DK , where DK is a discriminant of a quadratic field
K . We assume a > 0. Show that a is a principal ideal of Of (i.e. a D Of ˛

for some element ˛ 2 Of ) if and only if there exists integers x and y such that
ax2 C bxy C cy2 D ˙1.

(2) Show that the class of quadratic forms in the wide sense corresponding to a
principal ideal a contains the one given in Exercise 6.15.

(3) Notation being as above, give an example of a principal ideal a such that there
exists no x, y 2 Z with ax2 C bxy C cy2 D 1.

(4) Give an example of an equivalence class of quadratic forms Q.x; y/ in the
narrow sense corresponding to a principal ideal (in the wide sense) such that
Q.x; y/ is not SL2.Z/ equivalent to any form given in Exercise 6.15.

Exercise 6.17. Fix a positive discriminantD D f 2DK , whereK is a real quadratic
field, and consider an integral quadratic formQ.x; y/ D Ax2 CBxyCCy2 whose
discriminant is D.

(1) Let jaj be minimum among coefficients of x2 of quadratic forms which are
equivalent to Q. Show that there exists a quadratic form Q2.x; y/ D ax2 C
bxy C y2 equivalent to Q such that

p
D � 2jaj < b < p

D and jaj � jcj.
(2) TakingQ2 as in (1), show that ac < 0 and 0 < b. (Use .

p
DC b/.

p
D� b/ D

�4ac.) In particular, show that 0 < b <
p
D,

p
D � b < 2jaj < p

D C b.
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Exercise 6.18. Show that for any integral quadratic formQ, there exists a quadratic
form SL2.Z/ equivalent to Q such that the coefficient of x2 is positive. (See the
proof of Theorem 6.7, for example.)

Exercise 6.19. (1) Show that the following pairs of quadratic forms in (i) and
(ii) are SL2.Z/ equivalent respectively.

(i) ax2 C bxy C ay2 and ax2 � bxy C ay2:

(ii) ax2 C axy C cy2 and ax2 � axy C cy2:

(2) Assume that D D f 2DK < 0 and a positive definite quadratic form
Q.x; y/ D ax2 C bxy C cy2 has discriminant D. As shown in the proof
of Proposition 6.11, by replacing SL2.Z/ equivalence, we may assume that
jbj � a � c. Such quadratic forms are called reduced. Conversely, assume that
there are two SL2.Z/ equivalent positive definite quadratic forms Qi.x; y/ D
aix

2 C bixy C ciy
2 with discriminant D with jbi j � ai � ci (1 � i � 2).

Show that .a1; b1; c1/ D .a2; b2; c2/ except for the following pairs.

(i) a1 D c1 and .a2; b2; c2/ D .a1;�b1; a1/.
(ii) a1 D b1 and .a2; b2; c2/ D .a1;�a1; c1/.
Hint: Write down the transformation explicitly as a2 D a1˛

2Cb1˛�Cc1�2 and
assuming that a2 � a1 and using the condition of a1, b1, c1, show that j˛� j � 1.

Exercise 6.20. (1) Show that h.D/ D 1 for D D �3, �4, �7, �8, �11, �12,
�16, �19, �27, �28, �43, �67 and �163.

(2) Show that h.�20/ D 2 and give a complete set of representatives of the ideal
classes.

(3) Show that h.40/ D 2 and give a complete set of representatives of the ideal
classes.

Exercise 6.21. Fix a discriminant D D f 2DK and consider S D
�
a b=2

b=2 c

�
2

L�.D/. Show that the following conditions on S are equivalent (the class to which
such an S belongs is called an ambig class).

(1) There exists A 2 GL2.Z/ with det.A/ D �1 such that tASA D S .
(2) The matrix S is SL2.Z/ equivalent to

�
a �b=2

�b=2 c

�
:

(3) There exists S 0 D
�
a0 b0=2
b0=2 c0

�
2 L�.D/ which is SL2.Z/ equivalent to S

such that b0 is divisible by a0. (Here we may take b0 D 0 or b0 D a0.)

Hint: If tASA D S with det.A/ D �1, then show that T r.A/ D 0 andA2 D
�
1 0

0 1

�
.

Then reduce the case when A is upper triangular.



Chapter 7
Congruence Between Bernoulli Numbers
and Class Numbers of Imaginary
Quadratic Fields

In this chapter, we prove a congruence relation between Bernoulli numbers and
class numbers of imaginary quadratic fields (Theorem 7.1). For that purpose, we
study in Sect. 7.2 a certain type of power series which Hurwitz1 introduced (we call
this “Hurwitz-integral” series). Although one may prove Theorem 7.2 without using
this, we nevertheless introduce this notion because of its elegance and usefulness.

7.1 Congruence Between Bernoulli Numbers and Class
Numbers

For a prime p satisfying p � 3 mod 4, recall that h.�p/ denotes the class number
of the imaginary quadratic field of discriminant �p.

Theorem 7.1. Let p > 3 be a prime, p � 3 mod 4. We have the congruence2

h.�p/ � �2BpC1
2

mod p:

Remark 7.2. (1) By the theorem of Clausen and von Staudt (Theorem 3.1), the
denominator of BpC1

2

is prime to p.

(2) Using Euler’s formula �.1� k/ D �Bk=k (Theorem 5.4 (2), p. 72), we have

1Adolf Hurwitz (born on March 26, 1859 in Hildesheim, Germany—died on November 18, 1919
in Zürich, Switzerland).
2This is due to Augustin Louis Cauchy (born on August 21, 1789 in Paris, France—died on May 23,
1857 in Sceaux, France). He expressed the left-hand side by a difference of numbers of quadratic
residues and non-residues in the interval .0; p=2/. That this is equal to the class number is nothing
but the class number formula of Dirichlet.

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__7, © Springer Japan 2014
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�

�
1 � p

2

�
D �

BpC1
2

pC1
2

� �2BpC1
2

mod p

and hence the theorem can be written as

h.�p/ � �

�
1� p

2

�
mod p:

The class number formula (6.6) at the end of the last chapter gives

1 � h.�p/ D 1

p

ˇ̌
ˇ̌
ˇ

p�1X

uD1

�
u

p

�
u

ˇ̌
ˇ̌
ˇ � 1

p

p�1X

uD1
u D p � 1

2
:

This shows that the class number h.�p/ is uniquely determined by its value
mod p. Therefore, the above congruence asserts that the value �..1� p/=2/ of
the Riemann zeta function “knows completely” the class number h.�p/.

(3) For a more advanced interpretation of this theorem using p-adic modular forms,
see [82].

(4) An analogous result in the real quadratic case is known as the following
Ankeny3–Artin4–Chowla5 congruence [4]: Let p be a prime number congruent
to 1 modulo 4, and " D .t C u

p
p/=2 be the fundamental unit. Then, we have

u

t
h.p/ � Bp�1

2
mod p:

Example 7.3. Let us compute several class numbers by using the theorem.

(1) For p D 7,

�2B7C1
2

D �2B4 D �2
�

� 1

30

�
D 1

15
� 1 mod 7;

so h.�7/ D 1:
(2) For p D 11,

�2B11C1
2

D �2B6 D �2
�
1

42

�
D � 1

21
D 1

1 � 22
� 1 mod 11;

so h.�11/ D 1:

3Nesmith Cornett Ankeny (born in 1927 in Walla Walla, USA—died on August 4, 1993 in Seattle,
USA).
4Emil Artin (born on March 3, 1898 in Vienna, Austria—died on December 20, 1962 in Hamburg,
Germany).
5Sarvadaman D. S. Chowla (born on October 22, 1907 in London, England—died on December
10, 1995 in Laramie, USA).
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(3) For p D 19,

�2B19C1
2

D �2B10 D �2
�
5

66

�
D � 5

33
D 5

5 � 38
� 1 mod 19;

so h.�19/ D 1:

(4) For p D 23,

�2B23C1
2

D �2B12 D �2
�

� 691

2730

�
D 691

1365
� 1

8
� 3 mod 23;

so h.�23/ D 3:

7.2 “Hurwitz-integral” Series

Definition 7.4. A formal power series with rational number coefficients of the formP1
nD0 cn tn=nŠ such that all cn are integers is said to be a Hurwitz-integral series.

The set of all Hurwitz-integral series is denoted by H.

Note that P.t/ 2 H if and only if P.0/; P 0.0/; P 00.0/; P .3/.0/; : : : are all in Z.
Typical examples of elements of H are et and log.1C t/.

Proposition 7.5. (1) H is an integral domain.

(2) H is closed under term-by-term differentiation
d

dt
and integration

Z t

0

.

(3) The set of invertible elements of H is H� D fP.t/ 2 HjP.0/ D ˙1g:
Proof. (1) We only need to show that the set H is closed under multiplication,

other properties being trivial to verify. For two series P.t/ D P1
nD0 cn tn=nŠ,

Q.t/ D P1
nD0 dn tn=nŠ, write the product P.t/Q.t/ as

P1
nD0 en tn=nŠ. The

numbers en are given by

en D
nX

iD0

 
n

i

!
cidn�i

and hence are integers if ci ; dn�i are all integers.
(2) For P.t/ D P1

nD0 cn tn=nŠ 2 H, we have

P 0.t/ D
1X

nD1
cn

tn�1

.n � 1/Š D
1X

nD0
cnC1

tn

nŠ
;

Z t

0

P.t/dt D
1X

nD0
cn

tnC1

.nC 1/Š
D
1X

nD1
cn�1

tn

nŠ
:

Both of these are clearly in H.
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(3) In order that P.t/ D P1
nD0 cn tn=nŠ is invertible in QŒŒt ��, the condition c0 ¤ 0

is necessary (Proposition 1.9 on p. 15). This being so, write the reciprocal
P.t/�1 in QŒŒt �� as P.t/�1 D P1

nD0 bn tn=nŠ. To have P.t/�1 2 H, we need
b0 D c�10 2 Z and thus c0 D ˙1. If this is satisfied, other coefficients bn
automatically belong to Z, because bn is the constant term of the nth derivative�
P.t/�1

�.n/
of P.t/�1 and the derivative is of the form

�
P.t/�1

�.n/ D polynomial in P.t/; P 0.t/; P 00.t/; : : : with integer coefficients

power of P.t/
;

and so, if c0 D P.0/ D ˙1, then the value of this at t D 0 is an integer since
P.0/; P 0.0/; P 00.0/; � � � 2 Z. We therefore have P.t/ 2 H�. Conversely, if
P.t/ 2 H�, then from P.t/�1jtD0 D c�10 2 Z we have c0 D ˙1.

ut
Remark 7.6. The series sin.t/; cos.t/ (Taylor expansions of sin.x/; cos.x/ at the
origin, viewed as formal power series in x D t) are both in H, and cos.t/ D
1 � t2=2Š C t4=4Š C � � � is invertible by proposition (3) above. Hence the series
tan.t/ D sin.t/= cos.t/ is Hurwitz-integral. This shows that the tangent numbers Tn
in Remark 1.18 (p. 24) are integers.

Proposition 7.7. Suppose P.t/ 2 H; P.0/ D 0. Then for any N 2 N we have

P.t/N

N Š
2 H:

Proof. We proceed by induction on N . The case N D 1 is trivial. Assume the
proposition is valid up to N � 1. Using

�
P.t/N =N Š

�0 D P.t/N�1P 0.t/=.N � 1/Š

and P.0/ D 0, we have

P.t/N

N Š
D
Z t

0

P.t/N�1

.N � 1/Š
P 0.t/dt:

The induction hypothesis and Proposition 7.5 (1), (2) show the right-hand side
belongs to H. ut
Definition 7.8. For series P.t/.¤ 0/;Q.t/ 2 H, we write P.t/jHQ.t/ or
Q.t/ �H 0 mod P.t/ if the condition Q.t/=P.t/ 2 H holds. Also we write
Q1.t/ �H Q2.t/ mod P.t/ if P.t/jH .Q1.t/ �Q2.t//.

In particular, whenm is an integer (this is also an element in H), the congruence
Q1.t/ �H Q2.t/ mod m means, if we write Q1.t/ D P1

nD0 c
.1/
n tn=nŠ, Q2.t/ DP1

nD0 c
.2/
n tn=nŠ, that the congruence c.1/n � c

.2/
n mod m holds for every n.
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7.3 Proof of Theorem 7.1

Put .p � 1/=2 D m. We have m > 1 because of our assumption p > 3. In the class
number formula ((6.6) on p. 90)

h.�p/ D � 1
p

p�1X

uD1

�
u

p

�
u;

divide the sum into two parts according to u < p=2 and u > p=2, and note�
�1
p

�
D �1 because p � 3 mod 4. Then we obtain

ph.�p/ D �
X

0<u<p=2

�
u

p

�
u �

X

0<u<p=2

�
p � u

p

�
.p � u/

D �2
X

0<u<p=2

�
u

p

�
u C p

X

0<u<p=2

�
u

p

�
: (7.1)

On the other hand, if we divide the sum according to the parity of u, then we have

ph.�p/ D �
X

0<u<p=2

�
2u

p

�
.2u/�

X

0<u<p=2

�
p � 2u

p

�
.p � 2u/

D �4
X

0<u<p=2

�
2u

p

�
u C p

X

0<u<p=2

�
2u

p

�
:

From this we have
�
2

p

�
ph.�p/ D �4

X

0<u<p=2

�
u

p

�
u C p

X

0<u<p=2

�
u

p

�
: (7.2)

Subtract (7.2) from two times (7.1) to obtain
�
2 �

�
2

p

��
ph.�p/ D p

X

0<u<p=2

�
u

p

�

and hence

h.�p/ D 1

2 �
�
2
p

�
mX

aD1

�
a

p

�
:

Applying Euler’s criterion
�
a
p

�
� am mod p (cf. [50, Proposition 5.1.2]) here, we

have

h.�p/ � 1

2 � 2m

mX

aD1
am mod p:
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Hence, the proof of the theorem h.�p/ � �2BmC1 mod p boils down to showing

mX

aD1
am � �2.2 � 2m/BmC1 mod p:

Further, by 2 � 1
mC1 mod p and �.2 � 2m/ � �.22mC1 � 2m/ � 2m.1 � 2mC1/

mod p, this reduces to showing

mX

aD1
am � 2m.1 � 2mC1/ BmC1

mC 1
mod p:

First, by t
et�1 D 1 � t

2
CP1

nD2 Bn t
n

nŠ
, we have

1

et C 1
D 1

et � 1 � 2

e2t � 1

D 1

t

  
1 � t

2
C
1X

nD2
Bn
tn

nŠ

!
�
 
1 � 2t

2
C
1X

nD2
Bn
.2t/n

nŠ

!!

D 1

2
C
1X

nD2
.1� 2n/Bn

tn�1

nŠ

D 1

2
C
1X

nD1
.1� 2nC1/

BnC1
nC 1

� t
n

nŠ
:

Replacing t 7! 2t and multiplying both sides by 2, we obtain

2

e2t C 1
D 1C

1X

nD1
2nC1.1 � 2nC1/

BnC1
nC 1

tn

nŠ
: (7.3)

Now since

2

e2t C 1
D 1

1 � 1�e2t
2

D 1C
�
1 � e2t
2

�
C
�
1 � e2t
2

�2
C
�
1 � e2t

2

�3
C � � �

and
�
1�e2t
2

�
D �P1nD1 2n�1 t

n

nŠ
2 H, we have 2

e2tC1 2 H. Also, by Proposition 7.7,

we have
�
1�e2t
2

�N �H 0 mod NŠ. In particular, if N � 2, we have
�
1�e2t
2

�N �H

0 mod 2. By this, combined with the fact that the coefficient of tn

nŠ
in 1�e2t

2
is

divisible by 2 if n � 2, we have

2

e2t C 1
�H 1C t mod 2: (7.4)



7.3 Proof of Theorem 7.1 101

Therefore, by (7.3), we have

2n.1 � 2nC1/ BnC1
nC 1

2 Z

if n � 2. Next observe

.1C e2t /

mX

aD0
e4at D

mX

aD0

�
e4at C e.4aC2/t

� D
2mC1X

jD0
e2jt

D
pX

jD0

1X

nD0

.2jt/n

nŠ
D
1X

nD0

� pX

jD0
.2j /n

�
tn

nŠ

D p C 1C
1X

nD1
2n
� pX

jD1
j n
�
tn

nŠ

�H 1 �
X

n�1
p�1jn

2n
tn

nŠ
mod p:

(Here we have used (3.1) on p. 42, i.e.,
Pp

jD1 j n � �1 mod p if p � 1jn andPp
jD1 j n � 0 mod p otherwise.) Multiplying both sides by 2

e2tC1 .2 H/, we have

2

mX

aD0
e4at �H

2

e2t C 1

�
1 �

X

n�1
p�1jn

2n
tn

nŠ

�
mod p:

Comparing the coefficients of t
m

mŠ
on both sides, we obtain by (7.3) (notem D p�1

2
<

p � 1)

2

mX

aD0
.4a/m � 2mC1.1 � 2mC1/ BmC1

mC 1
mod p:

Dividing both sides by 2 and using 4m D 2p�1 � 1 mod p, we have

mX

aD0
am � 2m.1 � 2mC1/ BmC1

mC 1
mod p:

This is what we wanted to show. ut
Exercise 7.9. Compute the class number h.�31/ by using Theorem 7.1 and
Table 1.1 in Chap. 1.
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Exercise 7.10. Let p be a prime congruent to 3modulo 4. Prove that the numerator
of BpC1

2

can never be divisible by p.

Exercise 7.11. The Euler numberEn is defined by the generating series

2

et C e�t
D
1X

nD0
En
tn

nŠ
:

Prove that all En are integers. Moreover, prove thatE2n is odd for all n � 1. (E2nC1
is easily seen to be 0.) Hint: Use (7.4).



Chapter 8
Character Sums and Bernoulli Numbers

We would like to explain arithmetic identities between Bernoulli numbers and the
root of unity. Namely we shall explain certain small collections of formulas between
exponential sums or character sums and Bernoulli numbers. We often encounter
such formulas when we compare the dimension formulas of modular forms obtained
by the Riemann–Roch theorem and by the trace formula. Often, the exponential
sums appear in the first method and the Bernoulli numbers appear in the second
method. But sometimes it is not easy to prove these relations in an elementary way,
and there are several cases that no elementary proofs are known. It seems that there
is no general elementary way to study these relations. Our elementary method in
this section is very restrictive and clearly not enough to attack difficult problems,
but still, it should give us some general feeling of what are easy exponential sums.

Before going to easy things treated in this section, we give here one example for
which no elementary proof is known.

Let p be a prime such that p � 3 mod 4. We put � D e2�i=p . Then the following
formula holds.

X

.a;b;c/2S

 .abc/

.1 � �a/.1 � �b/.1 � �c/
D �p�p

�
p C 1

4
B1; C 1

6
B3; 

�
:

Here we put S D
{
.a; b; c/ 2 .F�p /3I ab C bc C ca D 0

}
; Fp is the prime field

Z=pZ with characteristic p,  is the quadratic residue character defined by  .x/ D�
x
p

�
, and Bn; is the generalized Bernoulli number.

Motivated by dimension formulas, this relation is conjectured in [69], and later
proved in [47]. The proof there is a remote indirect proof. It is natural to ask if there
exists a more elementary and direct proof. But no elementary alternative proof is
currently known. Assuming that such a direct proof exists, we have no idea if such
a proof is simple or complicated before we really prove it.

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__8, © Springer Japan 2014
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The results we shall give below are much easier compared with this example.
But we see that even researchers sometimes fail to recognize that these are easy,
so we think it is of some use to explain such elementary formulas here. To fix our
standpoint, we assume here that we are satisfied if an exponential sum or a character
sum can be written by the generalized Bernoulli numbers.

8.1 Simplest Examples

We start from simple examples which can be treated easily. For a prime p, we put
�p D e2�i=p . As one of our examples, we consider the sum

Pp�1
aD1.1� �ap/�1. In fact

this sum is equal to

p�1X

aD1

1

1 � �ap
D p � 1

2
: (8.1)

Similar sums obtained by attaching the quadratic residue symbols or character
values of a to the numerator of 1=.1 � �ap/ can be expressed by using Bernoulli
numbers and Gaussian sums. We call loosely this kind of sum obtained by
combination of roots of unity and characters an exponential sum or a character
sum. As for the first example (8.1) we gave above, the argument is very simple.
For similar sums with some characters too, this kind of formula can be obtained by
fairly easy calculation.

Proof 1. We give the first proof. Since �ap (1 � a � p � 1) are mutually different
p � 1 roots of the equation Xp � 1 D 0 which is not equal to 1, we have

Xp � 1

X � 1
D Xp�1 CXp�2 C � � � C 1 D

p�1Y

aD1
.X � �ap/:

Take the logarithm of both sides and compare their derivatives with respect to X .
Then the left-hand side is

d

dX
log.Xp�1 CXp�2 C � � � C 1/ D

Pp�1
aD1 aXa

Xp�1 C � � � C 1
;

and the right-hand side is

d

dX

p�1X

aD1
log.X � �ap/ D

p�1X

aD1

1

X � �ap
:

Here if we put X D 1, then we get the relation to be proved since p�1
Pp�1

aD1 a D
.p � 1/=2. ut
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Proof 2. The next proof might appear in an exercise of the elementary algebra.
Here we use a little tool of algebra (Galois theory of cyclotomic fields). We never
use this argument later, so if the readers are not familiar with this tool, they are
recommended to skip this and to go directly to Proof 3. We call the field generated by
the nth roots of unity over the rational number field a cyclotomic field. Gauss studied
cyclotomic fields deeply [35, Chapter 7]. The cyclotomic field Q.�p/ is a Galois
extension of Q, and the set of the mappings �a: �p 7! �ap for integers a with 1 �
a � p�1 gives the Galois group of Q.�p/ over Q. So the sum which appears in (8.1)
is equal to the trace of x D 1=.1��p/ 2 Q.�p/ over Q, that is, the sum

Pp�1
aD1 �a.x/,

where �a.x/ is the action of the element �a in the Galois group on x. This trace is
invariant by each element �a of the Galois group, so by the general Galois theory,
we see this is a rational number. The degree of extension of Q.�p/ over Q (namely
the dimension as a vector space over Q) is p�1, but since we have �p D 1�1=x, x
also generates Q.�p/, so the minimal polynomial of x over Q is also of degree p�1.
The minimal polynomial of �p is 1CX CX2 C � � � CXp�1 D .Xp � 1/=.X � 1/,
so the minimal polynomial of �1=x D �p � 1 is given by ..X C 1/p � 1/=X . If
we put X D �1=Y , then this is written as �Y 1�p..Y � 1/p � Y p/, so the minimal
polynomial of x whose coefficient of the highest degree is one is given by

1

p
.Y p � .Y � 1/p/:

The trace of x is �1 times the coefficient of Y p�2, so by the binomial theorem,
we get

1

p
� p.p � 1/

2
D p � 1

2
:

Hence we prove (8.1). ut
Proof 3. Proof 2 is somewhat clumsy and similar methods cannot be used so easily
in other cases as imagined. Here we explain a more general method. Let t be
an indeterminate (i.e. a variable, or an element transcendental over the field in
question), and consider the rational function

1

1 � �pt :

By expanding this as a formal power series along t D 0, we have

1

1 � �pt D
1X

iD0
�ipt

i D
1X

jD0

p�1X

cD0
�cpt

cCpj D
Pp�1

cD0 �cptc

1 � tp :
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If jt j < 1, this calculation is valid also as a convergent power series. If we take here
t ! 1, then by the definition of differentiation (or the theorem of l’Hôpital1), we
easily see that

1

1 � �p D � 1
p

p�1X

cD1
c�cp:

In the above calculation, we used only the properties that �pp D 1 and �p ¤ 1, so
for any a prime to p, we can apply the same calculation to �ap instead of �p , so we
get also

1

1 � �ap
D � 1

p

p�1X

cD1
c�acp :

Here if we take the summation over a, we have

p�1X

aD1
�cap D

p�1X

aD0
�cap � 1 D

{�1 if c 6� 0 mod p,
p � 1 if c � 0 mod p,

so we get

p�1X

aD1

1

1 � �ap
D � 1

p

p�1X

cD1
.�c/ D 1

p
� p.p � 1/

2
D p � 1

2
:

Hence we prove (8.1). ut
An advantage of Proof 3 is that we can calculate mechanically without any

special insight on the result beforehand.
An alternative proof for the expression for .1� �a/�1 that we obtained in Proof 3

above will be given also in Lemma 8.5. By the way, we see of course without any
calculation that the element .1 � �a/�1 of Q.�p/ is a linear combination of the
basis �p, . . . , �p�1p of Q.�p/ over Q. In principle, for any element of a finite field
extensionK over k, a concrete expression of the inverse by a basis can be obtained
by Euclidean algorithm on polynomials. But we cannot expect in general that such
a linear combination is written by a simple formula. Since we have an accidentally
easy expression in the above case, we could use it.

1Guillaume François Antoine de l’Hôpital, (born in 1661 in Paris, France—died on February 2,
1704 in Paris, France).
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8.2 Gaussian Sum

Before we start explaining the relation between exponential sums and the general-
ized Bernoulli numbers, we explain about Gaussian sums. The simplest definition
of a Gaussian sum is given by

g.p/ D
p�1X

xD0
�x

2

p �p D e
2�i
p

for an odd prime p. This number was calculated by Gauss and the result is very
beautiful. Namely we have

g.p/ D
q
.�1/.p�1/=2 p :

Here the choice of the square root is given as follows. If p � 1 mod 4, we take
p
p

as a positive number and if p � 3 mod 4 we take
p�p so that its argument is �=2.

As we shall see later, it is very easy to prove that g.p/2 D .�1/.p�1/=2p, but it is
considerably difficult to determine the sign of the square root in g.p/. It is said that
Gauss spent 4 years getting the proof. 2

At the present time, there are many known ways to determine this sign, but it
would be beyond the scope or different from the aim of this book to carry those
proofs here. So we would like to ask readers to refer to some other books on the
determination of the sign. (For example, many proofs are introduced in [15].)

Now, this Gaussian sum can be also expressed in a slightly different way. Let

 be the quadratic residue symbol modulo p defined on p. 88 (i.e.  .n/ D
�
n
p

�
)

and put

2Gauss wrote in his letter (Collected Works X, p. 24) to Olbers dated September 3, 1805: “Since
four years ago, a week has seldom passed when I had not made one or another attempt to solve this
difficulty, especially lively now also again in the latest period. But all pondering, all search have
been in vain, and each time sadly I must have laid down my pen again. At last a couple of days
ago it succeeded, not for my wearisome search, but only through the grace of God, I would like
to say. As the lightning strikes, the problem has been solved; � � � Strangely enough, the solution
of this problem appears now easier than many others which did not well keep me so many days as
these years, and certainly no one will, when I give a lecture on this matter some day, get suspicious
of the long dilemma in which it brought me.” Incidentally, Olbers (Heinrich Wilhelm Matthias
Olbers, 1758–1840) was a medical doctor and an astronomer. The biggest asteroid, Ceres, which
made Gauss leap to fame, was discovered by Italian astronomer Giuseppe Piazzi (1746–1826) on
New Year’s day in 1801, but became lost through the difficulty of observation, then was accurately
located by Gauss by calculation. It was rediscovered by Olbers on New Year’s day in 1802. Also,
he newly discovered the asteroid Pallas in 1802 and Vesta in 1807. Olbers was a friend of Gauss
whom he visited most often.
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g. / D
p�1X

nD0
 .n/�np:

For each n, the number of representatives mod p of x 2 Z such that n � x2 mod p
is given by 1C  .n/, so we get

g.p/ D
p�1X

nD0
.1C  .n//�np D

p�1X

nD0
�np C

p�1X

nD0
 .n/�np:

Here the first sum is obviously 0, so this coincides with g. /.
Here we shall explain more general Gaussian sums which will be needed later.

If we change x2 to a quadratic form of several variables and integral vectors in
the above definition of Gaussian sum g.p/, we can define the “Gaussian sum of
quadratic forms”. This plays an important role in the transformation formula of
theta functions for example, and it is possible to calculate this as the above formula
of Gauss, though we do not go into this direction here. On the other hand, if we
change  into a general Dirichlet character in the definition of g. /, then we can
define a Gaussian sum associated with a character. We treat this in this book.

Definition 8.1. Let � be a primitive Dirichlet character with conductor f and put
�f D e2�i=f . We write

g.�/ D
f�1X

nD0
�.n/�nf

and we call this the Gaussian sum associated with character �.

In such a general case too, the absolute value of g.�/ is a simple quantity and
given by g.�/g.�/ D f . (The proof will be given later.) But for general �, there is
no formula of the Gaussian sum itself which is simple and explicit. When �2 D 1,
there are some formulas which will be explained later.

Lemma 8.2. Let � be a primitive Dirichlet character with conductor f and let a
be an arbitrary integer. Then the following formula holds.

�.a/g.�/ D
fX

nD1
�.n/�anf :

In particular, we have g.�/ D �.�1/g.�/.
A good point of this relation is that we are not assuming that a is coprime to f

and this is often useful for calculation of exponential sums.
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Proofs of Lemma. If a is coprime to f , the relation is obtained trivially by replacing
n by an in the definition of the Gaussian sum g.�/. If a is not coprime to f , then the
left-hand side is of course 0 by definition of a Dirichlet character, but the right-hand
side is also 0 by the following reasoning. If .a; f / D d > 1, then �anf depends only
on n mod f=d , but elements 1 � n � f such that 1 mod f=d form a subgroup in
.Z=f Z/� and so for each fixed n0 coprime to f , we have

X

n�n0 mod f=d

�.n/ D �.n0/
X

n�1 mod f=d

�.n/ D 0:

The second relation is obtained by putting a D �1 and taking the conjugate of both
sides in the first relation. Namely we have �.�1/g.�/ D g.�/ and since �.�1/2 D
�.1/ D 1, we have �.�1/�1 D �.�1/. ut

Since the Gaussian sum is never 0 as we see below, the above formula can be
written also as

�.a/ D g.�/�1
fX

nD1
�.n/�anf : (8.2)

Lemma 8.3. We have

g.�/g.�/ D f:

Proof. By Lemma 8.2, for any integer a, we have

�.a/�.a/g.�/g.�/ D
f�1X

n;mD1
�.n/�.m/�

a.n�m/
f :

Summing up both sides from a D 0,. . . ,f � 1, the left-hand side becomes
'.f /g.�/g.�/ since �.a/�.a/ D 1 if .a; f / D 1 and 0 otherwise. Here '.f / is
the Euler function, namely the number of positive integers not more than f which
are coprime to f . By using

f�1X

aD0
�
a.n�m/
f D

{
0 if n ¤ m,

f if n D m,

the right-hand side becomes

f �
f�1X

nD1
�.n/�.n/ D f '.f /:

Comparing both sides, we prove the lemma. ut
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Next we will give a formula for the Gaussian sum for a primitive Dirichlet
character with �2 D 1.

Proposition 8.4. Let � be a non-trivial primitive Dirichlet character such that
�2 D 1. Then there exists a quadratic field K such that �.u/ D �K.u/ D �

DK
u

�
,

where DK is the fundamental discriminant of K . Furthermore, for such �, we have

g.�K/ D
p
DK:

By using the Chinese remainder theorem, we decompose the sum in the definition
of g.�K/ into powers of primes and we reduce the formula to those in the case of
primes. In the middle of the proof, we need the reciprocity law of quadratic residues.
We omit the details here. We refer to [15]. See also Exercises 8.26 and 8.27.

8.3 Exponential Sums and Generalized Bernoulli Numbers

In this section, we consider sums similar to those in Sect. 8.1, attaching characters to
them. In fact, these new sums are far more interesting. In the previous sections, we
took only the prime power root of unity, but in this section we consider the f th root
�f D e2�i=f of unity. Since it is troublesome to write the suffix f always, we fix a
natural number f once and for all and we denote �f simply by �. We will explain
below how to obtain formulas for sums like those in the last section by generalized
Bernoulli numbers and simple combinatorial numbers.

First of all, when a is not divisible by f , we get the formula given below. (This
formula will be used also in Chap. 11, Sect. 11.2.)

Lemma 8.5. If f j=a, then we have

1

1 � �a
D � 1

f

f �1X

cD1
c�ac :

Proof. This is obtained by the same calculation as in Proof 3 in Sect. 8.1, but here
we give more direct proof. By expanding polynomials, we have

.1 � X/ �
f�1X

cD1
cXc D �.f � 1/Xf C

f�1X

cD1
.c � .c � 1//Xc

D �fXf C
fX

cD1
Xc:
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If we substitute as X D �a in the above, then the second term of the right-hand side
is zero since

Pf
cD1 �ac D �a.1� �af /=.1 � �a/ D 0, and we have

.1 � �a/
f�1X

cD1
c�ac D �f �af D �f;

Dividing both sides by �f .1 � �a/, we have the equality in the lemma. ut
Now we consider a Dirichlet character � whose conductor is f (i.e. a primitive

Dirichlet character modulo f ). First, we put

Pk.�/ D
fX

aD1

�.a/

.1 � �a/k

and try to describe this. Of course if f D 1, then the denominator becomes zero so
this has no meaning. So we assume that f > 1 from now on. As in the last section,
we define the Gaussian sum with respect to � by

g.�/ D
fX

aD1
�.a/�a:

To treat the exponential sums slightly more generally, we put

Pk;�.t/ D
fX

aD1

�.a/

.1 � �aet /k :

We have Pk;�.0/ D Pk.�/. The next relation holds.

P1;�.0/ D �g.�/B1;�: (8.3)

Proof. By the last lemma and Lemma 8.2, we have

P1;�.0/ D � 1

f

fX

aD1
�.a/

f �1X

cD1
c�ac D � 1

f
g.�/

fX

cD1
�.c/c D �g.�/B1;�:

In the last equality, we used the formula (4.1) for B1;� in Sect. 4.2 (p. 54). ut
In fact, P1;�.t/ is almost identical to the definition of the generalized Bernoulli

numbers. Indeed, calculating the development, we have

P1;�.t/ D
fX

aD1

1X

jD0
�.a/�aj ejt D g.�/

1X

jD0
�.j /ejt D �g.�/

Pf �1
jD0 �.j /ejt

ef t � 1
:
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(Here we are regarding et as a formal variable and expanding it as a formal power
series. Or we may say we are expanding it in the neighborhood of t D �1.
Anyway, in the final stage, it is an equality between rational functions of et , and the
calculation is justified regardless of any interpretation.) Since we are taking f > 1,
we have �.0/ D �.f / D 0. So by definition, we have

P1;�.t/ D �g.�/
1X

nD1
Bn;�

tn�1

nŠ
:

Hence we have

d lP1;�

dt l
.0/ D P

.l/
1;�.0/ D �g.�/ 1

l C 1
BlC1;�: (8.4)

Next we want to give a formula for Pk;�.0/. Now we put

Qk;a.t/ D 1

.1 � �aet /k :

Then we have

Pk;�.t/ D
fX

aD1
�.a/Qk;a.t/;

and

d

dt
Qk;a.t/ D k.QkC1;a.t/ �Qk;a.t//;

so inductivelyQk;a.t/ is expressed by higher-order derivatives ofQ1;a.t/, soPk;�.t/
is also expressed by derivatives of higher order of P1;�.t/. More explicitly, by
using the Stirling number of the first kind (as for the definition, see Sect. 2.1), it
is expressed as follows.

Proposition 8.6.

Qk;a.t/ D 1

.k � 1/Š

k�1X

lD0

�
k

l C 1

	
Q
.l/
1;a.t/;

Pk;�.t/ D 1

.k � 1/Š

k�1X

lD0

�
k

l C 1

	
P
.l/
1;�.t/:

Proof. This is proved by induction with respect to k. The assertion is true for
k D 1. We assume it is true up to k. Since QkC1;a.t/ D Qk;a.t/ C 1

k
d
dt
Qk;a.t/,

we can expressQkC1;a.t/ by the linear combination of derivatives ofQk;1.t/ by the
inductive assumption, and the coefficient of Q.l/

1;a.t/ in QkC1;a.t/ in this expression
is given by
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1

.k � 1/Š

{�
k

l C 1

	
C 1

k

�
k

l

	}

for 0 � l � k. By the recurrence relation of the Stirling number of the first kind
(p. 28, Eq. (2.2)), this is equal to

1

kŠ

�
k C 1

l C 1

	
:

Hence we prove the assertion. ut
Corollary 8.7.

Pk;�.0/ D
fX

aD1

�.a/

.1 � �a/k
D � g.�/

.k � 1/Š

k�1X

lD0

�
k

l C 1

	
BlC1;�
l C 1

: (8.5)

Proof. In the second formula in the proposition, put t D 0 and then use (8.4). ut
Example 8.8. For example, we have

f�1X

aD1

�.a/

.1 � �a/
D �g.�/B1;�;

f�1X

aD1

�.a/

.1 � �a/2
D �g.�/

�
B1;� C 1

2
B2;�

�
;

f�1X

aD1

�.a/

.1 � �a/3
D �g.�/

�
B1;� C 3

4
B2;� C 1

6
B3;�

�
:

In the above, we assumed that the character � is primitive in order to evaluate
P
.l/
1;�.0/ by Bernoulli numbers in the final stage, but we did not use this condition at

any other place. So, in the above, even if we take 1 instead of �.a/ for any a, we
can execute almost the same calculation. For example, we get

f�1X

aD1
Q1;a.t/ D

f �1X

aD1

1

1 � �aet D f

1 � ef t
� 1

1 � et

D f � fef t

ef t � 1 �
�
1 � et

et � 1

�

D f � 1C
1X

nD1
Bn
.1� f n/tn�1

nŠ
:
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Hence if we put t D 0 here, we have

f�1X

aD1

1

1 � �a
D f � 1

2
(8.6)

since B1 D 1=2. The case f D p is the formula in Sect. 8.1.
We give similar formulas in more general cases. Noting the relation

f �1X

aD1
Q
.l/
1;a.0/ D 1

l C 1
.1 � f lC1/BlC1 C ıl0.f � 1/

(where ıl0 is Kronecker’s delta, that is, 1 for l D 0 and 0 otherwise), we get the
following formula.

Lemma 8.9.

f�1X

aD1

1

.1� �a/k
D

f �1X

aD1
Qk;a.0/

D 1

.k � 1/Š

k�1X

lD0

�
k

l C 1

	{
1

l C 1
.1� f lC1/BlC1 C .f � 1/ıl0

}

:

We give examples of this formula.

Example 8.10.

f�1X

aD1

1

1 � �a
D f � 1

2
;

f�1X

aD1

1

.1 � �a/2
D � .f � 1/.f � 5/

12
;

f�1X

aD1

1

.1 � �a/3
D � .f � 1/.f � 3/

8
;

f�1X

aD1

1

.1 � �a/4
D .f � 1/.f 3 C f 2 � 109f C 251/

720
:

Using similar methods, we will give formulas for the following sums:

f�1X

cD0
ck�ca:
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When f divides a, then we have �ac D 1, so this should give the formula to describe
sums of powers. Also under the assumption that f does not divide a, we give
formulas to express these sums byQk;a.0/. This is a generalization of the formula to
express the right-hand side of Lemma 8.5 by the left-hand side. (These formulas will
be applied to calculations of exponential sums later.) As usual, for natural numbers
k, j , we denote by

�
k
j

�
the binomial coefficient

 
k

j

!
D k.k � 1/ � � � .k � j C 1/

j Š
:

Here for j D 0, we put
�
k
0

� D 1.

Lemma 8.11. (1) When a is divisible by f , we have

fX

cD0
ck�ac D

fX

cD0
ck D

kX

jD0

 
k

j

!
Bj

f k�jC1

k � j C 1
:

(2) When a is not divisible by f , we have

fX

cD0
ck�acD

kX

mD1
.�1/m.m�1/ŠQm;a.0/

0

@
k�mC1X

jD1
.�1/k�j f j

 
k

j

!{
k � j C 1

m

}
1

A :

The first formula is nothing but the formula (1.1) in Chap. 1.

Proof. First we assume that a is an arbitrary integer. To extract ck by differentiating
an easily handled function, we consider the following transformation, taking t as a
variable.

f �1X

cD0
ck�caect D dk

dtk

0

@
f�1X

cD0
�acect

1

A

D dk

dtk

�
1 � ef t
1 � �aet

�

D Q
.k/
1;a.t/ �

kX

jD0

 
k

j

!
f k�j ef tQ.j /

1;a .t/: (8.7)

To show the last equality, we used the Leibniz rule3 on the higher-order derivatives
of products.

3Gottfried Wilhelm Freiherr von Leibniz (born on July 1, 1646 in Leipzig, Saxony (now
Germany)—died on November 14, 1716 in Hannover, Hanover (now Germany)).
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If f ja, then we have

Q1;a.t/ D Q1;0.t/ D � 1

et � 1
D 1 � et

et � 1 D 1 �
1X

nD0

Bn

nŠ
tn�1:

This has a pole at t D 0. So comparing the constant terms of both sides of (8.7) as
a power series expansion with respect to t and noting that

Q
.0/
1;a.t/ D �1

t
C .1 � B1/ � B2

2
t � � � � ;

Q
.j /
1;a .t/ D � .�1/

j j Š

tjC1
� BjC1
j C 1

� BjC2
.j C 2/

t � � � � .j � 1/;

ef t D
1X

nD0

f ntn

nŠ
;

we get

f�1X

cD0
ck D � BkC1

k C 1
C

kX

jD0

 
k

j

!
f k�j BjC1

j C 1
C

kX

jD0

 
k

j

!
f k�j f jC1

.jC1/Š � .�1/j j Š�f k

D
k�1X

jD0

 
k

j

!
f k�j BjC1

j C 1
C f kC1

k C 1
� f k

D
k�1X

jD0

 
k

j C 1

!
f k�j BjC1

k � j
C f kC1

k C 1
� f k

D
kX

jD1

 
k

j

!
f k�jC1 Bj

k � j C 1
C f kC1

k C 1
� f k:

(In the second equality, we used the fact
Pk

jD0.�1/j
�
k
j

�
1

jC1 D 1
kC1 .) So we get

fX

cD0
ck D

kX

jD0

 
k

j

!
Bj

f k�jC1

k � j C 1
:

In this way, we obtained the formula for the sum of powers again.
Next, we assume that a is not divisible by f . Here we want to express Q.n/

1;a.t/

by Qk;a.t/. This is a converse of the formula in Proposition 8.6 and this time, it is
described by using the Stirling number of the second kind. (As for definition, see
Sect. 2.1.)
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In the formula (5.1) of Proposition 2.6 p. 28, if we substitute asm ! mC1; n !
k C 1, we get

ımC1;kC1.D ım;k/ D .�1/kC1
kC1X

lDmC1
.�1/l

{
k C 1

l

} �
l

mC 1

	
:

By virtue of this equality and Proposition 8.6, we have

Q
.k/
1;a.t/ D

kX

mD0
ım;kQ

.m/
1;a .t/

D
kX

mD0
.�1/kC1

kC1X

lDmC1
.�1/l

{
k C 1

l

} �
l

mC 1

	
Q
.m/
1;a .t/

D
kC1X

lD1
.�1/kClC1

{
k C 1

l

} l�1X

mD0

�
l

mC 1

	
Q
.m/
1;a .t/

D
kC1X

lD1
.�1/kClC1.l � 1/Š

{
k C 1

l

}

Ql;a.t/:

So putting t D 0 in (8.7), we have

f �1X

cD0
ck�ac D

kC1X

mD1
.�1/kCmC1.m � 1/Š

{
k C 1

m

}

Qm;a.0/

C
kX

jD0

 
k

j

!
f j

k�jC1X

mD1
.�1/k�jCm.m � 1/Š

{
k � j C 1

m

}

Qm;a.0/

D
kX

jD1

 
k

j

!
f j

k�jC1X

mD1
.�1/k�jCm.m � 1/Š

{
k � j C 1

m

}

Qm;a.0/:

D
kX

mD1
.�1/m.m � 1/ŠQm;a.0/

0

@
k�mC1X

jD1
.�1/k�j f j

 
k

j

!{
k � j C 1

m

}
1

A :

ut
By the above calculation, we get the following examples.
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Example 8.12.

f�1X

cD0
c�ac D � f

1 � �a
;

f �1X

cD0
c2�ac D �f 2 C 2f

1 � �a
� 2f

.1 � �a/2
;

f �1X

cD0
c3�ac D �f 3 C 3f 2 � 3f

1 � �a C �3f 2 C 9f

.1 � �a/2 C �6f
.1 � �a/3 :

Application of these formulas will be given in the next section.

8.4 Various Examples of Sums

In this section, we treat several sporadic examples. Sometimes we can use the
similar method for sums on character values as for sums on roots of unity. We
shall see this. Let � be a primitive Dirichlet character modulo f . We consider the
following sum.

Sk.�/ D
f�1X

a1;:::;akD0
�.a1 C � � � C ak/a1 � � �ak:

Here we should note that the sum depends on the range of natural numbers ai
(namely, if we change them to other representatives modf , then the value of the
sum would change). Even for k D 2, it is not an efficient method to calculate this
kind of sum by dividing the sum into various pieces and to seek the answers by
case-by-case analysis. First of all, let us recall the following relation (cf. (8.2)).

�.a/ D g.�/�1
fX

nD1
�.n/�an:

By virtue of this relation, we get

Sk.�/ D g.�/�1
f �1X

a1;:::;akD0

fX

nD1
�.n/�n.a1C���Cak/a1 � � �ak: (8.8)

But since we have

f�1X

aD0
a�an D � f

1 � �n ;
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we obtain

Sk.�/ D .�f /kg.�/�1
fX

nD1

�.n/

.1 � �n/k

D .�f /kg.�/�1Pk;�.0/

D .�1/kC1f k

.k � 1/Š

k�1X

lD0

1

l C 1

�
k

l C 1

	
BlC1;�:

For example, we have

S2.�/ D �f 2

�
B1;� C 1

2
B2;�

�
;

S3.�/ D f 3

�
B1;� C 3

4
B2;� C 1

6
B3;�

�
:

We also consider the following similar examples.

S.�; e1; : : : ; ek/ D
f�1X

a1;:::;akD1
�.a1 C � � � C ak/a

e1
1 � � � aekk :

The formula to describe this by Bernoulli numbers can be obtained by almost the
same method as before. Indeed, as before, writing the character values by Gaussian
sum and roots of unity, we have

S.�; e1; : : : ; ek/ D g.�/�1
fX

nD1
�.n/

kY

jD1

0

@
f�1X

cD1
cej �cn

1

A

Dg.�/�1
fX

nD1
�.n/

X

1�lj �ej
1�mj�ej �lj C1

1�j�k

.�1/e1C���Cek�l1�����lkCm1C���Cmkf l1C���Clk

�
 
e1

l1

!
� � �
 
ek

lk

!
Qm1C���Cmk;n.0/.m1 � 1/Š � � � .mk � 1/Š

�
{
e1 � l1 C 1

m1

}

� � �
{
ek � lk C 1

mk

}

D �
X

1�lj �ej
1�mj�ej �lj C1

1�j�k

.�1/e1C���Cek�l1�����lk f l1C���Clk
 
e1

l1

!
� � �
 
ek

lk

!
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� .�1/m1C���Cmk
.m1 C � � � Cmk � 1/Š .m1 � 1/Š � � � .mk � 1/Š

�
{
e1 � l1 C 1

m1

}

� � �
{
ek � lk C 1

mk

}

�
 
m1C���Cmk�1X

lD0

1

l C 1

�
m1 C � � � Cmk

l C 1

	
BlC1;�

!
:

Below, we sum up the above formula again.

Proposition 8.13. We have the following formula.

S.�; e1; : : : ; ek/ D .�1/e1C���CekC1
e1X

l1D1
� � �

ekX

lkD1
.�f /l1C���Clk

kY

jD1

 
ej

lj

!

�
e1�l1C1X

m1D1
� � �

ek�lkC1X

mkD1

.�1/m1C���Cmk
.m1 C � � � Cmk � 1/Š

kY

jD1
.mj � 1/Š

{
ej � lj C 1

mj

}

�
 
m1C���Cmk�1X

lD0

1

l C 1

�
m1 C � � � Cmk

l C 1

	
BlC1;�

!
:

Example 8.14. We give examples of applications of the above lemma below.

Sk.�/ D S.�;

k‚ …„ ƒ
1; : : : ; 1/ D .�1/kC1f k

.k � 1/Š
k�1X

lD0

1

l C 1

�
k

l C 1

	
BlC1;�;

S.�; e/ D
f �1X

nD0
�.n/ne D

e�1X

lD0

f e�l

l C 1

 
e

l

!
BlC1;�;

S.�; 2; 1/ D
f�1X

m;nD0
�.mC n/m2n D �f 2

�
fB1;� C .f C 1/

2
B2;� C 1

3
B3;�

�
:

We also give another similar example. Let m be a natural number which is
coprime to a fixed f and smaller than f . We consider the following sum.

Dm.�/ D
fX

aD1
�.a Cm/a:

Then we have

Dm.�/ D g. N�/�1
fX

a;nD1
a N�.n/�.aCm/n
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D g. N�/�1
0

@
fX

nD1;.n;f /D1
N�.n/�mn

�
� f

.1 � �n/
C f

�1

A ;

but since we have

fX

nD1;.n;f /D1
N�.n/.1 � �mn/.1 � �n/�1 D

m�1X

lD0

fX

nD1;.n;f /D1
N�.n/�nl D g. N�/

m�1X

lD1
�.l/;

taking the relation
Pf

nD1 N�.n/.1 � �n/�1 D �g. N�/B1;� in the last section into
account, we get

Dm.�/ D f

 
mX

lD1
�.l/C B1;�

!
:

We will give several similar examples in the exercise of this chapter.

8.5 Sporadic Examples: Using Functions

Lemma 8.15. Let f > 1 be an odd number and let � be a primitive character with
conductor f . Then we have

f�1X

aD1

�.a/

.1 � �a/.1 � �2a/2

D �g.�/
�
1

24
B3; N� C 1

4
.1C �.2//B2; N� C 1

8
.3C 5�.2//B1; N�

�
:

Proof. If we put

Qk;�.t/ D
fX

aD1

�.a/.1C �aet /

.1 � �2ae2t /k
;

Pk;�.t/ D
fX

aD1

�.a/

.1 � �aet /k
;

then we get

Q1;�.t/ D P1;�.t/ D �g.�/
1X

nD1
Bn; N�

tn�1

nŠ
:
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Since

d

dt
Qk;�.t/ D 2kQkC1;�.t/C .1 � 2k/Qk;�.t/ � �.2/Pk;�.2t/:

we can write Qk;�.0/ inductively by Pk;�.0/, and then by Bernoulli numbers. For
example, if we put k D 1 in the above relation and take the derivatives, we get

Q01;�.t/ D 2Q2;�.t/ �Q1;�.t/ � �.2/P1;�.2t/;

Q02;�.t/ D 1

2
.Q

00

1;�.t/CQ01;�.t//C �.2/P 01;�.2t/;

and

Q2;�.0/ D �g.�/
2

�
1

2
B2;� C .1C �.2//B1;�

�
;

Q02;�.0/ D �g.�/
2

�
1

3
B3;� C

�
1

2
C �.2/

�
B2;�

�
:

In the same way we get

Q02;�.t/ D 4Q3;�.t/ � 3Q2;�.t/ � �.2/P2;�.2t/

and

Q3;�.0/ D 1

4
.Q02;�.0/C 3Q2;�.0/C �.2/P2;�.0//:

Since the left-hand side of the lemma is equal to Q3;�.0/, substituting this for the
above value and using the relation P2;�.0/ D �g.�/.B1;� C B2;�=2/, we get the
right-hand side. ut

8.6 Sporadic Examples: Using the Symmetry

In the examples below, we denote by  .n/ D . n
p
/ the quadratic residue character

where p is an odd prime.
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Example 8.16. We put

I D
p�1X

aD1
 .a/a:

By definition, this is equal to pB1; and we know already that B1; D 0 if
 .�1/ D 1 (i.e. if p � 1 mod 4 by the quadratic reciprocity law). This is also
shown directly as follows. We assume that p � 1 mod 4. Substituting p � a for a
and noting  .a/ D  .�a/ D  .p � a/, we get

I D
p�1X

aD1
 .p � a/.p � a/ D

p�1X

aD1
 .a/.p � a/:

Hence adding this to the original expression, we get

2I D
p�1X

aD1
 .a/.a C p � a/ D p

p�1X

aD1
 .a/ D 0:

Of course this argument cannot be used when p � 3 mod 4. Actually, if p �
3 mod 4 and p > 3, then �I=p is the class number of the imaginary quadratic field
Q.

p�p/, so it is a more complicated value.

Now there are many cases where the above kind of substitution is effective in our
calculation. For example:

Example 8.17. The character  being as above, put

I D
p�1X

l;m;nD1;4ln�m2 mod p

 .l/lmn:

Then substitutingm ! p �m, we get

2I D
p�1X

l;m;nD1;4ln�m2 mod p

 .l/ln.mC p �m/

D p

p�1X

l;nD1
 .l/l. .ln/ C 1/n

D p

p�1X

l;nD1
.l .n/nC  .l/ln/

D p3.p � 1/B1; :
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So we have

I D p3.p � 1/
2

B1; :

Example 8.18. The next sum was first considered in connection with dimension

formulas of automorphic forms [92]. We put  .n/ D
�
n
p

�
, where p is a prime and

S D f.s; t; r/ 2 F3pI s.r C s/.s C t/ ¤ 0g:

Put � D e2�i=p and define a sum I by

I D
X

.s;t;r/2S

 .s2 � rt/

.�rCs � 1/.�sCt � 1/.��s � 1/
:

At first glance, it might seem difficult to calculate this sum in an elementary way,
but actually this can be easily calculated as follows. If we put a D rC s, b D sC t ,
c D �s, then s2 � rt D c2 � .a C c/.b C c/ D �ab � bc � ca. Hence if we put
T D F�3p , then substitute �a, �b, �c for a, b, c, we get

I D
X

.a;b;c/2T

 .�ab � bc � ca/

.�a � 1/.�b � 1/.�c � 1/

D
X

.a;b;c/2T

 .�ab � bc � ca/

.��a � 1/.��b � 1/.��c � 1/

D
X

.a;b;c/2T

 .�ab � bc � ca/�a�b�c
.1 � �a/.1 � �b/.1 � �c/

D �
X

.a;b;c/2T

 .�ab � bc � ca/.�a � 1C 1/.�b � 1C 1/.�c � 1C 1/

.�a � 1/.�b � 1/.�c � 1/ :

So by expanding the numerator and transposing the same term to the left-hand
side, we get

2I D �
X

.a;b;c/2T
 .�ab � bc � ca/

�
�

1

.1 � �a/.1 � �b/
C 1

.1 � �b/.1� �c/
C 1

.1 � �c/.1 � �a/

� 1

1 � �a
� 1

1 � �b � 1

1 � �c
C 1

�
:
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If we fix a and b, then we have

X

c2F�

p

 .�ab � .aC b/c/ D
{

� .�ab/ if aC b ¤ 0 ;

.p � 1/ .�ab/ D .p � 1/ if a D �b ¤ 0 :

So if we fix a ¤ 0, then we have

p�1X

b;cD1
 .�ab � bc � ca/ D .p � 1/�

X

b¤�a; b¤0
 .�ab/ D p:

Here by Examples 8.8 and 8.10, we have

X

a;b2F�

p

 .�ab/
.1 � �a/.1 � �b/ D  .�1/g. /2B2

1; D pB2
1; ;

p
X

a2F�

p

1

.1 � �a/.1 � ��a/
D p.p � 1/

2
C p.p � 1/.p � 5/

12
:

So noting p � 1 D p �  .a2/, we get

X

.a;b;c/2T
 .�ab�bc�ca/ 1

.1��a/.1��b/D�pB2
1; Cp.p � 1/.p � 5/

12
Cp.p � 1/

2
:

We have also

X

.a;b;c/2T

 .�ab � bc � ca/

1 � �a
D p.p � 1/

2
:

X

.a;b;c/2T
 .�ab � bc � ca/ D p.p � 1/:

So as a total, we have

I D 3

2
pB2

1; � p.p � 1/.p � 5/
8

� p.p � 1/
2

D 3

2
pB2

1; � p.p � 1/2
8

:

In particular, if p � 1 mod 4 then B1; D 0, and if p � 3 mod 4 and p > 3,
then B1; D �h.�p/ (h.�p/ is the class number of the imaginary quadratic field
Q.

p�p/), so there exists a formula for I by class numbers.

Example 8.19. We put S D f.a; b; c/ 2 Z3I 1 � a; b; c � p � 1; ab C bc C ca �
0 mod pg and
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I D
X

.a;b;c/2S
 .abc/abc:

The condition in the sum I is complicated and it is not easy to calculate I . But if
we assume that  .�1/ D 1, then I can be calculated as follows. By the relation

I D
X

.a;b;c/2S
 .�abc/.p � a/.p � b/.p � c/

we get

2I D
X

.a;b;c/2S
 .abc/..p � a/.p � b/.p � c/C abc/

D
X

.a;b;c/2S
 .abc/.p3 � p2.a C b C c/C p.ab C bc C ca//:

But we have  .abc/ D  .�c2.aC b// D  .aC b/ and since the condition of the
definition of S is symmetric with respect to a, b, c, we have

X

.a;b;c/2S
 .abc/.ab C bc C ca/ D 3

X

.a;b;c/2S
 .a C b/ab

D 3
X

a;b;aCb 6�0 mod p

 .a C b/ab

D 3

p�1X

a;bD1
 .a C b/ab D �3p2

�
B1; C 1

2
B2; 

�
:

Since we assumed  .�1/ D 1, we have B1; D 0 now. Moreover we have

X

.a;b;c/2S
 .a C b/.aC b C c/ D 3

p�1X

aD1

 
p�1X

bD1
 .a C b/

!
a

D �3
p�1X

aD1
 .a/a D �3pB1; 

and this is equal to 0. We have

X

a;b;c2S
 .a C b/ D

p�1X

a;bD1
 .a C b/ D

p�1X

aD1
.� .a// D 0:
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So we have

I D �3p
3

4
B2; :

Remark 8.20. When  .�1/ D �1, a simple formula to write down I by general-
ized Bernoulli numbers is known only conjecturally.

8.7 Sporadic Example: Symmetrize Asymmetry

Let  .x/ be the quadratic residue character modulo p (p is a prime) and consider
the following special sum.

I D
p�1X

m;nD1
 .m � 4n/ .m/mn:

A formula for this sum was first given in [91] and [39] by comparing the trace
formula and algebraic geometry, but this can be calculated in an elementary way as
well. We illustrate this calculation below.

In the above definition, if we take n instead of m � 4n, then the sum is very
simple and given by

p�1X

m;nD1
 .mn/mn D

 
p�1X

mD1
 .m/m

!2
D p2B2

1; :

But the sum I we actually defined above is subtly breaking its symmetry and that
obstructs an easy calculation. We get over this by changing it to an exponential sum
and transforming it to a symmetric one. By the relation

 .m/ D g. /�1
p�1X

aD1
 .a/�am  .m � 4n/ D g. /�1

p�1X

bD1
 .b/�b.m�4n/;

we have

I D g. /�2
p�1X

a;bD1
 .ab/

p�1X

m;nD1
mn�amCb.m�4n/:

But for c 62 pZ, we have
Pp�1

mD1 m�cm D � p

1��c , hence we have
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I D g. /�2

0
B@p2

p�1X

a;bD1
a 6��b mod p

 .ab/

.1 � ��4b/.1 � �aCb/ C  .�1/
p�1X

m;n;bD1
mn��4nb

1
CA

D p .�1/
p�1X

a;bD1
aCb¤p

 .ab/

.1 � ��4b/.1 � �aCb/ � p.p � 1/2
4

;

using g. /2 D  .�1/p: In order to calculate I from the above relation, it is
sufficient to calculate

J D  .�1/
p�1X

a;bD1
aCb¤p

 .ab/

.1 � ��4b/.1 � �aCb/
:

Now a direct calculation of J seems difficult partly because the sum in the definition
of J is not symmetric with respect to a and b. So we try to rewrite this in a
symmetric way. If we exchange a and b, this is just a change of notation, so we
have

J D  .�1/
p�1X

a;bD1
aCb¤p

 .ab/

.1 � ��4a/.1 � �bCa/
:

Now we will add this to the original expression and take the average of both. To
calculate this, we use the following equality.

1

1 � ��4a C 1

1 � ��4b
D 2 � ��4a � ��4b
.1 � ��4a/.1 � ��4b/ D 2�4aC4b � �4a � �4b

.1 � �4a/.1 � �4b/

D �4aC4b � 1C .1 � �4a/.1 � �4b/
.1 � �4a/.1 � �4b/

D 1 � 1 � �4aC4b

.1 � �4a/.1 � �4b/ :

After all, if we put

J1 D
p�1X

a;bD1
aCb¤p

 .ab/

1 � �aCb
;

J2 D
p�1X

a;bD1
aCb¤p

 .ab/.1 � �4aC4b/
.1 � �4a/.1 � �4b/.1� �aCb/

;
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then we have

J D  .�1/
2

.J1 � J2/:

Here we have

J1 D � 1
p

p�1X

kD1

p�1X

a;bD1
aCb¤p

 .ab/k�k.aCb/

D � 1
p
.g. /2 �  .�1/.p � 1// � p.p � 1/

2
D � .�1/.p � 1/

2
:

Also we have

J2 D
p�1X

a;bD1
aCb¤p

 .ab/
1 � �4aC4b

.1 � �4a/.1 � �4b/.1 � �aCb/

D
p�1X

a;bD1

P3
lD0  .ab/�l.aCb/

.1 � �4a/.1 � �4b/ �
p�1X

aD1

4 .�1/
.1� �4a/.1� ��4a/

:

Now, by virtue of Example 8.10, we have

p�1X

aD1

1

.1 � �4a/.1 � ��4a/ D
p�1X

aD1

�
1

1 � �4a
� 1

.1 � �4a/2

�

D p � 1
2

C .p � 1/.p � 5/

12
D p2 � 1

12
:

Furthermore we have

p�1X

aD1

 .a/�la

1 � �4a D � 1
p

p�1X

a;cD1
 .a/c�4acCal D � 1

p
g. /

p�1X

cD1
 .4c C l/c:

Hence if we put S.l/ D Pp�1
cD1  .4c C l/c, then we have

J2 D  .�1/
p

3X

lD0
S.l/2 �  .�1/.p2 � 1/

3
:

Summing up, we have

J D �p � 1

4
C p2 � 1

6
� 1

2p

3X

lD0
S.l/2 D .p � 1/.2p � 1/

12
� 1

2p

3X

lD0
S.l/2:
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Next the following quantity should be evaluated.

3X

lD0
S.l/2 D

 
p�1X

cD1
 .4c/c

!2
C
 
p�1X

cD1
 .4c C 1/c

!2

C
 
p�1X

cD1
 .4c C 2/c

!2
C
 
p�1X

cD1
 .4c C 3/c

!2
: (8.9)

There are many ways to evaluate this, but here we calculate it just directly. (As for
more general method of calculation, see [45].) First we have

p�1X

cD1
. .2c/c C  .2c C 1/c/

D 1

2

 
p�1X

cD0
. .2c/ � .2c/C  .2c C 1/.2c C 1//�

p�1X

cD0
 .2c C 1/

!

D 1

2

 
2p�1X

cD1
 .c/c

!

D 1

2

p�1X

cD1
 .c/.c C c C p/ D

p�1X

cD1
 .c/c:

Hence we have

p�1X

cD1
 .2c C 1/c D .1 �  .2//

p�1X

cD1
 .c/c:

In the same way, we have

p�1X

cD1
. .4c/c C  .4c C 1/c C  .4c C 2/c C  .4c C 3/c/ D 1

4

4p�1X

cD1
 .c/c

D
p�1X

cD1
 .c/c:

This implies that

p�1X

cD1
. .4c C 1/C  .4c C 3//c D .1 �  .2//

p�1X

cD1
 .c/c:

Now we consider the case p � 1 mod 4 and p � 3 mod 4 separately.
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First if we assume p � 3 mod 4, the  .�1/ D �1. So we have  .4c C 3/ D
� .4.p � c/ � 3/ D � .4.p � 1 � c/C 1/, and

p�1X

cD0
 .4c C 3/c D �

p�1X

cD0
 .4c C 1/.p � 1 � c/ D

p�1X

cD0
 .4c C 1/c:

Hence in this case we have

p�1X

cD1
 .4c C 1/c D

p�1X

cD1
 .4c C 3/c D 1 �  .2/

2

p�1X

cD1
 .c/c:

So we have

3X

lD0
S.l/2 D

�
1C .1 �  .2//2 C .1 �  .2//2

2

� p�1X

cD1
 .c/c

!2

D .4 � 3 .2//p2B2
1; :

By the assumption p � 3 mod 4, if p ¤ 3 then we have B1; D �h.�p/, where
h.�p/ is the class number of the imaginary quadratic field Q.

p�p/ (p. 90, (6.5)).
Next we assume that p � 1 mod 4. In this case we have B1; D 0, so we cannot

separate
Pp�1

cD1  .4c C 1/c and
Pp�1

cD1  .4c C 3/c in the above expression in the
same way. In order to separate these two, we introduce a Dirichlet character ı with
conductor 4. Here for x � 3 mod 4 we have ı.x/ D �1 and we see that  ı is a
primitive Dirichlet character with conductor 4p. By definition, we have

4pB1; ı D
4p�1X

cD0
 .c/ı.c/c D

p�1X

cD0
. .4c C 1/.4c C 1/�  .4c C 3/.4c C 3//

D 4.S.1/� S.3// D 8S.1/ D �8S.3/:
By virtue of the fact B1; D 0, we have S.0/ D S.2/ D 0. So we get

S.1/2 C S.3/2 D p2

2
.B1; ı/

2:

Also we have h.�p/ D �B1; ı . Summing up all the above results, we get

ID�p.p�1/.p�2/
12

�

⎧
⎪⎪⎨

⎪⎪⎩

7=2 if pD3 ;
p2 � h.�p/2=4 if p � 1 mod 4;

.4 � 3 .2//p2 � h.�p/2=2 if p � 3 mod 4 and p ¤ 3:

By the way, as for further generalization of the results in this section, see [45].
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8.8 Quadratic Polynomials and Character Sums

The example given below is not related to Bernoulli numbers so much, but since the
method is similar, we take this opportunity to explain it. Here too, we assume that

p is an odd prime and  .x/ D
�
x
p

�
is the quadratic residue character modulo p.

Let P.x/ be a polynomial in a variable x. If we consider the sum
Pp�1

xD0  .P.x//,
then this is related with the number of pairs .x; y/ 2 F2p of integral solutions of
y2 D P.x/, so related with the congruence zeta function of algebraic curves and
a complicated quantity. There is no simple formula for general P.x/. But in the
special case where P.x/ is a quadratic polynomial, it corresponds to a conic. In this
case the structure of the curve itself is simple and there is a simple formula for the
sum as above. Let us practice the calculation. We write a quadratic polynomial of
x as P.x/ D ax2 C bx C c (a, b, c 2 Z, a 6� 0 mod p). It is not so difficult to
calculate

P
x mod p  .P.x//. Since we take p to be an odd prime, we consider the

finite field Fp and rewrite P.x/ D a..x � d/2 C e/. Then we have

X

x mod p

 .P.x// D  .a/
X

x mod p

 .x2 C e/:

So this right-hand side is the point.

Lemma 8.21.

X

x mod p

 .x2 C e/ D
{

�1 if e 6� 0 mod p;

p � 1 if e � 0 mod p:

Proof. If we write � D e2�i=p , then we have

 .x2 C e/ D 1

g. /

p�1X

kD0
 .k/�k.x

2Ce/;

where g. / is the Gaussian sum. So we have

p�1X

xD0
 .x2 C e/ D 1

g. /

p�1X

kD0
 .k/

p�1X

xD0
�k.x

2Ce/:

But we have
Pp�1

xD0 �kx
2 D  .k/g. /, so we get the following result.

1X

kD0
 .k/2�ke D

p�1X

kD1
�ke D

{
�1 if e 6� 0 mod p,

p � 1 if e � 0 mod p.

ut
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By the way, the result above has of course a relation to the number of pairs
.x; y/ 2 F2p such that x2Ce D y2. Namely, for each x 2 Fp , there are 1C .x2Ce/
number of y which satisfy this equation. So p � 1 pairs of .x; y/ are solutions of
this equation if e 6� 0 mod p.

In general, also for a quadratic formQ.x/ of n variables, that is, a homogeneous
polynomial of variables xi of x D .x1; x2; : : : ; xn/ of degree two, we sometimes
consider the sum

P
x mod p �

Q.x/ and the results are well known, but this is remote
from Bernoulli numbers and we omit it here.

Next we treat the sum
Pp�1

xD0  .x2 C e/x. (Note that the sum
Pp�1

xD0  .P.x//x
for a general quadratic polynomialP.x/ does not reduce to this sum.) Here we have

p�1X

xD1
 .x2 C e/x D

p�1X

xD1
.p � x/ ..p � x/2 C e/ D

p�1X

xD1
.p � x/ .x2 C e/;

so we have

2

p�1X

xD1
 .x2 C e/x D p

p�1X

xD1
 .x2 C e/ D p

 
p�1X

xD0
 .x2 C e/�  .e/

!
:

Hence we have

p�1X

xD0
 .x2 C e/x D

{
� .1C .e//p

2
if e 6� 0 mod p;

p.p�1/
2

if e � 0 mod p:

As an application, when e 62 pZ, we can show the following formula.

p�1X

x;yD0
 .x2 C ey2/xy D � .1C  .e//p2.p � 1/

4
:

We omit the proof here.

8.9 A Sum with Quadratic Conditions

For a polynomial f .x; y; z/, we put

M.f / D f.a; b; c/ 2 Z3I 1 � a; b; c � p � 1If .a; b; c/ � 0 mod pg:

Proposition 8.22. For an integer e 6� 0 mod p, we write he.x; y; z/ D exz � y2.
Then we have
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X

.a;b;c/2M.he/

 .a/

.1 � �a/.1 � �b/.1 � �c/ D �p � 1

4
.1C  .e//g. /B1; :

Proof. Denote the left-hand side by I . In the definition of I , we may replace b by
�b. Noting that

.1 � ��b/�1 C .1 � �b/�1 D 1;

and taking integers Na and Ne such that a Na � e Ne � 1 mod p, we have

2I D
p�1X

a;bD1

 .a/

.1 � �a/.1 � � Na Neb2/

D
p�1X

a;bD1

 .a/

.1 � �a/

 
� 1
p

p�1X

mD1
m� NaNeb2m

!

D � 1
p

p�1X

a;mD1

 .a/

.1 � �a/
m. . Na Nem/g. / � 1/

D �p � 1

2
 . Ne/g. /B1; � p � 1

2
g. /B1; 

D �p � 1

2
.1C  . Ne//g. /B1; :

ut
As an application of this formula, we can show the following.

Corollary 8.23.

X

.l;m;n/2M.he/
 .n/lmn D p3.p � 1/

4
.1C  .e//B1; :

Proof. For a while, for any rational number ˛ whose denominator is not divisible
by p, we understand that we define �˛ by regarding ˛ as an element of Fp . Then
we have

�p3I D
p�1X

l;m;nD1
lmn

X

.a;b;c/2M.he/
 .a/�alCbmCcn

D
p�1X

l;m;nD1
lmn

p�1X

aD1
 .a/�al �� aem

2

4n

p�1X

bD1
�
n
ae .bC aem

2n /
2



8.9 A Sum with Quadratic Conditions 135

D
p�1X

l;m;n;aD1
lmn�al .a/��aem2=4n. .n=.ae//g. / � �aem

2=4n/

D
p�1X

l;m;n;aD1
lmn�al . .ne/��aem2=4ng. / �  .a//

D
p�1X

l;m;nD1
.�g. / .ne/ �  .l/g. //lmn C pg. /

X

4ln�em2 mod p

 .n/lmn:

Hence we have

I D g. /

p3

0

@.1C  .e//pB1; 
p2.p � 1/2

4
� p

X

.l;m;n/2M.h4=e/
 .n/lmn

1

A :

In the above calculation, we used
Pp�1

xD0 �cx
2 D  .c/g. /. Here in the final

expression of I and in the first term of the right-hand side above, the number e
appears only as  .e/. Since we have  .4=e/ D  .e/, we can replace the condition
M.h4=e/ of the sum on the right-hand side by M.he/. By these considerations, we
get the formula for

P
.l;m;n/2M.he/  .n/lmn. ut

Several such sums with quadratic conditions have something to do with special
values of zeta functions of prehomogeneous vector spaces. But there are a lot of
mysteries around this in general. It has not been clarified when such formulas for
exponential sums can exist or what essential reasons there are for that. For some
special quadratic conditions, we have several conjectures but proofs are not known.
It seems premature to treat this problem here, so we omit the concrete description of
conjectures or other things, but it would be a very interesting problem to study these
sums from the viewpoint of relations between exponential sums and special values
of zeta functions of prehomogeneous vector spaces.

Exercise 8.24. Give an example of non-trivial primitive Dirichlet character � such
that �3 is trivial and for that �, calculate the Gaussian sum g.�/ explicitly.

Exercise 8.25. (1) Assume that the cardinality of a finite group G is odd. Then
show that any character � such that �2 D 1 (the identity character) is a trivial
character.

(2) Assume that G is a finite cyclic group of even order. Then show that the non-
trivial character � of G such that �2 D 1 exists uniquely.

Exercise 8.26. (1) Let p be an odd prime. For any natural number r , it is known
that .Z=prZ/� Š Z=pr�1Z � Z=.p � 1/Z. By using this, show that if a non-
trivial Dirichlet character � modulo pr satisfies �.a/2 D 1 for any a with
.a; p/ D 1, then the conductor of � is p.
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(2) Let r be a natural number with r � 2. It is known that .Z=2rZ/� Š Z=2Z �
Z=2r�2Z (or Š ..1C 2Z/=.1C 4Z// � �

.1C 4Z/=.1C 2r�2Z/
�
, the latter is

cyclic generated by 5.) Show that if a non-trivial Dirichlet character � modulo
2r satisfies �.a/2 D 1 for any a with .a; 2/ D 1, then the conductor of � is
either 4 or 8.

(3) Show that if � is any non-trivial Dirichlet character � such that �2 is trivial, then
the conductor of � is jDK j for a fundamental discriminant of some quadratic
field K .

(4) Show that if � is any non-trivial primitive Dirichlet character � such that �2

is trivial, then � D �K for some quadratic field K , where �K is defined as in
Sect. 6.3.

Exercise 8.27. Let � be a primitive Dirichlet character with conductor f . Assume
that f D m1m2 with .m1;m2/ D 1. We regard � as a character of .Z=f Z/� Š
.Z=m1Z/� � .Z=m2Z/� and denote by �i the restriction to Z=miZ for i D 1, 2.
We also denote by �i the Dirichlet character modulomi associated with �i .

(1) Prove that the conductor of �i is mi .
(2) For any n, put �n D exp

�
2�i
n

�
. We take integers x, y with xm1 C ym2 D 1.

Show that for any a 2 Z, we have

�af D �aym1�
ax
m2
:

(3) Show the following relation between Gaussian sums.

g.�/ D �1.m2/�2.m1/g.�1/g.�2/:

(4) For each primitive Dirichlet character � with conductor 4 or 8 defined in
Sect. 4.1, calculate the Gaussian sum g.�/.

(5) Let �K be the Dirichlet character modulo DK defined in Sect. 6.3. Show that
g.�K/ D p

DK by using g.p/ D p
.�1/.p�1/=2p for odd primes p and the

reciprocity law of the quadratic residue symbol.

Exercise 8.28. Prove Example 8.14 using Proposition 8.13.

Exercise 8.29. Show that the following relations hold.

(1) For any primitive character � modulo f , we have

f�1X

aD1

�.a/�a

.1 � �a/2 D �1
2
g.�/B2;�:

f�1X

aD1

�.a/�a.1C �a/

.1 � �a/3
D �1

3
g.�/B3;�:
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(2) If we denote by  .n/ D . n
p
/ the quadratic residue character, we have

p�1X

m;nD0
 .mC n/ .m/mn D 1

2

�
p2B2

1; � p.p � 1/.7p C 1/

12

�
:

(3) We have

p�1X

l;m;nD0
 .lmCmnC nl/ D  .�1/p.p � 1/:

p�1X

l;m;nD0
 .lmCmnC nl/l D  .�1/p

2.p � 1/

2
:

p�1X

l;m;nD0
 .lmCmnC nl/l2 D  .�1/p

2.p � 1/.2p � 1/

6
:

p�1X

l;m;nD0
 .lmCmnC nl/l3 D  .�1/p

3.p � 1/2

4
:

p�1X

l;m;nD0
 .lmCmnC nl/lm D  .�1/p

2.p2 � 1/

6
:

p�1X

l;m;nD0
 .lmCmnC nl/l2m D  .�1/p

3.p2 � 1/

12
:

p�1X

l;m;nD0
 .lmCmnC nl/lmn D �3p

3

2
.B1; /

2 C  .�1/p
3.p � 1/
4

:

(Hint:
Pp�1

nD0  .n.l Cm/C lm/ is 0 if l Cm 6� 0 mod p. In the last relation,
substitute l ,m, n by p� l , p�m, p�n and add that to the original expression.)



Chapter 9
Special Values and Complex Integral
Representation of L-Functions

As a continuation of Chaps. 4 and 5, we study here properties of Hurwitz
zeta functions and Dirichlet L-functions such as their analytic continuation and
functional equation, and calculate their special values at negative integers. There
are various proofs for the functional equation; here we explain the method using a
contour integral. Although there would be a viewpoint that it would be too much to
introduce a contour integral, it is interesting for its own sake and useful too, so we
venture to derive the functional equation from a contour integral by a method to cut
out the path of the integral.

9.1 The Hurwitz Zeta Function

For a positive real number a, we define a zeta function �.s; a/ by

�.s; a/ D
1X

nD0
.nC a/�s:

Since the series on the right-hand side converges absolutely for Re.s/ > 1, �.s; a/
is defined in this range. This function �.s; a/ is called a Hurwitz zeta function.
(Hurwitz [43], Whittaker1 and Watson2 [104, Part II]). In particular, when a D 1,
�.s; 1/ is nothing but the Riemann zeta function �.s/. In this section, we shall give
an integral representation of �.s; a/.

We denote by 	 .s/ the gamma function. This is defined by

1Edmund Taylor Whittaker (born on October 24, 1873 in Southport, England—died on March 24,
1956 in Edinburgh, Scotland).
2George Neville Watson (born on January 31, 1886 in Devon, England—died on February 2, 1965
in Warwickshire, England).

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__9, © Springer Japan 2014
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	 .s/ D
Z 1

0

e�t t s�1 dt (9.1)

for complex numbers s such that Re.s/ > 0. The integral on the right-hand side
converges absolutely and uniformly on any compact sets in Re.s/ > 0, and so we
see that 	 .s/ is a holomorphic function for Re.s/ > 0. By integration by parts, we
get the most important property

	 .s C 1/ D s	 .s/ (9.2)

of the gamma function. Through this equality (9.2), 	 .s/ can be continued
analytically to a meromorphic function on the whole s-plane. More concretely, if
we rewrite (9.2) as

	 .s/ D 	 .s C 1/

s
;

then since the right-hand side is a meromorphic function for Re.s/ > �1, 	 .s/ is
continued analytically to Re.s/ > �1 and s D 0 is a pole of order 1 with residue 1.
We also have

	 .s/ D 	 .s C 2/

s.s C 1/
;

and repeating this, we get

	 .s/ D 	 .s CM/

s.s C 1/ � � � .s CM � 1/
(9.3)

for arbitrary natural number M . Through (9.3), 	 .s/ is continued analytically to
a meromorphic function on Re.s/ > �M . Since M is arbitrary, 	 .s/ is continued
analytically to a meromorphic function on the whole s-plane and s D 0;�1;�2; : : :
are poles of order 1, and the residues can be calculated by (9.3).

Changing the variable as t ! .nC a/t .nC a > 0/ in (9.1), we get

1

.nC a/s
D 1

	 .s/

Z 1

0

e�.nCa/t t s�1 dt:

Formal calculation leads us to

1X

nD0

1

.nC a/s
D 1

	 .s/

Z 1

0

1X

nD0
e�.nCa/t t s�1 dt;
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and for the range Re.s/ > 1, we see that the right-hand side converges absolutely, so
the above calculation is justified. Hence, for the range Re.s/ > 1, we get an integral
representation of �.s; a/ as

�.s; a/ D 1

	 .s/

Z 1

0

e�at

1 � e�t
t s�1 dt D 1

	 .s/

Z 1

0

te.1�a/t

et � 1 t
s�2 dt: (9.4)

This integral representation suggests us that �.s; a/ has something to do with
Bernoulli polynomial Bk.a/.

9.2 Contour Integral

We transform the integral representation (9.4) to a complex integral in order to
apply to it the residue theorem of complex analysis. We regard the interval Œ0;1/

of integration as a path of a complex integral, and then expanding this a little, we
consider the following contour I.";1/ (" > 0). We define I.";1/ by a curve
' W .�1;1/ �! C given by

I.";1/ W '.u/ D
⎧
⎨

⎩

�u u < �";
" exp

�
�i uC"

"

� �" � u � ";

u u > ":

In the definition of I.";1/, the parts for u < �" and u > " overlap, but we interpret
it that for u < �" we take the path above the real axis and for u > " below the real
axis. This path is illustrated in Fig. 9.1.

Now consider the complex curvilinear integral

Z

I.";1/
te.1�a/t

et � 1 t
s�2 dt:

Since we have to treat t s�2 on I.";1/, we shall choose a complex power t s for
s 2 C. Denoting the argument of t by arg t , we can define a single-valued function
log t on C � fz D x C iy j y D 0; x � 0g by

log t D log jt j C i arg t .0 < arg t < 2�/:

0 ε

Fig. 9.1 Path of I.";1/
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Using this, a single-valued analytic function t s on C�fz D x C iy j y D 0; x � 0g
is defined by

t s D es log t :

We divide the contour I.";1/ into three pieces as follows.

C1: the part of the real axis from 1 to ",
I."/: the circle of radius " with center at the origin (oriented counter-clockwise),
C2: the part of the real axis from " to 1.

We have I.";1/ D C1 C I."/C C2. For t on C1, we put arg t D 0, and on C2 we
put arg t D 2� . Then the integral on C1 is given by

Z

C1

te.1�a/t

et � 1 t
s�2 dt D

Z "

1
te.1�a/t

et � 1
ts�2 dt

D �
Z 1

"

te.1�a/t

et � 1
ts�2 dt

and on C2 by

Z

C2

te.1�a/t

et � 1 t
s�2 dt D

Z 1

"

te.1�a/t

et � 1
e.s�2/.log tC2�i/ dt

D e2�i.s�2/
Z 1

"

te.1�a/t

et � 1 t
s�2 dt:

Noting e2�i.s�2/ D e2�is , together we get

Z

I.";1/

te.1�a/t

et�1 t s�2 dt D �
e2�is�1�

Z
1

"

te.1�a/t

et�1 t s�2 dtC
Z

I."/

e.1�a/t

et�1 t
s�1 dt:

(9.5)

The circle I."/ is parametrized as t D "ei� .0 � � � 2�/, so on I."/ we
have t s�1 D "s�1ei.s�1/� , and the absolute value of the integral is estimated from
above as

ˇ̌
ˇ̌
Z

I."/

e.1�a/t

et � 1
ts�1 dt

ˇ̌
ˇ̌ �

Z 2�

0

ˇ̌
ˇ̌
ˇ
e.1�a/"ei�

e"e
i� � 1

"s�1ei.s�1/� i"ei�
ˇ̌
ˇ̌
ˇ d�

D "Re.s/
Z 2�

0

ˇ̌
ˇ̌
ˇ
e.1�a/"ei�

e"e
i� � 1

eis�

ˇ̌
ˇ̌
ˇ d�: (9.6)



9.2 Contour Integral 143

We see
"

e"e
i� � 1 is bounded as a function of " and � , so if we take the limit " ! 0

then, for Re.s/ > 1, by (9.6) we get

lim
"!0

Z

I."/

e.1�a/t

et � 1 t
s�1 dt D 0: (9.7)

On the other hand, in (9.5), by Cauchy’s integral formula, the curvilinear integral
on the left-hand side does not depend on the choice of sufficiently small positive
number " (" < 2�), for if we take another "0 > 0, then in the region surrounded by
two paths, the integrand is a single-valued holomorphic function. Now we assume
that Re.s/ > 1. In (9.5), since the left-hand side does not depend on " > 0, we fix
" on the left-hand side, and on the right-hand side we take a limit as " ! 0. Then
using (9.7), we get

Z

I.";1/
te.1�a/t

et � 1 t
s�2 dt D �

e2�is � 1
� Z 1

0

te.1�a/t

et � 1 t
s�2 dt: (9.8)

Thus we obtain the following curvilinear integral representation of �.s; a/.

Proposition 9.1. Let " be a positive number with " < 2� . If Re.s/ > 1, then the
Hurwitz zeta function �.s; a/ .a > 0/ has the contour integral representation

�.s; a/ D 1

	 .s/.e2�is � 1/

Z

I.";1/
te.1�a/t

et � 1
ts�2 dt:

Through this formula, �.s; a/ is continued analytically to a meromorphic function
on the whole s-plane and has a unique pole at s D 1 of order 1 with residue 1.

Proof. The first half is immediately obtained by the integral representation (9.4) and
(9.8) of �.s; a/. We shall see the latter half below in turn. We prepare the following
lemma.

Lemma 9.2. The integral
Z

I.";1/
te.1�a/t

et � 1 t
s�2 dt converges absolutely for arbitrary

s 2 C and gives a holomorphic function on the whole s-plane.

Proof. The curvilinear integral
Z

Cj

te.1�a/t

et � 1 t
s�2 dt (j D 1; 2) converges absolutely

for arbitrary s 2 C, so it is holomorphic there. Also the curvilinear integralZ

I."/

te.1�a/t

et � 1
ts�2 dt converges absolutely for arbitrary s by (9.6) since " > 0

is fixed, and is differentiable with respect to s, so this is also holomorphic on the
whole s-plane. ut
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As is well known in complex analysis,
1

	 .s/
is a holomorphic function on the

whole s-plane, so by Proposition 9.1 and Lemma 9.2, poles of �.s; a/ result from
zeros of the function e2�is � 1. Since �.s; a/ converges absolutely for Re.s/ > 1

and is holomorphic there, possible poles are s D 1 or s D 1 �m (m 2 N). Among
these, at s D 1 �m the function

1

	 .s/.e2�is � 1/
is holomorphic. Hence �.s; a/ has a unique pole s D 1 and its order is 1. The residue
is given by

lim
s!1

.s � 1/
	 .s/.e2�is � 1/

Z

I.";1/
te.1�a/t

et � 1
ts�2 dt D 1

2�i

Z

I.";1/
te.1�a/t

et � 1 t
�1 dt

D 1

2�i

Z

I."/

te.1�a/t

et � 1 t
�1 dt D Res

tD0

�
e.1�a/t

et � 1

�
D 1:

The above calculation of the last integral is due to the residue theorem. The only

pole of the integrand
e.1�a/t

et � 1
inside I."/ is t D 0 and it is of order 1, so it is enough

to calculate its residue.
We have finished the proof of the latter half of Proposition 9.1. ut
Next, we calculate the special values of �.s; a/ at non-positive integers s D 1�m

(m 2 N) by using the contour integral representation.

Proposition 9.3. Let m be a natural number. Then for a > 0, we have

�.1�m; a/ D �Bm.a/
m

:

Here Bm.a/ is the Bernoulli polynomial defined in Sect. 4.3 (p. 55).

Proof. By Proposition 9.1 we have

�.1�m; a/ D
�

lim
s!1�m

1

	 .s/.e2�is � 1/

�Z

I.";1/
te.1�a/t

et � 1 t
�m�1 dt:

In the last curvilinear integral, the integrand
te.1�a/t

et � 1 t
�m�1 becomes a single-valued

holomorphic function on C n f0g. Notation being as before, in the integral for the
contour I.";1/ D C1 C I."/C C2, the curvilinear integrals on C1 and C2 cancel
each other. That is,
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Z

C1

te.1�a/t

et � 1 t
�m�1 dt C

Z

C2

te.1�a/t

et � 1 t
�m�1 dt D 0:

The calculation of the curvilinear integral on I."/ is done by calculation of the
residues. By virtue of (5) and (4) of Proposition 4.9 on Bernoulli polynomials, the
residue of the integrand te.1�a/t

et�1 t
�m�1 at t D 0 is given by

Res
tD0

�
te.1�a/t

et � 1
t�m�1

�
D Bm.1 � a/

mŠ
D .�1/mBm.a/

mŠ
:

On the other hand, the limit is calculated by (9.3) as follows.

lim
s!1�m

1

	 .s/.e2�is � 1/ D lim
s!1�m

s.s C 1/ � � � .s Cm � 1/
	 .s Cm/

�
e2�i.sCm�1/ � 1�

D .�1/.�2/ � � � .1 �m/
2�i

D .�1/m�1.m � 1/Š
2�i

:

So we have

�.1�m; a/ D .�1/m�1.m � 1/ŠRes
tD0

�
te.1�a/t

et � 1
t�m�1

�
:

By this, Proposition 9.3 is proved. ut

9.3 The Functional Equation of �.s; a/

We fix t0 < 0, and denote by C.t0/ the line on the t-plane defined by Re.t/ D t0
oriented upwards:

C.t0/ W t D t0 C iy .�1 < y < 1/:

We assume Re.s/ < 0. In the contour integral representation of the Hurwitz zeta
function �.s; a/ (Proposition 9.1), we cut out the contour I.";1/ as in Fig. 9.2, and
shift it over the imaginary axis to the line �C.t0/. Here we are taking 0 < a � 1.

When it goes beyond the imaginary axis, it passes the pole t D 2�in(n 2 Z;

n ¤ 0) of the integrand
te.1�a/t

et � 1
ts�2, so the residues appear there. The assumptions

Re.s/ < 0 and 0 < a � 1 are conditions for the integral to converge. Under the
condition 0 < a � 1, the curvilinear integral along C.t0/ converges absolutely.
Since we can transform as
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00
=⇒

−C(t0)

t0

Fig. 9.2 Shift of the contour

�.s; a/

D 1

	 .s/.e2�is � 1/

{

.�2�i/
X

n2Z
n¤0

e.1�a/2�in

.2�in/1�s
�
Z

C.t0/

te.1�a/t

et � 1 t
s�2 dt

}

D 1

	 .s/.e2�is � 1/

{

.�2�i/
1X

nD1

e�2�inae �i2 .s�1/ C e2�inae
3�i
2 .s�1/

.2�n/1�s

�
Z

C.t0/

te.1�a/t

et � 1
ts�2 dt

}

;

taking the limit t0 �! �1, we have

�.s; a/ D .��i/.2�/s�1
	 .s/ sin�s

{

e
�is
2

1X

nD1

e2�ina

n1�s
� e�

�is
2

1X

nD1

e�2�ina

n1�s

}

: (9.9)

Here substituting 1 � fag for a, we get

�.s; 1 � fag/ D .��i/.2�/s�1
	 .s/ sin�s

{

e
�is
2

1X

nD1

e�2�ina

n1�s
� e�

�is
2

1X

nD1

e2�ina

n1�s

}

; (9.10)
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where the notation fag denotes the fractional part of a: 0 � fag < 1, a � fag 2 Z.
This transformation is valid for Re.s/ < 0. By these relations (9.9), (9.10), we get

e
�is
2 �.s; a/C e� �is2 �.s; 1 � fag/ D .2�/s

	 .s/

1X

nD1

e2�ina

n1�s
; (9.11)

and since �.s; a/ is analytically continued to a meromorphic function on the whole

s-plane,
1X

nD1

e2�ina

n1�s
is also continued analytically to a meromorphic function.

Summing up, we get the following theorem.

Theorem 9.4. We assume that 0 < a � 1. The Hurwitz zeta function �.s; a/ is
continued analytically to a meromorphic function on the whole s-plane. It has a
unique pole at s D 1. It is of order 1 and the residue is 1. Moreover, the following
functional equation is satisfied.

�.s; a/ D .��i/.2�/s�1
	 .s/ sin�s

{

e
�is
2

1X

nD1

e2�ina

n1�s
� e�

�is
2

1X

nD1

e�2�ina

n1�s

}

:

If we put s D 1 �m here and use (4.3) on p. 59, we obtain Proposition 9.3.
Furthermore if we put a D 1 in (9.11), noting that �.s; 1/ D �.s/, we get

�.s/ D .2�/s

2	 .s/ cos �s
2

� �.1 � s/ D .2�/s

2	 .s/ sin �.sC1/
2

� �.1 � s/:

Then if we use the duplication formula of the gamma function

	 .s/ D ��1=22s�1	
� s
2

�
	

�
s C 1

2

�

and the reflection formula

	 .s/	 .1 � s/ D �

sin�s

(for these formulas, see [104, Chapter 11]), we get

	
� s
2

�
�.s/ D �1=221�s

.2�/s

2	
�
sC1
2

�
sin �.sC1/

2

�.1� s/

D �s�1=2	
�
1 � s
2

�
�.1� s/:
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Adjusting a little, this gives the usual functional equation of the Riemann zeta
function.

Theorem 9.5 (Functional equation of Riemann zeta function). The Riemann
zeta function �.s/ can be continued analytically to a meromorphic function on the
whole s-plane. If we put

�.s/ D ��s=2	
� s
2

�
�.s/;

it satisfies the functional equation

�.s/ D �.1 � s/:

9.4 Special Values of L-Functions and the Functional
Equations

In this section, our aim is to define a Dirichlet L-function and to look for its
functional equation and special values.

Let � be a Dirichlet character modulo f . The Dirichlet L-function associated
with the character � is defined by

L.s; �/ D
1X

nD1

�.n/

ns
:

The series on the right-hand side converges absolutely for Re.s/ > 1 and it is
holomorphic there.

First, we consider the special values at positive integers.
The Gaussian sum g.�/ associated with � is defined by

g.�/ D
fX

aD1
�.a/e2�ia=f

(Definition 8.1, p. 108). If we assume that � is a primitive character modulo f , then
by virtue of Lemma 8.2, we have

�.n/g.�/ D
fX

aD1
�.a/e2�ian=f (9.12)

for arbitrary integer n.
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Theorem 9.6. Let � be a primitive character modulo f and let k be a natural
number. If �.�1/ D .�1/k, then the special value of the Dirichlet L-function
L.s; �/ at s D k is given by

L.k; �/ D .�1/k�1.2�i/k
2kŠf k

g.�/Bk;�:

Example 9.7. We give examples first. Let � be the primitive character modulo 4 and
let k be an odd positive integer. Then we have � D � and g.�/ D 2i , so we have

L.k; �/ D .�1/ kC1
2 �k

2kkŠ
Bk;�:

We write two of them explicitly below. By the expression in (4.1) in Sect. 4.2, we
have B1;� D � 1

2
and B3;� D 3

2
, so we get

L.1; �/ D 1 � 1

3
C 1

5
� 1

7
C � � � D �

4
;

L.3; �/ D 1 � 1

33
C 1

53
� 1

73
C � � � D �3

32
:

Next, let � be the primitive character modulo 3. Since we have B1;� D � 1
3
, B3;� D

2
3
, g.�/ D p

3i , we get

L.1; �/ D 1 � 1

2
C 1

4
� 1

5
C 1

7
� 1

8
C � � � D �

3
p
3
;

L.3; �/ D 1 � 1

23
C 1

43
� 1

53
C 1

73
� 1

83
C � � � D 22�3

34
p
3
:

Proof. We give a proof of the above theorem. Using (9.12), we have

L.k; �/g.�/ D
fX

aD1
�.a/

1X

nD1

e2�ian=f

nk
:

Noting the assumption �.�1/ D .�1/k , the right-hand side is transformed into

1

2

fX

aD1
�.a/

X

n2Z
n¤0

e2�ian=f

nk
:
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By virtue of Theorem 4.11 (p. 59) and (4.1) (p. 54), this value can be rewritten as

�.2�i/k
2kŠ

fX

aD1
�.a/Bk.a=f / D �.2�i/k

2kŠf k�1 Bk;�:

Noting g.�/�1 D �.�1/g.�/=f by Lemmas 8.2 and 8.3 in the last section, we can
derive the theorem from this. ut

We express L.s; �/ by using Hurwitz zeta functions. Hurwitz zeta functions
are very useful to deduce various properties of L-functions. Under the assumption
Re.s/ > 1, we can transform L.s; �/ as

L.s; �/ D
fX

aD1

1X

mD0

�.a C f m/

.a C fm/s

D
fX

aD1
�.a/

1X

mD0

1

.aC f m/s

D f �s
fX

aD1
�.a/

1X

mD0

1

.mC a=f /s

and the next proposition follows.

Proposition 9.8. Let � be a primitive Dirichlet character modulo f > 1. Then in
the range Re.s/ > 1, we have

L.s; �/ D f �s
fX

aD1
�.a/�

�
s;
a

f

�
:

Through this expression,L.s; �/ is continued analytically to a holomorphic function
on the whole s-plane.

Proof. We have already shown the first half of the assertion. We use Proposition 9.1
for the latter half. By Proposition 9.1, the Hurwitz zeta function �.s; a=f / is
continued analytically to a meromorphic function on the whole s-plane, its pole
being only situated at s D 1 and it is of order 1. Hence L.s; �/ is analytically
continued to a meromorphic function on the whole s-plane and it has at most one
pole at s D 1 of order 1. Calculating the residue at s D 1, we get

f �1
fX

aD1
�.a/ D 0

since f > 1 and � is non-trivial, so we see it is holomorphic at s D 1 too. ut
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Let us derive the functional equation of L.s; �/ from the functional equation of
Hurwitz zeta functions (Theorem 9.4). We use the following notation ı D ı.�/,
defined by

ı D
{
0 if �.�1/ D 1;

1 if �.�1/ D �1:

So �.�1/ D .�1/ı, ı 2 f0; 1g.

Theorem 9.9 (Functional equation). Let � be a primitive character modulo f .
Then L.s; �/ satisfies the following functional equation.

�
f

�

�s=2
	

�
s C ı

2

�
L.s; �/ D W.�/

�
f

�

�.1�s/=2
	

�
1 � s C ı

2

�
L.1 � s; �/;

where we put

W.�/ D g.�/p
f iı

:

Proof. By using Proposition 9.8 and Theorem 9.4, we continueL.s; �/ analytically
to the region Re.s/ < 0, and get

L.s; �/ D f �s
fX

aD1
�.a/�

�
s;
a

f

�

D .��i/.2�/s�1
f s	 .s/ sin�s

⎧
⎨

⎩
e
�is
2

1X

nD1

fX

aD1

�.a/e
2�in af

n1�s
� e

��is
2

1X

nD1

fX

aD1

�.a/e
�2�in af
n1�s

⎫
⎬

⎭
:

Here, using (9.12), we get

L.s; �/ D .��i/.2�/s�1g.�/
f s	 .s/ sin�s

�
e
�is
2 � �.�1/e ��is

2

�
L.1 � s; �/:

Simplifying the expression, we get

	 .s/ cos

�
�.s � ı/

2

�
L.s; �/ D g.�/

2iı

�
2�

f

�s
L.1 � s; �/: (9.13)

By using the duplication formula of 	 .s/ and the relation 	 .s/	 .1 � s/ D �

sin�s
,

we can rewrite 	 .s/ as
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	 .s/ D ��1=22s�1	
� s
2

�
	

�
s C 1

2

�

D ��1=22s�1	
�
s C ı

2

�
�

	
�
1�sCı
2

�
cos �.s�ı/

2

and then substituting this into (9.13) and simplifying the result, we get the desired
functional equation. ut

Finally, let us look at special values of L.s; �/ at negative integers.

Theorem 9.10. Let � be a primitive character modulo f . For any positive integer
m, we have the following formula:

L.1 �m;�/ D �Bm;�
m

:

Proof. By Propositions 9.8 and 9.3, we have

L.1 �m;�/ D f m�1
fX

aD1
�.a/�

�
1 �m; a

f

�

D �f m�1
fX

aD1
�.a/

Bm.a=f /

m
:

By (4.1) on p. 54, this is equal to �Bm;�
m

. ut
Remark 9.11. We note that Theorem 9.6 can be derived also from Theorem 9.10
and the functional equation (Theorem 9.9).

Exercise 9.12. Let a be any complex number. Put f .s/ D �.s/�.s � a/. Find a
functional equation of f .s/, that is, give a relation between f .s/ and f .b � s/ for a
suitably chosen number b.

Exercise 9.13. Let a be a positive integer. Determine the location of poles of the
function �.s/�.s � a/ and their residues for each case when a is even or odd.

Exercise 9.14. (1) Let � be the primitive character with conductor 4. Show that
L.1; �/ D �

4
by using the integral

Z 1

0

1

1C x2
dx

and Abel’s theorem of power series convergence.
(2) Let � be the primitive character with conductor 3. Show that L.1; �/ D �

3
p
3

by
using the integral
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Z 1

0

1

1C x C x2
dx:

Exercise 9.15. (1) Let � be any Dirichlet character modulo f . Show that for any
x 2 C with Re.s/ > 1, the infinite product

Y

pWprime;p−f
.1 � �.p/p�s/�1

converges and equal to L.s; �/.
(2) Show that L.s; �/ ¤ 0 for any s 2 C with Re.s/ > 1.



Chapter 10
Class Number Formula and an Easy
Zeta Function of the Space of Quadratic Forms

In this chapter, as an application of quadratic forms and quadratic fields, we
give an explicit formula of some simple zeta functions, related to some so-called
prehomogeneous vector spaces. We also prove a class number formula of imaginary
quadratic fields. Before that, we review the theory of multiplicative structure of
ideals of quadratic field without proof.

10.1 Ideal Class Groups of Quadratic Fields

We first review the prime ideal decomposition of the maximal order of quadratic
fields. Since there are many good books on prime ideal decompositions of the
Dedekind domain, we do not give proofs here. For details, we refer to Lang [67],
Weber1 [101]. Then we supply the theory of ideals of a quadratic order which is not
maximal. Since such orders are not Dedekind domains, the theory of ideals is not
covered by the above general theory, so we explain the difference.

We fix a quadratic field K of discriminantDK and denote by Omax the maximal
order of K . For any non-zero ideals a and b of Omax, we write

ab D
{

�X

iD1
aibi I ai 2 a; bi 2 b; � is an arbitrary natural number

}

and call this a product of a and b. It is clear that this is also a non-zero ideal of
Omax. We give the following theorem without proof. We denote by �K the Dirichlet
character associated with K defined in Sect. 6.3.

1Heinrich Martin Weber (born on May 5, 1842 in Heidelberg, Germany—died on May 17, 1913 in
Strasbourg, Germany (now France)).

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__10, © Springer Japan 2014
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Theorem 10.1. (1) Any .non-zero/ ideal of the maximal order Omax of a quadratic
fieldK is a product of prime ideals. This factorization is unique. For any ideals
a and b of Omax, we have N.ab/ D N.a/N.b/.

(2) For any prime p 2 Z, the ideal pOmax is decomposed as follows.

(i) If �K.p/ D 1, then pOmax D p1p2, where p1 and p2 are different prime
ideals related by p2 D p1. Here we put

p1 D f N̨ I ˛ 2 p1g

and x 7! Nx is the non-trivial automorphism of K=Q.
(ii) If �K.p/ D �1 then pOmax is a prime ideal.

(iii) If �K.p/ D 0, namely if p is a prime factor of DK , then

pOmax D p2

for a prime ideal p.

There are no prime ideals of Omax other than those which appear in (1), (2) and (3)
above.

By this theorem, we have a relation between zeta functions as follows. For a
quadratic field K , we define the Dedekind zeta function of K by

�K.s/ D
X

a

1

N.a/s
:

Here the sum runs over all non-zero ideals of Omax and it converges absolutely for
Re.s/ > 1. The existence and uniqueness of the prime ideal factorization gives the
Euler product decomposition

�K.s/ D
Y

p

1

1 �N.p/�s
;

again for Re.s/ > 1. Here the product runs over all prime ideals of Omax. Also the
decomposition of primes of Z in K (Theorem 10.1) gives

�K.s/ D �.s/L.s; �K/:

We shall give a direct proof of this relation later.
We also give the following theorem on character, again without proof.

Proposition 10.2. Let K and DK be as before. Let � be a primitive Dirichlet
character moduloDK and we consider the following property on �:

�.N.a// D 1 for any ideal a of Omax which is coprime to DK:
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(1) The Dirichlet character �K.n/ D �
DK
n

�
is a primitive Dirichlet character

modulo jDkj and satisfies the above property.
(2) Conversely, any non-trivial primitive Dirichlet character modulo jDK j which

satisfies the above property is equal to �K .

Now in the rest of this section, we explain a multiplicative structure of ideals
including the case of non-maximal orders.

We fix an integer f � 1 and we consider ideals of an order Of of a quadratic
field K D Q.

p
m/. We extend the notion of ideals so that we can consider a

group of ideals. For this purpose, we introduceOf -modules, called fractional ideals,
which are not necessarily contained in Of . To define this, we first consider a free
Z-submodule L of the quadratic field K . The rank of L as a free Z-module is at
most 2. Indeed, if we assume that rankZL � 3, then there are elements !1, !2,
!3 2 L which are the part of a basis over Z. If c1!1 C c2!2 C c3!3 D 0 for some
ci 2 Q, then there is some non-zero r 2 Z such that rci 2 Z for all i , so we have
rci D 0 and hence ci D 0 for i D 1, 2, 3. Since L 	 K and K is of dimension two
as a vector space over Q, this is a contradiction.

Definition 10.3. A free Z-submodule of rank 2 in the quadratic field K D Q.
p
m/

is called a lattice of K .

For lattices L1 and L2, we define their product by

L1L2 D
{

�X

iD1
ai bi I ai 2 L1; bi 2 L2; � is an arbitrary natural number

}

:

This product is a lattice. Indeed, for any element ˛ 2 K , there exists r 2 Z such
that r˛ 2 Z C Z

p
m and applying this to a basis of lattices L1 and L2, we see

that rL1, rL2 	 Z C Z
p
m for some integer r . But since Z C Z

p
m is a ring, we

have r2L1L2 	 Z C Z
p
m. Hence by virtue of the structure theorem for finitely

generated abelian groups, L1L2 is a free Z-module of rank 2 at most. It is obvious
that its rank is 2, because for any 0 ¤ ! 2 L1, we have !L2 	 L1L2 and !L2 is
of rank 2. This multiplication is commutative and associative.

Generalizing slightly the notion of a proper ideal, we call a lattice L of K a
fractional ideal of Of ifL is an Of -module. Then we also haveOf L D LOf D L,
since 1 2 Of . So Of is an identity element of the semi-group of fractional ideals
of Of . In this book, if we say just an ideal of Of , we always understand that it is a
subset of Of .

Now, in order to introduce a group structure on fractional ideals of an order Of ,
we need inverse elements. In other words, for an ideal a, we would like to find a
lattice L such that aL D Of . But such lattice does not exist in general.

Example 10.4. Take K D Q.
p�2/ and consider the order O5 D Z C 5

p�2Z of
conductor 5. Put a D 5Z C 5

p�2Z. Then this is an ideal of O5, but there exists no
latticeL such that aL D O5. The reason is as follows. If such anL exists, then since
5 2 a, we have 5L 	 O5. So any element ˛ of L is written as ˛ D a=5C b

p�2
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(a, b 2 Z), but .5C 5
p�2/˛ D .a � 10b/C .a C 5b/

p�2 and since this should
belong to O5, we have a C 5b 2 5Z, so a 2 5Z. So we get L 	 Z C Z

p�2,
therefore we have aL 	 5.Z C Z

p�2/ ¤ O5. Notice in this example that a is not
a proper ideal.

Lemma 10.5. Let a be an Of ideal. There exists the fractional ideal L of Of such
that aL D Of if and only if a is a proper Of ideal. If a is proper, L is uniquely
determined by a.

Proof. First assume that a is proper and we construct L such that aL D Of

explicitly. It is sufficient to give it when a is a primitive ideal. Let f1; !g be the
standard basis of the maximal order ofK and express the ideal as a D ZaC Z.d C
f!/ in the standard basis. We denote by x 7! x the non-trivial automorphism of
K=Q, and putM D Z C Za�1.d C f !/ D a�1a. This is obviously an Of module
and hence a fractional ideal of Of . Taking the product, we have

aM D Za C Z.d C f!/C Z.d C f !/C Za�1.d C f!/.d C f !/:

Here, because a is an ideal, c WD a�1.d C f!/.d C f !/ is an integer (p. 80,
Lemma 6.3). Moreover, by the assumption that a is a proper ideal, a, b WD 2d C
f T r.!/, c are mutually prime (p. 81, Lemma 6.5). But by the above expression we
have a, b, c 2 aM , so 1 2 aM . Therefore, by d C f! 2 aM , we get f! 2 aM ,
and we see Of 	 aM . By the above expression, we have aM 	 Of , so we have
aM D Of and we proved the first half. Conversely, let a be an Of ideal such that
there exists L with aL D Of . Then if ˛a 	 a for ˛ 2 K , then ˛Of D ˛aL 	
aL D Of , so ˛ 2 Of . So a is a properOf ideal. If aM D aN D Of for fractional
Of ideals M , N , then M D MOf D M.aN/ D .M a/N D Of N D N , so the
uniqueness follows. ut

We denote the Of -module M defined above by a�1 and call it the inverse ideal
of a.

We call a fractional Of ideal L a proper fractional Of -ideal when

f
 2 KI
L 	 Lg D Of :

For any proper ideal a of Of , a�1 is also a proper fractional ideal. For any proper
fractional ideal L, we have rL 	 Of for some integer r , and rL is obviously a
proper ideal of Of , so L has also an inverseM , which is a fractional Of ideal such
that LM D Of .

Lemma 10.6. The product L1L2 of proper fractional ideals L1 and L2 of Of is a
proper fractional ideal.

Proof. It is sufficient to prove when L1 and L2 are (integral) ideals. Let a and b
be proper ideals and put ab D c. For ˛ 2 K , assume that ˛c 	 c. Since a is a
proper ideal, there exists a�1 and we have a�1c D a�1ab D b. Hence we have
˛b D a�1.˛c/ 	 a�1c D b and since b is a proper ideal, we have ˛ 2 Of . ut
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Summarizing the above, we have

Proposition 10.7. The set of all the proper fractional ideals of Of is a group by
the product defined above with the unit element Of .

The group defined in this way is called an ideal group of Of . The equivalence
of ideals is defined for fractional ideals in the same way as the usual ideals, namely
L 
 L0 if L D ˛L0 for some ˛ 2 K�, and the quotient group of fractional ideals
divided by this equivalence is called an ideal class group (in the wide sense). The
class number of Of is the cardinality of the ideal class group of Of .

Now we give a certain subset of ideals which, while not including all invertible
(i.e. proper) ideals, does include representatives for the whole ideal class group
of Of .

Definition 10.8. Letm be a natural number. We say that an ideal a of Of is coprime
to m if

a CmOf D Of :

Lemma 10.9. An ideal a of Of is coprime to m if and only if the norm of a is
coprime to m. Any ideal coprime to f is a proper ideal.

Proof. We may assume that a D lb for a primitive ideal b. By using the standard
basis, we write b D ZaC Z.d C f!/. The module a CmOf is obviously an ideal
of Of , so a is coprime to m if and only if 1 2 a CmOf , or equivalently there exist
x, y, z, w 2 Z such that l.xaC y.d C f!//Cm.z C wf!/ D 1. This implies that
lxa C lyd Cmz D 1 and lyf Cmwf D 0. If there exist such x, y, z, w, then by
the second equation, we see that ly is divisible bym and hence by the first equation
we see .m; la/ D 1. Since N.a/ D al2, we have .m;N.a// D 1. Conversely if
we assume that .m; la/ D 1, then there exist x, z 2 Z such that lax C mz D 1.
Since lax Cmz 2 a CmOf , this ideal is equal to Of and we have proved the first
assertion. Since fOmax 	 Of , for any ideal a of Of we have

a C fOf 	 a C fOmax 	 Of :

So if we assume that a is coprime to f , we have aCf Omax D Of . If ˛a 	 a, then
˛ 2 Omax, so we have

˛Of D ˛a C f ˛Omax 	 a C fOmax D Of :

Hence ˛ 2 Of and a is a proper ideal. ut
There exists a proper ideal of Of which is not coprime to f . For example a D

25ZC5p�2Z 	 O5 D ZC5p�2Z is not coprime to 5 but is a proper ideal of O5.
In order to consider classes of proper Of ideals, it is enough to consider ideals

coprime to f by the following lemma.
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Lemma 10.10. Let m be an arbitrary natural number. For any proper ideal a of
Of , there exists a proper ideal of Of which is equivalent to a and coprime to m.

Proof. It is enough to prove it when a is a proper primitive ideal. We write a
primitive quadratic form corresponding to the class of a by

�
a b=2

b=2 c

�
:

It is enough to see that we can make a prime tom by changing the quadratic form to
an equivalent quadratic form. Let S be the set of all primes which divide m and put

S1 D fp 2 S Ip − ag;
S2 D fp 2 S Ipja and p − cg;
S3 D fp 2 S Ipja and pjcg:

Put x D Q
p2S2 p and y D Q

p2S1 p. Then we have .x; y/ D 1, and if we put
l WD ax2 C bxy C cy2, then l is coprime to m. Indeed, if p 2 S1 then ax2 is
coprime to p, but pj.bxy C cy2/, so p − l , and if p 2 S2 then pj.ax2 C bxy/ but
p − cy2, so p − l . If p 2 S3, then since we assumed first that a, b, c are coprime, we
have p − b, and since p − xy, again l is coprime to p. Taking a matrixA 2 SL2.Z/
whose first row is .x; y/, we have

A

�
a b=2

b=2 c

�
tA D

�
l �
� �

�
;

so we are done. ut
We denote by I0.Of ; f / the set of ideals of Of which are coprime to f and by

I0.Omax; f / the set of ideals of Omax which are coprime to f .

Lemma 10.11. The mapping � W I0.Omax; f / ! I0.Of ; f / defined by �.a/ D
a \ Of is a bijection. This maps a product to a product and does not change the
norm.

Proof. First we show that this mapping does not change the norm. Let a be an ideal
of Omax coprime to f . By the isomorphism theorem of rings, we have Of =a \
Of Š .Of C a/=a. Since we assumed here that a is coprime to f , we have a C
fOmax D Omax , but since fOmax 	 Of , we also have Of C a D Omax. Namely
we get

jOf =a \ Of j D jOmax=aj;

and this means that the norms are equal. In particular, we have seen that the
image of the mapping is contained in I0.Of ; f / since the norm is coprime to f .
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The surjectivity of the mapping is proved as follows. For a0 2 I0.Of ; f /, the Omax

ideal a0Omax is coprime to f , since 1 2 Of D a0 C fOf 	 a0Omax C fOmax .
We have

a0 	 a0Omax \ Of D .a0Omax \ Of /.a0 C fOf /

	 a0 C a0fOmax 	 a0 C a0Of D a0:

So we have �.a0Omax/ D a0. Injectivity is proved as follows. If we write �.a/ D a0
for a fixed a 2 I.f;Omax/, then as we have shown above, we have �.a0Omax/ D a0.
We also have N.a0Omax/ D N.a0/ D N.a/. Since a0Omax 	 .a \ Of /Omax 	 a
andN.a/ D N.a0Omax/, we have a D a0Omax. This means that a is determined by
a0 D �.a/. So the mapping is bijective. Now take ideals a, b 2 I0.Omax; f /. We put
a0 D �.a/ D a \ Of and b0 D �.b/ D b \ Of . We will show that �.ab/ D a0b0.
First we show that a0b0 is coprime to f . Since a0 is coprime to f as shown before,
we have a0 C fOf D Of , so a0b0 C f b0 D b0. Since b0 is also coprime to f ,
we have a0b0 C f b0 C fOf D b0 C fOf D Of . Since f b0 	 fOf , we have
a0b0 C f b C fOf D a0b0 C fOf . So we have a0b0 C f Of D Of . So a0b0 is
coprime to f . Now we put c0 D a0b0. We will show that c0 D ab \ Of . We have
already shown that a D a0Omax , b D b0Omax and c0Omax \ Of D c0. We have

a0b0Omax D a0Omaxb0Omax D ab;

so for ab 2 I0.f;Omax/, we have �.ab/ D a0b0. Therefore a product is mapped to
a product. ut

So in order to consider the classes of proper Of ideals, we can lift proper Of

ideals prime to f in each class to ideals of Omax and consider these. But this does
not mean that the classes of Omax ideals and of Of ideals are the same. In fact, for
a principal ideal ˛Omax , the ideal Of \ ˛Omax is not necessarily a principal ideal
of Of and this causes the difference. Also we should note the following point.
We denote by I.Of ; f / the group of fractional proper Of ideals generated by
I0.Of ; f /. Then a principal ideal ˛Of .˛ 2 K/ is contained in I.Of ; f / if and
only if we can write ˛ D ˇ=� by numbers ˇ, � 2 Of which are prime to f .
Here, we may take � as a rational integer prime to f since ˛ D ˇ�=N.�/. We
denote the set of such principal ideals by P.Of ; f /. In the case when ˛ 2 K is
not in Of , even if (the numerator and the denominator of) N.˛/ is prime to f , we
cannot conclude that ˛Of is in P.Of ; f /. Now, obviously an element ˇ 2 Of

is prime to f if and only if ˇ � a 2 fOmax for some integer a such that a is
prime to f . So if we denote by PZ.Omax; f / the group generated by principal
ideals ˇOmax , where ˇ 2 Omax and ˇ � a 2 fOmax for some integer a prime
to f , then P.Of ; f / is lifted to this group, and we see that the ideal class group
of Of is isomorphic to I.Omax; f /=PZ.Omax; f /. If we denote by P.Omax; f /

the group generated by integral principal Omax ideals prime to f , then by counting
P.Omax; f /=PZ.Omax; f /, we can calculate the difference between h.f 2DK/ and
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h.DK/. This calculation is not so difficult and is explained for example in [101] or
[67], but we omit it here. In next section, we use a different method to obtain this
difference in the case of imaginary quadratic fields.

10.2 Proof of the Class Number Formula of Imaginary
Quadratic Fields

We prove that the class number of an imaginary quadratic field can be written in
terms of a generalized Bernoulli number. There are many ways to prove this; here
we use properties of theta functions.

Theorem 10.12. Let K be an imaginary quadratic field, �K be the character
corresponding with K defined in Sect. 6.3 and w be the half of the number of roots
of unity in the maximal order Omax of K . Then the class number of OK is given by

h.DK/ D �wB1;�K :

For the proof, we review the transformation formula of theta functions. Let a, b,
c be integers, and we assume that the quadratic formQ.x; y/ D ax2CbxyCcy2 is
positive definite. We defineQ�1 byQ�1.x; y/ D 4.4ac�b2/�1.cx2�bxyCay2/.
We put

H D f� 2 CI the imaginary part of � is positiveg

(the upper half plane). For � 2 H, we write

�Q.�/ D
X

x;y2Z

e�iQ.x;y/� :

It is easy to see that this converges absolutely and uniformly on compact sets in H,
and is a holomorphic function on H.

Proposition 10.13. For � 2 H, the following transformation formula holds.

�Q�1

�
�1
�

�
D

p
4ac � b2 .�=2i/ �Q.�/:

Proof. A general proof can be found for example in [3, p. 25]. Here we give a direct
proof restricted to this case. We use the Poisson2 summation formula which is well

2Siméon Denis Poisson (born on June 21, 1781 in Pithiviers, France—died on April 25, 1840 in
Sceaux, France).
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known in the theory of Fourier3 transforms. To simplify the notation, for arbitrary
complex number z 2 C, we write e.z/ D e2�iz. For ˛ > 0, � 2 H and �, �� 2 R, the
following formula is well known:

Z 1

�1
e.2�1˛��2/e.����/d� D e.�.2�˛/�1�� 2/p�i�˛ :

Here as the square root of �i�˛ (whose real part is positive since � 2 H), we take
the branch

p
˛ > 0 for � D i . When we put

f .�; �/ D e.2�1Q.�; �/�/;

the Fourier transform of this function with respect to the variables .�; �/ 2 R2 is
calculated as follows:

Of .��; ��/

D
Z 1

�1

Z 1

�1
f .�; �/e.���� � ���/d� d�

D
Z 1

�1

Z 1

�1
e.2�1�.a.� C .b=2a/�/2 C .c � b2=4a/�2//e.���� � ���/d� d�

D
Z 1

�1

Z 1

�1
e.2�1�.a�2 C .c � b2=4a/�2//e.���� � �.�� � .b=2a/��//d� d�

D 1p�i�ap�i�.c � b2=4a/
�e.�.2�a/�1�� 2/e.�.2�.c � b2=4a//�1.�� � .b=2a/��/2/

D 2i

�
p
.4ac � b2/

� e
� �1
2�.ac � b2=4/

.a�� 2 � b���� C c�� 2/
�
:

By this result and the Poisson summation formula (e.g. [102]), we get
X

�;�2Z

f .�; �/ D
X

��;��2Z

Of .��; ��/:

Hence we get the transformation formula of theta functions. ut
Proof of the Class Number Formula. We show this by calculating the residue
of a zeta function in two different ways. Namely, we can derive the formula by the
relation �K.s/ D �.s/L.s; �K/ and the following calculation:

3Jean Baptiste Joseph Fourier (born on March 21, 1768 in Auxerre, France—died on May 16, 1830
in Paris, France).
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lim
s!1.s � 1/�K.s/ D �h.DK/

w
pjDK j

and

L.1; �K/ D g.�/�i

jDK j B1;�K D �B1;�K �pjDK j ;

lim
s!1.s � 1/�.s/ D 1:

The latter two equalities are in Theorems 5.4 and 9.6. The point here is the
evaluation of lims!1.s�1/�K.s/. We fix an ideal class of Omax and denote by C the
set of all (integral) ideals of Omax belonging to this class. We define the following
zeta function which is a part of �K.s/:

�.s; C / D
X

a 2C

1

N.a/s
:

Lemma 10.14. Independently of the choice of C , we have

lim
s!1.s � 1/�.s; C / D �

w
pjDK j :

Proof. If we take a fractional ideal L which is equivalent to some ideal in C , then
all the other ideals in C are written as L˛(˛ 2 K). Since L˛ 	 Omax , we have
˛ 2 L�1. We can choose L so that L�1 D a 	 Omax by dividing L by some
rational number if necessary. Here we can assume that a is a primitive ideal without
loss of generality. Also we have L˛ D Lˇ if and only if ˛ D 
ˇ for some unit 
 of
Omax. Since we assumed that K is imaginary, 
 is a root of unity in K . Hence we
have

�.s; C / D N.a/s

2w

X

˛2a

1

N.˛/s
:

We write a D Za C Z.d C !/ using the standard basis and put N.d C !/ D ac,
b D 2d C T r.!/ as usual. Then for ˛ D xa C y.d C !/ we have N.˛/ D
a.ax2 C bxy C cy2/. Since N.a/ D a, we can cancel as in the numerator and the
denominator. So we have

�.s; C / D 1

2w

X

x;y2ZI .x;y/¤.0;0/
.ax2 C bxy C cy2/�s:

We have also 4ac � b2 D jDK j. Now our aim is to calculate the residue of this
function at s D 1. We use theta functions. Since �.s; C / converges absolutely
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uniformly on compact subsets of fs 2 CI Re.s/ > 1g, exchanging the summation
and the integral, and also using the following well-known formula of the gamma
function

	 .s/

ns
D
Z 1

0

e�t
�
t

n

�s
dt

t
D
Z 1

0

e�nt t s�1 dt;

we get

	 .s/�.s; C / D 1

2w

Z 1

0

X

.�;�/2Z2�.0;0/
e�.a�2Cb��Cc�2/yys�1 dy

D �s

2w

Z 1

0

.�Q.iy/ � 1/ys�1 dy:

Here �Q.iy/� 1 is a rapidly decreasing function for y ! 1, so the integral
Z 1

1

.�Q.iy/� 1/ys�1 dy

converges for all s 2 C and is a holomorphic function on the whole complex
s-plane. On the other hand, if we take .0; 1/ as the interval of integration, it might
not converge around 0 when s is small. In order to deal with this problem, we use
the transformation formula of theta functions. Namely, if we substitute y�1 for y in
the integral on the interval .0; 1/, in the range Re.s/ > 1 we have

Z 1

0

.�Q.iy/� 1/ys�1 dy

D
Z 1

1

.�Q.iy
�1/ � 1/y�s�1 dy

D
Z 1

1

.�Q�1 .iy/2y
p

jDK j�1 � 1/y�s�1 dy

D
Z 1

1

2.�Q�1.iy/ � 1/y�s
p

jDK j�1 C 2y�s
p

jDK j�1 � y�s�1 dy

D 2

Z 1

1

.�Q�1 .iy/ � 1/ y�s
pjDK j dy � 2

pjDK j.1 � s/
� 1

s
:

The integral in the last expression converges for arbitrary s, so it is holomorphic
on the whole complex plane, and the rest has a pole at s D 0 and s D 1. So the
residue of �.s; C / at s D 1 is given by

1

	 .1/

1

2w
� 2�p

DK

D �

w
pjDK j :

Hence the lemma is proved.
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Therefore we have

lim
s!1.s � 1/�K.s/ D h.DK/�

w
pjDK j :

Comparing this with the value of L.1; �K/, we get the class number formula. ut
Since �.s/ and L.s; �/ have functional equations, �K.s/, which is a product of

these two, also has a functional equation and it is easy to calculate its explicit form.
But as a matter of fact, if we use the above integral representation, we can obtain the
analytic continuation and the functional equation of �.s; C /, and through this we
can get an alternative proof of the analytic continuation and the functional equation
of �K.s/. Namely:

Proposition 10.15. Let C be an ideal class of the maximal order Omax of a
imaginary quadratic field K , and let the other notation be the same as above.
Then �.s; C / can be continued analytically to a meromorphic function on the
whole s-plane. If we put �.s; C / D .2�/�s jDK js=2	 .s/�.s; C /, then it satisfies
the following functional equation.

�.1 � s; C / D �.s; C /:

In the same way, if we put �K.s/ D .2�/�sjDK js=2	 .s/�K.s/, then we have

�K.1 � s/ D �K.s/:

Proof. For the proof, we use the integral representation mentioned before. For
Re.s/ > 1, we have

.2w/��s	 .s/�.s; C / D
Z 1

1
.�Q.iy/� 1/ys�1 dy C 2pjDK j

Z 1

1
.�Q�1 .iy/� 1/y�s dy

� 2
pjDK j.1 � s/

� 1

s
(10.1)

but the integral on the right-hand side is holomorphic on the whole s-plane. Hence
the right-hand side is a meromorphic function on the whole complex s-plane. So the
analytic continuation is proved.

The functional equation is shown as follows. Multiplying both sides of the
integral representation before by 2�sjDK js=2 and changing s ! 1 � s, we get

.2w/�.1 � s; C /
D .2w/jDK j.1�s/=2.2�/s�1	 .1 � s/�.1� s; C /

D 2s�1jDK j.1�s/=2
Z 1

1

.�Q.iy/ � 1/y�s dy
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C 2sjDK j�1=2jDK j.1�s/=2
Z 1

1

.�Q�1 .iy/� 1/ys�1 dy

� 2sjDK j.1�s/=2jDK j�1=2
s

� 2s�1jDK j.1�s/=2
1 � s

D 2sjDK j�s=2
�
2�1jDK j1=2

Z 1

1

.�Q.iy/ � 1/y�s dy

C
Z 1

1

.�Q�1 .iy/� 1/ys�1 dy � 1

s
� 2�1jDK j1=2

1 � s

�
: (10.2)

Here the integrals in the parentheses are almost identical to the integral expres-
sion (10.1) of �.s; C / if we exchangeQ andQ�1. We defined

Q�1.x; y/ D 4

jDK j .cx
2 � bxy C ay2/;

and the quadratic forms ax2CbxyCcy2 and cx2�bxyCay2 are equivalent since
it is the same if we replace .x; y/ ! .�y; x/. Since we have

.Q�1.x; y//�s D 2�2sjDK js.cx2 � bxy C ay2/�s

we see in the same way as before that

.2w/	 .s/�.s; C / D 22s�s jDK j�s
Z 1

0

.�Q�1 .iy/� 1/ys�1 dy:

Just in the same way as in the proof of (10.1), we have

Z 1

0

.�Q�1 .iy/ � 1/ys�1dy D
Z 1

1

.�Q�1 .iy/ � 1/ys�1dy

C 2�1
p

jDK j
Z 1

1

.�Q.iy/ � 1/y�sdy � 2�1
pjDK j
1 � s

� 1

s
:

(If we note that the discriminant of Q�1 is 16jDK j�1, we see the symmetry to the
case Q.) Therefore comparing this with (10.2), we have

.2w/�.1 � s; C / D 2sjDK j�s=2
Z 1

0

.�Q�1 .iy/� 1/ys�1 dy

D .2�/�sjDK js=222sjDK j�s�s
Z 1

0

.�Q�1 .iy/ � 1/ys�1 dy

D .2w/.2�/�sjDK js=2	 .s/�.s; C / D .2w/�.s; C /:
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Hence the proposition is proved. The functional equation of �K.s/ is obvious from
this. ut

As for the formula for the class number h.f 2DK/ of the ideal class group of a
general order Of , it is easiest to compare it with the ideal class group of Omax by
a group theoretic method. (For example, see Weber [101, p. 366], Lang [67, p. 95],
Zagier [106].) But here we introduce a different method.

We first give the formula for the zeta functions of Of ideals for general f � 1.
Here we do not assume that K is imaginary, since the theory is the same for real
quadratic fields.

We fix a natural number f and consider the zeta function of ideals of the order
Of D Z C Zf! of K , which is defined by

�.s; f 2DK/ D
X

a

1

N.a/s
;

where the sum runs over arbitrary ideals of Of , which are not necessarily proper.

Proposition 10.16. (1) For a positive integer a, let r.a/ be a number of residue
classes modulo 2a represented by integers b such that b2 � f 2DK mod 4a.
Then we have

�.s; f 2DK/ D �.2s/

1X

aD1
r.a/a�s :

(2) More precisely, we have the next relation.

�.s; f 2DK/ D �.s/L.s; �K/
Y

pjf
pmkf

1�p.mC1/.1�2s/��K.p/p�s.1 � pm.1�2s//
1 � p1�2s :

Here we denote by m the highest power of p dividing f (hence m depends
on p).

Proof. A primitive ideal of Of is written as a D Za C Z.d C f!/ (a D N.a/)
and there exists an integer c such that N.d C f!/ D ac, so if we put b D 2d C
f T r.!/ then b2 � f 2DK mod 4a (p. 79, Lemma 6.2 and p. 80, Lemma 6.3). For
positive integers a, a0, we have Za C Z.d C f!/ D Za0 C Z.d 0 C f!/ if and
only if a D a0 and d � d 0 mod a. So if we fix a, two primitive ideals which have
the above bases are equal if and only if b � b0 mod 2a for b D 2d C f T r.!/

and b0 D 2d 0 C f T r.!/. Besides, if b2 � f 2DK mod 4a for some integer b,
then since T r.!/2 � DK D 4N.!/, we have b2 � .f T r.!//2 mod 4 and there
exists an integer d such that b D 2d C f T r.!/. So we can define a primitive
ideal Za C .d C f!/Z. Taking ideals which are not primitive into account, (1) is
proved. Next we show (2). For this purpose, we should just calculate r.a/. Here
we introduce a local version of r.a/. For a positive integer a and a fixed prime p,
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we denote by e the maximum non-negative integer such that peja. If p is odd, we
define rp.a/ to be the number of integers b mod pe such that b2 � f 2DK mod pe .
If p D 2, we define rp.a/ D r2.a/ to be the number of integers b mod 2eC1 such
that b2 � f 2DK mod 2eC2. Obviously we have rp.a/ D rp.p

e/. By the Chinese
remainder theorem, we have r.a/ D Q

pja rp.a/. So we have
P1

aD1 r.a/a�s DQ
p

P1
eD0 rp.pe/p�es and it is enough to calculate the above local Dirichlet series

for each prime p. First we assume that p is an odd prime. Let f D pmf0, where
f0 is a positive integer prime to p. We consider the congruence equation b2 �
p2mf 2

0 DK mod pe with unknown b. If e � 2m then b2 � 0 mod pe . Hence if
e D 2e0 here, then b � 0 mod pe0 so rp.pe/ D pe=pe0 D pe0 . If e D 2e0 C 1,
then b � 0 mod pe0C1, and rp.pe/ D pe=pe0C1 D pe0 . So we have rp.pe/ D pe0

in both cases. Now we assume that 2m < e. Then we have b D pmb0 and b20 �
DKf

2
0 mod pe�2m. If pjDK then p divides DK precisely once, so if e � 2m � 2,

there is no such b0. Hence it can have solutions only when e � 2m D 1, and in this
case, the congruence implies nothing but pjb0, so pmC1jb is the condition. But we
are counting b mod p2mC1, so we have rp.p2mC1/ D pm, and we have rp.pe/ D 0

for e > 2mC 1. If p − DK , then the congruence equation b20 � DKf
2
0 mod pe�2m

has solutions only when �K.p/ D 1 and the number of solutions mod pe�2m is two
in that case. Since we must count these as residues mod pe�m, the number is 2pm.
After all, if p − DK and e > 2m, we have rp.pe/ D pm.1C�K.p//, independently
of e. Summing up, we have the following formula for rp.pe/.

rp.p
e/ D

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pŒe=2� 0 � e � 2m;

.1C �K.p//p
m 2mC 1 � e and p − DK ,

pm e D 2mC 1 and pjDK ,

0 2mC 2 � e and pjDK .

(10.3)

Here Œe=2� denotes the biggest integer which does not exceed e=2, that is, we put
Œe=2� D e0 if e D 2e0 or 2e0 C 1 for some integer e0. Also when p D 2, we
obtain the same formula (10.3) by similar consideration. For example, assume that
0 � e � 2m. If e D 2e0 is even, then b2 � 22mf 2

0 DK mod 2eC2 means that
b D 2e0b0 and b20 � f 2

0 DK mod 4. This last relation imposes the condition that
b0 is even or odd. So the number of solutions b mod 2eC1 is 2e0C1=2 D 2e0 . If
e D 2e0 C 1 is odd, then 2e0 C 2 � 2m, so b D 2e0C1b0. Again the relation b20 �
f 2
0 DK mod 2 tells that b0 is odd or even. So the number of solutions b mod 22e0C2

is 22e0C2�.e0C1/=2 D 2e0 . The case e � 2m C 1 is calculated similarly. Here we
note that if DK is odd, then �K.2/ D 1 if DK � 1 mod 8 and �K.2/ D �1 if
DK � 5 mod 8, and that the congruence equation x2 � y mod 2lC2 with l � 1

for a fixed y and unknown x has no solution when y � 5 mod 8 but two solutions
x mod 2lC1 when y � 1 mod 8. We should also note that, by definition, if DK is
even then DK � 0 mod 4, and if DK � 4 mod 8 then DK=4 � 3 mod 4. The rest
is the same and is omitted here. By using (10.3), we see
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1X

eD0
rp.p

e/p�es D .1C p�s/� .1C ps�1/p.1�2s/.mC1/

1 � p1�2s

C

⎧
⎪⎨

⎪⎩

pm.1�2s/�s if pjDK ,
.1C �K.p//p

m.1�2s/�s

1 � p�s
if p − DK .

The last term written for each case pjDK or p − DK separately has a unified
expression

.1C �K.p//p
m.1�2s/�s

1 � �K.p/p�s
:

Reducing to a common denominator, the right-hand side becomes

.1C p�s/.1 � p.mC1/.1�2s/ � �K.p/p�s.1 � pm.1�2s///
.1 � �K.p/p�s/.1 � p1�2s/

:

Hence multiplying this by the Euler p-factor of �.2s/, we get

.1 � p�2s/�1
1X

eD0
r.pe/p�es D 1 � p.mC1/.1�2s/ � �K.p/p�s.1 � pm.1�2s//

.1 � p�s/.1� �K.p/p�s/.1 � p1�2s / :

ut
Next we put

�.s;Of / D
X

a

1

N.a/s
:

But this time, we define the above sum so that a runs only over proper ideals of Of .

Here we introduce the Möbius4 function �.m/. This is a function of natural
numbers to f0;˙1g, defined as follows:

(1) �.1/ D 1.
(2) When the prime factor decomposition is given by m D p1 � � �pr with different

r primes, we define �.m/ D .�1/r .
(3) When m has a square factor, that is, if m is divisible by a square of a prime, we

define �.m/ D 0.

4August Ferdinand Möbius (born on November 17, 1790 in Schulpforta, Saxony (now Germany)—
died on September 26, 1868 in Leipzig, Germany).
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Ifm1 andm2 are coprime natural numbers, then we have�.m1/�.m2/ D �.m1m2/.
The next formula is known as the Möbius inversion formula.

Lemma 10.17. Let F.n/ and G.n/ be functions defined for all natural numbers n.
We assume that, for an arbitrary natural number n, the following equality holds.

F.n/ D
X

d jn
G.d/:

Then for an arbitrary natural number n, we have

G.n/ D
X

d jn
�
� n
d

�
F.d/:

The proof is easy and is omitted here (see [83]).

Proposition 10.18. (1) Using the Möbius function �, we have

�.s; f 2DK/ D f �s
X

ejf
es�.s;Oe/;

�.s;Of / D f �s
X

d jf
�.f=d/d s�.s; d 2DK/:

(2) The next relation holds.

�.s;Of / D �.s/L.s; �K/

�
Y

pjf

pmkf

.1 � p�s/.1 � �K.p/p
�s/� pm�1�2sm.1 � p1�s/.�K.p/� p1�s/

1 � p1�2s
:

Proof. The first equality of (1) comes from the facts that any ideal of Of is a
proper ideal of Oe for some ejf and that if the ideal is regarded as an ideal of
Oe, then the norm becomes f=e times the original one. The second equality follows
from the Möbius inversion formula, applying it to F.f / D f s�.s; f 2DK/ and
G.e/ D es�.s;Oe/. In order to show (2), we calculate the right-hand side of
the second equality of (1) by using Proposition 10.16. Since the Möbius function
is multiplicative, it is enough to calculate the Euler p-factors. Here when f DQt
iD1 p

mi
i , by the definition of the Möbius function, we can assume that d runs only

over the numbers
Q
p
mi�ji
i with ji D 0; 1. So if we write

f .m; p�s/ D 1 � p.mC1/.1�2s/ � �K.p/p�s.1 � pm.1�2s//
1 � p1�2s

:
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then we have

�.s;Of / D �.s/L.s; �K/
Y

pjf
.f .m; p�s/� p�sf .m � 1; p�s// :

Calculating the latter product, we get the result. ut
Remark 10.19. The explicit expression of the zeta function in Propositions 10.16
and 10.18 was given in [54, 106]. (See these papers for applications.)

Now, whenK is an imaginary quadratic field, we obtain the class number of Of

from the above formula for �.s;Of /. As before, we denote by C an ideal class of
proper ideals of Of and write

�.s; C;Of / D
X

a2C

1

N.a/s
:

Let wf be half the number of roots of unity in Of . For a primitive quadratic form
Q.x; y/ D ax2CbxyCcy2 with discriminant f 2DK corresponding to C , we have

.2wf /�.s; C;Of / D
X

.x;y/2Z2�.0;0/
.ax2 C bxy C cy2/�s :

This is proved in the same way as in the case of the maximal order. If we use the
transformation formula of �Q.�/, the residue at s D 1 of this Dirichlet series is
obtained in the same way as before, independently of C , and given by

lim
s!1.s � 1/�.s; C;Of / D �

wf f
pjDK j :

By this, we have

lim
s!1.s � 1/�.s;Of / D h.f 2DK/

�

wf f
pjDK j :

On the other hand, using the Euler product expression in the formula for �.s;Of /

in Proposition 10.18, we have

lim
s!1.s � 1/�.s;Of / D .lim

s!1.s � 1/�K.s// �
Y

pjf
.1 � �K.p/p

�1/

D �h.DK/

w
pjDK j

Y

pjf
.1 � �K.p/p

�1/:
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Hence we get the class number formula

h.f 2DK/ D h.DK/

w=wf
� f

Y

pjf
.1 � �K.p/p�1/

as was given in Chap. 6, Theorem 6.12 (2).
The class number formula for a real quadratic fieldK (or for indefinite quadratic

forms) is fairly complicated compared with this, and it is remote from our standpoint
from Bernoulli numbers, so we omit it here.

10.3 Some L-Functions Associated with Quadratic Forms

We introduce here one of the simplest example of zeta functions associated with so-
called prehomogeneous vector spaces. The content of this section is based on [47].

Let p be a prime. We assume that p � 3 mod 4. We define a Dirichlet character

 modulo p by  .a/ D
�
a
p

�
. From this, we define a function Q on the set L� of

all 2 � 2 half-integral symmetric matrices as follows. First, for

T D
�
a b=2

b=2 c

�
2 L�;

if T mod p D 0 or det.T / 6� 0 mod p, we define Q .T / D 0. If T mod p ¤ 0 and
det.T / � 0 mod p, then there exists g 2 GL2.Z=pZ/ such that

t gT g �
�
e 0

0 0

�
mod p:

Indeed since the rank of T mod p is 1, there exists g such that the second column
of Tg mod p is 0, and so is the second column of t gTg, but since this is symmetric,
the .2; 1/ component is also 0. We define  .T / D  .e/ for such T . This is well
defined since if we assume that

�
x y

z w

��
e 0

0 0

��
x z
y w

�
D
�
e0 0
0 0

�

for e, e0 6� 0 mod p and

�
x y

z w

�
2 GL2.Z=pZ/, then we have e0 D x2e (and z D 0,

x 2 .Z=pZ/�).
We denote by L�C the set of all positive definite half-integral symmetric matrices

in L�. Recall that T1 and T2 2 L� are said to be equivalent if we have t gT1g D T2
for some g 2 SL2.Z/. We define an L-function of L�C with character Q by
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L.s;L�C;  / D
X

T2L�

C
=	

Q .T /

.T / det.T /s

:

Here L�C=
 denotes a complete set of representatives of L�C up to the equivalence
and 
.T / the order of the finite group fg 2 SL2.Z/I t gTg D T g. (This L-function
was defined first by K. Hashimoto in relation to dimension formulas of automorphic
forms. This is also an example of L-functions of prehomogeneous vector spaces.
As we see later, Q can be regarded as a character of some ideal class group, so the
term “L-function with character Q ” is not strange.)

Let us try to calculate an example. If T D
�
a b=2

b=2 c

�
2 L� and rank.T mod

p/ D 1, then Q .T / D  .a/ if p − a and Q .T / D  .c/ if pja. Indeed if pja, then
by the condition on the rank, we have pjb and c 2 .Z=pZ/�, and if p − a, then we
have

�
1 0

�b=2a 1
��

a b=2

b=2 c

��
1 �b=2a
0 1

�
D
 
a 0

0 c � b2

4a

!
�
�
a 0

0 0

�
mod p:

In the case p D 3, for det.2T / D 3, 12, 15, 24, 27, . . . , we have

Q 
�
1 1=2

1=2 1

�
D 1; Q 

�
1 0

0 3

�
D 1; Q 

�
2 1

1 2

�
D �1; Q 

�
1 0

0 6

�
D 1;

Q 
�
2 0

0 3

�
D �1; Q 

�
1 1=2

1=2 7

�
D 1; Q 

�
3 3=2

3=2 3

�
D 0; : : :

We also have 
.T / D 6 for T D
�
a a=2

a=2 a

�
(a D 1, 2, 3 . . . ) and 
.T / D 2 for the

remaining T with rank.T mod 3/ D 1. From this we get

L.s;L�C;  / D 22s

6 � 3s C 1

�3s
�
1

2
� 1

6

�
C 1

6s

�
1

2
� 1

2

�
C 22s

2 � 33s C � � �

D 22s�1

3sC1
C 1

3sC1
C 22s�1

33s
C � � � :

Theorem 10.20. This L-function is essentially the Riemann zeta function. More
precisely we have

L.s;L�C;  / D �2
2s�1B1; 
ps

�.2s � 1/:
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In particular, for an arbitrary natural numberm, we have

L.1 �m;L�C;  / D pm�1

22m �mB2mB1; :

Before proving this, we prove a lemma. For an imaginary quadratic field K , its
discriminantDK and a positive integer f , we put d D f 2DK and

P.d/ D
{

T D
�
a b=2

b=2 c

�
2 L�;primC I 4ac � b2 D �d

}

:

Here L�;primC is the subset of L�C consisting of primitive ones. We also put S.d/ D
P.d/= 
.

Lemma 10.21. We assume that d (< 0) is divisible by p.

(1) If Q.
p
d/ ¤ Q.

p�p/, then
X

T2S.d/
Q .T / D 0.

(2) If Q.
p
d/ D Q.

p�p/, then Q .T / D 1 for any T 2 P.d/.
Proof. We first see that Q .T / is the value of  at the norm of the ideal correspond-
ing to T if rank.T mod p/ D 1. In this case, by definition, there exist integers x,
y coprime with each other such that Q .T / D  .e/ for e D ax2 C bxy C cy2.
Since 4ae D .2ax C by/2 C .4ac � b2/y2 and since we assumed that 4ac � b2

is divisible by p, we have  .ae/ D  .2ax C by/2. By assumption, we have
p − e, and replacing by an equivalent one if necessary, we may assume that
p − a. Hence we have  .2ax C by/ ¤ 0 and  .2ax C by/2 D 1, so we
have  .a/ D  .e/. This is the value at the norm. Therefore, since we have
�K D  if K D Q.

p
d/ D Q.

p�p/, we get Q .T / D 1 by Proposition 10.2
and Lemma 10.11. If K D Q.

p
d/ ¤ Q.

p�p/, then �K ¤  . So Q .T / takes �1
on some elements of S.d/ again by Proposition 10.2. That is, Q is a character of
the group S.d/ which is not trivial, so the sum over the group becomes 0. ut
Proof of Theorem. First, it is obvious that Q .eT / D  .e/ Q .T / for any integer e
prime to p and any T 2 L�C, and since 
.eT / D 
.T /, we reduce the L-function to
the sum over primitive quadratic forms. Namely if we put

Lprim.s; L�C;  / D
X

T2L�;prim

C
=	

Q .T /

.T / det.T /s

;

then we have
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L.s;L�C;  / D
1X

eD1

X

T2L�;prim

C
=	

 .e/ Q .T /

.eT / det.eT /s

D
1X

eD1

 .e/

e2s
Lprim.s; L�C;  /

D L.2s;  /Lprim.s; L�C;  /:

HereL.2s;  / is the DirichletL-function. Next, if we apply the previous lemma to
L
�;prim
C , only the part for T with 4 det.T / D �d D f 2p (f are positive integers)

remains alive. Since 
.T / has a common value for all the elements in P.d/, we
denote this by 
.d/. Then we have

Lprim.s; L�C;  / D 22s
1X

fD1

jS.d/j
psf 2s
.d/

:

By virtue of the relation between primitive quadratic forms and proper primitive
ideals of an order of a quadratic field, jS.d/j is the class number h.f 2DK/ of the
order Of of the imaginary quadratic field K D Q.

p�p/. By the class number
formula, we have

Lprim.s; L�C;  / D 22s
h.DK/

jO�maxjps
1X

fD1
f 1�2s Y

qjf
qWprime

�
1 � 1

q
 .q/

�
:

Here by Theorem 10.12, we have

h.DK/

jO�maxjps
D �B1; 

2ps
:

The above sum is calculated as

1X

fD1
f 1�2sY

qjf

�
1 � 1

q
 .q/

�
D
1X

fD1
f 1�2s Y

qjf
qWprime

�
1C 1

q
 .q/�.q/

�

D
1X

fD1
f 1�2sX

mjf

1

m
 .m/�.m/:

If we put f D mn here, the above sum becomes
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1X

m;nD1
n1�2sm�2s .m/�.m/ D �.2s � 1/

Y

qWprime
.1 �  .q/q�2s /

D �.2s � 1/L.2s;  /�1:

Combining all the above considerations together, we get the expression of
L.s;L�C;  / in the theorem. As for special values, it is an immediate consequence
of the fact that the values of the Riemann zeta function at integers not more than 0
are given by �.1�m/ D �Bm=m (p. 72, Theorem 5.4). ut

The above relatively easy considerations gave us a chance to start thinking that
zeta functions of prehomogeneous vector spaces consisting of symmetric matrices
would be easy objects. As things turned out, we found out that zeta functions for the
vector space of symmetric matrices of any degree are described by previously known
standard objects such as the Mellin transform of Eisenstein series of half-integral
weight and the Riemann zeta functions, and they have a decisive application for
dimension formulas of automorphic forms. See [46,48,49] for these developments.

Exercise 10.22. (1) Let DK be the discriminant of a quadratic field K and p an

odd prime such that �K.p/ D
�
DK
p

�
D 1. Show that there exists b 2 Z such

that b2 � DK mod 4p. Show also that for such b, the module p D Zp C
Z bCpDK

2
is an ideal of Omax whose norm is p.

(2) Assume DK � 1 mod 8 and put p D Z2C Z 1CpDK
2

. Show that this is an ideal
of Omax and N.p/ D 2. Also when DK � 4 mod 8 (i.e. DK � 12 mod 16),
give a prime ideal p with N.p/ D 2.

(3) Show that if a is an ideal ofOmax andN.a/ is prime toDK , then �K.N.a// D 1.

Exercise 10.23. (1) Let K be a quadratic field and Of is the order of conductor
f . Let a and b are proper Of ideals which are prime to f . Show that if a D b˛
for some ˛ 2 K�, then ˛ D ˇ=� for some ˇ 2 Of prime to f and � 2 Z
prime to f .

(2) We putK D Q.
p
3/, O2 D ZCZ.2

p
3/ and ˛ D 4Cp

3. Show that, although
N.˛/ D 13 is prime to 2, there is no pair ˇ, � 2 O2 prime to 2 such that
˛ D ˇ=� .

Exercise 10.24. Let a be a proper Of ideal. We define the norm N.a/ of a by the
cardinality of the set Of =a.

(1) If a D Za C Z bCpD
2

with a > 0, then show that N.a/ D a.

(2) Assume that a D Z!1 C Z!2. Then show that N.a/ D j.!1!2 � !2!1/=
p
Dj.

(3) Let ˛ 2 Of . Then show that N.˛a/ D jN.˛/jN.a/.

Exercise 10.25. Let a D Za C Z bCpD
2

be a proper primitive Of ideal and put

a D Za C �b C p
D

2
Z:
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(1) Show that a is also a proper primitive Of ideal and that

aa D aOf :

(2) Denote by Q.x; y/ a representative of quadratic form corresponding to the
narrow ideal class containing a. Then show that the following conditions are
equivalent.

(i) Q.x; y/ belongs to an ambig class.
(ii) a2 D ˛Of with N.˛/ > 0.

Exercise 10.26. Let a D Za C Z bCpD
2

be a proper primitive Of ideal, where
D D f 2DK for some fundamental discriminant DK . Assume that b � 0 mod a.
Show that a2 is a principal ideal aOf .

Exercise 10.27 (Product of “einig” pair of ideals). Denote byDK the fundamen-
tal discriminant of a quadratic fieldK . Fix a discriminantD D f 2DK and consider
two proper primitive Of ideals

ai D Zai C Z
bi C p

D

2
;

where ai > 0 (i D 1, 2). As is shown in Chap. 6, there exist integers c1 and
c2 such that D D b21 � 4a1c1 D b22 � 4a2c2, and we have gcd.a1; b1; c1/ D
gcd.a2; b2; c2/ D 1. In this exercise, we will obtain the free basis of the product

a1a2 D Za1a2 C Za1
b2 C p

D

2
C Za2

b1 C p
D

2
C Z

b1b2 CD C .b1 C b2/
p
D

4
:

We assume that gcd.a1; a2; .b1 C b2/=2/ D 1. (Here we note that b1 � b2 � 2

since b21 � D � b22 mod 4.) Such a pair of ideals is called einig by Dirichlet (see
[29]). We fix integers x, y, z such that xa1 C ya2 C z.b1 C b2/=2 D 1. Define a
rational number b0 by the relation

xa1
b2 C p

D

2
C ya2

b1 C p
D

2
C z

b1b2 CD C .b1 C b2/
p
D

4
D b0 C p

D

2
:

(1) Show that b0 is an integer.
(2) We put

˛ D x
b1 � b2

2
C c1z;

ˇ D y
b2 � b1
2

C c2z;

� D �.c2x C c1y/
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Then, show the following equalities.

a2

 
b1 C p

D

2

!
D a2

 
b0 C p

D

2

!
C a1a2˛;

a1

 
b2 C p

D

2

!
D a1

 
b0 C p

D

2

!
C a1a2ˇ;

b1b2 CD C .b1 C b2/
p
D

4
D
�
b1 C b2

2

�
b0 C p

D

2
C a1a2�:

(3) Show that

a1a2 D Za1a2 C Z
b0 C p

D

2

and N.a1a2/ D a1a2.

(4) If we put c0 D b20 �D
4a1a2

, then this should be an integer. Show that

c0 D .c1z C b1x/.c2z C b2y/C .a1x C a2y/.c2x C c1y/ �
�
b1 C b2

2

�2
xy

D ˛ˇ � �:

(Note, e.g. that b21 � b22 D .D C 4a1c1/� .D C 4a2c2/ D 4.a1c1 � a2c2/.)
(5) For variables x1, x2, y1, y2, put

X D .x1 C y1˛/.x2 C y2ˇ/ � c0y1y2 D x1x2 C ˛x2y1 C ˇx1y2 C �y1y2;

Y D a1x1y2 C a2x2y1 C b1 C b2

2
y1y2:

Then show that

.a1x
2
1 C b1x1y1 C c1y

2
1/.a2x

2
2 C b2x2y2 C c2y

2
2 / D a1a2X

2 C b0XY C c0Y
2:

Exercise 10.28 (General case). Fix a discriminant D D f 2DK and take two
proper primitive Of ideals a1 and a2 as in the last exercise. This time, we assume
that

gcd

�
a1; a2;

b1 C b2

2

�
D l;

where l might be greater than 1. Take integers x, y, z such that

xa1 C ya2 C z
b1 C b2

2
D l:
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We write a1 D la01, a2 D la02 and b1Cb2
2

D lB .

(1) Put

b0 D xa1b2 C ya2b1 C z
b1b2 CD

2

Show directly that b0 is an integer and divisible by l .
(2) Put

˛ D x
b1 � b2

2
C c1z;

ˇ D y
b2 � b1
2

C c2z;

� D �.xc2 C yc1/

Show the following equalities.

a2

 
b1 C p

D

2

!
D a02

 
b0 C l

p
D

2

!
C la01a02˛;

a1

 
b2 C p

D

2

!
D a01

 
b0 C l

p
D

2

!
C la01a02ˇ;

 
b1 C p

D

2

! 
b2 C p

D

2

!
D B

 
b0 C l

p
D

2

!
C la01a02�:

(3) We putm D gcd.l; ˛; ˇ; �/. Show that m D 1 by the following steps.

(i)

b1 � b2

2
D a01˛ � a02ˇ 2 mZ:

Hence c1z 2 mZ.
(ii)

B.c1z/� a02� D c1 C b2 � b1

2
Bx:

Hence c1 2 mZ.
(iii) We have b1Cb2

2
D lB 2 mZ and hence b1 2 mZ. Also we have

a1 D la01 2 mZ.
(iv) m D 1 since gcd.a1; b1; c1/ D 1.
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(4) Show that

a1a2 D Z la01a02 C Z
b0 C l

p
D

2
D l

 
Za01a02 C Z

b0=l C p
D

2

!
;

where b0=l is an integer.
(5) Show that

N.a1a2/ D N.a1/N.a2/:

(6) Find integers a3, b3, c3, X and Y similarly as in the last exercise such that

.a1x
2
1 C b1x1y2 C c1y

2
1 /.a2x

2
2 C b2x2y2 C c2y

2
2 / D a3X

2 C b3XY C c3Y
2:

(Hint: Write down the product of general elements of a1 and a2 by the basis
of a1a2 and take the norms. For example, put a3 D a01a02, b3 D b0=l , c3 D
b23 �D

4a01a02
, andX D lx1x2 C ˛x2y1 Cˇx1y2 C �y1y2, Y D a01x2y1 C a01x1y2 C

By1y2. )

Exercise 10.29. (1) We fix D D f 2DK . Show that for a natural number m and a
proper Of ideal a, there exists a proper Of ideal b which is equivalent to a and
whose norm N.b/ is prime to m.

(2) For two proper Of ideals a1, a2, show that N.a1a2/ D N.a1/N.a2/ by using
Exercise 10.27 but not using Exercise 10.28.

Exercise 10.30. (1) For K D Q.
p
5/, let Of be the order of K of conductor f .

By using Proposition 10.18, count the number of proper Of ideals of norm 4

and 16 for f D 1, 2, 3. Also, give them all explicitly.
(2) For K D Q.

p
11/ and the order O3 of K of conductor 3, give all the proper

ideals of norm 9 explicitly.

Exercise 10.31. For K D Q.
p
7/, we take the order O3 of conductor 3. Put L D

3Z C p
7Z. Show that L is a proper O3 lattice, though it is not an integral ideal of

O3 (i.e. not contained in O3).

Exercise 10.32. For K D Q.
p
82/, let Omax D Z C Z

p
82 be the maximal order

and O2 D Z C 2
p
82Z the order of conductor 2.

(1) Show that a D 2Z C p
82Z is an ideal of Omax .

(2) Show that a is not prime to 2 and that a \ O2 is not a proper ideal of O2.

Exercise 10.33. Assume that a is a proper Of ideal. We write a by the standard
basis as a D l.Za C Z.d C f!// with N.d C f!/ D ac. We assume that a C
fOmax D Of . Prove that a C f Of D Of by the following steps.

(1) Two numbers l and f are coprime.
(Hint: If there exists a prime p such that pjl and pjf , then a C fOmax 	
pOmax , which is a contradiction.)
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(2) Two numbers a and f are coprime.
(Hint: We have ac D N.d C f!/ D d2 C df T r.!/C f 2N.!/. If there is a
prime p such that pja and pjf , then pjd , and a 	 pOmax , which is again a
contradiction.)

(3) We have a C fOf D Of .
(Hint: By (1) and (2), two numbers al and f are coprime and we have x, y 2 Z
such that xal C yf D 1.)



Chapter 11
p-adic Measure and Kummer’s Congruence

In modern number theory, the p-adic method or p-adic way of thinking plays an
important role. As an example, there are objects called p-adic L-functions which
correspond to the Dirichlet L-functions, and in fact the natural setup to understand
the Kummer congruence described in Sect. 3.2 is in the context of the p-adic
L-functions. To be precise, a modified version (by a suitable “Euler factor”) of
Kummer’s congruence guarantees the existence of the p-adic L-function.

To discuss this aspect fully is beyond the scope of this book, but in this chapter we
explain the p-adic integral expression of the Bernoulli number and prove Kummer’s
congruence using it. Interested readers are advised to read books such as Iwasawa
[51], Washington [100], Lang [66].

We assume the basics of p-adic numbers. For this we refer readers to Serre [83,
Ch. 1] or Gouvea [37]. The results in this chapter are not used in other chapters.

11.1 Measure on the Ring of p-adic Integers and the Ring
of Formal Power Series

In this section we review the general correspondence between measures on the ring
of p-adic integers Zp and the ring of formal power series. We use this setup in the
next section to define the Bernoulli measure on Zp and to express Bernoulli numbers
as integrals. This expression turns out to be very useful in proving Kummer’s
congruence relation.

Let Qp be the algebraic closure of the field Qp of p-adic numbers. The p-adic
absolute value j j of Qp (normalized by jpj D 1=p) is extended uniquely to Qp . We
use the same notation j j for this extension. Then Qp is not complete with respect
to this absolute value, and the completion is denoted by Cp . The absolute value j j
also extends naturally to Cp. Let Op be the ring of integers of Cp:

Op D fx 2 Cp j jxj � 1g:

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__11, © Springer Japan 2014
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Remark 11.1. Like the complex number field C, the field Cp is complete and
algebraically closed. To do analysis in the p-adic setting, we need this big field.

First we review the general theory of measures on Zp .
Denote the Z-module Z=pnZ by Xn and the canonical map from XnC1 to Xn by

�nC1, so �nC1 W XnC1 ! Xn is defined by

x mod pnC1Z 7�! x mod pnZ:

The system of pairs .Xn; �n/ gives a projective system and we have the projective
limit lim � Xn :

lim � Xn D
{
.xn/ 2

Y

n�1
Xn j �nC1.xnC1/ D xn

}
:

The ring of p-adic integers Zp is identified with this projective limit lim � Xn .

Definition 11.2 (Measure on Zp). A set of functions � D f�ng1nD1 is called an
Op-valued measure on Zp if the following two conditions are satisfied:

(i) Each �n is an Op-valued function on Xn, �n W Xn �! Op .
(ii) For any n 2 N and x 2 Xn, the distribution property

�n.x/ D
X

y2XnC1

�nC1.y/Dx

�nC1.y/

holds.

The set of Op-valued measures on Zp is denoted by M.Zp;Op/ . This has an
Op-module structure. Further, the norm of � D f�ng 2 M.Zp;Op/ is defined as

k�k D sup
n2N; x2Xn

j�n.x/j:

Also, the Op-module of continuous Op-valued functions on Zp is denoted by
C.Zp;Op/, and the norm k'k of an element ' 2 C.Zp;Op/ is defined by

k'k D sup
x2Zp

j'.x/j:

For ' 2 C.Zp;Op/ and � D f�ng 2 M.Zp;Op/ , the integral on Zp is defined by

Z

Zp
'.x/d�.x/ D lim

n!1

pn�1X

rD0
'.r/�n.r/:
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(We use the abbreviated notation �n.r/ for �n.r mod pn/. A similar abbreviation
will be used in the following.) The convergence of the limit on the right-hand side
is guaranteed by the following estimate: when n < m, we have

ˇ̌
ˇ
pn�1X

rD0
'.r/�n.r/ �

pm�1X

lD0
'.l/�m.l/

ˇ̌
ˇ

D
ˇ̌
ˇ̌
pn�1X

rD0

�
'.r/�n.r/ �

pm�n�1X

qD0
'.r C pnq/�m.r C pnq/

� ˇ̌
ˇ

D
ˇ̌
ˇ
pn�1X

rD0

0

@
pm�n�1X

qD0
.'.r/� '.r C pnq// �m.r C pnq/

1

A
ˇ̌
ˇ

� max
r; q

j'.r/� '.r C pnq/j k�k:

For each natural number k, the binomial polynomial

 
t

k

!
D t.t � 1/ � � � .t � k C 1/

kŠ

in t is a continuous function on Zp .
To � D f�ng 2 M.Zp;Op/ we associate f 2 OpŒŒX�� in the following manner.

Set � D OpŒŒX��, �n D ..1 C X/p
n � 1/� and consider the projective system

f.�=�n;$n/g by the natural map $n W �=�n �! �=�n�1. Define fn.X/ 2
�=�n by

fn.X/ D
pn�1X

rD0
�n.r/.1CX/r D

pn�1X

rD0

rX

kD0
�n.r/

 
r

k

!
Xk D

pn�1X

kD0
cn;kX

k:

Here we understand that the equalities are mod�n and put

cn;k D
pn�1X

rD0
�n.r/

 
r

k

!
:

Since we have

.$nfn/.X/ D $n

0

@
pn�1X

rD0
�n.r/.1CX/r

1

A
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D $n

0

@
pn�1�1X

r 0D0

p�1X

lD0
�n.r

0 C pn�1l/.1CX/r
0

.1CX/p
n�1l

1

A

D
pn�1�1X

r 0D0
�n�1.r 0/.1CX/r

0

D fn�1.X/;

the system .fn/ is an element in the projective limit lim ��=�n . Now we have the

isomorphism

� Š lim ��=�n; � 3 g 7�! .gn/ 2 lim ��=�n;

where, for g 2 �, the system .gn/ is given by gn D g mod �n. Through this
isomorphism, the above ffng corresponds to f 2 � by

f .X/ D
1X

mD0
cmX

m;

where

cm D lim
n!1

pn�1X

rD0
�n.r/

 
r

m

!

D
Z

Zp

 
x

m

!
d�.x/:

We therefore have obtained a map from M.Zp;Op/ to OpŒŒX��. An important
fact is that this map gives a natural isomorphism between M.Zp;Op/ and the ring
of formal power series OpŒŒX��, often referred to as the Iwasawa isomorphism. The
way to associate a measure to an element in OpŒŒX�� is described as follows.

For f D P1
mD0 cmXm 2 OpŒŒX��, define � D f�ng by

�n.r/ D 1

pn

X

�p
nD1

��rf .� � 1/ .r 2 Xn/; (11.1)

the sum running over all pn-th roots � of 1. Since j� � 1j < 1, f .� � 1/ converges.
For eachm � 0, we have

1

pn

X

�p
nD1

��r .� � 1/m D 1

pn

X

�p
nD1

mX

jD0
��r

 
m

j

!
.�1/m�j �j

D
X

0�j�m
j�r mod pn

 
m

j

!
.�1/m�j :
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So this is contained in Op . In particular, if pn > r > m, then this is zero. When � is
a primitive p�-th root of 1 (� � 1), the equality

j� � 1j'.p�/ D jpj .' is the Euler function/

holds and hence

j.� � 1/mj D jpm='.p�/j:
From this, we conclude that pe divides the quantity

X

0�j�m
j�r mod pn

 
m

j

!
.�1/m�j

for e D m=�.pn/ � n. Therefore,

�n.r/ D
1X

mD0
cm

0

@ 1

pn

X

�p
nD1

��r .� � 1/m

1

A

is convergent and the value is in Op . To check the distribution property (ii) of the
measure, we need to calculate the following value:

X

y2XnC1; �nC1.y/Dx
�nC1.y/ D

X

a mod p

�nC1.x C pna/

D 1

pnC1
X

�p
nC1D1

0

@
X

a mod p

��.xCpna/
1

Af .� � 1/:

Using the identity

X

a mod p

��pna D
{
0 if �p

n ¤ 1;

p if �p
n D 1

for a pnC1-th root � of 1, we have
X

a mod p

�p
nC1D1

��x�pna D p
X

�p
nD1

��x;

so we have

X

y2XnC1

�nC1.y/Dx

�nC1.y/ D �n.x/
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which is to be proved. If we define the formal power series Qf 2 OpŒŒX��

corresponding to this measure defined as before, then the coefficients c0k of Xk of
this series are given by

c0k D lim
n!1

pn�1X

rD0
�n.r/

 
r

k

!

D lim
n!1

1X

mD0
cm

pn�1X

rD0

 
r

k

!
X

0�j�m
j�r mod pn

 
m

j

!
.�1/m�j :

We fix k. To calculate the coefficient of cm in the expression of c0k in the right-hand
side above, we fix m. We have

�
r
k

� D 0 for k > r so we may assume that k � r .
Taking n big enough, we assume that m < pn. Then, if j � r mod pn for some j
with 0 � j � m, we have j D r since we also have 0 � r � pn � 1 by definition.
So we may assume that k � r D j � m. So the coefficient of cm is given by

mX

rDk

 
r

k

! 
m

r

!
.�1/m�r D

m�kX

iD0

 
m � k

i

! 
m

k

!
.�1/m�k�i D

{
1 if m D k;

0 if m ¤ k:

Hence we have c0k D ck . So we have Qf D f and two mappings are inverse with
each other and we see that the set M.Zp;Op/ of Op-valued measures and the space
of formal power series OpŒŒX�� are bijective.

More precisely, we can introduce a product for both spaces and show that these
are isomorphic as Op algebras, as given in the following theorem whose complete
proof is omitted (see e.g. Lang [66, Ch.4]).

For two measures�; � 2 M.Zp;Op/, we define an Op-valued function .���/n
on Xn by

.� � �/n.x/ D
pn�1X

yD0
�n.y/�n.x � y/ .x 2 Xn/: (11.2)

Then � � � D f.� � �/ng becomes an element of M.Zp;Op/. We call this a
convolution product of � and �. The set M.Zp;Op/ becomes an Op algebra by
this product � � �.

Theorem 11.3 (Iwasawa isomorphism). Between the space M.Zp;Op/ of Op-
valued measures and the ring of formal power series OpŒŒX��, there is an Op

algebra isomorphism P W M.Zp;Op/ �! OpŒŒX�� given by

M.Zp;Op/ 3 � D f�ng P7�!f .X/ D
1X

mD0
cmX

m 2 OpŒŒX��:
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Here, cm is determined by �:

cm D
Z

Zp

 
x

m

!
d�.x/;

and conversely �n is determined by f :

�n.x/ D 1

pn

X

�p
nD1

��xf .� � 1/:

For convenience of the description below, we recall Mahler’s1 theorem giving
the necessary and sufficient condition for an Op-valued function on Zp to be
continuous.

Theorem 11.4. The function ' W Zp �! Op is continuous if and only if it can be
written as

'.x/ D
1X

nD0
an

 
x

n

!
; an 2 Op; janj �! 0:

If this is the case, the coefficients an are uniquely determined by ' and given by

an D
nX

kD0
.�1/n�k

 
n

k

!
'.k/:

We omit the proof (cf. Lang [66, §4.1]).
If we use Theorem 11.4, we can understand a part of Theorem 11.3 more

intuitively as follows. Fix x0 2 Z. Denote by ' the characteristic polynomial of
x0 C pnZp . Then by the definition of the p-adic measure, we see easily that

Z

Zp
'.x/d�.x/ D �n.x0/:

So if we replace '.x/ by the expansion '.x/ D P1
mD0 am

�
x
m

�
in Theorem 11.4, we

have

�n.x0/ D
1X

mD0
amcm D

1X

mD0
cm

mX

kD0
.�1/m�k

 
m

k

!
'.k/:

1Kurt Mahler (born on July 26, 1903 in Krefeld, Prussian Rhineland—died on February 25, 1988
in Canberra, Australia).
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Now, for any � with �p
n D 1, we have

1X

mD0
cm.� � 1/m D

1X

mD0
cm

mX

kD0

 
m

k

!
.�1/m�k�k:

Since '.k/ D 1 if k � x0 mod pn and '.k/ D 0 otherwise, we have

1

pn

X

�p
nD1

��x0
1X

mD0
cm.� � 1/m D

1X

mD0
cm

mX

kD0

 
m

k

!
.�1/m�k'.k/:

So we get the expression of �.x/ by f in Theorem 11.3.
We describe here several useful properties of the correspondence P in Theo-

rem 11.3 between measures and formal power series. Let the maximal ideal ofOp be

P D fz 2 Op j jzj < 1g:

For z 2 P , define the function .1C z/x in x by

.1C z/x WD
1X

nD0

 
x

n

!
zn:

By Mahler’s theorem, .1 C z/x is a continuous function of x 2 Zp . When x is a
non-negative integer, this definition of .1 C z/x coincides with the usual binomial
expansion. We have the relation

.1C z/x.1C z/x
0 D .1C z/xCx0

.x; x0 2 Zp/: (11.3)

This is obvious for x; x0 2 N, and the general case for x; x0 2 Zp follows from the
fact that the set N of natural numbers is dense in Zp .

In the following, we list several properties of measures and corresponding power
series, which will be used later.

Property (1). Let z 2 P . If � corresponds to f (i.e. P� D f ), then

f .z/ D
Z

Zp

.1C z/x d�.x/:

In particular, by putting z D 0,

f .0/ D
Z

Zp
d�.x/:
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Proof. Writing f .X/ D
1X

nD0
cnX

n , we have by Theorem 11.3

Z

Zp
.1C z/x d�.x/ D

Z

Zp

1X

nD0

 
x

n

!
zn d�.x/

D
1X

nD0
zn
Z

Zp

 
x

n

!
d�.x/

D
1X

nD0
cnzn D f .z/:

ut
We call the map 
 from C.Zp;Op/ to Op a bounded linear functional on

C.Zp;Op/ if the following conditions (i), (ii) are satisfied:

(i) For any '; ' 0 2 C.Zp;Op/ and any a; b 2 Op ,


.a' C b' 0/ D a
.'/C b
.' 0/:

(ii) There exists a positive constantM > 0 such that for any ' 2 C.Zp;Op/,

j
.'/j � M k'k:

The norm of 
 is defined by

k
k D sup
'2C.Zp;Op/

'¤0

j
.'/j
k'k :

Let 
 be a bounded linear functional on C.Zp;Op/. For x 2 Xn D Z=pnZ, write
the characteristic function of x C pnZp as 'x; n. If we put

�n.x/ D 
.'x;n/;

then � D f�ng is an Op-valued measure on Zp (i.e. � 2 M.Zp;Op/). Conversely,
given � D f�ng 2 M.Zp;Op/, if we put


.'/ D
Z

Zp

'.x/ d�.x/;



192 11 p-adic Measure and Kummer’s Congruence

then 
 is a bounded linear functional on C.Zp;Op/. This correspondence between

 and � is easily seen to be one to one.

Moreover, for h 2 C.Zp;Op/ and � 2 M.Zp;Op/ , the map

' 7�!
Z

Zp

'.x/h.x/ d�.x/; .' 2 C.Zp;Op//

is a bounded linear functional on C.Zp;Op/. Let h� be the corresponding measure.
It is an interesting problem to compute the formal power series corresponding to the
measure h� when � corresponds to f D P� 2 OpŒŒX��. Properties (2) and (3)
below give examples of this correspondence.

For f 2 OpŒŒX��, put

.Uf /.X/ D f .X/ � 1

p

X

�pD1
f .�.1CX/� 1/: (11.4)

Since

1

p

X

�pD1
.�.1CX/ � 1//l 2 ZpŒX�

for non-negative integers l , we have Uf 2 OpŒŒX��.

Property (2). Let f 2 OpŒŒX�� and �f be the corresponding measure. Also, let  
be the characteristic function of Z�p . Then the formal power series corresponding
to the measure  �f is Uf , i.e.,  �f D �Uf . More precisely, we have for any
' 2 C.Zp;Op/

Z

Zp
'.x/ .x/ d�f .x/ D

Z

Zp
'.x/ d�Uf .x/:

This can also be written as
Z

Z�

p

'.x/ d�f .x/ D
Z

Zp
'.x/ d�Uf .x/:

Proof. Write the power series corresponding to the measure �f as g. When z 2 P ,
by Property (1) we have

g.z/ D
Z

Zp
.1C z/x .x/ d�f .x/:

Let � be a pth root of 1. Regarding  also as a function on Z=pZ via  .a mod
p/ D  .a C pZp/, and putting
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O .�/ D 1

p

X

a2Z=pZ

 .a/��a;

(Fourier transform on Z=pZ) we have

 .a/ D
X

�pD1
O .�/�a

by a simple calculation (inverse Fourier transform). Since

O .�/ D
{

� 1
p

if � ¤ 1;
p�1
p

if � D 1;

by the definition of  , we obtain

g.z/ D
Z

Zp
.1C z/x .x/ d�f .x/

D
Z

Zp
.1C z/x

X

�pD1
O .�/�x d�f .x/

D
X

�pD1
O .�/

Z

Zp
.1C z/x�x d�f .x/

D
X

�pD1
O .�/

Z

Zp

�
1C .�.1C z/ � 1/

�x
d�f .x/

D
X

�pD1
O .�/f .�.1C z/ � 1/ D f .z/ � 1

p

X

�pD1
f .�.1C z/� 1/:

This shows g D Uf . (Here we define the power �x for x 2 Zp by

�x D .1C � � 1/x D
1X

nD0

 
x

n

!
.� � 1/n:

If we choose a 2 Z so that x � a 2 pZp , we have �x D �a.) ut
Define the differential operatorD on the ring of formal power series OpŒŒX�� by

D D .1CX/DX; where DX D d

dX
:
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Property (3). For f 2 OpŒŒX��, the power series corresponding to the
measure x�f is Df . Hence the power series corresponding to the measure
xk�f .k natural number/ is Dkf and the equalities

Z

Zp

xk d�f .x/ D
Z

Zp

d�Dkf .x/ D .Dkf /.0/

hold.

Proof. It is enough to show this when k D 1. Let g 2 OpŒŒX�� be the power series
corresponding to the measure x�f . By Property (1), we have for z 2 P

g.z/ D
Z

Zp
x.1C z/x d�f .x/:

Put f .X/ D P1
nD0 anXn; g.X/ D P1

nD0 bnXn. Using

X

 
X

n

!
D .nC 1/

 
X

nC 1

!
C n

 
X

n

!

and Theorem 11.3, we have

bn D
Z

Zp

 
x

n

!
d�g.x/ D

Z

Zp

 
x

n

!
x d�f .x/

D .nC 1/

Z

Zp

 
x

nC 1

!
d�f .x/C n

Z

Zp

 
x

n

!
d�f .x/

D .nC 1/anC1 C nan:

On the other hand,Df is computed as

.Df /.X/ D ..1CX/DXf /.X/

D .1CX/.a1 C 2a2X C � � � C nanX
n�1 C � � � /

D
1X

nD0
..nC 1/anC1 C nan/X

n:

This gives g D Df . ut
In general, for a power series f .X/, we define a new power series f �.Z/ in Z

by setting X D eZ � 1:

f �.Z/ D f .eZ � 1/: (11.5)
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For example, when

f .X/ D .1CX/a D
1X

nD0

 
a

n

!
Xn;

we have

f �.Z/ D eaZ D
1X

nD0

anZn

nŠ
:

Note the identity

.Dk
Zf
�/.0/ D .Dkf /.0/ (11.6)

since

DZf
�.Z/ D .1CX/DXf .X/ D Df.X/:

The next property is the basis of the fact that the isomorphismP in Theorem 11.3
is an Op algebra isomorphism.

Property (4). Let the measures �; � correspond respectively to the power series
f; g 2 OpŒŒX�� (i.e., � D �f ; � D �g). Then the power series corresponding to
the convolution � � � is fg:

�f � �g D �fg:

Proof. By Eq. (11.1), we have

�n.r/ D 1

pn

X

�p
nD1

��rf .� � 1/;

�n.k � r/ D 1

pn

X

�p
nD1

��kCrg.� � 1/:

Substituting this into the right-hand side of (11.2), we obtain

.� � �/n.k/ D
pn�1X

rD0

1

pn

X

�p
nD1

��rf .� � 1/ 1
pn

X

�p
nD1

��kCrg.� � 1/

D 1

pn

X

�

X

�

f .� � 1/g.� � 1/��k � 1
pn

pn�1X

rD0
.�=�/r
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D 1

pn

X

�

f .� � 1/g.� � 1/��k

D �fg; n.k/:

Here � and � run through all pn-th roots of 1. From this, Property (4) follows. ut

11.2 Bernoulli Measure

We define a specific measure called the Bernoulli measure. Recall that the first
Bernoulli polynomial is by definition equal to

B1.x/ D x � 1

2
:

In the following, p denotes an odd prime. For each natural number n and x 2 Xn D
Z=pnZ, set

En.x/ D B1

�{
x

pn

}�
;

where in the right-hand side, we regard x as an integer representing x mod pn, and
for w 2 R, fwg is the real number satisfying 0 � fwg < 1 and w � fwg 2 Z (the
fractional part of w). Then E D fEng is a measure on Zp but is not Op-valued. We
modify this as follows in order to have an Op-valued measure. Take an invertible
element c in Zp (i.e. c 2 Z�p ), and for x 2 Xn D Z=pnZ, let

Ec;n.x/ D En.x/ � cEn.c
�1x/:

We understand c�1x as an element in Xn D Z=pnZ. It is easy to see that Ec D
fEc;ng is an Op-valued measure. We call this the Bernoulli measure.

Proposition 11.5. (1) The formal power series corresponding to the Bernoulli
measure Ec is given by

fc.X/ D 1

X
� c

.1CX/c � 1 :

(2) Let k be a natural number. For c 2 Z�p with ck ¤ 1, we have

Bk

k
D .�1/k
1 � ck

Z

Zp

xk�1 dEc:

In particular, if p � 1 − k, then Bk=k 2 Z.p/.
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Proof.(1) Since c 2 Z�p , we see fc 2 ZpŒŒX��, the first two terms of fc.X/ being

fc.X/ D c � 1
2

C 1 � c2

12
X C � � � :

Let � D f�ng be the measure on Zp corresponding to fc by Theorem 11.3. For
r 2 Xn D Z=pnZ we have

�n.r/ D 1

pn

X

�p
nD1

��rfc.� � 1/

D 1

pn
fc.0/C 1

pn

X

�p
nD1; �¤1

��r
�

1

� � 1
� c

�c � 1
�
:

Now we use Lemma 8.5 on p. 110. For �p
n D 1; � ¤ 1 and f D pn, the lemma

gives

1

�c � 1
D 1

f

f�1X

jD1
j�cj

since .c; p/ D 1. By this, if we choose l so that cl � k mod pn; 0 � l < pn,
we obtain

1

f

X

�p
nD1; �¤1

��k
c

�c � 1
D c

f 2

X

�p
nD1

��k
f �1X

jD1
j�cj � c.f � 1/

2f

D cl

f
� c.f � 1/

2f

D c

{
c�1k
pn

}

� c

2
C c

2f

and by substituting this into the formula for �n.r/ above and noting that fc.0/ D
.c � 1/=2, we have

�n.r/ D c � 1
2f

C
�{

r

pn

}

� 1

2
C 1

2f
� c

{
c�1r
pn

}

C c

2
� c

2f

�

D
�{

r

pn

}

� 1

2

�
� c

�{
c�1r
pn

}

� 1

2

�
:

By the definition of the Bernoulli measure, we conclude �n.r/ D Ec;n.r/, i.e.,
� D Ec and the power series corresponding to Ec is fc .

The proof of (2) goes as follows. By Property (3) and Eq. (11.6) we have
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Z

Zp
xk�1 dEc D .Dk�1fc/.0/ D .Dk�1

Z f �c /.0/:

Here by definition (11.5), we have

f �c .Z/ D fc.e
Z � 1/ D 1

eZ � 1 � c

ecZ � 1

D
1X

nD1
.1 � cn/.�1/nBnZ

n�1

nŠ
;

so we have

.Dk�1
Z f �c /.0/ D .1 � ck/.�1/k Bk

k

and thus
Z

Zp
xk�1 dEc D .1 � ck/.�1/k Bk

k
:

This gives (2). ut

11.3 Kummer’s Congruence Revisited

The “right” formulation of Kummer’s congruence is the following.

Theorem 11.6. Suppose p is an odd prime.

(1) Assume that m is a positive even integer such that p � 1 − m. Then Bm=m 2
Z.p/.

(2) Let a be a positive integer, and m and n positive even integers satisfying m �
n mod .p � 1/pa�1 andm 6� 0 mod .p � 1/. Then we have

.1 � pm�1/
Bm

m
� .1 � pn�1/

Bn

n
mod pa:

To prove this, we need the following integral expression of the Bernoulli number,
a refined version of Proposition 11.5 (2).

Proposition 11.7. Let k be a positive even integer and take c 2 Z�p . Then we have

.1 � ck/.1 � pk�1/
Bk

k
D
Z

Z�

p

xk�1 dEc:
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Proof. The power series that corresponds to the Bernoulli measure Ec is fc in
Proposition 11.5. As in (11.4), define from fc a new power series g by

g.X/ D Ufc.X/ D fc.X/ � 1

p

X

�pD1
fc.�.1CX/� 1/:

We have g 2 OpŒŒX�� and so we let � D �g be the measure on Op obtained from g.
By Property (2) on p. 192 we have

Z

Z�

p

xk�1 dEc D
Z

Zp
xk�1 d�:

Further, using Property (3) on p. 194 and (11.6) one sees

Z

Zp

xk�1 d� D .Dk�1g/.0/ D .Dk�1
Z g�/.0/:

We compute the value .Dk�1
Z g�/.0/ . First,

g�.Z/ D 1

eZ � 1 � c

ecZ � 1 � 1

p

X

�pD1

�
1

�eZ � 1
� c

�cecZ � 1
�
:

Here, since

1

p

X

�pD1

1

�X � 1
D 1

Xp � 1 ;

we get

g�.Z/ D 1

eZ � 1 � c

ecZ � 1
�
�

1

epZ � 1 � c

ecpZ � 1

�

D
1X

kD0
.1 � ck/.�1/k Bk

kŠ
Zk�1 �

1X

kD0
.1 � ck/.�1/k Bk

kŠ
.pZ/k�1

D
1X

kD1
.1 � ck/.1 � pk�1/.�1/k Bk

kŠ
Zk�1:

Hence if k is even we have

.Dk�1
Z g�/.0/ D .1 � ck/.1� pk�1/

Bk

k
;

and the proposition is established. ut
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Proof of Theorem 11.6. The first assertion is already given in Theorem 3.2, but we
give here an alternative proof for that too. Since we assumedm 6� 0 mod p � 1, we
can take c 2 Z such that .c; p/ D 1 and cm 6� 1 mod p. For instance one may take
a primitive root mod p. From the proposition above, we have

.1 � cn/.1 � pn�1/Bn
n

D
Z

Z�

p

xn�1 dEc

and

.1 � cm/.1 � pm�1/Bm
m

D
Z

Z�

p

xm�1 dEc:

The assumption m � n mod .p � 1/pa�1 gives cn�m � 1 mod pa , and since we
assumed .1�cm; p/ D 1, we have also .1�cn; p/ D 1. SinceEc is an Op measure,
the above integral values are in Op and we see that Bn=n and Bm=m 2 Z.p/. Since
xm�1 � xn�1 mod pa if x 2 Z�p , and since Ec is an Op-valued measure, we have

.1 � cn/
�
.1 � pn�1/

Bn

n
� .1 � pm�1/Bm

m

�
2 paOp:

The left-hand side being contained in Zp , we conclude

.1 � pn�1/
Bn

n
� .1 � pm�1/Bm

m
2 paZp:

This proves the theorem. ut
Theorem 3.2 is a corollary of Theorem 11.6. Indeed, if a < m � n, then by

Theorem 11.6, we have

.1 � pm�1/
Bm

m
� .1 � pn�1/Bn

n

D .1 � pm�1/
�
Bm

m
� Bn

n

�
C Bn

n
.pn�m � 1/pm�1

� 0 mod pa:

Since p�1 − n, we have Bn=n 2 Z.p/ by Theorem 11.6. Since a � m�1, we have
pm�1Bn=n 2 paZ.p/. Hence we have

Bm

m
� Bn

n
� 0 mod pa:
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Exercise 11.8. Give an example of an odd prime p and integers 2 � a D m < n

such that the congruence in Theorem 3.2 does not hold. Check that for the same
choice of a, n, m and p, the congruence of Theorem 11.6 surely holds.
Hint: For example, put p D 5, a D m D 2 and n D 22 and use the following
values:

B2 D 1

6
; B22 D 854513

138
:

Exercise 11.9. Show that the Bernoulli number Bn is given by the limit (p-adic
limit in Qp)

lim
m!1

1

pm

pm�1X

iD0
in:

(For a function f W Zp ! Qp with a suitable condition, the limit

lim
m!1

1

pm

pm�1X

iD0
f .i/

is sometimes referred to as the Volkenborn integral of f over Zp . See [94, 95] for
details.)



Chapter 12
Hurwitz Numbers

12.1 Hurwitz Numbers

In this section, we briefly introduce Hurwitz’s generalization of Bernoulli numbers,
known as the Hurwitz numbers.

As we have seen in Proposition 1.17, Bernoulli numbers appear as the coeffi-
cients of expansions of trigonometric functions. Hurwitz replaced the trigonometric
function by a “lemniscate function”, which, in modern terms, is an elliptic function
having complex multiplication by the ring of Gaussian integers ZŒ

p�1�, and
considered its expansion. It was Gauss who first studied the lemniscate function
or more general elliptic functions, but most of his work on them did not appear
during his lifetime. In his Disquisitiones [35], Gauss mentioned at the beginning of
Chap. 7 that his theory of cyclotomy developed there could also be applied to the
division of the lemniscate. Inspired by this comment, Abel1 and Jacobi started their
investigation on elliptic functions and laid the foundations of the theory.

Let us define Hurwitz numbers. For this, put

$ D 2

Z 1

0

dxp
1 � x4

.D 2:622057 : : : /:

This is one-half of the arc-length of the lemniscate defined by

r2 D cos.2�/;

and is analogous to the similar quantity for the case of the circle:

� D 2

Z 1

0

dxp
1 � x2

:

1Niels Henrik Abel (born on August 5, 1802 in Frindoe, Norway—died on April 6, 1829 in Froland,
Norway).

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__12, © Springer Japan 2014
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Let }.z/ be the Weierstrass }-function with periods$ and$
p�1 defined by

}.z/ D 1

z2
C

X


2Z$CZ$
p

�1

¤0

�
1

.z � 
/2 � 1


2

�
: (12.1)

The function }.z/ is a doubly periodic meromorphic function on the complex
plane with periods $ and $

p�1, having double poles at the lattice points
Z$ C Z$

p�1 and holomorphic elsewhere (for the basic properties of the elliptic
function, see [104]). Owing to the fact that the lattice Z$CZ$

p�1 is preserved by
multiplication by

p�1, the function z 7! }.
z/ for any 
 2 ZŒ
p�1� is expressible

as a rational function of }.z/ and } 0.z/. By virtue of this property, }.z/ is said to
have complex multiplication by ZŒ

p�1�. In particular, it is easily seen from the
definition that }.z/ is an even function and

}.
p�1z/ D �}.z/:

Also, }.z/ satisfies the differential equations

} 0.z/2 D 4}.z/3 � 4}.z/

and

} 00.z/ D 6}.z/2 � 2:

Write the Laurent expansion of }.z/ at z D 0 as

}.z/ D 1

z2
C
1X

nD2

2nHn

n

zn�2

.n � 2/Š (12.2)

and use this to define the Hurwitz numbers Hn. From the property }.
p�1z/ D

�}.z/, we see thatHn D 0 unless n is a multiple of 4. The analogous expansion for
the Bernoulli numbers is

1

sin2.x/
D 1

x2
C
1X

nD2

.�1/ n2�12nBn
n

xn�2

.n � 2/Š
;

which can be obtained from the expansion of cot given in Proposition 1.17 by
differentiation, since cot0.x/ D � 1

sin2.x/
. In a similar manner to the proof of

Proposition 1.15, namely by comparing the coefficients of

} 00.z/ D 6}.z/2 � 2; (12.3)
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Table 12.1 Hurwitz numbers

n 4 8 12 16 20 24 28 32

Hn
1
10

3
10

567
130

43659
170

392931
10

1724574159
130

2498907956391
290

1671769422825579
170

we have

H4 D 1

10
;

and the recursion

.2n � 3/.4n � 1/.4nC 1/H4n D 3

n�1X

iD1
.4i � 1/.4n� 4i � 1/

 
4n

4i

!
H4iH4.n�i /

for n � 2. In particular, we see from this that H4n is a positive rational number.
Several values are in Table 12.1.

The analogy between Hurwitz and Bernoulli numbers is more apparent when we
look at the special values of zeta functions. Namely, first we rewrite the formula
(4.4) as

X

r2Z
r¤0

1

r2n
D .�1/n�1 .2�/

2n

.2n/Š
B2n .n � 1/:

Note the sum on the left runs over all non-zero integers. If we replace the rational
integers here by Gaussian integers, we have the formula

X


2ZCZ
p

�1

¤0

1


4n
D .2$/4n

.4n/Š
H4n:

To deduce this, expand the right-hand side of the definition (12.1) of }.z/ by using
1

.z�
/2 D 1

2

C 2z

3

C 3z2


4
C � � � and compare with (12.2).

Hurwitz proved a Clausen–von Staudt type theorem for Hn. To state this, we
need the following classical theorem of Fermat and Euler.

Theorem 12.1. Any prime number congruent to 1 modulo 4 can be written as a
sum of two squares essentially in the unique way.

Various proofs of this theorem are known since Euler. See [50] or [77] for some
of the standard proofs. For Zagier’s “One-sentence proof”, which simplifies a proof
by Heath-Brown, see [108].

Suppose now that p is a prime number congruent to 1 modulo 4 and write

p D a2 C b2:
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We may assume a is odd and b is even. We change the sign of a if necessary in
order to have

a � b C 1 .mod 4/:

(Note that the right-hand side is independent of the choice of the sign of b since b
is even.) These conditions uniquely determine a and so we denote it by ap to make
the dependence on p explicit. For instance, we have

5 D .�1/2 C 22; 13 D 32 C 22; 17 D 12 C 42;

so

a5 D �1; a13 D 3; a17 D 1:

Hurwitz’s theorem is then stated as:

Theorem 12.2. For each n � 1, we have

H4n D 1

2
C

X

p�1 mod 4
p�1j4n

.2ap/
4n
p�1

p
CGn

with an integer Gn. In the sum, p runs over prime numbers congruent to 1 modulo
4 such that p � 1 divides 4n.

As examples of the theorem, we have

H4 D 1

10
D 1

2
C .�2/

5
;

H8 D 3

10
D 1

2
C .�2/2

5
� 1;

H12 D 567

130
D 1

2
C .�2/3

5
C 6

13
C 5;

H16 D 43659

170
D 1

2
C .�2/4

5
C 2

17
C 253;

H20 D 392931

10
D 1

2
C .�2/5

5
C 39299;

H24 D 1724574159

130
D 1

2
C .�2/6

5
C 62

13
C 13265939:

Hurwitz also proved that every Gn for n > 1 is odd and determined its class
modulo 8. The proof [44] of Theorem 12.2 is not as elementary as the original
Clausen–von Staudt theorem. It uses the complex multiplication of the }-function
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as well as the notion of Hurwitz integral series (cf. Chap. 7). See [27, 58] for a
modern interpretation of the theorem and Kummer-type congruence forHn.

12.2 A Short Biography of Hurwitz

Adolf Hurwitz was born on March 26, 1859 in Hildesheim, Germany.2 His teacher
at the Gymnasium was Schubert,3 who is famous for his enumerative geometry
(“Schubert calculus”). Impressed by Hurwitz’s genius, Schubert came every Sunday
as a house tutor and persuaded Hurwitz’s father, who was not at all affluent, to
send his son to the university to study mathematics. Already during his time at
the Gymnasium, while he was still 17, Hurwitz wrote a joint paper with Schubert
on enumerative geometry. In the spring of 1877, he entered Munich Technical
University, where Klein4 was. From the fall of the same year until the spring
of 1879, he attended the lectures of Kummer, Weierstrass, and Kronecker at
Berlin University. Returning once again to Munich, and then moving to Leipzig
together with Klein, he obtained his doctoral degree there with research on modular
functions. He became a “Privatdozent” at Göttingen University in 1882 and then, on
the recommendation of Lindemann,5 a professor at Königsberg University in 1884.
Hilbert6 and Minkowski7 were among the students there. The exchanges among the
three of them in those early days and the influence which this had on Hilbert are
vividly described in [78]. In 1892, he moved to the ETH in Zürich as a successor
of Frobenius,8 a position he was to hold until his death. At the same time he was
offered a professorship at Göttingen as the successor of Schwarz, who moved to
Berlin, but he had already accepted the position at Zürich (the director at Zürich at
that time, Bleuler, went especially to Königsberg to make the contract).

Hurwitz’s health was not good. He got typhoid fever twice and suffered from
frequent migraines. And in 1905, one of his kidneys had to be removed. In the midst
of all this, he continued to do research and published in a large number of areas.

2The description in this section is based on Freudenthal [34], Hilbert [41], and Pólya [76].
3Hermann Cäsar Hannibal Schubert (born on May 22, 1848 in Potsdam, Germany—died on July
20, 1911 in Hamburg, Germany).
4Felix Christian Klein (born on April 25, 1849 in Düsseldorf, Prussia (now Germany)—died on
June 22, 1925 in Göttingen, Germany).
5Carl Louis Ferdinand von Lindemann (born on April 12, 1852 in Hannover, Hanover (now
Germany)—died on March 6, 1939 in Munich, Germany) who proved in 1882 that � is a
transcendental number.
6David Hilbert (born on January 23, 1862 in Königsberg, Prussia (now Kaliningrad, Russia)—died
on February 14, 1943 in Göttingen, Germany).
7Hermann Minkowski (born on June 22, 1864 in Alexotas, Russian Empire (now Kaunas,
Lithuania)—died on January 12, 1909 in Göttingen, Germany).
8Ferdinand Georg Frobenius (born on October 26, 1849 in Berlin-Charlottenburg, Prussia (now
Germany)—died on August 3, 1917 in Berlin, Germany).
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His articles have been collected and comprise two volumes. As well as the Hurwitz
zeta functions and Hurwitz numbers treated in this book, there are many other topics
which carry his name, such as the Hurwitz class number relations, Hurwitz’s genus
formula, the Hurwitz estimates for the size of automorphism groups of Riemann
surfaces and his investigations on the quaternions and other algebras. And according
to Hilbert, continued fractions were also a favorite topic of Hurwitz. (He wrote
approximately five articles on the subject.)

Hurwitz seems to have been an exceptionally modest and courteous man.
According to Pólya,9 who was the main editor of his collected works, he never
failed to tip his hat in greeting even to service people whom he met on the street.
Moreover, he was so skilled at the piano that in his youth he hesitated between a
career as a mathematician or as a pianist. He died on the 18th of November, 1919,
at the age of 60.

Exercise 12.3. Deduce the recursion of Hn given in the text from (12.3).

Exercise 12.4. Compute the residues 2Hn mod 16 for first several n, and find the
pattern. (For a proof, see [44].)

9George Pólya (born on December 13, 1887 in Budapest, Hungary—died on September 7, 1985 in
Palo Alto, USA).



Chapter 13
The Barnes Multiple Zeta Function

In this chapter, we introduce Barnes’ multiple zeta function, which is a natural
generalization of the Hurwitz zeta function, give an analytic continuation, and then
express their special values at negative integers by using Bernoulli polynomials.
Furthermore, for double zeta functions, we take up the problem of finding a
functional equation. This problem has several interesting points. For example, a
kind of Lerch1 type zeta function appears in the functional equation, and also the
proof has the flavor of the theory of automorphic forms.

The motivation to take up Barnes’ multiple zeta function here is that this is
deeply related with the very important and interesting conjecture about constructing
class fields over real quadratic fields, or totally real algebraic number fields (Stark–
Shintani2 conjecture, see [86, 87, 89] for example). Although we do not treat it in
this book, the value at s D 0 of the first-order derivative of Barnes’ multiple zeta-
function is expressed by special values of the multiple gamma function. Shintani
saw that for the construction of class fields of real quadratic fields, special values
of the double gamma function play an important role, and he proposed a detailed
conjecture that certain special values of the double gamma functions generate the
class fields, and solved part of his conjecture (cf. [85–87]). For the construction of
class fields over imaginary quadratic fields, modular forms such as the j -invariant
play an extremely important role, but in the case of real quadratic fields, any
viewpoint from modular forms is not considered in the above papers. The Lerch
type function treated in this chapter was introduced with the intention of giving
more or less such a viewpoint to the construction problem of class fields over real
quadratic fields. For details, see [6, 7].

1Mathias Lerch (born on February 20, 1860 in Milinov, Bohemia (now Czech Republic)—died on
August 3, 1922 in Susice, Czechoslovakia (now Czech Republic)).
2Takuro Shintani (born on February 4, 1943 in Kita-kyushu, Japan—died on November 14, 1980
in Tokyo, Japan).

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__13, © Springer Japan 2014
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13.1 Special Values of Multiple Zeta Functions
and Bernoulli Polynomials

Let all a; w1; w2; : : : ;wr be positive real numbers. We put w D .w1; : : : ;wr / and
define a zeta function �.s;w; a/ by

�.s;w; a/ D
1X

m1D0
� � �

1X

mrD0
.aCm1w1 C � � � Cmrwr /

�s:

This zeta function converges absolutely for Re.s/ > r . This kind of zeta function
was systematically studied by Barnes3 [11, 12].

For a while, we assume Re.s/ > r . We see that �.s;w; a/ has an integral
representation:

�.s;w; a/ D 1

	 .s/

1X

m1D0
� � �

1X

mrD0

Z 1

0

t s�1e�.aCm1w1C���Cmrwr /t dt

D 1

	 .s/

Z 1

0

t s�1
1X

m1D0
� � �

1X

mrD0
e�.aCm1w1C���Cmrwr /t dt

D 1

	 .s/

Z 1

0

t s�1
e�at

.1 � e�w1t / � � � .1 � e�wr t /
dt

D 1

	 .s/

Z 1

0

t s�1
e.w1C���Cwr�a/t

.ew1t � 1/ � � � .ewr t � 1/
dt:

Since the series �.s;w; a/ converges absolutely for Re.s/ > r , by virtue of
Lebesgue’s dominant convergence theorem for the Lebesgue4 integral, the above
calculation is justified for the same range of s. When r D 1, this is essentially the
Hurwitz zeta function. Namely, for w1 > 0, we have

�.s;w1; a/ D w�s1 �
�
s;
a

w1

�
:

Now, a multiple zeta-function �.s;w; a/ as well as the Hurwitz zeta function, can be
represented by a contour integral. Indeed, taking " > 0 small enough and denoting

3Ernest Barnes (born on April 1, 1874 in Birmingham, England—died on November 29, 1953 in
Sussex, England).
4Henri Léon Lebesgue (born on June 28, 1875 in Beauvais (Oise), France—died on July 26, 1941
in Paris, France).
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by I.";1/ the contour in Sect. 9.2, we have

�.s;w; a/ D 1

	 .s/.e2�is � 1/

Z

I.";1/
t s�1

e.w1C���Cwr�a/t

.ew1t � 1/ � � � .ewr t � 1/ dt: (13.1)

An advantage of this representation is that �.s;w; a/ is continued analytically to a
meromorphic function on the whole s-plane by this, because the contour integral
on the right-hand side converges absolutely for arbitrary s 2 C and it defines a
holomorphic function on the whole s-plane.

A point which possibly becomes a pole of �.s;w; a/ is among zeros

s D r; r � 1; : : : ; 0; �1; �2; : : :

of e2�is � 1 which are not in the range of absolute convergence. But 	 .s/ has poles
of order 1 at integer points less than or equal to 0, so points s D 1 � m .m 2 N/
cannot appear as poles and �.s;w; a/ is holomorphic there.

Let us look for special values of �.s;w; a/ at integer points s D 1 �m .m 2 N/.
For any integer k � 0, and for any fixed a and w, we define constants Ck.w; a/ by

eat t rQr
iD1.ewi t � 1/

D
1X

kD0
Ck.w; a/tk;

Proposition 13.1. We take m 2 N. If we write a > 0 as

a D a1w1 C a2w2 C � � � C arwr .a1; a2; : : : ; ar 2 R/;

we have

�.1�m;w; a/

D .�1/r .m� 1/Š
X

m1C���CmrDmCr�1
m1�0; :::;mr�0

0

@
rY

jD1

Bmj .aj /

mj Š

1

Awm1�11 � � � wmr�1r

D .�1/r .m� 1/ŠCmCr�1.w; a/:

Proof. The proof is based on the same method as the one used for looking at
special values of the Hurwitz zeta functions. In the same way as in the proof of
Proposition 9.3, we have

�.1 �m;w; a/ D
�

lim
s!1�m

1

	 .s/.e2�is � 1/
�Z

I."/

t�m
e.w1C���Cwr�a/t

.ew1t � 1/ � � � .ewr t � 1/
dt
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D .�1/m�1.m � 1/Š

2�i

Z

I."/

t�m
rY

jD1

e.1�aj /wj t

ewj t � 1 dt:

Now by using the generating function of Bernoulli polynomials (p. 56, (4.2)) and
Proposition 4.9 (4), the Laurent expansion of the integrand is obtained as follows:

t�m
rY

jD1

e.1�aj /wj t

ewj t � 1
D t�m

1X

m1D0
� � �

1X

mrD0

rY

jD1

�
Bmj .1 � aj / .wj t/

mj�1

mj Š

�

D
1X

m1D0
� � �

1X

mrD0

0

@
rY

jD1

.�1/mj Bmj .aj /wmj�1j

mj Š

1

A tm1C ���Cmr�r�m:

The residue at t D 0 of this integrand is given by

X

m1C���CmrDmCr�1
m1�0; :::; mr�0

0

@
rY

jD1
.�1/mj Bmj .aj /w

mj�1
j

mj Š

1

A :

Using the generating function of Bernoulli polynomials in Proposition 4.9, we have

1X

m1;:::;mrD0

Bm1.a1/ � � �Bmr .ar /
m1Š � � �mrŠ

wm11 � � � wmrr t
m1C���Cmr

D
rY

iD1

.wi t /eaiwi t

ewi t � 1 D .w1 � � � wr /
t r eatQr

iD1.ewi t � 1/
;

so we get the final equality of the proposition. ut

13.2 The Double Zeta Functions and Dirichlet Series

Now we set w D .w1;w2/. It will be a very interesting problem to study what kind
of zeta functions appear if we cut out the contour integral representation (13.1) of
the Barnes double zeta function �.s;w; a/, in the same way as we did when we
obtained the functional equation of the Hurwitz zeta functions (Theorem 9.4).

In order to answer this problem, we introduce a new Dirichlet series. For each
real algebraic irrational number 5 ˛, let us consider the following Dirichlet series:

5A real algebraic number which is not a rational number.
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�.s; ˛/ D
1X

nD1

cot�n˛

ns
:

Since cot.x/ is unbounded, we need to show that this converges when Re.s/ is big
enough.

By virtue of Roth’s theorem on Diophantine approximation in transcendental
number theory, the following things are known. Assume that ˛ is an algebraic
irrational number. When we take any positive number ", there exists a positive
constant C."/ such that

ˇ̌
ˇ˛ � m

n

ˇ̌
ˇ > C."/n�2�" (13.2)

for arbitrary integers m; n (n > 0). Now for a real number x, we use the notation
hhxii for the distance to the nearest integer from x. We have 0 � hhxii � 1=2.
Using this notation, for any integer n, (13.2) is expressed as

hhn˛ii > C."/n�1�":

When 0 < x < �=2, the inequality sin x > 2
�
x holds, so

j cot�n˛j � 1

sin�hhn˛ii <
1

2hhn˛ii

<
1

2C."/
n1C":

By this estimate, if we put � D Re.s/, we can take

1

2C."/

1X

nD1

n1C"

n�

as a majorant series of �.s; ˛/, and it converges for � > 2 C ". Since we can take
arbitrary ", �.s; ˛/ converges for6 Re.s/ > 2, and moreover it converges uniformly
on compact sets, so it is a holomorphic function of s in that range.

We denote by SL2.Z/ the modular group which appeared before (p. 76). If we

let an element V D
�
a b

c d

�
of SL2.Z/ act on a real algebraic irrational number ˛ by

6In fact, if we use Roth’s theorem more efficiently, we can show absolute convergence for Re.s/ >
1 (see [6]).
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V˛ D a˛ C b

c˛ C d
;

then V˛ is again a real algebraic irrational number.
Let ! and a be positive numbers and consider the following double zeta function:

�2.s; !; a/ D
1X

m; nD0
.mC n! C a/�s:

In the former notation, we have �2.s; !; a/ D �.s; .1; !/; a/. We put

�.s/ D .2�/s

	 .s/ sin.�s=2/
:

The zeta function �2.s; !; a/ converges absolutely for Re.s/ > 2, is holomorphic
there, and is continued analytically to a meromorphic function on the whole s-plane,
and its poles are s D 1; 2 and of order 1.

Using the contour integral representation (13.1), the principal part of the Laurent
expansion at s D 1 is given by

�2.s; !; a/ D
�
1C !

2!
� a

!

�
1

s � 1
C � � � : (13.3)

Proposition 13.2. Let ˛ > 0 be a real algebraic irrational number. We put

V D
�
n �1
1 0

�
.n 2 Z/. Then for the range Re.s/ > 2, we get the following

transformation formula:

˛s�1�.s; V˛/ � �.s; ˛/ D .1 � ˛s�1/ cot.�s=2/�.s/� �.s/�2.1� s; ˛; 1/: (13.4)

Proof. We start from the contour integral representation of the double zeta function
�2.s; ˛; 1/ given by

�2.s; ˛; 1/ D 1

	 .s/.e2�is � 1/

Z

I.";1/
t s�1

e˛t

.et � 1/.e˛t � 1/
dt: (13.5)

This expression is obtained if we put r D 2; w1 D 1; w2 D ˛; a D 1 in (13.1).
Since the right-hand side is continued analytically to a meromorphic function on the
whole s-plane, we consider the range Re.s/ < �1. We take t0 < 0 and let C.t0/ be
the vertical line Re.t/ D t0, oriented upwards:

C.t0/ W t D t0 C iy .�1 < y < 1/:
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In the same way as in the proof of Theorem 9.4, shifting the contour I.";1/ to
the left to C.t0/ and using the residue theorem, we can write

�2.s; ˛; 1/ D 1

	 .s/.e2�is � 1/

{

�
Z

C.t0/

t s�1
e˛t

.et � 1/.e˛t � 1/ dt

�2�i
X

n2Z�f0g

 
.2�in/s�1

1 � e�2�in˛
C .2�in=˛/s�1

e2�in=˛ � 1
� 1

˛

!}

;

and then taking the limit t0 ! �1 and noting

1

1 � e�2�in˛
D 1

2i
cot�n˛ C 1

2
and

1

e2�in=˛ � 1
D 1

2i
cot

�n

˛
� 1

2
;

we have

�2.s; ˛; 1/

D �2�i.2�/s�1
	 .s/.e2�is � 1/

{

� e�is=2.1C e�is/

2

�
�.1 � s; ˛/C ˛�s�

�
1 � s;

1

˛

��

Ce�is=2.1 � e�is/
2i

.1 � ˛�s/�.1� s/

}

:

The transformation up to here is valid for Re.s/ < �1. Substituting 1 � s for s and
using 	 .s/	 .1 � s/ D �= sin�s, in the range Re.s/ > 2 we have

�2.1 � s; ˛; 1/

D .2�/�s	 .s/ sin�s

{
e��is=2.1 � e��is/

1 � e�2�is
�
�.s; ˛/C ˛s�1�

�
s;
1

˛

��

C ie��is=2.1C e��is/
1 � e�2�is

.1 � ˛s�1/�.s/
}

D 1

�.s/

{

�.s; ˛/ � ˛s�1�
�
s;� 1

˛

�
C .1 � ˛s�1/ cot.�s=2/�.s/

}

;

and simplifying this, we have

˛s�1�
�
s;� 1

˛

�
� �.s; ˛/ D .1 � ˛s�1/ cot.�s=2/�.s/� �.s/�2.1 � s; ˛; 1/:
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Therefore, noting �.˛ C n; s/ D �.˛; s/, we obtain the assertion of the theorem.
ut

The transformation formula (13.4) can be extended to the following form. For
x 2 R, we denote by fxg the real number which satisfies x � fxg 2 Z, 0 � fxg < 1
(fractional part of x).

Theorem 13.3. For a real algebraic irrational number ˛ and V D
�
a b

c d

�
2

SL2.Z/ which satisfies c > 0 and c˛Cd > 0, the following transformation formula
holds in the range Re.s/ > 2.

�s�1�.s; V˛/ � �.s; ˛/
D .1 � �s�1/ cot.�s=2/�.s/� �.s/

X

j mod c

�2.1 � s; �; xj C yj �/:

Here we put � D c˛ C d and j runs over integers which represent residue classes
modulo c, and for each j mod c, we put xj D 1 � fjd=cg, yj D fj=cg.

Proof. See [6] and [7].

If we put V D
�
n �1
1 0

�
in this theorem, we get the transformation formula in

Proposition 13.2. ut
From now on, we always assume that ˛ is a real quadratic irrational number.

Then there exists V D
�
a b

c d

�
2 SL2.Z/ which satisfies the conditions

V˛ D ˛; c˛ C d > 0: (13.6)

This is easily understood if we think as follows. Let F be the real quadratic field
Q.˛/. Let L D Z˛ C Z be a lattice generated by ˛ and 1 and O.L/ be an order
associated to L, that is, O.L/ D fu 2 F j uL 	 Lg. We denote byE.L/ the group
of all totally positive units of O.L/. We take an element � ofE.L/ such that � ¤ 1.
Since � 2 L and �˛ 2 L, if we define a 2 � 2 matrix V with coefficients in Z by

�

�
˛

1

�
D V

�
˛

1

�
; V D

�
a b

c d

�
;

then we have V 2 SL2.Z/ and � D c˛ C d > 0. In order to make c > 0, it is
sufficient to take � so that � > 1 if ˛ > ˛ (˛ is the conjugate of ˛), and to take � so
that 0 < � < 1 if ˛ < ˛.

Applying Theorem 13.3 to this situation, we get the following theorem.

Theorem 13.4. When a real quadratic irrational number ˛ is given, we take a
totally positive unit � of F such that
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�

�
˛

1

�
D V

�
˛

1

�
; V D

�
a b

c d

�
2 SL2.Z/

with c > 0. Then in the range Re.s/ > 2, we have

�.s; ˛/ D � cot.�s=2/�.s/C �.s/

1 � �s�1
X

j mod c

�2.1 � s; �; xj C yj �/: (13.7)

Through this expression, �.s; ˛/ is analytically continued to a meromorphic function
on the whole s-plane, and the poles are s D 1 and s D 1 C 2�in

log � .n 2 Z; n ¤ 0/

and they are of order 1. Moreover, its values at s D 2m � 1 .m 2 Z; m � 2/ are
expressed using Bernoulli polynomials:7

�.2m � 1; ˛/ D .�1/m�1.2�/2m�1
1 � �2m�2

2mX

kD0

X

j mod c

Bk.xj /B2m�k.yj /
kŠ.2m � k/Š

�2m�k�1:

Proof. The expression (13.7) is immediately obtained by using V˛ D ˛ in
Theorem 13.3. Poles can possibly appear only at s D 2, s D 1, s D 1C 2�in

log � .n 2
Z; n ¤ 0/, and s D 0. For s D �2; �4; �6; : : : we have �.s/ D 0, so we note that
these are not poles. As for s D 2, as we remarked in the footnote on p. 213, �.s; ˛/
converges absolutely for Re.s/ > 1 and is holomorphic there, so this cannot be a
pole. Now we consider s D 0. Taking the result that the principal part of �2.s; !; a/
at the pole s D 1 is given by (13.3) and the fact �.0/ D � 1

2
into consideration, the

residue of the function �.s; ˛/ at s D 0 (possible pole of order at most 1) is given by

1

�
� 2

�.1 � ��1/
X

j mod c

�
1C �

2�
� xj C yj �

�

�
:

We see easily that this value is zero. So �.s; ˛/ is holomorphic at s D 0.
Lastly, the values at s D 2m�1 (m 2 Z; m � 2) are, by virtue of (13.7), given by

�.2m � 1; ˛/ D .�1/m�1.2�/2m�1
.1 � �2m�2/.2m� 2/Š

X

j mod c

�2.2 � 2m; �; xj C yj �/

and by Proposition 13.1, we get the expression using Bernoulli polynomials. ut

7When ˛ is a unit of a real quadratic field, this kind of special value has been calculated by Berndt
[14].
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13.3 �.s; ˛/ and Continued Fractions

As explained in detail in Zetafunktionen und quadratische Körper by D. Zagier [107,
§13], any quadratic irrational number ˇ can be expanded into a continued fraction8

of the following form.

ˇ D b1 � 1

b2 � 1

b3 � 1

b4 � :::

.bj 2 Z; b2; b3; : : : � 2/:

It is important that all the coefficients bj (j � 2) except for the first one are integers
bigger than or equal to 2. Here the sequence fb1; b2; : : :g is periodic, namely, there
exist some natural numbers � and r such that for j not less than �, we have

brCj D bj .j � �/:

We call the smallest such natural number r the period of ˇ. We write this continued
fraction expansion as

ˇ D ŒŒ b1; b2; : : : ; b��1; b�; : : : ; b�Cr�1 ��: (13.8)

The sequence fb�; : : : ; b�Cr�1g is called a fundamental period. Moreover when
� D 1, that is, if it is periodic from the first term, we say that the continued fraction
expansion of ˇ is purely periodic.

For a real quadratic irrational number ˇ, We denote by ˇ the conjugate number
of ˇ. Now we assume that the continued fraction expansion of a real quadratic
irrational number ! is purely periodic and we write

! D ŒŒ n1; n2; : : : ; nr �� .nj � 2/:

Then we have

1

!
D ŒŒ nr ; nr�1; : : : ; n1 ��

[107, p. 136, (17)]. By this expression, we have

! > 1 and 0 < ! < 1: (13.9)

8The continued fractions treated here are different from the usual continued fractions of real
quadratic irrational numbers.
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If a real quadratic irrational number ! satisfies condition (13.9), we say that ! is
reduced.9 Conversely, if ! satisfies this condition, we can show that the continued
fraction expansion of ! is periodic, so ! is reduced if and only if the continued
fraction expansion of ! is purely periodic.

Let F be a real quadratic field and regard F as a subfield of the real numbers R.
Moreover we define a mapping of F into R � R by

F.�/ D .�; �/ 2 R � R;

and identify � with the point .�; �/ of R � R. Now we assume that ! 2 F � Q is
reduced and that the continued fraction expansion of ! is given by

! D ŒŒ n1; n2; : : : ; nr ��:

We define an integer sequence fnj gj2Z by extending the continued fraction
expansion fn1; n2; : : : ; nr g by periodicity so that njCr D nj for any j 2 Z. For
a positive integer i we define a reduced number !i by

!i D ŒŒ ni ; niC1; : : : ; niCr�1 ��: (13.10)

Of course we have !1 D !rC1 D !. For n 2 Z, we put

V.n/ D
�
n �1
1 0

�
2 SL2.Z/:

From the continued fraction expansion (13.10), we get

!i D ni � 1

!iC1
D V.ni /!iC1;

so we have

! D V.n1/V .n2/ � � �V.nr /!:

We define now a lattice L of F by

L D Z! C Z

and take a generator " of the group E.L/ of totally positive units of O.L/ so that
" > 1. We define V by the relation

9This is different from the usual definition of reduced for the setting of ordinary continued
fractions. Usually a real quadratic irrational number ˛ is called reduced when ˛ > 1 and
0 > ˛ > �1.
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"

�
!

1

�
D V

�
!

1

�
; V D

�
a b

c d

�
2 SL2.Z/:

If we think of the stabilizer subgroup 	! D fM 2 SL2.Z/ j M! D !g of !, we
see 	! is generated by V and ˙I2 (I2 is the identity matrix). Because c > 0 and r
is the period of !, we have

V D V.n1/V .n2/ � � �V.nr/:

For any V0 2 SL2.Z/ and a real algebraic irrational number ˛, we use the notation
of an automorphy factor

J.V0; ˛/ D c˛ C d: (13.11)

As in the case when ˛ is in the complex upper half plane, this has a property
J.V1V2; ˛/ D J.V1; V2˛/J.V2; ˛/ for any V1, V2 2 SL2.Z/. Then using this
property of the automorphy factor (13.11), we have

" D J.V; !/ D J.V.n1/; !2/J.V .n2/; !3/ � � � J.V.nr /; !/

D !2!3 � � � !r!:

So we have

" D !1!2 � � � !r : (13.12)

Now, we put �0 D 1, �1 D ! D !rC1, �2 D !rC1!r , : : : , �r D !rC1!r � � �!2. Of
course we have �r D ". Here we have

L D Z�i C Z�iC1 .0 � i � r � 1/; (13.13)

because by the relation �i�1 D �i � 1
!rC2�i

we have

Z�i�1 C Z�i D �i

�
Z

1

!rC2�i
C Z

�

D �i
�
Z.nrC1�i � !rC1�i /C Z

�

D Z�i C Z�iC1

and starting from i D 1 inductively we can show the assertion.
Now we define a double zeta function of a lattice L by
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�L.s/ D
X

�2LTC.1;"/

��s : (13.14)

Here we denote by C.1; "/ the simplicial cone given by

C.1; "/ D f.x C y"; x C y"0/ j x > 0; y � 0g:

As we shall see later, �L.s/ is written as a finite sum of double zeta functions
explained before, so it converges absolutely for Re.s/ > 2 and is holomorphic in
that range. Let RC be the set of positive numbers. The group of totally positive units
E.L/ acts on RC � RC by

�.u; v/ D .�u; �v/ .� 2 E.L/; .u; v/ 2 RC � RC/:

The set C.1; "/ is a fundamental domain of RC � RC by E.L/.
Since !i > 1 for each i and since we see 1 < �i < �iC1 < 
 and 
 < �iC1 <

�i < 1, we can write

C.1; "/ D
r[

kD1
fx�k�1 C y�k j x > 0; y � 0g .disjoint union/;

so by (13.13) we get

L\C.1; "/ D
r[

kD1
fm�k�1Cn�k j m 2 Z>0; n 2 Z�0g .disjoint union/: (13.15)

This decomposition was given in Zagier [105]. Here we denote by Z>0 or Z�0 the set
of positive integers, or integers not less than 0, respectively. By the decomposition
(13.15), we get

�L.s/ D
rX

kD1
.�k�1/�s�2.s; !rC2�k; 1/: (13.16)

By this expression, �L.s/ converges absolutely for Re.s/ > 2 and is continued
analytically to a meromorphic function which is holomorphic in the whole s-plane
except for s D 1; 2.

Between the functions �.s; !/ and �L.s/, the following functional equation
holds.

Theorem 13.5. Let ! be a reduced number of F . Put L D Z C Z! and let " > 1
be a totally positive fundamental unit of the order O.L/ of L. Then we have

�.s; !/ D � cot.�s=2/�.s/� �.s/

"s�1 � 1�L.1 � s/: (13.17)
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We can also show through this equation that �.s; !/ can be continued analytically
to a meromorphic function of s.

Proof. Since we have now !i D V.ni /!iC1 and !i > 0, by Proposition 13.2, we
have an equality

.!rC2�k/s�1�.s; !rC1�k/� �.s; !rC2�k/

D �
1 � .!rC2�k/s�1

�
cot.�s=2/�.s/� �.s/�2.1 � s; !rC2�k; 1/

for 1 � k � r . Multiplying .�k�1/s�1 by both sides of this equality, then taking the
sum from k D 1 to k D r and using (13.12) and (13.16), we get

."s�1 � 1/�.s; !/ D .1 � "s�1/ cot.�s=2/�.s/� �.s/�L.1 � s/:

ut
Remark 13.6. If we cut out the contour integral representation, not only of a double
zeta function, but also of a multiple zeta function in the same way as in Sect. 13.2,
then a kind of Lerch type zeta function appears. It would be an interesting problem
to investigate what kind of modular properties it has.



Chapter 14
Poly-Bernoulli Numbers

In this chapter, we define and study a generalization of Bernoulli numbers referred to
as poly-Bernoulli numbers, which is a different generalization than the generalized
Bernoulli numbers introduced in Chap. 4.

14.1 Poly-Bernoulli Numbers

We give a definition in a down-to-earth way.

Definition 14.1 (Poly-Bernoulli number [56]). Poly-Bernoulli numbers B
.k/
n 2

Q .n � 0; k 2 Z/ are defined by the generating function

Lik.1 � e�t /
1 � e�t D

1X

nD0
B
.k/
n

tn

nŠ
:

Here, for any integer k, Lik.t/ stands for the formal power series
1X

nD1

tn

nk
.

When k � 1, the series Lik.t/ is the defining series of a “polylogarithm”
function, whereas when k � 0, it is the Taylor series of the rational function�
t d
dt

��k � t
1�t
�

at the origin. If k D 1, we have Li1.t/ D � log.1 � t/ and

Li1.1 � e�t / D t , hence by Theorem 1.12 on p. 20, the number B.1/n is nothing
but the original Bernoulli number Bn. If k � 1, by making a change of variables
ti 7! 1 � e�ti in the following iterated integral expression of Lik.t/,

Lik.t/ D
Z t

0

dtk

tk

Z tk

0

dtk�1
tk�1

� � �
Z t3

0

dt2

t2

Z t2

0

dt1

1 � t1
;

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2__14, © Springer Japan 2014

223



224 14 Poly-Bernoulli Numbers

Table 14.1 B
.k/
n .0 � k � 5; 0 � n � 7/

k\n 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1

1 1 1
2

1
6

0 � 1
30

0 1
42

0

2 1 1
4
� 1
36

� 1
24

7
450

1
40

� 38
2205

� 5
168

3 1 1
8
� 11
216

� 1
288

1243
54000

� 49
7200

� 75613
3704400

599
35280

4 1 1
16
� 49
1296

41
3456

26291
3240000

� 1921
144000

845233
1555848000

1048349
59270400

5 1 1
32
� 179
7776

515
41472

� 216383
194400000

� 183781
25920000

4644828197
653456160000

153375307
49787136000

we have the following expression of the generating function:

Lik.1 � e�t /
1 � e�t

D

et � 1

et � 1

Z t

0

dtk

etk � 1

Z tk

0

dtk�1
etk�1 � 1

Z tk�1

0

� � �
Z t3

0

dt2

et2 � 1

Z t2

0

dt1: (14.1)

This shows that, in the case of k � 1, the generating function
P1

nD0 B
.k/
n

tn

nŠ
of

poly-Bernoulli numbers B.k/n is obtained, starting with 1, by applying the integrationR t
0 dt and division by et � 1 successively k times, and finally by multiplying et .

Remark 14.2. (1) Our poly-Bernoulli number is different from the “Bernoulli
numbers of higher order” defined by Nörlund [75, Chapter 6]. The generating

function of the Bernoulli numbers of higher order is
�

t
et�1

�k
and this can be

written as a linear combination of derivatives of t
et�1 . Hence the Bernoulli

number of higher order is essentially a linear combination of classical Bernoulli
numbers. As is shown below, ourB.k/n can also be expressed in terms of classical
Bernoulli numbers, but we need to take products successively.

(2) There is a very interesting object called “multiple zeta values” (cf. [57,98,109]),
which generalize the values at positive integer arguments of the Riemann zeta
function. The poly-Bernoulli numbers are in some way related to the multiple
zeta values [9].

Table 14.1 gives some values of B.k/n for k � 0.
The next two propositions give recurrence formulas for B

.k/
n , which can be

derived from the definition and the iterated integral expression of the generating
function.

Proposition 14.3. For any k 2 Z and n � 0, we have

B
.k/
n D 1

nC 1

{

B
.k�1/
n �

n�1X

mD1

 
n

m � 1

!
B
.k/
m

}

:

We regard the sum on the right as 0 if n � 1.
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Proof. We differentiate the relationLik.1 � e�t / D .1 � e�t /
 1X

nD0
B
.k/
n

tn

nŠ

!
which

is obtained from the definition by multiplying by 1� e�t . By the relation Li 0k.t/ D
1

t
Lik�1.t/, we have

Lik�1.1 � e�t /
1 � e�t

e�t D e�t
1X

nD0
B
.k/
n

tn

nŠ
C .1 � e�t /

1X

nD1
B
.k/
n

tn�1

.n � 1/Š :

Multiplying by et on both sides and using
Lik�1.1 � e�t /

1 � e�t D
1X

nD0
B
.k�1/
n

tn

nŠ
, we have

1X

nD0
B
.k�1/
n

tn

nŠ
D
1X

nD0
B
.k/
n

tn

nŠ
C .et � 1/

1X

nD1
B
.k/
n

tn�1

.n � 1/Š

D
1X

nD0
B
.k/
n

tn

nŠ
C
1X

lD1

t l

lŠ

1X

nD1
B
.k/
n

tn�1

.n � 1/Š

D
1X

nD0
B
.k/
n

tn

nŠ
C
1X

nD1

 
n�1X

mD0
B
.k/
mC1

1

.n�m/ŠmŠ

!
tn

D B
.k/
0 C

1X

nD1

 
B
.k/
n C

n�1X

mD0

 
n

m

!
B
.k/
mC1

!
tn

nŠ
:

Hence we have B.k�1/0 D B
.k/
0 if n D 0, and if n � 1 we obtain

B
.k�1/
n D B

.k/
n C

n�1X

mD0

 
n

m

!
B
.k/
mC1 D .nC 1/B.k/n C

n�1X

mD1

 
n

m � 1

!
B
.k/
m :

This divided by nC 1 gives the proposition. ut
Proposition 14.4. For k � 1 and n � 0, we have

B
.k/
n D

nX

mD0
.�1/m

 
n

m

!
B
.k�1/
n�m

 
mX

lD0

.�1/l
n � l C 1

 
m

l

!
Bl

!
:

Proof. We use the iterated integral expression of the generating function, which
shows

Lik.1 � e�t /
1 � e�t

D et

et � 1

Z t

0

e�s
Lik�1.1 � e�s/

1 � e�s
ds:
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From this we have

1X

nD0
B
.k/
n

tn

nŠ
D
 1X

nD0
Bn
tn�1

nŠ

!Z t

0

 1X

nD0

.�s/n
nŠ

! 1X

nD0
B
.k�1/
n

sn

nŠ

!
ds

D
 1X

nD0
Bn
tn�1

nŠ

!Z t

0

1X

nD0

 
nX

mD0
.�1/n�m

 
n

m

!
B
.k�1/
m

!
sn

nŠ
ds

D
 1X

nD0
Bn
tn�1

nŠ

! 1X

nD0

 
nX

mD0
.�1/n�m

 
n

m

!
B
.k�1/
m

!
tnC1

.nC 1/Š
ds

D
1X

nD0

 
nX

lD0

Bn�l
l C 1

 
n

l

! 
lX

mD0
.�1/l�m

 
l

m

!
B
.k�1/
m

!!
tn

nŠ

D
1X

nD0

 
nX

mD0
.�1/mB.k�1/m

 
nX

lDm

.�1/l
l C 1

 
n

l

! 
l

m

!
Bn�l

!!
tn

nŠ
:

Use
�
n
l

��
l
m

� D �
n
m

��
n�m
n�l
�

and replace l ! n� l and thenm ! n �m to obtain

nX

mD0
.�1/mB.k�1/m

 
nX

lDm

.�1/l
l C 1

 
n

l

! 
l

m

!
Bn�l

!

D
nX

mD0
.�1/m

 
n

m

!
B
.k�1/
n�m

 
mX

lD0

.�1/l
n � l C 1

 
m

l

!
Bl

!
;

which gives the proposition. ut
Remark 14.5. In the above two recurrences, we need the numbers with different
upper index like B

.k�1/
n in order to express B

.k/
n . We do not know if there exists a

recurrence formula with the single index k.

The following theorem generalizes Theorem 2.8 (p. 35), which expresses
Bernoulli numbers by Stirling numbers.

Theorem 14.6.

B
.k/
n D .�1/n

nX

mD0

.�1/mmŠ{n
m

}

.mC 1/k
; .n � 0; k 2 Z/:

Proof. The proof goes in the same way as Theorem 2.8. In fact, by using
Proposition 2.6 (7) (p. 30) we have
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1X

nD0
B
.k/
n

tn

nŠ
D Lik.1 � e�t /

1 � e�t D
1X

mD1

.1 � e�t /m�1
mk

D
1X

mD0

.�1/m.e�t � 1/m

.mC 1/k
D
1X

mD0

.�1/mmŠ

.mC 1/k

1X

nDm

{
n

m

}
.�t/n
nŠ

D
1X

nD0
.�1/n

 
nX

mD0

.�1/mmŠ{n
m

}

.mC 1/k

!
tn

nŠ
:

Comparing coefficients of tn

nŠ
on both sides, we obtain the theorem. ut

14.2 Theorem of Clausen and von Staudt Type

In this section we discuss denominators of poly-Bernoulli numbers. The denomina-
tors of the classical Bernoulli numbers are completely determined by the theorem
of Clausen and von Staudt (Theorem 3.1, p. 41). The theorem not only determines
the denominator but also describes the “fractional part” of Bn. In the case of general
B
.k/
n we only have partial results below, but when k D 2 (“di-Bernoulli numbers”),

the denominators are completely determined. Note that, by Theorem 14.6, no prime
greater than nC 1 appears in the denominator of B.k/n .

Theorem 14.7. Let k � 2 be an integer andp be a prime number satisfying kC2 �
p � nC 1.

(1) When p� 1 jn, pkB.k/n is in Z.p/ .the set of rational numbers whose denomina-
tors are prime to p/ and

pkB.k/n � �1 mod p:

(2) When p � 1 − n, pk�1B.k/n is in Z.p/ and

pk�1B.k/n �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

p

{
n

p � 1
}

� n

2k
mod p if n � 1 mod .p � 1/;

.�1/n�1
p

{
n

p � 1
}

mod p otherwise:

Proof. Denote by ordp.a/ the p-order of a rational number a. We have
ordp.pt / D t and both numerator and denominator of a � p�ordp.a/ are prime
to p. We proceed in the same way as in the proof of Theorem 3.1, using the formula
in Theorem 14.6 and calculating the p-order of each term in the formula. Put

b
.k/
n .m/ D .�1/mmŠfnmg

.mC1/k . We prove (1) and (2) simultaneously.
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Write m C 1 D ape; .a; p/ D 1; e � 0. If e D 0, then b.k/n .m/ 2 Z.p/
and pk�1b.k/n .m/ � 0 mod p by the assumption k � 2, hence this term can be
discarded. Note that, since the Stirling number

{
n
m

}
is an integer, we have

ordp.b.k/n .m// � ordp

�
mŠ

.mC 1/k

�
:

First assume e � 2. We show the congruencepkb.k/n .m/ � 0 mod p and further

pk�1b.k/n .m/ � 0 mod p if p�1 − n. Using ordp.mŠ/ D P1
jD1

h
m
pj

i
, we estimate

ordp

�
mŠ

.mC 1/k

�
D
1X

jD1

�
m

pj

	
� ek

�
�
m

p

	
� ek D

�
ape � 1
p

	
� ek D ape�1 � 1 � ek

� pe�1 � 1 � ek D .1C p � 1/e�1 � 1 � ek

� 1C .e � 1/.p � 1/� 1 � ek D .e � 1/.p � 1/� ek
� .e � 1/.k C 1/� ek D �k C e � 1

� �k C 1:

From this we obtain ordp
�

mŠ

.mC1/k
�

� �k C 1 and thus pk�1b.k/n .m/ 2 Z.p/.

Therefore pkb.k/n .m/ � 0 mod p holds. If at least one inequality in the above
chain of inequalities is strict, we get pk�1b.k/n .m/ � 0 mod p. If all the inequalities
become equalities, we have e D 2;m C 1 D p2, and p D k C 2. In this case, the
lemma below (the case a D p) shows pk�1b.k/n .m/ � 0 mod p if p � 1 − n.

Lemma 14.8. Let n and a be natural numbers. We have the congruence

{
n

ap � 1
}

�

⎧
⎪⎪⎨

⎪⎪⎩

 
c � 1
a � 1

!
mod p if n D a � 1C c.p � 1/ for some c � a;

0 mod p otherwise:

We use the generating function of the Stirling numbers
{
n
m

}
(Proposition 2.6 (8)

on p. 30)

1X

nDm

{
n

m

}

tn D tm

.1 � t/ .1 � 2t/ � � � .1 �mt/
: (14.2)

When m D ap � 1, the right-hand side reduces modulo p to
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tap�1

.1 � tp�1/a D tap�1
1X

iD0

 
a C i � 1

i

!
t i.p�1/ D

1X

iD0

 
a C i � 1

a � 1

!
ta�1C.aCi /.p�1/:

Here we used .1�t/.1�2t/ � � � .1�.p�1/t/ � 1�tp�1 mod p. Putting aCi D c,
we obtain the lemma. ut

Next suppose e D 1 .m D ap � 1/. If a � 3, then p2j.ap � 1/Š ensures

ordp
�

mŠ

.mC1/k
�
> �k C 1 and this gives pk�1b.k/n .m/ � 0 mod p. If a D 2,

we have ordp.mŠ/ D 1 and ordp
�

mŠ

.mC1/k
�

D 1 � k, and hence ordp.b
.k/
n .m// D

1 � k C ordp
�{
n
m

}�
. From this, we have pkb.k/n .m/ � 0 mod p: If n 6� 1

mod .p � 1/, by putting a D 2 in the lemma above we have
{

n

2p�1
} � 0 mod p.

This gives us pk�1b.k/n .m/ � 0 mod p if n 6� 1 mod .p � 1/. If n � 1

mod .p � 1/, by writing n D 1 C c.p � 1/, we have c � 2 (note c D 1 never
happens because n � m) and the lemma again gives

{
n

2p�1
} � c�1 � �n mod p.

Hence we have

pk�1b.k/n .m/ D pk�1
.�1/2p�1.2p � 1/Š

{
n

2p�1
}

.2p/k

� n

2k
mod p:

(We have used Wilson’s1 theorem .p � 1/Š � �1 mod p, which implies
.2p � 1/Š=p � ..p � 1/Š/2 � 1 mod p.) Lastly, when a D 1 (m D p � 1),

we have b.k/n .m/ D .p�1/Šf n
p�1g

pk
. By the lemma we have

{
n

p�1
} � 0 mod p if n 6� 0

mod .p � 1/ and hence pk�1b.k/n .m/ � � 1
p

{
n

p�1
}

mod p. If n � 0 mod .p � 1/,
then we have

{
n

p�1
} � 1 mod p and pkb.k/n .m/ � �1 mod p: Combining all

these, we obtain the theorem. ut
Remark 14.9. Let k and p be as in the theorem, and assume n 6� 0; 1 mod .p�1/.
Denote by n0 the unique integer satisfying n0 � n mod p � 1 and 1 < n0 < p.
Then we have

pk�1B.k/n � .n � n0/
Bn

n
mod p:

If in particular n is odd, we have pk�1B.k/n � 0 mod p.
This comes from the congruence

1John Wilson (born on August 6, 1741 in Applethwaite, England—died on October 18, 1793 in
Kendal, England).
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.�1/n�1
p

{
n

p � 1

}

� .n � n0/
Bn

n
mod p;

which is a consequence of Eq. (14.3) in the proof of Theorem 14.10.

The denominators of di-Bernoulli numbers are completely determined.

Theorem 14.10. (1) If n is odd, we have B
.2/
n D � .n � 2/

4
Bn�1: .Hence in

this case the determination of the denominator is essentially reduced to the
theorem of Clausen and von Staudt (Theorem 3.1).)

(2) Suppose n is even .� 2/. For a prime p, denote by ord.p; n/ the p-order
of B.2/n . Then we have the following:

(2-1) If p > nC 1, then ord.p; n/ � 0 .no p appears in the denominator/.
(2-2) For p with 5 � p � nC 1,

(a) ord.p; n/ D �2 if p � 1 j n.
(b) Suppose p � 1 − n.

(b-1) We have ord.p; n/ � 0 if either p j Bn
n

or n � n0 mod p.p � 1/ for some

n0 with 1 < n0 < p � 1, and
(b-2) ord.p; n/ D �1 otherwise.
(2-3) We have ord.3; n/ � 0 if n > 2 and n � 2 mod 3, and ord.3; n/ D �2

otherwise.
(2-4) We have ord.2; n/ � 0 if n > 2 and n � 2 mod 4, ord.2; n/ D �1 if n � 0

mod 4, and ord.2; 2/ D �2.

Remark 14.11. The rational number
Bn

n
in (b-1) is always an element of Z.p/

(Theorem 3.2 (1)).

For the proof, we need a lemma.

Lemma 14.12. Let n � 2 be even, p � 5 a prime, and 2p � 1 D m. We have

.�1/mmŠ
{
n

m

}

� 0 mod p2;

and hence
.�1/mmŠ{n

m

}

.mC 1/2
2 Z.p/:

Proof. By Proposition 2.6 (p. 30), we have

.�1/mmŠ
{
n

m

}

D
2p�1X

lD1
.�1/l

 
2p � 1
l

!
ln

D
p�1X

lD1

{

.�1/l
 
2p � 1

l

!
lnC.�1/2p�l

 
2p � 1

2p � l

!
.2p � l/n

}

C.�1/p
 
2p � 1

p

!
pn
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�
p�1X

lD1

{

.�1/l
 
2p � 1

l

!
lnC.�1/l

 
2p � 1
l � 1

!
.�2npln�1 C ln/

}

mod p2:

Using
�
2p�1
l

�C �
2p�1
l�1

� D 2p

l

�
2p�1
l�1

�
, we see the last sum is equal to

2p.1� n/

p�1X

lD1
.�1/l

 
2p � 1

l � 1

!
ln�1:

Combining
 
2p � 1

l � 1

!
� .�1/l�1 mod p

and p � 1 − n � 1 (since n is even and p is odd), we have

p�1X

lD1
.�1/l

 
2p � 1

l � 1

!
ln�1 � �

p�1X

lD1
ln�1 � 0 mod p:

ut

Proof of Theorem 14.10. The iterated integral expression (14.1) of the generating
function of B.2/n and s

es�1 D P1
lD0.�1/lBl s

l

lŠ
give

1X

nD0
B
.2/
n

tn

nŠ
D et

et � 1
Z t

0

1X

lD0
.�1/lBl s

l

lŠ
ds

D
1X

mD0
Bm

tm�1

mŠ
�
1X

lD0
.�1/lBl t lC1

.l C 1/Š
:

From this we obtain

B
.2/
n D

nX

lD0
.�1/l

 
n

l

!
Bn�lBl
l C 1

:

If n is odd, one of n� l and l is odd. Since Bl D 0 for odd l � 3, we have for n � 3

B
.2/
n D �n

2
Bn�1B1 C B1Bn�1 D � .n � 2/

4
Bn�1:

This also holds for n D 1, and thus (1) is proved.
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(2-1) is clear from the formula in Theorem 14.6. By elementary computation, one
sees that the only cases where mŠ

.mC1/2 in that formula is not an integer are mC 1 D
8; 9; prime; 2 � prime. By Lemma 14.12, one sees that p does not appear in the

denominator of
.�1/mmŠfnmg
.mC1/2 if m C 1 D 2p; (p: prime � 5). Next consider the case

of mC 1 D p (p: prime � 5). In this case, we have

.�1/mmŠ
{
n

m

}

D
p�1X

lD1
.�1/l

 
p � 1
l

!
ln �

p�1X

lD1
ln mod p:

This reduces modp to �1 if p � 1 j n, 0 if p � 1 − n. Hence the p-order of
.�1/mmŠfnmg
.mC1/2 is �2 if p � 1 j n. The other terms being in Z.p/, this establishes (2-2)-

(a). Suppose p � 1 − n. Noting the congruence

 
p � 1

l

!
� .�1/l C .�1/l�1p

lX

iD1

1

i
mod p2

(expand .p � 1/.p � 2/ � � � .p � l/), we have

p�1X

lD1
.�1/l

 
p � 1

l

!
ln �

p�1X

lD1
ln � p

p�1X

lD1
ln

lX

iD1

1

i
mod p2:

It is known that if n is even and p � 1 − n, the congruence

p�1X

lD1
ln � pBn mod p2

holds (cf. Ireland and Rosen [50, Cor. of Prop. 15.2.2]). On the other hand, if n � n0
mod p � 1; 1 < n0 < p � 1, then n0 is also even and by Vandiver2 [93, (63)] (see
also Remark 14.24) we have

p�1X

lD1
ln

lX

iD1

1

i
�

p�1X

lD1
ln

0

lX

iD1

1

i
mod p

� Bn0 mod p:

2Harry Schultz Vandiver (born on October 21, 1882 in Philadelphia, USA, died on January 9, 1973
in Austin, USA).
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This gives

.�1/mmŠ
{
n

m

}

� p .Bn � Bn0/ mod p2:

By the assumption p � 1 − n, we have Bn
n

2 Z.p/ and Bn0 � n0 Bn
n

mod p
(Theorem 3.2). We therefore have (m D p � 1)

.�1/mmŠ
{
n

m

}

� p.n � n0/
Bn

n
mod p2; (14.3)

and (2-2)-(b) follows. As for the 3-order, the terms in the formula of Theorem 14.6
which have 3 in the denominators are

2Š
{
n

2

}

32
;

�5Š{n
5

}

62
;
8Š

{
n

8

}

92
:

Computation using Proposition 2.6 (6) (p. 30) gives (2-3). The determination of the
2-order is similar and is omitted. ut

By noting the appearance of the conditionp j Bn
n

in (2-2)-(b-1) of Theorem 14.10,
we can state the irregularity of a prime p in terms of the denominator of the di-
Bernoulli number B.2/n .

Corollary 14.13. A prime p .� 5/ is irregular if and only if there exists an even n
with p C 1 � n � 2p � 4 such that the denominator of B.2/n is not divisible by p.

For classical Bernoulli numbers, odd indexed ones are 0 except for B1, denomi-
nators of even indexed ones are easily determined (Clausen and von Staudt), and
the numerators of even indexed ones are mysterious quantities that are closely
related to the arithmetic of cyclotomic fields. As for the di-Bernoulli numbers,
the odd indexed ones are essentially the classical Bernoulli numbers and the
determination of denominators of even indexed ones requires the numerators of the
classical Bernoulli numbers. Can one expect any interesting arithmetic concerning
the numerators of the di-Bernoulli numbers? We do not know.

14.3 Poly-Bernoulli Numbers with Negative Upper Indices

When k is 0 or negative, the poly-Bernoulli number B
.k/
n is a positive integer

(Table 14.2). We give yet another formula for B
.k/
n in this case, and introduce

two different combinatorial interpretations of B.k/n for non-positive k which were
discovered recently.

We have the following formula.
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Table 14.2 B
.k/
n .�5 � k � 0; 0 � n � 7/

knn 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1

�1 1 2 4 8 16 32 64 128

�2 1 4 14 46 146 454 1394 4246

�3 1 8 46 230 1066 4718 20266 85310

�4 1 16 146 1066 6902 41506 237686 1315666

�5 1 32 454 4718 41506 329462 2441314 17234438

Theorem 14.14. For any n; k � 0, we have

B
.�k/
n D

min.n;k/X

jD0
.j Š/2

{
nC 1

j C 1

}{
k C 1

j C 1

}

:

In particular, B.�k/n is positive and symmetric in n and k.

Corollary 14.15.

B
.�k/
n D B

.�n/
k :

Proof.3 We compute the two-variable generating function of B.�k/n with the aid of
Theorem 14.6 and Proposition 2.6 (7), in the following way.

1X

nD0

1X

kD0
B
.�k/
n

xn

nŠ

yk

kŠ
D
1X

nD0

1X

kD0
.�1/n

nX

mD0
.�1/mmŠ

{
n

m

}

.mC 1/k
xn

nŠ

yk

kŠ

D
1X

nD0
.�1/n

nX

mD0
.�1/mmŠ

{
n

m

}

e.mC1/y
xn

nŠ

D
1X

mD0
.�1/mmŠe.mC1/y

1X

nDm
.�1/n

{
n

m

}
xn

nŠ

D
1X

mD0
.�1/mmŠe.mC1/y .e

�x � 1/m

mŠ

D ey
�

1

1 � .�ey.e�x � 1//
�

D exCy

ex C ey � exCy
:

Furthermore, we have

3The following proof, which greatly simplifies the original proof in [10], is due to Hiroyuki Ochiai.
The authors would like to thank him for providing this simple proof.
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exCy

ex C ey � exCy D exCy

1 � .ex � 1/.ey � 1/

D exCy
1X

jD0
.ex � 1/j .ey � 1/j

D
1X

jD0

1

.j C 1/2
d

dx
.ex � 1/jC1

d

dy
.ey � 1/jC1:

Applying Proposition 2.6 (7) again, we obtain

1X

nD0

1X

kD0
B
.�k/
n

xn

nŠ

yk

kŠ

D
1X

jD0
.j Š/2

d

dx

0

@
1X

nDj

{
nC 1

j C 1

}
xnC1

.nC 1/Š

1

A d

dy

0

@
1X

kDj

{
k C 1

j C 1

}
ykC1

.k C 1/Š

1

A

D
1X

jD0

1X

nDj

1X

kDj
.j Š/2

{
nC 1

j C 1

}{
k C 1

j C 1

}
xn

nŠ

yk

kŠ
:

Comparison of the coefficients on both sides gives the theorem (note
{
nC1
jC1

}{
kC1
jC1

} D 0

when j > min.n; k/). ut
By the theorem, we also have a different generating function for B.�k/n .

Corollary 14.16. We have

1X

nD0

1X

kD0
B
.�k/
n xnyk D

1X

jD0
pj .x/pj .y/;

where

pj .x/ D j Šxj

.1 � x/ .1 � 2x/ � � � .1 � .j C 1/x/
:

Proof. This is a consequence of

pj .x/ D j Š

1X

nDj

{
nC 1

j C 1

}

xn

which follows from Proposition 2.6 (8). ut
Computing this generating function in a different manner, we obtain the

following.
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Proposition 14.17. For any n > 0, we have

nX

lD0
.�1/lB.�l/n�l D 0:

Proof. Denote the left-hand side of Corollary 14.16 by B.x; y/. By Theorem 14.6
and Proposition 2.6 (8), we have

B.x; y/ D
1X

nD0

1X

kD0
.�1/n

nX

mD0
.�1/mmŠ

{
n

m

}

.mC 1/kxnyk

D
1X

mD0
.�1/mmŠ

1X

nDm
.�1/n

{
n

m

}

xn
1

1 � .mC 1/y

D
1X

mD0

mŠxm

.1C x/ .1C 2x/ � � � .1Cmx/ .1 � .mC 1/y/
:

(The term with m D 0 is 1
1�y .) Here we put y D �x and use Proposition 2.6 (8),

mŠ D
h
mC1
1

i
, and Proposition 2.6 (5.1), to obtainB.x;�x/ D 1 and the proposition

follows. ut
Remark 14.18. This is trivial when n is odd, because of the symmetry in
Corollary 14.15. When n is even, however, this is a non-trivial statement. For
example, from Table 14.2, we have 1 � 2C 1 D 0; 1 � 8C 14 � 8C 1 D 0; etc.

In recent years, two different combinatorial interpretations of the poly-Bernoulli
numbers with negative upper indices have been found. We briefly state these
theorems, one by Chad Brewbaker and the other by Stephan Launois. For proofs,
see their papers [20, 68].

Definition 14.19. A matrix whose entries are 0 or 1 is called “lonesum” if it is
uniquely reconstructed from its row and column sums.

Theorem 14.20 (Brewbaker [20]). Let n and k be natural numbers. The number
of n by k lonesum matrices is equal to B

.�k/
n .

We denote by Sn the symmetric group of degree n, viewed as a permutation
group on the set f1; 2; � � � ; ng.

Theorem 14.21 (Launois [68]). Let n and k be natural numbers. The cardinality
of the set

f� 2 SnCk j �n � i � �.i/ � k; 1 � 8i � nC kg

is equal to B
.�k/
n .
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We end this section by proving a special case of a theorem of Vandiver, making
use of the formulas in Theorem 14.6 and Corollary 14.15.

Theorem 14.22. For an odd prime p and an integer i with 1 � i � p� 2, we have

Bi �
p�2X

mD1

�
1C 1

2
C � � � C 1

m

�
.mC 1/i mod p:

Proof. By Theorem 14.6 and Fermat’s little theorem,

Bi D B
.1/
i � B

.2�p/
i mod p:

By Corollary 14.15, the right-hand side is equal to B
.�i /
p�2. Applying Theorem 14.6

again, we obtain

Bi � �
p�2X

mD0
.�1/mmŠ

{
p � 2
m

}

.mC 1/i mod p:

It therefore suffices to show the following lemma (note
{
p�2
0

} D 0).

Lemma 14.23. If 1 � m � p � 2, then

.�1/m�1mŠ
{
p � 2

m

}

� 1C 1

2
C � � � C 1

m
mod p:

Write .�1/m�1mŠ{p�2
m

} D bm. The recursion of the Stirling numbers (2.1) (p. 26)
gives

.�1/m�1mŠ
{
p � 1
m

}

D m.�bm�1 C bm/ .m � 2/:

On the other hand, by Proposition 2.6 (6) (p. 30), we have

.�1/m�1mŠ
{
p � 1

m

}

D �
mX

lD1
.�1/l

 
m

l

!
lp�1

� �
mX

lD1
.�1/l

 
m

l

!
mod p

� 1 mod p

and hence bm � bm�1 C 1
m

mod p:
This together with b1 D {

p�2
1

} D 1 proves the lemma and thus settles the
theorem. ut
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Remark 14.24. For 1 < i � p � 2, the right-hand side of the theorem is congruent
modulo p to

p�1X

mD1

�
1C 1

2
C � � � C 1

m

�
mi:

Vandiver’s original theorem (a special case of [93, (63)]) states that this is congruent
modulo p to Bi .

Exercise 14.25. Prove that if mŠ
.mC1/2 is not an integer, then m C 1 D

8; 9; prime; or 2 � prime.

Exercise 14.26. Define the numbers C .k/
n by the generating function

Lik.1 � e�t /
et � 1

D
1X

nD0
C .k/
n

tn

nŠ
:

(1) Prove the formula

C .k/
n D .�1/n

nX

mD0

.�1/mmŠ{nC1
mC1

}

.mC 1/k
:

(This is regarded as a generalization of Proposition 2.10.)

(2) Prove the duality

C
.�k/
n�1 D C

.�n/
k�1 .n; k � 1/:

Exercise 14.27. Prove that the number B.�k/n is always even when n; k � 1. Hint:
Use Theorem 14.14.

Exercise 14.28. List all n by k lonesum matrices for small n and k, and check
Theorem 14.20.

Exercise 14.29. Prove the congruence stated in Remark 14.24.



Appendix
Curious and Exotic Identities for Bernoulli
Numbers

Don Zagier

Bernoulli numbers, which are ubiquitous in mathematics, typically appear either as
the Taylor coefficients of x= tanx or else, very closely related to this, as special
values of the Riemann zeta function. But they also sometimes appear in other guises
and in other combinations. In this appendix we want to describe some of the less
standard properties of these fascinating numbers.

In Sect. A.1, which is the foundation for most of the rest, we show that, as well
as the familiar (and convergent) exponential generating series1

x

ex � 1 D
1X

nD0

Bn

nŠ
xn D 1 � x

2
C x2

12
� x4

720
C x6

30240
� � � � (A.1)

defining the Bernoulli numbers, the less familiar (and divergent) ordinary generat-
ing series

ˇ.x/ D
1X

nD0
Bn x

n D 1 � x

2
C x2

6
� x4

30
C x6

42
� � � � (A.2)

also has many virtues and is often just as useful as, or even more useful than, its
better-known counterpart (A.1). As a first application, in Sect. A.2 we discuss the
“modified Bernoulli numbers”

B�n D
nX

rD0

 
nC r

2r

!
Br

nC r

�
n � 1

�
: (A.3)

1Here, and throughout this appendix, we use the convention B1 D �1=2, rather than the
convention B1 D 1=2 used in the main text of the book.

T. Arakawa et al., Bernoulli Numbers and Zeta Functions, Springer Monographs
in Mathematics, DOI 10.1007/978-4-431-54919-2, © Springer Japan 2014
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These numbers, which arose in connection with the trace formula for the Hecke
operators acting on modular forms on SL.2;Z/, have several unexpected properties,
including the surprising periodicity

B�nC12 D B�n (n odd) (A.4)

and a modified form of the classical von Staudt–Clausen formula for the value
of Bn modulo 1. The following section is devoted to an identity discovered by
Miki [A10] (and a generalization due to Gessel [A4]) which has the striking
property of involving Bernoulli sums both of type

P
BrBn�r and

P�
n
r

�
BrBn�r ,

i.e., sums related to both the generating functions (A.1) and (A.2). In Sect. A.4 we
look at products of Bernoulli numbers and Bernoulli polynomials in more detail.
In particular, we prove the result (discovered by Nielsen) that when a product
of two Bernoulli polynomials is expressed as a linear combination of Bernoulli
polynomials, then the coefficients are themselves multiples of Bernoulli numbers.
This generalizes to a formula for the product of two Bernoulli polynomials in two
different arguments, and leads to a further proof, due to I. Artamkin, of the Miki–
Gessel identities. Finally, in Sect. A.5 we discuss the continued fraction expansions
of various power series related to both (A.1) and (A.2) and, as an extra titbit,
describe an unexpected appearance of one of these continued fraction expansions
in connection with some recent and amazing discoveries of Yu. Matiyasevich
concerning the non-trivial zeros of the Riemann zeta function.

This appendix can be read independently of the main text and we will recall
all facts and notations needed. We should also add a warning: if you don’t like
generating functions, don’t read this appendix!

A.1 The “Other” Generating Function(s)
for the Bernoulli Numbers

Given a sequence of interesting numbers fangn�0, one often tries to understand
them by using the properties of the corresponding generating functions. The two
most popular choices for these generating functions are

P1
nD0 anxn (“ordinary

generating function”) and
P1

nD0 anxn=nŠ (“exponential generating function”).
Usually, of course, at most one of these turns out to have useful properties. For the
Bernoulli numbers the standard choice is the exponential generating function (A.1)
because it has an expression “in closed form.” What is not so well known is that the
ordinary generating function of the Bernoulli numbers, i.e., the power series (A.2),
even though it is divergent for all non-zero complex values of x, also has extremely
attractive properties and many nice applications. The key property that makes it
useful, despite its being divergent and not being expressible as an elementary
function, is the following functional equation:
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Proposition A.1. The power series (A.2) is the unique solution in QŒŒx�� of the
equation

1

1 � x ˇ
� x

1 � x

�
� ˇ.x/ D x : (A.5)

Proof. Let fBng be unspecified numbers and define ˇ.x/ by the first equality
in (A.2). Then comparing the coefficients of xm in both sides of (A.5) gives

m�1X

nD0

 
m

n

!
Bn D

{
1 if m D 1;

0 if m > 1:
(A.6)

This is the same as the standard recursion for the Bernoulli numbers obtained by
multiplying both sides of (A.1) by ex � 1 and comparing the coefficients of xm=mŠ
on both sides. ut

The functional equation (A.5) can be rewritten in a slightly prettier form by
setting

ˇ1.x/ D x ˇ.x/ D
1X

nD0
Bn x

nC1 ;

in which case it becomes simply

ˇ1

� x

1 � x

�
� ˇ1.x/ D x2 : (A.7)

A generalization of this is given by the following proposition.

Proposition A.2. For each integer r � 1, the power series

ˇr.x/ D
1X

nD0

 
nC r � 1

n

!
Bn x

nCr (A.8)

satisfies the functional equation

ˇr

� x

1 � x

�
� ˇr.x/ D r xrC1 (A.9)

and is the unique power series having this property.

Proof. Equation (A.9) for any fixed value of r � 1 is equivalent to the recur-
sion (A.6), by the calculation
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ˇr

� x

1 � x
�

� ˇr.x/ D
1X

nD0

 
nC r � 1

n

!
Bn

1X

`DnCr

 
`

nC r � 1

!
x`C1

D
1X

`Dr

 
`

r � 1

!
x`C1

 
`�rX

nD0

 
` � r C 1

n

!
Bn

!
D r xrC1 :

Alternatively, we can deduce (A.9) from (A.7) by induction on r by using the easily
checked identity

x2 ˇ0r .x/ D r ˇrC1.x/ .r � 1/ (A.10)

and the fact that

x2
d

dx
F
� x

1 � x

�
D
� x

1 � x

�2
F 0
� x

1 � x

�
(A.11)

for any power series F.x/. ut
We observe next that the definition (A.8) makes sense for any r in Z,2 and that

the properties (A.9) and (A.10) still hold. But this extension is not particularly
interesting since ˇ�k.x/ for k 2 Z�0 is just a known polynomial in 1=x :

ˇ�k.x/ D
1X

nD0

 
n � k � 1

n

!
Bn x

n�k D
kX

nD0
.�1/n

 
k

n

!
Bn

xk�n

D Bk

� 1
x

�
C k

xk�1
D Bk

� 1
x

C 1
�

D .�1/k Bk
�

� 1

x

�
;

where Bk.X/ is the kth Bernoulli polynomial. (One can also prove these identities
by induction on k, using either (A.10) or else (A.9) together with the uniqueness
statement in Proposition A.2 and the corresponding well-known functional equation
for the Bernoulli polynomials.) However, there is a different and more interesting
way to extend the definition of ˇr to non-positive integral values of r . For k 2 Z,
define

�k.x/ D
X

n�max.1;�k/

.n � 1/Š
.nC k/Š

BnCk xn 2 xQŒŒx�� :

Then one easily checks that ��r .x/ D .r � 1/Š ˇr.x/ for r > 0, so that the
negative-index power series �k are just renormalized versions of the positive-index
power series ˇr . But now we do get interesting power series (rather than merely
polynomials) when k � 0, e.g.

2Or even in C if we work formally in xr QŒŒx��.
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�0.x/ D
1X

nD1

Bn x
n

n
; �1.x/ D

1X

nD1

BnC1 xn

n.nC 1/
; �2.x/ D

1X

nD1

BnC2 xn

n.nC 1/.nC 2/
:

(A.12)

The properties of these new functions corresponding to (A.10) and (A.9) are
given by:

Proposition A.3. The power series �k.x/ satisfy the differential recursion

x2 � 0k.x/ D �k�1.x/� Bk

kŠ
x .k � 0/ (A.13)

.with ��1.x/ D ˇ1.x// as well as the functional equations

�0

� x

1 � x

�
� �0.x/ D log.1 � x/C x ; (A.14)

�1

� x

1 � x

�
� �1.x/ D �

� 1
x

� 1

2

�
log.1 � x/ � 1 ;

and more generally for k � 1

�k

� x

1 � x

�
� �k.x/ D .�1/k

kŠ

�
Bk

� 1
x

�
log.1 � x/C Pk�1

� 1
x

�	
; (A.15)

where Pk�1.X/ is a polynomial of degree k � 1, the first few values of which are
P0.X/ D 1, P1.X/ D X � 1

2
, P2.X/ D X2 � X C 1

12
, P3.X/ D X3 � 3

2
X2 C

1
3
X C 1

12
and P4.X/ D X4 � 2X3 C 3

4
X2 C 1

4
X � 13

360
.

Proof. Equation (A.13) follows directly from the definitions, and then Eqs. (A.14)
and (A.15) (by induction over k) follow successively from (A.7) using the general
identity (A.11). ut

We end this section with the observation that, although ˇ.x/ and the related
power series ˇr.x/ and �k.x/ that we have discussed are divergent and do not give
the Taylor or Laurent expansion of any elementary functions, they are related to
the asymptotic expansions of very familiar, “nearly elementary” functions. Indeed,
Stirling’s formula in its logarithmic form says that the logarithm of Euler’s Gamma
function has the asymptotic expansion

log	 .X/ 

�
X � 1

2

�
logX �X C 1

2
log.2�/C

1X

nD2

Bn

n.n � 1/ X
�nC1

as X ! 1, and hence that its derivative  .X/ (“digamma function”) has the
expansion

 .X/ WD 	 0.X/
	 .X/


 logX � 1

2X
�
1X

nD2

Bn

n
X�n D logX � �0

�
� 1

X

�
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asX ! 1, with �0.x/ defined as in Eq. (A.12), and the functions ˇr.x/ correspond
similarly to the derivatives of  .x/ (“polygamma functions”). The transformation
x 7! x=.1�x/ occurring in the functional equations (A.5), (A.9), (A.14) and (A.15)
corresponds under the substitutionX D �1=x to the translationX 7! XC1, and the
compatibility equation (A.11) simply to the fact that this translation commutes with
the differential operator d=dX , while the functional equations themselves reflect
the defining functional equation 	 .X C 1/ D X	 .X/ of the Gamma function.

A.2 An Application: Periodicity of Modified Bernoulli
Numbers

The “modified Bernoulli numbers” defined by (A.3) were introduced in [A14].
These numbers, as already mentioned in the introduction, occurred naturally in a
certain elementary derivation of the formula for the traces of Hecke operators acting
on modular forms for the full modular group [A15]. They have two surprising
properties which are parallel to the two following well-known properties of the
ordinary Bernoulli numbers:

n > 1 odd ) Bn D 0 ; (A.16)

n > 0 even ) Bn� �
X

p prime
.p�1/jn

1

p
.mod 1/ (A.17)

(von Staudt–Clausen theorem). These properties are given by:

Proposition A.4. Let B�n .n > 0/ be the numbers defined by (A.3). Then for n odd
we have

B�n D
{

˙3=4 if n� ˙ 1 .mod 12/,


1=4 if n� ˙ 3 or ˙5 .mod 12/,
(A.18)

and for n even we have the modified von Staudt–Clausen formula

2nB�n � Bn�
X

p prime
.pC1/jn

1

p
.mod 1/ : (A.19)

Remark. The modulo 12 periodicity in (A.18) is related, via the above-mentioned
connection with modular forms on the full modular group SL.2;Z/, with the well-
known fact that the space of these modular forms of even weight k > 2 is the sum
of k=12 and a number that depends only on k .mod 12/.
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Proof. The second assertion is an easy consequence of the corresponding
property (A.17) of the ordinary Bernoulli numbers and we omit the proof. (It is
given in [A15].) To prove the first, we use the generating functions for Bernoulli
numbers introduced in Sect. A.1. Specifically, for 
 2 Q we define a power series
g
.t/ 2 QŒŒt �� by the formula

g
.t/ D �0

� t

1 � 
t C t2

�
� log.1 � 
t C t2/ ;

where �0.x/ D P
n>0 Bnx

n=n is the power series defined in (A.12). For 
 D 2 this
specializes to

g2.t/ D
1X

rD1

Br

r

tr

.1 � t/2r
� 2 log.1 � t/ D 2

1X

nD1
B�n tn : (A.20)

with B�n as in (A.3). On the other hand, the functional equation (A.14) applied to
x D t=.1� 
t C t2/, together with the parity property �0.x/C x D �0.�x/, which
is a restatement of (A.16), implies the two functional equations

g
C1.t/ D g
.t/C t

1 � 
t C t2
D g�
.�t/

for the power series g
. From this we deduce

g2.t/ � g2.�t/ D �
g2.t/ � g1.t/

� C �
g1.t/ � g0.t/

� C �
g0.t/ � g�1.t/

�

D t

1 � t C t2
C t

1C t2
C t

1C t C t2
D 3t � t3 � t5 C t7 C t9 � 3t11

1 � t12 ;

and comparing this with (A.20) immediately gives the desired formula (A.18) for
B�n , n odd. ut

We mention one further result about the modified Bernoulli numbers from [A15].
The ordinary Bernoulli numbers satisfy the asymptotic formula

Bn
.�1/.n�2/=2 2 nŠ

.2�/n
(n ! 1, n even). (A.21)

As one might expect, the modified ones have asymptotics given by a very similar
formula:

B�n
.�1/.n�2/=2 .n� 1/Š

.2�/n
(n ! 1, n even). (A.22)

The (small) surprise is that, while the asymptotic formula (A.21) holds to all orders
in 1=n (because the ratio of the two sides equals �.n/ D 1 C O.2�n/), this is not
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true of the new formula (A.22), which only acquires this property if the right-hand
side is replaced by .�1/n=2� Yn.4�/, where Yn.x/ is the nth Bessel function of the
second kind.

Here is a small table of the numbers B�n and QBn D 2nB�n � Bn for n even:

n 2 4 6 8 10 12 14 16 18 20 22

B�

n
1
24
� 27
80
� 29
1260

451
1120

� 65
264
� 6571
12012

571
312
� 181613

38080
23663513
1220940

� 10188203
83600

564133
552

QBn 0 � 8
3
� 3
10

136
21

�5 � 4249
330

651
13
� 3056

21
109269
170

� 247700
57

38775

A.3 Miki’s Identity

The surprising identity described in this section was found and proved by
Miki [A10] in an indirect and non-elementary way, using p-adic methods. In
this section we describe two direct proofs of it, or rather, of it and of a very similar
identity discovered by Faber and Pandharipande in connection with Chern numbers
of moduli spaces of curves. The first, which is short but not very enlightening,
is a variant of a proof I gave of the latter identity [A2] (but which with a slight
modification works for Miki’s original identity as well). The second one, which
is more natural, is a slight reworking of the proof given by Gessel [A4] based on
properties of Stirling numbers of the second kind. In fact, Gessel gives a more
general one-parameter family of identities, provable by the same methods, of which
both the Miki and the Faber–Pandharipande identities are special cases. In Sect. A.4
we will give yet a third proof of these identities, following I. Artamkin [A1].

Proposition A.5 (Miki). Write Bn D .�1/nBn=n for n > 0. Then for all n > 2 we
have

n�2X

iD2
BiBn�i D

n�2X

iD2

 
n

i

!
BiBn�iC2HnBn ; (A.23)

where Hn D 1C 1
2

C � � � C 1
n

denotes the nth harmonic number.

(Faber–Pandharipande). Write bg D .2 � 22g/
B2g

.2g/Š
for g � 0. Then for all

g > 0 we have

X

g1Cg2Dg
g1; g2>0

.2g1 � 1/Š .2g2 � 1/Š
2 .2g � 1/Š

bg1bg2 D
gX

nD1

22nB2n

2n .2n/Š
bg�nCH2g�1 bg : (A.24)
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First proof. We prove (A.24), following [A2]. Write the identity as a.g/ D b.g/C
c.g/ in the obvious way, and let A.x/ D

1P
gD1

a.g/ x2g�1, B.x/ D
1P
gD1

b.g/ x2g�1

and C.x/ D
1P
gD1

c.g/ x2g�1 be the corresponding odd generating functions. Using

the identity
1P
gD0

bg x
2g�1 D 1

sinhx
, we obtain

A.x/ D 1

2

X

g1; g2>0

bg1bg2

Z x

0

t2g1�1 .x � t/2g2�1 dt (by Euler’s beta integral)

D 1

2

Z x

0

�1
t

� 1

sinh t

�� 1

x � t � 1

sinh.x � t/

�
dt ;

B.x/ D 1

sinhx

1X

nD1

22nB2n

2n .2n/Š
x2n D 1

sinh x
log

� sinhx

x

�
;

C.x/ D
1X

gD1
bg

Z x

0

x2g�1 � t2g�1

x � t
dt D

Z x

0

�
1

x � t
� 1

sinhx
� 1

sinh t

�
C 1

xt

	
dt ;

and hence, symmetrizing the integral giving C.x/ with respect to t ! x � t ,

2A.x/ � 2C.x/ D
Z x

0

{�1
t

� 1

sinh t

�� 1

x � t � 1

sinh.x � t/

�

�
� 1

x � t
C 1

t

�� 1

sinhx
C 1

x

�

C 1

x � t

1

sinh t
C 1

t

1

sinh.x � t/

}

dt

D
Z x

0

� 1

sinh.t/ sinh.x � t/
� x

sinhx

1

t .x � t/
�
dt

D 1

sinhx
log

� sinh t

t
� x � t

sinh.x � t/

�ˇ̌
ˇ
tDx
tD0 D 2B.x/ :

A similar proof can be given for Miki’s original identity (A.23), with “sinh” replaced
by “tanh”. ut
Second proof. Now we prove (A.23), following the method in [A4]. Recall that the
Stirling number of the second kind S.k;m/ is defined as the number of partitions
of a set of k elements into m non-empty subsets or, equivalently, as 1=mŠ times the
number of surjective maps from the set f1; 2; : : : ; kg to the set f1; 2; : : : ; mg. It can
be given either by the closed formula
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S.k;m/ D 1

mŠ

mX

`D0
.�1/m�`

 
m

`

!
`k (A.25)

(this follows immediately from the second definition and the inclusion-exclusion
principle, since `k is the number of maps from f1; 2; : : : ; kg to a given set of `
elements) or else by either of the two generating functions

1X

kD0
S.k;m/ xk D xm

.1� x/.1 � 2x/ � � � .1 �mx/ ;

1X

kD0
S.k;m/

xk

kŠ
D .ex � 1/m

mŠ
;

(A.26)

both of which can be deduced easily from (A.25). (Of course all of these formulas
are standard and can be found in many books, including Chap. 2 of this one, where
S.k;m/ is denoted using Knuth’s notation

{
k
m

}
.) From either generating function one

finds easily that S.k;m/ vanishes for k < m, S.m;m/ D 1, S.mC 1;m/ D m2Cm
2

,
and more generally that S.m C n;m/ for a fixed value of n is a polynomial in m
(of degree 2n, and without constant term if n > 0). Gessel’s beautiful and very
natural idea was to compute the first few coefficients of this polynomial using each
of the generating functions in (A.26) and to equate the two expressions obtained. It
turned out that this gives nothing for the coefficients ofm0 andm1 (which are found
from either point of view to be 0 and Bn, respectively), but that the equality of the
coefficients of m2 obtained from the two generating functions coincides precisely
with the identity that Miki had discovered!

More precisely, from the first formula in (A.26) we obtain

log

� 1X

nD0
S.mC n;m/ xn

�
D

mX

jD1
log

� 1

1 � jx
�

D
1X

rD1

1r C 2r C � � �mr

r
xr

D
1X

rD1

�Br
r
mC .�1/r�1Br�1

2
m2 C � � �

�
xr

(the last line by the Bernoulli–Seki formula) and hence, exponentiating,

S.mC n;m/ D Bn mC
�
nBn�1 C

n�2X

iD2
BiBn�i

� m2

2
C � � � .n � 3/ ; (A.27)

while from the second formula in (A.26) and the expansion log
�
.ex � 1/=x

� DP
n>0

Bnxn=nŠ we get



A.4 Products and Scalar Products of Bernoulli Polynomials 249

S.mC n;m/

D
�
1C m

1

��
1C m

2

�
� � �
�
1C m

n

�
� Coefficient of

xn

nŠ
in
�ex � 1

x

�m

D
�
1CHnmC � � �

��
BnmC

� n�1X

iD1

 
n

i

!
BiBn�i

�
m2

2
C � � �

�

D Bn mC
�
2HnBn C

n�1X

iD1

 
n

i

!
BiBn�i

�m2

2
C � � � .n � 1/ : (A.28)

Comparing the coefficients of m2=2 in (A.27) and (A.28) gives Eq. (A.23). ut
Finally, we state the one-parameter generalization of (A.23) and (A.24) given

in [A4]. For n > 0 denote by Bn.x/ the polynomial Bn.x/=n.

Proposition A.6 (Gessel). For all n > 0 one has

n

2

�
Bn�1.x/C

n�1X

iD1
Bi .x/Bn�i .x/

�
D

nX

iD1

 
n

i

!
BiBn�i .x/CHn�1Bn.x/ : (A.29)

Gessel does not actually write out the proof of this identity, saying only that it can
be obtained in the same way as his proof of (A.23) and pointing out that, because
Bn.1/ D Bn and 22gB2g.1=2/ D .2g � 1/Š bg, it implies (A.23) and (A.24) by
specializing to x D 1 and x D 1=2, respectively.

A.4 Products and Scalar Products of Bernoulli Polynomials

If A is any algebra over Q and e0; e1; : : : is an additive basis of A, then each
product ei ej can be written uniquely as a (finite) linear combination

P
k c

k
ij ek for

certain numbers ckij 2 Q and the algebra structure on A is completely determined

by specifying the “structure constants” ckij . If we apply this to the algebraA D QŒx�

and the standard basis ei D xi , then the structure constants are completely trivial,
being simply 1 if i C j D k and 0 otherwise. But the Bernoulli polynomials also
form a basis of QŒx�, since there is one of every degree, and we can ask what the
structure constants defined byBi.x/Bj .x/ D P

k c
k
ij Bk.x/ are. It is easy to see that

ckij can only be non-zero if the difference r WDi C j � k is non-negative (because
Bi.x/Bj .x/ is a polynomial of degree i C j ) and even (because the nth Bernoulli
polynomial is .�1/n-symmetric with respect to x 7! 1 � x). The surprise is that,
up to an elementary factor, ckij is equal simply to the kth Bernoulli number, except
when k D 0. This fact, which was discovered long ago by Nielsen [A11, p. 75]
(although I was not aware of this reference at the time when Igor Artamkin and I
had the discussions that led to the formulas and proofs described below), is stated in
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a precise form in the following proposition. The formula turns out to be somewhat
simpler if we use the renormalized Bernoulli polynomials Bn.x/ D Bn.x/

n
rather

than the Bn.x/ themselves when n > 0. (For n D 0 there is nothing to be calculated
since the product of any Bi.x/ with B0.x/ D 1 is just Bi .x/.)

Proposition A.7. Let i and j be strictly positive integers. Then

Bi .x/Bj .x/ D
X

0�`< iCj
2

�
1

i

 
i

2`

!
C 1

j

 
j

2`

!	
B2` BiCj�2`.x/

C .�1/i�1.i � 1/Š .j � 1/Š
.i C j /Š

BiCj :

(A.30)

Note that, despite appearances, the (constant) second term in this formula is
symmetric in i and j , because if BiCj ¤ 0 then i and j have the same parity.

Proof. Write Bi;j .x/ for the right-hand side of (A.30). We first show that the
difference between Bi;j .x/ and Bi .x/Bj .x/ is constant. This can be done in two
different ways. First of all, using Bn.x C 1/� Bn.x/ D xn�1 we find

Bi;j .x C 1/ � Bi;j .x/ D
X

0�`< iCj
2

�
1

i

 
i

2`

!
C 1

j

 
j

2`

!	
B2` x

iCj�2`�1

D xj�1
�
Bi .x/C 1

2
xi�1

�
C xi�1

�
Bj .x/C 1

2
xj�1

�

D Bi .x C 1/Bj .x C 1/ � Bi .x/Bj .x/ :
It follows that the Bi;j .x/ � Bi .x/Bj .x/ is periodic and hence, since it is also
polynomial, constant. Alternatively, we can use that B0n.x/ equals 1 for n D 1 and
.n�1/Bn�1.x/ for n > 1 to show by induction on iCj that Bi;j .x/ and Bi .x/Bj .x/
have the same derivative (we omit the easy computation) and hence again that their
difference is constant. To show that this constant vanishes, it suffices to show that the
integrals of the two sides of (A.30) over the interval [0,1] agree. Since the integral
of Bn.x/ over this interval vanishes for any n > 0, this reduces to the following
statement, in which to avoid confusion with i D p�1 we have changed i and j to
r and s. ut
Proposition A.8. Let r and s be positive integers. Then

Z 1

0

Br.x/Bs.x/ dx D .�1/r�1 rŠ sŠ

.r C s/Š
BrCs : (A.31)

Proof. Here again we give two proofs. The first uses the Fourier development

Bk.x/ D � kŠ

.2�i/k

X

n2Z
n¤0

e2�inx

nk
.0 < x < 1; k � 1/ (A.32)
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discussed in Chap. 4, Theorem 4.11 of this book. (For k D 1 the sum converges
only conditionally and one has to be a little careful.) Since the integral

R 1
0
e2�ikx dx

equals ık;0, this gives

Z 1

0

Br .x/Bs.x/ dx D .�1/r rŠ sŠ

.2�i/rCs
X

n2Z
n¤0

1

nrCs
D .�1/r�1 rŠ sŠ

.r C s/Š
BrCs

as desired. (The second equality, giving the well-known connection between
Bernoulli numbers and the values at positive even integers of the Riemann zeta
function, is just the case k D r C s, x ! 0 of (A.32).) The second proof, using
generating functions, is just as short. Denote the left-hand side of (A.31), also for r
or s equal to 0, by Ir;s . Then we have

X

r; s�0
Ir;s

t r�1

rŠ

us�1

sŠ
D
Z 1

0

ext

et � 1
exu

eu � 1
dx D 1

et � 1

1

eu � 1
etCu � 1

t C u

D 1

t C u

�
1

et � 1
� 1

e�u � 1
	

D
1X

kD0

Bk

kŠ

tk�1 � .�u/k�1

t C u

D 1

tu
C
X

k�2

Bk

kŠ

X

r; s�1
rCsDk

t r�1 .�u/s�1 ;

and Eq. (A.31) follows by equating the coefficients of t r�1us�1.

Before continuing, we show that Proposition A.7 immediately yields another
proof of the identities of Miki and Gessel discussed in the preceding section. This
method is due to I. Artamkin [A1] (whose proof, up to a few small modifications,
we have followed here). Indeed, summing (A.30) over all i; j � 1 with i C j D n,
and using the easy identities

n�1X

iD1

1

i

 
i

r

!
D 1

r

 
n � 1
r

!
.r > 0/

and

X

i; j�1
iCjDn

.�1/i�1 .i � 1/Š .j � 1/Š

.n � 1/Š
D

n�1X

iD1

Z 1

0

.�x/i�1.1 � x/n�i�1dx

D
Z 1

0



.1 � x/n�1 � .�x/n�1�dx D 1C .�1/n

n
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(where the first equation is the beta integral again), we obtain

1

2

X

i; j�1
iCjDn

Bi .x/Bj .x/ D Hn�1 Bn.x/C
n�1X

rD2

 
n � 1
r

!
Br .0/Bn�r.x/C Bn.0/

n
;

(A.33)

which is equivalent to Gessel’s identity (A.29).
Proposition A.8 describes the scalar products among the Bernoulli polynomials

with respect to the scalar product .f; g/ D R 1
0
f .x/g.x/dx. It is more natural to

replace the Bernoulli polynomials Bk.x/ by their periodic versions Bk.x/ (defined
for x … Z as Bk.x � Œx�/ or by the right-hand side of (A.32), and for x 2 Z by
continuity if k ¤ 1 and as zero if k D 1), since then the scalar product is simply the
integral of Br.x/Bs.x/ over the whole domain of definition R=Z. The first proof
just given then carries over almost unchanged to give the following more general
result:

Proposition A.9. Let r and s be integers � 1 and ˛, ˇ two real numbers. Then

Z 1

0

Br.x C ˛/Bs.x C ˇ/ dx D .�1/r�1 rŠ sŠ

.r C s/Š
BrCs.˛ � ˇ/ : (A.34)

Using this, one finds, with almost the same proof as before, the following
generalization of Proposition A.7:

Proposition A.10. Let i and j be positive integers. Then for any two variables x
and y we have

Bi .x/Bj .y/ D
max.i;j /X

mD0

�
1

i

 
i

m

!
BiCj�m.y/C .�1/m

j

 
j

m

!
BiCj�m.x/

	
BCm .x � y/

C .�1/j�1 .i � 1/Š .j � 1/Š

.i C j /Š
BCiCj .x � y/ ; (A.35)

where BCm .x/ denotes the symmetrized Bernoulli polynomial

BCm .x/ D Bm.x/C .�1/mBm.�x/
2

D Bm.x C 1/C Bm.x/

2
D Bm.x/C m

2
xm�1:

The same calculation as was used above to deduce (A.33) from (A.30), but now
applied to (A.35) instead of (A.30), gives the following generalization of Gessel’s
identity (A.29):
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X

i; j�1
iCjDn

Bi .x/Bj .y/�Hn�1
�
Bn.x/C Bn.y/

�

D
n�1X

mD1

 
n � 1

m

!�
Bn�m.y/C .�1/m Bn�m.x/

� BCm .x � y/
m

C1C .�1/n
n2

BCn .x � y/ : (A.36)

We observe that Eq. (A.36) was also found by Hao Pan and Zhi-Wei Sun [A12] in a
slightly different form, the right-hand side in their formula being

nX

mD1

 
n � 1

m � 1

!�
Bn�m.y/

Bm.x � y/
m2

C Bn�m.x/
Bm.y � x/

m2

�

C 1

n

Bn.x/ � Bn.y/
x � y ; (A.37)

which is easily checked to be equal to the right-hand side of (A.36); their formula
has the advantage of being more visibly symmetric in x and y and of using only the
Bernoulli polynomials Bm.x/ rather than the symmetrized Bernoulli polynomials
BCm .x/, but the disadvantage of having a denominator x � y (which of course
disappears after division into the numeratorBn.x/�Bn.y/) rather than being written
in an explicitly polynomial form.

We end this section by giving a beautifully symmetric version of the multiplica-
tion law for Bernoulli polynomials given by the same authors in [A13].

Proposition A.11 (Sun–Pan). For each integer n � 0 define a polynomial�
r s

x y

	

n

in four variables r , s, x and y by

�
r s

x y

	

n

D
X

i; j�0
iCjDn

.�1/i
 
r

i

! 
s

j

!
Bj .x/ Bi .y/ : (A.38)

Then for any six variables r , s, t , x, y and z satisfying rCsCt D n and xCyCz D 1

we have

t

�
r s

x y

	

n

Cr
�
s t

y z

	

n

Cs
�
t r

z x

	

n

D 0 : (A.39)

First proof (sketch). We can prove (A.39) in the same way as (A.36) was proved
above, replacing the product Bj .x/Bi .y/ in (A.38) for i and j positive using
formula (A.35) (with x and y replaced by 1 � y and x) and then using elementary
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binomial coefficient identities to simplify the result. We do not give the full
calculation, which is straightforward but tedious. ut
Second proof. An alternative, and easier, approach is to notice that, since the left-
hand side of (A.39) is a polynomial in the variables x, y and z D 1 � x � y, it is
enough to prove the identity for x; y; z > 0 with x C y C z D 1. But for x and y
between 0 and 1 we have from (A.32)

.2�i/n
�
r s

x y

	

n

D
X

a; b2Z
Cn.r; sI a; b/ e2�i.bx�ay/

with

Cn.r; sI a; b/ D

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P
i; j�1; iCjDn.r/i .s/j a�i b�j if a ¤ 0, b ¤ 0

� .r/na�n if a ¤ 0, b D 0

� .s/nb�n if a D 0, b ¤ 0

0 if a D 0, b D 0

where .x/m D x.x � 1/ � � � .x � m C 1/ is the descending Pochhammer symbol.
Equation (A.39) then follows from the identity

t Cn.r; sI a; b/Cr Cn.s; t I b; c/Cs Cn.t; r I c; a/ D 0 .aCbCc D 0; rCsCt D n/ :

whose elementary proof (using partial fractions if abc ¤ 0) we omit. ut
We end by remarking on a certain formal similarity between the cyclic iden-

tity (A.39) and a reciprocity law for generalized Dedekind sums proved in [A5].
The classical Dedekind sums, introduced by Dedekind while posthumously editing
some unpublished calculations of Riemann’s, are defined by

s.b; c/ D
X

h .mod c/

B1

�h
c

�
B1

�bh
c

�
(b; c 2 N coprime),

whereB1.x/ as usual is the periodic version of the first Bernoulli polynomial (equal
to x � 1

2
if 0 < x < 1, to 0 if x D 0, and periodic with period 1), and satisfy the

famous Dedekind reciprocity relation

s.b; c/C s.c; b/ D b2 C c2 C 1

12bc
� 1

4
:

This was generalized by Rademacher, who discovered that if a, b and c are pairwise
coprime integers then the sum

s.a; bI c/ D
X

h .mod c/

B1

�ah
c

�
B1

�bh
c

�
(A.40)
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which equals s.a0; c/ for any a0 with aa0�b .mod c/ or ba0�a .mod c/, satisfies
the identity

s.a; bI c/C s.b; cI a/C s.c; aI b/ D a2 C b2 C c2

12abc
� 1

4
: (A.41)

A number of further generalizations, in which the functions B1 in (A.40) are
replaced by periodic Bernoulli polynomials with other indices and/or the arguments
of these polynomials are shifted by suitable rational numbers, were discovered later.
The one given in [A5] concerns the sums

Sm;n

�
a b c

x y z

�
D

X

h .mod c/

Bm

�
a
hC z

c
� x

�
Bn

�
b
hC z

c
� y

�
; (A.42)

where m and n are non-negative integers, a, b and c natural numbers with no
common factor, and x, y and z elements of TWDR=Z. (The hth summand in (A.42)
depends on z modulo c, not just modulo 1, but the whole sum has period 1 in z.)
For fixed m and n these sums do not satisfy any relation similar to the 3-term
relation (A.41) for the case m D n D 1, but if we assemble all of the functions
Sm;n (m; n � 0) into a single generating function

S

0

@
a b c

x y z
X Y Z

1

A D
X

m; n�0

1

mŠ nŠ
Sm;n

�
a b c

x y z

� �X
a

�m�1 �Y
b

�n�1
; (A.43)

in which X , Y and Z (which does not appear explicitly on the right) are formal
variables satisfying X C Y CZ D 0, then we have the following relation:

Proposition A.12 ([A5]). Let a; b; c be three natural numbers with no common
factor, x; y; z three elements of T, and X; Y; Z three formal variables satisfying
X C Y CZ D 0. Then

S

0

@
a b c

x y z
X Y Z

1

AC S

0

@
b c a

y z x

Y Z X

1

AC S

0

@
c a b

z x y

Z X Y

1

A D
{
1=4 if .x; y; z/ 2 .a; b; c/T ;
0 otherwise.

We do not give the proof of this relation, since three different proofs (all similar
in spirit to various of the proofs that have been given in this appendix) are given
in [A5], but we wanted to at least mention this generalized Dedekind–Rademacher
reciprocity law because of its formal resemblance, and perhaps actual relationship,
to the Sun–Pan reciprocity law (A.39).
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A.5 Continued Fraction Expansions for Generating
Functions of Bernoulli Numbers

There are several classical formulas expressing various versions of the standard
(exponential) generating functions of the Bernoulli numbers as continued fractions.
A simple example is

tanhx

�
D
X

n�2

2n.2n � 1/Bn
nŠ

xn�1
�

D x

1C x2

3C x2

5C x2

: : :

; (A.44)

whose proof is recalled below, and a somewhat more complicated one, whose proof
we omit, is

x=2

tanhx=2

�
D
X

n�0

B2n

.2n/Š
x2n

�
D 1

1C a1x
2

1C a2x
2

: : :

(A.45)

with an defined by

an D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� 1

12
if n D 1 ,

.nC 1/.nC 2/

.2n � 2/.2n� 1/.2n/.2nC 1/
if n is even ,

.n � 2/.n� 1/

.2n � 1/.2n/.2nC 1/.2nC 2/
if n > 1 is odd .

It was discovered by M. Kaneko that the convergentsPn.x/=Qn.x/ of the continued
fraction (A.45) could be given in a simple closed form, namely

Pn.x/ D
n=2X

iD0

 
n

2i

! 
2nC 1

2i

!�1
xi

.2i C 1/Š

Qn.x/ D
n=2X

iD0

 
nC 1

2i

! 
2nC 2

2i

!�1
xi

.2i/Š
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if n is even and a similar but slightly more complicated expression if n is odd.
(It was in connection with this discovery that he found the short recursion formula
for Bernoulli numbers discussed in Sect. 1.2 of the book.) Again we omit the proof,
which is given in [A6].

What is perhaps more surprising is that there are also nice continued fraction
expansions for certain non-standard (ordinary) generating functions of Bernoulli
numbers of the type considered in Sect. A.1, and these are in some sense of even
more interest because the continued fractions, unlike the power series themselves,
converge for positive real values of the argument (and give the appropriate deriva-
tives of  .X/ as discussed in the last paragraph of Sect. A.1). For instance, on the
cover of the Russian original of Lando’s beautiful book on generating functions [A7]
one finds the pair of formulas3

1 � x C 2 � x
3

3Š
C 16 � x

5

5Š
C 272 � x

7

7Š
C � � � D tan x

1 � x C 2 � x3 C 16 � x5 C 272 � x7 C � � � D x

1 � 1 � 2 x2

1 � 2 � 3 x2

1 � 3 � 4 x2
1� � � �

The numbers 1, 2, 16, 272, . . . defined by the first of these two formulas are just
the numbers .4n � 2n/jBnj=n, so the second formula gives a continued fraction
expansion for the non-exponential generating function for essentially the Bernoulli
numbers. Again we omit the proof, referring for this to the book cited, mentioning
only the following alternative and in some ways prettier form of the formula:

1

X
� 2

X3
C 16

X5
� 272

X7
C � � � D 1

X C 1

X

2
C 1

X

3
C � � �

(A.46)

in which the continued fraction is convergent and equal to 1�X
2

�
 
�
XC4
4

�� �XC2
4

��

for all X > 0.
Other continued fraction expansions for non-exponential Bernoulli number

generating functions that can be found in the literature include the formulas

3In the English translation [A8] (which we highly recommend to the reader) this formula has been
relegated to the exercises: Chapter 5, Problem 5.6, page 85.



258 Appendix: Curious and Exotic Identities for Bernoulli Numbers

1X

nD1
B2n.4x/

n D x

1C 1

2
C x

1

2
C 1

3
C x

1

3
C 1

4
C x

: : :

;

or the equivalent but less appealing identity

1X

nD0
Bnx

n D 1

1C x

2

1
� x

3C 2x

2

2
� 2x

5C 3x

2

3
� 3x

7C 4x

2

4
� 4x

9C 5x

: : :

;

and

1X

nD1
.2nC 1/B2n x

n D x

1C 1C x

1C 1

2
C x

1

2
C 1

2
C x

1

2
C 1

3
C x

1

3
C 1

3
C x

: : :

all given by J. Frame [A3] in connection with a statistical problem on curve fitting.
For good conscience’s sake we give the proofs of one continued fraction of each

of the two above types, choosing for this purpose the two simplest ones (A.44)
and (A.46). We look at (A.44) first. Define functions I0; I1; : : : on .0;1/ by

In.a/ D
Z a

0

tn.1 � t=a/n
nŠ

et dt
�
n 2 Z�0 ; a 2 R>0

�
:



A.5 Continued Fraction Expansions for Generating Functions of Bernoulli. . . 259

Integrating by parts twice, we find that

InC1.a/ D
Z a

0

et
d 2

dt2

�
tnC1.1 � t=a/nC1

.nC 1/Š

	
dt

D
Z a

0

et
�
tn�1.1 � t=a/n�1

.n � 1/Š
� 4nC 2

a

tn.1 � t=a/n

nŠ

	
dt

D In�1.a/ � 4nC 2

a
In.a/

for n > 0. Rewriting this as
In�1.a/
In.a/

D 4nC 2

a
C InC1.a/

In.a/
and noting that

I0.a/ D ea � 1 ; I1.a/ D ea
�
1 � 2

a

�
C
�
1C 2

a

�

by direct calculation, we obtain

1

tanhx
D e2x C 1

e2x � 1 D 1

x
C I1.2x/

I0.2x/
D 1

x
C 1

3

x
C 1

5

x
C 1

: : :

;

which is equivalent to (A.44). Similarly, for (A.46), we define functions J0; J1; : : :
on .0;1/ by

Jn.X/ D
Z 1

0

�
tanh .t=X/

�n
e�t dt

�
n 2 Z�0 ; X 2 R>0

�
:

This time J0.X/ is simply the constant function 1, while J1.X/ has the exact
evaluation

J1.X/ D 1 � X

2
 
�X
4

C 1
�

C X

2
 
�X
4

C 1

2

�
; (A.47)

as is easily deduced from Euler’s integral representation

 .x/ D �� C
Z 1

0

1 � tx�1

1 � t
dt ;

as well as the asymptotic expansion

J1.X/

Z 1

0

� 1
X
t � 2

X3

t3

3Š
C 16

X5

t5

5Š
� 272

X7

t7

7Š
C � � �

�
e�t dt


 1

X
� 2

X3
C 16

X5
� 272

X7
C � � �
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as X ! 1. (This last expression can be written as 1 � X�0.2=X/ C X�0.4=X/

with �0 as in (A.12), in accordance with (A.47) and the relationship between �0.X/
and  .X/ given at the end of Sect. A.1.) On the other hand, integrating by parts and
using tanh.x/0 D 1 � tanh.x/2, we find

Jn.X/ D
Z 1

0

e�t
d

dt

��
tanh.t=X/

�n�
dt

D n

X

Z 1

0

e�t
�

tanh.t=X/
�n�1 �

1 � �
tanh.t=X/

�2�
dt

D n

X

�
Jn�1.X/ � JnC1.X/

�

for n > 0, and rewriting this as
Jn�1.X/
Jn.X/

D X

n
C JnC1.X/

Jn.X/
we obtain that J1.X/ D

J1.X/

J0.X/
has the continued fraction expansion given by the right-hand side of (A.46),

as claimed. ut
We end this appendix by describing an appearance of the continued frac-

tion (A.46) in connection with the fantastic discovery of Yuri Matiyasevich that
“the zeros of the Riemann zeta function know about each other.” Denote the zeros
of �.s/ on the critical line <.s/ D 1

2
by �n and �n with 0 < =.�1/ � =.�2/ � � � �

and for M � 1 consider the finite Dirichlet series �M.s/ defined as the N � N

determinant4

�M.s/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 � � � 1 1 1
:::

:::
: : :

:::
:::

:::

n��1 n��1 � � � n��M n��M n�s
:::

:::
: : :

:::
:::

:::

N��1 N��1 � � � N��M N��M N�s

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

;

where N D 2M C 1. This function clearly vanishes when s D �n or �n for 1 �
n � M , but Matiyasevich’s discovery (for which we refer to [A9] and the other
papers and talks listed on his website) was that its subsequent zeros are incredibly
close to the following zeros of the Riemann zeta function, e.g., the first zero of
�50 on 1

2
C R>0 following �50 differs in absolute value from �51 by less than 4 �

10�15, the first zero of �1500 after �1500 differs in absolute value from �1501 by less
than 5�10�1113, and even the 300th zero of�1500 after �1500 differs in absolute value
from �1801 by less than 5�10�766! Moreover, if we write the Dirichlet series�M.s/

as cM
PN

nD1 aM;nn�s with the normalizing constant cM chosen to make aM;1 D 1,

4We have changed Matiyasevich’s notations slightly for convenience of exposition.
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then it turns out that the function c�1M �M.s/ not only has almost the same zeros,
but is itself a very close approximation to .1 � 21�s/�.s/ over a long interval of the
critical line.

In studying this latter function, Matiyasevich was led to consider the real
numbers �M defined by �M D 4M

P2M
nD1 �M;n=n, where �M;n denotes the

coefficient of n�s in the Dirichlet series c�1M �M.s/=�.s/. Since by the nature
of his investigation he was working to very high precision, he obtained very
precise decimal expansions of these numbers, and in an attempt to recognize
them, he computed the beginning of their continued fraction expansions. (Recall
that rational numbers and real quadratic irrationalities can be recognized
numerically by the fact that they have terminating or periodic continued
fraction expansions.) To his surprise, when M was highly composite these
numbers had very exceptional continued fraction expansions. For instance, for
2M D l.c.m.f1; 2; : : : ; 10g D 2520, the number �M has a decimal expansion
beginning 0:9998015873172093 � � � and a continued fraction expansion beginning
Œ0; 1; 5039; 2520; 1680; 1260; 1008; 840; 720; 630; 560; 504�. In view of the
fact that nearly all real numbers (in a very precise metrical sense) have continued
fraction expansions with almost all partial quotients very small, this is certainly
not a coincidence, and it is even more obviously not one when we notice that
the numbers 5040, 2520, . . . 504 are 5040=n for n D 1; 2; : : : ; 10. This leads
one immediately to the continued fraction (A.46) with X D 4M and hence, in
view of the evaluation of that continued fraction given above, to the (conjectural)
approximation �M � 1

2
 
�
M C 1

� � 1
2
 
�
M C 1

2

�
, which turns out indeed to be a

very good one for M large, the two numbers differing only by one part in 10108 in
the above-named case 2M D 2520. We take this somewhat unusual story as a fitting
place to end our survey of curious and exotic identities connected with Bernoulli
numbers.
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