
Chapter 13

Molecular Mechanisms of the Function
of Pineal Organs

Daisuke Kojima and Yoshitaka Fukada

Abstract The pineal organ in nonmammalian species is a light-sensitive brain

structure mediating photosensory and photoendocrine functions. This chapter

reviews the photopigments and the phototransduction pathways in the pineal organs

of chicken, teleosts, and lamprey and those in the pineal-related organ, the parietal

eye, of lizard. Chicken pinealocytes contain a rhodopsin-like molecules, pinopsin,

which activates a G protein, transducin, in a light-dependent manner resulting in

acute suppression of melatonin synthesis within the cells. Pinopsin is dominantly

expressed in the avian and reptilian pineal organs, whereas teleost pineal organs

have another rhodopsin-like molecule, exo-rhodopsin, instead of pinopsin. The

pineal organs of lampreys exhibit antagonistic responses to green and UV light at

the interneuron level: This UV response is mediated by parapinopsin in the photo-

receptor cells. In lizards, the parietal eye photoreceptor cells show antagonistic

responses to green and blue light at the photoreceptor cell level: parietopsin and

pinopsin are likely to antagonistically regulate a cGMP pathway to elicit the

responses. This chapter also introduces a more recent topic on a new pineal function

as producing a neurosteroid, 7α-hydroxypregnenolone, that regulates behavioral

activities in some species.
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13.1 Introduction

The pineal organ is an isolated brain structure and, inmost non-mammalian vertebrate

species, it is present in the dorsal brain just under the skull (Oksche 1965). The

pineal organ of many nonmammalian vertebrates is sensitive to light because the

pineal organ contains photoreceptor cells that respond to changes in ambient light

condition, sending light information via neural connections to other neurons and

secretingmelatonin into circulating blood. In avian andmammalian species, the pineal

organ functions as a neuroendocrine and/or photoendocrine gland. The mammalian

pineal gland is not sensitive to light directly but its activity is indirectly regulated by

the ambient light–dark information, which is transmitted from the retina via several

neural connections (Klein 1985; Simonneaux and Ribelayga 2003).

The pineal organs of nonmammalian vertebrates generally consist of three basic

cell types: photoreceptor cells (pinealocytes), projection neurons, and glial cells

(Ekstrom and Meissl 2003). In lamprey, teleosts, and amphibians, the pineal

photoreceptor cells have a well-developed lamellar outer segment that closely

resembles those of retinal rod and cone photoreceptor cells. The photoreceptor

cells transmit the light signals to the secondary afferent neurons (projection neu-

rons) through synaptic contacts within the pineal organ. The projection neurons

innervate several areas of the central brain, and in this sense they are similar to the

retinal ganglion cells. The pinealocytes of reptiles and birds have a regressed

outer segment with degenerated lammellar structure, and they are thus refered as

“modified” photoreceptor cells. Most of the modified photoreceptor cells act as

neuroendocrine cells specialized for secreting melatonin, rather than primary

sensory cells. Note that mammalian pinealocytes, having no direct light sensitivity,

lack any pronounced outer segment-like structure and instead function as special-

ized neuroendocrine cells (Ekstrom and Meissl 2003).

Physiological functions for the pineal organs have been reported mainly in

circadian biologies. For example, surgical removal of the pineal gland from oscine

passerine birds, such as the house sparrow (Passer domestics), abolishes the

expression of circadian locomotor rhythms when birds are placed in constant

darkness (Gaston and Menaker 1968), although the effects of pinealectomy are

variable in other avians (Cassone et al. 2009). The pineal gland also plays a role in

keeping a circadian rhythm of body temperature (Refinetti and Menaker 1992).

In some vertebrate species, such as lampreys and teleosts, the pineal organ

constitutes a structural unit of a pineal complex with an accessory organ called

the parapineal organ, which is also photosensitive. Some lizards have an extracra-

nial photosensory organ, called the parietal eye or parietal organ, which is consid-

ered as a parapineal organ homologue (Ekstrom and Meissl 2003). Another

example of extracranial photosensory organs is the frontal organ in frogs, but in

this case it is likely to to be a specialization of the distal part of the pineal organ

(Ekstrom and Meissl 2003).

In this chapter, we review the photopigments and the phototransduction

pathways of chicken and teleost pineal organs. We then discuss the photopigments
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in the lamprey pineal complex, in which light signals sent from multiple photore-

ceptor cells having different spectral sensitivities are likely to be converged at the

level of interneurons exhibiting “chromatic” photoresponses. We also review

the antagonistic phototransduction pathway of lizard parietal eye photoreceptor

cells, where light signals from multiple photopigments are converged within the

photoreceptor cells. Finally, a more recent topic is introduced on a new pineal

function as producing a neurosteroid, 7α-hydroxypregnenolone, that regulates

behavioral activities in some species.

13.2 Photopigments and Phototransduction
Pathways in Pineal and Related Organs

13.2.1 Avian Pineal Gland

The intrinsic photosensitivity in the chicken pineal gland was reported in the late

1970s (Binkley et al. 1978; Deguchi 1979a,b,c; Kasal et al. 1979), and the presence

of rhodopsin-like molecule(s) in the pineal gland was predicted by immunohisto-

chemical and physiological studies in the 1980s. In 1994, a rhodopsin-like photo-

receptive molecule, pinopsin, was identified in the chicken pineal gland (Okano

et al. 1994) as the first example of a “nonvisual” opsin expressed in a tissue outside

the retina. Pinopsin is closely related to vertebrate visual pigments in the primary

structure (Fig. 13.1), and binds 11-cis-retinal as the chromophore to form a blue-

sensitive pigment having the absorption maximum at 468 nm (Okano et al. 1994;

Nakamura et al. 1999).

The absorption maximum of pinopsin is ~30 nm blue-shifted from the peak

of the physiological action spectrum (500 nm) for light-induced inhibition of

chicken pineal arylalkylamine N-acetyltransferase (Deguchi 1981), a rate-

determining enzyme in the melatonin synthesis pathway. This difference suggested

that the chicken pineal gland contains at least one additional photoreceptive mol-

ecule having longer wavelength sensitivity, such as red cone opsin, and it is indeed

expressed in the pineal gland (Okano et al. 1994).

Chicken pinopsin is expressed only in the pineal gland (Okano et al. 1994; Max

et al. 1995). Pinopsin protein is localized in the outer segment of pinealocytes

(Hirunagi et al. 1997; Matsushita et al. 2000), which is considered as the primary

photosensitive structure and likely to contain phototransduction proteins just as in

the outer segments of retinal rods and cones (see following).

The chicken pineal gland has intermediate properties between a neuroendocrine

and photoendocrine organ, producing and secreting melatonin in a manner depen-

dent on both the efferent input signal and the light signal captured by intrinsic

photoreceptors. Melatonin is a nighttime hormone involved in a variety of physi-

ological aspects such as sleep–wake regulation. Melatonin production shows a
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nocturnal rhythm, which is controlled by the endogenous circadian clock in indi-

vidual cells (pinealocytes) of the pineal gland. The phase of the circadian rhythm

is shifted by light given at subjective night (phase-shifting effect; see Fig. 13.2).

On the other hand, the chicken pinealocytes contain another phototransduction

pathway mediating acute suppression of melatonin production by light (acute

suppression effect; see Fig. 13.2). These two effects of light on chicken pineal

cells can be discriminated by an administration of pertussis toxin (PTX). The PTX

treatment does not influence the phase-shifting effect of cellular clocks but blocks

the acute suppression effect on melatonin production (Zatz and Mullen 1988),

indicating the the latter effect is mediated by PTX-sensitive molecules, most

probably by a PTX-sensitive heterotrimeric GTP-binding protein (G protein).

Consistently, the chicken pineal gland shows mRNA expression of α-subunits of
PTX-sensitive G proteins, such as Gαt1 (rod transducin-α), Gαi2, Gαi3, and Gαo

Parapinopsin
Pinopsin
Red (M/LWS)
Violet (SWS1)
Blue (SWS2)
Green (RH2)
Rhodopsin (RH1)

Encephalopsin (OPN3)

TMT-opsin

Go-opsin

Melanopsin (OPN4)

Molluscan Visual Pigments

Arthropod Visual Pigments

RGR-opsin

Retinochrome

Neuropsin (OPN5)

Parietopsin

Peropsin

VA / VAL-opsin

Cnidarian opsin

V
er

te
br

at
e

vi
su

al
pi

gm
en

ts

Photo-
isomerases

Gi

Go

Gq

Gs

Gi/o

Gi/o

(Gi/o?)
Gt

11-cis -
    retinal

all-trans -
     retinal

Coupled
G-protein
subtype Chromophore

Fig. 13.1 Phylogenetic relationship among subfamilies in the opsin family. Nomemclatures for

vertebrate visual pigments (M/LWS, SWS1, SWS2, RH2 and RH1) are indicated in parentheses

according to Ebrey and Koutalos (2001)). Each node with a closed circle represents species

divergence; open circle represents gene duplication. (Modified from Kojima et al. 2008)
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(Okano et al. 1997; Matsushita et al. 2000; Kasahara et al. 2000). The rod-type

transducin, Gt1, is activated by chicken pinopsin in a light-dependent manner in

in vitro reconstitution assays as well as in the pineal homogenate (Max et al. 1998;

Nakamura et al. 1999; Kasahara et al. 2000) and is colocalized with pinopsin in the

“rudimentary” outer segment of pinealocytes (Matsushita et al. 2000; Kasahara

et al. 2000). Taken together, the pinopsin-transducin (Gt) pathway is likely to be

involved in the pineal phototransduction cascade and to account for the acute

suppression effect of light in themelatonin production of the pinealocytes (Fig. 13.2).

The PTX-sensitive acute effect of light might be mediated by another

photopigment, OPN5 (OPN5m), which has been recently reported to be present in

chicken pineal glands (Yamashita et al. 2010). OPN5 is an ultraviolet light (UV)-

sensitive photopigment and can activate Gi-type G protein in a UV-dependent

manner (Yamashita et al. 2010; Kojima et al. 2011). Gi/o-type G proteins, being

susceptible to PTX, are expressed in the pineal gland (Okano et al. 1997), although a

direct effect of ultraviolet light on melatonin production in the chicken pineal gland

has not been reported.

As just described, the circadian rhythm of melatonin production in the chicken

pinealocytes is phase shifted by light in a PTX-“insensitive” manner (Zatz and

Mullen 1988). Several classes of heterotrimeric G proteins, such as Gq/11 and Gs,

are insensitive to PTX treatment as they lack the (PTX-catalyzed) ADP-ribosylated

amino acid in the C-terminal region. Among these members, the α-subunit of G11

(Gα11) is expressed in the chicken pineal gland (Matsushita et al. 2000; Kasahara

et al. 2002). In a gain-of-function experiment using cultured chicken pinealocytes,

selective activation of G11 caused phase shift of the circadian rhythm of melatonin

production in a manner very similar to a light-triggered phase shift (Kasahara

et al. 2002). G11 is thus likely to mediate the circadian phase-shifting effect in

chicken pinealocytes (Fig. 13.2). Now an important question is the identities of

photopigments triggering this pathway. There has been no report on activation

of Gq/11-type G protein mediated by pinopsin, red cone opsin, or Opn5, although

chicken rhodopsin can interact with Gα11 in a light-dependent manner (Kasahara

et al. 2002). It should be noted that vitamin A depletion in the culture medium only
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Fig. 13.2 Light signaling pathways in chicken pineal photoreceptor cells
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reduces the acute melatonin supression but does not affect the circadian phase

shift (Zatz 1994). Therefore, the two phototransduction pathways (Fig. 13.2) causing

acute melatonin supression and the circadian phase shift in the chicken pineolocytes

are likely to couple with different photopigments from each other. A potential

candidate for the phase-shifting photopigment is OPN4, or melanopsin (Bailey

and Cassone 2005; Chaurasia et al. 2005; Holthues et al. 2005; Bellingham

et al. 2006; Torii et al. 2007), which is closely related in sequence to invertebrate

Gq-coupled rhodopsins (Fig. 13.1). Invertebrate rhodopsins as well as the

cepholochordate melanopsin homologue have been shown to activate Gq-type G

protein in a light-dependent manner (Koyanagi et al. 2005; Terakita et al. 2008). The

photoproduct (active state) of OPN4 is stable in the dark, and it is photo-convertible

to the original state without further supply of its chromophore 11-cis-retinal. Such a
bistable nature of OPN4 is consistent with the fact that the circadian phase-shifting

pathway does not require a vitamin A supply in the pineal cell culture (Zatz 1994).

The chicken pineal gland expresses two kinds of melanopsin genes, OPN4-1

(OPN4x) and OPN4-2 (OPN4m) (Bailey and Cassone 2005; Chaurasia et al. 2005;

Holthues et al. 2005; Bellingham et al. 2006; Torii et al. 2007). The OPN4-1 and

OPN4-2 genes encode blue-sensitive photopigments with absorption maxima at

476 and 484 nm, respectively (Torii et al. 2007). It is not known whether any of

these OPN4 proteins contributes to the phase shift in the chicken pineal gland.

13.2.2 Teleost Pineal Organ

In contrast to pinopsin expression in the pineal gland of birds (Okano et al. 1994;

Max et al. 1995; Kawamura et al. 1999) and reptiles (Kawamura and Yokoyama

1997; Taniguchi et al. 2001), the pineal organ of teleosts does not express pinopsin

but it has, instead, a novel rhodopsin-like molecule, exo-rhodopsin (named after

extraocular rhodopsin). The exo-rhodopsin was first identified in the zebrafish

pineal gland (Mano et al. 1999), and later in the pineal gland of salmon (Philp

et al. 2000a) and other teleosts. In zebrafish, exo-rhodopsin is specifically expressed

in the pineal gland (but not in the retina), whereas rhodopsin is specifically present

in the retinal rod photoreceptor cells but not in the pineal gland (Mano et al. 1999).

Such mutually exclusive expression patterns between exo-rhodopsin (pineal gland)

and rhodopsin (retina) were also reported in salmon (Philp et al. 2000a). A detailed

mutational analysis of the zebrafish exo-rhodopsin promoter led to identification of

a 12-bp cis-acting element, PIPE (pineal expression-promoting element), that is

required for pineal specific gene expression (Asaoka et al. 2002).

Molecular phylogenetic analyses clearly indicate that the exo-rhodopsin gene

emerged from the rhodopsin gene by gene duplication in the ray-finned fish lineage
(Mano et al. 1999; Bellingham et al. 2003; Rennison et al. 2012). Interestingly, the

teleost exo-rhodopsin genes retain the exon-intron structure that is conserved among

the tetrapod rhodopsin genes, whereas the teleost rhodopsin genes are intronless.
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These observations suggest that a retroposition occurred in the teleost “rhodopsin”
gene lineage just after the exo-rhodopsin gene had arisen (Bellingham et al. 2003). In

this sense, exo-rhodopsin may be the true orthologue of tetrapod rhodopsin (Bel-

lingham et al. 2003), and this idea is supported by a synteny analysis of rhodopsin/
exo-rhodopsin genes (Fig. 13.3).

The zebrafish pineal gland also expresses the red cone opsin gene in a smaller

subset of the cells (Robinson et al. 1995; Mano et al. 1999), whereas most of

the zebrafish pineal photoreceptor cells express exo-rhodopsin (Mano et al. 1999).

As are most of the vertebrate rhodopsins, exo-rhodopsin is a green-sensitive

photoreceptive molecule having its absorption maximum at 498 nm (Tarttelin

et al. 2011). The zebrafish red cone opsin, LWS1 or LWS2, has its absorption

maximum at 558 nm (LWS1) or 548 nm (LWS2) (Chinen et al. 2003). Consistently,

light-induced suppression of melatonin release measured in cultured zebrafish

pineal glands has a spectral sensitivity peaking at ~500 nm with a shoulder at

~570 nm, suggesting that multiple photopigments including exo-rhodopsin and red

cone opsin are involved in this response (Ziv et al. 2007). On the other hand, the

pineal gland of rainbow trout showed an action spectrum of melatonin suppression,

peaking at ~500 nm without any obvious shoulder in the longer-wavelength region

(Max and Menaker 1992), and it also showed maximal sensitivity between 500 and

530 nm in electrophysiological recordings of photoresponses of projection neurons

and photoreceptor cells (Dodt 1963; Meissl and Ekstrom 1988). The difference in
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spectral sensitivity at a longer-wavelength region between zebrafish and trout

pineal glands may reflect species variation in the composition of photoreceptive

molecules whose identities have not yet been reported in the trout pineal gland.

As an example of species variation, VA-opsin gene expression was detected in the

‘salmon’ pineal gland (Philp et al. 2000b) but not in the ‘zebrafish’ pineal gland

(Kojima et al. 2000; Ziv et al. 2007).

With light illumination, exo-rhodopsin, similar to rhodopsin, is converted into its

active state, meta II, which was shown to activate G-protein transducin in vitro

(Tarttelin et al. 2011). As in the chicken pineal photoreceptor cells, transducin is

likely to mediate the light-induced melatonin suppression in the pineal gland of

teleosts, where immunoreactivity to the α-subunit of transducin was detected (van

Veen et al. 1986). The meta II state of exo-rhodopsin has a lifetime more than

tenfold shorter than that of meta II of rhodopsin (Tarttelin et al. 2011), which is a

characteristic rather similar to cone opsins (Shichida and Imai 1998). This molec-

ular behavior of exo-rhodopsin was in contrast to the prediction, because

exo-rhodopsin is more similar to rhodopsin than to cone opsins in its primary

structure (Mano et al. 1999), including the determinant amino acid residues for

meta II lifetime of rhodopsin, Glu122, and Ile189 (Imai et al. 1997; Kuwayama

et al. 2002). The structural basis for the shorter meta II lifetime for exo-rhodopsin

appears quite different from the cone opsins but remains unsolved (Tarttelin

et al. 2011).

13.2.3 Lamprey Pineal Complex

The lamprey has a pineal complex consisting of the pineal body in the dorsal part

and parapineal body in the ventral part. The pineal body is located just under the

pineal window, which is a less-pigmented part of the skull. The ventral portion of

the pineal body shows immunoreactivities to rhodopsin antibody (Tamotsu

et al. 1990) and rhodopsin mRNA expression (Koyanagi et al. 2004). Expression

of the rhodopsin gene is consistent with the fact that the ventral pineal body has

achromatic (luminosity-type) interneurons, which are maximally sensitive to green

light (Morita and Dodt 1973; Uchida and Morita 1994). These observations suggest

potential signal inputs from the rhodopsin-expressing photoreceptor cells to the

luminosity-type interneurons. On the other hand, the dorsal and peripheral portion

of the lamprey pineal body expresses a UV-sensitive opsin, parapinopsin (Koyanagi

et al. 2004), which was originally identified in the catfish parapineal organ

(Blackshaw and Snyder 1997). The lamprey parapinosin shows a bistable nature

such that it is converted with UV light illumination to a thermally stable, green-

sensitive photoproduct, which can be converted with green light illumination again

to the original, UV-sensitive state (Koyanagi et al. 2004). The existence of the

UV-sensitive pigment is consistent with the fact that the lamprey pineal body
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contains “chromatic”-type interneurons, whose activity is inhibited maximally by

380-nm UV light but enhanced by 540-nm green light (Morita and Dodt 1973;

Uchida and Morita 1994). The inhibitory action of the UV light on the

chromatic-type interneurons is likely to be mediated by the parapinopsin-

expressing cells, whereas the excitatory action of green light is unlikely to originate

from rhodopsin-expressing cells in the ventral pineal body but could be mediated by

unidentified photopigments, which must be present in the dorsal and peripheral

portion of the lamprey pineal gland.

The parapineal body of the lamprey, as does the pineal body, has rhodopsin

expression in the ventral part and parapinopsin expression in the dorsal part

(Kawano-Yamashita et al. 2007; Koyanagi et al. 2004). In addition to rhodopsin

and parapinopsin, red cone opsin immunoreactivities are observed in the pineal and

parapineal bodies of lamprey (Tamotsu et al. 1994; Koyanagi et al. 2004). Some

of the red cone opsin-immunoreactive signals were observed in the serotonin-

containing pineal neurons (Tamotsu et al. 1994).

13.2.4 Reptile Parietal Organ

The parietal eye in reptiles is an extracranial photoreceptive organ that is

considered to be a parapineal organ homologue (Ekstrom and Meissl 2003). Similar

to vertebrate lateral eyes, the parietal eye has a retina-like layered structure, which

consists of two cellular layers: the inner layer has photoreceptor cells and the outer

has ganglion cells. In contrast to lateral eyes, the parietal eye has no interneurons,

but the ganglion cells exhibit antagonistic chromatic responses (Dodt and Scherer

1968; Miller and Wolbarsht 1962): Green light induces an excitatory response in

the parietal ganglion cells, whereas blue light causes an inhibitory response. The

spectral sensitivities of these responses peak at ~520 nm (excitatory) and at

~450 nm (inhibitory) in the European lizard Lacerta sicula campestris (Dodt and
Scherer 1968). The antagonistic chromatic response was found to originate from the

individual photoreceptor cells in the parietal eyes of the desert night lizard Xantusia
vigilis and the side-blotched lizard Uta stansburiana (Solessio and Engbretson

1993). In the parietal photoreceptor cells, green light depolarizes the membrane

potential by increasing Na+ conductance, and blue light on the background green

illumination hyperpolarizes it by decreasing Na+ conductance (Solessio and

Engbretson 1993). It was proposed that the antagonistic nature of these photo-

responses may provide lizards with a mechanism for enhanced detection of dawn

and dusk (Solessio and Engbretson 1993).

The green light-induced depolarization in the parietal eye photoreceptor cells

arises from openings of the cGMP-gated (CNG) cation channels located in their

outer segments, and they are similar in properties to those found in retinal rod

photoreceptor cells (Finn et al. 1997). The CNG channel openings in the parietal
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eye photoreceptor cells result from a rise in intracellular cGMP caused by a

decrease in activity of phosphodiesterase (PDE), which hydrolyzes cGMP, rather

than an increase in activity of guanylyl cyclase synthesizing cGMP (Xiong

et al. 1998). It is proposed that PDE activity is regulated by a G protein (putatively

termed G1, active in the dark) and is antagonistically inhibited by another G protein

(G2) activated by light (Xiong et al. 1998). It remains unknown whether the G1 is

constitutively active or is activated by an upstream signal in the dark.

Consistent with the presence of two antagonistic light signaling pathways

(Fig. 13.4), the parietal eye photoreceptor cells of side-blotched lizards were

found to have blue- and green-sensitive photoreceptive molecules (opsins) in the

same cells (Su et al. 2006): The blue one was pinopsin, originally found in

the chicken pineal gland (Okano et al. 1994), and the green one was named

parietopsin, having an absorption maximum at 522 nm with 11-cis-retinal bound.
Interestingly, the parietal eye photoreceptor cells have two kinds of G-protein

α-subunits, Gαgust and Gαo, but do not have transducin-α (Su et al. 2006). Electro-

physiological and pharmacological examination suggested that the Gαo inhibits the
PDE to generate the depolarizing response to green light, probably via activation by

parietopsin (Su et al. 2006) (Fig. 13.4). On the other hand, the structural similarity

of pinopsin to rod/cone opsins together with the close similarity among Gαgust and
Gαt1/2 (transducin-α) suggested the hypothesis that the blue-light induced hyper-

polarization in parietal eye photoreceptor cells could be mediated by a pinopsin-

Gαgust pathway via PDE activation (Su et al. 2006) (Fig. 13.4). It should be noted

that the parietal eye photoreceptor cells in another lizard, the green iguana (Iguana
iguana), contain a combination of parietopsin and UV-sensitive opsin,

parapinopsin, instead of pinopsin (Wada et al. 2012), indicating species variation

in the opsin repertoire of the parietal eye photoreceptor cells among reptiles.
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13.3 Light-DependentSynthesis of 7α-Hydroxypregnenolone
in Chicken Pineal Gland

The chicken pineal gland has been recently found to actively produce a

neurosteroid hormone, 7α-hydroxypregnenolone (Hatori et al. 2011). This finding

came from our pineal transcriptome analysis that aimed at understanding molecular

mechanisms underlying light-dependent regulation of the circadian clock. The

pineal transcripts prepared from dark-reared chicks or those exposed to light at

various times of the day were subjected to a differential microarray analysis to

search for the genes important for the light-dependent phase shift of the clock. This

global transcriptome analysis revealed light-induced transcriptional activation of a

set of genes involved in cholesterol biosynthesis (Hatori et al. 2011) along with

upregulation of a transcript for E4bp4, a clock transcription factor gene that is

known to repress Per2 gene expression and hence associated with the phase delay

of the chick pineal clock (Doi et al. 2001; Doi et al. 2004) (Fig. 13.5). The light

induction of these genes turned out to be regulated by light activation of the

transcription factor, sterol regulatory element-binding protein SREBP (Hatori

et al. 2011) (Fig. 13.5). From these observations, a possibility emerged that pineal

cholesterol biosynthesis is activated by light. In fact, we found that the chick pineal

gland produces and secretes 7α-hydroxypregnenolone (Fig. 13.5) in organ culture

in a light-stimulated manner (Hatori et al. 2011). It should be noted that the light

stimulation of 7α-hydroxypregnenolone production occurs only at a specific time of

the day: that is, this steroid production was not activated by light at late night nor

during daytime but by light given at early night (Hatori et al. 2011), which is the

time when the circadian clock is phase delayed by light exposure (Okano and

Fukada 2003). Interestingly, locomotor activities of dark-reared chicks are stimu-

lated far more strikingly by light exposure at early night when compared to light/

dark ratios at late night and in daytime (Hatori et al. 2011) (Fig. 13.5). It is well
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Fig. 13.5 Light-stimulated production of pineal cholesterol biosynthetic genes is associated with

light-stimulated production of 7α-hydroxypregnenolone. (Modified from Hatori et al. 2011)
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established that the canonical pineal hormone melatonin regulates sleep rhythms

(Arendt and Skene 2005). The pineal gland appears to participate in the regulation

of the sleep–wake state, not only by circadian production of melatonin in the dark

but also by synthesis and secretion of 7α-hydroxypregnenolone in the light.
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