
Chapter 12

Cochlear Development

Tomoko Tateya

Abstract The sensory epithelium of the cochlear duct, called the organ of Corti, is

the hearing organ of mammals including human. The organ of Corti is a master-

piece of cellular micro-architecture. The organ of Corti consists of two subtypes of

hair cells, a single row of inner and three rows of outer hair cells, and several

subtypes of supporting cells strategically positioned on the basilar membrane. The

organization of these cells maximizes the extraction of sound energy by amplifying

sound-induced basilar membrane motion and transmitting those movements, via the

help of the tectorial membrane, to inner hair cells. In this section, an overview of

cochlear development is presented and four important events during cochlear

development are described: extension of cochlear duct, prosensory specification,

cell-cycle exit, and cellular differentiation. Some of the most recent and enlighten-

ing results regarding the molecular mechanism underlying the formation of the

organ of Corti are also discussed. Most data are from the experiments using mice,

the most comprehensive model system for the developing mammalian cochlea.
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12.1 Extension of Cochlear Duct

The mammalian cochlear duct is a coiled structure resembling the shape of a snail,

while the avian cochlear duct (basilar papilla) is relatively straight. In mice, the

cochlear duct first arises as a ventral outpocketing from a posterolateral region of

the developing otocyst beginning around E11 [1] and descends ventromedially
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forming an L-shaped organ (a half turn) by embryonic day 12. Then, the cochlear

duct continues to extend and coil with the mature mouse structure consisting of one

and three quarter turns (Fig. 12.1). Similar to other mammals, the mouse cochlear

duct is tonotopically organized such that the base of the cochlear duct is most

sensitive to high frequency sounds and the apical region to low frequency

sounds [3].

12.1.1 Factors Regulating Cochlear Duct Extension

Multiple extrinsic factors regulate proper outgrowth and extension of the cochlear

duct. One clear example is Shh secreted from the notochord and floor plate. Similar

ventral phenotypes occur in Shh�/� ears and ears in chicken embryos in which the

ventral midline has been ablated, including agenesis of the cochlear duct [4, 5].

Additionally, it is well established that a mesenchymal contribution to cochlear

duct formation is also important [6]. Two transcription factors, Tbx1 and Pou3f4

(Brn4), of which the latter is expressed only in the otic mesenchyme, have been

implicated so far. Lack of Tbx1 or Pou3f4 in the otic mesenchyme can lead to

abnormal coiling or shortening of the cochlear duct, and these two pathways have

been shown to interact genetically [7–9]. One possible mediator of these effects is

RA, as both of these transcription factors are believed to induce expression of the

RA degradation enzyme Cyp26 in the periotic mesenchyme [9].

Fig. 12.1 Graphical abstract of Chap. 12. (Modified from [68])
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12.1.2 Convergent Extension

The cochlear duct is composed of pseudostratified epithelial cells derived from the

otic placode. Even at the earliest time points following the initiation of cochlear

outgrowth, the dorsal half of the duct, typically referred to as the floor, is already

comprised of a notably thickened epithelium that contains five or six layers of cells

[10, 11]. The organ of Corti arises from the floor of cochlear duct and the final

pattern contains two layers of cells: a hair cell layer and a supporting cell layer.

Accumulating evidence suggests that the growth of the cochlear duct is regulated

by not only proliferation of cells but also convergent extension movements

[6, 12–14]. Genes within the planar cell polarity pathway such as Dishevelled1–3,

Vangl2, and Celsr1 are thought to be involved in this process [15–17] (Fig. 12.2).

12.2 Prosensory Specification

The first step in the development of the organ of Corti is believed to be the

specification of the prosensory domain [18] (Fig. 12.3).

Notch signaling seemed to the main effector of sensory specification, and other

signaling pathways such as FGF [20–22] and Bmp signaling [23] also contribute to

the sensory specification.

Before E12.5 all of the epithelial cells that compose the floor of the cochlear duct

have a similar morphology; however, even at these early time points, a subset of

cells express the prosensory markers Sox2, Jagged1 (Jag1, also referred to as

Serrate1 in the chick), Lunatic Fringe (Lfng), Fgf10, and bone morphogenetic

protein 4 (Bmp4), and they have been implicated in the specification of prosensory

domain [1, 23] (Fig. 12.4).

Fig. 12.2 Convergent extension
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12.2.1 Notch Signaling and Prosensory Formation

Jag1 and Lfng are expressed in patterns that are largely consistent with a role in

specification of prosensory patches. Jag1 and Lfng are both components of the

Notch signaling pathway, with Jag1 acting as a ligand for Notch, while Lfng

modulates the activity of some Notch ligands [24, 25].

Lateral inhibition is the well-established role of Notch signaling in the regulation

of cellular differentiation within prosensory domains and will be discussed in a

subsequent section. But more recent experiments have illuminated an additional

role for Notch signaling in the specification of prosensory domains, called Notch

induction.

Although less well understood, the mechanism of inductive signaling differs

from lateral inhibition and typically involves positive feedback rather than negative

feedback [26].

Fig. 12.3 Development of the organ or Corti. (Modified from [19])

Fig. 12.4 Markers in prosensory formation. (Modified from [23])
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Analyses of inner ears from Jag1-deficient mice reveal a decrease in the overall

size of the sensory epithelia [27–31]. Similarly, deletion of Rbp-Jk, a transcriptional

repressor that is required for all Notch function, leads to a complete absence of all

vestibular epithelia and to a nearly complete loss of all cochlear hair cells as

well [32].

To the contrary, overexpression of an activated form of Notch1, NICD (Notch-

intracellular domain), in non-sensory regions of chick and mouse inner ear leads to

the formation of ectopic sensory patches [31, 33–36]. Interestingly, ectopic activa-

tion of Notch can only induce ectopic sensory patches within a certain time window

of development, suggesting other effectors may contribute to sensory specification

[35, 36].

The HMG-box transcription factor Sox2 is thought to specify the auditory

prosensory domain. Sensory precursors fail to develop in Sox2-deficient inner

ears, leading to loss of hair and supporting cells [37] and forced expression of

Sox2 in vivo induces ectopic sensory patches [36].

Sox2 has been suggested to be a downstream target of Jag1-Notch signaling.

Sox2 expression is reduced in Jag1 conditional mutants [29] and activation of

Notch leads to ectopic Jag1 and Sox2 expression [34, 36], suggesting that Jag1-

Notch signaling acts upstream of Sox2.

12.2.2 FGF Signaling and Prosensory Formation

Fibroblast growth factors (FGFs) have been shown to be of critical importance for

the development of the organ of Corti. In mice, FGF signaling has been implicated

in the early inductive events of the otic vesicle (Chap. 11). In the next phase of

cochlear development, at the sensory specification phase, FGF signaling is again

thought to be required. Tissue-specific deletion of Fgfr1 results in severe defects in

the development of both hair cells and support cells [20]. Subsequent studies have

identified the likely ligand for this receptor as Fgf20 [21]. Fgf20 is specifically

required for the differentiation of the lateral compartment of the cochlea (which

includes OHCs and Deiters’cells) [22]. In vitro rescue experiments indicate that

FGF signaling is downstream of Notch, as disruption of prosensory development by

the Notch inhibitor g-secretase can be partially rescued by exogenous application of

Fgf20 [38]. Interestingly, exogenous application of Fgf20 also restores Sox2

expression indicating that Fgf can independently control Sox2 expression

[38]. However, the phenotype of Fgf20 knockout cochlea is relatively mild and

the lateral compartment is partially formed [22]. Other ligands may be act for

prosensory specification and Fgf10 is a good candidate because of the expression

pattern in E11.5–E13.5 prosensory domain overlapping with Jag1 and Sox2 [23]

(Fig. 12.4). Fgf10 knockout cochlea is shortened but otherwise normal indicating

the possibility of compensation by other FGFs [39].
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12.2.3 Bmp4 Signaling and Prosensory Formation

Bmp4 is one of the regulators for development of sensory domain in the cochlea.

Bmp4 is expressed adjacent to the developing prosensory domain of the cochlea

in cells destined to become Hensen’s and Claudius’ cells of the outer sulcus

[1]. Ohyama et al. showed that BMP signaling is necessary for the development

of the outer sulcus and the prosensory domain and that BMP4 suppresses

medial markers but promotes lateral markers, suggesting that a gradient of

BMP signaling is an important step in patterning the cochlea across its modiolar-

to-strial axis.

12.3 Cell-Cycle Exit

Following specification of the prosensory domain, a subsequent important step is

cell-cycle exit within this domain. Cells in the presumptive organ of Corti can first

be distinguished by cell-cycle exit during mid-embyrogenesis. This termination of

mitosis occurs sequentially across the length of the cochlea, with cells at the apex

exiting first from the cell cycle at E12 and cells at the base terminating mitosis last

at E15 [40] (Fig. 12.3).

12.3.1 p27Kip1

The cyclin-dependent kinase inhibitor, p27Kip1, is involved in the maintenance of

this nonproliferative state [41] (Fig. 12.3). p27Kip1 is one of the earliest known

markers of the presumptive organ of Corti, and its expression correlates with

the onset of mitotic exit [41, 42]. In p27Kip1�/� null mutants, hair and supporting

cells continue proliferation after E15 resulting in extra hair and supporting cells [41].

p27Kip1 expression overlaps Sox2 expression and, as differentiation advances,

Sox2 and p27Kip1 are gradually limited to supporting cells and become

undetectable in HCs by birth [29, 37, 41, 43]. p27Kip1 has been shown to keep

postnatal supporting cells quiescent [44, 45]. Induced ablation of Sox2 in postnatal

inner pillar cells causes p27Kip1 downregulation and proliferation suggesting Sox2

is one of the upstream regulators of p27Kip1 to maintain the quiescent state of

postmitotic inner pillar cells [46].
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12.3.2 pRb

The retinoblastoma protein pRb is the protein product of Rb tumor suppressor gene

and a key cell-cycle inhibitor. pRb is present in all cells in the E12.5 otocyst and its

expression is prominent in hair cells during embryonic and adult ages [47]. Deletion

of Rb in cochlear prosensory cells produces supernumerary hair cells and

supporting cells and later apoptotic hair cell death [48]. Inducible inactivation of

Rb in postnatal cochlear hair cells causes cell-cycle reentry and cell death [49].

Inducible inactivation of Rb in postnatal pillar cells and Deiters’ cells results in cell-

cycle reentry and maintain their supporting cell fate [50].

12.3.3 p21cip1 and p19ink4d

Two additional cyclin-dependent kinase inhibitor, p21cip1 and p19ink4d, are also

expressed in the prosensory domain beginning between E14.5 and E16.5 [51, 52]

and suggested to maintain the nonproliferative state. While deletion of p21cip1 has

no apparent effect of maintenance of mitotic quiescence [52], loss of p19ink4d

results in an increasing rate of spontaneous hair cell mitoses beginning in the

postnatal period [51]. Deletion of both p19ink4d and p21cip1 results in initiation

of mitosis in hair cells beginning on P3 [52].

12.3.4 Wnt Signaling and Lgr5

Wnt/b-catenin regulates proliferation within the mitotic prosensory domain of E12

mouse cochlea, and Wnt activity becomes reduced as development progresses [53].

Later in development, low-level Wnt reporter activity is still maintained at E17in

pillar cells and in the third row of Deiters’ cells [53].

Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), a Wnt

target gene, has been shown to mark endogenous stem cells in rapidly proliferating

organs [54, 55]. In the postnatal cochlea, Lgr5 expression is Wnt dependent and

limited to supporting cell subtypes [56]. Lgr5-positive cells isolated by flow

cytometry from neonatal Lgr5EGFP-CreERT2/+ mice proliferated, formed clonal col-

onies, and differentiated into hair cells [57, 58]. Moreover, both in vitro and in vivo,

Wnt signaling enhanced proliferation of Lgr5-positive cells [58]. These data indi-

cate that Lgr5 marks Wnt-regulated sensory precursor cells in the postnatal cochlea

and Wnt signaling can promote their proliferation.
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12.4 Cellular Differentiation

Following specification of the prosensory domain and cell-cycle exit, individual

prosensory cells become determined to develop as all of the unique cell types within

the organ of Corti. The first indication of cellular differentiation within the

prosensory domain is inner hair cells observed in the mid-basal region of the

cochlea between E14 and E15. Inner hair cell differentiation then proceeds in a

gradient that extends toward both the apex and the base of the cochlear spiral [59]

(Fig. 12.4). The differentiation of outer hair cells and supporting cells is about 1 day

behind inner hair cells and can be observed by E15 to E16.

12.4.1 Hair Cell Differentiation

The earliest known gene expressed in the prosensory domain associated with hair

cells is the bHLH transcription factor Atoh1, which is first detected as a gradient

that is strongest near the cochlear base and over time extends toward the apex [60,

61]. As development proceeds, Atoh1 expression is restricted to cells that will

develop as hair cells.

Several factors that positively or negatively regulate Atoh1 have been identified.

Sox2, which is expressed in all prosensory regions, is required for Atoh1 expres-

sion. However, Sox2 also seems to negatively regulate Atoh1, as prolonged expres-

sion of Sox2 inhibits the ability of Atoh1 to induce hair cell formation, whereas

decreased expression of Sox2 leads to an increase in hair cell formation [43]. Other

regulators of Atoh1 are the Ids (inhibitors of differentiation), a family of bHLH-

related genes that act as antagonists of other bHLH genes [62]. Three of the four

mammalian Id genes, Id1, Id2, and Id3, are broadly expressed in the developing

cochlear duct but become downregulated in cells that will develop as hair cells

[63]. Moreover, forced persistent expression of Id3 leads to an inhibition of hair cell

formation, indicating that Ids act to negatively regulate Atoh1 [64].

Lateral inhibition of the Notch signaling pathway is involved in the regulation

of hair cell development and Atoh1 expression. Within the inner ear, localization

studies showed expression of Notch1 throughout the epithelium and expression of

two Notch ligands, Jagged2 and Delta-like1, in developing hair cells [65,

66]. Moreover, several inhibitory bHLHs, including Hes1, Hes5, and Hey1, are

expressed in developing supporting cells [2, 61, 67–69]. Deletion of different

members of Notch signaling pathway results in varying increases in the number of

hair cells, an effect that is very consistent with classic Notch-mediated lateral

inhibition [65, 67, 68, 70–72].
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12.4.2 Supporting Cell Differentiation

In the cochlea supporting cells take on several unique morphologies. Though the

nature and developmental regulation of supporting cells is less well understood in

comparison with hair cells, the FGF signaling pathway has been shown to regulate

the formation of the pillar cells that give rise to the tunnel of Corti. Before pillar cell

formation, Fgfr3 is expressed in the population of cochlear progenitor cells that will

develop as pillar cells, outer hair cells, and Deiters’ cells [73, 74]. At the same time,

developing inner hair cells express FGF8, a ligand with a strong binding affinity for

FGFR3. Deletion of either Fgf8 or Fgfr3 leads to a defect in pillar cell development,

whereas deletion of Sprouty2, a molecule that has been shown to act as an FGF

antagonist and is expressed in the cochlea, leads to an overproduction of pillar cells

[75]. These results are consistent with the hypothesis that FGF8 secreted by inner

hair cells binds to and activates FGFR3 in adjacent cells, leading to the formation of

pillar cells (Fig. 12.4).

In addition to inducing prosensory cells to develop as pillar cells, FGF8/FGFR3

signaling also acts to prevent these same cells from developing as hair cells

[76, 77]. This effect is mediated through activation of the inhibitory bHLH Hey2,

a gene that is normally regulated through the Notch pathway. Interestingly, deletion

of Hey2 alone does not lead to any changes in cell fate, but when Hey2 is deleted

along with inhibition of Notch signaling, pillar cells will convert into outer hair

cells [69].

12.4.3 Temporal Regulation of Cellular Differentiation

Cell-cycle exit in the cochlea occurs from the apex in an apical-to-basal gradient,

while cellular differentiation begins from the base around E14.5, just after the cell-

cycle exit has completed. It means that prosensory cells located in the apex of the

cochlea that become postmitotic have to be undifferentiated until the cellular

differentiation wave comes from the base. Recent works showed that this unique

temporal pattern of sensory cell differentiation requires Hh signaling and the source

of the signaling is Sonic hedgehog (Shh) from adjacent spiral ganglion [78–80].

In vivo activation and inactivation of the Hh effector smoothened (Smo) in the

developing cochlear epithelium after prosensory domain formation revealed that Hh

signaling inhibits prosensory cell differentiation into hair cells or supporting cells

and maintains their properties as prosensory cells [81]. Smo conditional knockout

(Smo CKO)mice showed that hair cell differentiation was preferentially accelerated

in the apical region of the cochlea and exhibited hair cell disarrangement in the

apical region, a decrease in hair cell number, and hearing impairment [81]. These

results indicate that Hh signaling determines the timing of cellular differentiation

and the basal-to-apical wave of hair cell development is required for the proper

differentiation, arrangement, and survival of hair cells and for hearing ability [81].
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