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Abstract

Glycosylation and sulfation are important posttranslational modifications of
proteins and are performed in the lumens of the endoplasmic reticulum (ER) or
the Golgi apparatus by glycosyltransferases and sulfotransferases, respectively.
However, the donor substrates of transferases, nucleotide sugars and 3’-phosphoa-
denosine 5’-phosphosulfate (PAPS), are synthesized in the cytosol or nucleus.
Nucleotide-sugar transporters (NSTs) or PAPST transporters (PAPSTs) transport
nucleotide sugar or PAPS into the lumen of the ER and the Golgi and therefore
determine the glycosylation or sulfation status by supplying donor substrates.
These transporters belong to the NST family, solute carrier 35 (SLC35). In this
chapter, all transporters with known transport activities are described. In addition,
the methods used for the measurement of their transferase activities and their
functional analysis using RNA interference (RNA1) are described.
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Introduction

Glycosylation is one of the most important posttranslational modifications, as glycan
structures on glycoproteins and glycolipids play key roles in central biological
processes such as cell fate determination/proliferation, morphogenesis/organ devel-
opment, viral and bacterial infections, immune response, and cancer invasion.
Glycosylation is performed in the lumens of the endoplasmic reticulum (ER) and
the Golgi apparatus by a sequence of glycosyltransferase reactions (Fig. la).
Thus, glycosyltransferase enzymes determine the glycosylation status. Glycosyl-
transferases transfer sugar molecules to acceptor substrates from sugar donors called
nucleotide sugars, which are monosaccharides that are activated by the addition of a
nucleoside mono- or diphosphate (UDP, GDP, or CMP). Most nucleotide sugars are
synthesized in the cytosol; however, CMP-sialic acid is the one exception that is
synthesized in the nucleus instead. After being synthesized, nucleotide sugars are
transported from the cytosol into the lumen compartment by specific nucleotide-
sugar transporters (NSTs). NSTs are multiple membrane-spanning proteins that
transport nucleotide sugars in a coupled byproduct of a glycosyltransferase reaction
and subsequent luminal nucleoside diphosphatase (NDPase) reaction inside the
lumen (Fig. 1a). Therefore, NSTs also determine the glycosylation status as the
supplier of donor sugars used in the glycosyltransferase reactions.

Sulfation is also an important posttranslational modification of proteins. Sulfated
proteins and sulfated glycans play important roles in various biological processes.
For example, heparan sulfate is indispensable to signaling pathways such as the
wingless, hedgehog, bone morphogenetic protein, and fibroblast growth factor
(FGF) pathways, during the developmental process. Sulfations are carried out for
proteins and glycans in the lumen of the Golgi apparatus by various sulfotransferases
(Fig. 1b). Thus, sulfotransferases determine the sulfation status, in the same vein as
glycosyltransferases act as the main driver of glycosylation. An activated form of
sulfate, 3’-phosphoadenosine 5'-phosphosulfate (PAPS), is a common sulfate donor.
Sulfotransferases transfer sulfate from PAPS to a defined position on a target sugar or
tyrosine (Tyr) residue. PAPS is synthesized in the cytosol and then transported by
PAPS transporters (PAPSTSs) into the lumen of the Golgi apparatus, where sulfation
is carried out. PAPSTs are multiple membrane-spanning proteins that transport
PAPS by a coupled antiport of adenosine 3’, 5'-diphosphate (PAP) (Fig. 1b). There-
fore, PAPSTs also determine the sulfation status, as they supply the sulfate groups
necessary as a substrate for sulfotransferase enzymes.

Both NSTs and PAPSTSs are members of the solute carrier 35 (SLC35) transporter
family. Nearly 200 different glycosyltransferases and 40 different sulfotransferases
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Fig. 1 Nucleotide-sugar transporters (a) or PAPS transporters (b) transport nucleotide-
sugars and PAPS from the cytosol into the ER/Golgi lumens, the location where glycosylation
or sulfation takes place. Nucleotide-sugars and 3’-phosphoadenosine 5'-phosphosulfate (PAPS)
are synthesized in the cytosol or the nucleus. Nucleotide-sugar transporters and PAPS transporters
transport these molecules from the cytosol into the ER/Golgi lumens. Glycosyltransferases and
sulfotransferases are then responsible for the transfer of sugars and sulfate molecules to acceptor
substrates from these donor nucleotide sugars and PAPS, respectively. Released nucleoside
diphosphates (NDPs) are hydrolyzed by nucleoside diphosphatase (NDPase) to form nucleoside
monophosphates (NMPs) and inorganic phosphates (Pis). NMPs and released adenosine 3, 5-
'-diphosphate (PAP) are exported in antiport with incoming nucleotide-sugars and PAPS. Pis exit
via a phosphate transporter.

have been identified in humans, whereas only eight NSTs and two PAPSTs have been
identified in humans (Fig. 2 and Table 1). This suggests that each of these transporters
likely regulates a broader range of glycosylation or sulfation reactions, as compared to
transferases, which appear to require more specificity.

Principles
Members of NST Family SLC35

NSTs and PAPSTs belong to the NST family. The SLC35 family was initially
classified based on sequence data from human NSTs. However, recently, a large
number of NSTs from many other species, including plants and worms, were cloned
and their activities identified. Available information about all NSTs and PAPSTs
whose NST or PAPST activity has been identified is presented in Table 1. Using the
amino acid sequences of these transporter molecules, their phylogenetic tree was also
constructed (Fig. 2). Given that the group of GDP-Man transporters was found near
the subgroups, SLC35C and SLC35D, we proposed to add this group as a new
subgroup to the SLC35 family, which has not been identified in humans. In addition,
it is worth mentioning that the specific NST activity of each nucleotide sugar could
not be easily estimated by the phylogenetic tree using similarity between amino acid
sequences. For the determination and estimation of the physiological function of each
member, the identification of its transporter activity is essential.
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Procedure
Identification of NST Activity

In general, two types of assays for identifying NST activity are used: a heterologous
expression system (Kamiyama et al. 2003; Suda et al. 2004) and a proteoliposome
system (Caffaro and Hirschberg 2006). The former method is discussed in this
section. A heterologous expression system makes use of a yeast expression system
for the expression of NSTs derived from various other species. This is done in order
to obtain a large enough microsome fraction expressing the NST of interest to allow
for the determination of its Km value. This is possible because the yeast microsome
normally shows only low endogenous NST activity, except for GDP-Man trans-
porter activity, which is highly present in yeast. The experimental procedure
consists of (I) a subcellular fractionation of yeast expressing the NST of interest
and (II) performing the NST activity assay.

(I) Preparation of subcellular fractionation of yeast (Saccharomyces cerevisiae)
expressing the NST of interest (Kamiyama et al. 2003, 2006; Suda et al. 2004,
Goda et al. 2006; Sasaki et al. 2009):

1. An NST coding region is inserted into the yeast expression vector
YEp352GAP-II with three copies of HA epitope tags (YPYDVPDYA) at
the position corresponding to the C terminus of the NST of interest. (An HA
tag can be inserted at the position corresponding to the N terminus if the
NST has an ER retention signal, a dilysine motif, at its C terminus.)

2. The yeast strain W303-1a (MATa, ade2-1, ura3-1, his3-11, hisl5, trpl-1,
leu2-3, leull2, and canl-100) is transformed by the lithium acetate
procedure using the yeast expression vector YEp352GAP-II.

3. In order to select the transformants, the transformed yeast cells are grown
at 30 °C in a synthetic defined medium that lacks uracil.

4. The cells are harvested and then washed with ice-cold 10 mM NaNj.

5. The cells are converted into spheroplasts by incubation at 37 °C for
30 min in spheroplast buffer (1.4 M sorbitol, 50 mM potassium phosphate

<
«

Fig. 2 Phylogenetic tree of the members of the nucleotide-sugar transporter family, solute
carrier 35 (SLC35). The phylogenetic tree was created based on amino acid sequences by using
the ClustalX program. Branch lengths indicate evolutionary distances between members. The
scale at the fop represents the evolutionary distance. The nucleotide sugars or PAPS that each
transporter transfers from the cytosol to the ER or Golgi lumen are shown in Fig. 1. Members
found in Homo sapiens are shown in red. At Arabidopsis thaliana, Af Aspergillus fumigatus, Bt Bos
taurus, Ce Caenorhabditis elegans, Ca Candida albicans, Cgl Candida glabrata, Cl Canis lupus
familiaris, Cg Cricetulus griseus, Cn Cryptococcus neoformans, Dr Danio rerio, Dm Drosophila
melanogaster, Eh Entamoeba histolytica, Hs Homo sapiens, Kl Kluyveromyces lactis, Ld Leish-
mania donovani, Lm Leishmania major, Mm Mus musculus, Os Oryza sativa Japonica, Pp Pichia
pastoris, Rn Rattus norvegicus, Sc Saccharomyces cerevisiae, Sp Schizosaccharomyces pombe, Ss
Sus scrofa, Tg Toxoplasma gondii, Tb Trypanosoma brucei.
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(pH 7.5), 10 mM NaNj3, 40 mM 2-mercaptoethanol, and 1 mg/g of cells of
zymolyase 100T (Seikagaku Kogyo Co. Ltd.; Tokyo, Japan)).

6. The spheroplasts are centrifuged into a pellet at 4 °C and washed twice
with 1.0 M ice-cold sorbitol to remove traces of zymolyase.

7. The spheroplasts are suspended in ice-cold lysis buffer (0.8 M sorbitol in
10 mM triethanolamine (pH 7.2), 5 pg/ml pepstatin A, and 1 mM
phenylmethylsulfonyl fluoride) and homogenized using a Dounce
homogenizer.

8. The lysate is centrifuged at 1,000 g for 10 min to remove unlysed cells and
cell wall debris.

9. The supernatant is centrifuged at 10,000 g for 15 min at 4 °C to obtain the
P10 membrane fraction pellet.

10. The supernatant is centrifuged further at 100,000 g to obtain the P100
membrane fraction pellet.
11. Each membrane fraction pellet is used for the NST activity assay.

The expression level of HA-tagged NST in each membrane fraction is
determined by western blot analysis using an anti-HA mouse monoclonal
antibody (Santa Cruz Biotechnology, Inc.; Santa Cruz, CA, USA).

(Il) The NST activity assay (Kamiyama et al. 2003, 2006; Suda et al. 2004; Goda

et al. 2006; Sasaki et al. 2009):

1. Each of the pellets described above (100 pg protein) is incubated at appropriate
temperature for 5 min in 100 pl of reaction buffer (20 mM Tris—HCI (pH 7.5),
0.25 M sucrose, 5.0 mM MgCl,, 1.0 mM MnCl,, and 10 mM 2-mercaptoethanol)
that contains 1 pM radiolabeled nucleotide sugars or PAPS substrate.

2. The reaction is stopped by adding 1 ml of stop buffer (20 mM Tris—HCI
(pH 7.5), 0.25 M sucrose, 5.0 mM MgCl,).

3. The radioactivity incorporated in the microsomes is trapped by a 0.45-pm
nitrocellulose filter. Then, the filter is washed with 10 ml of stop buffer and
trapped radioactivity is measured by using a liquid scintillation counter. The
amount of incorporated radioactivity is calculated as the difference from a
background value obtained by the same assay at corresponding temperature
at 0 min for each sample.

Functional Analysis of NSTs by RNA Interference

RNA interference (RNAi) is widely used for the functional analysis of a broad
range of biologically important molecules. The introduction and expression of
double-stranded RNAs into a cell results in the knockdown of expression of a
targeted gene through interference of this exogenously introduced RNA molecule
with the RNA molecule of the target gene (Kamiyama et al. 2003, 2011; Goda
et al. 2006; Sasaki et al. 2009). NST genes are no exception and can be targeted with
this same scheme. In embryonic stem cells, short hairpin RNAs (shRNAs)
expressed using sShRNA expression vectors and 21-25-nt synthetic small interfering
RNAs (siRNAs) can be used with effective knockdown efficiency (Sasaki
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et al. 2009). However, in mature mammalian cell lines, synthetic siRNAs are more
useful than shRNAs expressed using expression vectors (Kamiyama et al. 2006,
2011). In order to eliminate off-target effects, at least two different siRNA sequences
should be used. As long as the sequences used for knockdown are in the 3’ noncoding
regions, rescue experiments can be carried out by the over expression of knockdown
genes. The siRNA-induced knockdown of NST's had a delayed effect on glycosylation
compared to knockdown of genes coding for core proteins and glycosyltransferases.
Effect of synthetic siRNAs cannot be kept long. Thus, it is recommended that the
transfection of synthetic siRNAs should be repeated three times. For detailed descrip-
tions of experimental conditions, refer to the references (Kamiyama et al. 2003, 2006,
2011; Goda et al. 2006; Sasaki et al. 2009).

Results
Determination of Km Values

The Km values of human FRC1 (Hs SLC35D2/HFRC1) for nucleotide sugars were
determined by using the methods described above (Suda et al. 2004). Hs SLC35D2/
HFRC1 is the human ortholog of Drosophila Frc (Dm FRC) and C. elegans SQV-7,
which showed multi-substrate specific NST activity (Fig. 2). Hs SLC35D2/HFRC1
showed transport activity for UDP-GIcNAc and UDP-Glc and their Km values were
measured to be 8.0 and 2.1 pM, respectively. Km values of Dm FRC for
UDP-GIcNAc were 3 pM or 7.8 pM, where S. cerevisiae or Leishmania microsomal
vesicles was used for overexpressing HA-tagged Dm FRC, respectively (Selva
et al. 2001; Muraoka et al. 2007). The Km values for UDP-GIcNAc were not
very different between human and Drosophila.

The Km values of PAPST1 and PAPST2 from various species for PAPS were
also determined by using the method described above. Apparent Km values of
0.8 pM (Kamiyama et al. 2003), 1.2 pM (Kamiyama et al. 2003), 1.54 pM (Sasaki
et al. 2009), and 4.03 pM (Dejima et al. 2010) were determined for human PAPST1
(Hs SLC35B2/PAPST1), Drosophila SLL (Dm SLL), mouse PAPSTI1
(Mm SLC35B2/PAPST1), and C. elegans PST1 (Ce MO3F8.2/PST-1), respec-
tively. The Km values of PAPST1 for PAPS were not significantly different
between species. The Km values of 2.2 pM (Kamiyama et al. 2006), 2.3 pM
(Goda et al. 2006), and 1.49 pM (Sasaki et al. 2009) were measured for human
PAPST2 (Hs SLC35B3/PAPST2), Drosophila PAPST2 (Dm PAPST2), and mouse
PAPST2 (Mm SLC35B3/PAPST2), respectively. The PAPST2 of each species
showed a similar Km value as its PAPST1.

Functional Analysis by RNAi

NSTs or PAPSTs determine the status of glycosylation or sulfation by supplying the
donor substrates to glycosyltransferases or sulfotransferases, respectively. To study



1264 S. Nishihara

the role of PAPSTs in colorectal cancer, synthetic siRNAs were used in colorectal
cancer cell lines as a knockdown for human PAPST! and PAPST2 (Kamiyama
et al. 2011). In this study, the siRNAs were transfected three times, once every
3 days, in order to obtain optimal interference and inhibition. Knockdown of either
of the two PAPST genes reduced the amount of sulfation of glycans on cellular
proteins, FGF signaling, and also cellular proliferation. This result indicates that
PSPTs play a role in the proliferation of colorectal cancer cells by controlling the
sulfation state of their target molecules.

Comments

Many NSTs have been cloned to date, and their activity has also been identified
(Fig. 2 and Table 1). Several NSTs can transport the same nucleotide sugar. For
example, four types of human NSTs have been identified to be able to transport
UDP-GIcNAc, namely, Hs SLC35A3/UGTrel2, Hs SLC35B4/huYEA4, Hs
SLC35D1/UG, and Hs SLC35D2/HFRCI. Hs SLC35A3/UGTrel2, Hs SLC35B4/
huYEA4, and Hs SLC35D2/HFRCI1 are localized in the Golgi apparatus, while Hs
SLC35D1/UGTrel7 is localized in the ER (Table 1). The purpose of such redun-
dancy is not yet clear. One possibility is that specific glycosyltransferases bind to
each of these NSTs and use them differently. Redundancy can also be seen in
“PAPSTs,” such as PAPST1 and PAPST2, both of which are localized in the Golgi
apparatus of humans and other species (Table 1). In plants, there are many UDP-Gal
transporters in different SLC35 subgroups, SLC35B, SLC35D, and SLC35E, which
are yet other examples of redundancy for which the purpose is not clear (Fig. 2 and
Table 1). This unsolved issue of redundancy might be important for our under-
standing of the basic mechanisms underlying the glycosylation and sulfation
systems.
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