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1. Introduction

The pioneering works concerning control systems governed by second order
ordinary differential equations (SODE) with three point boundary condition
are developed in [2, 16]. In this paper we present some new applications of
the Green function introduced in [11] to the study of viscosity problem in
Optimal Control Theory where the dynamic is governed by (SODE) with m-
point boundary condition. The paper is organized as follows. In Sect.2 we
recall and summarize the properties of a new Green function (Lemma 2.1)
with application to a second order differential equation with m-point bound-
ary condition in a separable Banach space E of the form

ifit,x,f(t) + V”‘tr,x,f(t) = f(), t €[z, 1]

(SODE) m-2
e f(T) =X tr e p(1) = D etz p(0i)-

i=1
Here y is positive, f € L}g([O, 1]), m is an integer number > 3,0 < 7 <
N <m<---<nu2<lag e RIE=1,2,...,m— 2) satisfying the
condition

m—2 m—2

Dodi—ltexp(—y(l—1) =) aiexp(—ymi—1)#0 (LLD)

i=1 i=1

and u x, ¢ is the trajectory Wé’l ([, 1])-solution to (SODE) associated with
f e L}E([O, 1]) starting at the point x € E attime t € [0, I[. By Lemma 2.1,
Uy, ¢ and g g are represented, respectively, by

1
Urx,f (1) = e x (1) +/ G(t,5) f(s)ds, Vr € [z, 1]
0

) . 139G,
ey, (1) = ér () + /O —; G f(©)ds, Vi ez, 1]

where G is the Green function defined in Lemma 2.1 with

m—2

erx(t) =x 4 Ac(1 =Y a1 —exp(—y(t —))x, Vi € [1, 1]
-y
rx(t) =y A, (1 -> ai) exp (—y(t — T)x, Vr € [z, 1]

i=1
-1

m—2 m—2
Ar = (Z ai — 1+ exp(—y(1 = 1)) = > aiexp(—y (n; — r)))

i=1 i=1
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We stress that both existence and uniqueness and the integral representation
formulas of solution and its derivative for (SODE) via the new Green func-
tion are of importance of this work. Indeed this allows to treat several new
applications to optimal control problems and also some viscosity solutions
for the value function governed by (SODE) with m-point boundary condi-
tion. In Sect. 3, we treat an optimal control problem governed by (SODE) in
a separable Banach space

iif (1) + yiip(t) = f(1), f € Sk
(SODE) m2
i wp©) =x, wp(l)y=Y aup(n)

i=1

where I' is a measurable and integrably bounded convex compact valued
mapping and SIL is the set of all integrable selections of I". We show the
compactness of the solution set and the existence of optimal control for the
problem
iiy (1) + yig (1) = f (1), f €St
m—2
up©) =x, wup(l)y=Y aupm),

i=1

1
inf / J@up@), up@),iip(t))de.
restJo

These results lead naturally to the problem of viscosity for the value func-
tion associated with this class of (SODE) which is presented in Sect.4. In
Sect. 5 we deal with a class of (SODE) with Pettis integrable second mem-
ber. Existence and compactness of the solution set are also provided. Open
problems concerning differential game governed by (SODE) and (ODE) with
strategies are given in Sect. 6. We finish the paper by providing an applica-
tion to the dynamic programming principle (DPP) and viscosity property for
the value function associated with a sweeping process related to a model in
Mathematical Economics [25].

2. Existence and Uniqueness

Let E be a separable Banach space. We denote by E* the topological dual
of E; EE is the closed unit ball of E; £([0, 1]) is the o algebra of Lebesgue
measurable sets on [0, 1]; A = dt is the Lebesgue measure on [0, 1]; B(E) is
the o algebra of Borel subsets of E. By L }E([O, 1]), we denote the space of
all Lebesgue—Bochner integrable E-valued functions defined on [0, 1]. Let
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CEg ([0, 1]) be the Banach space of all continuous functions u : [0, 1] — E
endowed with the sup-norm and let C 115([0, 1]) be the Banach space of all
functions u € Cg([0, 1]) with continuous derivative, endowed with the norm

max{ max |lu(t)|], max ||11(t)||} .
tel0,1] t€l0,1]

We also denote Wé’l ([0, 1]) the space of all continuous functions in
CEg([0, 1]) such that their first derivatives are continuous and their second
weak derivatives belong to LIE([O, 1.

We recall and summarize a new Green type function given in [11] that is
a key ingredient in the statement of the problems under consideration.

Lemma2l.LetO<t<n<m<-<fp2<1l,y>0m>3bean
integer number, and a; € R (i =1, ..., m — 2) satisfying the condition
m—2

m—2
Yo —l+exp(—y(1—1)— > aiexp(=y(g —1) #0. (LLI1)

i=1 i=1

Let E be a separable Banach space and let G, : [t, 1] x [T, 1] — R be the
function defined by

1
G.(t,5) = ;(1 —exp(—=y(—s)), 1 <s<tr=<1
0, T<t<s<l1
Ar
+ (I —exp(—y(t = D) e (o), @.1)

where

m—2

I—exp(—y(1 =) — > o (1 —exp(—y(i —5)), T <s <m

i=1

m—2

pe(s) = 1 —exp(=y (1 =) = > i (1 —exp(—y (i =), m <5 <m
i=2

I —exp(=y (1 =), Mm—2 <8 <1,
2.2)



Optimal Control Problems Governed by a Second Order Ordinary ... 5

and
-1

m—2 m—2
A= (Z a — 1 +exp(—y(1 = 1) — Y _ e exp(—y (n; — r)))

i=1 i=1
(2.3)
Then the following assertions hold

(i) For every fixed s € [t, 1], the function G,(.,s) is right derivable on
[z, 1[ and left derivable on 1z, 1]. Its derivative is given by

(aGr> (t.s) = {exp(—y(l—s)), 1<s<t<l
+

ot 0, T<t<s<l
+Arexp(—y (t — 1)) (s), 249

+ A exp(=y (t —1))p (5).
2.5)

(8Gf> (t.5) = {gxp(fy(tfs)), r<s<rt<l

ot T<t<s<l1

G

(ii) G- (-, -) and °C

L (-, -) satisfies

G
|G+ (1, 5)| =< Mg, and ‘a—t’(t,s) <Mg,, V(@ s)elr,1]x[z1],

where
m—2
Mg, = max{y !, 1} |:1 + |A¢| (1 + Z |05i|>:| .
i=1

(iii) If u € W' ([z, 1]) with u(t) = x and u(1) = Y- aju(n;), then

1
u(t) = eqx(t) +/ G (t,$)(i(s) +yu(s)ds, Vitelr, 1],

where

m—2

erx(®) =x+Ac(1 =) a)(1 —exp(=y(t — T)x.

i=1

(iv) Let f € L}E([t, 1) and letuy : [t, 1] — E be the function defined by

1
ur(t) =erx(t) +/ G.(t,s)f(s)ds, Vtelr,1].
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Then we have
m—2

up(ry=x, wup(l) =Y aupm).
i=1
Further the function uy is derivable on [z, 1] and its derivative iy is
defined by

) _upt+h) —upt) . 139G,
it p (1) = lim ! - L2 — () + f 5 () f()ds,

with

m—2

bex(®) =y A (1= ai)exp(—y(t —T))x.
i=1
W If fe L}S([r, 1)), the function iy is scalarly derivable, and its weak
derivative ii y satisfies
iip()+yurt)=f(t) ae te]r,1].
Proof. (1) Lets € [r, 1] and ¢ € [7, 1]. We consider two following cases.

Case 1t # 5. Forevery small 4 > O with 4 < min {|t — 5|, 1 — ¢}, we
have

(Vh)_l exp(—y (t —s)) (I —exp(—yh)),
Gf(t—l—h,s)—GT(t’s)_ T<s<t<l

h 0.

T<t<s<l]
+Arexp(—y (t — 1))
x (I —exp (—=yh) (yh) ™" ¢ (s).
Hence G, (-, s) is right derivable at ¢ € [z, 1[\ {s} and

9G exp(—y (t =),
(1) 0
a ),

0, T<t<s<l
+Arexp(—y (t — 1)) ¢ (5).

Similarly, it is not difficult to check that G (-, s) is left derivable at ¢t €
Iz, 1]\ {s} and

T<s<t<l

exp(—=y (t—ys)), t<s<t=<1

0G¢
o (t,s) =
r)- 0, T<t<s<l

+Arexp (=y (t = 1)) dr (5).
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Case2t=s5.Given0 < h < 1 — 5. We have

G‘[ (t+h7s)_GT (t,S)

- = (yh)~' (1 — exp (—yh))

+ Arexp (—y (t — 7)) (1 — exp (—yh))
x (yh) L ¢ (),

hence

G,
( 3 ) (5,8) =1+ Arexp(=y (s — 1)) ¢ (5) .
r /4

Now given 0 < h < s — 7. We have

GT (t_h’s)_GT (t’s)
h

= Arexp(—y (t — 1))
x (1 —exp (—yh) (yh) ™' ¢ (),

hence

0G;
( p ) (s,8) =Arexp(—y (s — 7)) ¢ (5).
t /4

(i1) Itis easy to see that |¢p,(s)| < 1 + Z;”:_lz |aj| for all s € [0, 1]. So, from
the definition of G, we deduce that for all s, ¢t € [7, 1]

1 m—2
Gett )l < [1 + 1A (1 +> '“"')} < Mg,.

i=1

Similarly we deduce that for all s, t € [z, 1]

“(t,s)

oG
ot

m—2
< 141 Acl g ()] < 1+ |Aq| (1 +3 |a,-|) < Mg,.

i=1

(iii) Let x* € E*. By definition of G, for all ¢t € [z, 1], we have

1 1
<x*,/ G,(t,s)ﬁ(s)ds>=/ (x*, G (1, 5)ii(s))ds

1 t
= ;/ (1 —exp(—y (t —5))) (x*, ii(s))ds

Ac : ..
+ 7(1 —exp(=y(t — T)))/ (x*, pe (9)ii(s)) ds.
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On the other hand
t
/ (1 —exp(—y(t —s))) (x*, ii(s))ds

t
= (exp(—y(t — 1) — D) (x",i(v)) + V/ exp(—y (t — $))(x*, i(s))ds

and frl (x*, ¢ (8)ii(s))ds = Iy + I, where

m—1

1122f

i=1 YN~

ni
1 (1 —exp(=y (1 — ) (x*, ii(s))ds

1
= (exp(—y(1 — 1) = D) (x*, () + J// exp(—y (1 — ) {x™, 1i(s))ds

m—2m—2

12=—22(xj

ni
f (1 —exp(—=y (j — s))(x*, i(s))ds
i=1 j=i Um~l
m—2
==Y o (exp(—y (g — 1) — D) (x*, k(7))
i=1
m—2m—2

ni
s Z Z /n-f] exp(—y (i — $)){x*, u(s))ds

i=1 j=i

withng = 7, ny—1 = 1.
Hence

1
<x*, / Gf(r,s)<ii<s>+yu(s))ds>

1
;(GXP(—V(I — 1)) — D", (1))

Ac .
+ 7(1 —exp(—y(t — )", (1))

m—2
x [exp(—y(l —1) = 1= e (exp(—y(ni — 1)) — 1)}

i=1

¢ m—2 m—2
+/ (x*, 1(s))ds + A (1 — exp(—y1)) Z (1 — Z aj)

i=1
mi
x/ (x*, u(s))ds.

nNi—1

j=i
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This implies that
(x*, /01 G (t,s)(s)+yu(s))ds) = (x*, u@)—er ,(2)), Vtelr,1].
Since this equality holds for every x* € E*, we get
u(t) =erx(t) + [1 G.(t,s)(ii(s) +yu(s))ds, Vtelr, 1]
T

@iv) Let f € L}E([O, 1) and us(t) = eqx(t) + frl G.(t,s)f(s)ds, Vt €
[0, 1]. Then, by definition of G; in (i), we have u s (t) = x and

1 1
u (1) =ef,x<1>+;/ (1 — exp(—y (1 — ) f(s)ds
A; ‘ 1
50— exp(-y (1 - 1) / $e(5) f(s)ds
1 1
= e+ / [1 = exp(—y (1 = 5)) — de ()] £ (5)ds

1 1
4[4 —exp(—y (1 = o) +1] / $2(5) f(s)ds

m—2m—2

1 i
SCRUEEDY > f (= exp(oy =)/ 0)ds
i=1 j=i i~

m—2

A; !
Y a1~ ey (= 1) [ oeor50as
i=1 T

1 m—2 ni
— e+~ Y a /0 (1 = exp(=y (ni — ) f(5)ds
i=1

m—2

A; !
+ > il —exp(—y(mi — 1)) / ¢ (5) f (5)ds.
i=1 T

From the definition of e, . (¢) and A;, we deduce that

m—2

ern(l) = x + A (1 = Zm) (1 —exp(—y(1— 1) x

i=1

i=1

m—2
= A [AT‘ +1—exp(—y(1—1) + Y ai (exp(—y(1 - 1)) — 1>} x

m—2 m—2
= A [Z aiexp(—y(1—1) = Y a;exp(—y(n; — r))} x

i=1 i=1
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and
m—2
eox)=x+A; [ 1= aj | (1 —exp(—y(mi —1)))x
j=1

m—2 m—2
= A, {ATI +1—exp(—ymi —T) — Y aj+exp(—y(mi —1) Yy oe,} x

j=1 j=1

m—2
=A; [eXp (—y(1 = 1) —exp(=y (i — 7)) +exp(—y (i — 1) Y _ @;

j=1

m—2
+ ) ajexp(—y(n; — r))} x.

j=1

Hence we deduce that

m—2
Z aier x (1)
i=1

m—2 m—2
= A, {Z aiexp(—y(1—1) = Y aiexp(—y (i — 1))

i=1 i=1

m—2 m—2 m—2
+ (Z ij) Z a;exp(—ymi — 1)) — (Z a,->
Jj=1 i=1 i1

m—2
x ) ajexp(—y(n; - f))} * = enx(D).

j=1

So, by combining the above relations, we get

m—2 m—2 .
1 ni
wp(l) =Y ajecc(n) + - Y /0 (1 — exp(=y (n; — $))) f (s)ds
i=1 i=1
A m—2 1
+7r > (1 —exp(—y (i — r)))/ ¢ () f(s)ds
i=1 T
m—2

_ 1 ni
=Y [e,,xmi) + fo (1 = exp(=y (i — ) f(5)ds

i=1
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AL 1
+ 7(1 —exp(—y(mi — 1) [ ¢ (s)f(s)ds
T

m—2
=Y aius(n).
i=1

On the other hand, by the same arguments as in [2] we can conclude that
u s is derivable and its derivative # 7 is defined by

, . LG
up(t) =érx(t) +/ E(t’ s)f(s)ds, Vtel0,]1].

(v) Indeed, let ¢ € [0, 1]. Using the expression of 88—? in (i) we have
t
i) = )+ [ exp(oy(t =) 7(5)ds
1
+Acexp(—y(r — T))/ ¢ () f(s)ds.
Whence
R
(X)) = E(X g (1))
d t
= (x*, & (1)) + E/ exp(—y (t —$)){(x*, f(s))ds
1
—Aryexp(—y(t — f))/ (x*, ¢ (s) f (s))ds
t
= (X", érx (1)) + (x*, (1)) — V/ exp(—y (t — $)(x™, f(s))ds

1
—Ary exp(—y(t — f))/ (x*, dc(5) £ (5))ds.

We also note that €; (t) = —yé x(¢). Therefore
(i @) = (x*, f@) — (x*, yieg ().
This implies that i ¢ is scalarly derivable and

i) +yur@)=f@t) ae tel01]



12 C. Castaing et al.

The following result is a direct application of Lemma 2.1.

Lemma 2.2. With the notations of Lemma 2.1, assume 0 < 7 < n) <1 <
ces < me2 < 1L,y > 0, m > 3 be an integer number, and a; € R
i=1,....m—=2)and (1.1.1). Let f € Cg([t,1]) (resp. f € L}E([r, 1]).
Then the m-point boundary problem

Urx, (1) + v @) = f(1), t € [7,1]
m—2

e f (1) =Xtz p(1) = Y aitte p(0i)

i=1

has a unique CIZ:"([T’ 1])-solution (resp. Wé’] ([z, 1])-solution) which is given
by the integral representation formulas

1
ur,x,f(t) = et,x(t) +/ G (t,8)f(s)ds, t € [7,1]

) ) 139G,
iy x, f(1) = ér x(1) +/ W(t,S)f(S)ds, telr, 1]

where

m—2

erx(t) =x+A:(1 =) a;)(1 —exp(—y(t — T))x,
n‘lijl

erx(t) =vA; (1 - Zai) exp (—y(t — 1))x,
i=1

m—2 m—2
A = (Z a — 1 +exp(—y(1 = 1)) = > aiexp(—y (n; — r)))

i=1 i=1

Remark. It is clear that the Green function G, depends on . When t = 0,
(1.1.1) is reduced to

m—2 m—2
D= 1+exp(—y) = D aiexp(—y(m)) #0 (1.1.2)

i=1 i=1

where m is an integer number > 3,0 <ny <m <--- <np—2 < l,a; €R
(i=1,2,...,m —2). Then the m-point boundary problem

iy, f (1) +yux p(t) = f(0), t €[0,1]
m—2

e, 1 (0) =X 1y p(1) = Y ety (n)

i=1
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has a unique C%([O, 1])-solution (resp. Wé’l ([0, 1])-solution), uy s, with in-
tegral representation formulas

1
Uy, (1) = ex(t) +/ Go(t,s) f(s)ds, t €0, 1]
0
. . 198Gy
tiy, () = éx(t) +f W(t,s)f(s)ds, t €[0,1]
0

where

m—2

ex(t) = x + Ao(l — E o) (1 —exp(—y1)x,
i=1
m—2

éx(1) =y Ao (1 - Oli) exp (—y1)x,

i=1

m—2 m—2
Ag = (Z @ —l+exp(—=y) — Y o eXP(—V(m))>

i=1 i=1

—1

This remark and its notation will be used in the next section.

3. Existence of Optimal Controls

Let us recall the following denseness result based on Lyapunov theorem. See
e.g. [12,28].

Proposition 3.1. Let E be a separable Banach space. Let I' : [0, T] —
cwk(E) be a convex weakly compact valued measurable and integrably
bounded mapping. Let ext (I') : t — ext(I'(t)) where ext(I"(t)) is the set of
extreme points of I'(t)(t € [0, T]). Then the set S}w of all integrable selec-
tions of I' is convex and o (L1, L%.)-compact and the set of all integrable
selections Se]x[ ) of ext(I') is dense in S} with respect to this topology.

Proof. Seee.g.[12, 28]. m]

In this section we will assume that the hypotheses and notations of
Lemma 2.1 hold with T = 0.

Theorem 3.1. With the hypotheses and notations of Proposition 3.1, let E be
a separable Banach space and let T" : [0, T] — ck(E) be a convex com-
pact valued measurable and integrably bounded mapping. Let us following
(SODE)
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iip(t) +yipt) = f(t), f e Sk

(SODE)r m—2
ur(0)=x, wur(l)= Zaiuf(m)

i=1
lig(t) +yug(t) =g(t), g € Selx[(r)

(SODE)¢xs(r) m=2
TN ue@ =x. w1y =3 wiugmi).
i=1
Then the set{uy : f € Sll} of Wé’l([O, 1])-solutions to (SODE)r is compact
in CIIZ([O, 1]) and the set {ug : g € Selxt(l")} of WI%’I([O, 1])-solutions to
(SODE) ¢y (1) is dense in the compact set {uy : f € SII“} of Wﬁil([O, 1])-
solutions to (SODE) .

Proof. Step 1. Compactness of the solution set {u s : f € SIL} in C};([O, 1]).
Let (uz,) be a sequence of WZJI([O, 1])-solutions to (SODE)r. As S}-
iso(LL, L%)-compact, by Eberlein—Smulian theorem, we may assume that

(fi) o(LL, L%i)—converges to fo € Sll. From the properties of the Green
function G in Lemma 2.1 (by taking t = 0) we have, for eachn € N,

1
ug, () = ex(t) —i—/ Gol(t,s) fu(s)ds, t €0, 1], (3.1.1)

0

1
iy, (1) = eéx(t) +/ %(l, s) fn(s)ds, t €0, 1], 3.1.2)

0
ii 1, (1) + yii;, (t) = fo(t) € T(1),a.e. t € [0, 1] (3.1.3)
with
m—2

ex(t) = x + Ao(1 = Y ai)(1 —exp(—y1)x, 1 € [0, 1]
i=1
m—2

éx(t) = y Ao (1 -> a,-) exp (—yt)x, t €[0,1]

i=1

m—2 m—2
Ay = (Z a — l+exp(—y) — ) o eXp(—V(m))>

i=1 i=l1

-1

On the other hand, from definition of the Green function G¢ in Lemma 2.1(iv)
and (3.1.1), it is not difficult to show that {u s, : n € N} is equicontinuous
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in Cg([0, 1]). Indeed, let ¢,¢' € [0, 1], from (3.1.1) and (iv), we have the
estimate

g, () —ug, (]|

1
< llex(t) = ex ()| +/(; |Go(t, s) = Go(t', )| |lii 5, (s) + yit s, (s)llds

1
< llex(t) — ex ()| +/(; |Go(t, ) — Go(t', )| IT(s)lds.

Further, for each ¢t € [0,1] {uys,(t) : n € N} is relatively compact be-
cause it is included in the norm compact set e, (1) + fol Go(t, s)T'(s)ds (see
e.g. [12, 14]). So by Ascoli’s theorem, {uy, : n € N} is relatively com-
pact in Cg ([0, 1]). Similarly using the properties of % in Lemma 2.1 and
(3.1.2) we deduce that {L'tfn ‘n e N} is equicontinuous in Cg ([0, 1]). In
addition, the set {iif, (r) : n € N} is included in the compact set éx(f) +

01 % (t,s) T (s)ds. So {L'tfn ‘n € N} is relatively compact in Cg ([0, 1])
by Ascoli’s theorem. From the above facts, we deduce that there exists a sub-
sequence of (u f")n o still denoted by (u fn)n <N Which converges uniformly
tou® € Cg ([0, 1]) withu® (0) = x, u®> (1) = Z;”:_lz a;u® (n;). Similarly,
we may assume that (L'tfn) converges uniformly to v>° € Cg([0, 1]). Further-
more, by the above facts, it is easy to see that (u fn) o (L, L%)-converges

to w™® € L}E ([0, 17). For every ¢ € [0, 1], using the representation formula
(3.1.1), we have

1
WX () = lim uy, (f) = ey (1) + lim/ Go(t, 5) (i, (s) + yii 5, (s))ds
n—oo n—>o0 J

1 1
=e,;(t) + lim / Go(t, 8)ii f,(s)ds + y lim / Go(t, s)i s, (s)ds
n—0o0 0 n—0o0 0
1 1
=e, () + / Go(t, s )w™(s)ds + y / Go(t, s)v>(s)ds
0 0

1
=e. () + / Go(t, s)(w™(s) + yv™(s))ds. (3.1.4)
0

From (3.1.4) and Lemma 2.1(iv), we deduce that u® is derivable and its
derivative 1™ is given by

1
u®(t) = éx(r) +f %(t, (W™ (s) + yv™(s))ds, vt € [0, 1]. (3.1.5)
0
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Now using the integral representation formula (3.1.2) we have, for every ¢ €
[0, 11,

1aG
v(1) = lim iy, (1) = éx(t) + lim / —O(t, s)(i g, (s) + yug,(s))ds
n—00 n—oo Jq ot

1
. . dGo ..
:ex(t)+nlirgo/0 T(I,s)ufn(s)ds
1
oG
+y lim 8—t0(l,s)b'tfn(s)ds

n—0oo 0
LFTe LG
:éx(t)+/ —O(t,s)woo(s)ds—i—y/ 201, $)veo (5)ds
o Ot o Ot

1
=é,() + /0 %(Z, ) (WX (s) + yv>(s))ds (3.1.6)

so that by (3.1.5) and (3.1.6) we get v™° = 1°°. Now invoking Lemma 2.1(v)
and using (3.1.4) we get

U@ +yu®™ @) = we@) +yv>e@) = w® @) +yua>@¢) ae. te]l0,1].

Thus we get ii®°(t) = w*>(t) a.e.t € [0, 1] so that by (3.1.4)
1
u®(t) = e (t) +/ Go(t, )l (s) + yu(s))ds, te][0,1]
0

m—2
W) =x, w®(l)=Y ou™ ).
i=1
(3.1.7)
Step 2. Main fact: u® coincides with the Wé’l([O, 1])-solution u s, associ-

ated with f € SIL to

i () +yup, () = fool®),

m—2
(3.1.8)
up O =x, up ()= s ().

i=1
Remember that

lif, (1) +yuy () = fu),

m—2

w0 =x, ug(l)=> euym)
i=1
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and by the above fact, (ii s, + y 1 r,) converges weakly in L 2([0, 1) to &> +
yu®. Letv € LE. ([0, 1]). Multiply scalarly the equation

ii f, (1) + yiiy, (1) = fult)
by v(¢) and integrating on [0, 1] yields

1

1
/o (v(t),ﬁﬁ,(t)eruﬁ,(t))dt=/0 (v(), fn())dt. (3.1.9)

It is clear that

1 1
lim (), ii g, () + vy, (1))dt :/ (v(2), i) + yu(t))dt
0

n—oo 0

1 1
=nli)rgof0 (v(t),fn(t)>dt=/0 (v(1), foo(t))dt

so that
i+ yu® = foo. (3.1.10)
Using (3.1.7), (3.1.8), and (3.1.10) and uniqueness of solutions we get u® =

u r.. This proves the first part of the theorem, while the second part follows
from Proposition 3.1 and the integral representation formulas. O

Now comes a direct application to the existence of optimal controls for
the problem
iif (1) +yip(t) = f(0), f €5f
m—2 (*)
up©O) =x, wup(l)y=Y aup(m),

i=1

1
inf/ J(@t, up(t), up(t),iip(t))dr. ")
festJo

Theorem 3.2. Under the hypotheses and notations of Theorem 3.1, problem
(*)~(**) admits an optimal control.

Proof. Let us set m := inffes} fol J(t,up(t), uyp(t),iip(t))dt. Let us con-
sider a minimizing sequence (uy,, it s, , i f,), that is

1
lim J(tugp, (1), 1y, (), g, @)dt =m.

n—oo 0

Since (f;) is relatively weakly compact in L}E([O, 1]), we may assume that
(fn) converges weakly in L}E([O, 1]) to f. Applying the arguments in the
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proof of Theorem 3.1 shows that (u f,) converges uniformly to (uf), (g,)
converges uniformly to L't? and (i 1) o(LL, L) -converges to ii7 with

iz (t) + yuz(t) = f@,

m—2
ur0) =x, up(l) =D aup(n).
i=1
Now apply the lower semicontinuity for integral functionals ([14], Theo-
rem 8.1.6) yields

1 1
lim inf/ J(@t, ug, (), iy (), iif()dt > / J(t, u7(t), L‘tf(t), iif(t))dt >m.
0 0

n—oo

Hence we conclude that

1

1
m = inf/ J(t,uf(t),L‘tf(t),iif(z))dt:/ J(z,u7(t),u7(t),i4'7(t))dt.
reskJo 0

0O

Now along the paper we will assume that the hypotheses and notations of
Lemma 2.1 hold.

4. Viscosity Property of the Value Function

The results given in Sect. 3 lead naturally to the problem of viscosity for the
value function associated with a second order differential inclusion. Similar
results dealing with ordinary differential equation (ODE) and evolution inclu-
sion with control measures are available in [2, 7, 14, 16]. In this section we
treat a new problem of value function in the context of second order ordinary
differential equations (SODE) with m-point boundary condition. Assume that
E is a separable Banach space, Z is a convex compact subset of E and S é is
the set of all Lebesgue measurable mappings f : [0, 1] — Z (alias measur-
able selections of the constant mapping Z). For each f € S % let us denote
by u: x r the trajectory solution associated with the control f € § IZ starting
from x at time 7 € [0, n1[ to

e, f(1) + yiex p (1) = ft), 1 €[7,1]

(SODE) m=2
e f (1) =%, e p(1) = Y itte e (i)

i=1
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with the integral representation formulas

1
Urx, (1) = e x(1) +/ G(t,5)f(s)ds, 1 €[, 1]

oG “4.1)
e 0 = b+ [ ) )5, € 1)
and
m—2
er () =x+ A (1= )l —exp(—y(t —D))x, t € [1, 1]
.3
rx(t) = yA; (1 - ou) exp (=y(t —=0)x, 1 €[z, 1]
i=1
m—2 m—2 -
A = (Z a — 1 +exp(—y(1 = 1) = Y aiexp(—y (n; — t)))
i=1 i=1
“4.2)

where the coefficient A; and the Green function G are given in Lemma 2.1.

By the above considerations and Lemma 2.1(ii), it is easy to check that
li¢ 5, r are uniformly majorized by a continuous function ¢; : [7, 1] — RT,
namely

1 3G,
[litrx, r (D] < IIeT,x(t)||+/ | o @ I f)ds
1 3G,
< IIeT,x(t)||+/ I o (t, ) Zlds = c (1), Vt € [, 1]. (4.3)

It is worth mentioning that integral representation formulas (4.1) and (4.2)
will be useful in the study of the value function we present below. Let us
mention a useful lemma that is borrowed from ([16], Lemma 6.3) and ([7],
Lemma 3.1).

Lemma 4.1. Assume that (1.1.1) is satisfied. Let (ty, xo) € [0, ni[x E and let
Z be a convex compact subsetin E. Let A : [0, T] x E x Z — R be an upper
semicontinuous function such that the restriction of A to [0, T] x B x Z is
bounded on any bounded subset B of E. If

maxZEZA(t07 X0, Z) <—n< O
for some n > 0, then there exists o > 0 such that
to+o on
sup {f AT, ugy xg, £ (1), f(t))dl} <-3
fo

1
fes;
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where uy, ., r is the trajectory solution associated with the control f € S %
starting from x at time t to

iito,xo,f(t) + yl’.tt(),xo,f(t) = f(t)v 1 e [t()a 1]
(SODE) m=2
iy xg. £ (10) = X0, Uigxg, f (1) = Y ity g 1 (i)
i=1
Proof. By hypothesis, one has max,cz A (ty, xo,z) < —n < 0. As A is upper
semi continuous, so is the function

(t,x) > max A(t, x, z).
zeZ

Hence there is ¢ > 0 such that

max A(t, x,z) < _7
z€Z 2

forO <t —1ty < eand||x —xo|| <é&.ASily, x, s is uniformly bounded for all
f e SIZ and for all ¢ € [19, 1] by using the estimate (4.3) we can take 0 > 0
such that [|uy, xo, £ (t) — sy x, F(t0)|| < € forall z € [to, 1o + o] and for all
fes é Then by integrating

to+o o
[r?eazxA(t’ Uy, xo, (1), 2)]dt < -

fo+o
/ Nt gy, (1), f(2))dt < /
1

0 fo
forall f €S % and the result follows. O

For simplicity we deal first with a dynamic programming principle (DPP)
for a value function V; related to a bounded continuous function J : [0, 1] x
E x Z — R associated with

W) +yu@) = f@), feSh, telr, 1]

m—2

w(@) =x, u(l) =Y au(n).

i=1

(SODE)

The following result is of importance in the statement of viscosity.

Theorem 4.1 (of Dynamic Programming Principle). Lez (1.1.1) holds. Let
x€eE0<T1<n <. <npo<lando > 0 such that t + o < n.
Assume that J : [0,1] x E x E — R is bounded continuous such that
J(t,x,.) is convex on E for every (t,x) € [0, 1] x E. Let us consider the
value function

1
VJ(T’X) = Sup{ J(tsu‘[,x,f(t)v f(t))dt}7 ('L',.X) € [Oa 771[XE
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where u; y, r is the trajectory solution on [t, 1] associated the control f € S é
starting from x at time t to

g, f (1) + yiex f (1) = f(t), 1 €[1,1]

(SODE) m=2 (4.4)
e f(T) =X, tr e p(1) = D etttz e p(0i)-

i=1

Then the following hold

T+0o
Vy(z,x) = sup {/ J(t uex p (), f@)dt +Vi(T +0,urx (T + 0))}
fesy Wr

with

1
Vi(t +o0,ucx (T +0)) = sup / J(t, UrJrcr,uf‘x,f(qua),g(t)v g(t))dt
geSlz T+0

where Vrto,ury f(t40).8 denotes the trajectory solution on [t + o, 1] associ-
ated with the control g € S} starting from u; x (t + o) at time T + o io!

ijr+a,uz.x,f(r+o),g(t) + yi)t+0,u1,x,f(r+a),g(t) = g(t)7
ter+o,l1]

(SODE) vf+‘7’”f,x.j'(f+‘7)sg(r +o)= uf,X,f(f +0), 4.5)
m—2
Ut-i—ﬂ,ufvx,_/(r-}—(r),g(l) = Z aiUt-i—a,ur,x,f(t-i-d),g(771')-

i=1

Proof. Let

T+o
Wi (t,x) := sup {/ Stz p (1), f(0)dt + V(T +0, Uz p(T+ a))} :
resy Wr

For any f € SL. we have

1
/ (s ten (1), F())d1

1

T+0
_ / Tt ter (), FO)d1 + / Tt ter (), F())L.

+o

Uoge s necessary to write completely the expression of the trajectory
Vrtour . f(T40),8 that depends on (f, g) € S]Z X SIZ in order to get the lower semi-

continuous dependence with respectto f € Sé of Vy(r +o,ury r(t +0)).
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By the definition of V;(t + 0, uz x, r(t + o)) we have

1

Vit 40y ttrn (7 +0)) = / It ten (1), F))d1.
T+0

It follows that
1
/ Tt tte e £ 0), ()
T
T+0o
< / J(tugy r @), f@)dt +Vi(t +0,urx (T +0)).
T

By taking the supremum on S % in this inequality we get

T+o
Vi(z,x) < sup{ J(t urx p (1), f(0))dt + V(T +0,urx f (T +0))}
feSé T

=Wy (‘L’, X )
Let us prove the converse inequality.

Main Fact: f — V;(t + 0, u x, r(t + o)) is lower semicontinuous on SIZ
(endowed with the o (L1, LT)-topology).
Let us focus on the expression of Vj(t + o, ur (T +0))

1
Vi(t +o0,ucx (T +0)) = sup / J(, Ur-i—o,u,yxyf(r-i-a),g(t)» g(t))dt
ges), | Jtto ‘

where vy, F(r+o).g denotes the trajectory solution on [t + o, 1] associ-
ated with the control g € Slz starting from u; , ¢(t + o) at time T + o to
(SODE) (4.5). By the integral representation formulas (4.1) (4.2) given above
we have
1
UT+U,u,_x.f(r+o),g(t) = €r40,ucy, f(1+0) @) + /+ Giqo(t,s)g(s)ds
TT1+0

with

€r40,uzr y f(T40) ®)
m—2
=ury f(t+o)+Arqo(l— Z o) (1 —exp(—=y(t — (r + 0))urx (T +0).
i=1
Itis already seen in the proof of Step 1 of Theorem 3.1 that f +> u; » s from
SIZ into Cg([t, 1]) is continuous when SIZ is endowed with the cr(L1 , L%‘i)
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topology and Cg([7, 1]) is endowed with the norm of uniform convergence,
namely, when f, o (L} , LE.)-converges to f € S ), then u, f, converges
uniformly to u . f, this entails that

€r40,urx, fy (t+0)1) > €rto,ury f (T +0)@)
for every ¢t € [, 1]. Further, when g, G(L}E, L%.)-converges to g € st

by compactness of Z, and the boundedness property of G,y (f,s) in
Lemma 2.1, it is not difficult to check that

1 1
/ Grio(t, 5)gn(s)ds — / Grio(t,5)g(s)ds
T+o T+o

for every ¢ € [t, 1]. Therefore

Vtto,urx, f, (T+0),8n @) — Ur+a,ur_xyf(r+0),g(t)

for every ¢ € [t, 1]. Hence in view of ([14], Theorem 8.1.6) we deduce that

1
(Fo) = [ i i 0. 8O0
T+o

is lower semicontinuous on S} X Sé using the above fact and the con-
vexity assumption on the integrand J (¢, x, .). Consequently f — V;(t +
0, U x, (T + o)) is lower semicontinuous on § % Hence the mapping

T+o
f= / J( e, @), f(O)dt + V(T 40, urx p(T +0))

is lower semicontinuous on Slz. Since Slz is weakly compact in L]E([O, 1),
there is f! € Sé such that

T+0
Wj(z,x) = sup {/ J(@ urx g @), fF@)dt + V(T +o,urx f(T +cr))}
fesy Wr

T+0
= / J(tug o (), fL@O)dt+ V(T +0,u, (T +0).
T

Similarly there is g2 € S ]Z such that

1
Vit +o, Urx, fl (t+0)) = sup / J(t, erro,uTX /1 (r+a),g(t)’ g(1))dt
geSIZ T+o "

1
/ R O R G)
T+0o o
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where v 1@+0). & (t) denotes the trajectory solution on [t + o, 1]

r+a,utx

associated with the control g2 € S% starting from u, , (7 + o) at time
T+oto

. . 2

UT+U’ur,x.f1 (t40),8? ®) + yvt+d’ur,x,fl(f+‘7)v82 ) =g @),
telr+o,1]

(SODE) vT+U’ur,,r,fl (‘L’—I—U),gz (T + 0) = u‘[’x,fl (t + 0—)7

m—2

vT+U’ur,x_fl (r+o),g2(1) = Z o Uf+g,um(’fl (t+0).8% (n:)-
i=1

Let us set

o= lrtorf + lgonn
Then f € Sé (because S% is decomposable). Let W F be the trajectory
solution on [z, 1] associated with ? €S %, that is

W, (0 +yi, 7)) = f@), 1 €[, 1],

m—2

w70 =x, w 7(1) =Y ww, 7).

i=1

By uniqueness of solution we have

wr’x"?(t) = Mr,x’fl(t), Vit elr,t+o0],

w, 7)) = Vrtou, fl(r+a),g2(t)’ vVt e[t +o0,1].
Coming back to the expression of V; and W; we have

Wj(t, x)

T4+0 1
=/ J(t,ur’x’fl(t),fl(t))dt+/ J(t, Ve ygu /_I(Tﬂ,)’gz(t),gz(t))dt
T T+o T

1
= / T, w,  7@), f@)dt

1
< sup { | St urx p (1), f(£))dt}) = Vy(T,x).

Here are our results on viscosity of solutions for the value function.

Theorem 4.2 (of Viscosity Subsolution). Assume that E is a separable
Hilbert space. Assume (1.1.1) and J : [0,1] x E x E — R is bounded
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continuous such that J(t, x, .) is convex on E for every (t,x) € [0, 1] x E.
Let us consider the value function

1
VJ(Ta X) = Sup {/ J(tv u‘[,x,f(t)v f(t))dt k] (T,X) S [Ov UI[XE
fes, Ut

where u; ¢ is the trajectory solution on [t, 1] associated the control f € S IZ
starting from x € E at time T to

e, f (1) + yitex, f (1) = f(1), 1 € [1,1]

(SODE) m—2
Urx, f(T) =X, e i p (1) = Z itz x, £ (i)
i=1

Then V) satisfies a viscosity property: For any ¢ € C'([0, 1] x E) such that
Vj reaches a local maximum at (t, xo) € [0, n1[ X E, then

1

0 X G
22 (0. x0)+max{J (19, X0 2)}+6* (Ve (1o, x0). é19.xo (10)+ / " (19, ) Zds) > 0.
ot zeZ n 0

Proof. Assume by contradiction that there exist a ¢ € C1([0, 1] x E) such
that V; reaches a local maximum at (g, xg) € [0, n1[x E for which

1

ap " . 9Gy,
E(to, x0) + Iglea?{f(to, X0, 2)} + 8" (Vo(to, x0), €1y, (t0) + T(IO, §)Zds)

)

<-n<0

for some n > 0. Applying Lemma 4.1, by taking

X . 196Gy, dp
At,x,2) = J(t,x,2) + 8" (Vo(t, x), er,x () + ar (t,5)Zds) + 5(&)6)
1o

yields o > 0 such that

to+o
sup {/ J(t, ugy,x, £ (), f(2))d2
resl W

1

fo+o . . 3Gz0
+/ 8 (V(ﬂ(tauto,xo,f(t))»eto,xo(f)+/ o7 (t,8)Zds)dt
I 0]

fo+o 9
+/ _go(ts uto,xo,f(t))dt}
4 ot

0

an
—— 4.2.1
<=3 4.2.1)



26 C. Castaing et al.

where uy, x,, r is the trajectory solution associated with the control f € Sé
starting from xg at time f to

ligg,xg, f (1) + Yty xo, £ (1) = f(0), 1 € [10, 1]

(SODE) m=-2
ut(),xo,f(to) = X0, ut(),xo,f(l) = Z aiut(),xo,f(ni)-

i=1

Applying the dynamic programming principle (Theorem 4.1) gives

th+o
Vj(to, x0) = sup {/ J (@, ugy x, £ O, f@))dt + V(o + 0, ugy x, £ (10 +U))} .
fes, W
(4.2.2)
Since V; — ¢ has a local maximum at (¢y, xg), for small enough o

Vj(to, x0) — @(to, x0) = Vy(to + 0, ugy xg, f (f0 + 0))
— @l + 0, thy g, (T + ) (42.3)
for all f € S]Z. By (4.2.2), for each n € N, there is f" € S} such that

th+o
V) (10, x0) < / Tttty ng g (1), F O+ V) (10

fo
1
+ 0, Uy xo, 1 (f0 +0)) + = (4.2.4)
From (4.2.3) and (4.2.4) we deduce that
Vi(to + 0, us,xo, fn (to + 0)) — @(to + 0, Ugy,x, pn (10 + 0))

th+o 1

= f J(t, gy xg, pr (2), f*(@))dE + =

) n
—@(to, x0) + Vy(to + 0, gy 5o, pr (o + 0)).

Therefore we have

fo+o
0< / Tttty g o (D5 (00t
1

0
1
+ @(to + 0, Ugy xo, f2 (f0 + 0)) — @(to, X0) + . (4.2.5)
As ¢ € C1([0,1] x E)
@(to + 0, Ugy xq, f2 (fo + 0)) — @(to, X0)

to+o
= f (Vo(t, ugy xg, fr (1)), g xo, 2 (1))dE + /
fo

fo

to+o

E (ta Uy, xo, [ (t))d[
(4.2.6)
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Applying the integral representation formulas (4.1) and (4.2) gives

1
ulo,xo,f” (t) = eto,xo(t) +/ Gt()(tv s)f”(s)ds, re [t()v 1]

fo
1

. . G
ity ng g (1) = 61000 (1) + / 22 1, 5) " 5)ds, 1 € Tt 1]

fo
with

m—2
€y xo(1) = X0+ A (1 = Y i) (1 — exp(—y (t = 10))x0, ¥t € [10, 1]
nes
€100 (1) = ¥V Ay (1 - Z ai) exp (—y (t — to))xo, Vt € [10, 1]

i=1

m—2 m—2
Ay = (Z o — 1 +exp(=y( —1)) — Z o exp(—y (i — to)))

i=1 i=1

where the coefficient A;, and the Green function Gy are defined in
Lemma 2.1. Then from (4.2.6) we get the estimation

O(to + 0, Ugy x, 1 (20 + 0)) — @(to, X0)

to+o
= / (Vﬁﬂ(t, Uty,xg, [ (1)), ét(),x() ) + /
7 0

0

1y

anto (t, ) f(s)ds)dt

to+o @
+ / E(ta Uty,xo, f (t))dt (427)
1

0
Since f"(s) € Z for all s € [tg, 1], it follows that

0G

fo
t,8)Z
o7 (,s)

8Gfo n
—(Z, €
2 (t,8)f7(s)
for all ¢, s € [tg, 1]. From (4.2.7) and this inclusion we get

@(to + 0, Ugy xy, 2 (20 + 0)) — @(fo, X0)
1

to+o . . aGto
= / J (V(P(t, u[(),xo,f" (l))v eto,xo(l) + / 8t ([, S)st)dt
to 0]

th+o 1)
+/ E(l‘a Uy, xo, [ (t))dt. 4.2.8)
1

0



28 C. Castaing et al.

Put the estimation (4.2.8) in (4.2.5) we get

fo+o
0< / J(t, gy xg, pn (1), f"(1))dt
0]

1

fo+o , 3G,
+/ 8*(V(p(t»ut0,xo,f”(t))seto,xo(t)+/ 57 (t,s)Zds)dt
Io ]

fo+o 8§0 1
+ / —(t, Uy xg, (D)) + —. 4.2.9)
1 ot n

0

By combining (4.2.1) and (4.2.9) we get the estimation

to+o
0< f Tt gz g (0), F ()t
o

1

to+o . aGI()
—i—/ 8*(V(p(t,u,0)xO,fn(t)),eto‘xO(t)—i—/ P (t,8)Zds)dt
fo fo

+/m+a L oyt ++ <204 1 (4.2.10)
—(t,u n - <-4+ - 2.
o at fo.%0. f n 2 n

Therefore we have that 0 < % < % for every n € N. Passing to the limit
when n goes to oo in the preceding inequality yields a contradiction. O

5. Optimal Control Problem in Pettis Integration

We provide in this section some results in optimal control problems gov-
erned by an (SODE) with m-point boundary condition where the controls are
Pettis-integrable. Here E is a separable Banach space. We recall and summa-
rize some needed results on the Pettis integrability. Let f : [0, 1] — E be
a scalarly integrable function, that is, for every x* € E*, the scalar function
t = (x*, f(t)) is Lebesgue-integrable on [0, 1]. A scalarly integrable func-
tion f : [0, 1] — E is Pettis-integrable if, for every Lebesgue-measurable
set A in [0, 1], the weak integral [, f(r)dt defined by (x*, [, f(t)dt) =
fA(x*, f(@))dt for all x* € E* belongs to E. We denote by Pé([O, 11, dt)
the space of all Pettis-integrable functions f : [0, 1] — E endowed with the
Pettis norm || f|| pe = SUD B 1 fol [{(x*, f())|dt. A mapping f : [0, 1] —
E is Pettis-integrable iff the set {{(x*, f) : ||x*|| < 1} is uniformly inte-
grable in the space Llll([O, 1], dt). More generally a convex compact val-
ued mapping I" : [0, 1] = E is scalarly integrable, if, for every x* € E¥*,
the scalar function ¢ — §*(x*, I'(¢)) is Lebesgue-integrable on [0, 1], " is
Pettis-integrable if the set {8*(x*, '(.)) : ||x*|| < 1} is uniformly integrable
in the space L}{([O, 1], dt). In view of [[6], Theorem 4.2; or [14], Cor. 6.3.3]
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the set Sﬁ ¢ of all Pettis-integrable selections of a convex compact valued
Pettis-integrable mapping I” : [0, 1] = E is sequentially o (P}, L® ® E*)-
compact. We refer to [19], for related results on the integration of Pettis-
integrable multifunctions.

We provide some useful lemmas.

Lemma 5.1. Let G : [0, 1] x [0, 1] — R be a mapping with the following
properties

(i) for each t € [0, 1], G(¢t, .) is Lebesgue-measurable on [0, 1],
(ii) for each s € [0, 1], G(., s) is continuous on [0, 1],
(iii) there is a constant M > O such that |G(t,s)| < M for all (t,s) €
[0, 1] x [0, 11.

Let f : [0, 1] — E be a Pettis-integrable mapping. Then the mapping

1
uf:tv—>/ G(t,s)f(s)ds
0

is continuous from [0, 1] into E, that is, uy € Cg([0, 1]).

Proof. Let (t,) be a sequence in [0, 1] such that #, — ¢ € [0, 1]. Then we
have the estimation

1 1
sup |(x*, f Gltn, 5) f (s)ds — f Gt ) (s)ds)]
0 0

x*€B px

1
= sup /0 |G (ty, ) — G(t, )|[{x", f(s))lds.

x*eBpx

As the sequence (|G(¢,,.) —G(t, .)]) is bounded in Li’f([O, 1]) and pointwise
converges to 0, it converges to 0 uniformly on uniformly integrable subsets
of Llll([O, 1]) in view of a lemma due to Grothendieck’s [24], in others terms
it converges to 0 with respect to the Mackey topology 7(L>°, L'), see also
[5] for a more general result concerning the Mackey topology for bounded
sequences in Lg,. Since the set {|(x*, f(s))| : |[[x*|| < 1} is uniformly inte-
grable in Llll([O, 1]), the second term in the above estimation goes to O when
t, — t showing that u s is continuous on [0, 1] with respect to the norm
topology of E. O
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The following is a generalization of Lemma 5.1.

Lemma 5.2. Let G : [0, 1] x [0, 1] — R be a mapping with the following
properties

(i) for each t € [0, 1], G(¢, .) is Lebesgue-measurable on [0, 1],

(ii) for each s € [0, 1], G(., s) is continuous on [0, 1],
(iii) there is a constant M > O such that |G(t,s)| < M for all (t,s) €

[0, 1] x [0, 1].

Let T' : [0,1] — E be a convex compact valued measurable and Pettis-
integrable mapping. Then the set

1
{up upt) =/ G(t,s)f(s)ds :t €[0,1], f € SF}
0

is equicontinuous in Cg ([0, 1]).

Proof. By Lemma 5.1 it is clear that

1
{ug:up(r) :/ G(t,5) f(s)ds 1t €[0,1], f € SE¢} € CE([0, 1]).
0

Let us check the equicontinuity property. Indeed, let ¢, tx € [z, 1] such that
ty — t, we have the estimation

1

g (6) —up @)l < sup / G 1, 5) = G, $)[|8*(x*, T(s))lds.
X*GEE* 0

As the sequence (|G(%,.) — G(t, .)|) is bounded in Ly ([0, 1]) and the set

{18*(x*, T()| : ||x*|| < 1} is uniformly integrable in Lllz([O, 1]), by invok-

ing again Grothendieck lemma [24] as in the proof of Lemma 5.1, the second

term goes to O when #; — ¢ showing that {uy : f € SIE ¢} is equicontinuous
in Cg([0, 1]). m]

The following lemma is crucial in the statement of the (SODE) with
Pettis-integrable second member and m-point boundary condition. Here we
suppose that the hypotheses and notations of Lemma 2.1 hold.

Lemma 5.3. Let x € E, let G, be the Green function, er , and é;y in
Lemma 2.1

m—2
er(D) =2+ Ac(1 = ) an)(1 —exp(—y (1 = )x, ¥t €[z, 1]

i=1
m—2

érx(t) =y A, (1 -3 a,-) exp (—y(t — T)x, Vr € [z, 1]

i=1
-1

m—2 m—2
A = <Z o — 1 +exp(—y(1—1) — Y a;exp(—y (i — r)))

i=1 i=1
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and let f be a Pettis-integrable function. Let us consider the mapping

1
Uex, () = erx (1) +/ G:(t,5)f(s)ds, ©el0, [, tel0,1]

Then the following assertions hold

(1) uc x, r is continuous i.e. uz x r € Cg([0, 1),

(2) the f(©) =20 ttrep(1) = Y0P Gt p (1),

(3) The function u. x y is scalarly derivable, that is, for every x* € E*, the
scalar function (x*, u x, ¢) is derivable and its weak derivative ti; x ¢
satisfies

1

. . 0G

gy (1) = erx(t) + / 8; @, ) f(s)ds, tel0,m], telr 1]

T

(4) The function ti; x s is continuous and scalarly derivable, that is, for ev-
ery x* € E*, the scalar function (x*, i, 5 r) is derivable and its weak
derivative iy x y satisfies

liex, (1) + Ve f(t) = f(t) ae. te]r,1].

Proof. (1) Since e, € Cg([0, 1]) and G is a Carathéodory and bounded
function, u; x s is continuous on [z, 1] with respect to the norm topology of
E in view of Lemma 5.1.

(2) follows from Lemma 2.1(iv).

(3)-(4) Similarly, using the property of 3G,

a1
11 3?; (t, s) f(s)ds is continuous on [z, 1] with respect to the norm

topology of E in view of Lemma 5.1 and so is the mapping ¢ +— é, (f) +
f ! 35’ (t,s) f(s)ds. Now (3)—(4) follow from the computation used in (iv)—

in Lemma 2.1 we infer that

t —

T
(v) in Lemma 2.1. O

By W?,',IE([‘L', 1]) we denote the space of all continuous functions in
CEg([t, 1]) such that their first weak derivatives are continuous and their sec-
ond weak derivatives are Pettis-integrable on [z, 1]. By Lemma 5.3, given
a Pettis-integrable function f : [7,1] — E (shortly f € Pll-([r, 1]) the
(SODE)

ligx,f(t) + Ve ;) = f(@),t €[r,1], T € [0, m[
m—2

Urx, f(T) =X, Ugy (1) = Z iz x, £ (0i)

i=1
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admits a unique W?,'IE([‘L', 1])-solution with integral representation formulas

1
Urx, f (1) = erx (1) +/ Ge(t,5)f(s)ds, Tel0,m[, telrl],

156G,
fren 1 (6) = éun () + f s, TelOml relr)

The following result provides the compactness of solutions for a class
of (SODE) with m (m > 3) point boundary condition and Pettis-integrable
controls.

Theorem 5.1. Let E be a separable Banach space and let T' : [0,1] —
ck(E) be a convex compact valued measurable and Pettis-integrable map-
ping. Let us consider the following

fiv f(t) + pite @) = f(), 1 €[r, 1], T €[0,ml, feSke

(SODE)r i
e (D) =X, tey f ()= iutre r(m).
i=1

Then the set {uzx.; : f € SE¢} of Wy ([r. 1])-solutions to (SODE)r is
compact in Cg([t, 1]).

Proof. Let (u¢ x, r,) be a sequence of le,”lE ([z, 1])-solutions to (SODE)r. As
Slf ¢ is sequentially o (P}, L™ ® E*)-compact, by extracting a subsequence
we may assume that (f,) converges with respect to the o (PL, L® ® E*)
topology to fo € Sllfe. Using Lemma 5.3, we have, for eachn € N,

1
Urx, £, (1) = er x (1) +/ G.(t,s) fu(s)ds, t €7, 1] (5.1.1)
. : 109G,
ey, f,(t) = érx(t) —1—/ o @, 8) fu(s)ds, t €1, 1] (5.1.2)
ligx f, () + Vg x 5,(t) = fu(®) €(#),a.e. t €1, 1]. (5.1.3)

From the property the Green function G; in Lemma 2.1, (5.1.1) and

Lemma 5.2, we infer that {u; » 7, : n € N} is equicontinuous in Cg ([0, 1]).
Further, for each t € [z, 1], {u¢x,r,(t) : n € N} is relatively compact be-

cause it is included in the norm compact set e; (¢) + fol G.(t,s)I'(s)ds
(see e.g. [12, 14]). So by Ascoli’s theorem, {u; . r, : n € N} is relatively
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compact in Cg([t, 1]). Similarly using the properties of 857 in Lemma 2.1,

(5.1.2) and Lemma 5.2, we deduce that {b'tf’ X, fy S PE N} is equicontinuous
in Cg ([t, 1]). In addition, the set {dr,x,ﬁl (t):n € N} is included in the
compact set é; ,(t) + fol Bgf (t,5)T (s)ds. So {irx s, :n € N} is rela-
tively compact in Cg([t, 1]) using the Ascoli’s theorem. From the above
facts, we deduce that there exists a subsequence of (“r,x,fn)n o still de-

noted by (uT, x, fh)n N which converges uniformly to u* € Cg([z, 1]) with

u>® 0) = x and u® (1) = 2?1:_12 o;u (n;). Similarly, we may assume
that (12,, x,fn) converges uniformly to v*° € Cg([z, 1]). Furthermore, by the
above facts, it is easy to see that (ii,,x,fn) converges o(PL,L® @ E*) toa

Pettis integrable function w™ € Pé([‘f, 1]). For every ¢ € [z, 1], using the
representation formula (5.1.1), we have

u™(1)
1
— m terp, (1) = exn () + lim / Gt $)Ginr. £, (5) + ite.r. 1, (5))ds
n—oo n—oo T

1 1
= erx(t) + lim / G (t, 8)iiz x, f,(s)ds +y lim / G (t, )itz x, 1, (s)ds
n—0o0 O n—oo T

1 1
= erx(t) +/ G.(t, s)w™(s)ds —|—y/ Go(t, s)v™°(s)ds
0 0
1
= er (1) +/ G (t, s)(w>(s) + yv™(s))ds. (5.1.4)
0

From (5.1.4) and Lemma 5.3, we deduce that u is scalarly derivable and its
weak derivative 11*° is given by

1
i) = ér,x(t)—i—/ a;t @, s)(w™(s)+yv>X(s))ds, vt € [t,1]. (5.1.5)

Now using the integral representation formula (5.1.2) we have, for every ¢ €
[z, 11,

v®(t) = lim i 5, (1)
n—>0oo
1
. . 0G. .. .
= erx(t) + lim 5 O i, () + iz, (s))ds
T
1
. . 0G ..
= er,x(t) + nlllgo/ a—tr(l‘, S)an (s)ds
T

1
. 0G, .
+y nll%lo/r S (t, )iy, (s)ds
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1 1
= ¢, (1) +/ 96+ (@, Hw™(s)ds +y / 96+ (t, s)v™>(s)ds

Jt at
. 19G, o ~
= e x(t) —i—/ o7 (, s)(W™(s) + yv=7(s))ds (5.1.6)

so that by (5.1.5) and (5.1.6) we get v>° = °°. Now using (5.1.4) and invok-
ing Lemma 5.3(4) we get

W) +yu® @) = w®@®) +yv™e@) = w®@)+yu> @) ae. te[r, 1]

Thus we get ii®°(t) = w®(t) a.e.t € [t, 1] so that

1
ue(1) = er (1) +/ G (t, )™ (s) + yu>(s))ds, telr, 1]
! m—2
u®(r)y=x, w1 =Y ou m).
i=1
(5.1.7)
Step 2. Main fact: u® coincides with the W}Z{’IE([‘L’, 1])-solution u 7., associ-

ated with foo € SF° to

ﬁfoc(t) + )/Mfoo(t) = foo(t), ter, 1]

m—2

up (t)=x, up(l)= Z aiu g, (i)

i=1

(5.1.8)

Remember that

ligx, f, (1) +yig, () = fu),

m—2

urx, f,(t) =x, Uy f(1)= Z aitrx, £, (1;)

i=1

and by the above fact, (ii; x, 5, + Viizx, f,) o (P}, L® ® E*)-converges in
Pé([t, 1]) to ti>® + yu®*. Let v = h @ x* € L*®([r, 1]) ® E*. Multiply
scalarly the equation

e, f, (1) + Vitex, f, (1) = fu(t)

by v(#) and integrating on [z, 1] yields

1 1
/ (h(t)®x*,iifn(t)+yufn(t))dt=/ (h(t) @ x*, f(®))dt. (5.1.9)
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It is clear that

1 1
nll>ngo (h(t)®x*,iifn(t)+yzifn(t))dt=/ (h(t)@x™*, i () +yu™(1))dt

1

1
—iim [ () @x*, f ()t = / (h(1) ® x*, foo(D)dt

n—o0 T

so that by invoking the separability of E

W) +vu> @) = foot) a.e. tel]r,1]. (5.1.10)
Using (5.1.7), (5.1.8), and (5.1.10) and uniqueness of solution we obtain
u® =uy,. o

Remark. In the context of Theory of Control, we have stated in the proof
of Theorem 5.1, the dependence of the trajectory solution with respect to the
Pettis controls. Namely, with the notations of Theorem 5.1, if u x , is the

Wﬁ:%([t, 1])-solution of

fiz,x,f, (1) + yitg, (1) = fu(0), telr,1]
m—2

e (D) =X, tey g, ()= jtrr ()
i=1

and if (f,) o(PL, L™ @ E*)-converges to foo € Slfe, then (u;x, f,)
converges uniformly to ur y r, (itzx f,) converges uniformly to i,y r.
and (ii¢ x,f,) o(PL, L® ® E*)-converges to liz,x, fn, Where uq, r. is the

W,z;g([t, 1])-solution of

l:ir,x,foc(t) + V’:{r,x,foo(t) = foo(t), te]r, 1]

m—2
e oo (D) =X, ttey o, (1) =Y citte x 1, (7).
i=1
The above remark is of importance since it allows to prove further results.

Here is an application to the existence of WIZ;’IE ([z, 1])-solution of a (SODE)
with m-point boundary condition.

Theorem 5.2. Let F : [0, 1] x (E x E) — E be a Carathéodory mapping

satisfying
F(t,x,y) e (1)
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forall (t,x,y) € [0,1] x E x E where T : [0, 1] = E is a convex compact
valued Pettis-integrable mapping. Then the (SODE)

() +yu@)=F@t,u@),u@®), telr1]

m—2
w(@) =x, u(l)y=>y au)
i=1

has a W}Z,:%([t, 1])-solution.
Proof. Let us set

Xi={uex, [0, 1] = E tury 5(t) = er (1)
1
+/ G.(t,s)f(s)ds, t €[r,1], f e Slfe}.

Then Theorem 5.1 shows that X’ is compact and convex in Cg([t, 1]). For
each u € X, let us set

Q) :={weX:wkt)+ywk) = F,u(),u()), t €[z, 1]}.

In view of Lemma 5.3, ®(u) is non empty. Let us prove that the mapping
® : X — X is continuous. Let (u,, v,) € Graph ® such that u, — u
and v, — v in X. We need to check that v = ®(u). Taking account of
the particular structure of X and the remark of Theorem 5.1, we have that
ity — 1 uniformly and ii, o (PL, L ® E*)-converges to ii and that v, — ¥
uniformly and ¥, o (P}, L ® E*)-converges to . Multiply scalarly the
equality
i}n(t)—i_yi)ﬂ(t):F(’»”n(t)vl'.tn(t))s te[f,l]

by h(1) ® x* where h € LY ([z, 1]) and x* € B+ and integrating on [, 1]

gives

1 1
/ (h(t)®x*,55n(t)+7/ﬁn(t))dt=/ (h() @ x™, F(t, un(t), 1ty (1)))dt.

(5.2.1)
By passing to the limit when n — oo in (5.2.1) we get

1 1
lim (h(t)®x*,i5n(t)+yﬁn(t)>dt=/ (h(t) @ x*, (1) + y0(t))dt

n— 00 T

1 1
:nhi%‘o/ (h(t) ® x*, F(t, un(t),ﬂn(l)))dIZ/ (h(t) @ x*, F(t, u(t), u(1)))dt
(5.2.2)
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by Lebesgue dominated convergence theorem, because
[(h(t) ® x*, F(t, x, ))| < h(@®)[8*(x*, T ()]

for all (¢, x,y) € [0, 1] x E x E. By (5.2.2) we deduce that

1 1
/ (h(t)®x*,i}(t)+yz)(t))dt=/ (h(t) @ x*, F(t,u(t), u(t)))dt.

Whence we get
(x*,0() +yo@)) = (x*, F(t,u@®),u@))), ae. (5.2.4)

for every x* € Bp+. By taking a dense sequence (e})keN in B+ for the
Mackey topology we get

(e, V(1) +yo()) = (e, F(t,u(r), u())), a.e. (5.2.5)
for all k € N. Finally we get
V(@) 4+ yo@) = F(t,u(t),u(t)), a.e.

proving that Graph ® is compact. By applying the Kakutani—Ky Fan fixed
point theorem to ®, we find u € X such that ¥ = &(u) which is a
Wf,’ 55 ([z, 1])-solution of the (SODE) under consideration. O

The compactness in Cg([7, 1]) of
X = {ur,x,f [, 1] = E: ur,x,f(t) = er,x(t)
1
+/ G.(t,5)f(s)ds, t € [t,1], f e SE¢)
T

YVi={tueyrilt, 1] = E ttirx p(t) = érx(1)

1
+/ aaGtT (t,s)f(s)ds, t € [r, 1], f € SE)

are of importance and rely on some delicate arguments in the pioneering work
of [1, 2] involving the Pettis uniformly integrable condition, Grothendieck
lemma characterizing the Mackey topology for bounded sets in Ly [24] and
other compactness results. Second order differential inclusions with three
point boundary condition in case where the second member is a Pettis-
integrable convex compact valued multifunction is initiated in [2]. At this
point a second order differential inclusion with upper semicontinuous con-
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vex compact valued multifunction and three point boundary condition of the
form

() e F(t,u(),u(t)) a.et €[0,1],
u(0) =0; u®) =u(l).
is available in [2, 27]. Taking account into the above facts, one may state the

validity of Theorem 5.2 when F is a convex compact valued upper semicon-
tinuous mapping. Since we don’t focus on differential inclusion in the paper,
we only mention a closure type lemma which may have an independent in-
terest and solves this problem.

Theorem 5.3. Let F : [0,1] x E x E — E be a convex compact valued
upper semicontinuous mapping satisfying

F(t,x,y) cT'(t)

forall (t,x,y) € [0,1] x E x E where T : [0, 1] = E is a convex compact
valued Pettis-integrable mapping. Let (uy, v,) € X x X such that u, — u
and v, — v in X and that

Un (1) + yvn(t) € F(t,un(t), ity (1))

for all n € N and for all t € [t,1]. Then we have v(t) + yv(t) €
F@t,u(),u())a.e.

Proof. Leth ® x* where h € L, ([r, 1]) and x* € Bg+. From
Un (1) + yon(t) € F(t, un (1), ity (1))
we have
(h(t) @ x*, U (1) + yva (1)) < 8" (h(t) @ x*, F(t, un(t), itn(1))).

Integrating on [z, 1] this inequality yields

1 1
/<h(t)®x*,iin(t)+yvn(t)>dtsf §*(h(t) @ x*,

T

x F(t, un(t), tin()))dt.  (5.3.1)

Repeating the arguments of the proof of Theorem 5.2, we have that i, — u
uniformly and ii, o (P, L°® E*)-converges to ii and that v,, — © uniformly
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and ©, o (PL, L>® ® E*)-converges to ii. Then by passing to the limit when
n — oo in (5.3.1) we get

1
lim | (h(t) ® x*, B, (t) + y 0 (t))dt

n—oo T

1
=/ (h(t) ® x*, (1) + y0(t))dt

n—o00

1
< lim sup/ h(1)8* (x*, F(t, un (1), itn(1)))dt

1
< / h(t) limsup 8*(x*, F(t, u,(t), it,(¢)))dt

1
< / h()8*(x*, F(t,u(t), u()))dt (5.3.2)
because

8% (h(t) @ x™, F(t, x, )| < 18" (h(t) ® x*, T(#)| = h(®)[6"(x*, (1))

forall (¢, x, y) € [0, 1] x E x E and the mapping F' is upper semicontinuous.
By (5.3.2) we deduce that

1 1
/ h(t){(x*™, U(t) + yo(t))dt < / h()8*(x™*, F(t,u(t), u(t)))dt.
Whence we get
(x*,0() + yo@)) < 8*(x*, F(t,u(t), u(t))) a.e.

for every x* € B By taking a dense sequence (e,’(“)keN in B+ for the
Mackey topology we get

(e, U(t) +yo()) < 8"(ef, F(t,u(t),u(r))) a.e.
for all k € N so that

v()+yo(t) € F(t,u(t),u()) a.e. O

6. Open Problems: Differential Game Governed by
(SODE), (ODE) and Sweeping Process with Strategies

To finish the paper we discuss some viscosity problems in a differential game
governed by a class of (ODE) with strategy in the line of Elliot [20], Elliot—
Kalton [21] and Evans—Souganides [22]. For simplicity we assume that E is
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a separable Hilbert space. Let us consider two compact subsets ¥ and Z in
E. Set

Y(tr) ={y: [z, 1] — Y|y measurable}
Z(t) = {z : [t, 1] = Z| z measurable}

Denote by I'(t) the set of all strategies & : Z(t) — Y (r) and A(t) the set
of all strategies B : Y(tr) — Z(t). Let us given a Carathéodory integrable
mapping F : [0,1] x (Y x Z) — E such that F(¢,y,z) C K(t) for all
(t,y,2) € [0,1] x Y x Z where K : [0,1] = E is a convex compact
valued integrably bounded mapping, a bounded continuous integrand J :
[0,1] x E x Y x Z — R and let us define the upper—lower value function

1

Uj(t,x) = sup inf { J(, Mr,x,a(z),z(t)v a(z)(t), z(t))dt}, T € [0, n1]
ael (1) 2€2(1) J¢

1
Vi(t,x) = inf sup {/ J(t uz .,y 5@, y(©), B(y)())dt}, T € [0, n1]
BEA() yey(r) Jt

where u; x «(z),; is the trajectory Wi-’l ([z, 1])-solution of second order dif-
ferential game

le,x,a(z),z(1) + Vit xa(),: (1) = F(t, a(2)(@), 2(0)), t € [7, 1], T € [0, 1]

Uz x.a(),z(T) = X,
m—2

ur,x,a(z),z(l) = Z ai”t,x,a(z),z(ni),
i=1
(6.1.1)
with the integral representation formulas

1
Urx,0(2),: () = er x(7) +/ G (t,5)F(s, a(2)(s), z(s))ds, t € [, 1]

T

at

1
. . el
e x.a(). (1) = érx (1) +/ (t,5)F (s, a(z)(s), z(s))ds, t € [z, 1]
T
and similarly u; x y g(y) is the trajectory Wé’l ([z, 1])-solution of second or-
der differential game

I:ir.x,y,ﬂ(y)(t) + )”:ir,x,y,ﬂ(y)(t) =F@ y®),B®),t €[r,1],7 €[0,m]
ur,x,y,ﬂ(y)(f) =X,
m—2
Uy, py)(1) = Z itz x,y p(y)(Mi)-
i=1
6.1.2)
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We aim to generalize the viscosity problem in Theorem 4.2 to the case of
strategies in the following

Proposition 6.1. Let J : [0, 1] X E x Y X Z — R be a bounded continuous
integrand, t,0 € [0, 1] such that T € [0,n[ and T + o < 1 and let us
consider the upper value function

1
UJ(Tvx) = Sup lnf {/ J(tsur,x,a(z),z(t)’ Ol(Z)(t)y Z(I))dt} ’

ael(r) 2€Z(1)

te€[0,n],x €eE.

where Uz x a(z),; IS the trajectory Wé’l([t, 1])-solution of second order dif-
ferential game

ﬁr,x,a(z),z(’) + yur,x,a(z),z(t) =F(t, a()(@),z(t),t €[z, 1], T € [0, n1]

ur,x,a(z),z(f) =X,
m—2

Urxa().o (D) = Z Aillr x a(z).z (i) 6.1.1)

i=1

Then Uy satisfies a sub-viscosity property: For any ¢ € C'([0, 1] x E) such
that Uy — ¢ reaches a local maximum at (ty, xo) € [0, n1[ X E, then

0 .
d (10, x0) + min max{J (to, xo0, ¥, 2)} + 8" (Ve(to, x0), é1y,x, (f0)
ot 7€Z yeY

LG
+/ “ (1o, )K (s)ds) > 0
T

provides that U satisfies the DPP

T+0
Uj(r,x) = sup inf {/ J(t, Uy 0(2),2(8), a(2)(s), z(5))ds
ael(r)2€Z(@) | Je

+Uj(T+0), U xa(),2(T + U)}

Proof. Assume there is a ¢ € Cl([O, 1] x E) such that U; — ¢ reaches a
local maximum at (fg, xo) € [0, n1[x E for which

0 . .
g (10, x0) + min max{J (to, x0, y, 2)} + 8" (Ve(10, X0), é1y,x, (10)
ot zeZ yeY

139G
+/ (19, s)K (s)ds) < 0.
n Of
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Hence there exists some 7 > 0 such that

0 . .
g (10, x0) + min max{J (to, x0, y, 2)} + 8" (Ve(10, X0), é1y,x, (10)
ot z€Z yeY

1

3G

+/ N (ty, $)K (s)ds) < —n < 0.
n Of

Set

ap .
Alt,x,y,2) = E(I’ X))+ J(t,x,y,2) + 8 (Vo(t, x), éq,x, (1)

1
+/ 9G1, (t, $)K (s)ds).

Then we have

min max A(fy, xo, y,2) < —n < 0.
zeZ yeY

Hence there exists some 7 € Z such that

max A(t, X0, y,2) < —n < 0.
yeY

Since the mapping
(t, x) = max A(to, xo, y,2)
yey

is continuous there is € > 0 such that

max A(1, x, y.2) < —2
yeY

forO0 <t —tp < eand ||x — xol| < &. AS iy, x,a(z),z 15 estimated by

0

1
. . G
ekt x0.02),2 (D] = €155 (D)]] +/ | 8tt° (t, )IIK(s)|ds = (1)
fo

with ¢ € Cr([ty, 1]) for all z € Z(#y) and for all « € I'(#) in view of the
above integral representation formula, so we can choose o > 0 such that

to+o

||ut0,x0,a(z),z(t) - uto,xo,ot(z),z(tO)” = fto c(t)dt < eforallt € [ty, to + 0]
and for all z € Z(#p) and for all « € A(fp). Then the constant control Z(¢) =
z, Vt € [to, 1] belongs to Z(tg) and «(zZ) belongs to Y (tp) for all « € I'(7p) so

that by integrating we have

to+o B _ on
/ A(t, gy xg,02),2(1), 2(2) (1), 2(1)dt < 5
I

0
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for all « € I'(¢p). Thus

to+o
sup {/ J (@, Uty xo,az),z(), 2 (@)(1), 2(2))dt (6.1.3)
fo

ael(ty)
1

. G
F8*(Vo(t, try xp.0@).7(1)s 5.0 () + / 8;0 (t, $)K (s)ds)
fo

% on
+ a—t(t, uto,xo,a(z),z(t)} < —7.

As Uy satisfies the DPP property, we have

to+o
Uy(to, x0) < sup {/ J (8, uy,x0,0z),2(1), 2 () (1), 2(2))dt
1

ael'(ty) 0

+ Uj(to+o,u (to+cr))}-

0,%0,%(2),Z

Hence, for every n € N, there exists " € I'(#p) such that

fo+o

Uy (10, x0) < / Tttty g 0 (5. 2(0). @ (D)D), Z(0)) e

fo
1
+ Us(to + 0, Uy xp.an@).z(00 +0)) + e (6.1.4)
But Uj — ¢ has a local maximum at (¢, xo), for small enough o

Uy (to, x0) — @(to, x0) = Uy (to + 0, Uz, xg,a(2),z (o + 0))
—@(to + 0, Uz xp,a(2),z (f0 + 7))
(6.1.5)

for any trajectory solution u; y, «(z),; associated with control («(z), z) (o €
I'(t9), z € Z). From (6.1.4) and (6.1.5) we deduce

Uy(to+ 0, uy,xg,an@),z(t0 +0)) — @(to + 0, sy, xy,0nz),7(T0 + 0))

ty+o
< / Tttty .0 or.2(0), @ (B0, Z(0))d
fo

1
+U (10 + 0, uzy,xg,0n3),z(t0 + 0) + o @ (1, x0).
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Thus we have

to+o
0< / Tt sy ng a9 (0), & (B (1), Z(0))dt
1

0

1
+ @(to + 0, Uy xg,0nz),z(F0 + 0)) — @(to, X0) + . (6.1.6)
But
@(to + 0, Uy xp.0nz)z(00 + 0)) — @(fo, x0)
to+o
= / (V(p(tv Ml‘(),xo,a"(z),z(t))a ﬂto,xo,a"@,f(t))dt
fo
to+o @
+ / 09 (1. gy e 9 20 6.1.7)
and
3G

(1, 5)F (s, & ()(5), 2(s))ds

Uy, x0,0m @),z () = €19,x0 (1) +f

fo

ot
because iy, x,.an(z) 7 is the W2! ([, 1])-solution to (SODE)
ﬁto,xo,an(z)i(t) + yl'.tto,xo,a"(f),f(t) = F(t’ o (E)(t)9 Z(t))v

Uy, xg,an(2),z(0) = X0,
m—2

uto,xo,a"(f),f(l) = Z aiuto,xo,ﬂt”@j(ni)-

i=1

From (6.1.6) and (6.1.7) we deduce

fh+o
0< / J(t, Uiy xp.0n @) z(1), @ (2)(1), Z(1))dt
0]

ty+o . 1 8Gto

+/ 8*(v¢(lvuto,xo,a"(f)(t),f(t))seto,xo(t)+/ a7 (t, s)K (s)ds)dt
fo to
to+o 9 1

+/ —(t, Uy, xg,07(2),z(2)) + —. (6.1.8)
o ot 1o,x0,0"(2),Z n

Using (6.1.3) and (6.1.8) it follows that 0 < % < }l for every n € N.
Passing to the limit when n goes to oo in the preceding inequality yields a
contradiction. O
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The viscosity property for the lower—upper value function is an open
problem in the present context. Proposition 6.1 is a step forward in the prob-
lem under consideration. Compare with earlier result in the literature deal-
ing with viscosity problem governed by (ODE) in R” involving differential
games and strategies, e.g. [4, 20, 22], evolution inclusions, e.g. [7, 8, 13-17]
involving Young control measures, and Relaxation and Bolza problems gov-
erned by (SODE), e.g. [3, 9—11]. In order to illustrate the comparison, let us
come back to a differential game governed by ordinary differential equation
(ODE). Let M }F(Y ) and M L(Z) be the set of all probability Radon mea-
sures on compact metric space Y and Z, respectively, endowed with the nar-
row topology so that ./\/lﬂr( Y) and ML(Z ) are compact metrizable. Consider
the space of Young measures (alias relaxed controls)

Yo)={y:[r,1]— ML(Y) | y measurable}

Zty={z:[t, 1] — MEF(Z) | z measurable}

and as above denote by I'(7) the set of all strategies o : Z(t) — Y(7)
and A(t) the set of all strategies 8 : V(r) — Z(r). Let J : [0, 1] x
(E x Y x Z) — Rbe abounded Carathéodory integrand and let F : [0, 1]
x (E x Y x Z) — E be a Carathéodory mapping satisfying F (¢, x, y, z) €
K(t)forall (t,x,y,z) € [0, 1]XxExY xZ where K : [0, 1] == E is a convex
compact valued integrably bounded mapping and a Lipschitz type condition
F (@, x1,y,2)=F(t, x2,y, Dl < Allxi—xzf[ forall (¢, x1, y, 2), (t, x2, y, 2)
in [0, 1] x E x Y x Z. Then one may consider the lower value function

1
Vj(ts -x) = lnf Sup {/. [/ [/ ‘I(tv M‘L’,X,;L,ﬂ(,u) (t)v )’» Z)/M(dY)i|
BEA® ey |/« Lz LUy
Xﬂ(M)t(dZ)] dl}

where u; , ;. g 18 the absolutely continuous solution to (ODE)

ur,x,u,ﬂ(u)([) = /; |:/Y F(t, “r,x,u,ﬂ(u)([)v Y, Z)Mt(dy)] ,B(ﬂ)t(dz)vt €[z, 1]

Uz x,u,Bw)(T) = X

and the upper value function

1
Uj(r,x) = sup inf {/ [/ [/ J(t,ur,x,a(u),u(t),y,z)a(V)t(dy)} w(dz)”dt,
ael(r)veZ() | Jr z LJy

tel0,1],x e E
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where u; x o(v),v is the absolutely continuous solution to (ODE)

llr,x,oz(v),u(t) = /Z |:/Y F(, ur,x,a(v)(z),v(t)a Y, Z)a(‘))t(dy)i| vi(dz),t € [, 1]

ur,x,a(v),v(f) =X
and state the viscosity properties for these functions. In the sequel, we will
make some additional assumptions on J and F, namely, J and F are contin-
uous and the family (J (., ., ¥, 2))(y,z)ey x z is equicontinuous and the family
(F(.,.,¥,2))(y,2)er =z 1s equicontinuous.

Proposition 6.2. Let J : [0, 1] X E x Y X Z — R be a bounded continuous
integrand, and let us consider the upper value function

1
Us(r,x)= sup inf {/ [/ [/ J(t,uz,x,a(u),u(l),y,z)a(V)r(dy)} vt(a'z)”dt,
ael(r) VEZ(@) | Jr z LJy

tel0,1],x € E.

Let us consider the Hamiltonian

HY(t,x,p) = min max {(p,/ [/ F(t,x,y,z)du(y)j| dv(z)
ve ML (2) peMi(Y) z LJy

+/ [/ J(t,x,y,z)du(y)}dv(z)}.
VA Y

Then U is a viscosity solution to the HIB equation %—}—HﬁL (t,x,VU)) =0,
that is, for any ¢ € C([0, 11x E) for which Uy — ¢ reaches a local maximum
at (to, xo) € [0, 1] x E we have

0
8—‘f(ro, x0) + H* (10, x0. Ve (to. x0)) = 0

and for any ¢ € C1([0, 1] x E) for which U; — ¢ reaches a local minimum
at (tp, xg) € [0, 1] x E, we have

0
3_(f(t0’ x0) + H™ (to, x0, Vo(to, x0)) <0

provided that U satisfies the DPP

T+o
Uj(r,x) = sup inf {/ |:/ [/ J(@, gy am)v(s),y,2)
ael(r) vEZ() Jr z LJy

Xa(v)s(dy)} Vs (dz)} ds

+U;(x+0) urxam(®+ O')} .
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Proof. See Proposition 6.1 and ([14], Theorem 8.3.12). We will sketch the
proof. Assume thereis a ¢ € C'([0, 1] x E) such that U; — ¢ reaches a local
maximum at (fg, xg) € [0, 1] x E for which

agp
—(to,XO)-i- min max {/ [/ J(lo,XO,y,Z)dM(y)} dv(z)
veML(Z) peMl () Y

+ (pr(to,XO),/ [/ F(IOaXO’y,Z)dM(}’)} dV(Z)>} <0
z LJy
Hence there exists some 1 > 0 such that

g
—(lo,xo)-i- min max {/ |:/ J(to,xo,y,Z)dM(y)} dv(z)
veML(Z) peM(¥) Y

+ (Volo, x0). /Z [ /Y F(IO,XO,%Z)dM(y)] dv(z))} < p<o.
Set

A, x,pu,v) = (t x)—i—/ |:/ J(t, x,y, z)d,u(y)i| dv(z)

+ (Vo(t, x), / [/ F(t,x,y,z)du(y)] dv(z)).

Then we have

min max  A(t, xo, u,v) < —n < 0.
veML (Z2) peMi ()

Hence there exists some v € ML(Z) such that

max  A(t, xo, u,v) < —n < 0.
peML ()

Since the mapping

(t,x) = max A(f, xo, 4, V)
peMLl)

is continuous there is € > 0 such that

max A(t,x,u,v) < _7
peMl () 2

for 0 <t —1ty < e and [[x — xol| < &. AS Uiy, xp,a(v),v 1S estimated by
210, x0,000),0 ] < |K ()] with |K| € L{l([to, 1]) for all v € Z(#y) and for
all @ € I'(#p) I'(#p) so we can choose o > 0 such that ||us, x,a(),v () —
Wy o) (10)]| < ’°+" |K(1)|dt < ¢ forall t € [to, to + o] and for all
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v € Z(ty) and for all @ € I'(fp). Then the constant control v; = v, Vt €
[0, 1] belongs to Z(fp) and « (V) belongs to V(#) for all @ € I'(#) so that
by integrating we have

fh+o on
/ A(t9 ulo,xo,ot(g),v(t)v a(v)ﬁ vl)dt < _7
0]

for all « € I' (tp). Thus

ty+o
sup { / [ fz [ fy J(r,u,o,xo,a@),;(r),»z)a(ﬁ),(dy)}m(dz)]dr
fo

ael (1)
+<V(p(t, uto,xo,a(?),i(t))v A [/Y‘ F(ta Mt(),xo,oé(v),v(l)’ Y, Z)a(i)t(d)’):| gl‘ (dZ))

a o
+ ai(f(ts uto,xo,a(v),f(t))} < _777 (623)

As Uj satisfies the DPP, we have

th+o
Uy (ty, xg) < sup {/ [/Z [/; J(I,Mro,xo,a(m.v(t),y,Z)Ol(U)t(dy)]Vt(dZ)] dt
fo

ael (1)

+ Uy (to + 0, Uy, xg,am),7 (o + U))} .

Hence, for every n € N, there exists " € I'(fp) such that

to+o
U, (to, x0) 5/ [/Z [/Y J(t,uro,xo,an(m,v(t),y,z)a”(i)z(dy)],E(dz)] dt

fo

1
+U (1o + 0, Uz xg.0n@),5(to +0)) + - (6.2.4)
But Uj — ¢ has a local maximum at (¢, xg), for small enough o

Uj(to, x0) — ¢(to, x0) = Uj(to + 0, sy xp,a(v),v (o +0))
—p(ty + o, uto,xo,a(v),v(to +0)) (6.2.5)

for any trajectory solution u;, y, «(v),» associated with control (@ (v), v) (o €
I'(ty), v € Z(tp)). From (6.2.4) and (6.2.5) we deduce

Uy (o + 0, Uy, xg,0n@),5(t0 +0)) — @(to + 0, Uy, xg,an ), 50 + 0))

fo+o
= / [/; |:/; J(t’ ulo,x(),a"‘(i),i(t), Yy, Z)an (G)[(dy)] vl(dz)il dt
1

0

1
+ Uy (to + 0, sy, xg,0n )50 +0) + P @(to, X0)-
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Thus we have

to+o
0 =< / |:/ [/ J(t, Mzo,xo,an(i),ﬁ(t)y Y, Z)Otn(i)[(dy)i| s gt(dz):| dt
fo Z LJY

1

+ @(to + 0, gy, xy,0n@),5 (0 + 0)) — @(to, X0) + - (6.2.6)

But

@ty + 0, Uy, xg,an@),5 (L0 + 7)) — @(to, X0)
to+o
= / (Vgﬂ([, ulo,xo,ot”(f),f([))a ﬂto,xo,a"(i),f@))‘it
fo
to+o 7

+ / 09ttty g oy 5 () 62.7)

and

iy .m0 () = / [ f F(r,uto,xo,anm,u(t),y,z>a"(v)f<dy)} v, (d2)
VA Y

so that by combining with (6.2.7)
@(to + 0, Ugy xq.0n (m),5 (00 + 0)) — @19, X0)

ty+o
=/ (Vo(r, uzo,xo,a"(v),v(l)),/z[/y F(ts“to,xo,a”(i)j(f)sysZ)an(i)l(dy)}it(d@)dt
)

fhto 9
+ / 21ty 0,500, 6.2.8)
0

From (6.2.6) and (6.2.8) we deduce

th+o
0< / [ /Z [ /Y J(t,u,U,xo.an@,w),»z)a"@(dy)]ﬂ(dz)] dr
1o

ty+o
/ (Vo ty vp.ar).0(0)): /Z [ /Y F(t,um,m.an@,m),y,z)a"(v)t(dw] B (d2)dt
0]

to+o @ 1
+/ E(tv ulo.xg,a”(i),i(t)) + ; (629)

1o

Using (6.2.3) and (6.2.9) it follows that 0 < % < % for every n € N.
Passing to the limit when n goes to oo in the preceding inequality yields a
contradiction.

Next assume that U; — ¢ has a local minimum at (g, xo) € [0, 1] x E.
We must prove that
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0
2 (t.x0)+ min  max { f [/ J(to,xo,y,z)du(w]dv(z)
ot veMl(ZyveMml(z) Uz Ly

+ (Volio, 0), /Z [ /Y F(to,XO,y,Z)dM(y)} dv(z»} <0

and so will assume the contrary that

9
% (ty,x0) + min  max { / U J(to,xo,y,Z)dM(y)}dv(Z)
ot veMy(z) ueMl ) Lz L)y

+ (Volto, x0), /Z [ /Y F(to,xo,y,z)du(w} dv(z»} -~ >0

Arguing as in ([14], Lemma 8.3.11(b)) asserts that there exists for all suffi-
ciently small o > 0 some o € I'(#p) such that

fo+o
/ [ / [ / Tttty .00y (), 3, Z)oe(V)r(dy)} w(dz)] d
to Z Y

ty+o
+/ (V(p(ta ul(),xo,ot(l)),l)(t))v L |:/)‘/ F(ta uto,xo,o{(l)))}(t)v y7 Z)a(v)z(d)’)i|
fo

X v (dz))dt
ty+o ® on
+ E(t’ Uty xp,0(v),v (1)) = - (6.2.10)
0]

for all v € Z(tg). According to the DPP property we have

U, (1, x0)

to+o
> inf {/ [/ [/ J(t,uzo,xo,w),u(t),y,z)a(V)z(dy)] vr(dz)}dt
veZ(t) | Jy z LJy

+ Uj(to + o, uto,xg,oc(v),u(to + J))} .

Hence, for every n € N, there exists v"* € Z(fg) such that

to+o

Uy (tg, xp) > / |:/Z |:-/Y J(t, gy xo.0(vmyn (), Y, z)a(v");(dy)] v?(dz)] dt
fo

1
+Uj (10 + 0, usy, xg,a(vn),vn (f0 + 0)) — P (6.2.11)
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But U; — ¢ has a local minimum at (¢, xo), for small enough o
Uy (to, x0) — @(to, x0) < Uy(to + 0, Uz, xy,av),v(t0 +0))

—@(to + o, uto,xo,a(v),v(to +0)) (6.2.12)

for any trajectory solution u;, y, «(v),» associated with control (@ (v), v) (o €
I'(ty), v € Z(tp)). From (6.2.11) and (6.2.12) we deduce

Uy (to + 0, sy, xg,a(um),vn (o +0)) — @(to + 0, gy, xo,a(un), v (f0 + 0))

fo+o
Zf U U / (”“fo)w<v">,v"<f>,m)a(v")t(dy)] v,”(dz)} dt
10 VA Y

1
+U (o + 0, Uy, xg,a(vr),vm (o +0) — o @(to, X0).

Thus we have

fo+o
0> / [/ |:/ J(t, Uy, xp,a (V)01 ®,y, Z)Ol(v”)t(dy)] vf(dz)i| dt
] V4 Y

1

+‘P(t0 + o, Uty,xq,0 (V1) 0" (to + 0)) - (0(t0, XO) - ; (6213)

But

@(to + o, Uty xp,0 (V)01 (to + o)) — @(t0, x0)
th+o
= / (Vo(z, Uiy, xg,00 (™), 0" 1)), l'.‘t(),xo,o((u”),v” (t))dt
fo
to+o
+f E(I, Uty xg,a (), 0" (t))dt (6.2.14)
fo
and
uto,xo,a(v”),v" () = / |:/ F(, Uiy, xg,a(v), 0" ).y, Z)Ol(vn)t (d)’)] V?(dz)
Z Y

so that from (6.2.14)

@(to + 0, gy, xo,an),vn (fo + 0)) — @(t0, X0)

thy+o
:/ (Vo(, utg,xg,a(u"),v"(t)),
fo
[Z |:/; F (2, ugy xg,000m),0m (£), ¥, Z)Ol(vn)t(dy)] v (dz))dt

to+o 9
+/ a_(tv Uiy, xg,0 (V™) 0" (t)) (6215)
) t
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From (6.2.13) and (6.2.15) we deduce

thy+o
0= [ [/ [/ J (1, gy xg 0 omy, v (1), va)a(Vn)t(dy)] v;l(dz):| dt
] V4 Y

to+o
+ / (Vo(t, uzy,xg,avm,vn (1)),
1

0

/;[/Y F (2, uty,xg.a0m),vm (t),y,Z)a(V")z(dy)] vy (dz))dt

fo+o ® 1
+/; E(t, Uty,xg,a (), 0" ) — ; (6.2.16)

0
Using (6.2.10) and (6.2.16) it follows that % > ‘77” > 0 for every n € N.

Passing to the limit when n goes to oo in the preceding inequality yields a
contradiction. m]

Taking account into the sweeping process introduced by J.J. Moreau [26]
and its modelisation in Mathematical Economics [25], we finish the paper
with an application to the DPP and viscosity property for the value function
associated with a sweeping process. Compare with Theorem 3.5 in [17] deal-
ing with sweeping process involving Young measure control and Theorem 4.2
dealing with (SODE). Here E is a separable Hilbert space.

Proposition 6.3. Let C : [0, T] — ck(E) be a convex compact valued L-
Lipschitzean mapping:
ld(x, C(#)) —d(y,C(t)| = Llt —t|+|lx — y||,Vx,y € E x E, Vt,
T €[0,T] %[0, T].
Let Z be a convex compact subset in E and Sé is the set of all integrable
mappings f : [0, T] — Z. Assume that J : [0, T] x E x E — R is bounded

and continuous such that J(t, x,.) is convex for every (t,x) € [0,T] x E.
Let us consider the value function

T
Vi(t,x) = sup {/ J(tugyx r (@), f(1)) dt}, (t,x) €0, T]x E
feSé T

where ur x, ¢ is the trajectory solution on [t, T associated the control f €
S} starting from x € E at time t to the sweeping process (PSW)(C; f; x)

{ — gy, (1) — f(t) € Ne@y (e x, (1)), 1 € [T, T)

Ut x, f () =x
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and the Hamiltonian

H(t, x, p) = sup{—(p, z) + J(t,x, 2)} + 8" (o, —Md[dc)(x))
z€Z
where M := L 4 2|Z|, (t,x, p) € [0, T] x E x E and 9[dc)1(x) denotes
the subdifferential of the distance functions x + dcyx. Then Vy has the
DPP property

T+o
Vy(z,x) = sup [/ J(t,u,,x,f(t),f(t))dt+v,(r+a,um,f(r+a))]
fes} ~J

and is a viscosity subsolution to the HIB equation
oU
E(t’x) +H(t,x,VU(,x)) =0

that is, for any ¢ € CY([0,T1) x E) for which V; — ¢ reaches a local
maximum at (ty, xo) € [0, T] x E, we have

dp
H (t, xo, Vo (to, x0)) + E(to, x0) > 0.

Proof. We prove first that V; has the DPP property by applying the contin-
uous property of the solution with respect to the state and the control (see
Lemma 6.1 below) and lower semicontinuity of the integral functional ([14],
Theorem 8.1.6). We omit the proof of Lemma 6.1 because it is an adaptation
of the proof of Lemma 4.1 in [17].

Lemma 6.1. Let u, xn_gn be the trajectory solution on [z, T| associated the
control f" € Sé starting from x" € E at time T to the sweeping process

(PSW)(C5 f"5 %)

—dign pn(t) — (1) € Ny (e an, (1))
urxn () =x" € C(r)

(a) If (x™) converges to x> and f" converges o (L} LLY) to [, then
Uy, pn converges uniformly to uy yo goo, which is the Lipschitz solu-
tion of the sweeping process (PSW)(C; f°; x*°)

— lig xoo, foo (1) — fOt) € Ney (e xoo, poo (1))
Ug oo, oo (T) = x°° € C(1)



54 C. Castaing et al.

(b) Let J : [0, 1] X (E x E) —]— 00, +00] be a normal integrand such that
J(t,x,.)isconvexon E forall (t,x) € [0, T] x E and that

J(@t, ugn pu (1), f(2)) = Bu(?)

for all n € N and for all t € [0, T] for some uniformly integrable se-
quence (Bn)neN in L}l([O, T1), then we have

T

T
liminf/ J(t, ugon (1), (1)) dt z/ J(t, ur xoo poo (), f7O(1)) dt.

n—oo T

Let us focus on the expression of V(1 + 0, ur (T +0))

T
Vit +o, Mr,x,f(T +0)) = sup {/ J(t, Ur+a,u,1x_f(r+t7),g(t)7 g(t))dt}
geSé T+o

where vri54, Fr+o).g denotes the trajectory solution on [t + o, T'] associ-
ated with the control g € Slz starting from u; x ¢(t + o) attime 7 + 0.

Main Fact: f — V;(t + 0,u, r(t + 0)) is lower semicontinuous on
Sé (endowed with the o (L., LZ’)-topology). Let (fy, gn) € Sé X Sé such
that f, — f € S} and g, —> g € Sé. By Lemma 6.1, u¢ s, con-
verges uniformly to ur ¢ and veigu,, ; (r+0).g, cONverges uniformly to
Vrto,u, . f(r+0),¢ SO that by invoking the lower semicontinuity of integral
functional ([14], Theorem 8.1.6) we get

T+o Tto
lim inf / Tt tne g, (), fa(0)dt = / Tt ter (1), F())d1

n—o0

T
lim inf/ J(t, Voo, g (ct0).80 (1), 8n())dt
T

n—oo 4o

T
> / J(t, UT-‘rO‘,urquf(‘L’-‘rO'),g(t)a g@))dt
T+o

proving that the mapping f +— [

St uex p (1), f(2))dt is lower semi-
continuous on S% and the mapping (f, g) +— fTTJrG J(t, Vetour, p(t+0).g
(1), g(t))dt is lower semicontinuous on S} X S}. It follows that the mapping
f = Vy(t +o0,ucy r(r +0)) is lower semicontinuous on Sé and so is the
mapping f > [T Tt ur, (1), f(©)dt+V) (T 40,y (T +0)). Now
the DPP property for V; follows the same line of the proof of Theorem 4.1.
This fact allows to obtain the required viscosity property. Let us recall the

following



Optimal Control Problems Governed by a Second Order Ordinary ... 55

Lemma 6.2. Let (ty, xo) € [0, T] x E and let Z be a convex compact subset
inE.Let A : [0, T] x E x Z — R be an upper semicontinuous function such
that the restriction of A to [0, T] x B x Z is bounded on any bounded subset
Bof E. If

maxzez A(tg, x0,2) < —n <0

for some n > 0, then there exists o > 0 such that

fo+o on
sup / At ugy x, (1), f())dt < my
fo

fes),

where uy, ., r s the trajectory solution associated with the control f € S é
starting from xq at time ty to

- If‘tt(),xo,_}"(t) - f(t) € NC(Z‘)(ut(),xo,f(t))v t e [t()v T]
Uy, xo, f (T0) = X0.

Assume by contradiction that there exists a ¢ € C 1([0, T] x E) and a
point (fp, xo) € [0, T] x E for which

0
S0, 30) + H 10, x0. Vo(to.x0)) < = <0 for 1> 0.
Applying Lemma 6.2 by taking
A(t,x,z) = J(t,x,2) — (Vo(t, x),z) + 8" (Vol(t, x),

0
— MOlde) () + 5ot )

provides some o > 0 such that
sup {
feS)

ty+o
+/ 8*(V(,0(l, ut(),xo,f(t))v -M a[dc(t)](uto,xo,f(t))) dt
fo

ty+o to+o
/ J(t, ug,xo, £ (1), f(2))dt — f (Vo(t, uy x, £ (), f(2))dt
I

0 fo

ty+o 9 o
+/ —‘p(z,u,o,xo,f(t))dt} <-4 6.3.1)
) at 2

where uy, v, s is the trajectory solution associated with the control f € S},
starting from x¢ at time #( to the sweeping process (PSW)(C; f; x)

— gy xg, £ (1) — f() € Ny (g xg, £ (1)), t € [t0, T
Uy, xo, f (T0) = X0.
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Applying the dynamic programming principle gives
fo+o
V) (t0, x0) = sup [/ J(t, ttryxg. £ (1), F()dt
f eSé fo
Vit + 0. gy g (T + a))] . (63.2)
Since V; — ¢ has a local maximum at (¢y, xo), for small enough o

Vi (10, x0) — @(t0, x0) = Vj(to + 0, Uy xy, £ (0 + 0))
—@(to + 0 Uy 1o (t0 +0))  (63.3)

forall f € S%. For each n € N, there exists f” € S% such that

th+o

V) o, x0) < f

1
J(t, upy x, pr (), [ (@) dt 4+ Vi (to+0, gy xo, 1 (fo+0)) + —
fo

(6.3.4)
From (6.3.3) and (6.3.4) we deduce that
Vi(to + 0, sy xo, fr(t0 +0)) — @(to + 0, gy xy, 1 (10 + 0))

th+o 1
< / Tt g0, O, F O+
1

0

—@(to, x0) + Vy(to + 0, gy xy, rr (to + 0)).

Therefore we have

to+o 1
0< f J(t, gy o, fr (@), f71(0) dt +@ (10 +0, ugy g, fr (to+0) — @(to, x0) + P
fo
(6.3.5)
As g e CL([0, T] x E) we have
©(to + 0, gy, xy, 2 (Fo + 7)) — @(to, X0)

toyt+o . t0+(78(p
= / <V§0(ta Uty,xo, f" (t)), Uty,xo, f" (0) dt + / E(ts Uty,xo, [ (t)) dt.
4]

0]

(6.3.6)

Since uy, x,, o is the trajectory solution starting from xo at time #o to the
sweeping process (PSW)(C; f; x)

— gy, xg, fn (1) — [ (1) € Newy (g xg, f7 (1), t € [to, T
Uz, x, £ (T0) = X0
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by the classical property of normal convex cone and the estimation
ety xo, 2 (1) = POl = L +2|Z| = M we get

—ligy,xq, 2 (1) — f"(t) € M Aldc ()| (Ury,xg, 7 (1))
so that (6.3.6) yields

@(to + 0, Uy xo, 7 (10 + 7)) — @ (10, X0)

to+o
= f (V(P(t, u[o,xo,f" (t))v l;‘t(),xo,f” (t)) dt
0]
th+o (p
+ / _(ta uto,xo,f" (t)) dt

th+o
<- / (Yot ity xg. g (1)), F"(0)) dt
1

0

to+o
+/ 8 (Vo(t, usy xg, pr (1)), —M dldc 1) (Ury xo, 7 (1)) dt
fo

to+o ¢
+f 8—(t, Uy xo, f7 (1)) dt. (6.3.7)
fo t

Putting the estimate (6.3.7) in (6.3.5) we get
fo+o

fo+o
05/ J(fauto,xo,f"(t)vfn(t))dt_/ (Vo(t, ugy xo, (1)), f" (1)) dt
1

0 fo

fo+o
+ / 85 (Vo(t, gy xg, (1)), =M 3[dc 1)1 (Ury xo, 2 (1)) dt
1

0

fo+o ) 1
+ / B_(I’ Urg,xo. fn (1)) df + — (6.3.8)
1 t n

0

so that (6.3.1) and (6.3.8) give 0 < % < % for all n € N. Passing to the limit
when n goes oo in this inequality gives a contradiction. O

Viscosity problem governed by sweeping process with strategies and
Young measures

’/'lt,x,ot(v),v(t) € / |:f F(, “r,x,a(v),v(t)a Y, Z)“(”)t(dY)i| v (dz)
Z Y
- NC(t)(ur,x,a(u),v(t))»t € [z, 1],

ur,x,a(u),v(f) =x € C(1),

1
Uj(r,x) = sup inf {/ {/ [/ J([auf.x,a(v)i,v(t),ysZ)a(V)t(dy)] Vr(dz)]dt}
ael(r) VEZ() | Je z LJy
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where the integrand J, the upper value function Uy, the data Y, Z and F
are defined as in Proposition 6.2, is an open problem. Further related results
dealing with continuous and bounded variation (BVC) solution in sweeping
process governed by non empty interior closed convex valued continuous
mappings are available in [17, 18].
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