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1. Introduction

The pioneering works concerning control systems governed by second order
ordinary differential equations (SODE) with three point boundary condition
are developed in [2, 16]. In this paper we present some new applications of
the Green function introduced in [11] to the study of viscosity problem in
Optimal Control Theory where the dynamic is governed by (SODE) with m-
point boundary condition. The paper is organized as follows. In Sect. 2 we
recall and summarize the properties of a new Green function (Lemma 2.1)
with application to a second order differential equation with m-point bound-
ary condition in a separable Banach space E of the form

(SODE)

⎧
⎪⎪⎨

⎪⎪⎩

üτ,x,f (t)+ γ u̇τ,x,f (t) = f (t), t ∈ [τ, 1]

uτ,x,f (τ ) = x, uτ,x,f (1) =
m−2∑

i=1

αiuτ,x,f (ηi).

Here γ is positive, f ∈ L1
E([0, 1]), m is an integer number > 3, 0 ≤ τ <

η1 < η2 < · · · < ηm−2 < 1, αi ∈ R (i = 1, 2, . . . , m − 2) satisfying the
condition

m−2∑

i=1

αi − 1 + exp (−γ (1 − τ)) −
m−2∑

i=1

αi exp (−γ (ηi − τ)) �= 0 (1.1.1)

and uτ,x,f is the trajectory W
2,1
E ([τ, 1])-solution to (SODE) associated with

f ∈ L1
E([0, 1]) starting at the point x ∈ E at time τ ∈ [0, 1[. By Lemma 2.1,

uτ,x,f and u̇τ,x,f are represented, respectively, by

⎧
⎪⎪⎨

⎪⎪⎩

uτ,x,f (t) = eτ,x(t) +
∫ 1

0
Gτ (t, s)f (s)ds, ∀t ∈ [τ, 1]

u̇τ,x,f (t) = ėτ,x(t) +
∫ 1

0

∂Gτ

∂t
(t, s)f (s)ds, ∀t ∈ [τ, 1]

where Gτ is the Green function defined in Lemma 2.1 with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eτ,x(t) = x + Aτ (1 −
m−2∑

i=1

αi)(1 − exp(−γ (t − τ)))x, ∀t ∈ [τ, 1]

ėτ,x(t) = γAτ

(

1 −
m−2∑

i=1

αi

)

exp (−γ (t − τ))x, ∀t ∈ [τ, 1]

Aτ =
(
m−2∑

i=1

αi − 1 + exp(−γ (1 − τ)) −
m−2∑

i=1

αi exp(−γ (ηi − τ))

)−1

.
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We stress that both existence and uniqueness and the integral representation
formulas of solution and its derivative for (SODE) via the new Green func-
tion are of importance of this work. Indeed this allows to treat several new
applications to optimal control problems and also some viscosity solutions
for the value function governed by (SODE) with m-point boundary condi-
tion. In Sect. 3, we treat an optimal control problem governed by (SODE) in
a separable Banach space

(SODE)�

⎧
⎪⎪⎨

⎪⎪⎩

üf (t)+ γ u̇f (t) = f (t), f ∈ S1
�

uf (0) = x, uf (1) =
m−2∑

i=1

αiuf (ηi)

where � is a measurable and integrably bounded convex compact valued
mapping and S1

� is the set of all integrable selections of Γ . We show the
compactness of the solution set and the existence of optimal control for the
problem ⎧

⎪⎪⎨

⎪⎪⎩

üf (t)+ γ u̇f (t) = f (t), f ∈ S1
�

uf (0) = x, uf (1) =
m−2∑

i=1

αiuf (ηi),

inf
f∈S1

�

∫ 1

0
J (t, uf (t), u̇f (t), üf (t))dt.

These results lead naturally to the problem of viscosity for the value func-
tion associated with this class of (SODE) which is presented in Sect. 4. In
Sect. 5 we deal with a class of (SODE) with Pettis integrable second mem-
ber. Existence and compactness of the solution set are also provided. Open
problems concerning differential game governed by (SODE) and (ODE) with
strategies are given in Sect. 6. We finish the paper by providing an applica-
tion to the dynamic programming principle (DPP) and viscosity property for
the value function associated with a sweeping process related to a model in
Mathematical Economics [25].

2. Existence and Uniqueness

Let E be a separable Banach space. We denote by E∗ the topological dual
of E; BE is the closed unit ball of E; L([0, 1]) is the σ algebra of Lebesgue
measurable sets on [0, 1]; λ = dt is the Lebesgue measure on [0, 1]; B(E) is
the σ algebra of Borel subsets of E. By L1

E([0, 1]), we denote the space of
all Lebesgue–Bochner integrable E-valued functions defined on [0, 1]. Let
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CE([0, 1]) be the Banach space of all continuous functions u : [0, 1] → E

endowed with the sup-norm and let C1
E([0, 1]) be the Banach space of all

functions u ∈ CE([0, 1]) with continuous derivative, endowed with the norm

max

{

max
t∈[0,1]

‖u(t)‖ , max
t∈[0,1]

‖u̇(t)‖
}

.

We also denote W
2,1
E ([0, 1]) the space of all continuous functions in

CE([0, 1]) such that their first derivatives are continuous and their second
weak derivatives belong to L1

E([0, 1]).
We recall and summarize a new Green type function given in [11] that is

a key ingredient in the statement of the problems under consideration.

Lemma 2.1. Let 0 ≤ τ < η1 < η2 < · · · < ηm−2 < 1, γ > 0, m > 3 be an
integer number, and αi ∈ R (i = 1, . . . , m − 2) satisfying the condition

m−2∑

i=1

αi − 1 + exp (−γ (1 − τ)) −
m−2∑

i=1

αi exp (−γ (ηi − τ)) �= 0. (1.1.1)

Let E be a separable Banach space and let Gτ : [τ, 1] × [τ, 1] → R be the
function defined by

Gτ (t, s) =
⎧
⎨

⎩

1

γ
(1 − exp(−γ (t − s))) , τ ≤ s ≤ t ≤ 1

0, τ ≤ t < s ≤ 1

+Aτ

γ
(1 − exp(−γ (t − τ))) φτ (s), (2.1)

where

φτ (s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − exp(−γ (1 − s)) −
m−2∑

i=1

αi (1 − exp(−γ (ηi − s))) , τ ≤ s < η1

1 − exp(−γ (1 − s)) −
m−2∑

i=2

αi (1 − exp(−γ (ηi − s))) , η1 ≤ s ≤ η2

. . . . . .

1 − exp(−γ (1 − s)), ηm−2 ≤ s ≤ 1,

(2.2)
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and

Aτ =
(
m−2∑

i=1

αi − 1 + exp(−γ (1 − τ)) −
m−2∑

i=1

αi exp(−γ (ηi − τ))

)−1

.

(2.3)
Then the following assertions hold

(i) For every fixed s ∈ [τ, 1], the function Gτ (., s) is right derivable on
[τ, 1[ and left derivable on ]τ, 1]. Its derivative is given by

(
∂Gτ

∂t

)

+
(t, s) =

{
exp(−γ (t − s)), τ ≤ s ≤ t < 1
0, τ ≤ t < s < 1

+Aτ exp(−γ (t − τ))φτ (s), (2.4)

(
∂Gτ

∂t

)

−
(t, s) =

{
exp(−γ (t − s)), τ ≤ s < t ≤ 1
0, τ < t ≤ s ≤ 1

+Aτ exp(−γ (t−τ))φτ (s).

(2.5)
(ii) Gτ (·, ·) and ∂Gτ

∂t
(·, ·) satisfies

|Gτ (t, s)| ≤ MGτ and

∣
∣
∣
∣
∂Gτ

∂t
(t, s)

∣
∣
∣
∣ ≤ MGτ , ∀(t, s) ∈ [τ, 1] × [τ, 1],

where

MGτ = max{γ−1, 1}
[

1 + |Aτ |
(

1 +
m−2∑

i=1

|αi |
)]

.

(iii) If u ∈ W
2,1
E ([τ, 1]) with u(τ) = x and u(1) = ∑m−2

i=1 αiu(ηi), then

u(t) = eτ,x(t)+
∫ 1

τ

Gτ (t, s)(ü(s) + γ u̇(s))ds, ∀t ∈ [τ, 1],

where

eτ,x(t) = x + Aτ (1 −
m−2∑

i=1

αi)(1 − exp(−γ (t − τ)))x.

(iv) Let f ∈ L1
E([τ, 1]) and let uf : [τ, 1] → E be the function defined by

uf (t) = eτ,x(t)+
∫ 1

τ

Gτ (t, s)f (s)ds, ∀t ∈ [τ, 1].
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Then we have

uf (τ) = x, uf (1) =
m−2∑

i=1

αiuf (ηi).

Further the function uf is derivable on [τ, 1] and its derivative u̇f is
defined by

u̇f (t) = lim
h→0

uf (t + h) − uf (t)

h
= ėτ,x(t)+

∫ 1

τ

∂Gτ

∂t
(t, s)f (s)ds,

with

ėτ,x(t) = γAτ (1 −
m−2∑

i=1

αi) exp(−γ (t − τ))x.

(v) If f ∈ L1
E([τ, 1]), the function u̇f is scalarly derivable, and its weak

derivative üf satisfies

üf (t) + γ u̇f (t) = f (t) a.e. t ∈ [τ, 1].
Proof. (i) Let s ∈ [τ, 1] and t ∈ [τ, 1] . We consider two following cases.

Case 1 t �= s. For every small h > 0 with h < min {|t − s| , 1 − t} , we
have

Gτ (t + h, s) − Gτ (t, s)

h
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(γ h)−1 exp (−γ (t − s)) (1 − exp (−γ h)) ,

τ ≤ s < t < 1

0,
τ ≤ t < s ≤ 1

+ Aτ exp (−γ (t − τ))

× (1 − exp (−γ h)) (γ h)−1 φτ (s) .

Hence Gτ (·, s) is right derivable at t ∈ [τ, 1[\ {s} and

(
∂Gτ

∂t

)

+
(t, s) =

⎧
⎨

⎩

exp (−γ (t − s)) , τ ≤ s < t < 1

0, τ ≤ t < s ≤ 1

+Aτ exp (−γ (t − τ)) φτ (s) .

Similarly, it is not difficult to check that Gτ (·, s) is left derivable at t ∈
]τ, 1] \ {s} and

(
∂Gτ

∂t

)

−
(t, s) =

⎧
⎨

⎩

exp (−γ (t − s)) , τ ≤ s < t ≤ 1

0, τ < t < s ≤ 1

+Aτ exp (−γ (t − τ)) φτ (s) .
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Case 2 t = s. Given 0 < h < 1 − s. We have

Gτ (t + h, s) − Gτ (t, s)

h
= (γ h)−1 (1 − exp (−γ h))

+ Aτ exp (−γ (t − τ)) (1 − exp (−γ h))

× (γ h)−1 φτ (s) ,

hence
(
∂Gτ

∂t

)

+
(s, s) = 1 + Aτ exp (−γ (s − τ)) φτ (s) .

Now given 0 < h < s − τ. We have

Gτ (t − h, s) − Gτ (t, s)

h
= Aτ exp (−γ (t − τ))

× (1 − exp (−γ h)) (γ h)−1 φτ (s) ,

hence (
∂Gτ

∂t

)

+
(s, s) = Aτ exp (−γ (s − τ)) φτ (s) .

(ii) It is easy to see that |φτ (s)| ≤ 1 +∑m−2
i=1 |αi | for all s ∈ [0, 1]. So, from

the definition of Gτ we deduce that for all s, t ∈ [τ, 1]

|Gτ (t, s)| ≤ 1

γ

[

1 + |Aτ |
(

1 +
m−2∑

i=1

|αi |
)]

≤ MGτ .

Similarly we deduce that for all s, t ∈ [τ, 1]
∣
∣
∣
∣
∂Gτ

∂t
(t, s)

∣
∣
∣
∣ ≤ 1 + |Aτ | |φτ (s)| ≤ 1 + |Aτ |

(

1 +
m−2∑

i=1

|αi |
)

≤ MGτ .

(iii) Let x∗ ∈ E∗. By definition of Gτ , for all t ∈ [τ, 1], we have
〈

x∗,
∫ 1

τ

Gτ (t, s)ü(s)ds

〉

=
∫ 1

τ

〈
x∗,Gτ (t, s)ü(s)

〉
ds

= 1

γ

∫ t

τ

(1 − exp(−γ (t − s)))
〈
x∗, ü(s)

〉
ds

+ Aτ

γ
(1 − exp(−γ (t − τ)))

∫ 1

τ

〈
x∗, φτ (s)ü(s)

〉
ds.
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On the other hand
∫ t

τ

(1 − exp(−γ (t − s))) 〈x∗, ü(s)〉ds

= (exp(−γ (t − τ))− 1) 〈x∗, u̇(τ )〉 + γ

∫ t

τ

exp(−γ (t − s))〈x∗, u̇(s)〉ds

and
∫ 1
τ
〈x∗, φτ (s)ü(s)〉ds = I1 + I2 where

I1 =
m−1∑

i=1

∫ ηi

ηi−1
(1 − exp(−γ (1 − s))) 〈x∗, ü(s)〉ds

= (exp(−γ (1 − τ)) − 1) 〈x∗, u̇(τ )〉 + γ

∫ 1

τ

exp(−γ (1 − s))〈x∗, u̇(s)〉ds

I2 = −
m−2∑

i=1

m−2∑

j=i

αj

∫ ηi

ηi−1
(1 − exp(−γ (ηj − s)))〈x∗, u̇(s)〉ds

= −
m−2∑

i=1

αi (exp(−γ (ηi − τ)) − 1) 〈x∗, u̇(τ )〉

−γ

m−2∑

i=1

m−2∑

j=i

∫ ηi

ηi−1

exp(−γ (ηi − s))〈x∗, u̇(s)〉ds

with η0 = τ , ηm−1 = 1.
Hence
〈

x∗,
∫ 1

τ

Gτ (t, s)(ü(s) + γ u̇(s))ds

〉

= 1

γ
(exp(−γ (t − τ)) − 1)〈x∗, u̇(τ )〉

+ Aτ

γ
(1 − exp(−γ (t − τ)))〈x∗, u̇(τ )〉

×
[

exp(−γ (1 − τ)) − 1 −
m−2∑

i=1

αi (exp(−γ (ηi − τ)) − 1)

]

+
∫ t

τ

〈x∗, u̇(s)〉ds + Aτ (1 − exp(−γ t))

m−2∑

i=1

⎛

⎝1 −
m−2∑

j=i

αj

⎞

⎠

×
∫ ηi

ηi−1

〈x∗, u̇(s)〉ds.
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This implies that

〈x∗,
∫ 1

0
Gτ (t, s)(ü(s)+γ u̇(s))ds〉 = 〈x∗, u(t)−eτ,x(t)〉, ∀t ∈ [τ, 1].

Since this equality holds for every x∗ ∈ E∗, we get

u(t) = eτ,x(t)+
∫ 1

τ

Gτ (t, s)(ü(s) + γ u̇(s))ds, ∀t ∈ [τ, 1].

(iv) Let f ∈ L1
E([0, 1]) and uf (t) = eτ,x(t) + ∫ 1

τ
Gτ (t, s)f (s)ds, ∀t ∈

[0, 1]. Then, by definition of Gτ in (i), we have uf (τ) = x and

uf (1) = eτ,x(1) + 1

γ

∫ 1

τ

(1 − exp(−γ (1 − s)))f (s)ds

+Aτ

γ
(1 − exp(−γ (1 − τ)))

∫ 1

τ

φτ (s)f (s)ds

= eτ,x(1) + 1

γ

∫ 1

τ

[
1 − exp(−γ (1 − s)) − φτ (s)

]
f (s)ds

+ 1

γ

[
Aτ (1 − exp(−γ (1 − τ))) + 1

]
∫ 1

τ

φτ (s)f (s)ds

= eτ,x(1) + 1

γ

m−2∑

i=1

m−2∑

j=i

αj

∫ ηi

ηi−1
(1 − exp(−γ (ηi − s)))f (s)ds

+Aτ

γ

m−2∑

i=1

αi(1 − exp(−γ (ηi − τ)))

∫ 1

τ

φτ (s)f (s)ds

= eτ,x(1) + 1

γ

m−2∑

i=1

αi

∫ ηi

0
(1 − exp(−γ (ηi − s)))f (s)ds

+Aτ

γ

m−2∑

i=1

αi(1 − exp(−γ (ηi − τ)))

∫ 1

τ

φτ (s)f (s)ds.

From the definition of eτ,x(t) and Aτ , we deduce that

eτ,x(1) = x + Aτ

(

1 −
m−2∑

i=1

αi

)

(1 − exp (−γ (1 − τ))) x

= Aτ

[

A−1
τ + 1 − exp (−γ (1 − τ)) +

m−2∑

i=1

αi (exp (−γ (1 − τ)) − 1)

]

x

= Aτ

[
m−2∑

i=1

αi exp (−γ (1 − τ)) −
m−2∑

i=1

αi exp (−γ (ηi − τ))

]

x
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and

eτ,x(ηi) = x + Aτ

⎛

⎝1 −
m−2∑

j=1

αj

⎞

⎠ (1 − exp (−γ (ηi − τ))) x

= Aτ

⎡

⎣A−1
τ + 1 − exp (−γ (ηi − τ)) −

m−2∑

j=1

αj + exp (−γ (ηi − τ))

m−2∑

j=1

αj

⎤

⎦ x

= Aτ

⎡

⎣exp (−γ (1 − τ)) − exp (−γ (ηi − τ)) + exp (−γ (ηi − τ))

m−2∑

j=1

αj

+
m−2∑

j=1

αj exp (−γ (ηj − τ))

⎤

⎦ x.

Hence we deduce that

m−2∑

i=1

αieτ,x(ηi)

= Aτ

[
m−2∑

i=1

αi exp (−γ (1 − τ)) −
m−2∑

i=1

αi exp (−γ (ηi − τ))

+
⎛

⎝
m−2∑

j=1

αj

⎞

⎠
m−2∑

i=1

αi exp (−γ (ηi − τ)) −
(
m−2∑

i=1

αi

)

×
m−2∑

j=1

αj exp (−γ (ηj − τ))

⎤

⎦ x = eτ,x(1).

So, by combining the above relations, we get

uf (1) =
m−2∑

i=1

αieτ,x(ηi) + 1

γ

m−2∑

i=1

αi

∫ ηi

0
(1 − exp(−γ (ηi − s)))f (s)ds

+Aτ

γ

m−2∑

i=1

αi(1 − exp(−γ (ηi − τ)))

∫ 1

τ

φτ (s)f (s)ds

=
m−2∑

i=1

αi

[

eτ,x(ηi) + 1

γ

∫ ηi

0
(1 − exp(−γ (ηi − s)))f (s)ds
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+ Aτ

γ
(1 − exp(−γ (ηi − τ)))

∫ 1

τ

φτ (s)f (s)ds

]

=
m−2∑

i=1

αiuf (ηi).

On the other hand, by the same arguments as in [2] we can conclude that
uf is derivable and its derivative u̇f is defined by

u̇f (t) = ėτ,x(t)+
∫ 1

τ

∂G

∂t
(t, s)f (s)ds, ∀t ∈ [0, 1].

(v) Indeed, let t ∈ [0, 1]. Using the expression of ∂G
∂t

in (i) we have

u̇f (t) = ėτ,x(t)+
∫ t

τ

exp(−γ (t − s))f (s)ds

+Aτ exp(−γ (t − τ))

∫ 1

τ

φτ (s)f (s)ds.

Whence

〈x∗, üf (t)〉 = d

dt
〈x∗, u̇f (t)〉

= 〈x∗, ëτ,x(t)〉 + d

dt

∫ t

τ

exp(−γ (t − s))〈x∗, f (s)〉ds

−Aτγ exp(−γ (t − τ))

∫ 1

τ

〈x∗, φτ (s)f (s)〉ds

= 〈x∗, ëτ,x(t)〉 + 〈x∗, f (t)〉 − γ

∫ t

τ

exp(−γ (t − s))〈x∗, f (s)〉ds

−Aτγ exp(−γ (t − τ))

∫ 1

τ

〈x∗, φτ (s)f (s)〉ds.

We also note that ëτ,x(t) = −γ ėτ,x(t). Therefore

〈x∗, üf (t)〉 = 〈x∗, f (t)〉 − 〈x∗, γ u̇f (t)〉.
This implies that u̇f is scalarly derivable and

üf (t)+ γ u̇f (t) = f (t) a.e. t ∈ [0, 1].
�
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The following result is a direct application of Lemma 2.1.

Lemma 2.2. With the notations of Lemma 2.1, assume 0 ≤ τ < η1 < η2 <

· · · < ηm−2 < 1, γ > 0, m > 3 be an integer number, and αi ∈ R
(i = 1, . . . , m − 2) and (1.1.1). Let f ∈ CE([τ, 1]) (resp. f ∈ L1

E([τ, 1]).
Then the m-point boundary problem

⎧
⎪⎪⎨

⎪⎪⎩

üτ,x,f (t) + γ u̇τ,x,f (t) = f (t), t ∈ [τ, 1]

uτ,x,f (τ ) = x, uτ,x,f (1) =
m−2∑

i=1

αiuτ,x,f (ηi)

has a unique C2
E([τ, 1])-solution (resp. W 2,1

E ([τ, 1])-solution) which is given
by the integral representation formulas

⎧
⎪⎪⎨

⎪⎪⎩

uτ,x,f (t) = eτ,x(t)+
∫ 1

τ

Gτ (t, s)f (s)ds, t ∈ [τ, 1]

u̇τ,x,f (t) = ėτ,x(t)+
∫ 1

τ

∂Gτ

∂t
(t, s)f (s)ds, t ∈ [τ, 1]

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eτ,x(t) = x + Aτ (1 −
m−2∑

i=1

αi)(1 − exp(−γ (t − τ)))x,

ėτ,x(t) = γAτ

(

1 −
m−2∑

i=1

αi

)

exp (−γ (t − τ))x,

Aτ =
(
m−2∑

i=1

αi − 1 + exp(−γ (1 − τ)) −
m−2∑

i=1

αi exp(−γ (ηi − τ))

)−1

.

Remark. It is clear that the Green function Gτ depends on τ . When τ = 0,
(1.1.1) is reduced to

m−2∑

i=1

αi − 1 + exp (−γ ) −
m−2∑

i=1

αi exp (−γ (ηi)) �= 0 (1.1.2)

where m is an integer number > 3, 0 < η1 < η2 < · · · < ηm−2 < 1, αi ∈ R
(i = 1, 2, . . . , m − 2). Then the m-point boundary problem

⎧
⎪⎪⎨

⎪⎪⎩

üx,f (t) + γ u̇x,f (t) = f (t), t ∈ [0, 1]

ux,f (0) = x, ux,f (1) =
m−2∑

i=1

αiux,f (ηi)
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has a unique C2
E([0, 1])-solution (resp. W 2,1

E ([0, 1])-solution), ux,f , with in-
tegral representation formulas

⎧
⎪⎪⎨

⎪⎪⎩

ux,f (t) = ex(t)+
∫ 1

0
G0(t, s)f (s)ds, t ∈ [0, 1]

u̇x,f (t) = ėx(t)+
∫ 1

0

∂G0

∂t
(t, s)f (s)ds, t ∈ [0, 1]

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ex(t) = x + A0(1 −
m−2∑

i=1

αi)(1 − exp(−γ t))x,

ėx(t) = γA0

(

1 −
m−2∑

i=1

αi

)

exp (−γ t)x,

A0 =
(
m−2∑

i=1

αi − 1 + exp(−γ ) −
m−2∑

i=1

αi exp(−γ (ηi))

)−1

.

This remark and its notation will be used in the next section.

3. Existence of Optimal Controls

Let us recall the following denseness result based on Lyapunov theorem. See
e.g. [12, 28].

Proposition 3.1. Let E be a separable Banach space. Let � : [0, T ] →
cwk(E) be a convex weakly compact valued measurable and integrably
bounded mapping. Let ext (�) : t �→ ext (�(t)) where ext (Γ (t)) is the set of
extreme points of Γ (t)(t ∈ [0, T ]). Then the set S1

Γ of all integrable selec-
tions of Γ is convex and σ(L1

E,L
∞
E∗)-compact and the set of all integrable

selections S1
ext (Γ ) of ext (Γ ) is dense in S1

Γ with respect to this topology.

Proof. See e.g. [12, 28]. �
In this section we will assume that the hypotheses and notations of

Lemma 2.1 hold with τ = 0.

Theorem 3.1. With the hypotheses and notations of Proposition 3.1, let E be
a separable Banach space and let � : [0, T ] → ck(E) be a convex com-
pact valued measurable and integrably bounded mapping. Let us following
(SODE)
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(SODE)�

⎧
⎪⎪⎨

⎪⎪⎩

üf (t)+ γ u̇f (t) = f (t), f ∈ S1
�

uf (0) = x, uf (1) =
m−2∑

i=1

αiuf (ηi)

(SODE)ext (�)

⎧
⎪⎪⎨

⎪⎪⎩

üg(t)+ γ u̇g(t) = g(t), g ∈ S1
ext (�)

ug(0) = x, ug(1) =
m−2∑

i=1

αiug(ηi).

Then the set {uf : f ∈ S1
�} of W 2,1

E ([0, 1])-solutions to (SODE)� is compact

in C1
E([0, 1]) and the set {ug : g ∈ S1

ext (�)} of W 2,1
E ([0, 1])-solutions to

(SODE)ext (�) is dense in the compact set {uf : f ∈ S1
Γ } of W 2,1

E ([0, 1])-
solutions to (SODE)Γ .

Proof. Step 1. Compactness of the solution set {uf : f ∈ S1
�} in C1

E([0, 1]).
Let (ufn) be a sequence of W 2,1

E ([0, 1])-solutions to (SODE)� . As S1
Γ

is σ(L1
E,L

∞
E∗)-compact, by Eberlein–Smulian theorem, we may assume that

(fn) σ (L
1
E,L

∞
E∗)-converges to f∞ ∈ S1

� . From the properties of the Green
function G0 in Lemma 2.1 (by taking τ = 0) we have, for each n ∈ N,

ufn(t) = ex(t)+
∫ 1

0
G0(t, s)fn(s)ds, t ∈ [0, 1], (3.1.1)

u̇fn(t) = ėx(t)+
∫ 1

0

∂G0

∂t
(t, s)fn(s)ds, t ∈ [0, 1], (3.1.2)

üfn(t)+ γ u̇fn(t) = fn(t) ∈ �(t), a.e. t ∈ [0, 1] (3.1.3)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ex(t) = x + A0(1 −
m−2∑

i=1

αi)(1 − exp(−γ t))x, t ∈ [0, 1]

ėx(t) = γA0

(

1 −
m−2∑

i=1

αi

)

exp (−γ t)x, t ∈ [0, 1]

A0 =
(
m−2∑

i=1

αi − 1 + exp(−γ ) −
m−2∑

i=1

αi exp(−γ (ηi))

)−1

.

On the other hand, from definition of the Green functionG0 in Lemma 2.1(iv)
and (3.1.1), it is not difficult to show that {ufn : n ∈ N} is equicontinuous
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in CE([0, 1]). Indeed, let t, t ′ ∈ [0, 1], from (3.1.1) and (iv), we have the
estimate

||ufn(t)− ufn(t
′)||

≤ ||ex(t)− ex(t
′)|| +

∫ 1

0
|G0(t, s) − G0(t

′, s)| ||üfn(s) + γ u̇fn(s)||ds

≤ ||ex(t)− ex(t
′)|| +

∫ 1

0
|G0(t, s) − G0(t

′, s)| |�(s)|ds.

Further, for each t ∈ [0, 1] {ufn(t) : n ∈ N} is relatively compact be-

cause it is included in the norm compact set ex(t) + ∫ 1
0 G0(t, s)�(s)ds (see

e.g. [12, 14]). So by Ascoli’s theorem, {ufn : n ∈ N} is relatively com-
pact in CE([0, 1]). Similarly using the properties of ∂G0

∂t
in Lemma 2.1 and

(3.1.2) we deduce that
{
u̇fn : n ∈ N

}
is equicontinuous in CE ([0, 1]). In

addition, the set
{
u̇fn (t) : n ∈ N

}
is included in the compact set ėx(t) +

∫ 1
0

∂G0
∂t

(t, s) � (s) ds. So
{
u̇fn : n ∈ N

}
is relatively compact in CE([0, 1])

by Ascoli’s theorem. From the above facts, we deduce that there exists a sub-
sequence of

(
ufn
)

n∈N still denoted by
(
ufn
)

n∈N which converges uniformly

to u∞ ∈ CE([0, 1]) with u∞ (0) = x, u∞ (1) = ∑m−2
i=1 αiu

∞ (ηi). Similarly,
we may assume that

(
u̇fn
)

converges uniformly to v∞ ∈ CE([0, 1]). Further-
more, by the above facts, it is easy to see that

(
üfn
)
σ(L1

E,L
∞
E∗)-converges

to w∞ ∈ L1
E ([0, 1]). For every t ∈ [0, 1], using the representation formula

(3.1.1), we have

u∞(t) = lim
n→∞ ufn(t) = ex(t)+ lim

n→∞

∫ 1

0
G0(t, s)(üfn(s) + γ u̇fn(s))ds

= ex(t)+ lim
n→∞

∫ 1

0
G0(t, s)üfn(s)ds + γ lim

n→∞

∫ 1

0
G0(t, s)u̇fn(s)ds

= ex(t)+
∫ 1

0
G0(t, s)w

∞(s)ds + γ

∫ 1

0
G0(t, s)v

∞(s)ds

= ex(t)+
∫ 1

0
G0(t, s)(w

∞(s) + γ v∞(s))ds. (3.1.4)

From (3.1.4) and Lemma 2.1(iv), we deduce that u∞ is derivable and its
derivative u̇∞ is given by

u̇∞(t) = ėx(t)+
∫ 1

0

∂G0

∂t
(t, s)(w∞(s) + γ v∞(s))ds,∀t ∈ [0, 1]. (3.1.5)
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Now using the integral representation formula (3.1.2) we have, for every t ∈
[0, 1],

v∞(t) = lim
n→∞ u̇fn(t) = ėx(t)+ lim

n→∞

∫ 1

0

∂G0

∂t
(t, s)(üfn(s)+ γ u̇fn(s))ds

= ėx(t)+ lim
n→∞

∫ 1

0

∂G0

∂t
(t, s)üfn(s)ds

+γ lim
n→∞

∫ 1

0

∂G0

∂t
(t, s)u̇fn(s)ds

= ėx(t)+
∫ 1

0

∂G0

∂t
(t, s)w∞(s)ds + γ

∫ 1

0

∂G0

∂t
(t, s)v∞(s)ds

= ėx(t)+
∫ 1

0

∂G0

∂t
(t, s)(w∞(s)+ γ v∞(s))ds (3.1.6)

so that by (3.1.5) and (3.1.6) we get v∞ = u̇∞. Now invoking Lemma 2.1(v)
and using (3.1.4) we get

ü∞(t)+γ u̇∞(t) = w∞(t)+γ v∞(t) = w∞(t)+γ u̇∞(t) a.e. t ∈ [0, 1].
Thus we get ü∞(t) = w∞(t) a.e. t ∈ [0, 1] so that by (3.1.4)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u∞(t) = ex(t)+
∫ 1

0
G0(t, s)(ü

∞(s) + γ u̇∞(s))ds, t ∈ [0, 1]

u∞(0) = x, u∞(1) =
m−2∑

i=1

αiu
∞(ηi).

(3.1.7)
Step 2. Main fact: u∞ coincides with the W 2,1

E ([0, 1])-solution uf∞ associ-
ated with f∞ ∈ S1

� to

⎧
⎪⎪⎨

⎪⎪⎩

üf∞(t) + γ u̇f∞(t) = f∞(t),

uf∞(0) = x, uf∞(1) =
m−2∑

i=1

αiuf∞(ηi).
(3.1.8)

Remember that
⎧
⎪⎨

⎪⎩

üfn(t)+ γ u̇fn(t) = fn(t),

ufn(0) = x, ufn(1) =
m−2∑

i=1

αiufn(ηi)
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and by the above fact, (üfn + γ u̇fn) converges weakly in L1
E([0, 1]) to ü∞ +

γ u̇∞. Let v ∈ L∞
E∗([0, 1]). Multiply scalarly the equation

üfn(t) + γ u̇fn(t) = fn(t)

by v(t) and integrating on [0, 1] yields

∫ 1

0
〈v(t), üfn(t)+ γ u̇fn(t)〉dt =

∫ 1

0
〈v(t), fn(t)〉dt. (3.1.9)

It is clear that

lim
n→∞

∫ 1

0
〈v(t), üfn(t)+ γ u̇fn(t)〉dt =

∫ 1

0
〈v(t), ü∞(t)+ γ u̇∞(t)〉dt

= lim
n→∞

∫ 1

0
〈v(t), fn(t)〉dt =

∫ 1

0
〈v(t), f∞(t)〉dt

so that
ü∞ + γ u̇∞ = f∞. (3.1.10)

Using (3.1.7), (3.1.8), and (3.1.10) and uniqueness of solutions we get u∞ =
uf∞ . This proves the first part of the theorem, while the second part follows
from Proposition 3.1 and the integral representation formulas. �

Now comes a direct application to the existence of optimal controls for
the problem ⎧

⎪⎪⎨

⎪⎪⎩

üf (t)+ γ u̇f (t) = f (t), f ∈ S1
�

uf (0) = x, uf (1) =
m−2∑

i=1

αiuf (ηi),
(∗)

inf
f∈S1

�

∫ 1

0
J (t, uf (t), u̇f (t), üf (t))dt. (∗∗)

Theorem 3.2. Under the hypotheses and notations of Theorem 3.1, problem
(∗)–(∗∗) admits an optimal control.

Proof. Let us set m := inff∈S1
�

∫ 1
0 J (t, uf (t), u̇f (t), üf (t))dt . Let us con-

sider a minimizing sequence (ufn, u̇fn, üfn), that is

lim
n→∞

∫ 1

0
J (t, ufn(t), u̇fn(t), üfn(t))dt = m.

Since (fn) is relatively weakly compact in L1
E([0, 1]), we may assume that

(fn) converges weakly in L1
E([0, 1]) to f . Applying the arguments in the
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proof of Theorem 3.1 shows that (ufn) converges uniformly to (uf ), (u̇fn)

converges uniformly to u̇f and (üfn) σ (L
1
E,L

∞
E∗) -converges to üf with

üf (t)+ γ u̇f (t) = f (t),

uf (0) = x, uf (1) =
m−2∑

i=1

αiuf (ηi).

Now apply the lower semicontinuity for integral functionals ([14], Theo-
rem 8.1.6) yields

lim inf
n→∞

∫ 1

0
J (t, ufn(t), u̇fn(t), üfn(t))dt ≥

∫ 1

0
J (t, uf (t), u̇f (t), üf (t))dt ≥ m.

Hence we conclude that

m = inf
f∈S1

�

∫ 1

0
J (t, uf (t), u̇f (t), üf (t))dt =

∫ 1

0
J (t, uf (t), u̇f (t), üf (t))dt.

�
Now along the paper we will assume that the hypotheses and notations of

Lemma 2.1 hold.

4. Viscosity Property of the Value Function

The results given in Sect. 3 lead naturally to the problem of viscosity for the
value function associated with a second order differential inclusion. Similar
results dealing with ordinary differential equation (ODE) and evolution inclu-
sion with control measures are available in [2, 7, 14, 16]. In this section we
treat a new problem of value function in the context of second order ordinary
differential equations (SODE) withm-point boundary condition. Assume that
E is a separable Banach space, Z is a convex compact subset of E and S1

Z is
the set of all Lebesgue measurable mappings f : [0, 1] → Z (alias measur-
able selections of the constant mapping Z). For each f ∈ S1

Z , let us denote
by uτ,x,f the trajectory solution associated with the control f ∈ S1

Z starting
from x at time τ ∈ [0, η1[ to

(SODE)

⎧
⎪⎪⎨

⎪⎪⎩

üτ,x,f (t)+ γ u̇τ,x,f (t) = f (t), t ∈ [τ, 1]

uτ,x,f (τ ) = x, uτ,x,f (1) =
m−2∑

i=1

αiuτ,x,f (ηi)
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with the integral representation formulas
⎧
⎪⎪⎨

⎪⎪⎩

uτ,x,f (t) = eτ,x(t)+
∫ 1

τ

Gτ (t, s)f (s)ds, t ∈ [τ, 1]

u̇τ,x,f (t) = ėτ,x(t)+
∫ 1

τ

∂Gτ

∂t
(t, s)f (s)ds, t ∈ [τ, 1]

(4.1)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eτ,x(t) = x + Aτ (1 −
m−2∑

i=1

αi)(1 − exp(−γ (t − τ)))x, t ∈ [τ, 1]

ėτ,x(t) = γAτ

(

1 −
m−2∑

i=1

αi

)

exp (−γ (t − τ))x, t ∈ [τ, 1]

Aτ =
(
m−2∑

i=1

αi − 1 + exp(−γ (1 − τ)) −
m−2∑

i=1

αi exp(−γ (ηi − τ))

)−1

(4.2)

where the coefficient Aτ and the Green function Gτ are given in Lemma 2.1.
By the above considerations and Lemma 2.1(ii), it is easy to check that

u̇τ,x,f are uniformly majorized by a continuous function cτ : [τ, 1] → R+,
namely

||u̇τ,x,f (t)|| ≤ ||eτ,x(t)|| +
∫ 1

τ

|∂Gτ

∂t
(t, s)| ||f (s)||ds

≤ ||eτ,x(t)|| +
∫ 1

τ

|∂Gτ

∂t
(t, s)||Z|ds = cτ (t), ∀t ∈ [τ, 1]. (4.3)

It is worth mentioning that integral representation formulas (4.1) and (4.2)
will be useful in the study of the value function we present below. Let us
mention a useful lemma that is borrowed from ([16], Lemma 6.3) and ([7],
Lemma 3.1).

Lemma 4.1. Assume that (1.1.1) is satisfied. Let (t0, x0) ∈ [0, η1[×E and let
Z be a convex compact subset in E. Let � : [0, T ]×E×Z → R be an upper
semicontinuous function such that the restriction of � to [0, T ] × B × Z is
bounded on any bounded subset B of E. If

maxz∈Z�(t0, x0, z) < −η < 0

for some η > 0, then there exists σ > 0 such that

sup
f∈S1

Z

{∫ t0+σ

t0

�(t, ut0,x0,f (t), f (t))dt

}

< −ση

2



20 C. Castaing et al.

where ut0,x0,f is the trajectory solution associated with the control f ∈ S1
Z

starting from x0 at time t0 to

(SODE)

⎧
⎪⎪⎨

⎪⎪⎩

üt0,x0,f (t)+ γ u̇t0,x0,f (t) = f (t), t ∈ [t0, 1]

ut0,x0,f (t0) = x0, ut0,x0,f (1) =
m−2∑

i=1

αiut0,x0,f (ηi).

Proof. By hypothesis, one has maxz∈Z �(t0, x0, z) < −η < 0. As � is upper
semi continuous, so is the function

(t, x) �→ max
z∈Z �(t, x, z).

Hence there is ε > 0 such that

max
z∈Z �(t, x, z) < −η

2

for 0 ≤ t− t0 ≤ ε and ||x−x0|| ≤ ε. As u̇t0,x0,f is uniformly bounded for all
f ∈ S1

Z and for all t ∈ [t0, 1] by using the estimate (4.3) we can take σ > 0
such that ||ut0,x0,f (t) − ut0,x0,f (t0)|| ≤ ε for all t ∈ [t0, t0 + σ ] and for all
f ∈ S1

Z . Then by integrating
∫ t0+σ

t0

�(t, ut0,x0,f (t), f (t))dt ≤
∫ t0+σ

t0

[max
z∈Z �(t, ut0,x0,f (t), z)]dt < −ση

2

for all f ∈ S1
Z and the result follows. �

For simplicity we deal first with a dynamic programming principle (DPP)
for a value function VJ related to a bounded continuous function J : [0, 1] ×
E × Z → R associated with

(SODE)

⎧
⎪⎨

⎪⎩

ü(t)+ γ u̇(t) = f (t), f ∈ S1
Z, t ∈ [τ, 1]

u(τ) = x, u(1) =
m−2∑

i=1

αiu(ηi).

The following result is of importance in the statement of viscosity.

Theorem 4.1 (of Dynamic Programming Principle). Let (1.1.1) holds. Let
x ∈ E, 0 ≤ τ < η1 < .. < ηm−2 < 1 and σ > 0 such that τ + σ < η1.
Assume that J : [0, 1] × E × E → R is bounded continuous such that
J (t, x, .) is convex on E for every (t, x) ∈ [0, 1] × E. Let us consider the
value function

VJ (τ, x) = sup
f∈S1

Z

{
∫ 1

τ

J (t, uτ,x,f (t), f (t))dt}, (τ, x) ∈ [0, η1[×E
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where uτ,x,f is the trajectory solution on [τ, 1] associated the control f ∈ S1
Z

starting from x at time τ to

(SODE)

⎧
⎪⎪⎨

⎪⎪⎩

üτ,x,f (t)+ γ u̇τ,x,f (t) = f (t), t ∈ [τ, 1]

uτ,x,f (τ ) = x, uτ,x,f (1) =
m−2∑

i=1

αiuτ,x,f (ηi).
(4.4)

Then the following hold

VJ (τ, x) = sup
f∈S1

Z

{∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt + VJ (τ + σ, uτ,x,f (τ + σ))

}

with

VJ (τ + σ, uτ,x,f (τ + σ)) = sup
g∈S1

Z

{∫ 1

τ+σ

J (t, vτ+σ,uτ,x,f (τ+σ),g(t), g(t))dt

}

where vτ+σ,uτ,x,f (τ+σ),g denotes the trajectory solution on [τ + σ, 1] associ-

ated with the control g ∈ S1
Z starting from uτ,x,f (τ + σ) at time τ + σ to1

(SODE)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v̈τ+σ,uτ,x,f (τ+σ),g(t)+ γ v̇τ+σ,uτ,x,f (τ+σ),g(t) = g(t),

t ∈ [τ + σ, 1]
vτ+σ,uτ,x,f (τ+σ),g(τ + σ) = uτ,x,f (τ + σ),

vτ+σ,uτ,x,f (τ+σ),g(1) =
m−2∑

i=1

αivτ+σ,uτ,x,f (τ+σ),g(ηi).

(4.5)

Proof. Let

WJ (τ, x) := sup
f∈S1

Z

{∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt + VJ (τ + σ, uτ,x,f (τ + σ))

}

.

For any f ∈ S1
Z , we have

∫ 1

τ

J (t, uτ,x,f (t), f (t))dt

=
∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt +
∫ 1

τ+σ

J (t, uτ,x,f (t), f (t))dt.

1 It is necessary to write completely the expression of the trajectory
vτ+σ,uτ,x,f (τ+σ),g that depends on (f, g) ∈ S1

Z
× S1

Z
in order to get the lower semi-

continuous dependence with respect to f ∈ S1
Z

of VJ (τ + σ, uτ,x,f (τ + σ)).
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By the definition of VJ (τ + σ, uτ,x,f (τ + σ)) we have

VJ (τ + σ, uτ,x,f (τ + σ)) ≥
∫ 1

τ+σ

J (t, uτ,x,f (t), f (t))dt.

It follows that
∫ 1

τ

J (t, uτ,x,f (t), f (t))dt

≤
∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt + VJ (τ + σ, uτ,x,f (τ + σ)).

By taking the supremum on S1
Z in this inequality we get

VJ (τ, x) ≤ sup
f∈S1

Z

{
∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt + VJ (τ + σ, uτ,x,f (τ + σ))}

= WJ (τ, x).

Let us prove the converse inequality.

Main Fact: f → VJ (τ + σ, uτ,x,f (τ + σ)) is lower semicontinuous on S1
Z

(endowed with the σ(L1
E,L

∞
E∗)-topology).

Let us focus on the expression of VJ (τ + σ, uτ,x,f (τ + σ))

VJ (τ + σ, uτ,x,f (τ + σ)) = sup
g∈S1

Z

{∫ 1

τ+σ

J (t, vτ+σ,uτ,x,f (τ+σ),g(t), g(t))dt

}

where vτ+σ,uτ,x,f (τ+σ),g denotes the trajectory solution on [τ + σ, 1] associ-
ated with the control g ∈ S1

Z starting from uτ,x,f (τ + σ) at time τ + σ to
(SODE) (4.5). By the integral representation formulas (4.1) (4.2) given above
we have

vτ+σ,uτ,x,f (τ+σ),g(t) = eτ+σ,uτ,x,f (τ+σ)(t)+
∫ 1

τ+σ

Gτ+σ (t, s)g(s)ds

with

eτ+σ,uτ,x,f (τ+σ)(t)

= uτ,x,f (τ + σ) + Aτ+σ (1 −
m−2∑

i=1

αi)(1 − exp(−γ (t − (τ + σ)))uτ,x,f (τ + σ).

It is already seen in the proof of Step 1 of Theorem 3.1 that f �→ uτ,x,f from
S1
Z into CE([τ, 1]) is continuous when S1

Z is endowed with the σ(L1
E,L

∞
E∗)
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topology and CE([τ, 1]) is endowed with the norm of uniform convergence,
namely, when fn σ(L

1
E,L

∞
E∗)-converges to f ∈ S1

Z , then uτ,x,fn converges
uniformly to uτ,x,f , this entails that

eτ+σ,uτ,x,fn
(τ + σ)(t) → eτ+σ,uτ,x,f (τ + σ)(t)

for every t ∈ [τ, 1]. Further, when gn σ(L1
E,L

∞
E∗)-converges to g ∈ S1

Z ,
by compactness of Z, and the boundedness property of Gτ+σ (t, s) in
Lemma 2.1, it is not difficult to check that

∫ 1

τ+σ

Gτ+σ (t, s)gn(s)ds →
∫ 1

τ+σ

Gτ+σ (t, s)g(s)ds

for every t ∈ [τ, 1]. Therefore

vτ+σ,uτ,x,fn (τ+σ),gn(t) → vτ+σ,uτ,x,f (τ+σ),g(t)

for every t ∈ [τ, 1]. Hence in view of ([14], Theorem 8.1.6) we deduce that

(f, g) �→
∫ 1

τ+σ

J (t, vτ+σ,uτ,x,f (τ+σ),g(t), g(t))dt

is lower semicontinuous on S1
Z × S1

Z using the above fact and the con-
vexity assumption on the integrand J (t, x, .). Consequently f → VJ (τ +
σ, uτ,x,f (τ + σ)) is lower semicontinuous on S1

Z . Hence the mapping

f �→
∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt + VJ (τ + σ, uτ,x,f (τ + σ))

is lower semicontinuous on S1
Z . Since S1

Z is weakly compact in L1
E([0, 1]),

there is f 1 ∈ S1
Z such that

WJ (τ, x) = sup
f∈S1

Z

{∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt + VJ (τ + σ, uτ,x,f (τ + σ))

}

=
∫ τ+σ

τ

J (t, uτ,x,f 1(t), f
1(t))dt + VJ (τ + σ, uτ,x,f 1(τ + σ)).

Similarly there is g2 ∈ S1
Z such that

VJ (τ + σ, uτ,x,f 1(τ + σ)) = sup
g∈S1

Z

{∫ 1

τ+σ

J (t, vτ+σ,u
τ,x,f 1 (τ+σ),g(t), g(t))dt

}

=
∫ 1

τ+σ

J (t, vτ+σ,u
τ,x,f 1 (τ+σ),g2(t), g

2(t))dt
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where vτ+σ,u
τ,x,f 1 (τ+σ),g2(t) denotes the trajectory solution on [τ + σ, 1]

associated with the control g2 ∈ S1
Z starting from uτ,x,f 1(τ + σ) at time

τ + σ to

(SODE)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v̈τ+σ,u
τ,x,f 1 (τ+σ),g2(t)+ γ v̇τ+σ,u

τ,x,f 1 (τ+σ),g2(t) = g2(t),

t ∈ [τ + σ, 1]
vτ+σ,u

τ,x,f 1 (τ+σ),g2(τ + σ) = uτ,x,f 1(τ + σ),

vτ+σ,u
τ,x,f 1 (τ+σ),g2(1) =

m−2∑

i=1

αivτ+σ,u
τ,x,f 1 (τ+σ),g2(ηi).

Let us set
f := 1[τ,τ+σ ]f 1 + 1[τ+σ,1]f 2.

Then f ∈ S1
Z (because S1

Z is decomposable). Let wτ,x,f be the trajectory

solution on [τ, 1] associated with f ∈ S1
Z , that is

ẅτ,x,f (t)+ γ ẅτ,x,f (t) = f (t), t ∈ [τ, 1],

wτ,x,f (τ ) = x, wτ,x,f (1) =
m−2∑

i=1

αiwτ,x,f (ηi).

By uniqueness of solution we have

wτ,x,f (t) = uτ,x,f 1(t), ∀t ∈ [τ, τ + σ ],
wτ,x,f (t) = vτ+σ,u

τ,x,f 1 (τ+σ),g2(t), ∀t ∈ [τ + σ, 1].
Coming back to the expression of VJ and WJ we have

WJ (τ, x)

=
∫ τ+σ

τ

J (t, uτ,x,f 1(t), f
1(t))dt +

∫ 1

τ+σ

J (t, vτ+σ,u
τ,x,f 1 (τ+σ),g2(t), g

2(t))dt

=
∫ 1

τ

J (t, wτ,x,f (t), f (t))dt

≤ sup
f∈S1

Z

{
∫ 1

τ

J (t, uτ,x,f (t), f (t))dt} = VJ (τ, x).

�
Here are our results on viscosity of solutions for the value function.

Theorem 4.2 (of Viscosity Subsolution). Assume that E is a separable
Hilbert space. Assume (1.1.1) and J : [0, 1] × E × E → R is bounded
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continuous such that J (t, x, .) is convex on E for every (t, x) ∈ [0, 1] × E.
Let us consider the value function

VJ (τ, x) = sup
f∈S1

Z

{∫ 1

τ

J (t, uτ,x,f (t), f (t))dt

}

, (τ, x) ∈ [0, η1[×E

where uτ,x,f is the trajectory solution on [τ, 1] associated the control f ∈ S1
Z

starting from x ∈ E at time τ to

(SODE)

⎧
⎪⎪⎨

⎪⎪⎩

üτ,x,f (t)+ γ u̇τ,x,f (t) = f (t), t ∈ [τ, 1]

uτ,x,f (τ ) = x, uτ,x,f (1) =
m−2∑

i=1

αiuτ,x,f (ηi).

Then VJ satisfies a viscosity property: For any ϕ ∈ C1([0, 1] × E) such that
VJ reaches a local maximum at (t0, x0) ∈ [0, η1[×E, then

∂ϕ

∂t
(t0, x0)+max

z∈Z {J (t0, x0, z)}+δ∗(∇ϕ(t0, x0), ėt0,x0(t0)+
∫ 1

t0

∂Gt0

∂t
(t0, s)Zds) ≥ 0.

Proof. Assume by contradiction that there exist a ϕ ∈ C1([0, 1] × E) such
that VJ reaches a local maximum at (t0, x0) ∈ [0, η1[×E for which

∂ϕ

∂t
(t0, x0) + max

z∈Z {J (t0, x0, z)} + δ∗(∇ϕ(t0, x0), ėt0,x0(t0)+
∫ 1

t0

∂Gt0

∂t
(t0, s)Zds)

≤ −η < 0

for some η > 0. Applying Lemma 4.1, by taking

�(t, x, z) = J (t, x, z) + δ∗(∇ϕ(t, x), ėt0,x0(t)+
∫ 1

t0

∂Gt0

∂t
(t, s)Zds)+ ∂ϕ

∂t
(t, x)

yields σ > 0 such that

sup
f∈S1

Z

{∫ t0+σ

t0

J (t, ut0,x0,f (t), f (t))dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,f (t)), ėt0,x0(t)+
∫ 1

t0

∂Gt0

∂t
(t, s)Zds)dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f (t))dt

}

< −ση

2
(4.2.1)
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where ut0,x0,f is the trajectory solution associated with the control f ∈ S1
Z

starting from x0 at time t0 to

(SODE)

⎧
⎪⎪⎨

⎪⎪⎩

üt0,x0,f (t)+ γ u̇t0,x0,f (t) = f (t), t ∈ [t0, 1]

ut0,x0,f (t0) = x0, ut0,x0,f (1) =
m−2∑

i=1

αiut0,x0,f (ηi).

Applying the dynamic programming principle (Theorem 4.1) gives

VJ (t0, x0) = sup
f∈S1

Z

{∫ t0+σ

t0

J (t, ut0,x0,f (t),f (t))dt + VJ (t0 + σ, ut0,x0,f (t0 + σ))

}

.

(4.2.2)
Since VJ − ϕ has a local maximum at (t0, x0), for small enough σ

VJ (t0, x0) − ϕ(t0, x0) ≥ VJ (t0 + σ, ut0,x0,f (t0 + σ))

−ϕ(t0 + σ, ut0,x0,f (t0 + σ)) (4.2.3)

for all f ∈ S1
Z . By (4.2.2), for each n ∈ N, there is f n ∈ S1

Z such that

VJ (t0, x0) ≤
∫ t0+σ

t0

J (t, ut0,x0,f
n(t), f n(t))dt + VJ (t0

+ σ, ut0,x0,f
n(t0 + σ))+ 1

n
. (4.2.4)

From (4.2.3) and (4.2.4) we deduce that

VJ (t0 + σ, ut0,x0,f
n(t0 + σ)) − ϕ(t0 + σ, ut0,x0,f

n(t0 + σ))

≤
∫ t0+σ

t0

J (t, ut0,x0,f
n(t), f n(t))dt + 1

n

−ϕ(t0, x0) + VJ (t0 + σ, ut0,x0,f
n(t0 + σ)).

Therefore we have

0 ≤
∫ t0+σ

t0

J (t, ut0,x0,f
n(t), f n(t))dt

+ ϕ(t0 + σ, ut0,x0,f
n(t0 + σ))− ϕ(t0, x0) + 1

n
. (4.2.5)

As ϕ ∈ C1([0, 1] × E)

ϕ(t0 + σ, ut0,x0,f
n(t0 + σ)) − ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,f
n(t)), u̇t0,x0,f

n(t)〉dt +
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t))dt.

(4.2.6)
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Applying the integral representation formulas (4.1) and (4.2) gives

⎧
⎪⎪⎨

⎪⎪⎩

ut0,x0,f
n(t) = et0,x0(t)+

∫ 1

t0

Gt0(t, s)f
n(s)ds, t ∈ [t0, 1]

u̇t0,x0,f
n(t) = ėt0,x0(t)+

∫ 1

t0

∂Gt0

∂t
(t, s)f n(s)ds, t ∈ [t0, 1]

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

et0,x0(t) = x0 + At0(1 −
m−2∑

i=1

αi)(1 − exp(−γ (t − t0)))x0, ∀t ∈ [t0, 1]

ėt0,x0(t) = γAt0

(

1 −
m−2∑

i=1

αi

)

exp (−γ (t − t0))x0, ∀t ∈ [t0, 1]

At0 =
(
m−2∑

i=1

αi − 1 + exp(−γ (1 − t0)) −
m−2∑

i=1

αi exp(−γ (ηi − t0))

)−1

where the coefficient At0 and the Green function Gt0 are defined in
Lemma 2.1. Then from (4.2.6) we get the estimation

ϕ(t0 + σ, ut0,x0,f
n(t0 + σ)) − ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,f
n(t)), ėt0,x0(t)+

∫ 1

0

∂Gt0

∂t
(t, s)f n(s)ds〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t))dt. (4.2.7)

Since f n(s) ∈ Z for all s ∈ [t0, 1], it follows that

∂Gt0

∂t
(t, s)f n(s) ∈ ∂Gt0

∂t
(t, s)Z

for all t, s ∈ [t0, 1]. From (4.2.7) and this inclusion we get

ϕ(t0 + σ, ut0,x0,f
n(t0 + σ)) − ϕ(t0, x0)

≤
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,f
n(t)), ėt0,x0(t)+

∫ 1

t0

∂Gt0

∂t
(t, s)Zds)dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t))dt. (4.2.8)
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Put the estimation (4.2.8) in (4.2.5) we get

0 ≤
∫ t0+σ

t0

J (t, ut0,x0,f
n(t), f n(t))dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,f
n(t)), ėt0,x0(t)+

∫ 1

t0

∂Gt0

∂t
(t, s)Zds)dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t))dt + 1

n
. (4.2.9)

By combining (4.2.1) and (4.2.9) we get the estimation

0 ≤
∫ t0+σ

t0

J (t, ut0,x0,f
n(t), f n(t))dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,f
n(t)), ėt0,x0(t)+

∫ 1

t0

∂Gt0

∂t
(t, s)Zds)dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t))dt + 1

n
< −ση

2
+ 1

n
. (4.2.10)

Therefore we have that 0 <
ση
2 < 1

n
for every n ∈ N. Passing to the limit

when n goes to ∞ in the preceding inequality yields a contradiction. �

5. Optimal Control Problem in Pettis Integration

We provide in this section some results in optimal control problems gov-
erned by an (SODE) with m-point boundary condition where the controls are
Pettis-integrable. Here E is a separable Banach space. We recall and summa-
rize some needed results on the Pettis integrability. Let f : [0, 1] → E be
a scalarly integrable function, that is, for every x∗ ∈ E∗, the scalar function
t �→ 〈x∗, f (t)〉 is Lebesgue-integrable on [0, 1]. A scalarly integrable func-
tion f : [0, 1] → E is Pettis-integrable if, for every Lebesgue-measurable
set A in [0, 1], the weak integral

∫

A
f (t)dt defined by 〈x∗,

∫

A
f (t)dt〉 =

∫

A
〈x∗, f (t)〉 dt for all x∗ ∈ E∗ belongs to E. We denote by P 1

E([0, 1], dt)
the space of all Pettis-integrable functions f : [0, 1] → E endowed with the
Pettis norm ||f ||Pe = supx∗∈BE∗

∫ 1
0 |〈x∗, f (t)〉|dt. A mapping f : [0, 1] →

E is Pettis-integrable iff the set {〈x∗, f 〉 : ||x∗|| ≤ 1} is uniformly inte-
grable in the space L1

R([0, 1], dt). More generally a convex compact val-
ued mapping � : [0, 1] ⇒ E is scalarly integrable, if, for every x∗ ∈ E∗,
the scalar function t �→ δ∗(x∗, �(t)) is Lebesgue-integrable on [0, 1], � is
Pettis-integrable if the set {δ∗(x∗, �(.)) : ||x∗|| ≤ 1} is uniformly integrable
in the space L1

R([0, 1], dt). In view of [[6], Theorem 4.2; or [14], Cor. 6.3.3]
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the set SPe� of all Pettis-integrable selections of a convex compact valued
Pettis-integrable mapping Γ : [0, 1] ⇒ E is sequentially σ(P 1

E,L
∞ ⊗ E∗)-

compact. We refer to [19], for related results on the integration of Pettis-
integrable multifunctions.

We provide some useful lemmas.

Lemma 5.1. Let G : [0, 1] × [0, 1] → R be a mapping with the following
properties

(i) for each t ∈ [0, 1], G(t, .) is Lebesgue-measurable on [0, 1],
(ii) for each s ∈ [0, 1], G(., s) is continuous on [0, 1],

(iii) there is a constant M > 0 such that |G(t, s)| ≤ M for all (t, s) ∈
[0, 1] × [0, 1].

Let f : [0, 1] → E be a Pettis-integrable mapping. Then the mapping

uf : t �→
∫ 1

0
G(t, s)f (s)ds

is continuous from [0, 1] into E, that is, uf ∈ CE([0, 1]).
Proof. Let (tn) be a sequence in [0, 1] such that tn → t ∈ [0, 1]. Then we
have the estimation

sup
x∗∈BE∗

|〈x∗,
∫ 1

0
G(tn, s)f (s)ds −

∫ 1

0
G(t, s)f (s)ds〉|

≤ sup
x∗∈BE∗

∫ 1

0
|G(tn, s) − G(t, s)||〈x∗, f (s)〉|ds.

As the sequence (|G(tn, .)−G(t, .)|) is bounded in L∞
R ([0, 1]) and pointwise

converges to 0, it converges to 0 uniformly on uniformly integrable subsets
of L1

R([0, 1]) in view of a lemma due to Grothendieck’s [24], in others terms
it converges to 0 with respect to the Mackey topology τ(L∞, L1), see also
[5] for a more general result concerning the Mackey topology for bounded
sequences in L∞

E∗. Since the set {|〈x∗, f (s)〉| : ||x∗|| ≤ 1} is uniformly inte-
grable in L1

R([0, 1]), the second term in the above estimation goes to 0 when
tn → t showing that uf is continuous on [0, 1] with respect to the norm
topology of E. �
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The following is a generalization of Lemma 5.1.

Lemma 5.2. Let G : [0, 1] × [0, 1] → R be a mapping with the following
properties

(i) for each t ∈ [0, 1], G(t, .) is Lebesgue-measurable on [0, 1],
(ii) for each s ∈ [0, 1], G(., s) is continuous on [0, 1],

(iii) there is a constant M > 0 such that |G(t, s)| ≤ M for all (t, s) ∈
[0, 1] × [0, 1].

Let � : [0, 1] → E be a convex compact valued measurable and Pettis-
integrable mapping. Then the set

{uf : uf (t) =
∫ 1

0
G(t, s)f (s)ds : t ∈ [0, 1], f ∈ SPe� }

is equicontinuous in CE([0, 1]).
Proof. By Lemma 5.1 it is clear that

{uf : uf (t) =
∫ 1

0
G(t, s)f (s)ds : t ∈ [0, 1], f ∈ SPe� } ⊂ CE([0, 1]).

Let us check the equicontinuity property. Indeed, let t, tk ∈ [τ, 1] such that
tk → t , we have the estimation

||uf (t) − uf (tk)|| ≤ sup
x∗∈BE∗

∫ 1

0
|G(tk, s) − G(t, s)||δ∗(x∗, �(s))|ds.

As the sequence (|G(tk, .) − G(t, .)|) is bounded in L∞
R ([0, 1]) and the set

{|δ∗(x∗, �(.))| : ||x∗|| ≤ 1} is uniformly integrable in L1
R([0, 1]), by invok-

ing again Grothendieck lemma [24] as in the proof of Lemma 5.1, the second
term goes to 0 when tk → t showing that {uf : f ∈ SPe� } is equicontinuous
in CE([0, 1]). �

The following lemma is crucial in the statement of the (SODE) with
Pettis-integrable second member and m-point boundary condition. Here we
suppose that the hypotheses and notations of Lemma 2.1 hold.

Lemma 5.3. Let x ∈ E, let Gτ be the Green function, eτ,x and ėτ,x in
Lemma 2.1
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eτ,x(t) = x + Aτ (1 −
m−2∑

i=1

αi)(1 − exp(−γ (t − τ)))x, ∀t ∈ [τ, 1]

ėτ,x(t) = γAτ

(

1 −
m−2∑

i=1

αi

)

exp (−γ (t − τ))x, ∀t ∈ [τ, 1]

Aτ =
(
m−2∑

i=1

αi − 1 + exp(−γ (1 − τ)) −
m−2∑

i=1

αi exp(−γ (ηi − τ))

)−1
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and let f be a Pettis-integrable function. Let us consider the mapping

uτ,x,f (t) = eτ,x(t)+
∫ 1

τ

Gτ (t, s)f (s)ds, τ ∈ [0, η1[, t ∈ [0, 1].

Then the following assertions hold

(1) uτ,x,f is continuous i.e. uτ,x,f ∈ CE([0, 1]),
(2) uτ,x,f (τ ) = x, uτ,x,f (1) = ∑m−2

i=1 αiuτ,x,f (ηi),
(3) The function uτ,x,f is scalarly derivable, that is, for every x∗ ∈ E∗, the

scalar function 〈x∗, uτ,x,f 〉 is derivable and its weak derivative u̇τ,x,f
satisfies

u̇τ,x,f (t) = ėτ,x(t) +
∫ 1

τ

∂Gτ

∂t
(t, s)f (s)ds, τ ∈ [0, η1[, t ∈ [τ, 1].

(4) The function u̇τ,x,f is continuous and scalarly derivable, that is, for ev-
ery x∗ ∈ E∗, the scalar function 〈x∗, u̇τ,x,f 〉 is derivable and its weak
derivative üτ,x,f satisfies

üτ,x,f (t) + γ uτ,x,f (t) = f (t) a.e. t ∈ [τ, 1].
Proof. (1) Since eτ,x ∈ CE([0, 1]) and Gτ is a Carathéodory and bounded
function, uτ,x,f is continuous on [τ, 1] with respect to the norm topology of
E in view of Lemma 5.1.
(2) follows from Lemma 2.1(iv).
(3)–(4) Similarly, using the property of ∂Gτ

∂t
in Lemma 2.1 we infer that

t �→ ∫ 1
τ

∂Gτ

∂t
(t, s)f (s)ds is continuous on [τ, 1] with respect to the norm

topology of E in view of Lemma 5.1 and so is the mapping t �→ ėτ,x(t) +
∫ 1
τ

∂Gτ

∂t
(t, s)f (s)ds. Now (3)–(4) follow from the computation used in (iv)–

(v) in Lemma 2.1. �
By W

2,1
P,E([τ, 1]) we denote the space of all continuous functions in

CE([τ, 1]) such that their first weak derivatives are continuous and their sec-
ond weak derivatives are Pettis-integrable on [τ, 1]. By Lemma 5.3, given
a Pettis-integrable function f : [τ, 1] → E (shortly f ∈ P 1

E([τ, 1]) the
(SODE)

⎧
⎪⎪⎨

⎪⎪⎩

üτ,x,f (t)+ γ u̇τ,x,f (t) = f (t), t ∈ [τ, 1], τ ∈ [0, η1[

uτ,x,f (τ ) = x, uτ,x,f (1) =
m−2∑

i=1

αiuτ,x,f (ηi)
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admits a unique W 2,1
P,E([τ, 1])-solution with integral representation formulas

uτ,x,f (t) = eτ,x(t)+
∫ 1

τ

Gτ (t, s)f (s)ds, τ ∈ [0, η1[, t ∈ [τ, 1],

u̇τ,x,f (t) = ėτ,x(t) +
∫ 1

τ

∂Gτ

∂t
(t, s)f (s)ds, τ ∈ [0, η1[, t ∈ [τ, 1].

The following result provides the compactness of solutions for a class
of (SODE) with m (m > 3) point boundary condition and Pettis-integrable
controls.

Theorem 5.1. Let E be a separable Banach space and let � : [0, 1] →
ck(E) be a convex compact valued measurable and Pettis-integrable map-
ping. Let us consider the following

(SODE)�

⎧
⎪⎪⎨

⎪⎪⎩

üτ,x,f (t) + γ u̇τ,x,f (t) = f (t), t ∈ [τ, 1], τ ∈ [0, η1[, f ∈ SPe�

uτ,x,f (τ ) = x, uτ,x,f (1) =
m−2∑

i=1

αiuτ,x,f (ηi).

Then the set {uτ,x,f : f ∈ SPe� } of W 2,1
P,E([τ, 1])-solutions to (SODE)� is

compact in CE([τ, 1]).
Proof. Let (uτ,x,fn) be a sequence ofW 2,1

P,E([τ, 1])-solutions to (SODE)� . As

SPe� is sequentially σ(P 1
E,L

∞ ⊗ E∗)-compact, by extracting a subsequence
we may assume that (fn) converges with respect to the σ(P 1

E,L
∞ ⊗ E∗)

topology to f∞ ∈ SPe� . Using Lemma 5.3, we have, for each n ∈ N,

uτ,x,fn(t) = eτ,x(t) +
∫ 1

τ

Gτ (t, s)fn(s)ds, t ∈ [τ, 1] (5.1.1)

u̇τ,x,fn(t) = ėτ,x(t)+
∫ 1

τ

∂Gτ

∂t
(t, s)fn(s)ds, t ∈ [τ, 1] (5.1.2)

üτ,x,fn(t) + γ u̇τ,x,fn(t) = fn(t) ∈ �(t), a.e. t ∈ [τ, 1]. (5.1.3)

From the property the Green function Gτ in Lemma 2.1, (5.1.1) and

Lemma 5.2, we infer that {uτ,x,fn : n ∈ N} is equicontinuous in CE([0, 1]).
Further, for each t ∈ [τ, 1], {uτ,x,fn(t) : n ∈ N} is relatively compact be-

cause it is included in the norm compact set eτ,x(t) + ∫ 1
0 Gτ (t, s)�(s)ds

(see e.g. [12, 14]). So by Ascoli’s theorem, {uτ,x,fn : n ∈ N} is relatively
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compact in CE([τ, 1]). Similarly using the properties of ∂Gτ

∂t
in Lemma 2.1,

(5.1.2) and Lemma 5.2, we deduce that
{
u̇τ,x,fn : n ∈ N

}
is equicontinuous

in CE ([τ, 1]). In addition, the set
{
u̇τ,x,fn (t) : n ∈ N

}
is included in the

compact set ėτ,x(t) + ∫ 1
0

∂Gτ

∂t
(t, s) � (s) ds. So

{
u̇τ,x,fn : n ∈ N

}
is rela-

tively compact in CE([τ, 1]) using the Ascoli’s theorem. From the above
facts, we deduce that there exists a subsequence of

(
uτ,x,fn

)

n∈N still de-
noted by

(
uτ,x,fn

)

n∈N which converges uniformly to u∞ ∈ CE([τ, 1]) with

u∞ (0) = x and u∞ (1) = ∑m−2
i=1 αiu

∞ (ηi). Similarly, we may assume
that

(
u̇τ,x,fn

)
converges uniformly to v∞ ∈ CE([τ, 1]). Furthermore, by the

above facts, it is easy to see that
(
üτ,x,fn

)
converges σ(P 1

E,L
∞ ⊗ E∗) to a

Pettis integrable function w∞ ∈ P 1
E([τ, 1]). For every t ∈ [τ, 1], using the

representation formula (5.1.1), we have

u∞(t)

= lim
n→∞ uτ,x,fn(t) = eτ,x(t) + lim

n→∞

∫ 1

τ

Gτ (t, s)(üτ,x,fn(s) + γ u̇τ,x,fn(s))ds

= eτ,x(t) + lim
n→∞

∫ 1

0
Gτ (t, s)üτ,x,fn(s)ds + γ lim

n→∞

∫ 1

τ

Gτ (t, s)u̇τ,x,fn(s)ds

= eτ,x(t) +
∫ 1

0
Gτ (t, s)w

∞(s)ds + γ

∫ 1

0
G0(t, s)v

∞(s)ds

= eτ,x(t) +
∫ 1

0
Gτ (t, s)(w

∞(s) + γ v∞(s))ds. (5.1.4)

From (5.1.4) and Lemma 5.3, we deduce that u∞ is scalarly derivable and its
weak derivative u̇∞ is given by

u̇∞(t) = ėτ,x(t)+
∫ 1

τ

∂Gτ

∂t
(t, s)(w∞(s)+γ v∞(s))ds,∀t ∈ [τ, 1]. (5.1.5)

Now using the integral representation formula (5.1.2) we have, for every t ∈
[τ, 1],
v∞(t) = lim

n→∞ u̇τ,x,fn(t)

= ėτ,x(t)+ lim
n→∞

∫ 1

τ

∂Gτ

∂t
(t, s)(üτ,x,fn(s) + γ u̇τ,x,fn(s))ds

= ėτ,x(t)+ lim
n→∞

∫ 1

τ

∂Gτ

∂t
(t, s)üfn(s)ds

+γ lim
n→∞

∫ 1

τ

∂Gτ

∂t
(t, s)u̇fn(s)ds
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= ėτ,x(t)+
∫ 1

τ

∂Gτ

∂t
(t, s)w∞(s)ds + γ

∫ 1

τ

∂Gτ

∂t
(t, s)v∞(s)ds

= ėτ,x(t)+
∫ 1

τ

∂Gτ

∂t
(t, s)(w∞(s) + γ v∞(s))ds (5.1.6)

so that by (5.1.5) and (5.1.6) we get v∞ = u̇∞. Now using (5.1.4) and invok-
ing Lemma 5.3(4) we get

ü∞(t)+γ u̇∞(t) = w∞(t)+γ v∞(t) = w∞(t)+γ u̇∞(t) a.e. t ∈ [τ, 1].
Thus we get ü∞(t) = w∞(t) a.e. t ∈ [τ, 1] so that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u∞(t) = eτ,x(t) +
∫ 1

τ

Gτ (t, s)(ü
∞(s) + γ u̇∞(s))ds, t ∈ [τ, 1]

u∞(τ ) = x, u∞(1) =
m−2∑

i=1

αiu
∞(ηi).

(5.1.7)
Step 2. Main fact: u∞ coincides with the W 2,1

P,E([τ, 1])-solution uf∞ associ-

ated with f∞ ∈ SPe� to

⎧
⎪⎨

⎪⎩

üf∞(t)+ γ u̇f∞(t) = f∞(t), t ∈ τ, 1]
uf∞(τ ) = x, uf∞(1) =

m−2∑

i=1

αiuf∞(ηi).
(5.1.8)

Remember that
⎧
⎪⎨

⎪⎩

üτ,x,fn(t)+ γ u̇fn(t) = fn(t),

uτ,x,fn(τ ) = x, uτ,x,fn(1) =
m−2∑

i=1

αiuτ,x,fn(ηi)

and by the above fact, (üτ,x,fn + γ u̇τ,x,fn) σ (P
1
E,L

∞ ⊗ E∗)-converges in
P 1
E([τ, 1]) to ü∞ + γ u̇∞. Let v = h ⊗ x∗ ∈ L∞([τ, 1]) ⊗ E∗. Multiply

scalarly the equation

üτ,x,fn(t) + γ u̇τ,x,fn(t) = fn(t)

by v(t) and integrating on [τ, 1] yields

∫ 1

τ

〈h(t)⊗ x∗, üfn(t)+ γ u̇fn(t)〉dt =
∫ 1

τ

〈h(t)⊗ x∗, fn(t)〉dt. (5.1.9)
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It is clear that

lim
n→∞

∫ 1

τ

〈h(t)⊗x∗, üfn(t)+γ u̇fn(t)〉dt =
∫ 1

τ

〈h(t)⊗x∗, ü∞(t)+γ u̇∞(t)〉dt

= lim
n→∞

∫ 1

τ

〈h(t)⊗ x∗, fn(t)〉dt =
∫ 1

τ

〈h(t)⊗ x∗, f∞(t)〉dt
so that by invoking the separability of E

ü∞(t)+ γ u̇∞(t) = f∞(t) a.e. t ∈ [τ, 1]. (5.1.10)

Using (5.1.7), (5.1.8), and (5.1.10) and uniqueness of solution we obtain
u∞ = uf∞ . �
Remark. In the context of Theory of Control, we have stated in the proof
of Theorem 5.1, the dependence of the trajectory solution with respect to the
Pettis controls. Namely, with the notations of Theorem 5.1, if uτ,x,fn is the
W

2,1
P,E([τ, 1])-solution of

⎧
⎪⎨

⎪⎩

üτ,x,fn(t)+ γ u̇fn(t) = fn(t), t ∈ [τ, 1]
uτ,x,fn(τ ) = x, uτ,x,fn(1) =

m−2∑

i=1

αiuτ,x,fn(ηi)

and if (fn) σ (P 1
E,L

∞ ⊗ E∗)-converges to f∞ ∈ SPe� , then (uτ,x,fn)

converges uniformly to uτ,x,f∞ , (u̇τ,x,fn) converges uniformly to u̇τ,x,f∞
and (üτ,x,fn) σ (P

1
E,L

∞ ⊗ E∗)-converges to üτ,x,f∞ where uτ,x,f∞ is the

W
2,1
P,E([τ, 1])-solution of

⎧
⎪⎨

⎪⎩

üτ,x,f∞(t)+ γ u̇τ,x,f∞(t) = f∞(t), t ∈ [τ, 1]
uτ,x,f∞(τ ) = x, uτ,x,f∞(1) =

m−2∑

i=1

αiuτ,x,f∞(ηi).

The above remark is of importance since it allows to prove further results.
Here is an application to the existence of W 2,1

P,E([τ, 1])-solution of a (SODE)
with m-point boundary condition.

Theorem 5.2. Let F : [0, 1] × (E × E) → E be a Carathéodory mapping
satisfying

F(t, x, y) ∈ �(t)
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for all (t, x, y) ∈ [0, 1] × E × E where � : [0, 1] ⇒ E is a convex compact
valued Pettis-integrable mapping. Then the (SODE)

⎧
⎪⎨

⎪⎩

ü(t)+ γ u̇(t) = F(t, u(t), u̇(t)), t ∈ [τ, 1]
u(τ) = x, u(1) =

m−2∑

i=1

αiu(ηi)

has a W 2,1
P,E([τ, 1])-solution.

Proof. Let us set

X := {uτ,x,f : [τ, 1] → E : uτ,x,f (t) = eτ,x(t)

+
∫ 1

τ

Gτ (t, s)f (s)ds, t ∈ [τ, 1], f ∈ SPe� }.

Then Theorem 5.1 shows that X is compact and convex in CE([τ, 1]). For
each u ∈ X , let us set

�(u) := {w ∈ X : ẅ(t) + γ ẇ(t) = F(t, u(t), u̇(t)), t ∈ [τ, 1]}.
In view of Lemma 5.3, �(u) is non empty. Let us prove that the mapping
� : X → X is continuous. Let (un, vn) ∈ Graph� such that un → u

and vn → v in X . We need to check that v = �(u). Taking account of
the particular structure of X and the remark of Theorem 5.1, we have that
u̇n → u̇ uniformly and ün σ (P 1

E,L
∞ ⊗E∗)-converges to ü and that v̇n → v̇

uniformly and v̈n σ (P 1
E,L

∞ ⊗ E∗)-converges to v̈. Multiply scalarly the
equality

v̈n(t)+ γ v̇n(t) = F(t, un(t), u̇n(t)), t ∈ [τ, 1]
by h(t) ⊗ x∗ where h ∈ L∞

R+([τ, 1]) and x∗ ∈ BE∗ and integrating on [τ, 1]
gives

∫ 1

τ

〈h(t)⊗ x∗, v̈n(t) + γ v̇n(t)〉dt =
∫ 1

τ

〈h(t)⊗ x∗, F (t, un(t), u̇n(t))〉dt.
(5.2.1)

By passing to the limit when n → ∞ in (5.2.1) we get

lim
n→∞

∫ 1

τ

〈h(t)⊗ x∗, v̈n(t)+ γ v̇n(t)〉dt =
∫ 1

τ

〈h(t)⊗ x∗, v̈(t) + γ v̇(t)〉dt

= lim
n→∞

∫ 1

τ

〈h(t)⊗ x∗, F (t, un(t), u̇n(t))〉dt =
∫ 1

τ

〈h(t)⊗ x∗, F (t, u(t), u̇(t))〉dt
(5.2.2)
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by Lebesgue dominated convergence theorem, because

|〈h(t)⊗ x∗, F (t, x, y)〉| ≤ h(t)|δ∗(x∗, �(t))|
for all (t, x, y) ∈ [0, 1] × E × E. By (5.2.2) we deduce that

∫ 1

τ

〈h(t)⊗ x∗, v̈(t)+ γ v̇(t)〉dt =
∫ 1

τ

〈h(t)⊗ x∗, F (t, u(t), u̇(t))〉dt.

Whence we get

〈x∗, v̈(t) + γ v̇(t)〉 = 〈x∗, F (t, u(t), u̇(t))〉, a.e. (5.2.4)

for every x∗ ∈ BE∗ . By taking a dense sequence (e∗
k )k∈N in BE∗ for the

Mackey topology we get

〈e∗
k , v̈(t) + γ v̇(t)〉 = 〈e∗

k , F (t, u(t), u̇(t))〉, a.e. (5.2.5)

for all k ∈ N. Finally we get

v̈(t)+ γ v̇(t) = F(t, u(t), u̇(t)), a.e.

proving that Graph� is compact. By applying the Kakutani–Ky Fan fixed
point theorem to �, we find u ∈ X such that u = �(u) which is a
W

2,1
P,E([τ, 1])-solution of the (SODE) under consideration. �

The compactness in CE([τ, 1]) of

X := {uτ,x,f : [τ, 1] → E : uτ,x,f (t) = eτ,x(t)

+
∫ 1

τ

Gτ (t, s)f (s)ds, t ∈ [τ, 1], f ∈ SPe� }
Y := {u̇τ,x,f : [τ, 1] → E : u̇τ,x,f (t) = ėτ,x(t)

+
∫ 1

τ

∂Gτ

∂t
(t, s)f (s)ds, t ∈ [τ, 1], f ∈ SPe� }

are of importance and rely on some delicate arguments in the pioneering work
of [1, 2] involving the Pettis uniformly integrable condition, Grothendieck
lemma characterizing the Mackey topology for bounded sets in L∞

R [24] and
other compactness results. Second order differential inclusions with three
point boundary condition in case where the second member is a Pettis-
integrable convex compact valued multifunction is initiated in [2]. At this
point a second order differential inclusion with upper semicontinuous con-
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vex compact valued multifunction and three point boundary condition of the
form

{
ü(t) ∈ F(t, u(t), u̇(t)) a.e t ∈ [0, 1],
u(0) = 0; u(θ) = u(1).

is available in [2, 27]. Taking account into the above facts, one may state the

validity of Theorem 5.2 when F is a convex compact valued upper semicon-
tinuous mapping. Since we don’t focus on differential inclusion in the paper,
we only mention a closure type lemma which may have an independent in-
terest and solves this problem.

Theorem 5.3. Let F : [0, 1] × E × E → E be a convex compact valued
upper semicontinuous mapping satisfying

F(t, x, y) ⊂ �(t)

for all (t, x, y) ∈ [0, 1] × E × E where � : [0, 1] ⇒ E is a convex compact
valued Pettis-integrable mapping. Let (un, vn) ∈ X × X such that un → u

and vn → v in X and that

v̈n(t)+ γ vn(t) ∈ F(t, un(t), u̇n(t))

for all n ∈ N and for all t ∈ [τ, 1]. Then we have v̈(t) + γ v(t) ∈
F(t, u(t), u̇(t)) a.e.

Proof. Let h ⊗ x∗ where h ∈ L∞
R+([τ, 1]) and x∗ ∈ BE∗ . From

v̈n(t)+ γ vn(t) ∈ F(t, un(t), u̇n(t))

we have

〈h(t)⊗ x∗, v̈n(t)+ γ vn(t)〉 ≤ δ∗(h(t)⊗ x∗, F (t, un(t), u̇n(t))).

Integrating on [τ, 1] this inequality yields

∫ 1

τ

〈h(t)⊗ x∗, v̈n(t)+ γ vn(t)〉dt ≤
∫ 1

τ

δ∗(h(t)⊗ x∗,

×F(t, un(t), u̇n(t)))dt. (5.3.1)

Repeating the arguments of the proof of Theorem 5.2, we have that u̇n → u̇

uniformly and ün σ (P 1
E,L

∞⊗E∗)-converges to ü and that v̇n → v̇ uniformly
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and v̈n σ (P
1
E,L

∞ ⊗ E∗)-converges to v̈. Then by passing to the limit when
n → ∞ in (5.3.1) we get

lim
n→∞

∫ 1

τ

〈h(t)⊗ x∗, v̈n(t)+ γ v̇n(t)〉dt

=
∫ 1

τ

〈h(t)⊗ x∗, v̈(t)+ γ v̇(t)〉dt

≤ lim sup
n→∞

∫ 1

τ

h(t)δ∗(x∗, F (t, un(t), u̇n(t)))dt

≤
∫ 1

τ

h(t) lim sup
n→∞

δ∗(x∗, F (t, un(t), u̇n(t)))dt

≤
∫ 1

τ

h(t)δ∗(x∗, F (t, u(t), u̇(t)))dt (5.3.2)

because

|δ∗(h(t)⊗ x∗, F (t, x, y))| ≤ |δ∗(h(t)⊗ x∗, �(t))| = h(t)|δ∗(x∗, �(t))|
for all (t, x, y) ∈ [0, 1]×E×E and the mapping F is upper semicontinuous.
By (5.3.2) we deduce that

∫ 1

τ

h(t)〈x∗, v̈(t)+ γ v̇(t)〉dt ≤
∫ 1

τ

h(t)δ∗(x∗, F (t, u(t), u̇(t)))dt.

Whence we get

〈x∗, v̈(t)+ γ v̇(t)〉 ≤ δ∗(x∗, F (t, u(t), u̇(t))) a.e.

for every x∗ ∈ BE∗ . By taking a dense sequence (e∗
k )k∈N in BE∗ for the

Mackey topology we get

〈e∗
k , v̈(t)+ γ v̇(t)〉 ≤ δ∗(e∗

k , F (t, u(t), u̇(t))) a.e.

for all k ∈ N so that

v̈(t)+γ v̇(t) ∈ F(t, u(t), u̇(t)) a.e. �

6. Open Problems: Differential Game Governed by
(SODE), (ODE) and Sweeping Process with Strategies

To finish the paper we discuss some viscosity problems in a differential game
governed by a class of (ODE) with strategy in the line of Elliot [20], Elliot–
Kalton [21] and Evans–Souganides [22]. For simplicity we assume that E is
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a separable Hilbert space. Let us consider two compact subsets Y and Z in
E. Set

Y (τ) = {y : [τ, 1] → Y | y measurable}
Z(τ) = {z : [τ, 1] → Z| zmeasurable}

Denote by �(τ) the set of all strategies α : Z(τ) → Y (τ) and �(τ) the set
of all strategies β : Y (τ) → Z(τ). Let us given a Carathéodory integrable
mapping F : [0, 1] × (Y × Z) → E such that F(t, y, z) ⊂ K(t) for all
(t, y, z) ∈ [0, 1] × Y × Z where K : [0, 1] ⇒ E is a convex compact
valued integrably bounded mapping, a bounded continuous integrand J :
[0, 1] × E × Y × Z → R and let us define the upper–lower value function

UJ (τ, x) = sup
α∈�(τ)

inf
z∈Z(τ){

∫ 1

τ

J (t, uτ,x,α(z),z(t), α(z)(t), z(t))dt}, τ ∈ [0, η1]

VJ (τ, x) = inf
β∈�(τ) sup

y∈Y (τ)
{
∫ 1

τ

J (t, uτ,x,y,β(y)(t), y(t), β(y)(t))dt}, τ ∈ [0, η1]

where uτ,x,α(z),z is the trajectory W
2,1
E ([τ, 1])-solution of second order dif-

ferential game
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

üτ,x,α(z),z(t) + γ u̇τ,x,α(z),z(t) = F(t, α(z)(t), z(t)), t ∈ [τ, 1], τ ∈ [0, η1]
uτ,x,α(z),z(τ ) = x,

uτ,x,α(z),z(1) =
m−2∑

i=1

αiuτ,x,α(z),z(ηi),

(6.1.1)
with the integral representation formulas

uτ,x,α(z),z(t)(t) = eτ,x(t)+
∫ 1

τ

Gτ (t, s)F (s, α(z)(s), z(s))ds, t ∈ [τ, 1]

u̇τ,x,α(z),z(t) = ėτ,x(t)+
∫ 1

τ

∂Gτ

∂t
(t, s)F (s, α(z)(s), z(s))ds, t ∈ [τ, 1]

and similarly uτ,x,y,β(y) is the trajectory W 2,1
E ([τ, 1])-solution of second or-

der differential game
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

üτ,x,y,β(y)(t) + γ üτ,x,y,β(y)(t) = F(t, y(t), β(y)(t)), t ∈ [τ, 1], τ ∈ [0, η1]
uτ,x,y,β(y)(τ ) = x,

uτ,x,y,β(y)(1) =
m−2∑

i=1

αiuτ,x,y,β(y)(ηi).

(6.1.2)
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We aim to generalize the viscosity problem in Theorem 4.2 to the case of
strategies in the following

Proposition 6.1. Let J : [0, 1] ×E × Y × Z → R be a bounded continuous
integrand, τ, σ ∈ [0, 1] such that τ ∈ [0, η1[ and τ + σ < 1 and let us
consider the upper value function

UJ (τ, x) = sup
α∈�(τ)

inf
z∈Z(τ)

{∫ 1

τ

J (t, uτ,x,α(z),z(t), α(z)(t), z(t))dt

}

,

τ ∈ [0, η1], x ∈ E.

where uτ,x,α(z),z is the trajectory W
2,1
E ([τ, 1])-solution of second order dif-

ferential game
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

üτ,x,α(z),z(t) + γ u̇τ,x,α(z),z(t) = F(t, α(z)(t), z(t)), t ∈ [τ, 1], τ ∈ [0, η1]
uτ,x,α(z),z(τ ) = x,

uτ,x,α(z),z(1) =
m−2∑

i=1

αiuτ,x,α(z),z(ηi). (6.1.1)

Then UJ satisfies a sub-viscosity property: For any ϕ ∈ C1([0, 1] × E) such
that UJ − ϕ reaches a local maximum at (t0, x0) ∈ [0, η1[×E, then

∂ϕ

∂t
(t0, x0) + min

z∈Z max
y∈Y {J (t0, x0, y, z)} + δ∗(∇ϕ(t0, x0), ėt0,x0(t0)

+
∫ 1

t0

∂Gt0

∂t
(t0, s)K(s)ds) ≥ 0

provides that UJ satisfies the DPP

UJ (τ, x) = sup
α∈�(τ)

inf
z∈Z(τ)

{∫ τ+σ

τ

J (t, uτ,x,α(z),z(s), α(z)(s), z(s))ds

+ UJ (τ + σ), uτ,x,α(z),z(τ + σ)

}

.

Proof. Assume there is a ϕ ∈ C1([0, 1] × E) such that UJ − ϕ reaches a
local maximum at (t0, x0) ∈ [0, η1[×E for which

∂ϕ

∂t
(t0, x0) + min

z∈Z max
y∈Y {J (t0, x0, y, z)} + δ∗(∇ϕ(t0, x0), ėt0,x0(t0)

+
∫ 1

t0

∂Gt0

∂t
(t0, s)K(s)ds) < 0.
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Hence there exists some η > 0 such that

∂ϕ

∂t
(t0, x0) + min

z∈Z max
y∈Y {J (t0, x0, y, z)} + δ∗(∇ϕ(t0, x0), ėt0,x0(t0)

+
∫ 1

t0

∂Gt0

∂t
(t0, s)K(s)ds) ≤ −η < 0.

Set

�(t, x, y, z) = ∂ϕ

∂t
(t, x) + J (t, x, y, z) + δ∗(∇ϕ(t, x), ėt0,x0(t)

+
∫ 1

t0

∂Gt0

∂t
(t, s)K(s)ds).

Then we have
min
z∈Z max

y∈Y �(t0, x0, y, z) ≤ −η < 0.

Hence there exists some z ∈ Z such that

max
y∈Y �(t0, x0, y, z) ≤ −η < 0.

Since the mapping
(t, x) �→ max

y∈Y �(t0, x0, y, z)

is continuous there is ε > 0 such that

max
y∈Y �(t, x, y, z) < −η

2

for 0 ≤ t − t0 ≤ ε and ||x − x0|| ≤ ε. As u̇t0,x0,α(z),z is estimated by

||u̇t0,x0,α(z),z(t)|| ≤ ||ėt0,x0(t)|| +
∫ 1

t0

|∂Gt0

∂t
(t, s)||K(s)|ds = c(t)

with c ∈ CR([t0, 1]) for all z ∈ Z(t0) and for all α ∈ �(t0) in view of the
above integral representation formula, so we can choose σ > 0 such that
||ut0,x0,α(z),z(t)− ut0,x0,α(z),z(t0)|| ≤ ∫ t0+σ

t0
c(t)dt ≤ ε for all t ∈ [t0, t0 + σ ]

and for all z ∈ Z(t0) and for all α ∈ �(t0). Then the constant control z(t) =
z,∀t ∈ [t0, 1] belongs to Z(t0) and α(z) belongs to Y (t0) for all α ∈ �(t0) so
that by integrating we have

∫ t0+σ

t0

�(t, ut0,x0,α(z),z(t), α(z)(t), z(t))dt < −ση

2
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for all α ∈ �(t0). Thus

sup
α∈�(t0)

{∫ t0+σ

t0

J (t, ut0,x0,α(z),z(t), α(z)(t), z(t))dt (6.1.3)

+δ∗(∇ϕ(t, ut0,x0,α(z),z(t)), ėt0,x0(t)+
∫ 1

t0

∂Gt0

∂t
(t, s)K(s)ds)

+ ∂ϕ

∂t
(t, ut0,x0,α(z),z(t)

}

< −ση

2
.

As UJ satisfies the DPP property, we have

UJ (t0, x0) ≤ sup
α∈�(t0)

{∫ t0+σ

t0

J (t, ut0,x0,α(z),z(t), α(z)(t), z(t))dt

+ UJ (t0 + σ, u
t0,x0,α(z),z

(t0 + σ))

}

.

Hence, for every n ∈ N, there exists αn ∈ �(t0) such that

UJ (t0, x0) ≤
∫ t0+σ

t0

J (t, ut0,x0,α
n(z),z(t), α

n(z)(t), z(t))dt

+ UJ (t0 + σ, ut0,x0,α
n(z),z(t0 + σ)) + 1

n
. (6.1.4)

But UJ − ϕ has a local maximum at (t0, x0), for small enough σ

UJ (t0, x0) − ϕ(t0, x0) ≥ UJ (t0 + σ, ut0,x0,α(z),z(t0 + σ))

−ϕ(t0 + σ, ut0,x0,α(z),z(t0 + σ))

(6.1.5)

for any trajectory solution ut0,x0,α(z),z associated with control (α(z), z) (α ∈
�(t0), z ∈ Z). From (6.1.4) and (6.1.5) we deduce

UJ (t0 + σ, ut0,x0,α
n(z),z(t0 + σ)) − ϕ(t0 + σ, ut0,x0,α

n(z),z(t0 + σ))

≤
∫ t0+σ

t0

J (t, ut0,x0,α
n(z),z(t), α

n(z)(t), z(t))dt

+UJ (t0 + σ, ut0,x0,α
n(z),z(t0 + σ) + 1

n
− ϕ(t0, x0).
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Thus we have

0 ≤
∫ t0+σ

t0

J (t, ut0,x0,α
n(z),z(t), α

n(z)(t), z(t))dt

+ ϕ(t0 + σ, ut0,x0,α
n(z),z(t0 + σ)) − ϕ(t0, x0) + 1

n
. (6.1.6)

But

ϕ(t0 + σ, ut0,x0,α
n(z),z(t0 + σ)) − ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,α
n(z),z(t)), u̇t0,x0,α

n(z),z(t)〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α

n(z),z(t))dt (6.1.7)

and

u̇t0,x0,α
n(z),z(t) = ėt0,x0(t) +

∫ 1

t0

∂Gt0

∂t
(t, s)F (s, αn(z)(s), z(s))ds

because ut0,x0,α
n(z),z is the W 2,1([τ, 1])-solution to (SODE)

üt0,x0,α
n(z),z(t)+ γ u̇t0,x0,α

n(z),z(t) = F(t, αn(z)(t), z(t)),

ut0,x0,α
n(z),z(t0) = x0,

ut0,x0,α
n(z),z(1) =

m−2∑

i=1

αiut0,x0,α
n(z),z(ηi).

From (6.1.6) and (6.1.7) we deduce

0 ≤
∫ t0+σ

t0

J (t, ut0,x0,α
n(z),z(t), α

n(z)(t), z(t))dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,α
n(z)(t),z(t)), ėt0,x0(t) +

∫ 1

t0

∂Gt0

∂t
(t, s)K(s)ds)dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α

n(z),z(t)) + 1

n
. (6.1.8)

Using (6.1.3) and (6.1.8) it follows that 0 <
ση
2 < 1

n
for every n ∈ N.

Passing to the limit when n goes to ∞ in the preceding inequality yields a
contradiction. �
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The viscosity property for the lower–upper value function is an open
problem in the present context. Proposition 6.1 is a step forward in the prob-
lem under consideration. Compare with earlier result in the literature deal-
ing with viscosity problem governed by (ODE) in Rn involving differential
games and strategies, e.g. [4, 20, 22], evolution inclusions, e.g. [7, 8, 13–17]
involving Young control measures, and Relaxation and Bolza problems gov-
erned by (SODE), e.g. [3, 9–11]. In order to illustrate the comparison, let us
come back to a differential game governed by ordinary differential equation
(ODE). Let M1+(Y ) and M1+(Z) be the set of all probability Radon mea-
sures on compact metric space Y and Z, respectively, endowed with the nar-
row topology so that M1+(Y ) and M1+(Z) are compact metrizable. Consider
the space of Young measures (alias relaxed controls)

Y(τ ) = {y : [τ, 1] → M1+(Y ) | y measurable}
Z(τ ) = {z : [τ, 1] → M1+(Z) | z measurable}

and as above denote by �(τ) the set of all strategies α : Z(τ ) → Y(τ )
and �(τ) the set of all strategies β : Y(τ ) → Z(τ ). Let J : [0, 1] ×
(E × Y × Z) → R be a bounded Carathéodory integrand and let F : [0, 1]
× (E × Y × Z) → E be a Carathéodory mapping satisfying F(t, x, y, z) ∈
K(t) for all (t, x, y, z) ∈ [0, 1]×E×Y×Z whereK : [0, 1] ⇒ E is a convex
compact valued integrably bounded mapping and a Lipschitz type condition
||F(t, x1, y, z)−F(t, x2, y, z)|| ≤ λ||x1−x2|| for all (t, x1, y, z), (t, x2, y, z)

in [0, 1] × E × Y × Z. Then one may consider the lower value function

VJ (τ, x) = inf
β∈�(τ) sup

μ∈Y(τ )

{∫ 1

τ

[∫

Z

[∫

Y

J (t, uτ,x,μ,β(μ)(t), y, z)μt (dy)

]

×β(μ)t (dz)

]

dt

}

where uτ,x,μ,β(μ) is the absolutely continuous solution to (ODE)

u̇τ,x,μ,β(μ)(t) =
∫

Z

[∫

Y

F (t, uτ,x,μ,β(μ)(t), y, z)μt (dy)

]

β(μ)t (dz), t ∈ [τ, 1]

uτ,x,μ,β(μ)(τ ) = x

and the upper value function

UJ (τ, x) = sup
α∈�(τ)

inf
ν∈Z(τ )

{∫ 1

τ

[∫

Z

[∫

Y

J (t, uτ,x,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)

]}

dt,

τ ∈ [0, 1], x ∈ E
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where uτ,x,α(ν),ν is the absolutely continuous solution to (ODE)

u̇τ,x,α(ν),ν(t) =
∫

Z

[∫

Y

F (t, uτ,x,α(ν)(t),ν(t), y, z)α(ν)t (dy)

]

νt (dz), t ∈ [τ, 1]

uτ,x,α(ν),ν(τ ) = x

and state the viscosity properties for these functions. In the sequel, we will
make some additional assumptions on J and F , namely, J and F are contin-
uous and the family (J (., ., y, z))(y,z)∈Y×Z is equicontinuous and the family
(F (., ., y, z))(y,z)∈Y×Z is equicontinuous.

Proposition 6.2. Let J : [0, 1] ×E × Y × Z → R be a bounded continuous
integrand, and let us consider the upper value function

UJ (τ, x) = sup
α∈�(τ)

inf
ν∈Z(τ )

{∫ 1

τ

[∫

Z

[∫

Y

J (t, uτ,x,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)

]}

dt,

τ ∈ [0, 1], x ∈ E.

Let us consider the Hamiltonian

H+(t, x, ρ) = min
ν∈M1+(Z)

max
μ∈M1+(Y )

{

〈ρ,
∫

Z

[∫

Y

F (t, x, y, z)dμ(y)

]

dν(z)

+
∫

Z

[∫

Y

J (t, x, y, z)dμ(y)

]

dν(z)

}

.

ThenUJ is a viscosity solution to the HJB equation ∂U
∂t

+H+(t, x,∇U)) = 0,
that is, for any ϕ ∈ C1([0, 1]×E) for which UJ −ϕ reaches a local maximum
at (t0, x0) ∈ [0, 1] × E we have

∂ϕ

∂t
(t0, x0)+ H+(t0, x0,∇ϕ(t0, x0)) ≥ 0

and for any ϕ ∈ C1([0, 1] × E) for which UJ − ϕ reaches a local minimum
at (t0, x0) ∈ [0, 1] × E, we have

∂ϕ

∂t
(t0, x0)+ H+(t0, x0,∇ϕ(t0, x0)) ≤ 0

provided that UJ satisfies the DPP

UJ (τ, x) = sup
α∈�(τ)

inf
ν∈Z(τ )

{∫ τ+σ

τ

[∫

Z

[∫

Y

J (t, uτ,x,α(ν),ν(s), y, z)

×α(ν)s(dy)

]

νs(dz)

]

ds

+ UJ (τ + σ), uτ,x,α(ν),ν(τ + σ)

}

.
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Proof. See Proposition 6.1 and ([14], Theorem 8.3.12). We will sketch the
proof. Assume there is a ϕ ∈ C1([0, 1]×E) such that UJ −ϕ reaches a local
maximum at (t0, x0) ∈ [0, 1] × E for which

∂ϕ

∂t
(t0, x0) + min

ν∈M1+(Z)
max

μ∈M1+(Y )

{∫

Z

[∫

Y

J (t0, x0, y, z)dμ(y)

]

dν(z)

+ 〈∇ϕ(t0, x0),

∫

Z

[∫

Y

F (t0, x0, y, z)dμ(y)

]

dν(z)〉
}

< 0.

Hence there exists some η > 0 such that

∂ϕ

∂t
(t0, x0) + min

ν∈M1+(Z)
max

μ∈M1+(Y )

{∫

Z

[∫

Y

J (t0, x0, y, z)dμ(y)

]

dν(z)

+ 〈∇ϕ(t0, x0),

∫

Z

[∫

Y

F (t0, x0, y, z)dμ(y)

]

dν(z)〉
}

≤ −η < 0.

Set

�(t, x, μ, ν) = ∂ϕ

∂t
(t, x) +

∫

Z

[∫

Y

J (t, x, y, z)dμ(y)

]

dν(z)

+ 〈∇ϕ(t, x),
∫

Z

[∫

Y

F (t, x, y, z)dμ(y)

]

dν(z)〉.

Then we have

min
ν∈M1+(Z)

max
μ∈M1+(Y )

�(t0, x0, μ, ν) ≤ −η < 0.

Hence there exists some ν ∈ M1+(Z) such that

max
μ∈M1+(Y )

�(t0, x0, μ, ν) ≤ −η < 0.

Since the mapping

(t, x) �→ max
μ∈M1+(Y )

�(t0, x0, μ, ν)

is continuous there is ε > 0 such that

max
μ∈M1+(Y )

�(t, x, μ, ν) < −η

2

for 0 ≤ t − t0 ≤ ε and ||x − x0|| ≤ ε. As u̇t0,x0,α(ν),ν is estimated by
||u̇t0,x0,α(ν),ν(t)|| ≤ |K(t)| with |K| ∈ L1

R([t0, 1]) for all ν ∈ Z(t0) and for
all α ∈ �(t0) �(t0) so we can choose σ > 0 such that ||ut0,x0,α(ν),ν(t) −
ut0,x0,α(ν),ν(t0)|| ≤ ∫ t0+σ

t0
|K(t)|dt ≤ ε for all t ∈ [t0, t0 + σ ] and for all
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ν ∈ Z(t0) and for all α ∈ �(t0). Then the constant control νt = ν,∀t ∈
[t0, 1] belongs to Z(t0) and α(ν) belongs to Y(t0) for all α ∈ �(t0) so that
by integrating we have

∫ t0+σ

t0

�(t, ut0,x0,α(ν),ν(t), α(ν)t , νt )dt < −ση

2

for all α ∈ �(t0). Thus

sup
α∈�(t0)

{∫ t0+σ

t0

[
∫

Z

[∫

Y

J (t, ut0,x0,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)]dt

+〈∇ϕ(t, ut0,x0,α(ν),ν(t)),

∫

Z

[∫

Y

F (t, ut0,x0,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)〉

+ ∂ϕ

∂t
(t, ut0,x0,α(ν),ν(t))

}

< −ση

2
. (6.2.3)

As UJ satisfies the DPP, we have

UJ (t0, x0) ≤ sup
α∈�(t0)

{∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)

]

dt

+ UJ (t0 + σ, ut0,x0,α(ν),ν(t0 + σ))

}

.

Hence, for every n ∈ N, there exists αn ∈ �(t0) such that

UJ (t0, x0) ≤
∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α
n(ν),ν(t), y, z)α

n(ν)t (dy)

]

, νt (dz)

]

dt

+UJ (t0 + σ, ut0,x0,α
n(ν),ν(t0 + σ))+ 1

n
. (6.2.4)

But UJ − ϕ has a local maximum at (t0, x0), for small enough σ

UJ (t0, x0) − ϕ(t0, x0) ≥ UJ (t0 + σ, ut0,x0,α(ν),ν(t0 + σ))

−ϕ(t0 + σ, ut0,x0,α(ν),ν(t0 + σ)) (6.2.5)

for any trajectory solution ut0,x0,α(ν),ν associated with control (α(ν), ν) (α ∈
�(t0), ν ∈ Z(t0)). From (6.2.4) and (6.2.5) we deduce

UJ (t0 + σ, ut0,x0,α
n(ν),ν(t0 + σ)) − ϕ(t0 + σ, ut0,x0,α

n(ν),ν(t0 + σ))

≤
∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α
n(ν),ν(t), y, z)α

n(ν)t (dy)

]

νt (dz)

]

dt

+UJ (t0 + σ, ut0,x0,α
n(ν),ν(t0 + σ) + 1

n
− ϕ(t0, x0).
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Thus we have

0 ≤
∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α
n(ν),ν(t), y, z)α

n(ν)t (dy)

]

, νt (dz)

]

dt

+ ϕ(t0 + σ, ut0,x0,α
n(ν),ν(t0 + σ))− ϕ(t0, x0) + 1

n
(6.2.6)

But

ϕ(t0 + σ, ut0,x0,α
n(ν),ν(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,α
n(ν),ν(t)), u̇t0,x0,α

n(ν),ν(t)〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α

n(ν),ν(t))dt (6.2.7)

and

u̇t0,x0,α
n(ν),ν(t) =

∫

Z

[∫

Y

F (t, ut0,x0,α
n(ν),ν(t), y, z)α

n(ν)t (dy)

]

νt (dz)

so that by combining with (6.2.7)

ϕ(t0 + σ, ut0,x0,α
n(ν),ν (t0 + σ)) − ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,α
n(ν),ν (t)),

∫

Z

[∫

Y
F (t, ut0,x0,α

n(ν),ν (t), y, z)α
n(ν)t (dy)

]

νt (dz)〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α

n(ν),ν (t)). (6.2.8)

From (6.2.6) and (6.2.8) we deduce

0 ≤
∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α
n(ν),ν(t), y, z)α

n(ν)t (dy)

]

νt (dz)

]

dt

∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,α
n(ν),ν(t)),

∫

Z

[∫

Y

F (t, ut0,x0,α
n(ν),ν (t), y, z)α

n(ν)t (dy)

]

νt (dz)〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α

n(ν),ν (t))+ 1

n
. (6.2.9)

Using (6.2.3) and (6.2.9) it follows that 0 <
ση
2 < 1

n
for every n ∈ N.

Passing to the limit when n goes to ∞ in the preceding inequality yields a
contradiction.

Next assume that UJ − ϕ has a local minimum at (t0, x0) ∈ [0, 1] × E.
We must prove that
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∂ϕ

∂t
(t0, x0) + min

ν∈M1+(Z)
max

ν∈M1+(Z)

{∫

Z

[∫

Y

J (t0, x0, y, z)dμ(y)

]

dν(z)

+ 〈∇ϕ(t0, x0),

∫

Z

[∫

Y

F (t0, x0, y, z)dμ(y)

]

dν(z)〉
}

≤ 0

and so will assume the contrary that

∂ϕ

∂t
(t0, x0) + min

ν∈M1+(Z)
max

μ∈M1+(Y )

{∫

Z

[∫

Y

J (t0, x0, y, z)dμ(y)

]

dν(z)

+ 〈∇ϕ(t0, x0),

∫

Z

[∫

Y

F (t0, x0, y, z)dμ(y)

]

dν(z)〉
}

> η > 0.

Arguing as in ([14], Lemma 8.3.11(b)) asserts that there exists for all suffi-
ciently small σ > 0 some α ∈ �(t0) such that

∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)

]

dt

+
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,α(ν),ν(t)),

∫

Z

[∫

Y

F (t, ut0,x0,α(ν),ν(t), y, z)α(ν)t (dy)

]

×νt (dz)〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α(ν),ν(t)) ≥ ση

2
(6.2.10)

for all ν ∈ Z(t0). According to the DPP property we have

UJ (t0, x0)

≥ inf
ν∈Z(t0)

{∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)

]

dt

+ UJ (t0 + σ, ut0,x0,α(ν),ν(t0 + σ))

}

.

Hence, for every n ∈ N, there exists νn ∈ Z(t0) such that

UJ (t0, x0) ≥
∫ t0+σ

t0

[∫

Z

[∫

Y
J (t, ut0,x0,α(ν

n),νn (t), y, z)α(ν
n)t (dy)

]

νnt (dz)

]

dt

+UJ (t0 + σ, ut0,x0,α(ν
n),νn (t0 + σ))− 1

n
. (6.2.11)



Optimal Control Problems Governed by a Second Order Ordinary . . . 51

But UJ − ϕ has a local minimum at (t0, x0), for small enough σ

UJ (t0, x0) − ϕ(t0, x0) ≤ UJ (t0 + σ, ut0,x0,α(ν),ν(t0 + σ))

−ϕ(t0 + σ, ut0,x0,α(ν),ν(t0 + σ)) (6.2.12)

for any trajectory solution ut0,x0,α(ν),ν associated with control (α(ν), ν) (α ∈
�(t0), ν ∈ Z(t0)). From (6.2.11) and (6.2.12) we deduce

UJ (t0 + σ, ut0,x0,α(ν
n),νn(t0 + σ)) − ϕ(t0 + σ, ut0,x0,α(ν

n),νn(t0 + σ))

≥
∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α(ν
n),νn(t), y, z)α(ν

n)t (dy)

]

νnt (dz)

]

dt

+UJ (t0 + σ, ut0,x0,α(ν
n),νn(t0 + σ) − 1

n
− ϕ(t0, x0).

Thus we have

0 ≥
∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α(ν
n),νn(t), y, z)α(ν

n)t (dy)

]

νnt (dz)

]

dt

+ϕ(t0 + σ, ut0,x0,α(ν
n),νn(t0 + σ)) − ϕ(t0, x0)− 1

n
. (6.2.13)

But

ϕ(t0 + σ, ut0,x0,α(ν
n),νn(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,α(ν
n),νn(t)), u̇t0,x0,α(ν

n),νn(t)〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α(ν

n),νn(t))dt (6.2.14)

and

u̇t0,x0,α(ν
n),νn(t) =

∫

Z

[∫

Y

F (t, ut0,x0,α(ν
n),νn(t), y, z)α(ν

n)t (dy)

]

νnt (dz)

so that from (6.2.14)

ϕ(t0 + σ, ut0,x0,α(ν
n),νn(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,α(ν
n),νn(t)),

∫

Z

[∫

Y

F (t, ut0,x0,α(ν
n),νn(t), y, z)α(ν

n)t (dy)

]

νnt (dz)〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α(ν

n),νn(t)). (6.2.15)
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From (6.2.13) and (6.2.15) we deduce

0 ≥
∫ t0+σ

t0

[∫

Z

[∫

Y

J (t, ut0,x0,α(ν
n),νn(t), y, z)α(ν

n)t (dy)

]

νnt (dz)

]

dt

+
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,α(ν
n),νn(t)),

∫

Z

[∫

Y

F (t, ut0,x0,α(ν
n),νn(t), y, z)α(ν

n)t (dy)

]

νnt (dz)〉dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,α(ν

n),νn(t))− 1

n
. (6.2.16)

Using (6.2.10) and (6.2.16) it follows that 1
n

≥ ση
2 > 0 for every n ∈ N.

Passing to the limit when n goes to ∞ in the preceding inequality yields a
contradiction. �

Taking account into the sweeping process introduced by J.J. Moreau [26]
and its modelisation in Mathematical Economics [25], we finish the paper
with an application to the DPP and viscosity property for the value function
associated with a sweeping process. Compare with Theorem 3.5 in [17] deal-
ing with sweeping process involving Young measure control and Theorem 4.2
dealing with (SODE). Here E is a separable Hilbert space.

Proposition 6.3. Let C : [0, T ] → ck(E) be a convex compact valued L-
Lipschitzean mapping:

|d(x, C(t)) − d(y, C(τ))| ≤ L|t − τ | + ||x − y||,∀x, y ∈ E × E,∀t,
τ ∈ [0, T ] × [0, T ].

Let Z be a convex compact subset in E and S1
Z is the set of all integrable

mappings f : [0, T ] → Z. Assume that J : [0, T ]×E×E → R is bounded
and continuous such that J (t, x, .) is convex for every (t, x) ∈ [0, T ] × E.
Let us consider the value function

VJ (τ, x) = sup
f∈S1

Z

{∫ T

τ

J (t, uτ,x,f (t), f (t)) dt

}

, (τ, x) ∈ [0, T ] × E

where uτ,x,f is the trajectory solution on [τ, T ] associated the control f ∈
S1
Z starting from x ∈ E at time τ to the sweeping process (PSW)(C; f ; x)

{
− u̇τ,x,f (t)− f (t) ∈ NC(t)(uτ,x,f (t)), t ∈ [τ, T ]
uτ,x,f (τ ) = x
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and the Hamiltonian

H(t, x, ρ) = sup
z∈Z

{−〈ρ, z〉 + J (t, x, z)} + δ∗(ρ,−M∂[dC(t)](x))

where M := L + 2|Z|, (t, x, ρ) ∈ [0, T ] × E × E and ∂[dC(t)]](x) denotes
the subdifferential of the distance functions x �→ dC(t)x. Then VJ has the
DPP property

VJ (τ, x) = sup
f∈S1

Z

⎧
⎩
∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt+VJ (τ+σ, uτ,x,f (τ+σ))

⎫
⎭

and is a viscosity subsolution to the HJB equation

∂U

∂t
(t, x) + H(t, x,∇U(t, x)) = 0

that is, for any ϕ ∈ C1([0, T ]) × E) for which VJ − ϕ reaches a local
maximum at (t0, x0) ∈ [0, T ] × E, we have

H(t0, x0,∇ϕ(t0, x0)) + ∂ϕ

∂t
(t0, x0) ≥ 0.

Proof. We prove first that VJ has the DPP property by applying the contin-
uous property of the solution with respect to the state and the control (see
Lemma 6.1 below) and lower semicontinuity of the integral functional ([14],
Theorem 8.1.6). We omit the proof of Lemma 6.1 because it is an adaptation
of the proof of Lemma 4.1 in [17].

Lemma 6.1. Let uτ,xn,f n be the trajectory solution on [τ, T ] associated the
control f n ∈ S1

Z starting from xn ∈ E at time τ to the sweeping process
(PSW)(C; f n; x)

{
− u̇τ,xn,f n(t) − f n(t) ∈ NC(t)(uτ,xn,f n(t))

uτ,xn,f n(τ ) = xn ∈ C(τ)

(a) If (xn) converges to x∞ and f n converges σ(L1
E,L

∞
E ) to f∞, then

uτ,xn,f n converges uniformly to uτ,x∞,f∞ , which is the Lipschitz solu-
tion of the sweeping process (PSW)(C; f∞; x∞)

{
− u̇τ,x∞,f∞(t)− f∞(t) ∈ NC(t)(uτ,x∞,f∞(t))

uτ,x∞,f∞(τ ) = x∞ ∈ C(τ)
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(b) Let J : [0, 1]× (E×E) →]−∞,+∞] be a normal integrand such that
J (t, x, .) is convex on E for all (t, x) ∈ [0, T ] × E and that

J (t, uτ,xn,f n(t), f n(t)) ≥ βn(t)

for all n ∈ N and for all t ∈ [0, T ] for some uniformly integrable se-
quence (βn)n∈N in L1

R([0, T ]), then we have

lim inf
n→∞

∫ T

τ

J (t, uτ,xn,f n(t), f n(t)) dt ≥
∫ T

τ

J (t, uτ,x∞,f∞(t), f∞(t)) dt.

Let us focus on the expression of VJ (τ + σ, uτ,x,f (τ + σ))

VJ (τ + σ, uτ,x,f (τ + σ)) = sup
g∈S1

Z

{∫ T

τ+σ

J (t, vτ+σ,uτ,x,f (τ+σ),g(t), g(t))dt

}

where vτ+σ,uτ,x,f (τ+σ),g denotes the trajectory solution on [τ + σ, T ] associ-
ated with the control g ∈ S1

Z starting from uτ,x,f (τ + σ) at time τ + σ .

Main Fact: f → VJ (τ + σ, uτ,x,f (τ + σ)) is lower semicontinuous on
S1
Z (endowed with the σ(L1

E,L
∞
E )-topology). Let (fn, gn) ∈ S1

Z × S1
Z such

that fn → f ∈ S1
Z and gn → g ∈ S1

Z . By Lemma 6.1, uτ,x,fn con-
verges uniformly to uτ,x,f and vτ+σ,uτ,x,fn (τ+σ),gn converges uniformly to
vτ+σ,uτ,x,f (τ+σ),g so that by invoking the lower semicontinuity of integral
functional ([14], Theorem 8.1.6) we get

lim inf
n→∞

∫ τ+σ

τ

J (t, uτ,x,fn(t), fn(t))dt ≥
∫ τ+σ

τ

J (t, uτ,x,f (t), f (t))dt

lim inf
n→∞

∫ T

τ+σ

J (t, vτ+σ,uτ,x,fn (τ+σ),gn(t), gn(t))dt

≥
∫ T

τ+σ

J (t, vτ+σ,uτ,x,f (τ+σ),g(t), g(t))dt

proving that the mapping f �→ ∫ τ+σ

τ
J (t, uτ,x,f (t), f (t))dt is lower semi-

continuous on S1
Z and the mapping (f, g) �→ ∫ T

τ+σ
J (t, vτ+σ,uτ,x,f (τ+σ),g

(t), g(t))dt is lower semicontinuous on S1
Z ×S1

Z . It follows that the mapping
f �→ VJ (τ + σ, uτ,x,f (τ + σ)) is lower semicontinuous on S1

Z and so is the
mapping f �→ ∫ τ+σ

τ
J (t, uτ,x,f (t), f (t))dt+VJ (τ+σ, uτ,x,f (τ+σ)). Now

the DPP property for VJ follows the same line of the proof of Theorem 4.1.
This fact allows to obtain the required viscosity property. Let us recall the
following
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Lemma 6.2. Let (t0, x0) ∈ [0, T ] × E and let Z be a convex compact subset
in E. Let � : [0, T ]×E×Z → R be an upper semicontinuous function such
that the restriction of � to [0, T ]×B ×Z is bounded on any bounded subset
B of E. If

maxz∈Z�(t0, x0, z) < −η < 0

for some η > 0, then there exists σ > 0 such that

sup
f∈S1

Z

∫ t0+σ

t0

�(t, ut0,x0,f (t), f (t))dt < −ση

2

where ut0,x0,f is the trajectory solution associated with the control f ∈ S1
Z

starting from x0 at time t0 to
{

− u̇t0,x0,f (t)− f (t) ∈ NC(t)(ut0,x0,f (t)), t ∈ [t0, T ]
ut0,x0,f (t0) = x0.

Assume by contradiction that there exists a ϕ ∈ C1([0, T ] × E) and a
point (t0, x0) ∈ [0, T ] × E for which

∂ϕ

∂t
(t0, x0) + H(t0, x0,∇ϕ(t0, x0)) ≤ −η < 0 for η > 0.

Applying Lemma 6.2 by taking

�(t, x, z) = J (t, x, z) − 〈∇ϕ(t, x), z〉 + δ∗(∇ϕ(t, x),
− M ∂[dC(t)](x)) + ∂ϕ

∂t
(t, x)

provides some σ > 0 such that

sup
f∈S1

Z

{∫ t0+σ

t0

J (t, ut0,x0,f (t), f (t)) dt −
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,f (t)), f (t)〉 dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,f (t)),−M ∂[dC(t)](ut0,x0,f (t))) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f (t)) dt

}

< −ση

2
(6.3.1)

where ut0,x0,f is the trajectory solution associated with the control f ∈ S1
Z

starting from x0 at time t0 to the sweeping process (PSW)(C; f ; x)
{

− u̇t0,x0,f (t)− f (t) ∈ NC(t)(ut0,x0,f (t)), t ∈ [t0, T ]
ut0,x0,f (t0) = x0.
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Applying the dynamic programming principle gives

VJ (t0, x0) = sup
f∈S1

Z

⎧
⎩
∫ t0+σ

t0

J (t, ut0,x0,f (t), f (t))dt

+VJ (t0 + σ, ut0,x0,f (τ + σ))

⎫
⎭. (6.3.2)

Since VJ − ϕ has a local maximum at (t0, x0), for small enough σ

VJ (t0, x0) − ϕ(t0, x0) ≥ VJ (t0 + σ, ut0,x0,f (t0 + σ))

−ϕ(t0 + σ, ut0,x0,f (t0 + σ)) (6.3.3)

for all f ∈ S1
Z . For each n ∈ N, there exists f n ∈ S1

Z such that

VJ (t0, x0) ≤
∫ t0+σ

t0

J (t, ut0,x0,f
n(t), f n(t)) dt+VJ (t0 +σ, ut0,x0,f

n (t0 +σ))+ 1

n
.

(6.3.4)
From (6.3.3) and (6.3.4) we deduce that

VJ (t0 + σ, ut0,x0,f
n(t0 + σ)) − ϕ(t0 + σ, ut0,x0,f

n(t0 + σ))

≤
∫ t0+σ

t0

J (t, ut0,x0,f
n(t), f n(t))dt + 1

n

−ϕ(t0, x0) + VJ (t0 + σ, ut0,x0,f
n(t0 + σ)).

Therefore we have

0 ≤
∫ t0+σ

t0

J (t, ut0,x0,f
n (t), f n(t)) dt+ϕ(t0 +σ, ut0,x0,f

n(t0 +σ)−ϕ(t0, x0)+ 1

n
.

(6.3.5)
As ϕ ∈ C1([0, T ] × E) we have

ϕ(t0 + σ, ut0,x0,f
n (t0 + σ)) − ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,f
n(t)), u̇t0,x0,f

n(t)〉 dt +
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t)) dt.

(6.3.6)

Since ut0,x0,f
n is the trajectory solution starting from x0 at time t0 to the

sweeping process (PSW)(C; f n; x)
{

− u̇t0,x0,f
n(t) − f n(t) ∈ NC(t)(ut0,x0,f

n(t)), t ∈ [t0, T ]
ut0,x0,f

n(t0) = x0
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by the classical property of normal convex cone and the estimation
||u̇t0,x0,f

n(t)− f n(t)|| ≤ L+ 2|Z| = M we get

−u̇t0,x0,f
n(t)− f n(t) ∈ M ∂[dC(t)](ut0,x0,f

n(t))

so that (6.3.6) yields

ϕ(t0 + σ, ut0,x0,f
n(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,f
n(t)), u̇t0,x0,f

n(t)〉 dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t)) dt

≤ −
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,f
n(t)), f n(t)〉 dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,f
n(t)),−M ∂[dC(t)](ut0,x0,f

n(t))) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t)) dt. (6.3.7)

Putting the estimate (6.3.7) in (6.3.5) we get

0 ≤
∫ t0+σ

t0

J (t, ut0,x0,f
n(t), f n(t))dt −

∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,f
n(t)), f n(t)〉 dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,f
n(t)),−M∂[dC(t)](ut0,x0,f

n(t))) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,f

n(t)) dt + 1

n
(6.3.8)

so that (6.3.1) and (6.3.8) give 0 <
ση
2 < 1

n
for all n ∈ N. Passing to the limit

when n goes ∞ in this inequality gives a contradiction. �
Viscosity problem governed by sweeping process with strategies and

Young measures

u̇τ,x,α(ν),ν(t) ∈
∫

Z

[∫

Y

F (t, uτ,x,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)

− NC(t)(uτ,x,α(ν),ν(t)), t ∈ [τ, 1],
uτ,x,α(ν),ν(τ ) = x ∈ C(τ),

UJ (τ, x) = sup
α∈�(τ)

inf
ν∈Z(τ )

{∫ 1

τ

[∫

Z

[∫

Y

J (t, uτ,x,α(ν),ν(t), y, z)α(ν)t (dy)

]

νt (dz)

]

dt

}
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where the integrand J , the upper value function UJ , the data Y,Z and F

are defined as in Proposition 6.2, is an open problem. Further related results
dealing with continuous and bounded variation (BVC) solution in sweeping
process governed by non empty interior closed convex valued continuous
mappings are available in [17, 18].
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Abstract. In the present paper the authors discuss the efficiency of stochastic mesh
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2004). The authors apply stochastic mesh methods to certain type of Hörmander type
diffusion processes and show the following. (1) If one carefully takes partitions, the
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1. Introduction

Stochastic mesh methods were introduced by Broadie and Glasserman [4],
and Avramidis and Hyden [1] and Avramidis and Matzinger [2] proved
the efficiency of them in some cases (see [5] also). Also, Belomestny [3]
showed in Bermuda options that once we have estimated functions for
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the so-called continuation values, we have a better estimated value if we
construct a pre-optimal stopping time by using these estimated functions and
estimate the expectation of pay-off functionals based on this stopping time
by re-simulation.

In the present paper, we consider the efficiency of stochastic mesh meth-
ods and re-simulation in the case that we apply them to Hörmander type
diffusion processes.

Let N, d � 1. Let W0 = {w ∈ C([0,∞); Rd); w(0) = 0}, F be the
Borel algebra over W0 and μ be the Wiener measure on (W0,F). Let Bi :
[0,∞) × W0 → R, i = 1, . . . , d, be given by Bi(t, w) = wi(t), (t, w) ∈
[0,∞)×W0. Then {(B1(t), . . . , Bd(t); t ∈ [0,∞)} is a d-dimensional Brow-
nian motion. LetB0(t) = t, t ∈ [0,∞). Let V0, V1, . . . , Vd ∈ C∞

b (RN ; RN).

Here C∞
b (RN ; Rn) denotes the space of Rn-valued smooth functions defined

in RN whose derivatives of any order are bounded. We regard elements in
C∞
b (RN ; RN) as vector fields on RN.

Now let X(t, x), t ∈ [0,∞), x ∈ RN, be the solution to the Stratonovich
stochastic integral equation

X(t, x) = x +
d∑

i=0

∫ t

0
Vi(X(s, x)) ◦ dBi(s). (1)

Then there is a unique solution to this equation. Moreover we may assume
that X(t, x) is continuous in t and smooth in x and X(t, ·) : RN → RN,

t ∈ [0,∞), is a diffeomorphism with probability one.
Let A = {∅}∪⋃∞

k=1{0, 1, . . . , d}k and for α ∈ A, let |α| = 0 if α = ∅, let
|α| = k if α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k, and let ‖ α ‖ = |α|+card{1 �
i � |α|; αi = 0}. Let A∗ and A∗∗ denote A\{∅} and A\{∅, 0}, respectively.
Also, for each m � 1, A∗∗

�m
, {α ∈ A∗∗; ‖ α ‖� m}.

We define vector fields V[α], α ∈ A, inductively by

V[∅] = 0, V[i] = Vi, i = 0, 1, . . . , d,

V[α∗i] = [V[α], Vi], i = 0, 1, . . . , d.

Here α ∗ i = (α1, . . . , αk, i) for α = (α1, . . . , αk) and i = 0, 1, . . . , d.
We say that a system {Vi; i = 0, 1, . . . , d} of vector fields satisfies the

following condition (UFG).
(UFG) There are an integer �0 and ϕα,β ∈ C∞

b (RN), α ∈ A∗∗, β ∈ A∗∗
��0

,

satisfying the following.

V[α] =
∑

β∈A∗∗
��0

ϕα,βV[β], α ∈ A∗∗.
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Let A(x) = (Aij (x))i,j=1,...,N , t > 0 x ∈ RN be a N × N symmetric
matrix given by

Aij (x) =
∑

α∈A∗∗
��0

V i[α](x)V
j
[α](x), i, j = 1, . . . , N.

Let h(x) = detA(x), x ∈ RN and E = {x ∈ RN ; h(x) > 0}. By Kusuoka–
Stroock [7], we see that if x ∈ E, the distribution law of X(t, x) under μ has
a smooth density function p(t, x, ·) : RN → [0,∞) for t > 0. Moreover, we
will show in that

∫

E
p(t, x, y)dy = 1, x ∈ E.

Now let x0 ∈ E and fix it throughout this paper. Let (�,F , P ) be a
probability space, and X� : [0,∞) × � → RN, � = 1, 2, . . . , be continu-
ous stochastic processes such that the probability laws on C([0,∞); RN) of
X�(·) under P and of X(·, x0) under μ are the same for all � = 1, 2, . . . , and
that σ {X�(t); t � 0}, � = 1, 2, . . . , are independent.

Let q(L)s,t : E × � → [0,∞), t > s � 0, L � 1, be given by

q
(L)
s,t (y, ω) = 1

L

L∑

�=1

p(t − s,X�(s, ω), y), y ∈ E, ω ∈ �.

Let m(E) denote the space of measurable functions on E.
We define a random linear operator Q(L)

s,t , t > s � 0, L � 1, defined in
m(E) by

(Q
(L)
s,t f )(x) = 1

L

L∑

�=1

p(t − s, x,X�(t))f (X�(t))

q
(L)
s,t (X�(t))

, x ∈ E, f ∈ m(E).

Now let T > 0, and g : [0, T ] × RN → R be a continuous function
with sup{(1 + |x|)−1|g(t, x)|; x ∈ RN, t ∈ [0, T ]} < ∞. For any n � 1,
and 0 = t0 < t1 < . . . < tn = T , we define ctk,tk+1,...,tn : E → R, and

c̃
(L)
tk,tk+1,...,tn

: E × � → R, k = n, n − 1, . . . , 0, L � 1, inductively by

ctn(x) = c̃
(L)
tn

(x) = g(T , x), x ∈ E, and

ctk,tk+1,...,tn (x) =
∫

E

p(tk+1 − tk, x, y)(g(tk+1, y) ∨ ctk+1,...,tn (y))dy,

and

c̃
(L)
tk,tk+1,...,tn

(x) = Q
(L)
tk,tk+1

(g(tk+1, ·) ∨ c̃
(L)
tk+1,...,tn

(·))(x)
for x ∈ E and k = n − 1, . . . , 0.

Then we will show the following.



64 S. Kusuoka and Y. Morimoto

Theorem 1. Suppose that n(L) � 1, 0 = t
(L)
0 < t

(L)
1 < . . . < t

(L)
n(L) = T . If

there is an ε > 0 such that

L−(1−ε)/2
n(L)∑

k=1

(t
(L)
k − t

(L)
k−1)

−(N+1)�0/4 → 0,

then

E[|c̃(L)
t
(L)
0 ,t

(L)
1 ,...,t

(L)
n(L)

(x0) − c
t
(L)
0 ,t

(L)
1 ,...,t

(L)
n(L)

(x0)|2] → 0, L → ∞.

Let n � 1, and 0 = T0 < T1 < . . . < Tn = T and fix them. For each
ω ∈ �, let τ̂L,ωW0 → {T1, . . . , Tn} be a stopping time given by

τ̂L,ω= min{Tk; k = 1, 2, . . . , n, c̃LTk,Tk+1,...,Tn
(X(Tk, x0), ω) � g(Tk,X(Tk, x0))}.

Let ĉ : � → R be given by

ĉ(ω) = Eμ[g(τ̂L,ω,X(τ̂L,ω, x0)].
Then we have the following.

Theorem 2. Suppose that γ ∈ (0, 1]. If

n∑

k=1

μ(|cTk,Tk+1,...,Tn(X(Tk, x0))−g(Tk,X(Tk, x0))| < ε)=O(εγ ), as ε ↓ 0,

then for any α ∈ (1/2, (1 + γ )/(2 + γ )), there are �L ∈ F , L � 1, and
C > 0 such that P(�L) → 1, L → ∞, and

|ĉ(ω) − cT0,T1,...,Tn | � CL−α for any ω ∈ �L and L � 1.

2. The Basic Property of Hörmander Diffusion Processes

Let J : [0,∞) × RN × W0 → RN ⊗ RN, J (t, x) = (J ij (t, x))i,j=1,...,N be
given by

J ij (t, x) = ∂

∂xj
Xi(t, x).

Then it has been shown in [6] Sect. 2 that there are bβα : [0,∞)×RN ×W0 →
R, α, β ∈ A∗∗

��0
, such that

V[α](x) =
∑

β∈A∗∗
��0

bβα(t, x)J (t, x)
−1V[β](X(t, x)), α ∈ A∗∗

��0
,
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and

sup
x∈RN ,t∈[0,T ]

Eμ[|bβα(t, x)|p] < ∞ α, β ∈ A∗∗
��0

, T > 0, p � 1.

So we see that for any ξ ∈ RN,

(A(x)ξ, ξ) =
∑

α∈A∗∗
��0

(V[α](x), ξ)2

�
∑

α∈A∗∗
��0

(
∑

β∈A∗∗
��0

bβα(t, x)
2)(

∑

β∈A∗∗
��0

(J (t, x)−1V[β](X(t, x)), ξ)2)

= (
∑

α∈A∗∗
��0

∑

β∈A∗∗
��0

bβα(t, x)
2)(J (t, x)A(X(t, x))tJ (t, x)ξ, ξ).

Therefore we see that

h(x) � (
∑

α∈A∗∗
��0

∑

β∈A∗∗
��0

bβα(t, x)
2)Ndet (J (t, x))2h(X(t, x)). (2)

Then we have the following.

Proposition 3. (1) μ(X(t, x) ∈ E) = 1 for any x ∈ E and t > 0. In partic-
ular, p(t, x, y) = 0, y ∈ RN \ E, x ∈ E.

(2) For any p > 1 and T > 0, there exists a C > 0 such that

Eμ[h(X(t, x))−p] � Ch(x)−p, x ∈ E, t ∈ [0, T ].
(3) For any n,m � 0, p ∈ (1,∞), and T > 0, there exists a C > 0 such

that

||h(X(t, x))−m||Wn,p � Ch(x)−(n+m) x ∈ E, t ∈ [0, T ].
Here || · ||Wn,p is the norm of a Sobolev space Wn,p (c.f. Shigekawa [8]).

Proof. The assertions (1) and (2) are easy consequence of Eq. (2). Note that

D(h−m(X(t, x))) = −mh−(m+1)(X(t, x)))D(h(X(t, x))).

Thus we easily obtain the assertion (3) by induction. �

By Kusuoka–Stroock [7], we have the following.
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Proposition 4. Let δ0 > 0 be given by

δ0 = (3N( sup
x∈RN

d∑

k=1

|Vk(x)|2))−1.

Then we have the following.

(1) For any T > 0,

sup
t∈(0,T ], x∈RN

Eμ[exp(
2δ0

t
|X(t, x) − x|2)] < ∞.

(2) For any T > 0, n � 1, and p ∈ (1,∞),

sup
t∈(0,T ], x∈RN

tn/2|| exp(
δ0

t
|X(t, x) − x|2)||Wn,p < ∞.

Proposition 5. For any γ ∈ ZN
�0

, there are gγ,α1,...,αk ∈ C∞
b (RN), k =

1, . . . , |γ |, αi ∈ A∗∗
��0

, i = 1, . . . , k, such that

h(x)|γ | ∂ |γ |

∂xγ
f (x) =

|γ |∑

k=1

∑

α1,...,αk∈A∗∗
��0

gγ,α1,...,αk (x)(V[α1] · · ·V[αk ]f )(x), x ∈ RN

for any f ∈ C∞
b (RN).

Proof. Let Ã(x) = (Ãij (x))i,j=1,...,N be the cofactor matrix of the matrix
A(x) for x ∈ RN. Also, let cα,i(x), x ∈ RN, α ∈ A∗∗

��0
, i = 1, . . . , N, be

given by

cα,i(x) =
N∑

j=1

Ãij (x)V
j
[α](x).

Then we see that h, cα,i ∈ C∞
b (RN), and

∑

α∈A∗∗
��0

cα,i(x)(V[α]f )(x) = h(x)
∂f

∂xi
(x), i = 1, . . . , N.



Stochastic Mesh Method 67

So we have the assertion for the case that |γ | = 1. Since

h(x)|γ |+1(x)
∂

∂xi

∂ |γ |

∂xγ
f (x)

= h(x)
∂

∂xi
(h|γ | ∂ |γ |

∂xγ
f )(x) − |γ | ∂h

∂xi
(x)h|γ |(x) ∂

|γ |

∂xγ
f (x),

we have our assertion by induction. �

Now we have the following lemma.

Lemma 6. For any t > 0, x ∈ E and γ0, γ1 ∈ ZN
�0

, there are kγ0,γ1(t, x) ∈
W∞,∞− such that

∫

RN

∂
γ0
x ∂

γ1
y p(t, x, y)f (y)dy = Eμ[h(X(t, x))−2(|γ0|+|γ1|)�0

×f (X(t, x))kγ0,γ1(t, x)],
f ∈ C∞

0 (RN),

and

sup
t∈(0,T ],x∈E

t(|γ0|+|γ1|)�0/2||kγ0,γ1(t, x)||Wn,p < ∞, T > 0, n ∈ N, p ∈ (1,∞).

Here ∂γx = ∂ |γ |/∂xγ and ∂γy = ∂ |γ |/∂yγ .

Proof. First, by the argument in Shigekawa [8] we see that for γ ∈ ZN
�0

,

there are Jγ,β(t, x) ∈ W∞,∞−, t � 0, x ∈ RN, β ∈ ZN
�0

, |β| � |γ |, such

that
∂
γ
x (f (X(t, x)) =

∑

β∈ZN
�0

, |β|�|γ |
(∂βx f )(X(t, x))Jγ,β(t, x),

and

sup
t∈(0,T ],x∈RN

||Jγ,β(t, x)||Wn,p < ∞, T > 0, n ∈ N, p ∈ (1,∞).

Then we have for any x ∈ E and f ∈ C∞
0 (RN),

∫

RN

∂
γ0
x ∂

γ1
y p(t, x, y)f (y)dy

= (−1)|γ1|
∫

RN

∂
γ0
x p(t, x, y)(∂

γ1
y f )(y)dy

= (−1)|γ1|∂γ0
x Eμ[(∂γ1

y f )(X(t, x))]
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= (−1)|γ1| ∑

β∈ZN
�0

, |β|�|γ0|
Eμ[(∂γ1+β

x f )(X(t, x))Jγ0,β(t, x)]

= (−1)|γ1| ∑

β∈ZN
�0

, |β|�|γ0|

|γ1|+|β|∑

k=0

∑

α1,...,αk∈A∗∗
��0

Eμ[h(X(t, x))−(|γ1|+|β|)

× gγ1+β,α1,...,αk (X(t, x))Jγ0,β(t, x)(V[α1] · · ·V[αk]f )(X(t, x))].
So by the integration parts formula in [6] Lemma 8 and by Propositions 3

and 5, we have our assertion. �

Proposition 7. For any t > 0, x ∈ E and γ0, γ1 ∈ ZN
�0

,

∂
γ0
x ∂

γ1
y p(t, x, y) = 0 a.e.y ∈ RN \ E.

Moreover, for any γ0, γ1 ∈ ZN
�0

, p ∈ (1,∞), T > 0, and m ∈ Z with

m � 2(|γ0| + |γ1|),

sup{t (|γ0|+γ1|)�0/2h(x)2(|γ0|+|γ1|)�0−m(

∫

E

h(y)pm exp(
pδ0

t
|y − x|2)

×|∂γ0
x ∂

γ1
y p(t, x, y)|p

p(t, x, y)p−1
dy)1/p;

t ∈ (0, T ], x ∈ E} < ∞.

Proof. Let

ϕt,x(y) = exp(
δ0

t
|y − x|2), x, y ∈ RN, t > 0.

Then we have for any ε > 0, f ∈ C∞
0 (RN) and x ∈ E

∫

RN

∂
γ0
x ∂

γ1
y p(t, x, y)f (y)(ε + h(y))mϕt,x(y)dy

= Eμ[h(X(t, x))−2(|γ0|+|γ1|)�0f (X(t, x))(ε + h(X(t, x)))m

× ϕt,x(X(t, x)))kγ0,γ1(t, x)].
By Propositions 3 and 4, we see that
∫

RN

∂
γ0
x ∂

γ1
y p(t, x, y)f (y)h(y)mϕt,x(y)dy

= Eμ[h(X(t, x))m−2(|γ0|+|γ1|)�0f (X(t, x))ϕt,x(X(t, x)))kγ0,γ1(t, x)].
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Let k′(t, x) = h(X(t, x))m−2(|γ0|+|γ1|)�0ϕt,x(X(t, x))kγ0,γ1(t, x). Then we
see that

sup
t∈(0,T ],x∈E

t(|γ0|+|γ1|)�0/2h(x)2(|γ0|+|γ1|)�0−mEμ[|k′(t, x)|p]1/p

< ∞, T > 0, p ∈ (1,∞).

Note that there is a Borel function k̃(t, x) : RN → R, t ∈ (0, T ], x ∈ E,

such that

Eμ[k′(t, x)|σ {X(t, x))}] = k̃(t, x)(X(t, x)), t ∈ (0, T ], x ∈ E.

Then we have
∫

RN

∂
γ0
x ∂

γ1
y p(t, x, y)f (y)h(y)mϕt,x(y)dy

= Eμ[k′(t, x)f (X(t, x))] = Eμ[k̃(t, x)(X(t, x))f (X(t, x))]
=
∫

RN

f (y)k̃(t, x)(y)p(t, x, y)dy,

for any f ∈ C∞
0 (RN). This implies that ∂γ0

x ∂
γ1
y p(t, x, y)h(y)mϕt,x(y) =

k̃(t, x)(y)p(t, x, y) a.e.y, t � 0, x ∈ E. Therefore letting m = 0, we have
the first assertion. Since

∫

E

h(y)pmϕt,x(y)
p |∂γy p(t, x, y)|p
p(t, x, y)p−1

dy =
∫

E

|k̃(t, x, y)|pp(t, x, y)dy
= Eμ[|k̃(t, x)(X(t, x))|p] � Eμ[|k′(t, x)|p],

we have our assertion. �

Proposition 8. For any T > 0, there is a C > 0 such that

p(t, x, y) � Ct−(N+1)�0/2h(x)−2(N+1)�0

× exp(−2δ0

t
|y − x|2), t ∈ (0, T ], x, y ∈ E

and

p(t, x, y) � Ct−(N+1)�0/2h(y)−2(N+1)�0

× exp(−2δ0

t
|y − x|2), t ∈ (0, T ], x, y ∈ E.

In particular, for any T > 0 and m � 1, there is a C > 0 such that

p(t, x, y) � Ct−(N+1)�0/2h(x)−2(N+1)�0(1 + |x|2)m(1 + |y|2)−m,

t ∈ (0, T ], x, y ∈ E.



70 S. Kusuoka and Y. Morimoto

Proof. Let C0

= sup{t�0/2h(x)2(

∫

E

exp(
2(N + 1)δ0

t
|y − x|2) |∂yi p(t, x, y)|

N+1

p(t, x, y)N
dy)1/(N+1);

t ∈ (0, T ], x ∈ E, ε > 0}.
Let

ρε(t, x, y) = (p(t, x, y) + ε exp(−(1 + 2δ0

t
)|y − x|2))1/(N+1).

Then we see that

(

∫

RN

exp(
2δ0

t
|y − x|2)| ∂

∂yi
ρε(t, x, y)|N+1dy)1/(N+1)

= (N + 1)−1(

∫

RN

exp(
2δ0

t
|y − x|2)

× |∂yi (p(t, x, y) + ε exp(−(1 + 2δ0
t
)|y − x|2))|N+1

(p(t, x, y) + ε exp(−(1 + 2δ0
t
)|y − x|2))N dy)1/(N+1)

� (

∫

RN

exp(
2δ0

t
|y − x|2)

× |∂yip(t, x, y)|N+1

(p(t, x, y) + ε exp(−(1 + 2δ0
t
)|y − x|2))N dy)1/(N+1)

+ (

∫

RN

exp(
2δ0

t
|y − x|2)

× |∂yi (ε exp(−(1 + 2δ0
t
)|y − x|2))|N+1

(p(t, x, y) + ε exp(−(1 + 2δ0
t
)|y − x|2))N dy)1/(N+1)

� C0t
−�0/2h(x)−2 + (ε

∫

RN

(2|yi − xi |)N+1(1 + 1

t
])N+1

× exp(−|y − x|2))dy)1/(N+1).

Also, we have

(

∫

RN

exp(
2δ0

t
|y − x|2)ρε(t, x, y)N+1dy)1/(N+1)

= (

∫

RN

exp(
2δ0

t
|y − x|2)(p(t, x, y)

+ ε exp(−(1 + 2δ0

t
)|y − x|2))dy)1/(N+1)

= (Eμ[exp(
2δ0

t
|X(t, x) − x|2)] + πNε)1/(N+1),
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and

(

∫

RN

(|∂yi (exp(
2δ0

(N + 1)t
|y − x|2))|ρε(t, x, y))N+1dy)1/(N+1)

= (

∫

RN

(
4δ0|yi − xi |

t
)N+1 exp(

2δ0

(N + 1)t
|y − x|2)(p(t, x, y)

+ε exp(−(1 + 2δ0

t
)|y − x|2))dy)1/(N+1)

� 4δ0

t
Eμ[|X(t, x) − x|N+1 exp(

2δ0

t
|X(t, x) − x|2)]1/(N+1)

+ε
4δ0

t
(

∫

RN

|yi |N+1 exp(−|y|2))dy)1/(N+1).

Then by Sobolev’s inequality, we see that there is a constant C > 0 such
that

sup
y∈RN

(exp(
2δ0

t
|y − x|2)((p(t, x, y) + ε exp(−|y|2)))1/(N+1)

� C(C0t
−�0/2h(x)−2�0 + Ct−1/2 + Cε(1 + 1

t
)).

So letting ε ↓ 0, we have our first assertion.
Let

ρ̃ε(t, x, y) = (p(t, x, y)h(y)2(N+1)�0 + ε exp(−(1 + 2δ0

t
)|y − x|2))1/(N+1).

Then similarly we can show that
∫

RN

(exp(
2δ0

(N + 1)t
|y − x|2)ρ̃ε(t, x, y))N+1

+
N∑

i=1

|∂yi (exp(
2δ0

(N + 1)t
|y − x|2)ρ̃ε(t, x, y))|N+1)dy � Ct−�0/2,

t ∈ (0, T ], x ∈ E.

So we have our second assertion.
Finally note that

| log(1+|x|2)− log(1+|y|2)| � |
∫ |x|

|y|
2t

1 + t2
dt | � |x−y| � 1

ε
+ε|x−y|2,

x, y ∈ RN, ε > 0.

So we have the final assertion. �
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Proposition 9. Let δ ∈ (0, 1/N), α, β ∈ ZN
�0

and T > 0. Then there are

C > 0 and q > 0 such that

|∂αx ∂βy p(t, x, y)| � Ct−(|α|+|β|+1)�0/2h(x)−2(|α|+|β|+1)�0p(t, x, y)1−δ,

x, y ∈ E, t ∈ (0, T ],
and

|∂αx ∂βy p(t, x, y)| � Ct−(|α|+|β|+1)�0/2h(y)−2(|α|+|β|+1)�0p(t, x, y)1−δ,

x, y ∈ E, t ∈ (0, T ].
Proof. Let p = 1/δ > N, and let

ρε(t, x, y) = ∂αx ∂
β
y p(t, x, y)

(p(t, x, y) + ε)1−δ

for ε > 0. Then we see by Proposition 7 that there is a C1 > 0 such that

(

∫

RN

|ρε(t, x, y)|pdy)1/p = (

∫

RN

|∂αx ∂βy p(t, x, y)|p
(p(t, x, y) + ε)p−1

dy)1/p

� C1t
−(|α|+|β|)�0/2h(y)−2(|α|+|β|)�0, ε > 0, t ∈ (0, T ], x ∈ E.

Also, we have

(

∫

RN

|∂yi ρε(t, x, y)|pdy)1/p

� (

∫

RN

|∂αx ∂βy ∂yi p(t, x, y)|p
(p(t, x, y) + ε)p−1

dy)1/p

+(1 − δ)(

∫

RN

|∂αx ∂βy p(t, x, y)|2p
(p(t, x, y) + ε)2p−1

dy)1/(2p)(

∫

RN

|∂yi p(t, x, y)|2p
(p(t, x, y) + ε)2p−1

dy)1/(2p).

So we see by Proposition 7 that there is a C2 > 0 such that

(

∫

RN

|∂yi ρε(t, x, y)|pdy)1/p

� C2t
−(|α|+|β|+1)�0/2h(y)−2(|α|+|β|+1)�0, ε > 0, t ∈ (0, T ], x ∈ E.
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So by Sobolev’s inequality, we see that there is a C3 > 0 such that

sup
y∈RN

|ρε(t, x, y)| � C3t
−(|α|+|β|+1)�0/2h(x)−2(|α|+|β|+1),

ε > 0, t ∈ (0, T ], x ∈ E.

Letting ε ↓ 0, we have the first assertion.
Let

ρ̃ε(t, x, y) = ∂αx ∂
β
y p(t, x, y)

(p(t, x, y) + ε)1−δ
h(y)2(|α|+|β|+1)

for ε > 0. Then a similar argument implies that there is a C4 > 0 such that

sup
y∈RN

|ρ̃ε(t, x, y)| � C4t
−(|α|+|β|+1)�0/2,

ε > 0, t ∈ (0, T ], x ∈ E.

So we have the second assertion. �

Proposition 10. Let m � 0, α, β ∈ ZN
�0

, p ∈ [1,∞), δ ∈ (0, 1) and T > 0.

Then there is a C > 0 such that
∫

RN

|∂mt ∂αx ∂βy p(t − s, x, y)|pp(s, x0, x)dx

� C(t − s)p(|α|+|β|+2m+2)�0/2p(t, x0, y)
1−δ

for any t ∈ (0, T ], s ∈ [0, t), y ∈ RN.

Proof. First note that

∂tp(t, x, y) = Lxp(t, x, y), where L = 1

2

d∑

k=1

V 2
k + V0.

So it is sufficient to prove the case m = 0.
Let r = 1/(1 − δ). Since p > 1 − δ, we see by Propositions 8 and 9, that

there are C > 0 and b > 0 such that

|∂αx ∂βy p(t − s, x, y)|p � C(t − s)p(|α|+|β|+2)�0/2h(x)−bp(t − s, x, y)1−δ,
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for any t ∈ (0, T ], s ∈ [0, t), x ∈ E, y ∈ RN. So we see that
∫

RN

|∂αx ∂βy p(t − s, x, y)|pp(s, x0, x)dx

� C(t − s)p(|α|+|β|+2)�0/2
∫

RN

h(z)−bp(t − s, z, y)1/rp(s, x0, z)dz

� C(t − s)p(|α|+|β|+2)�0/2(

∫

RN

(h(z)−b/δp(s, x0, z)dz)
δ

× (

∫

RN

p(t − s, z, y)p(s, x0, z)dz)
1−δ.

Since ∫

RN

p(t − s, z, y)p(s, x0, z)dz = p(t, x0, y),

we have our assertion. �

Proposition 11. Let a ∈ (0, 1], and b ∈ (0, a). Then we have
∫

RN

p(s, x0, x)
ap(t − s, x, y)bφ(x)dx

� p(t, x0, y)
b(

∫

E

dxp(s, x0, x)
(a−b)/(1−b)φ(x)1/(1−b))1−b

for any t > s � 0, and non-negative measurable function φ : E → [0,∞).

Proof. Let δ = (a − b)/(1 − b), p = 1/b, and q = 1/(1 − b). Then we see
that 1 − δ = (1 − a)/(1 − b) and a − δ = b(1 − a)/(1 − b), and so we have

∫

RN

p(s, x0, x)
ap(t − s, x, y)bφ(x)dx

=
∫

RN

p(s, x0, x)
δp(s, x0, x)

(1−δ)/pp(t − s, x, y)1/pφ(x)dx

� (

∫

E

p(s, x0, x)
δp(s, x0, x)

1−δp(t − s, x, y)dx)1/p

× (

∫

E

p(s, x0, x)
δφ(x)qdx)1/q

= p(s, x0, y)
b(

∫

E

p(s, x0, x)
(a−b)/(1−b)φ(x)1/(1−b)dx)1−b.

This proves our assertion. �

Proposition 12. Let p � 1, m � 1. α, β ∈ ZN
�0

, T > 0, a ∈ (0, 1/p] and

b ∈ (a − 1/N, a). Then there is a C > 0 such that
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∫

RN

|∂αx (p(s, x0, x)
a)|p|∂βx p(t − s, x, y)|pdx

� Cs−p(|α|+1)�0/2(t − s)−p(|β|+2)�0/2p(t, x0, y)
pb(1 + |y|2)−m

for any y ∈ E and s, t ∈ (0, T ] with s < t.

Proof. Let δ = (a − b)/2 < 1/N. Note that ∂αx (p(s, x0, x)
a) is

a linear combination of a(a − 1) · · · (a − m + 1)p(s, x0, x)
a−m∂

α1
x

p(s, x0, x) · · · ∂αmx p(s, x0, x), m = 1, . . . , |α|, αk ∈ Z�0, |αk| � 1,
k = 1, . . . , m, α1 + · · · + αm = α.

Then by Propositions 9, we see that there is a C1 > 0 such that

|∂αx (p(s, x0, x)
a)||∂βx p(t − s, x, y)|

� C1s
−(|α|+1)�0/2(t − s)−(|β|+1)�0/2h(x)−2(|β|+1)�0p(s, x0, x)

a−δ

× p(t − s, x, y)1−δ

for any a ∈ (0, 1/p], b ∈ (a − 1/N, a), x, y ∈ E and s, t ∈ [0, T ] with
s < t. By Propositions 8, we see that there is a C2 > 0 such that

p(t − s, x, y)1−δ−b � C2(t − s)−�0/2h(x)−2(N+1)�0

× (1 + |x|2)m(1 + |y|2)−(1−δ−b)m

for any x, y ∈ E and s, t ∈ [0, T ] with s < t. So we have

|∂αx (p(s, x0, x)
a)||∂βx p(t − s, x, y)|

� C1C2s
−(|α|+1)�0/2(t − s)−(|β|+2)�0/2h(x)−2(|β|+N+2)�0p(s, x0, x)

a−δ

× p(t − s, x, y)b(1 + |x|2)m(1 + |y|2)−(1−(a+b)/2)m

Note that pb < p(a − δ) < 1, and so we have
∫

E

(h(x)−2(|β|+N+2)�0p(s, x0, x)
a−δp(t − s, x, y)b(1 + |x|2)m)pdx

=
∫

E

p(s, x0, x)
p(a−δ−b)/(1−pb)p(s, x0, y)

pb(1−p(a−δ))/(1−pb)

× p(t − s, x, y)pb(h(x)−2p(|β|+N+2)�0(1 + |x|2)mp dx

� (

∫

E

p(s, x0, x)
p(a−δ−b)/(1−pb)p(s, x0, y)

(1−p(a−δ))/(1−pb)

× p(t − s, x, y) dx)pb(

∫

E

p(s, x0, x)
p(a−δ−b)/(1−pb)

× h(x)−p(|β|+N+2)/(1−pb)(1 + |x|2)mp/(1−pb) dx)1−pb
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= p(t, x0, y)
pb(

∫

E

(1 + |x|2)−Np(s, x0, x)
p(a−δ−b)/(1−pb)

× h(x)−2p(|β|+N+2)/(1−pb)(1 + |x|2)mp/(1−pb)+N dx)1−pb

� p(t, x0, y)
pb(

∫

E

(1 + |x|2)−Np(s, x0, x)h(x)
−p(|β|+N+2)/�0(p(a−δ−b))

× (1 + |x|2)(mp+N(1−pb))/(p(a−δ−b)) dx)p(a−δ−b)

× (

∫

E

(1 + |x|2)−N dx)(1−p(a−δ−b))/(1−pb)

= p(t, x0, y)
pb(

∫

E

(1 + |x|2)−N dx)(1−pδ)/(1−pb)

× Eμ[h(X(s, x0))
−(|β|+N+2)�0/δ(1 + |X(s, x0)|2)(mp+N(1−pb))/(pδ)]pδ.

So by Proposition 3, we have our assertion. �

3. Stochastic Mesh and Random Norms

Let F (L)
t , t � 0, L = 0, 1, . . . ,∞ be sub σ -algebra of F given by

F (L)
t = σ {X�(s); s ∈ [0, t], � = 1, 2, . . . .L},

and
F (∞)
t = σ {X�(s); s ∈ [0, t], � = 1, 2, . . .}.

Let νt , t � 0, be the probability law ofX(t, x0) underμ. Then we see that
ν0 is the probability measure concentrated in x0, and νt (dx) = p(t, x0, x)dx,

t > 0.
Then for any t > s � 0, we can define a linear contraction map Ps,t :

L1(E; dνt ) → L1(E; dνs) by

(Ps,tf )(x) =
∫

E

p(t − s, x, y)f (y)dy, x ∈ E, f ∈ L1(E; dνt ).

Proposition 13. Let t > s � 0, α ∈ ZN
�0

and bounded measurable function

f : E → R. Then we have

E[∂αx (Q(L)
s,t f )(x)|F (∞)

s ] = ∂αx (Ps,tf )(x), νs − a.e.x.

and

E[|∂αx (Q(L)
s,t f )(x)−∂αx (Ps,t f )(x)|2|F (∞)

s ] � 1

L

∫

E

(∂αx p(t − s, x, y))2|f (y)|2
q
(L)
s,t (y)

dy.
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Proof. Note that

E[∂αx (Q(L)
s,t f )(x)|F (∞)

s ] = 1

L

L∑

�=1

∫

E

∂αx p(t − s, x, y)f (y)

q
(L)
s,t (y)

p(t − s,X�(s), y) dy

=
∫

E

∂αx p(t − s, x, y)f (y) dy = ∂αx (Ps,tf )(x).

This implies the first assertion.
Let

m� = 1

L

∫

E

∂αx p(t − s, x, y)f (y)

q
(L)
s,t (y)

p(t − s,X�(s), y) dy

and

d� = 1

L

∂αx p(t − s, x,X�(t))f (X�(t))

q
(L)
s,t (X�(t))

− m�

for � = 1, . . . , L. Then we see that

E[d�|F (∞)
s ∨ F (�−1)

t ] = 0, � = 1, . . . , L.

Here we let F (0)
t = {∅,�}. Moreover, we have

L∑

�=1

d� = ∂αx (Q
(L)
s,t f )(x) − ∂αx (Ps,tf )(x)

So we see that

E[|∂αx (Q(L)
s,t f )(x) − ∂αx (Ps,tf )(x)|2|F (∞)

s ] � E[(
L∑

�=1

|d�|2)|F (∞)
s ]

�
L∑

�=1

E[( 1

L

∂αx p(t − s, x,X�(t))f (X�(t))

q
(L)
s,t (X�(t))

)2|F (∞)
s ]

� 1

L2

L∑

�=1

∫

E

(∂αx p(t − s, x, y))2|f (y)|2
q
(L)
s,t (y)

2
p(t − s,X�(s), y) dy

= 1

L

∫

E

(∂αx p(t − s, x, y))2|f (y)|2
q
(L)
s,t (y)

dy.

So we have the second assertion. �
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Now let M(L)
t : m(E) × � → R, and N

(L)
t : m(E) × � → [0,∞),

t � 0, L � 1, be random functionals given by

M
(L)
t (f ) = M

(L)
t (f ;ω) = 1

L

L∑

�=1

f (X�(t)), f ∈ m(E),

and

N
(L)
t (f ) = N

(L)
t (f ;ω) = M

(L)
t (|f |) = 1

L

L∑

�=1

|f (X�(t))|, f ∈ m(E).

Then we see that M(L)
t is a linear function and N

(L)
t is a semi-norm in

m(E).

Proposition 14. Let t > s � 0 and L � 1 (1) For any f ∈ m(E),

M(L)
s (Q

(L)
s,t f ) = Mt(f ).

(2) For any f ∈ m(E)

N(L)
s (Q

(L)
s,t f ) � Nt(f ).

Proof. Suppose that f ∈ m(E). Then we have

M(L)
s (Q

(L)
s,t f ) = 1

L

L∑

�=1

1

L

L∑

k=1

p(t − s,X�(s),Xk(t))f (Xk(t))

q
(L)
s,t (Xk(t))

= 1

L

L∑

k=1

(
1

L

L∑

�=1

p(t − s,X�(s),Xk(t))f (Xk(t))

q
(L)
s,t (Xk(t))

) = Mt(f ).

So we have the assertion (1).
The second assertion is an easy consequence of the assertion (1). �

Proposition 15. (1) Let T > 0 and m � 1. Then there is a C > 0 such that

1

L

L∑

�=1

E[((Q(L)
s,t f )(X�(s))− (Ps,tf )(X�(s))

2|F (∞)
s ]

� C

L
(t − s)−(N+1)�0/2 max

�=1...,L
h(X�(s))

−2(N+1)(1 + |X�(s)|2)m)

×
∫

E

f (y)2(1 + |y|2)−m dy a.s.
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for any L � 1 and s, t ∈ [0, T ] with s < t.

In particular,

E[N(L)
s (Q

(L)
s,t f − Ps,tf )

2]
� C

L
(t − s)−(N+1)�0/2E[ max

�=1...,L
h(X�(s))

−2(N+1)(1 + |X�(s)|2)m]

×
∫

E

f (y)2(1 + |y|2)−mdy

for any L � 1 and s, t ∈ [0, T ] with s < t.

(2) For any ε > 0 and T > 0,

lim
L→∞L−ε sup

s∈[0,T ]
E[ max

�=1...,L
h(X�(s))

−2(N+1)(1 + |X�(s)|2)m] = 0

Proof. By Proposition 13, we see that

1

L

L∑

�=1

E[((Q(L)
s,t f )(X�(s)) − (Ps,tf )(X�(s))

2|F (∞)
s ]

� 1

L2

L∑

�=1

∫

E

p(t − s,X�(s), y)
2f (y)2

q
(L)
s,t (y)

dy

� 1

L2

L∑

�=1

∫

E

( max
�′=1,...,L

p(t − s,X�′(s), y))
p(t − s,X�(s), y)f (y)

2

q
(L)
s,t (y)

dy

= 1

L

∫

E

( max
�=1,...,L

p(t − s,X�(s), y))f (y)
2dy.

Then by Proposition 8 we have the assertion (1).
Let ε > 0. Let us take p > 1/ε. Then we have

E[ max
�=1...,L

h(X�(s))
−2(N+1)(1 + |X�(s)|2)m]

� E[(
L∑

�=1

(h(X�(s))
−2(N+1)(1 + |X�(s)|2)m)p)1/p]

� E[(
L∑

�=1

(h(X�(s))
−2(N+1)(1 + |X�(s)|2)m))p]1/p

= L1/pEμ[h(X(s, x0))
−2p(N+1)(1 + |X(s, x0)|2)mp]1/p

� L1/pEμ[h(X(s, x0))
−4p(N+1)]1/(2p)Eμ[(1 + |X(s, x0)|2)2pm]1/(2p)

So we have the assertion (2) by Proposition 3.
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4. Application 1

Let r � 0, and let Br be the set of Borel measurable functions f : RN → R
such that supx∈RN (1 + |x|2)−r/2|f (x)| < ∞.

Then we see that Q(L)
s,t and Ps,t , t > s � 0, can be regarded as linear

operators on Br .

Now let φs,t : Rn × R, s, t ∈ [0,∞), s < t, be measurable functions.
We assume that there is a λ � 0, such that

|φs,t (x, y)−φs,t (x, z)| � exp(λ(t−s))|y−z|, x ∈ RN, y, z ∈ R, t > s � 0.

Also, we assume that φs,t (·, 0) ∈ Br , t > s � 0.
Let us define a nonlinear operator Φs,t : Br → Br , s, t ∈ [0,∞), s < t,

by
(Φs,tf )(x) = φs,t (x, f (x)), x ∈ E, f ∈ Br .

Then we have

N(L)
s (Φs,tf − Φs,tg) � exp(λ(t − s))N(L)

s (f − g)

for any f, g ∈ Br .

Let us define operators Q̃(L)
s,t and P̃s,t on Br by Q̃

(L)
s,t = Φs,t ◦ Q(L)

s,t and
P̃s,t = Φs,t ◦ Ps,t .

Then we have the following easily from Propositions 14 and 15.

Proposition 16. (1)

N(L)
s (Q̃

(L)
s,t f − Q̃

(L)
s,t g) � exp(λ(t − s))N

(L)
t (f − g)

for any f, g ∈ Br .

(2) Let T > 0 and m � 1. Then there is a C > 0 such that

E[N(L)
s (Q̃

(L)
s,t f − P̃s,t f )

2]
� C

L
a(L) exp(2λ(t − s))(t − s)−(N+1)�0/2

×
∫

E

f (y)2(1 + |y|2)−(r+N) dy

for any L � 1 and s, t ∈ [0, T ] with s < t. Here

a(L) = sup
s∈[0,T ]

E[ max
�=1...,L

h(X�(s))
−2(N+1)(1 + |X�(s)|2)m]

Note that by Proposition 15(2), we see that for any δ > 0,

L−δa(L) → 0, L → ∞.

So we have the following.



Stochastic Mesh Method 81

Theorem 17. For T > 0, there is a C > 0 satisfying the following. For any
n � 1, and 0 = t0 < t1 < · · · < tn � T ,

E[|(Q̃(L)
t0,t1

· · · Q̃(L)
tn−1,tn

f )(x0) − (P̃t0,t1 · · · P̃tn−1,tnf )(x0)|2]1/2

� C

L1/2
a(L)1/2 exp(λtn)

n∑

k=1

(tk − tk−1)
−(N+1)�0/4

× (

∫

E

(P̃tk,tk+1 · · · P̃tn−1,tnf )(y)
2(1 + |y|2)−(r+N) dy)1/2

Proof. Note that

|(Q̃(L)
t0,t1

· · · Q̃(L)
tn−1,tn

f )(x0) − (P̃t0,t1 · · · P̃tn−1,tnf )(x0)|
= N

(L)
0 ((Q̃

(L)
t0,t1

· · · Q̃(L)
tn−1,tn

f ) − (P̃t0,t1 · · · P̃tn−1,tnf ))

�
n∑

k=1

N
(L)
0 ((Q̃

(L)
t0,t1

· · · Q̃(L)
tk−1,tk

P̃tk,tk+1 · · · P̃tn−1,tnf )

− (Q̃
(L)
t0,t1

· · · Q̃(L)
tk−2,tk−1

P̃tk−1,tk · · · P̃tn−1,tnf ))

�
n∑

k=1

exp(λtk−1)N
(L)
tk−1

(Q̃
(L)
tk−1,tk

P̃tk,tk+1 · · · P̃tn−1,tnf )

− (P̃tk−1,tk · · · P̃tn−1,tnf )).

Also, we have by Proposition 16

E[N(L)
tk−1

(Q̃
(L)
tk−1,tk

P̃tk,tk+1 · · · P̃tn−1,tnf ) − (P̃tk−1,tk · · · P̃tn−1,tnf ))
2]1/2

� C1/2

L1/2
a(L)1/2 exp(λ(tk − tk−1))(tk − tk−1)

−(N+1)�0/4

× (

∫

E

(P̃tk,tk+1 · · · P̃tn−1,tnf )(y)
2(1 + |y|2)−(r+N) dy)1/2.

These imply our theorem. �

Now we apply the above theorem to American option. Let g : [0, T ] ×
Rn → R be a continuous function such that there are r � 1 and C1 > 0
such that |g(t, x)| � C1(1 + |x|2)r/2, t ∈ [0, T ], x ∈ Rn. Let φs,t (x, y)
= g(s, x) ∨ y, for x ∈ Rn, y ∈ R, and s, t ∈ [0, T ] with s < t. Then we
have φs,t (x, y) − φs,t (x, z)| � |y − z|. It is easy to see that there is a a � 0
such that

E[ sup
t∈[0,T ]

(1 + |X(t, x)|2)r/2] � exp(aT )(1 + |x|2)r/2, x ∈ Rn.
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So we see that

sup
x∈Rn

(1 + |x|2)−r/2|P̃s,t f (x)| � expC1 ∨ exp(a(t − s))

× sup
x∈Rn

(1 + |x|2)−r/2|f (x)|, f ∈ Br .

Then we see that

(

∫

E

(P̃tk,tk+1 · · · P̃tn−1,tng(tn, ·))(y)2(1 + |y|2)−(r+N) dy)1/2

� C1 exp(a(tn − tk))

∫

E

(1 + |y|2)−N dy)1/2.

So we have by Theorem 17, we see that there is a C2 > 0 such that

E[|(Q̃(L)
t0,t1

· · · Q̃(L)
tn−1,tn

g(tn, ·)(x0) − (P̃t0,t1 · · · P̃tn−1,tng(tn, ·))(x0)|2]1/2

� C2

L1/2
a(L)1/2

n∑

k=1

(tk − tk−1)
−(N+1)�0/4

for any n � 1, and 0 = t0 < t1 < · · · < tn � T . So if we take nL � 1 and
0 = t

(L)
0 < t

(L)
1 < · · · < t

(L)
n = T for each L � 1, and there is a δ0, δ1 > 0,

with δ0 < δ1 < 1/2 such that

lim
L→∞L−δ0

nL∑

k=1

(t
(L)
k − t

(L)
k−1)

−(N+1)�0/4 = 0,

then we see that

L−(1−δ1)/2|(Q̃(L)

t
(L)
0 ,t

(L)
1

· · · Q̃(L)

t
(L)
nL−1,t

(L)
nL

g(T , ·)(x0)

− (P̃
t
(L)
0 ,t

(L)
1

· · · P̃
t
(L)
nL−1,t

(L)
nL

g(T , ·))(x0)| → 0

in probability.

5. Preparations for Estimates of Functions

Proposition 18. Let Zk, k = 1, 2 . . . be independent integrable random vari-
ables.

(1) For any p � 1, there is a C > 0 only depend on p such that

E[|
n∑

k=1

(Zk − E[Zk])|2p] � C(E[(
n∑

k=1

Z2
k )
p] + (

n∑

k=1

|E[Zk]|)2p), n � 1.
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(2) For any p � 1, there is a C > 0 only depend on p such that

E[|
n∑

k=1

Zk|2p] � C(E[(
n∑

k=1

Z2
k )

p] + (

n∑

k=1

|E[Zk]|)2p), n � 1.

(3) For any m ∈ N, there is a C > 0 only depend on m such that

E[|
n∑

k=1

Z2
k |2

m] � C

m+1∑

r=1

(

n∑

k=1

E[Z2r
k ])2m+1−r

, n � 1.

Proof. (1) If
∑n

k=1 E[|Zk|2p] = ∞, the right hand side is infinity, and so

the inequality is valid. So we assume that
∑n

k=1 E[|Zk|2p] < ∞. Then
by Burkholder’s inequality we have

E[|
n∑

k=1

(Zk − E[Zk])|2p] � C2pE[(
n∑

k=1

(Zk − E[Zk])2)p].

Since we have

E[(
n∑

k=1

(Zk − E[Zk])2)p] � 2pE[(
n∑

k=1

(Z2
k + E[Zk]2))p]

� 22pE[(
n∑

k=1

Z2
k )

p] + 22p(

n∑

k=1

E[Zk]2)p

� 22pE[(
n∑

k=1

Z2
k )

p] + 22p(

n∑

k=1

|E[Zk]|)2p,

we have our assertion.
(2) Note that

E[|
n∑

k=1

Zk|2p] = E[|
n∑

k=1

((Zk − E[Zk])+ E[Zk])|2p]

� 22p(E[|
n∑

k=1

(Zk − E[Zk]|2p] + |
n∑

k=1

E[Zk]|2p).

So we have our assertion by the assertion (1).
We can show the assertion (3) easily by induction and the assertion (2).

�
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Proposition 19. For any m � 1, j � 0, α ∈ ZN
�0

, δ ∈ (0, 1), and T > 0,

there is a C > 0 such that

E[ sup
s∈[0,t−ε]

|( 1

L

L∑

�=1

∂
j
t ∂

α
y p(t − s,X�(s), y)) − ∂

j
t ∂

α
y p(t, x0, y)|2m+1 ]

� Cε−2m(j+|α|+3)�0L−2mLp(t, x0, y)
1−δ(L−1 + p(t, x0, y)

1−δ)2
m

,

for any y ∈ RN, L � 1, t ∈ (0, T ], ε ∈ (0, t).

Proof. Let us note that

∂

∂t
∂
j
t ∂

α
y p(t, x, y) = Lx∂

j
t ∂

α
y p(t, x, y), t > 0, x ∈ E, y ∈ RN,

where

Lx = 1

2

d∑

k=1

V 2
k + V0.

So we see that ∂jt ∂
α
y p(t− s,X�(s), y), s ∈ [0, t), h > 0, is a martingale, and

〈∂jt ∂αy p(t − ·, X�(·), y)〉s

=
d∑

k=1

∫ s

0
|∂jt ∂αy Vk,xp(t − r,X�(r), y)|2dr.

So we have by Burkholder’s inequality and Proposition 18(3),

E[ sup
s∈[0,t−ε]

|
L∑

�=1

(∂
j
t ∂

α
y p(t − s,X�(s), y) − ∂

j
t ∂

α
y p(t, x0, y))|2m+1 ]

� C2m+1E[(
L∑

�=1

d∑

k=1

∫ t−ε

0
|∂jt ∂αy Vk,xp(t − s,X�(s), y)|2ds)2m ]

� C2m+1d
2m

d∑

k=1

E[(
L∑

�=1

∫ t−ε

0
|∂jt ∂αy Vk,xp(t − s,X�(s), y)|2ds)2m ]

� C

d∑

k=1

m∑

r=0

(

L∑

�=1

E[(
∫ t−ε

0
|∂jt ∂αy Vk,xp(t − s,X�(s), y)|2ds)2r ])2m−r

� C

d∑

k=1

m∑

r=0

t2
m−2m−r

(

L∑

�=1

E[(
∫ t−ε

0
|∂jt ∂αy Vk,x

× p(t − s,X�(s), y)|2r+1
ds])2m−r
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= C

d∑

k=1

m∑

r=0

t2
m−2m−r

L2m−r

(

∫ t−ε

0
(

∫

RN

|∂jt ∂αy Vk,xp(t − s, z, y)|2r+1

× p(s, x0, z)dz)ds)
2m−r

.

Then by Proposition 10, we have

E[ sup
s∈[0,t−ε]

|
L∑

�=1

(∂
j
t ∂

α
y p(t − s,X�(s), y) − ∂

j
t ∂

α
y p(t, x0, y))|2m+1 ]

� C′t2mε−2m(j+|α|+3)�0

m∑

r=0

L2m−r

p(t, x0, y)
2m−r (1−δ).

� C′t2mε−2m(j+|α|+3)�0L2mLp(t, x0, y)
1−δ(L−1 + p(t, x0, y)

1−δ)2
m

.

This implies our assertion. �
Proposition 20. For any δ ∈ (0, 1/2), T > 0 and p ∈ [2,∞), there is a
C > 0 such that

E[( sup
y∈RN ,

sup
t∈[ε,T ],s∈[0,t−ε]

(
|q(L)s,t (y) − p(t, x0, y)|

(L−1/(1−δ) + p(t, x0, y))(1−δ)/2
)p.]1/p

� Cε−5�0L−1/2+1/p, L � 1, ε ∈ (0, 1).

Proof. Let us take an m � 1 such that p + N < 2m. Note that

L−1 + p(t, x0, y)
1−δ � 2(L−1/(1−δ) + p(t, x0, y))

1−δ.

Let

ρL(s, t, y) = q
(L)
s,t (y) − p(t, x0, y)

(L−1/(1−δ) + p(t, x0, y))(1−δ)/2
, 0 � s < t � T , y ∈ RN.

We see by Proposition 9, we see that for any a > 0, j � 0, and α ∈ ZN
�0

,

there is a C > 0 such that

(L−1/(1−δ) + p(t, x0, y))
−a+2j+|α||∂jt ∂αy ((L−1/(1−δ) + p(t, x0, y))

−a)|
� Ct−(2j+|α|)�0p(t, x0, y)

−δ, y ∈ RN, t ∈ (0, T ].
So we see that by Proposition 18, for any a > 0, j = 0, 1, and α ∈ ZN

�0
with

|α| � 1, there is a C > 0 such that



86 S. Kusuoka and Y. Morimoto

E[ sup
s∈[0,t−ε]

|∂jt ∂αy ρL(s, t, y)|2
m+1 ]

� Cε−2m+14�0L−2mLp(t, x0, y)
1−2δ,

y ∈ RN, L � 1, ε ∈ (0, 1), t ∈ (ε, T ].
Therefore we see that

E[
∫

RN

dy sup
s∈[0,t−ε]

|∂jt ∂αy ρL(s, t, y)|2
m+1 ]

� Cε−2m+3�0L−2mL

∫

RN

p(t, x0, y)
1−2δdy,

L � 1, ε ∈ (0, 1), t ∈ (ε, T ].
Note by Proposition 8 that there is a C > 0 such that

∫

RN

p(t, x0, y)
1−2δdy � Ct(N+1)�0δ, t ∈ (0, T ].

Also, note that

∂αy ρL(s, t, y) = ∂αy ρL(s, T , y) −
∫ T

t

∂r∂
α
y ρL(s, r, y)dr,

and so we see that

sup
t∈[ε,T ],s∈[0,t−ε]

∫

RN

|∂αy ρL(s, t, y)|2
m

dy

� 2m+1
∫

RN

dy sup
s∈[0,T−ε]

|∂αy ρL(s, T , y)|2
m

+ 2m+1(T + 1)2
m

∫ T

t

dr

∫

RN

dy sup
s∈[0,r−ε)

|∂αy ρL(s, r, y)|2
m

.

Then by Sobolev’s inequality, we see that there is a C > 0 such that

E[ sup
y∈RN

sup
t∈[ε,T ],s∈[0,t−ε]

|ρL(s, t, y)|2m+1 ]1/2m+1

� Cε−(4+(N+1)/2m+1)�0L−1/2+1/2m+1
,

L � 1, ε ∈ (0, 1). This implies our assertion. �
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Let

ZL(s, t; δ) = sup
y∈RN

|q(L)s,t (y) − p(t, x0, y)|
(L−1/(1−δ) + p(t, x0, y))(1−δ)/2

, t > 0, s ∈ [0, t)

and
Z̃L(ε, δ, T ) = sup

t∈[ε,T ],s∈[0,t−ε]
ZL(s, t; δ)

for T > 0, ε ∈ (0, T ], and δ ∈ (0, 1). Note that ZL(s, t; δ) is F (∞)
s -

measurable.
Then we have the following.

Proposition 21. (1) Let T > 0, ε ∈ (0, T ], and δ ∈ (0, 1). Then for any
p > 1, there is a C > 0 such that

E[(L(1−δ2)/2Z̃L(ε, δ, T ))
p]1/p � Cε−5�0L−pδ2/2+1/p, L � 1.

(2) Let δ ∈ (0, 1), t > 0, and s ∈ (0, t). If L(1−δ2)/2ZL(s, t; δ) � 1/4, and
p(t, x0, y) � L−(1−δ), then

1

2
�

q
(L)
s,t (y)

p(t, x0, y)
� 2, t ∈ (ε, T ], s ∈ [0, t − ε].

Proof. The assertion (1) is an immediate consequence of Proposition 20.
Note that

|q(L)s,t (y) − p(t, x0, y)| � ZL(s, t; δ)(L−1/(1−δ) + p(t, x0, y))
(1−δ)/2

for any y ∈ RN, t ∈ [ε, T ] and s ∈ [0, t − ε].
If p(t, x0, y) � L−(1−δ), we have

∣
∣
∣
∣
∣

q
(L)
s,t (y)

p(t, x0, y)
− 1

∣
∣
∣
∣
∣
� ZL(s, t; δ)(L−1/(1−δ)p(t, x0, y)

−1 + 1)(1−δ)/2

× p(t, x0, y)
−(1+δ)/2

� ZL(s, t; δ)(L−1/(1−δ)L1−δ+1)(1−δ)/2L(1−δ2)/2�2L(1−δ2)/2ZL(s, t; δ).
This implies our second assertion. �
Proposition 22. Let T > 0, and δ ∈ (0, 1). Let BL(s, t) ∈ F , L � 1, be
given by

BL(s, t) = {ω ∈ � : L(1−δ2)/2ZL(s, t; δ) � 1/4}, t > ands ∈ (0, t),

and ϕt,L : E → {0, 1}, t ∈ (0, T ], L � 1, be given by

ϕt,L = 1{y∈E;p(t,x0,y)>L
−(1−δ)}, t > 0.
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(1) Let a ∈ (1/(2N), 1/2), b ∈ (a − 1/(2N), a), and m � 1. Then there is
a C > 0 such that

1BL(s,t)E[(sup
x∈E

p(s, x0, x)
a |(Q(L)

s,t (ϕt,Lf ))(x)

− (Ps,t (ϕt,Lf ))(x)|)2|F (∞)
s ]

� C

L
s−(N+2)�0(t − s)−(N+2)�0

∫

E

p(t, x0, y)
−1+2b(1 + |y|2)−m

× ϕt,L(y)f (y)
2dy a.s.

for t ∈ (0, T ], s ∈ (0, t), L � 1, and any bounded measurable function
f defined in E.

(2) Let a ∈ (0, 1/2), and m � 1. Then there is a C > 0 such that

1BL(s,t)E[(sup
x∈E

p(s, x0, x)
1/2−δ/4|Q(L)

s,t (ϕt,Lf ))(x)

− (Ps,t (ϕt,Lf ))(x)|)2|F (∞)
s ]

� C

L1−δ
s−(N+2)�0(t − s)−(N+2)�0

×
∫

E

(1 + |y|2)−mϕt,L(y)f (y)
2dy a.s.

for t ∈ (0, T ], s ∈ (0, t), L � 1, and any bounded measurable function
f defined in E.

(3) Let a ∈ (0, 1/2) and b ∈ (a − 1/(2N), a). Then there is a C > 0 such
that

1BL(s,t)E[(sup
x∈E

p(s, x0, x)
a |Q(L)

s,t (ϕt,Lp(t, x0, ·)−b))(x)

− (Ps,t (ϕt,Lp(t, x0, ·)−b))(x)|)2|F (∞)
s ]

� C

Lδ
s−(N+2)�0(t − s)−(N+2)�0 a.s.

for t ∈ (0, T ], s ∈ (0, t), L � 1.

Proof. Note that for α ∈ ZN
�0

1BL(s,t)E[|∂αx (p(s, x0, x)
a(Q

(L)
s,t (ϕt,Lf ))(x) − (Ps,t (ϕt,Lf ))(x)))|2F (∞)

s ]

� 1

L
1BL(s,t)

∫

E

|∂αx (p(s, x0, x)
ap(t − s, x, y))|2

q
(L)
s,t (y)

ϕt,L(y)f (y)
2 dy

� 2

L
1BL(s,t)

∫

E

|∂αx (p(s, x0, x)
ap(t−s, x, y))|2

× p(t, x0, y)
−1ϕt,L(y)f (y)

2 dy



Stochastic Mesh Method 89

So we have by Proposition 12 there is a C > 0 such that

1BL(s,t)E[
∫

RN
dx |∂αx (p(s, x0, x)

a(Q
(L)
s,t (ϕt,Lf ))(x)− (Ps,t (ϕt,Lf ))(x)))|2F (∞)

s ]

� C

L
s−(N+2)�0(t − s)−(N+2)�0

∫

E
p(t, x0, y)

−1+2b(1 + |y|2)−mϕt,L(y)f (y)
2dy.

This and Sobolev’s inequality imply the assertion (1).
In the assertion (1), if a = 1 − δ/4 and b > 1/2 − δ/2, then we have

p(t, x0, y)
−1+2bϕt,L(y) � L−δ.

This implies the assertion (2).
In the assertion (1), if m = N + 1 and f = p(t, x0, ·)−b then we have

∫

E
p(t, x0, y)

−1+2b(1+|y|2)−mϕt,L(y)f (y)
2dy � L1−δ

∫

RN
(1+|y|2)−(N+1)dy

This implies the assertion (3). �

Similarly by using Proposition 12, we have the following.

Proposition 23. Let a ∈ (1/(2N), 1/2) and b ∈ (a−1/(2N), a). Then there
is a C > 0 such that

sup
x∈E

p(s, x0, x)
a |(Ps,tf )(x)|

� Cs−(N+2)�0/2(t − s)−(N+3)�0/2 sup
y∈E

p(t, x0, y)
b|f (y)|

for t ∈ (0, T ], s ∈ (0, t), and any bounded measurable function f defined
in E.

6. Application to Bermuda Type Problem

Let us think of the situation in Sect. 4. Then we have the following.

Theorem 24. Let 0 = T0 < T1 < . . . < Tn < T, δ ∈ (0, 1/2), and f ∈ Br ,

for some r � 0. Then there are C > 0, �L ∈ F , L � 1, and measurable

functions d(L)m,i : E × � → [0,∞), m = 1, . . . , n − 1, i = 1, 2, L � 1,
such that
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lim
L→∞Lp(1 − P(�L)) = 0, p ∈ (1,∞),

1�L |(Q̃(L)
Tm,Tm+1

· · · Q̃(L)
Tn−1,Tn

f )(x) − (P̃Tm,Tm+1 · · · P̃Tn−1,Tnf )(x)|
� d

(L)
m,1(x) + d

(L)
m,2(x), x ∈ E, m = 1, . . . , n − 1, L � 1

and

E[
∫

E

d
(L)
m,1(x)p(Tm, x0, x)dx] � CL−(1−δ)2

E[
∫

E

d
(L)
m,2(x)

2p(Tm, x0, x)dx] � CL−(1−δ)

for any L � 1, m = 1, . . . , n − 1.

Proof. Note that for f, g ∈ Br ′

|(Q̃(L)
s,t f )(x) − (Q̃

(L)
s,t g)(x)|

= |φs,t (x, (Q(L)
s,t f )(x)) − φs,t (x, (Q

(L)
s,t g)(x))|

� exp(λ(t − s))(Q
(L)
s,t (|f − g|))(x)

So we see that

|(Q̃(L)
Tm,Tm+1

· · · Q̃(L)
Tk−1,Tk

f )(x) − (Q̃
(L)
Tm,Tm+1

· · · Q̃(L)
Tk−1,Tk

g)(x)|
� exp(λ(Tk − Tm))(QTm,Tm+1 · · ·Q(L)

Tk−1.Tk
(|f − g|))(x)

Similarly we have

|(Q̃(L)
s,t f )(x) − (P̃s,t g)(x)| � exp(λ(t − s))|(Q(L)

s,t f )(x) − (Ps,t g)(x)|
Let us take ak, k = 0, 1, . . . , n such that 1/2 > a0 > a1 > . . . > an >

1/2 − δ. Also, let

cm(x) = (P̃Tm,Tm+1 · · · P̃Tn−1,Tnf )(x).

Note that

|(Q̃(L)
Tm,Tm+1

· · · Q̃(L)
Tn−1,Tn

f )(x) − (P̃Tm,Tm+1 · · · P̃Tn−1,Tnf )(x)|

�
n−m∑

k=1

|(Q̃(L)
Tm,Tm+1

· · · Q̃(L)
Tm+k−1,Tm+k

P̃Tm+k,Tm+k+1 · · · P̃Tn−1,Tnf )(x)

− (Q̃
(L)
Tm,Tm+1

· · · Q̃(L)
Tm+k−2,Tm+k−1

P̃Tm+k−1,Tm+k
· · · P̃Tn−1,Tnf )(x)|
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� exp(λT )
n−m∑

k=1

(Q
(L)
Tm,Tm+1

· · ·Q(L)
Tm+k−2,Tm+k−1

(|Q(L)
Tm+k−1,Tm+k

cm+k

− PTm+k−1,Tm+k
cm+k|))(x).

Let

Rk = 1BL(Tk−1,Tk) sup
x∈E

p(Tk−1, x0, x)
ak−1(|Q(L)

Tk−1,Tk
(ϕTk,Lck)

− PTk−1,Tk (ϕTk,Lck)|)(x),
Zk = 1BL(Tk−1,Tk) sup

x∈E
p(Tk−1, x0, x)

ak−1

× (|Q(L)
Tk−1,Tk

(ϕTk,Lp(Tk, x0, ·)−ak )

− PTk−1,Tk (ϕTk,Lp(Tk, x0, ·)−ak )|)(x),
and

Dk = sup
x∈E

p(Tk−1, x0, x)
ak−1(PTk−1,Tk (ϕTk,Lp(Tk, x0, ·)−ak ))(x) < ∞,

k = 1, . . . , n.

Then Rk and Zk are F (∞)
Tk

-measurable for k = 1, . . . , n, and by Proposi-
tion 22 we see that there is a C > 0 such that

E[R2
k |F (∞)

Tk−1
] � CL−1, E[Z2

k |F (∞)
Tk−1

] � CL−(1−δ)

for any L � 1, and k = 1, . . . , n. So inductively we have

E[R2
k (

k∏

i=�+1

(Zi + Di)
2)|F (∞)

T�
] � 2k−�Ck+1−�L−1

k∏

i=�+1

(D2
i + CL−(1−δ))

for any L � 1, and 1 � � � k � n. Let �L = ⋂n
k=1 BL(Tk−1, Tk). Then we

have

1�LQ
(L)
Tk−1,Tk

(p(Tk, x0, ·)−ak )(x)

= 1�LQ
(L)
Tk−1,Tk

(ϕTk,Lp(Tk, x0, ·)−ak )(x)

+ Q
(L)
Tk−1,Tk

((1 − ϕTk,L)p(Tk, x0, ·)−ak )(x)

� 1�L(Zk + Dk)p(Tk−1, x0, x)
−ak−1

+ 1�LQ
(L)
Tk−1,Tk

((1 − ϕTk,L)p(Tk, x0, ·)−ak )(x).
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Therefore we have

1�L(Q
(L)
Tm,Tm+1

· · ·Q(L)
Tm+k−2,Tm+k−1

(|Q(L)
Tm+k−1,Tm+k

cm+k

− PTm+k−1,Tm+k
cm+k|)(x) � 1�LRm+k(Q

(L)
Tm,Tm+1

· · ·Q(L)
Tm+k−2,Tm+k−1

× p(Tm+k−1, x0, ·)−am+k−1)(x)

+ 1�L(Q
(L)
Tm,Tm+1

· · ·Q(L)
Tm+k−2,Tm+k−1

(Q
(L)
Tm+k−1,Tm+k

((1−ϕTm+k,L)|cm+k|)
+ PTm+k−1,Tm+k

((1 − ϕTm+k,L)|cm+k|)))(x)
� d̃m,2(x) + d̃m.1(x),

where

d̃
(L)
m,2(x) = Rm+k(

k∏

i=1

(Zm+i + Dm+i ))p(Tm, x0, x)
−am)

and

d̃
(L)
m,1(x) =

k∑

�=1

Rm+k(

m+k∏

i=m+�+1

(Zi + Di))

× (Q
(L)
Tm,Tm+1

· · ·Q(L)
Tm+�−2,Tm+�−1

((1−ϕTm+�−1,L)p(Tm+�−1, x0, ·)am+�−1))(x))

+ (Q
(L)
Tm,Tm+1

· · ·Q(L)
Tm+k−2,Tm+k−1

(Q
(L)
Tm+k−1,Tm+k

((1 − ϕTm+k,L)|cm+k|)
+ PTm+k−1,Tm+k

((1 − ϕTm+k,L)|cm+k|)))(x).

Note that

E[Rm+k(

m+k∏

i=m+�+1

(Zi + Di))(Q
(L)
Tm,Tm+1

· · ·Q(L)
Tm+�−2,Tm+�−1

((1 − ϕTm+�−1,L)

× p(Tm+�−1, x0, ·)am+�−1)(x))]

= E[E[Rm+k(

m+k∏

i=m+�+1

(Zi + Di))|F (∞)
Tm+�]

× (Q
(L)
Tm,Tm+1

· · ·Q(L)
Tm+�−2,Tm+�−1

((1 − ϕTm+�−1,L)

× p(Tm+�−1, x0, ·)am+�−1)(x))]

� (2kCk+1L−1
m+k∏

i=m+�+1

(D2
i + CL−(1−δ)))1/2

× E[Q(L)
Tm,Tm+1

· · ·Q(L)
Tm+�−2,Tm+�−1

((1 − ϕTm+�−1,L)
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× p(Tm+�−1, x0, ·)am+�−1)(x))]

= (2kCk+1L−1
m+k∏

i=m+�+1

(D2
i + CL−(1−δ)))1/2PTm,Tm+�−1((1 − ϕTm+�−1,L)

× p(Tm+�−1, x0, ·)am+�−1)(x).

Note that for a � 0
∫

E

PTm,Tm+�−1((1 − ϕTm+�−1,L)p(Tm+�−1, x0, ·)a)(x)p(Tm, x0, x)dx

=
∫

E

1{p(Tm+�−1,x0,x)�L−(1−δ)}p(Tm+�−1, x0, x)
1+adx

� L−(1−δ)2
∫

E

p(Tm+�−1, x0, x)
δ+adx.

Then we have our assertion. �

7. Re-simulation

We think of application to pricing Bermuda derivatives.
Let r � 1 and let g : [0, T ] × RN → R be a continuous function such

that
sup

x∈RN , t∈[0,T ]
(1 + |x|2)−r/2|g(t, x)| < ∞.

Let φs,t (x, y) = g(s, x) ∨ y, 0 � s < t � T , x ∈ RN and y ∈ R. Let
0 = T0 < T1 < . . . < Tn < T, and let cm : E → R, m = 0, 1, . . . , n, be
given by

cm(x) = (P̃Tm,Tm+1 · · · P̃Tn−1,Tng(Tn, ·))(x), m � n − 1, and cn(x) = g(Tn.x).

Now let c̃m : E → R, m = 1, . . . , n − 1, be given and let c̃n = g(Tn, ·).
We regard c̃m as estimators of cm, m = 1, . . . , n.

Let us think of the SDE in Introduction. Let τ : W0 → {T1, . . . , Tn} and
τ̃ : W0 → {T1, . . . , Tn} be stopping times given by

τ = min{Tk; ck(X(Tk, x0)) � g(Tk,X(Tk, x0), k = 1, . . . , n}
and

τ̃ = min{Tk; c̃k(X(Tk, x0)) � g(Tk,X(Tk, x0), k = 1, . . . , n}
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Let c̄m, m = 0, . . . , n, be given by inductively, c̄n = g(Tn, ·), and

c̄m−1 = PTm−1,Tm(g(Tm, ·)1{c̃m�g(Tm,·)}+c̄m1{c̃m>g(Tm,·)}), m = n, n−1, . . . , 1.

Then we have the following.

Proposition 25. (1) For m = 0, 1, . . . , n − 1,

Eμ[g(τ,X(τ, x0)|BTm]1{τ�Tm+1} = cm(X(Tm, x0))1{τ�Tm+1} a.s.

and

Eμ[g(τ̃ , X(τ̃ , x0)|BTm ]1{τ̃�Tm+1} = c̄m(X(Tm, x0))1{τ̃�Tm+1} a.s.

Here Bt = σ {Bi(s); s � t, i = 1, . . . , d}.
(2) For m = 0, 1, . . . , n − 1, and x ∈ E,

0 � cm(x) − c̄m(x) � PTm,Tm+1(|cm+1 − c̃m+1|)(x)
+PTm,Tm+1(1{c̃m+1>gm+1}(cm+1 − c̄m+1))(x).

In particular,

0 � cm(x)− c̄m(x) �
n∑

k=m+1

PTm,Tk (|ck− c̃k|)(x), m = 0, 1, . . . , n.

Proof. Since we have

Eμ[g(τ̃ , X(τ̃ , x0)|BTm−1 ]1{τ̃�Tm}
= Eμ[Eμ[g(τ̃ , X(τ̃ , x0)1{τ̃�Tm+1}|BTm]

+ g(Tm,X(Tm, x0))1{τ̃=Tm}|BTm−1],
we can easily obtain the assertion (1) by induction.

Note that

cm − c̄m

= PTm,Tm+1(1{c̃m+1�g(Tm+1,·)}((g(Tm+1, ·) ∨ cm+1)− g(Tm+1, ·)))
+ PTm,Tm+1(1{c̃m+1>g(Tm+1,·)}((g(Tm+1, ·) ∨ cm+1)− c̄m+1))

= PTm,Tm+1(1{c̃m+1�g(Tm+1,·)}((g(Tm+1, ·) ∨ cm+1)

− (g(Tm+1, ·) ∨ c̃m+1)))+ PTm,Tm+1(1{c̃m+1>g(Tm+1,·)}((g(Tm+1, ·)
− cm+1) ∨ 0) − ((g(Tm+1, ·) − c̃m+1) ∨ 0) + cm+1 − c̄m+1))

� PTm,Tm+1(|cm+1−c̃m+1|) + PTm,Tm+1(1{c̃m+1>g(Tm+1,·)}(cm+1)−c̄m+1))

This implies the first inequality of the assertion (2). The second inequality
follows from this by induction. �
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Proposition 26.

c0(x0) − c̄0(x0)

�
n∑

k=1

∫

E

(|c̃k − c̄k| + |ck − c̄k|)(x)1{|c̃k−ck |+|ck−c̄k |�ε}(x)

+ ε1{|g(Tk,·)−ck |<ε}p(Tk, x0, x)dx

for any ε > 0.

Proof. Note that

c0(x0) − c̄0(x0) = Eμ[g(τ,X(τ, x0)) − g(τ̃ , X(τ̃ , x0))]
= Eμ[g(τ,X(τ, x0)) − g(τ̃ , X(τ̃ , x0)), τ > τ̃ ] + Eμ[g(τ,X(τ, x0))

− g(τ̃ , X(τ̃ , x0)), τ < τ̃ ]
= Eμ[Eμ[g(τ,X(τ, x0))|Bτ̃ ] − g(τ̃ , X(τ̃ , x0), τ > τ̃ ]

+ Eμ[g(τ,X(τ, x0) − Eμ[g(τ̃ , X(τ̃ , x0))|Bτ ], τ < τ̃ ]

=
n−1∑

k=1

(Eμ[ck(X(Tk, x0)) − g(Tk,X(Tk, x0)), τ > Tk, τ̃ = Tk]

+ Eμ[g(Tk,X(k, x0)) − c̄k(X(Tk, x0)), τ = Tk, Tk < τ̃ ])

�
n−1∑

k=1

(Eμ[(ck(X(Tk, x0))− g(Tk,X(Tk, x0))1{c̃k�g(Tk,·)<ck}(X(Tk, x0))]

+ Eμ[((g(Tk,X(k, x0))− c̄k(X(Tk, x0)))) ∨ 0)

× 1{ck�g(Tk,·)<c̃k}(X(Tk, x0))]).
For any ε > 0, we see that

(ck − g(Tk, ·))1{c̃k�g(Tk,·)<ck}
� ε1{g(Tk,·)<ck�g(Tk,·)+ε} + (ck − g(Tk, ·))1{c̃k�g(Tk,·)<ck}1{gk+ε<ck}
� ε1{g(Tk,·)<(Tk,·)+ε} + (ck − c̃k)1{ck−c̃k>ε}1{c̃k�g(Tk,·)<ck},

and

((g(Tk, ·) − c̄k) ∨ 0)1{ck�g(Tk,·)<c̃k}
� ((g(Tk, ·) − c̄k) ∨ 0)1{ck�g(Tk,·)<c̃k}1{|c̃k−ck |+|ck−c̄k |�ε}

+ ((g(Tk, ·) − c̄k) ∨ 0)1{ck�g(Tk,·)<c̃k}1{|c̃k−ck |+|ck−c̄k |<ε}
� (|c̃k − ck| + |ck − c̄k|)1{|c̃k−ck |+|ck−c̄k |�ε}1{ck�g(Tk,·)<c̃k}

+ ε1{ck�g(Tk,·)<ck+ε}.

So we have our assertion. �
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Now we have the following.

Lemma 27. Let dm,i : E → [0,∞). m = 1, . . . , n, i = 1, 2, be measurable
functions. Assume that |c̃m − cm| � dm,1 + dm,2, m = 1, . . . , n. Then we
have the following.

c0(x0) − c̄0(x0)

� n

n∑

k=1

∫

E

dk,1(x)p(Tk, x0, x)dx + n(

n∑

k=1

(

∫

E

dk,2(x)
2p(Tk, x0, x)dx)

1/2)

× (ε−1/2(

n∑

k=1

∫

E

dk,1(x)p(Tk, x0, x)dx)

+ ε−1(

n∑

k=1

(

∫

E

dk,2(x)
2p(Tk, x0, x)dx)

1/2))

+ 2ε
n∑

k=1

∫

E

1{|g(Tk,·)−ck |<2ε}p(Tk, x0, x)dx

for any ε > 0.

Proof. Let

d̃m,i(x) =
n∑

k=m

(PTm,Tkdk,i)(x),m = 1, . . . , n.

Then by Proposition 25, we have

|c̃m(x) − cm(x)| + |c̄m(x) − cm(x)| � d̃m,1(x) + d̃m,2(x).

Note that
∫

E

(d̃m,1(x) + d̃m,2(x))1{d̃m,1(x)+d̃m,2(x)�2ε}(x)p(Tm, x0, x)dx

�
∫

E

d̃m,1(x)p(Tm, x0, x)dx + (

∫

E

d̃m,2(x)
2p(Tm, x0, x)dx)

1/2

× ((

∫

E

1{d̃m,1(x)�ε}(x)p(Tm, x0, x)dx)
1/2

+ (

∫

E

1{d̃m,2(x)�ε}(x)p(Tm, x0, x)dx)
1/2)

�
∫

E

d̃m,1(x)p(Tm, x0, x)dx + (

∫

E

d̃m,2(x)
2p(Tm, x0, x)dx)

1/2
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× (ε−1/2(

∫

E

d̃m,1(x)p(Tm, x0, x)dx)
1/2

+ ε−1(

∫

E

d̃m,2(x)
2p(Tm, x0, x)dx)

1/2)

Also, note that

∫

E

d̃m,1(x)p(Tm, x0, x)dx �
n∑

k=m

∫

E

dk,1(x)p(Tk, x0, x)dx,

and

(

∫

E

d̃m,2(x)
2p(Tm, x0, x)dx)

1/2 �
n∑

k=m

(

∫

E

dk,2(x)
2p(Tk, x0, x)dx)

1/2.

This and Proposition 26 imply our assertion. �

Now we apply this lemma and the results in the previous section to a
Bermuda derivative.

Let φs,t (x, y) = g(s, x) ∨ y, 0 � s < t � T , x ∈ RN and y ∈ R. Let
c̃m : E → R, m = 1, . . . , n − 1, be given by

c̃m(x) = (Q̃
(L)
Tm,Tm+1

· · · Q̃(L)
Tn−1,Tn

g(Tn, ·))(x).

Then by Theorem 24, we see that for any δ ∈ (0, 1/2), there are �′
L ∈ F ,

L � 1, C > 0 and measurable functions d(L)m,i : E × � → [0,∞), m =
1, . . . , n − 1, i = 1, 2, L � 1, such that

lim
L→∞P(�′

L) = 1,

|c̃m(x)−cm(x)| � dm,1(x)+dm,2(x), x ∈ E, ω ∈ �′
L, m = 1, . . . , n−1, L � 1

and

E[
∫

E

dm,1(x)p(Tm, x0, x)dx] � CL−(1−δ)2 m = 1, . . . , n − 1, L � 1,

and

E[
∫

E

dm,2(x)
2p(Tm, x0, x)dx] � CL−(1−δ)2 m = 1, . . . , n − 1, L � 1.
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Let

�′′
L = {ω ∈ �;

∫

E

dm,1(x)p(Tm, x0, x)dx � L−(1−δ)3 or

∫

E

dm,2(x)
2p(Tm, x0, x)dx � L−(1−δ)3}.

Then we see that

P(� \ �′′
L) � 2CL−(1−δ)2δ, L � 1.

Let �L = �′
L∩�′′

L, L � 1. Then we see that P(�L) → 1, l → ∞. So if we
use these c̃m(x), m = 1, . . . , n − 1, as estimators and use the re-simulation
method, we have

c0(x0) − c̄0(x0)

� n2L−(1−δ)3 + n3L−(1−δ)3/2(ε−1/2L−(1−δ)3/2 + ε−1L−(1−δ)3/2)

+ ε

n∑

k=1

∫

E

1{|g(Tk,·)−ck |<ε}p(Tk, x0, x)dx

for any ε > 0, ω ∈ �L, and L � 1. Suppose that

n−1∑

k=1

∫

E

1{|g(Tk,·)−ck |<ε}p(Tk, x0, x)dx = O(εγ ), ε ↓ 0,

for some γ ∈ (0, 1]. Then letting ε = L−(1−δ)3/(2+γ ), we see that c0(x0) −
c̄0(x0) = O(L−(1−δ)3(1+γ )/(2+γ )) as L → ∞.

Since δ is arbitrary, this proves Theorem 2.
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1. Introduction

The study of the existence and the structure of solutions of optimal con-
trol problems defined on infinite intervals and on sufficiently large inter-
vals has recently been a rapidly growing area of research. See, for example,
[2, 3, 6–10, 13, 14, 16, 18, 22, 23, 25, 26, 29, 31, 36–38, 40, 51, 57, 59]
and the references mentioned therein. These problems arise in engineering
[1, 27, 60], in models of economic growth [4, 11, 12, 17, 24, 30, 35, 39, 42–
44, 51], in infinite discrete models of solid-state physics related to disloca-
tions in one-dimensional crystals [5, 45] and in the theory of thermodynam-
ical equilibrium for materials [15, 28, 32–34]. In this paper we discuss the
structure of solutions of a discrete-time optimal control system describing a
general model of economic dynamics and the structure of solutions of vari-
ational problems with extended-valued integrands. We study an autonomous
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discrete-time control system with a compact metric space of states X. This
control system is described by a bounded upper semicontinuous function
v : X×X → R1 which determines an optimality criterion and by a nonempty
closed set � ⊂ X × X which determines a class of admissible trajectories
(programs). In models of economic growth the set X is the space of states, v
is a utility function and v(xt , xt+1) evaluates consumption at moment t .

We are interested in a turnpike property of the approximate solutions
which is independent of the length of the interval, for all sufficiently large
intervals. To have this property means, roughly speaking, that approximate
solutions of optimal control problems on an interval [0, T ] with given values
y, z at the endpoints 0 and T , corresponding to the pair (v,�), are determined
mainly by the objective function v, and are essentially independent of T , y
and z. Turnpike properties are well known in mathematical economics. The
term was first coined by Samuelson in 1948 (see [43]) where he showed that
an efficient expanding economy would spend most of the time in the vicinity
of a balanced equilibrium path (also called a von Neumann path). This prop-
erty was further investigated for optimal trajectories of models of economic
dynamics (see, for example, [24, 30, 35, 42, 51] and the references men-
tioned there). In the classical turnpike theory the function v has the turnpike
property (TP) if there exists x̄ ∈ X (a turnpike) which satisfies the following
condition:

For each ε > 0 there is a natural number L such that for each integer
T ≥ 2L and each solution {xi}Ti=0 ⊂ X of an optimal control problem corre-
sponding to the pair (v,�), for all i = L, . . . , T −L, the point xi belongs to
an ε-neighborhood of x̄.

Note that L does not depend on T .
In the classical turnpike theory the space X is a compact convex subset of

a finite-dimensional Euclidean space, the set � is convex and the function v

is strictly concave. Under these assumptions the turnpike property can be es-
tablished and the turnpike x̄ is a unique solution of the maximization problem
v(x, x) → max, (x, x) ∈ �.

In this situation it is shown that for each admissible sequence {xt }∞t=0
satisfying (xt , xt+1) ∈ � for all integers t ≥ 0, either the sequence
{∑T−1

t=0 v(xt , xt+1) − T v(x̄, x̄)}∞T=1 is bounded (in this case the sequence
{xt }∞t=0 is called (v)-good) or it diverges to −∞. Moreover, it is also estab-
lished that any (v)-good admissible sequence converges to the turnpike x̄. In
the sequel this property is called as the asymptotic turnpike property.

More recently, it was shown that the turnpike property is a general phe-
nomenon which holds for large classes of variational and optimal control
problems without convexity assumptions [46–49, 51]. For these classes of
problems a turnpike is not necessarily a singleton but may instead be an
nonstationary trajectory (in the discrete time nonautonomous case) or an ab-
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solutely continuous function on the interval [0,∞) (in the continuous time
nonautonomous case) or a compact subset of the space X (in the autonomous
case) [51]. Nevertheless, problems for which the turnpike is a singleton are
of great importance because of the following reasons: there are many models
of economic growth for which a turnpike is a singleton; if a turnpike is a sin-
gleton, then approximate solutions have very simple structure and this is very
important for applications; if a turnpike is a singleton, then it can be easily
calculated as a solution of the problem v(x, x) → max, (x, x) ∈ �.

The results presented in the paper explain when the turnpike property
holds with the turnpike being a singleton. We show that the turnpike property
follows from the asymptotic turnpike property. More precisely, we assume
that any (v)-good admissible trajectory converges to a unique solution x̄ of
the problem v(x, x) → max, (x, x) ∈ � and show that the turnpike property
holds and x̄ is the turnpike. Note that we do not use convexity (concavity)
assumptions.

The paper is organized as follows. In Sect. 2 we describe the class of
discrete-time optimal control problems. For this class of problems we present
turnpike results and show the existence of optimal solutions over infinite hori-
zon. Section 3 contains two auxiliary results. In Sect. 4 we discuss the struc-
ture of solutions of the discrete-time problems in the regions containing end
points. In Sect. 5 we study turnpike properties of approximate solutions of
variational problems with extended-valued integrands. For this class of varia-
tional problems we also show the existence of optimal solutions over infinite
horizon. Section 6 contains two auxiliary propositions. Examples of varia-
tional problems are considered in Sect. 7. In Sect. 8 we discuss the structure
of solutions of the variational problems with extended-valued integrands in
the regions containing end points. In Sect. 9 we show equivalence of opti-
mality criterions used in the literature for our class of variational problems.
A new result on agreeable solutions is presented in Sect. 10. Its proof is given
in Sect. 11.

2. Discrete-Time Problems

Let (X, ρ) be a compact metric space, � be a nonempty closed subset of
X×X and let v : X×X → R1 be a bounded upper semicontinuous function.

A sequence {xt }∞t=0 ⊂ X is called an (�)-program (or just a program if
the set � is understood) if (xt , xt+1) ∈ � for all nonnegative integers t . A
sequence {xt }T2

t=T1
where integers T1, T2 satisfy 0 ≤ T1 < T2 is called an

(�)-program (or just a program if the set � is understood) if (xt , xt+1) ∈ �

for all integers t ∈ [T1, T2 − 1].
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We consider the problems

T−1∑

i=0

v(xi, xi+1) → max, {(xi, xi+1)}T−1
i=0 ⊂ �, x0 = y, xT = z, (P (y,z)

T )

and

T−1∑

i=0

v(xi, xi+1) → max, {(xi, xi+1)}T−1
i=0 ⊂ �, x0 = y, (P (y)

T )

where T ≥ 1 is an integer and the points y, z ∈ X.
Set ‖v‖ = sup{|v(x, y)| : x, y ∈ X}. For each pair of points x, y ∈ X

and each natural number T define

σ(v, T , x) = sup {
T−1∑

i=0

v(xi, xi+1) : {xi}Ti=0 is a program and x0 = x},
(2.1)

σ(v, T , x, y) = sup{
T−1∑

i=0

v(xi, xi+1) :

{xi}Ti=0 is a program and x0 = x, xT = y}, (2.2)

σ(v, T ) = sup{
T−1∑

i=0

v(xi, xi+1) : {xi}Ti=0 is a program}. (2.3)

(Here we use the convention that the supremum of an empty set is −∞).
We suppose that there exist a point x̄ ∈ X and a positive constant c̄ such

that the following assumptions hold.

(A1) (x̄, x̄) is an interior point of � (there exists a positive number ε such
that {(x, y) ∈ X × X : ρ(x, x̄), ρ(y, x̄) ≤ ε} ⊂ �) and the function
v is continuous at the point (x̄, x̄).

(A2) σ(v, T ) ≤ T v(x̄, x̄) + c̄ for all natural numbers T .

Clearly, for each integer T ≥ 1 and each program {xt }Tt=0 we have

T−1∑

t=0

v(xt , xt+1) ≤ σ(v, T ) ≤ T v(x̄, x̄) + c̄. (2.4)

Inequality (2.4) implies the following result.
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Proposition 2.1. For each program {xt }∞t=0 either the sequence

{
T−1∑

t=0

v(xt , xt+1) − T v(x̄, x̄)}∞T=1

is bounded or limT→∞[∑T−1
t=0 v(xt , xt+1) − T v(x̄, x̄)] = −∞.

A program {xt }∞t=0 is called (v)-good if the sequence

{
T−1∑

t=0

v(xt , xt+1) − T v(x̄, x̄)}∞T=1

is bounded.
We suppose that the following assumption holds.

(A3) (the asymptotic turnpike property) For every (v)-good program {xt }∞t=0,

lim
t→∞ ρ(xt , x̄) = 0.

In view of (A3) ‖v‖ > 0. For each positive number M denote by XM the set
of all points x ∈ X for which there exists a program {xt }∞t=0 such that x0 = x

and that for all natural numbers T the following inequality holds:

T−1∑

t=0

v(xt , xt+1) − T v(x̄, x̄) ≥ −M.

It is not difficult to see that ∪{XM : M ∈ (0,∞)} is the set of all points
x ∈ X such that there exists a (v)-good program {xt }∞t=0 satisfying x0 = x.

Let T ≥ 1 be an integer. Denote by YT the set of all points x ∈ X such
that there exists a program {xt }Tt=0 which satisfies x0 = x̄ and xT = x.

The following turnpike result describes the structure of approximate so-
lutions of problem (P

(y)
T ).

Theorem 2.2. Let ε,M be positive numbers. Then there exist a natural num-
ber L and a positive number δ such that for each integer T > 2L and each
program {xt }Tt=0 which satisfies

x0 ∈ XM,

T−1∑

t=0

v(xt , xt+1) ≥ σ(v, T , x0) − δ (2.5)

there exist nonnegative integers τ1, τ2 ≤ L such that ρ(xt , x̄) ≤ ε for all
t = τ1, . . . , T − τ2 and if ρ(x0, x̄) ≤ δ, then τ1 = 0.
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In the sequel we use a notion of an overtaking optimal program intro-
duced in [4, 17, 44].

A program {xt }∞t=0 is called (v)-overtaking optimal if for each program
{yt }∞t=0 satisfying y0 = x0 the inequality

lim sup
T→∞

T−1∑

t=0

[v(yt , yt+1) − v(xt , xt+1)] ≤ 0

holds.
The following result establishes the existence of an overtaking optimal

program.

Theorem 2.3. Assume that x ∈ X and that there exists a (v)-good program
{xt }∞t=0 such that x0 = x. Then there exists an (v)-overtaking optimal pro-
gram {x∗

t }∞t=0 such that x∗
0 = x.

The next theorem is a refinement of Theorem 2.2. According to Theo-
rem 2.2 we have τ2 ≤ L where the constant L depends on M and ε. The next
theorem shows that τ2 ≤ L0 where the constant L0 depends only on ε.

Theorem 2.4. Let ε be positive number. Then there exists a natural number
L0 such that for each positive number M there exist an integer L > L0 and
a positive number δ such that the following assertion holds:

For each integer T > 2L and each program {xt }Tt=0 which satisfies (2.5)
there exist integers τ1 ∈ [0, L], τ2 ∈ [0, L0] such that ρ(xt , x̄) ≤ ε for all
t = τ1, . . . , T − τ2 and if ρ(x0, x̄) ≤ δ, then τ1 = 0.

The following result provides necessary and sufficient conditions for
overtaking optimality.

Theorem 2.5. Let {xt }∞t=0 be a program such that

x0 ∈ ∪{XM : M ∈ (0,∞)}.
Then the program {xt }∞t=0 is (v)-overtaking optimal if and only if the follow-
ing conditions hold:

(i) limt→∞ ρ(xt , x̄) = 0;
(ii) for each natural number T and each program {yt }Tt=0 satisfying y0 = x0,

yT = xT the inequality
∑T−1

t=0 v(yt , yt+1) ≤ ∑T−1
t=0 v(xt , xt+1) holds.

The next two theorems establish uniform convergence of overtaking
optimal programs to x̄.
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Theorem 2.6. Assume that the function v is continuous and let ε be a pos-
itive number. Then there exists a positive number δ such that for each (v)-
overtaking optimal program {xt }∞t=0 satisfying ρ(x0, x̄) ≤ δ the inequality
ρ(xt , x̄) ≤ ε holds for all nonnegative integers t .

Theorem 2.7. Assume that the function v is continuous and let M, ε be
positive numbers. Then there exists an integer L ≥ 1 such that for each
(v)-overtaking optimal program {xt }∞t=0 satisfying x0 ∈ XM the inequality
ρ(xt , x̄) ≤ ε holds for all integers t ≥ L.

Theorems 2.2–2.7 were obtained in [52]. The next two theorems obtained
in [55] describe the structure of problem (P

(y,z)
T ).

Denote by Card(A) the cardinality of the set A.

Theorem 2.8. Let ε,M0,M1 be positive numbers and let L0 be a natural
number. Then there exist a natural number L and a natural number K

such that for each integer T > 2L, each z0 ∈ XM0 and each z1 ∈ YL0 ,
σ(v, T , z0, z1) is finite and for each program {xt }Tt=0 which satisfies

x0 = z1, xT = z2,

T−1∑

t=0

v(xt , xt+1) ≥ σ(v, T , z0, z1)− M1

the following inequality holds:

Card({t ∈ {0, . . . , T } : ρ(xt , x̄) > ε}) ≤ K.

Theorem 2.9. Let ε,M0 be positive numbers and let L0 be a natural number.
Then there exists a natural number L and a positive number δ such that for
each integer T > 2L, each z0 ∈ XM0 and each z1 ∈ YL0 , σ(v, T , z0, z1) is
finite and for each program {xt }Tt=0 which satisfies

x0 = z1, xT = z2,

T−1∑

t=0

v(xt , xt+1) ≥ σ(v, T , z0, z1) − δ

there exist integers τ1, τ2 ∈ [0, L] such that

ρ(xt , x̄) ≤ ε, t = τ1, . . . , T − τ2.

Moreover if ρ(x0, x̄) ≤ δ, then τ1 = 0 and if ρ(xT , x̄) ≤ δ. then τ2 = 0.

Example 2.10. Let (X, ρ) be a compact metric space,� be a nonempty closed
subset of X × X, x̄ ∈ X, (x̄, x̄) be an interior point of �, π : X → R1

be a continuous function, α be a real number and L : X × X → [0,∞)
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be a continuous function such that for each (x, y) ∈ X × X the equality
L(x, y) = 0 holds if and only if (x, y) = (x̄, x̄). Set

v(x, y) = α − L(x, y) + π(x) − π(y)

for all x, y ∈ X. It is not difficult to see that (A1), (A2) and (A3) hold.

Example 2.11. Let X be a compact convex subset of the Euclidean space Rn

with the norm | · | induced by the scalar product 〈·, ·〉, let ρ(x, y) = |x − y|,
x, y ∈ Rn, � be a nonempty closed subset of X × X, a point x̄ ∈ X, (x̄, x̄)
be an interior point of � and let v : X × X → R1 be a strictly concave
continuous function such that

v(x̄, x̄) = sup{v(z, z) : z ∈ X and (z, z) ∈ �}.
We assume that there exists a positive constant r̄ such that

{(x, y) ∈ Rn × Rn : |x − x̄|, |y − x̄| ≤ r̄} ⊂ �.

It is a well-know fact of convex analysis that there exists a point l ∈ Rn such
that

v(x, y) ≤ v(x̄, x̄) + 〈l, x − y〉
for any point (x, y) ∈ X × X. Set

L(x, y) = v(x̄, x̄) + 〈l, x − y〉 − v(x, y)

for all (x, y) ∈ X×X. It is not difficult to see that this example is a particular
case of Example 2.10. Therefore (A1)–(A3) hold.

Examples 2.10 and 2.11 were considered in [52].

3. Two Auxiliary Results

For each integer T ≥ 1 denote by ȲT the set of all points x ∈ X for which
there exists a program {xt }Tt=0 such that x0 = x and xT = x̄.

It is easy to see that

ȲT ⊂ ȲT+1 for all natural numbers T .

By assumption (A1), if T is a natural number and a point x ∈ ȲT , then there
exists a (v)-good program {xt }∞t=0 which satisfies x0 = x. Assumptions (A1)
and (A3) imply that if a program {xt }∞t=0 is (v)-good, then there exists an
integer T ≥ 1 such that x0 ∈ ȲT . The boundedness of v implies the following
result.
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Proposition 3.1. Let T be a natural number. Then there exists a positive num-
ber M such that ȲT ⊂ XM .

The next result was obtained in [52].

Proposition 3.2. Let M be positive number. Then there exists an integer T ≥
1 such that the inclusion XM ⊂ ȲT holds.

In view of assumption (A1), there exists a number r̄ ∈ (0, 1) such that

{(x, y) ∈ X × X : ρ(x, x̄), ρ(y, x̄) ≤ r̄} ⊂ �.

In view of the inclusion above for each pair of points x, y ∈ X such that

ρ(x, x̄), ρ(y, x̄) ≤ r̄

and each natural number T , the value σ(v, x, y, T ) is finite.

4. Structure of Solutions in the Regions Containing
End Points

Assume that X is a compact convex subset of the n-dimensional Euclidean
space Rn with the norm | · | induced by the scalar product 〈·, ·〉, � is a
nonempty closed convex subset of X × X and that v : X × X → R1 is a
continuous strictly concave function such that

v(αz1 + (1 − α)z2) > αv(z1) + (1 − α)v(z2)

∀α ∈ (0, 1),∀z1, z2 ∈ X × X such that z1 �= z2.

Put ρ(x, y) = |x−y| for all x, y ∈ X. We assume that x̄ ∈ X, r̄ ∈ (0, 1) and
that

v(x̄, x̄) = sup{v(z, z) : z ∈ X and (z, z) ∈ �)},
{(x, y) ∈ Rn × Rn : |x − x̄|, |y − x̄| ≤ 2r̄} ⊂ �.

We have mentioned (see Example 2.11) that there is l ∈ Rn such that

v(x, y) ≤ v(x̄, x̄) + 〈l, x − y〉 for all (x, y) ∈ X × X.

Set
L(x, y) = v(x̄, x̄) + 〈l, x − y〉 − v(x, y), (x, y) ∈ X × X.

It is clear that the inequality L(x, y) ≥ 0 holds for all points x, y ∈ X. It
was explained in Sect. 2 that assumptions (A1)–(A3) hold. Therefore The-
orems 2.2–2.7 hold for the function v. Since the set � is convex and the
function v is strictly concave Theorem 2.3 implies the following result.
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Theorem 4.1. Assume that x ∈ X and that there exists a (v)-good program
{xt }∞t=0 such that x0 = x. Then there exists a unique (v)-overtaking program
{x∗

t }∞t=0 such that x∗
0 = x.

Let z ∈ X be given and let there exist a (v)-good program {xt }∞t=0 ⊂ X

such that x0 = z. Denote by {x(v,z)t }∞t=0 a unique (v)-overtaking optimal

program satisfying x(v,z)0 = z.

The following theorem which describes the structure of approximate so-
lutions in the region containing the left end point of the interval [0, T ] was
obtained in [52].

Theorem 4.2. Let M, ε > 0 be given and L0 ≥ 1 be an integer. Then there
exists a positive number δ and an integer L1 > L0 such that for each natural
number T ≥ L1 and each program {zt }Tt=0 which satisfies

z0 ∈ XM,

T−1∑

t=0

v(zt , zt+1) ≥ σ(v, T , z0) − δ

the inequality |zt − x
(v,z0)
t | ≤ ε holds for all integers t = 0, . . . , L0.

It follows from Theorem 2.4 applied with ε = r̄/4 that there exists a
natural number L0 such that the following property holds:

For each positive number M there exist an integer L > L0 and a positive
number δ such that if a natural number T > 2L and if a program {xt }Tt=0
satisfies

x0 ∈ XM,

T−1∑

t=0

v(xt , xt+1) ≥ σ(v, T , x0) − δ,

then
|xt − x̄| ≤ r̄/4 for all integers t = L, . . . , T − L0.

Define the functions L̄, v̄ : X ×X → R1 and the set �̄ by

v̄(x, y) = v(y, x), L̄(x, y) = L(y, x), x, y ∈ X,

�̄ = {(x, y) ∈ X ×X : (y, x) ∈ �}.
It is easy to see that �̄ is a nonempty closed convex subset of X × X, v̄ :
X × X → R1 is a concave function,

{(ξ1, ξ2) ∈ Rn × Rn : |ξi − x̄| ≤ 2r̄ , i = 1, 2} ⊂ �̄,

v̄(x̄, x̄) = sup{v̄(z, z) : z ∈ X and (z, z) ∈ �̄},
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v̄(αz1 + (1 − α)z2) > αv̄(z1) + (1 − α)v̄(z2) for each z1, z2 ∈ X × X

satisfying z1 �= z2 and each α ∈ (0, 1).

Evidently, for all points (x, y) ∈ X ×X, we have

v̄(x, y) ≤ v̄(x̄, x̄) + 〈−l, x − y〉,
L̄(x, y) = v̄(x̄, x̄) + 〈−l, x − y〉 − v̄(x, y).

It is not difficult to see that the assumptions (A1)–(A3) hold for the function
v̄ and the set �̄ and that Theorems 2.2–2.7, 4.1 and 4.2 hold for v̄ and �̄.

Denote by X∗ the set of all points x ∈ X for which there exists an (�̄)-
program {xt }L0+1

t=0 such that

x0 = x, xL0+1 = x̄.

It is clear that X∗ is a closed and convex set.
In view of Theorem 4.1 for any point x ∈ X∗ there exists a unique (v̄)-

overtaking optimal (�̄)-program {Λt(x)}∞t=0 such that Λ0(x) = x. For any
point x ∈ X∗ put

π(x) = lim
T→∞

T−1∑

t=0

[v̄(x̄, x̄) − v̄(Λt (x),Λt+1(x))]

= lim
T→∞[

T−1∑

t=0

L̄(Λt (x),Λt+1(x)) + 〈l, x − ΛT (x)〉]

=
∞∑

t=0

L̄(Λt (x),Λt+1(x)) + 〈l, x − x̄〉.

It is not difficult to show that π(x) is finite for all points x ∈ X∗.
In order to study the structure of approximate solutions of the problems

(P
(y)
T ) in the regions [T − L, T ] (see the definition of the turnpike property)

we need the following auxiliary results obtained in [52].

Proposition 4.3. An (�̄)-program {xt }∞t=0 is (v̄)-good if and only if

∞∑

t=0

L̄(xt , xt+1) < ∞.

Proposition 4.4. Let x ∈ X∗ and let an (�̄)-program {xt }∞t=0 be (v̄)-good
and satisfy x0 = x. Then

∑∞
t=0 L̄(xt , xt+1) + 〈l, x − x̄〉 ≥ π(x).

Proposition 4.5. The function π : X∗ → R1 is lower semicontinuous.
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Proposition 4.6. Let points y, z ∈ X∗ satisfy y �= z and a number α ∈ (0, 1).
Then π(αy + (1 − α)z) < απ(y) + (1 − α)π(z).

Since the function π : X∗ → R1 is lower semicontinuous and strictly
convex it possesses a unique point of minimum which will be denoted by x∗.
Thus

π(x∗) < π(x) for all points x ∈ X∗ \ {x∗}.
The next theorem which describes the structure of approximate solutions

{xt }Tt=0 of the problems (P (y)
T ) in the region containing the right end point of

the interval [0, T ] was obtained in [52]. It shows that this structure depends
neither on x0 nor T .

Theorem 4.7. Let M, ε be positive numbers and let L1 ≥ 1 be an integer.
Then there exist a positive number δ and an integer L2 > L1 such that if an
integer T > 2L2 and if an (�)-program {xt }Tt=0 satisfies

x0 ∈ XM,

T−1∑

t=0

v(xt , xt+1) ≥ σ(v, T , x0) − δ,

then |xT−t − Λt(x∗)| ≤ ε for all integers t = 0, . . . , L1.

5. Variational Problems with Extended-Valued Integrands

We study turnpike properties of approximate solutions of an autonomous
variational problem with a lower semicontinuous integrand f : Rn × Rn →
R1 ∪ {∞}, where Rn is the n-dimensional Euclidean space. More precisely,
we consider the following variational problems

∫ T

0
f (v(t), v′(t))dt → min, (P1)

v : [0, T ] → Rn is an absolutely continuous (a.c.) function such that

v(0) = x, v(T ) = y

and ∫ T

0
f (v(t), v′(t))dt → min, (P2)

v : [0, T ] → Rn is an a.c. function such that v(0) = x,

where x, y ∈ Rn.
We denote by mes(E) the Lebesgue measure of a Lebesgue measurable

set E ⊂ R1, denote by | · | the Euclidean norm of the space Rn and by 〈·, ·〉
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the inner product of Rn. For each function f : X → R1 ∪ {∞}, where X is a
nonempty, set

dom(f ) = {x ∈ X : f (x) < ∞}.
Let a be a real positive number, ψ : [0,∞) → [0,∞) be an increasing

function such that
lim
t→∞ψ(t) = ∞

and let f : Rn × Rn → R1 ∪ {∞} be a lower semicontinuous function such
that the set

dom(f ) = {(x, y) ∈ Rn × Rn : f (x, y) < ∞}
is nonempty, convex and closed and that

f (x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn.

For each pair of points x, y ∈ Rn and each positive number T define

σ(f, T , x) = inf{
∫ T

0
f (v(t), v′(t))dt : v : [0, T ] → Rn

is an absolutely continuous (a.c.) function satisfying v(0) = x},

σ(f, T , x, y) = inf{
∫ T

0
f (v(t), v′(t))dt : v : [0, T ] → Rn

is an a.c. function satisfying v(0) = x, v(T ) = y},

σ(f, T ) = inf{
∫ T

0
f (v(t), v′(t))dt : v : [0, T ] → Rn is an a.c. function}.

(Here we assume that infimum over an empty set is infinity.)
We suppose that there exists a point x̄ ∈ Rn such that

f (x̄, 0) ≤ f (x, 0) for each x ∈ Rn (5.1)

and that the following assumptions hold:

(A1) (x̄, 0) is an interior point of the set dom(f ) and the function f is con-
tinuous at the point (x̄, 0);

(A2) for each positive number M there exists a positive number cM such that

σ(f, T , x) ≥ Tf (x̄, 0) − cM

for each point x ∈ Rn satisfying |x| ≤ M and each real number T > 0;
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(A3) for each point x ∈ Rn the function f (x, ·) : Rn → R1∪{∞} is convex.
Assumption (A2) implies that for each a.c. function v : [0,∞) → Rn

the function

T →
∫ T

0
f (v(t), v′(t))dt − Tf (x̄, 0), T ∈ (0,∞)

is bounded from below.

It should be mentioned that inequality (5.1) and assumptions (A1)–(A3)
are common in the literature and hold for many infinite horizon optimal con-
trol problems [13, 51]. In particular, we need inequality (5.1) and assump-
tion (A2) in the cases when the problems (P1) and (P2) possess the turnpike
property and the point x̄ is its turnpike. Assumption (A2) means that the con-
stant function v̄(t) = x̄, t ∈ [0,∞) is an approximate solution of the infinite
horizon variational problem with the integrand f related to the problems (P1)

and (P2).
We say that an a.c. function v : [0,∞) → Rn is (f )-good [13, 51] if

sup{|
∫ T

0
f (v(t), v′(t))dt − Tf (x̄, 0)| : T ∈ (0,∞)} < ∞.

The following result was obtained in [53].

Proposition 5.1. Let v : [0,∞) → Rn be an a.c. function. Then either the
function v is (f )-good or

∫ T

0
f (v(t), v′(t))dt − Tf (x̄, 0) → ∞ as T → ∞.

Moreover, if the function v is (f )-good, then sup{|v(t)| : t ∈ [0,∞)} < ∞.

For each pair of numbers T1 ∈ R1, T2 > T1 and each a.c. function v :
[T1, T2] → Rn put

If (T1, T2, v) =
∫ T2

T1

f (v(t), v′(t))dt.

For each positive number M denote by XM the set of all points x ∈ Rn

such that |x| ≤ M and there exists an a.c. function v : [0,∞) → Rn which
satisfies

v(0) = x, If (0, T , v) − Tf (x̄, 0) ≤ M for each T ∈ (0,∞).

It is clear that ∪{XM : M ∈ (0,∞)} is the set of all points x ∈ X

for which there exists an (f )-good function v : [0,∞) → Rn such that
v(0) = x.
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We suppose that the following assumption holds:

(A4) (the asymptotic turnpike property) for each (f )-good function v :
[0,∞) → Rn, limt→∞ |v(t)− x̄| = 0.

The following turnpike result for the problem (P2) was established
in [53].

Theorem 5.2. Let ε,M be positive numbers. Then there exist an integer L ≥
1 and a real number δ > 0 such that for each real number T > 2L and each
a.c. function v : [0, T ] → Rn which satisfies

v(0) ∈ XM and If (0, T , v) ≤ σ(f, T , v(0)) + δ

there exist a pair of numbers τ1 ∈ [0, L] and τ2 ∈ [T − L, T ] such that

|v(t)− x̄| ≤ ε for all t ∈ [τ1, τ2]
and if |v(0) − x̄| ≤ δ, then τ1 = 0.

In the sequel we use a notion of an overtaking optimal function [13, 51].
An a.c. function v : [0,∞) → Rn is called (f )-overtaking optimal if for

each a.c. function u : [0,∞) → Rn satisfying u(0) = v(0) the inequality

lim sup
T→∞

[If (0, T , v) − If (0, T , u)] ≤ 0

holds.
The following result which establishes the existence of an overtaking op-

timal function was obtained in [53].

Theorem 5.3. Assume that x ∈ Rn and that there exists an (f )-good function
v : [0,∞) → Rn satisfying v(0) = x. Then there exists an (f )-overtaking
optimal function u∗ : [0,∞) → Rn such that u∗(0) = x.

Denote by Card(A) the cardinality of the set A.
Let M be a positive number. Denote by YM the set of all points x ∈ Rn for

which there exist a number T ∈ (0,M] and an a.c. function v : [0, T ] → Rn

such that v(0) = x̄, v(T ) = x and If (0, T , v) ≤ M .
The following turnpike results for the problems (P1) were established in

[58].

Theorem 5.4. Let ε,M0,M1,M2 > 0. Then there exist an integerQ ≥ 1 and
a positive number L such that for each number T > L, each point z0 ∈ XM0

and each point z1 ∈ YM1 , the value σ(f, T , z0, z1) is finite and for each a.c.
function v : [0, T ] → Rn which satisfies

v(0) = z0, v(T ) = z1, I
f (0, T , v) ≤ σ(f, T , z0, z1) + M2
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there exists a finite sequence of closed intervals [ai, bi] ⊂ [0, T ], i =
1, . . . , q such that

q ≤ Q, bi − ai ≤ L, i = 1, . . . , q,

|v(t)− x̄| ≤ ε, t ∈ [0, T ] \ ∪q

i=1[ai, bi].
Theorem 5.5. Let ε,M0,M1 > 0. Then there exist numbers L, δ > 0 such
that for each number T > 2L, each point z0 ∈ XM0 and each point z1 ∈ YM1 ,
the value σ(v, T , z0, z1) is finite and for each a.c. function v : [0, T ] → Rn

which satisfies

v(0) = z0, v(T ) = z1, I
f (0, T , v) ≤ σ(f, T , z0, z1) + δ

there exists a pair of numbers τ1 ∈ [0, L], τ2 ∈ [T − L, T ] such that

|v(t)− x̄| ≤ ε, t ∈ [τ1, τ2].
Moreover if |v(0)− x̄| ≤ δ, then τ1 = 0 and if |v(T )− x̄| ≤ δ. then τ2 = T .

6. Two Propositions

In the proofs of the results stated in the previous section the following two
propositions play an important role.

Proposition 6.1. Let M0,M1 > 0. Then there exists a positive number M2
such that for each positive number T and each a.c. function v : [0, T ] → Rn

which satisfies

|v(0)| ≤ M0, I
f (0, T , v) ≤ Tf (x̄, 0) + M1

the following inequality holds:

|v(t)| ≤ M2 for all t ∈ [0, T ].
Proposition 6.2. Let ε be a positive number. Then there exists a positive num-
ber δ such that if an a.c. function v : [0, 1] → Rn satisfies |v(0) − x̄|,
|v(1) − x̄| ≤ δ, then

If (0, 1, v) ≥ f (x̄, 0) − ε.
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7. Examples

Example 7.1. Let a0 be a positive number, ψ0 : [0,∞) → [0,∞) be an
increasing function satisfying

lim
t→∞ψ0(t) = ∞

and let L : Rn ×Rn → [0,∞] be a lower semicontinuous function such that

dom(L) := {(x, y) ∈ Rn × Rn : L(x, y) < ∞}
is nonempty, convex, closed set and

L(x, y) ≥ max{ψ0(|x|), ψ0(|y|)|y|} − a0 for each x, y ∈ Rn.

Assume that for each point x ∈ Rn the function L(x, ·) : Rn → R1 ∪ {∞} is
convex and that there exists a point x̄ ∈ Rn such that

L(x, y) = 0 if and only if (x, y) = (x̄, 0),

(x̄, 0) is an interior point of dom(L) and that L is continuous at the point
(x̄, 0).

Let μ ∈ R1 and l ∈ Rn. Define

f (x, y) = L(x, y) + μ + 〈l, y〉, x, y ∈ Rn.

We showed in [53] that all the assumptions introduced in Sect. 5 hold for f .

Example 7.2. Let a be a positive number, ψ : [0,∞) → [0,∞) be an in-
creasing function such that limt→∞ ψ(t) = ∞ and let f : Rn × Rn →
R1 ∪ {∞} be a convex lower semicontinuous function such that the set
dom(f ) is nonempty, convex and closed and that

f (x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn.

We suppose that there exists a point x̄ ∈ Rn such that

f (x̄, 0) ≤ f (x, 0) for each x ∈ Rn

and that (x̄, 0) is an interior point of the set dom(f ). It is known that the
function f is continuous at the point (x̄, 0). It is well-known fact of convex
analysis [41] that there exists a point l ∈ Rn such that

f (x, y) ≥ f (x̄, 0) + 〈l, y〉
for each x, y ∈ Rn.
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We assume that for each pair of points

(x1, y1), (x2, y2) ∈ dom(f )

satisfying (x1, y1) �= (x2, y2) and each number α ∈ (0, 1), we have

f (α(x1, y1) + (1 − α)(x2, y2)) < αf (x1, y1) + (1 − α)f (x2, y2).

Put
L(x, y) = f (x, y) − f (x̄, 0) − 〈l, y〉 for each x, y ∈ Rn.

It is not difficult to see that there exist a positive number a0 and an increasing
function ψ0 : [0,∞) → [0,∞) such that

L(x, y) ≥ max{ψ0(|x|), ψ0(|y|)|y|} − a0 for all x, y ∈ Rn.

It is easy to see that L is a convex, lower semicontinuous function and that the
equality L(x, y) = 0 holds if and only if (x, y) = (x̄, 0). Now it is easy to see
that our example is a particular case of Example 7.1 and all the assumptions
introduced in Sect. 5 hold for f .

8. Behavior of Solutions in the Regions Containing
End Points

We continue to use the notation and definitions introduced in Sect. 5 and to
study the structure of approximate solutions of problems (P2). Our goal is to
study their structure in the regions containing end points.

Let a be a positive number, ψ : [0,∞) → [0,∞) be an increasing
function which satisfies

lim
t→∞ψ(t) = ∞

and let f : Rn×Rn → R1 ∪{∞} be a convex lower semicontinuous function
such that the set dom(f ) is nonempty and closed and that

f (x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn.

We suppose that there exists a point x̄ ∈ Rn such that the following
assumption holds:

(A5) (x̄, 0) is an interior point of the set dom(f ) and

f (x̄, 0) ≤ f (x, 0) for all x ∈ Rn.
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They are well-known facts from convex analysis [41] that the function f
is continuous at the point (x̄, 0) and that there exits a point l ∈ Rn such that

f (x, y) ≥ f (x̄, 0) + 〈l, y〉 for each x, y ∈ Rn.

We also assume that for each pair of points (x1, y1), (x2, y2) ∈ dom(f )

such that (x1, y1) �= (x2, y2) and each number α ∈ (0, 1) the inequality

f (α(x1, y1)+ (1 − α)(x2, y2)) < αf (x1, y1)+ (1 − α)f (x2, y2)

holds. This means that the function f is strictly convex. The integrand f was
considered in Example 7.2. It was shown there that assumptions (A1)–(A4)
and all the results of Sect. 5 hold for the integrand f .

In our study we use an integrand L defined by

L(x, y) = f (x, y) − f (x̄, 0) − 〈l, y〉 for all x, y ∈ Rn.

We suppose that the following assumption holds.

(A6) For each pair of positive numbers M, ε there exists a positive number
γ such that for each pair of points (ξ1, ξ2), (η1, η2) ∈ dom (f ) which
satisfies the inequalities |ξi |, |ηi | ≤ M , i = 1, 2 and |ξ1 − ξ2| ≥ ε, we
have

2−1f (ξ1, η1) + 2−1f (ξ2, η2) − f (2−1(ξ1 + ξ2), 2−1(η1 + η2)) ≥ γ.

Since the restriction of the function f to the set dom(f ) is strictly convex
(see assumption (A6)) Theorem 5.3 implies the following result.

Theorem 8.1. Assume that x ∈ Rn and that there exists an (f )-good function
v : [0,∞) → Rn satisfying v(0) = x. Then there exists a unique (f )-
overtaking optimal function v∗ : [0,∞) → Rn such that v∗(0) = x.

Let z ∈ Rn and let there exist an (f )-good function v : [0,∞) → Rn

such that v(0) = z. Denote by Y (f,z) : [0,∞) → Rn a unique (f )-overtaking
optimal function satisfying Y (f,z)(0) = z which exists by Theorem 8.1.

The following theorem obtained in [54] describes the structure of approx-
imate solutions of variational problems in the regions containing the left end
point.

Theorem 8.2. Let M, ε > 0 be real numbers and let L0 ≥ 1 be an integer.
Then there exist a positive number δ and an integer L1 > L0 such that for
each number T ≥ L1, each point z ∈ XM and each a.c. function v : [0, T ] →
Rn which satisfies

v(0) = z, If (0, T , v) ≤ σ(f, T , z) + δ
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the inequality
|v(t)− Y (f,z)(t)| ≤ ε, t ∈ [0, L0]

holds.

We intend to describe the structure of approximate solutions of variational
problems in the regions containing the right end point. In order to meet this
goal define the functions f̄ , L̄ : Rn × Rn → R1 ∪ {∞} by

f̄ (x, y) = f (x,−y), L̄(x, y) = L(x,−y) for all x, y ∈ Rn.

It is not difficult to see that

dom(f̄ ) = {(x, y) ∈ Rn × Rn : (x,−y) ∈ dom(f )},
dom(f̄ ) is nonempty closed convex subset of Rn × Rn,

f̄ (x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn × Rn,

the point (x̄, 0) is an interior point of the set dom(f̄ ) and the function f̄ is
convex and lower semicontinuous.

It is not difficult to see that for each pair of points x, y ∈ Rn,

f̄ (x, y) = f (x,−y) ≥ f (x̄, 0) + 〈l,−y〉 = f̄ (x̄, 0) + 〈−l, y〉,
L̄(x, y) = L(x,−y) = f (x,−y) − f (x̄, 0) − 〈l,−y〉

= f̄ (x, y) − f̄ (x̄, 0) − 〈−l, y〉
and that for each pair of points (x1, y1), (x2, y2) ∈ dom(f̄ ) such that
(x1, y1) �= (x2, y2) and each number α ∈ (0, 1) we have

f̄ (α(x1, y1) + (1 − α)(x2, y2)) < αf̄ (x1, y1) + (1 − α)f̄ (x2, y2).

Therefore all the assumptions posed in this section for the function f also
hold for the function f̄ . Also all the results of this section and of Sect. 5 stated
for the function f are valid for the function f̄ . In particular Theorems 5.2
and 5.3 hold for the integrand f̄ .

Assumption (A6) imply that the following assumption holds.

(A7) For each pair of numbers M, ε > 0 there exists a positive number γ
such that for each pair of points (ξ1, ξ2), (η1, η2) ∈ dom(f̄ ) which
satisfies

|ξi |, |ηi | ≤ M, i = 1, 2 and |ξ1 − ξ2| ≥ ε

the inequality

2−1f̄ (ξ1, η1) + 2−1f̄ (ξ2, η2) − f̄ (2−1(ξ1 + ξ2), 2−1(η1 + η2)) ≥ γ0

holds.
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It is easy now to see that Theorems 8.1 and 8.2 hold for the integrand f̄ .
For each positive number M denote by X̄M the set of all points x ∈ Rn

such that |x| ≤ M and that there exists an a.c. function v : [0,∞) → Rn

which satisfies

I f̄ (0, T , v) − T f̄ (x̄, 0) ≤ M for each T ∈ (0,∞).

Set
X̄∗ = ∪{X̄M : M ∈ (0,∞)}.

Since the function f̄ is convex we conclude that the set X̄M is convex for all
positive numbers M . It is not difficult to show that for each positive number
M the set X̄M is closed.

By Theorem 8.1, applied to the integrand f̄ , for each point x ∈ X̄∗ there
exists a unique (f̄ )-overtaking optimal function Λ(x) : [0,∞) → Rn such
that Λ(x)(0) = x. Proposition 5.1 implies that Λ(x) is (f̄ )-good function for
any point x ∈ X̄∗. Therefore, for each point x ∈ X̄∗,

lim
t→∞ |Λ(x)(t)− x̄| = 0.

For each point x ∈ X̄∗ set

π(x) = lim
T→∞[I f̄ (0, T ,Λ(x)) − T f̄ (x̄, 0)].

Let x ∈ X̄∗ be given. Then

π(x) = lim
T→∞[

∫ T

0
L̄(Λ(x)(t), (Λ(x))′(t))dt −

∫ T

0
〈l, (Λ(x))′(t)〉dt]

= lim
T→∞

∫ T

0
L̄(Λ(x)(t), (Λ(x))′(t))dt − lim

T→∞〈l, Λ(x)(T )− x〉

=
∫ ∞

0
L̄(Λ(x)(t), (Λ(x))′(t))dt − 〈l, x̄ − x〉.

Therefore the value π(x) is well-defined. Since the function Λ(x) is (f̄ )-
good, Proposition 5.1 implies that π(x) is finite for each x ∈ X̄∗.

The function π plays an important role in our study of the structure of
approximate solutions of variational problems in the regions containing the
right end point. We show that approximate solutions of the problem (P2) are
arbitrary close to the function Λ(x∗)(T − t) in a region which contains the
right end point T , where x∗ is a unique point of minimum of the function π .

The following result was obtained in [54].
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Proposition 8.3. 1. For each positive number M the function π : X̄M →
R1 is lower semicontinuous.

2. For all pairs of points y, z ∈ X̄∗ satisfying y �= z and each number
α ∈ (0, 1),

π(αy + (1 − α)z) < απ(y) + (1 − α)π(z).

3. π(x̄) = 0.
4. There exists a number M̃ > |x̄| such that π(x) ≥ 2 for each point x ∈
X̄∗ \ X̄

M̃
.

Let a positive number M̃ be as guaranteed by Proposition 8.3. By Propo-
sition 8.3, there exists a unique point x∗ ∈ X̄

M̃
such that

π(x∗) < π(x) for all points x ∈ X̄
M̃

\ {x∗}.

By Proposition 8.3 if x ∈ X̄∗ \ X̄
M̃

, then

π(x) ≥ 2 > π(x̄) ≥ π(x∗).

The following theorem obtained in [54] describes the structure of approx-
imate solutions of variational problems in the regions containing the right end
point.

Theorem 8.4. Let M, ε > 0 be real numbers and let L1 ≥ 1 be an integer.
Then there exist a positive number δ and a natural number L2 > L1 such
that if a number T > 2L2 and if an a.c. function v : [0, T ] → Rn satisfies

v(0) ∈ XM and If (0, T , v) ≤ σ(f, T , v(0)) + δ,

then
|v(T − t)− Λ(x∗)(t)| ≤ ε for all t ∈ [0, L1].

9. Optimal Solutions for Infinite Horizon Problems

In this section which is based on [56] we study the structure of optimal solu-
tions of infinite horizon autonomous variational problems with a lower semi-
continuous integrand f : Rn × Rn → R1 ∪ {∞} introduced in Sect. 5. We
also show that all the optimality notions used in the literature are equivalent
for the problems with the integrand f . We use the notation and definitions
introduced in Sect. 5.
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Let a be a positive number, ψ : [0,∞) → [0,∞) be an increasing
function such that

lim
t→∞ψ(t) = ∞

and let f : Rn × Rn → R1 ∪ {∞} be a lower semicontinuous function such
that the set dom(f ) is nonempty convex and closed and that

f (x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn.

We suppose that there exists a point x̄ ∈ Rn such that

f (x̄, 0) ≤ f (x, 0) for each x ∈ Rn

and that assumptions (A1)–(A4) introduced in Sect. 5 hold.
We use the notion of an overtaking optimal function introduced in Sect. 5.

The following two optimality notions are also used in the infinite horizon
optimal control.

An a.c. function v : [0,∞) → Rn is called (f )-weakly optimal [11, 51]
if for each a.c. function u : [0,∞) → Rn satisfying u(0) = v(0), we have

lim inf
T→∞ [If (0, T , v) − If (0, T , u)] ≤ 0.

An a.c. function v : [0,∞) → Rn is called (f )-minimal [5, 51] if for
each pair of numbers T1 ≥ 0, each T2 > T1 and each a.c. function u :
[T1, T2] → Rn satisfying u(Ti) = v(Ti), i = 1, 2, we have

∫ T2

T1

f (v(t), v′(t))dt ≤
∫ T2

T1

f (u(t), u′(t))dt.

The following theorem obtained in [56] shows that for the integrand con-
sidered in the section all the three optimality notions introduced before are
equivalent.

Theorem 9.1. Assume that x ∈ Rn and that there exists an (f )-good function
ṽ : [0,∞) → Rn satisfying ṽ(0) = x. Let v : [0,∞) → Rn be an a.c.
function such that v(0) = x. Then the following conditions are equivalent:

(i) the function v is (f )-overtaking optimal; (ii) the function v is (f )-weakly
optimal; (iii) the function v is (f )-good and (f )-minimal; (iv) the function v
is (f )-minimal and limt→∞ v(t) = x̄; (v) the function v is (f )-minimal and
lim inft→∞ |v(t) − x̄| = 0.

The following two theorems obtained in [56] describe the asymptotic be-
havior of overtaking optimal functions.
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Theorem 9.2. Let ε be a positive number. Then there exists a positive number
δ such that:

(i) For each point x ∈ Rn satisfying |x − x̄| ≤ δ there exists an (f )-
overtaking optimal and (f )-good function v : [0,∞) → Rn such that
v(0) = x.

(ii) If an (f )-overtaking optimal function v : [0,∞) → Rn satisfies |v(0)−
x̄| ≤ δ, then |v(t)− x̄| ≤ ε for all numbers t ∈ [0,∞).

Theorem 9.3. Let ε,M be positive numbers. Then there exists a number a
positive number L such that for each point x ∈ XM and each (f )-overtaking
optimal function v : [0,∞) → Rn satisfying v(0) = x the following inequal-
ity holds:

|v(t)− x̄| ≤ ε for all t ∈ [L,∞).

The next theorem obtained in [56] establishes a non-self-intersection
property of overtaking optimal solutions analogous to the property estab-
lished in [34, 50] for variational problems with finite-valued integrands.

Theorem 9.4. Assume that v : [0,∞) → Rn is an (f )-good (f )-overtaking
optimal function and that 0 ≤ t1 < t2 satisfy v(t1) = v(t2). Then v(t) = x̄

for all numbers t ≥ t1.

10. Agreeable Solutions

We use the notation, definitions and assumptions introduced in Sect. 5. In
particular we assume that assumptions (A1)–(A4) hold.

An a.c. function v∗ : [0,∞) → Rn is called (f )-agreeable [19–21] if for
any T0 > 0 and any ε > 0 there exists a number Tε > T0 such that for any
number T ≥ Tε there exists an a.c. function v : [0, T ] → Rn which satisfies

v(t) = v∗(t), t ∈ [0, T0],
I f (0, T , v) ≤ σ(f, T , v∗(0)) + ε.

We will prove the following result.

Theorem 10.1. Let v∗ : [0,∞) → Rn be an a.c. function and let ṽ : [0,∞)

be an (f )-good function such that v∗(0) = ṽ(0). Then the following proper-
ties are equivalent:

(i) the function v∗ is (f )-agreeable; (ii) the function v∗ is (f )-minimal and

lim
t→∞ |v(t)− x̄| = 0.
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Theorem 10.1 is proved in the next section.
It is easy to see that Theorems 9.1 and 10.1 imply the following result.

Theorem 10.2. Assume that x ∈ Rn and that there exists an (f )-good func-
tion ṽ : [0,∞) → Rn satisfying ṽ(0) = x. Let v : [0,∞) → Rn be an a.c.
function such that v(0) = x. Then the following conditions are equivalent:

(i) the function v is (f )-overtaking optimal; (ii) the function v is (f )-weakly
optimal; (iii) the function v is (f )-good and (f )-minimal; (iv) the function v
is (f )-minimal and limt→∞ v(t) = x̄; (v) the function v is (f )-minimal and
lim inft→∞ |v(t) − x̄| = 0; (vi) the function v is (f )-agreeable.

11. Proof of Theorem 10.1

Let us show that property (i) implies property (ii). Assume that property (i)
holds. We claim that the function v∗ is (f )-minimal.

Assume the contrary. Then there exist S0 > 0 and an a.c. function u :
[0, S0] → Rn such that

u(0) = v∗(0), u(S0) = v∗(S0), (11.1)

If (0, S0, u) < If (0, S0, v∗).

Fix a positive number

Δ < If (0, S0, v∗) − If (0, S0, u). (11.2)

Since the function v∗ is (f )-agreeable there exists a number T1 > S0 such
that the following property holds:

(P1) for any T ≥ T1 there exists an a.c. function v : [0, T ] → Rn such
that

v(t) = v∗(t), t ∈ [0, S0], (11.3)

If (0, T , v) ≤ σ(f, T , v∗(0)) + Δ/2.

By property (P1) there exists an a.c. function v : [0, T1] → Rn such
that (11.3) holds and

If (0, T1, v) ≤ σ(f, T1, v∗(0)) + Δ/2. (11.4)

It follows from (11.1) and (11.3) that there exists an a.c. function z :
[0, T1] → Rn such that

z(t) = u(t), t ∈ [0, S0], z(t) = v(t), t ∈ (S0, T1]. (11.5)
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In view of (11.1)–(11.5),

0 ≤ If (0, T1, z) − σ(f, T1, v∗(0)) ≤ If (0, T1, z) − If (0, T1, v) + Δ/2

= If (0, S0, u) − If (0, S0, v) + Δ/2

< If (0, S0, v∗) − Δ − If (0, S0, v) + Δ/2 = −Δ/2,

a contradiction. The contradiction we have reached proves that the function
v∗ is (f )-minimal.

Let us show that
lim
t→∞ |v∗(t)− x̄| = 0.

Let ε > 0. Since the function ṽ is (f )-good there exists a constant M > 0
such that

If (0, T , ṽ) ≤ Tf (x̄, 0) + M for all T > 0. (11.6)

By (11.6) and the equality v∗(0) = ṽ(0),

v∗(0) ∈ XM. (11.7)

In view of Theorem 5.2, there exist an integer L ≥ 1 and a number δ > 0
such that the following property holds:

(P2) for each number T > 2L and each a.c. function v : [0, T ] → Rn

which satisfies

v(0) ∈ XM and If (0, T , v) ≤ σ(f, T , v(0)) + δ

we have
|v(t)− x̄| ≤ ε for all t ∈ [L, T − L].

Let a number
S > 2L. (11.8)

Since v∗ is (f )-agreeable there exists Tδ > S such that the following property
holds:
(P3) for any T ≥ Tδ there exists an a.c. function v : [0, T ] → Rn which
satisfies

v(t) = v∗(t), t ∈ [0, S], (11.9)

If (0, T , v) ≤ σ(f, T , v∗(0)) + δ. (11.10)

Let T ≥ Tδ and let an a.c. function v : [0, T ] → Rn be as guaranteed by
(P3). Thus (11.9) and (11.10) hold.

It follows from (11.7)–(11.10) and property (P2),

|v(t)− x̄| ≤ ε for all t ∈ [L, T − L].
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Together with (11.8) and (11.9) this implies that

|v∗(t)− x̄| ≤ ε for all t ∈ [L, S − L].
Since the inequality above holds for any S > 2L we have

|v∗(t)− x̄| ≤ ε for all t ≥ L.

Thus
lim
t→∞ |v∗(t)− x̄| = 0

and we showed that property (ii) holds.
Assume that the function v∗ is (f )-minimal and that

lim
t→∞ |v∗(t)− x̄| = 0.

We claim that the function v∗ is (f )-agreeable. By Theorem 9.1 the function
v∗ is (f )-good and there exists a number M > 0 such that

|v∗(0)| < M, (11.11)

|If (0, T , v∗) − Tf (x̄, 0)| < M for all T > 0. (11.12)

Let T0 > 0 and ε > 0. By Proposition 6.2 there exists a positive number
ε0 < ε such that the following property holds:
(P4) for each function v : [0, 1] → Rn satisfying

|v(0) − x̄|, |v(1) − x̄| ≤ ε0,

we have
If (0, 1, v) ≥ f (x̄, 0) − ε/8.

In view of (A1) there exists a number ε1 ∈ (0, ε0) such that the following
property holds:
(P5)

{(z, y) ∈ Rn × Rn : |z − x̄| ≤ 4ε1, |y| ≤ 4ε1} ⊂ dom(f ),

|f (z, y) − f (x̄, 0)| ≤ ε/8 for each (y, z) ∈ Rn × Rn

satisfying |x̄ − z| ≤ 4ε1, |y| ≤ 4ε1.

In view of (A4) there exists L0 > 0 such that

|v∗(t)− x̄| ≤ ε1 for all t ≥ L0. (11.13)
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By Theorem 5.2 there exist an integer L1 ≥ 1 and a number δ ∈ (0, ε/4)
such that the following property holds:
(P6) for each number T > 2L1 and each a.c. function v : [0, T ] → Rn which
satisfies

v(0) ∈ XM and If (0, T , v) ≤ σ(f, T , v(0)) + δ

we have
|v(t)− x̄| ≤ ε1 for all t ∈ [L1, T − L1].

Fix
Tε > 2L1 + 2L0 + T0 + 4. (11.14)

Let a number T ≥ Tε . By (11.12) and (11.14), there exists an a.c. function
v : [0, T ] → Rn which satisfies

v(0) = v∗(0), (11.15)

If (0, T , v) ≤ σ(f, T , v∗(0)) + δ. (11.16)

It follows from (11.12), (11.14), (11.15), (11.16) and (P6) that

|v(t)− x̄| ≤ ε1 for all t ∈ [L1, T − L1]. (11.17)

By (11.14), (11.17) and (P4),

If (T − L1 − 2, T − L1 − 1, v) ≥ f (x̄, 0) − ε/8. (11.18)

Define an a.c. function v̂ : [0, T − L1 − 1] → Rn by

v̂(t) = v(t), t ∈ [0, T − L1 − 2],
v̂(t) = v(T −L1 −2)+ (t− (T −L1 −2))[v∗(T −L1 −1)−v(T −L1 −2)],

t ∈ (T − L1 − 2, T − L1 − 1]. (11.19)

By (11.15) and (11.19),

v̂(0) = v∗(0), v̂(T − L1 − 1) = v∗(T − L1 − 1). (11.20)

Since the function v∗ is (f )-minimal (11.20) implies that

If (0, T − L1 − 1, v∗) ≤ If (0, T − L1 − 1, v̂). (11.21)
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It follows from (11.13), (11.14), (11.17) and (11.19) that for all t ∈ (T −
L1 − 2, T − L1 − 1),

v̂′(t) = v∗(T − L1 − 1) − v(T − L1 − 2), (11.22)

|v̂′(t)| ≤ |v∗(T − L1 − 1) − x̄| + |x̄ − v(T − L1 − 2)] ≤ 2ε1, (11.23)

|v̂(t) − x̄| ≤ |v(T − L1 − 2) − x̄| + |v̂′(t)| ≤ 3ε1. (11.24)

In view of (11.23), (11.24) and (P5), for all t ∈ (T − L1 − 2, T − L1 − 1),

|f (v̂(t), v̂′(t))− f (x̄, 0)| ≤ ε/8

and
If (T − L1 − 2, T − L1 − 1, v̂) ≤ f (x̄, 0) + ε/8. (11.25)

In view of (11.19), (11.21) and (11.25),

If (0, T − L1 − 1, v∗) ≤ If (0, T − L1 − 2, v) + f (x̄, 0) + ε/8

= If (0, T − L1 − 1, v) − If (T − L1 − 2, T − L1 − 1, v) + f (x̄, 0) + ε/8

≤ If (0, T − L1 − 1, v) + ε/4. (11.26)

By (11.14), (11.17) and (P4),

If (T − L1 − 1, T − L1, v) ≥ f (x̄, 0) − ε/8. (11.27)

Define an a.c. function u : [0, T − L1] → Rn by

u(t) = v∗(t), t ∈ [0, T − L1 − 1],
u(t) = v∗(T −L1 − 1)+ (t − (T −L1 − 1))[v(T −L1)− v∗(T −L1 − 1)],

t ∈ (T − L1 − 1, T − L1]. (11.28)

By (11.28) and (11.15),

u(0) = v(0), u(T − L1) = v(T − L1). (11.29)

Set u(t) = v(t), t ∈ (T − L1, T ]. (11.30)
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It follows from (11.13), (11.14), (11.17) and (11.28) that for all t ∈ (T −
L1 − 1, T − L1),

u′(t) = v(T − L1) − v∗(T − L1 − 1),

|u′(t)| ≤ |v(T − L1) − x̄| + |x̄ − v∗(T − L1 − 1)] ≤ 2ε1, (11.31)

|u(t) − x̄| ≤ |v∗(T − L1 − 1)− x̄| + |v(T − L1) − v∗(T − L1 − 1)| ≤ 3ε1.

(11.32)

In view of (11.31), (11.32) and (P5), for all t ∈ (T − L1 − 1, T − L1),

|f (u(t), u′(t))− f (x̄, 0)| ≤ ε/8

and
If (T − L1 − 1, T − L1, u) ≤ f (x̄, 0) + ε/8. (11.33)

In view of (11.16), (11.26), (11.27), (11.28), (11.30) and (11.33),

If (0, T , u) = If (0, T − L1, u) + If (T − L1, T , v)

≤ If (0, T − L1 − 1, v∗) + f (x̄, 0) + ε/8 + If (T − L1, T , v)

≤ If (0, T − L1 − 1, v) + ε/4 + If (T − L1 − 1, T − L1, v)

+ε/4 + If (T − L1, T , v)

= If (0, T , v) + ε/2 ≤ σ(f, T , v∗(0)) + ε/4/ + ε/2

and
If (0, T , u) ≤ σ(f, T , v∗(0)) + ε. (11.34)

Thus in view of (11.28) for any T ≥ Tε there exists an a.c. function u :
[0, T ] → Rn such that u(t) = v∗(t), t ∈ [0, T0] and (11.34) holds. Thus the
function v∗ is (f )-agreeable. This completes the proof of Theorem 10.1.
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Abstract. Let g and u be C1-class real-valued functions that satisfy the Lagrange
multiplier condition Du = λg and Du �= 0. In this paper, we show that u is quasi-
concave if and only if g satisfies an inequality which is related to the Bordered Hessian
condition even if both of u and g are C1 rather than C2.
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1. Introduction

Let C be an open and convex subset of Rn and g : C → R
n \ {0} be a C1-

function. Hosoya [2] shows that under integrability condition of g, for any
x ∈ C there exist an open (and convex, if necessary) neighborhood U of x
and a couple of functions u : U → R and λ : U → R such that

(a) u is C1-class,
(b) λ is positive and continuous, and furthermore,
(c) Du(y) = λ(y)g(y) for any y ∈ U .

However, we have to admit that it is an incomplete result for the theory of
consumers in the following sense. Usually, g and u are interpreted as an in-
verse demand function and a utility function, respectively. Hence, it is re-
quired that every y ∈ U is a maximum point of u with the budget constraint
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determined by the price g(y) and the income g(y) · y. That is, each y ∈ U

must be a solution of the following problem:

max u(z)

subject to. g(y) · z ≤ g(y) · y, (1)

z ∈ U.

We say that u has the property A if it satisfies the above condition.
In this paper, we assume that two functions u, λ : U → R with conditions

(a), (b) and (c) exist, where U is an open and convex subset U of C. Our main
task is to show the following results: (1) u satisfies the property A if and only
if u is quasi-concave,1 and (2) u is quasi-concave if and only if

wTDg(y)w ≤ 0

for any y ∈ U and any w ∈ R
n such that w · g(y) = 0.

Note that if u is C2, the result of (2) is an easy consequence of the result
of Otani [3]. Indeed, Otani [3] shows that u is quasi-concave if and only if

wTD2u(y)w ≤ 0

for any y ∈ U and any w ∈ R
n such that w · Du(y) = 0.2 Under conditions

(a), (b) and (c), w · Du(y) = 0 if and only if w · g(y) = 0. Also, under
conditions (a), (b) and (c), λ is C1 if u is C2 and thus,

wTD2u(y)w = wT [g(y)Dλ(y) + λ(y)Dg(y)]w
= λ(y)wT Dg(y)w

for any w ∈ R
n such that w · g(y) = 0. Hence, (2) holds in this case. There-

fore, our main purpose is to extend this result for the case u is C1 rather than
C2, provided that the integrability condition is fulfilled.3

In Sect. 2, we present a rigorous statement of our theorem. The proof of
theorem is in Sect. 3.

1 A real-valued function f defined on the convex set is said to be quasi-concave if
every upper contour set {x|f (x) ≥ a} is convex.
2 This condition is known as the Bordered Hessian condition.
3 Debreu [1] introduces an example of C1-class function g such that it satisfies the
integrability condition and there is no C2-function u such that Du = λg for some
C1-function λ. Hence, our extension is meaningful.
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2. Main Results

Let n ≥ 2, U ⊂ R
n be open and convex, and the functions g : U →

R
n \ {0}, λ : U → R++ and u : U → R be given. We assume both g

and u are C1 and,
Du(x) = λ(x)g(x),

for any x ∈ U .

Theorem. The following three claims are equivalent.

(1) u has property A.
(2) u is quasi-concave.
(3) wTDg(x)w ≤ 0 for any x ∈ U and w ∈ R

n such that w · g(x) = 0.

3. Proof

3.1. (2) Implies (1)

Suppose that u is quasi-concave and fix x ∈ U . Then, Du(x) �= 0 and
Du(x) = λ(x)g(x), that is, the Lagrange multiplier condition holds at x.
Hence, u has property A and thus (2) implies (1). �

3.2. (1) Implies (3)

Suppose (1) holds and w · g(x) = 0. Define x(t) = x + tw. Then,

g(x) · x(t) = g(x) · x
for any t . Let c(t) = u(x(t)). Since (1) holds and U is open, the function c

can be defined on [−ε, ε] for sufficiently small ε > 0, and

c(t) ≤ c(0)

for any t ∈ [−ε, ε]. Note that c′(t) = Du(x(t)) · w. By the mean value
theorem, there exists a sequence (tm) such that tm ↓ 0 and c′(tm) ≤ 0. Hence,
we have the following evaluation:

0 ≥ lim sup
m→∞

Du(x(tm)) · w
tm

= lim sup
m→∞

λ(x(tm))g(x(tm)) · w
tm

≥ M lim sup
m→∞

g(x(tm)) · w
tm
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= M lim sup
m→∞

g(x(tm)) − g(x(0))

tm
· w

= MwTDg(x)w,

where M = maxt∈[−ε,ε] λ(x(t)) > 0. Consequently, we have wTDg(x)w ≤
0, and thus, (3) holds. �

3.3. (3) Implies (2)

Suppose (3) holds and (2) does not hold. Then, there exists x, y ∈ U and
z ∈ [x, y] such that u(z) < min{u(x), u(y)}. Define a number s∗ by

s∗ = max[arg min
t∈[0,1] u((1 − t)x + ty)].

By the assumption concerning x and y, we have 0 �= s∗ �= 1. Let x(t) =
(1 − t)x + ty, w = x(s∗) and Du(w) = p. Then p �= 0 and thus ‖p‖ �= 0.

Consider the following function:

f (a, b) = u(w + a(y − x) + bp) = u(x(s∗ + a) + bp).

Then, f is C1 around (0, 0), f (0, 0) = u(w) and fb(0, 0) = ‖p‖2 > 0, and
thus, by the implicit function theorem, there exists ε1 > 0, ε2 > 0 and a C1

function b : [−ε1, ε1] → R such that b(0) = 0 and f (a, b) = u(w) if and
only if b = b(a) for any (a, b) ∈ [−ε1, ε1] × [−ε2, ε2]. Now, since

b′(a) = −fa(a, b(a))

fb(a, b(a))

= −Du(x(s∗ + a) + b(a)p) · (y − x)

Du(x(s∗ + a) + b(a)p) · p ,

we have

b′(0) = −Du(w) · (y − x)

Du(w) · p = 0

by the first-order condition of the following minimization problem:

min
t∈[0,1] u(x(t)).

Meanwhile, since f (a, b(a)) = u(w), we have

Du(x(s∗ + a) + b(a)p) · [b′(a)p + (y − x)] = 0,
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and thus,
g(x(s∗ + a) + b(a)p) · [b′(a)p + (y − x)] = 0

for any a ∈ [−ε1, ε1].
Clearly, if a = 0, then Du(x(s∗ + a) + b(a)p) · p = ‖p‖2 > 0. Hence,

if a > 0 is sufficiently small, then Du(x(s∗ + a)+ b(a)p) · p > 0. For such
a > 0,

0 = lim sup
a′↓a

1

a′ − a
{Du(x(s∗ + a) + b(a)p) · [b′(a′)p + (y − x)]

−Du(x(s∗ + a) + b(a)p) · [b′(a′)p + (y − x)]}
= lim sup

a′↓a
1

a′ − a
{Du(x(s∗ + a) + b(a)p) · [b′(a′)p + (y − x)]

−λ(x(s∗ + a) + b(a)p)g(x(s∗ + a) + b(a)p) · [b′(a′)p + (y − x)]}
= lim sup

a′↓a
1

a′ − a
{Du(x(s∗ + a) + b(a)p) · [(b′(a′)p + (y − x))

−(b′(a)p + (y − x))] + λ(x(s∗ + a) + b(a)p)[g(x(s∗ + a′) + b(a′)p)
−g(x(s∗ + a) + b(a)p)] · [b′(a′)p + (y − x)]}

= Du(x(s∗ + a) + b(a)) · p × lim sup
a′↓a

b′(a′) − b′(a)
a′ − a

+λ(x(s∗ + a) + b(a)p)[b′(a)p + (y − x)]T Dg(x(s∗ + a) + b(a)p)

[b′(a)p + (y − x)],
where the second term of the right-hand side is non-positive from (3). Hence,
we have

lim sup
a′↓a

b′(a′)− b′(a)
a′ − a

≥ 0.

Similarly, we can show that

lim sup
a′↑a

b′(a′) − b′(a)
a′ − a

≥ 0

for sufficiently small a > 0.
Now, fix any such a > 0 and define h(θ) = b′(θ)a−b′(a)θ . Then h(a) =

h(0) = 0, and thus, there exists θ∗ ∈]0, a[ such that either h(θ) ≤ h(θ∗) for
any θ ∈ [0, a] or h(θ) ≥ h(θ∗) for any θ ∈ [0, a]. If the former holds, then

0 ≥ lim sup
θ↓θ∗

h(θ)− h(θ∗)
θ − θ∗

= a lim sup
θ↓θ∗

b′(θ) − b′(θ∗)
θ − θ∗ − b′(a),
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and thus, we have b′(a) ≥ 0. We can show b′(a) ≥ 0 in the latter case
similarly. Therefore, we have b′(a) ≥ 0 for any sufficiently small a > 0.
Since b(0) = 0, we have b(a) ≥ 0 for any sufficiently small a > 0.

Now, since
fb(0, 0) = ‖p‖2 > 0,

there exists a neighborhood V of (0, 0) such that fb(a, b) > 0 for any
(a, b) ∈ V . If a > 0 is sufficiently small, then (a, b) ∈ V for any
b ∈ [0, b(a)]. Therefore,

Du(x(s∗ + a) + bp) · p = fb(a, b) > 0,

and thus,
u(x(s∗ + a)) ≤ u(x(s∗ + a) + b(a)p) = u(w),

which contradicts the definition of s∗. Hence, we conclude that (3) implies
(2). �
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