
Chapter 7
Nuclear Level Calculation

The nuclear level P, CP-odd effects arise in the form of P, CP-odd nuclear moments,
induced by P, CP-odd hadron level interactions. The leading P, CP-odd nuclear
moment is of course the nuclear electric dipole moment (EDM), which enhances
the contribution of P, CP-odd pion-nucleon interaction via many-body effects. The
nuclear EDM is measurable in light nuclear systems such as the deuteron and the
3He nucleus, with recent experimental developments using storage rings [1–4]. As
the experimental prospects show a very high sensitivity of O(10−29)e cm, it is of
primary interest to evaluate the nuclear EDM for the deuteron and 3He nucleus due
to the P, CP-odd hadron level processes.

For atomic systems, the situation is different. There the nuclear EDM is actually
screened by atomic electron rearrangement, and only a minor effect due to the finite
size of the nucleus can contribute to the atomic EDM. This phenomenon first pointed
by Schiff [5], leads to the suppression of the nuclear P, CP-odd effects in atoms. The
relevant P, CP-odd nuclear moment for the atomic EDM is then the nuclear Schiff
moment. In this discussion, we are also interested in the atomic EDMs of heavy nuclei
where, in spite of the suppression due to Schiff’s screening, the P, CP-odd hadronic
effects are expected to be sufficiently enhanced via nuclear many-body physics.

To evaluate these P, CP-odd nuclear moments, the calculation of the nuclear
wave functions are needed. As nuclei are made of protons and neutrons, the nuclear
level calculation involves difficulties due to the many-body problem [7, 8]. For
light nuclear systems, ab initio methods can be used. For heavy nuclei, however,
the ab initio methods cannot be applied, due to the calculational cost increasing
exponentially in nucleon number. For heavy nuclear systems of interest (129Xe,
199Hg, 211Rn and 225Ra), we will use the results from the sophisticated mean-field
approach.

In this chapter, we will first see the ab initio calculations of the EDMs of light
nuclei (deuteron and 3He).Wewill then review in detail the screening of the P,CP-odd
nuclear EDM in atomic systempointed bySchiff and the formula of the nuclear Schiff
moment as important P, CP-oddmechanism contributing to the atomic EDM.Wewill
next present the derivation of the leading P, CP-odd nuclear moments (the nuclear
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EDM, Schiff moment and magnetic quadrupole moment) for heavy nuclei within a
simple model. After this simple calculation, a sophisticated mean-field approach is
reviewed, and its results for the evaluation of the nuclear Schiff moments of heavy
nuclei (129Xe, 199Hg, 211Rn and 225Ra) are presented. We finally summarize the
nuclear level P, CP-odd moments for all nuclei relevant to the discussions in this
chapter. Note that the electric charge e is defined as e = |e| > 0 in this chapter, in
contrast to the previous chapters.

7.1 Ab Initio Calculations: Deuteron and 3He EDM

Let us first present the ab initio calculations of the EDMs in the deuteron and the 3He
nucleus. The motivation for the study of these light nuclei is as follows. Recently,
new experimental techniques of EDMmeasurements usingmagnetic storage ring are
in preparation [1–4], and the EDMof light nuclei is themain focus. The EDMof light
nuclei has the following advantages. The first advantage is that the system can be
measured with high precision. The projected experiment of BNL is aimed at reaching
the sensitivity of O(10−29)e cm for the deuteron EDM. The second advantage is the
absence of electrons which suppress the P, CP-odd nuclear effect through Schiff’s
screening phenomenon. These arguments indicate that the detection of EDMs in light
nuclei has more significant sensitivity than the experiments on measuring hadron
level P and CP violations. Although the small number of nucleons in the system, the
EDM of light nuclei is actually a very competitive probe of new physics. Here we
present the calculation of the deuteron EDM [6] and 3He EDM [9].

The calculation of the deuteron EDM was first done by Khriplovich and Korkin
with old strong potential [10]. A more complete analysis was made by Liu and
Timmermans using three phenomenological nuclear potentials [6]: Argonne v18
[11], Nijmegen models Reid93 and Nijm II [12]. The dependence of the P, CP-odd
pion-nucleon, ρ-meson-nucleon, η-meson-nucleon and ω-meson-nucleon interac-
tions were studied. They found the dominance of the isovector pion-nucleon cou-
pling for P, CP-odd interactionswhile all P, CP-odd hadronic interactions have similar
magnitudes. The contribution to the deuteron EDM is composed of (a) single nucleon
contribution (d(Nedm)

A ), (b) polarization contribution (d(pol)
A ), (c) contribution from

exchanged current (in this thesis, we neglect its effect). In the case of the deuteron,
the single nucleon contribution is simply given by the sum of proton and neutron
EDMs (d(Nedm)

d = dn + dp), since this is the allowed isoscalar combination. The
polarization contribution is determined by the spin/isospin selection rules as

d(pol)
d =

A=2∑

i=1

〈
d̃ : j = 1, jz = 1

∣∣ ei zi
∣∣d̃ : j = 1, jz = 1

〉

= e√
6
〈d||r ||d ′〉 · 1

2
〈I = 0|τ z

1 − τ z
2 |I = 1, Iz = 0〉 = e√

6
〈d||r ||d ′〉 (7.1)
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where z ≡ z1 − z2. Here |d̃ : j = 1, jz = 1〉 is the deuteron ground state wave
function polarized in the z-axis, with |d〉 and |d ′〉 its respective P, CP-even and P, CP-
odd components. In the second line, we have factored out the isospin space, with the
expression 〈d||r ||d ′〉 denoting the reduced matrix element, and the second element
is the matrix element of the isospin part with τ z

1 and τ z
2 the generator of the isospin

SU (2) group acting on the first and the second nucleons of the deuteron, respectively.
The center of mass frame

∑A
i ri = 0 was assumed. The wave functions |d〉 and |d ′〉

were calculated by using the following P, CP-odd nucleon-nucleon (N-N) potential:

W (ra − rb) = − gπ N N

8πm p

[(
ḡ(0)
π N N τa · τb + ḡ(2)

π N N (τa · τb − 3τ z
a τ z

b )
)

(σ a − σ b)

+ ḡ(1)
π N N (τ z

a σ a − τ z
b σ b)

]
· ∇a

e−mπ rab

rab
(7.2)

where a and b denote the indices of the two interacting nucleons, and rab ≡ |ra −rb|.
The contribution from the exchanged current is suppressed compared to the polar-
ization contribution with the P, CP-odd pion-nucleon couplings of the same order of
magnitude [6]. If we neglect the contribution from ω, ρ and η-mesons and consider
the pion exchange as the leading contribution, we obtain the following expression
for the deuteron EDM:

dd = dn + dp − 0.015gπ N N g−(1)
π N N × 10−13e cm. (7.3)

The sign for isovector coupling was reversed from the result of Ref. [6] due to the
difference of convention.

The calculation of the 3He EDM was done by Stetcu et al. The 3He EDM is also
given by the single nucleon, polarization and exchanged current contributions. In
this work, the exchanged current was neglected, following the small result of the
deuteron EDM [6]. The single nucleon contribution is

d(Nedm)
He = 〈He|

A=3∑

i=1

1

2

[
(dp + dn) + (dp − dn)τ z

i

]
σ z

i |He〉 (7.4)

where |He〉 is the ground state of 3He nucleus within the P and CP conserving
hamiltonian. The contribution from the polarization can be written in the second
order of perturbation as

d(pol)
He ≈ 〈He|

A=3∑

i=1

e

2
(1 + τ z

i )ri

∑

n 	=0

1

E0 − En
|n〉〈n|W |He〉 (7.5)

where n are the opposite parity states, En their corresponding energy, and W the P,
CP-odd interactions of Eq. (7.2).
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The evaluation of the 3He wave functions was done in the ab initio no-core shell
model approach [13, 14] with truncated harmonic oscillator basis. The nuclear forces
used in the calculation are the Argonne v18 [11], the nonlocal Bonn [15] potentials,
with Coulomb interaction and isospin violation taken into account, and two-, three-
body interactions derived from EFT [16–19].

The calculation of the dependence of the EDM of the 3He nucleus on P, CP-odd
pion-nucleon couplings gives the following result [9]:

dHe =gπ N N

(
−0.015ḡ(0)

π N N − 0.023ḡ(1)
π N N + 0.036ḡ(2)

π N N

)
× 10−13e cm

− 0.04dp + 0.90dn (7.6)

where we have not explicitly added the contribution of the P, CP-odd pion-nucleon
interactions coming from the single nucleon EDM (pion-loop contribution). Here
again, the sign for isoscalar and isovector couplings was reversed from the result of
Ref. [9] due to the difference of convention. This result shows that the 3He EDM
has higher sensitivity than the deuteron and nucleon EDMs to the P, CP-odd pion-
nucleon interactions. All measurements of EDMs of nucleon, deuteron and 3He are
complementary.

7.2 Schiff’s Screening Phenomenon and the Nuclear Schiff
Moment

We now move to the evaluation of nuclear P and CP violations for heavy nuclei in
atoms, where nuclear EDM is shielded by atomic electrons. The screening phenom-
enon of the intrinsic EDM of components in atomic systemwas first shown by Schiff
[5]. Actually, the theorem of Schiff states that the EDM of non-relativistic point-like
particle in a neutral electrostatically bound system is completely shielded. The effect
of the nuclear EDM in atomic systems is therefore suppressed. Schematically, the
screening of the nuclear EDM can be described as shown in Fig. 7.1.

Let us see this phenomenon in detail. The atomic EDM receives contribution
from the sum of the intrinsic EDMs of its components, and the polarization of the
system induced by the mixing of opposite parity states due to P, CP-odd interac-
tions (〈s1/2|HP/ T/ |p1/2〉). The atomic EDM (and more generally the EDM of neutral
electrostatically bound systems) can then be expressed as

datom =
∑

i

〈Ψ |diγ0σ i |Ψ 〉 + 2
∑

M

∑

i

〈Ψ |Qi eri |M〉〈M |HP/ T/ |Ψ 〉
E0 − EM

(7.7)

where the first term refers to the sum of the intrinsic EDMs of the components
and the second term to the contribution of the polarization arising from P, CP-odd
interactions. Ψ is the atomic state of interest, unperturbed by P, CP-odd interactions,
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Fig. 7.1 Schematic representations of the bare nuclear EDM (left side) and the nuclear EDM
screened in atom (right side). The effect of nuclear EDM is suppressed by the internal rearrangement
of the atomic systems

di the intrinsic EDM of the atomic components (electrons and nucleus), Qi and
ri are the charges and coordinates of each component, M the intermediate atomic
states (with opposite parity against |Ψ 〉) and HP/ T/ the P, CP-odd interaction. γ0 and
σ i ≡ γ0γ5γ i are Dirac matrices acting independently on each component labeled
by i .

The contribution from the first term, i.e. the sum of the EDMs of components
can be splitted into the non-relativistic and relativistic parts. Here we write down its
hamiltonian:

Hcomp = −
∑

i

diγ0σ i · Eext = −
∑

i

diσ i · Eext −
∑

i

di (γ0 − 1)σ i · Eext (7.8)

where Eext is the external electric field acting on the component EDMs. We will
now see that the non-relativistic contribution (first term) will be cancelled by the
polarization contribution. The EDMs of the components interact with the internal
electric field, thus generatingmixing between opposite parity states. The correspond-
ing (non-relativistic) EDM interaction which polarizes the system can be written as

HP/ T/ = −
∑

i

di · Eint =
∑

i

1

Qi e
di · ∇iU (r) = i

∑

i

1

Qi e
[pi , H0] · di . (7.9)

where di ≡ diσ i . U and H0 are respectively the potential energy and the P, CP-even
hamiltonian of the atomic system. This equation states that the charge of the system
will be polarized proportional to EDMs of components. The contribution from the
polarization is then

|Ψ ′〉 = |Ψ 〉 +
∑

m

|m〉〈m|HP/ T/|Ψ 〉
E0 − Em

=
(
1 + i

∑

i

1

Qi e
di · pi

)
|Ψ 〉 . (7.10)
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The EDM induced by intrinsic electron EDM is then

〈Ψ ′|
∑

i

Qi eri |Ψ ′〉 = 〈Ψ |
(
1 − i

∑

k

1

Qke
dk · pk

)
∑

i

Qi eri

⎛

⎝1 + i
∑

j

1

Q j e
d j · p j

⎞

⎠ |Ψ 〉

= 〈Ψ | i

[
∑

l

Qi eri ,
∑

k

1

Qke
dk · pk

]
|Ψ 〉

= −〈Ψ |
∑

i

di |Ψ 〉 . (7.11)

We see that the polarization of the system completely cancels the direct contribution
given by the sum of EDMs of non-relativistic constituents with intrinsic EDM. This
cancellation of the non-relativistic EDM contribution by the internal rearrangement
is called the Schiff’s theorem [5]. This conclusion is very important since the EDM
of the nucleus which can be treated as non-relativistic in atomic systems is shielded,
so that its effect is largely suppressed. We should also emphasize that the above
cancellation applies only for the non-relativistic contribution of the EDM of the con-
stituents. The EDM of relativistic particles actually gives an additional contribution
to the polarization of the atomic system (additional effective interaction to HP/ T/ ),
which is not cancelled by the direct contribution. The P, CP-odd electron-nucleon
interactions also contribute to the atomic polarization (with no direct contribution),
thus giving a non-vanishing EDM to the atom. The effects of relativistic electrons
and P, CP-odd electron-nucleon interactions are discussed in the next chapter.

Let us see Schiff’s screening phenomenon in the atomic system with a finite size
nucleus having an EDM [5, 20]. The hamiltonian of the neutral atomic system with
Z electrons is given by

H =
Z∑

i=1

[
Ki −

∫
e2ρ(r)d3r

|Ri − r| − eRi · Eext

]
+

Z∑

i>k

e2

|Ri − Rk | − dA · Eext (7.12)

where Ki and Ri are the kinetic energy and the coordinate of the atomic electrons,
respectively, and the nuclear charge density ρ(r) is normalized with

∫
ρ(r)d3r = Z .

The nuclear EDM is given by dA ≡ ∫
erρ(r)d3r . Let us now add to this hamiltonian

the following additional auxiliary term

Vpol = dA · Eext − 1

eZ

Z∑

i=1

dA∇i

∫
eρ(r)d3r

|Ri − r| (7.13)

with ∇i ≡ ∂/∂ Ri . This new interaction can be expressed by the following commu-
tation relation

i

Zeme

Z∑

i=1

[ pi , H ] · dA = dA · Eext − 1

eZ

Z∑

i=1

dA∇i

∫
eρ(r)d3r

|Ri − r| = Vpol (7.14)
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where we have used the fact that the total electron momentum
∑

i pi commutes

with the Coulomb interaction between electrons
∑Z

i>k
e2

|Ri −Rk | . The addition of this
auxiliary term does not affect the observation in the linear approximation in dA, since
〈Ψ |[ pi , H ]|Ψ 〉 ∼ (E0− E0) = 0. This term is just the effective interaction given by
the polarization of the atomic system.We thus obtain the following total hamiltonian
shifted by Vpol :

H̃ = H + Vpol =
Z∑

i=1

[Ki − eϕ(Ri ) − eRi · Eext] +
Z∑

i>k

e2

|Ri − Rk | (7.15)

with the electrostatic potential given by

ϕ(R) =
∫

eρ(r)
|R − r |d3r + 1

Z
(dA · ∇)

∫
ρ(r)

|R − r |d3r . (7.16)

It is interesting to observe that Eq. (7.15) does not depend on the direct interaction
between the nuclear EDM and the external electric field Eext. This is the screening
phenomenon pointed by Schiff [5].

Let us expand the nuclear potential in r/R (multipole expansion). To the first
order in r/R, the nuclear electrostatic potential of Eq. (7.16) can be written as

−
∫

eρ(r)
(

r · ∇ 1

R

)
d3r + 1

Z
(dA · ∇)

1

R

∫
ρ(r)d3r = 0 . (7.17)

This cancellationmeans that the EDMof the nucleus is totally screened if the nucleus
is point-like. This is also the consequence of Schiff’s screening phenomenon. The
shielding of the nuclear EDM contribution is however not complete if we take the
finite size of the nucleus into account. This fact manifests itself through the electro-
static potential of the nucleus by the non-zero contribution of the third order terms
in r/R:

ϕ(3) = −1

6

∫
eρ(r)rir j rkd3r∇i∇ j∇k

1

R
+ 1

2Z
(dA · ∇) ∇i∇ j

1

R

∫
ρ(r)rir j d

3r .

(7.18)
Tensors rir j rk and rir j are reducible, and their decompositions can be written as
follows:

rir j rk =
[

rir j rk − 1

5
r2(riδ jk + r jδik + rkδi j )

]
+ 1

5
r2(riδ jk + r jδik + rkδi j )

(7.19)

rir j =
[

rir j − 1

3
r2δi j

]
+ 1

3
r2δi j . (7.20)
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It is thus possible to decompose the third order ϕ(3) to the rank-3 octupole potential
[first terms of Eqs. (7.19) and (7.20)] and the rank-1 "Schiff" potential [second terms
of Eqs. (7.19) and (7.20)]. The electric octupole moment is a P, CP-odd moment,
so it can contribute to the atomic EDM through higher nuclear spin state. In this
discussion, the nuclear states in question are spin 1/2 states, so we omit the octupole
potential. By subtituting the first term of Eqs. (7.19) and (7.20) to Eq. (7.18), we
obtain the following rank-1 Schiff potential:

ϕSchiff = −SA · ∇
(

∇2 1

R

)
= 4πSA · ∇δ3(R) (7.21)

where SA is defined as

SA ≡ 1

10

[∫
eρ(r)rr2d3r − 5

3
dA

1

Z

∫
ρ(r)r2d3r

]
. (7.22)

This is the nuclear Schiff moment. The Schiff moment operator is thus written as

Ŝ = 1

10

Z∑

p=1

e

(
r2p − 5

3
〈r2〉ch

)
rp (7.23)

where 〈r2〉ch ≡ 1
Z

∫
r2ρ(r)d3r is the average (squared) charge radius of the nucleus,

and rp the coordinate operator of the nuclear proton. The above Schiff moment
operator satisfies SA = 〈ΨA| Ŝ |ΨA〉 with ΨA the nuclear state vector. Note that the
Schiff potential (7.21) acts on the atomic electron states, whereas the Schiff operator
(7.23) operates in the nuclear space. If we consider also the charge distribution of
the nucleons, we have to extend this expression to

Ŝ = 1

10

A∑

N=1

∑

iN

eiN

[
(rN + ρiN )2 − 5

3
〈r2〉ch

]
(rN + ρiN ) (7.24)

where N denotes the index of each nucleon and iN the index of the charged con-
stituents inside the N th nucleon. The coordinate of the iN th constituent relative to
the center of mass of the N th nucleon rN is given by ρiN , so that the intrinsic EDM
of the nucleon N can be written as dN = ∑

iN
eiN ρiN . The charge distribution inside

the nucleon is smaller than the size of the nucleus, so taking only up to the first order
in ρiN , we obtain the following final formula for the nuclear Schiff moment

Ŝ = Ŝch + Ŝnucleon (7.25)
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where

Ŝch = e

10

Z∑

p=1

(
r2p − 5

3
〈r2〉ch

)
rp (7.26)

Ŝnucleon ≈
A∑

N=1

{
1

6

(
r2N − 〈r2〉ch

)
dN + 1

5

(
(rN · dN )rN − r2N

3
dN

) }
. (7.27)

The derivation of the above relations from Eq. (7.24) is given in Appendix F.

7.3 Derivation of P, CP-odd Nuclear Moments in a Simple Model

Wewill now try to derive the P, CP-odd nuclear moments of heavy nuclei in a simple
model to see their qualitative properties. The P, CP-odd nuclear moments of interest
are the nuclear EDM, the Schiff moment and the magnetic quadrupole moment,
which give the leading contribution to nuclear and atomic P and CP violations. The
derivation presented in this section follows the discussion of Ref. [21]. P, CP-odd
nuclear moments are generated in the presence of P, CP-odd nucleon-nucleon (N-N)
interactions. Let us assume the following P, CP-odd interaction:

Wab = G F√
2

1

2m N
{(ηabσ a − ηbaσ b) · ∇δ(ra − rb)

+η′
ab(σ a × σ b) · [(pa − pb)δ(ra − rb) + δ(ra − rb)(pa − pb)]

}
(7.28)

where a and b label nucleons in the nuclear system. ηab and η′
ab are the P, CP-odd

N-N coupling constants. This interaction is the non-relativistic approximation of the
general contact P, CP-odd N-N interaction at the lowest order in derivatives. The
relation between the scalar-pseudoscalar type P, CP-odd N-N couplings ηab and the

P, CP-odd pion-nucleon couplings of Eq. (6.3) is roughly ηab ∼ O
(

ḡπ N N gπ N N

m2
π G F /

√
2

)
∼

O(107ḡπ N N ) (ḡπ N N denotes ḡ(0)
π N N , ḡ(1)

π N N and ḡ(2)
π N N ).

It is known that the nuclear interaction has strong pairing force, which pairs even
number of nuclei, so that odd nuclei have one valence nucleon. By assuming the
simple shell model (works for stable spherical nuclei with nucleon number A ≥ 20),
the valence nucleon feels the following P, CP-odd nuclear potential:

W = G F√
2

ηa

2m N
σ · ∇ρA(r), (7.29)

with ηa ≡ Z
A ηap + N

A ηan , and ρA(r) the density of nucleon inside the nucleus
normalizedwith

∫
ρA(r)d3r = A (note that the definition of ρ and ρA are different!).

The tensor type P, CP-odd N-N interaction [second term of Eq. (7.28)] does not

http://dx.doi.org/10.1007/978-4-431-54544-6_6
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contribute to the nucleus with one valence nucleon since nucleons in the core are
paired to have zero angular momentum. We see from Eq. (7.29) that in this model
the nuclear P, CP-odd effect occurs at the surface, so it grows slower than the total
nucleon number A of the system.

It is known that the nuclear potential which is felt by valence nucleon and the
nuclear density have the same shape. Their relation is then

ρA(r) = ρA(0)

U (0)
U (r) (7.30)

where ρA(0) andU (0) ∼ −45MeV are the nuclear density and potential at the center
of the nucleus, respectively. The potential felt by the valence nucleon can therefore
be rewritten as

Ũ (r) = U (r) + W (r) ≈ U (|r + ξσ |), (7.31)

where ξ ≡ G F√
2

ηa
2m N

ρA(0)
U (0) . The wave function in this potential then becomes

Ψ̃ (r) = Ψ (r + ξσ ) = (1 + ξσ · ∇ )Ψ (r). (7.32)

Following Refs. [8, 21], we obtain the next three formulae for the dependence of
the nuclear EDM, Schiff moment and magnetic quadrupole moment, respectively,
on the P, CP-odd N-N interactions:

dA(ξ) = −eξ

(
q − Z

A

)
t j (7.33)

SA(ξ) = −eq

2
ξ

[
1

5

(
t j + 1

j + 1

)
r2ex − 1

3
t j 〈r2〉ch

]
(7.34)

MA(ξ) = e

m N
ξ · (μ − q)(2 j − 1)t j (7.35)

where μ is the magnetic moment of the nucleus, r2ex ≡ ∫
r2|Ψ̃ (r)|2d3r is the mean

square radius of the valence nucleon and 〈r2〉ch ≡ 1
Z

∫
r2ρ(r)d3r the mean square

radius of the nuclear charge (with ρ(r) the nuclear charge density). The coefficient q
is the charge of the valence nucleon in unit of e (q = 0 when the valence nucleon is
a neutron, and q = 1 for the proton). Here t j = 1 is for a nucleus with j = l + 1/2,
and t j = − j

j+1 for a j = l − 1/2 nucleus. The derivation of the nuclear EDM and
the Schiff moment in this simple model is presented in Appendix F.

The above estimation within a simple model gives us important qualitative infor-
mation on the CP-odd nuclear moments. From the formula (7.34), we see that nuclei
with valence neutron (129Xe, 199Hg, 211Rn and 225Ra) have no Schiff moment due
to the overall factor q = 0. This means that P, CP-odd interactions between the
valence neutron and the core cannot directly generate the nuclear Schiff moment.
Moreover, in Ref. [8], it is assumed that the mean square radii of the valence nucleon
and the nuclear charge are approximately equal (r2ex = 〈r2〉ch = 3

5 A2/3r20 ). In this
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approximation, the nuclear Schiff moment of spin 1/2 s-wave nuclei vanishes. This is
the case for 205Tl nucleus. To do more quantitative analysis, more accurate determi-
nations of r2ex and 〈r2〉ch are needed, and these are the subject of the next work. In our
discussion, we will take the nuclear Schiff moment of 205Tl to be zero. The magnetic
quadrupole moment is not relevant to our discussion, since we are considering nuclei
with spin 1/2.

Since we are interested in the EDM of heavy atoms, the EDM of heavy nuclei
are also not relevant to our discussion, but here we should add some comments
on the nuclear enhancement of P, CP-odd effect compared with the single nucleon
EDM. The P, CP-oddN-N coupling generated from isoscalar P, CP-odd pion-nucleon

interaction is G F√
2
ηa ∼ gπ N N ḡ(0)

π N N
m2

π
. Comparing with the contribution of the isoscalar

P, CP-odd pion-nucleon interaction to the the single nucleon EDM dN (ḡ(0)
π N N ) ∼

egπ N N ḡ(0)
π N N

4π2m N
ln m N

mπ
[see Eq. (6.46)], the enhancement of the nuclear EDM against the

single nucleon EDM is

dA

dN
∼

∣∣∣∣
eξ

dN

∣∣∣∣ ∼
∣∣∣∣∣

3π

2m2
πr30U (0) ln(m N /mπ )

∣∣∣∣∣ ∼ 12 (7.36)

where we have assumed 1/ρA(0) = 4
3πr30 with the internucleon distance r0 ∼ 1.2

fm, which is valid for nuclei of interest. We see that the nuclear EDM is sensitive on
the P, CP-odd pion-nucleon couplings than the single nucleon EDMbymore than one
order of magnitude in this simple estimation. The nuclear enhancement is of course
dependent on the model of CP violation at the hadron level. For the standard model
contribution (see Chap. 9), the enhancement factor can be as large as 60 [24, 25].
We can thus expect a very good improvement of sensitivity against the CP violation
of new physics with the progress of experimental studies of the nuclear EDM.

We should also give the dependence of the P, CP-odd nuclear moments on the
EDM of the valence nucleon. With the same model assumptions, Ref. [21] (also Ref.
[8]) gives the following formulae for the nucleon EDM dependence of the nuclear
EDM, Schiff moment and magnetic quadrupole moment:

dA(dN ) = dN t j (7.37)

SA(dN ) = dN

2

[
1

5

(
t j + 1

j + 1

)
r2ex − 1

3
t j 〈r2〉ch

]
(7.38)

MA(dN ) = dN

m N
(2 j − 1)t j (7.39)

where dN is the EDMof the valence nucleon. The derivation of the nuclear EDM and
the Schiff moment is presented in Appendix F. The relations (7.38) and (7.39) have
similar form as Eqs. (7.34) and (7.35). This implies again that the nuclear Schiff
moment of the spin 1/2 s-wave nuclei is suppressed. This is the case for 205Tl, 129Xe
and 225Ra nuclei.

http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_9
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Phenomenologically, the valence nucleon is a superposition of the proton and
neutron due to the configuration mixing. The mixing coefficients 〈σp〉z and 〈σn〉z

can be obtained using the magnetic moment of the nucleus as follows:

{
μA = μp〈σp〉z + μn〈σn〉z

〈Ψ : j, jz = j | σz | Ψ : j, jz = j 〉 = 〈σn〉z + 〈σp〉z
(7.40)

where μA is the nuclear magnetic moment (in unit of the Bohr magneton). Here the
matrix element 〈Ψ : j, jz = j | σz | Ψ : j, jz = j 〉 is 1 for j = l + 1

2 nuclei, and

− j
j+1 for j = l − 1

2 nuclei (the same matrix element is needed for the derivation
of the nuclear EDM generated by the valence nucleon EDM. The detail is given in
Appendix F). The magnetic moment of the proton is μp = +2.7928 and that of the
neutron is μn = −1.9130. The mixing coefficients 〈σp〉z and 〈σn〉z are needed to
separate the EDM contribution of the valence proton and neutron, but also for the P,
CP-odd electron-nucleon interactions, which will be reviewed in the next chapter.

In this section, we have seen that the Schiff moment of nuclei with valence neutron
has no dependence on the P, CP-odd N-N interaction in the simple shell model.
However, for heavy nuclei such as 129Xe, 199Hg, 211Rn and 225Ra nuclei, the whole
nuclear system may be polarized by the P, CP-odd N-N interaction. This effect can
be calculated with many-body methods using the mean-field theory, which will be
reviewed in the next section. We must finally note that we have only assumed that
the shell model works for odd nuclei in question. We have also assumed that nuclei
are spherical. Deformed nuclei can enhance P, CP-odd moments with their close
opposite parity levels. In the next section, we will review the calculational methods
based onmean-field theory to treat the core polarization of heavy nuclei with valence
neutron, and their results.

7.4 Evaluation of the 129Xe, 199Hg, 211Rn and 225Ra Nuclear
Schiff Moments within Mean-Field Approach

Let us now present more sophisticated calculations of the nuclear wave functions
needed to obtain the nuclear Schiff moment from core polarization. Ideally, the
nuclear wave function should be obtained via some ab initio calculations, but this
task is too difficult as the computational cost for solving the many-body problem
increases exponentially with nucleon number. We must therefore introduce some
approximations.

In many-body calculations, we often use the Hartree-Fock method. In the many-
body system, the interaction between particles can be renormalized to a mean-field
potential with residual interactions, which will be determined phenomenologically.
With this approximation, the many-body calculation is thus reduced to an one-
body problem (one-particle interacting with the mean field). The hamiltonian of the
N -body system in the Hartree-Fock approximation can be written in the following
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form
H = H0 + V N−1 (7.41)

where H0 is the hamiltonian of the single particle (kinetic terms + mean-field poten-
tial), and V N−1 ≡ Vdir + Vex is the Hartree-Fock potential, which satisfies the
following relations:

Vdir(r)Ψ (r) =
N−1∑

n=1

∫
Ψ †

n (r1)Ψn(r1)V (r1, r)d3r1 Ψ (r)

Vex(r)Ψ (r) = −
N−1∑

n=1

∫
Ψ †

n (r1)Ψ (r1)V (r1, r)d3r1 Ψn(r) . (7.42)

These contributions can be illustrated diagramatically in Fig. 7.2.
Solving the Schrödinger equation for H is equivalent to solving the self-consistent

equation depicted in Fig. 7.3.
The physical meaning of the Hartree-Fock potential is the interaction between the

single particle and the medium (core) made of the remaining N − 1 particles. The

(a) (b)

Fig. 7.2 Feynman diagrams representing the Hartree-Fock potential. a is the direct contribution
(Vdir), b is the exchange contribution (Vex). Thin lines represent the single particle propagator in
the mean-field potential, doted lines represent the inter-particle interaction

Fig. 7.3 Self-consistent equation for the Hartree-Fock method drawn with Feynman diagrams.
Thin lines represent the single particle propagator in the mean-field potential, doted lines represent
the interaction. The self-consistent equation will be solved for the thick line
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Slater determinant made of Hartree-Fock N particles forms the ground state of the
many-body system.

Hartree-Fock method is known to be a very good approximation, but more
improvement can be done for the nuclear calculation. In the Hartree-Fock method,
the many-body states are Slater determinants formed by the independent single parti-
cle states of the mean field. To improve the situation, we should add correlations and
introduce the dynamical multi-particle state. We should therefore consider excita-
tions and de-excitations of one-particle states (generated fromHartree-Fockmethod)
through interactions between each other. In this framework, the energy raising oper-
ator should be written as

X†
η =

∑

p,h

(
xη,pha†

pb†h − yη,phbhap

)
(7.43)

wherea andb are particle andhole annihilatingoperators, respectively. p andh are the
corresponding indices. The determinations of xη,ph and yη,ph are therefore needed.
As X†

η’s are energy raising operators, they must satisfy the Heisenberg equation
[H, X†

η] = �ωη X†
η. By substituting X†

η and the hamiltonian, we obtain the following
equation

�ωη

(
xη,pha†

pb†h − yη,phbhap

)
=

∑

p,h

(εp − εh)xη,pha†
pb†h

+
∑

p,h,p′,h′
(Vph′hp′ xη,p′h′ + Vpp′hh′ yη,p′h′a†

pb†h)

+
∑

p,h

(εp − εh)yη,phbhap

+
∑

p,h,p′,h′
(Vhp′ ph′ yη,p′h′ + Vhh′ pp′ xη,p′h′bhap)

+ O((a†b†, ba)2) (7.44)

where V is the particle-hole interaction and higher order terms in a†b† and ba are
neglected. This self-consistent equation is called the random phase approximation
(RPA) equation. The RPA is a dynamical approach: by considering particle-hole
interactions, the energy eigenstates of themany-body system become a superposition
of particle-hole excitations (see Fig. 7.4).

The Hartree-Fock potential was able to renormalize the interactions between par-
ticles into an effective mean-field. The next step is then to include the contribution
of the residual interactions. For the nuclear case, the strongest residual interaction is
the spin pairing interaction between nucleons. In the presence of attractive pairing
interactions, particles can form spin-zero bound-states, which can be effectively seen
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Fig. 7.4 Example of dia-
grammatic representation of
1-particle 1-hole state in RPA.
The black dots are particle-
hole interactions. Time axis
goes from the bottom to the
top. The state is a mixing of
states with different number
of particle-hole pairs

as mixing between particles and holes. The mixing between particles and holes is
well described in the BCS theory [22, 23]. The hamiltonian of the nuclear system
with pairing force can be written as

H =
N∑

α

εac†αcα − 1

4
G0

(
N∑

α

(−1) ja−mα c†αc†−α

)⎛

⎝
N∑

β

(−1) jb−mβ c−βcβ

⎞

⎠ (7.45)

where c and c† are annihilation/creation operator of nucleon. The first term in this
equation is the Hartree-Fock diagonalized hamiltonian, and the second term is the
pairing force. We can see that this hamiltonian is not diagonal, due to the addition of
the pairing. To diagonalize this relation, we need to rotate the basis of particle and
hole:

a†
α = uac†α − vac̃α

ãα = uac̃α − vac†α (7.46)

where c̃ and c̃† are the annihilation and creation operators of holes, respectively. ã
and ã† are the corresponding operators for quasi-particles, giving the new basis of
physical states. This transformation of basis is the Bogoliubov transformation. The
determination of u and v will be done by fitting the energy of the system phenom-
enologically. The extension of the RPA with this formalism can also be done by
considering the quasi-particle excitations. The BCS extension of the RPA is called
quasi-particle RPA (QRPA).

Once we have explained the basic formalism for calculating nuclear systems,
let us now present the calculation of the nuclear Schiff moments. Early calculation
of nuclear moments induced by P, CP-odd nuclear forces was done by Flambaum
et al. considering the interaction of the valence nucleon with the core within the
phenomenologicalWoods-Saxon potential as amean-field [24, 25]. RPAcalculations
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(Hartree-Fock + non-pairing residual interaction) were done by Dmitriev et al., and
the dependence of 129Xe, 199Hg, 211Rn and 225Ra Schiff moments on the P, CP-odd
pion-nucleon couplings were given in Ref. [26]. The following P, CP-odd pion-
nucleon couplings were included at the first order of perturbation, via the following
P, CP-odd nucleon-nucleon interaction:

W (ra − rb) = − gπ N N

8πm p

[(
ḡ(0)
π N N τa · τb + ḡ(2)

π N N (τa · τb − 3τ z
a τ z

b )
)

(σ a − σ b)

+ ḡ(1)
π N N (τ z

a σ a − τ z
b σ b)

]
· ∇a

e−mπ rab

rab
(7.47)

where a and b denote the indices of the two interacting nucleons, and rab ≡ |ra −rb|.
This P, CP-odd interaction was also used in the ab initio evaluation of the deuteron
and 3He EDMs [see Eq. (7.2)]. The formula for the nuclear Schiff moment is

S =
∑

i

〈Ψ0|Ŝ|Ψi 〉〈Ψi |W |Ψ0〉
E0 − Ei

+ c.c. (7.48)

where Ŝ is the nuclear Schiff moment operator given in Eq. (7.25), and Ψ0, Ψi are
nuclearwave functions unperturbed byP,CP-oddN-N interactionsW [seeEq. (7.47)]
for ground and excited states, respectively.

The result is

SHg = gπ N N

(
−0.00004ḡ(0)

π N N − 0.055ḡ(1)
π N N + 0.009ḡ(2)

π N N

)
e fm3 (7.49)

SXe = gπ N N

(
0.008ḡ(0)

π N N + 0.006ḡ(1)
π N N − 0.009ḡ(2)

π N N

)
e fm3 (7.50)

SRn = gπ N N

(
−0.019ḡ(0)

π N N + 0.061ḡ(1)
π N N + 0.053ḡ(2)

π N N

)
e fm3 (7.51)

SRa = gπ N N

(
0.033ḡ(0)

π N N − 0.037ḡ(1)
π N N − 0.043ḡ(2)

π N N

)
e fm3 . (7.52)

The small coefficient of ḡ(0)
π N N for the 199Hg Schiff moment is due to an accidental

cancellation.
The nucleon EDM dependence of the 199Hg Schiff moment was also calculated

in Ref. [27] within the same approach, giving

SHg = (
(1.895 ± 0.035)dn + (0.20 ± 0.02)dp

) 1013

e cm
e fm3 . (7.53)

A more sophisticated calculation including the effects of pairing force with phe-
nomenological Skyrme interactions and nuclear deformation was done for 199Hg
[28, 29], 211Rn [29] and for 225Ra [30, 31] Schiff moments. Calculations were made
using the computer code HFODD [32] within several models of phenomenological
Skyrme interactions: SkO’ [33], SkM∗ [34], SLy4 [35], SV [36] and SIII [36]. SIII
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Table 7.1 Coefficients ai of the dependence of the Schiff moment on P, CP-odd pion-nucleon
couplings (S = gπ N N (a0 ḡ(0)

π N N + a1 ḡ(1)
π N N + a2 ḡ(2)

π N N )) in unit of e fm3

Nucleus Model −a0 −a1 a2 −b Ref.
199Hg SkO’ 0.010 0.074 0.018 – [28]

SkM∗ (HFB) 0.041 −0.027 0.069 0.013
SLy4 (HFB) 0.013 −0.006 0.024 0.007 [29]
SLy4 (HF) 0.013 −0.006 0.022 0.003
SV (HF) 0.009 −0.0001 0.016 0.002
SIII (HF) 0.012 0.005 0.016 0.004

211Rn SkM∗ 0.042 −0.028 0.078 0.015
SLy4 0.042 −0.018 0.071 0.016 [29]
SIII 0.034 −0.0004 0.064 0.015

225Ra SkO’ −1.5 6.0 −4.0 – [31]

The labels HB and HFB stand for calculations in the Hartree-Fock and Hartree-Fock-Bogoliubov
approximations, respectively.

may not be as trustworthy as the others: Ref. [28] showed that the interaction was
less able to reproduce related observable, the distribution of isoscalar E1 strength in
even nuclei. The result is shown in Table7.1.

The results for 211Rn Schiff moment are almost consistent. The 211Rn nucleus is
spherical, so no deformation was considered in the calculations.

In the case of 225Ra Schiff moment, the large enhancement of the P, CP-odd
contributions is due to the presence of a nearby parity-doublet states [30]. We have
more confidence in the Sko’ results, but the uncertainties due to difficulties in treating
nuclear deformation in the men-field methods are large. In addition, the optimal
Skyrme functional has not yet been identified. These deficiencies render a factor of
2 or 3 of uncertainty [31].

199Hg nucleus has also a small deformation, so it is useful to consider it. The
calculation of Ref. [29] took into account the effect of deformation and calculated
fully self-consistently, including the P, CP-odd interactions. By comparing with the
result ofRef. [28]which considered spherical 199Hgnucleus,we see that the isovector
coefficient a1 significantly decreases with the inclusion of deformation. The results
for a1 vary among Skyrme models and we have no decisive pretext to select one of
them.

The calculationof nuclear Schiffmoment presents somedifficulties in determining
the dependence to the P, CP-odd pion-nucleon couplings. This is essentially due to
the deficiency in expressing nuclear states of odd nuclei inmean-field theory. To have
an accurate description of the nuclei in question, we must wait for new calculational
method for odd nuclei. In the subsequent discussion,wewill take the average between
different calculations shown in Table7.1 for each coefficient.
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7.5 Summary of Nuclear Level Calculation

Deuteron EDM:

dd = −0.015g
π N N ḡ(1)

π N N × 10−13e cm + dp + dn . (7.54)

The deuteron EDM was calculated with realistic N-N potential [6].
3He nucleus EDM:

dHe =gπ N N

[
−0.015ḡ(0)

π N N − 0.023ḡ(1)
π N N + 0.036ḡ(2)

π N N

]
× 10−13e cm

− 0.04dp + 0.90dn (7.55)

The 3He nuclear EDM was calculated with the ab initio No-core shell model with
realistic N-N potential [9].

199Hg nuclear Schiff moment:

SHg =gπ N N

[
0.02ḡ(0)

π N N − 0.007ḡ(1)
π N N + 0.006ḡ(2)

π N N

+ 0.91dn + 0.09dp

e cm
× 4 × 1012

]
e fm3 . (7.56)

This is the average of different calculations of mean-field method presented in
Ref. [29].

129Xe nuclear Schiff moment:

SXe = gπ N N

[
0.008ḡ(0)

π N N + 0.006ḡ(1)
π N N − 0.009ḡ(2)

π N N − 3.2dn + 0.06dp

e cm
× 1012

]
e fm3.

(7.57)
The π N N interaction contribution was given by Dmitriev et al. with mean field
method [26]. The nucleon EDM contribution was calculated in the refined shell
model by Yoshinaga et al. [37].

211Rn nuclear Schiff moment:

SRn = gπ N N

[
−0.039ḡ(0)

π N N + 0.0155ḡ(1)
π N N + 0.071ḡ(2)

π N N + dn

e cm
× 1.5 × 1013

]
e fm3.

(7.58)
This was calculated with mean field method in Ref. [29].
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225Ra nuclear Schiff moment:

SRa = gπ N N

[
1.5ḡ(0)

π N N − 6.0ḡ(1)
π N N − 4.0ḡ(2)

π N N

]
e fm3 . (7.59)

This was calculated with mean field method with octupole deformation taken into
account [31].
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