
Chapter 6
Hadron Level Calculation

The first many-body physics relevant to the evaluation of the electric dipole moment
(EDM) is the effects on the hadron level. In this chapter we present the calculations
of the contributions from the leading P, CP-odd hadronic mechanisms. The processes
considered are the nucleon EDM, P, CP-odd nucleon-nucleon interaction, P, CP-odd
electron-nucleon interaction due to the P, CP-odd quark level operators, the quark
EDM, quark chromo-EDM, gluon chromo-EDM (i.e. Weinberg operator), θ -term,
P, CP-odd 4-quark interaction, and the P, CP-odd electron-quark interaction. The
schematic dependences of the hadronic scale operators on the quark level operators
are shown in Fig. 6.1.

The P, CP-odd lagrangian on the hadron level

Lhadron = Ledm + Lπ N N + LeN , (6.1)

with

• the nucleon EDM

Ledm = − i

2

∑

N=p,n

dN N̄σμνγ5N Fμν, (6.2)

• the P, CP-odd pion-nucleon interaction

Lπ N N =
∑

N=p,n

3∑

a=1

[
ḡ(0)
π N N N̄τ a Nπa + ḡ(1)

π N N N̄ Nπ0 + ḡ(2)
π N N (N̄τ a Nπa − 3N̄τ 3Nπ0)

]
,

(6.3)
where a denotes the isospin index, and

• the P, CP-odd electron-nucleon interaction

LeN = − G F√
2

∑

N=p,n

[
CSP

N N̄ N ēiγ5e + CPS
N N̄iγ5N ēe + 1

2
CT

N εμνρσ N̄σμν N ēσρσ e

]
.

(6.4)
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Fig. 6.1 Detailed flow diagram of the dependence of the hadron level P, CP-odd processes on
leading quark level P, CP-odd operators. The hadron level processes are shown in the left side and
the quark level operators in the right side. The Weinberg operator contribution is not discussed in
our analysis

The P, CP-odd nucleon-nucleon interaction receives the leading contribution from
one-pion exchange as shown in the flow chart of Fig. 6.1. It can be obtained by
combining the above P, CP-odd pion-nucleon interaction Lπ N N with the standard
P, CP-even pion-nucleon interaction (L = gπ N N N̄ iγ5τ N · π ).

P, CP-odd quark level operators include the θ -term, quark EDM, quark chromo-
EDM, four-fermion interaction and the Weinberg operator (gluon chromo-EDM).
These operators with the lowest mass dimension, give the leading contribution to the
hadron level P and CP violations. The leading quark level P, CP-odd interactions are
the followings:

• θ -term:

Lθ = g2
s

64π2 θ̄ εμνρσ Ga
μνGa

ρσ , (6.5)

• quark EDM:

LqEDM = − i

2

∑

q=u,d,s

dq q̄σμνγ5q Fμν, (6.6)
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• quark chromo-EDM:

LcEDM = − i

2

∑

q=u,d,s

dc
q gsq̄σμν taγ5qGμν

a , (6.7)

• P, CP-odd 4-quark interactions:

L4q = G F√
2

∑

q,q′=u,d,s,c,b

[
Cqq′(q̄q)(q̄′iγ5q′) + 1

2
C ′

qq ′εμνρσ (q̄σμνq)(q̄′σρσ q′)
]

,

(6.8)
• P, CP-odd electron-quark interactions:

Leq = −G F√
2

∑

q=u,d,s,c,b

[
CSP

eq q̄qēiγ5e + CPS
eq q̄iγ5qēe + 1

2
CT

eqεμνρσ q̄σμνqēσρσ e

]
,

(6.9)
• Weinberg operator [1]:

Lw = 1

6
w

G F√
2

f abcεαβγ δGa
μαGb

βγ Gμ,c
δ , (6.10)

where f abc is the SU (3) structure constant of the Lie algebra. (The Weinberg
operator will not be discussed in this thesis, since it is not relevant in our analysis.)

To obtain the P, CP-odd hadron level interactions, we need the results frommodel cal-
culationswhich needmany inputs, such as hadronmatrix elements, quarkmasses, etc.
Strong interaction processes should in principle be calculated within the framework
of the Quantum chromodymanics (QCD). However, we still do not have fully ana-
lytic non-perturbativemethods to calculate hadron level processes starting fromquark
level interactions. One way of calculating them in QCD is the Lattice QCD simula-
tion, which consists of numerical analysis usingMontecarlo techniques in discretized
space-time, but not many data for hadron matrix elements needed in EDM analysis
are currently available, and their calculations remain one of the important home-
work. On the side of model calculations, many results are available. Hadron matrix
elements needed in EDM analysis were essentially evaluated using non-relativistic
quark models, low energy theorems, chiral techniques and QCD sum rules [2]. In
this thesis, we mainly focus on the chiral approach using low energy theorems for
the evaluation of hadron matrix elements. The first reason of this choice is that many
calculations of hadron matrix elements are available. Since different models have
different source of errors, it is very important to use the same model for every hadron
matrix elements needed in the analysis. The second reason is the systematic estima-
tion of the precision of hadron matrix elements. We will also use the results from
ab initio lattice QCD calculations if available. In the following, we first examine the
quark contents of nucleon which are needed in many subsequent analyses. We will
then briefly review themethod using low energy theoremswhich provides us with the
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relation between quark level P, CP-odd operators and the P, CP-odd meson-baryon
couplings. After obtaining meson-baryon couplings, we will discuss the calculation
of nucleon EDMs using the chiral method. The Peccei-Quinn mechanism is then
reviewed. We finally summarize the results.

6.1 Quark Contents of the Nucleon

In the evaluation of the hadron level effective P, CP-odd interactions, we often need
the quark contents of the nucleon with suitable Lorentz structure. (for example, the
P, CP-odd electron-nucleon (e-N) interactions CSP

N N̄ N ēiγ5e = ∑
q CSP

eq 〈N |q̄q|N 〉
q̄q ēiγ5e.) Explicitly, wemust calculate 〈N |q̄q|N 〉, 〈N |q̄iγ5q|N 〉 and 〈N |q̄σμνq|N 〉
(N = p, n ; q = u, d, s, c, b). We begin first with the evaluation of the scalar content
of nucleon 〈N |q̄q|N 〉. The physical meaning of these matrix elements is the fraction
of the quark mass over the nucleon mass. In the classic phenomenological approach
using SU(3) symmetry and breaking with baryon mass splitting [3, 4], and the u, d
quark content of the nucleon (the so-called σ term, σ ≡ mu+md

2 〈p|ūu + d̄d|p〉 =
55 ∼ 75MeV [5]), we obtain the following values:

〈p|ūu|p〉 = 7.7, (6.11)

〈p|d̄d|p〉 = 6.9, (6.12)

〈p|s̄s|p〉 = 4.2, (6.13)

where we have equated the proton-neutron mass splitting 〈p|ūu − d̄d|p〉 = m0
p−m0

n
mu−md

,

theΞ -Λmass splitting 〈p|ūu + d̄d −2s̄s|p〉 = 3mΞ −mΛ

ms
and the σ -term above. The

recent values of the quark and baryon masses have been used, with mu ≈ 2.5MeV,
md ≈ 4.9MeV, ms ≈ 100MeV, m0

p − m0
n = −2.05 MeV (nucleon masses without

electromagnetic contribution), mΞ = 1321 MeV and mΛ = 1116 MeV [6–8]. The
quark contents of the nucleon were also evaluated in lattice QCD [9–13]. The u
and d quark contents are in agreement with lattice QCD simulations, and the result
shows that the chiral expansion in u and d quark masses works well. The strange
quark content of the nucleon merits a short discussion. The earlier quenched lattice
QCD simulations for 〈N |s̄s|N 〉 showed agreement with the classic value (Eq. 6.13).
However, recent lattice analyses with dynamical quarks indicate that the strange
content of the nucleon is suppressed about one order compared with the classic
values. This can be understood by the suppression of disconnected quark loop (sea
quark) contribution. In this analysis, we adopt the results of the lattice QCD analyses
with dynamical quarks [10–13]. Calculations present a small result with

〈p|s̄s|p〉 = 〈N |s̄s|N 〉 ≈ 0.1 , (6.14)
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derived with ms = 100MeV. This disagreement shows that the chiral expansion
in terms of strange quark mass is rather difficult. The result of Eq. (6.13) was from
using the first order expansion of the strange quark mass. However, higher order
corrections can be important since ms is far from the chiral limit. For these reasons,
we will use the result of lattice QCD calculations (〈p|s̄s|p〉 ≈ 0.1) [10–13] in this
thesis.

The charm and bottom quark contributions can be calculated by using the heavy
quark expansion [3, 4]. The leading order contribution of the heavy quark condensate
is given by

〈N |Q̄ Q|N 〉 ≈ −
〈
N

∣∣∣∣
αs

12πm Q
Gμν,aGμν

a

∣∣∣∣ N

〉
+ O

(
1

m2
Q

)
, (6.15)

where Q stands for heavy quark. By neglecting higher order terms of O(1/m2
Q), we

obtain

〈N |c̄c|N 〉 ≈3 × 10−2, (6.16)

〈N |b̄b|N 〉 ≈1 × 10−2, (6.17)

where the quark masses mc = 1.3GeV and mb = 4.2GeV were used [6–8].
We now calculate the matrix element 〈N |q̄iγ5q|N 〉 by using PCAC and axial

anomaly [14] to get

〈p|q̄iγ5q|p〉 = m N

mq

(
Δq ′ + αs

2π
Δg

)
, (6.18)

where Δq ′ is the fraction of the axial vector current of the quark q in the proton, Δg
is defined by 〈p|Tr Gμν G̃μν |p〉 = −2m N Δgū piγ5u p [14], where Gμν is the gluon
field strength and G̃μν its dual. We use Δu′ = 0.82, Δd ′ = −0.44, Δs′ = −0.11
[15, 16], (αs/2π)Δg = −0.16 [14] and the recent values of quark masses cited
previously. This gives

〈p|ūiγ5u|p〉 = 248, (6.19)

〈p|d̄iγ5d|p〉 = −115, (6.20)

〈p|s̄iγ5s|p〉 = −2.5. (6.21)

The pseudoscalar condensate of the bottom quark can also be calculated in heavy
quark expansion [3, 4]. The leading order contribution is given by

〈N |Q̄iγ5Q|N 〉 ≈ −
〈
N

∣∣∣∣
αs

8πm Q
Gμν,aG̃μν

a

∣∣∣∣ N

〉
+ O

(
1

m2
Q

)
. (6.22)
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This gives

〈N | c̄iγ5c |N 〉 ≈ −9 × 10−2,

〈N | b̄iγ5b |N 〉 ≈ −3 × 10−2. (6.23)

Again, higher order corrections were neglected.
The calculation of the tensor matrix element was done in quenched lattice QCD

with the Wilson quark [17]. The result is

〈p|ūσμνu|p〉 = (0.839 ± 0.060) p̄σμν p,

〈p|d̄σμνd|p〉 = −(0.231 ± 0.055) p̄σμν p,

〈p|s̄σμνs|p〉 = −(0.046 ± 0.034) p̄σμν p. (6.24)

Here the strange quark tensor charge receives purely disconnected contributions. All
these results suffer from a large finite volume effect, and it is difficult to determine
the strange quark tensor charge.

6.2 The PCAC Techniques and the P, CP-Odd Meson-Baryon
Interactions

Wenowexplain several calculational techniques. Thefirst one is thePCAC technique.
The quark sector of QCD at a few hundred of MeV is known to have approximately
chiral flavor SU (3)L ×SU (3)R×U (1)V symmetry.Quarks have smallmasses,which
explicitly break the axial SU (3) symmetry, but this symmetry breaking is quite small
compared to the scale of confinement, so an approximate relation for axial currents
is possible. This is the partially conserved axial vector current (PCAC) relation. One
of the important consequence of PCAC is the soft-pion theorem:

〈πc Ba | Oi | Bb〉 ≈ i

fπ
〈Ba | [Oi , (J c

5 )0] | Bb〉, (6.25)

where B is an SU (3) octet baryon state and (J c
5 )0 the axial charge. The baryon field

and the Nambu-Goldstone boson (meson) field πc are defined as

πc = M =

⎛

⎜⎜⎝

π0√
2

+ η0√
6

π+ K +

π− − π0√
2

+ η0√
6

K 0

K − K̄ 0 −2 η0√
6

⎞

⎟⎟⎠, (6.26)
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and

B =

⎛

⎜⎜⎝

Σ0√
2

+ Λ0√
6

Σ+ p

Σ− −Σ0√
2

+ Λ0√
6

n

Ξ− Ξ0 −2Λ0√
6

⎞

⎟⎟⎠. (6.27)

The right-hand side of the PCAC relation receives corrections from meson rescatter-
ing. Since we are interested in very low energy meson exchange, this contribution
can be ignored. This relation is part of the low energy theorem, and is often said to
be model independent. It can be used to reduce the P and CP violating hadron matrix
elements with external meson to the P and CP-even hadron matrix elements without
external meson, and so it will be used here to calculate the P, CP-odd meson-baryon
couplings (for example, ḡ(0)

π N N , ḡ(1)
π N N , ḡ(2)

π N N ).
An important example is the calculation of the θ -term contribution to the neutron

EDM [18]. The θ -term (Eq. 6.5) is related via the chiral anomaly to the CP-odd
quark mass LCPVM = −θ̄m∗(ūiγ5u + d̄iγ5d + s̄iγ5s) (with m∗ ≡ mumd

mu+md
), and

the parameter θ̄ can be transferred to each other. By applying the PCAC relation to
〈Nπa |LCPVM | N 〉, we obtain

ḡ(0)
π N N (θ̄) = θ̄m∗

fπ
〈N | q̄τ 3q | N 〉 ≈ 0.015θ̄ , (6.28)

where q = u, d. The hadronmatrix elements 〈p| ūu | p〉 and 〈p| d̄d | p〉were derived
from the proton and neutron mass splitting (see previous chapter). The strange quark
contribution was neglected since it is of the order of m∗/ms .

Another important example of calculation using the PCAC relation is the calcula-
tion of the chromo-EDMcontribution to themeson-baryon couplings. The discussion
below follows the paper of Hisano and Shimizu [19, 20]. After using the PCAC rela-
tion, we obtain the following contribution to the P, CP-odd pion-nucleon couplings:

〈Baπc|LcEDM|Bb〉 =
∑

q,q ′

1

fπ
dc

q〈Ba | q̄gs Gμν
a σμν taTcq | Bb〉 , (6.29)

where Tc is the generator of the flavor SU (3) symmetry, and ta the one of the color
SU (3). The values of these condensates are not calculable with chiral techniques. For
the evaluation of the mixed condensate in nucleon 〈Ba | q̄ ′gs Gμν

a σμν taTcq | Bb〉, we
use the relation based on QCD sum rules [21–23] with the saturation of the lightest
0++ state and the low energy theorem [24] adopted in Refs. [3, 4, 25–27] to write

〈Ba | q̄gs Gμν
a σμν taTcq | Bb〉 ≈ 5

3
m2

0〈Ba | q̄Tcq | Bb〉, (6.30)

where m2
0 ≡ 〈0| q̄gs Gμν

a σμν taq | 0〉/〈0| q̄q | 0〉 ≈ 0.8 (GeV)2 [21–23, 28, 29]. For
the derivation, see Appendix C.
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The result of the θ -term and chromo-EDM contributions can then be regrouped
to get the following expression:

〈Baπc|Lθ+cEDM|Bb〉 ≈
∑

q

1

fπ

(
2αqmq + 5

3
dc

qm2
0

)
〈Ba | q̄Tcq | Bb〉

=
∑

q

1

fπ
〈Ba | q̄{Tc, A}q | Bb〉, (6.31)

where
∑

q αq = θ̄ . A = diag(Au, Ad , As) is the flavor SU (3) breaking effect, with
components

Aq = αqmq + 5

6
m2

0dc
q . (6.32)

If we assume that the Peccei-Quinn symmetry and the axion mechanism hold, the
θ -term contribution will become unphysical. We can then expect the term with αq to
vanish. However, it is known that the chromo-EDM can induce the θ -term even in the
presence of the axionmechanism [30, 31]. The induced chromo-EDMcontribution is

αq = −m2
0

2

dc
q

mq
, (6.33)

so that

Aq = −m2
0

2
dc

q + 5

6
m2

0dc
q = m2

0

3
dc

q ≈ 0.27dc
q GeV. (6.34)

We will see the derivation of the contribution of the chromo-EDM to the induced
θ -term under the axion mechanism later in Sect. 6.5.

By considering the flavor SU (3) breaking matrix element of Eq. (6.31), we obtain
the following P, CP-odd meson-baryon interaction:

LC PV = 1√
2 fπ

[〈p|s̄s − d̄d|p〉Tr(B̄ B{M, A})

+ 〈p|ūu − d̄d|p〉Tr(B̄{M, A}B)

+2〈p|d̄d|p〉Tr(AM)Tr(B̄ B)
]
. (6.35)

The relevant P, CP-odd meson-baryon lagrangian is

LC PV = 〈p|s̄s − d̄d|p〉√
2 fπ

[
(Ad + As)Σ̄

+ pK̄ 0 + (Au + As)

(
Σ̄0

√
2

+ Λ̄√
6

)
pK −

+(Au + As)Σ̄
−nK − + (h.c.) − 4√

6
As p̄ pη0

]
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+ 〈p|ūu − d̄d|p〉√
2 fπ

[
(Au + Ad) p̄nπ+ − 2√

6
(Au + As) p̄ΛK + + (h.c.)

+ 2Au p̄ p

(
π0

√
2

+ η0√
6

)
− 2√

2
Adn̄nπ0

]

+ 2〈p|d̄d|p〉√
2 fπ

(
Au − Ad√

2
π0 + Au + Ad − 2As√

6
η0
)

( p̄ p + n̄n),

(6.36)

where +(h.c.) means that we add the hermitian conjugates of the terms in its left side.
From this we can derive the P, CP-odd pion-nucleon interactions:

Lπ N N = 1

2 fπ
(Au+Ad)〈p|ūu−d̄d|p〉N̄τ a Nπa+ 1

2 fπ
(Au−Ad)〈p|ūu+d̄d|p〉)N̄ Nπ0.

(6.37)
The P, CP-odd pion-nucleon couplings can be explicitly written as

ḡ(0)
π N N (θ̄ , dc

q) = 1

2 fπ
(Au + Ad)〈p|ūu − d̄d|p〉, (6.38)

ḡ(1)
π N N (θ̄ , dc

q) = 1

2 fπ
(Au − Ad)〈p|ūu + d̄d|p〉. (6.39)

For the case of P, CP-odd 4-quark interaction, the vacuum factorization approxi-
mation can be used. Combinedwith the PCACmethod, we get the following relation:

ḡ(1)
π N N (Cqd) =

∑

q=u,d,s,c,b

〈π0N |Cqd
G F√
2

q̄q d̄iγ5d|N 〉

≈
∑

q=u,d,s,c,b

Cqd
G F√
2

〈π0|d̄iγ5d|0〉〈N | q̄q|N 〉

= − Fπ m2
π G F

2
√
2md

∑

q=u,d,s,c,b

Cqd〈N | q̄q|N 〉. (6.40)

We should note that in this discussion, we have not considered the vacuum con-
densation of the neutral mesons, which, combined with the CP-even pion-nucleon
interaction, can generate an additional contribution to the CP-odd pion-nucleon inter-
action. This effect may be important as it contributes to the same chiral order as the
CP-odd pion-nucleon coupling calculated in this section (see Fig. 3 of Ref. [2] and
the corresponding discussion).
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6.3 Nucleon EDMs with Chiral Method

Let us move to the evaluation of the nucleon EDM. The one-loop term in the
expansion of the nucleon EDM has “chiral logarithm” ln(mπ/Λ) (Λ is some hadron
scale cutoff). This termappears to be independent of the chiralmodel chosen [32, 33].
The idea is to consider this termas the leading term in the chiral expansion.The expan-
sion of the nucleon EDM in the chiral perturbation theory has also divergent terms
at the one-loop level, which give the renormalization of the low energy constant of
the tree level and have to be determined for accurate calculation. In the present case
we consider the leading chiral logarithmic terms to be the dominant contribution,
although the theoretical uncertainty is as large as order one. The improvement of
the accuracy of the nucleon EDM calculation is an important subject which must
be treated in the near future. We will return to this subject briefly in the final sum-
mary. With the above assumption, the chiral contribution to the nucleon EDM can
be evaluated using the following chiral lagrangian.

Lm B B ≈ − gπ N N p̄iγ5 pπ0 − √
2gπ N N ( p̄iγ5nπ+ + h.c.) − gηN N p̄iγ5 pη0

+ gKΛN ( p̄iγ5ΛK + + h.c.)

− gKΣ N (Σ̄+iγ5 pK̄ 0 + Σ̄−iγ5nK − + 1√
2
Σ̄0iγ5 pK − + h.c.) ,

(6.41)

where gπ N N = m N
fπ

(D + F) ≈ 12.6, gηN N = m N√
3 fπ

(3F − D) ≈ 3.0, gKΛN =
m N +mΛ

2
√
3 fπ

(D + 3F) ≈ 6.4 and gKΣ N = m N +mΣ√
2 fπ

(D − F) ≈ 6.0, with D = 0.81 and

F = 0.44. In deriving these values, we neglected the isospin splitting. The detail of
the derivation is explained in Appendix D.

The P, CP-odd meson-baryon interactions contribute to the single nucleon EDM
through one-loop diagrams as shown in Figs. 6.2 and 6.3.

The calculation of the one-loop contribution of the nucleon EDM to the leading
chiral logarithm gives the following results:

dn = e

8π2 f 2π
(Au x (n)

u + Ad x (n)
d + As x (n)

s ), (6.42)

dp = e

8π2 f 2π
(Au x (p)

u + Ad x (p)
d + As x (p)

s ), (6.43)

with

x (n)
u = (D + F)〈p|ūu − d̄d|p〉 log m N

mπ

+ (D − F)〈p|d̄d − s̄s|p〉 log mΣ

mK
≈ 4.1,

x (n)
d = (D + F)〈p|ūu − d̄d|p〉 log m N

mπ

≈ 1.9,

x (n)
s = (D − F)〈p|d̄d − s̄s|p〉 log mΣ

mK
≈ 2.2,
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(a) (b)

(c) (d)

Fig. 6.2 Meson-loop contribution to the neutron EDM. The grey blob denotes the P, CP-oddmeson-
baryon coupling. Graphs (b) and (d) are strangeness contribution

(a) (b)

(c) (d)

Fig. 6.3 Meson-loop contribution to the proton EDM. The grey blob denotes the P, CP-oddmeson-
baryon coupling. Graphs (b) and (d) are strangeness contribution

x (p)
u = (D + F)〈p|d̄d − ūu|p〉 log m N

mπ

+ D − F

2
〈p|d̄d − s̄s|p〉 log mΣ

mK

+ D + 3F

6
〈p|d̄d + s̄s − 2ūu|p〉 log mΛ

mK
≈ −3.2,

x (p)
d = (D + F)〈p|d̄d − ūu|p〉 log m N

mπ

≈ −1.9,

x (p)
s = D − F

2
〈p|d̄d − s̄s|p〉 log mΣ

mK
+ D + 3F

6
〈p|d̄d + s̄s − 2ūu|p〉 log mΛ

mK
≈ −1.3.

(6.44)
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We also write down the case without strangeness contribution (K , Λ and Σ

neglected) for comparison.

x ′(n)
u = x ′(n)

d = −x ′(p)
u = −x ′(p)

d = (D + F)〈p|ūu − d̄d|p〉 log m N

mπ

≈ 1.9. (6.45)

In this case, we see that the proton and neutron EDMs have the same size and
opposite sign. From Eqs. (6.38) and (6.42), we can derive the well-known formula
of the neutron EDM generated by the isoscalar P, CP-odd pion-nucleon interaction
in the leading chiral logarithm approximation:

dn(ḡ(0)
π N N ) ≈ egπ N N ḡ(0)

π N N

4π2m N
ln

m N

mπ

. (6.46)

The detailed derivation of the above formula is given in Appendix D. By using
Eq. (6.28), we obtain the dependence of the neutron EDM on the θ -term [18]:

dn(θ̄) ≈ θ̄
egπ N N m∗
4π2m N fπ

〈p|ūu − d̄d|p〉 ln m N

mπ

≈ 2 × 10−16θ̄ e cm. (6.47)

We see that the neutron EDM is very sensitive to the θ -term.

6.4 Quark EDM Contribution to the Nucleon EDM

The next topic is the derivation of the nucleon EDM from the quark EDM. The
CP-odd electromagnetic form factor of the nucleon is given by

〈
N (p − q)

∣∣∣ j (em)
μ

∣∣∣ N (p)
〉

CPV
= −g2(q2)

2m N
ūN (p − q)σμνqνγ5uN (p), (6.48)

where uN is the nucleon spinor and qν is the momentum transfer. The EDM of the
nucleon dN is defined by the limit of zero momentum transfer of the CP-odd nucleon
form factor:

dN

e
≡ lim

q2→0

g2(q2)

2m N
. (6.49)

In the presence of the quark EDM operator, the leading contribution to the CP-odd
nucleon matrix element is

〈
N (p−q)

∣∣∣ j (em)
μ

∣∣∣ N (p)
〉

CPV
=

∑

q=u,d,s

−1

e

〈
N (p−q)

∣∣dqq̄σμνqνγ5q
∣∣N (p)

〉
, (6.50)
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where dq is the quark EDM. By taking the limit qν → 0 and the nucleon on-shell
after combining Eqs. (6.48) and (6.50), we see that the momentum transfer qν can
be factorized. The dependence of the nucleon EDM on the quark EDM is therefore
related to the tensor charge by

dN ūN σμνuN = dq〈N |q̄σμνq|N 〉. (6.51)

We can thus use the result of the lattice QCD calculation of the quark tensor charge
in nucleon (see Eq. (6.24)) to give the dependence of the nucleon EDM on the quark
EDMs. The QCD sum rules calculation gives also a consistent result within the
theoretical uncertainty [34].

It should be noted that the non-relativistic reduction of the tensor current gives
the spin density. Such a situation is realized in the non-relativistic constituent quark
model, which assumes that the nucleon is formed of three massive constituent quarks
with confining inter-quark potential and small spin/isospin dependent interactions.
The constituent quark model is known to work well in the hadron spectroscopy. The
tensor charge of the constituent quark in nucleon (or the quark EDM contribution to
the nucleon EDM) can be calculated with the SU (2) algebra, and is given as

dn(du, dd) = 4

3
dd − 1

3
du, (6.52)

dp(du, dd) = 4

3
du − 1

3
dd , (6.53)

with du and dd the EDMs of the u and d quarks, respectively. For the detailed
derivation, see Appendix E. We see that the non-relativistic constituent quark model
predicts a larger EDM than the lattice QCD result (6.24).

In watching this discrepancy, two sources of deviation can naïvely be inferred.
The first possibility is the dressing of the bare quark tensor charge (or the bare quark
EDM) by gluons, and the second one is the spin-dependent bound state effect. If
we assume that the non-relativistic quark model works well, this discrepancy should
originate in the gluon dressing of the tensor vertex of the quark.

The difference between the constituent quark model prediction and the lattice
QCD result is of O(1). As the hadronic level evaluation of other CP-odd quark
level operators involves much more theoretical uncertainties, we do not need to be
very sensitive on this discrepancy. In this thesis, we will use the results of the non-
relativistic constituent quark model (6.52) and (6.53) for simplicity.

6.5 Theta Term and Strong CP Problem

In QCD, there are many distinct classes of gluon field configurations which are not
connected by continuous gauge transformations. It is actually possible to assign to
each of them a distinct topological charge called winding number. There are also
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gauge transformations which can shift the winding number. This so-called “large
gauge transformation” can be generated with the following function [35]

Λ1(x) = x2 − d2

x2 + d2
+ 2idx · τ

x2 + d2
, (6.54)

where x and τ are respectively the spatial and internal SU (2) subgroup gauge coor-
dinates, and d an arbitrary parameter. This gauge transformation has an impressive
characteristic, it actuallymixes the external and internal coordinates. To obtain gauge
transformations which change the winding number arbitrarily, we simply have to
gauge transform the gluon field using the gauge function Λn(x) = [Λ1(x)]n. To
obtain a fully gauge invariant vacuum, we have to sum up all classes of vacuum
states with different winding number. The following coherent superposition of states
| m 〉 with winding number m satisfies the large gauge invariance:

| θ 〉 =
∑

m

e−imθ | m 〉, (6.55)

with θ an arbitrary real parameter which specifies the QCD vacuum. This is the
θ -vacuum. Under gauge transformation, the θ -vacuum behaves as

Un| θ 〉 = einθ | θ 〉, (6.56)

where Un is the large gauge transformation associated with the gauge function Λn .
With non-zero θ , we can reexpress the action by adding a new term. The generic
amplitude with QCD θ -vacuum can be written as

〈 θ | X | θ 〉 =
∑

m+, m−
ei(m+−m−)θ 〈 m+ | X | m−〉, (6.57)

where X is some operator. The shift of the winding number (m+ − m−) between
asymptotic initial and final states can be measured by the topological charge operator
∫

G̃G = g2s
64π2

∫
d4x εμνρσ Ga

μνGa
ρσ , as 〈m−| ∫ G̃G | m+〉 = m+ − m−. Applying it

to the generic amplitudes, we obtain

〈 θ | X | θ 〉 =
∑

m+, m−
〈 m+ | Xeiθ

∫
G̃G | m− 〉 = 〈 θ = 0 | Xeiθ

∫
G̃G | θ = 0 〉.

(6.58)
The above expression means that we can translate the general dynamics in the θ -
vacuum by the dynamics in θ = 0 vacuum with a new term Sθ = θ

∫
G̃G in the

action. This term is called the θ -term (see Eq. (6.5)), and has an important status
in the physics of CP violation. The θ -term is a total derivative, so it should not
be relevant in perturbation theory, but it is actually not invariant under the “large
gauge transformation”, and can have an important role at the non-perturbative level.
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Moreover, the existence of finite θ -term induces a sizable P and CP violation, as we
have seen previously.

We will now see that the θ -term is related to the chiral transformation. The θ -term
has the same form as the anomaly term relevant in the Ward identity of the axial (or
chiral) U (1)A current. The 4-divergence of the axial U (1)A current can be written as

∂μ jμ5 = 2

N f∑

q

mqq̄iγ5q + N f g2
s

16π2 Ga
μν G̃μν,a, (6.59)

where G̃μν
a ≡ 1

2ε
μνρσ Ga

ρσ , jμ5 ≡ ∑N f
q q̄γ μγ5q and N f is the number of flavors

for quarks. This is the concrete expression which describes the anomaly effect. The
physical meaning of the anomaly is the breakdown of the classical level symmetry
at the quantum level. Let us define the following “modified” chiral charge:

Q̃5 =
∫

d3x
{

j05 − K 0
}

, (6.60)

where K μ is defined such that ∂μK μ ≡ 2N f G̃G. The chiral transformation with
this modified chiral charge is conserved for massless quarks. Note that this chiral
charge is not gauge invariant. When we apply the gauge transformation Un which
changes the winding number by n, we have

Un Q̃5U−1
n = n(Q̃5 − 2N f ). (6.61)

This means that the θ -vacuum is modified by chiral rotations. The large gauge trans-
formation of the chirally rotated θ -vacuum (with angle α) is

Uneiα Q̃5 | θ 〉 = Uneiα Q̃5U−1
n Un | θ 〉 = ein(θ−2N f α)eiα Q̃5 | θ 〉 = ein(θ−2N f α)| θ−2N f α〉.

(6.62)
The chiral phase α and the parameter θ of the θ -vacuum can actually be transferred
to each other.

Let us now see the chiral transformation of quarks. The bare quark mass matrix
is in general not diagonal and may have complex phase. We assume that the quark
mass term has the following form

Lm = −q̄ ′
L m̂′q ′

R − q̄ ′
Rm̂′†q ′

L , (6.63)

where q ′
L/R and m̂′ are the bare quark and its mass matrix, respectively, with all

considered flavors. As the physical massmatrix m̂ should be real to have no tachyonic
quarks, the chiral rotation of the basis q ′

L/R = e∓iαUL/RqL/R , where UL/R is the
SU (N f ) unitary matrix diagonalizing m̂′, is needed to eliminate the axial U (1)A

phase α as
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Lm = −e2iα q̄LU †
Lm̂′URqR − e−2iα q̄RU †

Rm̂′†ULqL = −q̄L m̂qR − q̄Rm̂†qL ,

(6.64)
such that m̂ is diagonal and Im[det m̂] = Im[det(e2iαm̂′)] = 0 ⇔ 2N f α =
− arg(det m̂′). The total relevant θ -term is then

θ̄ = θ + arg(det m̂′). (6.65)

The physical effect of the θ̄ can be calculated with its contribution entirely trans-
ferred to the “P, CP-odd mass” ηq̄iγ5q via the chiral rotation. The quark mass
lagrangian can thus be expressed as

Lm = −q̄L M̂qR − q̄R M̂†qL = −
N f∑

q

mqq̄q − η

N f∑

q

q̄iγ5q, (6.66)

where M̂ is the quark mass matrix with the entire θ̄ contribution transferred, and η

the corresponding P, CP-odd quark mass. The parameter η should not depend on the
quark flavor since the effect of θ̄ was transferred via axial U (1)A transformation.
From this, it is evident that the P, CP-odd effects are suppressed for heavier quarks.
For QCD with 3 quark flavors, η satisfies the following relation

θ̄ = arg(det M̂) = arg[(mu + iη)(md + iη)(ms + iη)]. (6.67)

We thus have for small θ̄

η ≈ θ̄
mumdms

mumd + mums + mdms
≈ θ̄

mumd

mu + md
≡ θ̄m∗, (6.68)

where the second equality is the approximation for heavy strange quark mass. We
obtain finally the following replacement between the θ -term and the P, CP-odd quark
mass:

θ̄
g2

s

32π2 Ga
μν G̃μν,a ↔ −θ̄m∗

N f∑

q

q̄iγ5q. (6.69)

This replacement now gives us the possibility to calculate the hadron matrix element
of the P, CP-odd pion-nucleon vertex with the PCAC techniques, as described in
previous sections. It is therefore possible to estimate the physical contribution to the
observables such as the neutron EDM.We have seen that the θ -term of the QCDwas
strongly constrained by EDM experimental data. Crewther et al. have shown that the
neutron EDM experimental data constrain the parameter θ̄ to be less than 1 part of
1010 [18]. This remarkable fine-tuning can also be seen in many experimental data:

• Neutron EDM:
From the previous analysis [18] (see Eq. (6.47)) and the experimental upper limit
on neutron EDM (dn < 2.9 × 10−26e cm) [36], we obtain
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|θ̄ | < 1 × 10−10. (6.70)

• Decay of η meson [18, 37]:

Br(η → π+π−) = 1.8 × 102θ̄ . (6.71)

With the experimental data Br(η → π+π−) < 1.3 × 10−5eV [38], we obtain

|θ̄ | < 2.7 × 10−4. (6.72)

• EDMs of diamagnetic atoms [39, 40]:
Like the neutron EDM, these puts also via P, CP-odd pion-nucleon interactions severe
constraints on the θ -parameter.
From the experimental data of the EDM of 199Hg atom we have [39]

|θ̄ | < 3 × 10−10. (6.73)

From the experimental data of the EDM of 129Xe atom we have [40]

|θ̄ | < 7 × 10−7. (6.74)

All these results present strong arguments for the absence of physical contribution
of the strong CP lagrangian. This is in contrast to the physical contribution of the
anomalous

∫
G̃G contribution to the heavy η′ meson, which is believed to be the

solution to theU (1)A problem [41–44].This problem is called theStrong CP problem.
These data, although leaving a little possibility ofmiraculous accidental cancellation,
make us think of some mechanism that renders the parameter θ̄ to be unphysical.

One possible resolution to this problem was proposed by Peccei and Quinn, by
introducing a new field coupled to the Strong CP lagrangian, the axion [45]. Its
lagrangian (together with the Strong CP lagrangian) is given as follows:

La = 1

2
∂μa∂μa +

(
θ̄ + a(x)

fa

)
αs

8π
Ga

μν G̃μν,a, (6.75)

where a(x) is the axion field. This field is assumed to be the pseudo-Nambu-
Goldstone boson of some chiral U (1)PQ symmetry spontaneously broken at some
high energy scale fa . From this lagrangian, we see that if a vacuum expectation
value 〈a〉 = − fa θ̄ is developed by the axion, the Strong CP lagrangian becomes
irrelevant in the dynamics. We will see that this is exactly what happens. Let us give
the following effective lagrangian

L eff
a = 1

2
∂μa∂μa − K1

(
θ̄ + a

fa

)
− 1

2
K

(
θ̄ + a

fa

)2

+ · · · . (6.76)
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Coefficients K and K1 can be determined by the calculation of the correlators
involving the topological charge GG̃. First, we consider the case with only La +
LQCD. In this case, K1 vanishes since there are no way to annihilate the odd num-
ber of axions. The coefficient K is called the topological susceptibility, and can be
obtained by calculating the following correlator [41–44, 46, 47]

K = −i lim
k→0

∫
d4x eik(x−y)

〈
0
∣∣∣ T

{ αs

8π
Ga

μν G̃μν,a(x)
αs

8π
Gb

ρσ G̃ρσ,b(y)
}∣∣∣ 0

〉

≈ −m∗〈0|q̄q|0〉 + O(m2∗), (6.77)

where 〈0|q̄q|0〉 ≡ − f 2π m2
π/(mu + md) � −(0.280MeV)3 is a negative number.

For the derivation of Eq. (6.77), see Appendix C.We will then obtain a system which
dynamically chooses the vacuum such that θ̄ + 〈a〉/ fa = 0, which eliminates the
effect of theStrongCP term.This is one scenariowhich solves theStrongCPproblem,
called the axion mechanism. This spontaneous choice of the vacuum will of course
give massive excitations around 〈a〉 = − fa θ̄ with the mass of 1

fa

√−m∗〈0|q̄q|0〉.
The search for this axion particle gives null result at the present time, and the axion
is thought to be very light, constraining the scale of the U (1)PQ symmetry breaking
to be fa > 1010 GeV.

We now consider the linear term of the axion potential with K1 (the second term of
the right-hand side of Eq. (6.76)). This term is generated by the correlation between
the topological charge GG̃ and the P, CP-odd operator OC P . The coefficient K1 is
given as follows [30, 31]:

K1(OC P ) = −i lim
k→0

∫
d4xeik(x−y)

〈
0
∣∣∣ T

{ αs

8π
Ga

μν G̃μν,a(x)OC P (y)
}∣∣∣ 0

〉

= −i
∫

d4x

{
− 1

2N f
δ(x0 − y0)〈0|[ j05 (x), OC P (y) ]|0〉

− 1

N f

∑

q

〈0| T { mqq̄iγ5q(x)OC P (y) }|0〉
}

. (6.78)

For instance, the chromo-EDM contribution (OC P = − i
2dc

q q̄gsσ
μνGa

μν taγ5q) can
be written as

K1 = −m∗
2

∑

q=u,d,s

dc
q

mq
〈0|q̄gsσ

μνGa
μν taq|0〉. (6.79)

The derivation of K1 for the chromo-EDM is presented in Appendix C. The presence
of the linear term with K1 is important since the minimum of the axion potential
receives a shift, and thus generates an induced θ -term θind = −K1(OC P )/K [30, 31].
For the chromo-EDM, this gives the following induced θ -term:
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θind = −m2
0

2

∑

q=u,d,s

dc
q

mq
. (6.80)

This result has been used in Sect. 6.2.
For the Weinberg operator, the first term of the second equality of Eq. (6.78)

gives no contribution, since it involves no quark field operators. The second term is
also small, since isospin violation must occur to generate a pion from the isoscalar
Weinberg operator in the intermediate state. The θ -term induced by the Weinberg
operator is therefore suppressed by at least a factor of light quark mass.

6.6 Summary of Hadron Level Calculation

Here we summarize the dependences of the hadron level P, CP-odd interactions on
P, CP-odd quark level operators. These results will be used in our discussion.

• P, CP-odd π N N interactions:

ḡ(0)
π N N = 5.9 × 1013

dc
u + dc

d

cm
(6.81)

ḡ(1)
π N N = 1.0 × 1015

dc
u − dc

d

cm
−

∑

q ′=u,d,s,c,b

Cq′d
Fπ m2

π G F

2
√
2md

〈N |q̄ ′q ′|N 〉 (6.82)

• Neutron EDM:

dn = 4

3
dd − 1

3
du + 4.9edc

u + 2.3edc
d + 2.6edc

s , (6.83)

• Proton EDM:

dp = −1

3
dd + 4

3
du − 3.8edc

u − 2.3edc
d − 1.6edc

s , (6.84)

• P, CP-odd electron-nucleon interactions:

CSP
p =

∑

q=u,d,s,c,b

CSP
eq 〈p|q̄q|p〉 (6.85)

CSP
n =

∑

q=u,d,s,c,b

CSP
eq 〈n|q̄q|n〉 (6.86)

CPS
p =

∑

q=u,d,s,c,b

CPS
eq 〈p|q̄iγ5q|p〉 (6.87)

CPS
n =

∑

q=u,d,s,c,b

CPS
eq 〈n|q̄iγ5q|n〉 (6.88)
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