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Supervisor’s Foreword

The standard gauge theory of the interaction among quarks, leptons, and gauge
bosons is extremely successful in describing most of the strong and electroweak
phenomena. In spite of the success, there are a few phenomena that suggest the
current standard model might be an effective theory of the deeper fundamental
theory. One of the leading candidates for such theories is the supersymmetric
extension of the standard model (SUSY). The symmetry between fermions and
bosons naturally solves one of the theoretical concerns of the standard model, the
hierarchy and/or the fine-tuning problem. Since the construction of supersym-
metric theory more than some 30 years ago, tremendous efforts to search for its
signal have been made. In high-energy collider experiments, the production
of supersymmetric particles has been investigated directly. A complementary
approach is the low-energy precision test of the symmetry. The electric dipole
moment (EDM), which is a CP- and P-violating quantity, is one of the good
places to search for the new physics. The standard model, where the Cabibbo–
Kobayashi–Maskawa mechanism is the basic source of CP violation, makes an
extremely small contribution to flavor diagonal EDM. Currently, the EDM is
measured for a variety of systems such as the electron, neutron, atoms, and
molecules. Recent precise data of the EDM has started to constrain the models of
the new physics.

In this thesis, Nodoka Yamanaka has performed a systematic study of the EDM
to disentangle the structure of the Minimal Supersymmetric Standard Model
(MSSM) within R-parity-violating (RPV) interactions. The R-parity is defined
from the spin, the baryon, and lepton numbers, where a particle has opposite R-
parity from its supersymmetric partner. One of the achievements of the thesis is a
systematic study of the loop effects on the EDM and CP-violating fermion
interactions within RPV-MSSM. The elementary EDM of the fermions are then
used to evaluate the EDMs of hadrons, nuclei, and atoms by using the current
state-of-the-art procedure. The second feature of the thesis is the development of
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an analysis tool for the full RPV interaction space of the EDM instead of the
conventional single coupling dominance assumption. With this method together
with the proposed classification scheme of RPV couplings, complete exploration
of the RPV model space has been carried out, and the prospects of the coming
EDM experiments have been clarified.

Osaka, March 2013 Prof. Toru Sato
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Chapter 1
Introduction

The construction of the quantum chromodynamics [1–3] and the electroweak theory
[4] with three generations of fermions [5] lead to the establishment of the standard
model (SM) of particle physics. The SM has been able to describe consistently
many data from the accelerator experiments, and all particles except the Higgs boson
[6–11] within the model have been discovered so far. We can say that the SM is one
of the greatest success of modern physics.

However, despite this great success, particle physicists are not always satisfied
with the SM. The SM is actually known to have problems with phenomenology:

• The small mass of neutrinos is difficult to explain in the framework of the SM
[12].

• The CP violation due to the CKMmechanism is not sufficient to realize the abun-
dance of the matter in our Universe [13].

• The SM does not have candidates for cold dark matter and hence is not consistent
with observations [14–16].

• 73% of the energy the Universe is filled by the unknown dark energy which cannot
be explained in the SM. This fact is suggested by the observations of the type Ia
supernovae [17, 18].

• The gravity is not included in the SM.
• Recent experimental data, like the anomalous magnetic moment of the muon or
the decay asymmetry of the B hadron show discrepancies from the SM predictions
[19–21].

In addition, theoretical and convincing arguments against the SM also exist:

• Hierarchical problem due to the radiative corrections of Higgs scalar. The fun-
damental Higgs scalar poses a serious problem which requires the SM Higgs
parameter to be “ fine-tuned” (at the level of 10−34!!, if the fundamental scale is
the Planck scale).

• The choice of gauge group (SU (3)c × SU (2)L ×U (1)Y ) is ad hoc. Many particle
physicists believe that this needs the existence of a “Grand unification” of gauge
groups to explain.
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2 1 Introduction

• The spontaneous breaking of electroweak symmetry is introduced by adjusting the
Higgs potential, which is an ad hoc manipulation. The origin of the Higgs scalar
and its potential must be explained.

• The flavor structure and masses (Yukawa couplings) of quarks and leptons are
given ad hoc. The flavor seems to be arranged in three
generations, but their origin is not known.

All these theoretical arguments strongly suggest the existence of a new physics
beyond the SM. Especially, the fine-tuning problem due to the radiative correction of
Higgs scalar and the ad hoc choice of theHiggs potential give us a hint that the scale of
the new physics is relatively close to that of the electroweak symmetry breaking. The
problem of the fine-tuning with fundamental scalar particle merits some explanation.
The masses of fermions and gauge bosons (with no scalar in the theory) are protected
by symmetries. For example, the radiative corrections to the mass m of fermions
is δm ∝ m ln(Λ/m), where Λ is the cutoff of the effective theory. This can be
understood by the fact that the radiative correction cannot flip the chirality without
themass insertion, so that δm ∝ m. The radiative corrections to themass of the gauge
boson is ultimately kept zero by the gauge symmetry. The scale dependence of the
theory is then only logarithmic, and we have some stability in fixing parameters, such
as the masses of particles. When we insert a scalar particle in the theory, however,
the situation changes drastically. An example of the radiative correction of the scalar
mass at the one-loop level is shown in Fig. 1.1. After performing loop integrations,
we obtain that these one-loop corrections both lead to δm ∝ Λ2. What happens
in the case of the SM is that the Higgs scalar with mass around m2

H ∼ (100GeV)2

receives corrections of orderΛ2
Planck ∼ (1019GeV)2 if the fundamental scale is taken

to the Planck scale. This gives a 1034 times larger correction! The expected mass
of the Higgs boson is O(100GeV), so we must tune the parameter of the theory to
1 part in 1034, which seems to be very unnatural. As said above, this fact suggests
the existence of a new physics which incorporates the SM as an effective theory
near the scale of electroweak symmetry breaking. Theoretically, the resolution of the
fine-tuning problem is the most important requirement in constructing models with
new physics.

It is generally beleived that the supersymmetric extension of the SM is an impor-
tant candidate model with new physics. The supersymmetry was first introduced
by Wess and Zumino [22]. Thanks to many works, the supersymmetry acquired

(a) (b)

Fig. 1.1 One-loop correction to the scalar mass. Dashed lines represent the scalar propagator, and
solid lines the fermion propagator. a Is the correction due to scalar quartic interaction, and (b) is
the one-loop correction generated by Yukawa interaction
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a considerable popularity in particle physics. Compared with the other candidate
models with new physics, its phenomenological advantages is particularly interest-
ing [23–26]. Here we can list the following topics:

• The fine-tuning problem due to the radiative corrections of Higgs field can be
resolved.

• Soft supersymmetry breaking terms can induce the electroweak symmetry break-
ing.

• Lightest supersymmetric particles (LSP) can be candidates of dark matters.
• Soft supersymmetry breaking terms can provide new CP violating mechanisms.
• The three running gauge couplings have a better unification at high energy scale.

If the supersymmetry is the true symmetry of the nature, particles discovered so
far should have their supersymmetric partners with the same charges and masses.
These particles were of course not observed in any past experiments, so we should
think that the supersymmetry is a spontaneously broken symmetry. To keep the can-
cellation of the power divergences in radiative corrections, the supersymmetry must
be broken softly. We do not know the definite breaking mechanism of supersymme-
try, so the soft breaking terms are introduced by hand. The spontaneous breakdown
of supersymmetry is important in phenomenology, since it can provide a new mass
scale which is expected to be near above the electroweak scale. The price for intro-
ducing the supersymmetry breaking by hand is that we obtain more than 100 soft
breaking terms. The soft breaking terms all have mass dimension, and give masses
to the particles, which have not been discovered up to 1 TeV [27–31]. The gen-
eral soft breaking interactions can also have large flavor violation and CP phases,
which are also constrained phenomenologically [32]. Other than soft breaking terms,
the supersymmetric extension of the SM allows baryon or lepton number violating
interactions. These interactions are generated by a set of gauge invariant polynomials
of chiral superfields which do not conserve the baryon or lepton numbers, and are
calledR-parity violating (RPV) interactions. To prevent from such violation,we often
assume the conservation of R-parity. This manipulation is however ad hoc. A strong
argument to consider RPV interactions comes from the fact that many theoretical
physicists believe in the existence of a Grand unified theory of particles and interac-
tions. In Grand unified theories, there are no convincing reasons to distinguish RPV
interactions from the R-parity conserving matter fermion-Higgs interactions which
give fermion masses, or Higgs self-interactions. Thus it is natural to consider also
the violation of R-parity. Many studies of RPV interactions have been done [33–36].
These interactions can generate large baryon number, lepton number, flavor and CP
violations, and are therefore strongly constrained by phenomenology.

As discussed above, the models based on the supersymmetric extension of the SM
have been studied extensively. To test suchmodels, we can use the available data. But
we also need newdatawhichwill soon be available frommany on-going experiments.
The collider experiments at the LHC, through the direct production of new high
energy particles, can help to probe the masses of the supersymmetric particles or
their lower bounds. There are also many low energy experiments. The Super-K
experiments can probe the decay of protons, the mass differences and flavor mixing
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of neutrinos. The double beta decay experiments will search for the lepton number
violations. The muon decay experiments will probe the violation of lepton flavor.
Many available experimental results already give significant bounds on parameters
of the supersymmetric models, for both R-parity conserving and violating sectors.

In this thesis, we focus on the electric dipole moments (EDM), a promising experi-
mental observable which can probe the CP violation originated from the new physics
[37–41]. The search for large CP violation is a very important subject in particle
physics, since it is known that the CP phase of the CKM matrix cannot provide
enough CP violation to realize our matter abundant Universe. In searching for large
CP violation, the EDM is an excellent tools for many reasons. First, the EDM is a
very “clean” observable. The EDM receives a very small contribution from the SM,
due to the higher order effect of the CKM phase. It is also a static observable, so that
the final state interaction effects do not disturb the observation. The second important
advantage of the EDM is its high accuracy. Due to the strong experimental limits,
the EDM has constrained so far many parameters of many candidate models with
new physics including the supersymmetry.

The EDM is measurable in a variety of systems, ranging from the elementary
particles like the muon to the complex bound states such as molecules. The current
experiments already provide very accurate data for each of the systems. The exper-
imental techniques are being improved and many next generation experiments are
being prepared, such as the experiments using ultracold neutrons, storage rings, cold
molecular beams, ion trap method, etc.

The main objective of this thesis is to investigate the phenomenology of the
R-parity violation within the EDM experimental data. There were many previous
works in this subject, and many upper limits on the CP violation of the RPV interac-
tions were obtained [42–52]. The RPV interactions contribute to the EDM observ-
ables via two leading contributions. The first one is the EDM of quarks and charged
leptons, and also the chromo-EDMof quarks. The other contribution is due to the two-
body interactions between fermions (lepton-quark, 4-quark and 4-lepton). The tri-
linear RPV interactions which are the main focus of the study, contribute to the
fermion EDM starting from the two-loop level [43, 45]. This is due to the helicity
flip of the EDM operator and the structure of the RPV interactions. It was shown by
Godbole et al. that the the fermion EDM generated by the RPV contributions at the
one-loop level does not exist. The detailed analysis of the two-loop contributions to
the fermion EDM due to the R-parity violation was done by Chang et al. They found
that the Barr-Zee type two-loop diagrams give the leading contribution, with other
suppressed with more than one factor of light quark mass. The P, CP-odd 4-fermion
interactions are generated within R-parity violation by sneutrino exchange, and their
tree level effects have been studied [46–48].

The two elementaryP,CP-oddprocesses discussed above contribute to experimen-
tal EDM observables via intermediate mechanisms, and RPV interactions involved
can be constrained by the available experimental data of EDMs of neutron, atoms
and molecules. It was shown that the imaginary parts of many bilinears of RPV
couplings (λi j jλ

∗
ikk , λi j jλ

→∗
ikk and λ→

i j jλ
→∗
ikk , where i, j, k = 1, 2, 3) can be con-

strained via these two processes [43, 45–48]. It is noticed that in those analyses, the
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dominance of single RPV bilinears is assumed, and the interference between RPV
bilinears were neglected.

Recently, we have noticed that the previous calculation of the Barr-Zee type
diagram within R-parity violation was not correct [53]. Since the fermion EDM or
quark chromo-EDM receive the leading contribution from Barr-Zee type diagram,
the entire analysis of EDM within R-parity violation should be revised.

The purpose of this work is to rederive the fermion EDM and the quark chromo-
EDM generated from RPV interactions, and analyze the available EDM observables
(EDMs of neutron, atoms and molecule) with the corrected formula for Barr-Zee
type diagram together with the P, CP-odd 4-fermion interactions. We also predict the
EDMs for the planned experiments. As a first step of the extended analysis, we also
try to analyze the subleading contribution [54].

In Part I, we briefly review the framework of supersymmetry, the minimal super-
symmetric extension of the SM, and the R-parity violation, needed for deriving the
P, CP-odd elementary processes contributing to the EDM observables. In order to
evaluate the EDM of atoms, nuclei and hadrons, we need to investigate P, CP-odd
interactions at the hadronic, nuclear and atomic levels. At each level, we encounter
difficult many-body and non-perturbative physics. In this work, we use the best avail-
able information on those problems. Part II is a review of the subject on EDM. In Part
III, we describe our analysis of the R-parity violation within the EDM-constraints.
We first derive the fermion EDM and quark chromo-EDM within the two-loop level
Barr-Zee type diagram with detailed explanations of our corrections. Together with
the tree level P, CP-odd 4-fermion interaction, we then try to obtain upper bounds
on RPV couplings from the atomic, nuclear and hadronic EDM observables using
the consequences of the many-body physics presented in Part II. In doing this, we
have shown clear classification of RPV bilinears into six types, which clarifies the
dependences of the RPV couplings on EDM observables and helps our subsequent
analysis. The first step of our phenomenological analysis is to derive upper bounds
when single RPV bilinear is considered. This is an update of the previous analy-
ses, including the corrected formula for fermion EDM and quark chromo-EDM. In
the next step, we have analyzed RPV contribution to EDMs when all leading RPV
bilinears are relevant. In this analysis, the interference between RPV bilinears are
also taken into account, within a 10-dimensional parameter space. We also predict
the EDM observables for planned experiments. They are also compared between the
case of single RPV bilinear dominance and the case where interference can occur.
The prospect for each future EDM experiment is discussed from the point of view of
the determination of RPV couplings. After that, we present the investigation of one
of the subleading contribution to the EDM observables within R-parity violation, the
analysis on the P, CP-odd 4-fermion interactions at the one-loop level. This analysis
is done by assuming the dominance of one RPV bilinear. This analysis is interest-
ing since the atomic EDMs have a large sensitivity against the P, CP-odd 4-fermion
interactions and we can expect that even the subleading RPV contribution can be
constrained. It is also the first step of the extended analysis including the subleading
RPV contribution to EDM observables. The last chapter is devoted to the summary.
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Part I
Supersymmetry and R-parity Violation



Chapter 2
The Supersymmetry

2.1 Supersymmetry Algebra

The supersymmetry (SUSY) algebra can be explained by using the Wess-Zumino
model [1]. The Wess-Zumino lagrangian can be written as follows:

LW Z = 1

2
(∂μ A)2+ 1

2
(∂μB)2+ i

2
ψ̄∂/ψ − 1

2
(F2+G2)−m

(
1

2
ψ̄ψ − G A − F B

)
.

(2.1)
Here, A and B are complex scalar fields,ψ aMajorana spinor field, G and F auxiliary
fields (no kinetic term) with mass dimension 2. This Lagrangian is invariant (up to
a divergent term) under the following infinitesimal transformation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δA = i ᾱγ5ψ

δB = −ᾱψ

δψ = −Fα + iGγ5α + ∂/ γ5Aα + i∂/Bα

δF = i ᾱ∂/ψ

δG = ᾱγ5∂/ψ

. (2.2)

Here, α is an infinitesimal anti-commutingMajorana spinor parameter, and has mass
dimension − 1

2 .
We can generalize the SUSY transformation by using the SUSY generator Q

which is a Majorana spinor and obeys the following algebra:

[
Pμ, Qa

] = 0,
[
Mμν, Qa

] = −1

2
(σμν)ab Qb, (2.3){

Qa, Q̄b
} = 2Pμ(γ μ)ab,

where Mμν are the generators of the Lorentz transformation. These relations are from
a direct extension of the Poincaré algebra. The middle line of the above equations
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(commutation relation between Lorentz and supersymmetric generators) means that
the supersymmetric partner of a particle has spin which differs by 1/2. This describes
well the statement that “supersymmetry is symmetry between bosons and fermions”.
We must note that the last line is an anti-commutation relation, and gives a result
that creates momentum. This is an example of graded Lie-algebra (algebra with
anti-commutation), and its elements can mix with the space-time. We can think that
supersymmetry is part of the extended space-time geometry (we call it super-space).

2.2 Chiral Superfields and Superpotential

Let us now see how the supersymmetric field theory is formulated. It is known that
the general scalar function of the super-space has two terms which always give a
total divergence [for example, see the supersymmetric transformation of F and G of
Eq. (2.2)]. This property allowsus to construct the general supersymmetric lagrangian
by defining the scalar super-spatial function with the conditions of interest (gauge
invariance, renormalizability, conservation of given parities, etc), and taking these
terms invariant up to total derivative. This approach is called the superfield formalism,
and the lagrangian of the supersymmetric models is formulated in this manner.

The general scalar field of the super-space can be written as

Φ̂(x, θ) = S − i
∝
2θ̄γ5ψ − i

2
(θ̄γ5θ)M + 1

2
(θ̄θ)N + i

2
(θ̄γ5γμθ)V μ

+ i(θ̄γ5θ)[θ̄ (λ + i∝
2
∂/ψ)] − 1

4
(θ̄γ5θ)2[D − 1

2
∂2S ], (2.4)

where θ is the Grassmann Majorana spinor variable. Fields in the super-space are
called superfields. The supersymmetric transformation can be expressed in terms of
Grassmann variable θ as follow:

δΦ̂ =
[
ᾱQ, Φ̂

]
=

(
−ᾱ

∂

∂θ̄
− i ᾱ∂/ θ

)
Φ̂. (2.5)

The supersymmetric transformation of the above superfield Φ̂ is then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δS = i
∝
2ᾱγ5ψ

δψ = − 1∝
2

(
αM + iγ5αN + iγ μαVμ + γ5∂/S α

⎛
δM = ᾱ

(
λ + i

∝
2∂/ψ

⎛
δN = i ᾱγ5

(
λ + i

∝
2∂/ψ

⎛
δV μ = −i ᾱγ μλ + ∝

2ᾱ∂μψ

δλ = −iγ5αD − 1
2 [∂/, γμ]V μα

δD = ᾱ∂/ γ5λ

(2.6)
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We remark that the general superfield can be separated into three irreducible
multiplets which transform independently (up to total derivative). The first two are
the left- and right-chiral superfields, defined as

S = 1∝
2
(A ± i B), (2.7)

ψL/R = 1

2
(1 ∼ γ5)ψ, (2.8)

F = 1∝
2
(F ± iG) = 1∝

2
(M ∼ iN ), (2.9)

V μ = ±i∂μS , (2.10)

We see that by setting V μ, λ and D to zero, the supersymmetric transformation of
the Wess-Zumino model [see Eq. (2.2)] can be obtained. The fieldsS , ψL/R andF
thus form an irreducible supermultiplet. The left- (or right-) chiral superfield is used
in defining matter fields. The left-chiral superfield can be written as

ŜL = S + i
∝
2θ̄ψL + i θ̄ θLF , (2.11)

where θL ∗ PLθ . The supersymmetric transformation for the left-chiral scalar super-
field is ⎧⎨

⎩
δS = −i

∝
2ᾱψL

δψL = −∝
2FαL + ∝

2∂/S αR

δF = i
∝
2ᾱ∂/ψL

, (2.12)

where αL ∗ 1
2 (1 − γ5)α and αR ∗ 1

2 (1 + γ5)α.
The remaining third type supermultiplet, called the curl superfield, consists of

Fμν ∗ ∂μV ν − ∂νV μ, λ and D . The supersymmetric transformation of the curl
superfield can be written as

⎧⎨
⎩

δFμν = −i ᾱ[γ ν∂μ − γ μ∂ν]λ
δλ = −iγ5αD + 1

4 [γν, γν]Fμνα

δD = ᾱ∂/ γ5λ.

. (2.13)

This supermutiplet is used to express supersymmetric gauge fields. We should note
that for the curl superfield, it is not possible to set S , ψL/R and F to zero [see the
term with V μ in the second line of Eq. (2.6)]. The supersymmetric transformation of
this supermultiplet is in fact not irreducible. In gauge theories however, it is possible
to introduce an additional degree of freedom to remove this dependence.

By observing the supersymmetric transformation [Eq. (2.6)], we find that D is
only transformed by a total derivative. This fact suggests that the D component of
a general superfield is supersymmetric. The first idea for the construction of the
supersymmetric lagrangian is to take the component D (we call it the D-term) of a
field polynomial with the conditions of interest (gauge invariance, renormalizability,
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conservation of given parities, etc). By considering the D-term of the bilinear of
left- and right chiral superfields (Ŝ †

L ŜL ), we obtain the kinetic term as follows:

LD = ∂μS †∂μS + i

2
ψ̄∂/ψ + F †F . (2.14)

The bilinear Ŝ †
L ŜL is called the Kähler potential. The Kähler potential is generally

introduced to generate not only the kinetic terms, but also the gauge interactions
which will be explained in the next section.

In a general superfield, there is one more term which leaves only a total derivative
after supersymmetric transformation. This is the term with F in Eq. (2.11) (see
Eq. (2.12) for its supersymmetric transformation). As a general rule, polynomials of
left-chiral scalar superfields are also left-chiral superfields. It is therefore possible to
obtain the supersymmetric lagrangian by taking the F-term of some polynomial of
superfields with the conditions of interest. This left-chiral polynomial is called the
superpotential. In a renormalizable theory, the superpotential is a polynomial with
at most three factors of superfields, and the interaction lagrangian generated from it
is given by the following formula:

L f = −
⎫

i

⎬⎬⎬⎬⎬
∂ f̂

∂Ŝi

⎬⎬⎬⎬⎬
2

Ŝ=S

− 1

2

⎫
i, j

ψ̄i

⎡
⎣

⎠
∂2 f̂

∂Ŝi∂Ŝ j

)
Ŝ=S

PL +
⎠

∂2 f̂

∂Ŝi∂Ŝ j

)†

Ŝ=S

PR

⎤
⎦ψ j ,

(2.15)

where indices i and j denote the label of each superfield.
We see that the superpotential generates mass terms, mixing bilinears, Yukawa

and scalar 4-point interactions. By setting the superpotential f̂ → f̂WZ = mŜ 2,
the Wess-Zumino lagrangian (2.1) is obtained. For the supersymmetric extension
of the standard model, the superpotential is composed of quark, lepton, and Higgs
superfields.

2.3 Supersymmetric Gauge Theory

The next task is to extend the Kähler potential to include the gauge interaction. The
supersymmetric extension of gauge theories is less obvious than that of the matter
fields, due to the freedomassociatedwith the gauge transformation. It can be obtained
with the superfield formalism using Kähler potential. We will proceed in three steps
in constructing the supersymmetrizing gauge theories. The first step is to express
the gauge transformation in terms of the gauge potential superfield. The second is
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to couple gauge superfields to the chiral superfields, and the third is to construct the
gauge kinetic term.

We begin by defining the supersymmetrization of the gauge transformation. The
gauge transformation of the left-chiral superfield Ŝ (with components S , ψ and
F ) can be written as follow:

Ŝa(x̂, θ) =
[

e−igtAΩ̂A(x̂)
]

ab
Ŝb(x̂, θ), (2.16)

Here, we have defined the gauge transformation parameter Ω̂ as a superfield. Actu-
ally, the gauge transformation needs to be a left-chiral superfield (and consequently
so does the transformation parameter superfield Ω̂) in order to keep the field after
transformation a left-chiral superfield. This is due to the fact that the coordinate x̂
(∗xμ + i

2 θ̄γ5γ
μθ ) also has degrees of freedom in the Grassmann super-space. This

is also the result of the supersymmetric extension of the space-time. The gauge cou-
pling g is defined by the gauge covariant derivative Dμ ∗ ∂μ − ig Aμ

BtB where tB is
the generator of the gauge group. Note that the convention for the sign of the gauge
coupling in the Ref. [2] is opposite.

Our next step is to couple gauge superfields to the chiral superfields. For that, we
construct the Kähler potential containing the left- and right-chiral scalar superfield
in a gauge invariant way, and finally take its D-term to obtain the gauge invari-
ant lagrangian of chiral fields (We can avoid dealing with chiral interaction terms,
because these do not contain any derivatives).

We now introduce the gauge potential superfield Φ̂. Its gauge transformation can
be written as

e2gtAΦ̂ ↔
A = eigtP Ω̂

†
P e2gtAΦ̂A e−igtQΩ̂Q . (2.17)

By using this property, we can construct the following gauge invariant Kähler
potential:

K = Ŝ †e2gtAΦ̂AŜ . (2.18)

The gauge potential superfield can be expressed in the formof a general superfield,
but its components are not all physical (the scalar, fermion and auxiliary term), so we
need to eliminate the unphysical part. Actually, the gauge transformation of the left-
chiral scalar superfield can furnish the degree of freedom needed in the cancellation
of the unphysical components of the gauge potential. This gauge fixing is called the
Wess-Zumino gauge. We can think that the Wess-Zumino gauge fixing is a gauge
fixing over the super-space. After this fixing, the gauge potential superfield can be
written as

Φ̂A = 1

2
(θ̄γ5γμθ)(V μ

A + ∂μχA) + i θ̄γ5θ θ̄λA − 1

4
(θ̄γ5θ)2DA. (2.19)

Here, V μ, λ andD are respectively the gauge field, gaugino (the fermionic supersym-
metric partner of gauge boson) and the auxiliary D field. Since the gauge potential
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is real, the number of degrees of freedom that can be supplied is exactly one for the
abelian gauge theory ( N in SU (N ) gauge theories). This gives the free parameter
of the gauge theory, and the consistency is kept safe. This result is quite general and
works as well in the non-abelian case.

If we take the F-term of the Kähler potential in the Wess-Zumino gauge, we find

Lgauge = i

2
ψ̄∂/ψ + (∂μS )†(∂μS ) + F †F

− i(∂μS )†g(t · V μ)S + iS †g(t · V μ)∂μS + S †[gt · D + g2(t · V )2
]
S

+ 1

2
[gψ̄(t · V/ )ψL − gψ̄(t∇ · V/ )ψR]

+
(∝

2gS †tAλ̄A
1 − γ5

2
ψ + h.c.

⎛
, (2.20)

which is the final form of the gauge interacting supersymmetric chiral lagrangian.
Wemust now build the gauge kinetic term. For that, we construct a gauge invariant

left-chiral superfield from the gauge potential, and then take its F-term. Let us define
the following left-chiral (spinor) superfield

gtAŴA ∗ i

8
D̄DR

[
e−2gtC Φ̂C DLe2gtB Φ̂B

]
, (2.21)

where D, D̄, DL and DR are supercovariant derivatives defined as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D ∗ ∂

∂θ̄
− i∂/ θ

D̄ ∗ − ∂

∂θ
+ i θ̄∂/

DR ∗ PR D
DL ∗ PL D

. (2.22)

It is important to note here that the superfield ŴA is a spinor in the above construction.
This left-chiral superfield is actually gauge covariant in the adjoint representation,

like the field strength Fμν A (Indeed, the superfield e2gtAΦ̂A is not gauge covariant
and there was a necessity to bring a gauge covariant superfield). Thus we are led to
the idea of constructing a gauge invariant superfield by combining ŴA with another
left-chiral gauge covariant superfield which is transformed like ψ̄ under Lorentz
transformation. The only (renormalizable) possibility of such a combination is

Ŵ c
AŴA. (2.23)

Note that Ŵ c
A transforms covariantly under gauge transformation. We can now take

its F-term to give the lagrangian. After some manipulation, we obtain the following
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gauge kinetic lagrangian

LG K = i

2
λ̄A D/ACλC − 1

4
Fμν A Fμν

A + 1

2
DADA, (2.24)

where A and C are gauge indices in the adjoint representation, and

Fμν A ∗ ∂μVν A − ∂νVμA + g f ABC VμB VνC , (2.25)

(D/ λ)A ∗ ∂/λA − ig(tB V/B)ACλC . (2.26)

The final supersymmetric lagrangian isLG K +Lgauge. The derivation of the super-
symmetric gauge theory is carefully presented in the excellent book of Baer and
Tata [2].

2.4 Non-Renormalization Theorem

We have seen previously that the quadratic divergence of th e one-loop corrections
on the scalar mass is cancelled by the fermion loop. This helpful cancellation is due
to the general property of the supersymmetry, in which any loop corrections can be
written as a D-term, and F-terms do not receive any loop corrections. This is the non-
renormalization theorem. It means that the superpotential is not generated from loop
corrections. Since the mass of scalar particles is given by the superpotential, loops
cannot contribute to theirmass correction. Since thewave function renormalization is
at most logarithmic, the loop corrections to the scalar propagator (one-loop example
shown in Fig. 1.1) can also be at most only logarithmic, and thus leads to the absence
of the fine-tuning problem associated with the quadratic divergence of the Higgs
boson mass corrections. This aspect was first shown in Ref. [3] using the supergraph
methods, and directly in Ref. [4].
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Chapter 3
Minimal Supersymmetric Standard Model

3.1 Supersymmetric Extension of the Standard Model

The minimal supersymmetric extension of the standard model (SM) can be obtained
by taking the F- andD-terms of theKähler and superpotentials formulated previously.
The left-chiral superfields for quarks, leptons and Higgs should be combined with
the following conditions:

• SU (3)c × SU (2)L × U (1)Y gauge group.
• Three generations of quarks and leptons.
• Higgs potential with anomaly cancellation of the higgsino.
• Renormalizability.

In constructing the superpotential, the chiral-superfields listed in Table. 3.1 are
needed. The superpartners of leptons and quarks are named with a prefix s-(for
example, the superpartner of the quark is called squark). For the superpartners of
bosons, we add the suffix-ino (for example, the superpartner of the gauge boson is
called gaugino).

Wemust note that there are twoHiggs fields in the supersymmetric extension of the
SM. This is due to the fact that the superpotential cannot have a complex conjugate
Higgs field needed for generating the masses of up and down quarks. Therefore
we must introduce a new field which transforms in the conjugate representation of
SU (2)L . The second Higgs field is also needed for the cancellation of the chiral
anomaly of the higgsinos.

The supermultiplets of theMSSMmust be coupled to each other at the level of the
superpotential and the Kähler potential, following the gauge invariance and renor-
malizability. We remark here that if we construct the fully allowed superpotential,
some baryon and lepton number violating terms will also be allowed, such as

λi jkεab L̂a
i L̂b

j Êc
k , λ∝

i jkεab L̂a
i Q̂b

j D̂c
k , μ∝

iεab L̂a
i Ĥ b

u , λ∝∝
i jkÛ c

i D̂c
j D̂c

k , (3.1)

N. Yamanaka, Analysis of the Electric Dipole Moment in the R-parity 17
Violating Supersymmetric Standard Model, Springer Theses,
DOI: 10.1007/978-4-431-54544-6_3, © Springer Japan 2014
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Table 3.1 Chiral-superfields in the MSSM

Field SU (3)c SU (2)L U (1)Y

L̂ =
(

ν̂L

êL

)
1 2 − 1

2

Êc 1 1 1

Q̂ =
(

ûL

d̂L

)
3 2 1

6

Û c 3∼ 1 − 2
3

D̂c 3∼ 1 1
3

Ĥu =
⎧

ĥ+
u

ĥ0
u

⎪
1 2 1

2

Ĥd =
⎧

ĥ−
d

ĥ0
d

⎪
1 2∼ − 1

2

Quark and lepton fields are composed of 3 generations

where i, j, k denote the generation, and a, b are the SU (2)L indices (SU (3)c indices
were omitted). We can avoid the baryon/lepton number violation if we introduce the
following R-parity

R = (−1)3(B−L)+2s , (3.2)

where B, L and s are respectively the baryon, lepton numbers and spin. By imposing
this parity conservation, processes generated from the superpotential do not violate
baryon and lepton numbers. It is now possible to yield a renormalizable, gauge
invariant and R-parity conserving phenomenological supersymmetric extension of
the SM. We call it the minimal supersymmetric standard model (MSSM).

3.2 SUSY Breaking Terms

The supersymmetry requires the existence of a supersymmetric partner (sparticle)
which has the same properties and the same quantum numbers (especially the mass),
for each particle in the SM. However, no such sparticles have been observed so far,
so we must think that the supersymmetry is a spontaneously broken symmetry. As
discussed in the introduction, the mechanism of the spontaneous supersymmetry
breaking is not well known, and we need to break it by hand. To avoid the regener-
ation of the fine-tuning problem, we must break it without generating any quadratic
divergences. This is called the “Soft SUSY breaking”.

The classification of the soft SUSY breaking terms can be made by inspecting the
tadpole diagrams. Girardello andGrisaru [1] listed the following soft SUSY breaking
terms
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⎨⎩⎩⎩
⎩⎩⎩

μ2
1(A2 + B2) (mass shift of the scalar)

μ2
2(A2 − B2) (mass splitting of the complex scalar)

μ3λ̄λ (mass shift of the gaugino)
μ4(A3 − 3AB2) (scalar trilinear interaction)

. (3.3)

Including these terms in the MSSM, the resulting lagrangian breaks the supersym-
metry softly and is of the following form

Lsoft = −
[

Q̃†
i m2

Qi j
Q̃ j + d̃†

Ri m
2
Di j

d̃R j + ũ†
Ri m

2
Ui j

ũ R j

+ L̃†
i m2

Li j
L̃ j + ẽ†Ri m

2
Ei j

ẽR j + m2
Hu

|Hu |2 + m2
Hd

|Hd |2
]

− 1

2

[
M1λ̄0λ0 + M2λ̄AλA + M3g̃B g̃B

]

− i

2

[
M ∝

1λ̄0γ5λ0 + M ∝
2λ̄Aγ5λA + M ∝

3g̃Bγ5g̃B
]

+
[
(au)i jεab Q̃a

i Hubũ†
R j + (ad)i j Q̃a

i Hdad̃†
R j + (ae)i j L̃a

i Hdaẽ†R j + h.c.
]

+
[
(cu)i jεab Q̃a

i H∼
ubũ†

R j + (cd)i j Q̃a
i H∼

dad̃†
R j + (ce)i j L̃a

i H∼
daẽ†R j + h.c.

]
+ [ bHua Hda + h.c. ] , (3.4)

where λ0, λA and g̃B are respectively the gauginos for the U (1)Y , SU (2)L and
SU (3)c gauge groups. The matrices with flavor indices all have off-diagonal compo-
nents. All these SUSY breaking terms can have CP violating phases. We must note
here that although SUSY is broken softly by the gaugino bilinears (due to the gauge
invariance: cancellation of the tadpole diagram), but hardly by the chiral fermion
bilinears (i.e. generate quadratic divergence). In fact the chiral scalar field gains (or
loses) their mass, but the mass of the chiral fermion field is not shifted in the soft
SUSY breaking. The soft SUSY breaking lagrangian enlarges considerably the para-
meter space of the MSSM. After the introduction of SUSY breaking terms by hand
(field redefinition taken into account, c parameters neglected), the model has 124
parameters. To obtain the physical spectrum of the MSSM, we must diagonalize the
mass matrices. The detail is presented in Appendix A (see also Ref. [2]).

The study of the spontaneous breakdown of supersymmetry is a very rich subject
[3], but it is beyond the scope of this thesis.

3.3 Phenomenological Constraints on Supersymmetric SM

Since we do not know the true mechanism of the SUSY breaking, we are forced to
accept the huge number of SUSY breaking parameters. However, as seen previously,
the parameter space of the MSSM is restricted by phenomenology. In the following
we will review the constraints on the parameter space of soft breaking terms.
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Fig. 3.1 Example of production and cascade decay of sparticles. The final state terminates only
with neutral LSPs which bring high missing transverse energy

Constraints on sparticle masses from collider experiments

Sparticles, not discovered so far, are given lower bounds to their masses from high
energy collider experiments. The experimental principle for the detection of sparti-
cles is the measurement of high missing energy in collision processes. Particles in
the MSSM with R-parity conservation all decay successively (cascade decays, see
Fig. 3.1) to final state with the lightest supersymmetric particle (LSP), which yields
a large missing energy. The analysis of large missing energy with jet, lepton and
photon final states at the LHC has excluded colored sparticle masses (squarks and
gluino) less than 1TeV [4–6].

Constraints on flavor and CP violations

The data from experiments on testing fundemenal symmetries have provided useful
constraints on the soft SUSY breaking parameters, especially on the soft breaking
mass matrices of fermions [1st, 2nd, 5th and 6th lines of Eq. (3.4)] [7]. The most
known constraints are from the non-observation of the flavor changing neutral current
processes. The first type of constraint is the suppression of the quark flavor changing
neutral current, due to the K (sd̄), D (cū) and B (bd̄) oscillations (see Fig. 3.2).
Experimental results restrict the flavor off-diagonal components. The ratio between

the latter and flavor diagonal terms is approximately restricted to
δm2

q̃

m2
q̃

∗ O(10−3).

The CP violation of the K system yields also a constraint of same order to the
imaginary part of the squark mass matrices.

Fig. 3.2 Example of super-
symmetric δF = 2 process:
K 0 mixing
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Fig. 3.3 δF = 1 lepton
flavor violating process

Fig. 3.4 Mass correction to d
quark. There are also similar
contribution for other light
fermion

The second type of constraint is the δF = 1 flavor violating process. These
constraints apply to the lepton sector, and are obtained from the following flavor
violating process:

μ → e + γ . (3.5)

Of course, we can replace electron and muon by particles of other flavor. Figure3.3
shows its typical contribution. The experimental results give tight bounds especially
on the flavor off-diagonal component of the trilinear coupling [au , ad , ae ofEq. (3.4)].

The suppression is approximately
δm2

q̃

m2
q̃

∗ O(10−3) (processes involving the third

generation do not give strong constraint).

Flavor conservingprocesses can alsoyield restrictions.The third typeof restriction
comes from the mixing of fermion with their chiral partner (intra-generation mixing,
L ↔ R). This constraint applies only to the flavor diagonal components of the
trilinear interaction [terms with au, ad , ae in Eq. (3.4)], for both quarks and leptons.
The typical process is depicted in Fig. 3.4. This is a mass correction to fermions, and
it must not exceed their masses, so only the first and second generations suffer this
suppression.

Finally, measurement of the electric dipole moment constrains the imaginary part
of theflavor diagonal components. Figure3.5 shows itsmechanism.The experimental
results strongly constrain the imaginary part of the trilinear Higgs-sfermion-sfermion

Fig. 3.5 Contribution to the EDM. F is an arbitrary fermion
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Fig. 3.6 Unification of gauge coupling is better in MSSM than in the SM

interactions [termswith au, ad , ae in Eq. (3.4)]. The first generation (electron, u and d
quarks) is tightly constrained because the available experimental data depend mainly
on the first generation fermions. The EDM is the main subject of this thesis, and will
be studied in detail.

Renormalization group analysis

The supersymmetric extension of the SM has also an important impact on the renor-
malization group analysis. Since the quadratic divergences are removed by supersym-
metry, it is possible to extrapolate the parameters of the MSSM to very high energy
scale using the renormalization group. The inclusion of additional supersymmetric
degrees of freedom can deviate significantly the renormalization flow in the high
energy region. Surprisingly, the three gauge couplings have a very good unification
at 1016 GeV(= ΛGUT) in the MSSM [8] (see Fig. 3.6). This fact strongly suggests
that the MSSM is an effective theory of some underlying grand unified theory.

The soft breaking terms were also analyzed with renormalization group based
on the grand unification [9–13]. We suppose that the soft SUSY breaking terms are
also unified at the same scale as gauge coupling unification (ΛGUT) by imposing the
following universality relations

gGUT ∇ g1 = g2 = g3 , (3.6)

m1/2 ∇ M1 = M2 = M3 , (3.7)

m2
0 ∇ m2

Qi
= m2

Ui
= m2

Di
= m2

Li
= m2

Ei
= m2

Hu
= m2

Hd
, (3.8)

A0 ∇ At = Ab = Aτ , (3.9)

and evolve them along the renormalization group equations to obtain the sparti-
cle masses at the electroweak scale. The supersymmetric model obtained with these
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boundary conditions are called the constrained-MSSM (cMSSM). The gauge charges
of the particles have a strong influence on the evolution of the running of the para-
meters. As a consequence of renormalization group, the masses of colored particles
grows very fast, and the mass m Ei varies the least between ΛGUT and the elec-
troweak scale. One important feature of this renormalization group approach is that
the Yukawa coupling decreases the growth of the soft breaking masses. It was dis-
covered that for sufficiently large Yukawa coupling of the top quark, the Higgs
mass parameter becomes negative, and thus induces the spontaneous breaking of the
electroweak symmetry [14–19]. This is actually one of the strong argument which
supports the supersymmetric extension of the SM. In this thesis, the analysis will be
done without constraining the relative size of sparticle masses. In future work, the
result of renormalization group analysis will be taken into account.
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Chapter 4
R-parity Violation and Phenomenological
Constraints

4.1 R-parity Violating Interactions

TheR-parity violating (RPV) interactions are generatedby the following superpotential:

WR/ = μ∝
iεab L̂a

i Ĥ b
u + 1

2
λi jkεab L̂a

i L̂b
j (Êc)k + λ∝

i jkεab L̂a
i Q̂b

j (D̂c)k + 1

2
λ∝∝

i jk(Û
c)i

(D̂c) j (D̂c)k , (4.1)

with i, j, k = 1, 2, 3 indicating the generation, and a, b = 1, 2 the SU (2)L indices.
The sum is taken for each index. For the baryon number violating interactions (terms
with λ∝∝), the SU (3)c indices have been omitted. The lepton left-chiral superfields L̂
and Êc are respectively the SU (2)L doublet and singlet. The quark superfields Q̂,
Û c and D̂c denote respectively the quark SU (2)L doublet, up quark singlet and down
quark singlet left-chiral superfields, and Ĥu the up type Higgs left-chiral superfield.
TheRPV superpotential gives rise to the following baryon or lepton number violating
interactions (see Fig. 4.1).

LR/ =μ∝
i

[
ν̄i PL

(
h̃0

u

⎧c − ēi PL

(
h̃+

u

⎧c⎪ + h.c.

− 1

2
λi jk

[
ν̃i ēk PL e j + ẽL j ēk PLνi + ẽ†Rk ν̄

c
i PLe j − (i ∼ j)

⎪
+ h.c.

− λ∝
i jk

[
ν̃i d̄k PL d j + d̃L j d̄k PLνi + d̃†

Rk ν̄
c
i PL d j

− ẽLi d̄k PLu j − ũL j d̄k PLei − d̃†
Rk ēc

i PLu j

⎪
+ h.c.

− 1

2
λ∝∝

i jk

[
ũ†

Ri d̄ j PLdc
k + d̃†

R j ūi PLdc
k + d̃†

Rkūi PL dc
j

⎪
+ h.c. , (4.2)
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Fig. 4.1 Example of Yukawa interactions generated from R-parity violation. Arrows indicate the
lepton or baryon number flow

where PL ∗ 1
2 (1−γ5), and h̃u denotes the up type higgsino. The first three terms

in Eq. (4.2) are lepton number violating and the last term is baryon number violating.
There are also RPV scalar quartic interactions, but we do not consider them since
these interactions have less effects on observable.

We can also add the general soft SUSY breaking lagrangian in the RPV sector:

LR/soft = μ∝2
ui L̃i Hu + m̃2

di H†
d L̃i

+ mG̃

⎨
1

2
Aλ

i jkλi jk L̃i L̃ j Ẽc
k + Aλ∝

i jkλ
∝
i jk L̃i Q̃i D̃c

k + 1

2
Aλ∝∝

i jkλ
∝∝
i jkŨ c

i D̃c
j D̃c

k

⎩

+ h.c. , (4.3)

where thefield operatorswith tildes are the scalar component of the chiral-superfields.
The SU (2)L and SU (3)c indiceswere omitted, but fieldsmust be combined in a gauge
invariant way.

Asmentioned before, themotivation of eliminating theRPV interactions ismainly
to prevent the proton decay in the theory. However, there is no definite reasons to
forbid all RPV interactions. On the phenomenological ground, there is actually no
reasons to prefer R-parity conserved models than RPV models. Furthermore, the
RPV interactions can play roles in the grand unification. If we believe the grand
unification, the quarks and leptons should be embedded in the same multiplets, and
the conservation of R-parity seems to be incompatible. Many grand unified models
which effectively give RPV interactions at low energy have been studied [1–6].
From the point of view of the grand unification, there is no preference between the
R-parity conserving and RPV models, and all grand unification models do not have
any generic prediction for the size of the RPV interactions. (In string theories, it is
also possible to construct models with or without R-parity [7, 8]). We can say that
the study of RPV interactions has potential to provide us with knowledge about the
grand unification.

4.2 Bilinear R-parity Violation

The study of bilinear RPV interactions (mixing between lepton and Higgs) is inter-
esting by itself. The bilinear RPV interactions can be rotated away by redefining the
Higgs field as
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Ĥ ∝
da = μĤda + ∑

i εbaμ∝
i L̂b

i√
μ∝2 + μ∝2

1 + μ∝2
2 + μ∝2

3

, (4.4)

where the massive parameter μ of the first term in the numerator is the coefficient
of the mixing between up type and down type Higgs (the so-called μ-term of the
superpotential). This redefinition also converts the Higgs-fermion-fermion (stan-
dard Yukawa) terms of the superpotential to the RPV superpotential (for example,
εab Q̂a

i Ĥ b
u Û c

j → εab Q̂a
i L̂b

kÛ c
j ). This is the reason why we often treat bilinear and

trilinear RPV interactions separately. We must note that this rotation cannot get rid
of the bilinear RPV soft breaking terms. In the case where these soft breaking terms
are present, the sneutrinos also develop vacuum expectation value.

By using the above properties, it is possible to construct a scenario with R-parity
which breaks spontaneously using the following superpotential [9]:

f̂ =
∑

i, j=1,2,3

[
(fu)i jεab Q̂a

i Ĥ b
u Û c

j + (fd)i j Q̂a
i Ĥda D̂c

j + (fe)i j L̂a
i Ĥda Êc

j

+ (fν)i jεab L̂a
i Ĥ b

u ν̂c
j + (f)i j Φ̂ Ŝi ν̂

c
j

⎪
+ ( f0 Ĥu Ĥd − ε2)Φ̂, (4.5)

where Φ̂, Ŝi and ν̂c
i are the new chiral superfields with lepton numbers 0, −1 and +1,

respectively, and they are all with baryon number 0. The mechanism goes as follows.
First, the scalar potential gets vacuum expectation values in the directions of ν̃Ri ,
S̃i , Φ̃, h0

u and h0
d . These vacuum expectation values break the lepton number, thus

generating the effective bilinear RPV interaction (both the superpotential and the soft
breaking lagrangian). This can also be redefined in a basis with the RPV trilinear
superpotential and the vacuum expectation value of the sneutrinos. Note that this
spontaneous breakdown of R-parity does not change the proton life time since the
superpotential of Eq. (4.5) does not minimize to baryon number violating vacuum.

4.3 Phenomenological Constraints on Trilinear RPV Interactions

Many of the trilinear RPV interactions are constrained phenomenologically. We will
review in detail the most important ones.

Constraints from the Non-Observation of the Proton Decay

The simultaneous presence of lepton and baryon number violating RPV interac-
tions leads to proton decays (see Fig. 4.2). As the proton decay is not observed in
experiments, the combination of λ∝∝, λ or λ∝∝, λ∝ are strongly constrained [10–12].



28 4 R-parity Violation and Phenomenological Constraints

Fig. 4.2 Existence of both
baryon and lepton number
violating RPV interactions
induces proton decay

Table 4.1 Upper limits on combinations of RPV couplings from double beta decay experiments

RPV couplings λ∝2
111 λ∝

112λ
∝
121 λ∝

113λ
∝
131

Upper limits ([mSUSY]3) 7.7 × 10−6 4.0 × 10−7 1.7 × 10−8

[mSUSY]3 is the mass of the SUSY particle (d squark involved in the decay) in unit of 100GeV

Constraints from proton life time can be written as

|λ∝
i jkλ

∝∝
lmn| < 10−26 ↔ 10−11,

|λi jkλ
∝∝
lmn| < 10−11 ↔ 10−3, (4.6)

which set very strong upper limits [10–16]. Due to this result, we often assume in
theoretical analysis that baryon and lepton number violating RPV interactions do not
co-exist.

Constraints from Lepton Number Violating Processes

The non-observation of the neutrinoless double beta decay sets also strong constraints
on RPV couplings [13–21] (see Fig. 4.3).

The combinations of RPV couplings λ∝2
111, λ

∝
112λ

∝
121 and λ∝

113λ
∝
131 are constrained

as shown in Table4.1.
The effective Majorana mass of the neutrino can also be generated by lepton

number violating combination of RPV interactions [13–16, 22–24] (see Fig. 4.4). As
the neutrino (Majorana) mass is constrained by observation, it is possible to limit

Fig. 4.3 Example of neu-
trinoless double beta decay
amplitude induced from RPV
interactions
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Fig. 4.4 RPV contribution
to the Majorana mass of the
neutrino

RPV couplings contributing to the process. This gives a relatively tight constraint on
the RPV coupling λ∝

133: |λ∝
133| < 3.5 × 10−3.

Constraints from Precision Tests: Lepton Flavor Violating Process

Some combinations of RPV interactions are tightly constrained by lepton flavor
violating processes. Here we present the example of the flavor changing radiative
decay of charged lepton l → l ∝γ [13–16, 25] (see Fig. 4.5).

This process gives the following constraints on RPV interactions:

|λ∇
121λ122| < 5.7 × 10−5,

|λ∇
131λ132| < 5.7 × 10−5,

|λ∇
23kλ131| < 1.1 × 10−4,

|λ∝∇
2mkλ

∝
1mk | < 4.5 × 10−4,

|λ∝∇
23nλ

∝
13n| < 7.7 × 10−3,

|λ∝∇
233λ

∝
133| < 1.0 × 10−2,

|λ∝∇
1 jkλ

∝
3 jk | < 1.2 × 10−2, (4.7)

where k (= 1, 2, 3) and n (= 1, 2) denote the generation of charged leptons.

Constraints from Precision Tests: Rare Hadron Decays

Hadron decays are very sensitive probe of RPV interactions since they receive contri-
bution from the four-fermion interaction generated from R-parity violation [13–16,

Fig. 4.5 μ → eγ process
within RPV interactions
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Fig. 4.6 RPV contribution to
the K → πνν̄

26–31]. Here we will present the example of the semi-leptonic K + → π+νν̄ decay.
This K meson decay is induced by the following effective interaction (see Fig. 4.6)

LK = λ∝∇
i jkλ

∝
i ∝ j ∝k

2m2
d̃Rk

d̄ jγ
μ PLd j ∝ ν̄iγμνi ∝ − λ∝∇

i jkλ
∝
i ∝ jk∝

2m2
d̃L j

d̄kγ
μ PRdk∝ ν̄i ∝γμνi + h.c. . (4.8)

The branching ratio of the purely RPV K + → π+νν̄ decay is given by [28–31]

BRPV(K + → π+νν̄) = r+B(K + → π0e+νe)

16|Vus |2G2
F

∣∣∣∣∣∣
λ∝∇

i2nλ∝
j1n

m2
d̃Rn

− λ∝∇
in1λ

∝
jn2

m2
d̃Ln

∣∣∣∣∣∣
2

, (4.9)

where r+ = 0.901 is the isospin correction factor. The branching ratio of the K
decay into isospin partner is given by B(K + → π0e+νe) = (5.07 ± 0.04) × 10−2.
The above RPV branching ratio should not excess the discrepancy between exper-
imental data [32–35] and the standard model prediction [36]. Recently, experiment
has observed the rare K + → π+νν̄ decay, and the result is consistent with the stan-
dard model prediction. The RPV contribution is therefore constrained and should
not excess the error of Bexp − BSM, the difference between experimental value and
the standard model contribution. We do not consider the interference between RPV
and standard model contributions. The experimental value of the branching ratio of
the decay K + → π+νν̄ is [32–35]

Bexp(K + → π+νν̄) = (1.73+1.15
−1.05) × 10−10. (4.10)

The theoretical estimation of the standard model contribution is [36]

BSM(K + → π+νν̄) = (7.81+0.80
−0.71 ± 0.29) × 10−11, (4.11)

where the first error is related to the uncertainty of the input parameters and the
second one to the theoretical uncertainty. We obtain then the following inequality
for the bilinear of RPV couplings:
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4.1 ×
∣∣∣∣∣
λ∝∇

i2nλ
∝
j1n

[md̃Rn
]2 − λ∝∇

in1λ
∝
jn2

[md̃Ln
]2

∣∣∣∣∣
2

< 2.2 × 10−10, (4.12)

where the expression with [· · · ] denotes the mass of the sparticle in unit of 100GeV.
The right-hand side of the above equation is the error of Bexp − BSM. This gives then
the following bounds to the RPV couplings:

|λ∝∇
i2nλ∝

j1n| < 7.3 × 10−6[md̃Rn
]2 , |λ∝∇

in1λ
∝
jn2| < 7.3 × 10−6[md̃Ln

]2, (4.13)

where the dominance of the single bilinear of RPV couplings was assumed. Note
that we have not considered the interference of the RPV amplitudes with standard
model and R-parity conserving supersymmetric contributions.

This limit can be used to constrain RPV interactions with other flavors via fla-
vor mixing. The change from the current basis to the mass basis yields the change
d̄kdk∝ → d̄ ∝

kd ∝
k∝ � Vk∝1V ∇

k2s̄d + · · · for the quark bilinear in the effective lagrangian.
We then obtain the following upper limits

|λ∝
imk | < 5.7 × 10−3[md̃Rk

],
|λ∝

i3k | < 0.14 [md̃Rk
], (4.14)

where i, k = 1, 2, 3 and m = 1, 2.
Similar analysis holds for the B meson decays [37–40]. The effective lagrangian of

Eq. (4.8) involving bquark generates the followingpurelyRPVdecay B+ → Xsν j ν̄i ,
and can be expressed as follows [37]

BRPV(B+ → Xsν j ν̄i )

B(B+ → Xce+νe)
= 1

8G2
F |Vcb|2 fP S(m2

c/m2
b)

∑
k


⎛

∣∣∣∣∣∣
λ∝

i2kλ∝∇
j3k

2m2
d̃Rk

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
λ∝

ik2λ
∝∇
jk3

2m2
d̃Lk

∣∣∣∣∣∣
2
⎫⎬
⎡ ,

(4.15)
where fP S(x) = 1 − 8x + 8x3 − x4 − 12x2 ln x2 is the phase space factor. By
using the quark masses mc = 1.29+0.05

−0.11 GeV and mb = 4.19+0.18
−0.06 GeV [39, 40], we

obtain fP S(m2
c/m2

b) ≈ 0.5. The notations Xs and Xc denote the strange and charmed
hadronic final states respectively. From the review of Particle data group, we have
[39, 40]

B(B+ → K +νν̄) < 1.3 × 10−5, (4.16)

B(B+ → K ∇(892)+νν̄) < 8 × 10−5 , (4.17)

B(B+ → Xce+νe) = (10.8 ± 0.4) × 10−2, (4.18)

From the upper two inequalities, we have B(B+ → Xsνν̄) < 1×10−4. The standard
model prediction is BSM(B+ → Xsνν̄) < 5×10−5 [37]. By neglecting the standard
model contribution, we obtain the following bound to the RPV interactions:
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|λ∝
i2kλ

∝∇
j3k | < 5.8 × 10−4[md̃Rk

]2 , |λ∝
ik2λ

∝∇
jk3| < 5.8 × 10−4[md̃Lk

]2. (4.19)

As for the K → πνν̄ decay, the change from the current basis to the mass basis
can set limits to other combination of RPV couplings. The mixing between s and b
quarks gives the following bound

|λ∝
i3k | < 0.12[md̃Rk

]. (4.20)

where i, k = 1, 2, 3.

Constraints from Precision Tests: Electric Dipole Moments

The electric dipole moments of neutron, YbF molecule, 205Tl and 199Hg atoms can
set severe constraints on the CP phases between RPV couplings. This topic is the
main subject of this thesis and will be discussed in detail in Part III.

Constraints from Precision Tests: Universalities

The universality of the gauge coupling is an important tool to rule out the interactions
of new physics. If the universality of the weak coupling holds, the contribution from
the RPV must be embedded in the uncertainty of the standard model. This can
be applied to the RPV interactions by noticing that the weak decay of leptons
(or hadrons) can be mimicked by RPV amplitude with the same Lorentz structure
[41, 42].

Let us examine thedecays of leptons.The leptonnumber violatingRPV interaction
λi jk also contributes to the process. In Fig. 4.7, an example of the RPV muon decay
process is shown. This contribution can interfere with the muon beta decay, and leads
to the following redefinition of the Fermi weak coupling constant for the muon decay

G F√
2

= g2
2

8m2
W

⎣
⎠1 + m2

W

g2
2m2

ẽRk

|λ21k |2

⎤ . (4.21)

Similarly, the Fermi constants for the decays of τ lepton to electron and to muon
will be shifted by (m2

W /g2
2m2

ẽRk
)|λ31k |2 and (m2

W /g2
2m2

ẽRk
)|λ32k |2, respectively. The

decay ratios Rτμ ∗ Γ (τ− → μ−ν̄μντ )/Γ (μ− → e−ν̄eνμ) and Rτ ∗ Γ (τ− →
e−ν̄eντ )/Γ (τ− → μ−ν̄μντ ) will then be shifted by

Rτμ = [Rτμ]SM
⎦
1 + 2[(m2

W /g2
2m2

ẽRk
)|λ32k |2 − (m2

W /g2
2m2

ẽRk
)|λ21k |2]

}
, (4.22)

Rτ = [Rτ ]SM
⎦
1 + 2[(m2

W /g2
2m2

ẽRk
)|λ31k |2 − (m2

W /g2
2m2

ẽRk
)|λ32k |2]

}
. (4.23)
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Fig. 4.7 Example of process
with RPV interactions inter-
fering to the SM weak process
(example of muon decay)

The standard model prediction of these ratios are

[Rτμ]SM = 1.309 × 106,

[Rτ ]SM = 1.028. (4.24)

These values were calculated by taking into account the radiative corrections and the
running coupling [42]. The experimental values listed by the review of Particle data
group are [39, 40]

[Rτμ] = (1.315 ± 0.006) × 106,

[Rτ ] = 1.025 ± 0.003. (4.25)

The consistency between the experimental values and the standardmodel predictions
implies that theRPVcouplingsmust bewithin the experimental errors. The following
constraints can then be given:

|λ21k | < 0.05[mẽRk ],
|λ31k | < 0.03[mẽRk ],
|λ32k | < 0.05[mẽRk ], (4.26)

where k = 1, 2, 3. [ · · · ] denotes the mass of sparticles in unit of 100GeV. Here we
have also assumed the dominance of single RPV couplings.

Similar analysis holds for the decay ratios Γ (π− → e−ν̄e)/Γ (π− → μ−ν̄μ)

and Γ (τ− → π−ντ )/Γ (π− → μ−ν̄μ), and also for the decay ratios Γ (D0 →
μ+νμK −)/Γ (D0 → e+νe K −), Γ (D+ → μ+νμ K̄ 0)/Γ (D+ → e+νe K̄ 0) and
Γ (D+ → μ+νμ K̄ ∇(892)0)/Γ (D+ → e+νe K̄ ∇(892)0). These processes receive
contribution from lepton number violating RPV interactions λ∝

i jk , so it is possible to
constrain them. This method has the advantage to cancel the theoretical uncertainty
due to the meson form factors, and the ratio can be fully calculated in the standard
model. In these cases, the uncertainty of the CKM matrix elements Vud and Vcs has
to be taken into account. For detailed discussion, see Ref. [42].
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RPV at Colliders

TheRPVprocesses can also be observed in collider experiments [22, 41, 43, 44]. The
first type of manifestation of the R-parity violation is the resonance of the sneutrino
in pp collision, as shown in Fig. 4.8. The analysis of the data accumulated at the
LHC provides a stringent constraint on the coupling λ∝

311, if the τ sneutrino is the
LSP. The non-observation of such resonance gives λ∝

311 < 10−2 for m ν̃τ
= 1TeV

and λ∝
311 < 10−3 for m ν̃τ

= 100GeV [43, 44].
The other way to constrain RPV interactions is to analyze the displaced vertices

of the heavy particle decay. The typical process is the decay of the lightest neutralino
as shown in Fig. 4.9. No significant result was found at the LHC, and it was con-
cluded that the product between the production cross-section and the decay branching
fraction of the neutralino is less than 5pb for mq̃ = 1.5TeV [43, 44].

Constraints from Cosmology

The non-conservation of R-parity leads to the decays of lightest sparticles (LSPs)
(example of the decay is shown in Fig. 4.9) [13–16, 22]. This fact can disturb the cur-
rent picture of the Universe in two ways, and we need to constrain RPV interactions
in each case.

The first topic is the stability of the supersymmetric dark matters. The candidates
of dark matter in supersymmetric models are the lightest neutralino or sneutrino. To

Fig. 4.8 Example of
resonance process with RPV
interactions in collider search

Fig. 4.9 Neutralino decay
within RPV interactions
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reconcile the scenario of supersymmetric dark matters with the existence of RPV
interactions, the following constraint must hold:

|λi jk |, |λ∝
i jk |, |λ∝∝

i jk | < 10−21, (4.27)

for mSUSY = O(100GeV), where i, j, k = 1, 2, 3. Of course these limits do not
apply when the dark matter is not composed of supersymmetric particles.

If unstable LSPs with RPV interactions is larger than 10−20, there is a second type
of constraints. The LSPmust actually decay before the nucleosynthesis to not disturb
the nucleosynthesis [45]. The decay of LSPs before nucleosynthesis is translated to
the following lower bounds

|λi jk |, |λ∝
i jk |, |λ∝∝

i jk | > 10−12. (4.28)

The other cosmological source of strong constraints on RPV interactions is the
dilution of the baryon asymmetry [46–49]. The RPV interactions can dilute the
baryon number asymmetry of the Universe when the expansion rate of the Universe
is smaller than the decay rate of matter. The non-dilution of the matter imposes also
constraints on RPV interactions as follows:

|λi jk |, |λ∝
i jk |, |λ∝∝

i jk | < 1.6 × 10−7[m f̃ ]1/2 (T > m f̃ ),

|λi jk |, |λ∝
i jk |, |λ∝∝

i jk | < 1.6 × 10−6[m f̃ ]1/2 (T < m f̃ ), (4.29)

where [m f̃ ] is the mass of sfermions in unit of 100GeV. We must note that these
bounds do not apply simultaneously to all RPV interactions. It is possible to pro-
tect the baryon number asymmetry by imposing the above constraints to a fixed
generation.
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Electric Dipole Moments



Chapter 5
Backgrounds and Motivations for EDM Search

The study of the electric dipole moment (EDM) began in the measurement of
neutron EDM done by Purcell and Ramsey in 1949 [1]. Attentions were paid to
EDM, known as parity-odd observable, when parity violation was discovered in the
decay of polarized 60Co [2, 3]. Landau pointed out however that EDM can not probe
the parity violation since it is also time reversal-odd [4–6]. The time reversal symme-
try (or equivalently CP, within the assumption of CPT theorem) of the theory must be
broken to observe finite EDM. The parity (P) and time reversal (T) violations of the
EDM can be explicitly shown in the following way. Consider the EDM interaction
hamiltonian H = −d∝σ ∼ · E (the EDM is proportional to the spin unit vector ∝σ ∼
since it is the only vector quantity in the system). We then have

−d∝σ ∼ · E
P−∗ −d∝σ ∼ · (−E) = −H, (5.1)

−d∝σ ∼ · E
T−∗ −d(−∝σ ∼) · E = −H. (5.2)

After the CP violation in the K meson system was discovered [7], the importance of
EDM search was then fully recognized.

The EDM is an observable measurable in a variety of systems. It was tested
also for many atoms from 60’s. In 1963, Schiff gave the famous Schiff’s screening
theorem [8] which states that the EDM of non-relativistic, point-like components is
screened in a neutral electrostatically bound system. The EDM of components in
atoms suffers then from the screening due to the rearrangement of the system. Schiff
also pointed out the loopholes of the theorem. Atomic EDM can arise due to the
following mechanisms:

• Relativistic effect to electrons with intrinsic EDM.
• P, T-odd interactions between electron and nucleus.
• Finite size effect of the nucleus: the residual effect, the nuclear Schiff moment is
not screened by electron rearrangement.

The 70’s was an era of a great development for CP violation in theoretical
physics. Kobayashi andMaskawa predicted the existence of 6 quarkswith the famous
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Cabbibo-Kobayashi-Maskawa (CKM) mixing and successfully included the CP
violation in renormalizable theory [9]. The EDMs of neutron and electron were then
evaluated, but exhibited a very small contribution from the CKM matrix. This will
be shown in the subsequent chapter.

The potential role of the Strong CP lagrangian was also pointed out. The QCD
lagrangian can also have the Strong CP θ -term, which contributes to the P, CP
violation of the hadron sector. The θ -term has a large contribution to the neutron
EDM [10]. It is then possible to use the experimental data to constrain the size of
the θ -term. An extremely fine-tuned coupling θ (to better than one part in 109) has
been obtained. This unusual fine-tuning is known as the Strong CP problem. This
fact goes to the development of the dynamical relaxation of the Strong CP problem
introduced by Peccei and Quinn [11], which solves the problem by making the
θ -term unphysical while giving rise to the pseudo-Nambu-Goldstone boson, the
axion. The axions are still not discovered in experiment, and this subject is one of
the most important experimental challenges in particle physics.

While the CKM theory was very successful in describing CP violation in exper-
iments, it has also a serious problem in interpreting our matter abundant Universe.
Our Universe is thought to be initially empty of matter, and need satisfy some condi-
tions to dynamically generate baryon and lepton number asymmetries in a sufficient
manner. Sakharov pointed out the famous three criteria for realizing matter abun-
dant Universe [12, 13]: (a) The existence of baryon number violating interactions;
(b) Sufficient C and CP violations; (c) Departure from thermal equilibrium. In the
CKM theory, the CP violation (condition (b)) was estimated to be tooweak to explain
thematter abundant Universe. The baryon number asymmetry of our Universe is now
known to be one of the serious problem of the standard model (SM). We need there-
fore some new physics beyond the SM. The supersymmetric extension of the SM is
known to be one of the candidates of new physics which has the potential to solve
such problems and has been developed and analyzed by many theorists. The super-
symmetric extension of the SM can provide many CP violation via the soft breaking
terms, thus being a very interesting target of the EDM analysis. The CP violation
given by SUSY also has a large contribution to the EDM, and current experimental
data give constraints to the CP violating phases of soft breaking terms. It is then pos-
sible to constrain the CP phases of the supersymmetric SM from experimental data of
neutron and atomic EDMs by more than 2 orders of magnitude (when supersymmet-
ric particles have masses around TeV, which is preferred by the hierarchy between
the breakdowns of supersymmetry and electroweak symmetry). This unusual tuning
is called the SUSY CP problem. Studies of other models, such as the multi Higgs
doublet models [14–16], left-right symmetric models [17, 18], give also constraints
on the CP violation of the model considered.

Up to now the EDM searches give only null results in every system studied.
However, as seen above, the search and analysis of EDMs gave us many hints and
visions of what new physics look like, and stimulated the development of many
theoretical investigations. The search for EDMs are still one of the most important
challenges in particle physics, with the main goal: beyond the standard model.
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EDM has many advantages in searching new physics. Its experimental study can
be categorized in the low energy precision test of the SM, with lower cost than
high energy experiments using colliders. In General, the low energy precision tests
including EDMexperiments and high energy experiments are complementary in new
physics search. Moreover, the EDM can be measured in a variety of systems: the
EDMs of each system (neutron, atoms, molecules, muon, nuclei, etc) are sensitive to
their own parameter space of new physics, and each EDM is complementary. This
is one of the important motivations for the EDM search. Many EDM experiments
are now being planned or prepared to search for EDMs in a large variety of systems
[19]. The small SM contribution must also be emphasized. The CKM contribution
to the EDM is known to be be very small, due to the suppression in low orders
of perturbation. These more or less accidental suppressions give a very small SM
background on EDM,whichmakes the EDM to be a very good probe of new physics.
This topic will be discussed in detail later.

The sensitivity of the EDM on new physics in comparison with other experimen-
tal approaches is also remarkable. This can be illustrated by making a very naïve
comparison of the two experimental approaches. Let us assume that the contribution
of the new phyics to the EDM is from the one-loop mechanism with a O(1) coupling
with CP phase. For the neutron EDM dn , we then obtain

dn → Yqe

4π2MNP
→ 10−21

MNP/GeV
e cm, (5.3)

where MNP stands for the mass of the particles in the loop, and Yq is the quark
Yukawa coupling. If we interpret the mass of the intermediate particles to be the
scale of new physics, for dn < 10−26 e cm, we are probing new physics of the scale
of 100TeV. This value iswell beyond the current sensitivity of the present high energy
experiments (for LHC, ECM = 14 TeV). Of course, small CP phases or accidental
suppression of interactions contributing toEDMcan upset this argument, and probing
these scenarios is more or less limited, but this naïve comparison nevertheless tells
us the power and the potential of EDM experiments.

With all these arguments seen above, we can affirm that EDM is a very interesting
topic of particle physics, and this subject must be discussed.

There are now many EDM experimental data available for many systems. The
present experimental upper bounds of EDMs are given in Table 5.1. This table shows
the importance of the EDM search. The future plans of many experiments on EDM
have been made. The present planned neutron EDM experiments targets O(10−28) e
cm level sensitivity by increasing the ultracold neutron density stored in cells (PSI,
Los Alamos, RCNP-TRIUMF, J-PARC, etc). For paramagnetic atoms, the search
for the EDM of Francium is prepared in Tohoku university, aiming at O(10−28)
e cm. For the EDM of diamagnetic atoms, 129Xe (Tokyo Inst. Tech., O(10−30)
e cm), 225Ra (Argonne, O(10−28) e cm), radon (TRIUMF, O(10−29) e cm) are
planned. Searching for molecular EDMs is also planned in many facilities (with
ThO, PbO molecules, etc). The atomic and molecular EDM measurements have
known significant improvements with laser trap techniques. On the side of charged
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Table 5.1 Current experimental limits from direct EDM search and methods used in measurement

System Experimental limit (e cm) Techniques

Neutron dn < 2.9 × 10−26 Storage of Ultracold neutron [24]
205Tl atom dTl < 9.4 × 10−25 Beam of Tl atoms [25]
199Hg atom dHg < 3.1 × 10−29 Storage of Hg atoms in vapor cell [26]
129Xe atom dXe < 4.0 × 10−27 Spin exchange pumped maser [27]
YbF molecule (de < 1.05 × 10−27) Beam of YbF molecules [28]
Muon dμ < 1.8 × 10−19 Storage ring [29]

For the case of YbF molecule experiment, the corresponding limit to the electron EDM is shown

particles, muon (prospected sensitivity O(10−25) e cm), proton (O(10−29) e cm),
deuteron (O(10−29) e cm) EDM measurements are prepared at J-PARC and BNL.
The measurement of charged particles uses the new technique with storage ring
[20–23]. This new technological innovation opens up the possibility for the mea-
surement of light nuclei, such as the 3He nucleus.

To give constraints on parameters of new physics from EDM experimental data,
we need to analyze the hadronic, nuclear and atomic many-body physics [30–34].
The EDM of a composite system depends in fact on many underlying P, CP-odd
mechanisms and the relative sensitivity varies between systems. This is the reason
why the EDM data for different composite systems are complementary. The depen-
dence of EDMs on the underlying mechanisms are illustrated in Fig. 5.1.

The accuracy of the hadronic, nuclear and atomic level calculations is therefore
crucial for the search of new physics through EDMs. Details of these calculations
are explained in the subsequent chapters.

Fig. 5.1 Dependence of the EDM observables on the underlying P, CP-odd mechanisms [32]
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We will review in detail the many-body physics contributing to EDMs, the
prediction of the EDMs within the standard model and the constraints on super-
symmetry. In the next three chapters, we will see the detail of the hadronic, nuclear
and atomic many-body calculations. In Chap.9, we will review the prediction of the
small EDM in the standard model. In Chap. 10 we will present the constraints on
supersymmetry.
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Chapter 6
Hadron Level Calculation

The first many-body physics relevant to the evaluation of the electric dipole moment
(EDM) is the effects on the hadron level. In this chapter we present the calculations
of the contributions from the leading P, CP-odd hadronic mechanisms. The processes
considered are the nucleon EDM, P, CP-odd nucleon-nucleon interaction, P, CP-odd
electron-nucleon interaction due to the P, CP-odd quark level operators, the quark
EDM, quark chromo-EDM, gluon chromo-EDM (i.e. Weinberg operator), δ -term,
P, CP-odd 4-quark interaction, and the P, CP-odd electron-quark interaction. The
schematic dependences of the hadronic scale operators on the quark level operators
are shown in Fig. 6.1.

The P, CP-odd lagrangian on the hadron level

Lhadron = Ledm + LΛ N N + LeN , (6.1)

with

• the nucleon EDM

Ledm = − i

2

∑
N=p,n

dN N̄λμαγ5N Fμα, (6.2)

• the P, CP-odd pion-nucleon interaction

LΛ N N =
∑

N=p,n

3∑
a=1

[
ḡ(0)
Λ N N N̄ν a NΛa + ḡ(1)

Λ N N N̄ NΛ0 + ḡ(2)
Λ N N (N̄ν a NΛa − 3N̄ν 3NΛ0)

⎧
,

(6.3)
where a denotes the isospin index, and

• the P, CP-odd electron-nucleon interaction

LeN = − G F∝
2

∑
N=p,n

⎪
CSP

N N̄ N ēiγ5e + CPS
N N̄iγ5N ēe + 1

2
CT

N σμαΦλ N̄λμα N ēλΦλ e

⎨
.

(6.4)
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Fig. 6.1 Detailed flow diagram of the dependence of the hadron level P, CP-odd processes on
leading quark level P, CP-odd operators. The hadron level processes are shown in the left side and
the quark level operators in the right side. The Weinberg operator contribution is not discussed in
our analysis

The P, CP-odd nucleon-nucleon interaction receives the leading contribution from
one-pion exchange as shown in the flow chart of Fig. 6.1. It can be obtained by
combining the above P, CP-odd pion-nucleon interaction LΛ N N with the standard
P, CP-even pion-nucleon interaction (L = gΛ N N N̄ iγ5ν N · Λ ).

P, CP-odd quark level operators include the δ -term, quark EDM, quark chromo-
EDM, four-fermion interaction and the Weinberg operator (gluon chromo-EDM).
These operators with the lowest mass dimension, give the leading contribution to the
hadron level P and CP violations. The leading quark level P, CP-odd interactions are
the followings:

• δ -term:

Lδ = g2
s

64Λ2 δ̄ σμαΦλ Ga
μαGa

Φλ , (6.5)

• quark EDM:

LqEDM = − i

2

∑
q=u,d,s

dq q̄λμαγ5q Fμα, (6.6)
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• quark chromo-EDM:

LcEDM = − i

2

∑
q=u,d,s

dc
q gsq̄λμα taγ5qGμα

a , (6.7)

• P, CP-odd 4-quark interactions:

L4q = G F∝
2

∑
q,q∼=u,d,s,c,b

⎪
Cqq∼(q̄q)(q̄∼iγ5q∼) + 1

2
C ∼

qq ∼σμαΦλ (q̄λμαq)(q̄∼λΦλ q∼)
⎨

,

(6.8)
• P, CP-odd electron-quark interactions:

Leq = −G F∝
2

∑
q=u,d,s,c,b

⎪
CSP

eq q̄qēiγ5e + CPS
eq q̄iγ5qēe + 1

2
CT

eqθμαΦλ q̄λμαqēλΦλ e

⎨
,

(6.9)
• Weinberg operator [1]:

Lw = 1

6
w

G F∝
2

f abcθϕΩγ χGa
μϕGb

Ωγ Gμ,c
χ , (6.10)

where f abc is the SU (3) structure constant of the Lie algebra. (The Weinberg
operator will not be discussed in this thesis, since it is not relevant in our analysis.)

To obtain the P, CP-odd hadron level interactions, we need the results frommodel cal-
culationswhich needmany inputs, such as hadronmatrix elements, quarkmasses, etc.
Strong interaction processes should in principle be calculated within the framework
of the Quantum chromodymanics (QCD). However, we still do not have fully ana-
lytic non-perturbativemethods to calculate hadron level processes starting fromquark
level interactions. One way of calculating them in QCD is the Lattice QCD simula-
tion, which consists of numerical analysis usingMontecarlo techniques in discretized
space-time, but not many data for hadron matrix elements needed in EDM analysis
are currently available, and their calculations remain one of the important home-
work. On the side of model calculations, many results are available. Hadron matrix
elements needed in EDM analysis were essentially evaluated using non-relativistic
quark models, low energy theorems, chiral techniques and QCD sum rules [2]. In
this thesis, we mainly focus on the chiral approach using low energy theorems for
the evaluation of hadron matrix elements. The first reason of this choice is that many
calculations of hadron matrix elements are available. Since different models have
different source of errors, it is very important to use the same model for every hadron
matrix elements needed in the analysis. The second reason is the systematic estima-
tion of the precision of hadron matrix elements. We will also use the results from
ab initio lattice QCD calculations if available. In the following, we first examine the
quark contents of nucleon which are needed in many subsequent analyses. We will
then briefly review themethod using low energy theoremswhich provides us with the
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relation between quark level P, CP-odd operators and the P, CP-odd meson-baryon
couplings. After obtaining meson-baryon couplings, we will discuss the calculation
of nucleon EDMs using the chiral method. The Peccei-Quinn mechanism is then
reviewed. We finally summarize the results.

6.1 Quark Contents of the Nucleon

In the evaluation of the hadron level effective P, CP-odd interactions, we often need
the quark contents of the nucleon with suitable Lorentz structure. (for example, the
P, CP-odd electron-nucleon (e-N) interactions CSP

N N̄ N ēiγ5e = ⎩
q CSP

eq ∗N |q̄q|N →
q̄q ēiγ5e.) Explicitly, wemust calculate ∗N |q̄q|N →, ∗N |q̄iγ5q|N → and ∗N |q̄λμαq|N →
(N = p, n ; q = u, d, s, c, b). We begin first with the evaluation of the scalar content
of nucleon ∗N |q̄q|N →. The physical meaning of these matrix elements is the fraction
of the quark mass over the nucleon mass. In the classic phenomenological approach
using SU(3) symmetry and breaking with baryon mass splitting [3, 4], and the u, d
quark content of the nucleon (the so-called λ term, λ ↔ mu+md

2 ∗p|ūu + d̄d|p→ =
55 ∇ 75MeV [5]), we obtain the following values:

∗p|ūu|p→ = 7.7, (6.11)

∗p|d̄d|p→ = 6.9, (6.12)

∗p|s̄s|p→ = 4.2, (6.13)

where we have equated the proton-neutron mass splitting ∗p|ūu − d̄d|p→ = m0
p−m0

n
mu−md

,

theΞ -κmass splitting ∗p|ūu + d̄d −2s̄s|p→ = 3mΞ −mκ

ms
and the λ -term above. The

recent values of the quark and baryon masses have been used, with mu ≈ 2.5MeV,
md ≈ 4.9MeV, ms ≈ 100MeV, m0

p − m0
n = −2.05 MeV (nucleon masses without

electromagnetic contribution), mΞ = 1321 MeV and mκ = 1116 MeV [6–8]. The
quark contents of the nucleon were also evaluated in lattice QCD [9–13]. The u
and d quark contents are in agreement with lattice QCD simulations, and the result
shows that the chiral expansion in u and d quark masses works well. The strange
quark content of the nucleon merits a short discussion. The earlier quenched lattice
QCD simulations for ∗N |s̄s|N → showed agreement with the classic value (Eq. 6.13).
However, recent lattice analyses with dynamical quarks indicate that the strange
content of the nucleon is suppressed about one order compared with the classic
values. This can be understood by the suppression of disconnected quark loop (sea
quark) contribution. In this analysis, we adopt the results of the lattice QCD analyses
with dynamical quarks [10–13]. Calculations present a small result with

∗p|s̄s|p→ = ∗N |s̄s|N → ≈ 0.1 , (6.14)
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derived with ms = 100MeV. This disagreement shows that the chiral expansion
in terms of strange quark mass is rather difficult. The result of Eq. (6.13) was from
using the first order expansion of the strange quark mass. However, higher order
corrections can be important since ms is far from the chiral limit. For these reasons,
we will use the result of lattice QCD calculations (∗p|s̄s|p→ ≈ 0.1) [10–13] in this
thesis.

The charm and bottom quark contributions can be calculated by using the heavy
quark expansion [3, 4]. The leading order contribution of the heavy quark condensate
is given by

∗N |Q̄ Q|N → ≈ −
〈
N

∣∣∣∣ ϕs

12Λm Q
Gμα,aGμα

a

∣∣∣∣ N

〉
+ O

(
1

m2
Q

)
, (6.15)

where Q stands for heavy quark. By neglecting higher order terms of O(1/m2
Q), we

obtain

∗N |c̄c|N → ≈3 × 10−2, (6.16)

∗N |b̄b|N → ≈1 × 10−2, (6.17)

where the quark masses mc = 1.3GeV and mb = 4.2GeV were used [6–8].
We now calculate the matrix element ∗N |q̄iγ5q|N → by using PCAC and axial

anomaly [14] to get

∗p|q̄iγ5q|p→ = m N

mq

(
Δq ∼ + ϕs

2Λ
Δg

)
, (6.18)

where Δq ∼ is the fraction of the axial vector current of the quark q in the proton, Δg
is defined by ∗p|Tr Gμα G̃μα |p→ = −2m N Δgū piγ5u p [14], where Gμα is the gluon
field strength and G̃μα its dual. We use Δu∼ = 0.82, Δd ∼ = −0.44, Δs∼ = −0.11
[15, 16], (ϕs/2Λ)Δg = −0.16 [14] and the recent values of quark masses cited
previously. This gives

∗p|ūiγ5u|p→ = 248, (6.19)

∗p|d̄iγ5d|p→ = −115, (6.20)

∗p|s̄iγ5s|p→ = −2.5. (6.21)

The pseudoscalar condensate of the bottom quark can also be calculated in heavy
quark expansion [3, 4]. The leading order contribution is given by

∗N |Q̄iγ5Q|N → ≈ −
〈
N

∣∣∣∣ ϕs

8Λm Q
Gμα,aG̃μα

a

∣∣∣∣ N

〉
+ O

(
1

m2
Q

)
. (6.22)
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This gives

∗N | c̄iγ5c |N → ≈ −9 × 10−2,

∗N | b̄iγ5b |N → ≈ −3 × 10−2. (6.23)

Again, higher order corrections were neglected.
The calculation of the tensor matrix element was done in quenched lattice QCD

with the Wilson quark [17]. The result is

∗p|ūλμαu|p→ = (0.839 ± 0.060) p̄λμα p,

∗p|d̄λμαd|p→ = −(0.231 ± 0.055) p̄λμα p,

∗p|s̄λμαs|p→ = −(0.046 ± 0.034) p̄λμα p. (6.24)

Here the strange quark tensor charge receives purely disconnected contributions. All
these results suffer from a large finite volume effect, and it is difficult to determine
the strange quark tensor charge.

6.2 The PCAC Techniques and the P, CP-Odd Meson-Baryon
Interactions

Wenowexplain several calculational techniques. Thefirst one is thePCAC technique.
The quark sector of QCD at a few hundred of MeV is known to have approximately
chiral flavor SU (3)L ×SU (3)R×U (1)V symmetry.Quarks have smallmasses,which
explicitly break the axial SU (3) symmetry, but this symmetry breaking is quite small
compared to the scale of confinement, so an approximate relation for axial currents
is possible. This is the partially conserved axial vector current (PCAC) relation. One
of the important consequence of PCAC is the soft-pion theorem:

∗Λc Ba | Oi | Bb→ ≈ i

fΛ
∗Ba | [Oi , (J c

5 )0] | Bb→, (6.25)

where B is an SU (3) octet baryon state and (J c
5 )0 the axial charge. The baryon field

and the Nambu-Goldstone boson (meson) field Λc are defined as

Λc = M =

⎛
⎫⎫⎬

Λ0∝
2

+ η0∝
6

Λ+ K +

Λ− − Λ0∝
2

+ η0∝
6

K 0

K − K̄ 0 −2 η0∝
6

⎡
⎣⎣⎠, (6.26)
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and

B =

⎛
⎫⎫⎬

Σ0∝
2

+ κ0∝
6

Σ+ p

Σ− −Σ0∝
2

+ κ0∝
6

n

Ξ− Ξ0 −2κ0∝
6

⎡
⎣⎣⎠. (6.27)

The right-hand side of the PCAC relation receives corrections from meson rescatter-
ing. Since we are interested in very low energy meson exchange, this contribution
can be ignored. This relation is part of the low energy theorem, and is often said to
be model independent. It can be used to reduce the P and CP violating hadron matrix
elements with external meson to the P and CP-even hadron matrix elements without
external meson, and so it will be used here to calculate the P, CP-odd meson-baryon
couplings (for example, ḡ(0)

Λ N N , ḡ(1)
Λ N N , ḡ(2)

Λ N N ).
An important example is the calculation of the δ -term contribution to the neutron

EDM [18]. The δ -term (Eq. 6.5) is related via the chiral anomaly to the CP-odd
quark mass LCPVM = −δ̄m≈(ūiγ5u + d̄iγ5d + s̄iγ5s) (with m≈ ↔ mumd

mu+md
), and

the parameter δ̄ can be transferred to each other. By applying the PCAC relation to
∗NΛa |LCPVM | N →, we obtain

ḡ(0)
Λ N N (δ̄) = δ̄m≈

fΛ
∗N | q̄ν 3q | N → ≈ 0.015δ̄ , (6.28)

where q = u, d. The hadronmatrix elements ∗p| ūu | p→ and ∗p| d̄d | p→were derived
from the proton and neutron mass splitting (see previous chapter). The strange quark
contribution was neglected since it is of the order of m≈/ms .

Another important example of calculation using the PCAC relation is the calcula-
tion of the chromo-EDMcontribution to themeson-baryon couplings. The discussion
below follows the paper of Hisano and Shimizu [19, 20]. After using the PCAC rela-
tion, we obtain the following contribution to the P, CP-odd pion-nucleon couplings:

∗BaΛc|LcEDM|Bb→ =
∑
q,q ∼

1

fΛ
dc

q∗Ba | q̄gs Gμα
a λμα taTcq | Bb→ , (6.29)

where Tc is the generator of the flavor SU (3) symmetry, and ta the one of the color
SU (3). The values of these condensates are not calculable with chiral techniques. For
the evaluation of the mixed condensate in nucleon ∗Ba | q̄ ∼gs Gμα

a λμα taTcq | Bb→, we
use the relation based on QCD sum rules [21–23] with the saturation of the lightest
0++ state and the low energy theorem [24] adopted in Refs. [3, 4, 25–27] to write

∗Ba | q̄gs Gμα
a λμα taTcq | Bb→ ≈ 5

3
m2

0∗Ba | q̄Tcq | Bb→, (6.30)

where m2
0 ↔ ∗0| q̄gs Gμα

a λμα taq | 0→/∗0| q̄q | 0→ ≈ 0.8 (GeV)2 [21–23, 28, 29]. For
the derivation, see Appendix C.
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The result of the δ -term and chromo-EDM contributions can then be regrouped
to get the following expression:

∗BaΛc|Lδ+cEDM|Bb→ ≈
∑

q

1

fΛ

(
2ϕqmq + 5

3
dc

qm2
0

⎤
∗Ba | q̄Tcq | Bb→

=
∑

q

1

fΛ
∗Ba | q̄{Tc, A}q | Bb→, (6.31)

where
⎩

q ϕq = δ̄ . A = diag(Au, Ad , As) is the flavor SU (3) breaking effect, with
components

Aq = ϕqmq + 5

6
m2

0dc
q . (6.32)

If we assume that the Peccei-Quinn symmetry and the axion mechanism hold, the
δ -term contribution will become unphysical. We can then expect the term with ϕq to
vanish. However, it is known that the chromo-EDM can induce the δ -term even in the
presence of the axionmechanism [30, 31]. The induced chromo-EDMcontribution is

ϕq = −m2
0

2

dc
q

mq
, (6.33)

so that

Aq = −m2
0

2
dc

q + 5

6
m2

0dc
q = m2

0

3
dc

q ≈ 0.27dc
q GeV. (6.34)

We will see the derivation of the contribution of the chromo-EDM to the induced
δ -term under the axion mechanism later in Sect. 6.5.

By considering the flavor SU (3) breaking matrix element of Eq. (6.31), we obtain
the following P, CP-odd meson-baryon interaction:

LC PV = 1∝
2 fΛ

⎦∗p|s̄s − d̄d|p→Tr(B̄ B{M, A})

+ ∗p|ūu − d̄d|p→Tr(B̄{M, A}B)

+2∗p|d̄d|p→Tr(AM)Tr(B̄ B)
]
. (6.35)

The relevant P, CP-odd meson-baryon lagrangian is

LC PV = ∗p|s̄s − d̄d|p→∝
2 fΛ

⎪
(Ad + As)Σ̄

+ pK̄ 0 + (Au + As)

(
Σ̄0

∝
2

+ κ̄∝
6

⎤
pK −

+(Au + As)Σ̄
−nK − + (h.c.) − 4∝

6
As p̄ pη0

⎨
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+ ∗p|ūu − d̄d|p→∝
2 fΛ

⎪
(Au + Ad) p̄nΛ+ − 2∝

6
(Au + As) p̄κK + + (h.c.)

+ 2Au p̄ p

(
Λ0

∝
2

+ η0∝
6

⎤
− 2∝

2
Adn̄nΛ0

⎨

+ 2∗p|d̄d|p→∝
2 fΛ

(
Au − Ad∝

2
Λ0 + Au + Ad − 2As∝

6
η0
⎤

( p̄ p + n̄n),

(6.36)

where +(h.c.) means that we add the hermitian conjugates of the terms in its left side.
From this we can derive the P, CP-odd pion-nucleon interactions:

LΛ N N = 1

2 fΛ
(Au+Ad)∗p|ūu−d̄d|p→N̄ν a NΛa+ 1

2 fΛ
(Au−Ad)∗p|ūu+d̄d|p→)N̄ NΛ0.

(6.37)
The P, CP-odd pion-nucleon couplings can be explicitly written as

ḡ(0)
Λ N N (δ̄ , dc

q) = 1

2 fΛ
(Au + Ad)∗p|ūu − d̄d|p→, (6.38)

ḡ(1)
Λ N N (δ̄ , dc

q) = 1

2 fΛ
(Au − Ad)∗p|ūu + d̄d|p→. (6.39)

For the case of P, CP-odd 4-quark interaction, the vacuum factorization approxi-
mation can be used. Combinedwith the PCACmethod, we get the following relation:

ḡ(1)
Λ N N (Cqd) =

∑
q=u,d,s,c,b

∗Λ0N |Cqd
G F∝
2

q̄q d̄iγ5d|N →

≈
∑

q=u,d,s,c,b

Cqd
G F∝
2

∗Λ0|d̄iγ5d|0→∗N | q̄q|N →

= − FΛ m2
Λ G F

2
∝
2md

∑
q=u,d,s,c,b

Cqd∗N | q̄q|N →. (6.40)

We should note that in this discussion, we have not considered the vacuum con-
densation of the neutral mesons, which, combined with the CP-even pion-nucleon
interaction, can generate an additional contribution to the CP-odd pion-nucleon inter-
action. This effect may be important as it contributes to the same chiral order as the
CP-odd pion-nucleon coupling calculated in this section (see Fig. 3 of Ref. [2] and
the corresponding discussion).
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6.3 Nucleon EDMs with Chiral Method

Let us move to the evaluation of the nucleon EDM. The one-loop term in the
expansion of the nucleon EDM has “chiral logarithm” ln(mΛ/κ) (κ is some hadron
scale cutoff). This termappears to be independent of the chiralmodel chosen [32, 33].
The idea is to consider this termas the leading term in the chiral expansion.The expan-
sion of the nucleon EDM in the chiral perturbation theory has also divergent terms
at the one-loop level, which give the renormalization of the low energy constant of
the tree level and have to be determined for accurate calculation. In the present case
we consider the leading chiral logarithmic terms to be the dominant contribution,
although the theoretical uncertainty is as large as order one. The improvement of
the accuracy of the nucleon EDM calculation is an important subject which must
be treated in the near future. We will return to this subject briefly in the final sum-
mary. With the above assumption, the chiral contribution to the nucleon EDM can
be evaluated using the following chiral lagrangian.

Lm B B ≈ − gΛ N N p̄iγ5 pΛ0 − ∝
2gΛ N N ( p̄iγ5nΛ+ + h.c.) − gηN N p̄iγ5 pη0

+ gKκN ( p̄iγ5κK + + h.c.)

− gKΣ N (Σ̄+iγ5 pK̄ 0 + Σ̄−iγ5nK − + 1∝
2
Σ̄0iγ5 pK − + h.c.) ,

(6.41)

where gΛ N N = m N
fΛ

(D + F) ≈ 12.6, gηN N = m N∝
3 fΛ

(3F − D) ≈ 3.0, gKκN =
m N +mκ

2
∝
3 fΛ

(D + 3F) ≈ 6.4 and gKΣ N = m N +mΣ∝
2 fΛ

(D − F) ≈ 6.0, with D = 0.81 and

F = 0.44. In deriving these values, we neglected the isospin splitting. The detail of
the derivation is explained in Appendix D.

The P, CP-odd meson-baryon interactions contribute to the single nucleon EDM
through one-loop diagrams as shown in Figs. 6.2 and 6.3.

The calculation of the one-loop contribution of the nucleon EDM to the leading
chiral logarithm gives the following results:

dn = e

8Λ2 f 2Λ
(Au x (n)

u + Ad x (n)
d + As x (n)

s ), (6.42)

dp = e

8Λ2 f 2Λ
(Au x (p)

u + Ad x (p)
d + As x (p)

s ), (6.43)

with

x (n)
u = (D + F)∗p|ūu − d̄d|p→ log m N

mΛ

+ (D − F)∗p|d̄d − s̄s|p→ log mΣ

mK
≈ 4.1,

x (n)
d = (D + F)∗p|ūu − d̄d|p→ log m N

mΛ

≈ 1.9,

x (n)
s = (D − F)∗p|d̄d − s̄s|p→ log mΣ

mK
≈ 2.2,
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(a) (b)

(c) (d)

Fig. 6.2 Meson-loop contribution to the neutron EDM. The grey blob denotes the P, CP-oddmeson-
baryon coupling. Graphs (b) and (d) are strangeness contribution

(a) (b)

(c) (d)

Fig. 6.3 Meson-loop contribution to the proton EDM. The grey blob denotes the P, CP-oddmeson-
baryon coupling. Graphs (b) and (d) are strangeness contribution

x (p)
u = (D + F)∗p|d̄d − ūu|p→ log m N

mΛ

+ D − F

2
∗p|d̄d − s̄s|p→ log mΣ

mK

+ D + 3F

6
∗p|d̄d + s̄s − 2ūu|p→ log mκ

mK
≈ −3.2,

x (p)
d = (D + F)∗p|d̄d − ūu|p→ log m N

mΛ

≈ −1.9,

x (p)
s = D − F

2
∗p|d̄d − s̄s|p→ log mΣ

mK
+ D + 3F

6
∗p|d̄d + s̄s − 2ūu|p→ log mκ

mK
≈ −1.3.

(6.44)
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We also write down the case without strangeness contribution (K , κ and Σ

neglected) for comparison.

x ∼(n)
u = x ∼(n)

d = −x ∼(p)
u = −x ∼(p)

d = (D + F)∗p|ūu − d̄d|p→ log m N

mΛ

≈ 1.9. (6.45)

In this case, we see that the proton and neutron EDMs have the same size and
opposite sign. From Eqs. (6.38) and (6.42), we can derive the well-known formula
of the neutron EDM generated by the isoscalar P, CP-odd pion-nucleon interaction
in the leading chiral logarithm approximation:

dn(ḡ(0)
Λ N N ) ≈ egΛ N N ḡ(0)

Λ N N

4Λ2m N
ln

m N

mΛ

. (6.46)

The detailed derivation of the above formula is given in Appendix D. By using
Eq. (6.28), we obtain the dependence of the neutron EDM on the δ -term [18]:

dn(δ̄) ≈ δ̄
egΛ N N m≈
4Λ2m N fΛ

∗p|ūu − d̄d|p→ ln m N

mΛ

≈ 2 × 10−16δ̄ e cm. (6.47)

We see that the neutron EDM is very sensitive to the δ -term.

6.4 Quark EDM Contribution to the Nucleon EDM

The next topic is the derivation of the nucleon EDM from the quark EDM. The
CP-odd electromagnetic form factor of the nucleon is given by

〈
N (p − q)

∣∣∣ j (em)
μ

∣∣∣ N (p)
〉
CPV

= −g2(q2)

2m N
ūN (p − q)λμαqαγ5uN (p), (6.48)

where uN is the nucleon spinor and qα is the momentum transfer. The EDM of the
nucleon dN is defined by the limit of zero momentum transfer of the CP-odd nucleon
form factor:

dN

e
↔ lim

q2→0

g2(q2)

2m N
. (6.49)

In the presence of the quark EDM operator, the leading contribution to the CP-odd
nucleon matrix element is

〈
N (p−q)

∣∣∣ j (em)
μ

∣∣∣ N (p)
〉
CPV

=
∑

q=u,d,s

−1

e

〈
N (p−q)

∣∣dqq̄λμαqαγ5q
∣∣N (p)

〉
, (6.50)



6.4 Quark EDM Contribution to the Nucleon EDM 57

where dq is the quark EDM. By taking the limit qα → 0 and the nucleon on-shell
after combining Eqs. (6.48) and (6.50), we see that the momentum transfer qα can
be factorized. The dependence of the nucleon EDM on the quark EDM is therefore
related to the tensor charge by

dN ūN λμαuN = dq∗N |q̄λμαq|N →. (6.51)

We can thus use the result of the lattice QCD calculation of the quark tensor charge
in nucleon (see Eq. (6.24)) to give the dependence of the nucleon EDM on the quark
EDMs. The QCD sum rules calculation gives also a consistent result within the
theoretical uncertainty [34].

It should be noted that the non-relativistic reduction of the tensor current gives
the spin density. Such a situation is realized in the non-relativistic constituent quark
model, which assumes that the nucleon is formed of three massive constituent quarks
with confining inter-quark potential and small spin/isospin dependent interactions.
The constituent quark model is known to work well in the hadron spectroscopy. The
tensor charge of the constituent quark in nucleon (or the quark EDM contribution to
the nucleon EDM) can be calculated with the SU (2) algebra, and is given as

dn(du, dd) = 4

3
dd − 1

3
du, (6.52)

dp(du, dd) = 4

3
du − 1

3
dd , (6.53)

with du and dd the EDMs of the u and d quarks, respectively. For the detailed
derivation, see Appendix E. We see that the non-relativistic constituent quark model
predicts a larger EDM than the lattice QCD result (6.24).

In watching this discrepancy, two sources of deviation can naïvely be inferred.
The first possibility is the dressing of the bare quark tensor charge (or the bare quark
EDM) by gluons, and the second one is the spin-dependent bound state effect. If
we assume that the non-relativistic quark model works well, this discrepancy should
originate in the gluon dressing of the tensor vertex of the quark.

The difference between the constituent quark model prediction and the lattice
QCD result is of O(1). As the hadronic level evaluation of other CP-odd quark
level operators involves much more theoretical uncertainties, we do not need to be
very sensitive on this discrepancy. In this thesis, we will use the results of the non-
relativistic constituent quark model (6.52) and (6.53) for simplicity.

6.5 Theta Term and Strong CP Problem

In QCD, there are many distinct classes of gluon field configurations which are not
connected by continuous gauge transformations. It is actually possible to assign to
each of them a distinct topological charge called winding number. There are also
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gauge transformations which can shift the winding number. This so-called “large
gauge transformation” can be generated with the following function [35]

κ1(x) = x2 − d2

x2 + d2
+ 2idx · ν

x2 + d2
, (6.54)

where x and ν are respectively the spatial and internal SU (2) subgroup gauge coor-
dinates, and d an arbitrary parameter. This gauge transformation has an impressive
characteristic, it actuallymixes the external and internal coordinates. To obtain gauge
transformations which change the winding number arbitrarily, we simply have to
gauge transform the gluon field using the gauge function κn(x) = [κ1(x)]n. To
obtain a fully gauge invariant vacuum, we have to sum up all classes of vacuum
states with different winding number. The following coherent superposition of states
| m → with winding number m satisfies the large gauge invariance:

| δ → =
∑

m

e−imδ | m →, (6.55)

with δ an arbitrary real parameter which specifies the QCD vacuum. This is the
δ -vacuum. Under gauge transformation, the δ -vacuum behaves as

Un| δ → = einδ | δ →, (6.56)

where Un is the large gauge transformation associated with the gauge function κn .
With non-zero δ , we can reexpress the action by adding a new term. The generic
amplitude with QCD δ -vacuum can be written as

∗ δ | X | δ → =
∑

m+, m−
ei(m+−m−)δ ∗ m+ | X | m−→, (6.57)

where X is some operator. The shift of the winding number (m+ − m−) between
asymptotic initial and final states can be measured by the topological charge operator∫

G̃G = g2s
64Λ2

∫
d4x σμαΦλ Ga

μαGa
Φλ , as ∗m−| ∫ G̃G | m+→ = m+ − m−. Applying it

to the generic amplitudes, we obtain

∗ δ | X | δ → =
∑

m+, m−
∗ m+ | Xeiδ

∫
G̃G | m− → = ∗ δ = 0 | Xeiδ

∫
G̃G | δ = 0 →.

(6.58)
The above expression means that we can translate the general dynamics in the δ -
vacuum by the dynamics in δ = 0 vacuum with a new term Sδ = δ

∫
G̃G in the

action. This term is called the δ -term (see Eq. (6.5)), and has an important status
in the physics of CP violation. The δ -term is a total derivative, so it should not
be relevant in perturbation theory, but it is actually not invariant under the “large
gauge transformation”, and can have an important role at the non-perturbative level.
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Moreover, the existence of finite δ -term induces a sizable P and CP violation, as we
have seen previously.

We will now see that the δ -term is related to the chiral transformation. The δ -term
has the same form as the anomaly term relevant in the Ward identity of the axial (or
chiral) U (1)A current. The 4-divergence of the axial U (1)A current can be written as

∂μ jμ5 = 2

N f∑
q

mqq̄iγ5q + N f g2
s

16Λ2 Ga
μα G̃μα,a, (6.59)

where G̃μα
a ↔ 1

2σ
μαΦλ Ga

Φλ , jμ5 ↔ ⎩N f
q q̄γ μγ5q and N f is the number of flavors

for quarks. This is the concrete expression which describes the anomaly effect. The
physical meaning of the anomaly is the breakdown of the classical level symmetry
at the quantum level. Let us define the following “modified” chiral charge:

Q̃5 =
∫

d3x
{

j05 − K 0
}

, (6.60)

where K μ is defined such that ∂μK μ ↔ 2N f G̃G. The chiral transformation with
this modified chiral charge is conserved for massless quarks. Note that this chiral
charge is not gauge invariant. When we apply the gauge transformation Un which
changes the winding number by n, we have

Un Q̃5U−1
n = n(Q̃5 − 2N f ). (6.61)

This means that the δ -vacuum is modified by chiral rotations. The large gauge trans-
formation of the chirally rotated δ -vacuum (with angle ϕ) is

Uneiϕ Q̃5 | δ → = Uneiϕ Q̃5U−1
n Un | δ → = ein(δ−2N f ϕ)eiϕ Q̃5 | δ → = ein(δ−2N f ϕ)| δ−2N f ϕ→.

(6.62)
The chiral phase ϕ and the parameter δ of the δ -vacuum can actually be transferred
to each other.

Let us now see the chiral transformation of quarks. The bare quark mass matrix
is in general not diagonal and may have complex phase. We assume that the quark
mass term has the following form

Lm = −q̄ ∼
L m̂∼q ∼

R − q̄ ∼
Rm̂∼†q ∼

L , (6.63)

where q ∼
L/R and m̂∼ are the bare quark and its mass matrix, respectively, with all

considered flavors. As the physical massmatrix m̂ should be real to have no tachyonic
quarks, the chiral rotation of the basis q ∼

L/R = e≥iϕUL/RqL/R , where UL/R is the
SU (N f ) unitary matrix diagonalizing m̂∼, is needed to eliminate the axial U (1)A

phase ϕ as
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Lm = −e2iϕ q̄LU †
Lm̂∼URqR − e−2iϕ q̄RU †

Rm̂∼†ULqL = −q̄L m̂qR − q̄Rm̂†qL ,

(6.64)
such that m̂ is diagonal and Im[det m̂] = Im[det(e2iϕm̂∼)] = 0 ⇔ 2N f ϕ =
− arg(det m̂∼). The total relevant δ -term is then

δ̄ = δ + arg(det m̂∼). (6.65)

The physical effect of the δ̄ can be calculated with its contribution entirely trans-
ferred to the “P, CP-odd mass” ηq̄iγ5q via the chiral rotation. The quark mass
lagrangian can thus be expressed as

Lm = −q̄L M̂qR − q̄R M̂†qL = −
N f∑
q

mqq̄q − η

N f∑
q

q̄iγ5q, (6.66)

where M̂ is the quark mass matrix with the entire δ̄ contribution transferred, and η

the corresponding P, CP-odd quark mass. The parameter η should not depend on the
quark flavor since the effect of δ̄ was transferred via axial U (1)A transformation.
From this, it is evident that the P, CP-odd effects are suppressed for heavier quarks.
For QCD with 3 quark flavors, η satisfies the following relation

δ̄ = arg(det M̂) = arg[(mu + iη)(md + iη)(ms + iη)]. (6.67)

We thus have for small δ̄

η ≈ δ̄
mumdms

mumd + mums + mdms
≈ δ̄

mumd

mu + md
↔ δ̄m≈, (6.68)

where the second equality is the approximation for heavy strange quark mass. We
obtain finally the following replacement between the δ -term and the P, CP-odd quark
mass:

δ̄
g2

s

32Λ2 Ga
μα G̃μα,a ↔ −δ̄m≈

N f∑
q

q̄iγ5q. (6.69)

This replacement now gives us the possibility to calculate the hadron matrix element
of the P, CP-odd pion-nucleon vertex with the PCAC techniques, as described in
previous sections. It is therefore possible to estimate the physical contribution to the
observables such as the neutron EDM.We have seen that the δ -term of the QCDwas
strongly constrained by EDM experimental data. Crewther et al. have shown that the
neutron EDM experimental data constrain the parameter δ̄ to be less than 1 part of
1010 [18]. This remarkable fine-tuning can also be seen in many experimental data:

• Neutron EDM:
From the previous analysis [18] (see Eq. (6.47)) and the experimental upper limit
on neutron EDM (dn < 2.9 × 10−26e cm) [36], we obtain
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|δ̄ | < 1 × 10−10. (6.70)

• Decay of η meson [18, 37]:

Br(η → Λ+Λ−) = 1.8 × 102δ̄ . (6.71)

With the experimental data Br(η → Λ+Λ−) < 1.3 × 10−5eV [38], we obtain

|δ̄ | < 2.7 × 10−4. (6.72)

• EDMs of diamagnetic atoms [39, 40]:
Like the neutron EDM, these puts also via P, CP-odd pion-nucleon interactions severe
constraints on the δ -parameter.
From the experimental data of the EDM of 199Hg atom we have [39]

|δ̄ | < 3 × 10−10. (6.73)

From the experimental data of the EDM of 129Xe atom we have [40]

|δ̄ | < 7 × 10−7. (6.74)

All these results present strong arguments for the absence of physical contribution
of the strong CP lagrangian. This is in contrast to the physical contribution of the
anomalous

∫
G̃G contribution to the heavy η∼ meson, which is believed to be the

solution to theU (1)A problem [41–44].This problem is called theStrong CP problem.
These data, although leaving a little possibility ofmiraculous accidental cancellation,
make us think of some mechanism that renders the parameter δ̄ to be unphysical.

One possible resolution to this problem was proposed by Peccei and Quinn, by
introducing a new field coupled to the Strong CP lagrangian, the axion [45]. Its
lagrangian (together with the Strong CP lagrangian) is given as follows:

La = 1

2
∂μa∂μa +

(
δ̄ + a(x)

fa

⎤
ϕs

8Λ
Ga

μα G̃μα,a, (6.75)

where a(x) is the axion field. This field is assumed to be the pseudo-Nambu-
Goldstone boson of some chiral U (1)PQ symmetry spontaneously broken at some
high energy scale fa . From this lagrangian, we see that if a vacuum expectation
value ∗a→ = − fa δ̄ is developed by the axion, the Strong CP lagrangian becomes
irrelevant in the dynamics. We will see that this is exactly what happens. Let us give
the following effective lagrangian

L eff
a = 1

2
∂μa∂μa − K1

(
δ̄ + a

fa

⎤
− 1

2
K

(
δ̄ + a

fa

⎤2

+ · · · . (6.76)
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Coefficients K and K1 can be determined by the calculation of the correlators
involving the topological charge GG̃. First, we consider the case with only La +
LQCD. In this case, K1 vanishes since there are no way to annihilate the odd num-
ber of axions. The coefficient K is called the topological susceptibility, and can be
obtained by calculating the following correlator [41–44, 46, 47]

K = −i lim
k→0

∫
d4x eik(x−y)

〈
0
∣∣∣ T

{ ϕs

8Λ
Ga

μα G̃μα,a(x)
ϕs

8Λ
Gb

Φλ G̃Φλ,b(y)
}∣∣∣ 0〉

≈ −m≈∗0|q̄q|0→ + O(m2≈), (6.77)

where ∗0|q̄q|0→ ↔ − f 2Λ m2
Λ/(mu + md) � −(0.280MeV)3 is a negative number.

For the derivation of Eq. (6.77), see Appendix C.We will then obtain a system which
dynamically chooses the vacuum such that δ̄ + ∗a→/ fa = 0, which eliminates the
effect of theStrongCP term.This is one scenariowhich solves theStrongCPproblem,
called the axion mechanism. This spontaneous choice of the vacuum will of course
give massive excitations around ∗a→ = − fa δ̄ with the mass of 1

fa

∝−m≈∗0|q̄q|0→.
The search for this axion particle gives null result at the present time, and the axion
is thought to be very light, constraining the scale of the U (1)PQ symmetry breaking
to be fa > 1010 GeV.

We now consider the linear term of the axion potential with K1 (the second term of
the right-hand side of Eq. (6.76)). This term is generated by the correlation between
the topological charge GG̃ and the P, CP-odd operator OC P . The coefficient K1 is
given as follows [30, 31]:

K1(OC P ) = −i lim
k→0

∫
d4xeik(x−y)

〈
0
∣∣∣ T

{ ϕs

8Λ
Ga

μα G̃μα,a(x)OC P (y)
}∣∣∣ 0〉

= −i
∫

d4x

{
− 1

2N f
χ(x0 − y0)∗0|[ j05 (x), OC P (y) ]|0→

− 1

N f

∑
q

∗0| T { mqq̄iγ5q(x)OC P (y) }|0→
}

. (6.78)

For instance, the chromo-EDM contribution (OC P = − i
2dc

q q̄gsλ
μαGa

μα taγ5q) can
be written as

K1 = −m≈
2

∑
q=u,d,s

dc
q

mq
∗0|q̄gsλ

μαGa
μα taq|0→. (6.79)

The derivation of K1 for the chromo-EDM is presented in Appendix C. The presence
of the linear term with K1 is important since the minimum of the axion potential
receives a shift, and thus generates an induced δ -term δind = −K1(OC P )/K [30, 31].
For the chromo-EDM, this gives the following induced δ -term:
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δind = −m2
0

2

∑
q=u,d,s

dc
q

mq
. (6.80)

This result has been used in Sect. 6.2.
For the Weinberg operator, the first term of the second equality of Eq. (6.78)

gives no contribution, since it involves no quark field operators. The second term is
also small, since isospin violation must occur to generate a pion from the isoscalar
Weinberg operator in the intermediate state. The δ -term induced by the Weinberg
operator is therefore suppressed by at least a factor of light quark mass.

6.6 Summary of Hadron Level Calculation

Here we summarize the dependences of the hadron level P, CP-odd interactions on
P, CP-odd quark level operators. These results will be used in our discussion.

• P, CP-odd Λ N N interactions:

ḡ(0)
Λ N N = 5.9 × 1013

dc
u + dc

d

cm
(6.81)

ḡ(1)
Λ N N = 1.0 × 1015

dc
u − dc

d

cm
−

∑
q ∼=u,d,s,c,b

Cq∼d
FΛ m2

Λ G F

2
∝
2md

∗N |q̄ ∼q ∼|N → (6.82)

• Neutron EDM:

dn = 4

3
dd − 1

3
du + 4.9edc

u + 2.3edc
d + 2.6edc

s , (6.83)

• Proton EDM:

dp = −1

3
dd + 4

3
du − 3.8edc

u − 2.3edc
d − 1.6edc

s , (6.84)

• P, CP-odd electron-nucleon interactions:

CSP
p =

∑
q=u,d,s,c,b

CSP
eq ∗p|q̄q|p→ (6.85)

CSP
n =

∑
q=u,d,s,c,b

CSP
eq ∗n|q̄q|n→ (6.86)

CPS
p =

∑
q=u,d,s,c,b

CPS
eq ∗p|q̄iγ5q|p→ (6.87)

CPS
n =

∑
q=u,d,s,c,b

CPS
eq ∗n|q̄iγ5q|n→ (6.88)
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Chapter 7
Nuclear Level Calculation

The nuclear level P, CP-odd effects arise in the form of P, CP-odd nuclear moments,
induced by P, CP-odd hadron level interactions. The leading P, CP-odd nuclear
moment is of course the nuclear electric dipole moment (EDM), which enhances
the contribution of P, CP-odd pion-nucleon interaction via many-body effects. The
nuclear EDM is measurable in light nuclear systems such as the deuteron and the
3He nucleus, with recent experimental developments using storage rings [1–4]. As
the experimental prospects show a very high sensitivity of O(10−29)e cm, it is of
primary interest to evaluate the nuclear EDM for the deuteron and 3He nucleus due
to the P, CP-odd hadron level processes.

For atomic systems, the situation is different. There the nuclear EDM is actually
screened by atomic electron rearrangement, and only a minor effect due to the finite
size of the nucleus can contribute to the atomic EDM. This phenomenon first pointed
by Schiff [5], leads to the suppression of the nuclear P, CP-odd effects in atoms. The
relevant P, CP-odd nuclear moment for the atomic EDM is then the nuclear Schiff
moment. In this discussion, we are also interested in the atomic EDMs of heavy nuclei
where, in spite of the suppression due to Schiff’s screening, the P, CP-odd hadronic
effects are expected to be sufficiently enhanced via nuclear many-body physics.

To evaluate these P, CP-odd nuclear moments, the calculation of the nuclear
wave functions are needed. As nuclei are made of protons and neutrons, the nuclear
level calculation involves difficulties due to the many-body problem [7, 8]. For
light nuclear systems, ab initio methods can be used. For heavy nuclei, however,
the ab initio methods cannot be applied, due to the calculational cost increasing
exponentially in nucleon number. For heavy nuclear systems of interest (129Xe,
199Hg, 211Rn and 225Ra), we will use the results from the sophisticated mean-field
approach.

In this chapter, we will first see the ab initio calculations of the EDMs of light
nuclei (deuteron and 3He).Wewill then review in detail the screening of the P,CP-odd
nuclear EDM in atomic systempointed bySchiff and the formula of the nuclear Schiff
moment as important P, CP-oddmechanism contributing to the atomic EDM.Wewill
next present the derivation of the leading P, CP-odd nuclear moments (the nuclear

N. Yamanaka, Analysis of the Electric Dipole Moment in the R-parity 65
Violating Supersymmetric Standard Model, Springer Theses,
DOI: 10.1007/978-4-431-54544-6_7, © Springer Japan 2014
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EDM, Schiff moment and magnetic quadrupole moment) for heavy nuclei within a
simple model. After this simple calculation, a sophisticated mean-field approach is
reviewed, and its results for the evaluation of the nuclear Schiff moments of heavy
nuclei (129Xe, 199Hg, 211Rn and 225Ra) are presented. We finally summarize the
nuclear level P, CP-odd moments for all nuclei relevant to the discussions in this
chapter. Note that the electric charge e is defined as e = |e| > 0 in this chapter, in
contrast to the previous chapters.

7.1 Ab Initio Calculations: Deuteron and 3He EDM

Let us first present the ab initio calculations of the EDMs in the deuteron and the 3He
nucleus. The motivation for the study of these light nuclei is as follows. Recently,
new experimental techniques of EDMmeasurements usingmagnetic storage ring are
in preparation [1–4], and the EDMof light nuclei is themain focus. The EDMof light
nuclei has the following advantages. The first advantage is that the system can be
measured with high precision. The projected experiment of BNL is aimed at reaching
the sensitivity of O(10−29)e cm for the deuteron EDM. The second advantage is the
absence of electrons which suppress the P, CP-odd nuclear effect through Schiff’s
screening phenomenon. These arguments indicate that the detection of EDMs in light
nuclei has more significant sensitivity than the experiments on measuring hadron
level P and CP violations. Although the small number of nucleons in the system, the
EDM of light nuclei is actually a very competitive probe of new physics. Here we
present the calculation of the deuteron EDM [6] and 3He EDM [9].

The calculation of the deuteron EDM was first done by Khriplovich and Korkin
with old strong potential [10]. A more complete analysis was made by Liu and
Timmermans using three phenomenological nuclear potentials [6]: Argonne v18
[11], Nijmegen models Reid93 and Nijm II [12]. The dependence of the P, CP-odd
pion-nucleon, δ-meson-nucleon, Λ-meson-nucleon and λ-meson-nucleon interac-
tions were studied. They found the dominance of the isovector pion-nucleon cou-
pling for P, CP-odd interactionswhile all P, CP-odd hadronic interactions have similar
magnitudes. The contribution to the deuteron EDM is composed of (a) single nucleon
contribution (d(Nedm)

A ), (b) polarization contribution (d(pol)
A ), (c) contribution from

exchanged current (in this thesis, we neglect its effect). In the case of the deuteron,
the single nucleon contribution is simply given by the sum of proton and neutron
EDMs (d(Nedm)

d = dn + dp), since this is the allowed isoscalar combination. The
polarization contribution is determined by the spin/isospin selection rules as

d(pol)
d =

A=2∑
i=1

〈
d̃ : j = 1, jz = 1

⎧⎧ ei zi
⎧⎧d̃ : j = 1, jz = 1

⎪

= e∝
6
∼d||r ||d ∗→ · 1

2
∼I = 0|α z

1 − α z
2 |I = 1, Iz = 0→ = e∝

6
∼d||r ||d ∗→ (7.1)
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where z ↔ z1 − z2. Here |d̃ : j = 1, jz = 1→ is the deuteron ground state wave
function polarized in the z-axis, with |d→ and |d ∗→ its respective P, CP-even and P, CP-
odd components. In the second line, we have factored out the isospin space, with the
expression ∼d||r ||d ∗→ denoting the reduced matrix element, and the second element
is the matrix element of the isospin part with α z

1 and α z
2 the generator of the isospin

SU (2) group acting on the first and the second nucleons of the deuteron, respectively.
The center of mass frame

⎨A
i ri = 0 was assumed. The wave functions |d→ and |d ∗→

were calculated by using the following P, CP-odd nucleon-nucleon (N-N) potential:

W (ra − rb) = − gγ N N

8γm p

⎩(
ḡ(0)
γ N N αa · αb + ḡ(2)

γ N N (αa · αb − 3α z
a α z

b )
)

(σ a − σ b)

+ ḡ(1)
γ N N (α z

a σ a − α z
b σ b)

]
· ∇a

e−mγ rab

rab
(7.2)

where a and b denote the indices of the two interacting nucleons, and rab ↔ |ra −rb|.
The contribution from the exchanged current is suppressed compared to the polar-
ization contribution with the P, CP-odd pion-nucleon couplings of the same order of
magnitude [6]. If we neglect the contribution from λ, δ and Λ-mesons and consider
the pion exchange as the leading contribution, we obtain the following expression
for the deuteron EDM:

dd = dn + dp − 0.015gγ N N g−(1)
γ N N × 10−13e cm. (7.3)

The sign for isovector coupling was reversed from the result of Ref. [6] due to the
difference of convention.

The calculation of the 3He EDM was done by Stetcu et al. The 3He EDM is also
given by the single nucleon, polarization and exchanged current contributions. In
this work, the exchanged current was neglected, following the small result of the
deuteron EDM [6]. The single nucleon contribution is

d(Nedm)
He = ∼He|

A=3∑
i=1

1

2

[
(dp + dn) + (dp − dn)α z

i

]
ν z

i |He→ (7.4)

where |He→ is the ground state of 3He nucleus within the P and CP conserving
hamiltonian. The contribution from the polarization can be written in the second
order of perturbation as

d(pol)
He ≈ ∼He|

A=3∑
i=1

e

2
(1 + α z

i )ri

∑
n ≈=0

1

E0 − En
|n→∼n|W |He→ (7.5)

where n are the opposite parity states, En their corresponding energy, and W the P,
CP-odd interactions of Eq. (7.2).
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The evaluation of the 3He wave functions was done in the ab initio no-core shell
model approach [13, 14] with truncated harmonic oscillator basis. The nuclear forces
used in the calculation are the Argonne v18 [11], the nonlocal Bonn [15] potentials,
with Coulomb interaction and isospin violation taken into account, and two-, three-
body interactions derived from EFT [16–19].

The calculation of the dependence of the EDM of the 3He nucleus on P, CP-odd
pion-nucleon couplings gives the following result [9]:

dHe =gγ N N

(
−0.015ḡ(0)

γ N N − 0.023ḡ(1)
γ N N + 0.036ḡ(2)

γ N N

)
× 10−13e cm

− 0.04dp + 0.90dn (7.6)

where we have not explicitly added the contribution of the P, CP-odd pion-nucleon
interactions coming from the single nucleon EDM (pion-loop contribution). Here
again, the sign for isoscalar and isovector couplings was reversed from the result of
Ref. [9] due to the difference of convention. This result shows that the 3He EDM
has higher sensitivity than the deuteron and nucleon EDMs to the P, CP-odd pion-
nucleon interactions. All measurements of EDMs of nucleon, deuteron and 3He are
complementary.

7.2 Schiff’s Screening Phenomenon and the Nuclear Schiff
Moment

We now move to the evaluation of nuclear P and CP violations for heavy nuclei in
atoms, where nuclear EDM is shielded by atomic electrons. The screening phenom-
enon of the intrinsic EDM of components in atomic systemwas first shown by Schiff
[5]. Actually, the theorem of Schiff states that the EDM of non-relativistic point-like
particle in a neutral electrostatically bound system is completely shielded. The effect
of the nuclear EDM in atomic systems is therefore suppressed. Schematically, the
screening of the nuclear EDM can be described as shown in Fig. 7.1.

Let us see this phenomenon in detail. The atomic EDM receives contribution
from the sum of the intrinsic EDMs of its components, and the polarization of the
system induced by the mixing of opposite parity states due to P, CP-odd interac-
tions (∼s1/2|HP/ T/ |p1/2→). The atomic EDM (and more generally the EDM of neutral
electrostatically bound systems) can then be expressed as

datom =
∑

i

∼σ |diΦ0σ i |σ → + 2
∑

M

∑
i

∼σ |Qi eri |M→∼M |HP/ T/ |σ →
E0 − EM

(7.7)

where the first term refers to the sum of the intrinsic EDMs of the components
and the second term to the contribution of the polarization arising from P, CP-odd
interactions. σ is the atomic state of interest, unperturbed by P, CP-odd interactions,
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Fig. 7.1 Schematic representations of the bare nuclear EDM (left side) and the nuclear EDM
screened in atom (right side). The effect of nuclear EDM is suppressed by the internal rearrangement
of the atomic systems

di the intrinsic EDM of the atomic components (electrons and nucleus), Qi and
ri are the charges and coordinates of each component, M the intermediate atomic
states (with opposite parity against |σ →) and HP/ T/ the P, CP-odd interaction. Φ0 and
σ i ↔ Φ0Φ5γ i are Dirac matrices acting independently on each component labeled
by i .

The contribution from the first term, i.e. the sum of the EDMs of components
can be splitted into the non-relativistic and relativistic parts. Here we write down its
hamiltonian:

Hcomp = −
∑

i

diΦ0σ i · Eext = −
∑

i

diσ i · Eext −
∑

i

di (Φ0 − 1)σ i · Eext (7.8)

where Eext is the external electric field acting on the component EDMs. We will
now see that the non-relativistic contribution (first term) will be cancelled by the
polarization contribution. The EDMs of the components interact with the internal
electric field, thus generatingmixing between opposite parity states. The correspond-
ing (non-relativistic) EDM interaction which polarizes the system can be written as

HP/ T/ = −
∑

i

di · Eint =
∑

i

1

Qi e
di · ∇iU (r) = i

∑
i

1

Qi e
[pi , H0] · di . (7.9)

where di ↔ diσ i . U and H0 are respectively the potential energy and the P, CP-even
hamiltonian of the atomic system. This equation states that the charge of the system
will be polarized proportional to EDMs of components. The contribution from the
polarization is then

|σ ∗→ = |σ → +
∑

m

|m→∼m|HP/ T/|σ →
E0 − Em

=
(
1 + i

∑
i

1

Qi e
di · pi

)
|σ → . (7.10)
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The EDM induced by intrinsic electron EDM is then

∼σ ∗|
∑

i

Qi eri |σ ∗→ = ∼σ |
(
1 − i

∑
k

1

Qke
dk · pk

)∑
i

Qi eri

⎛
⎫1 + i

∑
j

1

Q j e
d j · p j

⎬
⎡ |σ →

= ∼σ | i

⎣∑
l

Qi eri ,
∑

k

1

Qke
dk · pk

⎠
|σ →

= −∼σ |
∑

i

di |σ → . (7.11)

We see that the polarization of the system completely cancels the direct contribution
given by the sum of EDMs of non-relativistic constituents with intrinsic EDM. This
cancellation of the non-relativistic EDM contribution by the internal rearrangement
is called the Schiff’s theorem [5]. This conclusion is very important since the EDM
of the nucleus which can be treated as non-relativistic in atomic systems is shielded,
so that its effect is largely suppressed. We should also emphasize that the above
cancellation applies only for the non-relativistic contribution of the EDM of the con-
stituents. The EDM of relativistic particles actually gives an additional contribution
to the polarization of the atomic system (additional effective interaction to HP/ T/ ),
which is not cancelled by the direct contribution. The P, CP-odd electron-nucleon
interactions also contribute to the atomic polarization (with no direct contribution),
thus giving a non-vanishing EDM to the atom. The effects of relativistic electrons
and P, CP-odd electron-nucleon interactions are discussed in the next chapter.

Let us see Schiff’s screening phenomenon in the atomic system with a finite size
nucleus having an EDM [5, 20]. The hamiltonian of the neutral atomic system with
Z electrons is given by

H =
Z∑

i=1

[
Ki −

⎤
e2δ(r)d3r

|Ri − r| − eRi · Eext

⎦
+

Z∑
i>k

e2

|Ri − Rk | − dA · Eext (7.12)

where Ki and Ri are the kinetic energy and the coordinate of the atomic electrons,
respectively, and the nuclear charge density δ(r) is normalized with

∫
δ(r)d3r = Z .

The nuclear EDM is given by dA ↔ ∫
erδ(r)d3r . Let us now add to this hamiltonian

the following additional auxiliary term

Vpol = dA · Eext − 1

eZ

Z∑
i=1

dA∇i

⎤
eδ(r)d3r

|Ri − r| (7.13)

with ∇i ↔ θ/θ Ri . This new interaction can be expressed by the following commu-
tation relation

i

Zeme

Z∑
i=1

[ pi , H ] · dA = dA · Eext − 1

eZ

Z∑
i=1

dA∇i

⎤
eδ(r)d3r

|Ri − r| = Vpol (7.14)
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where we have used the fact that the total electron momentum
⎨

i pi commutes

with the Coulomb interaction between electrons
⎨Z

i>k
e2

|Ri −Rk | . The addition of this
auxiliary term does not affect the observation in the linear approximation in dA, since
∼σ |[ pi , H ]|σ → ∼ (E0− E0) = 0. This term is just the effective interaction given by
the polarization of the atomic system.We thus obtain the following total hamiltonian
shifted by Vpol :

H̃ = H + Vpol =
Z∑

i=1

[Ki − eϕ(Ri ) − eRi · Eext] +
Z∑

i>k

e2

|Ri − Rk | (7.15)

with the electrostatic potential given by

ϕ(R) =
⎤

eδ(r)
|R − r |d3r + 1

Z
(dA · ∇)

⎤
δ(r)

|R − r |d3r . (7.16)

It is interesting to observe that Eq. (7.15) does not depend on the direct interaction
between the nuclear EDM and the external electric field Eext. This is the screening
phenomenon pointed by Schiff [5].

Let us expand the nuclear potential in r/R (multipole expansion). To the first
order in r/R, the nuclear electrostatic potential of Eq. (7.16) can be written as

−
⎤

eδ(r)
(

r · ∇ 1

R

)
d3r + 1

Z
(dA · ∇)

1

R

⎤
δ(r)d3r = 0 . (7.17)

This cancellationmeans that the EDMof the nucleus is totally screened if the nucleus
is point-like. This is also the consequence of Schiff’s screening phenomenon. The
shielding of the nuclear EDM contribution is however not complete if we take the
finite size of the nucleus into account. This fact manifests itself through the electro-
static potential of the nucleus by the non-zero contribution of the third order terms
in r/R:

ϕ(3) = −1

6

⎤
eδ(r)rir j rkd3r∇i∇ j∇k

1

R
+ 1

2Z
(dA · ∇) ∇i∇ j

1

R

⎤
δ(r)rir j d

3r .

(7.18)
Tensors rir j rk and rir j are reducible, and their decompositions can be written as
follows:

rir j rk =
[

rir j rk − 1

5
r2(riΩ jk + r jΩik + rkΩi j )

⎦
+ 1

5
r2(riΩ jk + r jΩik + rkΩi j )

(7.19)

rir j =
[

rir j − 1

3
r2Ωi j

⎦
+ 1

3
r2Ωi j . (7.20)
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It is thus possible to decompose the third order ϕ(3) to the rank-3 octupole potential
[first terms of Eqs. (7.19) and (7.20)] and the rank-1 "Schiff" potential [second terms
of Eqs. (7.19) and (7.20)]. The electric octupole moment is a P, CP-odd moment,
so it can contribute to the atomic EDM through higher nuclear spin state. In this
discussion, the nuclear states in question are spin 1/2 states, so we omit the octupole
potential. By subtituting the first term of Eqs. (7.19) and (7.20) to Eq. (7.18), we
obtain the following rank-1 Schiff potential:

ϕSchiff = −SA · ∇
(

∇2 1

R

)
= 4γSA · ∇Ω3(R) (7.21)

where SA is defined as

SA ↔ 1

10

[⎤
eδ(r)rr2d3r − 5

3
dA

1

Z

⎤
δ(r)r2d3r

⎦
. (7.22)

This is the nuclear Schiff moment. The Schiff moment operator is thus written as

Ŝ = 1

10

Z∑
p=1

e

(
r2p − 5

3
∼r2→ch

)
rp (7.23)

where ∼r2→ch ↔ 1
Z

∫
r2δ(r)d3r is the average (squared) charge radius of the nucleus,

and rp the coordinate operator of the nuclear proton. The above Schiff moment
operator satisfies SA = ∼σA| Ŝ |σA→ with σA the nuclear state vector. Note that the
Schiff potential (7.21) acts on the atomic electron states, whereas the Schiff operator
(7.23) operates in the nuclear space. If we consider also the charge distribution of
the nucleons, we have to extend this expression to

Ŝ = 1

10

A∑
N=1

∑
iN

eiN

[
(rN + ρiN )2 − 5

3
∼r2→ch

⎦
(rN + δiN ) (7.24)

where N denotes the index of each nucleon and iN the index of the charged con-
stituents inside the N th nucleon. The coordinate of the iN th constituent relative to
the center of mass of the N th nucleon rN is given by ρiN , so that the intrinsic EDM
of the nucleon N can be written as dN = ⎨

iN
eiN ρiN . The charge distribution inside

the nucleon is smaller than the size of the nucleus, so taking only up to the first order
in δiN , we obtain the following final formula for the nuclear Schiff moment

Ŝ = Ŝch + Ŝnucleon (7.25)
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where

Ŝch = e

10

Z∑
p=1

(
r2p − 5

3
∼r2→ch

)
rp (7.26)

Ŝnucleon ≈
A∑

N=1

{
1

6

(
r2N − ∼r2→ch

)
dN + 1

5

(
(rN · dN )rN − r2N

3
dN

) }
. (7.27)

The derivation of the above relations from Eq. (7.24) is given in Appendix F.

7.3 Derivation of P, CP-odd Nuclear Moments in a Simple Model

Wewill now try to derive the P, CP-odd nuclear moments of heavy nuclei in a simple
model to see their qualitative properties. The P, CP-odd nuclear moments of interest
are the nuclear EDM, the Schiff moment and the magnetic quadrupole moment,
which give the leading contribution to nuclear and atomic P and CP violations. The
derivation presented in this section follows the discussion of Ref. [21]. P, CP-odd
nuclear moments are generated in the presence of P, CP-odd nucleon-nucleon (N-N)
interactions. Let us assume the following P, CP-odd interaction:

Wab = G F∝
2

1

2m N
{(Λabσ a − Λbaσ b) · ∇Ω(ra − rb)

+Λ∗
ab(σ a × σ b) · [(pa − pb)Ω(ra − rb) + Ω(ra − rb)(pa − pb)]

}
(7.28)

where a and b label nucleons in the nuclear system. Λab and Λ∗
ab are the P, CP-odd

N-N coupling constants. This interaction is the non-relativistic approximation of the
general contact P, CP-odd N-N interaction at the lowest order in derivatives. The
relation between the scalar-pseudoscalar type P, CP-odd N-N couplings Λab and the

P, CP-odd pion-nucleon couplings of Eq. (6.3) is roughly Λab ∼ O
(

ḡγ N N gγ N N

m2
γ G F /

∝
2

)
∼

O(107ḡγ N N ) (ḡγ N N denotes ḡ(0)
γ N N , ḡ(1)

γ N N and ḡ(2)
γ N N ).

It is known that the nuclear interaction has strong pairing force, which pairs even
number of nuclei, so that odd nuclei have one valence nucleon. By assuming the
simple shell model (works for stable spherical nuclei with nucleon number A ≥ 20),
the valence nucleon feels the following P, CP-odd nuclear potential:

W = G F∝
2

Λa

2m N
σ · ∇δA(r), (7.29)

with Λa ↔ Z
A Λap + N

A Λan , and δA(r) the density of nucleon inside the nucleus
normalizedwith

∫
δA(r)d3r = A (note that the definition of δ and δA are different!).

The tensor type P, CP-odd N-N interaction [second term of Eq. (7.28)] does not

http://dx.doi.org/10.1007/978-4-431-54544-6_6
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contribute to the nucleus with one valence nucleon since nucleons in the core are
paired to have zero angular momentum. We see from Eq. (7.29) that in this model
the nuclear P, CP-odd effect occurs at the surface, so it grows slower than the total
nucleon number A of the system.

It is known that the nuclear potential which is felt by valence nucleon and the
nuclear density have the same shape. Their relation is then

δA(r) = δA(0)

U (0)
U (r) (7.30)

where δA(0) andU (0) ∼ −45MeV are the nuclear density and potential at the center
of the nucleus, respectively. The potential felt by the valence nucleon can therefore
be rewritten as

Ũ (r) = U (r) + W (r) ≈ U (|r + χσ |), (7.31)

where χ ↔ G F∝
2

Λa
2m N

δA(0)
U (0) . The wave function in this potential then becomes

σ̃ (r) = σ (r + χσ ) = (1 + χσ · ∇ )σ (r). (7.32)

Following Refs. [8, 21], we obtain the next three formulae for the dependence of
the nuclear EDM, Schiff moment and magnetic quadrupole moment, respectively,
on the P, CP-odd N-N interactions:

dA(χ) = −eχ

(
q − Z

A

)
t j (7.33)

SA(χ) = −eq

2
χ

[
1

5

(
t j + 1

j + 1

)
r2ex − 1

3
t j ∼r2→ch

⎦
(7.34)

MA(χ) = e

m N
χ · (μ − q)(2 j − 1)t j (7.35)

where μ is the magnetic moment of the nucleus, r2ex ↔ ∫
r2|σ̃ (r)|2d3r is the mean

square radius of the valence nucleon and ∼r2→ch ↔ 1
Z

∫
r2δ(r)d3r the mean square

radius of the nuclear charge (with δ(r) the nuclear charge density). The coefficient q
is the charge of the valence nucleon in unit of e (q = 0 when the valence nucleon is
a neutron, and q = 1 for the proton). Here t j = 1 is for a nucleus with j = l + 1/2,
and t j = − j

j+1 for a j = l − 1/2 nucleus. The derivation of the nuclear EDM and
the Schiff moment in this simple model is presented in Appendix F.

The above estimation within a simple model gives us important qualitative infor-
mation on the CP-odd nuclear moments. From the formula (7.34), we see that nuclei
with valence neutron (129Xe, 199Hg, 211Rn and 225Ra) have no Schiff moment due
to the overall factor q = 0. This means that P, CP-odd interactions between the
valence neutron and the core cannot directly generate the nuclear Schiff moment.
Moreover, in Ref. [8], it is assumed that the mean square radii of the valence nucleon
and the nuclear charge are approximately equal (r2ex = ∼r2→ch = 3

5 A2/3r20 ). In this
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approximation, the nuclear Schiff moment of spin 1/2 s-wave nuclei vanishes. This is
the case for 205Tl nucleus. To do more quantitative analysis, more accurate determi-
nations of r2ex and ∼r2→ch are needed, and these are the subject of the next work. In our
discussion, we will take the nuclear Schiff moment of 205Tl to be zero. The magnetic
quadrupole moment is not relevant to our discussion, since we are considering nuclei
with spin 1/2.

Since we are interested in the EDM of heavy atoms, the EDM of heavy nuclei
are also not relevant to our discussion, but here we should add some comments
on the nuclear enhancement of P, CP-odd effect compared with the single nucleon
EDM. The P, CP-oddN-N coupling generated from isoscalar P, CP-odd pion-nucleon

interaction is G F∝
2
Λa ∼ gγ N N ḡ(0)

γ N N
m2

γ
. Comparing with the contribution of the isoscalar

P, CP-odd pion-nucleon interaction to the the single nucleon EDM dN (ḡ(0)
γ N N ) ∼

egγ N N ḡ(0)
γ N N

4γ2m N
ln m N

mγ
[see Eq. (6.46)], the enhancement of the nuclear EDM against the

single nucleon EDM is

dA

dN
∼

⎧⎧⎧⎧ eχ

dN

⎧⎧⎧⎧ ∼
⎧⎧⎧⎧⎧

3γ

2m2
γr30U (0) ln(m N /mγ )

⎧⎧⎧⎧⎧ ∼ 12 (7.36)

where we have assumed 1/δA(0) = 4
3γr30 with the internucleon distance r0 ∼ 1.2

fm, which is valid for nuclei of interest. We see that the nuclear EDM is sensitive on
the P, CP-odd pion-nucleon couplings than the single nucleon EDMbymore than one
order of magnitude in this simple estimation. The nuclear enhancement is of course
dependent on the model of CP violation at the hadron level. For the standard model
contribution (see Chap. 9), the enhancement factor can be as large as 60 [24, 25].
We can thus expect a very good improvement of sensitivity against the CP violation
of new physics with the progress of experimental studies of the nuclear EDM.

We should also give the dependence of the P, CP-odd nuclear moments on the
EDM of the valence nucleon. With the same model assumptions, Ref. [21] (also Ref.
[8]) gives the following formulae for the nucleon EDM dependence of the nuclear
EDM, Schiff moment and magnetic quadrupole moment:

dA(dN ) = dN t j (7.37)

SA(dN ) = dN

2

[
1

5

(
t j + 1

j + 1

)
r2ex − 1

3
t j ∼r2→ch

⎦
(7.38)

MA(dN ) = dN

m N
(2 j − 1)t j (7.39)

where dN is the EDMof the valence nucleon. The derivation of the nuclear EDM and
the Schiff moment is presented in Appendix F. The relations (7.38) and (7.39) have
similar form as Eqs. (7.34) and (7.35). This implies again that the nuclear Schiff
moment of the spin 1/2 s-wave nuclei is suppressed. This is the case for 205Tl, 129Xe
and 225Ra nuclei.

http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_9
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Phenomenologically, the valence nucleon is a superposition of the proton and
neutron due to the configuration mixing. The mixing coefficients ∼νp→z and ∼νn→z

can be obtained using the magnetic moment of the nucleus as follows:

{
μA = μp∼νp→z + μn∼νn→z

∼σ : j, jz = j | νz | σ : j, jz = j → = ∼νn→z + ∼νp→z
(7.40)

where μA is the nuclear magnetic moment (in unit of the Bohr magneton). Here the
matrix element ∼σ : j, jz = j | νz | σ : j, jz = j → is 1 for j = l + 1

2 nuclei, and

− j
j+1 for j = l − 1

2 nuclei (the same matrix element is needed for the derivation
of the nuclear EDM generated by the valence nucleon EDM. The detail is given in
Appendix F). The magnetic moment of the proton is μp = +2.7928 and that of the
neutron is μn = −1.9130. The mixing coefficients ∼νp→z and ∼νn→z are needed to
separate the EDM contribution of the valence proton and neutron, but also for the P,
CP-odd electron-nucleon interactions, which will be reviewed in the next chapter.

In this section, we have seen that the Schiff moment of nuclei with valence neutron
has no dependence on the P, CP-odd N-N interaction in the simple shell model.
However, for heavy nuclei such as 129Xe, 199Hg, 211Rn and 225Ra nuclei, the whole
nuclear system may be polarized by the P, CP-odd N-N interaction. This effect can
be calculated with many-body methods using the mean-field theory, which will be
reviewed in the next section. We must finally note that we have only assumed that
the shell model works for odd nuclei in question. We have also assumed that nuclei
are spherical. Deformed nuclei can enhance P, CP-odd moments with their close
opposite parity levels. In the next section, we will review the calculational methods
based onmean-field theory to treat the core polarization of heavy nuclei with valence
neutron, and their results.

7.4 Evaluation of the 129Xe, 199Hg, 211Rn and 225Ra Nuclear
Schiff Moments within Mean-Field Approach

Let us now present more sophisticated calculations of the nuclear wave functions
needed to obtain the nuclear Schiff moment from core polarization. Ideally, the
nuclear wave function should be obtained via some ab initio calculations, but this
task is too difficult as the computational cost for solving the many-body problem
increases exponentially with nucleon number. We must therefore introduce some
approximations.

In many-body calculations, we often use the Hartree-Fock method. In the many-
body system, the interaction between particles can be renormalized to a mean-field
potential with residual interactions, which will be determined phenomenologically.
With this approximation, the many-body calculation is thus reduced to an one-
body problem (one-particle interacting with the mean field). The hamiltonian of the
N -body system in the Hartree-Fock approximation can be written in the following
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form
H = H0 + V N−1 (7.41)

where H0 is the hamiltonian of the single particle (kinetic terms + mean-field poten-
tial), and V N−1 ↔ Vdir + Vex is the Hartree-Fock potential, which satisfies the
following relations:

Vdir(r)σ (r) =
N−1∑
n=1

⎤
σ †

n (r1)σn(r1)V (r1, r)d3r1 σ (r)

Vex(r)σ (r) = −
N−1∑
n=1

⎤
σ †

n (r1)σ (r1)V (r1, r)d3r1 σn(r) . (7.42)

These contributions can be illustrated diagramatically in Fig. 7.2.
Solving the Schrödinger equation for H is equivalent to solving the self-consistent

equation depicted in Fig. 7.3.
The physical meaning of the Hartree-Fock potential is the interaction between the

single particle and the medium (core) made of the remaining N − 1 particles. The

(a) (b)

Fig. 7.2 Feynman diagrams representing the Hartree-Fock potential. a is the direct contribution
(Vdir), b is the exchange contribution (Vex). Thin lines represent the single particle propagator in
the mean-field potential, doted lines represent the inter-particle interaction

Fig. 7.3 Self-consistent equation for the Hartree-Fock method drawn with Feynman diagrams.
Thin lines represent the single particle propagator in the mean-field potential, doted lines represent
the interaction. The self-consistent equation will be solved for the thick line
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Slater determinant made of Hartree-Fock N particles forms the ground state of the
many-body system.

Hartree-Fock method is known to be a very good approximation, but more
improvement can be done for the nuclear calculation. In the Hartree-Fock method,
the many-body states are Slater determinants formed by the independent single parti-
cle states of the mean field. To improve the situation, we should add correlations and
introduce the dynamical multi-particle state. We should therefore consider excita-
tions and de-excitations of one-particle states (generated fromHartree-Fockmethod)
through interactions between each other. In this framework, the energy raising oper-
ator should be written as

X†
Λ =

∑
p,h

(
xΛ,pha†

pb†h − yΛ,phbhap

)
(7.43)

wherea andb are particle andhole annihilatingoperators, respectively. p andh are the
corresponding indices. The determinations of xΛ,ph and yΛ,ph are therefore needed.
As X†

Λ’s are energy raising operators, they must satisfy the Heisenberg equation
[H, X†

Λ] = �λΛ X†
Λ. By substituting X†

Λ and the hamiltonian, we obtain the following
equation

�λΛ

(
xΛ,pha†

pb†h − yΛ,phbhap

)
=

∑
p,h

(Ξp − Ξh)xΛ,pha†
pb†h

+
∑

p,h,p∗,h∗
(Vph∗hp∗ xΛ,p∗h∗ + Vpp∗hh∗ yΛ,p∗h∗a†

pb†h)

+
∑
p,h

(Ξp − Ξh)yΛ,phbhap

+
∑

p,h,p∗,h∗
(Vhp∗ ph∗ yΛ,p∗h∗ + Vhh∗ pp∗ xΛ,p∗h∗bhap)

+ O((a†b†, ba)2) (7.44)

where V is the particle-hole interaction and higher order terms in a†b† and ba are
neglected. This self-consistent equation is called the random phase approximation
(RPA) equation. The RPA is a dynamical approach: by considering particle-hole
interactions, the energy eigenstates of themany-body system become a superposition
of particle-hole excitations (see Fig. 7.4).

The Hartree-Fock potential was able to renormalize the interactions between par-
ticles into an effective mean-field. The next step is then to include the contribution
of the residual interactions. For the nuclear case, the strongest residual interaction is
the spin pairing interaction between nucleons. In the presence of attractive pairing
interactions, particles can form spin-zero bound-states, which can be effectively seen



7.4 Evaluation of the 129Xe, 199Hg, 211Rn and 225Ra Nuclear Schiff Moments 79

Fig. 7.4 Example of dia-
grammatic representation of
1-particle 1-hole state in RPA.
The black dots are particle-
hole interactions. Time axis
goes from the bottom to the
top. The state is a mixing of
states with different number
of particle-hole pairs

as mixing between particles and holes. The mixing between particles and holes is
well described in the BCS theory [22, 23]. The hamiltonian of the nuclear system
with pairing force can be written as

H =
N∑
κ

Ξac†κcκ − 1

4
G0

(
N∑
κ

(−1) ja−mκ c†κc†−κ

)⎛
⎫ N∑

Δ

(−1) jb−mΔ c−ΔcΔ

⎬
⎡ (7.45)

where c and c† are annihilation/creation operator of nucleon. The first term in this
equation is the Hartree-Fock diagonalized hamiltonian, and the second term is the
pairing force. We can see that this hamiltonian is not diagonal, due to the addition of
the pairing. To diagonalize this relation, we need to rotate the basis of particle and
hole:

a†
κ = uac†κ − vac̃κ

ãκ = uac̃κ − vac†κ (7.46)

where c̃ and c̃† are the annihilation and creation operators of holes, respectively. ã
and ã† are the corresponding operators for quasi-particles, giving the new basis of
physical states. This transformation of basis is the Bogoliubov transformation. The
determination of u and v will be done by fitting the energy of the system phenom-
enologically. The extension of the RPA with this formalism can also be done by
considering the quasi-particle excitations. The BCS extension of the RPA is called
quasi-particle RPA (QRPA).

Once we have explained the basic formalism for calculating nuclear systems,
let us now present the calculation of the nuclear Schiff moments. Early calculation
of nuclear moments induced by P, CP-odd nuclear forces was done by Flambaum
et al. considering the interaction of the valence nucleon with the core within the
phenomenologicalWoods-Saxon potential as amean-field [24, 25]. RPAcalculations
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(Hartree-Fock + non-pairing residual interaction) were done by Dmitriev et al., and
the dependence of 129Xe, 199Hg, 211Rn and 225Ra Schiff moments on the P, CP-odd
pion-nucleon couplings were given in Ref. [26]. The following P, CP-odd pion-
nucleon couplings were included at the first order of perturbation, via the following
P, CP-odd nucleon-nucleon interaction:

W (ra − rb) = − gγ N N

8γm p

⎩(
ḡ(0)
γ N N αa · αb + ḡ(2)

γ N N (αa · αb − 3α z
a α z

b )
)

(σ a − σ b)

+ ḡ(1)
γ N N (α z

a σ a − α z
b σ b)

]
· ∇a

e−mγ rab

rab
(7.47)

where a and b denote the indices of the two interacting nucleons, and rab ↔ |ra −rb|.
This P, CP-odd interaction was also used in the ab initio evaluation of the deuteron
and 3He EDMs [see Eq. (7.2)]. The formula for the nuclear Schiff moment is

S =
∑

i

∼σ0|Ŝ|σi →∼σi |W |σ0→
E0 − Ei

+ c.c. (7.48)

where Ŝ is the nuclear Schiff moment operator given in Eq. (7.25), and σ0, σi are
nuclearwave functions unperturbed byP,CP-oddN-N interactionsW [seeEq. (7.47)]
for ground and excited states, respectively.

The result is

SHg = gγ N N

(
−0.00004ḡ(0)

γ N N − 0.055ḡ(1)
γ N N + 0.009ḡ(2)

γ N N

)
e fm3 (7.49)

SXe = gγ N N

(
0.008ḡ(0)

γ N N + 0.006ḡ(1)
γ N N − 0.009ḡ(2)

γ N N

)
e fm3 (7.50)

SRn = gγ N N

(
−0.019ḡ(0)

γ N N + 0.061ḡ(1)
γ N N + 0.053ḡ(2)

γ N N

)
e fm3 (7.51)

SRa = gγ N N

(
0.033ḡ(0)

γ N N − 0.037ḡ(1)
γ N N − 0.043ḡ(2)

γ N N

)
e fm3 . (7.52)

The small coefficient of ḡ(0)
γ N N for the 199Hg Schiff moment is due to an accidental

cancellation.
The nucleon EDM dependence of the 199Hg Schiff moment was also calculated

in Ref. [27] within the same approach, giving

SHg = (
(1.895 ± 0.035)dn + (0.20 ± 0.02)dp

) 1013
e cm

e fm3 . (7.53)

A more sophisticated calculation including the effects of pairing force with phe-
nomenological Skyrme interactions and nuclear deformation was done for 199Hg
[28, 29], 211Rn [29] and for 225Ra [30, 31] Schiff moments. Calculations were made
using the computer code HFODD [32] within several models of phenomenological
Skyrme interactions: SkO’ [33], SkM⇔ [34], SLy4 [35], SV [36] and SIII [36]. SIII
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Table 7.1 Coefficients ai of the dependence of the Schiff moment on P, CP-odd pion-nucleon
couplings (S = gγ N N (a0 ḡ(0)

γ N N + a1 ḡ(1)
γ N N + a2 ḡ(2)

γ N N )) in unit of e fm3

Nucleus Model −a0 −a1 a2 −b Ref.
199Hg SkO’ 0.010 0.074 0.018 – [28]

SkM⇔ (HFB) 0.041 −0.027 0.069 0.013
SLy4 (HFB) 0.013 −0.006 0.024 0.007 [29]
SLy4 (HF) 0.013 −0.006 0.022 0.003
SV (HF) 0.009 −0.0001 0.016 0.002
SIII (HF) 0.012 0.005 0.016 0.004

211Rn SkM⇔ 0.042 −0.028 0.078 0.015
SLy4 0.042 −0.018 0.071 0.016 [29]
SIII 0.034 −0.0004 0.064 0.015

225Ra SkO’ −1.5 6.0 −4.0 – [31]

The labels HB and HFB stand for calculations in the Hartree-Fock and Hartree-Fock-Bogoliubov
approximations, respectively.

may not be as trustworthy as the others: Ref. [28] showed that the interaction was
less able to reproduce related observable, the distribution of isoscalar E1 strength in
even nuclei. The result is shown in Table7.1.

The results for 211Rn Schiff moment are almost consistent. The 211Rn nucleus is
spherical, so no deformation was considered in the calculations.

In the case of 225Ra Schiff moment, the large enhancement of the P, CP-odd
contributions is due to the presence of a nearby parity-doublet states [30]. We have
more confidence in the Sko’ results, but the uncertainties due to difficulties in treating
nuclear deformation in the men-field methods are large. In addition, the optimal
Skyrme functional has not yet been identified. These deficiencies render a factor of
2 or 3 of uncertainty [31].

199Hg nucleus has also a small deformation, so it is useful to consider it. The
calculation of Ref. [29] took into account the effect of deformation and calculated
fully self-consistently, including the P, CP-odd interactions. By comparing with the
result ofRef. [28]which considered spherical 199Hgnucleus,we see that the isovector
coefficient a1 significantly decreases with the inclusion of deformation. The results
for a1 vary among Skyrme models and we have no decisive pretext to select one of
them.

The calculationof nuclear Schiffmoment presents somedifficulties in determining
the dependence to the P, CP-odd pion-nucleon couplings. This is essentially due to
the deficiency in expressing nuclear states of odd nuclei inmean-field theory. To have
an accurate description of the nuclei in question, we must wait for new calculational
method for odd nuclei. In the subsequent discussion,wewill take the average between
different calculations shown in Table7.1 for each coefficient.
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7.5 Summary of Nuclear Level Calculation

Deuteron EDM:

dd = −0.015g
γ N N ḡ(1)

γ N N × 10−13e cm + dp + dn . (7.54)

The deuteron EDM was calculated with realistic N-N potential [6].
3He nucleus EDM:

dHe =gγ N N

⎩
−0.015ḡ(0)

γ N N − 0.023ḡ(1)
γ N N + 0.036ḡ(2)

γ N N

]
× 10−13e cm

− 0.04dp + 0.90dn (7.55)

The 3He nuclear EDM was calculated with the ab initio No-core shell model with
realistic N-N potential [9].

199Hg nuclear Schiff moment:

SHg =gγ N N

[
0.02ḡ(0)

γ N N − 0.007ḡ(1)
γ N N + 0.006ḡ(2)

γ N N

+ 0.91dn + 0.09dp

e cm
× 4 × 1012

⎦
e fm3 . (7.56)

This is the average of different calculations of mean-field method presented in
Ref. [29].

129Xe nuclear Schiff moment:

SXe = gγ N N

[
0.008ḡ(0)

γ N N + 0.006ḡ(1)
γ N N − 0.009ḡ(2)

γ N N − 3.2dn + 0.06dp

e cm
× 1012

⎦
e fm3.

(7.57)
The γ N N interaction contribution was given by Dmitriev et al. with mean field
method [26]. The nucleon EDM contribution was calculated in the refined shell
model by Yoshinaga et al. [37].

211Rn nuclear Schiff moment:

SRn = gγ N N

[
−0.039ḡ(0)

γ N N + 0.0155ḡ(1)
γ N N + 0.071ḡ(2)

γ N N + dn

e cm
× 1.5 × 1013

⎦
e fm3.

(7.58)
This was calculated with mean field method in Ref. [29].
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225Ra nuclear Schiff moment:

SRa = gγ N N

⎩
1.5ḡ(0)

γ N N − 6.0ḡ(1)
γ N N − 4.0ḡ(2)

γ N N

]
e fm3 . (7.59)

This was calculated with mean field method with octupole deformation taken into
account [31].
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Chapter 8
Atomic Level Calculation

The final step of the many-body calculation is the evaluation of the atomic electric
dipolemoment (EDM). The atomic system can have EDM in the presence of underly-
ingP,CP-odd interactions. This is realized through three leadingP,CP-odd processes:

• Enhancement of intrinsic electron EDMs through relativistic effect.
• P, CP-odd electron-nucleon interactions.
• Contribution from the nuclear Schiff moment.

We will first examine the formulation of the atomic EDM due to these P, CP-odd
interactions and see the difference between paramagnetic and diamagnetic atoms.We
will then present the high quality atomic many-body calculations of the EDMs of the
systems of interest (205Tl, 129Xe, 199Hg, 211Rn, 225Ra).Wewill review the employed
mean-field methods and give their results. In the subsequent section, we will derive
the contribution to the EDM of diamagnetic atoms using analytic formulae. We
finally summarize the dependences of the EDMs of the relevant systems on P, CP-
odd processes.Note that the electric charge e is defined as e = |e| > 0, the convention
of chapter 7.

8.1 Formulation of the Atomic EDM

Aswe have seen in Eq. (7.7), the EDMof atom is composed of the sum of the intrinsic
EDMs of its components and the polarization of the whole system due to P, CP-odd
interactions.Wehave also seen in the previous chapter that the screeningphenomenon
of Schiff [1] removes any non-relativistic part of the EDM of its components. The
formula for the atomic EDM (7.7) can then be rewritten as

datom =
∑

i

∝δ |di (Λ0 − 1)σ i |δ∼ + 2
∑

M

∑
i

∝δ |Qi eri |M∼∝M |H ∗
P/ T/ |δ∼

E0 − EM
, (8.1)

N. Yamanaka, Analysis of the Electric Dipole Moment in the R-parity 85
Violating Supersymmetric Standard Model, Springer Theses,
DOI: 10.1007/978-4-431-54544-6_8, © Springer Japan 2014
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where H ∗
P/ T/ is the P, CP-odd hamiltonian, composed of the relativistic contribution

of the electron EDM, the P, CP-odd electron-nucleon interactions and the nuclear
Schiff moment. Let us present them in detail.

• EDM interaction of the relativistic component of electrons:

HeEDM =
Z∑
i

(Λ0 − 1)σ i · Eint =
Z∑
i

(Λ0 − 1)σ i · ∇iU (r), (8.2)

where the sum is taken over all electrons in the atoms. The non-relativistic part
has of course been removed, since it does not contribute to the atomic EDM.
The relativistic part can however contribute to the EDM of paramagnetic atoms
[2–4]. This contribution can be seen as an enhancement of the electron EDM due
to relativistic effect inside the atom (it can be expressed as datom = K de), and
the coefficient K grows faster than Z3, where Z is the charge of the nucleus. We
have thus for heavy atoms a huge enhancement of the electron EDM. This large
amplification can be explained by the strong motional electric field generated
from the highly relativistic valence electron in heavy atoms which polarizes the
system, and this effect is not cancelled by the bare EDM contribution [first term
of Eq. (8.1)]. This is one of the important advantages in the study of paramagnetic
systems. The high relativistic enhancement exists also for paramagnetic molecules
which are being studied actively.

• P, CP-odd electron-nucleon (e-N) interactions:

HeN = G F→
2

∑
N=p,n

[
CSP

N N̄ N ēiΛ5e + CPS
N N̄iΛ5N ēe + 1

2
CT

N λμαγν N̄νμα N ēνγν e

]
.

(8.3)
This is the hamiltonian of Eq. (6.4). The generation of atomic EDMwithin P, CP-
odd e-N interactions can naturally be understood, since they polarize the atomic
system.

• Nuclear Schiff moment interaction:

HSM = −3S · r
B

γ(r) , (8.4)

where S is the nuclear Schiff moment, B ↔ ∫
γ(r)r4dr . The nuclear Schiff

moment is the residual nuclear P, CP-odd effect due to the finite size effect of
the nucleus, which could not be shielded with the rearrangement of the atomic
system.

The first term of Eq. (8.1), the bare electron EDM contribution, is given by the
unpaired valence electrons. The relativistic effect for such electrons should be small,
since the valence electron feels potential near atomic radius. Therefore the contri-
bution from the first term of Eq. (8.1) can be neglected. The atomic EDM receives
then the leading contribution from the polarization of the system generated by the

http://dx.doi.org/10.1007/978-4-431-54544-6_6
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P, CP-odd interactions seen above. It can be rewritten as

dpol = 2
∑

m

∝δ ∣∣−e
∑

i ri
∣∣ m∼

〈
m

∣∣∣H ∗
P/ T/

∣∣∣δ〉
E0 − Em

. (8.5)

The minus sign is due to the negative charge of electrons (note that e is positive!).
Due to the difference in Lorentz structures, the manifestations of the P, CP-odd

operators differs for paramagnetic and diamagnetic atoms.

• The paramagnetic atoms have valence electrons, so their EDMs are very sensitive
to the electron EDMand scalar-pseudoscalar type P, CP-odd e-N interaction (CSP

N ).
In our discussion, this is the case for 205Tl atom.

• The diamagnetic atoms have no valence electrons and the electron shell is closed.
The contribution from electron EDM and scalar-pseudoscalar type P, CP-odd e-N
interaction are suppressed. Instead, the Schiff moment becomes the leading contri-
bution. It should be noted that the effect of electron EDM and scalar-pseudoscalar
type P, CP-odd e-N interaction does not vanish, since they can contribute to the
EDM via hyperfine interaction. This contribution to diamagnetic atoms will be
derived in Sect. 8.3. In our discussion, this is the case for 129Xe, 199Hg, 211Rn and
225Ra atoms.

As for nuclear level calculations, the evaluation of atomic EDMs needs the many-
body wave functions. In the atomic level calculation, it is possible to obtain very
accurate wave functions. In the next section, we will briefly review the many-body
method used and the results of the evaluations of the relevant atomic EDMs.

8.2 Calculational Methods of the Electron Wave Functions

We will now present the atomic level many-body method based on the relativistic
mean-field theory. The calculations of the electron wave functions in atoms are
essentially the same as those for the nuclear system. Ideally, the full hamiltonian we
wish to solve is

Ĥ =
N∑

i=1

[
αi · pi + (σ − 1)m − Ze2/ri

]
+

∑
i< j

e2

|ri − r j | . (8.6)

This is of course not possible, due to the difficulty in treating the huge number of
electrons, as seen in the nuclear level calculation, and we must use some approxi-
mations.

The first step is to construct the ground state of the atom by using the relativistic
Hartree-Fock method. The hamiltonian of the single-electron in a mean field can be
written as

ĥ0 = Φ · p + (σ − 1)m − Ze2/r + V̂ N−1, (8.7)
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where V̂ N−1 is the Hartree-Fock potential which is similar to Eq. (7.42) for the
nuclear system. By solving the self-consistent relativistic Hartree-Fock equation, we
obtain the single-electron wave functions in a mean-field potential.

The Hartree-Fock method applied to atomic systems is known to be accurate to
10%, but even more accurate evaluation is possible. For noble gases such as Xe or
Rn, the RPA (see Chap.7) can be used to improve their wave functions. For other
atoms (i.e. paramagnetic atoms, Hg, Ra, etc), the many-body perturbation theory
(MBPT) with configuration interaction (CI) can be used to improve the accuracy
significantly, to the level of 1% [5]. The essential idea of this approach is to divide
the Hilbert space of the electron many-body states into the subspace of valence
electron+“frozen core” and its counterpart. The effects on the valence electron state
due to the potential of the core thenmust be treated, since its contribution is dominant
in low energy atomic excitations. The effect of virtual core excitation evaluated with
the MBPT is included in the correction of the valence electron state. Let us explain
this approach in a little more detail. We consider the projection P into the Hilbert
subspace in which the core is fixed (only valence electrons can be excited), and Q
its counterpart. The hamiltonian and state vectors will be split as

H = P H P + P H Q + Q H P + Q H Q, (8.8)

θ = Pθ + Qθ ↔ ϕ + Ω. (8.9)

The Schrödinger equation Hθ = Eθ will be rewritten as

(P H P)ϕ + (P H Q)Ω =Eϕ, (8.10)

(Q H Q)Ω + (Q H P)ϕ =EΩ. (8.11)

The first line can be rewritten as

(P H P)ϕ + χ(E) = Eϕ, (8.12)

where
χ(E) ↔ (P H Q) [E − (Q H Q)]−1 (Q H P). (8.13)

The P projected hamiltonian (P H P) is the contribution from the core electron
averaged, so it can be expressed as

P H P = Ecore +
∑

i>Ncore

hCI
i +

∑
j>i>Ncore

1

|ri − r j | , (8.14)

where Ecore is the kinetic energy of the core electrons + Coulomb interaction
(electron-nucleus, electron-electron), hCI is the kinetic energy of the valence elec-
tron(s) + Coulomb interaction (valence electron-core, valence electron-nucleus), and
the last term the interaction between valence electrons. In this expression, we use
the atomic unit (me = 1, e = 1). χ(E) is the contribution from the core excitation

http://dx.doi.org/10.1007/978-4-431-54544-6_7
http://dx.doi.org/10.1007/978-4-431-54544-6_7
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(contribution from the Q projected subspace), and can be evaluated using MBPT.
In the case of one valence electron system, the P H P is reduced to the relativistic
Hartree-Fock hamiltonian, and χ can be regarded as the self-energy correction. For
systems with two valence electrons, there are also corrections from the screening of
the Coulomb interaction by the core. The Feynman diagrams for evaluating these
corrections can be depicted as shown in Figs. 8.1 and 8.2.

With these methods, the atomic electron wave functions can be calculated accu-
rately for the perturbative evaluation of atomic EDMdue to the underlying P, CP-odd
interactions. Dzuba et al. have calculated the contribution from P, CP-odd interac-
tions (CT

N and CPS
N ), magnetic interaction with the electron EDM, and the nuclear

Schiff moment to the EDM of 129Xe, 199Hg, 171Yb, 211Rn and 225Ra atoms [6]. The
result is shown in Table8.1.

The calculation was also performed for the thallium atoms and gave the following
result [7, 8]:

dTl(de, CSP
N ) = −582de − 7.0 × 1018

(
81

205
CSP

p + 124

205
CSP

N

)
e cm, (8.15)

where the coherency of the non-relativistic nucleon in nucleus was used to derive
the ratio of CSP

N contributions (81, 124 and 205 are respectively for the number of
protons, neutrons and all nucleons of 205Tl nucleus). The theoretical uncertainty of
this calculation is expected to be less than 3%. As it can be seen, the enhancement
of electron EDM in thallium atom is huge. This large amplification can be explained
by the strong electric field generated from the highly relativistic valence electron in
heavy atoms, and is one of the important advantages in the study of paramagnetic
systems.

Fig. 8.1 Feynman diagrams
representing the self-energy
of the valence electron at the
second order

Fig. 8.2 Feynman diagrams
representing the screening
of the Coulomb potential
between valence electrons (at
the second order)
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Table 8.1 Contributions of the P, CP-odd interactions to the EDM of diamagnetic atoms
129Xe 199Hg 211Rn 225Ra

datom(CT
N ) (10−20CT

N ∝νN ∼ze cm) 0.57 −5.1 5.6 −18
datom(CP

N ) (10−23CP
N ∝νN ∼ze cm) 1.6 −18 21 −64

datom(S) (10−17[S/(e fm3)]e cm) 0.38 −2.6 3.3 −8.8
datom(de from HB) (10−4de) 1.0 11 −13 −56

8.3 Subleading Contributions to EDMs of Diamagnetic Atoms

For diamagnetic atoms, the electron EDM and the scalar-pseudoscalar type P, CP-
odd e-N interaction [term with CSP

N in Eq. (8.3)] cannot contribute at the leading
order, due to the closed electron shell. However, they can contribute to the EDM of
diamagnetic atoms in the third order of perturbation with the hyperfine interaction
[9, 10]

hhf = e
α · M × r

r3
, (8.16)

where α is the Dirac matrix and M the nuclear magnetic moment. Its contribution to
the EDM of diamagnetic atom is given by

dhf =
∑
m,n

∝δ ∣∣−e
∑

i ri
∣∣ m∼∝m |hhf | n∼∝n

∣∣∣H ∗∗
P/ T/

∣∣∣δ∼
(E0 − Em)(E0 − En)

+ permutations, (8.17)

where H ∗∗
P/ T/ is the electron EDM interaction or the scalar-pseudoscalar type P, CP-

odd e-N interaction (CSP
N ). The correction of |δ∼ by hhf and H ∗∗

P/ T/ is concentrated
in the vicinity of the nucleus, so terms with the matrix element of the operator −er
at the middle in Eq. (8.17) have negligible contributions. The contribution of these
P, CP-odd interactions to atomic EDMs can be given by substituting the P, CP-odd
interaction H ∗

P/ T/ of Eq. (8.5) by the following effective P, CP-odd operator

HeffP/T/ =
∑

n

(
H ∗∗

P/ T/|n∼∝n|hhf

)
+

(
hhf |n∼∝n|H ∗∗

P/ T/

)
E0 − En

. (8.18)

For the electron EDM contribution to diamagnetic atoms, the interaction between
EDM and magnetic field (generated by the nuclear magnetic moment) must also be
taken into account. This interaction is written as

HB = −ideΛ · B, (8.19)
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whereB is the magnetic field. The effect of this interaction, although smaller than the
hyperfine interaction contribution by about one order [6], cannot be neglected. We
should therefore define the following effective P, CP-odd interaction for the electron
EDM contribution to the diamagnetic atoms:

HeEDMeff =
∑

n

(
H ∗∗

P/ T/|n∼∝n|hhf

)
+

(
hhf |n∼∝n|H ∗∗

P/ T/

)
E0 − En

+ HB . (8.20)

To obtain the contribution of the above effective P, CP-odd operators to the EDM of
diamagnetic atoms, we need the analytic formulations of the atomic electron wave
functions [10, 11]. The external electron wave function can be written as

δnjlm(r) =
(

fn jl(r)Ξ jlm

gnjl(r) i(−σ · r/r)Ξ jlm

)
, (8.21)

withΞ jlm ↔ [Ylm∗(r̂)∇| s, sz ∼ ] jm the spherical functionwith spin s and the spherical
harmonics Ylm(r̂). n and m are respectively the principal and magnetic quantum
numbers, j and l are respectively the total and orbital angular momenta. We must
solve the relativistic Dirac equation [ fn jl(r) and gnjl(r)] in the unscreened Coulomb
field of the nucleus (r � aZ1/3, with a is the Bohr radius), since the P, CP-odd
interactions we want to calculate are all short range interactions. The solution of the
Dirac equation of electron in static Coulomb potential is

fn jl(r) = cnjl

r

[
(Λ + κ)J2Λ (x) − x

2
J2Λ−1(x)

]
, (8.22)

gnjl(r) = cnjl

r
ZΦ J2Λ (x), (8.23)

where J is the bessel function, x ↔ ( 8Zr
a

)1/2
, Λ ↔ √

( j + 1/2)2 − Z2Φ2 and

κ ↔ (l − j)(2 j + 1). The normalization factor cnjl = κ
|κ|

(
1

Za(n−νl )
3

)1/2
(with

νl the quantum defect) was determined phenomenologically to reproduce the non-
relativistic solution at long distance [11]. At short distance, this solution can be
rewritten as

fn jl(r) ≈ κ

|κ| (κ − Λ )

(
Z

a3(n − νl)3

)1/2 2

Δ(2Λ + 1)

( a

2Zr

)1−Λ

, (8.24)

gnjl(r) ≈ κ

|κ| ZΦ

(
Z

a3(n − νl)3

)1/2 2

Δ(2Λ + 1)

( a

2Zr

)1−Λ

. (8.25)

The factor 2
Δ(2Λ+1)

( a
2Zr

)1−Λ goes to 1 as ZΦ → 0, so it can be seen as a relativistic
enhancement factor.

It is now possible to give the analytic formulae for the contribution of the electron
EDM and scalar-pseudoscalar type e-N interaction to the EDMs of diamagnetic
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atoms. We can see that the analytic formulae for the P, CP-odd e-N interactions
(CPS

N , CPS
N combined with hyperfine interaction) and the magnetic interaction with

the electron EDM (HB) are proportional to the same matrix elements ∝s1/2|γ |p1/2∼.
This matrix element is also used in the calculation of the tensor type P, CP-odd e-N
interaction (CT

N ). Therefore, it is possible to relate the contributions of the electron
EDM and scalar-pseudoscalar type P, CP-odd e-N interaction to CT

N .
The following analytic relations are from Refs. [9, 10]:

• Scalar-pseudoscalar type P, CP-odd e-N interaction CSP
N can be written as

(
Z

A
CSP

p + N

A
CSP

n

)
I
I

≥ 1.9 × 103

(1 + 0.3Z2Φ2)A2/3μA

〈
CT

p

∑
p

σ p + CT
n

∑
n

σ n

〉
,

(8.26)
where Z , N and A are respectively the number of protons, neutrons and all nucleons
in the nucleus, I is the spin of the nucleus and μA is the magnetic moment of
the nucleus in unit of Bohr magneton. The ratios Z/A and N/A are due to the
coherence of the non-relativistic nucleons. Terms in squared brackets ∝· · · ∼ denote
the spin average over the nuclear state (the valence nucleon mixing coefficients
∝νp∼z and ∝νn∼z are given by solving Eq. (7.40) in the simple shell model). Since
129Xe, 199Hg, 211Rn and 225Ra have only one valence nucleon, it is possible to
equate the magnetic moment of the nucleus with the magnetic moment of the
proton (μp = +2.7928) and of the neutron (μn = −1.9130) as in Eq. (7.40).
The shell model description works well for 129Xe (μXe = −0.7778) and 199Hg
(μHg = 0.5059), so it is possible to give reliable coefficients with this method.
For 211Rn (μRn = 0.601) and 225Ra (μRa = −0.734) nuclei however, the shell
model is not applicable [6].

• Electron EDM contribution in diamagnetic atoms can be written as

de
I
I

≥ 3

7

G F m pe→
2ηΦμA

R

R − 1

〈
CT

p

∑
p

σ p + CT
n

∑
n

σ n

〉
, (8.27)

where R =
(

2
Δ(2Λ+1)

( a
2Zr

)1−Λ
)2
. We have included the contribution from hyper-

fine interaction and magnetic interaction of electron EDM.
• Pseudoscalar-scalar type P, CP-odd e-N interaction CSP

N is

CPS
N ≥ 5m pr0

ZΦ
CT

N ≈ 3.8 × 103
A1/3

Z
CT

N , (8.28)

where r0 is the nuclear radius. This formula was derived in Ref. [6] and it can be
applied generally to heavy atoms. We will use it to derive the dependence of 205Tl
EDM on CPS

N .

The above relations are accurate to O(Z2Φ2). Numerical results are presented in
Table8.2.

http://dx.doi.org/10.1007/978-4-431-54544-6_7
http://dx.doi.org/10.1007/978-4-431-54544-6_7
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Table 8.2 Analytically calculated coefficients of P, CP-odd interactions
129Xe 199Hg 211Rn 225Ra

datom(de) (10−3de) −0.98 −7.9 10.7 42.6
d(ZCSP

p /A + NCSP
n /A) (10−22(ZCSP

p /A + NCSP
n /A)e cm) −0.62 −5.1 7.0 29

d(CPS
N ) (10−23CPS∝νN ∼ze cm) 1.6 −18 21 −69

We see that the analytic results for pseudoscalar-scalar type e-N interaction (CPS
N )

is in very good agreement with the mean-field approach (compare with Table8.1).
Let us also show the result for the 205Tl atom.

dTl(C
T
N )/CT

N = 0.5 × 10−20∝νN ∼ze cm, (8.29)

dTl(C
PS
N )/CPS

N = 1.8 × 10−23∝νN ∼ze cm, (8.30)

where the parenthesis after dTl means that we take only the dependence of the P, CP-
odd interaction in the parenthesis. The valence nucleon mixing coefficients ∝νN ∼z =
∝νp∼z, ∝νn∼z are given by solving Eq. (7.40). The contribution of the nuclear Schiff
moment to the 205Tl EDM is omitted, since it was neglected at the nuclear level.

8.4 Summary of Atomic Level Calculation

We summarize the results of the calculation of the dependences of the atomic EDM
on the underlying P, CP-odd interactions (electron EDM, P, CP-odd electron-nucleon
interactions and nuclear Schiff moment). Note that we have omitted the dependences
on the tensor type P, CP-odd e-N interaction (CT

N ), since its effect is not relevant in
this thesis.

205Tl atom EDM:

dTl = −582de+
(
−7.0 × 10−18(0.395CSP

p + 0.605CSP
n ) + 1.8 × 10−23CPS

p

)
e cm .

(8.31)
The first term (electron EDM enhancement) and the coefficients of the P, CP-odd
scalar-pseudoscalar e-N interaction (CSP

N ) are from relativistic Hartree-Fock calcu-
lation improved with configuration mixing and many-body perturbation theory [7]
[see Eq. (8.15)]. The final term (term with CPS

N ) is derived from analytic calculation
with simple assumptions described in the previous section [10] (see Table8.2). The
Schiff moment contribution was omitted, since its contribution was neglected at the
nuclear level [12].

http://dx.doi.org/10.1007/978-4-431-54544-6_7
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199Hg atom EDM:

dHg = −7.9 × 10−3de

+
(
−51(0.40CSP

p + 0.60CSP
n ) + 6.1(0.09CPS

p + 0.91CPS
n )

)
× 10−23e cm

− 2.6 × 10−17 SHg
e fm3 e cm (8.32)

The first line (electron EDM enhancement) and the coefficients of the P, CP-odd
scalar-pseudoscalar e-N interaction (CSP

N ) were calculated with simple assumptions
specified in the previous section [10] (see Table8.2). The coefficients of CPS

N and the
Schiffmoment contribution (third line)were calculatedwith relativisticHartree-Fock
method improved with configuration mixing and many-body perturbation theory [6]
(see Table8.1).

129Xe atom EDM:

dXe = −0.98 × 10−3de

+
(
−6.2(0.42CSP

p + 0.58CSP
n ) + 1.6(0.24CPS

p + 0.76CPS
n )

)
× 10−23e cm

+ 0.38 × 10−17 SXe
e fm3 e cm (8.33)

The first line (electron EDM enhancement) and the coefficients of the P, CP-odd
scalar-pseudoscalar e-N interaction (CSP

N ) were calculated with the assumptions
described in the previous section [10] (see Table8.2). The coefficients of CPS

N and the
Schiff moment contribution (third line) were calculated with RPA [6] (see Table8.1).

211Rn atom EDM:

dRn = 10.7 × 10−3de

+
(
70(0.41CSP

p + 0.59CSP
n ) − 7.1(0.02CPS

p + 0.98CPS
n )

)
× 10−23e cm

+ 3.3 × 10−17 SRn
e fm3 e cm (8.34)

The methods used for the derivation of the coefficients are the same as for the EDM
of 129Xe atom.
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225Ra atom EDM:

dRa = 4.3 × 10−2de

+
(
29(0.39CSP

p + 0.61CSP
n ) − 6.4(0.25CPS

p + 0.75CPS
n )

)
× 10−22e cm

− 8.8 × 10−17 SRa
e fm3 e cm (8.35)

The methods used for the derivation of the coefficients are the same as for the EDM
of 199Hg atom.
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Chapter 9
EDM in the Standard Model

9.1 P, CP-odd Processes Generated by the CKM Phase

Fermion EDMs

The fermion EDM in the SM is generated for both quarks and charged leptons by
CKM matrix elements [1]. For the quark EDM, the first non-vanishing contribu-
tion appears at the three-loop level [2–4]. The one-loop contribution does not exist
trivially, since the quark EDM is a process without flavor change, and the CKM
matrix elements contributing at the one-loop level appear only with their complex
conjugates. At the two-loop level, CP violating diagrams can be drawn, but their
total sum cancels and does not contribute to the quark EDM [5]. This cancellation
at the two-loop level seems to be rather accidental. The complete calculation of the
three-loop level u and d quark EDMs was done in Ref. [4], with a careful analysis of
the top quark contribution. The leading diagrams are those with two W bosons and
one gluon, an example is shown in Fig. 9.1.

The values for u and d quark EDMs are

dd = − 0.7 × 10−32 md

GeV
e cm ∝ −3.5 × 10−35e cm,

du = − 0.3 × 10−32 mu

GeV
e cm ∝ −0.8 × 10−35e cm, (9.1)

with md = 5.0MeV, mu = 2.5MeV. The dependence between quark EDM
and neutron EDM is O(1) (for example, the non-relativistic quark model predicts
dn = 4

3dd − 1
3du), so the neutron EDM given from the CKM matrix elements via

quark EDM is dn(dqCKM) ∼ 10−35e cm.
For the electron EDM, the first non-vanishing contribution appears at the four-

loop order [6]. To provide the CKM phase, the electron must be attached to a quark
loop via W boson, so the EDM contribution must start from the one-loop. In this
case again, the lowest order quark loop diagram must have a CKM matrix element
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Fig. 9.1 Example of 3-loop
diagram contributing to quark
EDM

accompanied by its complex conjugate, so that the two-loop contribution cancels. The
three-loop contribution cancels also accidentally [6], and the leading EDM diagrams
appear only at the four-loop order. The electron EDM in the SM was estimated
roughly to be deCKM ∼ 10−41e cm, adding QCD loop corrections to the three-
loop diagrams [7]. The muon and τ lepton EDMs arise with the same mechanism,
and the corresponding values are dμCKM = mμ

me
deCKM ∼ 10−38e cm and dτCKM

= mτ
me

deCKM ∼ 10−37e cm. We add finally that in the presence of the Majorana
neutrino with see-saw model, the lepton EDM receives from the lepton sector CP
violation contribution of O(emlm2

νG2
F ) ∼ 10−43e cm [8], which is smaller than the

CKM contribution.

Gluonic P, CP-odd Interactions from CKM Phase

The P, CP-odd gluonic operators such as the θ-term or the Weinberg operator [9] can
also be generated with the CP phase of the CKM matrix.

The non-vanishing θ-term contribution from the CKMphase appears at the 4-loop
order, with two W boson exchange and QCD radiative correction [10, 11], as shown
in Fig. 9.2.

The θ-term generated by the CKM matrix is [11]

Fig. 9.2 Example of diagram
contributing to θ-term in the
SM. The solid lines indicate
quark propagators
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θCKM ∼ 10−19. (9.2)

which gives the following contribution to the neutron EDM

dn(θCKM) ∼ 10−35e cm. (9.3)

The Weinberg operator within CKM phase was calculated in Refs. [12–14]. It
receives contribution from the three-loop level diagram with W boson exchange, as
shown in Fig. 9.3.
By using the hadron matrix element calculated with QCD sum rules [15], we obtain

dn(wCKM) ∼ 10−42e cm. (9.4)

We see that the CP violating contribution of the CKM matrix has small contribu-
tions to the gluonic P, CP-odd operators.

Penguin Diagram Contribution

We have seen previously that the contribution of the quark EDM from the CKM
matrix element gives dn(dqCKM) ∼ 10−35e cm. However, the neutron EDM receives
larger contribution from the long distance effect generated by pion-loop diagrams
with strangeness non-conserving penguin diagram interactions as shown in
Fig. 9.4 [16].

Fig. 9.3 Diagram contributing to the Weinberg operator in the SM. The solid lines indicate quark
propagators

Fig. 9.4 Example of SM contribution to the neutron EDM. Penguin diagrams give rise to P, CP-odd
|δS| = 1 meson-baryon interaction (grey blob)
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This pion-loop processes generates a large contribution to the neutron EDM1 with

d(penguin)
n ∼ 10−32e cm. (9.5)

This gives actually larger contribution than the quark EDM (∼10−35e cm). We must
note that the quark EDM induced by weak diquark interaction contributes also to
the neutron EDM, but this contribution is also estimated to be small (∼10−34e cm)
[18–21].

For many-nucleon systems, their EDM receives the leading contribution from the
P, CP-odd nucleon-nucleon (N-N) interactions, which are also generated by penguin
diagrams [22]. The P, CP-odd N-N interactions in the SM are given by P, CP-odd
|δS| = 1 process given in Fig. 9.5. It is then possible to generate contributions to
nuclear EDMs or Schiff moments in the SM [22–24].
The P, CP-odd N-N interaction

HN−N = −ηN N ∗
G f→
2

N̄ iγ5N N̄ ∗N ∗ (9.6)

contributes to the Schiff moments of 129Xe and 199Hg as follows:

SXe = 1.75ηnp × 10−8e fm3, (9.7)

SHg = −1.4ηnp × 10−8e fm3. (9.8)

These numbers were obtained from the calculation using theWoods-Saxon potential
with spin-orbit correction [25, 26].We can obtain the expressions for 211Rn and 225Ra
Schiff moment by multiplying the ratio of A2/3 since the nuclear Schiff moment is
a surface effect of the nucleus [25, 26]. This yields

SRn = −1.4ηnp × 10−8e fm3, (9.9)

SRa = 2.4ηnp × 10−8e fm3. (9.10)

This simple estimation has not taken into account the deformation of the 225Ra
nucleus, so the value for SRa may be more enhanced. The P, CP-odd coupling

Fig. 9.5 Example of SM
contribution to the P,
CP-odd N-N interaction.
Penguin diagrams give rise to
P, CP-odd |δS| = 1 meson-
baryon interaction (grey blob)

1 Recently, it was pointed that tree level bound state effect at the second order in the weak interaction
can generate nucleon EDM of O(10−31)e cm [17].
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η ∼ 10−9 was given in Refs. [22–24]. By accounting for the dependences of the
nuclear Schiff moments on the atomic EDM given in Table8.1, we obtain

d(SM)
Xe ∼10−35e cm, (9.11)

d(SM)
Hg ∼10−34e cm, (9.12)

d(SM)
Rn ∼10−34e cm, (9.13)

d(SM)
Ra ∼10−33e cm. (9.14)

We must note that the P, CP-odd electron-nucleon (e-N) interactions contribute
also to the atomic EDMs. The contribution is estimated to be small of order
C ∼ 10−16 G F→

2
[27]. This can generate EDMs of diamagnetic atoms of order

d < 10−37e cm, so it cannot be the leading contribution. The P, CP-odd e-N inter-
action gives however for the paramagnetic atoms (205Tl) the leading contribution in
the SM because of the large enhancement of the scalar-pseudoscalar type interaction
CSP

N . The value can be estimated to be d(SM)
Tl ∼ 10−34e cm. These values are of

course well beyond the current experimental sensitivity.
For the estimation of the EDMs of the deuteron and 3He nucleus in the SM, we

will relate the P, CP-odd N-N coupling with the P, CP-odd pion-nucleon coupling:

η ↔ gπN N ḡ(1)
πN N

→
2

G F m2
π

. By using the dependence of the deuteron and 3He EDM on the P,

CP-odd pion-nucleon coupling, we obtain

d(SM)
d ∼10−31e cm, (9.15)

d(SM)
He ∼10−31e cm, (9.16)

with closer value with the proton or neutron EDMs.

9.2 Summary of the SM Contribution to EDM Observables

We have finally the following results for the SM contribution to the EDMs of interest
(Table9.1):
We can see that the present experimental data are well below the SM predictions.
This makes clear that the EDMs are very good observables to probe the new physics.

http://dx.doi.org/10.1007/978-4-431-54544-6_8
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Table 9.1 EDM in the SM. Units are in e cm

System SM contribution Present exp. limit Prospected exp. sensitivity

e− ∼10−41 (<1.05 × 10−27) [28] (∼10−31) [29]
μ ∼10−38 <1.8 × 10−19 [30] ∼10−25 [31–34]
n ∼10−32 <2.9 × 10−26 [35] ∼10−28 [29, 36]
p ∼10−32 Not available ∼10−27 [31–34]
Deuteron ∼10−31 Not available ∼10−27 [31–34]
3He nucleus ∼10−31 Not available −
205Tl atom ∼10−34 <9 × 10−25 [37] −
199Hg atom ∼10−34 <3.1 × 10−29 [38] ∼10−30

129Xe atom ∼10−35 <4.1 × 10−27 [39] ∼10−30 [29]
211Rn atom ∼10−34 Not available ∼10−29

225Ra atom ∼10−33 Not available ∼10−28 [29]

Data for the electron EDM were enclosed with parenthesis since they were given from the experi-
mental data of the YbF molecules [28]
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Chapter 10
Constraints on Supersymmetric Models
from Electric Dipole Moments

10.1 Constraints to MSSM via Fermion EDM

The leading (R-parity conserving) supersymmetric contribution to the fermionEDMs
arises at the one-loop level, and was analyzed by many authors. The analyses of the
supersymmetric contribution to the neutron EDM were made in the context of the
phenomenological search of CP violation [1–21]. The leading one-loop contribu-
tion is generated by the supersymmetric fermion-sfermion-gaugino interactions (see
Fig. 10.1).

The expressions for the one-loop contribution to the electron EDM, quark EDM
and chromo-EDM are [15–21]

de = eme

16π2M2
SUSY

(
g2
1

12
sin θA + 5g2

2 + g2
1

24
sin θμ tan β

)
,

dq = emq

16π2M2
SUSY

2g2
3

9

(
sin θμ[tan β]± − sin θA

) + O(g2
2, g2

1) ,

dc
q = mq

16π2M2
SUSY

5g2
3

18

(
sin θμ[tan β]± − sin θA

) + O(g2
2, g2

1) , (10.1)

where θA is the CP phase of the trilinear soft breaking interactions, and θμ the
phase of the μ-term (mixing of the up and down type Higgs). The notation [tan β]±
means that we take tan β for down type quarks, and 1/ tan β for u quarks. The
detail of the one-loop EDM calculation is collected in Appendix D. In deriving these
expressions, we have taken the general assumption that the trilinear soft breaking
terms are proportional to the corresponding Yukawa matrix (which gives mass to
fermions) with the same CP phase θA, to simplify the analysis. Masses of the spar-
ticles were also taken to be the same, MSUSY. By comparing Eq. (10.1) with the
EDM experimental data [22–24], we obtain stringent constraints on the CP phases
of the soft-breaking terms θμ and θA, suppressed by about 2 orders in magnitudes,
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Fig. 10.1 One-loop supersymmetric contribution to the fermion EDM (or chromo-EDM). The
external gauge boson (photon or gluon) line is attached to one of the sparticles in the loop. Diagrams
with external gluon and internal gluino lines are only allowed when external line corresponds to
quarks. When the external gauge boson is a gluon, the amplitude contributes to the chromo-EDM

for MSUSY ∝ TeV. The above analysis was also extended to the flavor changing
sector of sfermions, where strong constraints can be obtained with processes involv-
ing the third generation [25–32].

We must note that there are also similar diagrams contributing to the θ-term as
shown in Fig. 10.2. As we have seen in Sect. 6.5, the CP-odd quark mass −ηq̄iγ5q
contributes to the θ-term via chiral rotation and gives a large correction to the tree
level θ (θeff ∝ θtree+10−2δCP,where δCP is the linear combination of SUSYbreaking
CP phases θA and θμ with O(1) coefficients). The θ-term is strongly constrained by
neutron EDM experiment, so that the corrected θ-term with SUSY CP phases are
also tightly bound (at the order of δCP < 10−8 if θtree = 0!). However, if the Peccei-
Quinn symmetry “unphysicalize” the θ-term (see Sect. 6.5), the contribution from the
one-loop diagrams of Fig. 10.2 can be completely omitted. Under this condition, the
leading constraints on supersymmetric CP phases are given by the one-loop fermion
EDM seen above.

The above one-loop level analysis yields very strong upper limits on the CP
violation of the first and second generation sfermions. These stringent constraints
lead us to think of “natural” supersymmetric models with no CP phases in the first
and second generations. This put also a significant constraint on the CP violation at
the Grand unification scale via the renormalization group analysis [33–39].

Fig. 10.2 One-loop supersymmetric contribution to the θ-term. The “CP-odd mass” of quarks is
generated at the one-loop level

http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6
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10.2 Subleading Supersymmetric Contributions to EDMs

The subleading supersymmetric contributions known so far are the two-loop fermion
EDMs, theWeinberg operator, the P, CP-odd 4-fermion interactions and the fermion-
gluon interaction.

Two-Loop Level Fermion EDMs: Barr-Zee Type Contribution

Among two-loop level fermion EDM contributions, the leading effect is given by the
Barr-Zee type diagrams [40–54], depicted in Fig. 10.3. These Barr-Zee type graphs
can contribute significantly to the fermion EDM when the third generation particles
(top, bottom quarks and τ lepton) run in the loop especially when tan β becomes
very large. At very large tan β, the one-loop level θA contribution is relatively sup-
pressed [see Eq. (10.1)]. Actually, the two-loop level Barr-Zee type diagrams with
sfermion loop have contribution of order ∝ m F

16π2M2
SUSY

αY f sin(θA + θμ) tan β, and

θA contributes significantly. In the situation where sfermion masses are very heavy
(split SUSY scenario [55], for example), the one-loop and fermionic Barr-Zee type
contributions are suppressed, so that the Barr-Zee type graph with chargino loop
becomes dominant.

4-Fermion Interaction

The P, CP-odd 4-fermion interactions can have an important contribution to the
atomic EDM [59–61]. Despite the suppression due to Yukawa couplings, this

Fig. 10.3 Leading two-loop supersymmetric contribution to the fermion EDM. Hi denotes all
possible neutral Higgs bosons. When the external gauge boson is a gluon, the diagram contributes
to the chromo-EDM
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Fig. 10.4 4-fermion
interaction with intermediate
Higgs boson. Hi denotes all
possible neutral Higgs bosons

contribution is proportional to (tan β)3, so it can be greatly enhanced, even more
than Barr-Zee diagrams. An example of this contribution is depicted in Fig. 10.4.

One-Loop Electron-Gluon Interaction

Atomic EDM is also generated via the electron-gluon interaction at the one-loop
level. The contributing processes are depicted in Fig. 10.5. These mechanisms
can induce the P, CP-odd electron-nucleon interaction [54] through the relation
αs
8π ∼N |Ga

μνGμν,a |N ∗ = −(0.1GeV)N̄ N . This contribution is comparable in size
for top/bottom loop contribution with the P, CP-odd electron-quark interaction, and
is also expected to have similar behavior under large tan β.

Weinberg Operator

The Weinberg operator[55–58] can give higher order contributions to the hadronic
EDM. Its leading contribution is depicted in Fig. 10.6. The gluino loop can con-
tribute significantly to the neutron EDM when heavy fermion is involved, and have
comparable sensitivity as the one-loop contribution in the case where top quark run
in the loop. The quantitative comparison is unfortunately difficult due to the large
theoretical uncertainty of the relation between the neutron EDM and the Weinberg
operator. We must also add that this contribution does not grow with tan β [59–61].

It is now clear that, with “natural size” of CP phases of soft supersymmetry
breaking terms, the supersymmetric SMyields a large EDMobservables. The current
EDM experimental data give strong upper bounds, so that the SUSY CP phases are

Fig. 10.5 Supersymmetric contribution to the P, CP-odd electron-nucleon interaction generated
from gluon loop. Hi denotes all possible neutral Higgs bosons
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Fig. 10.6 Supersymmetric contribution to the Weinberg operator. Hi denotes all possible neutral
Higgs bosons

constrained by about 2 or 3 orders in magnitudes. This is the SUSY CP problem. The
possible explanation of the SUSY CP problem is as follows [16–21]:

• Heavy superpartners: The masses of sparticles are all above 100TeV, such that the
contributions discussed above decouple.

• Small phases: The CP symmetry may be an exact or approximate symmetry. This
assumption depends on themodel. There is also a possibility for scenarios inwhich
CP violation is only provided via flavor off-diagonal components [25–32], as in
the standard model.

• Accidental cancellation: This scenario allows every CP phases to be O(1).
Then the cancellation due to phases could happen, since the EDM constraints
(205Tl, 199Hg, neutron, etc) are combinations of different CP violating sources. To
find such combinations, sophisticated methods for scanning the SUSY parameter
space are required. This topic will be reviewed in the next section.

• No electroweak scale SUSY: In this scenario, we give up the explanation of the
hierarchy problemwithin the supersymmetry. This gives way to other mechanisms
which may solve the fine-tuning problem.

All the contributions cited above were carefully rederived in detail in the paper
of Ellis et al. [66].

10.3 Geometric Approach to SUSY CP Violation

In the previous analysis, the limits on the supersymmetric phases were set by com-
paring upper bounds given by each EDM experimental data (205Tl [22], 199Hg
[24] and neutron [23]), then taking the tightest one. However, as pointed in Refs.
[16–21, 62–64], the possibility of O(1) SUSYCP phases remains, if there is acciden-
tal cancellation amongCP violations in the EDMdata used. To analyze the remaining
O(1) regions of the SUSY CP phases, J. Ellis et al. developed a new approach based
on the differential-geometry to find the optimal value of some observables within
the constraints of the existing experimental data [63–65]. They analyzed the EDMs
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Fig. 10.7 3D example of the geometric analysis [63–65]. The (hyper)plane orthogonal to E is the
EDM-constrained parameter space.O is the true optimal direction for the observable O , andφ→ is its
EDM-constrained optimal direction,which can be obtained by projection onto theEDM-constrained
hyperplane

in the minimally flavor violating maximally CP violating (MFVMCP) models of
supersymmetric SM and have shown the prospect of measuring some CP violating
observables. The MFVMCP SUSY is the supersymmetric SM with 6 CP phases,
composed of three phases from the gaugino masses Φ1, Φ2, Φ3, and three phases
from the trilinear soft breaking interactions ΦAu , ΦAd and ΦAe (the CP phase of the
μ parameter θμ was absorbed in the phase of the gluino mass).

The geometric approach is as follows. First consider the Taylor expansion of the
EDM experimental constraints Ei = 0 and the observable O we want to maximize.
In the small phase approximation, it suffices to take the first order to write

O = φ · O, E = φ · E, (10.2)

where φ ↔ (Φ1, Φ2, Φ3, . . .) are the set of parameters of the new physics (in this
case,φ = (Φ1, Φ2, Φ3, ΦAu , ΦAd , ΦAe )). The gradients are defined asO ↔ ∇O and
E ↔ ∇E . In this case, there are 3 constraints EHg = ETl = En = 0, corresponding
respectively to the zero value of the 199HgEDM, 205Tl EDMand neutron EDM, since
those EDM experimental data give very strict constraints. We can now express the
“EDM-constrained” parameter space in terms of these gradients. The corresponding
equation can be expressed with the exterior product

Aαβγ = EHg
[α ETl

β Eb
γ] , (10.3)

where the square brackets means that we antisymmetrize the indices. The EDM-
constraint (hyperplane) is represented schematically in Fig. 10.7.
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We need now to find the optimal direction of the observable O (which is given
by the gradient ∇O) within the EDM-constrained hyperplane. We can do so by
projecting orthogonally the optimal direction of O to the EDM-constrained space.
The easiest way is to find the plane which contains both Ei and O, and take the
intersection with the EDM constrained hyperplane, where i labels the system giving
EDM-constraints (199Hg, 205Tl atoms and neutron). The plane which contains Ei

and O is expressed with

Bμν = εμνλρστ OλEHg
ρ ETl

σ En
τ , (10.4)

where the epsilon tensor is totally antisymmetric. The components of the optimal
EDM-constrained direction are then

φ→
α = N εαβγδμν Aβγδ Bμν, (10.5)

whereN is the normalization constant which must be determined to keep the linear
approximation safe. In fact, the above equation determines the optimal direction,
but not the size of the vector φ→. The size of φ→ can be determined by extending
the overall factor until the EDM-constraints are broken. The formula above neither
determines the sign of the optimal φ→, but this problem can be resolved by analyzing
higher derivatives which prefer some signs.

In this case, theEDM-constraints are 199Hg, 205Tl and neutronEDMs.The optimal
observables we want to obtain are those of the deuteron, muon, 225Ra EDMs and
the CP violating asymmetry in b → sγ decay [63–65]. It was concluded that the
optimal deuteron EDM in theMFVMCP SUSY is one order of magnitude larger than
the prospective experimental sensitivity. The analysis was also performed for 225Ra
atom EDM, which shows also a large optimal value. On the other hand, the muon
EDM and the branching ratio of b → sγ are too small to be observed in planned
experiments. These analyses were the first to treat analytically several CP violating
parameters on the same footing, and the results given may be significantly larger
than the analysis with single phase. Moreover, these analyses are more efficient than
the naive scan of all parameter space, and the computational cost is greatly reduced.
This method has thus a significant impact on the search for new physics with large
parameter space.
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Chapter 11
Leading RPV Contributions to the EDM
Observables

We have previously seen that the general renormalizable supersymmetric extension
of the SM allows also baryon and lepton number violating interactions, the R-parity
violating (RPV) interactions. The assumption of the R-parity is ad hoc, and RPV
interactions must be investigated phenomenologically. The RPV interactions are
generated by the following superpotential:

WR/ = μ∝
i εab L̂a

i Ĥ b
u + 1

2
λi jkεab L̂a

i L̂b
j (Êc)k + λ∝

i jkεab L̂a
i Q̂b

j (D̂c)k + 1

2
λ∝∝

i jk(Û
c)i (D̂c) j (D̂c)k ,

(11.1)
with i, j, k = 1, 2, 3 indicating the generation, a, b = 1, 2 the SU (2)L indices. For
the baryon number violating interactions (terms with λ∝∝), the SU (3)c indices have
been omitted. The lepton left-chiral superfields L̂ and Êc are respectively SU (2)L

doublet and singlet. The quark superfields Q̂, Û c and D̂c denote respectively the
quark SU (2)L doublet, up quark singlet and down quark singlet left-chiral super-
fields, and Ĥu the up type Higgs left-chiral superfield.

The trilinear R-parity violating (RPV) interactions contribute to the EDM observ-
ables via two leading processes: the Barr–Zee type 2-loop fermion EDM and the P,
CP-odd 4-fermion interaction. In deriving theBarr–Zee type two-loop contribution to
the fermion EDM, our result did not agree with that of the previous works [1, 2]. We
have found that the values from our correct formula [3] are one order in magnitudes
smaller than the results from previous works. This has an important consequences
on phenomenological analysis, since its contribution relative to the other leading
contributions (such as that from 4-fermion interaction) changes.

In this chapter, the detail of the derivation of the RPV contribution to the EDM
is carefully explained. We first explain the absence of one-loop level fermion EDM
diagram within trilinear RPV supersymmetry. We will then present the two leading
P, CP-odd contributions, the Barr–Zee type two-loop level fermion EDM and the tree
level P, CP-odd 4-fermion interactions.
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11.1 Absence of One-Loop Level RPV Contribution
to Fermion EDM

The leading contributions of the R-parity violating interactions to the quark and
electron EDMs are from the 2-loop level diagrams. It was shown by Godbole et al.
that there is no one-loop contribution to the fermion EDM generated from trilinear
R-parity violating couplings [4]. Here we briefly explain its mechanism. The analysis
is based on examining the helicity flip processes. From the Lorentz structure of the
EDM operator, diagrams contributing to the EDMs must flip the helicity. Since the
helicity flip by mass insertions to the external line can be removed by the equation
of motion (see Fig. 11.1), the helicity flip must be generated from the loop itself,
i.e. the external left-handed (Qi and Li ) and right-handed (Di , Ui and Ei ) chiral
fermion lines must be directly attached to the vertices of the loop. For the case of
charged lepton EDM, the diagrams must be proportional to λλ∼ or λ∝λ∝∼. For λλ∼,
it is impossible to generate a one-loop graph with left-handed lepton (chiral super-
field L) and right-handed lepton (chiral super-field Ec) attached directly to the loop
(Fig. 11.2a). For λ∝λ∝∼, we cannot give EDM contribution since there is no vertex
to give Ec (Fig. 11.2b). Similar discussion holds for the case of down type quark.
In this case, the diagrams must be proportional to λ∝λ∝∼ or λ∝∝λ∝∝∼. As for the lepton
EDM, it is not possible to draw such one-loop diagrams (see Fig. 11.2c and d). For
the up type quark, it is also not possible to generate one-loop diagram since RPV
interactions do not involve SU (2)L singlet Ui field. We must note that it is possible
to generate one-loop EDM graphs if we consider bilinear R-parity violation [5–8],
but we do not consider the bilinear R-parity violation in this work.

11.2 Two-Loop Level Barr–Zee Type Fermion EDM

The analysis of the two-loop quark EDM contribution was done by Chang et al. [1].
They enumerated all possible graphs contributing to the down-type quark EDM, and
found that theBarr–Zee type graphswith strongor electromagnetic gauge bosons give

Fig. 11.1 The helicity flip in the external line cannot generate EDM operator: it becomes the
renormalization of the vector and axial vector currents. The helicity flip must come directly from
the loop
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(a) (b)

(d)(c)

Fig. 11.2 Attempt to draw one-loop level EDMdiagramswithin R-parity violating supersymmetry.
We cannot construct one-loop diagram within RPV and supersymmetric interactions. There are no
interactionswhich give theYukawa verticeswith the big cross. The leptonEDMis given by diagrams
(a) and (b), where (a) is the contribution from the lepton loop and (b) from the quark loop. The
quark EDM is given by diagrams (c) and (d), where (c) is the contribution involving neutrino in the
loop and (d) is that generated by baryon number violating interactions. Fields Qi and L j refer to
the down type quark (SU (2)L doublet) and the neutrino, respectively

the leading contributions. The essential point was that the other two-loop diagrams
must have a Higgs boson which give a suppression of at least one power of light
quark mass plus some CKM mixing angle.1

We now derive the formula of the Barr–Zee type fermion EDM. The EDM dF of
the fermion F is defined as follows:

LEDM = −i
dF

2
ψ̄Fγ5σ

μνψF Fμν , (11.2)

where Fμν is the electromagnetic field strength. With the RPV lagrangian (4.2), the
sneutrino exchange Barr–Zee type diagrams shown in Fig. 11.3 contribute to the
EDM. Here the emission (absorption) of the sneutrino from fermion is accompanied
by PR ∗ 1

2 (1 + γ5) (PL ∗ 1
2 (1 − γ5)) projection operator as is apparent from

Eq. (4.2).
There are also additional diagramswith the inverted flow of the inner loop fermion

f j , and also diagrams in which the incident fermion Fk interacts first with the gauge
boson and then to the sneutrino before exiting. For them, the calculation is essentially
the same.

1 This section is based on the article of N. Yamanaka, T. Sato and T. Kubota, Phys. Rev. D 85,
117701 (2012), Copyright © American Physical Society All Rights Reserved.
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(a) (b)

Fig. 11.3 Examples of Barr–Zee type two-loop contributions to the fermion EDM within RPV
interactions. The projections of the chirality (PL and PR) were explicitly given for the RPV vertices

Effective One-Loop
∼
ν γγ Vertex

The first step of its computation is to obtain the formula for the effective one-loop
ν̃γγ vertex. The ν̃γγ vertex has two contributions as shown in Fig. 11.4.

The amplitude of the effective ν̃γγ vertex is

iMν̃γγ = − λ̂i j j nc(Q f e)2ε∼
μ(q1)ε

∼
ν(q2)

×
∫

d4k

(2π)4

Tr
[
(k/ + q/1 + m f j )γ

μ(k/ + m f j )γ
ν(k/ − q/2 + m f j )(1 − γ5)

⎧
[
(k + q1)2 − m2

f j

⎧ [
k2 − m2

f j

⎧ [
(k − q2)2 − m2

f j

⎧ ,

(11.3)

where i and j denote the flavor indices of ν̃ and loop fermion, respectively. The
coupling λ̂ is the R-parity violating coupling, λ̂ = λ when charged lepton runs in
the loop, and λ̂ = λ∝ in the case of down type quark. Here nc is the number of colors
of the fermion in the loop, i.e. nc = 1 if leptons run in the loop, and nc = 3 when
quarks run. The mass and the charge in unit of e of the loop fermion are denoted
respectively by m f j and Q f . We have to pay attention on the minus sign provided
by the R-parity violating coupling, the trace of the fermion loop and the i’s from
vertices and propagators.

We now explain the steps to calculate Eq. (11.3):

(a) (b)

Fig. 11.4 One-loop diagrams contributing to the effective ν̃γγ (or ν̃gg) vertex
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1. Feynman parameter calculation of propagator

1[
(k + q1)2 − m2

f j

⎧ [
k2 − m2

f j

⎧ [
(k − q2)2 − m2

f j

⎧

=
∫ 1

0

2!δ(1 − x − y − z) dxdydz[
x(k + q1)2 + yk2 + z(k − q2)2 − m2

f j

⎧3

=
∫ 1

0

2δ(1 − x − y − z) dxdydz[
k2 + 2x(k · q1) − 2z(k · q2) + xq21 + zq22 − m2

f j

⎧3

=
∫ 1

0

2δ(1 − x − y − z) dxdydz[
(k + xq1 − zq2)2 − (xq1 − zq2)2 + xq21 + zq22 − m2

f j

⎧3

(k∝ ∗ k + xq1 − zq2) =
∫ 1

0

2δ(1 − x − y − z) dxdydz[
k∝2 + x(1 − x)q21 + z(1 − z)q22 + 2xz(q1 · q2) − m2

f j

⎧3
(11.4)

2. Trace calculation

T = Tr
[
(k/ + q/1 + m f j )γ

μ(k/ + m f j )γ
ν(k/ − q/2 + m f j )(1 − γ5)

⎧

= m f j Tr
[
(k/ + q/1)γ

μk/ γν(1 − γ5) + (k/ + q/1)γ
μγν(k/ − q/2)(1 − γ5)

+ γμk/ γν(k/ − q/2)(1 − γ5) + m2
f j

γμγν
⎧

= 4m f j

[
4kμkν + 2qμ

1 kν − 2kμqν
2 + [m2

f j
− k2 − (q1 · q2)]gμν

− qμ
1 qν

2 + qμ
2 qν

1 − iεμναβ(q1)α(q2)β
⎧

= 4m f j

[
4(k∝μ − xqμ

1 + zqμ
2 )(k∝ν − xqν

1 + zqν
2 ) + 2qμ

1 (k∝ν − xqν
1 + zqν

2 )

− 2(k∝μ − xqμ
1 + zqμ

2 )qν
2 + [m2

f j
− (k∝ − xq1 + zq2)

2 − (q1 · q2)]gμν

− qμ
1 qν

2 + qμ
2 qν

1 − iεμναβ(q1)α(q2)β
⎧

= 4m f j

[
4k∝μk∝ν + 4(xqμ

1 − zqμ
2 )(xqν

1 − zqν
2 ) − 2qμ

1 (xqν
1 − zqν

2 )

+ 2(xqμ
1 − zqμ

2 )qν
2 + [m2

f j
− k∝2 − (xq1 − zq2)

2 − (q1 · q2)]gμν

− qμ
1 qν

2 + qμ
2 qν

1 − iεμναβ(q1)α(q2)β
⎧

= 4m f j

[4 − d

d
k∝2gμν + [m2

f j
− x2q21 − z2q22 + (2xz − 1)(q1 · q2)]gμν

+ (1 − 4xz)qμ
2 qν

1 + (4x2 − 2x)qμ
1 qν

1 + (−4xz + 2z + 2x − 1)qμ
1 qν

2

+ (4z2 − 2z)qμ
2 qν

2 − iεμναβ(q1)α(q2)β
⎧
. (11.5)
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In the fifth line, we have omitted terms linear in p∝ since they cancel by symmetry
when integrated. The convention we used for ε and γ5 is

ε0123 ∗ +1, (11.6)

γ5 ∗ iγ0γ1γ2γ3. (11.7)

3. Momentum integration
Diergent part: needed for obtaining the first term of the last line of Eq. (11.5).

Idiv =
∫

ddk∝

(2π)d

k∝2
⎪
k∝2 − Δ

⎨3 4 − d

d

=
∫

iddk∝
E

(2π)d

−k∝2
E⎪−k∝2

E − Δ
⎨3 4 − d

d

= i
4 − d

d
· 1

(4π)d/2

d

2

Γ (2 − d/2)

Γ (3)

⎩
1

Δ

)2− d
2

(d → 4) → i
1

(4π)2− ε
2

ε

4
Γ (ε/2)

⎩
1

Δ

) ε
2

(ε ∗ 4 − d)

= i
1

(4π)2

ε

4

⎩
2

ε
− γ + O(ε)

)
e− ε

2 logΔe
ε
2 log 4π

= i

2(4π)2
. (11.8)

We must note here that the regularization method used is the dimensional reduc-
tion [9], to keep the supersymmetry (in this situation, themanipulation is the same
as for the dimensional regularization).

Convergent part:

Iconv =
∫

ddk∝

(2π)d

1⎪
k∝2 − Δ

⎨3 = −i

2(4π)2

1

Δ
,

where Δ = −x(1 − x)q2
1 − z(1 − z)q2

2 − 2xz(q1 · q2) + m2
f j
.

With the above ingredients, Eq. (11.3) then gives

iMν̃γγ = − 4m f j λ̂i j j nc(Q f e)2ε∼
μ(q1)ε

∼
ν(q2)

∫ 1

0
2δ(1 − x − y − z)dxdydz

×
{

Idivgμν

+ Iconv
[
(m2

f j
− x2q21 − z2q22 + [2xz − 1][q1 · q2])gμν

+ (1 − 4xz)qμ
2 qν

1
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+ (4x2 − 2x)qμ
1 qν

1 + (−4xz + 2z + 2x − 1)qμ
1 qν

2

+ (4z2 − 2z)qμ
2 qν

2 − iεμναβ(q1)α(q2)β
⎧}

= − 4i

(4π)2
m f j λ̂i j j nc(Q f e)2ε∼

μ(q1)ε
∼
ν(q2)

×
∫ 1

0

δ(1 − x − y − z) dxdydz

−x(1 − x)q21 − z(1 − z)q22 − 2xz(q1 · q2) + m2
f j

×
{[

(2x2 − x)q21 + (2z2 − z)q22 + (1 − 4xz)(q1 · q2)
⎧

gμν

− (1 − 4xz)qμ
2 qν

1

− (4x2 − 2x)qμ
1 qν

1 − (−4xz + 2z + 2x − 1)qμ
1 qν

2

− (4z2 − 2z)qμ
2 qν

2 + iεμναβ(q1)α(q2)β
}

= 4i

(4π)2
m f j λ̂i j j nc(Q f e)2ε∼

μ(q1)ε
∼
ν(q2)

×
∫ 1

0
dx

∫ 1−x

0
dz

(1 − 4xz)
⎪
qμ
2 qν

1 − (q1 · q2)g
μν

⎨ − iεμναβ(q1)α(q2)β

m2
f j

− x(1 − x)q21 − z(1 − z)q22 − 2xz(q1 · q2)

− 4i

(4π)2
m f j λ̂i j j nc(Q f e)2ε∼

μ(q1)ε
∼
ν(q2)

×
[
1

2
(B1 + B2)q

2
1q22 gμν − B1q22qμ

1 qν
1 − B2q21qμ

2 qν
2 + B3(q1 · q2)q

μ
1 qν

2

]
,

(11.9)

where B1, B2 and B3 are defined as

B1 = 1

q2
2

∫ 1

0
dx

∫ 1−x

0
dz

2x(1 − 2x)

x(1 − x)q2
1 + z(1 − z)q2

2 + 2xz(q1 · q2) − m2
f j

,

B2 = 1

q2
1

∫ 1

0
dx

∫ 1−x

0
dz

2z(1 − 2z)

x(1 − x)q2
1 + z(1 − z)q2

2 + 2xz(q1 · q2) − m2
f j

,

B3 = − 1

q1 · q2

∫ 1

0
dx

∫ 1−x

0
dz

(1 − 2x)(1 − 2z)

x(1 − x)q2
1 + z(1 − z)q2

2 + 2xz(q1 · q2) − m2
f j

.

(11.10)

We now note that the gauge invariance requires B1 = B2 = B3. The equality
B1 = B3 is shown as follows:

q2
2 (q1 · q2)(B1 − B3) =

∫ 1

0
dx

∫ 1−x

0
dz

(1 − 2x)
⎪
2x(q1 · q2) + q2

2 (1 − 2z)
⎨

F(x, z)

=
∫ 1

0
dx (1 − 2x)

∫ ↔

0
dw

∫ 1−x

0
dz F(x, z)

⎩
− ∂

∂z

)
e−wF(x,z)
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=
∫ 1

0
dx (1 − 2x)

∫ ↔

0
dw

{
−F(x, z)e−wF(x,z)

∣∣∣1−x

0

+
∫ 1−x

0
dz e−wF(x,z) ∂

∂z
F(x, z)

⎛

=
∫ 1

0
dx (1 − 2x)

∫ ↔

0
dw

[
−F(x, z)e−wF(x,z) − 1

w
e−wF(x,z)

]1−x

0
,

(11.11)

where F(x, z) ∗ x(1 − x)q2
1 + z(1 − z)q2

2 + 2xz(q1 · q2) − m2
f j
. The dw integral

is a function of x(1 − x). By converting x ∝ = x − 1
2 , the above integral cancels (the

integral is odd in x ∝). We then have B1 = B3. Similar derivation is also possible for
B2.
∇ We have finally B1 = B2 = B3 ∗ B.

We shall show that B is not divergent as q1 → 0. By Taylor expanding B3 in
(q1 · q2),

B3 = − 1

q1 · q2

∫ 1

0
dx

∫ 1−x

0
dz

(1 − 2x)(1 − 2z)

x(1 − x)q2
1 + z(1 − z)q2

2 + 2xz(q1 · q2) − m2
f j

≈ − 1

q1 · q2

∫ 1

0
dx

∫ 1−x

0
dz

(1 − 2x)(1 − 2z)

z(1 − z)q2
2 − m2

f j

+ O(1)

= − 1

q1 · q2

∫ 1

0
dx (1 − 2x)

1

q2
2

∫ 1−x

0
dz

∂
∂z

[
z(1 − z)q2

2 − m2
f j

⎧
z(1 − z)q2

2 − m2
f j

+ O(1)

= − 1

(q1 · q2)q2
2

∫ 1

0
dx (1 − 2x) ln

⎫
m2

f j
− x(1 − x)q2

2

m2
f j

⎬
+ O(1)

= 0 + O(1). (11.12)

The first divergent term vanishes since it is an odd function in x ∝ = x − 1
2 . Thus we

have shown that B is not divergent.
In Eq. (11.9), the term with B is higher order in q1 and q2. The EDM is the first

order coefficient of the external momentum, so we are not interested in it. Thus
the final result for the ν̃γγ loop of our interest here is the following leading gauge
invariant amplitude in q2:

iMν̃γγ ≈ 4i

(4π)2
m f j λ̂i j j nc(Q f e)2ε∼

μ(q1)ε
∼
ν(q2)

×
∫ 1

0
dx

∫ 1−x

0
dz

(1 − 4xz)
⎪
qμ
2 qν

1 − (q1 · q2)g
μν

⎨ − iεμναβ(q1)α(q2)β

m2
f j

− x(1 − x)q21
.

(11.13)
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Since

∫ 1

0
dx

∫ 1−x

0
dz

(1 − 4xz)

m2
f j

− x(1 − x)q2
1

=
∫ 1

0
dx

(1 − x)[1 − 2x(1 − x)]
m2

f j
− x(1 − x)q2

1

= 1

2

∫ 1

0
dx

1 − 2x(1 − x)

m2
f j

− x(1 − x)q2
1

,

∫ 1

0
dx

∫ 1−x

0
dz

1

m2
f j

− x(1 − x)q2
1

= 1

2

∫ 1

0
dx

1

m2
f j

− x(1 − x)q2
1

, (11.14)

we obtain finally

iMν̃γγ = 2i

(4π)2
m f j λ̂i j j nc(Q f e)2ε∼

μ(q1)ε
∼
ν(q2)

×
∫ 1

0
dx

[1 − 2x(1 − x)]
⎪
qμ
2 qν

1 − (q1 · q2)g
μν

⎨ − iεμναβ(q1)α(q2)β

m2
f j

− x(1 − x)q21
.

(11.15)

For the gluon contribution (Mν̃gg), we just have to replace (Q f e)2 by g2
s , the polar-

ization vectors of photon by those of gluon, and nc by 1
2 which is the constant

originating from the color trace of the quark loop.
Note that the amplitude and the lagrangian are related with

Fμν Fμν = (∂μ A(1)
ν − ∂ν A(1)

μ )(∂μ A(2)ν − ∂ν A(2)μ)

≈ 2ε∼
μ(q1)ε

∼
ν(q2)

⎪
qμ
2 qν

1 − (q1 · q2)g
μν

⎨
. (11.16)

Second Loop

We first calculate the amplitude of the diagram in Fig. 11.3.

iMBZ = 2

(4π)2
m f j λ̂i j j λ̃

∼
ikknc(Q f e)2

QF e

2
ε∼
ν(q)

∫
d4k

(2π)4

×
[

ū(p − q)γμ(p/ − q/ − k/ + m Fk )γ5u(p) · [(q · k)gμν − qμkν]

k2
[
(q + k)2 − m2

ν̃i

⎧ [
(p − q − k)2 − m2

Fk

⎧

×
∫ 1

0
dx

1 − 2x(1 − x)

m2
f j

− x(1 − x)k2

+ ū(p − q)γμ(p/ − q/ − k/ + m Fk )u(p) · iεμναβkαqβ

k2
[
(q + k)2 − m2

ν̃i

⎧ [
(p − q − k)2 − m2

Fk

⎧
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×
∫ 1

0
dx

1

m2
f j

− x(1 − x)k2

]
, (11.17)

where λ̃ = λ for lepton EDM contribution and λ̃ = λ∝ for quark EDM contribution.
We have taken only the EDM contribution to the amplitude iMBZ.

First term of Eq. (11.23):

I1 =
∫

d4k

(2π)4

ū(p − q)γμ(p/ − q/ − k/ + m Fk )γ5u(p) · [(q · k)gμν − qμkν]

k2
[
(q + k)2 − m2

ν̃i

⎧ [
(p − q − k)2 − m2

Fk

⎧

×
∫ 1

0
dx

1 − 2x(1 − x)

m2
f j

− x(1 − x)k2

≈
∫

d4k

(2π)4

ū [q/ kν − (q · k)γν] k/ γ5u

k2(k2 − m2
ν̃i

)k2

∫ 1

0
dx

1 − 2x(1 − x)

m2
f j

− x(1 − x)k2

= 1

4

∫
d4k

(2π)4

ū (q/ γν − γνq/ ) γ5u · k2

k2(k2 − m2
ν̃i

)k2

∫ 1

0
dx

1 − 2x(1 − x)

m2
f j

− x(1 − x)k2

= −i

2

∫
d4k

(2π)4

ūσμνqμγ5u

k2(k2 − m2
ν̃i

)

∫ 1

0
dx

1 − 2x(1 − x)

m2
f j

− x(1 − x)k2

= −i

2

∫ 1

0
dx

∫ ↔

0

iπ2k2E d(k2E )

(2π)4
· ūσμνqμγ5u

k2E (k2E + m2
ν̃i

)
· 1 − 2x(1 − x)

m2
f j

+ x(1 − x)k2E
. (11.18)

Second term of Eq. (11.23):

I2 =
∫

d4k

(2π)4

ū(p − q)γμ(p/ − q/ − k/ + m Fk )u(p) · iεμναβkαqβ

k2
[
(q + k)2 − m2

ν̃i

⎧ [
(p − q − k)2 − m2

Fk

⎧

×
∫ 1

0
dx

1

m2
f j

− x(1 − x)k2

=
∫

d4k

(2π)4

ūγμ(−k/ )u · iεμναβkαqβ

k2(k2 − m2
ν̃i

)k2

∫ 1

0
dx

1

m2
f j

− x(1 − x)k2

= −1

4

∫
d4k

(2π)4

ūγμγαu · iεμναβqβ

k2(k2 − m2
ν̃i

)

∫ 1

0
dx

1

m2
f j

− x(1 − x)k2

= −1

2

∫
d4k

(2π)4

ūiγ5σνβqβu

k2(k2 − m2
ν̃i

)

∫ 1

0
dx

1

m2
f j

− x(1 − x)k2

= i

2

∫ 1

0
dx

∫ ↔

0

iπ2k2E d(k2E )

(2π)4
· ūγ5σ

μνqμu

k2E (k2E + m2
ν̃i

)
· 1

m2
f j

+ x(1 − x)k2E
. (11.19)
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We have used
1

2
εμνρσσρσ = −iγ5σ

μν . (11.20)

We then obtain

I1 + I2 = −i

2

∫ 1

0
dx

∫ ↔
0

iπ2k2E d(k2E )

(2π)4
· ūσμνqμγ5u

k2E (k2E + m2
ν̃i

)
· −2x(1 − x)

m2
f j

+ x(1 − x)k2E

= −1

(4π)2
ūσμνqμγ5u

∫ 1

0
dx x(1 − x)

∫ ↔
0

dr
1

r + m2
ν̃i

· 1

m2
f j

+ x(1 − x)r

= −1

(4π)2
ūσμνqμγ5u

∫ 1

0
dx

∫ ↔
0

dr
1

r + m2
ν̃i

· 1

r +
m2

f j
x(1−x)

= −1

(4π)2
ūσμνqμγ5u

∫ 1

0
dx

x(1 − x)

m2
f j

− m2
ν̃i

x(1 − x)

×
∫ ↔
0

dr

⎡⎣⎣⎠
⎣⎣

1

r + m2
ν̃i

− 1

r +
m2

f j
x(1−x)

⎤⎣⎣⎦
⎣⎣

(τ ∗ m2
f j

/m2
ν̃i

) = −1

(4π)2
1

m2
ν̃i

ūσμνqμγ5u
∫ 1

0
dx

x(1 − x)

x(1 − x) − τ
ln

⎩
x(1 − x)

τ

)
. (11.21)

We have finally

iMBZ = − λ̂i j j λ̃
∼
ikk

αem

(4π)3
nc Q2

f QF e
m f j

m2
ν̃i

∫ 1

0
dx

x(1 − x)

x(1 − x) − τ
ln

⎩
x(1 − x)

τ

)

× ε∼
ν(q)ūσμνqμγ5u. (11.22)

We have obtained the amplitude corresponding to the diagram of Fig. 11.3. We must
now add to them the remaining diagrams. The diagram with inverted flow is just the
complex conjugate of MBZ (except the gluon polarization vector). Diagrams with
sneutrino and gauge boson between the external fermion (F) line and the inner loop
replaced have just the same contribution as the original diagrams. This can be easily
shown by replacing the gammamatrices and inverting the sign of the loopmomentum
in Eqs. (11.18) and (11.19). The total Barr–Zee contribution is then

iMBZtot ≈ − 4i Im(λ̂i j j λ̃
∼
ikk)

αem

(4π)3
nc Q2

f QF e
m f j

m2
ν̃i

∫ 1

0
dx

x(1 − x)

x(1 − x) − τ
ln

⎩
x(1 − x)

τ

)

× ε∼
ν(q)ūσμνqμγ5u

= 4iIm(λ̂i j j λ̃
∼
ikk)

αem

(4π)3
nc Q2

f QF e
1

m f j

⎡⎠
 f


m2

f j

m2
ν̃i


 − g


m2

f j

m2
ν̃i



⎤⎦
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× ε∼
ν(q)ūσμνqμγ5u, (11.23)

where the functions f and g are defined as

f (z) = z

2

∫ 1

0
dx

1 − 2x(1 − x)

x(1 − x) − z
ln

⎩
x(1 − x)

z

)
, (11.24)

g(z) = z

2

∫ 1

0
dx

1

x(1 − x) − z
ln

⎩
x(1 − x)

z

)
, (11.25)

in the notation of the original notation of Barr and Zee [10]. For small z, we have

f (z) ≈ z
2

(
π2

3 + 4 + 2 ln z + (ln z)2
)
, and g(z) ≈ z

2

(
π2

3 + (ln z)2
)
. In the last line

of Eq. (11.23), we have taken only the part of iMBZ which contributes to the EDM,
disregarding Re(λ̂i j j λ̃

∼
ikk). The total EDM of the fermion F from the Barr–Zee type

diagrams with R-parity violating interaction is then

dFk = Im(λ̂i j j λ̃
∼
ikk)

αemnc Q2
f QF e

16π3m f j

· { f (τ ) − g (τ )}

≈ Im(λ̂i j j λ̃
∼
ikk)

αemnc Q2
f QF e

16π3m f j

· τ (2 + ln τ + · · · ) , (11.26)

where τ = m2
f j
/m2

ν̃i
. The flavor index, electric charge and number of color of the

fermion F are denoted respectively by k, QF e and nc (nc = 3 if the inner loop
fermion is a quark, otherwise nc = 1), and j and Q f e are respectively the flavor
index and the electric charge of the inner loop fermion f . The second line of the
above equation is the approximated expression for small τ . Note also that the Barr–
Zee type diagram gives EDM contribution only to down-type quarks, and the same
property holds also for the chromo-EDM (cEDM) seen below.

We see from Eq. (11.17) (see also Fig. 11.3) that the chirality structure of the
scalar exchange between internal loop and external line (RPV vertices with sneutrino
exchange) has the form PL ⊗ PR and PR ⊗ PL , which is a consequence of the lepton
number conservation of the whole EDM process. This gives as a result the structure

f (τ ) − g(τ ) ≈ τ (2 + ln τ ), (11.27)

in the final formula (11.26). This is consistent with the result obtained in the analysis
of the Barr–Zee type diagram analogues with the exchange of Higgs bosons in the
two Higgs doublet model, done originally by Barr and Zee [10] (see also [11]). In the
two Higgs doublet model, there are also additional contributions with the structures
PL ⊗ PL and PR ⊗ PR which yield contribution proportional to

f (τ ) + g(τ ) ≈ τ

⎩
π2

3
+ 2 + ln τ + (ln τ )2

)
, (11.28)
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which is absent in the RPV supersymmetric models.
The small τ behaviour in Eq. (11.26) is in contradictionwith the result presented in

Refs. [1, 2, 12, 13], where the RPV Barr–Zee type diagrams receive the leading con-
tribution proportional to τ (ln τ )2. The difference between these two results is large.
For example, if we consider the Barr–Zee type diagram with the bottom quark in the
loop andwith sneutrinomass=1TeV,wehave [ f (τ )−g(τ )]/[ f (τ )+g(τ )] ≈ −0.08.
By using our correct formula, the experimental upper bounds on RPV interactions
given from the RPV Barr–Zee type contribution are therefore loosened by one order
of magnitude.

Wecan also evaluateBarr–Zee typediagramswhich contribute to thequark cEDM.
The lagrangian of the cEDM interaction is given by

LcEDM = −i
dc

Q

2
ψ̄Qγ5σ

μνTaψQ Ga
μν, (11.29)

where Ga
μν is the gluon field strength. The Barr–Zee type contribution of the down-

type quark qk is then

dc
Qk

= − Im(λ∝
i j jλ

∝∼
ikk)

αsgs

32π3

mq j

m2
ν̃i

∫ 1

0
dx

x(1 − x)

x(1 − x) − τ
ln

⎩
x(1 − x)

τ

)

= Im(λ∝
i j jλ

∝∼
ikk)

αsgs

32π3mq j

· { f (τ ) − g (τ )} , (11.30)

where τ = m2
q j

/m2
ν̃i
. The flavor indices of the external quark Q and the quark of the

inner loop q are denoted respectively by k and j .

11.3 P, CP-Odd 4-Fermion Interactions

The EDM and the chromo-EDM of fermions seen above are P, CP-odd processes of a
single fermion. For the case of composite systems such as hadrons, nuclei and atoms,
their EDM can receive contribution from the P, CP-odd many-body interactions at
the elementary level, in addition to the EDM of their constituents. The leading P,
CP-odd many-body interactions are the P, CP-odd 4-fermion interactions. Trilinear
R-parity violating interactions contribute to the P, CP-odd 4-fermion interaction at
the tree level as shown in Fig. 11.5.

The importance of the contribution of the P, CP-odd electron-quark interaction
from R-parity violation was first pointed by Herczeg [2]. The analysis of P, CP-odd
4-quark interaction within R-parity violation was made by Faessler et al. [12, 13].
In both cases, it was possible to constrain R-parity violating couplings contributing
to P, CP-odd 4-fermion interactions from the current experimental data.

The 4-fermion interaction can be written as follows:
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Fig. 11.5 Diagram
contributing to 4-fermion
interaction within R-parity
violation. We must also con-
sider its complex conjugate

L4−f = Im(λ̂i j j λ̃
∼
ikk)

2m2
ν̃i

⎪
f̄ j f j · F̄kiγ5Fk − f̄ j iγ5 f j · F̄k Fk

⎨

− Re(λ̂i j j λ̃
∼
ikk)

2m2
ν̃i

⎪
f̄ j f j · F̄k Fk + f̄ j iγ5 f j · F̄kiγ5Fk

⎨
, (11.31)

where λ̂ = λ,λ∝ when the fermion f is a leptonor quark, respectively.Also, λ̃ = λ,λ∝
when the fermion F is a lepton or quark, respectively. The second line is the CP-even
part of the 4-fermion interaction, and is of no interest in this discussion, so we omit
them from now.

The tree level RPV contribution to the P, CP-odd 4-quark interaction can then be
written in terms of Eq. (6.8) as follows:

C jk = Im(λ∝
i j jλ

∝∼
ikk)≥

2m2
ν̃i

G F
, (11.32)

where j and k are the quark flavor. Note that there are no tensor type P, CP-odd
4-quark interaction (C ∝

qq ∝) in R-parity violation at the tree level.
The tree level RPV contribution to the P, CP-odd electron-quark interaction can

be written in terms of Eq. (6.9) as follows:

CSP
ej = Im(λi11λ

∝∼
i j j )≥

2m2
ν̃i

G F
, (11.33)

CPS
ej = − Im(λi11λ

∝∼
i j j )≥

2m2
ν̃i

G F
. (11.34)

We should be careful on the minus sign in the definition of Eq. (6.9), which was
introduced to be consistent with many references [14, 15]. In this case also, we
do not have tensor type P, CP-odd electron-quark interaction (CT

eq ) at the tree level
within R-parity violation.

http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6
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Chapter 12
Classification of RPV Couplings and RPV
Dependence to EDM Observables

12.1 Classification of RPV Contribution to the EDMs

Let us now discuss the general properties and the classification of the RPV
contributions to the EDM observables. The P, CP-odd processes involved in the
EDM do not change flavors and fermion numbers, so the relevant RPV interactions
at the tree level should be combined so as to create and annihilate sneutrino in inter-
mediate states, as we can see in Eqs. (11.26), (11.30) and (11.31). The relevant RPV
interactions are then λi j j and λ∝

ikk , where the first index indicates the flavor of the
virtual sneutrino, and the subsequent two are those of the incident and exiting fermi-
ons, which have to be the same. Of course, two complex conjugate RPV interactions
appear in each process, to avoid the fermion number violation of the total process.
The possible RPV combinations are then leptonic bilinears (λi j jλ

∼
ikk), semi-leptonic

bilinears (λi j jλ
∝∼
ikk), and hadronic bilinears (λ∝

i j jλ
∼
ikk). In Table 12.1, we havewritten

all possible RPV combinations relevant at the tree level, and the P, CP-odd processes
sensitive to them.

Let us give a more phenomenologically refined classification. We have summa-
rized in Table12.2 the RPV bilinears classified using the sensitivity of the available
EDM observables on them.

We see that each fermion EDMs and P, CP-odd 4-fermion interactions has its
own dependence on the imaginary parts of RPV bilinears. When one RPV bilinear
contributes to two or more P, CP-odd operators, the relative size of its effect to the
final EDM observables has to be investigated. This depends of course on the final
observables, but here we give a rough comparison. For RPV bilinears contributing
simultaneously to the electron EDM and to the P, CP-odd electron-quark interaction,
(Im(λi11λ

∝∼
i j j ) with i = 2, 3 and j = 1, 2, 3), the P, CP-odd electron-quark interac-

tion has generally larger effect to the EDM of atoms. For hadronic RPV interactions
(Im(λ∝

i11λ
∝∼
i22), Im(λ∝

i11λ
∝∼
i22) and Im(λ∝

i11λ
∝∼
i22) with i = 1, 2, 3), the quark chromo-

EDM contribution to the hadronic P, CP violation (nucleon EDMs, nuclear Schiff
moments) generally dominates over the d-quark EDMor the P, CP-odd 4-quark inter-
actions. The dominance of the chromo-EDM over the EDM is due to the suppression
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Table 12.1 All possible combinations of RPV couplings which generate the fermion EDM, the
chromo-EDMand the P, CP-odd 4-fermion interactions at the leading order, and P, CP-odd processes
sensitive to them

d f denotes the EDM of fermion f, dc
q the chromo-EDM of the quark q, and V f f ∝ the P, CP-

odd 4-fermion interactions between fermions f and f ∝. The upper, middle and lower tables treat
respectively the leptonic, semi-leptonic and hadronic RPV combinations

of the Barr-Zee type EDM contribution by the electromagnetic coupling αem and
also by the electric charge of the d-type quarks. The dominance of the chromo-EDM
over the P, CP-odd 4-quark interactions is however strongly model dependent and
involves a large theoretical uncertainty. We must also note that the Barr-Zee type
diagrams with electron or d-quark in the inner loop have a small contribution so we
neglect them (these are denoted by “small” in Table 12.2).

With these criteria, we can classify the RPV bilinears contributing to the fermion
EDMs and tree level P, CP-odd 4-fermion interactions into several types, depending
on how they contribute to the P, CP-odd processes. Our classification is as follow:

• Type 1: Leptonic bilinears which contribute only to the electron EDM via the
Barr-Zee diagram [Im(λ311λ

∼
322) and Im(λ211λ

∼
233)]. The EDM of paramagnetic

atoms and molecules are very sensitive to them.
• Type 2: Semi-leptonic bilinears involving electron which contribute both to the
electronEDMand theP,CP-oddelectron-nucleon (e-N) interactions [Im(λi11λ

∝∼
i11),

Im(λi11λ
∝∼
i22) and Im(λi11λ

∝∼
i33) (i = 2, 3)]. Atomic EDMs (paramagnetic and dia-

magnetic) are very sensitive to them.
• Type 3: Semi-leptonic bilinears involving d-quark and heavy leptons. These can be
only constrained via the nucleon EDM [Im(λi22λ

∝∼
i11) (i = 1, 3) and Im(λ j33λ

∝∼
j11)

( j = 1, 2)].
• Type 4: Hadronic bilinears. They contribute to the d-quark EDM, the chromo-
EDM and to the P, CP-odd 4-quark interactions [Im(λ∝

i11λ
∝∼
i22), Im(λ∝

i11λ
∝∼
i33) and

Im(λ∝
i22λ

∝∼
i33) (i = 1, 2, 3)]. Purely hadronic EDMs (nucleon EDM, bare nuclear

EDM) are highly sensitive to them.
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Table 12.2 Dependences of bilinears of RPV couplings to the EDM subprocesses (electron EDM
denoted by de, muon EDM by dμ, d-quark EDM by dd , quark chromo-EDM by dc

q , P, CP-odd
electron-quark interaction by Ceq , P, CP-odd 4-quark interaction with d-quark by Cqd )

de dμ dd dc
q Ceq Cqd Classification

Im(λ311λ
∼
322) ∗ small − − − − Type 1

Im(λ211λ
∼
233) ∗ − − − − − Type 1

Im(λ122λ
∼
133) − ∗ − − − − Type 5

Im(λi11λ
∝∼
i11) (i = 2, 3) small − small − ∗ − Type 2

Im(λi11λ
∝∼
i22) (i = 2, 3) ∗ − − − ∗ − Type 2

Im(λi11λ
∝∼
i33) (i = 2, 3) ∗ − − − ∗ − Type 2

Im(λi22λ
∝∼
i11) (i = 1, 3) − small ∗ − − − Type 3

Im(λi22λ
∝∼
i22) (i = 1, 3) − ∗ − − − − Type 5

Im(λi22λ
∝∼
i33) (i = 1, 3) − ∗ − − − − Type 5

Im(λi33λ
∝∼
i11) (i = 1, 2) − − ∗ − − − Type 3

Im(λi33λ
∝∼
i22) (i = 1, 2) − − − − − − Type 6

Im(λi33λ
∝∼
i33) (i = 1, 2) − − − − − − Type 6

Im(λ∝
i11λ

∝∼
i22) (i = 1, 2, 3) − − ∗ ∗ − ∗ Type 4

Im(λ∝
i11λ

∝∼
i33) (i = 1, 2, 3) − − ∗ ∗ − ∗ Type 4

Im(λ∝
i22λ

∝∼
i33) (i = 1, 2, 3) − − − ∗ − − Type 4

All combinations of RPV couplings relevant in the Barr-Zee type diagrams and P, CP-odd 4-fermion
interactions at the tree level were listed. Circles (∗) denote sizable sensitivity and minus signs (−)

denote the null sensitivity of the RPV couplings to the P, CP-odd operators (fermion EDM or
P, CP-odd 4-fermion interactions). The classification of RPV bilinears are also shown in the last
column

• Type5:Bilinearswhich contribute only tomuonEDM[Im(λ122λ
∼
133), Im(λi22λ

∝∼
i22)

and Im(λi22λ
∝∼
i33) (i = 1, 3)].

• Type 6: Remaining RPV bilinears which cannot be constrained in this analysis
[Im(λi33λ

∝∼
i22) and Im(λi33λ

∝∼
i33) (i = 1, 2)]. They are expected to contribute to the

EDMs of τ , or s and b quarks, but we have not considered them in our discussion,
since these couplings are not actually accessible experimentally.

The classification of RPV bilinears is also shown in Table 12.2.

12.2 Dependences of EDM Observables on RPV Couplings

Let us now review the dependences of the EDM observables on RPV couplings
relevant to our analysis. In our analysis there are 10 relevant RPV variables. For their
choice, it is adequate to choose the combinations of RPV bilinears as follows

x1 = Im(λ311λ
∼
322),

x2 = Im(λ211λ
∼
233),
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x3 =
∑

i=2,3

Im(λi11λ
∝∼
i11),

x4 =
∑

i=2,3

Im(λi11λ
∝∼
i22),

x5 =
∑

i=2,3

Im(λi11λ
∝∼
i33),

x6 =
∑

i=1,3

Im(λi22λ
∝∼
i11),

x7 =
∑

i=1,2

Im(λi33λ
∝∼
i11),

x8 =
∑

i=1,2,3

Im(λ∝
i11λ

∝∼
i22),

x9 =
∑

i=1,2,3

Im(λ∝
i11λ

∝∼
i33),

x10 =
∑

i=1,2,3

Im(λ∝
i22λ

∝∼
i33). (12.1)

Explicitly, x1 and x2 belong to the type 1, x3, x4 and x5 to the type 2, x6 and x7
to the type 3, and finally x8, x9 and x10 to the type 4. The type 5 and 6 can be
omitted from the linear programming, since they are not related at all with the other
observables. These xi ’s are unknown parameters to be determined in our analysis,
and this notation will be used hereafter.

Let us now present the gradients of EDM-observables. In this analysis, the P, CP-
odd observables (EDMs of the 205Tl, 199Hg, 129Xe atoms, neutron, proton, deuteron,
3He nucleus, 211Rn, 225Ra atoms, muon, and the R-correlation of the neutron beta
decay) were taken up to the first order in RPV bilinears, so it is possible to express
the observables as

da =
∑

i

cai xi , (12.2)

where a is the label of the system (for example, He for 3He nucleus). The coefficients
cai are determined from the elementary, hadronic, nuclear and atomic calculations
reviewed in this thesis. The components of the gradient vector of each P, CP-odd
observables are the coefficients cai ’s. The relevant coefficient in this analysis are
shown in Tables 12.3 and 12.4. Large coefficient cai means that the EDM-observable
a is sensitive to the corresponding RPV variable xi .

The values shown in Tables 12.3 and 12.4 can be derived by following the dis-
cussion of Part II, but here we should review their characteristics briefly.
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Table 12.3 Coefficients of proportionality cai → ∂da
∂xi

for the EDMs of electron, 205Tl, 199Hg,
129Xe atoms and neutron

Obs. de dTl dHg dn dXe

ca1 4.9 × 10−25 2.9 × 10−22 3.9 × 10−27 0 4.8 × 10−28

ca2 5.5 × 10−24 3.2 × 10−21 4.3 × 10−26 0 5.4 × 10−27

ca3 0 −3.1 × 10−18 −1.0 × 10−21 0 −1.8 × 10−22

ca4 1.6 × 10−25 −4.2 × 10−20 6.2 × 10−24 0 2.1 × 10−24

ca5 3.6 × 10−24 −2.1 × 10−21 −1.7 × 10−25 0 −5.1 × 10−27

ca6 0 0 2.9 × 10−29 2.2 × 10−25 −2.7 × 10−30

ca7 0 0 3.2 × 10−28 2.4 × 10−24 −2.9 × 10−29

ca8 0 0 9.4 × 10−26 9.3 × 10−23 −9.5 × 10−27

ca9 0 0 2.7 × 10−24 2.1 × 10−21 −2.8 × 10−25

ca10 0 0 3.1 × 10−25 2.4 × 10−21 −2.6 × 10−26

The sneutrino mass was taken to be 1TeV. The unit is in e cm

Table 12.4 Coefficients of proportionality cai → ∂da
∂xi

for the EDMs of proton, deuteron, 3He

nucleus, 211Rn, 225Ra atoms and the R-correlation of the neutron beta decay

Obs. dp dd dHe dRn dRa R

ca1 0 0 0 −5.3 × 10−27 −2.1 × 10−26 0
ca2 0 0 0 −5.9 × 10−26 −2.3 × 10−25 0
ca3 0 0 0 1.3 × 10−21 7.8 × 10−21 −1.1 × 10−2

ca4 0 0 0 −6.5 × 10−24 −8.6 × 10−23 0
ca5 0 0 0 2.6 × 10−25 3.5 × 10−25 0
ca6 −5.4 × 10−26 1.6 × 10−25 2.0 × 10−25 −1.1 × 10−28 0 0
ca7 −6.0 × 10−25 1.8 × 10−24 1.3 × 10−24 −1.2 × 10−27 0 0
ca8 −9.4 × 10−23 6.1 × 10−22 9.8 × 10−22 −2.9 × 10−25 −2.2 × 10−22 0
ca9 −2.1 × 10−21 1.8 × 10−20 2.9 × 10−20 −8.1 × 10−24 −6.4 × 10−21 0
ca10 −1.5 × 10−21 9.3 × 10−22 2.2 × 10−21 −1.2 × 10−24 0 0

The sneutrino mass was taken to be 1TeV. The unit for EDM observables is in e cm

• General comment on atomic EDMs:
Atomic EDMs are very sensitive to the P, CP-odd e-N interaction contributions
(c3, c4 and c5), and in particular to c3 which issues from the P, CP-odd electron-
d-quark interaction.

• Electron EDM:
The electron EDM is not a direct observable, but we have included it in the list
because its upper limit derived from the EDM experiment of YbF molecule was
reported in Ref. [1].

• 205Tl EDM:
Coefficients c1, c2, c3, c4 and c5 are very large, since 205Tl EDM is highly sensitive
to the electron EDM (c1 and c2) and to the P, CP-odd e-N interactions (c3, c4 and
c5). The 205Tl EDM should also receive contribution from the hadronic RPV
bilinears (c6, c7, c8, c9 and c10) via the nuclear Schiff moment. These coefficients
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however receive cancellation from two approximately equal terms [see Eqs. (7.34)
and (7.38)]. In our analysis we just omit the effect of the 205Tl Schiff moment.

• Nucleon EDM:
The nucleon EDM does not receive contribution from the purely leptonic RPV
bilinears x1 and x2. Here x3, x4 and x5 also do not contribute to the nucleon EDM,
since we have neglected the Barr-Zee type contribution with electron in the inner
loop.

• Deuteron and 3He EDM:
As for the nucleon EDM, the nuclear EDM does not receive contributions from x1
and x2, x3, x4 and x5. Note also that for the deuteron EDM, c10 is rather suppressed
compared to the nucleon EDM. This is due to the fact that c10 is generated from
the chromo-EDM of the strange quark with smaller isoscalar contribution. This
makes the gradient of the deuteron EDM less aligned compared with the nucleon
or 3He EDMs. The EDM of 3He has larger sensitivity to the RPV bilinears x6, x7,
x8, x9 and x10 than nucleon and deuteron EDMs.

• Leptonic contribution to the EDM of diamagnetic atoms (129Xe, 199Hg, 211Rn and
225Ra):
The diamagnetic atoms has closed electron shell, so the electron EDM cannot
contribute to the atomic EDM directly, and consequently the coefficients c1 and
c2 are suppressed. It should also be noted that the sensitivity to P, CP-odd e-N
interactions (c3, c4 and c5) are also more suppressed than that of the paramagnetic
atom (205Tl), for the same reason.

• Nuclear Schiff moment of diamagnetic atoms (129Xe, 199Hg, 211Rn and 225Ra):
The diamagnetic atoms relevant to this analysis have all odd neutron number,
so hadronic RPV bilinears (x6, x7, x8, x9 and x10) can contribute to the nuclear
Schiff moment. We should be careful for c6, c7 and c10 which are known from
the EDM of the valence nucleon. These coefficients receive contribution from two
approximately equal terms with opposite sign for spin one half s-wave nuclei [see
Eqs. (7.34) and (7.38)]. Therefore, these coefficients for 129Xe and 225Ra should be
vanishing. For 129Xe, we have used the result of the shell model [2] which predicts
non-zero c6, c7 and c10. For 225Ra, the shell model picture is not applicable due to
the deformation of the nucleus, and no results were available, so we have set c6,
c7 and c10 to zero. It should also be noted that the 225Ra has particularly large c8,
c9 compared to other diamagnetic atoms. This is due to the octupole deformation
(which induces close levels of opposite parity) which enhances the nuclear Schiff
moment by about 1000 times [3].

• R-correlation:
The R-correlation of the neutron beta decay is the decay asymmetry (see Appendix
G for detail) which is odd under P and CP [4, 5], and the SM contribution is known
to be very small [6], like the EDM. It is then also a good probe of new physics
[7], so we have included it in our analysis. The R-correlation is sensitive to the
semi-leptonic combination Im(λi11λ

∝∼
i11) (i = 2, 3).

http://dx.doi.org/10.1007/978-4-431-54544-6_7
http://dx.doi.org/10.1007/978-4-431-54544-6_7
http://dx.doi.org/10.1007/978-4-431-54544-6_7
http://dx.doi.org/10.1007/978-4-431-54544-6_7
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Chapter 13
Reappraisal of Constraints on R-parity
Violation from EDM at the Leading Order

13.1 Analysis and Results

To obtain upper limits on RPV couplings, it suffices to divide the experimental upper
bounds on the EDMs of electron, neutron, 205Tl and 199Hg atoms by the coefficients
of Table12.3. If several EDM experimental data give upper limits for one RPV
bilinears, we take the tightest limit. We will see that in some cases, the upper limits
are changed from previous analyses, due to the use of our correct formula for the
Barr-Zee type contribution derived in Chap. 11.

Type 1

The first type is the leptonic bilinears λ311λ
∝
322 and λ211λ

∝
233 which contribute exclu-

sively to the electron EDM via the Barr-Zee type diagram [see Eq. (11.26)]. The
electron EDM is actually strongly constrained by the result of the EDM experiment
using YbF molecules and the current limit is de < 1.05 × 10−27e cm [1]. From the
calculation of the RPV contribution above, we can give the upper limits shown in
Table13.1 [we have also shown the limits given to the semi-leptonic RPV bilinears
which contribute to the electron EDM (type 2)]. The limits, which are from the EDM
of 205Tl, a paramagnetic atom sensitive to the electron EDM, are also displayed for
comparison.

Type 2

The next type is the semi-leptonic RPV bilinears (which involve the electron) of
the form λi11λ

∼∝
ikk (i = 2, 3 and k = 1, 2, 3). They can be constrained by the

P, CP-odd e-N interactions, as was first pointed by Herczeg [4]. These interactions
are constrained via the electron Barr-Zee type graph, and also by the P, CP-odd
electron-nucleon (e-N) interactions. The P, CP-odd e-N interactions [see Eq. (8.3)]
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Table 13.1 Upper limits on the absolute value of combinations of RPV couplings (i = 2, 3) via
the electron EDM

|Im(λ322λ
∝
311)| |Im(λ233λ

∝
211)| |Im(λ∼

i22λ
∝
i11)| |Im(λ∼

i33λ
∝
i11)|

Limits to RPV from YbF molecule
Upper limits (m ν̃ = 1TeV) 2.1 × 10−3 1.9 × 10−4 6.6 × 10−3 2.9 × 10−4

Upper limits (m ν̃ = 5TeV) 4.5 × 10−2 3.7 × 10−3 1.4 × 10−1 5.4 × 10−3

Upper limits (m ν̃ = 100GeV) 2.9 × 10−5 3.3 × 10−6 9.2 × 10−4 5.9 × 10−6

Formulae of Ref. [2] (m ν̃ = 100GeV)1.9 × 10−6 3.3 × 10−7 6.0 × 10−6 6.6 × 10−7

Limits to RPV from 205Tl EDM
Upper limits (m ν̃ = 1TeV) 3.1 × 10−3 2.8 × 10−4 9.7 × 10−3 4.2 × 10−4

Upper limits (m ν̃ = 5TeV) 6.6 × 10−2 5.5 × 10−3 2.1 × 10−1 8.2 × 10−3

Upper limits (m ν̃ = 100GeV) 4.4 × 10−5 4.9 × 10−6 1.4 × 10−4 8.6 × 10−6

Formulae of Ref. [2] (m ν̃ = 100GeV)2.8 × 10−6 4.8 × 10−7 8.7 × 10−6 9.7 × 10−7

The upper table shows limits given from the experimental analysis of the YbF molecule. The lower
table shows limits deduced from the EDM of 205Tl atom [3] using the relation (8.31)

can be given by multiplying the P, CP-odd electron-quark interaction of Eq. (11.31)
with the quark contents of nucleon. In this work, we use the scalar and pseudoscalar
contents of the nucleon derived in Sect. 6.1 [see Eqs. (6.12), (6.13), (6.17), (6.21)
and (6.23)] [5–7]. The EDM of atoms is a very sensitive probe of the P, CP-odd
e-N interactions. The type 2 RPV bilinears receive the tightest upper bounds from
the EDM of 199Hg atom [8]. The dependence of the EDM of 199Hg atom on the
P, CP-odd e-N interactions are given in Eq. (8.32) [9, 10]. The upper limits are
shown in Table13.2.

We see that the EDM of the 199Hg atom gives a very tight constraints on the
CP phases between RPV couplings. We must be careful for Im(λi11λ

∼∝
i33), since the

Barr-Zee graph contributing to electron EDM can give also tight constraints on these
same RPV couplings. The previous analysis pointed that the Barr-Zee graph can give
tighter constraints [4], but the formula used in this analysis was not correct [11]. By
using Eq. (11.26), we see that the EDMof 199Hg atom can give through the P, CP-odd
electron-nucleon tighter constraints than that from the electron EDM using the YbF
molecule experiment.

Type 3

For the type 3, RPV bilinears can be constrained by the Barr-Zee type diagram of
the d-quark EDM with heavy fermions in the loop. The d-quark EDM contributes to
the nucleon EDM. The strongest limit on the type 3 RPV bilinears is given by the

Table 13.2 Upper limits on the absolute values of combinations of RPV couplings from the EDM
of 199Hg atom via the P, CP-odd electron-nucleon interactions

RPV couplings |Im(λi11λ
∼∝
i11)| |Im(λi11λ

∼∝
i22)| |Im(λi11λ

∼∝
i33)|

Upper limits 7.9 × 10−10[m ν̃ ]2 3.6 × 10−8[m ν̃ ]2 1.8 × 10−6[m ν̃ ]2
i = 2, 3. [m ν̃ ] is the mass of sneutrino in unit of 100 GeV. Upper limits were given independently
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Table 13.3 Upper limits on the absolute value of combinations of RPV couplings from neutron
EDM via the Barr-Zee type graph of the d quark. Here i = 2, 3

RPV couplings |Im(λi22λ
∼∝
i11)| |Im(λi33λ

∼∝
i11)| |Im(λ∼

i22λ
∼∝
i11)| |Im(λ∼

i33λ
∼∝
i11)|

Upper limits (m ν̃ = 1TeV) 1.3 × 10−1 1.2 × 10−2 4.2 × 10−1 1.8 × 10−2

Upper limits (m ν̃ = 5TeV) 2.8 2.3 × 10−1 8.7 3.3 × 10−1

Upper limits (m ν̃ = 100GeV) 1.7 × 10−3 2.0 × 10−4 5.5 × 10−3 3.5 × 10−4

Formulae of Ref. [2] (m ν̃ = 100GeV) 1.1 × 10−4 1.9 × 10−5 3.5 × 10−4 3.9 × 10−5

neutron EDM experimental data [12]. The corresponding upper bounds are shown
in Table13.3 (we have also shown hadronic type bilinears which contribute also to
the electromagnetic Barr-Zee type graphs of the d-quark). We have used the relation
(6.83) to obtain the dependence of the neutron EDM on the d-quark EDM.

The limits given here by the single neutron EDM are rather moderate. One of
the simple explanation is the absence of some large enhancement mechanism like
the electron EDM contribution to the paramagnetic atoms. Nevertheless, these semi-
leptonic RPV bilinears can only be constrained efficiently with the neutron EDM.
They can also be constrained from the atomic EDM, but the nucleon EDM contri-
bution suffers from Schiff’s screening which weakens their effect.

Type 4

The fourth type is the hadronic RPV bilinears (λ∼
i j jλ

∼∝
ikk , i, j, k = 1, 2, 3with j ∗= k).

These can be strongly constrained by the purely hadronic EDMs and the Schiff
moments of diamagnetic atoms. The elementary level processes involve the Barr-
Zee type chromo-EDM (11.30) and the P, CP-odd 4-quark interaction (11.31). These
two processes contribute to the nucleon EDM and the P, CP-odd pion-nucleon inter-
actions, and their relations are given by Eqs. (6.81), (6.82), (6.83) and (6.84). The
tightest limits on type 4 RPV bilinears are given by the neutron [12] and the 199Hg
EDM [8] experimental data. The relation between the above P, CP-odd hadron level
interactions and the 199Hg EDM is given by Eqs. (7.56) [13] and (8.32) [9]. For the
dependence of the 199Hg Schiff moment, we have used the average of Table7.1. We
have shown in Table13.4 the upper limits to the hadronic RPV bilinears from the
neutron and 199HgEDM.We can see the tightness of the constraints by comparing the

Table 13.4 Upper limits on the absolute value of combinations of hadronic RPV bilinears from
neutron EDM and 199Hg atomic EDM (i = 1, 2, 3)

RPV couplings |Im(λ∼
i11λ

∼∝
i22)| |Im(λ∼

i11λ
∼∝
i33)| |Im(λ∼

i22λ
∼∝
i33)|

Upper limits (m ν̃ = 1TeV) 3.1 × 10−4 1.1 × 10−5 1.2 × 10−5

Upper limits (m ν̃ = 5TeV) 6.5 × 10−3 2.1 × 10−4 2.2 × 10−4

Upper limits (m ν̃ = 100GeV) 4.3 × 10−6 2.3 × 10−7 2.4 × 10−7

Formulae of Ref. [2] (m ν̃ = 100GeV) 2.5 × 10−7 2.6 × 10−8 2.7 × 10−8
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limits to the sameRPV bilinears given via electromagnetic Barr-Zee (see Table13.3),
which are of 3 to 4 orders larger in magnitudes. This large ratio can be explained
by the suppression of the electromagnetic coupling in the Barr-Zee contribution.
The ratio between Eqs. (11.30) and (11.26) is suppressed both by the electromag-
netic coupling αem and by the square of the d-type quark charge, which renders
the chromo-EDM contribution to be important. The neutron and 199Hg EDMs gave
close upper limits to the RPV bilinears, except for Im(λ∼

i22λ
∼∝
i33). This is because this

bilinear are from the chromo-EDM of the strange quark. In our analysis, the strange
contribution enters only via the nucleon EDM. As the nucleon EDM contribution
is suppressed by Schiff’s screening for the 199Hg atom, the strange contribution is
relatively suppressed. Our result shows the importance of the strangeness, but this
result, together with the u and d contributions, suffers from large theoretical uncer-
tainties, including the uncertainty of the quark mass, value of the quark condensates
and also the calculation of the Schiff moment for the 199Hg EDM. Taking all these
topics into account, the result may change even by orders of magnitude. The result
shows nevertheless the large sensitivity of the neutron and 199Hg EDMs against the
purely hadronic RPV bilinears. We should also add some discussions concerning
the relative size between the chromo-EDM and the P, CP-odd 4-quark interaction.
In this case also, the correct size of the chromo-EDM is smaller than that used in
previous analyses [11]. In the present case however, the quantitative comparison of
the two contributions is meaningless because of the large theoretical uncertainty of
the hadronic and nuclear level calculations.

Type 5

The type 5 RPV bilinears are those constrained by the muon EDM and include
Im(λ122λ∝

133), Im(λi22λ
∼∝
i22), Im(λi22λ

∼∝
i33). These bilinears contribute only via the

Barr-Zee type diagram of the muon EDM [see Eq. (11.26)]. The muon EDM is
particular in the sense that at the leading order, its dependence on RPV bilinear
has no overlap with other available observables. This means that the type 5 RPV
bilinears can be constrained only by muon EDM. Unfortunately, constraints from the
muon EDM experimental data cannot be discussed, since the present experimental
sensitivity is too weak to give any limit on RPV interactions.

Type 6

The last type of RPV bilinears, λi33λ
∼∝
i22 and λi33λ

∼∝
i33 cannot be probed by the

currently available EDM experimental data, and nor by any projected experiments.
One possibility to probe them is the tau EDM, which may be technically difficult.

http://dx.doi.org/10.1007/978-4-431-54544-6_11
http://dx.doi.org/10.1007/978-4-431-54544-6_11
http://dx.doi.org/10.1007/978-4-431-54544-6_11
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Table 13.5 Upper limits on the absolute value of the combinations of RPV bilinears from presently
available experimental data. Results were given for mSUSY = 1TeV

RPV couplings Limits from Limits from EDM observables
other exp. EDMs used

Type 1 |Im(λ311λ
∝
322)| 0.15 2.1 × 10−3 YbF molecule [1]

|Im(λ211λ
∝
233)| 0.25 1.9 × 10−4 YbF molecule [1]

Type 2 |Im(λ211λ
∼∝
211)| 2.9 × 10−2 7.9 × 10−8 199Hg EDM [8]

|Im(λ311λ
∼∝
311)| 3.6 × 10−3 7.9 × 10−8 199Hg EDM [8]

|Im(λ211λ
∼∝
222)| 2.9 × 10−2 3.6 × 10−6 199Hg EDM [8]

|Im(λ311λ
∼∝
322)| 1.7 × 10−2 3.6 × 10−6 199Hg EDM [8]

|Im(λ211λ
∼∝
233)| 0.70 1.8 × 10−4 199Hg EDM [8]

|Im(λ311λ
∼∝
333)| 0.36 1.8 × 10−4 199Hg EDM [8]

Type 3 |Im(λ122λ
∼∝
111)| 4.4 × 10−2 1.2 × 10−1 neutron EDM [12]

|Im(λ322λ
∼∝
311)| 6.0 × 10−3 1.2 × 10−1 neutron EDM [12]

|Im(λ133λ
∼∝
111)| 2.6 × 10−2 1.1 × 10−2 neutron EDM [12]

|Im(λ233λ
∼∝
211)| 2.9 × 10−2 1.1 × 10−2 neutron EDM [12]

Type 4 |Im(λ∼
111λ

∼∝
122)| 5.0 × 10−3 3.1 × 10−4 neutron EDM [12] or 199Hg EDM [8]

|Im(λ∼
211λ

∼∝
222)| 3.2 × 10−3 3.1 × 10−4 neutron EDM [12] or 199Hg EDM [8]

|Im(λ∼
311λ

∼∝
322)| 6.8 × 10−4 3.1 × 10−4 neutron EDM [12] or 199Hg EDM [8]

|Im(λ∼
111λ

∼∝
133)| 3.1 × 10−4 1.1 × 10−5 neutron EDM [12] or 199Hg EDM [8]

|Im(λ∼
211λ

∼∝
233)| 8.0 × 10−2 1.1 × 10−5 neutron EDM [12] or 199Hg EDM [8]

|Im(λ∼
311λ

∼∝
333)| 1.4 × 10−2 1.1 × 10−5 neutron EDM [12] or 199Hg EDM [8]

|Im(λ∼
122λ

∼∝
133)| 2.0 × 10−4 1.2 × 10−5 neutron EDM [12]

|Im(λ∼
222λ

∼∝
233)| 8.0 × 10−2 1.2 × 10−5 neutron EDM [12]

|Im(λ∼
322λ

∼∝
333)| 6.8 × 10−2 1.2 × 10−5 neutron EDM [12]

Type 5 |Im(λ122λ
∝
133)| 0.15 − muon EDM

|Im(λ122λ
∼∝
122)| 2.9 × 10−2 − muon EDM

|Im(λ322λ
∼∝
322)| 2.9 × 10−2 − muon EDM

|Im(λ122λ
∼∝
133)| 1.8 × 10−3 − muon EDM

|Im(λ322λ
∼∝
333)| 0.60 − muon EDM

Type 6 |Im(λ133λ
∼∝
122)| 1.7 × 10−2 − −

|Im(λ233λ
∼∝
222)| 2.9 × 10−2 − −

|Im(λ133λ
∼∝
133)| 1.0 × 10−3 − −

|Im(λ233λ
∼∝
233)| 0.70 − −

13.2 Summary

In this chapter, we have discussed the contributions of the R-parity violating (RPV)
interactions to the EDM of the neutron, 205Tl, 199Hg atoms, and YbF molecule,
and have given limits to the RPV interactions by assuming the dominance of single
bilinear of RPV couplings. In doing this, we have calculated the correct contribution
of the two-loop level Barr-Zee type EDM diagram, and the result has given one
order of magnitude looser limits to products of RPV couplings. This point merits
some attention, because the relative size between the contribution from the P, CP-odd
4-fermion interaction is changed, and the phenomenological analysis was altered for
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the P, CP-odd electron-nucleon interactions. We have also classified the bilinears of
RPV couplings into 6 types, and presented their characteristics in detail. This has
made clear the interrelations between the RPV couplings and the EDM observables.
We give in Table13.5 the summary of the currently available experimental upper
limits to all RPV bilinears considered so far. We show also limits on RPV couplings
provided by other experiments.

We note once again that these limits were derived by assuming that only one
bilinear of RPV couplings is dominant in each analysis. The phenomenological
analysis with the consideration of the whole RPV parameter space should also be
done, as was done in the analysis of the EDM constraints within R-parity conserving
supersymmetry by Ellis et al. [14]. This is the subject of the Chap.14.
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Chapter 14
Analysis of the Maximal CP Violation
of RPV Interactions within 205Tl, 199Hg, 129Xe
and Neutron EDM-Constraints Using Linear
Programming Method

The parameter space of the R-parity violation (RPV) is quite large, and the analysis
of the full parameter space including the usual R-parity conserving parameters is
difficult. In such situations,weoften allowonly fewparameters in the parameter space
to vary for tractable phenomenological analyses, aswas done inmany previousworks
(assumptions of single coupling dominance) fromwhichmany tight constraints of the
RPVcouplingswere derived. This approach assuming the single coupling dominance
cannot however exclude regions of the RPV parameter space in which interferences
occur, and some couplings may be sufficiently larger than upper limits derived with
this assumption. In the R-parity conserving sector, a systematic analysis of the CP
phases of the supersymmetry (SUSY) breaking terms was done by Ellis et al., and
they obtained a large prediction for many prepared experiments such as the electric
dipole moments (EDMs) of the deuteron or 225Ra atom [1–3] (see Chap.13). If
the supersymmetric theory is extended with RPV, an equally full analysis for RPV
interactions seems to be needed.

In this chapter, we do a systematic analysis of the full space of the CP violating
RPV interactions by using the constraints given by existing experimental data to
derive upper limits on RPV couplings without the assumption of the dominance of
single RPV bilinears. To do an efficient analysis, we base on the linear programming
method to scan theRPVparameter space. The experimental inputs used are theEDMs
of the neutron, the 205Tl, 199Hg, and 129Xe atoms, in addition to the other CP con-
serving experimental data of fundamental precision tests. We first explain the linear
programmingmethod.We then give the setup of the supersymmetric parameters used
in the calculation, and indicate the set of input inequalities to be used in the linear
programming analysis. From this, we derive the limits on the bilinears of RPV cou-
plings, predict the maximal prospects for the P, CP-odd experimental observables in
preparation (EDMs of the proton, deuteron, 3He nucleus, 211Rn, 225Ra atoms, muon,
and the R-correlation of the neutron beta decay), and analyze the result.
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14.1 Linear Programming Method

In a phenomenological perturbative analysis, we often have linearly constrained
relations. To derive the maximum of some value (relation) constrained by these
relations, we have to solve a set of inequalities in order to find the maximum in
the allowed region. To do this, we can do a naïve scan of the full parameter space
by dotting and checking each point of the discretized space which contains regions
constrained by input inequalities. However, this naïvemethod looses efficiency when
the parameter space becomes large, in particular when the number of dimension
increases.An efficientway to derive themaximum is the linear programming method.
This method is based on the observation that the maximum is located at one of
the corners of the multidimensional polygon made of inequality constraints (if the
solution exists). This can be understood as follows. The linear relation we want
to maximize constitutes a constant gradient. After being located somewhere in the
allowed region, we follow the direction of the gradient to increase the objective linear
relation. When we reach one of the “wall” (hyperplane) of constraint inequality, we
follow then the direction of the projection of the gradient of the objective relation
onto the wall. The dimension of the hyperplane we hit in going along the projected
gradient diminishes in turn, and we arrive finally at some of the corners of the
multidimensional polygonal allowed region. This is the pointwhere the linear relation
in question was maximized (of course if the gradient is found to be orthogonal with
the final “hyperwall” we striked in going along the projected gradient, the whole
hyperwall will be a degenerate solution of the problem). This is exactly the algorithm
of the linear programming. The schematic picture of the 2-dimensional example is
shown in Fig. 14.1. In our case, we want to predict the maximal value of the prepared

Fig. 14.1 Schematic illustration of linear programming problem in 2-dimension. The maximum
of some linear relation is provided by the point whose projection onto the gradient becomes the
largest
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experimental observables within the EDM-constraints. The linear inequalities and
observables must be expressed by variables, which are the combinations of the RPV
bilinears. All these inputs will be defined in the next section.

14.2 Setup of Calculation

Before going to the calculation, we must specify parameters we are going to use.
This procedure includes the choice of the variables and the limits on the absolute
value of them.

SUSY Parameters

In this analysis, the SUSY mass are taken to be 1 TeV, as the excluded region of
the LHC experiment (December 2011) [4–8]. The relative size between sparticle
masses can be constrained in the CMSSM, from the result of the renormalization
group analysis aiming at grand unified theories [9]. In this discussion, we do not
consider such constraints. Our present parametrization is just the first step, and in
future work, the result of renormalization group analysis will be taken into account.
We also assume that the flavor off-diagonal terms of the soft SUSYbreaking terms are
very suppressed. We assume that the CP violation in the R-parity conserving sector
is minimal. The θ -term is minimized with Peccei-Quinn symmetry. The analysis of
CP violation including the R-parity conserving sector will be the subject of future
works. In addition, we assume that the slepton (sneutrinos and charged sleptons)
masses are degenerate. For the RPV sector, we consider only trilinear interactions
with no soft breaking terms.

Constraints to RPV Couplings from Other Experiments

In analyzing the full RPV parameter space, we need to refer to the constraints
providedbyother experiments. Thebounds onRPVcouplings relevant toour analysis
were essentially derived from the fundamental precision test experiments and are
given in Table14.1.

These limits are quite useful because the multidimensional area of the RPV para-
meter space is now bounded by them. From these limits, we obtain the 20 linear
inequalities which corresponds to a finite “box” in 10 dimensional RPV parameter
space as follows:
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−0.15 < x1 < 0.15,

−0.25 < x2 < 0.25,

−3.2 × 10−2 < x3 < 3.2 × 10−2,

−4.6 × 10−2 < x4 < 4.6 × 10−2,

−1.1 < x5 < 1.1, (14.1)

−5.0 × 10−2 < x6 < 5.0 × 10−2,

−5.5 × 10−2 < x7 < 5.5 × 10−2,

−8.9 × 10−3 < x8 < 8.9 × 10−3,

−9.5 × 10−2 < x9 < 9.5 × 10−2,

−0.15 < x10 < 0.15,

where we have used the convention of Eq. (12.1). We assume the SUSY mass to be
equal 1 TeV. In particular, sneutrino masses are degenerate.

EDM-Constraints

The EDM-constraints (205Tl, 199Hg, 129Xe and neutron EDMs) to the leading order
in RPV bilinears, can be expressed with eight linear relations of the form

− dexp
a < da < dexp

a ∗ −dexp
a <

∑
i

cai xi < dexp
a , (14.2)

where cai ’s are given in Table12.3. The experimental input is as follows:

dexp
Tl = 9 × 10−25e cm,

dexp
Hg = 3.1 × 10−29e cm,

dexp
n = 2.9 × 10−26e cm,

dexp
Xe = 4.0 × 10−27e cm. (14.3)

14.3 Constraints on RPV Couplings from Linear
Programming Method

After performing an analysis using the linear programming method, we have
found the upper limits on bilinears of RPV couplings listed in Table14.2. We
see that the RPV bilinears x2[= Im(λ211λ

→
233)], x3[= ∑

i=2,3 Im(λi11λ
∼→
i11)], x4[=∑

i=2,3 Im(λi11λ
∼→
i22)], x9[= ∑

i=1,2,3 Im(λ∼
i11λ

∼→
i33)] and x10[= ∑

i=1,2,3
Im(λ∼

i22λ
∼→
i33)] can be constrained. The limits obtained are of course looser than those

http://dx.doi.org/10.1007/978-4-431-54544-6_12
http://dx.doi.org/10.1007/978-4-431-54544-6_12
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,ẽ

,χ
0

=
1
Te
V
)

L
im

its
(m

ν̃
,ẽ

,χ
0

=
10

0
G
eV

)
L
im

its
(m

SU
SY

=
5
Te
V
)

|x 1
|(=

|Im
(λ

31
1
λ

→ 32
2
)|)

0.
15

1.
5

×
10

−3
3.
8

|x 2
|(=

|Im
(λ

21
1
λ

→ 23
3
)|)

0.
25

2.
5

×
10

−3
6.
3

|x 3
|(=

|∑ i=
2,
3
Im

(λ
i1
1
λ

∼→ i1
1
)|)

4.
7

×
10

−4
5.
1

×
10

−5
9.
9

×
10

−3
|x 4

|(=
|∑ i=

2,
3
Im

(λ
i1
1
λ

∼→ i2
2
)|)

4.
0

×
10

−2
4.
4

×
10

−3
0.
81

|x 5
|(=

|∑ i=
2,
3
Im

(λ
i1
1
λ

∼→ i3
3
)|)

1.
1

0.
11

27
|x 6

|(=
|∑ i=

1,
3
Im

(λ
i2
2
λ

∼→ i1
1
)|)

5.
0

×
10

−2
5.
0

×
10

−3
2.
6

|x 7
|(=

|∑ i=
1,
2
Im

(λ
i3
3
λ

∼→ i1
1
)|)

5.
5

×
10

−2
5.
5

×
10

−3
2.
2

|x 8
|(=

|∑ i=
1,
2,
3
Im

(λ
∼ i1
1
λ

∼→ i2
2
)|)

8.
9

×
10

−3
8.
9

×
10

−3
0.
38

|x 9
|(=

|∑ i=
1,
2,
3
Im

(λ
∼ i1
1
λ

∼→ i3
3
)|)

2.
3

×
10

−2
5.
3

×
10

−3
0.
70

|x 1
0
|(=

|∑ i=
1,
2,
3
Im

(λ
∼ i2
2
λ

∼→ i3
3
)|)

2.
0

×
10

−2
4.
5

×
10

−3
0.
62



14.3 Constraints on RPV Couplings from Linear Programming Method 151

obtained in the previous analysis assuming the dominance of single RPVbilinear (see
Table13.5). This illustrates the large degree of freedom of the RPV supersymmetric
sector in which rearrangement of the couplings can occur keeping consistency with
tight EDM-constraints. Although being looser, this analysis can give tighter upper
bounds than the initial input limits of Eq. (14.1) given by other experiments. We can
say that limits given in this analysis are the “true” upper bounds on RPV couplings.

Let us do an estimation of the constraints on RPV bilinears when the prospective
upper limits of the EDMs of the proton, deuteron 3He nucleus, 211Rn and 225Ra atoms
are set. We will set the following limits, regarding the prospects of the experimental
sensitivity [31–35]:

|dp| < 10−29e cm,

|dd | < 10−29e cm,

|dHe| < 10−29e cm,

|dRn| < 10−29e cm,

|dRa| < 3 × 10−28e cm. (14.4)

Let us first see the limits on RPV bilinear using the linear programming method
within the four EDM-constraints (205Tl, 199Hg, 129Xe and neutron) seen previously
with limit from one prospected EDM experiment added. The result is shown in
Table14.3.

By comparingTables14.2 and 14.3,we see thatmanyRPVbilinears (x2, x3, x4, x9
and x10) can be additionally constrained by adding one experimental data (dp, dd ,

dHe, dRn or dRa). This result shows the importance of the prospective experiments.
The following observations can be done:

Table 14.3 Upper limits on the absolute value of bilinears of RPV couplings found by linear
programming analysis within the EDM-constraints of neutron, 205Tl, 199Hg, 129Xe atoms + one
additional limit from prospective EDM experiment (proton, deuteron, 3He nucleus, 211Rn or 225Ra
atoms)

RPV bilinears dp dd dHe dRn dRa dp& dd& dRa

x1 0.15 0.15 0.15 0.15 0.15 0.15
x2 0.14 0.14 0.14 0.16 0.14 8.1 × 10−2

x3 3.6 × 10−4 3.6 × 10−4 3.6 × 10−4 3.9 × 10−4 3.6 × 10−4 3.3 × 10−4

x4 3.1 × 10−2 3.0 × 10−2 3.0 × 10−2 3.3 × 10−2 3.0 × 10−2 2.6 × 10−2

x5 1.1 1.1 1.1 1.1 1.1 1.1
x6 5.0 × 10−2 5.0 × 10−2 5.0 × 10−2 5.0 × 10−2 5.0 × 10−2 5.0 × 10−2

x7 5.5 × 10−2 5.5 × 10−2 5.5 × 10−2 5.5 × 10−2 5.5 × 10−2 5.5 × 10−2

x8 8.9 × 10−3 8.9 × 10−3 8.9 × 10−3 8.9 × 10−3 8.9 × 10−3 8.6 × 10−3

x9 4.8 × 10−4 3.0 × 10−4 3.0 × 10−4 3.7 × 10−3 3.3 × 10−4 2.9 × 10−4

x10 1.5 × 10−4 1.5 × 10−4 1.5 × 10−4 3.1 × 10−3 1.7 × 10−4 1.5 × 10−4

In the final row, we have given the upper limits for RPV bilinears when the constraints from dp , dd
and dRn were applied simultaneously. Sparticle mass was set to 1 TeV

http://dx.doi.org/10.1007/978-4-431-54544-6_13
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• By adding EDM-constraints of proton, deuteron, 3He nucleus and 225Ra, the
hadronic RPV bilinears x9 and x10 are constrained by two orders of magnitude
tighter. This shows the strong sensitivity of hadronic EDMs (proton, deuteron and
3He) against x9, x10. The EDM of 225Ra atom is also sensitive to the hadronic
R-parity violation, due to the strong enhancement of the nuclear Schiff moment.

• The leptonic and semi-leptonic RPV bilinears x2, x3 and x4, although moderate,
can be constrained with any additional prospective EDM constraints. Naïvely,
this fact is not obvious, since the purely hadronic EDMs (dp, dd and dHe) are
not sensitive to x2, x3 and x4. This can be understood by the interplay between
the additional future EDM-constraints and the existing constraints of diamagnetic
atoms (199Hg and 129Xe). This fact shows the importance of giving experimentally
the EDM-constraints on many systems.

• It is not possible to constrain x1, x5, x6, x7 and x8. This is because the relevant
EDMs have too weak sensitivity on them.

• The deuteron and 3He EDMs can give tighter constraint on x9 than the proton
EDM. This shows the non-alignment of coefficients cdi and cHei with those of the
neutron cni . (Recall that the neutron and the proton EDMs have no dependence on
P, CP-odd isovector pion-nucleon interaction).

• The experimental limit of the 211Rn EDM can also give tighter constraints on
x2, x3, x4, x9 and x10. This is realized thanks to the strong (prospective) EDM-
constraints.

We have also given upper limitswhen theEDM-constraints of the proton, deuteron
and 225Ra atom were applied simultaneously. The result gives even stronger limits.
We can conclude from this result that the combination of many EDM-constraints are
useful in setting upper bounds to RPV interactions.

14.4 Maximal Prediction of the EDMs of the Proton, Deuteron,
3He Nucleus, 211Rn, 225Ra Atoms and the R-Correlation

Next, we have made a prediction of the maximal value of the EDMs of the proton,
deuteron, 3He nucleus, 211Rn, 225Ra atoms and the R-correlation within the linear
programming method. This can be done by maximizing the linear relations made
by the coefficients of Table12.4 within EDM-constraints of 205Tl, 199Hg, 129Xe and
neutron. The result obtained is summarized in Table14.4. We show also the result
for mSUSY = 5 TeV in Table14.5. We obtain predictions with the same order of
magnitude since, the constraints on biliears of RPV couplings given by EDMs and
by other experiments (see Table14.1) have similar scaling in sparticle masses.

Let us compare our analysis with the previous analysis based on the assumption of
the dominanceof one singleRPVbilinear. InChap. 3,wehavederived the upper limits
of the CP violation of the RPV couplings with this assumption. Using these limits,
we obtain the upper limits for P, CP-odd observables prepared in next generation
experiments listed in Table14.6 (see also Table14.7 for mSUSY = 5TeV).

http://dx.doi.org/10.1007/978-4-431-54544-6_12
http://dx.doi.org/10.1007/978-4-431-54544-6_3
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Table 14.4 Maximal predictions of the EDMs of the proton, deuteron, 3He nucleus, 211Rn, 225Ra
atoms, and the R-correlation of the neutron beta decay, within the constraints of the 205Tl, 199Hg,
129Xe and neutron EDM experiments

dp dd dHe dRn dRa R

Max. 1.9 × 10−23 3.9 × 10−22 6.0 × 10−22 6.6 × 10−26 1.5 × 10−22 5.1 × 10−6

x1 −0.15 0.15 0.15 − 0.15 − 0.15 − 0.15
x2 −0.25 0.25 0.25 − 0.25 − 0.25 − 0.25
x3 −4.7 × 10−4 4.7 × 10−4 4.7 × 10−4 − 4.7 × 10−4 − 4.7 × 10−4 − 4.7 × 10−4

x4 −3.8 × 10−2 3.8 × 10−2 3.8 × 10−2 − 3.8 × 10−2 − 3.8 × 10−2 − 3.8 × 10−2

x5 1.1 − 1.1 − 1.1 1.1 1.1 1.1
x6 5.0 × 10−2 5.0 × 10−2 − 5.0 × 10−2 5.0 × 10−2 5.0 × 10−2 5.0 × 10−2

x7 5.5 × 10−2 5.5 × 10−2 − 5.5 × 10−2 5.5 × 10−2 5.5 × 10−2 5.5 × 10−2

x8 −8.9 × 10−3 8.9 × 10−3 8.9 × 10−3 − 8.9 × 10−3 − 8.9 × 10−3 − 8.9 × 10−3

x9 −2.2 × 10−2 2.2 × 10−2 2.2 × 10−2 − 2.2 × 10−2 − 2.2 × 10−2 − 2.2 × 10−2

x10 2.0 × 10−2 − 2.0 × 10−2 − 2.0 × 10−2 2.0 × 10−2 2.0 × 10−2 2.0 × 10−2

Coordinates xi maximizing the observables are also shown. The EDMs are expressed in unit of
e cm. The mass of the slepton was taken to be 1 TeV

Table 14.5 Maximal predictions of the EDMs of the proton, deuteron, 3He nucleus, 211Rn, 225Ra
atoms, and the R-correlation of the neutron beta decay, within the constraints of the 205Tl, 199Hg,
129Xe and neutron EDM experiments for mSUSY = 5 TeV

dp dd dHe dRn dRa R

Max. 3.1 × 10−23 6.5 × 10−22 1.0 × 10−21 1.1 × 10−25 2.4 × 10−22 4.3 × 10−6

The EDMs are expressed in unit of e cm

We see that all predictions with the assumption of the dominance of one single
RPVbilinear arewell belowour predictions using the linear programmingmethod, by
2 to 4 orders in magnitudes. This huge difference shows the importance of the degree
of freedom of the RPV parameters and suggests the possibility of strong cancellation
between the RPV contributions within the EDM-constraints. These configurations
of RPV couplings were neglected in the previous analyses by the assumption of the

Table 14.6 Upper limits of the prepared experimental observableswith the assumption of the single
coupling dominance

dXe dp dd dHe dRn dRa R

1.0 × 10−29 2.7 × 10−26 2.7 × 10−26 9.6 × 10−26 5.3 × 10−29 9.9 × 10−27 5.5 × 10−10

The unit is e cm for EDM observables. Sparticle masses were taken to 1 TeV

Table 14.7 Upper limits of the prepared experimental observableswith the assumption of the single
coupling dominance for mSUSY = 5 TeV

dXe dp dd dHe dRn dRa R

1.0 × 10−29 2.9 × 10−26 2.7 × 10−26 5.3 × 10−26 5.6 × 10−29 9.9 × 10−27 5.5 × 10−10

The unit is e cm for EDM observables
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single coupling dominance. The linear programming method shows efficiency in
finding such configurations for RPV parameters. Below, we will try to explain the
reasons of this large discrepancy.

Rearrangement of RPV Couplings Due to the EDM-Constraints of 205Tl,
199Hg and 129Xe Atoms

As we have seen in Chap.13, the atomic EDMs have a strong sensitivity to the type
2 (x3, x4 and x5) semi-leptonic RPV bilinears. Let us see how the RPV bilinears
have to arrange themselves to become large and are still consistent with the EDM-
constraints. The EDM of the paramagnetic 205Tl atom is sensitive to the type 2 RPV
bilinears, and also to the type 1 leptonic RPV bilinears (x1 and x2). Thus, to be
consistent with the constraint provided by the 205Tl EDM, it suffices to cancel the
type 1 and type 2 contributions mutually. As we can see in Table14.4, this is exactly
what happened (for the coefficients, see Tables12.3 and 12.4).

The constraints from the EDM of diamagnetic atoms (199Hg and 129Xe) have
also strong sensitivity to type 2 RPV bilinears, since it is generated by P, CP-odd
electron-nucleon interactions. Diamagnetic atoms have however a moderate sensi-
tivity on type 1 bilinears. They receive also contribution from type 4 (x8, x9 and x10).
To be consistent with experimental upper bounds, we have to cancel the type 2 and
type 4 contributions. The largest cancellation occurs between x3, x4 and x5. The
remaining small part is cancelled with the type 4 RPV components originating in
the nuclear Schiff moment. Within the above constraints, it is possible to enlarge the
x3 (=

∑
Im(λi11λ

∼→
i11)) component up to ↔10−4. The coefficients cia of the EDM of

diamagnetic atoms for type 2 RPV bilinears are aligned. This explains the relatively
small maximal prediction for the EDM of 211Rn atom. The same analysis does not
hold for the 225Ra atom, since the EDM of 225Ra has a strong sensitivity to the
hadronic sector (type 4). The above inspection means that even by introducing the
future experimental constraints from 211Rn and 225Ra atoms, it is not possible to
give tight upper bounds on RPV bilinears of type 2. To rule out the type 2 bilinears,
we need thus another observable with coefficients c3a, c4a and c5a not aligned with
those of the diamagnetic atoms. This is possible when we use the R-correlation,
which will be seen later.

Limits to Type 3

In this analysis, the type 3 RPV bilinears keep the same value (|x6| = 5.0 × 10−2,
|x7| = 5.5 × 10−2). This means that the type 3 cannot be constrained from this
analysis using linear programmingmethod. This is due to the suppression of the quark
EDM by the electromagnetic coupling constant in the Barr-Zee type contribution.
The limits coming from other experiments are therefore dominant in this case.

http://dx.doi.org/10.1007/978-4-431-54544-6_13
http://dx.doi.org/10.1007/978-4-431-54544-6_12
http://dx.doi.org/10.1007/978-4-431-54544-6_12
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Hadronic Observables

The purely hadronic observables (EDMs of the neutron, proton, deuteron and 3He
nucleus) have a large sensitivity against hadronic P, CP violating RPV interactions
(type 4). This is due to the absence of the screening electrons and also to the large
sensitivity of the prepared experiments with novel techniques using the storage ring
[31–34]. The absence of the electrons also suppresses the semi-leptonic contribution,
so that it serves to probe a fixed area of the RPV parameter space. One of the impor-
tant characteristics of the purely hadronic EDMs is that they depend approximately
only on type 4 RPV bilinears (type 3 contribution is relatively small). As they have
restricted sensitivity against RPV bilinears, they can be used as a good probe to rule
out a specific area of the RPV parameter space. This means also that collecting the
EDM experimental data of pure hadronic EDMs is an efficient way to constrain the
RPV parameter space, since they receive no cancellation from other sector than type
4 RPV bilinears.Wemust note that the prediction of the hadronic EDMs suffers from
large theoretical uncertainty due to the use ofmodel calculations at the hadronic level,
and it can change even at the level of the order of magnitude. To do a quantitative
analysis, we must improve the accuracy of the QCD level calculation.

R-Correlation

With the assumption of the single coupling dominance, the R-correlation is rather
weak, due to the strong constraint of the atomic EDMs against CP violation. For
example, within the dominance of one single bilinear of RPV couplings, the EDM
of 199Hg atom can constrain the same combination Im(λi11λ

∼→
i11) up to 10

−8 with the
current experimental data, whereas the R-correlation can constrain only up to 10−2 in
the current experimental prospect of the 8Li [36], well beyond the EDMexperimental
data. The result of our analysis, however, shows the potential importance of this
observable. As seen above, the R-correlation contribution can also be enhanced
by using the cancellation mechanism of the atomic EDM-constraints. As the R-
correlation depends only on one combination (at least at the tree level), it can avoid
the alignment between other EDMobservables, and be “safe”. The R-correlation is an
important probe of the absolute size of Im(λi11λ

∼→
i11). We have seen that Im(λi11λ

∼→
i11)

is themost sensitiveRPVbilinear for the atomicEDMs, and combinedwith theEDM-
constraints of paramagnetic and diamagnetic atoms, we can fully constrain the type
2 RPV bilinears. If the R-correlation can be measured with sufficient accuracy, it
is possible to rule out the large prediction of atomic EDMs from Im(λi11λ

∼→
i11), thus

reducing a large portion of the contribution to them. The experimental development
for searching R-correlation is therefore strongly recommended.
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Muon EDM

In this analysis, the muon EDM was not relevant, but this observable sits in a
particular position, so we should add some comment. The muon EDM depends on
Im(λ122λ

→
133), Im(λi22λ

∼→
i22), and Im(λi22λ

∼→
i33) via the two-loop level Barr-Zee type

diagram, but these combinations, as seen in Chap.13, do not contribute to the other
available P, CP-odd observables. In RPV, the muon EDM is actually a completely
independent system which can constrain its own RPV parameter space. It is then
important to improve the sensitivity of the muon EDM experiment. As we do not
have anyEDMexperimental datawhich can constrain theRPVcouplings in question,
the maximal prediction is just the sum of the upper bounds of RPV bilinears which
can be probed with the muon EDM, and is of order 10−24. The present experimental
sensitivity (↔10−19e cm [37]) is well below the existing limits to the RPV couplings
from other experiments. The future muon EDM experiments is prepared to aim at
the order of 10−24e cm [31–34], but the maximal value predicted in this analysis is
also of the same order. Thus it will be difficult to either probe or constrain these RPV
bilinears.

Theoretical Uncertainties

Let us mention briefly about the theoretical uncertainties. The first source of large
theoretical uncertainty is the nuclear level calculations. The actual results of Schiff
moment calculations are not consistent with each other (see Table7.1). We have
tested the dependence of the linear programming analysis on the different results
presented in Ref. [38]. The results may change by one or two orders of magnitude.
This illustrates the large uncertainty due to the nuclear level calculation of the Schiff
moments of nuclei with deformation. The reduction of the theoretical uncertainty
due to the difficulty of treating odd numbered nuclei with deformation is one of the
outstanding and challenging problem.

The second large theoretical uncertainty is the hadron level calculation. In this
analysis, we have used many approximations, which have all a large amount of error.
First, to derive the hadronmatrix element of the chromo-EDMoperator, we have used
the relation Eq. 6.30 based onQCD sum rule, which is not accurate better than 100%.
The above relation converted the nucleon matrix element of the chromo-EDM to the
quark contents of nucleon, but these quark contents cannot be estimated with high
precision, since they have dependence on light quark masses with large uncertainty.
We have finally used in deriving the nucleon EDM the approximation taking only
the chiral logarithm. This step involves also a considerable uncertainty, since the
renormalization of the constant terms which are not necessarily small against terms
logarithmic in Nambu-Goldstone boson mass was neglected. We conclude that in
the hadron sector, the final result can change by order of magnitude. To reduce these
theoretical uncertainties, the lattice QCD study is needed.

By considering these sources of theoretical error, we can say that coefficients
c6, c7, c8, c9 and c10 can deviate by orders of magnitude.

http://dx.doi.org/10.1007/978-4-431-54544-6_13
http://dx.doi.org/10.1007/978-4-431-54544-6_7
http://dx.doi.org/10.1007/978-4-431-54544-6_6
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Improvement of Constraints on RPV Couplings from Other Experiments

We must note that the limits on RPV couplings can be tightened by improving
the constraints provided by other experiments in the linear programming analysis.
This is because the reductions of the allowed region of the (absolute values of)
RPV couplings can constrain the degrees of freedom left for the rearrangement
of parameters within (EDM-)constraints. Here we mention the potential of other
experiments.

The first possibility is to improve the experimental accuracy of the measurements
of lepton decays (universality test) and hadron decays (K ∝ πνν̄, B ∝ Xsνν̄) (see
Table14.1).

The second possibility is the constraint from the absolute mass of neutrinos. All
lepton number violating RPV interactions contribute to the Majorana mass of the
neutrino (see Fig. 4.4), so the improvement of experimental constraints on its mass
has a large potential to limit RPV bilinears relevant in our analysis.

The third interesting possibility is the limit from collider experiments. As we have
seen in Sect. 4.3, resonances of sneutrino arise in the presence of theRPV interactions
at collider experiments (see Fig. 4.8). The parton distribution for strange and bottom
quarks allows also to probe the RPV interactions λ∼

i22 and λ∼
i33. The lepton collider

is sensitive to the resonances of sneutrino generated by leptonic RPV interactions
λi11 (electron collision), λi22 (muon collision) and λi33 (τ lepton collision).

14.5 Summary

In summary, we have done a wide analysis by taking into account the full CP violat-
ing RPV parameter space. For that, we have developed a new calculational technique
based on the linear programming method, have given limits on the imaginary parts
of RPV bilinears, and predicted the maximal values for observables of prepared or
on-going experiments (proton, deuteron, 3He nucleus, 211Rn, 225Ra atoms, muon,
and the R-correlation of the neutron beta decay), within the currently available exper-
imental constraints (205Tl, 199Hg, 129Xe and neutron EDMs + other CP conserving
experimental data of fundamental precision tests).We have found through this analy-
sis that the RPV bilinears x3[= ∑

i=2,3 Im(λi11λ
∼→
i11)], x4[= ∑

i=2,3 Im(λi11λ
∼→
i22)],

x9[= ∑
i=1,2,3 Im(λ∼

i11λ
∼→
i33)] and x10[= ∑

i=1,2,3 Im(λ∼
i22λ

∼→
i33)] can be constrained

within the currently available experimental EDM-constraints. The upper limits on
the above RPV bilinears and x2[= Im(λ211λ

→
233)] can be tightened with additional

prospective EDM-constraints of the proton, deuteron, 3He nucleus, 211Rn and 225Ra
atoms. In particular, x9 and x10 can be strongly constrained due to the high sensi-
tivity of the planned EDM experiments. RPV bilinears x1[= Im(λ311λ

→
322)], x5[=∑

i=2,3 Im(λi11λ
∼→
i33)], x6[= ∑

i=1,3 Im(λi22λ
∼→
i11)], x7[= ∑

i=1,2 Im(λi33λ
∼→
i11)] and

x8[= ∑
i=1,2,3 Im(λ∼

i11λ
∼→
i22)] could not be constrained due to the weak sensitivity of

the EDMs of the relevant systems.

http://dx.doi.org/10.1007/978-4-431-54544-6_4
http://dx.doi.org/10.1007/978-4-431-54544-6_4
http://dx.doi.org/10.1007/978-4-431-54544-6_4
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For the prediction of prospective experiments, we have found that very large
values are still allowed, although many severe constraints already exist. This result
is encouraging for experimentalists, since there is still a possibility to observe large
EDM for prospective experiments. We have done a comparison with the “classic”
analysis assuming the dominance of only one or some coupling, and have demon-
strated the potential importance of the so far omitted area. The interesting observables
are the R-correlation, the purely hadronic EDMs and the muon EDM which have
sensitivity to the restricted area of the RPV parameter space. We have also obtained
the useful information that the R-correlation is an important probe to rule out the
type 2 RPV bilinears. The method based on linear programming was a success, but
we have also encountered some problems due to the theoretical uncertainties. The
reduction of them, in particular at the hadronic and nuclear level, are needed.

We have tomention our future subjects. In this analysis, we have only analyzed the
EDM-constraints as linear relations in the linear programming, and the absolute limits
on the RPV couplings taken from other experimental data were assumed to hold for
single RPV coupling. As a future subject, we have to treat also these absolute limits
fromother experiments as linear relation inputs in the analysis of linear programming.

As an another future subject, we have to include the effects of the subleading RPV
contribution to the EDM observables which contain combinations of RPV couplings
and have not been considered so far. In the next chapter, we will consider the one-
loop correction analysis of the P, CP-odd 4-fermion interaction in the assumption of
the dominance of single bilinear of RPV couplings as a first step.
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Chapter 15
Analysis of the RPV Contribution to the P,
CP-Odd 4-Fermion Interaction at the
One-Loop Level

15.1 Analysis of the RPV Contribution to the P, CP-Odd e-N
Interaction at the One-Loop Level

The possible types of one-loop correction are shown in Fig. 15.1. Among the listed
diagrams, the vertex corrections are the renormalization of the tree level RPV cou-
pling, so we do not need to consider them. This reduces our analysis only to the box
diagrams.

In the evaluation of the box diagrams, we assume that the Yukawa couplings of the
1st and 2nd generations are neglected. The masses of light fermions are neglected.
We have also assumed that the soft breaking squark and slepton mass matrices have
no off-diagonal components, and diagonal components do not have any CP violating
phases. For the RPV interactions, the dominance of single bilinear of RPV interac-
tions is assumed. With these assumptions, there are only two contributing diagrams
(with their complex conjugates), which are shown in Fig. 15.2.

The amplitude due to Fig. 15.2 a with its complex conjugate added is:

iM(a) = − 8iIm(λ∝
1i1λ

∼
iam)Vam

G F∗
2

m2
W I (m2

W ,m2
ua
,m2

ẽLi
)

× [
ēiγ5e · d̄mdm − ēe · d̄miγ5dm + (P-even terms)

]
, (15.1)

where we have neglected the external and exchanged momenta. We see that this
amplitude is sensitive to the CP phase difference of the RPV coupling λi11 and λ∼

iam .
a, i and m are the flavor indices. The Fermi constant is denoted by G F , and Vam is
the CKM matrix element with a and m the flavor indices. Here, mW , mua and mẽLi

This chapter is based on the article of N. Yamanaka, Phys. Rev. D 85, 115012 (2012), Copyright
©American Physical Society All Rights Reserved..

N. Yamanaka, Analysis of the Electric Dipole Moment in the R-parity 161
Violating Supersymmetric Standard Model, Springer Theses,
DOI: 10.1007/978-4-431-54544-6_15, © Springer Japan 2014
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Fig. 15.1 Classification of one-loop correction contributing to P, CP-odd e-N interactions in the
R-parity violation

(a) (b)

Fig. 15.2 Two diagrams (+ complex conjugates) contribute to the P, CP-odd e-N interactions at the
one-loop level in the R-parity violation. The field χ corresponds to the chargino. Indices a, i and
m denote the flavor

are the masses of W boson, up type quark (with flavor index a) and charged slepton
(with flavor i), respectively. The loop integral I is expressed as follows:

I (a, b, c) = 1

4(4π)2
1

a − b

⎧
a

c − a
log

c

a
− b

c − b
log

c

b

⎪
. (15.2)

For example, we have for mẽLi = 100 MeV

m2
W I [m2

W ,m2
u,m2

ẽLi
= (100GeV)2] → 1.26 × 10−3 ,

m2
W I [m2

W ,m2
c,m2

ẽLi
= (100GeV)2] → 1.26 × 10−3 ,

m2
W I [m2

W ,m2
t ,m2

ẽLi
= (100GeV)2] → 3.7 × 10−4 ,

(15.3)

and for mẽLi = 1 TeV,
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m2
W I [m2

W ,m2
u,m2

ẽLi
= (1TeV)2] → 5.19 × 10−5 ,

m2
W I [m2

W ,m2
c,m2

ẽLi
= (1TeV)2] → 5.19 × 10−5 ,

m2
W I [m2

W ,m2
t ,m2

ẽLi
= (1TeV)2] → 3.30 × 10−5 . (15.4)

We see that this integral has a sharp dependence on the slepton mass.
The amplitude of Fig. 15.2 b (with its complex conjugate added) is:

iM(b) = − 8iIm(λ∝
1i1λ

∼
iam)Vam

G F∗
2

m2
W

⎨
j=1,2

|Z1 j
+ |2 I (m2

χ j
,m2

ν̃e
,m2

ũLa
)

× [
ēiγ5e · d̄mdm − ēe · d̄miγ5dm

]
. (15.5)

Here mχ j , m ν̃e and mũLa are respectively the masses of chargino, sneutrino (1st gen-
eration) and up type squark (with flavor index a). The mixing matrix elements of the
chargino Z1 j

+ ( j=1,2) follow the notation of Rosiek [3]. The important point is that
M(a) andM(b) have exactly the same combinations of RPV couplings Im(λ∝

i11λ
∼
iam)

with the same sign. The diagram (b) of Fig. 15.2 involves three sparticles in the
loop, and the integral I (m2

χ j
,m2

ν̃e
,m2

ũLa
) has three unknown variables. The exper-

imental result of the LHC has excluded the squark masses less than 1 TeV [4–6].
We set mũLa = 1 TeV in this discussion. We show some values of the integral
m2

W I (m2
χ j
,m2

ν̃e
,m2

ũLa
) for some tentative masses of sneutrino and chargino:

m2
W I (m2

χ j
,m2

ν̃e
,m2

ũLa
) = 3.8 × 10−5(mχ j = m ν̃e = 100GeV),

m2
W I (m2

χ j
,m2

ν̃e
,m2

ũLa
) = 9.9 × 10−6(mχ j = 1TeV,m ν̃e = 100GeV

or mχ j = 100GeV,m ν̃e = 1TeV),
m2

W I (m2
χ j
,m2

ν̃e
,m2

ũLa
) = 5.1 × 10−6(mχ j = m ν̃e = 1TeV).

(15.6)

The order of magnitude of m2
W I stays around 10−5 ↔ 10−6 due to the heavy squark

mass. The relative size between M(a) depends then on the slepton mass. We can
divide the discussion in two cases. If the slepton mass is around 100 GeV (light
slepton), the amplitude M(a) has a dominant contribution. On the other hand, when
we have slepton mass → 1 TeV (heavy slepton), the amplitudesM(a) andM(b) have
same order contribution. Wemust note that both amplitudes have the same couplings
with the same sign, so there is no possibility for cancellation with each other. The
constraints on RPV couplings can therefore always be discussed.

To obtain limits on RPV interactions, we must first derive the P, CP-odd e-N
interaction from the amplitude previously calculated, and then calculate its contri-
bution to the EDM of 199Hg atom. The derivation of the P, CP-odd e-N interactions
[see eq. (8.3)] can be done by multiplying the quark level amplitudes with the quark
contents of nucleon. Here we adopt the following results:

http://dx.doi.org/10.1007/978-4-431-54544-6_8
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∇p|ūu|p〉 =7.7, (15.7)

∇p|d̄d|p〉 =6.9, (15.8)

∇p|s̄s|p〉 =0.1, (15.9)

∇p|b̄b|p〉 =10−2, (15.10)

and

∇p|ūiγ5u|p〉 =248, (15.11)

∇p|d̄iγ5d|p〉 = − 115, (15.12)

∇p|s̄iγ5s|p〉 = − 2.5, (15.13)

∇p|b̄iγ5b|p〉 = − 3 × 10−2. (15.14)

Here we have used the scalar and pseudoscalar contents of the nucleon derived in
Sect. 6.1 [see Eqs. (6.12), (6.13), (6.17), (6.21) and (6.23)]. The scalar-pseudoscalar
coupling C S P

N and pseudoscalar-scalar C P S
N coupling are then

C S P
p =∇p|d̄d|p〉τ1 + ∇p|s̄s|p〉τ2 + ∇p|b̄b|p〉τ3 , (15.15)

C S P
n =∇p|ūu|p〉τ1 + ∇p|s̄s|p〉τ2 + ∇p|b̄b|p〉τ3 , (15.16)

and

C P S
p = − ∇p|d̄iγ5d|p〉τ1 − ∇p|s̄iγ5s|p〉τ2 − ∇p|b̄iγ5b|p〉τ3 , (15.17)

C P S
n = − ∇p|ūiγ5u|p〉τ1 − ∇p|s̄iγ5s|p〉τ2 − ∇p|b̄iγ5b|p〉τ3 , (15.18)

where

τm ≈ 8Im(λ∝
1i1λ

∼
iam)Vamm2

W

⎩
 I (m2

W ,m2
ua
,m2

ẽLi
) +

⎨
j=1,2

|Z1 j
+ |2 I (m2

χ j
,m2

ν̃e
,m2

ũLa
)


 .

(15.19)
Eqs. (15.16) and (15.18)were derived by using isospin symmetry. The dependence

of the P, CP-odd e-N couplings on the 199Hg atomic EDM is (see Sect. 8.3)

dHg =
[
−5.0 × (0.40CSP

p + 0.60CSP
n ) + 0.6 × (0.09CPS

p + 0.91CPS
n )

]
× 10−22e cm .

(15.20)

The experimental upper limit of the 199Hg is dHg < 3.1×10−29e cm, sowe obtain

dHg = (−166τ1 + 1.0τ2 − 0.032τ3) × 10−22e cm < 3.1 × 10−29e cm .(15.21)

http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_8
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Table 15.1 Upper bounds to the RPV couplings given by the 199Hg EDM experimental data via
the P, CP-odd e-N interactions for mSUSY = 1 TeV

RPV couplings 199Hg EDM Other experiments

|Im(λ∝
211λ

∼
221)| 2.0 × 10−5 2.9 × 10−2

|Im(λ∝
311λ

∼
321)| 2.0 × 10−5 1.7 × 10−2

|Im(λ∝
211λ

∼
231)| 8.2 × 10−4 0.60

|Im(λ∝
311λ

∼
331)| 8.2 × 10−4 0.36

|Im(λ∝
211λ

∼
212)| 3.3 × 10−3 2.9 × 10−2

|Im(λ∝
311λ

∼
312)| 3.3 × 10−3 1.7 × 10−2

|Im(λ∝
211λ

∼
232)| 2.9 × 10−2 0.60

|Im(λ∝
311λ

∼
332)| 2.9 × 10−2 0.36

|Im(λ∝
211λ

∼
213)| 7 2.9 × 10−2

|Im(λ∝
311λ

∼
313)| 7 1.7 × 10−2

|Im(λ∝
211λ

∼
223)| 0.6 2.9 × 10−2

|Im(λ∝
311λ

∼
323)| 0.6 1.7 × 10−2

Limits from other experiments [7] are also shown [they can be derived from Eqs. (4.14), (4.20) and
(4.26)]

Table 15.2 Upper bounds to the RPV couplings given by the 199Hg EDM experimental data via
the P, CP-odd e-N interactions for mẽ = 100 GeV

RPV couplings 199Hg EDM Other experiments

|Im(λ∝
211λ

∼
221)| 8.2 × 10−7 2.9 × 10−3

|Im(λ∝
311λ

∼
321)| 8.2 × 10−7 1.7 × 10−3

|Im(λ∝
211λ

∼
231)| 7.3 × 10−5 6.0 × 10−2

|Im(λ∝
311λ

∼
331)| 7.3 × 10−5 3.6 × 10−2

|Im(λ∝
211λ

∼
212)| 1.4 × 10−4 2.9 × 10−3

|Im(λ∝
311λ

∼
312)| 1.4 × 10−4 1.7 × 10−3

|Im(λ∝
211λ

∼
232)| 2.6 × 10−3 6.0 × 10−2

|Im(λ∝
311λ

∼
332)| 2.6 × 10−3 3.6 × 10−2

|Im(λ∝
211λ

∼
213)| 0.3 2.9 × 10−3

|Im(λ∝
311λ

∼
313)| 0.3 1.7 × 10−3

|Im(λ∝
211λ

∼
223)| 3 × 10−2 2.9 × 10−3

|Im(λ∝
311λ

∼
323)| 3 × 10−2 1.7 × 10−3

Limits from other experiments [7] are also shown [they can be derived from Eqs. (4.14), (4.20) and
(4.26)]

By solving the above equation for RPV couplings, it is possible to obtain con-
straints on Im(λ∝

i11λ
∼
iam). If there are no accidental cancellations between RPV

couplings, we obtain the constraints on bilinears of RPV couplings as shown in
Tables. 15.1 (for mSUSY = 1 TeV) and15.2 (for mẽ = 100 GeV).

The limits given for Im(λ∝
i11λ

∼
i21), Im(λ∝

i11λ
∼
i31), Im(λ∝

i11λ
∼
i12) and Im(λ∝

i11λ
∼
i32)

shows tighter constraints than limits from other experiments [7]. The new constraints
were set because of the strong upper limit of the EDM of 199Hg atom and also of the
high sensitivity of P, CP-odd e-N interactions to the R-parity violation.

We must pay attention to other processes contributing to the EDM of 199Hg atom
induced by the same bilinears of RPV couplings discussed in our analysis. These

http://dx.doi.org/10.1007/978-4-431-54544-6_4
http://dx.doi.org/10.1007/978-4-431-54544-6_4
http://dx.doi.org/10.1007/978-4-431-54544-6_4
http://dx.doi.org/10.1007/978-4-431-54544-6_4
http://dx.doi.org/10.1007/978-4-431-54544-6_4
http://dx.doi.org/10.1007/978-4-431-54544-6_4
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RPV couplings contribute to the Barr-Zee type diagram of the electron and quark
EDMs with W boson and charged slepton exchange. However these contributions
are small for the following reasons. The electron EDM contribution is suppressed
since the 199Hg atom is a diamagnetic atom. The quark EDM is also suppressed,
since its Barr-Zee type diagram has an electron loop (the Barr-Zee type contribution
receives a factor of the mass of the inner loop fermion).

This analysis is expected to be also applicable to the P, CP-odd four-quark inter-
action within the R-parity violation at the one-loop level. We will see below this
discussion.

This result has demonstrated the importance of the subleading order analysis for
the EDM, like the well-known analysis of the muon anomalous magnetic moment.
It also emphasizes the high accuracy of the 199Hg EDM experimental data and its
potential for probing newphysics. This analysis has also emphasized the accessibility
to a variety of RPV interactions through the subleading loop level contributions,
within the assumption of the dominance single bilinear of RPV couplings. We have
been able to set new limits to RPV interactions thanks to the combination of the
high accuracy of the EDM experimental data and the variety of RPV interactions
appearing at the one-loop level.

15.2 Analysis of the RPV Contribution to the P, CP-Odd
4-Quark Interaction at the One-Loop Level

The previous analysis can be extended to the P, CP-odd 4-quark interaction. This
discussion is a direct extension of the tree level analysis done by Faessler et al. [8].
Diagrams contributing to the P, CP-odd 4-quark interaction are shown in Fig. 15.3.

The amplitudes are given as follows

iM ∼
(a) →8iIm(λ∼∝

ib1λ
∼
iam)Vb1Vam

G F∗
2

m2
W

× I ∼
iab · [d̄iγ5d · d̄mdm − d̄d · d̄miγ5dm

] + (P − even terms), (15.22)

(a) (b)

Fig. 15.3 RPV contribution to the P, CP-odd 4-quark interaction at the one-loop level. The structure
of the box diagram is exactly the same as the P, CP-odd electron-quark interaction
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iM ∼
(b) →8iIm(λ∼∝

ib1λ
∼
iam)Vb1Vam

G F∗
2

m2
W

⎨
j=1,2

|Z1 j
+ |2 I (m2

χ j
,m2

ũLa
,m2

ũLb
)

× [
d̄iγ5d · d̄mdm − d̄d · d̄miγ5dm

]
, (15.23)

where iM ∼
(a) and iM ∼

(b) are the amplitudes of the diagramwithW boson and chargino
in the loop, respectively. a, b = 1, 2, 3 and m = 2, 3 are the flavor indices. I ∼

iab is
the loop integral of the amplitude iM ∼

(a), where

I ∼
iab =

⎛
⎫

I (m2
W , 0,m2

ẽLi
) (a=1,2, b=1,2)

I (m2
W ,m2

t ,m2
ẽLi

) (a=3, b=1,2)
I (m2

W ,m2
t ,m2

ẽLi
) (a=1,2,b=3)

J (m2
W ,m2

ẽLi
,m2

t ) (a=3, b=3)

(15.24)

with

J (a, b, c) ≈ 1

4(4π)2
1

a − b

⎧
a

c − a

⎬
1 − a

c − a
ln

c

a

⎡
− b

c − b

⎬
1 − b

c − b
ln

c

b

⎡⎪
.

For example, we have

m2
W J [m2

W ,m2
ẽLi

= (100GeV)2,m2
t ] → 1.9 × 10−4 ,

m2
W J [m2

W ,m2
ẽLi

= (1TeV)2,m2
t ] → 2.6 × 10−5 ,

(15.25)

The graph (b) of Fig. 15.3 involves two squarks in the loop, so its contribution is
smaller than the amplitude iM ∼

(a), since m2
W I (m2

χ j
,m2

ũLa
,m2

ũLb
) = 9.9 × 10−6 for

mχ j = 100 GeV, and m2
W I (m2

χ j
,m2

ũLa
,m2

ũLb
) = 5.1 × 10−6 for mχ j = 1 TeV (we

have assumed mũL → 1 TeV). As we have seen for the P, CP-odd e-N interaction,
the amplitudes iM ∼

(a) and iM ∼
(b) have the same sign and couplings, so there is no

possibility of cancellation with each other.
The P, CP-odd 4-quark interaction contributes to the P, CP-odd pion-nucleon

interaction. In this discussion, we use the factorization and PCAC reduction to derive
the hadron level interaction. This gives the following isovector type P, CP-odd pion-
nucleon interaction

L = ḡ(1)
πN N N̄ Nπ0 , (15.26)

with

ḡ(1)
πN N → − Fπm2

π

2md

G F∗
2

⎨
m=2,3

ρn∇p| d̄mdm |p〉 , (15.27)
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where Fπ → 93 MeV is the pion decay constant, and mπ = 140 MeV is the pion
mass. The coefficient ρm is defined as

ρm = 8iIm(λ∼∝
ib1λ

∼
iam)Vb1Vamm2

W

⎩
I ∼

iab +
⎨
j=1,2

|Z1 j
+ |2 I (m2

χ j
,m2

ũLa
,m2

ũLb
)


 .

(15.28)
We must note that this factorization method has a large uncertainty.
The recent Schiff moment of the 199Hg nucleus was calculated with fully self-

consistent many-body treatment taking into account the deformation [9]. The result
is [see Eq. (7.56)]

SHg = 0.007gπN N ḡ(1)
πN N e fm3 , (15.29)

where gπN N → 12.9 is the ordinary pseudoscalar coupling pion-nucleon coupling.
We have neglected contributions from the nucleon EDM, isoscalar and isotensor
P, CP-odd pion-nucleon interactions. The isovector dependence of 199Hg Schiff
moment presented above is the average of five calculations shown in Table. 7.1.
Note that this nuclear level calculation has also a large theoretical uncertainty (For
some calculational method, the result is of opposite sign).

The dependence of the EDM of the 199Hg atom on the nuclear Schiff moment is
given by [10] [see Eq. (8.32)]

dHg = −2.6 × 10−17 SHg
e fm3 e cm . (15.30)

The final form of the dependence of 199Hg EDM on the RPV P, CP-odd 4-quark
contribution is

dHg = (3.5ρ2 + 0.35ρ3) × 10−25e cm. (15.31)

The constraints on RPV couplings obtained from the experimental data (dHg <

3.1× 10−29e cm [2]) is shown in Table. 15.3, where mẽLi is tentatively taken as 100
GeV and 1 TeV.

The limits obtained are looser than those obtained from other experiments [7], so
it is not possible to obtain upper bounds on RPV interactions from the 199Hg EDM
experimental data. Nevertheless, this result shows the variety of RPV interactions
λ∼

i jk accessible from the one-loop level P, CP-odd 4-quark interactions.
We should add to this discussion the possibility to constrain RPV interactions

from future EDM experiments. The first good candidate is the EDM of 225Ra atom.
The 225Ra EDM has a strong sensitivity to the P, CP-odd hadronic interactions.
The dependence of the P, CP-odd 4-quark interaction on the EDM of 225Ra atom is
[10, 11]

dRa = (−1.0ρ2 − 0.1ρ3) × 10−21e cm . (15.32)

We have used the relations (7.59) and (8.35). We see that the sensitivity to the P,
CP-odd 4-quark interaction is enhanced by a factor of 3000 compared to the EDM

http://dx.doi.org/10.1007/978-4-431-54544-6_7
http://dx.doi.org/10.1007/978-4-431-54544-6 _7
http://dx.doi.org/10.1007/978-4-431-54544-6_8
http://dx.doi.org/10.1007/978-4-431-54544-6_7
http://dx.doi.org/10.1007/978-4-431-54544-6_8
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Table 15.3 Upper bounds to the RPV couplings given by the 199Hg EDM experimental data via
the P, CP-odd 4-quark interactions

RPV couplings (mẽLi =100 GeV) (mẽLi =1 TeV)

|Im(λ∼∝
i11λ

∼
i12)| 4.0 × 10−2 0.97

|Im(λ∼∝
i11λ

∼
i32)| 0.76 8.5

|Im(λ∼∝
i21λ

∼
i12)| 0.17 4.2

|Im(λ∼∝
i21λ

∼
i22)| 4.0 × 10−2 0.97

|Im(λ∼∝
i21λ

∼
i32)| 3.3 37

|Im(λ∼∝
i31λ

∼
i12)| 15 170

|Im(λ∼∝
i31λ

∼
i22)| 3.5 40

|Im(λ∼∝
i31λ

∼
i32)| 170 1200

|Im(λ∼∝
i11λ

∼
i13)| 25 630

|Im(λ∼∝
i11λ

∼
i23)| 2.2 53

|Im(λ∼∝
i21λ

∼
i13)| 110 2700

|Im(λ∼∝
i21λ

∼
i23)| 9.4 230

|Im(λ∼∝
i21λ

∼
i33)| 1.3 15

|Im(λ∼∝
i31λ

∼
i13)| 9900 1.1 × 105

|Im(λ∼∝
i31λ

∼
i23)| 840 9400

|Im(λ∼∝
i31λ

∼
i33)| 67 490

of 199Hg atom [compare with eq. (15.31)]. This large enhancement is due to the
enhancement of the Schiff moment by the octupole deformation of the 225Ra nucleus
[11] and the close parity doublet states of the atomic energy level [10]. The 225Ra
EDM experiment is being prepared by the group of Argonne National Laboratory
aiming at the sensitivity of O(10−28)e cm [12]. We can then expect upper bounds of
Table. 15.3 to be tightened by several hundred times.

Another experimental candidate is the EDM of the deuteron (nucleus). Recently
a new generation of EDM experiment using the storage ring is in preparation ,
and it offers the possibility to measure the EDM of charged particles with very
high sensitivity [13]. With this setup, the high sensitivity of the deuteron EDM is
possible, since the suppression of the nuclear level P, CP-odd effect is avoided due
to the absence of screening electrons, in addition to the long coherence time during
the measurement. The dependence of the P, CP-odd 4-quark interaction on the EDM
of the deuteron is [14]

dd = (2.9ρ2 + 0.29ρ3) × 10−21e cm . (15.33)

We have used the relation (7.54) for the derivation of the dependence given above.
We see that the deuteron EDM is 10000 times more sensitive than the EDM of 199Hg
atom against P, CP-odd 4-quark interaction. Themeasurement of deuteron EDM is in
preparation at Brookhaven National Laboratory, and the expected experimental sen-
sitivity is O(10−29)e cm.We thus expect upper bounds of Table. 15.3 to be tightened
by ↔10000 times.

We should also point out the potential importance of the nucleon EDMs. In our
discussion, we have neglected the contribution of the P, CP-odd 4-quark interaction

http://dx.doi.org/10.1007/978-4-431-54544-6_7
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to the nucleon EDM, since the isovector type P, CP-odd pion-nucleon interaction
does not contribute to the nucleon EDM in the approximation which takes only the
leading chiral logarithm. This approximation however neglects non-leading terms
which, although being model dependent, can involve sizable isovector dependence.
This approximation has a large theoretical uncertainty, and accurate evaluation of the
dependence of the nucleon EDM on P, CP-odd quark level interactions is needed.We
are thus waiting for Lattice QCD calculation. If we assume that the dependences of
the nucleon EDM on isovector type and other P, CP-odd pion-nucleon interactions
are comparable, the dependence of the P, CP-odd 4-quark interaction on the nucleon
EDM will be

dN ↔ (0.1ρ2 + 0.01ρ3) × 10−20e cm . (15.34)

The next generation of the neutron EDM experiments using UCN sources plan to
reach the sensitivity of O(10−28)e cm [12, 15], which can constrain the RPV interac-
tions listed in Table. 15.3 1000 times tighter than the current 199Hg EDM experimen-
tal data. We must also note that the proton EDM can be a strong candidate in limiting
these RPV interactions, since its performance should provide the same sensitivity as
the deuteron EDM [13].

15.3 Summary

In this chapterwehave analyzed the contribution of theR-parity violation to theP,CP-
odd e-N interaction at the one-loop level and derived from the recent 199Hg EDM
experimental data limits to the imaginary parts of the following products of RPV
couplings: λ∝

i11λ
∼
i21, λ

∝
i11λ

∼
i31, λ

∝
i11λ

∼
i12, λ

∝
i11λ

∼
i32, λ

∝
i11λ

∼
i13 and λ∝

i11λ
∼
i23 (i = 2, 3).

For λ∝
i11λ

∼
i21, λ∝

i11λ
∼
i31, λ∝

i11λ
∼
i12 and λ∝

i11λ
∼
i32 (i = 2, 3), we have found that these

limits give tighter constraints than those given by other experiments. For λ∝
i11λ

∼
i13

and λ∝
i11λ

∼
i23 (i = 2, 3), we could not set new limits. The new constraints were

set because of the strong upper limit of the 199Hg atom EDM and also of the high
sensitivity of the P, CP-odd e-N interaction to the R-parity violation. We have also
analyzed the P, CP-odd 4-quark interaction within the R-parity violation at the one-
loop level. The current experimental limit of the 199Hg EDM could not set new
limits, but new generation of EDM experiments with 225Ra atom, deuteron, neutron
and proton has the possibility to constrain the RPV interactions significantly via
P, CP-odd 4-quark interaction. This result has demonstrated the importance of the
subleading order analysis for the EDM, like the well-known analysis of the muon
anomalous magnetic moment. This analysis has also emphasized the accessibility to
a variety of RPV interactions through the subleading loop level contributions, within
the assumption of the dominance of a single bilinear of RPV couplings. We have
been able to set new limits to RPV interactions thanks to the combination of the
high accuracy of the EDM experimental data and the variety of RPV interactions
appearing at the one-loop level.
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We should also note that the limits to RPV interactions given by the analysis
of the P, CP-odd 4-quark interactions has a large theoretical uncertainty and model
dependence in QCD calculation. To give more definite constraints, accurate calcu-
lations are indispensable. The study of the dependence of P, CP-odd hadron level
interactions on the P, CP-odd 4-quark interaction within Lattice QCD is therefore
required.
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Chapter 16
Summary and Future Prospects

Here, we would like to summarize our investigations. We have first reviewed the
supersymmetry (SUSY) as a candidate of new physics beyond the standard model
(SM). The supersymmetry, although not discovered so far, is one of the leading
candidates, because it can provide the stability of the electroweak scale physics by
the cancellation of the power divergence. The supersymmetry has been discussed
and studied extensively, and the phenomenological works on it are still on-going.
We have seen that the R-parity violation, which is one possible scenario of SUSY,
is also interesting since it can be linked to the Grand unified theories. In this work,
we have studied the R-parity violating (RPV) interactions phenomenologically. The
SUSY (and other candidates of new physics) can be probed with a very powerful
experimental probe, the electric dipole moments (EDMs), which are the secondmain
subject of this thesis. The EDM is a very sensitive probe of the P and CP violations,
with a very small SM background, and it can be measured in a variety of systems,
which makes it to be a very good tool to detect the new physics. The EDM played
an active role in phenomenology, and many parameters of the SUSY and R-parity
violation were constrained by it so far.

In this thesis, we have analyzed the R-parity violation within EDM-constraints,
and have reported the following five important results:

• We have revised the two-loop level Barr-Zee type RPV contribution to the fermion
EDM. Our result gave a smaller value by about one order of magnitude than
previous works. This result alters the relative size between the contribution from
P, CP-odd electron–nucleon interactions for the EDM of 199Hg atom.

• We have classified the RPV contribution to the EDM observables. RPV bilinears
can be classified into six types. The update of EDM-constraints to the RPV inter-
actions were also given (see Table13.5). These limits were derived by assuming
that only one RPV bilinear dominates.

• We have analyzed the EDM-constraints (205Tl, 199Hg, 129Xe and neutron) on the
R-parity violation also for the case where all RPV couplings contributing to the
leading order are considered simultaneously. For that we have developed a calcu-
lational method based on linear programming. Although being softened (due to
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the interference between RPV bilinears), it was possible to set limits onmany RPV
bilinears. We have also analyzed the limits on R-parity violation when prospective
experimental EDM-constraints of proton, deuteron, 3He nucleus, 211Rn, 225Ra
atoms were included in evaluations. These planned EDM experiments have high
sensitivity on hadronic RPV bilinears, and within the prospective data, it is pos-
sible to constrain them by two orders tighter than the currently available EDM-
constraints. We must also note that the interplay of several EDM-constraints can
significantly limit the RPV parameter space, and this shows the importance of
measuring EDMs on many systems.

• We have also predicted the maximal values for the prospective experiments prob-
ing P, CP violation (EDMs of the proton, deuteron, 3He nucleus, 211Rn, 225Ra
atoms, and the R-correlation of the neutron beta decay). With the linear program-
ming method, all these observables were predicted with large values. The order of
magnitude of their maximal prediction is three or four orders larger than the max-
imal prediction within the assumption of the dominance of single RPV bilinear.
This shows the efficiency of the linear programming method in scanning the RPV
parameter space. This result is encouraging for experimentalists because EDMs
have more chances to be observed than the suggestions made by analyses within
the dominance of single RPV bilinear.

• We have also analyzed the P, CP-odd 4-fermion interactions at the one-loop level,
and obtained that some RPV interactions can be constrained by the experimental
data of the 199Hg atom. We have obtained a new limit to the CP violating RPV
couplings, and have shown the importance of the analysis of the subleading order
contribution.

We should add some comments on the advantages of the linear programming
method. The first advantage is that the full parameter space can be analyzed taking
also the area of the parameter space in which interference and cancellation occur.
The second advantage is that the linear programming method can be applied to many
other new physics. In particular, if the equation is linear in unknown parameters, the
systematic phenomenological study is possible.

With the help of the classification of RPV bilinears, some important consequences
were obtained. We have learned that the R-correlation is a useful probe of the RPV
bilinear Im(λi11λ

∝∼
i11), and if R can be constrained sufficiently by experiments, the

type two semi-leptonic RPV bilinears contributing to the P, CP-odd electron–nucleon
interactionswill be ruledout.Wehave also learned that the purely hadronicEDMsand
muon EDMhave restricted sensitivity against RPV bilinears, so that they can be used
as a good probe to rule out a specific area of the RPV parameter space. In particular,
the muon EDM is the only observable which can probe its RPV contribution, so the
muon EDM experiments will play a very important role in the phenomenology of
the R-parity violation. Considering all of these results, we have then analyzed the
CP violation of the R-parity violation from a very broad point of view.

We have also found many challenging problems in the course of our study. Let us
list them:
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• A new way to the RPV scenario: In our analysis, we have given the possibility
of scenario with large RPV bilinears with some constrained configuration (due
to EDM-constraints), which was not possible within the assumption of single
coupling dominance. This is a good challenge for theorists to build scenarios of
Grand unification with RPV interactions. Theorists however have also to explain
naturally the RPV configuration due to the EDM-constraints, which is a challenge.

• Linear programming analysis including the subleading RPV contribution to the
EDM: In our analysis all leading RPV contributions are considered simultaneously
within EDM-constraints. But we did not add the contribution from the one-loop
level P, CP-odd electron–nucleon interaction. As we have concluded that these
subleading contributions can also be important, we should add them into the full
analysis using the linear programming method. Actually, there are also another
subleading contribution in the fermion EDM. This is the Barr-Zee type two-loop
level diagram with W -boson exchange, which involves also RPV interactions not
relevant at the leading order. To complete this analysis, we should also evaluate
this subleading Barr-Zee type diagram, and do the full RPV analysis together with
the one-loop P, CP-odd electron–nucleon interaction and the leading contributions.

• Full analysis of the RPV couplings: In our analysis, we have only analyzed the
EDM-constraints as linear relations in the linear programming, and the absolute
limits on the RPV couplings taken from other experimental data were assumed
to hold for single RPV coupling. We have to treat also these absolute limits from
other experiments as linear relation inputs in the analysis of linear programming.

• Full analysis of the supersymmetric parameter space: Ideally, this analysis should
be extended to the whole supersymmetric parameter space, including the R-parity
conserving sector.

• Theuncertainty due toQCD: In deriving theEDMof the nucleon, atoms andnuclei,
we have encountered uncertainty due to the model calculations of the QCD. The
theoretical uncertainty is difficult to estimate, and the result may change even by
orders of magnitude. The development of the Lattice QCD is one of the promising
framework to do accurate evaluations of the QCD hadron matrix elements. The
calculation of the matrix elements needed in the calculation of EDMs is one of the
important subjects.

• The uncertainty of the Schiff moment calculation: As can be seen in Table7.1, the
nuclear Schiff moment calculation of the heavy deformed nuclei is rather unstable.
This is mainly due to the fact that the ground state wave functions of deformed
odd-nuclei are difficult to construct by using themean-fieldmethod. This subject is
also a difficult challenge not only for the EDM calculation but also for the nuclear
physics.

• Calculations of the EDMs of few body nuclei: We have seen in our thesis that the
purely hadronic EDMs have a strong sensitivity against hadronic RPV bilinears.
By looking to the sensitivity of the EDMs of deuteron and 3He nucleus to the P, CP-
odd pion-nucleon couplings, we see that the sensitivity increases in the number of
nuclei. We can therefore expect to have a more sensitive nuclear EDMs for A = 6,
7, 8, etc. The recent development of nuclear calculation using ab initio approaches
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for few body systems is remarkable. The author of this thesis plans to do such
calculations as future project.

• Study of the molecular P, CP violation: Recently, the new world record of upper
limit to electron EDMwas made using YbF molecule. The molecular P, CP viola-
tion is a promising study in development since the potential sensitivity of them to
new physics is huge, and many researches and developments are on-going. In this
thesis, we did not include the constraints from the YbF molecule due to the lack of
knowledge about relations between the P, CP violation of the YbF molecule and
the underlying P, CP-odd mechanisms. The development of theoretical calculation
for molecules is also an important subject.

• Final state interaction contribution of the R-correlation: From our analysis of RPV
with linear programming, we have concluded that the improvement of sensitivity
of the R-correlation is promising in excluding the degree of freedom of the RPV
parameter space allowing large atomic EDMs. The R-correlation receives however
contribution from the final state interaction (FSI) which is of order Rfsi ∗ 10−4.
To improve the sensitivity of the R-correlation, we must carry out an accurate
calculation of the FSI contribution. The R-correlation can also be measured with
nuclear beta decay, and for some nuclei such as the 8Li, the FSI contribution is
known to be smaller than the neutron. The accurate calculation of the FSI for them
are an interesting subject for the R-parity violation.



Appendix A
Particle Masses in the MSSM

The MSSM has many additional mass terms and mixings due to the soft breaking
of supersymmetry. The spectrum of the particles can be obtained by diagonalizing
their mass matrices. Here we present the formulae for the mass eigenvalues and
eigenstates of the Higgs bosons, charginos, neutralinos and sfermions.

Higgs Bosons

There are many types of scalar (like squarks, sleptons, Higgs bosons) which can
potentially break the symmetry. However, the vacuum is charge, color baryon and
lepton number conserving, so that only Higgs bosons can break spontaneously the
electroweak symmetry.We then define the vacuum so that the neutral Higgs develops
a vacuum expectation value (VEV). It can be shown from the total Higgs lagrangian,
that the neutral components of the up-type and down-type Higgs must have finite
VEV if the electroweak symmetry is broken. The scalar potential which must be
minimized is then

V = (m2
Hu

+ μ2)|h0
u |2 + (m2

Hd
+ μ2)|h0

d |2

− Bμ(h0
uh0

d + h.c. ) + 1

8
(g2 + g∝2)(|h0

u |2 − |h0
d |2)2, (A.1)

with the stabilizing conditions:

{
(Bμ)2 > (m2

Hu
+ μ2)(m2

Hd
+ μ2) (Stability of the vacuum)

m2
Hu

+ m2
Hd

+ 2μ2 > 2|Bμ| (No flat directions)
. (A.2)

Here m2
Hu

and m2
Hd

are the soft SUSY breaking mass shift of the Higgs boson,
and Bμ the soft SUSY breaking mixing between up and down type Higgs. The gauge

N. Yamanaka, Analysis of the Electric Dipole Moment in the R-parity 177
Violating Supersymmetric Standard Model, Springer Theses,
DOI: 10.1007/978-4-431-54544-6, © Springer Japan 2014



178 Appendix A: Particle Masses in the MSSM

couplings g and g∝ are the respective coupling constants of the SU (2)L and U (1)Y

gauge groups, so that we have g = e
sin θW

and g∝ = e
cos θW

.
The minimization condition is

⎧⎧⎧⎪
⎧⎧⎧⎨

Bμ = 1

2
(m2

Hu
+ m2

Hd
+ 2μ2) sin 2β

μ2 = m2
Hd

− m2
Hu

tan2 β

(tan2 β − 1)
− M2

Z

2

, (A.3)

where β is given by tan β ∼ vu
vd
, and M2

Z = g2+g∝2
2 (v2u + v2d).

It is important to note that in the supersymmetric gauge theory, the Higgs scalar
4-point interaction is given by gauge couplings, which insures that Higgs fields can
be treated perturbatively. Themass of the gauge bosons can be given as in the standard
model by replacing the VEV of the single Higgs v2 by v2u + v2d .

We now try to give the physical aspect of the Higgs scalar. As discussed before,
there are 8 parameters in theHiggs sector, each corresponding tomassive andNambu-
Goldstone particles. Masses of these particles are given by the mass matrix of the
Higgs bilinear coefficient. Due to the charge conservation and CP invariance of the
Higgs sector, Charged Higgs sector, neutral CP-odd and CP-even blocks can be
separated.

The charged block uses 4 parameters. If we express it in the SU(2) eigenstate
(h+

u , h+∗
u , h−

d , h−∗
d ), the mass matrix is

M 2
h± =

⎩
Bμ cot β + g2

2 v2d −Bμ − g2

2 vuvd

−Bμ − g2

2 vuvd Bμ tan β + g2

2 v2u

)
. (A.4)

The mass eigenvalue is

m±
G = 0 , m2

H± = Bμ(cot β + tan β) + M2
W . (A.5)

Here, the zero mass eigenstates are the Nambu-Goldstone modes, which will give
masses to W bosons.

The rotation we have used is then
(

G+
H+

)
=
(

cosβ sin β
− sin β cosβ

)(
h−∗

d
h+

u

)
. (A.6)

Next, we treat the neutral CP-odd (pseudo-scalar) Higgs field (h0
uI , h0

d I ).

M 2
h0u,d I

=
(

Bμ cot β Bμ
Bμ Bμ tan β

)
. (A.7)
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The mass eigenvalue is

mG0 = 0 , m2
A = Bμ(cot β + tan β). (A.8)

The zero mass eigenstate is the Nambu-Goldstone mode, which will give masses
to Z bosons. The rotation is

(
G0

A

)
=
(
sin β − cosβ
cosβ sin β

)(
h0

uI
h0

d I

)
. (A.9)

The remaining sector is the neutral CP-even Higgs (h0
u R , h0

d R):

M 2
h0u,d I

=
(

m2
A cos2 β + M2

Z sin2 β −(m2
A + M2

Z ) sin β cosβ
−(m2

A + M2
Z ) sin β cosβ m2

A sin2 β + M2
Z cos2 β

)
. (A.10)

The mass eigenvalue is

m2
h,H = 1

2

[
(m2

A + M2
Z ) →

√
(m2

A + M2
Z )2 − 4m2

A M2
Z cos2 2β

]
. (A.11)

There are 2 massive scalars, with one heavy and one light. The rotation is

(
h
H

)
=
(

cosα sinα
− sinα cosα

)(
h0

u R
h0

d R

)
, (A.12)

with

tanα =
(m2

A − M2
Z ) cos 2β +

√
(m2

A − M2
Z )2 − 4m2

A M2
Z cos2 2β

(m2
A + M2

Z ) sin β
. (A.13)

Technically, these rotation matrices are incorporated in vertices which create or
annihilate these Higgs for using mass eigenstate propagators.

Charginos and Neutralinos

Supersymmetric partners of Higgs scalars and gauge bosons have the same quantum
number, so they canmixwith each other.Within the charge conserving theory, 2 types
of particles are possible. The first one is themixing between supersymmetric partners
of charged Higgs and W bosons: the chargino. The other one is the mixing between
supersymmetric partners of the neutral Higgs, the neutral U (1)Y gauge boson, and
the t3 component of the SU (2)L gauge boson: the neutralino.
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There are 3 distinct sources in the mass matrix:

• Mass terms from the superpotential (Higgs bilinear):

L1 = −μ

2

(↔ψh0u
ψh0d

+ ↔ψh0d
ψh0u

+ ↔ψh0+ψh−
d

+ ↔ψh−
d
ψh+

u

⎛
. (A.14)

• Gaugino-Higgsino mixing due to the breakdown of electroweak symmetry:

L2 = − gvu↔λ1 + γ5

2
ψh − gvd↔λ1 − γ5

2
ψh + h.c.

− gvu∇
2
↔λ3ψh0u

+ g∝vu∇
2

↔λ0ψh0u
+ gvd∇

2
↔λ3ψh0d

− g∝vd∇
2

↔λ0ψh0d
, (A.15)

where λ = λ1+iλ2∇
2

and ψh = PLψh−
d

− PRψh+
u
. (PL ∼ 1−γ5

2 and PR ∼ 1+γ5
2 )

• Supersymmetry breaking gaugino mass:

L = −1

2
M1↔λ0λ0 − 1

2
M2↔λ3λ3 − M2↔λλ. (A.16)

Chargino Mass Matrix

The total chargino mass term can be written as

Lchargino = − ⎫↔λ , ↔ψh
⎬ ⎫

Mc PL + M T
c PR

⎬ ( λ
ψh

)
, (A.17)

where,

Mc =
(

M2 gvd

gvu −μ

)
. (A.18)

To find its physical mass eigenstate, wemust diagonalize this mass matrix.We see
that the chargino mass matrix has CP-odd mass terms, so chiral rotation is needed to
diagonalize it. This can be achieved by applying different unitary matrices Z+ and
Z− to the left and right. The physical chargino mass matrix can then be written as

MD ∼ Z T−Mc Z+ ∼
(

mχ2 0
0 mχ1

)
, M †

D ∼ Z†
+M T

c Z∗− ∼
(

mχ2 0
0 mχ1

)
,

(A.19)
where the physical chargino (mass) eigenstate χ satisfies

PL

(
λ
ψh

)
∼ Z+ PLχ ∼ Z+ PL

(
χ2
χ1

)
, PR

(
λ
ψh

)
∼ Z∗− PRχ ∼ Z∗− PR

(
χ2
χ1

)
.

(A.20)
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Here Z+ and Z∗− are unitary matrix which diagonalize M T
c Mc and McM T

c ,
respectively. By solving the eigenvalue problem, we find

Z+ =
⎡
⎣⎠

1√
1+x22

1√
1+x21

x2√
1+x22

x1√
1+x21


⎤⎦ , Z∗− =

⎡
⎣⎠

1√
1+y22

1√
1+y21

y2√
1+y22

y1√
1+y21


⎤⎦ , (A.21)

with

x1 =
μ2 − M2

2 + 2m2
W cos 2β −

√
(μ2 − M2

2 )2 + 4m2
W (m2

W cos2 2β + μ2 + M2
2 − 2μM2 sin 2β)

2
∇
2mW (−M2 cosβ + μ sin β)

,

x2 =
μ2 − M2

2 + 2m2
W cos 2β +

√
(μ2 − M2

2 )2 + 4m2
W (m2

W cos2 2β + μ2 + M2
2 − 2μM2 sin 2β)

2
∇
2mW (−M2 cosβ + μ sin β)

,

y1 =
μ2 − M2

2 + 2m2
W cos 2β −

√
(μ2 − M2

2 )2 + 4m2
W (m2

W cos2 2β + μ2 + M2
2 − 2μM2 sin 2β)

2
∇
2mW (−M2 sin β + μ cosβ)

,

y2 =
μ2 − M2

2 + 2m2
W cos 2β +

√
(μ2 − M2

2 )2 + 4m2
W (m2

W cos2 2β + μ2 + M2
2 − 2μM2 sin 2β)

2
∇
2mW (−M2 sin β + μ cosβ)

,

(A.22)

where mW is the mass of the W boson.

Neutralino Mass Matrix

The total neutralino mass term can be written as

Lneutralino = −1

2

( ↔ψh0u
, ↔ψh0d

, ↔λ3 , ↔λ0

⎛
⎡
⎣⎣⎣⎣⎣⎠

0 μ gvu∇
2

− g∝vu∇
2

μ 0 − gvd∇
2

g∝vd∇
2

gvu∇
2

− gvd∇
2

M2 0

− g∝vu∇
2

g∝vd∇
2

0 M1


⎤⎤⎤⎤⎤⎦

⎡
⎣⎣⎠

ψh0u
ψh0d
λ3
λ0


⎤⎤⎦ .

(A.23)

This matrix must also be diagonalized to find the physical mass eigenstates. The
neutrinalinomassmatrix is real and hermitian, so it can be diagonalized by orthogonal
matrix. If some mass eigenvalue are negative, we can always redefine the eigenstate
like ξ∝ = (−iγ5)ξ to make the mass positive. The diagonalization of 4×4 matrix is
tedious, and we generally diagonalize it numerically.
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Squarks and Sleptons

Squarks and sleptons have inter-generation (flavor) and intra-generation (L ↔ R)
mixings. Thus, there are 6 eigenstates for each squark and slepton. Their mass matri-
ces have 4 distinct sources:

• Superpotential terms:
Sfermions get the same contribution as their fermion partners from the superpo-
tential, from the auxiliary field bilinear:

F †
i Fi = −

∑
i

∣∣∣∣ ∂ f̂

∂Ŝi

∣∣∣∣
2

Ŝ=S

with f̂ = μĥ0
u ĥ0

d + fi f̂i ĥ
0
u,d f̂ c

i . (A.24)

Here, f̂i is the fermion field, fi its Yukawa coupling. Derivation of each type
of scalar (Higgs, SU (2)L singlet and doublet fermions) gives the diagonal mass
contributions

L1 =
∑

flavor, R/L

m2
i − f̃ †i f̃i , (A.25)

and also the intra-generational (L ↔ R) mixing

L2 =
∑
flavor

−(μ fi h
0
u/d)

⎫
f̃ †i L f̃i R + f̃ †i R f̃i L

⎬
, (A.26)

where h0
u/d = h0

u for up type sfermions, and h0
u/d = h0

d for down type sfermi-
ons. The intra-generation mixing is realized when the Higgs fields get vacuum
expectation value, since fi v0u/d = mi .

• Soft supersymmetry breaking scalar masses:
The first and second line of Eq. (3.4). There are flavor mixing contributions, but
no intra-generation mixings.

• Soft supersymmetry breaking trilinear terms:
The fifth line of Eq. (3.4). There are only intra-generation mixings, with flavor
changing contributions. The electroweak symmetry must be broken.

• D-term contributions:
The scalar 4 point interaction present in the D-term (≈ S †

i gtASi ) can generate
mass contributions, since it contains also Higgs scalars.

L = −1

2

∑
A

∣∣∣∑
i

S †
i gtASi

∣∣∣2

= −1

2
g2
∣∣∣Q̃†T3Q Q̃ + H†

u
τ3

2
Hu − H†

d
τ3

2
Hd

∣∣∣2

−
(g∝

2

⎛2∣∣∣H†
u YHu Hu + H†

d YHd Hd + Q̃†YQ Q̃ + ũ†
Ri YU c ũ Ri + d̃†

Ri YDc d̃Ri

∣∣∣2.
(A.27)
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Y are the hypercharges of each scalars. Cross terms between spontaneously broken
Higgs and sfermions generate mass contributions. Note that hypercharges of right-
handed sfermions are in fact those of left-handed anti-fermions. We can rewrite
the corresponding mass by using the electric charge (instead of hypercharge)

m2
D−term = M2

Z cos 2β(T3 − Q sin2 θW ). (A.28)

It is important to note that there are no inter/intra-generational mixing from the
D-term.

Generally, the flavor mixing contributions are strongly suppressed due to the phe-
nomenology of the flavor changing neutral current. If the flavor mixing is neglected,
we can construct the sfermion mass matrix by treating each flavor independently.
The sfermion mass matrix (only for one generation) can be given as follows:

Msfermion =
⎡
⎣⎠m2

f̃Li
+ m2

fi
+ e2(v2u−v2d )(T3 fi −Q fi sin

2 θW )

4 sin2 θW cos2 θW
−m f (R f μ + A f i /Y fi )

−m f (R f μ + A f i /Y fi ) m2
f̃ Ri

+ m2
fi

+ Q fi

e2(v2u−v2d )

4 cos2 θW


⎤⎦ ,

(A.29)

where R f = cot β for up type sfermions and R f = tan β for down type sfermions.
Parameters μ and A fi may have CP violating phases.



Appendix B
Fierz Transformation

The main purpose of the Fierz transformation is to convert a product of two fermion
bilinear into another with one member of the bilinear interchanged.

(↔u1Oi u2)(↔u3O ∝
i u4) =

∑
k

Cik(↔u1Oku4)(↔u3O ∝
ku2), (B.1)

where Oi × O ∝
i are matrices which obey the same Lorentz transformation. In the case

of 4 dimensional field theory, there are 16 independent combinations of thesematrices
and some of them are summed each other to give the same Lorentz transformation.

To obtain the Fierz transformation coefficients, we use the completeness of the
matrices Oi . We take the trace of the matrices in equation (B.1) with every combi-
nations O j × O ∝

j :

(Oi )αβ(O ∝
i )γδ =

∑
k

Cik(Ok)αδ(O ∝
k)γβ . (B.2)

If we introduce (O j )δα(O ∝
j )βγ , this equation becomes

T r(O j Oi O ∝
j O ∝

i ) =
∑

k

Cik T r(Ok O j )T r(O ∝
k O ∝

j ). (B.3)

We must be careful in the order of the matrices.
Defining Akj ∼ T r(Ok O j )T r(O ∝

k O ∝
j ), Bi j ∼ T r(O j Oi O ∝

j O ∝
i ), and using the

fact that Akj = A j is diagonal, we have finally

Ci j = Bi j/A j . (B.4)

For Lorentz scalar combinations, we have

Oi × O ∝
i = 1 × 1, γ5 × γ5, γμ × γμ, γμγ5 × γμγ5, σμν × σμν . (B.5)
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The Fierz transformation coefficients are given by

Ci j =

⎡
⎣⎣⎣⎣⎠

1/4 1/4 1/4 − 1/4 1/8
1/4 1/4 − 1/4 1/4 1/8
1 − 1 − 1/2 − 1/2 0

−1 1 − 1/2 − 1/2 0
3 3 0 0 − 1/2


⎤⎤⎤⎤⎦ . (B.6)



Appendix C
Condensates and QCD Correlators

Mixed Condensate in Nucleon (∇N|gs�qσμν Gμν
a taq|N〉)

By reducing the matrix element involving the chromo-EDM with PCAC reduction,
we obtain the mixed condensate in nucleon 〈N |gs↔qσμνGμν

a taq|N ≥.
By taking the lightest 0++ state as leading, we have

〈N | Ôs |N ≥
〈N | θμ

μ |N ≥ ⇔ 〈0| Ôs |σ≥〈σ|N ↔N ≥
〈0| θμ

μ |σ≥〈σ|N ↔N ≥ , (C.1)

where θ
μ
μ is the trace of the energy-momentum tensor, Ôs is the scalar operator for

which the condensate will be taken, and σ the lowest 0++ flavor SU (3) singlet state.
Here the detail of the state σ is not important. By applying the above relation for
Ôs = gs↔qσμνGa

μν taq, Ôs = gs↔qq, and taking their ratio, we obtain

〈N | gs↔qσμνGa
μν taq |N ≥

〈N | ↔qq |N ≥ ⇔ 〈0| gs↔qσμνGa
μν taq |σ≥

〈0| ↔qq |σ≥ . (C.2)

The matrix element 〈0| Ôs |σ≥ can be evaluated by using the low energy theorem.

lim
q→0

i
∫

dx eiq(x−y)

〈
0

∣∣∣∣ T

{
Ôs(x)

β(αs)

αs
Ga

μνGμν
a (y)

}∣∣∣∣ 0
〉

⇔ −d〈0|Ôs |0≥ + · · · ,

(C.3)
where β(αs) = −( 113 Nc − 2

3 N f )(α
2
s /2π) + O(α3

s ) and d is the canonical dimen-

sion of the operator Ôs . The ellipses denote terms linear in quark masses. We have
therefore 〈N | gs↔qσμνGa

μν taq |N ≥
〈N | ↔qq |N ≥ ⇔ 5

3
m2

0. (C.4)
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where m2
0 = 〈0| gs↔qσμνGa

μν taq |0≥/〈0| ↔qq |0≥. We must note that if the vacuum
saturation approximation is taken,

〈N | gs↔qσμνGa
μν taq |N ≥

〈N | ↔qq |N ≥ ⇔ m2
0. (C.5)

Topological Susceptibility

The correlator we want to evaluate is

K = −i lim
k→0

∫
d4x eik(x−y)

〈
0
∣∣∣ T

{αs

8π
Ga

μν G̃μν,a(x)
αs

8π
Gb

ρσG̃ρσ,b(y)
}∣∣∣ 0〉 .

(C.6)
Consider first the polarization operator

Pμν(q) = i
∫

d4x eiq(x−y)
〈
0
∣∣ T

{
j5μ(x) j5ν(y)

}∣∣ 0〉 , (C.7)

where j5μ(x) ∼ ∑N f
q ↔q(x)γμγ5q(x). By putting qμqν , we obtain

lim
q→0

qμqν Pμν(q) = lim
q→0

i
∫

d4x qμqνeiq(x−y)
〈
0
∣∣ T

{
j5μ(x) j5ν(y)

}∣∣ 0〉

= − lim
q→0

i
∫

d4x
(
∂μ

x ∂ν
x eiq(x−y)

⎛ 〈
0
∣∣ T

{
j5μ(x) j5ν(y)

}∣∣ 0〉

= −i
∫

d4x ∂μ
x ∂ν

x

〈
0
∣∣ T

{
j5μ(x) j5ν(y)

}∣∣ 0〉

= i
∫

d4x ∂μ
x ∂ν

y

〈
0
∣∣ T

{
j5μ(x) j5ν(y)

}∣∣ 0〉

= i
∫

d4x
〈
0
∣∣ T

{
∂μ

x j5μ(x)∂ν
y j5ν(y)

}
+ [ j50(x), ∂ν

y j5ν(y)]δ(x0 − y0)

− [∂μ
x j5μ(x), j50(y)]δ(x0 − y0)

− [ j50(x), j50(y)]∂0δ(x0 − y0) |0≥
= i

∫
d4x

〈
0
∣∣ T

{
∂μ

x j5μ(x)∂ν
y j5ν(y)

}
+ [ j50(x), ∂ν

y j5ν(y)]δ(x0 − y0) |0≥
= i

∫
d4x

〈
0
∣∣∣ T

{
N f

αs

4π
Ga

μν G̃μν,a(x) N f
αs

4π
Gb

ρσG̃ρσ,b(y)
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+
N f∑
q

2mq↔qiγ5q(x) N f
αs

4π
Ga

μν G̃μν,a(y)

+ N f
αs

4π
Ga

μν G̃μν,a(x)

N f∑
q

2mq↔qiγ5q(y)

+
N f∑
q

2mq↔qiγ5q(x)

N f∑
q ∝

2mq ∝↔q ∝iγ5q ∝(y)}|0≥

+
N f∑
q

4mq〈0| ↔qq|0≥

+ i
∫

d4x 〈0| [ j50(x), N f
αs

4π
Ga

μν G̃μν,a(y)]δ(x0 − y0) |0≥
= 0, (C.8)

where ∂
μ
x ∼ ∂

∂xμ
and ∂ν

y ∼ ∂
∂yν

. In the fourth equality, we have used the translational
invariance∂ν

x f (x−y) = −∂ν
y f (x−y). The third termof thefifth equality canbe inte-

grated by part, thus leading to the form [ j50(x), j50(y)]∂0δ(x0 − y0) which cancels
with the last term of the fifth equality. Note that in the fifth equality, the time ordering
T applies only to the first term. In the seventh equality,we have used the anomaly rela-

tion ∂μ jμ5 = ∑N f
q 2mq↔qiγ5q + N f

αs
4π Ga

μν G̃μν,a . To derive the term with 〈0| ↔qq|0≥
in the seventh equality, we have used the standard anti-commutation rule between

quark field operators to reduce the commutator [ j50(x),
∑N f

q 2mq↔qiγ5q(y)]. The
polarization qμqν Pμν(q) vanishes in the limit q → 0 since there are no singularity
in q2 = 0 (there are no massless particles in QCD). The last term of the seventh
equality can be omitted since 〈0|αs

4π Ga
μν G̃μν,a |n≥ (with |n≥ an arbitrary hadronic

state) can be rotated away with the chiral rotation, just like when we remove the
θ-term.

Consider next the following correlator

Pμ(q) = i
∫

d4x eiq(x−y)
〈
0
∣∣∣ T

{
j5μ(x) N f

αs

4π
Ga

μν G̃μν,a(y)
}∣∣∣ 0〉 . (C.9)

As in Eq. (C.8), we put qμ into the integral:

lim
q→0

qμ Pμ(q) = lim
q→0

i
∫

d4x qμeiq(x−y)
〈
0
∣∣∣ T

{
j5μ(x) N f

αs

4π
Ga

ρσG̃ρσ,a(y)
}∣∣∣ 0〉

= − lim
q→0

∫
d4x eiq(x−y)∂μ

〈
0
∣∣∣ T

{
j5μ(x) N f

αs

4π
Ga

ρσG̃ρσ,a(y)
}∣∣∣ 0〉

= −
∫

d4x
〈
0
∣∣∣ T

{ N f∑
q

2mq↔qiγ5q(x) N f
αs

4π
Ga

μν G̃μν,a(y)
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+N f
αs

4π
Ga

μν G̃μν,a(x) N f
αs

4π
Gb

ρσG̃ρσ,b(y)
}∣∣∣0〉

−
∫

d4x
〈
0
∣∣∣ [ j50(x) , N f

αs

4π
Ga

μν G̃μν,a(y)
]
δ(x0 − y0)

∣∣∣ 0〉

= −
∫

d4x
〈
0
∣∣∣ T

{ N f∑
q

2mq↔qiγ5q(x) N f
αs

4π
Ga

μν G̃μν,a(y)

+N f
αs

4π
Ga

μν G̃μν,a(x) N f
αs

4π
Gb

ρσG̃ρσ,b(y)
}∣∣∣0〉

= 0. (C.10)

This time again the above relation vanishes, since there are no massless hadrons.
We have also omitted the term with [ j50(x) , N f

αs
4π Ga

μν G̃μν,a(0)] using the chiral
rotation as in Eq. (C.8). By taking x − y → y − x and using the hermiticity of the
above relation, we have also

∫
d4x

〈
0
∣∣∣ T

{
N f

αs

4π
Ga

μν G̃μν,a(x)

N f∑
q

2mq↔qiγ5q(y)

+N f
αs

4π
Ga

μν G̃μν,a(x) N f
αs

4π
Gb

ρσG̃ρσ,b(y)
}∣∣∣0〉 = 0 . (C.11)

By substituting Eqs. (C.10) and (C.11) to Eq. (C.8), we obtain the following sum
rule:

i
∫

d4x
〈
0
∣∣∣ T

{
− N f

αs

4π
Ga

μν G̃μν,a(x) N f
αs

4π
Gb

ρσG̃ρσ,b(y)

+
N f∑
q

2mq↔qiγ5q(x)

N f∑
q ∝

2mq ∝↔q ∝iγ5q ∝(y)
}∣∣∣0〉 +

N f∑
q

4mq〈0|↔qq|0≥ = 0 .

(C.12)

The final step is the evaluation of T ∼ i
∫

d4x 〈0| T {∑N f
q 2mq↔qiγ5q(x)

∑N f

q ∝
2mq ∝↔q ∝iγ5q ∝(y)}|0≥. From now we consider only u and d quarks, which give the
leading contribution.

T = lim
q→0

i
∫

d4x eiq(x−y)
〈
0| T

{ ∑
q=u,d

2mq↔qiγ5q(x)
∑

q ∝=u,d

2mq ∝↔q ∝iγ5q ∝(y)
}∣∣∣0〉

⇔ lim
q→0

〈0| 2(mu↔uiγ5u + md↔diγ5d) |π≥ −1

q2 − m2
π

〈π| 2(mu↔uiγ5u + md↔diγ5d) |0≥

= 4

m2
π

|〈0| mu↔uiγ5u + md↔diγ5d |π≥|2. (C.13)



Appendix C: Condensates and QCD Correlators 191

In the second equality, we have taken the pion propagation as the leading contri-
bution, since it is the lightest mode. The matrix element 〈0| mu↔uiγ5u +md↔diγ5d |π≥
is calculated as follows:

〈0| mu↔uiγ5u + md↔diγ5d |π≥ = 1

2
〈0| (mu + md)(↔uiγ5u + ↔diγ5d)

+(mu − md)(↔uiγ5u − ↔diγ5d) |π≥
⇔ 1

2
(mu − md)〈0|↔uiγ5u − ↔diγ5d |π≥. (C.14)

We have neglected the isovector matrix element 〈0|↔uiγ5u + ↔diγ5d |π≥. The
isoscalar matrix element 〈0|↔uiγ5u − ↔diγ5d |π≥ can be obtained via the relation for
the divergence of the isovector axial current as follows:

∇
2 fπm2

π = qμ
1∇
2
〈0|↔uγμγ5u − ↔dγμγ5d |π≥

= ∇
2〈0| mu↔uiγ5u − md↔diγ5d |π≥

= 1∇
2
〈0| (mu + md)(↔uiγ5u − ↔diγ5d) + (mu − md)(↔uiγ5u + ↔diγ5d) |π≥

⇔ 1∇
2
(mu + md)〈0|↔uiγ5u − ↔diγ5d |π≥, (C.15)

where we have again neglected the isovector matrix element 〈0|↔uiγ5u + ↔diγ5d |π≥.
We then obtain

T = −4
(mu − md)2

mu + md
〈0|↔qq|0≥, (C.16)

where the Gell-Mann-Oakes-Renner relation 〈0|↔qq|0≥ = − f 2π m2
π

mu+md
was used. The

vacuum condensates for light quarks (u and d) are approximately the same
(〈0|↔uu|0≥ ⇔ 〈0|↔dd|0≥ ⇔ 〈0|↔qq|0≥).

Combining Eqs. (C.12) and (C.16), we obtain

i
∫

d4x
〈
0
∣∣∣ T

{αs

2π
Ga

μν G̃μν,a(x)
αs

2π
Gb

ρσG̃ρσ,b(y)
}∣∣∣ 0〉 = 16

mumd

mu + md
〈0|↔qq|0≥,

(C.17)
for N f = 2. The topological susceptibility is then

K ⇔ − mumd

mu + md
〈0|↔qq|0≥. (C.18)
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Correlation Between the Anomaly and the Chromo-EDM

The factor K1 is expressed in terms of the correlator between the anomaly and the
P, CP-odd operator as follows

K1(OC P ) = −i lim
k→0

∫
d4xeik(x−y)

〈
0
∣∣∣ T

{ αs

8π
Ga

μν G̃μν,a(x)OC P (y)
}∣∣∣ 0〉

= −i
∫

d4x
〈
0
∣∣∣ T

{ ( 1

2N f
∂μ jμ5 (x) − 1

N f

N f∑
q

mq↔qiγ5q(x)
⎛

OC P (y)
}∣∣∣0〉

= −i
∫

d4x

{
1

2N f
∂μ〈0|T { jμ5 (x)OC P (y) }|0≥

− 1

2N f
δ(x0 − y0)〈0|[ j05 (x), OC P (y) ]|0≥

− 1

N f

N f∑
q

〈0| T { mq↔qiγ5q(x)OC P (y) }|0≥
}

= i
∫

d4x

{
1

2N f
δ(x0 − y0)〈0|[ j05 (x), OC P (y) ]|0≥

+ 1

N f

N f∑
q

〈0| T { mq↔qiγ5q(x)OC P (y) }|0≥
}
. (C.19)

The third equality was obtained by integration by part. In the last equality, the
total derivative (the first term of the third equality) was omitted.

For the chromo-EDM (OC P = − i
2dc

q↔qgsσ
μνGa

μν taγ5q), the first term is

〈0|[ j05 (x), OC P (y) ]|0≥ = − i

2

N f∑
q ∝

dc
q〈0|[q ∝†γ5q ∝(x) , ↔qgsσ

μνGa
μν taγ5q(y)]|0≥

= i

N f∑
q

dc
q〈0|↔qgsσ

μνGa
μν taq|0≥δ(x − y) . (C.20)

Here we have used the commutation relation of the quark bilinear

[(q†
αqβ)(x), (q†

γqδ)(y)] ∼ q†
α(x)qβ(x)q†

γ(y)qδ(y) − q†
γ(y)qδ(y)q†

α(x)qβ(x)

= −q†
α(x)q†

γ(y)qβ(x)qδ(y) + q†
γ(y)q†

α(x)qδ(y)qβ(x)

+ δ(x − y)[q†
α(x)qδ(y)δβγ − q†

γ(y)qβ(x)δδα]
= δ(x − y)[q†

α(x)qδ(y)δβγ − q†
γ(y)qβ(x)δδα], (C.21)
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where α, β, γ and δ denote the indices of all internal degrees of freedom including
the Dirac spinor index.

The time ordered correlation TC P ∼ ∑N f
q 〈0| T { mq↔qiγ5q(x)OC P (y) }|0≥ [sec-

ond term of the last equality of Eq. (C.19)] can be transformed as follows:

TC P = lim
k→0

N f∑
q ∝

i
∫

d4xeik(x−y)〈0| T {mq ∝↔q ∝iγ5q ∝(x)OC P (y)}|0≥

⇔ − i

2

N f∑
q,q ∝

〈0| mq ∝↔q ∝iγ5q ∝ |π≥ 1

m2
π

〈π| dc
q↔qgsσ

μνGa
μν taγ5q |0≥

⇔ − i

2m2
π

N f∑
q

〈0| mu↔uiγ5u + md↔diγ5d |π≥〈π| dc
q↔qgsσ

μνGa
μν taγ5q |0≥

⇔ − i

4m2
π

N f∑
q

(mu − md)〈0|↔uiγ5u − ↔diγ5d |π≥〈π| dc
q↔qgsσ

μνGa
μν taγ5q |0≥

⇔ − i

8m2
π

(mu − md)〈0|↔uiγ5u − ↔diγ5d |π≥

×
∑

q=u,d

〈π| (dc
u + dc

d)↔qgsσ
μνGa

μν taγ5q + (dc
u − dc

d)↔qτ3gsσ
μνGa

μν taγ5q) |0≥

⇔ −i
fπ
4

mu − md

mu + md

×
∑

q=u,d

i

fπ
〈0| (dc

u + dc
d)↔qτ3gsσ

μνGa
μν taq + (dc

u − dc
d)↔qgsσ

μνGa
μν taq) |0≥

= 1

2

mu − md

mu + md
〈0| dc

u↔ugsσ
μνGa

μν tau − dc
d
↔dgsσ

μνGa
μν tad |0≥ (C.22)

where τ3 ∼
(
1 0
0 − 1

)
. In the fourth equality, we have used neglected the isovector

matrix element as in Eq. (C.14). In the sixth equality, we have used Eq. (C.15) and
the PCAC relation

lim
k→0

〈πc| OC P |0≥ ⇔ − i

fπ

∫
d3x〈0| [q†γ5Tcq(x), OC P ] |0≥ , (C.23)

where Tc is the generator of the SU (2) group for N f = 2 (for example, T3 = τ3
2 ).

By substituting Eqs. (C.20) and (C.22) to Eq. (C.19), we obtain



194 Appendix C: Condensates and QCD Correlators

K1(OC P ) ⇔ −1

4
〈0|dc

u↔ugsσ
μνGa

μν tau + dc
d
↔dgsσ

μνGa
μν tad|0≥

+1

4

mu − md

mu + md
〈0| dc

u↔ugsσ
μνGa

μν tau − dc
d
↔dgsσ

μνGa
μν tad |0≥

= − 1

2(mu + md)
〈0| mddc

u↔ugsσ
μνGa

μν tau + mudc
d
↔dgsσ

μνGa
μν tad |0≥

= −m∗
2

∑
q=u,d

dc
q

mq
〈0|↔qgsσ

μνGa
μν taq |0≥ , (C.24)

for N f = 2.



Appendix D
EDM One-loop Diagram

The leading contribution to the nucleon EDM is given by the meson one-loop dia-
grams as shown in Fig. D.1.

The chiral SU (3)L × SU (3)R invariant effective lagrangian is

L0 = f 2π
4
Tr(∂μU∂μU †) + Tr[↔B(i∂/ − m)B]

+ i

2
Tr[↔Bγμ(ξ∂μξ† + ξ†∂μξ)B] + i

2
Tr[↔BγμB(∂μξξ† + ∂μξ†ξ)]

+ i

2
(D + F)Tr[↔Bγμγ5(ξ∂

μξ† − ξ†∂μξ)B]

− i

2
(D − F)Tr[↔Bγμγ5B(∂μξξ† − ∂μξ†ξ)], (D.1)

where M is the meson field, B is the baryon field, and

ξ = exp

(
i M∇
2 fπ

)
, (D.2)

with U = ξ2. The meson field is defined by

M =

⎡
⎣⎣⎣⎣⎣⎣⎠

π0

∇
2

+ η0∇
6

π+ K +

π− − π0

∇
2

+ η0∇
6

K 0

K − ↔K 0 −2
η0∇
6


⎤⎤⎤⎤⎤⎤⎦

, (D.3)
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Fig. D.1 Meson loop contri-
bution to the nucleon EDM.
The grey blob represents the P,
CP-odd meson-baryon inter-
action

(a) (b)

(d)(c)

and the baryon field by

B =

⎡
⎣⎣⎠

Σ0∇
2

+ Λ0∇
6

Σ+ p

Σ− − Σ0∇
2

+ Λ0∇
6

n

Ξ− Ξ0 −2Λ0∇
6


⎤⎤⎦ . (D.4)

The second line of Eq. (D.1) does not contribute to the EDM at the one-loop order,
so we will neglect it. The third line can be rewritten to the zeroth order in the meson
field expansion as

L(M1) = D + F∇
2 fπ

Tr [↔Bγμγ5(∂
μM)B] + D − F∇

2 fπ
Tr [↔Bγμγ5B(∂μM)]

� D + F∇
2 fπ

[
↔pγμγ5n∂μπ+ +↔nγμγ5 p∂μπ− + ↔pγμγ5 p∂μ

(
π0

∇
2

+ η0∇
6

)

− 2∇
6

↔pγμγ5Λ∂μK + − 2∇
6

↔Λγμγ5 p∂μK −
]

+ D − F∇
2 fπ

[
↔Σ+γμγ5 p∂μ ↔K 0 + ↔pγμγ5Σ

+∂μK 0 + ↔Σ−γμγ5n∂μK −

+↔nγμγ5Σ
−∂μK + + 1∇

2
↔Σ0γμγ5 p∂μK − + 1∇

2
↔pγμγ5Σ

0∂μK +

+ 1∇
6

↔Λγμγ5 p∂μK − + 1∇
6

↔pγμγ5Λ∂μK + − 2∇
6

↔pγμγ5 p∂μη0
]

,

(D.5)

where � means that we have taken only the relevant terms. Terms without nucleon
field operators were omitted since they do not appear in the nucleon EDM dia-
grams at the one-loop level. Terms with only electrically neutral field operators were
also omitted since no photon can be attached to the one-loop graph. If we take the
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on-shell contribution of the baryon in the loop as dominating, we can approx-
imate the above lagrangian by using the equation of motion ↔Bγμγ5B ∝∂μM ⇔
−i(m B + m B∝)↔Bγ5B ∝M , the lagrangian can be approximated to

Lm B B ⇔ −gπN N ↔piγ5 pπ0 − ∇
2gπN N (↔piγ5nπ+ + h.c.) − gηN N ↔piγ5 pη0

+ gKΛN (↔piγ5ΛK + + h.c.) − gKΣ N ( ↔Σ+iγ5 p ↔K 0 + ↔Σ−iγ5nK −

+ 1∇
2

↔Σ0iγ5 pK − + h.c.) , (D.6)

where gπN N = m N
fπ

(D + F) ⇔ 12.6, gηN N = m N∇
3 fπ

(3F − D) ⇔ 3.0, gKΛN =
m N + mΛ

2
∇
3 fπ

(D + 3F) ⇔ 6.4 and gKΣ N = m N +mΣ∇
2 fπ

(D − F) ⇔ 6.0, with D = 0.81 and

F = 0.44. In deriving these values, we neglected the isospin splitting.
The CP-odd meson-baryon lagrangian is

LC PV = 1∇
2 fπ

[
XTr ( ↔B B{M, A}) + YTr (↔B{M, A}B)

+2

3
(Z − X − Y )Tr (AM)Tr ( ↔B B)

]

= X∇
2 fπ

[
(Ad + As) ↔Σ+ p ↔K 0 + (Au + As)

( ↔Σ0

∇
2

+ ↔Λ∇
6

)
pK −

+(Au + As) ↔Σ−nK − + (h.c.) − 4∇
6

As ↔ppη0
]

+ Y∇
2 fπ

[
(Au + Ad)↔pnπ+ − 2∇

6
(Au + As)↔pΛK + + (h.c.)

+ 2Au ↔pp

(
π0

∇
2

+ η0∇
6

)]

+
∇
2

3 fπ
(Z − X − Y )

[
Au − Ad∇

2
↔ppπ0 + Au + Ad − 2As∇

6
↔ppη0

]
,

(D.7)

where +(h.c.) means that we add the hermitian conjugates of the terms of its left.

One-loop Diagram with Yukawa Coupling
(Photon Attached to Scalar)

The one-loop diagrams we want to calculate are shown in Fig. D.2.
Let us assume the following lagrangian with the meson φ, baryon ψ and

nucleon ψ∝:
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(a) (b)

Fig. D.2 One-loop contribution to the fermion EDM, with scalar-fermion vertex. The grey blob
represents the P, CP-odd scalar-fermion interaction. The black dot denotes either the Yukawa cou-
pling, or the vertex with derivatives in chiral perturbation theory

La,b = (D(1)
μ φ)(D(1)μφ)† − m2

φφφ† + ↔ψ∝(i∂/ − mψ∝)ψ∝ + ↔ψ(i D/ (2) − mψ)ψ

+(−Aφ↔ψ∝iγ5ψ − Bφ↔ψ∝ψ + h.c.), (D.8)

with D(1)
μ ∼ ∂μ−i QφeAμ, Qφe being the charge of themeson, D(2)

μ ∼ ∂μ−i QψeAμ

with Qψe the charge of the baryon. Note that in this convention, the electromagnetic
coupling e is negative. The charge (in unit of e) Qφ and Qψ would be Qπ+ = +1,
Q p = +1, QK − = −1, etc. A and B are the coupling constants for P, CP-even and
P, CP-odd meson-baryon interactions, respectively, and are taken to be purely real.

The amplitudes of the diagrams (a) and (b) are

iM(a) = −AB Qφeε∗
μ(q)

∫
d4k

(2π)4

↔uψ∝(p − q)(p/ − k/ + mψ)iγ5uψ∝(p) · (2kμ − qμ)

[k2 − m2
φ][(k − q)2 − m2

φ][(p − k)2 − m2
ψ] ,

(D.9)

iM(b) = −AB Qφeε∗
μ(q)

∫
d4k

(2π)4

↔uψ∝(p − q)iγ5(p/ − k/ + mψ)uψ∝(p) · (2kμ − qμ)

[k2 − m2
φ][(k − q)2 − m2

φ][(p − k)2 − m2
ψ] .

(D.10)

The addition is then

iM(a)+(b) ∼ iM(a) + iM(b)

= −2AB Qφeε∗
μ(q)

∫
d4k

(2π)4

mψ↔uψ∝(p − q)iγ5uψ∝(p) · (2kμ − qμ)

[k2 − m2
φ][(k − q)2 − m2

φ][(p − k)2 − m2
ψ] .

(D.11)

The denominator can be written using the Feynman parameter as

I ∼ 1

[k2 − m2
φ][(k − q)2 − m2

φ][(p − k)2 − m2
ψ]

=
∫ 1

0

2δ(1 − x − y − z)dxdydz[
k2 − 2y(k · q) + yq2 − 2z(p · k) + zp2 − (x + y)m2

φ − zm2
ψ

]3
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=
∫ 1

0

2δ(1 − x − y − z)dxdydz[
(k − yq − zp)2 − (yq + zp)2 + yq2 + zp2 − (x + y)m2

φ − zm2
ψ

]3

=
∫ 1

0
dz

∫ 1−z

0
dy

2[
(k − yq − zp)2 − (yq + zp)2 + yq2 + zp2 − (1 − z)m2

φ − zm2
ψ

]3

=
∫ 1

0
dz

∫ 1−z

0
dy ×

2[
(k − yq − zp)2 − 2yz(q · p) + yq2 − y2q2 − z2m2

ψ∝ + z(m2
ψ∝ − m2

ψ + m2
φ) − m2

φ

]3

=
∫ 1

0
dz

∫ 1−z

0
dy

2[
(k − yq − zp)2 − z2m2

ψ∝ + z(m2
ψ∝ − m2

ψ + m2
φ) − m2

φ

]3 , (D.12)

We have used the fact that p2 = m2
ψ∝ and (p−q)2 = m2

ψ∝ from the on-shell condition.

In the soft photon limit (q2 ⇔ 0), (p · q) = 0 can be set.
Returning to the loop diagram,

iM(a)+(b) =
∫ 1

0
dz

∫ 1−z

0
dy

∫
d4k

(2π)4

−4AB Qφ eε∗
μ(q) mψ ↔uψ∝ (p − q)iγ5uψ∝ (p) · (2kμ − qμ)[

(k − yq − zp)2 − 2yz(q · p) + y(1 − y)q2 − z2m2
ψ∝ + z(m2

ψ∝ − m2
ψ + m2

φ) − m2
φ

]3

= −4AB Qφe
∫ 1

0
dz

∫ 1−z

0
dy

∫
d4k

(2π)4

× ε∗
μ(q) mψ ↔uψ∝ (p − q)iγ5uψ∝ (p) · (2zpμ + (2y − 1)qμ)[

k2 − 2yz(q · p) + y(1 − y)q2 − z2m2
ψ∝ + z(m2

ψ∝ − m2
ψ + m2

φ) − m2
φ

]3

= −4AB Qφe mψ
−i

2(4π)2
ε∗
μ(q)

∫ 1

0
dz

∫ 1−z

0
dy

× ↔uψ∝ (p − q)iγ5uψ∝ (p) · (2zpμ + (2y − 1)qμ)

2yz(q · p) − y(1 − y)q2 + z2m2
ψ∝ − z(m2

ψ∝ − m2
ψ + m2

φ) + m2
φ

= −2i

(4π)2
AB Qφe mψ ε∗

μ(q)↔uψ∝ (p − q)σμνqνγ5uψ∝ (p)

×
∫ 1

0

z(1 − z)dz

z2m2
ψ∝ − z(m2

ψ∝ − m2
ψ + m2

φ) + m2
φ

+ (≈ ε∗
μqμ term) . (D.13)

We have used (the γ5-version of) the Gordon identity:

↔uψ∝(p − q)σμνqνγ5uψ∝(p) = −(2pμ − qμ)↔uψ∝(p − q)iγ5uψ∝(p). (D.14)
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The integral is

∫ 1

0

z(1 − z)dz

az2 + bz + c
= a + b

2a2 ln

∣∣∣∣a + b + c

c

∣∣∣∣− 1

a
− b2 − 2ac + ba

2a2 (IB(1) − IB(0)) ,

(D.15)
where

IB(x) =

⎧⎧⎪
⎧⎧⎨

2∇
4ac − b2

arctan
2ax + b∇
4ac − b2

(b2 < 4ac)

−2∇
b2 − 4ac

arctanh
2ax + b∇
b2 − 4ac

(b2 > 4ac)

. (D.16)

(The second case (b2 − 4ac > 0) applies when η-meson propagates in the loop.)
The nucleon EDM with meson loop, approximated to the leading logarithm (the

so-called chiral limit), is

iM(a)+(b) = −2i

(4π)2
AB Qφe ε∗

μ(q)↔uψ∝(p − q)σμνqνγ5uψ∝(p)
m3

ψ

m4
ψ∝

ln
mψ

mφ
. (D.17)

From the relation of the lagrangian and the amplitude

L = − i

2
dψ∝ ↔ψ∝σμνγ5ψ

∝Fμν ↔ M = −dψ∝↔uψ∝(p−q)σμνqνγ5u(p)ε∗
μ(q), (D.18)

where dψ∝ is the EDM of the fermion ψ∝, we obtain

dψ∝ = AB Qφe

8π2

m3
ψ

m4
ψ∝

ln
mψ

mφ
. (D.19)

One-loop Diagram with Yukawa Coupling
(Photon Attached to Fermion)

The one-loop diagrams we want to calculate are shown in Fig. D.3.
We assume the following lagrangian with the meson φ, baryon ψ and nucleon ψ∝:

Lc,d = (D(1)
μ φ)(D(1)μφ)† − m2

φφφ† + ↔ψ∝(i∂/ − mψ∝)ψ∝ + ↔ψ(i D/ (2) − mψ)ψ

+(−A∝φ↔ψ∝iγ5ψ − B ∝φ↔ψ∝ψ + h.c.), (D.20)

with D(1)
μ ∼ ∂μ−i QφeAμ, Qφe being the charge of themeson, D(2)

μ ∼ ∂μ−i QψeAμ

with Qψe the charge of the baryon. Coefficients A∝ and B ∝ are the coupling constants
for the P, CP-even and P, CP-odd meson-baryon interactions, respectively, and are
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(a) (b)

Fig. D.3 One-loop contribution to the fermion EDM,with scalar-fermion vertex. The grey blob rep-
resents the P, CP-odd scalar-femrion interaction. The black dot denotes either the Yukawa coupling,
or the vertex with derivatives in chiral perturbation theory

taken to be purely real. Note that the meson φ and the baryon ψ are different from
the calculation of the one-loop diagram with the photon attached to the meson.

The amplitudes of the diagrams (c) and (d) are

iM(c) = −A∝B∝Qψeε∗
μ(q)

∫
d4k

(2π)4

↔uψ∝(p − q)(k/ − q/ + mψ)γμ(k/ + mψ)iγ5uψ∝ (p)

[(p − k)2 − m2
φ][(k − q)2 − m2

ψ][k2 − m2
ψ] ,

(D.21)

iM(d) = −A∝B∝Qψeε∗
μ(q)

∫
d4k

(2π)4

↔uψ∝(p − q)iγ5(k/ − q/ + mψ)γμ(k/ + mψ)uψ∝(p)

[(p − k)2 − m2
φ][(k − q)2 − m2

ψ][k2 − m2
ψ] ,

(D.22)

The addition is then

iM(c)+(d) ∼ iM(c) + iM(d)

= −2A∝ B∝ Qψeε∗
μ(q)

∫
d4k

(2π)4

mψ↔uψ∝ (p − q)
[
(k/ − q/ )γμ + γμk/

]
iγ5uψ∝ (p)

[(p − k)2 − m2
φ][(k − q)2 − m2

ψ][k2 − m2
ψ]

= −2A∝ B∝ Qψeε∗
μ(q)

∫
d4k

(2π)4

mψ↔uψ∝ (p − q)
[−q/ γμ + 2kμ

]
iγ5uψ∝ (p)

[(p − k)2 − m2
φ][(k − q)2 − m2

ψ][k2 − m2
ψ]

=
∫ 1

0
dz

∫ 1−z

0
dy

∫
d4k

(2π)4

−4A∝ B∝Qψeε∗
μ(q)mψ↔uψ∝ (p − q)

[−q/ γμ + 2kμ
]

iγ5uψ∝ (p)[
(k − yq − zp)2 − 2yz(q · p) + y(1 − y)q2 − z2m2

ψ∝ + z(m2
ψ∝ − m2

φ) − (1 − z)m2
ψ

]3

=
∫ 1

0
dz

∫ 1−z

0
dy

∫
d4k

(2π)4

× −4A∝ B∝ Qψeε∗
μ(q)mψ↔uψ∝ (p − q)

[−q/ γμ + 2zpμ + 2yqμ
]

iγ5uψ∝ (p)[
k2 − 2yz(q · p) + y(1 − y)q2 − z2m2

ψ∝ + z(m2
ψ∝ − m2

φ + m2
ψ) − m2

ψ

]3

= −4A∝ B∝Qψemψ
−i

2(4π)2
ε∗
μ(q)

∫ 1

0
dz

∫ 1−z

0
dy

× ↔uψ∝ (p − q)
[−q/ γμ + 2zpμ + 2yqμ

]
iγ5uψ∝ (p)

2yz(q · p) − y(1 − y)q2 + z2m2
ψ∝ − z(m2

ψ∝ − m2
φ + m2

ψ) + m2
ψ
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= 2i

(4π)2
A∝ B∝ Qψemψε∗

μ(q)↔uψ∝ (p − q)σμνqνγ5uψ∝ (p)

×
∫ 1

0
dz

(1 − z)(1 − z)

z2m2
ψ∝ − z(m2

ψ∝ − m2
φ + m2

ψ) + m2
ψ

+ (ε∗
μqμ term). (D.23)

Again, the last line was obtained by taking the soft photon limit.
The integral is

∫ 1

0

(1 − z)(1 − z)dz

az2 + bz + c
=
∫ 1

0
dz

(1 − z) − (1 − z)z

az2 + bz + c

= −2a + b

2a2 ln

∣∣∣∣a + b + c

c

∣∣∣∣ + 1

a

+b2 + 2a(a + b − c)

2a2 (IB(1) − IB(0)) , (D.24)

where we have used IB defined in Eq. (D.16). Note that the leading logarithmic term
disappears for the nucleon EDM graph with pion loop in the chiral limit.



Appendix E
Nucleon EDM in the Non-Relativistic
Constituent Quark Model

We calculate the electric dipole moment (EDM) of the nucleon (proton and neutron)
in the non-relativistic constituent quark model. We assume that the nucleon is made
of three constituent quarks with intrinsic EDM. We also assume an s-wave nucleon
without spin and isospin dependent interactions.

The general wave function of the nucleon in the non-relativistic quark model is
given by

| N : jz, Iz ≥ = [ | spherical ≥ ⊗ | spin ≥ ] j= 1
2 , jz

⊗ | isospin ≥I= 1
2 ,Iz

⊗ | color ≥singlet.
(E.1)

The quarks are fermions, so the wave function of the system must be totally
antisymmetric in the interchange of the constituents, due to the exclusion principle
of Pauli. The color SU (3)c part of the nucleon wave function | color ≥singlet is totally
antisymmetric, since the nucleon is a singlet state of the color SU (3)c group due to
the confinement. We have also assumed that the nucleon is an s-wave state, so the
spherical part of the nucleon wave function | spherical ≥ is totally symmetric and can
be factored out (in other word,

[ | spherical ≥ ⊗ | spin ≥ ] j= 1
2 , jz

= | spherical ≥l=0 ⊗
| spin ≥s= 1

2 ,sz
, with sz = jz ). The remaining spin and isospin parts must then be

combined to be totally symmetric in the interchange of particles.
In the non-relativistic quark model, the nucleon is a three-body system of up and

down quarks. In the three-body system, we have three ways to combine the spins
(and the isospin). The three ways are

[[
χ1⊗χ2

]
σ1

⊗χ3

]
s= 1

2 ,sz
,
[[

χ2⊗χ3
]
σ2

⊗χ1

]
s= 1

2 ,sz
, and

[[
χ3⊗χ1

]
σ3

⊗χ2

]
s= 1

2 ,sz
,

(E.2)
where χi (i = 1, 2, 3) is the spin wave function for the i th constituent quark. The
spin of the coupled two-quark system is denoted by σi = 0, 1 (i = 1, 2, 3). Similar
combinations can be written for the isospin part. The general form of the spin/isospin
part of the wave function is then given by
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| spin ≥s= 1
2 ,sz

⊗ | isospin ≥I= 1
2 ,Iz

=
∑
i jk

∑
σi =0,1

∑
Ti =0,1

C (σi ,Ti )
i

[[
χi ⊗ χ j

]
σi

⊗ χk

]
s= 1

2 ,sz

×
[[

ηi ⊗ η j
]

Ti
⊗ ηk

]
I= 1

2 ,Iz
, (E.3)

where (i, j, k) are even permutations of (1, 2, 3), and ηi the isospin part of the nucleon
wave function. The isospin of the coupled two-quark system is given by Ti = 0, 1.
The symmetry or the antisymmetry in the interchange of quarks are determined
by the spin σi and the isospin Ti of the coupled two-quark system. To keep the
system symmetric in the interchange of quarks, we must have C (σ1,T1)

1 = C (σ2,T2)
2 =

C (σ3,T3)
3 ∼ C (σ,T ), σ1 = σ2 = σ3 ∼ σ, T1 = T2 = T3 ∼ T , and, the spin and

the isospin must be combined such that σ = T = 0 or σ = T = 1. This can be
easily verified by using the symmetric and antisymmetric relations [ χi ⊗ χ j ]σ=1 =
[ χ j ⊗ χi ]σ=1 and [ χi ⊗ χ j ]σ=0 = −[ χ j ⊗ χi ]σ=0 (similar relations hold for the
isospin wave function ηi ). As we are not considering spin and isospin dependent
interactions, the coefficient C (σ,T ) must satisfy C (0,0) = C (1,1) = C . The spin and
isospin parts of the nucleon wave function can then be rewritten as

| spin ≥s= 1
2 ,sz

⊗ | isospin ≥I= 1
2 ,Iz

= C
∑
i jk

∑
σ=0,1

[[
χi ⊗ χ j

]
σ ⊗ χk

]
s= 1

2 ,sz

×
[[

ηi ⊗ η j
]
T =σ ⊗ ηk

]
I= 1

2 ,Iz
. (E.4)

The next step is to recombine the three channels where the spin and the isospin of
the quarks are combined in differentways, to one definite channel. The recombination
of the spin part of the coupled two-body subsystem in the three-body system is
written as

[[
χi ⊗ χk

]
σ∝ ⊗ χ j

]
s= 1

2 ,sz
=

∑
σ=0,1

2
√

(2σ + 1)(2σ∝ + 1)

⎧⎪
⎧⎨

1
2

1
2 σ

1
2 0 1

2

σ∝ 1
2

1
2

⎧
⎧

×
[[

χi ⊗ χ j
]
σ

⊗ χk

]
s= 1

2 ,sz
, (E.5)

where the expression with the curly bracket is Wigner’s 9- j symbol, given by the
following relation

〈 ( ( j1, j2) j12, ( j3, j4) j34 ) j, jz | ( ( j1, j3) j13, ( j2, j4) j24 ) j, jz ≥

= ∇
(2 j12 + 1)(2 j13 + 1)(2 j24 + 1)(2 j34 + 1)

⎪
⎨

j1 j2 j12
j3 j4 j34
j13 j24 j


 .(E.6)

Here ( jn, jm) jl means that we have coupled the angular momenta jn and jm to
obtain jl . This is just the coefficient appearing when the pairs of angular momenta
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( j1, j2) and ( j3, j4) are recombined into ( j1, j3) and ( j2, j4). The coefficients needed
in this section are given explicitly as follows:

⎧⎪
⎧⎨

1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

⎧
⎧ = 1

4
,

⎧⎪
⎧⎨

1
2

1
2 0

1
2 0 1

2

1 1
2

1
2

⎧
⎧ =

⎧⎪
⎧⎨

1
2

1
2 1

1
2 0 1

2

0 1
2

1
2

⎧
⎧ = 1

4
, and

⎧⎪
⎧⎨

1
2

1
2 1

1
2 0 1

2

1 1
2

1
2

⎧
⎧ = − 1

12
. (E.7)

The relation (E.5) can then be rewritten as

⎡
⎣⎠
[[

χk ⊗ χi
]
σ∝=0 ⊗ χ j

]
s= 1

2 ,sz[[
χk ⊗ χi

]
σ∝=1 ⊗ χ j

]
s= 1

2 ,sz


⎤⎦ =

⎡
⎠− 1

2 −
∇
3
2∇

3
2 − 1

2


⎦
⎡
⎣⎠
[[

χi ⊗ χ j
]
σ=0 ⊗ χk

]
s= 1

2 ,sz[[
χi ⊗ χ j

]
σ=1 ⊗ χk

]
s= 1

2 ,sz


⎤⎦ ,

(E.8)
where i, j and k are even permutation of 1, 2 and 3. Furthermore, we have

⎡
⎣⎠
[[

χ j ⊗ χk
]
σ∝=0 ⊗ χi

]
s= 1

2 ,sz[[
χ j ⊗ χk

]
σ∝=1 ⊗ χi

]
s= 1

2 ,sz


⎤⎦ =

⎡
⎠− 1

2 −
∇
3
2∇

3
2 − 1

2


⎦
2
⎡
⎣⎠
[[

χi ⊗ χ j
]
σ=0 ⊗ χk

]
s= 1

2 ,sz[[
χi ⊗ χ j

]
σ=1 ⊗ χk

]
s= 1

2 ,sz


⎤⎦

=
⎡
⎠ − 1

2

∇
3
2

−
∇
3
2 − 1

2


⎦
⎡
⎣⎠
[[

χi ⊗ χ j
]
σ=0 ⊗ χk

]
s= 1

2 ,sz[[
χi ⊗ χ j

]
σ=1 ⊗ χk

]
s= 1

2 ,sz


⎤⎦ .

(E.9)

The recombination of the isospin wave function goes exactly in the same way. By
combining the spin and isospin parts, we obtain

χ0(ki j)η0(ki j) =
[
−1

2
χ0(i jk) −

∇
3

2
χ1(i jk)

][
−1

2
η0(i jk) −

∇
3

2
η1(i jk)

]

= 1

4
χ0(i jk)η0(i jk) +

∇
3

4
χ0(i jk)η1(i jk)

+
∇
3

4
χ1(i jk)η0(i jk) + 3

4
χ1(i jk)η1(i jk) , (E.10)

χ1(ki j)η1(ki j) =
[∇

3

2
χ0(i jk) − 1

2
χ1(i jk)

][∇
3

2
η0(i jk) − 1

2
η1(i jk)

]

= 3

4
χ0(i jk)η0(i jk) −

∇
3

4
χ0(i jk)η1(i jk)

−
∇
3

4
χ1(i jk)η0(i jk) + 1

4
χ1(i jk)η1(i jk) , (E.11)



206 Appendix E: Nucleon EDM in the Non-Relativistic Constituent Quark Model

and

χ0( jki)η0( jki) =
[
−1

2
χ0(i jk) +

∇
3

2
χ1(i jk)

][
−1

2
η0(i jk) +

∇
3

2
η1(i jk)

]

= 1

4
χ0(i jk)η0(i jk) −

∇
3

4
χ0(i jk)η1(i jk)

−
∇
3

4
χ1(i jk)η0(i jk) + 3

4
χ1(i jk)η1(i jk) , (E.12)

χ1( jki)η1( jki) =
[
−

∇
3

2
χ0(i jk) − 1

2
χ1(i jk)

][
−

∇
3

2
η0(i jk) − 1

2
η1(i jk)

]

= 3

4
χ0(i jk)η0(i jk) +

∇
3

4
χ0(i jk)η1(i jk)

+
∇
3

4
χ1(i jk)η0(i jk) + 1

4
χ1(i jk)η1(i jk) , (E.13)

where we have defined

χσ(i jk) ∼
[[

χi ⊗ χ j
]
σ

⊗ χk

]
s= 1

2 ,sz
, and ησ(i jk) ∼

[[
ηi ⊗ η j

]
σ

⊗ ηk

]
I= 1

2 ,Iz
.

(E.14)
The spin/isospin wave function is then

| spin ≥s= 1
2 ,sz

⊗ | isospin ≥I= 1
2 ,Iz

= C
∑

σ=0,1

∑
i jk

[[
χi ⊗ χ j

]
σ

⊗ χk

]
s= 1

2 ,sz

×
[[

ηi ⊗ η j
]
σ

⊗ ηk

]
I= 1

2 ,Iz

= C
∑

σ=0,1

3

2

[[
χl ⊗ χm

]
σ

⊗ χn

]
s= 1

2 ,sz

×
[[

ηl ⊗ ηm
]
σ

⊗ ηn

]
I= 1

2 ,Iz

= 1∇
2

∑
σ=0,1

[[
χl ⊗ χm

]
σ

⊗ χn

]
s= 1

2 ,sz

×
[[

ηl ⊗ ηm
]
σ

⊗ ηn

]
I= 1

2 ,Iz
, (E.15)

where (l, m, n) are arbitrary even permutation of (1, 2, 3). The coefficient 1∇
2

= 3
2C

of the final equality was obtained just by noticing that the spin/isospin wave function
is composed of σ = T = 0 and σ = T = 1 states with equal weight. The nucleon
wave function in the non-relativistic constituent quarkmodelwithout spin and isospin
dependent interactions can now be written as
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| N : sz, Iz ≥ = | spherical ≥l=0 ⊗ | color ≥singlet
⊗ 1∇

2

∑
σ=0,1

∣∣ (σ, 1/2)1/2; sz

〉
⊗ ∣∣ (σ, 1/2)1/2; Iz

〉
, (E.16)

where we have defined | (σ, 1/2)1/2; sz ≥ ∼ l[[χl ⊗ χm]σ ⊗ χnr ]s= 1
2 ,sz

and

| (σ, 1/2)1/2; Iz ≥ ∼ l[[ ηl ⊗ ηm]σ ⊗ ηnr ]I= 1
2 ,Iz

. The spherical part | spherical ≥l=0

and the color part | color ≥singlet are each normalized to 1.
The quark EDM contribution to the nucleon EDM is given by

dN (dq) =
∑

q=u,d

〈 N : sz = 1/2, Iz | d̂q | N : sz = 1/2, Iz ≥

=
∑

q=u,d

3∑
i=1

〈 N : 1/2, Iz | d̂qi | N : 1/2, Iz ≥

=
∑

q=u,d

3〈 N : 1/2, Iz | d̂qn | N : 1/2, Iz ≥ , (E.17)

where d̂q is the quark EDM operator, defined by d̂u ∼ du
2 (1 + τz)σz and d̂d ∼

dd
2 (1− τz)σz with σz the usual Pauli matrix acting on the spin part, and τz the Pauli
matrix acting on the isospin space of the up and down quarks. The index n = 1, 2, 3
labeling the quarks in the third equality can be specified arbitrarily, since the nucleon
wave function is invariant under any even permutations of the quark labels [see
Eq. (E.15)].

The calculation of the isoscalar matrix element goes as follows:

M0 ∼ 〈 N : sz = 1/2, Iz = ±1/2 | σz | N : sz = 1/2, Iz = ±1/2 ≥
= 1

2

〈
(0, 1/2)1/2; 1/2 ∣∣σz

∣∣ (0, 1/2)1/2; 1/2 〉

+1

2

〈
(1, 1/2)1/2; 1/2 ∣∣σz

∣∣ (1, 1/2)1/2; 1/2 〉

= 1

2

(
1/2 1 1/2

−1/2 0 1/2

)[〈
(0, 1/2)1/2

∣∣∣∣σ ∣∣∣∣ (0, 1/2)1/2 〉

+〈
(1, 1/2)1/2

∣∣∣∣σ ∣∣∣∣ (1, 1/2)1/2 〉
]

= 1

2
× 1∇

6

[∇
6 −

∇
6

3

]
= 1

3
, (E.18)

where the expression with the parenthesis in the third equality is the 3- j symbol. For
the isoscalar matrix element M0, the isospin contribution is trivial, since it has no
isospin dependent operator. The result is of course independent on the isospin of the
nucleon. Note that the transition elements from σ = 0 to σ = 1 vanish. The reduced
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matrix elements of the third equality were calculated as

〈
(0, 1/2)1/2

∣∣∣∣σ ∣∣∣∣ (0, 1/2)1/2 〉 = 〈 1/2 || σ || 1/2 ≥ = ∇
6 , (E.19)

〈
(1, 1/2)1/2

∣∣∣∣σ ∣∣∣∣ (1, 1/2)1/2 〉 = −2

{
1/2 1/2 1
1/2 1/2 1

}
〈 1/2 || σ || 1/2 ≥

= −2 × 1

6
× ∇

6 = −
∇
6

3
, (E.20)

where the expression with the curly bracket is the 6- j symbol. The calculation of the
isovector matrix element goes in a similar way:

M1± ∼ 〈 N : sz = 1/2, Iz = ±1/2 | σzτz | N : sz = 1/2, Iz = ±1/2 ≥
= 1

2

〈
(0, 1/2)1/2; 1/2 ∣∣σz

∣∣ (0, 1/2)1/2; 1/2 〉
×〈

(0, 1/2)1/2;±1/2
∣∣ τz

∣∣ (0, 1/2)1/2;±1/2
〉

+1

2

〈
(1, 1/2)1/2; 1/2 ∣∣σz

∣∣ (1, 1/2)1/2; 1/2 〉
×〈

(1, 1/2)1/2;±1/2
∣∣ τz

∣∣ (1, 1/2)1/2;±1/2
〉

= 1

2

(
1/2 1 1/2

−1/2 0 1/2

)(
1/2 1 1/2

→1/2 0 ±1/2

)

×
[ 〈

(0, 1/2)1/2
∣∣∣∣σ ∣∣∣∣ (0, 1/2)1/2 〉〈 (0, 1/2)1/2 ∣∣∣∣ τ ∣∣∣∣ (0, 1/2)1/2 〉

+
〈
(1, 1/2)1/2

∣∣∣∣σ ∣∣∣∣ (1, 1/2)1/2 〉〈 (1, 1/2)1/2 ∣∣∣∣ τ ∣∣∣∣ (1, 1/2)1/2 〉
]

= ±1

2
× 1∇

6
× 1∇

6


∇

6
2 +

⎩
−

∇
6

3

)2

 = ±5

9
. (E.21)

We see that the isovector matrix element M1 changes its sign when the nucleon
isospin flips. In this case, we also find that the transition elements from σ = 0 to
σ = 1 vanish.

Combining M0 and M1±, we obtain the final formulae for the nucleon EDM as

dn(dq) = 3

2
(M0 + M1−)du + 3

2
(M0 − M1−)dd

=
(
1

2
− 5

6

)
du +

(
1

2
+ 5

6

)
dd = −1

3
du + 4

3
dd , (E.22)

dp(dq) = 3

2
(M0 + M1+)du + 3

2
(M0 − M1+)dd

= 4

3
du − 1

3
dd , (E.23)

which give Eqs. (6.52) and (6.53).

http://dx.doi.org/10.1007/978-4-431-54544-6_6
http://dx.doi.org/10.1007/978-4-431-54544-6_6


Appendix F
Nuclear EDM and Schiff Moment in the Simple
Shell Model

We show in this section the detailed derivation of the nuclear EDM and the nuclear
Schiff moment in the simple shell model. In the simple shell model, the valence
nucleon becomes the only degree of freedom, and the nucleons of the core are irrel-
evant. Therefore, the nuclear EDM and the nuclear Schiff moment receive contri-
butions only from the valence nucleon, and this picture makes possible to avoid
the impossible ab initio many-body calculation for heavy nuclei. Note that in this
appendix the electric charge e is defined as e = |e| > 0, the convention of Chap. 7.

Nuclear EDM Generated by the P, CP-odd N-N Interaction in the
Simple Shell Model

The EDM of odd-nuclei generated by the nuclear polarization in the simple shell
model is given by

dA(ξ) ∼ 〈
ψ̃ : j, jz = j

∣∣ qez
∣∣ ψ̃ : j, jz = j

〉
= qeξ

〈
ψ : j, jz = j

∣∣ z (σ · ∇)
∣∣ψ : j, jz = j

〉 + c.c.

= 2qeξ

(
j 1 j

− j 0 j

) 〈
ψ : j

∣∣∣∣ z (σ · ∇)
∣∣∣∣ψ : j

〉

= 2qeξ

√
j

(2 j + 1)( j + 1)

〈
ψ : j

∣∣∣∣ z (σ · ∇)
∣∣∣∣ψ : j

〉

= 2qeξ

√
j

(2 j + 1)( j + 1)

∫ ∞

0
r3 R(r)

〈
(l, s) j

∣∣∣∣ r̂ (σ · ∇)
∣∣∣∣ (l, s) j

〉
R(r) dr,

(F.1)

where z (and r ) is the coordinate of the external (valence) nucleon with the charge qe
(q = 1 for the proton and q = 0 for the neutron). The unit vector is given by r̂ . The
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state
∣∣ ψ̃ 〉

= (1+ ξσ ·∇)
∣∣ψ 〉

is the nuclear ground state perturbed with the small P,

CP-odd state ξσ · ∇ ∣∣ψ 〉
, and has the total angular momentum j . The unperturbed

P, CP-even state
∣∣ψ 〉

has the quantum numbers l (orbital angular momentum) and

s = 1
2 (spin). The radial part R(r) satisfies

∫∞
0 r2R2(r)dr = ∫ |ψ(r)|2d3r = 1. In

the last line, the order of the elements in the integral is important, since the angular
matrix element involves a gradient. The coupling of angular momenta is expressed
by (l, s) j which means that we have coupled l and s to obtain the total angular
momentum j .

Let us now calculate the angular reduced matrix element.

〈
(l, s) j

∣∣∣∣ r̂ (σ · ∇)
∣∣∣∣ (l, s) j

〉 = ∇
3(−1)2 j+1

∑
j ∝∝

{
1 0 1
j j j ∝∝

} 〈
(l, s) j

∣∣∣∣ r̂
∣∣∣∣ j ∝∝

〉

×〈
j ∝∝
∣∣∣∣ (σ · ∇)

∣∣∣∣ (l, s) j
〉
, (F.2)

where the sum over j ∝∝ is taken over all possible intermediate states. In this case there
is only one possible intermediate state. For the external state with j = l → 1

2 , we
have j ∝∝ = j = l ∝ ± 1

2 with l ∝ = l → 1 (only the orbital angular momentum changes).
We thus obtain

〈
(l, s) j

∣∣∣∣ r̂ (σ · ∇)
∣∣∣∣ (l, s) j

〉 = ∇
3

{
1 0 1
j j j

} 〈
(l, s) j

∣∣∣∣ r̂
∣∣∣∣ (l ∝, s) j

〉

× 〈
(l ∝, s) j

∣∣∣∣ (σ · ∇)
∣∣∣∣ (l, s) j

〉

= 1∇
2 j + 1

〈
(l, s) j

∣∣∣∣ r̂
∣∣∣∣ (l ∝, s) j

〉〈
(l ∝, s) j

∣∣∣∣ (σ · ∇)
∣∣∣∣ (l, s) j

〉

= 1∇
2 j + 1

(−1)l+s+ j+1(2 j + 1)

{
l l ∝ 1
j j s

} 〈
l
∣∣∣∣ r̂

∣∣∣∣ l ∝
〉

× (−1)s+l+ j
√
2 j + 1

{
l ∝ s j
s l 1

} 〈
l ∝
∣∣∣∣∇ ∣∣∣∣ l

〉〈
s
∣∣∣∣σ ∣∣∣∣ s

〉

= −1∇
j ( j + 1)(2 j + 1)

〈
l
∣∣∣∣ r̂

∣∣∣∣ l ∝
〉〈

l ∝
∣∣∣∣∇ ∣∣∣∣ l

〉

=

⎧⎧⎧⎧⎧⎪
⎧⎧⎧⎧⎧⎨

1

2

√
2 j + 1

j ( j + 1)

[
∂

∂r
− 1

r

(
j − 1

2

)]
(for j = l + 1

2
nuclei)

1

2

√
2 j + 1

j ( j + 1)

[
∂

∂r
+ 1

r

(
j + 3

2

)]
(for j = l − 1

2
nuclei)

.

(F.3)

In the fourth equality, we have used the following relations of the 6- j symbol:

{
1 b c
1/2 c + 1/2 b − 1/2

}
= (−1)1+b+c × 1

2

√
(1 + b − c)(2 − b + c)

b(2b + 1)(2c + 1)(c + 1)
, (F.4)
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and
{

b + 1 b 1
c c a

}
= (−1)a+b+c+1

× 1

2

√
(a + b + c + 2)(a + b − c + 1)(a − b + c)(−a + b + c + 1)

(2b + 1)(b + 1)(2b + 3)c(2c + 1)(c + 1)
.

(F.5)

By substituting Eq. (F.3) into Eq. (F.1), we obtain

dA(ξ) = 2qeξ

√
j

(2 j + 1)( j + 1)

∫ ∞
0

r3 R(r)
〈
(l, s) j

∣∣∣∣ r̂ (σ · ∇)
∣∣∣∣ (l, s) j

〉
R(r) dr

= ξqe

j + 1

∫ ∞
0

r3dr R(r) ×

⎧⎧⎪
⎧⎧⎨

[
∂

∂r
− 1

r

(
j − 1

2

)]
R(r) (for j = l + 1

2
nuclei)

[
∂

∂r
+ 1

r

(
j + 3

2

)]
R(r) (for j = l − 1

2
nuclei)

= ξeq

j + 1
×

⎧⎪
⎧⎨

−3

2
− j + 1

2
(for j = l + 1

2
nuclei)

−3

2
+ j + 3

2
(for j = l − 1

2
nuclei)

=
{

−ξeq (for j = l + 1
2 nuclei)

ξeq j
j+1 (for j = l − 1

2 nuclei)
, (F.6)

where we have used the following relation in the third equality:

∫ ∞

0
dr R(r)rn ∂

∂r
R(r) = −n

∫ ∞

0
dr R(r)rn ∂

∂r
R(r) −

∫ ∞

0
dr R2(r)rn−1

⇒
∫ ∞

0
dr R(r)rn ∂

∂r
R(r) = −n

2

∫ ∞

0
dr R2(r)rn−1. (F.7)

If we consider the shift of the center of mass, we obtain

dA(ξ) = −eξt j

(
q − Z

A

)
, (F.8)

with t j = 1 for j = l + 1
2 nuclei and t j = − j

j+1 for j = l − 1
2 nuclei, which is the

expression of Eq. (7.33).

http://dx.doi.org/10.1007/978-4-431-54544-6_7
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Nuclear Schiff Moment Generated by the P, CP-odd N-N
Interaction in the Simple Shell Model

The Schiff moment is a rank 1 operator, so calculation similar to the nuclear EDM
can be performed. In particular, the angular matrix element (F.3) is exactly the same,
as the Schiff moment and the dipole operator have both rank 1. Actually, we have just

to replace one r in Eq. (F.1) by e
10

(
r2 − 5

3 〈r2≥ch
⎛

r , with 〈r2≥ch = ∫∞
0 R2(r)r4dr .

We then obtain the following nuclear Schiff moment:

SA(ξ) = 2qeξ

√
j

(2 j + 1)( j + 1)

∫ ∞
0

r3 R(r)
e

10

(
r2 − 5

3
〈r2≥ch

)

×
〈
(l, s) j

∣∣∣∣ r̂ (σ · ∇)
∣∣∣∣ (l, s) j

〉
R(r) dr

= ξqe

j + 1

∫ ∞
0

r3dr R(r)
e

10

(
r2 − 5

3
〈r2≥ch

)

×

⎧⎧⎪
⎧⎧⎨

[
∂

∂r
− 1

r

(
j − 1

2

)]
R(r) (for j = l + 1

2 nuclei)

[
∂

∂r
+ 1

r

(
j + 3

2

)]
R(r) (for j = l − 1

2 nuclei)

=

⎧⎧⎪
⎧⎧⎨

−1

2
ξeq

[
1

5

j + 2

j + 1
r2ex − 1

3
〈r2≥ch

]
(for j = l + 1

2
nuclei)

1

2
ξeq

[
1

5

j − 1

j + 1
r2ex − 1

3

j

j + 1
〈r2≥ch

]
(for j = l − 1

2
nuclei)

, (F.9)

where r2ex ∼ ∫∞
0 R2(r)r4dr is the mean square radius of the valence nucleon. This

gives the expression of Eq. (7.34).

Nuclear EDM Generated by the Valence Nucleon EDM in the
Simple Shell Model

The nuclear EDM generated by the EDM of the valence nucleon N in the simple
shell model is given by

dA(dN ) ∼
〈
ψ̃ : j, jz = j

∣∣ (dN )z
∣∣ ψ̃ : j, jz = j

〉

= dN

〈
ψ : j, jz = j

∣∣σz
∣∣ψ : j, jz = j

〉

= dN

(
j 1 j

− j 0 j

) 〈
ψ : j

∣∣∣∣σ ∣∣∣∣ψ : j
〉

= dN

√
j

(2 j + 1)( j + 1)

〈
ψ : j

∣∣∣∣σ ∣∣∣∣ψ : j
〉

http://dx.doi.org/10.1007/978-4-431-54544-6_7
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= dN

√
j

(2 j + 1)( j + 1)

〈
(l, s) j

∣∣∣∣σ ∣∣∣∣ (l, s) j
〉 ∫ ∞

0
r2 R2(r) dr

= dN

√
j

(2 j + 1)( j + 1)

〈
(l, s) j

∣∣∣∣σ ∣∣∣∣ (l, s) j
〉
. (F.10)

The angular matrix element can be written as

〈
(l, s) j

∣∣∣∣σ ∣∣∣∣ (l, s) j
〉

= (−1)l+s+ j+1(2 j + 1)

{
s s 1
j j l

} 〈
s
∣∣∣∣σ ∣∣∣∣ s

〉

= (−1)l+s+ j+1(2 j + 1)

×(−1)s+ j+l+1 s(s + 1) + j ( j + 1) − l(l + 1)

2
∇

s(s + 1)(2s + 1) j ( j + 1)(2 j + 1)
× ∇

6

=
√

2 j + 1

j ( j + 1)
[s(s + 1) + j ( j + 1) − l(l + 1)]

=
√

2 j + 1

j ( j + 1)

×

⎧⎪
⎧⎨

3

4
+ j ( j + 1) − j ( j + 1) + j + 1

4
(for j = l + 1

2 nuclei)

3

4
+ j ( j + 1) − j ( j + 1) − j − 3

4
(for j = l − 1

2 nuclei)

=
√

2 j + 1

j ( j + 1)
×

⎧⎪
⎧⎨

j + 1 (for j = l + 1

2
nuclei)

− j (for j = l − 1

2
nuclei)

. (F.11)

By substituting Eq. (F.11) into Eq. (F.10), we obtain

dA(dN ) = dN t j =

⎧⎧⎪
⎧⎧⎨

dN (for j = l + 1

2
nuclei)

− j

j + 1
dN (for j = l − 1

2
nuclei)

. (F.12)

This gives the formula of Eq. (7.37)

Nuclear Schiff Moment Generated by the Valence Nucleon EDM in
the Simple Shell Model

We should first derive the nuclear Schiff moment operator with the nucleon EDM
contribution. The nuclear Schiff moment operator with the charge distribution of the
nucleon is given by

http://dx.doi.org/10.1007/978-4-431-54544-6_7
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Ŝ = 1

10

A∑
N=1

∑
iN

eiN

[
(rN + ρiN

)2 − 5

3
〈r2≥ch

]
(rN + ρiN

)

= 1

10

A∑
N=1

∑
iN

eiN

[
r2N + 2(rN · ρiN

) + ρ2iN
− 5

3
〈r2≥ch

]
(rN + ρiN

)

⇔ 1

10

A∑
N=1

∑
iN

eiN

[
r2N rN − 5

3
〈r2≥ch rN + r2N ρiN

+ 2(rN · ρiN
)rN − 5

3
〈r2≥ch ρiN

]

= Ŝch + 1

10

A∑
N=1

[
r2N dN − 5

3
〈r2≥ch dN + 2(rN · dN )rN

]
, (F.13)

where ρiN
is the coordinate of the constituents of the nucleon N . In the third line,

we have used the relation dN ∼ ∑
iN

eiN ρiN , and we have neglected O(ρ2iN
) terms.

The nucleon EDM contribution to the nuclear Schiff moment operator is then

Ŝnucleon ∼ 1

10

A∑
N=1

[
r2N dN − 5

3
〈r2≥ch dN + 2(rN · dN )rN

]
. (F.14)

This is the formula of Eq. (7.27).
The nuclear Schiff moment generated by the EDM of the valence nucleon N in

the simple shell model is given by

SA(dN ) ∼
〈
ψ̃ : j, jz = j

∣∣ (Ŝnucleon)z
∣∣ ψ̃ : j, jz = j

〉

=
(

j 1 j
− j 0 j

) 〈
ψ : j

∣∣∣∣ Ŝ
nucleon ∣∣∣∣ψ : j

〉

=
√

j

(2 j + 1)( j + 1)

〈
ψ : j

∣∣∣∣ Ŝ
nucleon ∣∣∣∣ψ : j

〉

=
√

j

(2 j + 1)( j + 1)

×
∫ ∞
0

r2 R2(r)

〈
(l, s) j

∣∣∣∣
∣∣∣∣ 1

10
r2dN − 1

6
〈r2≥ch dN + 1

5
(r · dN )r

∣∣∣∣
∣∣∣∣ (l, s) j

〉
dr

= dN

√
j

(2 j + 1)( j + 1)

×
∫ ∞
0

r2 R2(r)

〈
(l, s) j

∣∣∣∣
∣∣∣∣ 1

10
r2σ − 1

6
〈r2≥ch σ + 1

5
r2(r̂ · σ)r̂

∣∣∣∣
∣∣∣∣ (l, s) j

〉
dr

= dN

√
j

(2 j + 1)( j + 1)

{ (
1

10
r2ex − 1

6
〈r2≥ch

) 〈
(l, s) j

∣∣∣∣σ ∣∣∣∣ (l, s) j
〉

+1

5
r2ex

〈
(l, s) j

∣∣∣∣ (r̂ · σ)r̂
∣∣∣∣ (l, s) j

〉 }
, (F.15)
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where dN is the EDM of the valence nucleon. Here we need the expression of two

reduced matrix elements. The first reduced matrix element
〈
(l, s) j

∣∣∣∣σ ∣∣∣∣ (l, s) j
〉
is

given in Eq. (F.11). The second one
〈
(l, s) j

∣∣∣∣ (r̂ · σ)r̂
∣∣∣∣ (l, s) j

〉
is given as follows:

〈
(l, s) j

∣∣∣∣ r̂ (σ · r̂)
∣∣∣∣ (l, s) j

〉
= −1∇

j ( j + 1)(2 j + 1)

〈
l
∣∣∣∣ r̂

∣∣∣∣ l ∝
〉〈

l ∝
∣∣∣∣ r̂

∣∣∣∣ l
〉

= −1∇
j ( j + 1)(2 j + 1)

×
{

−(l + 1) (for j = l + 1
2 nuclei)

−l (for j = l − 1
2 nuclei)

= 1∇
j ( j + 1)(2 j + 1)

×
(

j + 1

2

)

= 1

2

√
2 j + 1

j ( j + 1)
. (F.16)

The first equality is derived in a manner similar to the computation of
〈
(l, s) j

∣∣∣∣
r̂ (σ · ∇)

∣∣∣∣ (l, s) j
〉
[see the fourth equality of Eq. (F.3)]. By substituting the reduced

matrix elements of Eqs. (F.11) and (F.16) into Eq. (F.15), we obtain

SA(dN ) = dN ×

⎧⎧⎪
⎧⎧⎨

1

10

j + 2

j + 1
r2ex − 1

6
〈r2≥ch (for j = l + 1

2
nuclei)

1

10

1 − j

j + 1
r2ex + 1

6

j

j + 1
〈r2≥ch (for j = l − 1

2
nuclei)

= dN

[
1

10

(
t j + 1

j + 1

)
r2ex − 1

6
t j 〈r2≥ch

]
. (F.17)

We then find the expression of Eq. (7.38).

http://dx.doi.org/10.1007/978-4-431-54544-6_7


Appendix G
R-Correlation of the Neutron Beta Decay

The decay distribution of the neutron beta decay can be written as

ω(Ee,Ωe,Ων) ≈ 1 + a
pe · pν

Ee Eν
+ b

me

Ee

+ σn ·
[

A
pe

Ee
+ B

pν

Eν
+ D

pe × pν

Ee Eν

]

+ σe ·
[

Nσn + Q
pe

Ee + m

σn · pe

Ee
+ R

σn × pe

Ee

]
+ · · · ,

(G.1)

where the R-correlation is the last term, the triple product of the initial neutron
polarization, emitted electron polarization and momentum. This observable is odd
under P and CP.

The tree level R-parity violating contribution to the R-correlation of the neutron
beta decay is given by the diagram given in Fig. G.1.

The quark level R-parity violating amplitude is

iMβ ⇔ i
∑

i=2,3

λi11λ
∝∗
i11

4m2
ẽLi

↔u(1 + γ5)d ·↔e(1 − γ5)νe, (G.2)

where the momentum transfer between currents was neglected. The nucleon level
effective interaction is then

Hβ ⇔ −
∑

i=2,3

gS
λi11λ

∝∗
i11

4m2
ẽLi

↔pn ·↔e(1 − γ5)νe, (G.3)
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Fig. G.1 R-parity violating
contribution to the d-quark
beta decay at the tree level

where gS ∼ 〈p|↔ud|n≥ ⇔ 〈p| ↔uu − ↔dd|p≥was obtained by taking the isospin breaking
to the first order. We finally obtain the following R-correlation

R = gA〈p| ↔uu − ↔dd|p≥
2Vud(1 + 3g2

A) G F∇
2

m2
ẽLi

∑
i=2,3

Im(λi11λ
∝∗
i11), (G.4)

where gA = 1.27.
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