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    Abstract     The complex functions of the mammalian neocortex depend on the 
formation of precise networks and subnetworks among its many neuron types during 
development. These networks are formed in a stereotyped manner that creates a 
reproducible human cortex and facilitates common human behavior. The accuracy 
and complexity of cortical circuitry predicts that the developmental mechanisms that 
direct each of these neurons to connect with its siblings must be precise. In recent 
years, remarkable advances have been made in our understanding of the several 
developmental mechanisms that direct cortical connectivity, but we still know only 
a fraction of the coordinated events and molecular elements involved. An additional 
diffi culty is that the intricate connectivity and physiology of these circuits is far 
from being defi nitively untangled. Much of the knowledge comes from relatively 
simple animal models, such as rodents, ferrets, and cats. Relevant information is 
also derived from the study of human genetic conditions that affect intellectual 
capabilities. This chapter briefl y describes the connectivity of excitatory neurons of 
the cerebral cortex, which integrate and transmit information among neocortex 
regions and to other regions of the brain. We will try to give an extended overview 
of the mechanisms that shape this connectivity during development, with special 
emphasis on implications in humans.  
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6.1         Regulation of Cortical Circuit Formation 

       The mammalian neocortex is a complex, highly organized structure that contains 
hundreds of different neuronal cell types and diverse types of glial cells (Guillemot 
 2007 ; Molyneaux et al.  2007 ). It is the most anterior part of the telencephalon and 
is responsible for sensory perception, high cognitive functions, and consciousness; 
as such, it has undergone pronounced expansion during evolution, with maximal 
representation in the human cortex (Selzer  1990 ). The complex cortical functions 
rely on the formation of precise networks and subnetworks among the many neuron 
types during development. These networks form in a stereotyped manner able to 
create a reproducible human cortex and to facilitate common human behavior. 
Certain cortical circuits are also preserved among species throughout evolution, 
while new circuits and functions have been added to the more primitive existing 
structures (Innocenti  2011 ; Molnar  2011 ). 

 The accuracy and complexity of cortical circuitry predicts that the developmental 
mechanisms that direct each of these neurons to connect with its siblings must nec-
essarily be precise. Several processes are conserved during evolution, and certain 
mechanisms are added or modifi ed to create new networks that expand the cognitive 
capabilities of the cortex. Remarkable advances have been made in recent years in 
our understanding of these mechanisms and their spatial and temporal coordination, 
but we still know only a fraction of them. An additional diffi culty is that the intricate 
connectivity and physiology of these circuits is far from being defi nitively untan-
gled. Much of the knowledge comes from relatively simple animal models, includ-
ing mice, which have a lissencephalic (smooth) cortical surface, whereas the close 
resemblance and evolutionary distance of the gyrencephalic brain of ferrets and cats 
provide excellent tools for deciphering processes exclusive to higher mammals. 
Relevant information is also derived from the study of human genetic conditions 
that affect cognitive capabilities, such as schizophrenia, autism, micro- and macro-
encephaly, and other syndromic and non-syndromic forms of mental retardation 
(Clowry et al.  2010 ; Manzini and Walsh  2011 ). In the near future, the fi eld will 
benefi t from the use of these approaches combined with new technologies and com-
puter modeling to make a decisive step forward. 

 Neurons of the cerebral cortex can be classifi ed into two broad classes, excitatory 
and inhibitory neurons. Inhibitory GABAergic, locally connecting neurons are born 
in the basal telencephalon and have modulatory functions. Excitatory neurons are of 
dorsal origin and are pyramidal neurons (most abundant) and spiny stellate excit-
atory interneurons of layer IV. Pyramidal neurons are projecting neurons; some 
extend their axons to distant subcortical and subcerebral targets, and others project 
to local and distant intracortical targets (Selzer  1990 ). This chapter will focus 
mainly on the connectivity of excitatory neurons, which integrate and transmit 
information between different neocortex regions and to other regions of the brain 
(subcortical targets).  
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6.2     General Structure of Cortical Connectivity 

 The cerebral cortex is a laminated structure, and each lamina or layer contains 
neurons with similar morphologies, connectivity patterns (Selzer  1990 ), and molec-
ular identities (Molyneaux et al.  2007 ) that originate sequentially during develop-
ment from radial precursors (Caviness et al.  1996 ; Takahashi et al.  1996 ; Heins et al. 
 2002 ; Malatesta et al.  2003 ; Hansen et al.  2010 ). The number of layers, their thick-
ness, cell composition, and architecture varies throughout the tangential surface of 
the cortex and among the different functionally specialized areas. The neocortex, 
and by extension most of the cortex, is composed of six layers, numbered I to VI, 
which show further expansion and subdivisions in human. Most sensory informa-
tion is routed to the cerebral cortex from the thalamus (Selzer  1990 ) and is con-
veyed to extracortical targets via corticofugal projections (Fig.  6.1 ). Nevertheless, 
the vast majority of cortical neuron connections are from one cortex region to 
another (intracortical) rather than to subcortical targets, allowing complex process-
ing and integration (Fig.  6.2 ).

    Cortical connectivity can be visualized in a simple scheme that refl ects its hier-
archical organization and the mechanism of origin during development. Radial inter-
laminar connectivity establishes the most essential intracortical circuit, the so- called 
cortical columns (Fig.  6.1 ). These columns, composed of neurons from different 

  Fig. 6.1    The cortical column. Scheme showing the connectivity of a column in the somatosensory 
cortex. The precise connectivity of columns shows some variations on this general pattern among 
functional areas.  Circular grey cells  represent inhibitory interneurons;  diamonds  indicate excitatory 
interneurons in layer IV       
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layers, were described from early electrophysiological recordings in the sensory 
cortex demonstrating that neurons inside the column respond with similar activity 
to precise stimuli. The thalamic input is preferentially distributed vertically in col-
umns to superfi cial and deep layers, rather than horizontally (Mountcastle et al. 
 1957 ). In the sensory cortex, neurons in a cortical column all process sensory 

  Fig. 6.2    The corpus callosum. ( a ) Myelinated axons of the CC project from neurons in layers II 
and III (~80 % in mouse) and in layer V (~20 %), and a very small population from cells in layer 
VI (not shown). ( b ) Confocal micrographs showing somas and CC axons of GFP-expressing layer 
II–III neurons in the P21 cortex. Neuronal morphology was analyzed at P21 after in utero electro-
poration at E15.5. Axons of CC neurons projecting from layers II–III invade the cortical plate at 
homotypic areas (six layered cortex), where they branch and profusely innervate layers II–III and 
V ( a  and  b ). (c) Layer specifi c pattern of innervation in the contralateral site. Magnifi cation from  b           
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information from the same peripheral location and submodality (Feldmeyer et al. 
 2013 ). These studies were extended in the visual cortex by Hubel and Wiesel, who 
showed among other things that innervation of the visual cortex from the two eyes 
is also organized in columns (ocular dominance) and discovered orientation col-
umns (Hubel and Wiesel  1962 ,  1963 ). Columnar organization is also the result of 
the common precursor foundation and the migration mode of cortical pyramidal 
neurons during development (Rakic  1988 ; Heins et al.  2002 ; Malatesta et al.  2003 ; 
Torii et al.  2009 ; Jones and Rakic  2010 ). 

 Columns communicate tangentially through laminar connectivity, essentially 
through layers II–III and V, to form the functionally specialized areas of the cortex 
generally classifi ed as sensory, motor, and association areas (Rakic  1988 ). In the 
adult, the transition from one neocortical area to another can be defi ned by differ-
ences in cytoarchitecture, gene expression patterns, input projections, and by the 
specifi c mode of connections between neurons of the column. These properties 
determine the physiology and connectivity of specifi c circuits to allow the func-
tional specializations that distinguish areas. For example, the somatosensory area in 
the mouse is defi ned by a thicker layer IV, expression of markers such as Rorβ, input 
from the whiskers and barrel formation. Finally, areas are interconnected, facilitat-
ing integration and complex behavior. Interhemispheric commissural axons permit 
information exchange between the cerebral hemispheres, whereas other axons that 
do not cross the midline, but run along the anterior posterior axis, connect areas 
from the same hemisphere. 

 In essence, the mechanisms that control cortical circuit formation during devel-
opment select axon pathways and infl uence formation of dendritic structures and 
synapses, as will be discussed below. Studies in recent years have shown remark-
able coordination between intrinsic molecular programs that specify neuronal cell 
identity and those regulating their connectivity. In the last two decades, numerous 
studies have reported examples of transcription factors (TF) expressed only by 
selected neuronal subtypes that regulate discrete aspects of connectivity (Hevner 
et al.  2001 ; Molnar et al.  2003 ; Jacobs et al.  2007 ). The pattern of overlapping func-
tions of these TF creates cell diversity and acts as a genetic code that encrypts the 
rules that govern cortical networks. These intrinsic programs regulate fundamental 
aspects such as neurotransmitter expression, cell morphology, and the ability to 
respond selectively to external cues, including soluble factors and membrane-bound 
molecules. These mechanisms are discussed separately in this chapter. Finally, 
during postnatal stages, experience- and activity-mediated mechanisms involved in 
plasticity ultimately shape the circuits and give rise to the fi nal stereotypical net-
works (Metin et al.  1997 ; Molnar and Cordery  1999 ).  

6.3     Corticofugal Neurons 

 Projection neurons extend their axons to distant subcortical targets to transmit infor-
mation to other brain regions. They are located mainly in the deeper layers of the 
cerebral cortex and are generally referred to as extracortical projection neurons or 
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corticofugal neurons, and are subdivided in  subcerebral  and  corticothalamic . 
 Subcerebral  projection neurons reside mostly in layer V and innervate different 
parts of the brain stem and cerebellum, as well as the higher-order thalamic nuclei 
(HOTN) through secondary collaterals (Fig.  6.3 ). The neurons of the HOTN relay 
cortico-cortical information by projecting excitatory fi bers to layers I, IV, and VI of 
a cortical area distinct from that from which they receive input. Subcerebral projecting 
layer V neurons can be subdivided into three major subpopulations,  corticotectal , 
 corticospinal , and  corticopontine. Corticotectal  neurons are located in the visual 
cortex; they send their primary axon to the superior colliculus and secondary col-
laterals to the rostral pons.  Corticospinal  motor neurons reside in the sensorimotor 
area of the cortex; they send primary projections to the spinal cord and secondary 
collaterals to the striatum red nucleus, caudal pons and medulla. Finally,  cortico-
pontine  neurons are in charge of transmitting information to the pons (Molyneaux 
et al.  2007 ) (Fig.  6.3 ).

  Fig. 6.3    The development of corticofugal axons. Scheme of the axonal pathway of corticofugal 
neurons of cortex layers V and VI. The different anatomic and genetic regions these axons encoun-
ter are depicted. Coronal ( a ) and sagittal views ( b ).  DTB  dorsal telencephalic boundary,  FOTN  fi rst 
order thalamic nuclei,  HOTN  high-order thalamic nuclei,  PSPB  pallial-subpallial boundary,  RTN  
reticular thalamic nuclei,  SC  superior colicullum,  SPC  spinal cord       
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    Corticothalamic  neurons are located in layer VI and enable cortical processing 
of peripheral data. They project axons to and receive input from the fi rst-order 
thalamic nuclei (FOTN) (Fig.  6.3 ). These nuclei receive peripheral sensory input 
and relay it to layer IV and VI neurons. Corticothalamic primary axons generate 
numerous small synapses with thalamic neurons, providing signals for peripheral 
information. Corticothalamic neurons projecting from layer VI primary visual cortex 
(V1) send axons to the dorsal lateral geniculate nucleus (dLGN); those in the audi-
tory cortex (A1) project to the medial geniculate nucleus (MGN) and those in the 
primary somatosensory cortex (S1), to the ventrobasal nucleus (VB). The axon 
collaterals of these neurons innervate the reticular thalamic nucleus (RTN). 

6.3.1     Development of Corticofugal Tracts 

 Development of corticofugal tracts follows a complex process by which distinct 
neuron subpopulations innervate specifi c extracortical regions in a temporal pattern 
with characteristic axon outgrowth kinetics. The subset of TF expressed by each 
neuron confers a unique identity, essential for its connectivity pattern and behavior. 
This identity would nonetheless be worthless in the absence of long- and short- range 
guidance cues that follow spatiotemporal dynamics. The development of corticofu-
gal tracts is also closely associated with thalamocortical tract formation, since axons 
that form both tracts establish the physical association necessary to guide each other 
and to complete their development. Considerable controversy nonetheless remains 
regarding the relative importance of this interaction and of other intrinsic and extrin-
sic mechanisms. This will not be discussed here in detail, as the reader can fi nd 
many complete reviews (Cang et al.  2005 ; Torii and Levitt  2005 ; Rash and Grove 
 2006 ; Rubenstein  2011 ). 

 The preplate contains the fi rst subsets of cortical differentiated neurons and gives 
rise to Cajal-Retzius and to subplate cells. The latter are the fi rst cortical neurons to 
extend their axons into the internal capsule, the natural path to extracortical territories. 
These initial projections act as a scaffold for subsequent corticofugal axons; the 
majority will disappear in the early postnatal period, correlating with a wave of cell 
death that eliminates their somas (Hevner et al.  2001 ; Jacobs et al.  2007 ). Neurons 
that form permanent connections between the cortex and extracortical regions will 
begin to extend their neurites at around embryonic day (E)10. Depending on their 
location and identity, their axons take a lateral, medial, rostral, or caudal trajectory, 
and grow until they reach the region adjacent to the lateral internal capsule. The dis-
tinct populations arrive at this zone at slightly different times between E13 and 
E15.5, depending on the position of their somas; the lateral fi bers are the fi rst to 
arrive and the dorsally derived fi bers, the last (Fig.  6.3a ). At this point, temporal 
synchronization requires axons to align in order to continue their journey together. 
The fi rst incoming axons await the arrival of the others before continuing growth; 
this is termed the fi rst waiting period. All the axons then cross the pallial-subpallial 
boundary (PSPB) and enter the internal capsule. The PSPB is a major boundary that 
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expresses a very specifi c subset of TF (high Pax6, null Emx1, Dlx1). This territory 
has modulatory potential, making early corticofugal projections turn sharply from 
their original ventrolateral to a medial trajectory, to cross the subpallium. The inter-
nal capsule is the site at which early corticofugal axons emitted from the subplate 
and thalamocortical projections fi rst meet and establish a close interaction that will 
be maintained throughout the intermediate zone, PSPB, and the lateral sector of the 
internal capsule; this interaction is needed for guidance (Hevner et al.  2001 ,  2002 ; 
Lopez-Bendito et al.  2007 ; Chen et al.  2012 ; Grant et al.  2012 ) (23). 

 Once the axons exit the internal capsule, they arrive at the diencephalon- 
telencephalon boundary (DTB), where they enter the prethalamus and encounter the 
cells of the perireticular nuclei (PRN) and RTN at E16 (Fig.  6.3a ). The extension 
will undergo a second pause that lasts until E17.5 (second waiting period). At this 
time, corticofugal projections continue through different pathways (Fig.  6.3a, b ). 
Layer V primary axons continue to grow and cross the cerebral peduncle to the 
brainstem and spinal cord. Layer VI primary axons and layer V collaterals change 
direction to enter the thalamus, a process that takes several days and results in post-
natal innervation of most thalamic nuclei. In higher mammals, this correlates with 
the functional establishment of behaviors associated with the relevant sensory systems; 
somatosensory and motor functions mature before visual and auditory functions. 
For example, in mice, somatosensory ventrobasal and motor ventrolateral nuclei are 
innervated earlier (E18.5 and P0.5) than auditory MGN and visual dLGN, which are 
not fully innervated until postnatal day (P)8 (O’Leary and Koester  1993 ; Metin 
et al.  1997 ; Molnar and Cordery  1999 ; Molnar et al.  2003 ; Jacobs et al.  2007 ; Grant 
et al.  2012 ; Lickiss et al.  2012 ). 

 One of the most fascinating characteristics of layer V and VI axons is therefore 
that they must navigate through several distinct territories until they reach their tar-
get. This requires dynamic recognition of territory-specifi c signals and modulation 
of axon responses. It has become apparent that several neuron populations and their 
axons, such as the thalamic afferents discussed above, provide structural support 
essential for crossing these anatomic regions and their boundaries. Pioneer axons 
are those of neurons (in this case, subplate neurons) that, thanks to their intrinsic 
electrical activity, can navigate without the help of preexisting axons and pave the 
way for follower axons. Voltage-gated ion channels, which in subplate neurons are 
voltage-gated K + 3.4 (Kv3.4), are responsible for the intrinsic electrical activity 
patterns of neurons, and are thus necessary for corticofugal development (Huang 
et al.  2012 ). The corridor cells, a population derived from the lateral ganglionic 
eminence, also illustrate these cooperative interactions. These cells are needed to 
generate a permissive substrate for cortical axon growth across the medial gangli-
onic eminence (MGE). The axon guidance functions of corridor cells overlap with 
the guidance and sorting functions of PRN neurons, thought to have a role in direc-
tional change in the internal capsule (Lopez-Bendito et al.  2006 ; Grant et al.  2012 ). 

 Following spatiotemporal dynamics, axons respond differently to distinct sets of 
cues in the environment they traverse. These specifi c behaviors enable correct navi-
gation and innervation of their targets. These guiding factors include intrinsic fac-
tors at the neuron that emits the axon (e.g., cell surface receptors or molecules that 
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infl uence intracellular signaling) as well as extrinsic factors (membrane-bound and 
soluble factors presented or secreted by intermediate or fi nal targets); the latter act 
at short and long range, and affect growth cone extension as well as orientation by 
generating repulsive or attractive responses. Soluble molecules often establish 
concentration gradients critical for precise axon guidance of corticofugal neurons.  

6.3.2     Guidance Factors and Receptors that Direct 
Corticofugal Axons 

 Although gaps remain in our knowledge, several families of guidance molecules are 
known to determine the trajectory of corticofugal axons. We summarize a series of 
illustrative examples. The semaphorin family provides early context-dependent 
cues. Pioneer explant experiments showed that Sema3A expression in the most 
superfi cial cortical plate, the marginal zone (MZ), is responsible both for repelling 
axons toward the VZ (Polleux et al.  1998 ) and for attracting apical dendrites 
(Polleux et al.  2000 ). Further complementary studies demonstrated that combina-
tions of Sema3 molecules have a specifi c effect on the corticofugal axon pathway. 
For example, in addition to the superfi cial cortical plate, Sema3A is expressed 
throughout the ventricular zone and lower subventricular zone, and Sema3C is 
expressed in the intermediate and the subventricular zones. Although cortical axons 
are exposed to Sema3A and Sema3C concurrently, Sema3A has a repulsive effect 
that overrides Sema3C attraction, even at very low concentrations. As a result, corti-
cofugal axons grow over the corridor generated at the intermediate zone and the 
upper SVZ, where Sema3C is expressed alone (Ruediger et al.  2012 ). Likewise, 
Sema5B is expressed in many regions of the corticofugal pathway, including the 
ventricular zone and the ventrolateral cortices, and inhibits axon entry into these ter-
ritories (Bagnard et al.  2001 ; Lett et al.  2009 ). Sema molecules bind to neuropilins, 
whose expression and differential association with plexins also critically modulate 
cortifugal axon responses and dynamics (Pasterkamp  2012 ). Several pathways 
involving Sema signaling alone can thus explain many of the corticofugal axon turns 
and trajectories. 

 Netrin-1 is expressed in the internal capsule and mediates long-range attraction 
of corticothalamic axons at E12.5–13.5. The attractive effects of netrin-1 can induce 
axon turning and thus appears to be responsible for corticofugal growth cone reori-
entation toward the ventral telencephalon. Slit1 and 2 have a major role in cortico-
thalamic and thalamocortical axon guidance within the ventral telencephalon and 
diencephalon, mainly through binding to Robo1 and Robo2 receptors, which appear 
to have partially redundant functions. In Robo mutant mice, and more markedly 
in Robo1 and Robo2 double mutants, corticothalamic axons do not grow through 
the internal capsule but are aberrantly directed to cross the midline. In addition, 
Robo1 (but not Slit) appears to act as a slowing signal, since both corticothalamic 
and thalamocortical axons grow faster in Robo1 knockouts (ko) than in WT mice. 
This deceleration might be relevant in the developmental control of the temporal 
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dynamics of these tracts, specifi cally in the regulation of the two waiting periods 
(Andrews et al.  2006 ; Lopez-Bendito et al.  2007 ; Grant et al.  2012 ). 

 Finally, the EphA family of tyrosine kinase receptors and their ligands are essen-
tial for the initial establishment of corticothalamic targeting. Neocortical neurons 
express an EphA7 gradient that controls the topography of corticothalamic projections, 
through local interactions within individual thalamic nuclei. Other EphA proteins, 
such as EphA5, also have a role in the correct patterning of corticothalamic and 
thalamocortical wiring (Sestan et al.  2001 ; Cang et al.  2005 ; Torii and Levitt  2005 ; 
Torii et al.  2013 ). 

 Further studies are needed to better delineate the elements that determine corticofu-
gal connectivity. As these neurons are characterized by their long-distance journeys, 
the challenge is not only to understand what these signals are and how they are 
transduced, but also the nature of the spatiotemporal mechanisms that regulate them.   

6.4     The Formation of Intracortical Circuits 

6.4.1     The Development of Callosal Projecting Neurons 

 Interhemispheric connections are essential components of intracortical circuits and 
contribute to the integration ability and high associative function of the mammalian 
brain. The corpus callosum (CC) and the anterior commissure formed by axons of layer 
V are the main commissures that connect the hemispheres. The CC is the major 
commissural track of the mammalian brain. Partial or total CC agenesis is associated 
with many human developmental syndromes that affect the brain (Fame et al.  2011 ). 
Most myelinated axons of the CC project from neurons in layers II and III (~80 % in 
the mouse) and in layer V (~20 %), and a very minor population from cells in layer 
VI. A number of callosal neurons also send axonal collaterals to the same hemi-
sphere (ipsilateral) and communicate cortical areas. There are also dual connections 
to the contra- and ipsilateral striatum. Axon guidance cues and synaptic maturation 
mechanisms that target callosal neurons and their projections are critical in the 
development of this important cortical circuitry. 

 In the several steps of axon routing involved in CC formation, different glial and 
neuronal cells act as intermediate guideposts and present secreted and membrane- 
bound navigation signals. Defects in hemisphere fusion cause partial or total CC 
agenesis; fusion occurs simultaneously as callosal neurons are born, just before they 
extend their axons, and is necessary for axons to cross the midline. Early studies 
showed that CC axons are guided across the cerebral midline by a glial population, 
then termed sling-like glial and now known as the glial sling. These astroglial popu-
lations form a bridge-like structure at the midline between the two lateral ventricles 
(Hankin et al.  1988 ; Silver et al.  1993 ). It was shown early on, that in acallosal mice 
midline crossing could be restored postnatally when this glial scaffold was 
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presented artifi cially (Silver and Ogawa  1983 ). More recent observations in mice 
and humans nonetheless show that many neurons are also present within the glial 
slings (Shu et al.  2003a ; Ren et al.  2006 ). Semaphorin 3C expression in one of these 
transient neuronal populations helps to attract callosal axons to and through the 
midline (Niquille et al.  2009 ). Additional glial structures in the CC are considered 
relevant for axon navigation, including radial glial cells in the glial wedge (GW) and 
astrocytes in the indusium griseum (IG) (Shu and Richards  2001 ; Shu et al.  2003b ). 
In the developing CC, GW-expressed Slit2 guides callosal axons to the corticoseptal 
boundary (Bagri et al.  2002 ; Shu et al.  2003c ). Robo receptors bind to Slit proteins; 
callosal axons express Robo1, and mice defi cient in this protein ( Robo1  −/− ) have 
defects in CC formation (Shu and Richards  2001 ; Andrews et al.  2006 ; Lopez-
Bendito et al.  2007 ). Once axons cross the midline, the same signal repels them 
from this boundary (Bagri et al.  2002 ; Shu et al.  2003c ). Other long-range molecules 
such as Wnt are necessary for the guidance of callosal axons. Wnt5a is expressed by 
the GW and the IG cells, and stimulates both outgrowth and repulsion of developing 
callosal axons via Ryk receptors (Keeble et al.  2006 ; Li et al.  2010 ). Other signals 
such as ephrins and their receptors (EphA5, EphB1 and EphrinB3) act at a shorter 
range and are essential not only for callosal formation, but also have a broader effect 
on other commissures (Mendes et al.  2006 ; Lindwall et al.  2007 ). 

 CC formation is also highly dependent on the earlier extensions emitted by a 
population of pioneer callosal neurons. This is the earliest neuron population to 
extend axons across the midline, at around E17 in the mouse. The cell bodies 
of these neurons are located in the most medial part of the cortical plate and the 
cingulate cortex, and their axons appear to guide the neocortical callosal projections 
(Koester and O’Leary  1994 ; Rash and Richards  2001 ; Fame et al.  2011 ). Short- 
range signals such as neuropilin 1 (Nrp1) regulate crossing of these early axons 
(Hatanaka et al.  2009 ; Piper et al.  2009 ). 

 Callosal axons initiate their journey guided by this plethora of signals. After mid-
line crossing, they travel along the CC; they make a sudden turn in their trajectory and 
invade the contralateral cortical plate at homotypic areas. Little is known about the 
mechanisms that trigger this turn, but it might imply changes in axon capacity to 
respond to cortical cues, similar to those that occur when they cross the midline. 
Recognition of the correct contralateral territories might also imply recognition of 
lateral gradients at the cortical plate, although these mechanisms remain unclear. 

 Axons are able to branch and extend many synapses along their length, which 
allows neurons to send information to various cells simultaneously. Callosal axons 
branch at several points during their trajectory; most branches profusely innervate 
layers II–III and V in the ipsilateral and contralateral columns (Fig.  6.2 ), although 
some neurons (termed dual projecting) also send collaterals to other areas and 
regions. Despite their probable importance in human cognition, the patterns of these 
branched connections are not fully resolved, although they are likely to be respon-
sible for certain associative properties of the cortex. For example, an undetermined 
number of callosal projecting neurons from the sensory cortex simultaneously 
extend exuberant projections to the contralateral homotypic cortex and to both 
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contralateral and ipsilateral areas of the motor cortex. Laterally located superfi cial 
neurons can also extend dual axons toward the midline and the internal capsule, 
although in the latter case, they apparently retract at P11 (Garcez et al.  2007 ). 
Similar schemes of dual projections are found in certain callosal neurons of the 
motor cortex, which send dual axonal projections to sensory areas (Mitchell and 
Macklis  2005 ). In mice, these dual projections show maximum numbers at P8; they 
are refi ned until approximately P21, probably through activity- dependent mecha-
nisms, but many persist into adulthood (Innocenti and Price  2005 ; Mitchell and 
Macklis  2005 ). Little is currently known of the molecular control of these double 
connections.  

6.4.2     Factors that Regulate Selectivity of the Synapse: 
From Intra-Columnar and Intra-Laminar 
Connectivity to Microcircuits 

 Based on the work discussed above, it is clear that scientists have successfully iden-
tifi ed several crucial regulatory mechanisms responsible for delivering axons to the 
vicinity of their targets. After this arduous journey, however, only half the job is 
done. Axons do not establish synapses without a pattern. The nervous system shows 
considerable specifi city at this level, and connections are made only with certain 
neurons; there is even selection of specifi c cell compartments. This is extreme in the 
case of cortical circuits, which implicate hierarchical organization in layers: axons 
selectively establish connections with certain layers, certain cells within the layers, and 
even choose between apical or basal dendrites. The cellular and genetic mechanisms 
responsible for the assembly of specifi c connections in the nervous system are the sub-
ject of intense study. These mechanisms involve coordinated expression of homophilic 
adhesion molecules by both pre- and postsynaptic partners, including the diverse 
cadherins and immunoglobulin superfamily (IgSF) proteins. Repulsive signals also 
prevent abnormal innervation (Shen and Scheiffele  2010 ; de Wit et al.  2011 ). 

 Few of the mechanisms known to select synaptic targets in other parts of the 
nervous system have been reported or tested in the cortex; there is an intriguing rela-
tive lack of knowledge about the elements that implement the beautiful patterns of 
cortical laminar connectivity. Barrels, which are prominent sensory units in the 
rodent somatosensory cortex, have been examined in detail. Data suggest that the 
initial gross formation of the barrel map relies on molecular cues, while refi nement 
of its topography depends on neuronal activity. Temporal and cell-specifi c expres-
sion of cadherins contributes to the barrel-like distribution of thalamic axonal inputs 
into layer IV (Huntley and Benson  1999 ; Inan and Crair  2007 ). The development of 
excitatory synapses between axons emitted from layer II–III neurons with dendrites 
in layers II–III and V, but not those in layers IV and VI, is another perfect paradigm 
of layer-specifi c synaptic organization. Activity has a role in determining the rela-
tive innervation of layers II–III and V by contralateral CC afferent connections. 
Reduced fi ring results in increased innervation of superfi cial layers at the expense 
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of layer V innervation (Mizuno et al.  2007 ). Recent work identifi ed an unexpected 
molecular regulators of innervation of layers II–III and V in Shh, a secreted mole-
cule known mainly for its patterning and axon guidance effects, and in its high-
affi nity receptor Brother of CDO (Boc) (Okada et al.  2006 ). The restricted Shh 
expression in layer V promotes synaptic formation with Boc-bearing axons; these 
axons are precisely those of neurons in layers II–III. Genetic manipulation of mice 
showed that conditional Shh deletion in the dorsal telencephalon mimics Boc ko 
phenotypes of layer V neurons. Boc-depleted layer V neurons show reduced den-
dritic complexity, spine density and synaptic strength as a result of decreased inner-
vation from layer II–III callosal projecting neurons (Harwell et al.  2012 ). Although 
alteration of activity or the Shh-Boc pathway did not result in layers being ectopi-
cally innervated, these studies open the path to understand layer-specifi c connec-
tions and the possible implications of other patterning molecules in cortical wiring, 
perhaps in conjunction with activity. 

 These studies of synaptic specifi city mechanisms are also extremely important 
when considering the existence and formation of microcircuits and subnetworks 
embedded within cortical circuits. There is cellular and molecular heterogeneity not 
only between layers and cortical areas, but also within the neurons of the same layer 
(Fame et al.  2011 ); this results in the expression of different membrane and secreted 
proteins that might contribute to generating networks in the cortex. In layers II–III, 
microcircuits have been described functionally by the characterization of neuron 
fi ring patterns (Burgalossi et al.  2011 ). They have also been identifi ed genetically, 
through visualization of GFP-labeled neurons that express high c-fos levels, and are 
highly interconnected, as shown by electrophysiology studies (Yassin et al.  2010 ). 
Common neuronal birth origin might be implicated in the formation of these micro-
circuits and in columnar formation. A common progenitor increases the probability 
of synapse between neurons, the probability to form strong electrical coupling with 
each other rather than with adjacent non-sister excitatory neurons, and the likelihood 
of producing similar excitatory responses (Yu et al.  2009 ,  2012 ; Li et al.  2012 ).  

6.4.3     The Regulation of Dendritic Structures 

 Another facet of the regulation of cortical circuitry is the modulation of postsynaptic 
structures: dendrites, spines, and synapses. Dendritic branching specifi es connectiv-
ity with selected axonal input and determines neuron morphology (Shen and 
Scheiffele  2010 ). Morphology in turn infl uences the way information is processed, 
amplifi es or silences presynaptic input depolarization signals (Mainen and 
Sejnowski  1996 ), and even affects plasticity (Feldman  2012 ). Spine density and 
spine morphology determine the number, strength, and stability of synaptic contacts 
(Tada and Sheng  2006 ; Edbauer et al.  2010 ; Shen and Scheiffele  2010 ). 

 Developmental mechanisms that target regulation of postsynaptic structures and 
compartments have considerable importance in cortical function and circuit modu-
lation, and are critical for the acquisition of higher intellectual abilities. Alterations 
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in dendritic morphology and in spine number and structure are defects that often 
correlate with cognitive disorders and mental retardation (Tada and Sheng  2006 ; 
Bourgeron  2009 ; Jan and Jan  2010 ; Kulkarni and Firestein  2012 ). Many of the 
mechanisms involved in the control of dendritic structures and synapses were thus 
identifi ed during the study of human intellectual disabilities, including autism and 
fragile X syndrome, the most frequent cause of mental retardation. Analysis of 
human mutations linked to autism often shows alterations in genes that regulate the 
cytoskeleton and synaptic scaffold (Segal  2001 ); this is the case of Shank proteins 
(Bourgeron  2009 ), kalirin (Penzes and Remmers  2012 ), and mutations that affect 
the Ras/Epac2 pathway (Srivastava et al.  2012 ). Autism-related genes also appear to 
target postnatal mechanisms of plasticity and synaptic refi nement. Human muta-
tions linked to fragile X syndrome (Zhang et al.  2001 ) affect  FMR1 , a gene that 
encodes the RNA-binding protein FMRP (fragile mental retardation protein), which 
regulates transport and local translation to axons and dendrites (Tada and Sheng 
 2006 ; Napoli et al.  2008 ; Boda et al.  2010 ; Darnell et al.  2011 ; Penzes et al.  2011 ; 
van Bokhoven  2011 ; De Rubeis et al.  2012 ). 

 Human and mouse genes that encode TF also control dendrite and synapse devel-
opment. In mice,  Mef2a  controls activity-dependent dendritogenesis (Fiore et al. 
 2009 ) as well as activity-dependent spine deletion (Flavell et al.  2006 ), which 
involves downstream use of FMRP (Pfeiffer et al.  2010 ).  Neurog2  regulates early 
neuritogenesis and alters neuron migration via phosporylation of the small GTPase 
Rnd2 (Hand et al.  2005 ), and by forming a DNA-binding complex with the LIM- only 
protein LMO4 (Asprer et al.  2011 ). Calcium signals and calcium-binding TF such as 
CREB are also involved in migration and dendritogenesis in the cortex (Redmond 
et al.  2002 ; Redmond and Ghosh  2005 ). Of the several cortical layer- specifi c TF 
described so far, the expression in mice of  Fezf2/Zfp312  in layer V neurons (Chen 
et al.  2005 ) and of  Cux1  and  Cux2  in layers II-IV regulate dendrite formation, and also 
synaptogenesis in the case of Cux proteins (Chen et al.  2005 ; Cubelos et al.  2010 ). 
 Cux  TF functions might be linked to evolution; the number of superfi cial layers in 
mammals expands together with brain volume and is maximal in humans (Hill and 
Walsh  2005 ). This correlates with the fact that upper layer neurons participate in 
highly associative circuits and tasks, and show an extreme degree of interconnectivity. 
It is thus possible that  Cux  optimize these neurons to increase their connectivity and 
their capacity to integrate information. 

 In a similar conceptual line, the two human-specifi c duplications of  SRGAP2  are 
proposed to be a delay mechanism for synaptic maturation which expands the tem-
poral window of neonatal plasticity in humans. Mice bear one copy of the SRGAP2 
gene, while humans have three alleles (A, B, and C). In the mouse neocortex, 
 SRGAP2  promotes spine maturation and limits spine density. The human  SRGAP2B  
and  SRGAP2C  duplications are partial and encode truncated forms that dimerize 
with the ancestral SRGAP2 (SRGAP2A) protein. Surprisingly, this dimerization 
inhibits normal SRGAP2 function. Thus, experiments in mice show that ectopic 
expression of hSRGAP2C phenocopies SRGAP2 defi ciency; in both cases, mice 
have abundant, immature long spines. These fi ndings suggest that inhibition of 
SRGAP2 function by its human-specifi c paralogs has contributed to evolution of the 
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human neocortex (Charrier et al.  2012 ). In sum, these studies suggest that specifi c 
mechanisms that target dendritic structures and synapses contribute to the evolution 
of cerebral cortical circuits and the defi nition of human intellectual capacity.   

6.5     Molecular Identity of Cortical Neurons: Layer and Area 
Identity as Determinants of Connectivity 

 Molecular identity is broadly defi ned by the subset of genes expressed by each neuron. 
Subtype-specifi c TF ultimately determine the molecular identity of neurons by ini-
tiating and maintaining specifi c genetic programs. Expression of these TF is often 
interconnected through gene expression cascades (Molyneaux et al.  2007 ; Leone 
et al.  2008 ; Fame et al.  2011 ). Neuron identity programs are initiated early in divid-
ing cells by progenitor-specifi c TF and passed on to neuronal progeny through 
expression of the same or other subtype-specifi c TF (Molyneaux et al.  2007 ; Leone 
et al.  2008 ; Fame et al.  2011 ). Because laminar organization of the cortex coincides 
with the segregation of neuron subpopulations, many of the TF that specify neuro-
nal identity have been identifi ed as layer specifi c (Fig.  6.4 ). In the last two decades, 
genetic studies in mice have shown how several of these layer- specifi c TF modulate 

  Fig. 6.4    The molecular identity of cortical neurons. Molecular identity is defi ned by the subset of 
TF expressed by each neuron. Many of the TF that specify neuronal identity have been identifi ed 
as layer-specifi c factors. Neuron identity programs are initiated early in dividing cells by 
progenitor- specifi c TF and passed on to neuronal progeny through expression of the same or other 
subtype-specifi c TF. This identity determines the connectivity pattern of these neurons. Schematic 
representation of reported molecular and genetic interactions that inter-regulate the expression of 
subclass-specifi c TF       
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different aspects of connectivity during development and indicate that they are related 
to almost every process the neurons undergo. This is a fascinating and dynamic fi eld, 
as indicated by the ongoing identifi cation of genes essential for determination of 
each neuron’s fate and behavior and, thus, its connectivity. The most recent studies 
clearly established that there is even further molecular diversity within the layers, 
which could explain the instructive signals that direct formation of cortical circuits 
and microcircuits.

   It is increasingly apparent that there are many TF genes common to all projection 
neurons, which would explain the common pattern of initial development. A smaller 
group of TF defi nes closely related subtypes of projection neurons and an even 
smaller group is characteristic of each neuron population (Arlotta et al.  2005 ; 
Molyneaux et al.  2007 ; Leone et al.  2008 ). Most studies analyze the phenotypes of 
neurons with loss and gain of function of specifi c genes. More research is needed to 
fully understand the specifi cation of all these neuron subtypes and the molecular 
mechanisms underlying their integration into selected circuitries. We can nonethe-
less begin to defi ne some mechanisms that are quite illustrative of the extreme 
importance of the TF selective mode of control. 

6.5.1     Transcription Factors in Lower Layers 

  Sox5 ,  Ctip2  ( COUP-TF- interacting protein 2), and  Tbr1  expression patterns 
selectively mark distinct subtypes of corticofugal populations (Fig.  6.4 ). Subplate 
neurons express an intermediate level of  Sox5 , high  Tbr1 , and low  Ctip2  levels; 
corticothalamic neurons in layer VI express  Sox5  and  Tbr1  strongly and little  Ctip2 , 
and subcerebral projection neurons in layer V show high  Ctip2  levels, intermediate 
 Sox5 , and little  Tbr1 . These expression patterns prompt the hypothesis that these 
proteins form a coregulatory network that governs the adoption of neuronal fates 
(Fig.  6.4 ) (Arlotta et al.  2005 ; Molyneaux et al.  2007 ). 

  Tbr1 , a T-box family TF gene, is expressed soon after cortical progenitors begin 
to differentiate (Fig.  6.4 ). It is found at high levels in early-born neurons of the pre-
plate and layer VI and is necessary for their correct differentiation, as it is for corti-
cal laminar organization and guidance of cortical afferent and efferent axons 
(Bulfone et al.  1995 ; Hevner et al.  2001 ). Several studies suggest that its functions 
overlap partially with those of  Sox5 , although defects in  Tbr1  ko mouse cortex are 
more severe. In the absence of  Tbr1 , the corticothalamic tract disappears and there 
is greater upregulation of neuronal markers than in  Sox5  ko mice. Chromatin immu-
noprecipitation and luciferase assays demonstrated that Tbr1 binds to and inhibits 
 Fezf2  promoter (McKenna et al.  2011 ). 

 Studies of  Sox5  ko mice and of its overexpression demonstrate that  Sox5  is criti-
cal for generation of diversity in extra-cortical projecting neurons, as it regulates 
and coordinates timing of sequential emergence of the different corticofugal neuron 
types (subplate, corticothalamic, and subcerebral) during early corticogenesis. 
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 Sox5  expression is essential for correct differentiation of corticothalamic and subplate 
neurons, and blocks premature emergence of subcerebral neurons. When  Sox5  is 
absent, subplate and corticothalamic neurons locate to more superfi cial areas, while 
subcerebral neurons accumulate within layer VI and the white matter. This is inter-
preted as an anomalous overlap in the generation of the three principal corticofugal 
neuron subtypes. In addition, in the  Sox5  ko mouse cortex, subplate neurons aber-
rantly express molecular hallmarks and connectivity patterns of subcerebral pro-
jection neurons, resulting in the appearance of additional subcerebral projection 
tracts. Differentiation of corticothalamic neurons is imprecise, and that of subcere-
bral projection neurons is accelerated. In contrast,  Sox5  gain of function at later 
stages of corticogenesis causes reemergence of neurons with corticofugal features 
(Lai et al.  2008 ). 

  Ctip2  is one of the molecular targets of  Sox5  that is upregulated in the subplate 
of Sox5 ko mice (Lai et al.  2008 ).  Ctip2  is also a major downstream effector of 
 Fezf2 ; it is expressed at high levels in layer V corticospinal and corticotectal neu-
rons, and at much lower levels in layer VI corticothalamic neurons.  Ctip2  expres-
sion begins once neurons reach the cortical plate and is not implicated in early 
specifi cation of cortical precursors (Arlotta et al.  2005 ).  Ctip2  participates in direct-
ing the extension, fasciculation, and refi nement of subcerebral axonal projections, 
particularly the ability of corticospinal neurons to extend projections to the spinal 
cord during formation of the corticospinal tract. Thus,  Ctip2  ko axons fail to extend 
past the pons to reach the spinal cord (Arlotta et al.  2005 ; Lickiss et al.  2012 ). 

  Fezf2  represses callosal neuron identity, is suffi cient for specifi cation of layer V 
subcortical projection neurons, and is needed for layer VI neuron maturation 
(Rouaux and Arlotta  2010 ).  Ctip2 - and  Fezf2 -null mice have very similar pheno-
types. In  Fezf2  ko mice, the corticospinal tract disappears; corticotectal and pontine 
projections are also greatly reduced; inappropriate new projections appear instead 
(Chen et al.  2005 ; Molyneaux et al.  2005 ). In  Fezf2  ko mice,  Ctip2  expression is 
absent, whereas forced expression of  Fezf2  by in utero electroporation induces 
upregulation of  Ctip2  in neurons that would not normally express it (Chen et al. 
 2005 ,  2008 ). This suggests that these two genes might act in a common pathway 
and that  Fezf2  is a key upstream regulator of corticospinal projection neuron 
differentiation. 

 Although the genetic regulatory pathways of the TF described above are rela-
tively well characterized, there are many other TF that defi ne lower layer identi-
ties or are involved in axon extension and pathfi nding.  Otx1  is expressed in 
40–50 % of subcerebral neurons, primarily those of the visual cortex, as well as 
by a number of cells in layer VI; it is essential for development of the corticotectal 
projection neurons and controls the refi nement and pruning of their axon collater-
als (Weimann et al.  1999 ).  Opn3  is a marker of layer V and  Foxp2  of layer VI. 
 Er81  is expressed in layer V cortico-cortical and subcerebral projection neurons; 
 Nfh  and  Pou3f1  are expressed primarily in layer V subcerebral projection neurons 
(Frantz et al.  1994 ; Ferland et al.  2003 ; Hevner et al.  2003 ; Voelker et al.  2004 ; 
Arlotta et al.  2005 ).  
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6.5.2     Transcription Factors in Superfi cial Layers 

 Several TF defi ne the molecular identity of the superfi cial layers. We will mention 
some that exemplify distinct roles in neuron differentiation.  Brn1  and  Brn2  are two 
POU domain transcriptional regulators expressed in superfi cial cortical neurons and 
are necessary for correct migration and cortical lamination (McEvilly et al.  2002 ; 
Sugitani et al.  2002 ). Genetic loss of  Brn1  and  Brn2  in mice thus abrogates the 
appearance of late-born superfi cial neurons (Sugitani et al.  2002 ). Other TF directly 
implement programs that regulate connectivity.  Satb2  (AT-rich sequence-binding 
protein 2) is a chromatin-remodeling TF expressed in a broad subset of layer II–III 
neurons and in a smaller subpopulation of layer V neurons. Loss of  Satb2  expres-
sion in mice results in agenesis of the corpus callosum and reorientation of axons 
toward subcortical targets through the internal capsule. This abnormal wiring sce-
nario is explained by the observation that  Satb2  represses expression of  Ctip2 , 
which regulates corticofugal identities;  Satb2 -defi cient neurons also have other 
molecular features of corticofugal projecting neurons (Alcamo et al.  2008 ; Britanova 
et al.  2008 ). An epigenetic regulator, the proto-oncogene  Ski , cooperates with  Satb2  
for callosal axon guidance (Baranek et al.  2012 ). 

  Cut -like homeobox proteins  Cux1  and  Cux2  also mark layers II–III and IV 
specifi cally (Nieto et al.  2004 ; Zimmer et al.  2004 ). As mentioned above, in cortical 
layers II–III, both genes regulate dendritogenesis, spine formation, and synaptogen-
esis in a non-redundant manner and act in combination to specify the fi nal dendritic 
tree and the synapses of these neurons (Cubelos et al.  2010 ).  CUX2  also defi nes the 
upper layers of the human cerebral cortex (Arion et al.  2007 ), and a possible asso-
ciation of  CUX1  polymorphisms with failure of antidepressant response is reported 
(Sasayama et al.  2012 ). Additional TF, including Id2, act as markers of the molecu-
lar identity of superfi cial layers. The functions of  Bhlhb5 , which marks superfi cial 
layers but is also found in layer V, are described below.  

6.5.3     Area-Specifi c TF 

 Neocortical areas are characterized by unique molecular profi les and cyto- architecture, 
which ultimately refl ect specifi c modes of axonal and dendritic connectivity. A strong 
deterministic function of TF expressed in the progenitor pools was demonstrated in 
relation to cortical area formation. Four murine TF,  Coup-TFI  (Armentano et al. 
 2007 ; Faedo et al.  2008 ),  Emx2, Pax6  (Bishop et al.  2000 ; Mallamaci et al.  2000 ), 
and  Sp8  (Sahara et al.  2007 ), all of which are expressed in gradients across the 
embryonic cortical axis, determine cortical area sizes and positions by specifying 
or repressing area identities within cortical progenitors. Early expression of area-
specifi c progenitor TF is modulated by morphogens and signaling molecules 
secreted by patterning centers that are positioned at the perimeter of the dorsal tel-
encephalon. These centers generate graded TF expression in cortical progenitors. 
Two major patterning centers are the commissural plate, which expresses  Fgf8  and 

F.M. Rodríguez-Tornos et al.



145

 Fgf17 , and the cortical hem, which expresses  Bmps  and  Wnts  (O’Leary and 
Nakagawa  2002 ). Progenitor area-specifi c TF also interact genetically, thus modi-
fying the expression of one another; for example,  Pax6  and  Emx2  are mutually 
exclusive (Bishop et al.  2000 ; Mallamaci et al.  2000 ). There is interplay between 
intrinsic genetic mechanisms and extrinsic information conveyed by thalamocorti-
cal input to the cortex, especially to layer IV. The relative contribution of each of 
these early mechanisms to area formation is still debated, and has been reviewed 
extensively (O’Leary et al.  2007 ; O’Leary and Sahara  2008 ). 

 Expression of progenitor area-specifi c TF can be downmodulated ( Emx2 ,  Pax6 ) 
or maintained in postmitotic neurons ( Coup-TFI ). Area-specifi c TF generally inhibit 
or promote expression of other area-specifi c genes including  Cadherin8, Eph  recep-
tors and other layer-specifi c TF such as  Satb2, Rorβ , and  Id2  (O’Leary et al.  2007 ; 
O’Leary and Sahara  2008 ).  Coup-TFI  is expressed as a gradient and, during corti-
cogenesis, is needed to maintain the balance between frontal/motor and sensory 
areas (Armentano et al.  2007 ). This factor temporally inhibits generation of cortico-
spinal motor neurons, which in large numbers characterize motor areas (Tomassy 
et al.  2010 ), and regulates axon outgrowth as well as the formation of the CC and 
other brain commissures (Armentano et al.  2006 ), and governs neuronal migration 
(Alfano et al.  2011 ) .  

 Arealization is closely linked to the identity of the postmitotic neurons. Moreover, 
certain layer-specifi c TF have a role in this process.  Bhlhb5  is selectively expressed 
in layers II–IV and V and regulates area identity; during embryonic development, it 
shows a transient high caudomedial to low rostrolateral gradient. It is gradually 
downmodulated in the postnatal brain to produce a sharp boundary between sensory 
and caudal motor cortices around P4, and practically disappears at P14.  Bhlhb5- null 
mice show aberrant expression of layer-specifi c markers and disorganization of 
vibrissal barrels, and those layer V corticospinal motor neurons of the motor cortex 
that normally express this TF also show aberrant development (Joshi et al.  2008 ). 

 Our picture of arealization mechanisms is still incomplete. Fortunately, consider-
able research is ongoing to further our understanding of this process. These studies 
include the contribution of other TF expressed in postmitotic neurons to area speci-
fi cation and how they might coordinate with the action of thalamocortical input, as 
well as with activity and experience. Unraveling circuit formation in the cerebral 
cortex will help us to comprehend the precise modes of connections in the cortex 
and that are altered in many human conditions that affect cognition, from mental 
retardation to neurodegeneration.      
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