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Abstract In order to satisfy the increasing demand in air traffic, the automated
air traffic control systems are necessary for facilitating and alleviating the work
of air traffic control. The primary concern of air traffic control is to maintain
safe separation between aircraft, and one of the major safety critical situations is
a midair conflict. In this paper, for the automated air traffic control systems, the
problem of probabilistic conflict detection in the presence of various uncertainties
during flight is considered. The aircraft dynamics are described by using stochastic
differential equations, and the future aircraft’s trajectory is determined by solving
the stochastic optimal control problem. A computationally efficient numerical
algorithm combining the pseudospectral method with the generalized polynomial
chaos method to solve the stochastic trajectory optimization problems is proposed.
By using the stochastic trajectory optimization method, the novel probabilistic
conflict detection algorithm is proposed. Through the numerical simulations for
trajectory prediction and conflict detection, the performance and effectiveness of
the algorithms are illustrated.

Keywords Air traffic management  Conflict detection ¢ Stochastic optimal
control * Generalized polynomial chaos

1 Introduction

The demand in air traffic has been growing mainly in the Asia-Pacific region,
and current air traffic management (ATM) system is under considerable stress. To
satisfy the increasing demand, the International Civil Aviation Organization (ICAO)
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published a new operational concept of global ATM in 2005 [9]. NextGen [5]
and SESAR [4], the two major ATM programs initiated by the United States and
Europe, respectively, are currently ongoing in order to support the new era of air
transportation. In Japan, CARATS [16], the long-term vision for air traffic systems,
was also proposed in 2010. In these ATM programs, the automated air traffic control
(ATC) systems are necessary to meet future growth in air traffic by facilitating
and alleviating the work of ATC. The primary concern of ATC is to maintain safe
separation between aircraft, and one of the major safety critical situations is a midair
conflict. When the minimum separation standard between aircraft is violated, a
conflict occurs. The protected zone of an aircraft is generally defined as follows:
the minimum allowed horizontal separation of en route airspace is 5nm, and the
vertical separation requirement is 1,000 ft. Air traffic controllers currently monitor
the trajectories of aircraft and whether there are some potential conflicts within a
lookahead time horizon.

There are two interconnected procedures to predict a midair conflict, i.e., trajec-
tory prediction and conflict detection. In addition, typically, most of the proposed
methods to solve the problems of trajectory prediction and conflict detection can
be categorized into two approach, i.e., deterministic and probabilistic [11]. Because
all problems in the real world contain uncertainties which arise due to disturbances,
modeling and estimation errors, we cannot predict the future position of the aircraft
completely. Therefore, in this study, we consider the problem of probabilistic
conflict detection and propose the novel stochastic conflict detection algorithm by
considering various uncertainties during flight, which is the key element for the
realization of the future air traffic systems.

For trajectory prediction and conflict detection in a probabilistic setting, the
empirical distribution model of future aircraft’s positions [12, 17,24], the dynamical
model by using stochastic differential equations that describe the aircraft motion
[8,19], or other probabilistic aircraft model [2, 14] is applied to the aircraft’s motion
model. In this paper, we model the aircraft dynamics by using stochastic differential
equations, and determine the future aircraft’s trajectory by solving the stochastic
optimal control problem. The previous work in the area of stochastic optimal control
includes the following. Blackmore et al. proposed the particle control method
using mixed integer linear programming techniques [1]. However, their proposed
approach relies on linear system dynamics, and is therefore difficult to apply to
nonlinear aircraft dynamics. Liu and Hwang solved stochastic optimal control prob-
lems by discretizing the aircraft’s continuous dynamics to get a controlled Markov
chain and then finding an optimal control law [15]. But the problem becomes
intractable as the number of discrete states grows. Application of various statistical
tools to the stochastic optimization problems is another commonly used approach.
Lecchini-Visintini et al. proposed a Markov chain Monte Carlo framework to
determine an approximate optimal control input [13]. Kantas et al. applied Bayesian
optimal design and sequential Monte Carlo method to automatically generate
optimal and safe maneuvers [10]. Prandini et al. also employed the Monte Carlo
simulation [19]. However, using these statistical methods takes much computation
time, and it is very difficult to implement them in the real applications of ATC.



Probabilistic Conflict Detection in the Presence of Uncertainty 19

Therefore, to reduce the computational burden, we employ a recently developed
computationally efficient method, generalized polynomial chaos (gPC) [22,23], to
solve the stochastic trajectory optimization problems. The gPC method applied to
the stochastic trajectory optimization problem by Cottrill and Harmon [3], however
their application is limited to a very little number of uncertainties or random
variables. Therefore to overcome this disadvantage, we employ other approach
which can be used for the larger number of random variables (>5), and propose
the stochastic optimization method. By using the stochastic trajectory optimization
method, the novel conflict detection algorithm is proposed.

The paper is organized as follows. Section 2 presents the stochastic trajectory
optimization method for trajectory prediction. In Sect.3, probabilistic conflict
detection algorithm is provided. Section 4 gives the numerical results and the
effectiveness of our proposed algorithms is illustrated. Finally, conclusions and
future research direction are provided in Sect. 5.

2 Trajectory Prediction

Our proposed stochastic optimization method combines the deterministic opti-
mization method with the gPC method. In this section, we first introduce the
deterministic trajectory optimization method, thereafter we propose the computa-
tionally efficient stochastic approach.

2.1 Deterministic Optimization Method

The following general continuous-time optimal control problem in Bolza form is
considered. Determine the state variables, x(z) € R™, the control variables, u(t) €
R", the initial time, ¢, and the terminal time, 7, on the time interval, f € [t0, tf], that
minimize the cost function given by:

‘e
7= 0uxli0) 1) + [ ale),u(r).0)ds M)
0
subject to the dynamic constraints:
dx
o = f(x(2),u(t),t) 2

the inequality path constraints:

Cmin < c(x(t),u(t),t) < cmax € R™ (3)
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and the boundary conditions:
bimin < b(x(l‘()),.x(l‘f)) < bpax € R" 4)

where ¢p and g define the Mayer and Lagrange terms in the cost function,
respectively, f is the system dynamics, ¢ defines the path constraint functions, and
b expresses the boundary condition functions.

In this research, we apply the direct collocation pseudospectral method, which
has increased in popularity for solving optimal control problems in recent years.
Especially the Radau pseudospectral method [18] is employed to solve the optimal
control problems. In the pseudospectral method, the dynamic variables (the state
variables, x(¢), and the control variables, u(t)), which depend on time, are approx-
imated and parameterized using Lagrange polynomials. The cost function (Eq. (1))
and the constrains (Eqs. (2)—(4)) are also discretized using a quadrature rule, and
the continuous-time optimal control problem is discretized and transcribed into a
nonlinear programming (NLP) problem, then an NLP solver, such as sequential
quadratic programming (SQP), is applied to determine the optimal solution.

In this paper, we employ the General Pseudospectral Optimization Software
(GPOPS) [20], which is performed in MATLAB and using SNOPT [7] as the NLP
solver. Using GPOPS, the continuous-time optimal control problem is transformed
into the NLP problem for SNOPT NLP solver which finds the optimal solution.
Therefore, GPOPS is employed as the deterministic solver in the gPC algorithm
described in the next subsection.

2.2 Stochastic Optimization Method

Uncertainties during flight are considered as random variables, and the aircraft’s
motion is described as stochastic differential equations. One of the most commonly
used methods for solving stochastic differential equations is Monte Carlo method,
or one of its variants such as the quasi Monte Carlo method. Monte Carlo method
generates random samples of random variables based on their prescribed probability
density function. Each random sample is inserted into the stochastic differential
equations, and the stochastic problem is transformed into the deterministic problem
that can be solved using deterministic methods. Using a set, or ensemble, of deter-
ministic solutions, the statistical information (e.g., expected value (mean), variance
and covariance) can be calculated. The Monte Carlo method is straightforward to
implement because it only requires repetitive application of deterministic solvers.
However, it is well known that the mean converges slowly and a large number of
executions are needed for accurate results, which implies excessive computational
burden.

The gPC method is also easy to implement by using sample points of the random
variables and repetitive executions of deterministic simulations as in the Monte
Carlo method. However, to reduce the computational burden, the gPC algorithm
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uses the collocation points as the sample points and a polynomial approximation to
determine the solution as described in detail later. By the gPC method, the stochastic
solutions are expressed as orthogonal polynomials of the random variables, and the
different types of orthogonal polynomials, such as Hermite and Legendre, can be
chosen to achieve better convergence.

There are two main methods of the gPC algorithm, i.e., the Galerkin and the
stochastic collocation. With respect to the implementation, a disadvantage of the
Galerkin method is that it can be cumbersome and difficult to implement for
complex and nonlinear systems [23]. In contrast, the stochastic collocation approach
is straightforward and easier to implement because it can be solved by using
the deterministic numerical solvers [22]. Therefore, in this paper, the stochastic
collocation form of the gPC method is employed. The stochastic collocation form
of the gPC algorithm is explained as follows.

By the gPC method, the solution z(p) is approximated by the summation of the
orthogonal polynomial of independent random variables p = (p1,..., py) € RV. The
Mth order approximation of the solution zj;(p) is written as the following equation.

M
wm(p) = Y, Cu®u(p) 5
m=1

where C, is the coefficient, and @(p) represents the N-dimensional orthogonal
polynomial basis function obtained from the one-dimensional basis function of each
random variable ¢ (p;) (i =1,...,N) by the tensor product rule.

N

(I)m(plv"'apN) :H(p[ll(pl) (m: 15"'7M7 li: lvap) (6)
i=1

where P is the total degree of one-dimensional bases ¢/, and M is the total
number of tensor product basis functions and determined by the following binomial
coefficient.

_(N+P
M—( ! ) )

In this paper, the normalized orthogonal polynomial basis is used by satisfying
the following orthogonality condition.

El07(p)o* ()] = [ 6/ (09" (p)pi(p)dp: = S ®

where §j; is the Kronecker delta function, and p;(p;) is the probability density
function corresponding to the ith random variable p;.
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In addition, the coefficient C,, in Eq. (5) is determined by the following equation.

Cn = E[z2(p)@u(p)] = / 2(p)@u(p)p(p)dp )

where p(p) is the joint probability density function given by:

N
p(p) = Hpi(pi) (10)

Applying the stochastic collocation method, the integral in Eq.(9) can be
approximated by using Gaussian quadrature. A set of collocation points and quadra-
ture weights is chosen based on the quadrature rule. Though the N-dimensional
quadrature is derived from the one-dimensional quadrature by the tensor product
rule in the research by Cottrill [3], we employ the sparse grid quadrature based on
extensions of one-dimensional or univariate Gaussian quadrature [6]. In general,
as the number of random variables gets larger, the tensor product grid suffers the
curse of dimensionality. However, the sparse grid with Q collocation points p/ (j =
1,...,0) and associated weights o/ (j = 1,...,Q) consists of a very small number
of the collocation points, and it can reduce the computational burden and increase
the number of random variables or uncertainties. As in the Monte Carlo method, the
stochastic problem is transformed into the deterministic problem on each collocation
point, and can be solved by repetitive application of the deterministic method.

The approximation of Eq.(9) based on the quadrature rule is given by the
following equation.

Y . o
Cn~ Y, 2(p)) ®u(p’) o (11)

where z(p/) denotes the deterministic solution using the jth collocation point p/ of
the random variables.

The approximate stochastic solution is determined by Eqgs.(5) and (11) as
the orthogonal polynomials of the random variables. The stochastic solution is a
distribution function of the random variables and can be evaluated for any given
random inputs. In addition, the statistical information of the stochastic solution can
be calculated by using the coefficients given by Eq.(11), and evaluates how the
solution varies with the random variables. The expected value of the solution is
described as the following equation.

M
B~ Eln(@) = [ | 3 Catulp) | p0)dp=C1 (12)
m=1

The variance is calculated by the following equation.
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var(z(p)] = E[(z(p) — E[z(p)])*] ~ E[(zu(p) — Elzm(p)])?]

M 2
_/lz cmcpm(p)—cll p(p)dp
m=1

=Y [Cul (13)

m=2

By the theory of the gPC method, the stochastic solution including the statistical

information (expected value and variance) is approximated and determined. Using
the gPC algorithm mentioned above, in this paper, the gPC method with GPOPS as
the deterministic trajectory optimization solver is applied to the stochastic trajectory
optimization problems.

2.3 Stochastic Trajectory Prediction Algorithm

In this study, the time of arrival at the waypoint from the aircraft’s current position is
predicted by using our proposed stochastic optimization algorithm. The procedures
of the algorithm are listed as follows.

1

2.

. Ge;nerate a set of collocation points p/ (j=1,...,0) and associated weights
o (j=1,...,0). '
Calculate the values of the orthogonal polynomial basis functions @,,(p’) (m =

1,....M, j=1,...,0).

. Solve the Q deterministic trajectory optimization problems using the Q colloca-

tion points p/ (j=1,...,Q), and determine the solution z(p/) (j=1,...,Q) (zis
the time of arrival or the terminal time 77 of the trajectory optimization problem
in this paper).

. Calculate the coefficients C, (m=1,...,M).
. Calculate the statistics of the approximate solution, the expected value E[z(p)]

and the variance var(z(p)), from the coefficients C,,.

2.4 Numerical Simulation

In this subsection, numerical simulation is conducted to verify the effectiveness and
performance of our proposed stochastic trajectory optimization method.
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Fig. 1 Problem setting for
trajectory prediction

2.4.1 Problem Setting

We consider the aircraft flying in two-dimensional plane, the & and 1 coordinate
frame as shown in Fig. 1. The state variables are defined as x(t) = (§,n, y)” where
v is the heading angle, and the control variable u(¢) is the bank angle. The control
variable is bounded as |u(¢)| < 35°. The aircraft dynamics are described in the
following equations.

f = VCos Y +wg
n = vsiny +wy

V= %tanu (14)

where g is the acceleration of gravity: 9.8 m/s?, v is the airspeed (true airspeed), and
(wg,wn) are the wind velocities in the £ and 1 directions. v is assumed to be the
constant speed of 480 knots.

As shown in Fig. 1, the initial and terminal conditions (#7 is the terminal time)
are as follows.

x(0) = (0,0,0)"
x(1) = (40,0,0)" (15)

For solving the optimal control problems, the cost function J is minimized and
given by the following equation.

f
J= 10*4-tf+/ u(t)’dt (16)
0

Furthermore, as the uncertainties during flight or random variables for the gPC
method, the wind prediction error, the airspeed measurement error, and the current
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Table 1 Comparison between gPC and Monte Carlo methods

Algorithm Total number of sample points  Efrs] (s)  y/varltf] (s) Computation time

gPC 51 300.24 7.04 45s
Monte Carlo 20,000 300.21 7.08 5.5h

position estimation error are considered. In this paper, we consider the aircraft
flying in two-dimensional horizontal plane, and the wind prediction error and the
current position estimation error are divided into two components, i.e., the longitude
and latitude directions. Then, we consider five random variables. In addition, we
assume that these uncertainties are modeled as the standard deviations of the
Gaussian distributions, and the values are 5.17m/s for the wind prediction errors,
2.57m/s for the airspeed measurement error and 50m for the current position
estimation errors [2, 17,21, 24]. The wind prediction error represents uncertainty
in the meteorological prediction, and for simplicity the only wind prediction error is
considered. Because the Gaussian distributions are used for the uncertainties in this
paper, Hermite polynomial basis functions collocated at Gauss-Hermite quadrature
points are selected for the gPC method as suggested in the paper by Xiu [22].

The stochastic solution of the terminal time 7 is calculated by using our proposed
stochastic approach. In addition, to verify the effectiveness and performance of
our proposed method, the stochastic solution is computed by using Monte Carlo
method, one of the most commonly used methods for solving stochastic differential
equations, and compared with the solution that is calculated by using our proposed
approach.

2.4.2 Simulation Results

Table 1 shows the expected value E[t¢] and standard deviation \/var(ts] (derived
from the variance var|ts]) of the terminal time #¢ by using the gPC and Monte Carlo
methods. The estimated solutions given by the gPC and Monte Carlo methods (i.e.,
E[ts] and \/var]ts]) closely match each other. It indicates that the gPC algorithm
can estimate a reasonable solution. In addition, as shown in Table 1, by using
the Monte Carlo method, the estimation of the solution converges after 20,000
iterations, requiring about five and a half hours. On the other hand, the gPC method
requires only 51 collocation points for five random variables by using the sparse grid
quadrature. The total number of multidimensional bases M and one-dimensional
bases P are 56 and 3, respectively. Computation time is approximately 45s for
solving the 51 trajectory optimization problems and determining the solution by
constructing the gPC approximation. Our proposed algorithm performs much faster
than the Monte Carlo method does. Therefore our proposed gPC method provides
an accurate approximate solution of the stochastic trajectory optimization problem
while dramatically reducing computational cost.
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3 Conflict Detection

By using the trajectory prediction algorithm described in Sect. 2, we propose the
estimation method of the conflict probability between aircraft in this section. First,
the conflict probability between aircraft is defined, thereafter the estimation method
of the conflict probability is described.

3.1 Contflict Prediction

In this study, the specific conflict scenarios, the merging situations at the waypoint
(merging point), are considered. As described in Sect.2, the time of arrival at
the merging point from the aircraft’s current position can be predicted. Based on
this trajectory prediction algorithm for two or multiple aircraft, a possible conflict
between aircraft is detected. A conflict (not a collision) is defined as a situation
where two or more aircraft come within the required minimum separation standard
between each other. We consider multiple aircraft flying at the same altitude, and
the required minimum separation is set to 5nm horizontally. For simplicity, it is
assumed that all aircraft pass at the merging point at the same speed of V knots.
Therefore, the minimum distance separation can be transcribed into the minimum
time separation ATy, = 5-3600/V s.

The purpose of the conflict prediction is to compute the probability that any two
aircraft will be in conflict at the merging point. By using the stochastic trajectory
prediction algorithm, the expected value and variance (or standard deviation) of the
time of arrival at the merging point are calculated. The probability distribution of
the time of arrival is assumed to be the Gaussian distribution. Therefore, we can
determine the Gaussian distributions of the two aircraft, labeled A and B, P4(¢)
and Pg(r), respectively. The conflict probability between the two aircraft can be
determined by using these Gaussian distributions. The estimation method of the
conflict probability is described in the next subsection.

3.2 Conflict Probability Estimation

We use the convolution integral to estimate the conflict probability. The conflict

probability CP4_p between the aircraft A and B is given by the following equations.
ATSep

chin= [ " Paa(ve (17)
—Algep

Py_p(7) = /7 ZPA(I)PB(t+‘L')dt (18)
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where Py_p(7) given by Eq. (18) expresses the conflict probability when the time
separation (the time difference of the time of arrival) at the merging point between
the aircraft A and B is 7. Therefore, by using Eq. (18), the conflict probability is
described in Eq.(17), because the conflict occurs when 7 satisfies the following
condition: —AT;,p, < T < AT,

By the theory of the convolution integral, P4_5(7) given by Eq. (18) is expressed
as the Gaussian distribution. Therefore, by using Eqs. (17) and (18), the conflict
probability between any two aircraft can be estimated.

4 Numerical Simulation

In this section, numerical simulation is conducted to verify the effectiveness and
performance of our proposed stochastic approach to detect conflicts. We consider
various conflict scenarios, especially merging situations, between two or multiple
aircraft.

4.1 Problem Setting

We consider the aircraft flying in two-dimensional horizontal plane. The two cases
are considered: the meteorological prediction for the aircraft dynamics is not
considered in Case 1, and considered in Case 2. The meteorological prediction data
are provided by the Japan Meteorological Agency as a grid format of longitude
and latitude. Therefore, to obtain the required wind predictions, linear and bilinear
interpolations are applied. In addition, because the meteorological prediction data
are provided as a grid format of longitude and latitude, the longitude 6 and latitude
¢ coordinate frame is considered in Case 2, whereas the & and 1 coordinate frame
is considered in Case 1. The state variables are defined as x(¢) = (§,7n, )T in Case
1 and x(¢t) = (0,¢,y)T in Case 2, and the control variable u(t) is the bank angle.
The control variable is bounded as |u(r)| < 35°. The aircraft dynamics in Case 1
are given by Eq. (14), and the dynamics in Case 2 are described in the following
equations.

VCOS Y + wg
(R+ h)cos¢

vsiny +wy
R+h

V= %tanu (19)
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Fig. 2 Problem setting for Merging Point
conflict detection in Case 1 A D. nm ){

where R is the Earth’s radius: 6.37 x 10°m, £ is the altitude, and (we,wy) are the
wind velocities in 6 and ¢ directions. The altitude is assumed to be a constant
35,0001t

As the uncertainties during flight, the wind prediction error, the airspeed
measurement error, and the current position estimation error are also considered as
described in Sect. 2.4.1. In addition, Hermite polynomial basis functions collocated
at Gauss-Hermite quadrature points are chosen for the gPC method. Furthermore,
for solving the optimal control problems, the cost function J given by Eq. (16) is
minimized.

For the gPC method, the number of collocation points for five random variables
is set to 51 by using the sparse grid quadrature, and the deterministic trajectory
optimization problems are solved repetitively. In addition, the total number of
multidimensional bases M and one-dimensional bases P are 56 and 3, respectively.
The solutions including the statistical information such as the expected value and
variance (or standard deviation) are calculated. The merging situations in Case 1
and 2 are explained as follows.

4.1.1 Merging Scenario in Case 1

As illustrated in Fig. 2, we consider the merging scenarios of the two aircraft, labeled
A and B, flying at the same altitude and the same speed of V = 480 knots (true
airspeed). The distance between the position of the aircraft A and the merging point
is set to D nm, and the distance between the position of the aircraft B and the
merging point is longer and set to D +dy,,, (dse,, > 0) nm. The initial and terminal
conditions of the aircraft A and B are as follows.

x4(0) = (=D,0,0)"
xa(tga) = (0,0,0)"
x5(0) = (0,~(D+dep), m/2)"
xp(tgp) = (0,0,m/2)" (20)
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Fig. 3 Problem setting for OA Mergine Point
conflict detection in Case 2 smne /I\
: :
< | A A
g [P A
2 B C 1
I e e
Longitude, deg [7]

where #74 and #7p are the terminal time (or the time of arrival at the merging point)
of the aircraft A and B, respectively.

We can generate various merging situations with various combinations of D and
dyep. In this paper, D is set to 80 and 160 nm and d;,, is set to 5 and 10 nm, and the
total number of the merging scenarios is four. For each combination, the conflict
probability is estimated and evaluated by using our proposed stochastic method
described in Sect. 3.

4.1.2 Merging Scenario in Case 2

As shown in Fig. 3, the merging scenario of the three aircraft, labeled A, B, and C,
flying at the same altitude (35,000ft) and the same speed of V = 450 knots (true
airspeed) is considered. The initial and terminal conditions of the aircraft A, B, and
C are as follows.

x4(0) = (138.5,34.75,0)"
xa(tpa) = (140,35.5,m/2)"
xp(0) = (139,34.25,0)"
xp(tsg) = (140,35.5,m/2)"
xc(0) = (139.5,34.25,0)7
xc(tge) = (140,35.5,m/2)" 2D

where f74, trp, and tc are the terminal time (or the time of arrival at the merging

point) of the aircraft A, B, and C, respectively.
Using our proposed stochastic approach described in Sect. 3, the conflict proba-
bility between the pairwise aircraft is estimated and evaluated.
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Fig. 4 Probability 0.03 ‘
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4.2 Simulation Results

In Case 1, Figs. 4 and 5 show the probability distributions of the time of arrival at
the merging point for the combinations of D and dy,),. Table 2 indicates the conflict
probabilities for the combinations of D and dy.,. As shown in Table 2, when dy,
is 10nm, the conflict probability is lower than that of when dj., is Snm due to
the longer time separation between the aircraft A and B. When dp is 10nm, as D
becomes larger, the conflict probability becomes much higher. On the other hand,
when d. is 5 nm, the conflict probability of when D is 160 nm is not much different
from that of when D is 80nm. The reasons of this are as follows. As shown in
Figs.4 and 5, when D becomes larger, the standard deviation of the time of arrival
gets larger and the probability distribution grows wider. Accordingly, when dy,, is
10 nm, the range in which the two probability distributions overlap each other is
much larger. In contrast, when d., is 5 nm, the range of when D is 80 nm is not
much different from that of when D is 160nm. As a result, when djp is 10 nm, the



Probabilistic Conflict Detection in the Presence of Uncertainty 31

Table 2 Conflict probability

in Case 1 (D,ds.p) (nm)  Conflict probability
(80,5) 0.49928
(80,10) 0.038099
(160,5) 0.467965
(160,10) 0.177118
0.03 —
B
0.025 e
fay
% 0.02 | ]
]
£ 0015 ]
2
3
c 001r i
&
0.005 |

550 600 650 700 750 800 850
time of arrival, sec

Fig. 6 Probability distribution of time of arrival in Case 2 (mean value: 674.55 (A), 736.66 (B),
641.28 (C), standard deviation: 15.01 (A), 17.27 (B), 14.94 (C))

Table 3 Conflict probabilit
Onfiict probabiitty Combination of aircraft ~ Conflict probability

in Case 2
Aand B 0.16687
Aand C 0.37491
Band C 0.0076496

conflict probability of when D is 160 nm is higher than that of when D is 80 nm.
On the other hand, when dj., is 5 nm, the conflict probability of when D is 160 nm
is not much different from that of when D is 80 nm.

In addition, the computation time for calculating the time of arrival and each
conflict probability is about 1 min. Our proposed probabilistic approach can provide
reasonable solutions while dramatically reducing computational cost.

In Case 2, Fig. 6 shows the probability distributions of the time of arrival at the
merging point for the three aircraft. The position of the aircraft C is nearest to the
merging point among the three aircraft and the mean value of the time of arrival of
the aircraft C is the smallest as shown in Fig. 6. On the other hand, the position of the
aircraft B is farthest to the merging point and the mean value of the time of arrival
of the aircraft B is the longest. As shown in Fig. 6 and Table 3, the distributions of
the three aircraft and the conflict probabilities are effectively calculated. In addition,
the computation time for calculating the time of arrival is approximately 1 min. In
Case 2, the conflict probabilities and the time of arrival can be calculated by using
our proposed computationally efficient method.
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Therefore, through the numerical simulations in Case 1 and 2, we can confirm the
effectiveness and performance of our probabilistic algorithm for detecting possible
conflicts by using the computationally efficient gPC method.

5 Conclusions and Future Work

In this paper, we proposed the gPC method for solving the stochastic trajectory
optimization problem and estimating the conflict probability. As the sample prob-
lems, the numerical simulation for the trajectory prediction demonstrated that our
proposed computationally efficient method can generate the accurate approximation
of the solution of the stochastic trajectory optimization problem by determining and
characterizing the statistical information, i.e., the expected value and variance. In
addition, we estimated and evaluated the conflict probability between the pairwise
aircraft in two merging scenarios by using the stochastic trajectory prediction
algorithm. Through the numerical simulations for trajectory prediction and conflict
detection, the performance and effectiveness of our novel probabilistic approach
was evaluated and verified.

The purpose of trajectory prediction and conflict detection is to resolve an
impending conflict. For conflict resolution, we need to decide the time to initiate
a resolution maneuver and select the maneuver to execute. For solving the problem
of conflict resolution, knowledge of the conflict probability help to establish the
optimal time to initiate the resolution maneuver as well as the characteristics of the
maneuver. Further research will focus on applying stochastic trajectory optimization
for conflict resolution problems. Besides, for improving our stochastic algorithms,
our proposed stochastic method is currently being extended for three-dimensional
aircraft dynamics. In addition, the random variables will be assumed to have the
different kinds of probability density function, and it will lead to a mix of the
different kinds of polynomials in the gPC method. Furthermore, we will consider
the time-varying random variables such as time-varying wind prediction error. By
introducing the time-varying random variables, the number of random variables and
computational burden will be increased, however, our stochastic approach has a
potential for solving such a difficult problem.
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