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Abstract Air traffic management ensures the safety of flight by optimizing flows
and maintaining separation between aircraft. After giving some definitions, some
typical feature of aircraft trajectories are presented. Trajectories are objects belong-
ing to spaces with infinite dimensions. The naive way to address such problem is to
sample trajectories at some regular points and to create a big vector of positions
(and or speeds). In order to manipulate such objects with algorithms, one must
reduce the dimension of the search space by using more efficient representations.
Some dimension reduction tricks are then presented for which advantages and
drawbacks are presented. Then, front propagation approaches are introduced with
a focus on Fast Marching Algorithms and Ordered upwind algorithms. An example
of application of such algorithm to a real instance of air traffic control problem
is also given. When aircraft dynamics have to be included in the model, optimal
control approaches are really efficient. We present also some application to aircraft
trajectory design. Finally, we introduce some path planning techniques via natural
language processing and mathematical programming.
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1 Introduction

Aircraft trajectory is one of the most fundamental objects within the frame of
ATM. However, partly due to the fact that aircraft positions are most of the time
represented as radar plots, the time dependence is generally overlooked so that many
trajectory statistics conducted in ATM are spatial only. Even in the most favorable
setting, with time explicitly taken into account, trajectory data is expressed as an
ordered list of plots labeled with a time stamp, forgetting the underlying aircraft
dynamics. Furthermore, the collection of radar plots describing the same trajectory
can have tenths more samples, nearly all of them redundant. From the trajectory
design point of view, this redundancy is real handicap for the optimization process.
In this survey, alternative trajectory representations are presented with a description
of their advantages and limits. Such new approaches may be applied in many areas:

Aircraft Trajectories Data Compression. As it has been previously mentioned,
ATM system manage aircraft trajectories and control them in order to guarantee
safety and airspace capacity. Currently those trajectories are represented by the
mean of plot lists which are manipulated by ATM software. Every day, all
aircraft trajectories are registered into large database for which huge capacity is
needed. Based on this new trajectory representation for which redundancy has been
removed, the trajectories database may be strongly improved from the capacity point
of view. This compressed trajectory format may also be used for improving the
trajectories transmission between ATM entities.

Aircraft Trajectories Distance Computation. Although trajectories are well
understood and studied, relatively little investigation on the precise comparison of
trajectories is presented in the literature. A key issue in performance evaluation
of ATM decision support tools (DST) is the distance metric that determines the
similarity of trajectories. Some proposed representation may be used to enhance
trajectory distance computation.

Aircraft Model Inference. All aircraft models are based on ODEs (Ordinary
Differential Equation), including tabular ones. Control input includes condition and
model parameters. The model refinement (and computational complexity) ranges
from tabular to many degrees of freedom. The aircraft model inference consists in
answering the following question: Given a parametrized model and a goal trajectory,
can we infer the best parameter values? A model can be viewed as a mapping from
the control space into the trajectory space. The way to answer the previous question
is then given by the closest model to the goal trajectory.

Trajectory Prediction. Air traffic management research and development has
provided a substantial collection of decision support tools that provide automated
conflict detection and resolution [13,24,78], trial planning [46], controller advisories
for metering and sequencing [19, 75], traffic load forecasting [45, 47], weather
impact assessment [25, 41, 74]. The ability to properly forecast future aircraft
trajectories is central in many of those decision support tools. As a result, trajectory
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prediction (TP) and the treatment of trajectory prediction uncertainty continue as
active areas of research and development (e.g. [49, 50, 61, 71, 76]). Accuracy of
TP is generally defined as point spatial accuracy (goal attainment) or as trajectory
following accuracy. The last one can be rigorously defined by the mean of trajectory
space. The first one is a limit case of the second by adding a weight function in
the energy functional. Since we may prescribe smoothness accuracy of a simplified
model relative to a finer one, may be computed.

Major Flows Definition. When radar tracks are observed over a long period of
time in a dense area, it is very easy to identify major flows connecting major airports.
The expression “major flows” is often used but never rigorously defined. Based
on an exact trajectory distance and a learning classifier, it is possible to answer
the following questions: Given a set of observed trajectories, can we split it into
“similar” trajectory classes? If yes, classes with highest number of elements will
rigorously define the major flows. Given those classes and a new trajectory, can we
tell if it belongs to a major flow and which one? The principle of the major flows
definition is to use shape space to represent trajectory shapes as points and to use
a shape distance (the shape of a trajectory is the path followed by an aircraft, that
is the projection in the 3D space of its 4D trajectory. The speed on the path has no
impact).

Trajectory Planning. To improve Air Traffic Management, projects have been
initialized in order to compel the aircraft in position and in time (4D trajectory)
so as to avoid potential conflict and allow for some optimality with respect to a
given user cost index, environmental criteria (noise abatement, pollutant emission
...). Depending on the time horizon, several kind of plannings can be designed:

» At a strategical level, only macroscopic indicators like congestion, mean traffic
complexity, delays can be taken into account, considering the high level of
uncertainty;

» at a pre-tactical level, the accuracy of previous indicators, specially congestion
and complexity increases while at the same time early conflict detection can be
performed;

* finally, at the tactical level, conflict resolution is the major concern and optimality
of the trajectories is only marginally interesting.

As we can see, there are many areas of ATM where trajectories are the main
objects that have to be manipulate.

The second part of this survey presents some relevant features of aircraft
trajectories. The third part, presents dimension reduction tricks for optimization
approaches. The fourth part describes approaches based on wave front propaga-
tion in isotropic and anisotropic environments. The fifth part presents automatic
control approaches with some application to air traffic control. Finally, the sixth
part introduces some path planning techniques via natural language processing
and mathematical programming. Finally, the seventh part gives some air traffic
management applications of such trajectory design approaches.
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2 Some Trajectories Features

In the following all aircraft trajectories will be described as mappings from a time
interval [a, b] to a state space E with E either R or R® depending on whether speed
is assumed to be part of aircraft state or not. Extension to trajectories on a sphere
(typically long haul flights) will be sketched only.

2.1 Notations and Terminology

The reference for this section is [6]. Let y[a,b] — E be a trajectory. The origin of
the trajectory is y(a) and the destination is y(b). Those two points are called the
endpoints of the trajectory. All trajectories are assumed to be at least continuously
differential (class C!) so that the length of a trajectory y[a,b] — E is well defined as:

1= [ 17 )l m

If || ¥ (r)|| = O for some £ € (a,b) the point 7 is said to be singular. A parametrized
curve of class C? (or more concisely a C? curve) will be a C” mapping from an open
time interval (a,b) to the state space E with no singular points. Any C' curve can be
parametrized by arc length. Let y(a,b) — E be such a curve. Defining the mapping

s(a,b) — (0,1(y)) by:
0= [ 1F Ol @

We see that by the non-singularity assumption on 7, s' (t) = ||y (¢)|| > 0 for any
t € (a,b), so that s is an invertible mapping. Now, yos~! is a mapping from the open
interval (0,1(y)) to E satisfying:

Iyos™ I =Ny os™o(s™) =1 3)

In the following, we will simply write y(s),s € (0,I(y)) for a curve parametrized
by arc length, dropping the variable ¢.

Remark 1. One must be careful with the respective definitions of trajectories and
curves: a curve is defined on an open interval and thus has no endpoints. Never-
theless, any trajectory y[a,b] — E has an associated curve, namely y(a,b) — E.
It is generally more convenient to deal with curves to avoid special treatment of the
endpoints.
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Remark 2. The non singularity assumption on the underlying curve is very natural
when dealing with aircraft trajectories in R? since it is not possible for an aircraft to
stop except at the endpoints of the trajectory.

Remark 3. While the case E = R3 is very natural and intuitive, care must be taken
when E = R® since all the preceding definitions apply in a completely different
setting: for example, the non singularity assumption does not implies nowhere zero
speed, but only that speed and acceleration cannot both vanish at the same time. The
arc length parametrization allows to define very important geometrical quantities
when E = R,

Definition 1. Let:
7(0,)) = R’ (4)

be a C' curve parametrized by arc length. The unit tangent vector to y at
s€(0,1) is:

(s) =7 (s) 5)

It is clear from the definition of parametrization by arc length that 7(s) is a unit
vector.

Definition 2. Let:
7(0,1) = R? (6)

be a C? curve parametrized by arc length. The curvature of y at s € (0,1) is:

K(s)=17 (s)] 7

The curvature can be explicitly computed even if the curve ¥ is not parametrized
by arc length. The general formula is:

Y OAY @)
KO =70

with A the vector cross product. Curvature is of primary importance for ATM related
studies since as mentioned before aircraft trajectories are mainly made of straight
lines and arcs of circle and so have piecewise constant curvature. If at point ¢ the
curvature is not zero, the curve is said to be biregular at 7. For a curve y parametrized
by arc length, the unit normal vector v(s) is defined at all biregular points by:

®)

v(s) = €))
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Remark 4. A straight line has everywhere zero curvature. However, it is clearly
possible to define a unit normal vector. At a biregular point, 7(s) and v(s) are well
defined. Taking their cross product gives a new vector 3(s) = 7(s) A v(s). If the
curve ¥ is assumed to be C3, it can be shown that B(s) and v(s) are collinear:

B(s) =T(s).v(s) (10)

The real number 7 (s) is called the torsion of the curve at s and represents an
obstruction for the curve to be planar. As for the curvature, it is possible to compute
the torsion even if the curve is not parametrized by arc length:

" "

 da(f 0.4 0.7 1)
IO = " OA7 O

(1)

Torsion is not so useful as curvature for en-route data analysis since only a few
number of trajectories have non zero torsion. However, it is very relevant in terminal
areas.

Remark 5. The E = R case is again very different, since the geometric meaning of
curvature and torsion is not obvious in this setting. Furthermore, the extra degrees of
freedom will impose using higher order derivatives in order to build up an equivalent
description. A complete treatment goes beyond the scope of the present paper and
has little interest for our purpose (in practical applications, the speed information,
when available, is used to improve estimates of curvature and torsion and not to
study a trajectory in R®).

3 Trajectory Models for Optimization

This section presents some dimension reduction tricks in order to reduce the
dimension of the state space for which an optimization process is searching for
an optimal vector of parameter.

This approach is summarized by Fig. 1.

The optimization process controls the parameter vector which is then used to
build the trajectory 7 for evaluation.

Each coordinate can be considered separately in order to build a given trajectory:
(1) = [x(1),3(1),2(1)]".

In this section, several trajectory models are presented and compared. Simple
models are first presented.
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Fig. 1 The optimization
process control the X vector Optimization

in order to build a trajectory y
for evaluation
X (parameters)
Trajectory
Reconstruction
Y T ~——
Trajectory
Evaluation
y=f(X)
Fig. 2 Trajectory defined by WP4
four way points connected by WP2
straight lines
WP1
WP3

3.1 Straight Line Segments

One of the easiest way to design trajectory is to use way points connected by straight
lines (see Fig. 2). This easy principle ensures continuity for the trajectory but not for
its derivatives. If one want to approximate trajectory with many shape turns, one
have to increase the number of way points in order to reduce the error between the
model of the real trajectory.

In order to improve concept Lagrange interpolation process adjust a polynomial
function to a given set of way points.

3.2 Lagrange Interpolation

Given n + 1 real numbers y;,0 <i < n, and n+ 1 distinct real numbers xy < x; <
... < xp, Lagrange polynomial [39] of degree n (L,(x)) associated with {x;} and
{y:} is a polynomial of degree n solving the interpolation problem:

Ly(x;)=yi, 0<i<n (12)

Ly(x) = yi.li(x) (13)
i=0
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Fig. 3 L,(x) is represented
by the black curve. The other
curves are the polynomials

l,-(x)

where

(x—x))
Lx)=1]——= (14)
J#i (xi — x;j)

An example of Lagrange interpolation is given in Fig. 3 for which four points
are interpolated by the black curve which represents Ls(x). The four polynomial
functions {ly(x),1; (x),l2(x),13(x)} are also given by the red, blue, green and yellow
curves.

When derivatives have also to be interpolated, Hermite interpolation has to be
used.

3.3 Hermite Interpolation

Hermite interpolation [3] generalizes Lagrange interpolation by fitting a polynomial
(H(x)) to a function f that not only interpolates f at each knot but also interpolates
a given number of consecutive derivatives of f at each knot. This means that the first
derivative of the polynomial H (x) have to fit the first derivatives of the function f(x):

97H (x) _[9f)
[ axj :|x—xi_|: axj :|x—xi (15)

forall j=0,1,....mandi=1,2,... k
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Fig. 4 Lagrange interpolation result for a set of aligned points

This means that n(m + 1) values

(x07y0)7 (xlayl)a R (xﬂflvynfl)v
(-x()ay/)a (-xluyl)u ceey (-x 717)/7 )7
o S (16)

(oo™, ™), - ey
must be known, rather than just the first n values required for Lagrange interpolation.
The resulting polynomial may have degree at most n(m+ 1) — 1, whereas the
Lagrange polynomial has maximum degree n — 1.

These interpolation polynomials seem attractive but they both induce oscillations
between interpolation points (Runge’s phenomenon). Runge’s phenomenon is a
problem of oscillation at the edges of an interval that occurs when using polynomial
interpolation with polynomials of high degree (which is the case for Lagrange and
Hermite interpolation). An example of such Runge’s phenomenon is given in Fig. 4
for which Lagrange interpolation has been used.

We can conclude that interpolation with high degree polynomial is risky. In
order to avoid this drawback of high degree polynomial interpolation one must use
piecewise interpolation.

3.4 Piecewise Linear Interpolation

This is the simplest piecewise interpolation method.

Given n+ 1 real numbers y;,0 < i <n, and n+ 1 distinct real numbers xg < x; <
... < xp, we consider the n linear curves /in;(x) = a;x + b; on the intervals [x;, x; 1]
fori=0,...n— 1 (lin;(x) represent linear functions for which g; is the slope and b;
a constant).

Each /;(x) has to connect two points ((x;,y;), (Xi+1,Yi+1))

Yi = aixi + bixiandy; 1 = aixir1 + bixiy (17)



214 D. Delahaye et al.

Xo Xij-1 Xj Xi+1 X

Fig. 5 Piecewise linear interpolation

In order to associate a piecewise formulation of this interpolation method, the
following “tent” functions are defined:

f;;x‘;ll ifx € [xi—1,x]
l/ll(x) = )ﬁ ifx S [xl-,xiﬂ] (18)
0 elsewhere
Then,
i=n
fx) =Y yi-vilx) (19)
i=0

An example of such a linear piecewise interpolation is given in Fig. 5.
The derivative of the resulting curve is not continuous. In order to fix this
drawback, one can use piecewise quadratic interpolation

3.5 Piecewise Quadratic Interpolation

We consider the n quadratic curves w;(x) = ¢i(x) = aix*> + bix + ¢; on the
intervals [x;,x;11] for i = 0,...n — 1. Each g;(x) has to connect two points
((xi,yi)s (i 1,9i41)); = yi = aixt + bixi + ¢; and yip = aixz q + bixiy1 + ci.
Furthermore, on each point, the derivative of the previous quadratic has to be
equal to the derivative of the next one; = 2a; + b; = 2a;_| + b;—. For the first
segment the term 2a;_| + b;_1 is arbitrarily chosen (this will affects the rest of the
curve). An example of piecewise quadratic interpolation is given in Fig. 6. The main
drawback of piecewise quadratic interpolation is linked to the effect induced on the
curve by moving on point. As a matter of fact moving one point may totally change
the shape of the interpolating curve. The piecewise cubic interpolation avoid this
drawback.
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Initial slope

X0 Xi-1 Xj Xi+1 Xn

Fig. 6 Piecewise quadratic interpolation. The shape of the entire curve depend of the choice of
the initial slope. Between two points, a quadratic polynomial is fitted

slope in i

slope in i+1

Yi+1

Xj1 Xj Xi+1 Xi+2

Fig. 7 Piecewise cubic interpolation. The derivative at point x; is given by line joining the point
(xi—1,yi—1) and (x;41,yi+1). Between two points, a cubic polynomial is fitted. The term / represents
the distance two consecutive points

3.6 Piecewise Cubic Interpolation

This interpolation is also called Hermite cubic interpolation [33]. For this interpola-
tion:

vi(x) = Gi(x) = ap® + b + cix + d; (20)

and we have the following constraints:

Ci(xi) = yi Ci(xit1) = Yit1 (1)
Yi+1 —Yi—1 S
Gl == ey Glm) = = 355 @)

An example of piecewise cubic interpolation is given in Fig. 7.
Moving a point do not affect all the curve which is the main advantage of this
interpolation. The resulting curve is C! but not C? (the second derivative is not
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continuous). The curvature radius of a curve may be expressed by the following
expression:

R= ﬂ (23)

(&)

The piecewise cubic interpolation do not insure that trajectory curvature is contin-
uous which is not adapted for aircraft trajectory mainly in TMA! areas and cubic
spline interpolation has to be used.

3.7 Cubic Spline Interpolation

This method has been developed by General Motor in 1964 [12]. For this piecewise
interpolation y;(x) = S;(x) with the following constraints:

S{(xi) Zy:; S;(xzﬂ) Z)’z,+1
8;0xi) = Si_y (iv1) S;(xiv1) = Sy (xie1) (24)
S; (xi) =8, (xiv1) S (xi1) = S;y g (xi1)

One can show that S;(x) for x € [x;,x;+1] is given by:

Si(x) = o (xip1—x)° + %it1 (r—x;)

6 xip1—x 6 “Xip1—X
+yi = — (i —x) (X1 — x) (25)
it gt — Zet (i —xi) (v =)
where
dZS,‘(x)
Oi=—3 (26)

An example of such interpolation is given in Fig. 8.

Such spline is also called natural spline because it represents the curve of a metal
spline constrained to interpolate some given points.

When interpolation is not a hard constraint, one can use some control points
which change the shape of a given trajectory without forcing this trajectory to go
through such control point; such approach is called approximation for which one of
the famous methods is the Bézier curve.

ITMA: “Terminal Maneuvering Area”.
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Xj-1 Xj Xj+1 Xi+2

Fig. 8 Cubic spline interpolation

Fig. 9 Bézier curve with two P1

int
points P.()/.

3.8 Bézier Approximation Curve

Bézier curves[28] were widely publicized in 1962 by the French engineer Pierre
Bézier, who used them to design automobile bodies. But the study of these curves
was first developed in 1959 by mathematician Paul de Casteljau using de Casteljau’s
algorithm [27], a numerically stable method to evaluate Bézier curves. A Bézier
curve is defined by a set of control points Py through P,, where n is called its order
(n =1 for linear, 2 for quadratic, etc.). The first and last control points are always the
end points of the curve; however, the intermediate control points (if any) generally
do not lie on the curve. Given points Py and Py, a linear Bézier curve B(r) is simply
a straight line between those two points (see Fig. 9). The curve is given by:

B(t) =Py +t(Py—Py) = (1 —1)Py+1tP; ,t €[0,1] 27

With four points (Py, Py, P2, P3), a Bézier curve of degree three can be built. The
curve starts at Py going towards P and arrives at P3 coming from the direction of
P;. Usually, it will not pass through P; or P;; these points are only there to provide
directional information (see Fig. 10).

Properties

* The polygon formed by connecting the Bézier points with lines, starting with Py
and finishing with P,,, is called the Bézier polygon (or control polygon).
+ The convex hull® of the Bézier polygon contains the Bézier curve.

2The convex hull or convex envelope of a set X of points in the Euclidean plane or Euclidean space
is the smallest convex set that contains X.
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P1

PO

o P2 BEZIER CURVE

P3

Fig. 10 Cubic Bézier curve

* The start (end) of the curve is tangent to the first (last) section of the Bézier
polygon.

The explicit form of the curve is given by:

B(t) = (1—1)*Py+3(1—1)tP1 +3(1 —1)’Py +13P3 , 1 € [0,1].  (28)

B(t) = bin(t)Pi, 1€[0,1] (29)
i=0
where the polynomials
n . .
bin(t) = <i)t’(1—t)n oi=0,...n (30)

are known as Bernstein basis polynomials of degree n. So, if there are many points,
one has to manipulate polynomials with high degree. In order to circumvent this
weak point one must use Basis-Splines.

3.9 Basis Splines

A B-spline [21] is a spline function that has minimal support with respect to a given
degree, smoothness, and domain partition. B-splines were investigated as early as
the nineteenth century by Nikolai Lobachevsky. A fundamental theorem states that
every spline function of a given degree, smoothness, and domain partition, can
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X (1)
Pi

EX ]

B; o (1)

tin

Fig. 11 Uniform B-splines of degree zero

be uniquely represented as a linear combination of B-splines of that same degree
and smoothness, and over that same partition. It is a powerful tool for generating
curves with many control points, B stands for basis. A single B-spline can specify
a long complicated curve and B-splines can be designed with sharp bends and even
“corners”. B-Spline interpolation is preferred over polynomial interpolation because
the interpolation error can be made small even when using low degree polynomials
for the spline. Furthermore, spline interpolation avoids the problem of Runge’s
phenomenon which occurs when interpolating between equidistant points with high
degree polynomials.

3.9.1 Uniform B-Splines of Degree Zero

We consider a node vector T = {1, 11,...,t,} with1y <#; <,...,<t, and n points P;.
One want to build a curve X () such that:

Xo(ti) = Pi (1)
= Xo(l‘) =P;Vt € [ti,ti+1].
Xo(r) =Y. Bio(t).Pi (32)
where
1 ift € [t;,8i41]
Bio(t) =
o(®) { 0 elsewhere 33)

The shape of the X(¢) function in one dimension is given in Fig. 11.
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X ()
Pi

Bi 1,1(t)

t i-1 t i t i+1

Fig. 12 Uniform B-splines of degree one

3.9.2 Uniform B-Splines of Degree One

We are searching for a piecewise linear approximation X | (¢) for which:

t—1t r—t
Xl(t) = (1 — It ) P 1+ (1 — ! )P,‘ Vt € [li,li+1]

liy1 — 1 tiy1 — 1

One can write X (¢):

where

ol ifr e [t 4,1

li—ti—|
fl—t -

Bin(1) = q = it € [tistin]
0 elsewhere

The shape of the X (¢) function in one dimension is given in Fig. 12.

3.9.3 Uniform B-Splines of Degree Three

(34)

(35)

(36)

Those B-Splines have been developed at Boeing in the 1970s and represent one
of the simplest and most useful cases of B-splines. Degree 3 B-Spline with n + 1

control points is given by:
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By 3(t) By3(t) Bs3(b) By 3(t)

2/3

1 2 3 4 5 6 7 8

Fig. 13 Order 3 basis function

n
X3(1) =Y, Bi3(t).Pi3<t<n+1 37)
i=0

where B;3(1) =0if r <t ort > t;4.

J
X3(t)= Y, P.Bi3(t)t€[j,j+1],3<j<n (38)
i=j—3

When a single control point P; is moved, only the portion of the curve X3(z) is
changed (with t; <t < t;14) insuring local control property. The basis functions have
the following properties:

* They are translates of each otheri.e. B;3(t) = By 3(t — i)

* They are piecewise degree three polynomial

* Partition of unity Y, B;3(t) =1for3 <t <n+1

 The functions X;(¢) are of degree 3 for any set of control points

(t—t; 2)* ift €[t; 2,1 1]

W 4302t —t; 1) +3h(t—t;1)> = 3(t—t;1)3

1 ift € [t;i_1,1]

Bi 23(t) = - W+ 3R%(ti — 1) + 3h(ti1 — 1) = 3(ti1 — 1) (39)
ift € [ti,ti+1]

(tisa — 1) if 1 € [ti1,8i12]

0 otherwise

where 4 is the distance between two consecutive points.
Those basis functions are shown in Fig. 13.
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Fig. 14 The black trajectories represent registered samples for which four principal components
are extracted (in this artificial example) for minimum error reconstruction process

3.9.4 Principal Component Analysis

When trajectories samples are available (from radar for instance), one can build
a dedicated bases which will minimize the number of coefficient for trajectory
reconstruction. Principal component analysis (PCA) is a mathematical procedure
that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables called
principal components. The number of principal components is less than or equal to
the number of original variables.

In the example presented in Fig. 14 a set of trajectories %(¢),i = 1...n are used
to build K = 4 principal components (y (7)) which can be used to reconstruct the
initial trajectories.

k=K
%(t) =Y, awwi(t) (40)
k=1
When probability density functions of the coefficient a;; can be identified, one
can use this trick to plug a stochastic optimization process which generates random
coefficients in order to produce relevant random trajectory. More information about
Functional PCA can be found in [56].
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Fig. 15 One new trajectory T

is built by using a weighted —

sum of two reference B
trajectories

M

3.9.5 Homotopy Trajectory Design

An easy way to build trajectory is to used reference trajectory (regular trajectories
used by aircraft) and to compute a weighted sum of such reference trajectories
to build a new one. If we consider two (or more) references trajectories joining
the same origin destination pair (see Fig.15) (past flown trajectories may be
considered):

Y, 41)

One can create a new trajectory Y, by using an homotopy:
Yo=(1-)n+op (42)

In this example only one coefficient ¢ has been used but one can extend this
principle to several parameters.

All the models described in this section, may be used in an optimization process
for which dimension reduction is needed. Depending on the targeted properties of
the designed trajectories one must select the most adapted representations for the
underlying application.

After having review algorithms based on optimization, the next section presents
wave front propagation approaches.

4 Wavefront Algorithms

4.1 Generalities

It is a well-known fact in physics that waves of high frequencies tend to propagate
along the path whose traveling (or propagation) time is shortest (such minimum time
path are called geodesic). The knowledge of the wave velocity at each point of space
allows for the computation of wave fronts that are the set of all points reached by the
wave at a given time, assuming it has started at a point source. The principle of the
wavefront propagation algorithms is to simulate such physical propagation model
in order to find optimal path based on a criterion that has to be optimized. As an
example, congestion will be taken into account by velocity reduction, so that paths
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crossing congested areas will be penalized. Depending on the fact that the metric
is or not isotropic (the later case being the one to be investigated when the wind is
used into the criterion and has a non negligible velocity), two classes of algorithms
are used.

4.2 Fast Marching Algorithms

The Fast Marching method, presented by Sethian [66] is a part of the more general
methods called Level Set [53]. These techniques are designed to track the evolution
of interfaces. The evolution of the wavefront can be compared to deform a curve
or a surface from a partial differential equation. The Fast Marching method is used
in the particular case where the wavefront speed is isotropic. It can still be applied
if the anisotropy is low enough. For air traffic applications, this last assumption is
valid in some areas of the airspace (of course it is not the case in the vicinity of jet

streams).

In the particular case where the Fast Marching method is applicable, the calculus
of the minimum time 7 to reach any points of the environment from the initial point
is equivalent to solve the Eikonal equation of the form:

VT ()] = ﬁ F()>0, and  T(Kimiia) =0 “3)
where x € R? represents the position in space, 7 € R the minimum time and F :
R — R the speed of propagation.

In free space, the wave speed F is equivalent to the aircraft speed. When we have
forbidden areas, we force the propagation speed at zero in order to get a barrier
value since the time to reach this point will be equal to infinity. Thereby, we have
guaranteed avoidance property for those areas. For the congestion, the method is
different, we want to penalize some areas where the congestion is high but we do
not want to ban aircraft from driving through these areas. We just need to reduce
the propagation speed. Thus, the time is increased proportionally to the congestion
value, penalizing the crossing.

To design the optimal path between the arrival point and the departure point, we
can then perform a gradient descent using the calculated values of 7" on the space,
from the arrival point to the initial point. There is no risk to get stuck on a local
minimum since the function T has only one optimum which is global.

The numerical resolution is like the graph search algorithms. However, in
opposition to these graph search algorithms, the Fast Marching method is consistent
since when the grid is refined, the obtained solution converges on the exact solution
of the Eikonal equation [66] that is a geodesic curve.
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4.3 Ordered Upwind Algorithm

When wind is to be taken into account and has a non negligible speed with respect
to the one of the aircraft, the propagation is no longer isotropic. The speed of the
wavefront depends on the position and the directions of wind. A specific algorithm,
called Ordered Upwind, has been developed to overcome this problem in [67], at
the expense of a higher algorithmic complexity. Basically, an extra parameter, the
anisotropy ratio, is considered: it is the ratio of the fastest to slowest propagation
speed for each points. Given a point in space, the algorithm first considers the points
on the current wavefront that are closest to it: it gives a time to travel when taking as
propagation speed the slowest. Now, the other points to be considered are located no
farther than the anisotropy ratio times the minimal distance. By maintaining a list of
potential points contributing to the information at the point of interest, the ordered
upwind algorithm can still be implemented in a single pass.

In order to keep the efficiency of the Fast Marching algorithm, Petres proposed
an extension of the algorithm Fast Marching in [55], he assumed the field is smooth.
He applied this extension to plan a path for autonomous underwater vehicles
taking underwater currents into account. We propose here a similar extension to
Petres’s method of the Fast Marching method, our extension is specific to aircraft
trajectories.

In the next section, we present an example of application of such wave propaga-
tion algorithm for air traffic management problem.

4.4 Light Propagation Algorithm

In geometric optics, light behavior is modeled using rays. Light emitted from a
point is assumed to travel along such a ray through space. In an effort to explain
the motion through space taken by rays as they pass through various media, Fermat
(1601-1665) developed his principle of least action [29]:

The path of a light ray connecting two points is the one for which the time of
transit, not the length, is a minimum.

In the framework of geometrical optics, light propagates through space respecting
Descartes’ Law:

Let n; be the index of refraction of medium 1 in which the incident ray propagates
and n; that of the medium in which the refracted ray propagates (medium 2). We
obtain:

¢ . (44)

V1= Eavz = I

{ ni. sin(@l) =nj. Sin(ez)
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where v{,v; are the speed values in media 1 and 2, 6, the angle of incidence, 6, the
angle of the refracted ray and c the speed of light in a vacuum.
We can make several observations as a result of Fermat’s principle:

* In a homogeneous medium, light rays are rectilinear. That is, within any medium
where the index of refraction is constant, light travels in a straight line.

* In an in-homogeneous medium, light rays follow smooth geodesic curves with
minimum transit time.

Light therefore tends to avoid high index areas where rays are slowed down. Light
reaches lowest speed for the highest encountered index.

Based on this principle of least action, we introduce an optimal path planning
algorithm which computes smooth geodesic trajectories in environments with static
or dynamic obstacles.

For a given mobile, we wish to find the shortest path between two points of
R”, taking account of a given metric (time, distance etc.) whilst avoiding obstacles
and respecting speed constraints. The trajectories produced must also respect a
regularity criterion characterized by a maximum curvature value.

This algorithm mimics light propagation between a starting point towards a
destination point, with obstacles modeled by high-index areas. By controlling the
index landscape, it is possible to ensure that the computed trajectories meet the
speed constraints and remain at a specified minimum distance from obstacles.

We begin by positioning a light source at the departure point (origin) which emits
rays in a hemisphere oriented towards the destination point (this restriction prevents
the generation of unrealistic trajectories which begin by turning 180° before turning
back towards the destination). The path followed by the first beam to reach the
arrival point corresponds to the geodesic trajectory we wish to obtain (see Fig. 16).

5 Optimal Control for Trajectory Generation

5.1 Optimal Trajectory Generation

In the physical space, a trajectory is occasionally represented as a four-dimensional
flight path, following the tradition of air traffic control [18], with time as the
fourth dimension, in addition to the normally used three-dimensional representation
of a path. Generating time-parameterized paths necessitates the incorporation of
the aircraft dynamics and/or kinematics, which makes the problem much more
difficult than simply finding a path that avoids obstacles in the physical three-
dimensional space. Path-planning is a term commonly used in the robotics and
artificial intelligence communities to refer to the problem of generating an obstacle-
free path to be followed by a vehicle (robot, aircraft, vehicle, etc.) in a two or three
dimensional space containing obstacles [42].
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Fig. 16 Launching rays from the departure point. Geodesic computation (A* like algorithm or
Triangle mesh algorithm)

Because the vehicle dynamics are not taken into account in these path-planning
methods (the solution of which only considers the geometric constraints of the
problem) it is often the case that the resulting path is infeasible, that is, it cannot be
followed exactly or even closely by the vehicle. One way to ensure that the resulting
paths correspond to feasible trajectories satisfying the vehicle dynamics, is to use
optimal control theory. The objective of optimal control theory is to determine the
control input(s) that will cause a process (i.e., the response of a dynamical system)
to satisfy the physical constraints, while, at the same time, minimize (or maximize)
some performance criterion. Feasibility of the trajectories is automatically ensured
using this approach. The typical optimal control problem (OCP) can be stated as
follows:

Given initial conditions xo, final conditions x; € £, and an initial time 7y > 0,
determine the final time 77 > fo, the control input u(r) € % and the corresponding
state history x(¢) for ¢ € [to, 7] which minimize the cost function

i
J(x,u) = [ L(x(2),u(r))dt, (45)
fo
where x(r) and u(r) satisfy, for all # € [to,t7] the differential and algebraic con-
straints:
5 (46)

(47)
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Optimal control has its roots in the theory of calculus of variations, which orig-
inated in the seventeenth century by Fermat, Newton, Liebniz, and the Bernoullis,
and was subsequently further developed by Lagrange, Weirstrass, Legendre, Cleb-
sch and Jacobi and others in the eighteenth and nineteenth centuries [26]. Calculus
of variations deals with the problem of minimizing (45) subject to the simple
differential equality constraint of the form %(¢) — u(¢) = 0, and is not able to
handle more complicated differential equality constraints such as (46) or algebraic
constraints such as (47). It was not until the middle of the twentieth century
when the Soviet mathematician L.S. Pontryagin developed a complete theory that
could handle constraints such as (46) and (47). Simply put, Pontryagin’s celebrated
Maximum Principle [54] states that the optimal control for the solution of the
problem (45)—(47) is given as the pointwise minimum of the so-called Hamiltonian
function, that is,

Uopt = argmin, ., H (t,x,A,u), (48)

where H (t,x,A,u) = L(x,u) + AT f(x,u) is the Hamiltonian, and A are the co-states,
computed from

10y = =2 (), 2.0.0). 9)

subject to certain boundary (transversality) conditions on A (7). Unfortunately,
an analytic solution to the previous problem is difficult. The optimal control
formulation of a trajectory optimization problem using Pontryagin’s Maximum
Principle (PMP) leads to a Two-point Boundary Value Problem (TBVP), or a Multi-
point Boundary Value Problem (MBVP) when the optimal trajectory is composed
of multiple phases. Numerical techniques such as shooting and multiple shooting
methods can be applied to solve accurately these TBVP and MBVP, but their con-
vergence is very sensitive to the choice of an initial guess for the solution. A software
that solves the optimal control problem using this approach is BNDSCO [51].
BNDSCO is an example of a class of numerical optimization methods which are
often referred to as indirect methods. The term indirect reflects the fact that in these
methods a solution is sought not by maximizing (or minimizing) the cost (45) but,
rather, by computing potential optimizers by solving the corresponding necessary
optimality conditions (48)—(49).

In recent years, direct methods have become increasingly popular for solving
trajectory optimization problems, the major reason being that direct methods do not
require an analytic expression for the necessary conditions, which for complicated
nonlinear dynamics can be intimidating. Moreover, direct methods do not need an
initial guess for the co-states whose time histories are difficult to predict a priori. As
mentioned earlier, direct methods, do not try to satisfy the necessary conditions of
optimality from PMP, instead, they minimize directly (45) subject to (46)—(47).

The main idea behind direct methods is to discretize the states and controls
of the original continuous-time optimal control problem in order to obtain a
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finite-dimensional nonlinear programming problem (NLP). The solution of this
NLP, which consists of discrete variables, is used to approximate the continuous
control and state time histories. Typical direct methods are collocation methods,
which discretize the ordinary differential equations (ODEs) of the problem using
collocation or interpolation schemes [23,32, 60, 79]. They introduce the collocation
conditions as NLP constraints together with the initial and terminal conditions.
The so-called pseudospectral methods use orthogonal polynomials to choose the
collocation points and are very efficient, exhibiting superlinear convergence when
the solution is smooth. Numerical optimal control software packages that implement
direct methods for the solution of OCPs include SOCS [8], RIOTS [65], DIDO [59],
PSOPT [4], GPOPS [57], MTOA [36] and DENMRA [83] among many others. A
recent survey of numerical optimal control techniques for trajectory optimization
can be found in [7].

In all these direct methods, the convergence rate and the quality of solution
depends on the grid used to discretize the equations, the cost and the problem
constraints. Uniform or fixed grid methods tend to perform poorly, especially when
the problem has several discontinuities or irregularities. Not surprisingly, adaptive
grid methods have been developed to accurately capture any discontinuities or
switchings in the state or control variables. The main idea behind all these adaptive
grid methods is to use a high resolution (dense) grid only in the vicinity of control
switches, constraint boundaries etc., and a coarse grid elsewhere. Examples of
such adaptive gridding techniques for the solution of optimal control problems are
[9-11,30,37,65].

A major issue with almost all current trajectory optimization solvers (direct or
indirect) is the fact that their computational complexity is high and their convergence
dependents strongly on the initial conditions, unless certain rather stringent convex-
ity conditions hold. As a result, the solution of trajectory optimization problem in
real-time is still elusive. A common line of attack for solving trajectory optimization
problems in real time (or near real time) is to divide the problem into two phases:
an offline phase and an online phase [38, 44, 69, 81]. The offline phase consists of
solving the optimal control problem for various reference trajectories and storing
these reference trajectories onboard for later online use. These reference trajectories
are used to compute the actual trajectory online via a neighboring optimal feedback
control strategy typically based on the linearized dynamics. Another strategy for
computing near-optimal trajectories in real-time is to use a receding horizon (RH)
approach [5,52,80]. In a receding horizon approach a trajectory that optimizes the
cost function over a period of time, called the planning horizon, is designed first.
The trajectory is implemented over the shorter execution time and the optimization
is performed again starting from the state that is reached at the end of the execution
time. A third approach is to use a two-layer architecture, where first an acceptable
(in terms of length, safety, etc.) path is computed using common path-planning
techniques, and then an optimal time-parameterization is imposed on this path to
yield a feasible trajectory. As mentioned earlier such an approach needs to be
carefully designed to ensure compatibility of the resulting path with the vehicle
dynamics. However, when successful, such an approach is numerically very efficient
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and can be implemented in real-time with current computer hardware. Even if the
resulting trajectory is not exactly feasible, it is often close to a feasible trajectory, or
it can be made as such using smoothing techniques [85]. As a result, alternatively,
the final trajectory can be used as a good initial guess for a follow-up optimal
trajectory generator. The next section summarizes this approach for applications
related to aircraft maneuvering under strict time and fuel constraints. For more
details the interested reader is referred to [2, 82, 84].

5.2 Emergency Aircraft Trajectory Design

Aircraft maneuvering was one of the first areas where optimal control theory was
used to generate optimal trajectories. Not surprisingly, traditionally, most work
has been focused on military aircraft. Relevant references on this subject are too
many to enumerate here. We just mention the work on fuel and range optimization
studied in [31, 68, 70], and the minimum-time, three-dimensional aircraft trajectory
optimization problem considered in [64]. In the latter, an approximation of the
aircraft dynamics using an energy state was used to reduce the dimension of
the problem for better convergence. This type of model reduction technique is
commonly used for aircraft trajectory optimization [40].

Some of these results have been extended to commercial airline operations. For
example, the work of [16] deals with the problem of minimum-fuel trajectories with
fixed time-of-arrival (TOA) for several civil aviation aircraft including B737, B747
and B767. Trajectory planning problems have also been studied in the context of
air traffic management (ATM) and automation. Jackson et al. [34] performed a sen-
sitivity analysis of trajectory prediction for ATM. The aircraft trajectory synthesis
problem is studied in [71] to provide some basic tools for air traffic automation.
Somewhat related is the recent work of Sridhar [72], in which he considered the
generation of wind-optimal trajectories for cruising aircraft while avoiding the
regions of airspace that facilitate persistent contrails formation. A shooting method
was employed to solve the associated optimal control problem by minimizing a
weighted sum of flight time, fuel consumption, and a term penalizing the contrail
formation. The airspace avoidance problem has also been considered in [35].
In that reference, the avoidance of restricted airspace is formulated as a non-
convex constrained trajectory optimization problem; it is claimed that with a feasible
starting guess, the efficiency of the optimization algorithm is not degraded too much
by the non-convex airspace constraints. Finally, some researchers have used ideas
from stochastic optimal control to deal with issues related to the unpredictability of
future trajectory, wind effects, presence of additional aircraft in the ATM airspace
etc. [43,77].

In this work we deal with the problem of efficiently generating minimum-time
and minimum-fuel (with fixed TOA) landing trajectories for commercial aircraft.
The former problem is of relevance in case of an on-board emergency where the
pilot has to land the airplane quickly and safely to the closest airport or airfield;
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the latter problem is of interest for typical terminal ATC phase applications. Prior
work in emergency landing includes the abort landing problem in the presence
of windshear [14, 15, 48], and emergency landing during loss of thrust [73].
The latter references generate feasible trajectories using segments of trajectories
corresponding to selected trim condition maneuvers. The search results are however
limited to those that can be generated by connecting trim state trajectory segments
with stable transitions. Because the unstable flight conditions are not considered
in the search, the algorithm cannot identify any feasible trajectories containing
unstable flight modes. Furthermore, the path length is used as the search criterion,
which is less appropriate when compared to flight time for emergency landing,
or fuel consumption for normal flight. Related work includes the investigation of
Atkins et al. [1], where the problem of emergency landing due to the loss-of-thrust
was studied using a hybrid approach. A two-step landing-site selection/trajectory
generation process was adopted to generate safe emergency plans in real time under
situations that require landing at an alternate airport. In the trajectory generation
routine, a heuristic path planner was used to generate a three-dimensional trajectory
connecting the current position of the aircraft to the runway, which consists of
straight lines and circular arcs. This method is fast and simple. However, it is
limited to conservative aircraft maneuvers (typically Dubins paths) in order to
reduce the chance of obtaining an infeasible trajectory. As a result, the optimality of
the generated trajectory could be unacceptable for emergency landing, and further
research is necessary to reduce such a conservatism.

In our approach, we start with the assumption that the path to be followed by the
aircraft is given. Note that this does not mean that the frajectory to be followed
is given. A trajectory requires a time-parameterized path and it is, indeed, the
main goal of this approach to provide such a time parameterization so as to meet
feasibility along with certain optimality specifications. The assumption that the
path is given is not as unusual or atypical as one may initially think. Commercial
airliners during the terminal landing phase, are required to follow strict Air Traffic
Control (ATC) rules, which guide the airplanes to follow “virtual” three-dimensional
corridors all the way to the landing strip. Furthermore, since our approach leads to
very fast computation of feasible trajectories, one can use the approach over new,
locally modified paths repeatedly till a satisfactory path is found.

To this end, let a path in the three-dimensional space, parameterized by the path
coordinate s, be given as follows: x = x(s), y = y(s), z = z(s), where s € [so,s¢]. The
main objective is to find a time-parameterization along the path, i.e., a function
s(t), where r € [0,7f] such that the corresponding time-parameterized trajectory
(x(s(r)),y(s(z)),z(s(t))) minimizes either the flight time 7¢ (emergency landing
case) or fuel (terminal landing operation). As shown in [82] all control (thrust, angle
of attack, load factor, etc.) constraints can be mapped into constraints involving the
specific kinetic energy of the aircraft, E = v?/2 where v is the aircraft velocity of
the form



232 D. Delahaye et al.

for some path-dependent functions g | (s) and g,,(s). The original problems therefore
reduce to the following simplified problems:
For the Minimum-Time Problem we have

sr ds
min —_— 50a
T /s() \/ 2F (S) ( )
: / T(s) :
subject to E'(s) = ——= — D(E(s),s) — gsiny(s), (50b)
m
8, (s) SE(s) <3,(s), (50c)
Tin < T(S) < Tax, (SOd)
and for the Minimum-fuel Problem with fixed TOA we have
miny / ! T(s)ds, (51a)
S0
subject to E'(s) = LO D(E(s),s) — gsiny(s), (51b)
m
1
t'(s) = ) 5lc
(s) EG) (51c)
8, (s) E(s) <3,(s) (51d)
Tmin(s) < T(S) < max(s)a (51e)

where D(E(s),s) is the drag, T is the thrust, y is the flight-path angle, and where
prime denotes differentiation with respect to path length s. The main advantage
of these problem formulations is the dimensionality reduction of the problem that
can be leveraged to solve both of these problems very efficiently and reliably. In
fact, these OCPs are simple enough so that the optimal switching structure of the
optimal solution can be unraveled using the necessary conditions from PMP. For the
minimum-fuel problem the switching structure varies depending on the given TOA.
However, for a given path and a fixed TOA, the structure is uniquely determined.
This helps tremendously the convergence properties of the algorithm.

The overall architecture for optimal on-line trajectory generation is shown in
Fig. 17. As shown in this figure, the method first generates a trajectory by assigning
an optimal time parameterization along the path given by the geometric path planner
via the solution of one of the previous two optimization problems. If the trajectory
is feasible, then it is used as an initial guess for the numerical optimal control
solver. Meanwhile, such a feasible trajectory is also stored as a back-up plan in
case of the failure of the NLP solver. If the trajectory generated by the time-
optimal path tracking method is not feasible, then the path is revised using the
path smoothing method described in [85], and the optimization is applied again
to the smoothed path. The process is repeated until either the trajectory is feasible,
or the maximum number of iterations is reached. If no feasible trajectory can be



Mathematical Models for Aircraft Trajectory Design: A Survey 233

Fig. 17 Schematic of landing
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obtained after reaching the iteration limit, the infeasible trajectory is passed to
the numerical optimal control algorithm, which makes a last attempt to produce
a feasible trajectory. If this last attempt is not successful, then it does not exist a
feasible trajectory that solves the problem.

6 Path Planning Techniques via Natural Language
Processing and Mathematical Programming: A Paradigm
for Future Aircraft Trajectory Management

Aircraft trajectory planning has reached enough maturity to shift the trajectory
planning problem from the mathematical optimization of the aircraft trajectory to
the automated parsing and understanding of desired trajectory goals, followed by
their re-formulation in terms of a mathematical optimization program. To a large
extent, we propose a possible evolution of the Flight Management System currently
used on all transport aircraft to become a full-fledged autonomous logic that may
also be used on unmanned aerial vehicles as an alternative to the current -and bulky-
Remotely-Piloted Vehicle (RPV) paradigm. What follows is a direct extension of
work originally presented in [63].

The overall proposed architecture is shown in Fig. 18. It consists of several
nested feedback loops. At the operator level, the information is presented to the
operator in the form of sentences expressed in natural language (e.g. that used by
air traffic control phraseology). At the level of trajectory planning automation, the
information is presented as a mix of continuous parameters (aircraft position and
speed), and discrete parameters describing mission status (completed tasks, tasks
remaining to be completed). The operator formulates the vehicles’s goals (e.g. flight
plans) using natural language. A natural language interpreter and task scheduler
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Fig. 18 Basic autonomous mission management loop for future aircraft and UAVs

transforms the operator’s requirements into tractable mathematical optimization
programs that may be executed by the vehicle through its flight control computer.
The vehicle’s innermost dynamics (that consist of raw vehicle dynamics and
stability augmentation system), although critical to vehicle stability, are not shown.

6.1 Natural Language Parsing and Generation

The main goal of using a Natural Language Interface (NLI) for interacting with a
computer-based system is to minimize the workload on the operator. Using normal
English sentence commands and reports indeed allows an operator to communicate
efficiently and effectively with an aircraft, as if it were a human pilot. The NLI
module that we have developed for demonstration purposes consists of two major
components. The first one takes sentence commands from the operator (presumably
an air traffic controller) and turns them into a formally coded command that looks
like the formulation of an optimization problem. The second component takes a
coded command set from the aircraft and generates natural language responses for
the air traffic controller to interpret. A sample dialog between the human operator
and the machine could be as follows:

Controller: Flight AA1234, this is Air Traffic Control.

Aircraft:  Go ahead, Air Traffic Control.

Controller: Add new waypoint. Proceed to waypoint Echo-Charlie 5 in minimum
time. and wait for further instructions after the task is completed

Aircraft: Roger. Acknowledge task information - proceeding to waypoint Echo-
Charlie 5.

Controller: AAI234, out.

The NLI module analyzes the natural sentences produced by the air traffic
controller using parsing, which is the process of converting an input sentence,
e.g. “Proceed to waypoint Echo-Charlie 5 in minimum time,” into a formal
representation. The latter is typically a tree structure which can in turn be translated
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into an explicit formal command. In our system, parsing consists of first applying
entity extraction to all the individual concepts (e.g. “Flight AA1234” or “Echo-
Charlie 5”) and then combining these concepts through cascades of finite-state
transducers using techniques derived from those described in [58]. While natural
language processing represents our progress so far, it is easy to imagine that it
could now be completed by a voice recognition device to further ease the level of
communication between controller (or operator) and aircraft.

6.2 Task Scheduling and Communications Interfacing

The task scheduling and communications processing components are designed to
centralize all of the aircraft mission processing in one module. Together with the
Natural Language Interface, it provides flexibility for an operator to insert and
change flight plan during the flight. The aircraft software keeps track of the flight
tasks, waypoint locations and known obstacles to pass on to the guidance algorithm.
The communications processing component provides the air traffic controller or
operator with the authority to send commands and receive status updates, threat
or obstacle avoidance information and acknowledgement messages. It also provides
remote pilots monitoring the flight with the ability to override the guidance system in
the event of an emergency or error. The system sends threat and override information
to the air traffic controller before any status or update information in an effort to
send the most important data relevant to the demonstration before any auxiliary
information. Input/Output data are processed every 1Hz frame before the task
planner and guidance step to ensure that the most up-to-date information is used
by the aircraft trajectory planner. The task scheduling component operates like a
Flight Management System and allows the aircraft operator or the air traffic manager
to enter a flight plan using a pre-defined list or as programmed during a mission.
Many additional features may be added to such a task scheduler, such as orders to
follow loiter patterns, “take me home” or low-emission approaches functionalities.
In addition, he or she has the option of providing (in real- time via the NLI) the
optimization metric used by the trajectory generation algorithm (i.e. minimum time,
minimum fuel, or the amount of time to finish the flight). Next, the operator can
either give the aircraft a new plan or change the current plan it is performing.
A “New Plan” command is added to the end of the aircraft task list and is executed
after all of the tasks currently scheduled have been completed. A “Change Plan”
command, on the other hand, modifies the current task performed by the aircraft.
Once a task is completed, it is removed from the list. After each of these actions, an
acknowledgement is sent to the air traffic controller and the updated task information
is included in the data sent to the Trajectory Generation Module.
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6.3 Trajectory Planning

After the Natural Language Interface and Flight Planning and Scheduling compo-
nents have converted the flight plan into a series of tasks for the aircraft to perform,
the Trajectory Generation Module guides the vehicle from one task to the next, i.e.
from an initial state to a desired one, through an obstacle field while optimizing
a certain objective. The latter can be to minimize time, fuel or a combination of
both. Much of the functionality described below becomes increasingly available in
today’s avionics systems, and also include such real-world factors as weather and
wind conditions. For our purposes, 2D scenarios were considered in which special-
use airspace and other no-fly zones are viewed as “obstacles” and detected while
the flight proceeds. The environment is always fully characterized inside a certain
detection region D around the aircraft. The resulting formulation can, however,
be easily generalized to account for any detection shape, such as a radar cone,
and for unknown areas within that shape. Since trajectories must be dynamically
feasible, the aircraft dynamics and kinematics should be accounted for in the
planning problem. For optimization purposes, the vehicle is characterized by a
discrete time, linear state space model (A,B) in an inertial 2D coordinate frame
(east-north). As such, the state vector x consists of the east-north position (x,y)
and corresponding inertial velocity (%,y). Depending on the particular model, the
input vector u is an inertial acceleration or reference velocity vector. In both cases,
however, combined with additional linear inequalities in x and u, the state space
model must capture the closed-loop dynamics that result from augmenting the
aircraft with a waypoint tracking controller. Since the environment is only partially-
known and further explored in real-time, a receding horizon planning strategy is
used to guide the vehicle towards the desired destination.

The destination is denoted by x; and is an ingress/egress state of a waypoint
with a corresponding inertial velocity vector. At each time step, a partial trajectory
from the current state towards the goal is computed by solving the trajectory
optimization problem over a limited horizon of length T. Because of the computation
delay, the initial state xo = (xo,0,%0,Y0) in the optimization problem should be an
estimate Xqim Of the position and inertial velocity of the aircraft when the plan is
actually implemented. The solution to the optimization problem provides a sequence
of waypoints (x;,y;) and corresponding inertial reference velocities (%;,y;) to the
aircraft for the next 7' time steps. Typically, however, only the first waypoint and
reference velocity of this sequence are given to the waypoint follower, and the
process is repeated at the next time step. As such, new information about the state
of the vehicle and the environment can be taken into account at each time step.
By introducing a cost function Jr over the T time steps, the general trajectory
optimization problem can be formulated as to
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T

Minimizey, ,,Jr = Zfi(x,-,u,',xf) + fr(xr,xy)

i=1
Xi+1 =AX;+Bu;, i=0,....,T—1
X0 = Xestim
X; €%y, i=1,...,T
uw € %, i=0,....T—1
(-xivyi)eg()v lzlavT
(xiv)’i)§ ﬁOa lzlaaT

Subject to

The objective function consists of stage costs fj(x;,u;,Xs) corresponding to each
time step i, and a terminal cost term fr (x7,x f) that accounts for an estimate of the
cost-to-go from the last state X7 in the planning horizon to the goal state x;.
The sets Z( and % represent the (possibly non-convex) constraints on the vehicle
dynamics and kinematics, such as bounds on velocity, acceleration and turn rate.
Here, the 0-subscript denotes the fact that these constraints can be dependent on
the initial state. Lastly, the expressions (x;,y;) € % and (x;,y;)€ Oy capture the
requirement that the planned trajectory points should lie inside the known region
2, but outside the obstacles & as given at the current time step i = 0. Note that
they are assumed to hold for Xg; if not, the trajectory optimization problem would
be infeasible from the start. As demonstrated in [62], however, despite the detection
region and avoidance constraints, the above receding horizon strategy has no safety
guarantees regarding avoidance of obstacles in the future. Namely, the algorithm
may fail to provide a solution in future time steps due to obstacles that are located
beyond the surveillance and planning radius of the vehicle. For instance, when the
planning horizon is too short and the maximum turn rate relatively small, the aircraft
might approach a no-fly zone too closely before accounting for it in the trajectory
planning problem. As a result, it might not be able to turn away in time, which
translates into the optimization problem becoming infeasible at a future receding
horizon iteration. In [62], a safe receding horizon scheme was therefore proposed
based on maintaining a known feasible trajectory from the final state x7 in the
current planning horizon towards an obstacle-free holding pattern. The latter must
lie in the region 2 of the environment that is fully characterized at the current time
step, and is computed and updated online. Assuming that the planned trajectories
can be accurately tracked, at each time step, the remaining part of the previous plan
together with the holding pattern can then always serve as an a priori safe backup
or “rescue” plan. In practice, we have found that formulating the problem of finding
the nominal and rescue trajectories optimization as mixed-integer programs (MIP)
works very well in practice, though such choices are not mandatory and may be
replaced by the other techniques discussed in this paper.
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7 Application to Air Traffic Management

Aircraft trajectory design can be applied in many areas of air traffic managements
like strategic planning, pre-tactical planning, tactical planning, SID-STAR design,
emergency trajectory design, etc....In the following three Air Traffic Management
applications are presented for which trajectory design is critical. The first one
presents the strategic aircraft trajectory planning (optimization approach), the
second one the pre-tactical and tactical planning by light propagation algorithm
(wave propagation approach) finally the last one describes Emergency trajectory
design by optimal control (optimal control approach).

7.1 Strategic Aircraft Trajectory Planning

The aim of strategic planning is to reduce airspace congestion by modifying takeoff
slots and routes for a set of flights on a country-wide scale.We thus considered a
sectorized airspace and a set of flight plans for a given day. For each flight, we
defined a set of alternative routes and a set of possible takeoff slots. Our goal was to
produce an optimal assignment to minimize airspace congestion. Our problem can
be presented as follows:

*  We consider all of the flight plans associated with the airspace of a country.
* For each airplane k, we suppose that the following elements are known:

— aset of possible routes (+ associated costs)

— aset of possible takeoff times (+ associated costs)

— the set of flights connected with flight k at departure and arrival points (hub
phenomenon)

We wish to obtain the configuration which allows us to reduce airspace congestion,
minimize cost and respect connection plans.

The architecture of the chosen approach (see Fig. 19) is made up of a traffic
simulator and a genetic algorithm (GA).

The simulator is used in pre-treatment to obtain the data needed for optimization.
It receives flight plans (airplane identification, airplane type, origin-destination,
departure time, flight profile, route as a set of beacons) and constructs airplane
trajectories, while saving the necessary data (sector input and output, flight position
and direction every minute, etc.).

Genetic algorithms simulate the process of natural selection in a hostile environ-
ment linked to the problem under consideration [20]. They use a vocabulary similar
to that found in natural genetics, without neglecting the fact that the underlying
principles involved in the two domains are considerably more complex in their
natural context. We thus refer to individuals in a population, and often individuals
will be reduced to a single chromosome. These chromosomes themselves are made
up of genes which contain the hereditary characteristics of the individual. We also
use principles of selection, crossing (crossover), mutation etc.
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In the context of optimization, each individual represents a point in the state
space to which we associate the value of the criterion to optimize. We then randomly
generate a population of individuals from which the genetic algorithm aims to select
the best specimens while ensuring efficient exploration of the state space.

The optimization algorithm then manipulates possible plannings, represented by
disturbances, in terms of routes and slots, to the initial flight plans.

The optimization generates plannings which are increasingly efficient in terms
of minimizing congestion. The best planning is then put forward as the result of the
optimization process.

This approach has been successfully applied for removing conflict in European
airspace with 32000 aircraft. The purpose of this research is to design a gate-
to-gate conflict free planning by adding way points (inducing a maximum of
10 % extra-distance) and/or by shifting the time on departure (maximum shift:
+30min). The optimal altitude profiles have been used. Direct route planning
induces ~400,000 interactions between trajectories. Figure 20 shows the European
traffic with interaction in red.

Figure 21 represents the conflict free traffic after optimization.

More information about this work may be found in [17].

7.2 Pre-tactical and Tactical Planning by Light
Propagation Algorithm

The objective of the proposed method, based on an analogy with optics, is to find
an optimal 4D trajectory for each aircraft which avoids congestion or conflicts and
minimizes a criterion based on a local metric.
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.
210

Fig. 20 Direct route traffic over Europe

3:510'

Fig. 21 Traffic picture after optimization

Congestion and the protection zone (volume surrounding the aircraft where no
other aircraft may enter) of other aircraft will be modeled as high-index areas. Our
light propagation algorithm (LPA) is designed from a particular aircraft point of
view. It is assumed that the aircraft knows the surrounding aircraft trajectories (the
set of trajectories of the other aircraft is a given input of the algorithm).

Some examples of geodesic trajectories computation are given on the following
Fig.22 for which the red areas contain high index values.
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Fig. 22 Example of optimal geodesic curves. The red color indicate high index areas

This algorithm has also been used at tactical phase in order to produce conflict
free trajectories. To generate a trajectory, we use a wavefront propagation algorithm
in 2D + time (in order to conform to operational practice, we carry out resolution in
terms of heading, but with a detection method which takes account of altitude) with
temporal sampling (the wave is propagated with a time step dr).

Real flight plans of 12 August 2008 with about 8,000 flights have been used
to produce reference trajectories. The initial trajectories (before conflict resolution)
induce a total number of around 4,000 conflicts. Based on a sliding time window,
trajectory segments are extracted in order to built conflict cluster for which LPA is
applied. To address the conflict resolution, LPA is sequentially applied to aircraft.
We assign a trajectory to the first aircraft disregarding the other aircraft (without
considering any constraints). Then, LPA looks for a trajectory for the subsequent
aircraft by considering the trajectory of the first aircraft as a constraint, and so on,
up to the m'" aircraft which considers the m — 1 previous aircraft trajectories as
constraints. In practice, some operational criteria may also be used in order to select
a specific sequence (for instance: first-come first-served rule, some aircraft may have
higher priority, trajectory length, etc.). The time window is then shifted and the
process is applied again.

The algorithm nearly solves all conflicts, with only 28 situations for which
conflict-free trajectories have not been found. However, these situations correspond
to some aircraft being already in conflict at the beginning of the simulation, for
instance at their starting point. Only 1,501 trajectories have been modified to reach
such a conflict-free planning. In many cases, the new computed trajectories are
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Fig. 23 Swissair 111 trajectory reconstruction

shorter than the initial ones (those that follow waypoints), due to the fact that LPA is
searching for the shortest path trajectories and proposes direct routes when possible.
More information about this work may be found in [22].

7.3 Emergency Trajectory Design by Optimal Control

This work presents an application of optimal control for computing backup trajec-
tories in case of emergency. In such a situation, one must be able to design backup
landing trajectories for aircraft that have lost having loose their thrust. The proposed
algorithm begin to find a flyable path to avoid obstacles (Dubins paths generation
with continuous descent), then find a feasible trajectory to follow along this path.

This requires the solution of optimal time parametrization (or velocity genera-
tion) problem. The latter is a one-dimensional optimal control problem that can be
solved very efficiently.

Two cases are presented in the following, the first one is link to the Swissair 111
crash and the second one to the US Air 1549 crash.

On Wednesday, 2 September 1998, the Swiss Air 111 flight crashed into the
Atlantic Ocean southwest of Halifax International Airport (due to fire on board).

The Swissair 111 trajectory is given in Fig. 23.

The algorithm has been applied to this case and has produced several backup
trajectories bringing back the aircraft at Halifax airport as it can be shown in Fig. 24.
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Fig. 24 Swissair 111 case backup trajectories generation in green. The blue trajectory represent
the real flown trajectory

Runway4

Fig. 25 US Air 1549 backup trajectories in green. The blue trajectory represent the real flown
trajectory ending in Hudson river

This algorithm has also been applied to the US Air 1549 case. On January 15,
2009, the US Air 1549 flight struck a flock of Canada Geese during its initial climb
out, lost engine power, and ditched in the Hudson River off midtown Manhattan.
Again, the algorithm found four backup trajectories bringing back safely the aircraft
the Laguardia airport (see Fig. 25).
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8 Conclusion

This survey has shown several approaches for trajectory modeling. As it has
been mentioned, trajectories are belonging to infinite dimension space for which
dimension reduction has to be implemented. Using trajectory samples vectors
is really redundant and inefficient. After having presented some definitions and
some features of aircraft trajectories, some dimension reductions methods have
been presented in order to be included in an optimization process. Interpolation
and approximation technique have been presented and some information have
also been given about Principal Component Analysis and Homotopy. The next
section has presented wave front propagation approaches and gives some details on
Fast Marching Algorithms, Ordered upwind algorithms and the light propagation
algorithm (LPA). The fourth part has focused on methods coming automatic control
for which vehicle dynamics are explicitly included in the models. Some applications
to air traffic management have also been presented. The sixth part has presented
an original path planning techniques mixing natural language processing and
mathematical programming. Finally, some air traffic management applications have
been presented for realistic cases.
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