
Chapter 5
Alternative Time-Domain Methods

Takuya Oshima, Takashi Ishizuka and Kan Okubo

Abstract The finite-difference time-domain (FDTD) method has been the only
choice of time-domain methods for practical applications with its simplicity and
efficiency. However, the simple discretization of the simple wave equation model in
which the method has its basis is not sufficient for modeling more complex wave
propagation phenomena, high-accuracy simulations, or acoustic fields with complex
geometries. In this chapter, alternative time-domain methods that may be applied
to such situations are discussed as follows: the linearized Euler equation (LEE)
method, the constrained interpolation profile (CIP) method, and the finite-volume
time-domain (FVTD) method. The LEE method is applicable to wave propagation
phenomena under the influence of arbitrary background flows. The main applica-
tion of the method is sound propagation simulations outdoors where wind effects
are not negligible. The CIP method is characteristic in that the method is in princi-
ple free from numerical dispersion. The characteristic allows simulations with high
phase accuracy. The FVTD method is constructed on an unstructured grid system.
The method thus has an advantage in modeling complex geometries compared to the
FDTD method where orthogonal structured grid is used.
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5.1 Linearized Euler Equation Method

The linearized Euler equation (LEE) method is an approach to solve sound propaga-
tion under an arbitrary background flow by an addition of the advection effect of the
medium to the basic equations of the finite-difference time-domain (FDTD) method.
The main application of the method is sound propagation simulations outdoors with
wind effects.

5.1.1 Governing Equations

The medium velocity U is represented as a composition of the background flow
component Ū and the acoustic particle velocity component U ′ as

U = Ū + U ′.

Other physical quantities are similarly represented. For example, pressure deviation
from the average medium air pressure is represented by decomposing into the airflow
component p̄ and the acoustic pressure component p′ as

p = p̄ + p′.

For outdoor acoustic propagation problems, a simplified linearized Euler model under
adiabatic, barotropic, and non-buoyant conditions can be employed. In the simpli-
fied model, the fundamental equations of fluid flow, the equations of motion, and
continuity, are linearized by the background flow components of velocity, pressure,
and density, Ū , p̄ and ρ̄ respectively [1, 2].

∂U ′

∂t
= − (

Ū · ∇)
U ′ − (

U ′ · ∇)
Ū − 1

ρ̄
∇ p′, (5.1)

∂p′

∂t
= −ρ̄c̄2∇ · U ′ − Ū · ∇ p′, (5.2)

where ρ̄ and c̄ are the medium air density and the speed of sound respectively.

5.1.2 Discretization

Equations (5.1), (5.2) are discretized using a three-dimensional orthogonal staggered
grid where p′ is located at the cell centroid and each component of U ′ is located at the
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cell face of the respective coordinate direction. The pressure and velocity variables
are located at staggered positions in time as well. Hereafter, the components of the
background flow vector and the acoustic velocity vector are denoted as follows:

Ū = { ū v̄ w̄ }T, U ′ = { u′ v′ w′ }T.

where T denotes the transpose operator.

5.1.2.1 Temporal Discretization

Time advancement is performed using the prediction-step staggered-in-time (PSIT)
technique [3], which allows a simple implementation and smaller memory footprints.
The technique calculates firstly a predicted value of the acoustic velocity at time step
n, Ũ ′n , using the acoustic velocity at time step n − 1/2, U ′n−1/2, and the acoustic
pressure at time step n, p′n , with the following equation

Ũ ′n = U ′n−1/2 − Δt

2ρ̄
∇ p′n, (5.3)

which is a backward Euler discretized form of Eq. (5.1) between time step n − 1/2
to n, but without the contribution of the background flow velocity Ū

∂U ′

∂t
= − 1

ρ̄
∇ p′. (5.4)

The predicted value is used to calculate the acoustic velocity at the next time step
n + 1/2, U ′n+1/2, using a timewise discretized form of Eq. (5.1).

U ′n+1/2 = U ′n−1/2 − Δt

ρ̄
∇ p′n − Δt

(
Ū · ∇)

Ũ ′n − Δt
(

Ũ ′n · ∇
)

Ū . (5.5)

Similarly, for Eq. (5.2) the predicted value of the acoustic pressure at time step n+1/2
is calculated by using the acoustic pressure at time step n, p′n , and the acoustic
velocity at time step n+1/2, U ′n+1/2. The predicted value in turn is used to calculate
the acoustic pressure at the next time step n + 1, p′n+1.

p̃′n+1/2 = p′n − ρ̄c̄2Δt

2
∇ · U ′n+1/2, (5.6)

p′n+1 = p′n − ρ̄c̄2Δt ∇ · U ′n+1/2 − Δt Ū · ∇ p̃′n+1/2. (5.7)
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5.1.2.2 Spatial Discretization

The spatial derivatives in the prediction-step equations, namely Eqs. (5.3), (5.6), are
discretized by the second-order central finite difference scheme that are widely used
in usual FDTD simulations. For example, the x component of ∇ p′n in the right hand
side of Eq. (5.3) is written as

∂p′n

∂x

∣∣
∣∣
i+1/2, j,k

≈ p′n
i+1, j,k − p′n

i, j,k

Δx
, (5.8)

where Δx is the x directional grid spacing.
On the other hand, Eqs. (5.5), (5.7) are simplified assuming that the background

flow Ū is a uniform x-directional flow of speed ū

Ū = { ū 0 0 }T.

By substituting this equation to Eq. (5.5), only the x-directional derivative remains in
the third term in the right hand side of Eq. (5.5). Besides, the fourth term in the right
hand side is cancelled out due to the omnidirectional zero gradient of Ū . Hence, by
representing each component of Ũ ′ by

Ũ ′ = { ũ′ ṽ′ w̃′ }T,

each component of Eq. (5.5) and Eq. (5.7) are written as follows.

u′n+1/2
i+1/2, j,k = u′n−1/2

i+1/2, j,k − Δt

ρ̄

∂p′n

∂x

∣∣∣∣
i+1/2, j,k

− Δt ū
∂ ũ′n

∂x

∣∣∣∣
i+1/2, j,k

, (5.9)

v
′n+1/2
i, j+1/2,k = v

′n−1/2
i, j+1/2,k − Δt

ρ̄

∂p′n

∂y

∣∣∣
∣
i, j+1/2,k

− Δt ū
∂ṽ′n

∂x

∣∣∣
∣
i, j+1/2,k

, (5.10)

w
′n+1/2
i, j,k+1/2 = w

′n−1/2
i, j,k+1/2 − Δt

ρ̄

∂p′n

∂z

∣
∣∣∣
i, j,k+1/2

− Δt ū
∂w̃′n

∂x

∣
∣∣∣
i, j,k+1/2

, (5.11)

p′n+1
i, j,k = p′n

i, j,k − ρ̄c̄2Δt

(
∂u′n+1/2

∂x

∣∣∣∣
i, j,k

+ ∂v′n+1/2

∂y

∣∣∣∣
i, j,k

+ ∂w′n+1/2

∂z

∣∣∣∣
i, j,k

)

− Δt ū
∂ p̃′n+1/2

∂x

∣∣∣∣
i, j,k

. (5.12)

The spatial derivatives in Eqs. (5.9)–(5.12) are discretized by two strategies: one is to
apply the second-order central finite difference scheme, which is denoted hereafter
as Type FD-2nd. Another is to apply a compact difference scheme to the third term
in the right hand side of each equation and to apply the second-order central finite
difference scheme to all other terms, which is denoted hereafter as Type FD-Compact.
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Fig. 5.1 Acoustic pulse in a
uniform flow
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Type FD-2nd. Taking the x-directional momentum equation Eq. (5.9) as example,
the spatial derivative of the second term in the right hand side is discretized by
Eq. (5.8). The third term is discretized using the finite difference of double grid
spacing 2Δx as follows:

∂ ũ′n

∂x

∣∣∣∣
i+1/2, j,k

≈ ũ′n
i+3/2, j,k − ũ′n

i−1/2, j,k

2Δx
.

Type FD-Compact. Taking Eq. (5.9) as example, the spatial derivative of the sec-
ond term in the right hand side is identically discretized to Type FD-2nd by
Eq. (5.8). The third term, on the other hand, is discretized with the Padé scheme
[4], which is a fourth-order compact difference scheme that represents the approx-
imation of ∂ ũ′n/∂x , φ′n , as follows:

1

4
φ′n

i−1/2, j,k + φ′n
i+1/2, j,k + 1

4
φ′n

i+3/2, j,k = 3

4

ũ′n
i+3/2, j,k − ũ′n

i−1/2, j,k

Δx
.

The matrix equation of φ′n obtained by applying the Padé scheme to the entire
grid is solved by a tridiagonal matrix algorithm (TDMA) solver [5].

5.1.3 Computational Setup

A sound propagation problem in a uniform medium under a uniform background flow
within a two-dimensional free space is solved in order to compare the formulations
and the analytical solutions.

An x-directional uniform background flow of speed ū is given as the background
flow. The initial acoustic pressure and acoustic velocity are given as
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p′ = p0exp
{
−α

(
x2 + y2

)}
,

U ′ = 0,

as shown in Fig. 5.1. Under the initial conditions, the analytical solution of the
acoustic pressure is given by Ref. [6] as

p′ = p0

2α

∫ ∞

0
exp

(
− ξ2

4α

)
cos (c̄ξ t) J0 (ξη) ξdξ,

η =
√

(x − ūt)2 + y2,

α = log 2

b2 ,

where p0 is the initial pressure amplitude, b is the half width at half maximum of the
initial pressure amplitude, and J0 is the Bessel function of the first kind of order 0.
In the tests, b is set to 3 and p0 and c̄ are set to unity. The Mach number is assumed
to be 0.1, namely

M = ū

c̄
= 0.1.

The computational domain is a square of diagonal points (x, y) = (−100,−100)

and (100, 100), which is divided by an orthogonal uniform grid of 201 × 201 × 1
cells in x × y × z directions. The time step Δt is set to 0.5.

5.1.4 Results

The contours of instantaneous pressure amplitudes |p′| at time t = 40 and 80 for
the analytical solutions and the discretized formulations are shown in Fig. 5.2. Slow
advection in x-direction following the uniform background flow of M = 0.1 is
seen in all cases. At t = 40, all computed results show good agreements with the
analytical case. However, as the propagation distance grows, at t = 80 we see
differences. At the downstream direction, a numerical dispersion is seen in Type
FD-2nd. On the contrary, Type FD-Compact shows no such error and agrees well
with the analytical case.

5.2 Constrained Interpolation Profile Method

The constrained interpolation profile (CIP) method was developed in the field of fluid
dynamics as a kind of the method of characteristics (MOC) [7–9]. This method has
been applied to numerical simulations of sound field in time domain [10–14] as it
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Fig. 5.2 Propagation of acoustic pulse in uniform flow at t = 40 and 80. Dotted, dash-dotted,
dashed and solid iso-contours denote |p′| values defined by a geometric ratio of 4 (which corre-
sponds to about 12 dB in relative SPL) from 6.25 × 10−5 to 0.004

Fig. 5.3 Collocated grid
system in the CIP method

has an advantage of low numerical dispersion over the FDTD method. Additionally,
a spatial grid size, which the CIP method requires for adequate accuracy, is larger
than that the FDTD method requires. High accuracy is achieved by a technique called
“multi-moments” where not only physical values, such as the sound pressure and the
particle velocity, but also their spatial derivatives are explicitly and simultaneously
calculated at all grid points. In the MOC, including the CIP method, a time step
size is free from Courant condition. The CIP method does not require a small time
step size other time-domain methods require for accuracy and stability, resulting in
a reduction of total computational time.

A collocated grid system is employed in the CIP method. All discrete physical
values and their spatial derivatives are defined at the same grid point as shown in
Fig. 5.3.
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Fig. 5.4 Advection of
values in the method of
characteristics

5.2.1 Formulation

The CIP method for acoustic simulation computes advection equations derived from
the governing equations of sound fields. The equation of continuity and the equation
of motion for a lossless linear sound field are transformed into

∂t p + cZ∂xvx = 0, Z∂tvx + c∂x p = 0, (5.13)

where ∂α represents an operator ∂/∂α, and p, vx , c, and Z are the sound pressure,
the particle velocity in the x-direction, the speed of sound, and the characteristic
impedance of a medium, respectively. It should be noted that these equations express
one-dimensional wave propagation in the x-direction. Addition and subtraction of
the two equations in Eq. (5.13) lead to the following advection equations:

∂t fx± ± c∂x fx± = 0, for fx± = p ± Zvx . (5.14)

fx+ and fx−, which are called “characteristic curves”, represent forward and back-
ward components of the sound field in the x-direction and Eq. (5.14) expresses
propagation of them with the velocity of c.

In the MOC, the advection equations expressing wave propagation are computed
by advection calculations schematically illustrated in Fig. 5.4. As shown in the dia-
gram, advecting fx± at points ∓cΔt distant from a grid point xi at a time step n
gives those at xi at the next time step:

f n+1
x± (xi ) = f n

x±(xi ∓ cΔt), (5.15)

whereΔt is the time step size, and the superscripts n and n+1 denote time steps. When
the points xi ∓ cΔt , called advection sources, are not at grid points, f n

x±(xi ∓ cΔt)
are obtained by using interpolations.

In the CIP method, a kind of the MOC, values at advection sources are interpolated
with high accuracy by using the Hermite interpolation [7, 15], normally the third-
order Hermite interpolation. These calculations need spatial derivatives of fx± at each
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(a) (b)

Fig. 5.5 Directionally separated advection of values in the multi-dimensional CIP method.
a x-directional advection. b y-directional advection

grid. Advection equations for the derivatives are derived from the differentiation of
Eq. (5.14):

∂tgx± ± c∂xgx± = 0, for gx± = ∂x p ± Z∂xvx . (5.16)

The CIP method simultaneously computes Eq. (5.14) and (5.16) using the third-order
Hermite interpolation.

Multi-dimensional wave propagation is computed by the directionally separated
advection formulation, where one-dimensional advections for each axis are alternately
computed as shown in Fig. 5.5, for a two-dimensional simulation for example.
Lettig results of x-directional advections be values at an intermediate step, values
at the next time step is obtained by advecting the values at the intermediate step in
the y-direction. This technique requires additional advection calculations for spatial
derivatives with respect to the direction perpendicular to the advection direction. For
the x-directional advection in a two-dimensional field, for example, the CIP method
simultaneously computes the following advection equations as well as Eqs. (5.14)
and (5.16):

∂tηx± ± c∂xηx± = 0 , for ηx± = ∂y p ± Z∂yvx , (5.17)

∂tμx± ± c∂xμx± = 0 , for μx± = ∂x∂y p ± Z∂x∂yvx , (5.18)

where ηx± and μx± are derivatives of fx± and gx± with respect to the y-direction,
respectively. A kind of the CIP method, called the “type-C” CIP method, employs the
third-order Hermite interpolation to obtain the perpendicular derivatives ηx± and μx±
at the advection sources [9, 11, 12]. Additionally, in a three-dimensional simulation,
advection equations for the derivatives of fx±, gx±, ηx±, and μx± with respect to
the z-direction have to be taken into calculations. We can calculate the y-directional
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(and the z-directional in three-dimensional simulations) advections in a similar pro-
cedure to that for the x-direction described above.

Although the type-C CIP method employing the Hermite interpolation for the
perpendicular derivatives has high accuracy, it is computationally expensive.
A simplified scheme, called the “type-M” CIP method, has been proposed [8, 10, 12].
The type-M CIP method calculates advection of the perpendicular derivatives only
for Eq. (5.17) using the first-order Lagrange interpolation, i.e., the upwind scheme.
Omitting calculations of Eq. (5.18), this scheme saves the computer memory and
computational time, but has lower accuracy than that the type-C CIP method has.

5.2.2 Implementation

The followings explain an implementation procedure of the type-C CIP method for
a two-dimensional sound field simulation. We assume here that the sound field is
discretized in the x- and the y-direction by the same grid size of Δl and i and j
denote the grid point number in each direction as shown in Fig. 5.3.

Firstly, we carry out advection calculations in the ±x-direction. At a time step n,
the characteristic curves and their derivatives at a grid point (i , j) are derived from
the physical values and their derivatives at the same point:

f n
x±(i, j) = pn(i, j) ± Zvn

x (i, j), (5.19)

gn
x±(i, j) = ∂x pn(i, j) ± Z∂xv

n
x (i, j), (5.20)

ηn
x±(i, j) = ∂y pn(i, j) ± Z∂yv

n
x (i, j), (5.21)

μn
x±(i, j) = ∂x∂y pn(i, j) ± Z∂x∂yv

n
x (i, j). (5.22)

The third-order Hermite interpolation simultaneously calculates fx± and gx± at an
intermediate step, which are values at the advection sources at the time step n:

f ∗
x±(i, j) = a±ξ3± + b±ξ2± + gn

x±(i, j)ξ± + f n
x±(i, j), (5.23)

g∗
x±(i, j) = 3a±ξ2± + 2b±ξ± + gn

x±(i, j), (5.24)

where superscript ∗ represents the intermediate step and

a± = gn
x±(i, j) + gn

x±(i ∓ 1, j)

(∓Δl)2 + 2
(

f n
x±(i, j) − f n

x±(i ∓ 1, j)
)

(∓Δl)3 , (5.25)

b± = 3
(

f n
x±(i ∓ 1, j) − f n

x±(i, j)
)

(∓Δl)2 − 2gn
x±(i, j) + gn

x±(i ∓ 1, j)

∓Δl
, (5.26)

ξ± = ∓cΔt. (5.27)

Equations (5.23)–(5.27), which are polynomial forms of the third-oder Hermite
interpolation, can be transformed into simple sum-of-product forms for efficient
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computation:

f ∗
x±(i, j) = C1± f n

x±(i ∓ 1, j) + C2± f n
x±(i, j)

+ C3±gn
x±(i ∓ 1, j) + C4±gn

x±(i, j), (5.28)

g∗
x±(i, j) = C ′

1± f n
x±(i ∓ 1, j) + C ′

2± f n
x±(i, j)

+ C ′
3±gn

x±(i ∓ 1, j) + C ′
4±gn

x±(i, j). (5.29)

The coefficients will be obtained before starting computations:

C1± = −2χ3 + 3χ2, (5.30)

C2± = 2χ3 − 3χ2 + 1, (5.31)

C3± = ξ±(χ2 − χ), (5.32)

C4± = ξ±(χ2 − 2χ + 1), (5.33)

C ′
1± = 6(−χ3 + χ2)/ξ±, (5.34)

C ′
2± = 6(χ3 − χ2)/ξ±, (5.35)

C ′
3± = 3χ2 − 2χ, (5.36)

C ′
4± = 3χ2 − 4χ + 1, (5.37)

where χ = cΔt/Δl. Advection of the perpendicular derivatives ηx± and μx± are
also calculated in the same way:

η∗
x±(i, j) = C1±ηn

x±(i ∓ 1, j) + C2±ηn
x±(i, j)

+ C3±μn
x±(i ∓ 1, j) + C4±μn

x±(i, j), (5.38)

μ∗
x±(i, j) = C ′

1±ηn
x±(i ∓ 1, j) + C ′

2±ηn
x±(i, j)

+ C ′
3±μn

x±(i ∓ 1, j) + C ′
4±μn

x±(i, j). (5.39)

Results of advection calculations in the x-direction are restored to the physical values
and their derivatives at the intermediate step:

p∗(i, j) = (
f ∗
x+(i, j) + f ∗

x−(i, j)
)
/2, (5.40)

v∗
x (i, j) = (

f ∗
x+(i, j) − f ∗

x−(i, j)
)
/2Z , (5.41)

∂x p∗(i, j) = (
g∗

x+(i, j) + g∗
x−(i, j)

)
/2, (5.42)

∂xv
∗
x (i, j) = (

g∗
x+(i, j) − g∗

x−(i, j)
)
/2Z , (5.43)

∂y p∗(i, j) = (
η∗

x+(i, j) + η∗
x−(i, j)

)
/2, (5.44)

∂yv
∗
x (i, j) = (

η∗
x+(i, j) − η∗

x−(i, j)
)
/2Z , (5.45)

∂x∂y p∗(i, j) = (
μ∗

x+(i, j) + μ∗
x−(i, j)

)
/2, (5.46)

∂x∂yv
∗
x (i, j) = (

μ∗
x+(i, j) − μ∗

x−(i, j)
)
/2Z . (5.47)
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The particle velocity in the x-direction and their derivatives are directly assigned to
those at the next time step: vn+1

x (i, j) = v∗
x (i, j), for example.

Secondly, advection calculations in the ±y-direction are carried out in a similar
procedure described above. The y-directional characteristic curves and their deriva-
tives are derived from the physical values and their derivatives at the intermediate step:

f ∗
y±(i, j) = p∗(i, j) ± Zv∗

y(i, j), (5.48)

g∗
y±(i, j) = ∂y p∗(i, j) ± Z∂yv

∗
y(i, j), (5.49)

η∗
y±(i, j) = ∂x p∗(i, j) ± Z∂xv

∗
y(i, j), (5.50)

μ∗
y±(i, j) = ∂x∂y p∗(i, j) ± Z∂x∂yv

∗
y(i, j). (5.51)

The third-order Hermite interpolation gives the values at the next time step n + 1:

f n+1
y± (i, j) = C1± f ∗

y±(i, j ∓ 1) + C2± f ∗
y±(i, j)

+ C3±g∗
y±(i, j ∓ 1) + C4±g∗

y±(i, j), (5.52)

gn+1
y± (i, j) = C ′

1± f ∗
y±(i, j ∓ 1) + C ′

2± f ∗
y±(i, j)

+ C ′
3±g∗

y±(i, j ∓ 1) + C ′
4±g∗

y±(i, j), (5.53)

ηn+1
y± (i, j) = C1±η∗

y±(i, j ∓ 1) + C2±η∗
y±(i, j)

+ C3±μ∗
y±(i, j ∓ 1) + C4±μ∗

y±(i, j), (5.54)

μn+1
y± (i, j) = C ′

1±η∗
y±(i, j ∓ 1) + C ′

2±η∗
y±(i, j)

+ C ′
3±μ∗

y±(i, j ∓ 1) + C ′
4±μ∗

y±(i, j). (5.55)

Results of advection calculations in the y-direction are restored to the physical values
and their derivatives at the time step n + 1:

pn+1(i, j) =
(

f n+1
y+ (i, j) + f n+1

y− (i, j)
)

/2, (5.56)

vn+1
y (i, j) =

(
f n+1
y+ (i, j) − f n+1

y− (i, j)
)

/2Z , (5.57)

∂y pn+1(i, j) =
(
gn+1

y+ (i, j) + gn+1
y− (i, j)

)
/2, (5.58)

∂yv
n+1
y (i, j) =

(
gn+1

y+ (i, j) − gn+1
y− (i, j)

)
/2Z , (5.59)

∂x pn+1(i, j) =
(
ηn+1

y+ (i, j) + ηn+1
y− (i, j)

)
/2, (5.60)

∂xv
n+1
y (i, j) =

(
ηn+1

y+ (i, j) − ηn+1
y− (i, j)

)
/2Z , (5.61)

∂x∂y pn+1(i, j) =
(
μn+1

y+ (i, j) + μn+1
y− (i, j)

)
/2, (5.62)

∂x∂yv
n+1
y (i, j) =

(
μn+1

y+ (i, j) − μn+1
y− (i, j)

)
/2Z . (5.63)
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In the type-M CIP method, the third-oder Hermite interpolation of the perpendic-
ular derivatives, Eqs. (5.38) and (5.54), are replaced with the first-order Lagrange
interpolation as follows:

η∗
x±(i, j) = C L

1±ηn
x±(i ∓ 1, j) + C L

2±ηn
x±(i, j) (5.64)

ηn+1
y± (i, j) = C L

1±η∗
y±(i, j ∓ 1) + C L

2±η∗
y±(i, j), (5.65)

where

C L
1± = χ, (5.66)

C L
2± = 1 − χ. (5.67)

The above equations correspond with the upwind scheme. Advection calculations for
Eqs. (5.39) and (5.55) are omitted and the second derivatives of the physical values,
∂x∂y p, ∂x∂yvx , and ∂x∂yvy , are not defined at the grid points, resulting in reduction
of required computer memory and computational time.

5.2.3 Boundary Conditions

In the CIP method, boundary conditions at the interface between two media are given
using the reflection coefficient [16]. When fx+ and gx+ are incident on the boundary
at xb, for example, the boundary conditions are represented as

fx−(xb) = Γ fx+(xb), (5.68)

gx−(xb) = Γ ′gx+(xb), (5.69)

where Γ and Γ ′ denote the reflection coefficient of p and vx and that of the spatial
derivatives ∂x p and ∂xvx , respectively.

Here, we designate a medium in the −x side of the boundary as medium-1 and
that in the opposite side as medium-2. The reflection coefficient Γ is given as

Γ = Z2 − Z1

Z2 + Z1
, (5.70)

where Z1 and Z2 are the characteristic impedance of each medium (hereafter, values
with a subscript 1 and 2 denote those in each medium). Eq. (5.70) is derived from
Dirichlet conditions of the sound pressure and the particle velocity on the boundary:

p1 = p2, (5.71)

vx1 = vx2. (5.72)
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Meanwhile, Neumann conditions on the boundary are

1

ρ1
∂x p1 = 1

ρ2
∂x p2, (5.73)

ρ1c2
1∂xvx1 = ρ2c2

2∂xvx2, (5.74)

where ρ1 and ρ2 are the density of each medium. These conditions lead to the
following relation:

Γ ′ = − Z2 − Z1

Z2 + Z1
= −Γ. (5.75)

We can explicitly give the reflection coefficients Γ and Γ ′ as constants as long as
they satisfy Eq. (5.75). For example, Γ = 1 and Γ ′ = −1 are set to a perfectly
reflective surface.

In multi-dimensional simulations, boundary conditions for the perpendicular
derivatives are given in similar forms to Eqs. (5.68) and (5.69). In a two-dimensional
simulation, for example, the boundary conditions for the perpendicular derivatives
are represented as

ηx−(xb) = Γ ηx+(xb), (5.76)

μx−(xb) = Γ ′μx+(xb). (5.77)

The equations above are derived from the differentiation of Eqs. (5.71)–(5.74).

5.2.4 Perfectly Matched Layer

The CIP method computes a sound field formed into a finite discrete domain. When
we apply the CIP method to a simulation of an infinite sound filed, such as an outdoor
sound field, an absorption treatment is required to suppress reflection waves from
outer boundaries of the finite simulation domain as the FDTD method requires. The
CIP method computes wave propagation dividing it into forward and backward com-
ponents. Consequently, the CIP method naturally provides an automatic-absorbing
boundary condition (A-ABC) on the outer boundaries letting incoming components
be zero. However, the A-ABC is similar to the Mur’s ABC of the first kind in the
FDTD method [17]. In multi-dimensional simulations, the A-ABC has insufficient
absorption performance for oblique-incident waves on the outer boundaries although
it is effective for a normal-incident wave.

The perfectly matched layer-absorbing boundary condition (PML-ABC) [18] is
often employed in multi-dimensional FDTD simulations to achieve high absorption
performance on the outer boundaries for oblique-incident waves as well as a normal-
incident wave. The followings explain formulation to implement the PML-ABC in
multi-dimensional sound field simulations using the type-C CIP method [19, 20].
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Fig. 5.6 Perfectly matched layer surrounding a sound field

Although, for simplicity, two-dimensional formulation is shown below, it can be
simply extended to three-dimensional simulations.

Figure 5.6 schematically illustrates the PML, which surrounds a calculated sound
field to suppress reflection waves from the outer boundaries. In the PML region,
nonzero attenuation parameter reduces sound waves and results in suppression of
incoming waves. Discontinuous change of the attenuation parameter causes reflec-
tion. Therefore, increasing attenuation parameter is given as a function of the distance
from the PML surface, that is the interface between the sound field and the PML:

R = Rmax

(
d

L

)m

, (5.78)

where Rmax is the maximum value of the attenuation parameter, L is the thickness
of the PML, and m decides distribution of the attenuation parameter. d denotes the
distance from the PML surface and can be expressed by coordinates as shown in
Fig. 5.6. It should be noted that nonzero attenuation parameter is given only in the
direction where the PML intends to suppress reflection waves; Rx = R, Ry = 0
in the PML for the x-direction, Rx = 0, Ry = R in that for the y-direction, and
Rx = R, Ry = R in that at a corner of calculated sound field.

In the PML region with nonzero attenuation parameter Rx , the governing equa-
tions for acoustic fields corresponding to Eq. (5.13) are [21]

∂t p + cZ∂xvx = − Rx

ρ
p, Z∂tvx + c∂x p = − Rx

ρ
Zvx . (5.79)

Addition and subtraction of them lead to the following equations letting rx = Rx/ρ:
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∂t fx± ± c∂x fx± = −rx fx±. (5.80)

Although Eq. (5.80) has a non-advection term, that is a dissipation term, in the right-
hand side, it can be computed by separating into advection and non-advection phases
[8]:

∂t fx± ± c∂x fx± = 0, (5.81)

∂t fx± = −rx fx±. (5.82)

Equation (5.81) is a normal advection equation. Therefore, it can be calculated by the
procedure previously described for lossless fields. We let here results of the advection
calculations at a time step n be f n(A)

x± , gn(A)
x± , η

n(A)
x± , and ξ

n(A)
x± .

In the non-advection phase, the analytical solution of Eq. (5.82) gives fx± at the
next time step using f n(A)

x± :

f n+1
x± = f n(A)

x± exp(−rxΔt). (5.83)

The derivatives gx± at the next time step are also analytically obtained by the spatial
differentiation of Eq. (5.83) with respect to x :

gn+1
x± =

{
g

n(A)
x± − Δt (∂xrx ) f n(A)

x±
}

exp(−rxΔt), (5.84)

where the spatial derivative of rx is given by

∂xrx = (∂x d)
m Rmax

ρL

(
d

L

)m−1

. (5.85)

Furthermore, the differentiations of Eqs. (5.83) and (5.84) with respect to y derive
the solutions of the perpendicular derivatives ηx± and μx±:

ηn+1
x± = η

n(A)
x± exp(−rxΔt), (5.86)

μn+1
x± =

{
μ

n(A)
x± − Δt (∂xrx )η

n(A)
x±

}
exp(−rxΔt). (5.87)

As described above, the values at the next time step, that is the results of the non-
advection phase, can be straightly calculated by using those previously obtained in
the advection phase.

We can compute y-directional wave propagations in the PML region in a similar
procedure to the above.

Figure 5.7 exhibits sound pressure distributions in a two-dimensional free field
with and without the PML over the lower outer boundary. The PML consists of 64
layers and the outer boundaries including the lower one behind the PML employ the
A-ABC. The illustrated area is a part of an adequately large calculated field, which
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(a) (b)

Fig. 5.7 Comparison of sound pressure distributions in the two-dimensional free field with and
without the PML over the lower outer boundary. Calculation parameters are: c = 340.5 m/s, Δt =
0.25 × 10−4 s, Δl = 0.025 m, Rmax = 2.0ρc, m = 2, and N = 64. a Without PML. b With
64-layer PML

has dimensions of 65.6 × 27.2 m. Therefore, no reflection waves from the outer
boundaries except the lower one appear in the illustrated area in a time range shown
in Fig. 5.7. In the results without the PML, we can observe the reflection wave from
the A-ABC and find that the amplitude of it increases as the incident angle increases.
In contrast, in the results with the PML, the reflection wave almost disappears.

5.3 Finite-Volume Time-Domain Method

The FDTD approach has widely been accepted as a simple, fast, and proven method
for numerical sound propagation prediction. However, the method requires an orthog-
onal structured grid system for a discretized representation of an acoustic field.
The use of the orthogonal grid system is recognized as one of shortcomings of the
FDTD method because it is generally not suitable for the representation of complex
geometries. Meshing (preprocessing) and postprocessing complex geometries with
orthogonal structured grids often require extensive human works.

The issue is addressed here through an introduction of a full finite-volume time-
domain (FVTD) method meant as a replacement for the FDTD method. The main
strength of the full FVTD approach is the capability to utilize unstructured grids,
which contain arbitrary polyhedral cells. The strength opens possibility of using a
vast variety of general-purpose pre- and post-processors designed for finite volume
or finite element grids.
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5.3.1 Finite-Volume Formulation

The wave propagation equation represented in velocity potential φ is written as
follows.

∂2φ

∂t2 = c2
0∇2φ, (5.88)

where t , c0, ∇2 are time, the propagation speed of the wave, and the Laplacian
operator, respectively. Using φ, pressure p and particle velocity u are written as
follows.

p = ρ
∂φ

∂t
, (5.89)

u = −∇φ. (5.90)

Equation (5.88) is discretized under an unstructured grid system as shown in Fig. 5.8
where the definition point of physical quantities are taken at the barycenter of each
control volume (CV). For the left hand side of Eq. (5.88), by integrating over the CV
with time-invariant volume V and applying central time-differential scheme, we get

∂2

∂t2

∫

V

φ dV ≈ φn+1 − 2φn + φn−1

Δt2 V,

where φn−1, φn , φn+1 denote the values of φ at the (n − 1)th, nth, (n + 1)th steps
of time step Δt . For the right hand side, by integrating Eq. (5.88) within a CV and
applying divergence theorem, we get

∫

V

c2
0 ∇2φdV = c2

0

∫

S

d S · ∇φ

≈ c2
0

∑

f

Sf · (∇φ)f , (5.91)

where Sf denotes the face area vector of the f-th face that constitutes the polyhedral
CV in question as follows:

Sf = Sf nf , (5.92)

where Sf and nf are the area and the unit outward normal vector of the face f,
respectively.

If a vector connecting the centers of the CV P and its adjacent CV N, dP N , is
parallel to S f , Sf (∇φ)f is written in terms of ∂φ/∂nf , the surface-normal gradient
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Fig. 5.8 Unstructured mesh
system
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of φ. Thus, the term within the summation in the rightmost hand side of Eq. (5.91)
is discretized as follows.

Sf · (∇φ)f = Sf
∂φ

∂nf

≈ Sf
φN − φP

|dPN| . (5.93)

However, if dP N is nonorthogonal to Sf , Sf has to be decomposed into its orthogonal
part Δf and nonorthogonal part kf .

Sf · (∇φ)f = Δf · (∇φ)f + kf · (∇φ)f .

The first term of the right hand side of the equation above, the orthogonal part, is
discretized similarly to Eq. (5.93) as follows:

Δf · (∇φ)f ≈ |Δf | φN − φP

|dPN| .

The nonorthogonal part, (∇φ)f in the second term, is given by interpolating the
gradient of φ at the centers of CVs P and N.

(∇φ)f = fx (∇φ)P + (1 − fx )(∇φ)N. (5.94)

Here, the interpolation coefficient fx and the gradient (∇φ)P are given as follows.

fx = fN

|dPN| ,

(∇φ)P = 1

V

∫

S
d S φ

≈ 1

V

∑

f

Sφf ,

where φf is a face-interpolated value of φ at the center of CVs.
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Fig. 5.9 Nonorthogonal mesh
correction vectors sf

δ f

kf

dPN

The orthogonal and nonorthogonal component vectors Δf and kf can be calculated
arbitrarily [22]. An orthogonal correction as follows is applied here.

Δf = dPN

|dPN| Sf , (5.95)

kf = Sf − Δf . (5.96)

The vectors are schematically drawn in Fig. 5.9.

5.3.2 Rigid Boundary Conditions

On acoustically rigid boundaries b, the normal component of particle velocity ub is
fixed to zero.

ub = nb · ub = 0. (5.97)

Substituting the relationship above to Eqs. (5.90) and (5.92) leads to the equation
below, which represents the surface normal gradient of φ being zero.

Sb · (∇φ)b = 0.

5.3.3 Computational Setup

In order to validate the proposed FVTD technique under unstructured meshes, a
comparative test using a sound propagation problem in a closed cube of 1 m × 1
m × 1 m, one of the AIJ-BPCA (Benchmark Platform on Computational Methods
for Architectural and Environmental Acoustics) [23] problems, was carried out. The
detail of the tested cases are shown in Table 5.1.

Case 1 The problem was solved using a conventional FDTD code written in Fortran
77 employing a pressure-particle velocity leapfrog scheme. The case is meant
to be the benchmark case to which the results obtained by the proposed
technique is compared for validation. Each edge of the cube was divided to
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Table 5.1 Computational setup

Case 1 2 3 4

Approach FDTD FVTD
Type of mesh – Hexahedral Unstructured tetrahedral
Number of cells/CVs 813 = 531 441 531 333
Δx [m] 0.0123 –
lc [m] – 0.025 (40 elements per edge)
Δt [ms] 0.02 0.0049
c0 [m/s] 343.7
Courant number 0.96 0.99 (max)
Nonorth. correction – Uncorrected Orthogonal
Initial condition A single wave of offset cosine (Eqs. (5.98), (5.99))

81 subedges to create a mesh of cell width Δx = 0.0123 m and the number
of cells 531,441 (Fig. 5.10b). The time step Δt and the Courant number Co

were set to 0.02 ms and 0.96, respectively.
Case 2 The problem was solved with the proposed technique under a hexahedral

orthogonal mesh and setup both identical to the ones for Case 1.
Case 3 The problem was solved with the proposed technique under a nonuniform

tetrahedral unstructured mesh automatically generated by an open-source
mesher, Gmsh [24]. The characteristic length lc (the length with which each
edge of the cube is divided) is set to 0.025 m, to make a mesh with the number
of CVs 531,333 (roughly the same as Cases 1 and 2). The ratio of maximum
and minimum CV edge lengths of the generated mesh was 6.32. The time
step Δt was set to 0.0049 ms to keep the maximum Courant number to 0.99.
In this case no nonorthogonal techniques was applied.

Case 4 The setups are same as Case 3, except that the orthogonal correction tech-
nique was applied.

For all cases, the initial values of φ were set to represent the pressure and particle
velocity conditions of

p−1/2(r) =
{cos 8πr + 1

2
(r < 0.125)

0 (otherwise)
[Pa], (5.98)

u0(r) = 0, (5.99)

where r [m] is the distance from the center of the cube. All cases were run up to
t = 0.04s.
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Fig. 5.10 a Problem geometry of the benchmark problem AIJ-BPCA B0-1T, b Surface mesh for
Cases 1 and 2 (coarsened by factor of 2 for visibility), c Surface mesh for Cases 3 and 4 (coarsened
by factor of 2) and d Surface and internal mesh (coarsened by factor of 8) for Cases 3 and 4

5.3.4 Results and Discussion

The transient sound pressure waveforms at the receiving point R2 shown in Fig. 5.10a
are plotted in Fig. 5.11, using the result of Case 1 as the benchmark case for compari-
son with other cases. From Fig. 5.11a, one can see that the results of FDTD and FVTD
techniques agree so precisely that they can be regarded as virtually identical results.
From the results one can verify the proposed FVTD technique has the same accu-
racy as the conventional FDTD under identical geometry, mesh, and computational
setups.

On the other hand, from the comparison of Cases 1 and 3 in Fig. 5.11b, the
waveform obtained by the FVTD technique under the tetrahedral mesh is phasing
forward in about 1.5 %. Also, the overall waveform is gradually dispersing over time.
In addition, the results of Case 4 is shown in Fig. 5.11c. Despite the employment of the
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Fig. 5.11 Transient sound pressure waveforms at the receiving point R2

Table 5.2 Processor and memory usages

Case 1 2 3 4

Processor [s] 28.0 343 865 2 013
Per time step [s] 0.0140 0.172 0.106 0.247
Memory [MB] 18 301 260 260

correction technique, the drift of the phase did not improve. Even worse, waveforms
started to oscillate and diverged eventually.

From the results one can conclude that while one can expect identical results
between FDTD and FVTD techniques under identical setups, there remains works
for the FVTD technique in reducing the phase error coming from nonorthogonalities
of unstructured grids.

5.3.5 Computational Loads

To compare the proposed technique with the conventional FDTD from the stand-
point of computational loads, processor times and memory usages were instrumented
for Cases 1–4, as shown in Table 5.2. The instrumentations were carried out on an
Opteron 2.4 GHz 64-bit Linux platform. The FVTD computations turned out to
require more than ten times of processor and memory usages. Hence it should be
noted that, from the computational load of view, the proposed FVTD technique is
not meant to completely replace FDTD especially in large cases, but should rather
be used for small to medium cases where rapid preprocessing (case setup) and post-
processing have of particular importance.
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Although Cases 2 and 3 have roughly the same number of cells, one may notice that
Case 3 requires smaller amount of computational time per time step. This is because
the computational load required in calculating the Laplacian term is determined
mostly by the number of faces per CV, as shown in Eq. (5.91). It is also shown that,
from Cases 3 and 4, applying nonorthogonal correction technique more than doubles
the processor usage.
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