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    Abstract     The biological properties of the interleukin-1 (IL-1) family ligands and 
receptors are characteristically pro-infl ammatory and act as adjuvants for specifi c 
immune responses to antigen. Thus, the IL-1 family of ligands and receptors is 
 fundamental to innate immunity. Of the 11 members of the IL-1 family, IL-1β has 
emerged as a therapeutic target for an expanding number of systemic and local 
infl ammatory conditions termed “auto-infl ammatory” diseases. These diseases are 
distinct from autoimmune diseases and include several hereditary conditions. 
Howver, auto-infl ammatory diseases are also common diseases such as heart fail-
ure, gouty arthritis, and type 2 diabetes. For these, neutralization of IL-1β results in 
a rapid and sustained reduction in disease severity. Another member of the IL-1 
family, IL-1α, is also a mediator of infl ammation but is classifi ed as an “alarmin” 
because the cytokine is present in most cells and readily released upon cell death. 
Although treatment for autoimmune diseases often includes immunosuppressive 
drugs, blocking the IL-1 receptor is effective as an anti-infl ammatory therapy for 
either IL-1α or IL-1β.  
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1.1         Introduction 

 As shown in Table  1.1 , more than any other cytokine family, the interleukin-1 (IL-1) 
family plays a fundamental role in innate infl ammation as well as reducing infl am-
mation (Dinarello et al.  2012 ). It is this innate infl ammation that facilitates specifi c 
immunological responses such as antibodies and cytotoxic T lymphocytes. In many 
ways, another interpretation of the innate response by IL-1 is its action as an adju-
vant. Initially termed the nonspecifi c response to infection, a new name now used is 
“the innate immune response.” The cytosolic segment of each member of the IL-1- 
receptor family contains the Toll-IL-1-receptor (TIR) domain. This domain is also 
present in each Toll-like receptor (TLR), receptors that respond to microbial prod-
ucts, viruses, and nucleic acids. TIR is the functional domain for both the TLR and 
IL-1 receptor families, as mutations in this domain result in loss of response to IL-1 
and TLR agonists.

   With one exception, all members of the IL-1 family are initially translated as 
precursors lacking a signal peptide for secretion via the Golgi apparatus. The pre-
cursors are found in the cytosol and exit the cell following its death by necrosis, not 
apoptosis. For example, once released, IL-1α, IL-33, and IL-36 can be processed 
extracellularly by neutrophil proteases into active cytokines. Although IL-1β is pri-
marily processed intracellularly by the cysteine protease caspase-1, the IL-1β pre-
cursor can also be cleaved extracellularly into an active cytokine by similar serine 
proteases of neutrophils (Joosten et al.  2009 ). The one member of the IL-1 family 
that is readily secreted is the IL-1-receptor antagonist (IL-1Ra). IL-1Ra is translated 
with a signal peptide (Fig.  1.1 ), although an intracellular form also exists (Arend 
 2002 ). IL-1Ra is produced in health and is found circulating in mice and humans 
where the antagonist serves as a brake on infl ammation driven by endogenous IL-1α 
or IL-1β. IL-1Ra binds to IL-1RI and blocks the receptor from binding to either 

    Table 1.1    Interleukin (IL)-1 family   

 Family name  Written name  Abbreviation  Property 

 IL-1 F1  Interleukin-1α  IL-1α  Pro-infl ammatory    
 IL-1 F2  Interleukin-1β  IL-1β  Pro-infl ammatory 
 IL-1 F3  IL-1-receptor antagonist  IL-1Ra  Anti-infl ammatory 
 IL-1 F4  Interleukin-18  IL-18  Pro-infl ammatory 
 IL-1 F5  IL-36-receptor antagonist  IL-36Ra  Anti-infl ammatory 
 IL-1 F6  Interleukin-36α  IL-36α  Pro-infl ammatory 
 IL-1 F7  Interleukin-37  IL-37  Anti-infl ammatory 
 IL-1 F8  Interleukin-36β  IL-36β  Pro-infl ammatory 
 IL-1 F9  Interleukin-36γ  IL-36γ  Pro-infl ammatory 
 IL-1 F10  Interleukin-38  IL-38  Anti-infl ammatory 
 IL-1 F11  Interleukin-33  IL-33  Pro-infl ammatory 

   a In some studies, IL-18 exhibits protective properties 
  b The biological properties of IL-38 remain unclear; IL-38 binds to the IL-36 receptor and can act 
as an anti-infl ammatory cytokine 
  c IL-33 is studied for its role in the Th2 paradigm because IL-33 binds to ST2, a member of the IL-1 
family of receptors linked to allergic diseases  
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IL-1α or IL-1β (see Fig.  1.2c ). Mice as well as humans born with a defi ciency in 
functional IL-1Ra exhibit increased systemic and local infl ammation; in humans a 
defi ciency in IL-1Ra is lethal. The IL-36 receptor antagonist (IL-36Ra), another 
member of the IL-1 family, inhibits the activity of endogenous IL-36α, -β, and -γ. 
Although IL-36Ra is not readily secreted, individuals with a mutation in IL-36Ra 
develop a severe form of psoriasis. One may conclude that most members of the 
IL-1 family primarily promote infl ammation and enhance specifi c acquired immune 
responses. However, there are also members that provide a brake on infl ammation. 
The primary characteristics of each member of the IL-1 family are depicted in 
Table  1.1 .

1.2         Interleukin-1 Family and Innate Responses 

 Independent of the type of organism or its products, the innate response is one of 
infl ammation in which the host musters its defenses to increase the production and 
infi ltration of phagocytic cells to the area of the invading microbe in an attempt limit 
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  Fig. 1.1    Organization of the interleukin (IL)-1 family into three subfamilies. The number of 
amino acids of the full length of each member is shown at the C-terminal end. The consensus 
sequence ( AXD ) is common to all IL-1 family members and serves to locate the N-terminus nine 
amino acids forward from this site ( dark vertical bars ). The N-terminus results in propieces of 
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infection and kill off the invader. Systemically, the liver increases the synthesis of 
acute-phase proteins, include anti-proteases. Even in humans, in most cases this 
process protects the subject without the use of antibiotics. For example, a break in 
the skin allows bacteria to gain access to the dermis and subsequent infl ammation 
provides activation of complement, the release of preformed cytokines from kerati-
nocytes, an increase in vascular wall adhesion molecules, and the extravasation of 
neutrophils. This response has functioned to battle against invaders for millions of 
years and can be traced back to fruit fl ies. 

 The skin, lung, and intestinal tract each provide a fi rst line of defense against 
microbial invasion, and the lining cells, whether keratinocytes of the skin, the alveo-
lar epithelial cells of the pulmonary tree, or the epithelial cells of the entire gastro-
intestinal tract, each contain preformed IL-1α, IL-18, and IL-33 as well as the 
members of the IL-36 subfamily. Because these members of the IL-1 family are 
each preformed in these cells, their release is a consequence of injury and is imme-
diate. Therefore, they are termed “alarmins” as they alert the host to initiate the 
response. There are other alarmins from the lining cells that participate in defense, 
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  Fig. 1.2    Interleukin (IL)-1 subfamily.  (a)  IL-1α or IL-1β binds to the IL-1RI and recruits the co- 
receptor IL-1RAcP. The heterodimeric IL-1 receptor complex results in a close approximation of 
the Toll-like receptor (TIR) domains on each receptor chain ( arrows ), resulting in the binding of 
intracellular MyD88 to the complex followed by phosphorylation of MyD88. Subsequent phos-
phorylations of IRAKs and IKKβ increase NFκB and IL-1R AcP-1 translocation to the nucleus, 
followed by expression of pro-infl ammatory genes.  (b)  In the central nervous system, IL-1α or 
IL-1β binds IL-1RI, recruiting IL-1RAcP, but can also recruit the co-receptor IL-1RAcPb. 
IL-1RAcPb contains an altered TIR domain, which results in a reduced signal.  (c)  IL-1Ra binds to 
IL-1RI: there is no recruitment of the co-receptor IL-1RAcP, no approximation of the TIR domains, 
and there is no signal.  (d)  IL-33 binds to its specifi c receptor, ST2, recruits the co-receptor 
IL-1RAcP, and the TIR domains approximate: signal transduction is initiated, resulting in the 
induction of the pro-infl ammatory gene profi le       
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for example, defensins, which are directly antimicrobial. Each of the constitutively 
present IL-1 family members in lining cells is present as a precursor. In the case of 
IL-1α, the precursor is fully active; in the case of the other members, the precursors 
are weakly active at fi rst but are converted to more active cytokines upon the infi l-
tration of neutrophils and processing by extracellular neutrophil proteases. In the 
end, the infection is contained, the invading microorganism is eliminated, and the 
skin begins its process of repair. 

 Following the cloning of the mouse IL-1 receptor (Sims et al.  1988 ), the cytosolic 
domain of the IL-1 receptor was found to be homologous to Toll of the fruit fl y (Gay 
and Keith  1991 ). Moreover, at the same time, the TIR domain for IL-1 signaling (see 
Fig.  1.2 ) was shown by Heguy to be required for IL-1 signaling (Heguy et al.  1992 ). 
Toll had been initially studied since its discovery in 1985 because of its central role 
in establishing dorsal ventral polarity in  Drosophila . Only since 1996 was Toll linked 
to survival in fruit fl ies infected with fungi (Lemaitre et al.  1996 ). However, it had 
already been reported, back in 1988, that a member of the IL-1/TLR family, human 
IL-1β, protected mice from lethal  Pseudomonas  infection (van der Meer et al.  1988 ). 
As already noted, the TIR domain is essential for both IL-1- receptor family and TLR 
family signaling: a mutation in the TIR domain severely impairs responses to IL-1 
family ligands as well to a large number of microbial products (O’Neill  2008 ). 

 The TIR domain binds MyD88 (Fig.  1.2 ), itself a TIR domain-containing protein, 
through TIR–TIR interactions triggering a cascade of kinases that propagate the 
IL-1 signal and result in transcription of a large number of genes, the majority of 
which code for other cytokines, chemokines, and a host of infl ammatory mediators. 
Of these is IL-1 itself and other members of the IL-1 family such as IL-36 and IL-18. 

 The “innate immune response” regulates to the “acquired immune response.” 
The late Charles Janeway proposed that the innate response assists the host in 
mounting an acquired immune response. This relationship between a nonspecifi c 
cytokine providing help for a specifi c response to a microbial antigen is simply the 
adjuvant property of some cytokines. The adjuvant property of some cytokines 
functions by upregulating lymphocyte growth factors such as IL-2, IL-4, and IL-6 
or lymphocyte receptors, resulting in expansion of lymphocyte clones, which will 
either rid the host of the invading microorganism with neutralizing antibodies or in 
generation of cytotoxic T cells to eliminate viral infections. In 1979, purifi ed human 
IL-1β, a nonspecifi c macrophage product, was shown to augment the T-cell response 
to a specifi c antigen (Rosenwasser et al.  1979 ). It was nearly 20 years later that TLR 
were identifi ed as inducing IL-1β from monocytes.  

1.3     Organization of the IL-1 Family of Ligands 
and the Consensus Sequence 

 As depicted in Fig.  1.1 , the IL-1 family can be divided into subfamilies according to 
the length of the precursor and the length of the propiece for each precursor. The 
IL-1 subfamily is composed of IL-1α, IL-1β, and IL-33. This subfamily has the 
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longest proteins with the longest propieces. In the case of IL-1β, the propiece is 
cleaved intracellularly by caspase-1 and then the mature cytokine is secreted. In the 
case of IL-1α, cleavage appears to occur by the membrane protease calpain, but 
extracellular neutrophil proteases can also cleave the IL-1α precursor. Extracellular 
neutrophil proteases account for the cleavage of the propiece of IL-33. The excep-
tion in the IL-1 subfamily is the IL-1Ra, which contains a signal peptide. 

 The IL-18 subfamily is composed of IL-18 and IL-37. By comparison, this sub-
family has a smaller propiece. IL-18 requires the cleavage of its propiece by cas-
pase- 1 to be active. IL-37 is part of the IL-18 subfamily because the cytokine binds 
to the IL-18Rα chain. It is unclear how the propiece of IL-37 is removed. The IL-36 
subfamily is composed of IL-36α, -β, and -γ as well as IL-36 Ra. In addition, IL-38 
likely belongs to this family because of its binding to the IL-36R. The IL-36 sub-
family has the shortest propiece. 

 A consensus sequence in all members of the IL-1 family is A-X-D, where A is an 
aliphatic amino acid such as isoleucine, methionine, or leucine, X is any amino acid, 
and D is aspartic acid. The aspartic acid of the consensus sequence is not the aspartic 
acid of the caspase-1 cleavage recognition site. The A-X-D motif is conserved in the 
IL-1 family where it plays a role in the three-dimensional structure of the active 
cytokine. The actual N-terminus is often located nine amino acids before the A-X-D 
site. By eliminating the amino acids before the N-terminus, the fi rst beta-sheet struc-
ture common to all members of the IL-1 family can form. For example, with the tenth 
amino acid before the A-X-D consensus site as the N-terminus, the specifi c activity 
of the IL-36 subfamily (IL-36α, IL-36β, IL-36γ, and IL-36Ra) is low. However, with 
the ninth amino acid as the N-terminus there was a marked increased in the activity 
(Towne et al.  2011 ). In the case of IL-1β, the ninth amino acid before the A-X-D site 
coincides exactly with the N-terminal alanine generated by the caspase-1 site.  

1.4     Interleukin-1α 

 From an evolutionary point of view, IL-1α is the oldest member of the IL-1 family, 
and its primary amino acid sequence is closely related to that of the fi broblast growth 
factor (FGF) family. Similar to FGF, IL-1α does not have a signal peptide, binds to 
nuclear DNA, exits the cell upon death, and binds to its receptor as an unprocessed 
precursor. As shown in Fig.  1.2 , IL-1α binds to the IL-1RI and recruits the IL-1R 
accessory protein (IL-1RAcP) to form a heterodimeric complex, which signals to 
induce infl ammation. In health, primary cells contain constitutive levels of the IL-1α 
precursor but not IL-1β (Hacham et al.  2002 ). The IL-1α precursor is present in 
keratinocytes, thymic epithelium, hepatocytes, endothelial cells, the epithelial cells 
of mucous membranes, including the entire gastrointestinal tract, and fi broblasts 
regardless of their location. The propiece of IL-1α precursor can be cleaved extra-
cellularly by neutrophil proteases, a step that increases its biological activity. 
However, IL-1α can also be active as a membrane-associated cytokine. Most cell 
lines including tumor cell lines contain constitutive levels of IL-1α (Hurgin et al. 
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 2007 ; Lonnemann et al.  1995 ; Werman et al.  2004 ). Using an epithelial cell line, 
what were considered to be intrinsic interferon (IFN)-γ activities depended largely 
on constitutively expressed IL-1α. IFN-γ activities were inhibited by antibodies to 
IL-1α but not to IL-1β (Hurgin et al.  2007 ). The concept that IL-1α acts as an auto-
crine growth factor assumes that the intracellular IL-1α precursor regulates normal 
cellular differentiation, particularly in epithelial and ectodermal cells. In support of 
the concept, an antisense oligonucleotide to IL-1α reduces senescence in endothelial 
cells (Maier et al.  1990 ). In fi broblasts, the constitutive IL-1α precursor binds to 
HAX-1, a non-receptor substrate for tyrosine kinases in hematopoietic cells. In 
fi broblasts, the IL-1α HAX-1 complex translocates to the nucleus (Kawaguchi et al. 
 2006 ). Although the concept is that IL-1α acts as an autocrine growth factor in fi bro-
blasts or endothelial cells in vitro, the data should be interpreted carefully because 
mice defi cient in IL-1α show no demonstrable defects in growth and development, 
including skin, fur, epithelium, and gastrointestinal function (Horai et al.  1998 ). 
However, mice defi cient in IL-1α still retain the N-terminal propiece, which func-
tions as a nuclear factor (Werman et al.  2004 ). In fact, in another study, the N-terminal 
propiece of IL-1α was shown to bind HAX-1 (Yin et al.  2001 ). 

 Is there is a role for the intracellular precursor IL-1α in normal cell function? The 
IL-1α precursor is present in cells that also contain large amounts of the intracellu-
lar form of the IL-1Ra (icIL-1Ra), as reviewed by Arend ( 2002 ). This form of 
IL-1Ra also binds to the IL-1 receptor and prevents signal transduction. In fact, 
icIL-1Ra is thought to compete with the intracellular pool of precursor IL-1α for 
nuclear-binding sites. 

1.4.1     Membrane-Associated IL-1α 

 Precursor IL-1α can be found on the surface of several cells, particularly on mono-
cytes and B lymphocytes, where it is referred to as membrane IL-1α (Kurt-Jones 
et al.  1985 ). Membrane IL-1α is biologically active (Kaplanski et al.  1994 ); its bio-
logical activities are neutralized by antibodies to IL-1α but not those to IL-1β. 
Endothelial cells undergoing stress-induced apoptosis release membrane apoptotic 
body-like particles containing nuclear fragments and histones as well as the full- 
length IL-1α precursor and the processed mature form (Berda-Haddad et al.  2011 ). 
When injected into mice, apoptotic body-like particles containing the IL-1α precur-
sor induce neutrophilic infi ltration that was prevented by neutralization of IL-1α but 
not IL-1β (Berda-Haddad et al.  2011 ).  

1.4.2     Processing and Secretion of IL-1α 

 Although the IL-1α precursor is biologically active, the processed form is more 
active. Furthermore, the binding of IL-1α to IL-1RI has been modeled using 
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recombinant IL-1α with an N-terminus at 113. The processing of the IL-1α  precursor 
is accomplished by calpain II, a membrane-associated, calcium-dependent cysteine 
protease (Miller et al.  1994 ). In macrophages treated with hydroquinone, calpain II 
levels fall and are associated with inhibition of IL-1α precursor processing (Miller 
et al.  1994 ). Not surprisingly, calcium infl ux induced IL-1α secretion of the pro-
cessed form (Gross et al.  2012 ). The secretion of IL-1α requires the presence of 
IL-1β, because IL-1β-defi cient mice do not secrete IL-1α (Fettelschoss et al.  2011 ). 
IL-1α binding to IL-1β has been reported in which IL-1β acts as a chaperone for the 
secretion mechanism via caspase-1 (Fettelschoss et al.  2011 ). In another study, 
IL-1β was shown to bind to, and enhance the activity of, HMGB1 (Sha et al.  2008 ). 
It is thus possible that both IL-1α exits the cell bound to IL-1β and HMGB1.  

1.4.3     Biological Functions of Constitutive IL-1α: IL-1α 
and Sterile Infl ammation 

 Large numbers of reports mention the use of bacterial and fungal products to induce 
cytokines as models of infl ammatory disease; however, most infl ammatory diseases 
are sterile. For example, the infl ammation associated with atherosclerosis, myocar-
dial infarction, stroke, cancer, renal, and liver failure is sterile. The hypoxic insult 
that takes place in ischemia results in local necrosis and release of cellular contents, 
including nucleic acids. Members of the IL-1 family contribute to sterile infl amma-
tion, and IL-1α plays a signifi cant role in this regard. Upon cell death by necrosis, 
the IL-1α precursor is released (Carmi et al.  2009 ; Cohen et al.  2010 ) and binds to 
the IL-1 receptor on nearby tissue macrophages and epithelial cells, triggering a 
response (Luheshi et al.  2011 ; Rider et al.  2011 ). For example, infi ltration of neutro-
phils occurs fi rst and is followed by infl ux of monocytes (Rider et al.  2011 ). Extracts 
of tumor cells induce neutrophilic infl ammation, which does not occur in mice defi -
cient in IL-1RI and is prevented by neutralization of IL-1α, but not neutralization of 
IL-1β (Chen et al.  2007 ). Sterile infl ammation is independent on TLR2 and TLR4 
(Chen et al.  2007 ). 

 Thus, IL-1α, either the unprocessed precursor or the calpain cleavage form, is 
classifi ed as an alarmin because the cytokine is preformed and triggers an infl am-
matory response rapidly. Endothelial cells subjected to nutritional stress release 
infl ammatory apoptotic bodies, which contain both the precursor and processed 
forms of IL-1α (Berda-Haddad et al.  2011 ). Infl ammatory apoptotic bodies induce 
chemokine and neutrophilic infi ltration into the peritoneal cavity, both of which 
are IL-1α dependent (Berda-Haddad et al.  2011 ). Platelets also contain IL-1α as 
well as IL-1β (Hawrylowicz et al.  1989 ). Platelet-derived IL-1 induces chemo-
kines such as IL-8 from endothelial cells (Kaplanski et al.  1993 ) and MCP-1 from 
monocytes (Hawrylowicz et al.  1991 ). Platelet-derived IL-1α is important in brain 
injury in stroke models (   Thornton et al.  2010 ) and in atherosclerosis (Gawaz et al. 
 2000 ).  
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1.4.4     Studies in IL-1α-Defi cient Mice 

 Mice defi cient in IL-1α are born healthy and develop normally. In some models of 
local infl ammatory responses, wild-type and IL-1α-defi cient mice develop fever 
and acute-phase proteins, whereas IL-1β-defi cient mice do not (Horai et al.  1998 ). 
In addition, although the infl ammation-associated induction of glucocorticoids was 
suppressed in IL-1β-defi cient mice, this suppression was not observed in IL-1α- 
defi cient mice. However, expression of IL-1β mRNA in the brain decreased 1.5 fold 
in IL-1α-defi cient mice whereas expression of IL-1α mRNA decreased more than 
30 fold in IL-1β-defi cient mice. These data suggest that IL-1β exerts greater control 
over production of IL-1α than does IL-1α over the production of IL-1β. In caspase-
1- defi cient mice, IL-1α production is also reduced (Kuida et al.  1995 ), further sug-
gesting that production of IL-1α is under the control of IL-1β. It is important that 
caspase-1-defi cient mice are also defi cient in caspase-11 (Kenneth et al.  2012 ). 

 In mice fed a high-fat diet, serum amyloid A protein, a marker of infl ammation 
in atherogenesis, was markedly lower in IL-1α-defi cient mice compared to wild- 
type or IL-1β-defi cient mice (Kamari et al.  2007 ). IL-1α-defi cient mice had signifi -
cantly higher levels of non-high density lipoprotein cholesterol. The benefi cial 
effect of IL-1α defi ciency was the result of hematopoietic cells transferred from the 
bone marrow of IL-1α-defi cient mice, resulting in a reduction in aortic lesion size 
twice that observed in mice transplanted with IL-1β-defi cient bone marrow cells. 
Therefore, IL-1α appears to play a greater role in the pathogenesis of lipid-mediated 
atherogenesis than IL-1β, and this may be the result of an effect of membrane IL-1α.   

1.5     Interleukin-1β 

1.5.1     IL-1β, the Master Cytokine in the IL-1 Family 

 More than any other member of the IL-1 family, IL-1β has been the focus of most 
studies. IL-1β is a highly infl ammatory cytokine, particularly in humans, as reviewed 
by (Dinarello  2011a ). As shown in Fig.  1.2a , IL-1β and IL-1α bind to the same 
IL-1RI and trigger a proinfl ammatory signal. The interest in IL-1β also results, in 
part, because it is a secreted cytokine from macrophages and from the importance 
of the macrophage in antigen presentation before the era of dendritic cells. The 
inactive IL-1β precursor is converted into an active cytokine by the intracellular 
cysteine protease caspase-1. In particular, persons with activating mutations in one 
of the key genes that control the activation of caspase-1 can develop life-threatening 
systemic infl ammation, which is reversed by either blocking the IL-1 receptor or 
through the use of a neutralizing antibody to IL-1β. Other chronic infl ammatory 
diseases are mediated by IL-1β, as neutralizing antibodies have been used to treat a 
broad spectrum of diseases. 
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 The IL-1β-mediated illnesses fall into the category of “auto-infl ammatory” 
 diseases, which are to be distinguished from the classic “autoimmune” diseases. 
Although infl ammation is common to both auto-infl ammatory and autoimmune dis-
eases, in the case of IL-1-mediated disease, there is no evidence for role of adaptive 
immunity in its induction.  

1.5.2     IL-1β is an Inducible Cytokine 

 In contrast to IL-1α, the IL-1β precursor is not present in health. Also differing 
from IL-1α, IL-1β is primarily a product of monocytes, macrophages, and dendritic 
cells (DC) as well as B lymphocytes and natural killer (NK) cells. In health, circu-
lating human blood monocytes or bone marrow cells do not constitutively express 
mRNA for IL-1β. Endothelial cells, skin keratinocytes, fi broblasts, and epithelial 
cells contain constitutive IL-1α and constitutive IL-33 as precursors as well as 
mRNA, but these cells do not express IL-1β mRNA, even upon stimulation with 
TLR ligands. Melanoma cells do express IL-1β as a precursor, and the more aggres-
sive and metastatic the melanoma, the greater the likelihood of active caspase-1 
and IL-1β secretion (Okamoto et al.  2009 ). In the bone marrow neutrophil precur-
sors, IL-1β gene expression is inducible but mature neutrophils in the circulation no 
longer produce IL-1β. Neutrophil IL-1β plays a pathological role in the severe 
infl ammation of mice with a mutant form of the phosphatase SHP1 (   Croker et al. 
 2011 ). Several malignant tumors do express IL-1β as part of their neoplastic nature, 
particularly acute myelogenous leukemia, melanoma, multiple myeloma, and juve-
nile myelogenous leukemia, each of which exhibit constitutive expression of IL-1β. 
In contrast to most cytokine promoters, IL-1β regulatory regions are distributed 
more than several thousand base pairs upstream from the transcriptional start site. 
In addition to a cAMP response element, there are NF-κB-like and activating pro-
tein-1 (AP-1) sites. IL-1β gene regulation has been reviewed in detail (Unlu et al. 
 2007 ). Although steady-state mRNA levels for IL-1β may be present, there is dis-
tinct dissociation between transcription and translation of the IL-1β precursor. 
Non-TLR ligands such as the complement component C5a, hypoxia, adherence to 
surfaces, or clotting of blood induce the synthesis of large amounts of IL-1β mRNA 
in monocytic cells without signifi cant translation into the IL-1β protein. In these 
cells, the IL-1β mRNA assembles into large polyribosomes, but there is no signifi -
cant elongation of the peptide (Kaspar and Gehrke  1994 ). This failure to complete 
the translation into IL-1β protein may be caused by the instability element present 
in the coding region. This instability region is also found in IL-18 and IL-37 and 
appears to limit the mRNA of these cytokines (Bufl er et al.  2004 ). However, com-
pletion of translation of the mRNA into the respective cytokines can be accom-
plished by adding low concentrations of TLR ligands or IL-1 itself to the “primed” 
monocytes (Schindler et al.  1990 ).  
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1.5.3     Processing and Secretion of IL-1β via Caspase-1 

 Nearly all microbial products induce IL-1β via TLR activation; in addition, IL-1 
(either IL-1α or IL-1β) induces itself both in vivo and in monocytes in vitro 
(Dinarello et al.  1987 ). Other studies supporting this concept of IL-1-induced IL-1 
have been reported (Boni-Schnetzler et al.  2008 ; Gattorno et al.  2007 ; Goldbach- 
Mansky et al.  2006 ; Greten et al.  2007 ). Regardless of the stimulus, processing and 
secretion of IL-1β require conversion of procaspase-1 to active caspase-1, although 
in some studies processing of the IL-1β precursor is caspase-1 independent (Wewers 
et al.  1997 ). The activation to active caspase-1 is dependent on a complex of intra-
cellular proteins termed the “infl ammasome” by the late Juerg Tschopp (Agostini 
et al.  2004 ; Martinon et al.  2009 ). The critical component of the infl ammasome is 
NLRP3 (see Fig.  1.3 ). NLRP3 is also termed cryopyrin because the gene was ini-
tially discovered in patients with familial cold auto-infl ammatory syndrome, a 
genetic disease characterized by constitutional symptoms, fevers, and elevated 
acute-phase proteins following exposure to cold (Hoffman et al.  2001 ).
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  Fig. 1.3    Activation of caspase-1 by the NLRP3 infl ammasome.  1  Activation of the cells following 
receptor binding for TLR or IL-1 receptors.  2  Transcription of the IL-1β gene.  3  Synthesis of the 
inactive IL-1β precursor.  4  Extracellular ATP binds P2X7 receptor.  5  Effl ux of potassium.  6  
Oligomerization of infl ammasone components.  7  Activation of caspase-1.  8  Cleavage of the IL-1β 
precursor by caspase-1.  9  Maure IL-1β is released from the cell       
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   As monocytes exit the bone marrow, they circulate in the bloodstream for 
approximately 3 days. In the absence of disease, it is likely that these cells do not 
enter tissues but are destroyed in the spleen or undergo apoptosis. There is no dearth 
of reports that circulating human blood monocytes release processed IL-1β upon 
stimulation starting 4 h after stimulation with TLR agonists and continue to release 
the cytokine during the following 20–40 h. Following lipopolysaccharide (LPS) 
stimulus, IL-1β mRNA levels rise rapidly within 15 min but begin to decline after 
4 h because of the short half-life of their mRNA or the action of micro RNA. In 
contrast, using IL-1 itself as a stimulant, IL-1β mRNA levels are sustained for more 
than 24 h (Schindler et al.  1990 ). Raising intracellular cAMP levels with histamine 
enhances IL-1-induced IL-1 gene expression and protein synthesis. Monocytes of 
patients with auto-infl ammatory diseases such as CAPS and HIDS release IL-1β 
even without TLR stimulation during a 24-h incubation (Drenth et al.  1996 ; Hoffman 
and Wanderer  2011 ). 

 When obtained from the venous blood of healthy subjects, human blood mono-
cytes contain active caspase-1. Active caspase-1, as determined by its cleavage into 
the active dimer, is present even in the absence of stimulation (Netea et al.  2009 ). 
Active caspase-1 present in freshly obtained monocytes is nevertheless dependent 
on the presence of the key components of the infl ammasome, namely, ASC and 
NLRP3 (Netea et al.  2009 ). However, during subsequent incubation, extracellular 
levels of ATP increase in the supernatant as IL-1β also increases and inhibition of 
ATP by oxidized ATP reduces the secretion of IL-1β (Netea et al.  2009 ). The inhibi-
tion of IL-1β secretion by oxidized ATP is consistent with the role of the P2X7 
receptor, which binds ATP and opens the potassium channel for release of intracel-
lular potassium. The presence of active caspase-1 in circulating blood monocytes 
suggests that the rate-limiting step in the processing and release of IL-1β is at the 
level of gene expression. 

 However, upon differentiation of the same blood monocytes into macrophages in 
vitro, TLR-induced IL-1β release requires activation of caspase-1 by exogenous 
ATP (Netea et al.  2009 ). The assembly of the infl ammasome components with inac-
tive pro-caspase-1 takes place following a fall in intracellular potassium triggered 
by ATP binding to the P2X7 receptor. ATP activation of the P2X7 receptor opens 
the potassium channel, and simultaneously, as potassium levels fall, caspase-1 is 
activated by the infl ammasome (Andrei et al.  1999 ; Andrei et al.  2004 ; Elssner et al. 
 2004 ; Gardella et al.  2000 ; Perregaux et al.  2000 ). Without exogenous ATP, there is 
little or no processing of the IL-1β precursor in differentiated monocyte-derived 
macrophages. Alveolar macrophages obtained from the lungs of healthy human 
also do not release IL-1β with LPS stimulation unless exogenous ATP is added 
(Netea et al.  2009 ). In addition to ATP activation of P2X7, activation of IL-1β pro-
cessing can also take place with a cathelicidin-derived peptide termed LL37, which 
is released from neutrophils (Elssner et al.  2004 ). 

 The cleavage of the IL-1β precursor by active caspase-1 can take place in the 
specialized secretory lysosomes or in the cytoplasm. However, more than one path-
way seems available for processed IL-1β to exit the cell: these include by exocytosis 
of the secretory lysosomes (Andrei et al.  1999 ,  2004 ), shedding of plasma 
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membrane microvesicles, direct release via transporters, or multivesicular bodies 
containing exosomes (Qu et al.  2007 ). In general, the release of processed IL-1β 
takes place before there is signifi cant release of lactate dehydrogenase (Brough and 
Rothwell  2007 ), although in vitro cell death eventually takes place. Pyroptosis is a 
caspase-1-dependent form of cell death and is induced by certain bacteria using 
Ipaf, a member of the NLR family of intracellular receptors (Suzuki et al.  2007 ). An 
increase in intracellular calcium is also required for the mature IL-1β to exit the cell, 
and this is phopholipase C dependent (Andrei et al.  2004 ).  

1.5.4     Gain-of-Function Mutation in Cryopyrin 

 Diseases associated with single amino acid-activating mutations in cryopyrin are 
termed cryopyrin-associated periodic syndromes (CAPS). In monocytes from 
patients with CAPS, activation of caspase-1 occurs without a requirement for a 
rapid fall in the level of intracellular potassium (Gattorno et al.  2007 ). Therefore, 
mutated cryopyrin allows for the assembly of the complex of interacting proteins in 
the presence of normal intracellular levels of potassium. Although LPS-induced 
synthesis of the IL-1β precursor is often studied (Kahlenberg et al.  2005 ), it is 
unlikely that LPS plays a role in auto-infl ammatory diseases. On the other hand, 
spontaneous secretion of IL-1β from monocytes of patients is the result of endoge-
nous IL-1β stimulation. In patients with CAPS, there is a decrease in steady-state 
levels of pro-caspase-1 mRNA with IL-1Ra treatment (Goldbach-Mansky et al. 
 2006 ), suggesting that IL-1β stimulates its own production and processing. Thus, in 
any disease process that includes an increase in the steady-state levels of pro-cas-
pase- 1 mRNA, components of the infl ammasome or the IL-1β precursor explain the 
“auto-infl ammatory” nature of the disease. Type 2 diabetes appears to be an exam-
ple of an auto-infl ammatory disease in which glucose induces IL-1β production 
from the insulin-producing beta cell and IL-1β induces the beta cell to produce its 
own IL-1β (Maedler et al.  2002 ).  

1.5.5     Polymorphisms in P2X7 and the Activation 
of the Infl ammasome 

 Patients with classic auto-infl ammatory diseases such as FMF or CAPS have nearly 
identical clinical parameters, secrete more IL-1β, and respond dramatically to IL-1 
receptor blockade, yet have no mutation in NALP3. It is therefore possible that 
mutations in P2X7 itself or regulation of the other genes controlling potassium 
channels (Pascual et al.  2005 ) may account for dysfunctional secretion of IL-1β. For 
example, monocytes from patients with rheumatoid arthritis are more sensitive to 
release of IL-1β following ATP activation of the P2X7 receptor compared to mono-
cytes from healthy controls (Al-Shukaili et al.  2008 ). However, monocytes from 

1 Interleukin-1 Family   



16

subjects with a P2X7 Glu496Ala loss-of-function polymorphism secrete  signifi cantly 
less IL-1β (Sluyter et al.  2004b ). Monocytes from subjects homozygous for this 
polymorphism also released signifi cantly less IL-18 (Sluyter et al.  2004a ). Another 
P2X7 receptor polymorphism is associated with increased mortality in patients 
undergoing allogeneic stem cell transplantation (Lee et al.  2007 ). Bacteremia was 
documented in 68 % of patients with this polymorphism compared to 18 % in wild-
type control patients (Lee et al.  2007 ). 

 In mice defi cient in P2X7 receptors, infl ammation, pain, and IL-1β-mediated 
IL-6 production are markedly reduced (Chessell et al.  2005 ). In addition to a fall in 
intracellular potassium, ATP triggers formation of peroxynitrite, which is required 
for caspase-1 activation because peroxynitrite scavengers prevent IL-1β secretion 
(Hewinson et al.  2008 ). Pannexin-1, a mammalian protein that functions as a hemi-
channel for the uptake of dyes, is required for caspase-1 processing and release of 
IL-1β via the P2X7 receptor (Pelegrin and Surprenant  2006 ). Pannexin-1 can also 
function for LPS-induced IL-1β synthesis in the absence of TLR4 (Kanneganti et al. 
 2007 ). P2X7 receptor activity is also regulated by a “regeneration and tolerance 
 factor” (Derks and Beaman  2004 ).  

1.5.6     Polymorphism in NLRP1 and the Release of IL-1β 

 NLRP1 is genetically associated with risk of several autoimmune diseases includ-
ing generalized vitiligo, Addison disease, type 1 diabetes, and rheumatoid arthritis. 
Predicted functional variations in NLRP1 reside in several common high-risk hap-
lotypes, and the haplotypes that are high risk for disease share two substitutions, 
L155H and M1184V. Peripheral blood monocytes from healthy subjects homozy-
gous for the predominant high-risk haplotype 2A released signifi cantly greater 
amounts ( P  < 0.001) of the IL-1β precursor to mature bioactive IL-1β under basal 
(resting) conditions as well as in response to TLR2 and TLR4 agonists compared 
with monocytes from subjects homozygous for the reference haplotype 1 
(Levandowski et al.  2013 ). The increase in basal release was 1.8 fold greater in 
haplotype 2A monocytes, and these differences between the two haplotypes were 
consistently observed three times during a 3-month period; no differences were 
observed for IL-1α or tumor necrosis factor (TNF)-α. NLRP1 RNA and protein 
levels were not altered by the predominant high-risk haplotype, indicating that 
altered function of the corresponding multivariant NLRP1 polypeptide predisposes 
to autoimmune diseases by activation of the NLRP1 infl ammasome.  

1.5.7     Non-caspase-1 Processing of IL-1β 

 Non-caspase-1 mechanisms also exist to generate active forms of IL-1β. For exam-
ple, sterile infl ammation induces fever, elevated IL-6, and increased production of 
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hepatic acute-phase proteins. These responses are absent in mice defi cient in IL-1β 
but present in mice defi cient in caspase-1 (Fantuzzi et al.  1997a ; Joosten et al. 
 2009 ). Sterile infl ammation is often associated with neutrophilic infi ltration, and the 
neutrophils produce IL-1β. Because neutrophils are short-lived cells, dying within 
hours upon emigration, release of the IL-1β precursor from intracellular stores is not 
unexpected. Processing of the IL-1β precursor extracellularly into an active cyto-
kine has been reported for the common neutrophil protease, proteinase-3 (Coeshott 
et al.  1999 ; Joosten et al.  2009 ). Proteinase-3 also contributes to the processing of 
IL-18 (Sugawara et al.  2001 ). Other proteases such as elastase, matrix metallopro-
tease 9, and granzyme A process the IL-1β precursor extracellularly. In addition, a 
mast cell chymase generates active IL-1β. 

 Mice with a targeted IKK-β deletion in myeloid cells are more susceptible to LPS-
induced shock than control mice (Greten et al.  2007 ) and markedly elevated levels of 
IL-1β are found in the circulation associated with a prominent neutrophilia (Greten 
et al.  2007 ). The elevated levels of IL-1β are lethal because blockade with IL-1Ra 
protects these mice from death. The source of the IL-1β in these mice is the neutro-
phil. When incubated with proteinase-3, cleavage of the IL-1β precursor is observed, 
yielding molecular weights of 25,000 and 15,000 Da (Greten et al.  2007 ). Because the 
cleavage of the IL-1β precursor by proteinase-3, elastase, and cathepsin G are within 
three amino acids of the caspase-1 cleavage site, the products of the non-caspase-1 
cleavage are biologically active (Coeshott et al.  1999 ; Joosten et al.  2009 ). Therefore, 
in infl ammatory conditions such as urate crystal arthritis, which is characterized by a 
prominent neutrophilic infi ltration, proteinase-3 cleavage of extracellular IL-1β pre-
cursor likely takes place (Joosten et al.  2010 ). Mice defi cient in caspase-1 are not 
protected against urate-induced infl ammation. Although IL-1Ra is effective in treat-
ing gout, IL-1Ra would be equally effective in any disease with extracellular process-
ing of the precursor (Schlesinger et al.  2011 ; So et al.  2007 ,  2010 ). The importance of 
extracellular processing of the IL-1β precursor by serine proteases may explain, in 
part, the anti-infl ammatory properties of alpha-1- antitrypsin (Numanami et al.  2003 ).  

1.5.8     Effects in Mice Defi cient in IL-1β 

 After 10 years of continuous breeding, mice defi cient in IL-1β exhibit no spontane-
ous disease. However, upon challenge, IL-1β-defi cient mice exhibit specifi c differ-
ences from their wild-type controls. The most dramatic is the response to local 
infl ammation induced by subcutaneous injection of an irritant. Within the fi rst 24 h, 
IL-1β-defi cient mice do not manifest an acute-phase response, do not develop 
anorexia, have no circulating IL-6, and no fever (Fantuzzi et al.  1997a ; Zheng et al. 
 1995 ). These fi ndings are consistent with those reported in the same model using 
anti-IL-1R type I antibodies in wild-type mice (Fantuzzi et al.  1997a ; Zheng et al. 
 1995 ). IL-1β-defi cient mice also have reduced infl ammation because of zymosan- 
induced peritonitis (Fantuzzi et al.  1997a ,  b ). In contrast, IL-1β-defi cient mice have 
elevated febrile responses to LPS, IL-1β, or IL-1α compared to wild-type mice 
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(Fantuzzi et al.  1996 ). Nevertheless, IL-1β-defi cient mice injected with LPS have 
little or no expression of leptin mRNA or protein (Faggioni et al.  1998 ). 

 Mice defi cient in IL-1β were compared to mice defi cient in IL-1α after exposure 
to chemical carcinogens (Krelin et al.  2007 ). In IL-1β-defi cient mice, tumors devel-
oped more slowly or did not develop in some mice. A defi ciency in IL-1α, on the 
other hand, did not impair tumor development compared to wild-type mice injected 
with the same carcinogen. In IL-1Ra-defi cient mice, tumor development was the 
most rapid. A leukocyte infi ltrate was found at the site of carcinogen injection. The 
neutrophilic infi ltrate was almost absent in IL-1β-defi cient mice, whereas in IL-1Ra- 
defi cient mice, a dense neutrophilic infi ltrate was observed. In wild-type mice, the 
leukocytic infi ltrate was sparse and the infi ltrate that was observed in IL-1α-defi cient 
mice was similar to that of control mice. These fi ndings may refl ect the fact that 
IL-1β is secreted into the microenvironment, resulting in the emigration of mono-
cytes and neutrophils, whereas IL-1α, remaining cell associated, is less likely to 
affect the microenvironment.  

1.5.9     IL-1β and Autophagy 

 Autophagy is an ancient process of recycling cellular components, such as cytosolic 
organelles and protein aggregates, through degradation mediated by lysosomes. 
Autophagy is activated in conditions of cell stress, hypoxia, starvation, or growth 
factor deprivation; it promotes cell survival by generating free metabolites and 
energy through degradation of the endogenous cellular components (Klionsky  2007 ). 
However, in addition to its role in the pathophysiology of cancer, neurodegenerative 
diseases, or aging, autophagy is also a modulator of infl ammation (Schmid and 
Munz  2007 ). A role for autophagy in production of proinfl ammatory cytokines, par-
ticularly of IL-1β, has emerged with deletion of ATG16-L1. For example, macro-
phages from  ATG16L1 -defi cient mice produce higher levels of IL-1β and IL-18 after 
stimulation with TLR4 ligands (Saitoh et al.  2008 ). The data suggest that higher 
activation of caspase-1 in the  ATG16L1 -defi cient mice accounts for the higher pro-
duction level (Saitoh et al.  2008 ). This observation was related to the specifi c degra-
dation of the IL-1β precursor in autophagosomes in mouse macrophages (Harris 
et al.  2011 ). Additional studies in the  ATG16L1 -defi cient mice point toward a regula-
tory effect of autophagy on caspase-1 activation through modulation of the NLRP3 
infl ammasome (Nakahira et al.  2011 ; Tschopp and Schroder  2010 ; Zhou et al.  2010 ). 

 This role of autophagy in the secretion of IL-1β was also observed in human 
primary monocytes, in which specifi c inhibition of autophagy leads to increased 
production of IL-1β (Crisan et al.  2011 ). However, in the same cells TNF-α produc-
tion was decreased by autophagy inhibition. These data suggest divergent effects of 
autophagy on the production of these two important proinfl ammatory cytokines. In 
mice, the increase in IL-1β production is ascribed to increased activation of the 
infl ammasome, but in human cells, it is IL-1β mRNA transcription that is elevated 
when autophagy was inhibited, whereas no effects were observed on caspase-1 
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 activation (Crisan et al.  2011 ; Harris et al.  2011 ; Saitoh et al.  2008 ). Despite these 
differences between mouse and human cells, the inhibition of autophagy increases 
the production of IL-1β but not TNF-α. 

 The modulation of infl ammation by autophagy in humans has been studied in 
Crohn’s disease. Genome-wide association studies in large cohorts of Crohn’s dis-
ease patients have revealed that genetic variants in two autophagy genes,  ATG16L1  
and  IRGM , result in increased susceptibility to the disease. A nonsynonymous poly-
morphism in  ATG16L1  on chromosome 2q37.1 and two polymorphisms in  IRGM  
on chromosome 5q33.1 were signifi cantly associated with Crohn’s disease risk 
(Hampe et al.  2007 ; Rioux et al.  2007 ). Another study revealed a signifi cant associa-
tion of Crohn’s disease susceptibility with an intronic polymorphism in the autoph-
agy gene  ULK1  (Henckaerts et al.  2011 ). Moreover, autophagy defects have been 
reported in individuals bearing  NOD2  mutations and are consistent with the concept 
that impaired bacterial clearance and increased bacterial persistence are part of the 
pathogenesis of Crohn’s disease (Lapaquette et al.  2010 ). 

 The mechanism through which polymorphisms in autophagy genes infl uence 
susceptibility to Crohn’s disease appear to involve IL-1β production. The  ATG16L1  
300Ala risk allele was associated with elevated production of IL-1β and IL-6; 
however, this fi nding was only observed in cells stimulated with the NOD2 ligand 
muramyl dipeptide (MDP). In contrast, the expected levels of IL-1β and IL-6 were 
produced upon stimulation with TLR2 and TLR4 ligands (Plantinga et al.  2011 ). 
The increased production of IL-1β was associated with an increase in the steady- 
state levels of IL-1β mRNA rather than increased activation of the infl ammasome 
(Plantinga et al.  2011 ). Studying the same polymorphism ( ATG16L1  Thr300Ala) 
in human dendritic cells, Cooney et al. reported defective NOD2-induced, but not 
TLR-induced, autophagy and antigen presentation (Cooney et al.  2010 ). 
Furthermore, effects of this polymorphism on antibacterial autophagy in epithelial 
cells have been observed (Homer et al.  2010 ). The specifi c effect of the  ATG16L1  
polymorphism on the NOD2 pathway, and not on TLR-induced stimulation, is 
likely related to the fact that NOD2 and ATG16L1 form a protein complex that is 
essential for NOD2-induced autophagosome formation (Travassos et al.  2010 ). 
Because the  ATG16L1  Thr300Ala polymorphism affects protein stability (Kuballa 
et al.  2008 ), defective induction of autophagy and therefore enhanced IL-1β 
mRNA transcription upon triggering of NOD2 may be caused by the presence of 
defective complex.   

1.6     Interleukin-33 

1.6.1     IL-33 as a Member of the IL-1 Subfamily 

 Formerly termed IL-1F11, IL-33 belongs to the IL-1 subfamily and has been stud-
ied for its role in the Th2 paradigm of immune responses. IL-1β is also linked to the 
Th2 response. The existence of IL-33 was predicted in 1994 following the discovery 
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of a novel member of the IL-1 receptor family termed ST2 (Bergers et al.  1994 ). 
ST2 is the ligand-binding chain for IL-33 (see Table  1.2 ) and is structurally similar 
to the ligand-binding chain of IL-1α and IL-1β. In addition, the co-receptor for 
IL-33 is the IL-1RAcP, which is also the co-receptor for IL-1α and IL-1β. It was not 
until 2005 that IL-33 was reported as the ligand for ST2 (Schmitz et al.  2005 ). ST2 
is regulated by the estrogen-inducible transcription factor Fos (Bergers et al.  1994 ), 
and this property of estrogens may be related to the large number of studies on the 
effect of estrogens to regulate IL-1 and infl ammation.

   Similar to most members of the IL-1 receptor family, ST2 is composed of three 
extracellular Ig domains and an intracellular TIR domain. Although the name ST2 
is still used, the correct term is the IL-33 receptor α-chain (IL-33Rα). As shown in 
Fig.  1.2d , the IL-33Rα chain is similar to the IL-1R1 in that it is the ligand-binding 
chain for IL-33 but requires IL-1RAcP to signal (Ali et al.  2007 ; Chackerian 
et al.  2007 ). 

 Before the discovery of IL-33, several studies suggested that the putative ligand 
(IL-33) for the ST2 orphan receptor was playing a role in allergic-type diseases. 
It became clear that activation of ST2 was uniquely driving Th2 responses. 
Structurally, IL-33 is closer to IL-18 than IL-1β. Biologically, IL-33 is closest to 
IL-1α, as the precursors for IL-1α and IL-33 are constitutively present in all endo-
thelial cells. As discussed below, similar to IL-1α, IL-33 functions as a DNA-
binding molecule. The dominant property of IL-33 is the induction of IL-4, IL-5, 
and IL-13 as well as other properties anticipated for a Th2-type cytokine. Diseases 
thought to be caused by increased immunoglobulin production may also be related 
to IL-33. IL-33 induces the production of IL-6, IL-1β, and PGE2 from mast cells.  

1.6.2     IL-33 and Th2 Responses 

 The properties of recombinant IL-33 recapitulate much of the existing data that ST2 
promotes Th2-type responses. For example, before its discovery, a role for IL-33 in 
the Th2 response was observed using soluble extracellular forms of ST2 [reviewed 

   Table 1.2    IL-1-receptor family      

 Name  Designation  Ligands  Co-receptor 

 IL-1RI  IL-1R1  IL-1α, IL-1β, IL-1Ra  IL-1RAcP (IL-1R3) 
 IL-1RII  IL-1R2  IL-1β, IL-1β precursor  IL-1RAcP (IL-1R3) 
 IL-1RAcP  IL-1R3  IL-1α, IL-1β, IL-33, IL-36  Not applicable 
 ST2/IL-33Rα  IL-1 R4  IL-33  IL-1RAcP (IL-1R3) 
 IL-18Rα  IL-1R5  IL-18, IL-37  IL-18Rβ (IL-1R7) 
 IL-1Rrp-2  IL-1R6  IL-36α, -β, -γ  IL-1RAcP (IL-1R3) 
 IL-18Rβ  IL-1R7  IL-18  Not applicable 
 TIGIRR-2/IL-1RAPL  IL-1R8  Unknown  Unknown 
 TIGIRR-1  IL-1R9  Unknown  Unknown 
 SIGIRR  TIR8  Unknown  Unknown 
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in (Schmitz et al.  2005 )]. However, IL-33 has properties that go beyond its role in 
the Th2 paradigm, because similar to IL-1α, IL-1β, and IL-36, IL-33 forms a het-
erodimeric complex with IL-1RAcP for signal transduction (Ali et al.  2007 ; 
Chackerian et al.  2007 ). Although the IL-1RAcP is expressed on most nucleated 
cells, ST2 is somewhat restricted to low expression on most cells with the notable 
exception of mast cells. 

 There are several mechanisms by which IL-33 favors the Th2 response. Similar 
to IL-1β, IL-33 induces IL-6, an adjuvant for antibody production. IL-33 induction 
of IL-6 is prevented by a blocking antibody to IL-1RAcP (Ali et al.  2007 ). IL-33 
initiates signal transduction via activation of NF-κB, which is typical of IL-1α, 
IL-1β, and IL-18 (Schmitz et al.  2005 ), but other studies have shown that antibody 
cross-linking of ST2 does not result in activation of NF-κB but rather AP-1. IL-33 
treatment also increased serum IgA and IgE, an expected response for a switch from 
Th1 to Th2.  

1.6.3     Processing of the IL-33 Precursor 

 Initially, IL-33 was considered closely related to IL-1β and IL-18 because the 
IL-33 precursor contains a caspase-1 site, which upon activation would cleave the 
IL-33 precursor and release the active cytokine (Schmitz et al.  2005 ), similar to 
that for IL-1β and IL-18. Indeed, the fi rst recombinant forms of IL-33 were pro-
duced with an N-terminus at the caspase-1 site (Schmitz et al.  2005 ). Although 
recombinant IL-33 was active, the concentrations required for activity were con-
siderably higher than those of other members of the IL-1 family. Indeed, subse-
quent studies revealed that caspase-1 actually results in loss of IL-33 activity and 
that the full length IL-33 precursor binds to ST2 and is active (Cayrol and Girard 
 2009 ), similar to the ability of the IL-1α precursor to bind to IL-1RI. In addition, it 
was reported that the caspase- 1 cleavage site at 178 is similar to the consensus 
sequence for caspase-3 and that intracellular IL-33 precursor is a substrate for cas-
pase-3 (Cayrol and Girard  2009 ). 

 Using immobilized IL-33 precursor, neutrophil proteinase 3 (PR3) was isolated 
from human urinary proteins (Bae et al.  2012 ). Neutrophil PR3 is known to process 
the IL-1β precursor into an active cytokine (Joosten et al.  2009 ). PR3 converted 
human and mouse precursor IL-33 proteins to biological active forms; however, 
increasing the incubation time of PR3 abrogated IL-33 activities (Bae et al.  2012 ). 
Using the consensus amino acid sequence sites for PR3, six human and mouse 
recombinant IL-33 proteins were produced and assessed for biological activities; 
varying levels of activity were reported (Bae et al.  2012 ). Another study also dem-
onstrated cleavage of the IL-33 precursor by neutrophil proteases such as PR3, neu-
trophil elastase, and cathepsin G (Lefrancais et al.  2012 ), resulting in the generation 
of IL-33 with different N-termini and varying levels of activity. These studies sup-
port the concept that extracellular IL-33 is released as a precursor, is rapidly pro-
cessed by neutrophil enzymes, and generates active forms with varying levels of 
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activity. The implications for generation of active IL-33 by neutrophil enzymes for 
Th2 polarization remain unclear. It may be more relevant to study the effect of pro-
teases from eosinophils in the processing of the IL-33 precursor. Nevertheless, the 
IL-33 precursor binds to ST2 and recruits the accessory chain for signal transduc-
tion, but compared to IL-33 generated by neutrophil proteases, the activity of IL-33 
precursor is weak (Bae et al.  2012 ; Lefrancais et al.  2012 ). 

 There is no dearth of studies on ST2 tissue-specifi c localization, regulation of its 
expression, and effects in transgenic mice overexpressing ST2 as well as deletion, 
neutralization, and antibody cross-linking of ST2. Elevated levels of the soluble 
form of ST2 were present in the circulation of patients with various infl ammatory 
diseases, and exogenous administration of pharmacological doses of soluble ST2 
neutralized endogenous levels of the then putative ligand IL-33 and reduced infl am-
mation (Leung et al.  2004 ). IL-33 activates Th2 lymphocytes, mast cells, basophils, 
and eosinophils as well as NK T cells and blood monocytes. One of the best studied 
properties of IL-33 is the induction of IL-5 and IL-13 and their respective roles in 
lung infl ammation, such as allergic-type asthma. For example, instillation of IL-33 
into the airways triggers an immediate allergic response in the lung of naïve mice 
and worsens the response in mice sensitized to antigen peripherally but challenged 
by exposure of antigen in the lung (Louten et al.  2011 ). 

 Mice defi cient in ST2 do not develop a Th2 response to  Schistosoma  egg antigen. 
Indeed, several studies have focused on the role of IL-33 in the pathogenesis of 
helminth worm infections. The Th2 response by the host contributes to the elimina-
tion of these worm infestations, which are worldwide and affl ict hundreds of mil-
lions. The role of IL-33 in the induction of IL-4, IL-5, and IL-13 is of paramount 
importance in terms of pulmonary and intestinal complications that reduce lifespan. 
Using mice defi cient in IL-33, a crucial role was demonstrated in mice to rid them 
of infection with  Strongyloides venezuelensis  (Yasuda et al.  2012 ). The infection 
induces a unique class of cells called natural helper cells or nuocytes, which upon 
activation by IL-33 produce IL-5 and IL-13, resulting in eosinophilic infi ltration 
into the lungs. In this model, pulmonary infl ammation causes damage via eosino-
philic infi ltration, which is IL-33 and IL-5 dependent (Yasuda et al.  2012 ). 

 Mice injected with human IL-33 exhibit impressive pathological changes in the 
arterial walls, lungs, and intestinal tissues (Schmitz et al.  2005 ). Of particular rele-
vance to the concept that IL-33 drives a Th2 response, esosinophilic infi ltration was 
a prominent fi nding in the lung and in allergic rhinitis as well as allergic conjuncti-
vitis (Matsuba-Kitamura et al.  2010 ). These initial observations have been con-
fi rmed by other reports (Kim et al.  2012 ). Although the interpretation of in vivo 
effects following the administration of an exogenous cytokine should be conserva-
tive, the fi ndings are clearly consistent with IL-33 being a pro-infl ammatory ligand 
of the IL-1 receptor family. Even before the ability to test IL-33-mediated activa-
tion, others had reported that neutralization of the putative ST2 ligand using soluble 
ST2 markedly reduced joint infl ammation, synovial hyperplasia, and joint erosion 
when given in the therapeutic phase of collagen-induced arthritis in mice (Leung 
et al.  2004 ).  
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1.6.4     IL-33 as an Anti-infl ammatory Cytokine 

 Members of the IL-1 family of ligands bind to their specifi c cell-surface receptors 
and recruit an accessory chain. The IL-1RIAcP is used by IL-1α and IL-1β but 
also IL-36 and IL-33. The accessory chain for IL-18 is related to the IL-1RIAcP but 
is encoded by a distinct gene. We now recognize that other members of the IL-1 
receptor family will bind more than one cytokine. The best example is IL-1α 
and IL-1β. Both bind with similar affi nities to IL-1RI, but the three-dimensional 
structures of IL-1α and IL-1β are hardly identical (Wang et al.  2010 ). The IL-1β 
precursor binds to IL-1RII as well as a processed form with the fi rst 112 amino 
acids cleaved from the precursor. IL-37 binds to the IL-18-receptor α-chain (Kumar 
et al.  2002 ), and both IL-36 and IL-38 bind to the IL-36 receptor (van de Veerdonk 
et al.  2012 ). 

 IL-33 forms a complex with ST2 IL-1RIAcP but also with SIGIRR (Bulek et al. 
 2009 ). This complex plays a role in the Th2 response by reducing IL-33 signaling 
(Bulek et al.  2009 ) and, consistent with these observations, Th2 responses are 
increased in mice defi cient in SIGIRR. Furthermore, there is high expression of 
SIGIRR in Th2 polarized cells, and in models of Th2 antigen sensitization, 
SIGIRR- defi cient mice exhibit a greater Th2 response (Bulek et al.  2009 ). The 
complex with SIGIRR and IL-33 may explain the anti-infl ammatory properties of 
IL-33. ST2 can sequester TLR adaptor molecules such as MyD88 and Mal (Gadina 
and Jefferies  2007 ). 

 In mice defi cient in ST2, there is myocardial hypertrophy, ventricle dilation, and 
fi brosis upon pressure overload, suggesting that IL-33 plays a protective role in the 
heart (Sanada et al.  2007 ). Furthermore, elevated levels of the extracellular domain 
of ST2 predict outcomes in patients with systolic heart failure or following a myo-
cardial infarction (Sanada et al.  2007 ). In a model of cardiomyocyte hypertrophy 
induced by chronic administration of phenylephrine, administration of recombinant 
IL-33 inhibited the phosphorylation of IκB and reduced the hypertrophy and fi bro-
sis (Sanada et al.  2007 ). One of the more challenging aspects of the properties of 
IL-33 to act as a Th2 cytokine is its role as an antagonist in the ApoE-defi cient 
mouse model of artherosclerosis. In this model, arterial wall plaques of mice on a 
high-fat diet contain IL-33 and ST2. In mice treated with IL-33, the atherosclerotic 
plaques were markedly reduced (Miller et al.  2008 ). In mice treated with soluble 
ST2 to neutralize IL-33, the disease worsened (Miller et al.  2008 ).  

1.6.5     IL-33 as a Transcription Factor 

 Similar to IL-1α, there is another side to IL-33. Although IL-33 binds to its specifi c 
surface receptor, IL-33 is identical to a nuclear factor dominantly expressed in high 
endothelial venules (HEV) (Carriere et al.  2007 ). This nuclear factor is termed 
NF-HEV. In addition to endothelial cells, constitutive nuclear localization of IL-33 
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has been reported in several cell types such as type II lung epithelial cells (Yasuda 
et al.  2012 ), epithelial cells (Moussion et al.  2008 ), and pancreatic stellate cells 
(Masamune et al.  2010 ). In fact, IL-33 binding to DNA and acting as a nuclear 
 factor is similar to IL-1α binding to chromatin and functioning as a nuclear factor 
(Cohen et al.  2010 ; Stevenson et al.  1997 ; Werman et al.  2004 ). A short IL-33 pep-
tide similar to a sequence in Kaposi sarcoma virus binds chromatin (Roussel et al. 
 2008 ). The full-length IL-33 precursor, but not mature IL-33, binds to the N-terminal 
Rel homology domain of NF-κB p65 (Ali et al.  2011 ). In cells overexpressing the 
IL-33 precursor, there was a reduction in IL-1β-induced TNF-α (Ali et al.  2011 ). 
These data are consistent with other data that IL-33 possesses anti-infl ammatory 
properties (see foregoing), and the mechanism for this property of IL-33 appears to 
be nuclear sequestration similar to that of IL-1α (Cohen et al.  2010 ).   

1.7     IL-18 and IL-37 Subfamily 

1.7.1     IL-18 

1.7.1.1     Background 

 IL-18 was fi rst described in 1989 as “IFN-γ-inducing factor” isolated in the serum 
of mice following an injection of endotoxin. The mice had been pretreated with 
 Proprionibacterium acnes , which stimulates the reticuloendothelial system, par-
ticularly the Kupffer cells of the liver. Many investigators concluded that the serum 
factor was IL-12. With molecular cloning of “IFN-γ-inducing factor” in 1995 
(Okamura et al.  1995 ), the name was changed to IL-18. Surprisingly, the new cyto-
kine was related to IL-1 and particularly to IL-1β. Similar to IL-1β, IL-18 lacks a 
signal peptide, is fi rst synthesized as an inactive precursor, and remains as an intra-
cellular cytokine. The tertiary structure of the mature form of IL-18 closely resem-
bles that of IL-1β (Okamura et al.  1995 ), although the IL-18 precursor is closely 
related to the IL-37 precursor. Since 1995, many studies have used neutralization of 
endogenous IL-18- or IL-18-defi cient mice to demonstrate the role for this cytokine 
in promoting infl ammation and immune responses [reviewed by (Dinarello  2007 )]. 
However, the biology of IL-18 is hardly the recapitulation of IL-1β. There are sev-
eral unique and specifi c differences between IL-18 and IL-1β. For example, in 
healthy human subjects and also in healthy mice, gene expression for IL-1β in 
blood mononuclear cells and hematopoietic cells is absent and there is no evidence 
that the IL-1β precursor is constitutively present in epithelial cells (Puren et al. 
 1999 ). In contrast, in the same blood cells large amounts of the IL-18 precursor are 
present. Peritoneal macrophages and mouse spleen contain the IL-18 precursor in 
the absence of disease (Puren et al.  1999 ). The IL-18 precursor is also present in 
keratinocytes and nearly all epithelial cells. In this regard, IL-18 is similar to IL-1α 
and IL-33.  
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1.7.1.2     Processing of the IL-18 Precursor 

 The IL-18 precursor has a molecular weight of 24,000 and is processed by 
caspase- 1 cleavage into a mature molecule of 18,000. Compared to wild-type mice, 
following an injection of endotoxin into caspase-1-defi cient mice, circulating IFN-γ 
is absent. IL-12-induced IFN-γ is also absent in caspase-1-defi cient mice (Fantuzzi 
et al.  1999 ). Importantly, any phenotypic characteristic of capsase-1-defi cient mice 
must be studied as whether the defi ciency is caused by reduced IL-1β or IL-18 activ-
ity. For example, the caspase-1-defi cient mouse is resistant to colitis (Siegmund 
et al.  2001b ) but the IL-1β-defi cient mouse is susceptible in the same disease. 
Because neutralizing antibodies to IL-18 are protective in the colitis model, cas-
pase- 1 defi ciency appears to prevent processing of IL-18 (Siegmund et al.  2001a ,  b ). 
On the other hand, there are examples where caspase-1 processing of IL-18 is not 
required. For example, Fas ligand stimulation results in release of biologically 
active IL-18 in caspase-1-defi cient murine macrophages (Tsutsui et al.  2000 ). 
Similar to IL-1β processing, proteinase-3 appears to activate processing to mature 
IL-18 (Sugawara et al.  2001 ). 

 Similar to IL-1α and IL-33, the IL-18 precursor is constitutively expressed in 
endothelial cells, keratinocytes, and intestinal epithelial cells throughout the gastro-
intestinal tract. Macrophages and dendritic cells are the primary sources for the 
release of active IL-18, whereas the inactive precursor remains in the intracellular 
compartment of mesenchymal cells. Also, similar to IL-1α and IL-33, the IL-18 
precursor is released from dying cells and processed extracellularly, most likely by 
neutrophil proteases such as proteinase-3.  

1.7.1.3     Signal Transduction by IL-18 

 As shown in Fig.  1.4a , IL-18 forms a signaling complex by binding to the IL-18 
α-chain (IL-18Rα), which is the ligand-binding chain for mature IL-18; however, 
this binding is of low affi nity. In cells that express the co-receptor, termed IL-18- 
receptor β-chain (IL-18Rβ), a high-affi nity complex is formed, which then signals. 
The complex of IL-18 with the IL-18Rα and IL-18Rβ chains is similar to that 
formed by other members of the IL-1 family with the co-receptor, the IL-1R acces-
sory chain IL-1RAcP. Following the formation of the heterodimer, the TIR domains 
approximate, and it appears that the cascade of sequential recruitment of MyD88, 
the four IRAKs, and TRAF-6 followed by the degradation of IκB and release of 
NFκB are nearly identical as that for IL-1 (Weber et al.  2010 ). There are differences 
between IL-1 and IL-18 signaling that remain unexplained. With few exceptions, 
IL-1α or IL-1βis active on cells in the low nanogram/ml range and often in the pico-
gram/ml range. In contrast, IL-18 activation of cells expressing the two IL-18- 
receptor chains requires 10–20 ng/ml and sometime higher levels (Lee et al.  2004 ; 
Morel et al.  2001 ).

   Although nearly all cells express IL-1RI, not all cells express IL-1RAcP. 
Similarly, most cells express IL-18Rα but not all cell express IL-18Rβ. IL-8Rβ is 
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expressed on T cells and dendritic cells but is not commonly expressed in 
 mesenchymal cells. The best example is the A549 cell. This cell line, derived from 
a lung carcinoma epithelial cell, does not express IL-18Rβ (Kim et al.  2005 ), and 
there is no signal unless IL-12 is added to induce IL-18Rβ (Nakanishi et al.  2001b ). 
In the absence of IL-18Rβ, IL-18 binds to IL-18Rα without a pro-infl ammatory 
signal. In A549 cells transfected with IL-18Rβ, IL-18 induces IL-8 and a large 
number of genes. One of these genes is the former IL-2-induced gene termed NK4 
(Dahl et al.  1992 ), now termed IL-32 (Kim et al.  2005 ). IL-32 is not a member of 
the IL-1 family but plays an important role in the regulation of cytokines such as 
IL-1β and TNF-α.  
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  Fig. 1.4    IL-18 subfamily.  (a)  IL-18 binds to the IL-18Rα chain and recruits the co-receptor 
IL-18Rβ. The signaling cascade of the IL-18 receptor complex is nearly the same as that of IL-1α 
and IL-1β, resulting in the expression of pro-infl ammatory genes.  (b)  The naturally occurring 
IL-18BP binds IL-18, thus neutralizing the activity of the cytokine.  (c)  IL-37 also binds to the 
IL-18Rα but with an affi nity lower than that of IL-18 binding to the same receptor. Furthermore, 
the binding of IL-37 to IL-18Rα does not recruit the co-receptor, IL-18Rβ, and therefore there is 
no pro-infl ammatory signal. The anti-infl ammatory properties of IL-37 require  SIGIRR , which 
may act as a “decoy” for MyD88.  (d)  IL-18BP also binds to IL-37, thus preventing binding of 
IL-37 to IL-18Rα. ( e)  IL-37 binds to IL-18BP, forming a complex, which then binds to IL-18Rα, 
enhancing the anti-infl ammatory property of IL-18BP       
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1.7.1.4     IL-18 as an Immunoregulatory Cytokine 

 Together with IL-12, IL-18 participates in the Th1 paradigm. This property of IL-18 
is the result of its ability to induce IFN-γ with either IL-12 or IL-15. Without IL-12 
or IL-15, IL-18 does not induce IFN-γ. IL-12 or IL-15 increases IL-18Rβ, which is 
essential for IL-18 signal transduction. Without IL-12 or IL-15, IL-18 plays a role 
in Th2 diseases (Nakanishi et al.  2001a ). The importance of IL-18 as an immuno-
regulatory cytokine is derived from its prominent biological property of inducing 
IFN-γ from NK cells. Macrophage colony-stimulating factor (M-CSF) induces 
human blood monocytes to develop into a subset of macrophages; these cells 
express a membrane-bound form of IL-18 (Bellora et al.  2012 ). Membrane IL-18 is 
expressed in 30–40 % of M-CSF-primed macrophages. In contrast, monocytes, den-
dritic cells, and monocytes differentiated into M1 macrophages did not express 
membrane IL-18. Although the expression of membrane IL-18 is caspase-1 depen-
dent (Bellora et al.  2012 ), LPS treatment was necessary for the release of membrane 
IL-18 (Bellora et al.  2012 ). A major immunoregulating role for IL-18 is on the NK 
cell. Upon shedding of membrane IL-18 into a soluble form, NK cells expressed 
CCR7 and produced high levels of IFN-γ. As expected, IFN-γ production was pre-
vented by neutralization of IL-18. This mechanism may account for the role of 
IL-18 as a major IFN-γ-inducing factor from NK cells and the role of NK cells in 
the pathogenesis of autoimmune diseases. 

 The induction of IFN-γ by IL-18 has been studied with co-inducer IL-12. For 
example, mice injected with the combination of IL-18 plus IL-12 develop high lev-
els of IFN-γ and die of hypoglycemia, intestinal infl ammation, and inanition 
(Nakamura et al.  2000 ). In leptin-defi cient mice, IL-18 plus IL-12 induce acute 
pancreatitis (Sennello et al.  2008 ). Several human autoimmune diseases are associ-
ated with elevated production of IFN-γ and IL-18. Diseases such as systemic lupus 
erythematosus, rheumatoid arthritis, type 1 diabetes, Crohn’s disease, psoriasis, and 
graft-versus-host disease are thought to be mediated, in part, by IL-18.  

1.7.1.5     Pro-infl ammatory Properties of IL-18 

 IL-18 exhibits characteristics of other pro-infl ammatory cytokines, such as increases 
in cell adhesion molecules, nitric oxide synthesis, and chemokine production. 
Blocking IL-18 activity reduces metastasis in a mouse model of melanoma, caused 
by a reduction in IL-18-induced expression of vascular cell adhesion molecule-1 
(Vidal-Vanaclocha et al.  2000 ). A unique property of IL-18 is the induction of Fas 
ligand (FasL), which may account for the hepatic damage that takes place in macro-
phage activation syndrome (Mazodier et al.  2005 ; Tsutsui et al.  2000 ). The induc-
tion of fever, a well-studied property of IL-1α and IL-1β as well as IL-6, is not a 
property of IL-18. Injection of IL-18 into mice, rabbits, or humans does not produce 
fever (Gatti et al.  2002 ; Li et al.  2003 ). In contrast to IL-1 and TNF-α, IL-18 does 
not induce cyclooxygenase-2 and hence there is no production of prostaglandin E 2  
(Lee et al.  2004 ; Reznikov et al.  2000 ). IL-18 has been administered to humans for 
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the treatment of cancer to increase the activity and expansion of cytotoxic T cells. 
Not unexpectedly, and similar to several cytokines, the therapeutic focus on IL-18 
has shifted from its use as an immune stimulant to inhibition of its activity (Dinarello 
 2007 ; Tak et al.  2006 ). 

 Because IL-18 can increase IFN-γ production, blocking IL-18 activity in autoim-
mune diseases is an attractive therapeutic target as anti-IL-12/23 reduces the sever-
ity of Crohn’s disease as well as that of psoriasis. As discussed next, there appears 
to be a role for blocking IL-18 in Crohn’s disease. However, there are several activi-
ties of IL-18 that are independent of IFN-γ. For example, IL-18 inhibits proteogly-
can synthesis in chondrocytes (Joosten et al.  2000 ), and proteoglycan synthesis is 
essential for maintaining healthy cartilage. IL-18 also increases VCAM-1 expres-
sion in endothelial cells independently of IFN-γ. VCAM-1 plays a major role in 
multiple sclerosis and other autoimmune diseases as well as in the metastatic pro-
cess (Carrascal et al.  2003 ).  

1.7.1.6     IL-18, Hyperphagia, and the Metabolic Syndrome 

 Although there is no constitutive gene expression for IL-1β in freshly obtained 
human peripheral blood mononuclear cells (PBMC), the same cells express constitu-
tive mRNA for IL-18 (Puren et al.  1999 ). In Western blot analysis from the same 
cells, the IL-18 precursor was present but not the IL-1β precursor. Similar observa-
tions were also made in mice (Puren et al.  1999 ). These fi ndings suggest that IL-18 
may act as regulator of homeostasis. Starting at 16 weeks of age, IL-18-defi cient 
mice start to overeat, become obese, and exhibit lipid abnormalities; there is increased 
atherosclerosis, insulin resistance, and diabetes mellitus, reminiscent of the meta-
bolic syndrome (Netea et al.  2006 ). IL-18Rα-defi cient mice also develop a similar 
phenotype. The higher body weight is attributed to enhanced food intake, in which 
the IL-18-defi cient mice begin to diverge from wild-type animals at a relatively early 
age, and to reach values 30–40 % higher than those of wild-type mice. Others have 
observed similar fi ndings (Zorrilla et al.  2007 ). A striking fi nding was an increase of 
more than 100 % in the percent of adipose tissue in the IL-18-defi cient animals, 
which was accompanied by fat deposition in the arterial walls. The insulin resistance 
in these mice is corrected by exogenous recombinant IL-18. Mice defi cient in IL-18 
respond normally to a challenge with exogenous leptin, suggesting that expression 
of the leptin receptor is unaffected. The unexpected and unique mechanism respon-
sible for the higher food intake in the IL-18-defi cient animals appears to be caused 
by a central nervous system loss of appetite control. IL-18 defi cient-mice eat 
throughout the day whereas wild-type mice eat once, nocturnally.  

1.7.1.7     IL-18 as a Protected Cytokine 

 As already stated, mice defi cient in caspase-1 experience increased disease severity 
when subjected to dextran sulfate sodium (DSS)-induced colitis and that 
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administration of exogenous IL-18 restored mucosal healing in these mice 
 (Dupaul-Chicoine et al.  2010 ). In addition, mice defi cient in NLRP3 were more 
susceptible to DSS colitis, which is thought to be caused by decreased IL-18 (Hirota 
et al.  2011 ). Mice defi cient in NLRP6 are also more vulnerable to DSS (Chen et al. 
 2007 ; Elinav et al.  2011 ), and the susceptibility appears to be lack of suffi cient 
IL-18. Thus, a growing number of studies support a protective role for IL-18. The 
fact that mice defi cient in IL-18 develop a metabolic syndrome-like phenotype is 
consistent with a role for IL-18 in homeostasis. A study in age-related macular 
degeneration is also consistent with a protective role for IL-18. In that study, drusen, 
which is a mixture of complement- derived apolipoproteins and lipids, was shown to 
activate NLRP3 and induce the production of mature IL-1β and IL-18 (Doyle et al. 
 2012 ). In a mouse model of “wet” age-related macular degeneration, the disease 
was worse in mice defi cient in NLRP3 but not in IL-1RI-defi cient mice (Doyle et al. 
 2012 ). Therefore, IL-18 rather than IL-1α or IL-1β was protective and, upon admin-
istration of IL-IL- 18, the disease severity improved. Taken together, there is a case 
for IL-18 being a protective rather than infl ammatory cytokine.  

1.7.1.8     IL-18-Binding Protein 

 The discovery of IL-18BP took place during the search for the soluble receptors for 
IL-18 (Novick et al.  1999 ). IL-18BP is a constitutively secreted protein with an 
exceptionally high affi nity for IL-18 (400 pM) (Fig.  1.4b ). Present in the serum of 
healthy humans at a 20-fold molar excess compared to IL-18 (Novick et al.  2001 ), 
IL-18BP may contribute to a default mechanism by which a Th1 response to foreign 
organisms is blunted to reduce triggering an autoimmune response to a routine 
infection. Although IL-18BP is readily secreted, it falls into the functional category 
of being a shed soluble receptor. As shown in Fig.  1.4b , IL-18BP contains only one 
IgG domain whereas the type II IL-1 receptor contains three domains. In this regard, 
the single IgG domain of IL-18BP is similar to SIGIRR, which also has a single IgG 
domain and also functions as a decoy receptor. The salient property of IL-18BP in 
immune responses is in downregulating Th1 responses by binding to IL-18 and thus 
reducing the induction of IFN-γ (Nakanishi et al.  2001a ). Because IL-18 also affects 
Th2 responses, IL-18BP also has properties controlling a Th2 cytokine response 
(Nakanishi et al.  2001a ). IL-18BP has a classic signal peptide and therefore is read-
ily secreted. Serum levels in healthy subjects are in the range of 2,000–3,000 pg/ml 
compared to the levels of IL-18 in the same sera of 80–120 pg/ml   . Moreover, 
IL-18BP binds IL-18 with an affi nity of 3–5 nM (Novick et al.  1999 ), an affi nity 
signifi cantly higher than that of IL-18Rα. Because a single IL-18BP molecule binds 
a single IL-18 molecule, one can calculate bound versus free IL-18 in a mixture of 
both molecules (Novick et al.  2001 ). 

 If one examines immunologically mediated diseases where IFN-γ plays a patho-
logical role such as Wegener’s granulomatosis and systemic lupus erythematosus, 
one must consider the level of free IL-18 compared to IL-18 bound to IL-18BP. In 
fact, in these diseases both IL-18BP and IL-18 are high (Novick et al.  2009 ,  2011 ) 
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but the level of IL-18BP is not suffi ciently high enough to neutralize IL-18 and, 
therefore, the level of free IL-18 is higher than in healthy subjects. In macrophage 
activation syndrome where IFN-γ plays a pathological role, both IL-18BP and IL-18 
are also high, but the clinical and hematological abnormalities correlate with ele-
vated free IL-18 (Mazodier et al.  2005 ). 

 A unique property of IL-18BP is that the molecule also binds IL-37 (Bufl er et al. 
 2002 ) and, in so doing, enhances the ability of IL-18BP to inhibit the induction of 
IFN-γ by IL-18. IL-37 binds to the IL-18Rα with a very low affi nity, but in mice 
expressing human IL-37, a profound anti-infl ammatory effect is observed (Nold 
et al.  2010 ), particularly of LPS-induced cytokines and dendritic cell maturation 
(Nold et al.  2010 ). Human IL-37-expressing mice are also resistant to colitis 
(McNamee et al.  2011 ). Thus, the anti-infl ammatory property of IL-37 can be 
affected by the concentration of IL-18BP. As the concentration of IL-18BP increases 
and binds IL-37, there is the possibility that IL-37 becomes less available as an anti- 
infl ammatory cytokine. Indeed, this has been observed in mice injected with 
IL-18BP. At low dosing of IL-18BP, there is reduced infl ammation in a model of 
rheumatoid arthritis, but as the doing of IL-18BP increases, the anti-infl ammatory 
properties of IL-18BP are lost (Banda et al.  2003 ). 

 IL-18BP is highly regulated at the level of gene expression and, unexpectedly, 
IFN-γ increases gene expression and synthesis of IL-18BP (Hurgin et al.  2002 ; 
Muhl et al.  2000 ). Therefore, IFN-γ driving an increase in the natural and potent 
inhibitor of IL-18 falls into the category of a negative feedback loop. The concept is 
supported by clinical data showing that patients being treated with IFN-α for hepa-
titis have elevated levels of IL-18BP (Kaser et al.  2002 ; Ludwiczek et al.  2002 ). 
IL-27, similar to IFN-γ, functions as both a pro- and an anti-infl ammatory cytokine, 
and both may accomplish their roles as anti-infl ammatory cytokines at the level of 
increased production of IL-18BP. In the skin, IL-27 also acts through a negative 
feedback loop for infl ammation. IL-27 is acting, as is IFN-γ, by induction of 
IL-18BP gene expression and synthesis (Wittmann et al.  2012 ).  

1.7.1.9     Viral IL-18BP 

 Natural neutralization of human IL-18 by IL-18BP takes place during a common 
viral infection. In molluscum contagiosum infection, characterized by raised but 
bland eruptions, there are large numbers of viral particles in the epithelial cells of 
the skin but histologically there are few infl ammatory or immunologically active 
cells in or near the lesions. Clearly, the virus fails to elicit an infl ammatory or immu-
nological response. Amino acid similarity exists between human IL-18BP and a 
gene found in various members of the poxviruses; the greatest degree of homology 
is found to be expressed by the molluscum contagiosum gene (Xiang and Moss 
 2001 ). The ability of viral IL-18BP to reduce the activity of mammalian IL-18 
likely explains the lack of infl ammatory and immune cells in the infected tissues 
and provides further evidence for the natural ability of IL-18BP to interfere with 
IL-18 activity.   
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1.7.2     IL-37 

1.7.2.1     IL-37 

 IL-37 was formerly termed IL-1F7. IL-37 lacks a signal peptide, has a caspase-1 
site, but the secretion of IL-37 has not been documented with any certainty. It is 
likely, however, that similar to IL-1α and IL-33, with loss of membrane integrity 
upon cell death, the IL-37 precursor exits from the cell. The recombinant form of 
the IL-37 precursor suppresses LPS-induced IL-1β, IL-6, and TNF-α. However, this 
is observed primarily in macrophages that have been differentiated into the M1 
phenotype by 5 days in the presence of GM-CSF. There are two consensus sequences 
(A-X-D) in the N-terminal domain of IL-37, IHD, and LED. A recombinant form of 
IL-37 with an N-terminus nine amino acids from the IHD site is active in suppress-
ing LPS-induced TNF-α and IL-6. Whether this short form of recombinant IL-37 
exists in nature is unclear.  

1.7.2.2     IL-37 Reduces IL-1β- and LPS-Induced Infl ammation In Vivo 

 A mouse homologue for human IL-37 has not been identifi ed. Therefore, to defi ne 
the in vivo functional role of IL-37, a strain of transgenic mice was generated (Nold 
et al.  2010 ). The full-length IL-37 cDNA was inserted into a vector using the stan-
dard CMV promoter for constitutive expression of the transgene in all cells. Both 
heterozygous and homozygous IL-37 transgenic mice (IL-37 tg) mice breed nor-
mally and exhibit no obvious phenotype. Despite the presence of the CMV pro-
moter, the IL-37 transcript is not constitutively expressed in the tissues of the IL-37 
transgenic mice. The failure to express IL-37 is likely caused by a functional insta-
bility sequence found in IL-37, which limits the half-life of IL-37 mRNA (Bufl er 
et al.  2004 ). Nevertheless, upon stimulation with LPS or IL-1β, levels of IL-37 
increase after 4–24 h. Once the transcript is present, the IL-37 precursor can be 
found in peripheral blood cells taken from the transgenic mice (Nold et al.  2003 ). 

 IL-37 transgenic mice are protected against LPS challenge compared to similarly 
challenged wild-type mice. IL-37 transgenic mice exhibit signifi cantly less hypo-
thermia, acidosis, hyperkalemia, hepatitis, and dehydration (Nold et al.  2010 ). In 
addition, circulating cytokines are signifi cantly reduced as well as cytokines induced 
in whole blood cultures and in lung and spleen cell homogenates. In addition to 
LPS-induced cytokines, whole blood cultures from IL-37 transgenic mice produce 
signifi cantly less IL-6 and TNF-α when stimulated by IL-1β or the combination of 
IL-12 plus IL-18. The anti-infl ammatory activity of IL-37 was not limited to a 
reduction of the cytokines and chemokines of innate immunity. Dendritic cells iso-
lated from the spleen of IL-37 transgenic mice upon LPS stimulation revealed a 
marked reduction (75 % and 89 %) in expression of CD86 and MHC II, respectively 
(Nold et al.  2010 ). The total numbers of dendritic cells, macrophages, natural killer 
cells, and CD4 +  T cells were similar in all strains and experimental conditions.  
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1.7.2.3     A Role for IL-37 During Experimental Colitis 

 IL-37 transgenic mice have been subjected to dextran sulfate sodium (DSS)-induced 
colitis. Despite the presence of a CMV promoter to drive expression of IL-37, 
mRNA transcripts were not present in colons in the resting state (McNamee et al. 
 2011 ). Expression was observed only upon disruption of the epithelial barrier, with 
a 6- to 7-fold increase on days 3 and 5 after continuous exposure to DSS. During the 
development of colitis, clinical disease scores were reduced by 50 % and histologi-
cal indices of colitis were one-third less in IL-37 transgenic mice compared with 
wild-type counterparts. Reduced infl ammation was associated with decreased leu-
kocyte recruitment into the colonic lamina propria. In addition, release of IL-1β and 
TNF-α from ex vivo colonic explant tissue was decreased 5- and 13 fold, respec-
tively, compared with wild-type mice, whereas IL-10 was increased 6 fold. However, 
IL-10 was not required for the anti-infl ammatory effects of IL-7 because IL-10 
receptor antibody blockade did not reverse IL-37-mediated protection. 
Mechanistically, IL-37 originating from hematopoietic cells was suffi cient to exert 
anti-infl ammatory effects because wild-type mice reconstituted with bone marrow 
from IL-37 transgenic mice were protected from colitis.  

1.7.2.4     A Nuclear Role for IL-37 

 In stable transfectants of human IL-37 in RAW macrophages stimulated with LPS, 
levels of TNF-α, IL-1α, IL-6, and the chemokine MIP-2 were substantially reduced 
(72–98 %) compared with LPS-stimulated cells transfected with the empty plasmid 
(Sharma et al.  2008 ). Similar to IL-1α and IL-33, IL-37 translocates to the nucleus 
following stimulation (Sharma et al.  2008 ). In mouse RAW macrophages stably 
expressing IL-37, the mature carboxyl terminal was detected in the nucleus. 
Furthermore, a specifi c caspase-1 inhibitor markedly reduced nuclear entry of IL-37 
(Sharma et al.  2008 ). The data demonstrate that IL-37 translocates to the nucleus 
after caspase-1 processing and may act as a transcriptional modulator reducing the 
production of LPS-stimulated pro-infl ammatory cytokines, consistent with IL-37 
being an anti-infl ammatory member of the IL-1 family. 

 IL-37 was identifi ed in a proteomics-based search for proteins that interacted with 
Smad3 (Grimsby et al.  2004 ). To test for a functional interaction of Smad3 with 
IL-37, IL-37 was transfected into A549 cells. IL-37 colocalized with phospho- Smad3 
was found in perinuclear and cytosolic regions and a IL-37–Smad3 complex was 
observed (Nold et al.  2010 ). A specifi c inhibitor of Smad3 reversed the inhibition of 
IL-6 and IL-1β expression in RAW cells stably transfected with IL-37. In stable 
human macrophage lines expressing IL-37, depletion of Smad3 by lentiviral intro-
duction of short hairpin (sh)RNA that inhibits Smad3 expression prevented the abil-
ity of IL-37 to reduce IL-1β- or LPS-induced production of IL-8, IL-6, and TNF. 
These in vitro fi ndings were confi rmed in vivo. IL-37 transgenic mice were pre-
treated intranasally with a Smad3-specifi c small interfering (si)RNA and then chal-
lenged with intranasal LPS. The reduction of lung cytokines in IL-37 transgenic mice 
was reversed in transgenic mice with a lung knockdown of Smad3 (Nold et al.  2010 ).  

C.A. Dinarello and M.G. Netea



33

1.7.2.5     Role of IL-18Rα for IL-37 

 From the fi rst reports on IL-37, it was observed that the recombinant forms bound 
to the IL-18Rα (Kumar et al.  2002 ; Pan et al.  2001 ). The binding of IL-37 to 
IL-18Rα has also been observed in cells from IL-37 transgenic mice using immuno-
fl uoresence, immunoprecipitation, and FRET analysis (Nold et al.  2011 ). IL-37 spe-
cifi cally binds to the third domain of the IL-18Rα (Bufl er et al.  2002 ). Despite these 
studies showing binding of IL-37 to the IL-18Rα-chain, IL-37 does not act as a 
classical receptor antagonist for IL-18 in that the ability of recombinant IL-18 to 
induce IFN-γ is not inhibited by high concentrations of IL-37. However, in the pres-
ence of low concentrations of IL-18BP, recombinant IL-37 modestly reduces IL-18- 
induced IFN-γ (Bufl er et al.  2002 ). The concept that IL-37 binds to the IL-18Rα and 
reduces cytokine production is supported, in part, with the fi nding that embryonic 
fi broblasts from mice defi cient in IL-18Rα produce tenfold more IL-6 in response 
to IL1β than do wild-type embryonic fi broblasts (Nold-Petry et al.  2009 ). In addi-
tion, silencing of IL-18Rα in primary human blood monocytes results in a fourfold 
increase in the secretion of LPS-induced IL-1β, IL-6, IFN-γ, and CD40 ligand 
(Nold-Petry et al.  2009 ). Thus, the seemingly paradoxical hyperresponsive state in 
cells defi cient in IL-18Rα supports the concept that IL-18Rα participates in both 
pro- and anti-infl ammatory responses and that the endogenous ligand IL-37 engages 
the IL-18Rα to deliver an inhibitory signal.  

1.7.2.6     Role of SIGIRR in the Anti-infl ammatory Property of IL-37 

 The mechanism by which an IL-1β or an LPS signal is suppressed by IL-37 
requires an understanding of SIGIRR. The IL-1RAcP serves as the co-receptor for 
IL-1α, IL-1β, IL-36α, IL-36β, IL-36γ, and IL-33, each a pro-infl ammatory cyto-
kine. However, in the IL-1 family of receptors, three co-receptors contain unusu-
ally long intracellular domains: these are SIGIRR, a variant of the IL-1RAcP 
termed IL-1RAcPb and receptors termed “three Ig IL-1 related receptor” (TIGIRR). 
There are two TIGIRRs, TIGIRR-1 and TIGIRR-2. IL-1RAcPb is expressed only 
in the brain and TIGIRR has limited expression. However, SIGIRR is expressed in 
most cells. The TIR domain of the three co-receptors is also different from that of 
other members of the IL-1 co-receptor family in that the TIR domain contains an 
amino acid sequence different from that of wild-type TIR (Smith et al.  2009 ). 
IL-1RAcPb forms the expected complex with IL-1 and IL-1R1 but does not recruit 
MyD88 or phosphorylate IRAK4 (Smith et al.  2009 ). Therefore, most IL-1 signal-
ing is arrested. However, as some genes are increased in response to the formation 
of the IL-1RI/IL–1RAcPb complex, partial IL-1 signaling must take place. 
Nevertheless, IL-1RAcPb functions as an inhibitory receptor chain but only in the 
brain. Mice defi cient in IL-1RAcPb exhibit a normal infl ammatory response in the 
periphery but greater neurodegeneration in the brain. As such, IL-1RAcPb could 
play a role in chronic infl ammatory responses in the brain by “buffering” IL-1-
mediated neurodegeneration. 
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 Similar to IL-1RAcPb, SIGIRR contains the same amino acid differences in its 
TIR domain, termed TIRb. Compared to wild-type TIR, TIRb likely has reduced 
binding of MyD88 (Smith et al.  2009 ). In addition to an altered TIR domain, 
SIGIRR has a carboxyl extension of 140 amino acids. Carboxyl extensions are also 
present in IL-1RAcPb as well as the two TIGIRRs. TIGIRR-2, which is associated 
with an X-linked cognitive defi ciency, is apparently independent of IL-1 function. 
Little is known whether these C-terminal segments contribute to the inhibitory 
properties of these receptors. Nevertheless, it seems likely that the alternative 
sequence in the TIRb domain of SIGIRR may act as a partial decoy for MyD88. 
MyD88 is phosphorylated upon TLR4 as well as IL-1β and IL-18 signaling and 
results in downstream phosphorylation of IRAK-4. In cells expressing SIGIRR and 
activated by IL-37 binding to the IL-18Rα, the signal from either IL-1 or LPS initi-
ates phosphorylation of MyD88. However, the decoy effect by the mutated TIRb of 
SIGIRR reduces the degree of phosphorylation of MyD88 and thus the phosphory-
lation of IRAK-4. The reduction, however, is partial. Indeed, the suppression by 
IL-37 added to blood macrophages is in the range of 20 % to 50 % and is unlike the 
total loss of activation by a defi ciency in MyD88. 

 Upon binding to the IL-18Rα, the IL-37 precursor may activate SIGIRR and 
provide a negative signal. An inhibitory signal from IL-37 is enhanced by a low 
concentration of IL-18BP (Bufl er et al.  2002 ). As shown in Fig.  1.4c,d , IL-18BP 
binds IL-37 (Bufl er et al.  2002 ) and likely presents the complex of the cytokine with 
the binding protein to the IL-18Rα. Because A549 cells express SIGIRR, it is likely 
that the inhibitory signal from IL-37 activates SIGIRR or alternatively IL-37 recruits 
SIGIRR as the accessory chain. The inhibitory signal of SIGIRR is established in 
several mouse models of infl ammation in which SIGIRR defi cient mice exhibit 
more infl ammation compared to wild-type control mice (Garlanda et al.  2009 ). In 
differentiated human blood M1 macrophages, recombinant IL-37 suppresses LPS- 
induced TNF-α and IL-6 production by 50–70 %. A source of IL-18BP in this cul-
ture may be fetal calf serum. During the differentiation of macrophages into the M1 
subset by GM-CSF, it is possible that SIGIRR expression increases whereas the 
level of IL-18Rβ decreases (see Fig.  1.4a ). In the absence of IL-18Rβ, a proinfl am-
matory complex is not formed with IL-18Rα and thus IL-37 binding to IL-18Rα 
may recruit or activate SIGIRR. Thus, expression of SIGIRR and the absence of 
IL-18Rβ would best explain the inhibitory properties of recombinant IL-37 reduc-
ing the response to LPS induction of IL-6 and TNFα.    

1.8     IL-36 Subfamily 

 The IL-1 family members IL-1F5, IL-1F6, IL-1F8, and IL-1F9 are now termed 
IL-36Ra, IL-36α, IL-36β, and IL-36γ, respectively (Dinarello et al.  2010 ). Each 
member of the IL-36 subfamily binds to the IL-1Rpr2, now termed IL-36R (Towne 
et al.  2004 ). As IL-38 also binds to the IL-36R (van de Veerdonk et al.  2012 ), IL-38 
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is included in the IL-36R subfamily. The IL-36 subfamily is closely related to the 
IL-1 subfamily because, similar to IL-1α and IL-1β and IL-33, IL-36R forms a 
 signaling complex with IL-1RAcP (Ali et al.  2007 ; Towne et al.  2004 ). Thus, of the 
11 members of the entire IL-1 family, 6 members use IL-1RAcP as the co-receptor 
for signal transduction. 

1.8.1     IL-36 

 IL-36R is the ligand-binding chain and therefore is comparable to the ligand- binding 
IL-1R1 and IL-18Rα. However, two members of the IL-36 subfamily bind to IL-36R 
but do not signal: the IL-36 receptor antagonist (IL-36Ra) and IL-38. As such, these 
function as receptor antagonists (Towne et al.  2011 ; van de Veerdonk et al.  2012 ). 
An unusual property of IL-38 is that low concentrations (1–10 ng/ml) are able to 
reduce the activity of endogenous IL-36 (van de Veerdonk et al.  2012 ), whereas in 
the case of IL-1Ra, higher concentrations are required to prevent the activation of 
endogenous IL-1α or IL-1β. 

 None of the members of the IL-36 subfamily has a signal peptide indicating the 
generation of the N-terminus and secretion via the Golgi. In addition, each member 
of the IL-36 subfamily has an unusually short propiece compared to those of IL-1α, 
IL-1β, and IL-33 (see Fig.  1.1 ). Similar to IL-1β and IL-18, there is no true caspase-
 1 cleavage site for generation of an N-terminus in the IL-36 subfamily. It remains 
unknown which specifi c proteases generate the various N-termini of the IL-36 sub-
family; nevertheless, each member has a unique N-terminus with a different levels 
of biological activity (Towne et al.  2011 ). What determines the N-terminus with 
optimal biological activity in the IL-36 subfamily? Each member of the IL-36 sub-
family contains the IL-1 family consensus sequence of A-X-D. The aspartic acid is 
not the recognition amino acid for caspase-1 or caspase-3, but rather participates in 
the stabilization of the fi rst beta-sheet of the three-dimensional structure that char-
acterizes the entire IL-1 family. 

 The “A” of the consensus sequence is for any aliphatic amino acid, for example, 
leucine or isoleucine. Nine amino acids before the “A” of the consensus sequence is 
the N-terminal site, which results in the cytokine with the greatest activity (Towne 
et al.  2011 ). For example, the biological activity of IL-36-γ increases by a factor of 
1,000 when the N-terminus is at the site nine amino acids before the consensus 
sequence and, in the case of the IL-36β, there is a 10,000 fold increase (Towne et al. 
 2011 ). The site nine amino acids forward from the consensus sequence is not only 
the N-terminus for the agonist members of the IL-36 family but also the IL-36 
receptor antagonist (IL-36Ra) (Towne et al.  2011 ), which increases from a low level 
of blocking of IL-36 family ligands to a high degree of blockade. It is unclear what 
specifi c protease cleaves at this site as the amino acid is different for each member 
of the IL-36 subfamily. Moreover, the site for the N-terminus of the IL-36Ra (valine) 
is but one amino acid from the N-terminal precursor methionine, and yet IL-36Ra 
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with an N-terminus at the valine site is 10,000 fold more potent than the IL-36 
 precursor. It is also an unusual situation that proteases that usually are infl ammatory 
in processing members of the IL-1 family in that case of IL-36Ra generate an 
 anti- infl ammatory molecule. 

1.8.1.1     IL-36α, -β, and -γ, Proinfl ammatory Members 
of the IL-36 Subfamily 

 IL-36α was highly expressed in the murine model of glomerulonephritis (Ichii et al. 
 2010 ), where the cytokine was localized to the kidney epithelium, and also in CD3 
T cells surrounding the tubules. IL-36α is also found in the kidneys of the MRL/
lupus, nephritic syndrome, and streptozotocin-induced diabetic models (Ichii et al. 
 2010 ). IL-36γ increases IL-8, CXCL3, and the Th17 chemokine CCL20 in human 
lung fi broblasts (Chustz et al.  2011 ) and thus may account for acute neutrophilic 
lung infl ammation. In addition to CD4 +  T cells, human articular chondrocytes and 
synovial fi broblasts express the IL-36R (Magne et al.  2006 ). In chondrocytes, there 
is also constitutive gene expression of IL-36β. Following stimulation with IL-1β or 
TNF-α, levels of the IL-36β precursor rise intracellularly but the cytokine is not 
secreted. Although IL-36β levels were detected in the joint fl uids of patients with 
rheumatoid arthritis as well as in serum samples, there was no correlation with dis-
ease severity (Magne et al.  2006 ). It is likely that IL-36 ligands are functional only 
when released from dying cells and can be processed extracellularly by enzymes 
present in infl ammatory conditions such as the joint of patients with rheumatoid 
arthritis. It unclear to what extent IL-36β plays a role in joint disease, although con-
stitutive expression in primary chondrocytes may indicate a role for the cytokine in 
osteoarthritis (Magne et al.  2006 ). 

 High levels of this cytokine are found in mouse embryonic tissues rich in epithe-
lial cells (Debets et al.  2001 ). In humans, IL-36α is observed in keratinocytes, not 
fi broblasts, and is thought to contribute to the infl ammation of psoriasis. Upon 
forming the heterodimer with IL-36R and IL-1RAcP, IL-36α activates NF-κB simi-
lar to that of IL-1β (Towne et al.  2004 ). In addition to NF-κB activation, IL-36α also 
activates MAPK, JNK, and ERK1/2 (Towne et al.  2004 ). In the mouse, bone 
marrow- derived dendritic cells and CD4 +  T cells express IL-36 receptors in health. 
In a comparison with IL-1 as a stimulant, the three IL-36 ligands are more active in 
inducing IL-1β, IL-6, IL-12, TNF-α, and IL-23 (Vigne et al.  2011 ). In addition, 
IL-36 ligands induced the production of IFN-γ, IL-4, and IL-17 from CD4 +  T cells. 
Not unexpectedly, cytokines induced by IL-36 ligands were prevented by 100- to 
1,000-fold excess IL-36Ra (Vigne et al.  2011 ).  

1.8.1.2     IL-36 in Psoriasis 

 Several studies implicate IL-36 ligands in the pathogenesis of psoriasis (Blumberg 
et al.  2007 ; Johnston et al.  2011 ; Muhr et al.  2011 ). IL-36γ is highly expressed in 
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keratinocytes from healthy human skin and increases upon stimulation with TLR 
polyI:C (Lian et al.  2012 ). Furthermore, polyI:C induced caspase-3, which resulted in 
cell death and the release of IL-36γ. Unexpectedly, stimulation of IL-36γ gene 
expression was dependent on caspase-1 (Lian et al.  2012 ). The caspase-1 dependency 
may be caused by IL-18 as this cytokine is constitutively present in keratinocytes as 
is IL-1α. With the release of IL-36γ by polyI:C and the subsequent death of the cell, 
IL-36γ falls into the category of being an alarmin in the skin, particularly because of 
infection (Lian et al.  2012 ). There is also a role for IL-36 in the production of IL-17: 
studies suggest that each of the IL-36 ligands is expressed in the skin and dependent 
on IL-22 (Carrier et al.  2011 ). Furthermore, the expression of IL-36 ligands in the 
psoriatic skin correlated with IL-17 (Carrier et al.  2011 ). Similar to other models in 
the IL-1 family, auto- and co-induction accounts for a role in a pathological process. 

 Overexpression of IL-36 in mice results in infl ammatory skin lesions that resem-
ble psoriasis in humans, as reviewed by (Towne and Sims  2012 ).Similarly, mice 
defi cient in endogenous IL-36Ra exhibit a severe lesion similar to that of humans 
with pustular psoriasis. The role of IL-36 in pustular psoriasis may include IL-1α, 
as humans with pustular psoriasis respond to an antibody that neutralizes IL-1α. 
Both IL-36 and IL-1α are found in the keratinocytes in healthy skin.  

1.8.1.3     A Role for IL-36R in Metabolic Regulation 

 Obesity is characterized by chronic low-grade infl ammation originating from 
expanding adipose tissue. Human adipogenic tissue levels of IL-36α are primarily 
present in adipose tissue-resident macrophages and are induced by infl ammation; 
however, IL-36β is absent (van Asseldonk et al.  2010 ). IL-36α, but not IL-36β, 
reduces adipocyte differentiation, as shown by a signifi cant decrease in PPAR-γ 
gene expression. Both IL-36α and IL-36β induce infl ammatory gene expression in 
mature adipocytes (van Asseldonk et al.  2010 ). Therefore, IL-36α and IL-36β are 
present in adipose tissue and are involved in the regulation of adipose tissue gene 
expression. Importantly, IL-36α inhibits PPAR-γ expression, which may lead to 
reduced adipocyte differentiation, suggesting metabolic effects of this cytokine. 

 Although IL-36Ra is known to occupy the IL-36R and act as a receptor antago-
nist, earlier studies revealed that IL-36Ra inhibited the induction of IL-1β by LPS. 
The role of IL-36Ra was also examined in the brain. IL-36Ra injected into the rat 
brain induced IL-4 and also in glial cells in vitro (Costelloe et al.  2008 ). Moreover, 
the reduction in LPS-induced IL-1β was not observed in cells defi cient in IL-4 and 
also not observed in cells defi cient in SIGIRR (Costelloe et al.  2008 ). However, 
these unique properties of IL-36Ra were not observed in peripheral monocytes or 
dendritic cells but only in the brain.  

1.8.1.4     Role of IL-36 in Human Disease 

 The importance of any cytokine in human biology can be found in mutations that 
result in a profound clinical picture. In IL-1, a mutation in the natural IL-1Ra results 
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in severe systemic infl ammation with erosive bone lesions, sterile meningitis, and 
death; the syndrome is called defi ciency of IL-1Ra (Aksentijevich et al.  2009 ; 
Reddy et al.  2009 ). In case of the IL-36 family, persons with a mutation in the natu-
rally occurring IL-36Ra suffer with a severe form of pustular psoriasis (Marrakchi 
et al.  2011 ; Onoufriadis et al.  2011 ). These human studies are consistent with the 
data from transgenic mice overexpressing IL-36α in the skin and the ability of 
IL-36Ra to suppress the severity of the infl ammation (Blumberg et al.  2007 ). In 
mice overexpressing IL-36α in the skin, crossing the mice to generate a strain of 
mice heterozygous for natural IL-36Ra knockout results in worsening of the skin 
lesions(Blumberg et al.  2007 ).    

1.9     IL-38 

 IL-8 is the name for the IL-1 family member 10. During the nomenclature revision 
of the IL-1 family in 2010 (Dinarello et al.  2010 ), the term IL-38 was assigned to 
IL-1F10 without any known biological function. Since then, IL-38 has been shown 
to bind to the IL-36 receptor (formerly IL-1Rrp2) (van de Veerdonk et al.  2012 ). To 
fi nd the receptor for IL-38, each member of the IL-1 receptor family was immobi-
lized, recombinant IL-38 precursor containing 152 amino acids was added, and 
binding was assessed using an antibody to the ligand. IL-38 bound only to the IL-36 
receptor, as did IL-36Ra (van de Veerdonk et al.  2012 ). To assess the biological 
function of IL-38, heat-killed  Candida albicans  was used to stimulate memory 
T-lymphocyte cytokine production in freshly obtained human peripheral blood 
mononuclear cells from healthy subjects. The addition of recombinant IL-38 inhib-
ited the production of T-cell cytokines IL-22 and IL-17. The dose–response sup-
pression of IL-38 as well as that of IL-36Ra of  Candida -induced IL-22 and IL-17 
was not that of the classic IL-1 receptor antagonist, because low concentrations 
were optimal for inhibiting IL-22 production (van de Veerdonk et al.  2012 ). These 
data provide evidence that IL-38 binds to the IL-36R, as does IL-36Ra, and that 
IL-38 and IL-36Ra have similar biological effects on immune cells by engaging the 
IL-36 receptor.  

1.10     The Infl uence of the IL-1 Family on Th17 Responses 

 The IL-1 family plays a signifi cant role in IFN-γ production, which is essential for 
the defense against intracellular pathogens. On the other hand, Th2 cells are charac-
terized by the production of IL-4 and are important in the host defense against para-
sitic infections. For more than one decade, the dichotomy between Th1 and Th2 has 
been the focus of studies on differentiation of CD4+ T lymphocytes. More recently, 
Th17 helper cells have been described and are characterized by their production of 
IL-17. IL-17 plays a major role in neutrophil recruitment and host defense against 
extracellular bacteria and fungi. Th17 cells produce a distinct cytokine profi le, 
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namely, IL-17A, IL-17F, IL-21, and IL-22. The cytokines produced by Th17 cells, 
in addition to activating neutrophils, are also crucial for nonimmune cells, for 
example, induction of defensins by IL-22 in epithelial cells and keratinocytes, 
which are part of mucosal and skin defenses. It has become apparent that Th17 
responses are associated with chronic infl ammation and autoimmune diseases such 
as multiple sclerosis, type 1 diabetes, Crohn’s disease, and psoriasis. Furthermore, 
Th17 responses are fundamental for host defense against many microorganisms, 
although they also contribute to the infl ammation during infection. 

 Although IL-4 and IL-12 were the fi rst cytokines described as infl uencing Th cell 
differentiation, cytokines of the IL-1 family also infl uence cytokine differentiation. 
IL-18 was initially described as an IFN-γ-inducing factor because of its strong stim-
ulatory effect on Th1/IFN-γ responses (Nakanishi et al.  2001b ). It is now known 
that IL-18 is, in fact, a crucial cytokine directing the development of Th1 cells, and 
one role of IL-12 is the induction of the expression of IL-18 receptors. In contrast, 
binding of IL-33, another member of the IL-1 family, to its ST2 receptor plays a role 
in inducing Th2 responses (Schmitz et al.  2005 ), and it thus appeared as if distinct 
members of the IL-1 family of cytokines directed Th1 versus Th2 differentiation. 
Considering these effects of IL-18 and IL-33, it came as no surprise that IL-1, the 
most well known member of the family, participates in the function of Th cells. 

 It has been known for more than 30 years that IL-1 enhances T-cell activation and 
recognition of antigen: one of the early names of IL-1 was lymphocyte activation 
factor (LAF). The specifi city of this response was, however, not known. Although 
initially only IL-23, IL-6, IL-21, and TGF-β were suggested to play a role in the 
development of Th17 responses in mice, there is no dearth of data that a more com-
plex picture exists. Thus, IL-1β, IL-6, and TGF-β have been reported to induce the 
development of Th17 cells, whereas IL-23 has been reported to be important for the 
maintenance of Th17 cells. The combination of IL-23 and IL-1β induces the devel-
opment of human Th17 cells expressing IL-17A, IL-17F, IL-22, IL-26, the chemo-
kine CCL20, and transcription factor RORγt (Wilson et al.  2007 ). Interestingly, 
these cells also released IFN-γ, displaying a phenotype common to both Th17 and 
Th1 cells (Wilson et al.  2007 ). The strong capacity of IL-1 to induce Th17 differen-
tiation has been also linked to its well-known capacity to induce the release of pros-
taglandins, as reviewed by Dinarello ( 2011b ). PGE 2  induced by COX-2 is a 
stimulator of Th17 induction and inhibitors of cyclooxyugenase decrease IL-17 
production (Chizzolini et al.  2008 ). On the other hand, engagement of the aryl- 
hydrocarbon receptor, a pathway demonstrated to be crucial for the generation of 
Th17 cells, has been shown to strongly induce IL-1β (Henley et al.  2004 ). In addi-
tion to inducing IL-17 production from the Th17 subset of lymphocytes, IL-1β is 
required for the production of IL-17 by NKT cells (Moreira et al.  2011 ) and of 
IL-22 from NK cells (Hughes et al.  2010 ). 

 Thus, cytokines of the IL-1 family have an important role in the differentiation 
of the Th subsets, with IL-1β strongly inducing Th17 responses, IL-18 being crucial 
for the generation of Th1 cells, and IL-33 being important in Th2 responses. 
Interestingly, reciprocal regulation has been demonstrated between the various Th 
subsets, with cytokines released by Th2 cells inhibiting Th1 responses, whereas 
IFN-γ release from Th1 cells impairs both Th2 and Th17 responses.     
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