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    Abstract     Transforming growth factor beta (TGF-β) is known to regulate numerous 
cell functions in the nervous system development, adult maintenance, and degenera-
tion. TGF-β carries roles in neurons and glia and is involved in the regulation of 
proliferation, differentiation, neuron survival and death, as well as orchestrating its 
response to lesion. In the context of brain disorders the current understanding of 
TGF-β action is discussed for brain tumors, neurodegenerative disease, such as 
Alzheimers’ and Parkinson’s disease, in insults such as ischemia, stroke, and vascu-
lar damage, as well as changes in neuronal activity, such as hyperactivity as seen in 
epilepsy, or in neuronal depression.  
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  CNTF    Ciliary neurotrophic factor   
  CSF    Cerebrospinal fl uid   
  E    Embryonic day   
  ECM    Extracellular matrix   
  EGF    Epidermal growth factor   
  FGF    Fibroblast growth factor   
  Fox    Forkhead box   
  GDNF    Glial cell line-derived neurotrophic factor   
  GFAP    Glial fi brillary acidic protein   
  GFRα    GDNF receptor   
  Id4    Inhibitors of DNA binding/differentiation   
  TIEG    TGF-β immediate early gene   
  IL    Interleukin   
  Kir    Inward recitfying potassium channels   
  MGP    Matrix GLA protein   
  MHC    Major histocompatobility class   
  MMP    Matrix metalloproteinase   
  MPP+    1-methyl-4-phenylpyridinium   
  MPTP    1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine   
  MS    Multiples sclerosis   
  NGF    Nerve growth factor   
  PAI    Plasminogen activator inhibitor   
  PD    Parkinson’s disease   
  PDGF    Platelet-derived growth factor   
  PNS    Peripheral nervous system   
  SOD    Superoxide dismutase   
  TGF- β    Transforming growth factor β   
  TβR    TGF-β receptor   
  TNF-α    Tumor necrosis factor α   
  TRAF    TNF-α receptor associated factor   
  t-PA    Tissue plasminogen activator   
  VEGF    Vascular endothelial growth factor   

17.1           Introduction 

 The isolation and characterization of transforming growth factors-β (TGF-β) by 
Anita Roberts has introduced a versatile extrinsic signaling molecule affecting 
numerous events in the life of almost each cell (Roberts and Sporn  1990 ; Derynck 
et al.  1985 ). Best characterized events include the regulation of cell cycle, composi-
tion of the extracellular matrix (ECM), and thereby cell migration or differentiation, 
as well as regulation of cell survival and death. Imbalance of TGF-β availability is 
therefore likely to affect tissue development, maintenance, and homeostasis. This 
certainly also accounts for the nervous system. Once accepted that TGF-β is also 
expressed in the nervous system, the functional contribution of TGF-β is now more 
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and more understood in numerous events in the development of the nervous system, 
its maintenance, and consequently also in the context of many brain diseases. This 
review will discuss the current knowledge of TGF-β in brain development and func-
tion and consequently in brain disorders. 

 Brain disorders include brain tumors, neurodegenerative disease, such as 
Alzheimers’ disease and Parkinson’s disease, insults such as ischemia and stroke, 
and vascular damage, as well as changes in neuronal activity, such as hyperactivity 
as seen in epilepsy, or neuronal depression.  

17.2     TGF-β Expression in the Central Nervous System 

 Localisation of TGF-β isoforms in mice and rats has been performed by immuno-
histochemistry and in situ hybridization studies demonstrating a widespread distri-
bution of TGF-β2 and TGF-β3 during development (Flanders et al.  1991 ; Pelton 
et al.  1991a ,  b ; Unsicker et al.  1991 ). TGF-β1 is confi ned to meninges and choroid 
plexuses. During mouse development TGF-β2 and -β3 immunoreactivities become 
fi rst detectable along peripheral nerves, in radial glial cells and along the central 
nervous system (CNS) axon tracts at embryonic age (E)12. Neuronal cell bodies 
become immunoreactive from E15 onwards. Most notably, TGF-β immunoreactiv-
ity is not detectable in the ventricular zone throughout the neural tube, suggesting 
that TGF-β may not be involved in the regulation of cell division of neural stem cells 
during development (Flanders et al.  1991 ). In contrast, on day E16, cells in the sub-
ventricular zone, subplate, and lamina I of the cortex stain positive for TGF-β. As 
they develop, astrocytes are also immunoreactive for TGF-β2 and -β3. In the adult 
nervous system both neurons and astroglia are immunoreactive for TGF-β2, -β3. 
Immunoreactive neuron populations include cortical layers 2, 3, and 5, hippocam-
pus, piriform cortex, retinal ganglionic cells, hindbrain aminergic neurons, as well 
as spinal and hindbrain motoneurons (Unsicker et al.  1991 ). TGF-β1 is most promi-
nent within the choroid plexus and meninges, it may, however, be expressed in other 
cells below levels of detectability. Upon lesioning, TGF-β1 may by upregulated in 
astrocytes as well as in neurons in vivo. TGF-β1 becomes also detectable in tissue 
culture, possibly mimicking a lesion-like situation. In primary neural tissue culture, 
treatment with all three TGF-β isoforms usually results in identical responses, sug-
gesting that the recombinant proteins used have similar affi nities for their shared 
receptor complex (Krieglstein and Unsicker  1994 ; Massague  2000 ). 

 In addition to the distribution of TGF-β within the peripheral nervous system 
(PNS) and CNS, its subcellular localization and mode of secretion is of importance 
in order to elaborate on its possible functions. Taking PC12 cells as a model to study 
sorting in the trans-Golgi network, Specht et al. ( 2003 ) could show that TGF-β2 
may be sorted and released to a large proportion via the regulated path of secretion. 
Secretory vesicles provide a milieu of pH 5, which is suitable for TGF-β activation 
within the vesicle, enabling release of active TGF-β (Specht et al.  2003 ). Activity-
depended release of TGF-β2 may suggest a function as a modulator for synaptic 
plasticity (Lacmann et al.  2007 ).  
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17.3     TGF-β in Brain Tumors 

 The role of TGF-β in cancer biology is complex and involves both aspects of tumor 
suppression (Bartholin et al.  2013 ; Seoane  2006 ) as well as tumor promotion (Wendt 
and Schiemann  2013 ; Joseph et al.  2013 ; Roberts and Wakefi eld  2003 ). 

 TGF-βs are well known for their capacity to regulate cell proliferation in a 
context- dependent manner. There are at least four scenarios in which regulation of 
cell proliferation is an important issue in nervous system development and mainte-
nance: (a) neurogenesis, (b) proliferation of neuroblasts (neural crest cells), (c) pro-
liferation of glial cells during development or upon lesioning, and (d) upon 
transformation in tumors. 

 Neurogenesis in the neural tube requires defi nite exit of the cell cycle to generate 
postmitotic neurons. In the past years there is increasing evidence for the role of 
TGF-β in developmental and adult neurogenesis (Vogel et al.  2010 ; Aigner and 
Bogdahn  2008 ). For some years there was indirect evidence available that neural 
stem cells in the neuroepithelium need to be protected from the action of TGF-β, in 
order to prevent premature growth retardation (Seoane et al.  2004 ; Hanashima et al. 
 2002 ). Seoane and coworkers have demonstrated on the basis of protein interaction 
analysis in human HaCaT keratinocytes that expression of the cyclin-dependent 
kinase (cdk) inhibitory protein 1 (p21Cip1) is regulated by TGF-β-dependent Smad 
complexes in combination with the Forkhead box (Fox) family member FoxO. This 
FoxO-Smad complex is inhibited by FoxG1, which has been shown to be essential 
for proliferation of telencephalic progenitor cells (Xuan et al.  1995 ). Indeed, FoxG1 
mutants, which display reduced proliferation of telencephalic progenitor cell, pre-
mature differentiation and early depletion of the progenitor population (Xuan et al. 
 1995 ) show high levels of p21Cip1 expression in TGF-β-sensitive progenitor cells 
(Seoane et al.  2004 ). Exit from the cell cycle during terminal differentiation, as 
required for neurogenesis, has been described to be regulated by Ink4d and Kip1 
inhibitors of cyclin-dependent kinases (Zindy et al.  1999 ; Cunningham and Roussel 
 2001 ). P27Kip1 has been identifi ed as a TGF-β-dependent target gene; however, 
there is no evidence for a TGF-β-dependent regulation of p19Ink4d. This suggests 
that TGF-β may serve as an extracellular regulator to induce cell cycle arrest at the 
G1 phase in neural stem cells but may probably not be suffi cient to regulate cell 
cycle exit required for terminal differentiation. In mouse hippocampal progenitor 
cells, TGF-β causes induction of p21Cip1 and downregulation of Cdk activators 
Ccnd1 and Ccnd2, leading to cell cycle exit and neuronal differentiation (Vogel 
et al.  2010 ). Along this line, TGF-β2/-β3 double knockout mice display increased 
cell proliferation and reduced numbers of neurons       in the developing cerebral cortex 
and hippocampus, as the progenitor cells failed to differentiate into neurons because 
they did not exit cell cycle. Furthermore, TGF-β1 has been implicated as a negative 
modulator of adult neurogenesis (Wachs et al.  2006 ). 

 By affecting the cell cycle prior to terminal differentiation, TGF-β may, of 
course, regulate proliferation of neuroepithelial cells, including neuroblasts, neural 
crest cells, and glial progenitors (Zhang et al.  1997a ; Anchan and Reh  1995 ). 
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Furthermore, TGF-β2 has been shown to regulate cell proliferation in neural crest- 
derived chromaffi n cells (Rahhal et al.  2004 ) with the capacity of lifelong 
proliferation. 

 Tumors of the CNS include primitive neuroectodermal tumors, such as gliomas 
and medulloblastomas (Fogarty et al.  2005 ; Nieder et al.  2003 ). They derive from 
dividing glial cells, or neural stem and progenitor cells. Glial brain tumors are further 
classifi ed using grades I–IV to express the likelihood of increased growth and malig-
nancy. CNS tumors are characterized by rapid and infi ltrative growth, angiogenesis, 
and immune suppression. Due to the proliferative behavior of brain cells, brain 
tumors show a high occurrence not only during development affecting children but 
also during adulthood. Particularly adult neural stem cells with the capacity to pro-
vide new neurons and glia in regions with high plasticity, following injury, or in the 
context of specifi c diseases, may escape their physiological control machinery and 
transform into brain cancer stem cells (reviewed in Aigner and Bogdahn  2008 ). 

 Id4 (inhibitors of DNA binding/differentiation) has been shown to serve impor-
tant functions in neural stem cell differentiation and its deregulation has been impli-
cated in glial neoplasia (Dell’Orso et al.  2010 ). Deregulation could occur via 
functional point mutations or epigenetic silencing. Martini and coworkers ( 2012 ) 
were able to show that epigenetic silencing of Id4 via hypermethylation resulted in 
reduced expression of matrix GLA protein (MGP), TGF-β1 and vascular endothe-
lial growth factor (VEGF) which was associated with a more favorable clinical out-
come. However, there are many possibilities to circumvent this effect. First, as 
TGF-β actions are context-dependent, the presence of certain mitogens, such as 
TGF-α/epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) 
may turn TGF-β into a growth stimulating factor (Roberts et al.  1981 ; Leof et al. 
 1986 ; Seoane  2006 ). Secondly, transformed cells may become insensitive to TGF-β 
due to overproduction of TGF-β or due to mutations of TGF-β receptors, their sig-
naling components, or even their target genes responsible for G1 arrest (for example 
Rich et al.  1999 ; Lyons et al.  1990 ; Markowitz et al.  1995 ; Hahn et al.  1996 ; Seoane 
et al.  2004 ; Rich  2003  for review). 

 TGF-β´s ability to regulate ECM composition puts TGF-β at high risk in the 
regulation of tumor invasion and metastasis. In this context TGF-β has been shown 
to regulate integrin expression, for example integrin α V β 3  which has been shown to 
play a role in glioma propagation (Uhm et al.  1999 ). TGF-β has also been shown to 
upregulate matrix metalloprotease 2 (MMP-2) and MMP-9 expression at the cell 
surface (Rooprai et al.  2000 ) that may interact with α V β 3  integrin (for review, see 
Platten et al.  2001 ). 

 TGF-β is a potent immunosuppressive cytokine (Wahl and Chen  2003 ; Roth 
et al.  2012 ; Hau et al.  2011 ). Brain tumors are well known for their immunosup-
pressive properties allowing them to escape from the host’s immune surveillance. 
TGF-β2 and TGF-β3 are considered master molecules that upon secretion mediate 
this immunosupressive environment. This immunosuppressive role has been attrib-
uted to TGF-β2, which is also the preferentially expressed isoform by many glio-
blastomas, grade IV gliomas (Bodmer et al.  1989 ; Hau et al.  2011 ). On this basis, 
TGF-β2-specifi c antisense gene therapy strategies have been established to make 
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tumor cells accessible to an effective anti-tumor immune response and counteract 
TGF-β-dependent tumor metastasis (Hau et al.  2009 ; Jachimczak et al.  1993 ; Lou 
 2004 ). Along this line, there is extensive research going on to identify TGF-β sig-
naling inhibitors for cancer therapy (DaCosta et al.  2004 ; Yingling et al.  2004 ; Lahn 
et al.  2005 ).  

17.4     Vascular Damage in the CNS 

 The blood–brain barrier (BBB) generates the specifi c milieu of the brain by building 
a tight boundary and thereby separating the components of the circulating blood 
from the brain. After injury or in neurologic diseases including trauma, ischemia/
stroke, or Alzheimer’s disease (AD), leakage of the BBB results in the entry of 
blood constituents into the brain (Abbott et al.  2006 ). Plasma proteins such as albu-
min, immunoglobulins, amyloid-β, and fi brinogen, and vascular cells such as eryth-
rocytes and leucocytes, leaking into the brain have been associated with infl ammation 
and restriction of repair (for review, see    Beck and Schachtrup  2012 ). Schachtrup 
and coworkers ( 2010 ) identifi ed TGF-β as a vascular-derived protein. Specifi cally, 
they could demonstrate that the plasma-derived protein fi brinogen acts as a carrier 
of latent TGF-β. Its activation is mediated via avβ6 and avβ8 integrins present on the 
surface of astrocytes. 

 Increased levels of TGF-β1 has been described in human brains during trauma, 
multiple sclerosis    (MS), Parkinson’s, AD, and stroke patients (Lippa et al.  1995 ). In 
patients suffering from severe head injury, high levels of TGF-β1 could be detected 
in the cerebrospinal fl uid (CSF   ) within 1 day after injury (Csuka et al.  1999 ; 
Morganti-Kossmann et al.  1999 ). These observations strongly suggest that lesion- 
induced, vascular-derived TGF-β contributes to the corresponding degeneration and 
regeneration processes (Beck and Schachtrup  2012 ). 

 TGF-β has been profoundly investigated for its role in orchestrating the response 
to brain lesions (for review, see Flanders et al.  1998 ). With regard to astrocytes, this 
includes regulation of astrocytic growth, astroglial scar formation, and anti- 
infl ammatory responses. In most contexts studied, TGF-β inhibits the growth of 
astrocytes (Flanders et al.  1993 ; Hunter et al.  1993 ). Most importantly, TGF-β coun-
teracts mitogenic signals by astroglial mitogens such as fi broblast growth factor-2 
(FGF-2) or PDGF. However, effects may vary depending on astrocyte culture condi-
tions in vitro or may be brain region-dependent in vivo (Labourdette et al.  1990 ; 
Johns et al.  1992 ). TGF-β may also affect cell adhesion, migration, and ECM pro-
duction by astrocytes, all being important steps in the cascade of shaping the reac-
tive astrocyte phenotype. TGF-β-treated astrocytes show a slight increase in actin 
content, the appearance of actin stress fi bers, a slight increase in the glial fi brillary 
acidic protein (GFAP), and an increased production of laminin and fi bronectin 
(cf. Baghdassarian et al.  1993 ). Thus, treatment of cerebral wounds with anti-
TGF-β2 antibodies was shown to lead to a marked reduction of glial scarring 
(Logan et al.  1999 ). Many effects of TGF-β on astroglia are anti-infl ammatory 
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and immunosuppressive, as TGF-β modulates the expression of important cyto-
kines involved in CNS immune reactions. These include upregulation of interleu-
kin-6 (IL-6) and nerve growth factor (NGF) (Spittau et al.  2012 ; Aderka et al.  1989 ; 
Lindholm et al.  1992 ), blocking interferon-γ mediated upregulation of major histo-
compatibility class (MHC) II (Dong et al.  2001 ), and the tumor necrosis factor α 
(TNF-α) and interleukin-1 β (IL-1 β)-mediated upregulation of intercellular adhe-
sion molecule-1 (Shrikant et al.  1996 ).  

17.5     TGF-β in Neuronal Survival and Death 

 TGF-β has been shown to promote survival of several neuronal populations in vitro 
(Krieglstein et al.  1995 ; Poulsen et al.  1994 ; Martinou et al.  1990 ). However, it is 
now well established that TGF-β may modulate the neurotrophic capacities of 
numerous growth factors including neurotrophins, such as NGF, brain-derived neu-
rotrophic factor (BDNF), as well as ciliary neurotrophic factor (CNTF) (Krieglstein 
and Unsicker  1996 ) and, most importantly, glial cell line-derived neurotrophic fac-
tor (GDNF;    Krieglstein et al.  1998b ). GDNF was shown to crucially depend on 
TGF-β to exert its neurotrophic activities on peripheral as well as mesencephalic 
dopaminergic neurons in vitro. In vivo, GDNF’s neuroprotective effect on target- 
deprived pre-ganglionic sympathetic neurons, as well as 1-methyl-4-phenyl-1,2,3,6- 
tetrahydropyridine (MPTP   )-lesioned nigrostriatal dopaminergic neurons, also 
depends on the presence of TGF-β (Schober et al.  1999 ,  2007 ). GDNF/TGF-β coop-
erativity on chick ciliary ganglionic neurons has now been characterized in detail, 
whereby TGF-β is required for appropriate GDNF receptor (GFRα1) recruitment to 
the plasma membrane (Peterziel et al.  2002 ). Interestingly, TGF-β does not cooper-
ate with Neurturin, a closely related factor to GDNF, and does not promote the 
recruitment of GFRα2 to the plasma membrane, suggesting high specifi city in 
TGF-β/GDNF cooperativity (Peterziel et al.  2007 ). 

 Depending on the cellular context, TGF-β has also been shown to regulate onto-
genetic neuron death. Upon immunoneutralization of all TGF-β isoforms in ovo 
(E6–E10), ontogenetic cell death of chick parasympathetic ciliary ganglionic neurons, 
sensory dorsal root ganglionic neurons as well as lumbar spinal motoneurons could 
be prevented (Krieglstein et al.  2000 ). Similarly, TGF-β regulates ontogenetic mor-
phogenetic cell death in the developing retina of chick and mouse embryos (Dünker 
et al.  2001 ; Dunker and Krieglstein  2003 ). Another classical model for morphoge-
netic cell death during embryogenesis represents the removal of interdigital tissue 
to form individual fi ngers. Similarly, double deletion of TGF-β2 and -β3 in the 
mouse resulted in lack of cell death (Dunker et al.  2002 ). Furthermore, induced 
neuron death following embryonic limb bud ablation in chick embryos resulted in a 
signifi cant neuroprotection upon immunoneutralization of TGF-β (Krieglstein et al. 
 2000 ). Together, these data suggest that TGF-β is a key regulator of ontogenetic cell 
death in vivo. Mechanistically, we recently identifi ed that TGF-β- induced apoptosis 
in oligodendroglial progenitor cells (OLI-neu; Schuster et al.  2002 ) is characterized 
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by downregulation of Bcl-xl. Furthermore, Fractin is produced as a caspase-specifi c 
cleavage product in oligodendroglial cells during TGF-β- mediated apoptosis, 
whereby Fractin binding to Bcl-xl induced downregulation of Bcl-xl protein levels 
(Schulz et al.  2009 ). Sorrentino and collaborators ( 2008 ) were able to show that the 
intracellular apoptotic cascade can be initiated via the type I receptor of TGF-β 
(TβR-I) and receptor-engaged TNF-α receptor associated factor 6 (TRAF6). 
Although TGF-β-induced apoptosis and underlying signaling pathways have been 
well characterized in many cells types, little is known about TGF-β-induced apop-
tosis in neurons (Schuster and Krieglstein  2002 ; Sanchez- Capelo  2005 ).  

17.6     Cerebral Ischemia 

 Cerebral ischemia is caused by either a blood clot occluding a blood vessel in the 
brain (focal ischenia) or a more general reduction in brain blood fl ow (global isch-
emia) leading to insuffi cient blood fl ow and reduced oxygen levels in the respective 
brain areas, thus leading to death of brain tissue. Neuronal cell death may occur as 
necrosis or apoptosis. Thrombolysis is the approved treatment of stroke. TGF-β1 
expressed at low levels in adult brain is rapidly upregulated following insults such 
as cerebral ischemia, excitatory injury, or traumatic brain injury (Klempt et al.  1992 ; 
Knuckey et al.  1996 ; Yamashita et al.  1999 ; Morganti-Kossmann et al.  1999 ; Zhu 
et al.  2000 ; Boche et al.  2003 ; Krieglstein  2006 ; Pál et al.  2012 ). TGF-β1 upregula-
tion was observed primarily in microglial cells and in astrocytes, while TGF-β2 
upregulation was seen in neurons. TGF-β3 was not upregulated; however, the levels 
of both TGF-β2 and TGF-β3 decreased subsequently. These data suggest a distinct 
spatiotemporal requirement of TGF-β isoforms action during cerebral ischemia (Pál 
et al.  2012 ). As TGF-β is a good candidate to organize the response of neurons to 
degeneration as well as mediating anti-infl ammatory reactions, its neuroprotective 
potential has been widely analyzed (for review, see Flanders et al.  1998 ; Böttner 
et al.  2000 ; Dobolyi et al.  2012 ). Specifi cally, TGF-β1 applied either as recombinant 
protein or by adenoviral-based overexpression has been shown to reduce infarct size 
after focal cerebral ischemia and to prevent hippocampal neuronal damage after 
global ischemia (Gross et al.  1993 ; Prehn et al.  1993 ; Zhu et al.  2002 ; for review, see 
Buisson et al.  2003 ; Dhandapani and Brann  2003 ). Furthermore, TGF-β may also 
mediate tolerance of ischemic preconditioning towards subsequent ischemic insult 
(Boche et al.  2003 ). The molecular mechanism(s) by which TGF-β protects neurons 
from ischemic cell death relies on a signaling crosstalk between neurons and astro-
cytes (Prehn et al.  1994 ; Docagne et al.  1999 ) and involves the maintenance of Ca 2+  
homeostasis, modulation of the t-plasminogen activator (tPA)/plasminogen activa-
tor inhibitor (PAI-1) axis, as well as inhibition of pro-apoptotic pathways, such as 
Bad and caspase-3 (Zhu et al.  2001 ,  2002 ) and upregulation of anti- apoptotic pro-
teins such as Bcl-2 (Prehn et al.  1994 ). An additional TGF-β-dependent anti- 
apoptotic pathways involving NF-κB activation has been described (Zhu et al. 
 2004 ). This pathway seems to be downstream of ALK1 (activin receptor-like kinase 
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1), an alternative TGF-β type I receptor fi rst described on endothelial cells, which 
has been shown to be upregulated in neurons in an injury-dependent manner (Konig 
et al.  2005 ). Injury-dependent upregulation of ALK1, with signaling preference 
towards Smad1, may also explain numerous opposing effects of TGF-β in brain 
development and lesions.  

17.7     Alzheimer’s Disease 

 Alzheimer’s disease (AD) is a degenerative brain syndrome characterized by a pro-
gressive decline in learning and memory, thinking, language, judgment, and other 
higher brain functions. Currently about 18 million people worldwide suffer from 
AD and it is estimated that in 2025, 34 million will be affected. The statistical risk 
of occurrence is 1.4 % at the age of 60 and doubles every 5 years thereafter (WHO; 
Huang and Mucke  2012 ). 

 AD is characterized by considerable brain shrinkage resulting in a large loss of 
brain weight and volume. The extent of brain volume loss suggests more general 
mechanisms such as shrinkage and loss of neuronal processes, including degenera-
tion of specifi c neuron populations (Huang and Mucke  2012 ). Along this line, aber-
rant neuronal network activity, dysfunction, and loss of synapses may describe the 
cognitive decline in AD. 

 TGF-β has been implicated in the regulation of neurite outgrowth, transmitter 
synthesis as well as synapse formation (Krieglstein et al.  2011 ). TGF-β has been 
reported to cause neurite sprouting and elongation of hippocampal axons as well as 
promoting re-elongation of injured axons of hippocampal neurons in vitro (Ishihara 
et al.  1994 ; Abe et al.  1996 ). In the mouse neocortex, TGF-β can direct neuronal 
polarity by initiation of axon formation and neuronal migration via site-specifi c 
phosphorylation of the polarity protein Par6 (Yi et al.  2010 ). Extracellular signaling 
factors such as Wnt and TGF-βs are recognized as target-derived signals in synap-
togenesis (Salinas  2005 ; Packard et al.  2003 ). In chick ciliary ganglionic neurons, 
developmental expression of K Ca  channels coincides with synaptogenesis. Dryer 
and coworkers have shown that target-derived TGF-β1 regulates the developmental 
expression of Ca 2+ -activated K +  currents in vitro and in vivo (Cameron et al.  1999 ). 
The acute effect of TGF-β1 relies on the translocation of K Ca  channels from intracel-
lular stores to the plasma membrane involving signaling via the Ras GTPase, extra-
cellular regulated kinases (Erk), and phosphoinositide 4′ (PI4) kinase (for review, 
see Dryer et al.  2003 ). In conclusion, TGF-β may well be suited to modulate synap-
tic plasticity and cognition (for review, see Krieglstein et al.  2011 ). 

 The pathogenesis of AD is focusing on amyloid β (Aβ) peptides, the main 
 constituent in plaques, derived from amyloid precursor protein (APP) upon pro-
teolylic cleavage (De Strooper et al.  2010 ; Bertram et al.  2010 ). There are several 
lines of evidence suggesting that TGF-β1 may contribute to the pathology of 
Alzheimer’s disease, particularly through promoting Aβ precursor expression and 
Aβ deposition (Burton et al.  2002 ; Wyss-Coray et al.  1997a ,  b ; Flanders et al.  1995 ; 
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van der Wal et al.  1993 ). Mice overexpressing TGF-β1 in astrocytes develop 
AD-like vascular and meningeal abnormalities with age (Gaertner et al.  2005 ). 
These chronic alterations could be correlated with reduced brain tissue perfusion, 
leading to an increased amount of fi brillar and soluble Aβ peptides. However, in 
brain parenchyma, astroglial TGF-β1 expression leads to a reduction of overall Aβ 
as well as decreased numbers of dystrophic neurites (Wyss-Coray et al.  2001 ). The 
reduced plaque burden in brain parenchyma is thought to depend on TGF-β-
dependent microglial activation and microglial Aβ-clearance. Furthermore, a 
genetic association study of three polymorphisms of the human TGF-β1 gene with 
AD suggests that there is no correlation between TGF-β1 and AD on the basis of 
TGF-β1 gene variability (Araria-Goumidi et al.  2002 ). 

 Most recently, bioactive TGF-β has been shown to be associated with lipopro-
teins, specifi cally those containing ApoE3, but not ApoE4 (Tesseur et al.  2009 ). 
Association of TGF-β1 with lipoproteins may facilitate its diffusion and signaling 
and possibly also other biological functions of TGF-β1. This observation is of par-
ticular interest in this context as ApoE4 has been genetically linked with late-onset 
AD (Bertram et al.  2010 ). As TGF-β1 is a neuroprotective agent and may be benefi -
cial in the AD condition, for example through reduction of plaque burden, the pref-
erential binding of TGF-β1 to ApoE3 versus ApoE4 may put ApoE4 carriers on 
higher risk for developing AD (Tesseur et al.  2009 ). 

 Several lines of evidence suggest impairment of TGF-β-activated Smad signal-
ing, with ectopic localization of phosphorylated Smad2/3 within amyloid plaques 
and neurofi brillary tangles (Lee et al.  2006 ; Tesseur et al.  2006 ; Ueberham et al. 
 2006 ; Chalmers and Love  2007a ,  b ). Furthermore, AD patients have been shown to 
have reduced plasma levels of TGF-β1 (Mocali et al.  2004 ; Juraskova et al.  2010 ) as 
well as reduced neuronal expression of the TGF-β type II receptor (TβRII) (Tesseur 
et al.  2006 ). Lack of TβRII signaling via neuronal expression of kinase-defi cient 
TβRII in AD transgenic mice promoted Aβ deposition and loss of dendrites (Tesseur 
et al.  2006 ), while Aβ may downregulate expression of TβRII via induction of miR- 
106b (Wang et al.  2010 ). Finally, injection of synthetic Aβ in combination with 
blocking TGF-β signaling via application of the TβRI kinase inhibitor SB431542 
signifi cantly increased the vulnerability of hippocampal neurons to Aβ, leading to 
neuronal degeneration (Caraci et al.  2008 ). 

 Together, as TGF-β1 signaling is benefi cial in the AD environment, rescuing 
TGF-β1 levels and TGF-β signaling may represent a new strategy for neuroprotec-
tion in AD (Caraci et al.  2012 ).  

17.8     Parkinson’s Disease 

 Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progres-
sive loss of nigrostriatal neurons and in consequence by marked reduction of striatal 
dopamine resulting in impaired voluntary movement (for review, see Braak et al. 
 2004 ; Dunnett and Björklund  1999 ). In addition to the loss of neurons, a further 
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morphologic hallmark of PD is the presence of Lewy bodies and Lewy neurites 
(Forno  1996 ). The formation of these proteinaceous inclusions involves interaction 
of several proteins, including α-synuclein (Spillantini et al.  1998 ). The etiology of 
PD is likely due to combinations of environmental and genetic factors (for review, 
see, for example, Valente et al.  2012 ; Gasser et al.  2011 ). 

 TGF-β2 and TGF-β3 are expressed in adult nigral dopaminergic neurons 
(Unsicker et al.  1991 ), and TGF-β1 and -β2 were elevated in biopsies of PD patients 
(Nagatsu et al.  2000 ). TGF-βs have been shown to promote midbrain dopaminergic 
neuron survival in vitro and in vivo (Krieglstein and Unsicker  1994 ; Poulsen et al. 
 1994 ; Roussa et al.  2004 ), as well as protection against 1-methyl-4- phenylpyridinium 
(MPP   +) intoxication (Krieglstein et al.  1995 ; Roussa et al.  2009 ). Most importantly, 
TGF-β cooperates with GDNF to promote dopaminergic neuron survival (Krieglstein 
et al.  1998b ). GDNF is well known as a potential therapeutic agent coping with    
PD (for review, see Björklund and Lindvall  2000 ). However, also in vivo GDNF- 
dependent neuroprotective effects are based on the cooperativity with TGF-β, as 
shown in the MPTP-mouse model, an animal model of PD (Schober et al.  2007 ). 
This neuroprotective strategy has already been used incidentally by grafting extra- 
adrenal chromaffi n cells obtained from Zuckerkandl’s organ in parkinsonian rats 
(6-hydroxydopamine model). The behavioral improvements of parkinsonia defi cts 
were in addition to the supply of catecholamines attributed to the release of the 
survival promoting proteins GDNF and TGF-β1 (Fernandez-Espejo et al.  2005    ). 

 Most recently, a new animal model for PD has been introduced. Viral transforma-
tion of rats with α-synuclein showed a slow progression of nigral dopaminergic neu-
rons (Ulusoy et al.  2010 ). Most interestingly, GDNF, for long considered as the gold 
standard in neurotrophic-based neuroprotection of PD, is not able to rescue α-synuclein-
mediated degeneration of dopaminergic neurons (Decressac et al.  2011 ).  

17.9     Epilepsy 

 Epilepsy is a common neurological disorder affecting 0.5–2 % of the population 
worldwide. Epilepsy is characterized by seizures resulting from abnormal neuronal 
activity. So far, there is no cure known for the disease. The mechanisms leading to 
the disease are only poorly understood. However, epilepsy is often seen following 
brain trauma, ischemic or infectious brain injury, or drug and alcohol misuse. These 
conditions may be accompanied by vascular damage and leakage of the blood–brain 
barrier (see above). 

 Cacheaux et al. ( 2009 ) have identifi ed the involvement of TGF-β signaling in 
epileptogenesis. The group has previously demonstrated that serum albumin causes 
epileptic fi eld potentials when exposed to brain slices in vitro (Ivens et al.  2007 ). 
Serum albumin was taken up by astrocytes leading to down regulation of inward- 
rectifying potassium (Kir 4.1) channels, resulting in reduced buffering of extracel-
lular potassium in neuronal hyperexcitability and epileptiform activity. As the 
albumin uptake was shown to occur in a TGF-β receptor-mediated mechanism, 
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blocking of the TβR in vivo reduced the likelihood of epiletogenesis in albumin 
exposed brains (Ivens et al.  2007 ). In follow-up experiments, the group was able to 
show that TGF-β1-mediated signaling is suffi cient to induce epileptoforming activ-
ity (Cacheaux et al.  2009 ). These data strongly link the TGF-β pathway with epilep-
togenesis and identify the TGF-β pathway as a therapeutic target for the prevention 
of injury-induced epilepsy (Friedman  2011 ).  

17.10     Depression 

 Major depressive disorder is a mental disorder characterized by low mood, low self- 
esteem, and reduced interest in enjoying pleasure. There is no clinical test for depres-
sion. Patients are treated with antidepressant drugs, which improves their mental 
condition after several weeks of treatment. Most antidepressant medications directly 
or indirectly increase the levels of one or more of the monoamines, such as serotonin, 
noradrenaline, and dopamine, in the synaptic cleft between neurons in the brain, sug-
gesting that depression may be the consequence of reduced synaptic activity. In addi-
tion to neurotransmitters, also neuropeptides and neurotrophic factors such as BDNF 
and TGF-β have been shown to be released in an activity- dependent manner (Thoenen 
 1995 ;    Specht et al.  2003 ; Lacmann et al.  2007 ). Notably, KCl stimulation caused 
Smad translocation into the nucleus and induced TGF-β-inducible early gene (Tieg1) 
expression, demonstrating that activity- dependent released TGF-β may exert auto-
crine actions and thereby activate the TGF-β-dependent signaling pathway (Lacmann 
et al.  2007 ). These results suggest an activity-dependent release and gene transcrip-
tion of TGF-β in mouse hippocampal neurons in vitro as well as subsequent auto-
crine functions of the released TGF-β within the hippocampal network. TGF-β is 
also known to have a prominent role in long-term synaptic facilitation in isolated 
Aplysia ganglia (Zhang et al.  1997b ). Within minutes, TGF-β1 stimulated MAPK-
dependent phosphorylation of synapsin, which appeared to modulate synapsin 
 distribution, and resulted in a reduced magnitude of synaptic depression (Chin et al. 
 2002 ). Most recently, Fukushima and coworkers ( 2007 ) were able to show that 
TGF-β modulates synaptic effi cacy and plasticity in dissociated rat hippocampal 
neurons. Together, increasing evidence suggests that TGF-β may be involved in syn-
aptogenesis, modulation of synaptic transmission, and synaptic plasticity. 

 The delayed effects of antidepressants are thought to depend on indirect mecha-
nisms, including the regulation of gene expression, for example antidepressant- 
induced upregulation of BDNF signaling, which then in turn  promotes adaptive 
neuronal plasticity through effects on gene expression. Wibrand and coworkers 
( 2006 ) identifi ed fi ve genes (Neuritin, Narp, Tieg1, Carp, and Arl4d) that are co- 
upregulated with Arc during BDNF-LTP. Tieg1 is a TGF-β-dependent immediate 
early gene that has also been shown to be upregulated in hippocampal neurons by 
TGF-β (Lacmann et al.  2007 ). As TGF-β has been shown to cooperate with BDNF 
in several scenarios, it may be quite likely that BDNF and TGF-β are the key play-
ers in antidepressant-mediated restoration of neuronal plasticity in patients suffer-
ing from major depressive disorders.  
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17.11     Motoneuron Disease 

 Amyotrophic lateral sclerosis (ALS) is a fatal disease, leading to paralysis and 
death. It is characterized by loss of motoneurons. Some ALS cases are due to muta-
tion of the superoxide dismutase 1 (SOD1). TGF-β is a prominent motoneuron sur-
vival factor (McLennan and Koishi  2002 ; Martinou et al.  1990 ). Using SOD1 
knockout mice as a model for ALS application of TGF-β2 caused a rapid and 
marked but transient improvement in the motoric performance of the mice (Day 
et al.  2005 ). In the past years, all components of the TGF-β signaling system have 
been localized in the presynaptic terminal of the neuromuscular junction, whereby 
TGF-β ligands are synthesized and localized on the postsynaptic side (McLennan 
and Koishi  2002 ; Toepfer et al.  1999 ). Furthermore, it has been shown that TGF-β2 
alters the characteristics of the neuromuscular junction by regulating presynaptic 
quantal size (Fong et al.  2010 ). 

 Appropriate myelination is an important aspect of neuronal activity. 
Oligodendroglial cells are the myelinating cells of the CNS and Schwann cells of 
the PNS. Oligodendrocytes arise from a bipotential progenitor cell, the O2A pro-
genitor. TGF-β restricts their PDGF-driven proliferation and induces oligodendrog-
lial differentiation (McKinnon et al.  1993 ) but may also induce apoptosis (Schuster 
et al.  2002 ). In the PNS, TGF-β mediates developmental cell death of Schwann cells 
(Parkinson et al.  2001 ) and blocks Schwann cell myelination and expression of 
myelin-related proteins (Awatramani et al.  2002  and references therein). However, 
in adult mice TGF-β seems to stabilize compact myelin, as TGF-β1-null mice have 
grossly abnormal myelin (Day et al.  2003 ). Ski, a repressor of Smad-mediated 
TGF-β signaling controls Schwann cell proliferation and myelination, whereas 
absence of Ski abolished the formation of peripheral myelin, and myelinating 
Schwann cells upregulate Ski in development as well as during remyelination upon 
injury (Bonnon and Atanasoski  2012 ; Atanasoski et al.  2004 ).  

17.12     Conclusions 

 TGF-β is a multifunctional and versatile molecule, effecting development, adult 
maintenance as well as aging of the brain. Although the prototype of a superfamily 
TGF-β is acting in the nervous system in a highly specifi c manner. In the context of 
brain tumors TGF-β is acting very much the way it as expected to by regulating cell 
cycle, adhesion, and immunosuppression. However, in all other disease scenarios 
TGF-β action is much more versatile reaching from orchestrating astrocyte and 
microglia activation to regulating growth factor responsiveness, uptake and release 
mechanisms, activity-dependent gene expression, and nerve myelination. TGF-β 
responsiveness may be mediated via alternative TβR-1 usage and may be blocked 
via the miRNA-dependent downregulation of TβR-II. A new and fascinating aspect 
is also evident from the modes of TGF-β delivery within the body through transport 
via lipoproteins or via fi brinogen. In conclusion, the role of TGF-β within brain 
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disorders, either as cause or as key molecule orchestrating responses is only at the 
beginning of its understanding. Major open issues regard the specifi c action of indi-
vidual TGF-β isoform, the context-specifi city, the role of TGF-β activation to regu-
late TGF-β function and complexity of TGF-β signaling and crosstalk. This 
knowledge will then be also helpful to explain opposing actions of TGF-β such as 
promotion of survival/protection as to induction of cell death.     
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