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    Abstract      Liver fi brosis is the fi nal consequence of many chronic liver injuries that 
later develop in cirrhosis and hepatocellular carcinoma (HCC), which are leading 
causes of morbidity and mortality worldwide. The transforming growth factor-beta 
(TGF-β) represents a key cytokine that increases in liver in its activated form upon 
damage and triggers important cellular events during any progression stage of the 
disease. TGF-β mediates activation of hepatic stellate cells (HSCs) to myofi bro-
blasts and induces cell death and epithelial mesenchymal transition (EMT) of hepa-
tocytes. Both processes may facilitate extracellular matrix (ECM) deposition and 
scar formation. Regulatory T cells, important negative regulators of infl ammation, 
depend on TGF-β for terminal differentiation, indicating its impact in the infl amma-
tory response. Oxidative stress plays an essential role in mediating liver fi brosis, and 
recent studies demonstrate that TGF-β contributes to the reactive oxygen species 
(ROS) production and oxidative damage. Indeed, the active implication of TGF-β 
signaling in the progression of liver fi brosis makes this cytokine an attractive thera-
peutic target. In addition to the increasing number of compounds aimed at direct 
inhibition of the TGF-β pathway, the recent discovery of new downstream mole-
cules with crucial roles in liver fi brosis development, such as NADPH oxidases, is 
opening the therapeutic perspectives.  
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  Abbreviations 

   ALK5    Activin receptor-like kinase 5   
  CLD    Chronic liver disease   
  ECM    Extracellular matrix   
  EMT    Epithelial mesenchymal transition   
  HCC    Hepatocellular carcinoma   
  HCV    Hepatitis C virus   
  HSCs    Hepatic stellate cells   
  NASH    Non-alcoholic steatohepatitis   
  NOX    NADPH oxidase   
  ROS    Reactive oxygen species   

11.1           Introduction  

 Liver fi brosis is the fi nal consequence of many chronic liver injuries (Brenner  2009 ) 
that later develop in cirrhosis and hepatocellular carcinoma (HCC), which are lead-
ing causes of morbidity and mortality worldwide. The main etiologies of chronic 
liver diseases in industrialized countries include chronic hepatitis C virus (HCV) 
infection, alcohol, and non-alcoholic steatohepatitis (NASH). Regardless of the 
 etiology, all the chronic liver diseases follow a common course: from middle infl am-
mation, to more severe infl ammation, to fi brosis and fi nally to cirrhosis. A complex 
and multistep process is involved in the progression to a chronic liver injury, which 
is evidenced by intracellular signal transduction changes, alteration in cell–cell and 
cell–extracellular matrix contacts and a drastic transdifferentiation of different cell 
types. During many years, research has been focused on the dissection of these 
pathways to develop new therapeutic approaches. 

 One of the cytokines whose levels increase in any kind of chronic liver disease 
(CLD) is the transforming growth factor-beta (TGF-β), which triggers important 
cellular events related to fi brogenesis and repair (Dooley and ten Dijke  2012 ; 
Hayashi and Sakai  2012 ). Most liver cells are sensitive to TGF-β, inducing both the 
canonical Smad-mediated and the non-canonical Smad-independent downstream 
signals. During the development of fi brosis, hepatic stellate cells (HSCs) respond to 
TGF-β moving to a myofi broblast phenotype, which in turn produces the higher 
deposition of extracellular matrix (ECM) proteins. TGF-β also plays essential roles 
during the infl ammatory process linked to liver fi brosis, since it mediates the termi-
nal differentiation of regulatory T cells, important negative regulators of infl amma-
tion. TGF-β induces cell death and epithelial mesenchymal transition of hepatocytes, 
and recent evidences indicate that this process might also contribute to the ECM 
deposition and scar formation. Activation of liver sinusoidal endothelial cells and 
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neoangiogenesis is also partially facilitated by TGF-β. Finally, TGF-β contributes to 
the reactive oxygen species (ROS) production and it is well known that oxidative 
stress plays an essential role in mediating liver fi brosis. 

 While the TGF-β role as “master” cytokine in chronic liver diseases is very clear, 
the complexity of the underlying response in cells and in the organ leading to the 
drastic changes observed is currently not fully understood. In this chapter, we will 
update the knowledge about the essential role of TGF-β in liver fi brosis, the pro-
posed molecular mechanisms that mediate its actions, as well as new therapeutic 
approaches to inhibit its signaling.  

11.2     Animal Models for the Study of Liver Fibrosis  

 During the last years, several mouse models of experimental fi brosis have been used 
for the study of the pathogenesis and molecular mechanisms associated with the 
diverse human pathologies leading to liver fi brosis. Among them, chemically 
induced fi brosis with hepatotoxic agents has been extensively investigated: thio-
acetamide, dimethylnitrosamine (DMN), and, most importantly, carbon tetrachlo-
ride (CCl 4 ), cause centrilobular parenchymal injury and fi brosis. These agents are 
processed by the cytochrome P-450 in hepatocytes, which releases damaging prod-
ucts causing massive hepatocyte cell death (Constandinou et al.  2005 ). In addition, 
concanavalin A is commonly used as a model for human chronic hepatitis since it 
triggers immune system-mediated fi brosis with similar histological characteristics 
(Louis et al.  2000 ). Finally, bile duct ligation constitutes a very used model for cho-
lestatic fi brosis, triggering extrahepatic biliary atresia and primary sclerosing chol-
angitis (Constandinou et al.  2005 ). Most importantly, knockout mice have become 
a powerful strategy for the last years to study the molecular mechanisms of fi brosis, 
focusing on the contribution of one or more genes to the pathogenesis of the disease 
(Hayashi and Sakai  2011 ). These knockout mice, in addition, have helped to estab-
lish new genetic models of liver fi brosis such as the Mdr2 −/−  mouse, which develops 
spontaneous sclerosing cholangitis (Fickert et al.  2004 ). 

 Studies with transgenic mice that overexpress TGF-β have demonstrated that this 
cytokine alone is suffi cient to induce fi brosis, independently of the primary cause of 
the disease. The hepatic expression of TGF-β induces upregulation of pro-collagen 
I and pro-collagen III mRNAs in the hepatic tissue, and deposition of extracellular 
matrix in the sinusoid (Kanzler et al.  2001 ). Similar results were obtained in a con-
ditional tetracycline-regulated expression of TGF-β1 in liver of transgenic mice, 
where fi brosis progressed to an intermediary state (Ueberham et al.  2003 ). In both 
cases, activation of HSC was observed. Inversely, in experimental models of liver 
fi brosis, the fi brogenic process can be attenuated simply by blockade of TGF-β 
signaling (Ueno et al.  2000 ). These results together point out to the relevant role 
played by TGF-β in liver fi brogenesis.  
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11.3     Effects of TGF-β in Liver Cells: Relevance 
in Liver Fibrosis  

 The response to chronic liver injury involves different cell types and undergoes dif-
ferent phases (Dooley and ten Dijke  2012 ). Initially, liver injury induces epithelial 
cell stress, which causes cell death either through necrosis or apoptosis. Death- 
mediated signals and necrotic cells induce a strong infl ammation and wound- healing 
response, as well as activation of HSC. These events may conduct to liver regenera-
tion and repair, but acute setting addresses a fi brogenic process. Below we will 
discuss the role of TGF-β in these processes. 

11.3.1     Role of TGF-β in the Activation of Hepatic Stellate 
Cells to Myofi broblasts  

 Regulation of extracellular matrix accumulation in acute and chronic liver injuries 
involves different mechanisms, but HSCs appear to be the principal effecter in all 
cases (Friedman  2010 ). The HSCs are the major storage site of retinoids in the body 
and are present in the space of Disse in close contact with hepatocytes and the sinu-
soid. When the HSC is activated, it loses its retinoid content, increases proliferation 
and motility, expresses new markers, such as smooth muscle actin, and produces 
ECM proteins. In the normal liver, sinusoidal endothelial cells and Kupffer cells 
(macrophages) contain relatively high levels of TGF-β mRNA, whereas HSCs 
express little amounts of TGF-β. However, in response to pro-fi brogenic stimuli 
HSCs express the three different isoforms of TGF-β and contribute to the develop-
ment of fi brosis through both autocrine and paracrine loops of TGF-β-stimulated 
collagen production (Inagaki et al.  2005 ). The main cell responsible for the fi brosis 
is the myofi broblast, which produces the fi brous scar found in all chronic liver dis-
eases. Different lines of evidence support the hypothesis that one of the main sources 
of these myofi broblasts are the quiescent HSC that become activated in response to 
TGF-β (Fig.  11.1 ): (1) downregulation of TGF-β expression in liver, by using adeno-
viruses or genetically modifi ed animals, reveal a failure in HSC activation and fi bro-
genesis (Hellerbrand et al.  1999 ; Kanzler et al.  1999 ); (2) in vitro experiments reveal 
that HSCs are responsive to TGF-β treatment and transduce a signal that may play 
important roles in fi brogenesis (Dooley et al.  2000 ); (3) gene transfer of Smad7, the 
member of inhibitory Smads, inhibits experimental fi brogenesis, which is coincident 
with arrested transdifferentiation of primary cultured HSCs to myofi broblasts 
(Dooley et al.  2003 ). The response of HSCs to TGF-β, leading to, e.g., induction of 
α2 (I) collagen expression, is mediated by phosphorylation of Smad2 and Smad3 
and subsequent nuclear translocation of a Smad-containing complex (Dooley et al. 
 2001 ). Maximal expression of collagen type I in activated HSCs requires Smad3 
in vivo and in culture (Schnabl et al.  2001 ). Interestingly, Smad3 is not necessary for 
HSC activation as assessed by alpha-SMA expression, but is necessary for inhibition 
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of proliferation of HSCs, which is TGF-β-dependent, and is required for TGF-β1-
mediated Smad-containing DNA-binding complex formation in cultured HSCs. 
These data indicate that HSCs are responsive to TGF-β treatment and transduce a 
signal that may play an important role in liver fi brogenesis. Myofi broblasts display 
decreased availability of surface receptors for TGF-β, which could be based on auto-
crine stimulation. However, lack of activated Smad complexes with DNA- binding 
activity and absence of α2 (I) collagen transcription inhibition by latency- associated 
peptide (LAP)/anti-TGF-β antibody raise the possibility of TGF-β signaling inde-
pendent receptor downregulation in myofi broblasts (Dooley et al.  2000 ).

11.3.2        Role of TGF-β on Hepatocytes: Relevance in Liver 
Fibrosis  

 Chronic liver injuries are characterized by persistent hepatocyte damage and death, 
induced by chemical toxicity, metabolic overload, viral/microbial infections, etc., 
which cause metabolic deregulation and oxidative stress. Several modes of cell 
death have been classifi ed in the damaged liver, including apoptosis and necrosis. 

  Fig. 11.1    Effects of TGF-β in liver and infl ammatory cells. Eff ects that may counteract liver fi brosis: 
(1) TGF-β triggers activation of hepatic stellate cells to myofi broblats, which are considered the 
main producers of extracellular matrix proteins. (2) TGF-β induces growth inhibition and cell 
death of hepatocytes, which impair liver regeneration. (3) The hepatocytes that survive to the 
inhibitory signals may respond to TGF-β undergoing epithelial mesenchymal transition (EMT). 
Although controversial, different reports indicate that this process exists and would facilitate ECM 
deposition and scar formation.  Effects that may counteract liver fi brosis : regulatory T cells, impor-
tant negative regulators of infl ammation, depend on TGF-β for terminal differentiation, which 
would have benefi cial consequences impairing the fi brotic process       
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It is now fully accepted that hepatocyte death is critical for hepatic fi brosis (Brenner 
 2009 ; Nikolaou et al.  2012 ). It appears that the primary response to injury would be 
liver regeneration, but if it is blocked, the default mode will be liver fi brosis. 
If  hepatocytes undergo apoptosis without compensatory proliferation, fi brosis again 
would result. Indeed, it has been proven that apoptosis and phagocytosis of hepato-
cytes directly induce HSC activation and initiation of fi brosis (Jiang et al.  2010 ), 
and hepatocyte apoptotic bodies during chronic hepatitis C infection amplify  stellate 
cell activation. TGF-β1 might be involved in the impairment of liver regeneration 
and in amplifying hepatocyte apoptosis (Fig.  11.1 ). Indeed, TGF-β is an important 
regulatory suppressor factor in hepatocytes, inhibiting proliferation (Carr et al. 
 1986 ) and inducing cell death (Oberhammer et al.  1992 ). The increase in TGF-β 
levels in the fi rst stages of liver fi brogenesis may be responsible for an imbalance in 
the proliferative and survival signals in hepatocytes, contributing to the failure in 
liver regeneration. 

 However, paradoxically, in addition to its suppressor effects, TGF-β also induces 
anti-apoptotic signals in proliferating hepatocytes and hepatoma cells (Valdes et al. 
 2004 ; Caja et al.  2007 ), through activation of the epidermal growth receptor (EGFR) 
pathway (Murillo et al.  2005 ). Cells that survive to TGF-β-induced apoptotic sig-
nals undergo epithelial mesenchymal transition (EMT) (Gotzmann et al.  2002 ; 
Valdes et al.  2002 ; Caja et al.  2007 ;  2011 ; Kaimori et al.  2007 ), a physiological 
process during embryogenesis, in which an epithelial cell loses expression of adhe-
sion molecules, such as E-cadherin, and other components responsible for cell 
polarity. Instead, they express mesenchymal components of cytoskeleton and 
acquire motility and scattering properties (Thiery et al.  2009 ). Certain evidences 
indicate that a crosstalk exists between the genetic programs that control TGF-β- 
induced growth arrest/apoptosis and those that regulate EMT. Indeed, once hepato-
cytes undergo EMT they become resistant to TGF-β-induced apoptosis (Valdes 
et al.  2002 ), a process in which transcription factors of the Snail family, repressors 
of the E-cadherin gene, are involved (Franco et al.  2010 ). A closely related pheno-
typic conversion is also detected in some models of fi brosis and may be associated 
with disease progression (Lopez-Novoa and Nieto  2009 ). In the case of the liver, the 
role of EMT from hepatocytes to myofi broblasts is perhaps the most intriguing and 
controversial of recent hypotheses on the origin mechanisms of liver fi brosis (Wells 
 2011 ). Strong evidences indicate that hepatocytes from transgenic animals overex-
pressing Snail (a master gene involved in EMT through its capacity to repress 
E-cadherin gene, among others) fully undergo EMT (Franco et al.  2010 ) and might 
propagate liver fi brosis progression (Rowe et al.  2011 ). However, under normal 
genetic background, data from different experimental approaches in animals and 
humans show controversy. Some reports support a role for EMT in epithelial cells 
in the liver that might transform into myofi broblasts (Zeisberg et al.  2007 ; Dooley 
et al.  2008 ), whereas others show no evidence of EMT in models of hepatic fi brosis 
(Taura et al.  2010 ; Chu et al.  2011 ). Further experiments are required to fully con-
clude that TGF-β plays a role in transdifferentiation of hepatocytes to myofi bro-
blasts through EMT processes (Fig.  11.1 ).   
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11.4     Crosstalk Between TGF-β and Infl ammatory Signals  

 Infl ammation plays an essential role in the development of liver fi brosis. When a 
chronic injury takes place, a large infi ltration of mononuclear cells, which include 
macrophages, lymphocytes, eosinophils, and plasma cells, occur. Mobilization of 
lymphocytes produces lymphokines that activate macrophages, which, in turn, stim-
ulate lymphocytes, fi broblasts, and other infl ammatory cells, thus setting the stage 
for persistence of an infl ammatory response (Wynn and Barron  2010 ). Furthermore, 
macrophages produce pro-fi brotic mediators, including TGF-β1 and PDGF, and 
control extracellular matrix turnover by regulating the balance of various matrix 
metalloproteases and tissue inhibitors of metalloproteases. Examples of knockout 
mice that are resistant to fi brosis because they have less infl ammation include those 
with gene deletions of TNF-α or Toll-like receptor 4 (TLR4), among others 
(Kitamura et al.  2002 ; Seki et al.  2007 ). 

 Crosstalk between TGF-β and infl ammatory signals occurs at different levels. On 
one side, from studies in different tissues including the liver, TGF-β is believed to 
play an important role in the regulation of the immune system. Indeed, it activates 
the differentiation of regulatory T cells (Treg) (Hammerich et al.  2011 ), a unique 
subset of CD4 +  T-helper cells that control effector T-cell responses to prevent auto-
immune reactions. Activated Treg produce the anti-infl ammatory cytokine IL-10, 
which would have benefi cial effects in a pro-fi brotic process (Fig.  11.1 ). However, 
on the other side, perturbation of TGF-β signaling by pro-infl ammatory cytokines in 
liver cells contributes to both fi brogenesis and carcinogenesis (fi bro- carcinogenesis). 
Smad proteins have intermediate linker regions between conserved Mad homology 
(MH) 1 and MH2 domains. TGF-β type I receptor and pro-infl ammatory cytokine- 
activated kinases differentially phosphorylate Smad2 and Smad3 to create phos-
phoisoforms that are phosphorylated at the COOH-terminal (C), linker (L), or both 
(L/C) regions (Matsuzaki  2009 ). TGF-β and pro-infl ammatory cytokines synergisti-
cally enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C 
and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic 
hepatocytes persistently affected by TGF-β together with pro-infl ammatory cyto-
kines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fi brogenic 
pSmad2L/C signaling as do myofi broblasts, thereby accelerating liver fi brosis while 
increasing risk of HCC (Matsuzaki  2009 ). c-Jun N-terminal kinase (JNK) activated 
by pro-infl ammatory cytokines is mediating this perturbed hepatocytic TGF-β sig-
naling (Yoshida et al.  2005 ). Under normal conditions, to avoid unlimited extracel-
lular matrix deposition, Smad7 induced by TGF-β negatively regulates its 
pro-fi brogenic response. In the presence of pro-infl ammatory cytokines and activa-
tion of the JNK and MAPKs pathways, Smad7 cannot be induced by the pSmad3L 
pathway (Yoshida and Matsuzaki  2012 ). Another example of modulation of TGF-β 
signals by pro-infl ammatory cytokines comes from studies in the TLR4-chimeric 
mice (Seki et al.  2007 ). In quiescent HSCs, TLR4 activation not only upregulates 
chemokine secretion and induces chemotaxis of Kupffer cells, but also downregu-
lates the TGF-β pseudoreceptor Bambi, to sensitize HSCs to TGF-β-induced signals 
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and allow unrestricted activation by Kupffer cells. Clinical relevance of the  crosstalk 
between TLR4 and the TGF-β/Bambi signaling has been demonstrated in studies of 
liver fi brosis progression in hepatitis C and hypercholesterolemic patients (Guo 
et al.  2009 ; Teratani et al.  2012 ). Finally, there is evidence that Th2 cytokines coop-
erate with TGF-β to induce fi brosis (Wynn  2008 ). IL-13 activates the production of 
latent TGF-β in macrophages and upregulates the expression of proteins that cleave 
the Latent Association Protein (LAP), which contributes to the release of active 
TGF-β (Lee et al.  2001 ).  

11.5     Reactive Oxygen Species in Liver Fibrosis: Connection 
with the TGF-β Pathway  

 ROS, including H 2 O 2 , OH·, and O 2  − , are critical intermediates in both the normal 
physiology and pathological conditions of liver cells. When the equilibrium between 
ROS generation and the antioxidant defense of the cell is disrupted, it results in an 
oxidative stress process (Sies and Cadenas  1985 ). As commented above, fi brosis has 
been well documented in many chronic liver diseases, usually beginning with an 
infl ammatory phase which progresses to fi brosis after chronic oxidative stress (Diesen 
and Kuo  2010 ). ROS play a central role in the development of liver fi brosis/cirrhosis 
by both alcohol and hepatitis virus core proteins (Perlemuter et al.  2003 ; Dionisio 
et al.  2009 ). In addition, oxidative stress markers have been detected in the serum of 
and biopsy samples from liver cirrhosis patients and in experimental liver fi brosis/
cirrhosis animals (Yadav et al.  2002 ; Pawlak et al.  2008 ). Moreover, in liver biopsies, 
areas of fi brosis were localized to areas with increased 4-hydroxy-2′-nonenal 
(4-HNE), a marker of lipid peroxidation (MacDonald et al.  2001 ; Seki et al.  2005 ). 

 In relation to TGF-β, ROS play a complex role promoting fi brosis progression. 
On one side, they constitute a commonly known downstream effector implicated in 
TGF-β signaling (Liu and Gaston Pravia  2010 ). On the other side, ROS may also 
promote fi brosis activating latent TGF-β through either LAP direct oxidation and 
subsequent release of the cytokine (Pociask et al.  2004 ) or via MMP activation 
(Wang et al.  2005 ). Indeed, LAP/TGF-β1 complex has been proposed to function as 
an oxidative stress sensor (Jobling et al.  2006 ). Finally, ROS can also stimulate the 
expression and secretion of TGF-β in a positive feedback loop in many types of 
cells, including hepatic stellate cells and hepatocytes (Proell et al.  2007 ; Boudreau 
et al.  2009 ). 

11.5.1     Subcellular Sources of ROS in Liver Fibrosis  

 The primary cellular sources of oxidative stress during the infl ammatory phase of 
liver fi brosis are mainly neutrophils, Kupffer cells, and, specially, hepatocytes. 
Although for many years the mitochondria have been considered as the major 
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source for ROS in the living cells, we have to consider two additional 
 ROS- producing systems playing determinant roles in the liver pathophysiology, 
such as the P450 system in hepatocytes and the NADPH oxidases (NOX) proteins 
in different liver cells. 

 Mitochondria play a central role for ROS production in the liver, since hepato-
cytes contain hundreds of these organelles and the mitochondrial electron transport 
is disrupted in a great number of pathophysiological circumstances, resulting in 
increased electron leak (Murphy  2009 ). Indeed, several reports have suggested a 
central role for mitochondrial ROS in hepatic toxicity in models of hepatic cholesta-
sis (Graf et al.  2002 ; Fang et al.  2004 ) and alcoholic disease (Kukielka et al.  1994 ; 
Zhu et al.  2012 ). Most importantly, several reports have shown that direct treatment 
with TGF-β induces a prolonged mitochondrial ROS production in rat hepatocytes 
(Albright et al.  2003 ; Herrera et al.  2004 ). This fact can be attributed to its capacity 
of downregulating the expression of several antioxidant enzymes, such as glutare-
doxin, catalase, superoxide dismutase, and glutathione peroxidase (GPx) (Franklin 
et al.  2003 ; Herrera et al.  2004 ). 

 CYP2E1, the hepatocytic member of the cytochrome P450 oxidase system, is 
involved in the metabolism of xenobiotics in the body. Most drugs and hepatotoxins 
are detoxifi ed by CYP2E1, which can generate ROS as a byproduct of the oxidative 
reaction. Both in vitro experiments and animal studies in vivo have demonstrated 
that CYP2E1 is an important source of ROS in alcohol-induced liver injury, and its 
expression is inducible by alcohol (Zhu et al.  2012 ). Importantly, it has been reported 
that TGF-β enhances hepatocyte toxicity in cells overexpressing CYP2E1 upon 
ethanol exposure (Zhuge and Cederbaum  2006 ). 

 Other main source of ROS implicated in TGF-β signaling and fi brosis is the 
NOX family of NADPH oxidases. This family has been discovered for homology to 
gp91 phox , the phagocytic oxidase. Nowadays, the NOX family includes seven differ-
ent members NOX1 to NOX5, DUOX1, and DUOX2 (Bedard and Krause  2007 ) 
whose main function is active ROS production. NOX proteins have been previously 
related to fi brosis in several organs such as lung (Hecker et al.  2009 ), pancreas 
(Masamune et al.  2008 ), kidney (Sedeek et al.  2010 ), and heart (Cucoranu et al. 
 2005 ). In the liver, several reports have demonstrated a key role for NOX proteins in 
the progression of hepatic fi brosis (De Minicis et al.  2010 ; Cui et al.  2011 ; Paik 
et al.  2011 ; Jiang et al.  2012 ; Sancho et al.  2012 ). The isoforms expressed by the 
different resident populations of the liver are mainly NOX1, NOX2, and NOX4 
(Paik et al.  2011 ).  

11.5.2     Implication of ROS in the Molecular Mechanisms 
Mediating Liver Fibrosis  

 One of the most studied mechanisms of fi brogenesis actually infl uenced by ROS is 
myofi broblast activation. In the liver, stellate cell transdifferentiation into myofi bro-
blast is inhibited by antioxidants (Foo et al.  2011 ; Abhilash et al.  2012 ). Indeed, 
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NOX4 downstream TGF-β has been described as the main mediator for myofi bro-
blast activation in different organs such as heart (Cucoranu et al.  2005 ), lung 
(Hecker et al.  2009 ), kidney (Bondi et al.  2010 ), and diseased prostatic stroma 
(Sampson et al.  2011 ). Equivalently, it has been demonstrated in cultured HSC that 
TGF-β- induced transdifferentiation is accompanied by NOX4-derived ROS (Proell 
et al.  2007 ), which can be a useful target for therapeutic approaches (Ikeda et al. 
 2011 ). Very recently, two different reports have described a key role for NOX4 in 
hepatic myofi broblasts activation downstream TGF-β (Jiang et al.  2012 ; Sancho 
et al.  2012 ) both in vivo and in vitro (Fig.  11.2 ). In these works, HSC activation was 
attenuated either by NOX4 downregulation or in a Nox4 −/−  genetic background, 
and, importantly, the myofi broblast-activated state could be also reversed by NOX4 
downregulation (Sancho et al.  2012 ). However, the role of NOX proteins in liver 
fi brogenesis is not only circumscribed to NOX4. Thus, studies performed in Nox1 −/− , 
Nox2 −/− , or p47phox −/−  mice have pointed out the importance of NOX1 and NOX2 
in fi brosis development (De Minicis et al.  2010 ; Jiang et al.  2010 ; Cui et al.  2011 ; 
Paik et al.  2011 ). Concretely, NOX1 promotes myofi broblast proliferation by PTEN 

  Fig. 11.2    NOX proteins play crucial different roles during liver fi brosis development. Opposite 
functions of NOX1 and NOX4 in hepatocytes: NOX1 protects cells from pro-apoptotic stimuli and 
mediates proliferation, while NOX4 promotes TGF-β-induced cell death. Afterwards, stellate cells 
can phagocytose the resulting apoptotic bodies, which functions as a triggering signal for activa-
tion. Primed stellate cells can also suffer transdifferentiation into myofi broblasts in response to 
TGF-β, a process where NOX4 plays a determinant role controlling the acquisition of the activated 
phenotype. Finally, and once fully activated, NOX1 favors myofi broblast proliferation, contribut-
ing to fi brosis development       
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inactivation to positively regulate an Akt/FOXO4/p27 signaling pathway (Cui et al. 
 2011 ). Indeed, NOX1 seems to mediate the pro-fi brogenic effects exclusively in 
endogenous liver cells, while NOX2 could be implicated in both endogenous liver 
cells and bone marrow-derived cells (Paik et al.  2011 ), possibly acting in the pro-
cess of phagocytosis of dead hepatocytes (Jiang et al.  2010 ) (Fig.  11.2 ).

   Finally, promotion of hepatocyte apoptosis constitutes also a crucial mechanism 
infl uenced by TGF-β-induced ROS. In fact, and as mentioned before, TGF-β induces 
apoptosis through ROS that is derived from both mitochondria and NOX activity 
(Herrera et al.  2004 ). Indeed, pretreatment with antioxidants block apoptosis 
(Sanchez et al.  1996 ; Herrera et al.  2001 ). Recently, it has been described that hepa-
tocytes express different members of the NOX family, mainly NOX1, NOX2, and 
NOX4 (Murillo et al.  2007 ), which play opposite roles in the control of hepatocyte 
survival and death. Indeed, NOX4 is necessary to mediate apoptosis induced by 
TGF-β (Carmona-Cuenca et al.  2008 ; Caja et al.  2009 ), but the pro-apoptotic effect 
of the cytokine can be attenuated when NOX1 is active (Sancho et al.  2009 ; Sancho 
and Fabregat  2011 ; Ortiz et al.  2012 ) (Fig.  11.2 ). In addition, Nox4 −/−  hepatocytes 
are also resistant to apoptosis induction by other stimuli, such as FasL and TNF-α/
actinomycin D (Jiang et al.  2012 ). In addition, NOX1 activity might further contrib-
ute to the infl ammatory process promoting COX-2 expression and prostaglandin 
synthesis in hepatocytes (Sancho et al.  2011 ). Interestingly, dual NOX4/NOX1 
pharmacological inhibition with GKT137831 is able to diminish both the apparition 
of fi brogenic markers and hepatocyte apoptosis in vivo upon bile duct ligation 
(Jiang et al.  2012 ), reinforcing the relevant role of NOX1 and NOX4 in liver fi brosis 
and opening new perspectives for its treatment.   

11.6     TGF-β Pathway Inhibitors as a Promising Therapy 
in Liver Fibrosis  

 During the last years, after the role of TGF-β signaling in cancer and other patholo-
gies, including fi brosis, became established, a great effort has been made in order to 
develop different approaches to inhibit TGF-β pathway. Thus, the number of pos-
sible compounds used either in preclinical or clinical studies related to fi brosis is 
continuously growing, thanks to previous experiences in other pathologies. The dif-
ferent strategies to block the TGF-β pathway can be classifi ed as: (1) ligand traps, 
which include blocking antibodies and inhibitory peptides; (2) antisense oligos; (3) 
receptor kinase inhibitors; (4) Smad inhibitors; and (5) indirect inhibitors 
(Table  11.1 ). However, the list of compounds tested for liver fi brosis is rather 
reduced when compared with all the available inhibitors, since clinical efforts have 
concentrated for the last few years in blocking the underlying pathology specifi c for 
each type of fi brosis.

   One of the most studied strategies for inhibiting the TGF-β pathway related to 
liver fi brosis is the ligand trapping, either by soluble receptors or inhibitory pep-
tides. Indeed, several studies have demonstrated the antifi brotic potential of a 
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   Table 11.1    Current preclinical and clinical TGF-β-based therapeutic strategies   

 Class  Drug  Target     Disease  References/Trial ID 

 Blocking 
antibodies 

 CAT-192  TGF-β 1   Systemic sclerosis  NCT00043706 
 Myelofi brosis  NTC01291784 

 CAT-152  TGF-β 2   Trabeculectomy, 
renal fi brosis 

 Hill et al. ( 2001 ), 
Grehn et al. ( 2007 ), 
Khaw et al. ( 2007 ) 

 LY238770  TGF-β 1   Diabetes  NTC01113801 
 GC1008  Pan-TGF-β  Systemic sclerosis  NCT01284322 

 Myelofi brosis  NCT01291784 
 Idiopathic 

pulmonary fi brosis 
 NCT00125385 

 Glomerulosclerosis 
(FSGS) 

 NCT00464321 

 Peptide 
inhibitor 

 sTβRII  Pan-TGF-β  Liver fi brosis  Sullivan et al. ( 2010 ), 
Yao et al. ( 2010 ), 
Nakamuta et al. 
( 2005 ),    Cui et al. 
( 2003   ), Yata et al. 
( 2002 ), Ueno et al. 
( 2000 ), George 
et al. ( 1999 ) 

 P144  TGF-β 1   Skin fi brosis  NCT00781053 
 Myocardial and 

liver fi brosis 
 Ezquerro et al. ( 2003 ), 

Hermida et al. 
( 2009 ) 

 Kinase 
inhibitors 

 GW388788  TβRII/ALK5  Infarction, renal and 
skin fi brosis 

 Lagares et al. ( 2010 ), 
Petersen et al. 
( 2008 ), Tan et al. 
( 2010 ) 

 SKI2162  ALK5  Peyronie’s disease  Piao et al. ( 2010 ) 
 GW6604  ALK5  Liver fi brosis  De Gouville et al. 

( 2005 ) 
 LY2109761  TβRII/ALK5  Several cancers, 

pulmonary 
fi brosis 

 Connolly et al. ( 2011 ), 
Fransvea et al. 
( 2008 ), Flechsig 
et al. ( 2012 ), 
Ganapathy et al. 
( 2010 ), Lacher et al. 
( 2006 ), Zhang et al. 
( 2010 ,  2011 ) 

 SD208  ALK5  Scleroderma  Chen et al. ( 2006 ) 
 SM16  ALK5  Vascular fi brosis  Fu et al. ( 2008 ) 
 IN-1130  ALK5  Renal fi brosis, 

Peyronie’s 
disease 

 Moon et al. ( 2006 ), 
Ryu et al. ( 2009 ) 

 Smad 
inhibitors 

 HSc025  Smad-
dependent 
transcription 

 Systemic sclerosis  Hasegawa et al. ( 2009 ) 
 Liver fi brosis  Higashi et al. ( 2011 ) 

 SiS3  Smad3  Liver fi brosis  Matsubara et al. ( 2011 ) 

(continued)
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soluble type II receptor. This antagonist, consisting of a chimeric IgG containing the 
extracellular portion of the TGF-β type II receptor, was able to inhibit several fi bro-
sis markers when tested in the model of bile duct ligation in mice (George et al. 
 1999 ). Importantly, it also showed    to be dose-dependently effective in models of 
chemical liver fi brosis with carbon tetrachloride or DMN at either short- or long- 
term evaluation (Yata et al.  2002 ; Nakamuta et al.  2005 ). Interestingly, in this last 
publication authors demonstrated that remote delivery of the compound in the mus-
cle is effective in inhibiting hepatic alterations. Recently, effectiveness of this com-
pound has been improved using a novel strategy consisting of a fusion protein 
formed by the soluble portion of TβRII and IFN-γ administered intraperitoneally in 
a model of experimental fi brosis in rats (Yao et al.  2010 ). Alternatively, several stud-
ies have exploited a genetic approach using adenovirus containing the ectodomain 
of the TβRII alone or fused with other proteins. This approach was tested in vitro by 
infection of primary rat HSC, showing an inhibitory effect on the autocrine TGF-β 
production concomitant with transdifferentiation into myofi broblasts (Cui et al. 
 2003 ). In addition, the adenovirus strategy has shown to be effective in vivo with no 
apparent side effects. In this case, adenovirus expressing the entire ectodomain of 
the human TβRII fused to the Fc portion of human IgG (AdTbeta-ExR) was injected 
in the skeletal muscle in rats (Ueno et al.  2000 ). 

 Additionally, a soluble form of the type III receptor (betaglycan) has also been 
tested both at the preclinical and at the clinical levels for treatment of different 
fi brosis-related diseases, such as pulmonary, cardiac, and skin fi brosis (Liu et al. 
 2002 ; Hermida et al.  2009 ). Regarding the liver, a short peptide derived from this 
receptor, P144, showed in vitro effi cacy blocking TGF-β-dependent stimulation of 
the human α2(I) collagen promoter. Importantly, intraperitoneal administration of 
P144 was able to diminish histological fi brosis markers and the number of 

 Class  Drug  Target     Disease  References/Trial ID 

 Indirect 
inhibitors 

 STX-100  αvβ6 integrin  Idiopathic 
pulmonary fi brosis 

 NCT01371305 

 Tranilast  Not known  Rheumatoid arthritis  NCT00882024 
 Lupus (LMDF)  Koike et al. ( 2011 ) 
 Crohn’s disease  Oshitani et al. ( 2007 ) 
 Diabetes  Martin et al. ( 2005 ), 

Kelly et al. ( 2007 ) 
 Hypertension  Hocher et al. ( 2002 ), 

Kagitani et al. 
( 2004 ) 

 Liver fi brosis     Ikeda et al. ( 1996   ), 
Uno et al. ( 2008 ), 
Said et al. ( 2012 ) 

Table 11.1 (continued)
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myofi broblats in rats treated with carbon tetrachloride, with no apparent side effects 
(Ezquerro et al.  2003 ). 

 Although inhibiting the kinase activity of TGF-β receptors is clearly the most 
recurrent strategy used in current preclinical and clinical therapies related to this 
cytokine, no signifi cant studies referring to liver fi brosis have been performed. 
However, a great number of inhibitors of the ATP binding site of TβRI kinase 
(activin receptor-like kinase 5: ALK5) have been designed and preclinically tested 
in various fi brosis-related diseases and, may be eventually, used for liver fi brosis 
treatment. Up to date, only one kinase inhibitor, GW6604, has shown benefi cial 
effects preventing liver damage in both an acute model of liver disease and a chronic 
model of dimethylnitrosamine (DMN)-induced liver fi brosis (de Gouville et al. 
 2005 ). In this last chronic model, where DMN was administered for 6 weeks and 
GW6604 dosed for the last 3 weeks, mortality was prevented, which correlated with 
reduced matrix deposition and decreased liver function deterioration. Another com-
pound, IN-1130, has also potential applicability for liver fi brosis treatment. Indeed, 
this compound, which has been positively tested for renal fi brosis and Peyronie’s 
disease (Moon et al.  2006 ; Ryu et al.  2009 ), is preferentially accumulated in the 
liver upon oral administration (Kim et al.  2008 ). 

 Alternatively, new compounds have been recently discovered which act by 
inhibiting Smad-dependent transcriptional inhibition. The indol-derivative SiS3 is a 
specifi c inhibitor of Smad3 phosphorylation and activity, and it was fi rst described 
to be effective in inhibiting the activated phenotype of scleroderma fi broblast 
(Jinnin et al.  2006 ). Regarding liver fi brosis, only one in vitro preclinical study 
using a cholestatic disease model has been published so far. In this work, SiS3 treat-
ment was able to inhibit the expression of several genes related to cholestasis devel-
opment (Matsubara et al.  2011 ). In addition, the compound Hsc025 is a 
Smad- dependent transcriptional inhibitor that has been effectively tested in mice 
models of skin, pulmonary and hepatic fi brosis by oral administration (Hasegawa 
et al.  2009 ; Higashi et al.  2011 ). Indeed, in vitro treatment with HSc025 signifi -
cantly suppressed collagen gene expression in cultured HSC, while oral administra-
tion of HSc025 improved liver injury and hepatic fi brosis degree in mice treated 
with carbon tetrachloride (Higashi et al.  2011 ). 

 Although its effects at the molecular level are not fully understood, tranilast is a 
drug mainly described as a collagen expression inhibitor, thus possessing antifi -
brotic properties. Indeed, while it can also inhibit the production of other cytokines, 
the major effect described for tranilast is the inhibition of both TGF-β expression 
and action (Miyazawa et al.  1995 ; Ikeda et al.  1996 ; Platten et al.  2001 ). This com-
pound showed potential for hepatic fi brosis treatment several years ago, when it was 
described that tranilast treatment inhibited the expression of pro-collagen and TGF- -
β  (Ikeda et al.  1996 ). Importantly, this compound also was effective in two different 
in vivo models of liver fi brosis. First, using a dietary model of NASH where obese 
diabetic and nondiabetic rats were fed with a methionine-defi cient and choline- 
defi cient diet, treatment with tranilast was effective at two different levels (Uno 
et al.  2008 ): on one side, it was able to inhibit fi brosis development and the activa-
tion of stellate cells, downregulating the expression of TGF-β, pro-collagen, and 
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plasminogen activator-1; on the other side, it attenuated hepatic infl ammation and 
Kupffer cell recruitment, downregulating the expression of TNFα. In the second 
model, tranilast was able to improve hepatic fi brosis due to schistosomal infection, 
proved by a signifi cant improvement of hepatic functions, reduction of the histo-
pathological changes and collagen content, and decreased TGF-β1 levels in serum 
(Said et al.  2012 ).  

11.7     Conclusions  

 Liver fi brosis is one of the main causes of mortality worldwide. Nowadays, a lot of 
effort is being made in order to increase the knowledge of the molecular mecha-
nisms underlying this complicated disease, in which TGF-β seems to play a deter-
minant role. Indeed, the active implication of TGF-β signaling in the progression of 
liver fi brosis, regardless of its original etiology, makes this cytokine an attractive 
therapeutic target for the development of new treatments. In addition to the increas-
ing number of compounds aimed at direct inhibition of the TGF-β pathway, the 
recent discovery of new downstream molecules with crucial roles in liver fi brosis 
development, such as NADPH oxidases, is opening the therapeutic perspectives. 
Indeed, specifi c targeting of these molecules could be an important step forward in 
the treatment of the disease, since its inhibition may be effective enough avoiding 
the possible side effects of TGF-β systemic inhibition.     
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