Chapter 5
Dimensions of Spaces

For an open cover U of a space X, ord/ = sup{cardU[x] | x € X} is called
the order of /. Note that ordl/ = dim N(U/) + 1, where N (/) is the nerve of U.
The (covering) dimension of X is defined as follows: dim X < n if each finite
open cover of X has a finite open refinement ¢/ with ordl/ < n 4 1. and then,
dimX =nifdimX <nanddimX £ n. By dimX = —1, we mean that X = ¢.
We say that X is n-dimensional if dim X = n and that X is finite-dimensional
(f.d.) (dimX < oo) if dimX < n for some n € w. Otherwise, X is said to be
infinite-dimensional (i.d.) (dim X = 00). The dimension is a topological invariant
(ie.,dimX =dimY if X = Y).

This chapter is devoted to lectures on Dimension Theory. Fundamental theorems
are proved and some examples of infinite-dimensional spaces are given. In this
context, we discuss the Brouwer Fixed Point Theorem and the characterization of
the Cantor set. We also construct finite-dimensional universal spaces such as the
Nobeling spaces and the Menger compacta.

We will use the results in Chaps. 2 and 4. In particular, we will need the combinatorial
techniques treated in Chap.4. Also, the concept of the nerves of open covers is very
important in Dimension Theory.

5.1 The Brouwer Fixed Point Theorem

It is said that a space X has the fixed point property if any map f : X — X hasa
fixed point, i.e., f(x) = x for some x € X. In this section, we prove the following
Brouwer Fixed Point Theorem:

Theorem 5.1.1 (BROUWER FIXED POINT THEOREM). For everyn € N, the n-
cube I" has the fixed point property.

To prove this theorem, we need two lemmas. Let K be a simplicial complex
and K’ a simplicial subdivision of K. A simplicial map & : K’ — K is called a
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Sperner map if foreach v € K’ h(v) is a vertex of the carrier cx (v)© of vin K,
equivalently v € Ok (h(v)). In other words, / is a simplicial approximation of id|x|.
Indeed, for each x € |K’'| = |K]|, ck/(x) C ck(x). Since cx(v) < ck(x) for every
v € cx(x)©, it follows that 2(cg/(x)@) C cx(x)@, hence h(x) € h(ck/(x)) <
ck (x).

Lemma 5.1.2 (SPERNER). Let T be an n-simplex, and K' a subdivision of F(z),
where F(7) is the natural triangulation of . If h : K — F (<) is a Sperner map,
then the number of n-simplexes ©' € K’ such that h(t') = 7 is odd; hence, there
exists such an n-simplex v’ € K'.

Proof. We prove the lemma by induction with respect to n. The case n = 0 is
obvious. Assume the lemma has been established for any (n — 1)-simplex. Let o
be an (n — 1)-face of 7. Then, h(c) C o. The natural triangulation F (o) of ¢ is a
subcomplex of F(7). Let L’ be the subdivision of F (o) induced by K'. As is easily
observed, i|o : L’ — F(0) is also a Sperner map. Let a be the number of (n — 1)-
simplexes ¢’ € L’ such that i(c’) = o. Then, a is odd by the inductive assumption.
Let S be the set of all (n — 1)-simplexes 6’ € K’ such that h(0’) = o. For each
n-simplex " € K’, let b(z’) denote the number of faces ¢’ of 7’ that belong to S,
i.e., h(0’) = 0. Then, it follows that

2 if h(r) = o
b(x') =141 if h(r) =1;

0 otherwise.

Let ¢ be the number of n-simplexes t” € K’ such that 4(z’) = 7. Then,

Z b(t)) —c iseven.

I/GK/\K/(”_I)
On the other hand, a is equal to the number of (n — 1)-simplexes o’ of S such that

0’ C o.Foreacho’ € S, ¢’ is a common face of exactly two n-simplexes of K’ if
and only if 0/ ¢ o. Hence,

Z b(t)) —a iseven.

t’GK’\K’(”_l)
Therefore, a — ¢ is also even. Recall that a is odd. Thus, ¢ is also odd. O
Lemma 5.1.3. Lett = (vi,...,Vy+1) be an n-simplex and Fy, . .., F,,+ be closed

sets in T. If (vi(ty, .., Vigm)) C Fiqy U+~ U Fygny foreach 1 <i(1) <--- <i(m) <
n+1,then FiN---N F41 # 0.
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Proof. Assume that F1 N---N F,,1; = @. Then,
U={t\ Fi,....7t\ Fup1} € cov(z).

Let K’ be a subdivision of F(t) that refines U. For each v € K’ O choose a vertex
v; of the carrier of v in F(7) so that v € F;, and let h(v) = v;. Then, we have a
Sperner map i : K’ — F(7). By Lemma 5.1.2, there is a simplex t/ € K’ such
that h(t") = ¢. Write 7/ = (v{,...,v, ) so that h(v;) = v;. By the definition of 7,
vi € F; foreachi = 1,...,n + 1. Thus, 7’ is not contained in any t \ F;, which is
a contradiction. O

Proof of Theorem 5.1.1. 1Tt suffices to show that any map f : A" — A" has a fixed
point, where A" C R"*! is the standard n-simplex. Foreachi = 1,...,n + 1, let

F = {x € A" | pr;(f(x)) < pr; ()},

where pr; : R"*! — R is the projection onto the i-th factor. Then, F; is closed in

A", Moreover, each face 0 = (e;j(1),...,€jm)) < A" is contained in Fjj) U --- U
Fi(m), where {ej, ..., e,y } is the canonical orthonormal basis for R**1 In fact, if
X € o then

Zpri(j)(f(-x)) <1l= Zpri(j)(-x)v
j=1 j=1

which implies that pr; ;) (f (x)) <pr;;(x) forsome j = 1,...,m. By Lemma5.1.3,
we have a pointa € Fy N --- N F,4;. Since 0 < pr;(f(a)) < pr;(a) for each
i=1,...,n+1and

n+1 n+1

Y pr(f@)=1=> pria).

i=1 i=1

it follows that pr;(f(a)) = pr;(a) foreachi = 1,...,n + 1, which means that

fl@) =a. O

The following is the infinite-dimensional version of Theorem 5.1.1:
Corollary 5.1.4. The Hilbert cube IV has the fixed point property.

Proof. Foreachn € N, let p, : IY — TI" be the projection onto the first n factors
and i, : I" — IV the natural injection defined by

i(x)=(x(),...,x(n),0,0,...).

For eachmap f : IN — IV, consider the map f, = p, fi, : I" — I".
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By the Brouwer Fixed Point Theorem 5.1.1, f, has a fixed point. We define

K, = {x el” i pnf(x) = pn(x)},

which is closed in IN and K, D K, for each n € N. Moreover, K,, # 0. Indeed,
if y € I" is a fixed point of f,, then p, f(i,(¥)) = [, (¥) =y = p.(in(y)), i.e.,
in(y) € K,. By compactness, we have a € (),cy K». Since p, f(a) = pu(a) for
every n € N, we have f(a) = a. O

As another corollary of the Brouwer Fixed Point Theorem 5.1.1, we have the
following:

Corollary 5.1.5 (NO RETRACTION THEOREM). There does not exist any map
r:B" — S withr|S"! = id.!

Proof. Suppose that there is a map r : B" — S"~! with r|S"~! = id. We define
amap f : B" — B” by f(x) = —r(x). Then, f has no fixed points, which
contradicts the Brouwer Fixed Point Theorem 5.1.1. O

Remark 1. It should be noted that the Brouwer Fixed Point Theorem 5.1.1 can
be derived from the No Retraction Theorem 5.1.5. Indeed, if there is a map
f : B" — B" without fixed points, then we have a map r : B" — 8"~! such
that x € (f(x).r(x)) for each x € B", which implies that |S"~! = id. In fact,
such a map r can be defined as follows:

r(x) = (I +a()x —a(x) f(x),
where o(x) > 0 can be obtained by solving the equation
a(0)?[|x = f)I? 4 2a(x) (x = f(x),x) + x> =1 =0,

where (y,z) = Y i_, y(i)z(i) is the inner product (Fig.5.1). Therefore, the No
Retraction Theorem 5.1.5 implies that I" ~ B” has the fixed point property. Thus,
the Brouwer Fixed Point Theorem 5.1.1 and the No Retraction Theorem 5.1.5 are
equivalent.

'Such a map r is called a retraction, which will be discussed in Chap. 6.
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r(x)

Fig. 5.1 The construction of r

Note. In Algebraic Topology, the homotopy groups or the homology groups are used to
prove the No Retraction Theorem 5.1.5, and then the Brouwer Fixed Point Theorem 5.1.1
is proved as the above Remark 1.

Using the Tietze Extension Theorem 2.2.2, we have the following extension
theorem:

Theorem 5.1.6. Let A be a closed set in a normal space X andn € N.

(1) Everymap [ : A — B" extends over X.
(2) Everymap f : A — 8" extends over a neighborhood of A in X.

Proof. By the coordinate-wise application of the Tietze Extension Theorem 2.2.2,
eachmap f : A — I" can be extended over X, which implies (1) because B" ~ I".

To prove (2), let f : A — S"~! be a map. By (1), f extends to a map f :
X — B". Then, W = f~!(B" \ {0}) is an open neighborhood of 4 in X. Let
r : B"\ {0} — S"! be the radial projection, i.e., r(x) = x/||x|. Then, r f|W :
W — S"~!is an extension of f. O

Using the No Retraction Theorem 5.1.5 and Theorem 5.1.6, we can obtain the
following characterization of boundary points of a closed set X in Euclidean space
R™:

Theorem 5.1.7. Let X be a closed subset of Euclidean space R". For a point x €
X, x € bd X if and only if each neighborhood U of x in X contains a neighborhood
V of x in X such that every continuous map f : X \'V — S"! extends to a
continuous map f : X — S"7\.

Proof. To show the “only if” part, for each neighborhood U of x in X, choose ¢ > 0
so that B(x,g) N X C U.Then, V = B(x, &) N X is the desired neighborhood of x
in X. Indeed, every map f : X \ V — S"! can be extended toamap g : X — B"
by Theorem 5.1.6. Choose 0 < § < ¢ so that g(X \ B(x,8)) C B" \ {0}. Let r :
B” \ {0} — S"~! be the canonical radial retraction (i.e., 7(y) = ||¥||~'y). Because
x € bd X, we have z € B(x, %(5 —8)\ X.LetA = %(8 + 8) > 0. Observe that
B(x,8) C B(z,A) C B(x,¢). Wedefineamaph : X — X \ B(z,A) C X \ B(x,9)
by 7| X \ B(z, A) = id and
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A
h(y) =z+ m(y —z) fory € X NB(z, A).

Then, rgh : X — S"~ ! is a continuous extension of f.
To prove the “if” part, assume that x € intX. Then, E(x, 8) C X for some
8 > 0. By the condition, B(x, §) contains a neighborhood V' of x such that every
map f: X\ V — S" lextendstoamap f : X — 8! It is easy to construct a
retraction
r:R"\ {x} - bdB(x,8) ~ 8" L.

Then, 7| X \ V extends to a retraction 7 : X — bdB(x,§). Since B(x,8) C X,
bd B(x, §) is a retract of E(x, 8), which contradicts the No Retraction Theorem 5.1.5
because (B(x, 8),bd B(x,§)) ~ (B",S8"~"). Thus, we have x € bd X. O

As a corollary of Theorem 5.1.7, we have the so-called INVARIANCE OF
DOMAIN:

Corollary 5.1.8 (INVARIANCE OF DOMAIN). For each X,Y C R", X ~ Y
impliesint X ~ intY.

Proof. Let h : X — Y be a homeomorphism. For each x € bd X and each
neighborhood U of A(x) in Y, h~'(U) is a neighborhood of x in X that contains
a neighborhood V' of x such that every map f : X \ V — S"~1 extends to a map
f: X — S""!. Then, h(V) is a neighborhood of /(x) in Y such that h(V) C U,
and every continuous map g : ¥ \ A(V) — S"! extends to a continuous map
g:Y — St Indeed, gh : X \ V — S§"7! extends to a continuous map
f:X — S Then, fh~' : Y — 8" is a continuous extension of g. O

5.2 Characterizations of Dimension

Recall that we define dim X < n if each finite open cover of X has a finite open
refinement I/ with ordi/ < n + 1. The following lemma shows that the refinement
U in this definition need not be finite.

Lemma 5.2.1. Let U be an open cover of a space X and V an open refinement
of U. Then, U has an open refinement W = {Wy | U € U} such that Wy C U
for each U € U and card W[x] < card V[x] for each x € X, which implies that
ord W < ordV and if U is (locally) finite (or o-discrete) then so is VV.

Proof. Let ¢ : V — U be a function such that V' C ¢ (V) for each V' € V. For each
U € U, define

Wy =Jo ' W) ={J{VeV]e)=U}.

Then, W = {Wy | U € U} is the desired refinement of U. O
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The following is a particular case of the Open Cover Shrinking Lemma 2.7.1,
which is easily proved directly.

Lemma 5.2.2. Each finite open cover {U,...,U,} of a normal space X has an
open refinement {Vy, ..., V,} such that c1V; C U; foreachi = 1,...,n.

Proof. Using the normality of X, V; can be inductively chosen so that
cddVicU; and yU---UV,UU; 1 U---UU, =X. O

We now prove the following characterizations of dimension:

Theorem 5.2.3. Forn € w and a normal space X, the following are equivalent:

(a) dmX <n;

(b) Every open cover {Uy,...,U,+2} of X has an open refinement V) with ordV <
n+1;

(c) For each open cover {Uy, ..., U,12} of X, there exists an open cover {Vi, ...,
Vaiga} of X such that Vi N --- N Vyyp = @ and clV; C U; for each
i=1,....,n+2;

(d) Forevery open cover {Uy,...,U,+2} of X, there exists a closed cover {Ay, .. .,
Ayi2} of X such that AyN---N A, p=0and A; C U; foreachi=1,...,n+2;

(e) Foreveryk > n, eachmap f : A — S¥ of any closed set A in X extends over
X;

(f) Eachmap [ : A — S" of any closed set A in X extends over X.

Proof. Consider the following diagram of implications:

triv. (5.2.1)+(5.2.2)
@ ) ——— ©
triv.
I I\ " Vs
(&) <= (d)

The implications (a) = (b) and (c) = (b) are obvious. By Lemmas 5.2.1 and 5.2.2,
we have (b) = (c), hence (b) < (c). The implication (c) = (d) follows from
Lemma 5.2.2 (or, (d) can be obtained by twice using (c)). Lastly, we prove the
implications (d) = (b) = (f) = (e) = (a).

(d) = (b): In condition (d), note that

{X\Al,...,X\An+2} S COV(X).

By Lemma5.2.2, we have a closed cover { By, ..., B,42} of X suchthat B; C X\ A4;
foreachi = 1,...,n + 2. Observe

(X\B)N--N(X\ Byy2) =X\ (B1U---UBy45) = 0.
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Foreachi =1,...,n+2,letV; =U;\ B; C U;.Since A; CU;N(X\ B;) =V,
we have V = {V1,..., Vy42} € cov(X). Moreover, V; N --- N V,1» = @, which
meansord)Y <n + 1.

(b) = (f): Let A”*! be the standard (n+1)-simplex and K = F(dA"T!) (i.e., the
simplicial complex consisting of all proper faces of A”*1). Then, | K|=0A" ! ~ §".
To extend a given map f : A — S" over X, we consider S" = |K|. By
Theorem 5.1.6(2), f : A — |K| is extended to a map f : clW — |K|, where
W is an open neighborhood of 4 in X. Note that card K© = n + 2. By (b), X has
a finite open cover V such thatord )V <n 4 1 and

V< {0k U X \cIW) |ve KD}
We have a function ¢ : V — K@ such that
V C fN(Ok(e(V) U(X \clW) foreach V €V,

which defines a simplicial map ¢ : N(V) — K because every n + 1 many
vertices span a simplex of K and each simplex of N())) has at most n 4+ 1 many
vertices. Since V is finite, there is a canonical map g : X — |[N(V)| for N(V) by
Theorem 4.9.4. Foreachx € W, f (x) and g g(x) are contained in the same simplex
of K. In fact, let t € K be the carrier of f(x), i.e., f (x) € rintt. Then, for each
V e Vx|, ~

xevnwc fT(0ke)),

hence f(x) € Ox(p(V)). Thus, we have f(x) € (Nyepp Ok (@(V)), which
implies that (V) € t© for each V € V[x], i.e., (¢(V[x])) < t. On the other
hand, g(x) € (V[x]), which implies

pg(x) € p((VIx])) = (p(V[x])) = <

so g(x), f(x) € t. Thus, we can defineamap 2 : X x {0} U W x1I — |K]| as
follows:

h(x,0) = pg(x) forx € X and
h(x,t) = (1 —1)g(x) + 1t f(x) for(x,1) e W xL

Let k : X — Ibe an Urysohn map with X \ W C k~'(0) and A C k~'(1). Then,
an extension f* : X — |K| of f can be defined by f*(x) = h(x,0) (= ¢pg(x))
forx € X \ W and f*(x) = h(x,k(x)) forx € W.

(f) = (e): By induction on k > n, we show that each map f : A — S¥*! of any
closed set A in X extends over X . Let

S]—(|—+l — sk-l—l N (Rk-l—l % R-{—) and S]i+1 — _S]f|—+l7
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Sk+l

IS

7165

Fig. 5.2 Extending amap f : A — Sk+!

where we identify S¥ = S¥ x {0} = Slfl N Sk+1 c Sk+1. We have disjoint open
sets U4 and U_ in X such that

UrNA=A\f7'(S") and U_nA =4\ f'(SE.

In fact, by Theorem 5.1.6(2), f extends to a map f’ : U — SF*! of an open
neighborhood of 4 in X. Then, Ux = f'~' (Sk+! \Sk;l) are the desired open sets.

Now, let Xo = X \ (Uy UU-) and 49 = A N Xy = f~'(S¥) (Fig.5.2). Since
flAo : Ag — SF extends over X by the inductive assumption, f|A, extends to a
map f : Xo — S¥. Let

Xy=XoUUp=X\U_ and X_ = XoUU_ =X\ Uy,

which are closed in X, and hence they are normal. Note that X is closed in both X
and X_. Since S ~ SK+! ~ BfF!, £ extends to maps f4 : X: — St+! and
f- : X_ — SK*+1 by Theorem 5.1.6(1). Then, the desired extension f : X — SF*!
of f can be defined by f|X+ = frand f|X_ = f_.

(e) = (a): For each finite open cover U of X, let K = N(U) be the nerve of
U with f : X — |K| a canonical map (cf. Theorem 4.9.4). If f(X) C |K")|,
Y (Okw) € cov(X) is a finite open refinement of &/ and

ord f 1 (Ogw) < ordOgwy = dim K™ +1 <n + 1.

Otherwise, choose m > n so that f(X) C |K™]| but f(X) ¢ |K"” V. Let
71, ..., Tk be the m-simplexes of K. Since dt7; ~ S"=land m — 1 > n, we have
maps f; : X — dt; suchthat f;| f~1(d;) = f|f~'(d7;) by (e). Let f': X — |K|
be the map defined by
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LUK = £IF7H(K™Y]) and
1Y) = fil f () foreachi =1,... k.

Then, f/(X)C|K™V|. Since cx(f'(x))<cx(f(x))<(U[x]) for each xeX, f’
is still a canonical map. By the downward induction on m>n, we can obtain a
canonical map f : X —|K| such that f(X)C|K™)|. This completes the proof. O

Remark 2. In the above proof of (¢) = (a), instead of a finite open cover U of X,
let us take a local finite open cover U whose nerve K = N(U) is locally finite-
dimensional (1.f.d.). It can be shown that I/ has a locally finite open refinement V
withordV <n + 1 (i.e.,dim N(V) < n).

Indeed, since K is the nerve of a locally finite open cover, by Theorem 4.9.4, we
have a canonical map f : X — |K]| such that each x € X has a neighborhood V,
in X with f(Vy) C |K,| for some finite subcomplex K, of K. Note that K might
be infinite-dimensional.

Now, consider the following subcomplexes of K:

K, = K\{r €K \ dimt > n, tis principal in Ki_l}

= K"y {r e K \ 7 is not principal in Ki_l}, i €N,

where Ko = K. Then, K™ = (0),.y K; because K is 1.f.d. We will inductively
construct canonical maps f; : X — |K|,i € N, such that

HIATNKD = fiml £2N (KD, fi(X) C |K;| and
fi(Vy) C |K,| foreach x € X,

where fy = f. Suppose f;—| have been constructed. For each t € K, \ K;, since
dimt > n, we can apply (e) to obtain an extension f; : X — 97 of fi_;|f;Z}(37).
We can define f; : X — | K] as follows:

FIA2VUKD = ficil 21K |) and
f,-|f,-:11(t) = ft|f,~:11(l’) foreacht € K;—_1 \ K;.

Then, f;(X) C |K;|.Since f;(f;Z}(r)) C 9t C tforeacht € K;—;\ K;, it follows
that f;(Vy) C |K,| for each x € X, so f; is continuous because each K is finite.
Moreover, ¢k (fi (x)) < cx(fi—1(x)) for each x € X, hence f; is also a canonical
map.

For each x € X, since K, is finite, K,((") = K, N K for some i(x) € N.
For every i > i(x), because K, N K; = K, N Kj(x), we have f;|Vy = fiq|Vs.
Therefore, we can define a map f : X — |K®| by f|V, = fi|Vs for each
x € X. Then, V = f‘l((’)K(n)) € cov(X) is an open refinement of I/ with ord <
n + 1. By applying Lemma 5.2.1, we can obtain the desired refinement VV of I/.
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When X is paracompact, since every open cover of X has a locally finite (and
o-discrete) open refinement with the 1.f.d. nerve by Theorem 4.9.9, if dim X < n,
then an arbitrary open cover of X has a (locally finite o-discrete) open refinement
V withordV < n + 1 by the above remark. Since the converse obviously holds, we
have the following characterization:

Theorem 5.2.4. For n € w and a paracompact space X, dim X < n if and only
if an arbitrary open cover of X has a (locally finite o-discrete) open refinement VV
withordV <n + 1. O

Instead of Theorem 4.9.9, we can use Theorem 4.9.10 to obtain the following
corollary:

Corollary 5.2.5. Let X be regular Lindeldf and n € w. Then, dimX < n if
and only if an arbitrary open cover of X has a (star-finite and countable) open
refinement )V withordV <n + 1. O

In the proof of Theorem 4.10.10, we can apply Theorem 5.2.4 (Corollary 5.2.5)
to obtain I; with ordl/; < n + 1, namely dim K; < n. By Remark 16 at the end of
Sect.4.10, we have the following version of Theorem 4.10.10 (Corollaries 4.10.11
and 4.10.12).

Corollary 5.2.6. Every completely metrizable space X with dimX < n < oo is
homeomorphic to the inverse limit of an inverse sequence (| K;|m, fi)ien of metric
polyhedra and PL maps such that dim K; < n, card K; < Row(X), and f; :
K41 — Sd K; is simplicial. Moreover, if X is compact metrizable (resp. separable

and completely metrizable), then each |K;|m = |K;| is compact (resp. locally
compact). If X is separable and locally compact metrizable, each |K;|m = |K;|
is locally compact and each f; is proper. O

Now, we can prove the following theorem:
Theorem 5.2.7. For eachn € N, dimB" = n.

Proof. For any U € cov(A"), A" has a triangulation K such that Ox < Sk < U
(Corollary 4.7.7). Since ord O = dimK + 1 =n + 1 and |K| = A" ~ B", it
follows that dimB” < n. If dimB"” < n — 1, then we apply Theorem 5.2.3 to obtain
amap r : B" — S"! such that 7|S"~! = id, which contradicts the No Retraction
Theorem 5.1.5. Consequently, we have dimB" = n. O

Proposition 5.2.8. For a normal space X, if there exists amap f : X — S" that is
not null-homotopic, then dim X > n.

Proof. Define §", and S” as in the proof of Theorem 5.2.3 (f) = (¢) and identify
"1 =8" N8 CS§.IfdimX < n—1then f|f'(S""") extends to a map
f": X — S""! by Theorem 5.2.3. We can define amap g : X — 8" as follows:

glf 'S = fIf7ISY) and gl fTISL) = £ 7HSL).
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Then, g >~ f rel. f~!(S"). Indeed, we have a homeomorphism ¢ : S — B" with
@|S"™! = id. Then, @f | /7' (S%) =~ @f'| f7'(S%) rel. f~!(S""!) in B", which
is realized by the straight-line homotopy. Hence, f|f~'(S",) =~ f’|f~'(S") rel.
£75S"") in §”, which implies g ~ f rel. f~!(S"). Since g(X) C 8" ~ B", it
follows that f ~ g ~ 0. This is a contradiction. O

Remark 3. The converse of Proposition 5.2.8 does not hold. In fact, if X is an n-
dimensional contractible space then every map f : X — S” is null-homotopic.

Using simplicial complexes, we can characterize the dimension of paracompact
spaces as follows:

Theorem 5.2.9. Let X be paracompact and n € w. Then, dim X < n if and only
if, for every simplicial complex K, eachmap f : X — |K| (or f : X — |K|n) is
contiguousto amap g : X — |K™| (or g : X — |K"|y). In this case, each g(x)
is contained in the carrier cx (f(x)) € K of f(x).

Proof. First, we will show the “if” part. Each (finite) open cover I/ of X has an open
star-refinement V. Let K = N(V) be the nerve of V. A canonical map f : X — |K|
is contiguous toamap g : X — |K™|. Then, g7' (Ogw) € cov(X) with

ordg_l((’)K<n)) <ord Ogw = dim K" +1<n+1.

LetV eV =K®andx € g7'(Ogw(V)). We have o € K such that f(x), g(x) €
0. Then, cx(f(x)) <oand V € 0. Since f is canonical, we have cx (f(x))© C
V[x] (Proposition 4.9.1). It follows that V N V' # @ and x € V' for any V' €
cx (f(x)©@, which implies x € st(V, V). Thus, g~ (Oxm (V)) C st(V,V), which
means g~ ! (Ogm) < U. Therefore, dim X < n.

To prove the “only if” part, let f : X — |K| be a map. Because dim X < n,
X has an open cover U < f~!1(Ok) with ordU/ < n + 1 by Theorem 5.2.4. Let
L = N(U) be the nerve of U with ¢ : X — |L| a canonical map. Then, we
have a function ¥ : L© = ¢/ — K© such that U C f~1(0g (¥ (V))), ie.,
f(U) C Ox(¥(U)). By Proposition 4.4.5, ¢ : L(© — K© induces the simplicial
map ¥ : L — K. Since dim L < n, it follows that Y @(X) C ¥(|L|) C |K™].
Thus, we haveamap g = ¢ : X — |K®)|.

We will show that g(x) € cx(f(x)) forevery x € X. Foreach x € X, ¢(x) €
(U[x]) € L because ¢ is canonical. Then, g(x) = Y ¢(x) € ¥ ((U[x])) € K. For
each U € U[x], f(x) € f(U) C Ox(¥(U)), which means ¥ (U) € cx(f(x))©.
Hence, ¥ ((U[x])) < cx(f(x)). Thus, g(x) € cx(f(x)) forevery x € X. O

Remark 4. In the above proof of the “only if” part, when K is locally finite-
dimensional, we can apply the same argument used in Remark 2 to obtain a map
g: X — |K™| contiguous to 1.

As a corollary of Theorems 5.2.7 and 5.2.9, we have the following:

Corollary 5.2.10. For any simplicial complex K,
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dim K = dim | K| = dim | K |.

Proof. An n-simplex t € K is closed in both |K| and | K|y, and dim7 = n by
Theorem 5.2.7. By the definition of dimension, dim |K| > dim t and dim | K|, >
dim 7. On the other hand, combining Theorem 5.2.9 with the Simplicial Approxi-
mation Theorem 4.7.14, we arrive at dim | K| < dim K and dim |K |, <dim K. O

Since the n-dimensional Euclidean space R" has an n-dimensional triangulation,
we have the following corollary:

Corollary 5.2.11. Foreachn € N, dimR" = n. O

Let A and B be disjoint closed sets in a space X. A closed set C in X is called
a partition between A and B in X if there exist disjoint open sets U and V in X
suchthat A CU,B C V,and X \ C = U U V. A family (4,, B} ),er of pairs of
disjoint closed sets in X is inessential in X if there are partitions L, between A,
and B, with (),¢r L, = 0. Note that if one of 4, or B, is empty then (4,, By)
is inessential. If (A,, By)yer is not inessential in X (i.e., (), er L, # 9 for any
partitions L, between A, and B,), it is said to be essential in X .

A map f : X — I" is said to be essential if every map g : X — I" with
gl f~1(@1") = f|f~'(91") is surjective, where it should be noted that g is also
essential. It is said that f is inessential if it is not essential, i.e., there is a map
g 1 X — I" such that g| f='(0I") = f|f~"(0I") and g(X) # I". Then, for an
inessential map f : X — I", there is amap g : X — dI" such that g| f ~1(3I") =
VAV C) OF

Lemma 5.2.12. Fortwomaps f,g : X — B", if f(x) # g(x) forany x € X, then
thereisamap h : X — 8"V such that h| f~'(S"~Y) = f|f~4(S" ).

Proof. In the same way as for the map r in the remark for the No Retraction
Theorem 5.1.5, we can obtain amap & : X — 8"~! such that f(x) € (h(x), g(x))
for each x € X, which implies 4| f~1(S"~") = f|f~1(S" ). O

Foramap f : X — B" with f(X) # B", by taking g as a constant map, the
following is a special case of Lemma 5.2.12.

Lemma 5.2.13. Ifamap f : X — B" is not surjective, then there is a map h :
X — 8" ' such that h| f~1(S"™") = f|f~1(S" ). O

Proposition 5.2.14. Let X be a normal space and h : X x I — 1" be a homotopy
such that hg is essential and h( f~'(0I") x I) C OI". Then, h, is also essential,
hence it is surjective.

Proof. Let hyp = f and assume that /1, is inessential. By Lemma 5.2.13, there is
amap g : X — OI" such that g|h;'(3I") = hy|h7'(31"). Then, f~1(I") C
hi'(01") and hy =~ g rel. h7'(91") by the straight-line homotopy:

(1 —1)h(x) +tg(x) foreach (x,1) € X xL
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Connecting this to /2, we obtain a homotopy ¢ : X x I — I" such that

e(fT'@I") x I) CII", gp = f and ¢; = g.

Then, A = pry (go_l([%, %]")) is a closed set in X. Observe

¢ (3.3 N (IO x 1) = 0,

which implies A N f~!(d") = @. Taking an Urysohn map k : X — I with
k(f~1(01")) = 0 and k(A) = 1, we define amap g’ : X — I" as follows:

g'(x) = ¢(x,k(x)) foreachx € X.

Then, g’| f~1(I") = f|f~1(dI") but g’(X) # I". In fact, g’(A) = g(A) C "
and

g'(X\A) Co((X\A) xD Co((X xD\e'([5,31") CI"\ [5,3]".

This is a contradiction because iy = f is essential. O
Essential maps can be characterized as follows:

Theorem 5.2.15. Let X be a normal space. For amap [ : X — 1", the following
are equivalent:

(a) f is essential;
(b) Foreachmap g : X — 1", there is some x € X such that f(x) = g(x);
(© (fpr7Y0)), £~ pr; 1 (1)))r_, is essential in X.
Proof. The implication (a) = (b) follows from Lemma 5.2.12.

(b) = (c): Assume that (f~(pr;1(0)), f~1(pr; 1(1)))7_, is inessential, that
is, there are partitions L; between f~!(pr;1(0)) and f~'(pr;!(1)) such that
ﬂ?zl L; = @. Then, we have disjoint open sets U; and V; in X such that

X\L; =U UV, f~pr;'(0)) Ui and f~'(pr;'(1)) C V.

Applying Lemma 5.2.2 to the open cover {X \ L; | i = 1,...,n} of X, we have a
closed cover {F; |i = 1,...,n}of X suchthat F; C X \ L; = U; U V;, where we
may assume that

f e ) U ST e (1) € F

EachU; N F; = F; \ V;and V; N F; = F; \ U; are disjoint closed sets in X. Using
Urysohn maps for U; N F; and V; N F;, we can define amap g : X — I" such that
pr;g(U; N F;) = 1 and pr; g(V; N F;) = 0. Observe
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Uwinfyvmink)=Jw,uvonF=JF =X,

i=1 i=1 i=1

(e, /)7 C Vi C X\ U; and (pr, f)"'(0) C Ui C X \ V.

It follows that g(x) # f(x) forany x € X.
(c) = (a): Suppose that f is inessential. Then, there is amap & : X — 0I" with
h| f~1(01") = f|f~1(01") by Lemma 5.2.13. Note that

FH e (0) € A7 (e (0) and £ (pri (1) € AT (pry (1)),

Each h™!(pr;' (1)) is a partition between f~!(pr;'(0)) and f~!(pr;'(1)), and then

(' e G) =h"'G.....5) = 0.

i=1

Thus, (f ' (pr; 1(0)), £~ (pr;1(1)))7_, is inessential. O

The Brouwer Fixed Point Theorem 5.1.1 means that the identity map of I”
satisfies condition (b) in Theorem 5.2.15, hence we have the following corollary:

Corollary 5.2.16. The family (pr; ' (0), pr;! (1)7_, is essential in I". O

Remark 5. Due to Theorem 5.2.15, this Corollary 5.2.16 is equivalent to the
Brouwer Fixed Point Theorem 5.1.1.

Using essential families and essential maps, we can also characterize dimension
as follows:

Theorem 5.2.17 (EILENBERG-OTTO; ALEXANDROFF). Let X be a normal
space and n € N. Then, the following are equivalent:

(a) dmX > n;
(b) X has an essential map f : X — I";
(c) X has an essential family of n pairs of disjoint closed sets.

Proof. The implication (b) = (c) follows from Theorem 5.2.15. For an essential
map f : X — I", £|f~1(I") : £~'(3I") — AI" cannot extend to any map from
X to dI", which means dim X > n by Theorem 5.2.3. Thus, we have also (b) =
(a). The implications (a) = (b) and (c) = (b) remain to be proved.

(a) = (b): By Theorem 5.2.3, there exists a map f’ : A — 9oI" of a closed set A
in X that cannot extend over X . Nevertheless, f/’ can be extendedtoamap f : X —
I" by Theorem 5.1.6(1). If there isamap g : X — I" such that g(x) # f(x) for any
x € X,thenwehaveamaph : X — 01" such that h| f~1(3I") = f~'| f~'(3I") by
Lemma 5.2.12. This is a contradiction because / is an extension of f’. Therefore,
for each map g : X — I”, there is some x € X such that f(x) = g(x). By
Theorem 5.2.15, f is essential.
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(c) = (b): Let (4;, B;)!_, be an essential family of n pairs of disjoint closed sets
in X. Using Urysohn maps for A; and B;, we can define amap f : X — I" so that
pr; f(A;) = 0 and pr; f(B;) = 1 foreachi = 1,...,n. Since 4; C f~'(pr;1(0))
and B; C f'(pr;y!(1)), it follows that (f~'(pr;'(0)), f~(pr;'(1)))r_, is
essential, which means that f is essential according to Theorem 5.2.15. O

Conditions (b) and (c) are called the ALEXANDROFF CHARACTERIZATION the
EILENBERG—OTTO CHARACTERIZATION of dimension. Using Theorem 5.2.17, we
can easily show the following corollary:

Corollary 5.2.18. Every non-degenerate O-dimensional normal space is discon-
nected. Equivalently, every non-degenerate connected normal space is positive
dimensional. O

5.3 Dimension of Metrizable Spaces

In this section, we will give characterizations of dimension for metrizable spaces.
For metric spaces, the following characterization can be established:

Theorem 5.3.1. Let X = (X, d) be a metric space. Then, dim X < n if and only if
X has a sequence Uy > Uy > -+ of (locally finite o-discrete) open covers such that
ordU; <n + 1 and lim; _, oo meshif; = 0.

Proof. When dim X < n, using the “only if”” of Theorem 5.2.4, we can inductively
construct locally finite o-discrete open covers U; > U, > --- of X such that
ordU; < n + 1 and lim;, o, meshf; = 0. Thus, the “only if” part holds.

To show the “if” part, let YV be a finite open cover of X. We have a function
@i : Uiy1 — U; such that U C ¢;(U) for each U € U;4;. For each j > i, let
Qij =@io--0Q;j_1: u]' —)Z/[,' and(p,-,i = idz,{l..

Foreachi € N, let

X; = U {U e U; \ st(U,U;) is contained in some W € W}
Then, X; C X, C---and X = UieN X; because lim; _, oo meshif; = 0. Moreover,
let U = U;[X;] and U = U] \ U;[X;—1], where X = .
Foreachi € Nand U € U], we define
k;(U) = min {k <i ’ o i (U)N Xy #£ @}.
Observe that ¢, 1, (U) € Z/{]g_(U) and ki, w)(¢k, )i (U)) = ki(U). As is easily

seen, U NU} = B if i # j.Foreach U € ;e U/, there is a unique j(U) € N
such that U € U}’(U). Then, we can define

U>I< :U{U/ﬂXi | U’EU{, i Zj(U):kl(U/), @j(U)’,'(U/): U} cU.



5.3 Dimension of Metrizable Spaces 265

Note that if k ;) (U) < j(U) then U* = 0.
Each x € X is contained in some X;, hence x € U’ N X; for some U’ € U!. Let
U = o, (U') € Z/{IZ(U/). Then, k; (U’) = j(U)and x € U' N X; C U*. Thus,
we have
V={U"|U € UeqU} € cov(X).

Each U € U/ meets X;, hence it meets some U’ € U; such that st(U’,U;) is
contained in some W € W. Then, U* c U C st(U’,U;) C W. Therefore, V < W.

For each x € X, choose k € N so that x € X \ X;—;. Foreach U* € V[x], we
can find U’ € Y] suchthati > j(U) = k;(U’), ¢jw);,(U") =U,andx € U' N X;.
Then, k < i because x € X; and x ¢ Xy_. Thus, we have ¢ ; (U’) € Ui[x]. On
the other hand, j(U) < k because U N Xy # @ and U N X;w)-1 = 0. Then,
(pj(U),kQDk’i(U/) = (pj(U),i(U/) = U. This means that V[x] > U* qu’,-(U/) S
Ui [x] is a well-defined injection. Therefore,

card V[x] < cardUi[x] < ordUy <n + 1.

The proof is complete. O

Applying Theorem 5.3.1, we can show that the inverse limit preserves the
dimension.

Theorem 5.3.2. Let X = l(iI_n(X,-, [i) be the inverse limit of an inverse sequence
(Xi, f))ien of metrizable spaces. If dim X; < n for infinitely many i € N then
dimX <n.

Proof. By Corollary 4.10.4, we may assume that dim X; < n for every i € N.
Recall that X is the following subspace of the product space [ [; ¢y Xi:

X={xe[lienXi \ x(i) = fi(x(i +1)) foreveryi € N}.
We define d € Metr(X) as follows:

d(x,y) = Sggmin{d,-(x(i), y(i)), 27,

where d; € Metr(X;). For each i € N, we can inductively choose V; € cov(X;) so
thatordV; <n + 1,
Vi< (fj..  fic)™'(V)) and mesh f; ... fioy (Vi) <277 forj <i.

LetU; = p;7'(Vi) € cov(X), where p; = pr;|X : X — X; is the inverse limit
projection. Then, Uy > Uy > ---, ordlf; < n + 1, and meshif; < 277. Therefore,
dim X < n by Theorem 5.3.1. O

The following is obvious by definition:

e IfY isaclosedsetin X thendimY < dim X.
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There exists a 0-dimensional compact space X that contains a subspace ¥ with
dimY > 0. Such a space will be constructed in Sect.5.5 (cf. Theorem 5.5.3).
However, when X is metrizable, we have the following theorem as a corollary of
Theorem 5.3.1.

Theorem 5.3.3 (SUBSET THEOREM). For every subset Y of a metrizable space
X,dimY <dim X. O

We can apply Theorem 5.3.1 to prove the following completion theorem:

Theorem 5.3.4. Every n-dimensional metrizable space X can be embedded in an
n-dimensional completely metrizable space as a dense set.

Proof. We can regard X as a dense subset of a complete metric space ¥ = (Y, d)
(Corollary 2.3.10). Applying Theorem 5.3.1, we can obtain a sequence U > Uy >

- € cov(X) such that ordf; < n + 1 and mesh; U; — 0 as i — oo. For each
i € N, there is a collection f; of open sets in ¥ such that U; |X = U;. Then,
ordL{ =ordl; <n+1and meshdu = meshdl/l Foreachi e N, G; = UL{ is
an open set in Y. Thus, we have a G-set X = (Niey Gi in Y and X is dense in X.
According to Theorem 2.5.3(2), X is completely metrizable. Moreover, dimX <
n by Theorem 5.3.1 and dimX > n by Theorem 5.3.3. Consequently, we have
dim X = n. O

A subset of a space X is called a clopen set in X if it is both closed and open in
X . A clopen basis for X is an open basis consisting of clopen sets. For metrizable
spaces, we characterize the 0-dimensionality as follows:

Theorem 5.3.5. For a metrizable space X (# 0), dim X = 0 if and only if X has
a o-locally finite clopen basis.

Proof. First, assume that dim X = 0 and let d € Metr(X). By Theorem 5.3.1, X
has a sequence of locally finite open covers B; > B, > --- such thatord B; = 1
and lim; .o, mesh B; = 0. Note that each B € B; is clopen in X because B =
X\ U{B’ € B; | B’ # B}.1Itis easy to see that B = |,y B; is a o-locally finite
clopen basis for X.

To show the “if” part, let B = | J, ¢y B: be a o-locally finite clopen basis for X,
where each B; is locally finite. Let {U,, U,} € cov(X). Foreachi € N, let

Vz,‘_l:U{BEB,“BCljl} and Vz,‘:U{BEBi|BCU2}.

Because V; is clopen, we have an open set W; = V; \ Uj<i V;in X. Then, W =
{W; | i € N} is an open refinement of {Uj, U,}. Indeed, Wp;—; C U, Wy; C Ua,

and
UI/I/;:UVI :UVZi—lUUVZi =U,UlU, =X.
ieN ieN ieN ieN
Since ord W < 1 by definition, we have dim X < 0 by Theorem 5.2.3. O



5.3 Dimension of Metrizable Spaces 267

Using the above characterization, we can easily show that dimQ = dim(R \
Q) = 0 and dimu® = 0, where u° is the Cantor (ternary) set. The following
theorem can also be easily proved by applying this characterization.

Theorem 5.3.6. The countable product of 0-dimensional metrizable spaces is 0-
dimensional. O

The following simple lemma is very useful in Dimension Theory.

Lemma 5.3.7 (PARTITION EXTENSION). Let A, B be closed and U, V be open
sets in a metrizable space X such that A C U and B C V andclU NclV = @.
For any subspace Y of X, if Y has a partition S between Y NclU andY NclV,
then X has a partition L between A and B withY N L C S.

Proof. Let U’ and V'’ be disjoint open sets in ¥ such that Y \ § = U’ U V’,
YNclU cU’,andY NeclV C V. FromU NV’ = @, it follows that ANcl V' = @.
Then,

AuUHYNd(BUV)Y=AUUYN(BUcV') = 0.

Similarly, we have (B U V') Ncl(AU U’) = @. Let d € Metr(X) and define

U'={xeX|dx,AUU') <d(x,BUV’)} and
V'={xeX |dx,BUV')<d(x,AUU")}.

Then, U” and V" are disjoint open sets in X, AUU’ Cc U”,and BUV' C V".
Hence, L = X \ (U” U V") is the desired partition. O

Note that it does not suffice to assume that S is a partition between A N Y and
BNYinY.Infact, A =[—1,0] x {0} and B = [0, 1] x {1} are disjoint closed sets
in X = R2. Let

Y =R*\ (@x2)CX,

where 2 = {0, 1} is the discrete space of two points. Then, S = {0} xR is a partition
between A NY and BN Y in Y but X has no partition L between A and B such
thatY N L C S.

Using partitions, we can characterize the dimension for metrizable spaces as in
the following theorem:

Theorem 5.3.8. Let X be metrizable and n € w. Then, dim X < n if and only if,
for any pair of disjoint closed sets A and B in X, there is a partition L in X between
Aand B withdimL <n — 1.

Proof. To prove the “if” part, let (A4;, Bi),'.’:ll be a family of pairs of disjoint closed
setsin X. Let L, 4 be a partition between 4,4+ and B, 4| withdim L,,1; <n — 1.
Foreachi = 1,...,n, let U; and V; be open sets in X such that A; C U;, B; C
Vi and clU; NclV; = @. By Theorem 5.2.17, L, 4+, has partitions S; between
Ly4+1 NeclU; and L, 41 N clV; such that ﬂ:?:l S; = 0. By the Partition Extension
Lemma 5.3.7, X has partitions L; between 4; and B; such that L; N L,4; C ;.
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Then, ﬂ:.’:ll L; € (i2, Si = 9. Therefore, (4;, Bi),'.’:ll is inessential. Thus, we
have dim X < n by Theorem 5.2.17.

To show the “only if” part, let d € Metr(X) such that dist(4, B) > 1. (Such a
metric can be obtained by a metric for X and an Urysohn map for A and B.) Using
Theorem 5.2.4 (cf. Theorem 5.3.1), we can construct a sequence (I4;);en of locally
finite open covers of X such that ordl; < n + 1, meshlf; < i~!, and L{fi_l < U;.
Let Ay and By be open neighborhoods of 4 and B in X, respectively, such that
dist(Ag, By) > 1. We inductively define sets A; and B; (i € N) as follows:

A =X\ J{aU | U etf[B;~1]} and

B = X\ J{clU | U et \t]B:1]}.

Then, A; N B; = @. Because of the local finiteness of Z/{icl, A; and B; are open
in X. Since B;_j N U = @ if and only if B;_; NclU = @ for each U € U, it
follows that B;—; C B; for each i € N. Then, U;[B;—;] C U;[B;]. We also have
U;[Bi] C U;[B;—1]. Indeed, each U € U;[B;] contains some point of B;, where that
point does not belong to any member of U; \ U;[B;—1]. This means U € U;[B;—_1].
Therefore, U;[B;] = U;[B;—1] foreachi € N.

We will show that cl A;—; C A; for each i € N. This follows from the fact that
cld;_; NclU = @ for each U € U;[B;—1]. This fact can be shown as follows:
The case i = 1 follows from meshi/; < 1 and dist(A4y, By) > 1. When i > 1, for
each U € U;[B;—1], clU is contained in some V € U;_. Since V € U;_[B;—1] =
U;—1[Bi—], it follows that A;_1 NV = @, and hence cl 4;,_; NV = @, which implies
cl Ai—l NclU = 0@.

Foreachi € N,let L; = X \ (4; U B;) and let L = ();cy Li. Then, L is
a partition between A and B. Indeed, X \ L = (U;en4i) U (Uien Bi), A C
Uien 41, B C Uien Bis and

(UAz) N (UBI) = U (Al n Bj) = U (Amax{i,j} n Bmax{i,j})
ieN ieN i,jeN i,jeN

J“inB) =0

ieN

Foreachi € N, we have
W, ={UNL|U €U[Bi_]} € cov(L).

Indeed, each x € L is not contained in A; 41, so x € clV for some V € U; 1 1[B;].
Choose U € U; so that cl1V C U. Then, U € U;[B;] = U;[B;—1], hence x €
U N L € W;. Therefore, W; € cov(L). Note that meshV;, < meshlf; < i~'.
Moreover, Wi+ < W; because each V' € U;[B;] is contained in some U € U;,
where U € U; [B,] =U; [Bi—l]-
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We will show that ord W; < n. Suppose that there are n + 1 many distinct
Uy,...,U,+1 € U;[B;—1] that contain a common point x € L. Since x ¢ B;,
x € clU,4, for some U4+, € U; \ U;[Bi—1]. Since ﬂ?ill U; is a neighborhood of

x, it follows that ﬂ’;izl U; # 0, which is contrary to ordl{; < n + 1. Therefore, we
have dim L < n — 1 by Theorem 5.3.1 O

Remark 6. 1t should be noted that the Partition Extension Lemma 5.3.7 and the “if”
part of Theorem 5.3.8 are valid for completely normal (= hereditarily normal) spaces
(cf. Sect. 2.2).

5.4 Fundamental Theorems on Dimension

In this section, we prove several fundamental theorems on dimension. We begin
with two types of sum theorem.

Theorem 5.4.1 (COUNTABLE SUM THEOREM). Let X = |J;cy Fi be normal
and n € w, where each F; is closed in X. If dim F; < n for everyi € N, then
dimX <n.

Proof. 1t suffices to show the case n < oo. Let {Uy,...,U,+2} € cov(X). By
inductionon i € N, we can definelf; = {U; 1,...,U; 42} € cov(X) so that

Cl(],',j C (],'_1,]' and Ui,l ﬂ"'mUi,n+ZmFi :@’

where Uy ; = U;. Indeed, assume that I{;_; has been defined, where Fy = 0. By
Theorem 5.2.3, we have {V; 1, ..., Vi +2} € cov(F;) such that

VijCU; and Vi,iN---NV,1,=0.

Let W, ; =V, ; U(Ui—1; \ F;). Then, {W 1, ..., W, 412} € cov(X). By normality,
we can find U; = {U;1,...,U; 12} € cov(X) such that clU; ; C W ;. Observe
that I{; is as desired.

Foreach j =1,...,n+2,let Aj = ();en Ui j. Observethat A; = (), ¢l U; ;
is closed in X. Since

AN NApNF CUn N NUipa N E =0,

we have A N+ N A,4» = 0. Foreachx € X, {i € N | x € U, ;} is infinite for
some j. Then, x € (e Uij = 4. Hence, X = A U--- U A, 4,. According to
Theorem 5.2.3, we have dim X < n. O

Theorem 5.4.2 (LOCALLY FINITE SUM THEOREM). Let X be normal and n €
. If X has a locally finite closed cover {F) | A € A} such that dim F) < n for
each A € A, thendim X < n.
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Proof. We may assume thatn < oo, A = (A, <) is awell-ordered set, and Fiyin 4 =
@. Let {Uy,...,U,42} € cov(X). Using transfinite induction, we will define U, =
{Ur1,...,Urnt2} € cov(X) so that

Unina,j =U;, Uy NN Uy p42 N Fy =@, and

w<A= U CUw. U \U;C |J F.

H=v=A

Suppose that {,, has been obtained for u < A. Let U ; = (7),.; Up,;. Then,
{US 15+ Uy qn) € cov(X). Indeed, if there exists o = max{u € A | u < A},
then Ux/,j = U,,,; foreach j = 1,...,n + 2. Otherwise, for each x € X, choose
an open neighborhood U of x in X that meets only finitely many F),. Then, there
exists u; < Asuchthat U N F, = @ for uy < u <A Ifx € Uy, ; € U,,, then
unu,, ; cU,;foru <u < Abecause

UNnUu)\Uu;C |J WnF)=0.

H=<v=p

It follows that

xelUnuU,,;C ﬂ Uuj = m Unj = Uy
p<p<i I

We apply Theorem 5.2.3 to obtain { V3 1, ..., Vi 42} € cov(Fy) suchthat V, ; C
Ux/,j and Vi N~ N Viygo = @. Now, let Uy ; = Vi ; U (U)(,j \ F3). Then,
{Uy1,-..,Upng2} € cov(X) is the desired open cover. In fact, if © < A then

Uuj \Usrj C FLU((Uu; \ F)\ (U;; \ F2)) C FL U (U;L.,j \ ﬂ Uu.,j)

V<A

chRU | W, \U)= | F.

U<v<A n<v<i

The proofs of the other properties are easy.

Foreach j = 1,...,n + 2, let U]T" = ﬂkeA U, ;. Then, similar to the above,
(U, ..., Uy} € cov(X). Clearly, U C Uy and U N---NU,f, = 0. Therefore,
dim X < n by Theorem 5.2.3. O

The following corollary is a combination of Theorems 5.4.1 and 5.4.2:

Corollary 5.4.3. Let X be a normal space and n € w. If X has a o-locally finite
closed cover {F | A € A} such that dim Fy < n foreach A € A, thendim X < n.
O

The next corollary follows from Theorem 5.4.2:
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Corollary 5.4.4. Let X be a paracompact space and n € w. If each point of X has
a closed neighborhood with dim < n, then dim X < n.

Proof. Since X is paracompact and each point of X has a closed neighborhood
with dim < n, X has a locally finite open cover U such that dimclU < n for each
U e U. Then, U is also locally finite in X, hence dim X < n by Theorem 5.4.2.

O

Remark 7. Corollary 5.4.4 can also be proved by applying Michael’s Theorem on
local properties of closed sets (Corollary 2.6.6). In this case, the proof is reduced
to showing that if X is the union of two closed sets X; and X, with dim X; < n,
i =1,2,thendim X <n.

In the remainder of this section, we consider only metrizable spaces. The real
line R is 1-dimensional and we can decompose R into two 0-dimensional subsets Q
and R \ Q. This can be generalized as follows:

Theorem 5.4.5 (DECOMPOSITION THEOREM). Let X be metrizable andn € w.
Then, dim X < n if and only if X is covered by n + 1 many subsets X1, ..., Xn+1
with dim X; < 0.

Proof. To prove the “if” part, let I/ be a finite open cover of X. Since dim X; < 0,
X; has a finite open cover V; such that V; < U and ord)V; < 1. Foreach V € V},
choose an open set W(V') in X so that W(V) N X; = V and W(V) is contained in
some member of /. Note that cl W(V) N X; = V because V is also closed in X;.
Foreach V € V;, let

V=wW\J{aw) |V £V eV

Then, V; = {V | V € V,} is a collection of disjoint open sets in X that covers
X; and refines U. Observe that V = Ufi 11 V; is an open refinement of & with
ordVY < n + 1. Therefore, dim X < n.

The “only if” part can be easily obtained by induction once the following
proposition has been proved. O

Proposition 5.4.6. Let X be metrizable and dim X <n < co. Then, X =Y U Z
forsome Y, Z C X withdimY <n—1anddimZ <0.

Proof. Assume that X is a metric space. For each i € N, let {f; be a locally finite
open cover of X with meshlf; < i~!. By paracompactness (Lemma 2.6.2) or
normality (Lemma 2.7.1), X has a closed cover {Fy | U € U;} such that Fy C U
forall U € U;. For each U € U;, we apply Theorem 5.3.8 to obtain an open set By
such that

Fy CBy CclBy CU and dimbdBy <n—1.

It is easy to see that B = {By | U € U;,i € N} is a o-locally finite open basis
for X. Let
Y= J{bdB|BeB} and Z=X\Y.
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According to Corollary 5.4.3,dimY <n—1.Since {BNZ | B € B} is ao-locally
finite clopen basis for Z, we have dim Z < 0 by Theorem 5.3.5. O

In the above proof of Proposition 5.4.6, the following two facts have been
proved:

(1) Each metrizable space X with dim X < n has a o-locally finite open basis 3
such that dimbd B < n — 1 forevery B € B.

(2) If a metrizable space X has such abasis Bthen X = Y UZ forsome Y, Z C X
withdimY <n—1anddimZ < 0.

In (2), Y is covered by n many subsets with dim < 0 by the Decomposition
Theorem 5.4.5. Hence, X is covered by n + 1 many subsets with dim < 0. By
the Decomposition Theorem 5.4.5 again, we have dim X < n. Thus, (1) implies
dim X < n. Consequently, we have the following characterization of dimension,
which is a generalization of Theorem 5.3.5:

Theorem 5.4.7. Let X be metrizable and n € w. Then, dim X < n ifand only if X
has a o-locally finite open basis B such that dimbd B <n — 1 foreach B € B. 0O

The following theorem is obtained as a corollary of the Decomposition Theo-
rem 5.4.5:

Theorem 5.4.8 (ADDITION THEOREM). For any two subspaces X and Y of a
metrizable space,

dmXUY <dmX +dimY + 1. O

Regarding the dimension of product spaces, we have the following theorem:

Theorem 5.4.9 (PRODUCT THEOREM). For any metrizable spaces X and Y,
dimX xY <dimX + dim?Y.

Proof. If dim X = co ordimY = oo, the theorem is obvious.

When dim X,dim Y < oo, we prove the theorem by induction on dim X +dim Y.
The case dimX = dimY = 0 is a consequence of Theorem 5.3.6. Assume the
theorem is true for any two spaces X and ¥ with dimX + dimY < k. Now, let
dimX = m,dimY = n,and m + n = k. According to Theorem 5.4.7, X and Y
have o-locally finite open bases By and By such that dimbd B < m — 1 for each
B € By and dimbd B < n — 1 for each B € By. Then,

B:{leBz‘Bleng and BzEBy}
is a o-locally finite open basis for X x Y. For each B, € By and B, € By,

bd(B; x B) = (bd By x ¢l By) U (cl B; x bd By).
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Hence, dimbd(B; x B,) < m+n—1 by the inductive assumption and Theorems 5.4.1
or 5.4.2. Then, we have dim X x ¥ < m + n by Theorem 5.4.7. O

Remark 8. In Theorem 5.4.9, the equality dimX x ¥ = dimX + dimY does
not hold in general. In fact, there exists a separable metrizable space X such that
dim X2 # 2dim X . Such a space will be constructed in Theorem 5.12.1. However, if
one of X orY is alocally compact polyhedron or a metric polyhedron (cf. Sect. 4.5),
the equality does hold. This will be proved in Theorem 7.9.7.

5.5 Inductive Dimensions

In this section, we introduce two types of dimension defined by induction. First, the
large inductive dimension Ind X of X can be defined as follows: Ind@ = —1 and
Ind X < n if each closed set A C X has an arbitrarily small open neighborhood V'
withIndbd V < n—1. Then, we defineInd X =nifIndX <nandInd X £n—1.
We write Ind X < oo if Ind X < n for some n € N, and otherwise Ind X = oc.
Observe the following:

e IfYisaclosedsetin X thenIndY <Ind X.

For an open set G and a closed set F in X,

bdclG =clG \intclG CclG\ G =bdG and
bdint F =clint F \int F C F \int F =bd F.

Then, Ind X < n if and only if each closed set A in X has an arbitrarily small closed
neighborhood V with IndbdV <n — 1.

As is easily observed, Ind X < n if and only if, for any two disjoint closed sets
A and B in X, there is a partition L between A and B with Ind L < n — 1. Note that
Ind@ = dim@ = —1. The next theorem follows, by induction, from Theorem 5.3.8.

Theorem 5.5.1. For every metrizable space X, dim X = Ind X. O

Next, the small inductive dimension ind X of X is defined as follows2: ind @ =
—1l and ind X < n if each point x € X has an arbitrarily small open neighborhood
V withindbdV <n —1;andthenind X = nifind X <nandind X £n—1. We
write ind X < oo ifind X < n for some n € N, and otherwise ind X = 0o. Now,

e indY <ind X for an arbitrary subset Y C X.

Then, ind X < n if and only if each point x of X has an arbitrarily small closed
neighborhood V with indbd V <n — 1.

21n this chapter, spaces are assumed normal, but the small inductive dimension also makes sense
for regular spaces.
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By definition, ind X < Ind X and ind@ = Ind@¥ = dim@ = —1. As is easily
shown, ind X < n if and only if X has an open basis B such thatindbd B < n—1 for
every B € B. Comparing this with Theorem 5.4.7, one might expect that the equality
indX = IndX = dim X holds for an arbitrary metrizable space X. However,
there exists a completely metrizable space X such that ind X # Ind X. Before
constructing such a space, we first prove the following Coincidence Theorem:

Theorem 5.5.2 (COINCIDENCE THEOREM). For every separable metrizable
space X, the equality dim X = Ind X = ind X holds.

Proof. Because ind X < IndX and Ind X = dim X, it is enough to show that
dimX < ind X when ind X < oco. We will prove this by induction on ind X.
Assume that dim X < ind X for every separable metrizable space X with ind X <
n. Now, let ind X = n. Then, X has an open basis 53 such that indbd B < n — 1
for every B € . Since X is separable metrizable, X has a countable open basis
{Vi | i € N}. We define

P ={(i.j)eN*|V; C BCV; forsome B € B}.

For each p = (i, j) € P, choose B, € Bsothat V; C B, C V;. Then, {B, | p €
P} is a countable open basis for X such that dimbd B, < indbd B, < n — 1 for
each p € P. By Theorem 5.4.7, we have dim X < n. O

In the non-separable case, we have the following theorem:

Theorem 5.5.3. There exists a completely metrizable space Z such that ind Z = 0
butInd Z = dim Z = 1. Furthermore, Z has a 0-dimensional compactification.

Example and Proof. Let 2 = [0, w;) be the space of all countable ordinals with
the order topology. Note that the space £2 = [0, @;] is compact and 0-dimensional.
In fact, for each open cover U of 2, we can inductively choose w; = oy > a;) >
ap > --- so that each (o, a;—1] is contained in some member of /. Since §2 is
well-ordered, some «,, is equal to 0. Thus, U/ has a finite open refinement {0} U
{(j,¢i—1] | i = 1,...,n}, which is pair-wise disjoint.

Our space is constructed as a subspace of the product 2. Let L be the subset
of §2 consisting of infinite limit ordinals and S = £ \ L. For each k € N, let
Sk ={a+k | a e L}. We define

Z={ze 2" |zk) e L = z(k+1) = z(k) + k,z(k + j) € Sk for j > 1}.

By definition, we have ind 2N =0, soind Z = 0. On the other hand, we can write
Z = SN U U, en Zk» where

Zi={z€Z|zk)e L} C "' x L x S\

Since S is a discrete space, it follows from Theorem 5.3.6 that dim S = 0.
As is easily seen, each Z; is homeomorphic to S¥~! x SE via the following
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correspondence:
Zi 32> (z(1),... 2k — 1), z(k + 1), z2(k +2),...) € ST x SN,

where z(k + 1) = z(k) + k. Then, it follows that dim Z; = 0 for each k € N.

(Neighborhood bases) For each a € L, choose & () < & (o) < --- < « so that
sup; ey &i (o) = . Each z € Z has the neighborhood basis {U, (z) | n € N} defined
as follows:

{x € Z | x(i)=2z(i) fori <n} ifz e SN,
Un(z) = {{x € Z | x(i) = z(i) fork #i <k +n,
and &, (z(k)) < x(k) <z(k)} ifze€ Z.

Note that each U, (z) is clopen in Z, but {U,(z) | z € S} is not locally finite at the
point (w,w + 1,0 +1,...)in Z (cf. Theorem 5.3.5). The following statements can
be easily proved:

(1) Ifz,7 € SNorz, 7 € Zy, then U, (z) NU,(Z) # 0 = U,(2) = U,(2).

) Ifze Zy,7 € Zy,and k < k' <n + k, then U,(z) N Uy () = @ for every
n’ € N.

(3) Ifze SN, 7 € Zy,andn < k, then U, (2) N Uy (Z) # 0 = Uy (Z) C Uy(2).

Furthermore, we have the following:

(4) Foranyz € SN and n € N, there exists some m > n such that U,,(z) NU,,(7) =
@ forevery 2 € U<, Zk-

In fact, if z(n + 1) & Sk for any k < n, then U,+1(z) N U,+1(z) = @ for every
7 € Upep Zi. I z(n + 1) € Si for some k < n, then Uy, (z) N Uy (2) = @ for
everym > nand z € U4, <, Z;. On the other hand, because z(k + 1) € S, we
can write z(k + 1) =« + r, wherea € LU {0} andr € N.Ifo« = O orr # k,
then U, (z) N U, (7)) = @ foreverym > k and 7 € Zy. When o € L and r = k,
choose m > k so that z(k) & (€,,(c), @]. Then, it follows that U,,(z) N U,,(z') = @
forevery 7 € Zy.

Note that each Zj is closed in Z by (2) and (4). Then, as mentioned before, we
havedim Z < 1.

(Metrizability) To prove the metrizability, by the Frink Metrization Theo-
rem 2.4.1 it suffices to show that, for each z € Z and n € N, there exists m € N so
that U, (z) N U, (2') # @ implies Uy, (Z) C U, (2).

When z € Z; forsome k € N, if 2 € | Zir or 2 € Uy g/ cpqor Zio then
Un+1(z) N Upsk(Z) = B by (2). Assume U, 44 (z) N Upx(2) # 0. 1f 7 € SN U
Ukrsntk Zi then Uy 1(2) C Uy(z) by definition. If 2 € Z, then U, (2) =
U,+x(z) C Uy(2) by (1). Thus, we have

Uk @) N Uk (D) # 0 = Uy k() C Up(2).
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For z € SN, we can choose m > n by (4) such that U,,(z) N U,, (') = @ for every
7 € U<, Zk. Assume U, (z) N Uy (2') # 0. Then, 7 € SN or 7 € Zj for some
k>n.1f7 € SN then U, () = Un(z) C U,(z) by (1).If 7 € Zj for some k > n,
then U,,(z) C U,(z) by (3). Thus, we have

Un(z) N Uy (Z/) #0= Um(Z/) C Uy(2).

(Complete metrizability) Because of Theorem 2.5.5, to show the complete
metrizability of Z, it is enough to prove that Z is a Gs-set in the compact space

2", Extend each U, (z) to a neighborhood of z in 2 as follows:

{xeﬁN\x(z’)zz(i) forifn} forz € SN,
U,(z) = {x e \ x(@) =z(i) fork #i <k +n,
and §,(z(k)) < x(k) < z(k)} forz € Zy.

Then, each W, = J.c, U,(z) is an open neighborhood of Z in 2 and Z =
Myex Wa- Indeed, if x € (,ey Wa \ SV, then x(k) € L for some k € N. For
n > k, choose z, € Z so that x € U,(z,). Since x(k) € L and k < n, it follows
thatz, ¢ SN U Uk’;ék Zi,ie.,z, € Zr. Then, x(k +1i) = z,(k + i) € Sy for each
0<i<nand§,(z,(k)) < x(k) <z,(k).Since x(k+1) = z,(k+1) = z,(k) +k,
every z, (k) is identical, say z(k). Since z(k) = sup §,(z(k)), we have x (k) = z(k).
Taking n € N arbitrarily large, we can see that x(i) € Sy for any i > k. Hence,
XeZ,CZ.

(1-dimensionality) It has been shown that Z is metrizable and each Zj is closed
in Z. Then, applying the Countable Sum Theorem (5.4.1) and the Addition Theorem
(5.4.8), wehavedimZ < 1.

To see that dim Z > 0, assume dimZ = 0. Let W = {W,, | a € 2} € cov(Z),
where W, = {z € Z | 0 < z(2) < a}. By the assumption, VV has an open refinement
VY with ordV < 1. Then, V is discrete in Z. Here, we call s € S” regular if there
exist f : P;en S" — S and V € V such that R(s; f) C V, where

R(s; f) ={x € SN \ x(@) =s(@) fori <n and
x(n+i)> f(x(n),....,.x(n+i—1)) fori € N}.
Otherwise, s is said to be irregular.
First, we verify the following fact:
(5) Every s € S is irregular.

For each f : @,y S" — S and a € £2, define 5% € SN as follows: s?(l)
59(2) = max{s, f(s),o + 1}, and s?(i +1) = ‘f(so)‘p(l),...,so)i(i)) for i
Then, 5% € R(s; f) \ Wo. Hence, R(s; f) is not contained in any V € V.

IV
)
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Next, we show the following fact:
(6) If s € S" is irregular, then (s,¢) € S"*! is irregular for some ¢ € S.

Suppose that (s, ) is regular for every 7 € S, that is, there are f; : @,y S' — S
and V; € V such that R(s,¢; f;) C V;. When there exista € S and V' € V such that
V, =V fort > max{a, f,(a)}, we define f : @,y S* — S by

f(t) = max{a, f,(a)} fort € S and

fti,....t1) = fi(ta,....t;) for (t1,....t;) € S',i > 2.
For x € R(s; f),lett = x(n + 1). Then, x € R(s,t; f;) because

x(n+141i)> f(x(n),...,x(n+1))
= filtx(n+1),....,.x(n+14+ (@G —1))) fori e N.
Moreover, t = x(n + 1) > f(x(n)) = max{a, f,(a)} > a. Hence, R(s; ) C
Urza R(s,t; f;) C V, which contradicts the irregularity of s. Therefore, we can
obtain an increasing sequence a; < a» < --- in § such that V,, # V,, 4+ and

ai+1 > fo;(a;). Leta = sup;eya; € L and by = o +n + 1. Foreach j € N, we
can inductively choose b; € S, 41 so that

b; = sup fo; (@i, bo,...,bj-1).
ieN
Then, we have

z=(s(1),...,s(n),a,by,by,bs,...) € Z,41 and
zi = (s(1),...,s(m),a;,bo,b1,ba,...) € R(s,a;; fo;) C Vg,
where lim; .o z; = z. This contradicts the discreteness of V because V,, # V, i
By (5) and (6), we obtain s € SV such that each (s(1),...,s(n)) € S" is

irregular. Then, s is contained in some V € V, from which U, (s) C V for some
n € N, which implies that (s(1), ..., s(n)) is regular. This is a contradiction.

(0-dimensional compactification) Finally, we will show that clgn Z is a 0-

. . . . . —=N

dimensional compactification of Z. It suffices to show that dim §2° = 0. Because
—N . —N .

£2° is compact, each open cover U of §£2° has a finite refinement

{p,;il(]_['j’»li:l[ai,j,ﬂ,-,j]) i i = 1, e ,I’l},
where py : [P AN ﬁk is the projection onto the first k factors. We write

{Oéi,j,,Bi,j |i=1,...,l’l;j =1,...,mi}={yk|k=1,...,€},
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where y, < yr41 foreachk = 1,...,£ — 1. Note that y; = 0 and y; = w,. Then,
U has the following pair-wise disjoint open refinement:

{plzl(n’]ﬂ=l(ykj—lv Vk,]) | k] = 1,...,€},

where m = max{my,...,m,} and (yo,y1] = {0}. Therefore, dim 2 = 0. This
completes the proof. O

Remark 9. According to Theorem 5.5.3, there exists a 0-dimensional compact
space that contains a 1-dimensional subspace. Thus, in the Subset Theorem 5.3.3,
metrizability cannot be replaced by compactness.

Remark 10. The inequality dim X < Ind X holds for any completely normal (=
hereditarily normal) space X because the “if” part of Theorem 5.3.8 is valid for
such a space, as was pointed out in Remark 6 (at the end of Sect. 5.3).

5.6 Infinite Dimensions

In this section, several types of infinite dimensions are defined and discussed.
According to Theorem 5.2.17, dim X = oo if and only if X has an essential
family of n pairs of disjoint closed sets for any n € N. A space X is said to be
strongly infinite-dimensional (s.i.d.) if X has an infinite essential family of pairs
of disjoint closed sets. Obviously, if X is s.i.d. then dim X = oo. It is said that X is
weakly infinite-dimensional (w.i.d.) if dim X = oo and X is not s.i.d.,? that is, for
every family (A4;, B;);en of pairs of disjoint closed sets in X, there are partitions L;
between A; and B; such that (), Li = 0.

Theorem 5.6.1. The Hilbert cube IV is strongly infinite-dimensional.
Proof. Foreachi € N, let

A ={xel"|x(i)=0} and B, = {x e IV | x(i) = 1}.

Then, (A;, B;);en is essential in IN. Indeed, for each i € N, let L; be a partition
between A; and B;. For eachn € N, let j, : I" — IV be the natural injection
defined by

Jn(x) = (x(1),...,x(n),0,0,...).

Then, foreachi <n, j,~ I(Ly)isa partition between

Jrt (A ={xel" | x(i) =0} and j, '(B) ={x eI"| x(i) =1}.

3In many articles, the infinite dimensionality is not assumed, i.e., w.i.d. = not s.i.d., so f.d. implies
w.i.d. However, here we assume the infinite dimensionality because we discuss the difference
among infinite-dimensional spaces.
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Since (jn_l(A,-),jn_l(Bi));.’=1 is essential in I" (Corollary 5.2.16), we have
iz, j 7 N(Li) # 0, hence (/_, Li # 9. Since I'' is compact, it follows that
mieN L; ?é 9. O

By definition, a space is strongly infinite-dimensional if it contains an s.i.d.
closed subspace. Then, it follows from Theorem 5.6.1 that every space containing a
copy of I is strongly infinite-dimensional. For example, £, £, and RY are s.i.d.*
Moreover, rint @ = |J, cn[—1 + 27,1 =27"N and IV \ (0, )N are also s.i.d.>

It is said that X is countable-dimensional (c.d.) if X is a countable union of
f.d. normal subspaces, where it should be noted that subspaces of normal spaces
need not be normal (cf. Sect.2.10). A metrizable space is countable-dimensional
if and only if it is a countable union of 0-dimensional subspaces, because an f.d.
metrizable space is a finite union of 0-dimensional subspaces by the Decomposition
Theorem 5.4.5.

Theorem 5.6.2. A countable-dimensional metrizable space X with dimX = oo
is weakly infinite-dimensional. In other words, any strongly infinite-dimensional
metrizable space is not countable-dimensional.

Proof. Let (A;, Bi);en be a family of pairs of disjoint closed sets in X. We can
write X = UieN X;, where dim X; = 0. From Theorem 5.2.17 and the Partition
Extension Lemma 5.3.7, it follows that for each i € N, X has a partition L; between
A; and B; such that L; N X; = 0. Then, we have

Ne=(Ne)r(Ux)=U((Ne)ox

ieN \ N jeN
clJwinx)=0.
ieN
Therefore, X is w.i.d. O
According to Theorem 5.6.2, the space €D, . I" and its one-point compactifica-
tion are c.d., hence they are w.i.d. The following space is also c.d. (so w.i.d.):

I?v ={xe o | x(i) = 0 except for finitely many i }.

There exists a w.i.d. compactum that is not c.d. As is easily seen, any subspace of a
c.d. metrizable space is also c.d. However, a subspace of a w.i.d. metrizable space
need not be w.i.d. Such a compactum will be constructed in Theorem 5.13.1.

“Tt is known that £; ~ {, ~ R, where the latter homeomorphy was proved by R.D. Anderson.

3Since rint Q and IV \ (0, 1)Y are not completely metrizable, they are not homeomorphic to RY,
but it is known that rint @ ~ IV \ (0, 1)N.
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Now, we introduce a strong version of countable dimensionality. We say that X
is strongly countable-dimensional (s.c.d.) if X is a countable union of f.d. closed
subspaces. The space €D,y I, its one-point compactification, and the space I} are
s.c.d. Every s.c.d. space is c.d. but the converse does not hold. Let v,, be the subspace
of the Hilbert cube I'' defined as follows:

v = {x €I | x(i) e I\ Q except for finitely many i }.

Theorem 5.6.3. The space v,, is countable-dimensional but not strongly countable-
dimensional.

Proof. Since v, is the countable union of subspaces
{x eIV |x(i) eI\Q fori > n} =~ 1" x I\ Q)",

it follows that v, is c.d. Moreover, dimv,, = oo because I" x {0} C v, for any
neN.

Assume that v, is s.c.d., that is, v, = UneN F,, where each F,, is f.d. and closed
in v,,. Consider the subspace (I\Q)" C v,,. Since (I\ Q)" is completely metrizable,
at least one F, N (I\ Q)" has the non-empty interior in (I \ Q)Y by the Baire
Category Theorem 2.5.1. Then, we have a non-empty open set U in v, such that
Und\QN c F,n @\ Q). Since U contains a copy of every n-cube I", it
follows that dim U = oo, hence U \ F, # @ because dim F, < oo. Since (I\ Q)N
is dense in v,,, we have

(UN@I\Q)\(FENI\NQY) = U\ F)NA\Q" # 0.

which is a contradiction. Therefore, v,, is not s.c.d. O

A collection A of subsets of X is locally countable if each x € X has a neigh-
borhood U that meets only countably many members of A, i.e., card A[U] < Ry.

Basic Properties of (Strong) Countable-Dimension 5.6.4.

(1) If X is a countable union of countable-dimensional subspaces, then X is
countable-dimensional.

(2) If X is a countable union of strongly countable-dimensional closed subspaces,
then X is strongly countable-dimensional.

(3) Every closed subspace of a (strongly) countable-dimensional space is (strongly)
countable-dimensional. For a metrizable space, this is valid for a non-closed
subspace, that is, every subspace of a (strongly) countable-dimensional metriz-
able space is (strongly) countable-dimensional.

The proofs of the above three items are trivial by definition.

(4) A paracompact space X is (strongly) countable-dimensional if each point x €
X has a (strongly) countable-dimensional neighborhood.
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Sketch of Proof. Let P be the property of closed sets in X being c.d. (or s.c.d.).
Apply Michael’s Theorem on local properties (Corollary 2.6.6). To show (F-3), use
the Locally Finite Sum Theorem 5.4.2.

(5) If a paracompact space X has a locally countable union of countable-
dimensional subspaces then X is countable-dimensional.

(6) If a paracompact space X has a locally countable union of strongly countable-
dimensional closed subspaces then X is strongly countable-dimensional.

Sketch of Proof of (5) (and (6)). Let A be a locally countable (closed) cover of X such
that each A € A is c.d. (s.c.d.). Each x € X has an open neighborhood V, in X such
that A[V,] is countable. Then, st(Vy, A) = |J A[V.] is a c.d. (s.c.d.) neighborhood of
xin X.

From Theorem 5.3.8, it follows that any finite-dimensional metrizable space X
contains an n-dimensional closed set for every n < dim X. However, this is not
true for an infinite-dimensional space. Namely, there exists an infinite-dimensional
compactum such that every subset with dim £ 0 is infinite-dimensional. Such a
space is called a hereditarily infinite-dimensional (h.i.d.) space. We will construct
an h.i.d. compactum in Theorem 5.13.4.

Next, we introduce infinite-dimensional versions of inductive dimensions. By
transfinite induction on ordinals « > w, the large transfinite inductive dimension
trind X and the small transfinite inductive dimension trind X are defined as
follows: trind X < w means that Ind X < oo and trInd X < « if each closed
set A C X has an arbitrarily small open neighborhood V' with trlndbd V' < «.
Similarly, trind X < o means that ind X < oo and trind X < « ifeach x € X
has an arbitrarily small open neighborhood V' with trindbd V' < «. Then, we define
trlnd X = o (resp. trind X = o) iftrlnd X < o (resp.trind X < o) and trlnd X £ B
(resp. trind X £ B) for any B < «. It should be noted that trlnd X < w (resp.
trind X < o) implies trlnd X = Ind X < oo (resp. trind X = ind X < 00). Using
transfinite induction, we can show that if trind X = o (resp. trind X = «) and
B < «, then X contains a closed set A with trind A = B (resp. trind A = f).

Lemma 5.6.5. If trInd X = « (resp. trind X = «) and B < «, then X has a closed
set Y such that trindY = B (resp. trind Y = B).

Proof. Because of the similarity, we prove the lemma only for trInd. Assume that
the lemma holds for any ordinal < «. Since trind X £ B, X has disjoint closed
sets A and B such that trind L £ B for any partition L between A and B. On the
other hand, since trlnd X < «, there is a partition L between A and B such that
trind L < «. If B = trInd L, then L is the desired Y. When 8 < trInd L, by the
inductive assumption, L has a closed set Y with trlnd Y = . O

It is said that a space X has large (or small) transfinite inductive dimension
(abbreyv. trInd (or trind)) if trInd X < « (or trind X < «) for some ordinal «.

Proposition 5.6.6. For a space X, the following statements hold:
(1) If X has trInd, then X has trind and trind X < trInd X.
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(2) If X has trind, then every subspace A of X also has trind, where trind A
trind X.

(3) If X has trInd, then every closed subspace A of X has trInd, where trInd A
trInd X.

(4) If X has no trInd, then X has a closed set A with an open neighborhood U such
that the boundary of each neighborhood of A contained in U has no trInd.

(5) If X has no trind, then X has a point x € X with an open neighborhood U such
that the boundary of each neighborhood of x contained in U has no trind.

IA

IA

Proof. Statements (1)—(3) are easily proved by the definitions.
(4): Let P be the collection of pairs (4, U) of closed sets A in X and open sets
U in X with A C U . Suppose that for each (4,U) € P, A has a neighborhood
Via,vy in X such that c1 V4 )y C U and bd V(4 vy has trInd. Take an ordinal a so
that o > trIndbd Vi4,¢ for every (A, U) € P. Then, Ind X < «, so X has trInd.
(5): In the proof of (4), replace the closed sets A in X with points x € X. O

We now prove that the converse of Proposition 5.6.6(1) does not hold.

Theorem 5.6.7. The strongly countable-dimensional space @, 1" has no trInd
but rind @, I" = w.

Proof. Each point of @, .y I" is contained in some I", hence trind P, .y I" < .
Because ind @,y I" = 00, we have trind P, . I" = .

On the other hand, assume that @@, I" has trInd, ie., tlnd P, I" = o
for some ordinal . Then, @ > w because dim @neN I" = oo0. By Lemma 5.6.5,
D, cnI" contains a closed set X with trilnd X = w. For each n € N, let
X, = X NTI". Then, each X, is finite-dimensional, but sup,cnydim X, = oo
because X = @neN X,. By Theorem 5.3.8, we have disjoint closed sets A4, and
B, in X, such that dim L > dim X,, — 1 for any partition L between A4, and B, in
X,. Then, A = P, cy 4n and B = P, oy B are disjoint closed sets in X. Since
trlnd X = w, we have a partition L in X between A and B such that trlnd L < o,
i.e.,dim L < o0. Choose n € N so that dimX,, > dim L + 1. Then, X,, N L is a
partition in X,, between 4, and B, and dim X,, N L < dim L < dim X,, — L. This is
a contradiction. Therefore, €, .y I" has no trInd. O

The above Theorem 5.6.7 also shows that the converse of the following theorem
does not hold.

Theorem 5.6.8. A metrizable space is countable-dimensional if it has trInd.

Proof. This can be proved by transfinite induction. Assume that all metrizable
spaces with trInd < « are c.d. and let X be a metrizable space with trlnd X = «.
By the analogy of Proposition 5.4.6, we can construct a o-locally finite basis I3 for
X such that trlndbd B < « foreach B € B. Let

Y= J{bdB|BeB} and Z=X\Y.
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Then, dim Z < 0 by Theorem 5.3.5. On the other hand, by the assumption, bd B is
c.d. for all B € B. Then, Y is also c.d. by 5.6.4(5) and (1). Therefore, X isc.d. O

The following theorem can be proved in a similar manner (cf. the proof of
Theorem 5.5.2).

Theorem 5.6.9. A separable metrizable space is countable-dimensional if it has
trind. O

Remark 11. In Theorem 5.6.9, it is unknown whether the separability is necessary
or not, that is, the existence of a metrizable space that has trind but is not c.d. is
unknown.

As we saw in Theorem 5.6.7, the converse of Theorem 5.6.8 is not true in general,
but it is true for compacta. Namely, the following theorem holds:

Theorem 5.6.10. A compactum has trInd if and only if it is countable-dimensional.

Proof. Tt is enough to prove the “if” part. Let X be compact and X = |, ¢y Ans
where dim A, < O for each n € N. Suppose that X has no trInd. Then, by
Proposition 5.6.6(4), X has a closed set A with an open neighborhood U such
that the boundary of each neighborhood of A contained in U has no trInd. Since
dimA; < 0, we can use the Partition Extension Lemma 5.3.7 to find a closed
neighborhood V; of A contained in U such thatbd V; N A; = @. Then, X; = bd V]
has no trInd and X; N A; = @. By the same argument, we have a closed set X, C X
that misses A, and has no trInd. Thus, by induction, we can obtain closed sets
X1 D X, D .-+ such that each X, has no trInd and X,, N A, = @. Then,

X=X 04 cJX.n4,) =0

neN neN neN neN

which contradicts the compactness of X. O

Although €, . I" has no trInd (Theorem 5.6.7), the one-point compactification
of @, ey I" has trInd by Theorem 5.6.10. Thus, even if a space X has trInd, it does
not imply that a subspace A of X has trlnd, that is, Theorem 5.6.6(3) does not hold
without the closedness of A.

Theorem 5.6.11. A completely metrizable space has trind if it is countable-
dimensional.

Proof. Let X = (X,d) be a complete metric space and X = |J, ey Ans
where dim A, < O for each n € N. Suppose that X has no trind. Then, by
Proposition 5.6.6(5), X has a point a with an open neighborhood U such that
the boundary of each neighborhood of a contained in U has no trind, where we
may assume that diam U < 27!, In the same way as for Theorem 5.6.10, we can
inductively obtain non-empty closed sets X; D X, D --- such that X, N 4, = @
and diam X,, < 27" for each n € N. Then,

X=X J4c|JX.n4,) =0

neN neN neN neN
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However, the completeness of X implies (1), ey X» 7 @. This is a contradiction. O
Combining Theorems 5.6.9 and 5.6.11, we have the following corollary:

Corollary 5.6.12. A separable completely metrizable space has trind if and only if
it is countable-dimensional. O

The next theorem shows that the “if”” part of Theorem 5.6.11 does not hold
without the completeness.

Theorem 5.6.13. The strongly countable-dimensional space Ilj\} has no trind.
To prove this theorem, we need the following two lemmas:

Lemma 5.6.14. Let X be a subspace of a metrizable space M . Then, every open set
U in M contains an open set U’ in M suchthat X NU' = X NU and X Ncly U’ =
cly (X NU’), hence X Nbdy U’ =bdyx (X NU).

Proof. Take d € Metr M and define
U={xeU|dx,XNU)<dx,X\U)}.

Then, XNU’ = XNU.Evidently, cly (XNU’) C X Ncly U’. Assume that cly (X N
U)=cly(XNU) # X Ncly U, thatis, we have x € X Ncly U' \cly (X NU).
For each ¢ > 0, we have y € U’ so that d(x, y) < %min{e,d(x,X N U)}. Since
diy, X NU) <d(y,X \ U), it follows that

dx,X\U)>d(y,X\U)—d(x,y)
>d(y,XNU)—3d(x, X NU)=1d(x,XNU) > 0.

On the other hand, x ¢ X N U, i.e., x € X \ U, which is a contradiction. O

Lemma 5.6.15. Let M be a separable metrizable space and X C M with
trind X < a. Then, X is contained in some Gg-set X™* in M with trind X* < a.

Proof. Assuming that the lemma is true for any ordinal < o, we will show the
lemma for «. For each i € N, applying Lemma 5.6.14, we can find a countable
open collection &; in M such that X C X; = |JU;, meshlf; < 1/i, and trind X N
bdy U < « foreach U € U;, where X Nbdy U = bdy (X NU) foreach U € U;.
By the inductive assumption, for each U € U;, there is a Gs-set Gy in M such that
X Nbdy U C Gy and trind Gy < «. Then,

X*=(Xxin[) () (GuUM\bdy U))

i€N ieNU€elU;

=N x\UJ U bdw U\ Gu)

ieN ieNUel;
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isa Gg-setin M and X C X*. Forany i € N, every x € X* is contained in some
U € U;. Then,diam X* NU < 1/i and

bdy«(X*NU) =cly+(X*NU)\U
Cc(X*Ncly U)\U =X*Nbdy U C Gy,

which implies trind X* Nbdy U < «. Thus, each point x € X™* has an arbitrarily
small neighborhood V' with trindbdy+ V' < «. Hence, trind X* < «. O

Proof of Theorem 5.6.13. Assume that I§ has trind. According to Lemma 5.6.15,
I? is contained in some Gg-set G in IN that also has trind. Then, G is c.d. by

Theorem 5.6.9. We show that G contains a copy of IN, hence G is s.i.d., which
contradicts Theorem 5.6.2. Thus, we obtain the desired result.

Let G = (yen Uk, where Uy is open in I'. Note that 0 = (0,0,...) € I? C
G C U,.Choosen; € Nand ay,...,a,, € (0,1) so that

{erN‘x(i)fai for i =1,....n} C Uy

Note that []/L,[0,a;] x {0} C II? C U,. According to the Wallace Theorem 2.1.2,

i=1
we can choose n, € Nand a,, 41, ...,as, € (0,1) so that ny > n; and

{xEIN\x(i)fai for i =1,...,n2}CU2.

By induction, we can obtain an increasing sequence n; of natural numbers and a
sequence a; € (0, 1) such that

{erN‘x(i)fai for i =1,....n;} C Uy foreach k € N.

Then, G = (;ey Uk contains [],cy[0, a;] ~ I O

Remark 12. There exists a slightly stronger version of the weak infinite dimension.
We say that X is weakly infinite-dimensional in the sense of Smirnov (S-w.i.d.)
if dim X = oo, and for every family (A;, B;);en of pairs of disjoint closed sets
in X, there are partitions L; between A; and B; such that ﬂ;’:l L; = @ for some
n € N. To distinguish w.i.d. from S-w.i.d. the term “weakly infinite-dimensional
in the sense of Alexandroff (A-w.i.d.)” is used. Obviously, every S-w.i.d. space is
(A-)w.i.d. For compact spaces, the converse is also true, that is, the two notions of
weak infinite dimension are equivalent. It was shown in [32] that the Stone—Cech
compactification of a normal space X is w.i.d. if and only if X is S-w.i.d.°

SRefer to Engelking’s book “Theory of Dimensions, Finite and Infinite,” Problem 6.1.E.
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5.7 Compactification Theorems

Note that every separable metrizable space X has a metrizable compactification.
Indeed, embedding X into the Hilbert cube N (Corollary 2.3.8), the closure of X
in I is a metrizable compactification of X . On the other hand, every n-dimensional
metrizable space can be embedded in an n-dimensional completely metrizable space
as a dense set (Theorem 5.3.4). In this section, we show that every n-dimensional
separable metrizable space has an n-dimensional metrizable compactification and
that every c.d. (resp. s.c.d.) separable completely metrizable space has a c.d. (resp.
s.c.d.) metrizable compactification.

Note. Here is an alternative proof of Corollary 2.3.8. Let X = (X,d) be a separable
metric space with {a; | i € N} a countable dense set. For each i € N, we define a map
fi : X = Iby fi(x) = min{l,d(x,a;)} for each x € X. Then, themap f : X — IV
defined by f(x) = (f;(x));en is an embedding. Indeed, for x # y € X, choose a; so that
d(x,a;) < min{l, %d(x, ¥)}. Then, f;(x) < f;(y) because

fie) =d(x.a;) < 3d(x.y) <d(x,y) —d(x,a;) < d(y.a).

Thus, f is injective. If f is not an embedding, then there are x,x, € X, n € N, and
0 < § < 1 such that lim, oo f(x,) = f(x) but d(x,,x) > § for all n € N. Choose a; so
that d(x,a;) < %8. Then, we have f;(x) < 1. For sufficiently large n € N,

Jixn) = fi(x) = d(xy,a;) — d(x,a;)
>d(x,,x)—2d(x,a;) > 86— %8 = %8,

which contradicts lim, o f; (x,) = f;(x). Therefore, f is an embedding.

Recall that a metric space X = (X, d) or ametric d is said to be totally bounded
provided that, for any ¢ > 0, there is a finite set A C X such that d(x, A) < ¢ for
every x € X, ie., X = (J,c Bua(a,ée). It is now easy to show that X is totally
bounded if and only if, for any ¢ > 0, X has a finite open cover ¢/ with meshl/ < ¢.
Then, every compact metric space is totally bounded. As is easily seen, any subspace
of a totally bounded metric space X is also totally bounded with respect to the metric
inherited from X.

Theorem 5.7.1. A metrizable space is separable if and only if it has an admissible
totally bounded metric.

Proof. If a metrizable space X is separable, then X can be embedded in the Hilbert
cube I, Restricting a metric for I'Y, we can obtain an admissible totally bounded
metric on X.

Conversely, if X has an admissible totally bounded metric d, then X has finite
subsets A;, i € N, so that d(x, 4;) < 2~/ for every x € X. Then, A = UieN A; is
a countable dense subset of X. Hence, X is separable. O
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Theorem 5.7.2 (COMPACTIFICATION THEOREM). Every n-dimensional sepa-
rable metrizable space has an n-dimensional metrizable compactification.

Proof. Let X be a separable metrizable space with dim X = n. By Theorem 5.7.1,
X has an admissible totally bounded metric d. For each i € N, X has a finite open
cover; = {U;; | j = 1,....,m;} such that ord; < n + 1, meshy U; < 27,
and mesh fi/ j/(U;) < 27 fori’ <i and j' < m;s, where f; ; : X — Iis the map
defined by

d(x, X \ Ui,j)

’1?;1 dx, X\ Uix)

Foreachi € N, we defineamap f; : X — I'" by

Jij(x) =

Ji) = (fin(). .o fim (X))

Then, the map f : X — [[;en I defined by f(x) = (fi(x))ien is an embedding.
Indeed, | J,enU; = {U;j | i € N, j < m;} is an open basis for X. Since x € U; ;
if and only if f; ;(x) > 0, it follows that f is injective, and

fWij) = f(X)N{z € [Ten " | 26)(j) > 0}.

The closure X of S(X)in [ ;e I is a metrizable compactification of X. Let p
be the admissible metric for [, . I defined by p(z, 7') = sup; ey 27 pi (2(i), 7 (i),
where p; is the metric for I’ defined by

pi(x.y) =max{|x(j) —y()||j=1.....m} forx,y eI,

Foreachi e Nand j < m;,letW,;; ={z € X | z(i)(j) > 0}. Then, WiiNnf(X)=
f(U;,j)is densein W; ;. Fori’ < i

diam,,, f;/(U; ;) = max {diam f; ;/(U; ;) | j' < mi} <27".

Thus, it follows that diam, W; ; = diam,, f(U; ;) < 2~i Foreachz € )Z, we have
X, € X, n € N, such that f(x,) — z (n — o0). Note that Z’]"’:l Sfij(xn) = L
For eachi € N, we can find j < m; such that f; ; (x,) > 1/m; for infinitely many
n € N. Because f; j(x,) — z(i)(j) (n — 00), we have z(i)(j) > 1/m;, ie., z €
W; ;. Therefore, W; = {W;; | j = 1,....m;} € cov()?) with mesh, W, < 277,
Since W; ; N f(X) = f(U;i;) and f(X) is dense in X, it follows that ord W; =
ord f(U;) = ordU; < n + 1. Since X is compact, we can find i} <ip <---inN
so that W;, > W;, > ---. Then, dim X < n by Theorem 5.3.1. On the other hand,
dim X < dim X by the Subset Theorem 5.3.3. Thus, we have dim X = n. u]

In the above proof, suppose now that X is a closed subset of a separable
metrizable space Y and d is an admissible totally bounded metric for Y. Then,
Y has open covers V; = {V;; | j = 1,...,m;} such that ord V;[X] < n + 1,
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meshy Vi < 277, and meshgy ;/(V;) < 27 fori’ < i and j' < m;, where
gi,j - Y — Iis the map defined by

diy. Y \Vi;)

?;1 d(y, Y\ Vix)

As for f in the above proof, using maps g; ;, we can define an embedding g : ¥ —

[T I The closure ¥ of g(Y) in [,y I is a metrizable compactification of ¥
such that dimcly X = dim X. Furthermore, we can strengthen this as follows:

&i,j ) =

Theorem 5.7.3. Let X be a separable metrizable space and X, X», ... be closed
sets in X. Then, there exists a metrizable compactification X of X such that
dimcly X; = dim X;.

Sketch of Proof. Assume that dim X; = n; < 00. Let d be an admissible totally bounded
metric for X. Construct open covers U; ; = {U;jx | k = 1,..., m(i, j)} of X so that
ordU; ;[X;] < n;+1, meshy U ; < 27~/ and mesh S Ui j) < 27 fori’+j’ <
i+ jandk’ <m(i’, j'), where f; ;i : X — Iis the map defined by

d(x, X\ U, x)
Y dx X\ Uiy
As above, we can now use these maps f; j to define an embedding

fex—=>1] I .

neNi+j=n+1

Jijr(x) =

The desired compactification of X is obtained as the closure X of f(X) in the compactum
l—InGN Hi+j=n+l Im(h/)'

Next, we show the following theorem:

Theorem 5.7.4. Every separable completely metrizable space X has a metrizable
compactification yX such that the remainder yX \ X is a countable union of finite-
dimensional compact sets, hence it is strongly countable-dimensional.

Proof. We may assume that X is a subset of a compact metric space Z = (Z,d)
with diam Z < 1. Since X is completely metrizable, we can write X = ﬂieN G,
where G; D G, D --- are open in Z. Since each G; is totally bounded, G; has a
finite open cover U; with meshlf; < 27'. We can write | J;.yU; = {U, | n € N}.
Let f : Z — I be a map defined by

fl@m) =diz X\U,), neN.
Then, f|X is an embedding. In fact, if x # y € X, there exists some U, such
that x € U, but y € U,. Then, f(x)(n) # 0 = f(y)(n), which implies that
f(x) # f(»). For each x € X and each neighborhood U of x in X, choose n € N
sothat x € U, N X C U. Since

fUNX)=fX)Nn{x el |xn) >0},

f(U) is a neighborhood of f(x) in f(X).
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Let yX be the closure of f(X) in I'. Identifying X with f(X), yX is a
compactification of X. Note that yX C f(Z). If f(z)(n) > O for infinitely many
n € N, then z is contained in infinitely many G;, which implies that z € ("), oy Gi =
X. Thus, we have f(Z)\ f(X) C I}, hence yX \ X C I?. Since X is completely
metrizable, X is Gs in yX, hence yX \ X is F, in yX. Consequently, yX \ X is a
countable union of f.d. compact sets. O

Now, we prove a compactification theorem for (strongly) countable-dimensional
spaces:

Theorem 5.7.5. Every (strongly) countable-dimensional separable completely metriz-
able space has a (strongly) countable-dimensional metrizable compactification.

Proof. The c.d. case is a direct consequence of Theorem 5.7.4. To prove the s.c.d.
case, let X be a separable completely metrizable space with X = [,y Xi, where
each X; isclosed in X, dim X; < oo, and X; C X, C ---. By Theorem 5.7.3, X has
a metrizable compactification Y such that dimcly X; = dim X;. By the complete
metrizability of X, we can write X = ﬂieN U;, where each U; is open in Y and
Y=U DU D--.LetZ =,y Ui Nely X;. Then, X = |, Xi C Z. Since
each U; Ncly X; is an F,-setin Y, Z is a countable union of f.d. compact sets.

We show that Y \ Z = |, ((Y \ cly X;) \ Ui +1), which is an F,-set in Y. For
eachy € Y\Z,letip) = max{i € N |y € U;}. Then, y € U;,\Uj,+1, which implies
y & cly X;, because y ¢ Z.Hence, y € (Y \cly X;,) \ Ujy+1. On the other hand, for
eachz € Z, we havei; suchthatz € U; Ncly X;,.Fori > i,z & (Y \cly X;)\U;+1
because z € cly X;, Ccly X;.Fori <ij,z¢ (Y \cly X;)\U; 4 becausez € U;, C
U;+1. Thus, Z is a Gg-set in a compactum Y, hence it is completely metrizable.

Now, applying Theorem 5.7.4, we have a metrizable compactification Z of
Z such that Z \ Z is a countable union of f.d. compact sets. Then, Zis a
compactification of X and it is a countable union of f.d. compact sets, hence it
is s.c.d. O

5.8 Embedding Theorem

Recall that every separable metrizable space X can be embedded into the Hilbert
cube IN (Corollary 2.3.8). As a finite-dimensional version of this result, we prove
the following theorem:

Theorem 5.8.1 (EMBEDDING THEOREM). Every separable metrizable space
with dim < n can be embedded in 1"t and can hence be embedded in the
Euclidean space R*'*1,

Remark 13. In Theorem 5.8.1, the cube I?"*! cannot be replaced by a smaller
dimensional cube. In fact, there exist n-dimensional compact polyhedra that cannot
be embedded into I?". See Fig. 5.3.
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Fig. 5.3 A I-dimensional polyhedron that cannot be embedded in I?

To prove Theorem 5.8.1, we introduce a new notion. Now, let X = (X, d) be
a compact metric space. Given ¢ > 0, amap f : X — Y is called an e-map if
diam f~!(y) < e foreach y € Y. Then,amap f : X — Y is an embedding if and
onlyif f : X — Y is an e-map for every & > 0.

Lemma 5.8.2. Let f : X — Y be an e-map from a compact metric space X =
(X, d) to a metric space Y = (Y, p). Then, there is some § > 0 such that any map
g: X = Y with p(f, g) <6 is an e-map.

Proof. Since f is a closed map, each y € Y has an open neighborhood V) in ¥
such that diam f~!(V,) < e. Since X is compact, we can choose § > 0 so that
each B,(f(x),28) is contained in some V,, hence diam f ' (B,(f(x),28)) < e.
Letg: X — Y beamapwith p(f.g) <8.Fory € Y and x,x" € g7'(y),

p(f(x), f(x) = p(f(x). g(x)) + p(f(x), g(x")) <28,

which implies that g~ (y) C f~'(B,(f(x),28)). Therefore, diam g~ (y) < ¢, that
is, g is an e-map. O

For spaces X and Y, let Emb(X, Y') denote the subspace of C(X, Y') consisting
of all closed embeddings.

Theorem 5.8.3. Let X = (X,d) be a compact metric space and Y = (Y, p) a
complete metric space. Assume that for each ¢ > 0 and § > 0, everymap [ : X —
Y is §-close to an e-map. Then, every map f : X — Y can be approximated by an
embedding, that is, Emb(X, Y) is dense in the space C(X,Y) with the sup-metric.

Proof. For eachn € N, let G, be the set of all 27"-maps from X to Y. Then, G,, is
open and dense in the space C(X, Y) by Lemma 5.8.2 and the assumption. By the
Baire Category Theorem 2.5.1, Emb(X,Y) = (), ey Gn is also dense in C(X,Y),
hence so is the set of embeddings of X into Y. O

The following is called the GENERAL POSITION LEMMA:

Lemma 5.8.4 (GENERAL POSITION). Let {U; | i € N} be a countable open
collection in R" and A C R" with card A < R such that each n + 1 many points of
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A are affinely independent. Then, there exists B = {v; | i € N} such thatv; € U;\ A
foreachi € N and each n + 1 many points of AU B are affinely independent.

Proof. Assume that vi € Uy, ..., vy € Ui have been chosen so that each n + 1
many points of A U {vy, ..., v} are affinely independent. Using the Baire Category
Theorem 2.5.1 and the fact that every (n — 1)-dimensional flat (= hyperplane) in R”
is nowhere dense in R”, we can find a point

Vk4+1 € Uk+1\U{ﬂ{x1,...,xk} | Xi eAU{vl,...,vk}}.

Then, each n + 1 many points of A U {vy, ..., v} are affinely independent. By
induction, we can obtain the desired set B = {v; | i € N} C R". O

Because every separable metrizable space has a metrizable compactification
with the same dimension by the Compactification Theorem 5.7.2, the Embedding
Theorem 5.8.1 can be obtained as a corollary of the next theorem:

Theorem 5.8.5 (EMBEDDING APPROXIMATION). Let X be a compact metric
space with diim X < n. Then, every map f : X — I*"T! can be approximated
by embeddings, that is, for each ¢ > 0, there is an embedding h : X — I*"*! that
is e-close to f. In particular, every compact metrizable space with dim < n can be
embedded in 1",

Proof. Because of Theorem 5.8.3, it is enough to show that for each ¢ > 0 and
§ > 0,everymap f : X — I?"T!is §-close to an e-map. We have a finite open
cover U of X such that ordd < n + 1, meshi < e, and mesh f(UU) < §/2.
Let K = N(U) be the nerve of U. A canonical map ¢ : X — |K]| is an e-map
because ¢ '(Ok) < U. By the General Position Lemma 5.8.4, we have points
vy € "Y1 U € U, such that d(vy, f(U)) < §/2 and every 2n + 2 many points
VU,+ - -\ VUy, 4, are affinely independent. We can define a map g : |[K| — I*"*! as
follows: g(U) = vy foreach U € U = K© and g is linear on each simplex of K.
Then, g is injective. Hence, h = g¢ : X — I*"*! is an e-map. For each x € X, let
U[X] = {Ul, “eey Uk}. Then,

Ivo; = fF(OI = d(vy,.. f(Up)) + diam f(U;) < 6.

Since B( f(x), ) is convex, it follows that

go(x) € g((Ur,.... U)) = (vu-- .. vy, ) CB(f(x).6).

Therefore, h = g¢ is 5-close to f. O

We generalize a non-compact version of the Embedding Approximation The-
orem 5.8.5. Given U € cov(X), amap f : X — Y is called a U-map if
F7Y V) < U for some V € cov(Y). By Cy(X,Y), we denote the subspace of
C(X,Y) consisting of all /-maps. In the case that X is a compact metric space, let
e > 0 be a Lebesgue number for &/ € cov(X). Then, every /-map is an e-map.
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Conversely, if Y = {B(x,¢) | x € X}, then every e-map f : X — Y is a //-map.
Indeed, f is closed because of the compactness of X. For each y € f(X), take
x, € f71(»). Since f~1(y) C B(xy, ), y has an open neighborhood V, in ¥ such
that f~'(V,) C B(x,,¢). Then,

V={V,|ye f(X)}U{Y\ f(X)} €cov(¥) and f'(V) <U.

Recall that if Y is completely metrizable then the space C(X,Y) with the
limitation topology is a Baire space (Theorem 2.9.4). The limitation topology is
the topology in which {V(f) | V € cov(Y)} is a neighborhood basis of each
f €C(X,Y),” where

V(f)={g €C(X,Y) | gis V-close to }.

In the following two lemmas, let Y be an arbitrary paracompact space.

Lemma 5.8.6. ForeachU € cov(X), Cy(X,Y) is open in the space C(X,Y) with
the limitation topology.

Proof. For each f € Cy(X,Y), f~'(V) < U for some V € cov(Y). Let W €
cov(Y) such that stVW < V. For each g € W(f), f(g7'OW)) < stW < V, so
g7 'W) < f~1(V) < U, which implies g € Cy (X, Y). O

Lemma 5.8.7. For each complete metric space X = (X,d), Emb(X,Y) =
(Mnen Cu, (X, Y), where U, € cov(X) with meshid, < 27". Thus, when X is a
completely metrizable space, Emb(X,Y) is a Gs-set in the space C(X,Y) with the
limitation topology.

Proof. Obviously, Emb(X,Y) C (,ey Cu, (X, Y). Every f € (),en Cu, (X, Y) is
injective. For x, € X, n € N, if (f(x,))sen is convergent, then (x,),ey is Cauchy,
so it is convergent. This means that f is closed, hence f € Emb(X,Y). Thus, we
have Emb(X,Y) = (), ey Cu, (X, Y). |

When Y is completely metrizable, the space C(X,Y) with the limitation
topology is a Baire space by Theorem 2.9.4. Then, by Lemmas 5.8.6 and 5.8.7,
Theorem 5.8.3 can be generalized as follows:

Theorem 5.8.8. Let X and Y be completely metrizable spaces. Suppose that, for
each U € cov(X), Cy(X,Y) is dense in the space C(X,Y) with the limitation
topology. Then, Emb(X,Y) is also dense in C(X,Y). In other words, if every map
f X — Y is approximated by U-maps for each U € cov(X), then every map
f X = Y is approximated by closed embeddings. O

"When Y is paracompact, {V(f) | V € cov(Y)} is a neighborhood basis of each f € C(X,Y)
and the topology is Hausdorff.
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We consider the case that X and Y are locally compact metrizable. Let C* (X, Y)
be the subspace of the space C(X, Y) with the limitation topology consisting of all
proper maps.® Then, the space C”(X,Y) is a Baire space by Theorem 2.9.8. It
should be noted that Emb(X,Y) C C”(X,Y). Moreover, if X is non-compact,
then any constant map of X to Y is not proper, which implies that Emb(X, Y) is
not dense in the space C(X,Y) with the limitation topology because C” (X,Y) is
clopen in C(X, Y') due to Corollary 2.9.7. For an open cover { € cov(X) consisting
of open sets with the compact closures, we have C/(X,Y) C CP(X,Y).

Indeed, for each f € Cy(X,Y), let V be a locally finite open cover of ¥ such that
f~'(V) < U. Each compact set A in Y meets only finitely many V;,..., V, €V,
where each f~!(V}) is contained in some U; € U. Then, f~1(4) C |J;—, clU;. Since
U!_, clU; is compact, f~!(A) is also compact.

The following theorem is the locally compact version of Theorem 5.8.8:

Theorem 5.8.9. Let X and Y be locally compact metrizable spaces. If Ci(X,Y)
is dense in the space C*(X,Y) with the limitation topology for each open cover

U of X consisting of open sets with the compact closures, then Emb(X, Y) is also
dense in C* (X, Y). O

Now, we show the following locally compact version of the Embedding Approx-
imation Theorem 5.8.5:

Theorem 5.8.10 (EMBEDDING APPROXIMATION). Let X be a locally compact
separable metrizable space with dim X < n. Then, Emb(X,R?>"*1) is dense in the
space CP (X, R¥"*1) with the limitation topology, that is, for each open cover U
of R+ every proper map f : X — R>*!is U-close to a closed embedding
h:X — R>»FL

Proof. Because of Theorem 5.8.9, it suffices to show that C;(X,Y) is dense in
CP(X,R?>"*1) for each U € cov(X), that is, for any V € cov(R?>"*1), every proper
map f : X — R?>"T!is V-close to some U-map h : X — R>"+1,

We can find W € cov(R*"*!) such that W is star-finite (ord W < 2n + 2),
cl W is compact for each W € W, and {(st(x,W)) | x € X} < V. By replacing
a refinement with U, we may assume that U/ < f~1(W) (e, fU) < W), U is
countable, and ordi/ < n + 1 (cf. Corollary 5.2.5). Write Y = {U; | i € N} and
choose W; € W, i € N, so that f(U;) C W;. Let K = N(U) be the nerve of U
with ¢ : X — |K| a canonical map. Then, dim K < n and ¢ is a //-map because
¢ ' (Og(U)) C U foreachU eld = K©.

By the General Position Lemma 5.8.4, we have points v; € R?**+! i e N, such
thatv; € W; and every 2n + 2 many points v;, ..., v, , are affinely independent.
Then, we have a PL-map g : |K| — R?"*! such that g(U;) = v; € W, for each
U; € K9 = { and g|o is affine on each simplex o € K. For each pair of simplexes
0.7 € K, g(6® U t©) is affinely independent, which implies that g|o U 7 is an
embedding. Hence, g is injective.

8Tn this case, a proper map coincides with a perfect map (Proposition 2.1.5).
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To prove that g is a closed embedding, let A be a closed set in |K|. Each y €
cl g(A) is contained in some W € W. By the star-finiteness of W, W[W] is finite,
hence g(K©) N W is finite. Since K is star-finite, W N g(o') # @ for only finitely
many simplexes o € K. Let

{o€e K| Wngo)#0} ={o1.....0m}

Since g is injective, it follows that W N g(A) = J'_, W N g(A4 N o;), which is
closed in W, and hence y € g(A). Therefore, g(|K|) is closed in R** 1,

It remains to be shown that the ¢//-map g¢ : X — Y is V-close to f. For each
x € X, take the carrier 0 € K of ¢(x) and let 0® = {U;,,..., U, }. Then,

glp(x)) € g(0) = (g(@ ) = (viy, ..., i)

On the other hand, since x € U;, N---NU;,, we have f(x) € W;, N---NW,,. Then,
it follows that v; , ..., v;, € st(f(x), W). Recall that (st( f(x), W)) is contained in
some V' € V. Then, we have g(¢(x)), f(x) € V. Thus, gg is V-close to f. O

Remark 14. In the Embedding Approximation Theorem 5.8.10, amap f : X —
R?"*+1 cannot be approximated by closed embeddings if f is not proper. Indeed,
A = f7'(a) is not compact for some a € Rt If h : X — Rt isa
closed embedding then /(A) is closed in R*"*!. Because h(A) is non-compact,
it is unbounded, hence sup,. 4 [|2(x) — f(x)| = oo.

We now show the following proposition:

Proposition 5.8.11. Let X be a paracompact space and n € w. Suppose that for
eachlU € cov(X), there exist a paracompact space Y withdimY < n and a U-map
f:X —> Y. Then, dimX <n.

Proof. For eachU € cov(X), we have alf-map f : X — Y such thatdimY < n.
Then, by Theorem 5.2.4, we have V € cov(Y) such that f~!(V) < U and ord V <
n + 1. Note that ord f_l (V) < n+ 1. Therefore, dim X < n by Theorem5.2.4. O

When X is a metric space, using Theorem 5.3.1 instead of Theorem 5.2.4, we
have the following:

Proposition 5.8.12. Let X be a metric space and n € w. Suppose that for each
e > 0, there exist a paracompact space Y with dimY < n and a closed e-map
f:X —>Y.Then dimX <n. O

5.9 Universal Spaces

Given a class C of spaces, a space Y € C is called a universal space for C if every
space X € C can be embedded into Y. The Hilbert cube I'' and RY are universal
spaces for separable metrizable spaces (Corollary 2.3.8) and the countable power



5.9 Universal Spaces 295

J(I)N of the hedgehog is the universal space for metrizable spaces with weight
< card I" (Corollary 2.3.7).°

In this section, we show the existence of universal spaces for metrizable spaces
with dim < n, and for countable-dimensional and strongly countable-dimensional
metrizable spaces.

First, we will show that the space I} is also a universal space for strongly
countable-dimensional separable metrizable spaces.

Lemma 5.9.1. Let X be a separable metrizable space and Xo C X, be closed
sets in X with dim X, < n. Then, there exists amap f : X — 12"%2 such that
Xo = f~10) and f|X\\ Xo is an embedding.

Proof. Applying the Tietze Extension Theorem 2.2.2 coordinate-wise, we can
extend an embedding of X into I?”*! obtained by Theorem 5.8.1 to a map
h:X — P Letg : X — Ibeamap with g7'(0) = X,. We define a map
f X -2 =P x Dby f(x) = (g(x)h(x), g(x)). Then, £~1(0) = X. It
is easy to prove that f|X; \ Xy is injective. To see that f|X; \ X, is an embedding,
let x,x; € X; \ Xo, i € N, and assume that f(x) = lim; f(x;). Since
g(x;) — g(x) and g(x;).g(x) > 0, we have g(x;)~! — g(x)~', which implies
that #(x;) — h(x) in I*"*!, hence x; — x in X. Therefore, f|X; \ Xo is an
embedding. O

Theorem 5.9.2. The space II? is a universal space for strongly countable-
dimensional separable metrizable spaces.

Proof. Let X be an s.c.d. separable metric space. We can write X = (J,cy Xk,
where X; & X, G .-+ are closed in X and dim X} = n; < oo. By Theorem 5.7.3,
X has a metrizable compactification Y such that dimcly Xy = dim Xy = nj. By
Lemma 5.9.1, we have maps f; : ¥ — I”"*2 (k € N) such that fk_l(O) =
cly Xj—1and fi|cly Xi\cly Xi—; is an embedding for each k € N, where X, = 0.
We define amap f : Y — [[iey P2 = IV by f(x) = (fe(x))ken. Then,
S Ujen cly Xk is injective. By definition, f(|_,encly Xk) C I?}. Fory e Y, if
f(y) e II?, then fr4+1(y) = 0 for some k € N, which means that y € cly Xj. Then,
it follows that

fAN I_N = f(ANUgencly Xi) foreach A C Y.

Since f is a closed map, the restriction f|Ugen cly Xi @ Ugencly Xe — I is
also a closed map. Therefore, f|(J;cycly Xk is an embedding, hence so is f|X.
This completes the proof. O

For eachn € w, let

ve = {x €I" | x(i) e I\ Q except for n many i }.'°

9Usually, the phrase “the class of” is omitted.
10Recall that v° denotes the space R \ Q. Then, vy & v° but vy &~ ((—1, 1) \ Q)F ~ v°.
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Then,vo = I\QNCcviCcv, C---Cv, = U, Vn- Recall that v,, is c.d. but
not s.c.d. (Theorem 5.6.3). We will show that v, is a universal space for separable
metrizable spaces with dim < n and that v,, is the universal space for c.d. separable
metrizable spaces. To avoid restricting ourselves to separable spaces, we construct
non-separable analogues to v, and v,,.

Let I be an infinite set. Recall that the hedgehog J(I") is the closed subspace of
£1(I") defined as

J(I) = {xeﬁl([')|x(y)el forall y € I' and
x(y) # 0 foratmostone y € F}

= (J(0.¢,) = | JIe, c ta(1).

yer yer

Then, dim J(I') = 1. Let

P(M) ={xeJ(I) | x(y) e M\ Q) U{0}} = {0} U [ J T\ Qe,.

yer

Observe P(I") = {0} U |,y Pi, where P, = P(I") \ B(0,1/i). Each P; is the
discrete union of 0-dimensional closed sets in P (") that are homeomorphic to I\ Q,
hence dim P; = 0 by the Locally Finite Sum Theorem 5.4.2. Then, dim P(I") = 0
by the Countable Sum Theorem 5.4.1. Now, we define

V(M) = {z e J(N)N | z(i) € P(I") except for finitely many i}.

Observe that v, (1") is the countable union of subspaces that are homeomorphic
to J(I')" x P(I")N. Since dim J(I")" x P(I")Y < n (Product Theorem 5.4.9 and
Theorem 5.3.6) and J(I")" contains a copy of I", we have dim J(I")" x P(I")N = n.
Therefore, it follows that v, (") is c.d. For each n € w, we define

v(IN) = {z e J(NN \ z(i) € P(I'") exceptforn manyi}.

Then, vo(I') = P(D)N Cvi(IN) Cvp(F) C -+ Cvu(T) = U, e, va ().

new
Theorem 5.9.3. For eachn € w, dimv,(I") = dimv, = n.
Proof. We only give a proof of dim v, (I") = n because dim v, = n is similar and
simpler.

We already proved that dimvy(I") = dim P(I')Y = 0. Assuming that
dimv,—;(I') = n — 1 and n > 0, we now prove that dimv,(I") = n. We can

write
M =vw@ul) U Uwqep.

ieN qe((0.11NQ) yel’
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where v, (i, q, y) is a closed set in v, (I") defined as follows:

va(i.q.y) = {z € va(I") | 26)(y) = gq}.

Since {v,(i,q,y) | v € I} is discrete in v,(I") and v,(i,q,y) ~ vy,—1(I"),
UyEF v, (i, q,y)is an (n — 1)-dimensional closed set in v, (I") by the Locally Finite
Sum Theorem 5.4.2. Then, dimv,(I") < n by the Countable Sum Theorem 5.4.1
and the Addition Theorem 5.4.8. Since v, (I") contains an n-dimensional subspace
J(I')'x P(I')N, we have dim v, (I") > n, hence dim v, (I") = n. The result follows
by induction. O

We will show that the space v, (") is a universal space for metrizable spaces with
dim < n and weight < card I', and that the space v, (I") is a universal space for
c.d. metrizable spaces with weight < card I".

Lemma 5.9.4. Let X be a metrizable space and Xy, X1,--- C X withdim X,, <0.
Suppose that Lo = @, Ly,..., Ly,—1 are closed sets in X satisfying the following
condition:

(*) No x € X, are contained inn + 1 many sets L;.

Then, for each pair (A, B) of disjoint closed sets in X, there exists a partition L,
in X between A and B that does not violate the condition (x).

Proof. Let Cy = Xy. Forn < m, define
C,,:U{Xnﬂﬂ’}zlL,-j |0<ii<iy<-<ip<m}.

Then, C; N C; = @ fori # j by (x).Let D = U?’:_ol C;. Foreachn < m —1,
Uf";nl 41 G is contained in the closed set

FZU{m;Hz—llLl/ |Ofll <i2<---<in+1<m}.

Note that F N [ J/_, X; = @ by (x). For this reason, | J!_, C; = D \ F is open in
D. Therefore, each C, = | J/_, C; \ |J/Z, Ci is an F,-setin D. It follows from the
Subset Theorem 5.3.3 and the Countable Sum Theorem 5.4.1 that dim D < 0.
Using Theorem 5.2.17 and the Partition Extension Lemma 5.3.7, we obtain a
partition L,, between A and B such that L,, N D = . Condition (x) is trivial
forn > m. Forn < m, if x € X,, is contained in n many sets L; (i < m), then
x € C, C D, which implies x ¢ L,,. Therefore, condition (x) is satisfied. O

Lemma 5.9.5. Let X be a metrizable space and Xy, X1,--- C X withdim X,, <0
and let a < b € R. Then, for any sequence (A;, B;)ien of pairs of disjoint closed
sets in X, there exist maps f; : X — [a,b], i € N, such that A; = f(a),
B: = f71(b), and

card{i e N| f;(x) € (a,b) NQ} <n forx € X,.
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Proof. Let{q; | j € N} = (a,b)NQ, whereq; # q; ifi # j.Foreach j € N, let
ii'<j.i#i'},
and define a; = g; —27/7'8; and b; = q; +27/7'5;. For each i € N, let

fio : X — [a,b] be amap with 4; = f;'(a) and B; = f;;'(b). We construct
maps f; ; : X — [a,b],i,j € N, so as to satisfy the following conditions:

(1) 4; = f;'(a) and B; = f75'(b);
2 fij(x) # fij1(x) = fij1(x). fi;(x) € (a;,b;)
(e, fijlfizhi(a.a;]U by, B)) = fij—1l fi5h1 (e a;] U b, b))

(3) No x € X, are contained in n 4+ 1 many ]’ifjl(qj).

8 :min{q,- —a,b—gqi. g —qi'|

For each (i, j) € N2, let k(i, j) = %(i +j—2)i+j—1)+ j € N. Then,
(i, ) is the k(i, j)-th element of N? in the ordering

1,1),2,1),(1,2),(3,1),(2,2),(1,3),....

By induction on k(i, j), we construct maps f; ; satisfying conditions (1), (2), and
(3) above. Assume that fjs ;- have been defined for k (i, j') < m. We will define
fij for k(i, j) = m. Applying Lemma 5.9.4 to Ly = @, Ly’ 1) = ﬁ:},(qj/),
k@', j" <m, A= f'(a,a;]),and B = f1([b;,b]), we obtain a partition
L,, in X between A and B such that

(*x) Nox € X, are contained in #» + 1 many sets L;.

Then, we can easily obtain a map f; ; : X — [a,b] such that L, = fl_]1 (¢;) and
fijlAU B = f; ;_1|A U B, for which conditions (1), (2), and (3) are satisfied.

Since b; —a; = 2778, it follows from (2) that | f; ; (x) — fi j—1(x)| < 277§,
for each x € X. Then, (fi ;) en uniformly converges to a map f; : X — [a,b]
and | f; ;(x) — fi(x)| < 27/§;. Foreach x € 4;, fi(x) = limju fij(x) = a
by (1). For each x € X \ A4;, we have k = min{j € N | fio(x) > a;} because
fio(x) > a = infjena;. Then, fio(x) = fii(x) =+ = fix—1(x) > ar and
fix(x) > ar = qr — 275718, hence

fix) = fire(x) =258 > qx — 8 = qx — (qx —a) = a.
Therefore, A; = fi_l (a). Similarly, we have B; = fl-_l(b).
For each x € X, let

M = {i eN ‘ fi.j(x) = ¢q; forsome j EN}.

Then, M has at most n many elements by (3). Fori € N\ M and j € N, let

K=1{k>j| fix(x) # fi,j(x)}.If K =0, then fi(x) = f; ;(x) # g, because
i ¢ M. Otherwise, let k = min K > j > 1.Since fix—1(x) = fi j(x) # fix(x),
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we have a; < fix(x) < bg by (2). Then, | fix(x) —g;| > 8 — 27%718;. On the
other hand, | f; (x) — fix(x)| < 27%+18;. Therefore,

| /i) =g = | fin(x) —q;] = [fi (x) = fie(X)]

> 6 — 2_k_15k — 2_k+15k > 4115]‘ > 0.
Thus, card{i | fi(x) € (a,b) NQ} < n forx € X,,. O

Proposition 5.9.6. Let X be a metrizable space and I" be an infinite set with
w(X) < card I". For each sequence Xy, X1,--- C X with dim X, < O, there exists
an embedding h : X — J(I')N such that h(X,)) C v,(I").

Proof. By Corollary 2.3.2, X has an open basis B = |, ¢y Bi, where each B; is
discrete in X. Then, as is easily observed, card B; < w(X) < card I', hence we
have I; C I',i € N, such that cardB; = card[; and I N[} = @ if i # j.
For each i € N, we write B; = {B, | y € I}}, where B, # B, if y # y’.
Let 4, = X\ Uyer,- B, . We apply Lemma 5.9.5 to obtain maps f; : X — [0, 1],
i € N, such that A; = f;7'(0) and card{i € N | fi(x) € (0,1) N Q} < n for
x € X,,. We define h; : X — J(I') by

filx) ifxeB,,yel;,

@) 0 otherwise.
In other words, h;(x) = fi(x)e, forx € By, y € I}, and h;(x) = 0 for x € 4;.
The desired embedding 2 : X — J(I')Y can be defined by 2(x) = (h;(x))ien.
Indeed,if x # y € X,thenx € B, and y ¢ B, forsome y € I;. Then, h; (x)(y) =
fi(x) > 0 = h;j(»)(y). Thus, h is injective. Foreach y € I}, U, = {z € J(IN)" |
z(i)(y) > 0} is open in J(I")". Observe that #(B,) = U, N h(X). Therefore, & is
an embedding of X into J(I")". For x € X,,,

card{i e N | hi(x) € P(I')} = card{i e N| fi(x) € Q\ {0}} <n.
Then, it follows that 2(X,,) C v, (I"). O

Theorem 5.9.7. Let I' be an infinite set. The space v,(I") is a universal space for
metrizable spaces X with w(X) < cardI" and dim X < n, and the space v, (I")
is a universal space for countable-dimensional metrizable spaces X with w(X) <
card I'.

Proof. We can write X = Uiew X;, wheredimX; < Oand X; = @ fori > n if
dim X = n. The theorem follows from Proposition 5.9.6. O

Let X be a separable metrizable space with dimX < n. In the proof of
Proposition 5.9.6, we can take a B; with only one element. Then, replacing I with
[a,1] where a € I\Q, themap & : X — [a, 1]N C IN defined by A(x) = (f;(x))ien
is an embedding such that #(X,) C v,. Similar to Theorem 5.9.7, we have the
following separable version:
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Theorem 5.9.8. The space v, is a universal space for separable metrizable spaces
with dim < n and the space v, is a universal space for countable-dimensional
separable metrizable spaces. O

Next, recall that I?} is s.c.d. We now define

K, = U v X ((0,1]" x {0}) C v, x I}.1!

neN

For an infinite set I", we define

Ko(I) = | va(I") x ((0.1]" x {0}) C vy () x I} € J(IM)" x I,

neN

Then, K, is separable and w(K,(I")) = card I". Moreover, K, (I") and K, are
s.c.d. Indeed, for (x, y) € K, (I'),

n

(x,y) € [ Jvi@) x (0, 1] x {0}) & y(n + 1) =0.

i=1

Hence, |J/_; vi(I") x ((0,1]" x {0}) is a closed set in K, (I"), which is finite-
dimensional by the Product Theorem 5.4.9 and the Addition Theorem 5.4.8.

Theorem 5.9.9. Let I" be an infinite set. The space K, (I") is a universal space for
strongly countable-dimensional metrizable spaces X with w(X) < card I'.

Proof. We can write X = UieN F;, where each F; isclosedin X,dimF; <i —1,
and F; C F;4 for eachi € N. By the Decomposition Theorem 5.4.5, we have a
sequence X1, X3, - C X such that dim X,, < 0 and

FF=X, Ah\Fi=XUXs, Gh\FK=X,UX;UXg, ...,
ie, F; \ Fi_ = UI;(;)k(i—l)+l Xy, where Fy = @and k(i) = %i(i + 1). We apply
Proposition 5.9.6 to obtain an embedding & : X — J(I")" such that #(X,) C

v,(I") foreach n € N. Foreachi € N, let f; : X — Ibe a map with f,7'(0) =
F;_,and defineamap f : X — IV as follows:

f(.X) = (fl(x)v f2(-x)v f2(x)v f3(x)v f3(x)v f3(x)v s )a

where each f; (x) appears i times, i.e.,pr, f = f; fork(i—1)+1 <n < k(i). Now,
we can define the embedding g : X — J(I')Y x IN by g(x) = (h(x), f(x)). For
eachx € X, choosei € Nandk(i —1)+1 <n <k(i)sothatx € X, C F;\ F;_;.
Then, h(x) € h(X,) C va(I") C v (). Since x € F; \ Fi_y, it follows that

'This is different from the usual notation. In the literature for Dimension Theory, this space is
represented by K, (8y) and K|, stands for I?.
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fj(x) >0forj <iand fj(x) =0forj >i+ 1,ie.,pr;f(x)>0forj < k(i)
and pr; f(x) = 0 for j > k(i) + 1. Therefore, f(x) € (0, 11F® x {0} c IV, Thus,
we have

g(x) = (h(x), £(x)) € v (") x ((0, 11F) x {0}) C K, (D).
Consequently, X can be embedded into K, (I"). O

Similarly, we can obtain the following separable version:

Theorem 5.9.10. The space K, is a universal space for strongly countable-
dimensional separable metrizable spaces. O

5.10 Nobeling Spaces and Menger Compacta

In this section, we shall construct two universal spaces for separable metrizable
spaces with dim < n, which are named the n-dimensional Nobeling space and the
n-dimensional Menger compactum.

In the previous section, we defined the universal space v,,. In the definition of v,,,
we replace I with R?"*! to define the n-dimensional Nobeling space v”, that is,

V' ={xe R2+1 \ x(i) € R\ Q except for n many i}
= {x e R*"*! | x(i) € Q at mostn many i},

which is the n-dimensional version of the space of irrationals v° = R \ Q. Similar
to Theorem 5.9.3, we can see dim v = n. Observe

R\ " = {x c R21+! | x(@@) e Q atleastn + 1 manyi}s

which is a countable union of n-dimensional flats that are closed in R?"*!, Then, v"
is a Gg-set in R?" !, hence it is completely metrizable. Thus, we have the following
proposition:

Proposition 5.10.1. The space V" is a separable completely metrizable space with
dimv” = n. O
Moreover, v" has the additional property:

Proposition 5.10.2. Each point of v" has an arbitrarily small neighborhood that
is homeomorphic to v". In fact, v" N ]‘[f’;fl(ai,b,-) ~ V" for each a; < b; € Q,
i=1,....2n+ 1.

Proof. Let ¢ : R — (—1, 1) be the homeomorphism defined by

-1 _ N
(‘Pi (s) = 1= |s|)

t
14 |t

pt) =
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We define a homeomorphism / : R2" ! — [T (a;, b;) as follows:

h(x) = (hi(x(1)), ... . houg1(x2n + 1))),
where i; : R — (a;, b;) is the homeomorphism defined by

b,’ —da;
2

Since /;(Q) = Q N (a;, b;), we have h(v") = v N[22 (as, by). O

i=1

hi(t) =

() + 1) +a;.

We will show the universality of v".

Theorem 5.10.3. The n-dimensional Nobeling space V" is a universal space for
separable metrizable spaces with dim < n.

According to the Compactification Theorem 5.7.2, every n-dimensional sep-
arable metrizable space X has an n-dimensional metrizable compactification.
Theorem 5.10.3 comes from the following proposition:

Proposition 5.10.4. For each locally compact separable metrizable space X with
dim X < nandU € cov(R*'*), every proper map f : X — R*'*1is U-close to

a closed embedding g : X — v". If X is compact, then R**T! can be replaced by
12n+1.

This can be shown by a modification of the proof of the Embedding Approxima-
tion Theorem 5.8.10 (or 5.8.5). To this end, we need the following generalization of
Theorem 5.8.9:

Lemma 5.10.5. Let X and Y be locally compact metrizable spaces and Yy =
(Vyen Gn C Y, where each G, is open inY (hence Yy is a Gs-set in Y ). Suppose
that for each n € N and each open cover U of X consisting of open sets with the
compact closures, Cy(X, G,) is dense in the space C*(X,Y) with the limitation
topology. Then, Emb(X, Yy) is dense in CP (X, Y).

Proof. Observe that
Emb(X, Yo) = Emb(X, Y) N C(X, Yo)
= () Cu,(X.Y)N [ C(X.G,) = [ Cu, (X. Gy).

neN neN neN

where U, € cov(X) consists of open sets with the compact closures and mesh 4, <
27", By the assumption, each Cy(X, G,) is open and dense in C”(X,Y). Since
c? (X, Y) is a Baire space by Theorem 2.9.8, we have the desired result. O

Proof of Proposition 5.10.4. According to the definition of v", we can write

V= R2n+1 \ U H; = ﬂ(R2n+l \ Hi)s

i€N i€N
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Fig. 5.4 R, andI\ Ry

where each H; is an n-dimensional flat. Because of Lemma 5.10.5, it suffices to
show that, for each n-dimensional flat H in R>" ™! and each U € cov(X) consisting
of open sets with the compact closure, Cy¢(X,R?**™! \ H) is dense in the space
CP (X, R?>"*1) with the limitation topology.

In the proof of 5.8.10, we can choose v; € R**T!i € N, to satisfy the additional
condition that the flat hull of every n 4 1 many points v;,...,v;, 41 misses H (i.e.,
fi{vi;, ..., vi,. 3 N H = ). Thus, we can obtain the PL embedding g : [K| —
R+ such that g(|K|) N H = @. The map g : X — R?>"*1\ H is a Y{/-map that
is V-close to f.

If X is compact, we can replace R*"*! by I?"*! to obtain the additional
statement. O

Remark 15. Tt is known that if X is a separable completely metrizable space with
dimX < n, then every map f : X — v”" can be approximated by closed
embeddings /2 : X — v". Refer to Remark 14.

Before defining the n-dimensional Menger compactum, let us recall the construc-
tion of the Cantor (ternary) set ;.°. We can geometrically describe u° C I as follows:
Foreach k € N, let

3=l
Re= | (m/3 ' +1/3  m/3" +2/3%) c L

m=0

Then, 1® = Nen@ \ Rk) = I\ Uyen Ri (Fig. 5.4). Observe that

k .
ZZXS—?)‘XEZIC}.

i=1

k
(AN R) =[0.37¥] + V. where V) =

i=1

Moreover, {37%u’ +v|v e v} is an open cover of 1° with ord = 1, where

p 37 v = p 0 (0,375 + v)
=N (=371 378 £ 37k 4y,
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Ry R,

Fig. 5.5 PP\ M} and PP \ M;

A7

Fig. 5.6 M} and M;

As the n-dimensional version of 11°, the n-dimensional Menger compactum ;.
is defined as follows: For each k € N, let

M+ = {x e """ | x(i) € I\ Ry except for n many i}
= {x e P! | x(i) € Ry atmostn manyi},
where it should be noted that

I\Mkz”'H = {x e t! \ x(i) € Ry atleastn + 1 manyi}.

Now, we define " = (\;en Mkz"+1. Since each Mkz"+1 is compact, p” is also
compact. See Figs. 5.5-5.7.

Proposition 5.10.6. For eachn € N, dim " = n.
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Fig. 5.7 M} N M;

Proof. Since i contains every n-face of I* 1, it follows that dim " > n. We can
apply Proposition 5.8.12 to see dim i < n. We use the metric d € Metr(I>"*)
defined by

d(x,y) = max{|x(i) — y(@)| | i = 1,....2n + 1}.

For each ¢ > 0, choose k € N so large that 2/3% < . Let K be the cell complex
consisting of all faces of (2n + 1)-cubes

2n+1 m 1 m
L i 2n+1 _ k
H[W’F]CI” ,mp=1,...,3"

i=1

Since p" C Man+1, it suffices to construct an e-map of Mkz"+1 to | K|, where
K™ is the n-skeleton of K.

Foreach C € K withdimC > n,letr¢c : C \{(:‘ } — 0C be the radial retraction,
where C is the barycenter of C and dC is the radial boundary of C. Observe that
Mkz"+1 NC c C\{C}and rc(Mkz”+1 NnC)c Mkz"+1 N dC. Foreachm > n, we
can define a retraction

For Mk2n+l n |K(m+1)| — Man-H N |K(m)|

by rm|C = rc for each (m + 1)-cell C € K. Since |K™| C MZ"*!, we have a
retraction

r="r, Ty ]14](2”4'1 N |K(”)|

By construction, r~!(x) C st(x, K) for each x € |K®™)|. Since mesh K =
1/3k=1 < ¢/2, it follows that r is an e-map. O

Foreachk € N, u* ~ 37%u" C [0,37%]. Let

an — {V = 3—kZ2n+1 i [O, 3—k]2n+1 +vC Mk2n+l}-
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Then, Mkz"+1 = Uver” ([0, 37%7"*1 + v) and p" = 37¥u" + V". Thus, we have
the following proposition:

Proposition 5.10.7. Every neighborhood of each point of ("' contains a copy of u".
O

We will show the universality of p”.

Theorem 5.10.8. The n-dimensional Menger compactum " is a universal space
for separable metrizable spaces with dim < n.

Proof. By Theorem 5.10.3, it suffices to prove that every compact set X in I>"*1 N
V" can be embedded in u”.
First, note that

X C {x e Prt! | x(i) # 1/2 except forn rnanyi}.
Then, we have a rational ¢; > 0 such that
X C {x e P! \ x(@@) eI\ Rf( except for n manyi},

where RY = (1/2—¢q1,1/2+¢q1) C (0,1). Let A¥ = {1/2—qi1,1/2+ q:} be the
set of end-points of Rf( and let g; : I — I be the PL homeomorphism defined by
210) =0, g1(1) = Land g (1/2 % q) = 1/2 % 1/6,ie., g1(A¥) = {1/3,2/3}.
Observe that |g;(s) —s| < 37! forevery s € L

Let B} be the set of mid-points of components of I\ A, i.e., B} = {1/2,1/2>—
q1/2.3/2> + q1/2} C Q. Note that

X C{x ePP"*"| x(i) eI\ B exceptforn manyi}.

Then, we have a rational g, > 0 such that 2¢g; is smaller than the diameter of each
component of I\ A¥, and

X C {x e P! ‘ x(@@) eI\ Rf except for n manyi},

where R = Jyepx (b—¢2,b+42). Let A7 be the set of end-points of components
of RY and let g, : I — I be the PL homeomorphism defined by g,(0) = 0,
g(1) =1, gAY UAY) = {m/3* | m =1,...,3% — 1}. Then, g>|A{ = g1|Af
and |g2(s) — g1(s)| <372 foreverys € L

Let B;' be the set of mid-points of components of I\ (A{ UA). Then, By C Q.
Since

X C{x eP"*"| x(i) eI\ By exceptforn many i},

we have a rational g3 > 0 such that 2¢g3 is smaller than the diameter of each
component of I\ (Af U Af), and

X C {x e P! \ x(@@) eI\ R? except for n many i},
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Fig. 5.8 Homeomorphisms g1, g2, ...

where Ry’ = yepx (b—¢2,b+42). Let A7 be the set of end-points of components

of RY and let g3 : I — I be the PL homeomorphism defined by g3(0) = 0,
g3(1) =1,g3(AFf UAS UAY) = {m/3° |m =1,...,3°—1}. Then, g3|Af UAS =
g2|AT U A5 and |g3(s) — g2(s)| < 373 forevery s € I — (Fig. 5.8).

By induction, we obtain RY, A¥ C I (k € N) such that RY is the union of 3¢~
many disjoint open intervals, A]f is the set of all end-points of components of R,
each component of R]f is contained in some component of I \ A,f_l, and

X C {x e P! \ x(@@) eI\ R,f except for n manyi}.
Hence, X is contained in

Wy = ﬂ {x e P! ‘ x(i) € I\ R exceptforn many i }.
keN

At the same time, we have the PL homeomorphisms g : I — I, k € N, such that
g0 =0, g () =1, g&(Uis, AF) = {m/3¢ [m=1,....3 -1},
k—1

U AiX and |gk(s) — gk_l(s)| <37% for every s € L.

i=1

k—1

U AY =gy

i=1

8k

Then, (gk)ken uniformly converges to amap g : I — L Since 4 = |J2, A is
dense in T and g maps A onto {m /3% | k € N, m = 1,...,3%—1} in the same order,
it follows that g is bijective, hence g is a homeomorphism. Let A : 1"+ — 27 +!
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be the homeomorphism defined by A(x) = (g(x(1)),...,g(x(2n + 1))) . As is
easily observed, h(uy) = p', hence h(X) C u". O

We also have the following theorem:

Theorem 5.10.9. Let X be a compactum with dim X < n. Then, every map [ :
X — W' can be approximated by embeddings into |\".

Proof. By Proposition 5.10.4, f can be approximated by embeddings f’ into
M kz” 1N v” for an arbitrarily large k € N. Replacing X by f/(X) in the proof
of Theorem 5.10.8, we can take RiX = R; and g; = id fori < k. Therefore, f can
be approximated by embeddings like /2 f”. O

5.11 Total Disconnectedness and the Cantor Set

A space X is said to be totally disconnected provided that, for any two distinct
points x # y € X, thereis aclopenset H in X suchthatx € H buty ¢ H (i.e., the
empty set is a partition between any two distinct points). Equivalently, for each x €
X the intersection of all clopen sets containing x is the singleton {x}. According to
Theorem 5.3.8, the 0-dimensionality implies the total disconnectedness. We say that
X is hereditarily disconnected if every non-degenerate subset of X is disconnected
(i-e., every component of X is a singleton). Clearly, the total disconnectedness
implies the hereditary disconnectedness. Therefore, we have the following fact:

Fact. Every O-dimensional space is totally disconnected, and every totally discon-
nected space is hereditarily disconnected.

The converse assertions are true for compact spaces. To see this, we prove the
following lemma:

Lemma 5.11.1. Let X be compact, x € X, and C be the intersection of all clopen
sets in X containing x.

(1) For each open neighborhood U of C in X, there is a clopen set H in X such
thatC C H C U.
(2) C isthe component of X containing x.

Proof. (1): Let ‘H be all the clopen sets in X containing x. Since X \ U is compact
and {X \ H | H e H} isits open cover in X, there are Hy, ..., H, € H such that

X\Uc|JX\H)=Xx\()H.

i=1 i=1

Thus, we have H = ()i, Hi e HandC C H C U.
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(2): Since C clearly contains the component of X containing x, it suffices to
show that C is connected. Now assume that C = A U B, where A and B are
disjoint closed sets in C and x € A. From the normality, it follows that there are
disjoint open sets U and V in X suchthat A C U and B C V. By (1), we have a
clopen set H in X suchthat C C H C U U V. Since H N U is open in X and
H\Visclosedin X, HNU = H \ Visclopenin X. Then,C C HNU C U,

which implies that B C C NV = @. Thus, C is connected. O
Theorem 5.11.2. For every non-empty compact space X, the following are equiv-
alent:

(a) dimX =0;

(b) X is totally disconnected;
(c) X is hereditarily disconnected.

Proof. The implications (a) = (b) = (c) follow from the above Fact. Here, we will
prove the converse implications.

(c) = (b): For each x € X, the intersection of all clopen sets in X containing
x is a component of X by Lemma 5.11.1(2). It is, in fact, the singleton {x}, which
means that X is totally disconnected.

(b) = (a): Let U be a finite open cover of X. Each x € X belongs to some U €
U. Because of the total disconnectedness of X, the singleton {x} is the intersection
of all clopen sets in X containing x. By Lemma 5.11.1(1), we have a clopen set H,
in X such that x € H,, C U. From the compactness, it follows that X = U;’=1 H,,
for some x1,...,x, € X. Let

Vi=HyVo=Hy,\Hy,....V, = H, \ (Hy, U---UH,,_)).

Then, V = {V1,...,V,} is an open refinement of ¢/ and ord V = 1. Hence, we have
dimX = 0. O

The implications (¢) = (b) = (a) in Theorem 5.11.2 do not hold in general.
In the next section, we will show the existence of nonzero-dimensional totally
disconnected spaces, i.e., counter-examples for (b) = (a). Here, we give a counter-
example for (c) = (b) via the following theorem:

Theorem 5.11.3. There exists a separable metrizable space that is hereditarily
disconnected but not totally disconnected.

Example and Proof. Take a countable dense set D in the Cantor set 1° and define
X=DxQUu’\D)xR\Q) c u’xR.

Let p : X — u° be the restriction of the projection of 1 x R onto .

First, we show that X is hereditarily disconnected. Let A C X be a non-
degenerate subset. When card p(4) > 1, since u is hereditarily disconnected,
p(A) is disconnected, which implies that A4 is disconnected. When card p(A) = 1,
AC p(A)xQ~QorAC p(A) xR\ Q) ~ R\ Q. Since both Q and R \ Q are
hereditarily disconnected, A is disconnected.
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Next, we prove that X is not totally disconnected. Assume that X is totally
disconnected and let xo € D C u°. Because (xo,0), (xo, 1) € X, we have closed
sets Fypand Fyin u® xR suchthat X ¢ FoUF, FbNFiNX =@, and (xg,i) € F;.
Then, Fo N X and F; N X are clopen in X. Choose an open neighborhood Uj of x
in 110 so that

(UsND)x{it=Uyx{i}nX CF fori =0,1.

Since F; is closed in u® x R and D is dense in u, it follows that Uy x {i} C F;.
Foreachr € Q, let

Cr={xel|(x,r)e KN F}.

Then, each C, is closed and nowhere dense in Uy. Indeed, for each x € Uy \ C,,
because (x,r) &€ Fo N Fy and Fy N Fy is closed in ,uo x R, x has a neighborhood
U in Uy suchthat U x {r} N Fo N F; = @. Then, (y,r) & FyN Fy forall y € U,
ie., UNC, =@,s0C, isclosed in Uy. Since Fy N F;y N X = @ and (x,r) € X for
x € D, we have C, C Uy \ D, which implies that C, is nowhere dense in U.

We will show that Uy \ D = UrEQ C,. Then,
b=cu U o
reQ xe€DNUy

which is contrary to the Baire Category Theorem 2.5.1. Thus, it would follow that
X is not totally disconnected. For each x € Up \ D,

{(x} X R = clogix} x (R\ Q) C cloxg X C FyU F.

Ifx ¢ UrEQ C,,then Fp N F;1 N {x} x Q = @ because x &€ C, forall r € Q.
Therefore,

FENFN{x}xR=FRNFN{X}IxR\Q CFNFNX=42.

Because (x,i) € F; N {x} x R, this contradicts the connectedness of R. Therefore,
X € Ure@ C, and the proof is complete. O

In the remainder of this section, we give a characterization of the Cantor set pLO
and show that every compactum is a continuous image of u°. Recall that u° ~ 2N,
where 2 = {0, 1} is the discrete space of two points. In the following, ;° can be
replaced by 2N (cf. Sect. 1.1).

Theorem 5.11.4 (CHARACTERIZATION OF THE CANTOR SET). A space X is
homeomorphic to the Cantor set u° if and only if X is a totally disconnected
compactum with no isolated points.

Proof. It suffices to show the “if” part. Since u’ ~ 2N, we will construct a
homeomorphism# : 2V — X .Letd € Metr(X) withdiam X < 1. First, note that

(*) Each non-empty open set in X can be written as the disjoint union of an
arbitrary finite number of non-empty open sets.
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In fact, because X has no isolated points, each non-empty open set U in X is non-
degenerate and dimU = 0 by Theorem 5.11.2 and the Subset Theorem 5.3.3. We
apply Theorem 5.2.3 iteratively to obtain the fact (x).

Using the fact (), we will construct a sequence 1 = ng < n; <--- in Nand

En={E(x)|xe€2"} ecov(X), neN,
so that

(1) Each E(x) € &, is non-empty, so non-degenerate;

(2) mesh&,, <27/;

(3) EX)NE(y)=0ifx #y €2"; and

4) E(x)=Ex1),...,x(n),00 U E(x(1),...,x(n),1) forall x € 2".

By (%), we have & = {E(0), E(1)} € cov(X) such that £(0) and E(1) are non-
empty, £(0) N E(1) = @, and mesh & < diam X < 1 = 2°. Assume that 1 = ng <
-+ < nj—yand &,...,&,_, have been defined. For each x € 2"—!, E(x) € &,,_,
is a compactum as a clopen set in X. Since dim E(x) = 0, E(x) has a finite open
cover U, with ord/y = 1 and meshif, < 2% (Theorem 5.3.1). Choose m € N so
that card/, < 2™ for each x € 2"—'. Using the fact (x), as a refinement of U, we
can obtain

E=1{E(x.y) | y €2"} € cov(E(x)),

where E(x,y) # @ for every y € 2™. Then, mesh&, < 27'. We define n; =
m—+n;—; > n;—; and

En = U Ec={E(x.y) | (x,y) €2 x 2" = 2"},

xe2i—1

Thus, we have &, € cov(X) with mesh&,, < 277. By the downward induction
using formula (4), we can define &,,—1, ..., &y, _,+1 € cov(X). Therefore, we obtain
€y, En; € cov(X).

For each x € 2V, (N,cxy E(x(1),...,x(n)) # O because of the compactness
of X. Since

lim diam E(x(1),...,x(n)) =0,
n—od
we can define /2 : 2N — X by

{(h(x)} = () Ex().....x(n)).

neN

To show that / is a homeomorphism, it suffices to prove that / is a continuous
bijection because 2" is compact. For each ¢ > 0, choose i € N so that 277 < &.
Then, mesh &,, < ¢ by (2). For each x,y € 2N, x(1) = y(1),...,x(n;) = y(n;)
imply A(x),h(y) € E(x(1),...,x(n;)) € &, so d(h(x),h(y)) < e. Hence, h is
continuous. It easily follows from (3) that /4 is injective. By (4), foreach y € X, we
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can inductively choose x(n) € 2,n € N, sothat y € E(x(1),...,x(n)). Then, we
have x € 2V such that y € (,cy E(x(1),...,x(n)), i.e., y = h(x). Hence, & is
surjective. This completes the proof. O

The Cantor set is very important because of the following theorem:

Theorem 5.11.5. Every compactum X is a continuous image of the Cantor set, that
is, there exists a continuous surjection f : u° — X.

The proof consists of a combination of the following two propositions.

Proposition 5.11.6. Every separable metrizable space X is a continuous image of
a subspace of the Cantor set.

Proof. We have a natural continuous surjection ¢ : u’ — I defined by
P en2x:/3) = YienXi/2', where x; € 2 = {0,1}. Since (u)N &~ uf,
the Hilbert cube IV is a continuous image of the Cantor set. Therefore, the result
follows from the fact that every separable metrizable space can be embedded in I'Y
(Corollary 2.3.8). ]

Proposition 5.11.7. Any non-empty closed set A in u° is a retract of u°, that is,
thereisamapr : n° — Awithr|A =id.

Proof. Since u° ~ 2N, we may replace u° by 2V, For each x € 2V and n € N, we
inductively define x“ (n) € 2 as follows:

x(n) if (xA(l), ... ,xA(n —1),x(n)) € py(A4),

xA(n) =
1 —x(n) otherwise,

where p, : 28 — 2" is the projection onto the first n factors. Since 4 # @,
(x4(1),...,x%4(n)) € p.(A) for each n € N. Since A4 is closed in 2%, it follows
that x4 = (x4(n)),en € A. It is obvious that x4 = x for x € A. We can define a
retraction r : 28 — A by r(x) = x4. Foreach x, y € 2,

Pa(x) = pa(y) = pu(r() = pu(x™) = pu(¥™) = pu(r(y)),

hence r is continuous. O

5.12 Totally Disconnected Spaces with dim # 0

In this section, we will construct totally disconnected separable metrizable spaces
X with dim X # 0. The first example called the Erdos space is constructed in the
proof of the following theorem. This space is also an example of spaces X such that
dim X? # 2dim X.

Theorem 5.12.1. There exists a 1-dimensional totally disconnected separable
metrizable space X that is homeomorphicto X*> = X x X.
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Example and Proof. The desired space X is a subspace of the Hilbert space £,
defined as follows:

X:{x€€2|x(i)eQ forallieN}.

The space £, x {5 has the norm ||(x, y)|| = (||x||> + ||y||*)"/?. Then, the map
h: €y x £y — €, defined by h(x,y)(2i —1) = x(i) and h(x, y)(2i) = y(i) is an
isometry, hence it is a homeomorphism. Since 2(X x X) = X, wehave X x X ~ X.

To prove the total disconnectedness of X, let x # y € X. Then, x(ip) # y(io)
for some iy € N. Without loss of generality, we may assume that x(ip) < y(ip).
Choose t € R\ Q so that x(ip) <t < y(ip). Then, H = {z € X | z(ip) < t}is
clopenin X and x € H but y & H. Hence, X is totally disconnected.

Note thatdim X = ind X by the Coincidence Theorem 5.5.2. Next, we show that
ind X >0andind X < 1.If so, we would have dim X =ind X = 1.

To show that ind X > 0, it suffices to prove that bdU # @ for every open
neighborhood U of 0 contained in B(0,1) = {x € X | ||x|]] < 1}. We can
inductively choose a;, a,, - -- € Q so that

X, =(ai,...,a,,0,0,...) €U and d(x,,X\U)<1/n.
In fact, when a,, . . ., a, have been chosen, let
ko =min{k € N|(ai.....an k/(n +2),0,0,...) € U}.
Then, (ko — 1)/(n + 2) € Q is the desired a, 4. Since Y ;_, a? < 1 for each n,
it follows that Zloil a,.2 < 1 < o0, hence xy = (a;)iey € X. Since x, — Xxp
(n — 00), it follows that xy € clU. On the other hand, since d(x,, X \ U) < 1/n,
we have xg € cl(X \ U). Therefore, xo € bd U.

To show that ind X < 1, it suffices to prove that each F, = {x € X | ||x|| =
1/n} is 0-dimensional. Note that F,, C Q" as sets. Furthermore, the topology on F,
coincides with the product inherited from the product space Q" (Proposition 1.2.4).
Since dim QY = 0, we have dim F,, = 0 by the Subset Theorem 5.3.3. The proof is
complete. O

To construct totally disconnected metrizable spaces X of arbitrarily large
dimensions, we need the following lemmas:

Lemma 5.12.2. Let (A,, B,)yer be an essential family of pairs of disjoint closed
sets in a compact space X and yy € I'. For eachy € I' \ {yo}, let L, be a partition
between A, and B, in X and L = ﬂyef\{yo} L,. Then, L has a component that
meets both A,, and B,,.

Proof. Assume that L has no components that meet both 4,, and B,,. Let D be
the union of all components of L that meet A,,, where we allow the case D = ¢
or D = L.Foreachx € L\ D, the component C, of L containing x misses A,,.
By Lemma 5.11.1(1), we have a clopen set E, in L such that C, C E, C L\ Ay,.
For each y € E,, the component C, of L with y € C, is contained in E,, hence
C, N Ay, = @. Then, it follows that E, C L\ D. Therefore, L \ D is openin L,
that is, D is closed in L, so it is compact.
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For each x € D, the component of L containing x misses By, by the assumption.
As above, we have a clopen set E in L such that x € E, C L\ By,. Since D is
compact, D C |J/_, Ey, for some xi,...,x, € D.Then, E = |J/_, E,, is clopen
inLandA,, "L CDCECLN\B,.

By the normality of X, we have disjoint open sets U and V in X such that
Ay, UE CUand ByyU(L\ E) C V.Then, L,, = X\ (U U V) is a partition
between A,, and B, in X and ﬂye rLy, = LN Ly, = @ This is contrary to
the essentiality of (4,, By),cr. Therefore, L has a component that meets both 4,
and By,. O

Lemma 5.12.3. Let X be a compactum and f : X — Y be a continuous
surjection. Then, X has a Gg-subset S that meets each fiber of f at precisely one
point, that is,

card(f~'(y)NS) =1 foreach y €Y.

Proof. We may assume that X C I'. For each y € Y, since f~!(y) is non-empty
and compact, we can define g(y) € X as follows:

g(y)(1) = minpr,;(f~'(y)) and
g(y)(n) = minpr, (7' () N2 pr ' ((3)())) forn > 1.

Then, @ # f~1(y) NN, pr; "(g(»)(i)) C pr, ' (g(y)(n)). By the compactness
of £~1(y), we have

0% £ N (e @()@) € () e @) M) = {g()},

ieN neN

which means g(y) € f~'(y). Thus, the set S = {g(y) | ¥ € Y} meets each fiber
of f at precisely one point.
Foreachn,m € N, let

Py = {x eX | Jz € X suchthat z(i) = x(i) fori <n,
2(n) < x(n) - and f(z) = f(x)}.

Since X is a compactum, it is easy to see that F, ,, is closed in X, hence U, ,, =
X\ F, m isopenin X. We show that § = ﬂn’meN U, m, whichis a Gs-setin X . For
eachy e Y,ifze€ X, z(i) = g(y)(i) foralli < n and z(n) < g(y)(n) — %, then
f@) #y = f(g(y)); otherwise g(y)(n) = z(n) (< g(y)(n)) by the definition of
g(y). Thus, g(y) € Uy, foralln,m € N,ie., S C (), ey Unm- Conversely, for
each x € (N, ey Unm, let y = f(x) (e, x € f71(y)). Then, x = g(y) € S.
Otherwise, let n = min{i € N | x(i) # g(y)(i)}. Since g(y)(n) < x(n) by
the definition of g(y), it follows that g(y)(n) < x(n) — % for some m € N, ie.,
x € Fy,n = X \ Uy,.m, which is a contradiction. O
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For a metric space X = (X, d), let Comp(X) be the space of all non-empty
compact sets in X that admits the Hausdorff metric dy defined as follows:

dy(A,B) =inf{r >0| A CNy(B.r), BCNy(A,r)}
= max { sup,c d(a, B)., supycpd(b, A)}.

According to the following proposition, the topology of Comp(X) induced by the
Hausdorff metric dy coincides with the Vietoris topology defined in Sect. 3.8.

Proposition 5.12.4. For a metric space Y = (Y,d), the Vietoris topology on
Comp(Y) is induced by the Hausdorff metric d . Consequently, the space Comp(X)
with the Vietoris topology is metrizable if Y is metrizable.

Proof. For each A € Comp(Y) and r > 0, we can choose ay,...,a, € A so that
A c UJ/Z,B(aj,r/2). Then,

n + n
Ae (UB(ai, r/2)) N (\B(a:i.r/2)~ N Comp(Y) C By, (A.r).
i=1 i=1

which means that By, (4, r) is a neighborhood of A in the Vietoris topology.'?

Let A € Comp(Y). For each openset U in Y with A € U™, takinga € AN U,
we have By, (4,d(a,Y \ U)) C U~. On the other hand, for each open set U in Y
with A € U, we have By, (4,8) C U™, where § = dist(4,Y \ U) > 0. Thus,
{Bg, (A,r) | r > 0} is a neighborhood basis at A € Comp(Y'). O

Note. When ¥ = (Y,d) is a bounded metric space, the Hausdorff metric dy is
defined on the set Cld(Y') consisting of all non-empty closed sets in Y, which induces
a topology different from the Vietoris topology if Y is non-compact. If ¥ is unbounded,
then dy (A, B) = oo for some A, B € Cld(Y). But, even in this case, dy induces the
topology on Cld(Y). We should note that this topology is dependent on the metric d. For
example, Cld(R) is non-separable with respect to the Hausdorff metric induced by the usual
metric. In fact, it has no countable open basis because By(N) is an uncountable discrete
set of CId(R). On the other hand, R is homeomorphic to the unit open interval (0, 1) and
CId((0, 1)) is separable with respect to the Hausdorff metric induced by the usual metric
because Fin((0, 1)) is dense in C1d((0, 1)).

As observed in Sect. 3.8, the space Cld(Y') with the Vietoris topology is Hausdorff if and
only if Y is regular. Here, it is remarked that Cld(Y") is metrizable if and only if ¥ is compact
and metrizable. Indeed, if ¥ is compact metrizable then Cld(Y') = Comp(Y') is metrizable
by Proposition 5.12.4. Conversely, if Y is non-compact then Y contains a countable discrete
set. Then, Po(N) = CId(N) can be embedded into Cld(Y') as a subspace, which implies
that 3o (N) is metrizable. Note that B (N) is separable because Fin(N) is dense in By (N).
Thus, Po(N) is second countable. Let B be a countable open base for o (N). For each
A € Py(N), choose By € Bsothat A € By C AT. When 4 # A’ € Ly(N), we
may assume A \ A’ # @. Then, A & B, . Hence, we have B, # B, . Consequently,
card B > card Po(N) = 280, which is a contradiction.

PRecall U" ={ACY |ANU #@Pyand Ut ={ACY |ACU}.
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Theorem 5.12.5. Let X = (X, d) be a metric space.

(1) If X is totally bounded then so is Comp(X) with respect to dy.
(2) If X is complete then so is Comp(X) with respect to dp.
(3) If X is compact then so is Comp(X).

Proof. (1): For each ¢ > 0, we have F € Fin(X) such that d(x, F) < ¢ for every
x € X. Then, Fin(F) is a finite subset of Comp(X). For each A € Comp(X), let
Fy={z€ F|d(z,A) < ¢&}.Foreach x € A, we have z € F such that d(x,z) < &,
which implies that z € Fy4. Then, F4 # 0 (i.e., F4 € Fin(F)) and dy (A, Fy) < e.
Hence, Comp(X) is totally bounded.

(2): Let (A,),en be a Cauchy sequence in Comp(X). If (A, ),en has a convergent
subsequence, then (A4,),en itself is convergent. Hence, it can be assumed that
du(A,, A;) <27 ! foreachn < i. Then, we prove that (A4, ),en converges to

Ao = () cIN(4,.27") € Comp(X).

neN

To this end, since Ay is closed in X and 49 C N(4,,27""!) foreach n € N, it
suffices to show that A is totally bounded and A, C N(Ap,27") foreachn € N.

First, we show that 4, C N(A4y,27™"). For each x € A,, inductively choose
X; € A;,i > n,sothatd(x;,x;—1) <27, where x = x,. Since (x;);>, is a Cauchy
sequence in X, it converges to some xo € X. Foreachi > n,

d(x,',)C()) < Zd(xj,xj_H) < ZZ‘j_l = 2_i,

j=i j=i
hence d(xg, A;) < 27" and d(xo, x) < 2~". Moreover, for each i < n,
d(xo, Ai) < d(x0,x) +d(x, A;) <27+ 2771 <27,

Therefore, xo € ();eny N(Ai,277) C Ao, s0 Ag # @ and x € N(A4o,27").

To see the total boundedness of Ay, let e > 0. Choose n € N so that 27"+! < e/3,
and take a finite £/3-dense subset {u;,...,u;} of A,.”3 Foreachi = 1,....k,
choose v; € Ay so that d(u;,v;) < 27". Then, {vy,..., v} is an e-dense subset of
Ay. Indeed, for each x € Ay, we have y € A, such that d(x,y) < 27"%!. Then,
d(y,u;) <e/2forsomei =1,...,k. Hence,

dx,vi) <d(x,y) +d(y,u;) +d@ui,vi) <27 +¢/34+27" <.

(3): This is a combination of (1) and (2). |

Theorem 5.12.6. For each n € N, there exists an n-dimensional totally discon-
nected separable completely metrizable space. In addition, there exists a strongly
infinite-dimensional totally disconnected separable completely metrizable space.

13Tn a metric space X = (X,d), A C X is said to be e-dense if d(x, A) < & for each x € X.
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‘ y \ a(t) = at))

AO BO

Fig. 5.9 «a(t),t € u°

Proof (Example and Proof). To construct the examples simultaneously, let X =
IxI" and d € Metr(X) where I' = {1,...,n} in the n-dimensional case and
I' = N in the infinite-dimensional case. Let pg : X — I be the projection onto the
first factor. Put Ag = py (0) and By = Do (1) and define

&= {E € Comp(X) | E is connected, E N Ay # 0, EN By # (ZJ}.

Then, £ is closed in Comp(X). Indeed, let D € Comp(X) \ £. When D is not
connected, it can be written as the disjoint union of two non-empty closed subsets
Dy and D,. Let ¢ = %distd(Dl,Dz) > 0. Then, every E € By, (D,¢) is
not connected because E is contained in Ny (D1, e) U Ny(D,, €) and meets both
N4(Dy,¢€) and Ny(D3, €). Hence, By, (D,e) N € = @.If D N Ay = @, then
Nq(D,8) N Ap = @, where § = disty(Ao, D) > 0. Every E € By, (D,§) also
misses Ao, which implies By, (D, 8) N € = @. The case D N By = @ is identical.
Since Comp(X) is compact by Theorem 5.12.5(3), £ is also compact. Then, we
have a map o : u° — &€ of the Cantor set u° onto £ by Theorem 5.11.5. We define

Y ={yep, ()| yeap(y)} CX.

Obviously, po(Y) C u’. For each t € uP, since () is a continuum that meets
both Ay and By, it follows that pox(t) = I, sot = po(y) for some y € «(t),
where y € Y (Fig.5.9). Thus, we have po(Y) = u°. Moreover, Y is closed in
X, so is compact. Indeed, let (y;);eny be a sequence in Y convergingto y € X.
Since po(y;) € u® foreveryi € N and (po(y;))ien converges to po(y), we have
po(y) € ul. Since y; € apy(y;) for every i € N and (apo(yi))ien converges to
apo(y) in &, it easily follows that y € apo(y), hence y € Y.
By Lemma 5.12.3, Y has a Gs-subset S such that

card(po_l(t) NS) =1 foreacht e u°.

Since Y is compact, S is completely metrizable. Since po|S : S — u’is a
continuous bijection and u° is totally disconnected, it follows that S is also totally
disconnected. Moreover, SN E # @ forevery E € £. Indeed, because £ = apy(S),
wecan find y € § C Y such that E = apy(y), where y € apo(y) = E.

Now, foreachi € I',let p; : X — Ibe the projection onto the i -th coordinates of
the second factor I". Since p;1(0), p;!(1) € &, it follows that A; = S N p;1(0) #
@and B; = S N pi_l(l) # (. Then, (A;, B;);er is essential in S. In fact, by the
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Partition Extension Lemma 5.3.7, for each partition L; between A; and B; in S,
we have a partition L; between p;'(0) and p;'(1) in X such that L; N S C L,.
According to Lemma 5.12.2, the intersection of the partions L; has a component
E € . Then, (e Li D ENS # @. Therefore, S is s.i.d. when I" = N. In the
case that I' = {1,...,n}, dimS > n by Theorem 5.2.17. Since S C TS U
dim S < n by the Subset Theorem 5.3.3 and the Product Theorem 5.4.9, hence
dim S = n. O

5.13 Examples of Infinite-Dimensional Spaces

In this section, we construct two infinite-dimensional compacta. One is weakly
infinite-dimensional but not countable-dimensional. The other is hereditarily infinite-
dimensional. First, we present the following theorem:

Theorem 5.13.1. There exists a weakly infinite-dimensional compact metrizable
space that contains a strongly infinite-dimensional subspace, and hence it is not
countable-dimensional.

Example and Proof. Let S be an s.i.d. totally disconnected separable completely
metrizable space (Theorem 5.12.6) and let X = y.S be a compactification of .S with
the c.d. remainder (Theorem 5.7.4). Then, we show that X is the required example.

First, X contains the s.i.d. subset S, so X is not c.d. (Theorem 5.6.2). To see that
X is w.i.d., let (A4;, B;)ie, be a family of pairs of disjoint closed sets in X. Since
X\Siscd,X\S = UieN X;, where dim X; = Oforeachi € N. Foreachi € N,
by Theorem 5.3.8 and the Partition Extension Lemma 5.3.7, X has a partition L;
between A; and B; such that L; N X; = @. Then,

L=(LicX\Xxi=x\JX =5

ieN ieN ieN

If L # @, then L is compact and totally disconnected, which implies dim L = 0 by
Theorem 5.11.2. Again by Theorem 5.3.8 and the Partition Extension Lemma 5.3.7,
X has a partition Ly between Ay and By such that Lo N L = @, which means
ﬂiew L, = 0. O

For a compact space X and a metric space ¥ = (Y,d), let C(X,Y) be the
space of all maps from X to Y admitting the topology induced by the sup-metric
d(f,g) = sup,.ex d(f(x), g(x)), which is identical to the compact-open topology
because X is compact (cf. 1.1.3(6)). Then, from 1.1.3(5), we have the following
lemma:

Lemma 5.13.2. Let X be a compactum and Y = (Y,d) be a separable metric
space. The space C(X,Y) is separable.
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Note. This lemma can be proved directly as follows:

Sketch of Direct Proof. Let {U; | i € N} and {V; | j € N} be open bases for X and Y,
respectively. For each i, j € N, let

Wi, = {f €C(X,Y)| f(clU) C V}}.

It is easy to prove that each W; ; is open in C(X, Y).

To see that {W; ; | i, j € N} is an open subbase for C(X,Y), let f € C(X,Y) and
& > 0. For each x € X, choose i(x),/(x) € N so that x € Uy, diamVjy) < ¢
and f(clUi)) C Vi), ie., f € Wi, jx) . Because of the compactness of X, we have
Xlsonn, Xn € X such that X = Ujy,) U -+~ Ui(,)- Then, observe f € (= Wi i) C
Bu(f.e).

To construct a hereditarily infinite-dimensional space, we need the following key
lemma:

Lemma 5.13.3. Let C C I be homeomorphic to the Cantor set, n € N, and I' C
N\ {n} such that I' and N\ I" are infinite. Then, there exists a collection {S; |
i € I'} of partitions S; between A; = pr;'(0) and B; = pr;'(1) in I such that
every subset X C (\;ep Si is strongly infinite-dimensional if C C pr,(X), where
pr; : IV — L is the projection of I onto the i-th factor.

Proof. Without loss of generality, we may assume thatn = land I" = {2i | i €
N}. Foreach i € N, let C; = pr; ([0, §]) and D; = pr;"'([3, 1]). We define

Q={fecd".1)|VieN, f7(4) = Cyu. [T'(Bi) = Da}.

Since §2 is separable by Lemma 5.13.2, there exist 7 C C and a continuous
surjection ¥ : T — £2 by Proposition 5.11.6. Let E = pr;!(T) C I'! and define a
map ¢ : E — IN by ¢(x) = (¥pr,(x))(x). Foreachi € N,

97N (A) = {x € E | p(x) = (¥pr;(x))(x) € 4;}
={x€E|xe@pr(x)(4)=Cu} =ENCy

and similarly ¢! (B;) = E N Dy;. Since pr; ! (%) is a partition between A; and B; in
IV, o~ ! (pr; (1)) is a partition between C; N E and D; N E in E. By the Partition
Extension Lemma 5.3.7, we have a partition S,; between A,; and By; in IV such that
S2 NE C ¢~ (pr; ' (3)). It should be noted that (A; Npry ! (x), By Npry! (x))ien
is essential in pr; ! (x) for every x € C. Then, prl_l(x) N (Nien S2i # @ for every
x € C,hence C C pr;((V;ey S2i)-

Take X C ();ey S2i such that C C pr;(X). We will show that X is s.i.d., that
is, X has an infinite essential family of pairs of disjoint closed sets. For each i € N,
let C/ = pr; ([0, %]) N X and D] = prf‘([%, 1]) N X. To see that (C,;, D}, )ien is
essential, let L; be a partition between Cy; and D), in X . By the Partition Extension
Lemma 5.3.7, we have a partition H; between C,; and D»; in INsuchthat H;NX C
L;. There is amap f; : I — I such that £,71(0) = Cy, f,"'(1) = Dy, and
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fi_l(%) = H,."* Indeed, let U; and V; be disjoint open sets in I' such that C; C U,
Dy C Vi,and X \ H; = U; U V;. We can take maps g; : X \ V; — I and
h; : X \ U; — 1T such that gi_l(O) = Cy, gl-_l(l) = H;, hi_l(O) = H;, and
hi'(1) = Dy; (cf. Theorem 2.2.6). The desired f; can be defined by

la)  ifxeX\V,

S T4+ 3hi(x) ifxeX\U.

Now, we define amap f : IN — IN by f(x) = (fi(x))ien. Foreachi € N,
YA = f~pr;1(0)) = £71(0) = Cy and similarly f~'(B;) = Dy;, which
implies that f € 2 = ¥(T), hence f = ¥ (¢) forsomet € T.Since T C C C
pr; (X), we have x € X such thatt = pr;(x). Then, ¢(x) = (¥pr;(x))(x) = f(x).
On the other hand, since x € prl_l(T) = FE, we have

xeXNEC(\SunNEcC e ' o' G)=9¢""G.5...0)
ieN ieN

Then, f(x) = ¢(x) = (%,%,...), ie., fi(x) = %for eachi € N, hence x €
Nien Hi N X C (e Li- Therefore, (C};, D), )ien is essential. |

Theorem 5.13.4. There exists a hereditarily infinite-dimensional compact met-
rizable space.

Example and Proof. Let {C, | n € N} be a collection of Cantor sets in I such
that every non-degenerate subinterval of I contains some C,. Let I, (i,n € N)
be disjoint infinite subsets of N \ {1} such thati ¢ I;,. For each i,n € N, by
Lemma 5.13.3, we have a compact set S;,, C I' that is the intersection of partitions
between A; = pr;'(0) and B; = pr;'(1) (j € I},) and has the property that
X C Siyissid. if G, C pr;(X).

We will show that S = () ,cySin is hid. Since S is the intersection of
partitions between A; and B; (j € |UJ;,en/in) and (4;, B;);en is essential,
S meets every partition between A; and B, which implies that dim S # —1,0.
Now, let @ # X C S. In the case that dimpr;(X) = O for every i € N,
since dim [ [,y pr; (X) = 0 by Theorem 5.3.6 and X C [[;ypr;(X), we have
dim X = 0 by the Subset Theorem 5.3.3. When dimpr; (X) # O for some i € N,
pr; (X) contains a non-degenerate subinterval of I, hence it contains some C,. Then,
it follows that X is s.i.d. O

l4Refer to the last Remark of Sect. 2.2.
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5.14 Appendix: The Hahn—-Mazurkiewicz Theorem

The content of this section is not part of Dimension Theory but is related to
the content of Sect.5.11. According to Theorem 5.11.5, every compact metrizable
space is the continuous image of the Cantor (ternary) set 11°. In this section, we will
prove the following characterization of the continuous image of the interval I:

Theorem 5.14.1 (HAHN-MAZURKIEWICZ). A space X is the continuous image
of the interval 1 if and only if X is a locally connected continuum."

Here, X is locally connected if each point x € X has a neighborhood basis
consisting of connected neighborhoods. Because of Theorem 5.14.1, a locally con-
nected continuum is called a Peano continuum in honor of the first mathematician
who showed that the square I? is the continuous image of the interval L.

The continuous image of a continuum is also a continuum, where the metrizability
follows from 2.4.5(1). Since every closed map is a quotient map, the “only if” part
of Theorem 5.14.1 comes from the following proposition:

Proposition 5.14.2. Let f : X — Y be a quotient map. If X is locally connected,
then so is Y. Namely, the quotient space of a locally connected space is also locally
connected.

Proof. Lety € Y. For each open neighborhood U of y in Y, let C be the connected
component of U with y € C. Since X is locally connected, each x € f~!(C) has a
connected neighborhood V;, C f~1(U). Note that (V) is connected, f(V,) C U,
and f(Vy) N C # @. Since C is a connected component of U, it follows that
f(Vy) € C,hence V, C f~'(C). Therefore, f~'(C) is open in X, which means
that C is open in Y. Thus, C is a connected neighborhood of y in ¥ with C C U.
O

To prove the “if”” part of Theorem 5.14.1, we introduce a simple chain in a metric
space X = (X,d). A finite sequence (Uy, ..., U,) of connected open sets'® in X is
called a chain (an e-chain) if

U NU4+ # 0 foreachi =1,...,n—1

(and diam U; < eforeveryi = 1,...,n), where n is called the length of this chain.
A chain is said to be simple provided that

AU NcU; =0 if|i — j| > 1.

5Recall that a continuum is a compact connected metrizable space.
16In general, each link U; is not assumed to be connected and open.

"This condition is stronger than usual, and is adopted to simplify our argument. Usually, it is said
that (Uy, ..., U,) is a simple chain if U; N U; # @ < |i — j| < 1. However, in our definition,
UNU; #0&cdUNcl; #0 & |i —j| < 1.
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It is said that two distinct points a,b € X are connected by a simple (¢-)chain
(Uy,...,Uy) ifa € U \clUyand b € U, \ clU,—; (when n = 1, this means
a,b € Uy), where (Uy, ..., U,) is called a simple (e-)chain from a to b. Given open
sets U and V in X with dist(clU,cl V) > 0, it is said that U and V are connected
by a simple (e-)chain (Uy, ..., U,) if

UNU #0, cdUNncl(U,uU---UU,) =0,
VNnU,#0,and clVNcl(UyU---UU,—;) =0,

where (Uy, ..., U,) is called a simple (&-)chain from U to V. When U is connected
(and diam U < ¢), (U, Uy,...,U,, V) is a simple (e-)chain.

Lemma 5.14.3. Let X = (X, d) be a connected, locally connected metric space,
and a # b € X. Then, the following hold:

(1) Each pair of distinct points are connected by a simple e-chain for any ¢ > 0.

(2) Each pair of open sets U and V in X with clU NclV = @ are connected by a
simple e-chain for any ¢ > 0.

(3) Each pair of open sets U and V in X with dist(U, V') > 0 are connected by a
simple chain of length n for any n € N.

Proof. (1): Let W be the subset of X consisting of all points x € X satisfying the
following condition:

* g and x are connected by a simple e-chain.

Then, W is open in X by the definition. Using the local connectedness of X, we can
easily show thata € W and X \ W is open in X. Since X is connected, it follows
that W = X. Then, we have b € W. This gives (1).

(2): Take pointsa € U to b € V and apply (1) to them, we have a simple e-chain
W, ..., W,) froma to b. Let

ko =max{i |cIW; NclU # @} > 1 and
ki =min{i > ko | clW; NclV # @} > ky.

If Wy, N U # @, then (W, ..., W,) is a simple e-chain from U to V. When
Wi, NU = @ or Wy, NV = 0 (except for the case that kg = k; and Wy, N U =
Wi, NV = @), we take a connected open neighborhood U’ of some x € cl Wy, N
clU with diam U’ < ¢ — diam W, or a connected open neighborhood V' of some
y € clW, NclV with diam V' < & — diam Wy, (in the except case, diam U’,
diam V' < (e — diam Wy,)). Then, replacing Wy, by U’ U Wy, or Wi, by V' U W,
(in the except case, replacing Wy, = Wi, by U'U V' U Wj,), we can obtain a simple
g-chain from U to V.



5.14  Appendix: The Hahn—-Mazurkiewicz Theorem 323

(3): Foreachn € N, let ¢ = n~!dist(U,V) > 0. By (2), we have a simple
e-chain (Wq, ..., W) from U to V. Then, n < k because

dist(U, V) < diam W; + --- + diam W, < ke = n~'k dist(U, V).

Hence, U and V are connected by a simple chain (W1, ..., Uf;n W;) of length n.
O

Recall that X is path-connected if every pair of points x,y € X can be
connected by a path, i.e., there is a path f : I — X with f(0) = x and f(1) = y.
It is said that X is arcwise connected if every two distinct points x,y € X can
be connected by an arc, i.e., there is an arc f : I — X with f(0) = x and
f(1) = y."® A space X is locally path-connected (or locally arcwise connected)
if each neighborhood U of each point x € X contains a neighborhood V' of x
such that every two (distinct) points y, y’ € V can be connected by a path (or an
arc) in U. According to the following lemma, the local path-connectedness and
the local arcwise connectedness can be defined in the same manner as the local
connectedness.

Lemma 5.14.4. For a locally path-connected (or locally arcwise connected) space
X, the following hold:

(1) Every component of X is open and path-connected (or arcwise connected).

(2) Each point of a locally path-connected (or locally arcwise connected) space X
has a neighborhood basis consisting of path-connected (or arcwise connected)
open neighborhoods.

Proof. (1): For each x € X, let W be a subset of X consisting of all points
connected with x by a path (or an arc) in X (and x itself). Then, it is easy to see that
W is a connected clopen set in X, and hence it is a component of X .

(2): Every open neighborhood U of each x € X is also locally path-connected (or
locally arcwise connected). It follows from (1) that the component of U containing
X is a path-connected (or arcwise connected) open neighborhood of x. O

Obviously, every arcwise connected (resp. locally arcwise connected) space
is path-connected (resp. locally path-connected), and every path-connected (resp.
locally path-connected) space is connected (resp. locally connected). However,
according to the following theorem, for connected locally compact metrizable
spaces, the local connectedness implies the local arcwise connectedness.

Theorem 5.14.5. Every connected, locally connected, locally compact metrizable
space X is arcwise connected and locally arcwise connected.

Proof. Because of the local compactness ci X and 2.7.7(1), it can be assumed that
X = (X,d) is a metric space such that B(x, 1) is compact for each x € X, so
X = (X,d) is complete. Let a,b € X be two distinct points. By induction on

18Recall that an arc is an injective path, i.e., an embedding of L.
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j zn(erl)*n(i)j Jj+1 zn(z’+1)*n(f)(j +1)
n(i) on(i+1) n(i) on(i+1)
zn(i+1)*n(i)j +1
on(i+1)

'

2/1(i+l)—n(i)j +2 2/1(i+1)—n(i)(j + 1) —1

on(i+1) on(i+1)

i+1
Uzn(i+l)*n(i)j+2

i+1 i+1 i+1
Uznuﬂ)fnmj,l U2nti+1)—nti>j+1 U2”"'+1>*”""(j+1)
i+1 i+1
Uznu+1)—nu)j Uzn(i+1)—n(i)(j+1),1

Fig. 5.10 Tllustration of condition (2)

i € N, we will construct a simple 2~ -chain (U}, U/,..., U ) from a to b

i
2n(i)—1
so that

(1) n(1) <n(2) <---;and
) U™ C U} for 2n0HD=n) j < fo < 2+ D=n()(j 4 1) (Fig. 5.10).

Since X is locally connected, @ and b have connected open neighborhoods
U and V, respectively, such that diam U, diamV < 27U and clU NclV = 0.
Using Lemma 5.14.3(2), we can obtain n(1) > 2 and a simple 2~ _chain

(U,....U,4_,) in X fromU to V. Let Uj = U and U, , = V. Thus, we
have a simple 2™ -chain (U, ..., Uzlnm_l) from a to b.
Next, suppose that a simple 2~/ -chain (Uj, U}, ..., U}, ) from a to b has

been obtained. Let U and V' be connected open neighborhoods of a and b in X,
respectively, such that clU C Uj and clV C Uj,,_,. Since each U; is connected
and locally connected, we can apply inductively Lellnma 5.14.3(2) to obatin a simple
2_(’+”-Chain v, ..., Vk’(j)) in U} from U}ﬂVk’(j_l) toU;NU; ., where Vk_(ll) =
U and U,,; = V.Choose n(i + 1) > n(i) so that

2n(i+l)—n(i) > max {k(j) | j=01,... ’2n(i) _ 1}_
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Fig. 5.11 A simple chain (Wj s S

) in Vk

m (/) ()

For each j = 0,1,...,2"D — 1, let m(j) = 2"0TD=0) — k() — 1 (e,
k(j) + m(j) = 2"+D=n0) _ 1), By Lemma 5.14.3(3), we have a simple chain

) = na
(%]’”eré(j)) in Vk]mfrom Vk(j)ﬂVk(]) , and k(})ﬂV] (Fig.5.11). Now,
we define

i+1 j i+1 J
Uzn(x+1)—n(x) VO ’e . Uzn(z+1)—n(z)] +k(j)—1 Vk(]) 1’
i+1 i+1 J
Uzn(erl) n(z)]+k(]) W Uzn(lJrl) n(l)]+2n(1+1) n(i)—1 Wm(])’
which are contained in U. Let Uit = U and Uzlntﬁrl) , = V. Then, it ujit,
-, ULth, ) is the desired simple 27¢+D-chain.

For each x € 2V = {0, 1}, observe 0 < Z'}@l 21D~ x(j) <2"® — 1 and

n(i) n(i—1) n(i)
Zzn(l) /x(]) — pn(H)=nG—1) Z on(i—=1)— /x(]) + Z Zn(i)_jx(j),
j=1 j=n(i—1)+1
where 0 < Z] iy 2" x(j) < 207G Then, it follows from (4) that
i i
UZ'}(’;H 20=7x(j) UZ”“ D= (j)’

By (3) and the completeness of X, the following is a singleton:

AdUL,e 0
Q Z,-Qﬂ”ﬂ*fx(j)7é

Then, we have amap f : 2N — X such that
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{fr=[elUg,

‘ 10 20— (j)’
i€N ’

where f(0) = a and f(1) = b.For x,y € 2N, if x(j) = y(j) for j < 2"?, then

- TOY € Ui sy = Vi, sy
hence d(f(x), f(¥)) <27 by (2), which implies that f is continuous.

Let ¢ : 2V — I be the quotient map defined by ¢(x) = > 72, 27 x(i). For each
x,y € 2N, we will show that ¢(x) = ¢(y) if and only if f(x) = f(y), hence f
induces the embedding / : I — X with #(0) = a and k(1) = b.

First, suppose that ¢(x) = @(y), i€, Y 10,27 x(i) = > 2,27 y(i). When
x # y,letk = min{i € N | x(i) # y(i)}, where we may assume that x(k) = 1
and y(k) = 0. Then,

[ele) k k—1
D o2Tix(i) =) 27x() =)y 27x() +27F
i=1 i=1 i=1

k o] k
=) 27y + Y. 27 =) 27y,
i=1 i=1

j=k+1

which implies that x() = 0 and y(i) = 1 for every i > k. Thus, we have

k—1 k—1
D 2 x () =) 2" y(j) and
j=1 j=1

m m
sz_jx(j) = Zz’"—/y(j) + 1 foreverym > k.
j=1 J=l1

Then, it follows that

Ul  NUL., @ foreveryi € N,
Y0 20-ix(y TG 20—y 7 Y

which implies that d( f(x), f(y)) = 0 by (3), hence f(x) = f(¥).
Conversely, suppose that f(x) = f(y). Foreveryi € N,

£,

Uloror oo AU
YO =iy T T = ()

which means | Z'}@l 2"O=ix(j) = (21 2"D=7y(j)| < 1. Therefore,

n
J

> 27ix(j) - Zz‘fy(j)‘
=1

=1 =

lo(x) =M =
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n(i)—1 n(i)—1

lim | 3027 x(j)— Y2 y(/)’
j=l1 j=l1
n(i)—1 n(i)—1
= il_igloz—n(i) Z 2n(i)—jx(j)_ Z 2n(i)—jy(j)‘
j=l1 j=l1
< lim 27" =,
1—>00

that is, ¢(x) = ¢(y). Thus, we have proved that X is arcwise connected.

Finally, note that every neighborhood of each point x € X contains a connected
open neighborhood U in X. Since U is also completely metrizable, it follows that
U is also arcwise connected. This means that X is locally arcwise connected. O

By the “only if” part of Theorems 5.14.1 and 5.14.5, we have the following
corollary:

Corollary 5.14.6. Let X be an arbitrary space. Then, each pair of distinct points
x # y € X are connected by a path in X if and only if they are connected by an
arc in X. In this case, the image of the arc is contained in the image of the path.

Proof. The “if” part is obvious. To see the “only if” part, let f : I — X be a
path with f(0) = x and f(1) = y. Since the image f(I) is a locally connected
continuum (i.e., a Peano continuum) by the “only if” part of Theorem 5.14.1, we
have an arc from x to y in f(I) (C X) by Theorem 5.14.5. O

Thus, we know that there is no difference between the (local) path-connectedness
and the (local) arcwise connectedness of an arbitrary space. This allows us to sate
the following:

Corollary 5.14.7. An arbitrary space X is path-connected if and only if X is
arcwise connected. Moreover, X is locally path-connected if and only if X is locally
arcwise connected. O

A metric space X = (X,d) is said to be uniformly locally path-connected
provided that, for every € > 0, there is § > 0 such that each pair of points x, y € X
with d(x, y) < & can be connected by a path with diam < e.

Proposition 5.14.8. A compact metric space X is uniformly locally path-connected
if it is locally path-connected.

Proof. For each e > 0, we apply Lemma 5.14.4(2) to obtain i/ € cov(X) consisting
of path-connected open sets with meshi/ < ¢. Let § > 0 be a Lebesgue number for
U. Then, each pair of points x, y € X with d(x, y) < é can be connected by a path
with diam < e. O

We are now ready to prove the “if” part of the Hahn—Mazurkiewicz Theo-
rem 5.14.1.



328 5 Dimensions of Spaces

Proof of the “if” part of Theorem 5.14.1. We may assume that X = (X,d) is a
compact connected metric space. Let u” be the Cantor (ternary) set in I. By Theo-
rem 5.11.5, there exists a continuous surjection f : u® — X. By Theorem 5.14.5,
X is path-connected and locally path-connected (arcwise connected and locally
arcwise connected). According to Proposition 5.14.8, we have §; > 6, > --- > 0
such that every two distinct points within §, can be connected by a path with
diam < 1/n, where we may assume that §, < 1/n.

Because of the construction of ;1°, the complement I\ 1° has only finitely many
components C; = (a;,b;),i = 1,...,m, such that d(f(a;), f(b;)) > §;. Indeed,
there is some k € N such that

a,b ey’ la—bl <3 = d(f(a), f(b)) <&,
(ie. d(f(a), f(b)) = 61 = |a—b| = 37%),

which implies that m < Zf.‘=12i_l. Foreachi = 1,...,m,let f; : clC; =
[a;,b;] — X be a path with fi(a;) = f(a;) and f;(b;) = f(b;). Then, we can
extend f to the map

m
fliM=poul JdC > x
i=1
that is defined by f/|clC; = f; foreachi = 1,...,m.

For each component C = (a,b) of I\ M (which is a component of T\ u),
fla) = f(b)or0 < d(f(a), f(b)) < é;. In the former case, let fc : clC =
[a,b] — X be the constant path with fc([a,b]) = {f(a)} (= {f(b)}). In the latter
case, choose n € N so that 8,41 < d(f(a), f(b)) < §, and take a path fc : clC =
[a,b] — X suchthat fc(a) = f(a), fc(b) = f(b), and diam f¢ ([a,b]) < 1/n.
Then, f’ can be extended to the map f* : I — X by f*|clC = f¢ for every
component C of I\ M.

It remains to verify the continuity of f*. Since each component C of I'\ M is an
open interval, the continuity of f* at a point of I \ M follows from the continuity
of fc. The continuity of f™* at a point of int M comes from the continuity of
f'. We will show the continuity of f* at a point x € bd M (= u°). For each
e > 0, choose n € N so that 1/n < /2. Since f’ is continuous at x, we
have a neighborhood U of x in I such that f/(U N M) C B(f'(x),8,/2)
(C B(f*(x),e/2) because 6, < 1/n < &/2). In the case that x ¢ bdC for
any component C = (a,b) of I \ M with d(f(a), f(b)) = 6&,, U can be
chosen so that U N clC = @ for any component C = (a,b) of I \ M with
d(f(a), f(b)) = 8,. In the case x € bdCy for some component Cy = (ao, bo)
of I\ M with d(f(ao), f(bo)) > &, (such a component Cy is unique if it exists),
U can be chosen so that fc,(U N Cp) C B(f'(x),&/2). Now, let C = (a,b) be a
component of I\ M withclC NU # @. Then,a e UNM orb € U N M, and so
d(f'(a), f'(x)) < e/2ord(f'(b), f'(x)) < &/2, respectively. If f'(a) = f'(b),
then f*(C) = fc(C) = {f(@)} C B(f'(x).£/2). 110 < d(f(@), f(B)) < b,
then diam f¢ ([a,b]) < 1/n < &/2, which implies that f*(C) = fc(la,b]) C
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B(f'(x),e). When d(f(a), f(b)) > §,, it follows that x € bd C, which means that
C = Cy. Then, f*(U NC) = fc,(U N Cy) C B(f'(x),e/2). Consequently, we
have f*(U) C B(f*(x), ¢). This completes the proof. O

Notes for Chap. 5

Below, we list only three among textbooks on Dimension Theory:

* R. Engelking, Theory of Dimensions, Finite and Infinite, Sigma Ser. in Pure Math. 10
(Heldermann Verlag, Lembo, 1995)

e W. Hurewicz and H. Wallman, Dimension Theory (Princeton University Press, Princeton, 1941)

* K. Nagami, Dimension Theory (Academic Press, Inc., New York, 1970)

For a more comprehensive study of Dimension Theory, we refer to Engelking’s book, which
also contains excellent historical notes. Nagami’s book is quite readable and contains an appendix
titled “Cohomological Dimension Theory” by Kodama. The classical book by Hurewicz and
Wallman is still a worthwhile read. Nothing fundamental has yet changed in the framework of
Dimension Theory since its publication. In this book, Hurewicz and Wallman discuss the Hausdorff
dimension, which is useful in the field of Fractal Geometry. However, we do not discuss this here.
In the following textbook of van Mill, Chap. 5 is devoted to Dimension Theory, and was used to
prepare the last two sections of this chapter.

e J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland
Math. Library 43 (Elsevier Sci. Publ. B.V., Amsterdam, 1989)

The definition of dim, which is due to Cech [11], is based on a property of covers of I
discovered by Lebesgue [28]. The Brouwer Fixed Point Theorem 5.1.1 was established in [8].
The proof using Sperner’s Lemma 5.1.2 in [53] is due to Knaster et al. [26].

The equivalence between (a), (b), and (d) in Theorem 5.2.3 was established by Hemmingsen
[20] and the equivalence between (a) and (d) was proved independently by Alexandroff [2] and
Dowker [12]. The equivalence between (a) and (f) was first established for compact metrizable
spaces by Hurewicz [23] and for normal spaces by Alexandroff [2], Hemmingsen [20], and Dowker
[12], independently.

The compact case of Corollary 5.2.6 was established by Freudenthal [17], and was generalized
to compact Hausdorff spaces by Mardesi¢ [33].

In [22], amap f : X — I" is called a universal map if it satisfies condition (b) in
Theorem 5.2.15. The equivalence between (b) and (c) in Theorem 5.2.15 is due to Holszyrnski
[22]. The equivalence between (a) and (b) in Theorem 5.2.17 was established by Alexandroff [1].
The equivalence between (a) and (c) in Theorem 5.2.17 was first established by Eilenberg and Otto
[14] in the separable metrizable case and extended to normal spaces by Hemmingsen [20].

Theorem 5.3.1 was established by Vopénka [55] and Theorem 5.3.2 was proved by Nagami
[40]. The Subset Theorem was proved by Dowker [13]. The Countable Sum Theorem (5.4.1) was
established by Cech [11] and the Locally Finite Sum Theorem (5.4.2) was proved independently
by Morita [Mo] and Katétov [24]. The Addition Theorem (5.4.8) was proved by Smirnov [52]. The
Decomposition and Product Theorems (5.4.5, 5.4.9) were proved independently by Katétov [24]
and Morita [39].

An inductive definition of dimension was outlined by Poincaré [44]. The first precise definition
of a dimension function was introduced by Brouwer [9]. His function coincides with Ind in the
class of locally connected compact metrizable spaces. The definition of Ind was formulated by
Cech [10]. On the other hand, the definition of ind was formulated by Urysohn [54] and Menger
[37]. The first example in Theorem 5.5.3 was constructed by Roy [47,48] but the example presented
here was constructed by Kulesza [27] and the proof of dim > 0 was simplified by Levin [31].
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The weak infinite dimension was first introduced by Alexandroff in [3]. In Remark 12, we
mentioned the weak infinite dimension in the sense of Smirnov, which was first studied in [32] and
[51].

Theorem 5.7.4 is due to Lelek [30] and the simple proof presented here is taken from Engelking
and Pol [15].

In [42], Nobeling introduced the spaces v" and showed their universality. The spaces " were
introduced by Menger [38], who showed that the universality ! is a universal space for compacta
with dim < 1. Theorem 5.10.8 is due to Bothe [6]. In [29], Lefschetz constructed a universal space
for compacta with dim < n. In [5], Bestvina gave the topological characterization of p”". Using
Bestvina’s characterization, we can see that Lefschetz’ universal space is homeomorphic to ©"; the
result for n = 1 had been obtained by Anderson [4]. Recently, in [41], Nagérko established the
topological characterization of v".

The total disconnectedness and the hereditary disconnectedness were respectively introduced
by Sierpinski [50] and Hausdorff [19]. The example of Theorem 5.11.3 is due to Knaster and
Kuratowski [25] (their example is the one in the Remark).

The example of Theorem 5.12.1 was described by Erdds [16]. Lemma 5.12.3 is due to Bourbaki
[7, Chap. 9] and the proof presented here is due to van Mill (Chap. 5 in his book listed above). The
first completely metrizable nonzero-dimensional totally disconnected space was constructed by
Sierpinski [50] (his example is 1-dimensional). Theorem 5.12.6 was established by Mazurkiewicz
[36] but the example and proof presented here is due to Rubin et al. [49] with some help from [45].

The example of Theorem 5.13.1 is presented by Pol [45]. Theorem 5.13.4 is due to Walsh [56]
but the example given here is due to Pol [46]. The earlier example of a compact metrizable space,
whose compact subsets are all either 0-dimensional or infinite-dimensional, was constructed by
Henderson [21].

In 1890, Peano [43] showed that the square I? is the continuous image of I. The Hahn—
Mazurkiewicz Theorem 5.14.1 was independently proved by Hahn [18] for planar sets and by
Mazurkiewicz [34] for subspaces of Euclidean space. In [35], Mazurkiewicz gave a systematic
exposition.

For more details, consult the historical and bibliographical notes at the end of each section of
Engelking’s book.
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