
Chapter 3
Topology of Linear Spaces and Convex Sets

In this chapter, several basic results on topological linear spaces and convex sets are
presented. We will characterize finite-dimensionality, metrizability, and normability
of topological linear spaces. Among the important results are the Hahn–Banach
Extension Theorem, the Separation Theorem, the Closed Graph Theorem, and the
Open Mapping Theorem. We will also prove the Michael Selection Theorem, which
will be applied in the proof of the Bartle–Graves Theorem.

3.1 Flats and Affine Functions

In this section, we present the basic properties of flats and affine functions. Let E
be a linear space (over R). We call F � E a flat1 if the straight line through every
distinct two points of F is contained in F , i.e.,

.1 � t/x C ty 2 F for each x; y 2 F and t 2 R.

Evidently, the intersection and the product of flats are also flats. We have the
following characterization of flats:

Proposition 3.1.1. LetE be a linear space. For each non-empty subset F � E , the
following conditions are equivalent:

(a) F is a flat;
(b) For each n 2 N, if v1; : : : ; vn 2 F and

Pn
iD1 ti D 1, then

Pn
iD1 tivi 2 F ;

(c) F � x is a linear subspace of E for any x 2 F ;
(d) F � x0 is a linear subspace of E for some x0 2 E .

1A flat is also called an affine set, a linear manifold, or a linear variety.
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72 3 Topology of Linear Spaces and Convex Sets

Proof. By induction on n 2 N, we can obtain (a) ) (b). Condition (c) follows from
the case n D 3 of (b) because, for each x; y; z 2 F and a; b 2 R,

a.y � x/C b.z � x/C x D .1 � a � b/x C ay C bz:

To see (c) ) (a), let x; y 2 F and t 2 R. Since F � x is a linear subspace of E by
(c), we have t.y � x/ 2 F � x, which means .1 � t/x C ty 2 F . The implication
(c) ) (d) is obvious.

(d) ) (c): It suffices to show that if F � x0 is a linear subspace of E , then
F � x D F � x0 for any x 2 F . For every z 2 F , we have

z � x D .z � x0/ � .x � x0/ 2 F � x0:
Here, take z0 2 F so that .z � x0/C .x � x0/ D z0 � x0. Then, we have

z � x0 D .z0 � x0/ � .x � x0/ D z0 � x 2 F � x:

Consequently, we have F � x D F � x0. ut
In the proof of the implication (d) ) (c), we actually proved the following:

Corollary 3.1.2. Let F be a flat in a linear spaceE . Then, F �x D F �y for any
x; y 2 F . ut

A maximal proper flat H ¤ E is called a hyperplane in E . The following
proposition shows the relationship between hyperplanes and linear functionals.

Proposition 3.1.3. Let E be a linear space.

(1) For each hyperplaneH � E , there is a linear functional f W E ! R such that
H D f �1.s/ for some s 2 R;

(2) For each non-trivial linear functional f W E ! R and s 2 R, f �1.s/ is a
hyperplane in E;

(3) For linear functionals f1; f2 W E ! R, if f �1
1 .s1/ D f �1

2 .s2/ for some s1; s2 2
R, then f2 D rf1 for some r 2 R.

Proof. (1): For a given x0 2 H , H0 D H � x0 is a maximal proper linear subspace
of E (Proposition 3.1.1). Let x1 2 E n H0. For each x 2 E , there exists a unique
t 2 R such that x � tx1 2 H0. Indeed, E D H0 C Rx1 because of the maximality
of H0. Hence, we can write x D z C tx1 for some z 2 H0 and t 2 R. Then,
x � tx1 2 H0. Moreover, if x � t 0x1 2 H0 and t 0 2 R, then .t � t 0/x1 2 H0. Since
x1 62 H0, it follows that t D t 0. Therefore, we have a function f W E ! R such that
x � f .x/x1 2 H0. For each x; y 2 E and a; b 2 R,

.ax C by/ � .af .x/C bf .y//x1 D a.x � f .x/x1/C b.y � f .y/x1/ 2 H0;

which means f .axCby/ D af .x/Cbf .y/, i.e., f is linear. Observe that f �1.0/ D
H0 D H � x0, hence it follows that H D f �1.f .x0//.
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(2): From the non-triviality of f , it follows that f .E/ D R, and hence
; ¤ f �1.s/ ¤ E . A simple calculation shows that f �1.s/ is a flat. To prove
the maximality, let F � E be a flat with f �1.s/ ¤ F . Take x0 2 f �1.s/ and
x1 2 F n f �1.s/. Since f .x1/ 6D f .x0/ and F is a flat, it follows that f .F / D R.
For each x 2 E , we can choose y 2 F n f �1.s/ so that f .y/ 6D f .x/. Note that
s D tf .x/C.1�t/f .y/ for some t 2 Rnf0g. Let z D txC.1�t/y 2 f �1.s/ � F .
Then, x D .1 � t�1/y C t�1z 2 F . Accordingly, we have F D E .

(3): When f �1
1 .s1/ D f �1

2 .s2/ D ;, both f1 and f2 are trivial (i.e., f1.E/ D
f2.E/ D f0g), and hence f1 D f2. If f �1

1 .s1/ D f �1
2 .s2/ 6D ;, take x0 2

f �1
1 .s1/ D f �1

2 .s2/. Then, it follows that

f �1
1 .0/ D f �1

1 .s1/ � x0 D f �1
2 .s2/ � x0 D f �1

2 .0/:

Let H0 D f �1
1 .0/ D f �1

2 .0/ and x1 2 E n H0. Analogous to (1), each x 2
E can be uniquely written as x D y C tx1, where y 2 H0 and t 2 R. Then,
f1.x/ D tf1.x1/ and f2.x/ D tf2.x1/, hence f2.x/ D f1.x/f1.x1/

�1f2.x1/. Let
r D f1.x1/

�1f2.x1/. It follows that f2 D rf1. ut
It is said that finitely many distinct points v1; : : : ; vn 2 E are affinely

(or geometrically) independent provided that, for t1; : : : ; tn 2 R,

nX

iD1
tivi D 0;

nX

iD1
ti D 0 ) t1 D � � � D tn D 0;

i.e., v1 � vn; : : : ; vn�1 � vn are linearly independent. In this case, the subset
fv1; : : : ; vng � E is also said to be affinely (or geometrically) independent. An
(infinite) subset A � E is said to be affinely (or geometrically) independent if
every finite subset of A is affinely independent. This condition is equivalent to the
condition that .A� v/ n f0g is linearly independent for some/any v 2 A.2

The smallest flat containingA � E is called the flat hull3 of A and is denoted by
flA. Then, Rn D flf0; e1; : : : ; eng, where fe1; : : : ; eng is the canonical orthonormal
basis for Rn (i.e., ei .i / D 1 and ei .j / D 0 for j 6D i ). Observe that

flfv1; : : : ; vng D ˚Pn
iD1 tivi

ˇ
ˇ Pn

iD1 ti D 1
�

and

flA D
[˚

flfx1; : : : ; xng
ˇ
ˇ n 2 N; x1; : : : ; xn 2 A�:

2The phrase “for some/any” means that we can choose one of “some” or “any” in the sentence.
By this choice, we have two different conditions. The condition using “some” is weaker than the
condition using “any” in general. However, these two conditions can be equivalent in a certain
situation.
3The flat hull is also called the affine hull.
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By Zorn’s Lemma, every non-empty subset A � E contains a maximal affinely
independent subset A0 � A. Then, flA0 D flA and each x 2 flA can be uniquely
written as x D Pn

iD1 tivi , where v1; : : : ; vn 2 A0 and t1; : : : ; tn 2 R n f0g such thatPn
iD1 ti D 1. In fact, for some/any v 2 A0, .A0 � v/ n f0g (D .A0 n fvg/ � v) is a

Hamel basis for the linear subspace flA� v (D flA0 � v) of E .
The dimension of a flat F � E is denoted by dimF , and is defined by

the dimension of the linear space F � x for some/any x 2 F , i.e., dimF D
dim.F � x/. When dimF D n (resp. dimF < 1 or dimF D 1), it is
said that F is n-dimensional (resp. finite-dimensional (abbrev. f.d.) or infinite-
dimensional (abbrev. i.d.)). Therefore, every n-dimensional flat F � E contains
nC 1 points v1; : : : ; vnC1 such that F D flfv1; : : : ; vnC1g. In this case, v1; : : : ; vnC1
are affinely independent. Conversely, if F D flfv1; : : : ; vnC1g for some nC1 affinely
independent points v1; : : : ; vnC1 2 F , then dimF D n.

Let F and F 0 be flats in linear spaces E and E 0, respectively. A function f W
F ! F 0 is said to be affine if it satisfies the following condition:

f ..1 � t/x C ty/ D .1 � t/f .x/C tf .y/ for each x; y 2 F and t 2 R,

which is equivalent to the following:

f
�Pn

iD1 tivi
� D

nX

iD1
tif .vi /

for each n 2 N, vi 2 F , ti 2 R with
nX

iD1
ti D 1.

Recall that F � E is a flat if and only if F � x0 is a linear subspace of E for
some/any x0 2 F (Proposition 3.1.1).

Proposition 3.1.4. Let f W F ! F 0 be a function between flats F and F 0 in linear
spacesE andE 0, respectively. In order that f is affine, it is necessary and sufficient
that the following f x0 W F � x0 ! F 0 � f .x0/ is linear for some/any x0 2 F :

f x0.x/ D f .x C x0/� f .x0/ for each x 2 F � x0.

Proof. (Necessity) For each x; y 2 F � x0 and a; b 2 R,

f x0.ax C by/ D f .ax C by C x0/ � f .x0/
D f .a.x C x0/C b.y C x0/C .1 � a � b/x0/� f .x0/

D af .x C x0/C bf .y C x0/C .1 � a � b/f .x0/� f .x0/

D a.f .x C x0/� f .x0//C b.f .y C x0/� f .x0//

D af x0.x/C bf x0.y/:



3.2 Convex Sets 75

(Sufficiency) For each x; y 2 F and t 2 R,

f ..1 � t/x C ty/ D f x0..1 � t/x C ty � x0/C f .x0/

D f x0..1 � t/.x � x0/C t.y � x0//C f .x0/

D .1 � t/f x0.x � x0/C tf x0.y � x0/C f .x0/

D .1 � t/.f x0.x � x0/C f .x0//C t.f x0.y � x0/C f .x0//

D .1 � t/f .x/C tf .y/: ut

Proposition 3.1.5. Let A be a non-empty affinely independent subset of a linear
space E . Then, every function g W A ! E 0 to another linear space E 0 uniquely
extends to an affine function Qg W flA ! E 0 such that Qg.flA/ D flg.A/. Accordingly,
every affine function f defined on F D flA is uniquely determined by f jA and the
image f .F / is a flat.

Proof. Let F 0 D flg.A/ and take v0 2 A. Since .A n fv0g/� v0 is a Hamel basis of
the linear subspace flA�v0 ofE , we have the unique linear function h W flA�v0 !
F 0 � g.v0/ such that

h.v � v0/ D g.v/ � g.v0/ for each v 2 A n fv0g.

Then, g uniquely extends to the affine function Qg W flA ! F 0 defined by

Qg.x/ D h.x � v0/C g.v0/ for each x 2 flA.

It is easy to see that Qg.flA/ D flg.A/. ut
Additional Properties of Flats and Affine Functions 3.1.6.

In the following, let E and E 0 be linear spaces and f W F ! E 0 be a function of a
flat F in E .

(1) If f is affine and F 0 is a flat in E 0, then f .F / and f �1.F 0/ are flats in E 0 and
E , respectively.

(2) A function f is affine if and only if the graph Gr.f / D f.x; f .x// j x 2 F g of
f is a flat in E � E 0.

3.2 Convex Sets

In this section, we introduce the basic concepts of convex sets. A subset C � E is
said to be convex if the line segment with the end ponts in C is contained in C , i.e.,

.1 � t/x C ty 2 C for each x; y 2 C and t 2 I.
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By induction on n, it can be proved that every convex set C � E satisfies the
following condition:

nX

iD1
z.i/vi 2 C for each n 2 N, vi 2 C and z 2 �n�1,

where �n�1 D fz 2 In j Pn
iD1 z.i/ D 1g is the standard .n � 1/-simplex. The

following is easy:

• If A;B � E are convex, then aAC bB is also convex for each a; b 2 R.

The dimension of a convex set C � E is defined by the dimension of the flat
hull flC , i.e., dimC D dim flC . Concerning the flat hull of a convex set, we have
the following proposition:

Proposition 3.2.1. For each convex set C � E ,

flC D ˚
.1 � t/x C ty

ˇ
ˇ x; y 2 C; t 2 R

�
:

Proof. Each z 2 flC can be written z D Pn
iD1 tixi , where xi 2 C and

Pn
iD1 ti D 1.

We may assume that t1 � � � � � tn 2 R n f0g. If t1 � 0 then z 2 C . Otherwise,
tk < 0 and tkC1 > 0 for some k D 1; : : : ; n�1. Then, we have t D Pn�k

iD1 tkCi > 0,
where 1 � t D Pk

iD1 ti < 0. Let

x D
kX

iD1
.1 � t/�1tixi ; y D

n�kX

iD1
t�1tkCi xkCi 2 C:

Then, z D .1 � t/x C ty. Accordingly, we have

flC � ˚
.1 � t/x C ty

ˇ
ˇ x; y 2 C; t 2 R

�
:

The converse inclusion is obvious. ut
The smallest convex set containing A � E is called the convex hull of A and

is denoted by hAi. We simply write hv1; : : : ; vni D hfv1; : : : ; vngi. Then, �n�1 D
he1; : : : ; eni. Observe that

hv1; : : : ; vni D ˚Pn
iD1 z.i/vi

ˇ
ˇ z 2 �n�1� and

hAi D
[˚hx1; : : : ; xni

ˇ
ˇ n 2 N; x1; : : : ; xn 2 A�:

For each two non-empty subsets A;B � E ,

hA[ Bi D ˚
.1 � t/x C ty

ˇ
ˇ x 2 hAi; y 2 hBi; t 2 I

�
and

haAC bBi D ahAi C bhBi for a; b 2 R.
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The second equality can be proved as follows: Because ahAi C bhBi is convex and aAC
bB � ahAi C bhBi, we have haAC bBi � ahAi C bhBi. To show that ahAi C bhBi �
haACbBi, let x 2 hAi and y 2 hBi. Then, x D Pn

iD1 ti xi and y D Pm
jD1 sj yj for some

xi 2 A, yj 2 B , and ti ; sj > 0with
Pn

iD1 ti D Pm
jD1 sj D 1. Since axiCbyj 2 aACbB

and
Pn

iD1

Pm
jD1 ti sj D 1, it follows that

ax C by D
nX

iD1

ti .axi C by/ D
nX

iD1

ti

� mX

jD1

sj .axi C byj /

�

D
nX

iD1

mX

jD1

ti sj .axi C byj / 2 haAC bBi:

Let C and C 0 be non-empty convex sets in the linear spaces E and E 0,
respectively. A function f W C ! C 0 is said to be affine (or linear in the affine
sense) provided

f ..1 � t/x C ty/ D .1 � t/f .x/C tf .y/ for each x; y 2 C and t 2 I.

As in the definition of a flat, I can be replaced by R, i.e.,

x; y 2 C; t 2 R; .1 � t/x C ty 2 C
) f ..1 � t/x C ty/ D .1 � t/f .x/C tf .y/:

Indeed, let z D .1� t /x C ty 2 C in the above expression. When t < 0, consider

x D 1

1� t
z C �t

1� t
y;

1

1� t
2 I;

�t
1� t

D 1� 1

1� t
:

When t > 1, consider

y D 1

t
z C t � 1

t
x;

1

t
2 I;

t � 1

t
D 1� 1

t
:

As is easily seen, f W C ! C 0 is affine if and only if

f
�Pn

iD1 z.i/vi
� D

nX

iD1
z.i/f .vi / for each n 2 N, vi 2 C and z 2 �n�1,

which is equivalent to the following:

vi 2 C; ti 2 R;

nX

iD1
tivi 2 C;

nX

iD1
ti D 1 ) f

�Pn
iD1 tivi

� D
nX

iD1
tif .vi /:
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For every affine function f W C ! E 0 of a convex set C � E into another linear
space E 0, the image f .C / is also convex.

Proposition 3.2.2. Let C and D be non-empty convex sets in the linear spaces E
andE 0, respectively. Every affine function f W C ! D uniquely extends to an affine
function Qf W flC ! flD. Moreover, if f is injective (or surjective) then so is Qf .

Proof. Let C0 be a maximal affinely independent subset of C . Then, flC D flC0.
Due to Proposition 3.1.5, f jC0 uniquely extends to an affine function Qf W flC !
flD. From the above remark, we can see that Qf jC D f .

If f is injective, we show that Qf is also injective. By the definition of Qf in the
proof of Proposition 3.1.5, it suffices to show that f .C0/ is affinely independent.
Assume that f .C0/ is not affinely independent, i.e., there are distinct points
v1; : : : ; vn 2 C0 and t1; : : : ; tn 2 R n f0g such that

Pn
iD1 tif .vi / D 0 andPn

iD1 ti D 0. Without loss of generality, it can be assumed that t1; : : : ; tk > 0

and tkC1; : : : ; tn < 0. Note that 1 < k < n and
Pk

iD1 ti D �Pn
jDkC1 tj > 0. Let

x D
kX

iD1

ti

s
vi and y D

nX

jDkC1
� tj
s

vj ; where s D
kX

iD1
ti > 0.

Then, x; y 2 C and f .x/ D f .y/ because

f .x/ � f .y/ D 1

s

nX

iD1
tif .vi / D 0:

Since f is injective, we have x D y. Hence, it follows that
Pk

iD1 tivi D
�Pn

jDkC1 tj vj , i.e.,
Pn

iD1 tivi D 0. Because C0 is affinely independent, t1 D � � � D
tn D 0, which is a contradiction.

Finally, we show that if f is surjective then so is Qf . By Proposition 3.2.1, each
z 2 flD can be written as follows:

z D .1 � t/y C ty0; y; y0 2 D; t 2 R:

Since f is surjective, we have x; x0 2 C such that f .x/ D y and f .x0/ D y0. Then,
.1 � t/x C tx0 2 flC and

Qf ..1 � t/x C tx0/ D .1 � t/y C ty0 D z:

Therefore, Qf is also surjective. ut
Let C be a convex set in a linear space E . The following set is called the radial

interior of C :

rintC D ˚
x 2 C ˇ

ˇ 8y 2 C; 9ı > 0 such that .1C ı/x � ıy 2 C �:4

4In Köthe’s book, rintC is denoted by C i and called the algebraic kernel of C .
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In the case C D hv1; : : : ; vni, observe that

rinthv1; : : : ; vni D ˚Pn
iD1 z.i/vi

ˇ
ˇ z 2 �n�1 \ .0;1/n

�
:

Indeed, let x0 D Pn
iD1 n

�1vi 2 hv1; : : : ; vni. For each x 2 rinthv1; : : : ; vni, we have
y 2 hv1; : : : ; vni such that x 2 hx0; yi, i.e., x D .1� t /x0 C ty for some t 2 .0; 1/. Then,
y D Pn

iD1 z.i/vi for some z 2 �n�1. It follows that x D Pn
iD1..1 � t /n�1 C tz.i//vi ,

where
Pn

iD1..1 � t /n�1 C tz.i// D 1 and .1 � t /n�1 C tz.i/ > 0 for all i D 1; : : : ; n.
Thus, x is a point of the rightside set. Conversely, it is straightforward to prove that each
point of the rightside set belongs to hv1; : : : ; vni.

In particular, rinthv1; v2i D f.1 � t/v1 C tv2 j 0 < t < 1g, and hence rinthv1; v2i D
hv1; v2i n fv1; v2g if v1 6D v2. The radial interior of C can also be defined as

rintC D ˚
x 2 C ˇ

ˇ 8y 2 C; 9z 2 C such that x 2 rinthy; zi�:

For each x 2 C , the following subset Cx � C is called the face of C at x:

Cx D ˚
y 2 C ˇ

ˇ 9ı > 0 such that .1C ı/x � ıy 2 C �

D ˚
y 2 C ˇ

ˇ 9z 2 C such that x 2 rinthy; zi�:5

By an easy observation, we have

rintC D fx 2 C j Cx D C g; i.e., x 2 rintC , Cx D C:

When Cx D fxg, we call x an extreme point of C . It is said that x 2 E is linearly
accessible from C if there is some y 2 C such that

rinthx; yi � C .i.e., hx; yi n fxg � C/:

The radial closure rclC of C is the set of all linearly accessible points from C .6

It should be noted that rclC � flC by Proposition 3.2.1, hence fl rclC D flC .
Consequently, we have the following inclusions:

rintC � C � rclC � flC:

The set @C D rclC n rintC is called the radial boundary of C .

Remark 1. Note that A � B implies rclA � rclB , but it does not imply rintA �
rintB . For example, consider A D In � f0g � B D InC1. Then, A\ rintB D ;.

5The face Cx is a little differently defined than the supporting facet of C through x in Köthe’s
book.
6In Köthe’s book, rclC is denoted by Ca and called the algebraic hull of C .
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For the Hilbert cube Q D Œ�1; 1�N, we have

rint Q D ˚
x 2 Q

ˇ
ˇ supi2N jx.i/j < 1� ¤ .�1; 1/N:

Observe that rintŒ�1; 1�Nf D .�1; 1/Nf but rint INf D ;, where

Œ�1; 1�Nf D R
N

f \ Œ�1; 1�N; .�1; 1/Nf D R
N

f \ .�1; 1/N; and INf D R
N

f \ IN:7

As is easily observed, INf D rcl.INf nf0g/. It will be shown in Remark 3 that INf nf0g D
rclC for some convex set C � R

N

f .

Remark 2. The unit closed ball Bc0 of the Banach space c0 has no extreme points.
In fact, every x 2 Bc0 is the midpoint of two distinct points y; z 2 Bc0 , i.e., x D
1
2
yC 1

2
z. For example, choose n 2 N so that jx.n/j < 1

2
and let y; z 2 Bc0 such that

y.i/ D z.i/ D x.i/ for i 6D n, y.n/ D x.n/C 1
2
, and z.n/ D x.n/ � 1

2
.

Proposition 3.2.3. Let C � E be a convex set. If x 2 rintC , y 2 rclC , and
0 � t < 1, then .1 � t/x C ty 2 rintC , i.e., hx; yi n fyg � rintC .

Proof. For each z 2 C , we have to find v 2 C and 0 < s < 1 such that

.1 � t/x C ty D .1 � s/z C sv 2 rinthz; vi:

Take w 2 C so that rinthw; yi � C , and choose 0 < r < 1 so that

z0 D .1C r/x � rz; w0 D .1C r/x � rw 2 C:

The desired v is to be written as

v D t1y C t2w C t3w
0 C t4z

0 D .t1 C t2/u C .t3 C t4/u
0 2 C;

where t1 C t2 C t3 C t4 D 1, t1; t2; t3; t4 > 0,

u D t1

t1 C t2
y C t1

t1 C t2
w; u0 D t3

t3 C t4
w0 C t4

t3 C t4
z0 2 C:

Then, we have

.1 � s/z C sv D .1 � s/z C s.t1y C t2w C t3w
0 C t4z

0/

D st1y C s.t2 � t3r/w C s.t3 C t4/.1C r/x C .1 � s � st4r/z:

To obtain .1� s/z C sv D .1� t/xC ty, it is enough to find t1; t2; t3; t4 > 0 and 0 <
s < 1 satisfying the simultaneous equations: st1 D t , t2 D t3r , s.t3Ct4/.1Cr/ D

7It is known that Œ�1; 1�Nf � INf .
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y

.1� t /x C ty

z

w

x

z0

w0

v D t1y C t2w C t3w0 C t4z0

u D t1

t1 C t2
y C t2

t1 C t2
w

u0 D t3

t3 C t4
w0 C t4

t3 C t4
z0

Fig. 3.1 .1� t /x C ty 2 rintC

1 � t , and 1 � s D st4r , i.e.,

.�/ t1 D t

s
; t4 D 1 � s

rs
; t3 D 1

r
� 1C rt

.1C r/rs
; t2 D 1 � 1C rt

.1C r/s
:

Since t1; t4 < 1 and 0 < t2 (< t3), it is necessary to satisfy

max

�

t;
1

1C r
;
1C rt

1C r

�

< s < 1:

We can take such an s because the left side of the above inequality is less than 1.
Then, we can define t1; t2; t3; t4 > 0 as in (�), which satisfies t1 C t2 C t3 C t4 D 1.
Thus, we have the desired v D t1y C t2w C t3w0 C t4z0 2 C — Fig. 3.1. ut

Although we verified in Remark 1 that A � B does not imply rintA � rintB in
general, we do have the following corollary:

Corollary 3.2.4. Let A and B be non-empty convex sets in E . If A � B and A \
rintB 6D ;, then rintA � rintB .

Proof. Let x 2 A \ rintB . For each y 2 rintA, we have z 2 A such that y 2
rinthx; zi. Since rinthx; zi � rintB by Proposition 3.2.3, it follows that y 2 rintB .

ut
Proposition 3.2.5. For each convex set C � E , the following statements hold:

(1) Both rintC and rclC are convex;
(2) rint rintC D rintC � rint rclC ;
(3) rintC 6D ; ) rint rclC D rintC; rcl rintC D rcl rclC D rclC ,

in which case @ rintC D @ rclC D @C ;
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(4) rintC 6D ; ) flC D fl rintC ;
(5) rintC 6D ;; rclC D flC ) rintC D C D flC ;
(6) @C 6D ; , ; 6D C ¤ flC ;
(7) Cx is convex and Cx D C \ flCx for x 2 C ;
(8) x 2 rintCx for x 2 C , hence .Cx/x D Cx;
(9) .Cx/y D Cy for x 2 C and y 2 Cx;

(10) Cx D Cy for x 2 C and y 2 rintCx .

Proof. (1): To prove the convexity of rintC , we can apply Proposition 3.2.3. It is
now quite straightforward to show the convexity of rclC .

(2): To show rintC � rint rintC , we can apply Proposition 3.2.3. Because
rint.rintC/ � rintC by Corollary 3.2.4, we have rint rintC D rintC .

For each x 2 rintC and y 2 rclC , 1
2
xC 1

2
y 2 rintC by Proposition 3.2.3. Then,

we have ı > 0 such that .1C ı/x � ı. 1
2
x C 1

2
y/ 2 C , i.e., .1C 1

2
ı/x � 1

2
ıy 2 C .

Hence, x 2 rint rclC .
(3): Let x0 2 rintC . For each x 2 rint rclC , we have y 2 rclC such that

x 2 rinthx0; yi, which implies that x 2 rintC by Proposition 3.2.3. Combining this
with (2) yields rint rclC D rintC .

We now have x0 2 rintC D rint rclC . If x 2 rcl rclC , then rinthx0; xi �
rint rclC D rintC by Proposition 3.2.3, which means that x 2 rcl rintC . Since
rcl rintC � rclC � rcl rclC , we have rcl rintC D rclC D rcl rclC .

(4): Let x0 2 rintC . For each x 2 C , 1
2
x C 1

2
x0 2 fl rintC by Proposition 3.2.3.

Then, it follows from Proposition 3.2.1 that x D 2. 1
2
x C 1

2
x0/ � x0 2 fl rintC .

Accordingly, we haveC � fl rintC , which implies flC � fl rintC . Since fl rintC �
flC , we have flC D fl rintC .

(5): Let x0 2 rintC . For each x 2 flC , 2x � x0 2 flC D rclC . Then, x D
1
2
x0 C 1

2
.2x � x0/ 2 rintC � C by Proposition 3.2.3.

(6): Assume ; 6D C ¤ flC . Then, we have x 2 flC n C , which can be written
as x D .1C t/y � tz for some y 6D z 2 C and t > 0 by Proposition 3.2.1. Let

s D inf
˚
t > 0

ˇ
ˇ .1C t/y � tz 62 C � � 0:

Then, .1C s/y � sz 2 rclC n rintC D @C .
When C D flC , i.e., C is a flat, we have rclC D rintC D C by definition,

which means @C D ;. Therefore, @C 6D ; implies ; 6D C ¤ flC .
(7): First, we show that Cx is convex. For each y; z 2 Cx, we can choose ı > 0

so that .1C ı/x � ıy 2 C and .1C ı/x � ız 2 C . Then, for each t 2 I,

.1C ı/x � ı�.1 � t/y C tz
�

D .1 � t/
�
.1C ı/x � ıy

�C t
�
.1C ı/x � ız

� 2 C;

which means .1 � t/y C tz 2 Cx.
BecauseCx � C\flCx , it remains to showC\flCx � Cx . By Proposition 3.2.1,

each y 2 C \ flCx can be written as y D .1 � t/y0 C ty00 for some y0; y00 2 Cx
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Cx 3 y00 x

y D .1� t /y0 C ty00

Cx 3 y0

.1C s/x � sy
z0 D .1C ı/x � ıy0 2 C

Fig. 3.2 C \ flCx � Cx

and t 2 R. Because of the convexity of Cx, we have y 2 Cx if t 2 I. Then, we
may assume that t < 0 (if t > 1, exchange y0 with y00). We have ı > 0 such that
z0 D .1C ı/x � ıy0 2 C . Observe that

.1C s/x � sy D .1C s/

�
ı

1C ı
y0 C 1

1C ı
z0
�

� s�.1 � t/y0 C ty00�

D
�
.1C s/ı

1C ı
� s.1 � t/

�

y0 C 1C s

1C ı
z0 � sty00:

Let s D ı=.1� t � tı/ > 0. Then, since 1C s D .1 � t/.1C ı/=.1� t � tı/, it
follows that

.1C s/x � sy D 1 � t

1 � t � tı z0 C �tı
1 � t � tı

y00 2 C;

which implies that y 2 Cx (Fig. 3.2).
(8): From the definition of rintCx , it easily follows that x 2 rintCx.
(9): Because Cx � C , we have .Cx/y � Cy by definition. We will show that

Cy � Cx, which implies Cy D .Cy/y � .Cx/y by (8) and the definition. For each
z 2 Cy , choose ı1 > 0 so that u D .1 C ı1/y � ı1z 2 C . On the other hand, since
y 2 Cx , we have ı2 > 0 such that v D .1C ı2/x � ı2y 2 C . Then,

.1C ı1/.1C ı2/

1C ı1 C ı2
x � ı1ı2

1C ı1 C ı2
z D 1C ı1

1C ı1 C ı2
v C ı2

1C ı1 C ı2
u 2 C;

which means that z 2 Cx .
(10): Since y 2 rintCx, we have .Cx/y D Cx . On the other hand, .Cx/y D Cy

by (9). ut

Remark 3. It should be noted that, in general, rcl rclC 6D rclC . For example, let C
be the convex set in R

N

f defined as follows:

C D ˚
x 2 INf

ˇ
ˇ 9k 2 N such that

P
i2N x.i/ � k�1;

x.i/ 6D 0 at least k many i 2 N
�
:
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It is easy to see that 0 62 rclC , i.e., rclC � INf n f0g. For each x 2 INf n f0g,

choose k 2 N so that k�1 � P
i2N x.i/, and let y 2 C such that y.i/ D k�2 for

i � k and y.i/ D 0 for i > k. If 0 < t � 1, then .1 � t/x C ty 2 C because
.1 � t/x.i/C ty.i/ 6D 0 for at least k many i 2 N and

X

i2N

�
.1� t/x.i/C ty.i/

� D .1 � t/
X

i2N
x.i/C t

X

i2N
y.i/ � k�1:

Therefore, rclC D INf n f0g. As observed in Remark 1, rcl
�
INf n f0g� D INf . Hence,

we have rcl rclC 6D rclC . It should also be noted that rintC D ;.

In the finite-dimensional case, we have the following proposition:

Proposition 3.2.6. Every non-empty finite-dimensional convex set C has a non-
empty radial interior, i.e., rintC 6D ;, and therefore

rcl rintC D rcl rclC D rclC and @ rintC D @ rclC D @C:

Proof. We have a maximal affinely independent finite subset fv1; : : : ; vng � C .
Then, v0 D Pn

iD1 n�1vi 2 rintC . Indeed, since C � flfv1; : : : ; vng, each x 2 C

can be written as x D Pn
iD1 tivi , where

Pn
iD1 ti D 1. Observe that

.1C ı/v0 � ıx D .1C ı/

nX

iD1
n�1vi � ı

nX

iD1
tivi

D
nX

iD1
.n�1 C ı.n�1 � ti //vi :

When v0 6D x, we have s D minfn�1 � ti j iD1; : : : ; ng < 0. Let ıD1=.�sn/ > 0.
Then, n�1 C ı.n�1 � ti / � 0 for every i D 1; : : : ; n, which implies that .1C ı/v0 �
ıx 2 C . ut
Additional Results for Convex Sets 3.2.7.

(1) For every two convex sets C andD,

.C \D/x D Cx \Dx for each x 2 C \D.

(2) For every two convex sets C andD with rintC \ rintD 6D ;,

rint.C \D/ D rintC \ rintD:

In general, rintC \ rintD � rint.C \D/.

Sketch of Proof. To show that rint.C \D/ � rintC \ rintD, let x0 2 rintC \ rintD.
For each x 2 rint.C\D/, take y 2 C\D so that x 2 rinthx0; yi. Since rinthx0; yi �
rintC by Proposition 3.2.3, it follows that x 2 rintC . Hence, rint.C \D/ � rintC .
Similarly, we have rint.C \D/ � rintD.
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(3) Let C and D be convex sets in the linear spaces E and E 0, respectively. Then,
C �D is also convex,

rint.C �D/ D rintC � rintD and rcl.C �D/ D rclC � rclD:

Moreover, .C �D/.x;y/ D Cx �Dy for each .x; y/ 2 C �D.
(4) Let f W C ! E 0 be an affine function of a convex set C in a linear spaceE into

another linear space E 0, andD be a convex set in E 0. Then, f .C / and f �1.D/
are convex and

f �1.D/x D Cx \ f �1.Df.x// for each x 2 f �1.D/ (� C ).

In particular, Cx � f �1.f .C /f .x// (i.e., f .Cx/ � f .C /f .x/) for each x 2 C .
When f is injective, f .Cx/ D f .C /f .x/ for each x 2 C .

Sketch of Proof. It is easy to see that f .f �1.D/x/ � Df.x/ , hence f �1.D/x �
f �1.Df.x//. Also, f �1.D/x � Cx because f �1.D/ � C . Accordingly, f �1.D/x �
Cx \ f �1.Df.x//. To prove the converse inclusion, for each y 2 f �1.Df.x//\ Cx ,
choose ı > 0 so that .1 C ı/f .x/ � ıf .y/ 2 D and .1 C ı/x � ıy 2 C . Then,
.1C ı/x � ıy 2 f �1.D/.

(5) For every (bounded) subset A of a normed linear space E D .E; k � k/, the
following hold:

(i) kx � yk � supz2A kx � zk for each x 2 E and y 2 hAi;
(ii) diamhAi D diamA.

Sketch of Proof. (i): Write y D Pn
iD1 z.i/xi for some x1; : : : ; xn 2 A and z 2

�n�1.
(ii): For each x; y 2 hAi,

kx � yk � sup
z2A

kx � zk � sup
z2A

sup
z0

2A

kz � z0k D diamA:

Remark 4. In (2) above, rint.C \ D/ 6D rintC \ rintD in general. Consider the
case that C \D 6D ; but rintC \ rintD D ;.

In (4) above, f .Cx/ 6D f .C /f .x/ in general. For instance, let C D f.s; t/ 2 R
2 j

jsj � t � 1g � R
2. Then, pr1.C / D Œ�1; 1�, pr1.C0/ D f0g, and pr1.C /0 D pr1.C /.

3.3 The Hahn–Banach Extension Theorem

We now prove the Hahn–Banach Extension Theorem and present a relationship
between the sublinear functionals and the convex sets.

Let E be a linear space. A functional p W E ! R is sublinear if it satisfies the
following conditions:

(SL1) p.x C y/ � p.x/C p.y/ for each x; y 2 E; and
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(SL2) p.tx/ D tp.x/ for each x 2 E and t > 0:

Note that if p W E ! R is sublinear then p.0/ D 0 and �p.�x/ � p.x/. For each
x; y 2 E and t 2 I,

p..1 � t/x C ty/ � .1 � t/p.x/C tp.y/:

Whenp W E ! R is a non-negative sublinear functional,p�1.Œ0; r// D rp�1.Œ0; 1//
and p�1.Œ0; r�/ D rp�1.I/ are convex for each r > 0.

In the following Hahn–Banach Extension Theorem, no topological concepts
appear (even in the proof). Nevertheless, this theorem is very important in the study
of topological linear spaces.

Theorem 3.3.1 (HAHN–BANACH EXTENSION THEOREM). Let p W E ! R be
a sublinear functional of a linear space E and F be a linear subspace of E . If
f W F ! R is a linear functional such that f .x/ � p.x/ for every x 2 F , then f
extends to a linear functional Qf W E ! R such that Qf .x/ � p.x/ for every x 2 E .

Proof. Let F be the collection of all linear functionals f 0 W F 0 ! R of a linear
subspace F 0 � E such that F � F 0, f 0jF D f , and f 0.x/ � p.x/ for every
x 2 F 0. For f 0; f 00 2 F , we define f 0 � f 00 if f 00 is an extension of f 0. Then,
F D .F ;�/ is an inductive ordered set, i.e., every totally ordered subset of F is
upper bounded. By Zorn’s Lemma, F has a maximal element f0 W F0 ! R. It
suffices to show that F0 D E .

Assume that F0 6D E . Taking x1 2 E n F0, we have a linear subspace F1 D
F0 C Rx1 ¥ F0. We show that f0 has a linear extension f1 W F1 ! R in F , which
contradicts the maximality of f0. By assigning x1 to ˛ 2 R, f1 can be defined, i.e.,
f1.x C tx1/ D f0.x/C t˛ for x 2 F0 and t 2 R. In order that f1 2 F , we have to
choose ˛ so that for every x 2 F0 and t > 0,

f0.x/C t˛ � p.x C tx1/ and f0.x/ � t˛ � p.x � tx1/:

Dividing by t , we obtain the following equivalent condition:

f0.y/ � p.y � x1/ � ˛ � p.y C x1/� f0.y/ for every y 2 F0.

Hence, such an ˛ 2 R exists if

supff0.y/ � p.y � x1/ j y 2 F0g � inffp.y C x1/� f0.y/ j y 2 F0g:

This inequality can be proved as follows: for each y; y0 2 F0,

f0.y/C f0.y
0/ D f0.y C y0/ � p.y C y0/ � p.y � x1/C p.y0 C x1/;

hence f0.y/�p.y�x1/ � p.y0Cx1/�f0.y0/, which implies the desired inequality.
ut
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Let F be a flat in a linear space E and A � F . The following set is called the
core of A in F :

coreF A D ˚
x 2 A ˇˇ 8y 2 F; 9ı > 0 such that

jt j � ı ) .1� t/x C ty 2 A�;

where jt j � ı can be replaced by �ı � t � 0 (or 0 � t � ı). Each point of coreF A
is called a core point of A in F . In the case that A is convex,

x 2 coreF A , 8y 2 F; 9ı > 0 such that .1C ı/x � ıy 2 A
, 8y 2 F; 9ı > 0 such that .1 � ı/x C ıy 2 A:

When F D E , we can omit the phrase “in E” and simply write coreA by removing
the subscript E . By definition, A � B � F implies coreF A � coreF B . We also
have the following fact:

Fact. For each A � F , coreF A 6D ; if and only if flA D F .

Indeed, the “if” part is trivial. To show the “only if” part, let x 2 coreF A. For each y 2 F ,
we have ı > 0 such that z D .1C ı/x � ıy 2 A. Then, y D ı�1.1C ı/x � ı�1z 2 flA.
Note that flA � F because A � F . Consequently, flA D F .

Proposition 3.3.2. For every convex set A � E , coreflA A D rintA, which is also
convex. Hence, coreA 6D ; implies coreA D rintA and core coreA D coreA.

Proof. Because coreflA A � rintA by definition, it suffices to show that rintA �
coreflA A. For each x 2 rintA and y 2 flA, we need to find some s > 0 such
that .1 C s/x � sy 2 A. This can be done using the same proof of the inclusion
C \ flCx � Cx in Proposition 3.2.5(7). ut
Remark 5. When A is a finite-dimensional convex set, coreF A 6D ; if and only if
F D flA according to Propositions 3.3.2 and 3.2.6. However, this does not hold for
an infinite-dimensional convex set. For example, consider the convex set INf in R

N.

Then, RN

f D fl INf and core
R
N

f
INf D rint INf D ;.

With regard to convex sets defined by a non-negative sublinear functional, we
have the following proposition:

Proposition 3.3.3. Let p W E ! R be a non-negative sublinear functional of a
linear subspace E . Then,

p�1.Œ0; 1// D corep�1.Œ0; 1// D corep�1.I/:

Proof. The inclusion corep�1.Œ0; 1// � corep�1.I/ is obvious.
Let x 2 p�1.Œ0; 1//. For each y 2 E , we can choose ı > 0 so that ıp.x � y/ <

1 � p.x/. Then,
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0 � p..1C ı/x � ıy/ D p.x C ı.x � y// � p.x/C ıp.x � y/ < 1;

i.e., x 2 corep�1.Œ0; 1//. Hence, p�1.Œ0; 1// � corep�1.Œ0; 1//.
If p.x/ � 1, then x 62 corep�1.I/ because

p..1C t/x � t0/ D .1C t/p.x/ > 1 for any t > 0.

This means that corep�1.I/ � p�1.Œ0; 1//. ut
For each A � E with 0 2 coreA, the Minkowski functional pA W E ! RC can

be defined as follows:

pA.x/ D inf
˚
s > 0

ˇ
ˇ x 2 sA� D inf

˚
s > 0

ˇ
ˇ s�1x 2 A�:

Then, for each x 2 E and t > 0,

pA.tx/ D inf
˚
s > 0

ˇ
ˇ s�1tx 2 A� D inf

˚
ts > 0

ˇ
ˇ .ts/�1tx 2 A�

D t inf
˚
s > 0

ˇ
ˇ s�1x 2 A� D tpA.x/;

i.e., pA satisfies (SL2). In the above, pA.tx/ D pt�1A.x/. Then, it follows that
pt�1A D tpA for each t > 0. Replacing t by t�1, we have

ptA D t�1pA for each t > 0.

If A � E is convex, the Minkowski functional pA has the following desirable
properties:

Proposition 3.3.4. Let A � E be a convex set with 0 2 coreA. Then, the
Minkowski functional pA is sublinear and

rintA D coreA D p�1
A .Œ0; 1// � A � p�1

A .I/ D rclA;

so @A D p�1
A .1/. Moreover,

pA.x/ D 0 , RCx � A:

In order that pA is a norm on E , it is necessary and sufficient that RCx 6� A if
x 6D 0 and tA � A if jt j < 1.

Proof. First, we prove that pA is sublinear. As already observed, pA satisfies (SL2).
To show that pA satisfies (SL1), let x; y 2 E . Since A is convex, we have

s�1x; t�1y 2 A ) .s C t/�1.x C y/ D s

s C t
s�1x C t

s C t
t�1y 2 A;

which implies that pA.x C y/ � pA.x/C pA.y/.
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The first equality rintA D coreA has been stated in Proposition 3.3.2. It easily
follows from the definitions that coreA � p�1

A .Œ0; 1// � A � p�1
A .I/ and p�1

A .1/ �
rclA, so p�1

A .I/ � rclA. By Propositions 3.3.2 and 3.3.3, we have

coreA D core coreA � corep�1
A .Œ0; 1// D p�1

A .Œ0; 1// � coreA;

which means the second equality coreA D p�1
A .Œ0; 1//. To obtain the third equality

p�1
A .I/ D rclA, it remains to show that rclA � p�1

A .I/. Let x 2 rclA. Since
0 2 rintA, it follows from Proposition 3.2.3 that s�1x 2 rintC � C for each s > 1,
which implies that pA.x/ � 1, i.e., x 2 p�1

A .I/.
By definition, pA.x/ D 0 if and only if tx 2 A for an arbitrarily large t > 0,

which means that RCx � A because A is convex.
Because pA is sublinear, pA is a norm if and only if pA.x/ 6D 0 and pA.x/ D

pA.�x/ for every x 2 E n f0g. Because pA.x/ 6D 0 if and only if RCx 6� A, it
remains to show that pA.x/ D pA.�x/ for every x 2 E n f0g if and only if tA � A

whenever jt j < 1.
Assume that pA.x/ D pA.�x/ for each x 2 E . If x 2 A and jt j < 1 then

pA.tx/ D pA.jt jx/ D jt jpA.x/ < 1, which implies that tx 2 A. Hence, tA � A

whenever jt j < 1.
Conversely, assume that tA � A whenever jt j < 1. For each s > pA.x/,

r�1x 2 A for some 0 < r < s, and we have s�1.�x/ D .�s�1r/r�1x 2 A, hence
pA.�x/ � pA.x/. Replacing x with �x, we have pA.x/ � pA.�x/. Therefore,
pA.x/ D pA.�x/. ut

When the Minkowski functional pA is a norm on E , we call it the Minkowski
norm. In this case, rclA, rintA, and @A are the unit closed ball, the unit open ball,
and the unit sphere, respectively, of the normed linear space E D .E; pA/. Then,
rclA and rintA are symmetric about 0, i.e., rclA D � rclA and rintA D � rintA.
We should note that a convex set A � E is symmetric about 0 if and only if tA � A

whenever jt j � 1 (in the next section, A is said to be circled).
A subsetW � E is called a wedge if xCy 2 W for each x; y 2 W and tx 2 W

for each x 2 W , t � 0, or equivalently,W is convex and tW � W for every t � 0.
Note that if A � E is convex then RCA is a wedge. For a wedge W � E , the
following statements are true:

(1) 0 2 coreW , W D E;
(2) W 6D E; x 2 coreW ) �x 62 W .

A cone C � E is a wedge with C \ .�C/ D f0g. Each translation of a cone is also
called a cone.

Using the Hahn–Banach Extension Theorem, we can prove the following
separation theorem:

Theorem 3.3.5 (SEPARATION THEOREM). LetA andB be convex sets inE such
that coreA 6D ; and .coreA/ \ B D ;. Then, there exists a linear functional
f W E ! R such that f .x/ < f .y/ for every x 2 coreA and y 2 B , and
supf .A/ � inff .B/.



90 3 Topology of Linear Spaces and Convex Sets

Proof. Recall that coreA D rintA (Proposition 3.3.2). For a linear functional f W
E ! R, if f .x/ < f .y/ for every x 2 coreA and y 2 B , then supf .A/ �
inff .B/. Indeed, let x 2 A, y 2 B , v 2 coreA, and 0 � t < 1. Since .1�t/vCtx 2
coreA by Proposition 3.2.3, we have

.1 � t/f .v/C tf .x/ D f ..1 � t/v C tx/ < f .y/;

where the left side tends to f .x/ as t ! 1, and hence f .x/ � f .y/.
Note that W D RC.A � B/ is a wedge. Moreover, .coreA/ � B � coreW .

Indeed, let x 2 coreA and y 2 B . For each z 2 E , choose ı > 0 so that .1C ı/x �
ı.y C z/ 2 A. Then,

.1C ı/.x � y/ � ız D .1C ı/x � ı.y C z/ � y 2 A� B � W:

Therefore, it suffices to construct a linear functional f W E ! R such that
f .coreW / � .�1; 0/.

Now, we shall show thatW \ .B�coreA/ D ;. Assume that there exist x0 2 A,
x1 2 coreA, y0; y1 2 B , and t0 � 0 such that t0.x0 � y0/ D y1 � x1. Note that
rinthx0; x1i � rintA D coreA by Proposition 3.2.3. Hence,

t0

t0 C 1
x0 C 1

t0 C 1
x1 D t0

t0 C 1
y0 C 1

t0 C 1
y1 2 .coreA/\ B;

which contradicts the fact that .coreA/ \ B D ;.
Take v0 2 .coreA/�B � coreW . Then, note that �v0 62 W . For each x 2 E , we

have ı > 0 such that .1Cı/v0�ı.�x/ 2 W , which implies xCı�1.1Cı/v0 2 W .
Then, we can define p W E ! R by

p.x/ D inf
˚
t � 0

ˇ
ˇ x C tv0 2 W �

:

Because W is a wedge, we see that p is sublinear. Since �v0 62 W , it follows
that p.s.�v0// D s and p.sv0/ D 0 for every s � 0. Applying the Hahn–Banach
Extension Theorem 3.3.1, we can obtain a linear functional f W E ! R such that
f .s.�v0// D s for each s 2 R and f .x/ � p.x/ for every x 2 E (see Fig. 3.3).
For each z 2 coreW , we have ı > 0 such that .1 C ı/z � ı.z C v0/ 2 W , i.e.,
z � ıv0 2 W . Accordingly, .z � ıv0/ C tv0 2 W for every t � 0, which means
p.z � ıv0/ D 0. Thus, we have

f .z/ < f .z/C ı D f .z � ıv0/ � p.z � ıv0/ D 0: ut

Remark 6. Using the Hahn–Banach Extension Theorem, we have proved the
Separation Theorem. Conversely, the Hahn–Banach Extension Theorem can be
derived from the Separation Theorem. Indeed, under the assumption of the Hahn–
Banach Extension Theorem 3.3.1, we define
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x

x C p.x/v0

v0 Wp.x/

f .x/

�v0

f �1.0/

E

E � R

the graph of p

the graph of f
Fig. 3.3 The graphs of p and f

A D ˚
.x; t/ 2 E � R

ˇ
ˇ t > p.x/

�
and B D ˚

.x; f .x// 2 E � R
ˇ
ˇ x 2 F �;

where B D Gr.f / is the graph of f . Then, A and B are disjoint convex sets in
E � R. It is straightforward to show that coreA D A 6D ;. By the Separation
Theorem 3.3.5, we have a linear functional ' W E � R ! R such that A �
'�1..�1; r�/ and B � '�1.Œr;1// for some r 2 R. Then, r � 0 because
0 D '.0; 0/ 2 '.B/. If '.z/ < 0 for some z 2 B , then '.tz/ D t'.z/ < r for
sufficiently large t > 0. This is a contradiction because tz 2 B . If '.z/ > 0 for
some z 2 B , then �z 2 B and '.�z/ D �'.z/ < 0, which is a contradiction.
Therefore, B � '�1.0/. Note that '.0; 1/ < 0 because .0; 1/ 2 A. Since
'.x; t/ D '.x; 0/ C t'.0; 1/ for each x 2 E , we have '.fxg � R/ D R. Observe
that .fxg � R/ \ '�1.0/ is a singleton. Then, f extends to the linear functional
Qf W E ! R whose graph is '�1.0/, i.e., .x; Qf .x// 2 '�1.0/ for each x 2 E . Since
'�1.0/ � .E � R/ n A, it follows that Qf .x/ � p.x/ for every x 2 E .

The Separation Theorem 3.3.5 can also be obtained as a corollary of the follow-
ing two theorems, where we do not use the Hahn–Banach Extension Theorem 3.3.1.

Theorem 3.3.6. For each pair of disjoint non-empty convex sets A;B � E , there
exists a pair of disjoint convex sets eA;eB � E such that A � eA, B � eB , and
eA[ eB D E .

Proof. Let P be the collection of pairs .C;D/ of disjoint convex sets such that
A � C and B � D. For .C;D/; .C 0;D0/ 2 P , we define .C;D/ � .C 0;D0/ if
C � C 0 and D � D0. Then, it is easy to see that P D .P ;�/ is an inductive
ordered set. Due to Zorn’s Lemma, P has a maximal element .eA;eB/.

To show that eA [ eB D E , assume the contrary, i.e., there exists a point v0 2
E n .eA [ eB/. By the maximality of .eA;eB/, we can obtain two points

x 2 eA\ heB [ fv0gi and y 2 eB \ heA[ fv0gi:
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Then, x 2 hv0; y1i for some y1 2 eB and y 2 hv0; x1i for some x1 2 eA. Note that
x 2 rinthv0; y1i and y 2 rinthv0; x1i. Consider the triangle hv0; x1; y1i. It is easy to
see that hx1; xi and hy1; yi meet at a point v1. Since hx1; xi � eA and hy1; yi � eB ,
it follows that v1 2 eA \ eB , which is a contradiction. ut
Theorem 3.3.7. For each pair of disjoint non-empty convex sets C;D � E with
C [D D E , rclC \ rclD is a hyperplane if rclC \ rclD 6D E .

Proof. First, we show that rclC \ rclD D @C D @D. To prove that @C � @D, let
x 2 @C . It suffices to find y 2 C such that

.1 � t/x C ty 2 C for 0 < t � 1 and

.1C t/x � ty 2 E n C D D for t > 0.

To this end, take y0; y00 2 C such that .1 � t/x C ty0 2 C for 0 < t � 1 and
.1 C t/x � ty00 62 C for t > 0. Then, y D 1

2
y0 C 1

2
y00 2 C is the desired point.

Indeed, for each 0 < t � 1,

.1 � t/x C ty D .1 � t/x C 1
2
ty0 C 1

2
ty00

D �
1 � 1

2
t
�
 
1 � t
1 � 1

2
t
x C

1
2
t

1 � 1
2
t
y0
!

C 1
2
ty00 2 C:

Moreover, note that

.1 � s/..1C t/x � ty/C sy0

D .1 � s/.1C t/x � 1
2
.1 � s/ty0 � 1

2
.1� s/ty00 C sy0:

For each t > 0, let s D t=.2C t/ 2 .0; 1/. Then, .1� s/t D 2s. Therefore, we have

.1 � s/..1C t/x � ty/C sy0 D .1C s/x � sy00 62 C;

which means that .1Ct/x�ty 62 C (Fig. 3.4). Similarly, we have @D � @C . Hence,
@C D @D. Since rintC \ rintD D ;, it follows that rclC \ rclD D @C D @D.

Next, we show that @C is a flat. It suffices to show that if x; y 2 @C and t > 0,
then x0 D .1C t/x � ty 2 @C . If x0 62 @C , then x0 2 rintC or x0 2 rintD. In this
case, x 2 rinthx0; yi � rintC or x 2 rinthx0; yi � rintD by Proposition 3.2.3. This
is a contradiction. Therefore, x0 2 @C .

It remains to show that if @C 6D E then @C is a hyperplane. We have v 2 E n@C .
It suffices to prove thatE D fl.@C[fvg/. Without loss of generality, we may assume
that v 2 rintC . On the other hand, @C 6D ; because C 6D E . Let z 2 @C . Then,
w D z � .v � z/ D 2z � v 2 rintD. Otherwise, w 2 rclC , from which, using
Proposition 3.2.3, it would follow that z D 1

2
v C 1

2
w 2 rinthv;wi � rintC , which is

a contradiction.
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y00

x 2 @C

y0

y

.1C t /x � ty 2 D

.1� s/..1 C t /x � ty/C sy0

.1� t /x C ty 2 C

D

C

Fig. 3.4 @C � @D

x 2 rintC
v

@Cw D z � .v � z/

z y D .1� s/x C sw

C

D

Fig. 3.5 The case x 2 rintC

x 2 rintD

v

@C

z y D .1� s/x C sv

C

D

Fig. 3.6 The case x 2 rintD

For each x 2 E n @C , x 2 rintC or x 2 rintD. When x 2 rintC , let

s D sup
˚
t 2 I

ˇ
ˇ .1 � t/x C tw 2 C �:

Refer to Fig. 3.5. Then, y D .1 � s/x C sw 2 @C , which implies that

x D 1

1 � s
y � 2s

1 � s
z C s

1 � s
v 2 fl.@C [ fvg/:

In the case that x 2 rintD, let

s D sup
˚
t 2 I

ˇ
ˇ .1 � t/x C tv 2 D�:

Now, refer to Fig. 3.6. Then, y D .1� s/x C sv 2 @D D @C , which implies that

x D 1

1 � s y C �s
1 � s v 2 fl.@C [ fvg/:
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Consequently, it follows that E D fl.@C [ fvg/. ut
Remark 7. In the above, the condition rclC \rclD 6D E is necessary. For example,
define the convex set C in the linear space R

N

f as follows:

C D ˚
x 2 R

N

f

ˇ
ˇ n D maxfi j x.i/ 6D 0g ) x.n/ > 0

�
:

Let D D R
N

f n C D .�C/ n f0g. Then, D is also convex. As is easily observed,

rclC D rclD D R
N

f , hence rclC \ rclD D R
N

f .

The Separation Theorem 3.3.5 can also be obtained as a corollary of Theorems
3.3.6 and 3.3.7. In fact, letA;B � E be convex sets with coreA 6D ; and .coreA/\
B D ;. Then, coreA D rintA is convex. We apply Theorem 3.3.6 to obtain disjoint
non-empty convex sets C and D such that coreA � C , B � D, and C [D D E .
Observe that coreA\ rclD D ;, hence rclD 6D E . It follows from Theorem 3.3.7
that rclC \ rclD is a hyperplane. Then, we have a linear functional f W E ! R

such that rclC \ rclD D f �1.s/ for some s 2 R (Proposition 3.1.3(1)). Since
coreA � E n f �1.s/, we have coreA � f �1..s;1// or coreA � f �1..�1; s//.
If coreA � f �1..s;1//, by replacing f and s by �f and �s, it can be assumed
that coreA � f �1..�1; s//.

We now show that rclC � f �1..�1; s�/. Let x 2 coreA (� rintC ). Then,
x 2 rintC and f .x/ < s. If f .y/ > s for some y 2 rclC , we have z 2 rinthx; yi \
f �1.s/. Because z 2 rclD, rinthw; zi � D for some w 2 D. On the other hand,
z 2 rinthx; yi � rintC (Proposition 3.2.3). Because rintC D coreC , hv; zi � C D
E nD for some v 2 rinthw; zi, which is a contradiction.

Since C � f �1..�1; s�/, it follows that D 	 f �1..s;1//. Observe that
rintD 	 f �1..s;1//. So, we have x 2 rintD and f .x/ > s. Likewise for rclD,
we can show that rclD � f �1.Œs;1//. Accordingly, we have

rclC D f �1..�1; s�/ and rclD D f �1.Œs;1//:

Since coreA � f �1..�1; s// and B � f �1.Œs;1//, we have the desired result.

3.4 Topological Linear Spaces

A topological linear space E is a linear space with a topology such that the
algebraic operations of addition .x; y/ 7! x C y and scalar multiplication
.t; x/ 7! tx are continuous.8 Every linear space E has such a topology. In fact,

8Here, we only consider linear spaces over R. Recall that topological spaces are assumed to be
Hausdorff. For topological linear spaces (more generally for topological groups), it suffices to
assume axiom T0, which implies regularity (Proposition 3.4.2 and its footnote). The continuity of
scalar multiplication implies the continuity of the operation x 7! �x because .�1/x D �x.
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E has a Hamel basis B . As a linear subspace of the product space R
B , RBf is a

topological linear space that is linearly isomorphic to E by the linear isomorphism
' W R

B
f ! E defined by '.x/ D P

v2B x.v/v. Then, ' induces a topology
that makes E a topological linear space. In the next section, it will be seen that
if E is finite-dimensional, then such a topology is unique. However, an infinite-
dimensional linear space has various topologies for which the algebraic operations
are continuous.

In the following proposition, we present the basic properties of a neighborhood
basis at 0 in a topological linear space.

Proposition 3.4.1. Let E be a topological linear space and U be a neighborhood
basis at 0 in E . Then, U has the following properties:

(1) For each U; V 2 U , there is some W 2 U such that W � U \ V ;
(2) For each U 2 U , there is some V 2 U such that V C V � U ;
(3) For each U 2 U , there is some V 2 U such that Œ�1; 1�V � U ;
(4) For each x 2 E and U 2 U , there is some a > 0 such that x 2 aU ;
(5)

TU D f0g.

Conversely, let E be a linear space with U a collection of subsets satisfying these
conditions. Then,E has a topology such that addition and scalar multiplication are
continuous and U is a neighborhood basis at 0.

Sketch of Proof. Property (1) is trivial; (2) comes from the continuity of addition at .0; 0/ 2
E�E; (3) is obtained by the continuity of scalar multiplication at each .t; 0/ 2 Œ�1; 1��E
and the compactness of Œ�1; 1�; (4) follows from the continuity of scalar multiplication at
.0; x/ 2 R � E; the Hausdorffness of E implies (5).

Given U with these properties, an open set inE is defined as a subset W � E satisfying
the condition that, for each x 2 W , there is some U 2 U such that x C U � W . (Verify
the axioms of open sets, i.e., the intersection of finite open sets is open; every union of open
sets is open.)

For each x 2 E and U 2 U , xCU is a neighborhood of x in this topology.9 Indeed, let

W D fy 2 E j 9V 2 U such that y C V � x C U g:
Then, x 2 W � x C U because of (5). For each y 2 W , we have V 2 U such that
yCV � xCU . Take V 0 2 U so that V 0 CV 0 � V as in (2). Then, yCV 0 � W because
.y C y0/ C V 0 � y C V � x C U for every y0 2 V 0. Therefore, W is open in E , so
x CU is a neighborhood of x in E . By the definition of the topology, fx CU j U 2 Ug is
a neighborhood basis at x. In particular, U is a neighborhood basis at 0.

Since fxCU j U 2 Ug is a neighborhood basis at x, the continuity of addition follows
from (2). Using (3), we can show that the operation x 7! �x is continuous.

For scalar multiplication, let x 2 E , ˛ 2 R, and U 2 U . Because of the continuity of
x 7! �x, it can be assumed that ˛ � 0. Then, we can write ˛ D nC t , where n 2 ! and
0 � t < 1. Using (2) inductively, we can find V1 � 	 	 	 � Vn � VnC1 in U such that

9If E is a topological linear space, x C U is a neighborhood of x 2 E for any neighborhood
U of 0.
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V1 C 	 	 	 C Vn C .VnC1 C VnC1/ � U:

By (3), we have W 2 U such that Œ�1; 1�W � VnC1. Then, x 2 rW for some r > 0 by
(4). Choose ı > 0 so that ı < minf1=r; 1� tg. Let y 2 x CW and j˛ � ˇj < ı. Then, we
can write ˇ D nC s, where t � ı < s < t C ı. It follows that

ˇy � ˛x D .nC s/y � .nC t /x D n.y � x/C s.y � x/C .s � t /x

2 nW C Œ�1; 1�W C ıŒ�1; 1�.rW /
� nVnC1 C VnC1 C VnC1

� VnC1 C 	 	 	 C VnC1
„ ƒ‚ …

nC 2 many

� U; 10

hence ˇy 2 ˛x C U .
To see the Hausdorffness, let x 6D y 2 E . By (5), we have U 2 U such that x�y 62 U .

By (2) and (3), we can find V 2 U such that V � V � U . Then, x C V and y C V are
neighborhoods of x and y, respectively. Observe that .x C V /\ .y C V / D ;.

It is said that A � E is circled if tA � A for every t 2 Œ�1; 1�. It should be
noted that the closure of a circled set A is also circled.

Indeed, let x 2 clA and t 2 Œ�1; 1�. If t D 0, then tx D 0 2 A � clA. When t 6D 0, for
each neighborhood U of tx in E , since t�1U is a neighborhood of t�1x, t�1U \ A 6D ;,
which implies that U \ tA 6D ;. Because tA � A, U \ A 6D ;. Thus, it follows that
tx 2 clA.

In (3) above, W D Œ�1; 1�V is a neighborhood of 0 2 E that is circled, i.e.,
tW � W for every t 2 Œ�1; 1�. Consequently, (3) is equivalent to the following
condition:

(3)’ 0 2 E has a neighborhood basis consisting of circled (open) sets.

A topological group G is a group with a topology such that the algebraic
operations of multiplication .x; y/ 7! xy and taking inverses x 7! x�1 are both
continuous.11 Then, G is homogeneous, that is, for each distinct x0; x1 2 G, there
is a homeomorphism h W G ! G such that h.x0/ D x1. Such an h can be defined
by h.x/ D x0x

�1x1, where not only h.x0/ D x1 but also h.x1/ D x0. Every
topological linear space is a topological group with respect to addition, so it is
homogeneous.

Proposition 3.4.2. Every topological group G has a closed neighborhood basis at
each g 2 G, i.e., it is regular.12 For a topological linear space E , 0 2 E has a
circled closed neighborhood basis.

10It should be noted that, in general, 2V � V C V but V C V 6� 2V .
11These two operations are continuous if and only if the operation .x; y/ ! x�1y is continuous.
12A topological group G is assumed to be Hausdorff, but it suffices to assume axiom T0. In fact,
axiom T0 implies T1 for a topological group G because of the homogeneity of G.
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Sketch of Proof. Each neighborhood U of the unit 1 2 G contains a neighborhood V of
1 such that V �1V � U . For each x 2 clV , we have y 2 Vx \ V . Consequently, x 2
V �1y � V �1V � U , so we have clV � U .

For the additional statement, recall that if V is circled then clV is also circled.

Proposition 3.4.3. Let G be a topological group andH be a subgroup of G.

(1) If H is open in G then H is closed in G.
(2) The closure clH of H is a subgroup of G.

Sketch of Proof. (1): For each x 2 G n H , Hx is an open neighborhood of x in G and
Hx � G nH .

(2): For each x; y 2 clH , show that x�1y 2 clH , i.e., each neighborhood W of x�1y

meets H . To this end, choose neighborhoods U and V of x and y, respectively, so that
U�1V � W .

Due to Proposition 3.4.3(1), a connected topological group G has no open
subgroups except forG itself. Observe that every topological linear spaceE is path-
connected. Consequently, E has no open linear subspaces except for E itself, i.e.,
every proper linear subspace of E is not open in E .

The continuity of linear functionals is characterized as follows:

Proposition 3.4.4. Let E be a topological linear space. For a linear functional
f W E ! R with f .E/ 6D f0g, the following are equivalent:

(a) f is continuous;
(b) f �1.0/ is closed in E;
(c) f �1.0/ is not dense in E;
(d) f .V / is bounded for some neighborhood V of 0 2 E .

Proof. The implication (a) ) (b) is obvious, and (b) ) (c) follows from f .E/ 6D
f0g (i.e., f �1.0/ 6D E).

(c) ) (d): We have x 2 E and a circled neighborhood V of 0 2 E such that
.xCV /\f �1.0/ D ;. Then, f .V / is bounded. Indeed, if f .V / is unbounded, then
there is some z 2 V such that jf .z/j > jf .x/j. In this case, f .tz/ D tf .z/ D �f .x/
for some t 2 Œ�1; 1�, which implies that �f .x/ 2 f .V /. It follows that 0 2 f .x/C
f .V / D f .x C V /, which contradicts the fact that .x C V / \ f �1.0/ D ;.

(d) ) (a): For each " > 0, we have n 2 N such that f .V / � .�n"; n"/.
Then, n�1V is a neighborhood of 0 in E and f .n�1V / � .�"; "/. Therefore, f
is continuous at 0 2 E . Since f is linear, it follows that f is continuous at every
point of E . ut
Proposition 3.4.5. Let E be a topological linear space and A;B � E .

(1) If B is open in E then AC B is open in E .
(2) If A is compact and B is closed in E then AC B is also closed in E .

Sketch of Proof. (1): Note that AC B D S
x2A.x C B/.

(2): To show thatEn.ACB/ is open inE , let z 2 En.ACB/. For each x 2 A, because
z�x 2 E nB , we have open neighborhoods Ux; Vx of x; z inE such that Vx�Ux � E nB .
Since A is compact, A � Sn

iD1 Uxi for some x1; : : : ; xn 2 A. Then, V D Tn
iD1 Vxi is an

open neighborhood of z inE . We can show that V \ .ACB/ D ;, i.e., V � E n .ACB/.
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Remark 8. In (2) above, we cannot assert that AC B is closed in E even if both A
and B are closed and convex in E . For example, A D R � f0g and B D f.x; y/ 2
R
2 j x > 0; y � x�1g are closed convex sets in R

2, but ACB D R� .0;1/ is not
closed in R

2.

Proposition 3.4.6. Let F be a closed linear subspace of a topological linear
space E . Then, the quotient linear space E=F with the quotient topology is also
a topological linear space, and the quotient map q W E ! E=F (i.e., p.x/ D
x C F 2 E=F ) is open, hence if U is a neighborhood basis at 0 in E , then
q.U/ D fq.U / j U 2 Ug is a neighborhood basis 0 in E=F .

Sketch of Proof. Apply Proposition 3.4.5(1) to show that the quotient map q W E ! E=F is
open. Then, in the diagrams below, q � q and q � idR are open, so they are quotient maps:

E �E

q�q

E

q

E=F �E=F E=F;

E � R

q�idR

E

q

E=F � R E=F:

Accordingly, the continuity of addition and scalar multiplication are clear. Note that E=F
is Hausdorff if and only if F is closed in E .

For convex sets in a topological linear space, we have the following:

Proposition 3.4.7. For each convex set C in a topological linear space E , the
following hold:

(1) clC is convex and rclC � clC , hence rclC D C if C is closed in E;
(2) intF C D ; for any flat F with flC ¤ F ;
(3) intflC C 6D ; implies intflC C D coreflC C D rintC .

Proof. By the definition and the continuity of algebraic operations, we can easily
obtain (1). For (2), observe intF C � coreF C . If intF C 6D ; then flC D F by the
Fact stated in the previous section.

(3): Due to Proposition 3.3.2, coreflC C D rintC . Note that intflC C �
coreflC C . Without loss of generality, we may assume that 0 2 intflC C . Then, for
each x 2 rintC , we can find 0 < s < 1 such that x 2 sC . Since .1 � s/C is a
neighborhood of 0 D x � x in flC , we have a neighborhood U of x in flC such
that U � x � .1� s/C . Then, it follows that U � .1� s/C C sC D C . Therefore,
x 2 intflC C . ut

Remark 9. In the above, we cannot assert any one of clC D rclC , intflC C D
coreflC C , or intflC C 6D ;. For example, Œ�1; 1�Nf is a convex set in R

N such that
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rclŒ�1; 1�Nf D Œ�1; 1�Nf but clŒ�1; 1�Nf D Œ�1; 1�N. Note that flŒ�1; 1�Nf D R
N

f .

Regard Œ�1; 1�Nf as a convex set in R
N

f . Then,

int
R
N

f
Œ�1; 1�Nf D ; but core

R
N

f
Œ�1; 1�Nf D rintŒ�1; 1�Nf D .�1; 1/Nf :

By Proposition 3.4.7(1), if A is a subset of a topological linear space E , then
clhAi is the smallest closed convex set containing A, which is called the closed
convex hull of A.

Remark 10. In general, hAi is not closed in E even if A is compact. For example,
let A D fan j n 2 !g � `1, where a0.i/ D 2�i for every i 2 N and, for each
n 2 N, an.i/ D 2�i if i � n and an.i/ D 0 if i > n. Then, A is compact and
hAi D S

n2Nha0; a1; : : : ; ani. For each n 2 N, let

xn D 2�na0 C 2�1a1 C � � � C 2�nan 2 ha0; a1; : : : ; ani:

Then, xn.i/ D 2�2iC1 if i � n and xn.i/ D 2�n�i if i > n. Hence, .xn/n2N
converges to x0 2 `1, where x0.i/ D 2�2iC1 for each i 2 N. However, x0 62 hAi.
Otherwise, x0 2 ha0; a1; : : : ; ani for some n 2 N, where we can write

x0 D
nX

iD0
z.i C 1/ai ; z 2 �n:

Then, we have the following:

z.1/a0.nC 1/ D x0.nC 1/ D 2�2n�1 D 2�na0.nC 1/ and

z.1/a0.nC 2/ D x0.nC 2/ D 2�2n�3 D 2�n�1a0.nC 2/;

hence z.1/ D 2�n and z.1/ D 2�n�1. This is a contradiction. Therefore, hAi is not
closed in `1.

The following is the topological version of the Separation Theorem 3.3.5:

Theorem 3.4.8 (SEPARATION THEOREM). Let A and B be convex sets in a
topological linear space E such that intA 6D ; and .intA/ \ B D ;. Then, there
is a continuous linear functional f W E ! R such that f .x/ < f .y/ for each
x 2 intA and y 2 B , and supf .A/ � inff .B/.

Proof. First, intA 6D ; implies coreA D intA 6D ; by Proposition 3.4.7(3). Then,
by the Separation Theorem 3.3.5, we have a linear functional f W E ! R such that
f .x/ < f .y/ for every x 2 intA and y 2 B , and supf .A/ � inff .B/. Note that
B � intA is open in E and f .z/ > 0 for every z 2 B � intA. Thus, f �1.0/ is not
dense in E . Therefore, f is continuous by Proposition 3.4.4. ut
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A topological linear space E is locally convex if 0 2 E has a neighborhood
basis consisting of (open) convex sets; equivalently, open convex sets make up an
open basis for E . It follows from Proposition 3.4.6 that for each locally convex
topological space E and each closed linear subspace F � E , the quotient linear
space E=F is also locally convex. For locally convex topological linear spaces, we
have the following separation theorem:

Theorem 3.4.9 (STRONG SEPARATION THEOREM). Let A and B be disjoint
closed convex sets in a locally convex topological linear space E . If at least one
of A and B is compact, then there is a continuous linear functional f W E ! R

such that supf .A/ < inff .B/.

Proof. By Proposition 3.4.5(2), B �A is closed in E . Since A\ B D ;, it follows
that 0 62 B � A. Choose an open convex neighborhood U of 0 so that U \ .B �
A/ D ;. By the Separation Theorem 3.4.8, we have a nontrivial continuous linear
functional f W E ! R such that supf .U / � inff .B � A/. Then, supf .A/ C
supf .U / � inff .B/, where supf .U / > 0 by the non-triviality of f . Thus, we
have the result. ut

As a particular case, we have the following:

Corollary 3.4.10. LetE be a locally convex topological linear space. For each pair
of distinct points x; y 2 E , there exists a continuous linear functional f W E ! R

such that f .x/ 6D f .y/. ut
Concerning the continuity of sublinear functionals, we have the following:

Proposition 3.4.11. Let p W E ! R be a non-negative sublinear functional of a
topological linear space E . Then, p is continuous if and only if p�1.Œ0; 1// is a
neighborhood of 0 2 E .

Proof. The “only if” part follows from p�1.Œ0; 1// D p�1..�1; 1//. To see the “if”
part, let " > 0. Since p�1.Œ0; "// D "p�1.Œ0; 1// is a neighborhood of 0 2 E , each
x 2 E has the following neighborhood:

U D �
x C p�1.Œ0; "//

�\ �
x � p�1.Œ0; "//

�
:

For each y 2 U , since p.y � x/ < " and p.x � y/ < ", it follows that

p.y/ � p.y � x/C p.x/ < p.x/C " and

p.y/ � p.x/ � p.x � y/ > p.x/ � ";

which means that p is continuous at x. ut
For each convex set C � E with 0 2 intC , we have intC D coreC D

p�1
C .Œ0; 1// by Propositions 3.3.4 and 3.4.7(3). Then, the following is obtained from

Proposition 3.4.11.
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Corollary 3.4.12. Let E be a topological linear space. For each convex set C � E

with 0 2 intC , the Minkowski functional pC W E ! R is continuous. Moreover,
p�1
C .Œ0; 1// D intC D rintC and p�1

C .I/ D clC D rclC , hence p�1
C .1/ D bdC D

@C . ut
The boundedness is a metric concept, but it can be extended to subsets of a

topological linear space E . A subset A � E is topologically bounded13 provided
that, for each neighborhood U of 0 2 E , there exists some r > 0 such that
A � rU . If A � E is topologically bounded and B � A, then B is also
topologically bounded. Recall that every neighborhood U of 0 2 E contains a
circled neighborhood V of 0 2 E (cf. Proposition 3.4.1(3)). Since sV � tV for
0 < s < t , it is easy to see that every compact subset of E is topologically bounded.
When E is a normed linear space, A � E is topologically bounded if and only if A
is bounded in the metric sense. Applying Minkowski functionals, we can show the
following:

Theorem 3.4.13. Let E be a topological linear space. Each pair of topologically
bounded closed convex sets C;D � E with intC 6D ; and intD 6D ;
are homeomorphic to each other by a homeomorphism of E onto itself, hence
.C; bdC/ 
 .D; bdD/ and intC 
 intD.

Proof. Without loss of generality, we may assume that 0 2 intC \ intD. Let pC
and pD be the Minkowski functionals for C andD, respectively. By the topological
boundedness of C and D, it is easy to see that pC .x/; pD.x/ > 0 for every x 2
E n f0g. Then, we can define maps '; W E ! E as follows: '.0/ D  .0/ D 0,

'.x/ D pC .x/

pD.x/
x and  .x/ D pD.x/

pC .x/
x for each x 2 E n f0g.

It follows from the continuity of pC and pD (Corollary 3.4.12) that ' and  are
continuous at each x 2 E n f0g.

To verify the continuity of ' at 0 2 E , let U be a neighborhood of 0 2 E . Since
D is topologically bounded andC is a neighborhood of 0, there is an r > 0 such that
D � rC . Then, pC .x/ � rpD.x/ for every x 2 E . Choose a circled neighborhood
V of 0 2 E so that rV � U . Then, '.V / � U . Indeed, for each x 2 V n f0g,

'.x/ D pC .x/

pD.x/
x 2 pC .x/

pD.x/
V � rV � U:

Similarly,  is continuous at 0 2 E .
For each x 2 E n f0g, since '.x/ 6D 0,

13Usually, we say simply bounded but here add topologically in order to distinguish the metric
sense. It should be noted that every metrizable space has an admissible bounded metric.
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 '.x/ D pD.'.x//

pC .'.x//
'.x/ D

pC .x/

pD.x/
pD.x/

pC .x/

pD.x/
pC .x/

� pC .x/
pD.x/

x D x:

Hence,  ' D id. Similarly, ' D id. Therefore, ' is a homeomorphism with
'�1 D  . Moreover, observe that '.C / � D and  .D/ � C , hence '.C / D D.
Thus, we have the result. ut

The norm of a normed linear space E is the Minkowski functional for the unit
closed ball BE ofE . Since bd BE is the unit sphere SE ofE , we have the following:

Corollary 3.4.14. Let E D .E; k � k/ be a normed linear space. For every bounded
closed convex set C � E with intC 6D ;, the pair .C; bdC/ is homeomorphic to
the pair .BE;SE/ of the unit closed ball and the unit sphere of E . ut

It is easy to see that every normed linear space E D .E; k � k/ is homeomorphic
to the unit open ball B.0; 1/ D BE n SE of E .

In fact, the following are homeomorphisms (each of them is the inverse of the other):

E 3 x 7! 1

1C kxkx 2 B.0; 1/I B.0; 1/ 3 y 7! 1

1� kyky 2 E:

By applying the Minkowski functional, this can be extended as follows:

Theorem 3.4.15. Every open convex set V in a topological linear space E is
homeomorphic to E itself.

Proof. Without loss of generality, it can be assumed that 0 2 intV D V . Then, we
have V D intV D p�1

V .Œ0; 1// by Corollary 3.4.12. Using the Minkowski functional
pV , we can define maps ' W V ! E and  W E ! V as follows:

'.x/ D 1

1 � pV .x/
x for x 2 V ;  .y/ D 1

1C pV .y/
y for y 2 E .

Observe that  ' D idV and ' D idE . This means that ' is a homeomorphism
with  D '�1. ut

3.5 Finite-Dimensionality

Here, we prove that every finite-dimensional linear space has the unique topology
that is compatible with the algebraic operations, and that a topological linear space
is finite-dimensional if and only if it is locally compact.

First, we show the following proposition:
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Proposition 3.5.1. Every finite-dimensional flat F in an arbitrary linear space E
has the unique (Hausdorff) topology such that the following operation is continuous:

F � F � R 3 .x; y; t/ 7! .1 � t/x C ty 2 F:
With respect to this topology, every affine bijection f W Rn ! F is a homeomor-
phism, where n D dimF . Then, F is affinely homeomorphic to R

n. Moreover, if E
is a topological linear space then F is closed in E .

Proof. As mentioned at the beginning of Sect. 3.4, E has a topology that makes E
a topological linear space. With respect to the topology of F inherited from this
topology, the above operation is continuous.

Note that there exists an affine bijection f W R
n ! F , where dimF D n.

We shall show that any affine bijection f W R
n ! F is a homeomorphism with

respect to any other topology of F such that the above operation is continuous,
which implies that such a topology is unique and F is affinely homeomorphic to R

n.
Since f is affine, we have

f .z/ D
�

1 �
nX

iD1
z.i/

�

f .0/C
nX

iD1
z.i/f .ei / for each z 2 R

n.

Note that the following function is continuous:

R
n 3 z 7!

�

1 �
nX

iD1
z.i/; z.1/; : : : ; z.n/

�

2 fl�n � R
nC1:

Then, the continuity of f follows from the claim:

Claim. Given v1; : : : ; vk 2 F , k � n, the following function is continuous:

'k W fl�k�1 3 z 7!
kX

iD1
z.i/vi 2 F:

Since fl�0 D �0 is a singleton, the continuity of '1 is obvious. Assuming the
continuity of 'k, we shall show the continuity of 'kC1. Let  W fl�k�1�R ! fl�k

be the map defined by  .z; t/ D ..1 � t/z; t/. Observe that

'kC1 .z; t/ D .1 � t/
kX

iD1
z.i/vi C tvkC1 D .1 � t/'k.z/C tvkC1:

From the property of the topology of F and the continuity of 'k , it follows that
'kC1 is continuous. For each i D 1; : : : ; kC 1, let pi D pri j fl�k W fl�k ! R be
the restriction of the projection onto the i -th factor. Note that



104 3 Topology of Linear Spaces and Convex Sets

 j fl�k�1 � .R n f1g/ W fl�k�1 � .R n f1g/ ! fl�k n p�1
kC1.1/

is a homeomorphism. Hence, 'kC1j fl�k n p�1
kC1.1/ is continuous. Replacing the

.k C 1/-th coordinates with the i -th coordinates, we can see the continuity of
'kC1j fl�k n p�1

i .1/. Since fl�k D SkC1
iD1 .fl�k n p�1

i .1//, it follows that 'kC1
is continuous. Thus, the claim can be obtained by induction.

It remains to show the openness of f . On the contrary, assume that f is not
open. Then, we have x 2 R

n and " > 0 such that f .B.x; "// is not a neighborhood
of f .x/ in F . Since bd B.x; "/ is a bounded closed set of Rn, it is compact, hence
f .bd B.x; "// is closed in F . Then, F nf .bd B.x; "// is a neighborhood of f .x/ in
F . Using the compactness of I, we can find an open neighborhoodU of f .x/ in F
such that

.1 � t/f .x/C tU � F n f .bd B.x; "// for every t 2 I.

Then, U \ f .bd B.x; "// D ;. Since f .B.x; "// is not a neighborhood of f .x/, it
follows that U 6� f .B.x; "//, and so we can take a point y 2 U n f .B.x; "//. Now,
we define a linear path g W I ! R

n by g.t/ D .1� t/xC tf �1.y/. Since f is affine
and y 2 U , it follows that

fg.t/ D .1 � t/f .x/C ty 2 F n f .bd B.x; "// for every t 2 I.

Since f is a bijection, we have

g.I/ � R
n n bd B.x; "/ D B.x; "/ [ .Rn n B.x; "//:

Then, g.0/ D x 2 B.x; "/ and g.1/ D f �1.y/ 2 R
n n B.x; "/, which contradicts

the connectedness of I. Thus, f is open.
In the case when E is a topological linear space, to prove that F is closed in E ,

take a point x 2 E nF and consider the flat Fx D fl.F [fxg/. It is easy to construct
an affine bijection f W RnC1 ! Fx such that f .Rn � f0g/ D F . As we saw in the
above, f is a homeomorphism, hence F is closed in Fx . Since Fx nF is open in Fx ,
we have an open set U inE such that U \Fx D Fx nF . Then,U is a neighborhood
of x inE andU � EnF . Therefore,EnF is open inE , that is,F is closed inE . ut

If a linear space E has a topology such that the operation

E �E � R 3 .x; y; t/ 7! .1 � t/x C ty 2 E
is continuous, then scalar multiplication and addition are also continuous with this
topology because they can be written as follows:

E � R 3 .x; t/ 7! tx D .1� t/0 C tx 2 EI
E � E 3 .x; y/ 7! x C y D 2

�
1
2
x C 1

2
y
� 2 E:
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Then, the following is obtained by Proposition 3.5.1:

Corollary 3.5.2. Every finite-dimensional linear space E has the unique (Haus-
dorff) topology compatible with the algebraic operations (addition and scalar
multiplication), and then it is linearly homeomorphic to R

n, where n D dimE . ut
Moreover, we have the following:

Corollary 3.5.3. Let E be a topological linear space and F a finite-dimensional
flat in another topological linear space. Then, every affine function f W F ! E is
continuous, and if f is injective then f is a closed embedding.

Proof. By Proposition 3.5.1, F can be replaced with R
n, where n D dimF . Then,

we can write

f .x/ D
 

1 �
nX

iD1
x.i/

!

f .0/C
nX

iD1
x.i/f .ei / for each x 2 R

n,

where e1; : : : ; en is the canonical orthonormal basis for Rn. Thus, the continuity of
f is obvious. Since f .Rn/ is a finite-dimensional flat in E , f .Rn/ is closed in E
by Proposition 3.5.1. If f is injective then f W Rn ! f .Rn/ is an affine bijection,
which is a homeomorphism by Proposition 3.5.1. Hence, f is a closed embedding.

ut
Combining Proposition 3.2.2 and Corollary 3.5.3, we have

Corollary 3.5.4. Let E be a topological linear space and C a finite-dimensional
convex set in another topological linear space. Then, every affine function f W C !
E is continuous. Moreover, if f is injective then f is an embedding. ut

For finite-dimensional convex sets in a linear space, we have the following:

Proposition 3.5.5. Let C be a finite-dimensional convex set in an arbitrary linear
space E . Then, rintC D intflC C with respect to the unique topology for flC as in
Proposition 3.5.1.

Proof. We may assume thatE is a topological linear space. By Proposition 3.4.7(3),
it suffices to show that intflC C 6D ;. We have affinely independent v0; v1; : : : ; vn 2
C with flC D flfv0; v1; : : : ; vng, where n D dimC . We have an affine bijection
f W Rn ! flC such that f .0/ D v0, f .e1/ D v1, . . . , f .en/ D vn. Then, f is a
homeomorphism by Proposition 3.5.1, hence

intflC C 	 intflC hv0; v1; : : : ; vni D f .intRnh0; e1; : : : ; eni/ 6D ;: ut
Note that every compact set in a topological linear space is topologically bounded

and closed. For an n-dimensional convex set C in a linear space, the flat hull
flC is affinely isomorphic to R

n. Combining Propositions 3.5.1 and 3.5.5 with
Corollary 3.4.14, we have the following:
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Corollary 3.5.6. For every n-dimensional compact convex set C in an arbi-
trary topological linear space E , the pair .C; @C / is homeomorphic to the pair
.Bn;Sn�1/ of the unit closed n-ball and the unit .n � 1/-sphere. ut
Remark 11. It should be noted that every bounded closed set in Euclidean space Rn

is compact. More generally, we can prove the following:

Proposition 3.5.7. Let E be an arbitrary topological linear space andA � E with
dim flA < 1. Then, A is compact if and only if A is topologically bounded and
closed in E .

Sketch of Proof. Using Proposition 3.5.1, this can be reduced to the case of Rn.

The following convex version of Proposition 3.5.1 is not trivial.

Proposition 3.5.8. Let C be an n-dimensional convex set in an arbitrary linear
space E . If (1) C is the convex hull of a finite set14 or (2) C D rintC , then C has
the unique (Hausdorff) topology such that the following operation is continuous:

C � C � I 3 .x; y; t/ 7! .1 � t/x C ty 2 C:

In case (1), rclC D C and .C; @C / 
 .Bn;Sn�1/; in case (2), C 
 R
n.

Proof. Like Proposition 3.5.1, it suffices to see the uniqueness and the additional
statement. To this end, suppose that C has such a topology, but it is unknown
whether this is induced from a topology of flC or not.

Case (1): Let C D hv1; : : : ; vki and define f W �k�1 ! C by f .z/ DPk
iD1 z.i/vi . In the same way as for the claim in the proof of Proposition 3.5.1,

we can see that the continuity of the operation above induces the continuity of f .
Since�k�1 is compact, f is a closed map, hence it is quotient. Thus, the topology of
C is unique and C is compact with respect to this topology. Giving any topology on
E so thatE is a topological linear space, we have rclC D C by Proposition 3.4.7(i)
and .C; @C / 
 .Bn;Sn�1/ by Corollary 3.5.6.

Case (2): Let f W R
n ! flC be an affine bijection, where n D dim flC D

dimC . Since D D f �1.C / is an n-dimensional convex set in R
n, D D rintD D

intD is open in R
n by Proposition 3.5.5, hence D 
 R

n by Proposition 3.4.15.
Then, it suffices to show that f jD W D ! C is a homeomorphism. For each x 2 D,
choose ı > 0 so that x C ıBn D B.x; ı/ � D. Let v0 D x � ı O�n�1, where O�n�1 is
the barycenter of the standard .n � 1/-simplex �n�1 D he1; e2; : : : ; eni � R

n. For
each i D 1; : : : ; n, let vi D x C ıei . Then, v0; v1; : : : ; vn are affinely independent
and

x 2 intRnhv0; v1; : : : ; vni � x C ıBn � D;

hence hv0; v1; : : : ; vni is a neighborhood of x in D. On the other hand, we have the
affine homeomorphism ' W �n ! hv0; v1; : : : ; vni defined by '.z/ D Pn

iD0 z.i C

14In this case, C is called a cell or a (convex) linear cell (cf. Sect. 4.1).
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ı
0 1

Dr

q D .x; y/

r

.1; 1/

s

Ds

Fig. 3.7 The continuity of the operation at .0; q; 0/ 2 C � C � I

1/vi . Since f '.z/ D Pn
iD0 z.i C 1/f .vi /, the continuity of the operation above

implies that of f ', hence f jhv0; v1; : : : ; vni is continuous at x. Then, it follows that
f jD is continuous at x.

Since D is open in R
n, we can apply the same argument as in the proof of

Proposition 3.5.1 to prove that f jD W D ! C is open. Consequently, f jD W D !
C is a homeomorphism. ut
Remark 12. For an arbitrary finite-dimensional convex C , Proposition 3.5.8 does
not hold in general. For example, let

C D f0g [ f.x; y/ 2 .0; 1�2 j x � yg � R
2:

Then, C is a convex set that has a finer topology than usual such that the operation
in Proposition 3.5.8 is continuous. Such a topology is generated by open sets in the
usual topology and the following sets:

Dr D f0g [ .B..0; r/; r/\ C/; r > 0:

Note that this topology induces the same relative topology onC nf0g as usual. Since
D"=

p
2 � B.0; "/ for each " > 0, fDr j r > 0g is a neighborhood basis at 0 2 C

with respect to this topology.
We shall show that the operation

C � C � I 3 .p; q; t/ 7! .1� t/p C tq 2 C
is continuous at .p; q; t/ 2 C � C � I. If .1 � t/p C tq 6D 0, it follows from the
continuity with respect to the usual topology. The continuity at .0; 0; t/ follows from
the convexity of Dr , r > 0.

To see the continuity at .0; q; 0/ (q 6D 0), let q D .x; y/, where 0 < y � x � 1.
Choose s > 0 so that q 2 Ds (i.e., s > .x2 C y2/=2y). For each 0 < r < minf1; sg,
let 0 � t � r=2s, p0 2 Dr=2, and q0 2 Ds (Fig. 3.7). Observe that

1 � t
r=s � t

.r=s/p0 2 1 � t
r=s � t

.r=s/Dr=2 � 1

r=2s
.r=s/Dr=2 D Dr
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and .r=s/q0 2 .r=s/Ds D Dr . Since Dr is convex, it follows that

.1 � t/p0 C tq0 D
�

1 � t

r=s

�
1� t

r=s � t
.r=s/p0 C t

r=s
.r=s/q0 2 Dr:

Thus, the operation is continuous at .0; q; 0/. The continuity at .p; 0; 1/ (p 6D 0) is
the same.

A subset A of a topological linear space E is totally bounded provided, for
each neighborhood U of 0 2 E , there exists some finite set M � E such that
A � M C U . In this definition,M can be taken as a subset of A.

Indeed, for each neighborhood U of 0 2 E , we have a circled neighborhood V such that
V CV � U . Then, A � M C V for some finite set M � E , where it can be assumed that
.x C V /\A 6D ; for every x 2 M . For each x 2 M , choose ax 2 A so that ax 2 x C V .
Then, x 2 ax�V D axCV . It follows thatA � S

x2M .xCV / � S
x2M .axCV CV / �S

x2M .ax C U/.

If A � E is totally bounded andB � A, thenB is also totally bounded. It is easy
to see that every compact subset of E is totally bounded and every totally bounded
subset of E is topologically bounded. In other words, we have:

compact ) totally bounded ) topologically bounded

For topological linear spaces, the finite-dimensionality can be simply characterized
as follows:

Theorem 3.5.9. Let E be a topological linear space. The following are equiva-
lent:

(a) E is finite-dimensional;
(b) E is locally compact;
(c) 0 2 E has a totally bounded neighborhood in E .

Proof. Since each n-dimensional topological linear space is linearly homeomorphic
to R

n (Corollary 3.5.2), we have (a) ) (b). Since every compact subset of E is
totally bounded, the implication (b) ) (c) follows.

(c) ) (a): Let U be a totally bounded neighborhood of 0 2 E . By Proposi-
tion 3.4.1, we have a circled neighborhood V of 0 such that V C V � U . Then, V
is also totally bounded. First, we show the following:

Claim. For each closed linear subspace F ¤ E , there is some x 2 U such that
.x C V / \ F D ;.

Contrary to the claim, suppose that .x C V / \ F 6D ; for every x 2 U . Since
V D �V , it follows that U � F C V , so we have V C V � F C V . If .n� 1/V �
F C V then

nV � .n � 1/V C V � F C V C V � F C F C V D F C V:
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By induction, we have nV � F C V for every n 2 N, which implies that V �T
n2N.F C n�1V /.
Take z 2 E n F . Since F is closed in E , we have a circled neighborhoodW of

0 2 E such thatW � V and .zCW /\F D ;. The total boundedness of V implies
the topological boundedness, hence V � mW for some m 2 N. On the other hand,
k�1z 2 V for some k 2 N. Since k�1z 2 V � F C .km/�1V , it follows that
z 2 F Cm�1V � F CW . This contradicts the fact that .z CW /\ F D ;.

Now, assume that E is infinite-dimensional. Let v1 2 U n f0g and F1 D Rv1.
Then, F1 is closed in E (Proposition 3.5.1) and F1 6D E . Applying the claim above,
we have v2 2 U such that .v2 C V / \ F1 D ;. Note that v2 62 v1 C V . Let F2 D
Rv1 C Rv2. Since F2 is closed in E (Proposition 3.5.1) and F2 6D E , we can again
apply the claim to find v3 2 U such that .v3 C V / \ F2 D ;. Then, note that
v3 62 vi C V for i D 1; 2. By induction, we have vn 2 U , n 2 N, such that
vn 62 vi C V for i < n. Then, fvn j n 2 Ng is not totally bounded. This is a
contradiction. Consequently,E is finite-dimensional. ut

By Theorem 3.5.9, every infinite-dimensional topological linear space is not
locally compact.

3.6 Metrizability and Normability

In this section, we prove metrization and normability theorems for topological linear
spaces. The metrizability of a topological linear space has the following very simple
characterization:

Theorem 3.6.1. A topological linear space E is metrizable if and only if 0 2 E

has a countable neighborhood basis.

In a more general setting, we shall prove a stronger result. A metric d on a
group G is said to be left (resp. right) invariant if d.x; y/ D d.zx; zy/ (resp.
d.x; y/ D d.xz; yz/) for each x; y; z 2 G; equivalently, d.x; y/ D d.x�1y; 1/
(resp. d.x; y/ D d.xy�1; 1/) for each x; y 2 G. When both of two metrics d and
d 0 on a group G are left (or right) invariant, they are uniformly equivalent to each
other if and only if they induce the same topology. It is said that d is invariant if it is
left and right invariant. Every invariant metric d on a groupG induces the topology
on G that makes G a topological group. In fact,

d.x; y/ D d.x�1xy�1; x�1yy�1/ D d.y�1; x�1/ D d.x�1; y�1/ and

d.xy; x0y0/ � d.xy; x0y/C d.x0y; x0y0/ D d.x; x0/C d.y; y0/:

It is easy to verify that a left (or right) invariant metric d on a group G is invariant
if d.x; y/ D d.x�1; y�1/ for each x; y 2 G. Theorem 3.6.1 comes from the
following:
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Theorem 3.6.2. For a topological group G, the following are equivalent:

(a) G is metrizable;
(b) The unit 1 2 G has a countable neighborhood basis;
(c) G has an admissible bounded left invariant (right invariant) metric.

Proof. Since the implications (a) ) (b) and (c) ) (a) are obvious, it suffices to
show the implication (b) ) (c).

(b) ) (c):15 We shall construct a left invariant metric � 2 Metr.G/. Then, a
right invariant metric �0 2 Metr.G/ can be defined by �0.x; y/ D �.x�1; y�1/. By
condition (b), we can find an open neighborhood basis fVn j n 2 Ng at 1 2 G such
that

V �1
n D Vn and VnC1VnC1VnC1 � Vn for each n 2 N.16

Let V0 D G, and define

p.x/ D inff2�i j x 2 Vi g 2 I for each x 2 G.

Since Vn D V �1
n for each n 2 N, it follows that p.x/ D p.x�1/ for every x 2 G.

Note that
T
n2! Vn D f1g.17 Hence, for every x 2 G,

p.x/ D 0 , x D 1:

By induction on n, we shall prove the following:

(�) p.x�1
0 xn/ � 2

nX

iD1
p.x�1

i�1xi / for each x0; x1; : : : ; xn 2 G.18

The case n D 1 is obvious. Assume (�) for m < n. If
Pn

iD1 p.x�1
i�1xi / D 0 orPn

iD1 p.x�1
i�1xi / � 1

2
, it is trivial. When 2�k�1 � Pn

iD1 p.x�1
i�1xi / < 2�k for some

k 2 N, choose 1 � m � n so that

m�1X

iD1
p.x�1

i�1xi / < 2�k�1 and
nX

iDmC1
p.x�1

i�1xi / < 2�k�1:

15The idea of the proof is the same as that of Theorem 2.4.1 (b) ) (a).
16Note that fVnx j n 2 Ng is an open neighborhood basis at x 2 G. For each x; y 2 G and
n 2 N, VnC1x \ VnC1y 6D ; implies VnC1y � Vnx. Indeed, ux D vy for some u; v 2 VnC1,
hence VnC1y D VnC1v�1ux � Vnx. Thus, the metrizability of G can be obtained by the
Frink Metrization Theorem 2.4.1. On the other hand, Vn D fVnx j x 2 Gg 2 cov.G/ and
stVnC1 
 Vn. Indeed, st.VnC1x;VnC1/ � Vnx. Thus, the metrizability of G can also be obtained
by Corollary 2.4.4.
17It is assumed that G is Hausdorff.
18For each x; y 2 G, let ı.x; y/ D p.x�1y/. Then, this inequality is simply the one given in the
sketch of the direct proof for Corollary 2.4.4.
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Note that p.x�1
m�1xm/ < 2�k. By the inductive assumption, p.x�1

0 xm�1/ <

2�k and p.x�1
m xn/ < 2�k . Then, x�1

0 xm�1; x�1
m�1xm; x�1

m xn 2 VkC1. Since
VkC1VkC1VkC1 � Vk , it follows that x�1

0 xn 2 Vk, hence

p.x�1
0 xn/ � 2�k � 2

nX

iD1
p.x�1

i�1xi /:

Now, we can define a metric � on G as follows:

�.x; y/ D inf
˚Pn

iD1 p.x�1
i�1xi /

ˇ
ˇ n 2 N; xi 2 G; x0 D x; xn D y

�
:

By the definition, � is left invariant. Note that �.x; y/ � p.x�1y/ � 1. Then,
x�1y 2 Vn implies �.x; y/ � p.x�1y/ � 2�n < 2�nC1, which means xVn �
B�.x; 2�nC1/. On the other hand, if �.x; y/ < 2�n then p.x�1y/ � 2�.x; y/ <

2�nC1 by (�), which implies x�1y 2 Vn. Thus, B�.x; 2�n/ � xVn. Therefore, � is
admissible. ut

In the above proof, a right invariant metric � 2 Metr.G/ can be directly defined as follows:

�.x; y/ D inf
˚Pn

iD1 p.xi�1x
�1
i /

ˇ
ˇ n 2 N; xi 2 G; x0 D x; xn D y

�
:

Every metrizable topological linear space E has an admissible (bounded) metric
� that is not only invariant but also satisfies the following:

(]) jt j � 1 ) �.tx; 0/ � �.x; 0/.

To verify this, let us recall how to define the metric � in the above proof. Taking a
neighborhood basis fVn j n 2 Ng at 0 2 E so that Vn D �Vn and VnC1 C VnC1 C
VnC1 � Vn for each n 2 N, we define the admissible invariant metric � as follows:

�.x; y/ D inf
˚Pn

iD1 p.xi � xi�1/
ˇ
ˇ n 2 N; xi 2 E; x0 D x; xn D y

�
;

wherep.x/ D inff2�i j x 2 Vi g. SinceE is a topological linear space, the condition
that Vn D �Vn can be replaced by a stronger condition that Vn is circled, i.e.,
tVn � Vn for t 2 Œ�1; 1�. Then, p.tx/ � p.x/ for each x 2 E and t 2 Œ�1; 1�,
which implies that �.tx; 0/ � �.x; 0/ for each x 2 E and t 2 Œ�1; 1�.

Let d be an invariant metric on a linear space E . Addition on a linear space
E is clearly continuous with respect to d . On the other hand, scalar multiplication
on E is continuous with respect to d if and only if d satisfies the following three
conditions:

(i) d.xn; 0/ ! 0 ) 8t 2 R; d.txn; 0/ ! 0;
(ii) tn ! 0 ) 8x 2 E; d.tnx; 0/ ! 0;

(iii) d.xn; 0/ ! 0; tn ! 0 ) d.tnxn; 0/ ! 0.

Indeed, the “only if” part is trivial. To show the “if” part, observe

tnxn � tx D .tn � t /.xn � x/C t .xn � x/C .tn � t /x:
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Since d is invariant, it follows that

d.tnxn; tx/ D d..tn � t /.xn � x/C t .xn � x/C .tn � t /x; 0/

� d..tn � t /.xn � x/; 0/C d.t.xn � x/; 0/C d..tn � t /x; 0/;

where d.tnxn; tx/ ! 0 if tn ! t and d.xn; x/ ! 0. Thus, the above three conditions
imply the continuity of scalar multiplication on E with respect to d .

It should be remarked that condition (]) implies condition (iii).
An invariant metric d on E satisfying these conditions is called a linear metric.

A linear space with a linear metric is called a metric linear space. Then, every
metric linear space is a metrizable topological linear space. Conversely, we have the
following fact:

Fact. Every admissible invariant metric for a metrizable topological linear space
is a linear metric.

For subsets of a metric linear space, the total boundedness coincides with that in
the metric sense. On the other hand, the topological boundedness does not coincide
with the metric boundedness. In fact, every metrizable topological linear space
E has an admissible bounded invariant metric. For instance, given an admissible
invariant metric d for E , the following are admissible bounded invariant metrics:

min
˚
1; d.x; y/

�
;

d.x; y/

1C d.x; y/
:

For a linear metric � on E with the condition (]), the functional E 3 x 7!
�.x; 0/ 2 R is called an F -norm. In other words, a functional k � k W E ! R on a
linear space E is called an F -norm if it satisfies the following conditions:

(F1) kxk � 0 for every x 2 E;
(F2) kxk D 0 ) x D 0;
(F3) jt j � 1 ) ktxk � kxk for every x 2 E;
(F4) kx C yk � kxk C kyk for every x; y 2 E;
(F5) kxnk ! 0 ) ktxnk ! 0 for every t 2 R;
(F6) tn ! 0 ) ktnxk ! 0 for every x 2 E .

Conditions (F3), (F5), and (F6) correspond to conditions (]), (i), and (ii), respectively. The
converse of (F2) is true because k0k D 0 by (F6). Then, kxk D 0 if and only if x D 0.
Condition (F3) implies that k � xk D kxk for every x 2 E . Furthermore, conditions (F3)
and (F4) imply condition (F5). Indeed, using (F4) inductively, we have knxk � nkxk for
every n 2 N. Each t 2 Œ0;1/ can be written as t D Œt �C s for some s 2 Œ0; 1/, where Œt �
is the greatest integer � t . Since ksxk � kxk by (F3), it follows that ktxk � .Œt �C 1/kxk.
Because k � xk D kxk, ktxk � .Œjt j� C 1/kxk for every t 2 R. This implies condition
(F5). Thus, condition (F5) is unnecessary.

A linear space E given an F -norm k � k is called an F -normed linear space.
Every norm is an F -norm, hence every normed linear space is an F -normed space.
An F -norm k � k induces the linear metric d.x; y/ D kx � yk. Then, every F -
normed linear space is a metric linear space. An F -norm on a topological linear
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space E is said to be admissible if it induces the topology for E . As we saw above,
if E is metrizable, then E has an admissible invariant metric � satisfying (]), which
induces the F -norm. Therefore, we have the following:

Theorem 3.6.3. A topological linear space has an admissible F -norm if and only
if it is metrizable. ut

For each metrizable topological linear space, there exists an F -norm with the
following stronger condition than (F3):

(F �
3 ) x 6D 0; jt j < 1 ) ktxk < kxk,

which implies that ksxk < ktxk for each x 6D 0 and 0 < s < t . The following
proposition guarantees the existence of an F -norm with the condition (F �

3 ):

Proposition 3.6.4. Every (completely) metrizable topological linear space E has
an admissible invariant (complete) metric d such that d.tx; 0/ < d.x; 0/ if x 6D 0
and jt j < 1, which induces an admissible F -norm satisfying .F �

3 /. If an admissible
invariant metric � for E is given, d can be chosen so that d � � (hence, if � is
complete, then so is d ). Moreover, if � is bounded, d can be chosen to be bounded.

Proof. Given an admissible (bounded) invariant metric � forE , we define d1.x; y/ D
sup0<s�1 �.sx; sy/. Then, d1 is an invariant metric on E with d1 � � (if � is
bounded then so is d1). For each " > 0, since the scalar multiplication E � R 3
.x; s/ ! sx 2 E is continuous at .0; s/ and I is compact, we can find ı > 0

such that �.x; 0/ < ı implies �.sx; 0/ < " for every s 2 I, hence �.x; y/ < ı

implies d1.x; y/ D sup0<s�1 �.sx; sy/ � ". Thus, d1 is uniformly equivalent to
�. In particular, d1 is admissible. For r > 0, we define an admissible invariant
metric dr for E by dr.x; y/ D d1.rx; ry/ (D sup0<s�r �.sx; sy/). Observe that
dr.tx; 0/ � dr.x; 0/ for each x 2 E and t 2 I.

Now, let Q \ .0; 1� D frn j n 2 Ng, where r1 D 1. We define d.x; y/ DP
n2N 2�nC1drn.x; y/. Then, d is an invariant metric on E and

�.x; y/ � d1.x; y/ � d.x; y/ � 2d1.x; y/;

hence d is admissible (if � is bounded then so is d ). It also follows that d.tx; 0/ �
d.x; 0/ for each x 2 E and t 2 I. It remains to show that d.tx; 0/ 6D d.x; 0/ for
each x 2 E n f0g and 0 < t < 1. Since Q \ .0; 1/ is dense in .0; 1/, it suffices to
show that d.tx; 0/ 6D d.x; 0/ for each x 2 E n f0g and t 2 Q \ .0; 1/. Assume that
there exists some x 2 E n f0g and t 2 Q\ .0; 1/ such that d.tx; 0/ D d.x; 0/. Note
that dr.tx; 0/ D dr.x; 0/ for each r 2 Q \ .0; 1/. Then, it follows that

dt.x; 0/ D dt .tx; 0/ D dt2.x; 0/ D dt2.tx; 0/

D dt3.x; 0/ D dt3.tx; 0/ D � � � ;
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so dt.x; 0/ D dtnC1 .x; 0/ D dt.t
nx; 0/ for every n 2 N. Since limn!1 tn D

0, it follows that dt.x; 0/ D limn!1 dt.t
nx; 0/ D 0, hence x D 0, which is a

contradiction. ut
The topological linear space R

N D s (the space of sequences) has the following
admissible F -norms:

sup
i2N

min
˚
1=i; jx.i/j�;

X

i2N
min

˚
2�i ; jx.i/j�;

X

i2N

2�i jx.i/j
1C jx.i/j ; : : : :

The first two do not satisfy condition (F �
3 ), but the third does.

We now consider the completion of metric linear spaces (cf. 2.3.10).

Proposition 3.6.5. Let G be a topological group such that the topology is induced
by an invariant metric d . The completion eG D .eG; Qd/ of .G; d/ is a group such
that G is its subgroup and Qd is invariant. Similarly, the completion of a metric (F -
normed or normed) linear space E is a metric (F -normed or normed) linear space
containingE as a linear subspace.

Proof. We define the algebraic operations on eG as follows: for each x; y 2
eG, choose sequences .xi /i2N and .yi /i2N in G so as to converge to x and y,
respectively. Since d is invariant, .xiyi /i2N and .x�1

i / are Cauchy sequences in
G. Then, define xy and x�1 as the limits of .xiyi /i2N and .x�1

i /i2N, respectively. It
is easily verified that these are well-defined. Since Qd.x; y/ D limi!1 d.xi ; yi /, it
is also easy to see that Qd is invariant, which implies the continuity of the algebraic
operations .x; y/ 7! xy and x 7! x�1.

For the completion eE of a metric linear space E , we can define not only addition
but also scalar multiplication in the same way. To see the continuity of scalar
multiplication, let x 2 eE and t 2 R. Choose a sequence .xi /i2N in E so as to
converge to x. For each " > 0, we can choose ı0 > 0 (depending on t) so that

z 2 E; d.z; 0/ < ı0; jt � t 0j < ı0 ) d.t 0z; 0/ < "=4:

Then, we have n0 2 N such that d.xn; xn0/ < ı0 for every n � n0. Choose ı1 > 0

so that ı1 < ı0 and
jsj < ı1 ) d.sxn0 ; 0/ < "=4:

Now, let x0 2 eE and t 0 2 R such that Qd.x; x0/ < ı0 and jt � t 0j < ı1. Take a
sequence .x0

i /i2N in E so as to converge to x0 and choose n1 2 N so that n1 � n0
and d.xn; x0

n/ < ı0 for every n � n1. Then, for every n � n1, it follows that

d.txn; t
0x0
n/ � d.txn; txn0/C d.txn0 ; t

0xn0/C d.t 0xn0 ; t 0xn/C d.t 0xn; t 0x0
n/

D d.t.xn � xn0/; 0/C d..t � t 0/xn0 ; 0/

C d.t 0.xn0 � xn/; 0/C d.t 0.xn � x0
n/; 0/

< "=4C "=4C "=4C "=4 D ":
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When E is an F -normed (or normed) linear space, it is easy to see that the F -norm
(or norm) for E naturally extends to eE . ut

Concerning the completeness of admissible invariant metrics, we have the
following:

Theorem 3.6.6. Let G be a completely metrizable topological group. Every ad-
missible invariant metric for G is complete. In particular, a metric linear space is
complete if it is absolutely Gı (i.e., completely metrizable).

Proof. Let d be an admissible invariant metric for G and eG be the completion
of .G; d/. Note that eG is a topological group by Proposition 3.6.5. It suffices to
show that eG D G. Since G is completely metrizable, G is a dense Gı-set in eG
(Theorem 2.5.2), hence we can write eGnG D S

n2N Fn, where each Fn is a nowhere
dense closed set in eG. Assume eG nG 6D ; and take x0 2 eG nG. Since x0x 2 eG nG
for every x 2 G, it follows that G � S

n2N x�1
0 Fn, where each x�1

0 Fn is also a
nowhere dense closed set in eG. Then, we have

eG D
[

n2N
Fn [

[

n2N
x�1
0 Fn;

which is the countable union of nowhere dense closed sets. This contradicts the
complete metrizability of eG (the Baire Category Theorem 2.5.1). ut
Corollary 3.6.7. Let G be a metrizable topological group. Every completely
metrizable Abelian subgroup H of G is closed in G. Hence, in a metrizable
topological linear space, every completely metrizable linear subspace is closed.

Proof. By Theorem 3.6.2, G has an admissible left invariant metric d . Because H
is an Abelian subgroup of G, the restriction of d on H is an admissible invariant
metric for H , which is complete by Theorem 3.6.6. Hence, it follows that H is
closed in G. ut

It is said that an F -norm (or an F -normed space) is complete if the metric
induced by the F -norm is complete. It should be noted that every metrizable
topological linear space has an admissible F -norm (Proposition 3.6.4) and that
every admissible F -norm for a completely metrizable topological linear space is
complete (Theorem 3.6.6). A completely metrizable topological linear space (or a
completeF -normed linear space) is called an F -space. A Fréchet space is a locally
convex F -space, that is, a completely metrizable locally convex topological linear
space. Every Banach space is a Fréchet space, but the converse does not hold. In
fact, s D R

N is a Fréchet space but it is not normable (Proposition 1.2.1).
Concerning the quotient of an F -normed (or normed) linear space, we have the

following:

Proposition 3.6.8. Let E D .E; k � k/ be an F -normed (or normed) linear space
and F a closed linear subspace of E . Then, the quotient space E=F has the
admissible F -norm (or norm) jjj�jjj D infx2� kxk, where if k � k is complete then
so is jjj � jjj. Hence, if E is (completely) metrizable or (completely) normable then so
is E=F .



116 3 Topology of Linear Spaces and Convex Sets

Proof. It is easy to see that jjj � jjj is an F -norm (or a norm). It should be noted that the
closedness of F is necessary for condition (F2). Let q W E ! E=F be the natural
linear surjection, i.e., q.x/ D x C F . Then, for each " > 0,

˚
q.x/

ˇ
ˇ kxk < "� D ˚

� 2 E=F ˇ
ˇ jjj�jjj < "�;

which means that q W E ! .E=F; jjj � jjj/ is open and continuous, so it is a quotient
map. Then, jjj � jjj induces the quotient topology, i.e., jjj � jjj is admissible for the quotient
topology. It also follows that if E is locally convex then so is E=F .

We should remark the following fact:

Fact. jjj� � � 0jjj D inf
˚kx � x0k ˇˇ x0 2 � 0� for each x 2 �.

Indeed, the left side is not greater than the right side by definition. For each x; y 2 � and
y0 2 �0,

ky � y0k D kx � .y0 C x � y/k � inf
˚kx � x0k ˇˇ x0 2 �0

�

because y0 C x � y 2 �0. Thus, the left side is not less than the right side.

We shall show that if k � k is complete then so is jjj � jjj. To see the completeness
of jjj � jjj, it suffices to prove that each Cauchy sequence .�i /i2N in E=F contains a
convergent subsequence. Then, by replacing .�i /i2N with its subsequence, we may
assume that jjj�i � �iC1jjj < 2�i for each i 2 N. Using the fact above, we can
inductively choose xi 2 �i so that kxi � xiC1k < 2�i . Then, .xi /i2N is a Cauchy
sequence in E , which converges to some x 2 E . It follows that .�i /i2N converges
to some x C F . ut

In the above, E=F is called the quotient F -normed (or normed) linear space
with the F -norm (or norm) jjj � jjj, which is called the quotient F -norm (or norm).
Note that E=F is locally convex if so is E . If E is a Banach space, a Fréchet space,
or an F -space, then so is E=F for any closed linear subspace F of E .

Recall that A � E is topologically bounded if, for each neighborhood U of
0 2 E , there exists some r 2 R such that A � rU .

Theorem 3.6.9. A topological linear space E is normable if and only if there is a
topologically bounded convex neighborhood of 0 2 E .

Proof. The “only if” part is trivial. To see the “if” part, let V be a topologically
bounded convex neighborhood of 0 2 E . Then, W D V \ .�V / is a topologically
bounded circled convex neighborhood of 0 2 E . Hence, the Minkowski functional
pW is a norm on E by Proposition 3.3.4. By Corollary 3.4.12,

˚
x 2 E ˇ

ˇ pW .x/ < "
� D "p�1

W .Œ0; 1// D " intW for each " > 0.

For each neighborhoodU of 0 2 E , we can choose r > 0 such thatW � rU . Then,

˚
x 2 E ˇ

ˇ pW .x/ < r
�1� D r�1 intW � r�1W � U;

hence pW induces the topology for E . ut
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For the local convexity, we have the following:

Theorem 3.6.10. A (metrizable) topological linear spaceE is locally convex if and
only if E is linearly homeomorphic to a linear subspace of the (countable) productQ
�2� E� of normed linear spaces E�.

Proof. As is easily observed, the product of locally convex topological linear spaces
is locally convex, and so is any linear subspace of a locally convex topological linear
space. Moreover, the countable product of metrizable spaces is metrizable. Then, the
“if” part follows.

We show the “only if” part. By the local convexity,E has a neighborhood basis
fV� j�2�g of 0 2 E consisting of circled closed convex sets (cf. Proposition 3.4.2),
where card� D @0 if E is metrizable (Theorem 3.6.1). For each � 2 �, let F� be a
maximal linear subspace of E contained in V�. (The existence of F� is guaranteed
by Zorn’s Lemma.) Then, F� is closed in E . Let q� W E ! E=F� be the natural
linear surjection, where we do not give the quotient topology to E=F� but we want
to define a norm on E=F�.

Observe that q�.V�/ is a circled convex set in E=F� and 0 2 coreq�.V�/.
Moreover, RC� 6� q�.V�/ for each � 2 .E=F�/ n f0g. Indeed, take x 2 E n F�
so that q�.x/ D �. By the maximality of F�, Rx C F� 6� V�, i.e., tx C y 62 V� for
some t 2 R and y 2 F�, where we can take t > 0 because V� is circled. For each
z 2 F�,

tx C y D 1
2
.2tx C z/C 1

2
.2y � z/:

Since 2y � z 2 F� � V�, it follows that 2tx C z 62 V�. Then, 2t� D q�.2tx/ 62
q�.V�/.

By Proposition 3.3.4, the Minkowski functional p� D pq�.V�/ W E=F� ! R for
q�.V�/ is a norm. Thus, we have a normed linear space E� D .E=F�; p�/. Observe
that

0 2 intV� D coreV� � q�1
� .core q�.V�//

D q�1
�

�
p�1
q�.V�/

.Œ0; 1//
� D .p�q�/

�1.Œ0; 1//:

By Proposition 3.4.11, the sublinear functional p�q� W E ! R is continuous, which
implies that q� W E ! E� is continuous.

Let h W E ! Q
�2� E� be the linear map19 defined by h.x/ D .q�.x//�2�. If

x 6D 0 2 E then x 62 V� (so x 62 F�) for some � 2 �, which implies q�.x/ 6D
0, hence h.x/ 6D 0. Thus, h is a continuous linear injection. To see that h is an
embedding, it suffices to show that

h.V�/ 	 h.E/ \ pr�1
� .p

�1
� .Œ0;

1
2
/// for each � 2 �.

19That is, a continuous linear function.
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If p�.pr�h.x// <
1
2

then

q�.2x/ D pr�h.2x/ 2 p�1
� .Œ0; 1// � q�.V�/;

hence 2x � y 2 F� for some y 2 V�. Then, it follows that

x D 1
2
.2x � y/C 1

2
y 2 V�;

so h.x/ 2 h.V�/. This completes the proof. ut
Combining Theorem 3.6.10 with Proposition 3.6.5 and Corollary 3.6.7, we have

the following:

Corollary 3.6.11. A topological linear space E is a Fréchet space if and only if
E is linearly homeomorphic to a closed linear subspace of the countable productQ
i2NEi of Banach spaces Ei . ut

3.7 The Closed Graph and Open Mapping Theorems

This section is devoted to two very important theorems, the Closed Graph Theorem
and the Open Mapping Theorem. They are proved using the Baire Category
Theorem 2.5.1.

Theorem 3.7.1 (CLOSED GRAPH THEOREM). LetE andF be completely metriz-
able topological linear spaces and f W E ! F be a linear function. If the graph of
f is closed in E � F , then f is continuous.

Proof. It suffices to show the continuity of f at 0 2 E . Let d and � be admissible
complete invariant metrics for E and F , respectively (cf. Proposition 3.6.4).

First, we show that for each " > 0, there is some ı."/ > 0 such that
Bd .0; ı."// � cl f �1.B�.0; "//. Since F D S

n2N nB�.0; "=2/ and f is linear,
it follows that E D S

n2N nf �1.B�.0; "=2//. By the Baire Category Theo-
rem 2.5.1, int clnf �1.B�.0; "=2// 6D ; for some n 2 N, which implies that
int cl f �1.B�.0; "=2// 6D ;. Let z 2 int cl f �1.B�.0; "=2// and choose ı."/ > 0

so that
z C Bd .0; ı."// D Bd .z; ı."// � cl f �1.B�.0; "=2//:

Then, it follows that

Bd .0; ı."// � cl f �1.B�.0; "=2//� z � cl f �1.B�.0; "//:

The second inclusion can be proved as follows: for each y 2 clf �1.B�.0; "=2//
and � > 0, we have y0; z0 2 f �1.B�.0; "=2// such that d.y; y0/; d.z; z0/ < �=2,
which implies d.y � z; y0 � z0/ < �. Observe that

�.f .y0 � z0/; 0/ D �.f .y0/; f .z0// � �.f .y0/; 0/C �.f .z0/; 0/ < ";
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which means y0 � z0 2 f �1.B�.0; "//. Therefore, y � z 2 clf �1.B�.0; "//.
Now, for each " > 0 and x 2 Bd .0; ı."=2//, we can inductively choose xn 2 E ,

n 2 N, so that xn 2 f �1.B�.0; 2�n"// and

d
�
x;
Pn

iD1 xi
� D d

�
x �Pn

iD1 xi ; 0
�
< min

˚
2�n; ı.2�n�1"/

�
:

Indeed, if x1; : : : ; xn�1 have been chosen, then

x �
n�1X

iD1
xi 2 Bd .0; ı.2�n"// � cl f �1.B�.0; 2�n"//;

hence we can choose xn 2 f �1.B�.0; 2�n"// so that

d
�
x;
Pn

iD1 xi
� D d

�
x �Pn�1

iD1 xi ; xn
�
< min

˚
2�n; ı.2�n�1"/

�
:

Since �.f .xn/; 0/ < 2�n" for each n 2 N, it follows that .f .
Pn

iD1 xi //n2N is a
Cauchy sequence, which converges to some y 2 F . For each n 2 N,

�
�
f .
Pn

iD1 xi /; 0
� �

nX

iD1
�.f .xi /; 0/ <

nX

iD1
2�i " < ";

hence y 2 B�.0; "/. On the other hand,
Pn

iD1 xi converges to x. Since the graph
of f is closed in E � F , the point .x; y/ belongs to the graph of f , which means
f .x/ D y 2 B�.0; "/. Thus, we have f .Bd .0; ı."=2/// � B�.0; "/. Therefore, f is
continuous. ut
Corollary 3.7.2. Let E and F be completely metrizable topological linear spaces.
Then, every continuous linear isomorphism f W E ! F is a homeomorphism.

Proof. In general, the continuity of f implies the closedness of the graph of f in
E � F . By changing coordinates, the graph of f can be regarded as the graph of
f �1. Then, it follows that the graph of f �1 is closed in F � E , which implies the
continuity of f �1 by Theorem 3.7.1. ut
Theorem 3.7.3 (OPEN MAPPING THEOREM). LetE andF be completely metriz-
able topological linear spaces. Then, every continuous linear surjection f W E !
F is open.

Proof. Since f �1.0/ is a closed linear subspace of E , the quotient linear space
E=f �1.0/ is completely metrizable by Proposition 3.6.8. Then, f induces the
continuous linear isomorphism Qf W E=f �1.0/ ! F . By Corollary 3.7.2, Qf is a
homeomorphism. Note that the quotient map q W E ! E=f �1.0/ is open. Indeed,
for every open set U in E , q�1.q.U // D U C f �1.0/ is open in E , which means
that q.U / is open in E=f �1.0/. Hence, f is also open. ut
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Note. In the above, the Closed Graph Theorem is first proved and then the Open Mapping
Theorem is obtained as a corollary of the Closed Graph Theorem. Conversely, we can
directly prove the Open Mapping Theorem and then obtain the Closed Graph Theorem
as a corollary of the Open Mapping Theorem.

Direct Proof of the Open Mapping Theorem. Let d and � be admissible complete invariant
metrics for E and F , respectively.

First, we show that for each " > 0, there is some ı."/ > 0 such that B�.0; ı."// �
cl f .Bd .0; "//. Since E D S

n2N nBd .0; "=2/, it follows that F D f .E/ D S
n2N nf

.Bd .0; "=2//. By the Baire Category Theorem 2.5.1, int cl nf .Bd .0; "=2// 6D ; for some
n 2 N, which implies that int clf .Bd .0; "=2// 6D ;. Let z 2 int cl f .Bd .0; "=2// and
choose ı."/ > 0 so that

z C B�.0; ı."// D B�.z; ı."// � cl f .Bd .0; "=2//:

Then, it follows that

B�.0; ı."// � clf .Bd .0; "=2// � z � cl f .Bd .0; "//;

where the second inclusion can be seen as follows: for y 2 clf .Bd .0; "=2// and � > 0,
choose y0; z0 2 Bd .0; "=2/ so that �.y; f .y0//, �.z; f .z0// < �=2. Then, observe that
�.y � z; f .y0 � z0// < � and d.y0 � z0; 0/ D d.y0; z0/ < ", hence y � z 2 clf .Bd .0; "//.

Next, we prove that cl f .Bd .0; "=2// � f .Bd .0; "// for each " > 0. For each y 2
cl f .Bd .0; "=2//, choose x1 2 Bd .0; "=2/ so that

�.y; f .x1// < minf2�1; ı.2�2"/g:
By induction, we can choose xn 2 Bd .0; 2�n"/, n 2 N, so that

�
�
y; f

�Pn
iD1 xi

�� D �
�
y �Pn

iD1 f .xi /; 0
�
< minf2�n; ı.2�n�1"/g:

Indeed, if x1; : : : ; xn�1 have been chosen, then

y �
n�1X

iD1

f .xi / 2 B�.0; ı.2�n"// � clf .Bd .0; 2�n"//;

hence we can choose xn 2 Bd .0; 2�n"/ so that

�
�
y; f

�Pn
iD1 xi

�� D �
�
y �Pn�1

iD1 f .xi /; f .xn/
�

< minf2�n; ı.2�n�1"/g:
Since .

Pn
iD1 xi /n2N is a Cauchy sequence in E , it converges to some x 2 E . On the other

hand, .f .
Pn

iD1 xi //n2N converges to y. By the continuity of f , we have f .x/ D y. For
each n 2 N,

d
�Pn

iD1 xi ; 0
� �

nX

iD1

d.xi ; 0/ <
nX

iD1

2�i " < ";

hence x 2 Bd .0; "/. Thus, it follows that clf .Bd .0; "=2// � f .Bd .0; "//.
To see that f is open, let U be an open set in E . For each x 2 U , choose " > 0 so that

Bd .0; "/ � �x C U . Since

B�.0; ı."=2// � clf .Bd .0; "=2// � f .Bd .0; "// � �f .x/C f .U /;
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it follows that B�.f .x/; ı."=2// � f .U /. Hence, f .U / is open in F . ut
Now, using the Open Mapping Theorem, we shall prove the Closed Graph Theorem.

Proof of the Closed Graph Theorem. The product space E � F is a completely metrizable
topological linear space. The graph G of f is a linear subspace of E�F that is completely
metrizable because it is closed in E�F . Since p D prE jG W G ! E is a homeomorphism
by the Open Mapping Theorem, f D prF ı p�1 is continuous. ut

Remark 13. In both the Closed Graph Theorem and the Open Mapping Theorem,
the completeness is essential. Let E D .`1; k � k2/, where `1 � `2 as sets and k � k2
is the norm inherited from `2. Then, E is not completely metrizable. Indeed, if so,
it would be closed in `2 by Corollary 3.6.7, but E is dense in `2 and E 6D `2. The
linear bijection f D id W `1 ! E is continuous, but is not a homeomorphism, so it
is not an open map. It follows from the continuity of f that the graph of f is closed
in `1 � E , hence the graph of f �1 is closed in E � `1. However, f �1 W E ! `1 is
not continuous.

3.8 Continuous Selections

LetX and Y be spaces and ' W X ! P.Y / be a set-valued function, where P.Y / is
the power set of Y . We denote P0.Y / D P.Y / n f;g. A (continuous) selection for
' is a map f W X ! Y such that f .x/ 2 '.x/ for each x 2 X . For a topological
linear space Y , we denote by Conv.Y / the set of all non-empty convex sets in Y . In
this section, we consider the problem of when a convex-valued function ' W X !
Conv.Y / has a selection.

It is said that ' W X ! P.Y / is lower semi-continuous (l.s.c.) (resp. upper
semi-continuous (u.s.c.)) if, for each open set V in Y ,

˚
x 2 X ˇ

ˇ '.x/ \ V 6D ;� �resp.
˚
x 2 X ˇ

ˇ '.x/ � V
��

is open in X ;

equivalently, for each open set V in Y and x0 2 X such that '.x0/ \ V 6D ; (resp.
'.x0/ � V ), there exists a neighborhood U of x0 in X such that '.x/ \ V 6D ;
(resp. '.x/ � V ) for every x 2 U . We say that ' is continuous if ' W X ! P.Y /
is l.s.c. and u.s.c. The continuity of ' coincides with that in the usual sense when
P.Y / is regarded as a space with the topology generated by the following sets:

U� D ˚
A 2 P.Y /

ˇ
ˇ A \ U 6D ;� and UC D ˚

A 2 P.Y /
ˇ
ˇ A � U

�
;

whereU is non-empty and open in Y . This topology is called the Vietoris topology,
where ; is isolated because f;g D ;C (; 62 U� for any open set U in Y ). The
Vietoris topology has an open basis consisting of the following sets: V.;/ D f;g
and

V.U1; : : : ; Un/ D ˚
A � Y

ˇ
ˇ A � Sn

iD1 Ui ; 8i D 1; : : : ; n; A \ Ui 6D ;�
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D
� n[

iD1
Ui

�C
\

n\

iD1
U�
i ;

where n 2 N and U1; : : : ; Un are open in Y . In fact, U� D V.U;X/ and UC D
V.U / [ V.;/. The subspace F1.Y / D ffyg j y 2 Y g of P0.Y / consisting of all
singletons is homeomorphic to Y because UC \ F1.Y / D U� \ F1.Y / D F1.U /
for each open set U in Y . It should be noted that P0.Y / with the Vietoris topology
is not T1 in general.

For example, the space P0.I/ is not T1. Indeed, for any neighborhood of U of I 2 P0.I/,
there are open sets U1; : : : ; Un in I such that I 2 V.U1; : : : ; Un/ � U . Then, D 2
V.U1; : : : ; Un/ � U for every dense subset D � I. In particular, I \ Q 2 U .

The subspace Comp.Y / of P.Y / consisting of all non-empty compact sets is
Hausdorff.20 Indeed, for each A 6D B 2 Comp.Y /, we may assume that A nB 6D ;.
Take y0 2 BnA. Because of the compactness ofA, we have disjoint open setsU and
V in Y such thatA � U and y0 2 V . Then,A 2 UC, B � V �, and UC \V � 6D ;.
It will be prove that Comp.Y / is metrizable if Y is metrizable (Proposition 5.12.4).
Moreover, Cld.Y / is metrizable if and only if Y is compact and metrizable (cf. Note
after Proposition 5.12.4).

By the same argument as above, it follows that if Y is regular then the subspace Cld.Y /
of P.Y / consisting of all non-empty closed sets is Hausdorff. One should note that the
converse is also true, that is, if Cld.Y / is Hausdorff then Y is regular. When Y is not regular,
we have a closed set A � Y and y0 2 Y nA such that if U and V are open sets withA � U

and y0 2 V then U \V 6D ;. Let B D A[fy0g 2 Cld.Y / and let U1; : : : ; Un, U 0

1 ; : : : ; U
0

n0

be open sets in Y such that

A 2 V.U1; : : : ; Un/ and B 2 V.U 0

1 ; : : : ; U
0

n0
/:

Let U0 D TfU 0

i j U 0

i \ A D ;g. Since y0 2 U0, we have y1 2 U0 \Sn
iD1 Ui . It follows

that
A[ fy1g 2 V.U1; : : : ; Un/\ V.U 0

1 ; : : : ; U
0

n0
/:

Thus, Cld.Y / is not Hausdorff.

Proposition 3.8.1. For a function g W Y ! X , the set-valued function g�1 W X !
P.Y / is l.s.c. (resp. u.s.c.) if and only if g is open (resp. closed).

Proof. This follows from the fact that, for V � Y ,

˚
x 2 X ˇ

ˇ g�1.x/ \ V 6D ;� D g.V / and
˚
x 2 X ˇ

ˇ g�1.x/ � V
� D X n ˚x 2 X ˇ

ˇ g�1.x/ \ .X n V / 6D ;�

D X n g.X n V /: �

20Recall that Y is assumed to be Hausdorff.
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Because of the following proposition, we consider the selection problem for l.s.c.
set-valued functions.

Proposition 3.8.2. Let ' W X ! P0.Y / be a set-valued function. Assume that, for
each x0 2 X and y0 2 '.x0/, there exists a neighborhood U of x0 in X and a
selection f W U ! Y for 'jU such that f .x0/ D y0. Then, ' is l.s.c.

Proof. Let V be an open set in Y and x0 2 X such that '.x0/ \ V 6D ;. Take
any y0 2 '.x0/ \ V . From the assumption, there is a neighborhood U of x0 in X
with a selection f W U ! Y for 'jU such that f .x0/ D y0. Then, f �1.V / is a
neighborhood of x0 in X and f .x/ 2 '.x/ \ V for each x 2 f �1.V /. ut
Lemma 3.8.3. Let '; W X ! P.Y / be set-valued functions such that cl'.x/ D
cl .x/ for each x 2 X . If ' is l.s.c. then so is  .

Sketch of Proof. This follows from the fact that, for each open set V in Y and B � Y ,
V \ B 6D ; if and only if V \ clB 6D ;.

Lemma 3.8.4. Let ' W X ! P.Y / be l.s.c.,A be a closed set inX , and f W A ! Y

be a selection for 'jA. Define  W X ! P.Y / by

 .x/ D
(

ff .x/g if x 2 A;
'.x/ otherwise:

Then,  is also l.s.c.

Proof. For each open set V in Y , f �1.V / is open in A and

f �1.V / � ˚
x 2 X ˇ

ˇ '.x/ \ V 6D ;�;

where the latter set is open in X because ' is l.s.c. Then, we can choose an open set
U in X so that f �1.V / D U \A and U � fx 2 X j '.x/\ V 6D ;g. Observe that

˚
x 2 X ˇ

ˇ  .x/ \ V 6D ;� D U [ �˚
x 2 X ˇ

ˇ '.x/ \ V 6D ;� nA�:

Thus, it follows that  is l.s.c. ut
For each W � Y 2 and y0 2 Y , we denote

W.y0/ D ˚
y 2 Y ˇ

ˇ .y0; y/ 2 W �
:

If W is a neighborhood of the diagonal �Y D f.y; y/ j y 2 Y g in Y 2, then W.y0/
is a neighborhood of y0 in Y .

Lemma 3.8.5. Let ' W X ! P.Y / be l.s.c., f W X ! Y be a map, and W be
a neighborhood of �Y in Y 2. Define a set-valued function  W X ! P.Y / by
 .x/ D '.x/ \W.f .x// for each x 2 X . Then,  is l.s.c.
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Proof. Let V be an open set in Y and x0 2 X such that  .x0/ \ V 6D ;. Take any
y0 2 '.x0/ \ W.f .x0// \ V . Since .f .x0/; y0/ 2 W , there are open sets V1 and
V2 in Y such that .f .x0/; y0/ 2 V1 � V2 � W . Then, x0 has the following open
neighborhood in X :

U D f �1.V1/\ ˚
x 2 X ˇ

ˇ '.x/ \ V2 \ V 6D ;�:

For each x 2 U , we have y 2 '.x/ \ V2 \ V . Since .f .x/; y/ 2 V1 � V2 � W ,
it follows that y 2 '.x/ \ W.f .x// \ V , hence  .x/ \ V 6D ;. Therefore,  is
l.s.c. ut

Let E be a linear space. The set of all non-empty convex sets in E is denoted by
Conv.E/. Recall that hAi denotes the convex hull of A � E .

Lemma 3.8.6. Let E be a topological linear space and ' W X ! P0.E/ be an
l.s.c. set-valued function. Define a convex-valued function  W X ! Conv.E/ by
 .x/ D h'.x/i for each x 2 X . Then,  is also l.s.c.

Proof. Let V be an open set inE and x0 2 X such that .x0/\V 6D ;. Choose any
y0 D Pn

iD1 ti yi 2  .x0/ \ V , where y1; : : : ; yn 2 '.x0/ and t1; : : : ; tn � 0 withPn
iD1 ti D 1. Then, each yi has an open neighborhood Vi such that t1V1 C � � � C

tnVn � V . Since ' is l.s.c.,

U D
n\

iD1

˚
x 2 X ˇ

ˇ '.x/ \ Vi 6D ;�

is an open neighborhood of x0 in X . For each x 2 U , let zi 2 '.x/ \ Vi , i D
1; : : : ; n. Then,

Pn
iD1 ti zi 2  .x/ \ V , hence  .x/ \ V 6D ;. Therefore, is l.s.c.

ut
Lemma 3.8.7. Let X be paracompact, E be a topological linear space, and ' W
X ! Conv.E/ be an l.s.c. convex-valued function. Then, for each convex open
neighborhood V of 0 in E , there exists a map f W X ! E such that f .x/ 2
'.x/C V for each x 2 X .

Proof. For each y 2 E , let

Uy D ˚
x 2 X ˇ

ˇ '.x/ \ .y � V / 6D ;�:

Since ' is l.s.c., we have U D fUy j y 2 Eg 2 cov.X/. From paracompactness, X
has a locally finite partition of unity .f�/�2� subordinated to U . For each � 2 �,
choose y� 2 E so that suppf� � Uy� . We define a map f W X ! E by f .x/ DP

�2� f�.x/y�. If f�.x/ 6D 0 then x 2 Uy� , which means that '.x/\.y��V / 6D ;,
i.e., y� 2 '.x/C V . Since each '.x/C V is convex, f .x/ 2 '.x/C V . ut
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Now, we can prove the following:

Theorem 3.8.8 (MICHAEL SELECTION THEOREM). Let X be a paracompact
space and E D .E; d/ be a locally convex metric linear space.21 Then, every l.s.c.
convex-valued function ' W X ! Conv.E/ admits a selection if each '.x/ is d -
complete. Moreover, if A is a closed set in X then each selection f W A ! E for
'jA can extend to a selection Qf W X ! E for '.

Proof. Let fVi j i 2 Ng be a neighborhood basis of 0 in E such that each Vi
is symmetric, convex, and diamVi < 2�.iC1/. By induction, we construct maps
fi W X ! E , i 2 N, so that, for each x 2 X and i 2 N,

(1) fi .x/ 2 '.x/C Vi and
(2) d.fiC1.x/; fi .x// < 2�i .

The existence of f1 is guaranteed by Lemma 3.8.7. Assume we have maps
f1; : : : ; fn satisfying (1) and (2). Define  W X ! Conv.E/ by

 .x/ D '.x/ \ .fn.x/C Vn/ for each x 2 X:

Since Vn is symmetric, we have  .x/ 6D ; by (1). Consider the neighborhoodW D
f.x; y/ 2 E2 j y � x 2 Vng of �E in E2. Then, W.fn.x// D fn.x/ C Vn. By
Lemma 3.8.5, is l.s.c. We can apply Lemma 3.8.7 to obtain a map fnC1 W X ! E

such that
fnC1.x/ 2  .x/C VnC1 for each x 2 X:

Then, as is easily observed, fnC1 satisfies (1) and (2). Thus, we have the desired
sequence of maps fi , i 2 N.

Using maps fi W X ! E , i 2 N, we shall define a selection f W X ! E for '.
For each x 2 X and i 2 N, we have xi 2 '.x/ such that d.fi .x/; xi / < 2�.iC1/ by
(1). Then, .xi /i2N is Cauchy in '.x/. Since '.x/ is complete, .xi /i2N converges to
f .x/ 2 '.x/. Thus, we have f W X ! E . Note that .fi /i2N uniformly converges
to f , so f is continuous. Hence, f is a selection for '.

For the additional statement, apply Lemma 3.8.4. ut
Concerning factors of a metric linear space, we have the following:

Corollary 3.8.9 (BARTLE–GRAVES–MICHAEL). Let E be a locally convex met-
ric linear space and F be a linear subspace of E that is complete (so a Fréchet
space). Then, E 
 F � E=F . In particular, E 
 R � G for some metric linear
space G.

Proof. Note that the quotient space E=F is metrizable (Proposition 3.6.8) and the
natural map g W E ! E=F is open, hence g�1 W E=F ! Conv.E/ is l.s.c. by
Proposition 3.8.1. Since g�1g.x/ D x C F is complete for each x 2 E , we apply
the Michael Selection Theorem 3.8.8 to obtain a map f W E=F ! E that is a

21Recall that a metric linear space is a linear space with a linear metric (cf. Sect. 3.5).
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selection for g�1, i.e., gf D id. Then, x � fg.x/ 2 F for each x 2 E . Hence, a
homeomorphism h W E ! F � .E=F / can be defined by

h.x/ D .x � fg.x/; g.x// for each x 2 E .

In fact, h�1.y; z/ D y C f .z/ for each .y; z/ 2 F � E=F . ut
By combining the Michael Selection Theorem 3.8.8 and the Open Mapping The-

orem 3.7.3, the following Bartle–Graves Theorem can be obtained as a corollary:

Theorem 3.8.10 (BARTLE–GRAVES). Let E and F be Fréchet spaces and f W
E ! F be a continuous linear surjection. Then, there is a map g W F ! E such
that fg D id. Therefore, E 
 F � kerf by the homeomorphism h defined as
follows:

h.x/ D .f .x/; x � gf .x// for each x 2 E . �

We show that each Banach space is a (topological) factor of `1.	 /. To this end,
we need the following:

Theorem 3.8.11 (BANACH–MAZUR, KLEE). For every Banach spaceE , there is
a continuous linear surjection q W `1.	 / ! E , where card	 D densE .

Proof. The unit closed ball BE of E has a dense set fe
 j 
 2 	 g. SinceP

2	 jx.
/j D kxk < 1 for each x 2 `1.	 / and E is complete, we can define a

linear map q W `1.	 / ! E as follows:

q.x/ D
X


2	
x.
/e
 for each x 2 E .22

Since kq.x/k � P

2	 jx.
/j D kxk, it follows that q is continuous.

To see that q is surjective, it suffices to show BE � q.`1.	 //. For each y 2 BE ,
we can inductively choose e
i , i 2 N, so that 
i 6D 
j if i 6D j , and

ky � e
1k < 2�1; ky � e
1 � 2�1e
2k < 2�2;

ky � e
1 � 2�1e
2 � 2�2e
3k < 2�3; : : : :

We have x 2 `1.	 / defined by

x.
/ D
(
21�i if 
 D 
i ;

0 otherwise.

Then, it follows that y D P1
iD1 21�ie
i D q.x/. This completes the proof. ut

22See Proposition 1.2.3.
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As a combination of the Bartle–Graves Theorem 3.8.10 and Theorem 3.8.11
above, we have the following:

Corollary 3.8.12. For any Banach space E , there exists a Banach space F such
that E � F 
 `1.	 /, where card	 D densE . ut

In the Michael Selection Theorem 3.8.8, the paracompactness of X is necessary.
Actually, we have the following characterization:

Theorem 3.8.13. A space X is paracompact if and only if the following holds for
any Banach space E: if ' W X ! Conv.E/ is l.s.c. and each '.x/ is closed, then '
has a selection.

Proof. Since the “only if” part is simply Theorem 3.8.8, it suffices to prove the “if”
part. For each U 2 cov.X/, we define ' W X ! P0.`1.U// as follows:

'.x/ D ˚
z 2 `1.U/

ˇ
ˇ kzk D 1; 8U 2 U ; z.U / � 0; z.U / D 0 if x 62 U �:

Clearly, each '.x/ is a closed convex set.
To see that ' is l.s.c., letW be an open set in `1.U/ and z 2 '.x/\W . Choose ı >

0 so that B.z; 2ı/ � W . Then, we have V1; : : : ; Vn 2 U Œx� such that
Pn

iD1 z.Vi / >
1� ı, where

Tn
iD1 Vi is a neighborhood of x in X . We define z0 2 `1.U/ as follows:

z0.Vi / D z.Vi /
Pn

jD1 z.Vj /
and z0.U / D 0 for U 6D V1; : : : ; Vn.

It is easy to see that z0 2 '.x0/ \W for every x0 2 Tn
iD1 Vi . Thus, ' is l.s.c.

By the assumption, ' has a selection f W X ! `1.U/. For each U 2 U , let
fU W X ! I be the map defined by fU .x/ D f .x/.U / for x 2 X . Then, .fU /U2U
is a partition of unity such that f �1

U ..0; 1�/ � U for everyU 2 U . The result follows
from Theorem 2.7.5. ut
Remark 14. Let g; h W X ! R be real-valued functions on a space X such that g
is u.s.c., h is l.s.c., and g.x/ � h.x/ for each x 2 X . We define the convex-valued
function ' W X ! Conv.R/ by '.x/ D Œg.x/; h.x/� for each x 2 X . Then, ' is
l.s.c. Indeed, for each open set V in R, let '.x/ \ V 6D ;. Take y 2 '.x/ \ V and
a < y < b so that Œa; b� � V . Since g is u.s.c. and h is l.s.c., x has a neighborhood
U in X such that x0 2 U implies g.x0/ < b and h.x0/ > a. Since g.x0/ � h.x0/, it
follows that

'.x0/ \ V 	 Œg.x0/; h.x0/� \ Œa; b� D Œmaxfa; g.x0/g;minfb; h.x0/g� 6D ;:

Now, we can apply the Michael Selection Theorem 3.8.8 to obtain a map f W
X ! R such that g.x/ � f .x/ � h.x/ for each x 2 X . This is analogous to
Theorem 2.7.6.
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3.9 Free Topological Linear Spaces

The free topological linear space over a spaceX is a topological linear spaceL.X/
that contains X as a subspace and has the following extension property:

(LE) For an arbitrary topological linear space F , every map f W X ! F of X
uniquely extends to a linear map23 Qf W L.X/ ! F .

X

\

f

F

L.X/

Qf

If such a space L.X/ exists, then it is uniquely determined up to linear homeomor-
phism, that is, ifE is a topological linear space that containsX and has the property
(LE), then E is linearly homeomorphic to L.X/.

Indeed, there exist linear maps ' W L.X/ ! E and  W E ! L.X/ such that 'jX D
 jX D idX . Since idL.X/ is a linear map extending idX , it follows from the uniqueness that
 ' D idL.X/. Similarly, we have ' D idE . Therefore, ' is a linear homeomorphism with
 D '�1.

Lemma 3.9.1. If X is a Tychonoff space,

(1) X is a Hamel basis for L.X/;
(2) L.X/ is regular.

Proof. (1): First, let F be the linear span of X . Applying (LE), we have a linear
map r W L.X/ ! F such that r jX D idX . Since r W L.X/ ! L.X/ is a linear
map extending idX , we have r D idL.X/, which implies F D L.X/, that is, L.X/
is generated by X .

To see thatX is linearly independent inL.X/, let x1; : : : ; xn 2 X , where xi 6D xj
if i 6D j . For each i D 1; : : : ; n, there is a map fi W X ! I such that fi .xi / D 1

and fi .xj / D 0 for j 6D i . Let f W X ! R
n be the map defined by f .x/ D

.f1.x/; : : : ; fn.x//. Then, by (LE), f extends to a linear map Qf W L.X/ ! R
n,

where Qf .xi / D f .xi / D ei for each i D 1; : : : ; n. Since e1; : : : ; en is linearly
independent in R

n, it follows that x1; : : : ; xn 2 X is linearly independent in L.X/.
(2): Due to the Fact in Sect. 3.4 and Proposition 3.4.2, it suffices to show that f0g

is closed in L.X/. Each z 2 L.X/ n f0g can be uniquely represented as follows:

z D
nX

iD1
tixi ; xi 2 X; ti 2 R n f0g;

23That is, a continuous linear function.
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where xi 6D xj if i 6D j . There is a map f W X ! I such that f .x1/ D 1 and
f .xi / D 0 for each i D 2; : : : ; n. By (LE), f extends to a linear map Qf W L.X/ !
R. Then, Qf .z/ D t1f .x1/ D t1 6D 0 D Qf .0/. Hence, Qf �1.R n f0g/ is an open
neighborhood of z in L.X/ that misses 0. ut
Remark 15. In the definition of a free topological linear space L.X/, specify a map
� W X ! L.X/ instead of assuming X � L.X/ and replace the property (LE) with
the following universality:

(*) For each map f W X ! F ofX to an arbitrary topological linear space F , there
exists a unique linear map Qf W L.X/ ! F such that Qf � D f .

X

�

f

F

L.X/

Qf

Then, we can show that � is an embedding if X is a Tychonoff space.
To see that � is injective, let x 6D y 2 X . Then, there is a map f W X ! I with

f .x/ D 0 and f .y/ D 1. By (*), we have a linear map Qf W L.X/ ! R such that
Qf � D f . Then, observe �.x/ 6D �.y/.

To show that � W X ! �.X/ is open, let U be an open set in X . For each x 2 U ,
there is a map g W X ! I such that g.x/ D 0 and g.X n U / D 1. By (*), we
have a linear map Qg W L.X/ ! R such that Qg� D g. Then, V D Qg�1..� 1

2
; 1
2
// is

an open neighborhood �.x/ in L.X/. Since ��1.V / D g�1.Œ0; 1
2
// � U , it follows

that V \�.X/ � �.U /, hence �.U / is a neighborhood of �.x/ in �.X/. This means
that �.U / is open in �.X/. Thus, � W X ! �.X/ is open.

Since � is an embedding, X can be identified with �.X/, which is a subspace of
L.X/. Then, (*) is equivalent to (LE). Here, it should be noted that the uniqueness
of Qf in (*) is not used to prove that � is an embedding. Moreover, the linear map Qf
in (*) is unique if and only if L.X/ is generated by �.X/. (For the “only if” part,
refer to the proof of Lemma 3.9.1(1).)

Theorem 3.9.2. For every Tychonoff space X , there exists the free topological
linear space L.X/ over X .

Proof. There exists a collection F D ff� W X ! F� j � 2 �g such that, for an
arbitrary topological linear space F and each continuous map f W X ! F , there
exist � 2 � and a linear embedding ' W F� ! F such that 'f� D f .

Indeed, for each cardinal � � cardX , let T� be the topologies T on R
�
f such that .R�f ; T /

is a topological linear space. Then, the desired collection is

F D [

��cardX

[

T 2T�

C.X; .R�f ; T //:
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Consequently, for an arbitrary topological linear space F and each continuous map f W
X ! F , let � D card f .X/ � cardX . The linear span F 0 of f .X/ is linearly
homeomorphic to .R�f ; T / for some T 2 T� . Let  W F 0 ! .R�f ; T / be a linear

homeomorphism. Accordingly, we have g D  f 2 C.X; .R�f ; T //, and thus f D  �1g.

The product space
Q
�2� F� is a topological linear space. Let � W X ! Q

�2� F�
be the map defined by �.x/ D .f�.x//�2�. We define L.X/ as the linear span of
�.X/ in

Q
�2� F�. Then, .L.X/; �/ satisfies the condition (*) in the above remark.

In fact, for an arbitrary topological linear space F and each map f W X ! F ,
there exists � 2 � and a linear embedding ' W F� ! F such that 'f� D f .
Consequently, we have a linear map Qf D 'pr�jL.X/ W L.X/ ! F and

Qf �.x/ D 'pr��.x/ D 'f�.x/ D f .x/ for every x 2 X .

X

�

f�

f

F

L.X/

Qf

� Q
�2� F� pr�

F�

'

Because L.X/ is generated by �.X/, a linear map Qf W L.X/ ! F is uniquely
determined by the condition that Qf � D f . As observed in the above remark, � is an
embedding, hence X can be identified with �.X/. Then, L.X/ satisfies (LE), i.e.,
L.X/ is the free topological linear space over X . ut

Let X and Y be Tychonoff spaces. For each map f W X ! Y , we have a unique
linear map f\ W L.X/ ! L.Y / that is an extension of f by (LE).

X

\

f

Y

\
L.X/

f\

L.Y /

This is functorial, i.e., .gf /\ D g\f\ for every pair of maps f W X ! Y and
g W Y ! Z, and idL.X/ D .idX/\. Accordingly, we have a covariant functor
from the category of Tychonoff spaces into the category of topological linear
spaces. Consequently, every homeomorphism f W X ! Y extends to a linear
homeomorphism f\ W L.X/ ! L.Y /.

In Sect. 7.12, we will construct a metrizable linear space that is not an absolute
extensor for metrizable spaces. The free topological linear space L.X/ over a
compactum X has an important role in the construction. The topological and
geometrical structures of L.X/ will be studied in Sect. 7.11.
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Notes for Chap. 3

There are lots of good textbooks for studying topological linear spaces. The following classical
book of Köthe is still a very good source on this subject. The textbook by Kelly and Namioka
is also recommended by many people. Besides these two books, the textbook by Day is a good
reference for normed linear spaces as is Valentine’s book for convex sets. Concerning non-locally
convex F -spaces and Roberts’ example (a compact convex set with no extreme points), one can
refer to the book by Kalton, Peck and Roberts.

• G. Köthe, Topological Vector Spaces, I, English edition, GMW 159 (Springer-Verlag, New
York, 1969)

• J.L. Kelly and I. Namioka, Linear Topological Spaces, Reprint edition, GTM 36 (Springer-
Verlag, New York, 1976)

• M.M. Day, Normed Linear Spaces, 3rd edition, EMG 21 (Springer-Verlag, Berlin, 1973)
• F.A. Valentine, Convex Sets (McGraw-Hill Inc., 1964); Reprint of the 1964 original (R.E. Krieger

Publ. Co., New York, 1976)
• N.J. Kalton, N.T. Peck and J.W. Roberts, An F -space Sampler, London Math. Soc. Lecture

Note Ser. 89 (Cambridge Univ. Press, Cambridge, 1984)

For a systematic and comprehensive study on continuous selections, refer to the following book
by Repovš and Semenov, which is written in instructive style.

• D. Repovš and P.V. Semenov, Continuous Selections of Multivalued Mappings, MIA 455
(Kluwer Acad. Publ., Dordrecht, 1998)

In Theorem 3.6.4, the construction of a metric d from d0 is due to Eidelheit and Mazur [1].

The results of Sect. 3.8 are contained in the first part of Michael’s paper [2], which consists of

three parts. For the finite-dimensional case, refer to the second and third parts of [2] (cf. [3]) and

the book of Repovš and Semenov. The finite-dimensional case is deeply related with the concept

discussed in Sect. 6.11 but will not be treated in this book. The 0-dimensional case will be treated

in Sect. 7.2.
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