Chapter 3
Topology of Linear Spaces and Convex Sets

In this chapter, several basic results on topological linear spaces and convex sets are
presented. We will characterize finite-dimensionality, metrizability, and normability
of topological linear spaces. Among the important results are the Hahn—Banach
Extension Theorem, the Separation Theorem, the Closed Graph Theorem, and the
Open Mapping Theorem. We will also prove the Michael Selection Theorem, which
will be applied in the proof of the Bartle-Graves Theorem.

3.1 Flats and Affine Functions

In this section, we present the basic properties of flats and affine functions. Let E
be a linear space (over R). We call F C E a flat' if the straight line through every
distinct two points of F is contained in F, i.e.,

(1—-1t)x+tyeF foreachx,y € Fandt € R.

Evidently, the intersection and the product of flats are also flats. We have the
following characterization of flats:

Proposition 3.1.1. Let E be a linear space. For each non-empty subset F C E, the
following conditions are equivalent:

(a) F isaflat;

(b) Foreachn €N, ifvi,...,v, € Fand ) |_,t; = 1,theny ;_ t;v; € F;
(c¢) F — x is alinear subspace of E forany x € F;

(d) F — xo is a linear subspace of E for some xy € E.

! A flat is also called an affine set, a linear manifold, or a linear variety.
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Proof. By induction on n € N, we can obtain (a) = (b). Condition (c) follows from
the case n = 3 of (b) because, foreach x, y,z € F and a,b € R,

a(y—x)+b(z—x)+x=(0—a—->b)x +ay + bz

Tosee (c) = (a),letx,y € F andt € R. Since F — x is a linear subspace of E by
(c), we have f(y — x) € F — x, which means (1 — #)x + ¢y € F. The implication
(c) = (d) is obvious.

(d) = (c): It suffices to show that if FF — Xx¢ is a linear subspace of E, then
F —x=F —xpforany x € F.Forevery z € F, we have

z—x = (z—x9) — (x — xg) € F — xo.
Here, take 7 € F so that (z — x¢) + (x — xo) = z’ — xo. Then, we have
7—x0=E —x0)—(x—x0) =7 —x € F —x.
Consequently, we have F' — x = F — x,. O

In the proof of the implication (d) = (c), we actually proved the following:

Corollary 3.1.2. Let F be a flat in a linear space E. Then, F —x = F —y for any
x,y €F. O

A maximal proper flat H & E is called a hyperplane in E. The following
proposition shows the relationship between hyperplanes and linear functionals.

Proposition 3.1.3. Let E be a linear space.

(1) For each hyperplane H C E, there is a linear functional f : E — R such that
H = f~1(s) for some s € R;

(2) For each non-trivial linear functional f : E — Rands € R, f~'(s) isa
hyperplane in E;

(3) For linear functionals fi, f>: E — R, if f7'(s1) = f5"'(s2) for some s1, 5, €
R, then f, = rfi for somer € R.

Proof. (1): Foragiven xo € H, Hy = H — x( is a maximal proper linear subspace
of E (Proposition 3.1.1). Let x; € E \ Hy. For each x € E, there exists a unique
t € Rsuch that x — tx; € Hy. Indeed, E = Hy + Rx; because of the maximality
of Hy. Hence, we can write x = z 4 tx; for some z € Hy and t € R. Then,
x —tx; € Hy. Moreover, if x —t'x; € Hyand ¢’ € R, then (t —t')x; € Hy. Since
x1 € Hy, it follows that ¢ = ¢’. Therefore, we have a function f : E — R such that
x — f(x)x; € Hy.Foreachx,y € E anda,b € R,

(ax +by) —(af(x) +bf(y)xi =alx — f(x)x1) +b(y — f(y)x1) € Hy,

whichmeans f(ax+by) = af(x)+bf(y),i.e., f islinear. Observe that £ ~'(0) =
Hy = H — x, hence it follows that H = £~ ( f(x0)).
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(2): From the non-triviality of f, it follows that f(EF) = R, and hence
9 S f7'(s) & E. A simple calculation shows that f~!(s) is a flat. To prove
the maximality, let F C E be a flat with f~!(s) & F. Take xo € f~!(s) and
x1 € F\ f7'(s). Since f(x1) # f(xo) and F is a flat, it follows that f(F) = R.
For each x € E, we can choose y € F \ f~!(s) so that f(y) # f(x). Note that
s =1tf(x)+(1—1)f(y) forsomes € R\{0}.Letz = tx+(1—¢t)y € f~(s) C F.
Then, x = (1 —t™ )y +¢7!z € F. Accordingly, we have F = E.

(3): When f7'(s1) = f, '(s2) = @, both f; and f> are trivial (i.e., fi(E) =
f(E) = {0}), and hence fi = fo. If fi7'(s1) = f, '(s2) # 0, take xo €
7 (s1) = f;7'(s2). Then, it follows that

O = 7160 —x0 = f5 ' (s2) = x0 = £, (0).

Let Hy = f7'(0) = f,7'(0) and x; € E \ Hy. Analogous to (1), each x €
E can be uniquely written as x = y + tx;, where y € Hy and ¢ € R. Then,

filx) = tfi(x1) and fr(x) = tfo(x1), hence fo(x) = fi(x)fi(x1)™" fa(x1). Let

r = fi(x1)~! fo(xy1). It follows that f, = rfi. O
It is said that finitely many distinct points vy,...,v, € FE are affinely
(or geometrically) independent provided that, for 71, ...,7, € R,
n n
Ztivi =0, Zli =0=tH=--=1,=0,
i=1 i=1
i€, Vi — Vu,...,Vy—1 — Vv, are linearly independent. In this case, the subset
{vi,...,vy} C E is also said to be affinely (or geometrically) independent. An

(infinite) subset A C E is said to be affinely (or geometrically) independent if
every finite subset of A is affinely independent. This condition is equivalent to the
condition that (4 — v) \ {0} is linearly independent for some/any v € A.”

The smallest flat containing A C E is called the flat hull® of 4 and is denoted by
fl A. Then, R" = f1{0,ey,...,e,}, where {eq,...,e,} is the canonical orthonormal
basis for R” (i.e., e;(i) = 1 and e;(j) = 0 for j # 7). Observe that

fl{vi,...,v} = {Z?:llivi | Z?:lti = 1} and
ﬂA:U{ﬂ{xl,...,xn}‘neN, Xlyeooy Xn EA}.

2The phrase “for some/any” means that we can choose one of “some” or “any” in the sentence.
By this choice, we have two different conditions. The condition using “some” is weaker than the
condition using “any” in general. However, these two conditions can be equivalent in a certain
situation.

3The flat hull is also called the affine hull.
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By Zorn’s Lemma, every non-empty subset A C E contains a maximal affinely
independent subset Ag C A. Then, fl A) = fl A and each x € fl A can be uniquely
written as x = Y '_, f;v;, where vi,...,v, € Agand 11,...,1, € R\ {0} such that
' t; = 1. In fact, for some/any v € Ay, (Ao —v) \ {0} (= (4o \ {v}) —v)isa
Hamel basis for the linear subspace fl4A —v (= fl Ag —v) of E.

The dimension of a flat ¥ C E is denoted by dim F, and is defined by
the dimension of the linear space F' — x for some/any x € F, ie., dimF =
dim(F — x). When dim F = n (resp. dimF < oo or dimF = o0), it is
said that F is n-dimensional (resp. finite-dimensional (abbrev. f.d.) or infinite-
dimensional (abbrev. i.d.)). Therefore, every n-dimensional flat F' C E contains

n + 1 points vy, ..., v,41 such that F = fi{vy, ..., v,41}. In this case, v, ..., v,
are affinely independent. Conversely, if F = fl{v;, ..., v,4+;} for some n+1 affinely
independent points vy, ..., v,+; € F, thendim F = n.

Let F and F’ be flats in linear spaces E and E’, respectively. A function f :
F — F’ is said to be affine if it satisfies the following condition:

f(A=Hx+ty)y=(0—=1t)f(x)+1tf(y) foreachx,y € F andt € R,

which is equivalent to the following:
f = ltlvl Z[lf(vl

n
foreachn e N,v; € F,1; € RWichti =1.
i=1

Recall that ¥ C E is a flat if and only if F' — Xy is a linear subspace of E for
some/any xo € F (Proposition 3.1.1).

Proposition 3.1.4. Let f : F — F’ be a function between flats F and F' in linear
spaces E and E’, respectively. In order that f is affine, it is necessary and sufficient
that the following f*° : F — xg — F' — f(xo) is linear for some/any xy € F:

f(x) = f(x + x0) — f(xg) foreach x € F — x,.

Proof. (Necessity) Foreach x,y € F —xpanda,b € R,

f*(ax +by) = flax + by + x0) — f(x0)
= fla(x + x0) + b(y + x0) + (1 —a — b)xo) — f(xo)
=af(x+x) +bf(y +x0) + (1 —a—>b)f(xo) — f(xo)
= a(f(x + x0) — f(x0)) + b(f(y + x0) — f(x0))
=af™(x)+bf"(y).
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(Sufficiency) Foreach x,y € F andt € R,

F(L=0)x +ty) = £~ —t)x + 1ty — x0) + f(x0)
= (1 = 1)(x — X0) + t(y — x0)) + f(x0)
=(1—1)f"(x —x0) + 1/ (y — x0) + f(x0)
= (1 =0)(f"(x = x0) + f(x0)) + 1(f™(y — x0) + f(x0))
=1 =0 f(x)+1f(). o

Proposition 3.1.5. Let A be a non-empty affinely independent subset of a linear
space E. Then, every function g : A — E’ to another linear space E’ uniquely
extends to an affine function g : l A — E’ such that g(fl A) = fl g(A). Accordingly,
every affine function f defined on F = fl A is uniquely determined by f|A and the
image f(F) is a flat.

Proof. Let F' = fl g(A) and take vy € A. Since (A \ {vo}) — vo is a Hamel basis of
the linear subspace fl A—vg of E, we have the unique linear function /2 : fl A—vy —
F’ — g(vp) such that

h(v—vy) = g(v) — g(vo) foreachv e A\ {vo}.
Then, g uniquely extends to the affine function & : fl A — F’ defined by
g(x) = h(x —vp) + g(vg) foreach x € fl A.

It is easy to see that g(fl A) = fl g(A). O
Additional Properties of Flats and Affine Functions 3.1.6.

In the following, let £ and E’ be linear spaces and f : F — E’ be a function of a
flat F in E.

(1) If f is affine and F’ is a flatin E’, then f(F) and f~'(F’) are flats in E’ and
E, respectively.

(2) A function f is affine if and only if the graph Gr(f) = {(x, f(x)) | x € F} of
fisaflatin E x E’.

3.2 Convex Sets

In this section, we introduce the basic concepts of convex sets. A subset C C E is
said to be convex if the line segment with the end ponts in C is contained in C, i.e.,

(1—-t)x+tyeC foreachx,y € Candt €L
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By induction on n, it can be proved that every convex set C C E satisfies the
following condition:

n
Zz(i)v,- € C foreachn e N,v; e Candze A",

i=1
where A"™! = {z € I" | Y7_,z(i) = 1} is the standard (n — 1)-simplex. The
following is easy:
e If A, B C E are convex, then aA + bB is also convex for each a, b € R.

The dimension of a convex set C C E is defined by the dimension of the flat
hull 1 C, i.e., dim C = dimfl C. Concerning the flat hull of a convex set, we have
the following proposition:

Proposition 3.2.1. For each convex set C C E,
C ={(1—t)x+1y |x,y € C, t eR}.

Proof. Eachz € lC canbe writtenz = Y +_, t;x;, wherex; € Cand > /_, t; = 1.
We may assume that t; < --- < ¢, € R\ {0}. If f; > 0 then z € C. Otherwise,
tr <0Oandt;+; > Oforsomek = 1,...,n—1. Then, we have t = Z:’:f teyi >0,
where | —¢ = Zf:l i <0.Let

k n—k
X = Z(l — t)_lli-xiv y = Zl_ltk-‘ri-xk-l-i eC.

i=1 i=1
Then, z = (1 —¢)x + ty. Accordingly, we have
fiC C {(1—t)x+ty|x,y€C, ZER}.

The converse inclusion is obvious. O

The smallest convex set containing A C E is called the convex hull of A and
is denoted by (A4). We simply write (vi,...,v,) = ({vi,...,vs}). Then, A1 =
(e1,...,e,). Observe that

Vi, vn) = {Z?le(z’)vi | z€ A”_l} and
(A) :U{(xl,...,xn) |n eN, x1,...,x, EA}.
For each two non-empty subsets A, B C E,

(AUB)={(1—0)x +1y |x e (A), ye(B), t €I} and
(aA+bB) =a(A) + b(B) fora,b € R.



3.2 Convex Sets 77

The second equality can be proved as follows: Because a(A) + b(B) is convex and aA +
bB C a(A) + b(B), we have (aA + bB) C a(A) + b(B). To show thata(A) + b(B) C
(aA+bB),letx € (A)and y € (B).Then, x = 37/, t;x;and y = Y7, s, y; for some
xi €A, y; € B,andt;,s; > Owith) [, t; = Z/_l s; = 1.Sinceax; +by; € aA+bB
and 3o, 320, tis; = 1, it follows that

n m

ax + by = Zt,v(axf + by) = Z[,(ij(ax,v +byj))

i=1 i=l1 j=1

= ZZI,-sj(ax,- +by;) € (aA + bB).

i=1j=1

Let C and C’ be non-empty convex sets in the linear spaces E and E’,
respectively. A function f : C — C’ is said to be affine (or linear in the affine
sense) provided

f((A=tx+1ty)=(1—1)f(x)+1tf(y) foreachx,y € C andt € L
As in the definition of a flat, I can be replaced by R, i.e.,

x,yeC,teR, (1-t)x+tyeC
= f(A-Dx+1y)=A-0)f(x) +1f(¥).

Indeed, let z = (1 —t)x + ty € C in the above expression. When ¢ < 0, consider

1 n —t 1 cl —t =1 1
S TPE N IR L 1—t 1—1¢
When ¢t > 1, consider
1 t—1 1 r—1 1
y=-z+ x, —€l, —=1—-.
t t t t t

As is easily seen, f : C — C’ is affine if and only if

n

f(Z?:lz(i)v,-) = Zz(i)f(vi) foreachn e N,v; € C andz € A",

i=1

which is equivalent to the following:

vi € C, tieR,Xn:tivieC,Xn:tizl:f( l_lt,v, th(v,

i=1 i=1 i=l1
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For every affine function f : C — E’ of a convex set C C E into another linear
space E’, the image f(C) is also convex.

Proposition 3.2.2. Let C and D be non-empty convex sets in the linear spaces E
and E', respectively. Every affine function f : C — D uniquely extends to an affine
function f :f1C — fl D. Moreover, if f is injective (or surjective) then so is f.

Proof. Let Cy be a maximal affinely independent subset of C. Then, i C = fl Cy.
Due to Proposition 3.1.5, f|Co uniquely extends to an affine function f : iC —
fl D. From the above remark, we can see that f|C = f. _

If f is injective, we show that f is also injective. By the definition of f in the
proof of Proposition 3.1.5, it suffices to show that f(Cy) is affinely independent.
Assume that f(Cp) is not affinely independent, i.e., there are distinct points
Vi,..osvy € Co and fy,...,1, € R\ {0} such that Y '_, % f(v;) = 0 and

Z?=1 t; = 0. Without loss of generality, it can be assumed that #{,...,#% > 0
and #441,...,1%, <0.Note that 1 < k < n and Zﬁ;l t = _Z’}=k+1 tj > 0.Let
k p n t k
_ A — . - 4
x—zsv, and y—'Z Sv], wheres—ZZ,>0.
i=1 j=k+1 i=1

Then, x,y € C and f(x) = f(y) because
o) = ) = - Yt f6p) =0
i=1

Since f is injective, we have x = y. Hence, it follows that Zf;l tivi =
=2 ik tjvjie, Dol tivi = 0. Because Cy is affinely independent, t; = --- =
t, = 0, which is a contradiction. ~

Finally, we show that if f is surjective then so is f. By Proposition 3.2.1, each
z € fl D can be written as follows:

z=0-0y+1ty,y,y €D, t eR.

Since f is surjective, we have x, x’ € C such that f(x) = y and f(x’) = y’. Then,
(I—t)x +tx’ €flC and

fQ=-tx+txY=0—-t)y+1y =z

Therefore, f is also surjective. O

Let C be a convex set in a linear space E. The following set is called the radial
interior of C:

rintC = {x € C | ¥y € C, 3§ > 0 suchthat (1 +8)x —38y € C}.*

“4In Kothe’s book, rint C is denoted by C? and called the algebraic kernel of C.
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In the case C = (vy,...,v,), observe that
rint(vy, ..., v,) = {Z?:l z(i)v; \ ze A" N (0, oo)”}.

Indeed, let xo = Y ;—,n"'v; € (vi,...,v,). For each x € rint{v,...,v,), we have
y € (v1,...,v,) such that x € (xg, y),i.e., x = (1 —t)xo + ty for some ¢ € (0, 1). Then,
y = Y., z(i)v; for some z € AL Tt follows that x = >/ ((1 — t)n ! + 12(i))vi,
where Y i (1 —)n~ ' 4+ tz(i)) = land (1 —t)n~' +1z(i) > Oforalli = 1,...,n.
Thus, x is a point of the rightside set. Conversely, it is straightforward to prove that each
point of the rightside set belongs to (v, ..., v,).

In particular, rint{v,, vo) = {(1 —#)v; + tvo | 0 < t < 1}, and hence rint{v;, v;) =
(v1,v2) \ {v1, v2} if vi # v,. The radial interior of C can also be defined as

rintC = {xeC \ Vy € C, 3z € C such that x € rint(y, z)}.
For each x € C, the following subset C, C C is called the face of C at x:
Cy={y € C|38>0 suchthat (I +8)x—38y € C}
={y € C |3z € C suchthatx € rint(y,z)}.’
By an easy observation, we have
rintC ={xeC|C,=C}, ie, xerntC & C, =C.

When C, = {x}, we call x an extreme point of C. It is said that x € FE is linearly
accessible from C if there is some y € C such that

rint{x,y) C C (e, {(x,y)\{x} C C).

The radial closure rcl C of C is the set of all linearly accessible points from C.°
It should be noted that rclC C flC by Proposition 3.2.1, hence firclC = fiC.
Consequently, we have the following inclusions:

rintC C C CrclC CflC.

The set dC = rcl C \ rint C is called the radial boundary of C.

Remark 1. Note that A C B implies rcl A C rcl B, but it does not imply rint A C
rint B. For example, consider A = I" x {0} C B = I"*!. Then, A Nrint B = 0.

5The face C, is a little differently defined than the supporting facet of C through x in Kéthe’s
book.

%In Kéthe’s book, rcl C is denoted by C¢ and called the algebraic hull of C.
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For the Hilbert cube Q@ = [—1, 1]V, we have

rintQ = {x eQ \ sup; ey [X(0)] < 1} S (-1, HN.

Observe that rint[—1, 1] = (-1, 1)I§ but rint II?, = (), where
L1 =Ry N L1, (-1 D} =Ry n (=1, DY, and I} =Ry N1

As s easily observed, I'} = rcl(I? \{0}). It will be shown in Remark 3 that I? \{0} =
rcl C for some convex set C C RI?.

Remark 2. The unit closed ball B, of the Banach space ¢ has no extreme points.
In fact, every x € B, is the midpoint of two distinct points y,z € B, i.e., x =
%y + %z. For example, choose n € N so that |x(n)| < % and let y, z € B, such that

y(i) = z(i) = x(i) fori #n, y(n) = x(n) + 5, and z(n) = x(n) — 5.

Proposition 3.2.3. Let C C E be a convex set. If x € rintC, y € rclC, and
0<t<l,then(1—1t)x +ty erintC,ie, (x,y)\{y} CrintC.

Proof. Foreachz € C,wehavetofindv € C and 0 < s < 1 such that
(1—t)x+ty = (1 —s)z+ sv € rint(z, v).
Take w € C so that rint(w, y) C C, and choose 0 < r < 1 so that
Z=04+nrNx—rz; w=0+rx—-rwecC.
The desired v is to be written as
v=ny+hw+nw +u7 =+ h)u+ (3 +1)u €C,

wheret; + b + 15 +t4 = 1,11, 1, 13,14 > 0,

h I , 13 , 7

u= y + w, u = w + 7 eC.
h+n n+n 13+ 14 13+ 14

Then, we have

(I—=5)z+sv=(1—=5)z+s(t1y +tow+ 6w + 1,7)
=sty+st—tr)w+stz + 1)1 +r)x + (1 —5 —stur)z.

To obtain (1 —s)z+sv = (1 —¢)x +ty,itis enoughto find #1, 1, #3,24 > 0 and 0 <
s < 1 satisfying the simultaneous equations: st; = ¢, t, = 31, s(t3+1t4)(1+r) =

"It is known that [—1, 1]} ~ I},
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Vv = [ly + l2W + t;w’ + [42/

’ 13 ’ iz 7
u = ——w Z
13+ 1y 3+ 14 y

Fig.3.1 (1 —¢t)x +ty €rintC

1—t,and 1 —s = syyr, ie.,

) 1 t ; 1—ys ; 1 14+ rt ; 1+rt
* = -, = —, = - -, = _—_—
Ty rs 0 r (1+r)rs : (1+7r)s

Since t1,74 < 1 and 0 < 1, (< 13), it is necessary to satisfy

1 14rt

_ — s < 1.
1+r 1+47r

max 3 7,

We can take such an s because the left side of the above inequality is less than 1.
Then, we can define 11, 15, t3,t4 > 0 as in (x), which satisfies t; + t, + 3 + 14 = 1.
Thus, we have the desired v = #;y + tow + 3w’ + 14,7 € C — Fig. 3.1. O

Although we verified in Remark 1 that A C B does not imply rint A C rint B in
general, we do have the following corollary:

Corollary 3.2.4. Let A and B be non-empty convex sets in E. If A C B and AN
rint B # @, thenrint A C rint B.

Proof. Let x € A NrintB. For each y € rint A, we have z € A such that y €
rint(x, z). Since rint(x, z) C rint B by Proposition 3.2.3, it follows that y € rint B.
O

Proposition 3.2.5. For each convex set C C E, the following statements hold:

(1) Bothrint C and rcl C are convex;

(2) rintrintC = rintC C rintrcl C;

(3) rintC # @ = rintrcl C = rint C, rclrint C = rclrcl C = rcl C,
in which case drintC = drclC = 9C;



82 3 Topology of Linear Spaces and Convex Sets

@) rintC # @ = f1IC = flrintC;
(5) rintC # @, rclC =1C = rintC = C =1fIC;
6) IC#EB & B#CGAC,
(7) Cyisconvexand Cy = C N1Cy forx € C;
(8) x erintCy for x € C, hence (Cy), = Cy;
9) (Cx)y=C,forxeCandy € Cy;

(10) C, =C, forx € C and y €rintCy.

Proof. (1): To prove the convexity of rint C, we can apply Proposition 3.2.3. It is
now quite straightforward to show the convexity of rcl C.

(2): To show rintC C rintrint C, we can apply Proposition 3.2.3. Because
rint(rint C) C rint C by Corollary 3.2.4, we have rintrint C = rintC.

Foreach x erintC and y € rclC, %x + %y € rint C by Proposition 3.2.3. Then,
we have § > 0 such that (1 + §)x — 8(%)6 + %y) eC,ie, (1 + %S)X — %8y eC.
Hence, x € rintrcl C.

(3): Let xo € rintC. For each x € rintrclC, we have y € rclC such that
X € rint{xy, y), which implies that x € rint C by Proposition 3.2.3. Combining this
with (2) yields rintrcl C = rint C.

We now have xy € rintC = rintrclC. If x € rclrcl C, then rint{xg, x) C
rintrcl C = rint C by Proposition 3.2.3, which means that x € rclrintC. Since
rclrint C C rel C C relrel C, we have relrint C = rcl C = relrel C.

(4): Let xy € rint C. Foreach x € C, %x + %xo € firint C by Proposition 3.2.3.
Then, it follows from Proposition 3.2.1 that x = 2(%x + %xo) —xp € flrintC.
Accordingly, we have C C flrint C, which implies fl C C firint C. Since flrint C C
fiC,wehave iC = flrintC.

(5): Let xog € rintC. Foreach x € iC,2x —xp € lC = rclC. Then, x =
%xo + %(2x — Xp) € rintC C C by Proposition 3.2.3.

(6): Assume @ # C S flC. Then, we have x € flC \ C, which can be written
asx = (1+1t)y —tzforsome y # z € C and ¢t > 0 by Proposition 3.2.1. Let

s=inf{t>0|(1+1)y—t1z¢C}>0.

Then, (1 +s)y —sz €rclC \ rintC = 9C.

When C = fiC, i.e., C is a flat, we have rcl C = rintC = C by definition,
which means 0C = . Therefore, C # @ implies § # C S iC.

(7): First, we show that C, is convex. For each y,z € C,, we can choose § > 0
sothat (1 +8)x — 38y € C and (1 + §)x — 6z € C. Then, foreach ¢ € I,

(14 8)x —8((1 —1)y +t2)
=1 -=0)(A+8x—38y) +1((1+8x—38z) e C,
which means (1 —¢)y + tz € C,.

Because C, C CNfl C,, itremains to show CNflC, C C,. By Proposition 3.2.1,
each y € C NfiC, can be written as y = (1 —¢)y’ + ty” for some y’,y” € C,
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y=0-=-0y +y”

7=(04+8§8x—-8"€eC
Fig.3.2 C NfiC, C C,

and ¢t € R. Because of the convexity of C,, we have y € C, if ¢t € L. Then, we
may assume that 7 < 0 (if ¢ > 1, exchange y’ with y”). We have § > 0 such that
7 = (1 +8)x — 8y’ € C. Observe that

_ _ _ B / 7
(1+s)x — sy (1+s)(1+5 57 ) s((L=0)y" +1y")
_(U+s)s A S
—( T3 s(1 t))y+1+8z sty”.

Lets =6/(1 —t —18) > 0. Then, since 1 + s = (1 —¢)(1 +68)/(1 —t —1§), it
follows that

1—t —t8
PRy i g
which implies that y € C, (Fig.3.2).

(8): From the definition of rint C,, it easily follows that x € rint C,.

(9): Because C; C C, we have (C,), C C, by definition. We will show that
C, C Cy, which implies C, = (C,), C (Cy), by (8) and the definition. For each
z € C,, choose §; > O sothatu = (1 + 8;)y — 8,z € C. On the other hand, since
y € Cy, we have §, > O such that v = (1 + 6;)x — 8,y € C. Then,

(1+51)(1+52)x_ 816 = 1+ 6; "t 8> }
1468 +6 1468 +6 146 +6 146+ 6

(1+s)x —sy = y'ec,

eC,

which means that z € C,.
(10): Since y € rint Cy, we have (Cy), = C. On the other hand, (Cx), = C,
by (9). O

Remark 3. Tt should be noted that, in general, rclrcl C # rcl C. For example, let C
be the convex set in R?} defined as follows:

C ={x eI |3k € Nsuchthat ), x(i) = k",
x(i) # 0 atleast k manyi € N}.
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It is easy to see that 0 & rclC, ie., rclC C I? \ {0}. For each x € I? \ {0},

choose k € N so that k™! < Y,y x(i), and let y € C such that y(i) = k=2 for
i <kand y(i) =0fori > k.If0 <t < 1, then (1 —t)x + ¢ty € C because
(1—=1)x(i) +ty(i) # 0 for at least k many i € N and

D (A =0x@) +y@) =1 —0)Y x@)+1Y y@) =k
ieN ieN ieN
Therefore, rcl C = I? \ {0}. As observed in Remark 1, rcl (I§ \ {0}) = I?. Hence,
we have rclrcl C # rcl C. It should also be noted that rint C = @.
In the finite-dimensional case, we have the following proposition:
Proposition 3.2.6. Every non-empty finite-dimensional convex set C has a non-
empty radial interior, i.e., rint C # @, and therefore

relrintC = rclrel C =rcl C and 0rintC = drcl C = aC.

Proof. We have a maximal affinely independent finite subset {vi{,...,v,} C C.
Then, vo = Y ;_,n"'v; € rintC. Indeed, since C C fi{vy,...,v,},eachx € C
can be written as x = Y _, #;v;, where Y _7_, #; = 1. Observe that

(48w —8x=(1+8)> nvi =8> 4

i=1 i=1
=) (7 + 8 =)
i=1

When vy # x, we have s = min{n~' —#; | i=1,...,n} < 0.Let §=1/(—sn) > 0.
Then, n™! +8(n~' —1t;) > O foreveryi = 1,...,n, which implies that (1 + §)vy —
ox e C. O
Additional Results for Convex Sets 3.2.7.

(1) For every two convex sets C and D,
(CnNnD)y=C,ND, foreachx € C ND.
(2) For every two convex sets C and D with rint C Nrint D # @,
rint(C N D) = rint C Nrint D.

In general, rint C Nrint D C rint(C N D).

Sketch of Proof. To show that rint(C N D) C rint C Nrint D, let xo € rint C Nrint D.
For each x € rint(C N D), take y € CN D so that x € rint{xg, ¥). Since rint{xq, y) C
rint C by Proposition 3.2.3, it follows that x € rint C. Hence, rint(C N D) C rintC.
Similarly, we have rint(C N D) C rint D.
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(3) Let C and D be convex sets in the linear spaces E and E’, respectively. Then,
C x D is also convex,

rint(C x D) =rintC xrint D and rcl(C x D) =rclC x rcl D.

Moreover, (C X D)) = Cy x D, foreach (x,y) € C x D.

(4) Let f : C — E’be an affine function of a convex set C in a linear space E into
another linear space E’, and D be a convex setin E’. Then, f(C) and f~'(D)
are convex and

fHD)y = Cc N f71(D ) foreachx € f7'(D)(C C).

In particular, Cx C f~1(f(C) s(x)) (€., f(Cx) C f(C) ) foreach x € C.
When f is injective, f(Cy) = f(C) s foreach x € C.

Sketch of Proof. It is easy to see that f(f~1(D),) C D), hence f~1(D), C
STUD fx)- Also, f71(D), C Cy because f~1(D) C C. Accordingly, f (D), C
C, N ffl(D/(X)). To prove the converse inclusion, for each y € ffl(D/(X)) N Cy,
choose § > 0 so that (1 + 8) f(x) —8f(y) € D and (1 + 8)x — Sy € C. Then,
(14 8)x—8y € f~YD).

(5) For every (bounded) subset A of a normed linear space £ = (E,| - ||), the
following hold:

(i) [lx —yll <sup,ey llx —z|| foreachx € E and y € (4);
(ii) diam(A) = diam A.

Sketch of Proof. (i): Write y = Y i_, z(i)x; for some xi,..., X, € Aand z €
An—l.
(ii): Foreach x,y € (A4),
lx — yll < supllx —zll < sup sup [|lz—2'|| = diam 4.
Z€EA Z€EAEA

Remark 4. In (2) above, rint(C N D) # rintC N rint D in general. Consider the
case that C N D # @ butrintC Nrint D = @.

In (4) above, f(Cy) # f(C) s(x) in general. For instance, let C = {(s,7) € R? |
|s| <t <1} C R Then, pr,(C) = [—1, 1], pr,(Co) = {0}, and pr, (C)o = pr,(C).

3.3 The Hahn-Banach Extension Theorem

We now prove the Hahn—Banach Extension Theorem and present a relationship
between the sublinear functionals and the convex sets.

Let E be a linear space. A functional p : E — R is sublinear if it satisfies the
following conditions:

(SLy) p(x +y) < p(x) + p(y) foreach x,y € E, and
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(SLy) p(tx) =tp(x) for eachx € E and ¢t > 0.

Note that if p : E — R is sublinear then p(0) = 0 and —p(—x) < p(x). For each
x,ye Eandt €1,

p((I—=t)x +1ty) < (1 =1)p(x) + tp(y).

When p : E — R is a non-negative sublinear functional, p~' ([0, 7)) = rp~!([0, 1))
and p~'([0, 7]) = rp~' () are convex for each r > 0.

In the following Hahn-Banach Extension Theorem, no topological concepts
appear (even in the proof). Nevertheless, this theorem is very important in the study
of topological linear spaces.

Theorem 3.3.1 (HAHN-BANACH EXTENSION THEOREM). Let p : E — R be
a sublinear functional of a linear space E and F be a linear subspace of E. If
f + F — Ris a linear functional such that f(x) < p(x) for every x € F, then f
extends to a linear functional f : E — R such that f(x) < p(x) forevery x € E.

Proof. Let F be the collection of all linear functionals f’ : F/ — R of a linear
subspace F' C E such that F C F’, f/|F = f, and f’(x) < p(x) for every
x € F'.For f', f" € F, we define f’ < f”if f” is an extension of f”. Then,
F = (F,<) is an inductive ordered set, i.e., every totally ordered subset of F is
upper bounded. By Zorn’s Lemma, F has a maximal element fo : Fop — R. It
suffices to show that Fy = E.

Assume that Fy # E. Taking x; € E \ Fy, we have a linear subspace F|, =
Fy + Rx; 2 Fy. We show that f has a linear extension f; : Fi — R in F, which
contradicts the maximality of fy. By assigning x; to & € R, f; can be defined, i.e.,
filx +tx1) = fo(x) + ta for x € Fyandt € R. In order that f; € F, we have to
choose « so that for every x € Fy and ¢t > 0,

fo(x) +ta < p(x +tx1) and fo(x) —ta < p(x —tx}).
Dividing by 7, we obtain the following equivalent condition:

Joy) —p(y —x1) =a < p(y +x1) — fo(y) foreveryy € Fy.

Hence, such an @ € R exists if

sup{ fo(y) — p(y —x1) | y € Fo} <inf{p(y +x1) — fo(y) | y € Fo}.
This inequality can be proved as follows: for each y, y’ € Fy,

Jo) + /0N = foly +5) = p(r +) = p(y —x0) + pO" + x1).

hence fo(y)—p(y—x1) < p(y’'+x1)— fo(y'), which implies the desired inequality.
O
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Let F be a flat in a linear space E and A C F. The following set is called the
coreof Ain F':

corep A={xeA ‘ Vy € F, 38§ > 0 such that
lt| <8 = (1—1t)x +1y € A},

where |t| < § can be replaced by —§ < ¢ < 0 (or 0 < ¢ < §). Each point of corer A
is called a core point of A in F'. In the case that 4 is convex,

x ecorep A< Vye F, 35§ >0 suchthat (1+68)x—38y €A
& Vy € F, 35 > 0 suchthat (1 —§8)x + 8y € A.

When F = E, we can omit the phrase “in E” and simply write core A by removing
the subscript E. By definition, A C B C F implies corer A C corer B. We also
have the following fact:

Fact. Foreach A C F, corep A # @ ifandonlyif 1A = F.

Indeed, the “if” part is trivial. To show the “only if” part, let x € corep A.Foreach y € F,
we have § > O such that z = (1 + §)x — 8y € A. Then, y =8 1(1 + §)x — 8~z € l A.
Note that fl A C F because A C F. Consequently, fl A = F.

Proposition 3.3.2. For every convex set A C E, coreq 4 A = rint A, which is also
convex. Hence, core A # O implies core A = rint A and core core A = core A.

Proof. Because coreg 4 A C rint A by definition, it suffices to show that rint A C
coreq4 A. For each x € rintA and y € fl A, we need to find some s > 0 such
that (1 + s)x — sy € A. This can be done using the same proof of the inclusion
C NflC, C C, in Proposition 3.2.5(7). O

Remark 5. When A is a finite-dimensional convex set, corer A # 0@ if and only if
F = fl A according to Propositions 3.3.2 and 3.2.6. However, this does not hold for
an infinite-dimensional convex set. For example, consider the convex set Ilj\}{ in RN,

Then, R?} = ﬂI?} and coregy II?- = rint II?- =0.

With regard to convex sets defined by a non-negative sublinear functional, we
have the following proposition:

Proposition 3.3.3. Let p : E — R be a non-negative sublinear functional of a

linear subspace E. Then,

p_l([O, 1)) = core p_l([O, 1)) = core p_l(I).

Proof. The inclusion core p~!([0, 1)) C core p~!(I) is obvious.
Let x € p~'([0,1)). For each y € E, we can choose § > 0 so that §p(x — y) <
1 — p(x). Then,
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0=<p((1+8x—38y)=px+dx—y) <pkx)+dp(x—-y) <1,

i.e., x € core p~1([0, 1)). Hence, p~!([0, 1)) C core p~!([0, 1)).
If p(x) > 1, then x ¢ core p~!(I) because

p(1+t)x—1t0)=(14+¢t)p(x) > 1 foranyt > 0.

This means that core p~!(I) C p~'([0, 1)). O

For each A C E with 0 € core A, the Minkowski functional p4 : £ — R can
be defined as follows:

pa(x) =inf{s > 0| x € sA} =inf{s >0 |s 'x € 4}.
Then, foreach x € £ andt > 0,
pa(tx) = inf{s >0 \ sTltx e A} = inf{ts >0 \ (ts)'tx e A}
=tinf{s > 0| s 'x € A} = 1pa(x),

i.e., py satisfies (SLy). In the above, p4(tx) = p,—i4(x). Then, it follows that
p,—14 = tp4 foreacht > 0. Replacing # by 1!, we have

Dia = t_lpA foreacht > 0.

If A C E is convex, the Minkowski functional p,4 has the following desirable
properties:

Proposition 3.3.4. Let A C E be a convex set with 0 € core A. Then, the
Minkowski functional p 4 is sublinear and

rint A = core A = p;'([0,1)) C A C p;'(I) =rcl A,
50 A = p'(1). Moreover,
pa(x) =0 & Rix C A.

In order that p4 is a norm on E, it is necessary and sufficient that R x ¢ A if
x#QandtA C Aif |t| < 1.

Proof. First, we prove that p4 is sublinear. As already observed, p4 satisfies (SLy).
To show that p 4 satisfies (SL;), let x, y € E. Since A is convex, we have

1. -1 -1 S I
sx,t €A = (s+1t X + = —s X+ —1t c A,
y s+ (x+y) o perrLi

which implies that p4(x + y) < pa(x) + pa(y).
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The first equality rint A = core A has been stated in Proposition 3.3.2. It easily
follows from the definitions that core A C p3'([0,1)) C A C p;'(I) and p3'(1) C
rcl A, so p;'(I) C rel A. By Propositions 3.3.2 and 3.3.3, we have

core A = corecore A C core p;l([O, 1) = pATI([O, 1)) C core A,

which means the second equality core A = p;'([0, 1)). To obtain the third equality
p;'(I) = rcl A, it remains to show that rcl A C p:ll(I). Let x € rcl A. Since
0 < rint A, it follows from Proposition 3.2.3 that s~'x € rint C C C foreachs > 1,
which implies that p4(x) < 1,1i.e., x € p;' (D).

By definition, p4(x) = 0 if and only if #x € A for an arbitrarily large t > 0,
which means that R1 x C A because 4 is convex.

Because pg4 is sublinear, p4 is a norm if and only if p4(x) # 0 and p4(x) =
pa(—x) for every x € E \ {0}. Because p4(x) # 0 if and only if Ry x ¢ A, it
remains to show that p4(x) = p4(—x) forevery x € E \ {0} ifand only if 14 C A
whenever |7]| < 1.

Assume that ps(x) = pas(—x) foreachx € E.If x € A and |t| < 1 then
pa(tx) = pa(|t|x) = |t|pa(x) < 1, which implies that tx € A. Hence, tA C A
whenever |7]| < 1.

Conversely, assume that A C A whenever || < 1. For each s > py(x),
r~!'x € A forsome 0 < r < s, and we have s~'(—x) = (—s~'r)r~'x € A, hence
pa(—x) < pa(x). Replacing x with —x, we have p4(x) < ps(—x). Therefore,
pa(x) = pa(—x). o

When the Minkowski functional p4 is a norm on E, we call it the Minkowski
norm. In this case, rcl A, rint A, and dA are the unit closed ball, the unit open ball,
and the unit sphere, respectively, of the normed linear space E = (E, p4). Then,
rcl A and rint A are symmetric about 0, i.e., rcl A = —rcl A and rint A = —rint A.
We should note that a convex set A C E is symmetric about 0 if and only if 14 C A
whenever |z| < 1 (in the next section, 4 is said to be circled).

Asubset W C E iscalled awedgeif x+y € W foreachx,y € Wandtx € W
foreach x € W, t > 0, or equivalently, W is convex and t W C W forevery ¢ > 0.
Note that if A C E is convex then Ry A4 is a wedge. For a wedge W C E, the
following statements are true:

(1) 0 ecoreW & W = E;
2y W#£E, xecoreW = —x&W.

A cone C C E is a wedge with C N (—C) = {0}. Each translation of a cone is also
called a cone.

Using the Hahn-Banach Extension Theorem, we can prove the following
separation theorem:

Theorem 3.3.5 (SEPARATION THEOREM). Let A and B be convex sets in E such
that core A # @ and (core A) N B = @. Then, there exists a linear functional
f + E — R such that f(x) < f(y) for every x € coreA and y € B, and
sup /(A) < inf /(B).
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Proof. Recall that core A = rint A (Proposition 3.3.2). For a linear functional f :
E — R,if f(x) < f(y) for every x € cored and y € B, then sup f(4) <
inf f(B).Indeed,letx € A,y € B,vecore A,and0 <t < 1. Since (1—t)v+itx €
core A by Proposition 3.2.3, we have

(I=0f) +1f(x) = f((A-1)v+1x) < f(y),

where the left side tends to f(x) ast — 1, and hence f(x) < f(y).

Note that W = R (A4 — B) is a wedge. Moreover, (core A) — B C core W.
Indeed, let x € core A and y € B. Foreach z € E, choose § > 0 so that (1 + §)x —
8(y + z) € A. Then,

14+8)x—-—y)—6z=1014+8)x—-8(y+20—ye€A-BCW.

Therefore, it suffices to construct a linear functional f : E — R such that
f(core W) C (—o0,0).

Now, we shall show that W N (B —core A) = @. Assume that there exist xo € A,
x| € core A, yo,y1 € B, and tp > 0 such that fo(xo — yo) = y; — x;. Note that
rint(xg, x;) C rint A = core A by Proposition 3.2.3. Hence,

to 1 to
Xo +
o+ 1"

1
X = + € (core A) N B,
ol Tt T 1! ( )

which contradicts the fact that (core A) N B = .

Take v € (core A)— B C core W. Then, note that —vy & W.Foreach x € E, we
have § > 0 such that (1 +8)vy—8(—x) € W, which implies x + 81 (1 4+8)vy € W.
Then, we can define p : E — R by

p(x) =inf{t >0 |x+1vy€ W}

Because W is a wedge, we see that p is sublinear. Since —vy & W, it follows
that p(s(—vp)) = s and p(svp) = O for every s > 0. Applying the Hahn—Banach
Extension Theorem 3.3.1, we can obtain a linear functional f : £ — R such that
f(s(—vp)) = s foreach s € R and f(x) < p(x) for every x € E (see Fig.3.3).
For each z € core W, we have § > 0 such that (1 + §)z — §(z + vo) € W, i.e,
7 —8vy € W. Accordingly, (z — dvo) + tvg € W for every t > 0, which means
p(z— 8vp) = 0. Thus, we have

f(@) < f() +8= f(z—38v) < p(z—6vg) = 0. o

Remark 6. Using the Hahn-Banach Extension Theorem, we have proved the
Separation Theorem. Conversely, the Hahn—Banach Extension Theorem can be
derived from the Separation Theorem. Indeed, under the assumption of the Hahn—
Banach Extension Theorem 3.3.1, we define
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the graph of p

the graph of f
Fig. 3.3 The graphs of p and f

:{(x,t)EEXR‘Z>p(x)} and B:{(x,f(x))EExR‘xeF},

where B = Gr(f) is the graph of f. Then, A and B are disjoint convex sets in
E x R. It is straightforward to show that coreA = A # @. By the Separation
Theorem 3.3.5, we have a linear functional ¢ : £ X R — R such that A C
¢ '((—o00.,r]) and B C ¢ !([r,o0)) for some r € R. Then, r < 0 because
0 = ¢(0,0) € o(B).If p(z) < 0 for some z € B, then ¢(tz) = tp(z) < r for
sufficiently large ¢+ > 0. This is a contradiction because tz € B. If ¢(z) > 0 for
some z € B, then —z € B and ¢(—z) = —@(z) < 0, which is a contradiction.
Therefore, B C ¢~'(0). Note that ¢(0,1) < 0 because (0,1) € A. Since
o(x,t) = @(x,0) + t¢(0, 1) for each x € E, we have ¢({x} x R) = R. Observe
that ({x} x R) N ¢~!(0) is a singleton. Then, f extends to the linear functional
f : E — R whose graph is ¢! (0), i.e., (x, F(x)) € ¢™1(0) for each x € E. Since
¢~ 1(0) C (E xR) \ 4, it follows that f(x) < p(x) forevery x € E.

The Separation Theorem 3.3.5 can also be obtained as a corollary of the follow-
ing two theorems, where we do not use the Hahn—Banach Extension Theorem 3.3.1.

Theorem 3.3.6. For each pair of disjoint non-empty convex sets A, B C E, there
exists_a pair of disjoint convex sets A, B C E suchthat A C A, B C B, and
AUB=E.

Proof. Let P be the collection of pairs (C, D) of disjoint convex sets such that
A C Cand B C D.For (C,D),(C’,D") € P, we define (C, D) < (C’, D) if
C C C'and D C D’. Then, it is easy to see that P = (P, <) is an inductive
ordered set. Due to Zorn’s Lemma, P has a maximal element (Z, E)

To show that AU B = E , assume the contrary, i.e., there exists a point vy €
E\ (Z U E) By the maximality of (Z, E), we can obtain two points

x€AN(BU{w}) and y € BN (AU {v}).
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Then, x € (v, y1) for some y; € B and y € (vg, x1) for some x; € ‘A. Note that
x € rint{vg, y1) and y € rint(vp, x;). Consider the triangle (vo, x1, y1). It is easy to
see that (x, x) and (y;, y) meet at a point v;. Since (x,x) C 4 and (y;, y) C B,
it follows that v; € AN E, which is a contradiction. O
Theorem 3.3.7. For each pair of disjoint non-empty convex sets C, D C E with
CUD = E, rclC Nrel D is a hyperplane if rcl C Nrcl D # E.

Proof. First, we show that rcl C Nrcl D = dC = dD. To prove that dC C 9D, let
x € dC. It suffices to find y € C such that
(1—t)x+tyeC forO0<t<1and
(1+t)x—tye E\N\C =D fort > 0.
To this end, take y’, y” € C such that (1 —¢)x + ¢y’ € C for0 < ¢t < 1 and

(I+t)x—ty” € C fort > 0. Then, y = %y’ + %y” € C is the desired point.
Indeed, foreach 0 <t < 1,

(I=0x+1y=(10=0x+ 3ty + 11y’

Moreover, note that

(1=5)(1+t)x —ty) + sy’
=1 -5)1+0)x — (1 =)y — L1 —9)1y" + 5y’

Foreacht > 0,lets =¢/(2+1¢) € (0, 1). Then, (1 — s)t = 2s. Therefore, we have
A=) +)x—ty)+sy =1 +s)x—sy" &€C,

which means that (1+¢)x—ty ¢ C (Fig. 3.4). Similarly, we have 0D C dC. Hence,
dC = 0D. Since rint C Nrint D = @, it follows that rcl1 C Nrcl D = dC = dD.

Next, we show that dC is a flat. It suffices to show thatif x,y € dC and ¢ > 0,
thenx’ = (1 +1)x —ty € C.If x’ & 9C, then x’ € rint C or x’ € rint D. In this
case, x € rint{x’, y) C rint C or x € rint(x’, y) C rint D by Proposition 3.2.3. This
is a contradiction. Therefore, x’ € dC.

It remains to show that if 9C # E then dC is a hyperplane. We havev € E\dC.
It suffices to prove that E = fl(dC U{v}). Without loss of generality, we may assume
that v € rint C. On the other hand, 0C # @ because C # E. Let z € 9C. Then,
w=2z—(v—2z) = 2z—v € rint D. Otherwise, w € rcl C, from which, using
Proposition 3.2.3, it would follow that z = %v + %w € rint(v, w) C rintC, which is
a contradiction.



3.3 The Hahn-Banach Extension Theorem

(1T =s)((A+0)x—ty)+ sy

D

1—t)x+tyeC (I14+0)x—1y €D

Fig. 3.4 0C C 9D

x €rintC

w=z—(v—2)
Fig. 3.5 The case x € rintC

y=(1—=s)x+sv

aC

X €rint D

Fig. 3.6 The case x € rint D

Foreach x € E \ 0C, x € rintC or x € rint D. When x € rintC, let

s=sup{r el | (1—t)x +iweC}.
Refer to Fig. 3.5. Then, y = (1 — s)x 4+ sw € dC, which implies that

x=—y— =2 (e U ).
s 1—=s

In the case that x € rint D, let

s:sup{tel\(l—t)x+tv€D}.

Now, refer to Fig. 3.6. Then, y = (1 — s)x + sv € dD = dC, which implies that

S e fi(dC U ).
1—s

X = y+

1—=5

93
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Consequently, it follows that £ = fl(dC U {v}). O

Remark 7. In the above, the condition rcl C Nrcl D # E is necessary. For example,
define the convex set C in the linear space IE@ as follows:

C:{xeRsi|n:max{i|x(i)7é0}:x(n)>0}.

Let D = Rlﬁ \ C = (=C) \ {0}. Then, D is also convex. As is easily observed,
rclC =rcl D = ]RI?., hencerclC Nrcl D = ]RI?..

The Separation Theorem 3.3.5 can also be obtained as a corollary of Theorems
3.3.6and 3.3.7. In fact, let A, B C E be convex sets with core A # @ and (core A)N
B = @. Then, core A = rint 4 is convex. We apply Theorem 3.3.6 to obtain disjoint
non-empty convex sets C and D such thatcoreA C C, B C D,andC U D = E.
Observe that core A Nrcl D = @, hence rcl D # E. It follows from Theorem 3.3.7
that rcl C N rel D is a hyperplane. Then, we have a linear functional f : £ — R
such that rclC Nrcl D = f~!(s) for some s € R (Proposition 3.1.3(1)). Since
core A C E\ f~'(s), we have core A C f~'((s,00)) orcore A C f~!((—00,s)).
If core A C f~!((s,00)), by replacing f and s by — f and —s, it can be assumed
that core A C f~1((—00,5)).

We now show that rclC C f~!((—o0,s]). Let x € core A (C rintC). Then,
x erintC and f(x) < s.If f(y) > s forsome y € rcl C, we have z € rint(x, y) N
£7(s). Because z € rcl D, rint{w,z) C D for some w € D. On the other hand,
z € rint{x, y) C rint C (Proposition 3.2.3). Because rint C = core C, (v,z) C C =
E \ D for some v € rint(w, z), which is a contradiction.

Since C C f~'((—o0,s]), it follows that D D f~'((s,o0)). Observe that
rint D O f~'((s,0)). So, we have x € rint D and f(x) > s. Likewise for rcl D,
we can show that rcl D C f~!([s, 00)). Accordingly, we have

rclC = f7'((—o0,s]) and rcl D = f~([s, 00)).

Since core A C ' ((—00,s)) and B C f~!([s.00)), we have the desired result.

3.4 Topological Linear Spaces

A topological linear space E is a linear space with a topology such that the
algebraic operations of addition (x,y) +— x + y and scalar multiplication
(¢,x) + tx are continuous.® Every linear space E has such a topology. In fact,

8Here, we only consider linear spaces over R. Recall that topological spaces are assumed to be
Hausdorff. For topological linear spaces (more generally for topological groups), it suffices to
assume axiom 7Ty, which implies regularity (Proposition 3.4.2 and its footnote). The continuity of
scalar multiplication implies the continuity of the operation x — —x because (—1)x = —x.
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E has a Hamel basis B. As a linear subspace of the product space RZ, R? is a
topological linear space that is linearly isomorphic to E by the linear isomorphism
® R? — E defined by ¢(x) = ) czx(v)v. Then, ¢ induces a topology
that makes E a topological linear space. In the next section, it will be seen that
if E is finite-dimensional, then such a topology is unique. However, an infinite-
dimensional linear space has various topologies for which the algebraic operations
are continuous.

In the following proposition, we present the basic properties of a neighborhood
basis at 0 in a topological linear space.

Proposition 3.4.1. Let E be a topological linear space and U be a neighborhood
basis at 0 in E. Then, U has the following properties:

(1) Foreach U,V €U, there is some W € U such that W Cc U NV;
(2) Foreach U € U, there is some V € U such thatV +V C U;

(3) Foreach U € U, there is some V € U such that [-1,1]V C U;

4) Foreachx € E and U € U, there is some a > 0 such that x € aU;

(5) NU = {0},

Conversely, let E be a linear space with U a collection of subsets satisfying these
conditions. Then, E has a topology such that addition and scalar multiplication are
continuous and U is a neighborhood basis at 0.

Sketch of Proof. Property (1) is trivial; (2) comes from the continuity of addition at (0, 0) €
E x E; (3) is obtained by the continuity of scalar multiplication at each (¢,0) € [—1, 1] X E
and the compactness of [—1, 1]; (4) follows from the continuity of scalar multiplication at
(0, x) € R x E; the Hausdorffness of E implies (5).

Given U with these properties, an open set in E is defined as a subset W C E satisfying
the condition that, for each x € W, there is some U € U such that x + U C W. (Verity
the axioms of open sets, i.e., the intersection of finite open sets is open; every union of open
sets is open.)

Foreach x € E and U € U, x + U is a neighborhood of x in this topology.® Indeed, let

W={y€E|3V €U suchthaty +V Cx + U}.

Then, x € W C x 4 U because of (5). For each y € W, we have VV € U such that
y+V Cx+U.Take V' € Usothat V' +V’' C V asin (2). Then, y + V' C W because
+y)+V Cy+V Cx+U forevery y) € V. Therefore, W is open in E, so
x + U is a neighborhood of x in E. By the definition of the topology, {x + U | U € U} is
a neighborhood basis at x. In particular, ¢/ is a neighborhood basis at 0.

Since {x + U | U € U} is a neighborhood basis at x, the continuity of addition follows
from (2). Using (3), we can show that the operation x = —x is continuous.

For scalar multiplication, let x € E, ¢ € R, and U € U. Because of the continuity of
X > —x, it can be assumed that @ > 0. Then, we can write « = n + ¢, where n € w and
0 <t < 1. Using (2) inductively, we can find V| D -+- D V, D V, 41 inU such that

°If E is a topological linear space, x + U is a neighborhood of x € E for any neighborhood
U of 0.
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Vi+--+Vyo+ Vig1 + V) CU.

By (3), we have W € U such that [—1, 1]W C V, 4. Then, x € rW for some r > 0 by
(4). Choose § > 0 so that § < min{1/r,1 —¢}.Lety € x + W and |a — 8| < §. Then, we
can write B =n + s, where t —§ < s <t + §. It follows that

By—ax=m+s)y—m+t)x=n(y—x)+s(y —x)+ (s —1)x
€nwW + [—1, W + §[—1,1](rW)
CnVigr + Va1 + Vit
CVarr+-+ Vo CU

n + 2 many

hence By € ax + U.

To see the Hausdorffness, let x # y € E.By (5), wehave U € U such thatx —y € U.
By (2) and (3), we can find V € U such that V — V C U. Then, x + V and y + V are
neighborhoods of x and y, respectively. Observe that (x + V)N (y + V) = 0.

It is said that A C E is circled if tA C A for every t € [—1,1]. It should be
noted that the closure of a circled set A is also circled.

Indeed, let x € clAand ¢ € [—1,1]. Ift = 0, thentx =0 € A C cl A. When ¢ # 0, for
each neighborhood U of tx in E, since ' U is a neighborhood of t ~'x, t~'U N A # @,
which implies that U N tA # (. Because tA C A, U N A # @. Thus, it follows that
tx € cl A.

In (3) above, W = [—1,1]V is a neighborhood of 0 € FE that is circled, i.e.,
tW C W forevery t € [—1,1]. Consequently, (3) is equivalent to the following
condition:

(3)’ 0 € E has a neighborhood basis consisting of circled (open) sets.

A topological group G is a group with a topology such that the algebraic
operations of multiplication (x, y) + xy and taking inverses x ~— x~! are both
continuous.!' Then, G is homogeneous, that is, for each distinct xy, x; € G, there
is a homeomorphism # : G — G such that (xy) = x;. Such an % can be defined
by h(x) = xox~'x;, where not only h(xp) = x; but also h(x;) = x,. Every
topological linear space is a topological group with respect to addition, so it is
homogeneous.

Proposition 3.4.2. Every topological group G has a closed neighborhood basis at
each g € G, i.e., it is regular'? For a topological linear space E, 0 € E has a
circled closed neighborhood basis.

101t should be noted that, in general, 2V C V +VbutV +V ¢ 2V.
These two operations are continuous if and only if the operation (x, y) — x 'y is continuous.

12A topological group G is assumed to be Hausdorff, but it suffices to assume axiom 7. In fact,
axiom T implies T for a topological group G because of the homogeneity of G.
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Sketch of Proof. Each neighborhood U of the unit 1 € G contains a neighborhood V of
1 such that V™'V C U. For each x € clV, we have y € Vx N V. Consequently, x €
V=ly c VTV CU,sowehaveclV C U.

For the additional statement, recall that if V' is circled then ¢l V' is also circled.

Proposition 3.4.3. Let G be a topological group and H be a subgroup of G.

(1) If H is open in G then H is closed in G.
(2) The closure cl H of H is a subgroup of G.

Sketch of Proof. (1): For each x € G \ H, Hx is an open neighborhood of x in G and
Hx CG\H.

(2): For each x, y € cl H, show that x~'y € cl H, i.e., each neighborhood W of x 1y
meets H. To this end, choose neighborhoods U and V of x and y, respectively, so that
u-lv cw.

Due to Proposition 3.4.3(1), a connected topological group G has no open
subgroups except for G itself. Observe that every topological linear space E is path-
connected. Consequently, £ has no open linear subspaces except for E itself, i.e.,
every proper linear subspace of E is not open in E.

The continuity of linear functionals is characterized as follows:

Proposition 3.4.4. Let E be a topological linear space. For a linear functional
f : E — Rwith f(E) # {0}, the following are equivalent:

(a) f is continuous;

(b) f71(0) is closed in E;

(c) f7Y0) is not dense in E;

(d) f(V) is bounded for some neighborhoodV of 0 € E.

Proof. The implication (a) = (b) is obvious, and (b) = (c) follows from f(E) #
{0} (e, £71(0) # E).

(¢) = (d): We have x € E and a circled neighborhood V' of 0 € E such that
(x+V)N f71(0) = @. Then, £(V) is bounded. Indeed, if #(V) is unbounded, then
there is some z € V such that | f(z)| > | f(x)]. Inthis case, f(tz) = tf(z) = — f(x)
for some ¢ € [—1, 1], which implies that — f(x) € f(V). It followsthat0 € f(x)+
f(V) = f(x + V), which contradicts the fact that (x + V) N f~1(0) = 0.

(d) = (a): For each ¢ > 0, we have n € N such that f(V) C (—ne,ne).
Then, n~'V is a neighborhood of 0 in E and f(n~'V) C (—&,¢). Therefore, f
is continuous at 0 € E. Since f is linear, it follows that f is continuous at every
point of E. O

Proposition 3.4.5. Let E be a topological linear space and A, B C E.

(1) If Bisopenin E then A + B is openin E.
(2) If A is compact and B is closed in E then A + B is also closed in E.

Sketch of Proof. (1): Note that A + B = {J,c4(x + B).

(2): To show that E\(A+ B)isopenin E,letz € E\(A+ B). Foreach x € A, because
z—x € E\ B, we have open neighborhoods Uy, V; of x, zin E such that V., —U, C E\ B.
Since A is compact, A C |J/_, U,, for some xy, ..., X, € A. Then, V = (\/_, V,, is an
open neighborhood of z in E. We can show that VN (A + B) = @,i.e.,V C E\(A+ B).
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Remark 8. In (2) above, we cannot assert that A + B is closed in E even if both 4
and B are closed and convex in E. For example, A = R x {0} and B = {(x, y) €
R? | x > 0, y > x~ !} are closed convex sets in R?, but A + B = R x (0, 00) is not
closed in R

Proposition 3.4.6. Let F be a closed linear subspace of a topological linear
space E. Then, the quotient linear space E | F with the quotient topology is also
a topological linear space, and the quotient map q : E — E/F (ie, p(x) =
x + F € E/F) is open, hence if U is a neighborhood basis at 0 in E, then
qU) ={qU) | U € U} is a neighborhood basis 0 in E/ F.

Sketch of Proof. Apply Proposition 3.4.5(1) to show that the quotient map g : E — E/F is
open. Then, in the diagrams below, ¢ X ¢ and ¢ X idg are open, so they are quotient maps:

EXE —> FE EXR —> E
qqu \Ltf gxidg \L \Lq
E/F xE/F —— EJ/F, E/F xR —— E/F.

Accordingly, the continuity of addition and scalar multiplication are clear. Note that E/F
is Hausdorff if and only if F is closed in E.

For convex sets in a topological linear space, we have the following:

Proposition 3.4.7. For each convex set C in a topological linear space E, the
following hold:

(1) clC is convex and rcl C C clC, hencerclC = C if C is closed in E;
(2) intg C = @ for any flat F withfiC & F;
3) intgc C # 0 implies intgc C = corege C = rint C.

Proof. By the definition and the continuity of algebraic operations, we can easily
obtain (1). For (2), observe intp C C corep C.Ifintp C # @ then flC = F by the
Fact stated in the previous section.

(3): Due to Proposition 3.3.2, coregc C = rintC. Note that intgc C C
coreg ¢ C. Without loss of generality, we may assume that 0 € intg¢c C. Then, for
each x € rintC, we can find 0 < s < 1 such that x € sC. Since (1 — s)C is a
neighborhood of 0 = x — x in flC, we have a neighborhood U of x in fl C such
that U —x C (1 —s)C. Then, it follows that U C (1 —s)C + sC = C. Therefore,
x €intgc C. O

Remark 9. In the above, we cannot assert any one of c1C = rclC, intgc C =
corege C, orintge C # 0. For example, [—1, 1]? is a convex set in RY such that
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rel[—1, 1]1? = [-1, 1]1? but cl[—1, 1]1? = [-1,1]N. Note that fi[—1, 1]1? = R?.

Regard [1, 1]1? as a convex set in R?. Then,
int@ 1, 1]§ = but corey -1, 1]5}{ = rint[-1, 1]} = (-1, 1)?.

By Proposition 3.4.7(1), if A is a subset of a topological linear space E, then
cl{A) is the smallest closed convex set containing A, which is called the closed
convex hull of A.

Remark 10. In general, (A) is not closed in E even if A is compact. For example,
let A ={a, | n € w} C £, where ap(i) = 27 for every i € N and, for each
n €N, a,(i) =2"ifi <nanda,(@i) = 0ifi > n. Then, A4 is compact and
(A) = U,enlao. a1, ... a,). Foreachn € N, let

Xp =2"ag+2'a; +---+27"a, € (ag,a, ..., a,).

Then, x,(i) = 272*1ifi < nand x,(i) = 27" if i > n. Hence, (X,)nen
converges to xo € £, where xo(i) = 272 *! for each i € N. However, xo & (A).
Otherwise, x¢ € {(ag,ay,...,a,) for some n € N, where we can write

n

Xo = ZZ(Z + Da;, z€ A”.
i=0

Then, we have the following:

z(Dao(n + 1) = xo(n + 1) = 272" = 27"gqo(n + 1) and
(Dao(m +2) = xo(n +2) =272 = 27" lay(n + 2),

hence z(1) = 27" and z(1) = 27"~!. This is a contradiction. Therefore, (A) is not
closed in ¢;.

The following is the topological version of the Separation Theorem 3.3.5:

Theorem 3.4.8 (SEPARATION THEOREM). Let A and B be convex sets in a
topological linear space E such that int A # @ and (int A) N B = @. Then, there
is a continuous linear functional f : E — R such that f(x) < f(y) for each
x €intAandy € B, and sup f(A) < inf f(B).

Proof. First, int A # @ implies core A = int A # @ by Proposition 3.4.7(3). Then,
by the Separation Theorem 3.3.5, we have a linear functional f : £ — R such that
f(x) < f(y) forevery x € intA and y € B, and sup f(A4) < inf f(B). Note that
B —int A is open in E and f(z) > O for every z € B — int A. Thus, f~!(0) is not
dense in E. Therefore, f is continuous by Proposition 3.4.4. O
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A topological linear space E is locally convex if 0 € E has a neighborhood
basis consisting of (open) convex sets; equivalently, open convex sets make up an
open basis for E. It follows from Proposition 3.4.6 that for each locally convex
topological space E and each closed linear subspace ' C E, the quotient linear
space E/F is also locally convex. For locally convex topological linear spaces, we
have the following separation theorem:

Theorem 3.4.9 (STRONG SEPARATION THEOREM). Let A and B be disjoint
closed convex sets in a locally convex topological linear space E. If at least one

of A and B is compact, then there is a continuous linear functional f : E — R
such that sup f(A) < inf f(B).

Proof. By Proposition 3.4.5(2), B — A isclosed in E. Since A N B = @, it follows
that 0 ¢ B — A. Choose an open convex neighborhood U of 0 so that U N (B —
A) = 0. By the Separation Theorem 3.4.8, we have a nontrivial continuous linear
functional f : £ — R such that sup f(U) < inf f(B — A). Then, sup f(A) +
sup f(U) < inf f(B), where sup f(U) > 0 by the non-triviality of f. Thus, we
have the result. O

As a particular case, we have the following:

Corollary 3.4.10. Let E be a locally convex topological linear space. For each pair
of distinct points x,y € E, there exists a continuous linear functional f : E — R

such that f(x) # f(y). O

Concerning the continuity of sublinear functionals, we have the following:

Proposition 3.4.11. Let p : E — R be a non-negative sublinear functional of a
topological linear space E. Then, p is continuous if and only if p~'([0, 1)) is a
neighborhood of 0 € E.

Proof. The “only if” part follows from p~'([0, 1)) = p~'((~1, 1)). To see the “if”
part, let ¢ > 0. Since p~'([0,£)) = ep~ ([0, 1)) is a neighborhood of 0 € E, each
x € E has the following neighborhood:

U=(x+p'([0.2)) N (x—p~'([0.2))).

Foreach y € U, since p(y — x) < gand p(x — y) < ¢, it follows that

p(y) < p(y —x)+ p(x) < p(x) +¢& and
p(y) = p(x) — p(x —y) > p(x) — ¢,

which means that p is continuous at x. O

For each convex set C C E with 0 € intC, we have intC = coreC =
pc'([0, 1)) by Propositions 3.3.4 and 3.4.7(3). Then, the following is obtained from
Proposition 3.4.11.
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Corollary 3.4.12. Let E be a topological linear space. For each convex set C C E
with 0 € intC, the Minkowski functional pc : E — R is continuous. Moreover,
pc'([0,1)) =intC =rintC and pz'(I) = c1C = rcl C, hence pz' (1) =bdC =
acC. O

The boundedness is a metric concept, but it can be extended to subsets of a
topological linear space E. A subset A C E is topologically bounded'® provided
that, for each neighborhood U of 0 € E, there exists some r > 0 such that
A C rU. If A C E is topologically bounded and B C A, then B is also
topologically bounded. Recall that every neighborhood U of 0 € E contains a
circled neighborhood V' of 0 € E (cf. Proposition 3.4.1(3)). Since sV C tV for
0 < s < t,itis easy to see that every compact subset of E is topologically bounded.
When E is a normed linear space, A C E is topologically bounded if and only if A
is bounded in the metric sense. Applying Minkowski functionals, we can show the
following:

Theorem 3.4.13. Let E be a topological linear space. Each pair of topologically
bounded closed convex sets C,D C E with intC # @ and intD # @
are homeomorphic to each other by a homeomorphism of E onto itself, hence
(C,bdC) =~ (D,bd D) and int C ~ int D.

Proof. Without loss of generality, we may assume that 0 € intC Nint D. Let pc
and pp be the Minkowski functionals for C and D, respectively. By the topological
boundedness of C and D, it is easy to see that pc(x), pp(x) > 0 for every x €
E \ {0}. Then, we can define maps ¢,V : E — E as follows: ¢(0) = ¥ (0) = 0,

pC(x)x and ¥(x) = pD—(x)x foreach x € E \ {0}.
pp(x) p

c(x)

It follows from the continuity of pc and pp (Corollary 3.4.12) that ¢ and ¢ are
continuous at each x € E \ {0}.

To verify the continuity of ¢ at 0 € E, let U be a neighborhood of 0 € E. Since
D is topologically bounded and C is a neighborhood of 0, there is an » > 0 such that
D C rC.Then, pc(x) < rpp(x) for every x € E. Choose a circled neighborhood
V of 0 € E sothatrV C U. Then, ¢(V) C U. Indeed, for each x € V' \ {0},

p(x) =

Pc(x)x pc(x)

VcrV cU.
pp(x) Pp(x)

p(x) =

Similarly, ¥ is continuous at 0 € E.
For each x € E \ {0}, since p(x) # 0,

3Usually, we say simply bounded but here add topologically in order to distinguish the metric
sense. It should be noted that every metrizable space has an admissible bounded metric.
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)

o) @ pe)

Ve = o) Y T pet) o)
o) pc(x)

Hence, ¥ ¢ = id. Similarly, ¢y = id. Therefore, ¢ is a homeomorphism with
™! = . Moreover, observe that ¢(C) C D and /(D) C C, hence ¢(C) = D.
Thus, we have the result. O

The norm of a normed linear space E is the Minkowski functional for the unit
closed ball B of E. Since bd B, is the unit sphere Sg of E, we have the following:

Corollary 3.4.14. Let E = (E, || - ||) be a normed linear space. For every bounded
closed convex set C C E with intC # @, the pair (C,bd C) is homeomorphic to
the pair (B, Sg) of the unit closed ball and the unit sphere of E. O

It is easy to see that every normed linear space £ = (E, | - ||) is homeomorphic
to the unit open ball B(0,1) = Bg \ Sg of E.

In fact, the following are homeomorphisms (each of them is the inverse of the other):

1
E>x XEB(O,I), B(0,1)3y|—>1—“”y€E
-1y

1
H ——
L+ x]l
By applying the Minkowski functional, this can be extended as follows:

Theorem 3.4.15. Every open convex set V in a topological linear space E is
homeomorphic to E itself.

Proof. Without loss of generality, it can be assumed that 0 € intV = V. Then, we
have V = intV = p;;!([0, 1)) by Corollary 3.4.12. Using the Minkowski functional
pv,we can definemaps ¢ : V — E and ¢ : E — V as follows:

1
x forxeV;, ¥y(y)=————y foryekE.

YO =TT, T+ 2v(y)

Observe that ¢ = idy and ¢ = idg. This means that ¢ is a homeomorphism
with ¥ = ¢~ L. O

3.5 Finite-Dimensionality

Here, we prove that every finite-dimensional linear space has the unique topology
that is compatible with the algebraic operations, and that a topological linear space
is finite-dimensional if and only if it is locally compact.

First, we show the following proposition:
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Proposition 3.5.1. Every finite-dimensional flat F in an arbitrary linear space E
has the unique (Hausdorff) topology such that the following operation is continuous:

FxFxR>(x,y,t)~»(1—t)x +ty € F.

With respect to this topology, every affine bijection f : R" — F is a homeomor-
phism, where n = dim F. Then, F is affinely homeomorphic to R". Moreover, if E
is a topological linear space then F is closed in E.

Proof. As mentioned at the beginning of Sect. 3.4, E has a topology that makes E
a topological linear space. With respect to the topology of F inherited from this
topology, the above operation is continuous.

Note that there exists an affine bijection f : R" — F, where dim F = n.
We shall show that any affine bijection f : R” — F is a homeomorphism with
respect to any other topology of F such that the above operation is continuous,
which implies that such a topology is unique and F is affinely homeomorphic to R”.

Since f is affine, we have

n

fl2) = (1 — Zz(i))f(()) + Zz(i)f(ei) for each z € R".

i=1 i=1
Note that the following function is continuous:

n

R">z+ (1 —Zz(i),z(l),...,z(n)) eflA" c R'H.

i=1

Then, the continuity of f follows from the claim:

Claim. Givenvy,...,vx € F, k < n, the following function is continuous:

k
o 1A 5 2 Zz(i)vi € F.

i=1

Since fl A = A° is a singleton, the continuity of ¢; is obvious. Assuming the
continuity of ¢, we shall show the continuity of ;1. Let ¢ : fl A*"! xR — fl A*
be the map defined by ¥ (z,7) = ((1 —#)z,¢). Observe that

k
G @) = (1=1) Y 26 + tvipr = (1= D@ (@) + v

i=1

From the property of the topology of F and the continuity of ¢, it follows that
@k+1V is continuous. Foreachi = 1,....k + 1, let p; = pr;|fl A : l A¥ — Rbe
the restriction of the projection onto the i -th factor. Note that
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YA S R\ (1) - AR X R\ {1}) > 4K\ pif, (1)

is a homeomorphism. Hence, ¢; 11| fl A% \ p1:41-1(1) is continuous. Replacing the
(k + 1)-th coordinates with the i-th coordinates, we can see the continuity of
@r+1] L AR\ p(1). Since fl A% = Uf:ll(ﬂ AR\ pr(1)), it follows that gyt
is continuous. Thus, the claim can be obtained by induction.

It remains to show the openness of f. On the contrary, assume that f is not
open. Then, we have x € R” and ¢ > 0 such that f(B(x, ¢)) is not a neighborhood
of f(x) in F. Since bd B(x, ¢) is a bounded closed set of R”, it is compact, hence
f(bdB(x,¢)) isclosed in F. Then, F \ f(bdB(x, ¢)) is a neighborhood of f(x) in
F. Using the compactness of I, we can find an open neighborhood U of f(x) in F
such that

(1—-1t)f(x)+tU C F\ f(bdB(x,¢)) foreveryt €L

Then, U N f(bdB(x,¢e)) = 0. Since f(B(x,¢)) is not a neighborhood of f(x), it
follows that U ¢ f(B(x,¢)), and so we can take a point y € U \ f(B(x, ¢)). Now,
we define a linear path g : I — R” by g(¢) = (1 —t)x +¢f~!(y). Since f is affine
and y € U, it follows that

fe@®)=0—=1t)f(x)+ty e F\ f(bdB(x,¢)) foreveryt € L

Since f is a bijection, we have
g(I) C R"\ bdB(x,&) = B(x, &) U (R" \ B(x, ¢)).

Then, g(0) = x € B(x,¢) and g(1) = f~!(y) € R" \ B(x, &), which contradicts
the connectedness of I. Thus, f is open.

In the case when E is a topological linear space, to prove that F is closed in E,
take a point x € E \ F and consider the flat F,, = fi(F U {x}). Itis easy to construct
an affine bijection f : R"*! — F, such that f(R" x {0}) = F. As we saw in the
above, f is a homeomorphism, hence F is closed in F. Since F, \ F is openin F},
we have an open set U in E such that U N F, = F, \ F. Then, U is a neighborhood
of xin EandU C E\F.Therefore, E\ F isopenin E, thatis, F isclosedin £. O

If a linear space E has a topology such that the operation
EXExR>(x,y,t)>(1—-t)x+ty€eE

is continuous, then scalar multiplication and addition are also continuous with this
topology because they can be written as follows:

ExRoa(x,t)»tx=(1-t)0+1tx € E;
EXE9(x,y)|—>x+y=2(%x+%y)EE.



3.5 Finite-Dimensionality 105

Then, the following is obtained by Proposition 3.5.1:

Corollary 3.5.2. Every finite-dimensional linear space E has the unique (Haus-
dorff) topology compatible with the algebraic operations (addition and scalar
multiplication), and then it is linearly homeomorphic to R", wheren = dim E. 0O

Moreover, we have the following:

Corollary 3.5.3. Let E be a topological linear space and F a finite-dimensional
flat in another topological linear space. Then, every affine function f : F — E is
continuous, and if f is injective then f is a closed embedding.

Proof. By Proposition 3.5.1, F can be replaced with R", where n = dim F. Then,
we can write

fx) = (1 — zn:X(i))f(O) + zn:x(i)f(e,-) for each x € R”,

i=1 i=1

where ey, ..., e, is the canonical orthonormal basis for R". Thus, the continuity of
f is obvious. Since f(R") is a finite-dimensional flat in E, f(R") is closed in E
by Proposition 3.5.1. If f is injective then f : R” — f(R") is an affine bijection,
which is a homeomorphism by Proposition 3.5.1. Hence, f is a closed embedding.

O

Combining Proposition 3.2.2 and Corollary 3.5.3, we have

Corollary 3.5.4. Let E be a topological linear space and C a finite-dimensional
convex set in another topological linear space. Then, every affine function f : C —
E is continuous. Moreover, if f is injective then f is an embedding. O

For finite-dimensional convex sets in a linear space, we have the following:

Proposition 3.5.5. Let C be a finite-dimensional convex set in an arbitrary linear
space E. Then, rint C = intgc C with respect to the unique topology for l C as in
Proposition 3.5.1.

Proof. We may assume that E is a topological linear space. By Proposition 3.4.7(3),
it suffices to show that intg ¢ C # @. We have affinely independent vy, vy, ..., v, €
C with IC = fl{vy,v1,..., v}, where n = dim C. We have an affine bijection
f : R" — f1C such that f(0) = vy, f(e1) = vy, ..., f(e,) = v,. Then, f isa
homeomorphism by Proposition 3.5.1, hence

intgc C D intﬂc(V(),Vl, c. ,Vn) = f(intRn (0,01, - ,en)) 7é Q. O

Note that every compact set in a topological linear space is topologically bounded
and closed. For an n-dimensional convex set C in a linear space, the flat hull
fl C is affinely isomorphic to R". Combining Propositions 3.5.1 and 3.5.5 with
Corollary 3.4.14, we have the following:
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Corollary 3.5.6. For every n-dimensional compact convex set C in an arbi-
trary topological linear space E, the pair (C,dC) is homeomorphic to the pair
(B, S"~1) of the unit closed n-ball and the unit (n — 1)-sphere. O

Remark 11. Tt should be noted that every bounded closed set in Euclidean space R”
is compact. More generally, we can prove the following:

Proposition 3.5.7. Let E be an arbitrary topological linear space and A C E with
dimfl A < oo. Then, A is compact if and only if A is topologically bounded and
closedin E.

Sketch of Proof. Using Proposition 3.5.1, this can be reduced to the case of R”.
The following convex version of Proposition 3.5.1 is not trivial.

Proposition 3.5.8. Let C be an n-dimensional convex set in an arbitrary linear
space E. If (1) C is the convex hull of a finite set'* or (2) C = rint C, then C has
the unique (Hausdorff) topology such that the following operation is continuous:

CxCxIsx,y,)—({0—-t)x+1tyeC.
Incase (1), 1c1C = C and (C,9C) ~ (B*,8"™"); in case (2), C ~ R".

Proof. Like Proposition 3.5.1, it suffices to see the uniqueness and the additional
statement. To this end, suppose that C has such a topology, but it is unknown
whether this is induced from a topology of fl C or not.

Case (1): Let C = (vi,...,v) and define f : A*=! — C by f(z) =
Zf:l z(i)v;. In the same way as for the claim in the proof of Proposition 3.5.1,
we can see that the continuity of the operation above induces the continuity of f.
Since A*~!is compact, f is a closed map, hence it is quotient. Thus, the topology of
C is unique and C is compact with respect to this topology. Giving any topology on
E so that E is a topological linear space, we have rcl C = C by Proposition 3.4.7(i)
and (C,dC) ~ (B",S"!) by Corollary 3.5.6.

Case (2): Let f : R" — flC be an affine bijection, where n = dimflC =
dim C. Since D = f~!(C) is an n-dimensional convex set in R”, D = rint D =
int D is open in R” by Proposition 3.5.5, hence D ~ R”" by Proposition 3.4.15.
Then, it suffices to show that f|D : D — C is ahomeomorphism. For each x € D,
choose § > 0 so that x 4+ §B" = B(x,8) C D. Let vy = x — A", where A"~ is
the barycenter of the standard (n — 1)-simplex A"~! = (e, e,,...,e,) C R". For

eachi = 1,...,n,letv; = x + 8e;. Then, vy, vy,..., v, are affinely independent
and

X € intgn {vo, v1,...,v,) Cx +6B" C D,
hence (vg, v1,...,v,) is a neighborhood of x in D. On the other hand, we have the

affine homeomorphism ¢ : A" — (vo,vi,...,v,) defined by ¢(z) = > /_,z(i +

4In this case, C is called a cell or a (convex) linear cell (cf. Sect.4.1).
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(1.1

Fig. 3.7 The continuity of the operation at (0,¢4,0) € C x C X1

D)v;. Since fo(z) = > i_yz(i + 1)f(v;), the continuity of the operation above
implies that of f¢, hence f|(vo, Vi, ..., v,) is continuous at x. Then, it follows that
f|D is continuous at x.

Since D is open in R”, we can apply the same argument as in the proof of
Proposition 3.5.1 to prove that f|D : D — C is open. Consequently, f|D : D —
C is a homeomorphism. O

Remark 12. For an arbitrary finite-dimensional convex C, Proposition 3.5.8 does
not hold in general. For example, let

C ={0}U{(x,y) € (0,1 | x = y} CR”.

Then, C is a convex set that has a finer topology than usual such that the operation
in Proposition 3.5.8 is continuous. Such a topology is generated by open sets in the
usual topology and the following sets:

D, = {0} U (B((0,r),r) N C), r > 0.

Note that this topology induces the same relative topology on C \ {0} as usual. Since
D, s € B(0,¢) for each ¢ > 0, {D, | r > 0} is a neighborhood basis at 0 € C
with respect to this topology.

We shall show that the operation

CxCxIa(p,gt)>(1—-t)p+tqgeC

is continuous at (p,q,t) € C x C x LIf (1 —t)p + tq # 0, it follows from the
continuity with respect to the usual topology. The continuity at (0, 0, ) follows from
the convexity of D,, r > 0.

To see the continuity at (0,¢,0) (¢ # 0),letg = (x,y), where0 <y < x < 1.
Choose s > 0 so that ¢ € D; (i.e., s > (x> + y?)/2y). Foreach 0 < r < min{1, s},
let0 <t <r/2s,p’ € D, and ¢’ € Dy (Fig.3.7). Observe that

11—t 1
D,y C ——(r/s)Dyjs = D,
= CID C /9D

1—1¢

r/s—

~(r/s)p'
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and (r/s)q’ € (r/s)Ds; = D,. Since D, is convex, it follows that

frrg = (1= )22 e p + /)
(1-0p +1q = (1 r/s)r/s_t(r/s)p + r/s(r/s)q e D,.

Thus, the operation is continuous at (0, ¢, 0). The continuity at (p,0, 1) (p # 0) is
the same.

A subset A of a topological linear space E is totally bounded provided, for
each neighborhood U of 0 € E, there exists some finite set M C E such that
A C M + U. In this definition, M can be taken as a subset of A.

Indeed, for each neighborhood U of 0 € E, we have a circled neighborhood V' such that
V4V CU.Then, AC M + V for some finite set M C E, where it can be assumed that
(x+ V)N A # @ forevery x € M. For each x € M, choose a, € Asothata, € x + V.
Then, x € a,—V =a,+V.Itfollows that A C U ey (x+V) C Uey(ax+V+V) C
UxEM(aX + U)

If A C E istotally boundedand B C A, then B is also totally bounded. It is easy
to see that every compact subset of E is totally bounded and every totally bounded
subset of E is topologically bounded. In other words, we have:

compact | = | totally bounded | = | topologically b0unded|

For topological linear spaces, the finite-dimensionality can be simply characterized
as follows:

Theorem 3.5.9. Let E be a topological linear space. The following are equiva-
lent:

(a) E is finite-dimensional;
(b) E islocally compact;
(c) 0 € E has a totally bounded neighborhood in E.

Proof. Since each n-dimensional topological linear space is linearly homeomorphic
to R” (Corollary 3.5.2), we have (a) = (b). Since every compact subset of E is
totally bounded, the implication (b) = (c) follows.

(¢) = (a): Let U be a totally bounded neighborhood of 0 € E. By Proposi-
tion 3.4.1, we have a circled neighborhood V' of 0 such that V' 4+ V C U. Then, V
is also totally bounded. First, we show the following:

Claim. For each closed linear subspace F© & E, there is some x € U such that
x+V)NF =40.

Contrary to the claim, suppose that (x + V) N F # @ for every x € U. Since
V =—V,itfollowsthatU C F +V,sowehave V+V C F4+V.If(n—1)V C
F 4V then

WCm-O)W+VCF+V+VCF+F+V=F+V
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By induction, we have nV C F + V for every n € N, which implies that V' C
ﬂnEN(F + n_l V)

Take z € E \ F. Since F is closed in E, we have a circled neighborhood W of
0 € E suchthat W C V and (z+ W) N F = @. The total boundedness of V' implies
the topological boundedness, hence V' C mW for some m € N. On the other hand,
k™'z € V for some k € N. Since k™!'z € V C F + (km)~'V, it follows that
z€ F +m~'V C F 4+ W. This contradicts the fact that ( + W) N F = 0.

Now, assume that E is infinite-dimensional. Let v; € U \ {0} and F; = Rv,.
Then, F) is closed in E (Proposition 3.5.1) and F; # E. Applying the claim above,
we have v, € U such that (v, + V) N F; = @. Note that v, &€ vi + V. Let F, =
Rv; + Rv;,. Since F; is closed in E (Proposition 3.5.1) and F, # E, we can again
apply the claim to find v3 € U such that (vs + V) N F, = @. Then, note that
vi € vi + V fori = 1,2. By induction, we have v, € U, n € N, such that
vp € vi + V fori < n. Then, {v, | n € N} is not totally bounded. This is a
contradiction. Consequently, E is finite-dimensional. O

By Theorem 3.5.9, every infinite-dimensional topological linear space is not
locally compact.

3.6 Metrizability and Normability

In this section, we prove metrization and normability theorems for topological linear
spaces. The metrizability of a topological linear space has the following very simple
characterization:

Theorem 3.6.1. A topological linear space E is metrizable if and only if 0 € E
has a countable neighborhood basis.

In a more general setting, we shall prove a stronger result. A metric d on a
group G is said to be left (resp. right) invariant if d(x,y) = d(zx,zy) (resp.
d(x,y) = d(xz,yz)) for each x,y,z € G; equivalently, d(x,y) = d(x"'y,1)
(resp. d(x,y) = d(xy~',1)) for each x, y € G. When both of two metrics d and
d’ on a group G are left (or right) invariant, they are uniformly equivalent to each
other if and only if they induce the same topology. It is said that d is invariant if it is
left and right invariant. Every invariant metric d on a group G induces the topology
on G that makes G a topological group. In fact,

dix,y)=dx""'xy " xlyy ™)y =d(y ", xT) =d(x"".y™") and
d(xy,x'y") <d(xy,x'y)+d(x'y,x'y") = d(x,x") +d(y. ).

It is easy to verify that a left (or right) invariant metric d on a group G is invariant
if d(x,y) = d(x7',y~") for each x,y € G. Theorem 3.6.1 comes from the
following:
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Theorem 3.6.2. For a topological group G, the following are equivalent:

(a) G is metrizable;
(b) The unit1 € G has a countable neighborhood basis;
(c) G has an admissible bounded left invariant (right invariant) metric.

Proof. Since the implications (a) = (b) and (c) = (a) are obvious, it suffices to
show the implication (b) = (c).

(b) = (c):'> We shall construct a left invariant metric p € Metr(G). Then, a
right invariant metric p’ € Metr(G) can be defined by p'(x,y) = p(x~!,y~!). By
condition (b), we can find an open neighborhood basis {V,, | n € N} at 1 € G such
that

V' =V, and V,41V,41Vat1 C V, foreachn € N.'°

Let Vy = G, and define
p(x) =inf{27" | x e V;} €I foreachx € G.

Since V, = V7! for each n € N, it follows that p(x) = p(x~!) for every x € G.
Note that (., V» = {1}.'” Hence, for every x € G,

ne€w
p(x) =0 & x=1.

By induction on n, we shall prove the following:

n
(*) plxy'xy) < 2Zp(xi__llxi) for each xg, x1,....x, € G.'®
i=1

The case n = 1 is obvious. Assume (%) form < n. If Y /_, p(xi__llx,-) = 0 or

Yooy p(xzx;) = 3, itis trivial. When 27571 < 3| p(x;7 x;) < 27F for some

k € N, choose 1 <m < n so that

m—1 n
Zp(xi__llx,-) <27k and Z p(x\xi) < 27F 1

i=1 i=m+1

5The idea of the proof is the same as that of Theorem 2.4.1 (b) = (a).

16Note that {V,x | n € N} is an open neighborhood basis at x € G. For each x,y € G and
n €N, Vyp1x N Vyy1y 7 @ implies V, 41y C V,x. Indeed, ux = vy for some u,v € V, 41,
hence V,1,1y = V,,_Hv_lux C V,x. Thus, the metrizability of G can be obtained by the
Frink Metrization Theorem 2.4.1. On the other hand, V, = {V,x | x € G} € cov(G) and
st Vy+1 < V,. Indeed, st(V,4+1x, V1) C V,x. Thus, the metrizability of G can also be obtained
by Corollary 2.4.4.

171t is assumed that G is Hausdorff.

8For each x, y € G, let §(x, y) = p(x~'y). Then, this inequality is simply the one given in the
sketch of the direct proof for Corollary 2.4.4.



3.6 Metrizability and Normability 111

Note that p(x,!,x,) < 27 By the inductive assumption, p(x;'x,u—1) <
27F and p(x,'x,) < 27K Then, xj'xu—1, X, 1 %, x,'x, € Viy1. Since
Vit1Vi41Vit1 C Vi, it follows that x; ' x, € Vi, hence

n
Pl ') <275 <23 p(xx).

i=1

Now, we can define a metric p on G as follows:
p(x.y) =inf{}7_, p(x;\x;)) |n €N, x; € G, xo = x. x, = y}.

By the definition, p is left invariant. Note that p(x,y) < p(x~'y) < 1. Then,
x~'y e V, implies p(x,y) < p(x~'y) < 27" < 27"*! which means xV, C
B, (x,27"*1). On the other hand, if p(x,y) < 27" then p(x~'y) < 2p(x,y) <
271 by (%), which implies x~!y € V,. Thus, B,(x,2™") C xV,,. Therefore, p is
admissible. O

In the above proof, a right invariant metric p € Metr(G) can be directly defined as follows:
p(x,y) =inf{X7_, pxi—ix") |n €N, x; € G, xo = x, x, = y}.

Every metrizable topological linear space E has an admissible (bounded) metric
p that is not only invariant but also satisfies the following:

® Il =1 = p(tx,0) < p(x,0).

To verify this, let us recall how to define the metric p in the above proof. Taking a
neighborhood basis {V,, | n € N} at 0 € E sothat V, = =V, and V| + V41 +
Vi1 C V, for each n € N, we define the admissible invariant metric p as follows:

p(x,y) =inf {37 p(xi —xi-1) [ n €N, x; € E, xo = x, x, = y},

where p(x) = inf{2™ | x € V;}. Since E is a topological linear space, the condition
that V,, = —V, can be replaced by a stronger condition that V,, is circled, i.e.,
tV, C Vyfort € [—1,1]. Then, p(tx) < p(x) foreach x € E and ¢t € [—1,1],
which implies that p(¢x,0) < p(x,0) foreach x € E andt € [-1,1].

Let d be an invariant metric on a linear space E. Addition on a linear space
E is clearly continuous with respect to d. On the other hand, scalar multiplication
on FE is continuous with respect to d if and only if d satisfies the following three
conditions:

() d(x,,0) > 0 = VreR, d(tx,,0) — 0;
) t, -0 = Vx e E, d(t,x,0) = 0;
(iii) d(x,,0) >0, t, > 0 = d(t,x,,0) — 0.

Indeed, the “only if” part is trivial. To show the “if” part, observe

IyXy —Ix = (t/l _t)(x/l _x) + [(xn _x) + (t/l _t)x~
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Since d is invariant, it follows that

d(tnxnvtx) = d((tn - t)(xn - X) + t(xn - X) + (tn - I)X,O)
= d((tn = 1)(xn = x),0) + d(1(x, — x),0) + d((t, —1)x,0),

where d(t,x,,tx) — 0ift, — t and d(x,,x) — 0. Thus, the above three conditions
imply the continuity of scalar multiplication on E with respect to d.

It should be remarked that condition (ff) implies condition (iii).

An invariant metric d on E satisfying these conditions is called a linear metric.
A linear space with a linear metric is called a metric linear space. Then, every
metric linear space is a metrizable topological linear space. Conversely, we have the
following fact:

Fact. Every admissible invariant metric for a metrizable topological linear space
is a linear metric.

For subsets of a metric linear space, the total boundedness coincides with that in
the metric sense. On the other hand, the topological boundedness does not coincide
with the metric boundedness. In fact, every metrizable topological linear space
E has an admissible bounded invariant metric. For instance, given an admissible
invariant metric d for E, the following are admissible bounded invariant metrics:

d(x,y)

min{l, d(x,y)}, Hd—(xy)

For a linear metric p on E with the condition (ff), the functional £ > x +—
p(x,0) € Ris called an F -norm. In other words, a functional || - || : £ — Rona
linear space E is called an F -norm if it satisfies the following conditions:

(F1) ||x|| = O forevery x € E;

(F) lIx[ =0 = x=0;

(F3) t] <1 = |tx]|| < | x| forevery x € E;
(Fo) llx + yll < lIxll + |yl forevery x, y € E;
(Fs) ||x,]l = 0 = ||tx,|| — Oforeveryt € R;
(Fg) t, >0 = |tyx|| > Oforevery x € E.

Conditions (F3), (F5), and (Fg) correspond to conditions (ff), (i), and (ii), respectively. The
converse of (F,) is true because ||0]] = 0 by (Fs). Then, ||x|| = 0 if and only if x = 0.
Condition (F3) implies that || — x|| = ||x|| for every x € E. Furthermore, conditions (F3)
and (Fy) imply condition (F5). Indeed, using (Fy) inductively, we have ||nx|| < n| x| for
every n € N. Each ¢ € [0, 00) can be written as ¢ = [t] + s for some s € [0, 1), where [¢]
is the greatest integer < 7. Since ||sx|| < ||x|| by (F3), it follows that ||zx|| < ([t] + D] x]|.
Because || — x|| = |[x]l, [lex|| < ([|¢]] + D|lx|| for every ¢ € R. This implies condition
(F5). Thus, condition (F5) is unnecessary.

A linear space E given an F-norm || - || is called an F-normed linear space.
Every norm is an F-norm, hence every normed linear space is an F-normed space.
An F-norm || - || induces the linear metric d(x,y) = |x — y|. Then, every F-
normed linear space is a metric linear space. An F-norm on a topological linear
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space E is said to be admissible if it induces the topology for E. As we saw above,
if £ is metrizable, then E has an admissible invariant metric p satisfying (), which
induces the F-norm. Therefore, we have the following:

Theorem 3.6.3. A topological linear space has an admissible F-norm if and only
if it is metrizable. O

For each metrizable topological linear space, there exists an F-norm with the
following stronger condition than (F3):

(F5) x #0, || <1 =[x < [xll,

which implies that ||sx| < [¢x]| for each x # 0 and 0 < s < ¢. The following
proposition guarantees the existence of an F'-norm with the condition (F3"):

Proposition 3.6.4. Every (completely) metrizable topological linear space E has
an admissible invariant (complete) metric d such that d(tx,0) < d(x,0) if x # 0
and |t| < 1, which induces an admissible F-norm satisfying (Fy). If an admissible
invariant metric p for E is given, d can be chosen so that d > p (hence, if p is
complete, then so is d ). Moreover, if p is bounded, d can be chosen to be bounded.

Proof. Given an admissible (bounded) invariant metric p for £, we define d, (x, y) =
SUPy<s<; P(sx,5y). Then, d; is an invariant metric on E with d; > p (if p is
bounded then so is d 1). For each ¢ > 0, since the scalar multiplication £ x R >
(x,5) — sx € E is continuous at (0,s) and I is compact, we can find § > 0
such that p(x,0) < & implies p(sx,0) < ¢ for every s € I, hence p(x,y) < §
implies d;(x,y) = supy.,<; P(sx,sy) < e. Thus, d; is uniformly equivalent to
p. In particular, d; is admissible. For r > 0, we define an admissible invariant
metric d, for E by d,(x,y) = di(rx,ry) (= supy.,, p(sx,sy)). Observe that
d,(tx,0) < d,(x,0) foreachx € E andt € L. B

Now, let Q@ N (0,1] = {r, | n € N}, where r; = 1. We define d(x,y) =
Y wen27"t1d,, (x,y). Then, d is an invariant metric on E and

p(x,y) <di(x,y) <d(x,y) <2d(x,y),

hence d is admissible (if p is bounded then so is d). It also follows that d(¢x, 0) <
d(x,0) for each x € E and ¢ € I It remains to show that d(tx,0) # d(x,0) for
eachx € E\ {0} and 0 < ¢ < 1. Since Q N (0, 1) is dense in (0, 1), it suffices to
show that d(tx,0) # d(x,0) foreach x € E \ {0} andt € Q N (0, 1). Assume that
there exists some x € E \ {0} andr € QN (0, 1) such that d(zx,0) = d(x,0). Note
that d, (tx,0) = d,(x,0) foreach r € Q N (0, 1). Then, it follows that

di(x,0) =d,(tx,0) = d,2(x,0) = d,2(tx,0)
= dt3(x50) == dﬂ(l‘x,o) = ..,
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so d;(x,0) = du+1(x,0) = d;(t"x,0) for every n € N. Since lim,—o0t" =
0, it follows that d;(x,0) = lim, o d;(t"x,0) = 0, hence x = 0, which is a
contradiction. O

The topological linear space RY = s (the space of sequences) has the following
admissible F-norms:

supmin {1/7, |x(@)[}. > min {27, [x@)[}. > 27 |x(0)]

ieN = ieN1+|x(f)|’

The first two do not satisfy condition (F5"), but the third does.
We now consider the completion of metric linear spaces (cf. 2.3.10).

Proposition 3.6.5. Let G be a topological group such that the topology is induced
by an invariant metric d. The completion G = (G,d) of (G,d) is a group such
that G is its subgroup and d is invariant. Similarly, the completion of a metric (F -
normed or normed) linear space E is a metric ( F-normed or normed) linear space
containing E as a linear subspace.

Proof. We define the algebraic operations on G as follows: for each x, y €
G, choose sequences (x;);eny and (y;)iey in G so as to converge to x and y,
respectively. Since d is invariant, (x;y;)ien and (x;!) are Cauchy sequences in
G. Then, define xy and x~! as the limits of (x;y;);en and (x71);en, respectively. It
is easily verified that these are well-defined. Since c?(x, y) = lim; 00 d(x;, i), it
is also easy to see that d is invariant, which implies the continuity of the algebraic
operations (x,y) — xy and x — x~ .

For the completion E of a metric linear space E, we can define not only addition
but also scalar multiplication in the same way. To see the continuity of scalar
multiplication, let x € E and ¢t € R. Choose a sequence (X;);en in E so as to
converge to x. For each ¢ > 0, we can choose §y > 0 (depending on #) so that

z€E, dz0) <8, |t —1t'| <8 = d(t'z,0) < &/4.

Then, we have no € N such that d(x,, x,,) < &o for every n > ng. Choose §; > 0
so that §; < §y and
Is] < 81 = d(sxn,,0) < &/4.

Now, let x’ € E and ¢’ € R such that d(x,x’) < 8 and |t — /| < §,. Take a
sequence (x!);en in E so as to converge to x” and choose n; € N so that n; > ny
and d(x,, x},) < 8 for every n > n;. Then, for every n > ny, it follows that
d(tx,,1'x) < d(tx,,tx5,) + d(txn, t'x00) + d(t' x50, t'x,) + d(t'x,,1'x))
=d(t(xy — Xny),0) + d((t — 1")xp,, 0)
+d(t'(xXpy = X1).0) + d(t'(x, — x,),0)
<eld+e/d+e/d+e/d=c¢
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When E is an F-normed (or normed) linear space, it is easy to see that the F'-norm
(or norm) for E naturally extends to E. ]

Concerning the completeness of admissible invariant metrics, we have the
following:

Theorem 3.6.6. Let G be a completely metrizable topological group. Every ad-
missible invariant metric for G is complete. In particular, a metric linear space is
complete if it is absolutely Gs (i.e., completely metrizable).

Proof. Let d be an admissible invariant metric for G and G be the completion
of (G,d). Note that Gisa topological group by Proposition 3.6.5. It suffices to
show that G = G. Since G is completely metrizable, G is a dense Gs-set in G
(Theorem 2.5.2), hence we can Wr1te G\G Unen Frs Where each F,isa nowhere
dense closed set in G. Assume G \G # @ and take x0€G \ G. Since xpx € G \G
for every x € G, it follows that G C UneN Xy IF,, where each Xo 1F, is also a
nowhere dense closed set in G. Then, we have

G=JRulJx'F.
neN neN

which is the countable un~ion of nowhere dense closed sets. This contradicts the
complete metrizability of G (the Baire Category Theorem 2.5.1). O

Corollary 3.6.7. Let G be a metrizable topological group. Every completely
metrizable Abelian subgroup H of G is closed in G. Hence, in a metrizable
topological linear space, every completely metrizable linear subspace is closed.

Proof. By Theorem 3.6.2, G has an admissible left invariant metric d. Because H
is an Abelian subgroup of G, the restriction of d on H is an admissible invariant
metric for H, which is complete by Theorem 3.6.6. Hence, it follows that H is
closedin G. O

It is said that an F-norm (or an F-normed space) is complete if the metric
induced by the F-norm is complete. It should be noted that every metrizable
topological linear space has an admissible F'-norm (Proposition 3.6.4) and that
every admissible F-norm for a completely metrizable topological linear space is
complete (Theorem 3.6.6). A completely metrizable topological linear space (or a
complete F-normed linear space) is called an F -space. A Fréchet space is a locally
convex F-space, that is, a completely metrizable locally convex topological linear
space. Every Banach space is a Fréchet space, but the converse does not hold. In
fact, s = R is a Fréchet space but it is not normable (Proposition 1.2.1).

Concerning the quotient of an F-normed (or normed) linear space, we have the
following:

Proposition 3.6.8. Ler E = (E, | - ||) be an F-normed (or normed) linear space
and F a closed linear subspace of E. Then, the quotient space E/F has the
admissible F-norm (or norm) ||§|| = infiee || x|, where if || - || is complete then
sois || - ||. Hence, if E is (completely) metrizable or (completely) normable then so

is E/F.
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Proof. Ttis easy to see that || - || is an F-norm (or a norm). It should be noted that the
closedness of F is necessary for condition (F3). Let ¢ : E — E/F be the natural
linear surjection, i.e., ¢(x) = x + F. Then, for each ¢ > 0,

{gx) | Ixll < &} = {E € E/F | Jlg]| < &},

which means thatg : E — (E/F,|| - ||) is open and continuous, so it is a quotient
map. Then, ||- || induces the quotient topology, i.e., || - || is admissible for the quotient
topology. It also follows that if E is locally convex then so is E/F.

We should remark the following fact:

Fact. ||§ — &[] = inf {||lx — X' | x' € §'} for each x € &.

Indeed, the left side is not greater than the right side by definition. For each x,y € & and
y et

Iy =yl =llx =" +x =yl = inf{llx —x| | " €&}
because y’ + x — y € &’. Thus, the left side is not less than the right side.

We shall show that if || - || is complete then so is || - ||. To see the completeness
of || - ||, it suffices to prove that each Cauchy sequence (&;);ey in E/F contains a
convergent subsequence. Then, by replacing (§;);en Wwith its subsequence, we may
assume that ||§& — & 41| < 277 for each i € N. Using the fact above, we can
inductively choose x; € & so that | x; — x; 41| < 27. Then, (x;);ey is a Cauchy
sequence in E, which converges to some x € E. It follows that (&;);en converges
to some x + F. O

In the above, E/F is called the quotient F-normed (or normed) linear space
with the F'-norm (or norm) || - ||, which is called the quotient F -norm (or norm).
Note that £/ F is locally convex if so is E. If E is a Banach space, a Fréchet space,
or an F-space, then so is £/ F for any closed linear subspace F of E.

Recall that A C FE is topologically bounded if, for each neighborhood U of
0 € E, there exists some r € Rsuchthat A C rU.

Theorem 3.6.9. A topological linear space E is normable if and only if there is a
topologically bounded convex neighborhood of 0 € E.

Proof. The “only if” part is trivial. To see the “if” part, let V' be a topologically
bounded convex neighborhood of 0 € E. Then, W = V N (—V) is a topologically
bounded circled convex neighborhood of 0 € E. Hence, the Minkowski functional
pw is anorm on E by Proposition 3.3.4. By Corollary 3.4.12,
{x eE | pw(x) < 8} = spﬁ,l([O, 1)) = eintW foreach e > 0.
For each neighborhood U of 0 € E, we can choose r > O such that W C rU. Then,
{x eE ‘ pw(x) < r_l} =r'intW cr 'w c U,

hence py induces the topology for E. O
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For the local convexity, we have the following:

Theorem 3.6.10. A (metrizable) topological linear space E is locally convex if and
only if E is linearly homeomorphic to a linear subspace of the (countable) product
[Lea Ex of normed linear spaces E,.

Proof. As is easily observed, the product of locally convex topological linear spaces
is locally convex, and so is any linear subspace of a locally convex topological linear
space. Moreover, the countable product of metrizable spaces is metrizable. Then, the
“if”” part follows.

We show the “only if” part. By the local convexity, £ has a neighborhood basis
{Vi| A € A} of 0 € E consisting of circled closed convex sets (cf. Proposition 3.4.2),
where card A = R if E is metrizable (Theorem 3.6.1). Foreach A € A, let F; be a
maximal linear subspace of E contained in V). (The existence of F) is guaranteed
by Zorn’s Lemma.) Then, F) is closed in E. Let g5 : E — E/F), be the natural
linear surjection, where we do not give the quotient topology to £/ F) but we want
to define anormon E/ F).

Observe that ¢, (V)) is a circled convex set in E/F; and 0 € coreq,(V)).
Moreover, R1& ¢ ¢, (V)) for each £ € (E/F)) \ {0}. Indeed, take x € E \ F),
so that g; (x) = £. By the maximality of F), Rx + F) ¢ V,,ie,tx + y &V, for
somet € Rand y € F), where we can take t > 0 because V) is circled. For each
z € F,

Ix+y=1Q2tx +2)+ 52y —2).

Since 2y — 7z € F, C V), it follows that 2tx + z € V). Then, 2t§ = ¢, (2tx) &
q,(V2).

By Proposition 3.3.4, the Minkowski functional py = py,(v,) @ E/Fy — R for
¢,(V;) is a norm. Thus, we have a normed linear space £, = (E/F), p,). Observe
that

0 cintV, =core V) C q;l(corqu(VA))
=4, (P40 (0. 1) = (p2g) ™' (0. 1))

By Proposition 3.4.11, the sublinear functional p,q, : E — R is continuous, which
implies that g, : E — E} is continuous.

Leth : E — [[,c, Ex be the linear map'” defined by h(x) = (qa(x))rea. If
x #0 € Ethenx &V, (sox ¢ F)) for some A € A, which implies g, (x) #
0, hence A(x) # 0. Thus, & is a continuous linear injection. To see that 4 is an
embedding, it suffices to show that

h(V)) Dh(E)N pr;l(pk_l([o, %))) foreach A € A.

19That is, a continuous linear function.
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If py(pr; h(x)) < % then
42(2x) = pryh(2x) € p; ([0, 1)) C g2 (Va),
hence 2x — y € F) for some y € V). Then, it follows that
x=302x—y)+ 3y €V,
so h(x) € h(V,). This completes the proof. O

Combining Theorem 3.6.10 with Proposition 3.6.5 and Corollary 3.6.7, we have
the following:

Corollary 3.6.11. A ropological linear space E is a Fréchet space if and only if
E is linearly homeomorphic to a closed linear subspace of the countable product
[1ien Ei of Banach spaces E;. O

3.7 The Closed Graph and Open Mapping Theorems

This section is devoted to two very important theorems, the Closed Graph Theorem
and the Open Mapping Theorem. They are proved using the Baire Category
Theorem 2.5.1.

Theorem 3.7.1 (CLOSED GRAPH THEOREM). Let E and F be completely metriz-
able topological linear spaces and f : E — F be a linear function. If the graph of
fisclosedin E x F, then f is continuous.

Proof. Tt suffices to show the continuity of f at 0 € E. Let d and p be admissible
complete invariant metrics for £ and F, respectively (cf. Proposition 3.6.4).

First, we show that for each ¢ > 0, there is some §(¢) > O such that
B4(0,5(g)) C cl f7'(B,(0,¢)). Since F = |J,cynB,(0,6/2) and f is linear,
it follows that E = J,enynf '(B,(0,£/2)). By the Baire Category Theo-
rem 2.5.1, intclnf ~'(B,(0,6/2)) # @ for some n € N, which implies that
intcl f71(B,(0,£/2)) # 0. Let z € intcl f~'(B,(0,¢/2)) and choose §(¢) > 0
so that

2+ By(0.5(e) = Ba(2.8() C el 7' (B,(0.¢/2).

Then, it follows that
B4 (0,6(¢)) C clf_l(B,,((), e/2))—z Ccl f_l(Bp(O,e)).

The second inclusion can be proved as follows: for each y € cl f~!(B,(0,¢/2))
and n > 0, we have y',7 € f7'(B,(0,¢/2)) such that d(y, '), d(z,7) < n/2,
which implies d(y — z, y' — Z’) < n. Observe that

p(f(Y' =2).0) = p(f()). fE&) = p(f()).0) + p(f(Z).0) <&,
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which means y' — 7' € f~1(B,(0, ¢)). Therefore, y — z € cl f~1(B,(0, ¢)).
Now, for each ¢ > 0 and x € B;(0,5(¢/2)), we can inductively choose x, € E,
n € N, sothatx, € f~'(B,(0,27"¢)) and

d(x, >/ xi)) =d(x—Y/_;x, 0) <min {27, 827" 1e)}.
Indeed, if x1, ..., x,—1 have been chosen, then

n—1

X =Y xi €By(0.8(27"e)) Ccl f7(By(0.27"¢)).

i=1

hence we can choose x, € f~'(B,(0,27"¢)) so that
d(x, Y0 %) =d(x = Y2 xi, x,) <min {27,827 e)}.

Since p(f(x,),0) < 27"¢ for each n € N, it follows that (f(3_F_; X/))nen is a
Cauchy sequence, which converges to some y € F.Foreachn € N,

P(f(Ci= X 0) < ) p(f(xi). 0) <) 276 <,

i=1 i=1

hence y € EP(O, €). On the other hand, Y /_, x; converges to x. Since the graph
of f is closed in E x F, the point (x, y) belongs to the graph of f, which means
f(x) =y € B,(0,¢). Thus, we have f(B,(0,8(¢/2))) C B,(0, ¢). Therefore, f is
continuous. O

Corollary 3.7.2. Let E and F be completely metrizable topological linear spaces.
Then, every continuous linear isomorphism f : E — F is a homeomorphism.

Proof. In general, the continuity of f implies the closedness of the graph of f in
E x F. By changing coordinates, the graph of f can be regarded as the graph of
f~!. Then, it follows that the graph of f~!is closed in F x E, which implies the
continuity of f~! by Theorem 3.7.1. O

Theorem 3.7.3 (OPEN MAPPING THEOREM). Let E and F be completely metriz-
able topological linear spaces. Then, every continuous linear surjection f : E —
F is open.

Proof. Since f~'(0) is a closed linear subspace of E, the quotient linear space
E/f71(0) is completely metrizable by Proposition 3.6.8. Then, f induces the
continuous linear isomorphism f : E/f~'(0) — F. By Corollary 3.7.2, f is a
homeomorphism. Note that the quotient map ¢ : £ — E/f~!(0) is open. Indeed,
for every open set U in E, ¢! (q(U)) = U + f~'(0) is open in E, which means
that ¢(U) is open in £/ ~'(0). Hence, f is also open. O
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Note. In the above, the Closed Graph Theorem is first proved and then the Open Mapping
Theorem is obtained as a corollary of the Closed Graph Theorem. Conversely, we can
directly prove the Open Mapping Theorem and then obtain the Closed Graph Theorem
as a corollary of the Open Mapping Theorem.

Direct Proof of the Open Mapping Theorem. Let d and p be admissible complete invariant
metrics for E and F, respectively.

First, we show that for each ¢ > 0, there is some 8(¢) > 0 such that B,(0,(s)) C
cl f(B4(0,¢)). Since E = U,ennBa(0,¢/2), it follows that F = f(E) = U,ennf
(B4(0,£/2)). By the Baire Category Theorem 2.5.1, intcln f(B4(0,&/2)) # @ for some
n € N, which implies that intcl f(B;(0,£/2)) # 0. Let z € intcl f(B,(0,¢/2)) and
choose §(¢) > 0 so that

2+ B,(0,8(g)) = B,(z,8(¢)) Ccl f(By(0,¢/2)).
Then, it follows that
B,(0.8(¢)) Ccl f(Ba(0,6/2)) —z Ccl f(By(0,¢)),

where the second inclusion can be seen as follows: for y € cl f(B;(0,&/2)) and n > 0,
choose y’,7 € B4(0,¢/2) so that p(y, ('), p(z, f(Z)) < n/2. Then, observe that
p(y —z (' —2)) <nand d(y’ —2/,0) =d(y’.7') <& hence y —z € cl f(B4(0,¢)).

Next, we prove that cl f(B;(0,¢/2)) C f(B4(0,¢)) for each ¢ > 0. For each y €
cl f(B4(0,¢/2)), choose x; € B;(0,¢/2) so that

p(y, f(x1)) <min{2™", 827 %¢)}.
By induction, we can choose x,, € B;(0,27"¢), n € N, so that

p(y, f(Xizi %)) = p(y = Xi=) f(xi), 0) <min{27", 827" ")}
Indeed, if xq, ..., x,—1 have been chosen, then

n—1

Y=Y f(xi) €By(0.627"e)) C cl f(By(0.27"¢)),

i=l1

hence we can choose x, € B;(0,27"¢) so that

n n—1
P(Yv f(Zf:1 xi)) = P(y - Zi:l S(xi), f(xn))
< min{2™", 827" 'e)}.
Since (}_7_, X;)nen is a Cauchy sequence in E, it converges to some x € E. On the other

hand, (f(}_7—, xi))nen converges to y. By the continuity of f, we have f(x) = y. For
eachn € N,

d(Y_,xi, 0) < Zd(x,v,O) < 22_15 <e,
i=1 i=1

hence x € B4(0, £). Thus, it follows that cl f(B;(0,¢/2)) C f(B4(0, ¢)).
_ Tosee that f is open, let U be an open set in E. For each x € U, choose & > 0 so that
B4(0,e) C —x + U. Since

B,(0.8(2/2)) C cl f(B4(0.£/2)) C f(Ba(0.¢)) C —f(x) + f(U).
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it follows that B,(f(x),8(¢/2)) C f(U). Hence, f(U) isopenin F. O
Now, using the Open Mapping Theorem, we shall prove the Closed Graph Theorem.

Proof of the Closed Graph Theorem. The product space E X F is a completely metrizable
topological linear space. The graph G of f is a linear subspace of E X F that is completely
metrizable because it is closed in E X F. Since p = pry;|G : G — E is a homeomorphism
by the Open Mapping Theorem, f = pry o p~! is continuous. O

Remark 13. In both the Closed Graph Theorem and the Open Mapping Theorem,
the completeness is essential. Let £ = ({1, | - ||2), where £; C £, as sets and || - |2
is the norm inherited from ¢,. Then, E is not completely metrizable. Indeed, if so,
it would be closed in £, by Corollary 3.6.7, but E is dense in £, and E # {,. The
linear bijection f = id : £; — E is continuous, but is not a homeomorphism, so it
is not an open map. It follows from the continuity of f that the graph of f is closed
in £; x E, hence the graph of f~!is closedin E x £;. However, f~! : E — {; is
not continuous.

3.8 Continuous Selections

Let X and Y be spaces and ¢ : X — SB(Y) be a set-valued function, where B(Y) is
the power set of Y. We denote Po(Y) = P(Y) \ {0}. A (continuous) selection for
@isamap f : X — Y suchthat f(x) € ¢(x) for each x € X. For a topological
linear space Y, we denote by Conv(Y') the set of all non-empty convex sets in Y. In
this section, we consider the problem of when a convex-valued function ¢ : X —
Conv(Y') has a selection.

It is said that ¢ : X — PB(Y) is lower semi-continuous (L.s.c.) (resp. upper
semi-continuous (u.s.c.)) if, for each openset V in Y,

{x eX \ e(x)NV # @} (resp. {x eX | o(x) C V}) isopenin X;

equivalently, for each open set V in Y and xo € X such that ¢(xo) NV # @ (resp.
©(x0) C V), there exists a neighborhood U of xy in X such that p(x) NV # @
(resp. ¢(x) C V) for every x € U. We say that ¢ is continuous if ¢ : X — B(Y)
is Ls.c. and u.s.c. The continuity of ¢ coincides with that in the usual sense when
B(Y) is regarded as a space with the topology generated by the following sets:

U ={AePY)|ANU #0} and UT = {4 ePY) | ACU},

where U is non-empty and open in Y. This topology is called the Vietoris topology,
where @ is isolated because {@} = @+ (@ ¢ U~ for any open set U in Y). The
Vietoris topology has an open basis consisting of the following sets: V(@) = {@}
and

V(U.....U)={AcY |[Ac U U.VYi=1,....n, ANU; # 0}
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() nfro

i=l1 i=

where n € N and Uy, ...,U, are open in Y. In fact, U~ = V(U, X) and Ut =
V(U) U V(@). The subspace F1(Y) = {{y} | ¥ € Y} of Py(Y) consisting of all
singletons is homeomorphic to Y because U™ NF(Y) = U~ NF(Y) = F(U)
for each open set U in Y. It should be noted that By(Y) with the Vietoris topology
is not 7; in general.

For example, the space Py (I) is not 7. Indeed, for any neighborhood of I/ of I € Py (D),
there are open sets Uj,...,U, in I such that I € V(Uy,...,U,) C U. Then, D €
V(U,...,U,) CU for every dense subset D C I. In particular, IN Q € U.

The subspace Comp(Y') of P(Y) consisting of all non-empty compact sets is
Hausdorff.?° Indeed, for each A # B € Comp(Y), we may assume that A\ B # @.
Take yo € B\ A. Because of the compactness of A, we have disjoint open sets U and
VinY suchthat AC Uandyy € V.Then,Ae UT,BC V- ,andUT NV~ #£ 0.
It will be prove that Comp(Y') is metrizable if Y is metrizable (Proposition 5.12.4).
Moreover, Cld(Y') is metrizable if and only if Y is compact and metrizable (cf. Note
after Proposition 5.12.4).

By the same argument as above, it follows that if Y is regular then the subspace Cld(Y)
of P(Y') consisting of all non-empty closed sets is Hausdorff. One should note that the
converse is also true, that is, if C1d(Y') is Hausdorff then Y is regular. When Y is not regular,
we have a closed set A C Y and yy € Y \ A such that if U and V are open sets with 4 C U
and yo € VthenUNV # @.Let B = AU{y,} € Cld(Y) andletUl,...,U,,,U{,...,Un',
be open sets in Y such that

AEV(U,.....U,) and B eV(U/.....U,).

n’

Let Uy = ({U/ | U/ N A = @}. Since yy € Uy, we have y; € Uy N Ji—, U;. It follows
that
AU} eV(UL....U) NV(U],....Up).

Thus, Cld(Y') is not Hausdorff.

Proposition 3.8.1. For a function g : Y — X, the set-valued function g=' : X —
B(Y) is Ls.c. (resp. w.s.c.) if and only if g is open (resp. closed).

Proof. This follows from the fact that, for V C Y,
{x eX \ g 'x)NV # @} =g(V) and

freX|g'@cVi=X\{xeX|g ' )NX\V)#0}
=X\g(X\V). O

20Recall that Y is assumed to be Hausdorff.
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Because of the following proposition, we consider the selection problem for 1.s.c.
set-valued functions.

Proposition 3.8.2. Let ¢ : X — Po(Y) be a set-valued function. Assume that, for
each xo € X and yy € @(xy), there exists a neighborhood U of xo in X and a
selection f : U — Y for ¢|U such that f(xo) = yo. Then, ¢ is Ls.c.

Proof. Let V be an open set in Y and xo € X such that ¢(xo) NV # 0. Take
any yo € ¢(xo) N V. From the assumption, there is a neighborhood U of xy in X
with a selection f : U — Y for ¢|U such that f(xo) = yo. Then, f~' (V) is a
neighborhood of x in X and f(x) € ¢(x) NV foreach x € f~(V). O

Lemma 3.8.3. Let ¢, : X — P(Y) be set-valued functions such that cl p(x) =
cly(x) foreach x € X. If ¢ is Ls.c. then so is .

Sketch of Proof. This follows from the fact that, for each open set V' in Y and B C Y,
VNB#@ifandonlyif V Ncl B # @.

Lemma 3.8.4. Letgp : X — P(Y) bels.c., Abeaclosedsetin X,and f : A - Y
be a selection for ¢|A. Define y : X — B(Y) by

{f)} if x e A,

o(x) otherwise.

Y(x) =

Then, v is also Ls.c.

Proof. Foreach openset VinY, f~!(V) is openin A and

V) clxeX |px) NV # 0},

where the latter set is open in X because ¢ is 1.s.c. Then, we can choose an open set
Uin X sothat f7' (V) =UNAandU C {x € X | o(x) NV # @}. Observe that

xeX|y)NV£0=UU({xeX|px)NV #0}\ A).

Thus, it follows that v is l.s.c. O

For each W C Y2 and yo € Y, we denote

W(yo) ={y €Y | (vo.y) € W}.

If W is a neighborhood of the diagonal Ay = {(y,y) | y € Y} in Y2, then W(y,)
is a neighborhood of yg in Y.

Lemma 3.8.5. Let ¢ : X — PY) be Ls.c., f : X — Y be a map, and W be
a neighborhood of Ay in Y?. Define a set-valued function ¥ : X — B(Y) by
Y(x) = o(x) N W(f(x)) foreach x € X. Then, ¥ is l.s.c.
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Proof. Let V be an open set in ¥ and xo € X such that ¥ (xo) NV # @. Take any
Yo € o(x0) N W(f(x0)) N V. Since (f(x0), yo) € W, there are open sets V; and
V5 in Y such that (f(xo), yo) € Vi x Vo C W. Then, x( has the following open
neighborhood in X:

U= MnN{xeX|ox)nhnV # 0}

Foreach x € U, we have y € p(x) NV, N V. Since (f(x),y) e Vi x Vo, C W,
it follows that y € ¢(x) N W(f(x)) NV, hence ¥(x) NV # @. Therefore, ¢ is
Ls.c. O

Let E be a linear space. The set of all non-empty convex sets in E is denoted by
Conv(E). Recall that (4) denotes the convex hull of A C E.

Lemma 3.8.6. Let E be a topological linear space and ¢ : X — Po(E) be an
L.s.c. set-valued function. Define a convex-valued function ¥ : X — Conv(E) by
Y(x) = (p(x)) for each x € X. Then, V¥ is also Ls.c.

Proof. Let V be anopen setin E and xo € X such that ¢ (xo) NV # @. Choose any
Yo = Y i tiyi € ¥(xo) NV, where yi,...,y, € ¢(xo) and t1,...,1, > 0 with
Z?=1 t; = 1. Then, each y; has an open neighborhood V; such that 4V} + --- +
t,V, C V. Since ¢ is Ls.c.,

n

U=(){xeX|px)nV #0}

i=1

is an open neighborhood of xy in X. For each x € U, letz; € o(x) NV, i =
1,...,n.Then, Y 7_, tiz; € ¥(x) NV, hence ¥ (x) NV # @. Therefore, ¥ is Ls.c.
O

Lemma 3.8.7. Let X be paracompact, E be a topological linear space, and ¢ :
X — Conv(E) be an ls.c. convex-valued function. Then, for each convex open
neighborhood V of 0 in E, there exists a map [ : X — E such that f(x) €
o(x) 4+ V foreach x € X.

Proof. Foreachy € E, let
U, = {xeXifp(x)ﬂ(y—V)yéQ}.

Since ¢ is 1.s.c., we have Y = {U, | y € E} € cov(X). From paracompactness, X
has a locally finite partition of unity (f3)ie4 subordinated to U. For each A € A,
choose yy € E so that supp fi C U,,. Wedefineamap f : X — E by f(x) =
Y oaea L) If fi(x) # Othen x € Uy,, which means that p(x) N (y,—V) # 0,
i.e., y1 € ¢(x) + V. Since each p(x) 4+ V is convex, f(x) € p(x) + V. O
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Now, we can prove the following:

Theorem 3.8.8 (MICHAEL SELECTION THEOREM). Let X be a paracompact
space and E = (E, d) be a locally convex metric linear space.”! Then, every l.s.c.
convex-valued function ¢ : X — Conv(E) admits a selection if each ¢(x) is d-
complete. Moreover, if A is a closed set in X then each selection f : A — E for
©|A can extend to a selection f : X — E for ¢.

Proof. Let {V; | i € N} be a neighborhood basis of 0 in E such that each V;
is symmetric, convex, and diam V; < 2~(*1D_ By induction, we construct maps
fi: X —> E,i € N,sothat,foreachx € X andi € N,

(1 fi(x) € p(x) + Vi and
(2) d(fi+1(x), fi(x)) <27,

The existence of f is guaranteed by Lemma 3.8.7. Assume we have maps
fi, ..., fn satisfying (1) and (2). Define ¥ : X — Conv(E) by

Y(x) = p(x)N(fu(x) +V,) foreachx € X.

Since V,, is symmetric, we have ¥ (x) # @ by (1). Consider the neighborhood W =
{(x,y) € E* | y —x € V,}of Ag in E?. Then, W(f,(x)) = f,(x) + V,. By
Lemma 3.8.5, ¥ is l.s.c. We can apply Lemma 3.8.7 to obtain amap f,4+,: X — E
such that

Jot1(x) € Yy(x) + Vy41 foreach x € X.

Then, as is easily observed, f,+; satisfies (1) and (2). Thus, we have the desired
sequence of maps f;,7 € N.

Using maps f; : X — E,i € N, we shall define a selection f : X — FE for ¢.
For each x € X andi € N, we have x; € ¢(x) such that d(f;(x), x;) <270+ by
(1). Then, (x;);en is Cauchy in ¢(x). Since ¢(x) is complete, (x;);en converges to
f(x) € ¢(x). Thus, we have f : X — E. Note that (f;);en uniformly converges
to f, so f is continuous. Hence, f is a selection for ¢.

For the additional statement, apply Lemma 3.8.4. O

Concerning factors of a metric linear space, we have the following:

Corollary 3.8.9 (BARTLE-GRAVES-MICHAEL). Let E be a locally convex met-
ric linear space and F be a linear subspace of E that is complete (so a Fréchet
space). Then, E ~ F x E/F. In particular, E ~ R x G for some metric linear
space G.

Proof. Note that the quotient space E/F is metrizable (Proposition 3.6.8) and the
natural map g : E — E/F is open, hence g~! : E/F — Conv(E) is Ls.c. by
Proposition 3.8.1. Since g7'g(x) = x + F is complete for each x € E, we apply
the Michael Selection Theorem 3.8.8 to obtain a map f : E/F — FE thatis a

2IRecall that a metric linear space is a linear space with a linear metric (cf. Sect. 3.5).
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selection for g~!, i.e., gf = id. Then, x — fg(x) € F foreach x € E. Hence, a
homeomorphism  : E — F x (E/F) can be defined by

h(x) = (x — fg(x), g(x)) foreachx € E.

In fact, h™'(y,z) = y + f(z) foreach (y,z) € F x E/F. O

By combining the Michael Selection Theorem 3.8.8 and the Open Mapping The-
orem 3.7.3, the following Bartle—Graves Theorem can be obtained as a corollary:

Theorem 3.8.10 (BARTLE-GRAVES). Let E and F be Fréchet spaces and f
E — F be a continuous linear surjection. Then, there is amap g : F — E such
that fg = id. Therefore, E ~ F X ker f by the homeomorphism h defined as
follows:

hix)=(f(x),x —gf(x)) foreachx € E. O

We show that each Banach space is a (topological) factor of £;(1"). To this end,
we need the following:

Theorem 3.8.11 (BANACH-MAZUR, KLEE). For every Banach space E, there is
a continuous linear surjection q : £1(I") — E, where card I’ = dens E.

Proof. The unit closed ball Br of E has a dense set {e, | y € I'}. Since
Zyef |x(y)| = ||x|| < oo foreach x € £,(I") and E is complete, we can define a
linear map g : £;(I") — E as follows:

q(x) = Z x(y)e, foreachx € E.»2
yer

Since [|g(x)[| < >_,p [x(¥)| = |Ix]|, it follows that ¢ is continuous.
To see that g is surjective, it suffices to show B C ¢(£;(I")). For each y € Bg,
we can inductively choose e, i € N, so that y; # y; ifi # j, and

-1 —1 -2
||y_e)/1||<2 v”y_e}/l_z eyz||<2 s

—1 ) -3
ly —e, —27"e, —277,|| <27, ....

We have x € £,(I") defined by

270 ity =y,
x(y) = ,
0 otherwise.
Then, it follows that y = ) 72, 2!~"e,, = g(x). This completes the proof. O

22See Proposition 1.2.3.



3.8 Continuous Selections 127

As a combination of the Bartle-Graves Theorem 3.8.10 and Theorem 3.8.11
above, we have the following:

Corollary 3.8.12. For any Banach space E, there exists a Banach space F such
that E x F ~ £,(I"), where card ' = dens E. O

In the Michael Selection Theorem 3.8.8, the paracompactness of X is necessary.
Actually, we have the following characterization:

Theorem 3.8.13. A space X is paracompact if and only if the following holds for
any Banach space E: if ¢ : X — Conv(E) is Ls.c. and each ¢(x) is closed, then ¢
has a selection.

Proof. Since the “only if” part is simply Theorem 3.8.8, it suffices to prove the “if”
part. For each U € cov(X), we define ¢ : X — Po(£;(U)) as follows:

px) ={ze i) | |zl =1, YU €U, z2(U) = 0,z(U) =0 ifx ¢ U}.

Clearly, each ¢(x) is a closed convex set.

To see that ¢ is 1.s.c., let W be an open setin £; (/) and z € ¢(x)NW.Choose § >
0 so that B(z,28) C W. Then, we have Vi, ..., V, € U[x] such that ) /_, z(V;) >
1—46, where ﬂ:-’zl V; is a neighborhood of x in X. We define 7' € £, (/) as follows:

2(Vp)

Z(V) = —Z'}:lZ(V;’)

and 7 (U) =0 forU # Vi,....V,.

It is easy to see that ' € ¢(x") N W forevery x" € (")/_; V;. Thus, ¢ is Ls.c.

By the assumption, ¢ has a selection f : X — £;(Uf). For each U € U, let
fu : X — Ibe the map defined by fy(x) = f(x)(U) for x € X. Then, (fv)veu
is a partition of unity such that f;;'((0, 1]) C U forevery U € U. The result follows
from Theorem 2.7.5. O

Remark 14. Let g,h : X — R be real-valued functions on a space X such that g
isws.c., i is Ls.c., and g(x) < h(x) for each x € X. We define the convex-valued
function ¢ : X — Conv(R) by ¢(x) = [g(x),h(x)] for each x € X. Then, ¢ is
Ls.c. Indeed, for each open set V in R, let ¢(x) NV # @. Take y € ¢(x) N V and
a <y <bsothat[a,b] C V. Since g is u.s.c. and A is L.s.c., x has a neighborhood
U in X such that x’ € U implies g(x") < b and h(x") > a. Since g(x’) < h(x'), it
follows that

e(x) NV D [g(x"), h(x")] N [a,b] = [max{a, g(x")}, min{b, h(x")}] # 0.
Now, we can apply the Michael Selection Theorem 3.8.8 to obtain a map f :

X — R such that g(x) < f(x) < h(x) for each x € X. This is analogous to
Theorem 2.7.6.
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3.9 Free Topological Linear Spaces

The free topological linear space over a space X is a topological linear space L(X)
that contains X as a subspace and has the following extension property:

(LE) For an arbitrary topological linear space F, every map f : X — F of X

uniquely extends to a linear map®® f : L(X) — F.

X F
4
n 7~
s f
L(X)

If such a space L(X) exists, then it is uniquely determined up to linear homeomor-
phism, that is, if E is a topological linear space that contains X and has the property
(LE), then E is linearly homeomorphic to L(X).

Indeed, there exist linear maps ¢ : L(X) — E and ¢ : E — L(X) such that p|X =
V¥|X = idy. Since id  (x) is a linear map extending idy, it follows from the uniqueness that
Yo = idp (). Similarly, we have ¢y = idg. Therefore, ¢ is a linear homeomorphism with

v=9".
Lemma 3.9.1. If X is a Tychonoff space,

(1) X is a Hamel basis for L(X);
2) L(X) is regular.

Proof. (1): First, let F' be the linear span of X. Applying (LE), we have a linear
map r : L(X) — F such that r|X = idy. Since r : L(X) — L(X) is a linear
map extending idy, we have r = idx), which implies F = L(X), thatis, L(X)
is generated by X .

To see that X is linearly independentin L(X),letxi,...,x, € X, wherex; # x;
ifi # j.Foreachi = 1,...,n,thereisamap f; : X — Isuchthat f;(x;) =1
and fi(x;) = Ofor j # i.Let f : X — R”" be the map defined by f(x) =
(fi(x), ..., fu(x)). Then, by (LE), f extends to a linear map f : L(X) —> R,
where f(x;) = f(x;) = e; foreachi = 1,...,n. Since ey,...,e, is linearly
independent in R”, it follows that xi, ..., x, € X is linearly independent in L(X).

(2): Due to the Fact in Sect. 3.4 and Proposition 3.4.2, it suffices to show that {0}
is closed in L(X). Each z € L(X) \ {0} can be uniquely represented as follows:

n
7= Ztix,-, xi €X, t ER\{O},

i=1

23That is, a continuous linear function.
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where x; # x; if i # j. Thereisamap f : X — Isuch that f(x;) = 1 and
f(xi) =0foreachi =2,...,n. By (LE), f extends to a linear map f LX) —>
R. Then, f(z) = t1f(x1) = t; # 0 = £(0). Hence, f~'(R \ {0}) is an open
neighborhood of z in L(X) that misses 0. O

Remark 15. In the definition of a free topological linear space L(X), specify a map
n: X — L(X) instead of assuming X C L(X) and replace the property (LE) with
the following universality:

(*) Foreachmap f : X — F of X to an arbitrary topological linear space F', there
exists a unique linear map f : L(X) — F suchthat fn = f.

X

n Ve
L(X)

Then, we can show that 7 is an embedding if X is a Tychonoff space.

To see that 7 is injective, let x # y € X. Then, there is amap f : X — I with
f(x) = 0and f(y) = 1. By (*), we have a linear map f : L(X) — R such that
fn = f.Then, observe n(x) # n(y).

To show that  : X — 1(X) is open, let U be an open set in X. For each x € U,
there is a map g : X — I such that g(x) = 0 and g(X \ U) = 1. By (¥), we
have a linear map g : L(X) — R such that gn = g. Then, V = g—l((—%, %)) is
an open neighborhood 7(x) in L(X). Since 7' (V) = g7!([0, 3)) C U, it follows
that VN n(X) C n(U), hence n(U) is a neighborhood of n(x) in n(X). This means
that n(U) is open in n(X). Thus, n : X — n(X) is open.

Since 7 is an embedding, X can be identified with (X', which is a subspace of
L(X). Then, (*) is equivalent to (LE). Here, it should be noted that the uniqueness
of f in (*) is not used to prove that 7 is an embedding. Moreover, the linear map f
in (*) is unique if and only if L(X) is generated by n(X). (For the “only if” part,
refer to the proof of Lemma 3.9.1(1).)

Theorem 3.9.2. For every Tychonoff space X, there exists the free topological
linear space L(X) over X.

Proof. There exists a collection F = {fi : X — F) | A € A} such that, for an
arbitrary topological linear space F' and each continuous map f : X — F, there
exist A € A and a linear embedding ¢ : F) — F suchthat ¢f) = f.

Indeed, for each cardinal t < card X, let T, be the topologies 7 on IR} such that (Rff, T)
is a topological linear space. Then, the desired collection is ‘

F= U U cx. @1y

t<card X TE€T,
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Consequently, for an arbitrary topological linear space F and each continuous map f :
X — F,lett = card f(X) < cardX. The linear span F’ of f(X) is linearly
homeomorphic to (R%,7) for some 7 € .. Let ¢ : F i (R%,T) be a linear
homeomorphism. Accordingly, we have g = ¥f € C(X, (R}, 7)), and thus f = v lg.

The product space [ [, F) is a topological linear space. Let  : X — [[,c4 Fa
be the map defined by 7(x) = (fi(x))iea. We define L(X) as the linear span of
n(X)in [[,c4 Fa. Then, (L(X), n) satisfies the condition (*) in the above remark.
In fact, for an arbitrary topological linear space F and each map f : X — F,
there exists A € A and a linear embedding ¢ : Fy — F such that ¢f; = f.
Consequently, we have a linear map f* = ¢pr; |L(X) : L(X) — F and

Fn(x) = gpryn(x) = pfi(x) = f(x) foreveryx € X.

12

F
A
\
\

LX) C [heatr —— Fa

pry

Because L(X) is generated by 1(X), a linear map f : L(X) — F is uniquely
determined by the condition that fn = f. As observed in the above remark, 7 is an
embedding, hence X can be identified with n(X). Then, L(X) satisfies (LE), i.e.,
L(X) is the free topological linear space over X . O

Let X and Y be Tychonoff spaces. For each map f : X — Y, we have a unique
linear map f; : L(X) — L(Y') that is an extension of f by (LE).

X Y

N N

LX) —— L(Y)
;

This is functorial, i.e., (gf); = gy f; for every pair of maps f : X — Y and
g :Y — Z, and id;(x) = (idx)y. Accordingly, we have a covariant functor
from the category of Tychonoff spaces into the category of topological linear
spaces. Consequently, every homeomorphism f : X — Y extends to a linear
homeomorphism f; : L(X) — L(Y).

In Sect. 7.12, we will construct a metrizable linear space that is not an absolute
extensor for metrizable spaces. The free topological linear space L(X) over a
compactum X has an important role in the construction. The topological and
geometrical structures of L (X)) will be studied in Sect. 7.11.
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Notes for Chap. 3

There are lots of good textbooks for studying topological linear spaces. The following classical
book of Kothe is still a very good source on this subject. The textbook by Kelly and Namioka
is also recommended by many people. Besides these two books, the textbook by Day is a good
reference for normed linear spaces as is Valentine’s book for convex sets. Concerning non-locally
convex F-spaces and Roberts’ example (a compact convex set with no extreme points), one can
refer to the book by Kalton, Peck and Roberts.

* G. Kothe, Topological Vector Spaces, I, English edition, GMW 159 (Springer-Verlag, New
York, 1969)

* J.L. Kelly and I. Namioka, Linear Topological Spaces, Reprint edition, GTM 36 (Springer-
Verlag, New York, 1976)

*  M.M. Day, Normed Linear Spaces, 3rd edition, EMG 21 (Springer-Verlag, Berlin, 1973)

* FEA. Valentine, Convex Sets (McGraw-Hill Inc., 1964); Reprint of the 1964 original (R.E. Krieger
Publ. Co., New York, 1976)

¢ N.J. Kalton, N.T. Peck and J.W. Roberts, An F-space Sampler, London Math. Soc. Lecture
Note Ser. 89 (Cambridge Univ. Press, Cambridge, 1984)

For a systematic and comprehensive study on continuous selections, refer to the following book
by Repovs and Semenov, which is written in instructive style.

* D. Repovs and P.V. Semenov, Continuous Selections of Multivalued Mappings, MIA 455
(Kluwer Acad. Publ., Dordrecht, 1998)

In Theorem 3.6.4, the construction of a metric d from dj is due to Eidelheit and Mazur [1].

The results of Sect. 3.8 are contained in the first part of Michael’s paper [2], which consists of
three parts. For the finite-dimensional case, refer to the second and third parts of [2] (cf. [3]) and
the book of Repovs§ and Semenov. The finite-dimensional case is deeply related with the concept
discussed in Sect. 6.11 but will not be treated in this book. The 0-dimensional case will be treated
in Sect. 7.2.
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