Chapter 2
Metrization and Paracompact Spaces

In this chapter, we are mainly concerned with metrization and paracompact spaces.
We also derive some properties of the products of compact spaces and perfect maps.
Several metrization theorems are proved, and we characterize completely metrizable
spaces. We will study several different characteristics of paracompact spaces that
indicate, in many situations, the advantages of paracompactness. In particular, there
exists a useful theorem showing that, if a paracompact space has a certain property
locally, then it has the same property globally. Furthermore, paracompact spaces
have partitions of unity, which is also a very useful property.

2.1 Products of Compact Spaces and Perfect Maps

In this section, we present some theorems regarding the products of compact spaces
and compactifications. In addition, we introduce perfect maps. First, we present a
proof of the TYCHONOFF THEOREM.

Theorem 2.1.1 (TYCHONOF¥F). The product space [],c, Xa of compact spaces
Xy, A € A, is compact.

Proof. Let X = [],c4 Xa. We may assume that A = (A, <) is a well-ordered
set. For each o € A, let py : X — [[,., Xa and g, : X — [],_, Xx be the
projections.

Let A be a collection of subsets of X with the finite intersection property
(f.i.p.). Using transfinite induction, we can find x;, € X, such that A|p;'(U)
has the f.i.p. for every neighborhood U of (x,),<x in [],.; X,. Indeed, suppose
that x, € X, A < u, have been found, but there exists no x, € X, with
the above property, i.e., any y € X, has an open neighborhood V) with an
open neighborhood U, of (x;3)1<, in Hk<u X such that AIq;l(Uy) N pr;l(Vy)
does not have the fi.p. Because X, is compact, we have y(,...,y, € X,
such that X, = J/_, V),. Since (i, Uy, is a neighborhood of (x3)r<, in
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22 2 Metrization and Paracompact Spaces

nl<u X,, we have vy,...,v, < p and neighborhoods W; of x,, in X,, such
that (/2 pry,' (W) C ¢;.' (i<, Uy). Let v = max{vy,...,v,} < w. Then,
we can write ()7, pr,' (W;) = p;'(W) for some neighborhood W of (x3)i<y
in [];<, Xa. Because pt(wW) Cc M., q;l(Uyl.), no A|p;t(W) n pr;l(Vyi) have
the f.i.p. Since X = (i, pr;,' (V},), it follows that A|p; ' (W) does not have the
f.i.p., which contradicts the inductive assumption.

Now, we have obtained the point x = (x3)iea € X. For each neighborhood
U of x in X, we have Ay,...,1, € A and neighborhoods U; of x, in X, such
that (N)/_, pr;l_l(U,-) C U. Let Ay = max{Ay,...,A,} € A. Then, we can write
Ni= pr;l_l(U,-) = p;ol(Uo) for some neighborhood Uy of (x,),<3, in Hvsko X,.
Since p;ol(Uo) C U, A|U has the f.i.p. Consequently, every neighborhood U
of x in X meets every member of A. This means that x € (),c4¢cl 4, and so

Muyeacl A#D. O

Note. There are various proofs of the Tychonoff Theorem. In one familiar proof, Zorn’s
Lemma is applied instead of the transfinite induction. Let .A be a collection of subsets of X
with the f.i.p. and @ be all of collections A’ of subsets of X such that A’ has the f.i.p. and
A C A’. Applying Zorn’s Lemma to the ordered set @ = (@, C), we can obtain a maximal
element A* € @. Because of the maximality, .A* has the following properties:

(1) The intersection of any finite members of A* belongs to A*;
(2) If B C X meets every member of A*, then B € A*.

Foreach A € A, pr, (A*) has the f.i.p. Since X, is compact, we have x; € (1) 4 _4* clpr; (A).
It follows from (2) that pr;l(V) € A* for every neighborhood V of x; in X;,. Now, it is
easy to see that

Xx=rea€ () dddC (A

A€ A* A€eA
Next, we prove WALLACE’S THEOREM:

Theorem 2.1.2 (WALLACE). Let A = [[;c, A2 C X = [l,es X2, where
each A, is compact. Then, for each open set W in X with A C W, there
exists a finite subset Ag C A and open sets V) in X), A € Aq, such that
A C Mzen, Pry (VI)CW.

Proof. When A is finite, we may take A9 = A. Then, (), Ao pr;l(VA) coincides
with [, ¢, Va. This case can be proved by induction on card A, which is reduced to
the case card A = 2. Proving the case card A = 2 is an excellent exercise. !

We will show that the general case is derived from the finite case. For each x€ 4,
we have a finite subset A(x) C A and an open set U(x) in ]_[AGA(X) X, such
that x € prZ(lx)(U (x)) C W. Because of the compactness of A, there exist finite

Xi,....,x, € Asuchthat 4 C |J/_, prZ(lxi)(U(x,-)). Thus, we have a finite subset

!Use the same strategy used in the proof of normality of a compact Hausdorff space.
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Ag == A(x;)) C A.Foreachi = 1,...,n,%et p; : [11en, Xa = [licac) X2
be the projection. Then, Wy = | J/_, p;' (U(x;)) is an open setin [, 4, Xa.

Note that ( J;_, pri,. y(U(xi)) = pr;, (Wo). From the finite case, we obtain open
sets V3, A € Ap, such that nAer A, C ]_[AeAO Vi, C Wy. Hence,

AC ﬂ pr;l(Vl) C prZé(Wo) c W 0
AEA)

For any space X, we define the evaluation map ey : X — I€®D by ex(x) =
(f(x)) reccxyy for each x € X. The continuity of ey follows from the fact that
pryoey = f is continuous for each f € C(X,I), where pry: I€XD 5 T is the
projection (i.e., pr,(§) = £(f)).

Proposition 2.1.3. For every Tychonoff space X, the map ex : X — I€XD jsan
embedding.

Proof. LetU be anopensetin X and x € U. Since X is a Tychonoff space, we have
some f € C(X,I)suchthat f(x) = 0and f(X\U) C {1}. Then, V = pr;l([O, 1))
is an open set in I*'D_ Since pry(ex(x)) = f(x) = 0, it follows that ex (x) € V.
Since pryoex (X \U) = f(X\U) C {1}, we have ex (X \U)NV = @. Therefore,
ex(x) e VNex(X) Cex(U). This implies that ex : X — ex(X) is an open map.

For x # y € X, applying the above argumentto U = X \ {y}, we can see that
ex(x)(f) =0#1=-ex(y)(f). Thus, ex is an embedding. O

From Tychonoff’s Theorem, it follows that the product space I°**D is compact.
Then, identifying X with ex(X), we define a compactification X of X as follows:

IBX = C]IC(X.I) ey (X),

which is called the Stone-Cech compactification.

Now, let f : X — Y be a map between Tychonoff spaces. The map fi :
XD TCOD s defined as fi(€§) = (£(kf))kecry for each & € I°K'D where
the continuity of f, follows from the continuity of pryofx = prs, k € C(Y, D).
Then, we have fioexy = eyof.

X Y

A

XD €YD
S

Indeed, for each x € X and k € C(Y, 1),

Selex () (k) = ex(X)(kf) = k(f(x)) = ey (f(x))(k).
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Since f is continuous, it follows that f.(8X) C BY. Thus, f extends to the map
Bf = f«IBX : X — BY.

Further, let g : Y — Z be another map, where Z is Tychonoft. Then, for each
£ e I°XD and k € C(Z.,1),

gx(fu(E) (k) = fu(E)(kg) = E(kgf) = (8/)=(5) (k).

that is, g« fx = (gf)«. Therefore, B(gf) = BgBf.
The Stone—Cech compactification BX can be characterized as follows:

Theorem 2.1.4 (STONE; CECH). Let X be a Tychonoff space. For any compactifi-
cation yX of X, there exists the (unique) map f : BX — yX suchthat f|X = idy.
If a compactification 8'X has the same property as above, then there exists a
homeomorphism h : BX — B'X such that h| X = idy.

Proof. Note that 8(yX) = yX because yX is compact. Leti : X — yX be the
inclusion and let f = Bi : BX — B(yX) = yX. Then, f|X = idy and f is
unique because X is dense in S.X.

If a compactification 8’ X of X has the same property, then we have two maps
h:BX — f'Xandh' : B'X — BX suchthat h|X = IW'|X = idy. It follows that
h'h = idgy and hh" = idg x, which means that / is a homeomorphism. |

A perfect map f : X — Y is a closed map such that f~!(y) is compact for
eachy € Y.Amap f : X — Y is said to be proper if f~'(K) is compact for
every compactset K C Y.

Proposition 2.1.5. Every perfect map f : X — Y is proper. If Y is locally
compact, then every proper map f : X — Y is perfect.

Proof. To prove the first assertion, let K C Y be compact and I/ an open cover
of f7!1(K) in X. For each y € K, choose a finite subcollection U, C U so that
7Y (y) € UU,. Since f is closed, each V, = Y \ f(X \ UU,) is an open
neighborhood of y in ¥, where f~'(V,) C |JU,. We can choose y1,...,y, € K
so that K C (J7_, Vy,. Thus, we have a finite subcollection Uy = | J/_, Uy, C U
such that f~1(K) C |JUp. Hence, f~!(K) is compact.

To show the second assertion, it suffices to prove that a proper map f is closed.
Let A C X beclosed and y € cl f(A). Since Y is locally compact, y has a compact
neighborhood N in Y. Note that N N f(A4) # @, which implies f~'(N) N A # @.
Since f is proper, f~!'(N) is compact, and hence f~!(N) N A is also compact.
Thus, f(f~'(N) N A) is compact, so it is closed in Y. If y & f(f~'(N) N A),
y has a compact neighborhood M C N with M N f(f~'(N) N A) = @. Then,
observe that

fETI M) n A M f(FTHIN)NA) =0,
which means that f~'(M) N A = @. However, using the same argument as for

FUN)N A # @, we can see that f~'(M) N A # @, which is a contradiction.
Thus, y € f(f~"(N)N A) C f(A). Therefore, f(A) is closed in Y. O
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It follows from the first assertion of Proposition 2.1.5 that the composition of any
two perfect maps is also perfect. In the second assertion, the local compactness of ¥
is not necessary if X and Y are metrizable, which allows the following proposition:

Proposition 2.1.6. For a map f : X — Y between metrizable spaces, the
following are equivalent:

@) f:X —Y is perfect;

() f:X — Y is proper;

(c) Any sequence (x,)nen in X has a convergent subsequence if (f(x,))nen is
convergentin Y.

Proof. The implication (a) = (b) has been shown in Proposition 2.1.5.

(b) = (¢): Let y = limy—oo f(xy) € Y and K = { f(x,) | n € N} U {y}. Since
K is compact, (b) implies the compactness of f~!(K), whose sequence (x,),en
has a convergent subsequence.

(c) = (a): For each y € Y, every sequence (x,),en in f~!(y) has a convergent
subsequence due to (c), which means that ~'(y) is compact because f~!(y) is
metrizable.

To see that f is a closed map, let A C X be a closed set and y € cly f(A).
Then, we have a sequence (X, ),en in A such that y = lim,_,o f(x;). Due to (c),
(xn)nen has a convergent subsequence (x,, );en, and since A4 is closed in X, we have
lim; 500 Xy, = X € A. Then, y = f(x) € f(A), and therefore f(A) is closedin Y.
This completes the proof. O

Lemma 2.1.7. Let D be a dense subset of X such that D # X. Any perfect map
f 1 D — Y cannot extend over X.

Proof. Assume that f* extends to a map f X —>Y.Letxoe X\ D,y = f (xo0),
D=DU J {x0}, and g = f|D D — Y. Since S (o) is compact and xo ¢
(), D has disjoint open sets U and V such that xo € U and f~!(yo) C V.
Since f is a closed map, f(D \ V) isclosed in Y, hence g~ (f(D \ V)) is closed
in D. Because g '(y) = f~'(y) forany y € Y \ {yo}, we have

D\V cg '(f(D\V) = f(f(D\V)) CD.

On the other hand, xo & clz V. Therefore, D = clz V' U g~ (f(D\ V))is closed
in D, which contradicts the fact that D is dense in D. O

Theorem 2.1.8. For amap f : X — Y between Tychonoff spaces, the following
are equivalent:

(a) f is perfect; ~

(b) For any compactification yY of Y, f extendstoamap f : X — yY so that
SBX\NX)CyY\Y;

() Bf(BX\X)CBY\Y.
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Proof. The implication (b) = (c) is obvious.

(a) = (b): Applying Theorem 2.1.4, we can obtain a map g : Y — yY
with g|¥Y = id. Then, f = g(Bf) is an extension of f. Moreover, we can apply
Lemma 2.1.7 to see that f(BX \ X) CyY \Y.

(c) = (a): Foreach y € Y, f~'(y) = (Bf)~'(y) is compact. For each closed
set Ain X,

(BAH(Cclpx A)NY = flclgy AN X) = f(A),
which implies that f(A) is closed in Y. Therefore, f is perfect. O

Remark 1. In Theorem 2.1.4, the map f : X — yX with f|X = idy satisfies
the condition f(BX \ X) C yX \ X that follows from Theorem 2.1.8.

Using Tychonoft’s Theorem 2.1.1 and Wallace’s Theorem 2.1.2, we can prove
the following:

Theorem 2.1.9. For each A € A, let fi : X3 — Y, be a perfect map. Then, the
map [ =[les fr 1 X =1Lies X2 = Y =[1,e4 Y2 is also perfect.

Proof. Owing to Tychonoff’s Theorem 2.1.1, f~'(y) = [l,ec4 fl_l(y(k)) is
compact for each y € Y. To show that f is a closed map, let A be a closed setin X

andy € Y \ f(A). Since f~!'(y) C X \ 4, we can apply Wallace’s Theorem 2.1.2
to obtain A;,...,A, € A andopensets U; in X,,,i = 1,...,n, such that

T =Tl A o) (e U) C X\ A

A€A i=1

Since f), is a closed map, V; = Yy, \ fi,(Xx, \ U;) is an open neighborhood of
y(&;) in ¥y, and f;~' (Vi) C U;. Then, V = (_, pr; ' (V;) is a neighborhood of y
inY and f~1(V) C X \ 4,i.e., V N f(A) = . Therefore, f is a closed map. 0O

2.2 The Tietze Extension Theorem and Normalities

In this section, we prove the Tietze Extension Theorem and present a few concepts
that strengthen normality. For A, B C X, itis said that A and B are separated in X
ifANclB=@and BNcl4d =0.

Lemma 2.2.1. Let A and B be separated F, sets in a normal space X. Then, X
has disjoint open sets U and V suchthat A C U and B C V.

Proof. Let A = |J, ey An and B = |,y Bn, Where Ay C Ay C --- and By C
B, C -+ areclosed in X. Set Uy = V; = @. Using normality, we can inductively
choose open sets Uy, V,, C X, n € N, so that

A, UclU,—y CcU, CclU, C X\ (clBUclV,_;) and

B,UclV,_; CV, CclV, C X\ (clAUclU,).



2.2 The Tietze Extension Theorem and Normalities 27

ap

.
.
.

FE

B
Fig. 2.1 Construction of U, and V),

Then, U = U,enUn and V- = |,y Vi are disjoint open sets in X such that
AcCUand BCV —Fig.2.1. O

We can now prove the following extension theorem:

Theorem 2.2.2 (TIETZE EXTENSION THEOREM). Let A be a closed set in a
normal space X . Then, every map f : A — 1 extends over X.

Proof. We first construct the open sets W(q) in X, g € IN Q, so that

(1) ¢ <q'" = cdW(g) C W(q"),
() AnNW(g) = f7(0.9)).

To thisend, let {g, | n € N} =INQ, whereq; =0,qo = land gq; # q; ifi # j.
We define W(q,) = W(0) = @ and W(q,) = W(1) = X \ f~!(1). Assume that
W(q1), W(q2),- - , W(q,) have been defined so as to satisfy (1) and (2). Let

qi =min{qi | qi > qn+1,1 = 1,--- ,n} and

Gm = max {q; | gi < qnt1,0 =1,---,n}.

Note that f~1([0,¢g,+1)) and f~'((gn+1.1]) are separated F, sets in X. Using
Lemma 2.2.1, we can find an open set U in X such that f~!([0,¢,+1)) C U
and f7'((gut1.1)) NclU = @. Then, V. = U \ f~'(gu+1) is open in X and
ANV = f70,¢,+1)). Again, using normality, we can obtain an open set G in
X such that

Al W(gm) U 710, ga+1]) C G CclG C W(qy).

Then, AN (VN G) = f70,¢n+1)) and cl(V N G) C W(q;). Yet again, using
normality, we can take an open set H in X such that

I W(gm) C H CclH C G\ f7([gn+1. 1]) (C W(an).
Then, W(gn+1) = (V N G) U H is the desired open set in X (Fig.2.2).

Now, we define f : X — I as follows:

~ 1 if x € W(1),
fx)=49. ,
1nf{q€IﬂQ|er(q)} if x € W(1).
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X f_l(l) 1= q2
S0, g0)
f_l(Qn-H)
! qe
- dn+1
SN0, gn1)) an
] 0=q
f—l([o’ qm))

Fig. 22 W(gu+1) = (U \ [T (@) NG)U H

Then, f|A = f because, foreachx € ANW(1) = A\ f~'(1),
f) =inf{geINQ|xe f7(0.9)} = ().

To see the continuity of f, let0 <a <1land0 < b < 1. Since f(x) < a if and
only if x € W(q) for some ¢ < a, it follows that £ ~'([0,a)) = qu W(q) is open

in X. Moreover, from (1), it follows that f (x) > b if and only if x & cl W(q) for
some g > b. Then, f~'((b,1]) = X \ ﬂq>b cl W(q) is also open in X . Therefore,

f is continuous. O
As a corollary, we have Urysohn’s Lemma:

Corollary 2.2.3 (URYSOHN’S LEMMA). For each disjoint pair of closed sets A
and B in a normal space X, there exists a map f : X — 1 such that A C f~'(0)
and B C f71(1). O

Such a map f as in the above is called a Urysohn map.

Note. In the standard proof of the Tietze Extension Theorem 2.2.2, the desired extension
is obtained as the uniform limit of a sequence of approximate extensions that are sums of
Urysohn maps. On the other hand, Urysohn’s Lemma is directly proved as follows:

Using the normality property yields the open sets W(g) in X corresponding to all ¢ €
I N Q satisfying condition (1) in our proof of the Tietze Extension Theorem and

AC W) CclW() C W)= X\ B.

A Urysohn map f : X — I can be defined as follows:

1 if x ¢ W(l),
fx)=. .
inf{g e INQ | x € W(g)} ifxeW().
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In general, a subspace of a normal space is not normal (cf. Sect. 2.10). However,
we have the following proposition:

Proposition 2.2.4. Every F, set in a normal space is also normal.

Proof. LetY be an F; set in a normal space X . Every pair of disjoint closed sets in
Y are F; sets in X that are separated in X . Then, the normality of ¥ follows from
Lemma 2.2.1. O

A space X is hereditarily normal if every subspace of X is normal. Evidently,
every metrizable space is hereditarily normal. It is said that X is completely normal
provided that, for each pair of separated subsets A, B C X, there exist disjoint open
sets U and V in X such that A C U and B C V. These concepts meet in the
following theorem:

Theorem 2.2.5. For a space X, the following are equivalent:

(a) X is hereditarily normal;
(b) Every open set in X is normal;
(c) X is completely normal.

Proof. The implication (a) = (b) is obvious.

(c) = (a): For an arbitrary subspace ¥ C X, each pair of disjoint closed sets A
and B in Y are separated in X. Then, (a) follows from (c).

(b) = (c): Let A, B C X be separated, i.e., ANclB =@ and BNcld = 0.
Then, W = X \ (c1A NclB)isopenin X and A, B C W. Moreover,

clw ANcly B=WNclANclB = 4.

From the normality of W, we have disjoint open sets U and V in W such that
A CUand B C V. Then, U and V are open in X, and hence we have (c). O

A normal space X is perfectly normal if every closed set in X is Gs in X
(equivalently, every open set in X is F, in X). Clearly, every metrizable space is
perfectly normal. A closed set A C X is called a zero set in X if A = f~'(0) for
some map f : X — R, where R can be replaced by I. The complement of a zero
set in X is called a cozero set.

Theorem 2.2.6. For a space X, the following conditions are equivalent:

(a) X is perfectly normal;

(b) Every closed set in X is a zero set (equivalently, every open set in X is a cozero
set);

(¢) For every pair of disjoint closed sets A and B in X, there existsamap f : X —
Isuchthat A= f~'(0)and B = f~'(1).

Proof. The implication (c) = (a) is trivial.
(a) = (b): Let A be a closed set in X. Then, we can write A = (1), ey G, Where
each G, is open in X. Using Urysohn’s Lemma, we take maps f, : X — L n € N,
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such that f,(A) C {0} and f,(X \ G,) C {1}. We can defineamap f : X — Ias
f(xX) =Y ,en 27" fu(x). Then, it is easy to see that A = f~1(0).

(b) = (c): Let A and B be disjoint closed sets in X. Condition (b) provides two
maps g,h : X — Isuch that g7!(0) = 4 and ~'(0) = B. Then, the desired map
f + X — Ican be defined as follows:

g
SO = o T h N

Theorem 2.2.7. Every perfectly normal space is hereditarily normal (= completely
normal).

Proof. Let X be perfectly normal. Then, each open set in X is an F, set, which is
normal as a consequence of Proposition 2.2.4. Hence, it follows from Theorem 2.2.5
that X is hereditarily normal. O

Remark 2. Let Ag, Ay, ..., A, be pairwise disjoint closed sets in a normal space X .
We can apply the Tietze Extension Theorem 2.2.2 to obtain a map f : X — I'such
that 4; C f~'(i/n) (i.e., f(A;) C {i/n}) foreachi = 0,1,...,n. When X is
perfectly normal and n > 2, the condition A; C f~'(i/n) cannot be replaced by
A; = f7'(i/n). For example, let X = S! be the unit circle (the unit 1-sphere of
R?), Ag = {e;}, A, = {e,}, and 4> = {—e;}, where e; = (1,0),e, = (0,1) € R%.
Since X \ A; is (path-)connected, there does not exist a map f : X — I such that
Ao = f710), Ay = f7'(1/2) and 4, = f7(D).

2.3 Stone’s Theorem and Metrization

In this section, we prove Stone’s Theorem and characterize the metrizability using
open bases. Let A be a collection of subsets of a space X and B C X. Recall that

ABl={A€ A| AN B # 0}.

When B = {x}, we write A[{x}] = A[x]. It is said that A is locally finite (resp.
discrete) in X if each x € X has a neighborhood U that meets only finite members
(resp. at most one member) of A, i.e., card A[U] < Ry (resp. card A[U] < 1).
When w(X) > Ry, if A is locally finite in X, then card A < w(X). For the sake
of convenience, we introduce the notation A” = {cl 4 | A € A}. The following is
easily proved and will be used frequently:

Fact. If A is locally finite (or discrete) in X, then so is A and also cl|J A =
UA? (= Ujeacl4).

A collection of subsets of X is said to be o-locally finite (resp. o -discrete)
in X if it can be represented as a countable union of locally finite (resp. discrete)
collections.
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Fig. 2.3 Definition of V) , neA

Theorem 2.3.1 (A.H. STONE). Every open cover of a metrizable space has a
locally finite and o-discrete open refinement.

Proof. Let X = (X,d) be a metric space and & € cov(X). We may index all
members of U by a well-ordered set A = (A, <), thatis, Y = {U, | A € A}. By
induction on n € N, we define open collections V, = {V, , | A € A} as follows:

Vin =N(Crpn.27") ={x € X | d(x,Cyn) <27},

where

Cin={reX|dx.X\U)>2"3}\ | | JU. U Vi

m<n
<A leh

For each x € X, let A(x) = min{A € A | x € U,} and choose n € N so that
27"3 < d(x, X \ Upr)). Then, x € Cy(x)n C Vi) or x € V,,, for some p € A
and m < n. Hence, we have V = |, ey Vi € cov(X). Since each V) , is contained
in U,, it follows that V < U. See Fig. 2.3.

The discreteness of each V, follows from the claim:

Claim (1). If A # p then disty(Vy 0, Vi) = 27",

To prove this claim, we may assume y < A. Foreachx € V , and y € V,, ,, choose
x' € Cppand y’ € Cyy sothat d(x,x") < 27" and d(y,y’) < 27", respectively.
Then, x’ ¢ U, and d(y’, X \ U,) > 27"3, hence d(x’, y') > 27"3. Therefore,

d(x,y) =d(x',y)—d(x,x")—d(y,y) >27".

The local finiteness of ) follows from the discreteness of each V), and the claim:

Claim (2). If B(x,27%) C Vim, then B(x,27F)n Vin =@ forall A € A and
n > max{k, m}.
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For each y € V) ,, choose y’ € C; , so that d(y,y’) < 27". Since y' & V), m, it
follows that d(x, y') > 27%. Hence,

d(x,y) > d(x,y)—d(y,y") > 2% 27" > 271,

The proof is complete. O

Applying Theorem 2.3.1 to the open covers B, = {B(x,27") | x € X},n € N,
of a metric space X = (X, d), we have the following corollary:

Corollary 2.3.2. Every metrizable space has a o-discrete open basis. O

Lemma 2.3.3. A regular space X with a o-locally finite open basis is perfectly
normal.

Proof. Let B = |J, ey Bn be an open basis for X where each B, is locally finite
in X. Instead of proving that every closed set in X is a Gs set, we show that every
openset W C X is F,. For each x € W, choose k(x) € N and B(x) € By so
that x € B(x) C cl B(x) C W.Foreachn € N, let

W, = J{B&) | x e W. k(x) = n}.
Because of the local finiteness of 53, we have
AW, = J{cIB(x) | x e W. k(x) =n} C W.

Since W = |,y Wa, it follows that W = | J, o ¢l W, which is Fy; in X.

To prove normality, let A and B be disjoint closed sets in X. As seen above, we
have open sets V,,, W, C X,n € N,suchthat X \ 4 = J,,en Vo = U,jen €1 Vi and
X\ B =U,ex Wo = U, eyl Wy. Foreachn € N, let

Gy =W\ | JelV, and H, =V, \ | cIW,.

m=<n m=<n

Then, G = |J,eny Gn and H = |, oy H, are disjoint open sets in X such that
ACGand B C H. O

Theorem 2.3.4 (BING; NAGATA-SMIRNOV). For a regular space X, the follow-
ing conditions are equivalent:

(a) X is metrizable;
(b) X has a o-discrete open basis;
(¢) X has a o-locally finite open basis.

Proof. The implication (a) = (b) is Corollary 2.3.2 and (b) = (c) is obvious. It
remains to show the implication (¢c) = (a).

(c) = (a): Let B = J, ey Bx be an open basis for X where each B, is locally
finite in X . Since X is perfectly normal by Lemma 2.3.3, we have maps fp : X — I,
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B € B, such that f;'(0) = X \ B (Theorem 2.2.6). For each n € N, since B, is
locally finite, we can define a map f, : X — £,(B,) by fu(x) = (f5(x))Ben, €
i(By). Let f @ X — [,ent1(By) be the map defined by f(x) = (f,(x))nen.
Since [ [, en €1(By) is metrizable, it suffices to show that f is an embedding.

For each x # y € X, choose B € B, C Bsothat x € B and y ¢ B. Then,
f(x) > 0= f5(y),s0 fu(x) # f.(»). Hence, f is an injection.

Foreachn e Nand B € B,, Vg = {y € £1(By) | y(B) > 0} is open in £,(B,).
Observe that for x € X,

x € B fi(x)(B) = fp(x) > 0% fulx) € V.

Then, it follows that f(B) = pr;'(Vg) N f(X) is open in f(X), where pr, :
[L,en €1(By) — £1(B,) is the projection. Thus, f is an embedding. O

The equivalence of (a) and (b) in Theorem 2.3.4 is called the BING METRIZA-
TION THEOREM, and the equivalence of (a) and (c) is called the NAGATA—SMIRNOV
METRIZATION THEOREM. As a corollary, we have the URYSOHN METRIZATION
THEOREM:

Corollary 2.3.5. A space is separable and metrizable if and only if it is regular and
second countable. O

For a metrizable space X, let I" be an infinite set with w(X) < card I". In the
proof of Theorem 2.3.4, note that card B, < card I" because of the local finiteness
of B, in X. Then, every £;(53,) can be embedded into £;(I"). Therefore, we can
state the following corollary:

Corollary 2.3.6. Let X be a metrizable space and I" an infinite set such that
w(X) < card I". Then, X can be embedded in the completely metrizable topological
linear space® £1(I")N. O

Here, w(£,(I")Y) = w({,(I")) = card I". In fact, w({;(I")) > card I" because
£1(I") has a discrete open collection with the same cardinality as I". Let

D ={xet(I')|x(y) €Q forall y € I" and
x(y) = 0 except for finitely many y € I" }

Then, {B(x,n™") | x € D,n € N} is an open basis for £;(I") with the same
cardinality as I", hence w({;(I")) < card I".
The hedgehog J(I") is the closed subspace of £ (") defined as follows:

Jry=|JIe, ={x e tuy(I") |x(y) €I forall y € I' and
yerlr

x(y) #0 atmostone y € I'},

2For topological linear spaces, refer to Sect. 3.4.
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0
(' xD/(I" x {0})

Fig. 2.4 The hedgehog J(I")

wheree, € £;(I") is the unit vector defined by e, (y) = l and e, (y’) = Ofory’ # y
(Fig.2.4). The hedgehog J(I") can also be defined as the space (I" x I)/(I" x {0})
with the metric induced from the pseudo-metric p on I x I defined as follows:

[t —s| if y =y,
t+s if y#y.

Note that w(J(I')Y) = card I'". In the proof of Theorem 2.3.4, if each B,
is discrete in X, then f,(X) C J(B,). Similar to Corollary 2.3.6, we have the
following:

p((y. 1), (y',5) =

Corollary 2.3.7. Let X be a metrizable space and I" an infinite set such that
w(X) < card I". Then, X can be embedded in J(I')N. O

In the second countable case, X can be embedded in IV, since we can take B =
U, en Bn in the proof of Theorem 2.3.4 so that each B, contains only one open set.
Thus, we have the following embedding theorem for separable metrizable spaces:

Corollary 2.3.8. Every separable metrizable space can be embedded in the Hilbert
cube 1Y, and hence in RY. O

In association with Corollary 2.3.6, we state the following theorem:

Theorem 2.3.9. Every metric space X = (X,d) can be isometrically embedded
into the Banach space C 8 (X).

Sketch of Proof. Fix xo € X and define ¢ : X — C%(X) as follows:
P(x)(z) = d(x,z) —d(x0.2), z € X.
It is easy to see that ||@(x)|| = d(x, xo) and ||@p(x) — (V) || = d(x, y).

The (metric) completion of a metric space X = (X,d) is a complete metric
space X = (} ,d) containing X as a dense set and as a metric subspace, that is, d
is the restriction of d.. Since a closed set in a complete metric space is also complete,
Theorem 2.3.9 implies the following:

Corollary 2.3.10. Every metric space has a completion. O
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2.4 Sequences of Open Covers and Metrization

In this section, we characterize metrizable spaces via sequences of open covers.
Given a cover V of a space X and A C X, we define

st(4,V) = (V4.

which is called the star of A with respect to V. When A = {x}, we write
st({x}, V) = st(x, V).

Theorem 2.4.1 (ALEXANDROFF-URYSOHN; FRINK). For a space X, the fol-
lowing conditions are equivalent:

(a) X is metrizable;
(b) X has open covers Uy,U,, ... such that {st(x,U,) | n € N} is a neighborhood
basis of each x € X and

UU €Uyr1, UNU #0 = 3U" €U, suchthat UU U c U”;

(¢) Each x € X has an open neighborhood basis {V,(x) | n € N} satisfying the
condition that, for each x € X andi € N, there exists a j(x,i) > i such that

Vieiy(X) N Vi (¥) # 0 = Vi (y) C Vi(x).
Proof. (a) = (c): A metric space X = (X, d) satisfies (c) because
B(x,3™)NB(y,3™) # @ = B(y,3™") C B(x,37"").
(c) = (b): Foreach x € X, let k(x,1) = 1 and inductively define
k(x,n) = max{n, j(x,i) |i =1,...,k(x,n —1)} > n.

For each n € N, let U,(x) = ﬂffl’”) V;(x). Then, {U,(x) | n € N} is an open
neighborhood basis of x and
U,x)NU,(») #0 = Uy(x) UU,(y) C Up—i(x) or
Un(x) U Un(y) - Un—l(y)'
In fact, assume that U, (x) N U,(y) # 9. Inthe case k(x,n) < k(y,n), Vixi(y) C

Vi(x) foreachi = 1,...,k(x,n — 1) because V;(, i)(x) N Vj,i)(¥) # @. Then, it
follows that

k(x,n) k(x,n—1) k(x,n—1)

G c Ve () Vieo®c () %) = U

i=1 i=1 i=1
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Since U,(x) C U,—i(x) by definition, we have U,(x) U U,(y) C U,—1(x). As
above, k(y,n) < k(x,n) implies U, (x) U U, (y) C U,—1(»).

For each n € N, we have U, = {U,(x) | x € X} € cov(X). It remains to be
prove that {st(x,U,) | n € N} is a neighborhood basis of x € X. Evidently, each
st(x,U,) is a neighborhood of x € X. Then, it suffices to show that st(x,U(x»)) C
Va(x). If x € Uje (), then

Vj(x,n)(-x) n Vj(x,n)(y) D) Vj(x,n)(-x) n Uj(x,n)(y) 7é Qs

and hence U ) () C Vi (¥) C Va(x).
(b) = (a): First, note that ; +; < U; foreachi € N. Let Uy = {X} € cov(X).
For each x, y € X, define

8(x,y) =inf{27" | 3U € U; suchthat x,y € U}.

Note that if §(x,y) > 0, then §(x,y) = 27" for some n > 0. As can easily be
shown, the following hold for each x, y,z € X:

(1) 8(x,y) =0ifand only if x = y;

(2) 8(x,y) =68(y,x);

(3) 8(x,y) <2max{s(x,z),d(z, y)}.

Furthermore, we claim that

(4) foreveryn > 3 and each xy,...,x, € X,

n—2

8(x1, X)) < 2(8(x1,%2) + 8(6u—1,%2)) + 4D 8(xi, Xi41).

i=2

In fact, when n = 3, the inequality follows from (3). Assuming claim (4) holds for
any n < k, we show (4) for n = k. Then, we may assume that x; # x;. For each
X1,..., Xk € X, let

m = min {i | 8(xy,x5) < 25(x1,x,-)} > 2.

Then, 6(x;,xx) < 268(x1,Xp). From (3) and the minimality of m, we have
8(x1, xk) < 28(xpm—1,xk). if m = 2 or m = k, then the inequality in (4) holds
forn = k.Inthecase 2 <m <k,

1 1
8(xy,x;) = 55(361,)%) + 55(361,)%) < 8(x1, Xm) + 8(Xpm—1, Xk).

By the inductive assumption, we have

m—2

8(x1.xm) < 2(8(x1. x2) + 8(Xm—1.Xm)) + 4 Y 8(x;.x;41) and
i=2
k—2
8(Xm1.%k) < 2(8(Xm—1. Xm) + 8(xe—1. X)) +4 Y 8(xi, Xi 1)

i=m
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so the desired inequality is obtained. By induction, (4) holds for all n € N.
Now, we can define d € Metr(X) as follows:

d(x,y) = inf{Z?;{ 8(xi.xi41) |n €N, x; € X, x1 = x, x, = y}.

In fact, d(x,y) = d(y, x) by (2) and the above definition. The triangle inequality
follows from the definition of d. Since 6(x, y) < 4d(x,y) by (4), it follows from
(1) that d(x,y) = O implies x = y. Obviously, x = y implies d(x,y) = 0.
Moreover, it follows that

d(x,y) <27"*=3U €U, suchthat x,y € U,

which means that By (x,27"72) C st(x,U,) for each x € X and n € N. Since
d(x,y) <8(x,y), wehave meshy U, < 27", sost(x,U,) C By(x,27"). Therefore,
{B4(x,27") | n € N} is a neighborhood basis of x € X. O

Remark 3. In the above proof of (b) = (a), the obtained metric d € Metr(X) has
the following property:

st(xX,Upt2) C Ba(x,27"72) C st(x,U,).
Moreover, d(x,y) < 1 forevery x,y € X.

In Theorem 2.4.1, the equivalence between (a) and (b) is called the
ALEXANDROFF-URYSOHN METRIZATION THEOREM and the equivalence between
(a) and (c) is called the FRINK METRIZATION THEOREM.

Let U and V be covers of X. When {st(x,V) | x € X} < U, wecall V a
A -refinement (or barycentric refinement) of // and denote

VEuU (or Ut

The following corollary follows from the Alexandroff—-Urysohn Metrization
Theorem:

Corollary 2.4.2. A space X is metrizable if and only if X has a sequence of open
covers

UL Su s
such that {st(x,U,) | n € N} is a neighborhood basis of each x € X. O

For covers U and V of X, we define
stV.U) = {st(V.U) | V € V},

which is called the star of VV with respect to &/. We denote st(), V) = stV, which is
called the star of V. When stV < U/, we call V a star-refinement of I/ and denote

ViU (or USV).
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For each n € N, the n-th star of V is inductively defined as follows:
stV = st(st" 1V, V),

where st”) = V. Observe that st(V,stV) = st*V and st(stV) = st*V. When
st" V < U, V is called an n-th star-refinement of /. There is the following relation
between A-refinements and star-refinements:

Proposition 2.4.3. For every three open covers U, V, W of a space X,

Wiviu = wiu

Sketch of Proof. For each W € W, take any x € W and choose U € U so that st(x, V) C
U. Then, we see that st(W, W) C U.

By virtue of this proposition, A-refinements in Corollary 2.4.2 can be replaced
by star-refinements, which allows us to sate the following corollary:

Corollary 2.4.4. A space X is metrizable if and only if X has a sequence of open
covers
* * *
Lll >L{2>U3>---

such that {st(x,U,) | n € N} is a neighborhood basis of each x € X. O

Remark 4. By tracing the proof of Theorem 2.4.1, we can directly prove Corol-
lary 2.4.4. This direct proof is simpler than that of Theorem 2.4.1, and the obtained
metric d € Metr(X) has the following, more acceptable, property than the previous
remark:

st(x,U11) C Ba(x,27") C st(x,U,).

Similar to the previous metric, d(x, y) < 1 forevery x,y € X.

Sketch of the direct proof of Corollary 2.4.4. To see the “if”” part, replicate the proof of (b)
=> (a) in Theorem 2.4.1 to construct d € Metr(X). Let Uy = {X}. For each x,y € X, we
define

8(x,y) = irlf{z_""'1 | 3U € UY; such that x, y € U} and

d(x,y) =inf{>/_, 8(xi—1, x;) | neN, xo=ux, x, = y}.
The admissibility and additional property of d are derived from the inequality d(x, y) <
8(x,y) <2d(x,y). To prove the right-hand inequality, it suffices to show the following:

8(x0,x,) < 228()([_1,)([) for each xg, xq,..., x, € X.

i=l1

This is proved by induction on n € N. Set Z:'l=1 8(x;—1,X;) = o and let k be the largest
number such that Zle 8(xi—1,x;) < a/2. Then, Z?:k-ﬁ-z 8(xi—1,x;) < a/2. By the
inductive assumption, 8(x¢, xx) < o and 8(xx+1, x,) < o. Note that §(xx, x¢41) < . Let
m = min{i € N | 27+t < «}. Since stl, < Uyp_i, we can find U € U,,_; such that
Xo, X, € U, and hence §(xo, x,) < 27" 12 < 2a.
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Additional Results on Metrizability 2.4.5.

(1) The perfect image of a metrizable space is metrizable, that is, if f : X — Y is
a surjective perfect map of a metrizable space X, then Y is also metrizable.

Sketch of Proof. Foreach y € Y and n € N, let

U,(») =Ng(f7'(»).27") and V,(») =Y \ f(X\ U, (»)),

where d is an admissible metric for X. Show that {V,,(y) | n € N} is a neighborhood
basis of y € Y that satisfies condition 2.4.1(c). For each y € Y and i € N, since
S 71(y) is compact, we can choose j > i so that U;(y) C f~'(V;41(y)). Then, the
following holds:

Viet() N V1) # 0 = Vi11(x) C Vi(y).

To see this, observe that

Vg NV@#0=U,0N @) #0
= /7@ C Vi () C Ui ()

= fT'(Vi41) CUj31() CU(y).

(2) A space X is metrizable if it is a locally finite union of metrizable closed
subspaces.

Sketch of Proof. To apply (1) above, construct a surjective perfect map f : ;4 X —
X such that each X is metrizable and f|X is a closed embedding. The metrizability
of @, 4 X, easily follows from Theorem 2.3.4. (The metrizability of @), , X, can
also be seen by embedding P, < , Xy into the product space A X £;(I")N for some I,
where we give A the discrete topology.)

2.5 Complete Metrizability

In this section, we consider complete metrizability. A space X has the Baire
property or is a Baire space if the intersection of countably many dense open sets
in X is also dense; equivalently, every countable intersection of dense G sets in X
is also dense. This property is very valuable. In particular, it can be used to prove
various existence theorems. Observe that the Baire property can also be expressed
as follows: if a countable union of closed sets has an interior point, then at least one
of the closed sets has an interior point. The following statement is easily proved:

* Every open subspace and every dense Gs subspace of a Baire space is also Baire.
Complete metrizability is preferable because it implies the Baire property.

Theorem 2.5.1 (BAIRE CATEGORY THEOREM). Every completely metrizable
space X is a Baire space. Consequently, X cannot be written as a union of countably
many closed sets without interior points.
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B(y0, €0)

B(y1,e1)

Yo =X

1

%S,

Fig. 2.5 Definition of y, € X and ¢, > 0

Proof. For each i € N, let G; be a dense open set in X and d € Metr(X) be a
complete metric. For each x € X and ¢ > 0, we inductively choose y; € X and
g > 0,1 € N, so that

yi € B(yi—1.36i-1) N Gi, B(yi.&) C G; and &; < 3¢,

where yo = x and gy = ¢ (Fig.2.5). Then, (y;);en is d-Cauchy, hence it converges
tosome y € X.Foreachn € w,

oo

o0 o0
d(yn.y) = Zd(yi’yi+l) < Z%Si =< Zz—fg,, = &p.

i=n i=1

Thus, y € B(x,¢) and y € B(y;, &) C G; foreachi € N, thatis, y € B(x,¢e) N
(ien Gi- Therefore, (), cy Gi is dense in X. |

A metrizable space X is said to be absolutely G;s if X is Gs in an arbitrary
metrizable space that contains X as a subspace. This concept characterizes complete
metrizability, which leads us to the following:

Theorem 2.5.2. A metrizable space is completely metrizable if and only if it is
absolutely Gg.

This follows from Corollary 2.3.6 (or 2.3.10) and the following theorem:
Theorem 2.5.3. Let X = (X, d) be a metric space and A C X.

(1) If A is completely metrizable, then A is Gs in X.
(2) If X is complete and A is Gs in X, then A is completely metrizable.

Proof. (1): Since cl A is Gs in X, it suffices to show that A is Gs incl A. Let p €
Metr(A) be a complete metric. For each n € N, let
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G, = {x € cl A | x has a neighborhood U in X with

diamg U < 27" and diam,U N4 < 2_"}.

Then, each G, is clearly openin cl 4 and A C (),ey G- Each x € (1), oy G has
neighborhoods U; D U, D --- in X such that diamy U, < 27" and diam, U, N A4 <
27" Since x € cl A, we have points x,, € U, N A, n € N. Then, (x,),en converges
to x. Since (x,),en is p-Cauchy, it is convergent in A. Thus, we can conclude that
x € A. Therefore, A = (), ey Gn, Which is Gs in cl A.

(2): First, we show that any open set U in X is completely metrizable. We can
define an admissible metric p for U as follows:

p(x.y) =d(x,y) + [dx. X \U)' =d(y. X \U)™"|.

Every p-Cauchy sequence (x,),en in U is d-Cauchy, so it converges to some
x € X. Since (d(x,, X \ U)™!),en is a Cauchy sequence in R, it is bounded. Then,

d(x, X \U) = lim d(x,, X \ U) > 0.
n—oo

This means that x € U, and hence (x,),en is convergentin U. Thus, p is complete.

Next, we show that an arbitrary G set A in X is completely metrizable. Write
A= ﬂneN U,, where U, U,, ... are open in X. As we saw above, each U, admits
a complete metric d, € Metr(U,). Now, we can define a metric p € Metr(A) as
follows:

o(x,y) = Zmin {27, du(x. y)}.
neN

Every p-Cauchy sequence in 4 is d,-Cauchy, which is convergent in U,. Hence, it
is convergentin A = (), ey Us. Therefore, p is complete. O

Analogous to compactness, the completeness of metric spaces can be character-
ized by the finite intersection property (f.i.p.).

Theorem 2.5.4. In order for a metric space X = (X,d) to be complete, it is
necessary and sufficient that, if a family F of subsets of X has the finite intersection
property and contains sets with arbitrarily small diameter, then F°' has a non-empty
intersection, which is a singleton.

Proof. (Necessity) Let F be a family of subsets of X with the f.i.p. such that F
contains sets with arbitrarily small diameter. For each n € N, choose F,, € F so
that diam F,, < 27", and take x,, € F,,. Forany n < m, F, N F,, # @, hence

d(x,, xp) < diam F, + diam F,, < 27" 427" < 27"+,
Thus, (x,),en is a Cauchy sequence, therefore it converges to a point x € X.

Then, x € ﬂ}'d. Otherwise, x ¢ cl F for some F € F. Choose n € N so that
d(x,x,), 27" < 1d(x, F). Since F N F, # 0, it follows that
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d(x,F)<d(x,x,) +diam F, < d(x,x,) +27" <d(x, F),

which is a contradiction.

(Sufficiency) Let (x,),en be a Cauchy sequence in X. For each n € N, let
F, ={x; | i = n}. Then, F; D F, D --- and diam F,, — 0 (n — 00). From
this condition, we have x € ﬂneN cl F,. For each ¢ > 0, choose n € N so that
diamcl F,, = diam F;,, < e. Then, d(x;,x) < ¢ fori > n, that is, lim, o X, = x.
Therefore, X is complete. O

Using compactifications, we can characterize complete metrizability as follows:
Theorem 2.5.5. For a metrizable space X, the following are equivalent:

(a) X is completely metrizable;

(b) X is Gs in an arbitrary compactification of X ;
(¢) X is Gs in the Stone—Cech compactification BX ;
(d) X has a compactification in which X is Gs.

Proof. The implications (b) = (c) = (d) are obvious. We show the converse (d) =
(c) = (b) and the equivalence (a) < (b).

(d) = (c): Let yX be a compactification of X and X = (),cy G, where each
G, is open in yX. Then, by Theorem 2.1.4, we have a map f : X — yX
such that f|X = id, where X = f~!(X) by Theorem 2.1.8. Consequently,
X =,en S '(Gy) is Gs in BX.

(c) = (b): By condition (c), we can write BX \ X = |J, ey Fn, Where each F,
is closed in BX . For any compactification yX of X, we have amap f : X — yX
such that f|X = id (Theorem 2.1.4). From Theorem 2.1.8, y X\ X = f(BX\X) =
U,en f(Fy) is Fy in yX, hence X is G5 in yX.

(b) = (a): To prove the complete metrizability of X, we show that X is
absolutely Gs (Theorem 2.5.2). Let X be contained in a metrizable space Y . Since
clgy X is a compactification of X, it follows from (b) that X is Gs in clgy X, and
henceitis Gsin Y Nclgy X = cly X, where cly X is also Gs in Y. Therefore, X is
GsinY.

(a) = (b): Let yX be a compactification of X and d an admissible complete
metric for X. For eachn € Nand x € X, let G,(x) be an open set in yX such that
Gu(x) N X = Bg(x,27"). Then, G, = J,cy Gu(x) isopenin yX and X C G,.
We will show that each y € [,y G is contained in X. This implies that X =
(Nyen Gn is Gs in yX.

For each n € N, choose x, € X so that y € G,(x,). Since y € cl,x X and
G,(x;,) N X = By(x,,27"), it follows that {B;(x,,27") | n € N} has the f.i.p.
By Theorem 2.5.4, we have x € (),en¢lx Ba(x,,27"), where lim,—00 X, = X
because d(x,,x) < 27". Thus, we have y = x € X. Otherwise, there would
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be disjoint open sets U and V in yX such that x € U and y € V. Since y €
(MNyen Gn NV, {By(x,,27") NV | n € N} has the f.i.p. Again, by Theorem 2.5.4,
we have

x' e[ elx(Ba(xs.27") N V) Ccly V.

neN

Since lim, o0 X, = x’ is the same as x, it follows that x’ = x € U, whichis a
contradiction. O

Note that conditions (b)—(d) in Theorem 2.5.5 are equivalent without the
metrizability of X, but X should be assumed to be Tychonoff in order that X has a
compactification. A Tychonoff space X is said to be éech-complete if X satisfies
one of these conditions.

Every compact metric space is complete. Since a non-compact locally compact
metrizable space X is open in the one-point compactification aX = X U {oco}, X
is completely metrizable because of Theorem 2.5.5. Thus, we have the following
corollary:

Corollary 2.5.6. Every locally compact metrizable space is completely metrizable.
O

We now state and prove the LAVRENTIEFF G5-EXTENSION THEOREM:

Theorem 2.5.7 (LAVRENTIEFF). Let f : A — Y be a map from a subset A of a
space X to a completely metrizable space Y. Then, f extends over a Gs set G in X
such that A C G C cl A.

Proof. We may assume that Y is a complete metric space. The oscillation of f at
x € cl A is defined as follows:

oscr(x) = inf{ diam f(ANU) | U is an open neighborhood of x}.

Let G = {x € cl A | oscs(x) = 0}. Then, A C G because f is continuous. Since
each {x € clA | oscs(x) < 1/n} is open in cl 4, it follows that G is G5 in X. For
each x € G,

Fr ={f(ANU) | U is an open neighborhood of x},

has the f.i.p. and contains sets with arbitrarily small diameter. By Theorem 2.5.4,
we have (| F< # @, which is a singleton because diam (| F<! = 0. The desired
extension f : G — Y of f can be defined by f(x) € [ FC. O

If A is a subspace of a metric space X and Y is a complete metric space, then
every uniformly continuous map f : A — Y extends over cl A. This result can be
obtained by showing that G = cl 4 in the above proof. However, a direct proof is
easier.
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We will modify Theorem 2.5.7 into the following, known as the LAVRENTIEFF
HOMEOMORPHISM EXTENSION THEOREM:

Theorem 2.5.8 (LAVRENTIEFF). Let X and Y be completely metrizable spaces
andlet f : A — B be a homeomorphism between A C X and B C Y. Then, f
extends to a homeomorphism f : G — H between Gg sets in X and Y such that
ACG CclAand B C H CclB.

Proof. By Theorem 2.5.7, f and f ! extendtomaps g : G’ — Y and h : H' —
X,where A C G' Cc clA, B C¢ H C cIB and G’, H are Gs in X and Y,
respectively. Then, we have Gs sets G = g~'(H') and H = h™!(G’) that contain
A and B as dense subsets, respectively. Consider the maps h(g|G) : G — X and
gh|H) : H — Y. Since h(g|G)|A = id4 and g(h|H)|B = idg, it follows that
h(g|G) = idg and g(h|H) = idy. Then, as is easily observed, we have g(G) C H
and h(H) C G.Hence, f = g|G : G — H is ahomeomorphism extending /. O

In the above, when X = Y and A = B, we can take G = H, that is, we can
show the following:

Corollary 2.5.9. Let X be a completely metrizable space and A C X. Then, every
homeomorphism f : A — A extends to a homeomorphism f : G — G over a G
set G in X with A C G C cl A.

Proof. Using Theorem 2.5.8, we extend f to a homeomorphism g : G’ — G”
between Gs sets G, G” C X with A C G'NG"” and G’, G” C cl A. We inductively
define a sequence of Gs sets G’ = G; D G D -+ in X as follows:

Got1 = G, Ng(G,) N g (G,).

Then, G = ("),ey Gn is Gs in X and g(x), g7 (x) € G foreach x € G. Indeed, for
eachn € N, since x € G, 41, it follows that g(x) € G, and g~ '(x) € G,. Thus,
f = g|G : G — G is the desired extension of f. O

Additional Results on Complete Metrizability 2.5.10.

(1) Let f : X — Y be a surjective perfect map between Tychonoff spaces. Then,
X is Cech-complete if and only if ¥ is Cech-complete. When X is metrizable,
X is completely metrizable if and only if Y is completely metrizable.

Sketch of Proof. See Theorem 2.1.8.
(2) A space X is completely metrizable if it is a locally finite union of completely
metrizable closed subspaces.

Sketch of Proof. Emulate 2.4.5(2). To prove the complete metrizability of the topologi-
cal sum @, ¢ 4 X, of completely metrizable spaces, embed €D, ¢ 4 X, into the product
space A X £;(I")Y for some I'.
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2.6 Paracompactness and Local Properties

A space X is paracompact if each open cover of X has a locally finite open refine-
ment.® According to Stone’s Theorem 2.3.1, every metrizable space is paracompact.
A space X is collectionwise normal if, for each discrete collection F of closed sets
in X, there is a pairwise disjoint collection {Ur | F' € F} of open sets in X such
that FF C Uf for each F' € F. Obviously, every collectionwise normal space is
normal. In the definition of collectionwise normality, {Ur | F € F} can be discrete
in X. Indeed, choose an open set V in X so that | JF C V C clV C Uper Ur.
Then, F C V N Up foreach F € F,and {V N Uf | F € F}isdiscrete in X.

Theorem 2.6.1. Every paracompact space X is collectionwise normal.

Proof. To see the regularity of X, let A be a closed setin X and x € X \ A. Each
a € A has an open neighborhood U, in X so that x & clU,. Let U be a locally finite
open refinement of

{Uu |a € A} U {X \A} € cov(X).

Then, V = st(A,U) = (JU[A] is an open neighborhood of A. Since U is locally
finite, it follows that c1 V' = | JU[A]". Since each U € U[A] is contained in some
U,, it follows that x & clU, and hence x & cl V.

We now show that X is collectionwise normal. Let F be a discrete collection
of closed sets in X. Since X is regular, each x € X has an open neighborhood
V, in X such that card Flcl V] < 1. Let U be a locally finite open refinement of
{Vx | x € X} € cov(X). Foreach F € F, we define

Wr=X\|J{cU|UeuU. FneauU =g}

Then, W is openin X and F C Wy C st(F,U") (Fig.2.6). Since card F[clU] < 1
for each U € U, it follows that st(F, Z/ICI) NWg = @if F' # F € F. Therefore,
{Wr | F € F} is pairwise disjoint. O

Lemma 2.6.2. If X is regular and each open cover of X has a locally finite
refinement (consisting of arbitrary sets), then for any open cover U of X there is
a locally finite closed cover {Fy | U € U} of X such that Fy C U foreach U € U.

Proof. Since X is regular, we have V € cov(X) such that V! < U/. Let A be
a locally finite refinement of V. There exists a function ¢ : A — U such that
cl A C ¢(A) foreach A € A. Foreach U € U, define

Fy=|J{cd|aep™' ()} cU.

3Recall that spaces are assumed to be Hausdorff.
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St(F, U

Fig. 2.6 The pairwise disjoint collection {Wr | F € F}

Since each x € X is contained in some A € Aand A C Fy), {Fv | U € U} isa
cover of X. Since A is locally finite, each Fy is closed in X and {Fy | U € U} is
locally finite. O

We have the following characterizations of paracompactness:
Theorem 2.6.3. For a space X, the following conditions are equivalent:

(a) X is paracompact;

(b) Each open cover of X has an open A-refinement;

(c) Each open cover of X has an open star-refinement;

(d) X is regular and each open cover of X has a o-discrete open refinement;
(e) X is regular and each open cover of X has a locally finite refinement.

Proof. (a) = (b): Let Y € cov(X). From Lemma 2.6.2, it follows that X has a
locally finite closed cover {Fyy | U € U} such that Fy C U for each U € U. For
each x € X, define

We= (WU el |xeFu}\|J{Fv|Uel. x¢Fy}.

Then, W, is an open neighborhood of x in X, hence W = {W, | x € X} € cov(X).
For each x € X, choose U € U sothat x € Fy.If x € W), then y € Fy, which
implies that W), C U. Therefore, st(x, W) C U for each x € X, which means that
W is a A-refinement of Uf.

(b) = (c): Due to Proposition 2.4.3, for U/, V, W € cov(X),

Wwiviu = wiu

This gives (b) = (c).

(c) = (d): To prove the regularity of X, let A C X be closed and x € X \ 4.
Then, {X \ A, X \ {x}} € cov(X) has an open star-refinement V. Choose W € W
so that x € W. Then, st(W, W) C X \ 4, ie., W Nst(4,W) = 0. Hence, X is
regular.
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Fig. 2.7 Definition of W

Next, we show that each I/ € cov(X) has a o-discrete open refinement. We may
assume that Y = {U, | A € A}, where A = (A, <) is a well-ordered set. By
condition (c), we have a sequence of open star-refinements:

USU S Uy = -
For each (A,n) € A x N, let
Urn = J{U €U, | stU.U,) C Ur} C Uy

Then, we have
(*) st(Uy n,Up41) C Uy py1 foreach (A,n) € A x N.

Indeed, each U € U, 4[U; ] meets some U’ € U, such that st(U’,U,) C U,. Since
U C st(U',Uy,+1), it follows that

st(U,Up41) C st (U’ Up41) C st(U’, stUy41) C st(U’, U,) C Uy,

which implies that U C U, 4. Thus, we have (x).
Now, for each (A,n) € A x N, let

Vk,n = UA,n \Cl UM</\ U;L,n+1 C U)k-

Then, each V, = {V), | A € A} isdiscrete in X. Indeed, each x € X is contained
insome U € Uy11. U NV, #0,then U C st(Uyp,Upt1) C Uppt1 by ().
Hence, U NV) , = @ forall A > p. This implies that U meets at most one member
of V, — Fig.2.8.

It remains to be proved that V = |,y Vi € cov(X). Each x € X is contained
in some U € U;. Since st(U,U;) C U, for some A € A, it follows that x € U, ;.
Thus, we can define

A(x) =min{A € A | x € Uy, forsomen € N}.
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Fig. 2.8 Construction of G,

Then, x € Uy(y),, for some n € N. It follows from (x) that

cl U;KA(x) Upn+1 C st ( UM<)L(X) Uu,n+1,Un+2)

= | stWunir.Uhy2) € ) Unnso:
H<A(x) H<A(x)

hence x ¢ cl UM<A(X) Uint1. Therefore, x € Vj(x),, and hence V € cov(X).
Consequently, V is a o-discrete open refinement of /.

(d) = (e): It suffices to show that every o-discrete open cover I/ of X has a
locally finite refinement. Let U = | J, ey Uy, Where each U, is discrete in X and
U, NUy = Bifn # m.Foreach U € Uy, let Ay = U \ U,,,(\UUn). Then,
A = {Ay | U € U} is a cover of X that refines U. For each x € X, choose the
smallest n € N such that x € | JU, and let x € Uy € U,. Then, Uy misses Ay for
allU e Um>n U, For each m < n, since U,, is discrete, x has a neighborhood V,,
in X such that cardU,[V;,] < 1. Then, V = Uy N V; N --- NV, is a neighborhood
of x in X such that card A[V] < n. Hence, A is locally finite in X — Fig. 2.9.

(e) = (a): LetU € cov(X). Then U has a locally finite refinement .A. For each
x € X, choose an open neighborhood V, of x in X so that card A[V,] < Ry.
According to Lemma 2.6.2, {V, | x € X} € cov(X) has a locally finite closed
refinement F. Then, card A[F] < R, for each F € F. For each A € A, choose
Uy € U sothat A C Uy and define

Wa=Us\|J{FeF|anF =0}

Then, A C Wy C Uy and W is open in X, hence W = {W, | A € A} is an
open refinement of U. Since F is a locally finite closed cover of X, st(x, F) is a
neighborhood of x € X. Foreach F € Fand A € A, F N Wy # @ implies
F N A#@. Then, card W[F] < card A[F] < 8 for each F' € F. Since card F[x] <
No, st(x, F) meets only finitely many members of WW. Hence, W is locally finite
in X. O
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A space X is Lindelof if every open cover of X has a countable open refinement.
By verifying condition (d) above, we have the following:

Corollary 2.6.4. Every regular Lindelof space is paracompact. O

Let P be a property of subsets of a space X. It is said that X has property P
locally if each x € X has a neighborhood U in X that has property P. Occasionally,
we need to determine whether X has some property P if X has property P locally.
Let us consider this problem now. A property P of open sets in X is said to be
G -hereditary if the following conditions are satisfied:

(G-1) If U has property P, then every open subset of U has P;

(G-2) If U and V have property P, then U U V' has property P;

(G-3) If {Uy | A € A}is discrete in X and each U, has property P, then | J,., U
has property P.

The following theorem is very useful to show that a space has a certain property:

Theorem 2.6.5 (E. MICHAEL). Let P be a G-hereditary property of open sets in
a paracompact space X. If X has property P locally, then X itself has property P.

Proof. Since X has property P locally, there exists «/ € cov(X) such that each
U € U has property P. According to Theorem 2.6.3, I/ has an open refinement
V = U, en Va such that each V), is discrete in X. Each V € V has property P by
(G-1). For each n € N, let V,, = |JV,. Then, each V, has property P by (G-3),
hence V; U --- U V), has property P by (G-2). From Lemma 2.6.2, it follows that X
has a closed cover {F, | n € N} such that F, C V, for each n € N.* Inductively
choose open sets G, (n € N) so that

F,UclG,.1CG,CclG,CcViU---uUlV,,

where Gy = @ (Fig.2.7). Foreachn € N, let W, = G, \ cl G,,—,, where G_; = 0.
Then, each W, also has property P by (G-1). Let X; = Unew Wiy+i, where i =
1,2,3. Since {W3,4; | n € w} is discrete in X, each X; has property P by (G-3).
Hence, X = X; U X, U X3 also has property P by (G-2). O

There are many cases where we consider properties of closed sets rather than
open sets. In such cases, Theorem 2.6.5 can also be applied. In fact, let P be a
property of closed sets of X. We define the property P° of open sets in X as follows:

U has property P° ﬁ clU has property P.
€

It is said that P is F -hereditary if it satisfies the following conditions:

(F-1) If A has property P, then every closed subset of A has property P;

*Closed sets F,, C X, n € N can be inductively obtained so that X = |J, ., int F; U ., V;.

i>n
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Fig. 2.9 Definition of V) ,

(F-2) If A and B have property P, then A U B has property P;
(F-3) If {4, | A € A}is discrete in X and each A; has property P, then | J, ., 4x
has property P.

Evidently, if property P is F-hereditary, then P° is G-hereditary. Therefore,
Theorem 2.6.5 yields the following corollary:

Corollary 2.6.6 (E.MICHAEL). Let P be an F-hereditary property of closed sets
in a paracompact space X. If X has property P locally, then X itself has property P.
O

Additional Results on Paracompact Spaces 2.6.7.
(1) A space is paracompact if it is a locally finite union of paracompact closed
subspaces.

Sketch of Proof. Let F be a locally finite closed cover of a space X such that each
F € F is paracompact. To prove regularity, let x € X and U an open neighborhood
of x in X. Since each F' € F|[x] is regular, we have an open neighborhood Ur of x in
X such that cI(F N Ur) C U. The following Uy is an open neighborhood of x in X:

= vr\UFE\F) (U7l = st(x,]-')).

FEF]

Observe that cly Uy = clUrer(Uo N F) = Urerp cl(Uo N F) C U. Thus, it
suffices to show that X satisfies condition 2.6.3(e).

(2) Every F, subspace A of a paracompact space X is paracompact.

Sketch of Proof. It suffices to show that A satisfies condition 2.6.3(d). Let 4 =
U, en An, where each A, is closed in X. For each V € cov(4) and n € N, let

Uy ={X\ A4, U V|V eV} ecov(X),

where each V is open in X with VN4 = V. Not that V, < U, implies that
ValAnllA < V.
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(3) Let X be a paracompact space. If every open subspace of X is paracompact,
then every subspace of X is also paracompact.

Sketch of Proof. To find a locally finite open refinement of i/ € cov(A), take an open
collection ¢/ in X such that / |A U and use the paracompactness of UL{

(4) A paracompact space X is (completely) metrizable if it is locally (completely)
metrizable.

Sketch of Proof. To apply 2.4.5(2) (2.5.10(2)), construct a locally finite cover of X
consisting of (completely) metrizable closed sets.

A space X is hereditarily paracompact if every subspace of X is paracompact.
The following theorem comes from (2) and (3).

Theorem 2.6.8. Every perfectly normal paracompact space is hereditarily para-
compact. O

2.7 Partitions of Unity

A collection A of subsets of X is said to be point-finite if each point x € X is
contained in only finitely many members of A, that is, card A[x] < Ro. Obviously,
every locally finite collection is point-finite. We prove the following, which is called
the OPEN COVER SHRINKING LEMMA.

Lemma 2.7.1. Each point-finite open cover U of a normal space X has an open
refinement {Vy | U € U} such that c1Vy C U for each U € U.

Proof. Let T be the topology of X (i.e., the collection of all open sets in X) and
define an ordered set @ = (@, <) as follows:

@ ={p:U—>T|UpeyeU) = X: clpU) CU if ¢(U) # U},
= = ¢1(U) # U implies ¢1(U) = g2 (V).

Observe that if @ has a maximal element ¢, then clpy(U) C U foreach U € U.
Then, the desired open refinement {Vy | U € U} can be defined by Viy = ¢o(U).
We apply Zorn’s Lemma to show that @ has a maximal element. It suffices to
show that every totally ordered subset ¥ C @ is upper bounded in @. For each
UelletplU) = ﬂwetp Y (U). Then, o(U) # U implies Yy (U) # U for
some Yy € ¥, which means that ¢(U) = ¢y (U) because ¥ (U) = ¢y (U) or
Yw(U) = U for every ¥ € W. Thus, we have ¢ : U/ — T such that clo(U) C U
if (U) # U. To verify X = (Jy, @(U), let x € X.If 9(U) = U for some
U € U[x] then x € U = ¢(U). When ¢(U) # U for every U € U[x], by the
same argument as above, we can see that ¢(U) = ¢y (U) foreach U € U[x]. Since
U[x] is finite, we have Yo = max{yy | U € U[x]} € ¥. Then, p(U) = ¢y (U) =
Yo(U) for each U € U[x]. Since X = |J, ¢y Yo(U), it follows that x € o (U)
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(Cc U)forsome U € U, which implies x € ¢(U) because U € U[x]. Consequently,
¢ € . It follows from the definition that ¢ < ¢ forany ¢ € ¥. O

Remark 5. The above lemma can be proved using the transfinite induction instead
of Zorn’s Lemma.

Foramap f : X — R, let

suppf:cl{xeX|f(x)7é0}CX,

which is called the support of f. A partition of unity on X is an indexed family
(fi)rea of maps f; : X — Isuchthat ) ,., fi(x) = 1 foreach x € X.Itis said
that (f3)e4 is locally finite if each x € X has a neighborhood U such that

card{A € A | U Nsupp fi # 0} < No.

A partition of unity (f))ies on X is said to be (weakly) subordinated to U/ €
cov(X) if {supp fu | A € A} <U (f71((0,1]) | A € A} < U).

Theorem 2.7.2. Let U be a locally finite open cover of a normal space X. Then,
there is a partition of unity ( fu)vey on X such that supp fy C U foreach U € U.

Proof. By Lemma 2.7.1, we have {Vy | U € U}, {(Wy | U € U} € cov(X) such
thatcl Wy C Vy CclVy C U foreachU € U.ForeachU € U,letgy : X — Ibe
a Urysohn map with gy (cl Wyy) = 1 and gy (X \ Vi) = 0. Since U is locally finite
and suppgy C clVy C U foreach U € U, we can define amap ¢ : X — [1,00)
by ¢(x) = D yey u(x). Foreach U € U, let fy : X — I be the map defined by
Ju(x) = gu(x)/e(x). Then, ( fy)vey is the desired partition of unity. O

Since every open cover of a paracompact space has a locally finite open
refinement, we have the following corollary:

Corollary 2.7.3. A paracompact space X has a locally finite partition of unity
subordinated to each open cover of X. O

There exists a partition of unity which is not locally finite. For example, the
hedgehog J(N) has a non-locally finite partition of unity ( f,)ne, defined as follows:
fo(x) =1—|x|; and f,(x) = x(n) for each n € N, where

J(N) = {x € £, |x(n) €I foralln € Nand
x(n) # 0 atmostone n € N} C {;.
However, the existence of a partition of unity implies the existence of a locally finite
one.

Proposition 2.7.4. If X has a partition of unity (f1)rea then X has a locally finite
partition of unity (g2)rea such that supp g, C f,7'((0, 1]) for each A € A.
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Proof. We define h : X — Iby h(x) = sup;¢, fa(x) > 0. To see the continuity
of h, for each x € X, choose A(x) € Fin(A) so that ZAGA(X) filx) >1— %h(x).
Then, fy(x) < %h(x) for every A € A\ A(x), so h(x) = fix)(x) for some
A(x) € A(x). Since ), ¢ A(x) Sr and fi(x) are continuous, x has a neighborhood Uy
in X such that

1 1
o A >1- Fh() and fio(y) > Sh(x) forall y € Uy
LEA(x)

Thus, fi(y) < %h(x) < faw)(y) forA € A\ A(x) and y € U,. Therefore,
h(y) = max {fi(y) | A € A(x)} foreach y € U,.

Hence, A is continuous.
Foreach A € A, letk) : X — I be a map defined by

kx(x) = max 0, fo(x)— %h(x) .

Then, suppk, C fA_l ((0,1]). Indeed, if f;(x) = 0 then x has a neighborhood U
such that f;(y) < %h(y) for every y € U, which implies x ¢ suppk,. For each
x € X, take U, and A(x) as in the proof of the continuity of /. Choose an open
neighborhood V, of x in X so that V, C U, and h(y) > %h(x) forall y € V,.If
A e A\ A(x) and y € V,, then

A0) = 5h0) < A0) = 55 <0,

which implies that V, Nsuppky = @ forany A € A\ A(x). Thus, (k3)aea is locally
finite. As in the proof of Theorem 2.7.2, foreach A € A, let g, : X — I be the map

defined by g (x) = ka(x)/@(x), where p(x) = >, ., ka(x). Then, (g2)rex is the
desired partition of unity on X. O

The paracompactness can be characterized by the existence of a partition of unity
as follows:

Theorem 2.7.5. A space X is paracompact if and only if X has a partition of unity
(weakly) subordinated to each open cover of X.

Proof. The “only if” part is Corollary 2.7.3. The “if” part easily follows from
Proposition 2.7 4. O

It is said that a real-valued function f : X — R is lower semi-continuous,
abbreviated as ls.c. (or upper semi-continuous, u.s.c.) if ! ((¢,00)) (or
f 7' ((—00,1))) is open in X for each t € R. Then, f : X — R is continuous
if and only if f is l.s.c. and u.s.c.

Theorem 2.7.6. Let g,h : X — R be real-valued functions on a paracompact
space X suchthat g isu.s.c., hisl.s.c. and g(x) < h(x) foreach x € X. Then, there
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existsamap f : X — Rsuchthat g(x) < f(x) < h(x) for each x € X. Moreover,
givenamap fy: A — Rofaclosed set A in X such that g(x) < fo(x) < h(x) for
each x € A, the map f can be an extension of fj.

Proof. Foreach g € Q, let

Uy = g ((—00,9)) N h™' (g, 00)).

For each x € X, we have ¢ € Q such that g(x) < ¢ < h(x),henceld = {U, | q €
Q} € cov(X). By Corollary 2.7.3, X has a locally finite partition of unity ( f1)iea
subordinated to /. For each A € A, choose g(4) € Q so that supp f, C U,w).
Then, we define a map f : X — R as follows:

f) =g frlx).

A€
Foreachx € X,let{A € A | x € supp fa} = {A1,--+, A, }. Since x € (/= Uyn,)s
we have g(x) < q(A;) < h(x) foreachi = 1,--- ,n, hence it follows that

g() = g0 fi,(x) < f(x) =D q(hi) fo, (x)

i=1 i=1

< h(x) =" h(x) fi, (x).

i=1

To prove the additional statement, apply the Tietze Extension Theorem 2.2.2 to
extend fo to amap f’ : X — R. Then, we have an open neighborhood U of A4 in
X such that g(x) < f'(x) < h(x) foreach x € U.Letk : X — I be a Urysohn
map with k(4) = 1 and k(X \ U) = 0. We can define f : X — R as follows:

) = (1 =k(x) f(xX) + k(x) f'(x).
Therefore, f|A = foand g(x) < f(x) < h(x) foreachx € X. O
Refinements by Open Balls 2.7.7.

(1) Let X be a metrizable space and U/ an open cover of X. Then, X has an
admissible metric p such that

{Ep(x,1)|x EX} < U.

Moreover, for a given d € Metr(X), p can be chosen so that p > d (hence, if
d is complete then p is) and if d is bounded then p is also bounded.

Sketch of Proof. Take an open A-refinement V of I/ and a locally finite partition of
unity (f3)rea on X subordinated to V. For a given d € Metr(X), the desired metric
p € Metr(X) can be defined as follows:

p(x.y) =d(x.y)+ Y [fix) = L) = d(x.y).

A€EA
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If p(x,y) < lthen x,y € ffl((O, 1]) C supp f; for some A € A, otherwise we
have

YA = LOI=D AW+ Y fil)=2>1

reA reA reA
Then, it follows that Ep(x, 1) Cst(x, V).

Sketch of another Proof. The above can be obtained as a corollary of 2.6.3 and 2.4.2
(or 2.4.4) as follows: By 2.4.2 (or 2.4.4), X has a sequence of open covers

A * * *
Uy >Uy > U3 > - (()I‘Z/{1>Z/{2>Z,{3>...)

such that {st(x,,) | n € N} is a neighborhood basis of each x € X. By 2.6.3, we can
inductively define V, € cov(X), n € N, such that

A
v)l < Z/{n and Vn < V)l*l (v)l i v)l*l)v
where Vy = U. Let d’ € Metr(X) be the bounded metric obtained by applying

Corollary 2.4.2 (or 2.4.4) with Remark 3 (or 4). For a given d € Metr(X), the desired
p € Metr(X) can be defined by p = 84’ + d (or p = 2d’ + d).

(2) Let X = (X, d) be a metric space. For each open cover U/ of X, there is a map
y : X — (0, 1) such that

{B(x.y(x)) | x e X} <U.
Sketch of Proof. For each x € X, let

r(x) = sup min{l, d(x, X \ U)} = sup d(x, X \ U),
veu veu

where d = min{l,d}. Show that r : X — (0, 00) is Ls.c. Then, we can apply
Theorem 2.7.6 to obtain amap y : X — (0, 1) such that y(x) < r(x) foreach x € X.

Remark. If U is locally finite, r is continuous (in fact, r is 1-Lipschitz), so we can
define y = %r.

2.8 The Direct Limits of Towers of Spaces

In this section, we consider the direct limit of a tower X; C X, C --- of spaces,
where each X, is a subspace of X, 1. The direct limit lim X, is the space | J, cyy X»

endowed with the weak topology with respect to the tower (X},),en, that is,
UcClimX,isopeninlimX, & VneN,UNX,isopenin X,
— —

(equiv. A ClimX,isclosedinlimX, < Vn e N, AN X, is closed in X,,).
— —



56 2 Metrization and Paracompact Spaces

In other words, the topology of h_n)l X, is the finest topology such that every
inclusion X,, C 1£>n X, is continuous; equivalently, every X, is a subspace of h_r)n X,
For an arbitrary space Y,

f li_r)nX,, — Y is continuous < Vn € N, f|X, is continuous.

Remark 6. Each point x € h_r)n X, belongs to some X, (). If V' is a neighborhood of
X in li_n)lX,,, then V' N X, is a neighborhood x in X, for every n > n(x). However,
it should be noted that the converse does not hold. For example, consider the direct
limit R® = li_n)lR” of the tower R € R? ¢ R3 C ---, where each R” is identified
with R” x {0} C R"TL. Let W = |, cn(—27",27")" C R®. Then, every W N R”
is a neighborhood of 0 € R” because it contains (—27",27")". Nevertheless, W is
not a neighborhood of 0 in R*°. Indeed,

(intgee W) NR" C intge (W NR") = (=27",27")" foreachn € N.

Then, it follows that (intgee W) NR C (), en(—27".27") = {0}, which means that
(intgec W) N R = @, and hence 0 ¢ intgeo W.

It should also be noted that the direct limit lim X, is 77 but, in general,
non-Hausdorff. Such an example is shown in 2.10.3.

As is easily observed, li_r)an(,-) = l'i)an forany n(l1) < n(2) <--- € N. Itis
also easy to prove the following proposition:
Proposition 2.8.1. Let X; C X, C --- andY; C Y, C --- be towers of spaces.

Suppose that there exist n(1) < n(2) < ---, m(1) < m(Q2) < --- € N and maps
fi : Xn(i) — Ym(i) and gi: Ym(i) g Xn(i+1) such that g,'f,' = ian(i) and fi+1gi =

idy,,;,, that is, the following diagram is commutative:
X,,(l) C Xn(z) C Xn(3) C
81 82
il l / f J/ / f J/
Ym(l) C Ym(z) C Ym(3) C
Then, lim X,, is homeomorphic to lim Y,,. O
— —

Remark 7. Tt should be noted that lim X, is not a subspace of lim Y,, even if each
X, is a closed subspace of V. For example, let Y,, = R be the real line and

X, ={00umr ' 1]cy, =R

Then, I = UneN X, R = h_r)n Y., and 0 is an isolated point of li_r)an but is not in
the subspace I C R.
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On the other hand, as is easily observed, if each X, is an open subspace of Y,
then h_n>1 X, is an open subspace of h_n>1 Y,.

The following proposition is also rather obvious:

Proposition 2.8.2. Let Y| C Y, C --- be a tower of spaces. If X is a closed (resp.
open) subspace of Y = h_n)l Y, then X = h_n)l(X NY,). Equivalently, if each X NY,,
is closed (resp. open) in Y,, then h_r)n(X NYy) is a closed (resp. open) subspace of Y .

O
Remark 8. In general, X # Yi)n(X NY,) for a subspace X C h_r)n Y,. For example,
let Y,, be a subspace of the Euclidean plane R? defined by

Yn = {(Os O)s (i_lvo)v (j_lvk_l)

i.keN, j=1,...n}

Observe that A = {(j ', k") | j,k € N} is dense in h_r)n Y., hence it is not closed
in the following subspace X of h_n)l Y,:

X ={0.03U{G k)| jkeN},

whereas A is closed in h_n)l(X nYy,).
With regard to products of direct limits, we have:

Proposition 2.8.3. Let X; C X, C --- be a tower of spaces. If Y is locally
compact then (h_n)l X)) xY = li_n)l(Xn x Y) as spaces.

Proof. First of all, note that

(lim X,,) x ¥ = lim(X, x ¥) = (X x Y) as sets.

neN

Itis easy to see thatid : li_n)l(X,, xY) — (li_n)l X,) xY is continuous. To see this is an
open map, let W be an open set in lim(X, xY'). For each (x, y) € W, choosem € N
sothatx € X,,. Since Y is locally compact, there exist open sets U,, C X, and V' C
Y suchthatx € Uy, y € V,U,, xcly V C W and cly V is compact. Then, by the
compactness of cly V', we can find an open set Uy, 1 C X+ suchthat U, C U,
and U, 4+ x cly V' C W. Inductively, we can obtain U,, C U, 4+ C Up4r C -+
such that each U, is open in X, and U, xcly V. C W.Then, U = |J,~,, U, is open
in lim X,,, and hence U x V is an open neighborhood of (x, y) in (li_n)l_X,,) x Y with
U xV C W.Thus, W is open in (li_r)n X,) xY. O

Proposition 2.8.4. Let X1 C X, C - and Y, C Y, C -+ be towers of spaces. If
each X, and Y, are locally compact, then

li_n)lX,, X li_n)lY,, = li_n)l(Xn x Y,) as spaces.
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Proof. First of all, note that

lim X, x lim ¥, = lim(X, x ,) = J(Xn x Y,) as sets.

neN

It is easy to see that id : lim(X,, x ¥,;) — lim X, x lim Y}, is continuous. To see that
this is open, let W be an open set in lgn(X,, x Y,). For each (x,y) € W, choose
m € N so that (x,y) € X,, x Y,,. Since X,, and Y,,, are locally compact, we have
open sets U,, C X, and V,,, C Y, such that

x €Uy, yeVy, cly, Uy xcly, V,y CW

and both cly,, Uy, and cly,, V, are compact. Then, by the compactness of cly,, U,
and cly, V,,, we can easily find open sets Uy,+1 C X;p41 and Vi1 C Yyyq1 such
that

cly,, Un C Upn1, cly, Vin C Vg, el 4 Ungr xcly, o Vit CW

and both cly, ,, Un+1 and cly, , Vi,41 are compact. Inductively, we can obtain
Upn C Upy1 C Uygr C +-- and V; C Vyyy1 C Vipgo C --- such that U,
and V, are open in X, and Y,, respectively, cly, U, and cly, V, are compact, and
cly, Uy xcly, V, € W.Then, U = J,~,,Us and V = |J,~,, V» are open in
11_11)1 X, and h_n)l Y, respectively, and (x, y) € U x V C W. Therefore, W is open in
lim X, x limY,,. O
— —

A tower X; C X, C --- of spaces is said to be closed if each X, is closed in
Xu+1; equivalently, each X, is closed in the direct limit h_n)l X, . For a pointed space
X = (X, %), let

X5 = {x € X" | x(n) =  except for finitely many n € N} ¢ X™.

Identifying each X" with X" x {(*,*,...)} C XY, we have a closed tower X C
X*c Xx¥c-- with X_}Rf = U,en X" We write X = li_r)nX", which is the space
X }Rf with the weak topology with respect to the tower (X"),en. A typical example
is R®, which appeared in Remark 6.

Proposition 2.8.5. Let X = (X, *) be a pointed locally compact space. Then, each
x e X® = h_r)n X" has a neighborhood basis consisting of X*° N [],ey Va, where
each V,, is a neighborhood of x(n) in X".>

Sketch of Proof. Let U be an open neighborhood of x in X°°. Choose ny € N so that
x € X" Foreachi = 1,...,nq, each x(i) has a neighborhood V; in X such that cl V; is

SIn other words, the topology of 1'£>nX " is a relative (subspace) topology inherited from the box

topology of XN,
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compact and [/, cl V; C U N X", Recall that we identify X"~ = X"~ x {*} C X".
For n > ng, we can inductively choose a neighborhood V,, of x(n) = * in X so that
cl V, is compact and []7_, cl V; C U N X", where we use the compactness of ]_[,";: clV;

(= ]_[::: clV; x {*}) This is an excellent exercise as the first part of the proof of Wallace’s
Theorem 2.1.2.

Remark 9. Proposition 2.8.3 does not hold without the local compactness of ¥ even
if each X, is locally compact. For example, (li_n>1 R™") x £, # li_n)1(R” x {£5). Indeed,

each R” is identified with R"” x {0} C I@ C £,. Then, we regard
(li_n)l R") x £, = li_n)l(R" x {p) = R?} x £, as sets.

Consider the following set:
D= {(k_len,n_lek) € RI? x £y | k,ne N},

where each e; € R§ C £, is the unit vector defined by e;(i) = 1 and e; (j) = O for
j #i.Foreachn € N, let

D, = {(k 'e,.n""ex) | k € N}.

Since {n~'e; | k € N} is discrete in £,, it follows that D, is discrete (so closed)
in R" x £,, hence it is also closed in R™ x £, for every m > n. Observe that
D N (R" x £,) = J'_, D;. Then, D is closed in 1i_n)1(R” X £3). On the other hand,
for each neighborhood U of (0, 0) in (h_I)n R"™) x £,, we can apply Proposition 2.8.5
totake §; > 0 (i € N)and n € N so that

(le} n H[—Si,g,’]) X}’l_lB[2 cU,
ieN

where By, is the unit closed ball of £,. Choose k € N so that k~! < §,. Then,
(k'e,,n"'ey) € U, which implies U N D # @. Thus, D is not closed in
(h_r)n]R )Xﬁz.

Remark 10. In Proposition 2.8.4, it is necessary to assume that both X, and Y,

are locally compact. Indeed, let X, = R" and ¥, = ¢, for every n € N. Then,
h_I)an X 1£)n Y, # lim(X, x Y,), as we saw in the above remark. Furthermore,

this equality does not hold even if X,, = Y,,. For example, li_n)l(Zz)” X li_n)1(€2)” #
lim((£2)" x (£2)"). Indeed, consider
H

lim(£,)" > lim(£)" = lim((€2)" x (£2)") = (£2)s X (L)} as sets.

Identifying R" = (Re;)" C (£2)" and {5 = £, x {0} C (£,)"}, we can also consider

(Yi)nR”) x4y = l'i)n(R” x {y) = RTC x €, C (62)§ X (EZ)BNC as sets.
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By Proposition 2.8.2, (l'i)nR”) x £, and li_r)n(R" x £,) are closed subspaces of
1 n 1 n 1 n n 1 1 n
11)11@2') xh_’11>n(€2) andh_1>n€(€2) anz}- ),ressectlYely. Asnwe saw’?bove, (gnR )%
£ # T (R £5). Thus, Tim(€a)" x lim(€2)" # lim((€2)" X (€2)").

Theorem 2.8.6. For the direct limit X = lim X,, of a tower X| C X, C --- of
; —
spaces, the following hold:

(1) Every compact set A C X is contained in some X,.

(2) For eachmap f : Y — X from a first countable space Y to X, each point
y € Y has a neighborhood V in Y such that the image f(V') is contained in
some X,,. In particular, if A C X is a metrizable subspace then each point of A
has a neighborhood in A that is contained in some X,,.

Proof. (1): Assume that A is not contained in any X,,. For each n € N, take x, €
A\ X, andlet D = {x, | n € N} C A. Then, D is infinite and discrete in li_r)nX,,.
Indeed, every C C D is closed in h_n)1 X, because C N X, is finite for each n € N.
This contradicts the compactness of A.

(2): Let {V, | n € N} be a neighborhood basis of y in Y such that V,, C V,_;.
Assume that f(V,) ¢ X, for every n € N. Then, taking y, € V,, \ f~1(X,), we
have a compactset A = {y, | n € w}in Y. Due to (1), f(A) is contained in some
X, and hence f(y,) € X,,. This is a contradiction. Therefore, f(V,) C X, for
some n € N. O

By Theorem 2.8.6(2), the direct limit of metrizable spaces is non-metrizable in
general (e.g., h_n)l R" is non-metrizable). However, it has some favorable properties,
which we now discuss.

Theorem 2.8.7. For the direct limit X = lim X,, of a closed tower X1 C X, C -+
. . —
of spaces, the following properties hold:

(1) If each X, is normal, then X is also normal;

(2) If each X, is perfectly normal, then X is also perfectly normal;

(3) If each X, is collectionwise normal, then X is also collectionwise normal;
(4) If each X, is paracompact, then X is also paracompact.

Proof. (1): Obviously, every singleton of X is closed, so X is 7). Let A and B be
disjoint closed sets in X . Then, we have a map f; : X; — I'suchthat fi(ANX;) =
0 and fi(B N X;) = 1. Using the Tietze Extension Theorem 2.2.2, we can extend
fitoamap f, : X, — I'suchthat /,(A N X;) =0and f,(B N X;) = 1. Thus, we
inductively obtain maps f, : X, — I, n € N, such that

fann—l = fn—lv fn(A N Xn) =0 and fn(B N Xn) =1

Let f : X — I be the map defined by f|X, = f, forn € N. Evidently, f(4) =0
and f(B) = 1. Therefore, X is normal.

(2): From (1), it suffices to show that every closed set A in X is a G set. Each X,
has open sets G, ,,, m € N, suchthat AN X,, = (),,ey Gnm- Foreachn,m € N, let
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Gy, = GumU(X\X,).Since X, is closed in X, each G, is openin X. Observe
that A = (), ,,en G- Hence, A is Gs in X.

(3): Let F be a discrete collection of closed sets in X. By inductionon n € N,
we have discrete collections {UF | F € F} of open sets in X, such that (F N
X,) Ucl UnF_1 C UnF for each F' € F, where UOF =@.Foreach F € F,let Ur =
UneN UnF. Then, F C Ur and U is open in X because Ur N X, = Ui>n Ul-F nx,
isopenin X, foreachn € N.If F # F’, then Ur N Ups = @ because -

7

Ul nuf cul iy NUL iy =0 foreachi,j € N.
Therefore, X is collectionwise normal.

(4): Since every paracompact space is collectionwise normal (Theorem 2.6.1), X
is also collectionwise normal by (3), so it is regular. Then, due to Theorem 2.6.3,
it suffices to show that each &/ € cov(X) has a o-discrete open refinement. By
Theorem 2.6.3, we have | J,,ey Vam € cov(X,), n € N, such that each V, ,, is
discrete in X, and V,,,, < U. Foreach V € V), ,,, choose Uy € U so that V C Uy.
Note that each V¢, is discrete in X, and recall that X is collectionwise normal.
So, X has a discrete open collection {Wy | V € V,,,} such that cl1V C Wy. Let
Wam = Wy NUy | V € V). Then, W = U, yeny Wam € cov(X) is a o-
discrete open cover refinement of /. O

From Theorems 2.8.7 and 2.6.8, we conclude the following:

Corollary 2.8.8. The direct limit of a closed tower of metrizable spaces is perfectly
normal and paracompact, and so it is hereditarily paracompact. O

2.9 The Limitation Topology for Spaces of Maps

Let X and Y be spaces. Recall that C(X, Y) denotes the set of all maps from X
to Y. Foreach f € C(X,Y) and U/ € cov(Y), we define

U(f)={g € C(X.Y) | gisU-loseto f}.

Observe that if V € cov(Y) is a A-refinement (or a star-refinement) of I/ then
V(g) CU(f) foreach g € V(f). Then, in the case that Y is paracompact, C(X,Y)
has a topology such that {{/(f) | U € cov(Y)} is a neighborhood basis of f. Such
a topology is called the limitation topology.

The limitation topology is Hausdorff. Indeed, let f # g € C(X,Y). Then f(xo) # g(xo)
for some xo € X. Take disjoint open sets U, V C Y with f(xo) € U and g(x¢) € V, and
define

U=AU Y \{f(x)}}, V=LAV, Y \ {g(x0)}} € cov(Y).
Then, U(f) N V(g) = 0.
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Remark 11. In the above, U(f) is not open in general. For example, consider the
hedgehog J(N) = |, cn1en (see Sect.2.3) and the map f : N — J(N) defined
by f(n) = e, foreachn € N, where e,(n) = 1 and e, (i) = 0 if i # n. For each
n €N, let

U, =Te, UB(0,n") c J(N).

Then, Y = {U, | n € N} € cov(J(N)). We show that U(f) is not open
in C(N, J(N)) with respect to the limitation topology. Indeed, L/( f) contains the
constant map fy with fo(N) = {0}. For each V € cov(J(N)), choose k € N so that
B(0,k71) C V, for some V, € V. Then, V(f;) contains the map g : N — J(N)
defined by g(n) = (k + 1)"'e,4; for each n € N. Observe that g(k + 1) =
(k+ 1D egys € Uppr but f(k +1) = exq1 € U, if n # k + 1, which means that
g U(S). Thus, V(fo) € U(f). Hence, U( f) is not open.

The set of all admissible bounded metrics of a metrizable space Y is denoted
by Metr?(Y). If ¥ is completely metrizable, let Metr¢(Y) denote the set of all
admissible bounded complete metrics of Y. The sup-metric on C(X,Y) defined
by d € Metr?(Y) is denoted by the same notation d. For each f € C(X,Y) and
d € Metr?(Y), let

Ua(f) =Ba(f.1) = {g € C(X.Y) | d(f.g) < 1}.

Then, U,.4(f) = Bys(f.n~") foreachn € N.

Proposition 2.9.1. When Y is metrizable, {Us(f) | d € Metr?(Y)} is a
neighborhood basis of f € C(X,Y) in the space C(X,Y) with the limitation
topology. If Y is completely metrizable, then {U;(f) | d € Metr°(Y)} is also a
neighborhood basis of f € C(X,Y).

Proof. For eachd € Metr? (Y), let
U={By(y.3) | yeY}ecov(l).

Then, clearly U(f) C Uy(f) for each f € C(X,Y). Conversely, for each U €
cov(Y), choose d € Metr® (Y) (or d € Metr®(Y)) so that {B,(y,1) | y e Y} <U
(cf. 2.7.7(1)). Thus, Uy (f) C U(f) foreach f € C(X,Y). O

For a space X, let Homeo(X) be the set of all homeomorphisms of X onto itself.
The limitation topology on Homeo(X) is the subspace topology inherited from
the space C(X, X) with the limitation topology. If X is metrizable, for each f €
Homeo(X) and d € Metr?(X), let

Ua+(f) = Ba=(f.1) = {g € Homeo(X) | d*(f.g) < 1},

where d* is the metric on Homeo(X) defined as follows:

d*(f.g)=d(f.g) +d(f~ g™,
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The following is the homeomorphism space version of Proposition 2.9.1:

Proposition 2.9.2. When X is metrizable, {Ug+(f) | d € Metr®(X)} is a
neighborhood basis of f € Homeo(X) in the space Homeo(X) with the limitation
topology. If X is completely metrizable, then {Uy+(f) | d € Metr(X)} is also a
neighborhood basis of f € Homeo(X).

Proof. Foreach f € Homeo(X) and d € Metr® (Y), let
U={By(x.1/5)N f (Ba(fT'(x).1/5)) | x € X} € cov(X).

Then, U(f) NHomeo(X) C Uy (f). Indeed, foreach g € U(f) NHomeo(X) and
x € X, wecanfind y € X such that

g7 ), x = g(g™ () € £ (Ba (ST (). 1/5)),

which means that d (g~ (x), f='(y)) < 1/5and d(f~'(x), f~'(y)) < 1/5, hence
d(f~'(x),g7"(x)) < 2/5. Therefore, d(f~', g~!) < 2/5. On the other hand, it is
easy to see that d( f, g) < 2/5. Thus, we have d*(f, g) < 1, thatis, g € U= (f).
Conversely, for each f € Homeo(X) and U € cov(X), choose d € Metr?(X)
(or d € Metr(X)) so that {By(y,1) | y € Y} < U (cf. 2.7.7(1)). Then,
Us=(f) C U(S). Indeed, for each g € Uy=(f) and x € X, d(f(x),g(x)) < 1
and B, (f(x), 1) is contained in some U € U, hence f(x),g(x) € U. Therefore,

gelu(f). O
If Y = (Y, d) is a metric space, foreach f € C(X,Y) and ¢ € C(Y, (0, 00)), let

Ne(f) =1{g € C(X.Y) | Vx € X, d(f(x). g(x)) < a(f(x))}.

Proposition 2.9.3. When Y = (Y, d) is a metric space, {No(f) | ¢eC(Y, (0, 0))}
is a neighborhood basis of f € C(X,Y) in the space C(X,Y) with the limitation
topology.

Proof. Let a € C(Y, (0, 00)). For each y € Y, choose an open neighborhood U,
so that diam U, < %a(y) and a(y’) > %oc(y) for all y’ € Uy. Thus, we have
U={U, |y e} ecov(l) Let f € C(X,Y) and g € U(f). Then, for
each x € X, we have some y € Y such that f(x),g(x) € U,, which implies

d(f(x),g(x)) < 5a(y) < a(f(x)). Therefore, U(f) C Nu(f).
Conversely, let U € cov(Y). Foreach y € Y, let

y(y) = sup {r >0 | AU € U such that B(y,r) C U}.
Then, y : ¥ — (0, 00) is lower semi-continuous. Hence, by Theorem 2.7.6, we

have o € C(Y, (0, 00)) such that o < y, which implies that N, (f) C U(f) for any
feCX,Y). O
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The following two theorems are very useful to show the existence of some types
of maps or homeomorphisms:

Theorem 2.9.4. For a completely metrizable space Y, the space C(X,Y) with the
limitation topology is a Baire space.

Proof. Let G,, n € N, be dense open sets in C(X,Y). To see that (), ey Gn is
dense in C(X,Y), let f € C(X,Y) and d € Metr(Y). We can inductively choose
gn € C(X,Y)and d, € Metr(Y), n € N, so that

&n € U2d,,71(gn—l) N Gna Ud,, (gn) C Gn and dn > 2dn—la

where go = f and dy = d. Observe d,, < 27"d,;+, for each m,n € w. Since
d(gn—1.82) < 27""'d,_1(gn—1.84) < 27" foreach n € N, (g,)nen is d-Cauchy.
From the completeness of d, (g,)n,en converges uniformly to g € C(X,Y) with
respect to d. Since

d(fig) <) dg-1.8) <) 27" =1,

neN neN

we have g € Uy (f) and, foreachn € N,

dn(gn.8) = Z dn(Gn+i—1: &n+i)

ieN

< Z2_i+ldn+i—l(gn+i—l7gn+i) < Zz_i =1,
ieN ieN
hence g € Uy, (g,) C Gy. Thus, Ug(f) N (),,en Gn # 9, hence (), G is dense
in C(X,Y). O

In the above proof, replace C(X, Y) and U,, with Homeo(X) and Uy, respec-
tively. Then, we can see that (g, ),en is d *-Cauchy. From the completeness of d *,
we have g € Homeo(X) with lim, e d*(gn,g) = 0. By the same calculation,
we can see d,'(g,,g) < 1, thatis, g € Uyx(g) C G, for every n € N. Then,
Ug«(f) N(,en Gn # 9. Therefore, we have:

Theorem 2.9.5. For a completely metrizable space X, the space Homeo(X) with
the limitation topology is a Baire space. O

Now, we consider the space of proper maps.

Proposition 2.9.6. Let U be a locally finite open cover of Y such that clU is
compact for every U € U (so Y is locally compact). If amap [ : X — Y is
U-close to a proper map g then f is also proper.

Proof. For each compact set A in Y, f~1(A) C g~ '(st(A,U")). Since U is
locally finite, it follows that Z/°/[4] is finite, and hence st(A4,U") is compact. Then,
g ' (st(4,U)) is compact because g is proper. Thus, its closed subset f~!(A) is
also compact. O
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Let C”(X,Y) be the subspace of C(X, Y consisting of all proper maps.® Then,
Proposition 2.9.6 yields the following corollary:

Corollary 2.9.7. If Y is locally compact and paracompact, then CF(X,Y) is
clopen (i.e., closed and open) in the space C(X,Y) with the limitation topology,
where X is also locally compact if CY(X,Y) # 0. O

From Theorem 2.9.4 and Corollary 2.9.7, we have:

Theorem 2.9.8. For every pair of locally compact metrizable spaces X and Y, the
space CP (X, Y) with the limitation topology is a Baire space. O

Some Properties of the Limitation Topology 2.9.9.
(1) For each paracompact space Y, the evaluation map
ev: X xCX,Y)o(x,f)— f(x)eY

is continuous with respect to the limitation topology.

Sketch of Proof. For each (x, f) € X x C(X,Y) and each open neighborhood V
of f(x) in Y, take an open neighborhood W of f(x) in Y so that c1W C V and
let V ={V,X \ clW} € cov(Y). Show that (x’, /) € f~1(W) x V(f) implies
fxev.

(2) Ifboth Y and Z are paracompact, the composition
C(X.Y)xC(Y.Z) 3 (f.g) +> g o f € C(X. Z)

is continuous with respect to the limitation topology.

Sketch of Proof. For each (f,g) € C(X,Y) x C(Y,Z) and U € cov(Z),let V €
cov(Z) be a star-refinement of /. Show that /" € g~ (V)(f) and g’ € V(g) implies

g'of el(gof).

(3) For every paracompact space X, the inverse operation
Homeo(X) 3 h +— h™' € Homeo(X)

is continuous with respect to the limitation topology. Combining this with (1),
the group Homeo(X) with the limitation topology is a topological group.

Sketch of Proof. Let h € Homeo(X) and U € cov(X). Show that g € h(U/)(h) implies
—1 -1
g teum).

Remark 12. If Y = (Y,d) is a metric space, for each f € C(X,Y) and y €
C(X, (0,0)), let

V,(f) ={g € C(X.Y) | Vx € X, d(f(x),g(x)) < y(x)}.

STf Y is locally compact, C*(X,Y) is the subspace of C(X,Y) consisting of all perfect maps
(Proposition 2.1.5).
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We have the topology of C(X,Y) such that {V,,(f) | y € C(X,(0,00))} is a
neighborhood basis of f. This is finer than the limitation topology. In general, these
topologies are not equal.

For example, let y € C(N, (0, 0o0)) be the map defined by y(n) = 27" forn € N.
Then, V,,(0) is not a neighborhood of 0 € C(N, R) in the limitation topology. Indeed,
for any ¢ € C(R, (0,00)), we define g € C(N,R) by g(n) = %oc(O) for every
n € N. Then, g € Ny(0) but g & V,(0). Thus, N,(0) ¢ V,(0). Moreover, the
composition

C(N,R)xC(R,R)> (f.g) > go f € C(N,R)

is not continuous with respect to this topology.

Indeed, let y be the above map. For any o € C(R, (0, 00)), we have n € N such that
27" < 1a(0). Let h = id 4+ 1o € C(R,R). Then, h € V,(id) but 1 0 0 & V, (id o 0)
because h o 0(n) = h(0) = %O((O) > 27" = y(n). (Here, id can be replaced by any
g € CR,R).)

2.10 Counter-Examples

In this section, we show that the concepts of normality, collectionwise normality,
and paracompactness are neither hereditary nor productive, and that the concepts
of perfect normality and hereditary normality are not productive either. Moreover,
we show that the direct limit of a closed tower of Hausdorff spaces need not be
Hausdorff.

The following example shows that the concepts of normality, collectionwise
normality and paracompactness are not hereditary.

The Tychonoff plank 2.10.1. Let [0, w,) be the space of all countable ordinals
with the order topology. The space [0, w] is the one-point compactification of the
space [0, wy). Let [0, ] be the one-point compactification of the space w = [0, w)
of non-negative integers. The product space [0, w] X [0, w] is a compact Hausdorff

space, hence it is paracompact. The following dense subspace of [0, w1] X [0, w] is
called the Tychonoff plank:

T =[0,01] x [0, 0] \ {(@1, w)}.

We now prove that

— The Tychonoff plank T is not normal.

Proof. We have disjoint closed sets {w; } X [0, @) and [0, ®;) x{w} in T'. Assume that
T has disjoint open sets U, V such that {w;} x [0,w) C U and [0, w;) x {w} C V.
For each n € w, choose o, < w; so that [, 1] x {n} C U.Leta = sup,cyty <
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{a} x [n, 0]
¢ \| —o (01, )

O] |_ el
v [

| -- [Ol,, (1)1] X {n}
Ui
‘ .

oy \a)l

[0,0] @=sup,eyt; <
Fig. 2.10 Tychonoff plank

wy. Then, [, w;] x N C U. On the other hand, we can choose n € N so that
{a} x [n,w] C V. Then, U NV # @, which is a contradiction (Fig. 2.10). O

The next example shows that the concepts of normality, perfect normality, hered-
itary normality, collectionwise normality, and paracompactness are not productive.

The Sorgenfrey Line 2.10.2. The Sorgenfrey line S is the space R with the
topology generated by [a,b), a < b. The product S? is called the Sorgenfrey plane.
These spaces have the following properties:

(1) S is a separable regular Lindeldf space, hence it is paracompact, and so is
collectionwise normal;

(2) S is perfectly normal, and so is hereditarily normal;

(3) S? is not normal.

Proof. (1): It is obvious that S is Hausdorff. Since each basic open set [a, b) is
also closed in S, it follows that S is regular. Clearly, Q is dense in S, hence S is
separable. To see that S is Lindelof, let i/ € cov(S). We have a functiony : § — Q
so that y(x) > x and [x, y(x)) C U forsome U € U. Then, {[x,y(x)) | x € S} €
cov(S) is an open refinement of /. For each ¢ € y(S), if there exists miny~'(g),
let R(g) = {miny~!(g)}. Otherwise, choose a countable subset R(q) C y~'(g) so
that inf R(g) = infy~'(g), where we mean y~'(g) = —oo if y!(¢) is unbounded
below. Then, the following is a subcover of {[x, y(x)) | x € S} € cov(S):

{lz.9) | g € ¥(S). z € R(g)} € cov(S),

which is a countable open refinement of /.

(2): Let U be an open set in S. We have a function y : U — Q so that y(x) > x
and [x, y(x)) C U.Then, U = |J, ¢y [x. y(x)). By the same argument as the proof
of (1), we can find a countable subcollection

{lai.bi) | i e N} C {[x,y(x)) | x € U}

such that U = UieN[a,-,b,-), hence U is Fy in S. Thus, S is perfectly normal.
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0 1 0 1
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1 Q = — = —
Ao Y A
X, X, X = xNyu{o,1}
Fig. 2.11 Non-Hausdorff direct limit

(3): As we saw in the proof of (1), Q is dense in S, hence Q? is dense in S2. It
follows that the restriction C(S2,R) > f > f|Q? € R? is injective. Therefore,

cardC(SZ,R) < cardRQz =% =,

On the other hand, D = {(x,y) € S? | x +y = 0} is a discrete set in S2. Then, we
have
cardC(D,R) = card R? = 2¢ > ¢ > card C(S%, R).

If S? is normal, it would follow from the Tietze Extension Theorem 2.2.2 that the

restriction C(S2,R) 3 f + f|D € C(D,R) is surjective, which is a contradiction.
Consequently, S? is not normal. O

Finally, we will construct a closed tower such that the direct limit is not
Hausdorff.

A Non-Hausdorff Direct Limit 2.10.3. Let Y be a space which is Hausdorff but
non-normal, such as the Tychonoff plank. Let Ao, A1 be disjoint closed sets in Y that
have no disjoint neighborhoods. We define X = (Y x N) U {0, 1} with the topology
generated by open sets in the product space Y x N and sets of the form

W x tk}y u i,

k>n

where i = 0,1 and each Uy is an open neighborhood of A;. Then, X is not
Hausdorff because 0 and 1 have no disjoint neighborhoods in X. For eachn € N,
let

Xy =Y x{1,....,n} U (Ao U A)) x{k | k >n}U{0,1}.

Then, X1 C X, C --- are closedin X and X = UnEN X, (Fig.2.11). As is easily
observed, every X, is Hausdorff. We will prove that X = h_I)n X, that is,

— X has the weak topology with respect to the tower (X;),en.
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Proof. Since id : lim X, — X is obviously continuous, it suffices to show that
every open set V' in lim X, is open in X. To this end, assume that V N X,, is open

in X, foreachn € N. Each x € V \ {0, 1} is contained in some Y x {n} C X,.
Then, V N (Y x {n}) is an open neighborhood of x in ¥ x {n}, and so is an open
neighborhood in X. When 0 € V, Ag x {k | kK > n} C V for some n € N because
VN X;isopenin X,.Foreach k > n,since VN (Y x{k})isopenin Y x {k}, there
is an open set Uy in Y such that V N (Y x {k}) = Uy x {k}. Note that Ay C Uy.
Then, ..., (U x {k}) U{0} C V, hence V is a neighborhood of 0 in X . Similarly,
V is a neighborhood of 1 in X if 1 € V. Thus, V isopenin X. O

Notes for Chap. 2

For more comprehensive studies on General Topology, see Engelking’s book, which contains
excellent historical and bibliographic notes at the end of each section.

* R. Engelking, General Topology, Revised and complete edition, Sigma Ser. in Pure Math. 6
(Heldermann Verlag, Berlin, 1989)

The following classical books are still good sources.

¢ J. Dugundji, Topology, (Allyn and Bacon, Inc., Boston, 1966)
» J.L. Kelly, General Topology, GTM 27 (Springer-Verlag, Berlin, 1975); Reprint of the 1955 ed.
published by Van Nostrand

For counter-examples, the following is a good reference:

* L.A. Steen and J.A. Seebach, Jr., Counterexamples in Topology, 2nd edition (Springer-Verlag,
New York, 1978)

Of the more recent publications, the following textbook is readable and seems to be popular:
* J.R. Munkres, Topology, 2nd edition (Prentice Hall, Inc., Upper Saddle River, 2000)

Most of the contents discussed in the present chapter are found in Chaps. 5-8 of this text, although
it does not discuss the Frink Metrization Theorem (cf. 2.4.1) and Michael’s Theorem 2.6.5 on local
properties.

Among various proofs of the Tychonoff Theorem 2.1.1, our proof is a modification of the
proof due to Wright [19]. Our proof of the Tietze Extension Theorem 2.2.2 is due to Scott [14].
Theorem 2.3.1 was established by Stone [16], but the proof presented here is due to Rudin [13]. The
Nagata—Smirnov Metrization Theorem (cf. 2.3.4) was independently proved by Nagata [12] and
Smirnov [15]. The Bing Metrization Theorem (cf. metrization) was proved in [2]. The Urysohn
Metrization Theorem 2.3.5 and the Alexandroff-Urysohn Metrization Theorem (cf. 2.4.1) were
established in [18] and [1], respectively. The Frink Metrization Theorem (cf. 2nd-metrization) was
proved by Frink [5]. The Baire Category Theorem 2.5.1 was first proved by Hausdorff [6] (Baire
proved the theorem for the real line in 1889). The equivalence of (a) and (b) in Theorem 2.5.5 was
shown by Cech [3]. Theorems 2.5.7 and 2.5.8 were established by Lavrentieff [7].

The concept of paracompactness was introduced by Dieudonné [4]. In [2], Bing introduced
the concept of collectionwise normality and showed the collectionwise normality of paracompact
spaces (Theorem 2.6.1). The equivalence of (b) and (c) in Theorem 2.6.3 was proved by Tukey
[17], where he called spaces satisfying condition (c) fully normal spaces. The equivalence of (a)
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and (c) and the equivalence of (a), (d), and (e) were respectively proved by Stone [16] and Michael
[10]. Theorem 2.6.5 on local properties was established by Michael [11]. Lemma 2.7.1 appeared in
[8]. Theorem 2.7.2 and Proposition 2.7.4 were also established by Michael [11]. The simple proof
of Proposition 2.7.4 presented here is due to Mather [9]. Theorem 2.7.6 was proved by Dieudonné
[4]. These notes are based on historical and bibliographic notes in Engelking’s book, listed above.

In some literature, it is mentioned that the direct limit of a closed tower of Hausdorft spaces
need not be Hausdorff. The author could not find such an example in the literature. Example 2.10.3
is due to H. Ohta.
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