Chapter 1
Preliminaries

The reader should have finished a first course in Set Theory and General Topology;
basic knowledge of Linear Algebra is also a prerequisite. In this chapter, we
introduce some terminology and notation. Additionally, we explain the concept of
Banach spaces contained in the product of real lines.

1.1 Terminology and Notation

For the standard sets, we use the following notation:

N — the set of natural numbers (i.e., positive integers);
o = N U {0} — the set of non-negative integers;

7 — the set of integers;

@Q — the set of rationals;

R = (—o0, 00) — the real line with the usual topology;
C — the complex plane;

]R-l- = [Os OO);

I = [0, 1] — the unit closed interval.

A (topological) space is assumed to be Hausdorff and a map is a continuous

function. A singleton is a space consisting of one point, which is also said to be
degenerate. A space is said to be non-degenerate if it is not a singleton. Let X be
aspace and A C X. We denote

cly A (or cl A) — the closure of A in X;
inty A (or int A) — the interior of A in X;
bdyx A (or bd A) — the boundary of 4 in X;
idx (or id) — the identity map of X.

For spaces X and Y,

X ~ Y means that X and Y are homeomorphic.
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Given subspaces X;,..., X, C Xand Y;,...,Y, CY,

s (X, X1,....Xy) ~ (,Y),...,Y,) means that there exists a homeomorphism
h:X — Y suchthat h(Xy) = Y1, ..., h(X,) = Yy
* (X, x0) & (¥, yo) means (X, {xo}) ~ (¥, {yo}).

We call (X, x) a pointed space and x its base point.
For a set I', the cardinality of I" is denoted by card I". The weight w(X), the
density dens X, and the cellurality c(X) of a space X are defined as follows:

* w(X) = min{card B | B is an open basis for X };
e dens X = min{card D | D is a dense setin X };
* ¢(X) = sup{cardG | G is a pair-wise disjoint open collection}.

As is easily observed, c(X) < dens X < w(X) in general. If X is metrizable, all
these cardinalities coincide.

Indeed, let D be a dense set in X with card D = dens X, and G be a pairwise disjoint
collection of non-empty open sets in X. Since each G € G meets D, we have an injection
g:G — D, hence cardG < card D = dens X. It follows that ¢(X) < dens X. Now, let
B be an open basis for X with card B = w(X). By taking any point x3 € B from each
B € B, we have a dense set {xp | B € B} in X, which implies dens X < w(X).

When X is metrizable, we show the converse inequality. The case card X < Ry is trivial.
We may assume that X = (X, d) is a metric space with diam X > 1 and card X > R,.
Let D be a dense set in X with card D = dens X. Then, {B(x,1/n) | x € D, n € N}
is an open basis for X, which implies w(X) < dens X. For each n € N, using Zorn’s
Lemma, we can find a maximal 27" -discrete subset X,, C X, i.e., d(x, y) > 27" for every
pair of distinct points x,y € X,. Then, G, = {B(x,27""") | x € X,} is a pairwise
disjoint open collection, and hence we have card X, = cardG, < c¢(X). Observe that
X« = U,en X, is dense in X, which implies sup,cycard X, = card Xy > dens X.
Therefore, ¢(X) > dens X.

For the product space [, Xy, the y-coordinate of each point x € [],cr X,
is denoted by x(y), i.e., x = (x(y))yer. For each y € I, the projection pr,, :
]_[yer X, — X, is defined by pr, (x) = x(y). For A C I', the projection pr, :
[l,er Xy = [liea Xa is defined by pr,(x) = x|A (= (x(1))rea). In the case
yer Xy = XT'. In particular, X" is the
product space of countable infinite copies of X. When I" = {1,...,n}, X r—= xn
is the product space of n copies of X. For the product space X x Y, we denote the
projections by pry : X xY — X andpry : X xY — Y.

A compact metrizable space is called a compactum and a connected compactum
is called a continuum.! For a metrizable space X, we denote

that X, = X forevery y € I', we write [ |

¢ Metr(X) — the set of all admissible metrics of X .

Now, let X = (X, d) be a metric space, x € X, e > 0,and A, B C X. We use
the following notation:

ITheir plurals are compacta and continua, respectively.
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e By(x,¢) = {y eX | d(x,y) < e} — the e-neighborhood of x in X
(or the open ball with center x and radius ¢);

* By(x,e) = {y eX | d(x,y) < e} — the closed e-neighborhood of x in X

(or the closed ball with center x and radius ¢);
e Ny(4,¢) = UXeA B, (x, &) — the e-neighborhood of 4 in X
e diamy A = sup {d(x, y) | X,y € A} — the diameter of A4;
e d(x,A) = inf{d(x, y) \ y € A} — the distance of x from A;
e disty(A, B) = inf{d(x, y) | xeA, ye B} — the distance of A and B.

It should be noted that N;({x},&) = By(x,¢) and d(x, A) = disty({x}, A). For a
collection A of subsets of X, let

* meshy A = sup {diamy A | A € A} — the mesh of A.

If there is no possibility of confusion, we can drop the subscript d and write B(x, ¢),
B(x,¢€), N(4, ¢), diam A, dist(A4, B), and mesh A.
The standard spaces are listed below:

e R" — the n-dimensional Euclidean space with the norm

Xl = V()2 + -+ x ()2,

0 = (0,...,0) € R" — the origin, the zero vector or the zero element,
e; € R" — the unit vector defined by e; (i) = 1 and e;(j) = O for j # i;
e Sl = {x eR” | x|l = 1} — the unit (n — 1)-sphere;
« B = {x eR” | x| < 1} — the unit closed n-ball;
e A" = {x e (Ry)" ! \ Z?ill x(i) = 1} — the standard n-simplex;
+ Q = [-1,1]Y — the Hilbert cube;
LI N __ the space of sequences;
o = { o2 2x; /3 | x; € {0, 1}} — the Cantor (ternary) set;
+ 1% =R\ Q — the space of irrationals;
e 2 = {0, 1} — the discrete space of two points.

Note that S"~!, B”, and A” are not product spaces, even though the same notations
are used for product spaces. The indexes n — 1 and n represent their dimensions (the
indexes of u° and v° are identical).

As is well-known, the countable product 2V of the discrete space 2 = {0, 1} is
homeomorphic to the Cantor set ;° by the correspondence:

SIS

i€N

On the other hand, the countable product NV of the discrete space N of natural
numbers is homeomorphic to the space v° of irrationals. In fact, N¥ ~ (0,1)\ Q ~
(=1,1)\ Q ~ v°. These three homeomorphisms are given as follows:
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X = ot 2t —1; SI—)L.
1—1s]|
x(1) +

x(2) +
x(3)+ ——

That the first correspondence is a homeomorphism can be verified as follows: for each
n €N, leta, : N¥ — I be a map defined by

an(x) =

x(1) +

1

1
x2+ ——m—
ot x(n)

Then, 0 < ax(x) < aq(x) < --+ < az(x) < a;(x) < 1. Using the fact shown below, we
can conclude that the first correspondence N 2 x > a(x) = lim, 00 @, (x) € (0,1) is
well-defined and continuous.

Fact. Foreverym > n, |a,(x) —a,(x)| < (@ + 1)~L

This fact can be shown by induction on n € N. First, observe that

1

TG+

lay (x) — ax(x)| =

which implies the case n = 1. When n > 1, for each x € NV, define x* € NN by
x*@) = x(i + 1). By the inductive assumption, |a,—;(x*) — au—(x*)] < n~! for
m > n, which gives us

|a/l—1(X*) _am—l(X*)|
(e (1) + ap—1 (x*))(x (1) + apm—1(x*))
lan—1(x™*) = @p—1(x™)|
T (Tt a1 (N + ap—1(x*))
|an71(X*) _amfl(x*)l
1+ |an71(X*) - amfl(X*)|
n~! 1

< =
“14n! n+1

|an(x) - am(x)|

Let t = g1/qo € (0,1) N Q, where q; < qo € N. Since qo/q1 = 7' > 1, we
can choose x; € N so that x; < qo/q1 < x; + 1. Then, 1/(x; +1) <t < 1/x;. If
t # 1/x;, then x| < go/q1, and hence t ™! = qo/q; = x1 + ¢2/¢ for some g, € N with
q> < ¢q1. Now, we choose x, € Nsothat x, < ¢q1/¢> < xp + 1. Thus, x; +1/(x, + 1) <
x1+q2/q1 < xi+1/xp,50 1/(x1+1/x2) <t < 1/(x;+1/(e2+1)). It 7 1/(x1+1/x2),
then x, < ¢/g». Similarly, we write q1/q> = x2 + ¢q3/¢2, where g3 € N with g3 < ¢»
(< q1), and choose x3 € N so that x3 < ¢g»/g3 < x3+ 1. Then, 1/(x; 4+ 1/(x2 +1/x3)) <
t <1/(x1 + 1/(x2 + 1/(x3 4+ 1))). This process has only a finite number of steps (at most
q. steps). Thus, we have the following unique representation:
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It follows that o (NY) C (0,1) \ Q.

For each ¢ € (0,1) \ Q, choose x; € Nsothat x; <t~ ! < x; 4+ 1. Then, 1/(x; + 1) <
t < 1/x;and t7! = x; + 1, for some #; € (0,1) \ Q. Next, choose x, € N so that
Xy < tfl < x4+ 1.Thus, x; +1/(x24+1) < x; 41 < x;4+1/x3,andso 1/(x; +1/x;) <
t < 1/(x1+1/(x2+1)). Again, write t;' = xp+12, 1 € (0, 1)\ Q, and choose x3 € N so
that x3 < t;l < x3+1.Then, I/(x;+1/(x2+1/(x35+1))) <t < 1/(x;+1/(x24+1/x3)).
We can iterate this process infinitely many times. Thus, there is the unique x = (x,),en €
NN such that a,,(x) < t < azp+1(x) for each n € N, where (x) = lim, o0 a,(x) = 1.
Therefore, o : NN — (0, 1) \ Q is a bijection.

In the above, let a5, (x) < s < az,—;(x) and define y = (y;);en € NI for this s similar
to x for . Then, @(y) = s and x; = y; foreachi < 2n—1, i.e., the first 2n — 1 coordinates
of x and y are all the same. This means that o ! is continuous.

Let f : A — Y be a map from a closed set 4 in a space X to another space Y.
The adjunction space Y U, X is the quotient space (X @ Y)/~, where X &
Y is the topological sum and ~ is the equivalence relation corresponding to the
decomposition of X @ Y into singletons {x}, x € X \ 4, and sets {y} U £~ (),
y € Y (the latter is a singleton {y} if y € Y \ f(A)). In the case that Y is a
singleton, Y Uy X ~ X/A. One should note that, in general, the adjunction spaces
are not Hausdorff. Some further conditions are necessary for the adjunction space
to be Hausdorff.

Let A and B be collections of subsets of X and Y C X. We define

e« AAB={ANB|Aec A BeB}
o AY ={ANY |Aec A}

When each A € A is contained in some B € B, it is said that A refines 5 and
denoted by:

A< B or B> A

It is said that A covers Y (or Ais a cover of Y in X)if Y C JA (= Uyea A
When Y = X, acover of Y in X is simply called a cover of X. A cover of ¥ in
X is said to be open or closed in X depending on whether its members are open or
closed in X. If A is an open cover of X then .4]Y is an open cover of ¥ and A[Y]
is an open cover of ¥ in X. When A4 and 15 are open covers of X, A A B is also an
open cover of X. For covers A and B of X, it is said that A is a refinement of B
if A < B, where A is an open (or closed) refinement if 4 is an open (or closed)
cover. For a space X, we denote

¢ cov(X) — the collection of all open covers of X.
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Let (X,),er be a family of (topological) spaces and X = (_J
topology on X with respect to (X, ),cr is defined as follows:

yer Xy- The weak

UcCXisopeninX & Vyel UNX,isopenin X,

(4C Xisclosedin X ¢ Vy el AN X, isclosedin X, ).

Suppose that X has the weak topology with respect to (X,),er, and that the
topologies of X, and X,/ agree on X, N X,/ forany y,y' € I'. If X, N X,/ is
closed (resp. open) in X,, for any y, y’ € I' then each X, is closed (resp. open) in
X and the original topology of each X, is a subspace topology inherited from X.
In the case that X, N X,y = @ for y # y’, X is the topological sum of (X, ),er,
denotedby X = P, Xy

Let f: X — Y beamap. For A C X and B C Y, we denote

f(A) ={f(x)|xeA} and f7'(B)={xe X | f(x) € B}.

For collections .4 and B of subsets of X and Y, respectively, we denote

fA) ={f(A)|Ae A} and f~'(B)={f""(B)| B € B}.

The restriction of f to A C X is denoted by f|A.Itissaid thatamapg: A —> Y
extends over X if thereisamap f : X — Y suchthat /|4 = g. Suchamap f is
called an extension of g.

Let [a, D] be a closed interval, where a < b. A map f : [a,b] — X is called
a path (from f(a) to f(b)) in X, and we say that two points f(a) and f(b) are
connected by the path f in X. An embedding f : [a,b] — X is called an arc (from
f(a)to f(b))in X, and the image f([a, b]) is also called an arc. Namely, a space is
called an arc if it is homeomorphic to I. It is known that each pair of distinct points
X,y € X are connected by an arc if and only if they are connected by a path.”

For spaces X and Y, we denote

¢ C(X,Y) — the set of (continuous) maps from X to Y.
Formaps f,g: X — Y (e, f,g € C(X,Y)),
e [ =~ g means that f and g are homotopic (or f is homotopic to g),

that is, there isamap & : X x I — Y such that hy = f and h; = g, where
hy : X — Y,t €1, are defined by h;(x) = h(x,t), and h is called a homotopy
from f to g (between f and g). When g is a constant map, it is said that f is null-
homotopic, which we denote by f =~ 0. The relation =~ is an equivalence relation
on C(X,Y). The equivalence class [f] = {g € C(X,Y) | g ~ f} is called the
homotopy class of f. We denote

2This will be shown in Corollary 5.14.6.
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* (X Y]={/]1feCX.Y)}=CX.Y)/x
— the set of the homotopy classes of maps from X to Y.

Foreach f, /' € C(X,Y) and g, g’ € C(Y, Z), we have the following:
fxflgxg =gf =g f

Thus, we have the composition [X, Y] x [Y, Z] — [X, Z] defined by ([f], [g]) —
[¢][f] = [gf]. Moreover,

* X =~ Y means that X and Y are homotopy equivalent (or X is homotopy
equivalent to Y),?

that is, there are maps f : X — Y and g : ¥ — X such that gf ~ idy and
fg ~ idy, where f is called a homotopy equivalence and g is a homotopy inverse

of f.
Given subspaces Xp,..., X, C X and Yy,...,Y, C Y,amap f : X — Y is
said to be a map from (X, X1,..., X;) to (¥, Yy,...,Y,), written

FiX.X1,.... X)) > (V.Y1,....Y,),

if f(X;)CTYy,..., f(X,) CY,. Wedenote

e C((X,X1,..., X)), (Y, Y,....Y)
— the set of maps from (X, X1,...,X,) to (¥, Yy,...,T,).

A homotopy & between maps f,g € C((X, X1,...,X,), (¥, Y1,...,Y,)) requires
the condition that #, € C((X, X1,..., X,), (Y, Y1,...,Y,)) foreveryt € Lie., his
regarded as the map

h:(XxLX xL...,X, xI) > (Y,Y,...,Y,).

Thus, >~ is an equivalence relation on C((X, X1,...,X,), (Y, Y1,...,Y,)). We
denote
o [(X,X1,.... X)), (Y, 11,.... )] =C((X, Xq,..., X,), (Y, Y,...., 7))/~

When there exist maps

FiX.X1,.... X)) > (V.Y1,....Y,),
g (V. Y,....Y) > (X.X1.....X»)

such that gf ~ idy and fg ~ idy, we denote
e (X, Xy,.... X)) 2, Y1,.... Y.

31t is also said that X and Y have the same homotopy type or X has the homotopy type of Y.
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Similarly, for each pair of pointed spaces (X, xo) and (Y, yo),

e C((X.x0), (Y, y0)) = C((X, {x0}), (Y. {y0}));
® [(X7 X()), (Yv J’O)] = C((Xv xO)?(Y’ )’0))/:,
* (X,x0) =~ (¥, yo) means (X, {xo}) =~ (Y. {yo}).

For A C X, ahomotopy & : X xI — Y is called a homotopy relative to A if
h({x} x I) is degenerate (i.e., a singleton) for every x € A. When a homotopy from
f to g is a homotopy relative to A (where f|A = g|A), we denote

e f ~grel A.

Let f,g : X — Y be maps and U a collection of subsets of ¥ (in usual, U €
cov(Y)). It is said that f and g are U/-close (or f is U-close to g) if

).} [xe X} <ULy} | yeY),

which implies that I/ covers the set { f(x), g(x) | f(x) # g(x)}. A homotopy 4 is
called a /-homotopy if

{h({x}xI) |x EX} <UU{{y} ‘ y € Y},
which implies that I/ covers the set
U {h({x} x I) | h({x} x I) is non-degenerate}.

We say that f and g are U/-homotopic (or f is /-homotopic to g) and denoted by
f >~y g if there is ad-homotopy h : X x I — Y suchthathy = f and h; = g.

When ¥ = (Y,d) is a metric space, we define the distance between f, g €
C(X,Y) as follows:

d(f.g) = sup{d(f(x).g(x)) | x € X}.

In general, it may be possible that d( f, g) = oo, in which case d is not a metric
on the set C(X,Y). If Y is bounded or X is compact, then this d is a metric on
the set C(X,Y), called the sup-metric. For ¢ > 0, we say that f and g are e-
close or f is e-close to g if d(f, g) < &. A homotopy # is called an e-homotopy
if mesh{h({x} xI) | x € X} < ¢, where f = ho and g = h, are said to be
e-homotopic and denoted by f ~, g.

In the above, even if d is not a metric on C(X,Y) (ie., d(f.g) = oo for
some f,g € C(X,Y)), it induces a topology on C(X,Y) such that each f has a
neighborhood basis consisting of

Bi(f.e) ={g € C(X.Y) | d(f.g) <e&}, ¢ >0.

This topology is called the uniform convergence topology.
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The compact-open topology on C(X, Y) is generated by the sets
(K:U)={f eC(X.Y) | f(K) C U},

where K is any compact set in X and U is any open set in Y. With respect to this
topology, we have the following:

Proposition 1.1.1. Everymap f : Z x X — Y (or f : X x Z — Y ) induces the
map [+ Z — C(X,Y) defined by f(2)(x) = f(z.x) (or f(2)(x) = f(x,2)).

Proof. For each z € Z, it is easy to see that f(z) X — Y is continuous, i.e.,
f(z) € C(X,Y). Thus, f is well-defined.

_ To verify the continuity of f . Z — C(X,Y), it suffices to show that
FYUK; U)) is open in Z for each compact set K in X and each open set U in
Y.Letz € f~'((K;U)),ie., f({z} x K) C U. Using the compactness of K, we
can easily find an open neighborhood V' of zin Z such that f(V x K) C U, which
means that V C f~'((K:U)). O

With regards to the relation >~ on C(X, Y'), we have the following:

Proposition 1.1.2. Each f, g € C(X,Y) are connected by a path in C(X,Y ). When
X is metrizable or locally compact, the converse is also true, that is, [ >~ g if and
only if f and g are connected by a pathin C(X,Y) if f ~ g.*

Proof. By Proposition 1.1.1, a homotopy 4 : X x I — Y from f to g induces the
path 2 : I — C(X,Y) defined as h(¢)(x) = h(x,t) foreacht € I'and x € X,
where 71(0) = f and i(1) = g.

Forapath¢ : I — C(X,Y) from f to g, we define the homotopy ¢ : X xI —
Y as ¢(x,t) = @(t)(x) for each (x,7) € X x L. Then, ¢y = ¢(0) = f and
@1 = ¢(1) = g. It remains to show that ¢ is continuous if X is metrizable or locally
compact.

In the case that X is locally compact, for each (x,7) € X x I and for each open
neighborhood U of ¢(x,7) = ¢(t)(x) in Y, x has a compact neighborhood K in
X such that ¢(¢)(K) C U, ie., ¢(t) € (K;U). By the continuity of ¢, ¢ has a
neighborhood V' in I such that (V) C (K;U). Thus, K x V is a neighborhood of
(x,t) € X xIand ¢(K x V) C U. Hence, ¢ is continuous.

In the case that X is metrizable, let us assume that ¢ is not continuous at (x,t) €
X x L. Then, ¢(x, t) has some open neighborhood U in Y such that ¢(V) ¢ U for
any neighborhood V of (x,¢) in X x I. Let d € Metr(X). For each n € N, we have
X, € X and ¢, € Isuchthatd(x,,x) < 1/n,|t, —t| < 1/n and ¢(x,,t,) € U.
Because x, — x (n — o00) and ¢(¢) is continuous, we have ny € N such that
@(t)(x,) € U forall n > ny. Note that K = {x,,x | n > no} is compact and
¢()(K) C U.Because t, — t (n — 00) and ¢ is continuous at ¢, ¢(t,,)(K) C U
for some n; > ng. Thus, ¢(x,,,t,,) € U, which is a contradiction. Consequently, ¢
is continuous. O

Remark 1. 1t is easily observed that Proposition 1.1.2 is also valid for

*More generally, this is valid for every k-space X, where X is a k-space provided U is open in
X if U N K is open in K for every compact set K C X. A k-space is also called a compactly
generated space.
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C(X.X1..... X)), (V.Y1.....Y).

Some Properties of the Compact-Open Topology 1.1.3.

The following hold with respect to the compact-open topology:
(1) For f € C(Z,X) and g € C(Y, Z), the following are continuous:

f*:CX,Y) > C(Z,Y), f*(h)y=ho f;
g+« C(X,Y) > C(X,Z), g«(h) = goh.
(2) When Y is locally compact, the following (composition) is continuous:
CX,Y)xC(Y,Z)>(f.g)—go f eC(X,2).

Sketch of Proof. Let K be a compact setin X and U an open setin Z with f € C(X,Y)
and g € C(Y, Z) such that go f(K) C U. Since Y is locally compact, we have an open
set V in Y such that cl V is compact, f(K) C V and g(cl1V) C U. Then, f'(K) CV
and g’(clV) C U imply g’ o f/(K) C U.

(3) For each x( € X, the following (evaluation) is continuous:
CX,Y)> f f(xo) €Y.

(4) When X is locally compact, the following (evaluation) is continuous:

CX,.Y)xX>(f,ix)— f(x)€e?Y.
In this case, for every map f : Z — C(X,Y), the following is continuous:
ZxX>3(@zx)~ f(z)(x) €Y.

(5) In the case that X is locally compact, we have the following inequalities:

w(¥) = w(C(X,Y)) = Row(X)w(Y).

Sketch of Proof. By embedding Y into C(X, Y'), we obtain the first inequality. For the
second, we take open bases By and By for X and Y, respectively, such that card By =
w(X), card By = w(Y), and cl A is compact for every A € By. The following is an
open sub-basis for C(X, Y):

B={{cl4.B) | (4, B) € By X By}.

Indeed, let K be a compact set in X, U be an open set in Y, and f € C(X,Y) with
f(K) CU,ie., f € (K,U).First, find By, ..., B, € By sothat f(K) C By U---U
B, C U.Next, find A4,..., A, € By sothat K C A; U---U A4, and each cl 4; is
contained in some f ~1(Bj). Then, f € (/= {cl A;, Bju)) C (K, U).



1.2 Banach Spaces in the Product of Real Lines 11

(6) If X is compact and ¥ = (Y,d) is a metric space, then the sup-metric on
C(X,Y) is admissible for the compact-open topology on C(X, Y).
Sketch of Proof. Let K be a compact set in X and U be an open set in ¥ with
f € C(X.Y) such that f(K) C U. Then, § = dist(f(K),Y \ U) > 0, and

d(f, f/) < & implies f/(K) C U. Conversely, for each ¢ > 0 and f € C(X,Y),
we have x1, ..., X, € X such that X = |J'_, f~1(B(f(x;), &/4). Observe that

FIfFTIB(f(xi).e/4)) CB(f(xi).e/2) (Vi =1.....n)
=d(f. f) <e.

(7) Let X = U, en X, where X, is compact and X, C int X, 4. If Y = (Y, d) is
a metric space, then C(X, Y') with the compact-open topology is metrizable.

Sketch of Proof. We define a metric p on C(X, Y) as follows:

p(f.g) = supmin {n~", sup d(f(x).g(x))¢ -

neN xXEX,

Then, p is admissible for the compact-open topology on C(X, Y). To see this, refer to
the proof of (6).

1.2 Banach Spaces in the Product of Real Lines

Throughout this section, let I" be an infinite set. We denote
e Fin(I") — the set of all non-empty finite subsets of I".
Note that card Fin(I") = card I". The product space R is a linear space with the
following scalar multiplication and addition:
R xR 3 (x,1) > tx = (tx(¥))yer € R
R xR" 3 (x,y) = x +y = (x(y) + y(1)yer € R
In this section, we consider various (complete) norms defined on linear subspaces

of R”". In general, the unit closed ball and the unit sphere of a normed linear space
X = (X,| -||) are denoted by Bx and S, respectively. Namely, let

By ={xeX||x| <1} and Sy = {x € X | lx] = 1}.

The zero vector (the zero element) of X is denoted by Oy, or simply 0 if there is no
possibility of confusion.

Before considering norms, we first discuss the product topology of R’". The
scalar multiplication and addition are continuous with respect to the product
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topology. Namely, R with the product topology is a topological linear space.’ Note
that w(R') = card I".

Let By be a countable open basis for R. Then, R” has the following open basis:
{N,erpr,'(B,) | F €Fin(I'). B, € By (y € F)}.

Thus, we have w(R’") < R cardFin(I") = card I". Let B be an open basis for R”. For
each B € B, we can find Fp € Fin(I') such that pr,(B) = R forevery y € I’ \ F.
Then, card | Jges Fp < Rocard B. If card B < card I then card | Jgep Fp < card I', so
we have yop € I' \ Ugep Fp. The open set pr%l((o, 00)) C R” contains some B € B.
Then, pr, (B) C (0, 00), which means that yo € Fg. This is a contradiction. Therefore,

card B > card I', and thus we have w(R") > card I'.

Foreach y € I', we define the unit vectore, € R” by e,(y) = 1 ande,(y’) =0
for y’ # y. It should be noted that {e, | y € I'} is not a Hamel basis for R”, and
the linear span of {e, | y € I'} is the following:®

RY ={x e R" | x(y) = 0 except for finitely many y € I'},

which is a dense linear subspace of R”". The subspace R of s = R is also denoted
by s r, which is the space of finite sequences (with the product topology). When
card " = Ry, the space R’ is linearly homeomorphic to the space of sequences
s = RN, ie., there exists a linear homeomorphism between RT and s, where the
linear subspace R’; is linearly homeomorphic to sy by the same homeomorphism.
The following fact can easily be observed:

Fact. The following are equivalent:

(a) RT is metrizable;

(b) RI; is metrizable;

(©) RI; is first countable;

(d) card I' < N,
The implication (c) = (d) is shown as follows: Let {U; | i € N} be a neighborhood basis
of 0 in ]R’;. Then, each I; = {y € I' | Re, ¢ U} is finite. If I" is uncountable, then

r\ Uie§ I #0,ie,Re, C[);eyU; forsome y € I'. In this case, U; ¢ pr;l((—l, 1))
for every i € N, which is a contradiction.

Thus, every linear subspace L of R’ containing R is non-metrizable if I' is
uncountable, and it is metrizable if I" is countable. On the other hand, due to
the following proposition, every linear subspaces L of R’ containing R; is non-
normable if I" is infinite.

Proposition 1.2.1. Let I" be an infinite set. Any norm on RI; does not induce the
topology inherited from the product topology of R'.

SFor topological linear spaces, refer Sect. 3.4.
The linear subspace generated by a set B is called the linear span of B.
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Proof. Assume that the topology of RI; is induced by a norm || - ||. Because U =
{x e R? | x|l < 1} is an open neighborhood of 0 in R’;, we have a finite set F C
I' and neighborhoods V,, of 0 € R, y € F, such that R; N ﬂyep pr;l(Vy) cU.

Take yo € I' \ F. As Re,, C U, we have |le,)||"'e,, € U but |[le,[|"e, | =
lley, I~ ley, | = 1, which is a contradiction. ]

The Banach space £ (1") and its closed linear subspaces c¢(I") D ¢o(I") are
defined as follows:

o Uoo(I') = {x e RF \ sup, e [X ()| < oo} with the sup-norm

[xlleo = sup Ix()l:

V4SS

e (I = {x e R” | Jdt € R suchthat Ve > 0, |x(y) —t| < & except for finitely
many y € F};
e co(IN) = {x e RF \ Ve > 0, |x(y)| < & except for finitely many y € F}.

These are linear subspaces of R!", but are not topological subspace according to
Proposition 1.2.1. The space c¢(I") is linearly homeomorphic to ¢o(I") x R by the
correspondence

co(IN) xR > (x,t) = (x(y) + )yer €c(I).

This correspondence and its inverse are Lipschitz with respect to the norm ||(x,?)| =
max{||x|lco, [#[}. Indeed, let y = (x(y)+#)yer. Then, [ylloo < lIxlloo+1tl < 20Cx, DI
Because x € ¢o(I") and [t] < |y(y)| + |x()| < [ylloo + |x(p)| for every y € T, it
follows that || < ||y|leo. Moreover, |x(¥)| < [y(¥)| + f] < 2|lyllco forevery y € I'.
Hence, ||x]lco < 2||¥|lco, and thus we have || (x, )| < 2||y]lco-

Furthermore, we denote RI; with this norm as 6({0([‘ ). We then have the
inclusions: ‘

€L (') Ceo(IN) Ce(IN) Cloo(D).

The topology of E&([‘ ) is different from the topology inherited from the product

topology. Indeed, {e, | y € I'} is discrete in Zgo (I"), but 0 is a cluster point of this
set with respect to the product topology.
We must pay attention to the following fact:

Proposition 1.2.2. For an arbitrary infinite set I,
W(loo(I)) = 257 put w(c(I')) = w(co(I") = wtl (I') = card I".

Proof. The characteristic map y, : I" — {0,1} C Rof A C I" belongs to £oo (1)
(g = 0 € Loo(IN)), where || x4 — xalloo = 1if A # A’ C I'. It follows that
W(loo(IM) = c(boo(IM)) > 254" Moreover, Q7 N oo (") is dense in £oo (I"), and
hence we have
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W(loo(IN)) = dens oo (I") < card Q7" = KRG = peard ",

On the other hand, e, € Ké;([') foreachy € I' and |le, —e,/|lcoc = 1if y # ¥'.
Since £2,(I") C ¢o(I"), it follows that

w(co(I") = w(tly(I) = e((I") = card "
Moreover, ¢ (I") has the following dense subset:
Q? ={xe Qr \ x(y) = 0 except for finitely many y € I'},
and so it follows that

w(co(I")) = densco(I") < card Q_F < RpcardFin(I") = card I'.

Thus, we have w(co(I")) = w(ﬁ'go(l“)) = card I". As already observed, c¢(I") ~
co(I") x R, hence w(c(I")) = w(co(I)). O

When I' = N, we write

¢ {(N) = oo — the space of bounded sequences,

* ¢(N) = ¢ — the space of convergent sequences,

¢ ¢o(N) = ¢o — the space of sequences convergent to 0, and

. 0 N) = ¢, — the space of finite sequences with the sup-norm,

where Ego # sy as (topological) spaces. According to Proposition 1.2.2, ¢ and ¢ are
separable, but £, is non-separable. When card I" = R, the spaces £ (I"), c(I"),
and co(I") are linearly isometric to these spaces £, ¢ and ¢y, respectively.

Here, we regard Fin(I") as a directed set by C. For x € R, we say that
>, er x(y) is convergent if (3_ X(V))FeFm(r) is convergent, and define

DX = dim > x(y).

yer yEF

In the case that x(y) > Oforall y € I', ZyEF x(y) is convergent if and only if
( ZyeF x(y))FEFm(F) is upper bounded, and then

dox(y)= sup Y x(y).

ver FeFin(I) o

By this reason, ) ¢ X(y) < oo means that ) _ . x(y) is convergent.

For x € RN, we should distinguish Y,y x(i) from Y :2, x(i). When the
sequence ( Yoo x( ))n < 18 convergent, we say that 372, x(i) is convergent, and
define
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oo n
Zx(z) = nll)ﬂgozx(l).
i=1 i=1

Evidently, if ),y x(i) is convergent, then Y o x(i) is also convergent and
Y2 x(i) = Y ;enx(i). However, Y,y x(i) is not necessary convergent even
if Zfil x(i) is convergent. In fact, due to Proposition 1.2.3 below, we have the
following:

o0
Z x(i) isconvergent < Z |x(@)| is convergent.
ieN i=1

Proposition 1.2.3. For an infinite set I’ and x € R', Zye rx(y) is convergent
if and only if Zyer |x(y)| < oo. In this case, I'y = {y € I' | x(y) # 0} is
countable, and Zyer x(y) = Y02, x(y;) for any sequence (y;)ien in I such that
I C{yi|i eNyandy; #y;ifi # .
Proof. Letusdenote I'y ={y € I' | x(y) >0}and I_ = {y € I' | x(y) < 0}.
Then, I'y = '+ U T_.

If Zye r X(y) is convergent, we have F, € Fin(I") such that

Fy C F e Fin(I') = <1

D ox() =) x)

yer yEF

Then, for each £ € Fin(I'}) U Fin(/_) (i.e., E € Fin(I'}) or E € Fin(I.)),

dYTolkmi=| Y. x(») Yo ox =D x(»)

yEE\Fy yEE\Fy yEEUF, y€F)

< 2.

Hence, 3 e [X(¥)| < 2_,ep, [X(¥)] + 4 forevery F € Fin(I"), which means that

(ZyEF |X(V)|)F€Fin(r) is upper bounded, i.e., Zyef |x(y)| < oo.

Conversely, we assume that Zye r|x(y)| < oo. Then, foreachn e N, I, =
{y € I' | |x(y)| > 1/n} is finite, and hence I'y = |J, x I is countable. Note that
Zyer+ |x(y)| <ooand }_ e |x(y)| < oo. We show that

dYoxm =D x@l= D] Ix@)l

yer yely yer—

For each ¢ > 0, we can find Fy € Fin(I'}) and F_ € Fin(/-) such that

Fr CEeFin(ly) = ) lx(l-¢/2<) Ix(I= ) x()l.

yely yEE yely
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Then, it follows that, for each F € Fin(I") with F D F; U F_,

Zw)—( PBREICOIED |x<y)|)‘

yEF yely yer—

+

Yo=Y k)

yeEFNT yely

YooM= ) k)l

yeEFNT— yel—

<g/2+¢/2=¢

Now, let (y;)ien be a sequence in I” such that I'y C {y; | i € N} and y; # y; if
i # j.We define
no=max{i e N|y; € Fy U F_}.

For each n > ny, it follows from F+ U F_ C {yy,..., y,} that

fx(m)—( PREICOIEDY |x(y)|)

i=l1 yely yel—

<é&.

Thus, we also have 3= o x(y) = > 72, x(7). O
For each p > 1, the Banach space £,(I") is defined as follows:
« £,(IN) ={x eR" | X/ |x(¥)|?” < oo} with the norm

1/p
Ixll, = (Z |x<y)|1’) .

yer

Similar to E'Z:O(F), we denote the space R’; with this norm by E{: ().

The triangle inequality for the norm ||x||, is known as the Minkowski inequality, which is
derived from the following Holder inequality:

1/p . 1—1/p
Zayby < (Zaf) (Zb;””) for every a,, b, > 0.

yer yer yer

Indeed, for every x,y € £,(I"),

Ix+ 2 =" 1x) + y»lI?

yer

<Y (@I + lyM)Ix) + y()P~!

yer

=D @I xM +yWIPT D Iyl - lx @) + yn)P !

yer yer
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1/p 1 1—=1/p
< (Z |x<y>|ﬂ) (Z lx(y) + y(y)|“"”lw)

yer yer

‘e . 1=1/p
+ (Z Iy(y)lf’) (Z Ix(y) + y(y)|(”l)1—1/p)

yer yer

1—1/p llx + yll7
= (lxll, + 1) (lx + 115 = (Ixll, +Iyllp) =7
( P P)( p) ( P y P)“x +_y“p

so it follows that [[x + y |, < lIx|l, + lyll,-

As for co(I"), we can show w({,(I")) = card I". When card I" = Yy, the Banach
space £,(I") is linearly isometric to £, = {,(N), which is separable. The space
£,(I") is the Hilbert space with the inner product

(x.9) =D x(My®).

yer

which is well-defined because

DMyl < 331x13 + 1v13) < oo
yerlr

For1 < p < q,wehave {,(I") & £,(I") & co(I") as sets (or linear spaces).
These inclusions are continuous because ||x[looc < [x]l; < [|x||, for every x €
£,(I"). When I is infinite, the topology of £,(I") is distinct from that induced by
the norm || - [|; or || - [leo (i.e., the topology inherited from £, (1) or ¢o(I")). In fact,
the unit sphere S¢,(r) is closed in £,(I") but not closed in £,(I") for any g > p, nor
in ¢o(I"). To see this, take distinct y; € I',i € N, and let (x,),en be the sequence
in Sy, (r defined by x, (y;) = n="/7 fori < nandx,(y) = 0fory # yi,....ya. It

follows that || X, ||cc = n7"/? — 0 (n — 00) and
ally = (n-n=9/?) " = n=0/24 - 0 (n — o)

because (p —q)/pq < 0.

For 1 < p < o0, we have R? C £,(I") as sets (or linear spaces). We denote by
E£ (I') this R’; with the topology inherited from £,(I"), and we write fo, N) = E£
(when I' = N). From Proposition 1.2.1, we know 6; () # R; as spaces for any
infinite set I". In the above, the sequence (x,),en is contained in the unit sphere

Sz{,(r) of E{;(F), which means that S[{) is not closed in E{, hence E{: # qu as

spaces for 1 < p < g < oco. Note that S

)

oLy is a closed subset of Z({ forl <g < p.
P

Concerning the convergence of sequences in £,(/"), we have the following:
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Proposition 1.2.4. For each p € Nand x € £,(I"), a sequence (X,),en converges
to x in £,(I") if and only if
xll, = lim ||x,||, and x(y) = lim x,(y) foreveryy € I.
n—>oo n—>oo

Proof. The “only if” part is trivial, so we concern ourselves with proving the “if”
part for £ ,(I"). For each ¢ > 0, we have yi, ..., yx € I" such that

k
Yo =Dl =D Ix()l? < 27Peb /4,

y#vi i=l1
Choose ng € N so that if n > ng then |||xn||§ — ||x||§| <27PgP/8,
|1 ()17 = 1x (r)|?| < 27P&? /8K and |x,(yi) — x(yi)|” < &7/ 4k

foreachi =1, ..., k. Then, it follows that

k
I =l =3 xa )l
y#vi i=1
k
=lxall? = I1x[12 + llxl2 =Y x ()]

i=1
k

+ ) (Ix@IP = 1xay)?)

i=1
<27PeP 8 + 27 PeP [4 + 2 PeP /8 = 2Pl )2,

and hence we have

k
ey = X115 < > by = x ()l + Y 27 max {|x,(¥)]. |x()]}

i=1 y#Vi
<e’/A+ Y 2P+ D] 27 x(y)I”
y#Vi y#Vi

<el/d+eP /24P /4 =¢",

that is, [|x, — x|, <e. O

Remark 2. 1t should be noted that Proposition 1.2.4 is valid not only for sequences,
but also for nets, which means that the unit spheres S, () D € N, are subspaces of
the product space R!", whereas R’ and R; are not metrizable if I" is uncountable.
Therefore, if | < p < g < oo, then S(p(r) is also a subspace of {,(I"), although,
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as we have seen, Sy, (ry of £,(I") is not closed in the space £,(I"). The unit sphere

Séf(r) of 6;(1") is a subspace of R; (C R, and also a subspace of £,(I") for
14

1<qg =< o0.

Remark 3. The “if” part of Proposition 1.2.4 does not hold for the space co(I")
(although the “only if” part obviously does hold), where I" is infinite. For instance,
take distinct y, € I', n € w, and let (x,),en be the sequence in ¢((I") defined by
X, = e, +e,.Then, |x,|lcc =1foreachn e N,

lim x,(y0) = 1 = e,,(y0) and lim x,(y) =0 = e, (y) fory # yo,
n—o0 n—o0
but ||x, —ey|lcc = 1 forevery n € I'. In addition, the unit sphere S,y of co(I")
is not a subspace of R”", because e,, € S¢,(r but (ey,),en converges to 0 in R

Concerning the topological classification of £,(I"), we have the following:

Theorem 1.2.5 (MAZUR). For each 1 < p < oo, £,(I") is homeomorphic to
£1(I"). By the same homeomorphism, €£ (I') is also homeomorphic to K{ ).

Proof. We define ¢ : £1(I") = £,(I") and ¥ : £,(I") — £1(I") as follows:

e(x)(y) = signx(y) - [x(y)|"/? forx € y(I),
Y(x)(y) = signx(y) - |x(y)|” for x € £,(I"),

where sign0 = 0 and signa = a/|a| for a # 0. We can apply Proposition 1.2.4 to
verify the continuity of ¢ and . In fact, the following functions are continuous:

6y s x> lle@l, = ()" € R, 6(I) 3 x > p(x)(y) €R, y € T';
(M) s x> [Y@)h = (Ixll,)" € R, £,(I') 3 x> Y(x)(y) €R, y €T
Observe that ¢ = id and ¢y = id. Thus, ¢ is a homeomorphism with ¢! = v,
where (£} (I')) C £ (I') and (¢ (")) C €} (). O

For each space X, we denote C(X) = C(X,R). The Banach space C5(X) is
defined as follows:

« CB(X)={f € C(X) | sup,ey | f(x)| < oo} with the sup-norm

A1 = sup | f(x)].
xX€X

This sup-norm of C8 (X)) induces the uniform convergence topology. If X is discrete
and infinite, then we have C2(X) = £ (X), and so, in particular, C5(N) = {.
When X is compact, C2(X) = C(X) and the topology induced by the norm
coincides with the compact-open topology.
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The uniform convergence topology of C(X) is induced by the following metric:
d(f.g) = sup min| f(x) — g(x)]. 1}.
Xe

As can be easily observed, C2(X) is closed and open in C(X) under the uniform
convergence topology. Note that C5 (X)) is a component of the space C(X) because
CB(X) is path-connected as a normed linear space.

Regarding C(X) as a subspace of the product space R¥, we can introduce a
topology on C(X), which is called the pointwise convergence topology. With
respect to this topology,

lim f,=f < lim f,(x) = f(x) forevery x € X.
n—o0 n—o0

The space C(X) with the pointwise convergence topology is usually denoted by

C,(X). The space C,(N) is simply the space of sequences s = R™.

In this chapter, three topologies on C(X) have been considered — the compact-
open topology, the uniform convergence topology, and the pointwise convergence
topology. Among them, the uniform convergence topology is the finest and the
pointwise convergence topology is the coarsest.

Notes for Chap. 1

Theorem 1.2.5 is due to Mazur [3]. Zhongqgiang Yang pointed out that Proposition 1.2.4 can be
applied to show the continuity of ¢ and i in the proof of Theorem 1.2.5. Related to Mazur’s result,
Anderson [1] proved that s = RY is homeomorphic to the Hilbert space {,. For an elementary
proof, refer to [2].
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