
Chapter 1
Preliminaries

The reader should have finished a first course in Set Theory and General Topology;
basic knowledge of Linear Algebra is also a prerequisite. In this chapter, we
introduce some terminology and notation. Additionally, we explain the concept of
Banach spaces contained in the product of real lines.

1.1 Terminology and Notation

For the standard sets, we use the following notation:

• N — the set of natural numbers (i.e., positive integers);
• ! D N [ f0g — the set of non-negative integers;
• Z — the set of integers;
• Q — the set of rationals;
• R D .�1;1/ — the real line with the usual topology;
• C — the complex plane;
• RC D Œ0;1/;
• I D Œ0; 1� — the unit closed interval.

A (topological) space is assumed to be Hausdorff and a map is a continuous
function. A singleton is a space consisting of one point, which is also said to be
degenerate. A space is said to be non-degenerate if it is not a singleton. Let X be
a space and A � X . We denote

• clX A (or clA) — the closure of A in X ;
• intX A (or intA) — the interior of A in X ;
• bdX A (or bdA) — the boundary of A in X ;
• idX (or id) — the identity map of X .

For spaces X and Y ,

• X � Y means that X and Y are homeomorphic.
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Given subspaces X1; : : : ; Xn � X and Y1; : : : ; Yn � Y ,

• .X;X1; : : : ; Xn/ � .Y; Y1; : : : ; Yn/ means that there exists a homeomorphism
h W X ! Y such that h.X1/ D Y1, . . . , h.Xn/ D Yn;

• .X; x0/ � .Y; y0/ means .X; fx0g/ � .Y; fy0g/.
We call .X; x0/ a pointed space and x0 its base point.

For a set � , the cardinality of � is denoted by card� . The weight w.X/, the
density densX , and the cellurality c.X/ of a space X are defined as follows:

• w.X/ D minfcardB j B is an open basis for Xg;
• densX D minfcardD j D is a dense set in Xg;
• c.X/ D supfcardG j G is a pair-wise disjoint open collectiong.

As is easily observed, c.X/ � densX � w.X/ in general. If X is metrizable, all
these cardinalities coincide.

Indeed, let D be a dense set in X with cardD D densX , and G be a pairwise disjoint
collection of non-empty open sets in X . Since each G 2 G meets D, we have an injection
g W G ! D, hence card G � cardD D densX . It follows that c.X/ � densX . Now, let
B be an open basis for X with cardB D w.X/. By taking any point xB 2 B from each
B 2 B, we have a dense set fxB j B 2 Bg in X , which implies densX � w.X/.

WhenX is metrizable, we show the converse inequality. The case cardX < @0 is trivial.
We may assume that X D .X; d/ is a metric space with diamX � 1 and cardX � @0.
Let D be a dense set in X with cardD D densX . Then, fB.x; 1=n/ j x 2 D; n 2 Ng
is an open basis for X , which implies w.X/ � densX . For each n 2 N, using Zorn’s
Lemma, we can find a maximal 2�n-discrete subset Xn � X , i.e., d.x; y/ � 2�n for every
pair of distinct points x; y 2 Xn. Then, Gn D fB.x; 2�n�1/ j x 2 Xng is a pairwise
disjoint open collection, and hence we have cardXn D card Gn � c.X/. Observe that
X

�

D S
n2NXn is dense in X , which implies supn2N

cardXn D cardX
�

� densX .
Therefore, c.X/ � densX .

For the product space
Q
�2� X� , the � -coordinate of each point x 2 Q

�2� X�
is denoted by x.�/, i.e., x D .x.�//�2� . For each � 2 � , the projection pr� WQ
�2� X� ! X� is defined by pr� .x/ D x.�/. For � � � , the projection pr� WQ
�2� X� ! Q

�2� X� is defined by pr�.x/ D xj� (D .x.�//�2�). In the case
that X� D X for every � 2 � , we write

Q
�2� X� D X� . In particular, XN is the

product space of countable infinite copies of X . When � D f1; : : : ; ng, X� D Xn

is the product space of n copies of X . For the product space X � Y , we denote the
projections by prX W X � Y ! X and prY W X � Y ! Y .

A compact metrizable space is called a compactum and a connected compactum
is called a continuum.1 For a metrizable space X , we denote

• Metr.X/ — the set of all admissible metrics of X .

Now, let X D .X; d/ be a metric space, x 2 X , " > 0, and A, B � X . We use
the following notation:

1Their plurals are compacta and continua, respectively.
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• Bd .x; "/ D ˚
y 2 X ˇ

ˇ d.x; y/ < "
�

— the "-neighborhood of x in X
(or the open ball with center x and radius ");

• Bd .x; "/ D ˚
y 2 X ˇ

ˇ d.x; y/ � "
�

— the closed "-neighborhood of x in X
(or the closed ball with center x and radius ");

• Nd .A; "/ D S
x2A Bd .x; "/ — the "-neighborhood of A in X ;

• diamd A D sup
˚
d.x; y/

ˇ
ˇ x; y 2 A� — the diameter of A;

• d.x;A/ D inf
˚
d.x; y/

ˇ
ˇ y 2 A� — the distance of x from A;

• distd .A;B/ D inf
˚
d.x; y/

ˇ
ˇ x 2 A; y 2 B� — the distance of A and B .

It should be noted that Nd .fxg; "/ D Bd .x; "/ and d.x;A/ D distd .fxg; A/. For a
collection A of subsets of X , let

• meshd A D sup
˚

diamd A
ˇ
ˇ A 2 A� — the mesh of A.

If there is no possibility of confusion, we can drop the subscript d and write B.x; "/,
B.x; "/, N.A; "/, diamA, dist.A;B/, and meshA.

The standard spaces are listed below:

• R
n — the n-dimensional Euclidean space with the norm

kxk D
p
x.1/2 C � � � C x.n/2;

0 D .0; : : : ; 0/ 2 R
n — the origin, the zero vector or the zero element,

ei 2 R
n — the unit vector defined by ei .i / D 1 and ei .j / D 0 for j 6D i ;

• Sn�1 D ˚
x 2 R

n
ˇ
ˇ kxk D 1

�
— the unit .n � 1/-sphere;

• Bn D ˚
x 2 R

n
ˇ
ˇ kxk � 1

�
— the unit closed n-ball;

• �n D ˚
x 2 .RC/nC1 ˇˇ PnC1

iD1 x.i/ D 1
�

— the standard n-simplex;
• Q D Œ�1; 1�N — the Hilbert cube;
• s D R

N — the space of sequences;
• �0 D ˚P1

iD1 2xi=3i
ˇ
ˇ xi 2 f0; 1g�— the Cantor (ternary) set;

• 	0 D R n Q — the space of irrationals;
• 2 D f0; 1g — the discrete space of two points.

Note that Sn�1, Bn, and �n are not product spaces, even though the same notations
are used for product spaces. The indexes n�1 and n represent their dimensions (the
indexes of �0 and 	0 are identical).

As is well-known, the countable product 2N of the discrete space 2 D f0; 1g is
homeomorphic to the Cantor set �0 by the correspondence:

x 7!
X

i2N

2x.i/

3i
:

On the other hand, the countable product NN of the discrete space N of natural
numbers is homeomorphic to the space 	0 of irrationals. In fact, NN � .0; 1/ nQ �
.�1; 1/ n Q � 	0. These three homeomorphisms are given as follows:
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x 7! 1

x.1/C 1

x.2/C 1

x.3/C 1

: : :

I t 7! 2t � 1I s 7! s

1 � jsj :

That the first correspondence is a homeomorphism can be verified as follows: for each
n 2 N, let an W NN ! I be a map defined by

an.x/ D 1

x.1/C 1

x.2/C 1

: : : C 1

x.n/

:

Then, 0 < a2.x/ < a4.x/ < � � � < a3.x/ < a1.x/ � 1. Using the fact shown below, we
can conclude that the first correspondence N

N 3 x 7! ˛.x/ D limn!1

an.x/ 2 .0; 1/ is
well-defined and continuous.

Fact. For every m > n, jan.x/� am.x/j < .nC 1/�1.

This fact can be shown by induction on n 2 N. First, observe that

ja1.x/� a2.x/j D 1

x.1/.x.1/x.2/C 1/
< 1=2;

which implies the case n D 1. When n > 1, for each x 2 N
N, define x� 2 N

N by
x�.i/ D x.i C 1/. By the inductive assumption, jan�1.x

�/ � am�1.x
�/j < n�1 for

m > n, which gives us

jan.x/� am.x/j D jan�1.x
�/� am�1.x

�/j
.x.1/C an�1.x�//.x.1/C am�1.x�//

� jan�1.x
�/� am�1.x

�/j
.1C an�1.x�//.1C am�1.x�//

<
jan�1.x

�/� am�1.x
�/j

1C jan�1.x�/� am�1.x�/j

� n�1

1C n�1
D 1

nC 1
:

Let t D q1=q0 2 .0; 1/ \ Q, where q1 < q0 2 N. Since q0=q1 D t�1 > 1, we
can choose x1 2 N so that x1 � q0=q1 < x1 C 1. Then, 1=.x1 C 1/ < t � 1=x1. If
t 6D 1=x1, then x1 < q0=q1, and hence t�1 D q0=q1 D x1 C q2=q1 for some q2 2 N with
q2 < q1. Now, we choose x2 2 N so that x2 � q1=q2 < x2 C 1. Thus, x1 C 1=.x2 C 1/ <

x1Cq2=q1 � x1C1=x2, so 1=.x1C1=x2/ � t < 1=.x1C1=.x2C1//. If t 6D 1=.x1C1=x2/,
then x2 < q1=q2. Similarly, we write q1=q2 D x2 C q3=q2, where q3 2 N with q3 < q2
(< q1), and choose x3 2 N so that x3 � q2=q3 < x3 C 1. Then, 1=.x1 C 1=.x2 C 1=x3// �
t < 1=.x1 C 1=.x2 C 1=.x3 C 1///. This process has only a finite number of steps (at most
q1 steps). Thus, we have the following unique representation:
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t D 1

x1 C 1

x2 C 1

: : : C 1

xn

; x1; : : : ; xn 2 N:

It follows that ˛.NN/ � .0; 1/ n Q.
For each t 2 .0; 1/ nQ, choose x1 2 N so that x1 < t�1 < x1 C 1. Then, 1=.x1 C 1/ <

t < 1=x1 and t�1 D x1 C t1 for some t1 2 .0; 1/ n Q. Next, choose x2 2 N so that
x2 < t

�1
1 < x2C1. Thus, x1C1=.x2C1/ < x1C t1 < x1C1=x2, and so 1=.x1C1=x2/ <

t < 1=.x1C1=.x2C1//. Again, write t�1
1 D x2Ct2, t2 2 .0; 1/nQ, and choose x3 2 N so

that x3 < t�1
2 < x3C1. Then, 1=.x1C1=.x2C1=.x3C1/// < t < 1=.x1C1=.x2C1=x3//.

We can iterate this process infinitely many times. Thus, there is the unique x D .xn/n2N 2
N

N such that a2n.x/ < t < a2nC1.x/ for each n 2 N, where ˛.x/ D limn!1

an.x/ D t .
Therefore, ˛ W NN ! .0; 1/ n Q is a bijection.

In the above, let a2n.x/ < s < a2n�1.x/ and define y D .yi /i2N 2 N
N for this s similar

to x for t . Then, ˛.y/ D s and xi D yi for each i � 2n�1, i.e., the first 2n�1 coordinates
of x and y are all the same. This means that ˛�1 is continuous.

Let f W A ! Y be a map from a closed set A in a space X to another space Y .
The adjunction space Y [f X is the quotient space .X ˚ Y /=�, where X ˚
Y is the topological sum and � is the equivalence relation corresponding to the
decomposition of X ˚ Y into singletons fxg, x 2 X n A, and sets fyg [ f �1.y/,
y 2 Y (the latter is a singleton fyg if y 2 Y n f .A/). In the case that Y is a
singleton, Y [f X � X=A. One should note that, in general, the adjunction spaces
are not Hausdorff. Some further conditions are necessary for the adjunction space
to be Hausdorff.

Let A and B be collections of subsets of X and Y � X . We define

• A ^ B D fA\ B j A 2 A; B 2 Bg;
• AjY D fA\ Y j A 2 Ag;
• AŒY � D fA 2 A j A\ Y 6D ;g.

When each A 2 A is contained in some B 2 B, it is said that A refines B and
denoted by:

A 	 B or B 
 A:
It is said that A covers Y (or A is a cover of Y in X ) if Y � SA (D S

A2AA).
When Y D X , a cover of Y in X is simply called a cover of X . A cover of Y in
X is said to be open or closed in X depending on whether its members are open or
closed in X . If A is an open cover of X then AjY is an open cover of Y and AŒY �
is an open cover of Y in X . When A and B are open covers of X , A ^ B is also an
open cover of X . For covers A and B of X , it is said that A is a refinement of B
if A 	 B, where A is an open (or closed) refinement if A is an open (or closed)
cover. For a space X , we denote

• cov.X/ — the collection of all open covers of X .
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Let .X�/�2� be a family of (topological) spaces and X D S
�2� X� . The weak

topology on X with respect to .X�/�2� is defined as follows:

U � X is open in X , 8� 2 �;U \X� is open in X�
�
A � X is closed in X , 8� 2 �;A\ X� is closed in X�

�
:

Suppose that X has the weak topology with respect to .X�/�2� , and that the
topologies of X� and X� 0 agree on X� \ X� 0 for any �; � 0 2 � . If X� \ X� 0 is
closed (resp. open) in X� for any �; � 0 2 � then each X� is closed (resp. open) in
X and the original topology of each X� is a subspace topology inherited from X .
In the case that X� \ X� 0 D ; for � 6D � 0, X is the topological sum of .X�/�2� ,
denoted by X D L

�2� X� .
Let f W X ! Y be a map. For A � X and B � Y , we denote

f .A/ D ˚
f .x/

ˇ
ˇ x 2 A� and f �1.B/ D ˚

x 2 X ˇ
ˇ f .x/ 2 B�:

For collections A and B of subsets of X and Y , respectively, we denote

f .A/ D ˚
f .A/

ˇ
ˇ A 2 A� and f �1.B/ D ˚

f �1.B/
ˇ
ˇ B 2 B�:

The restriction of f to A � X is denoted by f jA. It is said that a map g W A ! Y

extends over X if there is a map f W X ! Y such that f jA D g. Such a map f is
called an extension of g.

Let Œa; b� be a closed interval, where a < b. A map f W Œa; b� ! X is called
a path (from f .a/ to f .b/) in X , and we say that two points f .a/ and f .b/ are
connected by the path f inX . An embedding f W Œa; b� ! X is called an arc (from
f .a/ to f .b/) inX , and the image f .Œa; b�/ is also called an arc. Namely, a space is
called an arc if it is homeomorphic to I. It is known that each pair of distinct points
x; y 2 X are connected by an arc if and only if they are connected by a path.2

For spaces X and Y , we denote

• C.X; Y / — the set of (continuous) maps from X to Y .

For maps f; g W X ! Y (i.e., f; g 2 C.X; Y /),

• f ' g means that f and g are homotopic (or f is homotopic to g),

that is, there is a map h W X � I ! Y such that h0 D f and h1 D g, where
ht W X ! Y , t 2 I, are defined by ht.x/ D h.x; t/, and h is called a homotopy
from f to g (between f and g). When g is a constant map, it is said that f is null-
homotopic, which we denote by f ' 0. The relation ' is an equivalence relation
on C.X; Y /. The equivalence class Œf � D fg 2 C.X; Y / j g ' f g is called the
homotopy class of f . We denote

2This will be shown in Corollary 5.14.6.



1.1 Terminology and Notation 7

• ŒX; Y � D fŒf � j f 2 C.X; Y /g D C.X; Y /='
— the set of the homotopy classes of maps from X to Y .

For each f; f 0 2 C.X; Y / and g; g0 2 C.Y;Z/, we have the following:

f ' f 0; g ' g0 ) gf ' g0f 0:

Thus, we have the composition ŒX; Y � � ŒY;Z� ! ŒX;Z� defined by .Œf �; Œg�/ 7!
Œg�Œf � D Œgf �. Moreover,

• X ' Y means that X and Y are homotopy equivalent (or X is homotopy
equivalent to Y ),3

that is, there are maps f W X ! Y and g W Y ! X such that gf ' idX and
fg ' idY , where f is called a homotopy equivalence and g is a homotopy inverse
of f .

Given subspaces X1; : : : ; Xn � X and Y1; : : : ; Yn � Y , a map f W X ! Y is
said to be a map from .X;X1; : : : ; Xn/ to .Y; Y1; : : : ; Yn/, written

f W .X;X1; : : : ; Xn/ ! .Y; Y1; : : : ; Yn/;

if f .X1/ � Y1, . . . , f .Xn/ � Yn. We denote

• C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn//
— the set of maps from .X;X1; : : : ; Xn/ to .Y; Y1; : : : ; Yn/.

A homotopy h between maps f; g 2 C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn// requires
the condition that ht 2 C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn// for every t 2 I, i.e., h is
regarded as the map

h W .X � I; X1 � I; : : : ; Xn � I/ ! .Y; Y1; : : : ; Yn/:

Thus, ' is an equivalence relation on C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn//. We
denote

• Œ.X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn/� D C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn//='.

When there exist maps

f W .X;X1; : : : ; Xn/ ! .Y; Y1; : : : ; Yn/;

g W .Y; Y1; : : : ; Yn/ ! .X;X1; : : : ; Xn/

such that gf ' idX and fg ' idY , we denote

• .X;X1; : : : ; Xn/ ' .Y; Y1; : : : ; Yn/.

3It is also said that X and Y have the same homotopy type or X has the homotopy type of Y .
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Similarly, for each pair of pointed spaces .X; x0/ and .Y; y0/,

• C..X; x0/; .Y; y0// D C..X; fx0g/; .Y; fy0g//;
• Œ.X; x0/; .Y; y0/� D C..X; x0/; .Y; y0//=';
• .X; x0/ ' .Y; y0/ means .X; fx0g/ ' .Y; fy0g/.

For A � X , a homotopy h W X � I ! Y is called a homotopy relative to A if
h.fxg � I/ is degenerate (i.e., a singleton) for every x 2 A. When a homotopy from
f to g is a homotopy relative to A (where f jA D gjA), we denote

• f ' g rel. A.

Let f; g W X ! Y be maps and U a collection of subsets of Y (in usual, U 2
cov.Y /). It is said that f and g are U-close (or f is U-close to g) if

˚ff .x/; g.x/g ˇˇ x 2 X� 	 U [ ˚fyg ˇˇ y 2 Y �;

which implies that U covers the set ff .x/; g.x/ j f .x/ 6D g.x/g. A homotopy h is
called a U-homotopy if

˚
h.fxg � I/

ˇ
ˇ x 2 X� 	 U [ ˚fyg ˇˇ y 2 Y �;

which implies that U covers the set

[˚
h.fxg � I/

ˇ
ˇ h.fxg � I/ is non-degenerate

�
:

We say that f and g are U-homotopic (or f is U-homotopic to g) and denoted by
f 'U g if there is a U-homotopy h W X � I ! Y such that h0 D f and h1 D g.

When Y D .Y; d/ is a metric space, we define the distance between f; g 2
C.X; Y / as follows:

d.f; g/ D sup
˚
d.f .x/; g.x//

ˇ
ˇ x 2 X�:

In general, it may be possible that d.f; g/ D 1, in which case d is not a metric
on the set C.X; Y /. If Y is bounded or X is compact, then this d is a metric on
the set C.X; Y /, called the sup-metric. For " > 0, we say that f and g are "-
close or f is "-close to g if d.f; g/ < ". A homotopy h is called an "-homotopy
if meshfh.fxg � I/ j x 2 Xg < ", where f D h0 and g D h1 are said to be
"-homotopic and denoted by f '" g.

In the above, even if d is not a metric on C.X; Y / (i.e., d.f; g/ D 1 for
some f; g 2 C.X; Y /), it induces a topology on C.X; Y / such that each f has a
neighborhood basis consisting of

Bd .f; "/ D ˚
g 2 C.X; Y /

ˇ
ˇ d.f; g/ < "

�
; " > 0:

This topology is called the uniform convergence topology.
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The compact-open topology on C.X; Y / is generated by the sets

hKIU i D ˚
f 2 C.X; Y /

ˇ
ˇ f .K/ � U

�
;

where K is any compact set in X and U is any open set in Y . With respect to this
topology, we have the following:

Proposition 1.1.1. Every map f W Z �X ! Y (or f W X �Z ! Y ) induces the
map Nf W Z ! C.X; Y / defined by Nf .z/.x/ D f .z; x/ (or Nf .z/.x/ D f .x; z/).

Proof. For each z 2 Z, it is easy to see that Nf .z/ W X ! Y is continuous, i.e.,
Nf .z/ 2 C.X; Y /. Thus, Nf is well-defined.

To verify the continuity of Nf W Z ! C.X; Y /, it suffices to show that
Nf �1.hKIU i/ is open in Z for each compact set K in X and each open set U in
Y . Let z 2 Nf �1.hKIU i/, i.e., f .fzg � K/ � U . Using the compactness of K , we
can easily find an open neighborhood V of z in Z such that f .V �K/ � U , which
means that V � Nf �1.hKIU i/. ut

With regards to the relation ' on C.X; Y /, we have the following:

Proposition 1.1.2. Each f; g 2 C.X; Y / are connected by a path in C.X; Y /. When
X is metrizable or locally compact, the converse is also true, that is, f ' g if and
only if f and g are connected by a path in C.X; Y / if f ' g.4

Proof. By Proposition 1.1.1, a homotopy h W X � I ! Y from f to g induces the
path Nh W I ! C.X; Y / defined as Nh.t/.x/ D h.x; t/ for each t 2 I and x 2 X ,
where Nh.0/ D f and Nh.1/ D g.

For a path ' W I ! C.X; Y / from f to g, we define the homotopy Q' W X � I !
Y as Q'.x; t/ D '.t/.x/ for each .x; t/ 2 X � I. Then, Q'0 D '.0/ D f and
Q'1 D '.1/ D g. It remains to show that Q' is continuous if X is metrizable or locally
compact.

In the case that X is locally compact, for each .x; t/ 2 X � I and for each open
neighborhood U of Q'.x; t/ D '.t/.x/ in Y , x has a compact neighborhood K in
X such that '.t/.K/ � U , i.e., '.t/ 2 hKIU i. By the continuity of ', t has a
neighborhood V in I such that '.V / � hKIU i. Thus, K � V is a neighborhood of
.x; t/ 2 X � I and Q'.K � V / � U . Hence, Q' is continuous.

In the case that X is metrizable, let us assume that Q' is not continuous at .x; t/ 2
X � I. Then, Q'.x; t/ has some open neighborhoodU in Y such that Q'.V / 6� U for
any neighborhood V of .x; t/ in X � I. Let d 2 Metr.X/. For each n 2 N, we have
xn 2 X and tn 2 I such that d.xn; x/ < 1=n, jtn � t j < 1=n and Q'.xn; tn/ 62 U .
Because xn ! x (n ! 1) and '.t/ is continuous, we have n0 2 N such that
'.t/.xn/ 2 U for all n � n0. Note that K D fxn; x j n � n0g is compact and
'.t/.K/ � U . Because tn ! t (n ! 1) and ' is continuous at t , '.tn1/.K/ � U

for some n1 � n0. Thus, Q'.xn1 ; tn1/ 2 U , which is a contradiction. Consequently, Q'
is continuous. ut
Remark 1. It is easily observed that Proposition 1.1.2 is also valid for

4More generally, this is valid for every k-space X , where X is a k-space provided U is open in
X if U \ K is open in K for every compact set K � X . A k-space is also called a compactly
generated space.
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C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn//:

Some Properties of the Compact-Open Topology 1.1.3.

The following hold with respect to the compact-open topology:

(1) For f 2 C.Z;X/ and g 2 C.Y;Z/, the following are continuous:

f � W C.X; Y / ! C.Z; Y /; f �.h/ D h ı f I
g� W C.X; Y / ! C.X;Z/; g�.h/ D g ı h:

(2) When Y is locally compact, the following (composition) is continuous:

C.X; Y / � C.Y;Z/ 3 .f; g/ 7! g ı f 2 C.X;Z/:

Sketch of Proof. LetK be a compact set inX and U an open set inZ with f 2 C.X; Y /
and g 2 C.Y; Z/ such that gıf .K/ � U . Since Y is locally compact, we have an open
set V in Y such that clV is compact, f .K/ � V and g.clV / � U . Then, f 0.K/ � V

and g0.clV / � U imply g0 ı f 0.K/ � U .

(3) For each x0 2 X , the following (evaluation) is continuous:

C.X; Y / 3 f 7! f .x0/ 2 Y:

(4) When X is locally compact, the following (evaluation) is continuous:

C.X; Y / �X 3 .f; x/ 7! f .x/ 2 Y:

In this case, for every map f W Z ! C.X; Y /, the following is continuous:

Z �X 3 .z; x/ 7! f .z/.x/ 2 Y:

(5) In the case that X is locally compact, we have the following inequalities:

w.Y / � w.C.X; Y // � @0w.X/w.Y /:
Sketch of Proof. By embedding Y into C.X; Y /, we obtain the first inequality. For the
second, we take open bases BX and BY for X and Y , respectively, such that card BX D
w.X/, cardBY D w.Y /, and clA is compact for every A 2 BX . The following is an
open sub-basis for C.X; Y /:

B D ˚hclA;Bi ˇˇ .A; B/ 2 BX � BY
�
:

Indeed, let K be a compact set in X , U be an open set in Y , and f 2 C.X; Y / with
f .K/ � U , i.e., f 2 hK;U i. First, find B1; : : : ; Bn 2 BY so that f .K/ � B1 [ � � � [
Bn � U . Next, find A1; : : : ; Am 2 BX so that K � A1 [ � � � [ Am and each clAi is
contained in some f �1.Bj.i//. Then, f 2 Tm

iD1hclAi ; Bj.i/i � hK;U i.
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(6) If X is compact and Y D .Y; d/ is a metric space, then the sup-metric on
C.X; Y / is admissible for the compact-open topology on C.X; Y /.

Sketch of Proof. Let K be a compact set in X and U be an open set in Y with
f 2 C.X; Y / such that f .K/ � U . Then, ı D dist.f .K/; Y n U/ > 0, and
d.f; f 0/ < ı implies f 0.K/ � U . Conversely, for each " > 0 and f 2 C.X; Y /,
we have x1; : : : ; xn 2 X such that X D Sn

iD1 f
�1.B.f .xi /; "=4/. Observe that

f 0.f �1.B.f .xi /; "=4/// � B.f .xi /; "=2/ .8i D 1; : : : ; n/

) d.f; f 0/ < ":

(7) Let X D S
n2NXn, where Xn is compact and Xn � intXnC1. If Y D .Y; d/ is

a metric space, then C.X; Y / with the compact-open topology is metrizable.

Sketch of Proof. We define a metric 
 on C.X; Y / as follows:


.f; g/ D sup
n2N

min

(

n�1; sup
x2Xn

d.f .x/; g.x//

)

:

Then, 
 is admissible for the compact-open topology on C.X; Y /. To see this, refer to
the proof of (6).

1.2 Banach Spaces in the Product of Real Lines

Throughout this section, let � be an infinite set. We denote

• Fin.� / — the set of all non-empty finite subsets of � .

Note that card Fin.� / D card� . The product space R
� is a linear space with the

following scalar multiplication and addition:

R
� � R 3 .x; t/ 7! tx D .tx.�//�2� 2 R

� I
R
� � R

� 3 .x; y/ 7! x C y D .x.�/C y.�//�2� 2 R
� :

In this section, we consider various (complete) norms defined on linear subspaces
of R� . In general, the unit closed ball and the unit sphere of a normed linear space
X D .X; k � k/ are denoted by BX and SX , respectively. Namely, let

BX D ˚
x 2 X ˇ

ˇ kxk � 1
�

and SX D ˚
x 2 X ˇ

ˇ kxk D 1
�
:

The zero vector (the zero element) of X is denoted by 0X , or simply 0 if there is no
possibility of confusion.

Before considering norms, we first discuss the product topology of R
� . The

scalar multiplication and addition are continuous with respect to the product
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topology. Namely,R� with the product topology is a topological linear space.5 Note
that w.R� / D card� .

Let B0 be a countable open basis for R. Then, R� has the following open basis:

˚T
�2F pr�1

� .B� /
ˇ
ˇ F 2 Fin.� /; B� 2 B0 .� 2 F /

�
:

Thus, we have w.R� / � @0 card Fin.� / D card� . Let B be an open basis for R� . For
each B 2 B, we can find FB 2 Fin.� / such that pr� .B/ D R for every � 2 � n FB .
Then, card

S
B2B FB � @0 card B. If card B < card� then card

S
B2B FB < card� , so

we have �0 2 � n SB2B FB . The open set pr�1
�0
..0;1// � R

� contains some B 2 B.
Then, pr�0 .B/ � .0;1/, which means that �0 2 FB . This is a contradiction. Therefore,
card B � card� , and thus we have w.R� / � card� .

For each � 2 � , we define the unit vector e� 2 R
� by e� .�/ D 1 and e� .� 0/ D 0

for � 0 6D � . It should be noted that fe� j � 2 � g is not a Hamel basis for R� , and
the linear span of fe� j � 2 � g is the following:6

R
�
f D ˚

x 2 R
�
ˇ
ˇ x.�/ D 0 except for finitely many � 2 � �;

which is a dense linear subspace of R� . The subspace RN

f of s D R
N is also denoted

by sf , which is the space of finite sequences (with the product topology). When
card� D @0, the space R

� is linearly homeomorphic to the space of sequences
s D R

N, i.e., there exists a linear homeomorphism between R
� and s, where the

linear subspace R
�
f is linearly homeomorphic to sf by the same homeomorphism.

The following fact can easily be observed:

Fact. The following are equivalent:

(a) R
� is metrizable;

(b) R
�
f is metrizable;

(c) R
�
f is first countable;

(d) card� � @0.
The implication (c) ) (d) is shown as follows: Let fUi j i 2 Ng be a neighborhood basis
of 0 in R

�
f . Then, each �i D f� 2 � j Re� 6� Ui g is finite. If � is uncountable, then

� nSi2N �i 6D ;, i.e., Re� � T
i2N Ui for some � 2 � . In this case, Ui 6� pr�1

� ..�1; 1//
for every i 2 N, which is a contradiction.

Thus, every linear subspace L of R
� containing R

�
f is non-metrizable if � is

uncountable, and it is metrizable if � is countable. On the other hand, due to
the following proposition, every linear subspaces L of R� containing R

�
f is non-

normable if � is infinite.

Proposition 1.2.1. Let � be an infinite set. Any norm on R
�
f does not induce the

topology inherited from the product topology of R� .

5For topological linear spaces, refer Sect. 3.4.
6The linear subspace generated by a set B is called the linear span of B .



1.2 Banach Spaces in the Product of Real Lines 13

Proof. Assume that the topology of R�f is induced by a norm k � k. Because U D
fx 2 R

�
f j kxk < 1g is an open neighborhood of 0 in R

�
f , we have a finite set F �

� and neighborhoods V� of 0 2 R, � 2 F , such that R�f \ T
�2F pr�1

� .V� / � U .

Take �0 2 � n F . As Re�0 � U , we have ke�0k�1e�0 2 U but
�
�ke�0k�1e�0

�
� D

ke�0k�1ke�0k D 1, which is a contradiction. ut
The Banach space `1.� / and its closed linear subspaces c.� / � c0.� / are

defined as follows:

• `1.� / D ˚
x 2 R

�
ˇ
ˇ sup�2� jx.�/j < 1�

with the sup-norm

kxk1 D sup
�2�

jx.�/jI

• c.� / D ˚
x 2 R

�
ˇ
ˇ 9t 2 R such that 8" > 0; jx.�/� t j < " except for finitely

many � 2 � �I
• c0.� / D ˚

x 2 R
�
ˇ
ˇ 8" > 0; jx.�/j < " except for finitely many � 2 � �.

These are linear subspaces of R
� , but are not topological subspace according to

Proposition 1.2.1. The space c.� / is linearly homeomorphic to c0.� / � R by the
correspondence

c0.� / � R 3 .x; t/ 7! .x.�/C t/�2� 2 c.� /:

This correspondence and its inverse are Lipschitz with respect to the norm k.x; t /k D
maxfkxk

1

; jt jg. Indeed, let y D .x.�/Ct /�2� . Then, kyk
1

� kxk
1

Cjt j � 2k.x; t /k.
Because x 2 c0.� / and jt j � jy.�/j C jx.�/j � kyk

1

C jx.�/j for every � 2 � , it
follows that jt j � kyk

1

. Moreover, jx.�/j � jy.�/j C jt j � 2kyk
1

for every � 2 � .
Hence, kxk

1

� 2kyk
1

, and thus we have k.x; t /k � 2kyk
1

.

Furthermore, we denote R
�
f with this norm as `f1.� /. We then have the

inclusions:

`f1.� / � c0.� / � c.� / � `1.� /:

The topology of `f1.� / is different from the topology inherited from the product
topology. Indeed, fe� j � 2 � g is discrete in `f1.� /, but 0 is a cluster point of this
set with respect to the product topology.

We must pay attention to the following fact:

Proposition 1.2.2. For an arbitrary infinite set � ,

w.`1.� // D 2card� but w.c.� // D w.c0.� // D w.`f1.� // D card�:

Proof. The characteristic map �� W � ! f0; 1g � R of � � � belongs to `1.� /
(�; D 0 2 `1.� /), where k�� � ��0k1 D 1 if � 6D �0 � � . It follows that
w.`1.� // D c.`1.� // � 2card� . Moreover, Q� \ `1.� / is dense in `1.� /, and
hence we have
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w.`1.� // D dens `1.� / � cardQ� D @card�
0 D 2card� :

On the other hand, e� 2 `f1.� / for each � 2 � and ke� � e� 0k1 D 1 if � 6D � 0.
Since `f1.� / � c0.� /, it follows that

w.c0.� // � w.`f1.� // D c.`f1.� // � card�:

Moreover, c0.� / has the following dense subset:

Q
�
f D ˚

x 2 Q
�
ˇ
ˇ x.�/ D 0 except for finitely many � 2 � �;

and so it follows that

w.c0.� // D dens c0.� / � cardQ�
f � @0 card Fin.� / D card�:

Thus, we have w.c0.� // D w.`f1.� // D card� . As already observed, c.� / �
c0.� / � R, hence w.c.� // D w.c0.� //. ut

When � D N, we write

• `1.N/ D `1 — the space of bounded sequences,
• c.N/ D c — the space of convergent sequences,
• c0.N/ D c0 — the space of sequences convergent to 0, and
• `

f1.N/ D `
f1 — the space of finite sequences with the sup-norm,

where `f1 6D sf as (topological) spaces. According to Proposition 1.2.2, c and c0 are
separable, but `1 is non-separable. When card� D @0, the spaces `1.� /, c.� /,
and c0.� / are linearly isometric to these spaces `1, c and c0, respectively.

Here, we regard Fin.� / as a directed set by �. For x 2 R
� , we say thatP

�2� x.�/ is convergent if
�P

�2F x.�/
�
F2Fin.� / is convergent, and define

X

�2�
x.�/ D lim

F2Fin.� /

X

�2F
x.�/:

In the case that x.�/ � 0 for all � 2 � ,
P

�2� x.�/ is convergent if and only if
�P

�2F x.�/
�
F2Fin.� / is upper bounded, and then

X

�2�
x.�/ D sup

F2Fin.� /

X

�2F
x.�/:

By this reason,
P

�2� x.�/ < 1 means that
P

�2� x.�/ is convergent.
For x 2 R

N, we should distinguish
P

i2N x.i/ from
P1

iD1 x.i/. When the
sequence

�Pn
iD1 x.i/

�
n2N is convergent, we say that

P1
iD1 x.i/ is convergent, and

define
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1X

iD1
x.i/ D lim

n!1

nX

iD1
x.i/:

Evidently, if
P

i2N x.i/ is convergent, then
P1

iD1 x.i/ is also convergent andP1
iD1 x.i/ D P

i2N x.i/. However,
P

i2N x.i/ is not necessary convergent even
if
P1

iD1 x.i/ is convergent. In fact, due to Proposition 1.2.3 below, we have the
following:

X

i2N
x.i/ is convergent ,

1X

iD1
jx.i/j is convergent.

Proposition 1.2.3. For an infinite set � and x 2 R
� ,
P

�2� x.�/ is convergent
if and only if

P
�2� jx.�/j < 1. In this case, �x D f� 2 � j x.�/ 6D 0g is

countable, and
P

�2� x.�/ D P1
iD1 x.�i / for any sequence .�i /i2N in � such that

�x � f�i j i 2 Ng and �i 6D �j if i 6D j .

Proof. Let us denote �C D f� 2 � j x.�/ > 0g and �� D f� 2 � j x.�/ < 0g.
Then, �x D �C [ ��.

If
P

�2� x.�/ is convergent, we have F0 2 Fin.� / such that

F0 � F 2 Fin.� / )
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2�
x.�/�

X

�2F
x.�/

ˇ
ˇ
ˇ
ˇ
ˇ
< 1:

Then, for each E 2 Fin.�C/[ Fin.��/ (i.e., E 2 Fin.�C/ or E 2 Fin.��/),

X

�2EnF0
jx.�/j D

ˇ
ˇ
ˇ
ˇ
ˇ

X

�2EnF0
x.�/

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2E[F0
x.�/ �

X

�2F0
x.�/

ˇ
ˇ
ˇ
ˇ
ˇ
< 2:

Hence,
P

�2F jx.�/j <P�2F0 jx.�/j C 4 for every F 2 Fin.� /, which means that
�P

�2F jx.�/j�
F2Fin.� / is upper bounded, i.e.,

P
�2� jx.�/j < 1.

Conversely, we assume that
P

�2� jx.�/j < 1. Then, for each n 2 N, �n D
f� 2 � j jx.�/j > 1=ng is finite, and hence �x D S

n2N �n is countable. Note thatP
�2�

C

jx.�/j < 1 and
P

�2�
�

jx.�/j < 1. We show that

X

�2�
x.�/ D

X

�2�
C

jx.�/j �
X

�2�
�

jx.�/j:

For each " > 0, we can find FC 2 Fin.�C/ and F� 2 Fin.��/ such that

F˙ � E 2 Fin.�˙/ )
X

�2�
˙

jx.�/j � "=2 <
X

�2E
jx.�/j �

X

�2�
˙

jx.�/j:
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Then, it follows that, for each F 2 Fin.� / with F � FC [ F�,

ˇ
ˇ
ˇ
ˇ
ˇ

X

�2F
x.�/�

 
X

�2�
C

jx.�/j �
X

�2�
�

jx.�/j
!ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2F\�
C

jx.�/j �
X

�2�
C

jx.�/j
ˇ
ˇ
ˇ
ˇ
ˇ
C
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2F\�
�

jx.�/j �
X

�2�
�

jx.�/j
ˇ
ˇ
ˇ
ˇ
ˇ

< "=2C "=2 D ":

Now, let .�i /i2N be a sequence in � such that �x � f�i j i 2 Ng and �i 6D �j if
i 6D j . We define

n0 D maxfi 2 N j �i 2 FC [ F�g:
For each n � n0, it follows from FC [ F� � f�1; : : : ; �ng that

ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD1
x.�i /�

 
X

�2�
C

jx.�/j �
X

�2�
�

jx.�/j
!ˇ
ˇ
ˇ
ˇ
ˇ
< ":

Thus, we also have
P

�2� x.�/ D P1
iD1 x.�i /. ut

For each p � 1, the Banach space `p.� / is defined as follows:

• `p.� / D ˚
x 2 R

�
ˇ
ˇ P

�2� jx.�/jp < 1�
with the norm

kxkp D
 
X

�2�
jx.�/jp

!1=p

:

Similar to `f1.� /, we denote the space R�f with this norm by `fp .� /.

The triangle inequality for the norm kxkp is known as the Minkowski inequality, which is
derived from the following Hölder inequality:

X

�2�

a�b� �
 
X

�2�

ap�

!1=p 
X

�2�

b
1

1�1=p
�

!1�1=p

for every a� ; b� � 0.

Indeed, for every x; y 2 `p.� /,

kx C ykpp D X

�2�

jx.�/C y.�/jp

� X

�2�

�jx.�/j C jy.�/j�jx.�/C y.�/jp�1

D X

�2�

jx.�/j � jx.�/C y.�/jp�1 C X

�2�

jy.�/j � jx.�/C y.�/jp�1
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�
 
X

�2�

jx.�/jp
!1=p 

X

�2�

jx.�/C y.�/j.p�1/ 1
1�1=p

!1�1=p

C
 
X

�2�

jy.�/jp
!1=p 

X

�2�

jx.�/C y.�/j.p�1/ 1
1�1=p

!1�1=p

D �kxkp C kykp��kx C ykpp
�1�1=p D �kxkp C kykp�kx C ykpp

kx C ykp ;

so it follows that kx C ykp � kxkp C kykp .

As for c0.� /, we can show w.`p.� // D card� . When card� D @0, the Banach
space `p.� / is linearly isometric to `p D `p.N/, which is separable. The space
`2.� / is the Hilbert space with the inner product

hx; yi D
X

�2�
x.�/y.�/;

which is well-defined because

X

�2�
jx.�/y.�/j � 1

2
.kxk22 C kyk22/ < 1:

For 1 � p < q, we have `p.� / ¤ `q.� / ¤ c0.� / as sets (or linear spaces).
These inclusions are continuous because kxk1 � kxkq � kxkp for every x 2
`p.� /. When � is infinite, the topology of `p.� / is distinct from that induced by
the norm k � kq or k � k1 (i.e., the topology inherited from `q.� / or c0.� /). In fact,
the unit sphere S`p.� / is closed in `p.� / but not closed in `q.� / for any q > p, nor
in c0.� /. To see this, take distinct �i 2 � , i 2 N, and let .xn/n2N be the sequence
in S`p.� / defined by xn.�i / D n�1=p for i � n and xn.�/ D 0 for � 6D �1; : : : ; �n. It
follows that kxnk1 D n�1=p ! 0 (n ! 1) and

kxnkq D �
n � n�q=p�1=q D n.p�q/=pq ! 0 .n ! 1/

because .p � q/=pq < 0.
For 1 � p � 1, we have R

�
f � `p.� / as sets (or linear spaces). We denote by

`
f
p .� / this R�f with the topology inherited from `p.� /, and we write `fp .N/ D `

f
p

(when � D N). From Proposition 1.2.1, we know `
f
p .� / 6D R

�
f as spaces for any

infinite set � . In the above, the sequence .xn/n2N is contained in the unit sphere
S
`
f
p .� /

of `fp .� /, which means that S
`
f
p .� /

is not closed in `fq , hence `fp 6D `
f
q as

spaces for 1 � p < q � 1. Note that S
`
f
p .� /

is a closed subset of `fq for 1 � q < p.

Concerning the convergence of sequences in `p.� /, we have the following:
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Proposition 1.2.4. For each p 2 N and x 2 `p.� /, a sequence .xn/n2N converges
to x in `p.� / if and only if

kxkp D lim
n!1 kxnkp and x.�/ D lim

n!1xn.�/ for every � 2 � .

Proof. The “only if” part is trivial, so we concern ourselves with proving the “if”
part for `p.� /. For each " > 0, we have �1; : : : ; �k 2 � such that

X

� 6D�i
jx.�/jp D kxkpp �

kX

iD1
jx.�i /jp < 2�p"p=4:

Choose n0 2 N so that if n � n0 then
ˇ
ˇkxnkpp � kxkpp

ˇ
ˇ < 2�p"p=8,

ˇ
ˇjxn.�i /jp � jx.�i /jp

ˇ
ˇ < 2�p"p=8k and jxn.�i /� x.�i /jp < "p=4k

for each i D 1; : : : ; k. Then, it follows that

X

� 6D�i
jxn.�/jp Dkxnkpp �

kX

iD1
jxn.�i /jp

Dkxnkpp � kxkpp C kxkpp �
kX

iD1
jx.�i /jp

C
kX

iD1

�jx.�i /jp � jxn.�i /jp
�

<2�p"p=8C 2�p"p=4C 2�p"p=8 D 2�p"p=2;
and hence we have

kxn � xkpp �
kX

iD1
jxn.�i / � x.�i /jp C

X

� 6D�i
2p max

˚jxn.�/j; jx.�/j�p

< "p=4C
X

� 6D�i
2pjxn.�/jp C

X

� 6D�i
2pjx.�/jp

< "p=4C "p=2C "p=4 D "p;

that is, kxn � xkp < ". ut
Remark 2. It should be noted that Proposition 1.2.4 is valid not only for sequences,
but also for nets, which means that the unit spheres S`p.� /, p 2 N, are subspaces of
the product space R

� , whereas R� and R
�
f are not metrizable if � is uncountable.

Therefore, if 1 � p < q � 1, then S`p.� / is also a subspace of `q.� /, although,
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as we have seen, S`p.� / of `p.� / is not closed in the space `q.� /. The unit sphere

S
`
f
p .� /

of `fp .� / is a subspace of R�f (� R
� ), and also a subspace of `q.� / for

1 � q � 1.

Remark 3. The “if” part of Proposition 1.2.4 does not hold for the space c0.� /

(although the “only if” part obviously does hold), where � is infinite. For instance,
take distinct �n 2 � , n 2 !, and let .xn/n2N be the sequence in c0.� / defined by
xn D e�n C e�0 . Then, kxnk1 D 1 for each n 2 N,

lim
n!1xn.�0/ D 1 D e�0.�0/ and lim

n!1xn.�/ D 0 D e�0.�/ for � 6D �0,

but kxn � e�0k1 D 1 for every n 2 � . In addition, the unit sphere Sc0.� / of c0.� /

is not a subspace of R� , because e�n 2 Sc0.� / but .e�n/n2N converges to 0 in R
� .

Concerning the topological classification of `p.� /, we have the following:

Theorem 1.2.5 (MAZUR). For each 1 < p < 1, `p.� / is homeomorphic to

`1.� /. By the same homeomorphism, `fp .� / is also homeomorphic to `f1 .� /.

Proof. We define ' W `1.� / ! `p.� / and  W `p.� / ! `1.� / as follows:

'.x/.�/ D sign x.�/ � jx.�/j1=p for x 2 `1.� /,
 .x/.�/ D signx.�/ � jx.�/jp for x 2 `p.� /,

where sign 0 D 0 and sign a D a=jaj for a 6D 0. We can apply Proposition 1.2.4 to
verify the continuity of ' and  . In fact, the following functions are continuous:

`1.� / 3 x 7! k'.x/kp D �kxk1
�1=p 2 R; `1.� / 3 x 7! '.x/.�/ 2 R; � 2 � I

`p.� / 3 x 7! k .x/k1 D �kxkp
�p 2 R; `p.� / 3 x 7!  .x/.�/ 2 R; � 2 �:

Observe that  ' D id and ' D id. Thus, ' is a homeomorphism with '�1 D  ,
where '.`fp .� // � `

f
1 .� / and  .`f1 .� // � `

f
p .� /. ut

For each space X , we denote C.X/ D C.X;R/. The Banach space CB.X/ is
defined as follows:

• CB.X/ D ˚
f 2 C.X/

ˇ
ˇ supx2X jf .x/j < 1�

with the sup-norm

kf k D sup
x2X

jf .x/j:

This sup-norm of CB.X/ induces the uniform convergence topology. IfX is discrete
and infinite, then we have CB.X/ D `1.X/, and so, in particular, CB.N/ D `1.
When X is compact, CB.X/ D C.X/ and the topology induced by the norm
coincides with the compact-open topology.
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The uniform convergence topology of C.X/ is induced by the following metric:

d.f; g/ D sup
x2X

minfjf .x/� g.x/j; 1g:

As can be easily observed, CB.X/ is closed and open in C.X/ under the uniform
convergence topology. Note that CB.X/ is a component of the space C.X/ because
CB.X/ is path-connected as a normed linear space.

Regarding C.X/ as a subspace of the product space R
X , we can introduce a

topology on C.X/, which is called the pointwise convergence topology. With
respect to this topology,

lim
n!1fn D f , lim

n!1fn.x/ D f .x/ for every x 2 X .

The space C.X/ with the pointwise convergence topology is usually denoted by
Cp.X/. The space Cp.N/ is simply the space of sequences s D R

N.
In this chapter, three topologies on C.X/ have been considered — the compact-

open topology, the uniform convergence topology, and the pointwise convergence
topology. Among them, the uniform convergence topology is the finest and the
pointwise convergence topology is the coarsest.

Notes for Chap. 1

Theorem 1.2.5 is due to Mazur [3]. Zhongqiang Yang pointed out that Proposition 1.2.4 can be

applied to show the continuity of ' and  in the proof of Theorem 1.2.5. Related to Mazur’s result,

Anderson [1] proved that s D R
N is homeomorphic to the Hilbert space `2. For an elementary

proof, refer to [2].
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