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We can imagine and consider many mathematical concepts, such as numbers,
spaces, maps, dimensions, etc., that can be indefinitely extended beyond infinity
in our minds. Contemplating our mathematical ability in such a manner, I can recall
this phrase from the Scriptures:

Everything he has made pretty in its time. Even time indefinite he has put in their
heart, that mankind may never find out the work that the true God has made from
the start to the finish.—Ecclesiastes 3:11

May our Maker be glorified! Our brain is the work of his hands, as in Psalms
100:3, Know that Jehovah is God. It is he that has made us, and not we ourselves.
There are many reasons to give thanks to God. Our mathematical ability is one of
them.






Preface

This book is designed for graduates studying Dimension Theory, ANR Theory
(Theory of Retracts), and related topics. As is widely known, these two theories are
connected with various fields in Geometric Topology as well as General Topology.
So, for graduate students who wish to research subjects in General and Geometric
Topology, understanding these theories will be valuable. Some excellent texts on
these theories are the following:

e W. Hurewicz and H. Wallman, Dimension Theory (Princeton Univ. Press,
Princeton, 1941)

e K. Borsuk, Theory of Retracts, MM 44 (Polish Sci. Publ., Warsaw, 1966)

* S.-T. Hu, Theory of Retracts (Wayne State Univ. Press, Detroit, 1965)

However, these classical texts must be updated. This is the purpose of the present
book.
A comprehensive study of Dimension Theory may refer to the following book:

* R. Engelking, Theory of Dimensions, Finite and Infinite, SSPM 10 (Heldermann
Verlag, Lembo, 1995)

Engelking’s book, however, lacks results relevant to Geometric Topology. In this
or any other textbook, no proof is given that dimX x I = dimX + 1 for a
metrizable space X,' and no example illustrates the difference between the small
and large inductive dimensions or a hereditarily infinite-dimensional space (i.e.,
an infinite-dimensional space that has no finite-dimensional subspaces except for
0-dimensional subspaces).”

In the 1980s and 1990s, famous longstanding problems from Dimension Theory
and ANR Theory were finally resolved. In the process, it became clear that

I'This proof can be found in Kodama’s appendix of the following book:
* K. Nagami, Dimension Theory (Academic Press, Inc., New York, 1970)

2 As will be mentioned later, a hereditarily infinite-dimensional space is treated in the book of J. van
Mill: Infinite-Dimensional Topology.

vii



viii Preface

these theories are linked with others. In Dimension Theory, the Alexandroff
Problem had long remained unsolved. This problem queried the existence of
an infinite-dimensional space whose cohomological dimension is finite. On the
other hand, the CE Problem arose as a fascinating question in Shape Theory that
asked whether there exists a cell-like map of a finite-dimensional space onto an
infinite-dimensional space. In the 1980s, it was shown that these two problems
are equivalent. Finally, in 1988, by constructing an infinite-dimensional compact
metrizable space whose cohomological dimension is finite, A.N. Dranishnikov
solved the Alexandroff Problem.

On the other hand, in ANR Theory, for many years it was unknown whether a
metrizable topological linear space is an AR (or more generally, whether a locally
equi-connected metrizable space is an ANR). In 1994, using a cell-like map of a
finite-dimensional compact manifold onto an infinite-dimensional space, R. Cauty
constructed a separable metrizable topological linear space that is not an AR.
These results are discussed in the latter half of the final chapter and provide an
understanding of how deeply these theories are related to each other. This is also the
purpose of this book.

The notion of simplicial complexes is useful tool in Topology, and indispensable
for studying both Theories of Dimension and Retracts. There are many textbooks
from which we can gain some knowledge of them. Occasionally, we meet non-
locally finite simplicial complexes. However, to the best of the author’s knowledge,
no textbook discusses these in detail, and so we must refer to the original papers.
For example, J.H.C. Whitehead’s theorem on small subdivisions is very important,
but its proof cannot be found in any textbook. This book therefore properly treats
non-locally finite simplicial complexes. The homotopy type of simplicial complexes
is usually discussed in textbooks on Algebraic Topology using CW complexes,
but we adopt a geometrical argument using simplicial complexes, which is easily
understandable.

As prerequisites for studying infinite-dimensional manifolds, Jan van Mill
provides three chapters on simplicial complexes, dimensions, and ANRs in the
following book:

e J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction,
North-Holland Math. Library 43 (Elsevier Sci. Publ. B.V., Amsterdam, 1989)

These chapters are similar to the present book in content, but they are introduc-
tory courses and restricted to separable metrizable spaces. The important results
mentioned above are not treated except for an example of a hereditarily infinite-
dimensional space. Moreover, one can find an explanation of the Alexandroff
Problem and the CE Problem in Chap. 3 of the following book:

* A. Chigogidze, Inverse Spectra, North-Holland Math. Library 53 (Elsevier Sci.
B.V., Amsterdam, 1996)

Unfortunately, this book is, however, inaccessible for graduate students.
The present text has been in use by the author for his graduate class at the
University of Tsukuba. Every year, a lecture has been given based on some topic
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selected from this book except the final chapter, and the same material has been
used for an undergraduate seminar. Readers are required to finish the initial courses
of Set Theory and General Topology. Basic knowledge of Linear Algebra is also a
prerequisite. Except for the latter half of the final chapter, this book is self-contained.

Chapter 2 develops the general material relating to topological spaces appropriate
for graduate students. It provides a supplementary course for students who finished
an undergraduate course in Topology. We discuss paracompact spaces and some
metrization theorems for non-separable spaces that are not treated in a typical
undergraduate course.® This chapter also contains Michael’s theorem on local
properties, which can be applied in many situations. We further discuss the direct
limits of towers (increasing sequences) of spaces, which are appear in Geometric
and Algebraic Topology.* A non-Hausdorff direct limit of a closed tower of
Hausdorff spaces is included. The author has not found any literature representing
such an example. The limitation topology on the function spaces is also discussed.

Chapter 3 is devoted to topological linear spaces and convex sets. There are
many good textbooks on these subjects. This chapter represents a short course on
fundamental results on them. First, we establish the existing relations between these
objects and to General and Geometric Topology. Convex sets are then discussed in
detail. This chapter also contains Michael’s selection theorem. Moreover, we show
the existence of free topological spaces.

In Chap.4, simplicial complexes are treated without assuming local finiteness.
As mentioned above, we provide proof of J.H.C. Whitehead’s theorem on small
subdivisions. The simplicial mapping cylinder is introduced and applied to prove
the Whitehead—Milnor theorem on the homotopy type of simplicial complexes. It is
also applied to prove that every weak homotopy equivalence between simplicial
complexes is a homotopy equivalence. The inverse limits of inverse sequences
are also discussed, and it is shown that every completely metrizable space is
homeomorphic to locally finite-dimensional simplicial complexes with the metric
topology. These results cannot be found in any other book dealing with simplicial
complexes but are buried in old journals. D.W. Henderson established the metric
topology version of the Whitehead theorem on small subdivisions, but his proof
is valid only for locally finite-dimensional simplicial complexes. Here we offer a
complete proof without the assumption of local finite-dimensionality. Knowledge
of homotopy groups is not required, even when weak homotopy equivalences are

3These subjects are discussed in Munkres’ book, now a very popular textbook at the senior or the
first-year graduate level:

* J.R. Munkres, Topology, 2nd ed. (Prentice Hall, Inc., Upper Saddle River, 2000)
4The direct limits are discussed in Appendix of Dugundji’s book:
e J. Dugundji, Topology (Allyn and Bacon, Inc., Boston, 1966)

But, they are not discussed even in Engelking’s book, a comprehensive reference book for General
Topology:

* R. Engelking, General Topology, Revised and completed edition, SSPM 6
(Heldermann Verlag, Berlin, 1989)



X Preface

discussed. However, we do review homotopy groups in Appendix 4.14 because they
are helpful in the second half of Chap. 7.

Chapters 5 and 6 are devoted to Dimension Theory and ANR Theory, respec-
tively. We prove basic results and fundamental theorems on these theories. The
contents are very similar to Chaps.5 and 6 of van Mill’s “Infinite-Dimensional
Topology”. However, as mentioned previously, we do not restrict ourselves to
separable metrizable spaces and instead go on to prove further results.

In Chap.5, we describe a non-separable metrizable space such that the large
inductive dimension does not coincide with the small inductive dimension. As
mentioned above, such an example is not treated in any other textbook on Dimension
Theory (not even Engelking’s book). Here, we present Kulesza’s example with
Levin’s proof. The transfinite inductive dimension is also discussed, which is not
treated in van Mill’s book. Further, we prove that every completely metrizable space
with dimension < n is homeomorphic to the inverse limit of an inverse sequence
of metric simplicial complexes with dimension < n. Finally, hereditarily infinite-
dimensional spaces are discussed based on van Mill’s book.

In Chap. 6, we discuss several topics that are not treated in van Mill’s book
or in the two classical books by Hu and Borsuk mentioned above. Following are
examples of such topics: uniform ANRs in the sense of Michael and its completion;
Kozlowski’s theorem that the metrizable range of a fine homotopy equivalence
of an ANR is also an ANR; Cauty’s characterization, with Sakai’s proof, that a
metrizable space is an ANR if and only if every open set has the homotopy type
of an ANR; Haver’s theorem that every countable-dimensional locally contractible
metrizable space is an ANR; and Bothe’s theorem, with Kodama’s proof, that every
n-dimensional metrizable space can be embedded in an (n + 1)-dimensional AR as
a closed set.

In Chap. 7, cell-like maps and related topics are discussed. The first half is self-
contained, but the second half is not because some algebraic results are necessary. In
the first half, we examine the existing relations between cell-like maps, soft maps,
fine homotopy equivalences, etc. The second half is devoted to related topics. In
particular, the CE Problem is explained and Cauty’s example is presented. Note that
Chigogidze’s “Inverse Spectra” is the only book dealing with soft maps and provides
an explanation of the Alexandroff Problem and the CE Problem.

In the second half of Chap. 7, using the K-theory result of Adams, we present
the Taylor example. Eilenberg—MacLane spaces are usually constructed as CW
complexes, but here they are constructed as simplicial complexes. To avoid using
cohomology, we define the cohomological dimension geometrically. By applying
the cohomological dimension, we can prove the equality dim X x I = dim X + 1
for every metrizable space X. We also discuss the Alexandroff Problem and the
CE Problem as mentioned above. The equivalence of these problems is proved.
Next, we describe the Dydak—Walsh example that gives an affirmative answer to
the Alexandroff Problem. However, this part of the text is not self-contained. As a
corollary, we can answer the CE Problem, i.e., we can obtain a cell-like mapping
of a finite-dimensional compact manifold onto an infinite-dimensional compactum.
We also present Cauty’s example, i.e., a metrizable topological linear space that is
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not an absolute extensor. In the proof, we need the above cell-like mapping to be
open, and we therefore use Walsh’s open mapping approximation theorem. A proof
of Walsh’s theorem is beyond the scope of this book.

The author would like to express his sincere appreciation to his teacher, Professor
Yukihiro Kodama, who introduced him to Shape Theory and Infinite-Dimensional
Topology and warmly encouraged him to persevere. He owes his gratitude to
Ross Geoghegan for improving the written English text. He is also grateful to
Haruto Ohta, Taras Banakh and Zhongqiang Yang for their valuable comments and
suggestions. Finally, he also warmly thanks his graduate students, Yutaka Iwamoto,
Yuji Akaike, Shigenori Uehara, Masayuki Kurihara, Masato Yaguchi, Kotaro Mine,
Atsushi Yamashita, Minoru Nakamura, Atsushi Kogasaka, Katsuhisa Koshino, and
Hanbiao Yang for their careful reading and helpful comments.

Katsuro Sakai

Tsukuba, Japan
December 2012
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Chapter 1
Preliminaries

The reader should have finished a first course in Set Theory and General Topology;
basic knowledge of Linear Algebra is also a prerequisite. In this chapter, we
introduce some terminology and notation. Additionally, we explain the concept of
Banach spaces contained in the product of real lines.

1.1 Terminology and Notation

For the standard sets, we use the following notation:

N — the set of natural numbers (i.e., positive integers);
o = N U {0} — the set of non-negative integers;

7 — the set of integers;

@Q — the set of rationals;

R = (—o0, 00) — the real line with the usual topology;
C — the complex plane;

]R-l- = [Os OO);

I = [0, 1] — the unit closed interval.

A (topological) space is assumed to be Hausdorff and a map is a continuous

function. A singleton is a space consisting of one point, which is also said to be
degenerate. A space is said to be non-degenerate if it is not a singleton. Let X be
aspace and A C X. We denote

cly A (or cl A) — the closure of A in X;
inty A (or int A) — the interior of A in X;
bdyx A (or bd A) — the boundary of 4 in X;
idx (or id) — the identity map of X.

For spaces X and Y,

X ~ Y means that X and Y are homeomorphic.

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, 1
DOI 10.1007/978-4-431-54397-8_1, © Springer Japan 2013



2 1 Preliminaries

Given subspaces X;,..., X, C Xand Y;,...,Y, CY,

s (X, X1,....Xy) ~ (,Y),...,Y,) means that there exists a homeomorphism
h:X — Y suchthat h(Xy) = Y1, ..., h(X,) = Yy
* (X, x0) & (¥, yo) means (X, {xo}) ~ (¥, {yo}).

We call (X, x) a pointed space and x its base point.
For a set I', the cardinality of I" is denoted by card I". The weight w(X), the
density dens X, and the cellurality c(X) of a space X are defined as follows:

* w(X) = min{card B | B is an open basis for X };
e dens X = min{card D | D is a dense setin X };
* ¢(X) = sup{cardG | G is a pair-wise disjoint open collection}.

As is easily observed, c(X) < dens X < w(X) in general. If X is metrizable, all
these cardinalities coincide.

Indeed, let D be a dense set in X with card D = dens X, and G be a pairwise disjoint
collection of non-empty open sets in X. Since each G € G meets D, we have an injection
g:G — D, hence cardG < card D = dens X. It follows that ¢(X) < dens X. Now, let
B be an open basis for X with card B = w(X). By taking any point x3 € B from each
B € B, we have a dense set {xp | B € B} in X, which implies dens X < w(X).

When X is metrizable, we show the converse inequality. The case card X < Ry is trivial.
We may assume that X = (X, d) is a metric space with diam X > 1 and card X > R,.
Let D be a dense set in X with card D = dens X. Then, {B(x,1/n) | x € D, n € N}
is an open basis for X, which implies w(X) < dens X. For each n € N, using Zorn’s
Lemma, we can find a maximal 27" -discrete subset X,, C X, i.e., d(x, y) > 27" for every
pair of distinct points x,y € X,. Then, G, = {B(x,27""") | x € X,} is a pairwise
disjoint open collection, and hence we have card X, = cardG, < c¢(X). Observe that
X« = U,en X, is dense in X, which implies sup,cycard X, = card Xy > dens X.
Therefore, ¢(X) > dens X.

For the product space [, Xy, the y-coordinate of each point x € [],cr X,
is denoted by x(y), i.e., x = (x(y))yer. For each y € I, the projection pr,, :
]_[yer X, — X, is defined by pr, (x) = x(y). For A C I', the projection pr, :
[l,er Xy = [liea Xa is defined by pr,(x) = x|A (= (x(1))rea). In the case
yer Xy = XT'. In particular, X" is the
product space of countable infinite copies of X. When I" = {1,...,n}, X r—= xn
is the product space of n copies of X. For the product space X x Y, we denote the
projections by pry : X xY — X andpry : X xY — Y.

A compact metrizable space is called a compactum and a connected compactum
is called a continuum.! For a metrizable space X, we denote

that X, = X forevery y € I', we write [ |

¢ Metr(X) — the set of all admissible metrics of X .

Now, let X = (X, d) be a metric space, x € X, e > 0,and A, B C X. We use
the following notation:

ITheir plurals are compacta and continua, respectively.
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e By(x,¢) = {y eX | d(x,y) < e} — the e-neighborhood of x in X
(or the open ball with center x and radius ¢);

* By(x,e) = {y eX | d(x,y) < e} — the closed e-neighborhood of x in X

(or the closed ball with center x and radius ¢);
e Ny(4,¢) = UXeA B, (x, &) — the e-neighborhood of 4 in X
e diamy A = sup {d(x, y) | X,y € A} — the diameter of A4;
e d(x,A) = inf{d(x, y) \ y € A} — the distance of x from A;
e disty(A, B) = inf{d(x, y) | xeA, ye B} — the distance of A and B.

It should be noted that N;({x},&) = By(x,¢) and d(x, A) = disty({x}, A). For a
collection A of subsets of X, let

* meshy A = sup {diamy A | A € A} — the mesh of A.

If there is no possibility of confusion, we can drop the subscript d and write B(x, ¢),
B(x,¢€), N(4, ¢), diam A, dist(A4, B), and mesh A.
The standard spaces are listed below:

e R" — the n-dimensional Euclidean space with the norm

Xl = V()2 + -+ x ()2,

0 = (0,...,0) € R" — the origin, the zero vector or the zero element,
e; € R" — the unit vector defined by e; (i) = 1 and e;(j) = O for j # i;
e Sl = {x eR” | x|l = 1} — the unit (n — 1)-sphere;
« B = {x eR” | x| < 1} — the unit closed n-ball;
e A" = {x e (Ry)" ! \ Z?ill x(i) = 1} — the standard n-simplex;
+ Q = [-1,1]Y — the Hilbert cube;
LI N __ the space of sequences;
o = { o2 2x; /3 | x; € {0, 1}} — the Cantor (ternary) set;
+ 1% =R\ Q — the space of irrationals;
e 2 = {0, 1} — the discrete space of two points.

Note that S"~!, B”, and A” are not product spaces, even though the same notations
are used for product spaces. The indexes n — 1 and n represent their dimensions (the
indexes of u° and v° are identical).

As is well-known, the countable product 2V of the discrete space 2 = {0, 1} is
homeomorphic to the Cantor set ;° by the correspondence:

SIS

i€N

On the other hand, the countable product NV of the discrete space N of natural
numbers is homeomorphic to the space v° of irrationals. In fact, N¥ ~ (0,1)\ Q ~
(=1,1)\ Q ~ v°. These three homeomorphisms are given as follows:
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X = ot 2t —1; SI—)L.
1—1s]|
x(1) +

x(2) +
x(3)+ ——

That the first correspondence is a homeomorphism can be verified as follows: for each
n €N, leta, : N¥ — I be a map defined by

an(x) =

x(1) +

1

1
x2+ ——m—
ot x(n)

Then, 0 < ax(x) < aq(x) < --+ < az(x) < a;(x) < 1. Using the fact shown below, we
can conclude that the first correspondence N 2 x > a(x) = lim, 00 @, (x) € (0,1) is
well-defined and continuous.

Fact. Foreverym > n, |a,(x) —a,(x)| < (@ + 1)~L

This fact can be shown by induction on n € N. First, observe that

1

TG+

lay (x) — ax(x)| =

which implies the case n = 1. When n > 1, for each x € NV, define x* € NN by
x*@) = x(i + 1). By the inductive assumption, |a,—;(x*) — au—(x*)] < n~! for
m > n, which gives us

|a/l—1(X*) _am—l(X*)|
(e (1) + ap—1 (x*))(x (1) + apm—1(x*))
lan—1(x™*) = @p—1(x™)|
T (Tt a1 (N + ap—1(x*))
|an71(X*) _amfl(x*)l
1+ |an71(X*) - amfl(X*)|
n~! 1

< =
“14n! n+1

|an(x) - am(x)|

Let t = g1/qo € (0,1) N Q, where q; < qo € N. Since qo/q1 = 7' > 1, we
can choose x; € N so that x; < qo/q1 < x; + 1. Then, 1/(x; +1) <t < 1/x;. If
t # 1/x;, then x| < go/q1, and hence t ™! = qo/q; = x1 + ¢2/¢ for some g, € N with
q> < ¢q1. Now, we choose x, € Nsothat x, < ¢q1/¢> < xp + 1. Thus, x; +1/(x, + 1) <
x1+q2/q1 < xi+1/xp,50 1/(x1+1/x2) <t < 1/(x;+1/(e2+1)). It 7 1/(x1+1/x2),
then x, < ¢/g». Similarly, we write q1/q> = x2 + ¢q3/¢2, where g3 € N with g3 < ¢»
(< q1), and choose x3 € N so that x3 < ¢g»/g3 < x3+ 1. Then, 1/(x; 4+ 1/(x2 +1/x3)) <
t <1/(x1 + 1/(x2 + 1/(x3 4+ 1))). This process has only a finite number of steps (at most
q. steps). Thus, we have the following unique representation:
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It follows that o (NY) C (0,1) \ Q.

For each ¢ € (0,1) \ Q, choose x; € Nsothat x; <t~ ! < x; 4+ 1. Then, 1/(x; + 1) <
t < 1/x;and t7! = x; + 1, for some #; € (0,1) \ Q. Next, choose x, € N so that
Xy < tfl < x4+ 1.Thus, x; +1/(x24+1) < x; 41 < x;4+1/x3,andso 1/(x; +1/x;) <
t < 1/(x1+1/(x2+1)). Again, write t;' = xp+12, 1 € (0, 1)\ Q, and choose x3 € N so
that x3 < t;l < x3+1.Then, I/(x;+1/(x2+1/(x35+1))) <t < 1/(x;+1/(x24+1/x3)).
We can iterate this process infinitely many times. Thus, there is the unique x = (x,),en €
NN such that a,,(x) < t < azp+1(x) for each n € N, where (x) = lim, o0 a,(x) = 1.
Therefore, o : NN — (0, 1) \ Q is a bijection.

In the above, let a5, (x) < s < az,—;(x) and define y = (y;);en € NI for this s similar
to x for . Then, @(y) = s and x; = y; foreachi < 2n—1, i.e., the first 2n — 1 coordinates
of x and y are all the same. This means that o ! is continuous.

Let f : A — Y be a map from a closed set 4 in a space X to another space Y.
The adjunction space Y U, X is the quotient space (X @ Y)/~, where X &
Y is the topological sum and ~ is the equivalence relation corresponding to the
decomposition of X @ Y into singletons {x}, x € X \ 4, and sets {y} U £~ (),
y € Y (the latter is a singleton {y} if y € Y \ f(A)). In the case that Y is a
singleton, Y Uy X ~ X/A. One should note that, in general, the adjunction spaces
are not Hausdorff. Some further conditions are necessary for the adjunction space
to be Hausdorff.

Let A and B be collections of subsets of X and Y C X. We define

e« AAB={ANB|Aec A BeB}
o AY ={ANY |Aec A}

When each A € A is contained in some B € B, it is said that A refines 5 and
denoted by:

A< B or B> A

It is said that A covers Y (or Ais a cover of Y in X)if Y C JA (= Uyea A
When Y = X, acover of Y in X is simply called a cover of X. A cover of ¥ in
X is said to be open or closed in X depending on whether its members are open or
closed in X. If A is an open cover of X then .4]Y is an open cover of ¥ and A[Y]
is an open cover of ¥ in X. When A4 and 15 are open covers of X, A A B is also an
open cover of X. For covers A and B of X, it is said that A is a refinement of B
if A < B, where A is an open (or closed) refinement if 4 is an open (or closed)
cover. For a space X, we denote

¢ cov(X) — the collection of all open covers of X.
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Let (X,),er be a family of (topological) spaces and X = (_J
topology on X with respect to (X, ),cr is defined as follows:

yer Xy- The weak

UcCXisopeninX & Vyel UNX,isopenin X,

(4C Xisclosedin X ¢ Vy el AN X, isclosedin X, ).

Suppose that X has the weak topology with respect to (X,),er, and that the
topologies of X, and X,/ agree on X, N X,/ forany y,y' € I'. If X, N X,/ is
closed (resp. open) in X,, for any y, y’ € I' then each X, is closed (resp. open) in
X and the original topology of each X, is a subspace topology inherited from X.
In the case that X, N X,y = @ for y # y’, X is the topological sum of (X, ),er,
denotedby X = P, Xy

Let f: X — Y beamap. For A C X and B C Y, we denote

f(A) ={f(x)|xeA} and f7'(B)={xe X | f(x) € B}.

For collections .4 and B of subsets of X and Y, respectively, we denote

fA) ={f(A)|Ae A} and f~'(B)={f""(B)| B € B}.

The restriction of f to A C X is denoted by f|A.Itissaid thatamapg: A —> Y
extends over X if thereisamap f : X — Y suchthat /|4 = g. Suchamap f is
called an extension of g.

Let [a, D] be a closed interval, where a < b. A map f : [a,b] — X is called
a path (from f(a) to f(b)) in X, and we say that two points f(a) and f(b) are
connected by the path f in X. An embedding f : [a,b] — X is called an arc (from
f(a)to f(b))in X, and the image f([a, b]) is also called an arc. Namely, a space is
called an arc if it is homeomorphic to I. It is known that each pair of distinct points
X,y € X are connected by an arc if and only if they are connected by a path.”

For spaces X and Y, we denote

¢ C(X,Y) — the set of (continuous) maps from X to Y.
Formaps f,g: X — Y (e, f,g € C(X,Y)),
e [ =~ g means that f and g are homotopic (or f is homotopic to g),

that is, there isamap & : X x I — Y such that hy = f and h; = g, where
hy : X — Y,t €1, are defined by h;(x) = h(x,t), and h is called a homotopy
from f to g (between f and g). When g is a constant map, it is said that f is null-
homotopic, which we denote by f =~ 0. The relation =~ is an equivalence relation
on C(X,Y). The equivalence class [f] = {g € C(X,Y) | g ~ f} is called the
homotopy class of f. We denote

2This will be shown in Corollary 5.14.6.
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* (X Y]={/]1feCX.Y)}=CX.Y)/x
— the set of the homotopy classes of maps from X to Y.

Foreach f, /' € C(X,Y) and g, g’ € C(Y, Z), we have the following:
fxflgxg =gf =g f

Thus, we have the composition [X, Y] x [Y, Z] — [X, Z] defined by ([f], [g]) —
[¢][f] = [gf]. Moreover,

* X =~ Y means that X and Y are homotopy equivalent (or X is homotopy
equivalent to Y),?

that is, there are maps f : X — Y and g : ¥ — X such that gf ~ idy and
fg ~ idy, where f is called a homotopy equivalence and g is a homotopy inverse

of f.
Given subspaces Xp,..., X, C X and Yy,...,Y, C Y,amap f : X — Y is
said to be a map from (X, X1,..., X;) to (¥, Yy,...,Y,), written

FiX.X1,.... X)) > (V.Y1,....Y,),

if f(X;)CTYy,..., f(X,) CY,. Wedenote

e C((X,X1,..., X)), (Y, Y,....Y)
— the set of maps from (X, X1,...,X,) to (¥, Yy,...,T,).

A homotopy & between maps f,g € C((X, X1,...,X,), (¥, Y1,...,Y,)) requires
the condition that #, € C((X, X1,..., X,), (Y, Y1,...,Y,)) foreveryt € Lie., his
regarded as the map

h:(XxLX xL...,X, xI) > (Y,Y,...,Y,).

Thus, >~ is an equivalence relation on C((X, X1,...,X,), (Y, Y1,...,Y,)). We
denote
o [(X,X1,.... X)), (Y, 11,.... )] =C((X, Xq,..., X,), (Y, Y,...., 7))/~

When there exist maps

FiX.X1,.... X)) > (V.Y1,....Y,),
g (V. Y,....Y) > (X.X1.....X»)

such that gf ~ idy and fg ~ idy, we denote
e (X, Xy,.... X)) 2, Y1,.... Y.

31t is also said that X and Y have the same homotopy type or X has the homotopy type of Y.
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Similarly, for each pair of pointed spaces (X, xo) and (Y, yo),

e C((X.x0), (Y, y0)) = C((X, {x0}), (Y. {y0}));
® [(X7 X()), (Yv J’O)] = C((Xv xO)?(Y’ )’0))/:,
* (X,x0) =~ (¥, yo) means (X, {xo}) =~ (Y. {yo}).

For A C X, ahomotopy & : X xI — Y is called a homotopy relative to A if
h({x} x I) is degenerate (i.e., a singleton) for every x € A. When a homotopy from
f to g is a homotopy relative to A (where f|A = g|A), we denote

e f ~grel A.

Let f,g : X — Y be maps and U a collection of subsets of ¥ (in usual, U €
cov(Y)). It is said that f and g are U/-close (or f is U-close to g) if

).} [xe X} <ULy} | yeY),

which implies that I/ covers the set { f(x), g(x) | f(x) # g(x)}. A homotopy 4 is
called a /-homotopy if

{h({x}xI) |x EX} <UU{{y} ‘ y € Y},
which implies that I/ covers the set
U {h({x} x I) | h({x} x I) is non-degenerate}.

We say that f and g are U/-homotopic (or f is /-homotopic to g) and denoted by
f >~y g if there is ad-homotopy h : X x I — Y suchthathy = f and h; = g.

When ¥ = (Y,d) is a metric space, we define the distance between f, g €
C(X,Y) as follows:

d(f.g) = sup{d(f(x).g(x)) | x € X}.

In general, it may be possible that d( f, g) = oo, in which case d is not a metric
on the set C(X,Y). If Y is bounded or X is compact, then this d is a metric on
the set C(X,Y), called the sup-metric. For ¢ > 0, we say that f and g are e-
close or f is e-close to g if d(f, g) < &. A homotopy # is called an e-homotopy
if mesh{h({x} xI) | x € X} < ¢, where f = ho and g = h, are said to be
e-homotopic and denoted by f ~, g.

In the above, even if d is not a metric on C(X,Y) (ie., d(f.g) = oo for
some f,g € C(X,Y)), it induces a topology on C(X,Y) such that each f has a
neighborhood basis consisting of

Bi(f.e) ={g € C(X.Y) | d(f.g) <e&}, ¢ >0.

This topology is called the uniform convergence topology.
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The compact-open topology on C(X, Y) is generated by the sets
(K:U)={f eC(X.Y) | f(K) C U},

where K is any compact set in X and U is any open set in Y. With respect to this
topology, we have the following:

Proposition 1.1.1. Everymap f : Z x X — Y (or f : X x Z — Y ) induces the
map [+ Z — C(X,Y) defined by f(2)(x) = f(z.x) (or f(2)(x) = f(x,2)).

Proof. For each z € Z, it is easy to see that f(z) X — Y is continuous, i.e.,
f(z) € C(X,Y). Thus, f is well-defined.

_ To verify the continuity of f . Z — C(X,Y), it suffices to show that
FYUK; U)) is open in Z for each compact set K in X and each open set U in
Y.Letz € f~'((K;U)),ie., f({z} x K) C U. Using the compactness of K, we
can easily find an open neighborhood V' of zin Z such that f(V x K) C U, which
means that V C f~'((K:U)). O

With regards to the relation >~ on C(X, Y'), we have the following:

Proposition 1.1.2. Each f, g € C(X,Y) are connected by a path in C(X,Y ). When
X is metrizable or locally compact, the converse is also true, that is, [ >~ g if and
only if f and g are connected by a pathin C(X,Y) if f ~ g.*

Proof. By Proposition 1.1.1, a homotopy 4 : X x I — Y from f to g induces the
path 2 : I — C(X,Y) defined as h(¢)(x) = h(x,t) foreacht € I'and x € X,
where 71(0) = f and i(1) = g.

Forapath¢ : I — C(X,Y) from f to g, we define the homotopy ¢ : X xI —
Y as ¢(x,t) = @(t)(x) for each (x,7) € X x L. Then, ¢y = ¢(0) = f and
@1 = ¢(1) = g. It remains to show that ¢ is continuous if X is metrizable or locally
compact.

In the case that X is locally compact, for each (x,7) € X x I and for each open
neighborhood U of ¢(x,7) = ¢(t)(x) in Y, x has a compact neighborhood K in
X such that ¢(¢)(K) C U, ie., ¢(t) € (K;U). By the continuity of ¢, ¢ has a
neighborhood V' in I such that (V) C (K;U). Thus, K x V is a neighborhood of
(x,t) € X xIand ¢(K x V) C U. Hence, ¢ is continuous.

In the case that X is metrizable, let us assume that ¢ is not continuous at (x,t) €
X x L. Then, ¢(x, t) has some open neighborhood U in Y such that ¢(V) ¢ U for
any neighborhood V of (x,¢) in X x I. Let d € Metr(X). For each n € N, we have
X, € X and ¢, € Isuchthatd(x,,x) < 1/n,|t, —t| < 1/n and ¢(x,,t,) € U.
Because x, — x (n — o00) and ¢(¢) is continuous, we have ny € N such that
@(t)(x,) € U forall n > ny. Note that K = {x,,x | n > no} is compact and
¢()(K) C U.Because t, — t (n — 00) and ¢ is continuous at ¢, ¢(t,,)(K) C U
for some n; > ng. Thus, ¢(x,,,t,,) € U, which is a contradiction. Consequently, ¢
is continuous. O

Remark 1. 1t is easily observed that Proposition 1.1.2 is also valid for

*More generally, this is valid for every k-space X, where X is a k-space provided U is open in
X if U N K is open in K for every compact set K C X. A k-space is also called a compactly
generated space.



10 1 Preliminaries

C(X.X1..... X)), (V.Y1.....Y).

Some Properties of the Compact-Open Topology 1.1.3.

The following hold with respect to the compact-open topology:
(1) For f € C(Z,X) and g € C(Y, Z), the following are continuous:

f*:CX,Y)—>C(Z,Y), f*(h)y=ho f;
g+« :C(X,Y) > C(X,Z), g«(h) = goh.
(2) When Y is locally compact, the following (composition) is continuous:
CX,Y)xC(Y,Z)>(f.g)—go f eC(X,2).

Sketch of Proof. Let K be a compact setin X and U an open setin Z with f € C(X,Y)
and g € C(Y, Z) such that go f(K) C U. Since Y is locally compact, we have an open
set V in Y such that cl V is compact, f(K) C V and g(cl1V) C U. Then, f'(K) CV
and g’(clV) C U imply g’ o f/(K) C U.

(3) For each x( € X, the following (evaluation) is continuous:
CX,Y)> f f(xo) €Y.

(4) When X is locally compact, the following (evaluation) is continuous:

CX,.Y)xX>(f,ix)— f(x) €Y.
In this case, for every map f : Z — C(X,Y), the following is continuous:
ZxX>3(zx)~ f(z)(x) €Y.

(5) In the case that X is locally compact, we have the following inequalities:

w(¥) = w(C(X,Y)) = Row(X)w(Y).

Sketch of Proof. By embedding Y into C(X,Y'), we obtain the first inequality. For the
second, we take open bases By and By for X and Y, respectively, such that card By =
w(X), card By = w(Y), and cl A is compact for every A € By. The following is an
open sub-basis for C(X,Y):

B={{cl4.B) | (4, B) € By X By}.

Indeed, let K be a compact set in X, U be an open set in Y, and f € C(X,Y) with
f(K) CU,ie., f € (K,U).First, find By, ..., B, € By sothat f(K) C By U---U
B, C U.Next, find A4,..., A, € By sothat K C A; U---U A4, and each cl 4; is
contained in some f ~1(Bj). Then, f € (/= {cl A;, Bjt)) C (K, U).
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(6) If X is compact and ¥ = (Y,d) is a metric space, then the sup-metric on
C(X,Y) is admissible for the compact-open topology on C(X, Y).
Sketch of Proof. Let K be a compact set in X and U be an open set in ¥ with
f € C(X.Y) such that f(K) C U. Then, § = dist(f(K),Y \ U) > 0, and

d(f, f/) < & implies f/(K) C U. Conversely, for each ¢ > 0 and f € C(X,Y),
we have x1, ..., X, € X such that X = |J'_, f~1(B(f(x;), &/4). Observe that

FIfFTIB(f(xi).e/4)) CB(f(xi).e/2) (Vi =1.....n)
=d(f. f) <e.

(7) Let X = U, en X, where X, is compact and X, C int X, 4. If Y = (Y, d) is
a metric space, then C(X, Y') with the compact-open topology is metrizable.

Sketch of Proof. We define a metric p on C(X, Y) as follows:

p(f.g) = supmin {n~", sup d(f(x).g(x))¢ -

neN xXEX,

Then, p is admissible for the compact-open topology on C(X, Y). To see this, refer to
the proof of (6).

1.2 Banach Spaces in the Product of Real Lines

Throughout this section, let I" be an infinite set. We denote
e Fin(I") — the set of all non-empty finite subsets of I".
Note that card Fin(I") = card I". The product space R is a linear space with the
following scalar multiplication and addition:
R xR 3 (x,1) > tx = (tx(¥))yer € R
R xR" 3 (x,y) = x +y = (x(y) + y(1)yer € R
In this section, we consider various (complete) norms defined on linear subspaces

of R”". In general, the unit closed ball and the unit sphere of a normed linear space
X = (X,| -||) are denoted by Bx and S, respectively. Namely, let

By ={xeX||x| <1} and Sy = {x € X | lx] = 1}.

The zero vector (the zero element) of X is denoted by Oy, or simply 0 if there is no
possibility of confusion.

Before considering norms, we first discuss the product topology of R’". The
scalar multiplication and addition are continuous with respect to the product
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topology. Namely, R with the product topology is a topological linear space.’ Note
that w(R') = card I".

Let By be a countable open basis for R. Then, R” has the following open basis:
{N,erpr,'(B,) | F €Fin(I'). B, € By (y € F)}.

Thus, we have w(R’") < R cardFin(I") = card I". Let B be an open basis for R”. For
each B € B, we can find Fp € Fin(I') such that pr,(B) = R forevery y € I’ \ F.
Then, card | Jges Fp < Rocard B. If card B < card I then card | Jgep Fp < card I', so
we have yop € I' \ Ugep Fp. The open set pr%l((o, 00)) C R” contains some B € B.
Then, pr, (B) C (0, 00), which means that yo € Fg. This is a contradiction. Therefore,

card B > card I', and thus we have w(R") > card I'.

Foreach y € I', we define the unit vectore, € R” by e,(y) = 1 ande,(y’) =0
for y’ # y. It should be noted that {e, | y € I'} is not a Hamel basis for R”, and
the linear span of {e, | y € I'} is the following:®

RY ={x e R" | x(y) = 0 except for finitely many y € I'},

which is a dense linear subspace of R”". The subspace R of s = R is also denoted
by s r, which is the space of finite sequences (with the product topology). When
card " = Ry, the space R’ is linearly homeomorphic to the space of sequences
s = RN, ie., there exists a linear homeomorphism between RT and s, where the
linear subspace R’; is linearly homeomorphic to sy by the same homeomorphism.
The following fact can easily be observed:

Fact. The following are equivalent:

(a) RT is metrizable;

(b) RI; is metrizable;

(©) RI; is first countable;

(d) card I' < N,
The implication (c) = (d) is shown as follows: Let {U; | i € N} be a neighborhood basis
of 0 in ]R’;. Then, each I; = {y € I' | Re, ¢ U} is finite. If I" is uncountable, then

r\ Uie§ I #0,ie,Re, C[);eyU; forsome y € I'. In this case, U; ¢ pr;l((—l, 1))
for every i € N, which is a contradiction.

Thus, every linear subspace L of R’ containing R is non-metrizable if I' is
uncountable, and it is metrizable if I" is countable. On the other hand, due to
the following proposition, every linear subspaces L of R’ containing R; is non-
normable if I" is infinite.

Proposition 1.2.1. Let I" be an infinite set. Any norm on RI; does not induce the
topology inherited from the product topology of R'.

SFor topological linear spaces, refer Sect. 3.4.
The linear subspace generated by a set B is called the linear span of B.
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Proof. Assume that the topology of RI; is induced by a norm || - ||. Because U =
{x e R? | x|l < 1} is an open neighborhood of 0 in R’;, we have a finite set F C
I' and neighborhoods V,, of 0 € R, y € F, such that R; N ﬂyep pr;l(Vy) cU.

Take yo € I' \ F. As Re,, C U, we have |le,)||"'e,, € U but |[le,[|"e, | =
lley, I~ ley, | = 1, which is a contradiction. ]

The Banach space £ (1") and its closed linear subspaces c¢(I") D ¢o(I") are
defined as follows:

o Uoo(I') = {x e RF \ sup, e [X ()| < oo} with the sup-norm

[xlleo = sup Ix()l:

V4SS

e (I = {x e R” | Jdt € R suchthat Ve > 0, |x(y) —t| < & except for finitely
many y € F};
e co(IN) = {x e RF \ Ve > 0, |x(y)| < & except for finitely many y € F}.

These are linear subspaces of R!", but are not topological subspace according to
Proposition 1.2.1. The space c¢(I") is linearly homeomorphic to ¢o(I") x R by the
correspondence

co(IN) xR > (x,t) = (x(y) + )yer €c(I).

This correspondence and its inverse are Lipschitz with respect to the norm ||(x,?)| =
max{||x|lco, [#[}. Indeed, let y = (x(y)+#)yer. Then, [ylloo < lIxlloo+1tl < 20Cx, DI
Because x € ¢o(I") and [t] < |y(y)| + |x()| < [ylloo + |x(p)| for every y € T, it
follows that || < ||y|leo. Moreover, |x(¥)| < [y(¥)| + f] < 2|lyllco forevery y € I'.
Hence, ||x]lco < 2||¥|lco, and thus we have || (x, )| < 2||y]lco-

Furthermore, we denote RI; with this norm as 6({0([‘ ). We then have the
inclusions: ‘

€L (') Ceo(IN) Ce(IN) Cloo(D).

The topology of E&([‘ ) is different from the topology inherited from the product

topology. Indeed, {e, | y € I'} is discrete in Zgo (I"), but 0 is a cluster point of this
set with respect to the product topology.
We must pay attention to the following fact:

Proposition 1.2.2. For an arbitrary infinite set I,
W(loo(I)) = 257 put w(c(I')) = w(co(I") = wtl (I') = card I".

Proof. The characteristic map y, : I" — {0,1} C Rof A C I" belongs to £oo (1)
(g = 0 € Loo(IN)), where || x4 — xalloo = 1if A # A’ C I'. It follows that
W(loo(IM) = c(boo(IM)) > 254" Moreover, Q7 N oo (") is dense in £oo (I"), and
hence we have
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W(loo(IN)) = dens oo (I") < card Q7" = KRG = peard ",

On the other hand, e, € Ké;([') foreachy € I' and |le, —e,/|lcoc = 1if y # ¥'.
Since £2,(I") C ¢o(I"), it follows that

w(co(I") = w(tly(I) = e((I") = card "
Moreover, ¢ (I") has the following dense subset:
Q? ={xe Qr \ x(y) = 0 except for finitely many y € I'},
and so it follows that

w(co(I")) = densco(I") < card Q_F < RpcardFin(I") = card I'.

Thus, we have w(co(I")) = w(ﬁ'go(l“)) = card I". As already observed, c¢(I") ~
co(I") x R, hence w(c(I")) = w(co(I)). O

When I' = N, we write

¢ {(N) = oo — the space of bounded sequences,

* ¢(N) = ¢ — the space of convergent sequences,

¢ ¢o(N) = ¢o — the space of sequences convergent to 0, and

. 0 N) = ¢, — the space of finite sequences with the sup-norm,

where Ego # sy as (topological) spaces. According to Proposition 1.2.2, ¢ and ¢ are
separable, but £, is non-separable. When card I" = R, the spaces £ (I"), c(I"),
and co(I") are linearly isometric to these spaces £, ¢ and ¢y, respectively.

Here, we regard Fin(I") as a directed set by C. For x € R, we say that
>, er x(y) is convergent if (3_ X(V))FeFm(r) is convergent, and define

DX = dim > x(y).

yer yEF

In the case that x(y) > Oforall y € I', ZyEF x(y) is convergent if and only if
( ZyeF x(y))FEFm(F) is upper bounded, and then

dox(y)= sup Y x(y).

ver FeFin(I) o

By this reason, ) ¢ X(y) < oo means that ) _ . x(y) is convergent.

For x € RN, we should distinguish Y,y x(i) from Y :2, x(i). When the
sequence ( Yoo x( ))n < 18 convergent, we say that 372, x(i) is convergent, and
define
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oo n
Zx(z) = nll)ﬂgozx(l).
i=1 i=1

Evidently, if ),y x(i) is convergent, then Y o x(i) is also convergent and
Y2 x(i) = Y ;enx(i). However, Y,y x(i) is not necessary convergent even
if Zfil x(i) is convergent. In fact, due to Proposition 1.2.3 below, we have the
following:

o0
Z x(i) isconvergent < Z |x(@)| is convergent.
ieN i=1

Proposition 1.2.3. For an infinite set I’ and x € R', Zye rx(y) is convergent
if and only if Zyer |x(y)| < oo. In this case, I'y = {y € I' | x(y) # 0} is
countable, and Zyer x(y) = Y02, x(y;) for any sequence (y;)ien in I such that
I C{yi|i eNyandy; #y;ifi # .
Proof. Letusdenote I'y ={y € I' | x(y) >0}and I_ = {y € I' | x(y) < 0}.
Then, I'y = '+ U T_.

If Zye r X(y) is convergent, we have F, € Fin(I") such that

Fy C F e Fin(I') = <1

D ox() =) x)

yer yEF

Then, for each £ € Fin(I'}) U Fin(/_) (i.e., E € Fin(I'}) or E € Fin(I.)),

dYTolkmi=| Y. x(») Yo ox =D x(»)

yEE\Fy yEE\Fy yEEUF, y€F)

< 2.

Hence, 3 e [X(¥)| < 2_,ep, [X(¥)] + 4 forevery F € Fin(I"), which means that

(ZyEF |X(V)|)F€Fin(r) is upper bounded, i.e., Zyef |x(y)| < oo.

Conversely, we assume that Zye r|x(y)| < oo. Then, foreachn e N, I, =
{y € I' | |x(y)| > 1/n} is finite, and hence I'y = |J, x I is countable. Note that
Zyer+ |x(y)| <ooand }_ e |x(y)| < oo. We show that

dYoxm =D x@l= D] Ix@)l

yer yely yer—

For each ¢ > 0, we can find Fy € Fin(I'}) and F_ € Fin(/-) such that

Fr CEeFin(ly) = ) lx(l-¢/2<) Ix(I= ) x()l.

yely yEE yely
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Then, it follows that, for each F € Fin(I") with F D F; U F_,

Zw)—( PBREICOIED |x<y)|)‘

yEF yely yer—

+

Yo=Y k)

yeEFNT yely

YooM= ) k)l

yeEFNT— yel—

<g/2+¢/2=¢

Now, let (y;)ien be a sequence in I” such that I'y C {y; | i € N} and y; # y; if
i # j.We define
no=max{i e N|y; € Fy U F_}.

For each n > ny, it follows from F+ U F_ C {yy,..., y,} that

fx(m)—( PREICOIEDY |x(y)|)

i=l1 yely yel—

<é&.

Thus, we also have 3= o x(y) = > 72, x(7). O
For each p > 1, the Banach space £,(I") is defined as follows:
« £,(IN) ={x eR" | X/ |x(¥)|?” < oo} with the norm

1/p
Ixll, = (Z |x<y)|1’) .

yer

Similar to E'Z:O(F), we denote the space R’; with this norm by E{: ().

The triangle inequality for the norm ||x||, is known as the Minkowski inequality, which is
derived from the following Holder inequality:

1/p . 1—1/p
Zayby < (Zaf) (Zb;””) for every a,, b, > 0.

yer yer yer

Indeed, for every x,y € £,(I"),

Ix+ 2 =" 1x) + y»lI?

yer

<Y (@I + lyM)Ix) + y()P~!

yer

=D @I xM +yWIPT D Iyl - lx @) + yn)P !

yer yer
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1/p 1 1—=1/p
< (Z |x<y>|ﬂ) (Z lx(y) + y(y)|“"”lw)

yer yer

‘e . 1=1/p
+ (Z Iy(y)lf’) (Z Ix(y) + y(y)|(”l)1—1/p)

yer yer

1—1/p llx + yll7
= (lxll, + 1) (lx + 115 = (Ixll, +Iyllp) =7
( P P)( p) ( P y P)“x +_y“p

so it follows that [[x + y |, < lIx|l, + lyll,-

As for co(I"), we can show w({,(I")) = card I". When card I" = Yy, the Banach
space £,(I") is linearly isometric to £, = {,(N), which is separable. The space
£,(I") is the Hilbert space with the inner product

(x.9) =D x(My®).

yer

which is well-defined because

DMyl < 331x13 + 1v13) < oo
yerlr

For1 < p < q,wehave {,(I") & £,(I") & co(I") as sets (or linear spaces).
These inclusions are continuous because ||x[looc < [x]l; < [|x||, for every x €
£,(I"). When I is infinite, the topology of £,(I") is distinct from that induced by
the norm || - [|; or || - [leo (i.e., the topology inherited from £, (1) or ¢o(I")). In fact,
the unit sphere S¢,(r) is closed in £,(I") but not closed in £,(I") for any g > p, nor
in ¢o(I"). To see this, take distinct y; € I',i € N, and let (x,),en be the sequence
in Sy, (r defined by x, (y;) = n="/7 fori < nandx,(y) = 0fory # yi,....ya. It

follows that || X, ||cc = n7"/? — 0 (n — 00) and
ally = (n-n=9/?) " = n=0/24 - 0 (n — o)

because (p —q)/pq < 0.

For 1 < p < o0, we have R? C £,(I") as sets (or linear spaces). We denote by
E£ (I') this R’; with the topology inherited from £,(I"), and we write fo, N) = E£
(when I' = N). From Proposition 1.2.1, we know 6; () # R; as spaces for any
infinite set I". In the above, the sequence (x,),en is contained in the unit sphere

Sz{,(r) of E{;(F), which means that S[{) is not closed in E{, hence E{: # qu as

spaces for 1 < p < g < oco. Note that S

)

oLy is a closed subset of Z({ forl <g < p.
P

Concerning the convergence of sequences in £,(/"), we have the following:



18 1 Preliminaries

Proposition 1.2.4. For each p € Nand x € £,(I"), a sequence (X,),en converges
to x in £,(I") if and only if
xll, = lim ||x,||, and x(y) = lim x,(y) foreveryy € I.
n—>oo n—>oo

Proof. The “only if” part is trivial, so we concern ourselves with proving the “if”
part for £ ,(I"). For each ¢ > 0, we have yi, ..., yx € I" such that

k
Yo =Dl =D Ix()l? < 27Peb /4,

y#vi i=l1
Choose ng € N so that if n > ng then |||xn||§ — ||x||§| <27PgP/8,
|1 ()17 = 1x (r)|?| < 27P&? /8K and |x,(yi) — x(yi)|” < &7/ 4k

foreachi =1, ..., k. Then, it follows that

k
I =l =3 xa )l
y#vi i=1
k
=lxall? = I1x[12 + llxl2 =Y x ()]

i=1
k

+ ) (Ix@IP = 1xay)?)

i=1
<27PeP 8 + 27 PeP [4 + 2 PeP /8 = 2Pl )2,

and hence we have

k
ey = X115 < > by = x ()l + Y 27 max {|x,(¥)]. |x()]}

i=1 y#Vi
<e’/A+ Y 2P+ D] 27 x(y)I”
y#Vi y#Vi

<el/d+eP /24P /4 =¢",

that is, [|x, — x|, <e. O

Remark 2. 1t should be noted that Proposition 1.2.4 is valid not only for sequences,
but also for nets, which means that the unit spheres S, () D € N, are subspaces of
the product space R!", whereas R’ and R; are not metrizable if I" is uncountable.
Therefore, if | < p < g < oo, then S(p(r) is also a subspace of {,(I"), although,
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as we have seen, Sy, (ry of £,(I") is not closed in the space £,(I"). The unit sphere

Séf(r) of 6;(1") is a subspace of R; (C R, and also a subspace of £,(I") for
14

1<qg =< o0.

Remark 3. The “if” part of Proposition 1.2.4 does not hold for the space co(I")
(although the “only if” part obviously does hold), where I" is infinite. For instance,
take distinct y, € I', n € w, and let (x,),en be the sequence in ¢((I") defined by
X, = e, +e,.Then, |x,|lcc =1foreachn e N,

lim x,(y0) = 1 = e,,(y0) and lim x,(y) =0 = e, (y) fory # yo,
n—o0 n—o0
but ||x, —ey|lcc = 1 forevery n € I'. In addition, the unit sphere S,y of co(I")
is not a subspace of R”", because e,, € S¢,(r but (ey,),en converges to 0 in R

Concerning the topological classification of £,(I"), we have the following:

Theorem 1.2.5 (MAZUR). For each 1 < p < oo, £,(I") is homeomorphic to
£1(I"). By the same homeomorphism, €£ (I') is also homeomorphic to K{ ).

Proof. We define ¢ : £1(I") = £,(I") and ¥ : £,(I") — £1(I") as follows:

e(x)(y) = signx(y) - [x(y)|"/? forx € y(I),
Y(x)(y) = signx(y) - |x(y)|” for x € £,(I"),

where sign0 = 0 and signa = a/|a| for a # 0. We can apply Proposition 1.2.4 to
verify the continuity of ¢ and . In fact, the following functions are continuous:

6y s x> lle@l, = ()" € R, 6(I) 3 x > p(x)(y) €R, y € T';
(M) s x> [Y@)h = (Ixll,)" € R, £,(I') 3 x> Y(x)(y) €R, y €T
Observe that ¢ = id and ¢y = id. Thus, ¢ is a homeomorphism with ¢! = v,
where (£} (I')) C £ (I') and (¢ (")) C €} (). O

For each space X, we denote C(X) = C(X,R). The Banach space C5(X) is
defined as follows:

« CB(X)={f € C(X) | sup,ey | f(x)| < oo} with the sup-norm

A1 = sup | f(x)].
xX€X

This sup-norm of C8 (X)) induces the uniform convergence topology. If X is discrete
and infinite, then we have C2(X) = £ (X), and so, in particular, C5(N) = {.
When X is compact, C2(X) = C(X) and the topology induced by the norm
coincides with the compact-open topology.
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The uniform convergence topology of C(X) is induced by the following metric:
d(f.g) = sup min| f(x) — g(x)]. 1}.
Xe

As can be easily observed, C2(X) is closed and open in C(X) under the uniform
convergence topology. Note that C5 (X)) is a component of the space C(X) because
CB(X) is path-connected as a normed linear space.

Regarding C(X) as a subspace of the product space R¥, we can introduce a
topology on C(X), which is called the pointwise convergence topology. With
respect to this topology,

lim f,=f < lim f,(x) = f(x) forevery x € X.
n—o0 n—o0

The space C(X) with the pointwise convergence topology is usually denoted by

C,(X). The space C,(N) is simply the space of sequences s = R™.

In this chapter, three topologies on C(X) have been considered — the compact-
open topology, the uniform convergence topology, and the pointwise convergence
topology. Among them, the uniform convergence topology is the finest and the
pointwise convergence topology is the coarsest.

Notes for Chap. 1

Theorem 1.2.5 is due to Mazur [3]. Zhongqgiang Yang pointed out that Proposition 1.2.4 can be
applied to show the continuity of ¢ and i in the proof of Theorem 1.2.5. Related to Mazur’s result,
Anderson [1] proved that s = RY is homeomorphic to the Hilbert space {,. For an elementary
proof, refer to [2].
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Chapter 2
Metrization and Paracompact Spaces

In this chapter, we are mainly concerned with metrization and paracompact spaces.
We also derive some properties of the products of compact spaces and perfect maps.
Several metrization theorems are proved, and we characterize completely metrizable
spaces. We will study several different characteristics of paracompact spaces that
indicate, in many situations, the advantages of paracompactness. In particular, there
exists a useful theorem showing that, if a paracompact space has a certain property
locally, then it has the same property globally. Furthermore, paracompact spaces
have partitions of unity, which is also a very useful property.

2.1 Products of Compact Spaces and Perfect Maps

In this section, we present some theorems regarding the products of compact spaces
and compactifications. In addition, we introduce perfect maps. First, we present a
proof of the TYCHONOFF THEOREM.

Theorem 2.1.1 (TYCHONOF¥F). The product space [],c, Xa of compact spaces
Xy, A € A, is compact.

Proof. Let X = [],c4 Xa. We may assume that A = (A, <) is a well-ordered
set. For each o € A, let py : X — [[,., Xa and g, : X — [],_, Xx be the
projections.

Let A be a collection of subsets of X with the finite intersection property
(f.i.p.). Using transfinite induction, we can find x;, € X, such that A|p;'(U)
has the f.i.p. for every neighborhood U of (x,),<x in [],.; X,. Indeed, suppose
that x, € X, A < u, have been found, but there exists no x, € X, with
the above property, i.e., any y € X, has an open neighborhood V) with an
open neighborhood U, of (x;3)1<, in Hk<u X such that AIq;l(Uy) N pr;l(Vy)
does not have the fi.p. Because X, is compact, we have y(,...,y, € X,
such that X, = J/_, V),. Since (i, Uy, is a neighborhood of (x3)r<, in

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, 21
DOI 10.1007/978-4-431-54397-8_2, © Springer Japan 2013



22 2 Metrization and Paracompact Spaces

nl<u X,, we have vy,...,v, < p and neighborhoods W; of x,, in X,, such
that (/2 pry,' (W) C ¢;.' (i<, Uy). Let v = max{vy,...,v,} < w. Then,
we can write ()7, pr,' (W;) = p;'(W) for some neighborhood W of (x3)i<y
in [];<, Xa. Because pt(wW) Cc M., q;l(Uyl.), no A|p;t(W) n pr;l(Vyi) have
the f.i.p. Since X = (i, pr;,' (V},), it follows that A|p; ' (W) does not have the
f.i.p., which contradicts the inductive assumption.

Now, we have obtained the point x = (x3)iea € X. For each neighborhood
U of x in X, we have Ay,...,1, € A and neighborhoods U; of x, in X, such
that (N)/_, pr;l_l(U,-) C U. Let Ay = max{Ay,...,A,} € A. Then, we can write
Ni= pr;l_l(U,-) = p;ol(Uo) for some neighborhood Uy of (x,),<3, in Hvsko X,.
Since p;ol(Uo) C U, A|U has the f.i.p. Consequently, every neighborhood U
of x in X meets every member of A. This means that x € (),c4¢cl 4, and so

Muyeacl A#D. O

Note. There are various proofs of the Tychonoff Theorem. In one familiar proof, Zorn’s
Lemma is applied instead of the transfinite induction. Let .A be a collection of subsets of X
with the f.i.p. and @ be all of collections A’ of subsets of X such that A’ has the f.i.p. and
A C A’. Applying Zorn’s Lemma to the ordered set @ = (@, C), we can obtain a maximal
element A* € @. Because of the maximality, .A* has the following properties:

(1) The intersection of any finite members of A* belongs to A*;
(2) If B C X meets every member of A*, then B € A*.

Foreach A € A, pr, (A*) has the f.i.p. Since X, is compact, we have x; € (1) 4 _4* clpr; (A).
It follows from (2) that pr;l(V) € A* for every neighborhood V of x; in X;,. Now, it is
easy to see that

Xx=rea€ () dddC (A

A€ A* A€eA
Next, we prove WALLACE’S THEOREM:

Theorem 2.1.2 (WALLACE). Let A = [[;c, A2 C X = [l,es X2, where
each A, is compact. Then, for each open set W in X with A C W, there
exists a finite subset Ag C A and open sets V) in X), A € Aq, such that
A C Mzen, Pry (VI)CW.

Proof. When A is finite, we may take A9 = A. Then, (), Ao pr;l(VA) coincides
with [, ¢, Va. This case can be proved by induction on card A, which is reduced to
the case card A = 2. Proving the case card A = 2 is an excellent exercise. !

We will show that the general case is derived from the finite case. For each x€ 4,
we have a finite subset A(x) C A and an open set U(x) in ]_[AGA(X) X, such
that x € prZ(lx)(U (x)) C W. Because of the compactness of A, there exist finite

Xi,....,x, € Asuchthat 4 C |J/_, prZ(lxi)(U(x,-)). Thus, we have a finite subset

!Use the same strategy used in the proof of normality of a compact Hausdorff space.
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Ag == A(x;)) C A.Foreachi = 1,...,n,%et p; : [11en, Xa = [licac) X2
be the projection. Then, Wy = | J/_, p;' (U(x;)) is an open setin [, 4, Xa.

Note that ( J;_, pri,. y(U(xi)) = pr;, (Wo). From the finite case, we obtain open
sets V3, A € Ap, such that nAer A, C ]_[AeAO Vi, C Wy. Hence,

AC ﬂ pr;l(Vl) C prZé(Wo) c W 0
AEA)

For any space X, we define the evaluation map ey : X — I€®D by ex(x) =
(f(x)) reccxyy for each x € X. The continuity of ey follows from the fact that
pryoey = f is continuous for each f € C(X,I), where pry: I€XD 5 T is the
projection (i.e., pr,(§) = £(f)).

Proposition 2.1.3. For every Tychonoff space X, the map ex : X — I€XD jsan
embedding.

Proof. LetU be anopensetin X and x € U. Since X is a Tychonoff space, we have
some f € C(X,I)suchthat f(x) = 0and f(X\U) C {1}. Then, V = pr;l([O, 1))
is an open set in I*'D_ Since pry(ex(x)) = f(x) = 0, it follows that ex (x) € V.
Since pryoex (X \U) = f(X\U) C {1}, we have ex (X \U)NV = @. Therefore,
ex(x) e VNex(X) Cex(U). This implies that ex : X — ex(X) is an open map.

For x # y € X, applying the above argumentto U = X \ {y}, we can see that
ex(x)(f) =0#1=-ex(y)(f). Thus, ex is an embedding. O

From Tychonoff’s Theorem, it follows that the product space I°**D is compact.
Then, identifying X with ex(X), we define a compactification X of X as follows:

IBX = C]IC(X.I) ey (X),

which is called the Stone-Cech compactification.

Now, let f : X — Y be a map between Tychonoff spaces. The map fi :
XD TCOD s defined as fi(€§) = (£(kf))kecry for each & € I°K'D where
the continuity of f, follows from the continuity of pryofx = prs, k € C(Y, D).
Then, we have fioexy = eyof.

X Y

A

XD €YD
S

Indeed, for each x € X and k € C(Y, 1),

Selex () (k) = ex(X)(kf) = k(f(x)) = ey (f(x))(k).
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Since f is continuous, it follows that f.(8X) C BY. Thus, f extends to the map
Bf = f«IBX : X — BY.

Further, let g : Y — Z be another map, where Z is Tychonoft. Then, for each
£ e I°XD and k € C(Z.,1),

gx(fu(E) (k) = fu(E)(kg) = E(kgf) = (8/)=(5) (k).

that is, g« fx = (gf)«. Therefore, B(gf) = BgBf.
The Stone—Cech compactification BX can be characterized as follows:

Theorem 2.1.4 (STONE; CECH). Let X be a Tychonoff space. For any compactifi-
cation yX of X, there exists the (unique) map f : BX — yX suchthat f|X = idy.
If a compactification 8'X has the same property as above, then there exists a
homeomorphism h : BX — B'X such that h| X = idy.

Proof. Note that 8(yX) = yX because yX is compact. Leti : X — yX be the
inclusion and let f = Bi : BX — B(yX) = yX. Then, f|X = idy and f is
unique because X is dense in S.X.

If a compactification 8’ X of X has the same property, then we have two maps
h:BX — f'Xandh' : B'X — BX suchthat h|X = IW'|X = idy. It follows that
h'h = idgy and hh" = idg x, which means that / is a homeomorphism. |

A perfect map f : X — Y is a closed map such that f~!(y) is compact for
eachy € Y.Amap f : X — Y is said to be proper if f~'(K) is compact for
every compactset K C Y.

Proposition 2.1.5. Every perfect map f : X — Y is proper. If Y is locally
compact, then every proper map f : X — Y is perfect.

Proof. To prove the first assertion, let K C Y be compact and I/ an open cover
of f7!1(K) in X. For each y € K, choose a finite subcollection U, C U so that
7Y (y) € UU,. Since f is closed, each V, = Y \ f(X \ UU,) is an open
neighborhood of y in ¥, where f~'(V,) C |JU,. We can choose y1,...,y, € K
so that K C (J7_, Vy,. Thus, we have a finite subcollection Uy = | J/_, Uy, C U
such that f~1(K) C |JUp. Hence, f~!(K) is compact.

To show the second assertion, it suffices to prove that a proper map f is closed.
Let A C X beclosed and y € cl f(A). Since Y is locally compact, y has a compact
neighborhood N in Y. Note that N N f(A4) # @, which implies f~'(N) N A # @.
Since f is proper, f~!'(N) is compact, and hence f~!(N) N A is also compact.
Thus, f(f~'(N) N A) is compact, so it is closed in Y. If y & f(f~'(N) N A),
y has a compact neighborhood M C N with M N f(f~'(N) N A) = @. Then,
observe that

fETI M) n A M f(FTHIN)NA) =0,
which means that f~'(M) N A = @. However, using the same argument as for

FUN)N A # @, we can see that f~'(M) N A # @, which is a contradiction.
Thus, y € f(f~"(N)N A) C f(A). Therefore, f(A) is closed in Y. O
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It follows from the first assertion of Proposition 2.1.5 that the composition of any
two perfect maps is also perfect. In the second assertion, the local compactness of ¥
is not necessary if X and Y are metrizable, which allows the following proposition:

Proposition 2.1.6. For a map f : X — Y between metrizable spaces, the
following are equivalent:

@) f:X —Y is perfect;

() f:X — Y is proper;

(c) Any sequence (x,)nen in X has a convergent subsequence if (f(x,))nen is
convergentin Y.

Proof. The implication (a) = (b) has been shown in Proposition 2.1.5.

(b) = (¢): Let y = limy—oo f(xy) € Y and K = { f(x,) | n € N} U {y}. Since
K is compact, (b) implies the compactness of f~!(K), whose sequence (x,),en
has a convergent subsequence.

(c) = (a): For each y € Y, every sequence (x,),en in f~!(y) has a convergent
subsequence due to (c), which means that ~'(y) is compact because f~!(y) is
metrizable.

To see that f is a closed map, let A C X be a closed set and y € cly f(A).
Then, we have a sequence (X, ),en in A such that y = lim,_,o f(x;). Due to (c),
(xn)nen has a convergent subsequence (x,, );en, and since A4 is closed in X, we have
lim; 500 Xy, = X € A. Then, y = f(x) € f(A), and therefore f(A) is closedin Y.
This completes the proof. O

Lemma 2.1.7. Let D be a dense subset of X such that D # X. Any perfect map
f 1 D — Y cannot extend over X.

Proof. Assume that f* extends to a map f X —>Y.Letxoe X\ D,y = f (xo0),
D=DU J {x0}, and g = f|D D — Y. Since S (o) is compact and xo ¢
(), D has disjoint open sets U and V such that xo € U and f~!(yo) C V.
Since f is a closed map, f(D \ V) isclosed in Y, hence g~ (f(D \ V)) is closed
in D. Because g '(y) = f~'(y) forany y € Y \ {yo}, we have

D\V cg '(f(D\V) = f(f(D\V)) CD.

On the other hand, xo & clz V. Therefore, D = clz V' U g~ (f(D\ V))is closed
in D, which contradicts the fact that D is dense in D. O

Theorem 2.1.8. For amap f : X — Y between Tychonoff spaces, the following
are equivalent:

(a) f is perfect; ~

(b) For any compactification yY of Y, f extendstoamap f : X — yY so that
SBX\NX)CyY\Y;

() Bf(BX\X)CBY\Y.
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Proof. The implication (b) = (c) is obvious.

(a) = (b): Applying Theorem 2.1.4, we can obtain a map g : Y — yY
with g|¥Y = id. Then, f = g(Bf) is an extension of f. Moreover, we can apply
Lemma 2.1.7 to see that f(BX \ X) CyY \Y.

(c) = (a): Foreach y € Y, f~'(y) = (Bf)~'(y) is compact. For each closed
set Ain X,

(BAH(Cclpx A)NY = flclgy AN X) = f(A),
which implies that f(A) is closed in Y. Therefore, f is perfect. O

Remark 1. In Theorem 2.1.4, the map f : X — yX with f|X = idy satisfies
the condition f(BX \ X) C yX \ X that follows from Theorem 2.1.8.

Using Tychonoft’s Theorem 2.1.1 and Wallace’s Theorem 2.1.2, we can prove
the following:

Theorem 2.1.9. For each A € A, let fi : X3 — Y, be a perfect map. Then, the
map [ =[les fr 1 X =1Lies X2 = Y =[1,e4 Y2 is also perfect.

Proof. Owing to Tychonoff’s Theorem 2.1.1, f~'(y) = [l,ec4 fl_l(y(k)) is
compact for each y € Y. To show that f is a closed map, let A be a closed setin X

andy € Y \ f(A). Since f~!'(y) C X \ 4, we can apply Wallace’s Theorem 2.1.2
to obtain A;,...,A, € A andopensets U; in X,,,i = 1,...,n, such that

T =Tl A o) (e U) C X\ A

A€A i=1

Since f), is a closed map, V; = Yy, \ fi,(Xx, \ U;) is an open neighborhood of
y(&;) in ¥y, and f;~' (Vi) C U;. Then, V = (_, pr; ' (V;) is a neighborhood of y
inY and f~1(V) C X \ 4,i.e., V N f(A) = . Therefore, f is a closed map. 0O

2.2 The Tietze Extension Theorem and Normalities

In this section, we prove the Tietze Extension Theorem and present a few concepts
that strengthen normality. For A, B C X, itis said that A and B are separated in X
ifANclB=@and BNcl4d =0.

Lemma 2.2.1. Let A and B be separated F, sets in a normal space X. Then, X
has disjoint open sets U and V suchthat A C U and B C V.

Proof. Let A = |J, ey An and B = |,y Bn, Where Ay C Ay C --- and By C
B, C -+ areclosed in X. Set Uy = V; = @. Using normality, we can inductively
choose open sets Uy, V,, C X, n € N, so that

A, UclU,—y CcU, CclU, C X\ (clBUclV,_;) and

B,UclV,_; CV, CclV, C X\ (clAUclU,).
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Fig. 2.1 Construction of U, and V),

Then, U = U,enUn and V- = |,y Vi are disjoint open sets in X such that
AcCUand BCV —Fig.2.1. O

We can now prove the following extension theorem:

Theorem 2.2.2 (TIETZE EXTENSION THEOREM). Let A be a closed set in a
normal space X . Then, every map f : A — 1 extends over X.

Proof. We first construct the open sets W(q) in X, g € IN Q, so that

(1) ¢ <q'" = cdW(g) C W(q"),
() AnNW(g) = f7(0.9)).

To thisend, let {g, | n € N} =INQ, whereq; =0,qo = land gq; # q; ifi # j.
We define W(q,) = W(0) = @ and W(q,) = W(1) = X \ f~!(1). Assume that
W(q1), W(q2),- - , W(q,) have been defined so as to satisfy (1) and (2). Let

qi =min{qi | qi > qn+1,1 = 1,--- ,n} and

Gm = max {q; | gi < qnt1,0 =1,---,n}.

Note that f~1([0,¢g,+1)) and f~'((gn+1.1]) are separated F, sets in X. Using
Lemma 2.2.1, we can find an open set U in X such that f~!([0,¢,+1)) C U
and f7'((gut1.1)) NclU = @. Then, V. = U \ f~'(gu+1) is open in X and
ANV = f70,¢,+1)). Again, using normality, we can obtain an open set G in
X such that

Al W(gm) U 710, ga+1]) C G CclG C W(qy).

Then, AN (VN G) = f70,¢n+1)) and cl(V N G) C W(q;). Yet again, using
normality, we can take an open set H in X such that

I W(gm) C H CclH C G\ f7([gn+1. 1]) (C W(an).
Then, W(gn+1) = (V N G) U H is the desired open set in X (Fig.2.2).

Now, we define f : X — I as follows:

~ 1 if x € W(1),
fx)=49. ,
1nf{q€IﬂQ|er(q)} if x € W(1).
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X f_l(l) 1= q2
S0, g0)
f_l(Qn-H)
! qe
- dn+1
SN0, gn1)) an
] 0=q
f—l([o’ qm))

Fig. 22 W(gu+1) = (U \ [T (@) NG)U H

Then, f|A = f because, foreachx € ANW(1) = A\ f~'(1),
f) =inf{geINQ|xe f7(0.9)} = ().

To see the continuity of f, let0 <a <1land0 < b < 1. Since f(x) < a if and
only if x € W(q) for some ¢ < a, it follows that £ ~'([0,a)) = qu W(q) is open

in X. Moreover, from (1), it follows that f (x) > b if and only if x & cl W(q) for
some g > b. Then, f~'((b,1]) = X \ ﬂq>b cl W(q) is also open in X . Therefore,

f is continuous. O
As a corollary, we have Urysohn’s Lemma:

Corollary 2.2.3 (URYSOHN’S LEMMA). For each disjoint pair of closed sets A
and B in a normal space X, there exists a map f : X — 1 such that A C f~'(0)
and B C f71(1). O

Such a map f as in the above is called a Urysohn map.

Note. In the standard proof of the Tietze Extension Theorem 2.2.2, the desired extension
is obtained as the uniform limit of a sequence of approximate extensions that are sums of
Urysohn maps. On the other hand, Urysohn’s Lemma is directly proved as follows:

Using the normality property yields the open sets W(g) in X corresponding to all ¢ €
I N Q satisfying condition (1) in our proof of the Tietze Extension Theorem and

AC W) CclW() C W)= X\ B.

A Urysohn map f : X — I can be defined as follows:

1 if x ¢ W(l),
fx)=. .
inf{g e INQ | x € W(g)} ifxeW().
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In general, a subspace of a normal space is not normal (cf. Sect. 2.10). However,
we have the following proposition:

Proposition 2.2.4. Every F, set in a normal space is also normal.

Proof. LetY be an F; set in a normal space X . Every pair of disjoint closed sets in
Y are F; sets in X that are separated in X . Then, the normality of ¥ follows from
Lemma 2.2.1. O

A space X is hereditarily normal if every subspace of X is normal. Evidently,
every metrizable space is hereditarily normal. It is said that X is completely normal
provided that, for each pair of separated subsets A, B C X, there exist disjoint open
sets U and V in X such that A C U and B C V. These concepts meet in the
following theorem:

Theorem 2.2.5. For a space X, the following are equivalent:

(a) X is hereditarily normal;
(b) Every open set in X is normal;
(c) X is completely normal.

Proof. The implication (a) = (b) is obvious.

(c) = (a): For an arbitrary subspace ¥ C X, each pair of disjoint closed sets A
and B in Y are separated in X. Then, (a) follows from (c).

(b) = (c): Let A, B C X be separated, i.e., ANclB =@ and BNcld = 0.
Then, W = X \ (c1A NclB)isopenin X and A, B C W. Moreover,

clw ANcly B=WNclANclB = 4.

From the normality of W, we have disjoint open sets U and V in W such that
A CUand B C V. Then, U and V are open in X, and hence we have (c). O

A normal space X is perfectly normal if every closed set in X is Gs in X
(equivalently, every open set in X is F, in X). Clearly, every metrizable space is
perfectly normal. A closed set A C X is called a zero set in X if A = f~'(0) for
some map f : X — R, where R can be replaced by I. The complement of a zero
set in X is called a cozero set.

Theorem 2.2.6. For a space X, the following conditions are equivalent:

(a) X is perfectly normal;

(b) Every closed set in X is a zero set (equivalently, every open set in X is a cozero
set);

(¢) For every pair of disjoint closed sets A and B in X, there existsamap f : X —
Isuchthat A= f~'(0)and B = f~'(1).

Proof. The implication (c) = (a) is trivial.
(a) = (b): Let A be a closed set in X. Then, we can write A = (1), ey G, Where
each G, is open in X. Using Urysohn’s Lemma, we take maps f, : X — L n € N,
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such that f,(A) C {0} and f,(X \ G,) C {1}. We can defineamap f : X — Ias
f(xX) =Y ,en 27" fu(x). Then, it is easy to see that A = f~1(0).

(b) = (c): Let A and B be disjoint closed sets in X. Condition (b) provides two
maps g,h : X — Isuch that g7!(0) = 4 and ~'(0) = B. Then, the desired map
f + X — Ican be defined as follows:

g
SO = o T h N

Theorem 2.2.7. Every perfectly normal space is hereditarily normal (= completely
normal).

Proof. Let X be perfectly normal. Then, each open set in X is an F, set, which is
normal as a consequence of Proposition 2.2.4. Hence, it follows from Theorem 2.2.5
that X is hereditarily normal. O

Remark 2. Let Ag, Ay, ..., A, be pairwise disjoint closed sets in a normal space X .
We can apply the Tietze Extension Theorem 2.2.2 to obtain a map f : X — I'such
that 4; C f~'(i/n) (i.e., f(A;) C {i/n}) foreachi = 0,1,...,n. When X is
perfectly normal and n > 2, the condition A; C f~'(i/n) cannot be replaced by
A; = f7'(i/n). For example, let X = S! be the unit circle (the unit 1-sphere of
R?), Ag = {e;}, A, = {e,}, and 4> = {—e;}, where e; = (1,0),e, = (0,1) € R%.
Since X \ A; is (path-)connected, there does not exist a map f : X — I such that
Ao = f710), Ay = f7'(1/2) and 4, = f7(D).

2.3 Stone’s Theorem and Metrization

In this section, we prove Stone’s Theorem and characterize the metrizability using
open bases. Let A be a collection of subsets of a space X and B C X. Recall that

ABl={A€ A| AN B # 0}.

When B = {x}, we write A[{x}] = A[x]. It is said that A is locally finite (resp.
discrete) in X if each x € X has a neighborhood U that meets only finite members
(resp. at most one member) of A, i.e., card A[U] < Ry (resp. card A[U] < 1).
When w(X) > Ry, if A is locally finite in X, then card A < w(X). For the sake
of convenience, we introduce the notation A” = {cl 4 | A € A}. The following is
easily proved and will be used frequently:

Fact. If A is locally finite (or discrete) in X, then so is A and also cl|J A =
UA? (= Ujeacl4).

A collection of subsets of X is said to be o-locally finite (resp. o -discrete)
in X if it can be represented as a countable union of locally finite (resp. discrete)
collections.



2.3 Stone’s Theorem and Metrization 31

Fig. 2.3 Definition of V) , neA

Theorem 2.3.1 (A.H. STONE). Every open cover of a metrizable space has a
locally finite and o-discrete open refinement.

Proof. Let X = (X,d) be a metric space and & € cov(X). We may index all
members of U by a well-ordered set A = (A, <), thatis, Y = {U, | A € A}. By
induction on n € N, we define open collections V, = {V, , | A € A} as follows:

Vin =N(Crpn.27") ={x € X | d(x,Cyn) <27},

where

Cin={reX|dx.X\U)>2"3}\ | | JU. U Vi

m<n
<A leh

For each x € X, let A(x) = min{A € A | x € U,} and choose n € N so that
27"3 < d(x, X \ Upr)). Then, x € Cy(x)n C Vi) or x € V,,, for some p € A
and m < n. Hence, we have V = |, ey Vi € cov(X). Since each V) , is contained
in U,, it follows that V < U. See Fig. 2.3.

The discreteness of each V, follows from the claim:

Claim (1). If A # p then disty(Vy 0, Vi) = 27",

To prove this claim, we may assume y < A. Foreachx € V , and y € V,, ,, choose
x' € Cppand y’ € Cyy sothat d(x,x") < 27" and d(y,y’) < 27", respectively.
Then, x’ ¢ U, and d(y’, X \ U,) > 27"3, hence d(x’, y') > 27"3. Therefore,

d(x,y) =d(x',y)—d(x,x")—d(y,y) >27".

The local finiteness of ) follows from the discreteness of each V), and the claim:

Claim (2). If B(x,27%) C Vim, then B(x,27F)n Vin =@ forall A € A and
n > max{k, m}.
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For each y € V) ,, choose y’ € C; , so that d(y,y’) < 27". Since y' & V), m, it
follows that d(x, y') > 27%. Hence,

d(x,y) > d(x,y)—d(y,y") > 2% 27" > 271,

The proof is complete. O

Applying Theorem 2.3.1 to the open covers B, = {B(x,27") | x € X},n € N,
of a metric space X = (X, d), we have the following corollary:

Corollary 2.3.2. Every metrizable space has a o-discrete open basis. O

Lemma 2.3.3. A regular space X with a o-locally finite open basis is perfectly
normal.

Proof. Let B = |J, ey Bn be an open basis for X where each B, is locally finite
in X. Instead of proving that every closed set in X is a Gs set, we show that every
openset W C X is F,. For each x € W, choose k(x) € N and B(x) € By so
that x € B(x) C cl B(x) C W.Foreachn € N, let

W, = J{B&) | x e W. k(x) = n}.
Because of the local finiteness of 53, we have
AW, = J{cIB(x) | x e W. k(x) =n} C W.

Since W = |,y Wa, it follows that W = | J, o ¢l W, which is Fy; in X.

To prove normality, let A and B be disjoint closed sets in X. As seen above, we
have open sets V,,, W, C X,n € N,suchthat X \ 4 = J,,en Vo = U,jen €1 Vi and
X\ B =U,ex Wo = U, eyl Wy. Foreachn € N, let

Gy =W\ | JelV, and H, =V, \ | cIW,.

m=<n m=<n

Then, G = |J,eny Gn and H = |, oy H, are disjoint open sets in X such that
ACGand B C H. O

Theorem 2.3.4 (BING; NAGATA-SMIRNOV). For a regular space X, the follow-
ing conditions are equivalent:

(a) X is metrizable;
(b) X has a o-discrete open basis;
(¢) X has a o-locally finite open basis.

Proof. The implication (a) = (b) is Corollary 2.3.2 and (b) = (c) is obvious. It
remains to show the implication (¢c) = (a).

(c) = (a): Let B = J, ey Bx be an open basis for X where each B, is locally
finite in X . Since X is perfectly normal by Lemma 2.3.3, we have maps fp : X — I,
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B € B, such that f;'(0) = X \ B (Theorem 2.2.6). For each n € N, since B, is
locally finite, we can define a map f, : X — £,(B,) by fu(x) = (f5(x))Ben, €
i(By). Let f @ X — [,ent1(By) be the map defined by f(x) = (f,(x))nen.
Since [ [, en €1(By) is metrizable, it suffices to show that f is an embedding.

For each x # y € X, choose B € B, C Bsothat x € B and y ¢ B. Then,
f(x) > 0= f5(y),s0 fu(x) # f.(»). Hence, f is an injection.

Foreachn e Nand B € B,, Vg = {y € £1(By) | y(B) > 0} is open in £,(B,).
Observe that for x € X,

x € B fi(x)(B) = fp(x) > 0% fulx) € V.

Then, it follows that f(B) = pr;'(Vg) N f(X) is open in f(X), where pr, :
[L,en €1(By) — £1(B,) is the projection. Thus, f is an embedding. O

The equivalence of (a) and (b) in Theorem 2.3.4 is called the BING METRIZA-
TION THEOREM, and the equivalence of (a) and (c) is called the NAGATA—SMIRNOV
METRIZATION THEOREM. As a corollary, we have the URYSOHN METRIZATION
THEOREM:

Corollary 2.3.5. A space is separable and metrizable if and only if it is regular and
second countable. O

For a metrizable space X, let I" be an infinite set with w(X) < card I". In the
proof of Theorem 2.3.4, note that card B, < card I" because of the local finiteness
of B, in X. Then, every £;(53,) can be embedded into £;(I"). Therefore, we can
state the following corollary:

Corollary 2.3.6. Let X be a metrizable space and I" an infinite set such that
w(X) < card I". Then, X can be embedded in the completely metrizable topological
linear space® £1(I")N. O

Here, w(£,(I")Y) = w({,(I")) = card I". In fact, w({;(I")) > card I" because
£1(I") has a discrete open collection with the same cardinality as I". Let

D ={xet(I')|x(y) €Q forall y € I" and
x(y) = 0 except for finitely many y € I" }

Then, {B(x,n™") | x € D,n € N} is an open basis for £;(I") with the same
cardinality as I", hence w({;(I")) < card I".
The hedgehog J(I") is the closed subspace of £ (") defined as follows:

Jry=|JIe, ={x e tuy(I") |x(y) €I forall y € I' and
yerlr

x(y) #0 atmostone y € I'},

2For topological linear spaces, refer to Sect. 3.4.
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0
(' xD/(I" x {0})

Fig. 2.4 The hedgehog J(I")

wheree, € £;(I") is the unit vector defined by e, (y) = l and e, (y’) = Ofory’ # y
(Fig.2.4). The hedgehog J(I") can also be defined as the space (I" x I)/(I" x {0})
with the metric induced from the pseudo-metric p on I x I defined as follows:

[t —s| if y =y,
t+s if y#y.

Note that w(J(I')Y) = card I'". In the proof of Theorem 2.3.4, if each B,
is discrete in X, then f,(X) C J(B,). Similar to Corollary 2.3.6, we have the
following:

p((y. 1), (y',5) =

Corollary 2.3.7. Let X be a metrizable space and I" an infinite set such that
w(X) < card I". Then, X can be embedded in J(I')N. O

In the second countable case, X can be embedded in IV, since we can take B =
U, en Bn in the proof of Theorem 2.3.4 so that each B, contains only one open set.
Thus, we have the following embedding theorem for separable metrizable spaces:

Corollary 2.3.8. Every separable metrizable space can be embedded in the Hilbert
cube 1Y, and hence in RY. O

In association with Corollary 2.3.6, we state the following theorem:

Theorem 2.3.9. Every metric space X = (X,d) can be isometrically embedded
into the Banach space C 8 (X).

Sketch of Proof. Fix xo € X and define ¢ : X — C%(X) as follows:
P(x)(z) = d(x,z) —d(x0.2), z € X.
It is easy to see that ||@(x)|| = d(x, xo) and ||@p(x) — (V) || = d(x, y).

The (metric) completion of a metric space X = (X,d) is a complete metric
space X = (} ,d) containing X as a dense set and as a metric subspace, that is, d
is the restriction of d.. Since a closed set in a complete metric space is also complete,
Theorem 2.3.9 implies the following:

Corollary 2.3.10. Every metric space has a completion. O
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2.4 Sequences of Open Covers and Metrization

In this section, we characterize metrizable spaces via sequences of open covers.
Given a cover V of a space X and A C X, we define

st(4,V) = (V4.

which is called the star of A with respect to V. When A = {x}, we write
st({x}, V) = st(x, V).

Theorem 2.4.1 (ALEXANDROFF-URYSOHN; FRINK). For a space X, the fol-
lowing conditions are equivalent:

(a) X is metrizable;
(b) X has open covers Uy,U,, ... such that {st(x,U,) | n € N} is a neighborhood
basis of each x € X and

UU €Uyr1, UNU #0 = 3U" €U, suchthat UU U c U”;

(¢) Each x € X has an open neighborhood basis {V,(x) | n € N} satisfying the
condition that, for each x € X andi € N, there exists a j(x,i) > i such that

Vieiy(X) N Vi (¥) # 0 = Vi (y) C Vi(x).
Proof. (a) = (c): A metric space X = (X, d) satisfies (c) because
B(x,3™)NB(y,3™) # @ = B(y,3™") C B(x,37"").
(c) = (b): Foreach x € X, let k(x,1) = 1 and inductively define
k(x,n) = max{n, j(x,i) |i =1,...,k(x,n —1)} > n.

For each n € N, let U,(x) = ﬂffl’”) V;(x). Then, {U,(x) | n € N} is an open
neighborhood basis of x and
U,x)NU,(») #0 = Uy(x) UU,(y) C Up—i(x) or
Un(x) U Un(y) - Un—l(y)'
In fact, assume that U, (x) N U,(y) # 9. Inthe case k(x,n) < k(y,n), Vixi(y) C

Vi(x) foreachi = 1,...,k(x,n — 1) because V;(, i)(x) N Vj,i)(¥) # @. Then, it
follows that

k(x,n) k(x,n—1) k(x,n—1)

G c Ve () Vieo®c () %) = U

i=1 i=1 i=1
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Since U,(x) C U,—i(x) by definition, we have U,(x) U U,(y) C U,—1(x). As
above, k(y,n) < k(x,n) implies U, (x) U U, (y) C U,—1(»).

For each n € N, we have U, = {U,(x) | x € X} € cov(X). It remains to be
prove that {st(x,U,) | n € N} is a neighborhood basis of x € X. Evidently, each
st(x,U,) is a neighborhood of x € X. Then, it suffices to show that st(x,U(x»)) C
Va(x). If x € Uje (), then

Vj(x,n)(-x) n Vj(x,n)(y) D) Vj(x,n)(-x) n Uj(x,n)(y) 7é Qs

and hence U ) () C Vi (¥) C Va(x).
(b) = (a): First, note that ; +; < U; foreachi € N. Let Uy = {X} € cov(X).
For each x, y € X, define

8(x,y) =inf{27" | 3U € U; suchthat x,y € U}.

Note that if §(x,y) > 0, then §(x,y) = 27" for some n > 0. As can easily be
shown, the following hold for each x, y,z € X:

(1) 8(x,y) =0ifand only if x = y;

(2) 8(x,y) =68(y,x);

(3) 8(x,y) <2max{s(x,z),d(z, y)}.

Furthermore, we claim that

(4) foreveryn > 3 and each xy,...,x, € X,

n—2

8(x1, X)) < 2(8(x1,%2) + 8(6u—1,%2)) + 4D 8(xi, Xi41).

i=2

In fact, when n = 3, the inequality follows from (3). Assuming claim (4) holds for
any n < k, we show (4) for n = k. Then, we may assume that x; # x;. For each
X1,..., Xk € X, let

m = min {i | 8(xy,x5) < 25(x1,x,-)} > 2.

Then, 6(x;,xx) < 268(x1,Xp). From (3) and the minimality of m, we have
8(x1, xk) < 28(xpm—1,xk). if m = 2 or m = k, then the inequality in (4) holds
forn = k.Inthecase 2 <m <k,

1 1
8(xy,x;) = 55(361,)%) + 55(361,)%) < 8(x1, Xm) + 8(Xpm—1, Xk).

By the inductive assumption, we have

m—2

8(x1.xm) < 2(8(x1. x2) + 8(Xm—1.Xm)) + 4 Y 8(x;.x;41) and
i=2
k—2
8(Xm1.%k) < 2(8(Xm—1. Xm) + 8(xe—1. X)) +4 Y 8(xi, Xi 1)

i=m
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so the desired inequality is obtained. By induction, (4) holds for all n € N.
Now, we can define d € Metr(X) as follows:

d(x,y) = inf{Z?;{ 8(xi.xi41) |n €N, x; € X, x1 = x, x, = y}.

In fact, d(x,y) = d(y, x) by (2) and the above definition. The triangle inequality
follows from the definition of d. Since 6(x, y) < 4d(x,y) by (4), it follows from
(1) that d(x,y) = O implies x = y. Obviously, x = y implies d(x,y) = 0.
Moreover, it follows that

d(x,y) <27"*=3U €U, suchthat x,y € U,

which means that By (x,27"72) C st(x,U,) for each x € X and n € N. Since
d(x,y) <8(x,y), wehave meshy U, < 27", sost(x,U,) C By(x,27"). Therefore,
{B4(x,27") | n € N} is a neighborhood basis of x € X. O

Remark 3. In the above proof of (b) = (a), the obtained metric d € Metr(X) has
the following property:

st(xX,Upt2) C Ba(x,27"72) C st(x,U,).
Moreover, d(x,y) < 1 forevery x,y € X.

In Theorem 2.4.1, the equivalence between (a) and (b) is called the
ALEXANDROFF-URYSOHN METRIZATION THEOREM and the equivalence between
(a) and (c) is called the FRINK METRIZATION THEOREM.

Let U and V be covers of X. When {st(x,V) | x € X} < U, wecall V a
A -refinement (or barycentric refinement) of // and denote

VEuU (or Ut

The following corollary follows from the Alexandroff—-Urysohn Metrization
Theorem:

Corollary 2.4.2. A space X is metrizable if and only if X has a sequence of open
covers

UL Su s
such that {st(x,U,) | n € N} is a neighborhood basis of each x € X. O

For covers U and V of X, we define
stV.U) = {st(V.U) | V € V},

which is called the star of VV with respect to &/. We denote st(), V) = stV, which is
called the star of V. When stV < U/, we call V a star-refinement of I/ and denote

ViU (or USV).
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For each n € N, the n-th star of V is inductively defined as follows:
stV = st(st" 1V, V),

where st”) = V. Observe that st(V,stV) = st*V and st(stV) = st*V. When
st" V < U, V is called an n-th star-refinement of /. There is the following relation
between A-refinements and star-refinements:

Proposition 2.4.3. For every three open covers U, V, W of a space X,

Wiviu = wiu

Sketch of Proof. For each W € W, take any x € W and choose U € U so that st(x, V) C
U. Then, we see that st(W, W) C U.

By virtue of this proposition, A-refinements in Corollary 2.4.2 can be replaced
by star-refinements, which allows us to sate the following corollary:

Corollary 2.4.4. A space X is metrizable if and only if X has a sequence of open
covers
* * *
Lll >L{2>U3>---

such that {st(x,U,) | n € N} is a neighborhood basis of each x € X. O

Remark 4. By tracing the proof of Theorem 2.4.1, we can directly prove Corol-
lary 2.4.4. This direct proof is simpler than that of Theorem 2.4.1, and the obtained
metric d € Metr(X) has the following, more acceptable, property than the previous
remark:

st(x,U11) C Ba(x,27") C st(x,U,).

Similar to the previous metric, d(x, y) < 1 forevery x,y € X.

Sketch of the direct proof of Corollary 2.4.4. To see the “if”” part, replicate the proof of (b)
=> (a) in Theorem 2.4.1 to construct d € Metr(X). Let Uy = {X}. For each x,y € X, we
define

8(x,y) = irlf{z_""'1 | 3U € UY; such that x, y € U} and

d(x,y) =inf{>/_, 8(xi—1, x;) | neN, xo=ux, x, = y}.
The admissibility and additional property of d are derived from the inequality d(x, y) <
8(x,y) <2d(x,y). To prove the right-hand inequality, it suffices to show the following:

8(x0,x,) < 228()([_1,)([) for each xg, xq,..., x, € X.

i=l1

This is proved by induction on n € N. Set Z:'l=1 8(x;—1,X;) = o and let k be the largest
number such that Zle 8(xi—1,x;) < a/2. Then, Z?:k-ﬁ-z 8(xi—1,x;) < a/2. By the
inductive assumption, 8(x¢, xx) < o and 8(xx+1, x,) < o. Note that §(xx, x¢41) < . Let
m = min{i € N | 27+t < «}. Since stl, < Uyp_i, we can find U € U,,_; such that
Xo, X, € U, and hence §(xo, x,) < 27" 12 < 2a.
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Additional Results on Metrizability 2.4.5.

(1) The perfect image of a metrizable space is metrizable, that is, if f : X — Y is
a surjective perfect map of a metrizable space X, then Y is also metrizable.

Sketch of Proof. Foreach y € Y and n € N, let

U,(») =Ng(f~'(»).27") and V,(») =Y \ f(X\ U, (»)),

where d is an admissible metric for X. Show that {V,,(y) | n € N} is a neighborhood
basis of y € Y that satisfies condition 2.4.1(c). For each y € Y and i € N, since
S 71(y) is compact, we can choose j > i so that U;(y) C f~'(V;41(y)). Then, the
following holds:

Viet() N V1) # 0 = Vit1(x) C Vi(y).

To see this, observe that

Vg NV@#0=U,0N @) #0
= /7@ C Vi () C Ui ()

= fT'(Vi41) CUj11() CU(y).

(2) A space X is metrizable if it is a locally finite union of metrizable closed
subspaces.

Sketch of Proof. To apply (1) above, construct a surjective perfect map f : ;4 X —
X such that each X is metrizable and f|X is a closed embedding. The metrizability
of @, 4 X, easily follows from Theorem 2.3.4. (The metrizability of @), , X, can
also be seen by embedding ), < , Xy into the product space A X £;(I")N for some I,
where we give A the discrete topology.)

2.5 Complete Metrizability

In this section, we consider complete metrizability. A space X has the Baire
property or is a Baire space if the intersection of countably many dense open sets
in X is also dense; equivalently, every countable intersection of dense G sets in X
is also dense. This property is very valuable. In particular, it can be used to prove
various existence theorems. Observe that the Baire property can also be expressed
as follows: if a countable union of closed sets has an interior point, then at least one
of the closed sets has an interior point. The following statement is easily proved:

* Every open subspace and every dense Gs subspace of a Baire space is also Baire.
Complete metrizability is preferable because it implies the Baire property.

Theorem 2.5.1 (BAIRE CATEGORY THEOREM). Every completely metrizable
space X is a Baire space. Consequently, X cannot be written as a union of countably
many closed sets without interior points.
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B(y0, €0)

B(y1,e1)

Yo =X

1

%S,

Fig. 2.5 Definition of y, € X and ¢, > 0

Proof. For each i € N, let G; be a dense open set in X and d € Metr(X) be a
complete metric. For each x € X and ¢ > 0, we inductively choose y; € X and
g > 0,1 € N, so that

yi € B(yi—1.36i-1) N Gi, B(yi.&) C G; and &; < 3¢,

where yo = x and gy = ¢ (Fig.2.5). Then, (y;);en is d-Cauchy, hence it converges
tosome y € X.Foreachn € w,

oo

o0 o0
d(yn.y) = Zd(yi’yi+l) < Z%Si =< Zz—fg,, = &p.

i=n i=1

Thus, y € B(x,¢) and y € B(y;, &) C G; foreachi € N, thatis, y € B(x,¢e) N
(ien Gi- Therefore, (), cy Gi is dense in X. |

A metrizable space X is said to be absolutely G;s if X is Gs in an arbitrary
metrizable space that contains X as a subspace. This concept characterizes complete
metrizability, which leads us to the following:

Theorem 2.5.2. A metrizable space is completely metrizable if and only if it is
absolutely Gg.

This follows from Corollary 2.3.6 (or 2.3.10) and the following theorem:
Theorem 2.5.3. Let X = (X, d) be a metric space and A C X.

(1) If A is completely metrizable, then A is Gs in X.
(2) If X is complete and A is Gs in X, then A is completely metrizable.

Proof. (1): Since cl A is Gs in X, it suffices to show that A is Gs incl A. Let p €
Metr(A) be a complete metric. For each n € N, let
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G, = {x € cl A | x has a neighborhood U in X with

diamg U < 27" and diam,U N4 < 2_"}.

Then, each G, is clearly openin cl 4 and A C (),ey G- Each x € (1), oy G has
neighborhoods U; D U, D --- in X such that diamy U, < 27" and diam, U, N A4 <
27" Since x € cl A, we have points x,, € U, N A, n € N. Then, (x,),en converges
to x. Since (x,),en is p-Cauchy, it is convergent in A. Thus, we can conclude that
x € A. Therefore, A = (), ey Gn, Which is Gs in cl A.

(2): First, we show that any open set U in X is completely metrizable. We can
define an admissible metric p for U as follows:

p(x.y) =d(x,y) + [dx. X \U)' =d(y. X \U)™"|.

Every p-Cauchy sequence (x,),en in U is d-Cauchy, so it converges to some
x € X. Since (d(x,, X \ U)™!),en is a Cauchy sequence in R, it is bounded. Then,

d(x, X \U) = lim d(x,, X \ U) > 0.
n—oo

This means that x € U, and hence (x,),en is convergentin U. Thus, p is complete.

Next, we show that an arbitrary G set A in X is completely metrizable. Write
A= ﬂneN U,, where U, U,, ... are open in X. As we saw above, each U, admits
a complete metric d, € Metr(U,). Now, we can define a metric p € Metr(A) as
follows:

o(x,y) = Zmin {27, du(x. y)}.
neN

Every p-Cauchy sequence in 4 is d,-Cauchy, which is convergent in U,. Hence, it
is convergentin A = (), ey Us. Therefore, p is complete. O

Analogous to compactness, the completeness of metric spaces can be character-
ized by the finite intersection property (f.i.p.).

Theorem 2.5.4. In order for a metric space X = (X,d) to be complete, it is
necessary and sufficient that, if a family F of subsets of X has the finite intersection
property and contains sets with arbitrarily small diameter, then F°' has a non-empty
intersection, which is a singleton.

Proof. (Necessity) Let F be a family of subsets of X with the f.i.p. such that F
contains sets with arbitrarily small diameter. For each n € N, choose F,, € F so
that diam F,, < 27", and take x,, € F,,. Forany n < m, F, N F,, # @, hence

d(x,, xp) < diam F, + diam F,, < 27" 427" < 27"+,
Thus, (x,),en is a Cauchy sequence, therefore it converges to a point x € X.

Then, x € ﬂ}'d. Otherwise, x ¢ cl F for some F € F. Choose n € N so that
d(x,x,), 27" < 1d(x, F). Since F N F, # 0, it follows that
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d(x,F)<d(x,x,) +diam F, < d(x,x,) +27" <d(x, F),

which is a contradiction.

(Sufficiency) Let (x,),en be a Cauchy sequence in X. For each n € N, let
F, ={x; | i = n}. Then, F; D F, D --- and diam F,, — 0 (n — 00). From
this condition, we have x € ﬂneN cl F,. For each ¢ > 0, choose n € N so that
diamcl F,, = diam F;,, < e. Then, d(x;,x) < ¢ fori > n, that is, lim, o X, = x.
Therefore, X is complete. O

Using compactifications, we can characterize complete metrizability as follows:
Theorem 2.5.5. For a metrizable space X, the following are equivalent:

(a) X is completely metrizable;

(b) X is Gs in an arbitrary compactification of X ;
(¢) X is Gs in the Stone—Cech compactification BX ;
(d) X has a compactification in which X is Gs.

Proof. The implications (b) = (c) = (d) are obvious. We show the converse (d) =
(c) = (b) and the equivalence (a) < (b).

(d) = (c): Let yX be a compactification of X and X = (),cy G, where each
G, is open in yX. Then, by Theorem 2.1.4, we have a map f : X — yX
such that f|X = id, where X = f~!(X) by Theorem 2.1.8. Consequently,
X =,en S '(Gy) is Gs in BX.

(c) = (b): By condition (c), we can write BX \ X = |J, ey Fn, Where each F,
is closed in BX . For any compactification yX of X, we have amap f : X — yX
such that f|X = id (Theorem 2.1.4). From Theorem 2.1.8, y X\ X = f(BX\X) =
U,en f(Fy) is Fy in yX, hence X is G5 in yX.

(b) = (a): To prove the complete metrizability of X, we show that X is
absolutely Gs (Theorem 2.5.2). Let X be contained in a metrizable space Y . Since
clgy X is a compactification of X, it follows from (b) that X is Gs in clgy X, and
henceitis Gsin Y Nclgy X = cly X, where cly X is also Gs in Y. Therefore, X is
GsinY.

(a) = (b): Let yX be a compactification of X and d an admissible complete
metric for X. For eachn € Nand x € X, let G,(x) be an open set in yX such that
Gu(x) N X = Bg(x,27"). Then, G, = J,cy Gu(x) isopenin yX and X C G,.
We will show that each y € [,y G is contained in X. This implies that X =
(Nyen Gn is Gs in yX.

For each n € N, choose x, € X so that y € G,(x,). Since y € cl,x X and
G,(x;,) N X = By(x,,27"), it follows that {B;(x,,27") | n € N} has the f.i.p.
By Theorem 2.5.4, we have x € (),en¢lx Ba(x,,27"), where lim,—00 X, = X
because d(x,,x) < 27". Thus, we have y = x € X. Otherwise, there would
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be disjoint open sets U and V in yX such that x € U and y € V. Since y €
(MNyen Gn NV, {By(x,,27") NV | n € N} has the f.i.p. Again, by Theorem 2.5.4,
we have

x' e[ elx(Ba(xs.27") N V) Ccly V.

neN

Since lim, o0 X, = x’ is the same as x, it follows that x’ = x € U, whichis a
contradiction. O

Note that conditions (b)—(d) in Theorem 2.5.5 are equivalent without the
metrizability of X, but X should be assumed to be Tychonoff in order that X has a
compactification. A Tychonoff space X is said to be éech-complete if X satisfies
one of these conditions.

Every compact metric space is complete. Since a non-compact locally compact
metrizable space X is open in the one-point compactification aX = X U {oco}, X
is completely metrizable because of Theorem 2.5.5. Thus, we have the following
corollary:

Corollary 2.5.6. Every locally compact metrizable space is completely metrizable.
O

We now state and prove the LAVRENTIEFF G5-EXTENSION THEOREM:

Theorem 2.5.7 (LAVRENTIEFF). Let f : A — Y be a map from a subset A of a
space X to a completely metrizable space Y. Then, f extends over a Gs set G in X
such that A C G C cl A.

Proof. We may assume that Y is a complete metric space. The oscillation of f at
x € cl A is defined as follows:

oscr(x) = inf{ diam f(ANU) | U is an open neighborhood of x}.

Let G = {x € cl A | oscs(x) = 0}. Then, A C G because f is continuous. Since
each {x € clA | oscs(x) < 1/n} is open in cl 4, it follows that G is G5 in X. For
each x € G,

Fr ={f(ANU) | U is an open neighborhood of x},

has the f.i.p. and contains sets with arbitrarily small diameter. By Theorem 2.5.4,
we have (| F< # @, which is a singleton because diam (| F<! = 0. The desired
extension f : G — Y of f can be defined by f(x) € [ FC. O

If A is a subspace of a metric space X and Y is a complete metric space, then
every uniformly continuous map f : A — Y extends over cl A. This result can be
obtained by showing that G = cl 4 in the above proof. However, a direct proof is
easier.
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We will modify Theorem 2.5.7 into the following, known as the LAVRENTIEFF
HOMEOMORPHISM EXTENSION THEOREM:

Theorem 2.5.8 (LAVRENTIEFF). Let X and Y be completely metrizable spaces
andlet f : A — B be a homeomorphism between A C X and B C Y. Then, f
extends to a homeomorphism f : G — H between Gg sets in X and Y such that
ACG CclAand B C H CclB.

Proof. By Theorem 2.5.7, f and f ! extendtomaps g : G’ — Y and h : H' —
X,where A C G’ Cc clA, B ¢ H C cIB and G’, H are Gs in X and Y,
respectively. Then, we have Gs sets G = g~'(H') and H = h™!(G’) that contain
A and B as dense subsets, respectively. Consider the maps h(g|G) : G — X and
gh|H) : H — Y. Since h(g|G)|A = id4 and g(h|H)|B = idg, it follows that
h(g|G) = idg and g(h|H) = idy. Then, as is easily observed, we have g(G) C H
andh(H) C G.Hence, f = g|G : G — H is ahomeomorphism extending /. O

In the above, when X = Y and A = B, we can take G = H, that is, we can
show the following:

Corollary 2.5.9. Let X be a completely metrizable space and A C X. Then, every
homeomorphism f : A — A extends to a homeomorphism f : G — G over a Gg
set G in X with A C G C cl A.

Proof. Using Theorem 2.5.8, we extend f to a homeomorphism g : G’ — G”
between Gs sets G, G” C X with A C G'NG"” and G’, G” C cl A. We inductively
define a sequence of Gs sets G’ = G; D G D -+ in X as follows:

Got1 = G, Ng(G,) N g (G,).

Then, G = ("),ey Gn is Gs in X and g(x), g7 (x) € G foreach x € G. Indeed, for
eachn € N, since x € G,+1, it follows that g(x) € G, and g~ '(x) € G,. Thus,
f = g|G : G — G is the desired extension of f. O

Additional Results on Complete Metrizability 2.5.10.

(1) Let f : X — Y be a surjective perfect map between Tychonoff spaces. Then,
X is Cech-complete if and only if ¥ is Cech-complete. When X is metrizable,
X is completely metrizable if and only if Y is completely metrizable.

Sketch of Proof. See Theorem 2.1.8.
(2) A space X is completely metrizable if it is a locally finite union of completely
metrizable closed subspaces.

Sketch of Proof. Emulate 2.4.5(2). To prove the complete metrizability of the topologi-
cal sum @, ¢ 4 X, of completely metrizable spaces, embed €D, ¢ 4 X, into the product
space A X £;(I")Y for some I'.
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2.6 Paracompactness and Local Properties

A space X is paracompact if each open cover of X has a locally finite open refine-
ment.® According to Stone’s Theorem 2.3.1, every metrizable space is paracompact.
A space X is collectionwise normal if, for each discrete collection F of closed sets
in X, there is a pairwise disjoint collection {Ur | F' € F} of open sets in X such
that FF C Uf for each F' € F. Obviously, every collectionwise normal space is
normal. In the definition of collectionwise normality, {Ur | F € F} can be discrete
in X. Indeed, choose an open set V in X so that | JF C V C clV C Uper Ur.
Then, F C V N Up foreach F € F,and {V N Uf | F € F}isdiscrete in X.

Theorem 2.6.1. Every paracompact space X is collectionwise normal.

Proof. To see the regularity of X, let A be a closed setin X and x € X \ A. Each
a € A has an open neighborhood U, in X so that x & clU,. Let U be a locally finite
open refinement of

{Uu |a € A} U {X \A} € cov(X).

Then, V = st(A,U) = (JU[A] is an open neighborhood of A. Since U is locally
finite, it follows that c1 V' = | JU[A]". Since each U € U[A] is contained in some
U,, it follows that x & clU, and hence x & cl V.

We now show that X is collectionwise normal. Let F be a discrete collection
of closed sets in X. Since X is regular, each x € X has an open neighborhood
V, in X such that card Flcl V] < 1. Let U be a locally finite open refinement of
{Vx | x € X} € cov(X). Foreach F € F, we define

Wr=X\|J{cU|UeuU. FneauU =g}

Then, W is openin X and F C Wy C st(F,U") (Fig.2.6). Since card F[clU] < 1
for each U € U, it follows that st(F, Z/ICI) NWg = @if F' # F € F. Therefore,
{Wr | F € F} is pairwise disjoint. O

Lemma 2.6.2. If X is regular and each open cover of X has a locally finite
refinement (consisting of arbitrary sets), then for any open cover U of X there is
a locally finite closed cover {Fy | U € U} of X such that Fy C U foreach U € U.

Proof. Since X is regular, we have V € cov(X) such that V! < U/. Let A be
a locally finite refinement of V. There exists a function ¢ : A — U such that
cl A C ¢(A) foreach A € A. Foreach U € U, define

Fy=|J{cd|aep™' ()} cU.

3Recall that spaces are assumed to be Hausdorff.
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St(F, U

Fig. 2.6 The pairwise disjoint collection {Wr | F € F}

Since each x € X is contained in some A € Aand A C Fy), {Fv | U € U} isa
cover of X. Since A is locally finite, each Fy is closed in X and {Fy | U € U} is
locally finite. O

We have the following characterizations of paracompactness:
Theorem 2.6.3. For a space X, the following conditions are equivalent:

(a) X is paracompact;

(b) Each open cover of X has an open A-refinement;

(c) Each open cover of X has an open star-refinement;

(d) X is regular and each open cover of X has a o-discrete open refinement;
(e) X is regular and each open cover of X has a locally finite refinement.

Proof. (a) = (b): Let Y € cov(X). From Lemma 2.6.2, it follows that X has a
locally finite closed cover {Fyy | U € U} such that Fy C U for each U € U. For
each x € X, define

We= (WU el |xeFu}\|J{Fv|Uel. x¢Fy}.

Then, W, is an open neighborhood of x in X, hence W = {W, | x € X} € cov(X).
For each x € X, choose U € U sothat x € Fy.If x € W), then y € Fy, which
implies that W), C U. Therefore, st(x, W) C U for each x € X, which means that
W is a A-refinement of Uf.

(b) = (c): Due to Proposition 2.4.3, for U/, V, W € cov(X),

Wwiviu = wiu

This gives (b) = (c).

(c) = (d): To prove the regularity of X, let A C X be closed and x € X \ 4.
Then, {X \ A, X \ {x}} € cov(X) has an open star-refinement V. Choose W € W
so that x € W. Then, st(W, W) C X \ 4, ie., W Nst(4,W) = 0. Hence, X is
regular.
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Fig. 2.7 Definition of W

Next, we show that each I/ € cov(X) has a o-discrete open refinement. We may
assume that Y = {U, | A € A}, where A = (A, <) is a well-ordered set. By
condition (c), we have a sequence of open star-refinements:

USU S Uy = -
For each (A,n) € A x N, let
Urn = J{U €U, | stU.U,) C Ur} C Uy

Then, we have
(*) st(Uy n,Up41) C Uy py1 foreach (A,n) € A x N.

Indeed, each U € U, 4[U; ] meets some U’ € U, such that st(U’,U,) C U,. Since
U C st(U',Uy,+1), it follows that

st(U,Up41) C st (U’ Up41) C st(U’, stUy41) C st(U’, U,) C Uy,

which implies that U C U, 4. Thus, we have (x).
Now, for each (A,n) € A x N, let

Vk,n = UA,n \Cl UM</\ U;L,n+1 C U)k-

Then, each V, = {V), | A € A} isdiscrete in X. Indeed, each x € X is contained
insome U € Uy11. U NV, #0,then U C st(Uyp,Upt1) C Uppt1 by ().
Hence, U NV) , = @ forall A > p. This implies that U meets at most one member
of V, — Fig.2.8.

It remains to be proved that V = |,y Vi € cov(X). Each x € X is contained
in some U € U;. Since st(U,U;) C U, for some A € A, it follows that x € U, ;.
Thus, we can define

A(x) =min{A € A | x € Uy, forsomen € N}.
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Fig. 2.8 Construction of G,

Then, x € Uy(y),, for some n € N. It follows from (x) that

cl U;KA(x) Upn+1 C st ( UM<)L(X) Uu,n+1,Un+2)

= | stWunir.Uhy2) € ) Unnso:
H<A(x) H<A(x)

hence x ¢ cl UM<A(X) Uint1. Therefore, x € Vj(x),, and hence V € cov(X).
Consequently, V is a o-discrete open refinement of /.

(d) = (e): It suffices to show that every o-discrete open cover I/ of X has a
locally finite refinement. Let U = | J, ey Uy, Where each U, is discrete in X and
U, NUy = Bifn # m.Foreach U € Uy, let Ay = U \ U,,,(\UUn). Then,
A = {Ay | U € U} is a cover of X that refines U. For each x € X, choose the
smallest n € N such that x € | JU, and let x € Uy € U,. Then, Uy misses Ay for
allU e Um>n U, For each m < n, since U,, is discrete, x has a neighborhood V,,
in X such that cardU,[V;,] < 1. Then, V = Uy N V; N --- NV, is a neighborhood
of x in X such that card A[V] < n. Hence, A is locally finite in X — Fig. 2.9.

(e) = (a): LetU € cov(X). Then U has a locally finite refinement .A. For each
x € X, choose an open neighborhood V, of x in X so that card A[V,] < Ry.
According to Lemma 2.6.2, {V, | x € X} € cov(X) has a locally finite closed
refinement F. Then, card A[F] < R, for each F € F. For each A € A, choose
Uy € U sothat A C Uy and define

Wa=Us\|J{FeF|anF =0}

Then, A C Wy C Uy and W is open in X, hence W = {W, | A € A} is an
open refinement of U. Since F is a locally finite closed cover of X, st(x, F) is a
neighborhood of x € X. Foreach F € Fand A € A, F N Wy # @ implies
F N A#@. Then, card W[F] < card A[F] < 8 for each F' € F. Since card F[x] <
No, st(x, F) meets only finitely many members of WW. Hence, W is locally finite
in X. O
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A space X is Lindelof if every open cover of X has a countable open refinement.
By verifying condition (d) above, we have the following:

Corollary 2.6.4. Every regular Lindelof space is paracompact. O

Let P be a property of subsets of a space X. It is said that X has property P
locally if each x € X has a neighborhood U in X that has property P. Occasionally,
we need to determine whether X has some property P if X has property P locally.
Let us consider this problem now. A property P of open sets in X is said to be
G -hereditary if the following conditions are satisfied:

(G-1) If U has property P, then every open subset of U has P;

(G-2) If U and V have property P, then U U V' has property P;

(G-3) If {Uy | A € A}is discrete in X and each U, has property P, then | J,., U
has property P.

The following theorem is very useful to show that a space has a certain property:

Theorem 2.6.5 (E. MICHAEL). Let P be a G-hereditary property of open sets in
a paracompact space X. If X has property P locally, then X itself has property P.

Proof. Since X has property P locally, there exists «/ € cov(X) such that each
U € U has property P. According to Theorem 2.6.3, I/ has an open refinement
V = U, en Va such that each V), is discrete in X. Each V € V has property P by
(G-1). For each n € N, let V,, = |JV,. Then, each V, has property P by (G-3),
hence V; U --- U V), has property P by (G-2). From Lemma 2.6.2, it follows that X
has a closed cover {F, | n € N} such that F, C V, for each n € N.* Inductively
choose open sets G, (n € N) so that

F,UclG,.1CG,CclG,CcViU---uUlV,,

where Gy = @ (Fig.2.7). Foreachn € N, let W, = G, \ cl G,,—,, where G_; = 0.
Then, each W, also has property P by (G-1). Let X; = Unew Wiy+i, where i =
1,2,3. Since {W3,4; | n € w} is discrete in X, each X; has property P by (G-3).
Hence, X = X; U X, U X3 also has property P by (G-2). O

There are many cases where we consider properties of closed sets rather than
open sets. In such cases, Theorem 2.6.5 can also be applied. In fact, let P be a
property of closed sets of X. We define the property P° of open sets in X as follows:

U has property P° ﬁ clU has property P.
€

It is said that P is F -hereditary if it satisfies the following conditions:

(F-1) If A has property P, then every closed subset of A has property P;

*Closed sets F,, C X, n € N can be inductively obtained so that X = |J, ., int F; U ., V;.

i>n
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Fig. 2.9 Definition of V) ,

(F-2) If A and B have property P, then A U B has property P;
(F-3) If {4, | A € A}is discrete in X and each A; has property P, then | J, ., 4x
has property P.

Evidently, if property P is F-hereditary, then P° is G-hereditary. Therefore,
Theorem 2.6.5 yields the following corollary:

Corollary 2.6.6 (E.MICHAEL). Let P be an F-hereditary property of closed sets
in a paracompact space X. If X has property P locally, then X itself has property P.
O

Additional Results on Paracompact Spaces 2.6.7.
(1) A space is paracompact if it is a locally finite union of paracompact closed
subspaces.

Sketch of Proof. Let F be a locally finite closed cover of a space X such that each
F € F is paracompact. To prove regularity, let x € X and U an open neighborhood
of x in X. Since each F' € F|[x] is regular, we have an open neighborhood Ur of x in
X such that cI(F N Ur) C U. The following Uy is an open neighborhood of x in X:

= vr\UFE\ 7 (U Fil = st(x,]-')).

FEF]

Observe that cly Uy = clUrer(Uo N F) = Urerp cl(Uo N F) C U. Thus, it
suffices to show that X satisfies condition 2.6.3(e).

(2) Every F, subspace A of a paracompact space X is paracompact.

Sketch of Proof. It suffices to show that A satisfies condition 2.6.3(d). Let 4 =
U, en An, where each A, is closed in X. For each V € cov(4) and n € N, let

Uy ={X\ AUV |V eV} ecov(X),

where each V is open in X with VN4 = V. Not that V, < U, implies that
ValAnllA < V.
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(3) Let X be a paracompact space. If every open subspace of X is paracompact,
then every subspace of X is also paracompact.

Sketch of Proof. To find a locally finite open refinement of i/ € cov(A), take an open
collection ¢/ in X such that / |A U and use the paracompactness of UL{

(4) A paracompact space X is (completely) metrizable if it is locally (completely)
metrizable.

Sketch of Proof. To apply 2.4.5(2) (2.5.10(2)), construct a locally finite cover of X
consisting of (completely) metrizable closed sets.

A space X is hereditarily paracompact if every subspace of X is paracompact.
The following theorem comes from (2) and (3).

Theorem 2.6.8. Every perfectly normal paracompact space is hereditarily para-
compact. O

2.7 Partitions of Unity

A collection A of subsets of X is said to be point-finite if each point x € X is
contained in only finitely many members of A, that is, card A[x] < Ro. Obviously,
every locally finite collection is point-finite. We prove the following, which is called
the OPEN COVER SHRINKING LEMMA.

Lemma 2.7.1. Each point-finite open cover U of a normal space X has an open
refinement {Vy | U € U} such that c1Vy C U for each U € U.

Proof. Let T be the topology of X (i.e., the collection of all open sets in X) and
define an ordered set @ = (@, <) as follows:

@ ={p:U—>T|UpeyeU) = X: clpU) CU if ¢(U) # U},
= = ¢1(U) # U implies ¢1(U) = g2 (V).

Observe that if @ has a maximal element ¢, then clpy(U) C U foreach U € U.
Then, the desired open refinement {Vy | U € U} can be defined by Viy = ¢o(U).
We apply Zorn’s Lemma to show that @ has a maximal element. It suffices to
show that every totally ordered subset ¥ C @ is upper bounded in @. For each
UelletplU) = ﬂwetp Y (U). Then, o(U) # U implies Yy (U) # U for
some Yy € ¥, which means that ¢(U) = ¢y (U) because ¥ (U) = ¢y (U) or
Yw(U) = U for every ¥ € W. Thus, we have ¢ : U/ — T such that clo(U) C U
if (U) # U. To verify X = (Jy, @(U), let x € X.If 9(U) = U for some
U € U[x] then x € U = ¢(U). When ¢(U) # U for every U € U[x], by the
same argument as above, we can see that ¢(U) = ¢y (U) foreach U € U[x]. Since
U[x] is finite, we have Yo = max{yy | U € U[x]} € ¥. Then, p(U) = ¢y (U) =
Yo(U) for each U € U[x]. Since X = |J, ¢y Yo(U), it follows that x € o (U)
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(Cc U)forsome U € U, which implies x € ¢(U) because U € U[x]. Consequently,
¢ € . It follows from the definition that ¢ < ¢ forany ¢ € ¥. O

Remark 5. The above lemma can be proved using the transfinite induction instead
of Zorn’s Lemma.

Foramap f : X — R, let

suppf:cl{xeX|f(x)7é0}CX,

which is called the support of f. A partition of unity on X is an indexed family
(fi)rea of maps f; : X — Isuchthat ) ,., fi(x) = 1 foreach x € X.Itis said
that (f3)e4 is locally finite if each x € X has a neighborhood U such that

card{A € A | U Nsupp fi # 0} < No.

A partition of unity (f))ies on X is said to be (weakly) subordinated to U/ €
cov(X) if {supp fu | A € A} <U (f71((0,1]) | A € A} < U).

Theorem 2.7.2. Let U be a locally finite open cover of a normal space X. Then,
there is a partition of unity ( fu)vey on X such that supp fy C U foreach U € U.

Proof. By Lemma 2.7.1, we have {Vy | U € U}, {(Wy | U € U} € cov(X) such
thatcl Wy C Vy CclVy C U foreachU € U.ForeachU € U,letgy : X — Ibe
a Urysohn map with gy (cl Wyy) = 1 and gy (X \ Vi) = 0. Since U is locally finite
and suppgy C clVy C U foreach U € U, we can define amap ¢ : X — [1,00)
by ¢(x) = D yey u(x). Foreach U € U, let fy : X — I be the map defined by
Ju(x) = gu(x)/e(x). Then, ( fy)vey is the desired partition of unity. O

Since every open cover of a paracompact space has a locally finite open
refinement, we have the following corollary:

Corollary 2.7.3. A paracompact space X has a locally finite partition of unity
subordinated to each open cover of X. O

There exists a partition of unity which is not locally finite. For example, the
hedgehog J(N) has a non-locally finite partition of unity ( f,)ne, defined as follows:
fo(x) =1—|x|; and f,(x) = x(n) for each n € N, where

J(N) = {x € £, |x(n) €I foralln € Nand
x(n) # 0 atmostone n € N} C {;.
However, the existence of a partition of unity implies the existence of a locally finite
one.

Proposition 2.7.4. If X has a partition of unity (f1)rea then X has a locally finite
partition of unity (g2)rea such that supp g, C f,7'((0, 1]) for each A € A.
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Proof. We define h : X — Iby h(x) = sup;¢, fa(x) > 0. To see the continuity
of h, for each x € X, choose A(x) € Fin(A) so that ZAGA(X) filx) >1— %h(x).
Then, fy(x) < %h(x) for every A € A\ A(x), so h(x) = fix)(x) for some
A(x) € A(x). Since ), ¢ A(x) Sr and fi(x) are continuous, x has a neighborhood Uy
in X such that

1 1
o A >1- Fh() and fio(y) > Sh(x) forall y € Uy
LEA(x)

Thus, fi(y) < %h(x) < faw)(y) forA € A\ A(x) and y € U,. Therefore,
h(y) = max {fi(y) | A € A(x)} foreach y € U,.

Hence, A is continuous.
Foreach A € A, letk) : X — I be a map defined by

kx(x) = max 0, fo(x)— %h(x) .

Then, suppk, C fA_l ((0,1]). Indeed, if f;(x) = 0 then x has a neighborhood U
such that f;(y) < %h(y) for every y € U, which implies x ¢ suppk,. For each
x € X, take U, and A(x) as in the proof of the continuity of /. Choose an open
neighborhood V, of x in X so that V, C U, and h(y) > %h(x) forall y € V,.If
A e A\ A(x) and y € V,, then

A0) = 5h0) < A0) = 55 <0,

which implies that V, Nsuppky = @ forany A € A\ A(x). Thus, (k3)aea is locally
finite. As in the proof of Theorem 2.7.2, foreach A € A, let g, : X — I be the map

defined by g (x) = ka(x)/@(x), where p(x) = >, ., ka(x). Then, (g2)rex is the
desired partition of unity on X. O

The paracompactness can be characterized by the existence of a partition of unity
as follows:

Theorem 2.7.5. A space X is paracompact if and only if X has a partition of unity
(weakly) subordinated to each open cover of X.

Proof. The “only if” part is Corollary 2.7.3. The “if” part easily follows from
Proposition 2.7 4. O

It is said that a real-valued function f : X — R is lower semi-continuous,
abbreviated as ls.c. (or upper semi-continuous, u.s.c.) if ! ((¢,00)) (or
f 7' ((—00,1))) is open in X for each t € R. Then, f : X — R is continuous
if and only if f is l.s.c. and u.s.c.

Theorem 2.7.6. Let g,h : X — R be real-valued functions on a paracompact
space X suchthat g isu.s.c., hisl.s.c. and g(x) < h(x) foreach x € X. Then, there
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existsamap f : X — Rsuchthat g(x) < f(x) < h(x) for each x € X. Moreover,
givenamap fy: A — Rofaclosed set A in X such that g(x) < fo(x) < h(x) for
each x € A, the map f can be an extension of fj.

Proof. Foreach g € Q, let

Uy = g ((—00,9)) N h' (¢, 00)).

For each x € X, we have ¢ € Q such that g(x) < ¢ < h(x),henceld = {U, | q €
Q} € cov(X). By Corollary 2.7.3, X has a locally finite partition of unity ( f1)iea
subordinated to /. For each A € A, choose g(4) € Q so that supp f, C U,w).
Then, we define a map f : X — R as follows:

f) =g frlx).

A€
Foreachx € X,let{A € A | x € supp fa} = {A1,--+, A, }. Since x € (/= Uyn,)s
we have g(x) < q(A;) < h(x) foreachi = 1,--- ,n, hence it follows that

g() = g0 fi,(x) < f(x) =D q(hi) fo, (x)

i=1 i=1

< h(x) =" h(x) fi, (x).

i=1

To prove the additional statement, apply the Tietze Extension Theorem 2.2.2 to
extend fo to amap f’ : X — R. Then, we have an open neighborhood U of A in
X such that g(x) < f'(x) < h(x) foreach x € U.Letk : X — I be a Urysohn
map with k(4) = 1 and k(X \ U) = 0. We can define f : X — R as follows:

) = (1= k() f(xX) + k(x) f(x).
Therefore, f|A = foand g(x) < f(x) < h(x) foreachx € X. O
Refinements by Open Balls 2.7.7.

(1) Let X be a metrizable space and U/ an open cover of X. Then, X has an
admissible metric p such that

{Ep(x,1)|x EX} < U.

Moreover, for a given d € Metr(X), p can be chosen so that p > d (hence, if
d is complete then p is) and if d is bounded then p is also bounded.

Sketch of Proof. Take an open A-refinement V of I/ and a locally finite partition of
unity (f3)rea on X subordinated to V. For a given d € Metr(X), the desired metric
p € Metr(X) can be defined as follows:

p(x.y) =d(x.y)+ Y [fix)— L) = d(x.y).

A€EA
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If p(x,y) < lthen x,y € ffl((O, 1]) C supp f; for some A € A, otherwise we
have

YA = LOI=D AW+ Y fil)=2>1

reA reA reA
Then, it follows that Ep(x, 1) Cst(x, V).

Sketch of another Proof. The above can be obtained as a corollary of 2.6.3 and 2.4.2
(or 2.4.4) as follows: By 2.4.2 (or 2.4.4), X has a sequence of open covers

A * * *
Uy >Uy > U3 > - (()I‘Z/{1>Z/{2>Z,{3>...)

such that {st(x,,) | n € N} is a neighborhood basis of each x € X. By 2.6.3, we can
inductively define V, € cov(X), n € N, such that

A
v)l < Z/{n and Vn < V)l*l (v)l i v)l*l)v
where Vy = U. Let d’ € Metr(X) be the bounded metric obtained by applying

Corollary 2.4.2 (or 2.4.4) with Remark 3 (or 4). For a given d € Metr(X), the desired
p € Metr(X) can be defined by p = 84’ + d (or p = 2d’ + d).

(2) Let X = (X, d) be a metric space. For each open cover U/ of X, there is a map
y : X — (0, 1) such that

{B(x.y(x)) | x e X} <U.
Sketch of Proof. For each x € X, let

r(x) = sup min{l, d(x, X \ U)} = sup d(x, X \ U),
veu veu

where d = min{l,d}. Show that r : X — (0, 00) is Ls.c. Then, we can apply
Theorem 2.7.6 to obtain amap y : X — (0, 1) such that y(x) < r(x) foreach x € X.

Remark. If U is locally finite, r is continuous (in fact, r is 1-Lipschitz), so we can
define y = %r.

2.8 The Direct Limits of Towers of Spaces

In this section, we consider the direct limit of a tower X; C X, C --- of spaces,
where each X, is a subspace of X, 1. The direct limit lim X, is the space | J, cyy X»

endowed with the weak topology with respect to the tower (X},),en, that is,
UcClimX,isopeninlimX, & VneN,UNX,isopenin X,
— —

(equiv. A ClimX,isclosedinlimX, < Vn e N, AN X, is closed in X,,).
— —
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In other words, the topology of h_n)l X, is the finest topology such that every
inclusion X,, C 1£>n X, is continuous; equivalently, every X, is a subspace of h_r)n X,
For an arbitrary space Y,

f li_r)nX,, — Y is continuous < Vn € N, f|X, is continuous.

Remark 6. Each point x € h_r)n X, belongs to some X, (). If V' is a neighborhood of
X in li_n)lX,,, then V' N X, is a neighborhood x in X, for every n > n(x). However,
it should be noted that the converse does not hold. For example, consider the direct
limit R® = li_n)lR” of the tower R € R? ¢ R3 C ---, where each R” is identified
with R” x {0} C R"TL. Let W = |, cn(—27",27")" C R®. Then, every W N R”
is a neighborhood of 0 € R” because it contains (—27",27")". Nevertheless, W is
not a neighborhood of 0 in R*°. Indeed,

(intgee W) NR" C intge (W NR") = (=27",27")" foreachn € N.

Then, it follows that (intgee W) NR C (), en(—27".27") = {0}, which means that
(intgec W) N R = @, and hence 0 ¢ intgeo W.

It should also be noted that the direct limit lim X, is 77 but, in general,
non-Hausdorff. Such an example is shown in 2.10.3.

As is easily observed, li_r)an(,-) = l'i)an forany n(l1) < n(2) <--- € N. Itis
also easy to prove the following proposition:
Proposition 2.8.1. Let X; C X, C --- andY; C Y, C --- be towers of spaces.

Suppose that there exist n(1) < n(2) < ---, m(1) < m(Q2) < --- € N and maps
fi : Xn(i) — Ym(i) and gi: Ym(i) g Xn(i+1) such that g,'f,' = ian(i) and fi+1gi =

idy,,;,, that is, the following diagram is commutative:
X,,(l) C Xn(z) C Xn(3) C
81 82
il l / f J/ / f J/
Ym(l) C Ym(z) C Ym(3) C
Then, lim X,, is homeomorphic to lim Y,,. O
— —

Remark 7. Tt should be noted that lim X, is not a subspace of lim Y,, even if each
X, is a closed subspace of V. For example, let Y,, = R be the real line and

X, ={00umr ' 1]cy, =R

Then, I = UneN X, R = h_r)n Y., and 0 is an isolated point of li_r)an but is not in
the subspace I C R.
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On the other hand, as is easily observed, if each X, is an open subspace of Y,
then h_n>1 X, is an open subspace of h_n>1 Y,.

The following proposition is also rather obvious:

Proposition 2.8.2. Let Y| C Y, C --- be a tower of spaces. If X is a closed (resp.
open) subspace of Y = h_n)l Y, then X = h_n)l(X NY,). Equivalently, if each X NY,,
is closed (resp. open) in Y,, then h_r)n(X NYy) is a closed (resp. open) subspace of Y .

O
Remark 8. In general, X # Yi)n(X NY,) for a subspace X C h_r)n Y,. For example,
let Y,, be a subspace of the Euclidean plane R? defined by

Yn = {(Os O)s (i_lvo)v (j_lvk_l)

i.keN, j=1,...n}

Observe that A = {(j ', k") | j,k € N} is dense in h_r)n Y., hence it is not closed
in the following subspace X of h_n)l Y,:

X ={0.03U{G k)| jkeN},

whereas A is closed in h_n)l(X nYy,).
With regard to products of direct limits, we have:

Proposition 2.8.3. Let X; C X, C --- be a tower of spaces. If Y is locally
compact then (h_n)l X)) xY = li_n)l(Xn x Y) as spaces.

Proof. First of all, note that

(lim X,,) x ¥ = lim(X, x ¥) = (X x Y) as sets.

neN

Itis easy to see thatid : li_n)l(X,, xY) — (li_n)l X,) xY is continuous. To see this is an
open map, let W be an open set in lim(X, xY'). For each (x, y) € W, choosem € N
sothatx € X,,. Since Y is locally compact, there exist open sets U,, C X, and V' C
Y suchthatx € Uy, y € V,U,, xcly V C W and cly V is compact. Then, by the
compactness of cly V', we can find an open set Uy, 1 C X+ suchthat U, C U,
and U, 4+ x cly V' C W. Inductively, we can obtain U,, C U, 4+ C Up4r C -+
such that each U, is open in X, and U, xcly V. C W.Then, U = |J,~,, U, is open
in lim X,,, and hence U x V is an open neighborhood of (x, y) in (li_n)l_X,,) x Y with
U xV C W.Thus, W is open in (li_r)n X,) xY. O

Proposition 2.8.4. Let X1 C X, C - and Y, C Y, C -+ be towers of spaces. If
each X, and Y, are locally compact, then

li_n)lX,, X li_n)lY,, = li_n)l(Xn x Y,) as spaces.
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Proof. First of all, note that

lim X, x lim ¥, = lim(X, x ,) = J(Xn x Y,) as sets.

neN

It is easy to see that id : lim(X,, x ¥,;) — lim X, x lim Y}, is continuous. To see that
this is open, let W be an open set in lgn(X,, x Y,). For each (x,y) € W, choose
m € N so that (x,y) € X,, x Y,,. Since X,, and Y,,, are locally compact, we have
open sets U,, C X, and V,,, C Y, such that

x €Uy, yeVy, cly, Uy xcly, V,y CW

and both cly,, Uy, and cly,, V, are compact. Then, by the compactness of cly,, U,
and cly, V,,, we can easily find open sets Uy,+1 C X;p41 and Vi1 C Yyyq1 such
that

cly,, Un C Upn1, cly, Vin C Vg, el 4 Ungr xcly, o Vit CW

and both cly, ,, Un+1 and cly, , Vi,41 are compact. Inductively, we can obtain
Upn C Upy1 C Uygr C +-- and V; C Vyyy1 C Vipgo C --- such that U,
and V, are open in X, and Y,, respectively, cly, U, and cly, V, are compact, and
cly, Uy xcly, V, € W.Then, U = J,~,,Us and V = |J,~,, V» are open in
11_11)1 X, and h_n)l Y, respectively, and (x, y) € U x V C W. Therefore, W is open in
lim X, x limY,,. O
— —

A tower X; C X, C --- of spaces is said to be closed if each X, is closed in
Xu+1; equivalently, each X, is closed in the direct limit h_n)l X, . For a pointed space
X = (X, %), let

X5 = {x € X" | x(n) =  except for finitely many n € N} ¢ X™.

Identifying each X" with X" x {(*,*,...)} C XY, we have a closed tower X C
X*c Xx¥c-- with X_}Rf = U,en X" We write X = li_r)nX", which is the space
X }Rf with the weak topology with respect to the tower (X"),en. A typical example
is R®, which appeared in Remark 6.

Proposition 2.8.5. Let X = (X, *) be a pointed locally compact space. Then, each
x e X® = h_r)n X" has a neighborhood basis consisting of X*° N [],ey Va, where
each V,, is a neighborhood of x(n) in X".>

Sketch of Proof. Let U be an open neighborhood of x in X°°. Choose ny € N so that
x € X" Foreachi = 1,...,nq, each x(i) has a neighborhood V; in X such that cl V; is

SIn other words, the topology of 1'£>nX " is a relative (subspace) topology inherited from the box

topology of XN,
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compact and [/, cl V; C U N X", Recall that we identify X"~ = X"~ x {*} C X".
For n > ng, we can inductively choose a neighborhood V,, of x(n) = * in X so that
cl V, is compact and []7_, cl V; C U N X", where we use the compactness of ]_[,";: clV;

(= ]_[::: clV; x {*}) This is an excellent exercise as the first part of the proof of Wallace’s
Theorem 2.1.2.

Remark 9. Proposition 2.8.3 does not hold without the local compactness of ¥ even
if each X, is locally compact. For example, (li_n>1 R™") x £, # li_n)1(R” x {£5). Indeed,

each R” is identified with R"” x {0} C I@ C £,. Then, we regard
(li_n)l R") x £, = li_n)l(R" x {p) = R?} x £, as sets.

Consider the following set:
D= {(k_len,n_lek) € RI? x £y | k,ne N},

where each e; € R§ C £, is the unit vector defined by e;(i) = 1 and e; (j) = O for
j #i.Foreachn € N, let

D, = {(k 'e,.n""ex) | k € N}.

Since {n~'e; | k € N} is discrete in £,, it follows that D, is discrete (so closed)
in R" x £,, hence it is also closed in R™ x £, for every m > n. Observe that
D N (R" x £,) = J'_, D;. Then, D is closed in 1i_n)1(R” X £3). On the other hand,
for each neighborhood U of (0, 0) in (h_I)n R"™) x £,, we can apply Proposition 2.8.5
totake §; > 0 (i € N)and n € N so that

(le} n H[—Si,g,’]) X}’l_lB[2 cU,
ieN

where By, is the unit closed ball of £,. Choose k € N so that k~! < §,. Then,
(k'e,,n"'ey) € U, which implies U N D # @. Thus, D is not closed in
(h_r)n]R )Xﬁz.

Remark 10. In Proposition 2.8.4, it is necessary to assume that both X, and Y,

are locally compact. Indeed, let X, = R" and ¥, = ¢, for every n € N. Then,
h_I)an X 1£)n Y, # lim(X, x Y,), as we saw in the above remark. Furthermore,

this equality does not hold even if X,, = Y,,. For example, li_n)l(Zz)” X li_n)1(€2)” #
lim((£2)" x (£2)"). Indeed, consider
H

lim(£,)" > lim(£)" = lim((€2)" x (£2)") = (£2)s X (L)} as sets.

Identifying R" = (Re;)" C (£2)" and {5 = £, x {0} C (£,)"}, we can also consider

(Yi)nR”) x4y = l'i)n(R” x {y) = RTC x €, C (62)§ X (EZ)BNC as sets.
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By Proposition 2.8.2, (l'i)nR”) x £, and li_r)n(R" x £,) are closed subspaces of
1 n 1 n 1 n n 1 1 n
11)11@2') xh_’11>n(€2) andh_1>n€(€2) anz}- ),ressectlYely. Asnwe saw’?bove, (gnR )%
£ # T (R £5). Thus, Tim(€a)" x lim(€2)" # lim((€2)" X (€2)").

Theorem 2.8.6. For the direct limit X = lim X,, of a tower X| C X, C --- of
; —
spaces, the following hold:

(1) Every compact set A C X is contained in some X,.

(2) For eachmap f : Y — X from a first countable space Y to X, each point
y € Y has a neighborhood V in Y such that the image f(V') is contained in
some X,,. In particular, if A C X is a metrizable subspace then each point of A
has a neighborhood in A that is contained in some X,,.

Proof. (1): Assume that A is not contained in any X,,. For each n € N, take x, €
A\ X, andlet D = {x, | n € N} C A. Then, D is infinite and discrete in li_r)nX,,.
Indeed, every C C D is closed in h_n)1 X, because C N X, is finite for each n € N.
This contradicts the compactness of A.

(2): Let {V, | n € N} be a neighborhood basis of y in Y such that V,, C V,_;.
Assume that f(V,) ¢ X, for every n € N. Then, taking y, € V,, \ f~1(X,), we
have a compactset A = {y, | n € w}in Y. Due to (1), f(A) is contained in some
X, and hence f(y,) € X,,. This is a contradiction. Therefore, f(V,) C X, for
some n € N. O

By Theorem 2.8.6(2), the direct limit of metrizable spaces is non-metrizable in
general (e.g., h_n)l R" is non-metrizable). However, it has some favorable properties,
which we now discuss.

Theorem 2.8.7. For the direct limit X = lim X,, of a closed tower X1 C X, C -+
. . —
of spaces, the following properties hold:

(1) If each X, is normal, then X is also normal;

(2) If each X, is perfectly normal, then X is also perfectly normal;

(3) If each X, is collectionwise normal, then X is also collectionwise normal;
(4) If each X, is paracompact, then X is also paracompact.

Proof. (1): Obviously, every singleton of X is closed, so X is 7). Let A and B be
disjoint closed sets in X . Then, we have a map f; : X; — I'suchthat fi(ANX;) =
0 and fi(B N X;) = 1. Using the Tietze Extension Theorem 2.2.2, we can extend
fitoamap f, : X, — I'suchthat /,(A N X;) =0and f,(B N X;) = 1. Thus, we
inductively obtain maps f, : X, — I, n € N, such that

fann—l = fn—lv fn(A N Xn) =0 and fn(B N Xn) =1

Let f : X — I be the map defined by f|X, = f, forn € N. Evidently, f(4) =0
and f(B) = 1. Therefore, X is normal.

(2): From (1), it suffices to show that every closed set A in X is a G set. Each X,
has open sets G, ,,, m € N, suchthat AN X,, = (),,ey Gnm- Foreachn,m € N, let
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Gy, = GumU(X\X,).Since X, is closed in X, each G, is openin X. Observe
that A = (), ,,en G- Hence, A is Gs in X.

(3): Let F be a discrete collection of closed sets in X. By inductionon n € N,
we have discrete collections {UF | F € F} of open sets in X, such that (F N
X,) Ucl UnF_1 C UnF for each F' € F, where UOF =@.Foreach F € F,let Ur =
UneN UnF. Then, F C Ur and U is open in X because Ur N X, = Ui>n Ul-F nx,
isopenin X, foreachn € N.If F # F’, then Ur N Ups = @ because -

7

Ul nuf cul iy NUL iy =0 foreachi,j € N.
Therefore, X is collectionwise normal.

(4): Since every paracompact space is collectionwise normal (Theorem 2.6.1), X
is also collectionwise normal by (3), so it is regular. Then, due to Theorem 2.6.3,
it suffices to show that each &/ € cov(X) has a o-discrete open refinement. By
Theorem 2.6.3, we have | J,,ey Vam € cov(X,), n € N, such that each V, ,, is
discrete in X, and V,,,, < U. Foreach V € V), ,,, choose Uy € U so that V C Uy.
Note that each V¢, is discrete in X, and recall that X is collectionwise normal.
So, X has a discrete open collection {Wy | V € V,,,} such that cl1V C Wy. Let
Wam = Wy NUy | V € V). Then, W = U, yeny Wam € cov(X) is a o-
discrete open cover refinement of /. O

From Theorems 2.8.7 and 2.6.8, we conclude the following:

Corollary 2.8.8. The direct limit of a closed tower of metrizable spaces is perfectly
normal and paracompact, and so it is hereditarily paracompact. O

2.9 The Limitation Topology for Spaces of Maps

Let X and Y be spaces. Recall that C(X, Y) denotes the set of all maps from X
to Y. Foreach f € C(X,Y) and U/ € cov(Y), we define

U(f)={g € C(X.Y) | gisU-loseto f}.

Observe that if V € cov(Y) is a A-refinement (or a star-refinement) of I/ then
V(g) CU(f) foreach g € V(f). Then, in the case that Y is paracompact, C(X,Y)
has a topology such that {{/(f) | U € cov(Y)} is a neighborhood basis of f. Such
a topology is called the limitation topology.

The limitation topology is Hausdorff. Indeed, let f # g € C(X,Y). Then f(xo) # g(xo)
for some xo € X. Take disjoint open sets U, V C Y with f(xo) € U and g(x¢) € V, and
define

U=AU Y \{f(x)}}, V=LAV, Y \ {g(x0)}} € cov(Y).
Then, U(f) N V(g) = 0.
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Remark 11. In the above, U(f) is not open in general. For example, consider the
hedgehog J(N) = |, cn1en (see Sect.2.3) and the map f : N — J(N) defined
by f(n) = e, foreachn € N, where e,(n) = 1 and e, (i) = 0 if i # n. For each
n €N, let

U, =Te, UB(0,n") c J(N).

Then, Y = {U, | n € N} € cov(J(N)). We show that U(f) is not open
in C(N, J(N)) with respect to the limitation topology. Indeed, L/( f) contains the
constant map fy with fo(N) = {0}. For each V € cov(J(N)), choose k € N so that
B(0,k71) C V, for some V, € V. Then, V(f;) contains the map g : N — J(N)
defined by g(n) = (k + 1)"'e,4; for each n € N. Observe that g(k + 1) =
(k+ 1D egys € Uppr but f(k +1) = exq1 € U, if n # k + 1, which means that
g U(S). Thus, V(fo) € U(f). Hence, U( f) is not open.

The set of all admissible bounded metrics of a metrizable space Y is denoted
by Metr?(Y). If ¥ is completely metrizable, let Metr¢(Y) denote the set of all
admissible bounded complete metrics of Y. The sup-metric on C(X,Y) defined
by d € Metr?(Y) is denoted by the same notation d. For each f € C(X,Y) and
d € Metr?(Y), let

Ua(f) =Ba(f.1) = {g € C(X.Y) | d(f.g) < 1}.

Then, U,.4(f) = Bys(f.n~") foreachn € N.

Proposition 2.9.1. When Y is metrizable, {Us(f) | d € Metr?(Y)} is a
neighborhood basis of f € C(X,Y) in the space C(X,Y) with the limitation
topology. If Y is completely metrizable, then {U;(f) | d € Metr°(Y)} is also a
neighborhood basis of f € C(X,Y).

Proof. For eachd € Metr? (Y), let
U={By(y.3) | yeY}ecov(l).

Then, clearly U(f) C Uy(f) for each f € C(X,Y). Conversely, for each U €
cov(Y), choose d € Metr® (Y) (or d € Metr®(Y)) so that {B,(y,1) | y e Y} <U
(cf. 2.7.7(1)). Thus, Uy (f) C U(f) foreach f € C(X,Y). O

For a space X, let Homeo(X) be the set of all homeomorphisms of X onto itself.
The limitation topology on Homeo(X) is the subspace topology inherited from
the space C(X, X) with the limitation topology. If X is metrizable, for each f €
Homeo(X) and d € Metr?(X), let

Ua+(f) = Ba=(f.1) = {g € Homeo(X) | d*(f.g) < 1},

where d* is the metric on Homeo(X) defined as follows:

d*(f.g)=d(f.g) +d(f~ g™,
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The following is the homeomorphism space version of Proposition 2.9.1:

Proposition 2.9.2. When X is metrizable, {Ug+(f) | d € Metr®(X)} is a
neighborhood basis of f € Homeo(X) in the space Homeo(X) with the limitation
topology. If X is completely metrizable, then {Uy+(f) | d € Metr(X)} is also a
neighborhood basis of f € Homeo(X).

Proof. Foreach f € Homeo(X) and d € Metr® (Y), let
U={By(x.1/5)N f (Ba(fT'(x).1/5)) | x € X} € cov(X).

Then, U(f) NHomeo(X) C Uy (f). Indeed, foreach g € U(f) NHomeo(X) and
x € X, wecanfind y € X such that

g7 ), x = g(g™ () € £ (Ba (ST (). 1/5)),

which means that d (g~ (x), f='(y)) < 1/5and d(f~'(x), f~'(y)) < 1/5, hence
d(f~'(x),g7"(x)) < 2/5. Therefore, d(f~', g~!) < 2/5. On the other hand, it is
easy to see that d( f, g) < 2/5. Thus, we have d*(f, g) < 1, thatis, g € U= (f).
Conversely, for each f € Homeo(X) and U € cov(X), choose d € Metr?(X)
(or d € Metr(X)) so that {By(y,1) | y € Y} < U (cf. 2.7.7(1)). Then,
Us=(f) C U(S). Indeed, for each g € Uy=(f) and x € X, d(f(x),g(x)) < 1
and B, (f(x), 1) is contained in some U € U, hence f(x),g(x) € U. Therefore,

gelu(f). O
If Y = (Y, d) is a metric space, foreach f € C(X,Y) and ¢ € C(Y, (0, 00)), let

Ne(f) =1{g € C(X.Y) | Vx € X, d(f(x). g(x)) < a(f(x))}.

Proposition 2.9.3. When Y = (Y, d) is a metric space, {No(f) | ¢eC(Y, (0, 0))}
is a neighborhood basis of f € C(X,Y) in the space C(X,Y) with the limitation
topology.

Proof. Let a € C(Y, (0, 00)). For each y € Y, choose an open neighborhood U,
so that diam U, < %a(y) and a(y’) > %oc(y) for all y’ € Uy. Thus, we have
U={U, |y e} ecov(l) Let f € C(X,Y) and g € U(f). Then, for
each x € X, we have some y € Y such that f(x),g(x) € U,, which implies

d(f(x),g(x)) < 5a(y) < a(f(x)). Therefore, U(f) C Nu(f).
Conversely, let U € cov(Y). Foreach y € Y, let

y(y) = sup {r >0 | AU € U such that B(y,r) C U}.
Then, y : ¥ — (0, 00) is lower semi-continuous. Hence, by Theorem 2.7.6, we

have o € C(Y, (0, 00)) such that o < y, which implies that N, (f) C U(f) for any
feCX,Y). O
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The following two theorems are very useful to show the existence of some types
of maps or homeomorphisms:

Theorem 2.9.4. For a completely metrizable space Y, the space C(X,Y) with the
limitation topology is a Baire space.

Proof. Let G,, n € N, be dense open sets in C(X,Y). To see that (), ey Gn is
dense in C(X,Y), let f € C(X,Y) and d € Metr(Y). We can inductively choose
gn € C(X,Y)and d, € Metr(Y), n € N, so that

&n € U2d,,71(gn—l) N Gna Ud,, (gn) C Gn and dn > 2dn—la

where go = f and dy = d. Observe d,, < 27"d,;+, for each m,n € w. Since
d(gn—1.82) < 27""'d,_1(gn—1.84) < 27" foreach n € N, (g,)nen is d-Cauchy.
From the completeness of d, (g,)n,en converges uniformly to g € C(X,Y) with
respect to d. Since

d(fig) <) dg-1.8) <) 27" =1,

neN neN

we have g € Uy (f) and, foreachn € N,

dn(gn.8) = Z dn(Gn+i—1: &n+i)

ieN

< Z2_i+ldn+i—l(gn+i—l7gn+i) < Zz_i =1,
ieN ieN
hence g € Uy, (g,) C Gy. Thus, Ug(f) N (),,en Gn # 9, hence (), G is dense
in C(X,Y). O

In the above proof, replace C(X, Y) and U,, with Homeo(X) and Uy, respec-
tively. Then, we can see that (g, ),en is d *-Cauchy. From the completeness of d *,
we have g € Homeo(X) with lim, e d*(gn,g) = 0. By the same calculation,
we can see d,'(g,,g) < 1, thatis, g € Uyx(g) C G, for every n € N. Then,
Ug«(f) N(,en Gn # 9. Therefore, we have:

Theorem 2.9.5. For a completely metrizable space X, the space Homeo(X) with
the limitation topology is a Baire space. O

Now, we consider the space of proper maps.

Proposition 2.9.6. Let U be a locally finite open cover of Y such that clU is
compact for every U € U (so Y is locally compact). If amap [ : X — Y is
U-close to a proper map g then f is also proper.

Proof. For each compact set A in Y, f~1(A) C g~ '(st(A,U")). Since U is
locally finite, it follows that Z/°/[4] is finite, and hence st(A4,U") is compact. Then,
g ' (st(4,U)) is compact because g is proper. Thus, its closed subset f~!(A) is
also compact. O
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Let C”(X,Y) be the subspace of C(X, Y consisting of all proper maps.® Then,
Proposition 2.9.6 yields the following corollary:

Corollary 2.9.7. If Y is locally compact and paracompact, then CF(X,Y) is
clopen (i.e., closed and open) in the space C(X,Y) with the limitation topology,
where X is also locally compact if CY(X,Y) # 0. O

From Theorem 2.9.4 and Corollary 2.9.7, we have:

Theorem 2.9.8. For every pair of locally compact metrizable spaces X and Y, the
space CP (X, Y) with the limitation topology is a Baire space. O

Some Properties of the Limitation Topology 2.9.9.
(1) For each paracompact space Y, the evaluation map
ev: X xCX,Y)oa(x,f)— f(x)eY

is continuous with respect to the limitation topology.

Sketch of Proof. For each (x, f) € X x C(X,Y) and each open neighborhood V
of f(x) in Y, take an open neighborhood W of f(x) in Y so that c1W C V and
let V ={V,X \ cIW} € cov(Y). Show that (x’, /) € f~1 (W) x V(f) implies
fxev.

(2) Ifboth Y and Z are paracompact, the composition
C(X.Y)xC(Y.Z) 3 (f.g) +> g o f € C(X. Z)

is continuous with respect to the limitation topology.

Sketch of Proof. For each (f,g) € C(X,Y) x C(Y,Z) and U € cov(Z),letV €
cov(Z) be a star-refinement of /. Show that f’ € g~ 1(V)(f) and g’ € V(g) implies

g'of el(gof).

(3) For every paracompact space X, the inverse operation
Homeo(X) 3 & +— h™' € Homeo(X)

is continuous with respect to the limitation topology. Combining this with (1),
the group Homeo(X) with the limitation topology is a topological group.

Sketch of Proof. Let h € Homeo(X) and U € cov(X). Show that g € h(U/)(h) implies
—1 -1
g teum).

Remark 12. If Y = (Y,d) is a metric space, for each f € C(X,Y) and y €
C(X, (0,0)), let

V,(f) ={g € C(X.Y) | Vx € X, d(f(x),g(x)) < y(x)}.

STf Y is locally compact, C*(X,Y) is the subspace of C(X,Y) consisting of all perfect maps
(Proposition 2.1.5).
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We have the topology of C(X,Y) such that {V,,(f) | y € C(X,(0,00))} is a
neighborhood basis of f. This is finer than the limitation topology. In general, these
topologies are not equal.

For example, let y € C(N, (0, 00)) be the map defined by y(n) = 27" forn € N.
Then, V,,(0) is not a neighborhood of 0 € C(N, R) in the limitation topology. Indeed,
for any ¢ € C(R, (0,00)), we define g € C(N,R) by g(n) = %oc(O) for every
n € N. Then, g € Ny(0) but g & V,(0). Thus, N,(0) ¢ V,(0). Moreover, the
composition

C(N,R)xC(R,R)> (f.g) > go f € C(N,R)

is not continuous with respect to this topology.

Indeed, let y be the above map. For any ¢ € C(R, (0, 00)), we have n € N such that
27" < 1a(0). Let h = id 4+ 1o € C(R,R). Then, h € V,(id) but 1 0 0 & V, (id o 0)
because h o 0(n) = h(0) = %O((O) > 27" = y(n). (Here, id can be replaced by any
g € CR,R).)

2.10 Counter-Examples

In this section, we show that the concepts of normality, collectionwise normality,
and paracompactness are neither hereditary nor productive, and that the concepts
of perfect normality and hereditary normality are not productive either. Moreover,
we show that the direct limit of a closed tower of Hausdorff spaces need not be
Hausdorff.

The following example shows that the concepts of normality, collectionwise
normality and paracompactness are not hereditary.

The Tychonoff plank 2.10.1. Let [0, w) be the space of all countable ordinals
with the order topology. The space [0, w] is the one-point compactification of the
space [0, wy). Let [0, w] be the one-point compactification of the space w = [0, ®)
of non-negative integers. The product space [0, w] X [0, w] is a compact Hausdorff

space, hence it is paracompact. The following dense subspace of [0, w1] X [0, w] is
called the Tychonoff plank:

T =[0,01] x [0, 0] \ {(@1, w)}.

We now prove that

— The Tychonoff plank T is not normal.

Proof. We have disjoint closed sets {w; } X [0, @) and [0, @;) x{w} in T'. Assume that
T has disjoint open sets U, V such that {w,} x [0,w) C U and [0, w;) x {w} C V.
For each n € w, choose o, < w; so that [, 1] x {n} C U.Leta = sup,cyy <
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{a} x [n, 0]
¢ \| —o (01, )
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[0,0] @=sup,eyt; <
Fig. 2.10 Tychonoff plank

wy. Then, [, w;] x N C U. On the other hand, we can choose n € N so that
{a} x [n,w] C V. Then, U NV # @, which is a contradiction (Fig. 2.10). O

The next example shows that the concepts of normality, perfect normality, hered-
itary normality, collectionwise normality, and paracompactness are not productive.

The Sorgenfrey Line 2.10.2. The Sorgenfrey line S is the space R with the
topology generated by [a,b), a < b. The product S? is called the Sorgenfrey plane.
These spaces have the following properties:

(1) S is a separable regular Lindeldf space, hence it is paracompact, and so is
collectionwise normal;

(2) S is perfectly normal, and so is hereditarily normal;

(3) S? is not normal.

Proof. (1): It is obvious that S is Hausdorff. Since each basic open set [a, b) is
also closed in S, it follows that S is regular. Clearly, Q is dense in S, hence § is
separable. To see that S is Lindelof, let i/ € cov(S). We have a functiony : § — Q
so that y(x) > x and [x, y(x)) C U for some U € U. Then, {[x,y(x)) | x € S} €
cov(S) is an open refinement of /. For each ¢ € y(S), if there exists miny~'(g),
let R(g) = {miny~!(g)}. Otherwise, choose a countable subset R(q) C y~'(g) so
that inf R(g) = infy~'(g), where we mean y~'(g) = —oo if y!(¢) is unbounded
below. Then, the following is a subcover of {[x, y(x)) | x € S} € cov(S):

{lz.9) | g € ¥(S). z € R(g)} € cov(S),

which is a countable open refinement of /.

(2): Let U be an open set in S. We have a function y : U — Q so that y(x) > x
and [x, y(x)) C U.Then, U = |J, ¢y [x. y(x)). By the same argument as the proof
of (1), we can find a countable subcollection

{lai.bi) | i e N} C {[x,y(x)) | x € U}

such that U = UieN[a,-,b,-), hence U is Fy in S. Thus, S is perfectly normal.



68 2 Metrization and Paracompact Spaces

0 1 0 1
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X, X, X = xNyu{o,1}
Fig. 2.11 Non-Hausdorff direct limit

(3): As we saw in the proof of (1), Q is dense in S, hence Q? is dense in S2. It
follows that the restriction C(S2,R) > f > f|Q? € R? is injective. Therefore,

cardC(SZ,R) < cardRQz =% =,

On the other hand, D = {(x,y) € S? | x +y = 0} is a discrete set in S2. Then, we
have
cardC(D,R) = cardR? = 2¢ > ¢ > card C(S?, R).

If S? is normal, it would follow from the Tietze Extension Theorem 2.2.2 that the

restriction C(S2,R) 3 f + f|D € C(D,R) is surjective, which is a contradiction.
Consequently, S? is not normal. O

Finally, we will construct a closed tower such that the direct limit is not
Hausdorff.

A Non-Hausdorff Direct Limit 2.10.3. Let Y be a space which is Hausdorff but
non-normal, such as the Tychonoff plank. Let Ao, A1 be disjoint closed sets in Y
that have no disjoint neighborhoods. We define X = (Y x N) U {0, 1} with the
topology generated by open sets in the product space Y x N and sets of the form

W x ti}y v i,

k>n

where i = 0,1 and each Uy is an open neighborhood of A;. Then, X is not
Hausdorff because 0 and 1 have no disjoint neighborhoods in X. For eachn € N,
let

Xy =Y x{1,....,n} U (Ao U A)) x{k | k >n}U{0,1}.

Then, X1 C X, C --- are closedin X and X = UnEN X, (Fig.2.11). As is easily
observed, every X, is Hausdorff. We will prove that X = h_I)n X, that is,

— X has the weak topology with respect to the tower (X;),en.
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Proof. Since id : lim X, — X is obviously continuous, it suffices to show that
every open set V' in lim X, is open in X. To this end, assume that V N X,, is open

in X, foreachn € N. Each x € V \ {0, 1} is contained in some Y x {n} C X,.
Then, V N (Y x {n}) is an open neighborhood of x in ¥ x {n}, and so is an open
neighborhood in X. When 0 € V, Ag x {k | kK > n} C V for some n € N because
VN X;isopenin X,.Foreach k > n,since VN (Y x{k})isopenin Y x {k}, there
is an open set Uy in Y such that V N (Y x {k}) = Uy x {k}. Note that Ay C Uy.
Then, ..., (U x {k}) U{0} C V, hence V is a neighborhood of 0 in X . Similarly,
V is a neighborhood of 1 in X if 1 € V. Thus, V isopenin X. O

Notes for Chap. 2

For more comprehensive studies on General Topology, see Engelking’s book, which contains
excellent historical and bibliographic notes at the end of each section.

* R. Engelking, General Topology, Revised and complete edition, Sigma Ser. in Pure Math. 6
(Heldermann Verlag, Berlin, 1989)

The following classical books are still good sources.

¢ J. Dugundji, Topology, (Allyn and Bacon, Inc., Boston, 1966)
» J.L. Kelly, General Topology, GTM 27 (Springer-Verlag, Berlin, 1975); Reprint of the 1955 ed.
published by Van Nostrand

For counter-examples, the following is a good reference:

* L.A. Steen and J.A. Seebach, Jr., Counterexamples in Topology, 2nd edition (Springer-Verlag,
New York, 1978)

Of the more recent publications, the following textbook is readable and seems to be popular:
* J.R. Munkres, Topology, 2nd edition (Prentice Hall, Inc., Upper Saddle River, 2000)

Most of the contents discussed in the present chapter are found in Chaps. 5-8 of this text, although
it does not discuss the Frink Metrization Theorem (cf. 2.4.1) and Michael’s Theorem 2.6.5 on local
properties.

Among various proofs of the Tychonoff Theorem 2.1.1, our proof is a modification of the
proof due to Wright [19]. Our proof of the Tietze Extension Theorem 2.2.2 is due to Scott [14].
Theorem 2.3.1 was established by Stone [16], but the proof presented here is due to Rudin [13]. The
Nagata—Smirnov Metrization Theorem (cf. 2.3.4) was independently proved by Nagata [12] and
Smirnov [15]. The Bing Metrization Theorem (cf. metrization) was proved in [2]. The Urysohn
Metrization Theorem 2.3.5 and the Alexandroff-Urysohn Metrization Theorem (cf. 2.4.1) were
established in [18] and [1], respectively. The Frink Metrization Theorem (cf. 2nd-metrization) was
proved by Frink [5]. The Baire Category Theorem 2.5.1 was first proved by Hausdorff [6] (Baire
proved the theorem for the real line in 1889). The equivalence of (a) and (b) in Theorem 2.5.5 was
shown by Cech [3]. Theorems 2.5.7 and 2.5.8 were established by Lavrentieff [7].

The concept of paracompactness was introduced by Dieudonné [4]. In [2], Bing introduced
the concept of collectionwise normality and showed the collectionwise normality of paracompact
spaces (Theorem 2.6.1). The equivalence of (b) and (c) in Theorem 2.6.3 was proved by Tukey
[17], where he called spaces satisfying condition (c) fully normal spaces. The equivalence of (a)
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and (c) and the equivalence of (a), (d), and (e) were respectively proved by Stone [16] and Michael
[10]. Theorem 2.6.5 on local properties was established by Michael [11]. Lemma 2.7.1 appeared in
[8]. Theorem 2.7.2 and Proposition 2.7.4 were also established by Michael [11]. The simple proof
of Proposition 2.7.4 presented here is due to Mather [9]. Theorem 2.7.6 was proved by Dieudonné
[4]. These notes are based on historical and bibliographic notes in Engelking’s book, listed above.

In some literature, it is mentioned that the direct limit of a closed tower of Hausdorft spaces
need not be Hausdorff. The author could not find such an example in the literature. Example 2.10.3
is due to H. Ohta.
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Chapter 3
Topology of Linear Spaces and Convex Sets

In this chapter, several basic results on topological linear spaces and convex sets are
presented. We will characterize finite-dimensionality, metrizability, and normability
of topological linear spaces. Among the important results are the Hahn—Banach
Extension Theorem, the Separation Theorem, the Closed Graph Theorem, and the
Open Mapping Theorem. We will also prove the Michael Selection Theorem, which
will be applied in the proof of the Bartle-Graves Theorem.

3.1 Flats and Affine Functions

In this section, we present the basic properties of flats and affine functions. Let E
be a linear space (over R). We call F C E a flat' if the straight line through every
distinct two points of F is contained in F, i.e.,

(1—-1t)x+tyeF foreachx,y € Fandt € R.

Evidently, the intersection and the product of flats are also flats. We have the
following characterization of flats:

Proposition 3.1.1. Let E be a linear space. For each non-empty subset F C E, the
following conditions are equivalent:

(a) F isaflat;

(b) Foreachn €N, ifvi,...,v, € Fand ) |_,t; = 1,theny ;_ t;v; € F;
(c¢) F — x is alinear subspace of E forany x € F;

(d) F — xo is a linear subspace of E for some xy € E.

! A flat is also called an affine set, a linear manifold, or a linear variety.

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, 71
DOI 10.1007/978-4-431-54397-8_3, © Springer Japan 2013
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Proof. By induction on n € N, we can obtain (a) = (b). Condition (c) follows from
the case n = 3 of (b) because, foreach x, y,z € F and a,b € R,

a(y—x)+b(z—x)+x=(0—a—->b)x +ay + bz

Tosee (c) = (a),letx,y € F andt € R. Since F — x is a linear subspace of E by
(c), we have f(y — x) € F — x, which means (1 — #)x + ¢y € F. The implication
(c) = (d) is obvious.

(d) = (c): It suffices to show that if FF — Xx¢ is a linear subspace of E, then
F —x=F —xpforany x € F.Forevery z € F, we have

z—x = (z—x9) — (x — xg) € F — xo.
Here, take 7 € F so that (z — x¢) + (x — xo) = z’ — xo. Then, we have
7—x0=E —x0)—(x—x0) =7 —x € F —x.
Consequently, we have F' — x = F — x,. O

In the proof of the implication (d) = (c), we actually proved the following:

Corollary 3.1.2. Let F be a flat in a linear space E. Then, F —x = F —y for any
x,y €F. O

A maximal proper flat H & E is called a hyperplane in E. The following
proposition shows the relationship between hyperplanes and linear functionals.

Proposition 3.1.3. Let E be a linear space.

(1) For each hyperplane H C E, there is a linear functional f : E — R such that
H = f~1(s) for some s € R;

(2) For each non-trivial linear functional f : E — Rands € R, f~'(s) isa
hyperplane in E;

(3) For linear functionals fi, f>: E — R, if f7'(s1) = f5"'(s2) for some s1, 5, €
R, then f, = rfi for somer € R.

Proof. (1): Foragiven xo € H, Hy = H — x( is a maximal proper linear subspace
of E (Proposition 3.1.1). Let x; € E \ Hy. For each x € E, there exists a unique
t € Rsuch that x — tx; € Hy. Indeed, E = Hy + Rx; because of the maximality
of Hy. Hence, we can write x = z 4 tx; for some z € Hy and t € R. Then,
x —tx; € Hy. Moreover, if x —t'x; € Hyand ¢’ € R, then (t —t')x; € Hy. Since
x1 € Hy, it follows that ¢ = ¢’. Therefore, we have a function f : E — R such that
x — f(x)x; € Hy.Foreachx,y € E anda,b € R,

(ax +by) —(af(x) +bf(y)xi =alx — f(x)x1) +b(y — f(y)x1) € Hy,

whichmeans f(ax+by) = af(x)+bf(y),i.e., f islinear. Observe that £ ~'(0) =
Hy = H — x, hence it follows that H = £~ ( f(x0)).
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(2): From the non-triviality of f, it follows that f(EF) = R, and hence
9 S f7'(s) & E. A simple calculation shows that f~!(s) is a flat. To prove
the maximality, let F C E be a flat with f~!(s) & F. Take xo € f~!(s) and
x1 € F\ f7'(s). Since f(x1) # f(xo) and F is a flat, it follows that f(F) = R.
For each x € E, we can choose y € F \ f~!(s) so that f(y) # f(x). Note that
s =1tf(x)+(1—1)f(y) forsomes € R\{0}.Letz = tx+(1—¢t)y € f~(s) C F.
Then, x = (1 —t™ )y +¢7!z € F. Accordingly, we have F = E.

(3): When f7'(s1) = f, '(s2) = @, both f; and f> are trivial (i.e., fi(E) =
f(E) = {0}), and hence fi = fo. If fi7'(s1) = f, '(s2) # 0, take xo €
7 (s1) = f;7'(s2). Then, it follows that

O = 7160 —x0 = f5 ' (s2) = x0 = £, (0).

Let Hy = f7'(0) = f,7'(0) and x; € E \ Hy. Analogous to (1), each x €
E can be uniquely written as x = y + tx;, where y € Hy and ¢ € R. Then,

filx) = tfi(x1) and fr(x) = tfo(x1), hence fo(x) = fi(x)fi(x1)™" fa(x1). Let

r = fi(x1)~! fo(xy1). It follows that f, = rfi. O
It is said that finitely many distinct points vy,...,v, € FE are affinely
(or geometrically) independent provided that, for 71, ...,7, € R,
n n
Ztivi =0, Zli =0=tH=--=1,=0,
i=1 i=1
i€, Vi — Vu,...,Vy—1 — Vv, are linearly independent. In this case, the subset
{vi,...,vy} C E is also said to be affinely (or geometrically) independent. An

(infinite) subset A C E is said to be affinely (or geometrically) independent if
every finite subset of A is affinely independent. This condition is equivalent to the
condition that (4 — v) \ {0} is linearly independent for some/any v € A.”

The smallest flat containing A C E is called the flat hull® of 4 and is denoted by
fl A. Then, R" = f1{0,ey,...,e,}, where {eq,...,e,} is the canonical orthonormal
basis for R” (i.e., e;(i) = 1 and e;(j) = 0 for j # 7). Observe that

fl{vi,...,v} = {Z?:llivi | Z?:lti = 1} and
ﬂA:U{ﬂ{xl,...,xn}‘neN, Xlyeooy Xn EA}.

2The phrase “for some/any” means that we can choose one of “some” or “any” in the sentence.
By this choice, we have two different conditions. The condition using “some” is weaker than the
condition using “any” in general. However, these two conditions can be equivalent in a certain
situation.

3The flat hull is also called the affine hull.
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By Zorn’s Lemma, every non-empty subset A C E contains a maximal affinely
independent subset Ag C A. Then, fl A) = fl A and each x € fl A can be uniquely
written as x = Y '_, f;v;, where vi,...,v, € Agand 11,...,1, € R\ {0} such that
' t; = 1. In fact, for some/any v € Ay, (Ao —v) \ {0} (= (4o \ {v}) —v)isa
Hamel basis for the linear subspace fl4A —v (= fl Ag —v) of E.

The dimension of a flat ¥ C E is denoted by dim F, and is defined by
the dimension of the linear space F' — x for some/any x € F, ie., dimF =
dim(F — x). When dim F = n (resp. dimF < oo or dimF = o0), it is
said that F is n-dimensional (resp. finite-dimensional (abbrev. f.d.) or infinite-
dimensional (abbrev. i.d.)). Therefore, every n-dimensional flat F' C E contains

n + 1 points vy, ..., v,41 such that F = fi{vy, ..., v,41}. In this case, v, ..., v,
are affinely independent. Conversely, if F = fl{v;, ..., v,4+;} for some n+1 affinely
independent points vy, ..., v,+; € F, thendim F = n.

Let F and F’ be flats in linear spaces E and E’, respectively. A function f :
F — F’ is said to be affine if it satisfies the following condition:

f(A=Hx+ty)y=(0—=1t)f(x)+1tf(y) foreachx,y € F andt € R,

which is equivalent to the following:
f = ltlvl Z[lf(vl

n
foreachn e N,v; € F,1; € RWichti =1.
i=1

Recall that ¥ C E is a flat if and only if F' — Xy is a linear subspace of E for
some/any xo € F (Proposition 3.1.1).

Proposition 3.1.4. Let f : F — F’ be a function between flats F and F' in linear
spaces E and E’, respectively. In order that f is affine, it is necessary and sufficient
that the following f*° : F — xg — F' — f(xo) is linear for some/any xy € F:

f(x) = f(x + x0) — f(xg) foreach x € F — x,.

Proof. (Necessity) Foreach x,y € F —xpanda,b € R,

f*(ax +by) = flax + by + x0) — f(x0)
= fla(x + x0) + b(y + x0) + (1 —a — b)xo) — f(xo)
=af(x+x) +bf(y +x0) + (1 —a—>b)f(xo) — f(xo)
= a(f(x + x0) — f(x0)) + b(f(y + x0) — f(x0))
=af™(x)+bf"(y).
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(Sufficiency) Foreach x,y € F andt € R,

F(L=0)x +ty) = £~ —t)x + ty — x0) + f(x0)
= (1 = 1)(x — X0) + t(y — x0)) + f(x0)
=(1—1)f"(x —x0) + 1/ (y — x0) + f(x0)
= (1 =0)(f"(x = x0) + f(x0)) + 1(f™(y — x0) + f(x0))
=1 =0 f(x)+1f/ (). o

Proposition 3.1.5. Let A be a non-empty affinely independent subset of a linear
space E. Then, every function g : A — E’ to another linear space E’ uniquely
extends to an affine function g : l A — E’ such that g(fl A) = fl g(A). Accordingly,
every affine function f defined on F = fl A is uniquely determined by f|A and the
image f(F) is a flat.

Proof. Let F' = fl g(A) and take vy € A. Since (A \ {vo}) — vo is a Hamel basis of
the linear subspace fl A—vy of E, we have the unique linear function /2 : fl A—vy —
F’ — g(vp) such that

h(v—vy) = g(v) — g(vo) foreachv e A\ {vo}.
Then, g uniquely extends to the affine function & : fl A — F’ defined by
g(x) = h(x —vp) + g(vg) foreach x € fl A.

It is easy to see that g(fl A) = fl g(A). O
Additional Properties of Flats and Affine Functions 3.1.6.

In the following, let £ and E’ be linear spaces and f : F — E’ be a function of a
flat F' in E.

(1) If f is affine and F’ is a flatin E’, then f(F) and f~'(F’) are flats in E’ and
E, respectively.

(2) A function f is affine if and only if the graph Gr(f) = {(x, f(x)) | x € F} of
fisaflatin E x E’.

3.2 Convex Sets

In this section, we introduce the basic concepts of convex sets. A subset C C E is
said to be convex if the line segment with the end ponts in C is contained in C, i.e.,

(1—-t)x+tyeC foreachx,y € Candt €L
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By induction on n, it can be proved that every convex set C C E satisfies the
following condition:

n
Zz(i)v,- € C foreachn e N,v; e Candze A",

i=1
where A"™! = {z € I" | Y7_,z(i) = 1} is the standard (n — 1)-simplex. The
following is easy:
e If A, B C E are convex, then aA + bB is also convex for each a, b € R.

The dimension of a convex set C C E is defined by the dimension of the flat
hull 1 C, i.e., dim C = dimfl C. Concerning the flat hull of a convex set, we have
the following proposition:

Proposition 3.2.1. For each convex set C C E,
C ={(1—t)x+1y |x,y € C, t eR}.

Proof. Eachz € lC canbe writtenz = Y +_, t;x;, wherex; € Cand > /_, t; = 1.
We may assume that t; < --- < ¢, € R\ {0}. If f; > 0 then z € C. Otherwise,
tr <0Oandt;+; > Oforsomek = 1,...,n—1. Then, we have t = Z:’:f teyi >0,
where | —¢ = Zf:l i <0.Let

k n—k
X = Z(l — t)_lli-xiv y = Zl_ltk-‘ri-xk-l-i eC.

i=1 i=1
Then, z = (1 —¢)x + ty. Accordingly, we have
fiC C {(1—t)x+ty|x,y€C, ZER}.

The converse inclusion is obvious. O

The smallest convex set containing A C E is called the convex hull of A and
is denoted by (A4). We simply write (vi,...,v,) = ({vi,...,vs}). Then, A1 =
(e1,...,e,). Observe that

Vi, vn) = {Z?le(z’)vi | z€ A”_l} and
(A) :U{(xl,...,xn) |n eN, x1,...,x, EA}.
For each two non-empty subsets A, B C E,

(AUB)={(1—0)x +1y |x e (A), ye(B), t €I} and
(aA+bB) =a(A) + b(B) fora,b € R.
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The second equality can be proved as follows: Because a(A) + b(B) is convex and aA +
bB C a(A) + b(B), we have (aA + bB) C a(A) + b(B). To show thata(A) + b(B) C
(aA+bB),letx € (A)and y € (B).Then, x = 37/, t;x;and y = Y7, s, y; for some
xi €A, y; € B,andt;,s; > Owith) [, t; = Z/_l s; = 1.Sinceax; +by; € aA+bB
and 3o, 320, tis; = 1, it follows that

n m

ax + by = Zt,v(axf + by) = Z[,(ij(ax,v +byj))

i=1 i=l1 j=1

= ZZI,-sj(ax,- +by;) € (aA + bB).

i=1j=1

Let C and C’ be non-empty convex sets in the linear spaces E and E’,
respectively. A function f : C — C’ is said to be affine (or linear in the affine
sense) provided

f((A=tx+1ty)=(1—1)f(x)+1tf(y) foreachx,y € C andt € L
As in the definition of a flat, I can be replaced by R, i.e.,

x,yeC,teR, (1-t)x+tyeC
= f(A-Dx+1y)=A-0)f(x) +1f(¥).

Indeed, let z = (1 —t)x + ty € C in the above expression. When ¢ < 0, consider

1 n —t 1 cl —t =1 1
S TPE N IR L 1—t 1—1¢
When ¢t > 1, consider
1 t—1 1 r—1 1
y=-z+ x, —€l, —=1—-.
t t t t t

As is easily seen, f : C — C’ is affine if and only if

n

f(Z?:lz(i)v,-) = Zz(i)f(vi) foreachn e N,v; € C andz € A",

i=1

which is equivalent to the following:

vi € C, tieR,Xn:tivieC,Xn:tizl:f( l_lt,v, th(v,

i=1 i=1 i=l1
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For every affine function f : C — E’ of a convex set C C E into another linear
space E’, the image f(C) is also convex.

Proposition 3.2.2. Let C and D be non-empty convex sets in the linear spaces E
and E', respectively. Every affine function f : C — D uniquely extends to an affine
function f :f1C — fl D. Moreover, if f is injective (or surjective) then so is f.

Proof. Let Cy be a maximal affinely independent subset of C. Then, i C = fl Cy.
Due to Proposition 3.1.5, f|Co uniquely extends to an affine function f : iC —
fl D. From the above remark, we can see that f|C = f. _

If f is injective, we show that f is also injective. By the definition of f in the
proof of Proposition 3.1.5, it suffices to show that f(Cy) is affinely independent.
Assume that f(Cp) is not affinely independent, i.e., there are distinct points
Vi,..osvy € Co and fy,...,1, € R\ {0} such that Y '_, % f(v;) = 0 and

Z?=1 t; = 0. Without loss of generality, it can be assumed that #{,...,#% > 0
and #441,...,1%, <0.Note that 1 < k < n and Zﬁ;l t = _Z’}=k+1 tj > 0.Let
k p n t k
_ A — . - 4
x—zsv, and y—'Z Sv], wheres—ZZ,>0.
i=1 j=k+1 i=1

Then, x,y € C and f(x) = f(y) because
o) = ) = - Yt f6p) =0
i=1

Since f is injective, we have x = y. Hence, it follows that Zf;l tivi =
=2 ik tjvjie, Dol tivi = 0. Because Cy is affinely independent, t; = --- =
t, = 0, which is a contradiction. ~

Finally, we show that if f is surjective then so is f. By Proposition 3.2.1, each
z € fl D can be written as follows:

z=0-0y+1ty,y,y €D, t eR.

Since f is surjective, we have x, x’ € C such that f(x) = y and f(x’) = y’. Then,
(I—t)x +tx’ €flC and

fQ=-tx+txY=0—-t)y+1y =z

Therefore, f is also surjective. O

Let C be a convex set in a linear space E. The following set is called the radial
interior of C:

rintC = {x € C | ¥y € C, 3§ > 0 suchthat (1 +8)x —38y € C}.*

“4In Kothe’s book, rint C is denoted by C? and called the algebraic kernel of C.
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In the case C = (vy,...,v,), observe that
rint(vy, ..., v,) = {Z?:l z(i)v; \ ze A" N (0, oo)”}.

Indeed, let xo = Y ;—,n"'v; € (vi,...,v,). For each x € rint{v,...,v,), we have
y € (v1,...,v,) such that x € (xg, y),i.e., x = (1 —t)xo + ty for some ¢ € (0, 1). Then,
y = Y., z(i)v; for some z € AL Tt follows that x = >/ ((1 — t)n ! + 12(i))vi,
where Y i (1 —)n~ ' 4+ tz(i)) = land (1 —t)n~' +1z(i) > Oforalli = 1,...,n.
Thus, x is a point of the rightside set. Conversely, it is straightforward to prove that each
point of the rightside set belongs to (v, ..., v,).

In particular, rint{v,, vo) = {(1 —#)v; + tvo | 0 < t < 1}, and hence rint{v;, v;) =
(v1,v2) \ {v1, v2} if vi # v,. The radial interior of C can also be defined as

rintC = {xeC \ Vy € C, 3z € C such that x € rint(y, z)}.
For each x € C, the following subset C, C C is called the face of C at x:
Cy={y € C|38>0 suchthat (I +8)x—38y € C}
={y € C |3z € C suchthatx € rint(y,z)}.’
By an easy observation, we have
rintC ={xeC|C,=C}, ie, xerntC & C, =C.

When C, = {x}, we call x an extreme point of C. It is said that x € FE is linearly
accessible from C if there is some y € C such that

rint{x,y) C C (e, {(x,y)\{x} C C).

The radial closure rcl C of C is the set of all linearly accessible points from C.°
It should be noted that rclC C flC by Proposition 3.2.1, hence firclC = fiC.
Consequently, we have the following inclusions:

rintC C C CrclC CflC.

The set dC = rcl C \ rint C is called the radial boundary of C.

Remark 1. Note that A C B implies rcl A C rcl B, but it does not imply rint A C
rint B. For example, consider A = I" x {0} C B = I"*!. Then, A Nrint B = 0.

5The face C, is a little differently defined than the supporting facet of C through x in Kéthe’s
book.

%In Kéthe’s book, rcl C is denoted by C¢ and called the algebraic hull of C.
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For the Hilbert cube Q@ = [—1, 1]V, we have

rintQ = {x eQ \ sup; ey [X(0)] < 1} S (-1, HN.

Observe that rint[—1, 1] = (-1, 1)I§ but rint II?, = (), where
L1 =Ry N L1, (-1 D} =Ry n (=1, DY, and I} =Ry N1

As s easily observed, I'} = rcl(I? \{0}). It will be shown in Remark 3 that I? \{0} =
rcl C for some convex set C C RI?.

Remark 2. The unit closed ball B, of the Banach space ¢ has no extreme points.
In fact, every x € B, is the midpoint of two distinct points y,z € B, i.e., x =
%y + %z. For example, choose n € N so that |x(n)| < % and let y, z € B, such that

y(i) = z(i) = x(i) fori #n, y(n) = x(n) + 5, and z(n) = x(n) — 5.

Proposition 3.2.3. Let C C E be a convex set. If x € rintC, y € rclC, and
0<t<l,then(1—1t)x +ty erintC,ie, (x,y)\{y} CrintC.

Proof. Foreachz € C,wehavetofindv € C and 0 < s < 1 such that
(1—t)x+ty = (1 —s)z+ sv € rint(z, v).
Take w € C so that rint(w, y) C C, and choose 0 < r < 1 so that
Z=04+nrNx—rz; w=0+rx—-rwecC.
The desired v is to be written as
v=ny+hw+nw +u7 =+ h)u+ (3 +1)u €C,

wheret; + b + 15 +t4 = 1,11, 1, 13,14 > 0,

h I , 13 , 7

u= y + w, u = w + 7 eC.
h+n n+n 13+ 14 13+ 14

Then, we have

(I—=5)z+sv=(1—=5)z+s(t1y +tow+ 6w + 1,7)
=sty+st—tr)w+stz + 1)1 +r)x + (1 —5 —stur)z.

To obtain (1 —s)z+sv = (1 —¢)x +ty,itis enoughto find #1, 1, #3,24 > 0 and 0 <
s < 1 satisfying the simultaneous equations: st; = ¢, t, = 31, s(t3+1t4)(1+r) =

"It is known that [—1, 1]} ~ I},
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Vv = [ly + l2W + t;w’ + [42/

’ 13 ’ iz 7
u = ——w Z
13+ 1y 3+ 14 y

Fig.3.1 (1 —¢t)x +ty €rintC

1—t,and 1 —s = syyr, ie.,

) 1 t ; 1—ys ; 1 14+ rt ; 1+rt
* = -, = —, = - -, = _—_—
Ty rs 0 r (1+r)rs : (1+7r)s

Since t1,74 < 1 and 0 < 1, (< 13), it is necessary to satisfy

1 14rt

_ — s < 1.
1+r 1+47r

max 3 7,

We can take such an s because the left side of the above inequality is less than 1.
Then, we can define 11, 15, t3,t4 > 0 as in (x), which satisfies t; + t, + 3 + 14 = 1.
Thus, we have the desired v = #;y + tow + 3w’ + 14,7 € C — Fig. 3.1. O

Although we verified in Remark 1 that A C B does not imply rint A C rint B in
general, we do have the following corollary:

Corollary 3.2.4. Let A and B be non-empty convex sets in E. If A C B and AN
rint B # @, thenrint A C rint B.

Proof. Let x € A NrintB. For each y € rint A, we have z € A such that y €
rint(x, z). Since rint(x, z) C rint B by Proposition 3.2.3, it follows that y € rint B.
O

Proposition 3.2.5. For each convex set C C E, the following statements hold:

(1) Bothrint C and rcl C are convex;

(2) rintrintC = rintC C rintrcl C;

(3) rintC # @ = rintrcl C = rint C, rclrint C = rclrcl C = rcl C,
in which case drintC = drclC = 9C;
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@) rintC # @ = f1IC = flrintC;
(5) rintC # @, rclC =1C = rintC = C =1fIC;
6) IC#EB & B#CGAC,
(7) Cyisconvexand Cy = C N1Cy forx € C;
(8) x erintCy for x € C, hence (Cy), = Cy;
9) (Cx)y=C,forxeCandy € Cy;

(10) C, =C, forx € C and y €rintCy.

Proof. (1): To prove the convexity of rint C, we can apply Proposition 3.2.3. It is
now quite straightforward to show the convexity of rcl C.

(2): To show rintC C rintrint C, we can apply Proposition 3.2.3. Because
rint(rint C) C rint C by Corollary 3.2.4, we have rintrint C = rintC.

Foreach x erintC and y € rclC, %x + %y € rint C by Proposition 3.2.3. Then,
we have § > 0 such that (1 + §)x — 8(%)6 + %y) eC,ie, (1 + %S)X — %8y eC.
Hence, x € rintrcl C.

(3): Let xo € rintC. For each x € rintrclC, we have y € rclC such that
X € rint{xy, y), which implies that x € rint C by Proposition 3.2.3. Combining this
with (2) yields rintrcl C = rint C.

We now have xy € rintC = rintrclC. If x € rclrcl C, then rint{xg, x) C
rintrcl C = rint C by Proposition 3.2.3, which means that x € rclrintC. Since
rclrint C C rel C C relrel C, we have relrint C = rcl C = relrel C.

(4): Let xy € rint C. Foreach x € C, %x + %xo € firint C by Proposition 3.2.3.
Then, it follows from Proposition 3.2.1 that x = 2(%x + %xo) —xp € flrintC.
Accordingly, we have C C flrint C, which implies fl C C firint C. Since flrint C C
fiC,wehave iC = flrintC.

(5): Let xog € rintC. Foreach x € iC,2x —xp € lC = rclC. Then, x =
%xo + %(2x — Xp) € rintC C C by Proposition 3.2.3.

(6): Assume @ # C S flC. Then, we have x € flC \ C, which can be written
asx = (1+1t)y —tzforsome y # z € C and ¢t > 0 by Proposition 3.2.1. Let

s=inf{t>0|(1+1)y—t1z¢C}>0.

Then, (1 +s)y —sz €rclC \ rintC = 9C.

When C = fiC, i.e., C is a flat, we have rcl C = rintC = C by definition,
which means 0C = . Therefore, C # @ implies § # C S iC.

(7): First, we show that C, is convex. For each y,z € C,, we can choose § > 0
sothat (1 +8)x — 38y € C and (1 + §)x — 6z € C. Then, foreach ¢ € I,

(14 8)x —8((1 —1)y +t2)
=1 -=0)(A+8x—38y) +1((1+8x—38z) e C,
which means (1 —¢)y + tz € C,.

Because C, C CNfl C,, itremains to show CNflC, C C,. By Proposition 3.2.1,
each y € C NfiC, can be written as y = (1 —¢)y’ + ty” for some y’,y” € C,
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y=0-=-0y +y”

7=(04+8§8x—-8"€eC
Fig.3.2 C NfiC, C C,

and ¢t € R. Because of the convexity of C,, we have y € C, if ¢t € L. Then, we
may assume that 7 < 0 (if ¢ > 1, exchange y’ with y”). We have § > 0 such that
7 = (1 +8)x — 8y’ € C. Observe that

_ _ _ B / 7
(1+s)x — sy (1+s)(1+5 57 ) s((L=0)y" +1y")
_(U+s)s A S
—( T3 s(1 t))y+1+8z sty”.

Lets =6/(1 —t —18) > 0. Then, since 1 + s = (1 —¢)(1 +68)/(1 —t —1§), it
follows that

1—t —t8
PRy i g
which implies that y € C, (Fig.3.2).

(8): From the definition of rint C,, it easily follows that x € rint C,.

(9): Because C; C C, we have (C,), C C, by definition. We will show that
C, C Cy, which implies C, = (C,), C (Cy), by (8) and the definition. For each
z € C,, choose §; > O sothatu = (1 + 8;)y — 8,z € C. On the other hand, since
y € Cy, we have §, > O such that v = (1 + 6;)x — 8,y € C. Then,

(1+51)(1+52)x_ 816 = 1+ 6; "t 8> }
1468 +6 1468 +6 146 +6 146+ 6

(1+s)x —sy = y'ec,

eC,

which means that z € C,.
(10): Since y € rint Cy, we have (Cy), = C. On the other hand, (Cx), = C,
by (9). O

Remark 3. Tt should be noted that, in general, rclrcl C # rcl C. For example, let C
be the convex set in R?} defined as follows:

C ={x eI |3k € Nsuchthat ), x(i) = k",
x(i) # 0 atleast k manyi € N}.
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It is easy to see that 0 & rclC, ie., rclC C I? \ {0}. For each x € I? \ {0},

choose k € N so that k™! < Y,y x(i), and let y € C such that y(i) = k=2 for
i <kandy(i) =0fori > k.If0 <t < 1, then (1 —t)x + ¢ty € C because
(1—=1)x(i) +ty(i) # 0 for at least k many i € N and

D (A=0x@) +y@) =1 —0)Y x@)+1 Y y@) =k
ieN ieN ieN
Therefore, rcl C = I? \ {0}. As observed in Remark 1, rcl (I§ \ {0}) = I?. Hence,
we have rclrcl C # rcl C. It should also be noted that rint C = @.
In the finite-dimensional case, we have the following proposition:
Proposition 3.2.6. Every non-empty finite-dimensional convex set C has a non-
empty radial interior, i.e., rint C # @, and therefore

relrintC = rclrcl C =rcl C and 0rintC = drcl C = aC.

Proof. We have a maximal affinely independent finite subset {vi{,...,v,} C C.
Then, vo = Y ;_,n"'v; € rintC. Indeed, since C C fi{vy,...,v,}, eachx € C
can be written as x = Y _, #;v;, where Y _;_, #; = 1. Observe that

(48w —dx=(1+8)> nvi =8> 4

i=1 i=1
=) (7 + 8 =)
i=1

When vy # x, we have s = min{n~' —#; | i=1,...,n} < 0.Let §=1/(—sn) > 0.
Then, n™! +8(n~' —1;) > Oforeveryi = 1,...,n, which implies that (1 + §)vy —
ox eC. O
Additional Results for Convex Sets 3.2.7.

(1) For every two convex sets C and D,
(CnNnD)y=C,ND, foreachx € C ND.
(2) For every two convex sets C and D with rint C Nrint D # @,
rint(C N D) = rint C N rint D.

In general, rint C Nrint D C rint(C N D).

Sketch of Proof. To show that rint(C N D) C rint C Nrint D, let xo € rint C Nrint D.
For each x € rint(C N D), take y € C N D so that x € rint{xg, ¥). Since rint{xo, y) C
rint C by Proposition 3.2.3, it follows that x € rint C. Hence, rint(C N D) C rintC.
Similarly, we have rint(C N D) C rint D.
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(3) Let C and D be convex sets in the linear spaces E and E’, respectively. Then,
C x D is also convex,

rint(C x D) =rintC xrint D and rcl(C x D) =rclC x rcl D.

Moreover, (C X D)) = Cy x D, foreach (x,y) € C x D.

(4) Let f : C — E’be an affine function of a convex set C in a linear space E into
another linear space E’, and D be a convex setin E’. Then, f(C) and f~'(D)
are convex and

fHD)y = Cc N f71(D ) foreachx € f7'(D)(C C).

In particular, Cx C f~1(f(C) s(x)) (€., f(Cx) C f(C) ) foreach x € C.
When f is injective, f(Cy) = f(C) s foreach x € C.

Sketch of Proof. It is easy to see that f(f~1(D),) C D), hence f~1(D), C
STUD fx)- Also, f71(D), C Cy because f~1(D) C C. Accordingly, f (D), C
C, N ffl(D/(X)). To prove the converse inclusion, for each y € ffl(D/(X)) N Cy,
choose § > 0 so that (1 + 8) f(x) —8f(y) € D and (1 + 8)x — Sy € C. Then,
(14 8)x—8y € f~YD).

(5) For every (bounded) subset A of a normed linear space £ = (E,| - ||), the
following hold:

(i) [lx —yll <sup,ey llx —z|| foreachx € E and y € (4);
(ii) diam(A) = diam A.

Sketch of Proof. (i): Write y = Y i_, z(i)x; for some xi,..., X, € Aand z €
An—l.
(ii): Foreach x,y € (A4),
lx — yll < supllx —zll < sup sup [|lz—2'|| = diam 4.
Z€EA Z€EAEA

Remark 4. In (2) above, rint(C N D) # rintC N rint D in general. Consider the
case that C N D # @ butrintC Nrint D = @.

In (4) above, f(Cy) # f(C) s(x) in general. For instance, let C = {(s,7) € R? |
|s| <t <1} C R Then, pr,(C) = [—1, 1], pr,(Co) = {0}, and pr, (C)o = pr,(C).

3.3 The Hahn-Banach Extension Theorem

We now prove the Hahn—Banach Extension Theorem and present a relationship
between the sublinear functionals and the convex sets.

Let E be a linear space. A functional p : E — R is sublinear if it satisfies the
following conditions:

(SLy) p(x +y) < p(x) + p(y) foreach x,y € E, and
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(SLy) p(tx) =tp(x) for eachx € E and ¢t > 0.

Note that if p : E — R is sublinear then p(0) = 0 and —p(—x) < p(x). For each
x,ye Eandt €1,

p((I—=t)x +1ty) < (1 =1)p(x) + tp(y).

When p : E — R is a non-negative sublinear functional, p~' ([0, 7)) = rp~!([0, 1))
and p~'([0, 7]) = rp~' () are convex for each r > 0.

In the following Hahn-Banach Extension Theorem, no topological concepts
appear (even in the proof). Nevertheless, this theorem is very important in the study
of topological linear spaces.

Theorem 3.3.1 (HAHN-BANACH EXTENSION THEOREM). Let p : E — R be
a sublinear functional of a linear space E and F be a linear subspace of E. If
f + F — Ris a linear functional such that f(x) < p(x) for every x € F, then f
extends to a linear functional f : E — R such that f(x) < p(x) forevery x € E.

Proof. Let F be the collection of all linear functionals f’ : F/ — R of a linear
subspace F' C E such that F C F’, f/|F = f, and f’(x) < p(x) for every
x € F'.For f', f" € F, we define f’ < f”if f” is an extension of f”. Then,
F = (F,<) is an inductive ordered set, i.e., every totally ordered subset of F is
upper bounded. By Zorn’s Lemma, F has a maximal element fo : Fop — R. It
suffices to show that Fy = E.

Assume that Fy # E. Taking x; € E \ Fy, we have a linear subspace F|, =
Fy + Rx; 2 Fy. We show that f has a linear extension f; : Fi — R in F, which
contradicts the maximality of fy. By assigning x; to & € R, f; can be defined, i.e.,
filx +tx1) = fo(x) + ta for x € Fyandt € R. In order that f; € F, we have to
choose « so that for every x € Fy and ¢t > 0,

fo(x) +ta < p(x +tx1) and fo(x) —ta < p(x —tx}).
Dividing by 7, we obtain the following equivalent condition:

Joy) —p(y —x1) =a < p(y +x1) — fo(y) foreveryy € Fy.

Hence, such an @ € R exists if

sup{ fo(y) — p(y —x1) | y € Fo} <inf{p(y +x1) — fo(y) | y € Fo}.
This inequality can be proved as follows: for each y, y’ € Fy,

Jo) + /0N = foly +5) = p(r +) = p(y —x0) + pO" + x1).

hence fo(y)—p(y—x1) < p(y’'+x1)— fo(y'), which implies the desired inequality.
O
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Let F be a flat in a linear space E and A C F. The following set is called the
coreof Ain F':

corep A={xeA ‘ Vy € F, 38§ > 0 such that
lt| <8 = (1—1t)x +1y € A},

where |t| < § can be replaced by —§ < ¢ < 0 (or 0 < ¢ < §). Each point of corer A
is called a core point of A in F'. In the case that 4 is convex,

x ecorep A< Vye F, 35§ >0 suchthat (1+68)x—38y €A
& Vy € F, 35 > 0 suchthat (1 —§8)x + 8y € A.

When F = E, we can omit the phrase “in E” and simply write core A by removing
the subscript E. By definition, A C B C F implies corer A C corer B. We also
have the following fact:

Fact. Foreach A C F, corep A # @ ifandonlyif 1A = F.

Indeed, the “if” part is trivial. To show the “only if” part, let x € corep A.Foreach y € F,
we have § > O such that z = (1 + §)x — 8y € A. Then, y =8 1(1 + §)x — 8~z € l A.
Note that fl A C F because A C F. Consequently, fl A = F.

Proposition 3.3.2. For every convex set A C E, coreq 4 A = rint A, which is also
convex. Hence, core A # O implies core A = rint A and core core A = core A.

Proof. Because coreg 4 A C rint A by definition, it suffices to show that rint A C
coreq4 A. For each x € rintA and y € fl A, we need to find some s > 0 such
that (1 + s)x — sy € A. This can be done using the same proof of the inclusion
C NflC, C C, in Proposition 3.2.5(7). O

Remark 5. When A is a finite-dimensional convex set, corer A # 0@ if and only if
F = fl A according to Propositions 3.3.2 and 3.2.6. However, this does not hold for
an infinite-dimensional convex set. For example, consider the convex set Ilj\}{ in RN,

Then, R?} = ﬂI?} and coregy II?- = rint II?- =0.

With regard to convex sets defined by a non-negative sublinear functional, we
have the following proposition:

Proposition 3.3.3. Let p : E — R be a non-negative sublinear functional of a

linear subspace E. Then,

p_l([O, 1)) = core p_l([O, 1)) = core p_l(I).

Proof. The inclusion core p~!([0, 1)) C core p~!(I) is obvious.
Let x € p~'([0,1)). For each y € E, we can choose § > 0 so that §p(x — y) <
1 — p(x). Then,
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0=<p((1+8x—38y)=px+dx—y) <pkx)+dp(x—-y) <1,

i.e., x € core p~1([0, 1)). Hence, p~!([0, 1)) C core p~!([0, 1)).
If p(x) > 1, then x ¢ core p~!(I) because

p(1+t)x—1t0)=(14+¢t)p(x) > 1 foranyt > 0.

This means that core p~!(I) C p~'([0, 1)). O

For each A C E with 0 € core A, the Minkowski functional p4 : £ — R can
be defined as follows:

pa(x) =inf{s > 0| x € sA} =inf{s >0 |s 'x € 4}.
Then, foreach x € £ andt > 0,
pa(tx) = inf{s >0 \ sTltx e A} = inf{ts >0 \ (ts)'tx e A}
=tinf{s > 0| s 'x € A} = 1pa(x),

i.e., py satisfies (SLy). In the above, p4(tx) = p,—i4(x). Then, it follows that
p,—14 = tp4 foreacht > 0. Replacing # by 1!, we have

Dia = t_lpA foreacht > 0.

If A C E is convex, the Minkowski functional p,4 has the following desirable
properties:

Proposition 3.3.4. Let A C E be a convex set with 0 € core A. Then, the
Minkowski functional p 4 is sublinear and

rint A = core A = p;'([0,1)) C A C p;'(I) =rcl A,
50 A = p'(1). Moreover,
pa(x) =0 & Rix C A.

In order that p4 is a norm on E, it is necessary and sufficient that R x ¢ A if
x#QandtA C Aif |t| < 1.

Proof. First, we prove that p4 is sublinear. As already observed, p4 satisfies (SLy).
To show that p 4 satisfies (SL;), let x, y € E. Since A is convex, we have

1. -1 -1 S I
sx,t €A = (s+1t X + = —s X+ —1t c A,
y s+ (x+y) o perrLi

which implies that p4(x + y) < pa(x) + pa(y).
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The first equality rint A = core A has been stated in Proposition 3.3.2. It easily
follows from the definitions that core A C p3'([0,1)) C A C p;'(I) and p3'(1) C
rcl A, so p;'(I) C rel A. By Propositions 3.3.2 and 3.3.3, we have

core A = corecore A C core p;l([O, 1) = pATI([O, 1)) C core A,

which means the second equality core A = p;'([0, 1)). To obtain the third equality
p;'(I) = rcl A, it remains to show that rcl A C p:ll(I). Let x € rcl A. Since
0 < rint A, it follows from Proposition 3.2.3 that s~'x € rint C C C foreachs > 1,
which implies that p4(x) < 1,1i.e., x € p;' (D).

By definition, p4(x) = 0 if and only if #x € A for an arbitrarily large t > 0,
which means that R1 x C A because 4 is convex.

Because pg4 is sublinear, p4 is a norm if and only if p4(x) # 0 and p4(x) =
pa(—x) for every x € E \ {0}. Because p4(x) # 0 if and only if Ry x ¢ A, it
remains to show that p4(x) = p4(—x) forevery x € E \ {0} ifand only if 14 C A
whenever |7]| < 1.

Assume that ps(x) = pas(—x) foreachx € E.If x € A and |t| < 1 then
pa(tx) = pa(|t|x) = |t|pa(x) < 1, which implies that tx € A. Hence, tA C A
whenever |7]| < 1.

Conversely, assume that A C A whenever || < 1. For each s > py(x),
r~!'x € A forsome 0 < r < s, and we have s~'(—x) = (—s~'r)r~'x € A, hence
pa(—x) < pa(x). Replacing x with —x, we have p4(x) < ps(—x). Therefore,
pa(x) = pa(—x). o

When the Minkowski functional p4 is a norm on E, we call it the Minkowski
norm. In this case, rcl A, rint A, and dA are the unit closed ball, the unit open ball,
and the unit sphere, respectively, of the normed linear space E = (E, p4). Then,
rcl A and rint A are symmetric about 0, i.e., rcl A = —rcl A and rint A = —rint A.
We should note that a convex set A C E is symmetric about 0 if and only if 14 C A
whenever |z| < 1 (in the next section, 4 is said to be circled).

Asubset W C E iscalled awedgeif x+y € W foreachx,y € Wandtx € W
foreach x € W, t > 0, or equivalently, W is convex and t W C W forevery ¢ > 0.
Note that if A C E is convex then Ry A4 is a wedge. For a wedge W C E, the
following statements are true:

(1) 0 ecoreW & W = E;
2y W#£E, xecoreW = —x&W.

A cone C C E is a wedge with C N (—C) = {0}. Each translation of a cone is also
called a cone.

Using the Hahn-Banach Extension Theorem, we can prove the following
separation theorem:

Theorem 3.3.5 (SEPARATION THEOREM). Let A and B be convex sets in E such
that core A # @ and (core A) N B = @. Then, there exists a linear functional
f + E — R such that f(x) < f(y) for every x € coreA and y € B, and
sup /(A) < inf /(B).
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Proof. Recall that core A = rint A (Proposition 3.3.2). For a linear functional f :
E — R,if f(x) < f(y) for every x € cored and y € B, then sup f(4) <
inf f(B).Indeed,letx € A,y € B,vecore A,and0 <t < 1. Since (1—t)v+itx €
core A by Proposition 3.2.3, we have

(I=0f) +1f(x) = f((A-1)v+1x) < f(y),

where the left side tends to f(x) ast — 1, and hence f(x) < f(y).

Note that W = R (A4 — B) is a wedge. Moreover, (core A) — B C core W.
Indeed, let x € core A and y € B. Foreach z € E, choose § > 0 so that (1 + §)x —
8(y + z) € A. Then,

14+8)x—-—y)—6z=1014+8)x—-8(y+20—ye€A-BCW.

Therefore, it suffices to construct a linear functional f : E — R such that
f(core W) C (—o0,0).

Now, we shall show that W N (B —core A) = @. Assume that there exist xo € A,
x| € core A, yo,y1 € B, and tp > 0 such that fo(xo — yo) = y; — x;. Note that
rint(xg, x;) C rint A = core A by Proposition 3.2.3. Hence,

to 1 to
Xo +
o+ 1"

1
X = + € (core A) N B,
ol Tt T 1! ( )

which contradicts the fact that (core A) N B = .

Take v € (core A)— B C core W. Then, note that —vy & W.Foreach x € E, we
have § > 0 such that (1 +8)vy—8(—x) € W, which implies x + 81 (1 4+8)vy € W.
Then, we can define p : E — R by

p(x) =inf{t >0 |x+1vy€ W}

Because W is a wedge, we see that p is sublinear. Since —vy & W, it follows
that p(s(—vp)) = s and p(svp) = O for every s > 0. Applying the Hahn—Banach
Extension Theorem 3.3.1, we can obtain a linear functional f : £ — R such that
f(s(—vp)) = s foreach s € R and f(x) < p(x) for every x € E (see Fig.3.3).
For each z € core W, we have § > 0 such that (1 + §)z — §(z + vo) € W, i.e,
7 —8vy € W. Accordingly, (z — dvo) + tvg € W for every t > 0, which means
p(z— 8vp) = 0. Thus, we have

f(@) < f() +8= f(z—38v) < p(z—6vg) = 0. o

Remark 6. Using the Hahn-Banach Extension Theorem, we have proved the
Separation Theorem. Conversely, the Hahn—Banach Extension Theorem can be
derived from the Separation Theorem. Indeed, under the assumption of the Hahn—
Banach Extension Theorem 3.3.1, we define
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the graph of p

the graph of f
Fig. 3.3 The graphs of p and f

:{(x,t)EEXR‘Z>p(x)} and B:{(x,f(x))EExR‘xeF},

where B = Gr(f) is the graph of f. Then, A and B are disjoint convex sets in
E x R. It is straightforward to show that coreA = A # @. By the Separation
Theorem 3.3.5, we have a linear functional ¢ : £ X R — R such that A C
¢ '((—o00.,r]) and B C ¢ !([r,o0)) for some r € R. Then, r < 0 because
0 = ¢(0,0) € o(B).If p(z) < 0 for some z € B, then ¢(tz) = tp(z) < r for
sufficiently large ¢+ > 0. This is a contradiction because tz € B. If ¢(z) > 0 for
some z € B, then —z € B and ¢(—z) = —@(z) < 0, which is a contradiction.
Therefore, B C ¢~'(0). Note that ¢(0,1) < 0 because (0,1) € A. Since
o(x,t) = @(x,0) + t¢(0, 1) for each x € E, we have ¢({x} x R) = R. Observe
that ({x} x R) N ¢~!(0) is a singleton. Then, f extends to the linear functional
f : E — R whose graph is ¢! (0), i.e., (x, F(x)) € ¢™1(0) for each x € E. Since
¢~ 1(0) C (E xR) \ 4, it follows that f(x) < p(x) forevery x € E.

The Separation Theorem 3.3.5 can also be obtained as a corollary of the follow-
ing two theorems, where we do not use the Hahn—Banach Extension Theorem 3.3.1.

Theorem 3.3.6. For each pair of disjoint non-empty convex sets A, B C E, there
exists_a pair of disjoint convex sets A, B C E suchthat A C A, B C B, and
AUB=E.

Proof. Let P be the collection of pairs (C, D) of disjoint convex sets such that
A C Cand B C D.For (C,D),(C’,D") € P, we define (C, D) < (C’, D) if
C C C'and D C D’. Then, it is easy to see that P = (P, <) is an inductive
ordered set. Due to Zorn’s Lemma, P has a maximal element (Z, E)

To show that AU B = E , assume the contrary, i.e., there exists a point vy €
E\ (Z U E) By the maximality of (Z, E), we can obtain two points

x€AN(BU{w}) and y € BN (AU {v}).
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Then, x € (v, y1) for some y; € B and y € (vg, x1) for some x; € ‘A. Note that
x € rint{vg, y1) and y € rint(vp, x;). Consider the triangle (vo, x1, y1). It is easy to
see that (x, x) and (y;, y) meet at a point v;. Since (x,x) C 4 and (y;, y) C B,
it follows that v; € AN E, which is a contradiction. O
Theorem 3.3.7. For each pair of disjoint non-empty convex sets C, D C E with
CUD = E, rclC Nrel D is a hyperplane if rcl C Nrcl D # E.

Proof. First, we show that rcl C Nrcl D = dC = dD. To prove that dC C 9D, let
x € dC. It suffices to find y € C such that
(1—t)x+tyeC forO0<t<1and
(1+t)x—tye E\N\C =D fort > 0.
To this end, take y’, y” € C such that (1 —¢)x + ¢y’ € C for0 < ¢t < 1 and

(I+t)x—ty” € C fort > 0. Then, y = %y’ + %y” € C is the desired point.
Indeed, foreach 0 <t < 1,

(I=0x+1y=(10=0x+ 3ty + 11y’

Moreover, note that

(1=5)(1+t)x —ty) + sy’
=1 -5)1+0)x — (1 =)y — L1 —9)1y" + 5y’

Foreacht > 0,lets =¢/(2+1¢) € (0, 1). Then, (1 — s)t = 2s. Therefore, we have
A=) +)x—ty)+sy =1 +s)x—sy" &€C,

which means that (1+¢)x—ty ¢ C (Fig. 3.4). Similarly, we have 0D C dC. Hence,
dC = 0D. Since rint C Nrint D = @, it follows that rcl1 C Nrcl D = dC = dD.

Next, we show that dC is a flat. It suffices to show thatif x,y € dC and ¢ > 0,
thenx’ = (1 +1)x —ty € C.If x’ & 9C, then x’ € rint C or x’ € rint D. In this
case, x € rint{x’, y) C rint C or x € rint(x’, y) C rint D by Proposition 3.2.3. This
is a contradiction. Therefore, x’ € dC.

It remains to show that if 9C # E then dC is a hyperplane. We havev € E\dC.
It suffices to prove that E = fl(dC U{v}). Without loss of generality, we may assume
that v € rint C. On the other hand, 0C # @ because C # E. Let z € 9C. Then,
w=2z—(v—2z) = 2z—v € rint D. Otherwise, w € rcl C, from which, using
Proposition 3.2.3, it would follow that z = %v + %w € rint(v, w) C rintC, which is
a contradiction.
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(1T =s)((A+0)x—ty)+ sy

D

1—t)x+tyeC (I14+0)x—1y €D

Fig. 3.4 0C C 9D

x €rintC

w=z—(v—2)
Fig. 3.5 The case x € rintC

y=(1—=s)x+sv

aC

X €rint D

Fig. 3.6 The case x € rint D

Foreach x € E \ 0C, x € rintC or x € rint D. When x € rintC, let

s=sup{r el | (1—t)x +iweC}.
Refer to Fig. 3.5. Then, y = (1 — s)x 4+ sw € dC, which implies that

x=—y— =2 (e U ).
s 1—=s

In the case that x € rint D, let

s:sup{tel\(l—t)x+tv€D}.

Now, refer to Fig. 3.6. Then, y = (1 — s)x + sv € dD = dC, which implies that

S e fi(dC U ).
1—s

X = y+

1—=5

93
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Consequently, it follows that £ = fl(dC U {v}). O

Remark 7. In the above, the condition rcl C Nrcl D # E is necessary. For example,
define the convex set C in the linear space IE@ as follows:

C:{xeRsi|n:max{i|x(i)7é0}:x(n)>0}.

Let D = Rlﬁ \ C = (=C) \ {0}. Then, D is also convex. As is easily observed,
rclC =rcl D = ]RI?., hencerclC Nrcl D = ]RI?..

The Separation Theorem 3.3.5 can also be obtained as a corollary of Theorems
3.3.6and 3.3.7. In fact, let A, B C E be convex sets with core A # @ and (core A)N
B = @. Then, core A = rint 4 is convex. We apply Theorem 3.3.6 to obtain disjoint
non-empty convex sets C and D such thatcoreA C C, B C D,andC U D = E.
Observe that core A Nrcl D = @, hence rcl D # E. It follows from Theorem 3.3.7
that rcl C N rel D is a hyperplane. Then, we have a linear functional f : £ — R
such that rclC Nrcl D = f~!(s) for some s € R (Proposition 3.1.3(1)). Since
core A C E\ f~'(s), we have core A C f~'((s,00)) orcore A C f~!((—00,s)).
If core A C f~!((s,00)), by replacing f and s by — f and —s, it can be assumed
that core A C f~1((—00,5)).

We now show that rclC C f~!((—o0,s]). Let x € core A (C rintC). Then,
x erintC and f(x) < s.If f(y) > s forsome y € rcl C, we have z € rint(x, y) N
£7(s). Because z € rcl D, rint{w,z) C D for some w € D. On the other hand,
z € rint{x, y) C rint C (Proposition 3.2.3). Because rint C = core C, (v,z) C C =
E \ D for some v € rint(w, z), which is a contradiction.

Since C C f~'((—o0,s]), it follows that D D f~'((s,o0)). Observe that
rint D O f~'((s,0)). So, we have x € rint D and f(x) > s. Likewise for rcl D,
we can show that rcl D C f~!([s, 00)). Accordingly, we have

rclC = f7'((—o0,s]) and rcl D = f~([s, 00)).

Since core A C ' ((—00,s)) and B C f~!([s.00)), we have the desired result.

3.4 Topological Linear Spaces

A topological linear space E is a linear space with a topology such that the
algebraic operations of addition (x,y) +— x + y and scalar multiplication
(¢,x) + tx are continuous.® Every linear space E has such a topology. In fact,

8Here, we only consider linear spaces over R. Recall that topological spaces are assumed to be
Hausdorff. For topological linear spaces (more generally for topological groups), it suffices to
assume axiom 7Ty, which implies regularity (Proposition 3.4.2 and its footnote). The continuity of
scalar multiplication implies the continuity of the operation x — —x because (—1)x = —x.
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E has a Hamel basis B. As a linear subspace of the product space RZ, R? is a
topological linear space that is linearly isomorphic to E by the linear isomorphism
® R? — E defined by ¢(x) = ) czx(v)v. Then, ¢ induces a topology
that makes E a topological linear space. In the next section, it will be seen that
if E is finite-dimensional, then such a topology is unique. However, an infinite-
dimensional linear space has various topologies for which the algebraic operations
are continuous.

In the following proposition, we present the basic properties of a neighborhood
basis at 0 in a topological linear space.

Proposition 3.4.1. Let E be a topological linear space and U be a neighborhood
basis at 0 in E. Then, U has the following properties:

(1) Foreach U,V €U, there is some W € U such that W Cc U NV;
(2) Foreach U € U, there is some V € U such thatV +V C U;

(3) Foreach U € U, there is some V € U such that [-1,1]V C U;

4) Foreachx € E and U € U, there is some a > 0 such that x € aU;

(5) NU = {0},

Conversely, let E be a linear space with U a collection of subsets satisfying these
conditions. Then, E has a topology such that addition and scalar multiplication are
continuous and U is a neighborhood basis at 0.

Sketch of Proof. Property (1) is trivial; (2) comes from the continuity of addition at (0, 0) €
E x E; (3) is obtained by the continuity of scalar multiplication at each (¢,0) € [—1, 1] X E
and the compactness of [—1, 1]; (4) follows from the continuity of scalar multiplication at
(0, x) € R x E; the Hausdorffness of E implies (5).

Given U with these properties, an open set in E is defined as a subset W C E satisfying
the condition that, for each x € W, there is some U € U such that x + U C W. (Verity
the axioms of open sets, i.e., the intersection of finite open sets is open; every union of open
sets is open.)

Foreach x € E and U € U, x + U is a neighborhood of x in this topology.® Indeed, let

W={y€E|3V €U suchthaty +V Cx + U}.

Then, x € W C x 4 U because of (5). For each y € W, we have VV € U such that
y+V Cx+U.Take V' € Usothat V' +V’' C V asin (2). Then, y + V' C W because
+y)+V Cy+V Cx+U forevery y) € V. Therefore, W is open in E, so
x + U is a neighborhood of x in E. By the definition of the topology, {x + U | U € U} is
a neighborhood basis at x. In particular, ¢/ is a neighborhood basis at 0.

Since {x + U | U € U} is a neighborhood basis at x, the continuity of addition follows
from (2). Using (3), we can show that the operation x = —x is continuous.

For scalar multiplication, let x € E, ¢ € R, and U € U. Because of the continuity of
X > —x, it can be assumed that @ > 0. Then, we can write « = n + ¢, where n € w and
0 <t < 1. Using (2) inductively, we can find V| D -+- D V, D V, 41 inU such that

°If E is a topological linear space, x + U is a neighborhood of x € E for any neighborhood
U of 0.
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Vi+--+Vyo+ Vig1 + V) CU.

By (3), we have W € U such that [—1, 1]W C V, 4. Then, x € rW for some r > 0 by
(4). Choose § > 0 so that § < min{1/r,1 —¢}.Lety € x + W and |a — 8| < §. Then, we
can write B =n + s, where t —§ < s <t + §. It follows that

By—ax=m+s)y—m+t)x=n(y—x)+s(y —x)+ (s —1)x
€nwW + [—1, W + §[—1,1](rW)
CnVigr + Va1 + Vit
CVarr+-+ Vo CU

n + 2 many

hence By € ax + U.

To see the Hausdorffness, let x # y € E.By (5), wehave U € U such thatx —y € U.
By (2) and (3), we can find V € U such that V — V C U. Then, x + V and y + V are
neighborhoods of x and y, respectively. Observe that (x + V)N (y + V) = 0.

It is said that A C E is circled if tA C A for every t € [—1,1]. It should be
noted that the closure of a circled set A is also circled.

Indeed, let x € clAand ¢ € [—1,1]. Ift = 0, thentx =0 € A C cl A. When ¢ # 0, for
each neighborhood U of tx in E, since ' U is a neighborhood of t ~'x, t~'U N A # @,
which implies that U N tA # (. Because tA C A, U N A # @. Thus, it follows that
tx € cl A.

In (3) above, W = [—1,1]V is a neighborhood of 0 € FE that is circled, i.e.,
tW C W forevery t € [—1,1]. Consequently, (3) is equivalent to the following
condition:

(3)’ 0 € E has a neighborhood basis consisting of circled (open) sets.

A topological group G is a group with a topology such that the algebraic
operations of multiplication (x, y) + xy and taking inverses x ~— x~! are both
continuous.!' Then, G is homogeneous, that is, for each distinct xy, x; € G, there
is a homeomorphism # : G — G such that (xy) = x;. Such an % can be defined
by h(x) = xox~'x;, where not only h(xp) = x; but also h(x;) = x,. Every
topological linear space is a topological group with respect to addition, so it is
homogeneous.

Proposition 3.4.2. Every topological group G has a closed neighborhood basis at
each g € G, i.e., it is regular'? For a topological linear space E, 0 € E has a
circled closed neighborhood basis.

101t should be noted that, in general, 2V C V +VbutV +V ¢ 2V.
These two operations are continuous if and only if the operation (x, y) — x 'y is continuous.

12A topological group G is assumed to be Hausdorff, but it suffices to assume axiom 7. In fact,
axiom T implies T for a topological group G because of the homogeneity of G.
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Sketch of Proof. Each neighborhood U of the unit 1 € G contains a neighborhood V of
1 such that V™'V C U. For each x € clV, we have y € Vx N V. Consequently, x €
V=ly c VTV CU,sowehaveclV C U.

For the additional statement, recall that if V' is circled then ¢l V' is also circled.

Proposition 3.4.3. Let G be a topological group and H be a subgroup of G.

(1) If H is open in G then H is closed in G.
(2) The closure cl H of H is a subgroup of G.

Sketch of Proof. (1): For each x € G \ H, Hx is an open neighborhood of x in G and
Hx CG\H.

(2): For each x, y € cl H, show that x~'y € cl H, i.e., each neighborhood W of x 1y
meets H. To this end, choose neighborhoods U and V of x and y, respectively, so that
u-lv cw.

Due to Proposition 3.4.3(1), a connected topological group G has no open
subgroups except for G itself. Observe that every topological linear space E is path-
connected. Consequently, £ has no open linear subspaces except for E itself, i.e.,
every proper linear subspace of E is not open in E.

The continuity of linear functionals is characterized as follows:

Proposition 3.4.4. Let E be a topological linear space. For a linear functional
f : E — Rwith f(E) # {0}, the following are equivalent:

(a) f is continuous;

(b) f71(0) is closed in E;

(c) f7Y0) is not dense in E;

(d) f(V) is bounded for some neighborhoodV of 0 € E.

Proof. The implication (a) = (b) is obvious, and (b) = (c) follows from f(E) #
{0} (e, £71(0) # E).

(¢) = (d): We have x € E and a circled neighborhood V' of 0 € E such that
(x+V)N f71(0) = @. Then, £(V) is bounded. Indeed, if #(V) is unbounded, then
there is some z € V such that | f(z)| > | f(x)]. Inthis case, f(tz) = tf(z) = — f(x)
for some ¢ € [—1, 1], which implies that — f(x) € f(V). It followsthat0 € f(x)+
f(V) = f(x + V), which contradicts the fact that (x + V) N f~1(0) = 0.

(d) = (a): For each ¢ > 0, we have n € N such that f(V) C (—ne,ne).
Then, n~'V is a neighborhood of 0 in E and f(n~'V) C (—&,¢). Therefore, f
is continuous at 0 € E. Since f is linear, it follows that f is continuous at every
point of E. O

Proposition 3.4.5. Let E be a topological linear space and A, B C E.

(1) If Bisopenin E then A + B is openin E.
(2) If A is compact and B is closed in E then A + B is also closed in E.

Sketch of Proof. (1): Note that A + B = {J,c4(x + B).

(2): To show that E\(A+ B)isopenin E,letz € E\(A+ B). Foreach x € A, because
z—x € E\ B, we have open neighborhoods Uy, V; of x, zin E such that V., —U, C E\ B.
Since A is compact, A C |J/_, U,, for some xy, ..., X, € A. Then, V = (\/_, V,, is an
open neighborhood of z in E. We can show that VN (A + B) = @,i.e.,V C E\(A+ B).
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Remark 8. In (2) above, we cannot assert that A + B is closed in E even if both 4
and B are closed and convex in E. For example, A = R x {0} and B = {(x, y) €
R? | x > 0, y > x~ !} are closed convex sets in R?, but A + B = R x (0, 00) is not
closed in R

Proposition 3.4.6. Let F be a closed linear subspace of a topological linear
space E. Then, the quotient linear space E | F with the quotient topology is also
a topological linear space, and the quotient map q : E — E/F (ie, p(x) =
x + F € E/F) is open, hence if U is a neighborhood basis at 0 in E, then
qU) ={qU) | U € U} is a neighborhood basis 0 in E/ F.

Sketch of Proof. Apply Proposition 3.4.5(1) to show that the quotient map g : E — E/F is
open. Then, in the diagrams below, ¢ X ¢ and ¢ X idg are open, so they are quotient maps:

EXE —> FE EXR —> E
qqu \Ltf gxidg \L \Lq
E/F xE/F —— EJ/F, E/F xR —— E/F.

Accordingly, the continuity of addition and scalar multiplication are clear. Note that E/F
is Hausdorff if and only if F is closed in E.

For convex sets in a topological linear space, we have the following:

Proposition 3.4.7. For each convex set C in a topological linear space E, the
following hold:

(1) clC is convex and rcl C C clC, hencerclC = C if C is closed in E;
(2) intg C = @ for any flat F withfiC & F;
3) intgc C # 0 implies intgc C = corege C = rint C.

Proof. By the definition and the continuity of algebraic operations, we can easily
obtain (1). For (2), observe intp C C corep C.Ifintp C # @ then flC = F by the
Fact stated in the previous section.

(3): Due to Proposition 3.3.2, coregc C = rintC. Note that intgc C C
coreg ¢ C. Without loss of generality, we may assume that 0 € intg¢c C. Then, for
each x € rintC, we can find 0 < s < 1 such that x € sC. Since (1 — s)C is a
neighborhood of 0 = x — x in flC, we have a neighborhood U of x in fl C such
that U —x C (1 —s)C. Then, it follows that U C (1 —s)C + sC = C. Therefore,
x €intgc C. O

Remark 9. In the above, we cannot assert any one of c1C = rclC, intgc C =
corege C, orintge C # 0. For example, [—1, 1]? is a convex set in RY such that
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rel[—1, 1]1? = [-1, 1]1? but cl[—1, 1]1? = [-1,1]N. Note that fi[—1, 1]1? = R?.

Regard [1, 1]1? as a convex set in R?. Then,
int@ 1, 1]§ = but corey -1, 1]5}{ = rint[-1, 1]} = (-1, 1)?.

By Proposition 3.4.7(1), if A is a subset of a topological linear space E, then
cl{A) is the smallest closed convex set containing A, which is called the closed
convex hull of A.

Remark 10. In general, (A) is not closed in E even if A is compact. For example,
let A ={a, | n € w} C £, where ap(i) = 27 for every i € N and, for each
n €N, a,(i) =2"ifi <nanda,(@i) = 0ifi > n. Then, A4 is compact and
(A) = U,enlao. a1, ... a,). Foreachn € N, let

Xp =2"ag+2'a; +---+27"a, € (ag,a, ..., a,).

Then, x,(i) = 272*1ifi < nand x,(i) = 27" if i > n. Hence, (X,)nen
converges to xo € £, where xo(i) = 272 *! for each i € N. However, xo & (A).
Otherwise, x¢ € {(ag,ay,...,a,) for some n € N, where we can write

n

Xo = ZZ(Z + Da;, z€ A”.
i=0

Then, we have the following:

z(Dao(n + 1) = xo(n + 1) = 272" = 27"gqo(n + 1) and
(Dao(m +2) = xo(n +2) =272 = 27" lay(n + 2),

hence z(1) = 27" and z(1) = 27"~!. This is a contradiction. Therefore, (A) is not
closed in ¢;.

The following is the topological version of the Separation Theorem 3.3.5:

Theorem 3.4.8 (SEPARATION THEOREM). Let A and B be convex sets in a
topological linear space E such that int A # @ and (int A) N B = @. Then, there
is a continuous linear functional f : E — R such that f(x) < f(y) for each
x €intAandy € B, and sup f(A) < inf f(B).

Proof. First, int A # @ implies core A = int A # @ by Proposition 3.4.7(3). Then,
by the Separation Theorem 3.3.5, we have a linear functional f : £ — R such that
f(x) < f(y) forevery x € intA and y € B, and sup f(A4) < inf f(B). Note that
B —int A is open in E and f(z) > O for every z € B — int A. Thus, f~!(0) is not
dense in E. Therefore, f is continuous by Proposition 3.4.4. O
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A topological linear space E is locally convex if 0 € E has a neighborhood
basis consisting of (open) convex sets; equivalently, open convex sets make up an
open basis for E. It follows from Proposition 3.4.6 that for each locally convex
topological space E and each closed linear subspace ' C E, the quotient linear
space E/F is also locally convex. For locally convex topological linear spaces, we
have the following separation theorem:

Theorem 3.4.9 (STRONG SEPARATION THEOREM). Let A and B be disjoint
closed convex sets in a locally convex topological linear space E. If at least one

of A and B is compact, then there is a continuous linear functional f : E — R
such that sup f(A) < inf f(B).

Proof. By Proposition 3.4.5(2), B — A isclosed in E. Since A N B = @, it follows
that 0 ¢ B — A. Choose an open convex neighborhood U of 0 so that U N (B —
A) = 0. By the Separation Theorem 3.4.8, we have a nontrivial continuous linear
functional f : £ — R such that sup f(U) < inf f(B — A). Then, sup f(A) +
sup f(U) < inf f(B), where sup f(U) > 0 by the non-triviality of f. Thus, we
have the result. O

As a particular case, we have the following:

Corollary 3.4.10. Let E be a locally convex topological linear space. For each pair
of distinct points x,y € E, there exists a continuous linear functional f : E — R

such that f(x) # f(y). O

Concerning the continuity of sublinear functionals, we have the following:

Proposition 3.4.11. Let p : E — R be a non-negative sublinear functional of a
topological linear space E. Then, p is continuous if and only if p~'([0, 1)) is a
neighborhood of 0 € E.

Proof. The “only if” part follows from p~'([0, 1)) = p~'((~1, 1)). To see the “if”
part, let ¢ > 0. Since p~'([0,£)) = ep~ ([0, 1)) is a neighborhood of 0 € E, each
x € E has the following neighborhood:

U=(x+p'([0.2)) N (x—p~'([0.2))).

Foreach y € U, since p(y — x) < gand p(x — y) < ¢, it follows that

p(y) < p(y —x)+ p(x) < p(x) +¢& and
p(y) = p(x) — p(x —y) > p(x) — ¢,

which means that p is continuous at x. O

For each convex set C C E with 0 € intC, we have intC = coreC =
pc'([0, 1)) by Propositions 3.3.4 and 3.4.7(3). Then, the following is obtained from
Proposition 3.4.11.
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Corollary 3.4.12. Let E be a topological linear space. For each convex set C C E
with 0 € intC, the Minkowski functional pc : E — R is continuous. Moreover,
pc'([0,1)) =intC =rintC and pz'(I) = c1C = rcl C, hence pz' (1) =bdC =
acC. O

The boundedness is a metric concept, but it can be extended to subsets of a
topological linear space E. A subset A C E is topologically bounded'® provided
that, for each neighborhood U of 0 € E, there exists some r > 0 such that
A C rU. If A C E is topologically bounded and B C A, then B is also
topologically bounded. Recall that every neighborhood U of 0 € E contains a
circled neighborhood V' of 0 € E (cf. Proposition 3.4.1(3)). Since sV C tV for
0 < s < t,itis easy to see that every compact subset of E is topologically bounded.
When E is a normed linear space, A C E is topologically bounded if and only if A
is bounded in the metric sense. Applying Minkowski functionals, we can show the
following:

Theorem 3.4.13. Let E be a topological linear space. Each pair of topologically
bounded closed convex sets C,D C E with intC # @ and intD # @
are homeomorphic to each other by a homeomorphism of E onto itself, hence
(C,bdC) =~ (D,bd D) and int C ~ int D.

Proof. Without loss of generality, we may assume that 0 € intC Nint D. Let pc
and pp be the Minkowski functionals for C and D, respectively. By the topological
boundedness of C and D, it is easy to see that pc(x), pp(x) > 0 for every x €
E \ {0}. Then, we can define maps ¢,V : E — E as follows: ¢(0) = ¥ (0) = 0,

pC(x)x and ¥(x) = pD—(x)x foreach x € E \ {0}.
pp(x) p

c(x)

It follows from the continuity of pc and pp (Corollary 3.4.12) that ¢ and ¢ are
continuous at each x € E \ {0}.

To verify the continuity of ¢ at 0 € E, let U be a neighborhood of 0 € E. Since
D is topologically bounded and C is a neighborhood of 0, there is an » > 0 such that
D C rC.Then, pc(x) < rpp(x) for every x € E. Choose a circled neighborhood
V of 0 € E sothatrV C U. Then, ¢(V) C U. Indeed, for each x € V' \ {0},

p(x) =

Pc(x)x pc(x)

VcrV cU.
pp(x) Pp(x)

p(x) =

Similarly, ¥ is continuous at 0 € E.
For each x € E \ {0}, since p(x) # 0,

3Usually, we say simply bounded but here add topologically in order to distinguish the metric
sense. It should be noted that every metrizable space has an admissible bounded metric.
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)

o) @ pe)

Ve = o) Y T pet) o)
o) pc(x)

Hence, ¥ ¢ = id. Similarly, ¢y = id. Therefore, ¢ is a homeomorphism with
™! = . Moreover, observe that ¢(C) C D and /(D) C C, hence ¢(C) = D.
Thus, we have the result. O

The norm of a normed linear space E is the Minkowski functional for the unit
closed ball B of E. Since bd B, is the unit sphere Sg of E, we have the following:

Corollary 3.4.14. Let E = (E, || - ||) be a normed linear space. For every bounded
closed convex set C C E with intC # @, the pair (C,bd C) is homeomorphic to
the pair (B, Sg) of the unit closed ball and the unit sphere of E. O

It is easy to see that every normed linear space £ = (E, | - ||) is homeomorphic
to the unit open ball B(0,1) = Bg \ Sg of E.

In fact, the following are homeomorphisms (each of them is the inverse of the other):

1
E>x XEB(O,I), B(0,1)3y|—>1—“”y€E
-1y

1
H ——
L+ x]l
By applying the Minkowski functional, this can be extended as follows:

Theorem 3.4.15. Every open convex set V in a topological linear space E is
homeomorphic to E itself.

Proof. Without loss of generality, it can be assumed that 0 € intV = V. Then, we
have V = intV = p;;!([0, 1)) by Corollary 3.4.12. Using the Minkowski functional
pv,we can definemaps ¢ : V — E and ¢ : E — V as follows:

1
x forxeV;, ¥y(y)=————y foryekE.

YO =TT, T+ 2v(y)

Observe that ¢ = idy and ¢ = idg. This means that ¢ is a homeomorphism
with ¥ = ¢~ L. O

3.5 Finite-Dimensionality

Here, we prove that every finite-dimensional linear space has the unique topology
that is compatible with the algebraic operations, and that a topological linear space
is finite-dimensional if and only if it is locally compact.

First, we show the following proposition:
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Proposition 3.5.1. Every finite-dimensional flat F in an arbitrary linear space E
has the unique (Hausdorff) topology such that the following operation is continuous:

FxFxR>(x,y,t)~»(1—t)x +ty € F.

With respect to this topology, every affine bijection f : R" — F is a homeomor-
phism, where n = dim F. Then, F is affinely homeomorphic to R". Moreover, if E
is a topological linear space then F is closed in E.

Proof. As mentioned at the beginning of Sect. 3.4, E has a topology that makes E
a topological linear space. With respect to the topology of F inherited from this
topology, the above operation is continuous.

Note that there exists an affine bijection f : R" — F, where dim F = n.
We shall show that any affine bijection f : R” — F is a homeomorphism with
respect to any other topology of F such that the above operation is continuous,
which implies that such a topology is unique and F is affinely homeomorphic to R”.

Since f is affine, we have

n

fl2) = (1 — Zz(i))f(()) + Zz(i)f(ei) for each z € R".

i=1 i=1
Note that the following function is continuous:

n

R">z+ (1 —Zz(i),z(l),...,z(n)) eflA" c R'H.

i=1

Then, the continuity of f follows from the claim:

Claim. Givenvy,...,vx € F, k < n, the following function is continuous:

k
o 1A 5 2 Zz(i)vi € F.

i=1

Since fl A = A° is a singleton, the continuity of ¢; is obvious. Assuming the
continuity of ¢, we shall show the continuity of ;1. Let ¢ : fl A*"! xR — fl A*
be the map defined by ¥ (z,7) = ((1 —#)z,¢). Observe that

k
G @) = (1=1) Y 26 + tvipr = (1= D@ (@) + v

i=1

From the property of the topology of F and the continuity of ¢, it follows that
@k+1V is continuous. Foreachi = 1,....k + 1, let p; = pr;|fl A : l A¥ — Rbe
the restriction of the projection onto the i -th factor. Note that
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YA S R\ (1) - AR X R\ {1}) > 4K\ pif, (1)

is a homeomorphism. Hence, ¢; 11| fl A% \ p1:41-1(1) is continuous. Replacing the
(k + 1)-th coordinates with the i-th coordinates, we can see the continuity of
@r+1] L AR\ p(1). Since fl A% = Uf:ll(ﬂ AR\ pr(1)), it follows that gyt
is continuous. Thus, the claim can be obtained by induction.

It remains to show the openness of f. On the contrary, assume that f is not
open. Then, we have x € R” and ¢ > 0 such that f(B(x, ¢)) is not a neighborhood
of f(x) in F. Since bd B(x, ¢) is a bounded closed set of R”, it is compact, hence
f(bdB(x,¢)) isclosed in F. Then, F \ f(bdB(x, ¢)) is a neighborhood of f(x) in
F. Using the compactness of I, we can find an open neighborhood U of f(x) in F
such that

(1—-1t)f(x)+tU C F\ f(bdB(x,¢)) foreveryt €L

Then, U N f(bdB(x,¢e)) = 0. Since f(B(x,¢)) is not a neighborhood of f(x), it
follows that U ¢ f(B(x,¢)), and so we can take a point y € U \ f(B(x, ¢)). Now,
we define a linear path g : I — R” by g(¢) = (1 —t)x +¢f~!(y). Since f is affine
and y € U, it follows that

fe@®)=0—=1t)f(x)+ty e F\ f(bdB(x,¢)) foreveryt € L

Since f is a bijection, we have
g(I) C R"\ bdB(x,&) = B(x, &) U (R" \ B(x, ¢)).

Then, g(0) = x € B(x,¢) and g(1) = f~!(y) € R" \ B(x, &), which contradicts
the connectedness of I. Thus, f is open.

In the case when E is a topological linear space, to prove that F is closed in E,
take a point x € E \ F and consider the flat F,, = fi(F U {x}). Itis easy to construct
an affine bijection f : R"*! — F, such that f(R" x {0}) = F. As we saw in the
above, f is a homeomorphism, hence F is closed in F. Since F, \ F is openin F},
we have an open set U in E such that U N F, = F, \ F. Then, U is a neighborhood
of xin EandU C E\F.Therefore, E\ F isopenin E, thatis, F isclosedin £. O

If a linear space E has a topology such that the operation
EXExR>(x,y,t)>(1—-t)x+ty€eE

is continuous, then scalar multiplication and addition are also continuous with this
topology because they can be written as follows:

ExRoa(x,t)»tx=(1-t)0+1tx € E;
EXE9(x,y)|—>x+y=2(%x+%y)EE.
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Then, the following is obtained by Proposition 3.5.1:

Corollary 3.5.2. Every finite-dimensional linear space E has the unique (Haus-
dorff) topology compatible with the algebraic operations (addition and scalar
multiplication), and then it is linearly homeomorphic to R", wheren = dim E. 0O

Moreover, we have the following:

Corollary 3.5.3. Let E be a topological linear space and F a finite-dimensional
flat in another topological linear space. Then, every affine function f : F — E is
continuous, and if f is injective then f is a closed embedding.

Proof. By Proposition 3.5.1, F can be replaced with R", where n = dim F. Then,
we can write

fx) = (1 — zn:X(i))f(O) + zn:x(i)f(e,-) for each x € R”,

i=1 i=1

where ey, ..., e, is the canonical orthonormal basis for R". Thus, the continuity of
f is obvious. Since f(R") is a finite-dimensional flat in E, f(R") is closed in E
by Proposition 3.5.1. If f is injective then f : R” — f(R") is an affine bijection,
which is a homeomorphism by Proposition 3.5.1. Hence, f is a closed embedding.

O

Combining Proposition 3.2.2 and Corollary 3.5.3, we have

Corollary 3.5.4. Let E be a topological linear space and C a finite-dimensional
convex set in another topological linear space. Then, every affine function f : C —
E is continuous. Moreover, if f is injective then f is an embedding. O

For finite-dimensional convex sets in a linear space, we have the following:

Proposition 3.5.5. Let C be a finite-dimensional convex set in an arbitrary linear
space E. Then, rint C = intgc C with respect to the unique topology for l C as in
Proposition 3.5.1.

Proof. We may assume that E is a topological linear space. By Proposition 3.4.7(3),
it suffices to show that intg ¢ C # @. We have affinely independent vy, vy, ..., v, €
C with IC = fl{vy,v1,..., v}, where n = dim C. We have an affine bijection
f : R" — f1C such that f(0) = vy, f(e1) = vy, ..., f(e,) = v,. Then, f isa
homeomorphism by Proposition 3.5.1, hence

intgc C D intﬂc(V(),Vl, c. ,Vn) = f(intRn (0,01, - ,en)) 7é Q. O

Note that every compact set in a topological linear space is topologically bounded
and closed. For an n-dimensional convex set C in a linear space, the flat hull
fl C is affinely isomorphic to R". Combining Propositions 3.5.1 and 3.5.5 with
Corollary 3.4.14, we have the following:
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Corollary 3.5.6. For every n-dimensional compact convex set C in an arbi-
trary topological linear space E, the pair (C,dC) is homeomorphic to the pair
(B, S"~1) of the unit closed n-ball and the unit (n — 1)-sphere. O

Remark 11. Tt should be noted that every bounded closed set in Euclidean space R”
is compact. More generally, we can prove the following:

Proposition 3.5.7. Let E be an arbitrary topological linear space and A C E with
dimfl A < oo. Then, A is compact if and only if A is topologically bounded and
closedin E.

Sketch of Proof. Using Proposition 3.5.1, this can be reduced to the case of R”.
The following convex version of Proposition 3.5.1 is not trivial.

Proposition 3.5.8. Let C be an n-dimensional convex set in an arbitrary linear
space E. If (1) C is the convex hull of a finite set'* or (2) C = rint C, then C has
the unique (Hausdorff) topology such that the following operation is continuous:

CxCxIsx,y,)—({0—-t)x+1tyeC.
Incase (1), 1c1C = C and (C,9C) ~ (B*,8"™"); in case (2), C ~ R".

Proof. Like Proposition 3.5.1, it suffices to see the uniqueness and the additional
statement. To this end, suppose that C has such a topology, but it is unknown
whether this is induced from a topology of fl C or not.

Case (1): Let C = (vi,...,v) and define f : A*=! — C by f(z) =
Zf:l z(i)v;. In the same way as for the claim in the proof of Proposition 3.5.1,
we can see that the continuity of the operation above induces the continuity of f.
Since A*~!is compact, f is a closed map, hence it is quotient. Thus, the topology of
C is unique and C is compact with respect to this topology. Giving any topology on
E so that E is a topological linear space, we have rcl C = C by Proposition 3.4.7(i)
and (C,dC) ~ (B",S"!) by Corollary 3.5.6.

Case (2): Let f : R" — flC be an affine bijection, where n = dimflC =
dim C. Since D = f~!(C) is an n-dimensional convex set in R”, D = rint D =
int D is open in R” by Proposition 3.5.5, hence D ~ R”" by Proposition 3.4.15.
Then, it suffices to show that f|D : D — C is ahomeomorphism. For each x € D,
choose § > 0 so that x 4+ §B" = B(x,8) C D. Let vy = x — A", where A"~ is
the barycenter of the standard (n — 1)-simplex A"~! = (e, e,,...,e,) C R". For

eachi = 1,...,n,letv; = x + 8e;. Then, vy, vy,..., v, are affinely independent
and

X € intgn {vo, v1,...,v,) Cx +6B" C D,
hence (vg, v1,...,v,) is a neighborhood of x in D. On the other hand, we have the

affine homeomorphism ¢ : A" — (vo,vi,...,v,) defined by ¢(z) = > /_,z(i +

4In this case, C is called a cell or a (convex) linear cell (cf. Sect. 4.1).
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(1.1

Fig. 3.7 The continuity of the operation at (0,¢4,0) € C x C X1

D)v;. Since fo(z) = > i_yz(i + 1)f(v;), the continuity of the operation above
implies that of f¢, hence f|(vo, Vi, ..., v,) is continuous at x. Then, it follows that
f|D is continuous at x.

Since D is open in R”, we can apply the same argument as in the proof of
Proposition 3.5.1 to prove that f|D : D — C is open. Consequently, f|D : D —
C is a homeomorphism. O

Remark 12. For an arbitrary finite-dimensional convex C, Proposition 3.5.8 does
not hold in general. For example, let

C ={0}U{(x,y) € (0,1 | x = y} CR”.

Then, C is a convex set that has a finer topology than usual such that the operation
in Proposition 3.5.8 is continuous. Such a topology is generated by open sets in the
usual topology and the following sets:

D, = {0} U (B((0,r),r) N C), r > 0.

Note that this topology induces the same relative topology on C \ {0} as usual. Since
D, s € B(0,¢) for each ¢ > 0, {D, | r > 0} is a neighborhood basis at 0 € C
with respect to this topology.

We shall show that the operation

CxCxIa(p,gt)>(1—-t)p+tqgeC

is continuous at (p,q,t) € C x C x LIf (1 —t)p + tq # 0, it follows from the
continuity with respect to the usual topology. The continuity at (0, 0, ) follows from
the convexity of D,, r > 0.

To see the continuity at (0,¢,0) (¢ # 0),letg = (x,y), where0 <y < x < 1.
Choose s > 0 so that ¢ € D; (i.e., s > (x> + y?)/2y). Foreach 0 < r < min{1, s},
let0 <t <r/2s,p’ € D, and ¢’ € Dy (Fig.3.7). Observe that

11—t 1
D,y C ——(r/s)Dyjs = D,
= CID C /9D

1—1¢

r/s—

~(r/s)p'
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and (r/s)q’ € (r/s)Ds; = D,. Since D, is convex, it follows that

frrg = (1= )22 e p + /)
(1-0p +1q = (1 r/s)r/s_t(r/s)p + r/s(r/s)q e D,.

Thus, the operation is continuous at (0, ¢, 0). The continuity at (p,0, 1) (p # 0) is
the same.

A subset A of a topological linear space E is totally bounded provided, for
each neighborhood U of 0 € E, there exists some finite set M C E such that
A C M + U. In this definition, M can be taken as a subset of A.

Indeed, for each neighborhood U of 0 € E, we have a circled neighborhood V' such that
V4V CU.Then, AC M + V for some finite set M C E, where it can be assumed that
(x+ V)N A # @ forevery x € M. For each x € M, choose a, € Asothata, € x + V.
Then, x € a,—V =a,+V.Itfollows that A C U ey (x+V) C Uey(ax+V+V) C
UxEM(aX + U)

If A C E istotally boundedand B C A, then B is also totally bounded. It is easy
to see that every compact subset of E is totally bounded and every totally bounded
subset of E is topologically bounded. In other words, we have:

compact | = | totally bounded | = | topologically b0unded|

For topological linear spaces, the finite-dimensionality can be simply characterized
as follows:

Theorem 3.5.9. Let E be a topological linear space. The following are equiva-
lent:

(a) E is finite-dimensional;
(b) E islocally compact;
(c) 0 € E has a totally bounded neighborhood in E.

Proof. Since each n-dimensional topological linear space is linearly homeomorphic
to R” (Corollary 3.5.2), we have (a) = (b). Since every compact subset of E is
totally bounded, the implication (b) = (c) follows.

(¢) = (a): Let U be a totally bounded neighborhood of 0 € E. By Proposi-
tion 3.4.1, we have a circled neighborhood V' of 0 such that V' 4+ V C U. Then, V
is also totally bounded. First, we show the following:

Claim. For each closed linear subspace F© & E, there is some x € U such that
x+V)NF =40.

Contrary to the claim, suppose that (x + V) N F # @ for every x € U. Since
V =—V,itfollowsthatU C F +V,sowehave V+V C F4+V.If(n—1)V C
F 4V then

WCm-O)W+VCF+V+VCF+F+V=F+V
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By induction, we have nV C F + V for every n € N, which implies that V' C
ﬂnEN(F + n_l V)

Take z € E \ F. Since F is closed in E, we have a circled neighborhood W of
0 € E suchthat W C V and (z+ W) N F = @. The total boundedness of V' implies
the topological boundedness, hence V' C mW for some m € N. On the other hand,
k™'z € V for some k € N. Since k™!'z € V C F + (km)~'V, it follows that
z€ F +m~'V C F 4+ W. This contradicts the fact that ( + W) N F = 0.

Now, assume that E is infinite-dimensional. Let v; € U \ {0} and F; = Rv,.
Then, F) is closed in E (Proposition 3.5.1) and F; # E. Applying the claim above,
we have v, € U such that (v, + V) N F; = @. Note that v, &€ vi + V. Let F, =
Rv; + Rv;,. Since F; is closed in E (Proposition 3.5.1) and F, # E, we can again
apply the claim to find v3 € U such that (vs + V) N F, = @. Then, note that
vi € vi + V fori = 1,2. By induction, we have v, € U, n € N, such that
vp € vi + V fori < n. Then, {v, | n € N} is not totally bounded. This is a
contradiction. Consequently, E is finite-dimensional. O

By Theorem 3.5.9, every infinite-dimensional topological linear space is not
locally compact.

3.6 Metrizability and Normability

In this section, we prove metrization and normability theorems for topological linear
spaces. The metrizability of a topological linear space has the following very simple
characterization:

Theorem 3.6.1. A topological linear space E is metrizable if and only if 0 € E
has a countable neighborhood basis.

In a more general setting, we shall prove a stronger result. A metric d on a
group G is said to be left (resp. right) invariant if d(x,y) = d(zx,zy) (resp.
d(x,y) = d(xz,yz)) for each x,y,z € G; equivalently, d(x,y) = d(x"'y,1)
(resp. d(x,y) = d(xy~',1)) for each x, y € G. When both of two metrics d and
d’ on a group G are left (or right) invariant, they are uniformly equivalent to each
other if and only if they induce the same topology. It is said that d is invariant if it is
left and right invariant. Every invariant metric d on a group G induces the topology
on G that makes G a topological group. In fact,

dix,y)=dx""'xy " xlyy ™)y =d(y ", xT) =d(x"".y™") and
d(xy,x'y") <d(xy,x'y)+d(x'y,x'y") = d(x,x") +d(y. ).

It is easy to verify that a left (or right) invariant metric d on a group G is invariant
if d(x,y) = d(x7',y~") for each x,y € G. Theorem 3.6.1 comes from the
following:
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Theorem 3.6.2. For a topological group G, the following are equivalent:

(a) G is metrizable;
(b) The unit1 € G has a countable neighborhood basis;
(c) G has an admissible bounded left invariant (right invariant) metric.

Proof. Since the implications (a) = (b) and (c) = (a) are obvious, it suffices to
show the implication (b) = (c).

(b) = (c):'> We shall construct a left invariant metric p € Metr(G). Then, a
right invariant metric p’ € Metr(G) can be defined by p'(x,y) = p(x~!,y~!). By
condition (b), we can find an open neighborhood basis {V,, | n € N} at 1 € G such
that

V' =V, and V,41V,41Vat1 C V, foreachn € N.'°

Let Vy = G, and define
p(x) =inf{27" | x e V;} €I foreachx € G.

Since V, = V7! for each n € N, it follows that p(x) = p(x~!) for every x € G.
Note that (., V» = {1}.'” Hence, for every x € G,

ne€w
p(x) =0 & x=1.

By induction on n, we shall prove the following:

n
(*) plxy'xy) < 2Zp(xi__llxi) for each xg, x1,....x, € G.'®
i=1

The case n = 1 is obvious. Assume (%) form < n. If Y /_, p(xi__llx,-) = 0 or

Yooy p(xzx;) = 3, itis trivial. When 27571 < 3| p(x;7 x;) < 27F for some

k € N, choose 1 <m < n so that

m—1 n
Zp(xi__llx,-) <27k and Z p(x\xi) < 27F 1

i=1 i=m+1

3The idea of the proof is the same as that of Theorem 2.4.1 (b) = (a).

16Note that {V,x | n € N} is an open neighborhood basis at x € G. For each x,y € G and
n €N, Vyp1x N Vyy1y 7 @ implies V, 41y C V,x. Indeed, ux = vy for some u,v € V, 41,
hence V,1,1y = V,,_Hv_lux C V,x. Thus, the metrizability of G can be obtained by the
Frink Metrization Theorem 2.4.1. On the other hand, V, = {V,x | x € G} € cov(G) and
st Vy+1 < V,. Indeed, st(V,4+1x, V1) C V,x. Thus, the metrizability of G can also be obtained
by Corollary 2.4.4.

171t is assumed that G is Hausdorff.

8For each x, y € G, let §(x, y) = p(x~'y). Then, this inequality is simply the one given in the
sketch of the direct proof for Corollary 2.4.4.
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Note that p(x,!,x,) < 27 By the inductive assumption, p(x;'x,u—1) <
27F and p(x,'x,) < 27K Then, xj'xu—1, X, 1 %, x,'x, € Viy1. Since
Vit1Vi41Vit1 C Vi, it follows that x; ' x, € Vi, hence

n
Pl ') <275 <23 p(xx).

i=1

Now, we can define a metric p on G as follows:
p(x.y) =inf{}7_, p(x;\x;)) |n €N, x; € G, xo = x. x, = y}.

By the definition, p is left invariant. Note that p(x,y) < p(x~'y) < 1. Then,
x~'y e V, implies p(x,y) < p(x~'y) < 27" < 27"*! which means xV, C
B, (x,27"*1). On the other hand, if p(x,y) < 27" then p(x~'y) < 2p(x,y) <
271 by (%), which implies x~!y € V,. Thus, B,(x,2™") C xV,,. Therefore, p is
admissible. O

In the above proof, a right invariant metric p € Metr(G) can be directly defined as follows:
p(x,y) =inf{X7_, pxi—ix") |n €N, x; € G, xo = x, x, = y}.

Every metrizable topological linear space E has an admissible (bounded) metric
p that is not only invariant but also satisfies the following:

® Il =1 = p(tx,0) < p(x,0).

To verify this, let us recall how to define the metric p in the above proof. Taking a
neighborhood basis {V,, | n € N} at 0 € E sothat V, = =V, and V| + V41 +
Vi1 C V, for each n € N, we define the admissible invariant metric p as follows:

p(x,y) =inf {37 p(xi —xi-1) [ n €N, x; € E, xo = x, x, = y},

where p(x) = inf{2™ | x € V;}. Since E is a topological linear space, the condition
that V,, = —V, can be replaced by a stronger condition that V,, is circled, i.e.,
tV, C Vyfort € [—1,1]. Then, p(tx) < p(x) foreach x € E and ¢t € [—1,1],
which implies that p(¢x,0) < p(x,0) foreach x € E andt € [-1,1].

Let d be an invariant metric on a linear space E. Addition on a linear space
E is clearly continuous with respect to d. On the other hand, scalar multiplication
on FE is continuous with respect to d if and only if d satisfies the following three
conditions:

() d(x,,0) > 0 = VreR, d(tx,,0) — 0;
) t, -0 = Vx e E, d(t,x,0) = 0;
(iii) d(x,,0) >0, t, > 0 = d(t,x,,0) — 0.

Indeed, the “only if” part is trivial. To show the “if” part, observe

IyXy —Ix = (t/l _t)(x/l _x) + [(xn _x) + (t/l _t)x~
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Since d is invariant, it follows that

d(tnxnvtx) = d((tn - t)(xn - X) + t(xn - X) + (tn - I)X,O)
= d((tn = 1)(xn = x),0) + d(1(x, — x),0) + d((t, —1)x,0),

where d(t,x,,tx) — 0ift, — t and d(x,,x) — 0. Thus, the above three conditions
imply the continuity of scalar multiplication on E with respect to d.

It should be remarked that condition (ff) implies condition (iii).

An invariant metric d on E satisfying these conditions is called a linear metric.
A linear space with a linear metric is called a metric linear space. Then, every
metric linear space is a metrizable topological linear space. Conversely, we have the
following fact:

Fact. Every admissible invariant metric for a metrizable topological linear space
is a linear metric.

For subsets of a metric linear space, the total boundedness coincides with that in
the metric sense. On the other hand, the topological boundedness does not coincide
with the metric boundedness. In fact, every metrizable topological linear space
E has an admissible bounded invariant metric. For instance, given an admissible
invariant metric d for E, the following are admissible bounded invariant metrics:

d(x,y)

min{l, d(x,y)}, Hd—(xy)

For a linear metric p on E with the condition (ff), the functional £ > x +—
p(x,0) € Ris called an F -norm. In other words, a functional || - || : £ — Rona
linear space E is called an F -norm if it satisfies the following conditions:

(F1) ||x|| = O forevery x € E;

(F) lIx[ =0 = x=0;

(F3) t] <1 = |tx]|| < | x| forevery x € E;
(Fo) llx + yll < lIxll + |yl forevery x, y € E;
(Fs) ||x,]l = 0 = ||tx,|| — Oforeveryt € R;
(Fg) t, >0 = |tyx|| > Oforevery x € E.

Conditions (F3), (F5), and (Fg) correspond to conditions (ff), (i), and (ii), respectively. The
converse of (F,) is true because ||0]] = 0 by (Fs). Then, ||x|| = 0 if and only if x = 0.
Condition (F3) implies that || — x|| = ||x|| for every x € E. Furthermore, conditions (F3)
and (Fy) imply condition (F5). Indeed, using (Fy) inductively, we have ||nx|| < n| x| for
every n € N. Each ¢ € [0, 00) can be written as ¢ = [t] + s for some s € [0, 1), where [¢]
is the greatest integer < 7. Since ||sx|| < ||x|| by (F3), it follows that ||zx|| < ([t] + D] x]|.
Because || — x|| = |[x]l, [lex|| < ([|¢]] + D|lx|| for every ¢ € R. This implies condition
(F5). Thus, condition (F5) is unnecessary.

A linear space E given an F-norm || - || is called an F-normed linear space.
Every norm is an F-norm, hence every normed linear space is an F-normed space.
An F-norm || - || induces the linear metric d(x,y) = |x — y|. Then, every F-
normed linear space is a metric linear space. An F-norm on a topological linear
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space E is said to be admissible if it induces the topology for E. As we saw above,
if £ is metrizable, then E has an admissible invariant metric p satisfying (), which
induces the F-norm. Therefore, we have the following:

Theorem 3.6.3. A topological linear space has an admissible F-norm if and only
if it is metrizable. O

For each metrizable topological linear space, there exists an F-norm with the
following stronger condition than (F3):

(F5) x #0, || <1 =[x < [xll,

which implies that ||sx| < [¢x]| for each x # 0 and 0 < s < ¢. The following
proposition guarantees the existence of an F'-norm with the condition (F3"):

Proposition 3.6.4. Every (completely) metrizable topological linear space E has
an admissible invariant (complete) metric d such that d(tx,0) < d(x,0) if x # 0
and |t| < 1, which induces an admissible F-norm satisfying (Fy). If an admissible
invariant metric p for E is given, d can be chosen so that d > p (hence, if p is
complete, then so is d ). Moreover, if p is bounded, d can be chosen to be bounded.

Proof. Given an admissible (bounded) invariant metric p for £, we define d, (x, y) =
SUPy<s<; P(sx,5y). Then, d; is an invariant metric on E with d; > p (if p is
bounded then so is d 1). For each ¢ > 0, since the scalar multiplication £ x R >
(x,5) — sx € E is continuous at (0,s) and I is compact, we can find § > 0
such that p(x,0) < & implies p(sx,0) < ¢ for every s € I, hence p(x,y) < §
implies d;(x,y) = supy.,<; P(sx,sy) < e. Thus, d; is uniformly equivalent to
p. In particular, d; is admissible. For r > 0, we define an admissible invariant
metric d, for E by d,(x,y) = di(rx,ry) (= supy.,, p(sx,sy)). Observe that
d,(tx,0) < d,(x,0) foreachx € E andt € L. B

Now, let Q@ N (0,1] = {r, | n € N}, where r; = 1. We define d(x,y) =
Y wen27"t1d,, (x,y). Then, d is an invariant metric on E and

p(x,y) <di(x,y) <d(x,y) <2d(x,y),

hence d is admissible (if p is bounded then so is d). It also follows that d(¢x, 0) <
d(x,0) for each x € E and ¢ € I It remains to show that d(tx,0) # d(x,0) for
eachx € E\ {0} and 0 < ¢ < 1. Since Q N (0, 1) is dense in (0, 1), it suffices to
show that d(tx,0) # d(x,0) foreach x € E \ {0} andt € Q N (0, 1). Assume that
there exists some x € E \ {0} andr € QN (0, 1) such that d(zx,0) = d(x,0). Note
that d, (tx,0) = d,(x,0) foreach r € Q N (0, 1). Then, it follows that

di(x,0) =d,(tx,0) = d,2(x,0) = d,2(tx,0)
= dt3(x50) == dﬂ(l‘x,o) = ..,
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so d;(x,0) = du+1(x,0) = d;(t"x,0) for every n € N. Since lim,—o0t" =
0, it follows that d;(x,0) = lim, o d;(t"x,0) = 0, hence x = 0, which is a
contradiction. O

The topological linear space RY = s (the space of sequences) has the following
admissible F-norms:

supmin {1/7, |x(@)[}. > min {27, [x@)[}. > 27 |x(0)]

ieN = ieN1+|x(f)|’

The first two do not satisfy condition (F5"), but the third does.
We now consider the completion of metric linear spaces (cf. 2.3.10).

Proposition 3.6.5. Let G be a topological group such that the topology is induced
by an invariant metric d. The completion G = (G,d) of (G,d) is a group such
that G is its subgroup and d is invariant. Similarly, the completion of a metric (F -
normed or normed) linear space E is a metric ( F-normed or normed) linear space
containing E as a linear subspace.

Proof. We define the algebraic operations on G as follows: for each x, y €
G, choose sequences (x;);eny and (y;)iey in G so as to converge to x and y,
respectively. Since d is invariant, (x;y;)ien and (x;!) are Cauchy sequences in
G. Then, define xy and x~! as the limits of (x;y;);en and (x71);en, respectively. It
is easily verified that these are well-defined. Since c?(x, y) = lim; 00 d(x;, i), it
is also easy to see that d is invariant, which implies the continuity of the algebraic
operations (x,y) — xy and x — x~ .

For the completion E of a metric linear space E, we can define not only addition
but also scalar multiplication in the same way. To see the continuity of scalar
multiplication, let x € E and ¢t € R. Choose a sequence (X;);en in E so as to
converge to x. For each ¢ > 0, we can choose §y > 0 (depending on #) so that

z€E, dz0) <8, |t —1t'| <8 = d(t'z,0) < &/4.

Then, we have no € N such that d(x,, x,,) < &o for every n > ng. Choose §; > 0
so that §; < §y and
Is] < 81 = d(sxn,,0) < &/4.

Now, let x’ € E and ¢’ € R such that d(x,x’) < 8 and |t — /| < §,. Take a
sequence (x!);en in E so as to converge to x” and choose n; € N so that n; > ny
and d(x,, x},) < 8 for every n > n;. Then, for every n > ny, it follows that
d(tx,,1'x) < d(tx,,tx5,) + d(txn, t'x00) + d(t' x50, t'x,) + d(t'x,,1'x))
=d(t(xy — Xny),0) + d((t — 1")xp,, 0)
+d(t'(xXpy = X1).0) + d(t'(x, — x,),0)
<eld+e/d+e/d+e/d=c¢
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When E is an F-normed (or normed) linear space, it is easy to see that the F'-norm
(or norm) for E naturally extends to E. ]

Concerning the completeness of admissible invariant metrics, we have the
following:

Theorem 3.6.6. Let G be a completely metrizable topological group. Every ad-
missible invariant metric for G is complete. In particular, a metric linear space is
complete if it is absolutely Gs (i.e., completely metrizable).

Proof. Let d be an admissible invariant metric for G and G be the completion
of (G,d). Note that Gisa topological group by Proposition 3.6.5. It suffices to
show that G = G. Since G is completely metrizable, G is a dense Gs-set in G
(Theorem 2.5.2), hence we can wrlte G\G Unen Frs Where each F,isa nowhere
dense closed set in G. Assume G \G # @ and take Xo € G \ G. Since xpx € G \G
for every x € G, it follows that G C UneN Xo IF,, where each Xo IF, is also a
nowhere dense closed set in G. Then, we have

G=JRulJx'F.
neN neN

which is the countable un~ion of nowhere dense closed sets. This contradicts the
complete metrizability of G (the Baire Category Theorem 2.5.1). O

Corollary 3.6.7. Let G be a metrizable topological group. Every completely
metrizable Abelian subgroup H of G is closed in G. Hence, in a metrizable
topological linear space, every completely metrizable linear subspace is closed.

Proof. By Theorem 3.6.2, G has an admissible left invariant metric d. Because H
is an Abelian subgroup of G, the restriction of d on H is an admissible invariant
metric for H, which is complete by Theorem 3.6.6. Hence, it follows that H is
closed in G. O

It is said that an F-norm (or an F-normed space) is complete if the metric
induced by the F-norm is complete. It should be noted that every metrizable
topological linear space has an admissible F'-norm (Proposition 3.6.4) and that
every admissible F-norm for a completely metrizable topological linear space is
complete (Theorem 3.6.6). A completely metrizable topological linear space (or a
complete F-normed linear space) is called an F -space. A Fréchet space is a locally
convex F-space, that is, a completely metrizable locally convex topological linear
space. Every Banach space is a Fréchet space, but the converse does not hold. In
fact, s = R is a Fréchet space but it is not normable (Proposition 1.2.1).

Concerning the quotient of an F-normed (or normed) linear space, we have the
following:

Proposition 3.6.8. Ler E = (E, | - ||) be an F-normed (or normed) linear space
and F a closed linear subspace of E. Then, the quotient space E/F has the
admissible F-norm (or norm) ||§|| = infiee || x|, where if || - || is complete then
sois || - ||. Hence, if E is (completely) metrizable or (completely) normable then so

is E/F.
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Proof. Ttis easy to see that || - || is an F-norm (or a norm). It should be noted that the
closedness of F is necessary for condition (F3). Let ¢ : E — E/F be the natural
linear surjection, i.e., ¢(x) = x + F. Then, for each ¢ > 0,

{gx) | Ixll < &} = {E € E/F | Jlg]| < &},

which means thatg : E — (E/F,|| - ||) is open and continuous, so it is a quotient
map. Then, ||- || induces the quotient topology, i.e., || - || is admissible for the quotient
topology. It also follows that if E is locally convex then so is E/F.

We should remark the following fact:

Fact. ||§ — &[] = inf {||lx — X' | x' € §'} for each x € &.

Indeed, the left side is not greater than the right side by definition. For each x,y € & and
y et

Iy =yl =llx =" +x =yl = inf{llx —x| | " €&}
because y’ + x — y € &’. Thus, the left side is not less than the right side.

We shall show that if || - || is complete then so is || - ||. To see the completeness
of || - ||, it suffices to prove that each Cauchy sequence (&;);ey in E/F contains a
convergent subsequence. Then, by replacing (§;);en Wwith its subsequence, we may
assume that ||§& — & 41| < 277 for each i € N. Using the fact above, we can
inductively choose x; € & so that | x; — x; 41| < 27. Then, (x;);ey is a Cauchy
sequence in E, which converges to some x € E. It follows that (&;);en converges
to some x + F. O

In the above, E/F is called the quotient F-normed (or normed) linear space
with the F'-norm (or norm) || - ||, which is called the quotient F -norm (or norm).
Note that £/ F is locally convex if so is E. If E is a Banach space, a Fréchet space,
or an F-space, then so is £/ F for any closed linear subspace F of E.

Recall that A C FE is topologically bounded if, for each neighborhood U of
0 € E, there exists some r € Rsuchthat A C rU.

Theorem 3.6.9. A topological linear space E is normable if and only if there is a
topologically bounded convex neighborhood of 0 € E.

Proof. The “only if” part is trivial. To see the “if” part, let V' be a topologically
bounded convex neighborhood of 0 € E. Then, W = V N (—V) is a topologically
bounded circled convex neighborhood of 0 € E. Hence, the Minkowski functional
pw is anorm on E by Proposition 3.3.4. By Corollary 3.4.12,
{x eE | pw(x) < 8} = spﬁ,l([O, 1)) = eintW foreach e > 0.
For each neighborhood U of 0 € E, we can choose r > O such that W C rU. Then,
{x eE ‘ pw(x) < r_l} =r'intW cr 'w c U,

hence py induces the topology for E. O
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For the local convexity, we have the following:

Theorem 3.6.10. A (metrizable) topological linear space E is locally convex if and
only if E is linearly homeomorphic to a linear subspace of the (countable) product
[Lea Ex of normed linear spaces E,.

Proof. As is easily observed, the product of locally convex topological linear spaces
is locally convex, and so is any linear subspace of a locally convex topological linear
space. Moreover, the countable product of metrizable spaces is metrizable. Then, the
“if”” part follows.

We show the “only if” part. By the local convexity, £ has a neighborhood basis
{Vi| A € A} of 0 € E consisting of circled closed convex sets (cf. Proposition 3.4.2),
where card A = R if E is metrizable (Theorem 3.6.1). Foreach A € A, let F; be a
maximal linear subspace of E contained in V). (The existence of F) is guaranteed
by Zorn’s Lemma.) Then, F) is closed in E. Let g5 : E — E/F), be the natural
linear surjection, where we do not give the quotient topology to £/ F) but we want
to define anormon E/ F).

Observe that ¢, (V)) is a circled convex set in E/F; and 0 € coreq,(V)).
Moreover, R1& ¢ ¢, (V)) for each £ € (E/F)) \ {0}. Indeed, take x € E \ F),
so that g; (x) = £. By the maximality of F), Rx + F) ¢ V,,ie,tx + y &V, for
somet € Rand y € F), where we can take t > 0 because V) is circled. For each
z € F,

Ix+y=1Q2tx +2)+ 52y —2).

Since 2y — 7z € F, C V), it follows that 2tx + z € V). Then, 2t§ = ¢, (2tx) &
q,(V2).

By Proposition 3.3.4, the Minkowski functional py = py,(v,) @ E/Fy — R for
¢,(V;) is a norm. Thus, we have a normed linear space £, = (E/F), p,). Observe
that

0 cintV, =core V) C q;l(corqu(VA))
=4, (P40 (0. 1) = (p2g) ™' (0. 1))

By Proposition 3.4.11, the sublinear functional p,q, : E — R is continuous, which
implies that g, : E — E} is continuous.

Leth : E — [[,c, Ex be the linear map'” defined by h(x) = (qa(x))rea. If
x #0 € Ethenx &V, (sox ¢ F)) for some A € A, which implies g, (x) #
0, hence A(x) # 0. Thus, & is a continuous linear injection. To see that 4 is an
embedding, it suffices to show that

h(V)) Dh(E)N pr;l(pk_l([o, %))) foreach A € A.

19That is, a continuous linear function.
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If py(pr; h(x)) < % then
42(2x) = pryh(2x) € p; ([0, 1)) C g2 (Va),
hence 2x — y € F) for some y € V). Then, it follows that
x=302x—y)+ 3y €V,
so h(x) € h(V,). This completes the proof. O

Combining Theorem 3.6.10 with Proposition 3.6.5 and Corollary 3.6.7, we have
the following:

Corollary 3.6.11. A ropological linear space E is a Fréchet space if and only if
E is linearly homeomorphic to a closed linear subspace of the countable product
[1ien Ei of Banach spaces E;. O

3.7 The Closed Graph and Open Mapping Theorems

This section is devoted to two very important theorems, the Closed Graph Theorem
and the Open Mapping Theorem. They are proved using the Baire Category
Theorem 2.5.1.

Theorem 3.7.1 (CLOSED GRAPH THEOREM). Let E and F be completely metriz-
able topological linear spaces and f : E — F be a linear function. If the graph of
fisclosedin E x F, then f is continuous.

Proof. Tt suffices to show the continuity of f at 0 € E. Let d and p be admissible
complete invariant metrics for £ and F, respectively (cf. Proposition 3.6.4).

First, we show that for each ¢ > 0, there is some §(¢) > O such that
B4(0,5(g)) C cl f7'(B,(0,¢)). Since F = |J,cynB,(0,6/2) and f is linear,
it follows that E = J,enynf '(B,(0,£/2)). By the Baire Category Theo-
rem 2.5.1, intclnf ~'(B,(0,6/2)) # @ for some n € N, which implies that
intcl f71(B,(0,£/2)) # 0. Let z € intcl f~'(B,(0,¢/2)) and choose §(¢) > 0
so that

2+ By(0.5(e) = Ba(2.8() C el 7' (B,(0.¢/2).

Then, it follows that
B4 (0,6(¢)) C clf_l(B,,((), e/2))—z Ccl f_l(Bp(O,e)).

The second inclusion can be proved as follows: for each y € cl f~!(B,(0,¢/2))
and n > 0, we have y',7 € f7'(B,(0,¢/2)) such that d(y, '), d(z,7) < n/2,
which implies d(y — z, y' — Z’) < n. Observe that

p(f(Y' =2).0) = p(f()). fE&) = p(f()).0) + p(f(Z).0) <&,
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which means y' — 7' € f~1(B,(0, ¢)). Therefore, y — z € cl f~1(B,(0, ¢)).
Now, for each ¢ > 0 and x € B;(0,5(¢/2)), we can inductively choose x, € E,
n € N, sothatx, € f~'(B,(0,27"¢)) and

d(x, >/ xi)) =d(x—Y/_;x, 0) <min {27, 827" 1e)}.
Indeed, if x1, ..., x,—1 have been chosen, then

n—1

X =Y xi €By(0.8(27"e)) Ccl f7(By(0.27"¢)).

i=1

hence we can choose x, € f~'(B,(0,27"¢)) so that
d(x, Y0 %) =d(x = Y2 xi, x,) <min {27,827 e)}.

Since p(f(x,),0) < 27"¢ for each n € N, it follows that (f(3_F_; X/))nen is a
Cauchy sequence, which converges to some y € F.Foreachn € N,

P(f(Ci= X 0) < ) p(f(xi). 0) <) 276 <,

i=1 i=1

hence y € EP(O, €). On the other hand, Y /_, x; converges to x. Since the graph
of f is closed in E x F, the point (x, y) belongs to the graph of f, which means
f(x) =y € B,(0,¢). Thus, we have f(B,(0,8(¢/2))) C B,(0, ¢). Therefore, f is
continuous. O

Corollary 3.7.2. Let E and F be completely metrizable topological linear spaces.
Then, every continuous linear isomorphism f : E — F is a homeomorphism.

Proof. In general, the continuity of f implies the closedness of the graph of f in
E x F. By changing coordinates, the graph of f can be regarded as the graph of
f~!. Then, it follows that the graph of f~!is closed in F x E, which implies the
continuity of f~! by Theorem 3.7.1. O

Theorem 3.7.3 (OPEN MAPPING THEOREM). Let E and F be completely metriz-
able topological linear spaces. Then, every continuous linear surjection f : E —
F is open.

Proof. Since f~'(0) is a closed linear subspace of E, the quotient linear space
E/f71(0) is completely metrizable by Proposition 3.6.8. Then, f induces the
continuous linear isomorphism f : E/f~'(0) — F. By Corollary 3.7.2, f is a
homeomorphism. Note that the quotient map ¢ : £ — E/f~!(0) is open. Indeed,
for every open set U in E, ¢! (q(U)) = U + f~'(0) is open in E, which means
that ¢(U) is open in £/ ~'(0). Hence, f is also open. O
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Note. In the above, the Closed Graph Theorem is first proved and then the Open Mapping
Theorem is obtained as a corollary of the Closed Graph Theorem. Conversely, we can
directly prove the Open Mapping Theorem and then obtain the Closed Graph Theorem
as a corollary of the Open Mapping Theorem.

Direct Proof of the Open Mapping Theorem. Let d and p be admissible complete invariant
metrics for E and F, respectively.

First, we show that for each ¢ > 0, there is some 8(¢) > 0 such that B,(0,(s)) C
cl f(B4(0,¢)). Since E = U,ennBa(0,¢/2), it follows that F = f(E) = U,ennf
(B4(0,£/2)). By the Baire Category Theorem 2.5.1, intclnf(B4(0,&/2)) # @ for some
n € N, which implies that intcl f(B;(0,£/2)) # 0. Let z € intcl f(B,(0,¢/2)) and
choose §(¢) > 0 so that

2+ B,(0,8(g)) = B,(z,8(¢)) Ccl f(By(0,¢/2)).
Then, it follows that
B,(0.8(¢)) Ccl f(Ba(0,6/2)) —z Ccl f(By(0,¢)),

where the second inclusion can be seen as follows: for y € cl f(B;(0,&/2)) and n > 0,
choose y’,7 € B4(0,¢/2) so that p(y, ('), p(z, f(Z)) < n/2. Then, observe that
p(y —z (' —2)) <nand d(y’ —2/,0) =d(y’.7') <& hence y —z € cl f(B4(0,¢)).

Next, we prove that cl f(B;(0,¢/2)) C f(B4(0,¢)) for each ¢ > 0. For each y €
cl f(B4(0,¢/2)), choose x; € B;(0,¢/2) so that

p(y, f(x1)) <min{2™", 827 %¢)}.
By induction, we can choose x,, € B;(0,27"¢), n € N, so that

p(y, f(Xizi %)) = p(y = Xi=) f(xi), 0) <min{27", 827" ")}
Indeed, if xq, ..., x,—1 have been chosen, then

n—1

Y=Y f(xi) €By(0.627"e)) C cl f(By(0.27"¢)),

i=l1

hence we can choose x, € B;(0,27"¢) so that

n n—1
P(Yv f(Zf:1 xi)) = P(y - Zi:l S(xi), f(xn))
< min{2™", 827" 'e)}.
Since (}_7_, X;)nen is a Cauchy sequence in E, it converges to some x € E. On the other

hand, (f(}_7—, xi))nen converges to y. By the continuity of f, we have f(x) = y. For
eachn € N,

d(Y_,xi, 0) < Zd(x,v,O) < 22_15 <e,
i=1 i=1

hence x € B4(0, £). Thus, it follows that cl f(B;(0,¢/2)) C f(B4(0, ¢)).
_ Tosee that f is open, let U be an open set in E. For each x € U, choose & > 0 so that
B4(0,e) C —x + U. Since

B,(0.8(2/2)) C cl f(B4(0.£/2)) C f(Ba(0.¢)) C —f(x) + f(U).
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it follows that B,(f(x),8(¢/2)) C f(U). Hence, f(U) isopenin F. O
Now, using the Open Mapping Theorem, we shall prove the Closed Graph Theorem.

Proof of the Closed Graph Theorem. The product space E X F is a completely metrizable
topological linear space. The graph G of f is a linear subspace of E X F that is completely
metrizable because it is closed in E X F. Since p = pry;|G : G — E is a homeomorphism
by the Open Mapping Theorem, f = pry o p~! is continuous. O

Remark 13. In both the Closed Graph Theorem and the Open Mapping Theorem,
the completeness is essential. Let £ = ({1, | - ||2), where £; C £, as sets and || - |2
is the norm inherited from ¢,. Then, E is not completely metrizable. Indeed, if so,
it would be closed in £, by Corollary 3.6.7, but E is dense in £, and E # {,. The
linear bijection f = id : £; — E is continuous, but is not a homeomorphism, so it
is not an open map. It follows from the continuity of f that the graph of f is closed
in £; x E, hence the graph of f~!is closedin E x £;. However, f~! : E — {; is
not continuous.

3.8 Continuous Selections

Let X and Y be spaces and ¢ : X — SB(Y) be a set-valued function, where B(Y) is
the power set of Y. We denote Po(Y) = P(Y) \ {0}. A (continuous) selection for
@isamap f : X — Y suchthat f(x) € ¢(x) for each x € X. For a topological
linear space Y, we denote by Conv(Y') the set of all non-empty convex sets in Y. In
this section, we consider the problem of when a convex-valued function ¢ : X —
Conv(Y') has a selection.

It is said that ¢ : X — PB(Y) is lower semi-continuous (L.s.c.) (resp. upper
semi-continuous (u.s.c.)) if, for each openset V in Y,

{x eX \ e(x)NV # @} (resp. {x eX | o(x) C V}) isopenin X;

equivalently, for each open set V in Y and xo € X such that ¢(xo) NV # @ (resp.
©(x0) C V), there exists a neighborhood U of xy in X such that p(x) NV # @
(resp. ¢(x) C V) for every x € U. We say that ¢ is continuous if ¢ : X — B(Y)
is Ls.c. and u.s.c. The continuity of ¢ coincides with that in the usual sense when
B(Y) is regarded as a space with the topology generated by the following sets:

U ={AePY)|ANU #0} and UT = {4 ePY) | ACU},

where U is non-empty and open in Y. This topology is called the Vietoris topology,
where @ is isolated because {@} = @+ (@ ¢ U~ for any open set U in Y). The
Vietoris topology has an open basis consisting of the following sets: V(@) = {@}
and

V(U.....U)={AcY |[Ac U U.VYi=1,....n, ANU; # 0}
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() nfro

i=l1 i=

where n € N and Uy, ...,U, are open in Y. In fact, U~ = V(U, X) and Ut =
V(U) U V(@). The subspace F1(Y) = {{y} | ¥ € Y} of Py(Y) consisting of all
singletons is homeomorphic to Y because U™ NF(Y) = U~ NF(Y) = F(U)
for each open set U in Y. It should be noted that By(Y) with the Vietoris topology
is not 7; in general.

For example, the space Py (I) is not 7. Indeed, for any neighborhood of I/ of I € Py (D),
there are open sets Uj,...,U, in I such that I € V(Uy,...,U,) C U. Then, D €
V(U,...,U,) CU for every dense subset D C I. In particular, IN Q € U.

The subspace Comp(Y') of P(Y) consisting of all non-empty compact sets is
Hausdorff.?° Indeed, for each A # B € Comp(Y), we may assume that A\ B # @.
Take yo € B\ A. Because of the compactness of A, we have disjoint open sets U and
VinY suchthat AC Uandyy € V.Then,Ae UT,BC V- ,andUT NV~ #£ 0.
It will be prove that Comp(Y') is metrizable if Y is metrizable (Proposition 5.12.4).
Moreover, Cld(Y') is metrizable if and only if Y is compact and metrizable (cf. Note
after Proposition 5.12.4).

By the same argument as above, it follows that if Y is regular then the subspace Cld(Y)
of P(Y') consisting of all non-empty closed sets is Hausdorff. One should note that the
converse is also true, that is, if C1d(Y') is Hausdorff then Y is regular. When Y is not regular,
we have a closed set A C Y and yo € Y \ A such that if U and V are open sets with A C U
and yo € VthenUNV # @.Let B = AU{y,} € Cld(Y) andletUl,...,U,,,U{,...,Un’,
be open sets in Y such that

AEV(U,.....U,) and B eV(U/.....U,).

n’

Let Uy = ({U/ | U/ N A = @}. Since yy € Uy, we have y; € Uy N Ji—, U;. It follows
that
AU} eV(U.....U)NVU/,....U)).

Thus, Cld(Y') is not Hausdorff.

Proposition 3.8.1. For a function g : Y — X, the set-valued function g=' : X —
B(Y) is Ls.c. (resp. w.s.c.) if and only if g is open (resp. closed).

Proof. This follows from the fact that, for V C Y,
{x eX \ g 'x)NV # @} =g(V) and

freX|g'@cVi=X\{xeX|g ' )NX\V)#0}
=X\g(X\V). O

20Recall that Y is assumed to be Hausdorff.
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Because of the following proposition, we consider the selection problem for 1.s.c.
set-valued functions.

Proposition 3.8.2. Let ¢ : X — Po(Y) be a set-valued function. Assume that, for
each xo € X and yy € @(xy), there exists a neighborhood U of xo in X and a
selection f : U — Y for ¢|U such that f(xo) = yo. Then, ¢ is Ls.c.

Proof. Let V be an open set in Y and xo € X such that ¢(xo) NV # 0. Take
any yo € ¢(xo) N V. From the assumption, there is a neighborhood U of xy in X
with a selection f : U — Y for ¢|U such that f(xo) = yo. Then, f~' (V) is a
neighborhood of x in X and f(x) € ¢(x) NV foreach x € f~(V). O

Lemma 3.8.3. Let ¢, : X — P(Y) be set-valued functions such that cl p(x) =
cly(x) foreach x € X. If ¢ is Ls.c. then so is .

Sketch of Proof. This follows from the fact that, for each open set V' in Y and B C Y,
VNB#@ifandonlyif V Ncl B # @.

Lemma 3.8.4. Letgp : X — P(Y) bels.c., Abeaclosedsetin X,and f : A - Y
be a selection for ¢|A. Define y : X — B(Y) by

{f)} if x e A,

o(x) otherwise.

Y(x) =

Then, v is also Ls.c.

Proof. Foreach openset VinY, f~!(V) is openin A and

V) clxeX |px) NV # 0},

where the latter set is open in X because ¢ is 1.s.c. Then, we can choose an open set
Uin X sothat f7' (V) =UNAandU C {x € X | o(x) NV # @}. Observe that

xeX|y)NV£0=UU({xeX|px)NV #0}\ A).

Thus, it follows that v is l.s.c. O

For each W C Y2 and yo € Y, we denote

W(yo) ={y €Y | (vo.y) € W}.

If W is a neighborhood of the diagonal Ay = {(y,y) | y € Y} in Y2, then W(y,)
is a neighborhood of yg in Y.

Lemma 3.8.5. Let ¢ : X — PY) be Ls.c., f : X — Y be a map, and W be
a neighborhood of Ay in Y?. Define a set-valued function ¥ : X — B(Y) by
Y(x) = o(x) N W(f(x)) foreach x € X. Then, ¥ is l.s.c.
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Proof. Let V be an open set in ¥ and xo € X such that ¥ (xo) NV # @. Take any
Yo € o(x0) N W(f(x0)) N V. Since (f(x0), yo) € W, there are open sets V; and
V5 in Y such that (f(xo), yo) € Vi x Vo C W. Then, x( has the following open
neighborhood in X:

U= MnN{xeX|ox)nhnV # 0}

Foreach x € U, we have y € p(x) NV, N V. Since (f(x),y) e Vi x Vo, C W,
it follows that y € ¢(x) N W(f(x)) NV, hence ¥(x) NV # @. Therefore, ¢ is
Ls.c. O

Let E be a linear space. The set of all non-empty convex sets in E is denoted by
Conv(E). Recall that (4) denotes the convex hull of A C E.

Lemma 3.8.6. Let E be a topological linear space and ¢ : X — Po(E) be an
L.s.c. set-valued function. Define a convex-valued function ¥ : X — Conv(E) by
Y(x) = (p(x)) for each x € X. Then, V¥ is also Ls.c.

Proof. Let V be anopen setin E and xo € X such that ¢ (xo) NV # @. Choose any
Yo = Y i tiyi € ¥(xo) NV, where yi,...,y, € ¢(xo) and t1,...,1, > 0 with
Z?=1 t; = 1. Then, each y; has an open neighborhood V; such that 4V} + --- +
t,V, C V. Since ¢ is Ls.c.,

n

U=(){xeX|px)nV #0}

i=1

is an open neighborhood of xy in X. For each x € U, letz; € o(x) NV, i =
1,...,n.Then, Y 7_, tiz; € ¥(x) NV, hence ¥ (x) NV # @. Therefore, ¥ is Ls.c.
O

Lemma 3.8.7. Let X be paracompact, E be a topological linear space, and ¢ :
X — Conv(E) be an ls.c. convex-valued function. Then, for each convex open
neighborhood V of 0 in E, there exists a map [ : X — E such that f(x) €
o(x) 4+ V foreach x € X.

Proof. Foreachy € E, let
U, = {xeXifp(x)ﬂ(y—V)yéQ}.

Since ¢ is 1.s.c., we have Y = {U, | y € E} € cov(X). From paracompactness, X
has a locally finite partition of unity (f3)ie4 subordinated to U. For each A € A,
choose yy € E so that supp fi C U,,. Wedefineamap f : X — E by f(x) =
Y oaea L) If fi(x) # Othen x € Uy,, which means that p(x) N (y,—V) # 0,
i.e., y1 € ¢(x) + V. Since each p(x) 4+ V is convex, f(x) € p(x) + V. O
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Now, we can prove the following:

Theorem 3.8.8 (MICHAEL SELECTION THEOREM). Let X be a paracompact
space and E = (E, d) be a locally convex metric linear space.”! Then, every l.s.c.
convex-valued function ¢ : X — Conv(E) admits a selection if each ¢(x) is d-
complete. Moreover, if A is a closed set in X then each selection f : A — E for
©|A can extend to a selection f : X — E for ¢.

Proof. Let {V; | i € N} be a neighborhood basis of 0 in E such that each V;
is symmetric, convex, and diam V; < 2~(*1D_ By induction, we construct maps
fi: X —> E,i € N,sothat,foreachx € X andi € N,

(1 fi(x) € p(x) + Vi and
(2) d(fi+1(x), fi(x)) <27,

The existence of f is guaranteed by Lemma 3.8.7. Assume we have maps
fi, ..., fn satisfying (1) and (2). Define ¥ : X — Conv(E) by

Y(x) = p(x)N(fu(x) +V,) foreachx € X.

Since V,, is symmetric, we have ¥ (x) # @ by (1). Consider the neighborhood W =
{(x,y) € E* | y —x € V,}of Ag in E?. Then, W(f,(x)) = f,(x) + V,. By
Lemma 3.8.5, ¥ is l.s.c. We can apply Lemma 3.8.7 to obtain amap f,4+,: X — E
such that

Jot1(x) € Yy(x) + Vy41 foreach x € X.

Then, as is easily observed, f,+; satisfies (1) and (2). Thus, we have the desired
sequence of maps f;,7 € N.

Using maps f; : X — E,i € N, we shall define a selection f : X — FE for ¢.
For each x € X andi € N, we have x; € ¢(x) such that d(f;(x), x;) <270+ by
(1). Then, (x;);en is Cauchy in ¢(x). Since ¢(x) is complete, (x;);en converges to
f(x) € ¢(x). Thus, we have f : X — E. Note that (f;);en uniformly converges
to f, so f is continuous. Hence, f is a selection for ¢.

For the additional statement, apply Lemma 3.8.4. O

Concerning factors of a metric linear space, we have the following:

Corollary 3.8.9 (BARTLE-GRAVES-MICHAEL). Let E be a locally convex met-
ric linear space and F be a linear subspace of E that is complete (so a Fréchet
space). Then, E ~ F x E/F. In particular, E ~ R x G for some metric linear
space G.

Proof. Note that the quotient space E/F is metrizable (Proposition 3.6.8) and the
natural map g : E — E/F is open, hence g~! : E/F — Conv(E) is Ls.c. by
Proposition 3.8.1. Since g7'g(x) = x + F is complete for each x € E, we apply
the Michael Selection Theorem 3.8.8 to obtain a map f : E/F — FE thatis a

2IRecall that a metric linear space is a linear space with a linear metric (cf. Sect. 3.5).
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selection for g~!, i.e., gf = id. Then, x — fg(x) € F foreach x € E. Hence, a
homeomorphism  : E — F x (E/F) can be defined by

h(x) = (x — fg(x), g(x)) foreachx € E.

In fact, h™'(y,z) = y + f(z) foreach (y,z) € F x E/F. O

By combining the Michael Selection Theorem 3.8.8 and the Open Mapping The-
orem 3.7.3, the following Bartle—Graves Theorem can be obtained as a corollary:

Theorem 3.8.10 (BARTLE-GRAVES). Let E and F be Fréchet spaces and f
E — F be a continuous linear surjection. Then, there is amap g : F — E such
that fg = id. Therefore, E ~ F X ker f by the homeomorphism h defined as
follows:

hix)=(f(x),x —gf(x)) foreachx € E. O

We show that each Banach space is a (topological) factor of £;(1"). To this end,
we need the following:

Theorem 3.8.11 (BANACH-MAZUR, KLEE). For every Banach space E, there is
a continuous linear surjection q : £1(I") — E, where card I’ = dens E.

Proof. The unit closed ball Br of E has a dense set {e, | y € I'}. Since
Zyef |x(y)| = ||x|| < oo foreach x € £,(I") and E is complete, we can define a
linear map g : £;(I") — E as follows:

q(x) = Z x(y)e, foreachx € E.»2
yer

Since [|g(x)[| < >_,p [x(¥)| = |Ix]|, it follows that ¢ is continuous.
To see that g is surjective, it suffices to show B C ¢(£;(I")). For each y € Bg,
we can inductively choose e, i € N, so that y; # y; ifi # j, and

-1 —1 -2
||y_e)/1||<2 v”y_e}/l_z eyz||<2 s

—1 ) -3
ly —e, —27"e, —277,|| <27, ....

We have x € £,(I") defined by

270 ity =y,
x(y) = ,
0 otherwise.
Then, it follows that y = ) 72, 2!~"e,, = g(x). This completes the proof. O

22See Proposition 1.2.3.
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As a combination of the Bartle-Graves Theorem 3.8.10 and Theorem 3.8.11
above, we have the following:

Corollary 3.8.12. For any Banach space E, there exists a Banach space F such
that E x F ~ £,(I"), where card ' = dens E. O

In the Michael Selection Theorem 3.8.8, the paracompactness of X is necessary.
Actually, we have the following characterization:

Theorem 3.8.13. A space X is paracompact if and only if the following holds for
any Banach space E: if ¢ : X — Conv(E) is Ls.c. and each ¢(x) is closed, then ¢
has a selection.

Proof. Since the “only if” part is simply Theorem 3.8.8, it suffices to prove the “if”
part. For each U € cov(X), we define ¢ : X — Po(£;(U)) as follows:

px) ={ze i) | |zl =1, YU €U, z2(U) = 0,z(U) =0 ifx ¢ U}.

Clearly, each ¢(x) is a closed convex set.

To see that ¢ is 1.s.c., let W be an open setin £; (/) and z € ¢(x)NW.Choose § >
0 so that B(z,28) C W. Then, we have Vi, ..., V, € U[x] such that ) /_, z(V;) >
1—46, where ﬂ:-’zl V; is a neighborhood of x in X. We define 7' € £, (/) as follows:

2(Vp)

Z(V) = —Z'}:lZ(V;’)

and 7 (U) =0 forU # Vi,....V,.

It is easy to see that ' € ¢(x") N W forevery x" € (")/_; V;. Thus, ¢ is Ls.c.

By the assumption, ¢ has a selection f : X — £;(Uf). For each U € U, let
fu : X — Ibe the map defined by fy(x) = f(x)(U) for x € X. Then, (fv)veu
is a partition of unity such that f;;'((0, 1]) C U forevery U € U. The result follows
from Theorem 2.7.5. O

Remark 14. Let g,h : X — R be real-valued functions on a space X such that g
isws.c., his Ls.c., and g(x) < h(x) for each x € X. We define the convex-valued
function ¢ : X — Conv(R) by ¢(x) = [g(x),h(x)] for each x € X. Then, ¢ is
L.s.c. Indeed, for each open set V in R, let ¢(x) NV # @. Take y € ¢(x) N V and
a <y <bsothat[a,b] C V. Since g is u.s.c. and £ is L.s.c., x has a neighborhood
U in X such that x’ € U implies g(x") < b and h(x") > a. Since g(x’) < h(x'), it
follows that

e(x) NV D [g(x"), h(x")] N [a,b] = [max{a, g(x")}, min{b, h(x")}] # 0.
Now, we can apply the Michael Selection Theorem 3.8.8 to obtain a map f :

X — R such that g(x) < f(x) < h(x) for each x € X. This is analogous to
Theorem 2.7.6.
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3.9 Free Topological Linear Spaces

The free topological linear space over a space X is a topological linear space L(X)
that contains X as a subspace and has the following extension property:

(LE) For an arbitrary topological linear space F, every map f : X — F of X

uniquely extends to a linear map®® f : L(X) — F.

X F
4
n 7~
s f
L(X)

If such a space L(X) exists, then it is uniquely determined up to linear homeomor-
phism, that is, if E is a topological linear space that contains X and has the property
(LE), then E is linearly homeomorphic to L(X).

Indeed, there exist linear maps ¢ : L(X) — E and ¢ : E — L(X) such that p|X =
V¥|X = idy. Since id  (x) is a linear map extending idy, it follows from the uniqueness that
Yo = idp (). Similarly, we have ¢y = idg. Therefore, ¢ is a linear homeomorphism with

v=9".
Lemma 3.9.1. If X is a Tychonoff space,

(1) X is a Hamel basis for L(X);
2) L(X) is regular.

Proof. (1): First, let F' be the linear span of X. Applying (LE), we have a linear
map r : L(X) — F such that r|X = idy. Since r : L(X) — L(X) is a linear
map extending idy, we have r = idx), which implies F = L(X), thatis, L(X)
is generated by X .

To see that X is linearly independentin L(X),letxi,...,x, € X, wherex; # x;
ifi # j.Foreachi = 1,...,n,thereisamap f; : X — Isuchthat f;(x;) =1
and fi(x;) = Ofor j # i.Let f : X — R”" be the map defined by f(x) =
(fi(x), ..., fu(x)). Then, by (LE), f extends to a linear map f : L(X) —> R,
where f(x;) = f(x;) = e; foreachi = 1,...,n. Since ey,...,e, is linearly
independent in R”, it follows that xi, ..., x, € X is linearly independent in L(X).

(2): Due to the Fact in Sect. 3.4 and Proposition 3.4.2, it suffices to show that {0}
is closed in L(X). Each z € L(X) \ {0} can be uniquely represented as follows:

n
7= Ztix,-, xi €X, t ER\{O},

i=1

23That is, a continuous linear function.



3.9 Free Topological Linear Spaces 129

where x; # x; if i # j. Thereisamap f : X — Isuch that f(x;) = 1 and
f(xi) =0foreachi =2,...,n. By (LE), f extends to a linear map f LX) —>
R. Then, f(z) = t1f(x1) = t; # 0 = £(0). Hence, f~'(R \ {0}) is an open
neighborhood of z in L(X) that misses 0. O

Remark 15. In the definition of a free topological linear space L(X), specify a map
n: X — L(X) instead of assuming X C L(X) and replace the property (LE) with
the following universality:

(*) Foreachmap f : X — F of X to an arbitrary topological linear space F', there
exists a unique linear map f : L(X) — F suchthat fn = f.

X

n Ve
L(X)

Then, we can show that 7 is an embedding if X is a Tychonoff space.

To see that 7 is injective, let x # y € X. Then, there is amap f : X — I with
f(x) = 0and f(y) = 1. By (*), we have a linear map f : L(X) — R such that
fn = f.Then, observe n(x) # n(y).

To show that  : X — 1(X) is open, let U be an open set in X. For each x € U,
there is a map g : X — I such that g(x) = 0 and g(X \ U) = 1. By (¥), we
have a linear map g : L(X) — R such that gn = g. Then, V = g—l((—%, %)) is
an open neighborhood 7(x) in L(X). Since 7' (V) = g7!([0, 3)) C U, it follows
that VN n(X) C n(U), hence n(U) is a neighborhood of n(x) in n(X). This means
that n(U) is open in n(X). Thus, n : X — n(X) is open.

Since 7 is an embedding, X can be identified with (X', which is a subspace of
L(X). Then, (*) is equivalent to (LE). Here, it should be noted that the uniqueness
of f in (*) is not used to prove that 7 is an embedding. Moreover, the linear map f
in (*) is unique if and only if L(X) is generated by n(X). (For the “only if” part,
refer to the proof of Lemma 3.9.1(1).)

Theorem 3.9.2. For every Tychonoff space X, there exists the free topological
linear space L(X) over X.

Proof. There exists a collection F = {fi : X — F) | A € A} such that, for an
arbitrary topological linear space F' and each continuous map f : X — F, there
exist A € A and a linear embedding ¢ : F) — F suchthat ¢f) = f.

Indeed, for each cardinal t < card X, let T, be the topologies 7 on IR} such that (Rff, T)
is a topological linear space. Then, the desired collection is ‘

F= U U cx. @1y

t<card X TE€T,
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Consequently, for an arbitrary topological linear space F and each continuous map f :
X — F,lett = card f(X) < cardX. The linear span F’ of f(X) is linearly
homeomorphic to (R%,7) for some 7 € .. Let ¢ : F i (R%,T) be a linear
homeomorphism. Accordingly, we have g = ¥f € C(X, (R}, 7)), and thus f = v lg.

The product space [ [, F) is a topological linear space. Let  : X — [[,c4 Fa
be the map defined by 7(x) = (fi(x))iea. We define L(X) as the linear span of
n(X)in [[,c4 Fa. Then, (L(X), n) satisfies the condition (*) in the above remark.
In fact, for an arbitrary topological linear space F and each map f : X — F,
there exists A € A and a linear embedding ¢ : Fy — F such that ¢f; = f.
Consequently, we have a linear map f* = ¢pr; |L(X) : L(X) — F and

Fn(x) = gpryn(x) = pfi(x) = f(x) foreveryx € X.

12

F
A
\
\

LX) C [heatr —— Fa

pry

Because L(X) is generated by 1(X), a linear map f : L(X) — F is uniquely
determined by the condition that fn = f. As observed in the above remark, 7 is an
embedding, hence X can be identified with n(X). Then, L(X) satisfies (LE), i.e.,
L(X) is the free topological linear space over X . O

Let X and Y be Tychonoff spaces. For each map f : X — Y, we have a unique
linear map f; : L(X) — L(Y') that is an extension of f by (LE).

X Y

N N

LX) —— L(Y)
;

This is functorial, i.e., (gf); = gy f; for every pair of maps f : X — Y and
g :Y — Z, and id;(x) = (idx)y. Accordingly, we have a covariant functor
from the category of Tychonoff spaces into the category of topological linear
spaces. Consequently, every homeomorphism f : X — Y extends to a linear
homeomorphism f; : L(X) — L(Y).

In Sect. 7.12, we will construct a metrizable linear space that is not an absolute
extensor for metrizable spaces. The free topological linear space L(X) over a
compactum X has an important role in the construction. The topological and
geometrical structures of L (X) will be studied in Sect. 7.11.
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Notes for Chap. 3

There are lots of good textbooks for studying topological linear spaces. The following classical
book of Kothe is still a very good source on this subject. The textbook by Kelly and Namioka
is also recommended by many people. Besides these two books, the textbook by Day is a good
reference for normed linear spaces as is Valentine’s book for convex sets. Concerning non-locally
convex F-spaces and Roberts’ example (a compact convex set with no extreme points), one can
refer to the book by Kalton, Peck and Roberts.

* G. Kothe, Topological Vector Spaces, I, English edition, GMW 159 (Springer-Verlag, New
York, 1969)

* J.L. Kelly and I. Namioka, Linear Topological Spaces, Reprint edition, GTM 36 (Springer-
Verlag, New York, 1976)

*  M.M. Day, Normed Linear Spaces, 3rd edition, EMG 21 (Springer-Verlag, Berlin, 1973)

* FEA. Valentine, Convex Sets (McGraw-Hill Inc., 1964); Reprint of the 1964 original (R.E. Krieger
Publ. Co., New York, 1976)

¢ N.J. Kalton, N.T. Peck and J.W. Roberts, An F-space Sampler, London Math. Soc. Lecture
Note Ser. 89 (Cambridge Univ. Press, Cambridge, 1984)

For a systematic and comprehensive study on continuous selections, refer to the following book
by Repovs and Semenov, which is written in instructive style.

* D. Repovs and P.V. Semenov, Continuous Selections of Multivalued Mappings, MIA 455
(Kluwer Acad. Publ., Dordrecht, 1998)

In Theorem 3.6.4, the construction of a metric d from dj is due to Eidelheit and Mazur [1].

The results of Sect. 3.8 are contained in the first part of Michael’s paper [2], which consists of
three parts. For the finite-dimensional case, refer to the second and third parts of [2] (cf. [3]) and
the book of Repovs§ and Semenov. The finite-dimensional case is deeply related with the concept
discussed in Sect. 6.11 but will not be treated in this book. The 0-dimensional case will be treated
in Sect. 7.2.

References

1. M. Eidelheit, S. Mazur, Eine Bemerkung iiber die Riume vom Typus (F). Stud. Math. 7,
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Chapter 4
Simplicial Complexes and Polyhedra

In this chapter, we introduce and demonstrate the basic concepts and properties
of simplicial complexes. The importance and usefulness of simplicial complexes
lies in the fact that they can be used to approximate and explore (topological)
spaces. A polyhedron is the underlying space of a simplicial complex, which has
two typical topologies, the so-called weak (Whitehead) topology and the metric
topology. The paracompactness of the weak topology will be shown. We show that
every completely metrizable space can be represented as the inverse limit of locally
finite-dimensional polyhedra with the metric topology. In addition, we give a proof
of the Whitehead—Milnor Theorem on the homotopy type of simplicial complexes.
We also prove that a map between polyhedra is a homotopy equivalence if it induces
isomorphisms between their homotopy groups.

This chapter is based on Chaps. 2 and 3. In particular, we employ the theory of convex sets
and the related concepts discussed in Chap. 3.

4.1 Simplexes and Cells

Let E be a linear space. The convex hull o = (vy,...,v,) of finitely many affinely
independent points vy, ...,v, € E is called a simplex. Each v; is called a vertex
of o, and n — 1 is called the dimension of o, written as dimo = n — 1. An
n-dimensional simplex is called an n-simplex. A 0-simplex is a singleton and a
I-simplex is a line segment. Note that the affine image of a simplex o (i.e., the
image f(o) of an affine function f : 0 — E’ of ¢ into a linear space E’) is, in
general, not a simplex.

The convex hull C = (A4) of a non-empty finite subset A C E is called a cell
(or a linear cell),! where the dimension of C is defined as the dimension of the flat

'More precisely, it is called a convex linear cell.

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, 133
DOI 10.1007/978-4-431-54397-8_4, © Springer Japan 2013
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hull fiC,ie.,dimC = dimfl A < oo (cf. Sect. 3.2). An n-dimensional cell is called
an n-cell (or a linear n-cell). Obviously, every simplex is a cell. The affine image
of a cell is always a cell and every cell is the affine image of some simplex. A 0-cell
and a 1-cell are the same as a 0-simplex and a 1-simplex, respectively. If card A = n
and dim(A) = n — 1, then A is affinely independent, hence (A4) is a simplex. When
(v1, ..., Vy+1) is an n-simplex, it follows that vy, .. ., v, are affinely independent,
hence they are vertices of the simplex.

The radial interior and the radial boundary of a cell C are simply called the
interior and the boundary of C. Recall that they are defined without topology,
that is,

rintC = {x € C | Vy € C, 3§ > 0 suchthat (1 +8)x — 3y € C}
and 9C = C \ rint C (cf. Sect.3.2).> Forx # y € E,
d(x, y) = {x,y} and rint{x,y) = (x, y) \ {x, y}.
Then, we can also write as follows:
rintC = {x € C | Vy € C, 3z € C suchthat x € rint(y,z)}.

According to Proposition 3.5.1, the flat hull fl C has the unique topology such that
the following operation is continuous:

ICxACxR>(x,y,t) > (1—-0)x+1ty eflC,

and fl C is affinely homeomorphic to R”, where n = dimC = dimflC. With
respect to this topology, as is shown in Proposition 3.5.5,

rintC = intgc C and dC = bdyc C.

Moreover, (C,0C) ~ (B",S"™1) (Corollary 3.5.6). For every cell (or simplex) C,
we always consider the topology to be inherited from this unique topology of fl C.

In fact, as seen in Proposition 3.5.8, C itself has the unique topology such that the following
operation is continuous:

CxCxI>(x,y.t)~>(—t)x+1tyeC.

2 According to Proposition 3.5.8, C itself is equal to the radial closure

rclC ={x € E |3y eC suchthat YVt €1, (14+1)x —ty € C}.
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For the standard n-simplex A" C R"*!,
rint A" = {ze A" \z(i) >0 forevery i =1,...,n+ 1} and
IA" = {z € A" |z(i) =0 forsome i =1,....n+1}.

For an n-simplex ¢ = (vi,...,v,41) C E, there exists the natural affine
homeomorphism §, : fl A” — fl o defined by

n+1
85(z) = Zz(i)vi foreach z € fl A”.

i=1

Then, 0 = 6,(A"), rinto = §,(rint A"), and do = §,(dA"). The barycenter 6 of
o is defined as follows:

1 1 n+1 1
6 =0 ——.....—— | = V.
’ U(n+1 n+1) §n+l i

The homeomorphism £, is not unique because it is depend on the the order of ¢,
but the barycenter 6 is independent from the order of o® and uniquely determined.

When vy, ..., v, are not affinely independent, the map defined as &, is not a
homeomorphism, but we do have the following result:

Proposition 4.1.1. For every finite subset A = {vy,...,v,} C E,
rint(A) = {>7_, z(i)v; | z € rint A"}

Proof. Take zo € rint A" ' and let xo = Y 7_, 20(i)v; € (A). For each x € rint(A4),
we have x; € (A4) and 0 < § < 1 such that x = (1 — §)xg + 6x;. Write
xi = Y ,z@)vi, zz € A" Then, z = (1 — 8§)z0 + 8z1 € rintA™!
(Proposition 3.2.3) and

n

x=(1=8) 26w +8Y =)y .

i=1 i=1 i=1

Conversely, for each z € rint A"~!, we show Y '_, z(i)v; € rint(A). Each y €
(A) can be written as y = Y 7_, zo(i)v; for some zp € A"1_On the other hand,
we have 7; € A" 'and 0 < § < 1 such that z = (1 — §)z9 + 8z1. Let y; =
> iy z1(i)vi € (A). Then, it follows that

Dzl = (1=8) Y zo(i)vi + 8 zi(i)v = (1= 8)y + 8.

i=1 i=l1 i=1
This means that > ;_, z(i)v; € rint{A). O

Proposition 4.1.2. Each cell C C E has the smallest finite set C©) such that
(COY =C (ie., (A) = C = CO C A). In addition, C¥ c dC if dimC > 0.
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Proof. By the definition of a cell, we can easily find a minimal finite set C® such
that (C©) = C,ie., (B) # C if B S C©. We have to show that (A) = C implies
C©® c A. Assume that C© ¢ A. Let C© = {v,...,v,}, where v ¢ A and
vi #v;ifi # j. We can write

v = Zz(i)x,-, Xis.o Xy € A, z €1int A",

i=1

where x; # x; if i # j. Since v; ¢ A, it follows that m > 2. Define

Vo= (z(1) + &)x; + (z(2) — &)xy + Zz(i)xi,
i=3

V= (z(1) — &)x1 + (z(2) + &)xr + Zz(i)xi,
i=3

where ¢ > 0 is chosen so that z(1) & &, z(2) = & € (0, 1). Then, v # V" because

VvV —v" = 2e(x; — x3) # 0. Since V',V € C, we can write

n n
V/ — Zzl(i)vh V// — ZZ//(i)Vi, Z/,Z// c An_l,

i=1 i=1
and therefore
1 1 (1,1,
o EV/ + EVU = Z (Ez/(l) + EZ”(Z)) vi.

i=1
Recall that vi & (va,...,v,). Then, it follows that 1z/(1) + 1z’(1) = 1. Since
Z(1),7’(1) € I, we have /(1) = 7’(1) = 1. Hence, v/ = v/ = v, which is a
contradiction. Thus, C () is the smallest finite set such that (C©) = C.

The additional assertion easily follows from Proposition 4.1.1 and the minimality

of C, i
In Proposition 4.1.2, each point of C© is called a vertex of C; namely, C(©

is the set of vertices of C. Note that if 0 = (vy,...,v,41) is an n-simplex then

0© = {v;,...,v,11}. Thus, we have the following:

Corollary 4.1.3. A cell C C E is a simplex if and only if C is affinely

independent. O

It is said that two simplexes o and t are joinable (or o is joinable to 1) if
onNt=0and c® Ut is affinely independent. In this case, (c® U ) is a
simplex of dimension dimo + dimt 4 1, which is denoted by ot and called the
join of o and t. When o = {v}, the simplex {v}t is simply denoted by vrt.

The face of a cell C at x € C is defined as in Sect. 3.2, i.e.,

Cy={yeC|38>0 suchthat (I +8)x—8y e C}.
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Recall rintC = {x € C | C, = C}, hence 0C = {x € C | Cy # C}. Moreover,
x erintCy (3.2.5(8)) and C, = C, forevery y € rint C, (3.2.5(10)). Recall that an
extreme point of C is a point x € C such that C, = {x}.

Proposition 4.1.4. For each cell C C E and x € C, the following hold:

(1) Cyisacell withC” = CONC,;
(2) x is avertex of C if and only if it is an extreme point of C,
ie,xeCO&C, ={x}.

Proof. (1): To see that C, is a cell, it suffices to show that C, = (C® N C.,). Since
C, is convex (Proposition 3.2.5(7)), we have (C(® N C,) ¢ C,.Each y € C, can
be written as
n
y = Zz(z’)vi, Viseoisvp € CO z erint A"

i=1

Choose § € (0, 1) so that (1 +6)x — 8y € C.Foreachi =1,...,n,let

xi =(1=8+68z(i)x + ZSZ(j)Vj eC.
J#Ei

z\ X zZ()vi X y Xi N

which means that v; € C,. Hence, y € (C© N C,).
Since Cy = (C© N Cy), it follows that C\” ¢ C© N C, and

(COUCO\Co) = (CUCV\C)
={CcOncyuEc®\cy)
= =c.

The latter implies C© N C, ¢ C”. Hence, C® N ¢, = .

(2): If Cy = {x} then x € c? cco by (1). Conversely, if x € C© then
xeCOng, = CX(O) by (1). Since x € rint C, (Proposition 3.2.5(8)), we have
dim C, = 0 by Proposition 4.1.2, which implies C, = {x}. O

A cell D is call a face of a cell C (denotedby D < CorC > D)if D = C,
forsomex € C.If D < C and D # C, D is called a proper face of C (denoted
by D < C or C > D). An n-dimensional face is called an n-face. A face of
a simplex o is also a simplex (cf. Proposition 4.1.4(1)) and (vi,...,v) < o for
Vie...,v € 0. Note that ¢ is the join opo; of any two disjoint faces o¢ and o
withc©@ = Uéo) U 01(0) , where o; is called the opposite face of o to o1_; (i = 0, 1).
Moreover, it follows that 7oty < 0 = 0go; foreach; < o; (i =0, 1).
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Proposition 4.1.5. For simplexes o and t,
<0 e 19 ce®,

Proof. The implication = is a direct consequence of Proposition 4.1.4(1). If 7 C
o© then t C o. Take any x € rintt. Then, t C o, by the definition of o,. For

each y € o \ 7, we have distinct vy,...,v, € 0© and z € rint A" such that
y = >0, z(i)vi and v; &€ . Then, T Nrint(y, y’) = @ for any )’ € o, hence
y € o,. Thus, we have t = o,. |

Proposition 4.1.6. For each cell C C E, the following hold:

(D P#ACCO = (4)0 = 4;

(2) If A C C© is not a singleton then C© Nrint(A4) = @;
B)D<C=>D=CNADand DO =CcOnD=COnAD;

4 D <C = Dy =C,foreachx € D, hence D' < C foreach D' < D;
5) D<C = D =C, foreach x €rintD;

6) D, D'<C, DNrintD’ #0 = D' < D;

(7) D <C = dimD < dimC;

®) dC ={D|D<C}=UiD|D<C,dimD =dimC — 1.

Proof. By virtue of Propositions 3.2.5(7) and 4.1.4(1), we have (3). For (4) and (5),
we refer to Propositions 3.2.5(9) and 3.2.5(10), respectively. It is easy to obtain (6)
from (4) and (5). For (7), it follows from (3) that D < C impliesfiD & fiC, so
dim D < dim C. Statements (1), (2), and (8) remain to be proved.

(1): First, note that (4)® c 4 c CO. Let B = (CO\ 4A) U (4)© c CO,
Since A C (A) C (B), we have C® C (B) C C, hence (B) = C. Therefore,
B = C© by Proposition 4.1.2. This means (4)© = A.

(2): Assume that A C C© contains at least two vertices and rint(A4) contains
somev € C©, Since A\{v} # @, it follows from Proposition 4.1.1 that v € (4\{v}).
This implies (C©) = (C© \ {v}), which contradicts the definition of C©). Thus,
CO Nrint(4) = @.

(8): Since dC = {x € C | C, # C}, we have the first equality. To prove the
second equality, it suffices to show that each x € dC is contained in an (n — 1)-face
of C, where n = dim C. Let D be a maximal proper face of C containing x. Then,
dim D <n—1by (7). Assume dim D < n—1. Since rint D misses any other proper
face of C by (6), we have dC \rint D = | J{D' | D # D’ < C}, which is a compact
set in the flat fl C given the unique topology (Proposition 3.5.1). Take x( € rint D.
Since fl C is affinely homeomorphic to R", x, has a convex neighborhood V in fl C
such that V' N (dC \ rint D) = @. Since x € rint D C dC, we can find x; € C \ D
such that (1 + ¢)xo —tx; &€ C Ufl D forevery ¢t > 0. Choosing s,¢ > 0 sufficiently
small, we have

y=0—=s5)xg+sx; €V NrintC, z=(14+1t)xo—tx; € V\(C UflD).
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Consequently, xo € rint(y, z). Note that
dimfllDU{y}) <n—1<n=dimflC.

Hence, there exists a v € (VN C) \ fi(D U {y}). Since z € fi(D U {y}) and
v & fi(D U {y}), it follows that (v,z) N fID = @, so {(v,z) N D = @. On the
other hand, (v,z) N 0C # @ because v € C and z € C. Since {v,z) C V and
V N aC C rint D, we have (v,z) N D # @, which is a contradiction. Therefore,
dimD =n-—1. O

Proposition 4.1.7. For each n-cell C C E and each k-face D < C (k < n), there
existfaces D = Dy < Dy < -+ < D, = C suchthatdim D; =i fork <i <n.

Proof. The case n — k = 1 is obvious. When n — k > 1, let x € rintD. By
Proposition 4.1.6(8), we have (n — 1)-face C’ < C such that x € C’. Then, C| =
C. = D by Propositions 4.1.6(4) and (5). Hence, D < C’. The result can be
obtained by induction. O

Using affine functionals, we characterize cells as follows:

Proposition 4.1.8. Let @ # C C E be non-degenerate. In order for C to be a cell,
it is necessary and sufficient that dimfl C < oo, x+R (y—x) & C for each pair of
distinct points x,y € C, and there are finitely many non-constant affine functionals

fireeos fi :C = Rsuchthat C = (\_, £ (Ry).

Proof. (Necessity) Let n = dimC. By virtue of Proposition 4.1.6(8), we can
write dC = Ui;l D;, where each D; is an (n — 1)-face of C. Because fl D;
is a hyperplane in fl C, there is an affine functional f; : IC — R such that
fl D; = f,71(0) (Proposition 3.1.3(1)). Then, C C f"'(R4) or C C f7'(—Ry).
Replacing f; with — f; if C C f;7!(—R4), we may assume that C C f;(R4) for
every i = 1,...,k. Thus, we have C C ﬂle f;-_l(RJ,_). Suppose that there is a
z€ ﬂf;l f7'(R4)\ C. By taking y € rintC, we have x € rint(y,z) NdC. Then, x
is contained in some D;. Since f;(x) = 0 and f;(y) > 0, it follows that f;(z) < 0,
which is a contradiction. Therefore, C = ﬂf;l STHRY).

(Sufficiency) First, note that C = ﬂle S (R4) is convex and rintC =
corege C = N_, £71((0.00)), hence dC = C \rintC = |J'_,(C n £7(0)).
Moreover, C N fi"'(0) = @ implies C = (), fi'(Ry4), that is, fi,(x) > 0
for every x € ﬂi#) f7'(R4). Indeed, assume that fi,(x) < O for some x €
ﬂi#) f7'(R4). Take any point y € C. Because f;,(y) > 0, we have z € (x, y)
such that f;,(z) = 0. Then,z € (_, "' (Ry) = C,s0C N fi1(0) # @, which is
a contradiction. Thus, we may assume that C N f;71(0) # @ foreveryi = 1,... k.

Now, by induction on n = dimfl C, we shall show that C is a cell. For each
i=1,....k,letD; =C ﬂfi_l(O) Z# (. Then, as observed above, 0C = Uf;l D;.
Since i D; C f;71(0) and dim f;7!(0) = n — 1 (Proposition 3.1.3(2)), each D; =
N i fi1f1D;)"1(R4) is a cell by the inductive assumption. Thus, we have a finite
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set A = (J'_, DI c 8C. Consequently, 9C = | J'_, D; C (4) C C. Take any
pointv € A C dC. For each x € rintC, v + Ry(x —v) ¢ C, hence there is
ay € dC such that x € (v,y). Then, x € (A) because v,y € (A). Therefore,
C = (A)isacell O

Later, we will use the following results, which are easily proved.
Additional Results for Cells 4.1.9.

(1) Foreachcell C C E and each flat F C E with C N F # @, the intersection
C N F is also a cell.

(2) For every two cells C, D C E with C N D # @, the intersection C N D is also
acell with (C N D), = C, N D, foreachx € C N D. IfrintC Nrint D # @,
then rint(C N D) = rintC Nrint D.

(3) Let f : C — E’be an affine map from a cell C C E into another linear space
E'. Then, f~'(D) is acell for every cell D C E’ with D N f(C) # @, where
f7UD)y = Cx N f7Y(Ds)) for each x € f~1(D). When f is injective,
f(Cy) = f(C) ) foreach x € C.

Sketch of Proof. For the above three items, apply the characterization 4.1.8 (cf.
Proposition 3.2.2 for (3)). The statements about faces in (2) and (3) are the same as
3.2.7(1) and (4), respectively.The statement about the radial interior in (2) is 3.2.7(2).

(4) Foreverytwocells C,D C E,C x D isalso acell withrintC x D = rintC x
rint D and (C x D)(,,y) = Cx x D, foreach (x,y) € C x D.

Sketch of Proof. Note that C X D = (C©® x D©) and see 3.2.7(3).

4.2 Complexes and Subdivisions

Throughout this section, let E be a linear space. A collection K of cells in E is
called a cell complex® if K satisfies the following two conditions:

(Cl) IfCeKandD <C thenD € K;
(C2) ForeachC,D e KwithCND #@,CND<C (adCnND <D).

Under condition (C1), condition (C2) is equivalent to each of the following:

(C2") ForeachC,D € K,C Nrint D # @ implies D < C;
(C2") Foreach C,D € K, C # D implies rintC Nrint D = @ (equivalently,
rint C Nrint D # @ implies C = D).

Sketch of Proof. Since C < D and D < C imply C = D, we have (C2') = (C2"). To see
(C2) = (C2), show that C Nrint D # @ implies C N D = D.

3More precisely, it is called a (convex) linear cell complex.
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(C2"”) = (C2): Assume C N D # @ and take a point x € rint(C N D). Since Cy, D, €
K by (C1) and x € rint C, Nrint D, we have C, = D, by (C2”). It follows from 4.1.9(2)
that
cNb=CnNnD),=C,ND,=C, <C.

For each n-cell C, we can define the following cell complexes (cf. Proposi-
tion 4.1.6(6)):

F(C)={D|D<C} and F@OC)={D|D <C}.

Condition (C1) means that F(C) C K foreach C € K. A cell complex consisting
of simplexes is called a simplicial complex. For a simplex o, F (o) and F(Jdo) are
simplicial complexes.

The next fact follows from (C2) and Proposition 4.1.6(3):

Fact. ForeachC,D e K, D <C < DO c C©,

Let K be a cell (simplicial) complex. We call K© = | J ., C© the set of
vertices. It is said that K is finite, infinite, or countable according to card K
(equivalently card K@), If card K is infinite, we have card K = card K©.

Indeed, K 3 C — C© € Fin(K©®) is an injection by Proposition 4.1.2 (or the above
Fact). Then, card K© is also infinite, hence it follows that

card K < card Fin(K©) = card K© < card K.

The dimension of K is dim K = supocx dimC. If dim K = oo, K is said to
be infinite-dimensional (abbrev. i.d.). When dim K < oo, K is finite-dimensional
(abbrev. f.d.). It is said that K is n-dimensional if dim K = n. Note that every cell
complex K with dim K < 1 is simplicial.

The polyhedron | K| of K is defined as follows:

K= JK =] C=|JrintC (CE).

CekK CekK

Recall that each cell C € K is given the unique topology, as mentioned in the
previous section, and if dimC = n then C with this topology is homeomorphic
to the unit closed n-ball B” (Proposition 3.5.8). The topology for | K| is defined as
follows:

U C |K| isopenin |[K| < VC € K, UNC isopeninC
(equiV. A C|K] isclosedin |K| < VC € K, ANC isclosed in C).
This topology is called the Whitehead (or weak) topology. Then, K © is discrete in

|K|.Each C € K is a closed subspace of | K| because C N D < D forany D € K
with C N D # @. The following fact is used very often:
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Fact. For an arbitrary space X, each f : |K| — X is continuous if and only if
f|C is continuous for every C € K.

Remark 1. If V is a neighborhood of x € |K]|, then V' N C is a neighborhood x in
C forevery C € K[x]. However, the converse does not hold. For example, let K be
the 2-dimensional simplicial complex in IE@ defined as follows:

K =1{0.¢;.(0.¢).(e1.e11).(0.e1.e41) | i €N}

We define V = |, cx(0,27€1,27€; 1) C |K|. For each simplex o € K[0], V No
is a neighborhood of 0 in o. Nevertheless, V' is not a neighborhood of 0 in |K]|.
Indeed, foreachi € N,

(intjk; V) N {0, e1.€41) C (0.2, 2 ei11).

Hence, (intig| V) N (0,e;) C (),en(0.277e1) = {0}, which implies (intjx| V) N
(0,e;) = @. Thus, V is not a neighborhood of 0 in | K.

Each x € |K]| is contained in the interior of the unique cell cx(x) € K, which
is called the carrier of x in K. In other words, cg(x) is the smallest cell of K
containing x. If x € C € K then C, = ck(x). Acell C € K is said to be principal
if C is not a proper face of any cell of K, that is, it is a maximal cell of K. A cell
C € K is principal if and only if int| x| C # @. In general, int|x| C # rint C even if
C € K is principal. If dim K = n, then every n-cell of K is principal.

A cell complex L is called a subcomplex of a cell complex K if L C K. A
subcollection L C K is a subcomplex of K if and only if L satisfies condition (C1).
Evidently, unions and intersections of subcomplexes of K are also subcomplexes
of K. Every subcomplex of a simplicial complex is a simplicial complex. The n-
skeleton of K is the subcomplex:

K" ={CeK |dimC <n} CK.
The 0-skeleton is the set of vertices. For each cell C € K, F(C) and F(dC) are
subcomplexes of K and F(dC) = F(C)"~Vifn = dimC.

Proposition 4.2.1. For every subcomplex L of a cell complex of K, |L| is a closed
subspace of | K|.

Proof. As is easily observed, A N |L]| is closed in |L| for each closed set 4 in |K]|.
Then, it suffices to show that every closed set A in |L| is closed in | K|. For each
C ek,

AnC=4AncnlLl=|JancnDp= |J 4nbD.
DeL DeLNF(C)
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Foreach D € L N F(C), D is a closed subspace of C and A N D is closed in D,
hence it is closed in C. Because L N F(C) is finite, AN C is closed in C. Therefore,
A is closed in | K. O

Proposition 4.2.2. The polyhedron |K | is perfectly normal.

Proof. By definition, it is obvious that | K| is T}. For any disjoint closed sets A, B C
| K|, it suffices to find amap f : |K| — I'suchthat f~'(0) = A and f~'(1) = B.
We will inductively construct maps f, : |[K™| — I n € N, so that f,71(0) = A N
|[K™]|and f,7'(1) = BN|K®™)|. Then, the map f can be defined by f||K™| = f,
foreachn € N.

Since K is discrete, f; can be easily constructed. Assume that £ #~! has been
constructed. For each n-cell C € K, we apply the Tietze Extension Theorem 2.2.2
to obtain a map g¢ : C — I'such that g¢|0C = f,—1|0C, gc (AN C) = {0}, and
gc(B N C) = {1}. On the other hand, because C € K is metrizable (so perfectly
normal), there is a map k¢ : C — I with

hz'(0) = (ANC)U(BNC)UC.

We define amap f¢ : C — I by

fe ) = (1= he(@)ge (0) + she (x).

Then, fc|0C = f,—1]dC, fz1(0) = AN C and f='(1) = B N C. Hence, f, can
be defined by £,||[K"~V| = f,—; and f,|C = fc forevery n-cell of K. O

A full complex (or full simplicial complex) is a simplicial complex K such
that K(© is affinely independent and (v1,...,v,) € K for all finitely many distinct
vertices vi, ..., v, € K. Every simplex is the polyhedron of a finite full complex.
For each affinely independent set A in E, let A(A) denote the full complex with
A the set of vertices (i.e., A(4)® = A). In the case when A is infinite, |A(A)|
might be considered as an infinite-dimensional simplex. In fact, |A(c®)| = o for
a simplex o, where note that A(0”) = F(0). An infinite full complex has no
principal simplexes. For a simplicial complex K, if K© is affinely independent,
then K is a subcomplex of the full complex A(K©).

On the other hand, it is said that a subcomplex L of a simplicial complex K is
full in K or a full subcomplex of K if 0 € L forany 0 € K with 0@ c L©,
that is, L is a maximal subcomplex of K such that the set of vertices is L®.# The
n-skeleton K™ is not full in K unless K = K. In general, a full subcomplex of
a simplicial complex is not a full complex, but a full subcomplex of a full complex
is always a full complex.

“Tt should be noted that although the same word full is used, full subcomplex and full complex are
different concepts. The former is used in the relative sense, but the latter is in the absolute sense.
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The following subcomplex of K is called the star at C € K:
St(C,K) = {D | 3D" € K suchthat C < D', D < D’}.

Evidently, St(C, K) = F(C) (i.e., | St(C, K)| = C) if and only if C is principal
in K. We must not confuse St(C, K) with st(C, K).

Note that |St(C, K)| = st(rintC, K) for each C € K but, in general,
| St(C, K)| & st(C, K). Observe that

st(x, K) = | St(cg(x), K)| foreach x € |K]|.

If K is a simplicial complex, the link of 0 € K can be defined as follows:

Lk(o, K) = St(0, K) \ K[o] = {r € St(0, K) | t N0 = 0}
={‘C€K|TU€K}.
Note that Lk(o, K) = @ if and only if o is principal in K. For each non-principal

simplex o € K, we have | St(0, K)| = U, erx0.x) 0T
We define the open star at x € | K| (with respect to K) as follows:

Ok(x) = [K|\ [K\ K[x]| = U rint C,
CeK[x]

where K \ K[x] is a subcomplex of K, hence Ok (x) is an open neighborhood of
x in |K|. Since Ok (x) C st(x, K), it follows that st(x, K) (= | St(cx(x), K)|) is a
closed neighborhood of x in |K|. Note the following equivalences:

y € Ok(x) & cx(y) € K[x] & cx(x) < ck(y) & cx(x)© Cex ()@
s Vveck®)?, cx(y) € K] © Vv e ck(x)?, y € 0 (v).

Therefore, we have

Ok(x)= () Ox().

veck (x)©

Then, | K| has the following open and closed covers:
Ok = {0k () | ve KO} Sk = {|St(v, K)| | ve KO},
where O = Sk. If K is a simplicial complex,

Ox(v) = | St(v, K)| \ | Lk(v, K)| foreachv e K©.

SFor any A C |K]|, we denote K[4] = {C € K | C N A # @} and st(4, K) = | K[A].
When A = {x}, K[x] = {C € K | x € C} and st(x, K) = |J K[x]. See Sects. 2.3 and 2.4
(cf. Sect. 1.1).
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Proposition 4.2.3. Let K be a simplicial complex and vy, ...,v, € K©. Then,
(Vis...,va) € K ifand only if (/= Ok (v;) # 0.

Proof. If 6 = (vi,...,vy) € K, then (/_; Okx(v;) D rintoc # @. Thus, we
have the “only if” part. To prove the “if” part, assume that (")/_; Ok (v;) contains a
point x. Then, vi, ..., v, € cx(x)?. Hence, (vi,...,v,) € K. ]

Proposition 4.2.4. Let K be a simplicial complex and L a subcomplex of K. Then,
OklIL| = OL.

Proof. Since Or(v) = Ok (v) N |L| for each v € L©®, we have O; C Okl||L]|.
To prove Ok||L| C Op,letv € K© with Og(v) N |L| # @. We have a simplex
o € L such that Ogx(v) N ¢ # @, which means that v € c©® < LO. Then,
Ok (v) N |L| = Or(v). Therefore, Ok||L| = Of. O

A cell (or simplicial) complex K is said to be locally finite, locally countable,
or locally finite-dimensional (abbrev. 1.f.d.) according to whether the star St(v, K)
at every v € K© is finite, countable, or finite-dimensional, respectively. Every
locally finite cell complex is 1.f.d. Note that K[Og(v)] = K|[v] and St(v, K) =
Uce kp F(C) foreveryv € K ©), Then, we have the following:

Proposition 4.2.5. A cell complex K is locally finite (or locally countable) if and
only if K is locally finite (or locally countable) as a collection of subsets in the
space |K|. O

For compact sets in | K|, we have the following:

Proposition 4.2.6. Let K be a cell complex. Every compact set A C |K]| is
contained in |L| for some finite subcomplex L C K. Consequently, |K| is compact
if and only if K is finite.

Proof. Tt suffices to show that K4 = {D € K | A Nrint D # @} is finite. For each
D e Ky, take xp € ANrint D. Since C N{xp | D € K4} is finite for each C € K
by (C2), any subset of {xp | D € K} is closed in | K|, hence {xp | D € K4} is
discrete in | K|. Since A is compact, it follows that K4 is finite. O

When two cell complexes have the same polyhedron, the following proposition
holds:

Proposition 4.2.7. For each pair of cell complexes K| and K, with |K,| = |K>| as
sets, | K| = |K3| as spaces if and only if each cell of K; is covered by finitely many
cells of K5—; fori = 1,2.

Proof. The intersection of a cell of K and a cell of K is also a cell by 4.1.9(2). This
intersection has the unique topology mentioned in the previous section, hence it is a
subspace of both spaces | K| and | K>|. If each cell of K; is covered by finitely many
cells of K5_;, then every closed set in | K; | is also closed in | K3—;| fori = 1, 2. Thus,
we have proved the “if” part. The “only if”” part follows from Proposition 4.2.6. 0O
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It is said that a cell complex K’ is a subdivision of a cell complex K, or K’
subdivides K, if the following conditions are satisfied:

(S1) Each cell of K is covered by finitely many cells of K’;
(S2) K’ < K (i.e.,each C’ € K’ is contained in some C € K).

Due to Proposition 4.2.7,
* For every subdivision K’ of a cell complex K, |K’'| = | K| as spaces.

Evidently, if K’ is a subdivision of K and K” is a subdivision of K’, then K” is
a subdivision of K. A simplicial complex K’ subdividing K is called a simplicial
subdivision and denoted as follows:

K' <K or K> K'.

Lemma 4.2.8. Let K’ be a subdivision of a cell complex K. For each C € K', let
D € K be the smallest cell containing C. Then, rint C C rint D.

Proof. Take any x € rintC. Then, C C D, by the definition of D,. By the
minimality, D, = D, which means x € rint D. O

It should be noted that condition (S1) can be strengthened as follows:

Proposition 4.2.9. Let K’ be a subdivision of a cell complex K. For each C € K,
there are finitely many D, ..., Dy € K' such that C = Uf'{=1 rint D; = Uf'{=1 D;.

Proof. Because of condition (S1), we can find finitely many D, ..., Dy € K’ such
that C < \J*_, rint D; < \J¥_, D;, where it can be assumed that each rint D; meets
C. By Lemma 4.2.8, rint D; C rintC; for some C; € K. Then, C NrintC; # @,
which means C; < C by (C2). Thus, we have | Ji_, D; c Ui, G; c C. O

With regard to subdivisions, we have the following:

Theorem 4.2.10. Every cell complex K has a simplicial subdivision L with the
same vertices, i.e., K© = L©O,

Proof. Give an order on K@ so that C© has the maximum vc = max C© for
each C € K (e.g., a total order). Let Ly = K© and L; = K. Suppose that a
simplicial subdivision L, <t K has been defined so that

M LY =KOQand L, C L,;
(2) vepz) € 0 foreacho € Ly,

where ¢k (6) is the carrier of the barycenter & of o in K (note that cx(6) € K™
because 6 € |[K™|). Let C € K be an (n + 1)-cell. For each 0 € L, with o C
dC, we have cx(6) < C, 0 C ck(6) by Lemma 4.2.8 and v, 5, € 0© by the
assumption. If ve € ¢x(6)© then ve = Ver(6) € c©. When ve & cg(6)©, since
cx ()9 = CONAcg(6) (cf. 4.1.6(3)), it follows that ve & flcg (6), sove € flo.
Therefore, v¢ is joinable to o, that is, we have the simplex v¢o in C with o < v¢o.
Now, we define
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Lyy1 =L, U{vco |C e K"TV\ K" 5eL,

with o C 9C and ve ¢ cx(6)?}.

It is easy to verify that L,4 is a simplicial complex and L,+; <1 K®+V. By
definition, L, satisfies conditions (1) and (2).

By induction, we have simplicial subdivisions L, < K™, n € N, such that
LY = K© and L,—; C L,. Then, L = |J,cyy L» is a simplicial subdivision of K
with LO = KO, O

In the above proof of Theorem 4.2.10, we give an order on the set K of vertices
such that C© has the maximum for each cell C € K. A cell complex K with such
an order on K© is called an ordered cell complex. If K is a simplicial complex,
0© has the maximum for each simplex o € K if and only if 6(© is totally ordered
for each 0 € K. Thus, an ordered simplicial complex is a simplicial complex K
with an order on K© such that o(? is totally ordered for each o € K.

Theorem 4.2.11. Let K| and K, be cell complexes such that |K,| = |K;| as
spaces. Then, K| and K, have a common subdivision K. In addition, if K, is a
subcomplex of both K| and K, then Ky is also a subcomplex of K.

This follows from Proposition 4.2.7 and the next proposition:

Proposition 4.2.12. For each pair of cell complexes K| and K5, the following K is
a cell complex with | K| = | K | N |K3| (as sets):

K={CNnD|CeK, DeK, suchthat CND # 0}.

If Ko is a subcomplex of both K| and K, then K is also a subcomplex of K.
Moreover, if each cell of K; is covered by only finitely many cells of K5—; fori =
1,2, then | K| is a closed subspace of both | K| and | K,|.

Proof. For each pair C € Kyand D € K, withC N D # @, C N D is a cell and
(CN D), =C,N D, foreach x € C N D by 4.1.9(2). Thus, K satisfies (C1).

We will show that K satisfies (C2"), that is, for C,C’ € K| and D, D’ € K>, the
following implication holds:

rint(C N D) Nrint(C'N DY #P=CND=C'ND'.

Let x € rint(C N D) Nrint(C’ N D’). Then, (C N D), =CNDand (C'ND'), =
C’ N D’. On the other hand, by Proposition 3.2.5(8),

x €rintCy NrintC; Nrint D, N rint D’,.

Then, it follows from (C2”) that C, = C. and D, = D!. Therefore, we can
apply 4.1.9(2) to obtain the following equality:

cnbD=(CnD),=CiNnD,=C.ND,=(C"NnD"),=C"nD".
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By the definition of K, if K is a subcomplex of both K| and K, then K is also

a subcomplex of K. Moreover, it is evident that the inclusions |K| C |K;|,i = 1,2,

are continuous. When each cell of K; is covered by only finitely many cells of K3_;
fori = 1,2, it is easy to see that each closed set in | K| is closed in | K| and |K>|.

O

Combining Theorems 4.2.11 and 4.2.10, we have the following:

Corollary 4.2.13. Let K| and K, be simplicial complexes such that |K,| = |K;|
as spaces. Then, K| and K, have a common simplicial subdivision K. Additionally,
if Ko is a subcomplex of both K| and K», then K is also a subcomplex of K. O

Proposition 4.2.14. Let K be a cell complex and K' be a subdivision of K. Then,
every subcomplex L of K is subdivided by the subcomplex L' = {C' € K' | C' C
ILI} of K.

Proof. Obviously, L’ is a subcomplex of K’. For each C' € L’,let C € K be the
smallest cell containing C’. On the other hand, we have D € L containing some
x €rint C’. Since rint C’ C rint C by Lemma 4.2.8, it follows that D NrintC # @,
which implies C < D by (C2'), hence C € L. Thus, we have L’ < L.

For each C € L, we have finitely many D{,...,D; € K’ such that C =
\U¥_, D! by Proposition 4.2.9. Since D] C |L|, it follows that D] € L’. Thus,
C is covered by finitely many cells of L'. O

Proposition 4.2.15. Let K’ be a subdivision of a cell complex K. Then, Og: (V') C
Ok (v) foreachv' € K'® andv € cx (V). Consequently, Og: < Ok.

Proof. For each C € K’ withv' € C©, there is some D € K such that rintC C
rint D by Lemma 4.2.8. Then, D Nrintcg (V') # @, which implies cx (V) < D
by (C2'), hence v € cx (V)@ c DO, Thus, rint C C rint D C Og(v). Therefore,
Ok (V') C Og(v). O

Some Topological Properties of Polyhedra 4.2.16.
Let K be a cell complex.
(1) |K]| is separable if and only if K is countable.

Sketch of Proof. Each C € K has a countable dense set D¢. If K is countable, then
D = Jcek Dc is a countable dense set in |K|.
For a countable subset A C |K]|, the following is countable:

{C € K|3D € K suchthat C < D, ANrint D # @}.

If K is uncountable, we can find a cell Cy € K such that A NrintC = P if C € K
and Cy < C.Let x € rint Cy. Then, Og(x) N A = @, which means that A4 is not dense
in |K]|.

(2) The following are equivalent:

(a) K islocally finite;
(b) |K]| is locally compact;
(¢) |K| is metrizable;
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(d) |K]| is first-countable.

Sketch of Proof. Because of Proposition 4.2.6, we have (a) = (b). The implication (c)
= (d) is obvious. Since a space is metrizable if it is a locally finite union of metrizable
closed subspaces (2.4.5(2)), the implication (a) = (c) follows from Proposition 4.2.5.
(b) = (a): Let V be a compact neighborhood of v € K ©. Due to Proposition 4.2.6,
V C |L| for some finite subcomplex L C K.IfC € K andv € C® then V N C
is a neighborhood of v in C. Since V Nrint C # @, it follows that rint C meets some
D € L, which implies C < D. Hence, St(v, K) C L.

(d) = (a): Assume that St(v, K) is infinite for some v € K©. Then, v is a vertex of
distinct 1-cells (1-simplexes) 4,, n € N. Let {U, | n € N} be a neighborhood basis at
vin |K|. For each n € N, choose a, € rint A, N U,. Then, |K|\ {a, | n € N}isan
open neighborhood of v in | K| but it does not contain any U,,, which is a contradiction.

(3) The following are equivalent:

(a) K is countable and locally finite;
(b) | K| is second-countable;
(c) | K] is separable and metrizable.

Sketch of Proof. Combine (1) and (2) above.
(4) In general, w(|K|) # dens | K| (i.e., w(|K|) > dens |K]).

Sketch of Proof. Let K© = {y; | i € v} and define K = K@ U {{vy,v;) | i € N}.
Then, dens | K| = 8, by (1) above. However, | K| is not first countable by (2), hence
it is not second countable, that is, w(| K|) > 8.

(5) Let f : X — |K| be a map of a metrizable (more generally, first countable)
space X. Then, each x € X has a neighborhood U, in X such that f(U,) C
| K| for some finite subcomplex K, of K.

Sketch of Proof. If x € X does not have such a neighborhood, then we can find a
sequence (x;)jen in X such that lim; oo x; = x and cx (x;) # cx(x;) if i # j.
Because { f(x), f(x;) | i € N} C |K]|is compact, this contradicts Proposition 4.2.6.

A polyhedron (or a topological polyhedron) is defined as a space P such that
P = |K| (or P = |K]|) for some cell complex K. A subspace Q of a polyhedron
(or a topological polyhedron) P is called a subpolyhedron of P if there exists a
pair (K, L) of a cell complex and a subcomplex such that P = |K|and Q = |L|
(or (P, Q) ~ (|K|,|L])). Every subpolyhedron of P is closed in P according
to Proposition 4.2.1. It follows from 4.2.16(2) that a (topological) polyhedron is
metrizable if and only if it is locally compact. In general, for a (topological)
polyhedron P, w(P) # dens P (cf. 4.2.16(4)). A triangulation of a polyhedron
(or a topological polyhedron) P is a simplicial complex K such that |K| = P
(or |K| &~ P).Then,itis also said that P is triangulated by K or K triangulates P.
According to Theorem 4.2.10, every (topological) polyhedron has a triangulation.

5This can be shown as follows: If K is a simplicial complex, (a) = (c) will be proved in
Theorem 4.5.6. Due to Theorem 4.2.10, every cell complex has a simplicial subdivision. Evidently,
every subdivision of a locally finite cell complex is also locally finite. Thus, (a) = (c) is also valid
for every cell complex.
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For two cell complexes K (in E) and L (in F), by virtue of 4.1.9(4), the product
cell complex can be defined as the following cell complex (in E x F):

Kx.L={CxD|CeK, DelL}.

Note the following facts:

* |K x. L| =|K| x|L]| as sets;

e St(C x D,K x. L) = St(C,K) x. St(D, L) foreach C € K and D € L (cf.
4.1.9(4));

o ckx.L(x,y) = cx(x) x c(y) foreach (x, y) € |K| x |L| (cf. 4.1.9(4));

* Ogx.1(x,y) = Og(x) x Or(p) as sets for each (x, y) € |K| x |L|.

The projections pr; : |K %, L| — |K| and pr, : |K X, L| — |L| are continuous,
which means that the identity id : |K %, L| — |K| x |L| is continuous. When K
and L are finite, |K X, L| = |K| x |L| as spaces because |K x. L| is compact by
Proposition 4.2.6. More generally, we can prove the following:

Theorem 4.3.1. For each pair of cell complexes K and L, |K %, L| = |K| x |L|
as spaces if (1) both K and L are locally countable or (2) one of K or L is locally
finite.

Proof. Since id : |K %, L| — |K]| x |L| is continuous, it suffices to show the
continuity of id : |K| x |L| — |K X, L| at each (x,y) € |K| x |L|. Choose
(v,u) € KO x LO 5o that (x,y) € Og(v) x Or(u). Then,

OKXL.L(Vv M) = OK(V) X OL(u)

is an open neighborhood of (x, y) in both |K x. L| and |K| x |L|. Replacing K
and L by St(v, K) and St(u, L), case (1) reduces to the case where K and L are
countable and case (2) reduces to the case where L is finite.

Case (1): As noted above, we may assume that both K and L are countable. Then,
K and L have towers K; C K, C -+ and L} C L, C --- of finite subcomplexes
suchthatx € |Ki|, ¥ € |L1], K = U, ey Kn, and L = |, ey Ly Observe that | K|,
|L|, and |K x. L| have the weak topologies determined by {|K,| | n € N}, {|L,] |
n € N}, and {|K, %, L,| | n € N}, respectively. For eachn € N, |K,, x. L,| =
| K| x |Ly,| as spaces because K, and L, are finite. Then, for each neighborhood
W of (x, y) in |K x. L|, we can inductively choose open neighborhoods U, of x in
|K,| and V,, of y in |L,| so that

U,y xclV,_y C U, xV, CclU, xclV, C W N |K, X Ly|,
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where cl U, and cl V,, are compact. Observe that U = |, ey Un and V = (U, ey Vi
are open neighborhoods of x and y in | K| and |L|, respectively,and U x V C W.
Therefore, W is a neighborhood of (x, y) in | K| x |L]|.

Case (2): As noted above, it can be assumed that L is finite. Let W be a
neighborhood of (x,y) in |K X, L|. Foreach D € L, W N ({x} x D) is a
neighborhood of (x, y) in {x} x D because W N (cx(x) x D) is alsoin cx(x) x D.
Thus, W N ({x} x |L|) is a neighborhood of (x, y) in {x} x |L|. We can choose a
neighborhood V of y in |L| so that {x} xcl V C W, where cl VV is compact because
so is |L|. By induction on n € w, for each n-cell C € K[x], we can choose an open
neighborhood U¢ of x in C so thatclUc xclV C W and Uc N D = Up for each
D € F(0C)[x]. In fact, UDGF(ac)M clUp C C is compact because F(dC)[x] is
finite. Then, we can find an open set Ué in C such that

|J cUpxcV cU:xclV CelUtxclV CW.
DeF(IC)[x]

Therefore, Uc = U\ Uper@pe) (P \ Up) is the desired neighborhood. Now, let
U = Ucekpy Uc- Then, U is a neighborhood of x in st(x, K) and U x V' C W.
Since st(x, K) is a neighborhood of x in | K|, U is also a neighborhood of x in |K]|.
Hence, W is a neighborhood of (x, y) in | K| x |L]|. O

We denote I = F(I) (= {0, 1,1}), which is the cell complex with |/| = L It
follows from Theorem 4.3.1 that | K| xI = | K x. I | as spaces for every cell complex
K. Due to the following proposition, the conditions given by Theorem 4.3.1 are
essential.

Proposition 4.3.2. There exist 1-dimensional cell complexes K and L with
card K© = 2% gnd card L© = Ry such that K is not locally countable, L is
not locally finite, and |K x. L| # |K| x |L| as spaces.

Proof. We define K and L in the linear spaces RN and RY as follows:
K =1{0,e,,(0,e,) |a €N} and L ={0,e;,(0,¢;) |i € N},

where e, € R and e; € RY are the unit vectors (i.e., e,(y) =lande,(y') =0
fory’ # y). Foreacha € NN andi € N, let

Vai =a(i) " (eq. &) € (0,€,) x (0,e;) C RN x RV,

Then, Y = {y,; | a € NY,i € N}is closed in |K x. L|, where it should be noted
that (0,0) €Y.

To see that Y is not closed in |K| x |L|, we show that (0,0) € cligxz| Y.
Let U be a neighborhood of 0 in |K| and V' a neighborhood of 0 in |L|. For each
a € NN, choose ¢, > 0 so that [0, g,]e, C U. For eachi € N, choose §; > 0 so
that [0,8;]e; C V. Then, we have agp € NY such that ao(i)™' < min{8;,i~'} for
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(u3,v2)

(1, v2) (2, v2)

(u3,v1)

(u1,v1)

Fig. 4.1 A product simplicial complex

(12, v1)

each i € N. Choose iy € N so that ij! < &4,. Since ag(ip)™! < i;! < &, and
ao(ip)™! < §;,, it follows that y,,;, € U x V,hence (U x V) N'Y # @. Thus, we
have (0,0) € cligixz Y- |

For simplicial complexes K and L, the product complex K X, L is not simplicial
but does have a simplicial subdivision with the same vertices by Theorem 4.2.10.
From the proof of 4.2.10, such a simplicial subdivision of K x. L can be obtained
by giving an order on (K x. L)© = K© x L© 5o that K x, L is an ordered
complex, that is, the set of vertices of each cell has the maximum. If K and L are
ordered simplicial complexes, we can define an order on K@ x L© as follows:

(w,v) <@,v) if u<u and v<Vv.

By this order, K x. L is an ordered cell complex. By K x L, we denote the simplicial
subdivision of K X, L defined by using this order and call it the product simplicial
complex of K and L (Fig.4.1). In fact, K x; L can be written as follows:

K x, L = {((ul,vl),...,(uk,vk)) | Joe K,It €L
such that u; <--- < u; eo(o), Vi <--<y € 1(0)}.

The above is the simplicial subdivision of K X, L obtained by the procedure in the proof
of Theorem 4.2.10. To show this, it suffices to verify that the simplicial subdivision of the
n-skeleton (K X. L)™ defined by this procedure can be written as follows:

i, vi)s o (g, vi)) | Jo x 7 € (K %, L)™

such that u; < --- < uy E()'(O), v <--<y € 1(0)}.

This can be proved by induction. According to the proof of Theorem 4.2.10, the
simplicial subdivision of (K X, L)"*D is defined as the simplicial complex consisting

of the simplexes ((uy,v1),..., (uk, ), (Uk+1,Vk+1)), Where u; < --+ < u; € (réo),

v <--<y € réo) for some 0y X 79 € (K X. L)™ and (Uk+1. Vk41) is the maximum
vertex of the carrier 0 X t € K X, L of the barycenter of ((uy,vy), ..., (ux,vr)), where
o X1 € (K %, L))" Since 0 Nrintoy # @ and T Nrinttg # @, we have 6y < o and
o <t henceu; <---<up <upq; € c@andv, <--- <y < V41 € 7O,
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Conversely, consider the simplex ((uy, vy), ..., (ux.vi)), whereu; < -+ < € 0©,
v < < v € 7O for some 0 X T € (K X, L)+ We may assume that k > 1
and (uy,vi) # (ux—1,vi—1). Let o’ be the face of o with the vertices u, ..., ux—, and
7/ the face of t with the vertices vy, ..., Vi—1. Then, 0’ x ©/ € (K X. L)™, hence
((uy,v1), ..., (x—1,vk—1)) is a simplex of the simplicial subdivision of (K X, L)™ by
the inductive assumption. Since the barycenter of ((u;,v1),..., (tg—1, vi—1)) is contained
in the cell o X 7, {(ur,v1),..., (ug, vi)) is a simplex of the simplicial subdivision of
(K x, L)"+D,

We now consider the following useful theorem:

Theorem 4.3.3 (HOMOTOPY EXTENSION THEOREM). Let L be a subcomplex
of a cell complex K and h : |L| x I — X a homotopy into an arbitrary space X.
Ifhg extends to amap f : |K| — X, then h extends to a homotopy h : |K|xI — X
with hy = f. Moreover, if h is a U-homotopy for an open cover U of X, then h can
be taken as a U-homotopy.

Proof. Let h : |L| x I — X be a U-homotopy such that A, extends to a map
f :|K| — X.Foreachn € w, we define

K,=LUK®™ and P, = (K x. {0}) U (K, x. I).
Then, K,, and P, are subcomplexes of K and K x. I, respectively. Moreover, | P,| is
a closed subspace of | K| x I that contains | L| x I as a subspace (cf. Theorem 4.3.1).
Moreover, |K| x I = |, ¢, | Px| has the weak topology with respect to the tower

[Po| C|P1| C|Po] C--e.
We can define the map gy : | Py| — X as follows:

h(x,t) for(x,t) € |L|x]1,

OODZ0 ) for (o) € (KD x (01 U (KO L) x 1

It is obvious that go||Ko| x I is a U-homotopy. Assume that we have maps g; :
|P;| = X,i < n,suchthat g;||P,—i| = gi—1 and g;||K;| x Iis a /-homotopy. Let
C € K\ L be an n-cell. By taking v¢ € rint C, each x € C can be written as

x=({0—-s)y+sve, yeadC, selL
We can choose 0 < §¢ < 1 so that {g,—1(C(y)) | y € 0C} < U, where

C(y) ={xTU{((d—s5)y+svc. 0) [0 <5 <25}

See Fig. 4.2. We can define a map

re :C xI— Cx{0}UdC xIC |Py—]
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x=(1—=s)y+sve
Fig. 42 C x1

as follows:

re((1 —=s)y +sve, t)

(1 =s5)y + sve, 0) if28c <s <1,
_ 2(S—l‘5c) 2(.5‘—1‘50) .
= ((1— 7 )y+ 2 ve, 0 iftéc < s <26c,
(v, 1 =68c%) if0<s <téc.

Foreach x € C, rc({x} xI) = {(x,0)} or re({x} x I) C C(y), where y € dC
with x € (y, v¢). It follows that

{gn1rc(x} x1) [ x € C} < U.

Observe that r¢|C x{0}UJC xI = id. We canextend g,—j toamap g, : |Py| —> X
defined by g,|C x I = g, rc foreach n-cell C € K \ L. Then, g,||K,| xIis a
U-homotopy.

By induction, we can obtain maps g, : |P,| — X, n € w, such that g, || P,—1| =
gn—1 and g,||K,| x Iis a /-homotopy. The desired L/-homotopy / : |K| x T — X
can be defined by h|| P,| = g- O

For a cell complex L, two maps f,g : X — |L| are said to be contiguous (with
respect to L) if f, g are L-close, that is, for each x € X, there is some C € L such
that f(x),g(x) € C.

Proposition 4.3.4. Let K and L be cell complexes. If two maps f,g : |K| — |L|
are contiguous (with respect to L) then f ~; g by the homotopy h : |K| x1 — |L|
defined as follows:

h(x,t) = (1 —1t)f(x) +1tg(x) foreach (x,t) € |K|xL
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Proof. Because f and g are contiguous, & is well-defined. We need to prove the
continuity of 4. Since |K| x I = |K x. I| (Theorem 4.3.1), it suffices to show that
h|C x 1 is continuous for each C € K. According to Proposition 4.2.6, f(C) U
2(C) C |Ly| for some finite subcomplex L of L. For each pair (D, D) € L2,
let L(D1, D;) be the subcomplex of L consisting of faces of the minimal cell of L
containing Dy U D;, where L(Dy, D;) = @ if L has no cells containing D; U D,.
Then, L; = U(DI’DZ)GL(% L(Dy, Dy) is a finite subcomplex of L with Ly C L;
and 1(C x I) C |L,|. Note that the flat hull fl|L,] is finite-dimensional. Due to
Proposition 3.5.1, fl | L | has the unique topology for which the following operation
is continuous:

fl|Ly| x A|Ly| xI> (x,y,t) = (1 —t)x +ty € fl|Ly].

The topology of | L] is equal to the relative topology with respect to this topology.
Indeed, due to Proposition 3.5.8, each D € L has the unique topology for which the
operation (x, y,t) + (1—t)x+ty is continuous. Hence, the inclusion |L;| C fl |L;|
is continuous. By the compactness of |L;|, this inclusion is a closed embedding.
Then, it follows that #|C x I : C x I — |L| is continuous. O

In Proposition 4.3.4, & is called the straight-line homotopy.

Remark 2. Using the same arguments, we can prove that Proposition 4.3.4 is valid
even if | K| is replaced by a locally compact space X .’ It will be shown in Sect. 4.9
that every two contiguous maps defined on an arbitrary space are homotopic, where
the homotopy is not always given by the straight-line homotopy. In fact, there are
some cases where the straight-line homotopy is not continuous. Such an example
can be obtained by reforming the example given in Proposition 4.3.2.

Let I' = NN U N. We define K = {0,e,,(0,e,) | y € I'} and

L=KU{(e,.e, ), (0.e,.e) |y #y €I},

where e, € R” is the unit vector in R” (i.e., e,(y) = 1 and e,(y’) = 0 for
v’ # y). Then, K C L are cell complexes in R’ with dim K = 1 and dim L = 2.
Let f.g : |K|> — |L| be maps defined by f(x,y) = x and g(x,y) = y for each
(x.y) € |K|* where |K|> # |K x. K| as spaces (see the proof of Proposition 4.3.2).
Evidently, these maps f, g are contiguous. We can define 2 : |K|> x I — |L| as
follows:

h(x,y.t) = (1 =0)f(x,y) +1g(x,y) = (1 =0)x +1y.

We will prove that / is not continuous at (0, 0, %) € |K|?> x I. For each a € NN
andi € N, let

1 1
Vai = Ea(i)_lea + Ea(i)_lei € (0.eq.€;) C [L].

"More generally, it can be replaced by a k-space X . Indeed, to show the continuity of the straight-
line homotopy 4, it suffices to prove the continuity of 2|C X I for every compact set C in X.
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As is easily observed, U = |L|\ {v,,; | a € NV,i € N} is an open neighborhood of
0= h(0,0,3)in|L|. Then, A(W?x {1}) ¢ U for any neighborhood W of 0 in | K]|.
Indeed, for each y € I', choose §, > 0 so that [0,,]e, C W. We have ay € NN
such that ao (i) > max{i,§; '} forevery i € N. Take iy € N so that ig > §,.'. Since
ao(io)™! < iy < 84, we have xo = ao(ip) 'e,, € W. On the other hand, since
ap(io)™! < 8i,, we have yy = ao(io)_le,-0 € W. Then, it follows that

1 | |
h (-’COv Yo, E) = 500(10) letlo + EaO(IO) leio = Vayy io ¢ U.

Therefore, & is not continuous at (0, 0, %).

4.4 PL Maps and Simplicial Maps

Let K and L be cell complexes (in £ and F, respectively). A map f : |K| — |L]|
is said to be piecewise linear (PL) if there is a subdivision K’ of K such that f s
affine on each cell C € K’, i.e., f|C : C — F is affine. The continuity of f
follows from Corollary 3.5.4. Then, the graph G(f) = {(x, f(x)) | x € |K|} of f
is a closed subspace of the product space | K |x|L|, and prix(|G(f) : G(f) — |K]is
a homeomorphism whose inverse is the natural injection i r : |K| — G(f') defined
by ir(x) = (x, f(x)) for each x € |K|. Here, in general, |K| x |L| # |K x. L| as
spaces (Proposition 4.3.2), but we have the following:

Lemma 4.4.1. The topology of the graph G(f) of each PLmap f : |K| — |L| is
equal to the one inherited from |K x. L|.

Proof. Because id : |K x. L| — |K| x |L| is continuous, it suffices to show that
A C G(f)isclosedin |[K|x|L|if AN(C x D) isclosedin C x D foreachC € K
and D € L. Recall that prig||G(f) : G(f) — | K| is a homeomorphism. Thus, we
may show that prx|(A) is closed in | K|. For each C € K, since f(C) is compact,
we have D1,..., Dy € L such that f(C) C Ule D;. Since prl_Kll(C) NG(f) =
(C x f(C))NG(f), we have

k
ANpr(C)=AN(C x f(C) = JAN(C x D)).

i=1

Since each A N (C x D;) is compact as a closed subset of C x D;, it follows that
AN pr‘_Kl‘(C ) is compact. Hence, prg((A4) N C is also compact, which implies that
prix|(A) N C is closed in C. Therefore, prg|(A4) is closed in |K]. O

We have the following characterization of PL maps:

Theorem 4.4.2. Let K and L be cell complexes. Amap f : |K| — |L|is PL if and
only if the graph G(f) of f is a polyhedron.
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Proof. To prove the “only if” part, leti ; : | K| — G( f) be the natural injection and
K’ be a subdivision of K such that f is affine on each cell in K'. Then, i s (K') =
{if(C) | C € K'} is a cell complex (cf. 4.1.9(3)). Note that |i s (K')| = G(f) as
sets. For each A C G(f),

Aisclosedin G(f) < prig|(A)isclosedin [K| = |K'|
& VC € K', prig (4) N C is closed in C
& VC e K', ANiy(C)isclosediniyf(C)
& Aisclosedin |i (K"

Therefore, |i (K')| = G(f') as spaces.

To prove the “if” part, let M be a cell complex with |M| = G(f). Then,
prig|(M) = {prg(D) | D € M} is a cell complex (cf. 4.1.93)). Since
prig|G(f) : G(f) = [M| — |prjg(M)]| is a homeomorphism, it follows that
Iprix(M)| = |K| as spaces. By Theorem 4.2.11, K and pr|g (M) have a common
subdivision K’. Foreach C € K’, i s(C) is a cell contained in some cell in M . Note
that pr | s (C) is an affine homeomorphism, hence so is i ¢ |C. Since pr; | is affine
oneachcellin M, f = priz) © i 7 is affine on each cell in K’ thatis, fisPL. O

Lemma 4.4.3. Forevery PLmap f : |K| — |L|, K has a subdivision K’ such that
f is affine on each cell C € K' and f(K') < L (i.e., for each cell C € K', f(C)
is contained in some cell in L).

Proof. By replacing K with a subdivision, we may assume that f|C is affine
for each C € K. According to Theorem 4.4.2, there is a cell complex M such
that [M| = G(f), the graph of f. By Proposition 4.2.12, the following is a cell
complex:

M ={CND|CeM,DeKx.L suchthat CND # @} <M.

Each C € M is covered by finitely many cells of K x, L because it is compact in
|K x. L| by Lemma 4.4.1. Then, each cell of M is covered by finitely many cells
of M’'. Therefore, M’ is a subdivision of M. We apply Theorem 4.2.11 to obtain
a common subdivision K of K and prg(M’). Observe that prj;(M') < L and
S =pry iy, where iy : [K| — G(f) is the natural injection. Then, we have
f(K") <pry, (M) < L. O

Using Lemma 4.4.3, we can easily prove the following:
Proposition 4.4.4. The composition of PL maps is also PL. O

Remark 3. In Proposition 4.3.4, if f and g are PL and 4 : |K| x I — |L] is the
straight-line homotopy from f to g, theneach &, : |K| — |L|is PL. But, in general,
h :|K x. I| — |L|is not PL. In fact, by Theorem 4.2.11, K has a subdivision K’
such that both f|C and g|C are affine for each C € K'. Then, i, |C is affine by
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Fig. 4.3 The image of the PL map f

definition. As an example of the straight-line homotopy / being non-PL, consider
the affine maps f.g : I — I? defined by f(s) = (s,0) and g(s) = (0, s). In this
case, the straight-line homotopy # is defined by &(s,t) = ((1 —¢)s, ts). Note that

h((1 —1)(0,0) +¢(1,1)) = h(t,t) = (t —t*,t*) foreacht € L.

Any cell complex K with |K| = I? has a cell C such that A = C N {(0,0), (1,1))
is a non-degenerate line segment. Then, 4|C is not affine.

Remark 4. 1t should be remarked that the image of a PL map is, in general, not a
polyhedron. In fact, let f : Ry — I? be the PL map defined as follows:

(t.0) ifr eX=10,1],
f@O) =@ r-2i+1) ift € [2i —1,2i],
Q7 20 +2—1),2i +1—1) ifte[2i,2i +1].

Then, f(R4) is not a polyhedron. Indeed, if f(R4) = |L| for a cell complex L,
then f(2n — 1), n € w, should be vertices of L, which are contained in the compact

set f(I) (Fig.4.3).

Let K and L be simplicial complexes. A function f : |K| — |L]| is called a
simplicial map from K to L (or with respect to K and L) if f|o is affine and
f(0) € L for each 0 € K, where dim f(0) < dimo. Evidently, f(K©®) c L©
and f(K) ={f(0) | 0 € K}is asubcomplex of L. Wheno = (v{,...,v,) € K,

we have f(o) = (f(v1),..., f(v,)) € L and

n n
f(Z:-’thiv,-) = Zt,-f(vi) for each ¢; > 0 with Zti =1,

i=1 i=1

where it is possible that f(v;) = f(v;) for some i # j. Every simplicial map
f :|K| — |L|is PL, so it is continuous (Corollary 3.5.4). For a simplicial map from
K to L, we may write f : K — L. In fact, although it is actually a function from
|K| to |L], f induces a function from K to L because f(0) € L foreach o € K.
Note that the composition of simplicial maps and the restriction of a simplicial map
to a subcomplex are also simplicial.
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Proposition 4.4.5. Let K and L be simplicial complexes. For a function fy :
K© — LO the following are equivalent:

(a) fo extends to a simplicial map f : K — L;
®) {fo(d®)) € L foreacho € K;
©) Nves® OL(fo(v) # @ foreacho € K.

In this case, the simplicial extension f of fy is unique.

Proof. The implication (a) = (b) follows from the definition. By Proposition 4.2.3,
we have (b) < (c). It remains to show the implication (b) = (a). Foreach o € K,
the function fy|o® uniquely extends to an affine map f, : 0 — (fo(c@)) C |L].
Because fy|oc N7 = f;|o N1 foreach 0,7 € K, we can define f : |K| — |L]|
by flo = f5. Then, f is simplicial with respect to K and L. The uniqueness of f
follows from the uniqueness of f,, 0 € K. O

With regard to subdivisions of simplicial maps, we have the following:

Proposition 4.4.6. Let K and L be simplicial complexes and f : K — L a
simplicial map. For each simplicial subdivision L' <1 L, there exists a simplicial
subdivision K' <1 K suchthat f : K' — L’ is simplicial.

Proof. We define
Ko={on f'(t)|oeK, tel tC f(o)

Then, K| is a cell complex subdividing K. Indeed, let 0 € K and T € L’ with
1 C f(o)and x € o N f71(1). By 4.1.93), (flo) '(z) = o N f~ (1) is a cell
with (0 N f71(z))x = o N f~N(zy()). Since rint f(0y) Nrinttse) # 0, we
have 77) C f(oy) because L' <1 L. Thus, K satisfies (C1). To show (C2"), let
0,0/ € Kandt,7v' € L' witht C f(0), ¢’ C f(0), and

x erint(o N f~'(z)) Nrint(o’ N f71(z")) (Cono’' N T n7)).

Since rinto, Nrinto, # @ and rintt F(x) N rint ‘C}(X) # @, we have 0, = o and
Tfx) = t}(x). Then, from 4.1.9(3), it follows that

on f_l(f) =(N f_l(f))x =0y N f_l(ff(x))
=0, N [Ty =0 N ) =0"nfHE).

Therefore, Ky satisfies (C2").

Leto € Kand t € L' witht C f(0). Then, f(c N f~(z)) = flo) Nt = 1.
For each x € o N f~!(x), since Ts(x) C f(0y) as seen in the verification of (C1)
above, it follows that

Fo N f7H@))x) = flox N fT (Trw) = f(00) N Tre) = Tree)-
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In particular, if v € (0 N f~'(1))® then f(v) € 7(©. Consequently, we have
FKD) c 'O,

By Theorem 4.2.10, we have a simplicial subdivision K’ < K such that K'©® =
K(()O). Then, f(K'®) c L'©®. For each simplex 0’ € K’,wehaveo € K andt € L’
such that T C f(0), 0’ C o N f~(r),and '@ C (o N f~1(2)). Since f|o’
is affine and f(0’@) c ©, it follows that f(0’) < t, hence f(0’) € L’. Thus,
f : K' — L'is simplicial. O

For homeomorphisms that are PL, we have the following:

Theorem 4.4.7. Let K and L be cell complexes. If a homeomorphism [ : |K| —
|L| is PL, then the inverse f~' : |L| — |K| is also PL and K has a subdivision
K* such that f|C : C — f(C) is an affine homeomorphism for each C € K* and
L* ={f(C)| C € K*}is a cell complex subdividing L.

Proof. Because the graph G(f) of f can be regarded as the graph of f~!
by changing the first and the second factors, the first assertion follows from
Theorem 4.4.2.

Letiy : |[K| — G(f)andis;— :|L| — G(f) be the natural injections, where
ir—1(y) = (f7%(y), y) for each y € |L|. Let K’ be a subdivision of K such that
f is affine on each cell C € K’, and L’ be a subdivision of L such that ! is
affine on each cell D € L'. As observed in the proof of Theorem 4.4.2, i s (K’)
and i ;-1 (L") are cell complexes with |i(K')| = |i;~1(L")] = G(f) as spaces.
By virtue of Theorem 4.2.11, is(K’) and i f—l(L/ ) have a common subdivision
M. Then, K* = prjgx (M) and L* = pr); (M) are subdivisions of K" and L',
respectively. In addition, f(K*) = pr,is(K*) = pr, (M) = L*, that is,
L* ={f(C)| C € K*}.Foreach C € K*, f|C = pr;j0if|C :C — f(C)is
an affine homeomorphism. O

A piecewise linear (PL) homeomorphism is literally defined as a homeomor-
phism being PL. Due to Theorem 4.4.7, the inverse of a PL homeomorphism is
also a PL homeomorphism. For cell complexes K and L, the polyhedra | K| is PL
homeomorphic to |L| if there exists a PL homeomorphism f : |K| — |L|.

Remark 5. Every PL bijection between compact polyhedra is a PL homeomor-
phism. However, a bijective PL map f : |K| — |L| is, in general, not a PL
homeomorphism. For example, define f : Ry — 9I? as follows:

(t,0) ifr eI =0,1],
Jae- ifr e[1,2],
fo = G-1t1) ifr e[2,3],

0,27 2(n+2—1)) iftenn+1],n>3.

Then, f is a PL bijection that is not a PL. homeomorphism.
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For simplicial complexes K and L, if a bijection f : |K| — |L| is simplicial
with respect to K and L, then the inverse f~! is also a simplicial map from
L to K. A simplicial bijection is called a simplicial isomorphism. This is a
homeomorphism, so it is also called a simplicial homeomorphism. Obviously,
a simplicial isomorphism is a PL. homeomorphism. The inverse of a simplicial
isomorphism and the composition of simplicial isomorphisms are also simplicial
isomorphisms. Itis said that K is simplicially isomorphic to L (denotedby K = L)
if there exists a simplicial isomorphism f : K — L. Obviously, = is an equivalence
relation among simplicial complexes.

There exists a weaker equivalence relation among simplicial complexes. It is
said that K is combinatorially equivalent to L (denoted by K = L) if they have
simplicial subdivisions that are simplicially isomorphic. Then, = is an equivalence
relation among simplicial complexes.

It is obvious that == is reflective and symmetric. To see that = is transitive, let K| = K,
and K, = K;. Then, K| = Kj for some K| < K; and K; < K>, and K} = K}
for some K) <1 K, and KY <0 Kj. By virtue of Corollary 4.2.13, K} and K3 have a
common simplicial subdivision K}”, which induces K{” <1 K| and K}’ <1 K} such that
K{” = KJ" and K" = K}". Hence, K{” = K}”, which means K| = Kj. Therefore, =
is an equivalence relation among simplicial complexes.

This fact also follows from Theorem 4.4.8 below, Theorem 4.4.7, and Proposition 4.4.4.

Theorem 4.4.8. Two simplicial complexes K and L are combinatorially equivalent
to each other if and only if | K| and | L| are PL homeomorphic to each other; that is,
there exists a PL homeomorphism f : |K| — |L|.

Proof. If K =~ L, then K and L have simplicial subdivisions K’ and L’,
respectively, such that K’ = L’, hence there is a simplicial isomorphism f : K’ —
L'. Then, f : |K| — |L| is a PL homeomorphism.

Conversely, let f : |K| — |L| be a PL homeomorphism. By Theorem 4.4.7,
there is a cell complex K’ subdividing K such that f|C : C — f(C) is an affine
homeomorphism for each C € K’ and L’ = {f(C) | C € K'} is a subdivision of
L. By Theorem 4.2.10, we have a simplicial subdivision K” of K’ with the same
vertices. Then, L” = {f(0) | 0 € K"} is a simplicial subdivision of L. Observe
that f : K” — L” is a simplicial isomorphism. Thus, we have K” = L”, that is,
K=L. O

For simplicial complexes K and L, the following implications are trivial:
K=L=Kx=L=|K|~]|L|

Although it goes without saying that the converse of the first implication does not
hold, the converse of the second does not either. It should be noted that |K| =
|L| implies K =~ L by Theorems 4.2.11 and 4.2.10. The converse of the second
implication is called Hauptvermutung (the fundamental conjecture). It took a long
time to find finite simplicial complexes K and L such that K % L but |K| =~ |L]|.
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It is known that this conjecture does not hold even if |K| and |L| are n-manifolds
(i.e., there exists an n-manifold that has topological triangulations K 2 L).®

Remark 6. By Theorem 4.4.8, it might be expected that every PL map f : |K| —
| L| is simplicial with respect to some simplicial subdivisions of K and L. However,
this is not the case. For example, let K be the natural triangulation of R, that is,
K=wU{n—-1,n|neN}andlet L = I = {0,1,I}. We define a PL map
f 1 1K| — |L] as follows:

f@2n)=2""and f@n+1)=1-2""" foreachn € w,

and f is affine on each [n,n + 1]. Since every subdivision of K contains w as
vertices but every subdivision of L has only finitely many vertices, then f is not
simplicial with respect to any simplicial subdivisions of K and L.

In Sect.4.6, it will be proved that every proper PL map f : |K| — |L| is
simplicial with respect to some simplicial subdivisions of K and L. According to
Proposition 4.2.6, a (PL) map f : |K| — |L]| is proper if and only if, for each
o € L, there is a finite subcomplex K, C K such that f (o) C |K,]|.

4.5 The Metric Topology of Polyhedra

Let K be a simplicial complex. As shown in 4.2.16(2), | K| is non-metrizable unless

K is locally finite. In this section, we introduce the natural metric on the polyhedron

| K| that induces the same topology as the Whitehead topology if K is locally finite.
Each point x € | K| has the unique representation

n+1
x = z(i)vi. z€rint A", cx(x) = (vi.....vat1).

i=1
Foreachv € KO let
z(@) ifv=v,i=1...,n+1,
BE(x) =

0 otherwise.

Thus, we have maps BX : |K| — I, v € K©, which are affine on each simplex of
K. It follows from the definition that

Z BE(x) =1 foreach x € |K|,

veK©

8 An n-manifold (without boundary) is a paracompact space such that each point has an open
neighborhood that is homeomorphic to an open set in R”.
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where {v € K© | BK(x) # 0} = cx(0)©, ie., BE(x) > 0 & v € cx(x)?.
Namely, (BX),cxw is a partition of unity on |K| with supp BX = |St(v, K)|. In
fact, we have

B571((0,1]) = Ok (v) foreveryv e K@,

Then, each x € | K| is uniquely represented in the form

x= ) B,

veK©)

where BK(x) is called the barycentric coordinate of x at v with respect to K.
The injection X : |K| — £;(K©) defined by BX(x)(v) = BK(x) is called the
canonical representation of K. Observe that X(v) = e, is the unit vector of
£ (K©). For each 0 € K, the restriction SX|o is affine. It should be noted that
BX(K) = {BX(0) | 0 € K} is a simplicial complex in the Banach space £;(K©)
and BX : K — BX(K) is a simplicial isomorphism.

Now, we define the metric px on | K| as follows:

pr(x.y) = [IBX) = B = D 1BX ) - BE ).

veK©)

where || - [|; is the norm for £;(K®). Note that pg(v,v') = 2 for each pair of
distinct vertices v, € K©. The topology on |K| induced by this metric px is
called the metric topology. The space | K| with this topology is denoted by | K |p.
This space is homeomorphic to the subspace X (|K|) = |BX(K)| of the Banach
space £1(K©) because BX is an isometry. The space | K|, (or the metric space
(IK|. px)) is called a metric polyhedron. Note that £,(K®) c RX” and that the
topology of BX (| K|) inherited from £; (K ) coincides with the one inherited from
the product space RX"” because 8% (|K|) is contained in the unit sphere of £;(K @)
(cf. Proposition 1.2.4). Hence, the metric topology on | K| is the coarsest topology
such that all X : |K| — I (v € K©) are continuous. Then, we have the following:

Fact. For an arbitrary space X, each f : X — |K|n is continuous if and only if
BK f is continuous for everyv € K©.

Since every BX : |K| — I is continuous (with respect to the Whitehead topology),
the identity id|x| : |K| — |K|n is continuous, hence the Whitehead topology and
the metric topology are identical on each simplex of K.

The open star Ok (v) at each v € K© is open in | K|, because it is simply
BEY1((0,1]) (= |K|\ (BX)71(0)). Hence, Ok € cov(|K|m). For each x € |K|,
we have

Ok(x) = | rinto = () 0k() C[St(ck(x). K)|.

o€K|[x] veck (x)©@
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Hence, the open star Ok (x) is an open neighborhood of x in |K|y. For each 0 <
r < 1, we have the following open neighborhood of x in | K |i:

Ok(x,r) =1 —=r)x +rOk(x) = {(1 —r)x+ry ’ y € OK(x)}.

Then, Ok (x,r) C B, (x,2r). Indeed, for each y € Ok(x), since cx(x) < cg(y)
and BX is affine on ck(y), it follows that

p((L=r)x +ry.x)= Y |BE(1=r)x +ry) = BE ()]

veK©)

= 3 rIBE() - BE ()| = rox(x.y) <2r.

veK©)
As a consequence, we have the following:

Proposition 4.5.1. Let K be a simplicial complex and x € |K|. Then, {Ok(x,r) |
0 < r < 1} is an open neighborhood basis of x in | K |m. O

The following proposition can be easily proved:

Proposition 4.5.2. For every subcomplex L of a simplicial complex K, the metric
oL is the restriction of pg and |L|n is a closed subspace of | K |n. O

Moreover, we have:

Proposition 4.5.3. For a simplicial complex K and each x € |K|, the closure of
Ok (x) in |K | coincides with | St(cx (x), K)|. In particular, for a vertex v € K©),
| St(v, K)| is the closure of Ok (v) in | K |m.

Proof. According to Proposition 4.5.2, | St(ck (x), K)| is closed in |K|y. Then, it
suffices to show that (1 —t)y + tx € Ok(x) for each y € |St(ck(x), K)| and
0 <t <1.Foreachv € cx(x)©, since BX(x) > 0, it follows that

BE((1 =1y +1x) = (1 =L () + 1B (x) > 0,
ie, (1—0)y+tx e (B57(0,1]) = 0k ().

Hence, (1 — 1)y +tx € ﬂvec[((x)(m Ox(v) = Ok(x). O

Thus, with respect to the metric topology as well as the Whitehead topology,
Sk = O% and (BX),exo is a partition of unity on | K |, with supp X = | St(v, K)|.

Using the metric topology instead of the Whitehead (weak) topology, Proposi-
tion 4.3.4 can be generalized as follows:

Proposition 4.5.4. Let K be a simplicial complex and X an arbitrary space. If two
maps f,g : X — |K|m are contiguous (with respect to K) then [ ~k g by the
straight-line homotopy h : X x 1 — | K|, that is,

hix,t) = (1 —1t)f(x) +tg(x) foreach (x,t) € X xL
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Proof. Tt suffices to verify the continuity of 4. This follows from the continuity of
BER: X xT—>1,ve KO, where

BER(x, 1) = A —0)BK f(x) + 1BEg(x). O

Let K and L be simplicial complexes. Each simplicial map f : K — L can be
represented as follows:

f(x) f(ZVEK(O) ,BVK(X)V)

Yok rm= > > Bfwu

veK© ueL© ve f~1(u)

that is, BL(f(x)) = 3 ,c j-1(y Bi (x) for each x € |K|and u € L. Then, it is
easy to show the following:

Proposition4.5.5. Let f : K — L be a simplicial map between simplicial
complexes. Then, pr(f(x), f(¥)) < pk(x,y) for each x,y € |K|, hence f :
|K|m = |L|m is continuous. When f is injective, f : (|K|, px) — (|L|,pr) is a
closed isometry, so it is a closed embedding. Particularly, if f is bijective (i.e., f is
a simplicial homeomorphism), it is a homeomorphism. As a consequence,

K=L=|K|n~|Ln. O

For a finite simplicial complex K, since | K| is compact (Proposition 4.2.6), it
follows that id|g| : |K| — | K|y is a homeomorphism, that is, the metric topology
of | K| coincides with the Whitehead topology. More generally, we can prove the
following theorem (cf. 4.2.16(2)):

Theorem 4.5.6. For a simplicial complex K, the metric topology of | K| coincides
with the Whitehead topology (i.e., |K|m = |K| as spaces) if and only if K is locally
finite.

Proof. If |K|n = |K]| as spaces then |K| is metrizable, so K is locally finite by
4.2.16(2). To show the converse, let ¢ = id : |K| — |K|m. Assume that K is
locally finite, that is, St(v, K) is finite for each v € K©. Then, each ¢|| St(v, K)|
is a homeomorphism, so ¢|Ok(v) is also a homeomorphism. Since Ok is an open
cover of both | K|, and | K|, it follows that ¢ is a homeomorphism. O

Concerning subdivisions, we have the following result:

Proposition 4.5.7. Let K > K’ be simplicial complexes. Then, pgx(x,y) <
ok (x,y) foreach x,y € |K| = |K'|, henceid : |K'|n — | K|m is continuous.

Proof. Foreach x € |[K| = |K'| andv € K©, we have

BE () = BE (X exo BE w) = Y B (0)BKw).

weK’©)
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Fig. 44 |K'|m # |K|n

Then, foreach x, y € |K| = |K’|,

p(x,y) = Y |BEx) - BEW)|
veK©)
<Y BE @ =BE»[BEw

veK© weK’©

> 1B ) = BE )] = pxe(x. y).

weK’(0)

O

In contrast to the Whitehead topology, |K'|m # |K|n for some subdivision
K’ <@ K. Such an example can be defined in ¢; as follows:

K =1{0. ¢, (0.¢) | i €N} and
K = {0, 2_iei, €, (0,2_ie,‘>, (2_iei,ei) | i € N} < K,

where each e; € {; is defined by €;(i) = 1 and ¢;(j) = 0 for j # i. Then,
|K | is simply the hedgehog J(N). The set {27"¢; | i € N} is closed in |K'|;, but
lim; 500 27'¢; = 0in |K |, — Fig. 4.4.

For each simplicial map f : K — L, both maps f : |K| — |L| and f :
|K|m — |L|m are continuous (Proposition 4.5.5). Moreover, recall that every PL
map f : |K| — |L]| is continuous. However, a PL map f : |K|n — |L|m is not
continuous even if f is bijective. In fact, consider K/ <1 K in the above example
and let L = K. We definea PL map f : |K| — |L| by f(0) =0, f(e;) = e; and
f(27e) = %e,-, where %ei is the barycenter of (0,e;). Then, f : |K|m — |L|m
is not continuous, because 27'¢; — 0 in | K|, but f(27e;) = %e,- 4 f(0) =0
in |L|y.

It is inconvenient that the metric topology is changed by subdivisions and
that PL. maps are not continuous with respect to the metric topology. However,
concerning product simplicial complexes, the metric topology has the advantage
of the Whitehead topology.
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Theorem 4.5.8. For each pair of ordered simplicial complexes K and L,
|K X5 Llm = |K|m X |L|m as spaces.

Proof. The projections pr; : |K X; L|m — |K|m and pr, : |K X L|m — |L|m are
simplicial, so they are continuous. Therefore, id : |K X; L|m — |K|m X |L|m is
continuous.

We will prove the continuity of id : |K |y, X |L|m — |K Xs L|y ateach (x, y) €

|K|m X |L|m. To this end, we need the data of ,B(Iij‘)‘L(x, ¥). Note that the carrier

ckx,.(x,y) is contained in the cell cx(x) x ¢L (). Let
cx(X) = (w1, ..., u,), g <---<u, and
ct(¥)=(Viyee s Vim), VI <o < Uy,
anddefine0 =ap <a; <---<a,=land0=by <b; <---< b, =1as

k k
ai = Z,Bf(x) and by = Z,Bfi(y).

i=1 i=1
In this case, we can write
{ag,...,an,bo,..., by} ={co,...,ce}

such that 0 = ¢y < ¢; < -+ < ¢y = 1, where max{n,m} < £ < m + n and
Z£=1(ck —Ck—1) =ci—cop = 1.Foreachk = 1,...,¢, let

aiky—1 < ck < ajky and bjgy—1 < cx < bj),

and define (itx, Vi) = (4i), vVj())- Then, we have

(@1, v1), ..., (e, ve)) € K x5 L,

KXxgL

which is the carrier of (x, y), and S "5

(x,y) = ¢k — ck—1 because

¢
> (ex — e Gitg i)

k=1

= (Z Z (ck _Ck—l)ui(k),z Z (ck _Ck—l)Vj(k))

i=1i(k)=i j=1jk)=j

= (Z(d,’ — a,-_l)u,-, Z(bj — bj_l)Vj)
j=1

i=1

= (Zﬁf(x)un Zﬁf/(y)w) = (x, ).
j=1

i=1
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For each ¢ > 0, choose § > 0 so that 2§ < ¢ — cx—1 forevery k = 1,...,¢
and 2(¢ + 1)§ < e. Then, ,B,f(x) > 2§ fori = 1,...,n and ,BvLj(y) > 2§ for
j=1,...,m. Now,let (x',y") € |K| x |L| with pg (x,x") < § and p.(y,y") <38.
To show that pgx, 1 ((x, y), (x",y")) < &, let

cxk(X') = (uj, -+ ul,), uy <---<u, and

CL(y/) — (v/l7... ’v’/n/% v/l < e Z v:n/'
In the same way as x and y, define @, = Y r_, BE(x'), by, = >k BL(y"). and
write I I

{ag, ....a,,, by, ....b .} ={cp....cpt,
where 0 = ¢) < ¢ <--- < ¢, = l.Foreachk = 1,...,¢, leta;,(k)_1 <¢ <
a;,(k) and b;.,(k)_l <c, < b;,(k), and define (i, v;) = (u;,(k), v’j,(k)). Then,

(@, ), (i, Vi)Y = crxon(x',y")

andﬁ{;;%f)(x/,y/) =c¢,—c,_,.Foreachi =1,...,n,

K(x') = BE @) — IBE () - BEQ)] > 28— pre(x.x') > 6> 0,

which implies that u; < --- < u, is a subsequence of u’l < < u;,, that is, we can
take 1 < p(1) <--- < p(n) < n’ to write u; = u’p(l.). Observe that

k
iy —axl < Y IBEG) = BECHI+ Y R
i=1 u{uy,...,un}

< px(x,x’) <8 and

k—1
|y — a1 < D IBEC) = BECHI+ D BEK
i=1 u{uy,...,un}

< px(x,x") < 8.

Similarly, we cantake 1 < ¢g(1) <--- < g(m) < m’ to write v; = v;(j). Then,

1)y — bl <& and |b;,_; —bj—i| <.

On the other hand, for each k = 1,...,¢, because a;(t)—1 < ¢k < @) and
bjgy—1 < ¢k < bjw), we have

Ck = min{a; k), bjx)} and cx—1 = max{d;x)—1,bjx)—1}-
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Then, it follows that
b(/](j(k))—l < bj(k)—l +0<c+8<ck—8=<ax—0< a;(l-(k)).
. s i i . — /
Similarly, @yihy—1 < bq(j(k)). Hence, there is some r(k) = 1,..., ¢ such that
Crgy—1 = Max{d o)1 Dgcjay-1}
< Crgy = mindd) )0 byt
This means that p(i (k)) = i’(r(k)) and ¢(j(k)) = j'(r(k)), which implies that
iy 0y Vrgoy) = Wiy Vi) = Wticey VoG
= Uiy, Vi) = (Ug, Vi)
KX
and ,B(Lt:m(x Y') = €y — Cly—1- Observe that
Clk — § = min {ai(k) — 8, bj(k) — 8}
’ . ’ /
< Chy = min {a) 00y Dy )
< ¢k + 6 = min {ai(k) + S,bj(k) + 5} and
Ck—1 — 8§ = max {a,-(k)_l — 5, bj(k)—l — 8}
i ! !
< €yt = max {10 a1}
< Ck—1 + 6 = max {a,-(k)_l + vaj(k)—l + 8}
Moreover, it should be noted that
Z(C;_c;—l):a; a;— 1—:3 (")
i’(r)y=i
> (=) =bj—bj_ =B} () and

J'n=j
i'(r) e {p(D)..... p()},

D,....r(O} &
PEr@e O ) g, gty

Then, it follows that

) G =S W W (G o

ré{r(D)....r(0)} i¢{p(D)....p(m)} i’ (r)=i

+ > > (e —cy)

JEq),qm)} j'(r)=]
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Yo BEC) o+ X B0

ig{p(1),...p(n)} JEqD),...q(m)}
= > B + DD BEOD
u{uy,....un} ve€{vi,...Vm }

< px(x,x") + pr(y,y") < 28.
Consequently, we have the following estimation:

14
Prx,L((x, ), (x". ") = Z |(cx = cx—1) = () — Cray—)]

k=1
LY @
ré{r(1),...,r(0)}

¢ l
< Z lek — ¢l + Z |ek—1 = €)1 | + 28
k=1 k=1
<2(f+ 1) <e.

This completes the proof. O

For a simplicial complex K, we can characterize the complete metrizability of
| K| as follows:

Theorem 4.5.9. For a simplicial complex K, the following are equivalent:

(@) |K|m is completely metrizable;
(b) K contains no infinite full complexes as subcomplexes;
(c) pk is complete.

Proof. Since (¢) = (a) is obvious, we show (a) = (b) = (c).

(a) = (b): Assume that K contains an infinite full complex as a subcomplex.
Then, we have a countably infinite full complex L C K. Because K|y is
completely metrizable, its closed subspace |L|y, is also completely metrizable.
However, |L| is the union of countably many simplexes that have no interior
points. This contradicts the Baire Category Theorem 2.5.1. Therefore, K contains
no infinite full complexes.

(b) = (c): Let (x;)ieny be a pgx-Cauchy sequence in |K|,. Since BX
(K|, px) = £1(K©) is an isometry, (BX(x;))ien is Cauchy in £;(K®), hence
we have A = lim; 500 BX(x;) € £1(K©). Observe

> A =1l = Tim B )l = 1.

veK©)
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Let A = {v € KO | A(v) > 0}. Each finite subset F C A is contained in
cx (x1)© for sufficiently large i € N, hence (F) € K. Thus, K contains the full
complex A(A) as a subcomplex. It follows from (b) that A is finite. Using the above
argument, we have (A) € K, which means

x =) AWve(d)CIK|.
vEA

Therefore, px is complete. O

There is another admissible metric on | K|, that is widely adopted because it
allows for easy estimates of distances.

Another Metric on a Polyhedron 4.5.10.

(1) For a simplicial complex K, the following metric is admissible for | K |p:

PR (. y) = 15 () = BX (M)l

sup 1BE(x) = BEO)I (< px(x. ).
veK©

where || - ||oo is the norm for £oo (K'©).

Sketch of Proof. For the continuity of id : (|K[, p%°) — (IK|. pk). see Proposi-
tion 1.2.4.

(2) Proposition 4.5.7 is not valid for the metric p%°, that is, the inequality
pE(x,y) < p%(x,y) does not hold for some K’ <1 K.

Example. Consider the following simplicial complexes in R:
, 1 1 1
K ={0,£1,(0,£1)}, K" = {0, :I:z, +1, (0, :I:E) (:I:E +1)}.

Then, K’ <1 K but pzo(—%, %) = % > /o?(—?—V %) = %
(3) For a simplicial complex K, the following are equivalent:

(a) K is finite-dimensional;
(b) px is uniformly equivalent to p%°;
(c) p¥ is complete.

Sketch of Proof. (a) = (b) and (c): For each x, y € |K]|,

PR (x, ) < px(x,y) < 2(dim K + 1)pg° (x, ).

Then, applying Theorem 4.5.9, we have (c).

(b) or (¢c) = (a): If dim K = o0, then we can inductively choose n-simplexes 0, € K,
n € N, so that 6, N 0, = @ if n # m. Then, for any n < m, pg(6,,06,,) = 2 and
% (0, 0n) = 1/(n + 1). This is contrary to both (b) and (c).
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4.6 Derived and Barycentric Subdivisions

In this section, we introduce derived subdivisions and barycentric subdivisions,
and prove that proper PL maps are simplicial with respect to some simplicial
subdivisions.

The following lemma is useful to construct simplicial subdivisions:

Lemma 4.6.1. Let C be an n-cell with uy € rint C and K’ a simplicial subdivision
of the cell complex F(dC). Then,

K" = K"U{up} U{ugo |0 € K'} < F(C)

and K' is a full subcomplex of K"

Proof. Foreacho € K’, choose D < C sothato C D. Sinceup ¢ D = C Nfl D,
we have the join ugo, which is a simplex in C. Evidently, K” satisfies (C1) and
K" < F(C). To verify that K” is a simplicial subdivision of F(C), we have to
show that K” satisfies (C2”) and C is covered by simplexes of K”. On the other
hand, it easily follows from the definition of K” that K’ is full in K”. Then, it
suffices to show that each x € C is contained in the interior of a unique simplex
of K”.

The case x = ug is obvious. The case x € dC follows from the fact that K/ <
F(0C) and rintugo N dC = @ foreach o € K’'. When x € rint C and x # uy, let

to=sup{t>0| (1 —tHup+txeC}>1 and y = (1 —to)up + tox.

Then, y € dC and x € (up, y). By Proposition 3.2.3, such a point y € dC is
unique. Observe that the join upcg/(y) is a unique simplex of K” such that x €
rintugcgs(y), where cg/(y) is the carrier of y in K. O

Proposition 4.6.2. Let K be a cell complex and L' a simplicial subdivision of a
subcomplex L of K. Givenve € rint C for each C € K\ L, there exists a simplicial
subdivision K' of K such that L' is a full subcomplex of K' and

KO — 170 gO {Vc ‘ C eK\ L}.

Proof. For eachn € w, let K, = L U K™ Then, each K, is a subcomplex of K
and K = |, Ky Note that K/, = L' U K© < K, with K}© = L'O U K©
and L' is full in K§. Assume that K] | <1 K, such that L’ is a full subcomplex
of K/ _, and

K/

n—1

ForeachC € K™\ K,_1, let

O = kP Ufve | C e KMV LY.

Kyc ={0€K,_,|oCcdC} < F@AC).
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By Lemma 4.6.1, we have
Kc = Kyc U{ve} U {VCU | o€ Kac} < F(C)
and K¢ is full in K¢. Thus, we have a simplicial complex

K,=K,,u |J K¢
CEK(K)\KH—I

It is easy to see that K|, <1 K,,, L’ is a full subcomplex in K/, and
KO =kK"U{ve | CeK™\L.

By induction, we have K,; < K,,n € N, with the above conditions. Observe that
K’ = U, en K, is the desired simplicial subdivision. |

When L = @ in Proposition 4.6.2 above, the obtained subdivision K’ is called a
derived subdivision of K. This is written as follows:

K=l v6) | €1 << Gy K,

and K’ is an ordered simplicial complex with the natural order on K’ defined as
follows: ve < vp if C < D.If K is simplicial and v, = 6 for each o € K, the
derived subdivision K’ of K is called the barycentric subdivision of K, which is
denoted by Sd K.

When L is simplicial and L’ = L in Proposition 4.6.2, we call K’ a derived
subdivision of K relative to L, where

K' =LU{{ve,.....v¢,) | Ci <+ <Cpe K\ L}
U{(vl,...,vm,vcl,...,vcn) | (vi,...,vm) € L,

Cy<--<Cye K\ Lwith (v,...,vy) < Ci}.

If K and L are simplicial and v, = 6 for each 0 € K \ L, the derived subdivision
of K relative to L is called the barycentric subdivision of K relative to L, which
is denoted by Sd; K (cf. Fig.4.5). Note that L is a full subcomplex of Sd; K by
Proposition 4.6.2.

For simplicial complexes K and L, since the barycentric subdivisions Sd K
and Sd L are ordered simplicial complexes, we can define the product simplicial
complex Sd K x; Sd L, that consists of simplexes

((6—13‘?1)7”-,(6%’%11))7 a1 5"'5011 EKa 71 5"'577)1 EL-
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Sd;, K

[

Fig. 4.5 Definition of Sd; K

On the other hand, by giving v, € rint(o x t) foreacho x 7 € K %, L, we can
define a derived subdivision of the product cell complex K x. L, which consists of
simplexes

(Vorxys s Vayxr,)s O1 X T| < -+ <0y, XTy € KX L.

If voxe = (6,7) foreach o x T € K X, L, the derived subdivision of K x. L is
simply Sd K x; Sd L.
Applying these derived subdivisions, we prove the following:

Theorem 4.6.3. Let K, Ko, and L be simplicial complexes such that Ko C K N L,
|L| C |K|, and L \ Ky is finite. Then, K has a simplicial subdivision K' such that
Ky is a full subcomplex of K' and L is subdivided by some subcomplex of K'.

Proof. We show the theorem by induction on n = card(L \ Kp). In the case n = 0,
a derived subdivision K’ of K relative to L = K| is the desired one. In the case
n > 0, let 0 be a maximal dimensional simplex of L \ K. Since o is a principal
simplex of L, L; = L \ {0} is a subcomplex of L. By the inductive assumption,
we have K’ <1 K such that Ky is a full subcomplex of K" and L| <1 L; for some
L} C K'. Then, do is triangulated by the subcomplex L) = {r € L| | ¢ C do} of
L) (C K'). Let

L, ={tNo|7te€K suchthatt No # 0}.

Since t N ¢’ < tforeach o’ < o and v € K' with t No’ # @, L] is a cell
complex by Proposition 4.2.12. Then, |L)| = o and L} C L. It should be noted
thatif tNo # @butrintt No = @, thenz No = v/ N o for some T/ < 7 with
rintt’ No # @.

Now, consider the subcomplex K| = {t € K’ | t Nrinto = @} of K’. Then,
KoUL| C K{andoN|K]| = |L} | = do.Foreach r € K"\ K{, choose v, € rintt
so that

rintt Nrinto # @ = v, €rintt Nrinto,

where it should be noted that rint t Nrinto = @ implies rint ¢’ Nrinto # @ for some
7/ < T because T Nrinto # @. Using these points v,, we define K” as a derived
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Fig. 4.6 Definition of K

subdivision of K’ relative to K| (cf. Fig.4.6). Then, Ko U L] C K”. Since K| is
full in K{ and K7 is full in K", it follows that K is full in K.

On the other hand, for each cell C € L) \ L), let ve = v,., where 7¢ € K’
is the unique cell such that C = 7¢ N o and rintz¢ N o # @. Then, v¢ € rintC.
Indeed, since rintt¢ N rinto # @, we have rint C = rintt¢ N rinto by 4.1.9(2).
Using these points vc, we have the derived subdivision L of L] relative to L} .
Then, L/ is a triangulation of o, which is simply the subcomplex of K” consisting
of simplexes with vertices in o, thatis, L = {r € K" | © C o}. Thus, we have a
subcomplex L” = L| U L} of K" such that L” <1 L. O

To prove that proper PL. maps are simplicial with respect to some simplicial
subdivisions, we need the following:

Lemma 4.6.4. Let Cy,...,C, be cells contained in a cell C and Ky be a
triangulation of 0C such that if C; N dC # @ then C; N dC is triangulated by a
subcomplex of K. Then, C has a triangulation K such that Ky C K and Cy, ..., C,
are triangulated by subcomplexes of K.

Proof. 1t suffices to prove the case n = 1. Indeed, assume that C has triangulations
Ky,..., K, such that Ky C K; and C; is triangulated by a subcomplex of K;. By
Corollary 4.2.13, we have a common simplicial subdivision K of Kj, ..., K, with
Ky C K, which is the desired triangulation of C.

The case n = 1 can be shown as follows: Consider the cell complex F(C;) and
its subcomplex L; = {D € F(C,) | D C dC}, where |L;| = C, N dC. Indeed,
foreach x € C; N dC, take D < C, with x € rintD. Then, D = D, C C,.
Since x ¢ rint C implies C, < C, we have D C dC, thatis, D € L;. Note that
K, gives the simplicial subdivision L} of L. We can apply Proposition 4.6.2 to
obtain a simplicial subdivision K; of F(C;) with L C K. Then, K; U Ky is a
triangulation of C; U dC. On the other hand, F(C) has a simplicial subdivision
K with Ky C K by Proposition 4.6.2. Applying Theorem 4.6.3, we can obtain a
simplicial subdivision K { of K such that Ky C K { and K; U Kj is subdivided by a
subcomplex of K. O
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Now, we shall show the following:

Proposition 4.6.5. Let K and L be cell complexes. A proper map [ : |K| — |L|
is PL if and only if f is simplicial with respect to some simplicial subdivisions
K' <KandL' < L.

Proof. The “if” part is obvious, where the properness of f is not necessary.

To see the “only if” part, replace K with a subdivision so that f|C can be
assumed to be affine for each C € K. For each cell D € L, let Kp be the smallest
subcomplex of K such that f~!(D) C |Kp|, which also can be defined as

Kp=1{C eK|3C' €K suchthat C <C’, rintC’ N f~1(D) # 0}

Since f~!(D) is compact by the properness of f, it follows that Kp is a finite
subcomplex of K. According to the definition, Kp» C Kp for D' < D.

By induction on dim D, we can apply Lemma 4.6.4 to obtain a triangulation L p
of each D € L such that f(C) N D is triangulated by a subcomplex of L p for each
C € Kp and Lp C Lp for every D’ < D. Indeed, assume that Lps has been
obtained for every D’ < D. Then, Lyp = |J,,_p Lp’ is a triangulation of aD.
Applying Lemma 4.6.4, we have a triangulation L p of D such that Lyp C Lp and
f(C) N D is triangulated by a subcomplex of L forevery C € Kp.

Now, we have a simplicial subdivision L = | J,c, Lp of L, where f(C) is
triangulated by a subcomplex of L’ for every C € K.ForeachC € K andt € L’
withtN f(C) #0,CN f~1(r) = (fIC) (r)isacelland (f|C) ! (z)y = Cx N
F Nz forx € C N f71(x) by 4.1.9(3). By the analogy of Proposition 4.2.12,
we can show that, foreach C,C’ € K and t,7’ € L,

rint(C N f~H @) Nrint(C' N fT'@N#0 = Cn f o) =C'n ().
Thus, the following is a cell complex:
{C N f () | CeK,tel,Cnfl(r)# o},

which is a subdivision of K. By Theorem 4.2.10, we have a simplicial subdivision
K’ of this complex with the same vertices. Then, f is simplicial with respect to K’
and L' |

As we saw at the end of Sect. 4.4, the properness of f is essential in the “only if”
part of Proposition 4.6.5. By Propositions 4.4.6 and 4.6.5, we have the following:

Corollary 4.6.6. Let Ky, K», and K3 be simplicial complexes. For each simplicial
map f : Ki — K, and each proper PL map g : |K2| — |K3|, there are simplicial
subdivisions K| <1 K and K}, < K3 such that gf : K| — K} is simplicial.

Proof. Using Proposition 4.6.5, we can find simplicial subdivisions K}, <1 K, and
K} < K3 such that g : K} — Kj is simplicial. Then, by Proposition 4.4.6, K has
simplicial subdivisions K| <1 K; such that /' : K| — K} is simplicial, whence
gf 1 K| — Kj is simplicial. O
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Remark 7. As observed, a PL map cannot be defined as a map f : |K| — |L| that
is simplicial with respect to some simplicial subdivisions K’ <t K and L’ < L.
If we adopted such a definition, then we could not assert that the composition of
PL maps is PL. In fact, even if f : K; — K is a simplicial isomorphism and
g : |K2| — |K3] is simplicial with respect to some simplicial subdivisions, the
composition g f is not simplicial with respect to any simplicial subdivisions. For
example, let K = {n, [n,n + 1] | n € w} and I = {0, 1, I} be the natural
triangulations of [0, o) and I, respectively. We define K’ <1 K as follows:

K = {n, n 42 0+, [n,n + 2_(”+1)], [n + 2= FD 4 1] | ne a)}.

Let f : K — K’and g : K — I be the simplicial maps defined by
f@ny=n, fCn+1)=n+2"""Y ¢2n) =0 and g2n +1) = 1.

Then, f : K — K’ is a simplicial isomorphismand g : |[K'| = |K| — || =Iisa
PL map. Observe that g f(4n + 1) = 27@"*D and g f(4n + 3) = 1 —272"+2) for
each n € w, whence g f(w) is infinite. Since every subdivision of K contains w as
vertices but every subdivision of / contains only finitely many vertices, g f is not
simplicial with respect to any simplicial subdivisions of K and .

As we saw in Sect. 4.5, a subdivision generally changes the metric topology but
the barycentric subdivision does not.

Theorem 4.6.7. For each simplicial complex K, | Sd K |, = | K |m as spaces.

Proof. When K is finite, the result follows from Proposition 4.5.7 and the compact-
ness of | Sd K|,- We may assume that K is infinite. By Proposition 4.5.7, it suffices
to show that id : |K|n — | Sd K|, is continuous. Let x € |K| and k = dim ck (x).
For each ¢ > 0, choose § > 0 so that § < (2k + 3)~'e and

BEG) # B = 8 < 218K — B (o

The last condition implies that § < %,&K (x) for every v € cg(x)© because
,Bvlf(x) = 0 for some V' € K. For each y € |K| with pg(x,y) < §, the following
hold:

BE(x)>BE(x) = BE() > BE():
BE(x) =0 & BX(y) <.

Note that the first implication holds even if ,BVIf (x) = 0, hence cx(x) < cx(p).
Since BX (y) < B (y) implies BX (x) < BX (x), we can write

cxk(x) = (vo,...,vk), ck () = (vo,...,vu), k <mn,

W) == B(x) >0 and BE(y) = -+ = B (¥) > 0.
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For each i = 0,...,n,let o; = (vg,...,v;). Then, 0y < 07 < -+ < 0Oy,
ox = ckx(x), and 0, = cg(y). Observe that

x = BN+ BL_ v + -+ BE v 4+ BE (0w

Vk—1

= (k + DB (x)Gk + k(By,_, (x) = By, (x)) 61+

Vk—1

s 2(BE () = BE ()61 + (BE (x) — BE(x)) 0.
Hence, x € (6o,...,6%) € SAK, B35 (x) = (k + 1)BK (x) and
BK(x) = (i + (B (x) = B, (x)) fori =0,... k-1
Similarly, we have y € (5o, ..., 6,) € SAK, B3**(y) = (n + 1)BL (y) and

B () =+ D(BEW) —ﬂ§+l(y)) fori =0,...,n—1.

Then, it follows that

k n
psax (X, y) =Y |BEK ) - B+ D] B
i=0 i=k+1

k
<Y Qi+ D[BE@ = BEOD|+ k+DBE, ()

i=0

+k+2BK o+ D BED)

i=k+2
<2k +3))_[BEx) - BEW))
i=0
=2k + 3)px(x,y) < 2k +3)5 < &.
Thus, id : | K|y — | Sd K|, is continuous. O

We have the following generalization of 4.2.16(1):

Proposition 4.6.8. For each infinite cell complex K, dens |K| = card K©. If K is
simplicial, dens | K| = dens |K |, = card K@,

Sketch of Proof. As in 4.2.16(1), we can construct a dense set D in |K| with card D =
card K = card K©, hence dens |K| < card K©. On the other hand, let K’ be a derived
subdivision of K. Then, {Ox'(v) | v € K@} is a pair-wise disjoint collection of open sets
in |K|, hence card K© < ¢(|K|) < dens |K]|.

If K is simplicial, the above D is also dense in |K|,,. Moreover, {Osgx (v) | v € K©}
is a pair-wise disjoint collection of open sets in | K |y.
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It should be remarked that w(|K|,) = dens|K|, = card K© for every
infinite simplicial complex K (see Sect. 1.1) but, as we saw in 4.2.16(4), w(|K|) #
card K© in general (w(|K|) > dens |K| = card K©).

4.7 Small Subdivisions

In this section, it is proved that every simplicial complex K has an arbitrarily small
simplicial subdivision, that is, for any i/ € cov(|K|), there is K’ <1 K such that
Skr < U. As applications, we can prove the paracompactness of |K| and the
Simplicial (PL) Approximation Theorem.

We inductively define the n-th barycentric subdivision Sd" K of K and the n-th
barycentric subdivision Sd} K of K relative to L as follows:

Sd" K = Sd(Sd" "' K) and Sd? K = Sd, (Sd’~' K),

where Sd° K = Sd} K = K. In the following, we show that if K is finite then the
size of Sd™ K becomes smaller as m gets larger. The following is a special case of
3.2.7(5)(the proof is easy):

Lemma 4.7.1. For every cell C in a normed linear space E = (E,| - ||), the
following hold:

@) |lx = y|l < sup,eco |x — V|| foreachx € E andy € C;
(2) diam C = diam C©. O

Proposition 4.7.2. For every simplicial complex K in a normed linear space E,
mesh K = mesh K,

Proof. By Lemma 4.7.1(2), we have diam o = max, ¢, diam(u, v) for each o €
K. Then, it follows that mesh K = mesh K@, |

Lemma 4.7.3. Let f : 0 — E be an affine map of an n-simplex o into a normed
linear space E. Then,

mesh £(Sd F(o)) < n”j - diam f(0).

Proof. Note that f(o) isacellin E and f(0)@ C f(0@).Leto” <o’ <o.1It
follows from Lemma 4.7.1(1), (2) that

1£(6") = f6")Il < max 1£ (6" = fOI

cmax Y - f0]

vea!’© dimo’ 4+ 1
u€o’ 0
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1
=08 X Gmory 1160
uco’ O\ {v}

dimo’

< dmo +1 -diam f(0”) < nL -diam f (o).

+1

Then, we have the result by Proposition 4.7.2. O
The following is the special case of Lemma 4.7.3 when [ = id,:

Lemma 4.7.4. For every n-simplex o in a normed linear space E,

mesh Sd F (o) < nn? - diamo. 0

For each simplicial complex K, we have the isometry BX : (|K|,px) —
£, (K©). Then, we can regard |K| C £,(K®), and pg is induced from the norm
of £1(K©). Moreover, for an n-simplex o € K, px(v,6) = 2n/(n + 1) for every
v € 00, Hence, the following can be obtained from Lemma 4.7.4:

Proposition 4.7.5. Let K be a simplicial complex. For any simplicial subdivision
K’ <1 K, mesh,, K’ = mesh,, K'D. If dim K = m then

mesh,, SdK' < —— o meshy, K.

m —+

In particular, if K’ = K and dim K = m, we have mesh,,, Sd K = 2m/(m + 1).

0
Using Proposition 4.7.5 inductively, we have the following:
Theorem 4.7.6. For every finite-dimensional simplicial complex K,
mesh, sa" K <2 9mK )", neN
- or eve .
P =“\dimK + 1 e
Hence, lim,_, o mesh,, Sd" K = 0. O

Corollary 4.7.7. For a finite simplicial complex K, each open cover U of |K |m
(= |K)) is refined by Ssq»  for some n € N.

Proof. Since |K|n = |K]| is compact (Proposition 4.2.6 and Theorem 4.5.6) and
dim K < oo, we can choose n € N so large that mesh,, Sd" K is less than the
Lebesgue number of /. Then, we have the desired n. O

For infinite-dimensional simplicial complexes, we have the following:

Proposition 4.7.8. If K is an infinite-dimensional simplicial complex, then

mesh,, Sd" K =2 (= mesh,, K) for everyn € N.
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Proof. By induction on n € N, we shall show the following:

(%), foreach m € N and & > 0, there exist a vertex v € K® and an m-simplex
o € Lk(v,Sd" K) such that BX (u) < & forevery u € 0©.

If (%), has been shown, then T = ({v} U g) € Sd" K and

diam t > max pg(v,u) = max 2(1 — ﬂf(u)) >2(1—c¢).
u€c(© u€c(©

Thus, it would follow that mesh,, Sd" K = 2.

To see ()1, for each m € N and ¢ > 0, choose k € N so that (k +2)7! < e.
Since dim K = oo, K has simplexes 07 < -+ < 0,41 With dimo; = k +i. Let
VE 01(0). Then, we have an m-simplex o = (61, ...,6m+1) € Lk(v, Sd K). Observe
that BX(6;) = (k +i + )™ <eforeveryi =1,....,m + 1.

Now, we prove the implication (%), = (%),+1. Foreachm € N and ¢ > 0,
choose k € N so that (k 4+ 2)~! < £/2. By (x),, we have v € K@ and a (k + m)-
simplex 0 = (vq,...,Vk+m+1) € Lk(v,Sd" K) such that

,BVK(V,-) <¢/2 foreveryi =1,....k +m + 1.

Foreachi = 1,...,m+ 1,leto; = (v,v1,...,v+;) € Sd" K. Since v < 01 <
-+ < Opm+1, We have an m-simplex

o = (CAT],...,CATm_H) S Lk(v, Sdn+l K)

Then, it follows that
1 k+i
Ka K
)=—11 E )
IBV(G) k+l+1< +j:lIBV(VJ))

- 1 lJr(k—H)s - 1 L8
k+i+1 2 k+2 2 ’

™

This completes the proof. O
Remark 8. For the metric p°, we have the following:
dim K
dimK + 1
 If dim K = oo then mesh e SA"K =1(= mesh,eo K) forevery n € N.

n
e Ifdim K < oo then meshp? Sd" K < ( ) foreveryn € N;

To construct small subdivisions of infinite simplicial complexes, the following is
available:

Lemma 4.7.9. Let K be a finite simplicial complex and L a subcomplex of K.
Given an open neighborhood U(v) of | St(v, L)| in |K |m (= |K|) for everyv € L©,
there exists a subdivision K' of K such that L C K’ and |St(v, K')| C U(v) for
everyv e L,
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<

IS
'%///‘"{\{E ]
<

K

Fig. 4.7 Small subdivision

Proof. Replacing K by Sd; K, we may assume that L is full in K. Since | St(v, L)|
and | K|\ U(v) are disjoint closed sets in the compact metric space (| K|, px), we
have

8= I;lng) dist,, (| St(v, L)|, |K|\ U(v)) > 0.

Foreach o € K \ L, choose v(0) € rinto so that
oN|L| #0 = dist,, (v(0).,0 N|L]|) <8.

Using the points v(c), we define K’ as a derived subdivision of K relative to L,
which is as desired (Fig.4.7).

To see that | St(v, K')| C U(v) foreach v € L©, let x € | St(v, K’)|. Then, we
have og = (vi,...,vm) € St(v,L)and 0y < --- < 0, € K \ L such that

vi=v, 00 <o, and x € (vi,..., vy, v(01),...,v(0,)) C Oy,

whence we can write

m

X = Zz(i)vi + Zz(j +m)v(o;) forsome z € A",
i=1 j=1

Foreach j = 1,...,n, since o; N |L| # @, we can choose u; € o; N |L| so that
px(v(0;),u;) < 8. Since L is full in K, 0; N |L| = (6\” N|L|) € L for each
i=1,...,nando; N|L| <--- <0, N|L|, hence we have

m

y =Y 2w+ Y 2(j +mu; €0, N|L| C|St(v, L)].
i=1 j=l1
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Since BX|o,, is affine, it follows that

px(x.y) = | B5 ) = XD ],

> 2+ mBE (o) =D 2+ m)BE ;)
1

=1 =1

<Y 2 +m)|BE o)) - X)),

Jj=1

= "2 +m)px(v(oy).u;) < 8.

j=1
Thus, px (x, | St(v, L)|) < &, which means that x € U(v). O
We can apply Lemma 4.7.9 above to strengthen Corollary 4.7.7 as follows:

Proposition 4.7.10. Let K be a finite simplicial complex, L be a subcomplex of
K, and U be an open cover of |K|m (= |K|) such that S; < U. Then, K has a
subdivision K’ such that L C K’ and Sg < U. Moreover, if U(v) € U are given
forallv e L© so that | St(v, L)| C U(v), then | St(v, K")| C U(v) forall v € L©.

Proof. As the additional statement, we assume that | St(v, L)| C U(v) € U for each
v e L9, By Lemma 4.7.9, we have a subdivision K’ of K such that L C K’ and
|St(v, K")| € U(v) for each v € L©. By Corollary 4.7.7, Ssgm g» < U for some
m € N. Then, Sd7' K’ is the desired subdivision of K. Indeed, | St(v,Sd}' K')| C
|St(v, K)| C U(v) foreachv € L. Letv € (Sd} K")©@\ LO1f St(v, Sd}' K’) N
L = @ then | St(v, ST K')| = | St(v, Sd™ K')|, which is contained in some U € U.
When St(v,Sd7' K’) N L # @, we have v/ € L® such that (v/,v) € Sd}' K, that is,
v € 0 and v = 6 for some o € Sd7"~! K'. Then, it follows that

| St(v,Sd7 K')| C | St(o, SdT™" K')| C |St(v, K)| Cc U(Y).
Therefore, Ssan g7 < U. O

For a simplicial complex K, it is convenient to denote by K(n) the set of all
n-simplexes of K, that is, K(n) = K™\ K~1_ Now, we can prove the following:

Theorem 4.7.11 (J.LH.C. WHITEHEAD). Let K be an arbitrary simplicial com-
plex. For any open cover U of |K|, K has a simplicial subdivision K' such that
SK/ < U.

Proof. By induction, we shall construct subdivisions K, <i K™ and choose U(v) €
U for each v € K\ \ K,EO_)I so that K,—; C K, and | St(v, K,,)| C U(v) for every
ve K\ =,., K. Then, K = |,y K. would be the desired subdivision of
K. Indeed, each v € K'© belongs to some K, hence

|St, K| = ISt Ki)| c UWw) e U.

i>n
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Now, assume that K,_; <I K~ has been constructed and U(v) € U has been
chosen for every v € K,(gl such that | St(v, K,—1)| C U(v). For each o € K(n), let

Ky, ={t € K,—1 |t Cdo} < F(do).

Applying Lemma 4.6.1, we have
K, = Ky, U{6} U {En' \ T € Ka(,} < F(o).

By Proposition 4.7.10, we have K, <1 K, such that K3, C K, Sk, < U and
| St(v, K.)| C U(v), forevery v € Kgg). Then,

K,= |J KJUuK, <K
oc€K(n)

Foreachv € K,SO) \ K ,50_)1 , we have an n-simplex 0 € K such that v € rint o, whence
St(v, K,) = St(v, K.). Therefore, we can choose U(v) € U so that | St(v, K,)| C

U(v). On the other hand, for every v € K ©

n—1°
St(v. K)| = | J{IStw. K| | v €0 € K@)} U|St. Kum1)| € U().

This completes the proof. O
By Theorem 4.7.11 above, we have the following:
Corollary 4.7.12. Every polyhedron is paracompact.

Proof. 1t suffices to show that | K| is paracompact for any simplicial complex K.
For any open cover U of |K|, K has a subdivision K’ such that Sx» < U. Then,
(,BVK/)veK/(O) is a partition of unity on |K’| = |K| subordinated by /. Hence, | K| is
paracompact by Theorem 2.7.5. O

Let K and L be simplicial complexes. A simplicial map g : K — L is
called a simplicial approximation of a map f : |K| — |L| if each g(x) is
contained in the carrier ¢z ( f(x)) of f(x)in L. Then, f =~ g by Proposition 4.3.4,
which is realized by the straight-line homotopy. The definition of a simplicial
approximation ¢ : K — L of amap f : |K|nw — |L|m is the same. Then,
f =1 g by Proposition 4.5.4, which is also realized by the straight-line homotopy.

Lemma 4.7.13. A simplicial map g : K — L is a simplicial approximation of a
map f 2 |K| — |L|(or f :|K|m = |L|m) if and only if f(Ok(v)) C OL(g(v)) for
everyv e KO,

Proof. First, assume that g : K — L is a simplicial approximation of f and
let v € K© For each x € Og(v), we have v € cg(x)©. Observe that
g(x) € ¢ (f(x)) Nrintg(ck(x)). Then, g(cx(x)) = cL(f(x)), hence g(v) €
g(ex(x) @ C e (f(x). Therefore, f(x) € rinte(f(x)) C OL(g(¥)).
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Conversely, assume that f(Og(v)) C Op(g(v)) for every v € K© and
let x€|K|. For every v € cx(x)©, since x € rintcx(x) C Ok(v), we have
f(x) € f(Og() C Or(g(v)), which means that g(v) € c.(f(x))®. Thus,
g(ck(x)) = cL(f(x)). Therefore, g(x) € cL(f(x)). o

As an application of Theorem 4.7.11, we have the following:

Theorem 4.7.14 (SIMPLICIAL APPROXIMATION). Let K and L be simplicial
complexes. Then, each map f : |K| — |L| has a simplicial approximation
g: K' — L for some K' <1 K.

Proof. By Theorem 4.7.11, we have K’ <1 K such that Sg» < f~'(Op). Let g’ :
K'® — LO be a function such that |St(v, K’)| C f~'(OL(g'(v))). For each
€K,

oc () IStw.K) c () f7(OLE M)

veg© veg(©

hence (), ¢, OL(g'(v)) # @. Due to Proposition 4.4.5, g’ induces a simplicial map

g: K’ — L.ByLemma4.7.13, g is a simplicial approximation of f. O
Remark 9. We can easily generalize Theorem 4.7.14 as follows: Let K and
Ly,..., L, besimplicial complexes. For any maps f; : |K| — |L;|,i = 1,...,n,
there exist a subdivision K’ of K and simplicial maps g; : K’ — L;,i = 1,...,n,

such that each g; is a simplicial approximation of f;.
The following is a combination of Theorems 4.7.11 and 4.7.14:

Corollary 4.7.15 (PL APPROXIMATION THEOREM). Let K and L be simplicial
complexes and f : |K| — |L| be a map. For each open cover U of |L|, there is a
PLmap g : |K| — |L| that is U-close to f. O

4.8 Admissible Subdivisions

Let K be a simplicial complex and K’ a simplicial subdivision of K. In general, the
metric pg- is not admissible for | K|, so the topology induced by pg- is different
from the one induced by pg (cf. Sect. 4.5). We call K’ an admissible subdivision of
K if the metric pg- is admissible for | K|m; equivalently, | K|y, = |K | as spaces. *
For instance, the barycentric subdivision is admissible (Theorem 4.6.7) and, if K is
locally finite, every subdivision of K is admissible (Theorem 4.5.6). In this section,
we prove the metric topology version of Whitehead’s Theorem 4.7.11 on small
subdivisions. It should be remarked that mesh,, Sd" K = 2 (= mesh,, K) for
every n € N if dim K = oo (Proposition 4.7.8).

°1In [7], such a subdivision is called a proper subdivision.
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First, we give the following characterization of admissible subdivisions using
open stars:

Lemma 4.8.1. A simplicial subdivision K’ of a simplicial complex K is admissible
if and only if the open star Ok (v) of each vertex v € K'(0) is open in |K | .

Proof. The “only if” part follows from the fact that the open star Ok (v) is open in
| K'|m. To see the “if” part, it suffices to show that id : | K|, — |K’|i is continuous
ateach x € | K| (Proposition 4.5.7). Let U be a neighborhood of x in | K'|,,. We can
find 0 < r < 1 such that Ogs(x,r) € U by Proposition 4.5.1. On the other hand,
Ok/(x) = ﬂvECK,(x)(O) Ok (v) is open in | K |, because so is each Ok (v). Again by
Proposition 4.5.1, we can find 0 < s < 1 such that Og(x,s) C Ogs(x). Then, it
follows that

Ok(x,rs) = (1 —rs)x +rsOk(x)
={1-rx+ r((l —s5)x + sOK(x))

=1 —=r)x +r0Og(x,s)
C(1—=r)x +rOkg/(x) = Og/(x,r) CU,

which means that U is a neighborhood of x in | K |m. O

For A C | K|, we introduce the following subcomplexes of K:

N(A,K) = {cr ekK | dz € K[A] such that o < r},
C(A.K)=K\K[A]={o € K|oNA=0} and
B(A,K) = N(4,K)N C(A, K).

If A = |L| for a subcomplex L C K, we simply denote N(L, K), C(L, K),
and B(L, K) instead of N(|L|, K), C(|L|, K), and B(|L|, K), respectively. Note
that N({v}, K) = St(v, K) for each v € K© but N(o, K) 2 St(o, K) for each
o € K\ K© in general. For each simplex ¢ € K, |[N(0,K)| = st(c, K) and
| St(o, K)| = st(rinto, K) = st(6, K). Moreover, note that each x € | K] is joinable
to each simplex o € St(ck(x), K) N C(x, K),'” so we have the join xo contained
in | St(ck (x), K)].

Now, take A C |K| so that Og(x) N Ok(x') = @if x # x’ € A (i.e., K has no
simplex containing more than one point of A). Then, the simplicial subdivision K 4
of K can be defined as follows:

Ky=C(A,K)U {xa | x €A, 0eSt(ck(x),K)Nn C(x,K)}.

1In general, St(ck (x), K) N C(x, K) 2 Lk(ck (x), K).
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Observe that K" = AU K©, C(4, K4) = C(A, K), and Ok, (x) = Ok(x) for
each x € A. When A = {x}, we write K(,; = K,. The operation K — K, (or K,
itself) is called a starring of K at x. A subdivision obtained by finite starrings is
known as a stellar subdivision. In general, (K,), # (K,). for distinct two points
x,y € |K]|.

Lemma 4.8.2. For each w € |K|\ KO, the starring K,, is an admissible
subdivision of K.

Proof. Due to Proposition 4.5.7, we need to show that id : |K|n, — |Ky|m is
continuous. It suffices to prove that X+ : |K|,, — Lis continuous for each v € K, o
Using the barycentric coordinates with respect to K,,, each point x € |K| can be
written as follows:

x=BEow+ Y oo

ueK©
Since BX(v) = 1 and BX (u) = 0 foreachu € K© \ {v}, it follows that

B (x) = Bl (0)BS (w) + B (x)
(e, B (x) = BF(x) = B (0)BS(W)).

Then, it is enough to verify the continuity of 8Xv : | K|, — L
We shall show that

BE = min BEw) 'K |K|m — L

w
VECK (W)(())

which implies that BXv is continuous. For each x € |K|, if cx(w) £ ck(x) then
,BVIV(W(x) = 0 and min,e, ()0 ﬁf(x)/ﬁf(w) = 0. If ck(w) < cgx(x), let vy €
Ck (w)(o) such that

Bi (X)/ By (w) = Vecm(ig)w) B (x)/ By (w) € (0,1].

Let o be the opposite face of cg (x) to vy. Observe that

K K
nt) |y (ﬂfm— Pi) ﬂvK(w))

Vo (W) veo©) Vo (W)

B (x)
B (w)

B

= o (A0

(1-BKw) =1.

Then, we have

1 (%) )
vlg(w)w + Z (,BVK(X) - v’g(w)'BVK(W))V ewo € K,,,

vea©)
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which is simply x. Indeed,

BE @) p BE(x) )
A" * > (ﬂv (x) — BE Biom P )Y

veKO\{vo}
K

-y ﬁvo( ),BK(w)v+ Y (ﬁf(x)—%ﬁf(m)v

eK<0> vEK O\ {vo} Yo

_ K( ) K K _ K —
BEwvo+ Y BEv =D BE v =
'Bvo( ) veo© veK©)
Therefore, B (x) = BX (x)/BE (w). =

Lemma 4.8.3. Let K’ and K" be simplicial subdivisions of K such that K'© and
K"© are discrete in |K | . Then, K' and K" have a common simplicial subdivision
K" such that K" is discrete in | K | .

Proof. Here, we use the following admissible metric on | K|y:

dx.y) = |3 (BE@) - BED)).

veK©)

Then, each n-simplex o € K with this metric is isometric to the standard n-simplex
of Euclidean space R"*!, so diamy 0 = /2 if n # 0.

By Proposition 4.2.12, we have the following cell complex L, which is acommon
subdivision of K" and K”:

L={0'no" |0 €K' o”eK"suchthato' No” # 0}.

By Theorem 4.2.10, L has a simplicial subdivision K"’ such that K"”"©® = L©,
Then, it suffices to show that L® is discrete in | K |,.

Let xo € |K|m. Since L© N ¢ (xo) is finite, K'© U K”© is discrete in X, and
¢k (xp) is compact, we can find 0 < § < 1 such that B;(xg,8) C O(xo, K),

§ < disty (cx (x0). (K@U K"O)\ cx(x0)) and
§ <min{d(v.w) | v#we (LN ck(x)) Uixol}.

We show that d(xo,v) > §2/+/2 for every v € L© N By(xo,8) \ ck(x0), which
implies that By (xo,8%/+/2) N (L© \ {x0}) = .

Since v € O(xo, K) \ cx(xo), we have cg(xg) < cx(v). Since cg (v) is isometric
to the standard simplex of Euclidean space, there exists the nearest point u € ck (xo)
to v, i.e., d(v,u) = disty (v, cgx(xp)). Then, the line segment (u,v) is upright on
cx(xp). Since v e LO\ (K'@ U K”©) it follows that {v} = ¢’ N ¢” for some
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o' € K'\ K'@ando” € K"\ K"©. Then, o), = o/ N cg(xy) # @ and 0] =
o’ Ncg(xg) # B. Otherwise,

d(xo,v) > disty (ck (x0), (K@ U K" O)\ ck(x)) > 8,

which is a contradiction. Let o and o{’ be the faces of ¢’ and ¢” that are opposite
oy and oy, respectively. In other words, 0| and o are the simplexes spanned by the
vertices 0’ and ¢” that do not belong to o, and o/, respectively. Then, we can write

"_n

v=>0=)y +t'7 =0 =1t")y" +1"7,

where y' € 0(,7 € of, y" € 0y,z" € oy,and t’,t"” € (0, 1). Since 0’ N 0" = {v}
and v & cx(xo), we have o) N o) =0’ No” Ncg(xg) = @, hence

d(y',u) +d(y" u) > d(y',y") > disty (0}, 0f) = dista ((0)?, (0])?) > 6.

Then, d(y',u) > 8/2 or d(y”,u) > §/2. We may assume that d(y’, u) > §/2.

In the same way as above, let X’ € ck(xo) be the nearest point to 7, i.e.,
d(Z,x") = disty(Z,cg(x0)) > &, where the line segment {x’,z’) is upright on
ck (xp). Since the right triangle x’y’7 is similar to the right triangle uy’v and
d(x',y") < diamy cg (xo) = /2, it follows that

A
dGov) > duv) = LD a0y > 8243,
d(x',y")

This completes the proof. O

Theorem 4.8.4. A simplicial subdivision K’ of a simplicial complex K is admissi-
ble if and only if K'") is discrete in | K | .

Proof. Since K’ is discrete in |K'|, it suffices to show the “if” part. By virtue of
Proposition 4.5.7, we need only show the continuity of id : | K|, — |K'|m at each
w € |K|. By Lemma 4.8.3, there is a common subdivision K” of K,, and K’ such
that K”© is discrete in |K|. Then, id : |K” |, — |K'| is continuous. It suffices to
show the continuity of id : |K|n = |Ky|m — |K”|m at w, where w € K. Thus,
we may assume that w € K©.

For each x € | K|, observe that

pr(x,w) = Y [BK )= B (w)]

veK©)

=1-BK@)+ > Bf=20-85x).

ve KO\ {w}

For the same reason, we have pg/(x,w) = 2(1 — ff/(x)).
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Let § = dist,, (w, K’@ \ {w}) > 0. For each ¢ > 0, we shall show that if
pi(x,w) < 8&/2 then pg/(x,w) < e. Foreveryv € K'O\ {w}, BK(v) <1-§/2
because 2(1 — BX(v)) = px(v,w) > §. Foreach x € |K]|,

B = 3 BB m <K+ Y K1 -8/2)

veK’©) veK/O\{w}
<X () + (1=K ()1 = 8/2) = 68K (x) /2 + 1 - 8/2.
It follows that

/ 2(1 - B (x
prtem/2 =1 () < LB iy
Therefore, px’(x,w) < e. O
Combining Theorem 4.8.4 with Lemma 4.8.3, we have the following:

Corollary 4.8.5. Every two admissible subdivisions of K have an admissible
common subdivision. O

Lemma 4.8.6. Let K be a simplicial complex and L a finite-dimensional full sub-
complex of K. Every simplicial subdivision B’ of B(L, K) extends to a simplicial
subdivision N' of N(L, K) such that LU B’ C N' and N'® = L© u B'©®,

Proof. For each T € B’, let cx(7) be the carrier of the barycenter of 7 in K. Then,
ck(t) € B(L,K) and Lk(ck(7), K)NL # @. Foreach ¢ € Lk(ck(7), K)N L, we
have ot C ocg(T) € K. Then, we can define

N =LUB' U{ot |0 €Lk(cx(?),K)NL, € B}

Obviously, N'© = L@ y B’©® Foreach x € |[N(L, K)|\ |L U B’|, since L is full

in K, we have 0 = ckx(x) N|L| € L. Let ¢’ be the opposite face of cx (x) from o.

Then, 0’ € B(L, K). Since B’ is a subdivision of B(L, K), we have T € B’ such

that cx () = o’ and x € o7. Thus, N’ is a subdivision of N(L, K). O
For A C |K|,let BX =3 xon4 BX 1 |[K| = 1. When A is a simplex 0 € K,

we have o = (B5)~1 (1) and (85)~1((0. 1]) = U, cp0 Ok (v).

Lemma 4.8.7. (BX)7'((1—r, 1)) C {y € |K]| | dist, (y,0) < 2r}.

Proof. Foreachy € (BX)~1((1 —r,1]), we have

BE(y)
=2 5" C°

veg(©
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Then, it follows that

pr(x,y) = D B () = BED)]

veK©®
=) BFfO-BEm)+ Y Bf»
vea©) veKO\g©)

2(1=BX(y) <2r.

Therefore, dist,, (y,0) < 2r. O

The following is the metric topology version of Whitehead’s Theorem 4.7.11 on
small subdivisions:

Theorem 4.8.8 (HENDERSON—SAKAI). Let K be an arbitrary simplicial com-

plex. For any open cover U of |K |, K has an admissible subdivision K' such that
SK/ <U.

Proof. First, note that if a subdivision K’ of K refines U then S/ < stl{. Because
every open cover of |K|, has the open star-refinement, it suffices to construct
an admissible subdivision K’ of K that refines /. We will inductively construct
admissible subdivisions K, of K, n > 0, so as to satisfy the following conditions:

(1) K, is a subdivision of K,_;
(2) Kul|[K"™V| = K[| K7D
(3) K,[K™] < U (for simplicity, we write K,,[K™] instead of K[| K ™|]);
@ |C(K"™D. K| = |C(K"™D, Kyp)l,
or equivalently |[N(K"=V K,)| = [IN(K"™V K,_)],

where K_; = SdK and K©D = @. Condition (2) guarantees that K’ =
U, e Knl|K™] is a simplicial subdivision of K, where it should be noted that
Ko||[ K@ = K© c Ki||[KD|. Then, K’ < U by (3). Because each K,
is admissible, K’O|K™| = K\||K™| is discrete in |K|n by (2). Since
[C(K™, K")| C |[C(K™, K,)| by (2) and (4), C(K™, K")® has no accumulation
points in | K ™|. Then, it follows that K’ is discrete in | K|, which means that K’
is an admissible subdivision of K according to Theorem 4.8.4.

For each vertex v € K©, choose 1/2 < 1, < 1 so that (85 K)~1([,, 1]) is
contained in some U, € U (Lemma 4.8.7). Dividing each o € (Sd* K)[v] \ {v}
into two cells by (ﬂfdz K)~1(t,), we have a cell complex L subdividing Sd° K, (cf.
Fig.4.8) that is,

L=K®UCK,SdK)U {on BS5)7(1,).0 0 (B F) (0. 1,)).

on (ﬂfde)—l([[v, 1) |oe€ (S& K)W\ v}, ve KO
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Sd* K

(B 5) "1 (1,r)

B 5~ (1,)

v I T

S[(V, K())

B, = B(t*,C(K“, Ky)) N(z*, C(K©, Ky))
Fig. 4.8 The subdivision K, of Sd> K

Then, L© is discrete in | K |,. Indeed, L® consists of the vertices (Sd*> K)©® and
the points

v =1 —t)w+ty, ve KO weLk(v,Sd*K)?.

Since Sd* K is an admissible subdivision of K, (Sd* K)© is discrete in | K|y. On
the other hand, {(83" X)~1(z,) | v € K©} is discrete in | K |,. Then, it suffices to
show that {v,, | w € Lk(v, Sd* K)©} is discrete in (ﬂfdz Ky=1(t,) for eachv € K©,
Note that the metric pgp x is admissible for | K |,. For each w, w’ € Lk(v, Sd* K)©,

2 2
dezK(vMM VW’) = ﬁ\f}d K(Vw) + :33;9 K(VW’) = 2(1 - Z‘v)'

Now, let Ko be a simplicial subdivision of L with K\” = L© (cf. Fig.4.8).
Since K(()O) = L is discrete in |K|n, Ko is an admissible subdivision of K by
Theorem 4.8.4. Observe

|St(wv. Ko)| = (B3 %)~ ([, 1) C U, forv e Ky

Then, K satisfies condition (3).
Assume that K, has been obtained. For each n-simplex t € K, we define

™ =1tN|C(K" D, K,_))|.
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N(t*,C(K©, Ky))

Sdn(r)(KO'_[*)

N(Ky”, Ko)

C(K©, Ko)
Fig. 4.9 The subdivision N, of N(z, Kj)

Note that K,—;|t* is a triangulation of t*. We can choose n(r) € N so that
Sd" (K, _i|t*) < U. Let

B, = B(+*,C(K"™V K,_,)) and
N. = Sdy” N(x*, C(K" ™D, K,-1)).

Then, N, is an admissible subdivision of N(¢*, C(K"~V, K,_1)), hence | N¢|n is a
subspace of |K,—i|m = |K|m (cf. Figs. 4.8 and 4.9). Moreover,

Ne|t* = Sd"® (K, 1|t%) < U,

hence each ¢ € N, |t* is contained in some U, € U. By Lemma 4.8.7,
(BY)~1([t,1]) C U, for some 1/2 < t < 1. Since N.|t* is finite, we can find
1/2 < t; < 1 such that

(BY) ([t 1]) | 0 € No|o*} <.

For each o € N,[t*] \ N;|t*, we have 0 N t* € N,|t* and B |0 = ,Biv*’lcf.

oNt
Dividing each 0 € N [t*] \ N;|t* into two cells by (,Biv,:)_l(tt), we have a cell
complex L, subdividing N; (cf. Fig. 4.9), that is,

L, = N,t*UC(t*,N;)
U{o n(B¥) 7)), o n(BX)7([0, 1)),
o N (B ([t 1]) | 0 € Ne[e*]\ NeJo*}.



194 4 Simplicial Complexes and Polyhedra

Then, L(TO) is discrete in | N¢|m, so is discrete in | K |;,. Indeed, Lio) consists of NI(O)
and the points

(1 —t)w+tv, ve NO|T*, w e Lk(v, N,) O\ o*,
where NI(O) is discrete in | N |p. As can be easily observed, we have
disty,, (N, (BY) 7' (60)) = min{2t, 2(1 = 1)}

Foreachv,v € N”|t*, w € Lk(v, N,)@\ t*, and w' € Lk(v/, N,) O\ z*,if v # v/
orw # w then

on, (1 = t)w + tv, (1 — t)w + 1V') > min{2¢,, 2(1 —£;)}.

Now, for each T € K(n), let K, be a simplicial subdivision of L, with K\” =
Lio). Observe
B, =K,NC(K™ K,_)) and |B;| = |K.|N|C(K™, K,_})|.
Then, the following is a simplicial subdivision of C (K"~ K,_;) (cf. Fig.4.9):

C'=CK".K,-)u | ] K.
t€K(n)

According to Lemma 4.8.6, N(K"~V K,_;) has a simplicial subdivision N’
such that

N'|B(K"™Y, K,—1)| = C'||B(K"™", K,—1)| and
N'O — N(K®D, K, O U B'O).
Then, K,, = C’ U B’ is a simplicial subdivision of K,_; such that
IN(K"™V, K,)| = IN(K"™V, K,)),
that is, K, satisfies conditions (1) and (4). Note that

KO =NK"D K, )?UCK K, )?u | ) KO
t€K(n)
) 0
~ KU | N0,
t€K(n)
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which is discrete in | K |y,. This means that K, is an admissible subdivision of K by
Theorem 4.8.4. By our construction, we have K, || K"~D| = K,_;||K"~V|, that is,
K, satisfies condition (2). Moreover, K,[K "] < U because

K K" D] < K, [K" Y] <U and

K KM\ K, [K* D c | ) No<u.
t€K(n)

Thus, K, satisfies condition (3). This completes the proof. O

The next theorem can be proved by the same argument as in the proof of
Theorem 4.7.14:

Theorem 4.8.9 (SIMPLICIAL APPROXIMATION). Let K and L be simplicial
complexes. Each map | : |K|mw — |L|m has a simplicial approximation g : K' —
L such that K’ is an admissible subdivision of K, hence g : |K|n — |L|n is
continuous. O

Then, we have the following version of Corollary 4.7.15:

Corollary 4.8.10 (PL APPROXIMATION THEOREM). Let K and L be simplicial
complexes and f : |K|m — |L|m a map. For each open cover U of |L|n, there is
a simplicial map g : K/ — L’ with respect to admissible subdivisions K' and L’
of K and L, respectively. In this case, g : |K|m — |L|m is continuous. O

4.9 The Nerves of Open Covers

Let V be an arbitrary set. Recall Fin(V) is the collection of all non-empty finite
subsets of V. An abstract complex /C over V is a subcollection L C Fin(V)
satisfying the following condition:

(AC) ifAeKand® # B C Athen B € K.

A subcollection £ C K satisfying (AC) is called a subcomplex of /C. In particular,
Fin(V) is an abstract complex and every abstract complex KC over V' is a subcomplex
of Fin(V'). For each n € w, the n-skeleton K" of K is defined by

K(")z{AeKicardA§n+1},

where we regard K  V, and so Fin(V)© = V. Each K™ is a subcomplex of K.
If K = K™, we say that K is at most n-dimensional and write dim }C < n. It is said
that /C is n-dimensional (written as dim/C = n) if dim/XC < n and dim/XC £ n — 1.
Note that every abstract complex I over V' with dim/X < n is a subcomplex of
Fin(V)™.
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For any simplicial complex K, K = {6© | 0 € K} C Fin(K®) is an abstract
complex, which is called the abstract complex defined by K. Each K is defined
by K. In particular, C© = K©,

Conversely, each abstract complex K over V is defined by some simplicial
complex. In fact, consider the linear space R‘;. By identifying each v € V with

e, € R? defined by e,(v) = 1 and e,(v') = 0if v # v/, we can regard V as a Hamel
basis for R?. Then, K = {{(A) | A € K} is a simplicial complex that defines /.
This K is called the simplicial complex defined by /C. Then each K™ is defined by
K™ and K© = K© Note that the full simplicial complex A(V') is the simplicial
complex defined by Fin(V).

Remark 10. When V is a subset of a linear space E, for an abstract complex K over
V, K = {{A) | A € K} is a simplicial complex that defines K if and only if each
A € K is affinely independent and

(AyN(A") = (AN A') foreach A, A’ € K.
In particular, K is a simplicial complex if I satisfies the condition:

(#f) A U A’ is affinely independent for each 4, A’ € K.

The General Position Lemma states that there exists a countable (discrete) set V'
in R?2"*! such that each 2n + 2 many points of V' are affinely independent. This
can be easily proved by using the Baire Category Theorem 2.5.1 and the fact that
every hyperplane (= 2n-dimensional flat) in R?* ! is nowhere dense. The proof will
be detailed in Sect.5.8 (cf. Lemma 5.8.4). For such a set V' c R***!, Fin(}V)™
satisfies condition (ff) above. Therefore, for every abstract complex XC over V' with
dimKC <n, K = {(A) | A € K} is a simplicial complex that defines /.

Remark 11. Note that every abstract complex K with dimXC < n is simplicially
isomorphic to a subcomplex of Fin(V)™ for any set V with card V' > card K©.
Then, it follows that every countable complex K with dim K < n is simplicially
isomorphic to a simplicial complex in R>**1,

Remark 12. The barycentric subdivision Sd K of a simplicial complex K is simpli-

cially isomorphic to the simplicial complex defined by the abstract complex

{{O-lv"' sUn}|Ul << 0y GK}

Now, consider two abstract complexes /C and £ over V' and W, respectively.
Let K and L be the simplicial complexes defined by K and L, respectively. Recall
KO = K© and £© = L© Suppose that a function ¢ : K@ — L© satisfies the
following condition:

(¥) A € Kimplies p(A4) € L.
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Then, ¢ : K© — L© induces the simplicial map f : K — L with f|K© = ¢.
Conversely, for any simplicial map f : K — L, the restriction ¢ = f|K© :
K© — LO gatisfies condition (%) and f itself is the simplicial map induced by
this ¢. Such a function ¢ : K(© — L© is also called a simplicial map from K to £,
and is written as ¢ : K — L. If a bijection ¢ : K@ — L© satisfies the condition
that A € K if and only if ¢(A) € L, then ¢ induces the simplicial isomorphism
f : K — L with f|[K© = ¢, and any simplicial isomorphism f : K — L is
induced by such a bijection ¢ : K@ — L©_ Such a bijection ¢ : K© — L© is
also called a simplicial isomorphism from K to L. It is said that K is simplicially
isomorphic to £ (denoted by K = L) if there is a simplicial isomorphism from
Kto L.

For any open cover U of a space X, we define the abstract complex 91(Uf) over
U\ {0} as follows:

NU) = {{U1.-++ .Uy} € Fin@d) | Uy N+ N U, # 9}.

The simplicial complex N (U{) defined by 91(f) is called the nerve of &/. A map
f:X = |NU)|(or f: X — |[NU)|m) is called a canonical map for I/ if

f " (Onawy(U)) C U foreach U e NU)® = U.

Then, f~'(Onwy) is an open refinement of the open cover U. Observe that every
compact set in |N(U)| meets Oy (U) for only finitely many U € U. Hence, if
every U € U has the compact closure in X, then each canonical map f : X —
|N ()| is proper.

Remark 13. For a subspace A of X and U € cov(X), we have U|A € cov(A).
Assume that Uy N A # U, N A if Uy # U, € U[A]. Then, by identifying each
UNA e UA)\ {9} with U € U[A] (C U \ {@}), the nerve N(U|A) can be
regarded as the following subcomplex of the nerve N (I):

{(U.....U) e NU) | Ui n---NU, N A # 0}

In this case, for each canonical map f : X — |[NU)| (or f : X — |[NU)|wn),
the restriction f|A : A — |[N(U|A)| (or f|A : A — |[NU|A)|n) is a canonical
map for U|A. Indeed, for each x € A, cya(f(x)? C Ux] = U|A)[x], so
cenan(f(x)) € N(U|A). Therefore, f(A) C [NU|A)|.

Due to Proposition 4.2.3, every simplicial complex K can be regarded as the
nerve N(Ogx) of the open cover Ok of | K| (or |K|p) by identifying each v € K©
with Ok (v) € Ok. The identity id : |K| — |K| is a canonical map for Ok, where
it should be noted that id : |K| — |K|y and id : |K |y, — | K| are also canonical
maps for Og.

'This is not equal to N(U[A]).
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U
Us

Us

Us  f) Us

Fig. 4.10 A canonical map

We now have the following characterization of canonical maps:

Proposition 4.9.1. For an open cover U of X, amap f : X — |[NU)| (or f :
X — |NU)|w) is a canonical map if and only if

N (f(x)@ c U[x] foreach x € X,

where ¢y (f(x)) € NU) is the carrier of f(x). IfU[x] is finite, this condition is
equivalent to f(x) € (U[x]) € N(U) — Fig. 4.10.

Proof. To prove the “if” part, let U € U and x € f~'(Onw)(U)). From the
condition, it follows that U € ¢y (f(x))® C U[x], which means that x € U.
Therefore, f~'(Onwy(U)) C U.

To show the “only if” part, let x € X and U € cyqeq(f(x))©. Observe that
f(x) €rinteyany(f(x)) C Onay(U), hence x € f~1(Onwy(U)) C U. Thus, we
have ey (f(x)©@ C U[x]. O

Proposition 4.9.1 yields the following:

Corollary 4.9.2. LetU be an open cover of X. Then, any two canonical maps f, g :
X > |NU)| (or f,g: X — |[NU)|m) are contiguous. O

For each open refinement V of U € cov(X), we have a simplicial map ¢ :
N(V) = NU) such that V C ¢(V) foreach V € V = N(V)©. Such a simplicial
map is called a refining simplicial map.

Corollary 4.9.3. Let U and V be open covers of X withY < U and ¢ : N(V) —
NU) be a refining simplicial map. If f : X — [NV)| (or f : X = [NV)|m) is
a canonical map for V, then of : X — |[NU)| (or ¢of : X — |[NU)|nm) is also a
canonical map for U.

Proof. Foreachx € X,

enen @f ()@ = o(eno (f(x) @) C p(VIx]) C U[x]. g
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Concerning the existence of canonical maps, we have the following:

Theorem 4.9.4. Every locally finite open cover U of a normal space X has a
canonicalmap f : X — |N@U)| such that each point x € X has a neighborhood V,
with f(Vy) C |Ky| for some finite subcomplex K, of NU), so f : X — |[NU)|m
is also a canonical map.

Proof. According to Theorem 2.7.2, X has a partition of unity ( fy)yey such that
supp fu C U foreach U € U. We can define amap f : X — |N(U)|n as follows:

f&) =" fu) U (ie. g (f () = fu)).
veu
Observe that f ' (Onw)(U)) C supp fu C U foreach U € U. Then, f : X —
|N(@U)|m is a canonical map for N ().

We need to verify the continuity of f : X — |N(U)| (with respect to the
Whitehead topology). Each x € X has a neighborhood V. such that U[V,] is
finite. We have the finite subcomplex K, of N () with K ;O) = U[V,]. Note that
f(Vy) C |Kx|. Then, it follows that f |V, : Vy — |Ky|m = |K,| is continuous.
Consequently, f : X — |N(U)| is continuous. O

Because every open cover of a paracompact space has a locally finite open
refinement, the following corollary results from the combination of Theorem 4.9.4
and Corollary 4.9.3:

Corollary 4.9.5. For every open cover U of a paracompact space X, there exists a
canonical map f : X — |[NU)| such that f : X — |[N(U)|m is also a canonical
map. O

Applying Corollary 4.9.5, we will prove the following:

Theorem 4.9.6. For every simplicial complex K, the identity ¢ = id : | K| = |K|m
is a homotopy equivalence with a homotopy inverse ¥ : |K|nm — |K| such that
Yo ~k id and ¢y ~g id, where Yo ~o, id and ¢ ~p, id are also valid.
These homotopies are realized by the straight-line homotopy.

Proof. Consider K as the nerve N(QOf) of the open cover Ok € cov(|K|n), where
each vertex v € K© is identified with the open star Ox(v) € Ok. By virtue of
Corollary 4.9.5, we have a canonical map ¥ : |K|, — |N(Ok)| = |K|. Then,
Ye,id : |K| — | K| are contiguous and ¢, 1id : |K |y, — |K|m are also contiguous
by Corollary 4.9.2. Due to Propositions 4.3.4 and 4.5.4, ¥ ¢ ~k id and ¢ ~g id
by the straight-line homotopy defined as

hix,t) = (1 =t)vex) +tx = (1 —t)ey(x) + tx.

Since cx (¥ (x)) < ck(x) foreach x € |K|, each h({x} x I) is contained in not only
ck (x) but also Ok (v) for any v € cx (¥ (x))©. O
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Remark 14. In the above proof, let L be a subcomplex of a simplicial complex
K. Then, O; = Ok]||L| according to Proposition 4.2.4. As noted in Remark 13,
identifying Oy (v) with Ok (v) for each v € L, the nerve N(O}) can be regarded
as a subcomplex of the nerve of N(Ok), where the pair (K, L) can be identified with
the pair (N(Ok), N(OL)). Moreover, the restriction ¥||L| : |L|m — |[N(OL)| =
|L| is also a canonical map for O, which is a homotopy inverse of ¢||L| = id :
|L| = |L|m-Inthis case, (¥||L|)(¢||L]) >~ idand (¢||L|)(¥||L|) ~ id are given
by the straight-line homotopies, that is, the restrictions of the homotopies Y ¢ ~ id
and gy ~g id, respectively.

We can now generalize Proposition 4.3.4 as follows:

Proposition 4.9.7. Let K be a simplicial complex and X an arbitrary space. If two
maps f,g : X — |K| are contiguous then [ ~g g.

Proof. Let ¢ =id : |K| — |K|n. By virtue of Theorem 4.9.6, we have a map v :
|K|m — |K| such that ¢ >~k id by the straight-line homotopy % : |K| x I — |K|,
where cx (¥ (x)) < ckx(x) and h({x} x I) C cg(x) for each x € | K] (see the proof
of Theorem 4.9.6). On the other hand, by Proposition 4.5.4, we have ¢f ~k ¢g,
which is realized by the straight-line homotopy /' : X xI — |K|;,. Foreach x € X,
choose 0, € K so that i/ ({x} xI) C 0. Observe that yh'({x} xI) C ¥ (0y) C 0oy,
h({f(0)} xT) C ck(f(x)) C o, and h({g(x)} x I) C cx(g(x)) C ox. Then,
by connecting three homotopies 2( f X idy), ¥h’, and h(g X idy), we can geta K-
homotopy from f to g, hence f >~k g. O

Combining Corollary 4.9.2 with Proposition 4.9.7 (or 4.5.4), we have the
following corollary:

Corollary 4.9.8. Let U be an open cover of a space X. Then, f ~yu) g for any
two canonical maps f,g : X — |[NU)| (or f,g : X = |[NU)|m). O

An open cover U of a space X is said to be star-finite if ¢/[U] is finite for each
U € U, which is equivalent to the condition that the nerve N(I/) is locally finite.
In fact, St(U, NU))® = U[U] foreachU € U = N(U)©. Thus, the star-finiteness
of an open cover chraterizes the local finiteness of its nerve. On the other hand, the
nerve N () is locally finite-dimensional (1.f.d.) if and only if sup, o, cardU[x] < oo
for each U € U. In this case, we have

sup cardU[x] = dim St(U, N(U4)) + 1.
x€U
Note that every star-finite open cover is locally finite and its nerve is locally
finite-dimensional, and that if an open cover is locally finite or its nerve is locally
finite-dimensional then it is point-finite, that is, we have the following implications:
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| locally finite nerve = star-finite | ——> |locally finite

H ﬂ

|locally finite-dimensional nerve| ———> | point-finite

In the above, the converse implications do not hold and there are no connections
between the local finiteness of an open cover and the local finite-dimensionality of
its nerve. In fact, U = {R, (n,00) | n € N} is a locally finite open cover of R but
the nerve N (/) is not locally finite-dimensional. This example also shows that the
converse implication in the top row of the figure does not hold. Since the cover is
point-finite, the converse in the bottom row does not hold either. On the other hand,
let X = (N xI)/(N x {0}) be the quotient space (or X = J(N) the hedgehog
(cf. Sect.2.3)). Let Uy = X and, for each n € N, let U, = {n} x (0, 1]. Then,
U ={U, | n € w} is an open cover with dim N(U{) = 1, which is not locally finite
in X. This shows that the converse implication on the left side of the figure does
not hold. Since the cover is point-finite, the converse on the right side does not hold
either.

Theorem 4.9.9. Every open cover of a paracompact space has a locally finite o -
discrete open refinement with the locally finite-dimensional nerve.

Proof. 1t suffices to show that, for a simplicial complex K, the open cover Ok €
cov(|K|) has a locally finite o-discrete open refinement V' with the locally finite-
dimensional nerve. In fact, every open cover U of a paracompact space X has a
canonical map f : X — |N(U)| by Corollary 4.9.5. When K = N(U),

[TV < f710x) = f7(Onaw) < U,

£71(V) is locally finite o-discrete and N(f~1(V)) is 1.f.d. because N(f~'(V)) is
simplicially isomorphic to the subcomplex L C N()) defined as follows:
L={Vi,....Va) | iz, /7' (V) # 9}
We will construct an open collection V = {V,(0) | 0 € K™, n € w} satisfying
the following conditions:

(1) {Vy(0)| o € K™, dimo =i} is discrete in | K| for each i < n;
(2) clV,(0) C Osag(6) \ clV,—, foreacho € K and n > dimo;
B3) IKP|Ucl Vi C Vi,

where
Vo=|J{Vio) |oe KD i <n} (Vo =V,=0).

Then, V € cov(|K|) by (3), V < Osax < Ok by (2), and V is o-discrete in | K| by
(1). Moreover, we can see that ) is locally finite and N (V) is 1.f.d.
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Va(v)

Fig. 411 V= {V,(0) | n € 0, 0 € K™}

The local finiteness of V can be shown as follows: Each x € |K]| is contained in
some V, \ cl V,—, by (3). From (2), it follows that

Vu\clV,)NVi(o) =0 fori >n+landi <n—1.

By (1), x has a neighborhood W in V,, \ cl V,,_; that meets at most one member of
{Vi(0) | dimo = k} foreachi = n — 1,n,n + 1 and each k < i. Consequently,
W meets at most 3n + 3 of the points V; (o).

To prove that N(V) is 1.f.d.,, let n € w and 0 € K. Due to (2), for each
x € V,(0),

{i | 3t € K such that x € V;(v)} = {n — 1,n}or {n} or {n,n + 1}.

Foreachi € w, V;(7) is defined only if dim v < i, so x is contained in at most i + 1
of the open sets V;(t) by (1). Therefore, each x € V, (o) is contained in at most
2n + 3 of the open sets V; (1), that is, dim St(V;,(0), N(V)) < 2n + 2 (Fig.4.11).

Now, let us construct V. First, for each v € K, choose an open set V,(v) in |K |
sothatv € Vy(v) C cl Vp(v) C Osak(v). Each x € | K| is contained in the open star
Osa k (6) for some o € K, which meets only finitely many cl V;(v) because

Osax(6) N Osax (V) 0 & (1.6)eSdK & veo?,

Then, {cl Vo(v) | v € K@} is a pair-wise disjoint locally finite collection of closed
sets in | K|, which means that it is discrete in |K|. Therefore, {Vo(v) | v € K©} is
discrete in | K|.

Suppose that V; (c) has been defined fori <n — 1 and o € K so as to satisfy
(1), (2),and (3). Let V/_, be an open set in | K| such that



4.9 The Nerves of Open Covers 203

KD UclV,op C V) CclV,_ C Vo
For each n-simplex o € K, since |K("_1)| C V,—1, it follows that
0\ Vyoy =rinto \ V=1 C Osqk(6) \ clV/_| C Osax(6) \ clV,—s.
Then, we have an open set V(o) in | K| such that
0\ Va1 C Vu(o) CclVy(o) C Osqk(6) \ clV,_,.

Each x € |K”~V] is contained in the open set V'_,, which misses clV} (o) for
every n-simplex o € K. On the other hand, each x € |K|\ |K"~Y| is contained
in the open star Osq g () for some 7 € K\ K”~1, which meets only finitely many
cl V, (o) (where dimo = n) because

OSdK(‘LA')QOSdK(CAT);é@ == (C},f)ESdK & 0<T.

Then, {clV,(c) | 0 € K™, dimo = n} is a pair-wise disjoint locally finite
collection of closed sets in |K|, so it is discrete in |K|. Thus, {V,(0) | 0 €
K™ dimo = n} is discrete in | K|.'?

For each o € K™= _observe that

c1V,—1(0) \ Vot C Osak(6) \ clV,_; C Osak(6) \ cl V.
Then, we have an open set V, (o) in | K| such that
clVy—1(0) \ Va—i C V(o) CclV,(0) C Osak(6) \clV,_,.

By the same approach as above, we can see that {V,(0) | 0 € K™, dimo = i} is
discrete in | K| for each i < n.
Since {V;(0) |0 € K, i <n — 1} is locally finite in | K|, we have

cdV,_; = U{clVi(a) | oe KD | fn—l}.
Note that cl V; () C clV,_» C V,_, fori <n —2and o € K). Hence,

bdVimc |J cVim@\Viac J Valo.

oeKn—1) oeKn—=1)

Then, it follows that | K (”)| UclV,—1 C V,. Thus, we have obtained V,,(c) for every
o € K™ such that conditions (1), (2), and (3) are satisfied. The proof is completed
by induction. O

12Note that |K| is paracompact by Corollary 4.7.12, so it is collection-wise normal by Theo-
rem 2.6.1. Observe that {o \ V,_; | 0 € K™, dimo = n} is discrete in |K|. Then, we can
obtain {cl V,,(0) | 0 € K™, dimo = n} without taking V/

n—1-
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When X is a locally compact paracompact space, each U € cov(X) has a locally
finite open refinement V such that cl V' is compact for each V' € V. Then, as is
easily observed, V is star-finite, so the nerve N()) is locally finite. Thus, we have
the following theorem:

Theorem 4.9.10. Every open cover of a locally compact paracompact space has a
star-finite open refinement whose nerve is locally finite. O

In addition, we can show that:

Theorem 4.9.11. Every open cover of a regular Lindeldf space has a countable
star-finite open refinement whose nerve is countable and locally finite.

Proof. Due to Corollary 2.6.4, a regular Lindel6f space X is paracompact. Then,
each U € cov(X) has a countable locally finite open refinement V = {V; | i €
N}. Indeed, take open refinements V” < V' < U so that V' is locally finite and
V" is countable. Let ¢ : V” — )’ be a function such that V' C ¢(V) for each
V e V'.Then, V = {@(V) | V € V"} is countable and locally finite. According
to Lemma 2.7.1, V has an open refinement {V;; | i € N} such thatclV;; C V;
for each i € N. We can inductively choose open sets V; ; in X so thatclV; ;1 C
Vij CclV;; C V;.Foreachi, j € N, let

Wiy =vVi;\ J Vi
i <itj—1

Then, W = {W, ; | i, j € N} € cov(X) is a star-finite countable open refinement
of U. O

4.10 The Inverse Limits of Metric Polyhedra

An inverse sequence (X;, f;);en is a sequence of spaces X; and maps f; : X;4+; —
X;, that is,

fi f 5
X X5 X3 e,

where f; are called the bonding maps. Fori < j, we denote

f,’J Zfi"'fj_llXj—>X,'.

Then, f;;+1 = f; for each i € N. For convenience, we denote f;; = idy,. The
inverse limit l(iLn(X i» fi) is defined as the following subspace of the product space

nieNXi:

lim(X;, f;) = {x € [Tien Xi | x(i) = fi(x(i + 1)) foreachi € N},
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which is closed in [ ],y X;. For each i € N, the restriction p; : 1(111(X,-, fi) —
X; of the projection pr; : [[,cy = X; is called the (inverse limit) projection
of l(iEl(Xi, fi) to X;. Note that f; p;+1 = p; for each i € N. When the bonding
maps are evidently known, we simply write l(iLn(X i fi) = l(ln X;. Itis possible that
1(111(X,-, fi) = @ evenif X; # 0 for every i € N (cf. Proposition 4.10.9(1)). For
example, the following inverse sequence has the empty limit:

[1,00) D [2,00) D [3,00) D ---,

where the bonding maps are the inclusions. A nested sequence X; D X, D --- is
an inverse sequence of subspaces such that the inclusions are the bonding maps.

Proposition 4.10.1. For every nested sequence X; D X, D ---, there exists a
homeomorphism h : (\;en Xi — l(iI_nXi such that pih : (\en Xi — X is the
inclusion.

Proof. Note that pl(l(il_n X)) = ﬂieN X;, where p; : l(iLnX,- — X is the projection.
Leth : (\en Xi — l(iI_nXi be the diagonal map defined by A(x) = (x,x,...).
Then, pih = id and hp; = id. O
Proposition 4.10.2. For an inverse sequence (X;, fi)ien, if every bonding map f;

is surjective then the projection p,, : 1(i£1(X i» fi) = X, is also surjective for each
nelN

Proof. For each x € X, and each i < n, define x; = f;,(x). For each
i > n, inductively choose x;+1 € f;7'(x;). Then, (x;)ien € 1(111(X,-,f,<) and
Pu((xi)ien) = x5 = x. O

Let (X;, fi)ien and (Y}, g:)ien be inverse sequences. Given maps h; : X; — Y,
i € N, such that h; f; = g;h; 41 for every i € N, we can define a map l(ith,- :
lim(X;, f;) — lim(Y;, g;) as follows:
«— <“—

(1(111 hi)((xi)ien) = (hi(x;))ien.

Then, q,-l(iilhi = h; p; for every i € N, where p; : 1(111(X,-,f,-) — X; and ¢; :
l(iI_n(Yi, gi) — Y; are the projections.

P2
; @ .

X X X3 Lﬂl(Xi,fi)

hy \L hy \L \L h3 \L l(iEhi

Y Y, Y3

N
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Proposition 4.10.3. Let (X;, fi)ien be an inverse sequence. For any increasing
sequence n(1) < n(2) < --- €N, the following B is an open basis for l(iI_n(X,-, fi):

B = {pn_(})(V) \ i €N, Visopenin Xn(l-)}‘

Proof. For each open set U in 1(111(X,-, fi) and x € U, we have open sets V; in
X;,i = 1,...,n, such that x € ﬂ?zlpi_l(V,-) C U. Choose k € N so that
n(k) > n.Then, V = (', ﬂ;}k)(l/i) is an open set in X, and x € pn_(}{)(V) =
Nizipi' (V) CU. o

For an inverse sequence (X, f;);en and an increasing sequence n(1) < n(2) <
--- € N, we have the inverse sequence (X, i), fa(i)n(i+1))ieN:

Ja()n) Jn@)n(3)
X X0 X3 <=— -+,

which is called a subsequence of (X;, f;);en. Proposition 4.10.3 shows that the map
h: l(iLn(X,,(i), Jatiyni+1) = l(iLn(Xi, f;) obtained as the restriction of the projection
of ]_[ieN X; onto ]_[ieN X,(i) is open, hence / is a homeomorphism. Thus, we have
the corollary:

Corollary 4.10.4. Let (X;, f;)ien be an inverse sequence. For any increasing
sequence n(1) < n(2) <--- €N, there exists a homeomorphism h : l(iLn(Xi, fi) —
l(iI_n(X,,(i),ﬁ,(i),n(,-H)) such that plh = puu) for each i € N, where p;

l(iil(X,-, fi) = Xi and p; : l(iil(X,,(,-), Ju@ymi+1)) = Xn@) are the projections. O

The following can be easily proved using Corollary 4.10.4:

Corollary 4.10.5. Let (X;, fi)ien and (Yi, gi)ien be inverse sequences. Suppose
that there exists an increasing sequence n(l) < n(2) < --- € N and maps ¢; :
Xuiy = Yagi—y and ¥ : Yoeiv1) = Xaiy such that Y1 = fuiyn@i+2) and
Qi = gui—1)n2i+1), that is, the following diagram is commutative:

Sn@n Jn@).n(6)
X0 X Xou(6) ..
Vi 1] V3
o l l - l v
Y. Y03 Y5 e
&n(1),n(3) &n(3).n(5)

Then, 1(i£1(X,<, fi) is homeomorphic to 1(i£1(Yi , &)
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Sketch of Proof. Consider the following inverse sequence:

@1 1 2 Y2
Y. X2 Y. Xogy =— -,

whose limit is homeomorphic to the inverse limits of the upper and lower sequences in the
above diagram.

Let (X;, fi)ien be an inverse sequence and p; : X = 1(111(X,-, fi) = Xi,i €N,
be the projections of the inverse limit. Then, the following hold:
(inv-1)  fipi+1 = p; foreachi € N;
(inv-2) Givenmaps g; : ¥ — X;,i € N, such that f;g;11 = g;, there exists a
unique map g : ¥ — X such that p;g = g; foreachi € N.
The above two conditions characterize the inverse limit, that is, more formally:

Theorem 4.10.6. For an inverse sequence (X;, f;)ien, a space X is homeomorphic
to l(iI_n(X,-, fi) if and only if there are maps q; : X — X;, i € N, with conditions
(inv-1) and (inv-2). In this case, there is a unique homeomorphism h : X —
l(iil(X,-, fi) such that p;h = q; for eachi € N.

Proof. The “only if” part: If there is a homeomorphism /4 : X — l(in(X i» fi), then
the maps ¢; = p;h : X — X;,i € N, satisfy conditions (inv-1) and (inv-2), where
pi: l(in(X, fi) = X; is the inverse limit projection.

The “if” part: Because (g;);en satisfies condition (inv-1), we apply condition
(inv-2) for (p;)ien to obtain amap h : X — 1(111(X,-,f,-) such that p;h = ¢;
for each i € N. Similarly, we apply condition (inv-2) for (¢g;);en to obtain a map
g Ligl(Xi,ﬁ) — X such that g;g = p; for each i € N. Since p;hg = p; and
qigh = q; foreachi € N, hg = id and gh = id by the uniqueness in condition
(inv-2). Therefore, / is a homeomorphism with 7~ = g. O

Restricting the natural homeomorphism from [ [, ¢y Xi X[ [; e ¥i onto [ [, ¢y (Xi X
Y;), we can state the following:

Proposition 4.10.7. For inverse sequences (X;, f;)ien and (Y;, gi)ien, the product

space LE](X,‘, fi) x l(El(Yi , &) is homeomorphic to the inverse limit Lﬂl(X,- x Y,

ﬁ X gl) O
Concerning subspaces, we have the following proposition:

Proposition 4.10.8. Let X = l(in(X,,f,) be the inverse limit of an inverse

sequence (X;, f;)ien with the projections p; - X — X;,i € N.

(1) Foreachi € N, let A; be a subspace of X; such that f;(A;+1) C A;. Then,
A= l(iil(Ai, filAis1) is a subspace of X and p;|A, i € N, are the inverse limit
projections.

(2) For every closed subspace A of X, A = l(iil(pi (A), filpi+1(A)) and p;|A,

i € N, are the inverse limit projections.
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Proof. For (1), there is no proof needed. For (2), A C l(il_n(pi (A), filpi+i1(A4)) is
trivial. Conversely, for each x € l(il_n(pi (A), fi|pi+1(A)), we can find a; € A,
i € N, such that p;(a;) = x(i). Then, (@;);en converges to x in [ [;cy Xi, hence
xecld=A. O

Remark 15. 1f (X;, fi)ien is a nested sequence, then Proposition 4.10.8(2) is valid
for an arbitrary subspace A of X. However, in general, it is necessary to assume the
closedness of A. In fact, if every X; is finite then the inverse limit X is compact (cf.
Proposition 4.10.9 below). For A C X, since each p;(A) is finite, the inverse limit
l(il_n(pi (A), fi|pi+1(A)) is also compact. Then, A # l(il_n(pi (A), fi|pi+1(A)) unless
Aisclosedin X.

Proposition 4.10.9. Let X = I(Ln(X,,f,) be the inverse limit of an inverse
sequence (X;, fi)ien. Then, the following hold:

(1) If every X; is compact then X is compact, where X # @ if X; # @ for every
i €Ny

(2) If every X; is (completely) metrizable then X is (completely) metrizable;

(3) Ifevery X; is locally compact and each f; is proper, then X is locally compact
and the inverse limit projections p; : X — X;, i € N, are proper.

Proof. Since X is a closed subspace of the product space [ [,y Xi, (2) and the first
half of (1) are trivial. For the second half of (1), we define the nested sequence
X! D XJ D of closed sets in [ [,y X; as follows:

Xy ={x €[ljen Xi | x(i) = fin(x(n)) foreachi <n}.

If each X; is a non-empty compact space, then [ [;cy X; is compact and X, # @ for
eachi € N, hence X = (), X # 9.

(3): According to Proposition 4.10.3, it is enough to show that each projection
Pn - X — X, is proper. For each compact set A in X,, p;1 (A) is closed in X, so is
closed in [ [; ¢y Xi- We define

_ ) Jin(4) ifi<n,

A;
fNA) ifi > n,

where f; ; is proper for each i < j. Then, p,'(A) is contained in the compact
set [1;en Ai in [;ey Xi- Indeed, p; p; ' (A) = finpnp, ' (A) C fin(A) = A; for
i <nand p;p;'(A) = pip;! [, (A) C f,7'(A) = A; fori > n. Thus, p,'(A)
is compact. O

For the remainder of this section, we show that every completely metrizable

space is represented by the inverse limit of some inverse sequence of metric
polyhedra. This can be stated in the following theorem as:

Theorem 4.10.10. Every completely metrizable space X is homeomorphic to the
inverse limit l(il_n(|K,-|m, fi) of an inverse sequence of metric polyhedra and PL
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maps such that each K; is locally finite-dimensional, card K; < w(X), and each
fi + Kiq1 — K is simplicial for some admissible subdivision K| of K;, where
admissibility of K| guarantees the continuity of f; : |Ki+1|lm — |Ki|m.

Proof. Because this theorem is obvious if X is finite, we may assume that w(X) >

No. Let d be an admissible complete metric for X. By induction, we will construct
arefining sequence of open covers of X:

U = US = Uy = U = Us > -+

with admissible subdivisions K/ of the nerves K; = N(U;) and simplicial maps
fi : Kit1 — K/ satisfying the following conditions:
(1) U; is locally finite;
(2) K; = N(l;) is locally finite-dimensional;
(3) meshy U; < 277;
- 0

@) U C g7 (Og/(fi(U))) foreach U € K9, = Uys;
(5) mesh,, f;i(Sk;) <270 forj <i,
where ¢; is a canonical map and p; = pg; . Note that card K; < Row(X) = w(X)
by (1) and (2).

First, by Theorem 4.9.9, we have U; € cov(X) satisfying (1)—(3). Next, assume

that Uy, ..., U; and fi,..., fi—1 have been defined so as to satisfy (1)—(5). By
Theorem 4.8.8, we can find an admissible subdivision Kl-/ of K; such that

mesh,, Sgs < 1/2 and mesh,; f;;(Sk/) < 271D forall j <.

Note that OK{ is an open cover of | K| = | K;|m (cf. Lemma 4.8.1). Let ¢; : X —
| K;|m be a canonical map. Then,

97 (Og) € cov(X) and ¢ ' (O:) < 97 ' (Ok,) < U;.
By the regularity of X and Theorem 4.9.9, we have U;+; € cov(X) satisfying
(1)—(3) and Z/{lﬁ_l < 90,-_1((91(;)~ Then, there is a simplicial map f; : Ki41 — K/
satisfying (4), that is,

clU C (p,-_l(OKi/(ﬁ(U))) foreach U € Ki(g_)l = Uit

Indeed, for each (Uy,...,Ui) € K1, ﬂ1;=1¢f1(0K;(ﬁ(Uj))) # @, hence

ﬂ];=1 Ok:(fi(U;j)) # @, which implies that (f;(V1),..., fi(Ux)) € K. Since
fi(Sk, ) < SK{’ (5) holds for j < i + 1, that s,

mesh,, fji+1(Sk,4,) < 27UF1=)) foreach j <i + 1.
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We now construct a homeomorphism 2 : X — l(iLn(|K,- |m, f7). Foreach x € X
andi € N, let 7;(x) = (U;[x]) € K;. We will show that f;(7;+1(x)) C 7;i(x). Let
o € K; be the smallest simplex containing f; (t;+1(x)) € K/. Then,

U ck, (V)0 =00,

Vel 41(x]

Indeed, for each V € Ui 41[x] = 74+1(x)?, we have ck, (f;(V)) < o, that is,
ek, (iVNO C o1 Uy, g ex (i (V)P G 0@ then ti41(x) = (Uig[x])
is contained in a proper face of o, which contradicts the minimality of o. For each
Ve t41(0)? =Upi[x] and U € e, (f;(V)?, we have Og/(f;(V)) C Ok, (U)
by Proposition 4.2.15. Thus, l

(| Ox (i) C () Ok(U).

Vel 41[x] Ueo®

Then, it follows that

xe ﬂ VC ﬂ o7 (Ox/ (i (V)

Vel 41x] Vel 41x]
c () ¢'(ox)c () U
Ues©® Ueg©

Hence, 0© C U;[x], thatis, o0 < 7;(x), so f;(ti+1(x)) C 7;(x). Now, we have the
following nested sequence of compacta:

7 (x) = fii(mi(x) D fiiv1(T1(x)) D fiita(tiga(x)) Do

Since ﬂjzi Ji,j(tj(x)) # @ and limy oo diamy, f; ;44 (titr(x)) = 0 by (5), it
follows that ﬂjzi fi,j(tj(x)) is a singleton. Thus, we have #; : X — |K;| such that

{hi(x)} = ﬂ fi,j(rj(x)) foreachx € X.
jz=i
Observe that f;h;+; = h;. Thus, we have h : X — l(iLn(|K,<|m, fi) such that p;h =
h; foreachi € N, where p; : 1<i£1(|K,-|m, fi) = | K;|m is the projection.

We now verify the continuity of 4. For eachi € N, x € X, and ¢ > 0, we
can choose j > i so that mesh,, f; j(Sk;) < & by (5). Then, (\U;[x] is an open
neighborhood of x in X. Since y € (U;[x] implies 7;(x) < 7;(y), we have
hi(y) € 7;(y) € St(r;(x), K;), hence

hi(U;[x]) = fijhj (Ui Ix]) C fij (I St(T; (x). K;)D.

Then, it follows that
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diamp,. ]’l,(ﬂu] [xD) < diampi fz;(l St(‘L’j (x), K])D < meshp,. f,] (SKj) <e.

Thus, each i; : X — |K;|n, is continuous, so 4 is continuous.
Next, we show that / is injective. For x # x’ € X, we can choose i € N so that
meshy U; < d(x,x") by (3). Then, it follows that

()0 N5 =Ux] NUx] =0,

which means 7; (x) N 7;(x") = @, hence h; (x) # h; (x"), so h(x) # h(x’). Thus, i
is injective.

To prove that A is surjective, let y € 1(iI_n(|K,-|m, fi). For each i € N, let
7, = ¢k, (pi(y)) € K; be the carrier of p;(y). Then, we have an open set W; =
UUETI_(O) U C X. Since ﬂUGTI-(O) U # 0, it follows that diamy; W; < 2 meshy U;,

hence lim;_, o diamy W; = 0 by (3). For each U € ri(i)l, choose V' € t,-(o)

so that f;(U) € Ok, (V). Since f;(U) € K/ and K/ < K;, it follows that
Ok (fi(U)) C Ok, (V), hence by (4),

U C ¢ (O (/i (U)) C 97 (Ok, (V) C V.

Therefore, cl W, C W;. By the completeness of X, we have z € X such that
{2} = Njen 1 Wi = (;en Wi- For each i € N, z is contained in some U € 7\, so
ri(o) N7(2)@ # @, thatis, 7; N 7;(z) # 9. It follows from the definition of 4; that
hi(z) = pi(y) foreach i € N, which means i(z) = y.

To conclude that /2 is a homeomorphism, it remains to show that % is an open map.
Let V be a neighborhood of x in X. By (3), st(x,l;) C V for some i € N. Since
hi(x) € 7i(x), we have U € 7;(x)@ = U;[x] such that h;(x) € Ok, (U), which
means h(x) € p;'(Ok,(U)). Foreach y € p71 Ok, (U),letz = h~'(y). Then, U
is a vertex of the carrier t; € K; of p;(y). It follows from the above argument that
z€st(U,U;) C V,hence y = h(z) € h(V). Thus, we have p;'(Ok, (U)) C h(V).
Hence, h(V') is a neighborhood of A(x) in l(iLn(|K,< |m. fi). This shows that £ is an
open map. O

In the above proof, if X is compact then each I4; can be finite, so each K; is finite.
When X is separable and completely metrizable, each I{; can be countable and star-
finite by virtue of Theorem 4.9.10, which means that each K; is locally finite. Thus,
we have the following:

Corollary 4.10.11. Every compactum (resp. separable completely metrizable
space) is homeomorphic to the inverse limit of an inverse sequence of compact (resp.
separable locally compact) polyhedra and PL maps. O

Note. The compact case of the above Corollary 4.10.11 can be easily proved as
follows: By virtue of Corollary 2.3.8, we may assume that X is a closed set in the
Hilbert cube IN. For each i € N, let p; : I — T’ be the projection defined by
pi(x) = (x(1),...,x(i)). Construct polyhedra P; C I’ so that p;(X) C int; P;,
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Piy1 C Pi x I (hence p;} (Piy1) C p;'(P;)) and (e p; ' (P;) = X. For each
i € N,let f; : Pix; — P; be the restriction of the projection of P; x I onto
P;. Then, X = ey 27 '(P) ~ 1(iI_n(Pi, fi) by the homeomorphism induced by
p,lX X —> P

In the case that X is separable and locally compact metrizable, not only can each
K; be locally finite, but each f; can also be proper. Indeed, we can take I/; such that
each U € U; has the compact closure, hence U; 1+ 1[U] is finite for each U € U;,
which means that K; = N(U;) is locally finite, hence |K;|, = |K;| is locally
compact. Foreach U € K,.(:)_)l =Ui+1and V € Kl.(o) =U;,if fi(U) € Ok, (V) then

clU C ¢ " (Og(fi(U)) C g (O, (V) C V.
Since V contains only finitely many members of U; 11, ;' (f;(U)) contains only
finitely many vertices of K, . Hence, f; is proper.

Corollary 4.10.12. Every separable locally compact metrizable space is
homeomorphic to the inverse limit of an inverse sequence of separable locally
compact polyhedra and proper PL-maps. O

We now present the following useful remark.

Remark 16. In the proof of Theorem 4.10.10, we needed the following condition
that is derived from condition (5):

(%) kli)ngomeshp,. Jii+k(Sk, ) = 0.

In Theorem 4.10.10, if dim K; < oo foreachi € N, we can take K,-’ = Sd" K; for
some n; € N. Indeed, choose n; € N in the proof so that

: dim K; i

lim I Te——— =0.

i—oo \ dim K; + 1

Then, condition (*) holds because the following inequality is obtained from
Lemma 4.7.3:

dim Kl‘ +k
dimK; 1 + 1
< . dim Kl‘ +k
T \dim K4 + 1

<5 dimK; \"( dimK;y "t
- dimK; + 1 dim K+ + 1 ’

When dim K; < n for every i € N, we can take Ki’ = Sd K;. Indeed, condition
(*) is satisfied because the following inequality follows from Lemma 4.7.3:

itk
mesh,, fii1x(Sd"** Kiqy) < ( ) mesh,, fiirk(Kitk)

N4k
) mesh,, Sd" K;
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n
meshy, fii+x(Sd Kiyx) < ] mesh,, fii+x(Kitr)

IA

n
P mesh, fiivrk—1(Sd K yr—1)

2
n
< (m) meshy, fii+ik—1(Kitr—1)

k
5( z )meshpiSdK,-
n+1

N k+1
<2 .
- \n+1

Remark 17. By replacing N with a directed set, we can generalize the inverse
sequence to the inverse system. Using an inverse system of polyhedra with the
Whitehead topology, Theorem 4.10.10 is valid for every paracompact space, that
is, every paracompact space (hence every metrizable space) can be represented as
the inverse limit of an inverse system of polyhedra with the Whitehead topology.
Refer to Notes for Chap. 4.

IA

4.11 The Mapping Cylinders

The mapping cylinder M, of amap f : X — Y is defined as the following
adjunction space:
My =Y Ujpopryxxfop X X1,

that is, My is obtained from the topological sum ¥ & (X x I) by identifying the
points (x,0) € X x {0} with the points f(x) € Y.By g, : Y & (X xI) - My,
we denote the natural quotient map. The map ¢y : My — Y, called the collapsing
of My, is defined by cs|Y =idand cs|X x (0,1] = fopry.Byis: X — My,
we denote the natural embedding defined by i (x) = (x, 1). Then, csoi s = f and
cr >~ id rel. Y in My which is realized by the homotopy h' My x1 — My
defined by hof =cy, h',le = id for each ¢ € I and h,f(x,s) = (x, st) for each
(x,5) € X x(0,1]and ¢ € (0, 1].

When Y is a singleton, the mapping cylinder M, is homeomorphic to the
quotient space (X x I)/(X x {0}), which is called the cone over X. We regard
the mapping cylinder M4, of the identity map idy as the product space X x I.

If X is a closed subspace of Y, the mapping cylinder M; of the inclusion i :
X C Y can be regarded as the subspace (Y x {0}) U (X x I) of the product space
Y x 1. However, if Y is perfectly normal and X is not closed in Y then the mapping
cylinder M; of the inclusion i : X C Y cannot be regarded as the subspace of
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Y x I Indeed, let y € (cly X) \ X. Then, we have amap k : ¥ — I such that
{y} = k~'(0). Observe that the graph G = {(x,k(x)) | x € X} of the map k is
closed in M; but is not closed in the subspace (¥ x {0}) U (X xI) of ¥ x L

For spaces X and Y with 4 C X NY, we denote

X>~Y rel. A

if there exist homotopy equivalences f : X — Y and g : ¥ — X such that
flA=g|A=id, gf ~idy rel. A, and fg ~ idy rel. A. Consider one more space
Z with A C Z. Then, it easily follows that X ~ Y rel. A and ¥ ~ Z rel. A imply
X ~ Zrel. A.

Theorem 4.11.1. For maps f,g : X — Y, the following are equivalent:

@ f=g
(b) My >~ Myrel. Y U (X x {1});
(c) Thereisamap ¢ : My — M, such that |Y U (X x {1}) = id.

Proof. The implication (b) = (c) is obvious. Using the above homotopy 4/, we can
see (c) = (a) as follows:

f =cyroiy = cgquOh'(};oz'f - cgoqooh{oif = CgO0Qoif = (g0l = g.

(a) = (b): Leth : X xI — Y be a homotopy from f to g. We define maps
¢ My — Mgandy : My — My as follows: ¢|Y = ¢|Y =id and

{(x,Zs —1) for(x,s) € X x (L 1],
p(x,s) = 2
has(x) for (x,s) € X x (0, %];
. 5) = {(x,Zs— 1) for(x,s) € X x (4, 1],
hi—s(x) for (x,s) € X x (0, %].

See Fig. 4.12. Then, it follows that Y ¢|Y = id and

(x,4s —3) for(x,s) e X x (%,1],
Y(x,s) = {hs4(x)  for(x,s) € X x(3,3],
has(x) for (x,s) € X x (0, %].

We define an auxiliary map 6 : My — M as follows: 0|Y = id and

(x,45—3) for(x,s) € X x (3.1],

O(x,s) =
(x,s) f(x) for (x,s5) € X x (0, 3].
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[N S TR

(=N

Fig. 4.12 The mapping cylinders of homotopic maps

Then, we have Y@ ~ 6 >~ idy, rel. Y U (X x {1}) by the homotopies § : My xI —
My and: My x 1 — My defined as follows: §|Y = {;|Y = idand

(x,45 —3) for(x,s) € X x(%,l],
SI(X,S) = h(3_4s)t(x) for (X,S) e X x (%’ % ,
hagi (x) for (x,s) € X x (0,1];

4s — 3t \
Ct(x,s): (x7 4_3t) for(xvs)EXX(Zt’ 1]’
f(x) for (x,s) € X x (0, %t],
Similarly, we can see that v >~ idrel. Y U (X x {1}). O

Theorem 4.11.2. Formaps f : X — Y andg:Y — Z,
My Ui, My ~ Mgy rel. Z U (X x {1}).

Proof. We define maps ¢ : My U;, My — Mgy and ¢ : My — My U;, My as
follows: |M, = c,, 9| X x (0,1] =idand ¥|Z = id,

(x,2s—1)€ My for(x,s) € X x(3,1].

v = (f(x).25) € My for (x,5) € X x (0, 3].

Observe that yo|M, = cg, Y¢|X x (0,1] = ¢|X x (0,1],and ¢ |Z = id,

(x,2s —1) for(x,s) € X x (3.1],

e = {gf(x) for (x,s5) € X x (0, 5].

See Figs. 4.13 and 4.14. Then, we have



216 4 Simplicial Complexes and Polyhedra

N

Nie / >¥ e Nde/

z z

o

-

/
J-I\s

Mg Uig Mf —(p» Mgf _— Mg U,‘g Mf

Fig. 4.13 The mapping cylinder of the composition of maps (1)

M,y _ Mg, U, My —> My

¢

Fig. 4.14 The mapping cylinder of the composition of maps (2)

Yo ~id rel. Z U (X x{1})and ¢y ~id rel. Z U (X x {1}).

In fact, these are realized by the homotopies
%‘Z(MgU,'g Mf)XI-)MgU,'g My and §: Mgr X1 — M,y

defined as follows: & | M, = hf

1=t

¢|Z = id, and
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The case using the order

Vv <Vvy <v3

The case using the order

V3 <’ 1% <’ 141

217

K V3 K V3
2 ] %
u = f(v3) w = f(v3)
L L

up = fv1) = f(v2)

Fig. 4.15 The simplicial mapping cylinders

Et(x S) = ()C, 2;—__;) for (X,S) e X x (%[, 1],
(f(x),2s +1—1¢) for(x,s) e X x (0, %t];

25 —t
s t) for (x,s) € X x (31.1],

s = | (572
for (x,s) € X x (0, %t]. O

up = fv1) = f(v2)

gf(x)

Let K and L be simplicial complexes in the linear spaces E and F, respectively.
Consider the linear product space E x F xR and regard K and L as being contained
in E x {0} x {1} and {0} x F x {0}, respectively. Assume that K is an ordered
simplicial complex. The simplicial mapping cylinder Z ; of a simplicial map f :
K — L is defined as the following simplicial complex:

Zf :LU{(f(Vl)s ,f(Vm/),Vm,"' ,V,,) |

(i, ) eK, vi<--<v,, 1 <m' <m §n}.

The collapsing of Z ; is the simplicial map ¢y : Zy — L definedby cs(v) = f(v)
foreachv € K© and ¢/ (u) = uforeachu € L. Then, f = ¢/||K|. If L = {v}
is a singleton, Z ; is called the simplicial cone over K with v the cone vertex, which
is denoted by v * K.

Remark 18. Note that the simplicial mapping cylinder changes if the order on
K© is changed. Moreover, in general, |Z ;| % M. For instance, let K and L
be the standard triangulations of a 2-simplex (v, v, v3) and a 1-simplex (uj, us),
respectively. Consider the simplicial map f : K — L defined by f(v;) = f(») =
ui and f(v3) = up. Let Z s be the simplicial mapping cylinder defined by he order
Vi <Vvy<vyand Z ’f be the one defined by the order v; <’ v, <’ v;. Then, we have
notonly Z, # Z} but also |Z 7| # |Z’f| (see Fig.4.15). Evidently, | Z s| % M.
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K K vy
Vi
KxI
qr My
u
L
up

_—
L v

_ Pr
w = f() = fv) af

Vi

up

Fig. 4.16 The mapping cylinder and the simplicial mapping cylinder

Because K is assumed to be an ordered simplicial complex, we can consider
the product simplicial complex K x; I of K and the ordered simplicial complex
I = {1, 0, 1} with the natural order, i.e.,

K xo I ={{(v1.0), -+ . 0), (Vs 1)+, (v 1)) |
(Vi) €K, vy <o <y, 1<m' <m <n},

where |K x; I| = |K| x I according to Theorem 4.3.1. We define the simplicial
mapGy: L@ (K x,I)— Z;byqs|IL® =id,

Gr(v,0) = f(v) and Gs(v,1) = v foreachv e K.

Then, g5 : |L| @ (|K| xI) — |Z | is a quotient map. Indeed, let A C |Z | and
assume that c];l (A)isclosedin |L| @ (| K| x I). Observe that

Zf:LU{qf(t)|tEszl}.

Foreacho € L,ANo = EI;I(A) N o is closed in 0. For each t € K x; I, since
g |t is a quotient map and (G /|t)" (A N G/ (7)) = c];l(A) N 7 is closed in T, it
follows that A N g (7) is closed in g #(7). As a consequence, A is closed in |Z /|.
Since g¢||L| = idand Gs||K|x {0} = fopr k|, we have themap p; : My — |Z ]
such that proq s = g 7. Then, p is a quotient map (Fig. 4.16).
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For each (x,s) € |K| x L let ck(x) = (vi,---,vs) € K be the carrier of x
and write x = Z:-’:ltiv,-, where vi < --- < vy, and t; = ,BVIf(x) > (. Choose
m=1,---,n so that

n n m—1 m
S =s=3 ( S < 1—s§Zt,~),
i=m+1 i=m i=1 i=1

where >/ ., #; = 0. Then, it follows that

m—1 n
(x,5) Zzti("ho) + (Zfi —S)(Vm,o)

i=1

n n

+(s— Z ti)(vm,1)+ Z ti(vi, 1)

i=m+1 i=m+1
e((VI,O),"' 7(Vm70)7(vms 1),"' B (vn, 1)) S K X 1.

By the definition of g s, we have

m—1 n

Qs =3 6 f ) + (Zzi —s)f(vm)
i=1 i=m

+(S— Xn: ti)vm—i- Xn: t;vi

i=m+1 i=m+1
€ (f(vl)"” 7f(vm)7vma"' 7Vn> € Zf

Suppose ¢ (x’,s") = gr(x,s). If s = O then s’ = 0. When s > 0, it follows that
Vi, . . ., Wy are vertices of the carrier ¢ (x”) of x’, which are the last n—m + 1 vertices
with respect to the order of K©. The carrier of ¢ r(x’,s") contains no vertices of
K© except for v,,, ..., v, and ,Bf(x’) = t; form < i < n, hence s’ = s. Then,
Gr(x',s") = gr(x,s) implies s’ = s. In addition, if Gs(x,s) = Gs(x’,s), then
Gr(x,s") =qgr(x',s") forevery s’ € [0, s], because

n n
E L <s < E t; form’ > m.
i=m'+1 i=m’

Therefore, we can define a homotopy A/ : |Zs| xT — |Zs| by h_‘,f||L| = id and
htf (Gr(x,8)) =qgr(x,st)on|Zs|\|L| C gr(|K|xI). Thus, we have

¢r =hi ~h{ =idz,| rel.|L|,

where ﬁf(c";l(y) x1) = ¢;'(y) forevery y € |L|.
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nt
MfXI —_— Mf

pyxid l l rr

|Zs| <1 —— |Z/]
W

For each ordered simplicial complex K and its subdivision K’, we define the
simplicial subdivision 7 (K’, K) of the product simplicial complex K x; I as follows:

I(K',K) = (K' x {0}) U (K x {1})
U {{o X {0} U {vp, - v} x {1}) | 0 € K,
(vivoo ) €K, vy <o < vy, 0 C (visee L, vm) )

where K/ x {0} = {0 x{0} | 0 € K'} and K x {1} = {t x {1} | T € K}. For
any simplicial map f : K’ — L, given an order on K’ so that K’ is an ordered
simplicial complex, we have the simplicial mapping cylinder Z r. Identifying K’ C
Z s with K’ x {0} C I(K’, K), we have the simplicial complex

Z_K =Zs Ug—gxqoy 1(K', K),
from which it follows that |Z")f| = 1Z | Upr Ik Ixtoy | K| X L.

Theorem 4.11.3. Let K and K’ be ordered simplicial complexes such that K’ <1 K
and let L be a simplicial complex. For any simplicial approximation f : K/ — L
ofamap g : |K| — |L|,

|ZF| ~ M, rel. |L| U (IK]|x {1}).

Proof. Since f =~ g, we may assume that f = g by virtue of Theorem 4.11.1.
We define maps ¢ : |Z}{| - Mrandy : My — |Z}{| as follows: ¢||Z s| = ¢y,
¢||K]| % (0,1] =id, and ¥||L| = id,

(x.2s—1) for (x,s) € |K|x (3.1],
V(x,s) =9 _ 1
qr(x,2s)  for(x,s) € [K|x (0, 5].
Then, see Figs.4.17 and 4.18, and observe that

PlILIU (K[ x{1}) = ¢[|L| U (K[ x{1}) = id,

VollZsl =& = hj and Yol|K|x (0.1] = y[|K| x (0.1].

We now define the I_lomotopiesé : |Z}(| xI — |Z}(| and { : My xI — My as
follows: &||Z | = h/_,, &||L| = id, and
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K| idk| IK| idk| IK|

qr
z l / \ z
’ N\ s
id id
L] 1Ll L] 1Ll L]
z§ _— My _— z§
® 14

M, —_ > Zjlf —_— > M,

Fig. 418 Themap oy : My — M,

2—t
gr(x,2s+1—1) for(x,s) € |K|x (0, 5];

£(x,s5) = (x, 2s_t) for (x,s) € |K|x (52, 1],

25 —
&(x,s) = <x’ —zs_ f) for (x.5) € [K| x (32.1].

f(x) for (x,s) € | K| x (0, 31].
By these homotopies, we have
Yo =86 ~& =1id rel. |[L|U (|K| x {1}) and
oY =8 >~ =id rel. [L] U (|K| x {1}).

This completes the proof.

221
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In the above, consider the case that f = g and f : K — L is simplicial.
Then, |Z | ~ |Zjlf| rel. |L|. Indeed, let r : |Z§<| — |Z | be the map defined by
rl|Zy| =idand r|| K| x I = prjg|. As is easily observed, r >~ idrel. [Z /| in |Z}(|.
Thus, we have the following corollary:

Corollary 4.11.4. Let K be an ordered simplicial complex and L be a simplicial
complex. For every simplicialmap f : K — L, |Zy| =~ My rel. |L|. O

4.12 The Homotopy Type of Simplicial Complexes

In this section, we apply the mapping cylinder and the simplicial mapping cylinder
to prove the Whitehead—Milnor Theorem on the homotopy type of simplicial
complexes.

A space X is said to be homotopy dominated by Y (or Y homotopy dominates
X) if there are maps f : X — Y and g : ¥ — X such that gf =~ id. It is easy to
see that X has the homotopy type of the singleton {0} if and only if X is dominated
by {0}. The homotopy type of a simplicial complex K means the homotopy type
of the polyhedron |K| (or |K|m) (cf. Theorem 4.9.6). We say that X is homotopy
dominated by a simplicial complex K if X is homotopy dominated by | K| (or
| K |m). Applying Theorems 4.11.1-4.11.3, we can prove the following Whitehead—
Milnor Theorem:

Theorem 4.12.1 (J.H.C. WHITEHEAD; MILNOR). If a space X is homotopy
dominated by a simplicial complex K, then X has the homotopy type of a simplicial
complex L with card L' = dens |L| < dens X. When X is separable, X has the
homotopy type of a countable simplicial complex.

Proof. We may assume that X is infinite, so dens X > Ry. Let f : X — |K| and
g : |K| — X be maps such that gf ~ id. Then, we may assume that card K <
dens X . Indeed, take a dense set D in X with card D = dens X and define

Ky = {r eK \ Jdx € D suchthat 7 < CK(f(X))},

where cx (f(x)) is the carrier of f(x). Observe that card Ky < card D and f(X) =
f(cl D) Ccl f(D) C|Ko| Because (g||Ko|) f =~ id, we can replace K with Kj.

By the Simplicial Approximation Theorem 4.7.14, fg : |K| — |K]| has a
simplicial approximation ¢ : K’ — K, where K’ is a subdivision of K. Given
orders on K'©® and K© so that K’ and K are ordered simplicial complexes, we
obtain the simplicial complex Z (f with card Z (f <dens X.

For each n € Z, let L, be a copy of Z(f. Identifying K of L,4+; with K x
{1} of L, for each n € Z, we have a simplicial complex L = |J, ¢ L., where
card L < dens X. For each n € Z, let M>,—; and M>, be copies of M, and M,
respectively. Identifying X x {1} C My,—; with X C M;, and |K| x {1} C M,
with |K| C Myy41,let M = UnEZ M,.
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X XR:

Fig. 419 X xR ~ |L|
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By Theorems 4.11.3 and 4.11.2, we have

K’ K’ K’ K’
K K K
K K K K
Zw Zw Zw Zw
| | |
ldK ldK 1dK
/
kK —
My, My, My,
ldK ldK 1dK
X K X K X K X
M, My M, My M, My
idy idy idy idy
— X —1Fr — X —17
/
Mgy Mgy Mgy
idy idy idy idy
—1 0 1

|La| = |ZJ| >~ Mgy >~ My Ui, Mg = My, U My, rel. |[K|U (K| x {1}),

which implies that L ~ M. By Theorems 4.11.2 and 4.11.1,

M, U M2n+l = Mg Uig Mf ~ Mgf ~ Midx rel. X U (X X {1})

Regarding Miq, as X X [n,n + 1], we have M ~ X x R. Thus, we have X ~
X xR ~ |L| —Fig.4.19.

|
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K®

Sk

Fig. 4.20 The locally finite simplicial complex S

In the above proof, if dim K < oo then dim L < oo. Therefore, we have the
following corollary:

Corollary 4.12.2. A space X homotopy dominated by a finite-dimensional
simplicial complex has the homotopy type of a finite-dimensional simplicial complex
K with card K©© = dens |K| < dens X. O

Applying product simplicial complexes, we can prove the following theorem:

Theorem 4.12.3. Every simplicial complex has the homotopy type of a locally
finite-dimensional simplicial complex with the same density. In addition, every
countable simplicial complex has the homotopy type of a countable locally finite
simplicial complex.

Proof. Foreachn € w,let L, = {i, [i,i + 1] | i > n} be the ordered simplicial
complex with the natural order. For each simplicial complex K, assuming that K
is an ordered simplicial complex, we define a locally finite-dimensional simplicial
complex S = U, ¢, K™ X, L, (Fig.4.20). By Theorem 4.3.1, we have

1Skl = [J 1K™ x [n.00) € |K| x [0, 00).

new

To prove that | K| ~ |Sk]|, it suffices to show that | K| x [0, c0) =~ |Sk| because
|K| ~ |K| x [0, 00). Foreachn € w, let

T, = |[K™| x [0,n] U|Sk]|.

Then, |Sxk| =To C 71 C T, C -+ and |K| x [0,00) = li_n)lT,, (cf. Sect. 2.8). For
each n-simplex v € K, we have a map

pr T x[0,n] > dt x[0,n]Utx{n} =1x[0,n]NT,—;

defined as follows: p.(Z,s) = (7,n) and
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n—+s
=
2n
N 1
x=(0=-0T4ry [y 1////
2 (x’s)f_/) [JT(X,S)
s 0 § n =dimrt
T
Fig. 4.21 The map p,
A )
(y,s +2n(1 —1)) it — <r<1,
n
pe(x,8) = 2n . 2n : n+s
- t)t+——ty,n) if 0<t= ,
n—+s n—+s n

wherex = (1—1)T +ty €7,y € 97,0 <t < 1 (Fig.4.21).

For each n € N, let p, : T, — T,—; be the map defined by p,|T,—; = id
and p,|t x [0,n] = p. for each n-simplex t € K. Then, we can define a map
r:|K|x[0,00) — |Sk| by r|T,, = pi1--- p, foreachn € N. Note that r||Skx| = id
and r(tr x [0,00)) C t X [0,00) for each 7 € K. Observe that r =~ id rel. |Sk]|
in | K| x [0, 00) by the straight-line homotopy (i.e., t — (1 — t)r(x,s) + t(x,s)).
Therefore, we have | K| x [0, 00) >~ |Sk|.

If K is countable, K has a tower K; C K, C --- of finite subcomplexes with
K = U, ey Kn- Then, Tx = |, c,, Kn X5 Ly is a countable locally finite simplicial
complex. As above, we have | K| ~ |Tk]|. O

By Theorems 4.12.1 and 4.12.3, we have the following corollary:

Corollary 4.12.4. A space X homotopy dominated by a simplicial complex has
the homotopy type of a locally finite-dimensional simplicial complex K with
card K© = dens |K| < dens X. If X is separable, X has the homotopy type of
a countable locally finite simplicial complex. O

4.13 Weak Homotopy Equivalences

Letn € w. Amap f : X — Y is called an n-equivalence if it satisfies the following
condition (rr); foreachi =0,...,n:

(w); Foreachmap «a : S""! — X, if fa extendstoamap 8 : B' — Y, then «
extends to amap @ : B’ — X such that fa@ ~ Brel. S'~!,

where B = {0} and ™! = 0.
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f
X Y
A ~
JL
a N
Sz—l C Bi

When f : X — Y is an n-equivalence for every n € w, we call f a
weak homotopy equivalence. For convenience, a weak homotopy equivalence is
sometimes called an co-equivalence.

In the next section, we will give a characterization of n-equivalences in the
framework of homotopy groups. In particular, it will be shown that a map is
a weak homotopy equivalence if and only if it induces a bijection between the
sets of path-components and an isomorphism between their homotopy groups in
every dimension. The following proposition is an immediate consequence of this
characterization, but we will give a direct proof.

Proposition 4.13.1. Every homotopy equivalence f : X — Y is a weak homotopy
equivalence.

Proof. Let g : Y — X be a homotopy inverse of f. Then, there are homotopies
h:XxI— Xandk :Y xI — Y suchthat hy = idy, hy = gf, ko = idy, and
ki = fg.Foreach pairof mapsa : S"~! — X and 8 : B — Y with fa = B|S'™!,
we can extend « to the map & : B’ — X defined as follows:

gB(8x) if0 < [Ix[| = 1/8,
gfha(x]™'x), 8x = 1) if 1/8 < ||x]| < 1/4,
gh(fa(llx|7'x),2 = 4llx[)) if 1/4 < |x]| <1/2,
h(a(lx[7"x),2 = 2)x]) if1/2 < x| < 1.

alx) =

It remains to show that f& ~ B rel. S
We define an auxiliary map y : B’ — Y as follows:

p(8x) if0 < x| < 1/8,
Shla(lx]|7 %), 8lx[ = 1) if 1/8 < ||lx]| < 1/4,
y(x) = Yhk(fa(llx]|7 x), 2 —4llx[) if1/4 < x| <1/2,
k(fa(llxl7"x), 4lxl —2) if1/2 < [|lx]| < 3/4,
Fh(a(llx[7"x), 4 = 4llx]) if3/4 < |x| <1
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Then, y ~ f& rel. S'~! by the homotopy ¢ : B’ x I — Y defined as follows:

ki (B(8x)) if0 < [lx[| = 1/8,

ko (f h(ee(llx[| ™" x), 8]|x[| — 1)) if 1/8 < [|lx|| < 1/4,
@(x) = Jhk(falx]7"x),2 — 4]x]) if 1/4 < |lx]l < 1/2,

k(fa(llx[7"x), 4llxl =2 + 1) if1/2 < x| <(3-1)/4,

Shla(lx][|7' %), 4 = 4]lx[D/(1+1) fG—1)/4<|x[| <1

On the other hand, let ¥, y” : B' — Y be the maps defined as follows:

B(8x) if0 < x| < 1/8,

Y (x) = fha(x]7 x), 8llx[ = 1) if 1/8 < ||x[l < 1/4,
fefe(lx]™"x) if1/4 < x| <3/4,
fha(x|7x), 4 = 4llx[) if3/4 <|x[| < L;

" B(8x) if 0 < [lx]| < 1/8,

Y (x) = .

So([xI7x) if1/8 < [lx[| = 1.
It is then easy to obtain the homotopies y ~ y’ ~ y” ~ B rel. S'~1. O

In this section, we will show the converse of Proposition 4.13.1 when X and
Y are polyhedra. Namely, we will prove that every weak homotopy equivalence
between polyhedra is a homotopy equivalence.

A path-component of a space X is a maximal path-connected subset of X.
The set of path-components of X is denoted by 7o(X). Everymap f : X — Y
induces the function f; : mo(X) — mo(Y'), which sends the path-component of
x € X to the path-component of f(x) € Y. The following propositions are easily
proved:

Proposition 4.13.2. (1) Amap f : X — Y is a 0-equivalence if and only if every

path-component of Y meets f(X), i.e., f3 : mo(X) — mo(Y) is a surjection.

(2) Every 1-equivalence f : X — Y induces the bijection fy : mo(X) — mo(Y)

and the surjection fy : [(I, 1), (X, x0)] — [(L, dL), (Y, f(x0))] for every xo € X."3
O

Proposition 4.13.3. Let n € w U {c0}. The composition of n-equivalences is also
an n-equivalence. O

The following proposition, similar to Proposition 4.13.1, is an immediate
consequence of the characterization of an n-equivalence in the framework of
homotopy groups, which will be discussed in the next section. However, here we
will give a direct proof.

BThat is, Ji i mi(X, x9) = m(Y, f(x0)) is an epimorphism for every xy € X.
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Proposition 4.13.4. Letn € w U {oo}. Ifamap f : X — Y is homotopic to an
n-equivalence, then f is also an n-equivalence.

Proof. Foreachi < n + 1, leta : 8! — X and B : B’ — Y be maps such
that fo = B|S'~!. By the assumption, we have a homotopy 2 : X x I — Y such
that hp = f and h; is an n-equivalence. According to the Homotopy Extension
Theorem 4.3.3, there is a homotopy ¢ : B’ x I — Y such that gy = B and ¢|S'~! x
I = h(a x idy). Since hjo extends to the map ¢; : B — Y, o extends to a map
@ : B’ — X suchthat i@ ~ ¢ rel. S~

P
X ~ Y
ST—

o > ~ n = @1 (j% ﬂ
Si—1 c "B

Let ¢ : B' x I — Y be a homotopy such that Yo = h@, ¥; = ¢, and ¥, |S"™' =
hia for every ¢ € 1. We define a homotopy k : d(B' x I) x I — Y as follows:

pi—(x) ifs=1,
ki(x,s) = {hi_a(x) ifs=0,

hi_a(x) ifxeS~

Refer to Fig. 4.22. Then, v is an extension of k(. Hence, we can apply the Homotopy
Extension Theorem 4.3.3 to extend k; to a map ' : B’ xI — Y, which is a
homotopy from f & to B with ¥/|S'™! = fo foreverys € Li.e., f& ~ Brel. S,
Therefore, f is an n-equivalence. O

When f is the inclusion, we have the following:

Lemma 4.13.5. For the inclusion X C Y, each of the following is equivalent to
condition (7);:

(m); Everymap a : B — Y with «(S'™') C X is null-homotopic by a homotopy
0 :B xI =Y withe(S™'xI) C X, ie, [B,S), (Y, X)] = {0};"

(m)! For a homotopy h : S"™' x 1 — Y with hi(S"™") C X, if hy extends to a map
B :Bi — Y, then h extends to a homotopy h : B x 1 — Y such that hy = f8

and hi(B') C X.

14We use the convention that co + 1 = oo.

Tn terms of the homotopy groups, this means that 7; (Y, X,xo) = 0 for each x, € X. In
Proposition 4.14.7, we will give another proof of the equivalence between this condition and (r);.
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I fa
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PR ]// """ h]Ol
ha '
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Fig. 4.22 The homotopy k
(7)! X c Y (m)! X c Y
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//Ta //T\\ ) //]hl —//hT\
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I A0 ! A0 \ ) XL 1y X0
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Proof. (m); = (m): From condition (r);, we have a homotopy 1 : B’ x I — Y

such that iy = o, h1(B') C X and /,|S'~! = «|S'~! forevery t € I. Because B' is

contractible, we have /1y ~ 0 in X . Then, the homotopy ¢ in (x); is easily defined.
()} = (m)!: We have a homeomorphism ¢ : B x I — B’ x I such that

V(S xI) U (B’ x {0})) = B' x {0},
V(S x {1}) = 8 x {0} and
Y(B x {1}) = ("' xD U B x{1}).
Let B : B — Y be an extension of sy and define a map & : B’ — Y as follows:

hy=1(x,0) ifx € (S xI),

a(x) = » | |
Bprg: v~ (x,0) if x € Y(B' x{0}).

Since a(S"™') = h(S'!) C X, we can apply ()] to obtain a homotopy ¢ :
B’ xI — Y such that ¢y = o, (S'~! xI) C X, and ¢, is constant. Then, h =
eV : B' x I — Y is the desired extension of /.

(7)! = (r);: Givenamap B : B' — Y such thate = B|S"™! : S~ - X,
leth : S"~! x I — Y be the constant homotopy defined by #; = o for each t € L.
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B x1I B x1I

Fig. 4.23 The construction of h

Due to condition (;)/, h extends to a homotopy h:B' x1— Y suchthat hy = B
and 1 (B') C X (Fig.4.23). Then, h,|S'' = wand h; ~ Brel. S 1in Y. O

Using this lemma, we can prove the following proposition:

Proposition 4.13.6. Let X be a subspace of a space Y such that the inclusion X C
Y is an n-equivalence, where n € w U {oo}. Given a simplicial complex K and a
subcomplex L C K with K\ L C K", ifamap f : |L| — X extends to a map
f'|K| =Y, then f extends to amap f" :|K| — X such that f' ~ f" rel. |L|
inY.

Proof. According to Theorem 4.3.1,
ILUKD|xI=|(LUK®D)x.I| foreachi € w,

where I = {I,0, 1}. Applying condition ()] in Lemma 4.13.5 simplex-wise, we
can inductively construct homotopies ) : |[L U K| xI — Y,i € w, such that

B = LU k®) P (LUKD) c X and
(Z)HL U K(l—1)| xI=hptD,

where h=V : |L| x I — Y is the constant homotopy defined by h( D = f||IL] =

f'IIL] for every t € I Because |K| x I = |K x. I|, we can define a homotopy
h:|K|xI—Ybyh||LUK®| xI=h"foreachi € w.Hence, f” = h, is the
desired map. O

In the following proposition, we identify X with the subspace X x {1} of the
mapping cylinder My of f : X — Y.

Proposition 4.13.7. Letn € w U {oco}. Foramap f : X — Y, the following are
equivalent:
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(a) f is an n-equivalence;

(b) The inclusioniy: X C My isan n-equivalencelﬁ;

(c) Given a simplicial complex K and a subcomplex L. C K with K\ L C K™,
foramap g : |L| — X, if fg extendstoamap h : |K| — Y then g extends to
amap g : |K| — X suchthat fg ~ hrel. |L]|.

S
X Y
A ~
N
g AN
LI < [K]|

Proof. Since (B',S'™") ~ (|F(A")|,|F(dA")|), the implication (c) = (a) is trivial.
Since the collapsing ¢y : My — Y is a homotopy equivalence and the inclusion
iy 1 Y C My is its homotopy inverse, the map iy f = iycsis : X =Y C My is
homotopic to i : X — M. By virtue of Propositions 4.13.1, 4.13.3, and 4.13.4,
f =cyiyf : X — Y is an n-equivalence if and only if i ; is. Thus, we have the
equivalence (a) < (b). It remains to show the implication (b) = (c).

(b) = (c): Let K be a simplicial complex and L C K be a subcomplex such
that dimo < n foreveryo € K\ L. Letg : |L| - X and & : |[K| = Y be
maps such that fg = h||L|. The homotopy h/ : M; x I — M fromiycy to id
induces a homotopy ¢ : |L| xI — M, fromiycrisg =iy fg = iyh||L|toi,g,
which is defined by ¢, = h‘,fifg. Then, cro; = cfhtfifg = crifg = fg for
each t € I. According to the Homotopy Extension Theorem 4.3.3, ¢ extends to a
homotopy ¢ : | K| xI — M, with ¢y = h, so ¢, is an extension of i yg. By (b) and
Proposition 4.13.6, g extends to amap g : |K| — X such that g ~ ¢ rel. |L] in
My, hence fg =cyg >~ cr@prel. L] in Y. On the other hand, c;¢1 =~ cr@o =
crh = hrel. |L|in Y because c;¢/||L| = cro, = fg foreach ¢t € L. Thus, we
have fg ~ hrel. |L|inY. O

For polyhedra, we have the following theorem:

Theorem 4.13.8. Let K and L be simplicial complexes and n € N. If dim K <
n —1and dim L < n, then every n-equivalence f : |K| — |L| is a homotopy
equivalence.

Proof. According to the Simplicial Approximation Theorem 4.7.14, f has a
simplicial approximation g : K’ — L for some K’ <0 K. Then, M; ~ |Z g | rel.
|L|U|K| by Theorem 4.11.3, where | K | is identified with | K|x{1}in M s and|Z§|.
Since the inclusion |K| C M/ is an n-equivalence by (b) in Proposition 4.13.7,
it follows that the inclusion |K| C |Zé{< | is also an n-equivalence. Note that

16According to Lemma 4.13.5 and the previous footnote 15, this condition means that
mi(My, X, x9) = 0foreach xo € X andi <n + 1 (where co + 1 = 00).
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dim Z f < n. We can now apply condition (c) of Proposition 4.13.7 to obtain a
map ¢ : |ZX| — |K| such that ¢[|K| = id and ¢ =~ id rel. |[K| in |Zf|, which
means that the inclusion | K| C |Z g | is a homotopy equivalence, hence the inclusion
|K| C M is also a homotopy equivalence. Since the collapsing ¢ : My — |L| is
a homotopy equivalence, the map f = c||K| is a homotopy equivalence. O

In the case that n = oo, K(® = K in Propositions 4.13.6 and 4.13.7, so the
above argument is valid without the dimensional assumption. Thus, we have the
following theorem:

Theorem 4.13.9. For simplicial complexes K and L, every weak homotopy equiv-
alence f : |K| — |L| is a homotopy equivalence. O

Remark 19. Tt should be noted that there are connected polyhedra X and Y such

that X 2 Y but ,(X) = m,(Y) for every n € N. For example, X = S? x RP?

and RP? x S3 are not homotopy equivalent but they have the isomorphic homotopy
17

groups.

Combining the above with Theorem 4.12.1 and Proposition 4.13.1, we have the

following corollary:

Corollary 4.13.10. Let X and Y be spaces that are homotopy dominated by
simplicial complexes. Then, every weak homotopy equivalence f : X — Y isa
homotopy equivalence. O

4.14 Appendix: Homotopy Groups

In this section, we review several definitions related to the homotopy groups together
with their basic results. Some of them are stated without proof. For details, refer to
any textbook on Homotopy Theory or Algebraic Topology.

For a pair of paths o, 8 : I — X with a(1) = B(0), we can define the join
ax B :1— X as follows:

a(21) ifo<t<1/2,

PO=0 0021 it1j2<i <1,

The inverse ™ : I — X of a path « is defined by () = a(1 —¢) foreach ¢ € L
For another pair of paths «’, 8/, the following holds:
o ~a, B'~Brel,dl = axB~ao xp, a0 ~ao rel oL

Moreover, for three paths &, 8, y : I — X with «(1) = $(0) and B(1) = y(0),

"Here, RP? is the real projective plane and RP? is the 3-dimensional real projective space. For
example, refer to Hatcher’s book “Algebraic Topology.”
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(x*xB)*y ~ax*x(B*xy) rel. dl;

ok o), & ka2 coqy rel. IL,

where ¢, : I — X is the constant path with ¢, (I) = {x}. Apatho : I — X is called
aloop (at x) if 2(0) = (1) (= x).

For each pointed space (X, xo), we denote £2(X, xo) = C((I, 9I), (X, xo)), which
is the set of all loops in X (at x¢). The space §2(X, x¢) admitting the compact-open
topology is called the loop space. The base point of §2(X, xo) is the constant map
¢y, : I = {xo} C X, denoted by 0. Each pointed map f : (X,x9) — (¥, o)
induces the pointed map fi : £2(X,x0) — $2(Y,yo) defined by fi(0) = fo
(cf. 1.1.3 (1)). Now, we can define the fundamental group 7| (X, x¢) or the first
homotopy group of X at x¢ (or (X, xo)) as follows:

m1(X, x0) = [(I A1), (X, x0)] = $2(X, x0)/ =~

with the operation [&][8] = [« * 8] and the inverse [@] ™! = [@*"], where [«] is the
equivalence class of « € £2(X, xo) with respect to ~18In general, 771 (X, x¢) is not
commutative (i.e., non-Abelian). By the way, we have (X, xo) = mo(£2(X, x0))
by Proposition 1.1.2.

For each n > 1 and each «, 8 € C((I",dI"), (X, x¢)), we define o * 8 and
a e C((I",a1"), (X, x¢)) as follows:

a(2t1,t2,...,tn) if0511§1/2,

axB(t,....t) =
! Bt —1,t,...,ty) if1/2<t <1;
a“(t,....ty) =a(l —11,b,....1,).

Then, foreach o, &', 8, B/, y € C((I", oI"), (X, X)),

a~ad, BB =axBf~a*xp,a" ~a;

(@xB)sy~ax(Bxy);axa” ~a xa~0.""
Furthermore, we can see that o * 8 ~ 8 * «. Thus, we have the additive group
(X, x0) = [(X", 01"), (X, x0)] = C((X", oI"), (X, x0))/ ==,

with the operation of addition [«] + [8] = [« * B] and the inverse —[o] = [ ] of
[o]. The group 7, (X, xo) is called the n-th homotopy group of X at x, (or (X, xo)).

Every pointed map f : (X,xo) — (Y, o) induces the homomorphisms fy :
n (X, x0) = ma(Y, yo), n € N, defined by fi[a] = [ f«]. For another pointed map

8For loops a, B € 2(X, x¢), @ 2~ B means o 2 f rel. oI
YFor a, B € C((I", 1"), (X, x0)), @ = B means o = f rel. oI".



234 4 Simplicial Complexes and Polyhedra

f1o(Xoxo) = (Yoyo), ff = fyif f! =~ 2% For each pair of pointed maps
S 1 (X.,x0) = (Y.y0) and g : (Y, y0) = (Z,20), we have (gf)y = g fy and
(idy)t = idg,(x.x)- If f 1 (X, x0) = (¥, yo) is a pointed homotopy equivalence
(i.e., there is a pointed map g : (Y, yo) — (X, xo) such that gf ~ idy rel. xo and
fg >~ idy rel. yo) then f; is an isomorphism (with (f3) ™' = gy).

For a pointed space (X, x¢), mo(X, xo) is defined as the pointed set 7o(X ) whose
base point is the path-component of X containing xo. Then, a pointed map f :
(X, x0) = (¥, yo) induces the pointed function f; : 7o (X, x0) — 7o(Y, yo).

Suppose that xo,x; € X are contained in the same path-component of X.
Then, we have a path w : I — X from xy to x;. For each n € N and each
a € C((I", aI"), (X, x1)), we define a® € C((I", I"), (X, xo)) as follows:

a2z —11) if |22 — 1|00
02 =2[2z-1fo0) if 22— 100

IA

a’(z) =

v
NI— 1=

where ||z]|lcc = max{|z(i)] | i = 1,...,n}and 1 = (1,...,1) € R". Then, w
induces the isomorphism wy : 7, (X, x1) — 7,(X, x0) defined by w«[a] = [®],
where (w«)~! = . For a path o’ : I — X with »’(0) = xp and ®'(1) = x1,
if o >~ ' rel. I then wyx = . If ®” : I — X is another path with »”(0) = x;
and w”(1) = x; then (0 * ®©")x = Wk} : 7, (X, x2) = 7,(X, xp). When X is
path-connected, 7, (X, x9) = 7,(X, x) for any pair of points xg, x; € X.

Let 2 : X xI — Y be a homotopy with iy = f and h; = f’. For each
Xo € X, the homotopy & gives a path w : I — Y defined by w(t) = h(xo,1).
For each & € C((I", aI"), (X, x¢)), h(e x id) is a homotopy from f« to f’« and
h(a(oI") x {t}) = {w(¢)}. Then, it can be seen that fo >~ (f'a)® rel. oI". Thus, it
follows that f; = w« fn’ , that is, the following diagram commutes:

o (Y, f(x0)
Ty (Xs )C()) @

B (Y. f(x0)).

Using this fact, we can show that every homotopy equivalence f : X — Y induces
the isomorphisms f; : m, (X, x0) — 7w, (Y, f(x0)),n € N, xo € X. In fact, let
g : Y — X be a homotopy inverse of f, thatis, gf =~ idy and fg =~ idy.
A homotopy from gf to id gives a path w : I — X from gf(x¢) to xo and a
homotopy from fg to idy gives a path @’ : I — Y from fgf(xo) to f(xo). For
each xp € X and n € N, we have the following commutative diagram:

2For pointed maps f, f/ € C((X, xo). (Y, y0)), f/ =~ f means f’ =~ f rel. xo.
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a (X, X0) —— e 7y (X, g f (x0)

=t

T (Y, f(x0)) ——= (Y, fgf(x0)),

where it should be noted that the left and the right f; in the diagram are different

from each other. Since gy f; = ws« and figy = w) are isomorphisms, gy is
also an isomorphism. Then, it follows that f; : m,(X,x0) — 7, (Y, f(x0)) is an
isomorphism.

For each n > 2, we define
JTl= @0 xnpu @ x {1}).
Identifying I"™! = I""! x {0} C I", we have
'uy ' =01 and I'''nJ =0

For a space X with xo € A C X, the relative n-th homotopy group of (X, 4) at
Xo is defined as the group

Ty (Xv A7 X()) = [(Inv aIn7 Jn_1)7 (Xv Av X())]

with the operations defined by the analogy of m,(X, x¢). In general, the group
(X, A, xo) is non-commutative, so we describe it as a multiplicative group like the
fundamental group. On the other hand, for n > 3, 7, (X, A, xo) is represented as the
additive group because it is commutative. It should be noted that 7, (X, {x¢}, x0) =
7, (X, x0). We also define

(X, A, xo) = C((I, 91, 0), (X, 4, x0))/ ~,

which is regarded as the pointed set whose base point is the homotopy class [cy,].
As in the case with pointed spaces, every map f : (X, A, xo) — (¥, B, yo) induces
the homomorphisms f; : 7, (X, A, x0) — 7, (Y, B, y0), n > 2, and the pointed
function f; : (X, 4, x0) = 71 (Y, B, yo).

For eachn > 2,1let 0 : 7, (X, A, x9) — m,—1(A, xo) be the homomorphism in-
duced by the restriction operator, i.e., d[a] = [|I"~!], which is called the boundary
operator. In addition, we define the pointed function d : 71 (X, A4, x9) — 7o (A, Xo)
as follows: d[«] is the path-component of (1) for each « € C((IL, 9L, 0), (X, A4, xo)).
Then, the following diagram commutes:
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iy J )
h (A, x0) — (X, x0) —— m(X, A, x0) —— m,—1(4,X0)

(f14) J/ Ji l l Ji l (f14)

(B, yo) —= (Y, y0) — m (Y, B, yo) — 7a—1(B. o),
iy Jt

where the iy are the homomorphisms induced by the inclusions i : (4, xo) C (X, xo)
and i : (B,y0) C (Y,y0) and the j; are the ones induced by the inclusions j :
(X, {xo0},x0) C (X,A,x0) and j : (Y, {yo},y0) C (¥, B, yo). Moreover, imiy =
ker jz, im jy = ker d and im 9 = ker iy. Namely, the following sequence is exact:

) iy Ja )
I nn(A,)C()) - nn(Xs-xO) I ﬂn(X,A,)C()) -

i ) iy
a—1(4, Xo) mi1(A, x9) — mi(X, xo)

Tt 3 iy
—_— nl(X,A,xo) —_— ]T()(A,X()) —_— 7T()(X,X()).

This sequence is called the homotopy exact sequence of (X, A4, xo).
Let w : I - A be a path from x to x; and
a e C((I, 1", J"™), (X, A, x1)).

We now define ¢ somewhat differently from the case of pointed spaces, that is,
az(l) = 3.....2z(n = 1) — 3.22(n)) if | ]leo
(2= 2] [lo0) if 1|00

where 7/ = (2z(1) = 1,...,2z(n — 1) — 1,z(n)).

1
a®(z) = >
5,

IV 1A

Now, similar to the case of pointed spaces, we can define the isomorphism w :
(X, A, x1) = mw (X, A, x0) by w«[e] = [®]. Then, the following diagram
commutes:

iy J )
(4, x1) — (X, x1)) — (X, 4, x1) — m-1(4,x1)

ma (A4, x0) — (X, x0) —— (X, A, x0) T mu—1(4, yo).
i Jn
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Thus, if A is path-connected then m,(X, 4, x9) = m,(X, 4, x;) for any pair of
points xo, x; € A. In this case, it is acceptable to denote ), (X, A) without the base
point xg.

The proof of the following proposition is quite elementary:

Proposition 4.14.1. For pointed spaces (X1, x1), ..., (Xk, xx) andn € N,
T (X1 X oo X X, (X1, e vy Xk)) =2 (X0, x1) X o Xm0 (X, Xk )-
Proof. We have the following isomorphism
@ (Xy X X Xy (X1, 0oy k) = 70 (X, 2x0) X e X0, (X, X )3
plo] = ((prpslel. ... (pr)sle]) = (prial. ... [prea]).

Indeed, for each set of maps «; : (I",0I") — (X;,x;),i = 1,...,k, we have
the map

a: I, = (X; X+ x X, (X1,...,Xk))
defined by a(x) = (a1(x), ..., (x)). Then, ¢([@]) = (1], ..., [ox]). Hence, ¢

is an epimorphism. If every «;y, ..., ax are null-homotopic, then the map « is null-
homotopic, which means that ¢ is a monomorphism. O
For additive groups Gy, ..., G, the direct product G| X --- x Gy is regarded as

the direct sum G; @ - -+ @ Gy. Thus, when n > 2 in Theorem 4.14.1,
T (X X oo X X, (X1, 000, X)) = 7, (X1, x1) @D -+ - D 7w, (X, Xk)-

Proposition 4.14.2. For every pair of pointed spaces (X, x¢) and (Y, yy), there
exists a natural bijection

¢ : C((X x 1, Hy), (Y. y0)) = C((X, x0), (£2(Y, y0). ).

where Hy = (X x o) U ({xo} x I). Here, ¢ is natural in the following sense: given
pointed maps [ : (X', x()) = (X,x0) and g : (Y,y0) — (Y, ¥(), the diagrams
below are commutative:

C((X" x L, Hyr), (Y. yo)) — C((X", xp). (2(Y. yo). €,))

(f xid)* T T f*
¢

C((X XI? HX)v(Yv J’O)) C((X7 xO)?(Q(Y7 YO)7Cyo))

&x* \L \L ()

C((X x 1, HX)s (Y/’ y(/))) 7 C((Xs )C()), (Q(Y/’ y(/))7 cyé))-
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Proof. We define the functions

¢ : C((X x L, Hx), (Y. y0)) 3 k = ¢(k) € C((X, x0), (£2(Y, yo), €y,)),
W : C((Xv X()), (‘Q(Yv J’O)7Cyo)) >k~ 1//(k) € C((X X L HX)v (Yv J’O))
by ¢(k)(x)(s) = k(x,s) and ¥ (k)(x,s) = k(x)(s), respectively. It is easy to see
that ¢ = id and @y = id. Then, ¢ is a bijection with ¢! = .
To show the commutativity of the diagram, let k € C((X x I, Hx), (Y, ¥o)). For
eachx’ € X' ands €1,
o((f xid)* (k) (x")(s) = @(k(f xid)(x")(s) = k(f xid)(x'.5)
=k(f(x").5) = o(k)(f(x)(s) = f*(@(k)(x")(s).
Hence, ¢((f xid)*(k)) = f*(¢(k)). On the other hand, foreach x € X and s € I,

9(g+(k)(x)(s) = @(gk)(xX)(s) = gk(x.5) = g(p(k)(x)(s))
= g+ (@(k) (X)) (s) = (g)x(@(k))(x)(5).

Hence, ¢(g«(k)) = (gx)x(¢(k)). o

In the above situation, given a homotopy /2 : X xIxI — Y such that h,(Hy) =
{yo} for every ¢t € I, we have the homotopy ¢(h) : X x I — (Y, y¢) defined by

o(h); = o(hy), that is, p(h)(x,t)(s) = @(h;)(x)(s) = h(x,s) = h(x,s,t). Then,
¢ induces the function

@ : [(X x1, Hx). (Y. yo)] = [(X. x0). ($2(Y., yo). cy,)].

Given a homotopy & : X x I — £2(Y, yo) such that /,;(x0) = c,, for every
t € 1, we have the homotopy ¥ (k) : X x I x I — Y defined by ¥ (h), = ¥(h;),
that is, ¥ (h)(x,s,t) = ¥ (h)(x,s) = h(x)(s) = h(x,1)(s). Then, ¥ induces the
function
v [(Xv X()), (Q(Yv J’O), C}’())] g [(X X Iv HX)? (Yv yO)]

Furthermore, given a homotopy 2 : X x I xI — Y such that h,(Hx) = {yo} for
every t € I, w(¢(h)); = ¥(¢(h,)) = h,. Similarly, given a homotopy /2 : X xI —
£2(Y, yo) such that h; (xo) = ¢y, forevery t € L o(¥'(h)); = (¥ (h;)) = h;. Then,
it follows that @ is a bijection with @' = W¥. Thus, we have the following:

Proposition 4.14.3. For every two pointed spaces (X, xo) and (Y, yo), there exists
a natural bijection

b . [(X X Iv HX)v (Yv J’O)] - [(X7 X()), (‘Q(Yv J’O)’Cyo)],

where Hy = (X x dI) U ({xo} x I). Here, @ is natural in a similar sense to
Proposition 4.14.2. O
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In the above situation, replace (X, xo) and (Y, yo) with (I", 0I") and (X, xo),
respectively. Since (X x I, Hy) corresponds to (I"t!, 91" 1), we have a bijection

@ [ A1), (X, x0)] = [(X", 31"), (82(X, x0), €x)].

that is, @ : 7, 4+1(X, x0) = 7, (£2(X, X0), cx,)- As can be easily seen, p(a * &) =
@) * (o) and (@) = @(a)< for each a,a’ € C((I"T!, "), (X, xo)).
Hence, @ : m,41(X, X0) = m,(§2(X, x0), cx,) is an isomorphism. Thus, we have
the following theorem:

Theorem 4.14.4. For every pointed space (X, xo) andn € N,
JTn(.Q(X, xo),ch) = ﬂn+1(X, X()). O

Note. Recall that the loop space £2(X, xo) has the operations « * 8 and ¢, which
induce the operations of the fundamental group 7 (X, x¢). Using these operations of
£2(X, x0), we can define the operations « %  and " on C((T", oI"), (£2(X, X¢), Cx,))
as follows:

(@%B)(z) = a(z) * B(z) and a'(z) = a(z)" foreachz e I".

The operations of the homotopy group m,(£2(X, xo), cx,) are also induced by
the above operations. In fact, we can define the operations « x 8 and o« on
C(I"+1, 91"+, (X, x0)) as follows:

oc(tl,...,t,,,Zth) if()ftn_Hfl/Z,

axf(t, ..., thay1) =
! Bty .ty 2tapr — 1) if1/2 <ty < 1,
Oé<_(11, et =a(ty, .ty L —t41),

which induce the operations of the homotopy group 7, (§2 (X, Xo), Cx,), 1.6, 0 ¥ B ~
o * B and @ ~ o. Let ¥ (= ¢~') be the natural bijection in the proof of
Proposition 4.14.2. For each «, B € C((I", aI"), (£2(X, X0), Cx,))>

V(% p) = v() x ¥ (B) ~ ¥(a) * ¥(B) = ¥(a* f) and
V(@) = Y@ = Y@ =y@),

hencea %8 ~ax fanda” ~ a*.
Inductively, we can define £2" (X, x¢) = £2(£2"(X, xo), 0). Then, we have

T (X, X0) = 70(2"(X, x0). 0) = 71 (2" (X, x0), 0).
Lete; = (1,0,...,0) € R**! Foreachn € N,
T /or", 01" /or") ~ (S”,e;) and
@+ Aty § Y ~ (BT S ey).
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Then, C((I", 81"), (X, xo)) and C((I", 81", J*~1), (X, A, X¢)) can be identified with
C((S",e;), (X, x0)) and C((B",S""!,e)), (X, A, xq)), respectively. In particular,
C((S!,e1), (X, x0)) can be regarded as the loop space £2(X, xo). Thus, we can make
the following identifications:

7u (X, x0) = [(S", 1), (X, x0)] and
7Tn+1(Xv A7 X()) = [(Bn+l7 sn’ el)? (Xv Av X())].

In this case, the boundary operator d : m,4+1(X, 4, x9) — 7,(A, xo) is defined by
O] = [«|S"71].

When X (resp. A C X) is path-connected, as observed before, it is ac-
ceptable to denote m,(X) (resp. m,(X, A)) without a base point. However, this
does not mean that 7, (X) (resp. 7, (X, A)) can be identified with [S", X] (resp.
[(B",S"71), (X, A)]). It is said that X is simply connected if it is path-connected
and (X, x9) = {0} for any/some x, € X. The latter condition is equivalent to
the condition that every map « : S! — X is null-homotopic or  extends over B2,
When X (resp. A) is simply connected, 7, (X) (resp. 7, (X, A)) can be identified
with [S”, X] (resp. [(B".S"™"), (X, A)]). In fact, we have the following proposition:

Proposition 4.14.5. (1) If X is simply connected, for any xo € X andn > 2, the
inclusion

i:C((8",e),(X,x0) C C(S", X)

induces a bijection from (X, x) onto [S", X].
(2) If A C X is simply connected, for any xo € A and n > 2, the inclusion

i :C((B",8"" 1), (X, 4,x0)) C C((B",S"7"), (X, A))
induces a bijection from m,(X, A, xo) onto [(B",8" 1), (X, A)].

Proof. (1): For each @« € C(S", X), take a path v : I — X from «(e;) to xo.
Applying the Homotopy Extension Theorem 4.3.3, we can obtain a homotopy / :
S" x I — X such that iy = « and h(e;,?) = w(t) for each ¢t € 1. Thus, «
is homotopic to the map h; € C((S",e;), (X, Xo)). This means that i induces the
surjection.

Leta, B € C((S",e1), (X, x0)) and assume that there is a homotopy 4 : §" xI —
X from o to B. Since X is simply connected, we have a map k : I> — X such that
k(t,0) = h(e;,t) and k(0,¢) = k(1,¢) = k(¢,1) = x¢ foreach ¢ € 1. Applying the
Homotopy Extension Theorem 4.3.3, we have a homotopy ¢ : S” x I x I — X that
is an extension of the homotopy

¢ (8" x{0,1hU (e} xD) xI - X

defined by ¢;(x,0) = h(x,0) = a(x) and ¢,;(x,1) = h(x,1) = B(x) for each
x € §",and ¢, (e, s) = k(s,t) foreach s € I. Then, ¢; : S" xI — X is a homotopy
from o to B with ¢@;(e;,t) = x¢ for every t € L. This means that i induces the
injection.
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(2): Foreach o € C((B",S"!), (X, A)), take apath @ : I — A from a(e;) to x.
Applying the Homotopy Extension Theorem 4.3.3 twice, we can obtain a homotopy
h:B" xI — X suchthat hy = o, h(S"~! xI) C A and h(e,,t) = w(t) for each
t € L Thus, @ is homotopic to the map h; € C((B",S"!,e)), (X, A, xp)). This
means that i induces the surjection.

Let a, B € C((B",S"!,e1), (X, 4, x0)) and assume that there is a homotopy
h :B"xI — X froma to 8 such that 2(S"~! xI) C A. Since A is simply connected,
we have a map k : I> — A such that k(¢,0) = h(e;,?) and k(0,1) = k(1,7) =
k(t,1) = xo for each t € I. Applying the Homotopy Extension Theorem 4.3.3
twice, we have a homotopy @ : B” x I x I — X such that 3(S"~! x IxI) C 4 and
¢ is an extension of the homotopy

e:(B"x{0,1HU{e} xD)xI—> X

defined by ¢;(x,0) = h(x,0) = a(x) and ¢,;(x,1) = h(x,1) = B(x) for each
x € B", and ¢,(e;,s) = k(s,t) foreach s € 1. Then, ¢; : B" xI - X is a
homotopy from « to § with ¢;(e;,t) = xo for every ¢t € L. This means that i
induces the injection. O

If X is not simply connected, for two maps o, &’ : §" — X with a(e;) = o/ (ey),
a >~ o does not imply o ~ o' rel. e;. However, we have the following proposition:

Proposition 4.14.6. Fora map « : S" — X, the following are equivalent:

(a) « extends over B"!;

(b) « is null-homotopic, i.e., [@] = 0 € [S", X];

(©) o >~ cye) Tel. ey, ie, [0] =0 € m, (X, a(er)).

Proof. The implication (¢) = (b) is obvious. For (b) = (a),leth : S" x I — X be

a homotopy from « to a constant map. Then, a extends to the map 8 : B"! — X
defined by

A7 x, 1= x|y ifx #0,

POO=10 e ifx = 0.

For (a) = (c), using an extension 8 : B"*! — X of «, we can define the homotopy
h:S"xI— X byh(x,t) = B((1—1t)x + te;), whichrealizesa >~ Orel.e;. O

Even if A C X is not simply connected, we have the following:

Proposition 4.14.7. For a map « : (B"T1,S") — (X, A), the following are
equivalent:

(a) Thereis amap B : B""' — A such that B|S" = «|S" and o ~ B rel. S";

(b) @ ~ 0 by a homotopy h : B""' x I — X such that h(S" x I) C A, i.e.,
[e] = 0 € [(B"F.S"). (X, A));

(c) a ~ 0 by a homotopy h : B"™' x 1 — X such that h(S" xI) C A and
h({e1} xI) = {a(e))}, i.e, [0] =0 € m11(X, A, x(e))).
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Proof. The implications (¢) = (b) = (a) are trivial. Given the homotopy in
condition (a), we can connect it with a similar homotopy to that in the proof of
(a) = (c) in Proposition 4.14.6 to obtain the homotopy in (c). ]

Concerning the homomorphism induced by a map, we can state that:
Proposition 4.14.8. Foramap f : X — Y, the following are equivalent:

@ fi:m(X,x0) = . (Y, f(x0)) is a monomorphism for every xo € X;
(b) Foreachmap o : 8" — X, fa >~ O rel. e) implies a >~ 0 rel. e;;

(c) Anymap « : 8" — X is null-homotopic if fa >~ 0;

(d) Anymap a : S" — X extends over B"T1 if fa extends over B"T!.

Proof. Identifying (I" /01", 01" /dI") = (S",e;), we can easily obtain the equiva-
lence (a) < (b). By Proposition 4.14.6, conditions (b), (c), and (d) are equivalent to
each other. O

The following result can be obtained in the same way as (a) < (b) in
Proposition 4.14.8:

Proposition 4.14.9. Foramap f : X — Y, the following are equivalent:

@ fi:m (X, x0) = 7w, (Y, f(x0)) is an epimorphism for every xo € X ;
(b) Foreachmap B : S" — Y, there is amap a : S" — X such that fo(e;) =
B(e)) and fo ~ B rel. ey. O

The following proposition can be obtained by the homotopy exact sequence:

Proposition 4.14.10. For a pair (X, A) of spaces, leti : A C X be the inclusion
map. For eachn € N and xo € A, the following hold:

(1) iy : my (A, x0) = 7 (X, X0) is a monomorphism if w,41(X, A, x0) = {0},

(2) iy : (A, x0) = mn (X, x0) is an epimorphism if w, (X, A, xo) = {0},

(3) iy @ mu(A, x0) = ma(X, x0) is an isomorphism if w,1+1(X, A, x9) = {0} and
7u (X, A, x0) = {0};

4) ma1(X, A, x0) = {0} if iy : mu(A, x0) = 7, (X, Xo) is a monomorphism and
iy 2 Wy41(A, x0) = m41(X, Xo) is an epimorphism.

Direct Proof. First of all, note that (3) is a combination of (1) and (2).

(1): Leta : 8" — A be a map such that @ >~ 0 in X. According to Proposition 4.14.6, «
extends to amap B : B"T! — X. Then, [8] € m,+1(X, A) = {0}, so there is a homotopy
h :B"F!' x T — X such that h(S" xI) C A4, hy = B, and h, is a constant map. Hence,
o 2 0 in A by the restriction /|S" x L Thus, iy is a monomorphism.

(2): Each map « : (I", 0I") — (X, x¢) can be regarded as

a € C((I", 3", J'™1), (X, A, x0)).

and then [] € m, (X, A4, xo) = {0}. Hence, there is a homotopy /4 : I" X I — X such that
hOT" xT) C A, h(J" ' xI) = {x0}, ho = a, and h;(I") = {xo}. We define o’ : I" — A
as follows:

o' (z2) = h((z(),..., z(n —1),0),z(n)) foreachz € I".
Then, o/ (1") = {xo}, that is, o’ : (I", dI") — (A, xo). It is easy to see that &’ >~ « rel.
dI" in X . Therefore, iy is an epimorphism.
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4): Letar € C((I" T, 91! J"), (X, A, x0)). Note that o itself is a homotopy realizing
o|I" > Orel. 91" in X. Since iy : 7, (A4, x0) — 7, (X, Xo) is a monomorphism, it follows
that a|I" =~ 0 rel. dI" in A. By the Homotopy Extension Theorem 4.3.3, we have a
homotopy # : I't! x I — X such that iy = o, h(I" X I) C A, and h(J" X I) = {x,}.
Then, 71, € C((I"T1, 1" +), (X, xo)). Since iy : m,+1(4,%0) = mu1(X, X0) is an
epimorphism, we have o/ € C((I"+!,dI"t"), (4, x)) such that o’ =~ h; rel. 31"+ in
X. Now, we define a homotopy & : I"T! x T — X as follows:

a’ (z(1), ..., zn),zn+ 1) +1) ifzn+1)+1 <1,

X0 otherwise.

k(z,t) =

Then, ko = o/, k1 = ¢y, kK" X I) = o/ (I"F!) C A4, and k(J" x I) = {xo}. Thus, we
have [o] = [i1] = [¢'] =0 € 7, 11(X, 4, xo). o

Now, in the framework of the homotopy groups, we will give a characterization
of n-equivalences. The condition (77); can be divided into two conditions as follows:

Lemma 4.14.11. Leti € N. Foramap f : X — Y, condition (7); is equivalent
to the combination of the following two conditions:

(720 Syt mim1(X, x0) = w1 (Y, f(x0)) is a monomorphism for every xo € X;

(ﬂepl) Ji i mi (X, x0) = m (Y, f(x0)) is an epimorphism for every xo € X.

Proof. ()i = (nm°“°)+(nep) The casei = 1is Proposition4.13.2. Wheni > 1,
since (r); implies (d) of Proposition 4.14.8, we have (7/29°).

To see (n,-p), let xo € X and B : S — Y be a map with B(e;) = f(xo).
Identifying (B’ /0B', 0B/ /0B’) = (S',e;), let ¢ : (B',S"™!) — (S',e|) be the
quotient map. We can apply (7); to obtain a map @ : B — X such that @(S'™!) =
{xo} and fa& >~ Bgrel. ' in Y. Since @(S'~!) = {xo} is a singleton, the map &
induces a map ,3 §’ — X such that @ = ,Bq Then, B(e;) = xo and f,B B rel.
e in ¥ because ffg = fa ~ Bqrel. S

(o) 4 (2P) = (m);: Letar @ S~ v — X and B : B' — Y be maps such
that f a = B|S'"!. Due to Proposition 4.14.8, (™) implies that o extends to a
mapa’ : B’ — X.Lety : S' — Y be the map defined by y|S’, = fo'pry |S and
yIS_ = Bprg:|S, where

S, =S N(R x[0,00)) and S =S N (R x (—o0,0]).

Replacing e, with ¢, = (0,...,0,1) € Ri*!, we can apply (7"") to obtain a
map y’ : S' — X such that y’(e;+;) = &’(0) and fy’ ~ y rel. ;4. Similarly, let
q : B — S' be the quotient map with ¢(S'~!) = {e; 1}, where we can assume that
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priq(x) = 2x if [[x[| < 1/2and prgiq(x) = (2 = 2[x[Dllx[7 x if [lx]| > 1/2.
Then, we can define amap @ : B’ — X as follows:

v'q(2x) if | x[l < 1/2,

&(x) = { l -1 :
& (llxll = DllxlI="x) i flx]f = 1/2.

Since fy’ =~ y rel. 11, it follows that f& ~ B’ rel. S'~!, where g’ : B’ — Y is
defined as follows:

By = {yq(zx) if x] < 1/2.
S (@l = Dllxl~x) i fxl) = 1/2

Observe that
vq(2x) = Pprriq(2x) = B(4x) if |x|| = 1/4, and
yq(2x) = fa'prpiq(2x) = fa' (2 —4llx|llxlI7"x) if 1/4 < |[x]| < 1/2.
Now, it is easy to see that 8/ ~ B” rel. !, where f” : B’ — Y is defined by
B(4x) if [|x[| < 1/4,
S (X171 x) = fadllx|7'x) if [lx]| > 1/4.

Then, it follows that 8” ~ B rel. S~!. Thus, we have fa ~ B rel. S~ O

B (x) = {

The above Lemma 4.14.11 yields the following characterization of
n-equivalences:

Theorem 4.14.12. Letn € N U {oo}. Amap f : X — Y is an n-equivalence if
and only if [ induces the bijection f; : wo(X) — mo(Y) and, for every xo € X, f;
i (X, x0) = m; (Y, f(x0)) is an isomorphism for every i < n and f; : m,(X, Xo) —
7, (Y, f(x0)) is an epimorphism (if n < 00).>! O

Since every homotopy equivalence f : X — Y induces the isomorphisms f; :
7, (X, x0) = 7, (Y, f(x0)), n € N, xg € X, it is a weak homotopy equivalence by
Theorem 4.14.12. Thus, Proposition 4.13.1 is a corollary of Theorem 4.14.12.

In the case that f is the inclusion, by combining Theorem 4.14.12 and Proposi-
tion 4.14.10, we have the following characterization:

Corollary 4.14.13. For each n € N, the inclusion X C Y is an n-equivalence

if and only if each path-component of Y contains exactly one path-component of X,
7 (Y, X, x0) = {0} for eachi < n and xo € X. O

21 This is the definition of an n-equivalence in Homotopy Theory. However, the literature is not
consistent on the use of the term “n-equivalence” (some texts require that f; : m,(X,x0) —>
7, (Y, f(xp)) is an isomorphism).
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For a 1-equivalence f : X — Y, conditions (7°™) and (7} pi) can be modified
to the conditions without base points in the next two propositions.

Proposition 4.14.14. For a 1-equivalence f : X — Y, condition (7[""°) is
equivalent to the following condition:

f induces the injection from [S', X] to [S', Y], that is, any two maps o, o'
S" — X are homotopic if fo ~ fa'inY.

(n;ﬂOHO)/

Proof. When o is a constant map, (7/""°)" is equal to condition (c) of Proposi-

tion 4.14.8, so we have the implication (7"")" = (7/"").

(™M) = (7™"°)’: For maps o, &’ : S — X, assume that fo ~ fo'inY.
Leth : S x I — Y be a homotopy from fa' to fa. Since f is a 1-equivalence,
there is a path y : I — X from o’(e;) to a(e;) such that fy ~ hj rel. dI, where
j : I — {e;} xI C S x Iis the natural injection. We have amap r : S — §'
such that 7 ~ id rel. ¢; and r (S’ N pr;' (R4)) = {e;}, where pr; : R'"! — Ris the
projection onto the first factor. We define maps o” : ' — X and B : ' — Y as
follows:

y gavu) if x(1) <0,
a’(x) =
p(x()) ife > 1,

fa'r(x) ifx(1) <0,

and f(x) = ghj(x(l)) ifr> 1.

Then, a” ~ a'r ~ o and a”(e;) = «(e;). Since fy ~ hj rel. d1, it follows that
fa” ~ B rel. e;. On the other hand, we have amap ¢ : S’ x I — 8§’ x I such that
@ ~idrel. 8" x {1}, p({e;} x ) = {(e1. 1)},

J(x(1) if x(1) <0,

,0) =
#(x.0) {(p(x,O) =r(x) ifx(1)=<0.

Then, h¢ is a homotopy from 8 to fo with hp({e;} x I) = {B(e;)}, which means
that B ~ fa rel. e;. Hence, fa” >~ fa rel. e;. It follows from (/") that " ~ &
rel. e;. Since o” ~ o/, we have ~ o’ in X. O

Proposition 4.14.15. For a l-equivalence f : X — Y, condition (x") is
equivalent to the following:

€]

(7; pi)’ f induces the surjection from [S', X] to [S', Y], that is, for each map B :

S' - Y, thereisamap a : S — X such that fa ~ B inY.
Proof. (7)) = (x™): Let B : S — Y be a map. According to Proposi-
tion 4.13.2(1), there exists a path y : I — Y with xo € X such that y(0) = a(e;)
and y(1) = f(xo). Using the map r : ' — S’ from the proof of (7°") =
(™)’ in Proposition 4.14.14, we define amap ' : §' — Y by

prx) ifx(1) <0,

PO=10ay itxm =o.

Then, B’ ~ Br ~ B and g'(e;) = f(x0). By ("), we haveamap  : §' — X
such that fa ~ B’ rel. e, hence fo ~ B.
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(") = (7;™): Letxo € X and B : S’ — Y be a map with S(e;) = f(xo). By
(7""), wehaveamapa’ : S — X suchthat fo/ >~ BinY.Leth:S xI — Y bea
homotopy from fo’ to 8. Since f is a 1-equivalence, we have apath y : I — X with
y(0) = a'(e;), y(1) = xo, and fy ~ hj rel. dI, where j : I — {e;} xI C §' x I
is the natural injection. Using the above map r : §' — S', we now define maps
a:S — Xand B’ :S" — Y as follows:

a'r(x) ifx(l) <0, , fa'r(x) ifx(1) <0,
a(x) = ) and B'(x) = ]
y(x(1)) ifx(1) =0, hj(x(1)) if x(1) > 0.
Since fy =~ hj rel. 0L, it follows that fa ~ B’ rel. e;. Moreover, consider the
same map ¢ : S x I — S’ x I used in the proof of (7/™™) = (7x/™"°)’ of
Proposition 4.14.14. Then, h¢ is a homotopy from 8’ to 8 with hp({e;} x I) =
{B(e1)}, which means that 8’ ~ f rel. e;. Thus, we have fo >~ S rel. e;. O

Theorem 4.14.12 can be reformulated using Propositions 4.14.14 and 4.14.15.In
particular, we have the following corollary:

Corollary 4.14.16. Amap f : X — Y is a weak homotopy equivalence if and only
if f is a l-equivalence and f induces the bijection between [S", X| and [S", Y] for
everyn > 1. O

Notes for Chap. 4

There are no good textbooks for studying non-locally finite simplicial complexes or infinite-
dimensional simplicial complexes. For the study of Piecewise Linear (PL) Topology, we recom-
mend

* C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer Study
Edition, (Springer-Verlag, Berlin, 1982)

The following classical lecture notes are still excellent resources for PL Topology:

e J.EP. Hudson, Piecewise Linear Topology (W.A. Benjamin, Inc., New York, 1969)
» J. Stallings, Lectures on Polyhedral Topology (Tata Institute, Bombay, 1967)

e E.C. Zeeman, Seminar on Combinatorial Topology (Institute des Hautes Etude Sci., Paris,
1963)

Stellar subdivisions are discussed in Volume I of

e L.C. Glaser, Geometrical Combinatorial Topology, Vol.I, Vol.II (Van Nostrand Reinhold Co.,
New York, 1970, 1972)

There are many good textbooks on homotopy groups. Here we list two of them, a classical one
and a recent one:

e S.-T. Hu, Homotopy Theory (Academic Press, Inc., New York, 1959)
* A. Hatcher, Algebraic Topology (Cambridge Univ. Press, Cambridge, 2002)
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The example of Proposition 4.3.2 was given by Dowker [4]. The German terminology
“Hauptvermutung” was introduced by Kneser [10], but it was claimed by Poincaré [17, 18] and
formulated in 1908 as a conjecture by Steinitz [23] and Tietze [24]. In 1961, Hauptvermutung for
polyhedra was disproved by Milnor [14]. In 1969, Kirby and Siebenmann [9] demonstrated that
Hauptvermutung does not hold for n-manifolds for n > 5. Nevertheless, it was discovered in [21]
that for any two countable simplicial complexes K and L, |K| =~ |L| implies K X; F(N) =
L X, F(N), where F(N) is the countable infinite full complex. The completions of the metrics px
and p° on | K| are discussed in [20]. The proof of Proposition 4.6.5 presented in this book is given
by A. Yamashita.

Theorem 4.7.11 was established by Whitehead [25]. A characterization of admissible subdivi-
sions in Lemma 4.8.1 can be found in [7] and the one in Theorem 4.8.4 in [15]. Theorem 4.8.8
was established by Henderson [7]. However, his proof is valid only for locally finite-dimensional
complexes, and the complete proof presented here was given in [22].

The nerves of open covers were introduced by Alexandroff [1, 2] and canonical maps by
Kuratowski [11]. Theorems 4.9.6 and 4.9.9 were given by Dowker [3, 4]. In Theorem 4.9.6, it
can be asserted that id : |K| — | K|, is a fine homotopy equivalence, which will be defined in
Sect. 6.7. This can be obtained by combining Theorems 4.9.6 and 4.8.8. For an alternative proof,
refer to [19].

The compact case of Theorem 4.10.10 was established by Freudenthal [6]. In fact, he proved
that every compactum X is homeomorphic to the inverse limit of an inverse sequence of compact
polyhedra of dim < dim X (cf. Corollary 5.2.6). In [8, 7.2], Theorem 4.10.10 was proved under the
assumption that every open cover of X has an open refinement whose nerve is finite-dimensional.
In fact, this is proved in a more general setting (for a complete uniform space). It follows from
[16, Theorem 3.2] that every paracompact space is homeomorphic to the inverse limit of an inverse
system of polyhedra (with the Whitehead topology), but this does not imply that every metrizable
space is homeomorphic to the inverse limit of an inverse sequence of polyhedra with the metric
topology.

The countable case of Theorem 4.12.3 was proved in the proof of [26, Theorem 13]. The
simplicial mapping cylinder defined in Sect.4.12 is different from the mapping cylinder of a
simplicial map in [25]. Note that our collapsing is simplicial. Theorem 4.12.1 was first established
by Whitehead [27] in the separable case and extended by Milnor [13] to the general case. The
mapping cylinder technique used in the proof of Theorem 4.12.1 was essentially invented by

Mather [12] (cf. [5]).
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Chapter 5
Dimensions of Spaces

For an open cover U of a space X, ord/ = sup{cardU[x] | x € X} is called
the order of /. Note that ordl/ = dim N(U/) + 1, where N (/) is the nerve of U.
The (covering) dimension of X is defined as follows: dim X < n if each finite
open cover of X has a finite open refinement ¢/ with ordl/ < n 4 1. and then,
dimX =nifdimX <nanddimX £ n. By dimX = —1, we mean that X = ¢.
We say that X is n-dimensional if dim X = n and that X is finite-dimensional
(f.d.) (dimX < oo) if dimX < n for some n € w. Otherwise, X is said to be
infinite-dimensional (i.d.) (dim X = 00). The dimension is a topological invariant
(ie.,dimX =dimY if X = Y).

This chapter is devoted to lectures on Dimension Theory. Fundamental theorems
are proved and some examples of infinite-dimensional spaces are given. In this
context, we discuss the Brouwer Fixed Point Theorem and the characterization of
the Cantor set. We also construct finite-dimensional universal spaces such as the
Nobeling spaces and the Menger compacta.

We will use the results in Chaps.2 and 4. In particular, we will need the combinatorial
techniques treated in Chap.4. Also, the concept of the nerves of open covers is very
important in Dimension Theory.

5.1 The Brouwer Fixed Point Theorem

It is said that a space X has the fixed point property if any map f : X — X hasa
fixed point, i.e., f(x) = x for some x € X. In this section, we prove the following
Brouwer Fixed Point Theorem:

Theorem 5.1.1 (BROUWER FIXED POINT THEOREM). For everyn € N, the n-
cube I" has the fixed point property.

To prove this theorem, we need two lemmas. Let K be a simplicial complex
and K’ a simplicial subdivision of K. A simplicial map & : K’ — K is called a

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, 249
DOI 10.1007/978-4-431-54397-8_5, © Springer Japan 2013
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Sperner map if foreach v € K’ h(v) is a vertex of the carrier cx (v)© of vin K,
equivalently v € Ok (h(v)). In other words, / is a simplicial approximation of id|x|.
Indeed, for each x € |K’'| = |K]|, ck/(x) C ck(x). Since cx(v) < ck(x) for every
v € cx(x)©, it follows that 2(cg/(x)@) C cx(x)@, hence h(x) € h(ck/(x)) <
ck (x).

Lemma 5.1.2 (SPERNER). Let T be an n-simplex, and K' a subdivision of F(z),
where F(7) is the natural triangulation of . If h : K — F (<) is a Sperner map,
then the number of n-simplexes ©' € K’ such that h(t') = 7 is odd; hence, there
exists such an n-simplex v’ € K'.

Proof. We prove the lemma by induction with respect to n. The case n = 0 is
obvious. Assume the lemma has been established for any (n — 1)-simplex. Let o
be an (n — 1)-face of 7. Then, h(c) C o. The natural triangulation F (o) of ¢ is a
subcomplex of F(7). Let L’ be the subdivision of F (o) induced by K'. As is easily
observed, i|o : L’ — F(0) is also a Sperner map. Let a be the number of (n — 1)-
simplexes ¢’ € L’ such that i(c’) = o. Then, a is odd by the inductive assumption.
Let S be the set of all (n — 1)-simplexes 6’ € K’ such that h(0’) = o. For each
n-simplex " € K’, let b(z’) denote the number of faces ¢’ of 7’ that belong to S,
i.e., h(0’) = 0. Then, it follows that

2 if h(r) = o
b(x') =141 if h(r) =1;

0 otherwise.

Let ¢ be the number of n-simplexes t” € K’ such that 4(z’) = 7. Then,

Z b(t)) —c iseven.

I/GK/\K/(”_I)
On the other hand, a is equal to the number of (n — 1)-simplexes o’ of S such that

0’ C o.Foreacho’ € S, ¢’ is a common face of exactly two n-simplexes of K’ if
and only if 0/ ¢ o. Hence,

Z b(t)) —a iseven.

t’GK’\K’(”_l)
Therefore, a — ¢ is also even. Recall that a is odd. Thus, ¢ is also odd. O
Lemma 5.1.3. Lett = (vi,...,Vy+1) be an n-simplex and Fy, . .., F,,+ be closed

sets in T. If (vi(ty, .., Vigm)) C Fiqy U+~ U Fygny foreach 1 <i(1) <--- <i(m) <
n+1,then FiN---N F41 # 0.
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Proof. Assume that F1 N---N F,,1; = @. Then,
U={t\ Fi,....7t\ Fup1} € cov(z).

Let K’ be a subdivision of F(t) that refines U. For each v € K’ O choose a vertex
v; of the carrier of v in F(7) so that v € F;, and let h(v) = v;. Then, we have a
Sperner map i : K’ — F(7). By Lemma 5.1.2, there is a simplex t/ € K’ such
that h(t") = ¢. Write 7/ = (v{,...,v, ) so that h(v;) = v;. By the definition of 7,
vi € F; foreachi = 1,...,n + 1. Thus, 7’ is not contained in any t \ F;, which is
a contradiction. O

Proof of Theorem 5.1.1. 1Tt suffices to show that any map f : A" — A" has a fixed
point, where A" C R"*! is the standard n-simplex. Foreachi = 1,...,n + 1, let

F = {x € A" | pr;(f(x)) < pr; ()},

where pr; : R"*! — R is the projection onto the i-th factor. Then, F; is closed in

A", Moreover, each face 0 = (e;j(1),...,€jm)) < A" is contained in Fjj) U --- U
Fi(m), where {ej, ..., e,y } is the canonical orthonormal basis for R**1 In fact, if
X € o then

Zpri(j)(f(-x)) <1l= Zpri(j)(-x)v
j=1 j=1

which implies that pr; ;) (f (x)) <pr;;(x) forsome j = 1,...,m. By Lemma5.1.3,
we have a pointa € Fy N --- N F,4;. Since 0 < pr;(f(a)) < pr;(a) for each
i=1,...,n+1and

n+1 n+1

Y pr(f@)=1=> pria).

i=1 i=1

it follows that pr;(f(a)) = pr;(a) foreachi = 1,...,n + 1, which means that

fl@) =a. O

The following is the infinite-dimensional version of Theorem 5.1.1:
Corollary 5.1.4. The Hilbert cube IV has the fixed point property.

Proof. Foreachn € N, let p, : IY — TI" be the projection onto the first n factors
and i, : I" — IV the natural injection defined by

i(x)=(x(),...,x(n),0,0,...).

For eachmap f : IN — IV, consider the map f, = p, fi, : I" — I".
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By the Brouwer Fixed Point Theorem 5.1.1, f, has a fixed point. We define

K, = {x el” i pnf(x) = pn(x)},

which is closed in IN and K, D K, for each n € N. Moreover, K,, # 0. Indeed,
if y € I" is a fixed point of f,, then p, f(i,(¥)) = [, (¥) =y = p.(in(y)), i.e.,
in(y) € K,. By compactness, we have a € (),cy K». Since p, f(a) = pu(a) for
every n € N, we have f(a) = a. O

As another corollary of the Brouwer Fixed Point Theorem 5.1.1, we have the
following:

Corollary 5.1.5 (NO RETRACTION THEOREM). There does not exist any map
r:B" — S withr|S"! = id.!

Proof. Suppose that there is a map r : B" — S"~! with r|S"~! = id. We define
amap f : B" — B” by f(x) = —r(x). Then, f has no fixed points, which
contradicts the Brouwer Fixed Point Theorem 5.1.1. O

Remark 1. It should be noted that the Brouwer Fixed Point Theorem 5.1.1 can
be derived from the No Retraction Theorem 5.1.5. Indeed, if there is a map
f : B" — B" without fixed points, then we have a map r : B" — 8"~! such
that x € (f(x).r(x)) for each x € B", which implies that |S"~! = id. In fact,
such a map r can be defined as follows:

r(x) = (I +a()x —a(x) f(x),
where o(x) > 0 can be obtained by solving the equation
a(0)?[|x = f)I? 4 2a(x) (x = f(x),x) + x> =1 =0,

where (y,z) = Y i_, y(i)z(i) is the inner product (Fig.5.1). Therefore, the No
Retraction Theorem 5.1.5 implies that I" ~ B” has the fixed point property. Thus,
the Brouwer Fixed Point Theorem 5.1.1 and the No Retraction Theorem 5.1.5 are
equivalent.

'Such a map r is called a retraction, which will be discussed in Chap. 6.
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r(x)

Fig. 5.1 The construction of r

Note. In Algebraic Topology, the homotopy groups or the homology groups are used to
prove the No Retraction Theorem 5.1.5, and then the Brouwer Fixed Point Theorem 5.1.1
is proved as the above Remark 1.

Using the Tietze Extension Theorem 2.2.2, we have the following extension
theorem:

Theorem 5.1.6. Let A be a closed set in a normal space X andn € N.

(1) Everymap [ : A — B" extends over X.
(2) Everymap f : A — 8" extends over a neighborhood of A in X.

Proof. By the coordinate-wise application of the Tietze Extension Theorem 2.2.2,
eachmap f : A — I" can be extended over X, which implies (1) because B" ~ I".

To prove (2), let f : A — S"~! be a map. By (1), f extends to a map f :
X — B". Then, W = f~!(B" \ {0}) is an open neighborhood of 4 in X. Let
r : B"\ {0} — S"! be the radial projection, i.e., r(x) = x/||x|. Then, r f|W :
W — S"~!is an extension of f. O

Using the No Retraction Theorem 5.1.5 and Theorem 5.1.6, we can obtain the
following characterization of boundary points of a closed set X in Euclidean space
R™:

Theorem 5.1.7. Let X be a closed subset of Euclidean space R". For a point x €
X, x € bd X if and only if each neighborhood U of x in X contains a neighborhood
V of x in X such that every continuous map f : X \'V — S"! extends to a
continuous map f : X — S"7\.

Proof. To show the “only if” part, for each neighborhood U of x in X, choose ¢ > 0
so that B(x,g) N X C U.Then, V = B(x, &) N X is the desired neighborhood of x
in X. Indeed, every map f : X \ V — S"! can be extended toamap g : X — B"
by Theorem 5.1.6. Choose 0 < § < ¢ so that g(X \ B(x,8)) C B" \ {0}. Let r :
B” \ {0} — S"~! be the canonical radial retraction (i.e., 7(y) = ||¥||~'y). Because
x € bd X, we have z € B(x, %(5 —8)\ X.LetA = %(8 + 8) > 0. Observe that
B(x,8) C B(z,A) C B(x,¢). Wedefineamaph : X — X \ B(z,A) C X \ B(x,9)
by 7| X \ B(z, A) = id and
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A
h(y) =z+ m(y —z) fory € X NB(z, A).

Then, rgh : X — S"~ ! is a continuous extension of f.
To prove the “if” part, assume that x € intX. Then, E(x, 8) C X for some
8 > 0. By the condition, B(x, §) contains a neighborhood V' of x such that every
map f: X\ V — S" lextendstoamap f : X — 8! It is easy to construct a
retraction
r:R"\ {x} - bdB(x,8) ~ 8" L.

Then, 7| X \ V extends to a retraction 7 : X — bdB(x,§). Since B(x,8) C X,
bd B(x, §) is a retract of E(x, 8), which contradicts the No Retraction Theorem 5.1.5
because (B(x, 8),bd B(x,§)) ~ (B",S8"~"). Thus, we have x € bd X. O

As a corollary of Theorem 5.1.7, we have the so-called INVARIANCE OF
DOMAIN:

Corollary 5.1.8 (INVARIANCE OF DOMAIN). For each X,Y C R", X ~ Y
impliesint X ~ intY.

Proof. Let h : X — Y be a homeomorphism. For each x € bd X and each
neighborhood U of A(x) in Y, h~'(U) is a neighborhood of x in X that contains
a neighborhood V' of x such that every map f : X \ V — S"~1 extends to a map
f: X — S""!. Then, h(V) is a neighborhood of /(x) in Y such that h(V) C U,
and every continuous map g : ¥ \ A(V) — S"! extends to a continuous map
g:Y — St Indeed, gh : X \ V — S§"7! extends to a continuous map
f:X — S Then, fh~' : Y — 8" is a continuous extension of g. O

5.2 Characterizations of Dimension

Recall that we define dim X < n if each finite open cover of X has a finite open
refinement I/ with ordi/ < n + 1. The following lemma shows that the refinement
U in this definition need not be finite.

Lemma 5.2.1. Let U be an open cover of a space X and V an open refinement
of U. Then, U has an open refinement W = {Wy | U € U} such that Wy C U
for each U € U and card W[x] < card V[x] for each x € X, which implies that
ord W < ordV and if U is (locally) finite (or o-discrete) then so is VV.

Proof. Let ¢ : V — U be a function such that V' C ¢ (V) for each V' € V. For each
U € U, define

Wy =Jo ' W) ={J{VeV]e)=U}.

Then, W = {Wy | U € U} is the desired refinement of U. O
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The following is a particular case of the Open Cover Shrinking Lemma 2.7.1,
which is easily proved directly.

Lemma 5.2.2. Each finite open cover {U,...,U,} of a normal space X has an
open refinement {Vy, ..., V,} such that c1V; C U; foreachi = 1,...,n.

Proof. Using the normality of X, V; can be inductively chosen so that
cddVicU; and yU---UV,UU; 1 U---UU, =X. O

We now prove the following characterizations of dimension:

Theorem 5.2.3. Forn € w and a normal space X, the following are equivalent:

(a) dmX <n;

(b) Every open cover {Uy,...,U,+2} of X has an open refinement V) with ordV <
n+1;

(c) For each open cover {Uy, ..., U,12} of X, there exists an open cover {Vi, ...,
Vaiga} of X such that Vi N --- N Vyyp = @ and clV; C U; for each
i=1,....,n+2;

(d) Forevery open cover {Uy,...,U,+2} of X, there exists a closed cover {Ay, .. .,
Ayi2} of X such that AyN---N A, p=0and A; C U; foreachi=1,...,n+2;

(e) Foreveryk > n, eachmap f : A — S¥ of any closed set A in X extends over
X;

(f) Eachmap [ : A — S" of any closed set A in X extends over X.

Proof. Consider the following diagram of implications:

triv. (5.2.1)+(5.2.2)
@ ) ——— ©
triv.
I I\ " Vs
(&) <= (d)

The implications (a) = (b) and (c) = (b) are obvious. By Lemmas 5.2.1 and 5.2.2,
we have (b) = (c), hence (b) < (c). The implication (c) = (d) follows from
Lemma 5.2.2 (or, (d) can be obtained by twice using (c)). Lastly, we prove the
implications (d) = (b) = (f) = (e) = (a).

(d) = (b): In condition (d), note that

{X\Al,...,X\An+2} S COV(X).

By Lemma5.2.2, we have a closed cover { By, ..., B,42} of X suchthat B; C X\ A4;
foreachi = 1,...,n + 2. Observe

(X\B)N--N(X\ Byy2) =X\ (B1U---UBy45) = 0.
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Foreachi =1,...,n+2,letV; =U;\ B; C U;.Since A; CU;N(X\ B;) =V,
we have V = {V1,..., Vy42} € cov(X). Moreover, V; N --- N V,1» = @, which
meansord)Y <n + 1.

(b) = (f): Let A”*! be the standard (n+1)-simplex and K = F(dA"T!) (i.e., the
simplicial complex consisting of all proper faces of A”*1). Then, | K|=0A" ! ~ §".
To extend a given map f : A — S" over X, we consider S" = |K|. By
Theorem 5.1.6(2), f : A — |K| is extended to a map f : clW — |K|, where
W is an open neighborhood of 4 in X. Note that card K© = n + 2. By (b), X has
a finite open cover V such thatord )V <n 4 1 and

V< {0k U X \cIW) |ve KD}
We have a function ¢ : V — K@ such that
V C fN(Ok(e(V) U(X \clW) foreach V €V,

which defines a simplicial map ¢ : N(V) — K because every n + 1 many
vertices span a simplex of K and each simplex of N())) has at most n 4+ 1 many
vertices. Since V is finite, there is a canonical map g : X — |[N(V)| for N(V) by
Theorem 4.9.4. Foreachx € W, f (x) and g g(x) are contained in the same simplex
of K. In fact, let t € K be the carrier of f(x), i.e., f (x) € rintt. Then, for each
V e V[x], ~

xevnwc T (0ke)),

hence f(x) € Ox(p(V)). Thus, we have f(x) € (Nyepp Ok (@(V)), which
implies that (V) € t© for each V € V[x], i.e., (¢(V[x])) < t. On the other
hand, g(x) € (V[x]), which implies

pg(x) € p((VIx])) = (p(V[x])) = <

so g(x), f(x) € t. Thus, we can defineamap 2 : X x {0} U W x1I — |K]| as
follows:

h(x,0) = pg(x) forx € X and
h(x,t) = (1 —1)g(x) + 1t f(x) for(x,1) e W xL

Let k : X — Ibe an Urysohn map with X \ W C k~'(0) and A C k~'(1). Then,
an extension f* : X — |K| of f can be defined by f*(x) = h(x,0) (= ¢pg(x))
forx € X \ W and f*(x) = h(x,k(x)) forx € W.

(f) = (e): By induction on k > n, we show that each map f : A — S¥*! of any
closed set A in X extends over X . Let

S]—(|—+l — sk-l—l N (Rk-l—l % R-{—) and S]i+1 — _S]f|—+l7
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Sk+l

IS

7165

Fig. 5.2 Extending amap f : A — Sk+!

where we identify S¥ = S¥ x {0} = Slfl N Sk+1 c Sk+1. We have disjoint open
sets U4 and U_ in X such that

UrNA=A\f7'(S") and U_nA =4\ f'(SE.

In fact, by Theorem 5.1.6(2), f extends to a map f’ : U — SF*! of an open
neighborhood of 4 in X. Then, Ux = f'~' (Sk+! \Sk;l) are the desired open sets.

Now, let Xo = X \ (Uy UU-) and 49 = A N Xy = f~'(S¥) (Fig.5.2). Since
flAo : Ag — SF extends over X by the inductive assumption, f|A, extends to a
map f : Xo — S¥. Let

Xy=XoUUp=X\U_ and X_ = XoUU_ =X\ Uy,

which are closed in X, and hence they are normal. Note that X is closed in both X
and X_. Since S ~ SK+! ~ BfF!, £ extends to maps f4 : X: — St+! and
f- : X_ — SK*+1 by Theorem 5.1.6(1). Then, the desired extension f : X — SF*!
of f can be defined by f|X+ = frand f|X_ = f_.

(e) = (a): For each finite open cover U of X, let K = N(U) be the nerve of
U with f : X — |K| a canonical map (cf. Theorem 4.9.4). If f(X) C |K®™)|,
Y (Okw) € cov(X) is a finite open refinement of &/ and

ord f 1 (Ogw) < ordOgwy = dim K™ +1 <n + 1.

Otherwise, choose m > n so that f(X) C |K™]| but f(X) ¢ |K"” V. Let
71, ..., Tk be the m-simplexes of K. Since dt7; ~ S"=land m — 1 > n, we have
maps f; : X — dt; suchthat f;| f~1(d;) = f|f~'(d7;) by (e). Let f': X — |K|
be the map defined by
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LUK = £IF7H(K™Y]) and
1Y) = fil f () foreachi =1,... k.

Then, f/(X)C|K™V|. Since cx(f'(x))<cx(f(x))<(U[x]) for each xeX, f’
is still a canonical map. By the downward induction on m>n, we can obtain a
canonical map f : X —|K| such that f(X)C|K™)|. This completes the proof. O

Remark 2. In the above proof of (¢) = (a), instead of a finite open cover U of X,
let us take a local finite open cover U whose nerve K = N(U) is locally finite-
dimensional (1.f.d.). It can be shown that I/ has a locally finite open refinement V
withordV <n + 1 (i.e.,dim N(V) < n).

Indeed, since K is the nerve of a locally finite open cover, by Theorem 4.9.4, we
have a canonical map f : X — |K]| such that each x € X has a neighborhood V,
in X with f(Vy) C |K,| for some finite subcomplex K, of K. Note that K might
be infinite-dimensional.

Now, consider the following subcomplexes of K:

K, = K\{r €K \ dimt > n, tis principal in Ki_l}

= K"y {r e K \ 7 is not principal in Ki_l}, i €N,

where Ko = K. Then, K™ = (0),.y K; because K is 1.f.d. We will inductively
construct canonical maps f; : X — |K|,i € N, such that

HIATNKD = fiml £2N (KD, fi(X) C |K;| and
fi(Vy) C |K,| foreach x € X,

where fy = f. Suppose f;—| have been constructed. For each t € K, \ K;, since
dimt > n, we can apply (e) to obtain an extension f; : X — 97 of fi_;|f;Z}(37).
We can define f; : X — | K] as follows:

FIA2VUKD = ficil 21K |) and
f,-|f,-:11(t) = ft|f,~:11(l’) foreacht € K;—_1 \ K;.

Then, f;(X) C |K;|.Since f;(f;Z}(r)) C 9t C tforeacht € K;—;\ K;, it follows
that f;(Vy) C |K,| for each x € X, so f; is continuous because each K is finite.
Moreover, ¢k (fi (x)) < cx(fi—1(x)) for each x € X, hence f; is also a canonical
map.

For each x € X, since K, is finite, K,((") = K, N K for some i(x) € N.
For every i > i(x), because K, N K; = K, N Kj(x), we have f;|Vy = fiq|Vs.
Therefore, we can define a map f : X — |K®| by f|V, = fi|Vs for each
x € X. Then, V = f‘l((’)K(n)) € cov(X) is an open refinement of I/ with ord <
n + 1. By applying Lemma 5.2.1, we can obtain the desired refinement VV of I/.
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When X is paracompact, since every open cover of X has a locally finite (and
o-discrete) open refinement with the 1.f.d. nerve by Theorem 4.9.9, if dim X < n,
then an arbitrary open cover of X has a (locally finite o-discrete) open refinement
V withordV < n + 1 by the above remark. Since the converse obviously holds, we
have the following characterization:

Theorem 5.2.4. For n € w and a paracompact space X, dim X < n if and only
if an arbitrary open cover of X has a (locally finite o-discrete) open refinement VV
withordV <n + 1. O

Instead of Theorem 4.9.9, we can use Theorem 4.9.10 to obtain the following
corollary:

Corollary 5.2.5. Let X be regular Lindeldf and n € w. Then, dimX < n if
and only if an arbitrary open cover of X has a (star-finite and countable) open
refinement )V withordV <n + 1. O

In the proof of Theorem 4.10.10, we can apply Theorem 5.2.4 (Corollary 5.2.5)
to obtain I; with ordl/; < n + 1, namely dim K; < n. By Remark 16 at the end of
Sect.4.10, we have the following version of Theorem 4.10.10 (Corollaries 4.10.11
and 4.10.12).

Corollary 5.2.6. Every completely metrizable space X with dimX < n < oo is
homeomorphic to the inverse limit of an inverse sequence (| K;|m, fi)ien of metric
polyhedra and PL maps such that dim K; < n, card K; < Row(X), and f; :
K41 — Sd K; is simplicial. Moreover, if X is compact metrizable (resp. separable

and completely metrizable), then each |K;|m = |K;| is compact (resp. locally
compact). If X is separable and locally compact metrizable, each |K;|m = |K;|
is locally compact and each f; is proper. O

Now, we can prove the following theorem:
Theorem 5.2.7. For eachn € N, dimB" = n.

Proof. For any U € cov(A"), A" has a triangulation K such that Ox < Sk < U
(Corollary 4.7.7). Since ord O = dimK + 1 =n + 1 and |K| = A" ~ B", it
follows that dimB” < n. If dimB"” < n — 1, then we apply Theorem 5.2.3 to obtain
amap r : B" — S"! such that 7|S"~! = id, which contradicts the No Retraction
Theorem 5.1.5. Consequently, we have dimB" = n. O

Proposition 5.2.8. For a normal space X, if there exists amap f : X — S" that is
not null-homotopic, then dim X > n.

Proof. Define §", and S” as in the proof of Theorem 5.2.3 (f) = (¢) and identify
"1 =8" N8 CS§.IfdimX < n—1then f|f'(S""") extends to a map
f": X — S""! by Theorem 5.2.3. We can define amap g : X — 8" as follows:

glf 'S = fIf7ISY) and gl fTISL) = £ 7HSL).
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Then, g >~ f rel. f~!(S"). Indeed, we have a homeomorphism ¢ : S — B" with
@|S"™! = id. Then, @f | /7' (S%) =~ @f'| f7'(S%) rel. f~!(S""!) in B", which
is realized by the straight-line homotopy. Hence, f|f~'(S",) =~ f’|f~'(S") rel.
£75S"") in §”, which implies g ~ f rel. f~!(S"). Since g(X) C 8" ~ B", it
follows that f ~ g ~ 0. This is a contradiction. O

Remark 3. The converse of Proposition 5.2.8 does not hold. In fact, if X is an n-
dimensional contractible space then every map f : X — S” is null-homotopic.

Using simplicial complexes, we can characterize the dimension of paracompact
spaces as follows:

Theorem 5.2.9. Let X be paracompact and n € w. Then, dim X < n if and only
if, for every simplicial complex K, eachmap f : X — |K| (or f : X — |K|n) is
contiguousto amap g : X — |K™| (or g : X — |K"|y). In this case, each g(x)
is contained in the carrier cx (f(x)) € K of f(x).

Proof. First, we will show the “if” part. Each (finite) open cover I/ of X has an open
star-refinement V. Let K = N(V) be the nerve of V. A canonical map f : X — |K|
is contiguous toamap g : X — |K™|. Then, g7' (Ogw) € cov(X) with

ordg_l((’)K<n)) <ord Ogw = dim K" +1<n+1.

LetV eV =K®andx € g7'(Ogw(V)). We have o € K such that f(x), g(x) €
0. Then, cx(f(x)) <oand V € 0. Since f is canonical, we have cx (f(x))© C
V[x] (Proposition 4.9.1). It follows that V N V' # @ and x € V' for any V' €
cx (f(x)©@, which implies x € st(V, V). Thus, g~ (Oxm (V)) C st(V,V), which
means g~ ! (Ogm) < U. Therefore, dim X < n.

To prove the “only if” part, let f : X — |K| be a map. Because dim X < n,
X has an open cover U < f~!1(Ok) with ordU/ < n + 1 by Theorem 5.2.4. Let
L = N(U) be the nerve of U with ¢ : X — |L| a canonical map. Then, we
have a function ¥ : L© = ¢/ — K© such that U C f~1(0g (¥ (V))), ie.,
f(U) C Ox(¥(U)). By Proposition 4.4.5, ¢ : L(© — K© induces the simplicial
map ¥ : L — K. Since dim L < n, it follows that Y @(X) C ¥(|L|) C |K™].
Thus, we haveamap g = ¢ : X — |K®)|.

We will show that g(x) € cx(f(x)) forevery x € X. Foreach x € X, ¢(x) €
(U[x]) € L because ¢ is canonical. Then, g(x) = Y ¢(x) € ¥ ((U[x])) € K. For
each U € U[x], f(x) € f(U) C Ox(¥(U)), which means ¥ (U) € cx(f(x))©.
Hence, ¥ ((U[x])) < cx(f(x)). Thus, g(x) € cx(f(x)) forevery x € X. O

Remark 4. In the above proof of the “only if” part, when K is locally finite-
dimensional, we can apply the same argument used in Remark 2 to obtain a map
g: X — |K™| contiguous to 1.

As a corollary of Theorems 5.2.7 and 5.2.9, we have the following:

Corollary 5.2.10. For any simplicial complex K,
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dim K = dim | K| = dim | K |.

Proof. An n-simplex t € K is closed in both |K| and | K|y, and dim7 = n by
Theorem 5.2.7. By the definition of dimension, dim |K| > dim t and dim | K|, >
dim 7. On the other hand, combining Theorem 5.2.9 with the Simplicial Approxi-
mation Theorem 4.7.14, we arrive at dim | K| < dim K and dim |K |, <dim K. O

Since the n-dimensional Euclidean space R" has an n-dimensional triangulation,
we have the following corollary:

Corollary 5.2.11. Foreachn € N, dimR" = n. O

Let A and B be disjoint closed sets in a space X. A closed set C in X is called
a partition between A and B in X if there exist disjoint open sets U and V in X
suchthat A CU,B C V,and X \ C = U U V. A family (4,, B} ),er of pairs of
disjoint closed sets in X is inessential in X if there are partitions L, between A,
and B, with (),¢r L, = 0. Note that if one of 4, or B, is empty then (4,, By)
is inessential. If (A,, By)yer is not inessential in X (i.e., (), er L, # 9 for any
partitions L, between A, and B,), it is said to be essential in X .

A map f : X — I" is said to be essential if every map g : X — I" with
gl f~1(@1") = f|f~'(91") is surjective, where it should be noted that g is also
essential. It is said that f is inessential if it is not essential, i.e., there is a map
g 1 X — I" such that g| f='(0I") = f|f~"(0I") and g(X) # I". Then, for an
inessential map f : X — I", there is amap g : X — dI" such that g| f ~1(3I") =
VAV C) OF

Lemma 5.2.12. Fortwomaps f,g : X — B", if f(x) # g(x) forany x € X, then
thereisamap h : X — 8"V such that h| f~'(S"~Y) = f|f~4(S" ).

Proof. In the same way as for the map r in the remark for the No Retraction
Theorem 5.1.5, we can obtain amap & : X — 8"~! such that f(x) € (h(x), g(x))
for each x € X, which implies 4| f~1(S"~") = f|f~1(S" ). O

Foramap f : X — B" with f(X) # B", by taking g as a constant map, the
following is a special case of Lemma 5.2.12.

Lemma 5.2.13. Ifamap f : X — B" is not surjective, then there is a map h :
X — 8" ' such that h| f~1(S"™") = f|f~1(S" ). O

Proposition 5.2.14. Let X be a normal space and h : X x I — 1" be a homotopy
such that hg is essential and h( f~'(0I") x I) C OI". Then, h, is also essential,
hence it is surjective.

Proof. Let hyp = f and assume that /1, is inessential. By Lemma 5.2.13, there is
amap g : X — OI" such that g|h;'(3I") = hy|h7'(31"). Then, f~1(I") C
hi'(01") and hy =~ g rel. h7'(91") by the straight-line homotopy:

(1 —1)h(x) +tg(x) foreach (x,1) € X xL
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Connecting this to /2, we obtain a homotopy ¢ : X x I — I" such that

e(fT'@I") x I) CII", gp = f and ¢; = g.

Then, A = pry (go_l([%, %]")) is a closed set in X. Observe

¢ (3.3 N (IO x 1) = 0,

which implies A N f~!(d") = @. Taking an Urysohn map k : X — I with
k(f~1(01")) = 0 and k(A) = 1, we define amap g’ : X — I" as follows:

g'(x) = ¢(x,k(x)) foreachx € X.

Then, g’| f~1(I") = f|f~1(dI") but g’(X) # I". In fact, g’(A) = g(A) C "
and

g'(X\A) Co((X\A) xD Co((X xD\e'([5,31") CI"\ [5,3]".

This is a contradiction because iy = f is essential. O
Essential maps can be characterized as follows:

Theorem 5.2.15. Let X be a normal space. For amap [ : X — 1", the following
are equivalent:

(a) f is essential;
(b) Foreachmap g : X — 1", there is some x € X such that f(x) = g(x);
(© (fpr7Y0)), £~ pr; 1 (1)))r_, is essential in X.
Proof. The implication (a) = (b) follows from Lemma 5.2.12.

(b) = (c): Assume that (f~(pr;1(0)), f~1(pr; 1(1)))7_, is inessential, that
is, there are partitions L; between f~!(pr;1(0)) and f~'(pr;!(1)) such that
ﬂ?zl L; = @. Then, we have disjoint open sets U; and V; in X such that

X\L; =U UV, f~pr;'(0)) Ui and f~'(pr;'(1)) C V.

Applying Lemma 5.2.2 to the open cover {X \ L; | i = 1,...,n} of X, we have a
closed cover {F; |i = 1,...,n}of X suchthat F; C X \ L; = U; U V;, where we
may assume that

f e ) U ST e (1) € F

EachU; N F; = F; \ V;and V; N F; = F; \ U; are disjoint closed sets in X. Using
Urysohn maps for U; N F; and V; N F;, we can define amap g : X — I" such that
pr;g(U; N F;) = 1 and pr; g(V; N F;) = 0. Observe
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Uwinfyvmink)=Jw,uvonF=JF =X,

i=1 i=1 i=1

(e, /)7 C Vi C X\ U; and (pr, f)"'(0) C Ui C X \ V.

It follows that g(x) # f(x) forany x € X.
(c) = (a): Suppose that f is inessential. Then, there is amap & : X — 0I" with
h| f~1(01") = f|f~1(01") by Lemma 5.2.13. Note that

FH e (0) € A7 (e (0) and £ (pri (1) € AT (pry (1)),

Each h™!(pr;' (1)) is a partition between f~!(pr;'(0)) and f~!(pr;'(1)), and then

(' e G) =h"'G.....5) = 0.

i=1

Thus, (f ' (pr; 1(0)), £~ (pr;1(1)))7_, is inessential. O

The Brouwer Fixed Point Theorem 5.1.1 means that the identity map of I”
satisfies condition (b) in Theorem 5.2.15, hence we have the following corollary:

Corollary 5.2.16. The family (pr; ' (0), pr;! (1)7_, is essential in I". O

Remark 5. Due to Theorem 5.2.15, this Corollary 5.2.16 is equivalent to the
Brouwer Fixed Point Theorem 5.1.1.

Using essential families and essential maps, we can also characterize dimension
as follows:

Theorem 5.2.17 (EILENBERG-OTTO; ALEXANDROFF). Let X be a normal
space and n € N. Then, the following are equivalent:

(a) dmX > n;
(b) X has an essential map f : X — I";
(c) X has an essential family of n pairs of disjoint closed sets.

Proof. The implication (b) = (c) follows from Theorem 5.2.15. For an essential
map f : X — I", £|f~1(I") : £~'(3I") — AI" cannot extend to any map from
X to dI", which means dim X > n by Theorem 5.2.3. Thus, we have also (b) =
(a). The implications (a) = (b) and (c) = (b) remain to be proved.

(a) = (b): By Theorem 5.2.3, there exists a map f’ : A — 9oI" of a closed set A
in X that cannot extend over X . Nevertheless, f/’ can be extendedtoamap f : X —
I" by Theorem 5.1.6(1). If there isamap g : X — I" such that g(x) # f(x) for any
x € X,thenwehaveamaph : X — 01" such that h| f~1(3I") = f~'| f~'(3I") by
Lemma 5.2.12. This is a contradiction because / is an extension of f’. Therefore,
for each map g : X — I”, there is some x € X such that f(x) = g(x). By
Theorem 5.2.15, f is essential.
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(c) = (b): Let (4;, B;)!_, be an essential family of n pairs of disjoint closed sets
in X. Using Urysohn maps for A; and B;, we can define amap f : X — I" so that
pr; f(A;) = 0 and pr; f(B;) = 1 foreachi = 1,...,n. Since 4; C f~'(pr;1(0))
and B; C f'(pr;y!(1)), it follows that (f~'(pr;'(0)), f~(pr;'(1)))r_, is
essential, which means that f is essential according to Theorem 5.2.15. O

Conditions (b) and (c) are called the ALEXANDROFF CHARACTERIZATION the
EILENBERG—OTTO CHARACTERIZATION of dimension. Using Theorem 5.2.17, we
can easily show the following corollary:

Corollary 5.2.18. Every non-degenerate O-dimensional normal space is discon-
nected. Equivalently, every non-degenerate connected normal space is positive
dimensional. O

5.3 Dimension of Metrizable Spaces

In this section, we will give characterizations of dimension for metrizable spaces.
For metric spaces, the following characterization can be established:

Theorem 5.3.1. Let X = (X, d) be a metric space. Then, dim X < n if and only if
X has a sequence Uy > Uy > -+ of (locally finite o-discrete) open covers such that
ordU; <n + 1 and lim; _, oo meshif; = 0.

Proof. When dim X < n, using the “only if”” of Theorem 5.2.4, we can inductively
construct locally finite o-discrete open covers U; > U, > --- of X such that
ordU; < n + 1 and lim;, o, meshf; = 0. Thus, the “only if” part holds.

To show the “if” part, let YV be a finite open cover of X. We have a function
@i : Uiy1 — U; such that U C ¢;(U) for each U € U;4;. For each j > i, let
Qij =@io--0Q;j_1: u]' —)Z/[,' and(p,-,i = idz,{l..

Foreachi € N, let

X; = U {U e U; \ st(U,U;) is contained in some W € W}
Then, X; C X, C---and X = UieN X; because lim; _, oo meshif; = 0. Moreover,
let U = U;[X;] and U = U] \ U;[X;—1], where X = .
Foreachi € Nand U € U], we define
k;(U) = min {k <i ’ o i (U)N Xy #£ @}.
Observe that ¢, 1, (U) € Z/{]g_(U) and ki, w)(¢k, )i (U)) = ki(U). As is easily

seen, U NU} = B if i # j.Foreach U € ;e U/, there is a unique j(U) € N
such that U € U}’(U). Then, we can define

U>I< :U{U/ﬂXi | U’EU{, i Zj(U):kl(U/), @j(U)’,'(U/): U} cU.
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Note that if k ;) (U) < j(U) then U* = 0.
Each x € X is contained in some X;, hence x € U’ N X; for some U’ € U!. Let
U = o, (U') € Z/{IZ(U/). Then, k; (U’) = j(U)and x € U' N X; C U*. Thus,
we have
V={U"|U € UeqU} € cov(X).

Each U € U/ meets X;, hence it meets some U’ € U; such that st(U’,U;) is
contained in some W € W. Then, U* c U C st(U’,U;) C W. Therefore, V < W.

For each x € X, choose k € N so that x € X \ X;—;. Foreach U* € V[x], we
can find U’ € Y] suchthati > j(U) = k;(U’), ¢jw);,(U") =U,andx € U' N X;.
Then, k < i because x € X; and x ¢ Xy_. Thus, we have ¢ ; (U’) € Ui[x]. On
the other hand, j(U) < k because U N Xy # @ and U N X;w)-1 = 0. Then,
(pj(U),kQDk’i(U/) = (pj(U),i(U/) = U. This means that V[x] > U* qu’,-(U/) S
Ui [x] is a well-defined injection. Therefore,

card V[x] < cardUi[x] < ordUy <n + 1.

The proof is complete. O

Applying Theorem 5.3.1, we can show that the inverse limit preserves the
dimension.

Theorem 5.3.2. Let X = l(iI_n(X,-, [i) be the inverse limit of an inverse sequence
(Xi, f))ien of metrizable spaces. If dim X; < n for infinitely many i € N then
dimX <n.

Proof. By Corollary 4.10.4, we may assume that dim X; < n for every i € N.
Recall that X is the following subspace of the product space [ [; ¢y Xi:

X={xe[lienXi \ x(i) = fi(x(i +1)) foreveryi € N}.
We define d € Metr(X) as follows:

d(x,y) = Sggmin{d,-(x(i), y(i)), 27,

where d; € Metr(X;). For each i € N, we can inductively choose V; € cov(X;) so
thatordV; <n + 1,
Vi< (fj..  fic)™'(V)) and mesh f; ... fioy (Vi) <277 forj <i.

LetU; = p;7'(Vi) € cov(X), where p; = pr;|X : X — X; is the inverse limit
projection. Then, Uy > Uy > ---, ordlf; < n + 1, and meshif; < 277. Therefore,
dim X < n by Theorem 5.3.1. O

The following is obvious by definition:

e IfY isaclosedsetin X thendimY < dim X.
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There exists a 0-dimensional compact space X that contains a subspace ¥ with
dimY > 0. Such a space will be constructed in Sect.5.5 (cf. Theorem 5.5.3).
However, when X is metrizable, we have the following theorem as a corollary of
Theorem 5.3.1.

Theorem 5.3.3 (SUBSET THEOREM). For every subset Y of a metrizable space
X,dimY <dim X. O

We can apply Theorem 5.3.1 to prove the following completion theorem:

Theorem 5.3.4. Every n-dimensional metrizable space X can be embedded in an
n-dimensional completely metrizable space as a dense set.

Proof. We can regard X as a dense subset of a complete metric space ¥ = (Y, d)
(Corollary 2.3.10). Applying Theorem 5.3.1, we can obtain a sequence U; > Uy >

- € cov(X) such that ordf; < n + 1 and mesh; U; — 0 as i — oo. For each
i € N, there is a collection f; of open sets in ¥ such that U; |X = U;. Then,
ordL{ =ordl; <n+1and meshdL{ = meshdu Foreachi e N, G; = UL{ is
an open set in Y. Thus, we have a G-set X = (Niey Gi in Y and X is dense in X.
According to Theorem 2.5.3(2), X is completely metrizable. Moreover, dimX <
n by Theorem 5.3.1 and dimX > n by Theorem 5.3.3. Consequently, we have
dim X = n. O

A subset of a space X is called a clopen set in X if it is both closed and open in
X . A clopen basis for X is an open basis consisting of clopen sets. For metrizable
spaces, we characterize the 0-dimensionality as follows:

Theorem 5.3.5. For a metrizable space X (# 0), dim X = 0 if and only if X has
a o-locally finite clopen basis.

Proof. First, assume that dim X = 0 and let d € Metr(X). By Theorem 5.3.1, X
has a sequence of locally finite open covers B; > B, > --- such thatord B; = 1
and lim; .o, mesh B; = 0. Note that each B € B; is clopen in X because B =
X\ U{B’ € B; | B’ # B}.1Itis easy to see that B = |,y B; is a o-locally finite
clopen basis for X.

To show the “if” part, let B = | J, ¢y B: be a o-locally finite clopen basis for X,
where each B; is locally finite. Let {U,, U,} € cov(X). Foreachi € N, let

Vz,‘_l:U{BEB,“BCljl} and Vz,‘:U{BEBi|BCU2}.

Because V; is clopen, we have an open set W; = V; \ Uj<i V;in X. Then, W =
{W; | i € N} is an open refinement of {Uj, U,}. Indeed, Wp;—; C U, Wy; C Ua,

and
UWiZUVi :UVZi—IUUVZi =Uul, =X.
ieN ieN ieN ieN
Since ord W < 1 by definition, we have dim X < 0 by Theorem 5.2.3. O
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Using the above characterization, we can easily show that dimQ = dim(R \
Q) = 0 and dimu® = 0, where u° is the Cantor (ternary) set. The following
theorem can also be easily proved by applying this characterization.

Theorem 5.3.6. The countable product of 0-dimensional metrizable spaces is 0-
dimensional. O

The following simple lemma is very useful in Dimension Theory.

Lemma 5.3.7 (PARTITION EXTENSION). Let A, B be closed and U, V be open
sets in a metrizable space X such that A C U and B C V andclU NclV = @.
For any subspace Y of X, if Y has a partition S between Y NclU andY NclV,
then X has a partition L between A and B withY N L C S.

Proof. Let U’ and V'’ be disjoint open sets in ¥ such that Y \ § = U’ U V’,
YNclU cU’,andY NeclV C V. FromU NV’ = @, it follows that ANcl V' = @.
Then,

AuUHYNd(BUV)Y=AUUYN(BUcV') = 0.

Similarly, we have (B U V') Ncl(AU U’) = @. Let d € Metr(X) and define

U'={xeX|dx,AUU') <d(x,BUV’)} and
V'={xeX |dx,BUV')<d(x,AUU")}.

Then, U” and V" are disjoint open sets in X, AUU’ Cc U”,and BUV' C V".
Hence, L = X \ (U” U V") is the desired partition. O

Note that it does not suffice to assume that S is a partition between A N Y and
BNYinY.Infact, A =[—1,0] x {0} and B = [0, 1] x {1} are disjoint closed sets
in X = R2. Let

Y =R*\ (@x2)CX,

where 2 = {0, 1} is the discrete space of two points. Then, S = {0} xR is a partition
between A NY and BN Y in Y but X has no partition L between A and B such
thatY N L C S.

Using partitions, we can characterize the dimension for metrizable spaces as in
the following theorem:

Theorem 5.3.8. Let X be metrizable and n € w. Then, dim X < n if and only if,
for any pair of disjoint closed sets A and B in X, there is a partition L in X between
Aand B withdimL <n — 1.

Proof. To prove the “if” part, let (A4;, Bi),'.’:ll be a family of pairs of disjoint closed
setsin X. Let L, 4 be a partition between 4,4+ and B, 4| withdim L,,1; <n — 1.
Foreachi = 1,...,n, let U; and V; be open sets in X such that A; C U;, B; C
Vi and clU; NclV; = @. By Theorem 5.2.17, L, 4+, has partitions S; between
Ly4+1 NeclU; and L, 41 N clV; such that ﬂ:?:l S; = 0. By the Partition Extension
Lemma 5.3.7, X has partitions L; between 4; and B; such that L; N L,4; C ;.
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Then, ﬂ:.’:ll L; € (i2, Si = 9. Therefore, (4;, Bi),'.’:ll is inessential. Thus, we
have dim X < n by Theorem 5.2.17.

To show the “only if” part, let d € Metr(X) such that dist(4, B) > 1. (Such a
metric can be obtained by a metric for X and an Urysohn map for A and B.) Using
Theorem 5.2.4 (cf. Theorem 5.3.1), we can construct a sequence (I4;);en of locally
finite open covers of X such that ordl; < n + 1, meshlf; < i~!, and L{fi_l < U;.
Let Ay and By be open neighborhoods of 4 and B in X, respectively, such that
dist(Ag, By) > 1. We inductively define sets A; and B; (i € N) as follows:

A =X\ J{aU | U etf[B;~1]} and

B = X\ J{clU | U et \t]B:1]}.

Then, A; N B; = @. Because of the local finiteness of Z/{icl, A; and B; are open
in X. Since B;_j N U = @ if and only if B;_; NclU = @ for each U € U, it
follows that B;—; C B; for each i € N. Then, U;[B;—;] C U;[B;]. We also have
U;[Bi] C U;[B;—1]. Indeed, each U € U;[B;] contains some point of B;, where that
point does not belong to any member of U; \ U;[B;—1]. This means U € U;[B;—_1].
Therefore, U;[B;] = U;[B;—1] foreachi € N.

We will show that cl A;—; C A; for each i € N. This follows from the fact that
cld;_; NclU = @ for each U € U;[B;—1]. This fact can be shown as follows:
The case i = 1 follows from meshi/; < 1 and dist(A4y, By) > 1. When i > 1, for
each U € U;[B;—1], clU is contained in some V € U;_. Since V € U;_[B;—1] =
U;—1[Bi—], it follows that A;_1 NV = @, and hence cl 4;,_; NV = @, which implies
cl Ai—l NclU = 0@.

Foreachi € N,let L; = X \ (4; U B;) and let L = ();cy Li. Then, L is
a partition between A and B. Indeed, X \ L = (U;en4i) U (Uien Bi), A C
Uien 41, B C Uien Bis and

(UAz) N (UBI) = U (Al n Bj) = U (Amax{i,j} n Bmax{i,j})
ieN ieN i,jeN i,jeN

J“inB) =0

ieN

Foreachi € N, we have
W, ={UNL|U €U[Bi_]} € cov(L).

Indeed, each x € L is not contained in A; 41, so x € clV for some V € U; 1 1[B;].
Choose U € U; so that cl1V C U. Then, U € U;[B;] = U;[B;—1], hence x €
U N L € W;. Therefore, W; € cov(L). Note that meshV;, < meshlf; < i~'.
Moreover, Wi+ < W; because each V' € U;[B;] is contained in some U € U;,
where U € U; [B,] =U; [Bi—l]-
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We will show that ord W; < n. Suppose that there are n + 1 many distinct
Uy,...,U,+1 € U;[B;—1] that contain a common point x € L. Since x ¢ B;,
x € clU,4, for some U4+, € U; \ U;[Bi—1]. Since ﬂ?ill U; is a neighborhood of

x, it follows that ﬂ’;izl U; # 0, which is contrary to ordl{; < n + 1. Therefore, we
have dim L < n — 1 by Theorem 5.3.1 O

Remark 6. 1t should be noted that the Partition Extension Lemma 5.3.7 and the “if”
part of Theorem 5.3.8 are valid for completely normal (= hereditarily normal) spaces
(cf. Sect. 2.2).

5.4 Fundamental Theorems on Dimension

In this section, we prove several fundamental theorems on dimension. We begin
with two types of sum theorem.

Theorem 5.4.1 (COUNTABLE SUM THEOREM). Let X = |J;cy Fi be normal
and n € w, where each F; is closed in X. If dim F; < n for everyi € N, then
dimX <n.

Proof. 1t suffices to show the case n < oo. Let {Uy,...,U,+2} € cov(X). By
inductionon i € N, we can definelf; = {U; 1,...,U; 42} € cov(X) so that

Cl(],',j C (],'_1,]' and Ui,l ﬂ"'mUi,n+ZmFi :@’

where Uy ; = U;. Indeed, assume that I{;_; has been defined, where Fy = 0. By
Theorem 5.2.3, we have {V; 1, ..., Vi +2} € cov(F;) such that

VijCU; and Vi,iN---NV,1,=0.

Let W, ; =V, ; U(Ui—1; \ F;). Then, {W 1, ..., W, 412} € cov(X). By normality,
we can find U; = {U;1,...,U; 12} € cov(X) such that clU; ; C W ;. Observe
that I{; is as desired.

Foreach j =1,...,n+2,let Aj = ();en Ui j. Observethat A; = (), ¢l U; ;
is closed in X. Since

AN NApNF CUn N NUipa N E =0,

we have A N+ N A,4» = 0. Foreachx € X, {i € N | x € U, ;} is infinite for
some j. Then, x € (e Uij = 4. Hence, X = A U--- U A, 4,. According to
Theorem 5.2.3, we have dim X < n. O

Theorem 5.4.2 (LOCALLY FINITE SUM THEOREM). Let X be normal and n €
. If X has a locally finite closed cover {F) | A € A} such that dim F) < n for
each A € A, thendim X < n.
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Proof. We may assume thatn < oo, A = (A, <) is awell-ordered set, and Fiyin 4 =
@. Let {Uy,...,U,42} € cov(X). Using transfinite induction, we will define U, =
{Ur1,...,Urnt2} € cov(X) so that

Unina,j =U;, Uy NN Uy p42 N Fy =@, and

w<A= U CUw. U \U;C |J F.

H=v=A

Suppose that {,, has been obtained for u < A. Let U ; = (7),.; Up,;. Then,
{US 15+ Uy qn) € cov(X). Indeed, if there exists o = max{u € A | u < A},
then Ux/,j = U,,,; foreach j = 1,...,n + 2. Otherwise, for each x € X, choose
an open neighborhood U of x in X that meets only finitely many F),. Then, there
exists u; < Asuchthat U N F, = @ for uy < u <A Ifx € Uy, ; € U,,, then
unu,, ; cU,;foru <u < Abecause

UNnUu)\Uu;C |J WnF)=0.

H=<v=p

It follows that

xelUnuU,,;C ﬂ Uuj = m Unj = Uy
p<p<i I

We apply Theorem 5.2.3 to obtain { V3 1, ..., Vi 42} € cov(Fy) suchthat V, ; C
Ux/,j and Vi N~ N Viygo = @. Now, let Uy ; = Vi ; U (U)(,j \ F3). Then,
{Uy1,-..,Upng2} € cov(X) is the desired open cover. In fact, if © < A then

Uuj \Usrj C FLU((Uu; \ F)\ (U;; \ F2)) C FL U (U;L.,j \ ﬂ Uu.,j)

V<A

chRU | W, \U)= | F.

U<v<A n<v<i

The proofs of the other properties are easy.

Foreach j = 1,...,n + 2, let U]T" = ﬂkeA U, ;. Then, similar to the above,
(U, ..., Uy} € cov(X). Clearly, U C Uy and U N---NU,f, = 0. Therefore,
dim X < n by Theorem 5.2.3. O

The following corollary is a combination of Theorems 5.4.1 and 5.4.2:

Corollary 5.4.3. Let X be a normal space and n € w. If X has a o-locally finite
closed cover {F | A € A} such that dim Fy < n foreach A € A, thendim X < n.
O

The next corollary follows from Theorem 5.4.2:
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Corollary 5.4.4. Let X be a paracompact space and n € w. If each point of X has
a closed neighborhood with dim < n, then dim X < n.

Proof. Since X is paracompact and each point of X has a closed neighborhood
with dim < n, X has a locally finite open cover U such that dimclU < n for each
U e U. Then, U is also locally finite in X, hence dim X < n by Theorem 5.4.2.

O

Remark 7. Corollary 5.4.4 can also be proved by applying Michael’s Theorem on
local properties of closed sets (Corollary 2.6.6). In this case, the proof is reduced
to showing that if X is the union of two closed sets X; and X, with dim X; < n,
i =1,2,thendim X <n.

In the remainder of this section, we consider only metrizable spaces. The real
line R is 1-dimensional and we can decompose R into two 0-dimensional subsets Q
and R \ Q. This can be generalized as follows:

Theorem 5.4.5 (DECOMPOSITION THEOREM). Let X be metrizable andn € w.
Then, dim X < n if and only if X is covered by n + 1 many subsets X1, ..., Xn+1
with dim X; < 0.

Proof. To prove the “if” part, let I/ be a finite open cover of X. Since dim X; < 0,
X; has a finite open cover V; such that V; < U and ord)V; < 1. Foreach V € V},
choose an open set W(V') in X so that W(V) N X; = V and W(V) is contained in
some member of /. Note that cl W(V) N X; = V because V is also closed in X;.
Foreach V € V;, let

V=wW\J{aw) |V £V eV

Then, V; = {V | V € V,} is a collection of disjoint open sets in X that covers
X; and refines U. Observe that V = Ufi 11 V; is an open refinement of & with
ordVY < n + 1. Therefore, dim X < n.

The “only if” part can be easily obtained by induction once the following
proposition has been proved. O

Proposition 5.4.6. Let X be metrizable and dim X <n < co. Then, X =Y U Z
forsome Y, Z C X withdimY <n—1anddimZ <0.

Proof. Assume that X is a metric space. For each i € N, let {f; be a locally finite
open cover of X with meshlf; < i~!. By paracompactness (Lemma 2.6.2) or
normality (Lemma 2.7.1), X has a closed cover {Fy | U € U;} such that Fy C U
forall U € U;. For each U € U;, we apply Theorem 5.3.8 to obtain an open set By
such that

Fy CBy CclBy CU and dimbdBy <n—1.

It is easy to see that B = {By | U € U;,i € N} is a o-locally finite open basis
for X. Let
Y= J{bdB|BeB} and Z=X\Y.
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According to Corollary 5.4.3,dimY <n—1.Since {BNZ | B € B} is ao-locally
finite clopen basis for Z, we have dim Z < 0 by Theorem 5.3.5. O

In the above proof of Proposition 5.4.6, the following two facts have been
proved:

(1) Each metrizable space X with dim X < n has a o-locally finite open basis 3
such that dimbd B < n — 1 forevery B € B.

(2) If a metrizable space X has such abasis Bthen X = Y UZ forsome Y, Z C X
withdimY <n—1anddimZ < 0.

In (2), Y is covered by n many subsets with dim < 0 by the Decomposition
Theorem 5.4.5. Hence, X is covered by n + 1 many subsets with dim < 0. By
the Decomposition Theorem 5.4.5 again, we have dim X < n. Thus, (1) implies
dim X < n. Consequently, we have the following characterization of dimension,
which is a generalization of Theorem 5.3.5:

Theorem 5.4.7. Let X be metrizable and n € w. Then, dim X < n ifand only if X
has a o-locally finite open basis B such that dimbd B <n — 1 foreach B € B. 0O

The following theorem is obtained as a corollary of the Decomposition Theo-
rem 5.4.5:

Theorem 5.4.8 (ADDITION THEOREM). For any two subspaces X and Y of a
metrizable space,

dmXUY <dmX +dimY + 1. O

Regarding the dimension of product spaces, we have the following theorem:

Theorem 5.4.9 (PRODUCT THEOREM). For any metrizable spaces X and Y,
dimX xY <dimX + dim?Y.

Proof. If dim X = co ordimY = oo, the theorem is obvious.

When dim X,dim Y < oo, we prove the theorem by induction on dim X +dim Y.
The case dimX = dimY = 0 is a consequence of Theorem 5.3.6. Assume the
theorem is true for any two spaces X and ¥ with dimX + dimY < k. Now, let
dimX = m,dimY = n,and m + n = k. According to Theorem 5.4.7, X and Y
have o-locally finite open bases By and By such that dimbd B < m — 1 for each
B € By and dimbd B < n — 1 for each B € By. Then,

B:{leBz‘Bleng and BzEBy}
is a o-locally finite open basis for X x Y. For each B, € By and B, € By,

bd(B; x B) = (bd By x ¢l By) U (cl B; x bd By).
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Hence, dimbd(B; x B,) < m+n—1 by the inductive assumption and Theorems 5.4.1
or 5.4.2. Then, we have dim X x ¥ < m + n by Theorem 5.4.7. O

Remark 8. In Theorem 5.4.9, the equality dimX x ¥ = dimX + dimY does
not hold in general. In fact, there exists a separable metrizable space X such that
dim X2 # 2dim X . Such a space will be constructed in Theorem 5.12.1. However, if
one of X orY is alocally compact polyhedron or a metric polyhedron (cf. Sect. 4.5),
the equality does hold. This will be proved in Theorem 7.9.7.

5.5 Inductive Dimensions

In this section, we introduce two types of dimension defined by induction. First, the
large inductive dimension Ind X of X can be defined as follows: Ind@ = —1 and
Ind X < n if each closed set A C X has an arbitrarily small open neighborhood V'
withIndbd V < n—1. Then, we defineInd X =nifIndX <nandInd X £n—1.
We write Ind X < oo if Ind X < n for some n € N, and otherwise Ind X = oc.
Observe the following:

e IfYisaclosedsetin X thenIndY <Ind X.

For an open set G and a closed set F in X,

bdclG =clG \intclG CclG\ G =bdG and
bdint F =clint F \int F C F \int F =bd F.

Then, Ind X < n if and only if each closed set A in X has an arbitrarily small closed
neighborhood V with IndbdV <n — 1.

As is easily observed, Ind X < n if and only if, for any two disjoint closed sets
A and B in X, there is a partition L between A and B with Ind L < n — 1. Note that
Ind@ = dim@ = —1. The next theorem follows, by induction, from Theorem 5.3.8.

Theorem 5.5.1. For every metrizable space X, dim X = Ind X. O

Next, the small inductive dimension ind X of X is defined as follows2: ind @ =
—1l and ind X < n if each point x € X has an arbitrarily small open neighborhood
V withindbdV <n —1;andthenind X = nifind X <nandind X £n—1. We
write ind X < oo ifind X < n for some n € N, and otherwise ind X = 0o. Now,

e indY <ind X for an arbitrary subset Y C X.

Then, ind X < n if and only if each point x of X has an arbitrarily small closed
neighborhood V with indbd V <n — 1.

21n this chapter, spaces are assumed normal, but the small inductive dimension also makes sense
for regular spaces.
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By definition, ind X < Ind X and ind@ = Ind@¥ = dim@ = —1. As is easily
shown, ind X < n if and only if X has an open basis B such thatindbd B < n—1 for
every B € B. Comparing this with Theorem 5.4.7, one might expect that the equality
indX = IndX = dim X holds for an arbitrary metrizable space X. However,
there exists a completely metrizable space X such that ind X # Ind X. Before
constructing such a space, we first prove the following Coincidence Theorem:

Theorem 5.5.2 (COINCIDENCE THEOREM). For every separable metrizable
space X, the equality dim X = Ind X = ind X holds.

Proof. Because ind X < IndX and Ind X = dim X, it is enough to show that
dimX < ind X when ind X < oco. We will prove this by induction on ind X.
Assume that dim X < ind X for every separable metrizable space X with ind X <
n. Now, let ind X = n. Then, X has an open basis 53 such that indbd B < n — 1
for every B € . Since X is separable metrizable, X has a countable open basis
{Vi | i € N}. We define

P ={(i.j)eN*|V; C BCV; forsome B € B}.

For each p = (i, j) € P, choose B, € Bsothat V; C B, C V;. Then, {B, | p €
P} is a countable open basis for X such that dimbd B, < indbd B, < n — 1 for
each p € P. By Theorem 5.4.7, we have dim X < n. O

In the non-separable case, we have the following theorem:

Theorem 5.5.3. There exists a completely metrizable space Z such that ind Z = 0
butInd Z = dim Z = 1. Furthermore, Z has a 0-dimensional compactification.

Example and Proof. Let 2 = [0, w;) be the space of all countable ordinals with
the order topology. Note that the space £2 = [0, @;] is compact and 0-dimensional.
In fact, for each open cover U of 2, we can inductively choose w; = oy > a;) >
ap > --- so that each (o, a;—1] is contained in some member of /. Since §2 is
well-ordered, some «,, is equal to 0. Thus, U/ has a finite open refinement {0} U
{(j,¢i—1] | i = 1,...,n}, which is pair-wise disjoint.

Our space is constructed as a subspace of the product 2. Let L be the subset
of §2 consisting of infinite limit ordinals and S = £ \ L. For each k € N, let
Sk ={a+k | a e L}. We define

Z={ze 2" |zk) e L = z(k+1) = z(k) + k,z(k + j) € Sk for j > 1}.

By definition, we have ind 2N =0, soind Z = 0. On the other hand, we can write
Z = SN U U, en Zk» where

Zi={z€Z|zk)e L} C "' x L x S\

Since S is a discrete space, it follows from Theorem 5.3.6 that dim S = 0.
As is easily seen, each Z; is homeomorphic to S¥~! x SE via the following
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correspondence:
Zi 32> (z(1),... 2k — 1), z(k + 1), z2(k +2),...) € ST x SN,

where z(k + 1) = z(k) + k. Then, it follows that dim Z; = 0 for each k € N.

(Neighborhood bases) For each a € L, choose & () < & (o) < --- < « so that
sup; ey &i (o) = . Each z € Z has the neighborhood basis {U, (z) | n € N} defined
as follows:

{x € Z | x(i)=2z(i) fori <n} ifz e SN,
Un(z) = {{x € Z | x(i) = z(i) fork #i <k +n,
and &, (z(k)) < x(k) <z(k)} ifze€ Z.

Note that each U, (z) is clopen in Z, but {U,(z) | z € S} is not locally finite at the
point (w,w + 1,0 +1,...)in Z (cf. Theorem 5.3.5). The following statements can
be easily proved:

(1) Ifz,7 € SNorz, 7 € Zy, then U, (z) NU,(Z) # 0 = U,(2) = U,(2).

) Ifze Zy,7 € Zy,and k < k' <n + k, then U,(z) N Uy () = @ for every
n’ € N.

(3) Ifze SN, 7 € Zy,andn < k, then U, (2) N Uy (Z) # 0 = Uy (Z) C Uy(2).

Furthermore, we have the following:

(4) Foranyz € SN and n € N, there exists some m > n such that U,,(z) NU,,(7) =
@ forevery 2 € U<, Zk-

In fact, if z(n + 1) & Sk for any k < n, then U,+1(z) N U,+1(z) = @ for every
7 € Upep Zi. I z(n + 1) € Si for some k < n, then Uy, (z) N Uy (2) = @ for
everym > nand z € U4, <, Z;. On the other hand, because z(k + 1) € S, we
can write z(k + 1) =« + r, wherea € LU {0} andr € N.Ifo« = O orr # k,
then U, (z) N U, (7)) = @ foreverym > k and 7 € Zy. When o € L and r = k,
choose m > k so that z(k) & (€,,(c), @]. Then, it follows that U,,(z) N U,,(z') = @
forevery 7 € Zy.

Note that each Zj is closed in Z by (2) and (4). Then, as mentioned before, we
havedim Z < 1.

(Metrizability) To prove the metrizability, by the Frink Metrization Theo-
rem 2.4.1 it suffices to show that, for each z € Z and n € N, there exists m € N so
that U, (z) N U, (2') # @ implies Uy, (Z) C U, (2).

When z € Z; forsome k € N, if 2 € | Zir or 2 € Uy g/ cpqor Zio then
Un+1(z) N Upsk(Z) = B by (2). Assume U, 44 (z) N Upx(2) # 0. 1f 7 € SN U
Ukrsntk Zi then Uy 1(2) C Uy(z) by definition. If 2 € Z, then U, (2) =
U,+x(z) C Uy(2) by (1). Thus, we have

Uk @) N Uk (D) # 0 = Uy k() C Up(2).
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For z € SN, we can choose m > n by (4) such that U,,(z) N U,, (') = @ for every
7 € U<, Zk. Assume U, (z) N Uy (2') # 0. Then, 7 € SN or 7 € Zj for some
k>n.1f7 € SN then U, () = Un(z) C U,(z) by (1).If 7 € Zj for some k > n,
then U,,(z) C U,(z) by (3). Thus, we have

Un(z) N Uy (Z/) #0= Um(Z/) C Uy(2).

(Complete metrizability) Because of Theorem 2.5.5, to show the complete
metrizability of Z, it is enough to prove that Z is a Gs-set in the compact space

2", Extend each U, (z) to a neighborhood of z in 2 as follows:

{xeﬁN\x(z’)zz(i) forifn} forz € SN,
U,(z) = {x e \ x(@) =z(i) fork #i <k +n,
and §,(z(k)) < x(k) < z(k)} forz € Zy.

Then, each W, = J.c, U,(z) is an open neighborhood of Z in 2 and Z =
Myex Wa- Indeed, if x € (,ey Wa \ SV, then x(k) € L for some k € N. For
n > k, choose z, € Z so that x € U,(z,). Since x(k) € L and k < n, it follows
thatz, ¢ SN U Uk’;ék Zi,ie.,z, € Zr. Then, x(k +1i) = z,(k + i) € Sy for each
0<i<nand§,(z,(k)) < x(k) <z,(k).Since x(k+1) = z,(k+1) = z,(k) +k,
every z, (k) is identical, say z(k). Since z(k) = sup §,(z(k)), we have x (k) = z(k).
Taking n € N arbitrarily large, we can see that x(i) € Sy for any i > k. Hence,
XeZ,CZ.

(1-dimensionality) It has been shown that Z is metrizable and each Zj is closed
in Z. Then, applying the Countable Sum Theorem (5.4.1) and the Addition Theorem
(5.4.8), wehavedimZ < 1.

To see that dim Z > 0, assume dimZ = 0. Let W = {W,, | a € 2} € cov(Z),
where W, = {z € Z | 0 < z(2) < a}. By the assumption, VV has an open refinement
VY with ordV < 1. Then, V is discrete in Z. Here, we call s € S” regular if there
exist f : P;en S" — S and V € V such that R(s; f) C V, where

R(s; f) ={x € SN \ x(@) =s(@) fori <n and
x(n+i)> f(x(n),....,.x(n+i—1)) fori € N}.
Otherwise, s is said to be irregular.
First, we verify the following fact:
(5) Every s € S is irregular.

For each f : @,y S" — S and a € £2, define 5% € SN as follows: s?(l)
59(2) = max{s, f(s),o + 1}, and s?(i +1) = ‘f(so)‘p(l),...,so)i(i)) for i
Then, 5% € R(s; f) \ Wo. Hence, R(s; f) is not contained in any V € V.

IV
)
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Next, we show the following fact:
(6) If s € S" is irregular, then (s,¢) € S"*! is irregular for some ¢ € S.

Suppose that (s, ) is regular for every 7 € S, that is, there are f; : @,y S' — S
and V; € V such that R(s,¢; f;) C V;. When there exista € S and V' € V such that
V, =V fort > max{a, f,(a)}, we define f : @,y S* — S by

f(t) = max{a, f,(a)} fort € S and

fti,....t1) = fi(ta,....t;) for (t1,....t;) € S',i > 2.
For x € R(s; f),lett = x(n + 1). Then, x € R(s,t; f;) because

x(n+141i)> f(x(n),...,x(n+1))
= filtx(n+1),....,.x(n+14+ (@G —1))) fori e N.
Moreover, t = x(n + 1) > f(x(n)) = max{a, f,(a)} > a. Hence, R(s; ) C
Urza R(s,t; f;) C V, which contradicts the irregularity of s. Therefore, we can
obtain an increasing sequence a; < a» < --- in § such that V,, # V,, 4+ and

ai+1 > fo;(a;). Leta = sup;eya; € L and by = o +n + 1. Foreach j € N, we
can inductively choose b; € S, 41 so that

b; = sup fo; (@i, bo,...,bj-1).
ieN
Then, we have

z=(s(1),...,s(n),a,by,by,bs,...) € Z,41 and
zi = (s(1),...,s(m),a;,bo,b1,ba,...) € R(s,a;; fo;) C Vg,
where lim; .o z; = z. This contradicts the discreteness of V because V,, # V, i
By (5) and (6), we obtain s € SV such that each (s(1),...,s(n)) € S" is

irregular. Then, s is contained in some V € V, from which U, (s) C V for some
n € N, which implies that (s(1), ..., s(n)) is regular. This is a contradiction.

(0-dimensional compactification) Finally, we will show that clgn Z is a 0-

. . . . . —=N

dimensional compactification of Z. It suffices to show that dim §2° = 0. Because
—N . —N .

£2° is compact, each open cover U of §£2° has a finite refinement

{p,;il(]_['j’»li:l[ai,j,ﬂ,-,j]) i i = 1, e ,I’l},
where py : [P AN ﬁk is the projection onto the first k factors. We write

{Oéi,j,,Bi,j |i=1,...,l’l;j =1,...,mi}={yk|k=1,...,€},
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where y, < yr41 foreachk = 1,...,£ — 1. Note that y; = 0 and y; = w,. Then,
U has the following pair-wise disjoint open refinement:

{plzl(n’]ﬂ=l(ykj—lv Vk,]) | k] = 1,...,€},

where m = max{my,...,m,} and (yo,y1] = {0}. Therefore, dim 2 = 0. This
completes the proof. O

Remark 9. According to Theorem 5.5.3, there exists a 0-dimensional compact
space that contains a 1-dimensional subspace. Thus, in the Subset Theorem 5.3.3,
metrizability cannot be replaced by compactness.

Remark 10. The inequality dim X < Ind X holds for any completely normal (=
hereditarily normal) space X because the “if” part of Theorem 5.3.8 is valid for
such a space, as was pointed out in Remark 6 (at the end of Sect. 5.3).

5.6 Infinite Dimensions

In this section, several types of infinite dimensions are defined and discussed.
According to Theorem 5.2.17, dim X = oo if and only if X has an essential
family of n pairs of disjoint closed sets for any n € N. A space X is said to be
strongly infinite-dimensional (s.i.d.) if X has an infinite essential family of pairs
of disjoint closed sets. Obviously, if X is s.i.d. then dim X = oo. It is said that X is
weakly infinite-dimensional (w.i.d.) if dim X = oo and X is not s.i.d.,? that is, for
every family (A4;, B;);en of pairs of disjoint closed sets in X, there are partitions L;
between A; and B; such that (), Li = 0.

Theorem 5.6.1. The Hilbert cube IV is strongly infinite-dimensional.
Proof. Foreachi € N, let

A ={xel"|x(i)=0} and B, = {x e IV | x(i) = 1}.

Then, (A;, B;);en is essential in IN. Indeed, for each i € N, let L; be a partition
between A; and B;. For eachn € N, let j, : I" — IV be the natural injection
defined by

Jn(x) = (x(1),...,x(n),0,0,...).

Then, foreachi <n, j,~ I(Ly)isa partition between

Jrt (A ={xel" | x(i) =0} and j, '(B) ={x eI"| x(i) =1}.

3In many articles, the infinite dimensionality is not assumed, i.e., w.i.d. = not s.i.d., so f.d. implies
w.i.d. However, here we assume the infinite dimensionality because we discuss the difference
among infinite-dimensional spaces.
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Since (jn_l(A,-),jn_l(Bi));.’=1 is essential in I" (Corollary 5.2.16), we have
iz, j 7 N(Li) # 0, hence (/_, Li # 9. Since I'' is compact, it follows that
mieN L; ?é 9. O

By definition, a space is strongly infinite-dimensional if it contains an s.i.d.
closed subspace. Then, it follows from Theorem 5.6.1 that every space containing a
copy of I is strongly infinite-dimensional. For example, £, £, and RY are s.i.d.*
Moreover, rint @ = |J, cn[—1 + 27,1 =27"N and IV \ (0, )N are also s.i.d.>

It is said that X is countable-dimensional (c.d.) if X is a countable union of
f.d. normal subspaces, where it should be noted that subspaces of normal spaces
need not be normal (cf. Sect.2.10). A metrizable space is countable-dimensional
if and only if it is a countable union of 0-dimensional subspaces, because an f.d.
metrizable space is a finite union of 0-dimensional subspaces by the Decomposition
Theorem 5.4.5.

Theorem 5.6.2. A countable-dimensional metrizable space X with dimX = oo
is weakly infinite-dimensional. In other words, any strongly infinite-dimensional
metrizable space is not countable-dimensional.

Proof. Let (A;, Bi);en be a family of pairs of disjoint closed sets in X. We can
write X = UieN X;, where dim X; = 0. From Theorem 5.2.17 and the Partition
Extension Lemma 5.3.7, it follows that for each i € N, X has a partition L; between
A; and B; such that L; N X; = 0. Then, we have

Ne=(Ne)r(Ux)=U((Ne)ox

ieN \ N jeN
clJwinx)=0.
ieN
Therefore, X is w.i.d. O
According to Theorem 5.6.2, the space €D, . I" and its one-point compactifica-
tion are c.d., hence they are w.i.d. The following space is also c.d. (so w.i.d.):

I?v ={xe o | x(i) = 0 except for finitely many i }.

There exists a w.i.d. compactum that is not c.d. As is easily seen, any subspace of a
c.d. metrizable space is also c.d. However, a subspace of a w.i.d. metrizable space
need not be w.i.d. Such a compactum will be constructed in Theorem 5.13.1.

“Tt is known that £; ~ {, ~ R, where the latter homeomorphy was proved by R.D. Anderson.

3Since rint Q and IV \ (0, 1)Y are not completely metrizable, they are not homeomorphic to RY,
but it is known that rint @ ~ IV \ (0, 1)N.
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Now, we introduce a strong version of countable dimensionality. We say that X
is strongly countable-dimensional (s.c.d.) if X is a countable union of f.d. closed
subspaces. The space €D,y I, its one-point compactification, and the space I} are
s.c.d. Every s.c.d. space is c.d. but the converse does not hold. Let v,, be the subspace
of the Hilbert cube I'' defined as follows:

v = {x €I | x(i) e I\ Q except for finitely many i }.

Theorem 5.6.3. The space v,, is countable-dimensional but not strongly countable-
dimensional.

Proof. Since v, is the countable union of subspaces
{x eIV |x(i) eI\Q fori > n} =~ 1" x I\ Q)",

it follows that v, is c.d. Moreover, dimv,, = oo because I" x {0} C v, for any
neN.

Assume that v, is s.c.d., that is, v, = UneN F,, where each F,, is f.d. and closed
in v,,. Consider the subspace (I\Q)" C v,,. Since (I\ Q)" is completely metrizable,
at least one F, N (I\ Q)" has the non-empty interior in (I \ Q)Y by the Baire
Category Theorem 2.5.1. Then, we have a non-empty open set U in v, such that
Und\QN c F,n @\ Q). Since U contains a copy of every n-cube I", it
follows that dim U = oo, hence U \ F, # @ because dim F, < oo. Since (I\ Q)N
is dense in v,,, we have

(UN@I\Q)\(FENI\NQY) = U\ F)NA\Q" # 0.

which is a contradiction. Therefore, v, is not s.c.d. O

A collection A of subsets of X is locally countable if each x € X has a neigh-
borhood U that meets only countably many members of A, i.e., card A[U] < Ry.

Basic Properties of (Strong) Countable-Dimension 5.6.4.

(1) If X is a countable union of countable-dimensional subspaces, then X is
countable-dimensional.

(2) If X is a countable union of strongly countable-dimensional closed subspaces,
then X is strongly countable-dimensional.

(3) Every closed subspace of a (strongly) countable-dimensional space is (strongly)
countable-dimensional. For a metrizable space, this is valid for a non-closed
subspace, that is, every subspace of a (strongly) countable-dimensional metriz-
able space is (strongly) countable-dimensional.

The proofs of the above three items are trivial by definition.

(4) A paracompact space X is (strongly) countable-dimensional if each point x €
X has a (strongly) countable-dimensional neighborhood.
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Sketch of Proof. Let P be the property of closed sets in X being c.d. (or s.c.d.).
Apply Michael’s Theorem on local properties (Corollary 2.6.6). To show (F-3), use
the Locally Finite Sum Theorem 5.4.2.

(5) If a paracompact space X has a locally countable union of countable-
dimensional subspaces then X is countable-dimensional.

(6) If a paracompact space X has a locally countable union of strongly countable-
dimensional closed subspaces then X is strongly countable-dimensional.

Sketch of Proof of (5) (and (6)). Let A be a locally countable (closed) cover of X such
that each A € A is c.d. (s.c.d.). Each x € X has an open neighborhood V, in X such
that A[V,] is countable. Then, st(Vy, A) = |J A[V.] is a c.d. (s.c.d.) neighborhood of
xin X.

From Theorem 5.3.8, it follows that any finite-dimensional metrizable space X
contains an n-dimensional closed set for every n < dim X. However, this is not
true for an infinite-dimensional space. Namely, there exists an infinite-dimensional
compactum such that every subset with dim £ 0 is infinite-dimensional. Such a
space is called a hereditarily infinite-dimensional (h.i.d.) space. We will construct
an h.i.d. compactum in Theorem 5.13.4.

Next, we introduce infinite-dimensional versions of inductive dimensions. By
transfinite induction on ordinals « > w, the large transfinite inductive dimension
trind X and the small transfinite inductive dimension trind X are defined as
follows: trind X < w means that Ind X < oo and trInd X < « if each closed
set A C X has an arbitrarily small open neighborhood V' with trlndbd V' < «.
Similarly, trind X < o means that ind X < oo and trind X < « ifeach x € X
has an arbitrarily small open neighborhood V' with trindbd V' < «. Then, we define
trlnd X = o (resp. trind X = o) iftrlnd X < o (resp.trind X < o) and trlnd X £ B
(resp. trind X £ B) for any B < «. It should be noted that trlnd X < w (resp.
trind X < o) implies trlnd X = Ind X < oo (resp. trind X = ind X < 00). Using
transfinite induction, we can show that if trind X = o (resp. trind X = «) and
B < «, then X contains a closed set A with trind A = B (resp. trind A = f).

Lemma 5.6.5. If trInd X = « (resp. trind X = «) and B < «, then X has a closed
set Y such that trindY = B (resp. trind Y = B).

Proof. Because of the similarity, we prove the lemma only for trInd. Assume that
the lemma holds for any ordinal < «. Since trind X £ B, X has disjoint closed
sets A and B such that trind L £ B for any partition L between A and B. On the
other hand, since trlnd X < «, there is a partition L between A and B such that
trind L < «. If B = trInd L, then L is the desired Y. When 8 < trInd L, by the
inductive assumption, L has a closed set Y with trlnd Y = . O

It is said that a space X has large (or small) transfinite inductive dimension
(abbreyv. trInd (or trind)) if trInd X < « (or trind X < «) for some ordinal «.

Proposition 5.6.6. For a space X, the following statements hold:
(1) If X has trInd, then X has trind and trind X < trInd X.
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(2) If X has trind, then every subspace A of X also has trind, where trind A
trind X.

(3) If X has trInd, then every closed subspace A of X has trInd, where trInd A
trInd X.

(4) If X has no trInd, then X has a closed set A with an open neighborhood U such
that the boundary of each neighborhood of A contained in U has no trInd.

(5) If X has no trind, then X has a point x € X with an open neighborhood U such
that the boundary of each neighborhood of x contained in U has no trind.

IA

IA

Proof. Statements (1)—(3) are easily proved by the definitions.
(4): Let P be the collection of pairs (4, U) of closed sets A in X and open sets
U in X with A C U . Suppose that for each (4,U) € P, A has a neighborhood
Via,vy in X such that c1 V4 )y C U and bd V(4 vy has trInd. Take an ordinal a so
that o > trIndbd Vi4,¢ for every (A, U) € P. Then, Ind X < «, so X has trInd.
(5): In the proof of (4), replace the closed sets A in X with points x € X. O

We now prove that the converse of Proposition 5.6.6(1) does not hold.

Theorem 5.6.7. The strongly countable-dimensional space @, 1" has no trInd
but rind @, I" = w.

Proof. Each point of @, .y I" is contained in some I", hence trind P, .y I" < .
Because ind @,y I" = 00, we have trind P, . I" = .

On the other hand, assume that @@, I" has trInd, ie., tlnd P, I" = o
for some ordinal . Then, @ > w because dim @neN I" = oo0. By Lemma 5.6.5,
D, cnI" contains a closed set X with trilnd X = w. For each n € N, let
X, = X NTI". Then, each X, is finite-dimensional, but sup,cnydim X, = oo
because X = @neN X,. By Theorem 5.3.8, we have disjoint closed sets A4, and
B, in X, such that dim L > dim X,, — 1 for any partition L between A4, and B, in
X,. Then, A = P, cy 4n and B = P, oy B are disjoint closed sets in X. Since
trlnd X = w, we have a partition L in X between A and B such that trlnd L < o,
i.e.,dim L < o0. Choose n € N so that dimX,, > dim L + 1. Then, X,, N L is a
partition in X,, between 4, and B, and dim X,, N L < dim L < dim X,, — L. This is
a contradiction. Therefore, €, .y I" has no trInd. O

The above Theorem 5.6.7 also shows that the converse of the following theorem
does not hold.

Theorem 5.6.8. A metrizable space is countable-dimensional if it has trInd.

Proof. This can be proved by transfinite induction. Assume that all metrizable
spaces with trInd < « are c.d. and let X be a metrizable space with trlnd X = «.
By the analogy of Proposition 5.4.6, we can construct a o-locally finite basis I3 for
X such that trlndbd B < « foreach B € B. Let

Y= J{bdB|BeB} and Z=X\Y.
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Then, dim Z < 0 by Theorem 5.3.5. On the other hand, by the assumption, bd B is
c.d. for all B € B. Then, Y is also c.d. by 5.6.4(5) and (1). Therefore, X isc.d. O

The following theorem can be proved in a similar manner (cf. the proof of
Theorem 5.5.2).

Theorem 5.6.9. A separable metrizable space is countable-dimensional if it has
trind. O

Remark 11. In Theorem 5.6.9, it is unknown whether the separability is necessary
or not, that is, the existence of a metrizable space that has trind but is not c.d. is
unknown.

As we saw in Theorem 5.6.7, the converse of Theorem 5.6.8 is not true in general,
but it is true for compacta. Namely, the following theorem holds:

Theorem 5.6.10. A compactum has trInd if and only if it is countable-dimensional.

Proof. Tt is enough to prove the “if” part. Let X be compact and X = |, ¢y Ans
where dim A, < O for each n € N. Suppose that X has no trInd. Then, by
Proposition 5.6.6(4), X has a closed set A with an open neighborhood U such
that the boundary of each neighborhood of A contained in U has no trInd. Since
dimA; < 0, we can use the Partition Extension Lemma 5.3.7 to find a closed
neighborhood V; of A contained in U such thatbd V; N A; = @. Then, X; = bd V]
has no trInd and X; N A; = @. By the same argument, we have a closed set X, C X
that misses A, and has no trInd. Thus, by induction, we can obtain closed sets
X1 D X, D .-+ such that each X, has no trInd and X,, N A, = @. Then,

X=X 04 cJX.n4,) =0

neN neN neN neN

which contradicts the compactness of X. O

Although €, . I" has no trInd (Theorem 5.6.7), the one-point compactification
of @, ey I" has trInd by Theorem 5.6.10. Thus, even if a space X has trInd, it does
not imply that a subspace A of X has trlnd, that is, Theorem 5.6.6(3) does not hold
without the closedness of A.

Theorem 5.6.11. A completely metrizable space has trind if it is countable-
dimensional.

Proof. Let X = (X,d) be a complete metric space and X = |J, ey Ans
where dim A, < O for each n € N. Suppose that X has no trind. Then, by
Proposition 5.6.6(5), X has a point a with an open neighborhood U such that
the boundary of each neighborhood of a contained in U has no trind, where we
may assume that diam U < 27!, In the same way as for Theorem 5.6.10, we can
inductively obtain non-empty closed sets X; D X, D --- such that X, N 4, = @
and diam X,, < 27" for each n € N. Then,

X=X J4c|JX.n4,) =0

neN neN neN neN
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However, the completeness of X implies (1), ey X» 7 @. This is a contradiction. O
Combining Theorems 5.6.9 and 5.6.11, we have the following corollary:

Corollary 5.6.12. A separable completely metrizable space has trind if and only if
it is countable-dimensional. O

The next theorem shows that the “if”” part of Theorem 5.6.11 does not hold
without the completeness.

Theorem 5.6.13. The strongly countable-dimensional space Ilj\} has no trind.
To prove this theorem, we need the following two lemmas:

Lemma 5.6.14. Let X be a subspace of a metrizable space M . Then, every open set
U in M contains an open set U’ in M suchthat X NU' = X NU and X Ncly U’ =
cly (X NU’), hence X Nbdy U’ =bdyx (X NU).

Proof. Take d € Metr M and define
U={xeU|dx,XNU)<dx,X\U)}.

Then, XNU’ = XNU.Evidently, cly (XNU’) C X Ncly U’. Assume that cly (X N
U)=cly(XNU) # X Ncly U, thatis, we have x € X Ncly U' \cly (X NU).
For each ¢ > 0, we have y € U’ so that d(x, y) < %min{e,d(x,X N U)}. Since
diy, X NU) <d(y,X \ U), it follows that

dx,X\U)>d(y,X\U)—d(x,y)
>d(y,XNU)—3d(x, X NU)=1d(x,XNU) > 0.

On the other hand, x ¢ X N U, i.e., x € X \ U, which is a contradiction. O

Lemma 5.6.15. Let M be a separable metrizable space and X C M with
trind X < a. Then, X is contained in some Gg-set X™* in M with trind X* < a.

Proof. Assuming that the lemma is true for any ordinal < o, we will show the
lemma for «. For each i € N, applying Lemma 5.6.14, we can find a countable
open collection &; in M such that X C X; = |JU;, meshlf; < 1/i, and trind X N
bdy U < « foreach U € U;, where X Nbdy U = bdy (X NU) foreach U € U;.
By the inductive assumption, for each U € U;, there is a Gs-set Gy in M such that
X Nbdy U C Gy and trind Gy < «. Then,

X*=(Xxin[) () (GuUM\bdy U))

i€N ieNU€elU;

=N x\UJ U bdw U\ Gu)

ieN ieNUel;
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isa Gg-setin M and X C X*. Forany i € N, every x € X* is contained in some
U € U;. Then,diam X* NU < 1/i and

bdy«(X*NU) =cly+(X*NU)\U
Cc(X*Ncly U)\U =X*Nbdy U C Gy,

which implies trind X* Nbdy U < «. Thus, each point x € X™* has an arbitrarily
small neighborhood V' with trindbdy+ V' < «. Hence, trind X* < «. O

Proof of Theorem 5.6.13. Assume that I§ has trind. According to Lemma 5.6.15,
I? is contained in some Gg-set G in IN that also has trind. Then, G is c.d. by

Theorem 5.6.9. We show that G contains a copy of IN, hence G is s.i.d., which
contradicts Theorem 5.6.2. Thus, we obtain the desired result.

Let G = (yen Uk, where Uy is open in I'. Note that 0 = (0,0,...) € I? C
G C U,.Choosen; € Nand ay,...,a,, € (0,1) so that

{erN‘x(i)fai for i =1,....n} C Uy

Note that []/L,[0,a;] x {0} C II? C U,. According to the Wallace Theorem 2.1.2,

i=1
we can choose n, € Nand a,, 41, ...,as, € (0,1) so that ny, > n; and

{xEIN\x(i)fai for i =1,...,n2}CU2.

By induction, we can obtain an increasing sequence n; of natural numbers and a
sequence a; € (0, 1) such that

{erN‘x(i)fai for i =1,....n;} C Uy foreach k € N.

Then, G = (;ey Uk contains [],cy[0, a;] ~ I O

Remark 12. There exists a slightly stronger version of the weak infinite dimension.
We say that X is weakly infinite-dimensional in the sense of Smirnov (S-w.i.d.)
if dim X = oo, and for every family (A;, B;);en of pairs of disjoint closed sets
in X, there are partitions L; between A; and B; such that ﬂ;’:l L; = @ for some
n € N. To distinguish w.i.d. from S-w.i.d. the term “weakly infinite-dimensional
in the sense of Alexandroff (A-w.i.d.)” is used. Obviously, every S-w.i.d. space is
(A-)w.i.d. For compact spaces, the converse is also true, that is, the two notions of
weak infinite dimension are equivalent. It was shown in [32] that the Stone—Cech
compactification of a normal space X is w.i.d. if and only if X is S-w.i.d.°

SRefer to Engelking’s book “Theory of Dimensions, Finite and Infinite,” Problem 6.1.E.
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5.7 Compactification Theorems

Note that every separable metrizable space X has a metrizable compactification.
Indeed, embedding X into the Hilbert cube N (Corollary 2.3.8), the closure of X
in I is a metrizable compactification of X . On the other hand, every n-dimensional
metrizable space can be embedded in an n-dimensional completely metrizable space
as a dense set (Theorem 5.3.4). In this section, we show that every n-dimensional
separable metrizable space has an n-dimensional metrizable compactification and
that every c.d. (resp. s.c.d.) separable completely metrizable space has a c.d. (resp.
s.c.d.) metrizable compactification.

Note. Here is an alternative proof of Corollary 2.3.8. Let X = (X,d) be a separable
metric space with {a; | i € N} a countable dense set. For each i € N, we define a map
fi : X = Iby fi(x) = min{l,d(x,a;)} for each x € X. Then, themap f : X — IV
defined by f(x) = (f;(x));en is an embedding. Indeed, for x # y € X, choose a; so that
d(x,a;) < min{l, %d(x, ¥)}. Then, f;(x) < f;(y) because

fie) =d(x.a;) < 3d(x.y) <d(x,y) —d(x,a;) < d(y.a).

Thus, f is injective. If f is not an embedding, then there are x,x, € X, n € N, and
0 < § < 1 such that lim, oo f(x,) = f(x) but d(x,,x) > § for all n € N. Choose a; so
that d(x,a;) < %8. Then, we have f;(x) < 1. For sufficiently large n € N,

Jixn) = fi(x) = d(xy,a;) — d(x,a;)
>d(x,,x)—2d(x,a;) > 86— %8 = %8,

which contradicts lim, o f; (x,) = f;(x). Therefore, f is an embedding.

Recall that a metric space X = (X, d) or ametric d is said to be totally bounded
provided that, for any ¢ > 0, there is a finite set A C X such that d(x, A) < ¢ for
every x € X, ie., X = (J,c Bua(a,ée). It is now easy to show that X is totally
bounded if and only if, for any ¢ > 0, X has a finite open cover ¢/ with meshl/ < ¢.
Then, every compact metric space is totally bounded. As is easily seen, any subspace
of a totally bounded metric space X is also totally bounded with respect to the metric
inherited from X.

Theorem 5.7.1. A metrizable space is separable if and only if it has an admissible
totally bounded metric.

Proof. If a metrizable space X is separable, then X can be embedded in the Hilbert
cube I, Restricting a metric for I'Y, we can obtain an admissible totally bounded
metric on X.

Conversely, if X has an admissible totally bounded metric d, then X has finite
subsets A;, i € N, so that d(x, 4;) < 2~/ for every x € X. Then, A = UieN A; is
a countable dense subset of X. Hence, X is separable. O
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Theorem 5.7.2 (COMPACTIFICATION THEOREM). Every n-dimensional sepa-
rable metrizable space has an n-dimensional metrizable compactification.

Proof. Let X be a separable metrizable space with dim X = n. By Theorem 5.7.1,
X has an admissible totally bounded metric d. For each i € N, X has a finite open
cover; = {U;; | j = 1,....,m;} such that ord; < n + 1, meshy U; < 27,
and mesh fi/ j/(U;) < 27 fori’ <i and j' < m;s, where f; ; : X — Iis the map
defined by

d(x, X \ Ui,j)

’1?;1 dx, X\ Uix)

Foreachi € N, we defineamap f; : X — I'" by

Jij(x) =

Ji) = (fin(). .o fim (X))

Then, the map f : X — [[;en I defined by f(x) = (fi(x))ien is an embedding.
Indeed, | J,enU; = {U;j | i € N, j < m;} is an open basis for X. Since x € U; ;
if and only if f; ;(x) > 0, it follows that f is injective, and

fWij) = f(X)N{z € [Ten " | 26)(j) > 0}.

The closure X of S(X)in [ ;e I is a metrizable compactification of X. Let p
be the admissible metric for [, . I defined by p(z, 7') = sup; ey 27 pi (2(i), 7 (i),
where p; is the metric for I’ defined by

pi(x.y) =max{|x(j) —y()||j=1.....m} forx,y eI,

Foreachi e Nand j < m;,letW,;; ={z € X | z(i)(j) > 0}. Then, WiiNnf(X)=
f(U;,j)is densein W; ;. Fori’ < i

diam,,, f;/(U; ;) = max {diam f; ;/(U; ;) | j' < mi} <27".

Thus, it follows that diam, W; ; = diam,, f(U; ;) < 2~i Foreachz € )Z, we have
X, € X, n € N, such that f(x,) — z (n — o0). Note that Z’]"’:l Sfij(xn) = L
For eachi € N, we can find j < m; such that f; ; (x,) > 1/m; for infinitely many
n € N. Because f; j(x,) — z(i)(j) (n — 00), we have z(i)(j) > 1/m;, ie., z €
W; ;. Therefore, W; = {W;; | j = 1,....m;} € cov()?) with mesh, W, < 277,
Since W; ; N f(X) = f(U;i;) and f(X) is dense in X, it follows that ord W; =
ord f(U;) = ordU; < n + 1. Since X is compact, we can find i} <ip <---inN
so that W;, > W;, > ---. Then, dim X < n by Theorem 5.3.1. On the other hand,
dim X < dim X by the Subset Theorem 5.3.3. Thus, we have dim X = n. u]

In the above proof, suppose now that X is a closed subset of a separable
metrizable space Y and d is an admissible totally bounded metric for Y. Then,
Y has open covers V; = {V;; | j = 1,...,m;} such that ord V;[X] < n + 1,
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meshy Vi < 277, and meshgy ;/(V;) < 27 fori’ < i and j' < m;, where
gi,j - Y — Iis the map defined by

diy. Y \Vi;)

?;1 d(y, Y\ Vix)

As for f in the above proof, using maps g; ;, we can define an embedding g : ¥ —

[T I The closure ¥ of g(Y) in [,y I is a metrizable compactification of ¥
such that dimcly X = dim X. Furthermore, we can strengthen this as follows:

&i,j ) =

Theorem 5.7.3. Let X be a separable metrizable space and X, X», ... be closed
sets in X. Then, there exists a metrizable compactification X of X such that
dimcly X; = dim X;.

Sketch of Proof. Assume that dim X; = n; < 00. Let d be an admissible totally bounded
metric for X. Construct open covers U; ; = {U;jx | k = 1,..., m(i, j)} of X so that
ordU; ;[X;] < n;+1, meshy U ; < 27~/ and mesh S Ui j) < 27 fori’+j’ <
i+ jandk’ <m(i’, j'), where f; ;i : X — Iis the map defined by

d(x, X\ U, x)
Y dx X\ Uiy
As above, we can now use these maps f; j to define an embedding

fex—=>1] I .

neNi+j=n+1

Jijr(x) =

The desired compactification of X is obtained as the closure X of f(X) in the compactum
l—InGN Hi+j=n+l Im(h/)'

Next, we show the following theorem:

Theorem 5.7.4. Every separable completely metrizable space X has a metrizable
compactification yX such that the remainder yX \ X is a countable union of finite-
dimensional compact sets, hence it is strongly countable-dimensional.

Proof. We may assume that X is a subset of a compact metric space Z = (Z,d)
with diam Z < 1. Since X is completely metrizable, we can write X = ﬂieN G,
where G; D G, D --- are open in Z. Since each G; is totally bounded, G; has a
finite open cover U; with meshlf; < 27'. We can write | J;.yU; = {U, | n € N}.
Let f : Z — I be a map defined by

fl@m) =diz X\U,), neN.
Then, f|X is an embedding. In fact, if x # y € X, there exists some U, such
that x € U, but y € U,. Then, f(x)(n) # 0 = f(y)(n), which implies that
f(x) # f(»). For each x € X and each neighborhood U of x in X, choose n € N
sothat x € U, N X C U. Since

fUNX)=fX)Nn{x el |xn) >0},

f(U) is a neighborhood of f(x) in f(X).
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Let yX be the closure of f(X) in I'. Identifying X with f(X), yX is a
compactification of X. Note that yX C f(Z). If f(z)(n) > O for infinitely many
n € N, then z is contained in infinitely many G;, which implies that z € ("), oy Gi =
X. Thus, we have f(Z)\ f(X) C I}, hence yX \ X C I?. Since X is completely
metrizable, X is Gs in yX, hence yX \ X is F, in yX. Consequently, yX \ X is a
countable union of f.d. compact sets. O

Now, we prove a compactification theorem for (strongly) countable-dimensional
spaces:

Theorem 5.7.5. Every (strongly) countable-dimensional separable completely metriz-
able space has a (strongly) countable-dimensional metrizable compactification.

Proof. The c.d. case is a direct consequence of Theorem 5.7.4. To prove the s.c.d.
case, let X be a separable completely metrizable space with X = [,y Xi, where
each X; isclosed in X, dim X; < oo, and X; C X, C ---. By Theorem 5.7.3, X has
a metrizable compactification Y such that dimcly X; = dim X;. By the complete
metrizability of X, we can write X = ﬂieN U;, where each U; is open in Y and
Y=U DU D--.LetZ =,y Ui Nely X;. Then, X = |, Xi C Z. Since
each U; Ncly X; is an F,-setin Y, Z is a countable union of f.d. compact sets.

We show that Y \ Z = |, ((Y \ cly X;) \ Ui +1), which is an F,-set in Y. For
eachy € Y\Z,letip) = max{i € N |y € U;}. Then, y € U;,\Uj,+1, which implies
y & cly X;, because y ¢ Z.Hence, y € (Y \cly X;,) \ Ujy+1. On the other hand, for
eachz € Z, we havei; suchthatz € U; Ncly X;,.Fori > i,z & (Y \cly X;)\U;+1
because z € cly X;, Ccly X;.Fori <ij,z¢ (Y \cly X;)\U; 4 becausez € U;, C
U;+1. Thus, Z is a Gg-set in a compactum Y, hence it is completely metrizable.

Now, applying Theorem 5.7.4, we have a metrizable compactification Z of
Z such that Z \ Z is a countable union of f.d. compact sets. Then, Zis a
compactification of X and it is a countable union of f.d. compact sets, hence it
is s.c.d. O

5.8 Embedding Theorem

Recall that every separable metrizable space X can be embedded into the Hilbert
cube IN (Corollary 2.3.8). As a finite-dimensional version of this result, we prove
the following theorem:

Theorem 5.8.1 (EMBEDDING THEOREM). Every separable metrizable space
with dim < n can be embedded in 1"t and can hence be embedded in the
Euclidean space R*'*1,

Remark 13. In Theorem 5.8.1, the cube I?"*! cannot be replaced by a smaller
dimensional cube. In fact, there exist n-dimensional compact polyhedra that cannot
be embedded into I?". See Fig. 5.3.
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K(AHD =~ o5 12

Fig. 5.3 A I-dimensional polyhedron that cannot be embedded in I?

To prove Theorem 5.8.1, we introduce a new notion. Now, let X = (X, d) be
a compact metric space. Given ¢ > 0, amap f : X — Y is called an e-map if
diam f~!(y) < e foreach y € Y. Then,amap f : X — Y is an embedding if and
onlyif f : X — Y is an e-map for every & > 0.

Lemma 5.8.2. Let f : X — Y be an e-map from a compact metric space X =
(X, d) to a metric space Y = (Y, p). Then, there is some § > 0 such that any map
g: X = Y with p(f, g) <6 is an e-map.

Proof. Since f is a closed map, each y € Y has an open neighborhood V) in ¥
such that diam f~!(V,) < e. Since X is compact, we can choose § > 0 so that
each B,(f(x),28) is contained in some V,, hence diam f ' (B,(f(x),28)) < e.
Letg: X — Y beamapwith p(f.g) <8.Fory € Y and x,x" € g7'(y),

p(f(x), f(x) = p(f(x). g(x)) + p(f(x), g(x")) <28,

which implies that g~ (y) C f~'(B,(f(x),28)). Therefore, diam g~ (y) < ¢, that
is, g is an e-map. O

For spaces X and Y, let Emb(X, Y') denote the subspace of C(X, Y') consisting
of all closed embeddings.

Theorem 5.8.3. Let X = (X,d) be a compact metric space and Y = (Y, p) a
complete metric space. Assume that for each ¢ > 0 and § > 0, everymap [ : X —
Y is §-close to an e-map. Then, every map f : X — Y can be approximated by an
embedding, that is, Emb(X, Y) is dense in the space C(X,Y) with the sup-metric.

Proof. For eachn € N, let G, be the set of all 27"-maps from X to Y. Then, G,, is
open and dense in the space C(X, Y) by Lemma 5.8.2 and the assumption. By the
Baire Category Theorem 2.5.1, Emb(X,Y) = (), ey Gn is also dense in C(X,Y),
hence so is the set of embeddings of X into Y. O

The following is called the GENERAL POSITION LEMMA:

Lemma 5.8.4 (GENERAL POSITION). Let {U; | i € N} be a countable open
collection in R" and A C R" with card A < R such that each n + 1 many points of
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A are affinely independent. Then, there exists B = {v; | i € N} such thatv; € U;\ A
foreachi € N and each n + 1 many points of AU B are affinely independent.

Proof. Assume that vi € Uy, ..., vy € Ui have been chosen so that each n + 1
many points of A U {vy, ..., v} are affinely independent. Using the Baire Category
Theorem 2.5.1 and the fact that every (n — 1)-dimensional flat (= hyperplane) in R”
is nowhere dense in R”, we can find a point

Vk4+1 € Uk+1\U{ﬂ{x1,...,xk} | Xi eAU{vl,...,vk}}.

Then, each n + 1 many points of A U {vy, ..., v} are affinely independent. By
induction, we can obtain the desired set B = {v; | i € N} C R". O

Because every separable metrizable space has a metrizable compactification
with the same dimension by the Compactification Theorem 5.7.2, the Embedding
Theorem 5.8.1 can be obtained as a corollary of the next theorem:

Theorem 5.8.5 (EMBEDDING APPROXIMATION). Let X be a compact metric
space with diim X < n. Then, every map f : X — I*"T! can be approximated
by embeddings, that is, for each ¢ > 0, there is an embedding h : X — I*"*! that
is e-close to f. In particular, every compact metrizable space with dim < n can be
embedded in 1",

Proof. Because of Theorem 5.8.3, it is enough to show that for each ¢ > 0 and
§ > 0,everymap f : X — I?"T!is §-close to an e-map. We have a finite open
cover U of X such that ordd < n + 1, meshi < e, and mesh f(UU) < §/2.
Let K = N(U) be the nerve of U. A canonical map ¢ : X — |K]| is an e-map
because ¢ '(Ok) < U. By the General Position Lemma 5.8.4, we have points
vy € "Y1 U € U, such that d(vy, f(U)) < §/2 and every 2n + 2 many points
VU,+ - -\ VUy, 4, are affinely independent. We can define a map g : |[K| — I*"*! as
follows: g(U) = vy foreach U € U = K© and g is linear on each simplex of K.
Then, g is injective. Hence, h = g¢ : X — I*"*! is an e-map. For each x € X, let
U[X] = {Ul, “eey Uk}. Then,

Ivo; = fF(OI = d(vy,.. f(Up)) + diam f(U;) < 6.

Since B( f(x), ) is convex, it follows that

go(x) € g((Ur,.... U)) = (vu-- .. vy, ) CB(f(x).6).

Therefore, h = g¢ is 5-close to f. O

We generalize a non-compact version of the Embedding Approximation The-
orem 5.8.5. Given U € cov(X), amap f : X — Y is called a U-map if
F7Y V) < U for some V € cov(Y). By Cy(X,Y), we denote the subspace of
C(X,Y) consisting of all /-maps. In the case that X is a compact metric space, let
e > 0 be a Lebesgue number for &/ € cov(X). Then, every /-map is an e-map.
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Conversely, if Y = {B(x,¢) | x € X}, then every e-map f : X — Y is a //-map.
Indeed, f is closed because of the compactness of X. For each y € f(X), take
x, € f71(»). Since f~1(y) C B(xy, ), y has an open neighborhood V, in ¥ such
that f~'(V,) C B(x,,¢). Then,

V={V,|ye f(X)}U{Y\ f(X)} €cov(¥) and f'(V) <U.

Recall that if Y is completely metrizable then the space C(X,Y) with the
limitation topology is a Baire space (Theorem 2.9.4). The limitation topology is
the topology in which {V(f) | V € cov(Y)} is a neighborhood basis of each
f €C(X,Y),” where

V(f)={g €C(X,Y) | gis V-close to }.

In the following two lemmas, let Y be an arbitrary paracompact space.

Lemma 5.8.6. ForeachU € cov(X), Cy(X,Y) is open in the space C(X,Y) with
the limitation topology.

Proof. For each f € Cy(X,Y), f~'(V) < U for some V € cov(Y). Let W €
cov(Y) such that stVW < V. For each g € W(f), f(g7'OW)) < stW < V, so
g7 'W) < f~1(V) < U, which implies g € Cy (X, Y). O

Lemma 5.8.7. For each complete metric space X = (X,d), Emb(X,Y) =
(Mnen Cu, (X, Y), where U, € cov(X) with meshid, < 27". Thus, when X is a
completely metrizable space, Emb(X,Y) is a Gs-set in the space C(X,Y) with the
limitation topology.

Proof. Obviously, Emb(X,Y) C (,ey Cu, (X, Y). Every f € (),en Cu, (X, Y) is
injective. For x, € X, n € N, if (f(x,))sen is convergent, then (x,),ey is Cauchy,
so it is convergent. This means that f is closed, hence f € Emb(X,Y). Thus, we
have Emb(X,Y) = (), ey Cu, (X, Y). |

When Y is completely metrizable, the space C(X,Y) with the limitation
topology is a Baire space by Theorem 2.9.4. Then, by Lemmas 5.8.6 and 5.8.7,
Theorem 5.8.3 can be generalized as follows:

Theorem 5.8.8. Let X and Y be completely metrizable spaces. Suppose that, for
each U € cov(X), Cy(X,Y) is dense in the space C(X,Y) with the limitation
topology. Then, Emb(X,Y) is also dense in C(X,Y). In other words, if every map
f X — Y is approximated by U-maps for each U € cov(X), then every map
f X = Y is approximated by closed embeddings. O

"When Y is paracompact, {V(f) | V € cov(Y)} is a neighborhood basis of each f € C(X,Y)
and the topology is Hausdorff.
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We consider the case that X and Y are locally compact metrizable. Let C* (X, Y)
be the subspace of the space C(X, Y) with the limitation topology consisting of all
proper maps.® Then, the space C(X,Y) is a Baire space by Theorem 2.9.8. It
should be noted that Emb(X,Y) C C”(X,Y). Moreover, if X is non-compact,
then any constant map of X to Y is not proper, which implies that Emb(X, Y) is
not dense in the space C(X,Y) with the limitation topology because C” (X,Y) is
clopen in C(X, Y') due to Corollary 2.9.7. For an open cover i € cov(X) consisting
of open sets with the compact closures, we have C/(X,Y) C CP(X,Y).

Indeed, for each f € Cy(X,Y), let V be a locally finite open cover of ¥ such that
f~'(V) < U. Each compact set A in Y meets only finitely many V;,..., V, €V,
where each f~!(V}) is contained in some U; € U. Then, f~1(4) C |J;—, clU;. Since
U!_, clU; is compact, f~!(A) is also compact.

The following theorem is the locally compact version of Theorem 5.8.8:

Theorem 5.8.9. Let X and Y be locally compact metrizable spaces. If Ci(X,Y)
is dense in the space C*(X,Y) with the limitation topology for each open cover

U of X consisting of open sets with the compact closures, then Emb(X, Y) is also
dense in C* (X, Y). O

Now, we show the following locally compact version of the Embedding Approx-
imation Theorem 5.8.5:

Theorem 5.8.10 (EMBEDDING APPROXIMATION). Let X be a locally compact
separable metrizable space with dim X < n. Then, Emb(X,R?>"*1) is dense in the
space CP (X, R¥"*1) with the limitation topology, that is, for each open cover U
of R+ every proper map f : X — R>*!is U-close to a closed embedding
h:X — R>»FL

Proof. Because of Theorem 5.8.9, it suffices to show that C;(X,Y) is dense in
CP(X,R?>"*1) for each U € cov(X), that is, for any V € cov(R?>"*1), every proper
map f : X — R?>"T!is V-close to some U-map h : X — R>"+1,

We can find W € cov(R*"*!) such that W is star-finite (ord W < 2n + 2),
cl W is compact for each W € W, and {(st(x,W)) | x € X} < V. By replacing
a refinement with U, we may assume that U/ < f~1(W) (e, fU) < W), U is
countable, and ordi/ < n + 1 (cf. Corollary 5.2.5). Write Y = {U; | i € N} and
choose W; € W, i € N, so that f(U;) C W;. Let K = N(U) be the nerve of U
with ¢ : X — |K| a canonical map. Then, dim K < n and ¢ is a //-map because
¢ ' (Og(U)) C U foreachU eld = K©.

By the General Position Lemma 5.8.4, we have points v; € R?**+! i e N, such
thatv; € W; and every 2n + 2 many points v;, ..., v, , are affinely independent.
Then, we have a PL-map g : |K| — R?"*! such that g(U;) = v; € W, for each
U; € K9 = { and g|o is affine on each simplex o € K. For each pair of simplexes
0.7 € K, g(6® U t©) is affinely independent, which implies that g|o U 7 is an
embedding. Hence, g is injective.

8Tn this case, a proper map coincides with a perfect map (Proposition 2.1.5).
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To prove that g is a closed embedding, let A be a closed set in |K|. Each y €
cl g(A) is contained in some W € W. By the star-finiteness of W, W[W] is finite,
hence g(K©) N W is finite. Since K is star-finite, W N g(o') # @ for only finitely
many simplexes o € K. Let

{o€e K| Wngo)#0} ={o1.....0m}

Since g is injective, it follows that W N g(A) = J'_, W N g(A4 N o;), which is
closed in W, and hence y € g(A). Therefore, g(|K|) is closed in R** 1,

It remains to be shown that the ¢//-map g¢ : X — Y is V-close to f. For each
x € X, take the carrier 0 € K of ¢(x) and let 0® = {U;,,..., U, }. Then,

glp(x)) € g(0) = (g(@ ) = (viy, ..., i)

On the other hand, since x € U;, N---NU;,, we have f(x) € W;, N---NW,,. Then,
it follows that v; , ..., v;, € st(f(x), W). Recall that (st( f(x), W)) is contained in
some V' € V. Then, we have g(¢(x)), f(x) € V. Thus, gg is V-close to f. O

Remark 14. In the Embedding Approximation Theorem 5.8.10, amap f : X —
R?"*+1 cannot be approximated by closed embeddings if f is not proper. Indeed,
A = f7'(a) is not compact for some a € Rt If h : X — Rt isa
closed embedding then /(A) is closed in R*"*!. Because h(A) is non-compact,
it is unbounded, hence sup,. 4 [|2(x) — f(x)| = oo.

We now show the following proposition:

Proposition 5.8.11. Let X be a paracompact space and n € w. Suppose that for
eachlU € cov(X), there exist a paracompact space Y withdimY < n and a U-map
f:X —> Y. Then, dimX <n.

Proof. For eachU € cov(X), we have alf-map f : X — Y such thatdimY < n.
Then, by Theorem 5.2.4, we have V € cov(Y) such that f~!(V) < U and ord V <
n + 1. Note that ord f_l (V) < n+ 1. Therefore, dim X < n by Theorem5.2.4. O

When X is a metric space, using Theorem 5.3.1 instead of Theorem 5.2.4, we
have the following:

Proposition 5.8.12. Let X be a metric space and n € w. Suppose that for each
e > 0, there exist a paracompact space Y with dimY < n and a closed e-map
f:X —>Y.Then dimX <n. O

5.9 Universal Spaces

Given a class C of spaces, a space Y € C is called a universal space for C if every
space X € C can be embedded into Y. The Hilbert cube I'' and RY are universal
spaces for separable metrizable spaces (Corollary 2.3.8) and the countable power
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J(I)N of the hedgehog is the universal space for metrizable spaces with weight
< card I" (Corollary 2.3.7).°

In this section, we show the existence of universal spaces for metrizable spaces
with dim < n, and for countable-dimensional and strongly countable-dimensional
metrizable spaces.

First, we will show that the space I} is also a universal space for strongly
countable-dimensional separable metrizable spaces.

Lemma 5.9.1. Let X be a separable metrizable space and Xo C X, be closed
sets in X with dim X, < n. Then, there exists amap f : X — 12"%2 such that
Xo = f~10) and f|X\\ Xo is an embedding.

Proof. Applying the Tietze Extension Theorem 2.2.2 coordinate-wise, we can
extend an embedding of X into I?”*! obtained by Theorem 5.8.1 to a map
h:X — P Letg : X — Ibeamap with g7'(0) = X,. We define a map
f X -2 =P x Dby f(x) = (g(x)h(x), g(x)). Then, £~1(0) = X. It
is easy to prove that f|X; \ Xy is injective. To see that f|X; \ X, is an embedding,
let x,x; € X; \ Xo, i € N, and assume that f(x) = lim; f(x;). Since
g(x;) — g(x) and g(x;).g(x) > 0, we have g(x;)~! — g(x)~', which implies
that #(x;) — h(x) in I*"*!, hence x; — x in X. Therefore, f|X; \ Xo is an
embedding. O

Theorem 5.9.2. The space II? is a universal space for strongly countable-
dimensional separable metrizable spaces.

Proof. Let X be an s.c.d. separable metric space. We can write X = (J,cy Xk,
where X; & X, G .-+ are closed in X and dim X} = n; < oo. By Theorem 5.7.3,
X has a metrizable compactification Y such that dimcly Xy = dim Xy = nj. By
Lemma 5.9.1, we have maps f; : ¥ — I”"*2 (k € N) such that fk_l(O) =
cly Xj—1and fi|cly Xi\cly Xi—; is an embedding for each k € N, where X, = 0.
We define amap f : Y — [[iey P2 = IV by f(x) = (fe(x))ken. Then,
S Ujen cly Xk is injective. By definition, f(|_,encly Xk) C I?}. Fory e Y, if
f(y) e II?, then fr4+1(y) = 0 for some k € N, which means that y € cly Xj. Then,
it follows that

fAN I_N = f(ANUgencly Xi) foreach A C Y.

Since f is a closed map, the restriction f|Ugen cly Xi @ Ugencly Xe — I is
also a closed map. Therefore, f|(J;cycly Xk is an embedding, hence so is f|X.
This completes the proof. O

For eachn € w, let

ve = {x €I" | x(i) e I\ Q except for n many i }.'°

9Usually, the phrase “the class of” is omitted.
10Recall that v° denotes the space R \ Q. Then, vy & v° but vy &~ ((—1, 1) \ Q)F ~ v°.
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Then,vo = I\QNCcviCcv, C---Cv, = U, Vn- Recall that v,, is c.d. but
not s.c.d. (Theorem 5.6.3). We will show that v, is a universal space for separable
metrizable spaces with dim < n and that v,, is the universal space for c.d. separable
metrizable spaces. To avoid restricting ourselves to separable spaces, we construct
non-separable analogues to v, and v,,.

Let I be an infinite set. Recall that the hedgehog J(I") is the closed subspace of
£1(I") defined as

J(I) = {xeﬁl([')|x(y)el forall y € I' and
x(y) # 0 foratmostone y € F}

= (J(0.¢,) = | JIe, c ta(1).

yer yer

Then, dim J(I') = 1. Let

P(M) ={xeJ(I) | x(y) e M\ Q) U{0}} = {0} U [ J T\ Qe,.

yer

Observe P(I") = {0} U |,y Pi, where P, = P(I") \ B(0,1/i). Each P; is the
discrete union of 0-dimensional closed sets in P (") that are homeomorphic to I\ Q,
hence dim P; = 0 by the Locally Finite Sum Theorem 5.4.2. Then, dim P(I") = 0
by the Countable Sum Theorem 5.4.1. Now, we define

V(M) = {z e J(N)N | z(i) € P(I") except for finitely many i}.

Observe that v, (1") is the countable union of subspaces that are homeomorphic
to J(I')" x P(I")N. Since dim J(I")" x P(I")Y < n (Product Theorem 5.4.9 and
Theorem 5.3.6) and J(I")" contains a copy of I", we have dim J(I")" x P(I")N = n.
Therefore, it follows that v, (") is c.d. For each n € w, we define

v(IN) = {z e J(NN \ z(i) € P(I'") exceptforn manyi}.

Then, vo(I') = P(D)N Cvi(IN) Cvp(F) C -+ Cvu(T) = U, e, va ().

new
Theorem 5.9.3. For eachn € w, dimv,(I") = dimv, = n.
Proof. We only give a proof of dim v, (I") = n because dim v, = n is similar and
simpler.

We already proved that dimvy(I") = dim P(I')Y = 0. Assuming that
dimv,—;(I') = n — 1 and n > 0, we now prove that dimv,(I") = n. We can

write
M =vw@ul) U Uwqep.

ieN qe((0.11NQ) yel’
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where v, (i, q, y) is a closed set in v, (I") defined as follows:

va(i.q.y) = {z € va(I") | 26)(y) = gq}.

Since {v,(i,q,y) | v € I} is discrete in v,(I") and v,(i,q,y) ~ vy,—1(I"),
UyEF v, (i, q,y)is an (n — 1)-dimensional closed set in v, (I") by the Locally Finite
Sum Theorem 5.4.2. Then, dimv,(I") < n by the Countable Sum Theorem 5.4.1
and the Addition Theorem 5.4.8. Since v, (I") contains an n-dimensional subspace
J(I')'x P(I')N, we have dim v, (I") > n, hence dim v, (I") = n. The result follows
by induction. O

We will show that the space v, (") is a universal space for metrizable spaces with
dim < n and weight < card I', and that the space v, (I") is a universal space for
c.d. metrizable spaces with weight < card I".

Lemma 5.9.4. Let X be a metrizable space and Xy, X1,--- C X withdim X,, <0.
Suppose that Lo = @, Ly,..., Ly,—1 are closed sets in X satisfying the following
condition:

(*) No x € X, are contained inn + 1 many sets L;.

Then, for each pair (A, B) of disjoint closed sets in X, there exists a partition L,
in X between A and B that does not violate the condition (x).

Proof. Let Cy = Xy. Forn < m, define
C,,:U{Xnﬂﬂ’}zlL,-j |0<ii<iy<-<ip<m}.

Then, C; N C; = @ fori # j by (x).Let D = U?’:_ol C;. Foreachn < m —1,
Uf";nl 41 G is contained in the closed set

FZU{m;Hz—llLl/ |Ofll <i2<---<in+1<m}.

Note that F N [ J/_, X; = @ by (x). For this reason, | J!_, C; = D \ F is open in
D. Therefore, each C, = | J/_, C; \ |J/Z, Ci is an F,-setin D. It follows from the
Subset Theorem 5.3.3 and the Countable Sum Theorem 5.4.1 that dim D < 0.
Using Theorem 5.2.17 and the Partition Extension Lemma 5.3.7, we obtain a
partition L,, between A and B such that L,, N D = . Condition (x) is trivial
forn > m. Forn < m, if x € X,, is contained in n many sets L; (i < m), then
x € C, C D, which implies x ¢ L,,. Therefore, condition (x) is satisfied. O

Lemma 5.9.5. Let X be a metrizable space and Xy, X1,--- C X withdim X,, <0
and let a < b € R. Then, for any sequence (A;, B;)ien of pairs of disjoint closed
sets in X, there exist maps f; : X — [a,b], i € N, such that A; = f(a),
B: = f71(b), and

card{i e N| f;(x) € (a,b) NQ} <n forx € X,.
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Proof. Let{q; | j € N} = (a,b)NQ, whereq; # q; ifi # j.Foreach j € N, let
ii'<j.i#i'},
and define a; = g; —27/7'8; and b; = q; +27/7'5;. For each i € N, let

fio : X — [a,b] be amap with 4; = f;'(a) and B; = f;;'(b). We construct
maps f; ; : X — [a,b],i,j € N, so as to satisfy the following conditions:

(1) 4; = f;'(a) and B; = f75'(b);
2 fij(x) # fij1(x) = fij1(x). fi;(x) € (a;,b;)
(e, fijlfizhi(a.a;]U by, B)) = fij—1l fi5h1 (e a;] U b, b))

(3) No x € X, are contained in n 4+ 1 many ]’ifjl(qj).

8 :min{q,- —a,b—gqi. g —qi'|

For each (i, j) € N2, let k(i, j) = %(i +j—2)i+j—1)+ j € N. Then,
(i, ) is the k(i, j)-th element of N? in the ordering

1,1),2,1),(1,2),(3,1),(2,2),(1,3),....

By induction on k(i, j), we construct maps f; ; satisfying conditions (1), (2), and
(3) above. Assume that fjs ;- have been defined for k (i, j') < m. We will define
fij for k(i, j) = m. Applying Lemma 5.9.4 to Ly = @, Ly’ 1) = ﬁ:},(qj/),
k@', j" <m, A= f'(a,a;]),and B = f1([b;,b]), we obtain a partition
L,, in X between A and B such that

(*x) Nox € X, are contained in #» + 1 many sets L;.

Then, we can easily obtain a map f; ; : X — [a,b] such that L, = fl_]1 (¢;) and
fijlAU B = f; ;_1|A U B, for which conditions (1), (2), and (3) are satisfied.

Since b; —a; = 2778, it follows from (2) that | f; ; (x) — fi j—1(x)| < 277§,
for each x € X. Then, (fi ;) en uniformly converges to a map f; : X — [a,b]
and | f; ;(x) — fi(x)| < 27/§;. Foreach x € 4;, fi(x) = limju fij(x) = a
by (1). For each x € X \ A4;, we have k = min{j € N | fio(x) > a;} because
fio(x) > a = infjena;. Then, fio(x) = fii(x) =+ = fix—1(x) > ar and
fix(x) > ar = qr — 275718, hence

fix) = fire(x) =258 > qx — 8 = qx — (qx —a) = a.
Therefore, A; = fi_l (a). Similarly, we have B; = fl-_l(b).
For each x € X, let

M = {i eN ‘ fi.j(x) = ¢q; forsome j EN}.

Then, M has at most n many elements by (3). Fori € N\ M and j € N, let

K=1{k>j| fix(x) # fi,j(x)}.If K =0, then fi(x) = f; ;(x) # g, because
i ¢ M. Otherwise, let k = min K > j > 1.Since fix—1(x) = fi j(x) # fix(x),
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we have a; < fix(x) < bg by (2). Then, | fix(x) —g;| > 8 — 27%718;. On the
other hand, | f; (x) — fix(x)| < 27%+18;. Therefore,

| /i) =g = | fin(x) —q;] = [fi (x) = fie(X)]

> 6 — 2_k_15k — 2_k+15k > 4115]‘ > 0.
Thus, card{i | fi(x) € (a,b) NQ} < n forx € X,,. O

Proposition 5.9.6. Let X be a metrizable space and I" be an infinite set with
w(X) < card I". For each sequence Xy, X1,--- C X with dim X, < O, there exists
an embedding h : X — J(I')N such that h(X,)) C v,(I").

Proof. By Corollary 2.3.2, X has an open basis B = |,y Bi, where each B; is
discrete in X. Then, as is easily observed, card B; < w(X) < card I', hence we
have I; C I',i € N, such that cardB; = card[; and I N[} = @ if i # j.
For each i € N, we write B; = {B, | y € I}}, where B, # B, if y # y’.
Let 4, = X\ Uyer,- B, . We apply Lemma 5.9.5 to obtain maps f; : X — [0, 1],
i € N, such that A; = f;7'(0) and card{i € N | fi(x) € (0,1) N Q} < n for
x € X,,. We define h; : X — J(I') by

filx) ifxeB,,yel;,

@) 0 otherwise.
In other words, h;(x) = fi(x)e, forx € By, y € I}, and h;(x) = 0 for x € 4;.
The desired embedding 2 : X — J(I')Y can be defined by 2(x) = (h;(x))ien.
Indeed,if x # y € X,thenx € B, and y ¢ B, forsome y € I;. Then, h; (x)(y) =
fi(x) > 0 = h;j(»)(y). Thus, h is injective. Foreach y € I}, U, = {z € J(IN)" |
z(i)(y) > 0} is open in J(I")". Observe that #(B,) = U, N h(X). Therefore, & is
an embedding of X into J(I")". For x € X,,,

card{i e N | hi(x) € P(I')} = card{i e N| fi(x) € Q\ {0}} <n.
Then, it follows that 2(X,,) C v, (I"). O

Theorem 5.9.7. Let I' be an infinite set. The space v,(I") is a universal space for
metrizable spaces X with w(X) < cardI" and dim X < n, and the space v, (I")
is a universal space for countable-dimensional metrizable spaces X with w(X) <
card I'.

Proof. We can write X = Uiew X;, wheredimX; < Oand X; = @ fori > n if
dim X = n. The theorem follows from Proposition 5.9.6. O

Let X be a separable metrizable space with dimX < n. In the proof of
Proposition 5.9.6, we can take a B; with only one element. Then, replacing I with
[a,1] where a € I\Q, themap & : X — [a, 1]N C IN defined by A(x) = (f;(x))ien
is an embedding such that #(X,) C v,. Similar to Theorem 5.9.7, we have the
following separable version:
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Theorem 5.9.8. The space v, is a universal space for separable metrizable spaces
with dim < n and the space v, is a universal space for countable-dimensional
separable metrizable spaces. O

Next, recall that I?} is s.c.d. We now define

K, = U v X ((0,1]" x {0}) C v, x I}.1!

neN

For an infinite set I", we define

Ko(I) = | va(I") x ((0.1]" x {0}) C vy () x I} € J(IM)" x I,

neN

Then, K, is separable and w(K,(I")) = card I". Moreover, K, (I") and K, are
s.c.d. Indeed, for (x, y) € K, (I'),

n

(x,y) € [ Jvi@) x (0, 1] x {0}) & y(n + 1) =0.

i=1

Hence, |J/_; vi(I") x ((0,1]" x {0}) is a closed set in K, (I"), which is finite-
dimensional by the Product Theorem 5.4.9 and the Addition Theorem 5.4.8.

Theorem 5.9.9. Let I" be an infinite set. The space K, (I") is a universal space for
strongly countable-dimensional metrizable spaces X with w(X) < card I'.

Proof. We can write X = UieN F;, where each F; isclosedin X,dimF; <i —1,
and F; C F;4 for eachi € N. By the Decomposition Theorem 5.4.5, we have a
sequence X1, X3, - C X such that dim X,, < 0 and

FF=X, Ah\Fi=XUXs, Gh\FK=X,UX;UXg, ...,
ie, F; \ Fi_ = UI;(;)k(i—l)+l Xy, where Fy = @and k(i) = %i(i + 1). We apply
Proposition 5.9.6 to obtain an embedding & : X — J(I")" such that #(X,) C

v,(I") foreach n € N. Foreachi € N, let f; : X — Ibe a map with f,7'(0) =
F;_,and defineamap f : X — IV as follows:

f(.X) = (fl(x)v f2(-x)v f2(x)v f3(x)v f3(x)v f3(x)v s )a

where each f; (x) appears i times, i.e.,pr, f = f; fork(i—1)+1 <n < k(i). Now,
we can define the embedding g : X — J(I')Y x IN by g(x) = (h(x), f(x)). For
eachx € X, choosei € Nandk(i —1)+1 <n <k(i)sothatx € X, C F;\ F;_;.
Then, h(x) € h(X,) C va(I") C v (). Since x € F; \ Fi_y, it follows that

'This is different from the usual notation. In the literature for Dimension Theory, this space is
represented by K, (8y) and K|, stands for I?.
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fj(x) >0forj <iand fj(x) =0forj >i+ 1,ie.,pr;f(x)>0forj < k(i)
and pr; f(x) = 0 for j > k(i) + 1. Therefore, f(x) € (0, 11F® x {0} c IV, Thus,
we have

g(x) = (h(x), £(x)) € v (") x ((0, 11F) x {0}) C K, (D).
Consequently, X can be embedded into K, (I"). O

Similarly, we can obtain the following separable version:

Theorem 5.9.10. The space K, is a universal space for strongly countable-
dimensional separable metrizable spaces. O

5.10 Nobeling Spaces and Menger Compacta

In this section, we shall construct two universal spaces for separable metrizable
spaces with dim < n, which are named the n-dimensional Nobeling space and the
n-dimensional Menger compactum.

In the previous section, we defined the universal space v,,. In the definition of v,,,
we replace I with R?"*! to define the n-dimensional Nobeling space v”, that is,

V' ={xe R2+1 \ x(i) € R\ Q except for n many i}
= {x e R*"*! | x(i) € Q at mostn many i},

which is the n-dimensional version of the space of irrationals v° = R \ Q. Similar
to Theorem 5.9.3, we can see dim v = n. Observe

R\ " = {x c R21+! | x(@@) e Q atleastn + 1 manyi}s

which is a countable union of n-dimensional flats that are closed in R?"*!, Then, v"
is a Gg-set in R?" !, hence it is completely metrizable. Thus, we have the following
proposition:

Proposition 5.10.1. The space V" is a separable completely metrizable space with
dimv” = n. O
Moreover, v" has the additional property:

Proposition 5.10.2. Each point of v" has an arbitrarily small neighborhood that
is homeomorphic to v". In fact, v" N ]‘[f’;fl(ai,b,-) ~ V" for each a; < b; € Q,
i=1,....2n+ 1.

Proof. Let ¢ : R — (—1, 1) be the homeomorphism defined by

-1 _ N
(‘Pi (s) = 1= |s|)

t
14 |t

pt) =
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We define a homeomorphism / : R2" ! — [T (a;, b;) as follows:

h(x) = (hi(x(1)), ... . houg1(x2n + 1))),
where i; : R — (a;, b;) is the homeomorphism defined by

b,’ —da;
2

Since /;(Q) = Q N (a;, b;), we have h(v") = v N[22 (as, by). O

i=1

hi(t) =

() + 1) +a;.

We will show the universality of v".

Theorem 5.10.3. The n-dimensional Nobeling space V" is a universal space for
separable metrizable spaces with dim < n.

According to the Compactification Theorem 5.7.2, every n-dimensional sep-
arable metrizable space X has an n-dimensional metrizable compactification.
Theorem 5.10.3 comes from the following proposition:

Proposition 5.10.4. For each locally compact separable metrizable space X with
dim X < nandU € cov(R*'*), every proper map f : X — R*'*1is U-close to

a closed embedding g : X — v". If X is compact, then R**T! can be replaced by
12n+1.

This can be shown by a modification of the proof of the Embedding Approxima-
tion Theorem 5.8.10 (or 5.8.5). To this end, we need the following generalization of
Theorem 5.8.9:

Lemma 5.10.5. Let X and Y be locally compact metrizable spaces and Yy =
(Vyen Gn C Y, where each G, is open inY (hence Yy is a Gs-set in Y ). Suppose
that for each n € N and each open cover U of X consisting of open sets with the
compact closures, Cy(X, G,) is dense in the space C*(X,Y) with the limitation
topology. Then, Emb(X, Yy) is dense in CP (X, Y).

Proof. Observe that
Emb(X, Yo) = Emb(X, Y) N C(X, Yo)
= () Cu,(X.Y)N [ C(X.G,) = [ Cu, (X. Gy).

neN neN neN

where U, € cov(X) consists of open sets with the compact closures and mesh 4, <
27", By the assumption, each Cy(X, G,) is open and dense in C”(X,Y). Since
CP(X,Y) is a Baire space by Theorem 2.9.8, we have the desired result. O

Proof of Proposition 5.10.4. According to the definition of v", we can write

V= R2n+1 \ U H; = ﬂ(R2n+l \ Hi)s

i€N i€N
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Fig. 5.4 R, andI\ Ry

where each H; is an n-dimensional flat. Because of Lemma 5.10.5, it suffices to
show that, for each n-dimensional flat H in R>" ™! and each U € cov(X) consisting
of open sets with the compact closure, Cy¢(X,R?**™! \ H) is dense in the space
CP (X, R?>"*1) with the limitation topology.

In the proof of 5.8.10, we can choose v; € R**T!i € N, to satisfy the additional
condition that the flat hull of every n 4 1 many points v;,...,v;, 41 misses H (i.e.,
fi{vi;, ..., vi,. 3 N H = ). Thus, we can obtain the PL embedding g : [K| —
R+ such that g(|K|) N H = @. The map g : X — R?>"*1\ H is a Y{/-map that
is V-close to f.

If X is compact, we can replace R*"*! by I?"*! to obtain the additional
statement. O

Remark 15. Tt is known that if X is a separable completely metrizable space with
dimX < n, then every map f : X — v”" can be approximated by closed
embeddings /2 : X — v". Refer to Remark 14.

Before defining the n-dimensional Menger compactum, let us recall the construc-
tion of the Cantor (ternary) set ;.°. We can geometrically describe u° C I as follows:
Foreach k € N, let

3=l
Re= | (m/3 ' +1/3  m/3" +2/3%) c L

m=0

Then, 1® = Nen@ \ Rk) = I\ Uyen Ri (Fig. 5.4). Observe that

k .
ZZXS—?)‘XEZIC}.

i=1

k
(AN R) =[0.37¥] + V. where V) =

i=1

Moreover, {37%u’ +v|v e v} is an open cover of 1° with ord = 1, where

p 37 v = p 0 (0,375 + v)
=N (=371 378 £ 37k 4y,
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Ry R,

Fig. 5.5 PP\ M} and PP \ M;

A7

Fig. 5.6 M} and M;

As the n-dimensional version of 11°, the n-dimensional Menger compactum ;.
is defined as follows: For each k € N, let

M+ = {x e """ | x(i) € I\ Ry except for n many i}
= {x e P! | x(i) € Ry atmostn manyi},
where it should be noted that

I\Mkz”'H = {x e t! \ x(i) € Ry atleastn + 1 manyi}.

Now, we define " = (\;en Mkz"+1. Since each Mkz"+1 is compact, p” is also
compact. See Figs. 5.5-5.7.

Proposition 5.10.6. For eachn € N, dim " = n.
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Fig. 5.7 M} N M;

Proof. Since i contains every n-face of I* 1, it follows that dim " > n. We can
apply Proposition 5.8.12 to see dim i < n. We use the metric d € Metr(I>"*)
defined by

d(x,y) = max{|x(i) — y(@)| | i = 1,....2n + 1}.

For each ¢ > 0, choose k € N so large that 2/3% < . Let K be the cell complex
consisting of all faces of (2n + 1)-cubes

2n+1 m 1 m
L i 2n+1 _ k
H[W’F]CI” ,mp=1,...,3"

i=1

Since p" C Man+1, it suffices to construct an e-map of Mkz"+1 to | K|, where
K™ is the n-skeleton of K.

Foreach C € K withdimC > n,letr¢c : C \{(:‘ } — 0C be the radial retraction,
where C is the barycenter of C and dC is the radial boundary of C. Observe that
Mkz"+1 NC c C\{C}and rc(Mkz”+1 NnC)c Mkz"+1 N dC. Foreachm > n, we
can define a retraction

For Mk2n+l n |K(m+1)| — Man-H N |K(m)|

by rm|C = rc for each (m + 1)-cell C € K. Since |K™| C MZ"*!, we have a
retraction

r="r, Ty ]14](2”4'1 N |K(”)|

By construction, r~!(x) C st(x, K) for each x € |K®™)|. Since mesh K =
1/3k=1 < ¢/2, it follows that r is an e-map. O

Foreachk € N, u* ~ 37%u" C [0,37%]. Let

an — {V = 3—kZ2n+1 i [O, 3—k]2n+1 +vC Mk2n+l}-
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Then, Mkz"+1 = Uver” ([0, 37%7"*1 + v) and p" = 37¥u" + V". Thus, we have
the following proposition:

Proposition 5.10.7. Every neighborhood of each point of ("' contains a copy of u".
O

We will show the universality of p”.

Theorem 5.10.8. The n-dimensional Menger compactum " is a universal space
for separable metrizable spaces with dim < n.

Proof. By Theorem 5.10.3, it suffices to prove that every compact set X in I>"*1 N
V" can be embedded in u”.
First, note that

X C {x e Prt! | x(i) # 1/2 except forn rnanyi}.
Then, we have a rational ¢; > 0 such that
X C {x e P! \ x(@@) eI\ Rf( except for n manyi},

where RY = (1/2—¢q1,1/2+¢q1) C (0,1). Let A¥ = {1/2—qi1,1/2+ q:} be the
set of end-points of Rf( and let g; : I — I be the PL homeomorphism defined by
210) =0, g1(1) = Land g (1/2 % q) = 1/2 % 1/6,ie., g1(A¥) = {1/3,2/3}.
Observe that |g;(s) —s| < 37! forevery s € L

Let B} be the set of mid-points of components of I\ A, i.e., B} = {1/2,1/2>—
q1/2.3/2> + q1/2} C Q. Note that

X C{x ePP"*"| x(i) eI\ B exceptforn manyi}.

Then, we have a rational g, > 0 such that 2¢g; is smaller than the diameter of each
component of I\ A¥, and

X C {x e P! ‘ x(@@) eI\ Rf except for n manyi},

where R = Jyepx (b—¢2,b+42). Let A7 be the set of end-points of components
of RY and let g, : I — I be the PL homeomorphism defined by g,(0) = 0,
g(1) =1, gAY UAY) = {m/3* | m =1,...,3% — 1}. Then, g>|A{ = g1|Af
and |g2(s) — g1(s)| <372 foreverys € L

Let B;' be the set of mid-points of components of I\ (A{ UA). Then, By C Q.
Since

X C{x eP"*"| x(i) eI\ By exceptforn many i},

we have a rational g3 > 0 such that 2¢g3 is smaller than the diameter of each
component of I\ (Af U Af), and

X C {x e P! \ x(@@) eI\ R? except for n many i},
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Fig. 5.8 Homeomorphisms g1, g2, ...

where Ry’ = yepx (b—¢2,b+42). Let A7 be the set of end-points of components

of RY and let g3 : I — I be the PL homeomorphism defined by g3(0) = 0,
g3(1) =1,g3(AFf UAS UAY) = {m/3° |m =1,...,3°—1}. Then, g3|Af UAS =
g2|AT U A5 and |g3(s) — g2(s)| < 373 forevery s € I — (Fig. 5.8).

By induction, we obtain RY, A¥ C I (k € N) such that RY is the union of 3¢~
many disjoint open intervals, A]f is the set of all end-points of components of R,
each component of R]f is contained in some component of I \ A,f_l, and

X C {x e P! \ x(@@) eI\ R,f except for n manyi}.
Hence, X is contained in

Wy = ﬂ {x e P! ‘ x(i) € I\ R exceptforn many i }.
keN

At the same time, we have the PL homeomorphisms g : I — I, k € N, such that
g0 =0, g () =1, g&(Uis, AF) = {m/3¢ [m=1,....3 -1},
k—1

U AiX and |gk(s) — gk_l(s)| <37% for every s € L.

i=1

k—1

U AY =gy

i=1

8k

Then, (gk)ken uniformly converges to amap g : I — L Since 4 = |J2, A is
dense in T and g maps A onto {m /3% | k € N, m = 1,...,3%—1} in the same order,
it follows that g is bijective, hence g is a homeomorphism. Let A : 1"+ — 27 +!
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be the homeomorphism defined by A(x) = (g(x(1)),...,g(x(2n + 1))) . As is
easily observed, h(uy) = p', hence h(X) C u". O

We also have the following theorem:

Theorem 5.10.9. Let X be a compactum with dim X < n. Then, every map [ :
X — W' can be approximated by embeddings into |\".

Proof. By Proposition 5.10.4, f can be approximated by embeddings f’ into
M kz” 1N v” for an arbitrarily large k € N. Replacing X by f/(X) in the proof
of Theorem 5.10.8, we can take RiX = R; and g; = id fori < k. Therefore, f can
be approximated by embeddings like /2 f”. O

5.11 Total Disconnectedness and the Cantor Set

A space X is said to be totally disconnected provided that, for any two distinct
points x # y € X, thereis aclopenset H in X suchthatx € H buty ¢ H (i.e., the
empty set is a partition between any two distinct points). Equivalently, for each x €
X the intersection of all clopen sets containing x is the singleton {x}. According to
Theorem 5.3.8, the 0-dimensionality implies the total disconnectedness. We say that
X is hereditarily disconnected if every non-degenerate subset of X is disconnected
(i-e., every component of X is a singleton). Clearly, the total disconnectedness
implies the hereditary disconnectedness. Therefore, we have the following fact:

Fact. Every O-dimensional space is totally disconnected, and every totally discon-
nected space is hereditarily disconnected.

The converse assertions are true for compact spaces. To see this, we prove the
following lemma:

Lemma 5.11.1. Let X be compact, x € X, and C be the intersection of all clopen
sets in X containing x.

(1) For each open neighborhood U of C in X, there is a clopen set H in X such
thatC C H C U.
(2) C isthe component of X containing x.

Proof. (1): Let ‘H be all the clopen sets in X containing x. Since X \ U is compact
and {X \ H | H e H} isits open cover in X, there are Hy, ..., H, € H such that

X\Uc|JX\H)=Xx\()H.

i=1 i=1

Thus, we have H = ()i, Hi e HandC C H C U.
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(2): Since C clearly contains the component of X containing x, it suffices to
show that C is connected. Now assume that C = A U B, where A and B are
disjoint closed sets in C and x € A. From the normality, it follows that there are
disjoint open sets U and V in X suchthat A C U and B C V. By (1), we have a
clopen set H in X suchthat C C H C U U V. Since H N U is open in X and
H\Visclosedin X, HNU = H \ Visclopenin X. Then,C C HNU C U,

which implies that B C C NV = @. Thus, C is connected. O
Theorem 5.11.2. For every non-empty compact space X, the following are equiv-
alent:

(a) dimX =0;

(b) X is totally disconnected;
(c) X is hereditarily disconnected.

Proof. The implications (a) = (b) = (c) follow from the above Fact. Here, we will
prove the converse implications.

(c) = (b): For each x € X, the intersection of all clopen sets in X containing
x is a component of X by Lemma 5.11.1(2). It is, in fact, the singleton {x}, which
means that X is totally disconnected.

(b) = (a): Let U be a finite open cover of X. Each x € X belongs to some U €
U. Because of the total disconnectedness of X, the singleton {x} is the intersection
of all clopen sets in X containing x. By Lemma 5.11.1(1), we have a clopen set H,
in X such that x € H,, C U. From the compactness, it follows that X = U;’=1 H,,
for some x1,...,x, € X. Let

Vi=HyVo=Hy,\Hy,....V, = H, \ (Hy, U---UH,,_)).

Then, V = {V1,...,V,} is an open refinement of ¢/ and ord V = 1. Hence, we have
dimX = 0. O

The implications (¢) = (b) = (a) in Theorem 5.11.2 do not hold in general.
In the next section, we will show the existence of nonzero-dimensional totally
disconnected spaces, i.e., counter-examples for (b) = (a). Here, we give a counter-
example for (c) = (b) via the following theorem:

Theorem 5.11.3. There exists a separable metrizable space that is hereditarily
disconnected but not totally disconnected.

Example and Proof. Take a countable dense set D in the Cantor set 1° and define
X=DxQUu’\D)xR\Q) c u’xR.

Let p : X — u° be the restriction of the projection of 1 x R onto .

First, we show that X is hereditarily disconnected. Let A C X be a non-
degenerate subset. When card p(4) > 1, since u is hereditarily disconnected,
p(A) is disconnected, which implies that A4 is disconnected. When card p(A) = 1,
AC p(A)xQ~QorAC p(A) xR\ Q) ~ R\ Q. Since both Q and R \ Q are
hereditarily disconnected, A is disconnected.
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Next, we prove that X is not totally disconnected. Assume that X is totally
disconnected and let xo € D C u°. Because (xo,0), (xo, 1) € X, we have closed
sets Fypand Fyin u® xR suchthat X ¢ FoUF, FbNFiNX =@, and (xg,i) € F;.
Then, Fo N X and F; N X are clopen in X. Choose an open neighborhood Uj of x
in 110 so that

(UsND)x{it=Uyx{i}nX CF fori =0,1.

Since F; is closed in u® x R and D is dense in u, it follows that Uy x {i} C F;.
Foreachr € Q, let

Cr={xel|(x,r)e KN F}.

Then, each C, is closed and nowhere dense in Uy. Indeed, for each x € Uy \ C,,
because (x,r) &€ Fo N Fy and Fy N Fy is closed in ,uo x R, x has a neighborhood
U in Uy suchthat U x {r} N Fo N F; = @. Then, (y,r) & FyN Fy forall y € U,
ie., UNC, =@,s0C, isclosed in Uy. Since Fy N F;y N X = @ and (x,r) € X for
x € D, we have C, C Uy \ D, which implies that C, is nowhere dense in U.

We will show that Uy \ D = UrEQ C,. Then,
b=cu U o
reQ xe€DNUy

which is contrary to the Baire Category Theorem 2.5.1. Thus, it would follow that
X is not totally disconnected. For each x € Up \ D,

{(x} X R = clogix} x (R\ Q) C cloxg X C FyU F.

Ifx ¢ UrEQ C,,then Fp N F;1 N {x} x Q = @ because x &€ C, forall r € Q.
Therefore,

FENFN{x}xR=FRNFN{X}IxR\Q CFNFNX=42.

Because (x,i) € F; N {x} x R, this contradicts the connectedness of R. Therefore,
X € Ure@ C, and the proof is complete. O

In the remainder of this section, we give a characterization of the Cantor set pLO
and show that every compactum is a continuous image of u°. Recall that u° ~ 2N,
where 2 = {0, 1} is the discrete space of two points. In the following, ;° can be
replaced by 2N (cf. Sect. 1.1).

Theorem 5.11.4 (CHARACTERIZATION OF THE CANTOR SET). A space X is
homeomorphic to the Cantor set u° if and only if X is a totally disconnected
compactum with no isolated points.

Proof. It suffices to show the “if” part. Since u’ ~ 2N, we will construct a
homeomorphism# : 2V — X .Letd € Metr(X) withdiam X < 1. First, note that

(*) Each non-empty open set in X can be written as the disjoint union of an
arbitrary finite number of non-empty open sets.
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In fact, because X has no isolated points, each non-empty open set U in X is non-
degenerate and dimU = 0 by Theorem 5.11.2 and the Subset Theorem 5.3.3. We
apply Theorem 5.2.3 iteratively to obtain the fact (x).

Using the fact (), we will construct a sequence 1 = ng < n; <--- in Nand

En={E(x)|xe€2"} ecov(X), neN,
so that

(1) Each E(x) € &, is non-empty, so non-degenerate;

(2) mesh&,, <27/;

(3) EX)NE(y)=0ifx #y €2"; and

4) E(x)=Ex1),...,x(n),00 U E(x(1),...,x(n),1) forall x € 2".

By (%), we have & = {E(0), E(1)} € cov(X) such that £(0) and E(1) are non-
empty, £(0) N E(1) = @, and mesh & < diam X < 1 = 2°. Assume that 1 = ng <
-+ < nj—yand &,...,&,_, have been defined. For each x € 2"—!, E(x) € &,,_,
is a compactum as a clopen set in X. Since dim E(x) = 0, E(x) has a finite open
cover U, with ord/y = 1 and meshif, < 2% (Theorem 5.3.1). Choose m € N so
that card/, < 2™ for each x € 2"—'. Using the fact (x), as a refinement of U, we
can obtain

E=1{E(x.y) | y €2"} € cov(E(x)),

where E(x,y) # @ for every y € 2™. Then, mesh&, < 27'. We define n; =
m—+n;—; > n;—; and

En = U Ec={E(x.y) | (x,y) €2 x 2" = 2"},

xe2i—1

Thus, we have &, € cov(X) with mesh&,, < 277. By the downward induction
using formula (4), we can define &,,—1, ..., &y, _,+1 € cov(X). Therefore, we obtain
€y, En; € cov(X).

For each x € 2V, (N,cxy E(x(1),...,x(n)) # O because of the compactness
of X. Since

lim diam E(x(1),...,x(n)) =0,
n—od
we can define /2 : 2N — X by

{(h(x)} = () Ex().....x(n)).

neN

To show that / is a homeomorphism, it suffices to prove that / is a continuous
bijection because 2" is compact. For each ¢ > 0, choose i € N so that 277 < &.
Then, mesh &,, < ¢ by (2). For each x,y € 2N, x(1) = y(1),...,x(n;) = y(n;)
imply A(x),h(y) € E(x(1),...,x(n;)) € &, so d(h(x),h(y)) < e. Hence, h is
continuous. It easily follows from (3) that /4 is injective. By (4), foreach y € X, we
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can inductively choose x(n) € 2,n € N, sothat y € E(x(1),...,x(n)). Then, we
have x € 2V such that y € (,cy E(x(1),...,x(n)), i.e., y = h(x). Hence, & is
surjective. This completes the proof. O

The Cantor set is very important because of the following theorem:

Theorem 5.11.5. Every compactum X is a continuous image of the Cantor set, that
is, there exists a continuous surjection f : u° — X.

The proof consists of a combination of the following two propositions.

Proposition 5.11.6. Every separable metrizable space X is a continuous image of
a subspace of the Cantor set.

Proof. We have a natural continuous surjection ¢ : u’ — I defined by
P en2x:/3) = YienXi/2', where x; € 2 = {0,1}. Since (u)N &~ uf,
the Hilbert cube IV is a continuous image of the Cantor set. Therefore, the result
follows from the fact that every separable metrizable space can be embedded in I'Y
(Corollary 2.3.8). ]

Proposition 5.11.7. Any non-empty closed set A in u° is a retract of u°, that is,
thereisamapr : n° — Awithr|A =id.

Proof. Since u° ~ 2N, we may replace u° by 2V, For each x € 2V and n € N, we
inductively define x“ (n) € 2 as follows:

x(n) if (xA(l), ... ,xA(n —1),x(n)) € py(A4),

xA(n) =
1 —x(n) otherwise,

where p, : 28 — 2" is the projection onto the first n factors. Since 4 # @,
(x4(1),...,x%4(n)) € p.(A) for each n € N. Since A4 is closed in 2%, it follows
that x4 = (x4(n)),en € A. It is obvious that x4 = x for x € A. We can define a
retraction r : 28 — A by r(x) = x4. Foreach x, y € 2,

Pa(x) = pa(y) = pu(r() = pu(x™) = pu(¥™) = pu(r(y)),

hence r is continuous. O

5.12 Totally Disconnected Spaces with dim # 0

In this section, we will construct totally disconnected separable metrizable spaces
X with dim X # 0. The first example called the Erdos space is constructed in the
proof of the following theorem. This space is also an example of spaces X such that
dim X? # 2dim X.

Theorem 5.12.1. There exists a 1-dimensional totally disconnected separable
metrizable space X that is homeomorphicto X*> = X x X.
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Example and Proof. The desired space X is a subspace of the Hilbert space £,
defined as follows:

X:{x€€2|x(i)eQ forallieN}.

The space £, x {5 has the norm ||(x, y)|| = (||x||> + ||y||*)"/?. Then, the map
h: €y x £y — €, defined by h(x,y)(2i —1) = x(i) and h(x, y)(2i) = y(i) is an
isometry, hence it is a homeomorphism. Since 2(X x X) = X, wehave X x X ~ X.

To prove the total disconnectedness of X, let x # y € X. Then, x(ip) # y(io)
for some iy € N. Without loss of generality, we may assume that x(ip) < y(ip).
Choose t € R\ Q so that x(ip) <t < y(ip). Then, H = {z € X | z(ip) < t}is
clopenin X and x € H but y & H. Hence, X is totally disconnected.

Note thatdim X = ind X by the Coincidence Theorem 5.5.2. Next, we show that
ind X >0andind X < 1.If so, we would have dim X =ind X = 1.

To show that ind X > 0, it suffices to prove that bdU # @ for every open
neighborhood U of 0 contained in B(0,1) = {x € X | ||x|]] < 1}. We can
inductively choose a;, a,, - -- € Q so that

X, =(ai,...,a,,0,0,...) €U and d(x,,X\U)<1/n.
In fact, when a,, . . ., a, have been chosen, let
ko =min{k € N|(ai.....an k/(n +2),0,0,...) € U}.
Then, (ko — 1)/(n + 2) € Q is the desired a, 4. Since Y ;_, a? < 1 for each n,
it follows that Zloil a,.2 < 1 < o0, hence xy = (a;)iey € X. Since x, — Xxp
(n — 00), it follows that xy € clU. On the other hand, since d(x,, X \ U) < 1/n,
we have xg € cl(X \ U). Therefore, xo € bd U.

To show that ind X < 1, it suffices to prove that each F, = {x € X | ||x|| =
1/n} is 0-dimensional. Note that F,, C Q" as sets. Furthermore, the topology on F,
coincides with the product inherited from the product space Q" (Proposition 1.2.4).
Since dim QY = 0, we have dim F,, = 0 by the Subset Theorem 5.3.3. The proof is
complete. O

To construct totally disconnected metrizable spaces X of arbitrarily large
dimensions, we need the following lemmas:

Lemma 5.12.2. Let (A,, B,)yer be an essential family of pairs of disjoint closed
sets in a compact space X and yy € I'. For eachy € I' \ {yo}, let L, be a partition
between A, and B, in X and L = ﬂyef\{yo} L,. Then, L has a component that
meets both A,, and B,,.

Proof. Assume that L has no components that meet both 4,, and B,,. Let D be
the union of all components of L that meet A,,, where we allow the case D = ¢
or D = L.Foreachx € L\ D, the component C, of L containing x misses A,,.
By Lemma 5.11.1(1), we have a clopen set E, in L such that C, C E, C L\ Ay,.
For each y € E,, the component C, of L with y € C, is contained in E,, hence
C, N Ay, = @. Then, it follows that E, C L\ D. Therefore, L \ D is openin L,
that is, D is closed in L, so it is compact.
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For each x € D, the component of L containing x misses By, by the assumption.
As above, we have a clopen set E in L such that x € E, C L\ By,. Since D is
compact, D C |J/_, Ey, for some xi,...,x, € D.Then, E = |J/_, E,, is clopen
inLandA,, "L CDCECLN\B,.

By the normality of X, we have disjoint open sets U and V in X such that
Ay, UE CUand ByyU(L\ E) C V.Then, L,, = X\ (U U V) is a partition
between A,, and B, in X and ﬂye rLy, = LN Ly, = @ This is contrary to
the essentiality of (4,, By),cr. Therefore, L has a component that meets both 4,
and By,. O

Lemma 5.12.3. Let X be a compactum and f : X — Y be a continuous
surjection. Then, X has a Gg-subset S that meets each fiber of f at precisely one
point, that is,

card(f~'(y)NS) =1 foreach y €Y.

Proof. We may assume that X C I'. For each y € Y, since f~!(y) is non-empty
and compact, we can define g(y) € X as follows:

g(y)(1) = minpr,;(f~'(y)) and
g(y)(n) = minpr, (7' () N2 pr ' ((3)())) forn > 1.

Then, @ # f~1(y) NN, pr; "(g(»)(i)) C pr, ' (g(y)(n)). By the compactness
of £~1(y), we have

0% £ N (e @()@) € () e @) M) = {g()},

ieN neN

which means g(y) € f~'(y). Thus, the set S = {g(y) | ¥ € Y} meets each fiber
of f at precisely one point.
Foreachn,m € N, let

Py = {x eX | Jz € X suchthat z(i) = x(i) fori <n,
2(n) < x(n) - and f(z) = f(x)}.

Since X is a compactum, it is easy to see that F, ,, is closed in X, hence U, ,, =
X\ F, m isopenin X. We show that § = ﬂn’meN U, m, whichis a Gs-setin X . For
eachy e Y,ifze€ X, z(i) = g(y)(i) foralli < n and z(n) < g(y)(n) — %, then
f@) #y = f(g(y)); otherwise g(y)(n) = z(n) (< g(y)(n)) by the definition of
g(y). Thus, g(y) € Uy, foralln,m € N,ie., S C (), ey Unm- Conversely, for
each x € (N, ey Unm, let y = f(x) (e, x € f71(y)). Then, x = g(y) € S.
Otherwise, let n = min{i € N | x(i) # g(y)(i)}. Since g(y)(n) < x(n) by
the definition of g(y), it follows that g(y)(n) < x(n) — % for some m € N, ie.,
x € Fy,n = X \ Uy,.m, which is a contradiction. O
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For a metric space X = (X, d), let Comp(X) be the space of all non-empty
compact sets in X that admits the Hausdorff metric dy defined as follows:

dy(A,B) =inf{r >0| A CNy(B.r), BCNy(A,r)}
= max { sup,c d(a, B)., supycpd(b, A)}.

According to the following proposition, the topology of Comp(X) induced by the
Hausdorff metric dy coincides with the Vietoris topology defined in Sect. 3.8.

Proposition 5.12.4. For a metric space Y = (Y,d), the Vietoris topology on
Comp(Y) is induced by the Hausdorff metric d . Consequently, the space Comp(X)
with the Vietoris topology is metrizable if Y is metrizable.

Proof. For each A € Comp(Y) and r > 0, we can choose ay,...,a, € A so that
A c UJ/Z,B(aj,r/2). Then,

n + n
Ae (UB(ai, r/2)) N (\B(a:i.r/2)~ N Comp(Y) C By, (A.r).
i=1 i=1

which means that By, (4, r) is a neighborhood of A in the Vietoris topology.'?

Let A € Comp(Y). For each openset U in Y with A € U™, takinga € AN U,
we have By, (4,d(a,Y \ U)) C U~. On the other hand, for each open set U in Y
with A € U, we have By, (4,8) C U™, where § = dist(4,Y \ U) > 0. Thus,
{Bg, (A,r) | r > 0} is a neighborhood basis at A € Comp(Y'). O

Note. When ¥ = (Y,d) is a bounded metric space, the Hausdorff metric dy is
defined on the set Cld(Y') consisting of all non-empty closed sets in Y, which induces
a topology different from the Vietoris topology if Y is non-compact. If ¥ is unbounded,
then dy (A, B) = oo for some A, B € Cld(Y). But, even in this case, dy induces the
topology on Cld(Y). We should note that this topology is dependent on the metric d. For
example, Cld(R) is non-separable with respect to the Hausdorff metric induced by the usual
metric. In fact, it has no countable open basis because By(N) is an uncountable discrete
set of CId(R). On the other hand, R is homeomorphic to the unit open interval (0, 1) and
CId((0, 1)) is separable with respect to the Hausdorff metric induced by the usual metric
because Fin((0, 1)) is dense in C1d((0, 1)).

As observed in Sect. 3.8, the space Cld(Y') with the Vietoris topology is Hausdorff if and
only if Y is regular. Here, it is remarked that Cld(Y") is metrizable if and only if ¥ is compact
and metrizable. Indeed, if Y is compact metrizable then Cld(Y') = Comp(Y') is metrizable
by Proposition 5.12.4. Conversely, if Y is non-compact then Y contains a countable discrete
set. Then, Po(N) = CId(N) can be embedded into CId(Y') as a subspace, which implies
that 3o (N) is metrizable. Note that B (N) is separable because Fin(N) is dense in By (N).
Thus, Po(N) is second countable. Let B be a countable open base for o (N). For each
A € Py(N), choose By € Bsothat A € By C AT. When 4 # A’ € Ly(N), we
may assume A \ A’ # @. Then, A & B, . Hence, we have B, # B, . Consequently,
card B > card Po(N) = 280, which is a contradiction.

PRecall U" ={ACY |ANU #@Pyand Ut ={ACY |ACU}.
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Theorem 5.12.5. Let X = (X, d) be a metric space.

(1) If X is totally bounded then so is Comp(X) with respect to dy.
(2) If X is complete then so is Comp(X) with respect to dp.
(3) If X is compact then so is Comp(X).

Proof. (1): For each ¢ > 0, we have F € Fin(X) such that d(x, F) < ¢ for every
x € X. Then, Fin(F) is a finite subset of Comp(X). For each A € Comp(X), let
Fy={z€ F|d(z,A) < ¢&}.Foreach x € A, we have z € F such that d(x,z) < &,
which implies that z € Fy4. Then, F4 # 0 (i.e., F4 € Fin(F)) and dy (A, Fy) < e.
Hence, Comp(X) is totally bounded.

(2): Let (A,),en be a Cauchy sequence in Comp(X). If (A, ),en has a convergent
subsequence, then (A4,),en itself is convergent. Hence, it can be assumed that
du(A,, A;) <27 ! foreachn < i. Then, we prove that (A4, ),en converges to

Ao = () cIN(4,.27") € Comp(X).

neN

To this end, since Ay is closed in X and 49 C N(4,,27""!) foreach n € N, it
suffices to show that A is totally bounded and A, C N(Ap,27") foreachn € N.

First, we show that 4, C N(A4y,27™"). For each x € A,, inductively choose
X; € A;,i > n,sothatd(x;,x;—1) <27, where x = x,. Since (x;);>, is a Cauchy
sequence in X, it converges to some xo € X. Foreachi > n,

d(x,',)C()) < Zd(xj,xj_H) < ZZ‘j_l = 2_i,

j=i j=i
hence d(xg, A;) < 27" and d(xo, x) < 2~". Moreover, for each i < n,
d(xo, Ai) < d(x0,x) +d(x, A;) <27+ 2771 <27,

Therefore, xo € ();eny N(Ai,277) C Ao, s0 Ag # @ and x € N(A4o,27").

To see the total boundedness of Ay, let e > 0. Choose n € N so that 27"+! < e/3,
and take a finite £/3-dense subset {u;,...,u;} of A,.”3 Foreachi = 1,....k,
choose v; € Ay so that d(u;,v;) < 27". Then, {vy,..., v} is an e-dense subset of
Ay. Indeed, for each x € Ay, we have y € A, such that d(x,y) < 27"%!. Then,
d(y,u;) <e/2forsomei =1,...,k. Hence,

dx,vi) <d(x,y) +d(y,u;) +d@ui,vi) <27 +¢/34+27" <.

(3): This is a combination of (1) and (2). |

Theorem 5.12.6. For each n € N, there exists an n-dimensional totally discon-
nected separable completely metrizable space. In addition, there exists a strongly
infinite-dimensional totally disconnected separable completely metrizable space.

13Tn a metric space X = (X,d), A C X is said to be e-dense if d(x, A) < & for each x € X.
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‘ y \ a(t) = at))

AO BO

Fig. 5.9 «a(t),t € u°

Proof (Example and Proof). To construct the examples simultaneously, let X =
IxI" and d € Metr(X) where I' = {1,...,n} in the n-dimensional case and
I' = N in the infinite-dimensional case. Let pg : X — I be the projection onto the
first factor. Put Ag = py (0) and By = Do (1) and define

&= {E € Comp(X) | E is connected, E N Ay # 0, EN By # (ZJ}.

Then, £ is closed in Comp(X). Indeed, let D € Comp(X) \ £. When D is not
connected, it can be written as the disjoint union of two non-empty closed subsets
Dy and D,. Let ¢ = %distd(Dl,Dz) > 0. Then, every E € By, (D,¢) is
not connected because E is contained in Ny (D1, e) U Ny(D,, €) and meets both
N4(Dy,¢€) and Ny(D3, €). Hence, By, (D,e) N € = @.If D N Ay = @, then
Nq(D,8) N Ap = @, where § = disty(Ao, D) > 0. Every E € By, (D,§) also
misses Ao, which implies By, (D, 8) N € = @. The case D N By = @ is identical.
Since Comp(X) is compact by Theorem 5.12.5(3), £ is also compact. Then, we
have a map o : u° — &€ of the Cantor set u° onto £ by Theorem 5.11.5. We define

Y ={yep, ()| yeap(y)} CX.

Obviously, po(Y) C u’. For each t € uP, since () is a continuum that meets
both Ay and By, it follows that pox(t) = I, sot = po(y) for some y € «(t),
where y € Y (Fig.5.9). Thus, we have po(Y) = u°. Moreover, Y is closed in
X, so is compact. Indeed, let (y;);eny be a sequence in Y convergingto y € X.
Since po(y;) € u® foreveryi € N and (po(y;))ien converges to po(y), we have
po(y) € ul. Since y; € apy(y;) for every i € N and (apo(yi))ien converges to
apo(y) in &, it easily follows that y € apo(y), hence y € Y.
By Lemma 5.12.3, Y has a Gs-subset S such that

card(po_l(t) NS) =1 foreacht e u°.

Since Y is compact, S is completely metrizable. Since po|S : S — u’is a
continuous bijection and u° is totally disconnected, it follows that S is also totally
disconnected. Moreover, SN E # @ forevery E € £. Indeed, because £ = apy(S),
wecan find y € § C Y such that E = apy(y), where y € apo(y) = E.

Now, foreachi € I',let p; : X — Ibe the projection onto the i -th coordinates of
the second factor I". Since p;1(0), p;!(1) € &, it follows that A; = S N p;1(0) #
@and B; = S N pi_l(l) # (. Then, (A;, B;);er is essential in S. In fact, by the
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Partition Extension Lemma 5.3.7, for each partition L; between A; and B; in S,
we have a partition L; between p;'(0) and p;'(1) in X such that L; N S C L,.
According to Lemma 5.12.2, the intersection of the partions L; has a component
E € . Then, (e Li D ENS # @. Therefore, S is s.i.d. when I" = N. In the
case that I' = {1,...,n}, dimS > n by Theorem 5.2.17. Since S C TS U
dim S < n by the Subset Theorem 5.3.3 and the Product Theorem 5.4.9, hence
dim S = n. O

5.13 Examples of Infinite-Dimensional Spaces

In this section, we construct two infinite-dimensional compacta. One is weakly
infinite-dimensional but not countable-dimensional. The other is hereditarily infinite-
dimensional. First, we present the following theorem:

Theorem 5.13.1. There exists a weakly infinite-dimensional compact metrizable
space that contains a strongly infinite-dimensional subspace, and hence it is not
countable-dimensional.

Example and Proof. Let S be an s.i.d. totally disconnected separable completely
metrizable space (Theorem 5.12.6) and let X = y.S be a compactification of .S with
the c.d. remainder (Theorem 5.7.4). Then, we show that X is the required example.

First, X contains the s.i.d. subset S, so X is not c.d. (Theorem 5.6.2). To see that
X is w.i.d., let (A4;, B;)ie, be a family of pairs of disjoint closed sets in X. Since
X\Siscd,X\S = UieN X;, where dim X; = Oforeachi € N. Foreachi € N,
by Theorem 5.3.8 and the Partition Extension Lemma 5.3.7, X has a partition L;
between A; and B; such that L; N X; = @. Then,

L=(LicX\Xxi=x\JX =5

ieN ieN ieN

If L # @, then L is compact and totally disconnected, which implies dim L = 0 by
Theorem 5.11.2. Again by Theorem 5.3.8 and the Partition Extension Lemma 5.3.7,
X has a partition Ly between Ay and By such that Lo N L = @, which means
ﬂiew L, = 0. O

For a compact space X and a metric space ¥ = (Y,d), let C(X,Y) be the
space of all maps from X to Y admitting the topology induced by the sup-metric
d(f,g) = sup,.ex d(f(x), g(x)), which is identical to the compact-open topology
because X is compact (cf. 1.1.3(6)). Then, from 1.1.3(5), we have the following
lemma:

Lemma 5.13.2. Let X be a compactum and Y = (Y,d) be a separable metric
space. The space C(X,Y) is separable.
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Note. This lemma can be proved directly as follows:

Sketch of Direct Proof. Let {U; | i € N} and {V; | j € N} be open bases for X and Y,
respectively. For each i, j € N, let

Wi, = {f €C(X,Y)| f(clU) C V}}.

It is easy to prove that each W; ; is open in C(X, Y).

To see that {W; ; | i, j € N} is an open subbase for C(X,Y), let f € C(X,Y) and
& > 0. For each x € X, choose i(x),/(x) € N so that x € Uy, diamVjy) < ¢
and f(clUi)) C Vi), ie., f € Wi, jx) . Because of the compactness of X, we have
Xlsonn, Xn € X such that X = Ujy,) U -+~ Ui(,)- Then, observe f € (= Wi i) C
Bu(f.e).

To construct a hereditarily infinite-dimensional space, we need the following key
lemma:

Lemma 5.13.3. Let C C I be homeomorphic to the Cantor set, n € N, and I' C
N\ {n} such that I' and N\ I" are infinite. Then, there exists a collection {S; |
i € I'} of partitions S; between A; = pr;'(0) and B; = pr;'(1) in I such that
every subset X C (\;ep Si is strongly infinite-dimensional if C C pr,(X), where
pr; : IV — L is the projection of I onto the i-th factor.

Proof. Without loss of generality, we may assume thatn = land I" = {2i | i €
N}. Foreach i € N, let C; = pr; ([0, §]) and D; = pr;"'([3, 1]). We define

Q={fecd".1)|VieN, f7(4) = Cyu. [T'(Bi) = Da}.

Since §2 is separable by Lemma 5.13.2, there exist 7 C C and a continuous
surjection ¥ : T — £2 by Proposition 5.11.6. Let E = pr;!(T) C I'! and define a
map ¢ : E — IN by ¢(x) = (¥pr,(x))(x). Foreachi € N,

97N (A) = {x € E | p(x) = (¥pr;(x))(x) € 4;}
={x€E|xe@pr(x)(4)=Cu} =ENCy

and similarly ¢! (B;) = E N Dy;. Since pr; ! (%) is a partition between A; and B; in
IV, o~ ! (pr; (1)) is a partition between C; N E and D; N E in E. By the Partition
Extension Lemma 5.3.7, we have a partition S,; between A,; and By; in IV such that
S2 NE C ¢~ (pr; ' (3)). It should be noted that (A; Npry ! (x), By Npry! (x))ien
is essential in pr; ! (x) for every x € C. Then, prl_l(x) N (Nien S2i # @ for every
x € C,hence C C pr;((V;ey S2i)-

Take X C ();ey S2i such that C C pr;(X). We will show that X is s.i.d., that
is, X has an infinite essential family of pairs of disjoint closed sets. For each i € N,
let C/ = pr; ([0, %]) N X and D] = prf‘([%, 1]) N X. To see that (C,;, D}, )ien is
essential, let L; be a partition between Cy; and D), in X . By the Partition Extension
Lemma 5.3.7, we have a partition H; between C,; and D»; in INsuchthat H;NX C
L;. There is amap f; : I — I such that £,71(0) = Cy, f,"'(1) = Dy, and
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fi_l(%) = H,."* Indeed, let U; and V; be disjoint open sets in I' such that C; C U,
Dy C Vi,and X \ H; = U; U V;. We can take maps g; : X \ V; — I and
h; : X \ U; — 1T such that gi_l(O) = Cy, gl-_l(l) = H;, hi_l(O) = H;, and
hi'(1) = Dy; (cf. Theorem 2.2.6). The desired f; can be defined by

la)  ifxeX\V,

S T4+ 3hi(x) ifxeX\U.

Now, we define amap f : IN — IN by f(x) = (fi(x))ien. Foreachi € N,
YA = f~pr;1(0)) = £71(0) = Cy and similarly f~'(B;) = Dy;, which
implies that f € 2 = ¥(T), hence f = ¥ (¢) forsomet € T.Since T C C C
pr; (X), we have x € X such thatt = pr;(x). Then, ¢(x) = (¥pr;(x))(x) = f(x).
On the other hand, since x € prl_l(T) = FE, we have

xeXNEC(\SunNEcC e ' o' G)=9¢""G.5...0)
ieN ieN

Then, f(x) = ¢(x) = (%,%,...), ie., fi(x) = %for eachi € N, hence x €
Nien Hi N X C (e Li- Therefore, (C};, D), )ien is essential. |

Theorem 5.13.4. There exists a hereditarily infinite-dimensional compact met-
rizable space.

Example and Proof. Let {C, | n € N} be a collection of Cantor sets in I such
that every non-degenerate subinterval of I contains some C,. Let I, (i,n € N)
be disjoint infinite subsets of N \ {1} such thati ¢ I;,. For each i,n € N, by
Lemma 5.13.3, we have a compact set S;,, C I' that is the intersection of partitions
between A; = pr;'(0) and B; = pr;'(1) (j € I},) and has the property that
X C Siyissid. if G, C pr;(X).

We will show that S = () ,cySin is hid. Since S is the intersection of
partitions between A; and B; (j € |UJ;,en/in) and (4;, B;);en is essential,
S meets every partition between A; and B, which implies that dim S # —1,0.
Now, let @ # X C S. In the case that dimpr;(X) = O for every i € N,
since dim [ [,y pr; (X) = 0 by Theorem 5.3.6 and X C [[;ypr;(X), we have
dim X = 0 by the Subset Theorem 5.3.3. When dimpr; (X) # O for some i € N,
pr; (X) contains a non-degenerate subinterval of I, hence it contains some C,. Then,
it follows that X is s.i.d. O

l4Refer to the last Remark of Sect. 2.2.
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5.14 Appendix: The Hahn—-Mazurkiewicz Theorem

The content of this section is not part of Dimension Theory but is related to
the content of Sect.5.11. According to Theorem 5.11.5, every compact metrizable
space is the continuous image of the Cantor (ternary) set 11°. In this section, we will
prove the following characterization of the continuous image of the interval I:

Theorem 5.14.1 (HAHN-MAZURKIEWICZ). A space X is the continuous image
of the interval 1 if and only if X is a locally connected continuum."

Here, X is locally connected if each point x € X has a neighborhood basis
consisting of connected neighborhoods. Because of Theorem 5.14.1, a locally con-
nected continuum is called a Peano continuum in honor of the first mathematician
who showed that the square I? is the continuous image of the interval L.

The continuous image of a continuum is also a continuum, where the metrizability
follows from 2.4.5(1). Since every closed map is a quotient map, the “only if” part
of Theorem 5.14.1 comes from the following proposition:

Proposition 5.14.2. Let f : X — Y be a quotient map. If X is locally connected,
then so is Y. Namely, the quotient space of a locally connected space is also locally
connected.

Proof. Lety € Y. For each open neighborhood U of y in Y, let C be the connected
component of U with y € C. Since X is locally connected, each x € f~!(C) has a
connected neighborhood V;, C f~1(U). Note that (V) is connected, f(V,) C U,
and f(Vy) N C # @. Since C is a connected component of U, it follows that
f(Vy) € C,hence V, C f~'(C). Therefore, f~'(C) is open in X, which means
that C is open in Y. Thus, C is a connected neighborhood of y in ¥ with C C U.
O

To prove the “if”” part of Theorem 5.14.1, we introduce a simple chain in a metric
space X = (X,d). A finite sequence (Uy, ..., U,) of connected open sets'® in X is
called a chain (an e-chain) if

U NU4+ # 0 foreachi =1,...,n—1

(and diam U; < eforeveryi = 1,...,n), where n is called the length of this chain.
A chain is said to be simple provided that

AU NcU; =0 if|i — j| > 1.

5Recall that a continuum is a compact connected metrizable space.
16In general, each link U; is not assumed to be connected and open.

"This condition is stronger than usual, and is adopted to simplify our argument. Usually, it is said
that (Uy, ..., U,) is a simple chain if U; N U; # @ < |i — j| < 1. However, in our definition,
UNU; #0&cdUNcl; #0 & |i —j| < 1.



322 5 Dimensions of Spaces

It is said that two distinct points a,b € X are connected by a simple (¢-)chain
(Uy,...,Uy) ifa € U \clUyand b € U, \ clU,—; (when n = 1, this means
a,b € Uy), where (Uy, ..., U,) is called a simple (e-)chain from a to b. Given open
sets U and V in X with dist(clU,cl V) > 0, it is said that U and V are connected
by a simple (e-)chain (Uy, ..., U,) if

UNU #0, cdUNncl(U,uU---UU,) =0,
VNnU,#0,and clVNcl(UyU---UU,—;) =0,

where (Uy, ..., U,) is called a simple (&-)chain from U to V. When U is connected
(and diam U < ¢), (U, Uy,...,U,, V) is a simple (e-)chain.

Lemma 5.14.3. Let X = (X, d) be a connected, locally connected metric space,
and a # b € X. Then, the following hold:

(1) Each pair of distinct points are connected by a simple e-chain for any ¢ > 0.

(2) Each pair of open sets U and V in X with clU NclV = @ are connected by a
simple e-chain for any ¢ > 0.

(3) Each pair of open sets U and V in X with dist(U, V') > 0 are connected by a
simple chain of length n for any n € N.

Proof. (1): Let W be the subset of X consisting of all points x € X satisfying the
following condition:

* g and x are connected by a simple e-chain.

Then, W is open in X by the definition. Using the local connectedness of X, we can
easily show thata € W and X \ W is open in X. Since X is connected, it follows
that W = X. Then, we have b € W. This gives (1).

(2): Take pointsa € U to b € V and apply (1) to them, we have a simple e-chain
W, ..., W,) froma to b. Let

ko =max{i |cIW; NclU # @} > 1 and
ki =min{i > ko | clW; NclV # @} > ky.

If Wy, N U # @, then (W, ..., W,) is a simple e-chain from U to V. When
Wi, NU = @ or Wy, NV = 0 (except for the case that kg = k; and Wy, N U =
Wi, NV = @), we take a connected open neighborhood U’ of some x € cl Wy, N
clU with diam U’ < ¢ — diam W, or a connected open neighborhood V' of some
y € clW, NclV with diam V' < & — diam Wy, (in the except case, diam U’,
diam V' < (e — diam Wy,)). Then, replacing Wy, by U’ U Wy, or Wi, by V' U W,
(in the except case, replacing Wy, = Wi, by U'U V' U Wj,), we can obtain a simple
g-chain from U to V.
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(3): Foreachn € N, let ¢ = n~!dist(U,V) > 0. By (2), we have a simple
e-chain (Wq, ..., W) from U to V. Then, n < k because

dist(U, V) < diam W; + --- + diam W, < ke = n~'k dist(U, V).

Hence, U and V are connected by a simple chain (W1, ..., Uf;n W;) of length n.
O

Recall that X is path-connected if every pair of points x,y € X can be
connected by a path, i.e., there is a path f : I — X with f(0) = x and f(1) = y.
It is said that X is arcwise connected if every two distinct points x,y € X can
be connected by an arc, i.e., there is an arc f : I — X with f(0) = x and
f(1) = y."® A space X is locally path-connected (or locally arcwise connected)
if each neighborhood U of each point x € X contains a neighborhood V' of x
such that every two (distinct) points y, y’ € V can be connected by a path (or an
arc) in U. According to the following lemma, the local path-connectedness and
the local arcwise connectedness can be defined in the same manner as the local
connectedness.

Lemma 5.14.4. For a locally path-connected (or locally arcwise connected) space
X, the following hold:

(1) Every component of X is open and path-connected (or arcwise connected).

(2) Each point of a locally path-connected (or locally arcwise connected) space X
has a neighborhood basis consisting of path-connected (or arcwise connected)
open neighborhoods.

Proof. (1): For each x € X, let W be a subset of X consisting of all points
connected with x by a path (or an arc) in X (and x itself). Then, it is easy to see that
W is a connected clopen set in X, and hence it is a component of X .

(2): Every open neighborhood U of each x € X is also locally path-connected (or
locally arcwise connected). It follows from (1) that the component of U containing
X is a path-connected (or arcwise connected) open neighborhood of x. O

Obviously, every arcwise connected (resp. locally arcwise connected) space
is path-connected (resp. locally path-connected), and every path-connected (resp.
locally path-connected) space is connected (resp. locally connected). However,
according to the following theorem, for connected locally compact metrizable
spaces, the local connectedness implies the local arcwise connectedness.

Theorem 5.14.5. Every connected, locally connected, locally compact metrizable
space X is arcwise connected and locally arcwise connected.

Proof. Because of the local compactness ci X and 2.7.7(1), it can be assumed that
X = (X,d) is a metric space such that B(x, 1) is compact for each x € X, so
X = (X,d) is complete. Let a,b € X be two distinct points. By induction on

18Recall that an arc is an injective path, i.e., an embedding of L.
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j zn(erl)*n(i)j Jj+1 zn(z’+1)*n(f)(j +1)
n(i) on(i+1) n(i) on(i+1)
zn(i+1)*n(i)j +1
on(i+1)

'

2/1(i+l)—n(i)j +2 2/1(i+1)—n(i)(j + 1) —1

on(i+1) on(i+1)

i+1
Uzn(i+l)*n(i)j+2

i+1 i+1 i+1
Uznuﬂ)fnmj,l U2nti+1)—nti>j+1 U2”"'+1>*”""(j+1)
i+1 i+1
Uznu+1)—nu)j Uzn(i+1)—n(i)(j+1),1

Fig. 5.10 Tllustration of condition (2)

i € N, we will construct a simple 2~ -chain (U}, U/,..., U ) from a to b

i
2n(i)—1
so that

(1) n(1) <n(2) <---;and
) U™ C U} for 2n0HD=n) j < fo < 2+ D=n()(j 4 1) (Fig. 5.10).

Since X is locally connected, @ and b have connected open neighborhoods
U and V, respectively, such that diam U, diamV < 27U and clU NclV = 0.
Using Lemma 5.14.3(2), we can obtain n(1) > 2 and a simple 2~ _chain

(U,....U,4_,) in X fromU to V. Let Uj = U and U, , = V. Thus, we
have a simple 2™ -chain (U, ..., Uzlnm_l) from a to b.
Next, suppose that a simple 2~/ -chain (Uj, U}, ..., U}, ) from a to b has

been obtained. Let U and V' be connected open neighborhoods of a and b in X,
respectively, such that clU C Uj and clV C Uj,,_,. Since each U; is connected
and locally connected, we can apply inductively Lellnma 5.14.3(2) to obatin a simple
2_(’+”-Chain v, ..., Vk’(j)) in U} from U}ﬂVk’(j_l) toU;NU; ., where Vk_(ll) =
U and U,,; = V.Choose n(i + 1) > n(i) so that

2n(i+l)—n(i) > max {k(j) | j=01,... ’2n(i) _ 1}_
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Fig. 5.11 A simple chain (Wj s S

) in Vk

m (/) ()

For each j = 0,1,...,2"D — 1, let m(j) = 2"0TD=0) — k() — 1 (e,
k(j) + m(j) = 2"+D=n0) _ 1), By Lemma 5.14.3(3), we have a simple chain

) = na
(%]’”eré(j)) in Vk]mfrom Vk(j)ﬂVk(]) , and k(})ﬂV] (Fig.5.11). Now,
we define

i+1 j i+1 J
Uzn(x+1)—n(x) VO ’e . Uzn(z+1)—n(z)] +k(j)—1 Vk(]) 1’
i+1 i+1 J
Uzn(erl) n(z)]+k(]) W Uzn(lJrl) n(l)]+2n(1+1) n(i)—1 Wm(])’
which are contained in U. Let Uit = U and Uzlntﬁrl) , = V. Then, it ujit,
-, ULth, ) is the desired simple 27¢+D-chain.

For each x € 2V = {0, 1}, observe 0 < Z'}@l 21D~ x(j) <2"® — 1 and

n(i) n(i—1) n(i)
Zzn(l) /x(]) — pn(H)=nG—1) Z on(i—=1)— /x(]) + Z Zn(i)_jx(j),
j=1 j=n(i—1)+1
where 0 < Z] iy 2" x(j) < 207G Then, it follows from (4) that
i i
UZ'}(’;H 20=7x(j) UZ”“ D= (j)’

By (3) and the completeness of X, the following is a singleton:

AdUL,e 0
Q Z,-Qﬂ”ﬂ*fx(j)7é

Then, we have amap f : 2N — X such that
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{fr=[elUg,

‘ 10 20— (j)’
i€N ’

where f(0) = a and f(1) = b.For x,y € 2N, if x(j) = y(j) for j < 2"?, then

- TOY € Ui sy = Vi, sy
hence d(f(x), f(¥)) <27 by (2), which implies that f is continuous.

Let ¢ : 2V — I be the quotient map defined by ¢(x) = > 72, 27 x(i). For each
x,y € 2N, we will show that ¢(x) = ¢(y) if and only if f(x) = f(y), hence f
induces the embedding / : I — X with #(0) = a and k(1) = b.

First, suppose that ¢(x) = @(y), i€, Y 10,27 x(i) = > 2,27 y(i). When
x # y,letk = min{i € N | x(i) # y(i)}, where we may assume that x(k) = 1
and y(k) = 0. Then,

[ele) k k—1
D o2Tix(i) =) 27x() =)y 27x() +27F
i=1 i=1 i=1

k o] k
=) 27y + Y. 27 =) 27y,
i=1 i=1

j=k+1

which implies that x() = 0 and y(i) = 1 for every i > k. Thus, we have

k—1 k—1
D 2 x () =) 2" y(j) and
j=1 j=1

m m
sz_jx(j) = Zz’"—/y(j) + 1 foreverym > k.
j=1 J=l1

Then, it follows that

Ul  NUL., @ foreveryi € N,
Y0 20-ix(y TG 20—y 7 Y

which implies that d( f(x), f(y)) = 0 by (3), hence f(x) = f(¥).
Conversely, suppose that f(x) = f(y). Foreveryi € N,

£,

Uloror oo AU
YO =iy T T = ()

which means | Z'}@l 2"O=ix(j) = (21 2"D=7y(j)| < 1. Therefore,

n
J

> 27ix(j) - Zz‘fy(j)‘
=1

=1 =

lo(x) =M =
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n(i)—1 n(i)—1

lim | 3027 x(j)— Y2 y(/)’
j=l1 j=l1
n(i)—1 n(i)—1
= il_igloz—n(i) Z 2n(i)—jx(j)_ Z 2n(i)—jy(j)‘
j=l1 j=l1
< lim 27" =,
1—>00

that is, ¢(x) = ¢(y). Thus, we have proved that X is arcwise connected.

Finally, note that every neighborhood of each point x € X contains a connected
open neighborhood U in X. Since U is also completely metrizable, it follows that
U is also arcwise connected. This means that X is locally arcwise connected. O

By the “only if” part of Theorems 5.14.1 and 5.14.5, we have the following
corollary:

Corollary 5.14.6. Let X be an arbitrary space. Then, each pair of distinct points
x # y € X are connected by a path in X if and only if they are connected by an
arc in X. In this case, the image of the arc is contained in the image of the path.

Proof. The “if” part is obvious. To see the “only if” part, let f : I — X be a
path with f(0) = x and f(1) = y. Since the image f(I) is a locally connected
continuum (i.e., a Peano continuum) by the “only if” part of Theorem 5.14.1, we
have an arc from x to y in f(I) (C X) by Theorem 5.14.5. O

Thus, we know that there is no difference between the (local) path-connectedness
and the (local) arcwise connectedness of an arbitrary space. This allows us to sate
the following:

Corollary 5.14.7. An arbitrary space X is path-connected if and only if X is
arcwise connected. Moreover, X is locally path-connected if and only if X is locally
arcwise connected. O

A metric space X = (X,d) is said to be uniformly locally path-connected
provided that, for every € > 0, there is § > 0 such that each pair of points x, y € X
with d(x, y) < & can be connected by a path with diam < e.

Proposition 5.14.8. A compact metric space X is uniformly locally path-connected
if it is locally path-connected.

Proof. For each e > 0, we apply Lemma 5.14.4(2) to obtain i/ € cov(X) consisting
of path-connected open sets with meshi/ < ¢. Let § > 0 be a Lebesgue number for
U. Then, each pair of points x, y € X with d(x, y) < é can be connected by a path
with diam < e. O

We are now ready to prove the “if” part of the Hahn—Mazurkiewicz Theo-
rem 5.14.1.
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Proof of the “if” part of Theorem 5.14.1. We may assume that X = (X,d) is a
compact connected metric space. Let u” be the Cantor (ternary) set in I. By Theo-
rem 5.11.5, there exists a continuous surjection f : u® — X. By Theorem 5.14.5,
X is path-connected and locally path-connected (arcwise connected and locally
arcwise connected). According to Proposition 5.14.8, we have §; > 6, > --- > 0
such that every two distinct points within §, can be connected by a path with
diam < 1/n, where we may assume that §, < 1/n.

Because of the construction of ;1°, the complement I\ 1° has only finitely many
components C; = (a;,b;),i = 1,...,m, such that d(f(a;), f(b;)) > §;. Indeed,
there is some k € N such that

a,b ey’ la—bl <3 = d(f(a), f(b)) <&,
(ie. d(f(a), f(b)) = 61 = |a—b| = 37%),

which implies that m < Zf.‘=12i_l. Foreachi = 1,...,m,let f; : clC; =
[a;,b;] — X be a path with fi(a;) = f(a;) and f;(b;) = f(b;). Then, we can
extend f to the map

m
fliM=poul JdC > x
i=1
that is defined by f/|clC; = f; foreachi = 1,...,m.

For each component C = (a,b) of I\ M (which is a component of T\ u),
fla) = f(b)or0 < d(f(a), f(b)) < é;. In the former case, let fc : clC =
[a,b] — X be the constant path with fc([a,b]) = {f(a)} (= {f(b)}). In the latter
case, choose n € N so that 8,41 < d(f(a), f(b)) < §, and take a path fc : clC =
[a,b] — X suchthat fc(a) = f(a), fc(b) = f(b), and diam f¢ ([a,b]) < 1/n.
Then, f’ can be extended to the map f* : I — X by f*|clC = f¢ for every
component C of I\ M.

It remains to verify the continuity of f*. Since each component C of I'\ M is an
open interval, the continuity of f* at a point of I \ M follows from the continuity
of fc. The continuity of f™* at a point of int M comes from the continuity of
f'. We will show the continuity of f* at a point x € bd M (= u°). For each
e > 0, choose n € N so that 1/n < /2. Since f’ is continuous at x, we
have a neighborhood U of x in I such that f/(U N M) C B(f'(x),8,/2)
(C B(f*(x),e/2) because 6, < 1/n < &/2). In the case that x ¢ bdC for
any component C = (a,b) of I \ M with d(f(a), f(b)) = 6&,, U can be
chosen so that U N clC = @ for any component C = (a,b) of I \ M with
d(f(a), f(b)) = 8,. In the case x € bdCy for some component Cy = (ao, bo)
of I\ M with d(f(ao), f(bo)) > &, (such a component Cy is unique if it exists),
U can be chosen so that fc,(U N Cp) C B(f'(x),&/2). Now, let C = (a,b) be a
component of I\ M withclC NU # @. Then,a e UNM orb € U N M, and so
d(f'(a), f'(x)) < e/2ord(f'(b), f'(x)) < &/2, respectively. If f'(a) = f'(b),
then f*(C) = fc(C) = {f(@)} C B(f'(x).£/2). 110 < d(f(@), f(B)) < b,
then diam f¢ ([a,b]) < 1/n < &/2, which implies that f*(C) = fc(la,b]) C
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B(f'(x),e). When d(f(a), f(b)) > §,, it follows that x € bd C, which means that
C = Cy. Then, f*(U NC) = fc,(U N Cy) C B(f'(x),e/2). Consequently, we
have f*(U) C B(f*(x), ¢). This completes the proof. O

Notes for Chap. 5

Below, we list only three among textbooks on Dimension Theory:

* R. Engelking, Theory of Dimensions, Finite and Infinite, Sigma Ser. in Pure Math. 10
(Heldermann Verlag, Lembo, 1995)

e W. Hurewicz and H. Wallman, Dimension Theory (Princeton University Press, Princeton, 1941)

* K. Nagami, Dimension Theory (Academic Press, Inc., New York, 1970)

For a more comprehensive study of Dimension Theory, we refer to Engelking’s book, which
also contains excellent historical notes. Nagami’s book is quite readable and contains an appendix
titled “Cohomological Dimension Theory” by Kodama. The classical book by Hurewicz and
Wallman is still a worthwhile read. Nothing fundamental has yet changed in the framework of
Dimension Theory since its publication. In this book, Hurewicz and Wallman discuss the Hausdorff
dimension, which is useful in the field of Fractal Geometry. However, we do not discuss this here.
In the following textbook of van Mill, Chap. 5 is devoted to Dimension Theory, and was used to
prepare the last two sections of this chapter.

e J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland
Math. Library 43 (Elsevier Sci. Publ. B.V., Amsterdam, 1989)

The definition of dim, which is due to Cech [11], is based on a property of covers of I
discovered by Lebesgue [28]. The Brouwer Fixed Point Theorem 5.1.1 was established in [8].
The proof using Sperner’s Lemma 5.1.2 in [53] is due to Knaster et al. [26].

The equivalence between (a), (b), and (d) in Theorem 5.2.3 was established by Hemmingsen
[20] and the equivalence between (a) and (d) was proved independently by Alexandroff [2] and
Dowker [12]. The equivalence between (a) and (f) was first established for compact metrizable
spaces by Hurewicz [23] and for normal spaces by Alexandroff [2], Hemmingsen [20], and Dowker
[12], independently.

The compact case of Corollary 5.2.6 was established by Freudenthal [17], and was generalized
to compact Hausdorff spaces by Mardesi¢ [33].

In [22], amap f : X — I" is called a universal map if it satisfies condition (b) in
Theorem 5.2.15. The equivalence between (b) and (c) in Theorem 5.2.15 is due to Holszyrnski
[22]. The equivalence between (a) and (b) in Theorem 5.2.17 was established by Alexandroff [1].
The equivalence between (a) and (c) in Theorem 5.2.17 was first established by Eilenberg and Otto
[14] in the separable metrizable case and extended to normal spaces by Hemmingsen [20].

Theorem 5.3.1 was established by Vopénka [55] and Theorem 5.3.2 was proved by Nagami
[40]. The Subset Theorem was proved by Dowker [13]. The Countable Sum Theorem (5.4.1) was
established by Cech [11] and the Locally Finite Sum Theorem (5.4.2) was proved independently
by Morita [Mo] and Katétov [24]. The Addition Theorem (5.4.8) was proved by Smirnov [52]. The
Decomposition and Product Theorems (5.4.5, 5.4.9) were proved independently by Katétov [24]
and Morita [39].

An inductive definition of dimension was outlined by Poincaré [44]. The first precise definition
of a dimension function was introduced by Brouwer [9]. His function coincides with Ind in the
class of locally connected compact metrizable spaces. The definition of Ind was formulated by
Cech [10]. On the other hand, the definition of ind was formulated by Urysohn [54] and Menger
[37]. The first example in Theorem 5.5.3 was constructed by Roy [47,48] but the example presented
here was constructed by Kulesza [27] and the proof of dim > 0 was simplified by Levin [31].
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The weak infinite dimension was first introduced by Alexandroff in [3]. In Remark 12, we
mentioned the weak infinite dimension in the sense of Smirnov, which was first studied in [32] and
[51].

Theorem 5.7.4 is due to Lelek [30] and the simple proof presented here is taken from Engelking
and Pol [15].

In [42], Nobeling introduced the spaces v" and showed their universality. The spaces " were
introduced by Menger [38], who showed that the universality ! is a universal space for compacta
with dim < 1. Theorem 5.10.8 is due to Bothe [6]. In [29], Lefschetz constructed a universal space
for compacta with dim < n. In [5], Bestvina gave the topological characterization of p”". Using
Bestvina’s characterization, we can see that Lefschetz’ universal space is homeomorphic to ©"; the
result for n = 1 had been obtained by Anderson [4]. Recently, in [41], Nagérko established the
topological characterization of v".

The total disconnectedness and the hereditary disconnectedness were respectively introduced
by Sierpinski [50] and Hausdorff [19]. The example of Theorem 5.11.3 is due to Knaster and
Kuratowski [25] (their example is the one in the Remark).

The example of Theorem 5.12.1 was described by Erdds [16]. Lemma 5.12.3 is due to Bourbaki
[7, Chap. 9] and the proof presented here is due to van Mill (Chap. 5 in his book listed above). The
first completely metrizable nonzero-dimensional totally disconnected space was constructed by
Sierpinski [50] (his example is 1-dimensional). Theorem 5.12.6 was established by Mazurkiewicz
[36] but the example and proof presented here is due to Rubin et al. [49] with some help from [45].

The example of Theorem 5.13.1 is presented by Pol [45]. Theorem 5.13.4 is due to Walsh [56]
but the example given here is due to Pol [46]. The earlier example of a compact metrizable space,
whose compact subsets are all either 0-dimensional or infinite-dimensional, was constructed by
Henderson [21].

In 1890, Peano [43] showed that the square I? is the continuous image of I. The Hahn—
Mazurkiewicz Theorem 5.14.1 was independently proved by Hahn [18] for planar sets and by
Mazurkiewicz [34] for subspaces of Euclidean space. In [35], Mazurkiewicz gave a systematic
exposition.

For more details, consult the historical and bibliographical notes at the end of each section of
Engelking’s book.
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Chapter 6
Retracts and Extensors

A subset A of a space X is called a retract of X if thereisamapr : X — A
such that r|A = id, which is called a retraction. As is easily observed, every retract
of a space X is closed in X. A neighborhood retract of X is a closed set in X
that is a retract of some neighborhood in X. A metrizable space X is called an
absolute neighborhood retract (ANR) (resp. an absolute retract (AR)) if X is a
neighborhood retract (or a retract) of an arbitrary metrizable space that contains X
as a closed subspace. A space Y is called an absolute neighborhood extensor for
metrizable spaces (ANE) if each map f : A — Y from any closed set 4 in an
arbitrary metrizable space X extends over some neighborhood U of 4 in X. When
f can always be extended over X (i.e., U = X in the above), we call Y an absolute
extensor for metrizable spaces (AE). As is easily observed, every metrizable ANE
(resp. a metrizable AE) is an ANR (resp. an AR). As will be shown, the converse
is also true. Thus, a metrizable space is an ANE (resp. an AE) if and only if it is an
ANR (resp. an AR).

This chapter is devoted to lectures on ANR Theory (Theory of Retracts). We will
prove the basic properties, fundamental theorems, and various characterizations of
ANEs and ANRs.

The results in Chaps.2 and 4 are used frequently. For topological linear spaces, refer
to Chap. 3. To characterize countable-dimensional ANRs, finite-dimensional ANEs and
ANRs, we need some theorems from Chap. 5.

6.1 The Dugundji Extension Theorem and ANEs

Recall that a topological linear space E is locally convex if 0 € E has a
neighborhood basis consisting of convex sets. In this section, we prove the following
extension theorem:

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, 333
DOI 10.1007/978-4-431-54397-8_6, © Springer Japan 2013
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Theorem 6.1.1 (DUGUNDJI EXTENSION THEOREM). Let E be a locally convex
topological linear space, X be a metrizable space, and A be closed in X. Then, each
map f : A — E can be extended to amap f : X — E such that the image f (X)
is contained in the convex hull { f(A)) of f(A).

Due to the above Theorem 6.1.1, every locally convex topological linear space
and its convex set are AEs, and, if they are metrizable, then they are ARs.

Recall that every metrizable space X is paracompact, that is, any open cover of X
has a locally finite open refinement (Theorem 2.3.1), and that, for each locally finite
open cover U € cov(X), X has a partition of unity (Ay)yey such that suppAy C U
for each U € U (Theorem 2.7.2), where supp Ay = ¢l A5 ((0, 1]).

Note. For a locally finite open cover U of a metric space X = (X, d), a partition of unity

can be directly defined as follows: For each U € U, define amap Ay : X — I by
d(x,X\U)

Yveudx, X\V)

Then, (Ay)yey is a partition of unity on X such that A;,'((0, 1]) = U (hence supp Ay =

clU) foreach U € U.
By shrinking U/ (the Open Cover Shrinking Lemma 2.7.1), we can require supp Ay C U.

Ay(x) =

The following is a key to the proof of Theorem 6.1.1:

Lemma 6.1.2. Let X = (X, d) be a metric space and A # @ be a proper closed
set in X. Then, there exists a locally finite open cover U of X \ A with ay € A,
U € U, such that x € U € U implies d(x,ay) < 2d(x, A).

Proof. Let U be alocally finite open cover of X \ A such that
U= {B(x, Ld(x, A)) | xeX\ A}.

For each U € U, choose xy € X \ 4 so that U C B(xy, %d(xU, A)), and then
choose ay € A sothatd(xy,ay) < %d(xU,A). If x €e U € U then

d(x,ay) < d(x,xy) +d(xy,ay) < 3d(xy, A) < 2d(x, A)

because d(x, A) > d(xy, A) —d(x,xy) > %d(xU,A). O

We call the above (ay)yey @ Dugundji system for A C X.
Proof of Theorem 6.1.1. By the above lemma, we have a Dugundji system (ay )y ey
for A C X.Let (Ay)veu be apartition of unity on X \ 4 such that suppAy C U for
each U € U. (Here, it is enough to require that A7, ((0,1]) C U foreach U € U.)
We define f : X — E as follows:

f(x) if x € A,

fo = Sy ho(0) flay) ifx € X\ A,
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By the local finiteness of U, f is continuous at x € X \ A. To prove the continuity
of f ata € A,let V be any convex neighborhood of f(a) in E. From the continuity
of f, we have § > 0 such that f(B(a,8) N A) C V. For each x € B(a, 16) \ A4, if
Au(x) # Othen x € U, hence

d(a,ay) <d(a,x)+d(x,ay) <d(a,x) +2d(x,A) <3d(x,a) <,

which implies f(ay) € V. From the convexity of V, it follows that f (x) e V.
Thus, f(x) € V forall x € B(a, 1§). O

Remark 1. 1t is easy to show that C(X, E) and C(A, E) are topological linear
spaces with respect to the compact-open topology. If E is locally convex, so is
C(X,E).

In fact, let ¢/ be an open neighborhood basis at 0 € E. The set of all non-empty compact
sets in X is denoted by Comp(X). For each K € Comp(X) and U € U, let

W(K,U)={f €CX,E)| f(K)CU}.

Then, the following WV satisfies all conditions of Proposition 3.4.1:
W ={W(K,U) | K € Comp(X), U € U}.

Let R : C(X, E) — C(A, E) be the restriction operator, i.e., R(f) = f|A for
each f € C(X, E). Then, R is linear and continuous. Fixing a Dugundji system
(av)vey for A C X and a partition of unity (Ay)vey, the extension operator L :
C(A,E) - C(X, E) is defined by L(f) = f as above. Then, RoL = id and L is
linear by definition. Moreover, L is continuous.

To prove the continuity of L at 0 € C(4, E), let U be a neighborhood of 0 €
C(X, E). Then, we have a compact set K in X and an open convex neighborhood
W of 0 € E such that

{g€C(X.E)| g(K)c W} CD.

It suffices to find a compact set K4 C A such that f(K4) C W implies f(K) cw
for f € C(A, E). We define

Ki={ay |U €eUK]} U (AN K).

For f € C(A, E), f(K4) C W implies f(K) C W by the convexity of W and
the definition of f. To prove the compactness of K 4, it suffices to show that every
sequence (ax)ken in K 4 has a convergent subsequence. If ay € A N K for infinitely
many k € N, the compactness of K, follows from the compactness of A N K.
Otherwise, we may assume that ay € A\ K forall k € N, ie., ar = ay, for
some Uy € U[K], where we may also assume that U, # Uy if k # k’. For each
k € N, we have x; € U N K. By the compactness of K, (xx)ren has a subsequence
(xx,) jen converging to some xo € K. Since {Uy; | j € N} is locally finite in X \ 4,
it follows that xo € K N A C K 4. Hence,

d(xg;,ar;) = d(xk‘/.,ayk‘/,) < 2d(xk;, A) < 2d(xk;, x0) — 0,

which implies that (a ; )jen also converges to xo. Therefore, K 4 is compact.



336 6 Retracts and Extensors

Remark 2. When E = (E,| - |) is a normed linear space, let C5(X, E) be the
normed linear space of all bounded maps with the sup-norm || f'|| = sup,.cy || f(xX)]
For a closed set A in X, given a Dugundji system (ay )yey and a partition of unity
(Av)veu, Theorem 6.1.1 gives the extension operator L : C®(A4, E) — CB(X, E),
which is an isometry (i.e., |L(f)| = | f| for every f € CB(A, E)). In this case,
the restriction operator R : CB(X, E) — CB(A, E) satisfies |R(f)| < || /| for
every f € CB(X,E).

Remark 3. In Theorem 6.1.1, the local convexity is essential. Actually, there exists
a metric linear space that is not an AE (i.e., an AR). Such an example will be
constructed in Sect. 7.12.

Remark 4. Theorem 6.1.1 is valid even if E is a Fréchet space and X is a
paracompact space. Namely, every Fréchet space is an AE for paracompact spaces.
Indeed, applying the Michael Selection Theorem 3.8.8 to the set-valued function
¢ : X 2 x > cl{f(A)) € Conv(E), we can extend f to amap f : X —
cl{f(A)) C E. Here, the complete metrizability is required for cl{ f(A)) rather
than E itself. As a result, every complete convex set in a locally convex metric
linear space is an AE for paracompact spaces.

A polyhedron (with the Whitehead topology) is another example of an ANE.
To prove this, we need the following lemma:

Lemma 6.1.3. Let X be metrizable and A C X. Then, each open set U in A can
be extended to an open set E(U) in X so that

(1) E@) =0, E(A) =X;

2) EU)NA=U;
B)UCV=EU)CEW),
@ EUNV)=EU)NEW).

Proof. Using d € Metr(X), for each open set U in A, we define
EU)={xeX |d(x,U) <d(x,A\U)},

where d(x, @) = oco. Then, E(U) is an open set in X. Conditions (1), (2), and (3)
are obvious. We show E(U)N E(V) C E(U NV), which implies (4) by combining
(3). Foreach x € E(U) N E(V), it suffices to prove

(x) dx,UNV)<dx, A\ (UNV)) =min{d(x,A\U), d(x,A\ V)}.

Then, without loss of generality, we may assume that
dx, AN(UNV)) =d(x,A\U) =d(x,A\'V).

Since x € E(U), there exists a y € U such that d(x,y) < d(x, A\ U). Then, it
follows that d(x, y) < d(x, A\ V), which implies that y € V. Hence,y e U NV,
so we have the inequality (). O

Theorem 6.1.4. The polyhedron |K| of any simplicial complex K is an ANE.
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Proof. Let X be a metrizable space and f : A — |K| be a map from a closed
set A in X to |K|. Let (B,(x)),cx© be the barycentric coordinate of x € |K]|.
Since B, : |K| — Iis continuous, each U, = f~!(Ok(v)) is open in A, where
Ox(v) = B,1((0,1]) is the open star at v with respect to K. We show that {U, |
v € K©} is locally finite in 4. Assume that it is not locally finite at x, € A. Since
{ve KO | xyeU) = cx(f(x0)© is finite, we can choose xi, X, € 4 and
Vi, v, € K© so that xy ¢ U,,, x, € Uy, lim,_ 500X, = Xo, and v, 7# v, if
n # m. Then, f(xg) = lim,_c f(x,). On the other hand, each 6 € K does not
meet Ok (v) except for v € o(®, so it contains only finitely many f(x,), which
implies that { f(x,) | n € N} is closed in |K|. Hence, f(x9) = f(x,) for some
n € N, which is contrary to xo & U,, .

Now, for each x € A, choose an open neighborhood V, of x in A4 so that V, N
U, = @ except for finitely many v € K©. Let V be an open neighborhood of 4 in
X suchthatclV C UxeA E(V,), where E(U) is defined in Lemma 6.1.3. For each
v e KO, wedefine U, = E(U,) N V. Then, {U, | v € K©} is locally finite in X.
We can apply the Tietze Extension Theorem 2.2.2 to constructamap g, : X — I
such that g,|4 = B, o f and g,(X \ U,) = 0. Then, g = Y ovex® & 1 X > Ry
is well-defined and continuous. Since g(x) = Y cx© Bvf(x) = 1 foreach x € 4,
we have an open neighborhood W' = 27 1((0,0)) of Ain X. We can extend f to
f:W —|K|by

o 3 &) ( - :gv(x))
f(x) . (x) ie., B.(f(x)) 20 )

Then, f is well-defined and continuous. Indeed, for each x € W, only finitely many
gv(x) are nonzero, say

{v e K© | gv(x) # 0} = {v1,~-~ ,vn}.

Then, it follows that
E(N/-,U,) =EU,)N---NEU,) DU, N---NU, #0,

which implies that (\/_, U,, # @, ie., (', Ox(v;) # 0. Therefore, f(x) €
(v1,+-+,vy) € K. Thus, we have f(x) € |K|. Each x € W has a neighborhood
W, in W that meets only finitely many g;'((0,00)),v € K©,ie., f(W,) C |L|
for a finite subcomplex L of K. Since f|Vx : Vi = |L|m = |L| is continuous,
f W — |K]| is also continuous. O

Remark 5. Since every metrizable ANE is an ANR, it follows that |K| (= |K|m)
is an ANR for every locally finite simplicial complex K. If K is not locally finite,
then there are many maps from a compactum to | K|, that are not continuous with
respect to the Whitehead topology. Indeed, K contains a subcomplex L such that
| L|mm is homeomorphic to the hedgehog

J(N) = {x € £, | x(i) e Iforalli € Nand

x(i) # 0 atmostone i € N} C £;.



338 6 Retracts and Extensors

The graph of k

I : A ‘
| -
| h f
—_—
|
0 el |
A 14 ho f

Fig. 6.1 Extending a map using a contraction

It is easy to construct amap f : I — |L|, = J(N) such that f(1/i) = 277¢;
for eachi € N. Then, f : I — |L| (C |K]) is not continuous because f(I)
is not contained in the polyhedron of any finite subcomplex of L. In the next
section, we will show that | K|, is an ANR for an arbitrary simplicial complex K
(Theorem 6.2.6).

Let X beaspaceand A C X.Itis said that 4 is contractible in X if the inclusion
map A C X is null-homotopic, i.e., there is a homotopy & : A x I — X such that
ho = id and A, is constant. Such a homotopy # is called a contraction of A in X. If
A = X, we simply say that X is contractible and / is called a contraction of X .
A space X is contractible if and only if X has the homotopy type of a singleton.

Theorem 6.1.5. A contractible ANE is an AE.

Proof. Let X be a metrizable space, A be a closed set in X, and Y be an ANE
with a contraction 4. Eachmap f : A — Y extendstoamap f : U — Y from
a neighborhood U of A in X. Choose an open neighborhood V' of 4 in X so that
clV Cc U,andletk : X — I be an Urysohn map with k(A) = Oand k(X \ V) = 1.
We canextend f toamap f : X — Y by f(X \ V) = h;(Y) and

f(x) = h(f(x), k(x)) foreachx eclV.
See Fig.6.1. O

By Theorem 5.1.6(2) and the No Retraction Theorem 5.1.5, the unit sphere S” is
an ANE but not an AE. Then, we have the following corollary:

Corollary 6.1.6. For every n € w, the unit sphere S™ is not contractible.

For any full complex K, |K| is contractible. Indeed, fixing vp € K@, we can
define a contraction /2 : |K| x I — | K| by

Bu(h(x, 1)) = (1 = 1)B,(x) + 1B, (v), v € K©.
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Thus, we have the following:
Corollary 6.1.7. The polyhedron |K| of a full complex K is an AE. O

Recall that a tower X| C X, C --- of spaces is said to be closed if each X, is
closed in X, 4.

Theorem 6.1.8. For a closed tower Y| C Y, C --- of ANEs, the direct limit Y =
li_I)n Y, is also an ANE.

Proof. Let f : A — Y be a map from a closed set A in a metric space X = (X, d).
Foreachn € N, let A, = f~'(Y,) and define

X, ={xeX|dx, A)<dx, A\ A,)}

Then, each X, is closed in X and X,, N A = A,,. By induction, we can obtain N; C
N, C--- C X and maps f, : AU N, — Y such that N, is a closed neighborhood
of A, in X,,, f,(N,) C Y,, and f,|AU N,_; = f,—1, where Ny = @, fo = f.
Indeed, assume that f,, has been obtained. Since Y, 11 is an ANE and 4,11 U N, is
a closed subset of X+, A,+1 U N, has a closed neighborhood N,,4+; in X+ and
SulAns1 UNy, : Ays1 UN, — Y, extendstoamap f/ : Ny4+1 — Yy41. The map
Jut1is defined by f,11|A = f and f,41|Nyy1 = f'.Let N = |,y intx N, and
define f :N — Y by f|intX N, = fylinty N,. If A C |, ey inty Ny, then N is
a neighborhood of A in X and the continuity of f follows from that of each f,.
Since each N, is a neighborhood of A, in X, it suffices to show that A C
U, enintx X,. On the contrary, assume that there is an a € A \ |J,cyintx X,.
Then, a is contained in some Ag. For each i € N, we can choose x; € X \ Xi4; so
that lim,—,» X; = a. By the definition of X;, d(x;,a;) < d(x;, Ax+;) forsomea; €
A\ Ay +i.Since d(x;,a;) < d(x;,a), it follows that lim,_,» @; = a, hence f(a) =
lim; 00 f(a;). On the other hand, { f(a;) | i € N}isclosed in Y because each Y y;
contains only finitely many points f(a;). Therefore, f(a) = f(a;) forsomei € N,
hence f(a) & Yi+i, which is a contradiction. Thus, the proof is complete. O

Now, we list the basic properties of ANEs, which can be easily proved.
Basic Properties of ANEs 6.1.9.
(1) An arbitrary product of AEs is an AE and a finite product of ANEs is an ANE.

Sketch of Proof. Extend coordinate-wise.

(2) A retract of an AE is an AE and a neighborhood retract of an ANE is an ANE.

Sketch of Proof. Compose an extension with a retraction.

(3) Any open set in an ANE is also an ANE.

Sketch of Proof. Restrict an extension.

(4) A topological sum of ANEs is an ANE.
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Fig. 6.2 The union of two open ANEs

Sketch of Proof. Let f : A — @, Y» be a map from a closed set A in a metrizable
space X, where each Y; is an ANE. Extend each f|f~!(Y};) over a neighborhood in
E(f~'(Yy)), where E is the extension operator in Lemma 6.1.3.

(5) LetY =Y, UY,, where Y; isopenin Y. If Y| and ¥, are ANEs, then sois Y.

Sketch of Proof. Let f : A — Y be a map of a closed set A C X. Separate f (¥ \
Y,) and f~!(Y> \ Y}) by open sets U; and U, in X. By extending f| : 4\ (U, U
U,) — Y| NY, over a closed neighborhood W in X \ (U; U U,), we first extend f to
f/: AUW — Y. Then, extending f’| : (AN U;) UW — Y; over a neighborhood
inU; UW (i = 1,2), we can obtain an extension of f. Refer to Fig.6.2.

(6) (HANNER’S THEOREM) A paracompact space is an ANE if it is locally an ANE,
i.e., each point has an ANE neighborhood.

Sketch of Proof. Applying Michael’s Theorem 2.6.5 on local properties, the proof
follows from (3), (4), and (5).

In the above, (4) and (5) are special cases of (6). Combining (6) with Theorem 6.1.1,
every n-manifold (with boundary) is an ANE.! Due to 2.6.7(4), it is metrizable, hence
itis an ANR.

(7) LetY = Yy UY,, where Y; is closed in Y. If Y;, Y5, and Y; N Y, are ANEs
(AEs) thensois Y. If Y and Y; N Y, are ANEs (AEs), then so are Y; and Y>.

Sketch of Proof. The first assertion is similar to (5). Now, U; and U, are disjoint open
setssuchthat Uy N A = f~ (Y, \ Vo) and U, N A = f~ (Y, \ Y}) (Fig. 6.3).

For the second assertion, let f : A — Y| be a map of a closed set A C X. First,
extend f to a map f : U — Y of aneighborhood U of A in X. Then, extending
Fl: f~Y¥1 NY,) = Y; N Y, over a neighborhood Uy of f~1(¥Y; N Ys) in f—1(Y2),
we can extend ]7|f71(Y1) over U; = fﬁl(Yl) U Uj. See Fig. 6.4.

A paracompact space M is called an n-manifold (possibly with boundary) if each point has a
neighborhood that is homeomorphic to an open set in I". The boundary dM of M is the subset of
M consisting of all points with no neighborhood homeomorphic to an open set in R”. The interior
IntM = M \ dM is an n-manifold without boundary. It is known that the boundary 0M is an
(n — 1)-manifold without boundary.
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Fig. 6.3 The union of two closed ANEs

YiNY,

Fig. 6.4 Two closed sets whose union and intersection are ANEs

(7) For a compactum X and an ANE (resp. AE) Y, the space C(X, Y) of all maps
from X to Y with the compact-open topology is an ANE (resp. AE).

Sketch of Proof. Let Z be a metrizable space with C a closed set. Amap f : C —
C(X,Y) induces amap g : C x X — Y by 1.1.3(4). Then, g extends over a
neighborhood W of C X X in Z X X. By the compactness of X, U x X C W
for some neighborhood U of C in Z. The extension of g induces a map from U to
C(X,Y) by Proposition 1.1.1.

(8) For a pair (X, A) of compacta and a pair (Y, B) of ANEs, the space C((X, A),
(Y, B)) of all maps from (X, A) to (Y, B) with the compact-open topology is
an ANE, where B is not necessarily closed in Y.

Sketch of Proof. Let Z be a metrizable space with C a closed set. Amap f : C —
C((X, A), (Y, B))inducesamap g : (CxX,CxA) — (Y, B) (cf. 1.1.3(4)). Asin (8),
extend g|C x Atoamap g’ : VXA — B, where V is a closed neighborhood of C x A
in ZXx A.Define g’ : (CXX)U(VxA) > Ybyg’|CxX =gandg”’|VxA=¢g.
Next, extend g”’ over a neighborhood W of (C x X) U (V x A) in Z X X and find
a neighborhood U of C in Z sothat U C V and U X X C W. The restriction of
this extension of g”” to U X X induces an extension f : U — C((X, A), (Y, B)) of f
(cf. Proposition 1.1.1).
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6.2 Embeddings of Metric Spaces and ANRs

In this section, we first prove the following embedding theorem:

Theorem 6.2.1 (ARENS-EELLS EMBEDDING THEOREM). Every (complete)
metric space X can be isometrically embedded in a (complete) normed linear space
E with dens E = Ry dens X as a linearly independent closed set.

Proof. When X is finite, let X’ = X U {y; | i € N}, where y; € X and y; # y; if
i # j.The metric d of X can be extended to a metric on X’ by defining

d(yi,y;) =1 fori # j and d(x,y;) = diam X forx € X.

The linear span of X in the normed linear space obtained for X' is the desired one.
Thus, we may assume that X is infinite.

Let X* = X U {yo}, where yo ¢ X. Fix a point xo € X and extend the metric d
of X to a metric on X™* by defining

d(x,y0) = d(yo,x) = d(x,x0) + 1 forx € X.

By Fin(X™), we denote the set of all non-empty finite subsets of X*, and by
£ (Fin(X*)) the Banach space of all bounded real functions on Fin(X*) with the
sup-norm || - ||. For each x € X™*, we define ¢(x) € £ (Fin(X*)) by

@(x)(F) =d(x,F)—d(yo, F) for F € Fin(X"),

where |p(x)(F)| < d(x, yo) = d(x,x0) + 1. Then, [|¢(x) — ()|l = d(x,y) for
each x, y € X*. Indeed, for each F € Fin(X™),

lp(x)(F) —o()(F)| = |d(x, F) —d(y, F)|
<d(x,y) = le(x){y}) —eMUEIDI.

Thus, we have an isometry ¢ : X* — £ (Fin(X*)), where it should be noted that
©(¥0) = 0. Let E be the linear subspace of £~ (Fin(X*)) spanned by ¢(X), i.e.,

E={Y/_1dio(x)|neN i €R and x; € X}.

We show that dens £ = dens X when X is infinite. Take a dense set D in X with
card D = dens X, and define

Ep ={X>7_ dio(xi) \ neN, 1 €Q and x; € D}.

Then, Ep is dense in £ and card Ep = Rpcard D = dens X.

We show that ¢(X) is closed in E. Let f = Y 7" A;¢(y;) € E and x,, € X,
n € N, such that ¢(x,) converges to f. Let F = {yo,y1,-+-,¥m} € Fin(X"¥).
Then, d(x,, F) = ¢(x,)(F) converges to
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SF) =" hig(y)(F) =) did(yi, F) =0.

i=1 i=1

Since F is finite and d(y9, X) = 1, (x,)nen has a subsequence that converges to
somey € F\{yo} C X,s0 f = ¢(y) € ¢(X). Therefore, ¢(X) is closed in E. If
X is complete, ¢(X) is closed in £oo(Fin(X™*)), so is closed in the closure cl E of
E in Lo (Fin(X™)).

Finally, we show that ¢(X) is linearly independent. Let > /-, A;¢(x;) = 0,
where A; € R, x; € X,and x; # x; if i # j. Then,

> Xid(xi. F)—d(yo. F)) =0 foreach F € Fin(X*).
i=1

Foreachi = 1,...,m, applying this to
Fi = {yo,x1,++  Xm} \ {x;} € Fin(X™),

we have A;d(x;, F;) = 0, hence A; = 0 because d(x;, F;) # 0. O

Remark 6. Due to Theorem 2.3.9, every metric space X can be embedded into the
Banach space C2(X) by the isometry ¢ : X — CB(X) defined as above, i.e.,
©(x)(z) = d(x,z7) — d(x0,z), where xo € X is fixed. In this case, ¢(X) is closed in
the convex hull (p(X)).

Indeed, for each f € {p(X)) \ p(X), write f = >/, t;p(x;), where x; € X, #; € 1
with Y7, #; = 1. Choose § > 0 so that || f — ¢(x; )|| > § foreveryi = 1,..., n.
To prove B(f,8) N ¢(X) = @, assume the contrary, i.e., || f — ¢(x)|| < 8 for some
X € X.Then, Y/, t;d(x;,x) = | f(x) — ¢(x)(x)| < 8, which implies that d(x, x;) < §
for some i = 1,..., n. On the other hand, | f(x)(z) — ¢(x;)(z)] > § for some z € X.
However, | /(x)(2) = p(x)@)| < | XY= 1:(d(x;,2) — d(x,2)| < d(x,x;) <8, which is

a contradiction.
The following is a very useful procedure to extend homeomorphisms.

Theorem 6.2.2 (KLEE’S TRICK). Let E and F be metrizable topological linear
spaces that are AEs and let A and B be closed sets in E and F, respectively. Then,
each homeomorphism [ : A x {0} — {0} x B extends to a homeomorphism f :
ExF — EXF.

Proof. Letig : E - Ex{0} C ExF andifr : F — {0}xF C E XF be the natural
injections. Then, pryo foig|A : A — F and pryof~loip|B : B — E extend to
maps g; : £ — Fand g, : F — E, respectively. We define homeomorphisms
fi, o Ex F — E x F as follows:

Silx,y) = (x,y + g1(x)) and fo(x,y) = (x + g2(1), y).

Then, the homeomorphism f = fy; 'ofi 1 Ex F — E x F is an extension of f
(cf. Fig. 6.5). Indeed, for each x € A4, f(x,0) = (0, prp f(x,0)) and then
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Fig. 6.5 Klee’s trick

f@.0) = f @ gi1(x) = (x = g2(81(x)). 81(x))
= (x —prgof (0. prpo f(x,0)). prgo f(x,0)
= (x —prgof ! (f(x,0)), prpo f(x,0))
= (0,prpof(x.0)) = f(x,0). o
As a corollary, we prove the following metric extension theorem:

Theorem 6.2.3 (HAUSDORFF’S METRIC EXTENSION THEOREM). Let A be a
closed set in a (completely) metrizable space X . Every admissible (complete) metric
on A extends to an admissible (complete) metric on X .

Proof. By Theorem 6.2.1, we have a closed embedding g : X — E of X into a
(complete) normed linear space E = (E, || - || g). Let d be an admissible (complete)
metric on A. Again, by Theorem 6.2.1, we have a closed isometry & : A — F of
A = (A, d) into a (complete) normed linear space F = (F, || - | ). Since E and F
are AEs by the Dugundji Extension Theorem 6.1.1, we can apply Theorem 6.2.2 to
obtain a homeomorphism f : E x F — E x F such that

f(g(x),0) = (0,h(x)) forall x € A.

Leti : E — E x{0} C E x F be the natural injection. Then, foiog : X — E X F
is a closed embedding of X into the product normed linear space E x F with the
norm

G I = llxlle + [yl

Since foiog|A is an isometry with respect to d and || - ||, we can extend d to a
(complete) metric d on X as follows:

d(x,y) = | foiog(x) — foiog(y)l. 0
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In Theorem 6.2.1, if an embedding is not required to be an isometry, we have the
following:

Theorem 6.2.4. Every completely metrizable space can be embedded in a Hilbert
space with the same density as a closed set. Moreover, every metrizable space can
be embedded in a pre-Hilbert space (that is, a linear subspace of a Hilbert space)
with the same density as a closed set.

Proof. Let X = (X,d) be a metric space. We may assume that X is infinite.
For each n € N, X has a locally finite partition of unity (f}),er) such that
diamsupp f, < 27" for each y € I'(n), which implies that f,(x) f,(y) = 0 if
d(x,y)>27".LetI' = |, ey I (n), where it can be assumed that I"(n) N I"(m) =
@itn # m.Foreachy € I',let g, = 27" f,, where y € I'(n). We define
h:X — 6(I) by hix) = (g, (.X)%)),E[‘. Observe that 7(X) is contained in the
unit sphere of £,(I"). Then, the continuity of / follows from the continuity of g,
y € I' (Proposition 1.2.4). It is easy to show that

27" =d(x.y) (<27 = k() —hMI? 227" (> d(x, y)).

Hence, the inverse h~! of & is uniformly continuous. Thus, % is an embedding.
Since (fy)yer) is locally finite, we have card I'(n) < w(X) = dens X, hence
card I' < dens X. Observe

dens X < dens{,(I") = card I" < dens X,

so we have dens £, (") = dens X. When X is complete, 4 (X) is also complete, so
closed in £,(I").

When X is not complete, let £ be the linear subspace of £,(I") generated by
h(X). We now show that 4(X) is closed in E. Let y € clg h(X). Then, y =
Yot tih(x;) for some x; € X and #; € R. We may assume that x; # x; if i # j
and #; # 0 for all i. Suppose that m > 1. Choose n € N so that d(x;, x;) > 27" !
ifi # j.Foreachi = 1,...,m, we have y; € I'(n) such that f,, (x;) > 0, i.e.,
h(x;)(y;) > 0.Ifi # j then f,,(x;) = 0, i.e., h(x;)(y;) = 0. Hence, y(y;) > 0.
Since y € clh(X), we have x € X such that i(x)(y;) > 0, i.e., fy,(x) > 0 for all
i. This implies that d(x, x;) < 27" for each i, hence d(x;, x;) < 27"*!, whichis a
contradiction. Therefore, y = t1h(x;). Observe that y(y) > 0 forevery y € I" and
|ly|| = 1. Thus, we have y = h(x;). Hence, h(X) is closed in E. O

Note. By Corollary 3.8.12 and the Arens—Eells Embedding Theorem 6.2.1, every com-
pletely metrizable space X can be embedded in £;(I") as a closed set, where card I’ =
dens X. It is known that £,(I") =~ {,(I"). Thus, we have an alternative proof for
Theorem 6.2.4.
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As is easily observed, a metrizable AE (resp. ANE) is an AR (resp. ANR).
The converse is also true by the Arens—Eells Embedding Theorem 6.2.1 (or
Theorem 6.2.4), the Dugundji Extension Theorem 6.1.1, and 6.1.9(2). Thus, we
have the following theorem:

Theorem 6.2.5. For a metrizable space X, the following hold:

(1) X isan AR if and only if X is an AE.
(2) X isan ANR if and only if X is an ANE. O

The following theorem corresponds to Theorem 6.1.4:
Theorem 6.2.6. For any simplicial complex K, |K | is an ANR.

Proof. We can regard K as a subcomplex of the full simplicial complex F with
F© = K©_ Note that the canonical representation 87 : |F| — £;(F©) is
an isometry with respect to the metric pr (cf. Sect.4.5) and B¥ (| F|) is a convex
set in £;(F©). Then, |F|y is an AE by Theorem 6.1.1. Combining 6.1.9(2) with
Theorem 6.2.5(2), it suffices to show that | K|, is a neighborhood retract of | F|m
(refer to 6.2.10(2)).

By Theorem 4.6.7, |K |y = | Sd*> K| and | F|, = | Sd® F|y, as spaces. Let

N= |J su.SdF).
ve(Sd? K)©

Then, N is a subcomplex of Sd> F and |N| is a neighborhood of |K| in | F|y,. Each
vertex v € N is the barycenter of 0 € Sd F with o N |K| # @, where it should be
noted that o N |K| = (0@ N |K|) € Sd K. Let ro(v) be the barycenter of o N |K]|.
Then, forvi,...,v, € NO,

i, . v) € N = (ro(v),....ro(vy)) € SA* K.

Hence, the function ro : N© — (Sd? K)© defines the simplicial map r : N —
Sd’K. By definition, r| Sd?> K = id, which means that r is a retraction. Thus, | K |m
is a neighborhood retract of | F|;,. This completes the proof. O

Let X be a subspace of Y. A homotopy # : X xI — Y with hy = id is
called a deformation of X in Y. When X = Y, A is called a deformation of X.
A subset A of X is said to be a deformation retract of X if there is a homotopy
h: X xI — X such that iy = id and &, is a retraction of X onto A, where h; is
called a deformation retraction of X onto A. When /;|A = id forall ¢ € I, we call
A astrong deformation retract of X and /1, a strong deformation retraction of X
onto A. A deformation retraction (resp. a strong deformation retraction) r : X — A
(C X) is a retraction with r >~ idy (resp. r >~ idy rel. A). A closed set A in X is
called a neighborhood deformation retract of X if A has a neighborhood U in X
with a homotopy / : U x I — X such that hy = id and /, is a retraction of U onto
A, where h is called a deformation retraction of U onto 4 in X. When /|4 = id
for all t € I, we call A a strong neighborhood deformation retract of X and 4, a
strong deformation retraction of U onto 4 in X.
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Proposition 6.2.7. A retract of an AR is a strong deformation retract and a
neighborhood retract of an ANR is a strong neighborhood deformation retract.

Proof. Let X be an ANR and A be a closed set in X with r : U — A a retraction
of an open neighborhood U of 4 in X. Since X is an ANE by Theorem 6.2.5, we
have a neighborhood W of U x {0,1} U A xIinU xIandamaph : W — X
such that h(x,0) = x, h(x,1) = r(x) for x € U, and h(x,t) = x for x € A.
Choose a neighborhood V of A in U so that V x I C W. Then, h|V x I is the
desired homotopy. When X is an AR, we cantake U = X and W = X xIin
the above. O

Remark 7. By Proposition 6.2.7, a deformation retract of an AR is a strong
deformation retract. In Sect. 6.4, it will be proved that this is valid for any ANR, that
is, a deformation retract of an ANR is a strong deformation retract (Theorem 6.4.4).

A space X is locally contractible if each neighborhood U of any point x € X
contains a neighborhood of x that is contractible in U. The following proposition
can be proved by letting A = {x} in the proof of Proposition 6.2.7:

Proposition 6.2.8. Every ANR is locally contractible and every AR is contractible.
O

By Theorems 6.1.5 and 6.2.5, a contractible ANR is an AR. Thus, we have the
following characterization of ARs:

Corollary 6.2.9. A metrizable space is an AR if and only if it is a contractible ANR.
O

By Theorem 6.2.5, we can translate 6.1.9 as follows:

Basic Properties of ANRs 6.2.10.
(1) A countable product of ARs is an AR and a finite product of ANRs is an ANR.

The metrizability requires the countable product.

(2) A retract of an AR is an AR and a neighborhood retract of an ANR is an ANR.

(3) Any open set in an ANR is also an ANR.

(4) (HANNER’S THEOREM) A paracompact space is an ANR if it is locally an
ANR, that is, each point has an ANR neighborhood.

See the remark on 6.1.9(6). The metrizability of X follows from 2.6.7(4). Every n-
manifold is an ANR.

(5) Let X = X| U X,, where X; isclosedin X,i = 1,2.If X{, X5, and X; N X,
are ANRs (ARs) then sois X. If X and X| N X, are ANRs (ARs), then so are
X1 and Xz.
Sketch of Proof. In the first assertion, the metrizability of X follows from 2.4.5(2).

The second assertion can also be proved by showing that X; and X, are neighborhood
retracts of X (cf. (2)).
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(6) The space C(X, Y) of all maps from a compactum X to an ANR (resp. an AR)
Y with the compact-open topology is an ANR (resp. an AR).

For the metrizability of C(X, Y'), refer to 1.1.3(6).

(7) For a locally compact separable metrizable space X and an AR Y, the space
C(X,Y) of all maps from X to Y with the compact-open topology is an AR.

Sketch of Proof. Regard Y as a retract of a normed linear space E by the Arens—Eells
Embedding Theorem 6.2.1. Then, C(X,Y) can be regarded as a retract of C(X, E)
by 1.1.3(1), where C(X, E) is a locally convex topological linear space by Remark
1 in Sect. 6.1, and hence is an AE by the Dugundji Extension Theorem 6.1.1. Since
C(X, E) is metrizable by 1.1.3(7), itis an AR, so C(X, Y) is an AR.

(8) There exists a locally compact separable metrizable space X such that the space

C(X,S") with the compact-open topology is not locally path-connected, so it is
not an ANR (cf. 6.1.9(8)).

Example. Let X = |J;cn(S" + 2ie;) be a subspace of R? and define amap f : X —
S! by

f(x +2i,y) = ((=1)'x,y) forevery (x,y) €S'.
Foreachn € N,let X,, = U:'l=1 (S'4+2ie;)andr, : X — X, be the retraction defined
by 7,(X \ X,,) = {(2n + 1)e; }. Each neighborhood ¢ of f in C(X,S') contains some

fra. But fr, % f in S', which means that fr, and f cannot be connected by any
path in C(X, S").

6.3 Small Homotopies and LEC Spaces

For a space X, let Ay denote the diagonal of X 2 that is,
Ay = {(x,x) | X € X} c X2

For each A C X? and x € X, we define A(x) = {y € X | (x,y) € A}.
Each neighborhood U of Ay in X? gives every x € X its neighborhood U(x)
simultaneously. Given an open cover ¢/ of X, we have an open neighborhood
W = Upyey U? of Ay in X2, where W(x) = st(x,U) for each x € X. Such
open neighborhoods of Ay in X? form a neighborhood basis of Ay. Indeed, let U
be an open neighborhood of Ay in X2. Each x € X has an open neighborhood V,
in X such that V2 C U. Thus, we have an open cover V = {V, | x € X} such that
UxEX VXZ cvu

A space X said to be locally equi-connected (LEC) if the diagonal Ay of X?
has a neighborhood U and there isamap A : U x I — X such that

A(x,y,0) =x and A(x,y,1) =y foreach (x,y) e U and

A(x,x,t) = x foreachx € X andt €1,
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where I 5 ¢t — A(x,y,t) € X is a path from x to y in X. Such a map A is called
an equi-connecting map for X. If U = X2, X is said to be equi-connected (EC).
For example, every convex set X in a topological linear space is EC, where a natural
EC map A is defined by

Ax,y,t) =1 —t)-x+1-y.

In particular, every topological linear space is EC. More generally, a contractible
topological group X is also EC and a semi-locally contractible topological group X
is LEC, where X is said to be semi-locally contractible if each point of X has a
neighborhood that is contractible in X. In fact, let ¢ : V x I — X be a contraction
of a neighborhood of the unit 1 € X (V' = X when X is contractible). Then,
U = {(x.y) | x-y~! € V}is aneighborhood of Ay in X?> (U = X?if V = X).
We can define an equi-connectingmap A : U x I — X by

A(X,y,l‘) = @(lvt)_l (p(x : y_lvt) © ).
The following proposition is easily proved:
Proposition 6.3.1. An AR is EC and an ANR is LEC.

Sketch of Proof. An equi-connecting map A for an AR (or an ANR) X can be obtained as
an extension of the map of (X2 x {0, 1}) U (Ay x I) to X defined by the conditions of an
equi-connecting map.

The converse of Proposition 6.3.1 does not hold (cf. Remark 3 after Proof of
Theorem 6.1.1; Sect. 7.12).
Now, we will characterize LEC spaces via the following theorem.

Theorem 6.3.2. For an arbitrary space X,

(1) X is EC if and only if Ay is a strong deformation retract of X2, and
(2) X is LEC ifand only if Ay is a strong neighborhood deformation retract of X>.

Proof. To prove the “only if” part of both (1) and (2),let A : U x I — X be an
equi-connecting map for X, where U = X2 for (1) or U is a neighborhood of
Ay in X% for (2). Let h : U x I — X? be the homotopy defined by h(x, y,t) =
(x,A(x,y,1 —1)). Then, hy = id, h;|Ax = id foreach ¢t € I, and A, is a retraction
of U onto Ay.

To show the “if”” part of (1) and (2), let 4 : U x I — X? be a homotopy such
that iy = id, h;|Ax = id foreach ¢ € I and A, is a retraction of U onto Ax, where
U = X?or U is aneighborhood of Ay in responce to (1) or (2). An equi-connecting
map A : U x I - X for X can be defined as follows:

Ao y1) = prih(x,y,2t) for0 <t < %,
pryhi(x,y,2 —2t) for% <t<l,
where pr;,pr, : X* — X are the projections onto the first and the second
coordinates, respectively. O
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By the proof of Theorem 6.3.2, for every LEC space X, the diagonal Ay has a
neighborhood U in X? with a pr,-preserving homotopy / : U x I — X? such that
ho = id, h; : U — Ay is aretraction and h;|Ax = id for all ¢ € I, where 4 is
pr,-preserving if pr, i, = pr;|U for each t € I. Thus, every LEC space X has the
following property:

(*) Each neighborhood U of Ay in X? contains a neighborhood V of Ay with a
pr;-preserving homotopy /2 : V' x I — U such that hy = id and 4 (V) = Ax.

In the above (), foreach x € X, U(x) = {y € X | (x,y) € U} is a neighborhood
of x in X. We say that X is unified locally contractible (ULC)> when X has
the above property (x). A ULC space is locally contractible, but, as will be seen, the
converse does not hold. As seen in the above, an LEC space is ULC but the converse
is unknown.

Question If X is ULC, is X LEC?

Theorem 6.3.3. Let X be a space such that X? is normal.® Then, X is EC if and
only if X is contractible and LEC.

Proof. An equi-connecting map A : X2 x I — X induces the contraction & :
X xI — X defined by h(x,t) = A(x, x¢,1), where xo € X is fixed. Thus, we have
proved the “only if” part.

To show the “if” part, let X be contractible and LEC. By Theorem 6.3.2, Ay has
an open neighborhood U in X2 and there is a homotopy / : U x I — X? such that
ho = id, hy|Ax = id foreacht € I, and h1(U) = Ax. On the other hand, X has
a contraction ¢ : X x I — X. Note that (¢(x,?),¢(x,t)) € Ay foreach x € X
and ¢ € I Hence, there exists an open neighborhood V of Ay in X2 such that
(p(x,1),9(y,1)) € U for(x,y) € Vandt € I. Letk : X> — I be an Urysohn map
with k(Ax) = 0 and k(X2 \ V) = 1. Observe that (¢(x, k(x,y)).0(y.k(x,y))) €
U for every (x,y) € X2. Then, we can define a homotopy 4 : X> x I — X? as
follows:

_ ) (p(x, 2k (x, 3)1), (v, 2k (x, y)1)) for 0<¢ <1,
h(p(x.k(x, ). @(y. k(x.y)).2t —1) for 3 <1 <1.
Observe that ﬁo = id, };,|AX = id foreach t € I, and ﬁl(Xz) = Ay. Therefore,

Ay is a strong deformation retract of X 2. Consequently, it follows from Theorem
6.3.2 that X is EC by Theorem 6.3.2. O

};(x,y,t)

2This concept was introduced by F.D. Ancel. He adopted the term “uniformly locally contractible”
but here we replace “uniformly” by “unified” because we say that a metric space X is uniformly
locally contractible if, for each ¢ > 0, there is some § > 0 such that B(x, §) is contractible in
B(x,¢) foreach x € X.

3As we saw in 2.10.2, the Sorgenfrey line S is (perfectly) normal but S? is not normal.
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Let V be an open refinement of an open cover U/ of a space X. We call V an
h-refinement (resp. h-refinement) of I/ if any two V-close maps f,g : ¥ — X
defined on an arbitrary space Y are I/-homotopic (resp. U{-homotopicrel. {y € Y |

f(y) = g(»)}), where we write

V<U or U>V (resp.V<L{ or L{>V).
h h h h

Using #A-refinements, we can characterize LEC spaces as follows:

Theorem 6.3.4. A space X is LEC if and only if each open cover of X has an
h-refinement.

Proof. To prove the “only if” part, let A : U x I — X be an equi-connecting map
for X and U € cov(X). For each x € X, choose U, € U so that x € U,. From the
continuity of A, each x € X has an open neighborhood V; such that V2 C U and
A(V2x1I) C Uy. Then, V = {V, | x € X} is the desired refinement of /. Indeed,
any two V-close maps f, g : Y — X of an arbitrary space Y are {//-homotopic by a
homotopy & : Y x I — X defined by h(y,t) = A(f (), g(»),1).

Now, we show the “if” part. By the condition, the open cover / = {X} has an
h-refinement V. Then, U = ¢, V'? is a neighborhood of Ay in X?. Since pr,|U
and pr,|U are V-close and pr;|Ax = pr,|Ax, we have a homotopy A : U xI — X
such that Ay = pr,|U, A1 = pr,|U and A,;|Ax = pr,|Ax = pr,|Ax foreacht € L.
This homotopy A is an equi-connecting map for X. O

By Proposition 6.3.1, we have the following corollary:

Corollary 6.3.5. Every open cover of an ANR has an h-refinement (hence, it has
an h-refinement). O

Theorem 6.3.6. A paracompact space X is ULC if and only if each open cover
of X has an h-refinement.

Proof. To prove the “only if” part, for each U € cov(X), let U’ be a star-refinement
of . Then, W = UUeu/ U? contains a neighborhood Wy of Ay in X2 with a pry-
preserving homotopy & : Wy xI — W such that hy = id and /(W) = Ay. Choose
V € cov(X) so that | ¢y, V> C Wp. Observe that V C st(x,U’) foreach V € V
and x € V. Then, it follows that V < /. Moreover, V is an h-refinement of U/.
Indeed, let f,g : Y — X be V-close maps. Since (f(y), g(y)) € Wy foreach y €
Y, we can define a homotopy 2* : ¥ xI — X by h*(y,t) = pr,i(f(¥). 8(»),1).
Then, hf = gand hf = f.Foreachy € Y and ¢ € I, since h(f(y).g(y).t) € W,
we have U € U’ such that (f(y),h*(y.1)) = h(f(¥),g(y).t) € U?, resulting in
U eU'[f(y)] and h*(y,t) € U. Therefore, h*({y} x I) C st(f(y),U’). Thus, h*
is a /-homotopy.

To show the “if”” part, let W be a neighborhood of Ay in X2. Choose U € cov(X)
so that | J;;¢,, U> C W. Taking an h-refinement V of U, define Wy = (<, V>
Then, W} is aneighborhood of Ay in W. Since pr;| Wy and pr, | W, are V-close, there
is al{-homotopy i : WoxI — X such thathg = pr|Wy and hy = pr,|W. We define
a pr;-preserving homotopy h : Wy x I — X2 by h(x,y,t) = (x,h(x,y,1 —1)).
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Then, o = id and ﬁl(Wo) = Ay.Foreach (x, y) € Wy, h({(x, y)}xI) is contained
in some U € U, which implies that h({(x,y)} x I) C U 2. Therefore, we have
h(Wy xI) C W. O

Next, consider the following related theorem:

Theorem 6.3.7. A space X has an open cover U such that any two U-close maps
f.g 1 Y — X defined on an arbitrary space Y are homotopic (i.e., U is an h-
refinement of { X }) if and only if Ay is a neighborhood deformation retract of X>.

Proof. To show the “only if” part, given an open cover I/ in the condition, W =
Uyey U? is a neighborhood of Ay in X2. Since pry|W and pr,|W are U-close,
there is a homotopy 4 : W x I — X such that iy = pr;|W and h; = pr,|W. Then,
we can define i : W x I — X2 by h(x,y.1) = (x,h(x,y,1 —1t)). Observe that
ho id and hl W — Ay is aretraction. Thus, Ay is a neighborhood deformation
retract of X 2.

To prove the “if” part, let W be a neighborhood of Ay in X?and ¢ : W x I —
X2a homotopy such that ¢y = id and ¢; : W — Ay is a retraction. Then, we
have U € cov(X) such that U? C W for each U € U. Any two U-close maps
f,g : Y — X of an arbitrary space Y are homotopic by a homotopy /2 : ¥ xI — X
defined as follows:

prie(f(¥). g(»),21) for 0 <
prop(f (). g(y).2—21) for 3 <1

In general, a locally contractible space is not ULC, as shown in the following
theorem:

h(y,t) =

Theorem 6.3.8 (BORSUK). There exists a continuum X such that each point has a
neighborhood basis consisting of contractible neighborhoods but the cover { X } has
no h-refinements (hence, X is not ULC).

Example and Proof. Let Xo = {x € IN | x(1) = 0} and, for each n € N, let
X, = 0C, be the boundary n-sphere of the (n + 1)-cube

Co=[(n+1)"",n7' ] xI" x {0} x {0} x --- C I,

Then, we prove that X = | J,,¢,, X» (C I) is the desired continuum.

First, we show that each point of X has a neighborhood basis consisting of
contractible neighborhoods. Since |,y X» = X \ Xj is a polyhedron that is open
in X,eachx € UneN X, has such a neighborhood basis. When x € Xy, for each
neighborhood U of x in X, we can find m > 2 and a convex neighborhood W of
(x(2),...,x(m)) in "~ such that p,,}([0,m™!] x W) C U, where p,, : X — I"
is the restriction of the projection onto the first m coordinates. When x(m 4+ 1) < 1
(resp. > %), we define a neighborhood V of x in X as follows:

V= p, 0 ([0,m™" I x W x[0,1)) (resp. p,,},([0.m™'] x W x (0, 1])).
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X, = 0C,
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Fig. 6.6 Borsuk’s example

Then, V C U and V is contractible. Indeed, let

Vo = ppl (10} x W x {0}) C Xo  (resp. p,, ({0} x W x {1})) and
Vi = ppla(0.m™" 1 x W x {0})  (resp. p, L ([0.m™ "] x W x {1})).

Then, V) is a strong deformation retract of V' by a deformation 2 : V xI — V
sliding along the (m + 1)-th coordinate, and Vj is a strong deformation retract of V;
by a deformation g : V; xI — V] sliding along the first coordinate (Fig. 6.6). Since
Vo is contractible, V' is also contractible.

Next, we show that { X } has no h-refinements. On the contrary, assume that { X }
has an A-refinement i/ € cov(X). By the compactness of X, we can take m € N
such that {X N p,'(x) | x € I"} < U. Then, the map f : X — X defined by
f(x)=(x@1),...,x(m),0,0,...)isU-close toid, hence f ~id.Letr : X — X,
be a retraction defined as follows:

(m+ 1)1 xQ),....x(m +1),0,0,...) ifx(1)<(@m+1)"",
r(x) =143 m1, x2),x@3),...) if x(1) > m™!,

X otherwise.
Then, id = r|X,, ~ rf| X : X;u = X,u. Moreover,
rf(Xm) = f(Xpm) = [m+ D)7 m™ I x I x {0} x -+,

hence rf|X,, >~ 0. Thus, S ~ X, is contractible, which contradicts Corol-
lary 6.1.6. O
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Fig. 6.7 The union of two open LEC spaces

Basic Properties of LEC Spaces 6.3.9.

(1) An arbitrary product of EC spaces is EC and a finite product of LEC spaces is
LEC.

Sketch of Proof. Define an equi-connecting map coordinate-wise.

(2) A retract of an EC space is EC and a neighborhood retract of an LEC space
is LEC.

Sketch of Proof. Compose a retraction with the restriction of an equi-connecting map.

(3) Any open set in an LEC space is LEC.

Sketch of Proof. Restrict an equi-connecting map.

(4) Let X = X; U X,, where X; is open in X. Suppose that X2 is normal. If X,
and X, are LEC, then sois X.

Sketch of Proof. Apply Theorem 6.3.2. Note that Xo = X N Xj is also LEC by (3). For
i =0,1,2, we have a neighborhood U; of Ay, in X,-2 and a homotopy WU xI—
X? such that k) = id, K’ is a retraction onto Ay, and hi|Ay, = id for all t € L
Choose open sets V), VO’ , Vi, Vs in X2 so that

AVinecV, =0, Ax\X? CViCU, Ax \ X} CV, CU,,
Ax\(VlUVz)CVOCClVOCVO/CClVO/CUO
and h°(cl Vy xI) C Uy N U, Then, V = V, UV} U V; is a neighborhood of Ay in
X2. Using h' (i = 0,1,2)and an Urysohn map k : X — I with k(X2 \ V) = O and

k(cl Vy) = 1, define a homotopy 4 : V X I — X2 such that iy = id, h is a retraction
onto Ay, and h,|Ay = id for all t € L. See Fig.6.7.

(5) A metrizable space X is LEC if each point of X has an LEC neighborhood
in X.

Sketch of Proof. Apply Michael’s Theorem 2.6.5 on local properties.
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Fig. 6.8 An extension of a homotopy

6.4 The Homotopy Extension Property

We say that a space Y has the homotopy extension property (HEP) for metrizable
spaces provided any map f : A — Y of a closed set A in an arbitrary metrizable
space X extends over X if f is homotopic to a map extending over X. Due to
the following theorem, every ANE has the HEP for metrizable spaces.

Theorem 6.4.1 (HOMOTOPY EXTENSION THEOREM). Let Y be an ANE, U be
an open cover of Y, and h : A x 1 — Y be a U-homotopy of a closed set A in
a metrizable space X. If hy extends to a map f : X — Y, then h extends to a
U-homotopy h - X x 1 — Y withhy = f.

Proof. Since Y is an ANE, h extends to amap &’ : W — Y from a neighborhood
W of X x {0}U A xIin X x I'such that #’(x,0) = f(x) for each x € X. For each
a € A, choose U, € U so that i’ ({a} x I) = h({a} xI) C U,. Then, eacha € A
has an open neighborhood V, in X such that V, x I € W and #'(V, x I) C U,.
Let V = \U,c4 Va and let k : X — I be an Urysohn map with k(X \ V) = 0
and k(A) = 1. Then, the desired homotopy h: X xI — Y can be defined by
h(x,t) = h'(x,tk(x)). See Fig.6.8. O

Using Corollary 6.3.5, we can prove another Homotopy Extension Theorem:

Theorem 6.4.2. Any open cover U of an ANR Y has an open refinement V
satisfying the following condition:

(*) For any V-homotopy h : A x1 — Y of a closed set A in a metrizable space X,
if ho and hy extend to V-close maps f,g : X — Y, respectively, then h extends
to a U-homotopy h : X x1 — Y such thathy = f and hy = g.

Proof. By Corollary 6.3.5, we can take open refinements of U/ as follows:

v;w/iwﬁu/iu.
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X x1

Fig. 6.9 An extension of a homotopy

We will show that V is the desired refinement. Let 7 : A xI — Y be a V-
homotopy of a closed set A in a metrizable space X such that A, and /; extend
to V-close maps f,g : X — Y, respectively. Then, we have a VW -homotopy /' :
X xI — Y such that hy = f and A} = g. On the other hand, & extends to a map
h : AxTIUX x{0,1} — Y defined by h”’(x,0) = f(x) and h”(x,1) = g(x) for
all x € X. Since h'|A xTU X x {0, 1} and 1" are W-close, there is a U’-homotopy

0 :(AXITUX x{0,1}) xI—>Y

such that 9 = h'|A xTU X x {0, 1} and ¢; = h” (cf. Fig. 6.9). By Theorem 6.4.1,
¢ extends to a {’-homotopy ¢ : (X xI) x I — Y such that §o = h" and @;]A xTU
X x{0,1} = h”. Then, h = ¢; : X xI — Y is al{-homotopy such that hy = f,
hy =g,and h|Ax1=h. O

Using the HEP, we can characterize ANRs as follows:
Theorem 6.4.3. For a metrizable space X, the following are equivalent:

(a) X isan ANR;

(b) X is semi-locally contractible and has the HEP for metrizable spaces;

(¢) X has an open coverV such that for any V-homotopy h : Ax1 — X of a closed
set A in a metrizable space Y, if ho and h respectively extend to V-close maps
f.g Y = X, then h extends to a homotopy h : Y x1 — X such that hy = f
and h; = g;

(d) X islocally contractible and has an open cover V such that for any V-homotopy
h: AxI — X of aclosed set A in a metrizable space Y, if hy extends to a map
f Y — X then h extends to a homotopy h : Y x 1 — X such that hy = f;

(e) Each x € X has a neighborhood V in X such that any map f : A —V of a
closed set A in a metrizable space Y extendstoamap f Y — X;

(f) Each x € X has a neighborhood V in X such that any map f : A — V of
a closed set A in a metrizable space Y extends to amap f :V — X ofa
neighborhoodV of AinY to X.
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Sketch of Proof. Observe the following implications:

(6.2.8) (6.2.8)
(642) (6.4.1)

(©) <= @ —— (b

.

e O==®

(b) (or (d)) = (e): Choose a neighborhood V' of x € X so as to be contractible in X (or
in some member of V in (d)).

(c) = (d): Take V such as in (c). Each x € X is contained in some V' € V. Using (c),
construct a contraction g : V' X I — X so that g,(x) = x for each ¢ € I. Restricting g to a
small neighborhood of x, we can show the local contractibility. For f and & of (d), applying
(c) to the V-homotopy h* : A x I — X defined by 1) = hy, fort < % and h]" = hy_y,
fort > % we can obtain an extension of /.

(f) = (a): In condition (f), intV is an ANE, hence an ANR. Then, Hanner’s
Theorem 6.2.10(4) can be applied.

Using the Homotopy Extension Theorem 6.4.1, we can prove the following
theorem, which was announced in the remark after Proposition 6.2.7:

Theorem 6.4.4. A deformation retract of an ANR is a strong deformation retract.

Proof. Let A be a deformation retract of an ANR X. Then, there is a homotopy
h:X xI— X suchthat hg =id and /| : X — A is a retraction. Since h1h; = h
and i;|A = id, we can define a homotopy

0:(AxTUX x{0,1}) xI > X
as follows:
hia—s(x) ifx € A,
hi—shi(x) ift =1,
X ift =0,
hy(x) ifs =0.

o(x,t,8) =

Refer to Fig. 6.10. Since ¢, extends to £, ¢ extends a homotopy ¢ : (X xI) xI — X
by the Homotopy Extension Theorem 6.4.1. Then, /' = ¢; : X xI — X isa
homotopy such that i;|A = ho|A = id for every t € I, | = hoh; = hy, and
h’0 = id. Thus, h’l is a strong deformation retraction of X onto A, so A is a strong
deformation retract of X . ]

6.5 Complementary Pairs of ANRs

First, we prove the following lemma, which is often used in extending maps.
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Fig. 6.10 The homotopy ¢

Lemma 6.5.1 (C.H. DOWKER). Let X and Y be metrizable spaces and f : A —
Y be a map of a closed set A in X. Suppose there exists a homotopyh : A X1 — Y
such that hg = f and h|A x (0, 1] extends over a neighborhood W of A x (0, 1] in
X x (0, 1]. Then, f extends over a neighborhood of A in X. If X x {1} C W, then
f extends over X.

Proof. For simplicity, let d stand for admissible metrics of X and Y as well as the
metric on X X I defined as follows:

d((x,1), (X', 1)) = max{d(x,x), |t —¢'[}.

We may assume that / is defined on the set W U A x {0} and that #|A x I and
h|W are continuous. However, it is not assumed that / is continuous. First, we find
aneighborhood W* of Ax (0, 1] in X x(0, 1] such that W* C W and h|W*U A x{0}
is continuous. To this end, for each (a,7) € A x (0, 1], choose a neighborhood
Wi(a,t) of (a,t) in W so that diam W(a,t) < %t and diam h(W(a, 1)) < %t. Then,
w* = U(a’,)eAX(OJ] W(a,t) is a neighborhood of A x (0,1] in X x (0, 1]. To
verify the continuity of 7|/W* U A x {0} at (a,0) € A x {0}, let ¢ > 0. By the
continuity of #|A x I at (a,0), we can choose § > 0 so that, if (a’,t') € A x I
and d((a,0), (a',t")) < §, then d(h(a,0),h(d’,t")) < %8. Let (x,t) € W* with
d((a,0),(x,1)) < %min{& ¢}. Then, we have (a’,t’) € A x (0, 1] such that (x,¢) €
W(a',t), resulting in d((x,1), (a’,1")) < %t/ and d(h(x,1),h(d', 1)) < %t’. Since
|t —¢'| < 1t', it follows that 11" < ¢ < L min{8,e}. Thus, d((x.1).(a’,1")) < 18
and d(h(x,t),h(d’, 1)) < %8. Since

d((a,0),(@',t") = d((a,0), (x,1) + d((x,1),(a',1") <8,
it follows that d (h(a, 0), h(d’, 1)) < %8. Then,
d(h(a,0),h(x,1)) < d(h(a,0),h(d’,t") +d(h@',t"), h(x,1)) <e.

Therefore, i|W* U A x {0} is continuous at (a, 0).
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Fig. 6.11 Extending a map

Choose open neighborhoods U, of A in X, n € N, so that U, x [27",1] € W*,
clU,41 C U,, and (,enUn = A. Take maps k, : X — [0,27"], n € N, so
that k,(clU,+1) = 0 and k,(X \ U,) = 27", and define a map k : X — Iby
k(x) = Y, cnkn(x). Observe that k~1(0) = A and k(x) € [27",27"*1] for each
x € Uy, \ Uy41, which implies that (x, k(x)) € A x {0} U W* for all x € U,. Then,
f extends to a map f U, — Y defined by f(x) = h(x,k(x)). See Fig.6.11.

If X x {1} C W, we define W* = |, neaxoi W(a.1) U X x {1}. Then, the

map f above can be defined over X. O

Remark 8. In the above proof, it is not enough to take a map k with k~1(0) = A.
Indeed, we define a map

h:Ix(0,1]U{0} x{0} - R

by h(x,t) = x/t ift # 0 and h(0,0) = 0, where (X, 4) = (LL{0}),Y =R
and W = I x (0, 1]. Moreover, let k = id : I — L Then, k™ 1(0) = {0}. Using
this k, we define f : I — R as in the above proof, i.e., f = h(x,k(x)) for each
x € L Then, f is not continuous at 0 € I because f (0) = h(0,0) = 0, but

f(x) = h(x,k(x)) =x/k(x) =1ifx # 0.
Applying Lemma 6.5.1, we prove the following theorem:

Theorem 6.5.2 (KRUSE-LIEBNITZ). Let X be metrizable and A be a strong
neighborhood deformation retract of X. If A and X \ A are ANRs, then so is X.

Proof. From the assumption, we have a homotopy % : clU x I — X of an open
neighborhood U of A in X such that hy = id, &, is a retraction of cl U onto A4, and
h:]A = id for every ¢t € L. Given an admissible metric d for X, we may assume
that diam2({x} x I) < 1 forevery x € U. Let f : B — X be a map from a closed
set B in an arbitrary metrizable space Y. We apply Lemma 6.5.1 to extend f over
a neighborhood of Bin Y.
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Fig. 6.12 Extensions of 2, f|f~'(U) and f|f (X \ 4)

Note that £ ~!(U) and f~'(X\ A) areclosedin Y\ f~1(X\U)and Y\ f~'(A),
respectively. Since 4 and X \ A are ANRs, maps /1 f| f~1(U) and f|f~1(X \ 4)
extend to maps f’ : V' — Aand f” : V” — X \ A, respectively, where V’
and V" are open setsin Y \ f~1(X \ U) and Y \ f~!(A), respectively, such that
V'NB=f""(U)and V"N B = f~(X \ A). Observe that

VNV'nB=fYU\A) and f'IV'NV"NB=hf"|V' nV"NB.

Note that every open cover of an ANR has an %-refinement by Corollary 6.3.5.
Then, we can find an open set V in V/ N V” such that Vo N B = V' N V" N B and
f'|Vo = hif"|Vorel. Vo N B. Let ¢ : Vo x I — A be a homotopy such that

Qo = f/|V0, [ :hlf//lI/() and ¢/|VoN B = f/|V()ﬂB forallt € I.

Choose disjoint open sets V; and V, in Y so that f~'(4) c V; € V' and B \
f~YU) c Vo, c V".Then, V = V, U V; U V5 is an open neighborhood of B in Y .
Refer to Fig. 6.12.

The function U > x + diam & ({x}xI) € Iis continuous. Indeed, foreach x € U
and ¢ > 0, using the compactness of I, we can find § > 0 such that d(x,x’) < §
implies d(h(x, ), h(x',t)) < ¢/2 foreveryt € L. Let x’ € U with d(x,x") < §.
For each ty,t; €1,

d(h(x',10), h(x",11)) < d(h(x,t0), h(x,11))
+ d(h(x, 1), h(x',10)) + d(h(x,t1), h(x', 11))
< diamAh({x} xI) + ¢,
which implies that
diam2({x’} x I) < diamh({x} x I) + &.
Replacing x” with x in the above, we have

diam2({x} x I) < diamh({x'} x I) + &.
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Fig. 6.13 The map g

Letw : (V\ Vo) U B — I be an Urysohn map with o(V; \ Vp) = 0 and
a(Va \ Vo) = 1. We define themap 8 : (V \ Vo)) U B — Iby g(Vi \ Vp) = 0,
B(Va\ Vo) =1, and

B(x) = min {1, diama({ f(x)} x ) + a(x)} forx € f~'(clU).

Note that diam 2({ f(x)} x I) < B(x) forevery x € f~'(clU) and B~'(0) N B =
f~1(A). By the Tietze Extension Theorem 2.2.2, B extends toamap y : V — L
Observe that y~'((0,1)) C Vo, y~'([0,1)) € V', and y~1((0,1]) C V". Then, we
can defineamap g : V x (0, 1] — X as follows:

J"(x) if 1 < y(x),

R(f"(x), ()™t =1) ify(x) <t <2p(x),
glnt) = p(x.3—y(x)™"1) if 2y(x) <t < 3y(x),

f'(x) if £ > 3y(x).

Refer to Fig.6.13. For each (x,7) € B x (0, 1], we have d(g(x,?), f(x)) < t.
Indeed, recall §|B = y|B and ¢;|Vo N B = hy f|Vo N B for every ¢ € I. Observe
the following:

t<yx) = glx,t) = f(x)
y(x) <t <2y(x) = d(g(x,1), f(x)) <diamh({ f(x)} xI) < y(x) <1;
t>2y(x) = d(gx,1), f(x) =dh f(x), f(x)) <y(x) <t

Therefore, g| B x (0, 1] can be extended to the homotopy g : B x I — X with
go = f.ByLemma 6.5.1, f extends over a neighborhood of B in Y. O

Recall that a perfect map f : X — Y is a closed map such that f~!(y) is
compact for every y € Y. The perfect image of a metrizable space is also metrizable
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(2.4.5(1)). As a corollary of Theorem 6.5.2, we have the following theorem on the
adjunction spaces:

Theorem 6.5.3 (BORSUK—WHITEHEAD-HANNER). Let X and Y be ANRs and
f A=Y beamap froma closed set A in X. Then, the adjunction space Y Uy X
is an ANR if f is perfect and A is an ANR.

Proof. Since A is a strong neighborhood deformation retract of X by Proposi-
tion 6.2.7, it follows that Y is a strong neighborhood deformation retractof ¥ U s X .
The result follows from Theorem 6.5.2. O

As special cases of Theorem 6.5.3, we have the following:

Corollary 6.5.4. For any perfect map f : X — Y between ANRs, the mapping
cylinder M ¢ is an ANR. O

When Y is a singleton in the above, the mapping cylinder M ; is regarded as the
cone (X x I)/(X x {0}). Since a contractible ANR is an AR (Corollary 6.2.9), we
have the following corollary:

Corollary 6.5.5. The cone (X xI)/(X x{0}) over a compact ANR X isan AR. O

Mapping cylinders are very useful, as seen in Sect.4.12. However, they are not,
in general, metrizable. We introduce the mapping cylinder that is different from the
quotient space. Foramap f : X — Y, let

M(f)=YU (X x (0, 1]) (the disjoint union),

whose topology is generated by open sets in X x (0, 1] and sets U U (f~'(U) x
(0,¢)), where U is openin Y and O < ¢ < 1. Then, we have the natural continuous
bijection ¢, : My — M(f), where ¢p|Y =idand ¢,|X x (0, 1] = id.

When X and Y are bounded closed sets in normed linear spaces E and F,
respectively, we can define a closed embedding ¢ : M(f) — E x F xR as follows:
¢(y) = (0, y,0) foreach y € Y and

o(x,t) = (@x,(1 —1)f(x),t) foreach (x,t) € X x (0, 1].

To verify the continuity at y € cl f(X), lete > 0. Choose §; > 0 so that (1 —7)B(y, ;) C
B(y,e) if 0 < ¢ < §;. Since X is bounded in E, we have 0 < § < §; (< ¢&) such that
8X CB(0,¢).Let U = Y NB(y,8). Then, U U f~(U) X (0, §) is an open neighborhood
of y in M(f) and

e(U U (f7'(U) x(0,8))) CB(0,) X B(y, &) X (—&,¢).

To verify the closedness of ¢, let (z;);en be a sequence in M(f') such that (¢(z;))ien
converges to (x, y,t) € EXFxR. We will show that (z;);en has a convergent subsequence.
Then, we may assume that z; € Y forevery i € Norz € X x (0,1] for every i € N.
In the first case, since ¢(z;) = (0,z,0), (z;);en converges to y. In the second case, let
zi = (x;,t;) foreach i € N. Then, t = lim; oo #; € I. Hence, x = ¢ lim; oo Xx; and
y =1 —=1)limj oo f(x;). If £ > 0 then lim; o0 X; = ¢ ~'x, where  ~!x € X because
X isclosed in E. Hence, (z;);en is convergent. When ¢ = 0, we have lim; oo f(x;) = y,
where y € Y because Y is closed in F. For each open neighborhood U of y in Y and



6.5 Complementary Pairs of ANRs 363

0 < ¢ < 1, we have i) € N such that i > i, implies t; < ¢ and f(x;) € U, ie.,
7z = (xi,4;) € U U f~1(U) x (0, &), which means that (z;); <y is convergent.

Due to the Arens—Eells Embedding Theorem 6.2.1, every metrizable (resp.
completely metrizable) space can be embedded into a normed linear space (resp. a
Banach space). Then, M ( f) is (completely) metrizable if X and Y are. The metriz-
ability of M( f') can also be shown by applying the Bing Metrization Theorem 2.3.4.

Forany map f : X — Y, we can identify M (/) with M r as sets (by the natural
map ¢ ), but the topology of M is finer than the topology of M(f). Let g :
Y & (X xI) - My be the quotient map. If f : X — Y is perfect, M(f) = My
as spaces, where the natural map ¢  is a homeomorphism.

Indeed, for each neighborhood U of y € Y\ f(X) in My, since f~1(y) x{0} C g4 (U)N
(X xT) and f~'(y) is compact, we have a neighborhood W of f~!(y) in X with§ € (0, 1)
such that W x [0, 8) C g (U) N (X xI). Since f is closed, there is a neighborhood V of y
inY suchthat f (V) C Wand V C q,(U)NY.Then, VU(f~1(V)%(0,8)) C ¢/ (U).
Thus, ¢ r(U) is a neighborhood of y in M(f).

We also call M(f) the mapping cylinder of f (or the metrizable mapping
cylinder of f when we need to distinguish it from M ). As with M, we define
the collapsing ¢, : M(f) — Y, which is continuous. Then, c; =~ id rel. ¥ in
M( f) by the homotopy 2/ : M(f) x I — M(f) defined in the same manner as
h'iM rxI— My.Hence,Y is a strong deformation retract of M ( /). The natural
map ¢rqr Y @ (X xI) — M(f) is abbreviated by g s, the same notation as the
natural quotient map.

From Theorem 6.5.2 we deduce:

Corollary 6.5.6. For any map f : X — Y between ANRs, the mapping cylinder
M(f) is an ANR. O

The mapping cylinder M (idx) = Miq, of the identity map idy of X is regarded
as the product space X x I. When X is a subspace of Y, the mapping cylinder M (i)
of the inclusion map i : X C Y can be regarded as a subspace (Y x {0}) U (X x 1)
of the product space ¥ x I, but M; cannot be regarded thus unless X is closed in Y
(cf. Sect. 4.11). If Y = {0}, we denote C(X) = M(f),i.e.,

C(X) = {0} U (X x (0. 1]),

which has the topology generated by open sets in the product space X x (0, 1] and
sets {0} U (X x (0,¢)), where 0 < ¢ < 1. We call C(X) the (metrizable) cone over
X . The following subspace of C(X) is called the (metrizable) open cone over X:

C°(X) ={0} U (X x(0,1)).
Then, C(X) and C°(X) are contractible.

Corollary 6.5.7. The cone C(X) over any ANR X is an AR. Hence, so is the open
cone C°(X). O



364 6 Retracts and Extensors

For a map to a paracompact space, we have the following lemma:

Lemma 6.5.8. Let Y be a paracompact space and f : X — Y be a map. For each
open cover U of M(f), Y has a locally finite open cover ¥V withamap o : Y —
(0, 1) such that, for each V.€ V, V U (f~1(V) x (0,supa(V)]) is contained in
some member of U.

Proof. Foreachy €Y, let

y(y) = sup {s € (0,1) \ AU €U, AV :openin Y such that
yeVu(f'(V)x(0.s)) CU} >0

Then, y : ¥ — (0, 1) is lower semi-continuous (l.s.c.). By Theorem 2.7.6, we
have amap @ : ¥ — (0,1) such that «(y) < y(y) for every y € Y. For each
y € Y, we have 5, > «(y) and an open neighborhood V), of y in ¥ such that
Vy U (f71(Vy) x (0,sy,)) is contained in some U € U and a(y’) < s, for every
y € V,.Let V € cov(Y) be a locally finite open refinement of the open cover
{Vy | y € Y}. Then, o and V are as required. O

As seen above, the topology of M( f) is different from that of M r, but we have
the following theorem:

Theorem 6.5.9. For each map f : X — Y, the natural bijection ¢ : My —
M(f) is a homotopy equivalence with a homotopy inverse ¥ : M(f) — My such
that

Y ~idrel. Y U (X x{1}) and ¢y ~idrel. Y U (X x {1}),

hence M(f) = My rel. Y U X x {1}. If Y is paracompact, for each open cover U
of M(f), the homotopy inverse W can be chosen such that

Vor g idrel. Y U(X x{1}) and ¢s ~yidrel. Y U (X x {1}).

Proof. We first prove the case where Y is paracompact. By Lemma 6.5.8, for each
open cover U of M(f), we haveamap « : ¥ — (0, 1) such that

IV O x Oa) |y e Y} <U.

Letgs : Y & (X xI) — M/ be the quotient map. Then, we can define a map
Wi M(f)— My by y|Y =g;|Y and

qr(x,s) = (x,s) if x e X, s >a(f(x)),
V(x.s) = 1q5(x,25s —a(f(x) if x € X, a(f(x))/2 <5 < a(f(x)),
qr(x,0) = f(x) if xeX,0<s<a(f(x))/2.
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The continuity of y follows from that of ¥| X x (0, 1] and | W, where
W =Y U{(x,5s) € X x(0,1] ’ s < a(f(x))/2}.

Now, we define a homotopy 2 : (Y & (X xI)) xI - Y & (X x 1) as follows:
ho =1id, h,|Y =id foreacht € I, and

(x,s) if x e X, s>ta(f(x)),
hi(x,s) = 3 (x, 25 —ta(f(x)) if x € X, ta(f(x))/2 <5 < ta(f(x)),
(x,0) if xelX,s <rta(f(x))/2.

Then, as is easily shown, % induces a i/-homotopy &’ : M(f) x I — M(f') and the
¢J71(Z/l)-h0m0t0py h": My x1— M such that

hy =1id, by = ¢y, and hj|Y U (X x{1}) =id foreachs € I
hy =id, h{ = y¢s, and A]|Y U (X x{1}) =id foreachs € L

The continuity of 4’ can be verified as follows: Since ¢, : My — M(f) is continuous, the
continuity of 4/|M(f) x (0, 1] can be shown in a manner similar to that of . Observe that
X % (0, 1] x {0} has the following open neighborhood in M( f) x I:

W’ = {(x.5,1) € X x (0. 1] xI| 5 > ra(f(x))}.

The continuity of 4’|W’ is obvious. For each neighborhood V of y in ¥ and ¢ € (0, 1), it
is easy to show that

W (VU (7)) % (0,6) xD CVU(STHV) % (0,)).

Thus, /' is also continuous at (y, 0).

In the general case, since there are no covering estimations, we can take a
constant map as « (e.g., ¢(y) = %) in the above proof. O

For maps f; : X; — Xi—1,i = 1,...,n,let M(fi...., f) = Ui, M(f)
be the adjunction space, where each X; x {1} C M(f;) is identified with
Xi C M(fi+1). We call M(fi,..., f,) the mapping telescope of fi,..., f,.
By Theorem 6.5.9, Theorems 4.11.1 and 4.11.2 are also valid for the metrizable
mapping cylinders.

Corollary 6.5.10. For maps f,g : X — Y, the following conditions are
equivalent:

@ f~g

) M(f)>~M(g)rel Y UX x {1},

(¢) Thereisamap ¢ : M(f) = M(g) withp|Y U X x {1} =id. O
Corollary 6.5.11. Formaps [ : X - Y andg:Y — Z, M(gf) >~ M(g, f) rel.
ZUX x{l}. O

These corollaries can also be proved directly in the same manner as Theo-
rems 4.11.1 and 4.11.2.
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6.6 Realizations of Simplicial Complexes

Let X be a space and U € cov(X). Let K be a simplicial complex and L be a
subcomplex of K with K(© ¢ L. Then, amap f : |L| — X is called a partial
U-realization of K in X if { f(c N |L|) | 0 € K} < U. A full Y-realization of K
in Xisamap f : |K| - X suchthat{f(0) |0 € K} <U.Wecall V € cov(X) a
Lefschetz refinement of / and denote

V<U or UV
L L

if V < U and any partial V-realization of an arbitrary simplicial complex in
X extends to a full {/-realization in X. The following is called LEFSCHETZ’S
CHARACTERIZATION of ANRs.

Theorem 6.6.1 (LEFSCHETZ). A metrizable space X is an ANR if and only if any
open cover of X admits a Lefschetz refinement.

Proof. To prove the “only if” part, by the Arens—Eells Embedding Theorem 6.2.1,
we may assume that X is a closed set in a normed linear space E. Then, we have
an open neighborhood W of X in E and a retraction r : W — X. For each open
coverf of X, r_l(U) is an open cover of W, which has a refinement V consisting
of open convex sets in £. We show that V| X is a Lefschetz refinement of /.

Let K be a simplicial complex, L be a subcomplex of K with K@ C L, and
let fo : |[L| — X be a partial (V| X)-realization of K. By induction, we can obtain
maps f, : |[LUK®™| — W,n €N, so that

HIILUK" V= f,_; and
fulo N|LUK™)) C (folo N|L])) foreacho € K.

Indeed, given f;,_1, then for each o € K™ \ (L U K"™V), f,_i|d0 extends to a
map f5 : 0 = {fo(o N|L])) by the Dugundji Extension Theorem 6.1.1. Thus, f,
can be defined by f,|o0 = f, foro € K™ \ (L U K"~Y). Foreach o € K, we
write o N|LUK®| = UL, 0i, whereo; € LU K foreachi = 1,--- ,m. Then,

filonILUK®) = | fo(o0) € | ol N ILD) € (olo N ILD).
i=1 i=1

Let f : |K| — W be the map defined by f||L U K™| = f,. Foreacho € K,
fo(o N|L]) is contained in some V' € V), which implies that

f(o) C (foloe NIL]) C V.
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Fig. 6.14 The nerves K, and L,

Thus, f is a full V-realization of K in W. Since V < r='(U), rof : |[K| > X isa
full U-realization of K in X, which is an extension of f.

To prove the “if” part, it suffices to show that X is an ANE. Let f : A — X be
a map from a closed set A in a metrizable space Y. Given d € Metr(X), take open
covers of X as follows:

* * *
U1§V1>U2§V2>U3TV3>'“,

where meshif,, < 27" for each n € N. Foreachn € N, let
W, = {f_l(U) x Jy i U Gu,H_z},

where J;1 = (27!, 1] and J, = (27",27"3) forn > 1. Then, W = (J, ey Wh is an
open cover of A x (0, 1]. Let K be the nerve of W with ¢ : A x (0,1] — |K]| a
canonical map. Foreach n € N, let K, and L, be the nerves of W, UW, 4 and W,,
respectively, which are naturally regarded as subcomplexes of K (Fig 6.14). Then,
we have

K=Ky KiNKyy1 =Lyg1 and L, N Lypy = 0.

neN

Foreachn € N, let g/, : ILY] - X bea map such that g/, (W) € fpr, (W) for
each W € W,. Observe that g/, is a partial V,4-realization of L, in X. Then, g/,
extends to a full 2,4 -realization g, : |L,| — X. Wedefine ), : |[L, UL,41| > X
by A, ||L,| = g» and 1, ||L,+1] = gu+1. Observe that /), is a partial V,-realization
of K, in X. Then, k], extends to a full U, -realization &, : |K,| — X . We can define
amaph : |K| — X by h||K,| = h,. Thus, we have the map hp : A x (0,1] - X.

For each (a,t) € A x (0,1],let ¢ € K be the carrier of ¢(a,t) and W € ¢©.
Since ¢ is a canonical map, we have (a,t) € W (Proposition 4.9.1). When o € K,,,
h(o) = hy,(0) is contained in some U € U,, hence hp(a,t) € U. Moreover, since
W e W, UW, 41, we have
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h(W) =gl(W) e fpry(W)NnU (wherei =norn+ 1),
fla) e fpry(W) € Uy1o Ulhyys and ¢ > 2771,

Then, it follows that

d(he(a,1), f(a)) < d(hg(a.1),h(W)) + d(h(W), f(a))
< diam U + diam fpr (W)

<2742 I3 2 3y

Therefore, h¢ can be extended to a homotopy h:AxI—> X by ho = f.

On the other hand, since |K| is an ANE, ¢ extends over a neighborhood of A x
(0,1]in Y x (0, 1], hence so does hg. Then, we can apply Lemma 6.5.1 to extend
f over a neighborhood of Ain Y. O

Recall that a space X is homotopy dominated by a space Y if there are maps
f:X—>Yandg:Y — X suchthat gf ~ idy.If gf = idx for an open cover
U of X (resp. gf =~ idy for ¢ > 0), we say that X is /-homotopy dominated
(resp. e-homotopy dominated) by Y. The following theorem is HANNER’S
CHARACTERIZATION of ANRs.

Theorem 6.6.2 (HANNER). For a metric space X = (X,d), the following are
equivalent:

(a) X is an ANR;

(b) For each open cover U of X, there is a simplicial complex K such that X is
U-homotopy dominated by |K|;

(c) For any e > 0, X is e-homotopy dominated by an ANE.

Proof. The implication (b) = (c) follows from the fact that | K| is an ANE for any
simplicial complex K. We will prove the implications (a) = (b) and (c) = (a).

(a) = (b): For each open cover U of X, applying Theorems 6.6.1 and 6.3.6 with
Proposition 6.3.1, we can take open refinements as follows:

u;viv’iwiw’.

Let K be the nerve of YW’ with a canonical map f : X — |K|.ForeachW € W' =
K©, choosing g/(W) € W, we can obtain a partial W-realization g’ : K© — X
of K, which extends to a full V’'-realization g : |K| — X of K. Observe that gf is
V-close to idy, which means g f =, idyx. Thus, X is i/{-homotopy dominated by K.

(¢) = (a): We show that X is an ANE. Let f : A — X be amap of a closed set A
in a metrizable space Y. For each n € N, we have an ANE X,,, maps j, : X — X,
and k, : X, — X, and a 37"-homotopy A" : X x I — X with hjj = idx and
Wi = kyjn. For each n € N, let I} = [3772,37@ D] and I/ = [37",37"2].
Since each X, is an ANE, j, f extends to a map f, : U, — X, from an open
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neighborhood U, of 4 in Y. We may assume that U,+; C U, for each n € N. For
eachn € N, we defineamap g/, : U, x I, — X by

gy 1) = Wk fu(), 3 = 3"0).

Then, for each y € U,

(.37 =k, fu(») and g, (y.37"2) = kyt1jnt1kn fu (V).

Also, for each (a,1) € A x I,

d(gh(a,t), f(@) = d(" T (kpju f(a),3 = 3"1), f(a))
< 370D 4 371 371 <4

Foreachn € N, let
A, = AXx ]y:/ UU,+1 X 3],:/ C U4 X ]y:/.

We define a map %), : A, — X,+ as follows:

Jntrkn fa(y) if (y.1) € Upy1 X {372},
hy(y.t) =3 fur1 () if (y.1) € Upy1 X {377},
jn+lhn(f(y)s 3"t — 1) if (ys[) € AX Ir:/

Since X+ is an ANE, £/, extends to a map A, : V,, — X, 4, of a neighborhood V,
of A, in U,4, x I. Thus, we obtain the map g/ = k,1h]] : V, — X. Observe,
foreach y € U,41,

£, (1.37"2) = kyt1jur1kn fu(y) and  g,/(y,37") = Knt1 fus1 (D)
and for each (a,1) € A x I/,
d(g,(a.1), f(@) = d(kn+1jn+1h"(f(a),3"t = 1), f(a))
<370 437 <37 < 0f,
Then, W = |, en((U, x I)) UV,) is a neighborhood of 4 x (0, 1] in ¥ x (0, 1]. We
defineamap g: W — X by
glUyx 1 =g, and g|V, =g .

Since d(g(a,t), f(a)) < 2t foreach (a,t) € A x (0, 1], we can apply Lemma 6.5.1
to extend f over a neighborhood of A in X. — Fig. 6.15. O

Remark 9. In condition (b) of Theorem 6.6.2, we can take K as a locally finite-
dimensional simplicial complex with card K O < w(X). Indeed, if X is finite,
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Fig. 6.15 Extension using Lemma 6.5.1

then X is itself a O-dimensional simplicial complex. When X is infinite, by
Theorem 4.9.9, each open cover of X has a locally finite o-discrete open refinement
with the locally finite-dimensional nerve. Then, in the proof of (a) = (b), we
can take W such that W’ is o-discrete and the nerve K of W' is locally finite-
dimensional. It follows that

card K < Rgcard W' < Row(X) = w(X).

Corollary 6.6.3. Let f : X — Y be a map from a paracompact space X to an
ANR Y and U an open cover of Y. Then, each open cover V of X has an open
refinement VW with a map ¢ : [N(W)| — Y such that Yo >~y f for any canonical
map ¢ : X = [NOW)|.

Proof. Let U’ € cov(Y) be such that sti{’-close maps are U-homotopic. By
Theorem 6.6.2, we have a simplicial complex K with maps ¢’ : ¥ — |K| and
¥’ ¢ |K| — Y such that ¥'¢’ >~ idy, hence f =~y ¥'¢’ f. Replacing K
with a small subdivision, we may assume that Og < ¥’ ‘l(u’) (Theorem 4.7.11).
Let W € cov(X) be a common refinement of (¢’ f)~!(Ok) and V. Assigning to
each W e W = NOW)© a g(W) € KO such that W C ¢~ (Og(g(W))),
we can obtain a simplicial map g : N(W) — K. Thus, we have a map ¢ =
Yv'g : INW) — Y.Letgp : X — |[N(W)| be a canonical map, that is,
¢ ' (Oyowy(W)) C W for each W € W. For each x € X, choose W € W
so that x € ¢~ (Oyow)(W)). Then, go(x) € g(Onow)(W)) C Ok(g(W)) and
0 f(x) €' f(W) C Ok(g(W)). Since ¥/ (Ok) < U, it follows that Yo = ¥/ gg
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is U'-close to ¥'¢’ f. Consequently, Yo is stif’-close to f, which implies that
Ve >~y f. m|

Remark 10. In Corollary 6.6.3, W can be taken to be locally finite and o-discrete
in X and to have a locally finite-dimensional nerve N (W) (cf. Theorem 4.9.9). If X
is separable, we can take a star-finite countable open refinement /, which has the
locally finite nerve N (W) (cf. Theorem 4.9.10). When X is compact, we can take a
finite open refinement W.

By Theorem 6.6.2 and Corollary 4.12.4, we have the following corollary:

Corollary 6.6.4. Every ANR X has the homotopy type of a locally finite-dimensional
simplicial complex K with card KO < w(X). In particular, every separable ANR
has the homotopy type of a countable locally finite simplicial complex. O

For every simplicial complex K, we have |K| >~ |K|y by Theorem 4.9.6 and
| K |m is an ANR by Theorem 6.2.6. Then, we have the following corollary:

Corollary 6.6.5. A space X has the homotopy type of a simplicial complex if and
only if it has the homotopy type of an ANR. O

Moreover, by Corollary 4.13.10, we can obtain:

Corollary 6.6.6. Let X and Y be ANRs. Then, every weak homotopy equivalence
f : X — Y is a homotopy equivalence. O

A subset A C X is said to be homotopy dense in X if there exists a homotopy
h: X xI— X suchthat hy = id and A(X x (0, 1]) C A. When X is paracompact,
for each open cover U € cov(X), X is U-homotopy dominated by A and A is
U|A-homotopy dominated by X . In fact, we have a lower semi-continuous function
y : X — (0, 1] defined by

y(x) = sup{r € I| h({x} x [0,]) C U forsome U € U}.

By Theorem 2.7.6, there is a map « : X — (0, 1] such that «(x) < y(x) for each
x € X. We can define a U/-homotopy h* : X x I — X by h*(x,t) = h(x,ta(x)).
Then, h{ : X — A, hf =~y idy in X, and hf|A =~y id4 in A. Thus, from
Theorem 6.6.2, we have the following corollary:

Corollary 6.6.7. Let X be a metrizable space and A be a homotopy dense subset
of X. Then, X is an ANR if and only if A is an ANR. O

Evidently, if A C B C X and A4 is homotopy dense in X, then B is also
homotopy dense in X. For any A C dI", I" \ A is homotopy dense in I". As is
easily observed, the radial interior rint @ = |, cy[—1 + 27,1 — 27| and the
pseudo-interior (—1, 1) of the Hilbert cube Q = [—1, 1] are homotopy dense in
Q. By the following proposition, @ , = [-1, 1]5}{ and (—1, 1)?} are also homotopy
dense in Q.
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Proposition 6.6.8. Let xo € A C X. If A is homotopy dense in X and X is
contractible then the following set AI? is homotopy dense in XN:

A?} = {x e AN i x(n) = xo except for finitely many n € N}.

Proof. We have a homotopy & : X x I — X such that iy = id, #,(X) C A for
every t > 0, and h(X) = {x¢}. Indeed, let f : X x I — X be a contraction and
g : X xI — X be a homotopy such that gop = id and g;(X) C A for every ¢ > 0.
Then, & can be defined by

82t for(x) for0 <t <1/2,

hi(x) =
822t fr—2i(x9) forl/2 <t <1.

Now, we define the homotopy ¢ : X x I — XV as follows: ¢y = id,

(,01()6) = ()C(), X0, X0 - - )
@r-1(x) = (hp—1(x(1)), x0, X0, ...)
Pa—2(x) = (hy—2(x(1)), hy=1(x(2)), xo, X0, ... .)

@2 (x) = (ha—(x(1)), hy—nt1(x(2)), ..., hy—1(x (1)), X0, X0, .. .)

and for 27" <t < 27" tL

o(x) = (h(x(1)), ..., hgn—2,x(n — 1), hon—1,(x (1)), X0, X0, . .. ).

Then, ¢, (X") C A’} forevery ¢ > 0. O

A space X is said to be homotopically trivial if, for each n € N, every map
f :8"7! - X is null-homotopic, that is, f extends over B". As is easily observed,
X is homotopically trivial if and only if the map from X to the singleton {0} is a
weak homotopy equivalence.

Proposition 6.6.9. Let K be a simplicial (or cell) complex and L be a subcomplex
of K. If X is homotopically trivial then any map f : |L| — X extends to a map
f K| — X.

Proof. For eachn € w, let K, = K® U L. Then, K = Une(u K,. Since X is
homotopically trivial, we can inductively construct maps f, : |K,| — X, n € o, so
that f,||Ky—1| = fu—1, where K_; = L and f_; = f. The desired extension f is
defined by f||K,| = f, foreachn € w. O
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Every contractible space is homotopically trivial. For an ANR X, the converse is
also true. In fact, if X is homotopically trivial, it follows from Corollary 6.6.6 that
X is homotopy equivalent to the singleton {0}, which means that X is contractible.
As a consequence, the following characterization follows from Corollary 6.2.9:

Theorem 6.6.10. A metrizable space is an AR if and only if it is a homotopically
trivial ANR. O

6.7 Fine Homotopy Equivalences

For an open cover U of a space Y, amap f : X — Y is called a //-homotopy
equivalence if there isamap g : ¥ — X such that gf >~ -1y, idy and fg >y
idy, where g is called a /-homotopy inverse of f. For every simplicial complex

d: |K| = |K|n is an Og-homotopy equivalence (cf. Theorem 4.9.6). We call
f : X — Y afine homotopy equivalence if f is a //-homotopy equivalence for
each open cover U of Y. For example, if X = Y x Z and Z is contractible, then the
projection pry : X — Y is a fine homotopy equivalence. Note that the image of a
fine homotopy equivalence is dense in its range (or codomain).

Proposition 6.7.1. A subset X of a metrizable space Y is homotopy dense in Y if
and only if the inclusion map X C Y is a fine homotopy equivalence.

Proof. The “only if” part was shown in the arguments before Corollary 6.6.7.

To prove the “if” part, assume that the inclusion map X C Y is a fine homotopy
equivalence and let d € Metr(Y). Foreachn € N, wehaveamap f, : ¥ — X
with 3_”-h0m0t0pies @™ Y xI - Y and y™ : X xI — X such that (p(()") = idy,

(”) = £, = idy, and w(”) /| X . We can define ahomotopy & : ¥ xI — Y
as follows: ho id and for t > 0,
Sl 32 < <37,

O fix 37 <1 =<372

t =
Then, d(h;,id) < 2t because

d(h,,id) <37 +3771 <3772 if 37 <t <37t

Hence, & is continuous at points of ¥ x {0}. Since 2 (Y x (0, 1]) C X, it follows that
X is homotopy dense in Y. O

Proposition 6.7.2. For each map f : X — Y, both of the collapsings cy :
M(f)—>Yandcy: My — Y are fine homotopy equivalences.

Proof. Let j : Y — M(f) be the inclusion map. Then, ¢ s j = idy. The homotopy
h'  M(f)xI— M(f) isa c;l(L{) homotopy from ¢y = jcy toidys) for every
U € cov(Y). Thus, ¢; : M(f) — Y is a fine homotopy equivalence. The same
proofis validforcy : My — Y. O
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The following has been shown in Theorem 6.5.9 as an additional statement:

Proposition 6.7.3. Let Y be a paracompact space. For eachmap f : X — Y, the
natural bijection ¢y : My — M(f) is a fine homotopy equivalence. O

Here, we note the following:

Proposition 6.7.4. Let f : X — Y be a fine homotopy equivalence and Z be a
paracompact space. Then, a map g : Y — Z is a fine homotopy equivalence if and
only if gf is a fine homotopy equivalence.

A
—_—
AN
Proof. First, assume that g is a fine homotopy equivalence. For each U € cov(Z),
we have V € cov(Z) such that s’V < U. Then, g has a V-homotopy inverse
g :Z — Y and f has a g~!'(V)-homotopy inverse /' : ¥ — X. We show that

f'g’ is a U-homotopy inverse of g f. Since g(g~'(V)) < V, we have gff'g’ ~y
gg' ~y idz, hence gf f'g’ ~ idz. On the other hand,

X

4

N <— ~

F'8'8f =prvy f1f =110y 1dx,

where f'(g7'(V)) < f71 (g7 (stV)). Hence, f'g'gf =~ 14—y idx. Thus, g f
is a fine homotopy equivalence.

Next, assume that gf is a fine homotopy equivalence. For each U € cov(Z),
we have V € cov(Z) such that st* V < U. Then, f has a g~ (V)-homotopy inverse
f':Y — X and g f has a V-homotopy inverse 1 : Z — X. Since fhg(g~'(V)) <
fh(V), we have

The =gy Fheff' =1y [ =g=1(v) idy,

where fh(V) < g~ !'(stV) because gfh(V) < stV. Hence, fhg ~,—1q idy. On
the other hand, g fh ~y idz. Thus, g is a fine homotopy equivalence. O

From Theorem 6.6.2, it follows that the range of a fine homotopy equivalence of
an ANR is an ANR if it is metrizable. This extends as follows:

Theorem 6.7.5 (G. KOZLOWSKI). Let f : X — Y be a map from an ANR X to
a metrizable space Y such that f(X) is dense in Y and, for each open cover U of
Y, thereisamap g : Y — X with gf ~ -1 idx. Then, f is a fine homotopy
equivalence and Y is an ANR.
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Proof. First, we prove the following two claims:

Claim (1). Foramap g : Y — X, if gf is f~'(U)-close to idy then fg is stid-
close to idy.

For each y € Y, choose U}, U, € U so that y € U and fg(y) € U, ie.,
y € Uy N (fg) ' (U,). Since f(X) is dense in Y, we have an x € X such that
f(x) € Uy N (fg) ' (Uy). Since gf is f~'(U)-close to idy, we have a Us € U
such that x, gf(x) € f~1(U3), ie., f(x), fgf(x) € Us. Then, U N Us # @ and
U, N Us # @. Hence, it follows that y, fg(y) € st(Us, U).

Claim (2). Each open cover U of Y has an open refinement V such that f~1(V) is
an h-refinement of f~'(Uf).

For an open star-refinement V' of U/, we have amap g : ¥ — X such that
gf ;-1 idx. By Corollary 6.3.5, f~'(W) has an h-refinement W'. Let
V € cov(Y) be a common refinement of g~!(W’) and U. Then, V is the desired
refinement. Indeed, let k,k’ : Z — X be f~'(V)-close maps. Then, gfk and
gf k' are W'-close, so g f'k >~ ;-1 gfk’. Since gf =~ y—1()y) idx, it follows that
k :Slffl(W) k/, sok fol(u) k.

Now, we will prove the theorem. Because of Theorem 6.6.2, it suffices to show
that f is a fine homotopy equivalence. For each open cover U of Y, Y has an
admissible metric p such that {B,(y,1) | y € Y} < U (2.7.7(1)). Using Claim (2)
inductively, we can take U; € cov(Y), i € w, such that

*

Uy > U, N , meshid, < 277! and f_l(Z/l,,) ; f_l(L{n_l).

By the condition on f, we have maps g, : ¥ — X, n € N, such that
gnf >, idx. Then, fg, is Uy+i-close to idy by Claim (1). Since fg, and
fgni1 areU,-close, thatis, g, and g,,+| are f~'(U,)-close, we have an f ' (U,_,)-
homotopy /1, : ¥ xI — X suchthath,o = g, andh,; = gy41.Leth : Y xI - Y
be the homotopy defined as follows:

fha(p.2=2"0) if 27" <1 <27+ neN

hon ) = if 1 =0

Then, & is a U-homotopy with sy = idy and h; = fg;. Indeed, foreach y € Y,

diamh({y} x I) = diamh({y} x (0, 1]) = diam U fh,({y} xI)

neN

< Zmeshb{n_l < Zz—” =1.

neN neN

Thus, we have fg; ~ idy. Recall g1 f =~ ;-1 idx. Then, it follows that g is a
U-homotopy inverse of f. Consequently, f is a fine homotopy equivalence. O
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In view of Proposition 6.7.1, Theorem 6.7.5 yields the following:

Corollary 6.7.6. Let X be an ANR that is a dense set in a metrizable space Y .
Suppose that, for each open cover U of Y, thereisamap g : Y — X with g|X ~y
idy in X. Then, X is homotopy dense in Y and Y is an ANR. O

Using the mapping cylinders, we can characterize fine homotopy equivalences
between ANRs as follows:

Theorem 6.7.7. For a map f : X — Y between ANRs, the following are
equivalent:

(a) f is a fine homotopy equivalence;
(b) X x (0, 1] is homotopy dense in M(f);
(c) The naturalmap qy : X x1 — M(f) is a fine homotopy equivalence.

Proof. Because of Proposition 6.7.1, condition (b) means that the inclusion X x
(0,1] € M(f) is a fine homotopy equivalence. The equivalence (b) < (c) follows
from Proposition 6.7.4.

X x(0,1] C X x1I
. /
ar
M(f)

(c) = (a): Since the projection pry : X x I — X and the collapsing cs :
M(f) — Y are fine homotopy equivalences (Proposition 6.7.2), we can apply
Proposition 6.7.4 to see that if the natural map ¢r : X x I — M(f) is a fine
homotopy equivalence, then f : X — Y is a fine homotopy equivalence.

qr
XxI — = M(f)

o ]

X Y
f

(a) = (b): Due to Corollary 6.7.6, for each open cover U of M(f), it suffices to
constructamap k : M(f) — X x (0, 1] such that k| X x (0, 1] is &/-homotopic to id
in X x (0, 1]. By Lemma 6.5.8, we have an open cover V withamapa : ¥ — (0, 1)
such that, foreach V €V,

VU (f71 (V) x (0,supa(V)])
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is contained in some member of /. Then, there existamap g : ¥ — X and an
f~'(V)-homotopy / : X x I — X such that hy = idy and h; = gf. We define a
map k : M(f) — X x (0, 1] as follows:

(x,s) ifx € X and s > af(x),
(h(x, Qaf(x) —2s)/af(x)), $)

ifx e Xandaf(x)/2 <s <af(x),
(gf(x),af(x)/2) ifxe Xands <af(x)/2,

k(x,s) =

and k(y) = (g(y),afg(y)/2) for y € Y. Then, k| X x (0, 1] is U-homotopic to id
in X x (0, 1] by the homotopy ¢ : X x (0,1] x I — X x (0, 1] defined as follows*:

(x,s) ifx € Xands > af(x),
(h(x,t2af (x) = 25)/af (X)), )
@i(x,s) = ifx e X andaf(x)/2 <s < af(x),

(hi(x), (1 —1)s +taf(x)/2)
ifx e Xands < af(x)/2.

This completes the proof. O

Remark 11. In Theorem 6.7.7, the implications (b) < (c) = (a) hold for any
metrizable spaces X and Y. In fact, for a map f : X — Y between metrizable
spaces, the following are equivalent:

(a) For each open cover U of Y, there isamap g : ¥ — X such that gf ~ ;-1
idx;

(b) For each open cover U of M(f), thereis amap g : M(f) — X x (0, 1] such
that g| X x (0, 1] >~z idin X x (0, 1];

(c) For each open cover U of M(f'), thereisamap g : M(f) — X x Isuch that
847 ~q7 1w idy 1.

It should be remarked that if X is an ANR then condition (a) above implies that f
is a fine homotopy equivalence and that Y is also an ANR by Theorem 6.7.5.

Regarding the inverse limit of an inverse sequence of ANRs, we have the
following theorem:

Theorem 6.7.8. Let X = l(iil(X,-, ©;) be the inverse limit of an inverse sequence
(Xi,¢i)ien of completely metrizable ANRs such that each bonding map ¢;
Xi+1 — X, is a fine homotopy equivalence. Then, X is an ANR. Moreover, if X is
an AR (so every X; is an AR), then X is an AR.

“It is not required that k 2, id in M(f).
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Proof. Let f : A — X be a map from a closed set A in a metrizable space Y. For
eachi € N, let p; : X — X; be the inverse limit projection. Take an admissible
complete metric d; for X; and choose U; € cov(X;) so that meshy; @i U;) <271
foreach j < i, where¢;; =idand ¢;; = @;@;y1---¢i—1 : X; — X, for j <.
Since ¢; is a fine homotopy inverse, it has a U;-homotopy inverse ¥; : X; — X;41.

Now, since X is an ANR, the map p, f extends to amap f; : U — X, of a
neighborhood U of A4 in Y. By induction, we can obtain maps f; : U — X;,i € N,
such that f;|A = p; f and d;(¢;; fi,@ji+1fi+1) < 27" foreach j < i. Indeed,
suppose that f; has been obtained. Then,

pitrf o Viviviv f = Vipi [ = vi fil A.

By the Homotopy Extension Theorem 6.4.1, p; 1+ f extends to amap fi+; : U —
Xi+1 thatis ;! (U;)-homotopic to ¥; f;, hence @11 fi+1 is stUj-close to f;, which
implies that dj((pj,i+lfi+ls(pj,ifi) <27 y

For each j € N, since d; is complete, we have a map f; = lim; 00 @) fi :
U — X;. Then, it follows that

9 fi+1 = @; (im0 @) 41 fi) = il_ifgofpj,fﬁ = fj.

Therefore, we have a map f : U — X such that p; f = f] for every j € N. Since
piflA = fj|A=p;f forevery j € N, it follows that /|4 = f.
If X, is an AR, we can take U = X in the above. Then, f extendsover Y. O

Remark 12. In Theorem 6.7.8, it suffices to require of each bonding map ¢; the
condition that for any U; € cov(X;), there is a map ¥; : X; — X;4+; such that
Vi i ) idy, ,, and ¢;¥; is U;-close to idy,. In this case, since ¢; (X;+1)
is dense in X;, the map ¢; : X;y; — X; is a fine homotopy equivalence by
Theorem 6.7.5.

6.8 Completions of ANRs and Uniform ANRs

For a metric space X = (X, d), a sequence U = (U,),en of open covers of X is
called a zero-sequence if lim,_,, meshl4, = 0. For a zero-sequence U, we define
the telescope Tel({/) as follows:

Tel@) = | N@U, U Uy 11).

neN

where N(U, U U, ) is the nerve of U, U U, and we regard U, N U,, = @ for
n # m as the sets of vertices of the nerves. The following characterization of ANRs
is due to Nguyen To Nhu:
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Theorem 6.8.1 (NGUYEN TO NHU). A metric space X = (X,d) is an ANR if
and only if X has a zero-sequence U = (Up)nen of open covers with a map | :
| Tel(d)| — X satisfying the following conditions:

() f(U) €U foreachU € |, ey Un = TelU)®;
(ii) limy— oo mesh{ f(0) | 0 € NUy, UlUy11)} = 0.

Proof. To prove the “only if” part, by the Arens—Eells Embedding Theorem 6.2.1,
we may assume that X is a neighborhood retract of a normed linear space E. Let
r : W — X be aretraction of an open neighborhood W of X in E onto X . For each
n € N, let V, be a collection of open convex sets in E such that X C YV, C W
and meshr(),) < 27". Then, we have a zero-sequence Y = (U,),en of open
covers of X such that stif, < V, and U,4+; < U,. Choosing fo(U) € U for each
U € U,entn = TelU)®, we have a map fy : Tel@/)® — X C E, which
extends to a map f : |Tel(d)|] — E such that f|o is affine on each simplex
o € Tel(U). For each o € Tel(i), we have n(c) € N and U, € o© such that
0 € NUn) U Unoy+1) and Uy € Uy (o). Since Ungy+1 < Un(o), it follows that
fo(e@) C st(Uy, Uy (o)), wWhich is contained in some V, € V(). By the convexity
of Vs, f(0) C Vo € V). Hence, f(|Tel(ld)|) C W. Thus, we have the map
rf | Tel(d)| — X, which satisfies condition (i) because rf is an extension of fj.
For each o € Tel(U), diamrf (o) < meshr(Vy)) < 27", which means that rf
satisfies condition (ii).

To prove the “if” part, let U/ = (U, )nen be a zero-sequence of open covers of X
and f : | Tel(d)] — X be a map satisfying conditions (i) and (ii). For eachn € N,
let ¢, : X — |N(U,)| be a canonical map. For each x € X, let 0, , be the simplex
of N(U, UU,+1) spanned by vertices of the carrier of ¢, (x) in N(U,) and the carrier
of ¢y41(x) in N(Uy,+1). Then, ¢,(x), ¢n+1(x) € 0,. Thus, we have a homotopy
g" X xI - |N(U, UlUy,+1)| such that

86 = ¢n, 81 = ¢nt+1 and g"({x} xI) C 0, foreachx € X.
Then, each fg is a,-close to id, where

ay = supmeshlf; + mesh{f(0) | 0 € N(U; UlU;11)}.

i>n

Indeed, each x € X is contained in some U € U,, N 0,5(,2 and f(U) € U, hence

d(x, fg"(x,0)) <d(x, f(U)) +d(f(U), fg"(x,1))
< diam U + diam f(0,.)

< mesh 4, + diam f(an,x) = ay.

Thus, we can define a homotopy & : X x I — X as follows:
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fg'(x,2=2"%) if 27" <t <27t peN,
h(x,t) =
X if t =0.
Observe that g = id, hy—nt1 = f¢,, and diam h({x} x [0,27"F!]) < 2a, for each

x € X.Hence, fg, is 2a,-homotopic to id, which implies that X is 2«,-homotopy
dominated by N (U,). Since lim,, o @, = 0, X is an ANR by Theorem 6.6.2. 0O

Remark 13. In Theorem 6.8.1, if f(| Tel(l{)|) is contained in some A C X, then
the homotopy / in the proof above satisfies #(X x (0, 1]) C A, hence A is homotopy
dense in X.

Corollary 6.8.2. Let X be a subset of a metric space M = (M, d). If X is an ANR,
then X is homotopy dense in some Ggs-set Y in M, hence Y is also an ANR.

Proof. By Theorem 6.8.1, X has a zero-sequence { = (U, )nen of open covers with
amap f :|Tel(ld)| — X satisfying conditions (i) and (ii) in Theorem 6.8.1. Using
the operator E as in Lemma 6.1.3 to extend open sets in X to open sets in M, we
define

Y=cduyxn() | EQV).

neNUeU,

Then, Y isa Gg-setin M and X C Y C cly X.Foreachn € N, let
U, ={Y NEWU) | U €Uy} € cov(Y).

Then, U = (ZZ,),,GN ii a zero-sequence because meshan = meshlf, — 0 (as
n — 00). Observe Tel({f) = Tel(U/) by the correspondence Y N E(U) <> U. Then,
the map f : | Tel({)] — X C Y satisfies conditions (i) and (ii) in Theorem 6.8.1.
By the above remark, we have the result. O

Since every metrizable space X can be embedded into a completely metrizable
space M (e.g., the metric completion of X for some admissible metric), Corol-
lary 6.8.2 yields:

Corollary 6.8.3. Every ANR is contained in a completely metrizable ANR as a
homotopy dense subset. O

Let X = (X,d) and Y = (Y, p) be metric spaces and A be a closed set in
X.Amap f : X — Y is said to be uniformly continuous at A if, for each
e > 0, there is a § > 0 such that for each x € X and a € A, d(x,a) < § implies
o(f(x), f(a)) < &> We call A a uniform retract of X if there is a retraction
r : X — A that is uniformly continuous at A. A uniform neighborhood of A4 in
X is a subset U of X with dist(4, X \ U) > 0, that is, there is a § > 0 such that
B(a,8) C U foralla € A. We call A a uniform neighborhood retract of X if A

SWe do not use the preposition “on” but “at” here. When we say that f : X — Y is uniformly
continuous on A, it means that f|A is uniformly continuous.
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is a uniform retract of a uniform neighborhood of 4 in X. It is easy to see that every
compact (neighborhood) retract of X is a uniform (neighborhood) retract. Observe
that the following closed set in the Euclidean plane R? is homeomorphic to the real
line R but is not a uniform (neighborhood) retract of R?:

{(x.y) eR? |y =x7", x = 1} U ({1} xI) U (1. 00) x {0}).

A metric space X is called a uniform AR (a uniform ANR) if X is a uniform
retract (a uniform neighborhood retract) of an arbitrary metric space that contains
X as a closed metric subspace (i.e., the inclusion of X is an isometrically closed
embedding). A metric space Y is called a uniform AE (a uniform ANE) if for
any closed set A in an arbitrary metric space X, any uniformly continuous map
f:A—>Y extendstoamapf X -7 (amapf : U — Y of a uniform
neighborhood of A in X) that is uniformly continuous at A. It should be noted that a
metric space uniformly homeomorphic to a uniform AE (or a uniform ANE) is also
a uniform AE (or a uniform ANE). Like ANRs and ANEs, we have the following
theorem:

Theorem 6.8.4. A metric space X is a uniform AR (resp. a uniform ANR) if and
only if X is a uniform AE (resp. a uniform ANE).

Proof. The “if” part is trivial. We prove the “only if” part for the case where X is a
uniform ANR. By the Arens—Eells Embedding Theorem 6.2.1, we may assume that
X is a closed set in a normed linear space E = (E, || - ||). Then, there is a uniform
retraction r : G — X of a uniform neighborhood G of X in E. It is easy to prove
the following:

() For each ¢ > 0, there exists a y(¢) > 0 such thatif S C X and diam S < y(e)
then (S) C G and diamr((S)) < e.

Let Y = (Y,d) be a metric space and f : A — X be a uniformly continuous
map from a closed set A in Y. For each ¢ > 0, we have §(g) > 0 such that for any
a,a’ € A, d(a,a’) < B(e) implies || f(a) — f(a')| < &.Foreacha € 4, let

Vo={yeY\A|d(y.a)<2d(y, A)}.

Then, Y \ A has a locally finite partition of unity (1,),e4 subordinated to the open
cover {V, | a € A}. For each ¢ > 0, we define §(¢) = %,3(%)/(8)) > 0 and

U={yeY |d(y.4) <Dy}
Then, U is a uniform neighborhood of 4 in Y. We extend f to f :U — X by

f() if yeA,

J) = r(ZaeAku(y)f(a)) if yeU\ A.
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Then, f is well-defined and uniformly continuous at A. Indeed, let y € U \ A4,
a € A, and d(y,a) < 8(¢). If Ays(y) # Othen d(y,a’) < 2d(y, A) < 25(e), so
d(a,a’) < ,3(%)/(8)), which implies || f(a) — f(a)| < %y(s). Thus,

diam ({ f(a) | 2o (y) # 0} U {f(@)}) =< y(e).

Whene = 1, > 4 Aa () f(a’) € G by (%), which shows the well-definedness
of f.Since f(¥) = r( X pesrer(¥) f(@)), we have | f(y) — f(@)]l < e by (),
hence f is uniformly continuous at A. ~

If X is a uniform AR, we can take G = E in the above. Then, f can be defined
over Y, which means that X is a uniform AE. O

Remark 14. The above proof is also valid even if X is a closed set in a convex set
C in E and G is a neighborhood of X in C. Moreover, in the case where E is not a
normed linear space, if condition (x) is satisfied, then the proof can be carried out.

If X itself is a convex set in a locally convex metric linear space E, let
G = C = X and r = id in the above remark. Condition (x) is satisfied with
respect to the linear metric for £.° Indeed, by the local convexity of E, each %8-
neighborhood of 0 € E contains a convex neighborhood of 0, which contains some
y(¢)-neighborhood of 0. If S C X with diam S < y(¢), then (S) C C = X and
diam(S) < ¢. Thus, we have the following theorem:

Corollary 6.8.5. Every convex set in a locally convex metric linear space is a
uniform AE, and is hence a uniform AR. O

According to Corollary 6.3.5, every open cover { of an ANR X has an h-
refinement V), that is, any two V-close maps into X are {/-homotopic. The following
is a uniform version of this:

Theorem 6.8.6. Let X be a uniform ANR. Then, for each € > 0, there is § > 0 such
that any two §-close maps of an arbitrary space to X are e-homotopic.

Proof. By the Arens—Eells Embedding Theorem 6.2.1, we can consider X as a
closed set in a normed linear space £ = (E,| - ||). Since X is a uniform ANR,
X has a uniform neighborhood U with a retraction » : U — X that is uniformly
continuous at X . For each ¢ > 0, we have § > 0 such that § < dist(X, £ \ U) and,
foreach x € X and y € U, d(x,y) < & implies |x — r(y)|| < &/2. Then, any
two §-close maps f,g : ¥ — X are e-homotopic by the homotopy /1 : ¥ xI — X
defined as follows:

h(y,t) =r((1—=1)f(y) +18(y)). O

The following is a variant of Theorem 6.6.10.

The linear metric can be replaced by any admissible invariant metric.
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Theorem 6.8.7. A uniform ANR is a uniform AR if and only if it is homotopically
trivial.

Proof. If a uniform ANR X is homotopically trivial, then X is an AR by
Theorem 6.6.10. Let ¥ = (Y,d) be a metric space and f : A — X be a
uniformly continuous map from a closed set 4 in Y. Since X is a uniform ANE by
Theorem 6.8.4, f extends to amap f : U — X of a uniform open neighborhood
U in'Y that is uniformly continuous at A. Choose a uniform neighborhood V' of 4
inY sothatclV C U. Since X is an AE, f|clV extendstoamap f : Y — X.
Obviously, f is uniformly continuous at A. Therefore, X is a uniform AE, hence it
is a uniform AR by Theorem 6.8.4. O

When several metric spaces with common points appear, we denote by By (x, r)
the open ball in the space X (centered at x with radius r).

Lemma 6.8.8. A uniform ANR X is homotopy dense in every metric space Z that
contains X isometrically as a dense subset.

Proof. In the proof of the “only if” part of Theorem 6.8.1, since the retraction r :
W — X can be assumed to be a retraction of a uniform open neighborhood W of X
in a normed linear space E that is uniformly continuous at X, we can take §; > &, >
.-+ > 0so that lim,_, 8, = 0, Bg(x,8,) C W, and diamr(Bg(x,§,)) < 27" for
every x € X andn € N. Let V, = {Bg(x,8,) | x € X} andU, = {Bx(x,68,/3) |
x € X}. Then, U = (Uy)nen is a zero-sequence of open covers of X. Observe
that stif, < V, and U,+; < U,. Take any map fy : Tel/)©® — X such that
Jo(U) € U. Similar to the proof of Theorem 6.8.1, we can extend fj to a map f
satisfying conditions (i) and (ii) in Theorem 6.8.1.

For eachn € N, let U, = {Bz(x,8,/3) | x € X}. Then, U= (Z;{n)neN is a
zero-sequence of open covers of Z. By the same argument as in Corollary 6.8.2, we
can show that X is homotopy dense in Z. O

Theorem 6.8.9. For a metric space X, the following are equivalent:

(a) X is a uniform ANR;

(b) Every metric space Z containing X isometrically as a dense subset is a uniform
ANR and X is homotopy dense in Z;

(c) X is isometrically embedded in some uniform ANR Z as a homotopy dense
subset.

Proof. The implications (a) = (c) and (b) = (a) are obvious by considering Z=X.

(a) = (b): Let Z be a metric space containing X isometrically as a dense subset.
Then, X is homotopy dense in Z by Lemma 6.8.8. To prove that Z is a uniform
ANR, assume that Z is a closed set in a metric space Y. Let Y’ = Y\ (Z\ X). Since
X is a closed set in Y”, there is a retraction r : U — X of a uniform neighborhood
U of X in Y’ that is uniformly continuous at X. Then, V = U U Z is a uniform
neighborhoodof Z in Y. Weextendr to7 : V — Z by 7|Z \ X = id. Itis easy to
see that 7 is uniformly continuous at Z. Hence, Z is a uniform ANR.



384 6 Retracts and Extensors
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Fig. 6.16 The homeomorphism ¢

(c) = (a): Let Y = (Y,d) be a metric space and f : A — X be a
uniformly continuous map from a closed set A in Y. Since Z is a uniform ANE by
Theorem 6.8.4, f extendstoamap f : U — Z of auniform open neighborhood U
of AinY thatis uniformly continuous at A, where we may assume that d(y, A) < 1
for all y € U. On the other hand, we have a homotopy /2 : Z x I — Z such that
ho = id and h,(Z) C X for all £ > 0. Pushing the image of f into X by this
homotopy, we can define amap U > y +— h(f(y),d(y,A)) € X extending f.
Unfortunately, in general, this is not uniformly continuous at 4, so we need to adjust
the homotopy A.

It is easy to construct maps ¢, : Z — (0,1), n € N, such that &, 41(z) < o, (2)
(£ 27" and diam h({z} x [0,a,(z)]) < 27". There exists a homeomorphism ¢ :
Z xI— Z xIsuchthatpryo = pry, ¢|Z x {0,1} = id, and

©(z,27") = (z,a,(z)) foreachz € Z andn € N,

See Fig. 6.16. Then, it follows that d(z, he(z,t)) < 27" if t < 27". We define an
extension f’': U — X of f by f'(y) = h(p(f(y),dgy,A)) for each y € U. For
each ¢ > 0, choose n € N so that 27! < ¢. Since f is uniformly continuous at
A,wehave 0 < § <2 " suchthatif y e U,a € A, and d(y,a) < § (< 27"), then
d(f(y), f(a)) < 27", resulting in

d(f' (). f@) < dhe(f (). d(y. A). f() +d(f(¥). f(@))
<242 = g
Therefore, f’ is also uniformly continuous at 4. Thus, X is a uniform ANE, hence

a uniform ANR by Theorem 6.8.4. O

By Theorem 6.8.9 (combined with Theorem 6.8.7), we have the following
corollary, which shows an advantage of the concepts of uniform ARs and uniform
ANRs.
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Corollary 6.8.10. A metric space X is a uniform ANR (resp. a uniform AR) if and
only if the metric completion X of X is a uniform ANR (resp. a uniform AR) and X
is homotopy dense in X. O

Regarding admissible metrics on ANRs, we prove the following theorem:

Theorem 6.8.11. For any admissible metric d on an AR (resp. ANR) X, X has an
admissible metric p > d such that (X, p) is a uniform AR (resp. uniform ANR),
where if d is bounded then so is p.

Proof. Since an AR is a contractible ANR (Corollary 6.2.9), by Theorem 6.8.7, it
is enough to prove the case where X is an ANR. By the Arens—Eells Embedding
Theorem 6.2.1, we may assume that X is a neighborhood retract of a normed
linear space E, i.e., there is a retraction r : G — X of a neighborhood G of X
in E. Then, as noted in Remark 14 on the proof of Theorem 6.8.4, it suffices to
construct an admissible metric p > d on X that satisfies condition (*) in the proof
of Theorem 6.8.4.

By induction, we will construct admissible metrics p;, i € N, for X such that,
foreachn e Nand A C X,

diam,, A < 27" = (4) C G, diam,,_, r({4)) <n~'27",

where po = d. Assume p;_; has been defined. By the continuity of r, X has open
covers ., n € N, such that

(U)C G and diam,,_, r({(U)) <n™'27" foreach U € U..

Then, X has admissible metrics d, n € N, such that {By; (x, 1) | x € X} < U} (cf.
2.7.7(1)). We now define p; as follows:

o0
pi(x.y) =Y min{d}(x.y). 27"}.
n=1
It is easy to prove that p; is an admissible metric for X. Since p;(x,y) < 27"
implies d! (x, y) < 27", it follows that A C X with diam,,, A < 27" is contained in
some U € Z/l,’;. Then, p; satisfies the condition.
Now, we define a metric on X as follows:

o0
p(x.y) = pox.y) + Y min{p;(x,y).27 "1},
i=1
It is easy to see that p is an admissible metric for X and, if d = py is bounded, then
sois p. Let A C X such that diam, A < % Since diam,, 4 < %, (A) C G. Choose
n € Nsothat 27771 < diam, A < 27". Since diam,, A < 27" foreach i < n,
diam,, r((4)) < n~'27" foreachi < n. Hence,

diam, r((4)) < 27" 4+ Y 27 = 10- 277! < 10diam, A.

i>n

Then, p satisfies condition (). ]
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6.9 Homotopy Types of Open Sets in ANRs

In this section, we will prove the following characterization of ANRs:

Theorem 6.9.1 (CAUTY). A metrizable space X is an ANR if and only if every
open set in X has the homotopy type of an ANR, i.e., the homotopy type of a
simplicial complex (cf. Corollary 6.6.5).

To prove the “if” part of this theorem, we use the mapping cylinders and the
mapping telescopes discussed in Sect. 6.5. Formaps f; : X; — X;—1,i =1,...,n,
we regard

M(f],...,ﬁ,)ZX()UXlX(O,l]U---UXnX(}’l—l,n],

where M( f;) is identified with X;_; x {i — 1} U X; x (i — 1, ] by reparameterizing.
The following fact states in detail Corollary 6.5.11.

Factl. Formaps f : X > Y andg:Y — Z,letgp : M(g, f) —> M(gf) and
v M(gf) — M(g, f) be the maps defined as follows: ¢|Z = ¥|Z = idg,

o(x.5) = {(x,s—l) for (x,5) € X x(1,2],
g(x) for (x,s) €Y x(0,1];
Sirs) = (x,25) for (x,s) € X x (3.1],
(f(x),2s) for (x,s) € X x (0, %].

Then, Yo ~idrel. Z & X x {2} and o >~ id rel. Z & X x {1} by the homotopies
E: Mg f)xI — M(g, f)and ¢ : M(gf) x1 — M(gf) defined as follows:
&|1Z =¢41Z =id and

(x, 2(;__;)) for (x.8) € X x (1+ 4,2],
£(x,5) = (f(x),2s—1—1¢) for (x,s)EXx(l,l—i—%t],

(x,s—1) for (x,s) €Y x(¢t,1],

g(x) for (x,s) € Y x(0,1];
o250 e

gf(x) for (x,s) € X x (0, 31].

Then, we can state

(1) &@x} x (1,2]) C{f)}x (0, 1]Ufx}x (1,2] forx € X and t € 1;

) &{y}x(0,1) C{gM Uy} x (0. 1]fory € Y andt € I;
3) &LEx}x(0,1]) C{gf(x)}U{x} x(0,1]forx € X andt € L
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We can now also state the following fact:

Fact2. Let f : X — Y, g :Y — Xbemapsandh : X x1 — X be a
homotopy such that hy = id and hy = gf. Define maps f : X x1 — M(f),
g:M(f)=>XXL f: XxI— M(g),andg: M(g) - X xIas follows:

~ ) (x,0) fort >0, o Fo )

Fen = g, (e =X

i {(hz_h(x),s) for (x,5) € X x (3,1],

gx.s) = 1
(8f(x),s)  for(x,s) € X x(0, 3],

g(y) = (). 0) foryeY;

Fons) = {(f(x),2s —1) for(x,s) € X x (1,1],
has(x) for (x,s) € X x [0, %];

g(y.s) = (&(y).s) for(y.s) €Y x(0,1],
gx) = (x,0) forx € X.

Furthermore, define the homotopies hoh:X xIxI— X x1I as follows:

~ (h=25)1(x),8) for (x,s,t) € X x (3,1] x I,
hi(x,s) = 2
(h:(x),s) for (x,s,t) € X x [0, %] x I,
- (hy(x), (1 +1t)s —1t) for(x,s,t) € X x (3,1]x1,
hl‘(xvs) = 2
(hag (%), (1 —1)s) for (x,s,t) € X x [0, %] x L

Then,

(1) hy =idand hy = g f; )
(@) fI1X x{1} = g|X x{1} =id and h;|X x {1} = id for every t € I,
(3) hi(x,0) = (h(x),0) foreach x € X andt € I;
@) h({(x,s)} xI) C h({x} xI) x {s} for each (x,s) € X xI;
(5) g f()}U{x}x (0,1]) Ch({x} xI) x I foreachx € X;
(6) ho=idandh, = g f;
(7) hi|X x {0} = id for everyt € I;
) lz,f(x, 1) = (hy(x),1) foreach x € X andt € 1;
) h({x} xIxI) C h({x} xI) x Lforeachx € X;
(10) g({g(} Uiy} x(0,1]) C{g(y)} x Lforeachy € Y.

Remark 15. We can define g : M(f) — X x I as follows:

g(x,8) = (h1—s(x),s) for(x,s) € X x(0,1],
g(y) =(g(),0) foryeY.
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This definition is natural, but the continuity of g is not guaranteed because of the
topology of M(f).

The following is the key lemma for Theorem 6.9.1.

Lemma 6.9.2. Suppose that X is a metrizable space such that each open set in
X has the homotopy type of some ANR. Let Yy be an ANR, X be a closed set in
X, Wy be an open set in X with Xo C Wy, Vo be an open cover of Wy, and let
fo 1 Wo = Yo, g0 : Yo = Woy be maps and h° : Wy x I — W, be a Vy-homotopy
such that hg = id and h(l) = go fo. Given a discrete open collection W in X, let
Wy =UW and

V=YVoUWU{VUW |V eV, WeW[V]}

Then, there exists an ANR'Y such that Y contains Yy as a closed set, fol Xo and go
extend to maps f - WoU W) — Y and g : Y — Wy U W), respectively, and there
is a V-homotopy h : (Wo U W1) x I — Wy U Wi such that hy = id, hy = g f, and
I’ZIX() xI= h0|X0 x L

Proof. Choose a closed neighborhood N of Xj in X so that N C W, and let
a : Wo UW; — [0,1] be an Urysohn map with a(N U (Wp \ W;)) = 0 and
a(Wy \ Wy) = 1. We define

S =Wox[0,L]UWon W) x [L,3]UW x[51]C X x1I

13
6" 6
and an embedding j : Wo U W — S by j(x) = (x,a(x)). Letr = pry|S : S —
Wo U Wy. Then, rj =id and j(N U (Wy \ W})) C Wy x {0}.

By the hypothesis, there are ANRs Y7, Y. and homotopy equivalences fi : W; —
Y1, f« : Wo N W) — Y, with homotopy inverses g; and g«, respectively. Since W
is discrete, Y} and Y can be written as Y1 = @y e ¥V, Yo = Bpeny ¥ . and
=AW W s YV R = AWon W Won W — Y)Y are homotopy
equivalences with g}/ = g|Y)V : Y)Y - W, gl =g |Y)V : Y}V > wonw
homotopy inverses, respectively. Let

Y = M(fog«) Uy, x{1} M(fig+).

Then, Y is an ANR by Corollary 6.5.6 with 6.2.10(5). By identifying ¥y = Yy x
{0} C M(fog«), Y contains Y as a closed set. We will construct maps f : § — Y,
g:Y — S andanr~'(V)-homotopy & : S x I — S such that hy = id, h; = gf,
f(x,0) = fo(x) foreach x € Wy, g(y) = (go(y),0) foreach y € Yy, and

(h9(x),0) forx € Wpand 3 <1 <1,

<1
h(x,0) = o |
(h3(x),0) forx € Wopand0 <¢ < 3.
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WoU W) =~ the graph of &

Yy Wo W Y

Wo N W, Y. Wo 0 Wy

MO Mo MGy | MU

M(gx) M(g+)

0 1 2 3 2 1 0

Fig. 6.17 The maps f’ and g’

Then, the maps f = fj and g = rg are the desired ones and the V-homotopy his
defined as follows:

h(x) = rhasgey—10J (X) = rhgpey—1 (X, a(x)),

where 8 : Wy U W; — I is an Urysohn map with S((Wo U W;) \ N) = 0 and

B(Xo) = 1. Indeed, £ (x) = f(x.0) = fo(x) forx € Xo. &(y) = rg(y) = go(»)
for y € Yy and h,(x) = rhy—1,(x,0) = h%(x) for (x,7) € X, x L For every

x e Wy u Wl,ﬁo(x) = rho(x,a(x)) = x.If x € N, then ﬁl(x) =rhjx) =
rgfj(x) = gf(x). When x € N, since (1 4+ B(x))~! > 1, it follows that

hi(x) = rhaypi-1(x,0) = h)(x) = go fo(x) = & f (x).

Fori = 0,1, let j; : Wo N W; — W, be the inclusion. We define
T = M(fo, jo,&x) Uy, x3y M(f1, j1. 8x)-

Using Fact 2, we can obtain maps f’ : S — T, ¢ : T — S and a homotopy
W' : Sx1— S suchthathy =id, b} = g’ f', h}(x,0) = (h’(x),0) foreachx € W,
and t € I (cf. Fig. 6.17). The following are consequences of the construction:
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(1) hy|(Wo N Wh) x ([£. 51U [3.2]) = idforeacht € I;

(2) Each k) preserves components of (Wy N W) x [%, %], W N W) x [% %], and
Wi x [2,1];

(3) I ({x} x [0, 3] xI) € h°({x} x T) x [0, }] for each x € Wy;

@) &'({g+(»)} x(0,2]U{y} = (2,3]) C h°({g«(»)} xIx (0, 1]U {g«(»)} x (1,3])
foreach y € Yy;

5) g fo(x)} x {0} U {x} x (0,2]) C A°({x} x I) x T U {x} x (1,2] for each
x € Wy N Wy,

6) g'({ fo(x)} x {0} U {x} x (0,1]) € h°({x} x I) x I for each x € Wj.

Now, we can use Fact 1 to obtain maps f” : T — Y,g” : Y — T and a
homotopy 4" : T x I — T such that hj = id and i = g” f”. Then, the following
statements hold:

(7) h|Yo x {0} @ Y« x {3} &Y, x {0} =idforeacht €1,

(8) Each h!/ preserves components of M(f1, ji, g«);

) h"({y} < (2,3] xI) C {g«(»)} x (0,2] U {y} x (2,3] for y € Y;
(10) A" ({x} x (0,2] xI) C { fo(x)} x {0} U {x} x (0,2] for x € Wy N Wy;
(11) A"({x} x (0,1] xI) C { fo(x)} x {0} U {x} x (0, 1] for x € W,.

Thus, we have the maps f = f"f': S - Y, g = g'g” : Y — S and the
homotopy / : S x I — S defined by

g'hy,_ f fort

ht =
), for ¢

=
=

N— =

Then, hy = id and h; = gf. Since h° is a Vy-homotopy, it is easy to prove that & is
ar~'(V)-homotopy. Thus, the proof is complete. O

Now, we can prove Theorem 6.9.1:

Proof of Theorem 6.9.1. 'We must prove the “if”” part. For any open cover U of X,
we will show that X is {/-homotopy dominated by an ANE. Then, it will follow
from Theorem 6.6.2 that X is an ANR.

Let K be the nerve of U with ¢ : X — | K| a canonical map. For each simplex
o € K,let X, = ¢7'(|St(6,Sd*> K)|), where & is the barycenter of o. Then,
X = yex Xo. Foreach n € w, choose an open set W, in X so that

U XecWicaw,c | ¢7'(0suak(),
ceKM\ K@= ceKM\Kr=D

where {97 1(Osqx(6)) | 0 € K™ \ K"V} is pair-wise disjoint. For each o €
K™\ K®=D let W, = W, N ¢~ (Osqx(6)). Then,

X, C Wy CclW, C ¢ ' (0sqk(6))
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and W, = {W, | 0 € K™\ K”=D} is a discrete open collection in X with
(UW, = W,.For each n € w, we define

Vn=OW,-= U W, and X, = U X, CV,.
i=0

oeKm™ o€EK™

Note that V,, = V,_; U W,,. Foreach o € K,

cc | owsdk)
veoN(Sd? K)©)

c U Istv.sd k)| = ISt 8d K).
veaN(Sd? K)© <o

Hence, we have X = int X,,. We inductively define

new
Vi =Vart UW, UV UW |V eV,o1, WeW, [V},

where Vy = Wj. Then, each V, is an open cover of V},. By induction, it can be seen
that for each V' € V,, there are some 0y, 07, ..., 0 € K™ such thatdimoy < -+ <
dimoy (hence k <n),o0N---Nogx # G,and V = ﬂi;o W, . Take v € ﬂi;o cri(o).
Then, we have

V C o7 (Uizy Osax(61) C 97 (0k (),

which means that V, < U.

For each v € K©, W, has the homotopy type of an ANR Y,. Let ¥, =
@veK(o) Y,. Since V) = W) is discrete in X and V) = W, there exist two maps
fo : Vo = Yo, 80 : Yo — Vo and a Vy-homotopy h° : Vo x I — V; with
h8 = go fo and h(l) = id. By Lemma 6.9.2, we have an ANR Y, maps f; : V] — 171,
g1 : Y1 — V; and a V;-homotopy h! : V; x I — V; such that h(l) = g1 /1, h% =id,
Yo C Y1, filXo = folXo, g11Yo = go. and h'| X x I = h°| X, x L. Again, using
Lemma 6.9.2, we obtain an ANR Y,, maps f> : Vo — Yo and g, : Y, — V5,
and a V,-homotopy h? : V5, x I — V5 such that h% = @/ h% =id, Y; C Y,
HlXT = filX1, g21Y1 = g1, and h?|X; x I = h'|X; x L Thus, we apply
Lemma 6.9.2 inductively to obtain a tower Yy C Y} C Y, C --- of ANRs with
maps f, : V, — Y., g. : Y, — V, and V,-homotopies h" : V, x I — V,
such that i = g, fu, B} = id, fulXuz1 = fuc1lXn—1, ulYu—1 = gu—1, and
WX,y xIT=h"1X,_ xLLetY = li_I)nYn. We can define maps f : X — Y,
g :Y — X,and a U-homotopy 2 : X xI — X as follows: f|X, = f,|Xn,
glY, = gn,and h| X, xI = h"| X, xIforn > 0. Then, hy = gf and h; = id, hence
X is U-homotopy dominated by Y. Moreover, Y is an ANE by Theorem 6.1.8. This
completes the proof. O
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6.10 Countable-Dimensional ANRs

Recall that X is countable-dimensional if X = | J;cy A; for some countably many
subsets 4; C X with dim A; < 0 (cf. Sect.5.6). By the Decomposition Theorem
5.4.5 in Dimension Theory, every n-dimensional metrizable space is the union of at
most n + 1 many 0-dimensional subspaces, hence it is countable-dimensional. In
this section, we prove the following theorem:

Theorem 6.10.1. Every countable-dimensional locally contractible metrizable
space is an ANR.

First, we introduce a covering property related to countable-dimensionality.
A space X has Property C provided for any open covers U, of X, n € N, there
exists an open cover V = |,y Vu of X such that each V), is pair-wise disjoint and
V, <U,.

Lemma 6.10.2. Let X be a metrizable space. If X = |J;ey Ai and each A; has
Property C, then X also has Property C.

Proof. LetU, € cov(X), n € N. Take a bijection k£ : N x N — N. Having Property
C, each A; has an open cover V] = |J; ey V; ;, such that each V, . is pair-wise

(i.j)
disjoint and Vl i) = Ui, j)- Foreach V e V/ choose U(V) € Ui,y so that
V C U(V), and define

V={xeUWV)|dxV)<dx 4 \V)}=UV)NE®W),

(i.j)

where E (V) is the open set in X defined in the proof of Lemma 6.1.3. Then, V is
openin X and V N A; = V.Foreachn € N, letV, = {V | V € Vi- f—1(n )} Then,

each V), is pair-wise disjoint and V, < U, . Since U en Vk(.j) 1s an open cover of
A;in X,V = J,en Va 18 an open cover of X = UieNAi' O

Lemma 6.10.3. Let X be a metrizable space that has Property C. Then, every Fy
set in X also has Property C.

Proof. Itis easy to see that any closed set in X has Property C. Then, we can apply
Lemma 6.10.2 to complete the proof. O

Theorem 6.10.4. Every countable-dimensional metrizable space has Property C.

Proof. Since any open cover of a 0-dimensional space has a discrete open refine-
ment, any 0-dimensional space has Property C. Then, applying Lemma 6.10.2, we
complete the proof. O

Lemma 6.10.5. If X has Property C, then X x I also has Property C.

Proof. LetU, € cov(X xI), n € N. Using the compactness of I, we can easily find
W, € cov(X), n € N, and partitions 0 = 7} < ¢}V <--- < t]f‘(/W) =1, WeW,
so that

W =AW xJV | WeW,, i =01, k(W)} <Usy Alpu_1,
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where JOW = [O,IIW), JkVI/W) = (t,?(/w)_l, 1] and JV = (ti”_/l,tml) for0 <i <
k(W). Since X has Property C, X has an open cover V = |, oy Vs such that each
V, is pair-wise disjoint and V,, < W,. For each V' € V,, choose W(V) € W, so
that V' C W(V). Foreachn € N, let

Vi, =V x| VeV, 0<i<lk(W(V))} and
Vi =V x L Vevio<i < lkw)) -1
We have V* = |, ey Vi € cov(X x I), where each V) is pair-wise disjoint. Since
V12V, < Wi < Uoy—1 AlUay,

it follows that V¥ < U, for each n € N. Hence, X x I has Property C. O
By Lemmas 6.10.3 and 6.10.5, we have the following proposition:

Proposition 6.10.6. If X is metrizable and has Property C, then X x (0, 1] also
has Property C. O

By Theorem 6.10.4, we can obtain Theorem 6.10.1 as a corollary of the following
Extension Theorem:

Theorem 6.10.7. Let A be a closed set in a metrizable space X such that A has
Property C, and let Y be a locally contractible metrizable space. Then, any map
f A=Y extends over a neighborhood of A in X.

Proof. Inductively take open covers of Y:

U1>V1;UQ>V2;U3>”~,

so that meshi{, < 27" and each member of V), is contractible in some member of
U,. Foreachn € N, let

U ={fU)x Jy |m €N, U € Upyym} € cov(4 x (0,1]),

where J; = (1/2,1] and J,, = (27™,273) for m > 1. Since A x (0, 1] has
Property C, it has an open cover W = | J, ¢y Wi such that each W), is pair-wise
disjoint and W, < U;.

For each W € W, choose n(W), m(W), k(W) € N, UW) € Urw), V(W) €
View)—1, and ﬁ(W) € Ukw)—1 as follows:

) W eWaw),

Q) W C f7H UMW) X Jmwy € Uy

(3) UW) € Urwy, k(W) = 2n(W) + m(W),
@) st (UW), Ukw)) C V(W) € Viw)—1,

(5) V(W) is contractible in U (W) € Urw)-1,
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and let ¥ : V(W) x I — U(W) be a contraction, that is, vy = id and
Yl (V(W)) = {xw}, where xy € U(W).

Let K be the nerve of W with ¢ : A x (0, 1] — | K| a canonical map. Since | K|
is an ANE, ¢ extends to amap ¢ : N — |K| over a neighborhood N of A4 x (0, 1]
in X x (0, 1]. We will construct amap g : |K| — Y so that d(gg(a.t), f(a)) <t
for each (a,t) € A x (0,1]. Then, gg : A x (0,1] — Y would be extended over
A x1Iby f.Hence, we could apply Lemma 6.5.1 to extend f over a neighborhood
of Ain X.

For each 0 € K, take a vertex W(o) € o© (C W) such that n(W(o)) =
min{n(W) | W € o©}. Then, such a vertex W(o) € o© is unique. Indeed,
n(W)y < n(W') or n(W') < n(W) for W # W’ € o© because each W, is
pair-wise disjoint. Next, let oy be the (n — 1)-face of o such that W(o) € oy, i.e.,
o = {00 U {W(0)}). Then, each point of o can be represented as

1-t)z+tW(o), t €1, z € 0y.

Here, we should notice that, if t < o and W(o) € t©, then W(r) = W(o) and
T < 0p.
We will show

(6) U(W) C V(W(0)) forevery W € 6@,

Since Juwioy N Jmewy # 0, we have |m(W (o)) — m(W)| < 1, which implies
k(W(o)) < k(W) by (3). Since Urw)—1 < Urw(o))» U (W) is contained in some
member of Uyw(s)). On the other hand, U(W) N U(W(c)) # @ by (2). Since
Uuw)c U(W), we have U(W) N U(W(o)) # @. Thus, it follows from (4) that

UW) C stUW(0)),Urwioy) C V(W (0)).

Now, let go : |K®| — Y be a map such that go(W) = xy € U(W) for
each W e K©. Assume that we have maps g; : |[K®| — Y, i < n, such that
gil|KPV| =g;_yand,ifoc € KO, ¢t eIand z € 0y, then g;_,(z) € lj(W(ao)) C
V(W(o)) and

g (1 =0z +tW(0)) = ¢y (gi_1(2),1) € UW(0)).

For each n-simplex 0 € K, we have g,_i(09) C U(W(0y)) C V(W(0)) by the
above assumption and (6). Then, we can define amap g, : 0 — U(W(o)) C Y as
follows:

go((1 =0z +1W(0) = ¥ (g,-1(2),1).

It is easy to prove that g,|d0 = g,—1|do. Hence, g,—; extends to the map g, :
|[K™| — Y defined by g,|0 = g, for each n-simplex 0 € K, where if o € K™,
t €1, and z € oy, then

gn(1 =1z +tW(0)) = ") (g,(2).1) € UW(0)).
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By induction, we have maps g,, n € N, satisfying the above condition. Let g :
|K| — Y be the map defined by g||K™| = g,. Then, g(o) C U(W(0)) for each
ocek.

It remains to show that d(g¢(a,t), f(a)) < t foreach (a,t) € Ax(0,1].Leto €
K be the carrier of ¢(a,t). Then, (a,t) € W(o), which implies that ¢ € J,,(w(o)),

f(a) € UW(o)) C U(W(0)) and gg(a,t) € U(W(0)). Hence, t > 27"V >
2—k(W(0))+2 and

d(gp(a,1), f(a)) < diam U (W(0)) < meshUywioy—1 < 2 FVO+ <,

This completes the proof. O

6.11 The Local n-Connectedness

In this section, we need a few results from Chap.5: Theorem 5.2.3, the No
Retraction Theorem 5.1.5, the General Position Lemma 5.8.4, and Sect. 5.10.

A space X is said to be n-connected (C") if each map f : S > X,i <n,
extends over B/ 1.7 Being 0-connected means being path-connected. We also say
that X is simply connected instead of 1-connected. Note that S” is (n—1)-connected
but not n-connected by Theorem 5.2.3 and the No Retraction Theorem 5.1.5. We
also say that X is locally n-connected (L C") if for each x € X, each neighborhood
U of x contains a peighborhood V of x such that any map f : S > V,i <n,
extends to a map f : B! — U. To be LC” means to be locally path-connected.
A space X is said to be locally simply connected instead of locally 1-connected.
We say that X is C* (or LC®) if X is C" (or LC") for all n € w. Being C*
means being homotopically trivial. Every locally contractible space X is LC°° but,
in general, the converse does not hold. In fact, being L C *° does not imply that every
point has an arbitrarily small homotopically trivial (C *°) neighborhood.

Example 6.11.1 (BORSUK). There exists an LC® continuum that has a point
without homotopically trivial neighborhoods, so it is not locally contractible.

Example and Proof Foreachi € N, let u; = 27e;,v; = 277!3e; € £, and let
S; be the i-dimensional sphere in £, centered at v; with radius 2711 e, S, =
v; + 271§, where we identify S’ = S’ x {0} C £,. Note that S; N S; 41 = {u;}
and S; N S; = @if|i — j| > 1. Foreachn € N, let X, = {0} U U2, Si C £a.
Then, X is compact and connected. Each X,, is the closed 27" *!-neighborhood of
the point 0 in X. As is easily observed, every S, is a retract of X;. Since S, is not
contractible, it follows that S, is not contractible in any set containing S,. Then,
any neighborhood of 0 in X is not homotopically trivial because it contains S, for
sufficiently large n. On the other hand, X, is locally contractible at any point of
X1\ {0}. It remains to show that X; is LC ° at the point 0.

7In terms of homotopy groups, this means that 7r; (X, xo) = {0} for every xo € X andi < n.
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SN i \ 1))

F7HXG N A=) F =)

- Uj_l _ s Bi+1 Si
Fig. 6.18 Open sets Uy

To prove that X; is LC* at 0, it suffices to show that X, is n-connected for each
m > n, thatis, each map f : S — X,,, i < n, extends over B'*!. First, we take
open sets U; in B'*!, j > m, such that

FNX \{uj—) c Uy ceU; cUj— \ fHSj— \ duj—1}).

In fact, let U,, = B'™'\ f~!(u,,—1) and suppose that U;_; has been obtained. Since
el f7HX; \ {uj—1}) € f71(X;) and

(B TN\U;—) U f71(Sj=1 \{uj—1})) C BT\ U;—p) U f71(S-0),
F7UX G\ {uj—1}) and BTN\ U;— ) U f71(S;—1 \ {uj—1}) are separated in B' 1.

By complete normality,® B/ *! has the desired open set U;. — Fig. 6.18.
Next, for each j > m, observe that /(S NbdU;) = {u;—} and

FE N EU;\Uj1) C X\ (Xj11\{u;}) = S;.

Since dim(clU; \U; 1) =i 41 < j, we can apply Theorem 5.2.3 to obtain a map
fi:clUj\Uj41 — S; (= S/) such that

Si®dU;) ={uj—}, f;(0dU;41) = {u;}, and
Fi18" N (@U; \Uj41) = fIS N (clU; \ Uj41).

Now, we can define a map f : B't! — X, as follows:

FldU; \Uj1 = f; for j >m,
FB TN\ U,) = {up—1}. and ()2, Uj) = {0}.

Then, f is an extension of f. Hence, X,, is LC". O

8Due to Theorem 2.2.5, X is completely normal if and only if X is hereditarily normal.
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Remark 16. In the above example, for a fixed n € N, let S; be the n-dimensional
sphere in ¢, centered at v; with radius 277!, i.e., S; = v; + 2777!S". Then, a
similar proof shows that {0} U | ;¢ Si is LC"~! but not LC". Thus, we have an
n-dimensional continuum that is LC"~! but not LC".

The universal spaces v" and pu”" are also LC"™! but not LC" as we now
explain (cf. Sect. 5.10). The n-dimensional universal Nobeling space v" is defined
as follows:

V' = {x e R¥ ! ‘ x(@) e R\ Q except forn manyi}

= {x e R¥*! \ x() € Q atmostn manyi}.
Foreach k € N, let

3=l
Re= | (m/3 " +1/3  m/3" +2/3) c L

m=0

The intersection (eI \ Rk) (= I\ Uey Ri) is the Cantor (ternary) set .
The n-dimensional universal Menger compactum p” is defined as the intersection
B = Nyey M, where

Mkzn+1 — {x c 2! | x(i) € I\ Ry exceptforn manyi}

= {x e P"*"| x(i) € Rx atmostn manyi}.

Theorem 6.11.2. The n-dimensional universal Nobeling space v" and the n-
dimensional universal Menger compactum " are C"~' and LC"~", but they are
neither C" nor LC" at any point.

Proof. To prove that v" isnot C" or LC" at any point, it suffices to show that for any
neighborhood V of x € v”, thereis amap f : §" — V thatis not null-homotopic in
V. Choose a; < b; e R\Q,i =1,...,2n+1, so that v”ﬂ]_[izi’fl[a,-,bi] c V,and
define C = []/Z/[a;,b;] C R**!. Take a point v € Q"+! NintC  R"*!. Then,
we have a retraction 7 : R"*1\ {v} — 9C. Since {v} xR" C R¥"*1\ 1", we have the
map rp : V" — dC, where p : V" — R"T1\ {v} is the restriction of the projection of
R?"*+1 onto the first n + 1 factors. Now, let u = (@, 42, ..., a+1) € (R\Q)". Then,
dC x{u} C v" by the definition of v"". Let f : 8" — dC x{u} be a homeomorphism.
Assume that £ is null-homotopic in v, that is, /" extends to a map f : Bt — .
Themap f~'rp f : B"*! — §" is a retraction, which contradicts the No Retraction
Theorem 5.1.5. Hence, f is not null-homotopic in v.

By analogy, we can show that for any neighborhood V' of x € p, there is a map
f :§" — V that is not null-homotopic in u". In the above, replacing v" and [a;, b;]
with " and [(m; —1)/3%, m; /3¥], m; € N, respectively, and defining the points v, u
by
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v=(m —3)/3 .. .. (myp1 —1)/3") and
u = (m,,+2/3k, e ,m2n+1/3k),

the same arguments apply.
Suppose that v and " inherit the metric of R*! induced by the norm

IxXloo = max {|x()| | i =1,...,2n + 1}.

Let m < n and denote K = F(A™) and L = F(dA™). To show that v" and
w" are C"~!and LC"!, it suffices to show that every map f : [L| — v" (resp.
S o IL| = p"), m < n, extends to amap f : |K| — V" (resp. f : |[K| — u")
with d1amf(|K|) < 2diam f(|L|) (resp. diam f (| K|) < 12diam f(|L]|)). Since
C = ]_[2"+ pr; f(|L|) is an AE, f extendsto amap f; : |K| — C, where

diam f(|L|) < diam fo(|K|) < diam C = diam f(|L]).

Then, we will deform £ to a map f |K| — v" (resp. f |K| — ') such that
f||L| fandd(f f0)< dlamC(resp d(f, fo) < 6diamC).

The case of v': We wr1te v = R\ |, Hi, where each H; is an n-
dimensional flat. By induction, we will construct maps f; : |K| — R\
Uf;lH,-, k € N, such that fi||L| = f and d(fk, fi—1) < &r/2, where g > 0
is defined as follows: &g = diam C and

e = min {er—1/2, dist(f(|L|), Hx). 1 dist(fi—1(|K ), Hi—1)} > 0

Observe Y 2, &;/2 < g < 27%diam C. Then, ( f;);en is Cauchy, so it converges to
a map f K| — R2”+1 by the completeness of C(| K|, R*"*!), where FIIL = f
and d(f, fo) <e1 < 3 Ldiam C. Since d(f, f;) < ei41 foreach i € N, it follows
that
dist(f (K1), H;) = dist(f; (IK[), H;) — €i+1 = €i+1 > 0,

hence f(|K|) € R\ oy Hi = V"

Now, assume that fo,..., fx—1 have been obtained. Then, g; > 0 is defined as
above. Choose K’ <1 K so that diam{ fx—;(0)) < & /2 foreveryo € K’, and let L’

be the subcomplex of K’ with L’ <1 L. Then, for each 0 € K’ with o N |L| # @,
we have

dist(( fe-1(0)), Hi) = dist(N(f(|L]). £x/2), Hi) = i /2.

Since Hj is an n-dimensional flat in R>"*! and dim K = m < n, we can apply the
General Position Lemma 5.8.4 to find points p, € R2*+! v e K/@\ 1/© guch

that || p, — fi—1(")|| < €x/2 and

{puys ...\ Pupyyy N He =0 forevery vi,...,vpy1 € K/(O)\L/(O).
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Using the barycentric coordinates, we can define a map f; : |K| — R*' !\ Hy as
follows:

Yo B @ if a(x) = 0,
VEK/(O)\L/(O)
Je) = 1a@) f(Xiepoa@™BE )+ Y K
veK/O\1/©
if e(x) >0,

where a(x) = ) ;0 ﬂf/(x). Then, fi||L] = f. In the above definition, if
a(x) # 1 then

Yo B =0-a) ) /3 (X)

(X
VGK’(O)\L’(O) VEK/(O)\L/(O) ( )

where 1 —a(x) = Z‘,GK,«))\L,(O) ,Bf/(x). Since || py — fi—1(v)|| < ex/2 for each

ve KO\ L' it follows that || fi (x) — fi—1(x)|| < &x/2 for each x € |K|. This
completes the induction.

The case of pu": Recall pu" = ey MZ"T' C IP"*1. Take the largest number
ko €  such that 2diamC < 1/3%, Then, 1/3% < 6diamC. For each i =
1,...,2n + 1,let m; € N be the smallest number such that max pr; (C) < mi/3k°.
Then, fy(|K]) is contained in the following cube:

2n+1 m 1 m
- i— 1 mi
D_Ul[ 3o ’3%}'

Observe D C ﬂf:ll Mf”“. We have a homeomorphism ¢ : (D,D N u") —
(I>"*+1, ") defined by

o(x) = 3oy — my—1,...,my41 —1).

Refer to Fig.5.7. If the map ¢f : |K| — I?"*! can be deformed to a map f” :
|K| — u", then fo = ¢! f’ : |K| — D N u" is the desired one. Thus, we may
assume that D = I?"*1,

By induction, we will construct maps f; : |K| — ﬂf;l M,-Z”H, k € N, such
that fi||L| = f and f; is 2/3%-close to fi_;. Since Zook 2/30 = 1/3K1 it
follows that ( f;);en is Cauchy and thus converges toamap f : |K| — I?"*! with
f||L| 7. Since f is the limit of f; : |K| — ﬂl_l MZ”+1 j = k, it follows that

FUKD) C " = ey MP"T.
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Assume that f, ..., fr—1 have been obtained. Let

S ={m/3*"'+3/32)|m=o0,..3""-1} and
T={xe R2+1 \ x(i) € S atleastn + 1 manyi}.

Then, S consists of mid-points of components of Ry_;, T is a finite union of n-
dimensional flats in R?"*! and

Mk2n+l — 12n+l \N(T, 1/(3k2))

Note that M 211 and ﬂk ! M; 21+1 are the polyhedra of subcomplexes of the cell
complex consisting of all faces of the following cubes:

2n+l[ —1 m
I cP omefl,... 35
k k] ’ 1
bl KL

Choose a simplicial subdivision K’ <1 K so that diam f;_(0) < 1/(3%4) for each
o € K'. Asin the case of v", we can apply the General Position Lemma 5.8.4 to find
points p, € "1,y e K/ \ £ (M), so that p, and fi—;(v) are contained
in the same cube in the above and

Wpw.. s Py NT =0

for every m 4+ 1 many vy, ..., v+ € K'© \ fk__ll(MkZ”H). Then, in the same way
as fy in the case of v", we can defineamap g : |K| — ﬂf‘;ll Mf"“ \ T such that
g|fk__11 (Mkz”“) = fi_1 and g is 3 ¥-close to f;_;. On the other hand, we have a
retraction h : "*1\ T — M?"*! such that ROZI M\ T) = N, M2
and h is 3 ¥-close to id. Then hg is the desired map f;. This completes the
induction. O

6.12 Finite-Dimensional ANRs

A space Y is called an absolute neighborhood extensor for metrizable spaces of
dimension < n (or an ANE(n)) if each map f : A — Y from any closed set 4 in
a metrizable space X of dim X < n extends over some neighborhood U of A4 in X.
When f can always be extended over X (i.e., U = X in the above), we call Y
an absolute extensor for metrizable spaces of dimension < n (or an AE(n)).
In this section, we show that the local n-connectedness characterizes ANE(n + 1)s
and n-dimensional ANRs.
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For a metrizable space X, dim X < n if and only if each open cover I/ of X has
an open refinement V with ord V < n+ 1.7 We use the following facts of Dimension
Theory:

(i) Ifdim X < nthendim X xI <n + 1 — the Product Theorem 5.4.9.
(i) For any subset A of a metrizable space X, dimA < dim X—the Subset
Theorem 5.3.3.

In Lemma 6.1.2, given a proper closed set A # @ in a metric space X = (X, d),
we obtained a Dugundji system (ay)veu, i-e., U is a locally finite open cover of
X\ Awithay € A, U € U, such that x € U € U implies d(x,ay) < 2d(x, A).
IfdimX \ A <n + 1, we can take I/ with the additional condition that ordif <
n+2,ie., dim NU) < n + 1, where N(U) is the nerve of U. Thus, we have the
following variant:

Lemma 6.12.1. Let X = (X, d) be a metric space and A # O be a proper closed
setin X suchthatdim X \ A < n+ 1. Then, there exists a Dugundji system (ay)uveu
for A C X such thatdim N(U) <n + 1. O

An open refinement V of i € cov(X) is called a C"-refinement of I/ if each
V € Vis contained in some U € U such that any map f : S — V,i < n, extends
toamap f : B'T! — U. We call V an n-Lefschetz refinement of / if any partial
V-realization of an arbitrary simplicial complex with dim < n in X extends to full
U-realization in X. We denote

V<UorlUU>V (resp.V<U orL{>V)
CI'I CI'I LI'I Li’l

when V is a C”"-refinement (resp. an n-Lefschetz refinement) of /.

Lemma 6.12.2. For an LC" paracompact space Y, each open cover U of Y has
an (n + 1)-Lefschetz refinement.

Proof. Since Y is LC", U has the following open refinements:
* * * *
Z/{:Vn+1>bln>Vn >u,,_1 > V,,_1>'~>Z/{0>VO.
cn cn—l co

Let K be a simplicial complex with dim K < n + 1, L be a subcomplex of K
with K© < L,and f : |L| — Y be a partial V,-realization of K. By induction,
we can define partial V;-realizations f; : |[L U K)| — Y of K such that f;||L U
K@Y = fi_|, where fy = f.Indeed, assume that f;_, has been defined. For
each 0 € K\ (L U KYD) choose V, € V,_; so that f;_;(do) C V,. Since
V;_1isa C'!-refinement of U;_;, f;_|d0 extendsto amap f, : ¢ — U, for some
U, € U;_;. Thus, f; can be defined by fi|oc = f, foroc € KO\ (L U K/~D).

9In the definition of dimension, & and V are required to be finite. However, by Theorem 5.2.4, this
requirement is not necessary for paracompact spaces (so metrizable spaces).
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Foreach o € K, we can write 0 N |[L U K| = U1;=10j’ where 6; € L U K@,
Since each f;(o;) is contained in some U; € U;—; and f(0?) is contained in
some Uy € U;—y, it follows that f;(|F(0)?|) C st(Uy,U;—). Since U; is a star-
refinement of V;, f; is a V;-realization of K. Note that f, 1, is a full /-realization
of K. Therefore, V) is an (n + 1)-Lefschetz refinement of /. O

Now, we prove the following characterization of ANE(#n)s:

Theorem 6.12.3. Let n € w. For a metrizable space Y, the following are
equivalent:

(@ YisLC"

(b) Y isan ANE(n + 1);

(c) If A is a closed set in a metrizable space X withdim X \ A < n + 1, then every
map f 1 A — Y extends over a neighborhood of A in X ;

(d) If A is a closed set in a metrizable space X with dim A < n, then every map
f 1 A — Y extends over a neighborhood of A in X;

(e) Each open coverU of Y has an (n + 1)-Lefschetz refinement;

(f) Each neighborhood U of any y € Y contains a neighborhood V of y in Y
such that every map f : X — V of a metrizable space X with dim X < n is
null-homotopic in U.

Proof. The implication (a) = (e) is Lemma 6.12.2. The implication (f) = (a) is
trivial and (c¢) = (b) follows from (ii). We show the implications (a) = (c), (b) =
(f), and (e) = (d) = ().

(6.12.2)
(&) <—— (3 —= (0

|1 s

d) == () <= b)

(a) = (c): We may assume that X and Y are metric spaces. For simplicity, let d
stand for both metrics of X and Y. By (a), we can take open covers of Y as follows:

Vo= {¥} > Uz V=l 2 Vo> oo

and mesh V; < 277 foreach i € N. By Lemma 6.12.1, we have a Dugundji system
(aw)wew for A C X such thatdim NOV) <n + 1.Letgp : X \ 4 — [NOV)| be
a canonical map, i.e., (x) € (W][x]) for each x € X \ A (cf. Proposition 4.9.1).
Foreacho € NOW), let A(0) = {aw | W € 0@} C A. Let K, be the subcomplex
of N(W) consisting of all simplexes 0 € N(WV) such that f(A(c)) is a singleton.
Obviously, K" = NOW)© = W. For each 6 € N(W) \ Ko, let

k(o) = max {i €Ew \ f(A(o)) C V forsomeV € V,-},
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and choose V(o) € Vi) sothat f(A(0)) C V(o). Observethatif o € NOWV)\ Ko
and 0 < t,then t € NOW) \ Ky and k(o) > k(r). We define a subcomplex
K C N(W) as follows:

K=KyU{oe NW)|k(o)=>n+1}.

Foreachi € N, let K; = Ko U K. Note that K = K, ;1. Let go: |Ko| > Y
be the map defined by go(0) = f(A(0)) for each o € Kj. Then, observe

go(o N |Ko|) = f(A(0)) C Vo(0) € V() foreacho € K \ K.

For each 1-simplex o € K \ Ko, we have Up(0) € U (o) such that go|do = go|o®
extends to amap g, : 0 — Up(0). Then, we can extend go toamap g, : |[K;| = Y
defined by gi|o0 = g, foro € K; \ Ky. Foreacho € K \ Ky,

g1(o N |Ky|) C St(Vo(0), Uro)) € StVk(o)» Uk(o)) < StUk(o) < Vi(o)—1>

hence g; (o0 N |K|) is contained in some V(o) € Vi (s)—1. Next, for each 2-simplex
o € K\ Ky, we have U;(0) € Uy(s)—1 such that g;|do extends to amap g, : 0 —
Ui (o). Then, as above, we can extend g; to a map g, : |K»| — Y such that, for
eacho € K \ Ky, g2(0 N|K>|) is contained in some V,(0) € Vi()—2. We continue
this process n + 1 times to obtain amap g = g,+1 : |K| = |K,+1| — Y such that,
foreach o € K = K, 41, g(0) is contained in some V,,41(0) € Vi(o)—n—1-

Now, we define / : AU ¢ '(|K|) = Y by f|4A = f and flp '(K|) =
gg0|g0_1(|KJ). It remains to be shown that 4 U ¢~'(]K|) is a neighborhood of A
in X and f is continuous. To this end, it suffices to prove that A U ¢~ !(|K|) is a
neighborhood of each a € bdy 4 in X and f is continuous at each a € bdy A. We
will prove these claims at the same time. For each a € bdy A and ¢ > 0, choose
i>n+1landV €V sothat 27/(1 + 2"*!) < g and f(a) € V. Then, we have
8 > 0 such that f(A N B(a,8§)) C V.Forx € X \ A with d(x,a) < §/3, let
oy € N(W) be the carrier of ¢(x). For every W € o” sincex € W e W, we
have d(x,ay) < 2d(x, A) < 2d(x,a), hence

d(a,aw) <d(x,a) +d(x,ay) <3d(x,a) <.
Then, f(A(oyx)) C V € V;, which implies that k(o) > i > n + 1, hence o, € K.
Therefore, ¢(x) € |K|. Thus, A U ¢~ 1(|K]) is a neighborhood of @ in X. On the

other hand, note that

fla) eV, g0{”) = f(A(ox)) C V and

g(0x) C Vat1(0x) € Vi(oy)—n—1-
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Then, it follows that

d(f(a),ge(x)) < diam V' + diam V,, 41 (0%)
< 2—i + 2—k(ax)+n+l S 2—[(1 + 2n+1) < .

Therefore, f is continuous at a € bdy A. The continuity of f oninty AU@~'(|K|)
is obvious. Thus, f is extended over a neighborhood of A in X.
(e) = (d): Given d € Metr(Y), we take open covers of ¥ as follows:

* * *
U > Vi>=U > Vo>U; > V3> .-
L+l L+l L+l

and meshf; < 277! for each i € N. Since dim A < n, A has open covers W,
i € N,suchthatord W, <n 4+ 1and W; < f~'Ui12) AWi_1, where Wy = {A}.
For each i € N, let K; be the nerve of W; with ¢; : A — |K;| a canonical map.
Then, dim K; < n. Extending a partial V;;-realization of K; defined on Ki(o), we
can obtain a full I; 4 -realization p; : |K;| — Y such that

pi(W) e f(W) foreach W e Kl-(o) =W,.
Since W, 41 < Wi, there is a simplicial map v; : K;+; — K; such that
Wy (W)eK” =W, foreach W € K, = Wiy

Choosing an order on Kl-(o) so that K; is an ordered simplicial complex, we have
the simplicial mapping cylinder Zy, of ;. Then, dimZy, < n + 1 and Zx(//? )
K; @& K;+,. Observe that p; & p;+1 : |K;| ® |Ki+1| — Y is a partial V;-realization
of Zy,. Then, we have a full I{;-realization g; : |Zy,| — Y such that g;||K;| = p;
and g;||Ki 1| = pi+1. On the other hand, we also have amap h; : A x1 — |Zy,|
such that 4;(a,0) = ¢;(a) and h;(a,1) = @;11(a). Indeed, ¢; and ¥;@; 4+ are
canonical maps for the cover W;, hence they are contiguous (Corollary 4.9.2) and
h; can be defined as follows:

qy; (@i+1(a),2t — 1) ift

hi(a7t) =
(1 =20)¢i(a) + 2t V@i 11(a) ift

> 1
p— 2,
<1
j— 2,
where Gy, : |Ki| ® |Kit1 x I| = |Zy,]| is the quotient map (Fig. 6.19). For each

(a,t) € Ax[0,1), the carrier of h;(a,t) in Zy, has a vertex W € Wj[a]. Then,

g(W)=pi(W) e f(W) Cst(f(a),U+2).

Since g; is a full If;-realization of Zy,, it follows that g; h; (a,t) € st(f(a), Vi—1).
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Fig. 6.19 The maps /; and g;
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Fig. 6.20 The maps ¢ and g

Now, we have a simplicial complex K = |J;ey Zy, and amap g : |K| — YV
defined by g|Zy, = g; foreachi € N. We also defineamap ¢ : 4 x (0,1] — |K]|
as follows:

@(a,t) = hi(a,2—2't) for2™ <t <27 *1,

See Fig. 6.20. Since |K| is an ANE, the map g¢ : A x (0,1] — Y extends over a
neighborhood of 4 x (0, 1] in X x (0, 1]. On the other hand, for each a € A and
27 < <27

gela,t) = gihi(a,2 = 2'1) € st(f(a), Ui-),

which implies that d(g¢(a,t), f(a)) < 27" < t. Hence, go can be extended over
A xIby f. Thus, we can apply Lemma 6.5.1 to extend f over a neighborhood of
Ain X.

(b) (or (d)) = (f): Let d € Metr(Y) and assume that condition (f) does not
hold. Then, we have a point yo € Y, an open neighborhood U of yy in ¥ and
maps f; : X; — U, i € N, such that each X; is a metrizable space, dim X; < n,
fi(X;) C B(y0,27%), and each f; is not null-homotopic. Take vy & P,y Xi X I
and let

X ={}UEP X xI and 4 ={w}uX; x{0.1},

ieN ieN
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where X admits the topology generated by the open sets in X; x I and {vo} U
>, j=i Xj xL,i € N.Then, X is metrizable by the Bing Metrization Theorem 2.3.4
and A is closed in X . By facts (i) and (ii) mentioned at the beginning of this section,
dimX; xI <n+1anddimX; x {0,1} < n for every i € N. By definition, it is
easy to show that dimX < n + 1 and dimA < n. We defineamap f : 4 - U
by f(vo) = yo, f(x,0) = fi(x), and f(x,1) = yo for x € X;. Then, f extends
over a neighborhood W of A4 in X by (b) (or (d)). Note that W contains some X; x I
that maps into U by the extension of f. This means that f; is null-homotopic in U,
which is a contradiction. O

Remark 17. The following conditions can also be added to the list of Theo-
rem 6.12.3, as variants of (a) (or (f)) corresponding to (b), (c), and (d).

(b’) Each neighborhood U of any point y in Y contains a neighborhood V' of y in
Y such that every map f : A — V defined in a closed set A in a metrizable
space X withdimX <n 4 lextendstoamap f : X — U;

(c’) Each neighborhood U of any point y in ¥ contains a neighborhood V' of y in
Y such that every map f : A — V defined in a closed set A in a metrizable
space X withdimX \ A <n + lextendstoamap f : X — U,

(d’) Each neighborhood U of any point y in Y contains a neighborhood V' of y in
Y such that every map f : A — V defined in a closed set A in a metrizable
space X withdim A < n extendstoamap f : X — U.

Sketch of Proof. For y € V C U in each of these conditions, given amap f : X — V
of a metrizable space X with dimX < n,leth : X x {0,1} — V be the map defined by
h(x,0) = f(x)and h(x,1) = y for x € X. Then, h can be extended to a homotopy giving
f =~ 0in U. Thus, each of (b’), (¢’), and (d”) implies condition (f) in Theorem 6.12.3.

The proofs of the implications (b) = (b’), (c¢) = (c¢’), and (d) = (d’) are similar to the
proof of (b) (or (d)) = (f) in Theorem 6.12.3.

As in Proposition 6.6.9, we can prove the following lemma:

Lemma 6.12.4. Let K be an (n+1)-dimensional simplicial complex and L be a
subcomplex of K. If X is n-connected, then any map f : |L|—X extends over |K|.
O

Using this lemma and Theorem 6.12.3, we can obtain the following characteri-
zation of AE(n)s:

Theorem 6.12.5. Let n € w. For a metrizable space Y, the following are
equivalent:

(@) YisC"and LC";

(b)) Y isan AE(n + 1);

(c) If A is a closed set in a metrizable space X withdim X \ A < n + 1, then every
map [ : A — Y extends over X;

(d) If A is a closed set in a metrizable space X with dim A < n, then every map
f A —Y extends over X.
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Proof. The implication (c) = (b) follows from (ii). Since conditions (b) and (d)
imply that Y is n-connected, the implications (b) = (a) and (d) = (a) can be
obtained by Theorem 6.12.3.

In the proof of Theorem 6.12.3 (a) = (c), if Y is n-connected, themap g : |K| —
Y can be extended over | N(W)| by Lemma 6.12.4, hence f can be defined over X.
Thus, the implication (a) = (c) of this theorem also holds.

In the proof of Theorem 6.12.3 (e) = (d), we may assume that diam Y < 273, If
Y is n-connected, we can take U; = V; = {Y} fori = 1,2, 3, so we can also take
W, = {A}. Now, since ¢|A x {1} is a constant map and | K| is an ANE, g¢ extends
over a neighborhood of 4 x (0,1] U X x {1} in X x (0, 1]. Therefore, f extends
over X by Lemma 6.5.1. Since condition (a) of this theorem implies condition (e)
of Theorem 6.12.3, we have the implication (a) = (d). O

By Theorems 6.12.3 and 6.12.5, we have the following characterization of ARs
and ANRs of dimension < n:

Corollary 6.12.6. Let X be a metrizable space with dim X < n.

(1) X isan AR ifand only if X is C" and LC" (i.e., X isan AE(n + 1)).
(2) X isan ANR ifand only if X is LC" (i.e., X is an ANE(n + 1)). O

Theorem 6.12.7. Let f : X — Y be a map from a paracompact space X with
dimX < ntoan LC"! paracompact (resp. an LC" metrizable) space Y and let
U be an open cover of Y. Then, each open cover V of X has an open refinement VV
withord W < n+1 (i.e.,, dim NOW) < n) and a full U-realizationy : |INOW)| — Y
such that Yo is U-close (resp. U-homotopic) to f for any canonical map ¢ : X —
INOV)I.

Proof. By Lemma 6.12.2 and the paracompactness of ¥, we can take the following
open refinements of U € cov(Y):

* * /
U>u1;u0>u.

By Theorem 5.2.4, £ ~!(U4’) and V have a common open refinement W € cov(X)
with ord W < n + 1 (i.e., dim N(W) < n). For simplicity, we denote K = N(WV).
Foreach W € W = K©, choosing Uy € U’ so that f(W) C Uy and taking a
point ¥o(W) € Uy, we have a partial Uy-realization ¥ : K O _ Y of K, which
extends to a full U;-realization ¢ : |K| — Y of K. It is easy to prove that ¢ is
U-close to f for any canonical map ¢ : X — |[N(W)|.

If Y is a metrizable ANE(n + 1), we can take d € Metr(Y) so that {B,(x,1) |
x €Y} <UDby2.7.7(1). Foreachi € N, take U;, V; € cov(Y) such that

Vigl < U <V < B ={By(x.27) |x eV,
LH

By the above argument, we can obtain W; € cov(X) and a full I;-realization ; :
|K;| = Y of the nerve K; of W; such that W) < V, W11 < Wi,ordW, <n + 1,
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and v, ¢; is V;-close to f, where ¢; : X — |K;| is any canonical map for W;. Since
Wi+1 < W, there is a simplicial map k; : K;41 — K; such that k;¢; 4+ is also a
canonical map for W; (cf. Sect.4.9). Then, ¥;k; ¢; +1 is also V;-close to f. Since ¢;
and k; ¢; 41 are contiguous, we can define amap ¢ : X x I — |Zy,| by

* Vi (pi1(x),2t = 1) if 1
@ (x,1) =

(1 =20)@i (x) + 2tkigi41(x) ifO<t <3,
where G, : |K;| @ |Ki+1 x I| — Zj, is the natural simplicial map from the product
simplicial complex K;4+1 x I of K;4; and I = {I,0, 1} to the simplicial mapping
cylinder Zy, of k; (cf. Sect.4.12). Since y;k; is a full U;-realization of K, and
Yi41 is a full U, 4 -realization of K; 1, it follows that ¥; and ;4 induce a partial
V,-realization of Zj,. Since dim Z;;, < n + 1, we have a full B;-realization wi* :
|Zi,| = Y such that || K;| = ¥; and ¥*||K; 41| = ¥;41. Observe that

Y or({x} x 1) C se (Wi (x). By,

hence diam y/*¢* ({x} x I) < 27 for each x € X. Then, we can define a homotopy
h:X xI—Y asfollows:

ho = f and h(x,t) = ¥} @*(x,2—2t) for2™ <1 <27FL

Since diam A({x} x I) < 1 foreach x € X, we have f >~y h; = ¥ 1¢1. O

Remark 18. In Theorem 6.12.7, VW can be taken as in Corollary 6.6.3, so as to
be locally finite and o-discrete in X (cf. Theorem 5.2.4). When X is separable, a
star-finite countable open refinement WV can be taken, hence |N(W)] is separable
and locally compact (cf. Corollary 5.2.5). If X is compact then W is finite, hence
[N(W)| is compact.

The following is easily seen by the same argument as in the above proof:
Proposition 6.12.8. LetU,V, W € cov(Y) such that

Wiy < U
L+l

Let P be a polyhedron with dim P < n and Q be a subpolyhedron of P. If two
maps f,g: P — Y are W-close and f|Q = g|Q, then f >~y g rel. Q.

Proof. Given maps f, g : P — Y that are W-close and f|Q = g|Q, we define a
map
(O xDU(Px{0,1}) >Y

by h'(x,0) = f(x) and 4'(x,1) = g(x) foreachx € P and h'|Q x I = fpr,.
Let K be a triangulation of P such that Q is triangulated by a subcomplex of K and
K < f7'OV) A g7'(W). Give an order on K© so that K is an ordered simplicial
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complex. Then, the product simplicial complex K X [ is a triangulation of P x I,
where I = {I, 0, 1} is the ordered simplicial complex with |/| = I. Moreover,

(K x; 1)© c (0 xI)U (P x {0, 1}).

Since /' is a partial V-realization of K x; I, it extends to a full U-realization & :
P xI — Y of K x; I. Then, h is a l{-homotopy realizing f ~;; g rel. Q. Thus,
the proof is complete. O

An open refinement V of U € cov(Y) is called an h"-refinement of I/ if any
two V-close maps f, g : X — Y defined on an arbitrary metrizable space X with
dim X < n are /-homotopic, where we denote

V<U o U>V.
i n

Theorem 6.12.9. A metrizable space Y is LC" (i.e., an ANE(n + 1)) if and only if
every open cover of Y has an h" -refinement.

Proof. To prove the “if” part, it suffices to show that Y is LC" by Theorem 6.12.3.
For each y € Y and each open neighborhood U of y in Y, the open cover U =
{U,Y \ {y}} of Y has an h"-refinement V. Let V € V such that y € V. Then,
V C U.Foreachi < n,everymap f : S" — V is V-close to the constant map c,
with ¢, (S') = {y}, hence f =~ c¢,, which means f =~ ¢, in U. Therefore, ¥ is
LC".

Now, we will show the “only if” part. Each U/ € cov(Y') has the following open
refinements:

Uu=u ;uouil Vo = sV = V.

Let X be a metrizable space with dimX < n and f,g : X — Y be maps that
are V-close. By Theorem 6.12.7, X has open covers W, and full V-realizations
v INOW)| — Y,i = 1,2, such that dim NW;) < n, Y191 >~y f, and
Y@y >~y g for any canonical maps ¢; : X — |N(W;)|. Take a common refinement
W € cov(X) of Wy and W, with dim N(W) < nandletgp : X — [N(W)| be a
canonical map. We have refining simplicial maps k; : NOW) — NOW,),i = 1,2,
ie, W Ck;(W) foreach W € W = NOWV)©. Then, k; ¢ is also a canonical map
for N(W;) (Corollary 4.9.3).

INOWV)|
k1 Y1
/ o1 T \
¢ !
INOWV)| X Y

Sl

INOW)|
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For each principal simplex 0 € N(W), take x € [\ c,0 W. Since ¢ is a
canonical map, it follows that ¢(x) € o. On the other hand, we have V' € V such
that f(x),g(x) € V. Then, ¥1kip(x), Y2k0(x) € st(V,V). Since y; is a full
V-realization of N(W;), ¥ k; is a full V-realization of N (W), so it follows that

1k1(0) U ¥nky(o) C Stz(V, V) e st?V < Vo.

Thus, Y1k, and vk, induce a partial Vj-realization of the product simplicial
complex N(W) x, I, where we regard N(V) as an ordered complex by giving
an order on W = N(W)©. Then, we have a full I,-realization

Vi INOW) x I = [NOV)[ xT - Y,
which is a U;-homotopy with Yo = k| and Y1 = vY2k,. Thus, we have

I v Uik >y Ynkap >y g.

Therefore, f >~y g. O

Remark 19. The above proof is valid even if X is paracompact, but we need the
metrizability of Y (cf. Theorem 6.12.7).

A subset Z in a space Y is said to be n-homotopy dense provided that, for each
map f : X — Y from an arbitrary metrizable space X with dim X < n, there exists
ahomotopy / : X xI — Y suchthat by = f and A(X x (0, 1]) C Z. The following
two theorems are the ANE(#n) versions of Corollary 6.6.7:

Theorem 6.12.10. Every n-homotopy dense set Z in an ANE(n) Y is also an
ANEn). If Y is an AE(n) then so is Z.

Proof. Let A be a closed set in a metrizable space X with dim X < n. Each map
f:A— Zextendstoamap g : U — Y, where U is a neighborhood U of 4 in
X. Since dim U < n, there exists a homotopy & : U x I — Y such that iy = g and
h(A x (0,1]) C Z. Take d € Metr(X) such that diam, (X) < 1 and define a map
f:U—> Zby f(x) = h(x,d(x, A)). Then, f is an extension of f. Thus, Z is
an ANE(n). When Y is an AE(n), we can take U = X in the above, hence Z is an
AE(n). O

Theorem 6.12.11. If a metrizable space Y contains an (n — 1)-homotopy dense
set Z that is an ANE(n + 1), then Y is an ANE(n). If Z is an (n — 1)-connected
ANE(n + 1), then Y is an AE(n).

Proof. We will verify condition (d) of Theorem 6.12.3. Let A be a closed set in
a metrizable space X with dimA < n — 1. Foreach map f : A — Y, there is
a homotopy & : A x I — Y such that hy = f and h(A x (0,1]) C Z. Since
dim A x (0,1] <n and 4 x (0, 1] is closed in X x (0, 1], the restriction 2|4 x (0, 1]
extends over a neighborhood W of A x (0, 1] in X x (0, 1]. Due to Lemma 6.5.1,
this implies that f* extends over a neighborhood of A in X.
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Since Z is (n — 1)-homotopy dense in Y, every map g : "' — Y is homotopic
toamap g’ : 8! — Z. When Z is (n — 1)-connected, since g’ is null-homotopic
in Z, g is null-homotopicin Y, hence Y is also (n — 1)-connected. Since an (n — 1)-
connected ANE(n) is AE(n) by Theorem 6.12.5, we have the additional statement.

O

6.13 Embeddings into Finite-Dimensional ARs

Since a normed linear space is an AR by Theorems 6.1.1 and 6.2.5, the Arens—Eells
Embedding Theorem 6.2.1 means that every metrizable space can be embedded
in an AR as a closed set. In this section, we consider the finite-dimensional
version of this fact. Here, we need more theorems from Dimension Theory, e.g.,
Theorems 5.3.4, 5.3.2, Corollary 5.2.6, etc.

The n-dimensional Menger compactum w" and the n-dimensional Nobeling
space v" are AE(n)s by Theorems 6.11.2 and 6.12.5. Then, Theorems 5.10.3
and 5.10.8 imply that every compact metrizable space with dim < n can be
embedded in an n-dimensional separable metrizable AE(n) as a closed set.'?

First, we prove the following theorem:

Theorem 6.13.1. Every n-dimensional metrizable space X can be embedded as a
closed set in an (n+1)-dimensional AR T (X ) of the same weight. If X is completely
metrizable, compact, separable, or separable locally compact, then so is T(X),
respectively.

Proof. When X is finite, X can be embedded in the interval I. Then, we may assume
that X is infinite. By Theorem 5.3.4, we may also assume that X is a dense subspace
of a complete metric space X with dim X = n, where X = X if X is completely
metrizable. By Corollary 5.2.6, X is homeomorphic to the inverse limit 1(in Kof an
inverse sequence K = (| K;|n, fi)ien of metric polyhedra and PL maps such that
card K; < w(X),dim K; < n, and each f; : K;1; — Sd KiNis simplicial. Note that
dim K; = n for sufficiently large i € N. Otherwise, dim X = diml(iilK < n by
Theorem 5.3.2. We identify X = limK.

To consider the simplicial mapping cylinder Z s of each simplicial map f; :
Ki+1 — SdK;, we regard K;4; as an ordered simplicial complex. Let 77 = 0 *
Sd K be the simplicial cone over Sd K;. Moreover, we may assume that [Z ;| N
|Zs| =0 for|i — j|>1land |T\|N|Zy| =0 fori > 1. We define

107p fact, every separable completely metrizable space with dim < n can be embedded in v” as a
closed set (cf. Remark 15 on Theorem 5.10.3).
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0 1
T T T |

Fig. 6.21 The space T(’)\(/)

k—1
Te =Ty U| JSdsax, Zj; fork > 1and
i=1

T=JT =1l JSdsax, Zy.
ieN ieN

where Sdsqk; Z f, is the barycentric subdivision of Z f relative to the subcomplex
SdK; C Zy. Observe that T is a simplicial complex with card 7© < ®ow(X) and
T, C T, C --- are subcomplexes of 7', where dim7 = n + 1 because dim7; =
n + 1 for sufficiently large i € N (Fig.6.21). It should be noted that |,y Z f;, in
general, is not a simplicial complex.

With respect to XN |T| = 0, we define y; : |T| U X > |T;|,i € N, as follows:

b if x € |T;],
vi(x) = ¢z --Cp(x) ifxelZyl j =i,
pi(x) ifx € X,

where ¢ : Z; — Sd K; is the simplicial collapsing map and p; : X = th —
| Ki|m is the projection. Note that y;y; = y; fori < j.Let T(X) be the space |T|U
X with the coarsest topology such that every y; : |T| U X > |T; | is continuous,
that is, the topology generated by sets y;”! (U), where i € Nand U is open in |7} |m.
It should be noted that if U C |T;| \ [K;| then y'(U) =U, _which implies that
|7; |m is a subspace of T(X) and |T | is an open subspace of T(X) Evidently, | T |
is dense in T'(X).

For each x € X, {y7'(st(pi(x),K;)) | i € N} is a neighborhood basis at
X in T(X) where st(p;(x), K;) = |St(ck,(pi(x)), K;)|. Indeed, the open star
Ot 4, (pi+1(x)) is open in |7} 4|m and

Vi Vi (014, (Pi+1(x))) C i (Ot (pi41(x)))
C cr(st(pit1(x), Zy)) Cst(pi(x),Sd K;) C st(pi(x), Ki).
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hence x € )/i__:l(OT,.Jrl (pi+1(x))) C y7'(st(pi(x), K;)), which means that
¥ L(st(pi(x), K;)) is a neighborhood of x in T()? ). Moreover, if U is an open set
in |T;|m and x € ;7 1(U), then U N | K;| is an open neighborhood of p; (x) = y;(x)
in |K;|m. By Remark 16 at the end of Sect. 4.10,

k
n
mesh, .. fi itk (Kiti) < meshy, fiivk—1(Sd Kiqpr—1) <2- (n m 1) ,

where fiitk = fi-  fixk—1 : |Kixx| = |K;|."" Then, we can choose k € N so
that f; ; 4k (st(pi+k(x), Ki+x)) C U, hence

Vit (SUPi4k (X), Kigr)) C v Sk SUPi4x(X), Ki4x))) C v ' (U).

Letc; : |Tiv1lm = |T;| U |Zf| — |Ti|m be the strong deformation retraction
extending the collapsing ¢ 7. Then, we have the following commutative diagram:

c1 &) 3
ITt|m |T2|m T3l <—— -+
C C C
U U U
|K1|m |K2|m |K3|m <=—— -
N fa 5

We regard X as the inverse limit of the lower sequence. The space T(} ) can be
regarded as the inverse limit of the upper sequence with y; : T(Y) — |Ti|m the
projection (cf. Theorem 4.10.6).

As already noted, |T'|, is an open dense subspace of T(Y), hence X is a closed
subspace of T(}) and w(T(})) = w(|T|m) = w(X). Due to Theorem 4.5.9, each
|T; |m is completely metrizable because 7; is finite-dimensional. Therefore, T(} ) is
also completely metrizable by Proposition 4.10.9(2). Since dim |7; |, = dim 7; for
eachi € N (Corollary 5.2.10), we have dim T(}) = n + 1 by Theorem 5.3.2 (or
the Countable Sum Theorem 5.4.1).

Foreachi € N, let Z; = {¢; (o) | o € Sd K;}. Then,

Vi = CiVit1 Xz Viq1 rel. |T;]

by the homotopy ' extending 1/ (y; 41 x id1)|(T(§) \ |T;]) x L. For each x € X
andk <i, _
W (v Ok, (pr(x))) x D) €y U(pr (%), Ki)).

""In general, f;; 1, = f; fi+1 is not simplicial with respect to K;1, and Sd K; because f;(f) is
not necessarily the barycenter of the simplex f;(r) € SdK; fort € K, 4.
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Indeed, for each y € )/k_l(OKk (pr(x))), choose o € Sd K; so that k' ({y} x I) C
¢;Y(0) C y7'(0). Then, hi(y) = yi(y) € ¢;'(0) N |K;| = 0. Choose a simplex
T € Ki so that yx(0) C 7. Since yxh{(y) € T and

yeho(¥) = vevi(v) = v (y) € Ok (pr(x)),
it follows that py(x) € 7, i.e., T C st(px(x), Ki). Thus, we have

yeh' (v} x D) C yry ' (0) C ya(0) C T C st(pr(x), K).

Connecting homotopies A’, i € N, we can define a homotopy 7 : T(f )xI —
T(X) such that hy = id, hy—+1 = y; foreachi € N, and h(T(X) x (0,1]) C |T]|.
The continuity of / at a point (x,0) € X x {0} follows from the fact that each
)/k_l (Ok, (pk(x))) is an open neighborhood of x in T(}) and

J# 0 (Ok (e (x0))) x D) C i (st(pie (x). Kio)).

i>k

Hence, |T'|n is homotopy dense in T(X), which implies T(X) is an ANR
(Corollary 6.6.7). Since hl(T(Y)) = |0 * Sd K| is contractible, so is T(X), hence
T(X) is an AR (Corollary 6.2.9).

Except for the case where X is separable and locally compact, the desired space
T (X) is defined as the subspace T(X) = |T| U X of T(}). Indeed, X is closed in
T(X), w(T(X)) = w(X), and dim7(X) = n + 1. In the above, /(T (X) xI) C
T(X),so T(X) is an AR for the same reason as T(}).

When X is completely metrizable, since X=X, T(X)= T(f) is completely
metrizable. When X is compact, since each K; is finite due to Corollary 5.2.6, each
|T;|m is compact, hence so is T(X) = T(f) by Proposition 4.10.9(1). If X is
separable then so is f, hence each K; is countable due to Corollary 5.2.6, which
implies that 7 is also countable, so 7'(X) is separable. If X is separable and locally
compact, the above T (X) is not locally compact at 0 € K(go) unless K is finite.
Thus, some modification is necessary for the additional statement to be valid.

(The case that X is separable and locally compact) In the above construction,
each K; is countable and locally finite and each f; is proper by Proposition 5.2.6.
If K, is disconnected, let Ly, L;, ...be the components of K; and take vertices
V| € L§0), vy € Léo), .... Adding new 1-simplexes (v, v2), (v, v3),...to K, we can
assume that K is connected. Moreover, instead of Ky = {0} and 7} = 0%Sd K, let
Ko =wU{[i —1,i] | i € N} be the natural triangulation of Ry = [0, 00) and T} =
Z 1, the simplicial mapping cylinder for a proper simplicial map f; : Sd K1 — K.
Then, T would be countable and locally finite, hence 7' (X) would be separable and
locally compact.

Now, we will construct a proper simplicial map fy : Sd K; — K. For each
i €N, let

Vi={veSdK” | (v,u) € SAK, forsomeu € V;_y},
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where Vo = {v}, vo € SAK”. Then, (Sd K1) = |J,., Vi because Sd K, is
connected. We can define a simplicial map fj : Sd K; — K by

fo(v) =min{i € w | v e V;} foreachv e (SdK)©.

Since Sd K is locally finite, each V; is finite, hence the map fy : |Ki|m =
[SdKi|lm — |Kolm = R4 is proper. Thus, each |Ti|n is locally compact
and each ¢; is also proper. Therefore, 7(X) = T(X) is locally compact by
Proposition 4.10.9(3). Since |Ky|m = R4+ is a deformation retract of 7'(X), it
follows that 7'(X) is contractible, hence 7'(X) is an AR. O

In Theorem 6.13.1 above, we cannot take dim 7(X) = dim X = n, that is, an n-
dimensional metrizable space cannot, in general, be embedded in an n-dimensional
AR (nor an n-dimensional ANR). Neither the n-dimensional universal Nobeling
space V" nor the n-dimensional universal Menger compactum " can be embedded
in any n-dimensional ANR. Otherwise, they would be retracts of an n-dimensional
ANR because they are n-dimensional AE(n)s by Theorems 6.11.2 and 6.12.5. But
this is impossible because they are not ANRs by Theorem 6.11.2 (cf. 6.2.10(2)).

It should be noted that every separable n-dimensional metrizable space can be
embedded into v" and ", which are n-dimensional AE(n)s by Theorems 5.10.3
and 5.10.8. Without separability, we can obtain the same embedding theorem:

Theorem 6.13.2. Every n-dimensional metrizable space X can be embedded in an
n-dimensional metrizable AE(n) S(X) with w(S(X)) = w(X) as a closed set. If X
is completely metrizable, compact, separable, or separable locally compact, then so
is S(X), respectively.

To prove this theorem, we employ the following lemmas:

Lemma 6.13.3. Let f : K — L be a simplicial map between simplicial complexes
and X be a metrizable space with dim X < n — 1. Then, for each map g : X —
|Z(;L)|m, g ~z Crg = fgrel. g \(|L|), where ¢y : Z; — L is a simplicial
coilapsing and Z = {5;1(0) | o e L}

Proof. Let f' = f|K®=D . K= — (" Then, observe
Z@ Yz, cz™ and |Z4|\ K| = |Z7)\ K]
! 4 ! f s '

By Theorem 5.2.9, we have amap g’ : X — |Z£f_l)|m such that g’(x), g(x) € oy,

where 0, = cz,(g(x)) € Z;") is the carrier of g(x). Taking an Urysohn map
k:X — Iwithk(g7'(JL])) = 0and k(g ' (|K|)) = 1, we can define a homotopy
h: X xI— |Zy’)|m as follows:

h(x,t) = (1 —k(x)t)g(x) + k(x)tg'(x) foreach (x,1) € X x L.
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Then, ho = g, h:|g"'(IL|) = glg~'(|L|) for each ¢ € L and h|(X) C |Z|.
Hence, we have

gxh ~cph =crh ~crg rel. g (L)),

where these homotopies are given by #,, ﬁtf /hl, and ¢ shi—, respectively. For each
xe X\ g (LD,

h({x} xI) C oy, crh({x} xI) Ccr(oy) and
R ((hy(x)} x T) € &7 (1 (04).

This completes the proof. O

Lemma 6.13.4. Let O« K be the simplicial cone over a simplicial complex K. Then,
the n-skeleton (0 x K)™ is (n — 1)-connected.

Proof. Regarding 0 x K as the simplicial mapping cylinder of the constant map of
K, we can apply Lemma 6.13.3 to show that every map g : 8"~! — (0 x K)™ is
homotopic to the map of K to {0}, hence g ~ 0. O

Proof of Theorem 6.13.2. Modifying the proof of Theorem 6.13.1, we will construct
S(X) as a closed subspace of 7(X). Let S| = T(") (0% Sd K;)™,

k—1
Sk =810 JSdsak, 2§ ¢ 1" fork > 1and
i=1

S=Js=8sulsdsax, 2} cT™.
ieN ieN

Since Z(f:') = Zf ‘K(n n U K41, it follows that

SdeK, Z = SdeK, Z K(n 1) USdK,_H,

Jil

which is not equal to (Sdsqk, Z ;)™ if dim K;4; = n. Restricting the strong
deformation retraction ¢x : |Titilm — |Tk|m, wWe have the retraction c;
[Sk+1lm — [Sk|m, which is no longer a strong deformation retraction.

Let S (X )= |S|U X be the n-dimensional closed subspace of T(X ), which is
regarded as the inverse limit of the middle sequence in the following commutative
diagram:
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c1 &) c3
|Tl|m |T2|m |T3|m <
C C C
@] @] @]
< A <
[S1]m |S2]m |S3]m <—— -
C C C
@] @] @]
|K1|m |K2|m |K3|m = -
A f f3

Then, the projection y; : S (35 ) — |Si|m is the restriction of the projection y; :
T(X) — |Ti|m, where we no longer have that y/ = c/y/ >~ y/, rel. |S;].

The space S(X) is the closed subspace |S|UX = S(y) NT(X)of T(X), hence,
if X is completely metrizable, compact or separable, then so is S(X), respectively.
When X is separable and locally compact, in the same way as 7' (X ), we can modify
S(X) to be separable and locally compact.

We will now apply Theorem 6.12.11 to prove that S(X) is an AE(n). Since
S(X)\ X = |S|n is an ANE as a polyhedron with the metric topology, it suffices
to show that |S|y is (n — 1)-homotopy dense in S(X) and (n — 1)-connected.

(The (n — 1)-homotopy denseness) Let g : Z — S(X) be a map of a metrizable
space Z withdimZ < n—1.Foreachi € N,let Z; = {¢/"'(0) | 0 € Sd K;}. Due
to Lemma 6.13.3, we have

vig = cjvi18 ~z v rel. g7 (ISi])

by a Z;-homotopy &' : Z x I — |Si41|lm C S(X). Connecting these homotopies,
we can define a homotopy & : Z x I — S(X) such that hy = g, hy—i+1 = y/g
for each i € N and h(Z x (0,1]) C |S|. The continuity of / at a point (z,0) €
g 1(X) x {0} C Z x Iis guaranteed by the following fact:

h (g™ v Ok (Prg(2) x D) C i~ (sUpr(g(2)). Ki))
foreachz € g7'(X)and k <.

This can be verified in a manner analogous to Theorem 6.13.1. Therefore, |S |y, is
(n — 1)-homotopy dense in S(X).

(The (n — 1)-connectedness) In the above, let Z = S"~!. Then, every map g :
§"~! — S§(X) is homotopic to a map g’ : S"! — |Si|. Since S; = Tl(") =
(0 % Sd K;)™ is (n — 1)-connected by Lemma 6.13.4, we have g ~ g’ ~ 0. This
completes the proof. O
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Notes for Chap. 6

For supplementary results and examples, refer to the following classical books of Borsuk and Hu.
One can find interesting examples in Borsuk’s book, Chap. VI. In Hu’s book, ANEs are discussed
not only for the class of metrizable spaces but also for a more general class.

* K. Borsuk, Theory of Retracts, Monog. Mat. 44 (Polish Sci. Publ., Warsaw, 1966).
* S.-T. Hu, Theory of Retracts (Wayne State Univ. Press, Detroit, 1965).

The theory has developed considerably since the publication of these books. Many important
results have been gained and many problems have been solved. Some of them have been treated
in this chapter while others have not. Many interesting examples can be seen in numerous existing
articles. Especially, in 1994, Cauty constructed a metric linear space that is not an AR. This very
important result will be proved in Sect. 7.12. For history of ANR theory (theory of retracts), refer
to the article of Madesic [28].

Theorem 6.1.1 was established in [12]. The remark on 6.1.1 is taken from Michael [29].
Theorem 6.1.9(6) is due to Hanner [17].

Theorem 6.2.1 was established in [3], but the short proof presented here is due to Torunczyk
[35]. For another short proof, see [30]. Theorem 6.2.2 was the trick used in [23]. Theorem 6.2.3
was established in [18] and the proof presented here is due to Toruriczyk [35]. The first assertion
of Theorem 6.2.4 was established in [10].

Theorem 6.3.2 was established in [13] and Theorem 6.3.4 was proved independently in [13] and
[21]. For conditions that LEC spaces are ANRs, refer to [9]. The notion of ULC was introduced
in [2], but we use the word “unified” instead of “uniformly.” The example for Theorem 6.3.8 was
constructed in [5] as a locally contractible compactum that is not an ANR, and it was shown in
[13] that this is not LEC.

The first version of Theorem 6.4.1 is due to Borsuk [4].

Lemma 6.5.1 is proved by Dowker [11] in a more general setting (X is countably paracompact
normal and A is a closed Gs). Theorem 6.5.2 was established in [26] and Theorem 6.5.3 was
essentially proved in successive stages by [37], and [17].

Theorems 6.6.1 and 6.6.2 are due to Lefschetz [27] and Hanner [17], respectively. The present
proof of the implication (c) = (a) in Theorem 6.6.2 follows Dowker’s idea [11]. Theorem 6.7.5
was established in [25] (cf. [14]). The compact case of Theorem 6.7.8 can be obtained as a corollary
of the result in [8].

Theorem 6.8.1 was established by Nguyen To Nhu [32] and the proof presented here is due to
Sakai [33]. The concept of a uniform retract (or a uniform retraction) was introduced by Michael
[31]; it is called a regular retract (or retraction) in [36]. Theorem 6.8.11 was proved by Michael
[31] and Torunczyk [36], independently. For characterizations of (finite-dimensional) uniform ARs
and ANRs, refer to [31].

Theorem 6.9.1 was conjectured by Geoghegan [15] and proved by Cauty [7]. The proof
presented here is due to Sakai [34].

The result of Sect. 6.10 was first proved in [19] for o-compact spaces and then generalized in
[16]. The property C was named in [20]. The definition of Sect. 6.10 is due to [1].

Theorem 6.13.1 was proved in [6]. The proof presented here is due to
Kodama [24]. Theorem 6.13.2 was implicitly proved in [22].
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Chapter 7
Cell-Like Maps and Related Topics

A compact set A # @ in X is said to be cell-like in X if A is contractible in every
neighborhood of A in X. A compactum X is cell-like if X is cell-like in some
metrizable space that contains X as a subspace. It will be seen that X is cell-like
in every ANR that contains X as a subspace (Theorem 7.1.2). A cell-like (CE)
map is a perfect (surjective) map f : X — Y such that each fiber f~!(y) is cell-
like. The concept of cell-like maps is very important in Geometric Topology. It has
been mainly developed in Shape Theory and Decomposition Theory. For infinite-
dimensional manifolds (in particular Hilbert cube manifolds), this concept is one of
the main tools.

In the first six sections of this chapter, we will discuss several fundamental
properties of cell-like maps and related concepts. The remainder of the chapter will
be devoted to some associated topics. In Sect.7.10, we will construct an infinite
dimensional compactum with finite cohomological dimension, which implies that
there exists a cell-like map of a finite-dimensional compactum onto an infinite-
dimensional compactum. In Sect. 7.12, we will use this example to construct a linear
metric space that is not an AR.

This chapter is based on results in Chaps.2-6. In Sect.7.7 and 7.10, we will use some
results from Algebraic Topology without proofs. Thus, these sections are not self-contained.
Moreover, the construction of Sect.7.12 requires an open cell-like map of a finite-
dimensional compactum onto an infinite-dimensional compactum. Using Walsh’s result on
open maps, the cell-like map in Sect. 7.10 can be remade to be open. However, we will not
give the proof of Walsh’s result because it is beyond the scope of this book.

7.1 Trivial Shape and Related Properties

In this section, we introduce some properties related to cell-like compacta. First,
note that every contractible compactum is cell-like but that the converse is not true.
The sin(1/x)-curve

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, 421
DOI 10.1007/978-4-431-54397-8_7, © Springer Japan 2013
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1
{O}x[—I,I]U{(x,y)eR2 y=sin—, 0<x <1
X

is a typical example of a non-contractible cell-like compactum. The cell-likeness of
this compactum comes from the following:

Proposition 7.1.1. Let X| D X, D --- be a nested sequence of contractible non-
empty compacta. Then, X = (\;en Xi is cell-like.

Proof. Every neighborhood U of X in X, contains some X;. Since X; is con-
tractible, X is contractible in U. O

It is said that a non-empty closed set A in X has Property UV ™* in X (simply A
is UV™* in X) if each neighborhood U of 4 in X contains a neighborhood V' of A
that is contractible in U. A metrizable space X is said to be UV* if X is UV ™ in
some ANR that contains X as a closed subspace.! Itis said that X has trivial shape
if any map from X to an arbitrary ANR is null-homotopic; equivalently, any map
from X to an arbitrary polyhedron is null-homotopic (Corollary 6.6.5).

Theorem 7.1.2. For a metrizable space X (# 9), the following are equivalent:

(a) X has trivial shape;

(b) X is contractible in every ANR that contains X as a closed set;

(c) X is contractible in every neighborhood in some metrizable space that contains
X as a closed set;

(d) X is UV™ in any ANR that contains X as a closed set;

(&) XisUV™;

() X is UV™ in some metrizable space that contains X as a closed set.
In particular, a compactum is cell-like if and only if it has trivial shape.

Proof. Consider the following diagram of implications. Every implication is trivial
except for the two marked with asterisks.

@) —— () ——

| /e, 1

(b) == (d) == (¢)
* 6.2.1)

(c) = (a): Assume that X is closed in a metrizable space M and X is contractible
in every neighborhood in M. For any ANR Y, every map f : X — Y extends over
an open neighborhood U of X in M. Let f : U — Y be an extension of f. There
exists a contraction 2 : X x I — U. Then, f h: X xI — Y is a homotopy such
that fho = f and fh; is constant.

'In other literature, Property UV * is called Property UV *°.
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(b) = (d): Let Y be an ANR containing X as a closed subspace. For each open
neighborhood U of X in Y, we have a contraction & : X x I — U by (b). Since U
is an ANR, we have a neighborhood V' of X in U and a homotopy /2 : V x I — U
such that iy = id and h; is a constant map. Thus, X isUV* in Y. O

Due to Theorem 7.1.2, a U V* compactum is equal to a cell-like compactum. The
term “cell-like” is used only for compacta but “U V' *” is used without compactness.

Note. When X is a compactum, the term “metrizable” in condition (c) can be replaced by
the term “normal.” Indeed, assume that X is contractible in every neighborhood in some
normal space Y that contains X. We can regard X as a closed subspace of the Hilbert cube
Q = [—1,1]N. Then, it suffices to show that X is contractible in every neighborhood U in
0. By the coordinate-wise application of the Tietze Extension Theorem 2.2.2, we have a
map f : Y — Q with f|X = id. Because f~!(U) is a neighborhood of X in Y, we have
a contraction 2 : X X I — f~1(U). Hence, fh : X X I — U is a contraction, that is, X
is contractible in U.

Letn € w. A closed set A C X has Property UV” in X (or simply Ais UV"
in X)) if each neighborhood U of A in X contains a neighborhood V' of A such that,
foreach0 <i < n,everymap f : S’ — V is null-homotopic in U. We say that A
has Property UV in X (or Ais UV in X) ifitis UV" in X forevery n € N.
A metrizable space X is said to be UV" (resp. UV ) if X is UV" (resp. UV *°) in
some ANR that contains X as a closed subspace.”

Proposition 7.1.3. A metrizable space X is UV" (resp. UV ®>°) if and only if X is
UV" (resp. UV ) in every ANR that contains X as a closed subspace.

Proof. Since the UV *° case follows from the U V" case and the “if” part is trivial,
it suffices to show the “only if” part of the U V" case.

Let Y and Y, be ANRs containing X as a closed subspace. Then, we have maps
¢ : W) — Yand ¥ : W, — Y such that | X = | X = id. Assume that X is
U V" in Y. For each open neighborhood U of X in Y, ¢! (U) is a neighborhood
of X in Y;, which contains a neighborhood V' of X such that for each 0 < i < n,
every map g : S — V' is null-homotopic in ¢! (U). Because U is an ANR, there
isald € cov(U) that is an #i-refinement of {U } (Corollary 6.3.5). We can easily find
a neighborhood V' of X in U such that ¢ v/|V is U-close to id and V C v~ (V).
Then, for each map f : S — V, the map ¥f : S — V' is null-homotopic in
¢~ '(U), hence

f=yIV)f =¢yf ~0inlU.

Therefore, X is U V" in Y,. Thus, we have the “only if” part. O

Note that X is UV" in X itself if and only if X is n-connected. Then, we have
the following:

Corollary 7.1.4. An ANR is UV™" if and only if it is n-connected. Consequently, a
UV ANR is the same as an AR. O

20ur Property UV *° is weaker than in most other literature (cf. the previous footnote 1).
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We show that Property U V° characterizes connectedness.
Proposition 7.1.5. A metrizable space X is UV if and only if X is connected.

Proof. Regard X as a closed set in a normed linear space Y (Theorem 6.2.1).
It is easy to show that if X is not connected then X is not U V%in Y, that is, the
“only if”” part holds. Each neighborhood U of X in Y has a cover BB consisting
of open balls. If X is connected, then, for each two B, B’ € B[X], there are
By, Bi,...,B, € Bsuchthat By = B, = B, and each B; meets B;_;, which
implies that st(X, B3) is path-connected. Thus, we have the “if” part. O

According to Theorem 7.1.2, Property U V'* characterizes the trivial shape. For
a finite-dimensional space, we have the following:

Theorem 7.1.6. An n-dimensional metrizable space X has trivial shape if and only
if X is UV". Consequently, an n-dimensional compactum is cell-like if and only if

itisuv”.

Proof. Since the “only if” part is trivial, it suffices to show the “if” part. Assuming
that X is UV" in an ANR Y, we will show that X is contractible in each open
neighborhood U of X in Y. Choose open neighborhoods U = V41 D --- DV D
Vo of X in Y so that every map f : St — Vis null-homotopic in V; 4. Since 1} is
an ANR and dim X = n, we can apply Theorem 6.12.7 and Corollary 6.3.5 to obtain
a simplicial complex L withdim L < nandmaps f : X — |L|, g : |L| — V, such
that gf ~ idy in V{. Let K = vg * L be the simplicial cone over L with v, the cone
vertex. Then, dim K <n + 1. Foreach0 <i <n + 1, we denote K; = K U L.
Note that Ky = {vo} U L. Taking any point hy(vo) € Vp, we can extend g to a
map hy : |Ko| — Vp. Suppose that g extends to a map h; : |K;| — V;. For each
(i + 1)-simplex T € K \ L, h;|0t : 9t — V; extendstoamap h, : T — V4. We
define a map h; 41 : |Ki+1| = Vis1 by hi+1|t = h,, which is an extension of g.
By induction, we have amap & = h,4 : |K| = V,41 C U such that h||L| = g.
Thus, g >~ 0in U, henceidy ~ gf ~ 0in U, that is, X is contractible in U. By
virtue of Theorem 7.1.2, X has trivial shape. O

Due to Corollary 4.10.11, every compactum X is the inverse limit of an inverse
sequence (X;, f;) of compact polyhedra and PL maps. The following lemma is
useful when treating the inverse limits:

Lemma 7.1.7. Let X be the inverse limit of an inverse sequence (X;, fi)ien of
compacta with projections p; : X — X;, i € N, and let P be a space with the
homotopy type of a simplicial complex.

(1) For everymap g : X — P, there exist some iy € N and maps g; : X; — P,
i > iy, such that g; p; >~ g.

(2) Let g, g’ : Xi, — P be maps. If gpi, =~ g’ pi,» then there is some jo > io such
that g fi,.; ~ & fi,.j for every j > jo, where fi ; = fi--- fj_i fori < j and
fii =idy,.
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Proof. Since P has the homotopy type of an ANR (Corollary 6.6.5), we may
assume that P is an ANR. Recall X = l(iil(X,-, f) C Iljeny Xi and p; = pr;| X,
i € N (cf.Sect.4.10). Then, f; p;+1 = p;. Foreachi € N, let z; € X; be fixed and
define an embedding ¢; : X; — []; ey Xi by

@i(x) = (fl,i (x),..., fi—l,i (X), X, Zi41, %425 -+ - )
Then, lim; o0 ¢; p; = id. Foreachn € N, let

X} ={x €[lienXi | x(i) = fin(x(n)) foreachi <n}.
Then, (;en X* = X.

(1): Because P is an ANR, g extends to amap g : U — P over an open
neighborhood U of X in [[;cy Xi. Then, X C U for some n € N. For each
i > n,since ¢;(X;) C X C X, we have amap g; = g¢; : X; — P. Since
lim; 00 @; pi = id, we have lim, <; o0 & pi = g. Hence, g; pi >~ g for sufficiently
large i > n.

(2): Extending a homotopy from gp; to g’ p; over the following set

E=XxDU((JeyXi x1{0,1}),

we have amap & : & — P such that i(x,0) = g(x(i)) = gpr;(x) and h(x,1) =
g’ (x(i)) = g'pr;(x) foreach x € [[; ¢y X;. Since P is an ANR, / extends to a map
h:UxI— P,whereU is an open neighborhood of X in [ [,y Xi. Then, Xj"; cU
for some jo > ip. Forevery j > jo, ¢;(X;) xI C Xj* x I C U. Consequently, we

have a homotopy 7’ = /(g; x idi) : X; x I — P.Foreach x € X,

ho(x) = h(g; (x),0) = h(g;(x),0) = gprp; (x) = gfi ; (%),

i.e., hy = gfi ;. Similarly, we have | = g’ f; ;. Therefore, gf; ; ~ g fi ;. O

Remark 1. As we saw in the proof above, in Lemma 7.1.7(1), when P is an
ANR, there exist some n € N and maps g; : X; — P, i > n, such that
lim,<i>o00 &i Pi = &-

The cell-likeness of the inverse limits can be characterized as follows:
Theorem 7.1.8. Let X be the inverse limit of an inverse sequence (X;, fi)ien of
compact ANRs and p; : X — X;, i € N, be the projections. Then, the following are
equivalent:
(a) X is cell-like;
(b) pi ~ 0 foreveryi € N;
(c) Foreachi €N, thereisa j > i suchthat f; ;j ~ 0.

Proof. The implication (b) = (c) follows from Lemma 7.1.7(2). Because p; =
fi.j pj, the implication (c) = (b) is trivial.
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(a) = (b): By Theorem 7.1.2, X has trivial shape. Since every X; is an ANR, the
implication (a) = (b) is trivial.

(b) = (a): Letg : X — P be amap from X to an ANR P. By Lemma 7.1.7(1),
there exist some i € Nandamap g’ : X; — P suchthat g’ p; ~ g. Since p; >~ 0, it
follows that g ~ 0. Thus, X has trivial shape, hence it is cell-like by Theorem 7.1.2.

O

Remark 2. The implications (c) = (b) = (a) hold without the assumption that each
X; is an ANR. This is a generalization of Proposition 7.1.1.

Concerning the U V" properties, we have the following characterization:

Theorem 7.1.9. Let X be the inverse limit of an inverse sequence (X;, fi)ien of
compact ANRs and p; : X — X;, i € N, be the projections. Then, the following are
equivalent:

(@ XisUV";
(b) Foreachi € N, thereisa j > i suchthat f; ja >~ 0 for every map o : sk —
X;,0<k<n

Proof. We can regard X as a closed set in the Hilbert cube Q.

(a) = (b): For each i € N, since X; is an ANR, p; : X — X; extends to a
map p; : U — X; over a neighborhood U of X in Q. Then, U contains an open
neighborhood V' of X such that, foreach 0 <i < n, every map from S’ to V is null-
homotopic in U. Because V is an ANR, applying Lemma 7.1.7(1) to the inclusion
X C V, we can obtain some j’ > i and amap g : X;» — V such that gp;» ~ idy
in V. Since p;gp;s ~ pi|X = pi = fijpj, it follows from Lemma 7.1.7(2)
that p;gfj; ~ fijrfir; = fi,j forsome j > j’. For 0 < k < n and each map
a:S8" — X;,wehave gf;s ja >~ 0in U, hence f; jo ~ p;gfyr jo ~ 0in X;.

(b) = (a): For each open neighborhood U of X in @, applying Lemma 7.1.7(1)
to the inclusion X C U, we can obtain some i € Nand amap g : X; — U such that
gpi ~ idy in U. Then, there is some j > i such that f; ja ~ 0 for every map « :
S" — X;.Because X; isan ANR, p; : X — X; extendstoamap p; : V' — X;
over a neighborhood V' of X in Q. Since gf; ; p;|X = gfi,jp; = gp: ~ idy in
the ANR U, X has a neighborhood V in Q suchthat V C V' and gf; ; p;|V ~idy
inU.For0 < k <nandeachmapa : S — V, wehave o >~ gf; ;pjo >~ 0
inU. O

7.2 Soft Maps and the 0-Dimensional Selection Theorem

Amap f : X — Y is said to be soft (n-soft) provided that, for any metrizable space
Z (withdim Z < n)and any map g : C — X of aclosed set C of Z, if fg extends
toamaph : Z — Y then g extendstoamap g : Z — X with fg = h.
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In the above, if Y is an AE or an ANE (an AE(n) or an ANE(n)) then so is
X. Replacing the pair (Z,C) with a polyhedral pair® (with dim < n), we can
introduce a polyhedrally soft map (a polyhedrally n-soft map). By the following
proposition, every (n-)soft map is polyhedrally (n-)soft.

Proposition 7.2.1. Foramap f : X—Y to be polyhedrally soft (resp. polyhedrally
n-soft), it is necessary and sufficient that, for any map « : S~!' — X, i € N
(resp.i < n), if fa extendstoamap B : B — Y then o extendsto amap @ : B’ —
X with fa = B.

f
X Y
Y &
N
s c B

Consequently, amap f : X — Y is polyhedrally soft if and only if f is polyhedrally
n-soft for every n € w.

To show the sufficiency, let K be a simplicial complex with L a subcomplex of K, and let
g:|L| > X and h : |K| — Y be maps with fg = h||L|. We inductively construct maps
g i IKODULl - X,i €w (resp.i < n), so that each g; is an extension of g,—; and
fgi = h||K®D U L|, where g_; = g. This can be done by applying the condition to each
simplex in K@ \ (K¢~ U L). Then, the desired extension g : |K| — X of g can be
defined by g||K®| = g;||K®| for each i € w (resp. g = g,).

Evidently, every polyhedrally soft map is a weak homotopy equivalence and
every polyhedrally n-soft map is an n-equivalence (cf. Sect. 4.13).

e —— |Weak homot. equiv.|

U H U

] — [poy o] ——— [

We have the following characterization of polyhedrally O-soft maps:

3Thatis, Z = |K| and C = |L| for some simplicial complex K and a subcomplex L C K.
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Proposition 7.2.2. A map f : X — Y is polyhedrally 0-soft if and only if f is
surjective.

Proof. Because 0-dimensional polyhedra are discrete, it is trivial that a surjective
map is polyhedrally 0-soft. To prove the converse, for each y € Y, consider the pair
({y}.9) in the definition of a polyhedrally O-soft map. Then, we can find x € X
such that f(x) = y. O

Proposition 7.2.3. When Y is metrizable, every O-soft map f : X — Y isa
surjective open map.

Proof. According to Proposition 7.2.2, f is surjective. Suppose that f is not open.
Then, X has an open set U with x € U such that f(x) ¢ int f(U). We have y, €
Y\ f(U),n € N, such that f(x) = lim,— e ys.Since Z = { f(x)} U{y, | n € N}
is 0-dimensional, we haveamap g : Z — X suchthat g(f(x)) = x and fg = idg,
which causes a contradiction. O

If X is completely metrizable, the converse of Proposition 7.2.3 above is also
true. This will be shown as a corollary of the following 0-Dimensional Selection
Theorem, which can be proved by the same strategy as the Michael Selection
Theorem 3.8.8.

Theorem 7.2.4 (0-DIMENSIONAL SELECTION THEOREM). Let X be a para-
compact space with dimX = 0and Y = (Y,d) be a metric space. Then, every
lower semi-continuous (l.s.c.) closed-valued function ¢ : X — CId(Y) admits a
selection if each ¢(x) is d-complete. In addition, if A is a closed set in X then each
selection f : A — Y for ¢|A can extend to a selection f : X — Y for ¢.

Proof. We may assume that diamY < 1. By induction, we will construct maps
fi : X - Y,i €N, such that

d(fi(x),0(x)) <27 and d(fi+1(x), fi(x)) <27"%2 forevery x € X.

Assume that f,_; has been obtained, where f; is any map. We define a closed-
valued function ¢ : X — CId(Y) as follows:

Y(x) =cly (go(x) N B(fr—1(x), 2_”+1)) foreach x € X.

Let W = UyEY B(y,27"t1) x {y}. Since B(y,27")> C W forevery y € Y, W is
a neighborhood of the diagonal Ay in Y 2. Therefore, ¥ is l.s.c. by Lemmas 3.8.5
and 3.8.3.

Foreach y € Y, let

Vy={xe X |y(x)NB(y.27") # 0}.

Since ¥ is Ls.c., each V, is open in X. By the 0-dimensionality, X has an open
coverUd < {V, | y € Y} with ordld = 1 (cf. Theorem 5.2.4). For each U € U,
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choose y(U) € Y sothat U C V). Then, we have amap f, : X — Y such that

fn(x) = y(U) forevery x € U € U. Observe that d( f,(x), ¥ (x)) < 27" for every
x € X, which means that d( £, (x), ¢(x)) < 27" and d( f,(x), fu—1(x)) < 273,
The rest of the proof is similar to that of the Michael Selection Theorem 3.8.8.

O

Now, as a corollary of Theorem 7.2.4, we can obtain the following characteriza-
tion of 0-soft maps:

Corollary 7.2.5. Let X is be a completely metrizable and Y be a metrizable space.
Then, amap f : X — Y is O-soft if and only if f is surjective and open.

Proof. The “only if” part is Proposition 7.2.3. To see the “if” part, let Z be a 0-
dimensional metrizable space and C a closed setin Z. Given maps g : C — X
and h : Z — Y such that fg = h|C, note that f~'h : Z — Cld(X) is an Ls.c.
closed-valued function (cf. Proposition 3.8.1) and g is a selection for f~1h|C. We
can apply Theorem 7.2.4 to extend g to a selection § : Z — X.Then, fg =h. O

We have variety in the definition of softness. A map f : X — Y is
said to be homotopically soft (homotopically n-soft) (resp. approximately soft
(approximately n-soft)) provided that, for any metrizable space Z (with dim Z <
n),any map g : C — X of aclosed set C in Z and each open cover U of Y, if fg
extendstoamap i : Z — Y then g extends & : Z — X suchthat fg >~y hrel.C
(resp. f g is U-close to h).

Y
X Y
V\ ~
~ —Uu
SRR

g \\\
C C Z

Replacing the pair (Z, C) with a pair of polyhedra (with dim < n), we can introduce
a polyhedrally homotopically soft map (a polyhedrally homotopically r-soft
map) or a polyhedrally approximately soft map (a polyhedrally approximately
n-soft map).

| poly. approx. soft | — |poly. homot. soft| _— | weak homot.equiv.|

ﬂ U ﬂ

|poly. approx.n-soft| — |p01y. homot.n-soft| _—

Proposition 7.2.6. When Y is paracompact, every approximately (n-)soft map f :
X — Y is polyhedrally approximately (n-)sofft.
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Proof. Let K be a simplicial complex (with dim K < n) and L be a subcomplex
of K withamap g : |L| — X such that fg extends to amap & : |K| — Y. For
each open cover U of Y, we will show that g extends to amap g : |K| — X such
that f' g is U-close to h. Because Y is paracompact, I/ has an open star-refinement
V. Due to Whitehead’s Theorem 4.7.11 on small subdivisions, replacing K with a
subdivision, we may assume that K < h~!'()V). Moreover, replacing K by Sd; K,
we may also assume that L is full in K. We denote ¢ = id|g| : |K| — |K|m. By
Theorem 4.9.6, we have amap v : | K|, — |K|suchthat ¢ ~g id and o ~g id
by the straight-line homotopy. Since L is full in K, it follows that Y ¢||L| ~; id
and ¢V ||L|yn =~ id by the straight-line homotopy. Because f is approximately
(n-)soft, the map gy ||L| extends a map g’ : |K|m — X such that fg’ is V-close
to hyr.

P
X — _ Y
ST~ g
gT T~ \\\\\ Th
@ g RS T o
IL] —= [LIm C [Klm = IK]|
14 14

Since K < h~1(V), it follows that L < g~ f~1(}), consequently

g'olILl = gyol|lL| =1 &

By the Homotopy Extension Theorem 4.3.3, g extends to a map g : |K| — X
such that & >~ -1y, g'p, hence f g >~y fg'p. Since fg'ep is V-close to hyr¢ and
hyr >~y h, it follows that f g is U-close to A. O

Remark 3. In the above proof, if f : X — Y is homotopically (n-)soft, then
gV¥||L| can be extended to a map g’ : |K|m — X such that fg’ >~y hy rel. |L|n,

so fg'¢ >y hyp rel.|L|. But f2I|IL| = h||L| # fgVel|IL| = f¢'¢||IL| and
hyrol|L| # h in general. Then, we cannot conclude that fg =~ h rel. |L|.
However, it is also true that every homotopically (n-)soft map f : X — Y is
polyhedrally approximately (n-)soft when Y is paracompact. This will be shown in
the next section.

The following lemma is easy but useful for constructing approximations of maps
to paracompact spaces:

Lemma 7.2.7. Given a sequence of open covers of Y as follows:
* * *
U>U >Uy >---,

let Wit = stOWV;, Ui +1), where W = U,. Then, stOWV;,U;) < U foreveryi € N.
This lemma can be shown by induction because

S[(W,‘,Z/{[) = St(S[(W[-],Z/{[),Z/{[) < S[(W,'_I,Stu,') < St(W[_l,Z/{[_l).
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Theorem 7.2.8. Let Y be a paracompact space. Amap f : X — Y is polyhedrally
homotopically soft if and only if f is polyhedrally homotopically n-soft for every
new.

Proof. The “only if” part is obvious. To prove the “if” part, let K be a simplicial
complex with L a subcomplex of K, andlet g : |[L| - X and h : |K| — Y be
maps with fg = h||L|. Since Y is paracompact, each open cover U € cov(Y') has
open refinements as follows:

USUp = Uy = Uy > - .

For each i € N, let W; = stW;_1,U;), where Wy = Uy. By Lemma 7.2.7,
stW;,U;) < U forevery i € N.

We will inductively construct maps g; : |[K” U L| — X, h; : |K| — Y and
U;-homotopies ) : |K| x I — Y, i € N, such that

glIKDULl =gioy, fgi =hlIKDUL| @) = hioi, o = I,
oKD ULl =hi_y||[KI"DUL| = fgi_y foreveryt €1,

where g = g and h_; = h. Suppose that g,_;, h,_;, and ¢~V have been
defined.

f
X ~
T A . I
gn—1 AN hn—1 ~ N
- TN
K-DULl c [KMWULl c |K| —— [K|

By the polyhedral homotopy n-softness of f, the map g,—; extends to a map g, :
|[K™ U L| — X such that

fen ~u, hu—1]|K™W U L| rel. | K"V U L|.

Using the Homotopy Extension Theorem 4.3.3, we have a U,-homotopy ¢ : |K|x
I — Y such that

(p(()n) = h,_i, gOYI)HI((n) U L| — fgn and
o™IK" D UL| = hy_||[K" D UL| foreacht € L
The map h,, is defined by h, = (p{”) (K| =Y.

Now, we can extend g to the map g : |[K| — X defined by g||K) U L| = g; for
eachi € w.Letg : |K| x I — Y be a homotopy defined as follows: ¢y = f g and

o(x.1) =V (x,2-2%p) if 27 <t <27 i € w.
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Then, ¢; = ¢\ = h_y = hand ¢,||L| = h||L| = fg = fg||L| foreveryr € L
The continuity of ¢ at each pointin | K| x {0} follows from the continuity of ¢|o x I
for each simplex ¢ € K, where if dimo = k then

@ilo = hilo = fgrlo = f&lo = golo foreveryt <2771
Foreachx € |K|andn € N,

e(xy x 2771 1) = p({x} x 277, 1) U™ ({x} x 1)
C st(p({x} x 27, 1]). Uy).

Since p({x} x [271,1]) = ¢@({x} x I) is contained in some member of Uy =
W, it follows that ¢({x} x [27"~',1]) is contained in some member of W,. In
addition, note that ¢({x} x [0,27%71]) = {f&(x)} for sufficiently large k € N.
Then, ¢({x} x I) is contained in some member of /. Hence, ¢ is a U/-homotopy.
Thus, we have fg >~ hrel. L. O

Remark 4. 1f f is polyhedrally approximately n-soft for every n € w, the above
arguments are not valid to prove that f is polyhedrally approximately soft because
we cannot apply the Homotopy Extension Theorem 4.3.3.

Every open cover U of an ANR (resp.a metrizable ANE(n + 1)) ¥ has an
h-refinement (resp. h"-refinement) V € cov(Y) by Proposition 6.3.1 and Theo-
rem 6.3.4 (resp. Theorem 6.12.9). Therefore, we have the following:

Proposition 7.2.9. Let Y be a metrizable space and f : X — Y be a map.

(1) When Y is LC", i.e., Y is an ANE(n + 1), f is (polyhedrally) homotopically
n-soft if and only if f is (polyhedrally) approximately n-soft.

(2) When Y is LC®, f is polyhedrally homotopically soft if and only if f is
polyhedrally approximately soft.

(3) When Y is an ANR, f is homotopically soft if and only if f is approximately
soft. O

A polyhedrally approximately 0-soft map is simply a map with the dense image.
We can state this formally as follows:

Proposition 7.2.10. Amap f : X — Y is polyhedrally approximately 0-soft if and
only if f(X) isdenseinY.

Sketch of Proof. For the “if” part, note that 0-dimensional polyhedra are discrete. To see
the “only if” part, for each y € Y and each open neighborhood V of y in Y, consider
(Z2,C) = ({},9), h = id,and U = {Y \ {y},V} in the definition of a polyhedrally
approximately 0-soft map.
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7.3 Hereditary n-Equivalence and Local Connections

Amap f : X — Y is called a hereditary n-equivalence if f|f ' (U) :
f~Y(U) — U is an n-equivalence for every open set U in Y, that is, it satisfies
the following condition (r); foreachi = 0,...,n:

(r); Foreachmapa : S°~! — f~1(U), if fa extendstoamap 8 : B — U then
a extendstoamap @ : B — f~!'(U) such that f& ~ Brel.S"™!,

where B = {0} and S~! = #.

-1 J
f/(U) —= U

> ~
aT Ny B
a \\

s c B

A map f : X — Y is a hereditary O-equivalence if and only if every y € Y
can be connected with an arbitrarily close point of f(X) by a small path. A
hereditary weak homotopy equivalence is a map f : X — Y such that
f1f7YU) : f7Y(U) — U is a weak homotopy equivalence for every open set U
in Y'; equivalently, it is a hereditary n-equivalence for every n € w. The following
statements are easily proved:

* Every polyhedrally homotopically n-soft map is a hereditary n-equivalence.
* Every polyhedrally homotopically soft map is a hereditary weak homotopy
equivalence.

Sketch of Proof. The second statement follows from the first statement. Let f : X — Y be
a polyhedrally homotopically n-soft map and U be an open set in Y. For maps o : ! —
S7Y(U) and B : Bl — U with B|S'"~! = fa, consider i = {U,Y \ B(B')} € cov(Y).

If Y is paracompact, the converse statements are also true.

Theorem 7.3.1. Let Y be a paracompact space. Then, amap f : X — Y isa
hereditary n-equivalence if and only if f is polyhedrally homotopically n-soft.

Proof. The “if” part has been shown previously. To prove the “only if” part, let
(P, Q) be a pair of polyhedra with dim P < n,andletg: Q - X andh: P - Y
be maps with fg = h|Q. For each U € cov(Y), take open refinements as follows:

* * k k
U=U, >Uy—1 >-->Uy > V.
Then, P has a triangulation K such that Q is triangulated by a subcomplex of K and

K < h='(V) (Theorem 4.7.11). We will inductively define maps g; : Q U |[K®| —
X with homotopies ¢ : (Q U |K®D|)xI— Y,i =0,...,n, such that
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&i10 UIKO™] = g1, p](Q U [KW)) x T = g,
o xD o e KDy <th, o)) =hQUIK?| and o] = fg;,

where g_; = g and ¢V = hprg : O xI — Y. Then, g can be extended to a map
gn . P — X suchthat fg, >~y hrel. Q.

Suppose that g;_; and ¢~ have been defined. For each i-simplex o € K with
o ¢ Q,since K < h™'(V) and st(V,U;_1) < U;, we can choose U, € U; so that

9" V(o x {0}) U (90 x 1)) C st(h(0).Ui—1) C Us.
Then, fg;_1(d0) C U,, i.e., gi—1(d0) C f~'(Uy,). Take a homeomorphism
Yo 10 — (0 x {0}) U (do xT)

such that y,(x) = (x,1) for each x € do. Consider the map h, = @@ Dy, :
o — U.Then, hy|d0 = fgi—1|d0. Because f|f~'(U,) : f~'(Uy) — U, is an
n-equivalence, g;—1|do extends to a map g, : 0 — f~'(U,) such that fg, ~ h,
rel. do.

o

fl ¢
f_l(UU) > U(7<777* UXI

~ ]
N
gn—1l NG U
8o N
N

do C o = (o x{0}) U (do x 1)
Yo

Using a homotopy from A, to fg, rel.do, we can easily construct a homotopy
¢° 10 xI — U, such that ¢f = fg, and

@?1(0 x{0}) U (do x 1) = hgya_l.

The last condition means that ¢ = h|o and ¢°|do x I = ¢(~D|do x I. Summing
up these g, and ¢, we can obtain the desired extensions g; and @) of g;_; and
@~ respectively. O

Combining Theorems 7.3.1 and 7.2.8, we have the following:

Corollary 7.3.2. Let Y be a paracompact space. Then, a map f : X — Y
is a hereditary weak homotopy equivalence if and only if f is a polyhedrally
homotopically soft map. O

As in the case of polyhedrally homotopically (n-)soft maps, it is easy to see
that every homotopically n-soft map is a hereditary n-equivalence and every
homotopically soft map is a hereditary weak homotopy equivalence. Then, by
Corollary 7.3.2, we have the following:
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Corollary 7.3.3. When Y is paracompact, every homotopically (n-)soft map f :
X — Y is a polyhedrally homotopically (n-)soft map. O

Amap f : X — Y is called a local n-connection (resp. a strong local n-
connection) if f(X) is dense in Y and every neighborhood U of each y € Y
contains a neighborhood V' of y such that, foreach 0 <i < n, everymap g : §' —
£~V is null-homotopicin f~!(U) and, foreachmap g : 8" — f~(V), fg ~ 0
inU (resp.g ~ 0in f~!(U),i.e., foreachO <i <n,everymapg : S — f~ (V)
is null-homotopic in £~ (U)).

f
f'loy < i) —=U
A A
Tg I Pd
|
Si C Bi+l -

The following are direct consequences of the definitions:

* Every hereditary (n + 1)-equivalence is a strong local n-connection.
* Every strong local n-connection is a local n-connection.
* Every local n-connection is a strong local (n — 1)-connection.

Moreover, note that amap f : X — Y is a strong local rn-connection if and only if
f(X)isdensein Y and each open cover U of Y has an open refinement V such that
F71(V) is a C"-refinement of f~!(/). We call f a local co-connection if f is a
(strong) local n-connection for every n € w. Amap f : X — Y is called a local
x-connection if f(X) is dense in Y and every neighborhood U of each y € Y
contains a neighborhood V of y such that f~'(V) is contractible in f~'(U). If
f is a closed map, each non-empty fiber ' () has trivial shape. A perfect local
*-connection is simply a cell-like map.

Theorem 7.3.4. Let Y be a paracompact space. Then, foramap f : X — Y, the
following statements are equivalent:

(a) f is a strong local n-connection;
(b) f is polyhedrally approximately (n + 1)-soft;
(¢) f isa hereditary (n + 1)-equivalence.

Proof. The equivalence (b) < (c) is the statement of Theorem 7.3.1 and the
implication (c) = (a) has been proved. Consequently, it remains to show the
implication (a) = (b).

(a) = (b): Since f is a strong local n-connection, each & € cov(Y) has the
following open refinements:

* * * * *
U > Vo1 > Upp1 >V > o= UL = Vo > Uy
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such that f~'U;+1) = f~'(V;). Then, it follows that
Cl

F V) = ST Une) 2 7O >

S TN STV 5 ST ),
By the same arguments as in the proof of Lemma 6.12.2, we can prove that
70V < ST V).
Lntl

Let (P, Q) be a pair of polyhedra with dimP <n + 1,and let g : Q — X and
h : P — Y be maps such that fg = h|Q. Then, P has a triangulation K such that
Q is triangulated by a subcomplex of K and K < =~ (Up) (Theorem 4.7.11). Since
f(X)is dense in Y, we can extend g to amap go : Q U |K®| — X such that fg
is Up-close to 1|Q U |K©|. Then, g is a partial f~'(V,)-realization of K, which
extends to a full f~!(V,4)-realization g : P = |K| — X.

f
X

Y
4 N N g
g h
N
~N

Q0 C QUIK9 c P

Each x € P is contained in some t € K. Then, we have V' € V), such that
g(r) € f7YV),ie., fg(r) C V. On the other hand, /() is contained in some
Vo € Vo. Take v € 1. Then, fg(v) = fgo(v) and h(v) are contained in the same
Uy € Up, hence f g(x), h(x) € st(Up, V,+1). Consequently, f g isl-closetoh. O

IfY is LC", we have the following proposition:
Proposition 7.3.5. Let Y be LC" and f : X — Y be a map.

(1) If f is polyhedrally approximately n-soft then f is a local n-connection.
Q) If f is polyhedrally approximately (n + 1)-soft then f is a strong local
n-connection.

Proof. First, note that a polyhedrally approximately O-soft map has the dense image
by Proposition 7.2.10. Since Y is LC?, every y € Y can be connected with an
arbitrarily close point of f(X) by a small path, which means that f is a local
0-connection.

Since Y is LC", every open neighborhood U of each y € Y contains a
neighborhood V' of y such that, for 0 < i < n, every map g : S’ — V extends
toamap g : B'T! — U.Now,let0 <i <nandg:S — f~'(V)beamap. Then,
fgextendstoamaph : BT — U.
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7y c f‘l(U);U

K

Si C Bi+l

When f is polyhedrally approximately n-soft, if 0 < i < n — 1 then g extends
toamap g : B't! — X such that f g is U-close to h, where

U={Y\hBTYH, U} ecov(Y).

Then, fg(B'*") C U,ie, gB*") Cc £~ (U). This means that f is a local n-
connection. If f is polyhedrally approximately (n + 1)-soft, this argument is valid
for all 0 <i < n, which shows that f is a strong local n-connection. O

Theorem 7.3.6. Let Y be a metrizable space. Every local n-connection f : X —
Y is polyhedrally homotopically n-sofft.

Proof. We may assume that ¥ = (Y, d) is a metric space. In the case n = 0, it
suffices to show that for each y € Y and for each ¢ > 0, there is an x € X such that
f(x) is connected with y by a path in the e-neighborhood B(y,&) C Y. We can
choose open neighborhoods U; D U, D --- of y in Y such that, for every pair of
points x,x" € £~ (U;), f(x) and f(x’) are connected by a path in B(y, 27 T¢).
Since f(X) is dense in Y, we have points x; € f~'(U;). Taking paths &; : I —
B(y.27"T1e) with h;(0) = x; and h;(1) = x;41, we can define a path & : I —
B(y, ¢) as follows:

h(0) =y and h(r) = hj(2—2t) for2™" <1 <27,

Assuming the theorem is valid for n — 1, we prove the theorem for n. Let (P, Q)
be a pair of polyhedra with dim P = n,andletg: Q — X andh : P — Y be
maps such that fg = h. Each{ € cov(Y') has refinements

* * *
U>U >V >Uy >V > -+,

such that mesh{; < 2~ and the following condition hold:

e Each V € V; is contained in some U € U; such that, for each map @ : §" —
f7Y(V), fa ~0in U, thatis, fa extendsto amap 8 : B"*! — U.

For convenience, we denote W; = U; +,. Then,

st? W; =stOWV;,stW;) <V; and Wi < W,.
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Foreachi € N, let K; be a triangulation of P such that K; < h~'(W;) and K; 1| <

K;. Then, note that |K"~"| c |Ki(”+_ll) .

By the inductive assumption, we have amap g/ : Q U |Ki(”_l) | = X such that
g/10 = gand fg 2w, h|Q UK "|rel. Q. Let
YD (QUIK" ) xT—>Y
be a W;-homotopy such that Woi) = h|Q U |K’.("_1)|, Wli) = fg!, and 1//,(i)|Q =
h|Q = fg foreacht € I. Applying the Homotopy Extension Theorem 4.3.3, we
can extend fg/ to amap i; : P — Y such that h; >y, hrel. Q. Since f is

polyhedrally approximately n-soft by Theorem 7.3.4, we can extend g/ to a map
gi - P — X such that fg; is W;-close to h;, hence fg; is st W;-close to h. Let

gi (P x{0,1H U@ xI) = X

be the map defined by ¢; (x,7) = g(x) foreach (x,¢) € O xI, ¢;i(x,0) = gi(x),
and ¢; (x, 1) = gi+1(x) for each x € P. Then, f¢; extends to the map

Yi (P x{0,1)U(QUIK" ") xD) - Y

defined as follows: ¥;| P x {0,1} = f¢;|P x {0, 1} and

vO(x,1-2t) ift

IA
= N~

wi(xvt) =
Yt (x 2t — 1) ift

v

Since f is polyhedrally approximately n-soft, we can extend ¢; to a map
G (Px{0.1)U(QUIK" ") xD - X

such that f@; is W;-close to ;.
For each n-simplex 0 € K; with o ¢ Q, h(o) is contained in some W € W;.
Since fg; is st W;-close to h, we have

f8i(0) U fgit1(0) Cst(W,stW)) e st W, < V.

On the other hand, ¥; (do x I) C st(W, W;) by the definition of ;. Since f¢@; is
W;-close to y;, it follows that

£ @ (00 x I) C st(st(W, W;), W,) € st W, < V;.

Consequently, there is some V' € V; such that

Jf@i((ox{0,1) U (9o x1)) = fgi(0) U fgivi1(0) U f¢;i(do xT) C V.
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Then, we have U € U; and amap ¥, : 0 x I — U such that
Vol(o x{0,1}) U (do x I) = f¢;[(o x {0,1}) U (do xI).

Pasting these 1/, , we can obtain a I4;-homotopy ¥; : P xI — Y, thatis, ;|0 xI =
Yo |o x I for each n-simplex o € K; with o ¢ Q. Observe that

Vi(x,1) = f@i(x,1) = foi(x,t) = fg(x) foreach (x,1) € Q x L
Now, we define * : P xI — Y by y§ = h and
Ve, t) = ¥i(x,2=2"r) if27 <r <27 i eN.

Clearly ¥* is continuous at each point of P x (0, 1]. To verify the continuity of v *
at each point of P x {0}, let x € P and ¢ > 0. By the continuity of A, we have
a neighborhood U of x in P such that diam /A (U) < &/2. Choose k € N so that
2% < /2. Foreach x’ € U andt € (0,27%),

d (1), ¥*(x,0) < d@* (', 1), ¢ (x",0)) + d(h(x"), h(x))
< diam y* ({x'} x [0,27¥]) + diam U

< Z diam y; ({x"} x I) + &/2

i=k+1

o0
< Z meshlf; + /2 <2 X +¢/2 <.
i=k+1

Thus, ¥* is continuous. Observe that ¥* is a U{-homotopy and ¥,*|Q = fg
for every t € I Then, fg1 = ¥ =~y h rel. Q. Therefore, f is polyhedrally
homotopically n-soft. O

All the results can be summarized as follows:

|loc. n-connecti0n| _— | strong loc. (n — 1)-connection|

LCI'I
metriz. paracomp. ﬁ

| poly. homot. n-soft | —_— | poly. approx. n-soft |

LC"metriz.
paracomp. ﬂ

| hered. n-equivalence |
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Corollary 7.3.7. When Y be an LC" metrizable space, the following five condi-
tions foramap f : X — Y are equivalent:

(a) f is alocal n-connection;

(b) f is a strong local (n — 1)-connection ( f(X) is dense in Y whenn = 0);
(¢) f is polyhedrally approximately n-soft;

(d) f is polyhedrally homotopically n-soft;

(e) f is a hereditary n-equivalence.

IfY is an LC"™" paracompact space, conditions (b) and (c) are equivalent. If Y is
an LC" paracompact space, three conditions (a), (b), and (c) are equivalent, and
conditions (d) and (e) are equivalent. O

Combining Proposition 7.2.8 with the above, we have

|hered. weak homot. equiV.| = |loc. oo-connection|

metriz.
paracomp. paracomp. LCo®

| poly. homot. soft| —_— |poly. approx. soft|

LC®°metriz.

Corollary 7.3.8. When Y is an LC® metrizable space, the following four condi-
tions foramap f : X — Y are equivalent:

(a) f is alocal co-connection;

(b) f is polyhedrally approximately soft;

(¢) f is polyhedrally homotopically soft;

(d) f is a hereditary weak homotopy equivalence.

If Y is an LC® paracompact space, conditions (a) and (b) are equivalent and
conditions (c) and (d) are equivalent. ]

Theorem 7.3.9. Let f : X — Y be a local n-connection and Y be metrizable.
Then, Y is LC".

Proof. Let y € Y and U be an open neighborhood of y in Y. Because f is a local
n-connection, we have an open neighborhood V' of y such that fg ~ 0 in U for
eachmapg : 8 — f~'(V),where 0 < i < n.For0 < i < n and for each
maph : 8 — V,letd = {V,Y \ h(S")} € cov(Y). Since f is polyhedrally
homotopically n-soft by Theorem 7.3.6, we have a map g : §' — X such that
fg ~uy h, which means that fg ~ hin V and g(S') C f~!(V). Since fg ~ 0in
U, it follows that 7 ~ 0 in U. |
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7.4 Fine Homotopy Equivalences Between ANRs

Recall that a map f : X — Y is a fine homotopy equivalence if f has a U-
homotopy inverse g : ¥ — X for each open cover U of Y, thatis, gf =~ y—1) idy
and fg >~y idy.

Proposition 7.4.1. Let f : X — Y be a fine homotopy equivalence and Y be
regular.

(1) If Y is locally contractible then f is a local *-connection.
(2) If Y is LC" then f is a strong local n-connection.
(3) If Y is LC® then f is a local co-connection.

Proof. Assertion (3) is a direct consequence of (2). The following is a proof of (1)
(resp. (2)).

For each y € Y and each open neighborhood U of y in Y, choose open
neighborhoods V' C W of y sothatcl W C U and V is contractible in W (resp. o =~
Oin W foreverymapa : S — V,0 <i <n)andlettd = {U, Y \clW} € cov(Y).
Then, f has a U{-homotopy inverse g : ¥ — X. Observe that gf | f~ (V) ~ id in
£~ (U). Onthe otherhand, g f| f =1 (V) ~ 0in g(W) (gfa ~ 0in g(W) for every
mapa : S — f71(V),0<i <n).Since fg(W) C st(W.,U) = U, it follows that
g(W) c f~Y(U). Therefore, f~1(V) is contractible in f~'(U) (¢ ~ 0in f~'(U)
foreverymapa : 8 — f~(V),0 <i <n). O

Proposition 7.4.2. Let f : X — Y be a fine homotopy equivalence and Y be
paracompact.

(1) If X is an ANR, then f is approximately sofft.
(2) If both X and Y are ANRs, then f is homotopically soft.

Proof. Because (2) is a combination of (1) and Proposition 7.2.9(3), it suffices to
show (1).

Let Z be a metrizable space and g : C — X be a map of a closed set C in
Z such that fg extendstoamap h : Z — Y. Foreachd € cov(Y), let V be an
open star-refinement of /. We have a map k : ¥ — X such that fk =~y idy and
kf ’fol(v) ldX Then, g ’fol(v) kfg = kl’lIC
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By the Homotopy Extension Theorem 6.4.1, g can be extendedtoamap g : Z — X
thatis f~'())-homotopic to kh. Then, fg ~y fkh ~y h,so fg ~y h* O

A fine homotopy equivalence between ANRs is characterized as follows:

Theorem 7.4.3. For a map f : X — Y between ANRs, the following are
equivalent:

(a) f is a fine homotopy equivalence;

(b) f is approximately (= homotopically) soft;

(¢) f is polyhedrally approximately (= homotopically) soft;
(d) f is a hereditary weak homotopy equivalence;

(e) f isalocal co-connection;

(f) f isalocal x-connection.

Proof. In the following diagram of implications, the equivalence among (c), (d),
and (e) has been shown in Corollary 7.3.8. The implications (b) = (c) and (f)
=> (e) are trivial. The implications (a) = (b) and (a) = (f) have been shown in
Propositions 7.4.2 and 7.4.1, respectively. Thus, it remains to show the implication
(c) = (a).

(74.2) (7.4.1)
(b) == (@) == O

(7.2.1) H / U triv.

() <= (d) <= (e)
(7.3.8) (7.3.8)

(c) = (a): For each U € cov(Y), let V € cov(Y) such that st* V < U. Since Y
is an ANR, we have a polyhedron Py with maps ¢y : Y — Py and ¢y : Py — Y
such that Yypy =~y idy, and apply (c) to obtain a map g : Py — X such that

fg =y ¥y.

Since fgoy >~y Yyey =~y idy, we have a st V-homotopy /2 : ¥ x I — Y such that
I’l() = idY and ]’ll = fgg()y.
Choose W € cov(X) so that

W< f7H(V) and W < (goy /)7 (f ' (V)).

“It is not shown that g 2 hrel.C.
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Because X is an ANR, we have a polyhedron Py with maps ¢y : X — Py and
Yx : Px — X such that Yy py ~yy idy. We define a st V-homotopy ¢ : Py x I —
Y andamap £ : Py x {0,1} — X as follows:

¢(x.1) = h(fx (x).1): §(x.0) = ¥y (x), §(x.1) = goy f¥x(x).

Then, | Px x{0, 1} = f&.Indeed, {(x,0) = ho fyx(x) = f¥x(x)and {(x,1) =
hyx(x) = fgoy fx(x).

X ———= Y
A
AN
Py x{0,1} C PyxI
By (c), we can obtain an f~'(st? V)-homotopy E:PyxI—> X that extends &.

Leth : X x I — X be the f~!(st* V)-homotopy defined by /(x, 1) = &(px (x). 7).
Then,

ho = &opx = Yxex ~w idy and
h = E1ox = goy fUxox ooy fOWV) 8PV [-

Since W, goy f(W) < f~1(V) and st V < U, it follows that gy f ~ -1 idy.
O

Since every open set in an ANR is an ANR, Theorem 7.4.3 yields the following
corollary:

Corollary 7.4.4. Let f : X — Y be a fine homotopy equivalence between ANRs.
Then, for every opensetU inY, f|f~'(U) : f~Y(U) — U is also a fine homotopy
equivalence. O

Corollary 7.4.5. Let f : X — Y be a fine homotopy equivalence between ANRs. If
A C Y is contractible in an open neighborhood U in Y, then f~'(A) is contractible
in f~1(U).

Proof. By Corollary 7.4.4, f|f~'(U) : f~'(U) — U has a homotopy inverse
g:U — f~Y(U).Leth: f~'(U) xI — f~(U) be a homotopy with 1, = id
and by = gf | f~"(U). On the other hand, we have a contraction k : AxI — U, that

is, ko = id and k, is constant. Then, we can define a contraction ¢ : f~1(4) x I —
F~HU) as follows:

h(x,2t) ift <1/2,

PO = 2t — 1) it 1/2, 0



444 7 Cell-Like Maps and Related Topics

Due to Proposition 6.7.1, a subset X of a metrizable space Y is homotopy dense
in Y if and only if the inclusion X C Y is a fine homotopy equivalence. Applying
Theorem 7.4.3 to the inclusion X C Y, we have the following:

Corollary 7.4.6. Let X and Y be ANRs such that X is a dense subset of Y. Then,
the following are equivalent:

(a) X is homotopy dense in Y ;

(b) For each open set U in Y, the inclusion U N X C U is a weak homotopy
equivalence, i.e., for eachn € N, ifamap o : 8"~' — U N X extends to a map
B :B" = U then o extends toamap & : B* — U N X suchthata >~ B inU
rel. S"7 1

(c) Every neighborhood U of each y in Y contains a neighborhood V of y in Y
such that every map « : 8"~ — V N X is null-homotopic in U N X for each
nelN O

Now, we prove the following theorem:

Theorem 7.4.7. Let X and Y be ANRs and [ = limi f; : X — Y be the
uniform limit of fine homotopy equivalences with respect to some d € Metr(Y).
Then, f is also a fine homotopy equivalence.

Proof. According to Theorem 7.4.3, it suffices to show that f is a local oco-
connection. Since each f;(X) is dense in Y, it follows that f(X) is dense. Every
open neighborhood U of each y in Y contains an open neighborhood V' of y such
that V is contractible in U. For eachn € N, leta : 8" — f~'(V) be a map. Then,
faextendstoamap B : B"™! — U. Let

§ = dist(B(B" "), Y \ U) > 0.

Since Y is an ANR, the open cover {B(y,8/6) | y € Y} of Y has an h-refinement
V € cov(Y) (Corollary 6.3.5). Because f«(S") is compact, we have ¢ > 0 such
that {B(fa(x),e) | x € §"} < V. Indeed, find x; € S" ande; > 0,i = 1,...,k,
such that

k
{(B(fa(x).2e) |i =1.....k} <V and fa(S") C | JB(fa(x).&).

i=1

Then, min{e; | i = 1,...,k} > 0 is the desired ¢ > 0. Choose i € N so that
fi is e-close to f, which implies that fia ~s;3 fo = B|S". By the Homotopy
Extension Theorem 6.4.1, f;« extendsto amap A’ : B"*! — Y such that 8/ ~;/3 B.
Since f; is polyhedrally approximately soft by Theorem 7.4.3, o extends to a map
& : B"t! — X suchthat d(f;a&, B’) < §/3. Observe that

d(fa.p) =d(fa, fid) +d(fia, ') +d(B'.p) <.

Then, f&(B"™) C U, ie., aB"*") c £~ (V). O
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7.5 Hereditary Shape Equivalences and U V" Maps

Recall that [X, Y] is the set of the homotopy classes of maps from X to Y. For any
space P,amap h : X — Y induces a function 2* : [Y, P] — [X, P] defined by
r*([f]) = [fh] foreachmap f : Y — P.

h

NS

P

X Y

Fact. For every space X, Y, Z, and P, the following statements hold:

(1) The identity idy : X — X induces the identity id[x.p : [X, P] — [X, P], i.e,
(idx)* = idpx, p).

(2) The composition hohy : X — Z oftwomaps hy : X - Y andhy, 1 Y — Z
induces the composition hth; : [Z, P] — [X, Pl of h3 : [Z, P] — [Y., P] and
hY Y, P] — [X, P], ie., (hah1)* = hTh3.

Amaph : X — Y is said to be a shape equivalence if the function i2* :
[Y, P] — [X, P] is a bijection for every ANR P, equivalently for every polyhedron
P (Corollary 6.6.5). Observe the following:

(i) Every homotopy equivalence is a shape equivalence.
(i1)) The composition of shape equivalences is also a shape equivalence.

Remark 5. We do not give the definition that X and Y have the same shape type,
but it is not defined by the existence of a shape equivalence & : X — Y. It should be
noted that if there is a shape equivalence 4 : X — Y then X and Y have the same
shape, but the converse does not hold.

The following is easy to prove:
Proposition 7.5.1. The following are equivalent for a space X # @:

(a) X has trivial shape;

(b) The map of X to the singleton {0} is a shape equivalence;

(c) Forevery x € X, the inclusion {x} — X is a shape equivalence:

(d) There is some x € X such that the inclusion {x} < X is a shape equivalence.
O

Corollary 7.5.2. Leth : X — Y be a shape equivalence. Then, X has trivial shape
if and only if Y has trivial shape. When X and Y are compacta, X is cell-like if and
only if Y is cell-like. O

Amaph : X — Y is said to be a hereditary shape equivalence if 7|72~ (A) :
h~'(A) — A s a shape equivalence for any closed set 4 in Y. In this case, h(X) =
Y and each fiber 27! (y) has trivial shape. Then, every hereditary shape equivalence
is cell-like if it is perfect.
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Theorem 7.5.3. Every closed fine homotopy equivalence h : X — Y between
metrizable spaces is a hereditary shape equivalence.

Proof. Let A be a closed setin Y and P be an ANR. Each map f : h=!(A) — P
extends to a map f : U — P from an open neighborhood U of 7~'(A4) in X.
Because 4 is a closed map, there is an open neighborhood V of A in Y such
that 7~1(V) C U.LetV = {V,Y \ A} € cov(Y). Since & is a fine homotopy
equivalence, it has a V-homotopy inverse g : ¥ — X, ie., hg =~y id and
gh ~j-1(y id. Observe that gh|h™'(4) =~ id;-i(4) in A" (V) C U. Then, we
have amap fg|4: A — P suchthat fghlh™'(4) ~ f|h~'(4) = f.

Now, let fo, fi : A — P be maps such that foh|h™'(A) >~ fih|h~'(A). Since
P is an ANR, A has an open neighborhood W in Y with maps fo, fi : W — P
that are extensions of fy and f;, respectively. Then, foh|h™'(A) ~ fih|h~'(A).
We can choose an open neighborhood U of h™'(A) in X so that U C h™ (W)
and foh|U >~ fih|U. As before, there is an open neighborhood V' of A in Y such
that V. W, h™"(V) C U, and & has a V-homotopy inverse g : ¥ — X, where
Y ={V,Y \ A} € cov(Y). Since hg|A ~ id4 in V and g(4) Cc h="(V) C U, it
follows that

fo= folA = fohglA = (foh|U)(g|4)
~ (fih|U)(g|A) = fihglA ~ filA = fi. O

A surjective map f : X — Y is called a UV* map if each fiber f~'(y) is
U V*; equivalently, each fiber f~!(y) has trivial shape by Theorem 7.1.2.
o A perfect UV* map is the same as a cell-like map.

Forn e wU{oo,}, f : X — Y isaUV" map if each fiber f~!(y)is UV".Fora
closed surjective map f : X — Y, if X is an ANR, then the following equivalences
hold:

fisUV" & f isastrong local n-connection;

fisUV® & fisalocal co-connection;

fisUV* & f isalocal *x-connection.

For closed surjective maps, we have the following version of Theorem 7.4.3:

Theorem 7.5.4. For a closed surjective map f : X — Y between ANRs X and Y,
the following are equivalent:

(a) f is afine homotopy equivalence;

(b) fisa UV map (= a local co-connection);
(¢) fisaUV* map (= alocal *-connection);
(d) f is a hereditary shape equivalence.
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If f is a perfect map, the following is also equivalent to the above:
(e) f is a cell-like map.

Proof. The equivalence among (a) through (c) has been obtained by Theorem 7.4.3.
The implication (a) = (d) has been shown in Theorem 7.5.3. Condition (d) implies
that each fiber f~!(y) has trivial shape. Because X is an ANR, f is a closed UV*
map. Thus, we have (d) = (c). |

Remark 6. Let X be the sin(1/x)-curve given at the beginning of Sect.7.1 and
f =prlX : X - Y =1 where pr; : R2 — R is the projection onto the
first factor. Then, f is cell-like (U V'*) but not a (fine) homotopy equivalence nor
polyhedrally approximately 1-soft. Hence, in Theorem 7.5.4, it is essential that X is
an ANR. Moreover, in general, a cell-like map is not a shape equivalence, hence it is
not a hereditary shape equivalence. Such examples will be given in Theorems 7.7.5
and 7.7.8.

Corollary 7.5.5. Let X, Y, and Z be ANRs. For each two cell-like maps f : X —
Yandg:Y — Z, the composition gf : X — Y is also a cell-like map.

Proof. Tt is easy to show that the composition of hereditary shape equivalences is
also a hereditary shape equivalence. Then, the result follows from Theorem 7.5.4.
0

Remark 7. In general, the composition of cell-like maps is not cell-like. Such an
example will be seen in Remark 11 in Sect. 7.7.

The following proposition will be used in Sect. 7.7.

Proposition 7.5.6. For each map f : A — Y of a closed set A in a metrizable
space X, let

h:MpU(X x{1}) =Y UrX
be the map defined by h|My = cy and h(x,1) = x for eachx € X \ A, where cs

is the collapsing of the mapping cylinder. Then, h is a shape equivalence.

Proof. First, we extend f to the map f :X =Y Uy X by f|X \ A = id, that is,
f is the restriction of the natural quotient map from ¥ & X onto ¥ Uy X. Then,
MU (X x{1}) C M ; and h = cf~.|Mf U (X x {1}), where the collapsing cpisa
homotopy equivalence, and is therefore a shape equivalence.

MfU(XX{l}) C M}?

N/

YUfX
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X x1I Mz
X x {1} X x {1}

My
A X\A Y X\ A
Fig. 7.1 M; U (X x{1}) C M;

Since the composition of shape equivalences is a shape equivalence, it suffices to
show that the inclusioni : My U (X x {1}) — M 7 is a shape equivalence, that is,

i* M7 Pl [My U (X x {1}), P]

is bijective for each ANR P. Identifying X \ 4 = (X \ 4) x {0}, we can regard the
mapping cylinder M 7as follows:

M}; =Y Ufopr,|ax{0} (X x1I).
Letg: Y @ (X xI) > M 7 be the natural quotient map. See Fig. 7.1.

To show that i * is surjective, let p : My U (X x{1}) — P be amap. Regarding
¢ = pq|A x 1 as a homotopy such that ¢; extends over X, we apply the Homotopy
Extension Theorem 6.4.1 to obtain a map ¢ : X x I — P such that

Pl(AXxD U (X x{1}) = pg[(Ax D U (X x{1}).
Then, it follows that

¢lAx {0} = pg|A x {0} = (p|Y) fpry|A x {0}.

Thus, we have the map p : M ; — P such that plY = p|Y and pg|X x1I = @,
hence pi = p|M; U X x {1} = p.

MyU(X x{1}) C Mf

N
2y

AxDU(X x{1}) Cc X xI

ql
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X xIxI M7 x1
X x{1} x1I X x{1} x1I
I D
I r
/ - MfXI
A X\4

Fig. 7.2 (M, U (X x {1})) x)) U (M x{0.1}) C M x T
To show that i * is injective, let p, p’ : M 7 — P such that pi ~ p’i. Pasting p,
p’ and a homotopy from pi to p’i, we define amap ¢ : D — P on the set
D = ((Mf U (X x {1})) xI) u (Mf~x {0,1}),
which is regarded as the adjunction space (Y x I) U I 11, where

I=AxIxDUX x{1} xDUX xIx{0,1}) C X xIxI and
f=(fopryAdx{0})xidi: Ax{0}xI—>Y xL
We make the following identification:
M};xI:(YxI)va(XxIxI),
where the natural quotient map is denoted by

r:qxidl:(YxI)Ga(XxIxI):(YEB(XXI))XI—>Mf~xI.

Then, r((Y x I) & IT) is the domain of . — Fig. 7.2.
Now, we regard the map ¥r|(4A x I x I) U (X x I x {0, 1}) as a homotopy that
realizes
Yr|(A x {0} xI) U (X x {0} x {0, 1})
~yr|(Ax {1} xD U (X x {1} x {0, 1}).
Since Yr|(A x {1} xI) U (X x {1} x {0, 1}) extends over X x {1} x I, we apply the

Homotopy Extension Theorem 6.4.1 to obtain amap ¢ : X x I xI — P such that
@|IT = yr|Il. Then, it follows that

PlAX {0 x T = yr|A x {0} xI= (y|Y) f.
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Therefore, we have the homotopy 1} M 7 X I — P such that 1/~/r = ¢.

M}?X{O,I}CD - MfXI

=/ r
\ v, \
v ¥ ®

Vi®e
~— I xDp (X xIx]

A

X xIx{0,1} Cc I1 C X xIxI

Since 1ﬂ|Mf~ x{0,1} = WM,? x {0, 1}, ¥ is a homotopy realizing p ~ p’. O

7.6 The Near-Selection Theorem

Recall that X has Property C if, for any open covers U, of X, n € N, X has an
open cover V = UneN V, such that each V), is pairwise disjoint and V,, < U,
(see Sect.6.10). Every countable-dimensional metrizable space has Property C
(Proposition 6.10.4).

Theorem 7.6.1 (HAVER’S NEAR-SELECTION THEOREM). Let X be a o-com-
pact metrizable space with Property C, Y = (Y,d) be a metric ANR, and ¢
X — Comp(Y) be a continuous set-valued function such that each ¢(x) is cell-
like. For each map o : X — (0,00), there exists a map h : X — Y such that
d(h(x), p(x)) < a(x) forevery x € X.

Proof. We may assume that X is a metric space. Let X = |, ¢y X», Where X; C
X, C --- are compact. We can inductively choose 8, > 0 so that §, < 27773 and
N(p(x),28,) is contractible in N(¢(x), §,_1) for each x € X,,, where §, = 273,
Indeed, assume that §,—; > 0 is chosen. Because ¢(x) is compact and U V*, we
have §, > 0 such that N(¢(x), 8,) is contractible in N(¢(x), 8,—1/2), where 8, <
8,—1/2. Since ¢ is continuous, each x € X, has an open neighborhood V, such that
dy(p(x), p(x")) < 8¢/2 for any x” € V,. Observe that x’ € V, implies

N(p(x").8x/2) C N(p(x),8:) and N(p(x),8,-1/2) C N(p(x"), 8,-1).

By the compactness of X,,, we have xi,...,x;y € X, such that X,, C Ui;l Vi
Then, § min{§,, /2 |i = 1,...,k} > O s the desired §, > 0.

By the continuity of ¢ and the compactness of X,, we cantake &; > &3 > --- > 0
such that if x € X, and x’ € X with d(x, x") < 2¢, then dy (¢(x), p(x")) < 8,
that is, ¢(x) C N(¢(x'),d,) and ¢(x’) C N(@(x), 8,).
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We will construct collections Vj, Vs, ... of open sets in X satisfying the following
conditions:

() V=Uen Vi € cov(X);

(2) Each V) is pairwise disjoint;

(3) meshV; < ¢;;

(4) Each open set in V; meets X;;

(5) a(x) > 27" forx € JVs;

© VNV, =0ifi # j.

Letk : N> —> Nbea bijection such that k(i,n) > i for every (i,n) € N2 (e.g.,
k(i,n) = 2""'(2i —1) > i). Without loss of generality, we can assume that (x) <
1 forall x € X.Foreachi,j € N, let

Xij=X;Na (277,277,

Since each X; ; has Property C by Lemma 6.10.3, we have collections V; i n),
n € N, of open sets in

o« (@ =272 27 1 27T
such that |, ey V) k(in) covers X; ;, each V; k(i ») is pairwise disjoint, and
mesh V; kin) < &j+2k(in)—2-

It can be assumed that the open sets of V; x(; ») meet X; ;, so they meet X ; 1ok (i n)—2
because X; ; C X; C X 12k(in)—2. Then, the following conditions hold:

(1) U,pen Vjm coversa™ (277,277 F1));
(8) Each V; ,, is pairwise disjoint;
(9) meshV;,; < &jom—2;
(10) Every open set of V; ,, meets X 12,,—2;
(11) Every open set of V; ,, is contained in

a (7 =277 27 4 27y,

We define V; as follows:

i i
Vo1 = U Vai—om+1m and Vo = U Vai—om+2.m-

m=1 m=1

For j,m e N,letn = j4+2m—2.1fn =2i—1thenj =n—-2m+2 =2i-2m+1,
andifn = 2i then j = n —2m + 2 = 2i —2m + 2. Consequently, V;,, C V,.
Therefore, (1) follows from (7); (2) follows from (8) and (11); (3) follows from (9);
(4) follows from (10); (5) follows from (11). By replacing V, with V, \ U,_, Vi,
condition (6) is satisfied without failing the other conditions.

i<n
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Let K be the nerve of V = | J, oy Vi € cov(X) with p : X — |K| a canonical
map. Foreach V € V;, take xy € V' N X; (cf.(4)) and yy € ¢(xy). Then, we have
a contraction

r" :N(gp(xy),28) x I = N(p(xv), 8i—1)

such that r/ (N(¢(xy),268;)) = {yv} (r] = id). For each n-simplex o € K, let
V(o) € V() be the vertex of o such thati(0) = min{i € N | 6@ NV, # @}
(cf. (2)), and let oy be the (n — 1)-face of o with V(0) & 0y. For eachn € N, let

Ko ={oek|o®c U V).

Then, K = |, ey Kn-
We will inductively construct maps g, : |K,|] — Y, n € N, such that
gnl|Kn=1| = gn—1 and, foro € K,,,t €I, and z € oy,

(%) gn((1 =0z 41V (0)) = r"(g,(2).1) € N(@(xv(0)). 8i(0)-1)-
Since K| = Kl(o) = V) by (2), we can first define g| : |K;| = Y by g1 (V) = yy
for each V e V);. Suppose that gy, . .., g,—1 have been defined. For j < n, let

Kpj={oeK|o® CcUi;Vi} CK,.

Observe that K,, = K\» = V, by (2), K,; C K, —1, and K, = K, ;. We
define g, : |Kyn| = Y by gun(V) = yy foreach VV € V,. Now, suppose that
gni |Kuil = Y,i > j,have been defined such that

(12) gnillKni+1l = gni+1;

(13) gunillKn—1i] = gna1l|Kn—1il

(14) gn.i(0) C N(@(xv(0)). 8i(0)—1) foro € K, ;;
(15) gn,; satisfies (%) foro € K,,;,¢t € I, and z € 0p.

For each 0 € K, ; \ K, j+1, V(0) € V; and 09 € K, j+i. By the inductive
hypothesis on g, j 41,

&n.j+1(00) C N(@(Xv(50)), Bi(on)—1) C N(@(Xv(ap)),8/)-
On the other hand, since V(ay) N V(o) # @, it follows that
d(xv(ap), Xv(0)) < diam V(0p) + diam V(0) < &i(s) + & < 2¢;.

Since xy©) € X;, we have ¢(Xy(,)) C N(¢(xy()).8;), hence g, j+1(00) C
N(¢(xy(s)),28;). Then, g, ;11 can be extended to the map g, ; : |K, ;| = Y by

gnj(1=0z+1tV(0)) = rV(U)(gn,j+l(Z)a 1) € N(@(xv(0)). 8j-1)
foro € K, j \ K j+1,t € land z € 0y,



7.7 The Suspensions and the Taylor Example 453

where j = i(0). Then, g, ; satisfies (12), (14), and (15) by definition. Since g,
satisfies (), it follows that g, ;|| Ku—1,j| = gn—1||Ku—1,;|, 1.e., (13) is also satisfied.
By downward induction on j, we can obtain the map g, = g1 : |Kx| = |Kn.1| —
Y that extends g,—; and satisfies ().

Now, let g : |K| — Y be the map defined by g||K,| = g,. For each x € X,
let 0 € K be the carrier of p(x). Since p is a canonical map for the nerve K of
V, we have x € V(o) € Vi), hence d(x, xy()) < mesh V) < &) by (3) and
a(x) > 271@=1 by (5). Since xy() € Xi(o), it follows that

gr(x) € g(o) C N(@(xv(5)) Si(0)-1)
C N(N(¢(x), 8i(6)): 8i(6)=1) C N(p(x),28(5)-1)-

Therefore, we have
d(gp(x), p(x)) < 28i)—1 < 271071 < g (x).

Thus, gp : X — Y is the desired map. O

7.7 The Suspensions and the Taylor Example

In this section, using a K-theory result of J.F. Adams, we will construct the
Taylor example, that is, a compactum that is not cell-like but has the Hilbert cube
Q = [-1,1]" as its cell-like image. Moreover, using the Taylor example, we will
construct a cell-like map of Q onto a compactum that is not an ANR. Here, we use
the TORUNCZYK CHARACTERIZATION OF THE HILBERT CUBE:’

Theorem 7.7.1 (TORUNCZYK). A space X is homeomorphic to the Hilbert cube
QO if and only if X is a compact AR that has the disjoint cells property, that is,
for each n € N, each pair of maps f,g : I" — X can be approximated by maps
[, g I — X with disjoint images, i.e., f'(I') N g'(I") = @. O

The suspension X' X of a space X is the following quotient space of [—1, 1] x X:

TX = [-1,1] x X/{{—1} x X, {1} x X1,

where {—1} x X and {1} x X are regarded as two distinct points. Let gx : [1, 1] x
X — XY X be the quotient map. For each map f : X — Y, there exists a unique
map X f : ¥YX — XY suchthatgy o (id x f) = (X' f) o gy, that is, the following
diagram is commutative:

SFor this proof, refer to van Mill’s book “Infinite-Dimensional Topology” mentioned in the Preface.
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idx f

L1xX — > [-1,1]xY

qxl l”

X Y.

zf

It should be noted that Yidy = idyy and ¥gX' f = X (gf) for each pair of maps
f:X—>Yandg:Y — Z.
Observe that the suspension X X is the union of two cones

Ix X/{1}x X and [-1,0] x X/{—1} x X.

Since the cone over a compact ANR is an AR by Corollary 6.5.5, the next
proposition follows from 6.2.10(5)

Proposition 7.7.2. For every compact ANR X, the suspension ¥ X is an ANR. 0O

Proposition 7.7.3. For each cell-like compactum X, the suspension XX is also
cell-like.

Proof. Embed X into the Hilbert cube Q. Then, it suffices to prove that X' X is
cell-like in ¥ Q. Let gg : [-1,1] x @ — X Q be the quotient map. For each
neighborhood U of ¥'X in ¥ @, we can choose a neighborhood V' of X in Q
so that gg([—1,1] x V) C U. Since X is cell-like in Q, there is a contraction
h: X xI — V, which induces the homotopy

h:ZX x1—qo(-1,1]xV)CU

such thath, = Xh, foreachs € L Then, hy = idand i (X X) = hy(X)x[~1,1] ~
[—1, 1], which implies that X' X is contractible in U. Consequently, X' X is cell-like
inXQ. O
Proposition 7.7.4. Let X = l(ﬂl(X i, [i) be the inverse limit of an inverse sequence
(Xi, fi)ien of compacta with p; : X — X;, i € N, the projections of the inverse
limit. Then, there exists the unique homeomorphism h : X — l(iI_n(EXi, 1)
such that q;h = X p; for eachi € N, where each q; l(iil(EXi, X)) —> XX is
the inverse limit projection.

Proof. Letgx : [-1,1] x X — ¥ X and gy, : [-1,1] x X; - X X;,i € N, be the
quotient maps. For (t,x) € [-1,1] x X andi € N,

(Xf)qx; 4, (6, x(@ + 1)) = qx, (¢, fi(x(@ + 1)) = qx, (2, x(D)).

Then, we can defineamap h : ¥ X — l(iI_n(EX,-, X ;) as follows:

th(tv x) = (qu (tvx(i))),'eN = ((Epi)qX(t’x))ieN’
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which means that ;1 = X'p; for each i € N. The uniqueness of the map /4 follows
from the last condition.® We will show that  is bijective, which implies that / is a
homeomorphism because X' X is compact.

qx h
[1,1] x X X im(ZX;. 5f) € [liew TXi

idX p; \L Ypi \L /
qi

[—1, 1] X X,‘ —_— EX,

qx;

To prove that & is surjective, let (qx, (fi, Xi))ien € l(iil(EXi, X' f;). For each
i eN,
qx; (tis xi) = (X fi)qx, 1 Cit1, Xit1) = qx, (i1, fi(Xit1),

which implies that t; = #, = --- = ¢. If t # %1 then fj(x;4+1) = x; for every
i € N.Whent = +1, we may assume that f; (x;+1) = x;. Then, x = (x;);en € X.
It follows that hgx (¢, x) = (qx, (ti, Xi))ien-

To show that & is injective, let (¢, x), (t',x") € [-1,1] x X and assume that
hqx(t,x) = hgx(t',x’). Foreachi € N,

qx, (t, pi(x)) = qihqx(t,x) = gihgx (', x") = qx, (¢, pi(x")).

Then, we have t = ¢'. If t = t' = +1 thengy(f,x) = gx(t',x’). Whent = t' #
+1, it follows that p;(x) = p;(x’) for every i € N, which means x = x’, hence
qX(ts-x) = qX(Zlvx/)' O

For each n € N, the n-fold suspension X" X is inductively defined by X" X =
X (X" 1X), where X°X = X.Foramap f : X — Y, let

V=X ) 2 X = 2(EIX) - XY = Z(2"Y),

where X°f = f. The twofold suspension ¥?X is also called the double
suspension. Observe

22X = [LIPx X/{E x [-L 1 x X, {2} x X | -1 <1< 1}}
=X[-11]x X/{{z} x X |z € 0X[-1. 1]},

where X[—1, 1] ~ B? and

AX[-1,1] = {1} x [-L 1]} U (-1, 1) x {£1}) ~ S".

%We can apply Theorem 4.10.6 to show the existence and the uniqueness of h.
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Furthermore, regarding [—1,1] = X{0}, we can write X[—1,1] = X2{0}. Then,
we can also write

22X = ZH0}x X/{{z} x X | z € 022{0}}.
By induction, we can show that
XX = X0} x X /{{z} x X | z € 92"{0}},

where d X" {0} is the boundary (n — 1)-sphere of X"{0} ~ B". Indeed, assume the
above equality holds. Then, it follows that

Y = ¥(Z"X)
= X(Z"{0} x X /{{z} x X | z€ 05"{0}})
=[-1,1] x Z"{0} x X /{{£1} x Z"{0} x X,
{Ihx{zyx X | -1 <t <1, z€dx"{0}}
= X0} x X /{{z} x X | z € 9X" {0} }.

where the last equality comes from the following facts:

O} = [—1, 1] x {0} /{{£1} x "{0}} and
X0} = {1} x Z™{0}} U ((—1.1) x 3Z"{0}).

As we have just seen, the n-fold suspension X”X is the quotient space of
2"{0} x X, where the quotient map is denoted by g% : X"{0} x X — X"X.
Foreachmap f : X — Y, themap X" f : ¥"X — X"Y is induced by the
map id x f : X"{0} x X — X"{0} x Y, i.e., X" f is defined by the following
commutative diagram:

idx f

SOOI x X — ZM0}x Y

\Lq;

xny

nf
Remark 8. Since X"{0} ~ I", we can regard
"X =T'"xX/{{z} x X |z €'}

In this case, X" X" X ~ X" X but X" X" X # X" X because
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DX =1 x X [{{z} x X |z € o™} but
InEX =T x X [y < x X, (Y} x{zgh x X |
yedl", y erm\ar", zeol}.
In his paper [1] (References in Notes for Chap. 7), Adams constructed a compact

polyhedron A with a map @ : X" A — A from the r-fold suspension of A onto A
such that every composition

aoX qo-0 X "Vrg X 5 4
is essential, i.e., it is not null-homotopic. Using this map, we can construct a cell-like

map that is not a shape equivalence, which is the subject of the following theorem:

Theorem 7.7.5 (TAYLOR). There exists a cell-like map f : X — Q of a
compactum X onto the Hilbert cube Q such that X is not cell-like, that is, f is
not a shape equivalence, where X is homeomorphic to the r-fold suspension X" X.

Proof. Let X be the inverse limit of the inverse sequence:

Yo >y

A <~ xr4 $ 4

where A is the compact polyhedron with the map o : X" A — A constructed by
Adams. Let p; : X — X G=Dr4 i e N, be the inverse limit projections, where
304 = A.If X is cell-like, then p; ~ 0 by Theorem 7.1.8. Note that every X" A
is an ANR by Proposition 7.7.2. Applying Lemma 7.1.7 (both (1) and (2)), we can
find some j € N such that

aoX qo--0 XU Vg ~0,

which is a contradiction. Thus, X is not cell-like. Moreover, by Proposition 7.7.4,
X" X is homeomorphic to the inverse limit of

Yo DR g
YA ~—— ZVA ~— V4 ~— ...

hence ¥" X ~ X (Corollary 4.10.4).

We regard X' A as the quotient space of X'"{0} x A with the quotient map
g’y : Z'"{0}x A — X" A such that ¢'/ ({z} x A) is a singleton for each z € 9 X" {0}.
Let f; : X" A — X7{0} be the map induced by the projection of X" {0} x A onto
Xir{0}. Because X (T {0} = X" X7{0} is the quotient space of X/"{0} x X"{0},
we have the map

g 1 ZUTV0) = TR0} - X0},
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which is induced by the projection of X7 {0} x X" {0} onto X" {0}, that is, the map
¢; is defined by the following commutative diagram:

Tirf0} x X740}

Pryirgoy )
ir
qxr{o}

Eir{()} yir Er{()} — E(i+l)r{0}

i

In the above, pryirgp is a fine homotopy equivalence. Since qiE’, o is cell-like, it
is also a fine homotopy equivalence. By Proposition 6.7.4, ¢; is a fine homotopy
equivalence. On the other hand, we have the embedding v; : X" {0} — XD {0}
defined by ¥; (x) = ¢, 10y (%, 0). Therefore, ¢; y; = id.

By diagram chasing, we can see f; X"a = ¢; f;+1. In the diagram below, the
circumference and the upper right square commute. Moreover, q;’ +hr (¢ rioyxid) =
q’g, 4(id x gq1) is surjective. Hence, the botom rectangle also commutes.

- qixr,{()}xid )
X0} x X{0}x A Xiryrioyx A
- l
Y0y x A =—— XIr{0}x XTA DEFDror x A
idxa
P PR
. Yirg . .
prsirgy | XA Yiryrd —=————— YUt g | proa+nryg
\L fi Ji+1 \L
Eir{O} Z‘(i+l)r{0}
@i
Thus, we have the following commutative diagram:
X I T

A~ 34 >4 L R

L

TH{0} =—— T¥{0} =—— D0} =— -
(2 P2 @3
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LetY = l(ln Xir{0} be the inverse limit of the bottom sequence and p; : ¥ —
Xir{0},i € N, the inverse limit projections. Then, we have the map f = l(ln fi:
X — Y defined by the maps f;. It remains to show that Y ~ Q and f : X — Y is
cell-like.

To show Y ~ @, we use the Toruriczyk characterization of Q (Theorem 7.7.1).
As observed in the above, each bonding map ¢; is a fine homotopy equivalence,
hence Y is a compact AR by Theorem 6.7.8. Recall that there are embeddings v; :
Xirfoy — X0+Dre0Y, i e N, such that ¢;1/; = id. We can define an embedding
Y, 1 X0} — Y, i €N, as follows:

Vi(x) = (@1i(x), ... @im1i (X), X, i 41 (), Yii42(x), ...,

where ¢;; = ¢;---@;—1 for j < i and ¥;; = ¥;j_1---y; for j > i. Then,
piv; = id for each i € N and lim; o0 ¥; p; = idy. Since X"{0} ~ I'" for each
i € N, we can apply Theorem 5.8.1 to see that ¥ has the disjoint cells property, that
is, foreach n € Nand U € cov(Y), each pair of maps f, g : I" — Y are U-close to
map [/, g : " = Y with f/(I") N g’(I") = @. By the Toruficzyk characterization
of the Hilbert cube, we have Y ~ Q.

To prove that f is cell-like, let y = (yi)ien € ¥ = l(iLnE”{O}. Consider the
following commutative diagram:

idxaq’y idxaqy idxag’

S0 XA —— ZV{0Ix A = ZV{0hx A <~ -
U U U

i} xA =— { o} xAd =— {y3} x4 =— ---

S

o) =— 7100 =— f7' () =— -+
N N N

22r A 23r A
X >y >y

24

The inverse limit of the third sequence is f~!(y). Recall that X = lim Yirdis a

subspace of the product space [];cy X" A. For each neighborhood U of f~!(y)
in [];ey 2" A, we will show that f~!(y) is contractible in U, which implies that
£7Y(y) is cell-like by Theorem 7.1.2.

For each j € N, let

Yy ={xe [lic, "4 | x(j) € 7)),
Vi< x(@i) = (Zao-0 TV a)(x(/))}.
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Then, ¥; x [];.; £'" A is compact and

o= (Yj x ]_[f,-_l(yi)) = (Yj x HE”A) cuc[]z"a.
jeN i>j jeN i>j ieN

Hence, we can find j € Nsuchthat Y; x]]
is contractible in X" A. Indeed, recall

XA C U.Foreachi > j, ' (y:)

i>]

DA = (20} x A)J{{zt x A | z € 9X7{0}}.

Then, f;~'(y;) is a singleton if y; € dX'"{0}. When y; € X7{0} \ dX'"{0}, take
apathy : I — X'7{0} from y(0) = y; to y(1) € X"{0} and define a homotopy
h:{y}x AxI — X7{0} x Aby h(y;,x,t) = (y(t),x). Then, h induces a
contraction & of £~ (y;) in X" A:

h .
{(yitx AxT ——= Zir{0} x A

qi Xid \L \L qi

S ) > 1 A
h
It follows that Y; 11 x [];. ;44 £ (i) is contractible in Y; x [1;-; X" A, which
implies that £ ~'(y) is contractible in U. Therefore, f~'(y) is cell-like. O

Remark 9. In the above proof, as mentioned in Remark 8, we can regard
S"A=T"xA/{{z} x A |z I"}.

In this case, recall that X" X" A # X+ 4 Foreachi € N, the projection of I'" x
A onto I'” induces the map f; : X" A — I'". In the literature explaining Taylor’s
example (as in Taylor’s original paper [21], References in Notes for Chap. 7), the
map f : X — @ is constructed using the following diagram:

o X Yo X >y X 33y
A<~ Y4 —— 34 —— T4 —— ...

R

| IZr I3r
pr pr pr
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However, the domain of the map X"« is X" X" A, which is not X0+ 4,
If X" X" A is identified with X(*D"4 by a homeomorphism then the above
diagram is not commutative. Although X" X" 4 can be regarded as the quotient
space of I+ x A, the projection of I/ *1" x 4 onto I+ does not induce a map
of X" X" A onto I¢+Dr,

Remark 10. We can also regard
S'A=B"xA/{{z} x A|ze S}

As above, X0+ 4 £ X" 5" 4 For each i € N, the projection of B’ x A onto
B'” induces the map f; : £'"A — B'". Then, we can construct a homeomorphism
f; : X" X" A — X'’ A so that the following diagram commutes:

ir

0;
EirA - EirErA . E(i-H)rA

~

fi \L \L Ji+1

Bir B(H—l)r

prgir

In fact, we have a surjective map 6; : B’ x B — BU*D" defined by
6;(y.2) = (y. V1 —|ly|?z) foreach (y,z) € B” xB'.
Then, 6;|(B" \ S ') x B" is injective,
071 (SUFTD = (S x B") U (B x S,
671 (6:(y)) = 67" (y,0) = {y} x B" foreachy € 8!

and 0; is B'"-preserving, that is, the following diagram commutes:

0;

Bir x B" B(i+l)r
h AI
Bir

Observe
IUETA=B" xB x A/{{y} xB x A, {y'} x{z} x 4|
y € Sir—l’ y/ c Bir \Sir—l’ z€ Sr—l}
=B" xB xA/{07'(x) x A | ze STV}
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Then, 6; x id, induces the desired homeomorphism 6; : X7 X"A — X(+hryg,
Indeed, let ¢ : B" x X — X" X be the quotient map. Then, the following diagram
commutes:

B xB" x A
GiXidA
idgir Xq'y
idBirXOt
B" x A B x XA BO+Dr 4
l ai J/ 4¥r 4 gy l
. Tirg . Bi .
b | XA i A DA | eyt
\L fi Jit1 \L
B BG+Dr
prgir

In this case, Y is defined as the inverse limit of the inverse sequence

prgr Prg2r PIg3r

B’ B2r B3r

However, it is not trivial that Y is homeomorphic to Q.

Remark 11. Using the Taylor example, we can prove that the composition of cell-
like maps is not a cell-like map in general. In fact, the compositionco f : X — {0}
of the constant map ¢ : Q@ — {0} and Taylor’s cell-like map f : X — Q isnota
cell-like map.

It should be noted that Taylor’s cell-like map is not a shape equivalence by
Corollary 7.5.2. Thus, in general, a cell-like map need not be a shape equivalence
but we do have the following theorem:

Theorem 7.7.6. Let f : X — Y be a cell-like map between metrizable spaces. If
f7N(y) is a singleton except for finitely many y € Y, then f is a hereditary shape
equivalence.

In this theorem, ¥ ~ X/{f~'(3)...., f~'(yx)} for some finite y;,..., y; €
Y. Since the composition of shape equivalences is a shape equivalence, this theorem
can be easily reduced to the following special case:

Theorem 7.7.7. For each cell-like compactum A in a metrizable space X, the
quotient map p : X — X /A is a shape equivalence.

Proof. In Proposition 7.5.6, when Y is a singleton, we canidentify Y Uy X = X/A
and My = A xI/A x {0}, where My U (X x {1}) can be regarded as the following
space:

Z =(AxI/Ax{0}) U (X x{1}).
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AXxI/A x {0}

Fig. 7.3 Extending a homotopy % : gi >~ g’i

Then, we have a shape equivalence 7 : Z — X/A such that hi = ¢, where
i(x) = (x,1) for each x € X. Thus, it suffices to show thati : X — Zisa
shape equivalence, i.e., i * : [Z, P] — [X, P] is bijective for each ANR P.

Let f : X — P be a map. According to Theorem 7.1.2, A has trivial shape,
hence f|A ~ 0. Then, we have amap f : AxI/Ax{0} — P suchthat fi|A = f,
which extends to a map g : Z — P such that gi = f. Therefore, i * is surjective.

To show that i * is injective, let g, g’ : Z — P be maps with a homotopy # :
X x I — P suchthat hy = gi and by = g’i. Observe that

(Ax{1} xDU((AxI/Ax{0})x{0,1}) =~ YA,

which is cell-like by Proposition 7.7.3, so it has trivial shape by Theorem 7.1.2.
Regarding (A x I/A x {0}) x I as the cone over the above space, we know that
(A x I/A x {0}) x I is contractible. Then, we can apply the Homotopy Extension
Theorem 6.4.1 to obtain a map

h i (AxI/Ax{0) xI— P

such that #’'(x,1,¢) = h(x,t) foreach x € A andt € I, h'(z,0) = g(z) and
W (z.1) = g'(z) for each z € A x I/A x {0}. Then, i’ extends to a homotopy
h:Z x1— P suchthat hi = h,hence hy = g and h; = g’'. — Fig.7.3. O

Using the Taylor example, we can also obtain the following theorem:

Theorem 7.7.8. There exists a cell-like map g : Q — Y ofthe Hilbert cube Q onto
a compactum Y that is not cell-like, which means that g is not a shape equivalence.

Proof. Let Q¢ and Q; be copies of @, f : X — Qo be Taylor’s cell-like map
obtained in Theorem 7.7.5, and embed X into Q. We define Y = Q¢ Uy Q. The
quotient map g : Q1 — Y is cell-like. Indeed, foreach y € Y,if y € Q; \ X then
g ' (y) ={yl,andif y € Qg then g~ (y) = f~(y) is cell-like.

Assume that Y is cell-like. Because we have a shape equivalence 2 : M U (Q x
{1}) — Y by Proposition 7.5.6, it follows from Corollary 7.5.2 that M r U(Q1x{1})
is cell-like. On the other hand, the natural map
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q:MyU(Q1x{1}) = (MyU(Q1x{1})/{Qo. Q1 x{1}} ~ TX

is a shape equivalence by Theorem 7.7.6. Hence, ¥ X is also cell-like. Using
Proposition 7.7.3 inductively, it follows that X" X is cell-like. But X" X ~ X is
not cell-like, which is a contradiction. Thus, Y is not cell-like. O

7.8 The Simplicial Eilenberg—-MacLane Complexes

For each n € N, m,(S") # {0} by the No Retraction Theorem 5.1.5. In fact, it is
known that m,,(S") is an infinite cyclic group generated by [ids-], that is, 7, (S") =
Z. 1t follows from Theorem 5.2.3 that 7, (S") = {0} for m < n, and it is known that
7, (SY) = {0} for any m > 1. However, for each n > 1, there is some m > n such
that 7,,(S") # {0}. For instance, 73(S?) = Z. For these facts, refer to any textbook
on Homotopy Theory or Algebraic Topology.

There exists a space K(Z, n) such that

7 (K(Z,n)) = Z and 7, (K(Z,n)) = {0} if m # n.

Such a space K(Z,n) is called the Eilenberg—MacLane space (of type (Z, n)),
which is unique up to homotopy type. The unit circle S' is K(Z, 1). It is easy to
see the homotopical uniqueness of K(Z, 1), that is, if X is a path-connected space
homotopy dominated by a simplicial complex such that 7;(X) = Z and 7, (X) =
{0} for any m > 1, then X has the homotopy type of S'. Indeed, let f : S! — X
be a map such that [ f] € m;(X) is a generator of 1(X) = Z. Then, f induces
an isomorphism f; : 71 (S') — m1(X) because f;([idgi]) = [f]. For each m > 1,
fi @ wn(S') — mu(X) is an isomorphism because 7,(S') = 7, (X) = {0}.
Therefore, f is a weak homotopy equivalence by Theorem 4.14.12, hence it is a
homotopy equivalence by Corollary 4.13.10. In general, given an Abelian group G,
there exists a space K(G,n) such that 7, (K(G,n)) = G and 7,,,(K(G,n)) = {0}
if m # n. The space K(G, n) is also called the Eilenberg-MacLane space (of type
(G, n)), which is unique up to homotopy type.’

For each n > 1, we will construct the space K(Z, n) as a countable simplicial
complex such that F(dA™*D) is its subcomplex and AT is a mapping (n + 1)-
deformation retract of |K(Z, n)| for metrizable spaces. Here, a closed set A4 in a
space X is a mapping (n + 1)-deformation retract of X for a class C of spaces if
the following condition is satisfied:

(Dy+1) For any space Z € C withdimZ < n + 1 and eachmap f : Z — X,
thereisamap g : Z — A suchthat g|f~'(4) = f|f'(A)and f ~ g

7 As usual, the Eilenberg-MacLane space K(G,n) is constructed as a CW-complex, which has the
homotopy type of a simplicial complex.



7.8 The Simplicial Eilenberg—MacLane Complexes 465

rel. £71(A), that is, there exists a homotopy & : Z x I — X such that
ho= f,h = g,and h;| f~1(A) = f|f~"(A) foreveryt € L

One should remark the following:

e If A is a mapping (n + 1)-deformation retract of X for compact polyhedra then
the inclusioni : A C X is an (n + 1)-equivalence.

In the above, when X is path-connected, the inclusion map i : A C X induces
the isomorphisms iy : m,(A) — 7w, (X), m < n, and the epimorphism iy :
wh+1(A) — my4+1(X) (Theorem 4.14.12). Using this fact, we will prove the
homotopical uniqueness of K(Z, n) (Theorem 7.8.6).

For polyhedra, we have the following:

Proposition 7.8.1. Let K be a simplicial complex with L a subcomplex of K. If
|L| is a mapping (n + 1)-deformation retract of |K| for metrizable spaces and
L C K"FY, then |L| is a retract of | K" +V)|.

Proof. By Theorem 4.9.6 with Remark 14, ¢ = id : |K| — |K|y, is a homotopy
equivalence that has a homotopy inverse ¥ : | K|, — | K| such that the restriction
¥||L| is a homotopy inverse of ¢||L| = id : |L| — |L|n. Since |L| is a
mapping (n + 1)-deformation retract of | K| for metrizable spaces, there is a map
f 1 |K@*tD| — |L|suchthat f||L| = ¥||L|and f =~ ¥ rel.|L|. Thus, we have
amap fol[K"HV| o |[KOHD]| — |L|. Because fo||L| = (Y[IL])(g|IL]) ~ id
in |L|, we can apply the Homotopy Extension Theorem 4.3.3 to obtain a retraction
r: |[K@+Y| — |L| homotopic to fo|/ K"*D|in |K|. O

Before constructing the simplicial Eilenberg—MacLane complex, we will show

the following:

Lemma 7.8.2. Let (B),S,), A € A, be pairwise disjoint copies of the pair
B2, 8" ™Y and h : @,c, Sx — X be a map. Then, X is a mapping (n + 1)-
deformation retract of the adjunction space X Uy, @, ¢ 4 Ba for normal spaces.

Proof. Let f : Z — X U@, By be amap from a normal space Z with dim Z <
n+ 1. Foreach A € A, let C; C By such that (B), C;) ~ (B""2, 1B"*2). Since
dim f~'(Cy) < n + 1 and bd C; ~ S"*!, we can apply Theorem 5.2.3 to obtain
amap fi : f1(Cy) — bdC; such that 3| f~'(bdC;) = f|f ' (bdC;). By
Theorem 5.1.6(1), f|f~(Cy) ~ fi rel. f~1(bd Cy) in Cy. Because { f~1(Cy) |
A € A} is discrete in Z, we can define a map

fZ—->XU, @AEA(BA \ intC})
by f'| f~1(C,) = f, foreach A € A and
FIZN N BrenintCo) = F1Z\ f(Drey int Co).

Then, ' ~ f rel. f~1(X). On the other hand, we have a retraction
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riX U, @e By \intCr) - X

such that r >~ id rel. X. The map ¢ = rf’ : Z — X is the desired one because
g=rf"~ f' ~ frel. f71(X). O

Proposition 7.8.3. For every connected simplicial complex K and n € N, there
exists a simplicial complex K containing K as a subcomplex such that 7,41 (|K|) =
0and |K| is a mapping (n+ 1)-deformation retract of | K| for normal spaces, hence
ip : w(|K|) = 7tm(|K|) is an isomorphism for m < n. Moreover, if K is countable
then so is K.

Proof. Here, we identify S"t! = §A"*2 By the Simplicial Approximation
Theorem 4.7.14, we can write 7,11 (| K|) = {[h\] | A € A}, where hy : Ly — K is
a simplicial map of L; = Sd"™* F(dA"*?) for some n, € N.If K is countable, then
A is also countable. For each A € A, we have K; <1 F(A"*?) with L; C Kj. For
example, take a point v € rint A" T2 andlet Ky = L, U{v} U {{(c U {v}) | o € L}
(cf. Proof of Theorem 4.6.2). Then, (|K3|,|Lx|) ~ (B"T2,8"T1). Regarding K},
A € A, as a pairwise disjoint collection, we have a simplicial complex ), ., Kx
and its subcomplex €9, .4 L. Leth : €0, 4 Ly — K be the simplicial map defined
by h|L; = hy for each A € A. The desired simplicial complex K can be defined
as K = Z(h) U D, K, where Z(h) is the simplicial mapping cylinder of &. If
K is countable, then so is K because A is countable and each K 1 1s finite. Since
|K| is homeomorphic to the adjunction space | K| Uy, D, e | K, it follows from
Lemma 7.8.2 that | K| is a mapping (n + 1)-deformation retract of |K|. Hence, the
inclusion i : |K| C |K]|is an (n + 1)-equivalence. In particular, the inclusion i
induces the epimorphism iy : 7,1 (| K|) — 7u1+1(|K|). Since every hy ~ 0in | K|,
it follows that 7,11 (| K|) = ig(m.11(|K])) = {0}. O

Now, we will construct the simplicial Eilenberg-MacLane complex K(Z, n)
for each n > 2. We apply Proposition 7.8.3 inductively to obtain a tower

FOA"™™M =Kyc K, CK,C---

of countable simplicial complexes such that each |Ky—_;| is a mapping (n + k)-
deformation retract of | Ky | for normal spaces, 7, (| Kx|) = {0} forn # m <n+k,
and the inclusion i : A" C | K| induces the isomorphism (i) : 7, (04" 1) —
7, (| Kk|). Then, the countable simplicial complex K(Z,n) = ¢, Kk is the
desired complex. Indeed, by virtue of Proposition 4.2.6, each map f : §" —
| K(Z, n)| has the image f(S™) contained in some | K| and if f ~ g in |K(Z,n)|
for maps f, g : S — |K(Z,n)| then f ~ g in some | Ky|. So, it follows that

7. (|K(Z,n)|) = m,(0A"") = Z and 7,(|K(Z,n)|) = {0} if m # n.

81t suffices to take a set {[h;] | A € A} generating the group 7,1 (|K|). Then, if m,41(|K]) is
finitely generated, we can take a finite set as A.
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Fig. 7.4 Extending a homotopy /

By the same argument, it is easy to prove that dA"™! is a mapping (n + 1)-
deformation retract of | K(Z, n)| for compact spaces.

To show that dA"*! is a mapping (n + 1)-deformation retract of |K(Z, n)| for
metrizable spaces, we use the following lemma:

Lemma 7.8.4. Suppose that A is a mapping (n + 1)-deformation retract of an ANE
X for metrizable spaces. Let f : Z — X be a map of a metrizable space Z with
dimZ < n + 1 and a homotopy h : Zo x 1 — X of a closed set Zy in Z with
8 > 0 such that hy = f|Zoy, h1(Zy) C A, hy = h; for everyt € [1 —§,1], and
h|Zo N YA = f|Zo n f_l(A)~f0r every t € L Then, h extends to a homotopy
h:Z x1— X suchthathy = f, hi(Z) C A, hy = hy foreveryt € [1 —3/2,1],
and h;| f Y (A) = f|f7Y(A) foreveryt € L

Proof. Because X is an ANE, & can be extended to a homotopy h:ZxI— X such

that by = f and h,| f~'(A) = f|f~'(A) for every ¢t € L Since A is a mapping

(n + 1)-deformation retract of X, we have a homotopy 4’ : Z x I — X such that
hy = hi—s, W\(Z) C A and h)|h7'5(A) = hi—s|h7"(A) foreveryt € L

The desired homotopy h:Z x1— X can be defined as follows:

h, ift <1-36,
he = Moy iE1—8 <1 <1-5/2,
i, ifr>1-35/2.

Indeed ho = ho = f and h = 4 foreveryt € [1—38/2,1]. Since ZOUf '(4) c
hi'(A), it follows that &, |ZO = hy|Zo = hy and ! NfA) = | f~(4) =

f for every t € L. Then, h|Zo x1 = hand h, | f~ l(A) f foreveryt € L

— Fig.7.4. O

Proposition 7.8.5. For each n > 2, dA"™ is a mapping (n + 1)-deformation
retract of |K(Z, n)| for metrizable spaces.
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pi—n 0] : pi+D
2 e I R Lo
(@) h(l) 2
TR S

hl(j+1) — h(ziji-l)

J——1xi

Zig—

Fig. 7.5 Homotopies /")

Proof. Observe that |K(Z,n)| = li_r)n|Kk|, where (K;)ie, is the tower defining
K(Z,n). Then, each |K;| is a mapping (n + 1)-deformation retract of K;; for
normal spaces, hence for metrizable spaces. Let f : Z — |K(Z, n)| be a map from
a metrizable space Z with dimZ < n + 1. Foreachi € w, let Z; = f~'(|K;|).
Then, Zo C Z; C --- and Z = |J,, Z;. By induction, we define homotopies
h® : Z; xI —|K;|,i € w, such that

1€w

hO|Zi_y xT=h"D h) = £z, foro <1 <27,
W0\ Z; 0 f7AMY = £1Z 0 @A™ fort e,

hO(zZ; x 277,277 C |K;|, b, (Zi) € |K;]| for j <i and

h =h; for2™ —27 T < <27 j <.
The homotopy 7© : Zy x I — | K| is defined by 4\” = f|Z, for ¢ € I. Assume
that #() has been defined. Foreach j = 0,1,...,i + 1, let

Lj = (Z, X I) U (Zi+l X [O, 2_j]).

The homotopy /) can be extended over L;+; by (f|Z;i+1) x id. Then, using
Lemma 7.8.4 iteratively, we extend this over L; C .-+ C Ly C Ly = Z; 41 xIstep-
by-step. Thus, we can obtain the homotopy 2/ *V : Z; 1| x I — | K| satisfying
the conditions. — Fig. 7.5.

According to Theorem 2.8.6(2), each z € Z has a neighborhood V in Z such that
f(V) C |K;| for some i € w, which means that V' C Z;, so z € int Z;. Therefore,
Z = e, int Z;. Thus, we can define a homotopy / : Z xI — |K(Z,n)| by h|Z; x
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I = h® foreachi € w. Then, hy = f, hi(Z) C A" and h,| f~1(3A"F!) =
F171@A ) forevery t € L. 0

The homotopical uniqueness of the Eilenberg—MacLane spaces can be derived
from the following theorem:

Theorem 7.8.6. Let n € N and suppose that X is a path-connected space
homotopy dominated by a simplicial complex such that w,(X) = Z and 7,,(X) = 0
for every m # n. Then, X has the homotopy type of the simplicial Eilenberg—
MacLane complex K(Z,n) constructed above.

Proof. The case n = 1 has been seen already. For n > 2, let (K;); ¢, be the tower
in the definition of K(Z,n). Take a homeomorphism ¢ : |Ko| — S" and a map
a : §" — X such that [«] is a generator of 7, (X) = Z. Let fo = agp : |Ko| —
X. To extend fy to amap f : |K(Z,n)] — X, we inductively construct maps
fi + |Ki| = X,i € N, such that f;||K;—i| = fi—1, and then f can be defined
by f||K;| = f;. In fact, the construction of K; from K;_; is as follows: Taking
a simplicial map / : @Ae 4 Ly — K;_y such that each L, is a triangulation of
St and {[h|L;] | A € A} = mu+i(|Ki=1]) (or {[R|L;] | A € A} generates
nti(|Ki=1])), we define K; = Z(h) U @, 4 Kx, where K}, is a triangulation of
B+ with L, C K;. Foreach A € A, the map f;_h|L, : 8" — X is null-
homotopic because of m,+;(X) = {0}. Hence, fi— extends over Z(h|L,) U K.
Thus, f;—; extends to amap f; : |K;| = X.

It remains to show that f is a homotopy equivalence. By virtue of Corol-
lary 4.13.10, it suffices to verify that f is a weak homotopy equivalence. For
m #n, fi: 7y (|K(Z,n)|) = m,,(X) is an isomorphism because 7, (| K(Z, n)|) =
7m(X) = {0}. Recall that the inclusion |Ky| = dA"+! C |K(Z,n)|is an (n + 1)-
equivalence, hence it induces the isomorphism from 7, (| Ko|) onto m, (| K(Z, n)|).
On the other hand, (fo)1 : 7. (|Ko|]) — m,(X) is an isomorphism because it
sends a generator of 7, (|Ko|) = Z to that of m,(X) = Z. Then, it follows that
St mu(|IK(Z,n)|) — m,(X) is also an isomorphism. Consequently, f is a weak
homotopy equivalence. O

For a pair (X, A) of spaces, amap f : (Y, B) — (Z, C) induces the map
f+« :C((X,A), (Y, B)) - C((X, A),(Z,0C)),

which is defined by fi(k) = f ok (cf. 1.1.3(1)).

Lemma 7.8.7. Let f, f' : (Y,B) — (Z,C) with f ~ [’ (as maps of pairs). For
each pair (X, A) of spaces,

fx = fo 1 C((X. 4), (Y, B)) - C((X, 4),(Z,C)).
Proof. Leth : (Y x1, B xI) — (Z, C) be a homotopy from f to f'. We define

h: C((X, A), (Y, B)) x I - C((X, A), (Z.C))
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by ﬁ(g,t) = h,o0g. To see the continuity of h, for each compactset K C X and each
openset U C Z,let (g.t) € h"'({K;U)). Since h(g(K) x {t}) = h;(g(K)) C U,
we can choose open sets V' C Y and W C Iso that g(K) x {t} C V x W and
h(V x W) C U.Then, g € (K;V)andt € W.Foreach g’ € (K;V)ands € W,

hs(g'(K)) = h(g'(K) x {t'"}) Ch(V x W) C U,
hence ﬁ(g/,t’) € (K;U). Thus, we have (K;V) x W C h™'((K;U)). Conse-
quently, 7' ((K;U)) is openin C(X,Y) x L. O
Proposition 7.8.8. For each pair (X, A) of spaces, (Y, B) ~ (Y’, B) implies

C((X, A),(Y,B)) ~ C((X,A), (Y, B)).

Proof. Let f : (Y, B) — (Y’, B’) be a homotopy equivalence with g a homotopy
inverse. Then, f and g induce the maps
f« :C((X, A),(Y,B)) ~ C((X,A),(Y',B")) and
8« - C((Xs A)s (Y/v B/)) = C((Xv A)v (Yv B))
defined by fi (k) = fok and g.«(k) = gok, respectively. By virtue of Lemma 7.8.7,
we have g« fx = (gf )« >~ id and fi g« = (fg)« ~ id. O

Corollary 7.8.9. For each simplicial complex K with vo € K©, the loop space
2(|K |, xo) has the homotopy type of a simplicial complex.

Proof. By virtue of Proposition 7.8.8,
(1K, x0) = C((I, L), (| K], x0)) == C((L, o), (|K |m, x0)).
where the last space is an ANR by 1.1.3(5) and 6.1.9(9). Then, we have the result

by Corollary 6.6.5. O

Recall that 7, (§£2(X, x0), ¢x,) = ma4+1(X, Xxo) for any pointed space (X, xo) and
n € N (Theorem 4.14.4). Then, combining Theorem 7.8.6 with Corollary 7.8.9, we
have the following corollary:

Corollary 7.8.10. For each n € N, the loop space 2(|K(Z,n + 1)|,v) has the
homotopy type of |K(Z,n)|, where v € |K(Z,n + 1)| is any point. O

The wedge sum (or the one-point union) X; Vv --- v X; of pointed spaces
X1 = (X1,x1), ..., Xx = (X, xx) is defined as the quotient space

XiveevXr=X1®--- @ Xi)/{x1, ..., xn},
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which is also defined as the following subspace of the product space [/, X;:
XivevXe={xe ., X | x(i) = x; except for onei}.

When (X;, x;) = (X, xo) foreveryi = 1,...,k, we write \/k X instead of X Vv
v X.

We use the following theorem but leave the proof to any textbook on Homotopy
Theory or Algebraic Topology.

Theorem 7.8.11. For everyn > 2and k € N, m; (\/k S")y = {0} fori < n and
T (\/* 8" = 7k 0

Proposition 7.8.12. For each m > n, |F(A™)®| ~ \/*§", where k = ,,Cp1.
Consequently, 7r; (|F(A™)™|) = {0} fori < n and m,(|F(A™)™|) = ZF.

Proof. Since P = |St(e,+1, F(A™)™)| is a compact AR, the quotient space
|F(A™)™|/P is a compact ANR by Theorem 6.5.3, where the quotient map ¢ :
|F(A™)™]| — |F(A™)™|/P is a (fine) homotopy equivalence by Theorem 7.5.4.
Thkus, we have |F(A™)™| ~ |F(A™)™]|/P. The latter space is homeomorphic to
AVAR 1 ]

In the construction of the simplicial Eilenberg—MacLane complex K(Z,n),
replacing the starting complex F(dA"T!) with a connected simplicial complex L,
we can obtain a connected simplicial complex K(L,n) such that r; (|K(L,n)|) =
{0} fori > n and |L| is a mapping (n + 1)-deformation retract of |K(L, n)| for
metrizable spaces. Then, the inclusion |L| C |K(L,n)| is an (n + 1)-equivalence,
hence 7; (| K(L,n)|) = m;(|L]) fori <n.

Now, foreachn > 2and k € N, let L be a triangulation of \/k S”. We can obtain
the simplicial Eilenberg-MacLane complex K (Z*,n) such that |L| is a mapping
(n + 1)-deformation retract of | K(Z¥, n)| for metrizable spaces. It should be noted
that K (Zk,n) is also countable. In the same way as for Theorem 7.8.6, we can
prove the homotopical uniqueness of K(Z*,n). Indeed, let X be a path-connected
space homotopy dominated by a simplicial complex such that ,(X) = Z* and
;i (X) = {0} for every i # n. Using generators of 7, (X), we define a map ¢ :
|L| ~ \/k S" — X. By the construction of K(Z*,n), we can inductively extend ¢
toamap f : |[K(Z*,n)| — X. Then, f is a weak homotopy equivalence, so f is a
homotopy equivalence by Corollary 4.13.10.

Since m,(|K(Z,n)[¥) = Z* and m;(|K(Z.,n)|F) = {0} for i # n by
Proposition 4.14.1, we have the following:

Proposition 7.8.13. For eachn > 2 and k € N, the product space |K(Z,n)|* has
the homotopy type of |K(ZF, n)|. O

Here, ZF = Z @ --- @ Z (k many). When n = 1, this is not true but 7;(\/* S!) is isomorphic to
the free product Z * - - - x Z (k many) by Theorem of Seifert and Van Kampen.
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In the rest of this section, we will construct the so-called simplicial Edwards—
Walsh complex, which will be used in Sect. 7.10.

Proposition 7.8.14. Let K be a simplicial complex and n > 2. There exist
countable simplicial complexes K, 0 € K, such that

(1) |Ks| =0 if dimo < n;

2) Ko C Ky ifo’ <o;

(3) |Ko| N |Ky'| = | Kono'| for each 0,0’ € K;

@) (|Ks|, 00) ~ (|K(Z,n)|, A" for each (n + 1)-simplex o € K

(5) |Ko| =~ |K(Z,n)|K™ if dimo = m > n + 1 (where k(m) = ,,Cpy1);

(6) Ifdimo > n + 1, then |Ky,| is a mapping (n + 1)-deformation retract of | K|
for metrizable spaces, where Ky, = | K,

o’'<o

Proof. Forevery o € K™, let K, = F(c). Suppose that K, have been defined for
all o € K™, For each (m + 1)-simplex o € K, let

Loi = | JiKor |0’ < 0. dimo’ =i}, n <i <m.

Then, F(0)™ = Ly, C Loy+1 C -+ C Ly = Kj, are simplicial complexes by
(1), (2), and (3). Using (3) and (6), we can show that |L;| is a mapping (n + 1)-
deformation retract of | L, 4| for metrizable spaces. As observed in the above, we
can construct a simplicial complex K, = K(Kjs,n) such that 7r; (|K,|) = {0} for
i > n and |Kjy,| is a mapping (n + 1)-deformation retract of | K| for metrizable
spaces. Then, it follows that 0™ = |L,,| is a mapping (n + 1)-deformation retract
of | K| for metrizable spaces, which implies that the inclusion 0™ C |K,| is an
(n + 1)-equivalence. Since 7; (| K, |) = 7; (™) fori < n, we have 7; (| K,|) = {0}
fori < n and m,(|K,|) = ZK"*D by Proposition 7.8.12. From the homotopy
uniqueness and Proposition 7.8.13, it follows that

|Ko| = |K(ZF™ D n)| = |K(Z, n) KD,

Thus, we have a simplicial complex K, satisfying (2), (5), and (6). Moreover, we
can construct K, for every (m + 1)-simplex o0 € K so that |K;| N |Ky/| = | Koo,
that is, (3) is satisfied. By induction, we obtain the desired result. |

In Proposition 7.8.14, we have the following simplicial complex:

EWK.n=|)K,=k"u (] K.
c€K oc€K\K®

We call EW(K,n) the simplicial Edwards—Walsh complex for K. Since each
K, is countable, if K is countable then so is EW(K,n). There exists a map @ :
|[EW(K,n)| — |K| such that || K™| = id and

w'(0) = |Ky| ~ |K(Z,n)[F4™ foreacho € K\ K™,
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which is called an associate map of EW (K, n). Indeed, we inductively define maps
w, . |Ky| = 0,0 € K, such that wg_l(aa) = | Ky, | and w,||K,/| = @, for each
o' < o.Letw, = idforevery o € K™ and assume that w, : |K,| — o have been
defined forevery o € K. Foreach (m+1)-simplexo € K, let wy, : |Ky,| — 00
be the map defined by wy,||K,/| = @, for each 6’ < o. Since wy, >~ 0 in
0, Wy can be extended to a map w, : |K,| — o by the Homotopy Extension
Theorem 4.3.3, where we can modify @, to satisfy the condition @' (d0) = | Ky, |
because rint o is homotopy dense in o and | K, | is a zero setin | K, |, i.e., f ~'(0) =
|Kjs| for some map f : |K,| — I (cf.Proposition 4.2.2).!° Then, the map @ is
defined by w||K,| = @, for each ¢ € K. We prove the following proposition
regarding the map w : |EW(K,n)| — |K]|:

Proposition 7.8.15. For each simplicial complex K andn > 2, letw : |EW(K,n)|
|K| be an associate map of the simplicial Edwards—Walsh complex EW (K, n).
Then, for each subcomplex L of K and amap g : |L| — |K(Z, n)|, the composition
gw|w ! (|L|) extends over |[EW (K, n)|.

h

- —

— =N

[EW(K.m)| > @ UL —— |K(Z.n)

A

K] D L]

Proof. Because |K(Z,n)| is (n — 1)-connected, we can extend g over |L| U |K®)|
by skeleton-wise induction. Then, we can assume that K ™ < L. For each
(n + 1)-simplex 0 € K \ L, |Ky,| = 90 and (|K,|,d0) ~ (|K(Z,n)|, dA" 1),
hence do is a mapping (n 4+ 1)-deformation retract of | K| for metrizable spaces.
By Proposition 7.8.1, do is a retract of |KL(,"+1) |. Therefore, the composition
gw|@1(|L|) extends to a map

h:w ' (L) U |[EW(K,n)"Y| - |K(Z,n)|.

Since 7, (|K(Z,n)|) = {0} for every m > n, we can extend i’ over |EW (K, n)| by
skeleton-wise induction. O

10Since Sd L is a full subcomplex of Sd K,, such a simplicial map f can be defined by
F(SA L)) = {0} and f((Sd K;)@ \ (Sd L)) = {1}.
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7.9 Cohomological Dimension

In this section, using the Eilenberg—MacLane complexes defined in the previous
section, we define the cohomological dimension and discuss its relationship with the
(covering) dimension. We apply the cohomological dimension to prove that dim X x
P = dim X + dim P for every metrizable space X and every locally compact (or
metric) polyhedron P (Theorem 7.9.7). This result was announced in Sect. 5.4.

In Theorem 5.2.3, the (covering) dimension is characterized as follows:

* For anormal space X, dim X < n if and only if, for each m > n and each closed
set Ain X, every map f : A — S™ extends over X.

Replacing S™ by |K(Z, m)|, we define dimz X < n,'! that is,

e dimz X < n if and only if, for each m > n and each closed set 4 in X, every
map f : A — |K(Z, m)| extends over X.

It is clear from this definition that dimz X < n implies dimz X < m for any m >
n. Then, it can be defined that dimz X = n if dimz X < n and dimz X #£ n.
Moreover,dimz X = oo means that dimz X £ n forany n € N. We call dimz X the
cohomological dimension of X .'? Using the Eilenberg-MacLane complex K (G, n)
instead of K(Z,n), we can also define the cohomological dimension dimg X with
respect to G.

Due to Theorem 5.2.3, to assert dimX < n, it suffices to examine the
extensibility for maps from closed sets in X to the n-dimensional sphere S”, and
it is not necessary to examine for ™ for m > n. For the cohomological dimension,
we have the same situation, sated as follows:

Theorem 7.9.1. For a metrizable space X, dimz X < n if and only if X satisfies
the following condition:

(e), Everymap f : A — |K(Z,n)| of each closed set A in X extends over X.

The “only if” part of Theorem 7.9.1 is obvious and the “if” part can be obtained
by induction and the following lemma:

Lemma 7.9.2. For a metrizable space X, the condition (e), implies (€),+1-

To prove this lemma, we use a path space. The path space P (X, x¢) on a pointed
space (X, xo) is defined as follows:

P(X, x0) = C((L,0). (X, x0)),

n Chigogidze’s book “Inverse Spectra,” the notation dimg, X is used.

12The cohomological dimension dimgz X was originally defined as the maximum of the number

neow such that H”" (X, A) # 0 for every closed set 4 in X, where H" (X, A) is the n-th relative
Cech cohomology group. This is why dimy, is called the cohomological dimension.
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and it admits the compact-open topology. Let e; : P(X,x9) — X be the map
defined by ej(a) = (1) (cf.1.1.3(3)). Then, e ' (xo) is simply the loop space
£2(X, xp) (cf. Sect. 4.14).

A map p : E — B is called a Hurewicz fibration if it has the homotopy lifting
property for an arbitrary space Z, that is, given a homotopy & : Z x I — B and a
map f : Z — E with pf = hy, there exists a homotopy h:Z x1— E such that
ph=handhy = f.

Proposition 7.9.3. For every pointed space (X, xo), the following statements
hold:

(1) The path space P(X, xo) is contractible;

(2) The map e, : P(X, xo) — X is a Hurewicz fibration whose image is the path-
component of X containing xo;

(3) If x € X belongs to the same path-component as xo then e; ' (x) ~ e; ' (xo) =
£2(X, x0);

4) If A is a subset of the path-component of X containing xo and there is a
contraction h © A x1 — A such that hi(A) = {a} and h;(a) = a for every
t €1 then e7'(A) ~ (X, x).

Proof. (1): We have the contraction & : P(X,xo) x I — P(X,xp) defined by
h(a,t)(s) = a((1 —1)s) foreach (o, 2) € P(X,x9) xIand s € I (cf.1.1.3(4)).
(2): It is trivial that the image of e; is the path-component of X containing xo.
To prove that e; : P(X, x9) — X is a Hurewicz fibration, let 7 : Z x I — X be a
homotopy and f : Z — P(X, xo) a map with e, f = hy, thatis, ho(z) = e; f(2) =
f(@)(1) forevery z € Z. We can defineamap /' : Z x I xI — X as follows:

, fU+1Ds)  if0<s<@+1)7",

h(z,t,s) =
hiz,(t+1Ds—1) if¢+1)'<s<I.

Then, /' induces the map /i : Z x I — C(I, X) defined by h(z,)(s) = h'(z.t,5).

Observe that

h(z,1)(0) = f(2)(0) = xo, h(z,1)(s) = f(z)(s) and
elﬁ(z,t) = ﬁ(z,t)(l) = h(z,1).

Thus, we have a homotopy h:ZxI— P (X, x¢) such that ho = f and eth = h.

(3): Take any w € ey!(x) and define maps f : e;'(x) — e[ '(xo) and g :
e (x0) > e;'(x) by f(a) = @ x ®* and g(B) = B * w. Itis easy to see that
gf ~idand gf ~ id. Refer to Sect.4.14

(4): Due to (3), it suffices to show that ;! (4) >~ e;!(a). By virtue of (2), we can
obtainahomotopyﬁ cer N (A)xI — el_l(A) such that 1o = id and e, 71 = h(eyxid).
Therefore, _

h|e1_1(a) x1I: el_l(a) xI— el_l(a)
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is a homotopy from id to ﬁl|e1_1(a). Hence, the inclusion e;!(a) C e;!(A) is a
homotopy equivalence. O

The following can be proved by analogy to 6.1.9(9):

Lemma 7.94. Let X, X; be closed sets in a compactum X such that X, N X, = @
or X1 D Xy, and let Y be an ANE with Y,Y, C Y that are also ANEs. Then, the
space C((X, X1, X2), (Y, Y1, Y2)) with the compact-open topology is an ANE. O

Now, we will show Lemma 7.9.2.

Proof of Lemma 7.9.2. Let f : A — K(Z,n + 1) be a map from a closed set 4 in
a metrizable space X . We will show that f extends over X. Consider the fibration

e1: E=P(|K(Z,n+1)|,v) — |K(Z,n + 1)|,
where vy € K(Z,n + 1) Then, E is an AE by Proposition 7.9.3(1) and 6.1.9(9)

(or Lemma 7.9.4 above). For each subcomplex L of K(Z,n + 1), e;'(|L]) is an
ANE by Lemma 7.9.4 because

er '(IL]) = C((, {0}, {1}), (IK(Z,n + )|, {vo}, |L])).
For eachi € w, we define

Ei=e'(|(KZn+ D)D) CE and A; = f~'(K(Z,n+1)D]) C A.

Then, E = J,¢, Ei and A = |, ¢, 4i-
e;'(0) C Ei C E=P(K(Zn+1)v)
fo 7 i 7
e 7/ el
- e
< s

Y o) <c A4 C A

|K(Z,n + 1)|

We will inductively construct the maps f; : A; — E;, i € w, such that
filAdici = fioi and fi(f7(0)) C e7'(0) for every 0 € K(Z,n + 1)@ Let
fo : Ao — Ep be a map such that e, fy = f|Ap. For instance, it can be
defined so that fo(f~'(v)) is a singleton for each vertex v € K(Z,n + 1)©.
Assume that f;_; has been constructed. For each i-simplex 0 € K(Z,n + 1),
fi—1(f~1(30)) C e;'(d0). Due to Proposition 7.9.3(4) and Corollary 7.8.10,

e;'(0) =~ QUK(Z,n + 1)|,v) ~ |K(Z,n)|.
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Hence, we can apply the condition (e), to extend f;—;|f~!(do) over X. By
restricting this extension, we have a map f, : f'(0) — e;!(0) such that
f,,|f_1(3cr) = fi- 1|f_ (do). Then, the desired map f; : A; — E can be defined
by fil fl (o) = Jolf™ (o) foreach i- -simplex o € K(Z,n + 1).

Now, we define f : A — E by f|A, = f; for every i € w. Because A is
metrizable, each x € A has a neighborhood U, in A such that f(U,) C |K(Z,n +
1)(k)| for some k € w (cf.4.2.16(5)). In other words, U, C Aj, which means
flU. = fi|U. Therefore, f is continuous. Moreover, for each x € A, f(x) is
contained in an i-simplex 0 € K(Z,n + 1). Then,

f(x) = fi(x) € fi(f(0) Cer'(0).

ie., elf(x) € 0. Thus, elf is contiguous to f', which implies elf ~ f.Since E is
contractible by Proposition 7.9.3(1), the map f extends over X, hence so does e f .
Therefore, f also extends over X by the Homotopy Extension Theorem 6.4.1. O

Because 8! ~ |K(Z, 1)|, the following is a direct consequence of Theorems 5.2.3
and 7.9.1:

» For every metrizable space X, dimz X < 1 if and only if dim X < 1.

For finite-dimensional metrizable spaces, the cohomological dimension coincides
with the (covering) dimension, which can be stated as follows:

Theorem 7.9.5. For every metrizable space X, dimz X < dim X. If X is finite-
dimensional, then dimy X = dim X.

Proof. The case dimX = oo is trivial. Then, it suffices to show the finite-
dimensional case, i.e., dim X = n < oo implies dimz X = n.

Let f : A — |K(Z.,n)| be a map from a closed set A in X. Since dA" ! is
a mapping (n + 1)-deformation retract of |K(Z,n)| for metrizable spaces, f is
homotopic to amap g : A — dA"T!. Because of dim X = n, g extends to a map
g :X — A" x~ §". Since |K(Z,n)| is an ANE, f also extends over X by the
Homotopy Extension Theorem 6.4.1. Hence, we have dimz X < n.

Now, assume that dimz X <n — 1. Let A~be a closed set in X. Then, every map
f:A— 0A" ~ S" lextendstoamap f : X — |K(Z,n — 1)|. Since A" is
a mapping n-deformation retract of | K(Z,n — 1)| for metrizable spaces, we have a
map g : X — dA" such that g|A = f|A = f, thatis, g is an extension of f. This
means that dim X < n — 1, which is a contradiction. Consequently, dimz X = n.

O

Now, using the cohomological dimension, we can prove the following lemma:

Lemma 7.9.6. For every metrizable space X, dim X x I = dim X + 1, where we
mean oo + 1 = o0

Proof. We may assume that dimX = n < oo. Since dimX x I < n + 1 by the
Product Theorem 5.4.9, it suffices to show that dimX xI > n + 1. Since X x I
contains a copy of I, we have the case n = 0. Consequently, we may assume that
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n > 0. Since dim X = dimz X = n by Theorem 7.9.5, we have amap f : A —
|K(Z,n—1)| of aclosed set A in X that cannot extend over X . Take a point xo € A
and let v = f(xo) € |K(Z,n —1)]. Leti : A C X be the inclusion. Then, the
following map is not surjective:

i*:C((X, x0), |K(Z,n —1)],v)) => C((4, x0), | K(Z,n — 1)],v)).

Since the loop space 2(]K(Z,n)|,v) has the homotopy type of K(Z,n — 1) by
Corollary 7.8.10, we can replace |K(Z,n — 1)| by 2(|K(Z,n)|,v). According to
Proposition 4.14.2, we have the following commutative diagram:

C((X x L, Hx), (IK(Z,n)|.v)) . C((X. x0). (2(|K(Z,n)],v), ¢v))

(i xidp)* l J/ i*
¢

C((A x 1, Hy), (IK(Z,n)|.v)) —— C((4,x0), (2(|K(Z,n)],v). ),

where both ¢ are bijective and the right i * is not surjective, hence the left (i x idy)*
is not surjective. Then, we have amap g : A x I — |K(Z,n)| such that g(H4) = v
and g cannot extend over X x I, which means that dimz X x I > n. Because X x I
is finite-dimensional, dim X x I = dimz X xI > n 4 1 by Theorem 7.9.5. O

Theorem 7.9.7. Let P be a locally compact polyhedron or P = |K|n be the
polyhedron of an arbitrary simplicial complex K with the metric topology. For every
metrizable space X,

dimX x P = dim X + dim P.

Proof. Since dim X x P < dim X 4+dim P by the Product Theorem 5.4.9, it suffices
to show thatdim X x P > dimX +dim P.Ifdim P = ocothendim X x P = o©
because P can be embedded into X x P as a closed set. Then, we may assume that
dim P = n < oo. In this case, P contains an n-simplex o, which is homeomorphic
to some I". Inductively applying Lemma 7.9.6, we have

dimX xo =dimX xI" =dim X + n.

Since X x o is aclosed setin X x P, it follows thatdim X x P > m + n. O

In the remainder of this section, we will prove the following theorem, which
means that any cell-like map does not raise the cohomological dimension:

Theorem 7.9.8. Let f : X — Y be a cell-like map between compacta. Then,
dimz ¥ < dimg X.

This is the direct consequence of the following theorem:

Theorem 7.9.9. Let f : X — Y be a UV" map between compacta. If dimz X <n
then dimz Y < n.



7.9 Cohomological Dimension 479

To prove this theorem, we need the following Vietoris—Begle-type mapping
theorem:

Theorem 7.9.10. Let f : X — Y be a UV"™! map between compacta and P an
ANR (or a polyhedron) with w; (P) = {0} for i > n. Then, f* :[Y, P] — [X, P]is
a bijection.

Note that it suffices to prove only the ANR case. To prove Theorem 7.9.10, we
will prove the following lemma:

Lemma 7.9.11. Let f : X — Y be a UV"™! map between compacta and P an
ANR with r;(P) = {0} fori > n. Suppose that A is a closed setin Y and f|f~'(A)
is an embedding. Then, amap « : A — P from A to an ANR P extends over Y if

af | f~1(A) extends over X.
B
> f7(4)
a\ P
A
/

f}l} ] fIJ;/

~
~
-

o

Proof. Letpr, : Q = I — I be the projection of the Hilbert cube Q onto the first
factor. Embed X and Y as closed sets in prl_l(l) ~ @ and let

Ox =0\ (' (D\X) and Oy = @\ (pr;' (1) \ ¥).

Since Qx and Qy are homotopy dense in @, it is easy to extend f to a map f :
Qx — Qy suchthat f(Qx\X) C Oy \YV,ie, f71(Y) = X, which implies that
f_l(~y) = f~!(y) forevery y € Y. The maps  and B extend to maps @ : R — P
and B : M — P, where M and R are open neighborhoods of X and A4 in Qx and
Qy, respectively. Because f is closed and f7'(Y) = X C M, we have an open
neighborhood N of Y in Qy such that f ~'(N) Cc M.

Take open covers of P as follows:

{P}Zwoiwliwzlwg.

Replacing R by a smaller one, we can assume that ,3|f_1(R) and &f|f‘l (R) are
Ws-close because

Bl (A) =BIf (A =af|fT () =aflf (4.
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Choose an open cover V, of Y in Qy so that
st(A4,Vy) C R and Vo[A] < @ '(W3).

Let U, be an open cover of Y in N with stiy < V. We can inductively choose open
coversU;, V;of Y in N,i = 1,...,n, as follows:

f_l(Vi) C’il f_l(u,'_l) and stl; < V.

Indeed, assume that V;_; has been obtained and take an open star-reﬁnelgent Uiy
of V;_i. Each y € Y is contained in some Uy € U;—;. Then, f~1(y) = f~(y) C
f‘l(Uy). Since f~!(y)is UV", f~'(y) has an open neighborhood Vy’ in M such
that any map from S/ to V] extends to a map from B/*! to f~Y(U,) for each

] < n — 1. Because f is closed, y has an open neighborhood V), in N such that
f '(vy) C Vi (C f '(Uy)). Therefore, V; = {V, | y € Y} is an open cover of Y
in N that has the desired property.

Since Y is compact, the open cover {U NY | U € U,[Y]} of Y has a finite
subcover U € cov(Y). Let K = N(U) be the nerve of Y with ¢ : ¥ — |K| a
canonical map. For each vertex U € K@ = U, choose a point ¥o(U) € f~'(U),
where Vo(U) € f~'(U N A) for U € U[A]. Thus, we have a map ¥y : |[KO| —
X C M. Since stU < Vy, it follows that ¥ is a partial f~'(V,)-realization of K.
Assume that v extends to a partial f ~'(V,_; 4)-realization ¥;_; : |[K@~V| — M.
For each i-simplex o € K, there is some V; € Vy,—;4; such that Yi—1(do) C
f~Y(V,). Then, we have some U, € U,—; such that V; C U, and v;—1|do extends
toamap V¥, : 0 — f'(U,). Now, we can extend y;_; to themap v; : |[K©D| — M
by ¥;|oc = ¥, for each i-simplex 0 € K. Forevery 0 € K, thereis V; € V41
such that ¥, (c@~V) c f~1(V,), hence

Yi(0) Cst(f T Vo), £ Un—i)
€ St(f_l(Vn_i-H), f_l(un—i))
<stf Ui) < FT Vi)

Thus, ¥; is a partial f ~1(V,-;)-realization of K. By induction, we can obtain a
partial £~ (Vp)-realization v, : K™ — M.
The nerve L = N(U[A]) of U[A] is a subcomplex of K. For each 0 € L, we

have V' € Vy such that ¥, (c™) c f71(V), where V N A # @ because v, (c?) C
=Y (V N A). Then, @(V) is contained in some W € W, hence

afy.(c™)ycal)cw.

Since B| /' (R) and @ f| f~'(R) are Ws-close and VV C R, it follows that
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B (0™ C st(W, Ws) € st W3 < W.

Therefore, ,3 Y ||[L™] is a partial W,-realization of L, which extends to a full W;-
realization y : |L| — P.

For each a € A, ¢(a) is contained in some o € L, where y (o) is contained in
some W € W;. Since 0© C Ula], it follows that

y(@®) = By (0©) = Byo(c)
€ B (st(a,U) N A) C a(st(a,U) N A)
C st(a(a), aU)) C st(a(a), Ws),

hence W N st(a(a), Ws) # @. Then, o and yp|A are Wp-close, which implies
a >~ yp|A.

_ On the other hand, we can define a map y, : |[K™M|U|L| — P by y,||[K™W| =
By, and y,||L] = y. Since m;(P) = {0} for every i > n, by skeleton-wise
induction, we can construct maps y; : |[K®@| U |L| — P, i > n, such that
Yi+1|| KD U |L| = y;. Because dim K = m < oo because K is finite, we have
amap y,¢ : Y — P. As we saw in the above, y,,¢|A = yp|A >~ «. By the
Homotopy Extension Theorem 6.4.1, a can be extended over Y. O

Proof of Theorem 7.9.10. First, we show that f* is surjective. Consider the
mapping cylinder M s, where we identify X = X x{1} C My.Letg : X xI — My
be the restriction of the quotient map. Then, ¢ is a UV"~! map and ¢~ (X) =
X x{l} C X xI.Foreverymapo : X — P,themap apry : X xI — P is an
extension of ag|qg~'(X).

Applying Lemma 7.9.11, we have amap & : My — P. Since the collapsing ¢y :
M — Y is astrong deformation retraction, it follows that

@Y)f = @Y)er|X ~@X =a.

Thus, we have f*[@|Y] = [«].
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Next, we show that f* is injective. The double mapping cylinder DM ; is defined
as the adjunction space

DMy = (Y x 0I) U yxigy (X xI).
Themap f xidf: X xI - Y innducesthemapf : DMy — Y x 1, which is
aUV" " mapand f|Y x I = id. Let ap,r; : ¥ — P be maps with f*[ag] =

f*len], ie., a0 f >~ oy f. Then, a homotopy /2 : X x I — P from oo f to a; f
induces themap h : DM, — P.

h

\

fl idl oDy P
A
YxI D Y xdl e
i

Applying Lemma 7.9.11, we have a map h:Y xI— P such that };|Y x I =
h|Y x dI, which means that / is a homotopy from « to «;. Consequently, it follows
that [ag] = [o1]- O

Now, we prove Theorem 7.9.9.

Proof of Theorem 7.9.9. Let f : X — Y be a UV" map with dimy X < n. For
each closed set A in Y, we denote f4 = f|f~"(4) : f~'(A) = A. Then, fy is
alsoa UV" map.Leti : A C Y and j : f~'(A) C X be the inclusions. We have
the following commutative diagram:

*

VK@) — [A|K(Z.n)]

- k

(XK@ ml] —— [f71(A). [K(Z.n)]].
J

According to Theorem 7.9.10, both vertical f* and f[ are bijective. Because
dimz X <n, j* is surjective, consequently so is i *. This means that dimz ¥ < n.
O

As a corollary of Theorem 7.9.10, we have the following:

Corollary 7.9.12. Let f : X — Y be a cell-like map between compacta and P
an ANR (or a polyhedron) with wt; (P) = {0} except for finitely many i € N. Then,
f*: Y, P] — [X, P] is a bijection. O
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Remark 12. As we saw in the previous section, a cell-like map f : X — Y is
not a shape equivalence even if X or Y is a compact AR. Therefore, the homotopy
condition on P is essential in Corollary 7.9.12.

7.10 Alexandroff’s Problem and the CE Problem

In Sect. 7.9, we have shown that dimz X < dim X for every compact space X and
dimy X = dim X if X is finite-dimensional (Theorem 7.9.5). Then, it is natural to
ask the following question:

* Does there exist an infinite-dimensional compactum with finite cohomological
dimension dimz?

This problem is called Alexandroff’s Problem. Recall that it has been shown in
Sect. 7.9 that any cell-like map between compacta does not raise the cohomological
dimension (Theorem 7.9.8). So, it is also natural to ask the following question:

* Do cell-like maps of compacta raise the dimension?

This is called the CE Problem. These two problems are equivalent. In fact, this
section has the purpose of establishing the following theorem:

Theorem 7.10.1. For every compactum X, the following are equivalent:

(a) dimz X <n;
(b) There exists a cell-like map f : Y — X for some compactum Y with
dimY < n.

In the next section, we will give an affirmative answer to Alexandroff’s Problem,
so the CE Problem is also positively answered.

To prove Theorem 7.10.1, we first establish a criterion to estimate the coho-
mological dimension of the inverse limit via the bonding maps. For each map
f X — Y from a compact space X to a metric space Y = (Y,d) andn,m € N,
we define o, (/) and o' ( f') as follows:

an(f) =inf{d(fg): g € C(X.Y), dimg(X) < n};
o, (f) =sup {a,,(f|A) 1A eCld(X), dimA < m}
Theorem 7.10.2. Let X = lim(X;, f;) be the inverse limit of an inverse sequence

of compact metric polyhedraf_Then, the following conditions are equivalent:

(a) dimz X <n;
() lim; o0 " t1(fi ;) = 0 foreachi €N,

where fij = fi--- fi1:X; = X, fori < j.
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Proof. (b) = (a): Let A be aclosed setin X and g : A — |K(Z,n)| be a map. For
eachi € N, let A; = p;(A), where p; : X — X; is the inverse limit projection.
Then, A = l(iLn(A,-, filAi+1) and each p;|A is the inverse limit projection. By
Lemma 7.1.7, we have some i € N and amap g; : A; — |K(Z,n)| such that
gipilA ~ g. Since |K(Z,n)| is an ANE, g; extendsto amap g; : U — |K(Z, n)|
over a neighborhood U of A; in X;. Let e = %dist(Ai,Xi \ U) > 0. Because X;
is a compact ANR, we can find 0 < § < & such that every pair of §-close maps to
X, are e-homotopic in X;. By (b), we can choose j > i so that a"*1(f; ;) < §.
Let K be a triangulation of X; with mesh f; ;(K) < & (Corollary 4.7.7) and
let L be the subcomplex of K with |[L| = st(4;, K). Then, we have a map
B |K@tY| — X; such that dim 2/ (|K"TD|) < nand d(W, fi;||K" D)) < 6,
hence &’ =~ f; ;||K"*V|. By the Homotopy Extension Theorem 6.4.1, h" extends
toamaph : |[K| = X; — X; such that h >~ f; ;. Then, mesh & (K) < 3¢, hence
h(IL|) C U and h||L| >~ f;;||L|in U. Thus, we have the map g;A||L| : |L| —
|K(Z,m)| and & h|IL| =~ & f.;IIL].

Recall that dA"*! is a mapping (n + 1)-deformation retract of |K(Z,n)| for
metrizable spaces. Since dim 2(|L"*TV|) < n and h(|L"*V|) C U, we have a map
g h(JLOFV]) — 9A"! ~ 8" such that g'|D = &/|D and g’ ~ &/|h(|JL"*V))
rel. D, where

D = g~l_—1(aAn+l) ) I’Z(|L(n+l)|).

Because dim (| K" *V|) < n, the map g’ extends to a map g’ : A(|JK"*D|) —
A" ~ §" Then, g'h||L" V| = g’h||L" V| ~ g;h||L"*V|. By the Homotopy
Extension Theorem 6.4.1, we can obtain a map g” : |L| — |K(Z,n)| such that
g"||L" V| = g’h||L"*TV| and g” ~ g;h||L|. Thus, we have amap g”’ : |[K"+D|U
|L| — |K(Z,n)| defined by g”||K"*D| = g’h and g"”"||L| = g". On the other
hand, for every m > n, every map from 8™ to | K(Z, n)| extends over B"*! because
m(|K(Z,n)|) = 0. By skeleton-wise induction, we can extend g’ to a map g* :
|K| = X; — |K(Z,n)|. Then, it follows that

g pjlA=2g"pilA~ghpj|A~gfijpjlA=giplAdx~g,

hence g can be extended over X by the Homotopy Extension Theorem 6.4.1.

(@) = (b): For each j € N and ¢ > 0, we have to find ky > j so that
o' (fix) < e for every k > ko. We assume that dim X; > n because the
other case is obvious. Let K be a triangulation of X; with mesh K < &/2
(Corollary 4.7.7). Let EW(K, n) be the simplicial Edwards—Walsh complex for K.
Recall that K™ C EW(K,n) = \J,cx Ko, Where K,, 0 € K, are simplicial
complexes obtained by Proposition 7.8.14. Suppose that the map p; | pj_l (K™ :
pj_l(|K(”)|) — |EW(K,n)| extends to a map g, : p;l(lK(”’)D — |EW(K, n)| for
m > n such that g, (p;'(0)) C |K,| foreacho € K _For each (m + 1)-simplex
o € K, observe that

gm(pjfl(ao)) C U |Ky| C |Ko| ~ |K(Z,n)|* for some k € N.

o/<o
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Since dimg pj_l(cr) < dimzX < n, gn |pj71 (0o) extends to a map g,
p;l(a) — | K,|. By virtue of Proposition 7.8.14(3), the map g,,+1 can be defined
by gm+1|p;1(cr) = g, forevery (m + 1)-simplexo € K.

Now, we have obtained the map ggimx : X — |EW(K, n)|, which extends to a
map g : U — |EW(K,n)| over a neighborhood U of X in ]_[j ey X j. Observe that

g(pr}l(a) NnX)= g(pj_l((f)) C |K,| foreacho € K.
Then, X has a neighborhood V' C U in [ [; ¢y X; such that
g(pr;l(a) NV) Cintst(|Ky|, EW(K,n)) foreacho € K.

We use the same notation X * as in the proof of Lemma 7.1.7. Because X is compact,
we can choose ko > j so that

X,:) = {x € [lien Xi | x() = fix(x(k)) fori < k} cV.
Letz € [ [,y Xi be fixed and define an embedding ¢; : X; — X by

@i(x) = (fri(x),..., fici(x),x,z2( +1),20 +2),...).

Then, for every k > ky, the following statement holds:
(*) If x € X, fix(x) €0 € K, and goi(x) € |K,r|, 0" € K, theno No’ # 0.

Indeed, since fjx = pr; gk, we have g (x) € pr;l(o) N V, hence g(gr(x)) €
intst(|Kq|, EW(K,n)). It follows that |K,| N |K,/| # @, which implies that o N
o’ # 0 by Proposition 7.8.14(3).

Let A be a closed set in X; with dimA < n + 1 and consider the restriction
fiklA+ A — X; = |K|. Using Proposition 7.8.14(6), we can obtain a map ¥ :
A — | K™ such that each v/ (x) is contained in 0™ for some o € K with ggy (x) €
| Ky | and

VI(ge) (K™ ) N 4 = go;l(gen) (K™ N A,

where the carrier of f;x(x) in K meets o by (*). Then, d(fjx(x),¥(x)) <
2mesh K < e. This means that o 71 (fjx) < e. ]

Let X = (X,dx) and (Y, dy) be metric spaces. Amap f : X — Y is said to
be non-expansive if dy ( f(x), f(x)) < dx(x,x’) for every x, x € X. An inverse
sequence (X;, fi)ien of metric spaces X; = (X;, d;) is said to be non-expansive
if every bonding map f; is non-expansive. For every inverse sequence (X, f;)ien
of metrizable spaces, we have d; € Metr(X;), i € N, such that (X;, f;);ey is non-
expansive. Indeed, for each i € N, let di’ € Metr(X;). The desired metric d; for X;
can be defined as follows:
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di(x,y) =Y dj(f.(x), f3: (),
J<i
where fj; = fj -+ fi—1: Xi — X and f;; =1id.

Lemma 7.10.3. Let X and Y be the inverse limits of inverse sequences (X;, f;)ien
and (Yi,gi)ien with p; © X — X; and q; : Y — Y; the projections,
respectively. Suppose that each Y; has an admissible complete metric d; such that
(Yi, gi)ien is non-expansive. Then, given maps h; : X; — Y;, i € N, such
that ) " en di(hi fi, gihiv1) < oo, there exists a map h : X — Y such that
di(hipi,qih) < ij,- dj(hjfi.gihj+1).

Proof. Since g; ; is non-expansive for i < j, it follows that

di(gijhjpj.gij+1hj+1pj+1) <dj(hjp;.gihj+1pj+1)
=di(hjfipj+1.8&hj+1pj+1) <djh; f;.gjhj+1).

Then, foreachi < j <k,

di(gijhjpj.gixhepx) <di(gijhjpj,gij+1hj+1pj+1)
+ o+ di (i k—1hk—1 Pk—1, &i ki i)
<djhjfij.gihj+1) + -+ di—1(hi—1 fi—1, gk—1h1).
Now, for each ¢ > 0, choose k € N so that ijk di(hjfj,gjhj+1) < e Then, for
each j' > j >k,
di(gijhjpj.&jhjpi) <djh;f; gihj+1)
+ -+ dj/—l(hj/—lf}/—lvgj/—lhj/) < &.
Therefore, (gi jh;p;)j=i is a Cauchy sequence in C(X,Y;) with the sup-metric.
Since Y; = (Y;,d;) is complete, so is C(X, Y;), hence (g; jh;p;);>i converges to
amap h; : X — Y;. It should be noted that g; 1} = h._, for each i € N. We can
defineamaph : X — Y by h(x) = (h}(x));en. Foreachi € Nand ¢’ > 0, choose
J >isothatd;(gi;h;pj, h;) <¢€'. Then,
di(hipia%‘h) = a’i(hipi,hﬁ)
< di(hipi, gihi+1pi+1) + di(gii+1hi+1pi+1, gii+2hit2pit2)
+ -+ di(gij1hj1pj-1.8ijhjpy) + di(gijhipj.hy)
<di(h; fi.gihi+1) + dit1(hiv1 fit1. i+1hi+2)
+ o+ di(gij—1hj—1 fi-1. gi k) + €.
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Therefore, d;(h; pi,qih) < iji di(hjfj,gjhjy1) for each i € N. This
completes the proof. O

Now, we can prove Theorem 7.10.1.

Proof of Theorem 7.10.1. The implication (b) = (a) is obtained by combining
Theorem 7.9.5 and Theorem 7.9.8.

(a) = (b): By Corollary 4.10.11, we may assume that X = LiLn(Xi’ fi), where
each X; is a compact polyhedron. By p; : X — X;, we denote the inverse limit
projection. As observed in the above, we can give an admissible metric d; for each
X; such that every f; : X;41 — X; is non-expansive.

By the uniformly local contractibility of compact metric polyhedra and Theo-
rem 7.10.2, we can inductively take two sequences | = gy > g; > &, > --- > 0 and
1 =k(1) <k(2) <--- € Nsothat
(1) 2¢; < &;—; and the 2¢;-neighborhood B(x, 2¢;) of each point x € X is

contractible in the &;_;-neighborhood B(x, &;_1);
Q) M (Sfriyritn) < &i/3.
Then, (1) implies that &; < 2~@~/)¢; for every i > j. Hence, disj & <&

Triangulate each X ;) by a simplicial complex K; with mesh K; < ¢;/3. By (2),

we have amap g/ : |K,.(:'_—1H)| — | K;| such that

+1 . +1
driy (gl friokan|KETY]) < &:/3 and dim g/ ((K"HY)) < n.

Pushing the image g/ (|Ki("+Tl) |) into |Ki(")| by Theorem 5.2.9, we can obtain a map
gl |Ki(”+T1)| — |Kl.(")| with di(iy(g/,g]) < meshK; < &;/3. Foreachi € N,
let Y; = |Ki(”)| and g; = g'|Yi+1 : Yiq1 — Y;. Thus, we have an inverse
sequence (Y;, gi)ieny With Y = 1(i£1(Y,<,g,-) % 0 (cf.4.10.9(1)), where the inverse
limit projection is denoted by ¢g; : ¥ — Y;. According to Theorem 5.3.2, we have
dimY < n.We canregard X = Liil(Xk(,‘), Jr@)ki+1)) (Corollary 4.10.4). Because
dri)(&i» friyki+nlYie1) < 2&;/3, we can apply Lemma 7.10.3 to the inclusions
hi :Y; C Xruy,i € N, toobtainamap s : Y — X such that

dri)(Praiyh. qi) < 228]'/3 < 2¢g;—1/3 foreachi € N.
Jj=i

We will now show that £ is cell-like. For each point x € X, we write x; =
DPr(i)(x) € Xi) for each i € N. Recall that fi ()i +1) is non-expansive. For each
y € Yi4+1, we have

driy(Xis & (V) < driy(friyki+0(Xi+1)s fr@yki+1(0))
+ diiy (i ki +1 () & (1)
< dri+n(Xiy1,y) + 2¢; /3.
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Then, it follows that
gi(B(xi+1,8) NYi41) CB(x;, 6 +26/3)NY; CB(xi,6-1)NY;.

Since Y; = |K,-(")| and mesh K; < &;/3, we have Q; = B(x;,&i_1) NY; # @.
Thus, we have an inverse sequence (Q;, g;|Qi+1)ien- The inverse limit Q =
l(iil(Q,-,g,-|Qi+1) # ) is a subspace of Y and ¢;|Q, i € N, are the projections
(cf. Propositions 4.10.8(2) and 4.10.9(1)).

We will show that 7~!(x) = Q.Foreach y € Q,

diiy (Priyh(¥), Xi) < diiy(PriyR(¥), i () + diiy(gi (¥), Xi)
<2g&-1/34+ -1 <2¢_;.
Then, lim; - o0 di)(pr@yh(¥), x;) = 0, which implies that 4(y) = x, thatis, y €
h~'(x). Conversely, if y € Y \ Q then ¢;(y) & Q; for some i € N, which means

that diy(qi (), xi) > &i—1. Since dri)(priyh(¥), ¢i (¥)) < 2ei-1/3, it follows that
Priyh(¥) # xi = pray(x), hence h(y) # x,ie,y € Y \ h~1(x).

It remains to prove that Q is cell-like. By Remark 2 of Theorem 7.1.8, for each
i € N, itsuffices to find j > i so that g; ;|Q; =~ 0. Observe that
git1i+3(Qi13) = gi+18i+2(B(Xi43. & 42) N Yiy3)
C &i+1(B(xit2.8i41) N Yiy2)
C B(xj41,28i41) N Yiqy,

which implies that g;y1;4+3(Q;+3) is contractible in E(xi+1,£,-) by (1). Since

dimgi4+1;4+3(Qi+3) x I < n + 1, pushing this contraction into |K;T1_1)| by

Theorem 5.2.9, we can conclude that g; 1 ;+3(Q;+3) is contractible in B(x; 41, & +
gi+1/3)N |K,-("+1)|. On the other hand, similar to g;,

diiy (xi, 8/ (V) < dii+n)(Xi+1. ¥) + 261/3 foreach y € |[K"*V|.
Then, it follows that

g/ B(xir1,e +i41/3) N K" V) CBxi e + i11/3 4+ 261/3) N Y
CB(x,ei-1)NY; = Q.

Thus, g;;+3(Q;+3) is contractible in Q;. This completes the proof. O
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In the rest of this section, we will give an affirmative answer to Alexandroff’s
Problem:

Theorem 7.10.4 (DRANISHNIKOV; DYDAK-WALSH). There exists an infinite-
dimensional compactum X with finite cohomological dimension (dimz X = 2).

Remark 13. In Theorem 7.10.4, dimz X = 3 for the first example constructed by
Dranishnikov, but dimz X = 2 due to Dydak—Walsh’s construction, where one
should recall that dimz X < 1 if and only if dim X < 1.

Combining Theorem 7.10.4 with Theorem 7.10.1, we have the following positive
answer to the CE Problem:

Corollary 7.10.5. There exists a cell-like map f : X — Y from a 2-dimensional
compactum X onto an infinite-dimensional compactum Y . O

Amap f : X — Y is said to be monotone if f~!(y) is connected for every
y € Y. The following profound theorem on approximations by open maps was
proved by J.J. Walsh. It is beyond the scope of this book to present the proof; refer
instead to [24] (References in Notes for Chap. 7).

Theorem 7.10.6 (J.J. WALSH). Let M be a compact connected (topological) n-
manifold (possibly with boundary), where n > 3. Every monotonemap f : M — Y
of M onto a metrizable space Y can be approximated by open maps g : M — Y
such that g~ (y) and f~'(y) have the same shape type for each y € Y."> In
particular, every cell-like map f : M — Y can be approximated by a cell-like open
map.

Let f : X — Y be a cell-like map from a 2-dimensional compactum X onto an
infinite-dimensional compactum Y as in Corollary 7.10.5. Embed the compactum X
into S° (or I°), and consider the adjunction space Y U S’ (or Y U I°). Restricting
the quotient map, we can obtain a cell-like map g : S°> > Y U, S° (org : I° —
Y Uy PP). Because S° (or I°) is a compact connected 5-manifold (with boundary),
we can apply Walsh’s Theorem 7.10.6 to obtain the following corollary:

Corollary 7.10.7. There exists a cell-like open map from S° (or I°) onto an infinite-
dimensional compactum. O

To prove Theorem 7.10.4, we introduce the cohomological dimension of a map
f X — Y. Wedefine dimy f < n provided that, for eachmap g : A — K(Z,n)
from a closed set Ain Y, gf| f~'(A) extends over X.

13More generally, this theorem is valid for a quasi-open (or quasi-monotone) map, where f is said
to be quasi-open or quasi-monotone if f(U) = V for each open set V in Y and each component
U of f~1(V).
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X o fUA) — |K(Z,n)

T

Y D A

We define dimy f = n if dimz f < n and dimg f £ n. Then, it is obvious
that dimzidy = dimz X. When ¥ = |K]| is the polyhedron of a simplicial
complex K, we define the cohomological dimension with respect to K as follows:
dimz(f, K) < n provided that, for each subcomplex L. C K and each map
g : |L| — |K(Z,n)|, the composition gf|f~'(|L|) extends over X. Using this
terminology, Proposition 7.8.15 can be reformulated as follows:

* For each simplicial complex K and n > 2,let w : |[EW(K,n)| — |K| be
an associate map of the simplicial Edwards—Walsh complex EW(K,n). Then,
dimz(w, K) < n.

The following is trivial by definition:

Lemma 7.10.8. Let f : X — |K| be a map with dimgz(f, K) < n. Then,
dimgz(f1Y,K) <n foreveryY C X. O

Lemma 7.10.9. Let X be the inverse limit of an inverse sequence (|K;|, fi)ien of
compact metric polyhedra. If lim; o, mesh f; ;(K;) = 0 and dimz(f;, K;) < n
foreachi € N then dimz X < n.

Proof. Letg : A — |K(Z,n)| be a map from a closed set A in X. Foreachi € N,
let A; = p;i(A), where p; : X — |K;| is the inverse limit projection. Then, A =
1(111(/1,‘, filAi+1) and each p;|A is the inverse limit projection. By Lemma 7.1.7, we
have some i € Nand amap g; : A; — |K(Z,n)| such that g; p;|A ~ g. Then,
gi extends to amap g : U — |K(Z,n)| over a neighborhood U of A4; in |K;|.
Since lim; .o mesh f; ;(K;) = 0, we can find j > i so that f; ;(st(4;,K;)) =
st(4;, fij(K;)) C U, where st(4;, K;) = |L| for some subcomplex L of K.
Observe that

Ajr1=pj+1(4) C f7(A)) C [T (WA K)) = f7 (L)) C |Kj1l.
Because dimz(f;, K;) < n, thereisamap g;+1 : |K; 41| = |K(Z, n)| such that
gl S (st(A;. K))) = & fijal 7 (s0(A;. K)).
Thus, we have amap gj1+1pj+1 : X — |K(Z, n)|. Then, it follows that

giv1pj+1lA=gifij+r1pj+1lA = gipilA ~g.
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Therefore, g extends over X by the Homotopy Extension Theorem 6.4.1. O

For a pointed space (Y, yo), let £2(Y, yo) be the loop space, that is,

2(Y, yo) = C((,3), (Y, yo)) = C((S', e1), (Y. yo)),

where the constant loop ¢y, is the base point of £2(Y, y¢). For each i > 1,
Q1(Y,y0) = 2(2'(Y, yo), c«), where c4 is the constant loop at the base point
x € 271(Y, y0) and 2°(Y, yo) means Y = (Y, ) itself. Here, omitting the
base point, we simply write £2'Y instead of £2(Y, y,). To prove Theorem 7.10.4,
we need three more lemmas whose proofs are not given because more algebraic
preliminaries would be necessary. For their proofs, refer to the paper by Dydak and
Walsh [8] (References in Notes for Chap. 7).

Lemma 7.10.10. * Let (X, x¢), (Y, yo) be pointed polyhedra, K be a countable
simplicial complex, and p : X — | K| be a map with the following properties:

(1) p~'(|L|) is a subpolyhedron of X for every subcomplex L of K ;

(2) There is some iy > 2 such that [p~'(0),2'Y] = {0} for every 0 € K and
1> 1.

Then, p induces the isomorphisms

P 1 I(K. p(x0)). ('Y, %)] = [(X, x0), ('Y, ¥)], i = o.

Let EW(K,n) be the simplicial Edwards—Walsh complex for a simplicial
complex K and n > 2.1t should be noted that if K is countable then so is EW (K, n).
Then, an associate map @ : |EW(K,n)| — | K| has property (1) of Lemma 7.10.10
because @ (| L|) is a subpolyhedron of |EW(K,n)| for every subcomplex L of
K. Recall that w~! (o) = o foreacho € K™ and w~' (o) ~ |K(Z, n)|<4m°) for
eacho € K\ K.

Lemma 7.10.11. For eachn > 2 andk > 1, [|K(Z*,n)|, 28] = {0} if m is odd
andi > morifmisevenandi > 2m — 1.

In Lemma 7.10.11, when n = 2 and m = 3, [|K(ZF,2)|, 2'S?] = {0} for each
k > landi > 3. Then, an associate map @ : | EW(K, 2)| — | K| satisfies condition
(2) of Lemma 7.10.10, where Y = 83, n = 2, and iy = 3. Consequently, @ induces
isomorphisms

w*  [|K|, 2°S*] = [[EW(K,2)|, 2°S3].

14This lemma is formulated in a more general setting in [8] and called the COMBINATORIAL
VIETORIS-BEGLE THEOREM, where X is a k-space (i.e., compactly generated) and property (1)
is that the inclusion p~'(|L]) C X is a cofibration for every subcomplex L of K. Due to the
Homotopy Extension Theorem 4.3.3, for an arbitrary simplicial complex K and any subcomplex
L of K, the inclusion |L| C |K]| is a cofibration.
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Therefore, for amap f : |[K| — §23S,

20 & fw £

Lemma 7.10.12. Let K = |J,cy Ki be a countable simplicial complex, where
K, C K, C --- are finite subcomplexes of K. Let (Y, yo) be a pointed polyhedron
and iy > 3 such that 7; (Y, yo) is finite for each i > iy. Foramap [ : |K| —
QUY, y),i >io—1,if f||K;| == 0 forevery j € N then f ~ 0.

It is known that 7;(S**~!) is finite for every i > 2n — 1.° In particular,
7 (2383 = m;43(S?) is finite for every i € N. Moreover, 7, (§2°S%) =
Tm+3(8) # {0} for some m > 3.'° Then, we have a map f : 8" — £2°S°
with f 2 0 for some m > 3.

Theorem 7.10.13 (DYDAK-WALSH). Foramap f : 8" — 2383 with f 20
(m > 3), there exists amap g : X — S™ of a compactum X with dimz X < 2 such
that g % 0.

Proof. Let K| = F(dA™*!) and identify |K;| = S™. Thus, we can regard f :
|K{| — £23S3. We will inductively construct maps g; : |Ki+i| — |K;|,i € N,
so that (|K;|, g;)ien satisfies the conditions of Lemma 7.10.9 for n = 2, and the
compositions fgi; = fg1---gi—1 : |K;| — £23S* are not null-homotopic (i.e.,
fg1---gi % 0). Then, X = 1(i£1(|K,<|,g,<) and the inverse limit projection p; :
X — | K| are the desired compactum and map. Indeed, dimyz X < 2 by virtue of
Lemma 7.10.9. Moreover, fp; 2 0 by Lemma 7.1.7(2), which implies that p; 2¢ 0.

Let EW(K{,2) be the simplicial Edwards—Walsh complex for K;. Then, as
observed above, an associate map @) : |[EW(K},2)| — |K| satisfies conditions
(1) and (2) of Lemma 7.10.10, hence it follows that fw; % 0. By Lemma 7.10.12,
fo]|K2| 2 0 for some finite subcomplex K, of EW(K{,2). Let g1 = @]||K>|
and replace K, by a subdivision such that mesh g;(K,) < 271

Next, let @, : |EW(K3,2)| — |K3| be an associate map of the simplicial
Edwards—Walsh complex EW(K>,2) for K,. By the analogy of g, we can apply
Lemma 7.10.10 to have (fg1)m, % 0. By Lemma 7.10.12, ( fg)®2||K3| 2 0 for
some finite subcomplex K3 of EW(K3,2). Let go = @,||K3| and replace K3 by a
subdivision such that mesh g12-(K3) < 272 and mesh g,(K3) < 272.

I5For example, see Theorem 7.1 in Chap. XI of Hu’s book “Homotopy Theory.” More generally,
7; (S") is finite for every i > n except for w4 (S*) (cf. Hatcher’s book “Algebraic Topology,”
p.339).

161n fact, 74(S®) = Z;, by Theorem 16.1 in Chap. XI of Hu’s book “Homotopy Theory.”
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|[EW(K,,2)| |[EW(K>,2)|
w| w2
/ . / U
2’8 < |K| | K>| | K|
£ g & g3

Inductively, let @; : |[EW(K;,2)| — |K;| be an associate map of the simplicial
Edwards—Walsh complex EW(K;,?2) for K;. Applying Lemma 7.10.10 we have
(fg1---gi—1)w; # 0. By Lemma 7.10.12, (fg1 - gi—1)@i||Ki41| # 0O for some
finite subcomplex K;4; of EW(K;,2). Let g; = @;||K;+1| and replace K;4; by a
subdivision such that mesh g; -+~ g; (K;+1) < 27" for every j < i.This completes
the proof. O

Now, we can prove Theorem 7.10.4.

Proof of Theorem 7.10.4. An example X in Theorem 7.10.13 is an infinite-
dimensional compactum with dimz X < 2. Since X hasamap g : X — S”
with g % 0, we have dim X > m > 3 by Proposition 5.2.8, which implies that
X is infinite-dimensional by Theorem 7.9.5. Recall that dimz X < 1 if and only if
dim X < 1. Then, it follows that dimyz X = 2. O

7.11 Free Topological Linear Spaces Over Compacta

Recall that the free topological linear space over a space X is a topological linear
space L(X) that contains X as a subspace and has the following extension property:

(LE) For an arbitrary topological linear space F, every map f : X — F of X
uniquely extends to a linear map'” f : L(X) — F.

If the free topological linear space L(X) exists then it is uniquely determined
up to linear homeomorphism. For every Tychonoff space X, there exists the
free topological linear space L(X) over X (Theorem 3.9.2), which is regular
(Lemma 3.9.1(2)). In addition, X is a Hamel basis for L(X) (Lemma 3.9.1(1)).

In this section, to study topological and geometrical structures of L(X), we will
reconstruct L(X) for a compactum X. Because L(X) is a linear space with X a
Hamel basis, it can be algebraically identified with the following linear space:

Riﬁ = {E e R¥ \ &(x) = 0 except for finitely many x € X},

7That is, a continuous linear function.
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where each x € X is identified with §, € R’; defined by

1 ify=ux,

5 (y) =
=) 0 ify # x.

We define y : @, cy(X" X R") — L(X) as follows:

y(x.A) =Y A(i)x(i) for (x.1) € X" x R".

i=1

We equip L(X) with the topology such that y is a quotient map. Identifying X =
X x {1} C X xR, y|X is the inclusion of X into L(X), which is continuous. For
an arbitrary topological linear space F, every map f : X — F uniquely extends to
alinear map f : L(X) — F because X is a Hamel basis of L(X). Since

Fy(e. 1) = A0) f(x(@)) for (x.2) € X" xR",

i=1

it follows that f Y 1 D,en(X" x R") — F is continuous, which means that f
is continuous. Consequently, L(X) has the property (LE). Then, it follows that the
inclusion of X into L(X) is an embedding.

Indeed, for each open set U in X and x € U, let f : X — I be a map with f(x) = 0 and
f(X \ U) = 1, where it suffices to assume that X is Tychonoff. By (LE), f extends to a

linear map f : L(X) — R.Then, x € ffl ((—%, %))DX C U. This means that U is open
with respect to the topology of X inherited from L(X) (cf. Remark before Theorem 3.9.2).

Each z € L(X) \ {0} can be uniquely represented as follows:

7= Zlixi, x; € X, 4; e R\ {0},

i=1

where x; # x; if i # j. This is called the irreducible representation of z. In
this case, we denote supp(z) = {xi,...,x,}, which is called the support of z. For
convenience, let supp(0) = 9.

To prove the Hausdorffness of L(X), for each z # 7/ € L(X), it suffices to find
amap f : L(X) — R such that f(z) # f(z'). When supp(z) # supp(z), we
may assume that there is xo € supp(z) \ supp(z’). By (LE), we have a linear map
f : L(X) — R such that

f(xo) =1 and f((supp(z) Usupp(z)) \ {xo}) = 0.
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Then, f(z) # 0 = f(Z'). When supp(z) = supp(z’), we have the following
irreducible representations:

n n
7= Zkixi, 7= Zlfxi, x; € X, AM? € R\ {0}.
i=1 i=1

Then, we may assume that Ao # A{,. By (LE), there exists a linear map f : L(X) —
R such that f(xo) = 1 and f(supp(z) \ {xo}) = 0. Then, f(z) = Ao # A[, = f(Z).

To prove that L(X) is the free topological linear space over X, it remains to show
the continuity of addition and scalar multiplication. For each n € N, we denote
Yn = y| X" x R" and we define

Ly(X) = {z € L(X) | card supp(z) < n}
=y,(X" xR") C L(X).
Forr > 0,let L,(X,r) = y, (X" xrd") C L,(X), where
0" ={h eR" | X0 RO = 15

Then, all L, (X) and L, (X, r) are closed in L(X), hence the restrictions y| X" x R"
and y| X" x r{" are quotient maps.

Indeed, for each z € L(X) \ L,(X), let supp(z) = {x1,..., Xm}, where m =
card supp(z) > n. By (LE), we have a linear map f : L(X) — R™ such that f(x;) = ¢;
foreachi = 1,..., m. Then, £~ (R™ \ {0}) is an open neighborhood of z in L(X) that
does not meet L, (X). Therefore, L, (X) is closed in L(X).

For each z € L(X) \ L, (X, r), we have the irreducible representation:

n
7= Zkfxi, xi € X, A; € R\ {0}.
i=1
By (LE), we have a linear map f : L(X) — R” such that f(x;) = e; for each i =

1,..., n. Let
U={LeR" | YXI_ 1A0)] > r}.

Then, f~'(U) is an open neighborhood of z in L(X) that misses L, (X,r). Therefore,
L,(X,r)isclosed in L(X).

It should be noted that if X is compact metrizable then so is L, (X, r) for each
n € Nand r > 0 because y| X" x r" : X" xr" — L,(X,r) is a perfect map
(see 2.4.5(1)).

Now, we consider the tower L(X,1) C L,(X,2) C ---, where L(X) =
U, en Ln (X, n). Then, we can show the following:

Lemma 7.11.1. L(X) = lim L,(X,n).
H

Proof. Let A C L(X) and assume that AN L, (X, n) is closed in L, (X, n) for every
n € N. Then, each y~1(4) N (X" xn{") is closed in X" x R". Let xy € X be fixed.
Foreachn < m € N, we define the embedding £, ,, : X" x R" — X" x R™ by
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hn,m(xl,...,xn;kl,...,kn) = (Xl,...,xn,X(),...,Xo;ll,...,/\n,o,...,O).
Because Y/, ., = y|X" x R" and ), (X" x m{Q™) = X" x m{", we have
h;}n(y_l(A) N (X" x m(}’")) =y 1A N X" xmO").

Hence, y~'(4) N (X" x mO™) is closed in X" x R” for each m > n. Since X" x R”
has the weak topology with respect to { X" xm{" | m > n}, it follows that y ! (4)N
(X" xR") is closed in X" x R". Then, y ! (A) is closed in @, ¢ (X" x R"), which
means that A4 is closed in L(X). O

Remark 14. For acompactum X, as mentioned before Lemma 7.11.1,each L, (X, n)
is also compact metrizable. Thus, L(X) is the direct limit of a tower of compacta.
Therefore, L(X) is perfectly normal and paracompact by Corollary 2.8.8, hence it
is hereditarily normal (= completely normal) (Theorem 2.2.7).

Recall that h_n)l X, xl'i)n Y, = li_r)n(X,, xY,)if each X, and Y, are locally compact
(Proposition 2.8.4). Using this fact, we can prove the following:

Lemma 7.11.2. L(X) is a topological linear space.

Proof. Since L(X) = li_I)nL,,(X,n) by Lemma 7.11.1 and each L,(X,n) is
compact, it follows that L(X) x L(X) = li_r)n(Ln (X,n) x L,(X,n)) and

Yu X Y o (X" xnd") x (X" xnd") - L,(X,n) x L,(X,n)

is a quotient map. Then, the addition a is continuous according to the following
commutative diagram:

(X" x nO") x (X" x nd") _ Ly 2n 2"

YnX¥n \L \L Y2n

L,(X,n)x L,(X,n) Ly, (X,2n),

where a((x, A), (x’, 1)) = ((x,x"), (A, 1)).
Since R = h_n)l[—n, n], we have L(X) xR = li_n>1(Ln (X,n) x [-n,n]) and

Yo xid 1 (X" x nQ") x [-n,n] — L,(X,n) x [-n,n]

is a quotient map. The scalar multiplication m is continuous because of the following
commutative diagram:



7.11 Free Topological Linear Spaces Over Compacta 497

(X" xn") x [-n,n] . X" x n2<>”2

Y Xid \L V2

L,(X,n) x [-n,n]

where m((x,1),7) = (x,...,x,tA,0,...,0). O
Consequently, we have arrived at the following theorem:

Theorem 7.11.3. For every compact space X, L(X) is the free topological linear
space over X. O

Let X and Y be compact spaces. For each map f : X — Y, we have a unique
continuous linear map f; : L(X) — L(Y) which is an extension of f. This is
functorial, that is, (gf); = g3/ foranymaps f : X — Y andg : Y — Z, and
idz(xy = (idx);. Thus, we have a covariant functor from the category of compact
spaces into the category of topological linear spaces.

Next, we will look into the geometrical structure of the free topological linear
space L(X).

Lemma 7.11.4. Foreachn <m € Nandr > 0,
L,(X)NL,(X,r)=L,(X,r).

Proof. Clearly, L,(X,r) C L,(X)N Ly(X,r). Forz € L,(X) N Ly(X,r), we
can write z = Zf;lt,-xi, where p < n,t; # 0,and x; # x; fori # j. On
the other hand, because z € L, (X, r), there is (y,A) € X™ x r{™ such that 7 =
S _ A7)y (j). Then, we have

J=1

> AG)

y(j)=xj

imzz

i=1

=D DDA =
j=1

i=1y(j)=xi

We define (y’, ") € X x r{" as follows:

x; ifi <p, ti ifi <p,

y'(i) =

and A(i) = {

x; ifi > p, 0 ifi > p.

Then, it follows that

P n
z=Y tixi =Y M)y @)=y V)€ L(X.r). O
i=1

i=1
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Proposition 7.11.5. Each L, (X) is closed in L(X), which is the direct limit of the
tower L, (X,1) C L,(X,2) C -+, i.e, L,(X) = li_I)nLn(X,m).

Proof. Foreachm > n € N, L,(X) N L,,(X,m) = L,(X,m) is closed in L(X)
by compactness. Thus, L, (X) is closed in L(X) by Lemma 7.11.1, hence it follows
that L,(X) = h_n)l L, (X, m) (cf. Remark for Proposition 2.8.1). O

Now, foreachn € N, let
Su(X) = Ly(X)\ Ly—1(X) = {z € L(X) | cardsupp(z) = n},

where Lo(X) = {0}. Then, each S,(X) is open in L,(X) by Proposition 7.11.5.
Let Vi,...,V, be n many pairwise disjoint open sets in X. Observe that U =
ya([T'2; Vi x (R \ {0})") is an open set in S, (X) and

v ') = P [ Ve x ®\{0})".

9e6, i=1

where &, is the n-th symmetric group. For each 8 € &,, the restriction
vl TTi=; Vo) x (R\ {0})" is a homeomorphism onto U as it is a bijective quotient
map.

In general, a map p : X — Xiscalleda covering projection if each x € X
has an open neighborhood U evenly covered by p, that is, there are disjoint open
sets Uy, A € A, such that p~'(U) = |, Uy and each p|Uj; is a homeomorphism
onto U. Therefore, we have obtained the following proposition:

Proposition 7.11.6. For eachn € N, y,|y, ' (S,(X)) is a covering projection over
Su(X) such that cardy, ' (x) = n! for each x € S,(X). In particular, each point of
Sy (X)) has an open neighborhood that is homeomorphic to an open set in X" x R".

O

As a corollary, we have the following:

Corollary 7.11.7. If X is compact metrizable, then each S, (X) is locally compact,
metrizable, and o-compact.

Proof. 1t follows from Proposition 7.11.6 that S, (X) is locally compact and locally
metrizable. Since a locally metrizable paracompact space is metrizable (2.6.7(4)),
S, (X) is metrizable (this also follows from the fact that the perfect image of
a metrizable space is metrizable (2.4.5(1))). Because of the perfect normality of
L, (X), the open set S, (X) is Fy in L,(X). The o-compactness of S, (X) follows
from that of L, (X). O

By Corollary 5.4.4 and Hanner’s Theorem 6.2.10(4), we also have the following
corollaries:
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Corollary 7.11.8. For a finite-dimensional compactum X, each S,(X) is finite-
dimensional, hence so is L,(X). Consequently, L(X) is a countable union of finite-
dimensional compact sets, hence L(X) is strongly countable-dimensional. O

As for the following, recall that a locally ANR paracompact space is an ANR
(6.2.10(4)).

Corollary 7.11.9. For a compact ANR X, each S,(X) is an ANR. O
The following lemma will be used in the next section.
Lemma 7.11.10. Foreachn € Nand0 < r < s, the following statements hold:

1) Yo tixi € Su(X) N Ly(X,r) implies Y i |t;| <r;
(i) S,(X)N L,(X,s) is a neighborhood of S,(X) N L,(X,r) in S,(X).

Proof. (i) This is trivial (cf. the proof of Lemma 7.11.4).

(ii) For each z = Z;’:l tix; € S,(X) N L,(X,r), we have disjoint open sets
Ui,..., U, in X such that x; € U;. Because 0 < Z;’:l |t;] < r < s by (i), we can
choose 0 < a; <t; <b;sothat0 < Y !'_, |t/| <sifa; <t/ <b;. Then,

Uz = ]/n(l_[:-;l U; x ]_[?=1(ai,bi)) C Sn(X) N Ln(X,S)

is an open neighborhood of z in S, (X), which implies the desired result. O

7.12 A Non-AR Metric Linear Space

By the Dugundji Extension Theorem 6.1.1, every locally convex topological linear
space is an AE. In this section, we show that the local convexity is essential. This
involves the following theorem:

Theorem 7.12.1. There exists a o-compact metric linear space that is not an AE,
hence it is not an AR.

To construct such a space, we use the free topological linear space L(X) over
a compactum X . Note that L(X) is the direct limit of compacta according to the
remark after Lemma 7.11.1. Then, L(X) is perfectly normal and paracompact,
hence it is also hereditarily normal (= completely normal) (Remark 14). Let My
be the set of all continuous metrics d on L(X) such that (L(X),d) is a metric
linear space. Conventionally, open sets, neighborhoods, closures, etc. in (L(X), d)
are called d-open sets, d-neighborhoods, d-closures, etc. In addition, continuous
maps with respect to d are said to be d-continuous.

Lemma 7.12.2. Each neighborhood U of 0 € L(X) is a d-neighborhood of 0 for
some d € My. In particular, My # @.
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Proof. Since L(X) is a perfectly normal topological linear space (Remark 14),
L(X) has open sets U; D U, D --- such that

U cU Uiy + U4 CU;, [—1, 1]U,'+1 c U; and {0} = ﬂU,‘.
ieN

For each x € L(X), because each U; is a neighborhood of 0 = 0x € L(X), we
can find s > O such that sx € U;, i.e.,, x € s~ U;. By Proposition 3.4.1,{U; | i €
N} is a neighborhood basis at 0 in some topology of L(X), which makes L(X) a
topological linear space. By Theorem 3.6.1, this topology is metrizable and coarser
than the original topology. Moreover, U is a neighborhood of 0 in this topology
because U; C U. Thus, we have the desired result. O

Lemma 7.12.3. For a compactum X, the following statements hold:

(i) Given d; € My, i € N, there exists some d € My such that idp(x) :
(L(X),d) — (L(X), d;) is continuous for everyi € N;
(ii) Each open set U in L(X) is d-open for some d € Mx;
(iii) For an arbitrary metric space Y and A C L(X), eachmap f : A — Y is
d-continuous for some d € My
(iv) For each metrizable subset A C L(X) and dy € My, there is d € My such
that d > do and d|A? € Metr(A).

Proof. (i) Note that the product space F = [[.on(L(X),d;) is a metrizable
topological linear space. Let 0 : L(X) — F be the diagonal injection (i.e.,
0(x)(i) = x for each i € N). Then, 0 is continuous and linear. The desired metric
can be defined by ® and an admissible metric for F. (For example, d(z,2) =
sup; ey min{i ', d;(z,2)} or d(z,7) = Y, oy min{27, di(z,2)}.)

(ii) For each x € U, U — x is a neighborhood of 0 in L(X). By Lemma 7.12.2,
U — x is a d,-neighborhood of 0 for some d, € 9ty. Choose r, > 0 so that
By (0,r,) C U —x andlet V, = By (0,7y) + x C U. Note that V; is also
open in L(X). On the other hand, we have a tower D; C D, C --- of compacta
with L(X) = li_I)nDi. Then, U = |J,n(U N D;) and each U N D; is separable
metrizable. It is easy to prove that U is covered by a countable subcollection of
(Vi | x € U}, say U = |J;en Vs, - By (1), we have d € 9y such that idy(x) :
(L(X),d) — (L(X),d,,) is continuous for every i € N. Since each V, is d-open,
U = ey Vy, is also d-open.

(iii) Foreach x € A andi € N, choose an open neighborhood V; (x) of x in L(X)
so that diam f(V;(x) N A) < 1/i. Then, V;(x) is d;*-open for some d;* € My by
(ii). Here, we write L(X) = 11_11)1 D; as in the proof of (ii). Because 4 = |, cn(A N
D,) and each A N D, is separable metrizable, we can obtain {x; | j € N} C 4
such that A C Uj en Vilx;) for every i € N. By (i), we have d € 9ty such that
idpxy @ (L(X).d) = (L(X), d,-xj) is continuous, hence every V;(x;) is d-open.
For each x € A andi € N, choose j € N so that x € V;(x;). Since V;(x;) is
a d-open neighborhood of x and diam f(V;(x;) N A) < 1/i, it follows that f is
d-continuous.
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(iv) Take d’ € Metr(A) and apply (iii) to obtain d” € 9y such that id4 :
A — (A,d') is d"-continuous. Note thatidy : 4 = (4,d’) — (A,d"|A?) is also
continuous, hence it is a homeomorphism. Therefore, d”|A? € Metr(A). We define
a metric on L(X) as follows:

d(z.7) = max {d"(z.7), do(z.2)}.

Then, it is easy to see that d € My is the desired metric. O

Lemma 7.12.4. Let E and F be metrizable topological linear spaces and h : E —
F a continuous linear surjection. If E and F are ARs, then for each open set U in
F, h|h="(U) : =Y (U) — U is a fine homotopy equivalence.

Proof. For every neighborhood V' of each y € F, choose an open neighborhood W
of 0 € FsothattW C W fort elland W + y C V. Then,

YW +y) = h7Y(W) 4+ x foreach x € h™'(y).

Since th™'(W) C h™'(W) for t € 1, it follows that 2~'(W) is contractible.
Thus, ~~'(W + y) is a contractible open neighborhood of 2~ '(y) in A= (V).
Hence, h is a local *-connection. It follows from Theorem 7.4.3 that & is a
fine homotopy equivalence. Due to Corollary 7.4.4, for each open set U in F,
h|h~Y(U) : = (U) — U is also a fine homotopy equivalence. O

Since there exists a cell-like open map from a finite-dimensional compactum
onto an infinite-dimensional compactum (Corollary 7.10.7), Theorem 7.12.1 can be
derived from the following theorem:

Theorem 7.12.5. Let X be an infinite-dimensional compactum with a cell-like open
map [ 1Y — X of afinite-dimensional compact ANR Y . Then, the free topological
linear space L(X) over X has a continuous metric d such that (L(X), d) is a metric
linear space but is not an AR.

Proof. LetdimY < m. Because X is infinite-dimensional, we have a closed set A
in X and amap g : A — S that cannot extend over X (Theorem 5.2.3). Since S™
is an ANE for normal spaces (Theorem 5.1.6(2)), A has an open neighborhood W
in L(X) such that 0 & cl W and g extends to amap g : cl W — S™. Observe that

SAHIY N LT AW) =g fIY 0 f7 (A W).
Later, using Haver’s Near-Selection Theorem 7.6.1 and the fact thatdimY < m
and f is a cell-like open map, we will prove the following claim:

Claim. There exists an open neighborhood U of X U clW in L(X) and the map
g fy extends to amap & : fn_l(U) — §".
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By virtue of Lemma 7.12.3, we have d € 9ty such that U and W are d-open
and g is d-continuous. Again, by Lemma 7.12.3, we have d’ € 9ty such that

fi 1 (L(Y).d") > (L(X),d) and h:(f;"(U).d") —>S"

are continuous. Thus, we have the following commutative diagram of metric spaces
and maps:

N A
8y

A A
ful klllfﬂ kz\lfn
\ \ :
(L(X),d) D U D w
g
@]
D A

Since L(Y) is a countable union of finite-dimensional compact sets by Corol-
lary 7.11.8, it follows that (L(Y),d’) is (strongly) countable-dimensional. There-
fore, (L(Y),d’) is an AR by Corollaries 6.10.1 and 6.2.9.

Suppose that (L(X),d) is an AR. Then, fhlfu_l(U) and fhlfu_l(W) are
homotopy equivalences by virtue of Lemma 7.12.4. Let k; : U — fq_l(U ) and
ky: W — fﬂ_l (W) be their homotopy inverses. Observe that

hki|W =~ hk, fiky =~ hky = § fiky ~ §|W.

Thus, we have hk;|A ~ g. By the Homotopy Extension Theorem 6.4.1, g extends
over U. This contradicts the fact that g cannot extend over X. Consequently,
(L(X),d) is not an AR. O

To prove the Claim, we need the following lemma, which easily follows from
Lemma 7.12.3:

Lemma 7.12.6. There exists some dy € My such that fn_l(cl W) and every
fu_l(Ln(X)) are dy-closed and g’fu|fu_1(cl w) fn_l(cl W) — S" is dy-

continuous. O

Recall that Comp(Z) is the space of all non-empty compact sets in a space
Z with the Vietoris topology. When Z = (Z,d) is a metric space, the Vietoris
topology of Comp(Z) is induced by the Hausdorff metric di. Then, by Theo-
rem 5.12.5(3), if Z is compact metrizable then so is Comp(Z). One should also
recall that S, (X) = L, (X) \ L,—i(X) is metrizable by Corollary 7.11.7.
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Lemma 7.12.7. For each z € S,(X), ¢a(z) = fu_l(z) N S,(Y) is a cell-
like compactum, and the set-valued function ¢, : S,(X) — Comp(S,(Y)) is
continuous.

Proof. We write z = Y __, t;x; by the irreducible representation. Since f “Tx)nN
f~Nx;) =0 fori # j, it follows that

on(2) = Ztif_l(x,-) = {Z?:l Liyi \ yi € f_l(xi)} R~ l—[f_l(xi),

i=1 i=1

where each f~!(x;) is a cell-like compactum. Then, ¢,(z) is also a cell-like
compactum.

To show that ¢, is upper semi-continuous (u.s.c.), let U be an open set in S, (Y)
such that ¢,(z) = >/, t; f~'(x;) C U. Choose disjoint open sets V,...,V, inY
and § > 0 so that

STy Vi 8 <minfly] |i=1.....n} and Y (4 = 8.4 +§)V; C U.

i=1

Because f is a closed map, each x; has an open neighborhood W; in X such that
f7'W) C V. Let

WzﬁW,-xﬁ(ti—&t,-+8)CX"xR”.

i=1 i=1

Then, y,(W) is an open neighborhood of z in S, (X). For each (x, 1) € W,

o ) = Y A £ (D) € Yt~ .1 +B)Vi C U

i=1 i=1

Therefore, ¢, is u.s.c.

Next, to prove that ¢, is 1.s.c., let U be an open set in S, (Y) that meets ¢, (z) =
St f 7 (x;). Choose y; € f1(x;),i = 1,...,n,s0thaty '_, t;y; € U. Since
yi # y; fori # j, we have disjoint open sets Vi, ..., V, in Y and § > 0 such that

n
yi € Vi, 8<min{|t,~| | i = 1,...,n} and Z(ti—8,t,-+8)Vi cU.

i=1

Because f is an open map, each f(V;) is an open neighborhood of x; = f(y;) in
X. Now, let

WZﬁf(V,')Xﬁ(li—S,ti+8)CX”XR".

i=1 i=1
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Then, y,(W) is an open neighborhood of z in S,(X). For each (x,A) € W,
@n(Yu(x,1))NU # 0. Indeed, choose y! € V;,i = 1,...,n,sothat f(y]) = x(i).
Then, it follows that

D Ay € Y A ST x() = @alya(x,4)) and
i=1 i=1

Zn:/\(i)y,{ € Zn:(ti -8, +8)V:i CU.

i=1 i=1

Therefore, ¢, is 1.s.c. O
Now, we will prove the Claim.

Proof of Claim. In the following, we will inductively construct closed sets V), C
V! C L,(X) and maps h, : fn_l(Vn’ UclW) — §™ n € N, so as to satisfy the
conditions below:

) L,(X)Nn(XUclW) Cint, V, CV, Cint, V);

2) L,(X)NVyq1 = Vyand L, (X) Nint,4q V1 = int, Vi3

(3) hal [T A W) = g fil 7 (A W);

@) Bt | /71 (Vy Ul W) = hy,

where we denote int, A = int;, (xyA for A C L,(X). Then, V = |, en Vi 18
a closed neighborhood of X U clW in L(X) = li_r)nLn (X) by (1) and (2). Since

L(Y) = h_n>1 L,(Y) and fn_l (Ly(X)) D L,(Y), it follows from Proposition 2.8.2
and (2) that

£y =tim (£710) 0 L) =T (£ (V) 0 La(Y)).

Then, by (4), we have the map hy : fn_l(V) — §™ such that hoo|fn_1(Vn) =
hal £, (Va), hence heol ;7' (cl W) = g fil ;7' (I W) by (3). Thus, we have U =
intV and h = heo| ftl_l (U), which are needed in the Claim.

The first step. Because dimY < m, themap g f|Y N fu_1 (c1 W) extends over Y

(Theorem 5.2.3), hence the map g f extends to amap hp : ¥ U fn_l(cl W) — §™.
Since S" is an ANE for normal spaces (Theorem 5.1.6(2)), ho extends to a map
ho : Go — S™ from an open neighborhood Gy of Y U ftl_l (c1 W) in L(Y). Consider
the following diagram:
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GO_*‘~\\ /’l_o

~
~

U ho N

~
N\

/\
YUL T C@W) > f7w) —= 87

| A

XUclW ) clWw D A

Recall that ¢; : S;(X) — Comp(S;(Y)) is the continuous set-valued function
defined by ¢;(z) = fn_1 (z) N S1(Y) (Lemma 7.12.7). Then, we have the following
open set in S;(X):

M, = {z € Si(X) | p1(2) C Go}.

which is open in L;(X) because S;(X) is open in L;(X). Observe that
e1(x) = f71(x) CY C Gy forx € X and
01(x) C f;7'(@) € f7 (el W) C Gy forz e Li(X) NclW,

hence L;(X) N (X UclW) C M,. Therefore, we can find closed sets V; C V/ C
L1(X) such that

Ll(X) N (X U CIW) Cint; V; C Vi Cinty Vll C Vll C M.
Since f; is continuous, we have the continuous set-valued function
g1 = oL fil £, (My) : f;7 (M) — Comp(S1(Y) N Go).

For each y € fu_l(Ml), 01(y) = @i(fi(y)) is a cell-like compactum by
Lemma 7.12.7. Since S;(Y) is finite-dimensional, o-compact, and metrizable
(Corollaries 7.11.7 and 7.11.8), so is the Fj-set fn_l(Ml \clW) = fu_l(Ml) \
fn_l(cl W) in S;(Y). Moreover, S1(Y) N Gy is an ANR because so is S;(Y)
(Corollary 7.11.9). By virtue of Lemma 7.12.3(iv), we have d; € 9y such
that d; > dy and d,|S;(Y)?> € Metr(S;(Y)), where dy is the metric obtained
by Lemma 7.12.6. Note that fn_l(cl W) is d,-closed and g‘fq|fn_l(cl W) is d;-
continuous. We can apply Haver’s Near-Selection Theorem 7.6.1 to obtain a map

£ TN (M \ W) — $1(Y) N Go

such that d, (&1 (), ¢1(y)) < di(y, fn_l(cl W)) forevery y € fn_l(Ml \ cl W).



506 7 Cell-Like Maps and Related Topics

S1(Y) N Gy Comp(S1(Y) N Gy)
ho @1
\ / g / n

S W) —— 8" < £ (M \ el W) Comp(S;(Y))
ahy hoky é

Sy l / Sy T o1
g

clw M \cW Cc M; C S1(X)

Then, we can define £, : fq_l(Vl’ UclW) — S™ as follows:

_Vef) if ye T Eaw),
hi(y)=4"- , O
ho§1(y) if y € fm (V] \clW).

We will verify the continuity of /;. Since fu_l(Vl’ \ cl W) is an open set in
fn_l(V{ U cl W), we have to show the continuity of /; at each y € fn_l(cl w).
To this end, we will show that 4, is d;-continuous at y because id : L(Y) —
(L(Y), d;) is continuous. Since &, |fn_1(c1 W) = gfu|fn_1(cl W) is d;-continuous,
it suffices to prove that

Aim di(yi.y) =0, yi € fviNaw) = Jim ho&1 (i) = & f1(9)-
Since @1 : f,”'(M1) — Comp(S1(Y) N Gy) is us.c. and

diE i), @) < di(yi, f7H(CAW)) < di(i, p),

it follows that {&;(y;) | i € N} U @;(y) is compact, hence (£;(y;));en has a

convergent subsequence (§1(y;;)) jen. Since d1(51(yi;), 1(¥)) = 0, (51 (¥i;)) jen
converges to some

z€@i(y) = ei(() = {71 A NSIY) C £ (A W).

Then, (ho€1(yi;))jen converges to ho(z) = gf;(z) = gfy(y). By the same
argument, any subsequence of (ﬁoél(yi))ieN has a subsequence converging to
g fy(¥). This means that lim; 00 10§1 (yi) = & f5(¥).

The inductive step. Assume that V,_i, Vn/_l, and h,_; have been constructed.
Because S” is an ANE for normal spaces, /1,1 extends to a map ﬁn_l G —>
S™ from an open neighborhood G,—; of fq_l(Vn/—l UclW) in L(Y). Recall that
¢n : Sp(X) — Comp(S,(Y)) is the continuous set-valued function defined by
on(2) = fn_l(z) N S,(Y) (Lemma 7.12.7). Let
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M, ={z€ S,(X) | gu(2) C Gy} and N, = M, Uint,_, V,_,.

Then, M, is open in S, (X), hence in L, (X).

We will show that N, is open in L, (X). Suppose that N, is not open in L, (X).
Then, N, N L,(X,m) is not open in L, (X, m) for some m € N because L,(X) =
li_n>1L,, (X, m) (Proposition 7.11.5). Since X is compact metrizable, L,(X,m) =
Yu (X" x m{Q™) is also compact metrizable. Then, there is some z € N, N L, (X, m)
that is the limit of z; € L, (X, m)\ N,,. Since M,, is openin L, (X), it follows that 7 €
int,_; Vn’ _; C Ly—1(X). Then, L, (X) contains only finitely many z;. Otherwise,
infinitely many z; would be contained in int,—; V/_, C N,. Consequently, we may
assume that z; € S,(X) = L,(X) \ L,—1(X) forevery i € N. Since z; ¢ M,,, we
have y; € ¢,(z;) \ Gn—1. Recall that ¢, (z;) = fn_l(zi) N S,(Y). Then,

Fii) =2 € Ly(X.m) N Sy(X) = yu(X" x mO™) N S, (X).

Since y; € S,(Y), it follows that y; € L,(Y,m) = y,(Y" x m{"). Because
L, (Y, m) is compact, we may assume that lim; o, y; = y € L, (Y, m). Then,

fi(y) = lim fy(y;) = lim z; =z,
1—>00 1—>00
hence y € fn_l(z) C fn_l(Vn/—l) C Gy—;. Therefore, y; € G,—; for sufficiently

large i € N, which is a contradiction. Thus, N, is open in L, (X).
Foreach z € S,(X) Ncl W, we have

¢n(2) C f;7'(@) C £ (ClW) C Gy
Hence, S, (X) Ncl W C M,,. Then, it follows that
L,(X)N(XUclW)=(S,(X)NnclW)U (Ln_l(X) N(X Ucl W))
C M, Uint,_ Vn/—l = N,.

Since L(X) is hereditarily normal (= completely normal) (Remark 14), so is L, (X),
hence, we can find an open set V in L, (X) such that

(5) (L,(X) N (X UclW)) Uinty—s V=1 C V and
(6) LV N ((Lu=1(X) \ Vy1) U (Lu(X) \ Ny)) = 0.

LetV, =V, Ucl Vc N,,. Then, it follows from (6) that

Ln—l(X) n Vn C Vn—l C Ln—l()()ﬂ Vna
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L,(X)NclW

- < L,(X)
\
/\\é{_‘\\ - - y X
/oy, TN )

/ s ’
, (\\ Va <, / Vn—l
- R /44 /
| V/l Y Vi1
N M, s
~ ~
-—-" N, = M, Uint,_, V/t/—l

Fig. 7.6 M,, N,,and V,

hence L,—;(X) NV, = V,_;. Moreover, by (5),

int,_ V,_y C L,_1(X)NV C L,_(X) Nint, V,
Cinty_ (Lo (X) N V) = int,_; V.

Thus, we have L,,—;(X) Nint, V,, = int,—; V. Choose a closed set V! C L, (X)
so that V,, C int, V] C V! C N,. Thus, we have obtained V,, and V/ satisfying
conditions (1) and (2) (Fig.7.6).

Because f; is continuous, we have the continuous set-valued function

On = @nfulfn_l(Mn) . fq_l(Mn) g Comp(S,,(Y) N Gu-1),

where S, (Y)NG,— is an ANR because so is S, (Y) (Corollary 7.11.9). Since S, (Y)
is finite-dimensional o -compact and metrizable (Corollaries 7.11.7 and 7.11.8), so is
the F,-set fn_l (M \clW) = fn_l (Mn)\fn_l (c1W)in S,(Y). By the analogy of d,
we apply Lemma 7.12.3(iv) to obtain d, € My such that d, > dy and d,|S,(Y)? €
Metr(S,(Y)). Then, fn_l(Ln_l(X) UclW) = fn_l(Ln_l(X)) u fn_l(cl W) is dy-
closed and g f;| fu_l(cl W) is d,,-continuous.

Due to Lemma 7.11.10(i), S, (Y) N L, (Y, m + 1) is a neighborhood of S, (Y) N
L,(Y,m) in S, (Y) for each m € N. Then, we have an L.s.c. function ¢, : S,,(Y) —
(0, o) defined by

Gn(y) = %dn(van(Y) \ L,(Y,m + 1))
ifyeS,(Y)NL,(Y,m)\ L,(Y,m—1),meN.
Indeed, assume that y € S,(Y) N L,(Y,m) \ L,(Y,m — 1) and {,(y) > ¢, i.e.,

%dn .S, (Y)\ L,(Y,m 4 1)) > t. Then, the following V), is a neighborhood of y
in S, (Y):
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Vy={y € Su(Y) | 3du(y. Su(Y)\ Lu(Y.m + 1)) >t}
N Ly(Y.m+ 1)\ L,(Y,m = 1).

Foreach y’ € V,, if y’ € L,(Y, m) then

&) = %dn(Ys Sp(Y)\ Ly(Y,m + 1)) > 1,

and if y’ € L, (Y, m) then

é-n(y/) = %dn(ya Sn(Y) \ Ln(va + 2))
> 14,5, 8,(Y)\ L,(Y,m + 1)) > ¢.

Applying Theorem 2.7.6, we have amap 1 : S,(Y') — (0, 1) such that 0 < 1, (y) <
£, (). Then, it follows that

M (¥) < 3dn(y, Su(¥)\ Ly (Y, m + 1))
foreachy € S,(Y)N L,(Y,m)and m € N.
Because each ¢, (y) is compact, we can define 7, : fq_l(M,, \clW) — (0,1)

by 7,(y) = min n,¢,(y). To prove the continuity of 7,, observe that the following
set-valued function is continuous:

S My \ el W) 3 y = 0,0, (y) € Comp((0, 1)).

Foreach y € fq_l(M,, \ cl W) and ¢ > 0, we have § > 0 such that

dn()’vy/) <3 = dgMugn(y), nnﬁbn(y/)) <g,

where dy is the Hausdorff metric on Comp((0, 1)) induced by the metric d(¢,t") =
[t —t'|. When dp(1,@n(), 1@n(y')) < &, we can find t € 1,¢,(y) and ¢’ €
Mn@n(y") such that |t — 7,(y")] < e and [t' — 7l,(y)| < e. Then, 7,(y) <t <
Mn(y') +eand 7,(y') < 1" <7,(y) + & which means that |7,(y) — 7. ()')] < .
As in the first step, we apply Haver’s Near Selection Theorem 7.6.1 to obtain a
map
En fu_l(Mn \clW) = S5, (Y)N Gy

satisfying

dy (& (1), @n () < min {d, (v, £;7 (L1 (X) Ul W), 712 ()}
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G S Sy (Y) N Goet  Comp(Sy(Y) N Gooy)
}'_ln—l }'_ln—l ‘Zn
U & N
fu_l(Vn’_1 UcdW) ——= S fn_l(Mn \ cl W) Comp(S,(Y))

hn—1 h_nflsn Pn

Jy

T%

M, \cW C M, C SuX)

Here, it should be remarked that the distance between /,_&,(y) and 7, (y)
converges to 0 as y tends to fn_l(cl W) but it does not always decrease as y tends

to fq_l(Vn/—l \ clW).
We will show that the line segment from ip—16,(y) to hy—1(y) is contained in
G, if y is close to fu_l(Vn’_1 \ cl W). To see this, let

Ry ={y € £, (My \clW) | (y,&(»)) C Go—1} and
T, = R, U f,7'(int,—y V,_, UclW).

Note that fﬂ_l (M, \ c1 W) is open in fﬂ_l (Ly(X) UclW). Since G,—; is open in
L(Y) and §, is continuous, it follows that R, is open in fn_l (L,(X)\ cl W), hence
so in fu_l(Ln(X) UclW).

We now show that 7, is open in fn_l(L,, (X) UclW). Assume that T, is not
open in fn_l(L,, (X) U cl W). Because fn_l(L,, (X)UclW)isclosed in L(Y) =
Yi)n L, (Y, m) (Proposition 7.11.5), we have

ST L (X)) UcdW) = lim (S (La(X) U W) N Ly (Y. m)).

Then, T,N L, (Y, m) is not open in fu_l (L,(X)UcdW)NL,(Y,m)forsomem € N,
hence we have z € T, N L, (Y, m) which is the limit of

s € f LX) U W) N Ly(Y,m)\T,, i €N.

Since R, is open in fn_l(L,, (X)UclW)and z; € R,, i € N, it follows that
€ fu_l(intn_l V)_, UclW). Note that N, is open in L, (X), L,(X)NclW C N,,
andint,_; V,_, C N,, hence N,,Ucl W is a neighborhood of f;(z) in L,(X)Ucl W.
Therefore, we may assume that z; € fu_l(Nn U clW) for every i € N. Then,
Zi € fn_l(M,, \ ¢l W) because z; & fn_l(intn_l V/_, UclW). Since z; & R,, we
have (z;, ,(z)) Z Gp—1.
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On the other hand, since z; € L,(Y,m), it follows that fi(z;) € L,(X,m).
Note that fi(z;) € M, C S,(X). Then, fi(z;) € S,(X) N L,(X,m). For 7 =
Y1 tjyj € Sy(Y), by Lemma 7.11.10(i),

j=1
£i@) =D 1 f(;) € Su(X) N Ly(X.m) = 7 € Ly(Y. m).
j=1
Thus, it follows that
@n(@) = @a(fi(@) = f7' (f3@)) N Su(Y) C S, (Y) N Ly (Y, m),

hence &,(z;) € L,(Y,m + 1) because

dn(gn (Zi)7 @n(zl)) < ﬁn(zi) = min nn¢n(zl)
= %min {d,,(y, Sy (Y)\ L,(Y,m + 1)) | y € (ﬁ,,(z,-)}.

Since L,(Y,m-+1) is compact metrizable, so is Comp(L,(Y,m+1)) (Theorem
5.12.5(3)). Then, we may assume that &, (z;) converges to some a€ L, (Y,m+1) and
also ¢, (z;) converges to some K € Comp(L, (Y, m+1)). Since f;(¢.(z)) = fy(z)
converges to f;(z), it follows that K C fﬂ_l (f4(z)). Observe that

Tim d, (6 (@), §a(@) < 1im d(zi, ;7 (Lot (X) Ucl W)
< lim d,(z;,z) = 0.
1—>00
Hence, lim; .o d,,(a, ¢,(z;)) = 0. Since L, (Y, m 4 1) is compact, d, is admissible

on L,(Y,m+ 1),hencea € K C fn_l(fu(z)). By the linearity of f;, fn_l(fg(z)) is
a flat, which is convex. Then, it follows that

(z.a) C 7' (fs2) C S (V,_ Ul W) C Gy
Since (z;, £,(z;)) converges to (z,a) in Comp(L,(Y,m + 1)), (z;,&,(z:)) C Gp—1
for sufficiently large i € N, which is a contradiction. Consequently, 7}, is open in

fu‘1 (Ly(X)UclW).
Now, choose an open set B in fn_l(L,, (X) UclW) so that

STV, UcdW)C BCcBCT,
and let 8 : fﬂ_l (L, (X)UclW) — Ibe a Urysohn map with

B(cIB) =0 and B(f,” (La(X)Uc W)\ T,) = 1.
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From the definition of 7,,, it follows that

(1=By + BOE(Y) € Guy fory € f71 (M, \ cIW).
On the other hand,

STV U W)\ B C f7 (N, Ud W)\ £V, U W)
= fi (M, \ el W).

Then, we can define a map £, : fn_l(V;{ UclW) — S™ by

hu1(¥) if y €clB,

hy (Y) =3 - .
hu—1 (1= By + B)éa(y)) ify & B.

Because l_zn_l is an extension of h,_;, the map h, satisfies conditions (3) and (4).
This completes the proof. O

Notes for Chap. 7

As mentioned at the beginning of this chapter, the concept of cell-like maps is profoundly related
to Shape Theory and Decomposition Theory. For insight into these theories, refer to the following
textbooks:

e S. Mardesi¢ and J. Segal, Shape Theory, North-Holland Math. Library 26 (Elsevier Sci. B.V.,
Amsterdam, 1982)

* A. Chigogidze, Inverse Spectra, North-Holland Math. Library 53 (Elsevier Sci. B.V., Amster-
dam, 1996)

¢ R.J. Davarmann, Decomposition of Manifolds, Pure and Appl. Math. 124 (Academic Press,
Inc., Orlando, 1986)

Shape Theory was founded by K. Borsuk in 1968. As a textbook of Shape Theory, his own book
gives a good introduction:

* K. Borsuk, Theory of Shape, Monog. Mat. 59 (Polish Sci. Publ., Warsaw, 1975)

To study cell-like maps, a background in Algebraic Topology is required. There exist many
textbooks on Algebraic Topology. Among them, we recommend the following:

e E. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966)
e S.-T. Hu, Homotopy Theory (Academic Press, Inc., New York, 1959)
* A. Hatcher, Algebraic Topology (Cambridge Univ. Press, Cambridge, 2002)

The paper [13] gives a good survey of cell-like maps up to the mid-1970s. A compactum A
in an n-manifold M is called cellular if A has an arbitrarily small neighborhood in M that is
homeomorphic to B”. In other words, A can be written as A = ( ),y Bi, where B; ~ B"
and B;4; C int B;. Every cellular compactum is cell-like but the converse does not hold. The
Whitehead continuum is an example of non-cellular cell-like compacta (see Daverman’s book, pp.
68-69).
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The concept of the (n-)soft map was introduced by Shchepin in [19] and generalized to the
(polyhedrally) approximately (n-)soft map in [20]. These are discussed in Chigogidze’s book
above. The 0-Dimensional Selection Theorem 7.2.4 was established by Michael [14, 15]. In [10],
Kozlowski introduced the concept of the local n-connection and proved Theorem 7.3.6.

The Toruniczyk characterization of the Hilbert cube Q (Theorem 7.7.1) was established in [23].
This characterization (more generally, the Toruiiczyk characterization of Q-manifolds) is the main
theme of van Mill’s book “Infinite-Dimensional Topology” mentioned in the Preface. The author’s
second book “Topology of Infinite-Dimensional Manifolds” can also be referred to. The result of
Adams used in Sect. 7.7 appeared in [1]. It also follows from the work of Toda [22]. The Taylor
example in Theorem 7.7.5 was constructed in [21] (cf.[18]). The example of Theorem 7.7.8 is
due to Keesling [9]. Using the Taylor example, many counter-examples are constructed in ANR
Theory. For example, in [16], van Mill constructed a map f : Q@ — Y of the Hilbert cube Q onto
anon-AR compactum Y such that £ ~!(y) &~ Q forevery y € Y, and in [17] he also constructed
a separable metrizable space X such that, for each compact set A in an arbitrary metrizable space
Y, every map f : A — X extends over Y but X is not an ANR.

Usually, the Eilenberg-MacLane complexes are constructed as CW-complexes, but we con-
structed them as simplicial complexes in Sect. 7.8.

Theorem 7.9.1 was originally proved by Cohen [4] but the proof presented here is based
on an idea of S. Ferry, which appeared in Appendix A in [25]. The proof of Theore 7.9.12
(7.9.10) appeared in [25], and is based on Kozlowski’s technique in [11]. Theorem 7.9.5 was
established by Alexandroff [2]. It was shown by Edwards that Alexandroff’s Problem is equivalent
to the CE Problem. Theorems 7.10.1 and 7.10.2 are due to Edwards (see [25]). The existence
of dimension-raising cell-like maps was first shown by A. Dranishnikov [5, 6]. Lemma 7.10.10
and Theorem 7.10.13 were established by Dydak and Walsh [8]. In [12], Kozlowski and Walsh
proved that the image of a cell-like map of a compact 3-dimensional manifold is always
finite-dimensional. It remains unsolved whether there exists a cell-like map of I* onto an infinite-
dimensional compactum. There are good surveys on Cohomological Dimension Theory [7].
Walsh’s Theorem 7.10.6 on approximations by open maps was proved in [24].

The example of Theorem 7.12.1 was constructed in [3].
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Preface

p. vii, line 9 from top, 1966 should read as 1967

Chapter 1

p- 1, line 12 from bottom: Insert “ — half line” before ;.
p- 2, line 7 from top: cellurality should read as cellularity
p- 19, line 9 from top: n € I should read as n € N

Chapter 2

. 47, Fig. 2.7 should read as Fig. 2.8. This figure should be on p. 48

.47, line 5 from bottom: Fig. 2.8 should read as Fig. 2.7

. 48: Fig. 2.8 should read as Fig. 2.9. This figure should be on p. 50

. 48, line 13 from bottom: Remove “— Fig. 2.9

.48, line 1 from bottom: Insert “— Fig. 2.8” before ‘.

.49, line 10 from bottom: (Fig. 2.7) should read as (Fig. 2.9)

. 50: Fig. 2.9 should read as Fig. 2.7. This figure should be on p. 47

.51, line 1 from top: Remove “Let X be a paracompact space.”

.51, line 3 from top: Insert “Let A be a subspace of X.” before ‘To find ...
. 65, line 7 from bottom: with (1) should read as with (2)
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Chapter 4

p. 137, line 7 from bottom: call should read as called
p. 156, line 11 from top: f's should read as f is
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p. 160, line 10 from bottom: polyhedra should read as polyhedron
p. 186, line 4 from top: K’(0) should read as K'®
p. 187, line 2 from top: Insert “If x € K© then K, = K’

Chapter 5

p- 249, line 3 from top: Insert “dim X after ‘dimension’

p. 249, line 4 from top: n + 1. and should read as n + 1, and

p. 254, line 15-21: This proof is only for the case X and Y are closed in R".
For the general case, the proof should be written as follows:

Proof. For each homeomorphism /2 : X — Y, we will show that i(int X) C int Y.
Then, applying this to the inverse homeomorphism A~! : ¥ — X, we can also
obtain /! (int Y) C int X, thatis, int Y C h(int X). Thus, we will have A (int X) =
intY.

To see & (int X) C int Y, note that each x € int X has a compact neighborhood
C inR" with C C X. Sinceint 4 (C) C int Y, we may show that /1 (x) € int & (C).
On the contrary, assume that /2 (x) € bd & (C). For each neighborhood U of x in
C, h(U) is a neighbourhood of % (x) in & (C). We can apply Theorem 5.1.7 to
find a neighbourhood V of & (x) in & (C) such that V' C & (U) and every map
g:h(C)\V — 8" 'extendstoamapg : h (C)\ V — S"!. Then, =" (V) is a
neighborhood of x in C with 2~! (V') C U. For every map f : C\h"'(V) - Sf_l,
fh™': h(C) — 8" ! can be extended to amap f : h(C) — S"'. Then, fh :
C — S" ! is an extension of f. Due to Theorem 5.1.7, this means that x € bd C,
which is a contradiction. Therefore, /& (x) € int & (C). O

p. 261, line 6 from bottom: f ! should read as hy"
p- 263, line 14 from top: Insert the following at the end of the sentence:

Corollary 5.2.16 is valid even if n = oo. In fact, (prl-_l (0),pr;! (1))1.GN is essential
in IN. This will be shown in the proof of Theorem 5.6.1.

. 264, line 6 from top: Insert “and” between ‘CHARACTERIZATION’ and ‘the’.
. 264, line 7 from top: Insert “respectively” after ‘dimension’

. 268, line 12 from top: Since should read as Note that U;

. 268, line 12 from top: it should read as U;. Then, it

. 293, line 16 from bottom: Y should read as R*"+!

. 316, line 6 from bottom: ¢/2 should read as €/3

. 319, line 13 from top: n € N, and should read as and n € N. For any infinite set
. 319, line 14 from top: Delete ‘such that ... infinite. Then’.

. 320, line 6 from bottom: By should read as B; in IV.

. 320, line 6 from bottom: Replace ‘which implies that’ by the following:

Tt T T T o T T o

By Lemma 5.3.7, if P is a partition between A; N S and B; N S in S, then there
is a partition P’ between A; and B; in I'' such that P’ N S C P. Then, it follows
that P # @. Due to Theorem 5.2.17, this means that dim S > 1, that is,
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Chapter 6

p. 346, line 11 from bottom: homotopy should read as deformation
p. 346, line 10 from bottom: Delete ‘hy = id and’.
p- 346, line 1 from bottom: Add the following:

It is said that X is deformable into A (C X) if there is a deformation i : X x
I - X with 1y (X) C A. A retract A of X is a deformation retract of X if X is
deformable into A (refer 6.2.10(9)).

p. 348: Insert the following before Section 6.3:

(9) A subset A of a space X is a deformation retract if and only if X is deformable
into A and A is a retract of X.

To see the “if” part, let & : X X I = X be a deformation with 4, (X) C A and
let r : X — A be a retraction. Using the fact that rh; = hj, we can define a
homotopy from idy to r.

p. 363, line 5 from top: Add “as a closed set” after ‘Banach space)’.
p. 371, line 5 from top: 4.9.10 should read as 4.9.11
Index

p. 516, right-side line 2 from bottom: cellurality should read as cellularity
p. 518, left-side line 12 from top: hedgehog, 33 should read as hedgehog, 33, 296
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0-dimensional, dim, 249
characterization, 266 dimgz, dimg, 474

0-soft, 428, 429 L,(I), 16
C(A,K), 186 @[é([')’ 16
C", n-connected, 395 loo, 14
C"-refinement, 401 loo(I), 13
F -hereditary property, 49 oL 14
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h-refinement, 351

F-space, 1135 oo-equivalence, 226
G -hereditary property, 49 RC 12 ’
K(G.n), 464 A

K(Z,n), 464 B 11

K., 300 T

K, (I"), 300 AX; 8 5

LC", locally n-connected, 395 AANB ’ 5

N(4, K), 186 AL 5

UV™ map, 446 .A|Y,5

UV" map, 446 ’ .

UVee. 423 U-homotopic, 8
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Emb(X,Y), 290, 292

Fin(I"), 11

Fi(Y), 122

Homeo(X), 62

N, (A4,¢),N(4,¢),3
0

n’,
w", 304, 397
Vo, 3

v, 301, 397
vy, 295

v, (1), 296
Vg, 280

v (1), 296
Ind, 273
Metr(X), 2

Metr? (X), 62
Metr (X), 62
vV(U,..., U,), 122
cov(X),5
dens X, 2
diamy A, diam A4, 3
disty (A, B), dist(4, B), 3
ind, 273
mesh, A, mesh A, 3
trInd, 281
trind, 281
B,(x,€), B(x,¢),3
wo(X), 227
JT()(X, Xo), 234
ZyGF X()/), 14
e-close, 8
e-homotopic, 8
e-map, 290
c(X),2
d(x,A),3
f=~0,6
f=g6
f~grel. A, 8
f=ug8

~.g,8
h-refinement, 351
h" -refinement, 409
n-Lefschetz refinement, 401
n-dimensional, 249
n-equivalence, 225
n-homotopy dense, 410
w(X), 2

absolutely Gs, 40

abstract complex, 195
Addition Theorem, 272
adjunction space, 5
admissible subdivision, 185

Index

AE(n), absolute extensor for metrizable spaces
of dimension < n, 400

AE, absolute extensor, 333

affine function (or map), 74, 77

affine hull, 73

affine set, 71

affinely independent, 73

Alexandroff’s Problem, 483, 489

ANE(n), absolute neighborhood extensor for
metrizable spaces of dimension < n,
400

ANE, absolute neighborhood extensor, 333

ANR with dim < n, 407

ANR, absolute neighborhood retract, 333

AR with dim < n, 407

AR, absolute retract, 333

arc, 6

arcwise connected, 323

Arens-Eells Embedding Theorem, 342

Baire Category Theorem, 39
Baire property, 39

Baire space, 39, 64
barycenter of a simplex, 135
barycentric coordinate, 163
barycentric refinement, 37
barycentric subdivision, 173
base point, 2

bonding map, 204

boundary of a cell, 134
boundary operator, 235, 240
Brouwer Fixed Point Theorem, 249

canonical map, 197
canonical representation of a simplicial
complex, 163
Cantor (ternary) set, 3
Cantor set, 3, 310, 312
carrier, 142
CE map, 421
CE Problem, 483
Cech-complete, 43
cell,
principal, 142
cell, (linear cell), 133
cell-like compactum, 421
cell-like map, 421
Cell-Like Mapping Problem, 483
cell-like open map, 489
cellular, 512
cellurality, 2
chain; e-chain, 321
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characterization of AE(n)s, 406
characterization of ANE(n)s, 402
characterization of ANRs,
by HEP, 356
Cauty, 386
Hanner, 368
Lefschetz, 366
Nguyen To Nhu, 378
characterization of ARs, 347, 373
Characterization of dimension,
Alexandroff, 263
Eilenberg—Otto, 263
characterization of LEC-ness, 349, 351
Characterization of the Cantor Set, 310
circled, 96
clopen basis, 266
clopen set, 266
closed convex hull, 99
Closed Graph Theorem, 118
closed tower, 58
cohomological dimension, 474
cohomological dimension of a map, 489
Coincidence Theorem, 274
collapsing, 363
collectionwise normal, 45
combinatorially equivalent, 161
compact-open topology, 9, 10
Compactification Theorem, 287
compactum (compacta), 2
completely metrizable,
characterization, 40-42
completely normal, 29
complex,
cell, 140
countable, 141
finite, 141
finite-dimensional (f.d.), 141
infinite, 141
infinite-dimensional (i.d.), 141
locally countable, 145
locally finite, 145
locally finite-dimensional (l.f.d.), 145
ordered, 147
simplicial, 141
cone, 89, 213
cone, metrizable, 363
contiguous, 154, 164, 200
continuous set-valued function, 121
continuum (continua), 2
contractible, 338
contraction, 338
convergent (infinite sum), 14
convex, 75
convex hull, 76

core, 87

Countable Sum Theorem, 269
countable-dimensional (c.d.), 279
cover, 5

covering dimension, (dim), 249
covering projection, 498

cozero set, 29

Decomposition Theorem, 271
deformation, 346
deformation retract, 346, 357
deformation retraction, 346, 357
density, 2
derived subdivision, 173
dimension,

— of a complex, 141

— of a convex set, 76

— of a flat, 74

— of a simplex, 133

— of a simplicial complex, 260

— of a space, 249

— of an abstract complex, 195
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characterization, 255, 259, 263, 264, 267

direct limit, 55

discrete, 30

double suspension, 455

Dugundji Extension Theorem, 334
Dugundji system, 334

EC, equi-connected, 349
Eilenberg—MacLane space, 464

Embedding Approximation Theorem, 291, 293

Embedding Theorem, 289
equi-connecting map, 349
Erdos space, 312
essential family, 261
essential map, 261

evenly covered, 498
extension, 6

extreme point, 79, 137

fi.p., 21, 41
face, 79, 137

fine homotopy equivalence, 373, 374

finite intersection property, 21, 41
finite-dimensional (f.d.) , 249
fixed point property, 249

flat, 71

flat hull, 73

free topological linear space, 128, 493

Fréchet space, 115, 125, 336
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full complex, 143

full realization, 366

full simplicial complex, 143
full subcomplex, 143
fundamental group, 233

General Position Lemma, 196, 290
geometrically independent, 73

Hahn-Banach Extension Theorem, 86
Hauptvermutung, 161
Hausdorff metric, 315
Hausdorff’s Metric Extension Theorem, 344
hedgehog, 33
hereditarily disconnected, 308
hereditarily infinite-dimensional (h.i.d.), 281
hereditarily normal, 29
hereditarily paracompact, 51
hereditary n-equivalence, 433
hereditary shape equivalence, 445
hereditary weak homotopy equivalence, 433
Hilbert cube,
fixed point property, 251
universality, 34
homogeneous, 96
homotopic, 6
homotopically trivial, 372
homotopy, 6
homotopy class, 6
homotopy dense, 371
homotopy dominate, 222
homotopy dominate by a simplicial complex,
222
homotopy dominated, 368
homotopy equivalence, 7
homotopy equivalent, 7
homotopy exact sequence, 236
homotopy extension property (HEP), 355
Homotopy Extension Theorem,
— for ANEs, 355
— for cell complexes, 153
homotopy group, 233
homotopy inverse, 7
homotopy lifting property, 475
homotopy relative to a set, 8
homotopy type, 7
homotopy type of a simplicial complex, 222
Hurewicz fibration, 475
hyperplane, 72

inductive dimension,

Index

large, 273

small, 273
inessential family, 261
infinite-dimensional (i.d.), 249
interior of a cell, 134
Invariance of Domain, 254
invariant metric, 109
inverse limit, 204
inverse of a path, 232
inverse sequence, 204

join, 136
join of paths, 232
joinable, 136

Klee’s Trick, 343

large inductive dimension, (Ind), 273
large transfinite inductive dimension, 281
Lavrentieff Gg-Extension Theorem, 43
Lavrentieff Homeomorphism Extension
Theorem, 44
LEC, locally equi-connected, 348
Lefschetz refinement, 366
limitation topology, 61, 62, 292
Lindelof, 49
linear in the affine sense, 77
linear manifold or variety, 71
linear metric, 112
linear span, 12
linearly accessible, 79
link in a complex, 144
local *-connection, 435
local co-connection, 435
local n-connection, 435, 513
local path-connected, 395
locally arcwise connected, 323
locally connected, 321
locally contractible, 347
locally convex, 100, 333
locally finite, 30
Locally Finite Sum Theorem, 269
locally finite-dimensional nerve, 200
locally path-connected, 323
locally simply connected, 395
loop, 233
loop space, 233, 491
lower semi-continuous (I.s.c.),
— real-valued function, 53
— set-valued function, 121
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mapping (n + 1)-deformation retract, 464 PL Approximation Theorem, 185, 195
mapping cylinder, 213 PL homeomorphism, piecewise linear
mapping cylinder, metrizable, 363 homeomorphism, 160
mapping telescope, 365 PL map, piecewise linear map, 156
Menger compactum, u”, 304, 397 point-finite, 51
metric linear space, 112 pointed space, 2
metric polyhedron, 163 pointwise convergence topology, 20
metric topology of a polyhedron, 163 polyhedrally O-soft, 428
Metrization Theorem, polyhedron, 141, 149
Alexandroff-Urysohn, 35 product cell complex, 150
Bing, 32 product simplicial complex, 152
Frink, 35 Product Theorem, 272
Nagata-Smirnov, 32 proper face, 137
Urysohn, 33 proper map, 24, 64
Minkowski functional, 88 proper PL map, 162
Minkowski norm, 89 Property C, 392
monotone map, 489 Property UV ™, 422

Property UV", 423
Property UV °, 422, 423
neighborhood deformation retract, 346
neighborhood retract, 333

nerve, 197 quasi-monotone map, 489

nested sequence, 205 quasi-open map, 489

non-expansive inverse sequence, 485 quotient F-normed linear space, 116
non-expansive map, 485 quotient linear space, 98
null-homotopic, 6 quotient normed linear space, 116

Nobeling space, v, 301, 397

radial boundary, 79

one-point union, 470 radial closure, 79

open cone, metrizable, 363 radial interior, 78

Open Cover Shrinking Lemma, 51 refine, 5

Open Mapping Theorem, 119 refinement, 5

open star, 144, 163, 186 refinements by open balls, 37, 38, 54
order of an open cover, 249 refining simplicial map, 198

ordered complex, 147 relative n-th homotopy group, 235

retract, 333
retraction, 333

paracompact,

characterization, 46, 53

definition, 45 selection, 121
partial realization, 366 semi-locally contractible, 349
partition, 261 separated, 26
Partition Extension Lemma, 267 Separation Theorem, 89, 99
partition of unity, shape equivalence, 445

— (weakly) subordinated to an open cover,  simple chain, 321

52 simplex, 133

locally finite, 52 simplicial approximation, 184
path, 6 Simplicial Approximation Theorem, 185, 195
path-component, 227 simplicial complex, 141
path-connected, 323, 395 simplicial cone, 217
Peano continuum, 321 simplicial Eilenberg—MacLane complex, 466,
perfect map, 24 471

perfectly normal, 29 simplicial homeomorphism, 161
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simplicial isomorphism, 161
simplicial map, 158
simplicial map between abstract complexes,
197
simplicial mapping cylinder, 217
simplicially isomorphic, 161
simply connected, 240, 395
skeleton,
— of a cell complex, 142
— of an abstract complex, 195
small inductive dimension, (ind), 273
small transfinite inductive dimension, 281
soft (n-soft),
— map, 426
approximately, 429
homotopically, 429
polyhedrally, 427
polyhedrally approximately, 429
polyhedrally homotopy, 429
Sorgenfrey line, 67
Sorgenfrey plane, 67
Sperner map, 250
Sperner’s Lemma, 250
star, 35
star in a complex, 144
star-finite open cover, 200
star-refinement, 37
starring, 187
stellar subdivision, 187
Stone—Cech compactification, 23
straight-line homotopy, 155, 164
strong deformation retract, 346, 357
strong deformation retraction, 346, 357
strong local n-connection, 435
strong neighborhood deformation retract, 346
Strong Separation Theorem, 100
strongly countable-dimensional (s.c.d.), 280
strongly infinite-dimensional (s.i.d.), 278
subcomplex,
— of a cell complex, 142
— of a simplicial complex, 195
subdivision,
— of a cell complex, 146
simplicial, 146
sublinear, 85
subpolyhedron, 149
subsequence of an inverse sequence, 206
Subset Theorem, 266
sup-metric, 8
support,
— of amap, 52
suspension, 453
suspension,
n-fold, 455

Index

telescope, 378
the opposite face, 137
the simplicial Edwards—Walsh complex, 472
Theorem,
Borsuk—Whitehead—Hanner, 362
Dydak—Walsh, 492
Hahn-Mazurkiewicz, 321
Hanner’s, 340, 347
Henderson—Sakai, 191
Kozlowski, G.,, 374
Kruse-Liebnitz, 359
Mazur, 19
Michael, 49
Stone, A.H., 31
Tychonoft, 21
Wallace, 22
‘Walsh, 489
Whitehead, J.H.C., 183
‘Whitehead—Milnor, 222
Tietze Extension Theorem, 27
topological group, 96
topological linear space, 94
topological sum, 6
topologically bounded, 101
totally bounded, 108, 286
totally disconnected, 308
transfinite inductive dimension,
large, 281
small, 281
triangulation, 149
trivial shape, 422
Tychonoff plank, 66

ULC, unified locally contractible, 350
uniform AE, 381
uniform ANE, 381
uniform ANR, 381
uniform AR, 381
uniform convergence topology, 8, 20
uniform neighborhood, 380
uniform neighborhood retract, 380
uniform retract, 380
uniformly continuous at A4, 380
uniformly locally contractible, 350
uniformly locally path-connected, 327
universal map, in the sence of Holszyniski, 329
universal space, 294
upper semi-continuous (u.s.c.),

— real-valued function, 53

— set-valued function, 121
Urysohn map, 28
Urysohn’s Lemma, 28
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vertex,
— of a simplex, 133
—of acell, 136
Vietoris topology, 121, 315

weak homotopy equivalence, 226, 246

weak topology, 6

weak topology of a polyhedron, 141

weakly infinite-dimensional in the sense of
Alexandroff (A-w.i.d.), 285
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weakly infinite-dimensional in the sense of
Smirnov (S-w.i.d.), 285

weakly infinite-dimensional (w.i.d.), 278

wedge, 89

wedge sum, 470

weight, 2

Whitehead topology of a polyhedron, 141

zero set, 29
zero-sequence, 378
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