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We can imagine and consider many mathematical concepts, such as numbers,
spaces, maps, dimensions, etc., that can be indefinitely extended beyond infinity
in our minds. Contemplating our mathematical ability in such a manner, I can recall
this phrase from the Scriptures:

Everything he has made pretty in its time. Even time indefinite he has put in their
heart, that mankind may never find out the work that the true God has made from
the start to the finish.—Ecclesiastes 3:11

May our Maker be glorified! Our brain is the work of his hands, as in Psalms
100:3, Know that Jehovah is God. It is he that has made us, and not we ourselves.
There are many reasons to give thanks to God. Our mathematical ability is one of
them.





Preface

This book is designed for graduates studying Dimension Theory, ANR Theory
(Theory of Retracts), and related topics. As is widely known, these two theories are
connected with various fields in Geometric Topology as well as General Topology.
So, for graduate students who wish to research subjects in General and Geometric
Topology, understanding these theories will be valuable. Some excellent texts on
these theories are the following:

• W. Hurewicz and H. Wallman, Dimension Theory (Princeton Univ. Press,
Princeton, 1941)

• K. Borsuk, Theory of Retracts, MM 44 (Polish Sci. Publ., Warsaw, 1966)
• S.-T. Hu, Theory of Retracts (Wayne State Univ. Press, Detroit, 1965)

However, these classical texts must be updated. This is the purpose of the present
book.

A comprehensive study of Dimension Theory may refer to the following book:

• R. Engelking, Theory of Dimensions, Finite and Infinite, SSPM 10 (Heldermann
Verlag, Lembo, 1995)

Engelking’s book, however, lacks results relevant to Geometric Topology. In this
or any other textbook, no proof is given that dimX � I D dimX C 1 for a
metrizable space X ,1 and no example illustrates the difference between the small
and large inductive dimensions or a hereditarily infinite-dimensional space (i.e.,
an infinite-dimensional space that has no finite-dimensional subspaces except for
0-dimensional subspaces).2

In the 1980s and 1990s, famous longstanding problems from Dimension Theory
and ANR Theory were finally resolved. In the process, it became clear that

1This proof can be found in Kodama’s appendix of the following book:

• K. Nagami, Dimension Theory (Academic Press, Inc., New York, 1970)

2As will be mentioned later, a hereditarily infinite-dimensional space is treated in the book of J. van
Mill: Infinite-Dimensional Topology.
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these theories are linked with others. In Dimension Theory, the Alexandroff
Problem had long remained unsolved. This problem queried the existence of
an infinite-dimensional space whose cohomological dimension is finite. On the
other hand, the CE Problem arose as a fascinating question in Shape Theory that
asked whether there exists a cell-like map of a finite-dimensional space onto an
infinite-dimensional space. In the 1980s, it was shown that these two problems
are equivalent. Finally, in 1988, by constructing an infinite-dimensional compact
metrizable space whose cohomological dimension is finite, A.N. Dranishnikov
solved the Alexandroff Problem.

On the other hand, in ANR Theory, for many years it was unknown whether a
metrizable topological linear space is an AR (or more generally, whether a locally
equi-connected metrizable space is an ANR). In 1994, using a cell-like map of a
finite-dimensional compact manifold onto an infinite-dimensional space, R. Cauty
constructed a separable metrizable topological linear space that is not an AR.
These results are discussed in the latter half of the final chapter and provide an
understanding of how deeply these theories are related to each other. This is also the
purpose of this book.

The notion of simplicial complexes is useful tool in Topology, and indispensable
for studying both Theories of Dimension and Retracts. There are many textbooks
from which we can gain some knowledge of them. Occasionally, we meet non-
locally finite simplicial complexes. However, to the best of the author’s knowledge,
no textbook discusses these in detail, and so we must refer to the original papers.
For example, J.H.C. Whitehead’s theorem on small subdivisions is very important,
but its proof cannot be found in any textbook. This book therefore properly treats
non-locally finite simplicial complexes. The homotopy type of simplicial complexes
is usually discussed in textbooks on Algebraic Topology using CW complexes,
but we adopt a geometrical argument using simplicial complexes, which is easily
understandable.

As prerequisites for studying infinite-dimensional manifolds, Jan van Mill
provides three chapters on simplicial complexes, dimensions, and ANRs in the
following book:

• J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction,
North-Holland Math. Library 43 (Elsevier Sci. Publ. B.V., Amsterdam, 1989)

These chapters are similar to the present book in content, but they are introduc-
tory courses and restricted to separable metrizable spaces. The important results
mentioned above are not treated except for an example of a hereditarily infinite-
dimensional space. Moreover, one can find an explanation of the Alexandroff
Problem and the CE Problem in Chap. 3 of the following book:

• A. Chigogidze, Inverse Spectra, North-Holland Math. Library 53 (Elsevier Sci.
B.V., Amsterdam, 1996)

Unfortunately, this book is, however, inaccessible for graduate students.
The present text has been in use by the author for his graduate class at the

University of Tsukuba. Every year, a lecture has been given based on some topic
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selected from this book except the final chapter, and the same material has been
used for an undergraduate seminar. Readers are required to finish the initial courses
of Set Theory and General Topology. Basic knowledge of Linear Algebra is also a
prerequisite. Except for the latter half of the final chapter, this book is self-contained.

Chapter 2 develops the general material relating to topological spaces appropriate
for graduate students. It provides a supplementary course for students who finished
an undergraduate course in Topology. We discuss paracompact spaces and some
metrization theorems for non-separable spaces that are not treated in a typical
undergraduate course.3 This chapter also contains Michael’s theorem on local
properties, which can be applied in many situations. We further discuss the direct
limits of towers (increasing sequences) of spaces, which are appear in Geometric
and Algebraic Topology.4 A non-Hausdorff direct limit of a closed tower of
Hausdorff spaces is included. The author has not found any literature representing
such an example. The limitation topology on the function spaces is also discussed.

Chapter 3 is devoted to topological linear spaces and convex sets. There are
many good textbooks on these subjects. This chapter represents a short course on
fundamental results on them. First, we establish the existing relations between these
objects and to General and Geometric Topology. Convex sets are then discussed in
detail. This chapter also contains Michael’s selection theorem. Moreover, we show
the existence of free topological spaces.

In Chap. 4, simplicial complexes are treated without assuming local finiteness.
As mentioned above, we provide proof of J.H.C. Whitehead’s theorem on small
subdivisions. The simplicial mapping cylinder is introduced and applied to prove
the Whitehead–Milnor theorem on the homotopy type of simplicial complexes. It is
also applied to prove that every weak homotopy equivalence between simplicial
complexes is a homotopy equivalence. The inverse limits of inverse sequences
are also discussed, and it is shown that every completely metrizable space is
homeomorphic to locally finite-dimensional simplicial complexes with the metric
topology. These results cannot be found in any other book dealing with simplicial
complexes but are buried in old journals. D.W. Henderson established the metric
topology version of the Whitehead theorem on small subdivisions, but his proof
is valid only for locally finite-dimensional simplicial complexes. Here we offer a
complete proof without the assumption of local finite-dimensionality. Knowledge
of homotopy groups is not required, even when weak homotopy equivalences are

3These subjects are discussed in Munkres’ book, now a very popular textbook at the senior or the
first-year graduate level:

• J.R. Munkres, Topology, 2nd ed. (Prentice Hall, Inc., Upper Saddle River, 2000)

4The direct limits are discussed in Appendix of Dugundji’s book:

• J. Dugundji, Topology (Allyn and Bacon, Inc., Boston, 1966)

But, they are not discussed even in Engelking’s book, a comprehensive reference book for General
Topology:

• R. Engelking, General Topology, Revised and completed edition, SSPM 6
(Heldermann Verlag, Berlin, 1989)
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discussed. However, we do review homotopy groups in Appendix 4.14 because they
are helpful in the second half of Chap. 7.

Chapters 5 and 6 are devoted to Dimension Theory and ANR Theory, respec-
tively. We prove basic results and fundamental theorems on these theories. The
contents are very similar to Chaps. 5 and 6 of van Mill’s “Infinite-Dimensional
Topology”. However, as mentioned previously, we do not restrict ourselves to
separable metrizable spaces and instead go on to prove further results.

In Chap. 5, we describe a non-separable metrizable space such that the large
inductive dimension does not coincide with the small inductive dimension. As
mentioned above, such an example is not treated in any other textbook on Dimension
Theory (not even Engelking’s book). Here, we present Kulesza’s example with
Levin’s proof. The transfinite inductive dimension is also discussed, which is not
treated in van Mill’s book. Further, we prove that every completely metrizable space
with dimension � n is homeomorphic to the inverse limit of an inverse sequence
of metric simplicial complexes with dimension � n. Finally, hereditarily infinite-
dimensional spaces are discussed based on van Mill’s book.

In Chap. 6, we discuss several topics that are not treated in van Mill’s book
or in the two classical books by Hu and Borsuk mentioned above. Following are
examples of such topics: uniform ANRs in the sense of Michael and its completion;
Kozlowski’s theorem that the metrizable range of a fine homotopy equivalence
of an ANR is also an ANR; Cauty’s characterization, with Sakai’s proof, that a
metrizable space is an ANR if and only if every open set has the homotopy type
of an ANR; Haver’s theorem that every countable-dimensional locally contractible
metrizable space is an ANR; and Bothe’s theorem, with Kodama’s proof, that every
n-dimensional metrizable space can be embedded in an (nC 1)-dimensional AR as
a closed set.

In Chap. 7, cell-like maps and related topics are discussed. The first half is self-
contained, but the second half is not because some algebraic results are necessary. In
the first half, we examine the existing relations between cell-like maps, soft maps,
fine homotopy equivalences, etc. The second half is devoted to related topics. In
particular, the CE Problem is explained and Cauty’s example is presented. Note that
Chigogidze’s “Inverse Spectra” is the only book dealing with soft maps and provides
an explanation of the Alexandroff Problem and the CE Problem.

In the second half of Chap. 7, using the K-theory result of Adams, we present
the Taylor example. Eilenberg–MacLane spaces are usually constructed as CW
complexes, but here they are constructed as simplicial complexes. To avoid using
cohomology, we define the cohomological dimension geometrically. By applying
the cohomological dimension, we can prove the equality dimX � I D dimX C 1
for every metrizable space X . We also discuss the Alexandroff Problem and the
CE Problem as mentioned above. The equivalence of these problems is proved.
Next, we describe the Dydak–Walsh example that gives an affirmative answer to
the Alexandroff Problem. However, this part of the text is not self-contained. As a
corollary, we can answer the CE Problem, i.e., we can obtain a cell-like mapping
of a finite-dimensional compact manifold onto an infinite-dimensional compactum.
We also present Cauty’s example, i.e., a metrizable topological linear space that is
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not an absolute extensor. In the proof, we need the above cell-like mapping to be
open, and we therefore use Walsh’s open mapping approximation theorem. A proof
of Walsh’s theorem is beyond the scope of this book.

The author would like to express his sincere appreciation to his teacher, Professor
Yukihiro Kodama, who introduced him to Shape Theory and Infinite-Dimensional
Topology and warmly encouraged him to persevere. He owes his gratitude to
Ross Geoghegan for improving the written English text. He is also grateful to
Haruto Ohta, Taras Banakh and Zhongqiang Yang for their valuable comments and
suggestions. Finally, he also warmly thanks his graduate students, Yutaka Iwamoto,
Yuji Akaike, Shigenori Uehara, Masayuki Kurihara, Masato Yaguchi, Kotaro Mine,
Atsushi Yamashita, Minoru Nakamura, Atsushi Kogasaka, Katsuhisa Koshino, and
Hanbiao Yang for their careful reading and helpful comments.

Katsuro Sakai
Tsukuba, Japan
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Chapter 1
Preliminaries

The reader should have finished a first course in Set Theory and General Topology;
basic knowledge of Linear Algebra is also a prerequisite. In this chapter, we
introduce some terminology and notation. Additionally, we explain the concept of
Banach spaces contained in the product of real lines.

1.1 Terminology and Notation

For the standard sets, we use the following notation:

• N — the set of natural numbers (i.e., positive integers);
• ! D N [ f0g— the set of non-negative integers;
• Z — the set of integers;
• Q — the set of rationals;
• R D .�1;1/ — the real line with the usual topology;
• C — the complex plane;
• RC D Œ0;1/;
• I D Œ0; 1� — the unit closed interval.

A (topological) space is assumed to be Hausdorff and a map is a continuous
function. A singleton is a space consisting of one point, which is also said to be
degenerate. A space is said to be non-degenerate if it is not a singleton. Let X be
a space and A � X . We denote

• clX A (or clA) — the closure of A in X ;
• intX A (or intA) — the interior of A in X ;
• bdX A (or bdA) — the boundary of A in X ;
• idX (or id) — the identity map of X .

For spaces X and Y ,

• X � Y means that X and Y are homeomorphic.

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics,
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2 1 Preliminaries

Given subspaces X1; : : : ; Xn � X and Y1; : : : ; Yn � Y ,

• .X;X1; : : : ; Xn/ � .Y; Y1; : : : ; Yn/ means that there exists a homeomorphism
h W X ! Y such that h.X1/ D Y1, . . . , h.Xn/ D Yn;

• .X; x0/ � .Y; y0/ means .X; fx0g/ � .Y; fy0g/.
We call .X; x0/ a pointed space and x0 its base point.

For a set � , the cardinality of � is denoted by card� . The weight w.X/, the
density densX , and the cellurality c.X/ of a space X are defined as follows:

• w.X/ D minfcardB j B is an open basis for Xg;
• densX D minfcardD j D is a dense set in Xg;
• c.X/ D supfcardG j G is a pair-wise disjoint open collectiong.
As is easily observed, c.X/ � densX � w.X/ in general. If X is metrizable, all
these cardinalities coincide.

Indeed, let D be a dense set in X with cardD D densX , and G be a pairwise disjoint
collection of non-empty open sets in X . Since each G 2 G meets D, we have an injection
g W G ! D, hence card G � cardD D densX . It follows that c.X/ � densX . Now, let
B be an open basis for X with cardB D w.X/. By taking any point xB 2 B from each
B 2 B, we have a dense set fxB j B 2 Bg in X , which implies densX � w.X/.

WhenX is metrizable, we show the converse inequality. The case cardX < @0 is trivial.
We may assume that X D .X; d/ is a metric space with diamX � 1 and cardX � @0.
Let D be a dense set in X with cardD D densX . Then, fB.x; 1=n/ j x 2 D; n 2 Ng
is an open basis for X , which implies w.X/ � densX . For each n 2 N, using Zorn’s
Lemma, we can find a maximal 2�n-discrete subset Xn � X , i.e., d.x; y/ � 2�n for every
pair of distinct points x; y 2 Xn. Then, Gn D fB.x; 2�n�1/ j x 2 Xng is a pairwise
disjoint open collection, and hence we have cardXn D card Gn � c.X/. Observe that
X

�

D S
n2NXn is dense in X , which implies supn2N

cardXn D cardX
�

� densX .
Therefore, c.X/ � densX .

For the product space
Q
�2� X� , the � -coordinate of each point x 2 Q�2� X�

is denoted by x.�/, i.e., x D .x.�//�2� . For each � 2 � , the projection pr� WQ
�2� X� ! X� is defined by pr� .x/ D x.�/. For � � � , the projection pr� WQ
�2� X� !

Q
�2� X� is defined by pr�.x/ D xj� (D .x.�//�2�). In the case

that X� D X for every � 2 � , we write
Q
�2� X� D X� . In particular, XN is the

product space of countable infinite copies of X . When � D f1; : : : ; ng, X� D Xn

is the product space of n copies of X . For the product space X � Y , we denote the
projections by prX W X � Y ! X and prY W X � Y ! Y .

A compact metrizable space is called a compactum and a connected compactum
is called a continuum.1 For a metrizable space X , we denote

• Metr.X/ — the set of all admissible metrics of X .

Now, let X D .X; d/ be a metric space, x 2 X , " > 0, and A, B � X . We use
the following notation:

1Their plurals are compacta and continua, respectively.
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• Bd .x; "/ D
˚
y 2 X ˇ

ˇ d.x; y/ < "
�

— the "-neighborhood of x in X
(or the open ball with center x and radius ");

• Bd .x; "/ D
˚
y 2 X ˇ

ˇ d.x; y/ � "� — the closed "-neighborhood of x in X
(or the closed ball with center x and radius ");

• Nd .A; "/ D Sx2A Bd .x; "/ — the "-neighborhood of A in X ;
• diamd A D sup

˚
d.x; y/

ˇ
ˇ x; y 2 A� — the diameter of A;

• d.x;A/ D inf
˚
d.x; y/

ˇ
ˇ y 2 A� — the distance of x from A;

• distd .A;B/ D inf
˚
d.x; y/

ˇ
ˇ x 2 A; y 2 B� — the distance of A and B .

It should be noted that Nd .fxg; "/ D Bd .x; "/ and d.x;A/ D distd .fxg; A/. For a
collection A of subsets of X , let

• meshd A D sup
˚

diamd A
ˇ
ˇ A 2 A

�
— the mesh of A.

If there is no possibility of confusion, we can drop the subscript d and write B.x; "/,
B.x; "/, N.A; "/, diamA, dist.A;B/, and meshA.

The standard spaces are listed below:

• R
n — the n-dimensional Euclidean space with the norm

kxk D
p
x.1/2 C � � � C x.n/2;

0 D .0; : : : ; 0/ 2 R
n — the origin, the zero vector or the zero element,

ei 2 R
n — the unit vector defined by ei .i / D 1 and ei .j / D 0 for j 6D i ;

• Sn�1 D ˚x 2 R
n
ˇ
ˇ kxk D 1� — the unit .n � 1/-sphere;

• Bn D ˚x 2 R
n
ˇ
ˇ kxk � 1� — the unit closed n-ball;

• �n D ˚x 2 .RC/nC1
ˇ
ˇ PnC1

iD1 x.i/ D 1
�

— the standard n-simplex;
• Q D Œ�1; 1�N — the Hilbert cube;
• s D R

N — the space of sequences;
• �0 D ˚P1iD1 2xi=3i

ˇ
ˇ xi 2 f0; 1g

�
— the Cantor (ternary) set;

• 	0 D R nQ — the space of irrationals;
• 2 D f0; 1g— the discrete space of two points.

Note that Sn�1, Bn, and �n are not product spaces, even though the same notations
are used for product spaces. The indexes n�1 and n represent their dimensions (the
indexes of �0 and 	0 are identical).

As is well-known, the countable product 2N of the discrete space 2 D f0; 1g is
homeomorphic to the Cantor set �0 by the correspondence:

x 7!
X

i2N

2x.i/

3i
:

On the other hand, the countable product NN of the discrete space N of natural
numbers is homeomorphic to the space 	0 of irrationals. In fact, NN � .0; 1/ nQ �
.�1; 1/ nQ � 	0. These three homeomorphisms are given as follows:
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x 7! 1

x.1/C 1

x.2/C 1

x.3/C 1

: : :

I t 7! 2t � 1I s 7! s

1 � jsj :

That the first correspondence is a homeomorphism can be verified as follows: for each
n 2 N, let an W NN! I be a map defined by

an.x/D 1

x.1/C 1

x.2/C 1

: : : C 1

x.n/

:

Then, 0 < a2.x/ < a4.x/ < � � � < a3.x/ < a1.x/ � 1. Using the fact shown below, we
can conclude that the first correspondence N

N 3 x 7! ˛.x/ D limn!1

an.x/ 2 .0; 1/ is
well-defined and continuous.

Fact. For every m > n, jan.x/� am.x/j < .nC 1/�1.

This fact can be shown by induction on n 2 N. First, observe that

ja1.x/� a2.x/j D 1

x.1/.x.1/x.2/C 1/ < 1=2;

which implies the case n D 1. When n > 1, for each x 2 N
N, define x� 2 N

N by
x�.i/ D x.i C 1/. By the inductive assumption, jan�1.x

�/ � am�1.x
�/j < n�1 for

m > n, which gives us

jan.x/� am.x/j D jan�1.x
�/� am�1.x

�/j
.x.1/C an�1.x�//.x.1/C am�1.x�//

� jan�1.x
�/� am�1.x

�/j
.1C an�1.x�//.1C am�1.x�//

<
jan�1.x

�/� am�1.x
�/j

1C jan�1.x�/� am�1.x�/j

� n�1

1C n�1
D 1

nC 1 :

Let t D q1=q0 2 .0; 1/ \ Q, where q1 < q0 2 N. Since q0=q1 D t�1 > 1, we
can choose x1 2 N so that x1 � q0=q1 < x1 C 1. Then, 1=.x1 C 1/ < t � 1=x1. If
t 6D 1=x1, then x1 < q0=q1, and hence t�1 D q0=q1 D x1 C q2=q1 for some q2 2 N with
q2 < q1. Now, we choose x2 2 N so that x2 � q1=q2 < x2 C 1. Thus, x1C 1=.x2C 1/ <
x1Cq2=q1 � x1C1=x2, so 1=.x1C1=x2/ � t < 1=.x1C1=.x2C1//. If t 6D 1=.x1C1=x2/,
then x2 < q1=q2. Similarly, we write q1=q2 D x2 C q3=q2, where q3 2 N with q3 < q2
(< q1), and choose x3 2 N so that x3 � q2=q3 < x3C 1. Then, 1=.x1C 1=.x2C 1=x3// �
t < 1=.x1C 1=.x2C 1=.x3C 1///. This process has only a finite number of steps (at most
q1 steps). Thus, we have the following unique representation:
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t D 1

x1 C 1

x2 C 1

: : : C 1

xn

; x1; : : : ; xn 2 N:

It follows that ˛.NN/ � .0; 1/ nQ.
For each t 2 .0; 1/ nQ, choose x1 2 N so that x1 < t�1 < x1C 1. Then, 1=.x1C 1/ <

t < 1=x1 and t�1 D x1 C t1 for some t1 2 .0; 1/ n Q. Next, choose x2 2 N so that
x2 < t

�1
1 < x2C1. Thus, x1C1=.x2C1/ < x1C t1 < x1C1=x2, and so 1=.x1C1=x2/ <

t < 1=.x1C1=.x2C1//. Again, write t�1
1 D x2Ct2, t2 2 .0; 1/nQ, and choose x3 2 N so

that x3 < t�1
2 < x3C1. Then, 1=.x1C1=.x2C1=.x3C1/// < t < 1=.x1C1=.x2C1=x3//.

We can iterate this process infinitely many times. Thus, there is the unique x D .xn/n2N 2
N

N such that a2n.x/ < t < a2nC1.x/ for each n 2 N, where ˛.x/ D limn!1

an.x/ D t .
Therefore, ˛ W NN ! .0; 1/ nQ is a bijection.

In the above, let a2n.x/ < s < a2n�1.x/ and define y D .yi /i2N 2 N
N for this s similar

to x for t . Then, ˛.y/ D s and xi D yi for each i � 2n�1, i.e., the first 2n�1 coordinates
of x and y are all the same. This means that ˛�1 is continuous.

Let f W A ! Y be a map from a closed set A in a space X to another space Y .
The adjunction space Y [f X is the quotient space .X ˚ Y /=�, where X ˚
Y is the topological sum and � is the equivalence relation corresponding to the
decomposition of X ˚ Y into singletons fxg, x 2 X n A, and sets fyg [ f �1.y/,
y 2 Y (the latter is a singleton fyg if y 2 Y n f .A/). In the case that Y is a
singleton, Y [f X � X=A. One should note that, in general, the adjunction spaces
are not Hausdorff. Some further conditions are necessary for the adjunction space
to be Hausdorff.

Let A and B be collections of subsets of X and Y � X . We define

• A ^ B D fA\ B j A 2 A; B 2 Bg;
• AjY D fA\ Y j A 2 Ag;
• AŒY � D fA 2 A j A\ Y 6D ;g.
When each A 2 A is contained in some B 2 B, it is said that A refines B and
denoted by:

A 	 B or B 
 A:

It is said that A covers Y (or A is a cover of Y in X ) if Y � S
A (D S

A2AA).
When Y D X , a cover of Y in X is simply called a cover of X . A cover of Y in
X is said to be open or closed in X depending on whether its members are open or
closed in X . If A is an open cover of X then AjY is an open cover of Y and AŒY �
is an open cover of Y in X . When A and B are open covers of X , A ^ B is also an
open cover of X . For covers A and B of X , it is said that A is a refinement of B
if A 	 B, where A is an open (or closed) refinement if A is an open (or closed)
cover. For a space X , we denote

• cov.X/ — the collection of all open covers of X .
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Let .X�/�2� be a family of (topological) spaces and X D S
�2� X� . The weak

topology on X with respect to .X�/�2� is defined as follows:

U � X is open in X , 8� 2 �;U \X� is open in X�
�
A � X is closed in X , 8� 2 �;A\ X� is closed in X�

�
:

Suppose that X has the weak topology with respect to .X�/�2� , and that the
topologies of X� and X� 0 agree on X� \ X� 0 for any �; � 0 2 � . If X� \ X� 0 is
closed (resp. open) in X� for any �; � 0 2 � then each X� is closed (resp. open) in
X and the original topology of each X� is a subspace topology inherited from X .
In the case that X� \ X� 0 D ; for � 6D � 0, X is the topological sum of .X�/�2� ,
denoted by X DL�2� X� .

Let f W X ! Y be a map. For A � X and B � Y , we denote

f .A/ D ˚f .x/ ˇˇ x 2 A� and f �1.B/ D ˚x 2 X ˇ
ˇ f .x/ 2 B�:

For collections A and B of subsets of X and Y , respectively, we denote

f .A/ D ˚f .A/ ˇˇ A 2 A
�

and f �1.B/ D ˚f �1.B/ ˇˇ B 2 B
�
:

The restriction of f to A � X is denoted by f jA. It is said that a map g W A! Y

extends over X if there is a map f W X ! Y such that f jA D g. Such a map f is
called an extension of g.

Let Œa; b� be a closed interval, where a < b. A map f W Œa; b� ! X is called
a path (from f .a/ to f .b/) in X , and we say that two points f .a/ and f .b/ are
connected by the path f inX . An embedding f W Œa; b�! X is called an arc (from
f .a/ to f .b/) inX , and the image f .Œa; b�/ is also called an arc. Namely, a space is
called an arc if it is homeomorphic to I. It is known that each pair of distinct points
x; y 2 X are connected by an arc if and only if they are connected by a path.2

For spaces X and Y , we denote

• C.X; Y / — the set of (continuous) maps from X to Y .

For maps f; g W X ! Y (i.e., f; g 2 C.X; Y /),

• f ' g means that f and g are homotopic (or f is homotopic to g),

that is, there is a map h W X � I ! Y such that h0 D f and h1 D g, where
ht W X ! Y , t 2 I, are defined by ht.x/ D h.x; t/, and h is called a homotopy
from f to g (between f and g). When g is a constant map, it is said that f is null-
homotopic, which we denote by f ' 0. The relation ' is an equivalence relation
on C.X; Y /. The equivalence class Œf � D fg 2 C.X; Y / j g ' f g is called the
homotopy class of f . We denote

2This will be shown in Corollary 5.14.6.
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• ŒX; Y � D fŒf � j f 2 C.X; Y /g D C.X; Y /='
— the set of the homotopy classes of maps from X to Y .

For each f; f 0 2 C.X; Y / and g; g0 2 C.Y;Z/, we have the following:

f ' f 0; g ' g0 ) gf ' g0f 0:

Thus, we have the composition ŒX; Y � � ŒY;Z� ! ŒX;Z� defined by .Œf �; Œg�/ 7!
Œg�Œf � D Œgf �. Moreover,

• X ' Y means that X and Y are homotopy equivalent (or X is homotopy
equivalent to Y ),3

that is, there are maps f W X ! Y and g W Y ! X such that gf ' idX and
fg ' idY , where f is called a homotopy equivalence and g is a homotopy inverse
of f .

Given subspaces X1; : : : ; Xn � X and Y1; : : : ; Yn � Y , a map f W X ! Y is
said to be a map from .X;X1; : : : ; Xn/ to .Y; Y1; : : : ; Yn/, written

f W .X;X1; : : : ; Xn/! .Y; Y1; : : : ; Yn/;

if f .X1/ � Y1, . . . , f .Xn/ � Yn. We denote

• C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn//
— the set of maps from .X;X1; : : : ; Xn/ to .Y; Y1; : : : ; Yn/.

A homotopy h between maps f; g 2 C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn// requires
the condition that ht 2 C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn// for every t 2 I, i.e., h is
regarded as the map

h W .X � I; X1 � I; : : : ; Xn � I/! .Y; Y1; : : : ; Yn/:

Thus, ' is an equivalence relation on C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn//. We
denote

• Œ.X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn/� D C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn//='.

When there exist maps

f W .X;X1; : : : ; Xn/! .Y; Y1; : : : ; Yn/;

g W .Y; Y1; : : : ; Yn/! .X;X1; : : : ; Xn/

such that gf ' idX and fg ' idY , we denote

• .X;X1; : : : ; Xn/ ' .Y; Y1; : : : ; Yn/.

3It is also said that X and Y have the same homotopy type or X has the homotopy type of Y .
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Similarly, for each pair of pointed spaces .X; x0/ and .Y; y0/,

• C..X; x0/; .Y; y0// D C..X; fx0g/; .Y; fy0g//;
• Œ.X; x0/; .Y; y0/� D C..X; x0/; .Y; y0//=';
• .X; x0/ ' .Y; y0/ means .X; fx0g/ ' .Y; fy0g/.

For A � X , a homotopy h W X � I ! Y is called a homotopy relative to A if
h.fxg � I/ is degenerate (i.e., a singleton) for every x 2 A. When a homotopy from
f to g is a homotopy relative to A (where f jA D gjA), we denote

• f ' g rel. A.

Let f; g W X ! Y be maps and U a collection of subsets of Y (in usual, U 2
cov.Y /). It is said that f and g are U-close (or f is U-close to g) if

˚ff .x/; g.x/g ˇˇ x 2 X� 	 U [ ˚fyg ˇˇ y 2 Y �;

which implies that U covers the set ff .x/; g.x/ j f .x/ 6D g.x/g. A homotopy h is
called a U-homotopy if

˚
h.fxg � I/

ˇ
ˇ x 2 X� 	 U [ ˚fyg ˇˇ y 2 Y �;

which implies that U covers the set

[˚
h.fxg � I/

ˇ
ˇ h.fxg � I/ is non-degenerate

�
:

We say that f and g are U-homotopic (or f is U-homotopic to g) and denoted by
f 'U g if there is a U-homotopy h W X � I! Y such that h0 D f and h1 D g.

When Y D .Y; d/ is a metric space, we define the distance between f; g 2
C.X; Y / as follows:

d.f; g/ D sup
˚
d.f .x/; g.x//

ˇ
ˇ x 2 X�:

In general, it may be possible that d.f; g/ D 1, in which case d is not a metric
on the set C.X; Y /. If Y is bounded or X is compact, then this d is a metric on
the set C.X; Y /, called the sup-metric. For " > 0, we say that f and g are "-
close or f is "-close to g if d.f; g/ < ". A homotopy h is called an "-homotopy
if meshfh.fxg � I/ j x 2 Xg < ", where f D h0 and g D h1 are said to be
"-homotopic and denoted by f '" g.

In the above, even if d is not a metric on C.X; Y / (i.e., d.f; g/ D 1 for
some f; g 2 C.X; Y /), it induces a topology on C.X; Y / such that each f has a
neighborhood basis consisting of

Bd .f; "/ D
˚
g 2 C.X; Y /

ˇ
ˇ d.f; g/ < "

�
; " > 0:

This topology is called the uniform convergence topology.
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The compact-open topology on C.X; Y / is generated by the sets

hKIU i D ˚f 2 C.X; Y /
ˇ
ˇ f .K/ � U �;

where K is any compact set in X and U is any open set in Y . With respect to this
topology, we have the following:

Proposition 1.1.1. Every map f W Z �X ! Y (or f W X �Z ! Y ) induces the
map Nf W Z ! C.X; Y / defined by Nf .z/.x/ D f .z; x/ (or Nf .z/.x/ D f .x; z/).
Proof. For each z 2 Z, it is easy to see that Nf .z/ W X ! Y is continuous, i.e.,
Nf .z/ 2 C.X; Y /. Thus, Nf is well-defined.

To verify the continuity of Nf W Z ! C.X; Y /, it suffices to show that
Nf �1.hKIU i/ is open in Z for each compact set K in X and each open set U in
Y . Let z 2 Nf �1.hKIU i/, i.e., f .fzg � K/ � U . Using the compactness of K , we
can easily find an open neighborhood V of z in Z such that f .V �K/ � U , which
means that V � Nf �1.hKIU i/. ut

With regards to the relation' on C.X; Y /, we have the following:

Proposition 1.1.2. Each f; g 2 C.X; Y / are connected by a path in C.X; Y /. When
X is metrizable or locally compact, the converse is also true, that is, f ' g if and
only if f and g are connected by a path in C.X; Y / if f ' g.4

Proof. By Proposition 1.1.1, a homotopy h W X � I ! Y from f to g induces the
path Nh W I ! C.X; Y / defined as Nh.t/.x/ D h.x; t/ for each t 2 I and x 2 X ,
where Nh.0/ D f and Nh.1/ D g.

For a path ' W I! C.X; Y / from f to g, we define the homotopy Q' W X � I!
Y as Q'.x; t/ D '.t/.x/ for each .x; t/ 2 X � I. Then, Q'0 D '.0/ D f and
Q'1 D '.1/ D g. It remains to show that Q' is continuous if X is metrizable or locally
compact.

In the case that X is locally compact, for each .x; t/ 2 X � I and for each open
neighborhood U of Q'.x; t/ D '.t/.x/ in Y , x has a compact neighborhood K in
X such that '.t/.K/ � U , i.e., '.t/ 2 hKIU i. By the continuity of ', t has a
neighborhood V in I such that '.V / � hKIU i. Thus, K � V is a neighborhood of
.x; t/ 2 X � I and Q'.K � V / � U . Hence, Q' is continuous.

In the case that X is metrizable, let us assume that Q' is not continuous at .x; t/ 2
X � I. Then, Q'.x; t/ has some open neighborhoodU in Y such that Q'.V / 6� U for
any neighborhood V of .x; t/ in X � I. Let d 2 Metr.X/. For each n 2 N, we have
xn 2 X and tn 2 I such that d.xn; x/ < 1=n, jtn � t j < 1=n and Q'.xn; tn/ 62 U .
Because xn ! x (n ! 1) and '.t/ is continuous, we have n0 2 N such that
'.t/.xn/ 2 U for all n � n0. Note that K D fxn; x j n � n0g is compact and
'.t/.K/ � U . Because tn ! t (n!1) and ' is continuous at t , '.tn1/.K/ � U
for some n1 � n0. Thus, Q'.xn1 ; tn1/ 2 U , which is a contradiction. Consequently, Q'
is continuous. ut
Remark 1. It is easily observed that Proposition 1.1.2 is also valid for

4More generally, this is valid for every k-space X , where X is a k-space provided U is open in
X if U \ K is open in K for every compact set K � X . A k-space is also called a compactly
generated space.
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C..X;X1; : : : ; Xn/; .Y; Y1; : : : ; Yn//:

Some Properties of the Compact-Open Topology 1.1.3.

The following hold with respect to the compact-open topology:

(1) For f 2 C.Z;X/ and g 2 C.Y;Z/, the following are continuous:

f � W C.X; Y /! C.Z; Y /; f �.h/ D h ı f I
g� W C.X; Y /! C.X;Z/; g�.h/ D g ı h:

(2) When Y is locally compact, the following (composition) is continuous:

C.X; Y / � C.Y;Z/ 3 .f; g/ 7! g ı f 2 C.X;Z/:

Sketch of Proof. LetK be a compact set inX and U an open set inZ with f 2 C.X; Y /
and g 2 C.Y; Z/ such that gıf .K/ � U . Since Y is locally compact, we have an open
set V in Y such that clV is compact, f .K/ � V and g.clV / � U . Then, f 0.K/ � V
and g0.clV / � U imply g0 ı f 0.K/ � U .

(3) For each x0 2 X , the following (evaluation) is continuous:

C.X; Y / 3 f 7! f .x0/ 2 Y:

(4) When X is locally compact, the following (evaluation) is continuous:

C.X; Y / �X 3 .f; x/ 7! f .x/ 2 Y:

In this case, for every map f W Z ! C.X; Y /, the following is continuous:

Z �X 3 .z; x/ 7! f .z/.x/ 2 Y:

(5) In the case that X is locally compact, we have the following inequalities:

w.Y / � w.C.X; Y // � @0w.X/w.Y /:
Sketch of Proof. By embedding Y into C.X; Y /, we obtain the first inequality. For the
second, we take open bases BX and BY for X and Y , respectively, such that card BX D
w.X/, cardBY D w.Y /, and clA is compact for every A 2 BX . The following is an
open sub-basis for C.X; Y /:

B D ˚hclA;Bi ˇˇ .A; B/ 2 BX � BY
�
:

Indeed, let K be a compact set in X , U be an open set in Y , and f 2 C.X; Y / with
f .K/ � U , i.e., f 2 hK;U i. First, find B1; : : : ; Bn 2 BY so that f .K/ � B1 [ � � � [
Bn � U . Next, find A1; : : : ; Am 2 BX so that K � A1 [ � � � [ Am and each clAi is
contained in some f �1.Bj.i//. Then, f 2Tm

iD1hclAi ; Bj.i/i � hK;U i.



1.2 Banach Spaces in the Product of Real Lines 11

(6) If X is compact and Y D .Y; d/ is a metric space, then the sup-metric on
C.X; Y / is admissible for the compact-open topology on C.X; Y /.

Sketch of Proof. Let K be a compact set in X and U be an open set in Y with
f 2 C.X; Y / such that f .K/ � U . Then, ı D dist.f .K/; Y n U/ > 0, and
d.f; f 0/ < ı implies f 0.K/ � U . Conversely, for each " > 0 and f 2 C.X; Y /,
we have x1; : : : ; xn 2 X such that X D Sn

iD1 f
�1.B.f .xi /; "=4/. Observe that

f 0.f �1.B.f .xi /; "=4/// � B.f .xi /; "=2/ .8i D 1; : : : ; n/

) d.f; f 0/ < ":

(7) Let X D S
n2NXn, where Xn is compact and Xn � intXnC1. If Y D .Y; d/ is

a metric space, then C.X; Y / with the compact-open topology is metrizable.

Sketch of Proof. We define a metric 
 on C.X; Y / as follows:


.f; g/ D sup
n2N

min

(

n�1; sup
x2Xn

d.f .x/; g.x//

)

:

Then, 
 is admissible for the compact-open topology on C.X; Y /. To see this, refer to
the proof of (6).

1.2 Banach Spaces in the Product of Real Lines

Throughout this section, let � be an infinite set. We denote

• Fin.� / — the set of all non-empty finite subsets of � .

Note that card Fin.� / D card� . The product space R
� is a linear space with the

following scalar multiplication and addition:

R
� � R 3 .x; t/ 7! tx D .tx.�//�2� 2 R

� I
R
� � R

� 3 .x; y/ 7! x C y D .x.�/C y.�//�2� 2 R
� :

In this section, we consider various (complete) norms defined on linear subspaces
of R� . In general, the unit closed ball and the unit sphere of a normed linear space
X D .X; k � k/ are denoted by BX and SX , respectively. Namely, let

BX D
˚
x 2 X ˇ

ˇ kxk � 1� and SX D
˚
x 2 X ˇ

ˇ kxk D 1�:

The zero vector (the zero element) of X is denoted by 0X , or simply 0 if there is no
possibility of confusion.

Before considering norms, we first discuss the product topology of R
� . The

scalar multiplication and addition are continuous with respect to the product
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topology. Namely,R� with the product topology is a topological linear space.5 Note
that w.R� / D card� .

Let B0 be a countable open basis for R. Then, R� has the following open basis:

˚T
�2F pr�1

� .B� /
ˇ
ˇ F 2 Fin.� /; B� 2 B0 .� 2 F /�:

Thus, we have w.R� / � @0 card Fin.� / D card� . Let B be an open basis for R� . For
each B 2 B, we can find FB 2 Fin.� / such that pr� .B/ D R for every � 2 � n FB .
Then, card

S
B2B FB � @0 card B. If card B < card� then card

S
B2B FB < card� , so

we have �0 2 � nSB2B FB . The open set pr�1
�0
..0;1// � R

� contains some B 2 B.
Then, pr�0 .B/ � .0;1/, which means that �0 2 FB . This is a contradiction. Therefore,
card B � card� , and thus we have w.R� / � card� .

For each � 2 � , we define the unit vector e� 2 R
� by e� .�/ D 1 and e� .� 0/ D 0

for � 0 6D � . It should be noted that fe� j � 2 � g is not a Hamel basis for R� , and
the linear span of fe� j � 2 � g is the following:6

R
�
f D

˚
x 2 R

�
ˇ
ˇ x.�/ D 0 except for finitely many � 2 � �;

which is a dense linear subspace of R� . The subspace RN

f of s D R
N is also denoted

by sf , which is the space of finite sequences (with the product topology). When
card� D @0, the space R

� is linearly homeomorphic to the space of sequences
s D R

N, i.e., there exists a linear homeomorphism between R
� and s, where the

linear subspace R
�
f is linearly homeomorphic to sf by the same homeomorphism.

The following fact can easily be observed:

Fact. The following are equivalent:

(a) R
� is metrizable;

(b) R
�
f is metrizable;

(c) R
�
f is first countable;

(d) card� � @0.
The implication (c)) (d) is shown as follows: Let fUi j i 2 Ng be a neighborhood basis
of 0 in R

�
f . Then, each �i D f� 2 � j Re� 6� Ui g is finite. If � is uncountable, then

� nSi2N �i 6D ;, i.e., Re� �Ti2N Ui for some � 2 � . In this case, Ui 6� pr�1
� ..�1; 1//

for every i 2 N, which is a contradiction.

Thus, every linear subspace L of R
� containing R

�
f is non-metrizable if � is

uncountable, and it is metrizable if � is countable. On the other hand, due to
the following proposition, every linear subspaces L of R� containing R

�
f is non-

normable if � is infinite.

Proposition 1.2.1. Let � be an infinite set. Any norm on R
�
f does not induce the

topology inherited from the product topology of R� .

5For topological linear spaces, refer Sect. 3.4.
6The linear subspace generated by a set B is called the linear span of B .
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Proof. Assume that the topology of R�f is induced by a norm k � k. Because U D
fx 2 R

�
f j kxk < 1g is an open neighborhood of 0 in R

�
f , we have a finite set F �

� and neighborhoods V� of 0 2 R, � 2 F , such that R�f \
T
�2F pr�1� .V� / � U .

Take �0 2 � n F . As Re�0 � U , we have ke�0k�1e�0 2 U but
�
�ke�0k�1e�0

�
� D

ke�0k�1ke�0k D 1, which is a contradiction. ut
The Banach space `1.� / and its closed linear subspaces c.� / � c0.� / are

defined as follows:

• `1.� / D
˚
x 2 R

�
ˇ
ˇ sup�2� jx.�/j <1

�
with the sup-norm

kxk1 D sup
�2�
jx.�/jI

• c.� / D ˚x 2 R
�
ˇ
ˇ 9t 2 R such that 8" > 0; jx.�/� t j < " except for finitely

many � 2 � �I
• c0.� / D

˚
x 2 R

�
ˇ
ˇ 8" > 0; jx.�/j < " except for finitely many � 2 � �.

These are linear subspaces of R
� , but are not topological subspace according to

Proposition 1.2.1. The space c.� / is linearly homeomorphic to c0.� / � R by the
correspondence

c0.� / � R 3 .x; t/ 7! .x.�/C t/�2� 2 c.� /:

This correspondence and its inverse are Lipschitz with respect to the norm k.x; t /k D
maxfkxk

1

; jt jg. Indeed, let y D .x.�/Ct /�2� . Then, kyk
1

� kxk
1

Cjt j � 2k.x; t /k.
Because x 2 c0.� / and jt j � jy.�/j C jx.�/j � kyk

1

C jx.�/j for every � 2 � , it
follows that jt j � kyk

1

. Moreover, jx.�/j � jy.�/j C jt j � 2kyk
1

for every � 2 � .
Hence, kxk

1

� 2kyk
1

, and thus we have k.x; t /k � 2kyk
1

.

Furthermore, we denote R
�
f with this norm as `f1.� /. We then have the

inclusions:

`f1.� / � c0.� / � c.� / � `1.� /:

The topology of `f1.� / is different from the topology inherited from the product
topology. Indeed, fe� j � 2 � g is discrete in `f1.� /, but 0 is a cluster point of this
set with respect to the product topology.

We must pay attention to the following fact:

Proposition 1.2.2. For an arbitrary infinite set � ,

w.`1.� // D 2card� but w.c.� // D w.c0.� // D w.`f1.� // D card�:

Proof. The characteristic map �� W � ! f0; 1g � R of � � � belongs to `1.� /
(�; D 0 2 `1.� /), where k�� � ��0k1 D 1 if � 6D �0 � � . It follows that
w.`1.� // D c.`1.� // � 2card� . Moreover, Q� \ `1.� / is dense in `1.� /, and
hence we have
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w.`1.� // D dens `1.� / � cardQ� D @card�
0 D 2card� :

On the other hand, e� 2 `f1.� / for each � 2 � and ke� � e� 0k1 D 1 if � 6D � 0.
Since `f1.� / � c0.� /, it follows that

w.c0.� // � w.`f1.� // D c.`f1.� // � card�:

Moreover, c0.� / has the following dense subset:

Q
�
f D

˚
x 2 Q

�
ˇ
ˇ x.�/ D 0 except for finitely many � 2 � �;

and so it follows that

w.c0.� // D dens c0.� / � cardQ�
f � @0 card Fin.� / D card�:

Thus, we have w.c0.� // D w.`f1.� // D card� . As already observed, c.� / �
c0.� / � R, hence w.c.� // D w.c0.� //. ut

When � D N, we write

• `1.N/ D `1 — the space of bounded sequences,
• c.N/ D c — the space of convergent sequences,
• c0.N/ D c0 — the space of sequences convergent to 0, and
• `

f1.N/ D `f1 — the space of finite sequences with the sup-norm,

where `f1 6D sf as (topological) spaces. According to Proposition 1.2.2, c and c0 are
separable, but `1 is non-separable. When card� D @0, the spaces `1.� /, c.� /,
and c0.� / are linearly isometric to these spaces `1, c and c0, respectively.

Here, we regard Fin.� / as a directed set by �. For x 2 R
� , we say thatP

�2� x.�/ is convergent if
�P

�2F x.�/
�
F2Fin.� / is convergent, and define

X

�2�
x.�/ D lim

F2Fin.� /

X

�2F
x.�/:

In the case that x.�/ � 0 for all � 2 � ,
P

�2� x.�/ is convergent if and only if
�P

�2F x.�/
�
F2Fin.� / is upper bounded, and then

X

�2�
x.�/ D sup

F2Fin.� /

X

�2F
x.�/:

By this reason,
P

�2� x.�/ <1 means that
P

�2� x.�/ is convergent.
For x 2 R

N, we should distinguish
P

i2N x.i/ from
P1

iD1 x.i/. When the
sequence

�Pn
iD1 x.i/

�
n2N is convergent, we say that

P1
iD1 x.i/ is convergent, and

define
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1X

iD1
x.i/ D lim

n!1

nX

iD1
x.i/:

Evidently, if
P

i2N x.i/ is convergent, then
P1

iD1 x.i/ is also convergent andP1
iD1 x.i/ D

P
i2N x.i/. However,

P
i2N x.i/ is not necessary convergent even

if
P1

iD1 x.i/ is convergent. In fact, due to Proposition 1.2.3 below, we have the
following:

X

i2N
x.i/ is convergent ,

1X

iD1
jx.i/j is convergent.

Proposition 1.2.3. For an infinite set � and x 2 R
� ,
P

�2� x.�/ is convergent
if and only if

P
�2� jx.�/j < 1. In this case, �x D f� 2 � j x.�/ 6D 0g is

countable, and
P

�2� x.�/ D
P1

iD1 x.�i / for any sequence .�i /i2N in � such that
�x � f�i j i 2 Ng and �i 6D �j if i 6D j .

Proof. Let us denote �C D f� 2 � j x.�/ > 0g and �� D f� 2 � j x.�/ < 0g.
Then, �x D �C [ ��.

If
P

�2� x.�/ is convergent, we have F0 2 Fin.� / such that

F0 � F 2 Fin.� / )
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2�
x.�/�

X

�2F
x.�/

ˇ
ˇ
ˇ
ˇ
ˇ
< 1:

Then, for each E 2 Fin.�C/[ Fin.��/ (i.e., E 2 Fin.�C/ or E 2 Fin.��/),

X

�2EnF0
jx.�/j D

ˇ
ˇ
ˇ
ˇ
ˇ

X

�2EnF0
x.�/

ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2E[F0
x.�/ �

X

�2F0
x.�/

ˇ
ˇ
ˇ
ˇ
ˇ
< 2:

Hence,
P

�2F jx.�/j <
P

�2F0 jx.�/j C 4 for every F 2 Fin.� /, which means that
�P

�2F jx.�/j
�
F2Fin.� / is upper bounded, i.e.,

P
�2� jx.�/j <1.

Conversely, we assume that
P

�2� jx.�/j < 1. Then, for each n 2 N, �n D
f� 2 � j jx.�/j > 1=ng is finite, and hence �x D S

n2N �n is countable. Note thatP
�2�

C

jx.�/j <1 and
P

�2�
�

jx.�/j <1. We show that

X

�2�
x.�/ D

X

�2�
C

jx.�/j �
X

�2�
�

jx.�/j:

For each " > 0, we can find FC 2 Fin.�C/ and F� 2 Fin.��/ such that

F˙ � E 2 Fin.�˙/ )
X

�2�
˙

jx.�/j � "=2 <
X

�2E
jx.�/j �

X

�2�
˙

jx.�/j:
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Then, it follows that, for each F 2 Fin.� / with F � FC [ F�,

ˇ
ˇ
ˇ
ˇ
ˇ

X

�2F
x.�/�

 
X

�2�
C

jx.�/j �
X

�2�
�

jx.�/j
!ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2F\�
C

jx.�/j �
X

�2�
C

jx.�/j
ˇ
ˇ
ˇ
ˇ
ˇ
C
ˇ
ˇ
ˇ
ˇ
ˇ

X

�2F\�
�

jx.�/j �
X

�2�
�

jx.�/j
ˇ
ˇ
ˇ
ˇ
ˇ

< "=2C "=2 D ":

Now, let .�i /i2N be a sequence in � such that �x � f�i j i 2 Ng and �i 6D �j if
i 6D j . We define

n0 D maxfi 2 N j �i 2 FC [ F�g:
For each n � n0, it follows from FC [ F� � f�1; : : : ; �ng that

ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD1
x.�i /�

 
X

�2�
C

jx.�/j �
X

�2�
�

jx.�/j
!ˇ
ˇ
ˇ
ˇ
ˇ
< ":

Thus, we also have
P

�2� x.�/ D
P1

iD1 x.�i /. ut
For each p � 1, the Banach space `p.� / is defined as follows:

• `p.� / D
˚
x 2 R

�
ˇ
ˇ P

�2� jx.�/jp <1
�

with the norm

kxkp D
 
X

�2�
jx.�/jp

!1=p

:

Similar to `f1.� /, we denote the space R�f with this norm by `fp .� /.

The triangle inequality for the norm kxkp is known as the Minkowski inequality, which is
derived from the following Hölder inequality:

X

�2�

a�b� �
 
X

�2�

ap�

!1=p 
X

�2�

b
1

1�1=p
�

!1�1=p

for every a� ; b� � 0.

Indeed, for every x; y 2 `p.� /,

kx C ykpp D
X

�2�

jx.�/C y.�/jp

�X

�2�

�jx.�/j C jy.�/j�jx.�/C y.�/jp�1

DX

�2�

jx.�/j � jx.�/C y.�/jp�1 CX

�2�

jy.�/j � jx.�/C y.�/jp�1
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�
 
X

�2�

jx.�/jp
!1=p 

X

�2�

jx.�/C y.�/j.p�1/ 1
1�1=p

!1�1=p

C
 
X

�2�

jy.�/jp
!1=p 

X

�2�

jx.�/C y.�/j.p�1/ 1
1�1=p

!1�1=p

D �kxkp C kykp��kx C ykpp
�1�1=p D �kxkp C kykp�kx C yk

p
p

kx C ykp ;

so it follows that kx C ykp � kxkp Ckykp .

As for c0.� /, we can show w.`p.� // D card� . When card� D @0, the Banach
space `p.� / is linearly isometric to `p D `p.N/, which is separable. The space
`2.� / is the Hilbert space with the inner product

hx; yi D
X

�2�
x.�/y.�/;

which is well-defined because

X

�2�
jx.�/y.�/j � 1

2
.kxk22 C kyk22/ <1:

For 1 � p < q, we have `p.� / ¤ `q.� / ¤ c0.� / as sets (or linear spaces).
These inclusions are continuous because kxk1 � kxkq � kxkp for every x 2
`p.� /. When � is infinite, the topology of `p.� / is distinct from that induced by
the norm k � kq or k � k1 (i.e., the topology inherited from `q.� / or c0.� /). In fact,
the unit sphere S`p.� / is closed in `p.� / but not closed in `q.� / for any q > p, nor
in c0.� /. To see this, take distinct �i 2 � , i 2 N, and let .xn/n2N be the sequence
in S`p.� / defined by xn.�i / D n�1=p for i � n and xn.�/ D 0 for � 6D �1; : : : ; �n. It
follows that kxnk1 D n�1=p ! 0 (n!1) and

kxnkq D
�
n � n�q=p�1=q D n.p�q/=pq ! 0 .n!1/

because .p � q/=pq < 0.
For 1 � p � 1, we have R

�
f � `p.� / as sets (or linear spaces). We denote by

`
f
p .� / this R�f with the topology inherited from `p.� /, and we write `fp .N/ D `

f
p

(when � D N). From Proposition 1.2.1, we know `
f
p .� / 6D R

�
f as spaces for any

infinite set � . In the above, the sequence .xn/n2N is contained in the unit sphere
S
`
f
p .� /

of `fp .� /, which means that S
`
f
p .� /

is not closed in `fq , hence `fp 6D `
f
q as

spaces for 1 � p < q � 1. Note that S
`
f
p .� /

is a closed subset of `fq for 1 � q < p.

Concerning the convergence of sequences in `p.� /, we have the following:
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Proposition 1.2.4. For each p 2 N and x 2 `p.� /, a sequence .xn/n2N converges
to x in `p.� / if and only if

kxkp D lim
n!1 kxnkp and x.�/ D lim

n!1xn.�/ for every � 2 � .

Proof. The “only if” part is trivial, so we concern ourselves with proving the “if”
part for `p.� /. For each " > 0, we have �1; : : : ; �k 2 � such that

X

� 6D�i
jx.�/jp D kxkpp �

kX

iD1
jx.�i /jp < 2�p"p=4:

Choose n0 2 N so that if n � n0 then
ˇ
ˇkxnkpp � kxkpp

ˇ
ˇ < 2�p"p=8,

ˇ
ˇjxn.�i /jp � jx.�i /jp

ˇ
ˇ < 2�p"p=8k and jxn.�i /� x.�i /jp < "p=4k

for each i D 1; : : : ; k. Then, it follows that

X

� 6D�i
jxn.�/jp Dkxnkpp �

kX

iD1
jxn.�i /jp

Dkxnkpp � kxkpp C kxkpp �
kX

iD1
jx.�i /jp

C
kX

iD1

�jx.�i /jp � jxn.�i /jp
�

<2�p"p=8C 2�p"p=4C 2�p"p=8 D 2�p"p=2;
and hence we have

kxn � xkpp �
kX

iD1
jxn.�i / � x.�i /jp C

X

� 6D�i
2p max

˚jxn.�/j; jx.�/j
�p

< "p=4C
X

� 6D�i
2pjxn.�/jp C

X

� 6D�i
2pjx.�/jp

< "p=4C "p=2C "p=4 D "p;

that is, kxn � xkp < ". ut
Remark 2. It should be noted that Proposition 1.2.4 is valid not only for sequences,
but also for nets, which means that the unit spheres S`p.� /, p 2 N, are subspaces of
the product space R

� , whereas R� and R
�
f are not metrizable if � is uncountable.

Therefore, if 1 � p < q � 1, then S`p.� / is also a subspace of `q.� /, although,
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as we have seen, S`p.� / of `p.� / is not closed in the space `q.� /. The unit sphere

S
`
f
p .� /

of `fp .� / is a subspace of R�f (� R
� ), and also a subspace of `q.� / for

1 � q � 1.

Remark 3. The “if” part of Proposition 1.2.4 does not hold for the space c0.� /

(although the “only if” part obviously does hold), where � is infinite. For instance,
take distinct �n 2 � , n 2 !, and let .xn/n2N be the sequence in c0.� / defined by
xn D e�n C e�0 . Then, kxnk1 D 1 for each n 2 N,

lim
n!1xn.�0/ D 1 D e�0.�0/ and lim

n!1xn.�/ D 0 D e�0.�/ for � 6D �0,

but kxn � e�0k1 D 1 for every n 2 � . In addition, the unit sphere Sc0.� / of c0.� /

is not a subspace of R� , because e�n 2 Sc0.� / but .e�n/n2N converges to 0 in R
� .

Concerning the topological classification of `p.� /, we have the following:

Theorem 1.2.5 (MAZUR). For each 1 < p < 1, `p.� / is homeomorphic to

`1.� /. By the same homeomorphism, `fp .� / is also homeomorphic to `f1 .� /.

Proof. We define ' W `1.� /! `p.� / and  W `p.� /! `1.� / as follows:

'.x/.�/ D sign x.�/ � jx.�/j1=p for x 2 `1.� /,
 .x/.�/ D signx.�/ � jx.�/jp for x 2 `p.� /,

where sign 0 D 0 and sign a D a=jaj for a 6D 0. We can apply Proposition 1.2.4 to
verify the continuity of ' and  . In fact, the following functions are continuous:

`1.� / 3 x 7! k'.x/kp D
�kxk1

�1=p 2 R; `1.� / 3 x 7! '.x/.�/ 2 R; � 2 � I
`p.� / 3 x 7! k .x/k1 D

�kxkp
�p 2 R; `p.� / 3 x 7!  .x/.�/ 2 R; � 2 �:

Observe that  ' D id and ' D id. Thus, ' is a homeomorphism with '�1 D  ,
where '.`fp .� // � `f1 .� / and  .`f1 .� // � `fp .� /. ut

For each space X , we denote C.X/ D C.X;R/. The Banach space CB.X/ is
defined as follows:

• CB.X/ D ˚f 2 C.X/
ˇ
ˇ supx2X jf .x/j <1

�
with the sup-norm

kf k D sup
x2X
jf .x/j:

This sup-norm of CB.X/ induces the uniform convergence topology. IfX is discrete
and infinite, then we have CB.X/ D `1.X/, and so, in particular, CB.N/ D `1.
When X is compact, CB.X/ D C.X/ and the topology induced by the norm
coincides with the compact-open topology.
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The uniform convergence topology of C.X/ is induced by the following metric:

d.f; g/ D sup
x2X

minfjf .x/� g.x/j; 1g:

As can be easily observed, CB.X/ is closed and open in C.X/ under the uniform
convergence topology. Note that CB.X/ is a component of the space C.X/ because
CB.X/ is path-connected as a normed linear space.

Regarding C.X/ as a subspace of the product space R
X , we can introduce a

topology on C.X/, which is called the pointwise convergence topology. With
respect to this topology,

lim
n!1fn D f , lim

n!1fn.x/ D f .x/ for every x 2 X .

The space C.X/ with the pointwise convergence topology is usually denoted by
Cp.X/. The space Cp.N/ is simply the space of sequences s D R

N.
In this chapter, three topologies on C.X/ have been considered — the compact-

open topology, the uniform convergence topology, and the pointwise convergence
topology. Among them, the uniform convergence topology is the finest and the
pointwise convergence topology is the coarsest.

Notes for Chap. 1

Theorem 1.2.5 is due to Mazur [3]. Zhongqiang Yang pointed out that Proposition 1.2.4 can be

applied to show the continuity of ' and  in the proof of Theorem 1.2.5. Related to Mazur’s result,

Anderson [1] proved that s D R
N is homeomorphic to the Hilbert space `2. For an elementary

proof, refer to [2].
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Chapter 2
Metrization and Paracompact Spaces

In this chapter, we are mainly concerned with metrization and paracompact spaces.
We also derive some properties of the products of compact spaces and perfect maps.
Several metrization theorems are proved, and we characterize completely metrizable
spaces. We will study several different characteristics of paracompact spaces that
indicate, in many situations, the advantages of paracompactness. In particular, there
exists a useful theorem showing that, if a paracompact space has a certain property
locally, then it has the same property globally. Furthermore, paracompact spaces
have partitions of unity, which is also a very useful property.

2.1 Products of Compact Spaces and Perfect Maps

In this section, we present some theorems regarding the products of compact spaces
and compactifications. In addition, we introduce perfect maps. First, we present a
proof of the TYCHONOFF THEOREM.

Theorem 2.1.1 (TYCHONOFF). The product space
Q
�2� X� of compact spaces

X�, � 2 �, is compact.

Proof. Let X D Q
�2� X�. We may assume that � D .�;�/ is a well-ordered

set. For each � 2 �, let p� W X ! Q
��� X� and q� W X ! Q

�<� X� be the
projections.

Let A be a collection of subsets of X with the finite intersection property
(f.i.p.). Using transfinite induction, we can find x� 2 X� such that Ajp�1� .U /
has the f.i.p. for every neighborhood U of .x	/	�� in

Q
	�� X	 . Indeed, suppose

that x� 2 X�, � < �, have been found, but there exists no x� 2 X� with
the above property, i.e., any y 2 X� has an open neighborhood Vy with an
open neighborhood Uy of .x�/�<� in

Q
�<� X� such that Ajq�1� .Uy/ \ pr�1� .Vy/

does not have the f.i.p. Because X� is compact, we have y1; : : : ; yn 2 X�
such that X� D Sn

iD1 Vyi . Since
Tn
iD1 Uyi is a neighborhood of .x�/�<� in

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics,
DOI 10.1007/978-4-431-54397-8 2, © Springer Japan 2013
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Q
�<� X�, we have 	1; : : : ; 	m < � and neighborhoods Wi of x	i in X	i such

that
Tm
iD1 pr�1	i .Wi/ � q�1� .

Tn
iD1 Uyi /. Let 	 D maxf	1; : : : ; 	mg < �. Then,

we can write
Tm
iD1 pr�1	i .Wi / D p�1	 .W / for some neighborhood W of .x�/��	

in
Q
��	 X�. Because p�1	 .W / �

Tn
iD1 q�1� .Uyi /, no Ajp�1	 .W / \ pr�1� .Vyi / have

the f.i.p. Since X D Sn
iD1 pr�1� .Vyi /, it follows that Ajp�1	 .W / does not have the

f.i.p., which contradicts the inductive assumption.
Now, we have obtained the point x D .x�/�2� 2 X . For each neighborhood

U of x in X , we have �1; : : : ; �n 2 � and neighborhoods Ui of x�i in X�i such
that

Tn
iD1 pr�1�i .Ui / � U . Let �0 D maxf�1; : : : ; �ng 2 �. Then, we can write

Tn
iD1 pr�1�i .Ui/ D p�1�0 .U0/ for some neighborhood U0 of .x	/	��0 in

Q
	��0 X	 .

Since p�1�0 .U0/ � U , AjU has the f.i.p. Consequently, every neighborhood U
of x in X meets every member of A. This means that x 2 T

A2A clA, and soT
A2A clA6D;. ut

Note. There are various proofs of the Tychonoff Theorem. In one familiar proof, Zorn’s
Lemma is applied instead of the transfinite induction. Let A be a collection of subsets of X
with the f.i.p. and ˚ be all of collections A0 of subsets of X such that A0 has the f.i.p. and
A � A0. Applying Zorn’s Lemma to the ordered set ˚ D .˚;�/, we can obtain a maximal
element A� 2 ˚ . Because of the maximality, A� has the following properties:

(1) The intersection of any finite members of A� belongs to A�;
(2) If B � X meets every member of A�, then B 2 A�.

For each � 2 �, pr�.A�/ has the f.i.p. SinceX� is compact, we have x� 2TA2A�
cl pr�.A/.

It follows from (2) that pr�1
� .V / 2 A� for every neighborhood V of x� in X�. Now, it is

easy to see that

x D .x�/�2� 2
\

A2A�

clA � \

A2A
clA:

Next, we prove WALLACE’S THEOREM:

Theorem 2.1.2 (WALLACE). Let A D Q
�2� A� � X D Q

�2� X�, where
each A� is compact. Then, for each open set W in X with A � W , there
exists a finite subset �0 � � and open sets V� in X�, � 2 �0, such that
A �T�2�0 pr�1� .V�/�W .

Proof. When � is finite, we may take �0 D �. Then,
T
�2�0 pr�1� .V�/ coincides

with
Q
�2� V�. This case can be proved by induction on card�, which is reduced to

the case card� D 2. Proving the case card� D 2 is an excellent exercise.1

We will show that the general case is derived from the finite case. For each x2A,
we have a finite subset �.x/ � � and an open set U.x/ in

Q
�2�.x/ X� such

that x 2 pr�1�.x/.U.x// � W . Because of the compactness of A, there exist finite

x1; : : : ; xn 2 A such that A � Sn
iD1 pr�1�.xi /.U.xi //. Thus, we have a finite subset

1Use the same strategy used in the proof of normality of a compact Hausdorff space.
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�0 D Sn
iD1 �.xi / � �. For each i D 1; : : : ; n, let pi W Q�2�0 X� !

Q
�2�.xi / X�

be the projection. Then,W0 DSn
iD1 p�1i .U.xi // is an open set in

Q
�2�0 X�.

Note that
Sn
iD1 pr�1�.xi /.U.xi // D pr�1�0 .W0/. From the finite case, we obtain open

sets V�, � 2 �0, such that
Q
�2�0 A� �

Q
�2�0 V� � W0. Hence,

A �
\

�2�0
pr�1� .V�/ � pr�1�0 .W0/ � W: ut

For any space X , we define the evaluation map eX W X ! IC.X;I/ by eX.x/ D
.f .x//f 2C.X;I/ for each x 2 X . The continuity of eX follows from the fact that
prf ıeX D f is continuous for each f 2 C.X; I/, where prf W IC.X;I/ ! I is the
projection (i.e., prf .�/ D �.f /).
Proposition 2.1.3. For every Tychonoff space X , the map eX W X ! IC.X;I/ is an
embedding.

Proof. LetU be an open set inX and x 2 U . SinceX is a Tychonoff space, we have
some f 2 C.X; I/ such that f .x/ D 0 and f .X nU / � f1g. Then, V D pr�1f .Œ0; 1//
is an open set in IC.X;I/. Since prf .eX.x// D f .x/ D 0, it follows that eX.x/ 2 V .
Since prf ıeX.X nU / D f .X nU / � f1g, we have eX.X nU /\V D ;. Therefore,
eX.x/ 2 V \ eX.X/ � eX.U /. This implies that eX W X ! eX.X/ is an open map.

For x 6D y 2 X , applying the above argument to U D X n fyg, we can see that
eX.x/.f / D 0 6D 1 D eX.y/.f /. Thus, eX is an embedding. ut

From Tychonoff’s Theorem, it follows that the product space IC.X;I/ is compact.
Then, identifyingX with eX.X/, we define a compactification ˇX of X as follows:

ˇX D clIC.X;I/ eX.X/;

which is called the Stone–Čech compactification.
Now, let f W X ! Y be a map between Tychonoff spaces. The map f� W

IC.X;I/ ! IC.Y;I/ is defined as f�.�/ D .�.kf //k2C.Y;I/ for each � 2 IC.X;I/, where
the continuity of f� follows from the continuity of prkıf� D prkf , k 2 C.Y; I/.
Then, we have f�ıeX D eY ıf .

X
f

eX

Y

eY

IC.X;I/

f
�

IC.Y;I/

Indeed, for each x 2 X and k 2 C.Y; I/,

f�.eX.x//.k/ D eX.x/.kf / D k.f .x// D eY .f .x//.k/:
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Since f� is continuous, it follows that f�.ˇX/ � ˇY . Thus, f extends to the map
f̌ D f�jˇX W ˇX ! ˇY .

Further, let g W Y ! Z be another map, where Z is Tychonoff. Then, for each
� 2 IC.X;I/ and k 2 C.Z; I/,

g�.f�.�//.k/ D f�.�/.kg/ D �.kgf / D .gf /�.�/.k/;

that is, g�f� D .gf /�. Therefore, ˇ.gf / D ˇg f̌ .
The Stone–Čech compactification ˇX can be characterized as follows:

Theorem 2.1.4 (STONE; ČECH). Let X be a Tychonoff space. For any compactifi-
cation �X ofX , there exists the (unique) map f W ˇX ! �X such that f jX D idX .
If a compactification ˇ0X has the same property as above, then there exists a
homeomorphism h W ˇX ! ˇ0X such that hjX D idX .

Proof. Note that ˇ.�X/ D �X because �X is compact. Let i W X ,! �X be the
inclusion and let f D ˇi W ˇX ! ˇ.�X/ D �X . Then, f jX D idX and f is
unique because X is dense in ˇX .

If a compactification ˇ0X of X has the same property, then we have two maps
h W ˇX ! ˇ0X and h0 W ˇ0X ! ˇX such that hjX D h0jX D idX . It follows that
h0h D idˇX and hh0 D idˇ0X , which means that h is a homeomorphism. ut

A perfect map f W X ! Y is a closed map such that f �1.y/ is compact for
each y 2 Y . A map f W X ! Y is said to be proper if f �1.K/ is compact for
every compact set K � Y .

Proposition 2.1.5. Every perfect map f W X ! Y is proper. If Y is locally
compact, then every proper map f W X ! Y is perfect.

Proof. To prove the first assertion, let K � Y be compact and U an open cover
of f �1.K/ in X . For each y 2 K , choose a finite subcollection Uy � U so that
f �1.y/ � S

Uy . Since f is closed, each Vy D Y n f .X n SUy/ is an open
neighborhood of y in Y , where f �1.Vy/ � SUy . We can choose y1; : : : ; yn 2 K
so that K � Sn

iD1 Vyi . Thus, we have a finite subcollection U0 D Sn
iD1 Uyi � U

such that f �1.K/ �SU0. Hence, f �1.K/ is compact.
To show the second assertion, it suffices to prove that a proper map f is closed.

LetA � X be closed and y 2 cl f .A/. Since Y is locally compact, y has a compact
neighborhoodN in Y . Note that N \ f .A/ 6D ;, which implies f �1.N /\A 6D ;.
Since f is proper, f �1.N / is compact, and hence f �1.N / \ A is also compact.
Thus, f .f �1.N / \ A/ is compact, so it is closed in Y . If y 62 f .f �1.N / \ A/,
y has a compact neighborhood M � N with M \ f .f �1.N / \ A/ D ;. Then,
observe that

f .f �1.M/\ A/ �M \ f .f �1.N /\ A/ D ;;
which means that f �1.M/ \ A D ;. However, using the same argument as for
f �1.N / \ A 6D ;, we can see that f �1.M/ \ A 6D ;, which is a contradiction.
Thus, y 2 f .f �1.N /\ A/ � f .A/. Therefore, f .A/ is closed in Y . ut
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It follows from the first assertion of Proposition 2.1.5 that the composition of any
two perfect maps is also perfect. In the second assertion, the local compactness of Y
is not necessary if X and Y are metrizable, which allows the following proposition:

Proposition 2.1.6. For a map f W X ! Y between metrizable spaces, the
following are equivalent:

(a) f W X ! Y is perfect;
(b) f W X ! Y is proper;
(c) Any sequence .xn/n2N in X has a convergent subsequence if .f .xn//n2N is

convergent in Y .

Proof. The implication (a)) (b) has been shown in Proposition 2.1.5.
(b)) (c): Let y D limn!1 f .xn/ 2 Y and K D ff .xn/ j n 2 Ng [ fyg. Since

K is compact, (b) implies the compactness of f �1.K/, whose sequence .xn/n2N
has a convergent subsequence.

(c)) (a): For each y 2 Y , every sequence .xn/n2N in f �1.y/ has a convergent
subsequence due to (c), which means that f �1.y/ is compact because f �1.y/ is
metrizable.

To see that f is a closed map, let A � X be a closed set and y 2 clY f .A/.
Then, we have a sequence .xn/n2N in A such that y D limn!1 f .xn/. Due to (c),
.xn/n2N has a convergent subsequence .xni /i2N, and sinceA is closed inX , we have
limi!1 xni D x 2 A. Then, y D f .x/ 2 f .A/, and therefore f .A/ is closed in Y .
This completes the proof. ut
Lemma 2.1.7. Let D be a dense subset of X such that D 6D X . Any perfect map
f W D ! Y cannot extend over X .

Proof. Assume that f extends to a map Qf W X ! Y . Let x0 2 X nD, y0 D Qf .x0/,
eD D D [ fx0g, and g D Qf jeD W eD ! Y . Since f �1.y0/ is compact and x0 62
f �1.y0/, eD has disjoint open sets U and V such that x0 2 U and f �1.y0/ � V .
Since f is a closed map, f .D n V / is closed in Y , hence g�1.f .D n V // is closed
in eD. Because g�1.y/ D f �1.y/ for any y 2 Y n fy0g, we have

D n V � g�1.f .D n V // D f �1.f .D n V // � D:

On the other hand, x0 62 cleD V . Therefore,D D cleD V [ g�1.f .D n V // is closed
in eD, which contradicts the fact that D is dense in eD. ut
Theorem 2.1.8. For a map f W X ! Y between Tychonoff spaces, the following
are equivalent:

(a) f is perfect;
(b) For any compactification �Y of Y , f extends to a map Qf W ˇX ! �Y so that

Qf .ˇX nX/ � �Y n Y ;
(c) f̌ .ˇX nX/ � ˇY n Y .
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Proof. The implication (b)) (c) is obvious.
(a) ) (b): Applying Theorem 2.1.4, we can obtain a map g W ˇY ! �Y

with gjY D id. Then, Qf D g. f̌ / is an extension of f . Moreover, we can apply
Lemma 2.1.7 to see that Qf .ˇX n X/ � �Y n Y .

(c)) (a): For each y 2 Y , f �1.y/ D . f̌ /�1.y/ is compact. For each closed
set A in X ,

. f̌ /.clˇX A/ \ Y D f .clˇX A \X/ D f .A/;
which implies that f .A/ is closed in Y . Therefore, f is perfect. ut
Remark 1. In Theorem 2.1.4, the map f W ˇX ! �X with f jX D idX satisfies
the condition f .ˇX nX/ � �X nX that follows from Theorem 2.1.8.

Using Tychonoff’s Theorem 2.1.1 and Wallace’s Theorem 2.1.2, we can prove
the following:

Theorem 2.1.9. For each � 2 �, let f� W X� ! Y� be a perfect map. Then, the
map f DQ�2� f� W X D

Q
�2� X� ! Y DQ�2� Y� is also perfect.

Proof. Owing to Tychonoff’s Theorem 2.1.1, f �1.y/ D Q
�2� f �1� .y.�// is

compact for each y 2 Y . To show that f is a closed map, let A be a closed set in X
and y 2 Y n f .A/. Since f �1.y/ � X nA, we can apply Wallace’s Theorem 2.1.2
to obtain �1; : : : ; �n 2 � and open sets Ui in X�i , i D 1; : : : ; n, such that

f �1.y/ D
Y

�2�
f �1� .y.�// �

n\

iD1
pr�1�i .Ui/ � X nA:

Since f�i is a closed map, Vi D Y�i n f�i .X�i n Ui/ is an open neighborhood of
y.�i / in Y�i and f �1�i

.Vi / � Ui . Then, V D Tn
iD1 pr�1�i .Vi / is a neighborhood of y

in Y and f �1.V / � X nA, i.e., V \ f .A/ D ;. Therefore, f is a closed map. ut

2.2 The Tietze Extension Theorem and Normalities

In this section, we prove the Tietze Extension Theorem and present a few concepts
that strengthen normality. For A;B � X , it is said thatA and B are separated in X
if A \ clB D ; and B \ clA D ;.

Lemma 2.2.1. Let A and B be separated F sets in a normal space X . Then, X
has disjoint open sets U and V such that A � U and B � V .

Proof. Let A D S
n2NAn and B D S

n2N Bn, where A1 � A2 � � � � and B1 �
B2 � � � � are closed in X . Set U0 D V0 D ;. Using normality, we can inductively
choose open sets Un; Vn � X , n 2 N, so that

An [ clUn�1 � Un � clUn � X n .clB [ clVn�1/ and

Bn [ clVn�1 � Vn � clVn � X n .clA[ clUn/:
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A1

A2

B1
U1

A3

B2

B3

V1

A B

U2

Fig. 2.1 Construction of Un and Vn

Then, U D S
n2NUn and V D S

n2N Vn are disjoint open sets in X such that
A � U and B � V — Fig. 2.1. ut

We can now prove the following extension theorem:

Theorem 2.2.2 (TIETZE EXTENSION THEOREM). Let A be a closed set in a
normal space X . Then, every map f W A! I extends over X .

Proof. We first construct the open sets W.q/ in X , q 2 I \Q, so that

(1) q < q0) clW.q/ � W.q0/,
(2) A \W.q/ D f �1.Œ0; q//.
To this end, let fqn j n 2 Ng D I \Q, where q1 D 0, q2 D 1 and qi 6D qj if i 6D j .
We define W.q1/ D W.0/ D ; and W.q2/ D W.1/ D X n f �1.1/. Assume that
W.q1/;W.q2/; � � � ;W.qn/ have been defined so as to satisfy (1) and (2). Let

ql D min
˚
qi
ˇ
ˇ qi > qnC1; i D 1; � � � ; n

�
and

qm D max
˚
qi
ˇ
ˇ qi < qnC1; i D 1; � � � ; n

�
:

Note that f �1.Œ0; qnC1// and f �1..qnC1; 1�/ are separated F sets in X . Using
Lemma 2.2.1, we can find an open set U in X such that f �1.Œ0; qnC1// � U

and f �1..qnC1; 1�/ \ clU D ;. Then, V D U n f �1.qnC1/ is open in X and
A \ V D f �1.Œ0; qnC1//. Again, using normality, we can obtain an open set G in
X such that

clW.qm/ [ f �1.Œ0; qnC1�/ � G � clG � W.ql/:
Then, A \ .V \ G/ D f �1.Œ0; qnC1// and cl.V \ G/ � W.ql/. Yet again, using
normality, we can take an open set H in X such that

clW.qm/ � H � clH � G n f �1.ŒqnC1; 1�/ .� W.ql//:
Then,W.qnC1/ D .V \G/ [H is the desired open set in X (Fig. 2.2).

Now, we define Qf W X ! I as follows:

Qf .x/ D
(
1 if x 62 W.1/;
inf
˚
q 2 I \Q

ˇ
ˇ x 2 W.q/� if x 2 W.1/:
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f �1.1/

f �1.qnC1/

f

U

W.q`/

G

H

W.qm/

X

A

0 D q1

1 D q2

qnC1

q`

qm

f �1.Œ0; qm//

f �1.Œ0; qnC1//

f �1.Œ0; q`//

Fig. 2.2 W.qnC1/ D ..U n f �1.qnC1//\G/[H

Then, Qf jA D f because, for each x 2 A\W.1/ D A n f �1.1/,
Qf .x/ D inf

˚
q 2 I \Q

ˇ
ˇ x 2 f �1.Œ0; q//� D f .x/:

To see the continuity of Qf , let 0 < a � 1 and 0 � b < 1. Since Qf .x/ < a if and
only if x 2 W.q/ for some q < a, it follows that Qf �1.Œ0; a// D Sq<a W.q/ is open

in X . Moreover, from (1), it follows that Qf .x/ > b if and only if x 62 clW.q/ for
some q > b. Then, Qf �1..b; 1�/ D X nTq>b clW.q/ is also open in X . Therefore,
Qf is continuous. ut

As a corollary, we have Urysohn’s Lemma:

Corollary 2.2.3 (URYSOHN’S LEMMA). For each disjoint pair of closed sets A
and B in a normal space X , there exists a map f W X ! I such that A � f �1.0/
and B � f �1.1/. ut

Such a map f as in the above is called a Urysohn map.

Note. In the standard proof of the Tietze Extension Theorem 2.2.2, the desired extension
is obtained as the uniform limit of a sequence of approximate extensions that are sums of
Urysohn maps. On the other hand, Urysohn’s Lemma is directly proved as follows:

Using the normality property yields the open sets W.q/ in X corresponding to all q 2
I\Q satisfying condition (1) in our proof of the Tietze Extension Theorem and

A � W.0/ � clW.0/ � W.1/ D X n B:
A Urysohn map f W X ! I can be defined as follows:

f .x/ D
(
1 if x 62 W.1/,
inffq 2 I\Q j x 2 W.q/g if x 2 W.1/.
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In general, a subspace of a normal space is not normal (cf. Sect. 2.10). However,
we have the following proposition:

Proposition 2.2.4. Every F set in a normal space is also normal.

Proof. Let Y be an F set in a normal space X . Every pair of disjoint closed sets in
Y are F sets in X that are separated in X . Then, the normality of Y follows from
Lemma 2.2.1. ut

A space X is hereditarily normal if every subspace of X is normal. Evidently,
every metrizable space is hereditarily normal. It is said thatX is completely normal
provided that, for each pair of separated subsetsA;B � X , there exist disjoint open
sets U and V in X such that A � U and B � V . These concepts meet in the
following theorem:

Theorem 2.2.5. For a space X , the following are equivalent:

(a) X is hereditarily normal;
(b) Every open set in X is normal;
(c) X is completely normal.

Proof. The implication (a)) (b) is obvious.
(c)) (a): For an arbitrary subspace Y � X , each pair of disjoint closed sets A

and B in Y are separated in X . Then, (a) follows from (c).
(b)) (c): Let A;B � X be separated, i.e., A \ clB D ; and B \ clA D ;.

Then,W D X n .clA \ clB/ is open in X and A;B � W . Moreover,

clW A \ clW B D W \ clA\ clB D ;:

From the normality of W , we have disjoint open sets U and V in W such that
A � U and B � V . Then, U and V are open in X , and hence we have (c). ut

A normal space X is perfectly normal if every closed set in X is Gı in X
(equivalently, every open set in X is F in X ). Clearly, every metrizable space is
perfectly normal. A closed set A � X is called a zero set in X if A D f �1.0/ for
some map f W X ! R, where R can be replaced by I. The complement of a zero
set in X is called a cozero set.

Theorem 2.2.6. For a space X , the following conditions are equivalent:

(a) X is perfectly normal;
(b) Every closed set in X is a zero set (equivalently, every open set in X is a cozero

set);
(c) For every pair of disjoint closed sets A andB inX , there exists a map f W X !

I such that A D f �1.0/ and B D f �1.1/.
Proof. The implication (c)) (a) is trivial.

(a)) (b): Let A be a closed set in X . Then, we can write A DTn2NGn, where
each Gn is open in X . Using Urysohn’s Lemma, we take maps fn W X ! I, n 2 N,
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such that fn.A/ � f0g and fn.X n Gn/ � f1g. We can define a map f W X ! I as
f .x/ DPn2N 2�nfn.x/. Then, it is easy to see that A D f �1.0/.

(b)) (c): Let A and B be disjoint closed sets in X . Condition (b) provides two
maps g; h W X ! I such that g�1.0/ D A and h�1.0/ D B . Then, the desired map
f W X ! I can be defined as follows:

f .x/ D g.x/

g.x/C h.x/ : ut

Theorem 2.2.7. Every perfectly normal space is hereditarily normal (= completely
normal).

Proof. Let X be perfectly normal. Then, each open set in X is an F set, which is
normal as a consequence of Proposition 2.2.4. Hence, it follows from Theorem 2.2.5
that X is hereditarily normal. ut
Remark 2. LetA0;A1; : : : ; An be pairwise disjoint closed sets in a normal spaceX .
We can apply the Tietze Extension Theorem 2.2.2 to obtain a map f W X ! I such
that Ai � f �1.i=n/ (i.e., f .Ai / � fi=ng) for each i D 0; 1; : : : ; n. When X is
perfectly normal and n > 2, the condition Ai � f �1.i=n/ cannot be replaced by
Ai D f �1.i=n/. For example, let X D S1 be the unit circle (the unit 1-sphere of
R
2), A0 D fe1g, A1 D fe2g, and A2 D f�e1g, where e1 D .1; 0/; e2 D .0; 1/ 2 R

2.
Since X n A1 is (path-)connected, there does not exist a map f W X ! I such that
A0 D f �1.0/, A1 D f �1.1=2/ and A2 D f �1.1/.

2.3 Stone’s Theorem and Metrization

In this section, we prove Stone’s Theorem and characterize the metrizability using
open bases. Let A be a collection of subsets of a space X and B � X . Recall that

AŒB� D fA 2 A j A \ B 6D ;g:

When B D fxg, we write AŒfxg� D AŒx�. It is said that A is locally finite (resp.
discrete) in X if each x 2 X has a neighborhoodU that meets only finite members
(resp. at most one member) of A, i.e., cardAŒU � < @0 (resp. cardAŒU � � 1).
When w.X/ � @0, if A is locally finite in X , then cardA � w.X/. For the sake
of convenience, we introduce the notation Acl D fclA j A 2 Ag. The following is
easily proved and will be used frequently:

Fact. If A is locally finite (or discrete) in X , then so is Acl and also cl
S

A DS
Acl .DSA2A clA/.

A collection of subsets of X is said to be � -locally finite (resp. � -discrete)
in X if it can be represented as a countable union of locally finite (resp. discrete)
collections.
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Fig. 2.3 Definition of V�;n

Theorem 2.3.1 (A.H. STONE). Every open cover of a metrizable space has a
locally finite and -discrete open refinement.

Proof. Let X D .X; d/ be a metric space and U 2 cov.X/. We may index all
members of U by a well-ordered set � D .�;�/, that is, U D fU� j � 2 �g. By
induction on n 2 N, we define open collections Vn D fV�;n j � 2 �g as follows:

V�;n D N.C�;n; 2�n/ D
˚
x 2 X ˇ

ˇ d.x; C�;n/ < 2
�n�;

where

C�;n D
˚
x 2 X ˇ

ˇ d.x;X n U�/ > 2�n3
� n

0

B
@
[

�<�

U� [
[

m<n
�2�

V�;m

1

C
A :

For each x 2 X , let �.x/ D minf� 2 � j x 2 U�g and choose n 2 N so that
2�n3 < d.x;X n U�.x//. Then, x 2 C�.x/;n � V�.x/;n or x 2 V�;m for some � 2 �
and m < n. Hence, we have V D Sn2N Vn 2 cov.X/. Since each V�;n is contained
in U�, it follows that V 	 U . See Fig. 2.3.

The discreteness of each Vn follows from the claim:

Claim (1). If � 6D � then distd .V�;n; V�;n/ � 2�n.

To prove this claim, we may assume � < �. For each x 2 V�;n and y 2 V�;n, choose
x0 2 C�;n and y0 2 C�;n so that d.x; x0/ < 2�n and d.y; y0/ < 2�n, respectively.
Then, x0 62 U� and d.y0; X n U�/ > 2�n3, hence d.x0; y0/ > 2�n3. Therefore,

d.x; y/ � d.x0; y0/� d.x; x0/ � d.y; y0/ > 2�n:

The local finiteness of V follows from the discreteness of each Vn and the claim:

Claim (2). If B.x; 2�k/ � V�;m, then B.x; 2�k�1/ \ V�;n D ; for all � 2 � and
n > maxfk;mg.
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For each y 2 V�;n, choose y0 2 C�;n so that d.y; y0/ < 2�n. Since y0 62 V�;m, it
follows that d.x; y0/ � 2�k. Hence,

d.x; y/ � d.x; y0/� d.y; y0/ > 2�k � 2�n � 2�k�1:

The proof is complete. ut
Applying Theorem 2.3.1 to the open covers Bn D fB.x; 2�n/ j x 2 Xg, n 2 N,

of a metric space X D .X; d/, we have the following corollary:

Corollary 2.3.2. Every metrizable space has a -discrete open basis. ut
Lemma 2.3.3. A regular space X with a -locally finite open basis is perfectly
normal.

Proof. Let B D S
n2N Bn be an open basis for X where each Bn is locally finite

in X . Instead of proving that every closed set in X is a Gı set, we show that every
open set W � X is F . For each x 2 W , choose k.x/ 2 N and B.x/ 2 Bk.x/ so
that x 2 B.x/ � clB.x/ � W . For each n 2 N, let

Wn D
[˚

B.x/
ˇ
ˇ x 2 W; k.x/ D n�:

Because of the local finiteness of Bn, we have

clWn D
[˚

clB.x/
ˇ
ˇ x 2 W; k.x/ D n� � W:

Since W D Sn2NWn, it follows that W D Sn2N clWn, which is F in X .
To prove normality, let A and B be disjoint closed sets in X . As seen above, we

have open sets Vn;Wn � X , n 2 N, such that X nA D Sn2N Vn D
S
n2N clVn and

X n B DSn2NWn D Sn2N clWn. For each n 2 N, let

Gn D Wn n
[

m�n
clVm and Hn D Vn n

[

m�n
clWm:

Then, G D S
n2NGn and H D S

n2NHn are disjoint open sets in X such that
A � G and B � H . ut
Theorem 2.3.4 (BING; NAGATA–SMIRNOV). For a regular space X , the follow-
ing conditions are equivalent:

(a) X is metrizable;
(b) X has a -discrete open basis;
(c) X has a -locally finite open basis.

Proof. The implication (a) ) (b) is Corollary 2.3.2 and (b) ) (c) is obvious. It
remains to show the implication (c)) (a).

(c)) (a): Let B D S
n2N Bn be an open basis for X where each Bn is locally

finite inX . SinceX is perfectly normal by Lemma 2.3.3, we have maps fB W X ! I,
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B 2 B, such that f �1B .0/ D X n B (Theorem 2.2.6). For each n 2 N, since Bn is
locally finite, we can define a map fn W X ! `1.Bn/ by fn.x/ D .fB.x//B2Bn 2
`1.Bn/. Let f W X ! Q

n2N `1.Bn/ be the map defined by f .x/ D .fn.x//n2N.
Since

Q
n2N `1.Bn/ is metrizable, it suffices to show that f is an embedding.

For each x 6D y 2 X , choose B 2 Bn � B so that x 2 B and y 62 B . Then,
fB.x/ > 0 D fB.y/, so fn.x/ 6D fn.y/. Hence, f is an injection.

For each n 2 N and B 2 Bn, VB D fy 2 `1.Bn/ j y.B/ > 0g is open in `1.Bn/.
Observe that for x 2 X ,

x 2 B , fn.x/.B/ D fB.x/ > 0, fn.x/ 2 VB:
Then, it follows that f .B/ D pr�1n .VB/ \ f .X/ is open in f .X/, where prn WQ
n2N `1.Bn/! `1.Bn/ is the projection. Thus, f is an embedding. ut
The equivalence of (a) and (b) in Theorem 2.3.4 is called the BING METRIZA-

TION THEOREM, and the equivalence of (a) and (c) is called the NAGATA–SMIRNOV

METRIZATION THEOREM. As a corollary, we have the URYSOHN METRIZATION

THEOREM:

Corollary 2.3.5. A space is separable and metrizable if and only if it is regular and
second countable. ut

For a metrizable space X , let � be an infinite set with w.X/ � card� . In the
proof of Theorem 2.3.4, note that cardBn � card� because of the local finiteness
of Bn in X . Then, every `1.Bn/ can be embedded into `1.� /. Therefore, we can
state the following corollary:

Corollary 2.3.6. Let X be a metrizable space and � an infinite set such that
w.X/ � card� . Then,X can be embedded in the completely metrizable topological
linear space2 `1.� /

N. ut
Here, w.`1.� /N/ D w.`1.� // D card� . In fact, w.`1.� // � card� because

`1.� / has a discrete open collection with the same cardinality as � . Let

D D ˚x 2 `1.� /
ˇ
ˇx.�/ 2 Q for all � 2 � and

x.�/ D 0 except for finitely many � 2 � �:
Then, fB.x; n�1/ j x 2 D;n 2 Ng is an open basis for `1.� / with the same
cardinality as � , hence w.`1.� // � card� .

The hedgehog J.� / is the closed subspace of `1.� / defined as follows:

J.� / D
[

�2�
Ie� D

˚
x 2 `1.� /

ˇ
ˇx.�/ 2 I for all � 2 � and

x.�/ 6D 0 at most one � 2 � �;

2For topological linear spaces, refer to Sect. 3.4.
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�

I

0

1

.� � I/=.� � f0g/
Fig. 2.4 The hedgehog J.� /

where e� 2 `1.� / is the unit vector defined by e� .�/ D 1 and e� .� 0/ D 0 for � 0 6D �
(Fig. 2.4). The hedgehog J.� / can also be defined as the space .� � I/=.� � f0g/
with the metric induced from the pseudo-metric 
 on � � I defined as follows:


..�; t/; .� 0; s// D
(
jt � sj if � D � 0;
t C s if � 6D � 0:

Note that w.J.� /N/ D card� . In the proof of Theorem 2.3.4, if each Bn
is discrete in X , then fn.X/ � J.Bn/. Similar to Corollary 2.3.6, we have the
following:

Corollary 2.3.7. Let X be a metrizable space and � an infinite set such that
w.X/ � card� . Then, X can be embedded in J.� /N. ut

In the second countable case, X can be embedded in IN, since we can take B DS
n2N Bn in the proof of Theorem 2.3.4 so that each Bn contains only one open set.

Thus, we have the following embedding theorem for separable metrizable spaces:

Corollary 2.3.8. Every separable metrizable space can be embedded in the Hilbert
cube IN, and hence in R

N. ut
In association with Corollary 2.3.6, we state the following theorem:

Theorem 2.3.9. Every metric space X D .X; d/ can be isometrically embedded
into the Banach space CB.X/.

Sketch of Proof. Fix x0 2 X and define ' W X ! CB.X/ as follows:

'.x/.z/ D d.x; z/� d.x0; z/; z 2 X:
It is easy to see that k'.x/k D d.x; x0/ and k'.x/� '.y/k D d.x; y/.

The (metric) completion of a metric space X D .X; d/ is a complete metric
space eX D .eX; Qd/ containing X as a dense set and as a metric subspace, that is, d
is the restriction of Qd . Since a closed set in a complete metric space is also complete,
Theorem 2.3.9 implies the following:

Corollary 2.3.10. Every metric space has a completion. ut
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2.4 Sequences of Open Covers and Metrization

In this section, we characterize metrizable spaces via sequences of open covers.
Given a cover V of a space X and A � X , we define

st.A;V/ D
[

V ŒA�;

which is called the star of A with respect to V . When A D fxg, we write
st.fxg;V/ D st.x;V/.

Theorem 2.4.1 (ALEXANDROFF–URYSOHN; FRINK). For a space X , the fol-
lowing conditions are equivalent:

(a) X is metrizable;
(b) X has open covers U1;U2; : : : such that fst.x;Un/ j n 2 Ng is a neighborhood

basis of each x 2 X and

U;U 0 2 UnC1; U \ U 0 6D ; ) 9U 00 2 Un such that U [ U 0 � U 00I
(c) Each x 2 X has an open neighborhood basis fVn.x/ j n 2 Ng satisfying the

condition that, for each x 2 X and i 2 N, there exists a j.x; i/ � i such that

Vj.x;i/.x/ \ Vj.x;i/.y/ 6D ; ) Vj.x;i/.y/ � Vi .x/:

Proof. (a)) (c): A metric space X D .X; d/ satisfies (c) because

B.x; 3�n/\ B.y; 3�n/ 6D ; ) B.y; 3�n/ � B.x; 3�nC1/:

(c)) (b): For each x 2 X , let k.x; 1/ D 1 and inductively define

k.x; n/ D maxfn; j.x; i/ j i D 1; : : : ; k.x; n � 1/g � n:

For each n 2 N, let Un.x/ D Tk.x;n/
iD1 Vi .x/. Then, fUn.x/ j n 2 Ng is an open

neighborhood basis of x and

Un.x/ \ Un.y/ 6D ; ) Un.x/ [ Un.y/ � Un�1.x/ or

Un.x/ [ Un.y/ � Un�1.y/:

In fact, assume that Un.x/\Un.y/ 6D ;. In the case k.x; n/ � k.y; n/, Vj.x;i/.y/ �
Vi .x/ for each i D 1; : : : ; k.x; n � 1/ because Vj.x;i/.x/ \ Vj.x;i/.y/ 6D ;. Then, it
follows that

Un.y/ �
k.x;n/\

iD1
Vi .y/ �

k.x;n�1/\

iD1
Vj.x;i/.y/ �

k.x;n�1/\

iD1
Vi .x/ D Un�1.x/:
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Since Un.x/ � Un�1.x/ by definition, we have Un.x/ [ Un.y/ � Un�1.x/. As
above, k.y; n/ � k.x; n/ implies Un.x/ [ Un.y/ � Un�1.y/.

For each n 2 N, we have Un D fUn.x/ j x 2 Xg 2 cov.X/. It remains to be
prove that fst.x;Un/ j n 2 Ng is a neighborhood basis of x 2 X . Evidently, each
st.x;Un/ is a neighborhood of x 2 X . Then, it suffices to show that st.x;Uj.x;n// �
Vn.x/. If x 2 Uj.x;n/.y/, then

Vj.x;n/.x/ \ Vj.x;n/.y/ � Vj.x;n/.x/ \ Uj.x;n/.y/ 6D ;;
and hence Uj.x;n/.y/ � Vj.x;n/.y/ � Vn.x/.

(b)) (a): First, note that UiC1 	 Ui for each i 2 N. Let U0 D fXg 2 cov.X/.
For each x; y 2 X , define

ı.x; y/ D inf
˚
2�i

ˇ
ˇ 9U 2 Ui such that x; y 2 U �:

Note that if ı.x; y/ > 0, then ı.x; y/ D 2�n for some n � 0. As can easily be
shown, the following hold for each x; y; z 2 X :

(1) ı.x; y/ D 0 if and only if x D y;
(2) ı.x; y/ D ı.y; x/;
(3) ı.x; y/ � 2maxfı.x; z/; ı.z; y/g.
Furthermore, we claim that

(4) for every n � 3 and each x1; : : : ; xn 2 X ,

ı.x1; xn/ � 2.ı.x1; x2/C ı.xn�1; xn//C 4
n�2X

iD2
ı.xi ; xiC1/:

In fact, when n D 3, the inequality follows from (3). Assuming claim (4) holds for
any n < k, we show (4) for n D k. Then, we may assume that xk 6D x1. For each
x1; : : : ; xk 2 X , let

m D min
˚
i
ˇ
ˇ ı.x1; xk/ � 2ı.x1; xi /

� � 2:
Then, ı.x1; xk/ � 2ı.x1; xm/. From (3) and the minimality of m, we have
ı.x1; xk/ � 2ı.xm�1; xk/. If m D 2 or m D k, then the inequality in (4) holds
for n D k. In the case 2 < m < k,

ı.x1; xk/ D 1

2
ı.x1; xk/C 1

2
ı.x1; xk/ � ı.x1; xm/C ı.xm�1; xk/:

By the inductive assumption, we have

ı.x1; xm/ � 2.ı.x1; x2/C ı.xm�1; xm//C 4
m�2X

iD2
ı.xi ; xiC1/ and

ı.xm�1; xk/ � 2.ı.xm�1; xm/C ı.xk�1; xk//C 4
k�2X

iDm
ı.xi ; xiC1/;
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so the desired inequality is obtained. By induction, (4) holds for all n 2 N.
Now, we can define d 2 Metr.X/ as follows:

d.x; y/ D inf
˚Pn�1

iD1 ı.xi ; xiC1/
ˇ
ˇ n 2 N; xi 2 X; x1 D x; xn D y

�
:

In fact, d.x; y/ D d.y; x/ by (2) and the above definition. The triangle inequality
follows from the definition of d . Since ı.x; y/ � 4d.x; y/ by (4), it follows from
(1) that d.x; y/ D 0 implies x D y. Obviously, x D y implies d.x; y/ D 0.
Moreover, it follows that

d.x; y/ � 2�n�2) 9U 2 Un such that x; y 2 U;
which means that Bd .x; 2�n�2/ � st.x;Un/ for each x 2 X and n 2 N. Since
d.x; y/ � ı.x; y/, we have meshd Un � 2�n, so st.x;Un/ � Bd .x; 2�n/. Therefore,
fBd .x; 2�n/ j n 2 Ng is a neighborhood basis of x 2 X . ut
Remark 3. In the above proof of (b)) (a), the obtained metric d 2 Metr.X/ has
the following property:

st.x;UnC2/ � Bd .x; 2�n�2/ � st.x;Un/:

Moreover, d.x; y/ � 1 for every x; y 2 X .

In Theorem 2.4.1, the equivalence between (a) and (b) is called the
ALEXANDROFF–URYSOHN METRIZATION THEOREM and the equivalence between
(a) and (c) is called the FRINK METRIZATION THEOREM.

Let U and V be covers of X . When fst.x;V/ j x 2 Xg 	 U , we call V a
�-refinement (or barycentric refinement) of U and denote

V �	 U .or U �
 V/:

The following corollary follows from the Alexandroff–Urysohn Metrization
Theorem:

Corollary 2.4.2. A space X is metrizable if and only if X has a sequence of open
covers

U1
�
 U2

�
 U3
�
 � � �

such that fst.x;Un/ j n 2 Ng is a neighborhood basis of each x 2 X . ut
For covers U and V of X , we define

st.V ;U/ D ˚ st.V;U/
ˇ
ˇ V 2 V

�
;

which is called the star of V with respect to U . We denote st.V ;V/ D stV , which is
called the star of V . When stV 	 U , we call V a star-refinement of U and denote

V �	 U .or U �
 V/:
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For each n 2 N, the n-th star of V is inductively defined as follows:

stn V D st.stn�1 V ;V/;

where st0 V D V . Observe that st.V ; stV/ D st3 V and st.stV/ D st4 V . When
stn V 	 U , V is called an n-th star-refinement of U . There is the following relation
between�-refinements and star-refinements:

Proposition 2.4.3. For every three open covers U ;V ;W of a space X ,

W �	 V �	 U ) W �	 U :

Sketch of Proof. For each W 2 W , take any x 2 W and choose U 2 U so that st.x;V/ �
U . Then, we see that st.W;W/ � U .

By virtue of this proposition, �-refinements in Corollary 2.4.2 can be replaced
by star-refinements, which allows us to sate the following corollary:

Corollary 2.4.4. A space X is metrizable if and only if X has a sequence of open
covers

U1
�
 U2

�
 U3
�
 � � �

such that fst.x;Un/ j n 2 Ng is a neighborhood basis of each x 2 X . ut
Remark 4. By tracing the proof of Theorem 2.4.1, we can directly prove Corol-
lary 2.4.4. This direct proof is simpler than that of Theorem 2.4.1, and the obtained
metric d 2 Metr.X/ has the following, more acceptable, property than the previous
remark:

st.x;UnC1/ � Bd .x; 2�n/ � st.x;Un/:

Similar to the previous metric, d.x; y/ � 1 for every x; y 2 X .

Sketch of the direct proof of Corollary 2.4.4. To see the “if” part, replicate the proof of (b)
) (a) in Theorem 2.4.1 to construct d 2 Metr.X/. Let U0 D fXg. For each x; y 2 X , we
define

ı.x; y/ D inf
˚
2�iC1

ˇ
ˇ 9U 2 Ui such that x; y 2 U � and

d.x; y/D inf
˚Pn

iD1 ı.xi�1; xi /
ˇ
ˇ n 2 N; x0 D x; xn D y

�
:

The admissibility and additional property of d are derived from the inequality d.x; y/ �
ı.x; y/ � 2d.x; y/. To prove the right-hand inequality, it suffices to show the following:

ı.x0; xn/ � 2
nX

iD1

ı.xi�1; xi / for each x0; x1; : : : ; xn 2 X:

This is proved by induction on n 2 N. Set
Pn

iD1 ı.xi�1; xi / D ˛ and let k be the largest

number such that
Pk

iD1 ı.xi�1; xi / � ˛=2. Then,
Pn

iDkC2 ı.xi�1; xi / < ˛=2. By the
inductive assumption, ı.x0; xk/ � ˛ and ı.xkC1; xn/ < ˛. Note that ı.xk; xkC1/ � ˛. Let
m D minfi 2 N j 2�iC1 � ˛g. Since stUm 	 Um�1, we can find U 2 Um�1 such that
x0; xn 2 U , and hence ı.x0; xn/ � 2�mC2 � 2˛.
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Additional Results on Metrizability 2.4.5.

(1) The perfect image of a metrizable space is metrizable, that is, if f W X ! Y is
a surjective perfect map of a metrizable space X , then Y is also metrizable.

Sketch of Proof. For each y 2 Y and n 2 N, let

Un.y/ D Nd .f
�1.y/; 2�n/ and Vn.y/ D Y n f .X n Un.y//;

where d is an admissible metric for X . Show that fVn.y/ j n 2 Ng is a neighborhood
basis of y 2 Y that satisfies condition 2.4.1(c). For each y 2 Y and i 2 N, since
f �1.y/ is compact, we can choose j � i so that Uj .y/ � f �1.ViC1.y//. Then, the
following holds:

VjC1.y/\ VjC1.z/ 6D ; ) VjC1.z/ � Vi .y/:
To see this, observe that

VjC1.y/\ VjC1.z/ 6D ; ) Uj .y/\ f �1.z/ 6D ;
) f �1.z/ � f �1.ViC1.y// � UiC1.y/

) f �1.VjC1.z// � UjC1.z/ � Ui .y/:

(2) A space X is metrizable if it is a locally finite union of metrizable closed
subspaces.

Sketch of Proof. To apply (1) above, construct a surjective perfect map f WL�2� X�!
X such that each X� is metrizable and f jX� is a closed embedding. The metrizability
of
L

�2� X� easily follows from Theorem 2.3.4. (The metrizability of
L

�2� X� can
also be seen by embedding

L
�2� X� into the product space �� `1.� /N for some � ,

where we give � the discrete topology.)

2.5 Complete Metrizability

In this section, we consider complete metrizability. A space X has the Baire
property or is a Baire space if the intersection of countably many dense open sets
in X is also dense; equivalently, every countable intersection of dense Gı sets in X
is also dense. This property is very valuable. In particular, it can be used to prove
various existence theorems. Observe that the Baire property can also be expressed
as follows: if a countable union of closed sets has an interior point, then at least one
of the closed sets has an interior point. The following statement is easily proved:

• Every open subspace and every denseGı subspace of a Baire space is also Baire.

Complete metrizability is preferable because it implies the Baire property.

Theorem 2.5.1 (BAIRE CATEGORY THEOREM). Every completely metrizable
spaceX is a Baire space. Consequently,X cannot be written as a union of countably
many closed sets without interior points.
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y0 D x

"0 D "

"1

y1

B.y0; "0/

B.y1; "1/

Fig. 2.5 Definition of yn 2 X and "n > 0

Proof. For each i 2 N, let Gi be a dense open set in X and d 2 Metr.X/ be a
complete metric. For each x 2 X and " > 0, we inductively choose yi 2 X and
"i > 0, i 2 N, so that

yi 2 B.yi�1; 12 "i�1/ \Gi ; B.yi ; "i / � Gi and "i � 1
2
"i�1;

where y0 D x and "0 D " (Fig. 2.5). Then, .yi /i2N is d -Cauchy, hence it converges
to some y 2 X . For each n 2 !,

d.yn; y/ �
1X

iDn
d.yi ; yiC1/ <

1X

iDn
1
2
"i �

1X

iD1
2�i "n D "n:

Thus, y 2 B.x; "/ and y 2 B.yi ; "i / � Gi for each i 2 N, that is, y 2 B.x; "/ \T
i2NGi . Therefore,

T
i2NGi is dense in X . ut

A metrizable space X is said to be absolutely Gı if X is Gı in an arbitrary
metrizable space that containsX as a subspace. This concept characterizes complete
metrizability, which leads us to the following:

Theorem 2.5.2. A metrizable space is completely metrizable if and only if it is
absolutely Gı .

This follows from Corollary 2.3.6 (or 2.3.10) and the following theorem:

Theorem 2.5.3. Let X D .X; d/ be a metric space and A � X .

(1) If A is completely metrizable, then A is Gı in X .
(2) If X is complete and A is Gı in X , then A is completely metrizable.

Proof. (1): Since clA is Gı in X , it suffices to show that A is Gı in clA. Let 
 2
Metr.A/ be a complete metric. For each n 2 N, let
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Gn D
˚
x 2 clA

ˇ
ˇ x has a neighborhoodU in X with

diamd U < 2�n and diam
 U \A < 2�n
�
:

Then, each Gn is clearly open in clA and A � T
n2NGn. Each x 2 Tn2NGn has

neighborhoodsU1 � U2 � � � � inX such that diamd Un < 2
�n and diam
 Un\A <

2�n. Since x 2 clA, we have points xn 2 Un \ A, n 2 N. Then, .xn/n2N converges
to x. Since .xn/n2N is 
-Cauchy, it is convergent in A. Thus, we can conclude that
x 2 A. Therefore, A D Tn2NGn, which is Gı in clA.

(2): First, we show that any open set U in X is completely metrizable. We can
define an admissible metric 
 for U as follows:


.x; y/ D d.x; y/C ˇˇd.x;X n U /�1 � d.y;X n U /�1ˇˇ:

Every 
-Cauchy sequence .xn/n2N in U is d -Cauchy, so it converges to some
x 2 X . Since .d.xn;X nU /�1/n2N is a Cauchy sequence in R, it is bounded. Then,

d.x;X n U / D lim
n!1d.xn;X n U / > 0:

This means that x 2 U , and hence .xn/n2N is convergent in U . Thus, 
 is complete.
Next, we show that an arbitrary Gı set A in X is completely metrizable. Write

A D Tn2NUn, where U1; U2; : : : are open in X . As we saw above, each Un admits
a complete metric dn 2 Metr.Un/. Now, we can define a metric 
 2 Metr.A/ as
follows:


.x; y/ D
X

n2N
min

˚
2�n; dn.x; y/

�
:

Every 
-Cauchy sequence in A is dn-Cauchy, which is convergent in Un. Hence, it
is convergent in A DTn2N Un. Therefore, 
 is complete. ut

Analogous to compactness, the completeness of metric spaces can be character-
ized by the finite intersection property (f.i.p.).

Theorem 2.5.4. In order for a metric space X D .X; d/ to be complete, it is
necessary and sufficient that, if a family F of subsets ofX has the finite intersection
property and contains sets with arbitrarily small diameter, then F cl has a non-empty
intersection, which is a singleton.

Proof. (Necessity) Let F be a family of subsets of X with the f.i.p. such that F
contains sets with arbitrarily small diameter. For each n 2 N, choose Fn 2 F so
that diamFn < 2�n, and take xn 2 Fn. For any n < m, Fn \ Fm 6D ;, hence

d.xn; xm/ � diamFn C diamFm < 2
�n C 2�m < 2�nC1:

Thus, .xn/n2N is a Cauchy sequence, therefore it converges to a point x 2 X .
Then, x 2 TF cl. Otherwise, x 62 clF for some F 2 F . Choose n 2 N so that
d.x; xn/; 2

�n < 1
2
d.x; F /. Since F \ Fn 6D ;, it follows that
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d.x; F / � d.x; xn/C diamFn < d.x; xn/C 2�n < d.x; F /;

which is a contradiction.
(Sufficiency) Let .xn/n2N be a Cauchy sequence in X . For each n 2 N, let

Fn D fxi j i � ng. Then, F1 � F2 � � � � and diamFn ! 0 (n ! 1). From
this condition, we have x 2 Tn2N clFn. For each " > 0, choose n 2 N so that
diam clFn D diamFn < ". Then, d.xi ; x/ < " for i � n, that is, limn!1 xn D x.
Therefore,X is complete. ut

Using compactifications, we can characterize complete metrizability as follows:

Theorem 2.5.5. For a metrizable space X , the following are equivalent:

(a) X is completely metrizable;
(b) X is Gı in an arbitrary compactification of X ;
(c) X is Gı in the Stone–Čech compactification ˇX ;
(d) X has a compactification in which X is Gı.

Proof. The implications (b)) (c)) (d) are obvious. We show the converse (d))
(c)) (b) and the equivalence (a), (b).

(d)) (c): Let �X be a compactification of X and X D T
n2NGn, where each

Gn is open in �X . Then, by Theorem 2.1.4, we have a map f W ˇX ! �X

such that f jX D id, where X D f �1.X/ by Theorem 2.1.8. Consequently,
X DTn2N f �1.Gn/ is Gı in ˇX .

(c)) (b): By condition (c), we can write ˇX n X D S
n2N Fn, where each Fn

is closed in ˇX . For any compactification �X of X , we have a map f W ˇX ! �X

such that f jX D id (Theorem 2.1.4). From Theorem 2.1.8, �XnX D f .ˇXnX/ DS
n2N f .Fn/ is F in �X , hence X is Gı in �X .
(b) ) (a): To prove the complete metrizability of X , we show that X is

absolutely Gı (Theorem 2.5.2). Let X be contained in a metrizable space Y . Since
clˇY X is a compactification of X , it follows from (b) that X is Gı in clˇY X , and
hence it is Gı in Y \ clˇY X D clY X , where clY X is also Gı in Y . Therefore,X is
Gı in Y .

(a) ) (b): Let �X be a compactification of X and d an admissible complete
metric for X . For each n 2 N and x 2 X , let Gn.x/ be an open set in �X such that
Gn.x/ \ X D Bd .x; 2�n/. Then, Gn D S

x2X Gn.x/ is open in �X and X � Gn.
We will show that each y 2 Tn2NGn is contained in X . This implies that X DT
n2NGn is Gı in �X .
For each n 2 N, choose xn 2 X so that y 2 Gn.xn/. Since y 2 cl�X X and

Gn.xn/ \ X D Bd .xn; 2�n/, it follows that fBd .xn; 2�n/ j n 2 Ng has the f.i.p.
By Theorem 2.5.4, we have x 2 Tn2N clX Bd .xn; 2�n/, where limn!1 xn D x

because d.xn; x/ � 2�n. Thus, we have y D x 2 X . Otherwise, there would
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be disjoint open sets U and V in �X such that x 2 U and y 2 V . Since y 2T
n2NGn \ V , fBd .xn; 2�n/ \ V j n 2 Ng has the f.i.p. Again, by Theorem 2.5.4,

we have

x0 2
\

n2N
clX.Bd .xn; 2�n/\ V / � clX V:

Since limn!1 xn D x0 is the same as x, it follows that x0 D x 2 U , which is a
contradiction. ut

Note that conditions (b)–(d) in Theorem 2.5.5 are equivalent without the
metrizability of X , but X should be assumed to be Tychonoff in order that X has a
compactification. A Tychonoff space X is said to be Čech-complete if X satisfies
one of these conditions.

Every compact metric space is complete. Since a non-compact locally compact
metrizable space X is open in the one-point compactification ˛X D X [ f1g, X
is completely metrizable because of Theorem 2.5.5. Thus, we have the following
corollary:

Corollary 2.5.6. Every locally compact metrizable space is completely metrizable.
ut

We now state and prove the LAVRENTIEFF Gı-EXTENSION THEOREM:

Theorem 2.5.7 (LAVRENTIEFF). Let f W A ! Y be a map from a subset A of a
space X to a completely metrizable space Y . Then, f extends over a Gı set G in X
such that A � G � clA.

Proof. We may assume that Y is a complete metric space. The oscillation of f at
x 2 clA is defined as follows:

oscf .x/ D inf
˚

diamf .A \ U / ˇˇ U is an open neighborhood of x
�
:

Let G D fx 2 clA j oscf .x/ D 0g. Then, A � G because f is continuous. Since
each fx 2 clA j oscf .x/ < 1=ng is open in clA, it follows that G is Gı in X . For
each x 2 G,

Fx D
˚
f .A \ U / ˇˇ U is an open neighborhood of x

�
;

has the f.i.p. and contains sets with arbitrarily small diameter. By Theorem 2.5.4,
we have

T
F cl
x 6D ;, which is a singleton because diam

T
F cl
x D 0. The desired

extension Qf W G ! Y of f can be defined by Qf .x/ 2TF cl
x . ut

If A is a subspace of a metric space X and Y is a complete metric space, then
every uniformly continuous map f W A ! Y extends over clA. This result can be
obtained by showing that G D clA in the above proof. However, a direct proof is
easier.
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We will modify Theorem 2.5.7 into the following, known as the LAVRENTIEFF

HOMEOMORPHISM EXTENSION THEOREM:

Theorem 2.5.8 (LAVRENTIEFF). Let X and Y be completely metrizable spaces
and let f W A ! B be a homeomorphism between A � X and B � Y . Then, f
extends to a homeomorphism Qf W G ! H between Gı sets in X and Y such that
A � G � clA and B � H � clB .

Proof. By Theorem 2.5.7, f and f �1 extend to maps g W G0 ! Y and h W H 0 !
X , where A � G0 � clA, B � H 0 � clB and G0, H 0 are Gı in X and Y ,
respectively. Then, we have Gı sets G D g�1.H 0/ and H D h�1.G0/ that contain
A and B as dense subsets, respectively. Consider the maps h.gjG/ W G ! X and
g.hjH/ W H ! Y . Since h.gjG/jA D idA and g.hjH/jB D idB , it follows that
h.gjG/ D idG and g.hjH/ D idH . Then, as is easily observed, we have g.G/ � H
and h.H/ � G. Hence, Qf D gjG W G ! H is a homeomorphism extending f . ut

In the above, when X D Y and A D B , we can take G D H , that is, we can
show the following:

Corollary 2.5.9. Let X be a completely metrizable space and A � X . Then, every
homeomorphism f W A ! A extends to a homeomorphism Qf W G ! G over a Gı
set G in X with A � G � clA.

Proof. Using Theorem 2.5.8, we extend f to a homeomorphism g W G0 ! G00
betweenGı setsG0; G00 � X with A � G0\G00 andG0; G00 � clA. We inductively
define a sequence of Gı sets G0 D G1 � G2 � � � � in X as follows:

GnC1 D Gn \ g.Gn/ \ g�1.Gn/:

Then,G D Tn2NGn is Gı in X and g.x/; g�1.x/ 2 G for each x 2 G. Indeed, for
each n 2 N, since x 2 GnC1, it follows that g.x/ 2 Gn and g�1.x/ 2 Gn. Thus,
Qf D gjG W G ! G is the desired extension of f . ut

Additional Results on Complete Metrizability 2.5.10.

(1) Let f W X ! Y be a surjective perfect map between Tychonoff spaces. Then,
X is Čech-complete if and only if Y is Čech-complete. When X is metrizable,
X is completely metrizable if and only if Y is completely metrizable.

Sketch of Proof. See Theorem 2.1.8.

(2) A space X is completely metrizable if it is a locally finite union of completely
metrizable closed subspaces.

Sketch of Proof. Emulate 2.4.5(2). To prove the complete metrizability of the topologi-
cal sum

L
�2� X� of completely metrizable spaces, embed

L
�2� X� into the product

space � � `1.� /N for some � .
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2.6 Paracompactness and Local Properties

A space X is paracompact if each open cover of X has a locally finite open refine-
ment.3 According to Stone’s Theorem 2.3.1, every metrizable space is paracompact.
A spaceX is collectionwise normal if, for each discrete collection F of closed sets
in X , there is a pairwise disjoint collection fUF j F 2 Fg of open sets in X such
that F � UF for each F 2 F . Obviously, every collectionwise normal space is
normal. In the definition of collectionwise normality, fUF j F 2 Fg can be discrete
in X . Indeed, choose an open set V in X so that

S
F � V � clV � S

F2F UF .
Then, F � V \ UF for each F 2 F , and fV \ UF j F 2 Fg is discrete in X .

Theorem 2.6.1. Every paracompact space X is collectionwise normal.

Proof. To see the regularity of X , let A be a closed set in X and x 2 X n A. Each
a 2 A has an open neighborhoodUa inX so that x 62 clUa. Let U be a locally finite
open refinement of

˚
Ua

ˇ
ˇ a 2 A�[ ˚X nA� 2 cov.X/:

Then, V D st.A;U/ D S
U ŒA� is an open neighborhood of A. Since U is locally

finite, it follows that clV D S
U ŒA�cl. Since each U 2 U ŒA� is contained in some

Ua, it follows that x 62 clU , and hence x 62 clV .
We now show that X is collectionwise normal. Let F be a discrete collection

of closed sets in X . Since X is regular, each x 2 X has an open neighborhood
Vx in X such that cardF ŒclVx� � 1. Let U be a locally finite open refinement of
fVx j x 2 Xg 2 cov.X/. For each F 2 F , we define

WF D X n
[˚

clU
ˇ
ˇ U 2 U ; F \ clU D ;�:

Then,WF is open inX and F � WF � st.F;U cl/ (Fig. 2.6). Since cardF ŒclU � � 1
for each U 2 U , it follows that st.F;U cl/ \ WF 0 D ; if F 0 6D F 2 F . Therefore,
fWF j F 2 Fg is pairwise disjoint. ut

Lemma 2.6.2. If X is regular and each open cover of X has a locally finite
refinement (consisting of arbitrary sets), then for any open cover U of X there is
a locally finite closed cover fFU j U 2 Ug of X such that FU � U for each U 2 U .

Proof. Since X is regular, we have V 2 cov.X/ such that Vcl 	 U . Let A be
a locally finite refinement of V . There exists a function ' W A ! U such that
clA � '.A/ for each A 2 A. For each U 2 U , define

FU D
[˚

clA
ˇ
ˇ A 2 '�1.U /� � U:

3Recall that spaces are assumed to be Hausdorff.
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F 0

F
WF U

WF 0

st.F;U cl/

Fig. 2.6 The pairwise disjoint collection fWF j F 2 Fg

Since each x 2 X is contained in some A 2 A and A � F'.A/, fFU j U 2 Ug is a
cover of X . Since A is locally finite, each FU is closed in X and fFU j U 2 Ug is
locally finite. ut

We have the following characterizations of paracompactness:

Theorem 2.6.3. For a space X , the following conditions are equivalent:

(a) X is paracompact;
(b) Each open cover of X has an open�-refinement;
(c) Each open cover of X has an open star-refinement;
(d) X is regular and each open cover of X has a -discrete open refinement;
(e) X is regular and each open cover of X has a locally finite refinement.

Proof. (a) ) (b): Let U 2 cov.X/. From Lemma 2.6.2, it follows that X has a
locally finite closed cover fFU j U 2 Ug such that FU � U for each U 2 U . For
each x 2 X , define

Wx D
\˚

U 2 U
ˇ
ˇ x 2 FU

� n
[˚

FU
ˇ
ˇ U 2 U ; x 62 FU

�
:

Then,Wx is an open neighborhood of x inX , hence W D fWx j x 2 Xg 2 cov.X/.
For each x 2 X , choose U 2 U so that x 2 FU . If x 2 Wy then y 2 FU , which
implies that Wy � U . Therefore, st.x;W/ � U for each x 2 X , which means that
W is a �-refinement of U .

(b)) (c): Due to Proposition 2.4.3, for U ;V ;W 2 cov.X/,

W �	 V �	 U ) W �	 U :

This gives (b)) (c).
(c)) (d): To prove the regularity of X , let A � X be closed and x 2 X n A.

Then, fX nA;X n fxgg 2 cov.X/ has an open star-refinement W . ChooseW 2W
so that x 2 W . Then, st.W;W/ � X n A, i.e., W \ st.A;W/ D ;. Hence, X is
regular.
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x

st.x;F/

UA

WAA

F

Fig. 2.7 Definition of WA

Next, we show that each U 2 cov.X/ has a -discrete open refinement. We may
assume that U D fU� j � 2 �g, where � D .�;�/ is a well-ordered set. By
condition (c), we have a sequence of open star-refinements:

U �
 U1
�
 U2

�
 � � � :

For each .�; n/ 2 � � N, let

U�;n D
[˚

U 2 Un
ˇ
ˇ st.U;Un/ � U�

� � U�:

Then, we have

() st.U�;n;UnC1/ � U�;nC1 for each .�; n/ 2 � � N.

Indeed, each U 2 UnC1ŒU�;n�meets someU 0 2 Un such that st.U 0;Un/ � U�. Since
U � st.U 0;UnC1/, it follows that

st.U;UnC1/ � st2.U 0;UnC1/ � st.U 0; stUnC1/ � st.U 0;Un/ � U�;

which implies that U � U�;nC1. Thus, we have ().
Now, for each .�; n/ 2 � �N, let

V�;n D U�;n n cl
S
�<� U�;nC1 � U�:

Then, each Vn D fV�;n j � 2 �g is discrete in X . Indeed, each x 2 X is contained
in some U 2 UnC1. If U \ V�;n 6D ;, then U � st.U�;n;UnC1/ � U�;nC1 by ().
Hence, U \ V�;n D ; for all � > �. This implies that U meets at most one member
of Vn — Fig. 2.8.

It remains to be proved that V D S
n2N Vn 2 cov.X/. Each x 2 X is contained

in some U 2 U1. Since st.U;U1/ � U� for some � 2 �, it follows that x 2 U�;1.
Thus, we can define

�.x/ D min
˚
� 2 � ˇ

ˇ x 2 U�;n for some n 2 N
�
:
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Fig. 2.8 Construction of Gn

Then, x 2 U�.x/;n for some n 2 N. It follows from () that

cl
S
�<�.x/ U�;nC1 � st

�S
�<�.x/ U�;nC1;UnC2

�

D
[

�<�.x/

st.U�;nC1;UnC2/ �
[

�<�.x/

U�;nC2;

hence x 62 cl
S
�<�.x/ U�;nC1. Therefore, x 2 V�.x/;n, and hence V 2 cov.X/.

Consequently, V is a -discrete open refinement of U .
(d) ) (e): It suffices to show that every -discrete open cover U of X has a

locally finite refinement. Let U D S
n2N Un, where each Un is discrete in X and

Un \ Um D ; if n 6D m. For each U 2 Un, let AU D U n Sm<n.
S

Um/. Then,
A D fAU j U 2 Ug is a cover of X that refines U . For each x 2 X , choose the
smallest n 2 N such that x 2 SUn and let x 2 U0 2 Un. Then, U0 misses AU for
all U 2 Sm>n Um. For each m � n, since Um is discrete, x has a neighborhood Vm
in X such that cardUmŒVm� � 1. Then, V D U0 \ V1 \ � � � \ Vn is a neighborhood
of x in X such that cardAŒV � � n. Hence, A is locally finite in X — Fig. 2.9.

(e)) (a): Let U 2 cov.X/. Then U has a locally finite refinement A. For each
x 2 X , choose an open neighborhood Vx of x in X so that cardAŒVx� < @0.
According to Lemma 2.6.2, fVx j x 2 Xg 2 cov.X/ has a locally finite closed
refinement F . Then, cardAŒF � < @0 for each F 2 F . For each A 2 A, choose
UA 2 U so that A � UA and define

WA D UA n
[˚

F 2 F
ˇ
ˇ A\ F D ;�:

Then, A � WA � UA and WA is open in X , hence W D fWA j A 2 Ag is an
open refinement of U . Since F is a locally finite closed cover of X , st.x;F/ is a
neighborhood of x 2 X . For each F 2 F and A 2 A, F \ WA 6D ; implies
F \A6D;. Then, cardW ŒF � � cardAŒF � < @0 for each F 2 F . Since cardF Œx� <
@0, st.x;F/ meets only finitely many members of W . Hence, W is locally finite
in X . ut
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A spaceX is Lindelöf if every open cover ofX has a countable open refinement.
By verifying condition (d) above, we have the following:

Corollary 2.6.4. Every regular Lindelöf space is paracompact. ut
Let P be a property of subsets of a space X . It is said that X has property P

locally if each x 2 X has a neighborhoodU inX that has property P . Occasionally,
we need to determine whether X has some property P if X has property P locally.
Let us consider this problem now. A property P of open sets in X is said to be
G -hereditary if the following conditions are satisfied:

(G-1) If U has property P , then every open subset of U has P ;
(G-2) If U and V have property P , then U [ V has property P ;
(G-3) If fU� j � 2 �g is discrete in X and each U� has property P , then

S
�2� U�

has property P .

The following theorem is very useful to show that a space has a certain property:

Theorem 2.6.5 (E. MICHAEL). Let P be a G-hereditary property of open sets in
a paracompact space X . If X has property P locally, then X itself has property P .

Proof. Since X has property P locally, there exists U 2 cov.X/ such that each
U 2 U has property P . According to Theorem 2.6.3, U has an open refinement
V D S

n2N Vn such that each Vn is discrete in X . Each V 2 V has property P by
(G-1). For each n 2 N, let Vn D S

Vn. Then, each Vn has property P by (G-3),
hence V1 [ � � � [ Vn has property P by (G-2). From Lemma 2.6.2, it follows that X
has a closed cover fFn j n 2 Ng such that Fn � Vn for each n 2 N.4 Inductively
choose open sets Gn (n 2 N) so that

Fn [ clGn�1 � Gn � clGn � V1 [ � � � [ Vn;

where G0 D ; (Fig. 2.7). For each n 2 N, let Wn D Gn n clGn�2, where G�1 D ;.
Then, each Wn also has property P by (G-1). Let Xi D S

n2! W3nCi , where i D
1; 2; 3. Since fW3nCi j n 2 !g is discrete in X , each Xi has property P by (G-3).
Hence, X D X1 [ X2 [X3 also has property P by (G-2). ut

There are many cases where we consider properties of closed sets rather than
open sets. In such cases, Theorem 2.6.5 can also be applied. In fact, let P be a
property of closed sets ofX . We define the propertyPı of open sets inX as follows:

U has property Pı”
def

clU has property P :

It is said that P is F -hereditary if it satisfies the following conditions:

(F-1) If A has property P , then every closed subset of A has property P ;

4Closed sets Fn � X , n 2 N can be inductively obtained so that X D S
i�n intFi [Si>n Vi .
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Fig. 2.9 Definition of V�;n

(F-2) If A and B have property P , then A[ B has property P ;
(F-3) If fA� j � 2 �g is discrete in X and each A� has property P , then

S
�2� A�

has property P .

Evidently, if property P is F -hereditary, then Pı is G-hereditary. Therefore,
Theorem 2.6.5 yields the following corollary:

Corollary 2.6.6 (E.MICHAEL). Let P be an F -hereditary property of closed sets
in a paracompact spaceX . IfX has property P locally, thenX itself has propertyP .

ut
Additional Results on Paracompact Spaces 2.6.7.

(1) A space is paracompact if it is a locally finite union of paracompact closed
subspaces.

Sketch of Proof. Let F be a locally finite closed cover of a space X such that each
F 2 F is paracompact. To prove regularity, let x 2 X and U an open neighborhood
of x in X . Since each F 2 F Œx� is regular, we have an open neighborhood UF of x in
X such that cl.F \ UF / � U . The following U0 is an open neighborhood of x in X :

U0 D
\

F2F Œx�
UF n

[
.F n F Œx�/

�
�[F Œx�D st.x;F/

�
:

Observe that clX U0 D cl
S
F2F Œx�.U0 \ F / D

S
F2F Œx� cl.U0 \ F / � U . Thus, it

suffices to show that X satisfies condition 2.6.3(e).

(2) Every F subspace A of a paracompact space X is paracompact.

Sketch of Proof. It suffices to show that A satisfies condition 2.6.3(d). Let A DS
n2N

An, where each An is closed in X . For each V 2 cov.A/ and n 2 N, let

Un D ˚
X n An�[ ˚eV

ˇ
ˇ V 2 V

� 2 cov.X/;

where each eV is open in X with eV \ A D V . Note that Vn 	 Un implies that
VnŒAn�jA 	 V .
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(3) Let X be a paracompact space. If every open subspace of X is paracompact,
then every subspace of X is also paracompact.

Sketch of Proof. To find a locally finite open refinement of U 2 cov.A/, take an open
collectioneU in X such thateU jA D U and use the paracompactness of

S
eU .

(4) A paracompact space X is (completely) metrizable if it is locally (completely)
metrizable.

Sketch of Proof. To apply 2.4.5(2) (2.5.10(2)), construct a locally finite cover of X
consisting of (completely) metrizable closed sets.

A space X is hereditarily paracompact if every subspace of X is paracompact.
The following theorem comes from (2) and (3).

Theorem 2.6.8. Every perfectly normal paracompact space is hereditarily para-
compact. ut

2.7 Partitions of Unity

A collection A of subsets of X is said to be point-finite if each point x 2 X is
contained in only finitely many members of A, that is, cardAŒx� < @0. Obviously,
every locally finite collection is point-finite. We prove the following, which is called
the OPEN COVER SHRINKING LEMMA.

Lemma 2.7.1. Each point-finite open cover U of a normal space X has an open
refinement fVU j U 2 Ug such that clVU � U for each U 2 U .

Proof. Let T be the topology of X (i.e., the collection of all open sets in X ) and
define an ordered set ˚ D .˚;�/ as follows:

˚ D ˚' W U ! T
ˇ
ˇ S

U2U '.U / D X I cl'.U / � U if '.U / 6D U �;
'1 � '2 ”

def
'1.U / 6D U implies '1.U / D '2.U /:

Observe that if ˚ has a maximal element '0 then cl'0.U / � U for each U 2 U .
Then, the desired open refinement fVU j U 2 Ug can be defined by VU D '0.U /.

We apply Zorn’s Lemma to show that ˚ has a maximal element. It suffices to
show that every totally ordered subset � � ˚ is upper bounded in ˚ . For each
U 2 U , let '.U / D T

 2�  .U /. Then, '.U / 6D U implies  U .U / 6D U for
some  U 2 � , which means that '.U / D  U .U / because  .U / D  U .U / or
 .U / D U for every  2 � . Thus, we have ' W U ! T such that cl'.U / � U

if '.U / 6D U . To verify X D S
U2U '.U /, let x 2 X . If '.U / D U for some

U 2 U Œx� then x 2 U D '.U /. When '.U / 6D U for every U 2 U Œx�, by the
same argument as above, we can see that '.U / D  U .U / for each U 2 U Œx�. Since
U Œx� is finite, we have  0 D maxf U j U 2 U Œx�g 2 � . Then, '.U / D  U .U / D
 0.U / for each U 2 U Œx�. Since X D S

U2U  0.U /, it follows that x 2  0.U /
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(� U ) for some U 2 U , which implies x 2 '.U / becauseU 2 U Œx�. Consequently,
' 2 ˚ . It follows from the definition that  � ' for any  2 � . ut
Remark 5. The above lemma can be proved using the transfinite induction instead
of Zorn’s Lemma.

For a map f W X ! R, let

suppf D cl
˚
x 2 X ˇ

ˇ f .x/ 6D 0� � X;

which is called the support of f . A partition of unity on X is an indexed family
.f�/�2� of maps f� W X ! I such that

P
�2� f�.x/ D 1 for each x 2 X . It is said

that .f�/�2� is locally finite if each x 2 X has a neighborhoodU such that

card
˚
� 2 � ˇ

ˇ U \ suppf� 6D ;
�
< @0:

A partition of unity .f�/�2� on X is said to be (weakly) subordinated to U 2
cov.X/ if fsuppf� j � 2 �g 	 U (ff �1� ..0; 1�/ j � 2 �g 	 U).

Theorem 2.7.2. Let U be a locally finite open cover of a normal space X . Then,
there is a partition of unity .fU /U2U on X such that suppfU � U for each U 2 U .

Proof. By Lemma 2.7.1, we have fVU j U 2 Ug, fWU j U 2 Ug 2 cov.X/ such
that clWU � VU � clVU � U for each U 2 U . For each U 2 U , let gU W X ! I be
a Urysohn map with gU .clWU/ D 1 and gU .X n VU / D 0. Since U is locally finite
and suppgU � clVU � U for each U 2 U , we can define a map ' W X ! Œ1;1/
by '.x/ D P

U2U gU .x/. For each U 2 U , let fU W X ! I be the map defined by
fU .x/ D gU .x/='.x/. Then, .fU /U2U is the desired partition of unity. ut

Since every open cover of a paracompact space has a locally finite open
refinement, we have the following corollary:

Corollary 2.7.3. A paracompact space X has a locally finite partition of unity
subordinated to each open cover of X . ut

There exists a partition of unity which is not locally finite. For example, the
hedgehogJ.N/ has a non-locally finite partition of unity .fn/n2! defined as follows:
f0.x/ D 1 � kxk1 and fn.x/ D x.n/ for each n 2 N, where

J.N/ D ˚x 2 `1
ˇ
ˇx.n/ 2 I for all n 2 N and

x.n/ 6D 0 at most one n 2 N
� � `1:

However, the existence of a partition of unity implies the existence of a locally finite
one.

Proposition 2.7.4. If X has a partition of unity .f�/�2� then X has a locally finite
partition of unity .g�/�2� such that suppg� � f �1� ..0; 1�/ for each � 2 �.
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Proof. We define h W X ! I by h.x/ D sup�2� f�.x/ > 0. To see the continuity
of h, for each x 2 X , choose �.x/ 2 Fin.�/ so that

P
�2�.x/ f�.x/ > 1 � 1

2
h.x/.

Then, f�.x/ < 1
2
h.x/ for every � 2 � n �.x/, so h.x/ D f�.x/.x/ for some

�.x/ 2 �.x/. Since
P

�2�.x/ f� and f�.x/ are continuous, x has a neighborhoodUx
in X such that

X

�2�.x/
f�.y/ > 1 � 1

2
h.x/ and f�.x/.y/ >

1

2
h.x/ for all y 2 Ux .

Thus, f�.y/ < 1
2
h.x/ < f�.x/.y/ for � 2 � n�.x/ and y 2 Ux . Therefore,

h.y/ D max
˚
f�.y/

ˇ
ˇ � 2 �.x/� for each y 2 Ux.

Hence, h is continuous.
For each � 2 �, let k� W X ! I be a map defined by

k�.x/ D max

�

0; f�.x/� 2
3
h.x/

	

:

Then, supp k� � f �1� ..0; 1�/. Indeed, if f�.x/ D 0 then x has a neighborhood U
such that f�.y/ < 2

3
h.y/ for every y 2 U , which implies x 62 supp k�. For each

x 2 X , take Ux and �.x/ as in the proof of the continuity of h. Choose an open
neighborhood Vx of x in X so that Vx � Ux and h.y/ > 3

4
h.x/ for all y 2 Vx. If

� 2 � n�.x/ and y 2 Vx , then

f�.y/� 2
3
h.y/ < f�.y/� 1

2
h.x/ < 0;

which implies that Vx\supp k� D ; for any � 2 �n�.x/. Thus, .k�/�2� is locally
finite. As in the proof of Theorem 2.7.2, for each � 2 �, let g� W X ! I be the map
defined by g�.x/ D k�.x/='.x/, where '.x/ DP�2� k�.x/. Then, .g�/�2� is the
desired partition of unity on X . ut

The paracompactness can be characterized by the existence of a partition of unity
as follows:

Theorem 2.7.5. A spaceX is paracompact if and only if X has a partition of unity
(weakly) subordinated to each open cover of X .

Proof. The “only if” part is Corollary 2.7.3. The “if” part easily follows from
Proposition 2.7.4. ut

It is said that a real-valued function f W X ! R is lower semi-continuous,
abbreviated as l.s.c. (or upper semi-continuous, u.s.c.) if f �1 ..t;1// (or
f �1..�1; t//) is open in X for each t 2 R. Then, f W X ! R is continuous
if and only if f is l.s.c. and u.s.c.

Theorem 2.7.6. Let g; h W X ! R be real-valued functions on a paracompact
spaceX such that g is u.s.c., h is l.s.c. and g.x/ < h.x/ for each x 2 X . Then, there



54 2 Metrization and Paracompact Spaces

exists a map f W X ! R such that g.x/ < f .x/ < h.x/ for each x 2 X . Moreover,
given a map f0 W A! R of a closed set A in X such that g.x/ < f0.x/ < h.x/ for
each x 2 A, the map f can be an extension of f0.

Proof. For each q 2 Q, let

Uq D g�1..�1; q// \ h�1..q;1//:
For each x 2 X , we have q 2 Q such that g.x/ < q < h.x/, hence U D fUq j q 2
Qg 2 cov.X/. By Corollary 2.7.3, X has a locally finite partition of unity .f�/�2�
subordinated to U . For each � 2 �, choose q.�/ 2 Q so that suppf� � Uq.�/.
Then, we define a map f W X ! R as follows:

f .x/ D
X

�2�
q.�/f�.x/:

For each x 2 X , let f� 2 � j x 2 suppf�g D f�1; � � � ; �ng. Since x 2Tn
iD1 Uq.�i /,

we have g.x/ < q.�i/ < h.x/ for each i D 1; � � � ; n, hence it follows that

g.x/ D
nX

iD1
g.x/f�i .x/ < f .x/ D

nX

iD1
q.�i /f�i .x/

< h.x/ D
nX

iD1
h.x/f�i .x/:

To prove the additional statement, apply the Tietze Extension Theorem 2.2.2 to
extend f0 to a map f 0 W X ! R. Then, we have an open neighborhood U of A in
X such that g.x/ < f 0.x/ < h.x/ for each x 2 U . Let k W X ! I be a Urysohn
map with k.A/ D 1 and k.X n U / D 0. We can define Qf W X ! R as follows:

Qf .x/ D .1� k.x//f .x/ C k.x/f 0.x/:
Therefore, Qf jA D f0 and g.x/ < Qf .x/ < h.x/ for each x 2 X . ut
Refinements by Open Balls 2.7.7.

(1) Let X be a metrizable space and U an open cover of X . Then, X has an
admissible metric 
 such that

˚
B
.x; 1/

ˇ
ˇ x 2 X� 	 U :

Moreover, for a given d 2 Metr.X/, 
 can be chosen so that 
 � d (hence, if
d is complete then 
 is) and if d is bounded then 
 is also bounded.

Sketch of Proof. Take an open �-refinement V of U and a locally finite partition of
unity .f�/�2� on X subordinated to V . For a given d 2 Metr.X/, the desired metric

 2 Metr.X/ can be defined as follows:


.x; y/ D d.x; y/CX

�2�

jf�.x/� f�.y/j � d.x; y/:
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If 
.x; y/ � 1 then x; y 2 f �1
� ..0; 1�/ � supp f� for some � 2 �, otherwise we

have
X

�2�

jf�.x/� f�.y/j D
X

�2�

f�.x/C
X

�2�

f�.y/ D 2 > 1:

Then, it follows that B
.x; 1/ � st.x;V/.

Sketch of another Proof. The above can be obtained as a corollary of 2.6.3 and 2.4.2
(or 2.4.4) as follows: By 2.4.2 (or 2.4.4), X has a sequence of open covers

U1
�
 U2

�
 U3
�
 � � �

�
or U1

�
 U2
�
 U3

�
 � � �
�

such that fst.x;Un/ j n 2 Ng is a neighborhood basis of each x 2 X . By 2.6.3, we can
inductively define Vn 2 cov.X/, n 2 N, such that

Vn 	 Un and Vn
�	 Vn�1

�
Vn

�	 Vn�1

�
;

where V0 D U . Let d 0 2 Metr.X/ be the bounded metric obtained by applying
Corollary 2.4.2 (or 2.4.4) with Remark 3 (or 4). For a given d 2 Metr.X/, the desired

 2 Metr.X/ can be defined by 
 D 8d 0 C d (or 
 D 2d 0 C d ).

(2) Let X D .X; d/ be a metric space. For each open cover U of X , there is a map
� W X ! .0; 1/ such that

˚
B.x; �.x//

ˇ
ˇ x 2 X� 	 U :

Sketch of Proof. For each x 2 X , let

r.x/ D sup
U2U

minf1; d.x; X n U/g D sup
U2U
Nd.x; X n U/;

where Nd D minf1; dg. Show that r W X ! .0;1/ is l.s.c. Then, we can apply
Theorem 2.7.6 to obtain a map � W X ! .0; 1/ such that �.x/ < r.x/ for each x 2 X .

Remark. If U is locally finite, r is continuous (in fact, r is 1-Lipschitz), so we can
define � D 1

2
r .

2.8 The Direct Limits of Towers of Spaces

In this section, we consider the direct limit of a tower X1 � X2 � � � � of spaces,
where eachXn is a subspace ofXnC1. The direct limit lim�!Xn is the space

S
n2NXn

endowed with the weak topology with respect to the tower .Xn/n2N, that is,

U � lim�!Xn is open in lim�!Xn , 8n 2 N, U \Xn is open in Xn
�

equiv. A � lim�!Xn is closed in lim�!Xn , 8n 2 N, A\ Xn is closed in Xn
�
:
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In other words, the topology of lim�!Xn is the finest topology such that every
inclusionXn � lim�!Xn is continuous; equivalently, everyXn is a subspace of lim�!Xn.
For an arbitrary space Y ,

f W lim�!Xn ! Y is continuous , 8n 2 N, f jXn is continuous.

Remark 6. Each point x 2 lim�!Xn belongs to someXn.x/. If V is a neighborhood of
x in lim�!Xn, then V \ Xn is a neighborhood x in Xn for every n � n.x/. However,
it should be noted that the converse does not hold. For example, consider the direct
limit R1 D lim�!R

n of the tower R � R
2 � R

3 � � � � , where each R
n is identified

with R
n � f0g � R

nC1. Let W D Sn2N.�2�n; 2�n/n � R
1. Then, every W \ R

n

is a neighborhood of 0 2 R
n because it contains .�2�n; 2�n/n. Nevertheless, W is

not a neighborhood of 0 in R
1. Indeed,

.intR1 W / \R
n � intRn.W \R

n/ D .�2�n; 2�n/n for each n 2 N.

Then, it follows that .intR1 W /\R �Tn2N.�2�n; 2�n/ D f0g, which means that
.intR1 W /\ R D ;, and hence 0 62 intR1 W .

It should also be noted that the direct limit lim�!Xn is T1 but, in general,
non-Hausdorff. Such an example is shown in 2.10.3.

As is easily observed, lim�!Xn.i/ D lim�!Xn for any n.1/ < n.2/ < � � � 2 N. It is
also easy to prove the following proposition:

Proposition 2.8.1. Let X1 � X2 � � � � and Y1 � Y2 � � � � be towers of spaces.
Suppose that there exist n.1/ < n.2/ < � � � , m.1/ < m.2/ < � � � 2 N and maps
fi W Xn.i/ ! Ym.i/ and gi W Ym.i/ ! Xn.iC1/ such that gifi D idXn.i/ and fiC1gi D
idYm.i/ , that is, the following diagram is commutative:

Xn.1/

f1

� Xn.2/

f2

� Xn.3/

f3

� � � �

Ym.1/

g1

� Ym.2/

g2

� Ym.3/ � � � �

Then, lim�!Xn is homeomorphic to lim�! Yn. ut
Remark 7. It should be noted that lim�!Xn is not a subspace of lim�! Yn even if each
Xn is a closed subspace of Yn. For example, let Yn D R be the real line and

Xn D f0g [ Œn�1; 1� � Yn D R:

Then, I D S
n2NXn, R D lim�!Yn, and 0 is an isolated point of lim�!Xn but is not in

the subspace I � R.
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On the other hand, as is easily observed, if each Xn is an open subspace of Yn
then lim�!Xn is an open subspace of lim�! Yn.

The following proposition is also rather obvious:

Proposition 2.8.2. Let Y1 � Y2 � � � � be a tower of spaces. If X is a closed (resp.
open) subspace of Y D lim�!Yn, thenX D lim�!.X\Yn/. Equivalently, if eachX\Yn
is closed (resp. open) in Yn, then lim�!.X\Yn/ is a closed (resp. open) subspace of Y .

ut
Remark 8. In general, X 6D lim�!.X \ Yn/ for a subspace X � lim�!Yn. For example,

let Yn be a subspace of the Euclidean plane R2 defined by

Yn D
˚
.0; 0/; .i�1; 0/; .j�1; k�1/

ˇ
ˇ i; k 2 N; j D 1; : : : ; n�:

Observe that A D f.j�1; k�1/ j j; k 2 Ng is dense in lim�!Yn, hence it is not closed
in the following subspace X of lim�! Yn:

X D f.0; 0/g [ f.j�1; k�1/ j j; k 2 Ng;

whereas A is closed in lim�!.X \ Yn/.
With regard to products of direct limits, we have:

Proposition 2.8.3. Let X1 � X2 � � � � be a tower of spaces. If Y is locally
compact then .lim�!Xn/ � Y D lim�!.Xn � Y / as spaces.

Proof. First of all, note that

.lim�!Xn/ � Y D lim�!.Xn � Y / D
[

n2N
.Xn � Y / as sets.

It is easy to see that id W lim�!.Xn�Y /! .lim�!Xn/�Y is continuous. To see this is an
open map, letW be an open set in lim�!.Xn�Y /. For each .x; y/ 2 W , choosem 2 N

so that x 2 Xm. Since Y is locally compact, there exist open sets Um � Xm and V �
Y such that x 2 Um, y 2 V , Um � clY V � W and clY V is compact. Then, by the
compactness of clY V , we can find an open setUmC1 � XmC1 such thatUm � UmC1
and UmC1 � clY V � W . Inductively, we can obtain Um � UmC1 � UmC2 � � � �
such that each Un is open inXn and Un�clY V � W . Then,U D Sn�m Un is open
in lim�!Xn, and henceU �V is an open neighborhood of .x; y/ in .lim�!Xn/�Y with
U � V � W . Thus, W is open in .lim�!Xn/ � Y . ut
Proposition 2.8.4. Let X1 � X2 � � � � and Y1 � Y2 � � � � be towers of spaces. If
each Xn and Yn are locally compact, then

lim�!Xn � lim�! Yn D lim�!.Xn � Yn/ as spaces.
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Proof. First of all, note that

lim�!Xn � lim�!Yn D lim�!.Xn � Yn/ D
[

n2N
.Xn � Yn/ as sets.

It is easy to see that id W lim�!.Xn � Yn/! lim�!Xn � lim�!Yn is continuous. To see that
this is open, let W be an open set in lim�!.Xn � Yn/. For each .x; y/ 2 W , choose
m 2 N so that .x; y/ 2 Xm � Ym. Since Xm and Ym are locally compact, we have
open sets Um � Xm and Vm � Ym such that

x 2 Um; y 2 Vm; clXm Um � clYm Vm � W

and both clXm Um and clYm Vm are compact. Then, by the compactness of clXm Um
and clYm Vm, we can easily find open sets UmC1 � XmC1 and VmC1 � YmC1 such
that

clXm Um � UmC1; clYm Vm � VmC1; clXmC1
UmC1 � clYmC1

VmC1 � W

and both clXmC1
UmC1 and clYmC1

VmC1 are compact. Inductively, we can obtain
Um � UmC1 � UmC2 � � � � and Vm � VmC1 � VmC2 � � � � such that Un
and Vn are open in Xn and Yn, respectively, clXn Un and clYn Vn are compact, and
clXn Un � clYn Vn � W . Then, U D S

n�m Un and V D S
n�m Vn are open in

lim�!Xn and lim�! Yn, respectively, and .x; y/ 2 U � V � W . Therefore,W is open in
lim�!Xn � lim�!Yn. ut

A tower X1 � X2 � � � � of spaces is said to be closed if each Xn is closed in
XnC1; equivalently, each Xn is closed in the direct limit lim�!Xn. For a pointed space
X D .X;/, let

XN

f D
˚
x 2 XN

ˇ
ˇ x.n/ D  except for finitely many n 2 N

� � XN:

Identifying each Xn with Xn � f.;; : : : /g � XN

f , we have a closed tower X �
X2 � X3 � � � � with XN

f D
S
n2NXn. We write X1 D lim�!Xn, which is the space

XN

f with the weak topology with respect to the tower .Xn/n2N. A typical example
is R1, which appeared in Remark 6.

Proposition 2.8.5. Let X D .X;/ be a pointed locally compact space. Then, each
x 2 X1 D lim�!Xn has a neighborhood basis consisting of X1 \Qn2N Vn, where

each Vn is a neighborhood of x.n/ in Xn.5

Sketch of Proof. Let U be an open neighborhood of x in X1. Choose n0 2 N so that
x 2 Xn0 . For each i D 1; : : : ; n0, each x.i/ has a neighborhood Vi in X such that clVi is

5In other words, the topology of lim�!Xn is a relative (subspace) topology inherited from the box

topology of XN.
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compact and
Qn0
iD1 clVi � U \Xn0 . Recall that we identify Xn�1 D Xn�1 � f�g � Xn.

For n > n0, we can inductively choose a neighborhood Vn of x.n/ D � in X so that
clVn is compact and

Qn
iD1 clVi � U \ Xn, where we use the compactness of

Qn�1
iD1 clVi�D Qn�1

iD1 clVi�f�g
�
. This is an excellent exercise as the first part of the proof of Wallace’s

Theorem 2.1.2.

Remark 9. Proposition 2.8.3 does not hold without the local compactness of Y even
if each Xn is locally compact. For example, .lim�!R

n/ � `2 6D lim�!.R
n � `2/. Indeed,

each R
n is identified with R

n � f0g � R
N

f � `2. Then, we regard

.lim�!R
n/ � `2 D lim�!.R

n � `2/ D R
N

f � `2 as sets.

Consider the following set:

D D ˚.k�1en; n�1ek/ 2 R
N

f � `2
ˇ
ˇ k; n 2 N

�
;

where each ei 2 R
N

f � `2 is the unit vector defined by ei .i / D 1 and ei .j / D 0 for
j 6D i . For each n 2 N, let

Dn D
˚
.k�1en; n�1ek/

ˇ
ˇ k 2 N

�
:

Since fn�1ek j k 2 Ng is discrete in `2, it follows that Dn is discrete (so closed)
in R

n � `2, hence it is also closed in R
m � `2 for every m � n. Observe that

D \ .Rn � `2/ D Sn
iD1 Di . Then, D is closed in lim�!.R

n � `2/. On the other hand,
for each neighborhoodU of .0; 0/ in .lim�!R

n/ � `2, we can apply Proposition 2.8.5
to take ıi > 0 (i 2 N) and n 2 N so that




R
N

f \
Y

i2N
Œ�ıi ; ıi �

�

� n�1B`2 � U;

where B`2 is the unit closed ball of `2. Choose k 2 N so that k�1 < ın. Then,
.k�1en; n�1ek/ 2 U , which implies U \ D 6D ;. Thus, D is not closed in
.lim�!R

n/�`2.
Remark 10. In Proposition 2.8.4, it is necessary to assume that both Xn and Yn
are locally compact. Indeed, let Xn D R

n and Yn D `2 for every n 2 N. Then,
lim�!Xn � lim�!Yn 6D lim�!.Xn � Yn/, as we saw in the above remark. Furthermore,
this equality does not hold even if Xn D Yn. For example, lim�!.`2/

n � lim�!.`2/
n 6D

lim�!..`2/
n � .`2/n/. Indeed, consider

lim�!.`2/
n � lim�!.`2/

n D lim�!..`2/
n � .`2/n/ D .`2/Nf � .`2/Nf as sets.

Identifying R
n D .Re1/n � .`2/n and `2 D `2 � f0g � .`2/Nf , we can also consider

.lim�!R
n/ � `2 D lim�!.R

n � `2/ D R
N

f � `2 � .`2/Nf � .`2/Nf as sets.
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By Proposition 2.8.2, .lim�!R
n/ � `2 and lim�!.R

n � `2/ are closed subspaces of
lim�!.`2/

n�lim�!.`2/
n and lim�!..`2/

n�.`2/n/, respectively. As we saw above, .lim�!R
n/�

`2 6D lim�!.R
n � `2/. Thus, lim�!.`2/

n � lim�!.`2/
n 6D lim�!..`2/

n � .`2/n/.
Theorem 2.8.6. For the direct limit X D lim�!Xn of a tower X1 � X2 � � � � of
spaces, the following hold:

(1) Every compact set A � X is contained in some Xn.
(2) For each map f W Y ! X from a first countable space Y to X , each point

y 2 Y has a neighborhood V in Y such that the image f .V / is contained in
some Xn. In particular, if A � X is a metrizable subspace then each point of A
has a neighborhood in A that is contained in some Xn.

Proof. (1): Assume that A is not contained in any Xn. For each n 2 N, take xn 2
A n Xn and let D D fxn j n 2 Ng � A. Then, D is infinite and discrete in lim�!Xn.
Indeed, every C � D is closed in lim�!Xn because C \ Xn is finite for each n 2 N.
This contradicts the compactness of A.

(2): Let fVn j n 2 Ng be a neighborhood basis of y0 in Y such that Vn � Vn�1.
Assume that f .Vn/ 6� Xn for every n 2 N. Then, taking yn 2 Vn n f �1.Xn/, we
have a compact set A D fyn j n 2 !g in Y . Due to (1), f .A/ is contained in some
Xm, and hence f .ym/ 2 Xm. This is a contradiction. Therefore, f .Vn/ � Xn for
some n 2 N. ut

By Theorem 2.8.6(2), the direct limit of metrizable spaces is non-metrizable in
general (e.g., lim�!R

n is non-metrizable). However, it has some favorable properties,
which we now discuss.

Theorem 2.8.7. For the direct limit X D lim�!Xn of a closed tower X1 � X2 � � � �
of spaces, the following properties hold:

(1) If each Xn is normal, then X is also normal;
(2) If each Xn is perfectly normal, then X is also perfectly normal;
(3) If each Xn is collectionwise normal, then X is also collectionwise normal;
(4) If each Xn is paracompact, then X is also paracompact.

Proof. (1): Obviously, every singleton of X is closed, so X is T1. Let A and B be
disjoint closed sets inX . Then, we have a map f1 W X1 ! I such that f1.A\X1/ D
0 and f1.B \ X1/ D 1. Using the Tietze Extension Theorem 2.2.2, we can extend
f1 to a map f2 W X2 ! I such that f2.A\X2/ D 0 and f2.B \X2/ D 1. Thus, we
inductively obtain maps fn W Xn ! I, n 2 N, such that

fnjXn�1 D fn�1; fn.A\ Xn/ D 0 and fn.B \Xn/ D 1:

Let f W X ! I be the map defined by f jXn D fn for n 2 N. Evidently, f .A/ D 0
and f .B/ D 1. Therefore,X is normal.

(2): From (1), it suffices to show that every closed set A inX is aGı set. EachXn
has open sets Gn;m,m 2 N, such that A\Xn D Tm2NGn;m. For each n;m 2 N, let
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G�n;m D Gn;m[ .X nXn/. Since Xn is closed in X , eachG�n;m is open in X . Observe
that A D Tn;m2NG�n;m. Hence, A is Gı in X .

(3): Let F be a discrete collection of closed sets in X . By induction on n 2 N,
we have discrete collections fUF

n j F 2 Fg of open sets in Xn such that .F \
Xn/ [ clUF

n�1 � UF
n for each F 2 F , where UF

0 D ;. For each F 2 F , let UF DS
n2NUF

n . Then, F � UF and UF is open inX becauseUF \Xn DSi�n U F
i \Xn

is open in Xn for each n 2 N. If F 6D F 0, then UF \ UF 0 D ; because

UF
i \ UF 0

j � UF
maxfi;j g \ UF 0

maxfi;j g D ; for each i; j 2 N.

Therefore,X is collectionwise normal.
(4): Since every paracompact space is collectionwise normal (Theorem 2.6.1),X

is also collectionwise normal by (3), so it is regular. Then, due to Theorem 2.6.3,
it suffices to show that each U 2 cov.X/ has a -discrete open refinement. By
Theorem 2.6.3, we have

S
m2N Vn;m 2 cov.Xn/, n 2 N, such that each Vn;m is

discrete in Xn and Vn;m 	 U . For each V 2 Vn;m, choose UV 2 U so that V � UV .
Note that each Vcl

n;m is discrete in X , and recall that X is collectionwise normal.
So, X has a discrete open collection fWV j V 2 Vn;mg such that clV � WV . Let
Wn;m D fWV \ UV j V 2 Vn;mg. Then, W D S

n;m2NWn;m 2 cov.X/ is a -
discrete open cover refinement of U . ut

From Theorems 2.8.7 and 2.6.8, we conclude the following:

Corollary 2.8.8. The direct limit of a closed tower of metrizable spaces is perfectly
normal and paracompact, and so it is hereditarily paracompact. ut

2.9 The Limitation Topology for Spaces of Maps

Let X and Y be spaces. Recall that C.X; Y / denotes the set of all maps from X

to Y . For each f 2 C.X; Y / and U 2 cov.Y /, we define

U.f / D ˚g 2 C.X; Y /
ˇ
ˇ g is U-close to f

�
:

Observe that if V 2 cov.Y / is a �-refinement (or a star-refinement) of U then
V.g/ � U.f / for each g 2 V.f /. Then, in the case that Y is paracompact, C.X; Y /
has a topology such that fU.f / j U 2 cov.Y /g is a neighborhood basis of f . Such
a topology is called the limitation topology.

The limitation topology is Hausdorff. Indeed, let f 6D g 2 C.X; Y /. Then f .x0/ 6D g.x0/

for some x0 2 X . Take disjoint open sets U; V � Y with f .x0/ 2 U and g.x0/ 2 V , and
define

U D fU; Y n ff .x0/gg; V D fV; Y n fg.x0/gg 2 cov.Y /:

Then, U.f /\ V.g/ D ;.
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Remark 11. In the above, U.f / is not open in general. For example, consider the
hedgehog J.N/ D S

n2N Ien (see Sect. 2.3) and the map f W N ! J.N/ defined
by f .n/ D en for each n 2 N, where en.n/ D 1 and en.i/ D 0 if i 6D n. For each
n 2 N, let

Un D Ien [ B.0; n�1/ � J.N/:
Then, U D fUn j n 2 Ng 2 cov.J.N//. We show that U.f / is not open
in C.N; J.N// with respect to the limitation topology. Indeed, U.f / contains the
constant map f0 with f0.N/ D f0g. For each V 2 cov.J.N//, choose k 2 N so that
B.0; k�1/ � V0 for some V0 2 V . Then, V.f0/ contains the map g W N ! J.N/

defined by g.n/ D .k C 1/�1enC1 for each n 2 N. Observe that g.k C 1/ D
.k C 1/�1ekC2 62 UkC1 but f .k C 1/ D ekC1 62 Un if n 6D k C 1, which means that
g 62 U.f /. Thus, V.f0/ 6� U.f /. Hence, U.f / is not open.

The set of all admissible bounded metrics of a metrizable space Y is denoted
by MetrB.Y /. If Y is completely metrizable, let Metrc.Y / denote the set of all
admissible bounded complete metrics of Y . The sup-metric on C.X; Y / defined
by d 2 MetrB.Y / is denoted by the same notation d . For each f 2 C.X; Y / and
d 2 MetrB.Y /, let

Ud.f / D Bd .f; 1/ D
˚
g 2 C.X; Y /

ˇ
ˇ d.f; g/ < 1g:

Then, Un�d .f / D Bd .f; n�1/ for each n 2 N.

Proposition 2.9.1. When Y is metrizable, fUd.f / j d 2 MetrB.Y /g is a
neighborhood basis of f 2 C.X; Y / in the space C.X; Y / with the limitation
topology. If Y is completely metrizable, then fUd.f / j d 2 Metrc.Y /g is also a
neighborhood basis of f 2 C.X; Y /.

Proof. For each d 2 MetrB.Y /, let

U D ˚Bd .y; 13 /
ˇ
ˇ y 2 Y � 2 cov.Y /:

Then, clearly U.f / � Ud.f / for each f 2 C.X; Y /. Conversely, for each U 2
cov.Y /, choose d 2 MetrB.Y / (or d 2 Metrc.Y /) so that fBd .y; 1/ j y 2 Y g 	 U
(cf. 2.7.7(1)). Thus, Ud.f / � U.f / for each f 2 C.X; Y /. ut

For a spaceX , let Homeo.X/ be the set of all homeomorphisms of X onto itself.
The limitation topology on Homeo.X/ is the subspace topology inherited from
the space C.X;X/ with the limitation topology. If X is metrizable, for each f 2
Homeo.X/ and d 2 MetrB.X/, let

Ud�.f / D Bd�.f; 1/ D ˚g 2 Homeo.X/
ˇ
ˇ d�.f; g/ < 1g;

where d� is the metric on Homeo.X/ defined as follows:

d�.f; g/ D d.f; g/C d.f �1; g�1/:
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The following is the homeomorphism space version of Proposition 2.9.1:

Proposition 2.9.2. When X is metrizable, fUd�.f / j d 2 MetrB.X/g is a
neighborhood basis of f 2 Homeo.X/ in the space Homeo.X/ with the limitation
topology. If X is completely metrizable, then fUd�.f / j d 2 Metrc.X/g is also a
neighborhood basis of f 2 Homeo.X/.

Proof. For each f 2 Homeo.X/ and d 2 MetrB.Y /, let

U D ˚Bd .x; 1=5/\ f
�
Bd .f �1.x/; 1=5/

� ˇ
ˇ x 2 X� 2 cov.X/:

Then, U.f /\Homeo.X/ � Ud�.f /. Indeed, for each g 2 U.f /\Homeo.X/ and
x 2 X , we can find y 2 X such that

f .g�1.x//; x D g.g�1.x// 2 f �Bd
�
f �1.y/; 1=5

��
;

which means that d.g�1.x/; f �1.y// < 1=5 and d.f �1.x/; f �1.y// < 1=5, hence
d.f �1.x/; g�1.x// < 2=5. Therefore, d.f �1; g�1/ � 2=5. On the other hand, it is
easy to see that d.f; g/ � 2=5. Thus, we have d�.f; g/ < 1, that is, g 2 Ud�.f /.

Conversely, for each f 2 Homeo.X/ and U 2 cov.X/, choose d 2 MetrB.X/
(or d 2 Metrc.X/) so that fBd .y; 1/ j y 2 Y g 	 U (cf. 2.7.7(1)). Then,
Ud�.f / � U.f /. Indeed, for each g 2 Ud�.f / and x 2 X , d.f .x/; g.x// < 1

and Bd .f .x/; 1/ is contained in some U 2 U , hence f .x/; g.x/ 2 U . Therefore,
g 2 U.f /. ut

If Y D .Y; d/ is a metric space, for each f 2 C.X; Y / and ˛ 2 C.Y; .0;1//, let

N˛.f / D
˚
g 2 C.X; Y /

ˇ
ˇ 8x 2 X; d.f .x/; g.x// < ˛.f .x//�:

Proposition 2.9.3. When Y D .Y; d/ is a metric space, fN˛.f / j ˛2C.Y; .0;1//g
is a neighborhood basis of f 2 C.X; Y / in the space C.X; Y / with the limitation
topology.

Proof. Let ˛ 2 C.Y; .0;1//. For each y 2 Y , choose an open neighborhood Uy
so that diamUy � 1

2
˛.y/ and ˛.y0/ > 1

2
˛.y/ for all y0 2 Uy . Thus, we have

U D fUy j y 2 Y g 2 cov.Y /. Let f 2 C.X; Y / and g 2 U.f /. Then, for
each x 2 X , we have some y 2 Y such that f .x/; g.x/ 2 Uy , which implies
d.f .x/; g.x// � 1

2
˛.y/ < ˛.f .x//. Therefore, U.f / � N˛.f /.

Conversely, let U 2 cov.Y /. For each y 2 Y , let

�.y/ D sup
˚
r > 0

ˇ
ˇ 9U 2 U such that B.y; r/ � U �:

Then, � W Y ! .0;1/ is lower semi-continuous. Hence, by Theorem 2.7.6, we
have ˛ 2 C.Y; .0;1// such that ˛ < � , which implies that N˛.f / � U.f / for any
f 2 C.X; Y /. ut
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The following two theorems are very useful to show the existence of some types
of maps or homeomorphisms:

Theorem 2.9.4. For a completely metrizable space Y , the space C.X; Y / with the
limitation topology is a Baire space.

Proof. Let Gn, n 2 N, be dense open sets in C.X; Y /. To see that
T
n2NGn is

dense in C.X; Y /, let f 2 C.X; Y / and d 2 Metrc.Y /. We can inductively choose
gn 2 C.X; Y / and dn 2 Metr.Y /, n 2 N, so that

gn 2 U2dn�1 .gn�1/\Gn; Udn.gn/ � Gn and dn � 2dn�1;

where g0 D f and d0 D d . Observe dm � 2�ndmCn for each m; n 2 !. Since
d.gn�1; gn/ � 2�nC1dn�1.gn�1; gn/ < 2�n for each n 2 N, .gn/n2N is d -Cauchy.
From the completeness of d , .gn/n2N converges uniformly to g 2 C.X; Y / with
respect to d . Since

d.f; g/ �
X

n2N
d.gn�1; gn/ <

X

n2N
2�n D 1;

we have g 2 Ud.f / and, for each n 2 N,

dn.gn; g/ �
X

i2N
dn.gnCi�1; gnCi /

�
X

i2N
2�iC1dnCi�1.gnCi�1; gnCi / <

X

i2N
2�i D 1;

hence g 2 Udn.gn/ � Gn. Thus, Ud.f / \Tn2NGn 6D ;, hence
T
n2NGn is dense

in C.X; Y /. ut
In the above proof, replace C.X; Y / and Udn with Homeo.X/ and Ud�

n
, respec-

tively. Then, we can see that .gn/n2N is d�-Cauchy. From the completeness of d�,
we have g 2 Homeo.X/ with limn!1 d�.gn; g/ D 0. By the same calculation,
we can see d�n .gn; g/ < 1, that is, g 2 Ud�

n
.g/ � Gn for every n 2 N. Then,

Ud�.f / \Tn2NGn 6D ;. Therefore, we have:

Theorem 2.9.5. For a completely metrizable space X , the space Homeo.X/ with
the limitation topology is a Baire space. ut

Now, we consider the space of proper maps.

Proposition 2.9.6. Let U be a locally finite open cover of Y such that clU is
compact for every U 2 U (so Y is locally compact). If a map f W X ! Y is
U-close to a proper map g then f is also proper.

Proof. For each compact set A in Y , f �1.A/ � g�1.st.A;U cl//. Since U cl is
locally finite, it follows that U clŒA� is finite, and hence st.A;U cl/ is compact. Then,
g�1.st.A;U cl// is compact because g is proper. Thus, its closed subset f �1.A/ is
also compact. ut
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Let CP .X; Y / be the subspace of C.X; Y / consisting of all proper maps.6 Then,
Proposition 2.9.6 yields the following corollary:

Corollary 2.9.7. If Y is locally compact and paracompact, then CP .X; Y / is
clopen (i.e., closed and open) in the space C.X; Y / with the limitation topology,
where X is also locally compact if CP .X; Y / 6D ;. ut

From Theorem 2.9.4 and Corollary 2.9.7, we have:

Theorem 2.9.8. For every pair of locally compact metrizable spaces X and Y , the
space CP .X; Y / with the limitation topology is a Baire space. ut
Some Properties of the Limitation Topology 2.9.9.

(1) For each paracompact space Y , the evaluation map

ev W X � C.X; Y / 3 .x; f / 7! f .x/ 2 Y
is continuous with respect to the limitation topology.

Sketch of Proof. For each .x; f / 2 X � C.X; Y / and each open neighborhood V
of f .x/ in Y , take an open neighborhood W of f .x/ in Y so that clW � V and
let V D fV;X n clW g 2 cov.Y /. Show that .x0; f 0/ 2 f �1.W / � V.f / implies
f 0.x0/ 2 V .

(2) If both Y and Z are paracompact, the composition

C.X; Y / � C.Y;Z/ 3 .f; g/ 7! g ı f 2 C.X;Z/

is continuous with respect to the limitation topology.

Sketch of Proof. For each .f; g/ 2 C.X; Y / � C.Y; Z/ and U 2 cov.Z/, let V 2
cov.Z/ be a star-refinement of U . Show that f 0 2 g�1.V/.f / and g0 2 V.g/ implies
g0 ı f 0 2 U.g ı f /.

(3) For every paracompact space X , the inverse operation

Homeo.X/ 3 h 7! h�1 2 Homeo.X/

is continuous with respect to the limitation topology. Combining this with (1),
the group Homeo.X/ with the limitation topology is a topological group.

Sketch of Proof. Let h 2 Homeo.X/ and U 2 cov.X/. Show that g 2 h.U/.h/ implies
g�1 2 U.h�1/.

Remark 12. If Y D .Y; d/ is a metric space, for each f 2 C.X; Y / and � 2
C.X; .0;1//, let

V�.f / D
˚
g 2 C.X; Y /

ˇ
ˇ 8x 2 X; d.f .x/; g.x// < �.x/�:

6If Y is locally compact, CP .X; Y / is the subspace of C.X; Y / consisting of all perfect maps
(Proposition 2.1.5).
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We have the topology of C.X; Y / such that fV�.f / j � 2 C.X; .0;1//g is a
neighborhood basis of f . This is finer than the limitation topology. In general, these
topologies are not equal.

For example, let � 2 C.N; .0;1// be the map defined by �.n/ D 2�n for n 2 N.
Then,V�.0/ is not a neighborhood of 0 2 C.N;R/ in the limitation topology. Indeed,
for any ˛ 2 C.R; .0;1//, we define g 2 C.N;R/ by g.n/ D 1

2
˛.0/ for every

n 2 N. Then, g 2 N˛.0/ but g 62 V�.0/. Thus, N˛.0/ 6� V�.0/. Moreover, the
composition

C.N;R/ � C.R;R/ 3 .f; g/ 7! g ı f 2 C.N;R/

is not continuous with respect to this topology.

Indeed, let � be the above map. For any ˛ 2 C.R; .0;1//, we have n 2 N such that
2�n < 1

2
˛.0/. Let h D id C 1

2
˛ 2 C.R;R/. Then, h 2 V˛.id/ but h ı 0 62 V� .id ı 0/

because h ı 0.n/ D h.0/ D 1
2
˛.0/ > 2�n D �.n/. (Here, id can be replaced by any

g 2 C.R;R/.)

2.10 Counter-Examples

In this section, we show that the concepts of normality, collectionwise normality,
and paracompactness are neither hereditary nor productive, and that the concepts
of perfect normality and hereditary normality are not productive either. Moreover,
we show that the direct limit of a closed tower of Hausdorff spaces need not be
Hausdorff.

The following example shows that the concepts of normality, collectionwise
normality and paracompactness are not hereditary.

The Tychonoff plank 2.10.1. Let Œ0; !1/ be the space of all countable ordinals
with the order topology. The space Œ0; !1� is the one-point compactification of the
space Œ0; !1/. Let Œ0; !� be the one-point compactification of the space ! D Œ0; !/

of non-negative integers. The product space Œ0; !1� � Œ0; !� is a compact Hausdorff
space, hence it is paracompact. The following dense subspace of Œ0; !1� � Œ0; !� is
called the Tychonoff plank:

T D Œ0; !1� � Œ0; !� n f.!1; !/g:
We now prove that

� The Tychonoff plank T is not normal.

Proof. We have disjoint closed sets f!1g�Œ0; !/ and Œ0; !1/�f!g in T . Assume that
T has disjoint open sets U , V such that f!1g � Œ0; !/ � U and Œ0; !1/ � f!g � V .
For each n 2 !, choose ˛n < !1 so that Œ˛n; !1� � fng � U . Let ˛ D supn2N ˛n <
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Œ0; !1�

Œ0; !�

!

!1

.!1; !/

Œ˛n; !1� � fng

˛n

˛ D supn2N
˛n < !1

U

V

ı
f˛g � Œn; !�

Fig. 2.10 Tychonoff plank

!1. Then, Œ˛; !1� � N � U . On the other hand, we can choose n 2 N so that
f˛g � Œn; !� � V . Then, U \ V 6D ;, which is a contradiction (Fig. 2.10). ut

The next example shows that the concepts of normality, perfect normality, hered-
itary normality, collectionwise normality, and paracompactness are not productive.

The Sorgenfrey Line 2.10.2. The Sorgenfrey line S is the space R with the
topology generated by Œa; b/, a < b. The product S2 is called the Sorgenfrey plane.
These spaces have the following properties:

(1) S is a separable regular Lindelöf space, hence it is paracompact, and so is
collectionwise normal;

(2) S is perfectly normal, and so is hereditarily normal;
(3) S2 is not normal.

Proof. (1): It is obvious that S is Hausdorff. Since each basic open set Œa; b/ is
also closed in S , it follows that S is regular. Clearly, Q is dense in S , hence S is
separable. To see that S is Lindelöf, let U 2 cov.S/. We have a function � W S ! Q

so that �.x/ > x and Œx; �.x// � U for some U 2 U . Then, fŒx; �.x// j x 2 Sg 2
cov.S/ is an open refinement of U . For each q 2 �.S/, if there exists min ��1.q/,
let R.q/ D fmin��1.q/g. Otherwise, choose a countable subset R.q/ � ��1.q/ so
that infR.q/ D inf ��1.q/, where we mean ��1.q/ D �1 if ��1.q/ is unbounded
below. Then, the following is a subcover of fŒx; �.x// j x 2 Sg 2 cov.S/:

˚
Œz; q/

ˇ
ˇ q 2 �.S/; z 2 R.q/� 2 cov.S/;

which is a countable open refinement of U .
(2): Let U be an open set in S . We have a function � W U ! Q so that �.x/ > x

and Œx; �.x// � U . Then, U D Sx2U Œx; �.x//. By the same argument as the proof
of (1), we can find a countable subcollection

˚
Œai ; bi /

ˇ
ˇ i 2 N

� � ˚Œx; �.x// ˇˇ x 2 U �

such that U DSi2NŒai ; bi /, hence U is F in S . Thus, S is perfectly normal.
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1

2

3

A0 A1

0 1

Y

X1 X2 X D .Y �N/[ f0; 1g

0 1

Fig. 2.11 Non-Hausdorff direct limit

(3): As we saw in the proof of (1), Q is dense in S , hence Q
2 is dense in S2. It

follows that the restriction C.S2;R/ 3 f 7! f jQ2 2 R
Q
2

is injective. Therefore,

card C.S2;R/ � cardRQ
2 D 2@0 D c:

On the other hand,D D f.x; y/ 2 S2 j xCy D 0g is a discrete set in S2. Then, we
have

card C.D;R/ D cardRD D 2c > c � card C.S2;R/:

If S2 is normal, it would follow from the Tietze Extension Theorem 2.2.2 that the
restriction C.S2;R/ 3 f 7! f jD 2 C.D;R/ is surjective, which is a contradiction.
Consequently, S2 is not normal. ut

Finally, we will construct a closed tower such that the direct limit is not
Hausdorff.

A Non-Hausdorff Direct Limit 2.10.3. Let Y be a space which is Hausdorff but
non-normal, such as the Tychonoff plank. Let A0;A1 be disjoint closed sets in Y
that have no disjoint neighborhoods. We define X D .Y � N/ [ f0; 1g with the
topology generated by open sets in the product space Y � N and sets of the form

[

k>n

.Uk � fkg/[ fig;

where i D 0; 1 and each Uk is an open neighborhood of Ai . Then, X is not
Hausdorff because 0 and 1 have no disjoint neighborhoods in X . For each n 2 N,
let

Xn D Y � f1; : : : ; ng [ .A0 [ A1/ � fk j k > ng [ f0; 1g:
Then, X1 � X2 � � � � are closed in X and X D S

n2NXn (Fig. 2.11). As is easily
observed, every Xn is Hausdorff. We will prove that X D lim�!Xn, that is,

� X has the weak topology with respect to the tower .Xn/n2N.
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Proof. Since id W lim�!Xn ! X is obviously continuous, it suffices to show that
every open set V in lim�!Xn is open in X . To this end, assume that V \ Xn is open
in Xn for each n 2 N. Each x 2 V n f0; 1g is contained in some Y � fng � Xn.
Then, V \ .Y � fng/ is an open neighborhood of x in Y � fng, and so is an open
neighborhood in X . When 0 2 V , A0 � fk j k > ng � V for some n 2 N because
V \X1 is open inX1. For each k > n, since V \ .Y �fkg/ is open in Y �fkg, there
is an open set Uk in Y such that V \ .Y � fkg/ D Uk � fkg. Note that A0 � Uk .
Then,

S
k>n.Uk � fkg/[ f0g � V , hence V is a neighborhood of 0 in X . Similarly,

V is a neighborhood of 1 in X if 1 2 V . Thus, V is open in X . ut

Notes for Chap. 2

For more comprehensive studies on General Topology, see Engelking’s book, which contains
excellent historical and bibliographic notes at the end of each section.

• R. Engelking, General Topology, Revised and complete edition, Sigma Ser. in Pure Math. 6
(Heldermann Verlag, Berlin, 1989)

The following classical books are still good sources.

• J. Dugundji, Topology, (Allyn and Bacon, Inc., Boston, 1966)
• J.L. Kelly, General Topology, GTM 27 (Springer-Verlag, Berlin, 1975); Reprint of the 1955 ed.

published by Van Nostrand

For counter-examples, the following is a good reference:

• L.A. Steen and J.A. Seebach, Jr., Counterexamples in Topology, 2nd edition (Springer-Verlag,
New York, 1978)

Of the more recent publications, the following textbook is readable and seems to be popular:

• J.R. Munkres, Topology, 2nd edition (Prentice Hall, Inc., Upper Saddle River, 2000)

Most of the contents discussed in the present chapter are found in Chaps. 5–8 of this text, although
it does not discuss the Frink Metrization Theorem (cf. 2.4.1) and Michael’s Theorem 2.6.5 on local
properties.

Among various proofs of the Tychonoff Theorem 2.1.1, our proof is a modification of the
proof due to Wright [19]. Our proof of the Tietze Extension Theorem 2.2.2 is due to Scott [14].
Theorem 2.3.1 was established by Stone [16], but the proof presented here is due to Rudin [13]. The
Nagata–Smirnov Metrization Theorem (cf. 2.3.4) was independently proved by Nagata [12] and
Smirnov [15]. The Bing Metrization Theorem (cf. metrization) was proved in [2]. The Urysohn
Metrization Theorem 2.3.5 and the Alexandroff–Urysohn Metrization Theorem (cf. 2.4.1) were
established in [18] and [1], respectively. The Frink Metrization Theorem (cf. 2nd-metrization) was
proved by Frink [5]. The Baire Category Theorem 2.5.1 was first proved by Hausdorff [6] (Baire
proved the theorem for the real line in 1889). The equivalence of (a) and (b) in Theorem 2.5.5 was
shown by Čech [3]. Theorems 2.5.7 and 2.5.8 were established by Lavrentieff [7].

The concept of paracompactness was introduced by Dieudonné [4]. In [2], Bing introduced
the concept of collectionwise normality and showed the collectionwise normality of paracompact
spaces (Theorem 2.6.1). The equivalence of (b) and (c) in Theorem 2.6.3 was proved by Tukey
[17], where he called spaces satisfying condition (c) fully normal spaces. The equivalence of (a)
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and (c) and the equivalence of (a), (d), and (e) were respectively proved by Stone [16] and Michael
[10]. Theorem 2.6.5 on local properties was established by Michael [11]. Lemma 2.7.1 appeared in
[8]. Theorem 2.7.2 and Proposition 2.7.4 were also established by Michael [11]. The simple proof
of Proposition 2.7.4 presented here is due to Mather [9]. Theorem 2.7.6 was proved by Dieudonné
[4]. These notes are based on historical and bibliographic notes in Engelking’s book, listed above.

In some literature, it is mentioned that the direct limit of a closed tower of Hausdorff spaces

need not be Hausdorff. The author could not find such an example in the literature. Example 2.10.3

is due to H. Ohta.
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1. P. Alexandroff, P. Urysohn, Une condition nécessaire et suffisante pour qu’une classe .L/ soit
une classe .B/. C.R. Acad. Sci. Paris Sér. A-B 177, 1274–1276 (1923)

2. R.H. Bing, Metrization of topological spaces. Can. J. Math. 3, 175–186 (1951)
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Chapter 3
Topology of Linear Spaces and Convex Sets

In this chapter, several basic results on topological linear spaces and convex sets are
presented. We will characterize finite-dimensionality, metrizability, and normability
of topological linear spaces. Among the important results are the Hahn–Banach
Extension Theorem, the Separation Theorem, the Closed Graph Theorem, and the
Open Mapping Theorem. We will also prove the Michael Selection Theorem, which
will be applied in the proof of the Bartle–Graves Theorem.

3.1 Flats and Affine Functions

In this section, we present the basic properties of flats and affine functions. Let E
be a linear space (over R). We call F � E a flat1 if the straight line through every
distinct two points of F is contained in F , i.e.,

.1 � t/x C ty 2 F for each x; y 2 F and t 2 R.

Evidently, the intersection and the product of flats are also flats. We have the
following characterization of flats:

Proposition 3.1.1. LetE be a linear space. For each non-empty subset F � E , the
following conditions are equivalent:

(a) F is a flat;
(b) For each n 2 N, if v1; : : : ; vn 2 F and

Pn
iD1 ti D 1, then

Pn
iD1 tivi 2 F ;

(c) F � x is a linear subspace of E for any x 2 F ;
(d) F � x0 is a linear subspace of E for some x0 2 E .

1A flat is also called an affine set, a linear manifold, or a linear variety.

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics,
DOI 10.1007/978-4-431-54397-8 3, © Springer Japan 2013
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Proof. By induction on n 2 N, we can obtain (a)) (b). Condition (c) follows from
the case n D 3 of (b) because, for each x; y; z 2 F and a; b 2 R,

a.y � x/C b.z� x/C x D .1 � a � b/x C ay C bz:

To see (c)) (a), let x; y 2 F and t 2 R. Since F � x is a linear subspace of E by
(c), we have t.y � x/ 2 F � x, which means .1 � t/x C ty 2 F . The implication
(c)) (d) is obvious.

(d) ) (c): It suffices to show that if F � x0 is a linear subspace of E , then
F � x D F � x0 for any x 2 F . For every z 2 F , we have

z � x D .z� x0/ � .x � x0/ 2 F � x0:
Here, take z0 2 F so that .z � x0/C .x � x0/ D z0 � x0. Then, we have

z� x0 D .z0 � x0/ � .x � x0/ D z0 � x 2 F � x:
Consequently, we have F � x D F � x0. ut

In the proof of the implication (d)) (c), we actually proved the following:

Corollary 3.1.2. Let F be a flat in a linear spaceE . Then, F �x D F �y for any
x; y 2 F . ut

A maximal proper flat H ¤ E is called a hyperplane in E . The following
proposition shows the relationship between hyperplanes and linear functionals.

Proposition 3.1.3. Let E be a linear space.

(1) For each hyperplaneH � E , there is a linear functional f W E ! R such that
H D f �1.s/ for some s 2 R;

(2) For each non-trivial linear functional f W E ! R and s 2 R, f �1.s/ is a
hyperplane in E;

(3) For linear functionals f1; f2 W E ! R, if f �11 .s1/ D f �12 .s2/ for some s1; s2 2
R, then f2 D rf1 for some r 2 R.

Proof. (1): For a given x0 2 H , H0 D H � x0 is a maximal proper linear subspace
of E (Proposition 3.1.1). Let x1 2 E nH0. For each x 2 E , there exists a unique
t 2 R such that x � tx1 2 H0. Indeed, E D H0 C Rx1 because of the maximality
of H0. Hence, we can write x D z C tx1 for some z 2 H0 and t 2 R. Then,
x � tx1 2 H0. Moreover, if x � t 0x1 2 H0 and t 0 2 R, then .t � t 0/x1 2 H0. Since
x1 62 H0, it follows that t D t 0. Therefore, we have a function f W E ! R such that
x � f .x/x1 2 H0. For each x; y 2 E and a; b 2 R,

.ax C by/ � .af .x/C bf .y//x1 D a.x � f .x/x1/C b.y � f .y/x1/ 2 H0;

which means f .axCby/ D af .x/Cbf .y/, i.e., f is linear. Observe that f �1.0/ D
H0 D H � x0, hence it follows that H D f �1.f .x0//.
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(2): From the non-triviality of f , it follows that f .E/ D R, and hence
; ¤ f �1.s/ ¤ E . A simple calculation shows that f �1.s/ is a flat. To prove
the maximality, let F � E be a flat with f �1.s/ ¤ F . Take x0 2 f �1.s/ and
x1 2 F n f �1.s/. Since f .x1/ 6D f .x0/ and F is a flat, it follows that f .F / D R.
For each x 2 E , we can choose y 2 F n f �1.s/ so that f .y/ 6D f .x/. Note that
s D tf .x/C.1�t/f .y/ for some t 2 Rnf0g. Let z D txC.1�t/y 2 f �1.s/ � F .
Then, x D .1 � t�1/y C t�1z 2 F . Accordingly, we have F D E .

(3): When f �11 .s1/ D f �12 .s2/ D ;, both f1 and f2 are trivial (i.e., f1.E/ D
f2.E/ D f0g), and hence f1 D f2. If f �11 .s1/ D f �12 .s2/ 6D ;, take x0 2
f �11 .s1/ D f �12 .s2/. Then, it follows that

f �11 .0/ D f �11 .s1/ � x0 D f �12 .s2/ � x0 D f �12 .0/:

Let H0 D f �11 .0/ D f �12 .0/ and x1 2 E n H0. Analogous to (1), each x 2
E can be uniquely written as x D y C tx1, where y 2 H0 and t 2 R. Then,
f1.x/ D tf1.x1/ and f2.x/ D tf2.x1/, hence f2.x/ D f1.x/f1.x1/

�1f2.x1/. Let
r D f1.x1/�1f2.x1/. It follows that f2 D rf1. ut

It is said that finitely many distinct points v1; : : : ; vn 2 E are affinely
(or geometrically) independent provided that, for t1; : : : ; tn 2 R,

nX

iD1
tivi D 0;

nX

iD1
ti D 0 ) t1 D � � � D tn D 0;

i.e., v1 � vn; : : : ; vn�1 � vn are linearly independent. In this case, the subset
fv1; : : : ; vng � E is also said to be affinely (or geometrically) independent. An
(infinite) subset A � E is said to be affinely (or geometrically) independent if
every finite subset of A is affinely independent. This condition is equivalent to the
condition that .A� v/ n f0g is linearly independent for some/any v 2 A.2

The smallest flat containingA � E is called the flat hull3 of A and is denoted by
flA. Then, Rn D flf0; e1; : : : ; eng, where fe1; : : : ; eng is the canonical orthonormal
basis for Rn (i.e., ei .i / D 1 and ei .j / D 0 for j 6D i ). Observe that

flfv1; : : : ; vng D
˚Pn

iD1 tivi
ˇ
ˇ Pn

iD1 ti D 1
�

and

flA D
[˚

flfx1; : : : ; xng
ˇ
ˇ n 2 N; x1; : : : ; xn 2 A

�
:

2The phrase “for some/any” means that we can choose one of “some” or “any” in the sentence.
By this choice, we have two different conditions. The condition using “some” is weaker than the
condition using “any” in general. However, these two conditions can be equivalent in a certain
situation.
3The flat hull is also called the affine hull.
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By Zorn’s Lemma, every non-empty subset A � E contains a maximal affinely
independent subset A0 � A. Then, flA0 D flA and each x 2 flA can be uniquely
written as x DPn

iD1 tivi , where v1; : : : ; vn 2 A0 and t1; : : : ; tn 2 R n f0g such thatPn
iD1 ti D 1. In fact, for some/any v 2 A0, .A0 � v/ n f0g (D .A0 n fvg/ � v) is a

Hamel basis for the linear subspace flA� v (D flA0 � v) of E .
The dimension of a flat F � E is denoted by dimF , and is defined by

the dimension of the linear space F � x for some/any x 2 F , i.e., dimF D
dim.F � x/. When dimF D n (resp. dimF < 1 or dimF D 1), it is
said that F is n-dimensional (resp. finite-dimensional (abbrev. f.d.) or infinite-
dimensional (abbrev. i.d.)). Therefore, every n-dimensional flat F � E contains
nC 1 points v1; : : : ; vnC1 such that F D flfv1; : : : ; vnC1g. In this case, v1; : : : ; vnC1
are affinely independent. Conversely, if F D flfv1; : : : ; vnC1g for some nC1 affinely
independent points v1; : : : ; vnC1 2 F , then dimF D n.

Let F and F 0 be flats in linear spaces E and E 0, respectively. A function f W
F ! F 0 is said to be affine if it satisfies the following condition:

f ..1 � t/x C ty/ D .1 � t/f .x/C tf .y/ for each x; y 2 F and t 2 R,

which is equivalent to the following:

f
�Pn

iD1 tivi
� D

nX

iD1
tif .vi /

for each n 2 N, vi 2 F , ti 2 R with
nX

iD1
ti D 1.

Recall that F � E is a flat if and only if F � x0 is a linear subspace of E for
some/any x0 2 F (Proposition 3.1.1).

Proposition 3.1.4. Let f W F ! F 0 be a function between flats F and F 0 in linear
spacesE andE 0, respectively. In order that f is affine, it is necessary and sufficient
that the following f x0 W F � x0 ! F 0 � f .x0/ is linear for some/any x0 2 F :

f x0.x/ D f .x C x0/� f .x0/ for each x 2 F � x0.

Proof. (Necessity) For each x; y 2 F � x0 and a; b 2 R,

f x0.ax C by/ D f .ax C by C x0/ � f .x0/
D f .a.x C x0/C b.y C x0/C .1 � a � b/x0/� f .x0/
D af .x C x0/C bf .y C x0/C .1 � a � b/f .x0/� f .x0/
D a.f .x C x0/� f .x0//C b.f .y C x0/� f .x0//
D af x0.x/C bf x0.y/:
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(Sufficiency) For each x; y 2 F and t 2 R,

f ..1 � t/x C ty/ D f x0..1 � t/x C ty � x0/C f .x0/
D f x0..1 � t/.x � x0/C t.y � x0//C f .x0/
D .1 � t/f x0.x � x0/C tf x0.y � x0/C f .x0/
D .1 � t/.f x0.x � x0/C f .x0//C t.f x0.y � x0/C f .x0//
D .1 � t/f .x/C tf .y/: ut

Proposition 3.1.5. Let A be a non-empty affinely independent subset of a linear
space E . Then, every function g W A ! E 0 to another linear space E 0 uniquely
extends to an affine function Qg W flA! E 0 such that Qg.flA/ D flg.A/. Accordingly,
every affine function f defined on F D flA is uniquely determined by f jA and the
image f .F / is a flat.

Proof. Let F 0 D flg.A/ and take v0 2 A. Since .A n fv0g/� v0 is a Hamel basis of
the linear subspace flA�v0 ofE , we have the unique linear function h W flA�v0 !
F 0 � g.v0/ such that

h.v � v0/ D g.v/ � g.v0/ for each v 2 A n fv0g.

Then, g uniquely extends to the affine function Qg W flA! F 0 defined by

Qg.x/ D h.x � v0/C g.v0/ for each x 2 flA.

It is easy to see that Qg.flA/ D flg.A/. ut
Additional Properties of Flats and Affine Functions 3.1.6.

In the following, let E and E 0 be linear spaces and f W F ! E 0 be a function of a
flat F in E .

(1) If f is affine and F 0 is a flat in E 0, then f .F / and f �1.F 0/ are flats in E 0 and
E , respectively.

(2) A function f is affine if and only if the graph Gr.f / D f.x; f .x// j x 2 F g of
f is a flat in E � E 0.

3.2 Convex Sets

In this section, we introduce the basic concepts of convex sets. A subset C � E is
said to be convex if the line segment with the end ponts in C is contained in C , i.e.,

.1 � t/x C ty 2 C for each x; y 2 C and t 2 I.
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By induction on n, it can be proved that every convex set C � E satisfies the
following condition:

nX

iD1
z.i/vi 2 C for each n 2 N, vi 2 C and z 2 �n�1,

where �n�1 D fz 2 In j Pn
iD1 z.i/ D 1g is the standard .n � 1/-simplex. The

following is easy:

• If A;B � E are convex, then aAC bB is also convex for each a; b 2 R.

The dimension of a convex set C � E is defined by the dimension of the flat
hull flC , i.e., dimC D dim flC . Concerning the flat hull of a convex set, we have
the following proposition:

Proposition 3.2.1. For each convex set C � E ,

flC D ˚.1 � t/x C ty ˇˇ x; y 2 C; t 2 R
�
:

Proof. Each z 2 flC can be written z DPn
iD1 tixi , where xi 2 C and

Pn
iD1 ti D 1.

We may assume that t1 � � � � � tn 2 R n f0g. If t1 � 0 then z 2 C . Otherwise,
tk < 0 and tkC1 > 0 for some k D 1; : : : ; n�1. Then, we have t DPn�k

iD1 tkCi > 0,
where 1 � t DPk

iD1 ti < 0. Let

x D
kX

iD1
.1 � t/�1tixi ; y D

n�kX

iD1
t�1tkCi xkCi 2 C:

Then, z D .1 � t/x C ty. Accordingly, we have

flC � ˚.1 � t/x C ty ˇˇ x; y 2 C; t 2 R
�
:

The converse inclusion is obvious. ut
The smallest convex set containing A � E is called the convex hull of A and

is denoted by hAi. We simply write hv1; : : : ; vni D hfv1; : : : ; vngi. Then, �n�1 D
he1; : : : ; eni. Observe that

hv1; : : : ; vni D
˚Pn

iD1 z.i/vi
ˇ
ˇ z 2 �n�1� and

hAi D
[˚hx1; : : : ; xni

ˇ
ˇ n 2 N; x1; : : : ; xn 2 A

�
:

For each two non-empty subsets A;B � E ,

hA[ Bi D ˚.1 � t/x C ty ˇˇ x 2 hAi; y 2 hBi; t 2 I
�

and

haAC bBi D ahAi C bhBi for a; b 2 R.
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The second equality can be proved as follows: Because ahAi C bhBi is convex and aAC
bB � ahAiC bhBi, we have haAC bBi � ahAi C bhBi. To show that ahAiC bhBi �
haACbBi, let x 2 hAi and y 2 hBi. Then, x DPn

iD1 ti xi and y DPm
jD1 sj yj for some

xi 2 A, yj 2 B , and ti ; sj > 0with
Pn

iD1 ti D
Pm

jD1 sj D 1. Since axiCbyj 2 aACbB
and

Pn
iD1

Pm
jD1 ti sj D 1, it follows that

ax C by D
nX

iD1

ti .axi C by/ D
nX

iD1

ti


 mX

jD1

sj .axi C byj /
�

D
nX

iD1

mX

jD1

ti sj .axi C byj / 2 haAC bBi:

Let C and C 0 be non-empty convex sets in the linear spaces E and E 0,
respectively. A function f W C ! C 0 is said to be affine (or linear in the affine
sense) provided

f ..1 � t/x C ty/ D .1 � t/f .x/C tf .y/ for each x; y 2 C and t 2 I.

As in the definition of a flat, I can be replaced by R, i.e.,

x; y 2 C; t 2 R; .1 � t/x C ty 2 C
) f ..1 � t/x C ty/ D .1 � t/f .x/C tf .y/:

Indeed, let z D .1� t /x C ty 2 C in the above expression. When t < 0, consider

x D 1

1� t zC �t
1� t y;

1

1� t 2 I;
�t
1� t D 1� 1

1� t :

When t > 1, consider

y D 1

t
zC t � 1

t
x;

1

t
2 I;

t � 1
t
D 1� 1

t
:

As is easily seen, f W C ! C 0 is affine if and only if

f
�Pn

iD1 z.i/vi
� D

nX

iD1
z.i/f .vi / for each n 2 N, vi 2 C and z 2 �n�1,

which is equivalent to the following:

vi 2 C; ti 2 R;

nX

iD1
tivi 2 C;

nX

iD1
ti D 1) f

�Pn
iD1 tivi

� D
nX

iD1
tif .vi /:
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For every affine function f W C ! E 0 of a convex set C � E into another linear
space E 0, the image f .C / is also convex.

Proposition 3.2.2. Let C and D be non-empty convex sets in the linear spaces E
andE 0, respectively. Every affine function f W C ! D uniquely extends to an affine
function Qf W flC ! flD. Moreover, if f is injective (or surjective) then so is Qf .

Proof. Let C0 be a maximal affinely independent subset of C . Then, flC D flC0.
Due to Proposition 3.1.5, f jC0 uniquely extends to an affine function Qf W flC !
flD. From the above remark, we can see that Qf jC D f .

If f is injective, we show that Qf is also injective. By the definition of Qf in the
proof of Proposition 3.1.5, it suffices to show that f .C0/ is affinely independent.
Assume that f .C0/ is not affinely independent, i.e., there are distinct points
v1; : : : ; vn 2 C0 and t1; : : : ; tn 2 R n f0g such that

Pn
iD1 tif .vi / D 0 andPn

iD1 ti D 0. Without loss of generality, it can be assumed that t1; : : : ; tk > 0

and tkC1; : : : ; tn < 0. Note that 1 < k < n and
Pk

iD1 ti D �
Pn

jDkC1 tj > 0. Let

x D
kX

iD1

ti

s
vi and y D

nX

jDkC1
� tj
s

vj ; where s D
kX

iD1
ti > 0.

Then, x; y 2 C and f .x/ D f .y/ because

f .x/ � f .y/ D 1

s

nX

iD1
tif .vi / D 0:

Since f is injective, we have x D y. Hence, it follows that
Pk

iD1 tivi D
�Pn

jDkC1 tj vj , i.e.,
Pn

iD1 tivi D 0. Because C0 is affinely independent, t1 D � � � D
tn D 0, which is a contradiction.

Finally, we show that if f is surjective then so is Qf . By Proposition 3.2.1, each
z 2 flD can be written as follows:

z D .1 � t/y C ty0; y; y0 2 D; t 2 R:

Since f is surjective, we have x; x0 2 C such that f .x/ D y and f .x0/ D y0. Then,
.1 � t/x C tx0 2 flC and

Qf ..1 � t/x C tx0/ D .1 � t/y C ty0 D z:

Therefore, Qf is also surjective. ut
Let C be a convex set in a linear space E . The following set is called the radial

interior of C :

rintC D ˚x 2 C ˇ
ˇ 8y 2 C; 9ı > 0 such that .1C ı/x � ıy 2 C �:4

4In Köthe’s book, rintC is denoted by C i and called the algebraic kernel of C .
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In the case C D hv1; : : : ; vni, observe that

rinthv1; : : : ; vni D
˚Pn

iD1 z.i/vi
ˇ
ˇ z 2 �n�1 \ .0;1/n�:

Indeed, let x0 D Pn
iD1 n

�1vi 2 hv1; : : : ; vni. For each x 2 rinthv1; : : : ; vni, we have
y 2 hv1; : : : ; vni such that x 2 hx0; yi, i.e., x D .1� t /x0C ty for some t 2 .0; 1/. Then,
y D Pn

iD1 z.i/vi for some z 2 �n�1. It follows that x D Pn
iD1..1 � t /n�1 C tz.i//vi ,

where
Pn

iD1..1 � t /n�1 C tz.i// D 1 and .1 � t /n�1 C tz.i/ > 0 for all i D 1; : : : ; n.
Thus, x is a point of the rightside set. Conversely, it is straightforward to prove that each
point of the rightside set belongs to hv1; : : : ; vni.

In particular, rinthv1; v2i D f.1 � t/v1 C tv2 j 0 < t < 1g, and hence rinthv1; v2i D
hv1; v2i n fv1; v2g if v1 6D v2. The radial interior of C can also be defined as

rintC D ˚x 2 C ˇ
ˇ 8y 2 C; 9z 2 C such that x 2 rinthy; zi�:

For each x 2 C , the following subset Cx � C is called the face of C at x:

Cx D
˚
y 2 C ˇ

ˇ 9ı > 0 such that .1C ı/x � ıy 2 C �

D ˚y 2 C ˇ
ˇ 9z 2 C such that x 2 rinthy; zi�:5

By an easy observation, we have

rintC D fx 2 C j Cx D C g; i.e., x 2 rintC , Cx D C:

When Cx D fxg, we call x an extreme point of C . It is said that x 2 E is linearly
accessible from C if there is some y 2 C such that

rinthx; yi � C .i.e., hx; yi n fxg � C/:

The radial closure rclC of C is the set of all linearly accessible points from C .6

It should be noted that rclC � flC by Proposition 3.2.1, hence fl rclC D flC .
Consequently, we have the following inclusions:

rintC � C � rclC � flC:

The set @C D rclC n rintC is called the radial boundary of C .

Remark 1. Note that A � B implies rclA � rclB , but it does not imply rintA �
rintB . For example, consider A D In � f0g � B D InC1. Then, A\ rintB D ;.

5The face Cx is a little differently defined than the supporting facet of C through x in Köthe’s
book.
6In Köthe’s book, rclC is denoted by Ca and called the algebraic hull of C .
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For the Hilbert cube Q D Œ�1; 1�N, we have

rint Q D ˚x 2Q
ˇ
ˇ supi2N jx.i/j < 1

�
¤ .�1; 1/N:

Observe that rintŒ�1; 1�Nf D .�1; 1/Nf but rint INf D ;, where

Œ�1; 1�Nf D R
N

f \ Œ�1; 1�N; .�1; 1/Nf D R
N

f \ .�1; 1/N; and INf D R
N

f \ IN:7

As is easily observed, INf D rcl.INf nf0g/. It will be shown in Remark 3 that INf nf0g D
rclC for some convex set C � R

N

f .

Remark 2. The unit closed ball Bc0 of the Banach space c0 has no extreme points.
In fact, every x 2 Bc0 is the midpoint of two distinct points y; z 2 Bc0 , i.e., x D
1
2
yC 1

2
z. For example, choose n 2 N so that jx.n/j < 1

2
and let y; z 2 Bc0 such that

y.i/ D z.i/ D x.i/ for i 6D n, y.n/ D x.n/C 1
2
, and z.n/ D x.n/ � 1

2
.

Proposition 3.2.3. Let C � E be a convex set. If x 2 rintC , y 2 rclC , and
0 � t < 1, then .1 � t/x C ty 2 rintC , i.e., hx; yi n fyg � rintC .

Proof. For each z 2 C , we have to find v 2 C and 0 < s < 1 such that

.1 � t/x C ty D .1 � s/zC sv 2 rinthz; vi:

Take w 2 C so that rinthw; yi � C , and choose 0 < r < 1 so that

z0 D .1C r/x � rz; w0 D .1C r/x � rw 2 C:

The desired v is to be written as

v D t1y C t2wC t3w0 C t4z0 D .t1 C t2/uC .t3 C t4/u0 2 C;

where t1 C t2 C t3 C t4 D 1, t1; t2; t3; t4 > 0,

u D t1

t1 C t2 y C
t1

t1 C t2w; u0 D t3

t3 C t4w0 C t4

t3 C t4 z0 2 C:

Then, we have

.1 � s/zC sv D .1 � s/zC s.t1y C t2wC t3w0 C t4z0/
D st1y C s.t2 � t3r/wC s.t3 C t4/.1C r/x C .1 � s � st4r/z:

To obtain .1� s/zC sv D .1� t/xC ty, it is enough to find t1; t2; t3; t4 > 0 and 0 <
s < 1 satisfying the simultaneous equations: st1 D t , t2 D t3r , s.t3Ct4/.1Cr/ D

7It is known that Œ�1; 1�Nf � INf .
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y

.1� t /x C ty

z

w

x

z0

w0

v D t1y C t2wC t3w0 C t4z0

u D t1

t1 C t2 y C
t2

t1 C t2 w

u0 D t3

t3 C t4 w0 C t4

t3 C t4 z0

Fig. 3.1 .1� t /x C ty 2 rintC

1 � t , and 1 � s D st4r , i.e.,

./ t1 D t

s
; t4 D 1 � s

rs
; t3 D 1

r
� 1C rt
.1C r/rs ; t2 D 1 �

1C rt
.1C r/s :

Since t1; t4 < 1 and 0 < t2 (< t3), it is necessary to satisfy

max

�

t;
1

1C r ;
1C rt
1C r

	

< s < 1:

We can take such an s because the left side of the above inequality is less than 1.
Then, we can define t1; t2; t3; t4 > 0 as in (), which satisfies t1 C t2 C t3 C t4 D 1.
Thus, we have the desired v D t1y C t2wC t3w0 C t4z0 2 C — Fig. 3.1. ut

Although we verified in Remark 1 that A � B does not imply rintA � rintB in
general, we do have the following corollary:

Corollary 3.2.4. Let A and B be non-empty convex sets in E . If A � B and A \
rintB 6D ;, then rintA � rintB .

Proof. Let x 2 A \ rintB . For each y 2 rintA, we have z 2 A such that y 2
rinthx; zi. Since rinthx; zi � rintB by Proposition 3.2.3, it follows that y 2 rintB .

ut
Proposition 3.2.5. For each convex set C � E , the following statements hold:

(1) Both rintC and rclC are convex;
(2) rint rintC D rintC � rint rclC ;
(3) rintC 6D ; ) rint rclC D rintC; rcl rintC D rcl rclC D rclC ,

in which case @ rintC D @ rclC D @C ;
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(4) rintC 6D ; ) flC D fl rintC ;
(5) rintC 6D ;; rclC D flC ) rintC D C D flC ;
(6) @C 6D ; , ; 6D C ¤ flC ;
(7) Cx is convex and Cx D C \ flCx for x 2 C ;
(8) x 2 rintCx for x 2 C , hence .Cx/x D Cx;
(9) .Cx/y D Cy for x 2 C and y 2 Cx;

(10) Cx D Cy for x 2 C and y 2 rintCx .

Proof. (1): To prove the convexity of rintC , we can apply Proposition 3.2.3. It is
now quite straightforward to show the convexity of rclC .

(2): To show rintC � rint rintC , we can apply Proposition 3.2.3. Because
rint.rintC/ � rintC by Corollary 3.2.4, we have rint rintC D rintC .

For each x 2 rintC and y 2 rclC , 1
2
xC 1

2
y 2 rintC by Proposition 3.2.3. Then,

we have ı > 0 such that .1C ı/x � ı. 1
2
x C 1

2
y/ 2 C , i.e., .1C 1

2
ı/x � 1

2
ıy 2 C .

Hence, x 2 rint rclC .
(3): Let x0 2 rintC . For each x 2 rint rclC , we have y 2 rclC such that

x 2 rinthx0; yi, which implies that x 2 rintC by Proposition 3.2.3. Combining this
with (2) yields rint rclC D rintC .

We now have x0 2 rintC D rint rclC . If x 2 rcl rclC , then rinthx0; xi �
rint rclC D rintC by Proposition 3.2.3, which means that x 2 rcl rintC . Since
rcl rintC � rclC � rcl rclC , we have rcl rintC D rclC D rcl rclC .

(4): Let x0 2 rintC . For each x 2 C , 1
2
x C 1

2
x0 2 fl rintC by Proposition 3.2.3.

Then, it follows from Proposition 3.2.1 that x D 2. 1
2
x C 1

2
x0/ � x0 2 fl rintC .

Accordingly, we haveC � fl rintC , which implies flC � fl rintC . Since fl rintC �
flC , we have flC D fl rintC .

(5): Let x0 2 rintC . For each x 2 flC , 2x � x0 2 flC D rclC . Then, x D
1
2
x0 C 1

2
.2x � x0/ 2 rintC � C by Proposition 3.2.3.

(6): Assume ; 6D C ¤ flC . Then, we have x 2 flC n C , which can be written
as x D .1C t/y � tz for some y 6D z 2 C and t > 0 by Proposition 3.2.1. Let

s D inf
˚
t > 0

ˇ
ˇ .1C t/y � tz 62 C � � 0:

Then, .1C s/y � sz 2 rclC n rintC D @C .
When C D flC , i.e., C is a flat, we have rclC D rintC D C by definition,

which means @C D ;. Therefore, @C 6D ; implies ; 6D C ¤ flC .
(7): First, we show that Cx is convex. For each y; z 2 Cx, we can choose ı > 0

so that .1C ı/x � ıy 2 C and .1C ı/x � ız 2 C . Then, for each t 2 I,

.1C ı/x � ı�.1 � t/y C tz�

D .1 � t/�.1C ı/x � ıy�C t�.1C ı/x � ız� 2 C;

which means .1 � t/y C tz 2 Cx.
BecauseCx � C\flCx , it remains to showC\flCx � Cx . By Proposition 3.2.1,

each y 2 C \ flCx can be written as y D .1 � t/y0 C ty00 for some y0; y00 2 Cx
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Cx 3 y00 x

y D .1� t /y0 C ty00

Cx 3 y0

.1C s/x � sy
z0 D .1C ı/x � ıy0 2 C

Fig. 3.2 C \ flCx � Cx

and t 2 R. Because of the convexity of Cx, we have y 2 Cx if t 2 I. Then, we
may assume that t < 0 (if t > 1, exchange y0 with y00). We have ı > 0 such that
z0 D .1C ı/x � ıy0 2 C . Observe that

.1C s/x � sy D .1C s/



ı

1C ı y
0 C 1

1C ı z0
�

� s�.1 � t/y0 C ty00�

D


.1C s/ı
1C ı � s.1 � t/

�

y0 C 1C s
1C ı z0 � sty00:

Let s D ı=.1� t � tı/ > 0. Then, since 1C s D .1 � t/.1C ı/=.1� t � tı/, it
follows that

.1C s/x � sy D 1 � t
1 � t � tı z0 C �tı

1 � t � tı y
00 2 C;

which implies that y 2 Cx (Fig. 3.2).
(8): From the definition of rintCx , it easily follows that x 2 rintCx.
(9): Because Cx � C , we have .Cx/y � Cy by definition. We will show that

Cy � Cx, which implies Cy D .Cy/y � .Cx/y by (8) and the definition. For each
z 2 Cy , choose ı1 > 0 so that u D .1C ı1/y � ı1z 2 C . On the other hand, since
y 2 Cx , we have ı2 > 0 such that v D .1C ı2/x � ı2y 2 C . Then,

.1C ı1/.1C ı2/
1C ı1 C ı2 x � ı1ı2

1C ı1 C ı2 z D 1C ı1
1C ı1 C ı2 vC ı2

1C ı1 C ı2 u 2 C;

which means that z 2 Cx .
(10): Since y 2 rintCx, we have .Cx/y D Cx . On the other hand, .Cx/y D Cy

by (9). ut

Remark 3. It should be noted that, in general, rcl rclC 6D rclC . For example, let C
be the convex set in R

N

f defined as follows:

C D ˚x 2 INf
ˇ
ˇ 9k 2 N such that

P
i2N x.i/ � k�1;

x.i/ 6D 0 at least k many i 2 N
�
:
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It is easy to see that 0 62 rclC , i.e., rclC � INf n f0g. For each x 2 INf n f0g,
choose k 2 N so that k�1 � Pi2N x.i/, and let y 2 C such that y.i/ D k�2 for
i � k and y.i/ D 0 for i > k. If 0 < t � 1, then .1 � t/x C ty 2 C because
.1 � t/x.i/C ty.i/ 6D 0 for at least k many i 2 N and

X

i2N

�
.1� t/x.i/C ty.i/� D .1 � t/

X

i2N
x.i/C t

X

i2N
y.i/ � k�1:

Therefore, rclC D INf n f0g. As observed in Remark 1, rcl
�
INf n f0g

� D INf . Hence,
we have rcl rclC 6D rclC . It should also be noted that rintC D ;.

In the finite-dimensional case, we have the following proposition:

Proposition 3.2.6. Every non-empty finite-dimensional convex set C has a non-
empty radial interior, i.e., rintC 6D ;, and therefore

rcl rintC D rcl rclC D rclC and @ rintC D @ rclC D @C:

Proof. We have a maximal affinely independent finite subset fv1; : : : ; vng � C .
Then, v0 D Pn

iD1 n�1vi 2 rintC . Indeed, since C � flfv1; : : : ; vng, each x 2 C
can be written as x DPn

iD1 tivi , where
Pn

iD1 ti D 1. Observe that

.1C ı/v0 � ıx D .1C ı/
nX

iD1
n�1vi � ı

nX

iD1
tivi

D
nX

iD1
.n�1 C ı.n�1 � ti //vi :

When v0 6D x, we have s D minfn�1 � ti j iD1; : : : ; ng < 0. Let ıD1=.�sn/ > 0.
Then, n�1C ı.n�1� ti / � 0 for every i D 1; : : : ; n, which implies that .1C ı/v0�
ıx 2 C . ut
Additional Results for Convex Sets 3.2.7.

(1) For every two convex sets C andD,

.C \D/x D Cx \Dx for each x 2 C \D.

(2) For every two convex sets C andD with rintC \ rintD 6D ;,

rint.C \D/ D rintC \ rintD:

In general, rintC \ rintD � rint.C \D/.
Sketch of Proof. To show that rint.C \D/ � rintC \ rintD, let x0 2 rintC \ rintD.
For each x 2 rint.C\D/, take y 2 C\D so that x 2 rinthx0; yi. Since rinthx0; yi �
rintC by Proposition 3.2.3, it follows that x 2 rintC . Hence, rint.C \D/ � rintC .
Similarly, we have rint.C \D/ � rintD.
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(3) Let C and D be convex sets in the linear spaces E and E 0, respectively. Then,
C �D is also convex,

rint.C �D/ D rintC � rintD and rcl.C �D/ D rclC � rclD:

Moreover, .C �D/.x;y/ D Cx �Dy for each .x; y/ 2 C �D.
(4) Let f W C ! E 0 be an affine function of a convex set C in a linear spaceE into

another linear space E 0, andD be a convex set in E 0. Then, f .C / and f �1.D/
are convex and

f �1.D/x D Cx \ f �1.Df.x// for each x 2 f �1.D/ (� C ).

In particular, Cx � f �1.f .C /f .x// (i.e., f .Cx/ � f .C /f .x/) for each x 2 C .
When f is injective, f .Cx/ D f .C /f .x/ for each x 2 C .

Sketch of Proof. It is easy to see that f .f �1.D/x/ � Df.x/ , hence f �1.D/x �
f �1.Df.x//. Also, f �1.D/x � Cx because f �1.D/ � C . Accordingly, f �1.D/x �
Cx \ f �1.Df.x//. To prove the converse inclusion, for each y 2 f �1.Df.x//\ Cx ,
choose ı > 0 so that .1 C ı/f .x/ � ıf .y/ 2 D and .1 C ı/x � ıy 2 C . Then,
.1C ı/x � ıy 2 f �1.D/.

(5) For every (bounded) subset A of a normed linear space E D .E; k � k/, the
following hold:

(i) kx � yk � supz2A kx � zk for each x 2 E and y 2 hAi;
(ii) diamhAi D diamA.

Sketch of Proof. (i): Write y D Pn
iD1 z.i/xi for some x1; : : : ; xn 2 A and z 2

�n�1.
(ii): For each x; y 2 hAi,

kx � yk � sup
z2A
kx � zk � sup

z2A
sup
z0

2A

kz� z0k D diamA:

Remark 4. In (2) above, rint.C \ D/ 6D rintC \ rintD in general. Consider the
case that C \D 6D ; but rintC \ rintD D ;.

In (4) above, f .Cx/ 6D f .C /f .x/ in general. For instance, let C D f.s; t/ 2 R
2 j

jsj � t � 1g � R
2. Then, pr1.C / D Œ�1; 1�, pr1.C0/ D f0g, and pr1.C /0 D pr1.C /.

3.3 The Hahn–Banach Extension Theorem

We now prove the Hahn–Banach Extension Theorem and present a relationship
between the sublinear functionals and the convex sets.

Let E be a linear space. A functional p W E ! R is sublinear if it satisfies the
following conditions:

(SL1) p.x C y/ � p.x/C p.y/ for each x; y 2 E; and
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(SL2) p.tx/ D tp.x/ for each x 2 E and t > 0:

Note that if p W E ! R is sublinear then p.0/ D 0 and �p.�x/ � p.x/. For each
x; y 2 E and t 2 I,

p..1 � t/x C ty/ � .1 � t/p.x/C tp.y/:

Whenp W E ! R is a non-negative sublinear functional,p�1.Œ0; r// D rp�1.Œ0; 1//
and p�1.Œ0; r�/ D rp�1.I/ are convex for each r > 0.

In the following Hahn–Banach Extension Theorem, no topological concepts
appear (even in the proof). Nevertheless, this theorem is very important in the study
of topological linear spaces.

Theorem 3.3.1 (HAHN–BANACH EXTENSION THEOREM). Let p W E ! R be
a sublinear functional of a linear space E and F be a linear subspace of E . If
f W F ! R is a linear functional such that f .x/ � p.x/ for every x 2 F , then f
extends to a linear functional Qf W E ! R such that Qf .x/ � p.x/ for every x 2 E .

Proof. Let F be the collection of all linear functionals f 0 W F 0 ! R of a linear
subspace F 0 � E such that F � F 0, f 0jF D f , and f 0.x/ � p.x/ for every
x 2 F 0. For f 0; f 00 2 F , we define f 0 � f 00 if f 00 is an extension of f 0. Then,
F D .F ;�/ is an inductive ordered set, i.e., every totally ordered subset of F is
upper bounded. By Zorn’s Lemma, F has a maximal element f0 W F0 ! R. It
suffices to show that F0 D E .

Assume that F0 6D E . Taking x1 2 E n F0, we have a linear subspace F1 D
F0 C Rx1 ¥ F0. We show that f0 has a linear extension f1 W F1 ! R in F , which
contradicts the maximality of f0. By assigning x1 to ˛ 2 R, f1 can be defined, i.e.,
f1.x C tx1/ D f0.x/C t˛ for x 2 F0 and t 2 R. In order that f1 2 F , we have to
choose ˛ so that for every x 2 F0 and t > 0,

f0.x/C t˛ � p.x C tx1/ and f0.x/ � t˛ � p.x � tx1/:

Dividing by t , we obtain the following equivalent condition:

f0.y/ � p.y � x1/ � ˛ � p.y C x1/� f0.y/ for every y 2 F0.

Hence, such an ˛ 2 R exists if

supff0.y/ � p.y � x1/ j y 2 F0g � inffp.y C x1/� f0.y/ j y 2 F0g:

This inequality can be proved as follows: for each y; y0 2 F0,

f0.y/C f0.y0/ D f0.y C y0/ � p.y C y0/ � p.y � x1/C p.y0 C x1/;

hence f0.y/�p.y�x1/ � p.y0Cx1/�f0.y0/, which implies the desired inequality.
ut
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Let F be a flat in a linear space E and A � F . The following set is called the
core of A in F :

coreF A D
˚
x 2 A ˇˇ 8y 2 F; 9ı > 0 such that

jt j � ı) .1� t/x C ty 2 A�;

where jt j � ı can be replaced by �ı � t � 0 (or 0 � t � ı). Each point of coreF A
is called a core point of A in F . In the case that A is convex,

x 2 coreF A, 8y 2 F; 9ı > 0 such that .1C ı/x � ıy 2 A
, 8y 2 F; 9ı > 0 such that .1 � ı/x C ıy 2 A:

When F D E , we can omit the phrase “in E” and simply write coreA by removing
the subscript E . By definition, A � B � F implies coreF A � coreF B . We also
have the following fact:

Fact. For each A � F , coreF A 6D ; if and only if flA D F .

Indeed, the “if” part is trivial. To show the “only if” part, let x 2 coreF A. For each y 2 F ,
we have ı > 0 such that z D .1C ı/x � ıy 2 A. Then, y D ı�1.1C ı/x � ı�1z 2 flA.
Note that flA � F because A � F . Consequently, flA D F .

Proposition 3.3.2. For every convex set A � E , coreflA A D rintA, which is also
convex. Hence, coreA 6D ; implies coreA D rintA and core coreA D coreA.

Proof. Because coreflA A � rintA by definition, it suffices to show that rintA �
coreflA A. For each x 2 rintA and y 2 flA, we need to find some s > 0 such
that .1 C s/x � sy 2 A. This can be done using the same proof of the inclusion
C \ flCx � Cx in Proposition 3.2.5(7). ut
Remark 5. When A is a finite-dimensional convex set, coreF A 6D ; if and only if
F D flA according to Propositions 3.3.2 and 3.2.6. However, this does not hold for
an infinite-dimensional convex set. For example, consider the convex set INf in R

N.

Then, RN

f D fl INf and core
R
N

f
INf D rint INf D ;.

With regard to convex sets defined by a non-negative sublinear functional, we
have the following proposition:

Proposition 3.3.3. Let p W E ! R be a non-negative sublinear functional of a
linear subspace E . Then,

p�1.Œ0; 1// D corep�1.Œ0; 1// D corep�1.I/:

Proof. The inclusion corep�1.Œ0; 1// � corep�1.I/ is obvious.
Let x 2 p�1.Œ0; 1//. For each y 2 E , we can choose ı > 0 so that ıp.x � y/ <

1 � p.x/. Then,
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0 � p..1C ı/x � ıy/ D p.x C ı.x � y// � p.x/C ıp.x � y/ < 1;

i.e., x 2 corep�1.Œ0; 1//. Hence, p�1.Œ0; 1// � corep�1.Œ0; 1//.
If p.x/ � 1, then x 62 corep�1.I/ because

p..1C t/x � t0/ D .1C t/p.x/ > 1 for any t > 0.

This means that corep�1.I/ � p�1.Œ0; 1//. ut
For each A � E with 0 2 coreA, the Minkowski functional pA W E ! RC can

be defined as follows:

pA.x/ D inf
˚
s > 0

ˇ
ˇ x 2 sA� D inf

˚
s > 0

ˇ
ˇ s�1x 2 A�:

Then, for each x 2 E and t > 0,

pA.tx/ D inf
˚
s > 0

ˇ
ˇ s�1tx 2 A� D inf

˚
ts > 0

ˇ
ˇ .ts/�1tx 2 A�

D t inf
˚
s > 0

ˇ
ˇ s�1x 2 A� D tpA.x/;

i.e., pA satisfies (SL2). In the above, pA.tx/ D pt�1A.x/. Then, it follows that
pt�1A D tpA for each t > 0. Replacing t by t�1, we have

ptA D t�1pA for each t > 0.

If A � E is convex, the Minkowski functional pA has the following desirable
properties:

Proposition 3.3.4. Let A � E be a convex set with 0 2 coreA. Then, the
Minkowski functional pA is sublinear and

rintA D coreA D p�1A .Œ0; 1// � A � p�1A .I/ D rclA;

so @A D p�1A .1/. Moreover,

pA.x/ D 0 , RCx � A:

In order that pA is a norm on E , it is necessary and sufficient that RCx 6� A if
x 6D 0 and tA � A if jt j < 1.

Proof. First, we prove that pA is sublinear. As already observed, pA satisfies (SL2).
To show that pA satisfies (SL1), let x; y 2 E . Since A is convex, we have

s�1x; t�1y 2 A ) .s C t/�1.x C y/ D s

s C t s
�1x C t

s C t t
�1y 2 A;

which implies that pA.x C y/ � pA.x/C pA.y/.
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The first equality rintA D coreA has been stated in Proposition 3.3.2. It easily
follows from the definitions that coreA � p�1A .Œ0; 1// � A � p�1A .I/ and p�1A .1/ �
rclA, so p�1A .I/ � rclA. By Propositions 3.3.2 and 3.3.3, we have

coreA D core coreA � corep�1A .Œ0; 1// D p�1A .Œ0; 1// � coreA;

which means the second equality coreA D p�1A .Œ0; 1//. To obtain the third equality
p�1A .I/ D rclA, it remains to show that rclA � p�1A .I/. Let x 2 rclA. Since
0 2 rintA, it follows from Proposition 3.2.3 that s�1x 2 rintC � C for each s > 1,
which implies that pA.x/ � 1, i.e., x 2 p�1A .I/.

By definition, pA.x/ D 0 if and only if tx 2 A for an arbitrarily large t > 0,
which means that RCx � A because A is convex.

Because pA is sublinear, pA is a norm if and only if pA.x/ 6D 0 and pA.x/ D
pA.�x/ for every x 2 E n f0g. Because pA.x/ 6D 0 if and only if RCx 6� A, it
remains to show that pA.x/ D pA.�x/ for every x 2 E n f0g if and only if tA � A
whenever jt j < 1.

Assume that pA.x/ D pA.�x/ for each x 2 E . If x 2 A and jt j < 1 then
pA.tx/ D pA.jt jx/ D jt jpA.x/ < 1, which implies that tx 2 A. Hence, tA � A

whenever jt j < 1.
Conversely, assume that tA � A whenever jt j < 1. For each s > pA.x/,

r�1x 2 A for some 0 < r < s, and we have s�1.�x/ D .�s�1r/r�1x 2 A, hence
pA.�x/ � pA.x/. Replacing x with �x, we have pA.x/ � pA.�x/. Therefore,
pA.x/ D pA.�x/. ut

When the Minkowski functional pA is a norm on E , we call it the Minkowski
norm. In this case, rclA, rintA, and @A are the unit closed ball, the unit open ball,
and the unit sphere, respectively, of the normed linear space E D .E; pA/. Then,
rclA and rintA are symmetric about 0, i.e., rclA D � rclA and rintA D � rintA.
We should note that a convex set A � E is symmetric about 0 if and only if tA � A
whenever jt j � 1 (in the next section, A is said to be circled).

A subsetW � E is called a wedge if xCy 2 W for each x; y 2 W and tx 2 W
for each x 2 W , t � 0, or equivalently,W is convex and tW � W for every t � 0.
Note that if A � E is convex then RCA is a wedge. For a wedge W � E , the
following statements are true:

(1) 0 2 coreW , W D E;
(2) W 6D E; x 2 coreW ) �x 62 W .

A cone C � E is a wedge with C \ .�C/ D f0g. Each translation of a cone is also
called a cone.

Using the Hahn–Banach Extension Theorem, we can prove the following
separation theorem:

Theorem 3.3.5 (SEPARATION THEOREM). LetA andB be convex sets inE such
that coreA 6D ; and .coreA/ \ B D ;. Then, there exists a linear functional
f W E ! R such that f .x/ < f .y/ for every x 2 coreA and y 2 B , and
supf .A/ � inff .B/.
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Proof. Recall that coreA D rintA (Proposition 3.3.2). For a linear functional f W
E ! R, if f .x/ < f .y/ for every x 2 coreA and y 2 B , then supf .A/ �
inff .B/. Indeed, let x 2 A, y 2 B , v 2 coreA, and 0 � t < 1. Since .1�t/vCtx 2
coreA by Proposition 3.2.3, we have

.1 � t/f .v/C tf .x/ D f ..1 � t/vC tx/ < f .y/;

where the left side tends to f .x/ as t ! 1, and hence f .x/ � f .y/.
Note that W D RC.A � B/ is a wedge. Moreover, .coreA/ � B � coreW .

Indeed, let x 2 coreA and y 2 B . For each z 2 E , choose ı > 0 so that .1C ı/x �
ı.y C z/ 2 A. Then,

.1C ı/.x � y/ � ız D .1C ı/x � ı.y C z/ � y 2 A� B � W:

Therefore, it suffices to construct a linear functional f W E ! R such that
f .coreW / � .�1; 0/.

Now, we shall show thatW \ .B�coreA/ D ;. Assume that there exist x0 2 A,
x1 2 coreA, y0; y1 2 B , and t0 � 0 such that t0.x0 � y0/ D y1 � x1. Note that
rinthx0; x1i � rintA D coreA by Proposition 3.2.3. Hence,

t0

t0 C 1x0 C
1

t0 C 1x1 D
t0

t0 C 1y0 C
1

t0 C 1y1 2 .coreA/\ B;

which contradicts the fact that .coreA/ \ B D ;.
Take v0 2 .coreA/�B � coreW . Then, note that�v0 62 W . For each x 2 E , we

have ı > 0 such that .1Cı/v0�ı.�x/ 2 W , which implies xCı�1.1Cı/v0 2 W .
Then, we can define p W E ! R by

p.x/ D inf
˚
t � 0 ˇˇ x C tv0 2 W

�
:

Because W is a wedge, we see that p is sublinear. Since �v0 62 W , it follows
that p.s.�v0// D s and p.sv0/ D 0 for every s � 0. Applying the Hahn–Banach
Extension Theorem 3.3.1, we can obtain a linear functional f W E ! R such that
f .s.�v0// D s for each s 2 R and f .x/ � p.x/ for every x 2 E (see Fig. 3.3).
For each z 2 coreW , we have ı > 0 such that .1 C ı/z � ı.z C v0/ 2 W , i.e.,
z � ıv0 2 W . Accordingly, .z � ıv0/ C tv0 2 W for every t � 0, which means
p.z � ıv0/ D 0. Thus, we have

f .z/ < f .z/C ı D f .z � ıv0/ � p.z � ıv0/ D 0: ut

Remark 6. Using the Hahn–Banach Extension Theorem, we have proved the
Separation Theorem. Conversely, the Hahn–Banach Extension Theorem can be
derived from the Separation Theorem. Indeed, under the assumption of the Hahn–
Banach Extension Theorem 3.3.1, we define
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x

xC p.x/v0

v0 Wp.x/

f .x/

�v0

f �1.0/

E

E �R

the graph of p

the graph of f
Fig. 3.3 The graphs of p and f

A D ˚.x; t/ 2 E � R
ˇ
ˇ t > p.x/

�
and B D ˚.x; f .x// 2 E � R

ˇ
ˇ x 2 F �;

where B D Gr.f / is the graph of f . Then, A and B are disjoint convex sets in
E � R. It is straightforward to show that coreA D A 6D ;. By the Separation
Theorem 3.3.5, we have a linear functional ' W E � R ! R such that A �
'�1..�1; r�/ and B � '�1.Œr;1// for some r 2 R. Then, r � 0 because
0 D '.0; 0/ 2 '.B/. If '.z/ < 0 for some z 2 B , then '.tz/ D t'.z/ < r for
sufficiently large t > 0. This is a contradiction because tz 2 B . If '.z/ > 0 for
some z 2 B , then �z 2 B and '.�z/ D �'.z/ < 0, which is a contradiction.
Therefore, B � '�1.0/. Note that '.0; 1/ < 0 because .0; 1/ 2 A. Since
'.x; t/ D '.x; 0/ C t'.0; 1/ for each x 2 E , we have '.fxg � R/ D R. Observe
that .fxg � R/ \ '�1.0/ is a singleton. Then, f extends to the linear functional
Qf W E ! R whose graph is '�1.0/, i.e., .x; Qf .x// 2 '�1.0/ for each x 2 E . Since
'�1.0/ � .E � R/ n A, it follows that Qf .x/ � p.x/ for every x 2 E .

The Separation Theorem 3.3.5 can also be obtained as a corollary of the follow-
ing two theorems, where we do not use the Hahn–Banach Extension Theorem 3.3.1.

Theorem 3.3.6. For each pair of disjoint non-empty convex sets A;B � E , there
exists a pair of disjoint convex sets eA;eB � E such that A � eA, B � eB , and
eA[ eB D E .

Proof. Let P be the collection of pairs .C;D/ of disjoint convex sets such that
A � C and B � D. For .C;D/; .C 0;D0/ 2 P , we define .C;D/ � .C 0;D0/ if
C � C 0 and D � D0. Then, it is easy to see that P D .P ;�/ is an inductive
ordered set. Due to Zorn’s Lemma, P has a maximal element .eA;eB/.

To show that eA [ eB D E , assume the contrary, i.e., there exists a point v0 2
E n .eA [ eB/. By the maximality of .eA;eB/, we can obtain two points

x 2 eA\ heB [ fv0gi and y 2 eB \ heA[ fv0gi:
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Then, x 2 hv0; y1i for some y1 2 eB and y 2 hv0; x1i for some x1 2 eA. Note that
x 2 rinthv0; y1i and y 2 rinthv0; x1i. Consider the triangle hv0; x1; y1i. It is easy to
see that hx1; xi and hy1; yi meet at a point v1. Since hx1; xi � eA and hy1; yi � eB ,
it follows that v1 2 eA \ eB , which is a contradiction. ut
Theorem 3.3.7. For each pair of disjoint non-empty convex sets C;D � E with
C [D D E , rclC \ rclD is a hyperplane if rclC \ rclD 6D E .

Proof. First, we show that rclC \ rclD D @C D @D. To prove that @C � @D, let
x 2 @C . It suffices to find y 2 C such that

.1 � t/x C ty 2 C for 0 < t � 1 and

.1C t/x � ty 2 E n C D D for t > 0.

To this end, take y0; y00 2 C such that .1 � t/x C ty0 2 C for 0 < t � 1 and
.1 C t/x � ty00 62 C for t > 0. Then, y D 1

2
y0 C 1

2
y00 2 C is the desired point.

Indeed, for each 0 < t � 1,

.1 � t/x C ty D .1 � t/x C 1
2
ty0 C 1

2
ty00

D �1 � 1
2
t
�
 
1 � t
1 � 1

2
t
x C

1
2
t

1 � 1
2
t
y0
!

C 1
2
ty00 2 C:

Moreover, note that

.1 � s/..1C t/x � ty/C sy0

D .1 � s/.1C t/x � 1
2
.1 � s/ty0 � 1

2
.1� s/ty00 C sy0:

For each t > 0, let s D t=.2C t/ 2 .0; 1/. Then, .1� s/t D 2s. Therefore, we have

.1 � s/..1C t/x � ty/C sy0 D .1C s/x � sy00 62 C;

which means that .1Ct/x�ty 62 C (Fig. 3.4). Similarly, we have @D � @C . Hence,
@C D @D. Since rintC \ rintD D ;, it follows that rclC \ rclD D @C D @D.

Next, we show that @C is a flat. It suffices to show that if x; y 2 @C and t > 0,
then x0 D .1C t/x � ty 2 @C . If x0 62 @C , then x0 2 rintC or x0 2 rintD. In this
case, x 2 rinthx0; yi � rintC or x 2 rinthx0; yi � rintD by Proposition 3.2.3. This
is a contradiction. Therefore, x0 2 @C .

It remains to show that if @C 6D E then @C is a hyperplane. We have v 2 E n@C .
It suffices to prove thatE D fl.@C[fvg/. Without loss of generality, we may assume
that v 2 rintC . On the other hand, @C 6D ; because C 6D E . Let z 2 @C . Then,
w D z � .v � z/ D 2z � v 2 rintD. Otherwise, w 2 rclC , from which, using
Proposition 3.2.3, it would follow that z D 1

2
vC 1

2
w 2 rinthv;wi � rintC , which is

a contradiction.
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y00

x 2 @C

y0

y

.1C t /x � ty 2 D

.1� s/..1C t /x � ty/C sy0

.1� t /x C ty 2 C

D

C

Fig. 3.4 @C � @D

x 2 rintC
v

@CwD z� .v� z/

z y D .1� s/x C sw

C

D

Fig. 3.5 The case x 2 rintC

x 2 rintD

v

@C

z y D .1� s/x C sv

C

D

Fig. 3.6 The case x 2 rintD

For each x 2 E n @C , x 2 rintC or x 2 rintD. When x 2 rintC , let

s D sup
˚
t 2 I

ˇ
ˇ .1 � t/x C tw 2 C �:

Refer to Fig. 3.5. Then, y D .1 � s/x C sw 2 @C , which implies that

x D 1

1 � s y �
2s

1 � s zC s

1 � s v 2 fl.@C [ fvg/:

In the case that x 2 rintD, let

s D sup
˚
t 2 I

ˇ
ˇ .1 � t/x C tv 2 D�:

Now, refer to Fig. 3.6. Then, y D .1� s/x C sv 2 @D D @C , which implies that

x D 1

1 � s y C
�s
1 � s v 2 fl.@C [ fvg/:



94 3 Topology of Linear Spaces and Convex Sets

Consequently, it follows that E D fl.@C [ fvg/. ut
Remark 7. In the above, the condition rclC \rclD 6D E is necessary. For example,
define the convex set C in the linear space R

N

f as follows:

C D ˚x 2 R
N

f

ˇ
ˇ n D maxfi j x.i/ 6D 0g ) x.n/ > 0

�
:

Let D D R
N

f n C D .�C/ n f0g. Then, D is also convex. As is easily observed,

rclC D rclD D R
N

f , hence rclC \ rclD D R
N

f .

The Separation Theorem 3.3.5 can also be obtained as a corollary of Theorems
3.3.6 and 3.3.7. In fact, letA;B � E be convex sets with coreA 6D ; and .coreA/\
B D ;. Then, coreA D rintA is convex. We apply Theorem 3.3.6 to obtain disjoint
non-empty convex sets C and D such that coreA � C , B � D, and C [D D E .
Observe that coreA\ rclD D ;, hence rclD 6D E . It follows from Theorem 3.3.7
that rclC \ rclD is a hyperplane. Then, we have a linear functional f W E ! R

such that rclC \ rclD D f �1.s/ for some s 2 R (Proposition 3.1.3(1)). Since
coreA � E n f �1.s/, we have coreA � f �1..s;1// or coreA � f �1..�1; s//.
If coreA � f �1..s;1//, by replacing f and s by �f and �s, it can be assumed
that coreA � f �1..�1; s//.

We now show that rclC � f �1..�1; s�/. Let x 2 coreA (� rintC ). Then,
x 2 rintC and f .x/ < s. If f .y/ > s for some y 2 rclC , we have z 2 rinthx; yi \
f �1.s/. Because z 2 rclD, rinthw; zi � D for some w 2 D. On the other hand,
z 2 rinthx; yi � rintC (Proposition 3.2.3). Because rintC D coreC , hv; zi � C D
E nD for some v 2 rinthw; zi, which is a contradiction.

Since C � f �1..�1; s�/, it follows that D � f �1..s;1//. Observe that
rintD � f �1..s;1//. So, we have x 2 rintD and f .x/ > s. Likewise for rclD,
we can show that rclD � f �1.Œs;1//. Accordingly, we have

rclC D f �1..�1; s�/ and rclD D f �1.Œs;1//:

Since coreA � f �1..�1; s// and B � f �1.Œs;1//, we have the desired result.

3.4 Topological Linear Spaces

A topological linear space E is a linear space with a topology such that the
algebraic operations of addition .x; y/ 7! x C y and scalar multiplication
.t; x/ 7! tx are continuous.8 Every linear space E has such a topology. In fact,

8Here, we only consider linear spaces over R. Recall that topological spaces are assumed to be
Hausdorff. For topological linear spaces (more generally for topological groups), it suffices to
assume axiom T0, which implies regularity (Proposition 3.4.2 and its footnote). The continuity of
scalar multiplication implies the continuity of the operation x 7! �x because .�1/x D �x.
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E has a Hamel basis B . As a linear subspace of the product space R
B , RBf is a

topological linear space that is linearly isomorphic to E by the linear isomorphism
' W R

B
f ! E defined by '.x/ D P

v2B x.v/v. Then, ' induces a topology
that makes E a topological linear space. In the next section, it will be seen that
if E is finite-dimensional, then such a topology is unique. However, an infinite-
dimensional linear space has various topologies for which the algebraic operations
are continuous.

In the following proposition, we present the basic properties of a neighborhood
basis at 0 in a topological linear space.

Proposition 3.4.1. Let E be a topological linear space and U be a neighborhood
basis at 0 in E . Then, U has the following properties:

(1) For each U; V 2 U , there is some W 2 U such that W � U \ V ;
(2) For each U 2 U , there is some V 2 U such that V C V � U ;
(3) For each U 2 U , there is some V 2 U such that Œ�1; 1�V � U ;
(4) For each x 2 E and U 2 U , there is some a > 0 such that x 2 aU ;
(5)

T
U D f0g.

Conversely, let E be a linear space with U a collection of subsets satisfying these
conditions. Then,E has a topology such that addition and scalar multiplication are
continuous and U is a neighborhood basis at 0.

Sketch of Proof. Property (1) is trivial; (2) comes from the continuity of addition at .0; 0/ 2
E�E; (3) is obtained by the continuity of scalar multiplication at each .t; 0/ 2 Œ�1; 1��E
and the compactness of Œ�1; 1�; (4) follows from the continuity of scalar multiplication at
.0; x/ 2 R� E; the Hausdorffness of E implies (5).

Given U with these properties, an open set inE is defined as a subset W � E satisfying
the condition that, for each x 2 W , there is some U 2 U such that x C U � W . (Verify
the axioms of open sets, i.e., the intersection of finite open sets is open; every union of open
sets is open.)

For each x 2 E and U 2 U , xCU is a neighborhood of x in this topology.9 Indeed, let

W D fy 2 E j 9V 2 U such that y C V � x C U g:
Then, x 2 W � x C U because of (5). For each y 2 W , we have V 2 U such that
yCV � xCU . Take V 0 2 U so that V 0CV 0 � V as in (2). Then, yCV 0 � W because
.y C y0/ C V 0 � y C V � x C U for every y0 2 V 0. Therefore, W is open in E , so
xCU is a neighborhood of x in E . By the definition of the topology, fxCU j U 2 Ug is
a neighborhood basis at x. In particular, U is a neighborhood basis at 0.

Since fxCU j U 2 Ug is a neighborhood basis at x, the continuity of addition follows
from (2). Using (3), we can show that the operation x 7! �x is continuous.

For scalar multiplication, let x 2 E , ˛ 2 R, and U 2 U . Because of the continuity of
x 7! �x, it can be assumed that ˛ � 0. Then, we can write ˛ D nC t , where n 2 ! and
0 � t < 1. Using (2) inductively, we can find V1 � � � � � Vn � VnC1 in U such that

9If E is a topological linear space, x C U is a neighborhood of x 2 E for any neighborhood
U of 0.
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V1 C � � � C Vn C .VnC1 C VnC1/ � U:
By (3), we have W 2 U such that Œ�1; 1�W � VnC1. Then, x 2 rW for some r > 0 by
(4). Choose ı > 0 so that ı < minf1=r; 1� tg. Let y 2 xCW and j˛ � ˇj < ı. Then, we
can write ˇ D nC s, where t � ı < s < t C ı. It follows that

ˇy � ˛x D .nC s/y � .nC t /x D n.y � x/C s.y � x/C .s � t /x
2 nW C Œ�1; 1�W C ıŒ�1; 1�.rW /
� nVnC1 C VnC1 C VnC1

� VnC1 C � � � C VnC1
„ ƒ‚ …

nC 2 many

� U; 10

hence ˇy 2 ˛x C U .
To see the Hausdorffness, let x 6D y 2 E . By (5), we have U 2 U such that x�y 62 U .

By (2) and (3), we can find V 2 U such that V � V � U . Then, x C V and y C V are
neighborhoods of x and y, respectively. Observe that .x C V /\ .y C V / D ;.

It is said that A � E is circled if tA � A for every t 2 Œ�1; 1�. It should be
noted that the closure of a circled set A is also circled.

Indeed, let x 2 clA and t 2 Œ�1; 1�. If t D 0, then tx D 0 2 A � clA. When t 6D 0, for
each neighborhood U of tx in E , since t�1U is a neighborhood of t�1x, t�1U \ A 6D ;,
which implies that U \ tA 6D ;. Because tA � A, U \ A 6D ;. Thus, it follows that
tx 2 clA.

In (3) above, W D Œ�1; 1�V is a neighborhood of 0 2 E that is circled, i.e.,
tW � W for every t 2 Œ�1; 1�. Consequently, (3) is equivalent to the following
condition:

(3)’ 0 2 E has a neighborhood basis consisting of circled (open) sets.

A topological group G is a group with a topology such that the algebraic
operations of multiplication .x; y/ 7! xy and taking inverses x 7! x�1 are both
continuous.11 Then, G is homogeneous, that is, for each distinct x0; x1 2 G, there
is a homeomorphism h W G ! G such that h.x0/ D x1. Such an h can be defined
by h.x/ D x0x

�1x1, where not only h.x0/ D x1 but also h.x1/ D x0. Every
topological linear space is a topological group with respect to addition, so it is
homogeneous.

Proposition 3.4.2. Every topological group G has a closed neighborhood basis at
each g 2 G, i.e., it is regular.12 For a topological linear space E , 0 2 E has a
circled closed neighborhood basis.

10It should be noted that, in general, 2V � V C V but V C V 6� 2V .
11These two operations are continuous if and only if the operation .x; y/! x�1y is continuous.
12A topological group G is assumed to be Hausdorff, but it suffices to assume axiom T0. In fact,
axiom T0 implies T1 for a topological group G because of the homogeneity of G.
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Sketch of Proof. Each neighborhood U of the unit 1 2 G contains a neighborhood V of
1 such that V �1V � U . For each x 2 clV , we have y 2 Vx \ V . Consequently, x 2
V �1y � V �1V � U , so we have clV � U .

For the additional statement, recall that if V is circled then clV is also circled.

Proposition 3.4.3. Let G be a topological group andH be a subgroup of G.

(1) If H is open in G then H is closed in G.
(2) The closure clH of H is a subgroup of G.

Sketch of Proof. (1): For each x 2 G n H , Hx is an open neighborhood of x in G and
Hx � G nH .

(2): For each x; y 2 clH , show that x�1y 2 clH , i.e., each neighborhood W of x�1y

meets H . To this end, choose neighborhoods U and V of x and y, respectively, so that
U�1V � W .

Due to Proposition 3.4.3(1), a connected topological group G has no open
subgroups except forG itself. Observe that every topological linear spaceE is path-
connected. Consequently, E has no open linear subspaces except for E itself, i.e.,
every proper linear subspace of E is not open in E .

The continuity of linear functionals is characterized as follows:

Proposition 3.4.4. Let E be a topological linear space. For a linear functional
f W E ! R with f .E/ 6D f0g, the following are equivalent:

(a) f is continuous;
(b) f �1.0/ is closed in E;
(c) f �1.0/ is not dense in E;
(d) f .V / is bounded for some neighborhood V of 0 2 E .

Proof. The implication (a)) (b) is obvious, and (b)) (c) follows from f .E/ 6D
f0g (i.e., f �1.0/ 6D E).

(c)) (d): We have x 2 E and a circled neighborhood V of 0 2 E such that
.xCV /\f �1.0/ D ;. Then, f .V / is bounded. Indeed, if f .V / is unbounded, then
there is some z 2 V such that jf .z/j > jf .x/j. In this case, f .tz/ D tf .z/ D �f .x/
for some t 2 Œ�1; 1�, which implies that �f .x/ 2 f .V /. It follows that 0 2 f .x/C
f .V / D f .x C V /, which contradicts the fact that .x C V / \ f �1.0/ D ;.

(d) ) (a): For each " > 0, we have n 2 N such that f .V / � .�n"; n"/.
Then, n�1V is a neighborhood of 0 in E and f .n�1V / � .�"; "/. Therefore, f
is continuous at 0 2 E . Since f is linear, it follows that f is continuous at every
point of E . ut
Proposition 3.4.5. Let E be a topological linear space and A;B � E .

(1) If B is open in E then AC B is open in E .
(2) If A is compact and B is closed in E then AC B is also closed in E .

Sketch of Proof. (1): Note that AC B DS
x2A.x C B/.

(2): To show thatEn.ACB/ is open inE , let z 2 En.ACB/. For each x 2 A, because
z�x 2 E nB , we have open neighborhoods Ux; Vx of x; z inE such that Vx�Ux � E nB .
Since A is compact, A � Sn

iD1 Uxi for some x1; : : : ; xn 2 A. Then, V D Tn
iD1 Vxi is an

open neighborhood of z inE . We can show that V \ .ACB/ D ;, i.e., V � E n .ACB/.
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Remark 8. In (2) above, we cannot assert that AC B is closed in E even if both A
and B are closed and convex in E . For example, A D R � f0g and B D f.x; y/ 2
R
2 j x > 0; y � x�1g are closed convex sets in R

2, but ACB D R� .0;1/ is not
closed in R

2.

Proposition 3.4.6. Let F be a closed linear subspace of a topological linear
space E . Then, the quotient linear space E=F with the quotient topology is also
a topological linear space, and the quotient map q W E ! E=F (i.e., p.x/ D
x C F 2 E=F ) is open, hence if U is a neighborhood basis at 0 in E , then
q.U/ D fq.U / j U 2 Ug is a neighborhood basis 0 in E=F .

Sketch of Proof. Apply Proposition 3.4.5(1) to show that the quotient map q W E ! E=F is
open. Then, in the diagrams below, q � q and q � idR are open, so they are quotient maps:

E �E
q�q

E

q

E=F �E=F E=F;

E �R

q�idR

E

q

E=F �R E=F:

Accordingly, the continuity of addition and scalar multiplication are clear. Note that E=F
is Hausdorff if and only if F is closed in E .

For convex sets in a topological linear space, we have the following:

Proposition 3.4.7. For each convex set C in a topological linear space E , the
following hold:

(1) clC is convex and rclC � clC , hence rclC D C if C is closed in E;
(2) intF C D ; for any flat F with flC ¤ F ;
(3) intflC C 6D ; implies intflC C D coreflC C D rintC .

Proof. By the definition and the continuity of algebraic operations, we can easily
obtain (1). For (2), observe intF C � coreF C . If intF C 6D ; then flC D F by the
Fact stated in the previous section.

(3): Due to Proposition 3.3.2, coreflC C D rintC . Note that intflC C �
coreflC C . Without loss of generality, we may assume that 0 2 intflC C . Then, for
each x 2 rintC , we can find 0 < s < 1 such that x 2 sC . Since .1 � s/C is a
neighborhood of 0 D x � x in flC , we have a neighborhood U of x in flC such
that U � x � .1� s/C . Then, it follows that U � .1� s/C C sC D C . Therefore,
x 2 intflC C . ut

Remark 9. In the above, we cannot assert any one of clC D rclC , intflC C D
coreflC C , or intflC C 6D ;. For example, Œ�1; 1�Nf is a convex set in R

N such that
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rclŒ�1; 1�Nf D Œ�1; 1�Nf but clŒ�1; 1�Nf D Œ�1; 1�N. Note that flŒ�1; 1�Nf D R
N

f .

Regard Œ�1; 1�Nf as a convex set in R
N

f . Then,

int
R
N

f
Œ�1; 1�Nf D ; but core

R
N

f
Œ�1; 1�Nf D rintŒ�1; 1�Nf D .�1; 1/Nf :

By Proposition 3.4.7(1), if A is a subset of a topological linear space E , then
clhAi is the smallest closed convex set containing A, which is called the closed
convex hull of A.

Remark 10. In general, hAi is not closed in E even if A is compact. For example,
let A D fan j n 2 !g � `1, where a0.i/ D 2�i for every i 2 N and, for each
n 2 N, an.i/ D 2�i if i � n and an.i/ D 0 if i > n. Then, A is compact and
hAi DSn2Nha0; a1; : : : ; ani. For each n 2 N, let

xn D 2�na0 C 2�1a1 C � � � C 2�nan 2 ha0; a1; : : : ; ani:

Then, xn.i/ D 2�2iC1 if i � n and xn.i/ D 2�n�i if i > n. Hence, .xn/n2N
converges to x0 2 `1, where x0.i/ D 2�2iC1 for each i 2 N. However, x0 62 hAi.
Otherwise, x0 2 ha0; a1; : : : ; ani for some n 2 N, where we can write

x0 D
nX

iD0
z.i C 1/ai ; z 2 �n:

Then, we have the following:

z.1/a0.nC 1/ D x0.nC 1/ D 2�2n�1 D 2�na0.nC 1/ and

z.1/a0.nC 2/ D x0.nC 2/ D 2�2n�3 D 2�n�1a0.nC 2/;

hence z.1/ D 2�n and z.1/ D 2�n�1. This is a contradiction. Therefore, hAi is not
closed in `1.

The following is the topological version of the Separation Theorem 3.3.5:

Theorem 3.4.8 (SEPARATION THEOREM). Let A and B be convex sets in a
topological linear space E such that intA 6D ; and .intA/ \ B D ;. Then, there
is a continuous linear functional f W E ! R such that f .x/ < f .y/ for each
x 2 intA and y 2 B , and supf .A/ � inff .B/.

Proof. First, intA 6D ; implies coreA D intA 6D ; by Proposition 3.4.7(3). Then,
by the Separation Theorem 3.3.5, we have a linear functional f W E ! R such that
f .x/ < f .y/ for every x 2 intA and y 2 B , and supf .A/ � inff .B/. Note that
B � intA is open in E and f .z/ > 0 for every z 2 B � intA. Thus, f �1.0/ is not
dense in E . Therefore, f is continuous by Proposition 3.4.4. ut
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A topological linear space E is locally convex if 0 2 E has a neighborhood
basis consisting of (open) convex sets; equivalently, open convex sets make up an
open basis for E . It follows from Proposition 3.4.6 that for each locally convex
topological space E and each closed linear subspace F � E , the quotient linear
space E=F is also locally convex. For locally convex topological linear spaces, we
have the following separation theorem:

Theorem 3.4.9 (STRONG SEPARATION THEOREM). Let A and B be disjoint
closed convex sets in a locally convex topological linear space E . If at least one
of A and B is compact, then there is a continuous linear functional f W E ! R

such that supf .A/ < inff .B/.

Proof. By Proposition 3.4.5(2), B �A is closed in E . Since A\ B D ;, it follows
that 0 62 B � A. Choose an open convex neighborhood U of 0 so that U \ .B �
A/ D ;. By the Separation Theorem 3.4.8, we have a nontrivial continuous linear
functional f W E ! R such that supf .U / � inff .B � A/. Then, supf .A/ C
supf .U / � inff .B/, where supf .U / > 0 by the non-triviality of f . Thus, we
have the result. ut

As a particular case, we have the following:

Corollary 3.4.10. LetE be a locally convex topological linear space. For each pair
of distinct points x; y 2 E , there exists a continuous linear functional f W E ! R

such that f .x/ 6D f .y/. ut
Concerning the continuity of sublinear functionals, we have the following:

Proposition 3.4.11. Let p W E ! R be a non-negative sublinear functional of a
topological linear space E . Then, p is continuous if and only if p�1.Œ0; 1// is a
neighborhood of 0 2 E .

Proof. The “only if” part follows from p�1.Œ0; 1// D p�1..�1; 1//. To see the “if”
part, let " > 0. Since p�1.Œ0; "// D "p�1.Œ0; 1// is a neighborhood of 0 2 E , each
x 2 E has the following neighborhood:

U D �x C p�1.Œ0; "//�\ �x � p�1.Œ0; "//�:

For each y 2 U , since p.y � x/ < " and p.x � y/ < ", it follows that

p.y/ � p.y � x/C p.x/ < p.x/C " and

p.y/ � p.x/ � p.x � y/ > p.x/ � ";

which means that p is continuous at x. ut
For each convex set C � E with 0 2 intC , we have intC D coreC D

p�1C .Œ0; 1// by Propositions 3.3.4 and 3.4.7(3). Then, the following is obtained from
Proposition 3.4.11.
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Corollary 3.4.12. Let E be a topological linear space. For each convex set C � E
with 0 2 intC , the Minkowski functional pC W E ! R is continuous. Moreover,
p�1C .Œ0; 1// D intC D rintC and p�1C .I/ D clC D rclC , hence p�1C .1/ D bdC D
@C . ut

The boundedness is a metric concept, but it can be extended to subsets of a
topological linear space E . A subset A � E is topologically bounded13 provided
that, for each neighborhood U of 0 2 E , there exists some r > 0 such that
A � rU . If A � E is topologically bounded and B � A, then B is also
topologically bounded. Recall that every neighborhood U of 0 2 E contains a
circled neighborhood V of 0 2 E (cf. Proposition 3.4.1(3)). Since sV � tV for
0 < s < t , it is easy to see that every compact subset of E is topologically bounded.
When E is a normed linear space, A � E is topologically bounded if and only if A
is bounded in the metric sense. Applying Minkowski functionals, we can show the
following:

Theorem 3.4.13. Let E be a topological linear space. Each pair of topologically
bounded closed convex sets C;D � E with intC 6D ; and intD 6D ;
are homeomorphic to each other by a homeomorphism of E onto itself, hence
.C; bdC/ � .D; bdD/ and intC � intD.

Proof. Without loss of generality, we may assume that 0 2 intC \ intD. Let pC
and pD be the Minkowski functionals for C andD, respectively. By the topological
boundedness of C and D, it is easy to see that pC .x/; pD.x/ > 0 for every x 2
E n f0g. Then, we can define maps '; W E ! E as follows: '.0/ D  .0/ D 0,

'.x/ D pC .x/

pD.x/
x and  .x/ D pD.x/

pC .x/
x for each x 2 E n f0g.

It follows from the continuity of pC and pD (Corollary 3.4.12) that ' and  are
continuous at each x 2 E n f0g.

To verify the continuity of ' at 0 2 E , let U be a neighborhood of 0 2 E . Since
D is topologically bounded andC is a neighborhood of 0, there is an r > 0 such that
D � rC . Then, pC .x/ � rpD.x/ for every x 2 E . Choose a circled neighborhood
V of 0 2 E so that rV � U . Then, '.V / � U . Indeed, for each x 2 V n f0g,

'.x/ D pC .x/

pD.x/
x 2 pC .x/

pD.x/
V � rV � U:

Similarly,  is continuous at 0 2 E .
For each x 2 E n f0g, since '.x/ 6D 0,

13Usually, we say simply bounded but here add topologically in order to distinguish the metric
sense. It should be noted that every metrizable space has an admissible bounded metric.
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 '.x/ D pD.'.x//

pC .'.x//
'.x/ D

pC .x/

pD.x/
pD.x/

pC .x/

pD.x/
pC .x/

� pC .x/
pD.x/

x D x:

Hence,  ' D id. Similarly, ' D id. Therefore, ' is a homeomorphism with
'�1 D  . Moreover, observe that '.C / � D and  .D/ � C , hence '.C / D D.
Thus, we have the result. ut

The norm of a normed linear space E is the Minkowski functional for the unit
closed ball BE ofE . Since bd BE is the unit sphere SE ofE , we have the following:

Corollary 3.4.14. Let E D .E; k � k/ be a normed linear space. For every bounded
closed convex set C � E with intC 6D ;, the pair .C; bdC/ is homeomorphic to
the pair .BE;SE/ of the unit closed ball and the unit sphere of E . ut

It is easy to see that every normed linear space E D .E; k � k/ is homeomorphic
to the unit open ball B.0; 1/ D BE n SE of E .

In fact, the following are homeomorphisms (each of them is the inverse of the other):

E 3 x 7! 1

1C kxkx 2 B.0; 1/I B.0; 1/ 3 y 7! 1

1� kyky 2 E:

By applying the Minkowski functional, this can be extended as follows:

Theorem 3.4.15. Every open convex set V in a topological linear space E is
homeomorphic to E itself.

Proof. Without loss of generality, it can be assumed that 0 2 intV D V . Then, we
have V D intV D p�1V .Œ0; 1// by Corollary 3.4.12. Using the Minkowski functional
pV , we can define maps ' W V ! E and  W E ! V as follows:

'.x/ D 1

1 � pV .x/x for x 2 V ;  .y/ D 1

1C pV .y/y for y 2 E .

Observe that  ' D idV and ' D idE . This means that ' is a homeomorphism
with  D '�1. ut

3.5 Finite-Dimensionality

Here, we prove that every finite-dimensional linear space has the unique topology
that is compatible with the algebraic operations, and that a topological linear space
is finite-dimensional if and only if it is locally compact.

First, we show the following proposition:
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Proposition 3.5.1. Every finite-dimensional flat F in an arbitrary linear space E
has the unique (Hausdorff) topology such that the following operation is continuous:

F � F � R 3 .x; y; t/ 7! .1 � t/x C ty 2 F:
With respect to this topology, every affine bijection f W Rn ! F is a homeomor-
phism, where n D dimF . Then, F is affinely homeomorphic to R

n. Moreover, if E
is a topological linear space then F is closed in E .

Proof. As mentioned at the beginning of Sect. 3.4, E has a topology that makes E
a topological linear space. With respect to the topology of F inherited from this
topology, the above operation is continuous.

Note that there exists an affine bijection f W Rn ! F , where dimF D n.
We shall show that any affine bijection f W Rn ! F is a homeomorphism with
respect to any other topology of F such that the above operation is continuous,
which implies that such a topology is unique and F is affinely homeomorphic to R

n.
Since f is affine, we have

f .z/ D



1 �
nX

iD1
z.i/

�

f .0/C
nX

iD1
z.i/f .ei / for each z 2 R

n.

Note that the following function is continuous:

R
n 3 z 7!




1 �
nX

iD1
z.i/; z.1/; : : : ; z.n/

�

2 fl�n � R
nC1:

Then, the continuity of f follows from the claim:

Claim. Given v1; : : : ; vk 2 F , k � n, the following function is continuous:

'k W fl�k�1 3 z 7!
kX

iD1
z.i/vi 2 F:

Since fl�0 D �0 is a singleton, the continuity of '1 is obvious. Assuming the
continuity of 'k, we shall show the continuity of 'kC1. Let  W fl�k�1�R! fl�k

be the map defined by  .z; t/ D ..1 � t/z; t/. Observe that

'kC1 .z; t/ D .1 � t/
kX

iD1
z.i/vi C tvkC1 D .1 � t/'k.z/C tvkC1:

From the property of the topology of F and the continuity of 'k , it follows that
'kC1 is continuous. For each i D 1; : : : ; kC 1, let pi D pri j fl�k W fl�k ! R be
the restriction of the projection onto the i -th factor. Note that
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 j fl�k�1 � .R n f1g/ W fl�k�1 � .R n f1g/! fl�k n p�1kC1.1/

is a homeomorphism. Hence, 'kC1j fl�k n p�1kC1.1/ is continuous. Replacing the
.k C 1/-th coordinates with the i -th coordinates, we can see the continuity of
'kC1j fl�k n p�1i .1/. Since fl�k D SkC1

iD1 .fl�k n p�1i .1//, it follows that 'kC1
is continuous. Thus, the claim can be obtained by induction.

It remains to show the openness of f . On the contrary, assume that f is not
open. Then, we have x 2 R

n and " > 0 such that f .B.x; "// is not a neighborhood
of f .x/ in F . Since bd B.x; "/ is a bounded closed set of Rn, it is compact, hence
f .bd B.x; "// is closed in F . Then, F nf .bd B.x; "// is a neighborhood of f .x/ in
F . Using the compactness of I, we can find an open neighborhoodU of f .x/ in F
such that

.1 � t/f .x/C tU � F n f .bd B.x; "// for every t 2 I.

Then, U \ f .bd B.x; "// D ;. Since f .B.x; "// is not a neighborhood of f .x/, it
follows that U 6� f .B.x; "//, and so we can take a point y 2 U n f .B.x; "//. Now,
we define a linear path g W I! R

n by g.t/ D .1� t/xC tf �1.y/. Since f is affine
and y 2 U , it follows that

fg.t/ D .1 � t/f .x/C ty 2 F n f .bd B.x; "// for every t 2 I.

Since f is a bijection, we have

g.I/ � R
n n bd B.x; "/ D B.x; "/ [ .Rn n B.x; "//:

Then, g.0/ D x 2 B.x; "/ and g.1/ D f �1.y/ 2 R
n n B.x; "/, which contradicts

the connectedness of I. Thus, f is open.
In the case when E is a topological linear space, to prove that F is closed in E ,

take a point x 2 E nF and consider the flat Fx D fl.F [fxg/. It is easy to construct
an affine bijection f W RnC1 ! Fx such that f .Rn � f0g/ D F . As we saw in the
above, f is a homeomorphism, hence F is closed in Fx . Since Fx nF is open in Fx ,
we have an open set U inE such that U \Fx D Fx nF . Then,U is a neighborhood
of x inE andU � EnF . Therefore,EnF is open inE , that is,F is closed inE . ut

If a linear space E has a topology such that the operation

E �E �R 3 .x; y; t/ 7! .1 � t/x C ty 2 E
is continuous, then scalar multiplication and addition are also continuous with this
topology because they can be written as follows:

E � R 3 .x; t/ 7! tx D .1� t/0C tx 2 EI
E � E 3 .x; y/ 7! x C y D 2 � 1

2
x C 1

2
y
� 2 E:
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Then, the following is obtained by Proposition 3.5.1:

Corollary 3.5.2. Every finite-dimensional linear space E has the unique (Haus-
dorff) topology compatible with the algebraic operations (addition and scalar
multiplication), and then it is linearly homeomorphic to R

n, where n D dimE . ut
Moreover, we have the following:

Corollary 3.5.3. Let E be a topological linear space and F a finite-dimensional
flat in another topological linear space. Then, every affine function f W F ! E is
continuous, and if f is injective then f is a closed embedding.

Proof. By Proposition 3.5.1, F can be replaced with R
n, where n D dimF . Then,

we can write

f .x/ D
 

1 �
nX

iD1
x.i/

!

f .0/C
nX

iD1
x.i/f .ei / for each x 2 R

n,

where e1; : : : ; en is the canonical orthonormal basis for Rn. Thus, the continuity of
f is obvious. Since f .Rn/ is a finite-dimensional flat in E , f .Rn/ is closed in E
by Proposition 3.5.1. If f is injective then f W Rn ! f .Rn/ is an affine bijection,
which is a homeomorphism by Proposition 3.5.1. Hence, f is a closed embedding.

ut
Combining Proposition 3.2.2 and Corollary 3.5.3, we have

Corollary 3.5.4. Let E be a topological linear space and C a finite-dimensional
convex set in another topological linear space. Then, every affine function f W C !
E is continuous. Moreover, if f is injective then f is an embedding. ut

For finite-dimensional convex sets in a linear space, we have the following:

Proposition 3.5.5. Let C be a finite-dimensional convex set in an arbitrary linear
space E . Then, rintC D intflC C with respect to the unique topology for flC as in
Proposition 3.5.1.

Proof. We may assume thatE is a topological linear space. By Proposition 3.4.7(3),
it suffices to show that intflC C 6D ;. We have affinely independent v0; v1; : : : ; vn 2
C with flC D flfv0; v1; : : : ; vng, where n D dimC . We have an affine bijection
f W Rn ! flC such that f .0/ D v0, f .e1/ D v1, . . . , f .en/ D vn. Then, f is a
homeomorphism by Proposition 3.5.1, hence

intflC C � intflC hv0; v1; : : : ; vni D f .intRnh0; e1; : : : ; eni/ 6D ;: ut
Note that every compact set in a topological linear space is topologically bounded

and closed. For an n-dimensional convex set C in a linear space, the flat hull
flC is affinely isomorphic to R

n. Combining Propositions 3.5.1 and 3.5.5 with
Corollary 3.4.14, we have the following:
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Corollary 3.5.6. For every n-dimensional compact convex set C in an arbi-
trary topological linear space E , the pair .C; @C / is homeomorphic to the pair
.Bn;Sn�1/ of the unit closed n-ball and the unit .n � 1/-sphere. ut
Remark 11. It should be noted that every bounded closed set in Euclidean space Rn

is compact. More generally, we can prove the following:

Proposition 3.5.7. Let E be an arbitrary topological linear space andA � E with
dim flA < 1. Then, A is compact if and only if A is topologically bounded and
closed in E .

Sketch of Proof. Using Proposition 3.5.1, this can be reduced to the case of Rn.

The following convex version of Proposition 3.5.1 is not trivial.

Proposition 3.5.8. Let C be an n-dimensional convex set in an arbitrary linear
space E . If (1) C is the convex hull of a finite set14 or (2) C D rintC , then C has
the unique (Hausdorff) topology such that the following operation is continuous:

C � C � I 3 .x; y; t/ 7! .1 � t/x C ty 2 C:

In case (1), rclC D C and .C; @C / � .Bn;Sn�1/; in case (2), C � R
n.

Proof. Like Proposition 3.5.1, it suffices to see the uniqueness and the additional
statement. To this end, suppose that C has such a topology, but it is unknown
whether this is induced from a topology of flC or not.

Case (1): Let C D hv1; : : : ; vki and define f W �k�1 ! C by f .z/ DPk
iD1 z.i/vi . In the same way as for the claim in the proof of Proposition 3.5.1,

we can see that the continuity of the operation above induces the continuity of f .
Since�k�1 is compact, f is a closed map, hence it is quotient. Thus, the topology of
C is unique and C is compact with respect to this topology. Giving any topology on
E so thatE is a topological linear space, we have rclC D C by Proposition 3.4.7(i)
and .C; @C / � .Bn;Sn�1/ by Corollary 3.5.6.

Case (2): Let f W Rn ! flC be an affine bijection, where n D dim flC D
dimC . Since D D f �1.C / is an n-dimensional convex set in R

n, D D rintD D
intD is open in R

n by Proposition 3.5.5, hence D � R
n by Proposition 3.4.15.

Then, it suffices to show that f jD W D ! C is a homeomorphism. For each x 2 D,
choose ı > 0 so that xC ıBn D B.x; ı/ � D. Let v0 D x � ı O�n�1, where O�n�1 is
the barycenter of the standard .n � 1/-simplex �n�1 D he1; e2; : : : ; eni � R

n. For
each i D 1; : : : ; n, let vi D x C ıei . Then, v0; v1; : : : ; vn are affinely independent
and

x 2 intRnhv0; v1; : : : ; vni � x C ıBn � D;
hence hv0; v1; : : : ; vni is a neighborhood of x in D. On the other hand, we have the
affine homeomorphism ' W �n ! hv0; v1; : : : ; vni defined by '.z/ D Pn

iD0 z.i C

14In this case, C is called a cell or a (convex) linear cell (cf. Sect. 4.1).
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ı
0 1

Dr

q D .x; y/

r

.1; 1/

s

Ds

Fig. 3.7 The continuity of the operation at .0; q; 0/ 2 C � C � I

1/vi . Since f '.z/ D Pn
iD0 z.i C 1/f .vi /, the continuity of the operation above

implies that of f ', hence f jhv0; v1; : : : ; vni is continuous at x. Then, it follows that
f jD is continuous at x.

Since D is open in R
n, we can apply the same argument as in the proof of

Proposition 3.5.1 to prove that f jD W D ! C is open. Consequently, f jD W D !
C is a homeomorphism. ut
Remark 12. For an arbitrary finite-dimensional convex C , Proposition 3.5.8 does
not hold in general. For example, let

C D f0g [ f.x; y/ 2 .0; 1�2 j x � yg � R
2:

Then, C is a convex set that has a finer topology than usual such that the operation
in Proposition 3.5.8 is continuous. Such a topology is generated by open sets in the
usual topology and the following sets:

Dr D f0g [ .B..0; r/; r/\ C/; r > 0:
Note that this topology induces the same relative topology onC nf0g as usual. Since
D"=
p
2 � B.0; "/ for each " > 0, fDr j r > 0g is a neighborhood basis at 0 2 C

with respect to this topology.
We shall show that the operation

C � C � I 3 .p; q; t/ 7! .1� t/p C tq 2 C
is continuous at .p; q; t/ 2 C � C � I. If .1 � t/p C tq 6D 0, it follows from the
continuity with respect to the usual topology. The continuity at .0; 0; t/ follows from
the convexity of Dr , r > 0.

To see the continuity at .0; q; 0/ (q 6D 0), let q D .x; y/, where 0 < y � x � 1.
Choose s > 0 so that q 2 Ds (i.e., s > .x2C y2/=2y). For each 0 < r < minf1; sg,
let 0 � t � r=2s, p0 2 Dr=2, and q0 2 Ds (Fig. 3.7). Observe that

1 � t
r=s � t .r=s/p

0 2 1 � t
r=s � t .r=s/Dr=2 � 1

r=2s
.r=s/Dr=2 D Dr
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and .r=s/q0 2 .r=s/Ds D Dr . Since Dr is convex, it follows that

.1 � t/p0 C tq0 D



1 � t

r=s

�
1� t
r=s � t .r=s/p

0 C t

r=s
.r=s/q0 2 Dr:

Thus, the operation is continuous at .0; q; 0/. The continuity at .p; 0; 1/ (p 6D 0) is
the same.

A subset A of a topological linear space E is totally bounded provided, for
each neighborhood U of 0 2 E , there exists some finite set M � E such that
A �M C U . In this definition,M can be taken as a subset of A.

Indeed, for each neighborhood U of 0 2 E , we have a circled neighborhood V such that
V CV � U . Then, A �M C V for some finite set M � E , where it can be assumed that
.xC V /\A 6D ; for every x 2M . For each x 2M , choose ax 2 A so that ax 2 xC V .
Then, x 2 ax�V D axCV . It follows thatA �Sx2M .xCV / �

S
x2M .axCV CV / �S

x2M .ax C U/.
If A � E is totally bounded andB � A, thenB is also totally bounded. It is easy

to see that every compact subset of E is totally bounded and every totally bounded
subset of E is topologically bounded. In other words, we have:

compact ) totally bounded ) topologically bounded

For topological linear spaces, the finite-dimensionality can be simply characterized
as follows:

Theorem 3.5.9. Let E be a topological linear space. The following are equiva-
lent:

(a) E is finite-dimensional;
(b) E is locally compact;
(c) 0 2 E has a totally bounded neighborhood in E .

Proof. Since each n-dimensional topological linear space is linearly homeomorphic
to R

n (Corollary 3.5.2), we have (a) ) (b). Since every compact subset of E is
totally bounded, the implication (b)) (c) follows.

(c) ) (a): Let U be a totally bounded neighborhood of 0 2 E . By Proposi-
tion 3.4.1, we have a circled neighborhood V of 0 such that V C V � U . Then, V
is also totally bounded. First, we show the following:

Claim. For each closed linear subspace F ¤ E , there is some x 2 U such that
.x C V / \ F D ;.

Contrary to the claim, suppose that .x C V / \ F 6D ; for every x 2 U . Since
V D �V , it follows that U � F C V , so we have V C V � F C V . If .n� 1/V �
F C V then

nV � .n � 1/V C V � F C V C V � F C F C V D F C V:
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By induction, we have nV � F C V for every n 2 N, which implies that V �T
n2N.F C n�1V /.
Take z 2 E n F . Since F is closed in E , we have a circled neighborhoodW of

0 2 E such thatW � V and .zCW /\F D ;. The total boundedness of V implies
the topological boundedness, hence V � mW for some m 2 N. On the other hand,
k�1z 2 V for some k 2 N. Since k�1z 2 V � F C .km/�1V , it follows that
z 2 F Cm�1V � F CW . This contradicts the fact that .zCW /\ F D ;.

Now, assume that E is infinite-dimensional. Let v1 2 U n f0g and F1 D Rv1.
Then, F1 is closed in E (Proposition 3.5.1) and F1 6D E . Applying the claim above,
we have v2 2 U such that .v2 C V / \ F1 D ;. Note that v2 62 v1 C V . Let F2 D
Rv1 C Rv2. Since F2 is closed in E (Proposition 3.5.1) and F2 6D E , we can again
apply the claim to find v3 2 U such that .v3 C V / \ F2 D ;. Then, note that
v3 62 vi C V for i D 1; 2. By induction, we have vn 2 U , n 2 N, such that
vn 62 vi C V for i < n. Then, fvn j n 2 Ng is not totally bounded. This is a
contradiction. Consequently,E is finite-dimensional. ut

By Theorem 3.5.9, every infinite-dimensional topological linear space is not
locally compact.

3.6 Metrizability and Normability

In this section, we prove metrization and normability theorems for topological linear
spaces. The metrizability of a topological linear space has the following very simple
characterization:

Theorem 3.6.1. A topological linear space E is metrizable if and only if 0 2 E
has a countable neighborhood basis.

In a more general setting, we shall prove a stronger result. A metric d on a
group G is said to be left (resp. right) invariant if d.x; y/ D d.zx; zy/ (resp.
d.x; y/ D d.xz; yz/) for each x; y; z 2 G; equivalently, d.x; y/ D d.x�1y; 1/
(resp. d.x; y/ D d.xy�1; 1/) for each x; y 2 G. When both of two metrics d and
d 0 on a group G are left (or right) invariant, they are uniformly equivalent to each
other if and only if they induce the same topology. It is said that d is invariant if it is
left and right invariant. Every invariant metric d on a groupG induces the topology
on G that makes G a topological group. In fact,

d.x; y/ D d.x�1xy�1; x�1yy�1/ D d.y�1; x�1/ D d.x�1; y�1/ and

d.xy; x0y0/ � d.xy; x0y/C d.x0y; x0y0/ D d.x; x0/C d.y; y0/:

It is easy to verify that a left (or right) invariant metric d on a group G is invariant
if d.x; y/ D d.x�1; y�1/ for each x; y 2 G. Theorem 3.6.1 comes from the
following:
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Theorem 3.6.2. For a topological group G, the following are equivalent:

(a) G is metrizable;
(b) The unit 1 2 G has a countable neighborhood basis;
(c) G has an admissible bounded left invariant (right invariant) metric.

Proof. Since the implications (a) ) (b) and (c) ) (a) are obvious, it suffices to
show the implication (b)) (c).

(b) ) (c):15 We shall construct a left invariant metric 
 2 Metr.G/. Then, a
right invariant metric 
0 2 Metr.G/ can be defined by 
0.x; y/ D 
.x�1; y�1/. By
condition (b), we can find an open neighborhood basis fVn j n 2 Ng at 1 2 G such
that

V �1n D Vn and VnC1VnC1VnC1 � Vn for each n 2 N.16

Let V0 D G, and define

p.x/ D inff2�i j x 2 Vi g 2 I for each x 2 G.

Since Vn D V �1n for each n 2 N, it follows that p.x/ D p.x�1/ for every x 2 G.
Note that

T
n2! Vn D f1g.17 Hence, for every x 2 G,

p.x/ D 0 , x D 1:

By induction on n, we shall prove the following:

() p.x�10 xn/ � 2
nX

iD1
p.x�1i�1xi / for each x0; x1; : : : ; xn 2 G.18

The case n D 1 is obvious. Assume () for m < n. If
Pn

iD1 p.x�1i�1xi / D 0 orPn
iD1 p.x�1i�1xi / � 1

2
, it is trivial. When 2�k�1 �Pn

iD1 p.x�1i�1xi / < 2�k for some
k 2 N, choose 1 � m � n so that

m�1X

iD1
p.x�1i�1xi / < 2�k�1 and

nX

iDmC1
p.x�1i�1xi / < 2�k�1:

15The idea of the proof is the same as that of Theorem 2.4.1 (b)) (a).
16Note that fVnx j n 2 Ng is an open neighborhood basis at x 2 G. For each x; y 2 G and
n 2 N, VnC1x \ VnC1y 6D ; implies VnC1y � Vnx. Indeed, ux D vy for some u; v 2 VnC1,
hence VnC1y D VnC1v�1ux � Vnx. Thus, the metrizability of G can be obtained by the
Frink Metrization Theorem 2.4.1. On the other hand, Vn D fVnx j x 2 Gg 2 cov.G/ and
stVnC1 	 Vn. Indeed, st.VnC1x;VnC1/ � Vnx. Thus, the metrizability of G can also be obtained
by Corollary 2.4.4.
17It is assumed that G is Hausdorff.
18For each x; y 2 G, let ı.x; y/ D p.x�1y/. Then, this inequality is simply the one given in the
sketch of the direct proof for Corollary 2.4.4.
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Note that p.x�1m�1xm/ < 2�k. By the inductive assumption, p.x�10 xm�1/ <

2�k and p.x�1m xn/ < 2�k . Then, x�10 xm�1; x�1m�1xm; x�1m xn 2 VkC1. Since
VkC1VkC1VkC1 � Vk , it follows that x�10 xn 2 Vk, hence

p.x�10 xn/ � 2�k � 2
nX

iD1
p.x�1i�1xi /:

Now, we can define a metric 
 on G as follows:


.x; y/ D inf
˚Pn

iD1 p.x�1i�1xi /
ˇ
ˇ n 2 N; xi 2 G; x0 D x; xn D y

�
:

By the definition, 
 is left invariant. Note that 
.x; y/ � p.x�1y/ � 1. Then,
x�1y 2 Vn implies 
.x; y/ � p.x�1y/ � 2�n < 2�nC1, which means xVn �
B
.x; 2�nC1/. On the other hand, if 
.x; y/ < 2�n then p.x�1y/ � 2
.x; y/ <

2�nC1 by (), which implies x�1y 2 Vn. Thus, B
.x; 2�n/ � xVn. Therefore, 
 is
admissible. ut

In the above proof, a right invariant metric 
 2 Metr.G/ can be directly defined as follows:


.x; y/D inf
˚Pn

iD1 p.xi�1x
�1
i /

ˇ
ˇ n 2 N; xi 2 G; x0 D x; xn D y

�
:

Every metrizable topological linear space E has an admissible (bounded) metric

 that is not only invariant but also satisfies the following:

(]) jt j � 1) 
.tx; 0/ � 
.x; 0/.
To verify this, let us recall how to define the metric 
 in the above proof. Taking a
neighborhood basis fVn j n 2 Ng at 0 2 E so that Vn D �Vn and VnC1 C VnC1 C
VnC1 � Vn for each n 2 N, we define the admissible invariant metric 
 as follows:


.x; y/ D inf
˚Pn

iD1 p.xi � xi�1/
ˇ
ˇ n 2 N; xi 2 E; x0 D x; xn D y

�
;

wherep.x/ D inff2�i j x 2 Vi g. SinceE is a topological linear space, the condition
that Vn D �Vn can be replaced by a stronger condition that Vn is circled, i.e.,
tVn � Vn for t 2 Œ�1; 1�. Then, p.tx/ � p.x/ for each x 2 E and t 2 Œ�1; 1�,
which implies that 
.tx; 0/ � 
.x; 0/ for each x 2 E and t 2 Œ�1; 1�.

Let d be an invariant metric on a linear space E . Addition on a linear space
E is clearly continuous with respect to d . On the other hand, scalar multiplication
on E is continuous with respect to d if and only if d satisfies the following three
conditions:

(i) d.xn; 0/! 0 ) 8t 2 R; d.txn; 0/! 0;
(ii) tn ! 0 ) 8x 2 E; d.tnx; 0/! 0;

(iii) d.xn; 0/! 0; tn ! 0 ) d.tnxn; 0/! 0.

Indeed, the “only if” part is trivial. To show the “if” part, observe

tnxn � tx D .tn � t /.xn � x/C t .xn � x/C .tn � t /x:
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Since d is invariant, it follows that

d.tnxn; tx/D d..tn � t /.xn � x/C t .xn � x/C .tn � t /x; 0/
� d..tn � t /.xn � x/; 0/C d.t.xn � x/; 0/C d..tn � t /x; 0/;

where d.tnxn; tx/ ! 0 if tn ! t and d.xn; x/ ! 0. Thus, the above three conditions
imply the continuity of scalar multiplication on E with respect to d .

It should be remarked that condition (]) implies condition (iii).
An invariant metric d on E satisfying these conditions is called a linear metric.

A linear space with a linear metric is called a metric linear space. Then, every
metric linear space is a metrizable topological linear space. Conversely, we have the
following fact:

Fact. Every admissible invariant metric for a metrizable topological linear space
is a linear metric.

For subsets of a metric linear space, the total boundedness coincides with that in
the metric sense. On the other hand, the topological boundedness does not coincide
with the metric boundedness. In fact, every metrizable topological linear space
E has an admissible bounded invariant metric. For instance, given an admissible
invariant metric d for E , the following are admissible bounded invariant metrics:

min
˚
1; d.x; y/

�
;

d.x; y/

1C d.x; y/ :

For a linear metric 
 on E with the condition (]), the functional E 3 x 7!

.x; 0/ 2 R is called an F -norm. In other words, a functional k � k W E ! R on a
linear space E is called an F -norm if it satisfies the following conditions:

(F1) kxk � 0 for every x 2 E;
(F2) kxk D 0 ) x D 0;
(F3) jt j � 1 ) ktxk � kxk for every x 2 E;
(F4) kx C yk � kxk C kyk for every x; y 2 E;
(F5) kxnk ! 0 ) ktxnk ! 0 for every t 2 R;
(F6) tn ! 0 ) ktnxk ! 0 for every x 2 E .

Conditions (F3), (F5), and (F6) correspond to conditions (]), (i), and (ii), respectively. The
converse of (F2) is true because k0k D 0 by (F6). Then, kxk D 0 if and only if x D 0.
Condition (F3) implies that k � xk D kxk for every x 2 E . Furthermore, conditions (F3)
and (F4) imply condition (F5). Indeed, using (F4) inductively, we have knxk � nkxk for
every n 2 N. Each t 2 Œ0;1/ can be written as t D Œt �C s for some s 2 Œ0; 1/, where Œt �
is the greatest integer� t . Since ksxk � kxk by (F3), it follows that ktxk � .Œt �C 1/kxk.
Because k � xk D kxk, ktxk � .Œjt j�C 1/kxk for every t 2 R. This implies condition
(F5). Thus, condition (F5) is unnecessary.

A linear space E given an F -norm k � k is called an F -normed linear space.
Every norm is an F -norm, hence every normed linear space is an F -normed space.
An F -norm k � k induces the linear metric d.x; y/ D kx � yk. Then, every F -
normed linear space is a metric linear space. An F -norm on a topological linear
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space E is said to be admissible if it induces the topology for E . As we saw above,
if E is metrizable, then E has an admissible invariant metric 
 satisfying (]), which
induces the F -norm. Therefore, we have the following:

Theorem 3.6.3. A topological linear space has an admissible F -norm if and only
if it is metrizable. ut

For each metrizable topological linear space, there exists an F -norm with the
following stronger condition than (F3):

(F �3 ) x 6D 0; jt j < 1) ktxk < kxk,
which implies that ksxk < ktxk for each x 6D 0 and 0 < s < t . The following
proposition guarantees the existence of an F -norm with the condition (F �3 ):

Proposition 3.6.4. Every (completely) metrizable topological linear space E has
an admissible invariant (complete) metric d such that d.tx; 0/ < d.x; 0/ if x 6D 0
and jt j < 1, which induces an admissible F -norm satisfying .F �3 /. If an admissible
invariant metric 
 for E is given, d can be chosen so that d � 
 (hence, if 
 is
complete, then so is d ). Moreover, if 
 is bounded, d can be chosen to be bounded.

Proof. Given an admissible (bounded) invariant metric 
 forE , we define d1.x; y/ D
sup0<s�1 
.sx; sy/. Then, d1 is an invariant metric on E with d1 � 
 (if 
 is
bounded then so is d1). For each " > 0, since the scalar multiplication E � R 3
.x; s/ ! sx 2 E is continuous at .0; s/ and I is compact, we can find ı > 0

such that 
.x; 0/ < ı implies 
.sx; 0/ < " for every s 2 I, hence 
.x; y/ < ı

implies d1.x; y/ D sup0<s�1 
.sx; sy/ � ". Thus, d1 is uniformly equivalent to

. In particular, d1 is admissible. For r > 0, we define an admissible invariant
metric dr for E by dr.x; y/ D d1.rx; ry/ (D sup0<s�r 
.sx; sy/). Observe that
dr.tx; 0/ � dr.x; 0/ for each x 2 E and t 2 I.

Now, let Q \ .0; 1� D frn j n 2 Ng, where r1 D 1. We define d.x; y/ DP
n2N 2�nC1drn.x; y/. Then, d is an invariant metric on E and


.x; y/ � d1.x; y/ � d.x; y/ � 2d1.x; y/;

hence d is admissible (if 
 is bounded then so is d ). It also follows that d.tx; 0/ �
d.x; 0/ for each x 2 E and t 2 I. It remains to show that d.tx; 0/ 6D d.x; 0/ for
each x 2 E n f0g and 0 < t < 1. Since Q \ .0; 1/ is dense in .0; 1/, it suffices to
show that d.tx; 0/ 6D d.x; 0/ for each x 2 E n f0g and t 2 Q\ .0; 1/. Assume that
there exists some x 2 E n f0g and t 2 Q\ .0; 1/ such that d.tx; 0/ D d.x; 0/. Note
that dr.tx; 0/ D dr.x; 0/ for each r 2 Q \ .0; 1/. Then, it follows that

dt.x; 0/ D dt .tx; 0/ D dt2.x; 0/ D dt2.tx; 0/
D dt3.x; 0/ D dt3.tx; 0/ D � � � ;
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so dt.x; 0/ D dtnC1 .x; 0/ D dt.t
nx; 0/ for every n 2 N. Since limn!1 tn D

0, it follows that dt.x; 0/ D limn!1 dt.tnx; 0/ D 0, hence x D 0, which is a
contradiction. ut

The topological linear space R
N D s (the space of sequences) has the following

admissible F -norms:

sup
i2N

min
˚
1=i; jx.i/j�;

X

i2N
min

˚
2�i ; jx.i/j�;

X

i2N

2�i jx.i/j
1C jx.i/j ; : : : :

The first two do not satisfy condition (F �3 ), but the third does.
We now consider the completion of metric linear spaces (cf. 2.3.10).

Proposition 3.6.5. Let G be a topological group such that the topology is induced
by an invariant metric d . The completion eG D .eG; Qd/ of .G; d/ is a group such
that G is its subgroup and Qd is invariant. Similarly, the completion of a metric (F -
normed or normed) linear space E is a metric (F -normed or normed) linear space
containingE as a linear subspace.

Proof. We define the algebraic operations on eG as follows: for each x; y 2
eG, choose sequences .xi /i2N and .yi /i2N in G so as to converge to x and y,
respectively. Since d is invariant, .xiyi /i2N and .x�1i / are Cauchy sequences in
G. Then, define xy and x�1 as the limits of .xiyi /i2N and .x�1i /i2N, respectively. It
is easily verified that these are well-defined. Since Qd.x; y/ D limi!1 d.xi ; yi /, it
is also easy to see that Qd is invariant, which implies the continuity of the algebraic
operations .x; y/ 7! xy and x 7! x�1.

For the completion eE of a metric linear space E , we can define not only addition
but also scalar multiplication in the same way. To see the continuity of scalar
multiplication, let x 2 eE and t 2 R. Choose a sequence .xi /i2N in E so as to
converge to x. For each " > 0, we can choose ı0 > 0 (depending on t) so that

z 2 E; d.z; 0/ < ı0; jt � t 0j < ı0) d.t 0z; 0/ < "=4:

Then, we have n0 2 N such that d.xn; xn0/ < ı0 for every n � n0. Choose ı1 > 0

so that ı1 < ı0 and
jsj < ı1) d.sxn0 ; 0/ < "=4:

Now, let x0 2 eE and t 0 2 R such that Qd.x; x0/ < ı0 and jt � t 0j < ı1. Take a
sequence .x0i /i2N in E so as to converge to x0 and choose n1 2 N so that n1 � n0
and d.xn; x0n/ < ı0 for every n � n1. Then, for every n � n1, it follows that

d.txn; t
0x0n/ � d.txn; txn0/C d.txn0 ; t 0xn0/C d.t 0xn0 ; t 0xn/C d.t 0xn; t 0x0n/
D d.t.xn � xn0/; 0/C d..t � t 0/xn0 ; 0/

C d.t 0.xn0 � xn/; 0/C d.t 0.xn � x0n/; 0/
< "=4C "=4C "=4C "=4 D ":
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When E is an F -normed (or normed) linear space, it is easy to see that the F -norm
(or norm) for E naturally extends to eE . ut

Concerning the completeness of admissible invariant metrics, we have the
following:

Theorem 3.6.6. Let G be a completely metrizable topological group. Every ad-
missible invariant metric for G is complete. In particular, a metric linear space is
complete if it is absolutely Gı (i.e., completely metrizable).

Proof. Let d be an admissible invariant metric for G and eG be the completion
of .G; d/. Note that eG is a topological group by Proposition 3.6.5. It suffices to
show that eG D G. Since G is completely metrizable, G is a dense Gı-set in eG
(Theorem 2.5.2), hence we can write eGnG DSn2N Fn, where each Fn is a nowhere
dense closed set in eG. Assume eG nG 6D ; and take x0 2 eG nG. Since x0x 2 eG nG
for every x 2 G, it follows that G � S

n2N x�10 Fn, where each x�10 Fn is also a
nowhere dense closed set in eG. Then, we have

eG D
[

n2N
Fn [

[

n2N
x�10 Fn;

which is the countable union of nowhere dense closed sets. This contradicts the
complete metrizability of eG (the Baire Category Theorem 2.5.1). ut
Corollary 3.6.7. Let G be a metrizable topological group. Every completely
metrizable Abelian subgroup H of G is closed in G. Hence, in a metrizable
topological linear space, every completely metrizable linear subspace is closed.

Proof. By Theorem 3.6.2, G has an admissible left invariant metric d . Because H
is an Abelian subgroup of G, the restriction of d on H is an admissible invariant
metric for H , which is complete by Theorem 3.6.6. Hence, it follows that H is
closed in G. ut

It is said that an F -norm (or an F -normed space) is complete if the metric
induced by the F -norm is complete. It should be noted that every metrizable
topological linear space has an admissible F -norm (Proposition 3.6.4) and that
every admissible F -norm for a completely metrizable topological linear space is
complete (Theorem 3.6.6). A completely metrizable topological linear space (or a
completeF -normed linear space) is called an F -space. A Fréchet space is a locally
convex F -space, that is, a completely metrizable locally convex topological linear
space. Every Banach space is a Fréchet space, but the converse does not hold. In
fact, s D R

N is a Fréchet space but it is not normable (Proposition 1.2.1).
Concerning the quotient of an F -normed (or normed) linear space, we have the

following:

Proposition 3.6.8. Let E D .E; k � k/ be an F -normed (or normed) linear space
and F a closed linear subspace of E . Then, the quotient space E=F has the
admissible F -norm (or norm) jjj�jjj D infx2� kxk, where if k � k is complete then
so is jjj � jjj. Hence, if E is (completely) metrizable or (completely) normable then so
is E=F .
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Proof. It is easy to see that jjj � jjj is an F -norm (or a norm). It should be noted that the
closedness of F is necessary for condition (F2). Let q W E ! E=F be the natural
linear surjection, i.e., q.x/ D x C F . Then, for each " > 0,

˚
q.x/

ˇ
ˇ kxk < "� D ˚� 2 E=F ˇ

ˇ jjj�jjj < "�;

which means that q W E ! .E=F; jjj � jjj/ is open and continuous, so it is a quotient
map. Then, jjj � jjj induces the quotient topology, i.e., jjj � jjj is admissible for the quotient
topology. It also follows that if E is locally convex then so is E=F .

We should remark the following fact:

Fact. jjj� � � 0jjj D inf
˚kx � x0k ˇˇ x0 2 � 0� for each x 2 �.

Indeed, the left side is not greater than the right side by definition. For each x; y 2 � and
y0 2 �0,

ky � y0k D kx � .y0 C x � y/k � inf
˚kx � x0k ˇˇ x0 2 �0

�

because y0 C x � y 2 �0. Thus, the left side is not less than the right side.

We shall show that if k � k is complete then so is jjj � jjj. To see the completeness
of jjj � jjj, it suffices to prove that each Cauchy sequence .�i /i2N in E=F contains a
convergent subsequence. Then, by replacing .�i /i2N with its subsequence, we may
assume that jjj�i � �iC1jjj < 2�i for each i 2 N. Using the fact above, we can
inductively choose xi 2 �i so that kxi � xiC1k < 2�i . Then, .xi /i2N is a Cauchy
sequence in E , which converges to some x 2 E . It follows that .�i /i2N converges
to some x C F . ut

In the above, E=F is called the quotient F -normed (or normed) linear space
with the F -norm (or norm) jjj � jjj, which is called the quotient F -norm (or norm).
Note that E=F is locally convex if so is E . If E is a Banach space, a Fréchet space,
or an F -space, then so is E=F for any closed linear subspace F of E .

Recall that A � E is topologically bounded if, for each neighborhood U of
0 2 E , there exists some r 2 R such that A � rU .

Theorem 3.6.9. A topological linear space E is normable if and only if there is a
topologically bounded convex neighborhood of 0 2 E .

Proof. The “only if” part is trivial. To see the “if” part, let V be a topologically
bounded convex neighborhood of 0 2 E . Then, W D V \ .�V / is a topologically
bounded circled convex neighborhood of 0 2 E . Hence, the Minkowski functional
pW is a norm on E by Proposition 3.3.4. By Corollary 3.4.12,

˚
x 2 E ˇ

ˇ pW .x/ < "
� D "p�1W .Œ0; 1// D " intW for each " > 0.

For each neighborhoodU of 0 2 E , we can choose r > 0 such thatW � rU . Then,

˚
x 2 E ˇ

ˇ pW .x/ < r
�1� D r�1 intW � r�1W � U;

hence pW induces the topology for E . ut
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For the local convexity, we have the following:

Theorem 3.6.10. A (metrizable) topological linear spaceE is locally convex if and
only if E is linearly homeomorphic to a linear subspace of the (countable) productQ
�2� E� of normed linear spaces E�.

Proof. As is easily observed, the product of locally convex topological linear spaces
is locally convex, and so is any linear subspace of a locally convex topological linear
space. Moreover, the countable product of metrizable spaces is metrizable. Then, the
“if” part follows.

We show the “only if” part. By the local convexity,E has a neighborhood basis
fV� j�2�g of 0 2 E consisting of circled closed convex sets (cf. Proposition 3.4.2),
where card� D @0 if E is metrizable (Theorem 3.6.1). For each � 2 �, let F� be a
maximal linear subspace of E contained in V�. (The existence of F� is guaranteed
by Zorn’s Lemma.) Then, F� is closed in E . Let q� W E ! E=F� be the natural
linear surjection, where we do not give the quotient topology to E=F� but we want
to define a norm on E=F�.

Observe that q�.V�/ is a circled convex set in E=F� and 0 2 coreq�.V�/.
Moreover, RC� 6� q�.V�/ for each � 2 .E=F�/ n f0g. Indeed, take x 2 E n F�
so that q�.x/ D �. By the maximality of F�, Rx C F� 6� V�, i.e., tx C y 62 V� for
some t 2 R and y 2 F�, where we can take t > 0 because V� is circled. For each
z 2 F�,

tx C y D 1
2
.2tx C z/C 1

2
.2y � z/:

Since 2y � z 2 F� � V�, it follows that 2tx C z 62 V�. Then, 2t� D q�.2tx/ 62
q�.V�/.

By Proposition 3.3.4, the Minkowski functional p� D pq�.V�/ W E=F� ! R for
q�.V�/ is a norm. Thus, we have a normed linear space E� D .E=F�; p�/. Observe
that

0 2 intV� D coreV� � q�1� .core q�.V�//

D q�1�
�
p�1q�.V�/.Œ0; 1//

� D .p�q�/�1.Œ0; 1//:

By Proposition 3.4.11, the sublinear functional p�q� W E ! R is continuous, which
implies that q� W E ! E� is continuous.

Let h W E ! Q
�2� E� be the linear map19 defined by h.x/ D .q�.x//�2�. If

x 6D 0 2 E then x 62 V� (so x 62 F�) for some � 2 �, which implies q�.x/ 6D
0, hence h.x/ 6D 0. Thus, h is a continuous linear injection. To see that h is an
embedding, it suffices to show that

h.V�/ � h.E/ \ pr�1� .p�1� .Œ0; 12 /// for each � 2 �.

19That is, a continuous linear function.
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If p�.pr�h.x// <
1
2

then

q�.2x/ D pr�h.2x/ 2 p�1� .Œ0; 1// � q�.V�/;
hence 2x � y 2 F� for some y 2 V�. Then, it follows that

x D 1
2
.2x � y/C 1

2
y 2 V�;

so h.x/ 2 h.V�/. This completes the proof. ut
Combining Theorem 3.6.10 with Proposition 3.6.5 and Corollary 3.6.7, we have

the following:

Corollary 3.6.11. A topological linear space E is a Fréchet space if and only if
E is linearly homeomorphic to a closed linear subspace of the countable productQ
i2NEi of Banach spaces Ei . ut

3.7 The Closed Graph and Open Mapping Theorems

This section is devoted to two very important theorems, the Closed Graph Theorem
and the Open Mapping Theorem. They are proved using the Baire Category
Theorem 2.5.1.

Theorem 3.7.1 (CLOSED GRAPH THEOREM). LetE andF be completely metriz-
able topological linear spaces and f W E ! F be a linear function. If the graph of
f is closed in E � F , then f is continuous.

Proof. It suffices to show the continuity of f at 0 2 E . Let d and 
 be admissible
complete invariant metrics for E and F , respectively (cf. Proposition 3.6.4).

First, we show that for each " > 0, there is some ı."/ > 0 such that
Bd .0; ı."// � cl f �1.B
.0; "//. Since F D S

n2N nB
.0; "=2/ and f is linear,
it follows that E D S

n2N nf �1.B
.0; "=2//. By the Baire Category Theo-
rem 2.5.1, int clnf �1.B
.0; "=2// 6D ; for some n 2 N, which implies that
int cl f �1.B
.0; "=2// 6D ;. Let z 2 int cl f �1.B
.0; "=2// and choose ı."/ > 0

so that
zC Bd .0; ı."// D Bd .z; ı."// � cl f �1.B
.0; "=2//:

Then, it follows that

Bd .0; ı."// � cl f �1.B
.0; "=2//� z � cl f �1.B
.0; "//:

The second inclusion can be proved as follows: for each y 2 clf �1.B
.0; "=2//
and � > 0, we have y0; z0 2 f �1.B
.0; "=2// such that d.y; y0/; d.z; z0/ < �=2,
which implies d.y � z; y0 � z0/ < �. Observe that


.f .y0 � z0/; 0/ D 
.f .y0/; f .z0// � 
.f .y0/; 0/C 
.f .z0/; 0/ < ";



3.7 The Closed Graph and Open Mapping Theorems 119

which means y0 � z0 2 f �1.B
.0; "//. Therefore, y � z 2 clf �1.B
.0; "//.
Now, for each " > 0 and x 2 Bd .0; ı."=2//, we can inductively choose xn 2 E ,

n 2 N, so that xn 2 f �1.B
.0; 2�n"// and

d
�
x;
Pn

iD1 xi
� D d �x �Pn

iD1 xi ; 0
�
< min

˚
2�n; ı.2�n�1"/

�
:

Indeed, if x1; : : : ; xn�1 have been chosen, then

x �
n�1X

iD1
xi 2 Bd .0; ı.2�n"// � cl f �1.B
.0; 2�n"//;

hence we can choose xn 2 f �1.B
.0; 2�n"// so that

d
�
x;
Pn

iD1 xi
� D d �x �Pn�1

iD1 xi ; xn
�
< min

˚
2�n; ı.2�n�1"/

�
:

Since 
.f .xn/; 0/ < 2�n" for each n 2 N, it follows that .f .
Pn

iD1 xi //n2N is a
Cauchy sequence, which converges to some y 2 F . For each n 2 N,



�
f .
Pn

iD1 xi /; 0
� �

nX

iD1

.f .xi /; 0/ <

nX

iD1
2�i " < ";

hence y 2 B
.0; "/. On the other hand,
Pn

iD1 xi converges to x. Since the graph
of f is closed in E � F , the point .x; y/ belongs to the graph of f , which means
f .x/ D y 2 B
.0; "/. Thus, we have f .Bd .0; ı."=2/// � B
.0; "/. Therefore, f is
continuous. ut
Corollary 3.7.2. Let E and F be completely metrizable topological linear spaces.
Then, every continuous linear isomorphism f W E ! F is a homeomorphism.

Proof. In general, the continuity of f implies the closedness of the graph of f in
E � F . By changing coordinates, the graph of f can be regarded as the graph of
f �1. Then, it follows that the graph of f �1 is closed in F � E , which implies the
continuity of f �1 by Theorem 3.7.1. ut
Theorem 3.7.3 (OPEN MAPPING THEOREM). LetE andF be completely metriz-
able topological linear spaces. Then, every continuous linear surjection f W E !
F is open.

Proof. Since f �1.0/ is a closed linear subspace of E , the quotient linear space
E=f �1.0/ is completely metrizable by Proposition 3.6.8. Then, f induces the
continuous linear isomorphism Qf W E=f �1.0/ ! F . By Corollary 3.7.2, Qf is a
homeomorphism. Note that the quotient map q W E ! E=f �1.0/ is open. Indeed,
for every open set U in E , q�1.q.U // D U C f �1.0/ is open in E , which means
that q.U / is open in E=f �1.0/. Hence, f is also open. ut
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Note. In the above, the Closed Graph Theorem is first proved and then the Open Mapping
Theorem is obtained as a corollary of the Closed Graph Theorem. Conversely, we can
directly prove the Open Mapping Theorem and then obtain the Closed Graph Theorem
as a corollary of the Open Mapping Theorem.

Direct Proof of the Open Mapping Theorem. Let d and 
 be admissible complete invariant
metrics for E and F , respectively.

First, we show that for each " > 0, there is some ı."/ > 0 such that B
.0; ı."// �
cl f .Bd .0; "//. Since E D S

n2N nBd .0; "=2/, it follows that F D f .E/ D S
n2N nf

.Bd .0; "=2//. By the Baire Category Theorem 2.5.1, int cl nf .Bd .0; "=2// 6D ; for some
n 2 N, which implies that int clf .Bd .0; "=2// 6D ;. Let z 2 int cl f .Bd .0; "=2// and
choose ı."/ > 0 so that

zC B
.0; ı."// D B
.z; ı."// � cl f .Bd .0; "=2//:

Then, it follows that

B
.0; ı."// � clf .Bd .0; "=2// � z � cl f .Bd .0; "//;

where the second inclusion can be seen as follows: for y 2 clf .Bd .0; "=2// and � > 0,
choose y0; z0 2 Bd .0; "=2/ so that 
.y; f .y0//, 
.z; f .z0// < �=2. Then, observe that

.y � z; f .y0 � z0// < � and d.y0 � z0; 0/ D d.y0; z0/ < ", hence y � z 2 clf .Bd .0; "//.

Next, we prove that cl f .Bd .0; "=2// � f .Bd .0; "// for each " > 0. For each y 2
cl f .Bd .0; "=2//, choose x1 2 Bd .0; "=2/ so that


.y; f .x1// < minf2�1; ı.2�2"/g:
By induction, we can choose xn 2 Bd .0; 2�n"/, n 2 N, so that



�
y; f

�Pn
iD1 xi

�� D 

�
y �Pn

iD1 f .xi /; 0
�
< minf2�n; ı.2�n�1"/g:

Indeed, if x1; : : : ; xn�1 have been chosen, then

y �
n�1X

iD1

f .xi / 2 B
.0; ı.2�n"// � clf .Bd .0; 2�n"//;

hence we can choose xn 2 Bd .0; 2�n"/ so that



�
y; f

�Pn
iD1 xi

�� D 

�
y �Pn�1

iD1 f .xi /; f .xn/
�

< minf2�n; ı.2�n�1"/g:
Since .

Pn
iD1 xi /n2N is a Cauchy sequence in E , it converges to some x 2 E . On the other

hand, .f .
Pn

iD1 xi //n2N converges to y. By the continuity of f , we have f .x/ D y. For
each n 2 N,

d
�Pn

iD1 xi ; 0
� �

nX

iD1

d.xi ; 0/ <
nX

iD1

2�i " < ";

hence x 2 Bd .0; "/. Thus, it follows that clf .Bd .0; "=2// � f .Bd .0; "//.
To see that f is open, let U be an open set in E . For each x 2 U , choose " > 0 so that

Bd .0; "/ � �x C U . Since

B
.0; ı."=2// � clf .Bd .0; "=2// � f .Bd .0; "// � �f .x/C f .U /;
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it follows that B
.f .x/; ı."=2// � f .U /. Hence, f .U / is open in F . ut
Now, using the Open Mapping Theorem, we shall prove the Closed Graph Theorem.

Proof of the Closed Graph Theorem. The product space E � F is a completely metrizable
topological linear space. The graph G of f is a linear subspace of E�F that is completely
metrizable because it is closed in E�F . Since p D prE jG W G ! E is a homeomorphism
by the Open Mapping Theorem, f D prF ı p�1 is continuous. ut

Remark 13. In both the Closed Graph Theorem and the Open Mapping Theorem,
the completeness is essential. Let E D .`1; k � k2/, where `1 � `2 as sets and k � k2
is the norm inherited from `2. Then, E is not completely metrizable. Indeed, if so,
it would be closed in `2 by Corollary 3.6.7, but E is dense in `2 and E 6D `2. The
linear bijection f D id W `1 ! E is continuous, but is not a homeomorphism, so it
is not an open map. It follows from the continuity of f that the graph of f is closed
in `1 � E , hence the graph of f �1 is closed in E � `1. However, f �1 W E ! `1 is
not continuous.

3.8 Continuous Selections

LetX and Y be spaces and ' W X ! P.Y / be a set-valued function, where P.Y / is
the power set of Y . We denote P0.Y / D P.Y / n f;g. A (continuous) selection for
' is a map f W X ! Y such that f .x/ 2 '.x/ for each x 2 X . For a topological
linear space Y , we denote by Conv.Y / the set of all non-empty convex sets in Y . In
this section, we consider the problem of when a convex-valued function ' W X !
Conv.Y / has a selection.

It is said that ' W X ! P.Y / is lower semi-continuous (l.s.c.) (resp. upper
semi-continuous (u.s.c.)) if, for each open set V in Y ,

˚
x 2 X ˇ

ˇ '.x/ \ V 6D ;� �resp.
˚
x 2 X ˇ

ˇ '.x/ � V �� is open in X ;

equivalently, for each open set V in Y and x0 2 X such that '.x0/ \ V 6D ; (resp.
'.x0/ � V ), there exists a neighborhood U of x0 in X such that '.x/ \ V 6D ;
(resp. '.x/ � V ) for every x 2 U . We say that ' is continuous if ' W X ! P.Y /
is l.s.c. and u.s.c. The continuity of ' coincides with that in the usual sense when
P.Y / is regarded as a space with the topology generated by the following sets:

U� D ˚A 2 P.Y /
ˇ
ˇ A \ U 6D ;� and UC D ˚A 2 P.Y /

ˇ
ˇ A � U �;

whereU is non-empty and open in Y . This topology is called the Vietoris topology,
where ; is isolated because f;g D ;C (; 62 U� for any open set U in Y ). The
Vietoris topology has an open basis consisting of the following sets: V.;/ D f;g
and

V.U1; : : : ; Un/ D
˚
A � Y ˇ

ˇ A �Sn
iD1 Ui ; 8i D 1; : : : ; n; A \ Ui 6D ;

�
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D

 n[

iD1
Ui

�C
\

n\

iD1
U�i ;

where n 2 N and U1; : : : ; Un are open in Y . In fact, U� D V.U;X/ and UC D
V.U / [ V.;/. The subspace F1.Y / D ffyg j y 2 Y g of P0.Y / consisting of all
singletons is homeomorphic to Y because UC \ F1.Y / D U� \ F1.Y / D F1.U /
for each open set U in Y . It should be noted that P0.Y / with the Vietoris topology
is not T1 in general.

For example, the space P0.I/ is not T1. Indeed, for any neighborhood of U of I 2 P0.I/,
there are open sets U1; : : : ; Un in I such that I 2 V.U1; : : : ; Un/ � U . Then, D 2
V.U1; : : : ; Un/ � U for every dense subset D � I. In particular, I\Q 2 U .

The subspace Comp.Y / of P.Y / consisting of all non-empty compact sets is
Hausdorff.20 Indeed, for each A 6D B 2 Comp.Y /, we may assume that A nB 6D ;.
Take y0 2 BnA. Because of the compactness ofA, we have disjoint open setsU and
V in Y such thatA � U and y0 2 V . Then,A 2 UC, B � V �, and UC\V � 6D ;.
It will be prove that Comp.Y / is metrizable if Y is metrizable (Proposition 5.12.4).
Moreover, Cld.Y / is metrizable if and only if Y is compact and metrizable (cf. Note
after Proposition 5.12.4).

By the same argument as above, it follows that if Y is regular then the subspace Cld.Y /
of P.Y / consisting of all non-empty closed sets is Hausdorff. One should note that the
converse is also true, that is, if Cld.Y / is Hausdorff then Y is regular. When Y is not regular,
we have a closed set A � Y and y0 2 Y nA such that if U and V are open sets withA � U
and y0 2 V then U \V 6D ;. Let B D A[fy0g 2 Cld.Y / and let U1; : : : ; Un, U 0

1 ; : : : ; U
0

n0

be open sets in Y such that

A 2 V.U1; : : : ; Un/ and B 2 V.U 0

1 ; : : : ; U
0

n0

/:

Let U0 D TfU 0

i j U 0

i \ A D ;g. Since y0 2 U0, we have y1 2 U0 \Sn
iD1 Ui . It follows

that
A[ fy1g 2 V.U1; : : : ; Un/\ V.U 0

1 ; : : : ; U
0

n0

/:

Thus, Cld.Y / is not Hausdorff.

Proposition 3.8.1. For a function g W Y ! X , the set-valued function g�1 W X !
P.Y / is l.s.c. (resp. u.s.c.) if and only if g is open (resp. closed).

Proof. This follows from the fact that, for V � Y ,

˚
x 2 X ˇ

ˇ g�1.x/ \ V 6D ;� D g.V / and
˚
x 2 X ˇ

ˇ g�1.x/ � V � D X n ˚x 2 X ˇ
ˇ g�1.x/ \ .X n V / 6D ;�

D X n g.X n V /: �

20Recall that Y is assumed to be Hausdorff.
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Because of the following proposition, we consider the selection problem for l.s.c.
set-valued functions.

Proposition 3.8.2. Let ' W X ! P0.Y / be a set-valued function. Assume that, for
each x0 2 X and y0 2 '.x0/, there exists a neighborhood U of x0 in X and a
selection f W U ! Y for 'jU such that f .x0/ D y0. Then, ' is l.s.c.

Proof. Let V be an open set in Y and x0 2 X such that '.x0/ \ V 6D ;. Take
any y0 2 '.x0/ \ V . From the assumption, there is a neighborhood U of x0 in X
with a selection f W U ! Y for 'jU such that f .x0/ D y0. Then, f �1.V / is a
neighborhood of x0 in X and f .x/ 2 '.x/ \ V for each x 2 f �1.V /. ut
Lemma 3.8.3. Let '; W X ! P.Y / be set-valued functions such that cl'.x/ D
cl .x/ for each x 2 X . If ' is l.s.c. then so is  .

Sketch of Proof. This follows from the fact that, for each open set V in Y and B � Y ,
V \ B 6D ; if and only if V \ clB 6D ;.

Lemma 3.8.4. Let ' W X ! P.Y / be l.s.c.,A be a closed set inX , and f W A! Y

be a selection for 'jA. Define  W X ! P.Y / by

 .x/ D
(
ff .x/g if x 2 A;
'.x/ otherwise:

Then,  is also l.s.c.

Proof. For each open set V in Y , f �1.V / is open in A and

f �1.V / � ˚x 2 X ˇ
ˇ '.x/ \ V 6D ;�;

where the latter set is open in X because ' is l.s.c. Then, we can choose an open set
U in X so that f �1.V / D U \A and U � fx 2 X j '.x/\ V 6D ;g. Observe that

˚
x 2 X ˇ

ˇ  .x/ \ V 6D ;� D U [ �˚x 2 X ˇ
ˇ '.x/ \ V 6D ;� nA�:

Thus, it follows that  is l.s.c. ut
For each W � Y 2 and y0 2 Y , we denote

W.y0/ D
˚
y 2 Y ˇ

ˇ .y0; y/ 2 W
�
:

If W is a neighborhood of the diagonal �Y D f.y; y/ j y 2 Y g in Y 2, then W.y0/
is a neighborhood of y0 in Y .

Lemma 3.8.5. Let ' W X ! P.Y / be l.s.c., f W X ! Y be a map, and W be
a neighborhood of �Y in Y 2. Define a set-valued function  W X ! P.Y / by
 .x/ D '.x/ \W.f .x// for each x 2 X . Then,  is l.s.c.
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Proof. Let V be an open set in Y and x0 2 X such that  .x0/ \ V 6D ;. Take any
y0 2 '.x0/ \ W.f .x0// \ V . Since .f .x0/; y0/ 2 W , there are open sets V1 and
V2 in Y such that .f .x0/; y0/ 2 V1 � V2 � W . Then, x0 has the following open
neighborhood in X :

U D f �1.V1/\
˚
x 2 X ˇ

ˇ '.x/ \ V2 \ V 6D ;
�
:

For each x 2 U , we have y 2 '.x/ \ V2 \ V . Since .f .x/; y/ 2 V1 � V2 � W ,
it follows that y 2 '.x/ \ W.f .x// \ V , hence  .x/ \ V 6D ;. Therefore,  is
l.s.c. ut

Let E be a linear space. The set of all non-empty convex sets in E is denoted by
Conv.E/. Recall that hAi denotes the convex hull of A � E .

Lemma 3.8.6. Let E be a topological linear space and ' W X ! P0.E/ be an
l.s.c. set-valued function. Define a convex-valued function  W X ! Conv.E/ by
 .x/ D h'.x/i for each x 2 X . Then,  is also l.s.c.

Proof. Let V be an open set inE and x0 2 X such that .x0/\V 6D ;. Choose any
y0 D Pn

iD1 ti yi 2  .x0/ \ V , where y1; : : : ; yn 2 '.x0/ and t1; : : : ; tn � 0 withPn
iD1 ti D 1. Then, each yi has an open neighborhood Vi such that t1V1 C � � � C

tnVn � V . Since ' is l.s.c.,

U D
n\

iD1

˚
x 2 X ˇ

ˇ '.x/ \ Vi 6D ;
�

is an open neighborhood of x0 in X . For each x 2 U , let zi 2 '.x/ \ Vi , i D
1; : : : ; n. Then,

Pn
iD1 ti zi 2  .x/ \ V , hence  .x/ \ V 6D ;. Therefore, is l.s.c.

ut
Lemma 3.8.7. Let X be paracompact, E be a topological linear space, and ' W
X ! Conv.E/ be an l.s.c. convex-valued function. Then, for each convex open
neighborhood V of 0 in E , there exists a map f W X ! E such that f .x/ 2
'.x/C V for each x 2 X .

Proof. For each y 2 E , let

Uy D
˚
x 2 X ˇ

ˇ '.x/ \ .y � V / 6D ;�:

Since ' is l.s.c., we have U D fUy j y 2 Eg 2 cov.X/. From paracompactness, X
has a locally finite partition of unity .f�/�2� subordinated to U . For each � 2 �,
choose y� 2 E so that suppf� � Uy� . We define a map f W X ! E by f .x/ DP

�2� f�.x/y�. If f�.x/ 6D 0 then x 2 Uy� , which means that '.x/\.y��V / 6D ;,
i.e., y� 2 '.x/C V . Since each '.x/C V is convex, f .x/ 2 '.x/C V . ut
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Now, we can prove the following:

Theorem 3.8.8 (MICHAEL SELECTION THEOREM). Let X be a paracompact
space and E D .E; d/ be a locally convex metric linear space.21 Then, every l.s.c.
convex-valued function ' W X ! Conv.E/ admits a selection if each '.x/ is d -
complete. Moreover, if A is a closed set in X then each selection f W A ! E for
'jA can extend to a selection Qf W X ! E for '.

Proof. Let fVi j i 2 Ng be a neighborhood basis of 0 in E such that each Vi
is symmetric, convex, and diamVi < 2�.iC1/. By induction, we construct maps
fi W X ! E , i 2 N, so that, for each x 2 X and i 2 N,

(1) fi .x/ 2 '.x/C Vi and
(2) d.fiC1.x/; fi .x// < 2�i .

The existence of f1 is guaranteed by Lemma 3.8.7. Assume we have maps
f1; : : : ; fn satisfying (1) and (2). Define  W X ! Conv.E/ by

 .x/ D '.x/ \ .fn.x/C Vn/ for each x 2 X:

Since Vn is symmetric, we have  .x/ 6D ; by (1). Consider the neighborhoodW D
f.x; y/ 2 E2 j y � x 2 Vng of �E in E2. Then, W.fn.x// D fn.x/ C Vn. By
Lemma 3.8.5, is l.s.c. We can apply Lemma 3.8.7 to obtain a map fnC1 W X ! E

such that
fnC1.x/ 2  .x/C VnC1 for each x 2 X:

Then, as is easily observed, fnC1 satisfies (1) and (2). Thus, we have the desired
sequence of maps fi , i 2 N.

Using maps fi W X ! E , i 2 N, we shall define a selection f W X ! E for '.
For each x 2 X and i 2 N, we have xi 2 '.x/ such that d.fi .x/; xi / < 2�.iC1/ by
(1). Then, .xi /i2N is Cauchy in '.x/. Since '.x/ is complete, .xi /i2N converges to
f .x/ 2 '.x/. Thus, we have f W X ! E . Note that .fi /i2N uniformly converges
to f , so f is continuous. Hence, f is a selection for '.

For the additional statement, apply Lemma 3.8.4. ut
Concerning factors of a metric linear space, we have the following:

Corollary 3.8.9 (BARTLE–GRAVES–MICHAEL). Let E be a locally convex met-
ric linear space and F be a linear subspace of E that is complete (so a Fréchet
space). Then, E � F � E=F . In particular, E � R � G for some metric linear
space G.

Proof. Note that the quotient space E=F is metrizable (Proposition 3.6.8) and the
natural map g W E ! E=F is open, hence g�1 W E=F ! Conv.E/ is l.s.c. by
Proposition 3.8.1. Since g�1g.x/ D x C F is complete for each x 2 E , we apply
the Michael Selection Theorem 3.8.8 to obtain a map f W E=F ! E that is a

21Recall that a metric linear space is a linear space with a linear metric (cf. Sect. 3.5).
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selection for g�1, i.e., gf D id. Then, x � fg.x/ 2 F for each x 2 E . Hence, a
homeomorphism h W E ! F � .E=F / can be defined by

h.x/ D .x � fg.x/; g.x// for each x 2 E .

In fact, h�1.y; z/ D y C f .z/ for each .y; z/ 2 F � E=F . ut
By combining the Michael Selection Theorem 3.8.8 and the Open Mapping The-

orem 3.7.3, the following Bartle–Graves Theorem can be obtained as a corollary:

Theorem 3.8.10 (BARTLE–GRAVES). Let E and F be Fréchet spaces and f W
E ! F be a continuous linear surjection. Then, there is a map g W F ! E such
that fg D id. Therefore, E � F � kerf by the homeomorphism h defined as
follows:

h.x/ D .f .x/; x � gf .x// for each x 2 E . �

We show that each Banach space is a (topological) factor of `1.� /. To this end,
we need the following:

Theorem 3.8.11 (BANACH–MAZUR, KLEE). For every Banach spaceE , there is
a continuous linear surjection q W `1.� /! E , where card� D densE .

Proof. The unit closed ball BE of E has a dense set fe� j � 2 � g. SinceP
�2� jx.�/j D kxk <1 for each x 2 `1.� / and E is complete, we can define a

linear map q W `1.� /! E as follows:

q.x/ D
X

�2�
x.�/e� for each x 2 E .22

Since kq.x/k �P�2� jx.�/j D kxk, it follows that q is continuous.
To see that q is surjective, it suffices to show BE � q.`1.� //. For each y 2 BE ,

we can inductively choose e�i , i 2 N, so that �i 6D �j if i 6D j , and

ky � e�1k < 2�1; ky � e�1 � 2�1e�2k < 2�2;
ky � e�1 � 2�1e�2 � 2�2e�3k < 2�3; : : : :

We have x 2 `1.� / defined by

x.�/ D
(
21�i if � D �i ;
0 otherwise.

Then, it follows that y DP1iD1 21�ie�i D q.x/. This completes the proof. ut

22See Proposition 1.2.3.
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As a combination of the Bartle–Graves Theorem 3.8.10 and Theorem 3.8.11
above, we have the following:

Corollary 3.8.12. For any Banach space E , there exists a Banach space F such
that E � F � `1.� /, where card� D densE . ut

In the Michael Selection Theorem 3.8.8, the paracompactness of X is necessary.
Actually, we have the following characterization:

Theorem 3.8.13. A space X is paracompact if and only if the following holds for
any Banach space E: if ' W X ! Conv.E/ is l.s.c. and each '.x/ is closed, then '
has a selection.

Proof. Since the “only if” part is simply Theorem 3.8.8, it suffices to prove the “if”
part. For each U 2 cov.X/, we define ' W X ! P0.`1.U// as follows:

'.x/ D ˚z 2 `1.U/
ˇ
ˇ kzk D 1; 8U 2 U ; z.U / � 0; z.U / D 0 if x 62 U �:

Clearly, each '.x/ is a closed convex set.
To see that ' is l.s.c., letW be an open set in `1.U/ and z 2 '.x/\W . Choose ı >

0 so that B.z; 2ı/ � W . Then, we have V1; : : : ; Vn 2 U Œx� such that
Pn

iD1 z.Vi / >
1� ı, where

Tn
iD1 Vi is a neighborhood of x in X . We define z0 2 `1.U/ as follows:

z0.Vi / D z.Vi /
Pn

jD1 z.Vj /
and z0.U / D 0 for U 6D V1; : : : ; Vn.

It is easy to see that z0 2 '.x0/ \W for every x0 2 Tn
iD1 Vi . Thus, ' is l.s.c.

By the assumption, ' has a selection f W X ! `1.U/. For each U 2 U , let
fU W X ! I be the map defined by fU .x/ D f .x/.U / for x 2 X . Then, .fU /U2U
is a partition of unity such that f �1U ..0; 1�/ � U for everyU 2 U . The result follows
from Theorem 2.7.5. ut
Remark 14. Let g; h W X ! R be real-valued functions on a space X such that g
is u.s.c., h is l.s.c., and g.x/ � h.x/ for each x 2 X . We define the convex-valued
function ' W X ! Conv.R/ by '.x/ D Œg.x/; h.x/� for each x 2 X . Then, ' is
l.s.c. Indeed, for each open set V in R, let '.x/ \ V 6D ;. Take y 2 '.x/ \ V and
a < y < b so that Œa; b� � V . Since g is u.s.c. and h is l.s.c., x has a neighborhood
U in X such that x0 2 U implies g.x0/ < b and h.x0/ > a. Since g.x0/ � h.x0/, it
follows that

'.x0/ \ V � Œg.x0/; h.x0/� \ Œa; b� D Œmaxfa; g.x0/g;minfb; h.x0/g� 6D ;:

Now, we can apply the Michael Selection Theorem 3.8.8 to obtain a map f W
X ! R such that g.x/ � f .x/ � h.x/ for each x 2 X . This is analogous to
Theorem 2.7.6.
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3.9 Free Topological Linear Spaces

The free topological linear space over a spaceX is a topological linear spaceL.X/
that contains X as a subspace and has the following extension property:

(LE) For an arbitrary topological linear space F , every map f W X ! F of X
uniquely extends to a linear map23 Qf W L.X/! F .

X

\

f

F

L.X/

Qf

If such a space L.X/ exists, then it is uniquely determined up to linear homeomor-
phism, that is, ifE is a topological linear space that containsX and has the property
(LE), then E is linearly homeomorphic to L.X/.

Indeed, there exist linear maps ' W L.X/ ! E and  W E ! L.X/ such that 'jX D
 jX D idX . Since idL.X/ is a linear map extending idX , it follows from the uniqueness that
 ' D idL.X/. Similarly, we have ' D idE . Therefore, ' is a linear homeomorphism with
 D '�1.

Lemma 3.9.1. If X is a Tychonoff space,

(1) X is a Hamel basis for L.X/;
(2) L.X/ is regular.

Proof. (1): First, let F be the linear span of X . Applying (LE), we have a linear
map r W L.X/ ! F such that r jX D idX . Since r W L.X/ ! L.X/ is a linear
map extending idX , we have r D idL.X/, which implies F D L.X/, that is, L.X/
is generated by X .

To see thatX is linearly independent inL.X/, let x1; : : : ; xn 2 X , where xi 6D xj
if i 6D j . For each i D 1; : : : ; n, there is a map fi W X ! I such that fi .xi / D 1

and fi .xj / D 0 for j 6D i . Let f W X ! R
n be the map defined by f .x/ D

.f1.x/; : : : ; fn.x//. Then, by (LE), f extends to a linear map Qf W L.X/ ! R
n,

where Qf .xi / D f .xi / D ei for each i D 1; : : : ; n. Since e1; : : : ; en is linearly
independent in R

n, it follows that x1; : : : ; xn 2 X is linearly independent in L.X/.
(2): Due to the Fact in Sect. 3.4 and Proposition 3.4.2, it suffices to show that f0g

is closed in L.X/. Each z 2 L.X/ n f0g can be uniquely represented as follows:

z D
nX

iD1
tixi ; xi 2 X; ti 2 R n f0g;

23That is, a continuous linear function.
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where xi 6D xj if i 6D j . There is a map f W X ! I such that f .x1/ D 1 and
f .xi / D 0 for each i D 2; : : : ; n. By (LE), f extends to a linear map Qf W L.X/!
R. Then, Qf .z/ D t1f .x1/ D t1 6D 0 D Qf .0/. Hence, Qf �1.R n f0g/ is an open
neighborhood of z in L.X/ that misses 0. ut
Remark 15. In the definition of a free topological linear space L.X/, specify a map
� W X ! L.X/ instead of assuming X � L.X/ and replace the property (LE) with
the following universality:

(*) For each map f W X ! F ofX to an arbitrary topological linear space F , there
exists a unique linear map Qf W L.X/! F such that Qf � D f .

X

�

f

F

L.X/

Qf

Then, we can show that � is an embedding if X is a Tychonoff space.
To see that � is injective, let x 6D y 2 X . Then, there is a map f W X ! I with

f .x/ D 0 and f .y/ D 1. By (*), we have a linear map Qf W L.X/ ! R such that
Qf � D f . Then, observe �.x/ 6D �.y/.

To show that � W X ! �.X/ is open, let U be an open set in X . For each x 2 U ,
there is a map g W X ! I such that g.x/ D 0 and g.X n U / D 1. By (*), we
have a linear map Qg W L.X/ ! R such that Qg� D g. Then, V D Qg�1..� 1

2
; 1
2
// is

an open neighborhood �.x/ in L.X/. Since ��1.V / D g�1.Œ0; 1
2
// � U , it follows

that V \�.X/ � �.U /, hence �.U / is a neighborhood of �.x/ in �.X/. This means
that �.U / is open in �.X/. Thus, � W X ! �.X/ is open.

Since � is an embedding, X can be identified with �.X/, which is a subspace of
L.X/. Then, (*) is equivalent to (LE). Here, it should be noted that the uniqueness
of Qf in (*) is not used to prove that � is an embedding. Moreover, the linear map Qf
in (*) is unique if and only if L.X/ is generated by �.X/. (For the “only if” part,
refer to the proof of Lemma 3.9.1(1).)

Theorem 3.9.2. For every Tychonoff space X , there exists the free topological
linear space L.X/ over X .

Proof. There exists a collection F D ff� W X ! F� j � 2 �g such that, for an
arbitrary topological linear space F and each continuous map f W X ! F , there
exist � 2 � and a linear embedding ' W F� ! F such that 'f� D f .

Indeed, for each cardinal � � cardX , let T� be the topologies T on R
�
f such that .R�f ; T /

is a topological linear space. Then, the desired collection is

F D [

��cardX

[

T 2T�

C.X; .R�f ; T //:
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Consequently, for an arbitrary topological linear space F and each continuous map f W
X ! F , let � D card f .X/ � cardX . The linear span F 0 of f .X/ is linearly
homeomorphic to .R�f ; T / for some T 2 T� . Let  W F 0 ! .R�f ; T / be a linear

homeomorphism. Accordingly, we have g D  f 2 C.X; .R�f ; T //, and thus f D  �1g.

The product space
Q
�2� F� is a topological linear space. Let � W X !Q

�2� F�
be the map defined by �.x/ D .f�.x//�2�. We define L.X/ as the linear span of
�.X/ in

Q
�2� F�. Then, .L.X/; �/ satisfies the condition (*) in the above remark.

In fact, for an arbitrary topological linear space F and each map f W X ! F ,
there exists � 2 � and a linear embedding ' W F� ! F such that 'f� D f .
Consequently, we have a linear map Qf D 'pr�jL.X/ W L.X/! F and

Qf �.x/ D 'pr��.x/ D 'f�.x/ D f .x/ for every x 2 X .

X

�

f�

f

F

L.X/

Qf

� Q
�2� F� pr�

F�

'

Because L.X/ is generated by �.X/, a linear map Qf W L.X/ ! F is uniquely
determined by the condition that Qf � D f . As observed in the above remark, � is an
embedding, hence X can be identified with �.X/. Then, L.X/ satisfies (LE), i.e.,
L.X/ is the free topological linear space over X . ut

Let X and Y be Tychonoff spaces. For each map f W X ! Y , we have a unique
linear map f\ W L.X/! L.Y / that is an extension of f by (LE).

X

\

f

Y

\
L.X/

f\

L.Y /

This is functorial, i.e., .gf /\ D g\f\ for every pair of maps f W X ! Y and
g W Y ! Z, and idL.X/ D .idX/\. Accordingly, we have a covariant functor
from the category of Tychonoff spaces into the category of topological linear
spaces. Consequently, every homeomorphism f W X ! Y extends to a linear
homeomorphism f\ W L.X/! L.Y /.

In Sect. 7.12, we will construct a metrizable linear space that is not an absolute
extensor for metrizable spaces. The free topological linear space L.X/ over a
compactum X has an important role in the construction. The topological and
geometrical structures of L.X/ will be studied in Sect. 7.11.
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Notes for Chap. 3

There are lots of good textbooks for studying topological linear spaces. The following classical
book of Köthe is still a very good source on this subject. The textbook by Kelly and Namioka
is also recommended by many people. Besides these two books, the textbook by Day is a good
reference for normed linear spaces as is Valentine’s book for convex sets. Concerning non-locally
convex F -spaces and Roberts’ example (a compact convex set with no extreme points), one can
refer to the book by Kalton, Peck and Roberts.

• G. Köthe, Topological Vector Spaces, I, English edition, GMW 159 (Springer-Verlag, New
York, 1969)

• J.L. Kelly and I. Namioka, Linear Topological Spaces, Reprint edition, GTM 36 (Springer-
Verlag, New York, 1976)

• M.M. Day, Normed Linear Spaces, 3rd edition, EMG 21 (Springer-Verlag, Berlin, 1973)
• F.A. Valentine, Convex Sets (McGraw-Hill Inc., 1964); Reprint of the 1964 original (R.E. Krieger

Publ. Co., New York, 1976)
• N.J. Kalton, N.T. Peck and J.W. Roberts, An F -space Sampler, London Math. Soc. Lecture

Note Ser. 89 (Cambridge Univ. Press, Cambridge, 1984)

For a systematic and comprehensive study on continuous selections, refer to the following book
by Repovš and Semenov, which is written in instructive style.

• D. Repovš and P.V. Semenov, Continuous Selections of Multivalued Mappings, MIA 455
(Kluwer Acad. Publ., Dordrecht, 1998)

In Theorem 3.6.4, the construction of a metric d from d0 is due to Eidelheit and Mazur [1].

The results of Sect. 3.8 are contained in the first part of Michael’s paper [2], which consists of

three parts. For the finite-dimensional case, refer to the second and third parts of [2] (cf. [3]) and

the book of Repovš and Semenov. The finite-dimensional case is deeply related with the concept

discussed in Sect. 6.11 but will not be treated in this book. The 0-dimensional case will be treated

in Sect. 7.2.
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Chapter 4
Simplicial Complexes and Polyhedra

In this chapter, we introduce and demonstrate the basic concepts and properties
of simplicial complexes. The importance and usefulness of simplicial complexes
lies in the fact that they can be used to approximate and explore (topological)
spaces. A polyhedron is the underlying space of a simplicial complex, which has
two typical topologies, the so-called weak (Whitehead) topology and the metric
topology. The paracompactness of the weak topology will be shown. We show that
every completely metrizable space can be represented as the inverse limit of locally
finite-dimensional polyhedra with the metric topology. In addition, we give a proof
of the Whitehead–Milnor Theorem on the homotopy type of simplicial complexes.
We also prove that a map between polyhedra is a homotopy equivalence if it induces
isomorphisms between their homotopy groups.

This chapter is based on Chaps. 2 and 3. In particular, we employ the theory of convex sets
and the related concepts discussed in Chap. 3.

4.1 Simplexes and Cells

Let E be a linear space. The convex hull  D hv1; : : : ; vni of finitely many affinely
independent points v1; : : : ; vn 2 E is called a simplex. Each vi is called a vertex
of  , and n � 1 is called the dimension of  , written as dim  D n � 1. An
n-dimensional simplex is called an n-simplex. A 0-simplex is a singleton and a
1-simplex is a line segment. Note that the affine image of a simplex  (i.e., the
image f ./ of an affine function f W  ! E 0 of  into a linear space E 0) is, in
general, not a simplex.

The convex hull C D hAi of a non-empty finite subset A � E is called a cell
(or a linear cell),1 where the dimension of C is defined as the dimension of the flat

1More precisely, it is called a convex linear cell.

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics,
DOI 10.1007/978-4-431-54397-8 4, © Springer Japan 2013
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hull flC , i.e., dimC D dim flA <1 (cf. Sect. 3.2). An n-dimensional cell is called
an n-cell (or a linear n-cell). Obviously, every simplex is a cell. The affine image
of a cell is always a cell and every cell is the affine image of some simplex. A 0-cell
and a 1-cell are the same as a 0-simplex and a 1-simplex, respectively. If cardA D n
and dimhAi D n� 1, then A is affinely independent, hence hAi is a simplex. When
hv1; : : : ; vnC1i is an n-simplex, it follows that v1; : : : ; vnC1 are affinely independent,
hence they are vertices of the simplex.

The radial interior and the radial boundary of a cell C are simply called the
interior and the boundary of C . Recall that they are defined without topology,
that is,

rintC D ˚x 2 C ˇ
ˇ 8y 2 C; 9ı > 0 such that .1C ı/x � ıy 2 C �

and @C D C n rintC (cf. Sect. 3.2).2 For x 6D y 2 E ,

@hx; yi D fx; yg and rinthx; yi D hx; yi n fx; yg:

Then, we can also write as follows:

rintC D ˚x 2 C ˇ
ˇ 8y 2 C; 9z 2 C such that x 2 rinthy; zi�:

According to Proposition 3.5.1, the flat hull flC has the unique topology such that
the following operation is continuous:

flC � flC � R 3 .x; y; t/ 7! .1 � t/x C ty 2 flC;

and flC is affinely homeomorphic to R
n, where n D dimC D dim flC . With

respect to this topology, as is shown in Proposition 3.5.5,

rintC D intflC C and @C D bdflC C:

Moreover, .C; @C / � .Bn;Sn�1/ (Corollary 3.5.6). For every cell (or simplex) C ,
we always consider the topology to be inherited from this unique topology of flC .

In fact, as seen in Proposition 3.5.8,C itself has the unique topology such that the following
operation is continuous:

C � C � I 3 .x; y; t / 7! .1� t /x C ty 2 C:

2According to Proposition 3.5.8, C itself is equal to the radial closure

rclC D fx 2 E j 9y 2 C such that 8t 2 I; .1C t /x � ty 2 C g:
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For the standard n-simplex�n � R
nC1,

rint�n D ˚z 2 �n
ˇ
ˇ z.i/ > 0 for every i D 1; : : : ; nC 1� and

@�n D ˚z 2 �n
ˇ
ˇ z.i/ D 0 for some i D 1; : : : ; nC 1�:

For an n-simplex  D hv1; : : : ; vnC1i � E , there exists the natural affine
homeomorphism ı W fl�n ! fl  defined by

ı.z/ D
nC1X

iD1
z.i/vi for each z 2 fl�n:

Then,  D ı .�n/, rint D ı.rint�n/, and @ D ı .@�n/. The barycenter O of
 is defined as follows:

O D ı



1

nC 1; : : : ;
1

nC 1
�

D
nC1X

iD1

1

nC 1 � vi :

The homeomorphism h is not unique because it is depend on the the order of .0/,
but the barycenter O is independent from the order of .0/ and uniquely determined.

When v1; : : : ; vnC1 are not affinely independent, the map defined as ı is not a
homeomorphism, but we do have the following result:

Proposition 4.1.1. For every finite subset A D fv1; : : : ; vng � E ,

rinthAi D ˚Pn
iD1 z.i/vi

ˇ
ˇ z 2 rint�n�1�:

Proof. Take z0 2 rint�n�1 and let x0 DPn
iD1 z0.i/vi 2 hAi. For each x 2 rinthAi,

we have x1 2 hAi and 0 < ı < 1 such that x D .1 � ı/x0 C ıx1. Write
x1 D Pn

iD1 z1.i/vi , z1 2 �n�1. Then, z D .1 � ı/z0 C ız1 2 rint�n�1
(Proposition 3.2.3) and

x D .1 � ı/
nX

iD1
z0.i/vi C ı

nX

iD1
z1.i/vi D

nX

iD1
z.i/vi :

Conversely, for each z 2 rint�n�1, we show
Pn

iD1 z.i/vi 2 rinthAi. Each y 2
hAi can be written as y D Pn

iD1 z0.i/vi for some z0 2 �n�1. On the other hand,
we have z1 2 �n�1 and 0 < ı < 1 such that z D .1 � ı/z0 C ız1. Let y1 DPn

iD1 z1.i/vi 2 hAi. Then, it follows that

nX

iD1
z.i/vi D .1 � ı/

nX

iD1
z0.i/vi C ı

nX

iD1
z1.i/vi D .1 � ı/y C ıy1:

This means that
Pn

iD1 z.i/vi 2 rinthAi. ut
Proposition 4.1.2. Each cell C � E has the smallest finite set C .0/ such that
hC .0/i D C (i.e., hAi D C ) C .0/ � A). In addition, C .0/ � @C if dimC > 0.
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Proof. By the definition of a cell, we can easily find a minimal finite set C .0/ such
that hC .0/i D C , i.e., hBi 6D C if B ¤ C .0/. We have to show that hAi D C implies
C .0/ � A. Assume that C .0/ 6� A. Let C .0/ D fv1; : : : ; vng, where v1 62 A and
vi 6D vj if i 6D j . We can write

v1 D
mX

iD1
z.i/xi ; x1; : : : ; xm 2 A; z 2 rint�m�1;

where xi 6D xj if i 6D j . Since v1 62 A, it follows that m � 2. Define

v0 D .z.1/C "/x1 C .z.2/� "/x2 C
mX

iD3
z.i/xi ;

v00 D .z.1/ � "/x1 C .z.2/C "/x2 C
mX

iD3
z.i/xi ;

where " > 0 is chosen so that z.1/ ˙ "; z.2/˙ " 2 .0; 1/. Then, v0 6D v00 because
v0 � v00 D 2".x1 � x2/ 6D 0. Since v0; v00 2 C , we can write

v0 D
nX

iD1
z0.i/vi ; v00 D

nX

iD1
z00.i/vi ; z0; z00 2 �n�1;

and therefore

v1 D 1

2
v0 C 1

2
v00 D

nX

iD1



1

2
z0.i/C 1

2
z00.i/

�

vi :

Recall that v1 62 hv2; : : : ; vni. Then, it follows that 1
2
z0.1/ C 1

2
z00.1/ D 1. Since

z0.1/; z00.1/ 2 I, we have z0.1/ D z00.1/ D 1. Hence, v0 D v00 D v1, which is a
contradiction. Thus, C .0/ is the smallest finite set such that hC .0/i D C .

The additional assertion easily follows from Proposition 4.1.1 and the minimality
of C .0/. ut

In Proposition 4.1.2, each point of C .0/ is called a vertex of C ; namely, C .0/

is the set of vertices of C . Note that if  D hv1; : : : ; vnC1i is an n-simplex then
.0/ D fv1; : : : ; vnC1g. Thus, we have the following:

Corollary 4.1.3. A cell C � E is a simplex if and only if C .0/ is affinely
independent. ut

It is said that two simplexes  and � are joinable (or  is joinable to �) if
 \ � D ; and .0/ [ �.0/ is affinely independent. In this case, h.0/ [ �.0/i is a
simplex of dimension dim C dim � C 1, which is denoted by � and called the
join of  and � . When  D fvg, the simplex fvg� is simply denoted by v� .

The face of a cell C at x 2 C is defined as in Sect. 3.2, i.e.,

Cx D
˚
y 2 C ˇ

ˇ 9ı > 0 such that .1C ı/x � ıy 2 C �:
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Recall rintC D fx 2 C j Cx D C g, hence @C D fx 2 C j Cx 6D C g. Moreover,
x 2 rintCx (3.2.5(8)) and Cx D Cy for every y 2 rintCx (3.2.5(10)). Recall that an
extreme point of C is a point x 2 C such that Cx D fxg.
Proposition 4.1.4. For each cell C � E and x 2 C , the following hold:

(1) Cx is a cell with C .0/
x D C .0/ \ Cx;

(2) x is a vertex of C if and only if it is an extreme point of C ,
i.e., x 2C .0/,CxDfxg.

Proof. (1): To see that Cx is a cell, it suffices to show that Cx D hC .0/ \Cxi. Since
Cx is convex (Proposition 3.2.5(7)), we have hC .0/ \ Cxi � Cx. Each y 2 Cx can
be written as

y D
nX

iD1
z.i/vi ; v1; : : : ; vn 2 C .0/; z 2 rint�n�1:

Choose ı 2 .0; 1/ so that .1C ı/x � ıy 2 C . For each i D 1; : : : ; n, let

xi D .1 � ı C ız.i//x C
X

j 6Di
ız.j /vj 2 C:

Then, it follows that



1C 1

2
ız.i/

�

x � 1
2
ız.i/vi D 1

2

�
.1C ı/x � ıy�C 1

2
xi 2 C;

which means that vi 2 Cx. Hence, y 2 hC .0/ \ Cxi.
Since Cx D hC .0/ \ Cxi, it follows that C .0/

x � C .0/ \ Cx and

hC .0/
x [ .C .0/ n Cx/i D hCx [ .C .0/ n Cx/i

D ˝.C .0/ \ Cx/ [ .C .0/ n Cx/
˛

D hC .0/i D C:

The latter implies C .0/ \ Cx � C .0/
x . Hence, C .0/ \ Cx D C .0/

x .
(2): If Cx D fxg then x 2 C .0/

x � C .0/ by (1). Conversely, if x 2 C .0/ then
x 2 C .0/ \ Cx D C

.0/
x by (1). Since x 2 rintCx (Proposition 3.2.5(8)), we have

dimCx D 0 by Proposition 4.1.2, which implies Cx D fxg. ut
A cell D is call a face of a cell C (denoted by D � C or C � D) if D D Cx

for some x 2 C . If D � C and D 6D C , D is called a proper face of C (denoted
by D < C or C > D). An n-dimensional face is called an n-face. A face of
a simplex  is also a simplex (cf. Proposition 4.1.4(1)) and hv1; : : : ; vki �  for
v1; : : : ; vk 2 .0/. Note that  is the join 01 of any two disjoint faces 0 and 1
with .0/ D .0/0 [ .0/1 , where i is called the opposite face of  to 1�i (i D 0; 1).
Moreover, it follows that �0�1 �  D 01 for each �i � i (i D 0; 1).
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Proposition 4.1.5. For simplexes  and � ,

� �  , �.0/ � .0/:

Proof. The implication) is a direct consequence of Proposition 4.1.4(1). If �.0/ �
.0/ then � �  . Take any x 2 rint � . Then, � � x by the definition of x . For
each y 2  n � , we have distinct v1; : : : ; vn 2 .0/ and z 2 rint�n�1 such that
y D Pn

iD1 z.i/vi and v1 62 �.0/. Then, � \ rinthy; y0i D ; for any y0 2  , hence
y 62 x . Thus, we have � D x . ut
Proposition 4.1.6. For each cell C � E , the following hold:

(1) ; 6D A � C .0/) hAi.0/ D A;
(2) If A � C .0/ is not a singleton then C .0/ \ rinthAi D ;;
(3) D � C ) D D C \ flD and D.0/ D C .0/ \D D C .0/ \ flD;
(4) D � C ) Dx D Cx for each x 2 D, henceD0 � C for eachD0 � D;
(5) D � C ) D D Cx for each x 2 rintD;
(6) D; D0 � C; D \ rintD0 6D ; ) D0 � D;
(7) D < C ) dimD < dimC ;
(8) @C DSfD j D < C g D SfD j D < C; dimD D dimC � 1g.
Proof. By virtue of Propositions 3.2.5(7) and 4.1.4(1), we have (3). For (4) and (5),
we refer to Propositions 3.2.5(9) and 3.2.5(10), respectively. It is easy to obtain (6)
from (4) and (5). For (7), it follows from (3) that D < C implies flD ¤ flC , so
dimD < dimC . Statements (1), (2), and (8) remain to be proved.

(1): First, note that hAi.0/ � A � C .0/. Let B D .C .0/ n A/ [ hAi.0/ � C .0/.
Since A � hAi � hBi, we have C .0/ � hBi � C , hence hBi D C . Therefore,
B D C .0/ by Proposition 4.1.2. This means hAi.0/ D A.

(2): Assume that A � C .0/ contains at least two vertices and rinthAi contains
some v 2 C .0/. SinceAnfvg 6D ;, it follows from Proposition 4.1.1 that v 2 hAnfvgi.
This implies hC .0/i D hC .0/ n fvgi, which contradicts the definition of C .0/. Thus,
C .0/ \ rinthAi D ;.

(8): Since @C D fx 2 C j Cx 6D C g, we have the first equality. To prove the
second equality, it suffices to show that each x 2 @C is contained in an .n� 1/-face
of C , where n D dimC . Let D be a maximal proper face of C containing x. Then,
dimD � n�1 by (7). Assume dimD < n�1. Since rintD misses any other proper
face ofC by (6), we have @C nrintD D SfD0 j D 6D D0 < C g, which is a compact
set in the flat flC given the unique topology (Proposition 3.5.1). Take x0 2 rintD.
Since flC is affinely homeomorphic to R

n, x0 has a convex neighborhood V in flC
such that V \ .@C n rintD/ D ;. Since x0 2 rintD � @C , we can find x1 2 C nD
such that .1C t/x0 � tx1 62 C [ flD for every t > 0. Choosing s; t > 0 sufficiently
small, we have

y D .1 � s/x0 C sx1 2 V \ rintC; z D .1C t/x0 � tx1 2 V n .C [ flD/:
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Consequently, x0 2 rinthy; zi. Note that

dim fl.D [ fyg/ � n � 1 < n D dim flC:

Hence, there exists a v 2 .V \ C/ n fl.D [ fyg/. Since z 2 fl.D [ fyg/ and
v 62 fl.D [ fyg/, it follows that hv; zi \ flD D ;, so hv; zi \ D D ;. On the
other hand, hv; zi \ @C 6D ; because v 2 C and z 62 C . Since hv; zi � V and
V \ @C � rintD, we have hv; zi \ D 6D ;, which is a contradiction. Therefore,
dimD D n� 1. ut
Proposition 4.1.7. For each n-cell C � E and each k-face D < C (k < n), there
exist facesD D Dk < DkC1 < � � � < Dn D C such that dimDi D i for k � i � n.

Proof. The case n � k D 1 is obvious. When n � k > 1, let x 2 rintD. By
Proposition 4.1.6(8), we have .n � 1/-face C 0 < C such that x 2 C 0. Then, C 0x D
Cx D D by Propositions 4.1.6(4) and (5). Hence, D < C 0. The result can be
obtained by induction. ut

Using affine functionals, we characterize cells as follows:

Proposition 4.1.8. Let ; 6D C � E be non-degenerate. In order for C to be a cell,
it is necessary and sufficient that dim flC <1, xCRC.y�x/ 6� C for each pair of
distinct points x; y 2 C , and there are finitely many non-constant affine functionals
f1; : : : ; fk W flC ! R such that C DTk

iD1 f �1i .RC/.

Proof. (Necessity) Let n D dimC . By virtue of Proposition 4.1.6(8), we can
write @C D Sk

iD1 Di , where each Di is an .n � 1/-face of C . Because flDi

is a hyperplane in flC , there is an affine functional fi W flC ! R such that
flDi D f �1i .0/ (Proposition 3.1.3(1)). Then, C � f �1i .RC/ or C � f �1i .�RC/.
Replacing fi with �fi if C � f �1i .�RC/, we may assume that C � fi .RC/ for
every i D 1; : : : ; k. Thus, we have C � Tk

iD1 f �1i .RC/. Suppose that there is a
z 2Tk

iD1 f �1i .RC/nC . By taking y 2 rintC , we have x 2 rinthy; zi\@C . Then, x
is contained in some Di . Since fi .x/ D 0 and fi .y/ > 0, it follows that fi .z/ < 0,
which is a contradiction. Therefore, C D Tk

iD1 f �1i .RC/.
(Sufficiency) First, note that C D Tk

iD1 f �1i .RC/ is convex and rintC D
coreflC C D Tk

iD1 f �1i ..0;1//, hence @C D C n rintC D Sk
iD1.C \ f �1i .0//.

Moreover, C \ f �1i0
.0/ D ; implies C D T

i 6Di0 f
�1
i .RC/, that is, fi0.x/ � 0

for every x 2 T
i 6Di0 f

�1
i .RC/. Indeed, assume that fi0.x/ < 0 for some x 2

T
i 6Di0 f

�1
i .RC/. Take any point y 2 C . Because fi0 .y/ � 0, we have z 2 hx; yi

such that fi0.z/ D 0. Then, z 2Tk
iD1 f �1i .RC/ D C , so C \f �1i0

.0/ 6D ;, which is
a contradiction. Thus, we may assume that C \f �1i .0/ 6D ; for every i D 1; : : : ; k.

Now, by induction on n D dim flC , we shall show that C is a cell. For each
i D 1; : : : ; k, letDi D C \f �1i .0/ 6D ;. Then, as observed above, @C DSk

iD1 Di .
Since flDi � f �1i .0/ and dimf �1i .0/ D n � 1 (Proposition 3.1.3(2)), each Di DT
j 6Di .fj j flDi/

�1.RC/ is a cell by the inductive assumption. Thus, we have a finite
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set A D Sk
iD1 D

.0/
i � @C . Consequently, @C D Sk

iD1 Di � hAi � C . Take any
point v 2 A � @C . For each x 2 rintC , v C RC.x � v/ 6� C , hence there is
a y 2 @C such that x 2 hv; yi. Then, x 2 hAi because v; y 2 hAi. Therefore,
C D hAi is a cell. ut

Later, we will use the following results, which are easily proved.

Additional Results for Cells 4.1.9.

(1) For each cell C � E and each flat F � E with C \ F 6D ;, the intersection
C \ F is also a cell.

(2) For every two cells C;D � E with C \D 6D ;, the intersection C \D is also
a cell with .C \D/x D Cx \Dx for each x 2 C \D. If rintC \ rintD 6D ;,
then rint.C \D/ D rintC \ rintD.

(3) Let f W C ! E 0 be an affine map from a cell C � E into another linear space
E 0. Then, f �1.D/ is a cell for every cell D � E 0 with D \ f .C / 6D ;, where
f �1.D/x D Cx \ f �1.Df.x// for each x 2 f �1.D/. When f is injective,
f .Cx/ D f .C /f .x/ for each x 2 C .

Sketch of Proof. For the above three items, apply the characterization 4.1.8 (cf.
Proposition 3.2.2 for (3)). The statements about faces in (2) and (3) are the same as
3.2.7(1) and (4), respectively.The statement about the radial interior in (2) is 3.2.7(2).

(4) For every two cells C;D � E , C �D is also a cell with rintC �D D rintC �
rintD and .C �D/.x;y/ D Cx �Dy for each .x; y/ 2 C �D.

Sketch of Proof. Note that C �D D hC.0/ �D.0/i and see 3.2.7(3).

4.2 Complexes and Subdivisions

Throughout this section, let E be a linear space. A collection K of cells in E is
called a cell complex3 if K satisfies the following two conditions:

(C1) If C 2 K andD � C thenD 2 K;
(C2) For each C;D 2 K with C \D 6D ;, C \D � C (and C \D � D).

Under condition (C1), condition (C2) is equivalent to each of the following:

(C20) For each C;D 2 K , C \ rintD 6D ; impliesD � C ;
(C200) For each C;D 2 K , C 6D D implies rintC \ rintD D ; (equivalently,

rintC \ rintD 6D ; implies C D D).

Sketch of Proof. Since C � D andD � C imply C D D, we have (C20)) (C200). To see
(C2)) (C20), show that C \ rintD 6D ; implies C \D D D.

3More precisely, it is called a (convex) linear cell complex.
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(C200)) (C2): Assume C \D 6D ; and take a point x 2 rint.C \D/. Since Cx;Dx 2
K by (C1) and x 2 rintCx \ rintDx , we have Cx D Dx by (C200). It follows from 4.1.9(2)
that

C \D D .C \D/x D Cx \Dx D Cx � C:
For each n-cell C , we can define the following cell complexes (cf. Proposi-

tion 4.1.6(6)):

F.C / D ˚D ˇ
ˇ D � C � and F.@C / D ˚D ˇ

ˇ D < C
�
:

Condition (C1) means that F.C / � K for each C 2 K . A cell complex consisting
of simplexes is called a simplicial complex. For a simplex  , F./ and F.@/ are
simplicial complexes.

The next fact follows from (C2) and Proposition 4.1.6(3):

Fact. For each C;D 2 K , D � C , D.0/ � C .0/.

Let K be a cell (simplicial) complex. We call K.0/ D S
C2K C .0/ the set of

vertices. It is said that K is finite, infinite, or countable according to cardK
(equivalently cardK.0/). If cardK is infinite, we have cardK D cardK.0/.

Indeed, K 3 C 7! C.0/ 2 Fin.K.0// is an injection by Proposition 4.1.2 (or the above
Fact). Then, cardK.0/ is also infinite, hence it follows that

cardK � card Fin.K.0// D cardK.0/ � cardK:

The dimension of K is dimK D supC2K dimC . If dimK D 1, K is said to
be infinite-dimensional (abbrev. i.d.). When dimK <1, K is finite-dimensional
(abbrev. f.d.). It is said that K is n-dimensional if dimK D n. Note that every cell
complexK with dimK � 1 is simplicial.

The polyhedron jKj of K is defined as follows:

jKj D
[
K D

[

C2K
C D

[

C2K
rintC .� E/:

Recall that each cell C 2 K is given the unique topology, as mentioned in the
previous section, and if dimC D n then C with this topology is homeomorphic
to the unit closed n-ball Bn (Proposition 3.5.8). The topology for jKj is defined as
follows:

U � jKj is open in jKj , 8C 2 K; U \ C is open in C
�

equiv. A � jKj is closed in jKj , 8C 2 K; A \ C is closed in C
�
:

This topology is called the Whitehead (or weak) topology. Then,K.0/ is discrete in
jKj. Each C 2 K is a closed subspace of jKj because C \D � D for anyD 2 K
with C \D 6D ;. The following fact is used very often:
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Fact. For an arbitrary space X , each f W jKj ! X is continuous if and only if
f jC is continuous for every C 2 K .

Remark 1. If V is a neighborhood of x 2 jKj, then V \ C is a neighborhood x in
C for every C 2 KŒx�. However, the converse does not hold. For example, let K be
the 2-dimensional simplicial complex in R

N

f defined as follows:

K D ˚0; ei ; h0; eii; he1; eiC1i; h0; e1; eiC1i
ˇ
ˇ i 2 N

�
:

We define V D Si2Nh0; 2�ie1; 2�ieiC1i � jKj. For each simplex  2 KŒ0�, V \ 
is a neighborhood of 0 in  . Nevertheless, V is not a neighborhood of 0 in jKj.
Indeed, for each i 2 N,

.intjKj V / \ h0; e1; eiC1i � h0; 2�ie1; 2�ieiC1i:

Hence, .intjKj V / \ h0; e1i �
T
n2Nh0; 2�ie1i D f0g, which implies .intjKj V / \

h0; e1i D ;. Thus, V is not a neighborhood of 0 in jKj.
Each x 2 jKj is contained in the interior of the unique cell cK.x/ 2 K , which

is called the carrier of x in K . In other words, cK.x/ is the smallest cell of K
containing x. If x 2 C 2 K then Cx D cK.x/. A cell C 2 K is said to be principal
if C is not a proper face of any cell of K , that is, it is a maximal cell of K . A cell
C 2 K is principal if and only if intjKj C 6D ;. In general, intjKj C 6D rintC even if
C 2 K is principal. If dimK D n, then every n-cell of K is principal.

A cell complex L is called a subcomplex of a cell complex K if L � K . A
subcollectionL � K is a subcomplex ofK if and only if L satisfies condition (C1).
Evidently, unions and intersections of subcomplexes of K are also subcomplexes
of K . Every subcomplex of a simplicial complex is a simplicial complex. The n-
skeleton of K is the subcomplex:

K.n/ D ˚C 2 K ˇ
ˇ dimC � n� � K:

The 0-skeleton is the set of vertices. For each cell C 2 K , F.C / and F.@C / are
subcomplexes of K and F.@C / D F.C /.n�1/ if n D dimC .

Proposition 4.2.1. For every subcomplex L of a cell complex of K , jLj is a closed
subspace of jKj.
Proof. As is easily observed, A \ jLj is closed in jLj for each closed set A in jKj.
Then, it suffices to show that every closed set A in jLj is closed in jKj. For each
C 2 K ,

A \ C D A\ C \ jLj D
[

D2L
A \ C \D D

[

D2L\F.C/
A \D:
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For each D 2 L \ F.C /, D is a closed subspace of C and A \D is closed in D,
hence it is closed in C . Because L\F.C / is finite,A\C is closed in C . Therefore,
A is closed in jKj. ut
Proposition 4.2.2. The polyhedron jKj is perfectly normal.

Proof. By definition, it is obvious that jKj is T1. For any disjoint closed setsA;B �
jKj, it suffices to find a map f W jKj ! I such that f �1.0/ D A and f �1.1/ D B .
We will inductively construct maps fn W jK.n/j ! I, n 2 N, so that f �1n .0/ D A \
jK.n/j and f �1n .1/ D B\jK.n/j. Then, the map f can be defined by f jjK.n/j D fn
for each n 2 N.

SinceK.0/ is discrete, f0 can be easily constructed. Assume that f .n�1/ has been
constructed. For each n-cell C 2 K , we apply the Tietze Extension Theorem 2.2.2
to obtain a map gC W C ! I such that gC j@C D fn�1j@C , gC .A \ C/ D f0g, and
gC .B \ C/ D f1g. On the other hand, because C 2 K is metrizable (so perfectly
normal), there is a map hC W C ! I with

h�1C .0/ D .A\ C/[ .B \ C/[ @C:

We define a map fC W C ! I by

fC .x/ D .1 � hC .x//gC .x/C 1

2
hC .x/:

Then, fC j@C D fn�1j@C , f �1C .0/ D A \ C and f �1C .1/ D B \ C . Hence, fn can
be defined by fnjjK.n�1/j D fn�1 and fnjC D fC for every n-cell of K . ut

A full complex (or full simplicial complex) is a simplicial complex K such
that K.0/ is affinely independent and hv1; : : : ; vni 2 K for all finitely many distinct
vertices v1; : : : ; vn 2 K.0/. Every simplex is the polyhedron of a finite full complex.
For each affinely independent set A in E , let �.A/ denote the full complex with
A the set of vertices (i.e., �.A/.0/ D A). In the case when A is infinite, j�.A/j
might be considered as an infinite-dimensional simplex. In fact, j�..0//j D  for
a simplex  , where note that �..0// D F./. An infinite full complex has no
principal simplexes. For a simplicial complex K , if K.0/ is affinely independent,
then K is a subcomplex of the full complex�.K.0//.

On the other hand, it is said that a subcomplex L of a simplicial complex K is
full in K or a full subcomplex of K if  2 L for any  2 K with .0/ � L.0/,
that is, L is a maximal subcomplex of K such that the set of vertices is L.0/.4 The
n-skeleton K.n/ is not full in K unless K.n/ D K . In general, a full subcomplex of
a simplicial complex is not a full complex, but a full subcomplex of a full complex
is always a full complex.

4It should be noted that although the same word full is used, full subcomplex and full complex are
different concepts. The former is used in the relative sense, but the latter is in the absolute sense.



144 4 Simplicial Complexes and Polyhedra

The following subcomplex of K is called the star at C 2 K:

St.C;K/ D ˚D ˇ
ˇ 9D0 2 K such that C � D0; D � D0�:

Evidently, St.C;K/ D F.C / (i.e., j St.C;K/j D C ) if and only if C is principal
in K . We must not confuse St.C;K/ with st.C;K/.5

Note that j St.C;K/j D st.rintC;K/ for each C 2 K but, in general,
j St.C;K/j ¤ st.C;K/. Observe that

st.x;K/ D j St.cK.x/;K/j for each x 2 jKj:
If K is a simplicial complex, the link of  2 K can be defined as follows:

Lk.;K/ D St.;K/ nKŒ� D ˚� 2 St.;K/
ˇ
ˇ � \  D ;�

D ˚� 2 K ˇ
ˇ � 2 K�:

Note that Lk.;K/ D ; if and only if  is principal in K . For each non-principal
simplex  2 K , we have j St.;K/j DS�2Lk.;K/ � .

We define the open star at x 2 jKj (with respect to K) as follows:

OK.x/ D jKj n jK nKŒx�j D
[

C2KŒx�
rintC;

where K n KŒx� is a subcomplex of K , hence OK.x/ is an open neighborhood of
x in jKj. Since OK.x/ � st.x;K/, it follows that st.x;K/ (D j St.cK.x/;K/j) is a
closed neighborhood of x in jKj. Note the following equivalences:

y 2 OK.x/, cK.y/ 2 KŒx�, cK.x/ � cK.y/, cK.x/
.0/ � cK.y/.0/

, 8v 2 cK.x/.0/; cK.y/ 2 KŒv�, 8v 2 cK.x/.0/; y 2 OK.v/:

Therefore, we have

OK.x/ D
\

v2cK.x/.0/
OK.v/:

Then, jKj has the following open and closed covers:

OK D
˚
OK.v/

ˇ
ˇ v 2 K.0/

�I SK D
˚j St.v; K/j ˇˇ v 2 K.0/

�
;

where Ocl
K D SK . If K is a simplicial complex,

OK.v/ D j St.v; K/j n jLk.v; K/j for each v 2 K.0/:

5For any A � jKj, we denote KŒA� D fC 2 K j C \ A 6D ;g and st.A;K/ D S
KŒA�.

When A D fxg, KŒx� D fC 2 K j x 2 C g and st.x;K/ D S
KŒx�. See Sects. 2.3 and 2.4

(cf. Sect. 1.1).
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Proposition 4.2.3. Let K be a simplicial complex and v1; : : : ; vn 2 K.0/. Then,
hv1; : : : ; vni 2 K if and only if

Tn
iD1 OK.vi / 6D ;.

Proof. If  D hv1; : : : ; vni 2 K , then
Tn
iD1 OK.vi / � rint 6D ;. Thus, we

have the “only if” part. To prove the “if” part, assume that
Tn
iD1 OK.vi / contains a

point x. Then, v1; : : : ; vn 2 cK.x/.0/. Hence, hv1; : : : ; vni 2 K . ut
Proposition 4.2.4. Let K be a simplicial complex and L a subcomplex ofK . Then,
OK jjLj D OL.

Proof. Since OL.v/ D OK.v/ \ jLj for each v 2 L.0/, we have OL � OK jjLj.
To prove OK jjLj � OL, let v 2 K.0/ with OK.v/ \ jLj 6D ;. We have a simplex
 2 L such that OK.v/ \  6D ;, which means that v 2 .0/ � L.0/. Then,
OK.v/\ jLj D OL.v/. Therefore, OK jjLj D OL. ut

A cell (or simplicial) complex K is said to be locally finite, locally countable,
or locally finite-dimensional (abbrev. l.f.d.) according to whether the star St.v; K/
at every v 2 K.0/ is finite, countable, or finite-dimensional, respectively. Every
locally finite cell complex is l.f.d. Note that KŒOK.v/� D KŒv� and St.v; K/ DS
C2KŒv� F .C / for every v 2 K.0/. Then, we have the following:

Proposition 4.2.5. A cell complex K is locally finite (or locally countable) if and
only if K is locally finite (or locally countable) as a collection of subsets in the
space jKj. ut

For compact sets in jKj, we have the following:

Proposition 4.2.6. Let K be a cell complex. Every compact set A � jKj is
contained in jLj for some finite subcomplex L � K . Consequently, jKj is compact
if and only if K is finite.

Proof. It suffices to show that KA D fD 2 K j A \ rintD 6D ;g is finite. For each
D 2 KA, take xD 2 A\ rintD. Since C \fxD j D 2 KAg is finite for each C 2 K
by (C20), any subset of fxD j D 2 KAg is closed in jKj, hence fxD j D 2 KAg is
discrete in jKj. Since A is compact, it follows that KA is finite. ut

When two cell complexes have the same polyhedron, the following proposition
holds:

Proposition 4.2.7. For each pair of cell complexesK1 andK2 with jK1j D jK2j as
sets, jK1j D jK2j as spaces if and only if each cell of Ki is covered by finitely many
cells of K3�i for i D 1; 2.

Proof. The intersection of a cell ofK1 and a cell ofK2 is also a cell by 4.1.9(2). This
intersection has the unique topology mentioned in the previous section, hence it is a
subspace of both spaces jK1j and jK2j. If each cell ofKi is covered by finitely many
cells ofK3�i , then every closed set in jKi j is also closed in jK3�i j for i D 1; 2. Thus,
we have proved the “if” part. The “only if” part follows from Proposition 4.2.6. ut
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It is said that a cell complex K 0 is a subdivision of a cell complex K , or K 0
subdivides K , if the following conditions are satisfied:

(S1) Each cell of K is covered by finitely many cells ofK 0;
(S2) K 0 	 K (i.e., each C 0 2 K 0 is contained in some C 2 K).

Due to Proposition 4.2.7,

• For every subdivisionK 0 of a cell complexK , jK 0j D jKj as spaces.

Evidently, if K 0 is a subdivision of K and K 00 is a subdivision of K 0, then K 00 is
a subdivision of K . A simplicial complex K 0 subdividing K is called a simplicial
subdivision and denoted as follows:

K 0 C K or K B K 0:

Lemma 4.2.8. Let K 0 be a subdivision of a cell complex K . For each C 2 K 0, let
D 2 K be the smallest cell containing C . Then, rintC � rintD.

Proof. Take any x 2 rintC . Then, C � Dx by the definition of Dx . By the
minimality,Dx D D, which means x 2 rintD. ut

It should be noted that condition (S1) can be strengthened as follows:

Proposition 4.2.9. Let K 0 be a subdivision of a cell complex K . For each C 2 K ,
there are finitely many D1; : : : ;Dk 2 K 0 such that C D Sk

iD1 rintDi DSk
iD1 Di .

Proof. Because of condition (S1), we can find finitely manyD1; : : : ;Dk 2 K 0 such
thatC �Sk

iD1 rintDi �Sk
iD1 Di , where it can be assumed that each rintDi meets

C . By Lemma 4.2.8, rintDi � rintCi for some Ci 2 K . Then, C \ rintCi 6D ;,
which means Ci � C by (C20). Thus, we have

Sk
iD1 Di �Sk

iD1 Ci � C . ut
With regard to subdivisions, we have the following:

Theorem 4.2.10. Every cell complex K has a simplicial subdivision L with the
same vertices, i.e., K.0/ D L.0/.
Proof. Give an order on K.0/ so that C .0/ has the maximum vC D maxC .0/ for
each C 2 K (e.g., a total order). Let L0 D K.0/ and L1 D K.1/. Suppose that a
simplicial subdivision Ln C K.n/ has been defined so that

(1) L.0/n D K.0/ and Ln�1 � Ln;
(2) vcK. O/ 2 .0/ for each  2 Ln,

where cK. O/ is the carrier of the barycenter O of  in K (note that cK. O/ 2 K.n/

because O 2 jK.n/j). Let C 2 K be an .n C 1/-cell. For each  2 Ln with  �
@C , we have cK. O/ � C ,  � cK. O/ by Lemma 4.2.8 and vcK. O/ 2 .0/ by the
assumption. If vC 2 cK. O/.0/ then vC D vcK. O/ 2 .0/. When vC 62 cK. O/.0/, since
cK. O/.0/ D C .0/\fl cK. O/ (cf. 4.1.6(3)), it follows that vC 62 fl cK. O/, so vC 62 fl  .
Therefore, vC is joinable to  , that is, we have the simplex vC in C with  < vC .
Now, we define
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LnC1 D Ln [
˚
vC

ˇ
ˇ C 2 K.nC1/ nK.n/;  2 Ln

with  � @C and vC 62 cK. O/.0/
�
:

It is easy to verify that LnC1 is a simplicial complex and LnC1 C K.nC1/. By
definition, LnC1 satisfies conditions (1) and (2).

By induction, we have simplicial subdivisions Ln C K.n/, n 2 N, such that
L
.0/
n D K.0/ and Ln�1 � Ln. Then, L D S

n2NLn is a simplicial subdivision of K
with L.0/ D K.0/. ut

In the above proof of Theorem 4.2.10, we give an order on the setK.0/ of vertices
such that C .0/ has the maximum for each cell C 2 K . A cell complexK with such
an order on K.0/ is called an ordered cell complex. If K is a simplicial complex,
.0/ has the maximum for each simplex  2 K if and only if .0/ is totally ordered
for each  2 K . Thus, an ordered simplicial complex is a simplicial complex K
with an order on K.0/ such that .0/ is totally ordered for each  2 K .

Theorem 4.2.11. Let K1 and K2 be cell complexes such that jK1j D jK2j as
spaces. Then, K1 and K2 have a common subdivision K . In addition, if K0 is a
subcomplex of both K1 andK2, thenK0 is also a subcomplex of K .

This follows from Proposition 4.2.7 and the next proposition:

Proposition 4.2.12. For each pair of cell complexesK1 andK2, the followingK is
a cell complex with jKj D jK1j \ jK2j (as sets):

K D ˚C \D ˇ
ˇ C 2 K1; D 2 K2 such that C \D 6D ;�:

If K0 is a subcomplex of both K1 and K2, then K0 is also a subcomplex of K .
Moreover, if each cell of Ki is covered by only finitely many cells of K3�i for i D
1; 2, then jKj is a closed subspace of both jK1j and jK2j.
Proof. For each pair C 2 K1 and D 2 K2 with C \D 6D ;, C \D is a cell and
.C \D/x D Cx \Dx for each x 2 C \D by 4.1.9(2). Thus, K satisfies (C1).

We will show thatK satisfies (C200), that is, for C;C 0 2 K1 andD;D0 2 K2, the
following implication holds:

rint.C \D/ \ rint.C 0 \D0/ 6D ; ) C \D D C 0 \D0:
Let x 2 rint.C \D/\ rint.C 0\D0/. Then, .C \D/x D C \D and .C 0\D0/x D
C 0 \D0. On the other hand, by Proposition 3.2.5(8),

x 2 rintCx \ rintC 0x \ rintDx \ rintD0x:

Then, it follows from (C200) that Cx D C 0x and Dx D D0x . Therefore, we can
apply 4.1.9(2) to obtain the following equality:

C \D D .C \D/x D Cx \Dx D C 0x \D0x D .C 0 \D0/x D C 0 \D0:
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By the definition ofK , if K0 is a subcomplex of bothK1 and K2 then K0 is also
a subcomplex ofK . Moreover, it is evident that the inclusions jKj � jKi j, i D 1; 2,
are continuous. When each cell ofKi is covered by only finitely many cells ofK3�i
for i D 1; 2, it is easy to see that each closed set in jKj is closed in jK1j and jK2j.

ut
Combining Theorems 4.2.11 and 4.2.10, we have the following:

Corollary 4.2.13. Let K1 and K2 be simplicial complexes such that jK1j D jK2j
as spaces. Then,K1 andK2 have a common simplicial subdivisionK . Additionally,
if K0 is a subcomplex of bothK1 andK2, thenK0 is also a subcomplex of K . ut
Proposition 4.2.14. Let K be a cell complex and K 0 be a subdivision of K . Then,
every subcomplex L of K is subdivided by the subcomplex L0 D fC 0 2 K 0 j C 0 �
jLjg of K 0.

Proof. Obviously, L0 is a subcomplex of K 0. For each C 0 2 L0, let C 2 K be the
smallest cell containing C 0. On the other hand, we have D 2 L containing some
x 2 rintC 0. Since rintC 0 � rintC by Lemma 4.2.8, it follows that D\ rintC 6D ;,
which implies C � D by (C20), hence C 2 L. Thus, we have L0 	 L.

For each C 2 L, we have finitely many D01; : : : ;D0k 2 K 0 such that C D
Sk
iD1 D0i by Proposition 4.2.9. Since D0i � jLj, it follows that D0i 2 L0. Thus,

C is covered by finitely many cells of L0. ut
Proposition 4.2.15. Let K 0 be a subdivision of a cell complex K . Then, OK0.v0/ �
OK.v/ for each v0 2 K 0.0/ and v 2 cK.v0/.0/. Consequently, OK0 	 OK .

Proof. For each C 2 K 0 with v0 2 C .0/, there is some D 2 K such that rintC �
rintD by Lemma 4.2.8. Then, D \ rint cK.v0/ 6D ;, which implies cK.v0/ � D

by (C20), hence v 2 cK.v0/.0/ � D.0/. Thus, rintC � rintD � OK.v/. Therefore,
OK0.v0/ � OK.v/. ut
Some Topological Properties of Polyhedra 4.2.16.

Let K be a cell complex.

(1) jKj is separable if and only if K is countable.

Sketch of Proof. Each C 2 K has a countable dense set DC . If K is countable, then
D DS

C2K DC is a countable dense set in jKj.
For a countable subset A � jKj, the following is countable:

fC 2 K j 9D 2 K such that C � D; A\ rintD 6D ;g:
If K is uncountable, we can find a cell C0 2 K such that A \ rintC D ; if C 2 K
and C0 � C . Let x 2 rintC0. Then, OK.x/\AD ;, which means that A is not dense
in jKj.

(2) The following are equivalent:

(a) K is locally finite;
(b) jKj is locally compact;
(c) jKj is metrizable;
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(d) jKj is first-countable.

Sketch of Proof. Because of Proposition 4.2.6, we have (a)) (b). The implication (c)
) (d) is obvious. Since a space is metrizable if it is a locally finite union of metrizable
closed subspaces (2.4.5(2)), the implication (a)) (c) follows from Proposition 4.2.5.6

(b)) (a): Let V be a compact neighborhood of v 2 K.0/. Due to Proposition 4.2.6,
V � jLj for some finite subcomplex L � K . If C 2 K and v 2 C.0/ then V \ C
is a neighborhood of v in C . Since V \ rintC 6D ;, it follows that rintC meets some
D 2 L, which implies C � D. Hence, St.v; K/ � L.
(d)) (a): Assume that St.v; K/ is infinite for some v 2 K.0/. Then, v is a vertex of
distinct 1-cells (1-simplexes) An, n 2 N. Let fUn j n 2 Ng be a neighborhood basis at
v in jKj. For each n 2 N, choose an 2 rintAn \ Un. Then, jKj n fan j n 2 Ng is an
open neighborhood of v in jKj but it does not contain any Un, which is a contradiction.

(3) The following are equivalent:

(a) K is countable and locally finite;
(b) jKj is second-countable;
(c) jKj is separable and metrizable.

Sketch of Proof. Combine (1) and (2) above.

(4) In general, w.jKj/ 6D dens jKj (i.e., w.jKj/ > dens jKj).
Sketch of Proof. Let K.0/ D fvi j i 2 !g and define K D K.0/ [ fhv0; vi i j i 2 Ng.
Then, dens jKj D @0 by (1) above. However, jKj is not first countable by (2), hence
it is not second countable, that is, w.jKj/ > @0 .

(5) Let f W X ! jKj be a map of a metrizable (more generally, first countable)
space X . Then, each x 2 X has a neighborhood Ux in X such that f .Ux/ �
jKxj for some finite subcomplexKx of K .

Sketch of Proof. If x 2 X does not have such a neighborhood, then we can find a
sequence .xi /i2N in X such that limi!1

xi D x and cK.xi / 6D cK.xj / if i 6D j .
Because ff .x/; f .xi / j i 2 Ng � jKj is compact, this contradicts Proposition 4.2.6.

A polyhedron (or a topological polyhedron) is defined as a space P such that
P D jKj (or P � jKj) for some cell complex K . A subspace Q of a polyhedron
(or a topological polyhedron) P is called a subpolyhedron of P if there exists a
pair .K;L/ of a cell complex and a subcomplex such that P D jKj and Q D jLj
(or .P;Q/ � .jKj; jLj/). Every subpolyhedron of P is closed in P according
to Proposition 4.2.1. It follows from 4.2.16(2) that a (topological) polyhedron is
metrizable if and only if it is locally compact. In general, for a (topological)
polyhedron P , w.P / 6D densP (cf. 4.2.16(4)). A triangulation of a polyhedron
(or a topological polyhedron) P is a simplicial complex K such that jKj D P

(or jKj � P ). Then, it is also said thatP is triangulated byK orK triangulatesP .
According to Theorem 4.2.10, every (topological) polyhedron has a triangulation.

6This can be shown as follows: If K is a simplicial complex, (a) ) (c) will be proved in
Theorem 4.5.6. Due to Theorem 4.2.10, every cell complex has a simplicial subdivision. Evidently,
every subdivision of a locally finite cell complex is also locally finite. Thus, (a)) (c) is also valid
for every cell complex.
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4.3 Product Complexes and Homotopy Extension

For two cell complexes K (in E) and L (in F ), by virtue of 4.1.9(4), the product
cell complex can be defined as the following cell complex (in E � F ):

K �c L D
˚
C �D ˇ

ˇ C 2 K; D 2 L�:

Note the following facts:

• jK �c Lj D jKj � jLj as sets;
• St.C � D;K �c L/ D St.C;K/ �c St.D;L/ for each C 2 K and D 2 L (cf.

4.1.9(4));
• cK�cL.x; y/ D cK.x/ � cL.y/ for each .x; y/ 2 jKj � jLj (cf. 4.1.9(4));
• OK�cL.x; y/ D OK.x/ �OL.y/ as sets for each .x; y/ 2 jKj � jLj.
The projections pr1 W jK �c Lj ! jKj and pr2 W jK �c Lj ! jLj are continuous,
which means that the identity id W jK �c Lj ! jKj � jLj is continuous. When K
and L are finite, jK �c Lj D jKj � jLj as spaces because jK �c Lj is compact by
Proposition 4.2.6. More generally, we can prove the following:

Theorem 4.3.1. For each pair of cell complexes K and L, jK �c Lj D jKj � jLj
as spaces if (1) both K and L are locally countable or (2) one of K or L is locally
finite.

Proof. Since id W jK �c Lj ! jKj � jLj is continuous, it suffices to show the
continuity of id W jKj � jLj ! jK �c Lj at each .x; y/ 2 jKj � jLj. Choose
.v; u/ 2 K.0/ � L.0/ so that .x; y/ 2 OK.v/ �OL.u/. Then,

OK�cL.v; u/ D OK.v/ �OL.u/

is an open neighborhood of .x; y/ in both jK �c Lj and jKj � jLj. Replacing K
and L by St.v; K/ and St.u; L/, case (1) reduces to the case where K and L are
countable and case (2) reduces to the case where L is finite.

Case (1): As noted above, we may assume that bothK andL are countable. Then,
K and L have towers K1 � K2 � � � � and L1 � L2 � � � � of finite subcomplexes
such that x 2 jK1j, y 2 jL1j,K D Sn2NKn, and L DSn2NLn. Observe that jKj,
jLj, and jK �c Lj have the weak topologies determined by fjKnj j n 2 Ng, fjLnj j
n 2 Ng, and fjKn �c Lnj j n 2 Ng, respectively. For each n 2 N, jKn �c Lnj D
jKnj � jLnj as spaces because Kn and Ln are finite. Then, for each neighborhood
W of .x; y/ in jK �c Lj, we can inductively choose open neighborhoodsUn of x in
jKnj and Vn of y in jLnj so that

clUn�1 � clVn�1 � Un � Vn � clUn � clVn � W \ jKn �c Lnj;
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where clUn and clVn are compact. Observe that U D S
n2NUn and V D S

n2N Vn
are open neighborhoods of x and y in jKj and jLj, respectively, and U � V � W .
Therefore,W is a neighborhood of .x; y/ in jKj � jLj.

Case (2): As noted above, it can be assumed that L is finite. Let W be a
neighborhood of .x; y/ in jK �c Lj. For each D 2 L, W \ .fxg � D/ is a
neighborhood of .x; y/ in fxg �D becauseW \ .cK.x/�D/ is also in cK.x/�D.
Thus, W \ .fxg � jLj/ is a neighborhood of .x; y/ in fxg � jLj. We can choose a
neighborhoodV of y in jLj so that fxg� clV � W , where clV is compact because
so is jLj. By induction on n 2 !, for each n-cell C 2 KŒx�, we can choose an open
neighborhoodUC of x in C so that clUC � clV � W and UC \D D UD for each
D 2 F.@C /Œx�. In fact,

S
D2F.@C/Œx� clUD � C is compact because F.@C /Œx� is

finite. Then, we can find an open set U 0C in C such that

[

D2F.@C/Œx�
clUD � clV � U 0C � clV � clU 0C � clV � W:

Therefore, UC D U 0C n
S
D2F.@C/Œx�.D nUD/ is the desired neighborhood. Now, let

U D S
C2KŒx� UC . Then, U is a neighborhood of x in st.x;K/ and U � V � W .

Since st.x;K/ is a neighborhood of x in jKj, U is also a neighborhood of x in jKj.
Hence,W is a neighborhood of .x; y/ in jKj � jLj. ut

We denote I D F.I/ (D f0; 1; Ig), which is the cell complex with jI j D I. It
follows from Theorem 4.3.1 that jKj�I D jK�c I j as spaces for every cell complex
K . Due to the following proposition, the conditions given by Theorem 4.3.1 are
essential.

Proposition 4.3.2. There exist 1-dimensional cell complexes K and L with
cardK.0/ D 2@0 and cardL.0/ D @0 such that K is not locally countable, L is
not locally finite, and jK �c Lj 6D jKj � jLj as spaces.

Proof. We defineK and L in the linear spaces RN
N

and R
N as follows:

K D f0; ea; h0; eai j a 2 N
Ng and L D f0; ei ; h0; eii j i 2 Ng;

where ea 2 R
N
N

and ei 2 R
N are the unit vectors (i.e., e� .�/ D 1 and e� .� 0/ D 0

for � 0 6D � ). For each a 2 N
N and i 2 N, let

ya;i D a.i/�1.ea; ei / 2 h0; eai � h0; eii � R
N
N � R

N:

Then, Y D fya;i j a 2 N
N; i 2 Ng is closed in jK �c Lj, where it should be noted

that .0; 0/ 62 Y .
To see that Y is not closed in jKj � jLj, we show that .0; 0/ 2 cljKj�jLj Y .

Let U be a neighborhood of 0 in jKj and V a neighborhood of 0 in jLj. For each
a 2 N

N, choose "a > 0 so that Œ0; "a�ea � U . For each i 2 N, choose ıi > 0 so
that Œ0; ıi �ei � V . Then, we have a0 2 N

N such that a0.i/�1 < minfıi ; i�1g for
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.u1; v1/

.u1; v2/

.u2; v1/

.u3; v1/

.u3; v2/

.u2; v2/

Fig. 4.1 A product simplicial complex

each i 2 N. Choose i0 2 N so that i�10 < "a0 . Since a0.i0/�1 < i�10 < "a0 and
a0.i0/

�1 < ıi0 , it follows that ya0;i0 2 U � V , hence .U � V / \ Y 6D ;. Thus, we
have .0; 0/ 2 cljKj�jLj Y . ut

For simplicial complexesK and L, the product complexK�c L is not simplicial
but does have a simplicial subdivision with the same vertices by Theorem 4.2.10.
From the proof of 4.2.10, such a simplicial subdivision of K �c L can be obtained
by giving an order on .K �c L/.0/ D K.0/ � L.0/ so that K �c L is an ordered
complex, that is, the set of vertices of each cell has the maximum. If K and L are
ordered simplicial complexes, we can define an order on K.0/ � L.0/ as follows:

.u; v/ � .u0; v0/ if u � u0 and v � v0:

By this order,K�cL is an ordered cell complex. ByK�sL, we denote the simplicial
subdivision ofK �c L defined by using this order and call it the product simplicial
complex of K and L (Fig. 4.1). In fact, K �s L can be written as follows:

K �s L D
˚h.u1; v1/; : : : ; .uk; vk/i

ˇ
ˇ 9 2 K; 9� 2 L

such that u1 � � � � � uk 2 .0/; v1 � � � � � vk 2 �.0/
�
:

The above is the simplicial subdivision of K �c L obtained by the procedure in the proof
of Theorem 4.2.10. To show this, it suffices to verify that the simplicial subdivision of the
n-skeleton .K �c L/.n/ defined by this procedure can be written as follows:

˚h.u1; v1/; : : : ; .uk; vk/i
ˇ
ˇ 9 � � 2 .K �c L/.n/

such that u1 � � � � � uk 2 .0/; v1 � � � � � vk 2 � .0/
�
:

This can be proved by induction. According to the proof of Theorem 4.2.10, the
simplicial subdivision of .K �c L/.nC1/ is defined as the simplicial complex consisting
of the simplexes h.u1; v1/; : : : ; .uk; vk/; .ukC1; vkC1/i, where u1 � � � � � uk 2 

.0/
0 ,

v1 � � � � � vk 2 � .0/0 for some 0 � �0 2 .K �c L/.n/ and .ukC1; vkC1/ is the maximum
vertex of the carrier  � � 2 K �c L of the barycenter of h.u1; v1/; : : : ; .uk; vk/i, where
 � � 2 .K �c L/.nC1/. Since  \ rint 0 6D ; and � \ rint �0 6D ;, we have 0 �  and
�0 � � , hence u1 � � � � � uk � ukC1 2 .0/ and v1 � � � � � vk � vkC1 2 � .0/.
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Conversely, consider the simplex h.u1; v1/; : : : ; .uk; vk/i, where u1 � � � � � uk 2 .0/,
v1 � � � � � vk 2 � .0/ for some  � � 2 .K �c L/.nC1/. We may assume that k > 1

and .uk; vk/ 6D .uk�1; vk�1/. Let  0 be the face of  with the vertices u1; : : : ; uk�1 and
� 0 the face of � with the vertices v1; : : : ; vk�1. Then,  0 � � 0 2 .K �c L/.n/, hence
h.u1; v1/; : : : ; .uk�1; vk�1/i is a simplex of the simplicial subdivision of .K �c L/.n/ by
the inductive assumption. Since the barycenter of h.u1; v1/; : : : ; .uk�1; vk�1/i is contained
in the cell  � � , h.u1; v1/; : : : ; .uk; vk/i is a simplex of the simplicial subdivision of
.K �c L/.nC1/.

We now consider the following useful theorem:

Theorem 4.3.3 (HOMOTOPY EXTENSION THEOREM). Let L be a subcomplex
of a cell complex K and h W jLj � I ! X a homotopy into an arbitrary space X .
If h0 extends to a map f W jKj ! X , then h extends to a homotopy Nh W jKj� I! X

with Nh0 D f . Moreover, if h is a U-homotopy for an open cover U of X , then Nh can
be taken as a U-homotopy.

Proof. Let h W jLj � I ! X be a U-homotopy such that h0 extends to a map
f W jKj ! X . For each n 2 !, we define

Kn D L [K.n/ and Pn D .K �c f0g/[ .Kn �c I /:

Then,Kn and Pn are subcomplexes ofK andK�c I , respectively. Moreover, jPnj is
a closed subspace of jKj � I that contains jLj � I as a subspace (cf. Theorem 4.3.1).
Moreover, jKj � I D S

n2! jPnj has the weak topology with respect to the tower
jP0j � jP1j � jP2j � � � � .

We can define the map g0 W jP0j ! X as follows:

g0.x; t/ D
(
h.x; t/ for .x; t/ 2 jLj � I;

f .x/ for .x; t/ 2 .jKj � f0g/[ .jK.0/j n jLj/ � I:

It is obvious that g0jjK0j � I is a U-homotopy. Assume that we have maps gi W
jPi j ! X , i < n, such that gi jjPi�1j D gi�1 and gi jjKi j � I is a U-homotopy. Let
C 2 K n L be an n-cell. By taking vC 2 rintC , each x 2 C can be written as

x D .1 � s/y C svC ; y 2 @C; s 2 I:

We can choose 0 < ıC < 1 so that fgn�1.C.y// j y 2 @C g 	 U , where

C.y/ D fyg � I [ f..1� s/y C svC ; 0/ j 0 � s � 2ıC g:

See Fig. 4.2. We can define a map

rC W C � I! C � f0g [ @C � I � jPn�1j
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s 10 2ıC

t

1

s D tıC

ıC

y

vC
C

x

y vC

0

x D .1� s/y C svC
Fig. 4.2 C � I

as follows:

rC ..1 � s/y C svC ; t/

D

8
ˆ̂
<̂

ˆ̂
:̂

�
.1 � s/y C svC ; 0

�
if 2ıC � s � 1;
�

1 � 2.s � tıC /
2 � t

�
y C 2.s � tıC /

2 � t vC ; 0

�

if tıC � s � 2ıC ;
�
y; t � ı�1C s

�
if 0 � s � tıC :

For each x 2 C , rC .fxg � I/ D f.x; 0/g or rC .fxg � I/ � C.y/, where y 2 @C
with x 2 hy; vC i. It follows that

fgn�1.rC .fxg � I// j x 2 C g 	 U :

Observe that rC jC �f0g[@C�I D id. We can extend gn�1 to a map gn W jPnj ! X

defined by gnjC � I D gn�1rC for each n-cell C 2 K n L. Then, gnjjKnj � I is a
U-homotopy.

By induction, we can obtain maps gn W jPnj ! X , n 2 !, such that gnjjPn�1j D
gn�1 and gnjjKnj � I is a U-homotopy. The desired U-homotopy Nh W jKj � I! X

can be defined by NhjjPnj D gn. ut
For a cell complex L, two maps f; g W X ! jLj are said to be contiguous (with

respect to L) if f; g are L-close, that is, for each x 2 X , there is some C 2 L such
that f .x/; g.x/ 2 C .

Proposition 4.3.4. Let K and L be cell complexes. If two maps f; g W jKj ! jLj
are contiguous (with respect to L) then f 'L g by the homotopy h W jKj � I! jLj
defined as follows:

h.x; t/ D .1 � t/f .x/C tg.x/ for each .x; t/ 2 jKj � I:
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Proof. Because f and g are contiguous, h is well-defined. We need to prove the
continuity of h. Since jKj � I D jK �c I j (Theorem 4.3.1), it suffices to show that
hjC � I is continuous for each C 2 K . According to Proposition 4.2.6, f .C / [
g.C / � jL0j for some finite subcomplex L0 of L. For each pair .D1;D2/ 2 L2,
let L.D1;D2/ be the subcomplex of L consisting of faces of the minimal cell of L
containingD1 [D2, where L.D1;D2/ D ; if L has no cells containingD1 [D2.
Then, L1 D S

.D1;D2/2L20 L.D1;D2/ is a finite subcomplex of L with L0 � L1

and h.C � I/ � jL1j. Note that the flat hull fl jL1j is finite-dimensional. Due to
Proposition 3.5.1, fl jL1j has the unique topology for which the following operation
is continuous:

fl jL1j � fl jL1j � I 3 .x; y; t/ 7! .1 � t/x C ty 2 fl jL1j:
The topology of jL1j is equal to the relative topology with respect to this topology.
Indeed, due to Proposition 3.5.8, eachD 2 L1 has the unique topology for which the
operation .x; y; t/ 7! .1�t/xCty is continuous. Hence, the inclusion jL1j � fl jL1j
is continuous. By the compactness of jL1j, this inclusion is a closed embedding.
Then, it follows that hjC � I W C � I! jL1j is continuous. ut

In Proposition 4.3.4, h is called the straight-line homotopy.

Remark 2. Using the same arguments, we can prove that Proposition 4.3.4 is valid
even if jKj is replaced by a locally compact space X .7 It will be shown in Sect. 4.9
that every two contiguous maps defined on an arbitrary space are homotopic, where
the homotopy is not always given by the straight-line homotopy. In fact, there are
some cases where the straight-line homotopy is not continuous. Such an example
can be obtained by reforming the example given in Proposition 4.3.2.

Let � D N
N [ N. We define K D f0; e� ; h0; e�i j � 2 � g and

L D K [ ˚he� ; e� 0i; h0; e� ; e� 0i ˇˇ � 6D � 0 2 � �;
where e� 2 R

� is the unit vector in R
� (i.e., e� .�/ D 1 and e� .� 0/ D 0 for

� 0 6D � ). Then, K � L are cell complexes in R
� with dimK D 1 and dimL D 2.

Let f; g W jKj2 ! jLj be maps defined by f .x; y/ D x and g.x; y/ D y for each
.x; y/ 2 jKj2, where jKj2 6D jK�cKj as spaces (see the proof of Proposition 4.3.2).
Evidently, these maps f , g are contiguous. We can define h W jKj2 � I ! jLj as
follows:

h.x; y; t/ D .1 � t/f .x; y/C tg.x; y/ D .1 � t/x C ty:
We will prove that h is not continuous at .0; 0; 1

2
/ 2 jKj2 � I. For each a 2 N

N

and i 2 N, let

va;i D 1

2
a.i/�1ea C 1

2
a.i/�1ei 2 h0; ea; ei i � jLj:

7More generally, it can be replaced by a k-space X . Indeed, to show the continuity of the straight-
line homotopy h, it suffices to prove the continuity of hjC � I for every compact set C in X .
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As is easily observed,U D jLj n fva;i j a 2 N
N; i 2 Ng is an open neighborhood of

0 D h.0; 0; 1
2
/ in jLj. Then, h.W 2�f 1

2
g/ 6� U for any neighborhoodW of 0 in jKj.

Indeed, for each � 2 � , choose ı� > 0 so that Œ0; ı� �e� � W . We have a0 2 N
N

such that a0.i/ > maxfi; ı�1i g for every i 2 N. Take i0 2 N so that i0 > ı�1a0 . Since
a0.i0/

�1 < i�10 < ıa0 , we have x0 D a0.i0/
�1ea0 2 W . On the other hand, since

a0.i0/
�1 < ıi0 , we have y0 D a0.i0/�1ei0 2 W . Then, it follows that

h




x0; y0;
1

2

�

D 1

2
a0.i0/

�1ea0 C
1

2
a0.i0/

�1ei0 D vai0 ;i0 62 U:

Therefore, h is not continuous at .0; 0; 1
2
/.

4.4 PL Maps and Simplicial Maps

Let K and L be cell complexes (in E and F , respectively). A map f W jKj ! jLj
is said to be piecewise linear (PL) if there is a subdivision K 0 of K such that f s
affine on each cell C 2 K 0, i.e., f jC W C ! F is affine. The continuity of f
follows from Corollary 3.5.4. Then, the graph G.f / D f.x; f .x// j x 2 jKjg of f
is a closed subspace of the product space jKj�jLj, and prjKjjG.f / W G.f /! jKj is
a homeomorphism whose inverse is the natural injection if W jKj ! G.f / defined
by if .x/ D .x; f .x// for each x 2 jKj. Here, in general, jKj � jLj 6D jK �c Lj as
spaces (Proposition 4.3.2), but we have the following:

Lemma 4.4.1. The topology of the graph G.f / of each PL map f W jKj ! jLj is
equal to the one inherited from jK �c Lj.
Proof. Because id W jK �c Lj ! jKj � jLj is continuous, it suffices to show that
A � G.f / is closed in jKj� jLj if A\ .C �D/ is closed in C �D for each C 2 K
and D 2 L. Recall that prjKjjG.f / W G.f /! jKj is a homeomorphism. Thus, we
may show that prjKj.A/ is closed in jKj. For each C 2 K , since f .C / is compact,

we have D1; : : : ;Dk 2 L such that f .C / � Sk
iD1 Di . Since pr�1jKj.C / \ G.f / D

.C � f .C // \G.f /, we have

A \ pr�1jKj.C / D A \ .C � f .C // D
k[

iD1
A\ .C �Di/:

Since each A \ .C �Di/ is compact as a closed subset of C �Di , it follows that
A \ pr�1jKj.C / is compact. Hence, prjKj.A/ \ C is also compact, which implies that
prjKj.A/\ C is closed in C . Therefore, prjKj.A/ is closed in jKj. ut

We have the following characterization of PL maps:

Theorem 4.4.2. Let K andL be cell complexes. A map f W jKj ! jLj is PL if and
only if the graph G.f / of f is a polyhedron.
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Proof. To prove the “only if” part, let if W jKj ! G.f / be the natural injection and
K 0 be a subdivision of K such that f is affine on each cell in K 0. Then, if .K 0/ D
fif .C / j C 2 K 0g is a cell complex (cf. 4.1.9(3)). Note that jif .K 0/j D G.f / as
sets. For each A � G.f /,

A is closed in G.f / , prjKj.A/ is closed in jKj D jK 0j
, 8C 2 K 0; prjKj.A/ \ C is closed in C

, 8C 2 K 0; A \ if .C / is closed in if .C /

, A is closed in jif .K 0/j:

Therefore, jif .K 0/j D G.f / as spaces.
To prove the “if” part, let M be a cell complex with jM j D G.f /. Then,

prjKj.M/ D fprjKj.D/ j D 2 M g is a cell complex (cf. 4.1.9(3)). Since
prjKjjG.f / W G.f / D jM j ! jprjKj.M/j is a homeomorphism, it follows that
jprjKj.M/j D jKj as spaces. By Theorem 4.2.11, K and prjKj.M/ have a common
subdivisionK 0. For each C 2 K 0, if .C / is a cell contained in some cell inM . Note
that prjKjjif .C / is an affine homeomorphism, hence so is if jC . Since prjLj is affine
on each cell in M , f D prjLj ı if is affine on each cell in K 0, that is, f is PL. ut
Lemma 4.4.3. For every PL map f W jKj ! jLj,K has a subdivisionK 0 such that
f is affine on each cell C 2 K 0 and f .K 0/ 	 L (i.e., for each cell C 2 K 0, f .C /
is contained in some cell in L).

Proof. By replacing K with a subdivision, we may assume that f jC is affine
for each C 2 K . According to Theorem 4.4.2, there is a cell complex M such
that jM j D G.f /, the graph of f . By Proposition 4.2.12, the following is a cell
complex:

M 0 D ˚C \D ˇ
ˇ C 2M; D 2 K �c L such that C \D 6D ;� 	M:

Each C 2 M is covered by finitely many cells of K �c L because it is compact in
jK �c Lj by Lemma 4.4.1. Then, each cell of M is covered by finitely many cells
of M 0. Therefore, M 0 is a subdivision of M . We apply Theorem 4.2.11 to obtain
a common subdivision K 0 of K and prjKj.M 0/. Observe that prjLj.M 0/ 	 L and
f D prjLj ı if , where if W jKj ! G.f / is the natural injection. Then, we have
f .K 0/ 	 prjLj.M 0/ 	 L. ut

Using Lemma 4.4.3, we can easily prove the following:

Proposition 4.4.4. The composition of PL maps is also PL. ut
Remark 3. In Proposition 4.3.4, if f and g are PL and h W jKj � I ! jLj is the
straight-line homotopy from f to g, then each ht W jKj ! jLj is PL. But, in general,
h W jK �c I j ! jLj is not PL. In fact, by Theorem 4.2.11, K has a subdivision K 0
such that both f jC and gjC are affine for each C 2 K 0. Then, ht jC is affine by
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f .0/ f .1/

f .2/

f .3/

f .4/

Fig. 4.3 The image of the PL map f

definition. As an example of the straight-line homotopy h being non-PL, consider
the affine maps f; g W I ! I2 defined by f .s/ D .s; 0/ and g.s/ D .0; s/. In this
case, the straight-line homotopy h is defined by h.s; t/ D ..1 � t/s; ts/. Note that

h..1 � t/.0; 0/C t.1; 1// D h.t; t/ D .t � t2; t2/ for each t 2 I:

Any cell complex K with jKj D I2 has a cell C such that A D C \ h.0; 0/; .1; 1/i
is a non-degenerate line segment. Then, hjC is not affine.

Remark 4. It should be remarked that the image of a PL map is, in general, not a
polyhedron. In fact, let f W RC ! I2 be the PL map defined as follows:

f .t/ D

8
ˆ̂
<

ˆ̂
:

.t; 0/ if t 2 I D Œ0; 1�;

.2�iC1; t � 2i C 1/ if t 2 Œ2i � 1; 2i �;

.2�i .2i C 2 � t/; 2i C 1 � t/ if t 2 Œ2i; 2i C 1�:
Then, f .RC/ is not a polyhedron. Indeed, if f .RC/ D jLj for a cell complex L,
then f .2n� 1/, n 2 !, should be vertices of L, which are contained in the compact
set f .I/ (Fig. 4.3).

Let K and L be simplicial complexes. A function f W jKj ! jLj is called a
simplicial map from K to L (or with respect to K and L) if f j is affine and
f ./ 2 L for each  2 K , where dimf ./ � dim  . Evidently, f .K.0// � L.0/

and f .K/ D ff ./ j  2 Kg is a subcomplex of L. When  D hv1; : : : ; vni 2 K ,
we have f ./ D hf .v1/; : : : ; f .vn/i 2 L and

f
�Pn

iD1 tivi
� D

nX

iD1
tif .vi / for each ti � 0 with

nX

iD1
ti D 1;

where it is possible that f .vi / D f .vj / for some i 6D j . Every simplicial map
f W jKj ! jLj is PL, so it is continuous (Corollary 3.5.4). For a simplicial map from
K to L, we may write f W K ! L. In fact, although it is actually a function from
jKj to jLj, f induces a function from K to L because f ./ 2 L for each  2 K .
Note that the composition of simplicial maps and the restriction of a simplicial map
to a subcomplex are also simplicial.
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Proposition 4.4.5. Let K and L be simplicial complexes. For a function f0 W
K.0/ ! L.0/, the following are equivalent:

(a) f0 extends to a simplicial map f W K ! L;
(b) hf0..0//i 2 L for each  2 K;
(c)

T
v2.0/ OL.f0.v// 6D ; for each  2 K .

In this case, the simplicial extension f of f0 is unique.

Proof. The implication (a)) (b) follows from the definition. By Proposition 4.2.3,
we have (b), (c). It remains to show the implication (b)) (a). For each  2 K ,
the function f0j.0/ uniquely extends to an affine map f W  ! hf0..0//i � jLj.
Because f j \ � D f� j \ � for each ; � 2 K , we can define f W jKj ! jLj
by f j D f . Then, f is simplicial with respect to K and L. The uniqueness of f
follows from the uniqueness of f ,  2 K . ut

With regard to subdivisions of simplicial maps, we have the following:

Proposition 4.4.6. Let K and L be simplicial complexes and f W K ! L a
simplicial map. For each simplicial subdivision L0 C L, there exists a simplicial
subdivisionK 0 C K such that f W K 0 ! L0 is simplicial.

Proof. We define

K0 D f \ f �1.�/ j  2 K; � 2 L0; � � f ./g:

Then, K0 is a cell complex subdividing K . Indeed, let  2 K and � 2 L0 with
� � f ./ and x 2  \ f �1.�/. By 4.1.9(3), .f j/�1.�/ D  \ f �1.�/ is a cell
with . \ f �1.�//x D x \ f �1.�f .x//. Since rintf .x/ \ rint �f .x/ 6D ;, we
have �f .x/ � f .x/ because L0 C L. Thus, K0 satisfies (C1). To show (C200), let
;  0 2 K and �; � 0 2 L0 with � � f ./, � 0 � f . 0/, and

x 2 rint. \ f �1.�// \ rint. 0 \ f �1.� 0// ��  \  0 \ f �1.� \ � 0/�:

Since rintx \ rint 0x 6D ; and rint �f .x/ \ rint � 0f .x/ 6D ;, we have x D  0x and
�f .x/ D � 0f .x/. Then, from 4.1.9(3), it follows that

 \ f �1.�/ D . \ f �1.�//x D x \ f �1.�f .x//
D  0x \ f �1.� 0f .x// D . 0 \ f �1.� 0//x D  0 \ f �1.� 0/:

Therefore,K0 satisfies (C200).
Let  2 K and � 2 L0 with � � f ./. Then, f . \ f �1.�// D f ./ \ � D � .

For each x 2  \ f �1.�/, since �f .x/ � f .x/ as seen in the verification of (C1)
above, it follows that

f .. \ f �1.�//x/ D f .x \ f �1.�f .x/// D f .x/ \ �f .x/ D �f .x/:
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In particular, if v 2 . \ f �1.�//.0/ then f .v/ 2 �.0/. Consequently, we have
f .K

.0/
0 / � L0.0/.

By Theorem 4.2.10, we have a simplicial subdivisionK 0 C K0 such thatK 0.0/ D
K
.0/
0 . Then, f .K 0.0// � L0.0/. For each simplex  0 2 K 0, we have  2 K and � 2 L0

such that � � f ./,  0 �  \ f �1.�/, and  0.0/ � . \ f �1.�//.0/. Since f j 0
is affine and f . 0.0// � �.0/, it follows that f . 0/ � � , hence f . 0/ 2 L0. Thus,
f W K 0! L0 is simplicial. ut

For homeomorphisms that are PL, we have the following:

Theorem 4.4.7. Let K and L be cell complexes. If a homeomorphism f W jKj !
jLj is PL, then the inverse f �1 W jLj ! jKj is also PL and K has a subdivision
K� such that f jC W C ! f .C / is an affine homeomorphism for each C 2 K� and
L� D ff .C / j C 2 K�g is a cell complex subdividing L.

Proof. Because the graph G.f / of f can be regarded as the graph of f �1
by changing the first and the second factors, the first assertion follows from
Theorem 4.4.2.

Let if W jKj ! G.f / and if �1 W jLj ! G.f / be the natural injections, where
if �1 .y/ D .f �1.y/; y/ for each y 2 jLj. Let K 0 be a subdivision of K such that
f is affine on each cell C 2 K 0, and L0 be a subdivision of L such that f �1 is
affine on each cell D 2 L0. As observed in the proof of Theorem 4.4.2, if .K 0/
and if �1 .L0/ are cell complexes with jif .K 0/j D jif �1 .L0/j D G.f / as spaces.
By virtue of Theorem 4.2.11, if .K 0/ and if �1 .L0/ have a common subdivision
M . Then, K� D prjKj.M/ and L� D prjLj.M/ are subdivisions of K 0 and L0,
respectively. In addition, f .K�/ D prjLjif .K�/ D prjLj.M/ D L�, that is,
L� D ff .C / j C 2 K�g. For each C 2 K�, f jC D prjLj ı if jC W C ! f .C / is
an affine homeomorphism. ut

A piecewise linear (PL) homeomorphism is literally defined as a homeomor-
phism being PL. Due to Theorem 4.4.7, the inverse of a PL homeomorphism is
also a PL homeomorphism. For cell complexes K and L, the polyhedra jKj is PL
homeomorphic to jLj if there exists a PL homeomorphism f W jKj ! jLj.
Remark 5. Every PL bijection between compact polyhedra is a PL homeomor-
phism. However, a bijective PL map f W jKj ! jLj is, in general, not a PL
homeomorphism. For example, define f W RC ! @I2 as follows:

f .t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.t; 0/ if t 2 I D Œ0; 1�;

.1; t � 1/ if t 2 Œ1; 2�;

.3 � t; 1/ if t 2 Œ2; 3�;

.0; 2�nC2.nC 2 � t// if t 2 Œn; nC 1�; n � 3:

Then, f is a PL bijection that is not a PL homeomorphism.



4.4 PL Maps and Simplicial Maps 161

For simplicial complexes K and L, if a bijection f W jKj ! jLj is simplicial
with respect to K and L, then the inverse f �1 is also a simplicial map from
L to K . A simplicial bijection is called a simplicial isomorphism. This is a
homeomorphism, so it is also called a simplicial homeomorphism. Obviously,
a simplicial isomorphism is a PL homeomorphism. The inverse of a simplicial
isomorphism and the composition of simplicial isomorphisms are also simplicial
isomorphisms. It is said thatK is simplicially isomorphic toL (denoted byK � L)
if there exists a simplicial isomorphism f W K ! L. Obviously,� is an equivalence
relation among simplicial complexes.

There exists a weaker equivalence relation among simplicial complexes. It is
said that K is combinatorially equivalent to L (denoted by K Š L) if they have
simplicial subdivisions that are simplicially isomorphic. Then, Š is an equivalence
relation among simplicial complexes.

It is obvious that Š is reflective and symmetric. To see that Š is transitive, let K1 Š K2

and K2 Š K3. Then, K 0

1  K 0

2 for some K 0

1 C K1 and K 0

2 C K2, and K 00

2  K 00

3

for some K 00

2 C K2 and K 00

3 C K3. By virtue of Corollary 4.2.13, K 0

2 and K 00

2 have a
common simplicial subdivision K 000

2 , which induces K 000

1 C K 0

1 and K 000

3 C K 00

3 such that
K 000

1  K 000

2 and K 000

3  K 000

2 . Hence, K 000

1  K 000

3 , which means K1 Š K3. Therefore, Š
is an equivalence relation among simplicial complexes.

This fact also follows from Theorem 4.4.8 below, Theorem 4.4.7, and Proposition 4.4.4.

Theorem 4.4.8. Two simplicial complexesK andL are combinatorially equivalent
to each other if and only if jKj and jLj are PL homeomorphic to each other, that is,
there exists a PL homeomorphism f W jKj ! jLj.
Proof. If K Š L, then K and L have simplicial subdivisions K 0 and L0,
respectively, such that K 0 � L0, hence there is a simplicial isomorphism f W K 0 !
L0. Then, f W jKj ! jLj is a PL homeomorphism.

Conversely, let f W jKj ! jLj be a PL homeomorphism. By Theorem 4.4.7,
there is a cell complex K 0 subdividing K such that f jC W C ! f .C / is an affine
homeomorphism for each C 2 K 0 and L0 D ff .C / j C 2 K 0g is a subdivision of
L. By Theorem 4.2.10, we have a simplicial subdivision K 00 of K 0 with the same
vertices. Then, L00 D ff ./ j  2 K 00g is a simplicial subdivision of L. Observe
that f W K 00 ! L00 is a simplicial isomorphism. Thus, we have K 00 � L00, that is,
K Š L. ut

For simplicial complexesK and L, the following implications are trivial:

K � L) K Š L) jKj � jLj:

Although it goes without saying that the converse of the first implication does not
hold, the converse of the second does not either. It should be noted that jKj D
jLj implies K Š L by Theorems 4.2.11 and 4.2.10. The converse of the second
implication is called Hauptvermutung (the fundamental conjecture). It took a long
time to find finite simplicial complexes K and L such that K 6Š L but jKj � jLj.
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It is known that this conjecture does not hold even if jKj and jLj are n-manifolds
(i.e., there exists an n-manifold that has topological triangulationsK 6Š L).8

Remark 6. By Theorem 4.4.8, it might be expected that every PL map f W jKj !
jLj is simplicial with respect to some simplicial subdivisions ofK and L. However,
this is not the case. For example, let K be the natural triangulation of RC, that is,
K D ! [ fŒn � 1; n� j n 2 Ng, and let L D I D f0; 1; Ig. We define a PL map
f W jKj ! jLj as follows:

f .2n/ D 2�n�1 and f .2nC 1/ D 1 � 2�n�1 for each n 2 !;

and f is affine on each Œn; n C 1�. Since every subdivision of K contains ! as
vertices but every subdivision of L has only finitely many vertices, then f is not
simplicial with respect to any simplicial subdivisions of K and L.

In Sect. 4.6, it will be proved that every proper PL map f W jKj ! jLj is
simplicial with respect to some simplicial subdivisions of K and L. According to
Proposition 4.2.6, a (PL) map f W jKj ! jLj is proper if and only if, for each
 2 L, there is a finite subcomplexK � K such that f �1./ � jK j.

4.5 The Metric Topology of Polyhedra

LetK be a simplicial complex. As shown in 4.2.16(2), jKj is non-metrizable unless
K is locally finite. In this section, we introduce the natural metric on the polyhedron
jKj that induces the same topology as the Whitehead topology ifK is locally finite.

Each point x 2 jKj has the unique representation

x D
nC1X

iD1
z.i/vi ; z 2 rint�n; cK.x/ D hv1; : : : ; vnC1i:

For each v 2 K.0/, let

ˇKv .x/ D
(

z.i/ if v D vi ; i D 1; : : : ; nC 1;
0 otherwise.

Thus, we have maps ˇKv W jKj ! I, v 2 K.0/, which are affine on each simplex of
K . It follows from the definition that

X

v2K.0/

ˇKv .x/ D 1 for each x 2 jKj;

8An n-manifold (without boundary) is a paracompact space such that each point has an open
neighborhood that is homeomorphic to an open set in R

n.
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where fv 2 K.0/ j ˇKv .x/ 6D 0g D cK.x/
.0/, i.e., ˇKv .x/ > 0 , v 2 cK.x/.0/.

Namely, .ˇKv /v2K.0/ is a partition of unity on jKj with suppˇKv D j St.v; K/j. In
fact, we have

.ˇKv /
�1..0; 1�/ D OK.v/ for every v 2 K.0/:

Then, each x 2 jKj is uniquely represented in the form

x D
X

v2K.0/

ˇKv .x/v;

where ˇKv .x/ is called the barycentric coordinate of x at v with respect to K .
The injection ˇK W jKj ! `1.K

.0// defined by ˇK.x/.v/ D ˇKv .x/ is called the
canonical representation of K . Observe that ˇK.v/ D ev is the unit vector of
`1.K

.0//. For each  2 K , the restriction ˇK j is affine. It should be noted that
ˇK.K/ D fˇK./ j  2 Kg is a simplicial complex in the Banach space `1.K.0//

and ˇK W K ! ˇK.K/ is a simplicial isomorphism.
Now, we define the metric 
K on jKj as follows:


K.x; y/ D kˇK.x/ � ˇK.y/k1 D
X

v2K.0/

jˇKv .x/ � ˇKv .y/j;

where k � k1 is the norm for `1.K.0//. Note that 
K.v; v0/ D 2 for each pair of
distinct vertices v; v0 2 K.0/. The topology on jKj induced by this metric 
K is
called the metric topology. The space jKj with this topology is denoted by jKjm.
This space is homeomorphic to the subspace ˇK.jKj/ D jˇK.K/j of the Banach
space `1.K.0// because ˇK is an isometry. The space jKjm (or the metric space
.jKj; 
K/) is called a metric polyhedron. Note that `1.K.0// � R

K.0/
, and that the

topology of ˇK.jKj/ inherited from `1.K
.0// coincides with the one inherited from

the product space RK
.0/

because ˇK.jKj/ is contained in the unit sphere of `1.K.0//

(cf. Proposition 1.2.4). Hence, the metric topology on jKj is the coarsest topology
such that all ˇKv W jKj ! I (v 2 K.0/) are continuous. Then, we have the following:

Fact. For an arbitrary space X , each f W X ! jKjm is continuous if and only if
ˇKv f is continuous for every v 2 K.0/.

Since every ˇKv W jKj ! I is continuous (with respect to the Whitehead topology),
the identity idjKj W jKj ! jKjm is continuous, hence the Whitehead topology and
the metric topology are identical on each simplex of K .

The open star OK.v/ at each v 2 K.0/ is open in jKjm because it is simply
.ˇKv /

�1..0; 1�/ (D jKj n .ˇKv /�1.0/). Hence, OK 2 cov.jKjm/. For each x 2 jKj,
we have

OK.x/ D
[

2KŒx�
rint D

\

v2cK.x/.0/
OK.v/ � j St.cK.x/;K/j:
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Hence, the open star OK.x/ is an open neighborhood of x in jKjm. For each 0 <
r � 1, we have the following open neighborhood of x in jKjm:

OK.x; r/ D .1 � r/x C rOK.x/ D
˚
.1 � r/x C ry ˇˇ y 2 OK.x/

�
:

Then, OK.x; r/ � B
K .x; 2r/. Indeed, for each y 2 OK.x/, since cK.x/ � cK.y/
and ˇKv is affine on cK.y/, it follows that


K..1� r/x C ry; x/ D
X

v2K.0/

ˇ
ˇˇKv ..1 � r/x C ry/� ˇKv .x/

ˇ
ˇ

D
X

v2K.0/

r
ˇ
ˇˇKv .y/� ˇKv .x/

ˇ
ˇ D r
K.x; y/ < 2r:

As a consequence, we have the following:

Proposition 4.5.1. Let K be a simplicial complex and x 2 jKj. Then, fOK.x; r/ j
0 < r � 1g is an open neighborhood basis of x in jKjm. ut

The following proposition can be easily proved:

Proposition 4.5.2. For every subcomplex L of a simplicial complex K , the metric

L is the restriction of 
K and jLjm is a closed subspace of jKjm. ut

Moreover, we have:

Proposition 4.5.3. For a simplicial complex K and each x 2 jKj, the closure of
OK.x/ in jKjm coincides with j St.cK.x/;K/j. In particular, for a vertex v 2 K.0/,
j St.v; K/j is the closure of OK.v/ in jKjm.

Proof. According to Proposition 4.5.2, j St.cK.x/;K/j is closed in jKjm. Then, it
suffices to show that .1 � t/y C tx 2 OK.x/ for each y 2 j St.cK.x/;K/j and
0 < t � 1. For each v 2 cK.x/.0/, since ˇKv .x/ > 0, it follows that

ˇKv ..1 � t/y C tx/ D .1 � t/ˇKv .y/C tˇKv .x/ > 0;
i.e., .1 � t/y C tx 2 .ˇKv /�1..0; 1�/ D OK.v/:

Hence, .1 � t/y C tx 2Tv2cK.x/.0/ OK.v/ D OK.x/. ut
Thus, with respect to the metric topology as well as the Whitehead topology,

SK D Ocl
K and .ˇKv /v2K.0/ is a partition of unity on jKjm with suppˇKv D j St.v; K/j.

Using the metric topology instead of the Whitehead (weak) topology, Proposi-
tion 4.3.4 can be generalized as follows:

Proposition 4.5.4. Let K be a simplicial complex andX an arbitrary space. If two
maps f; g W X ! jKjm are contiguous (with respect to K) then f 'K g by the
straight-line homotopy h W X � I! jKjm, that is,

h.x; t/ D .1 � t/f .x/C tg.x/ for each .x; t/ 2 X � I:
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Proof. It suffices to verify the continuity of h. This follows from the continuity of
ˇKv h W X � I! I, v 2 K.0/, where

ˇKv h.x; t/ D .1 � t/ˇKv f .x/C tˇKv g.x/: �

Let K and L be simplicial complexes. Each simplicial map f W K ! L can be
represented as follows:

f .x/ D f �Pv2K.0/ ˇKv .x/v
�

D
X

v2K.0/

ˇKv .x/f .v/ D
X

u2L.0/

X

v2f �1.u/

ˇKv .x/u;

that is, ˇLu .f .x// D
P

v2f �1.u/ ˇ
K
v .x/ for each x 2 jKj and u 2 L.0/. Then, it is

easy to show the following:

Proposition 4.5.5. Let f W K ! L be a simplicial map between simplicial
complexes. Then, 
L.f .x/; f .y// � 
K.x; y/ for each x; y 2 jKj, hence f W
jKjm ! jLjm is continuous. When f is injective, f W .jKj; 
K/ ! .jLj; 
L/ is a
closed isometry, so it is a closed embedding. Particularly, if f is bijective (i.e., f is
a simplicial homeomorphism), it is a homeomorphism. As a consequence,

K � L) jKjm � jLjm: �

For a finite simplicial complex K , since jKj is compact (Proposition 4.2.6), it
follows that idjKj W jKj ! jKjm is a homeomorphism, that is, the metric topology
of jKj coincides with the Whitehead topology. More generally, we can prove the
following theorem (cf. 4.2.16(2)):

Theorem 4.5.6. For a simplicial complex K , the metric topology of jKj coincides
with the Whitehead topology (i.e., jKjm D jKj as spaces) if and only if K is locally
finite.

Proof. If jKjm D jKj as spaces then jKj is metrizable, so K is locally finite by
4.2.16(2). To show the converse, let ' D id W jKj ! jKjm. Assume that K is
locally finite, that is, St.v; K/ is finite for each v 2 K.0/. Then, each 'jj St.v; K/j
is a homeomorphism, so 'jOK.v/ is also a homeomorphism. Since OK is an open
cover of both jKjm and jKj, it follows that ' is a homeomorphism. ut

Concerning subdivisions, we have the following result:

Proposition 4.5.7. Let K B K 0 be simplicial complexes. Then, 
K.x; y/ �

K0.x; y/ for each x; y 2 jKj D jK 0j, hence id W jK 0jm ! jKjm is continuous.

Proof. For each x 2 jKj D jK 0j and v 2 K.0/, we have

ˇKv .x/ D ˇKv
�P

w2K0.0/ ˇK
0

w .x/w
� D

X

w2K0.0/

ˇK
0

w .x/ˇKv .w/:
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e1

e2

ei
2�iei

2�1e1

0
2�2e2

Fig. 4.4 jK 0jm 6D jKjm

Then, for each x; y 2 jKj D jK 0j,


K.x; y/ D
X

v2K.0/

ˇ
ˇˇKv .x/ � ˇKv .y/

ˇ
ˇ

�
X

v2K.0/

X

w2K0.0/

ˇ
ˇˇK

0

w .x/ � ˇK0

w .y/
ˇ
ˇˇKv .w/

D
X

w2K0.0/

ˇ
ˇˇK

0

w .x/ � ˇK0

w .y/
ˇ
ˇ D 
K0.x; y/:

ut

In contrast to the Whitehead topology, jK 0jm 6D jKjm for some subdivision
K 0 C K . Such an example can be defined in `1 as follows:

K D ˚0; ei ; h0; eii
ˇ
ˇ i 2 N

�
and

K 0 D ˚0; 2�iei ; ei ; h0; 2�iei i; h2�iei ; ei i
ˇ
ˇ i 2 N

�
C K;

where each ei 2 `1 is defined by ei .i / D 1 and ei .j / D 0 for j 6D i . Then,
jKjm is simply the hedgehog J.N/. The set f2�iei j i 2 Ng is closed in jK 0jm but
limi!1 2�iei D 0 in jKjm — Fig. 4.4.

For each simplicial map f W K ! L, both maps f W jKj ! jLj and f W
jKjm ! jLjm are continuous (Proposition 4.5.5). Moreover, recall that every PL
map f W jKj ! jLj is continuous. However, a PL map f W jKjm ! jLjm is not
continuous even if f is bijective. In fact, consider K 0 C K in the above example
and let L D K . We define a PL map f W jKj ! jLj by f .0/ D 0, f .ei / D ei and
f .2�iei / D 1

2
ei , where 1

2
ei is the barycenter of h0; eii. Then, f W jKjm ! jLjm

is not continuous, because 2�iei ! 0 in jKjm but f .2�iei / D 1
2
ei 6! f .0/ D 0

in jLjm.
It is inconvenient that the metric topology is changed by subdivisions and

that PL maps are not continuous with respect to the metric topology. However,
concerning product simplicial complexes, the metric topology has the advantage
of the Whitehead topology.
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Theorem 4.5.8. For each pair of ordered simplicial complexesK and L,

jK �s Ljm D jKjm � jLjm as spaces.

Proof. The projections pr1 W jK �s Ljm ! jKjm and pr2 W jK �s Ljm ! jLjm are
simplicial, so they are continuous. Therefore, id W jK �s Ljm ! jKjm � jLjm is
continuous.

We will prove the continuity of id W jKjm � jLjm ! jK �s Ljm at each .x; y/ 2
jKjm � jLjm. To this end, we need the data of ˇK�sL.u;v/ .x; y/. Note that the carrier
cK�sL.x; y/ is contained in the cell cK.x/ � cL.y/. Let

cK.x/ D hu1; : : : ; uni; u1 < � � � < un and

cL.y/ D hv1; : : : ; vmi; v1 < � � � < vm;

and define 0 D a0 < a1 < � � � < an D 1 and 0 D b0 < b1 < � � � < bm D 1 as

ak D
kX

iD1
ˇKui .x/ and bk D

kX

iD1
ˇLvi .y/:

In this case, we can write

fa0; : : : ; an; b0; : : : ; bmg D fc0; : : : ; c`g
such that 0 D c0 < c1 < � � � < c` D 1, where maxfn;mg � ` < m C n andP`

kD1.ck � ck�1/ D c` � c0 D 1. For each k D 1; : : : ; `, let

ai.k/�1 < ck � ai.k/ and bj.k/�1 < ck � bj.k/;
and define .Nuk; Nvk/ D .ui.k/; vj.k//. Then, we have

h.Nu1; Nv1/; : : : ; .Nu`; Nv`/i 2 K �s L;

which is the carrier of .x; y/, and ˇK�sL.Nuk ;Nvk/.x; y/ D ck � ck�1 because

X̀

kD1
.ck � ck�1/.Nuk; Nvk/

D

 nX

iD1

X

i.k/Di
.ck � ck�1/ui.k/;

mX

jD1

X

j.k/Dj
.ck � ck�1/vj.k/

�

D

 nX

iD1
.ai � ai�1/ui ;

mX

jD1
.bj � bj�1/vj

�

D

 nX

iD1
ˇKui .x/ui ;

mX

jD1
ˇLvj .y/vj

�

D .x; y/:
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For each " > 0, choose ı > 0 so that 2ı < ck � ck�1 for every k D 1; : : : ; `

and 2.` C 1/ı < ". Then, ˇKui .x/ > 2ı for i D 1; : : : ; n and ˇLvj .y/ > 2ı for
j D 1; : : : ; m. Now, let .x0; y0/ 2 jKj � jLj with 
K.x; x0/ < ı and 
L.y; y0/ < ı.
To show that 
K�sL..x; y/; .x0; y0// < ", let

cK.x
0/ D hu01; � � � ; u0n0

i; u01 < � � � < u0n0

and

cL.y
0/ D hv01; � � � ; v0m0

i; v01 < � � � < v0m0

:

In the same way as x and y, define a0k D
Pk

iD1 ˇKu0

i
.x0/, b0k D

Pk
iD1 ˇLv0

i
.y0/, and

write

fa00; : : : ; a0n0

; b00; : : : ; b0m0

g D fc00; : : : ; c0`0

g;
where 0 D c00 < c01 < � � � < c0

`0

D 1. For each k D 1; : : : ; `0, let a0
i 0.k/�1 < c0k �

a0i 0.k/ and b0j 0.k/�1 < c
0
k � b0j 0.k/, and define .Nu0k; Nv0k/ D .u0i 0.k/; v0j 0.k//. Then,

h.Nu01; Nv01/; : : : ; .Nu0`0

; Nv0`0

/i D cK�sL.x0; y0/

and ˇK�sL
.Nu0

k ;Nv0

k/
.x0; y0/ D c0k � c0k�1. For each i D 1; : : : ; n,

ˇKui .x
0/ � ˇKui .x/ � jˇKui .x/ � ˇKui .x0/j > 2ı � 
K.x; x0/ > ı > 0;

which implies that u1 < � � � < un is a subsequence of u01 < � � � < u0n0

, that is, we can
take 1 � p.1/ < � � � < p.n/ � n0 to write ui D u0p.i/. Observe that

ja0p.k/ � akj �
kX

iD1
jˇKui .x/ � ˇKui .x0/j C

X

u62fu1;:::;ung
ˇKu .x

0/

� 
K.x; x0/ < ı and

ja0p.k/�1 � ak�1j �
k�1X

iD1
jˇKui .x/ � ˇKui .x0/j C

X

u62fu1;:::;ung
ˇKu .x

0/

� 
K.x; x0/ < ı:

Similarly, we can take 1 � q.1/ < � � � < q.m/ � m0 to write vj D v0q.j /. Then,

jb0q.j / � bj j < ı and jb0q.j /�1 � bj�1j < ı:

On the other hand, for each k D 1; : : : ; `, because ai.k/�1 < ck � ai.k/ and
bj.k/�1 < ck � bj.k/, we have

ck D minfai.k/; bj.k/g and ck�1 D maxfai.k/�1; bj.k/�1g:
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Then, it follows that

b0q.j.k//�1 < bj.k/�1 C ı � ck�1 C ı < ck � ı � ai.k/ � ı < a0p.i.k//:

Similarly, a0p.i.k//�1 < b0q.j.k//. Hence, there is some r.k/ D 1; : : : ; `0 such that

c0r.k/�1 D maxfa0p.i.k//�1; b0q.j.k//�1g
< c0r.k/ D minfa0p.i.k//; b0q.j.k//g:

This means that p.i.k// D i 0.r.k// and q.j.k// D j 0.r.k//, which implies that

.Nu0r.k/; Nv0r.k// D .u0i 0.r.k//; v0j 0.r.k/// D .u0p.i.k//; v0q.j.k///
D .ui.k/; vj.k// D .Nuk; Nvk/

and ˇK�sL.Nuk ;Nvk/.x
0; y0/ D c0r.k/ � c0r.k/�1. Observe that

ck � ı D min
˚
ai.k/ � ı; bj.k/ � ı

�

< c0r.k/ D min
˚
a0p.i.k//; b0q.j.k//

�

< ck C ı D min
˚
ai.k/ C ı; bj.k/ C ı

�
and

ck�1 � ı D max
˚
ai.k/�1 � ı; bj.k/�1 � ı

�

< c0r.k/�1 D max
˚
a0p.i.k//�1; b0q.j.k//�1

�

< ck�1 C ı D max
˚
ai.k/�1 C ı; bj.k/�1 C ı

�
:

Moreover, it should be noted that

X

i 0.r/Di
.c0r � c0r�1/ D a0i � a0i�1 D ˇKu0

i
.x0/

X

j 0.r/Dj
.c0r � c0r�1/ D b0j � b0j�1 D ˇLv0

j
.y0/ and

r 2 fr.1/; : : : ; r.`/g ,
(
i 0.r/ 2 fp.1/; : : : ; p.n/g;
j 0.r/ 2 fq.1/; : : : ; q.m/g:

Then, it follows that

X

r 62fr.1/;:::;r.`/g
.c0r � c0r�1/ �

X

i 62fp.1/;:::;p.n/g

X

i 0.r/Di
.c0r � c0r�1/

C
X

j 62fq.1/;:::;q.m/g

X

j 0.r/Dj
.c0r � c0r�1/
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D
X

i 62fp.1/;:::;p.n/g
ˇKu0

i
.x0/ C

X

j 62fq.1/;:::;q.m/g
ˇLv0

j
.y0/

D
X

u62fu1;:::;ung
ˇKu .x

0/ C
X

v 62fv1;:::;vmg
ˇLv .y

0/

< 
K.x; x
0/C 
L.y; y0/ < 2ı:

Consequently, we have the following estimation:


K�sL..x; y/; .x0; y0// D
X̀

kD1

ˇ
ˇ.ck � ck�1/ � .c0r.k/ � c0r.k/�1/

ˇ
ˇ

C
X

r 62fr.1/;:::;r.`/g
.c0r � c0r�1/

<
X̀

kD1
jck � c0r.k/j C

X̀

kD1
jck�1 � c0r.k/�1j C 2ı

< 2.`C 1/ı < ":

This completes the proof. ut
For a simplicial complex K , we can characterize the complete metrizability of

jKjm as follows:

Theorem 4.5.9. For a simplicial complexK , the following are equivalent:

(a) jKjm is completely metrizable;
(b) K contains no infinite full complexes as subcomplexes;
(c) 
K is complete.

Proof. Since (c)) (a) is obvious, we show (a)) (b)) (c).
(a) ) (b): Assume that K contains an infinite full complex as a subcomplex.

Then, we have a countably infinite full complex L � K . Because jKjm is
completely metrizable, its closed subspace jLjm is also completely metrizable.
However, jLj is the union of countably many simplexes that have no interior
points. This contradicts the Baire Category Theorem 2.5.1. Therefore, K contains
no infinite full complexes.

(b) ) (c): Let .xi /i2N be a 
K -Cauchy sequence in jKjm. Since ˇK W
.jKj; 
K/ ! `1.K

.0// is an isometry, .ˇK.xi //i2N is Cauchy in `1.K.0//, hence
we have � D limi!1 ˇK.xi / 2 `1.K.0//. Observe

X

v2K.0/

�.v/ D k�k1 D lim
i!1 kˇ

K.xi /k1 D 1:
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Let A D fv 2 K.0/ j �.v/ > 0g. Each finite subset F � A is contained in
cK.xi /

.0/ for sufficiently large i 2 N, hence hF i 2 K . Thus, K contains the full
complex�.A/ as a subcomplex. It follows from (b) that A is finite. Using the above
argument, we have hAi 2 K , which means

x D
X

v2A
�.v/v 2 hAi � jKj:

Therefore, 
K is complete. ut
There is another admissible metric on jKjm that is widely adopted because it

allows for easy estimates of distances.

Another Metric on a Polyhedron 4.5.10.

(1) For a simplicial complexK , the following metric is admissible for jKjm:


1K .x; y/ D kˇK.x/ � ˇK.y/k1
D sup

v2K.0/

jˇKv .x/ � ˇKv .y/j
� � 
K.x; y/

�
;

where k � k1 is the norm for `1.K.0//.

Sketch of Proof. For the continuity of id W .jKj; 
1

K / ! .jKj; 
K/, see Proposi-
tion 1.2.4.

(2) Proposition 4.5.7 is not valid for the metric 
1K , that is, the inequality

1K .x; y/ � 
1K0

.x; y/ does not hold for some K 0 C K .

Example. Consider the following simplicial complexes in R:

K D f0;˙1; h0;˙1ig; K 0 D f0;˙1
2
;˙1; h0;˙1

2
i; h˙1

2
;˙1ig:

Then, K 0 C K but 
1

K .� 3
4
; 3
4
/ D 3

4
> 
1

K0

.� 3
4
; 3
4
/ D 1

2
.

(3) For a simplicial complexK , the following are equivalent:

(a) K is finite-dimensional;
(b) 
K is uniformly equivalent to 
1K ;
(c) 
1K is complete.

Sketch of Proof. (a)) (b) and (c): For each x; y 2 jKj,

1

K .x; y/ � 
K.x; y/ � 2.dimK C 1/
1

K .x; y/:

Then, applying Theorem 4.5.9, we have (c).
(b) or (c)) (a): If dimK D1, then we can inductively choose n-simplexes n 2 K ,
n 2 N, so that n \ m D ; if n 6D m. Then, for any n < m, 
K.On; Om/ D 2 and

1

K .On; Om/ D 1=.nC 1/. This is contrary to both (b) and (c).
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4.6 Derived and Barycentric Subdivisions

In this section, we introduce derived subdivisions and barycentric subdivisions,
and prove that proper PL maps are simplicial with respect to some simplicial
subdivisions.

The following lemma is useful to construct simplicial subdivisions:

Lemma 4.6.1. Let C be an n-cell with u0 2 rintC andK 0 a simplicial subdivision
of the cell complex F.@C /. Then,

K 00 D K 0 [ fu0g [
˚
u0

ˇ
ˇ  2 K 0� C F.C /

andK 0 is a full subcomplex of K 00.

Proof. For each  2 K 0, chooseD < C so that  � D. Since u0 62 D D C \ flD,
we have the join u0 , which is a simplex in C . Evidently, K 00 satisfies (C1) and
K 00 	 F.C /. To verify that K 00 is a simplicial subdivision of F.C /, we have to
show that K 00 satisfies (C200) and C is covered by simplexes of K 00. On the other
hand, it easily follows from the definition of K 00 that K 0 is full in K 00. Then, it
suffices to show that each x 2 C is contained in the interior of a unique simplex
of K 00.

The case x D u0 is obvious. The case x 2 @C follows from the fact that K 0 C
F.@C / and rint u0 \ @C D ; for each  2 K 0. When x 2 rintC and x 6D u0, let

t0 D supft > 0 j .1 � t/u0 C tx 2 C g > 1 and y D .1� t0/u0 C t0x:

Then, y 2 @C and x 2 hu0; yi. By Proposition 3.2.3, such a point y 2 @C is
unique. Observe that the join u0cK0.y/ is a unique simplex of K 00 such that x 2
rint u0cK0.y/, where cK0.y/ is the carrier of y in K 0. ut
Proposition 4.6.2. Let K be a cell complex and L0 a simplicial subdivision of a
subcomplexL ofK . Given vC 2 rintC for each C 2 K nL, there exists a simplicial
subdivisionK 0 of K such that L0 is a full subcomplex of K 0 and

K 0.0/ D L0.0/ [K.0/ [ ˚vC
ˇ
ˇ C 2 K n L�:

Proof. For each n 2 !, let Kn D L [K.n/. Then, each Kn is a subcomplex of K
and K D S

n2NKn. Note that K 00 D L0 [ K.0/ C K0 with K 00.0/ D L0.0/ [ K.0/

and L0 is full in K 00. Assume that K 0n�1 C Kn�1 such that L0 is a full subcomplex
of K 0n�1 and

K 0n�1
.0/ D K 00.0/ [

˚
vC
ˇ
ˇ C 2 K.n�1/ nL�:

For each C 2 K.n/ nKn�1, let

K@C D f 2 K 0n�1 j  � @C g C F.@C /:
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By Lemma 4.6.1, we have

KC D K@C [ fvC g [
˚
vC

ˇ
ˇ  2 K@C

�
C F.C /

andK@C is full in KC . Thus, we have a simplicial complex

K 0n D K 0n�1 [
[

C2K.n/nKn�1

KC :

It is easy to see that K 0n C Kn, L0 is a full subcomplex in K 0n, and

K 0n
.0/ D K 00.0/ [ fvC j C 2 K.n/ nLg:

By induction, we haveK 0n C Kn, n 2 N, with the above conditions. Observe that
K 0 DSn2NK 0n is the desired simplicial subdivision. ut

When L D ; in Proposition 4.6.2 above, the obtained subdivisionK 0 is called a
derived subdivision of K . This is written as follows:

K 0 D ˚hvC1; : : : ; vCni
ˇ
ˇ C1 < � � � < Cn 2 K

�
;

and K 0 is an ordered simplicial complex with the natural order on K 0.0/ defined as
follows: vC � vD if C � D. If K is simplicial and v D O for each  2 K , the
derived subdivision K 0 of K is called the barycentric subdivision of K , which is
denoted by SdK .

When L is simplicial and L0 D L in Proposition 4.6.2, we call K 0 a derived
subdivision of K relative to L, where

K 0 D L [ ˚hvC1; : : : ; vCni
ˇ
ˇ C1 < � � � < Cn 2 K nL

�

[ ˚hv1; : : : ; vm; vC1; : : : ; vCni
ˇ
ˇ hv1; : : : ; vmi 2 L;

C1 < � � � < Cn 2 K n L with hv1; : : : ; vmi < C1
�
:

If K and L are simplicial and v D O for each  2 K n L, the derived subdivision
of K relative to L is called the barycentric subdivision of K relative to L, which
is denoted by SdL K (cf. Fig. 4.5). Note that L is a full subcomplex of SdL K by
Proposition 4.6.2.

For simplicial complexes K and L, since the barycentric subdivisions SdK
and SdL are ordered simplicial complexes, we can define the product simplicial
complex SdK �s SdL, that consists of simplexes

h. O1; O�1/; : : : ; . On; O�n/i; 1 � � � � � n 2 K; �1 � � � � � �n 2 L:
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L
K

SdL K

Fig. 4.5 Definition of SdL K

On the other hand, by giving v�� 2 rint. � �/ for each  � � 2 K �c L, we can
define a derived subdivision of the product cell complexK �c L, which consists of
simplexes

hv1��1 ; : : : ; vn��ni; 1 � �1 < � � � < n � �n 2 K �c L:

If v�� D . O; O�/ for each  � � 2 K �c L, the derived subdivision of K �c L is
simply SdK �s SdL.

Applying these derived subdivisions, we prove the following:

Theorem 4.6.3. Let K ,K0, and L be simplicial complexes such thatK0 � K \L,
jLj � jKj, and L nK0 is finite. Then, K has a simplicial subdivision K 0 such that
K0 is a full subcomplex of K 0 and L is subdivided by some subcomplex of K 0.

Proof. We show the theorem by induction on n D card.L nK0/. In the case n D 0,
a derived subdivision K 0 of K relative to L D K0 is the desired one. In the case
n > 0, let  be a maximal dimensional simplex of L n K0. Since  is a principal
simplex of L, L1 D L n fg is a subcomplex of L. By the inductive assumption,
we have K 0 C K such that K0 is a full subcomplex of K 0 and L01 C L1 for some
L01 � K 0. Then, @ is triangulated by the subcomplexL0@ D f� 2 L01 j � � @g of
L01 (� K 0). Let

L0 D
˚
� \  ˇˇ � 2 K 0 such that � \  6D ;�:

Since � \  0 � � for each  0 <  and � 2 K 0 with � \  0 6D ;, L0 is a cell
complex by Proposition 4.2.12. Then, jL0 j D  and L0@ � L0 . It should be noted
that if � \  6D ; but rint � \  D ;, then � \  D � 0 \  for some � 0 < � with
rint � 0 \  6D ;.

Now, consider the subcomplex K 01 D f� 2 K 0 j � \ rint D ;g of K 0. Then,
K0[L01 � K 01 and \jK 01j D jL0@ j D @ . For each � 2 K 0nK 01, choose v� 2 rint �
so that

rint � \ rint  6D ; ) v� 2 rint � \ rint;

where it should be noted that rint �\rint D ; implies rint � 0\rint 6D ; for some
� 0 < � because � \ rint 6D ;. Using these points v� , we define K 00 as a derived
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K 0 nK 0

1



�

v�

Fig. 4.6 Definition of K 00

subdivision of K 0 relative to K 01 (cf. Fig. 4.6). Then, K0 [ L01 � K 00. Since K0 is
full in K 01 andK 01 is full in K 00, it follows that K0 is full in K 00.

On the other hand, for each cell C 2 L0 n L0@ , let vC D v�C , where �C 2 K 0
is the unique cell such that C D �C \  and rint �C \  6D ;. Then, vC 2 rintC .
Indeed, since rint �C \ rint 6D ;, we have rintC D rint �C \ rint by 4.1.9(2).
Using these points vC , we have the derived subdivision L00 of L0 relative to L0@ .
Then, L00 is a triangulation of  , which is simply the subcomplex of K 00 consisting
of simplexes with vertices in  , that is, L00 D f� 2 K 00 j � � g. Thus, we have a
subcomplex L00 D L01 [ L00 of K 00 such that L00 C L. ut

To prove that proper PL maps are simplicial with respect to some simplicial
subdivisions, we need the following:

Lemma 4.6.4. Let C1; : : : ; Cn be cells contained in a cell C and K0 be a
triangulation of @C such that if Ci \ @C 6D ; then Ci \ @C is triangulated by a
subcomplex ofK0. Then,C has a triangulationK such thatK0 � K andC1; : : : ; Cn
are triangulated by subcomplexes of K .

Proof. It suffices to prove the case n D 1. Indeed, assume that C has triangulations
K1; : : : ; Kn such that K0 � Ki and Ci is triangulated by a subcomplex of Ki . By
Corollary 4.2.13, we have a common simplicial subdivision K of K1; : : : ; Kn with
K0 � K , which is the desired triangulation of C .

The case n D 1 can be shown as follows: Consider the cell complex F.C1/ and
its subcomplex L1 D fD 2 F.C1/ j D � @C g, where jL1j D C1 \ @C . Indeed,
for each x 2 C1 \ @C , take D � C1 with x 2 rintD. Then, D D Dx � Cx .
Since x 62 rintC implies Cx < C , we have D � @C , that is, D 2 L1. Note that
K0 gives the simplicial subdivision L01 of L1. We can apply Proposition 4.6.2 to
obtain a simplicial subdivision K1 of F.C1/ with L01 � K1. Then, K1 [ K0 is a
triangulation of C1 [ @C . On the other hand, F.C / has a simplicial subdivision
K with K0 � K by Proposition 4.6.2. Applying Theorem 4.6.3, we can obtain a
simplicial subdivisionK 01 of K such that K0 � K 01 andK1 [K0 is subdivided by a
subcomplex ofK 01. ut
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Now, we shall show the following:

Proposition 4.6.5. Let K and L be cell complexes. A proper map f W jKj ! jLj
is PL if and only if f is simplicial with respect to some simplicial subdivisions
K 0 C K and L0 C L.

Proof. The “if” part is obvious, where the properness of f is not necessary.
To see the “only if” part, replace K with a subdivision so that f jC can be

assumed to be affine for each C 2 K . For each cell D 2 L, let KD be the smallest
subcomplex ofK such that f �1.D/ � jKDj, which also can be defined as

KD D fC 2 K j 9C 0 2 K such that C � C 0; rintC 0 \ f �1.D/ 6D ;g:
Since f �1.D/ is compact by the properness of f , it follows that KD is a finite
subcomplex ofK . According to the definition,KD0 � KD forD0 < D.

By induction on dimD, we can apply Lemma 4.6.4 to obtain a triangulation LD
of eachD 2 L such that f .C /\D is triangulated by a subcomplex of LD for each
C 2 KD and LD0 � LD for every D0 < D. Indeed, assume that LD0 has been
obtained for every D0 < D. Then, L@D D S

D0<D LD0 is a triangulation of @D.
Applying Lemma 4.6.4, we have a triangulation LD of D such that L@D � LD and
f .C /\D is triangulated by a subcomplex of LD for every C 2 KD.

Now, we have a simplicial subdivision L0 D S
D2L LD of L, where f .C / is

triangulated by a subcomplex of L0 for every C 2 K . For each C 2 K and � 2 L0
with � \f .C / 6D ;, C \f �1.�/ D .f jC/�1.�/ is a cell and .f jC/�1.�/x D Cx\
f �1.�f .x// for x 2 C \ f �1.�/ by 4.1.9(3). By the analogy of Proposition 4.2.12,
we can show that, for each C;C 0 2 K and �; � 0 2 L,

rint.C \ f �1.�//\ rint.C 0 \ f �1.� 0// 6D ; ) C \ f �1.�/ D C 0 \ f �1.� 0/:

Thus, the following is a cell complex:

˚
C \ f �1.�/ ˇˇ C 2 K; � 2 L0; C \ f �1.�/ 6D ;�;

which is a subdivision of K . By Theorem 4.2.10, we have a simplicial subdivision
K 0 of this complex with the same vertices. Then, f is simplicial with respect to K 0
and L0. ut

As we saw at the end of Sect. 4.4, the properness of f is essential in the “only if”
part of Proposition 4.6.5. By Propositions 4.4.6 and 4.6.5, we have the following:

Corollary 4.6.6. Let K1, K2, and K3 be simplicial complexes. For each simplicial
map f W K1 ! K2 and each proper PL map g W jK2j ! jK3j, there are simplicial
subdivisionsK 01 C K1 andK 03 C K3 such that gf W K 01 ! K 03 is simplicial.

Proof. Using Proposition 4.6.5, we can find simplicial subdivisions K 02 C K2 and
K 03 C K3 such that g W K 02 ! K 03 is simplicial. Then, by Proposition 4.4.6, K1 has
simplicial subdivisions K 01 C K1 such that f W K 01 ! K 02 is simplicial, whence
gf W K 01! K 03 is simplicial. ut
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Remark 7. As observed, a PL map cannot be defined as a map f W jKj ! jLj that
is simplicial with respect to some simplicial subdivisions K 0 C K and L0 C L.
If we adopted such a definition, then we could not assert that the composition of
PL maps is PL. In fact, even if f W K1 ! K2 is a simplicial isomorphism and
g W jK2j ! jK3j is simplicial with respect to some simplicial subdivisions, the
composition gf is not simplicial with respect to any simplicial subdivisions. For
example, let K D fn; Œn; n C 1� j n 2 !g and I D f0; 1; Ig be the natural
triangulations of Œ0;1/ and I, respectively. We define K 0 C K as follows:

K 0 D ˚n; nC 2�.nC1/; Œn; nC 2�.nC1/�; ŒnC 2�.nC1/; nC 1� ˇˇ n 2 !�:

Let f W K ! K 0 and g W K ! I be the simplicial maps defined by

f .2n/ D n; f .2nC 1/ D nC 2�.nC1/; g.2n/ D 0 and g.2nC 1/ D 1:
Then, f W K ! K 0 is a simplicial isomorphism and g W jK 0j D jKj ! jI j D I is a
PL map. Observe that gf .4nC 1/ D 2�.2nC1/ and gf .4nC 3/ D 1 � 2�.2nC2/ for
each n 2 !, whence gf .!/ is infinite. Since every subdivision of K contains ! as
vertices but every subdivision of I contains only finitely many vertices, gf is not
simplicial with respect to any simplicial subdivisions of K and I .

As we saw in Sect. 4.5, a subdivision generally changes the metric topology but
the barycentric subdivision does not.

Theorem 4.6.7. For each simplicial complexK , j SdKjm D jKjm as spaces.

Proof. WhenK is finite, the result follows from Proposition 4.5.7 and the compact-
ness of j SdKjm. We may assume that K is infinite. By Proposition 4.5.7, it suffices
to show that id W jKjm ! j SdKjm is continuous. Let x 2 jKj and k D dim cK.x/.
For each " > 0, choose ı > 0 so that ı < .2k C 3/�1" and

ˇKv .x/ 6D ˇKv0

.x/ ) ı <
1

2
jˇKv .x/ � ˇKv0

.x/j:

The last condition implies that ı < 1
2
ˇKv .x/ for every v 2 cK.x/

.0/ because
ˇKv0

.x/ D 0 for some v0 2 K.0/. For each y 2 jKj with 
K.x; y/ < ı, the following
hold:

ˇKv .x/ > ˇ
K
v0

.x/ ) ˇKv .y/ > ˇ
K
v0

.y/ I
ˇKv .x/ D 0 , ˇKv .y/ < ı:

Note that the first implication holds even if ˇKv0

.x/ D 0, hence cK.x/ � cK.y/.
Since ˇKv .y/ � ˇKv0

.y/ implies ˇKv .x/ � ˇKv0

.x/, we can write

cK.x/ D hv0; : : : ; vki; cK.y/ D hv0; : : : ; vni; k � n;
ˇKv0 .x/ � � � � � ˇKvk .x/ > 0 and ˇKv0 .y/ � � � � � ˇKvn.y/ > 0:
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For each i D 0; : : : ; n, let i D hv0; : : : ; vii. Then, 0 < 1 < � � � < n,
k D cK.x/, and n D cK.y/. Observe that

x D ˇKvk .x/vk C ˇKvk�1
.x/vk�1 C � � � C ˇKv1 .x/v1 C ˇKv0 .x/v0

D .k C 1/ˇKvk .x/ Ok C k
�
ˇKvk�1

.x/ � ˇKvk .x/
� Ok�1C

� � � C 2�ˇKv1 .x/ � ˇKv2 .x/
� O1 C

�
ˇKv0 .x/ � ˇKv1 .x/

� O0:

Hence, x 2 h O0; : : : ; Oki 2 SdK , ˇSdK
Ok .x/ D .k C 1/ˇKvk .x/ and

ˇSdK
Oi .x/ D .i C 1/�ˇKvi .x/ � ˇKviC1

.x/
�

for i D 0; : : : ; k � 1:

Similarly, we have y 2 h O0; : : : ; Oni 2 SdK , ˇSdK
On .y/ D .nC 1/ˇKvn.y/ and

ˇSdK
Oi .y/ D .i C 1/�ˇKvi .y/ � ˇKviC1

.y/
�

for i D 0; : : : ; n � 1:

Then, it follows that


SdK.x; y/ D
kX

iD0

ˇ
ˇˇSdK
Oi .x/ � ˇSdK

Oi .y/
ˇ
ˇC

nX

iDkC1
ˇSdK
Oi .y/

�
kX

iD0
.2i C 1/ˇˇˇKvi .x/ � ˇKvi .y/

ˇ
ˇC .k C 1/ˇKvkC1

.y/

C .k C 2/ˇKvkC1
.y/C

nX

iDkC2
ˇKvi .y/

�.2k C 3/
nX

iD0

ˇ
ˇˇKvi .x/ � ˇKvi .y/

ˇ
ˇ

D.2k C 3/
K.x; y/ < .2k C 3/ı < ":
Thus, id W jKjm ! j SdKjm is continuous. ut

We have the following generalization of 4.2.16(1):

Proposition 4.6.8. For each infinite cell complex K , dens jKj D cardK.0/. If K is
simplicial, dens jKj D dens jKjm D cardK.0/.

Sketch of Proof. As in 4.2.16(1), we can construct a dense set D in jKj with cardD D
cardK D cardK.0/, hence dens jKj � cardK.0/. On the other hand, let K 0 be a derived
subdivision of K . Then, fOK0 .v/ j v 2 K.0/g is a pair-wise disjoint collection of open sets
in jKj, hence cardK.0/ � c.jKj/ � dens jKj.

If K is simplicial, the above D is also dense in jKjm. Moreover, fOSdK.v/ j v 2 K.0/g
is a pair-wise disjoint collection of open sets in jKjm.
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It should be remarked that w.jKjm/ D dens jKjm D cardK.0/ for every
infinite simplicial complex K (see Sect. 1.1) but, as we saw in 4.2.16(4), w.jKj/ 6D
cardK.0/ in general (w.jKj/ � dens jKj D cardK.0/).

4.7 Small Subdivisions

In this section, it is proved that every simplicial complexK has an arbitrarily small
simplicial subdivision, that is, for any U 2 cov.jKj/, there is K 0 C K such that
SK0 	 U . As applications, we can prove the paracompactness of jKj and the
Simplicial (PL) Approximation Theorem.

We inductively define the n-th barycentric subdivision Sdn K ofK and the n-th
barycentric subdivision SdnL K of K relative to L as follows:

Sdn K D Sd.Sdn�1 K/ and SdnL K D SdL.Sdn�1L K/;

where Sd0 K D Sd0L K D K . In the following, we show that if K is finite then the
size of Sdm K becomes smaller as m gets larger. The following is a special case of
3.2.7(5)(the proof is easy):

Lemma 4.7.1. For every cell C in a normed linear space E D .E; k � k/, the
following hold:

(1) kx � yk � supv2C.0/ kx � vk for each x 2 E and y 2 C ;
(2) diamC D diamC .0/. ut
Proposition 4.7.2. For every simplicial complex K in a normed linear space E ,
meshK D meshK.1/.

Proof. By Lemma 4.7.1(2), we have diam  D maxv;u2.0/ diamhu; vi for each  2
K . Then, it follows that meshK D meshK.1/. ut
Lemma 4.7.3. Let f W  ! E be an affine map of an n-simplex  into a normed
linear space E . Then,

meshf .SdF.// � n

nC 1 � diamf ./:

Proof. Note that f ./ is a cell in E and f ./.0/ � f ..0//. Let  00 <  0 �  . It
follows from Lemma 4.7.1(1), (2) that

kf . O 0/ � f . O 00/k � max
v2 00.0/

kf . O 0/ � f .v/k

� max
v2 00.0/

X

u2 0.0/

1

dim  0 C 1kf .u/ � f .v/k
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D max
v2 00.0/

X

u2 0.0/nfvg

1

dim  0 C 1kf .u/� f .v/k

� dim  0

dim  0 C 1 � diamf . 0/ � n

nC 1 � diamf ./:

Then, we have the result by Proposition 4.7.2. ut
The following is the special case of Lemma 4.7.3 when f D id :

Lemma 4.7.4. For every n-simplex  in a normed linear space E ,

mesh SdF./ � n

nC 1 � diam: ut
For each simplicial complex K , we have the isometry ˇK W .jKj; 
K/ !

`1.K
.0//. Then, we can regard jKj � `1.K

.0//, and 
K is induced from the norm
of `1.K.0//. Moreover, for an n-simplex  2 K , 
K.v; O/ D 2n=.nC 1/ for every
v 2 .0/. Hence, the following can be obtained from Lemma 4.7.4:

Proposition 4.7.5. Let K be a simplicial complex. For any simplicial subdivision
K 0 C K , mesh
K K

0 D mesh
K K
0.1/. If dimK D m then

mesh
K SdK 0 � m

mC 1 �mesh
K K
0:

In particular, if K 0 D K and dimK D m, we have mesh
K SdK D 2m=.mC 1/.
ut

Using Proposition 4.7.5 inductively, we have the following:

Theorem 4.7.6. For every finite-dimensional simplicial complex K ,

mesh
K Sdn K � 2



dimK

dimK C 1
�n

for every n 2 N:

Hence, limn!1mesh
K Sdn K D 0. ut
Corollary 4.7.7. For a finite simplicial complex K , each open cover U of jKjm
.D jKj/ is refined by SSdn K for some n 2 N.

Proof. Since jKjm D jKj is compact (Proposition 4.2.6 and Theorem 4.5.6) and
dimK < 1, we can choose n 2 N so large that mesh
K Sdn K is less than the
Lebesgue number of U . Then, we have the desired n. ut

For infinite-dimensional simplicial complexes, we have the following:

Proposition 4.7.8. If K is an infinite-dimensional simplicial complex, then

mesh
K Sdn K D 2 .D mesh
K K/ for every n 2 N:
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Proof. By induction on n 2 N, we shall show the following:

.?/n for each m 2 N and " > 0, there exist a vertex v 2 K.0/ and an m-simplex
 2 Lk.v;Sdn K/ such that ˇKv .u/ < " for every u 2 .0/.

If .?/n has been shown, then � D hfvg [ i 2 Sdn K and

diam � � max
u2.0/


K.v; u/ D max
u2.0/

2.1 � ˇKv .u// > 2.1� "/:

Thus, it would follow that mesh
K Sdn K D 2.
To see .?/1, for each m 2 N and " > 0, choose k 2 N so that .k C 2/�1 < ".

Since dimK D 1, K has simplexes 1 < � � � < mC1 with dim i D k C i . Let
v 2 .0/1 . Then, we have anm-simplex  D hO1; : : : ; OmC1i 2 Lk.v;SdK/. Observe
that ˇKv . Oi / D .k C i C 1/�1 < " for every i D 1; : : : ; mC 1.

Now, we prove the implication .?/n ) .?/nC1. For each m 2 N and " > 0,
choose k 2 N so that .k C 2/�1 < "=2. By .?/n, we have v 2 K.0/ and a .k Cm/-
simplex  D hv1; : : : ; vkCmC1i 2 Lk.v;Sdn K/ such that

ˇKv .vi / < "=2 for every i D 1; : : : ; k CmC 1:

For each i D 1; : : : ; m C 1, let i D hv; v1; : : : ; vkCi i 2 Sdn K . Since v < 1 <

� � � < mC1, we have an m-simplex

 D hO1; : : : ; OmC1i 2 Lk.v;SdnC1 K/:

Then, it follows that

ˇKv . Oi / D
1

k C i C 1

 

1C
kCiX

jD1
ˇKv .vj /

!

<
1

k C i C 1



1C .k C i/"
2

�

<
1

k C 2 C
"

2
< ":

This completes the proof. ut
Remark 8. For the metric 
1K , we have the following:

• If dimK <1 then mesh
1

K
Sdn K �



dimK

dimK C 1
�n

for every n 2 N;

• If dimK D1 then mesh
1

K
Sdn K D 1 .D mesh
1

K
K/ for every n 2 N.

To construct small subdivisions of infinite simplicial complexes, the following is
available:

Lemma 4.7.9. Let K be a finite simplicial complex and L a subcomplex of K .
Given an open neighborhoodU.v/ of j St.v; L/j in jKjm .D jKj/ for every v 2 L.0/,
there exists a subdivision K 0 of K such that L � K 0 and j St.v; K 0/j � U.v/ for
every v 2 L.0/.
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U.v/

v

St.v; L/

K
L

Fig. 4.7 Small subdivision

Proof. ReplacingK by SdL K , we may assume that L is full inK . Since j St.v; L/j
and jKj n U.v/ are disjoint closed sets in the compact metric space .jKj; 
K/, we
have

ı D min
v2L.0/

dist
K .j St.v; L/j; jKj n U.v// > 0:

For each  2 K n L, choose v./ 2 rint so that

 \ jLj 6D ; ) dist
K .v./;  \ jLj/ < ı:

Using the points v./, we define K 0 as a derived subdivision of K relative to L,
which is as desired (Fig. 4.7).

To see that j St.v; K 0/j � U.v/ for each v 2 L.0/, let x 2 j St.v; K 0/j. Then, we
have 0 D hv1; : : : ; vmi 2 St.v; L/ and 1 < � � � < n 2 K nL such that

v1 D v; 0 < 1 and x 2 hv1; : : : ; vm; v.1/; : : : ; v.n/i � n;

whence we can write

x D
mX

iD1
z.i/vi C

nX

jD1
z.j Cm/v.j / for some z 2 �mCn�1:

For each j D 1; : : : ; n, since j \ jLj 6D ;, we can choose uj 2 j \ jLj so that


K.v.j /; uj / < ı. Since L is full in K , i \ jLj D h.0/i \ jLji 2 L for each
i D 1; : : : ; n and 1 \ jLj < � � � < n \ jLj, hence we have

y D
mX

iD1
z.i/vi C

nX

jD1
z.j Cm/uj 2 n \ jLj � j St.v; L/j:
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Since ˇK jn is affine, it follows that


K.x; y/ D
�
�ˇK.x/ � ˇK.y/��

1

D
�
�
�
�

nX

jD1
z.j Cm/ˇK.v.j //�

nX

jD1
z.j Cm/ˇK.uj /

�
�
�
�
1

�
nX

jD1
z.j Cm/��ˇK.v.j // � ˇK.uj /

�
�
1

D
nX

jD1
z.j Cm/
K.v.j /; uj / < ı:

Thus, 
K.x; j St.v; L/j/ < ı, which means that x 2 U.v/. ut
We can apply Lemma 4.7.9 above to strengthen Corollary 4.7.7 as follows:

Proposition 4.7.10. Let K be a finite simplicial complex, L be a subcomplex of
K , and U be an open cover of jKjm .D jKj/ such that SL 	 U . Then, K has a
subdivision K 0 such that L � K 0 and SK0 	 U . Moreover, if U.v/ 2 U are given
for all v 2 L.0/ so that j St.v; L/j � U.v/, then j St.v; K 0/j � U.v/ for all v 2 L.0/.
Proof. As the additional statement, we assume that j St.v; L/j � U.v/ 2 U for each
v 2 L.0/. By Lemma 4.7.9, we have a subdivision K 0 of K such that L � K 0 and
j St.v; K 0/j � U.v/ for each v 2 L.0/. By Corollary 4.7.7, SSdm K0 	 U for some
m 2 N. Then, SdmL K

0 is the desired subdivision of K . Indeed, j St.v;SdmL K
0/j �

j St.v; K 0/j � U.v/ for each v 2 L.0/. Let v 2 .SdmL K
0/.0/ nL.0/. If St.v;SdmL K

0/\
L D ; then j St.v;SdmL K

0/j D j St.v;Sdm K 0/j, which is contained in some U 2 U .
When St.v;SdmL K

0/ \L 6D ;, we have v0 2 L.0/ such that hv0; vi 2 SdmL K
0, that is,

v0 2 .0/ and v D O for some  2 Sdm�1L K 0. Then, it follows that

j St.v;SdmL K
0/j � j St.;Sdm�1L K 0/j � j St.v0; K 0/j � U.v0/:

Therefore, SSdmL K
0 	 U . ut

For a simplicial complex K , it is convenient to denote by K.n/ the set of all
n-simplexes ofK , that is, K.n/ D K.n/ nK.n�1/. Now, we can prove the following:

Theorem 4.7.11 (J.H.C. WHITEHEAD). Let K be an arbitrary simplicial com-
plex. For any open cover U of jKj, K has a simplicial subdivision K 0 such that
SK0 	 U .

Proof. By induction, we shall construct subdivisionsKn C K.n/ and chooseU.v/ 2
U for each v 2 K.0/

n n K.0/
n�1 so that Kn�1 � Kn and j St.v; Kn/j � U.v/ for every

v 2 K.0/
n D S

i�n K
.0/
i . Then, K 0 D S

n2NKn would be the desired subdivision of
K . Indeed, each v 2 K 0.0/ belongs to some Kn, hence

j St.v; K 0/j D
[

i�n
j St.v; Ki /j � U.v/ 2 U :
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Now, assume that Kn�1 C K.n�1/ has been constructed and U.v/ 2 U has been
chosen for every v 2 K.0/

n�1 such that j St.v; Kn�1/j � U.v/. For each  2 K.n/, let

K@ D f� 2 Kn�1 j � � @g C F.@/:

Applying Lemma 4.6.1, we have

K D K@ [ f Og [
˚ O� ˇˇ � 2 K@

�
C F./:

By Proposition 4.7.10, we have K 0 C K such that K@ � K 0 , SK0


	 U and

j St.v; K 0/j � U.v/, for every v 2 K.0/

@ . Then,

Kn D
[

2K.n/
K 0 [Kn�1 C K.n/:

For each v 2 K.0/
n nK.0/

n�1, we have an n-simplex  2 K such that v 2 rint  , whence
St.v; Kn/ D St.v; K 0/. Therefore, we can choose U.v/ 2 U so that j St.v; Kn/j �
U.v/. On the other hand, for every v 2 K.0/

n�1,

j St.v; Kn/j D
[˚j St.v; K 0 /j

ˇ
ˇ v 2  2 K.n/� [ j St.v; Kn�1/j � U.v/:

This completes the proof. ut
By Theorem 4.7.11 above, we have the following:

Corollary 4.7.12. Every polyhedron is paracompact.

Proof. It suffices to show that jKj is paracompact for any simplicial complex K .
For any open cover U of jKj, K has a subdivision K 0 such that SK0 	 U . Then,
.ˇK

0

v /v2K0.0/ is a partition of unity on jK 0j D jKj subordinated by U . Hence, jKj is
paracompact by Theorem 2.7.5. ut

Let K and L be simplicial complexes. A simplicial map g W K ! L is
called a simplicial approximation of a map f W jKj ! jLj if each g.x/ is
contained in the carrier cL.f .x// of f .x/ in L. Then, f 'L g by Proposition 4.3.4,
which is realized by the straight-line homotopy. The definition of a simplicial
approximation g W K ! L of a map f W jKjm ! jLjm is the same. Then,
f 'L g by Proposition 4.5.4, which is also realized by the straight-line homotopy.

Lemma 4.7.13. A simplicial map g W K ! L is a simplicial approximation of a
map f W jKj ! jLj (or f W jKjm ! jLjm) if and only if f .OK.v// � OL.g.v// for
every v 2 K.0/.

Proof. First, assume that g W K ! L is a simplicial approximation of f and
let v 2 K.0/. For each x 2 OK.v/, we have v 2 cK.x/

.0/. Observe that
g.x/ 2 cL.f .x// \ rintg.cK.x//. Then, g.cK.x// � cL.f .x//, hence g.v/ 2
g.cK.x//

.0/ � cL.f .x//.0/. Therefore, f .x/ 2 rint cL.f .x// � OL.g.v//.
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Conversely, assume that f .OK.v// � OL.g.v// for every v 2 K.0/ and
let x2jKj. For every v 2 cK.x/

.0/, since x 2 rint cK.x/ � OK.v/, we have
f .x/ 2 f .OK.v// � OL.g.v//, which means that g.v/ 2 cL.f .x//

.0/. Thus,
g.cK.x// � cL.f .x//. Therefore, g.x/ 2 cL.f .x//. ut

As an application of Theorem 4.7.11, we have the following:

Theorem 4.7.14 (SIMPLICIAL APPROXIMATION). Let K and L be simplicial
complexes. Then, each map f W jKj ! jLj has a simplicial approximation
g W K 0 ! L for some K 0 C K .

Proof. By Theorem 4.7.11, we have K 0 C K such that SK0 	 f �1.OL/. Let g0 W
K 0.0/ ! L.0/ be a function such that j St.v; K 0/j � f �1.OL.g0.v///. For each
 2 K 0,

 �
\

v2.0/
j St.v; K 0/j �

\

v2.0/
f �1.OL.g0.v///;

hence
T

v2.0/ OL.g0.v// 6D ;. Due to Proposition 4.4.5, g0 induces a simplicial map
g W K 0 ! L. By Lemma 4.7.13, g is a simplicial approximation of f . ut
Remark 9. We can easily generalize Theorem 4.7.14 as follows: Let K and
L1; : : : ; Ln be simplicial complexes. For any maps fi W jKj ! jLi j, i D 1; : : : ; n,
there exist a subdivisionK 0 of K and simplicial maps gi W K 0 ! Li , i D 1; : : : ; n,
such that each gi is a simplicial approximation of fi .

The following is a combination of Theorems 4.7.11 and 4.7.14:

Corollary 4.7.15 (PL APPROXIMATION THEOREM). Let K and L be simplicial
complexes and f W jKj ! jLj be a map. For each open cover U of jLj, there is a
PL map g W jKj ! jLj that is U-close to f . ut

4.8 Admissible Subdivisions

LetK be a simplicial complex andK 0 a simplicial subdivision ofK . In general, the
metric 
K0 is not admissible for jKjm, so the topology induced by 
K0 is different
from the one induced by 
K (cf. Sect. 4.5). We callK 0 an admissible subdivision of
K if the metric 
K0 is admissible for jKjm; equivalently, jK 0jm D jKjm as spaces. 9

For instance, the barycentric subdivision is admissible (Theorem 4.6.7) and, if K is
locally finite, every subdivision of K is admissible (Theorem 4.5.6). In this section,
we prove the metric topology version of Whitehead’s Theorem 4.7.11 on small
subdivisions. It should be remarked that mesh
K Sdn K D 2 (D mesh
K K) for
every n 2 N if dimK D1 (Proposition 4.7.8).

9 In [7], such a subdivision is called a proper subdivision.
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First, we give the following characterization of admissible subdivisions using
open stars:

Lemma 4.8.1. A simplicial subdivisionK 0 of a simplicial complexK is admissible
if and only if the open star OK0.v/ of each vertex v 2 K 0.0/ is open in jKjm.

Proof. The “only if” part follows from the fact that the open star OK0.v/ is open in
jK 0jm. To see the “if” part, it suffices to show that id W jKjm ! jK 0jm is continuous
at each x 2 jKj (Proposition 4.5.7). Let U be a neighborhood of x in jK 0jm. We can
find 0 < r < 1 such that OK0.x; r/ 2 U by Proposition 4.5.1. On the other hand,
OK0.x/ D Tv2cK0

.x/.0/ OK0.v/ is open in jKjm because so is each OK0.v/. Again by
Proposition 4.5.1, we can find 0 < s < 1 such that OK.x; s/ � OK0.x/. Then, it
follows that

OK.x; rs/ D .1 � rs/x C rsOK.x/
D .1 � r/x C r�.1 � s/x C sOK.x/

�

D .1 � r/x C rOK.x; s/
� .1� r/x C rOK0.x/ D OK0.x; r/ � U;

which means that U is a neighborhood of x in jKjm. ut
For A � jKj, we introduce the following subcomplexes of K:

N.A;K/ D ˚ 2 K ˇ
ˇ 9� 2 KŒA� such that  � ��;

C.A;K/ D K nKŒA� D ˚ 2 K ˇ
ˇ  \A D ;� and

B.A;K/ D N.A;K/\ C.A;K/:

If A D jLj for a subcomplex L � K , we simply denote N.L;K/, C.L;K/,
and B.L;K/ instead of N.jLj; K/, C.jLj; K/, and B.jLj; K/, respectively. Note
that N.fvg; K/ D St.v; K/ for each v 2 K.0/ but N.;K/ ¥ St.;K/ for each
 2 K n K.0/ in general. For each simplex  2 K , jN.;K/j D st.;K/ and
j St.;K/j D st.rint;K/ D st. O;K/. Moreover, note that each x 2 jKj is joinable
to each simplex  2 St.cK.x/;K/ \ C.x;K/,10 so we have the join x contained
in j St.cK.x/;K/j.

Now, take A � jKj so that OK.x/ \ OK.x0/ D ; if x 6D x0 2 A (i.e., K has no
simplex containing more than one point of A). Then, the simplicial subdivisionKA

of K can be defined as follows:

KA D C.A;K/[
˚
x

ˇ
ˇ x 2 A;  2 St.cK.x/;K/\ C.x;K/

�
:

10In general, St.cK.x/;K/\ C.x;K/¥ Lk.cK.x/;K/.
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Observe that K.0/
A D A [ K.0/, C.A;KA/ D C.A;K/, and OKA.x/ D OK.x/ for

each x 2 A. When A D fxg, we write Kfxg D Kx. The operation K ! Kx (or Kx

itself) is called a starring of K at x. A subdivision obtained by finite starrings is
known as a stellar subdivision. In general, .Kx/y 6D .Ky/x for distinct two points
x; y 2 jKj.
Lemma 4.8.2. For each w 2 jKj n K.0/, the starring Kw is an admissible
subdivision of K .

Proof. Due to Proposition 4.5.7, we need to show that id W jKjm ! jKwjm is
continuous. It suffices to prove that ˇKw

v W jKjm ! I is continuous for each v 2 K.0/
w .

Using the barycentric coordinates with respect to Kw, each point x 2 jKj can be
written as follows:

x D ˇKw
w .x/wC

X

u2K.0/

ˇKw
u .x/u:

Since ˇKv .v/ D 1 and ˇKv .u/ D 0 for each u 2 K.0/ n fvg, it follows that

ˇKv .x/ D ˇKw
w .x/ˇKv .w/C ˇKw

v .x/
�
i.e., ˇKw

v .x/ D ˇKv .x/ � ˇKw
w .x/ˇKv .w/

�
:

Then, it is enough to verify the continuity of ˇKw
w W jKjm ! I.

We shall show that

ˇKw
w D min

v2cK.w/.0/
ˇKv .w/

�1ˇKv W jKjm ! I;

which implies that ˇKw
w is continuous. For each x 2 jKj, if cK.w/ 6� cK.x/ then

ˇKw
w .x/ D 0 and minv2cK.w/.0/ ˇ

K
v .x/=ˇ

K
v .w/ D 0. If cK.w/ � cK.x/, let v0 2

cK.w/.0/ such that

ˇKv0 .x/=ˇ
K
v0 .w/ D min

v2cK.w/.0/
ˇKv .x/=ˇ

K
v .w/ 2 .0; 1�:

Let  be the opposite face of cK.x/ to v0. Observe that

ˇKv0 .x/

ˇKv0 .w/
C

X

v2.0/




ˇKv .x/ �
ˇKv0 .x/

ˇKv0 .w/
ˇKv .w/

�

D ˇKv0 .x/

ˇKv0 .w/
C �1 � ˇKv0 .x/

� � ˇ
K
v0
.x/

ˇKv0 .w/

�
1 � ˇKv0 .w/

� D 1:

Then, we have

ˇKv0 .x/

ˇKv0 .w/
wC

X

v2.0/




ˇKv .x/ �
ˇKv0 .x/

ˇKv0 .w/
ˇKv .w/

�

v 2 w 2 Kw;
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which is simply x. Indeed,

ˇKv0 .x/

ˇKv0 .w/
wC

X

v2K.0/nfv0g




ˇKv .x/ �
ˇKv0 .x/

ˇKv0 .w/
ˇKv .w/

�

v

D
X

v2K.0/

ˇKv0 .x/

ˇKv0 .w/
ˇKv .w/vC

X

v2K.0/nfv0g




ˇKv .x/ �
ˇKv0 .x/

ˇKv0 .w/
ˇKv .w/

�

v

D ˇKv0 .x/

ˇKv0 .w/
ˇKv0 .w/v0 C

X

v2.0/
ˇKv .x/v D

X

v2K.0/

ˇKv .x/v D x:

Therefore, ˇKw
w .x/ D ˇKv0 .x/=ˇKv0 .w/. ut

Lemma 4.8.3. Let K 0 and K 00 be simplicial subdivisions of K such that K 0.0/ and
K 00.0/ are discrete in jKjm. Then,K 0 andK 00 have a common simplicial subdivision
K 000 such that K 000.0/ is discrete in jKjm.

Proof. Here, we use the following admissible metric on jKjm:

d.x; y/ D
s X

v2K.0/

�
ˇKv .x/ � ˇKv .y/

�2
:

Then, each n-simplex  2 K with this metric is isometric to the standard n-simplex
of Euclidean space R

nC1, so diamd  D
p
2 if n 6D 0.

By Proposition 4.2.12, we have the following cell complexL, which is a common
subdivision of K 0 andK 00:

L D ˚ 0 \  00 ˇˇ  0 2 K 0;  00 2 K 00 such that  0 \  00 6D ;�:

By Theorem 4.2.10, L has a simplicial subdivision K 000 such that K 000.0/ D L.0/.
Then, it suffices to show that L.0/ is discrete in jKjm.

Let x0 2 jKjm. Since L.0/ \ cK.x0/ is finite, K 0.0/ [K 00.0/ is discrete in X , and
cK.x0/ is compact, we can find 0 < ı < 1 such that Bd.x0; ı/ � O.x0;K/,

ı < distd
�
cK.x0/;

�
K 0.0/ [K 00.0/� n cK.x0/

�
and

ı < min
˚
d.v;w/

ˇ
ˇ v 6D w 2 �L.0/ \ cK.x0/

� [ fx0g
�
:

We show that d.x0; v/ � ı2=
p
2 for every v 2 L.0/ \ Bd .x0; ı/ n cK.x0/, which

implies that Bd .x0; ı2=
p
2/\ .L.0/ n fx0g/ D ;.

Since v 2 O.x0;K/ n cK.x0/, we have cK.x0/ < cK.v/. Since cK.v/ is isometric
to the standard simplex of Euclidean space, there exists the nearest point u 2 cK.x0/
to v, i.e., d.v; u/ D distd .v; cK.x0//. Then, the line segment hu; vi is upright on
cK.x0/. Since v 2 L.0/ n .K 0.0/ [ K 00.0//, it follows that fvg D  0 \  00 for some
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 0 2 K 0 n K 0.0/ and  00 2 K 00 n K 00.0/. Then,  00 D  0 \ cK.x0/ 6D ; and  000 D
 00 \ cK.x0/ 6D ;. Otherwise,

d.x0; v/ � distd
�
cK.x0/;

�
K 0.0/ [K 00.0/� n cK.x/

� � ı;

which is a contradiction. Let  01 and  001 be the faces of  0 and  00 that are opposite
 00 and  000 , respectively. In other words,  01 and  001 are the simplexes spanned by the
vertices  0 and  00 that do not belong to  00 and  000 , respectively. Then, we can write

v D .1 � t 0/y0 C t 0z0 D .1� t 00/y00 C t 00z00;

where y0 2  00, z0 2  01, y00 2  000 , z00 2  001 , and t 0; t 00 2 .0; 1/. Since  0 \  00 D fvg
and v 62 cK.x0/, we have  00 \  000 D  0 \  00 \ cK.x0/ D ;, hence

d.y0; u/C d.y00; u/ � d.y0; y00/ � distd . 00;  000 / D distd .. 00/.0/; . 000 /.0// � ı:

Then, d.y0; u/ � ı=2 or d.y00; u/ � ı=2. We may assume that d.y0; u/ � ı=2.
In the same way as above, let x0 2 cK.x0/ be the nearest point to z0, i.e.,

d.z0; x0/ D distd .z0; cK.x0// > ı, where the line segment hx0; z0i is upright on
cK.x0/. Since the right triangle x0y0z0 is similar to the right triangle uy0v and
d.x0; y0/ � diamd cK.x0/ D

p
2, it follows that

d.x0; v/ � d.u; v/ D d.x0; z0/
d.x0; y0/

� d.u; y0/ � ı2=p2:

This completes the proof. ut
Theorem 4.8.4. A simplicial subdivision K 0 of a simplicial complex K is admissi-
ble if and only if K 0.0/ is discrete in jKjm.

Proof. Since K 0.0/ is discrete in jK 0j, it suffices to show the “if” part. By virtue of
Proposition 4.5.7, we need only show the continuity of id W jKjm ! jK 0jm at each
w 2 jKj. By Lemma 4.8.3, there is a common subdivision K 00 of Kw and K 0 such
that K 00.0/ is discrete in jKj. Then, id W jK 00jm ! jK 0jm is continuous. It suffices to
show the continuity of id W jKjm D jKwjm ! jK 00jm at w, where w 2 K.0/

w . Thus,
we may assume that w 2 K.0/.

For each x 2 jKj, observe that


K.x;w/ D
X

v2K.0/

ˇ
ˇˇKv .x/� ˇKv .w/

ˇ
ˇ

D 1 � ˇKw .x/C
X

v2K.0/nfwg
ˇKv .x/ D 2.1� ˇKw .x//:

For the same reason, we have 
K0.x;w/ D 2.1� ˇK0

w .x//.
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Let ı D dist
K .w; K
0.0/ n fwg/ > 0. For each " > 0, we shall show that if


K.x;w/ < ı"=2 then 
K0.x;w/ < ". For every v 2 K 0.0/ n fwg, ˇKw .v/ � 1 � ı=2
because 2.1� ˇKw .v// D 
K.v;w/ � ı. For each x 2 jKj,

ˇKw .x/ D
X

v2K0.0/

ˇK
0

v .x/ˇKw .v/ � ˇK
0

w .x/C
X

v2K0.0/nfwg
ˇK

0

v .x/.1 � ı=2/

� ˇK0

w .x/C .1 � ˇK0

w .x//.1 � ı=2/ D ıˇK0

w .x/=2C 1 � ı=2:

It follows that


K0.x;w/=2 D 1 � ˇK0

w .x/ � 2.1� ˇKw .x//
ı

D 
K.x;w/=ı:

Therefore, 
K0.x;w/ < ". ut
Combining Theorem 4.8.4 with Lemma 4.8.3, we have the following:

Corollary 4.8.5. Every two admissible subdivisions of K have an admissible
common subdivision. ut
Lemma 4.8.6. Let K be a simplicial complex and L a finite-dimensional full sub-
complex of K . Every simplicial subdivision B 0 of B.L;K/ extends to a simplicial
subdivision N 0 of N.L;K/ such that L [ B 0 � N 0 and N 0.0/ D L.0/ [ B 0.0/.
Proof. For each � 2 B 0, let cK. O�/ be the carrier of the barycenter of � in K . Then,
cK. O�/ 2 B.L;K/ and Lk.cK. O�/;K/\L 6D ;. For each  2 Lk.cK. O�/;K/\L, we
have � � cK. O�/ 2 K . Then, we can define

N 0 D L [ B 0 [ f� j  2 Lk.cK. O�/;K/\ L; � 2 B 0g:

Obviously,N 0.0/ D L.0/ [B 0.0/. For each x 2 jN.L;K/j n jL[B 0j, since L is full
in K , we have  D cK.x/ \ jLj 2 L. Let  0 be the opposite face of cK.x/ from  .
Then,  0 2 B.L;K/. Since B 0 is a subdivision of B.L;K/, we have � 2 B 0 such
that cK. O�/ D  0 and x 2 � . Thus, N 0 is a subdivision of N.L;K/. ut

For A � jKj, let ˇKA D
P

v2K.0/\A ˇKv W jKj ! I. When A is a simplex  2 K ,
we have  D .ˇK /�1.1/ and .ˇK /

�1..0; 1�/ DSv2.0/ OK.v/.

Lemma 4.8.7. .ˇK /
�1..1 � r; 1�/ � ˚y 2 jKj ˇˇ dist
K .y; / < 2r

�
.

Proof. For each y 2 .ˇK /�1..1 � r; 1�/, we have

x D
X

v2.0/

ˇKv .y/

ˇK .y/
v 2 :
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Then, it follows that


K.x; y/ D
X

v2K.0/

ˇ
ˇˇKv .x/ � ˇKv .y/

ˇ
ˇ

D
X

v2.0/

�
ˇKv .x/ � ˇKv .y/

�C
X

v2K.0/n.0/
ˇKv .y/

D 2�1 � ˇK .y/
�
< 2r:

Therefore, dist
K .y; / < 2r . ut
The following is the metric topology version of Whitehead’s Theorem 4.7.11 on

small subdivisions:

Theorem 4.8.8 (HENDERSON–SAKAI). Let K be an arbitrary simplicial com-
plex. For any open cover U of jKjm, K has an admissible subdivision K 0 such that
SK0 	 U .

Proof. First, note that if a subdivisionK 0 of K refines U then SK0 	 stU . Because
every open cover of jKjm has the open star-refinement, it suffices to construct
an admissible subdivision K 0 of K that refines U . We will inductively construct
admissible subdivisionsKn ofK , n � 0, so as to satisfy the following conditions:

(1) Kn is a subdivision of Kn�1;
(2) KnjjK.n�1/j D Kn�1jjK.n�1/j;
(3) KnŒK

.n/� 	 U (for simplicity, we write KnŒK
.n/� instead of KnŒjK.n/j�);

(4) jC.K.n�1/; Kn/j D jC.K.n�1/; Kn�1/j,
or equivalently jN.K.n�1/; Kn/j D jN.K.n�1/; Kn�1/j,

where K�1 D SdK and K.�1/ D ;. Condition (2) guarantees that K 0 DS
n2NKnjjK.n/j is a simplicial subdivision of K , where it should be noted that

K0jjK.0/j D K.0/ � K1jjK.1/j. Then, K 0 	 U by (3). Because each Kn

is admissible, K 0.0/jjK.n/j D K
.0/
n jjK.n/j is discrete in jKjm by (2). Since

jC.K.n/;K 0/j � jC.K.n/;Kn/j by (2) and (4), C.K.n/;K 0/.0/ has no accumulation
points in jK.n/j. Then, it follows thatK 0.0/ is discrete in jKjm, which means thatK 0
is an admissible subdivision ofK according to Theorem 4.8.4.

For each vertex v 2 K.0/, choose 1=2 < tv < 1 so that .ˇSd2 K
v /�1.Œtv; 1�/ is

contained in some Uv 2 U (Lemma 4.8.7). Dividing each  2 .Sd2 K/Œv� n fvg
into two cells by .ˇSd2 K

v /�1.tv/, we have a cell complex L subdividing Sd2 K , (cf.
Fig. 4.8) that is,

L DK.0/ [ C.K.0/;Sd2 K/[ ˚ \ .ˇSd2 K
v /�1.tv/;  \ .ˇSd2 K

v /�1.Œ0; tv�/;

 \ .ˇSd2 K
v /�1.Œtv; 1�/

ˇ
ˇ  2 .Sd2 K/Œv� n fvg; v 2 K.0/

�
:
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v

.ˇSd2 K
v /�1.tv/

��

�

St.v0; K0/

B� D B.��; C.K.0/; K0//

v0

St.v; K0/

Sd2 K

.ˇSd2 K
v0

/�1.tv0/

N.��; C.K.0/; K0//

Fig. 4.8 The subdivision K0 of Sd2 K

Then, L.0/ is discrete in jKjm. Indeed, L.0/ consists of the vertices .Sd2 K/.0/ and
the points

vw D .1 � tv/wC tvv; v 2 K.0/; w 2 Lk.v;Sd2 K/.0/:

Since Sd2 K is an admissible subdivision of K , .Sd2 K/.0/ is discrete in jKjm. On
the other hand, f.ˇSd2 K

v /�1.tv/ j v 2 K.0/g is discrete in jKjm. Then, it suffices to
show that fvw j w 2 Lk.v;Sd2 K/.0/g is discrete in .ˇSd2 K

v /�1.tv/ for each v 2 K.0/.
Note that the metric 
Sd2 K is admissible for jKjm. For each w;w0 2 Lk.v;Sd2 K/.0/,


Sd2 K.vw; vw0/ D ˇSd2 K
w .vw/C ˇSd2 K

w0

.vw0/ D 2.1� tv/:

Now, let K0 be a simplicial subdivision of L with K.0/
0 D L.0/ (cf. Fig. 4.8).

Since K.0/
0 D L.0/ is discrete in jKjm, K0 is an admissible subdivision of K by

Theorem 4.8.4. Observe

j St.v; K0/j D .ˇSdK
v /�1.Œtv; 1�/ � Uv for v 2 K.0/

0 :

Then,K0 satisfies condition (3).
Assume that Kn�1 has been obtained. For each n-simplex � 2 K , we define

�� D � \ jC.K.n�1/; Kn�1/j:
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v

N.K
.0/
0 ; K0/

Sdn.�/.K0j��/

B� D B.��; C.K.0/; K0//
�
ˇN��

�
�1
.t� /

N.��; C.K.0/; K0//

�

St.v; K0/

N.��; N� /

C.K.0/; K0/

Fig. 4.9 The subdivision N� of N.�;K0/

Note that Kn�1j�� is a triangulation of ��. We can choose n.�/ 2 N so that
Sdn.�/.Kn�1j��/ 	 U . Let

B� D B.��; C.K.n�1/; Kn�1// and

N� D Sdn.�/B�
N.��; C.K.n�1/; Kn�1//:

Then,N� is an admissible subdivision ofN.��; C.K.n�1/; Kn�1//, hence jN� jm is a
subspace of jKn�1jm D jKjm (cf. Figs. 4.8 and 4.9). Moreover,

N� j�� D Sdn.�/.Kn�1j��/ 	 U ;

hence each  2 N� j�� is contained in some U 2 U . By Lemma 4.8.7,
.ˇN� /

�1.Œt; 1�/ � U for some 1=2 < t < 1. Since N� j�� is finite, we can find
1=2 < t� < 1 such that

˚
.ˇN� /

�1.Œt� ; 1�/
ˇ
ˇ  2 N� j��

� 	 U :

For each  2 N�Œ��� n N� j��, we have  \ �� 2 N� j�� and ˇN�\��

j D ˇ
N�
��

j .
Dividing each  2 N�Œ��� n N� j�� into two cells by .ˇN�

��

/�1.t� /, we have a cell
complex L� subdividingN� (cf. Fig. 4.9), that is,

L� D N� j�� [ C.��; N� /
[ ˚ \ .ˇN�

��

/�1.t� /;  \ .ˇN���

/�1.Œ0; t� �/;

 \ .ˇN���

/�1.Œt� ; 1�/
ˇ
ˇ  2 N�Œ��� nN� j��

�
:
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Then, L.0/� is discrete in jN� jm, so is discrete in jKjm. Indeed, L.0/� consists of N.0/
�

and the points

.1 � t� /wC t�v; v 2 N.0/
� j��; w 2 Lk.v; N� /.0/ n ��;

where N.0/
� is discrete in jN� jm. As can be easily observed, we have

dist
N� .N
.0/
� ; .ˇ

N�
��

/�1.t� // � minf2t� ; 2.1� t� /g:

For each v; v0 2 N.0/
� j��, w 2 Lk.v; N�/.0/n��, and w0 2 Lk.v0; N� /.0/n��, if v 6D v0

or w 6D w0 then


N� ..1 � t� /wC t�v; .1 � t� /w0 C t�v0/ � minf2t� ; 2.1� t� /g:

Now, for each � 2 K.n/, let K� be a simplicial subdivision of L� with K.0/
� D

L
.0/
� . Observe

B� D K� \ C.K.n/;Kn�1/ and jB� j D jK� j \ jC.K.n/;Kn�1/j:
Then, the following is a simplicial subdivision of C.K.n�1/; Kn�1/ (cf. Fig. 4.9):

C 0 D C.K.n/;Kn�1/[
[

�2K.n/
K� :

According to Lemma 4.8.6, N.K.n�1/; Kn�1/ has a simplicial subdivision N 0
such that

N 0jjB.K.n�1/; Kn�1/j D C 0jjB.K.n�1/; Kn�1/j and

N 0.0/ D N.K.n�1/; Kn�1/.0/ [ B 0.0/:
Then,Kn D C 0 [ B 0 is a simplicial subdivision ofKn�1 such that

jN.K.n�1/; Kn�1/j D jN.K.n�1/; Kn/j;
that is, Kn satisfies conditions (1) and (4). Note that

K.0/
n D N.K.n�1/; Kn�1/.0/ [ C.K.n/;Kn�1/.0/ [

[

�2K.n/
K.0/
�

D K.0/
n�1 [

[

�2K.n/
N .0/
� ;
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which is discrete in jKjm. This means thatKn is an admissible subdivision of K by
Theorem 4.8.4. By our construction, we haveKnjjK.n�1/j D Kn�1jjK.n�1/j, that is,
Kn satisfies condition (2). Moreover,KnŒK

.n/� 	 U because

KnŒK
.n�1/� 	 Kn�1ŒK.n�1/� 	 U and

KnŒK
.n/� nKnŒK

.n�1/� �
[

�2K.n/
N� 	 U :

Thus,Kn satisfies condition (3). This completes the proof. ut
The next theorem can be proved by the same argument as in the proof of

Theorem 4.7.14:

Theorem 4.8.9 (SIMPLICIAL APPROXIMATION). Let K and L be simplicial
complexes. Each map f W jKjm ! jLjm has a simplicial approximation g W K 0 !
L such that K 0 is an admissible subdivision of K , hence g W jKjm ! jLjm is
continuous. ut

Then, we have the following version of Corollary 4.7.15:

Corollary 4.8.10 (PL APPROXIMATION THEOREM). Let K and L be simplicial
complexes and f W jKjm ! jLjm a map. For each open cover U of jLjm, there is
a simplicial map g W K 0 ! L0 with respect to admissible subdivisions K 0 and L0
of K and L, respectively. In this case, g W jKjm ! jLjm is continuous. ut

4.9 The Nerves of Open Covers

Let V be an arbitrary set. Recall Fin.V / is the collection of all non-empty finite
subsets of V . An abstract complex K over V is a subcollection K � Fin.V /
satisfying the following condition:

(AC) if A 2 K and ; 6D B � A then B 2 K.

A subcollection L � K satisfying (AC) is called a subcomplex of K. In particular,
Fin.V / is an abstract complex and every abstract complexK over V is a subcomplex
of Fin.V /. For each n 2 !, the n-skeleton K.n/ of K is defined by

K.n/ D ˚A 2 K
ˇ
ˇ cardA � nC 1�;

where we regard K.0/ � V , and so Fin.V /.0/ D V . Each K.n/ is a subcomplex of K.
If K D K.n/, we say that K is at most n-dimensional and write dimK � n. It is said
that K is n-dimensional (written as dimK D n) if dimK � n and dimK 6� n � 1.
Note that every abstract complex K over V with dimK � n is a subcomplex of
Fin.V /.n/.
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For any simplicial complex K , K D f.0/ j  2 Kg � Fin.K.0// is an abstract
complex, which is called the abstract complex defined by K . Each K.n/ is defined
by K.n/. In particular, K.0/ D K.0/.

Conversely, each abstract complex K over V is defined by some simplicial
complex. In fact, consider the linear space R

V
f . By identifying each v 2 V with

ev 2 R
V
f defined by ev.v/ D 1 and ev.v0/ D 0 if v 6D v0, we can regard V as a Hamel

basis for RVf . Then, K D fhAi j A 2 Kg is a simplicial complex that defines K.

ThisK is called the simplicial complex defined by K. Then eachK.n/ is defined by
K.n/ and K.0/ D K.0/. Note that the full simplicial complex �.V / is the simplicial
complex defined by Fin.V /.

Remark 10. When V is a subset of a linear spaceE , for an abstract complex K over
V , K D fhAi j A 2 Kg is a simplicial complex that defines K if and only if each
A 2 K is affinely independent and

hAi \ hA0i D hA\ A0i for each A;A0 2 K:

In particular,K is a simplicial complex if K satisfies the condition:

(]) A [A0 is affinely independent for each A;A0 2 K.

The General Position Lemma states that there exists a countable (discrete) set V
in R

2nC1 such that each 2n C 2 many points of V are affinely independent. This
can be easily proved by using the Baire Category Theorem 2.5.1 and the fact that
every hyperplane (= 2n-dimensional flat) in R

2nC1 is nowhere dense. The proof will
be detailed in Sect. 5.8 (cf. Lemma 5.8.4). For such a set V � R

2nC1, Fin.V /.n/

satisfies condition (]) above. Therefore, for every abstract complex K over V with
dimK � n, K D fhAi j A 2 Kg is a simplicial complex that defines K.

Remark 11. Note that every abstract complex K with dimK � n is simplicially
isomorphic to a subcomplex of Fin.V /.n/ for any set V with cardV � cardK.0/.
Then, it follows that every countable complex K with dimK � n is simplicially
isomorphic to a simplicial complex in R

2nC1.

Remark 12. The barycentric subdivision SdK of a simplicial complexK is simpli-
cially isomorphic to the simplicial complex defined by the abstract complex

˚f1; � � � ; ng
ˇ
ˇ 1 < � � � < n 2 K

�
:

Now, consider two abstract complexes K and L over V and W , respectively.
Let K and L be the simplicial complexes defined by K and L, respectively. Recall
K.0/ D K.0/ and L.0/ D L.0/. Suppose that a function ' W K.0/ ! L.0/ satisfies the
following condition:

() A 2 K implies '.A/ 2 L.
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Then, ' W K.0/ ! L.0/ induces the simplicial map f W K ! Lwith f jK.0/ D '.
Conversely, for any simplicial map f W K ! L, the restriction ' D f jK.0/ W
K.0/ ! L.0/ satisfies condition () and f itself is the simplicial map induced by
this '. Such a function ' W K.0/ ! L.0/ is also called a simplicial map from K to L,
and is written as ' W K ! L. If a bijection ' W K.0/ ! L.0/ satisfies the condition
that A 2 K if and only if '.A/ 2 L, then ' induces the simplicial isomorphism
f W K ! L with f jK.0/ D ', and any simplicial isomorphism f W K ! L is
induced by such a bijection ' W K.0/ ! L.0/. Such a bijection ' W K.0/ ! L.0/ is
also called a simplicial isomorphism from K to L. It is said that K is simplicially
isomorphic to L (denoted by K � L) if there is a simplicial isomorphism from
K to L.

For any open cover U of a space X , we define the abstract complex N.U/ over
U n f;g as follows:

N.U/ D ˚fU1; � � � ; Ung 2 Fin.U/
ˇ
ˇ U1 \ � � � \ Un 6D ;

�
:

The simplicial complex N.U/ defined by N.U/ is called the nerve of U . A map
f W X ! jN.U/j (or f W X ! jN.U/jm) is called a canonical map for U if

f �1.ON.U/.U // � U for each U 2 N.U/.0/ D U :

Then, f �1.ON.U// is an open refinement of the open cover U . Observe that every
compact set in jN.U/j meets ON.U/.U / for only finitely many U 2 U . Hence, if
every U 2 U has the compact closure in X , then each canonical map f W X !
jN.U/j is proper.

Remark 13. For a subspace A of X and U 2 cov.X/, we have U jA 2 cov.A/.
Assume that U1 \ A 6D U2 \ A if U1 6D U2 2 U ŒA�. Then, by identifying each
U \ A 2 .U jA/ n f;g with U 2 U ŒA� (� U n f;g), the nerve N.U jA/ can be
regarded as the following subcomplex of the nerve N.U/:

˚hU1; : : : ; Uni 2 N.U/
ˇ
ˇ U1 \ � � � \ Un \A 6D ;

�
:11

In this case, for each canonical map f W X ! jN.U/j (or f W X ! jN.U/jm),
the restriction f jA W A ! jN.U jA/j (or f jA W A ! jN.U jA/jm) is a canonical
map for U jA. Indeed, for each x 2 A, cN.U/.f .x//.0/ � U Œx� D .U jA/Œx�, so
cN.U/.f .x// 2 N.U jA/. Therefore, f .A/ � jN.U jA/j.

Due to Proposition 4.2.3, every simplicial complex K can be regarded as the
nerve N.OK/ of the open cover OK of jKj (or jKjm) by identifying each v 2 K.0/

with OK.v/ 2 OK . The identity id W jKj ! jKj is a canonical map for OK , where
it should be noted that id W jKj ! jKjm and id W jKjm ! jKjm are also canonical
maps for OK .

11This is not equal to N.U ŒA�/.
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x
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U2

U3

U4
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U6
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f .x/

f .y/
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U2

U3 U4

U5

U6

Fig. 4.10 A canonical map

We now have the following characterization of canonical maps:

Proposition 4.9.1. For an open cover U of X , a map f W X ! jN.U/j (or f W
X ! jN.U/jm) is a canonical map if and only if

cN.U/.f .x//.0/ � U Œx� for each x 2 X;
where cN.U/.f .x// 2 N.U/ is the carrier of f .x/. If U Œx� is finite, this condition is
equivalent to f .x/ 2 hU Œx�i 2 N.U/ — Fig. 4.10.

Proof. To prove the “if” part, let U 2 U and x 2 f �1.ON.U/.U //. From the
condition, it follows that U 2 cN.U/.f .x//.0/ � U Œx�, which means that x 2 U .
Therefore, f �1.ON.U/.U // � U .

To show the “only if” part, let x 2 X and U 2 cN.U/.f .x//.0/. Observe that
f .x/ 2 rint cN.U/.f .x// � ON.U/.U /, hence x 2 f �1.ON.U/.U // � U . Thus, we
have cN.U/.f .x//.0/ � U Œx�. ut

Proposition 4.9.1 yields the following:

Corollary 4.9.2. Let U be an open cover ofX . Then, any two canonical maps f; g W
X ! jN.U/j (or f; g W X ! jN.U/jm) are contiguous. ut

For each open refinement V of U 2 cov.X/, we have a simplicial map ' W
N.V/! N.U/ such that V � '.V / for each V 2 V D N.V/.0/. Such a simplicial
map is called a refining simplicial map.

Corollary 4.9.3. Let U and V be open covers of X with V 	 U and ' W N.V/ !
N.U/ be a refining simplicial map. If f W X ! jN.V/j (or f W X ! jN.V/jm) is
a canonical map for V , then 'f W X ! jN.U/j (or 'f W X ! jN.U/jm) is also a
canonical map for U .

Proof. For each x 2 X ,

cN.U/.'f .x//.0/ D '
�
cN.V/.f .x//.0/

� � '.V Œx�/ � U Œx�: �
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Concerning the existence of canonical maps, we have the following:

Theorem 4.9.4. Every locally finite open cover U of a normal space X has a
canonical map f W X ! jN.U/j such that each point x 2 X has a neighborhoodVx
with f .Vx/ � jKxj for some finite subcomplex Kx of N.U/, so f W X ! jN.U/jm
is also a canonical map.

Proof. According to Theorem 2.7.2, X has a partition of unity .fU /U2U such that
suppfU � U for each U 2 U . We can define a map f W X ! jN.U/jm as follows:

f .x/ D
X

U2U
fU .x/ � U

�
i.e., ˇN.U/U .f .x// D fU .x/

�
:

Observe that f �1.ON.U/.U // � suppfU � U for each U 2 U . Then, f W X !
jN.U/jm is a canonical map for N.U/.

We need to verify the continuity of f W X ! jN.U/j (with respect to the
Whitehead topology). Each x 2 X has a neighborhood Vx such that U ŒVx� is
finite. We have the finite subcomplex Kx of N.U/ with K.0/

x D U ŒVx�. Note that
f .Vx/ � jKxj. Then, it follows that f jVx W Vx ! jKxjm D jKxj is continuous.
Consequently, f W X ! jN.U/j is continuous. ut

Because every open cover of a paracompact space has a locally finite open
refinement, the following corollary results from the combination of Theorem 4.9.4
and Corollary 4.9.3:

Corollary 4.9.5. For every open cover U of a paracompact space X , there exists a
canonical map f W X ! jN.U/j such that f W X ! jN.U/jm is also a canonical
map. ut

Applying Corollary 4.9.5, we will prove the following:

Theorem 4.9.6. For every simplicial complexK , the identity ' D id W jKj ! jKjm
is a homotopy equivalence with a homotopy inverse  W jKjm ! jKj such that
 ' 'K id and ' 'K id, where  ' 'OK id and ' 'OK id are also valid.
These homotopies are realized by the straight-line homotopy.

Proof. Consider K as the nerve N.OK/ of the open cover OK 2 cov.jKjm/, where
each vertex v 2 K.0/ is identified with the open star OK.v/ 2 OK . By virtue of
Corollary 4.9.5, we have a canonical map  W jKjm ! jN.OK/j D jKj. Then,
 '; id W jKj ! jKj are contiguous and ' ; id W jKjm ! jKjm are also contiguous
by Corollary 4.9.2. Due to Propositions 4.3.4 and 4.5.4,  ' 'K id and ' 'K id
by the straight-line homotopy defined as

h.x; t/ D .1 � t/ '.x/C tx D .1 � t/' .x/C tx:
Since cK. .x// � cK.x/ for each x 2 jKj, each h.fxg� I/ is contained in not only
cK.x/ but also OK.v/ for any v 2 cK. .x//.0/. ut
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Remark 14. In the above proof, let L be a subcomplex of a simplicial complex
K . Then, OL D OK jjLj according to Proposition 4.2.4. As noted in Remark 13,
identifyingOL.v/ with OK.v/ for each v 2 L.0/, the nerve N.OL/ can be regarded
as a subcomplex of the nerve ofN.OK/, where the pair .K;L/ can be identified with
the pair .N.OK/;N.OL//. Moreover, the restriction  jjLj W jLjm ! jN.OL/j D
jLj is also a canonical map for OL, which is a homotopy inverse of 'jjLj D id W
jLj ! jLjm. In this case, . jjLj/.'jjLj/ 'L id and .'jjLj/. jjLj/ 'L id are given
by the straight-line homotopies, that is, the restrictions of the homotopies ' 'K id
and ' 'K id, respectively.

We can now generalize Proposition 4.3.4 as follows:

Proposition 4.9.7. Let K be a simplicial complex andX an arbitrary space. If two
maps f; g W X ! jKj are contiguous then f 'K g.

Proof. Let ' D id W jKj ! jKjm. By virtue of Theorem 4.9.6, we have a map  W
jKjm ! jKj such that  ' 'K id by the straight-line homotopy h W jKj � I! jKj,
where cK. .x// � cK.x/ and h.fxg � I/ � cK.x/ for each x 2 jKj (see the proof
of Theorem 4.9.6). On the other hand, by Proposition 4.5.4, we have 'f 'K 'g,
which is realized by the straight-line homotopy h0 W X �I! jKjm. For each x 2 X ,
choose x 2 K so that h0.fxg � I/ � x . Observe that  h0.fxg � I/ �  .x/ � x ,
h.ff .x/g � I/ � cK.f .x// � x , and h.fg.x/g � I/ � cK.g.x// � x . Then,
by connecting three homotopies h.f � idI/,  h0, and h.g � idI/, we can get a K-
homotopy from f to g, hence f 'K g. ut

Combining Corollary 4.9.2 with Proposition 4.9.7 (or 4.5.4), we have the
following corollary:

Corollary 4.9.8. Let U be an open cover of a space X . Then, f 'N.U/ g for any
two canonical maps f; g W X ! jN.U/j (or f; g W X ! jN.U/jm). ut

An open cover U of a space X is said to be star-finite if U ŒU � is finite for each
U 2 U , which is equivalent to the condition that the nerve N.U/ is locally finite.
In fact, St.U;N.U//.0/ D U ŒU � for eachU 2 U D N.U/.0/. Thus, the star-finiteness
of an open cover chraterizes the local finiteness of its nerve. On the other hand, the
nerveN.U/ is locally finite-dimensional (l.f.d.) if and only if supx2U cardU Œx� <1
for each U 2 U . In this case, we have

sup
x2U

cardU Œx� D dim St.U;N.U//C 1:

Note that every star-finite open cover is locally finite and its nerve is locally
finite-dimensional, and that if an open cover is locally finite or its nerve is locally
finite-dimensional then it is point-finite, that is, we have the following implications:
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locally finite nerve� star-finite locally finite

locally finite-dimensional nerve point-finite

In the above, the converse implications do not hold and there are no connections
between the local finiteness of an open cover and the local finite-dimensionality of
its nerve. In fact, U D fR; .n;1/ j n 2 Ng is a locally finite open cover of R but
the nerve N.U/ is not locally finite-dimensional. This example also shows that the
converse implication in the top row of the figure does not hold. Since the cover is
point-finite, the converse in the bottom row does not hold either. On the other hand,
let X D .N � I/=.N � f0g/ be the quotient space (or X D J.N/ the hedgehog
(cf. Sect. 2.3)). Let U0 D X and, for each n 2 N, let Un D fng � .0; 1�. Then,
U D fUn j n 2 !g is an open cover with dimN.U/ D 1, which is not locally finite
in X . This shows that the converse implication on the left side of the figure does
not hold. Since the cover is point-finite, the converse on the right side does not hold
either.

Theorem 4.9.9. Every open cover of a paracompact space has a locally finite -
discrete open refinement with the locally finite-dimensional nerve.

Proof. It suffices to show that, for a simplicial complex K , the open cover OK 2
cov.jKj/ has a locally finite -discrete open refinement V with the locally finite-
dimensional nerve. In fact, every open cover U of a paracompact space X has a
canonical map f W X ! jN.U/j by Corollary 4.9.5. When K D N.U/,

f �1.V/ 	 f �1.OK/ D f �1.ON.U// 	 U ;

f �1.V/ is locally finite -discrete and N.f �1.V// is l.f.d. because N.f �1.V// is
simplicially isomorphic to the subcomplexL � N.V/ defined as follows:

L D ˚hV1; : : : ; Vni
ˇ
ˇ
Tn
iD1 f �1.Vi / 6D ;

�
:

We will construct an open collection V D fVn./ j  2 K.n/; n 2 !g satisfying
the following conditions:

(1) fVn./ j  2 K.n/; dim  D ig is discrete in jKj for each i � n;
(2) clVn./ � OSdK. O/ n clVn�2 for each  2 K and n � dim  ;
(3) jK.n/j [ clVn�1 � Vn,
where

Vn D
[˚

Vi ./
ˇ
ˇ  2 K.i/; i � n� �

V�1 D V�2 D ;
�
:

Then, V 2 cov.jKj/ by (3), V 	 OSdK 	 OK by (2), and V is -discrete in jKj by
(1). Moreover, we can see that V is locally finite and N.V/ is l.f.d.
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v
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V1.v0/

V2.v/
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Fig. 4.11 V D ˚
Vn./

ˇ
ˇ n 2 !;  2 K.n/

�

The local finiteness of V can be shown as follows: Each x 2 jKj is contained in
some Vn n clVn�2 by (3). From (2), it follows that

.Vn n clVn�2/\ Vi./ D ; for i > nC 1 and i < n � 1.

By (1), x has a neighborhoodW in Vn n clVn�2 that meets at most one member of
fVi./ j dim  D kg for each i D n � 1; n; nC 1 and each k � i . Consequently,
W meets at most 3nC 3 of the points Vi ./.

To prove that N.V/ is l.f.d., let n 2 ! and  2 K.n/. Due to (2), for each
x 2 Vn./,

˚
i j 9� 2 K such that x 2 Vi .�/

� D fn� 1; ng or fng or fn; nC 1g.
For each i 2 !, Vi .�/ is defined only if dim � � i , so x is contained in at most iC1
of the open sets Vi.�/ by (1). Therefore, each x 2 Vn./ is contained in at most
2nC 3 of the open sets Vi .�/, that is, dim St.Vn./;N.V// � 2nC 2 (Fig. 4.11).

Now, let us construct V . First, for each v 2 K.0/, choose an open set V0.v/ in jKj
so that v 2 V0.v/ � clV0.v/ � OSdK.v/. Each x 2 jKj is contained in the open star
OSdK. O/ for some  2 K , which meets only finitely many clV0.v/ because

OSdK. O/\OSdK.v/ 6D ; , hv; Oi 2 SdK , v 2 .0/:
Then, fclV0.v/ j v 2 K.0/g is a pair-wise disjoint locally finite collection of closed
sets in jKj, which means that it is discrete in jKj. Therefore, fV0.v/ j v 2 K.0/g is
discrete in jKj.

Suppose that Vi ./ has been defined for i � n � 1 and  2 K.i/ so as to satisfy
(1), (2), and (3). Let V 0n�1 be an open set in jKj such that
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jK.n�1/j [ clVn�2 � V 0n�1 � clV 0n�1 � Vn�1:

For each n-simplex  2 K , since jK.n�1/j � Vn�1, it follows that

 n Vn�1 D rint n Vn�1 � OSdK. O/ n clV 0n�1 � OSdK. O/ n clVn�2:

Then, we have an open set Vn./ in jKj such that

 n Vn�1 � Vn./ � clVn./ � OSdK. O/ n clV 0n�1:

Each x 2 jK.n�1/j is contained in the open set V 0n�1, which misses clVn./ for
every n-simplex  2 K . On the other hand, each x 2 jKj n jK.n�1/j is contained
in the open star OSdK. O�/ for some � 2 K nK.n�1/, which meets only finitely many
clVn./ (where dim D n) because

OSdK. O�/\OSdK. O/ 6D ; , hO; O�i 2 SdK ,  < �:

Then, fclVn./ j  2 K.n/; dim  D ng is a pair-wise disjoint locally finite
collection of closed sets in jKj, so it is discrete in jKj. Thus, fVn./ j  2
K.n/; dim  D ng is discrete in jKj.12

For each  2 K.n�1/, observe that

clVn�1./ n Vn�1 � OSdK. O/ n clV 0n�1 � OSdK. O/ n clVn�2:

Then, we have an open set Vn./ in jKj such that

clVn�1./ n Vn�1 � Vn./ � clVn./ � OSdK. O/ n clV 0n�1:

By the same approach as above, we can see that fVn./ j  2 K.n/; dim  D ig is
discrete in jKj for each i < n.

Since fVi./ j  2 K.i/; i � n � 1g is locally finite in jKj, we have

clVn�1 D
[˚

clVi ./
ˇ
ˇ  2 K.i/; i � n � 1�:

Note that clVi ./ � clVn�2 � Vn�1 for i � n � 2 and  2 K.i/. Hence,

bdVn�1 �
[

2K.n�1/

clVn�1./ n Vn�1 �
[

2K.n�1/

Vn./:

Then, it follows that jK.n/j [ clVn�1 � Vn. Thus, we have obtained Vn./ for every
 2 K.n/ such that conditions (1), (2), and (3) are satisfied. The proof is completed
by induction. ut

12Note that jKj is paracompact by Corollary 4.7.12, so it is collection-wise normal by Theo-
rem 2.6.1. Observe that f n Vn�1 j  2 K.n/; dim D ng is discrete in jKj. Then, we can
obtain fclVn./ j  2 K.n/; dim D ng without taking V 0

n�1.
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When X is a locally compact paracompact space, each U 2 cov.X/ has a locally
finite open refinement V such that clV is compact for each V 2 V . Then, as is
easily observed, V is star-finite, so the nerve N.V/ is locally finite. Thus, we have
the following theorem:

Theorem 4.9.10. Every open cover of a locally compact paracompact space has a
star-finite open refinement whose nerve is locally finite. ut

In addition, we can show that:

Theorem 4.9.11. Every open cover of a regular Lindelöf space has a countable
star-finite open refinement whose nerve is countable and locally finite.

Proof. Due to Corollary 2.6.4, a regular Lindelöf space X is paracompact. Then,
each U 2 cov.X/ has a countable locally finite open refinement V D fVi j i 2
Ng. Indeed, take open refinements V 00 	 V 0 	 U so that V 0 is locally finite and
V 00 is countable. Let ' W V 00 ! V 0 be a function such that V � '.V / for each
V 2 V 00. Then, V D f'.V / j V 2 V 00g is countable and locally finite. According
to Lemma 2.7.1, V has an open refinement fVi;1 j i 2 Ng such that clVi;1 � Vi
for each i 2 N. We can inductively choose open sets Vi;j in X so that clVi;j�1 �
Vi;j � clVi;j � Vi . For each i; j 2 N, let

Wi;j D Vi;j n
[

i 0Cj 0<iCj�1
clVi 0;j 0 :

Then, W D fWi;j j i; j 2 Ng 2 cov.X/ is a star-finite countable open refinement
of U . ut

4.10 The Inverse Limits of Metric Polyhedra

An inverse sequence .Xi ; fi /i2N is a sequence of spaces Xi and maps fi W XiC1!
Xi , that is,

X1 X2
f1

X3
f2 � � �

f3

;

where fi are called the bonding maps. For i < j , we denote

fi;j D fi � � �fj�1 W Xj ! Xi:

Then, fi;iC1 D fi for each i 2 N. For convenience, we denote fi;i D idXi . The
inverse limit lim �.Xi ; fi / is defined as the following subspace of the product space
Q
i2NXi :

lim �.Xi ; fi / D
˚
x 2Qi2NXi

ˇ
ˇ x.i/ D fi .x.i C 1// for each i 2 N

�
;
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which is closed in
Q
i2NXi . For each i 2 N, the restriction pi W lim �.Xi ; fi / !

Xi of the projection pri W
Q
i2N ! Xi is called the (inverse limit) projection

of lim �.Xi ; fi / to Xi . Note that fipiC1 D pi for each i 2 N. When the bonding
maps are evidently known, we simply write lim �.Xi ; fi / D lim �Xi . It is possible that
lim �.Xi ; fi / D ; even if Xi 6D ; for every i 2 N (cf. Proposition 4.10.9(1)). For
example, the following inverse sequence has the empty limit:

Œ1;1/ � Œ2;1/ � Œ3;1/ � � � � ;
where the bonding maps are the inclusions. A nested sequence X1 � X2 � � � � is
an inverse sequence of subspaces such that the inclusions are the bonding maps.

Proposition 4.10.1. For every nested sequence X1 � X2 � � � � , there exists a
homeomorphism h W Ti2NXi ! lim �Xi such that pih W Ti2NXi ! Xi is the
inclusion.

Proof. Note that p1.lim �Xi/ D
T
i2NXi , where p1 W lim �Xi ! X1 is the projection.

Let h W Ti2NXi ! lim �Xi be the diagonal map defined by h.x/ D .x; x; : : : /.
Then, p1h D id and hp1 D id. ut
Proposition 4.10.2. For an inverse sequence .Xi ; fi /i2N, if every bonding map fi
is surjective then the projection pn W lim �.Xi ; fi / ! Xn is also surjective for each
n 2 N.

Proof. For each x 2 Xn and each i � n, define xi D fi;n.x/. For each
i � n, inductively choose xiC1 2 f �1i .xi /. Then, .xi /i2N 2 lim �.Xi ; fi / and
pn..xi /i2N/ D xn D x. ut

Let .Xi ; fi /i2N and .Yi ; gi /i2N be inverse sequences. Given maps hi W Xi ! Yi ,
i 2 N, such that hifi D gihiC1 for every i 2 N, we can define a map lim �hi W
lim �.Xi ; fi /! lim �.Yi ; gi / as follows:

.lim �hi /..xi /i2N/ D .hi .xi //i2N:
Then, qi lim � hi D hipi for every i 2 N, where pi W lim �.Xi ; fi / ! Xi and qi W
lim �.Yi ; gi /! Yi are the projections.

X1

h1

X2
f1

h2

X3
f2

h3

� � � lim �.Xi ; fi /

p2

p3

lim � hi

Y1 Y2
g1

Y3
g2

� � � lim �.Yi ; gi /

q2

q3
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Proposition 4.10.3. Let .Xi ; fi /i2N be an inverse sequence. For any increasing
sequence n.1/ < n.2/ < � � � 2 N, the following B is an open basis for lim �.Xi ; fi /:

B D ˚p�1n.i/.V /
ˇ
ˇ i 2 N; V is open in Xn.i/

�
:

Proof. For each open set U in lim �.Xi ; fi / and x 2 U , we have open sets Vi in

Xi , i D 1; : : : ; n, such that x 2 Tn
iD1 p�1i .Vi / � U . Choose k 2 N so that

n.k/ � n. Then, V D Tn
iD1 f �1i;n.k/.Vi / is an open set in Xn.k/ and x 2 p�1n.k/.V / DTn

iD1 p�1i .Vi / � U . ut
For an inverse sequence .Xi ; fi /i2N and an increasing sequence n.1/ < n.2/ <

� � � 2 N, we have the inverse sequence .Xn.i/; fn.i/;n.iC1//i2N:

Xn.1/ Xn.2/

fn.1/;n.2/

Xn.3/

fn.2/;n.3/

� � � ;

which is called a subsequence of .Xi ; fi /i2N. Proposition 4.10.3 shows that the map
h W lim �.Xn.i/; fn.i/;n.iC1//! lim �.Xi ; fi / obtained as the restriction of the projection
of
Q
i2NXi onto

Q
i2NXn.i/ is open, hence h is a homeomorphism. Thus, we have

the corollary:

Corollary 4.10.4. Let .Xi ; fi /i2N be an inverse sequence. For any increasing
sequence n.1/ < n.2/ < � � � 2 N, there exists a homeomorphism h W lim �.Xi ; fi /!
lim �.Xn.i/; fn.i/;n.iC1// such that p0ih D pn.i/ for each i 2 N, where pi W
lim �.Xi ; fi /! Xi and p0i W lim �.Xn.i/; fn.i/;n.iC1//! Xn.i/ are the projections. ut

The following can be easily proved using Corollary 4.10.4:

Corollary 4.10.5. Let .Xi ; fi /i2N and .Yi ; gi /i2N be inverse sequences. Suppose
that there exists an increasing sequence n.1/ < n.2/ < � � � 2 N and maps 'i W
Xn.2i/ ! Yn.2i�1/ and  i W Yn.2iC1/ ! Xn.2i/ such that  i'iC1 D fn.2i/;n.2iC2/ and
'i i D gn.2i�1/;n.2iC1/, that is, the following diagram is commutative:

Xn.2/

'1

Xn.4/

fn.2/;n.4/

'2

Xn.6/

fn.4/;n.6/

'3

� � �

Yn.1/ Yn.3/
gn.1/;n.3/

 1

Yn.5/
gn.3/;n.5/

 2

� � �

 3

Then, lim �.Xi ; fi / is homeomorphic to lim �.Yi ; gi /.
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Sketch of Proof. Consider the following inverse sequence:

Yn.1/ Xn.2/

'1

Yn.3/

 1

Xn.4/

'2

� � �
 2

;

whose limit is homeomorphic to the inverse limits of the upper and lower sequences in the
above diagram.

Let .Xi ; fi /i2N be an inverse sequence and pi W X D lim �.Xi ; fi / ! Xi , i 2 N,
be the projections of the inverse limit. Then, the following hold:

(inv-1) fipiC1 D pi for each i 2 N;
(inv-2) Given maps gi W Y ! Xi , i 2 N, such that figiC1 D gi , there exists a

unique map g W Y ! X such that pig D gi for each i 2 N.

The above two conditions characterize the inverse limit, that is, more formally:

Theorem 4.10.6. For an inverse sequence .Xi ; fi /i2N, a spaceX is homeomorphic
to lim �.Xi ; fi / if and only if there are maps qi W X ! Xi , i 2 N, with conditions
(inv-1) and (inv-2). In this case, there is a unique homeomorphism h W X !
lim �.Xi ; fi / such that pih D qi for each i 2 N.

Proof. The “only if” part: If there is a homeomorphism h W X ! lim �.Xi ; fi /, then
the maps qi D pih W X ! Xi , i 2 N, satisfy conditions (inv-1) and (inv-2), where
pi W lim �.Xi ; fi /! Xi is the inverse limit projection.

The “if” part: Because .qi /i2N satisfies condition (inv-1), we apply condition
(inv-2) for .pi /i2N to obtain a map h W X ! lim �.Xi ; fi / such that pih D qi

for each i 2 N. Similarly, we apply condition (inv-2) for .qi /i2N to obtain a map
g W lim �.Xi ; fi / ! X such that qig D pi for each i 2 N. Since pihg D pi and
qigh D qi for each i 2 N, hg D id and gh D id by the uniqueness in condition
(inv-2). Therefore, h is a homeomorphism with h�1 D g. ut

Restricting the natural homeomorphism from
Q
i2NXi�

Q
i2N Yi onto

Q
i2N.Xi�

Yi/, we can state the following:

Proposition 4.10.7. For inverse sequences .Xi ; fi /i2N and .Yi ; gi /i2N, the product
space lim �.Xi ; fi / � lim �.Yi ; gi / is homeomorphic to the inverse limit lim �.Xi � Yi ;
fi � gi /. ut

Concerning subspaces, we have the following proposition:

Proposition 4.10.8. Let X D lim �.Xi ; fi / be the inverse limit of an inverse
sequence .Xi ; fi /i2N with the projections pi W X ! Xi , i 2 N.

(1) For each i 2 N, let Ai be a subspace of Xi such that fi .AiC1/ � Ai . Then,
A D lim �.Ai ; fi jAiC1/ is a subspace of X and pi jA, i 2 N, are the inverse limit
projections.

(2) For every closed subspace A of X , A D lim �.pi .A/; fi jpiC1.A// and pi jA,
i 2 N, are the inverse limit projections.
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Proof. For (1), there is no proof needed. For (2), A � lim �.pi .A/; fi jpiC1.A// is
trivial. Conversely, for each x 2 lim �.pi .A/; fi jpiC1.A//, we can find ai 2 A,
i 2 N, such that pi .ai / D x.i/. Then, .ai /i2N converges to x in

Q
i2NXi , hence

x 2 clA D A. ut
Remark 15. If .Xi ; fi /i2N is a nested sequence, then Proposition 4.10.8(2) is valid
for an arbitrary subspace A of X . However, in general, it is necessary to assume the
closedness of A. In fact, if everyXi is finite then the inverse limit X is compact (cf.
Proposition 4.10.9 below). For A � X , since each pi .A/ is finite, the inverse limit
lim �.pi .A/; fi jpiC1.A// is also compact. Then,A 6D lim �.pi .A/; fi jpiC1.A// unless
A is closed in X .

Proposition 4.10.9. Let X D lim �.Xi ; fi / be the inverse limit of an inverse
sequence .Xi ; fi /i2N. Then, the following hold:

(1) If every Xi is compact then X is compact, where X 6D ; if Xi 6D ; for every
i 2 N;

(2) If every Xi is (completely) metrizable then X is (completely) metrizable;
(3) If every Xi is locally compact and each fi is proper, then X is locally compact

and the inverse limit projections pi W X ! Xi , i 2 N, are proper.

Proof. Since X is a closed subspace of the product space
Q
i2NXi , (2) and the first

half of (1) are trivial. For the second half of (1), we define the nested sequence
X�1 � X�2 � � � � of closed sets in

Q
i2NXi as follows:

X�n D
˚
x 2Qi2NXi

ˇ
ˇ x.i/ D fi;n.x.n// for each i � n�:

If eachXi is a non-empty compact space, then
Q
i2NXi is compact and X�n 6D ; for

each i 2 N, hence X DTn2NX�n 6D ;.
(3): According to Proposition 4.10.3, it is enough to show that each projection

pn W X ! Xn is proper. For each compact set A in Xn, p�1n .A/ is closed in X , so is
closed in

Q
i2NXi . We define

Ai D
(
fi;n.A/ if i � n,

f �1n;i .A/ if i > n,

where fi;j is proper for each i < j . Then, p�1n .A/ is contained in the compact
set

Q
i2NAi in

Q
i2NXi . Indeed, pip�1n .A/ D fi;npnp

�1
n .A/ � fi;n.A/ D Ai for

i � n and pip�1n .A/ D pip
�1
i f

�1
n;i .A/ � f �1n;i .A/ D Ai for i > n. Thus, p�1n .A/

is compact. ut
For the remainder of this section, we show that every completely metrizable

space is represented by the inverse limit of some inverse sequence of metric
polyhedra. This can be stated in the following theorem as:

Theorem 4.10.10. Every completely metrizable space X is homeomorphic to the
inverse limit lim �.jKi jm; fi / of an inverse sequence of metric polyhedra and PL
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maps such that each Ki is locally finite-dimensional, cardKi � w.X/, and each
fi W KiC1 ! K 0i is simplicial for some admissible subdivision K 0i of Ki , where
admissibility of K 0i guarantees the continuity of fi W jKiC1jm ! jKi jm.

Proof. Because this theorem is obvious if X is finite, we may assume that w.X/ �
@0. Let d be an admissible complete metric for X . By induction, we will construct
a refining sequence of open covers of X :

U1 
 U cl
2 
 U2 
 U cl

3 
 U3 
 � � �
with admissible subdivisions K 0i of the nerves Ki D N.Ui / and simplicial maps
fi W KiC1 ! K 0i satisfying the following conditions:

(1) Ui is locally finite;
(2) Ki D N.Ui / is locally finite-dimensional;
(3) meshd Ui < 2�i ;
(4) clU � '�1i .OK0

i
.fi .U /// for each U 2 K.0/

iC1 D UiC1;
(5) mesh
j fj;i .SKi / < 2�.i�j / for j < i ,

where 'i is a canonical map and 
j D 
Kj . Note that cardKi � @0w.X/ D w.X/
by (1) and (2).

First, by Theorem 4.9.9, we have U1 2 cov.X/ satisfying (1)–(3). Next, assume
that U1, . . . , Ui and f1; : : : ; fi�1 have been defined so as to satisfy (1)–(5). By
Theorem 4.8.8, we can find an admissible subdivisionK 0i of Ki such that

mesh
i SK0

i
< 1=2 and mesh
j fj;i .SK0

i
/ < 2�.iC1�j / for all j < i .

Note that OK0

i
is an open cover of jK 0i jm D jKi jm (cf. Lemma 4.8.1). Let 'i W X !

jKi jm be a canonical map. Then,

'�1i .OK0

i
/ 2 cov.X/ and '�1i .OK0

i
/ 	 '�1i .OKi / 	 Ui :

By the regularity of X and Theorem 4.9.9, we have UiC1 2 cov.X/ satisfying
(1)–(3) and U cl

iC1 	 '�1i .OK0

i
/. Then, there is a simplicial map fi W KiC1 ! K 0i

satisfying (4), that is,

clU � '�1i .OK0

i
.fi .U /// for each U 2 K.0/

iC1 D UiC1.

Indeed, for each hU1; : : : ; Uki 2 KiC1,
Tk
jD1 '�1i .OK0

i
.fi .Uj /// 6D ;, hence

Tk
jD1 OK0

i
.fi .Uj // 6D ;, which implies that hfi.U1/; : : : ; fi .Uk/i 2 K 0i . Since

fi .SKiC1
/ 	 SK0

i
, (5) holds for j < i C 1, that is,

mesh
j fj;iC1.SKiC1
/ < 2�.iC1�j / for each j < i C 1.



210 4 Simplicial Complexes and Polyhedra

We now construct a homeomorphism h W X ! lim �.jKi jm; fi /. For each x 2 X
and i 2 N, let �i .x/ D hUi Œx�i 2 Ki . We will show that fi .�iC1.x// � �i .x/. Let
 2 Ki be the smallest simplex containing fi .�iC1.x// 2 K 0i . Then,

[

V 2UiC1Œx�

cKi .fi .V //
.0/ D .0/:

Indeed, for each V 2 UiC1Œx� D �iC1.x/.0/, we have cKi .fi .V // �  , that is,
cKi .fi .V //

.0/ � .0/. If
S

UiC1Œx�
cKi .fi .V //

.0/ ¤ .0/ then �iC1.x/ D hUiC1Œx�i
is contained in a proper face of  , which contradicts the minimality of  . For each
V 2 �iC1.x/.0/ D UiC1Œx� and U 2 cKi .fi .V //.0/, we haveOK0

i
.fi .V // � OKi .U /

by Proposition 4.2.15. Thus,
\

V 2UiC1Œx�

OK0

i
.fi .V // �

\

U2.0/
OKi .U /:

Then, it follows that

x 2
\

V 2UiC1Œx�

V �
\

V 2UiC1Œx�

'�1i
�
OK0

i
.fi .V //

�

�
\

U2.0/
'�1i

�
OKi .U /

� �
\

U2.0/
U:

Hence, .0/ � Ui Œx�, that is,  � �i .x/, so fi .�iC1.x// � �i .x/. Now, we have the
following nested sequence of compacta:

�i .x/ D fi;i .�i .x// � fi;iC1.�iC1.x// � fi;iC2.�iC2.x// � � � � :
Since

T
j�i fi;j .�j .x// 6D ; and limk!1 diam
i fi;iCk.�iCk.x// D 0 by (5), it

follows that
T
j�i fi;j .�j .x// is a singleton. Thus, we have hi W X ! jKi j such that

fhi .x/g D
\

j�i
fi;j .�j .x// for each x 2 X .

Observe that fihiC1 D hi . Thus, we have h W X ! lim �.jKi jm; fi / such that pih D
hi for each i 2 N, where pi W lim �.jKi jm; fi /! jKi jm is the projection.

We now verify the continuity of h. For each i 2 N, x 2 X , and " > 0, we
can choose j > i so that mesh
i fi;j .SKj / < " by (5). Then,

T
Uj Œx� is an open

neighborhood of x in X . Since y 2 T
Uj Œx� implies �j .x/ � �j .y/, we have

hj .y/ 2 �j .y/ 2 St.�j .x/;Kj /, hence

hi.
T

Uj Œx�/ D fi;j hj .TUj Œx�/ � fi;j .j St.�j .x/;Kj /j/:
Then, it follows that
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diam
i hi .
T

Uj Œx�/ � diam
i fi;j .j St.�j .x/;Kj /j/ � mesh
i fi;j .SKj / < ":

Thus, each hi W X ! jKi jm is continuous, so h is continuous.
Next, we show that h is injective. For x 6D x0 2 X , we can choose i 2 N so that

meshd Ui < d.x; x0/ by (3). Then, it follows that

�i .x/
.0/ \ �i .x0/.0/ D Ui Œx� \ Ui Œx0� D ;;

which means �i .x/ \ �i .x0/ D ;, hence hi .x/ 6D hi .x
0/, so h.x/ 6D h.x0/. Thus, h

is injective.
To prove that h is surjective, let y 2 lim �.jKi jm; fi /. For each i 2 N, let

�i D cKi .pi .y// 2 Ki be the carrier of pi .y/. Then, we have an open set Wi DS
U2�.0/i U � X . Since

T
U2�.0/i U 6D ;, it follows that diamd Wi � 2meshd Ui ,

hence limi!1 diamd Wi D 0 by (3). For each U 2 �
.0/
iC1, choose V 2 �

.0/
i

so that fi .U / 2 OKi .V /. Since fi .U / 2 K 0i .0/ and K 0i C Ki , it follows that
OK0

i
.fi .U // � OKi .V /, hence by (4),

clU � '�1i .OK0

i
.fi .U /// � '�1i .OKi .V // � V:

Therefore, clWiC1 � Wi . By the completeness of X , we have z 2 X such that
fzg D T

i2N clWi D T
i2NWi . For each i 2 N, z is contained in some U 2 �.0/i , so

�
.0/
i \ �i .z/.0/ 6D ;, that is, �i \ �i .z/ 6D ;. It follows from the definition of hi that
hi .z/ D pi.y/ for each i 2 N, which means h.z/ D y.

To conclude that h is a homeomorphism, it remains to show that h is an open map.
Let V be a neighborhood of x in X . By (3), st.x;Ui / � V for some i 2 N. Since
hi .x/ 2 �i .x/, we have U 2 �i .x/.0/ D Ui Œx� such that hi .x/ 2 OKi .U /, which
means h.x/ 2 p�1i .OKi .U //. For each y 2 p�1i OKi .U /, let z D h�1.y/. Then, U
is a vertex of the carrier �i 2 Ki of pi .y/. It follows from the above argument that
z 2 st.U;Ui / � V , hence y D h.z/ 2 h.V /. Thus, we have p�1i .OKi .U // � h.V /.
Hence, h.V / is a neighborhood of h.x/ in lim �.jKi jm; fi /. This shows that h is an
open map. ut

In the above proof, ifX is compact then each Ui can be finite, so eachKi is finite.
WhenX is separable and completely metrizable, each Ui can be countable and star-
finite by virtue of Theorem 4.9.10, which means that eachKi is locally finite. Thus,
we have the following:

Corollary 4.10.11. Every compactum (resp. separable completely metrizable
space) is homeomorphic to the inverse limit of an inverse sequence of compact (resp.
separable locally compact) polyhedra and PL maps. ut
Note. The compact case of the above Corollary 4.10.11 can be easily proved as
follows: By virtue of Corollary 2.3.8, we may assume that X is a closed set in the
Hilbert cube IN. For each i 2 N, let pi W IN ! Ii be the projection defined by
pi .x/ D .x.1/; : : : ; x.i//. Construct polyhedra Pi � Ii so that pi .X/ � intIi Pi ,
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PiC1 � Pi � I (hence p�1iC1.PiC1/ � p�1i .Pi /) and
T
i2N p�1i .Pi / D X . For each

i 2 N, let fi W PiC1 ! Pi be the restriction of the projection of Pi � I onto
Pi . Then, X D T

i2N p�1i .Pi / � lim �.Pi ; fi / by the homeomorphism induced by
pi jX W X ! Pi .

In the case that X is separable and locally compact metrizable, not only can each
Ki be locally finite, but each fi can also be proper. Indeed, we can take Ui such that
each U 2 Ui has the compact closure, hence UiC1ŒU � is finite for each U 2 Ui ,
which means that Ki D N.Ui / is locally finite, hence jKi jm D jKi j is locally
compact. For each U 2 K.0/

iC1 D UiC1 and V 2 K.0/
i D Ui , if fi .U / 2 OKi .V / then

clU � '�1i .OK0

i
.fi .U /// � '�1i .OKi .V // � V:

Since V contains only finitely many members of UiC1, f �1i .fi .U // contains only
finitely many vertices ofKiC1. Hence, fi is proper.

Corollary 4.10.12. Every separable locally compact metrizable space is
homeomorphic to the inverse limit of an inverse sequence of separable locally
compact polyhedra and proper PL-maps. ut

We now present the following useful remark.

Remark 16. In the proof of Theorem 4.10.10, we needed the following condition
that is derived from condition (5):

() lim
k!1mesh
i fi;iCk.SKiCk

/ D 0.

In Theorem 4.10.10, if dimKi <1 for each i 2 N, we can take K 0i D Sdni Ki for
some ni 2 N. Indeed, choose ni 2 N in the proof so that

lim
i!1



dimKi

dimKi C 1
�ni
D 0:

Then, condition () holds because the following inequality is obtained from
Lemma 4.7.3:

mesh
i fi;iCk.SdniCk KiCk/ �



dimKiCk
dimKiCk C 1

�niCk

mesh
i fi;iCk.KiCk/

�



dimKiCk
dimKiCk C 1

�niCk

mesh
i Sdni Ki

� 2



dimKi

dimKi C 1
�ni
 dimKiCk

dimKiCk C 1
�niCk

:

When dimKi � n for every i 2 N, we can take K 0i D SdKi . Indeed, condition
() is satisfied because the following inequality follows from Lemma 4.7.3:
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mesh
i fi;iCk.SdKiCk/ � n

nC 1 mesh
i fi;iCk.KiCk/

� n

nC 1 mesh
i fi;iCk�1.SdKiCk�1/

�



n

nC 1
�2

mesh
i fi;iCk�1.KiCk�1/

� � � � �



n

nC 1
�k

mesh
i SdKi

� 2



n

nC 1
�kC1

:

Remark 17. By replacing N with a directed set, we can generalize the inverse
sequence to the inverse system. Using an inverse system of polyhedra with the
Whitehead topology, Theorem 4.10.10 is valid for every paracompact space, that
is, every paracompact space (hence every metrizable space) can be represented as
the inverse limit of an inverse system of polyhedra with the Whitehead topology.
Refer to Notes for Chap. 4.

4.11 The Mapping Cylinders

The mapping cylinder Mf of a map f W X ! Y is defined as the following
adjunction space:

Mf D Y [f ıprX jX�f0g X � I;

that is, Mf is obtained from the topological sum Y ˚ .X � I/ by identifying the
points .x; 0/ 2 X � f0g with the points f .x/ 2 Y . By qf W Y ˚ .X � I/ ! Mf ,
we denote the natural quotient map. The map cf W Mf ! Y , called the collapsing
of Mf , is defined by cf jY D id and cf jX � .0; 1� D f ıprX . By if W X ! Mf ,
we denote the natural embedding defined by if .x/ D .x; 1/. Then, cf ıif D f and
cf ' id rel. Y in Mf which is realized by the homotopy hf W Mf � I ! Mf

defined by hf0 D cf , hft jY D id for each t 2 I and hft .x; s/ D .x; st/ for each
.x; s/ 2 X � .0; 1� and t 2 .0; 1�.

When Y is a singleton, the mapping cylinder Mf is homeomorphic to the
quotient space .X � I/=.X � f0g/, which is called the cone over X . We regard
the mapping cylinderMidX of the identity map idX as the product space X � I.

If X is a closed subspace of Y , the mapping cylinder Mi of the inclusion i W
X � Y can be regarded as the subspace .Y � f0g/ [ .X � I/ of the product space
Y � I. However, if Y is perfectly normal and X is not closed in Y then the mapping
cylinder Mi of the inclusion i W X � Y cannot be regarded as the subspace of
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Y � I. Indeed, let y 2 .clY X/ n X . Then, we have a map k W Y ! I such that
fyg D k�1.0/. Observe that the graph G D f.x; k.x// j x 2 Xg of the map k is
closed in Mi but is not closed in the subspace .Y � f0g/[ .X � I/ of Y � I.

For spaces X and Y with A � X \ Y , we denote

X ' Y rel. A

if there exist homotopy equivalences f W X ! Y and g W Y ! X such that
f jA D gjA D id, gf ' idX rel. A, and fg ' idY rel. A. Consider one more space
Z with A � Z. Then, it easily follows that X ' Y rel. A and Y ' Z rel. A imply
X ' Z rel. A.

Theorem 4.11.1. For maps f; g W X ! Y , the following are equivalent:

(a) f ' g;
(b) Mf 'Mg rel. Y [ .X � f1g/;
(c) There is a map ' WMf !Mg such that 'jY [ .X � f1g/ D id.

Proof. The implication (b)) (c) is obvious. Using the above homotopy hf , we can
see (c)) (a) as follows:

f D cf ıif D cgı'ıhf0 ıif ' cgı'ıhf1 ıif D cgı'ıif D cgıig D g:
(a) ) (b): Let h W X � I ! Y be a homotopy from f to g. We define maps

' WMf !Mg and  WMg !Mf as follows: 'jY D  jY D id and

'.x; s/ D
(
.x; 2s � 1/ for .x; s/ 2 X � . 1

2
; 1�;

h2s.x/ for .x; s/ 2 X � .0; 1
2
�I

 .x; s/ D
(
.x; 2s � 1/ for .x; s/ 2 X � . 1

2
; 1�;

h1�2s.x/ for .x; s/ 2 X � .0; 1
2
�:

See Fig. 4.12. Then, it follows that  'jY D id and

 '.x; s/ D

8
ˆ̂
<

ˆ̂
:

.x; 4s � 3/ for .x; s/ 2 X � . 3
4
; 1�;

h3�4s.x/ for .x; s/ 2 X � . 1
2
; 3
4
�;

h2s.x/ for .x; s/ 2 X � .0; 1
2
�:

We define an auxiliary map � WMf !Mf as follows: � jY D id and

�.x; s/ D
(
.x; 4s � 3/ for .x; s/ 2 X � . 3

4
; 1�;

f .x/ for .x; s/ 2 X � .0; 3
4
�:
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1
2

Y idY

Mf

Y idY

Mg

Y

Mf
'  

idX idXX X X

f g ff g

g f

h2s h1�2s
s s

0

1
3
4

idXidX

Fig. 4.12 The mapping cylinders of homotopic maps

Then, we have  ' ' � ' idMf
rel. Y [.X �f1g/ by the homotopies � WMf �I!

Mf and � WMf � I!Mf defined as follows: �t jY D �t jY D id and

�t .x; s/ D

8
ˆ̂
<

ˆ̂
:

.x; 4s � 3/ for .x; s/ 2 X � . 3
4
; 1�;

h.3�4s/t .x/ for .x; s/ 2 X � . 1
2
; 3
4
�;

h2st .x/ for .x; s/ 2 X � .0; 1
2
�I

�t .x; s/ D
8
<

:

�
x;
4s � 3t
4 � 3t

�
for .x; s/ 2 X � . 3

4
t; 1�;

f .x/ for .x; s/ 2 X � .0; 3
4
t �:

Similarly, we can see that ' ' id rel. Y [ .X � f1g/. ut
Theorem 4.11.2. For maps f W X ! Y and g W Y ! Z,

Mg [ig Mf 'Mgf rel: Z [ .X � f1g/:
Proof. We define maps ' W Mg [ig Mf ! Mgf and  W Mgf ! Mg [ig Mf as
follows: 'jMg D cg , 'jX � .0; 1� D id and  jZ D id,

 .x; s/ D
(
.x; 2s � 1/ 2 Mf for .x; s/ 2 X � . 1

2
; 1�;

.f .x/; 2s/ 2 Mg for .x; s/ 2 X � .0; 1
2
�:

Observe that  'jMg D cg ,  'jX � .0; 1� D  jX � .0; 1�, and ' jZ D id,

' .x; s/ D
(
.x; 2s � 1/ for .x; s/ 2 X � . 1

2
; 1�;

gf .x/ for .x; s/ 2 X � .0; 1
2
�:

See Figs. 4.13 and 4.14. Then, we have



216 4 Simplicial Complexes and Polyhedra

Z
idZ

Mg [ig Mf

idZ

Mgf

Z

'  

X X

f

gf

g

idX

Y
f

g

Y

idX

g

f

Z

Mg [ig Mf

X

Fig. 4.13 The mapping cylinder of the composition of maps (1)

idZidZ

Mgf

Z

' 

X

gf

idX

Y

X
f

g

idX

g

f

Z

Mg [ig Mf

gf

X

Z

Mgf

Fig. 4.14 The mapping cylinder of the composition of maps (2)

 ' ' id rel. Z [ .X � f1g/ and ' ' id rel. Z [ .X � f1g/.
In fact, these are realized by the homotopies

� W .Mg [ig Mf / � I!Mg [ig Mf and � WMgf � I!Mgf

defined as follows: �t jMg D hg1�t , �t jZ D id, and
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u1 D f .v1/ D f .v2/

u2 D f .v3/

v1
v3

v2

Z0

fZf

L

v2

v3
v1

L

KK

The case using the order

v3 <0 v2 <0 v1v1 < v2 < v3

The case using the order

u1 D f .v1/ D f .v2/

u2 D f .v3/

Fig. 4.15 The simplicial mapping cylinders

�t .x; s/ D
8
<

:

�
x;
2s � t
2 � t

�
for .x; s/ 2 X � . 1

2
t; 1�;

.f .x/; 2s C 1 � t/ for .x; s/ 2 X � .0; 1
2
t �I

�t .x; s/ D
8
<

:

�
x;
2s � t
2 � t

�
for .x; s/ 2 X � . 1

2
t; 1�;

gf .x/ for .x; s/ 2 X � .0; 1
2
t �: ut

Let K and L be simplicial complexes in the linear spaces E and F , respectively.
Consider the linear product spaceE�F �R and regardK andL as being contained
in E � f0g � f1g and f0g � F � f0g, respectively. Assume that K is an ordered
simplicial complex. The simplicial mapping cylinder Zf of a simplicial map f W
K ! L is defined as the following simplicial complex:

Zf D L [
˚hf .v1/; � � � ; f .vm0/; vm; � � � ; vni

ˇ
ˇ

hv1; � � � ; vni 2 K; v1 < � � � < vn; 1 � m0 � m � n
�
:

The collapsing of Zf is the simplicial map Ncf W Zf ! L defined by Ncf .v/ D f .v/
for each v 2 K.0/ and Ncf .u/ D u for each u 2 L.0/. Then, f D Ncf jjKj. If L D fvg
is a singleton,Zf is called the simplicial cone overK with v the cone vertex, which
is denoted by v K .

Remark 18. Note that the simplicial mapping cylinder changes if the order on
K.0/ is changed. Moreover, in general, jZf j 6� Mf . For instance, let K and L
be the standard triangulations of a 2-simplex hv1; v2; v3i and a 1-simplex hu1; u2i,
respectively. Consider the simplicial map f W K ! L defined by f .v1/ D f .v2/ D
u1 and f .v3/ D u2. Let Zf be the simplicial mapping cylinder defined by he order
v1 < v2 < v3 and Z0f be the one defined by the order v3 <0 v2 <0 v1. Then, we have
not only Zf 6� Z0f but also jZf j 6� jZ0f j (see Fig. 4.15). Evidently, jZf j 6� Mf .
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f

L

K � I

u1 D f .v1/ D f .v2/

u2 D f .v2/

u2

u1

v1
v3

v2

Mf

Zf

L

u2

v2

v3
v1

u1

v1

v3

v2

pf

qf

Nqf

L

K

K

K

I
˚
L

Fig. 4.16 The mapping cylinder and the simplicial mapping cylinder

Because K is assumed to be an ordered simplicial complex, we can consider
the product simplicial complex K �s I of K and the ordered simplicial complex
I D fI; 0; 1g with the natural order, i.e.,

K �s I D
˚h.v1; 0/; � � � ; .vm0 ; 0/; .vm; 1/; � � � ; .vn; 1/i

ˇ
ˇ

hv1; � � � ; vni 2 K; v1 < � � � < vn; 1 � m0 � m � n
�
;

where jK �s I j D jKj � I according to Theorem 4.3.1. We define the simplicial
map Nqf W L˚ .K �s I /! Zf by Nqf jL.0/ D id,

Nqf .v; 0/ D f .v/ and Nqf .v; 1/ D v for each v 2 K.0/.

Then, Nqf W jLj ˚ .jKj � I/ ! jZf j is a quotient map. Indeed, let A � jZf j and
assume that Nq�1f .A/ is closed in jLj ˚ .jKj � I/. Observe that

Zf D L[
˚ Nqf .�/

ˇ
ˇ � 2 K �s I

�
:

For each  2 L, A \  D Nq�1f .A/ \  is closed in  . For each � 2 K �s I , since

Nqf j� is a quotient map and . Nqf j�/�1.A \ Nqf .�// D Nq�1f .A/ \ � is closed in � , it
follows that A \ Nqf .�/ is closed in Nqf .�/. As a consequence, A is closed in jZf j.
Since Nqf jjLj D id and Nqf jjKj�f0g D f ıprjKj, we have the map pf WMf ! jZf j
such that pf ıqf D Nqf . Then, pf is a quotient map (Fig. 4.16).
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For each .x; s/ 2 jKj � I, let cK.x/ D hv1; � � � ; vni 2 K be the carrier of x
and write x D Pn

iD1 tivi , where v1 < � � � < vn and ti D ˇKvi .x/ > 0. Choose
m D 1; � � � ; n so that

nX

iDmC1
ti � s �

nX

iDm
ti

 

i.e.,
m�1X

iD1
ti � 1 � s �

mX

iD1
ti

!

;

where
Pn

iDnC1 ti D 0. Then, it follows that

.x; s/ D
m�1X

iD1
ti .vi ; 0/C


 nX

iDm
ti � s

�

.vm; 0/

C



s �
nX

iDmC1
ti

�

.vm; 1/C
nX

iDmC1
ti .vi ; 1/

2h.v1; 0/; � � � ; .vm; 0/; .vm; 1/; � � � ; .vn; 1/i 2 K �s I:
By the definition of Nqf , we have

Nqf .x; s/ D
m�1X

iD1
tif .vi /C


 nX

iDm
ti � s

�

f .vm/

C



s �
nX

iDmC1
ti

�

vm C
nX

iDmC1
tivi

2 hf .v1/; � � � ; f .vm/; vm; � � � ; vni 2 Zf :
Suppose Nqf .x0; s0/ D Nqf .x; s/. If s D 0 then s0 D 0. When s > 0, it follows that
vm; : : : ; vn are vertices of the carrier cK.x0/ of x0, which are the last n�mC1 vertices
with respect to the order of K.0/. The carrier of Nqf .x0; s0/ contains no vertices of
K.0/ except for vm; : : : ; vn and ˇKvi .x

0/ D ti for m < i � n, hence s0 D s. Then,
Nqf .x0; s0/ D Nqf .x; s/ implies s0 D s. In addition, if Nqf .x; s/ D Nqf .x0; s/, then
Nqf .x; s0/ D Nqf .x0; s0/ for every s0 2 Œ0; s�, because

nX

iDm0C1
ti � s0 �

nX

iDm0

ti form0 � m.

Therefore, we can define a homotopy Nhf W jZf j � I ! jZf j by Nhft jjLj D id and
Nhft . Nqf .x; s// D Nqf .x; st/ on jZf j n jLj � Nqf .jKj � I/. Thus, we have

Ncf D Nhf0 ' Nhf1 D idjZf j rel. jLj,
where Nhf . Nc�1f .y/ � I/ D Nc�1f .y/ for every y 2 jLj.
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Mf � I
hf

pf �id

Mf

pf

jZf j � I
Nhf
jZf j

For each ordered simplicial complex K and its subdivision K 0, we define the
simplicial subdivision I.K 0; K/ of the product simplicial complexK�sI as follows:

I.K 0; K/ D .K 0 � f0g/[ .K � f1g/
[ ˚h � f0g [ fvm; � � � ; vng � f1gi

ˇ
ˇ  2 K 0;

hv1; � � � ; vni 2 K; v1 < � � � < vn;  � hv1; � � � ; vmi
�
;

where K 0 � f0g D f � f0g j  2 K 0g and K � f1g D f� � f1g j � 2 Kg. For
any simplicial map f W K 0 ! L, given an order on K 0.0/ so that K 0 is an ordered
simplicial complex, we have the simplicial mapping cylinder Zf . IdentifyingK 0 �
Zf with K 0 � f0g � I.K 0; K/, we have the simplicial complex

ZK
f D Zf [K0DK0�f0g I.K 0; K/;

from which it follows that jZK
f j D jZf j [pr

jKj

jjKj�f0g jKj � I:

Theorem 4.11.3. LetK andK 0 be ordered simplicial complexes such thatK 0 C K

and let L be a simplicial complex. For any simplicial approximation f W K 0 ! L

of a map g W jKj ! jLj,
jZK

f j 'Mg rel: jLj [ .jKj � f1g/:
Proof. Since f ' g, we may assume that f D g by virtue of Theorem 4.11.1.
We define maps ' W jZK

f j ! Mf and  W Mf ! jZK
f j as follows: 'jjZf j D Ncf ,

'jjKj � .0; 1� D id, and  jjLj D id,

 .x; s/ D
(
.x; 2s � 1/ for .x; s/ 2 jKj � . 1

2
; 1�;

Nqf .x; 2s/ for .x; s/ 2 jKj � .0; 1
2
�:

Then, see Figs. 4.17 and 4.18, and observe that

'jjLj [ .jKj � f1g/ D  jjLj [ .jKj � f1g/ D id;

 'jjZf j D Ncf D Nhf0 and  'jjKj � .0; 1� D  jjKj � .0; 1�:

We now define the homotopies � W jZK
f j � I ! jZK

f j and � W Mf � I ! Mf as

follows: �t jjZf j D Nhf1�t , �t jjLj D id, and
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ZK
f Mf

'  

jKj

f

jKj

Ncf

jLj

ZK
f

id
jKj

Zf

jKj

Zf

jLj jLj

Nqf

id
jKj

id
jLj

id
jLj

Fig. 4.17 The map  ' W ZK
f ! ZK

f

Mf
' 

f

jKj

Ncf

jLj

ZK
f

id
jKj

jKj

Zf

jLj

Nqf

id
jKj

id
jLj

id
jLj

Mf

f

jKj

jLj

Fig. 4.18 The map ' W Mf ! Mf

�t .x; s/ D
8
<

:

�
x;
2s � t
2 � t

�
for .x; s/ 2 jKj � . 1

2
t; 1�;

Nqf .x; 2s C 1 � t/ for .x; s/ 2 jKj � .0; 1
2
t �I

�t .x; s/ D
8
<

:

�
x;
2s � t
2 � t

�
for .x; s/ 2 jKj � . 1

2
t; 1�;

f .x/ for .x; s/ 2 jKj � .0; 1
2
t �:

By these homotopies, we have

 ' D �1 ' �0 D id rel. jLj [ .jKj � f1g/ and

' D �1 ' �0 D id rel. jLj [ .jKj � f1g/.
This completes the proof. ut
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In the above, consider the case that f D g and f W K ! L is simplicial.
Then, jZf j ' jZK

f j rel. jLj. Indeed, let r W jZK
f j ! jZf j be the map defined by

r jjZf j D id and r jjKj � I D prjKj. As is easily observed, r ' id rel. jZf j in jZK
f j.

Thus, we have the following corollary:

Corollary 4.11.4. Let K be an ordered simplicial complex and L be a simplicial
complex. For every simplicial map f W K ! L, jZf j 'Mf rel: jLj. ut

4.12 The Homotopy Type of Simplicial Complexes

In this section, we apply the mapping cylinder and the simplicial mapping cylinder
to prove the Whitehead–Milnor Theorem on the homotopy type of simplicial
complexes.

A spaceX is said to be homotopy dominated by Y (or Y homotopy dominates
X ) if there are maps f W X ! Y and g W Y ! X such that gf ' id. It is easy to
see that X has the homotopy type of the singleton f0g if and only if X is dominated
by f0g. The homotopy type of a simplicial complex K means the homotopy type
of the polyhedron jKj (or jKjm) (cf. Theorem 4.9.6). We say that X is homotopy
dominated by a simplicial complex K if X is homotopy dominated by jKj (or
jKjm). Applying Theorems 4.11.1–4.11.3, we can prove the following Whitehead–
Milnor Theorem:

Theorem 4.12.1 (J.H.C. WHITEHEAD; MILNOR). If a space X is homotopy
dominated by a simplicial complexK , thenX has the homotopy type of a simplicial
complex L with cardL.0/ D dens jLj � densX . When X is separable, X has the
homotopy type of a countable simplicial complex.

Proof. We may assume that X is infinite, so densX � @0. Let f W X ! jKj and
g W jKj ! X be maps such that gf ' id. Then, we may assume that cardK �
densX . Indeed, take a dense set D in X with cardD D densX and define

K0 D
˚
� 2 K ˇ

ˇ 9x 2 D such that � � cK.f .x//
�
;

where cK.f .x// is the carrier of f .x/. Observe that cardK0 � cardD and f .X/ D
f .clD/ � cl f .D/ � jK0j. Because .gjjK0j/f ' id, we can replaceK with K0.

By the Simplicial Approximation Theorem 4.7.14, fg W jKj ! jKj has a
simplicial approximation ' W K 0 ! K , where K 0 is a subdivision of K . Given
orders on K 0.0/ and K.0/ so that K 0 and K are ordered simplicial complexes, we
obtain the simplicial complexZK

' with cardZK
' � densX .

For each n 2 Z, let Ln be a copy of ZK
' . Identifying K of LnC1 with K �

f1g of Ln for each n 2 Z, we have a simplicial complex L D S
n2Z Ln, where

cardL � densX . For each n 2 Z, let M2n�1 and M2n be copies of Mf and Mg,
respectively. Identifying X � f1g � M2n�1 with X � M2n and jKj � f1g � M2n

with jKj �M2nC1, let M DSn2ZMn.
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Fig. 4.19 X �R' jLj

By Theorems 4.11.3 and 4.11.2, we have

jLnj D jZK
' j ' Mfg 'Mf [if Mg D M2n�1 [M2n rel. jKj [ .jKj � f1g/;

which implies that L ' M . By Theorems 4.11.2 and 4.11.1,

M2n [M2nC1 DMg [ig Mf 'Mgf ' MidX rel. X [ .X � f1g/:
Regarding MidX as X � Œn; n C 1�, we have M ' X � R. Thus, we have X '
X � R ' jLj— Fig. 4.19. ut
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1 2 3

K.0/ K.1/ K.2/ K.3/

0

SK

Fig. 4.20 The locally finite simplicial complex SK

In the above proof, if dimK < 1 then dimL < 1. Therefore, we have the
following corollary:

Corollary 4.12.2. A space X homotopy dominated by a finite-dimensional
simplicial complex has the homotopy type of a finite-dimensional simplicial complex
K with cardK.0/ D dens jKj � densX . ut

Applying product simplicial complexes, we can prove the following theorem:

Theorem 4.12.3. Every simplicial complex has the homotopy type of a locally
finite-dimensional simplicial complex with the same density. In addition, every
countable simplicial complex has the homotopy type of a countable locally finite
simplicial complex.

Proof. For each n 2 !, let Ln D fi; Œi; i C 1� j i � ng be the ordered simplicial
complex with the natural order. For each simplicial complex K , assuming that K
is an ordered simplicial complex, we define a locally finite-dimensional simplicial
complex SK DSn2! K.n/ �s Ln (Fig. 4.20). By Theorem 4.3.1, we have

jSK j D
[

n2!
jK.n/j � Œn;1/ � jKj � Œ0;1/:

To prove that jKj ' jSK j, it suffices to show that jKj � Œ0;1/ ' jSK j because
jKj ' jKj � Œ0;1/. For each n 2 !, let

Tn D jK.n/j � Œ0; n� [ jSK j:

Then, jSK j D T0 � T1 � T2 � � � � and jKj � Œ0;1/ D lim�! Tn (cf. Sect. 2.8). For
each n-simplex � 2 K , we have a map

p� W � � Œ0; n�! @� � Œ0; n� [ � � fng D � � Œ0; n� \ Tn�1
defined as follows: p�. O�; s/ D . O�; n/ and
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y

O�
0 n D dim �

�

x D .1� t /O� C ty

s

t D nC s
2n

1
2

1

p� .x; s/
.x; s/

Fig. 4.21 The map p�

p� .x; s/ D

8
<̂

:̂

.y; s C 2n.1 � t// if
nC s
2n
� t � 1;





1� 2n

nC s t
�

O� C 2n

nC s ty; n
�

if 0 < t � nC s
2n

;

where x D .1 � t/ O� C ty 2 � , y 2 @� , 0 < t � 1 (Fig. 4.21).
For each n 2 N, let pn W Tn ! Tn�1 be the map defined by pnjTn�1 D id

and pnj� � Œ0; n� D p� for each n-simplex � 2 K . Then, we can define a map
r W jKj � Œ0;1/! jSK j by r jTn D p1 � � �pn for each n 2 N. Note that r jjSK j D id
and r.� � Œ0;1// � � � Œ0;1/ for each � 2 K . Observe that r ' id rel. jSK j
in jKj � Œ0;1/ by the straight-line homotopy (i.e., t 7! .1 � t/r.x; s/ C t.x; s/).
Therefore, we have jKj � Œ0;1/ ' jSK j.

If K is countable, K has a tower K1 � K2 � � � � of finite subcomplexes with
K D Sn2NKn. Then, TK D Sn2! Kn �s Ln is a countable locally finite simplicial
complex. As above, we have jKj ' jTK j. ut

By Theorems 4.12.1 and 4.12.3, we have the following corollary:

Corollary 4.12.4. A space X homotopy dominated by a simplicial complex has
the homotopy type of a locally finite-dimensional simplicial complex K with
cardK.0/ D dens jKj � densX . If X is separable, X has the homotopy type of
a countable locally finite simplicial complex. ut

4.13 Weak Homotopy Equivalences

Let n 2 !. A map f W X ! Y is called an n-equivalence if it satisfies the following
condition .�/i for each i D 0; : : : ; n:

.�/i For each map ˛ W Si�1 ! X , if f ˛ extends to a map ˇ W Bi ! Y , then ˛
extends to a map N̨ W Bi ! X such that f N̨ ' ˇ rel. Si�1,

where B0 D f0g and S�1 D ;.
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X
f

Y

Si�1

˛

� Bi
N̨
'

ˇ

When f W X ! Y is an n-equivalence for every n 2 !, we call f a
weak homotopy equivalence. For convenience, a weak homotopy equivalence is
sometimes called an1-equivalence.

In the next section, we will give a characterization of n-equivalences in the
framework of homotopy groups. In particular, it will be shown that a map is
a weak homotopy equivalence if and only if it induces a bijection between the
sets of path-components and an isomorphism between their homotopy groups in
every dimension. The following proposition is an immediate consequence of this
characterization, but we will give a direct proof.

Proposition 4.13.1. Every homotopy equivalence f W X ! Y is a weak homotopy
equivalence.

Proof. Let g W Y ! X be a homotopy inverse of f . Then, there are homotopies
h W X � I ! X and k W Y � I ! Y such that h0 D idX , h1 D gf , k0 D idY , and
k1 D fg. For each pair of maps ˛ W Si�1 ! X and ˇ W Bi ! Y with f ˛ D ˇjSi�1,
we can extend ˛ to the map N̨ W Bi ! X defined as follows:

N̨ .x/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

gˇ.8x/ if 0 � kxk � 1=8,

gf h.˛.kxk�1x/; 8kxk � 1/ if 1=8 � kxk � 1=4,

gk.f ˛.kxk�1x/; 2 � 4kxk/ if 1=4 � kxk � 1=2,

h.˛.kxk�1x/; 2 � 2kxk/ if 1=2 � kxk � 1.

It remains to show that f N̨ ' ˇ rel. Si�1.
We define an auxiliary map � W Bi ! Y as follows:

�.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

ˇ.8x/ if 0 � kxk � 1=8,

f h.˛.kxk�1x/; 8kxk � 1/ if 1=8 � kxk � 1=4,

k.f ˛.kxk�1x/; 2 � 4kxk/ if 1=4 � kxk � 1=2,

k.f ˛.kxk�1x/; 4kxk � 2/ if 1=2 � kxk � 3=4,

f h.˛.kxk�1x/; 4 � 4kxk/ if 3=4 � kxk � 1.
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Then, � ' f N̨ rel. Si�1 by the homotopy ' W Bi � I! Y defined as follows:

't .x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

kt .ˇ.8x// if 0 � kxk � 1=8,

kt .f h.˛.kxk�1x/; 8kxk � 1// if 1=8 � kxk � 1=4,

ktk.f ˛.kxk�1x/; 2 � 4kxk/ if 1=4 � kxk � 1=2,

k.f ˛.kxk�1x/; 4kxk � 2C t/ if 1=2 � kxk � .3 � t/=4,

f h.˛.kxk�1x/; .4 � 4kxk/=.1C t// if .3 � t/=4 � kxk � 1.

On the other hand, let � 0; � 00 W Bi ! Y be the maps defined as follows:

� 0.x/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

ˇ.8x/ if 0 � kxk � 1=8,

f h.˛.kxk�1x/; 8kxk � 1/ if 1=8 � kxk � 1=4,

fgf ˛.kxk�1x/ if 1=4 � kxk � 3=4,

f h.˛.kxk�1x/; 4 � 4kxk/ if 3=4 � kxk � 1;

� 00.x/ D
(
ˇ.8x/ if 0 � kxk � 1=8,

f ˛.kxk�1x/ if 1=8 � kxk � 1.

It is then easy to obtain the homotopies � ' � 0 ' � 00 ' ˇ rel. Si�1. ut
In this section, we will show the converse of Proposition 4.13.1 when X and

Y are polyhedra. Namely, we will prove that every weak homotopy equivalence
between polyhedra is a homotopy equivalence.

A path-component of a space X is a maximal path-connected subset of X .
The set of path-components of X is denoted by �0.X/. Every map f W X ! Y

induces the function f] W �0.X/ ! �0.Y /, which sends the path-component of
x 2 X to the path-component of f .x/ 2 Y . The following propositions are easily
proved:

Proposition 4.13.2. (1) A map f W X ! Y is a 0-equivalence if and only if every
path-component of Y meets f .X/, i.e., f] W �0.X/! �0.Y / is a surjection.
(2) Every 1-equivalence f W X ! Y induces the bijection f] W �0.X/ ! �0.Y /

and the surjection f] W Œ.I; @I/; .X; x0/�! Œ.I; @I/; .Y; f .x0//� for every x0 2 X .13

ut
Proposition 4.13.3. Let n 2 ! [ f1g. The composition of n-equivalences is also
an n-equivalence. ut

The following proposition, similar to Proposition 4.13.1, is an immediate
consequence of the characterization of an n-equivalence in the framework of
homotopy groups, which will be discussed in the next section. However, here we
will give a direct proof.

13That is, f] W �1.X; x0/! �1.Y; f .x0// is an epimorphism for every x0 2 X .
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Proposition 4.13.4. Let n 2 ! [ f1g. If a map f W X ! Y is homotopic to an
n-equivalence, then f is also an n-equivalence.

Proof. For each i < n C 1,14 let ˛ W Si�1 ! X and ˇ W Bi ! Y be maps such
that f ˛ D ˇjSi�1. By the assumption, we have a homotopy h W X � I ! Y such
that h0 D f and h1 is an n-equivalence. According to the Homotopy Extension
Theorem 4.3.3, there is a homotopy ' W Bi � I! Y such that '0 D ˇ and 'jSi�1 �
I D h.˛ � idI/. Since h1˛ extends to the map '1 W Bi ! Y , ˛ extends to a map
N̨ W Bi ! X such that h1 N̨ ' '1 rel. Si�1.

X

h1

'
f

Y

Si�1

˛

� Bi
N̨
' '1 ' ˇ

Let  W Bi � I! Y be a homotopy such that  0 D h1 N̨ ,  1 D '1, and  t jSi�1 D
h1˛ for every t 2 I. We define a homotopy k W @.Bi � I/ � I! Y as follows:

kt .x; s/ D

8
ˆ̂
<

ˆ̂
:

'1�t .x/ if s D 1,

h1�t N̨ .x/ if s D 0,

h1�t ˛.x/ if x 2 Si�1.

Refer to Fig. 4.22. Then, is an extension of k0. Hence, we can apply the Homotopy
Extension Theorem 4.3.3 to extend k1 to a map  0 W Bi � I ! Y , which is a
homotopy from f N̨ to ˇ with  0s jSi�1 D f ˛ for every s 2 I, i.e., f N̨ ' ˇ rel. Si�1.
Therefore, f is an n-equivalence. ut

When f is the inclusion, we have the following:

Lemma 4.13.5. For the inclusion X � Y , each of the following is equivalent to
condition .�/i :

.�/0i Every map ˛ W Bi ! Y with ˛.Si�1/ � X is null-homotopic by a homotopy
' W Bi � I! Y with '.Si�1 � I/ � X , i.e., Œ.Bi ;Si�1/; .Y;X/� D f0g;15

.�/00i For a homotopy h W Si�1 � I! Y with h1.Si�1/ � X , if h0 extends to a map
ˇ W Bi ! Y , then h extends to a homotopy Nh W Bi � I! Y such that Nh0 D ˇ
and Nh1.Bi / � X .

14We use the convention that1C 1 D1.
15In terms of the homotopy groups, this means that �i .Y; X; x0/ D 0 for each x0 2 X . In
Proposition 4.14.7, we will give another proof of the equivalence between this condition and .�/i .
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h

Si�1
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�0
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Nh1

�1

�

Bi � I

Nh

�
Bi

�0

ˇ

�
Proof. .�/i ) .�/0i : From condition .�/i , we have a homotopy h W Bi � I ! Y

such that h0 D ˛, h1.Bi / � X and ht jSi�1 D ˛jSi�1 for every t 2 I. Because Bi is
contractible, we have h1 ' 0 in X . Then, the homotopy ' in .�/0i is easily defined.
.�/0i ) .�/00i : We have a homeomorphism W Bi � I! Bi � I such that

 
�
.Si�1 � I/ [ .Bi � f0g/� D Bi � f0g;
 .Si�1 � f1g/ D Si�1 � f0g and

 .Bi � f1g/ D .Si�1 � I/ [ .Bi � f1g/:
Let ˇ W Bi ! Y be an extension of h0 and define a map ˛ W Bi ! Y as follows:

˛.x/ D
(
h �1.x; 0/ if x 2  .Si�1 � I/,

ˇprBi  
�1.x; 0/ if x 2  .Bi � f0g/.

Since ˛.Si�1/ D h1.Si�1/ � X , we can apply .�/0i to obtain a homotopy ' W
Bi � I ! Y such that '0 D ˛, '.Si�1 � I/ � X , and '1 is constant. Then, Nh D
' W Bi � I! Y is the desired extension of h.
.�/00i ) .�/i : Given a map ˇ W Bi ! Y such that ˛ D ˇjSi�1 W Si�1 ! X ,

let h W Si�1 � I ! Y be the constant homotopy defined by ht D ˛ for each t 2 I.
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const.
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Fig. 4.23 The construction of Nh

Due to condition .�/00i , h extends to a homotopy Nh W Bi � I! Y such that Nh0 D ˇ

and Nh1.Bi / � X (Fig. 4.23). Then, Nh1jSi�1 D ˛ and Nh1 ' ˇ rel. Si�1 in Y . ut
Using this lemma, we can prove the following proposition:

Proposition 4.13.6. Let X be a subspace of a space Y such that the inclusionX �
Y is an n-equivalence, where n 2 ! [ f1g. Given a simplicial complex K and a
subcomplex L � K with K n L � K.n/, if a map f W jLj ! X extends to a map
f 0 W jKj ! Y , then f extends to a map f 00 W jKj ! X such that f 0 ' f 00 rel. jLj
in Y .

Proof. According to Theorem 4.3.1,

jL [K.i/j � I D j.L[K.i// �c I j for each i 2 !,

where I D fI; 0; 1g. Applying condition .�/00i in Lemma 4.13.5 simplex-wise, we
can inductively construct homotopies h.i/ W jL [K.i/j � I! Y , i 2 !, such that

h
.i/
0 D f 0jjL [K.i/j; h.i/1 .jL[K.i/j/ � X and

h.i/jjL[K.i�1/j � I D h.i�1/;
where h.�1/ W jLj � I ! Y is the constant homotopy defined by h.�1/t D f jjLj D
f 0jjLj for every t 2 I. Because jKj � I D jK �c I j, we can define a homotopy
h W jKj � I! Y by hjjL [K.i/j � I D h.i/ for each i 2 !. Hence, f 00 D h1 is the
desired map. ut

In the following proposition, we identify X with the subspace X � f1g of the
mapping cylinderMf of f W X ! Y .

Proposition 4.13.7. Let n 2 ! [ f1g. For a map f W X ! Y , the following are
equivalent:
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(a) f is an n-equivalence;
(b) The inclusion if W X �Mf is an n-equivalence16;
(c) Given a simplicial complex K and a subcomplex L � K with K n L � K.n/,

for a map g W jLj ! X , if fg extends to a map h W jKj ! Y then g extends to
a map Ng W jKj ! X such that f Ng ' h rel. jLj.

X
f

Y

jLj

g

� jKj
Ng
'

h

Proof. Since .Bi ;Si�1/ � .jF.�i/j; jF.@�i /j/, the implication (c)) (a) is trivial.
Since the collapsing cf W Mf ! Y is a homotopy equivalence and the inclusion
iY W Y � Mf is its homotopy inverse, the map iY f D iY cf if W X ! Y � Mf is
homotopic to if W X ! Mf . By virtue of Propositions 4.13.1, 4.13.3, and 4.13.4,
f D cf iY f W X ! Y is an n-equivalence if and only if if is. Thus, we have the
equivalence (a), (b). It remains to show the implication (b)) (c).

(b) ) (c): Let K be a simplicial complex and L � K be a subcomplex such
that dim  � n for every  2 K n L. Let g W jLj ! X and h W jKj ! Y be
maps such that fg D hjjLj. The homotopy hf W Mf � I ! Mf from iY cf to id
induces a homotopy ' W jLj � I ! Mf from iY cf if g D iY fg D iY hjjLj to if g,

which is defined by 't D h
f
t if g. Then, cf 't D cf h

f
t if g D cf if g D fg for

each t 2 I. According to the Homotopy Extension Theorem 4.3.3, ' extends to a
homotopy N' W jKj � I!Mf with N'0 D h, so N'1 is an extension of if g. By (b) and
Proposition 4.13.6, g extends to a map Ng W jKj ! X such that Ng ' N'1 rel. jLj in
Mf , hence f Ng D cf Ng ' cf N'1 rel. jLj in Y . On the other hand, cf N'1 ' cf N'0 D
cf h D h rel. jLj in Y because cf N't jjLj D cf 't D fg for each t 2 I. Thus, we
have f Ng ' h rel. jLj in Y . ut

For polyhedra, we have the following theorem:

Theorem 4.13.8. Let K and L be simplicial complexes and n 2 N. If dimK �
n � 1 and dimL � n, then every n-equivalence f W jKj ! jLj is a homotopy
equivalence.

Proof. According to the Simplicial Approximation Theorem 4.7.14, f has a
simplicial approximation g W K 0 ! L for some K 0 C K . Then, Mf ' jZK

g j rel.
jLj[jKj by Theorem 4.11.3, where jKj is identified with jKj�f1g inMf and jZK

g j.
Since the inclusion jKj � Mf is an n-equivalence by (b) in Proposition 4.13.7,
it follows that the inclusion jKj � jZK

g j is also an n-equivalence. Note that

16According to Lemma 4.13.5 and the previous footnote 15, this condition means that
�i .Mf ;X; x0/D 0 for each x0 2 X and i < nC 1 (where1C 1 D1).
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dimZK
g � n. We can now apply condition (c) of Proposition 4.13.7 to obtain a

map ' W jZK
g j ! jKj such that 'jjKj D id and ' ' id rel. jKj in jZK

g j, which
means that the inclusion jKj � jZK

g j is a homotopy equivalence, hence the inclusion
jKj � Mf is also a homotopy equivalence. Since the collapsing cf W Mf ! jLj is
a homotopy equivalence, the map f D cf jjKj is a homotopy equivalence. ut

In the case that n D 1, K.1/ D K in Propositions 4.13.6 and 4.13.7, so the
above argument is valid without the dimensional assumption. Thus, we have the
following theorem:

Theorem 4.13.9. For simplicial complexes K and L, every weak homotopy equiv-
alence f W jKj ! jLj is a homotopy equivalence. ut
Remark 19. It should be noted that there are connected polyhedra X and Y such
that X 6' Y but �n.X/ Š �n.Y / for every n 2 N. For example, X D S2 � RP3

and RP2 � S3 are not homotopy equivalent but they have the isomorphic homotopy
groups.17

Combining the above with Theorem 4.12.1 and Proposition 4.13.1, we have the
following corollary:

Corollary 4.13.10. Let X and Y be spaces that are homotopy dominated by
simplicial complexes. Then, every weak homotopy equivalence f W X ! Y is a
homotopy equivalence. ut

4.14 Appendix: Homotopy Groups

In this section, we review several definitions related to the homotopy groups together
with their basic results. Some of them are stated without proof. For details, refer to
any textbook on Homotopy Theory or Algebraic Topology.

For a pair of paths ˛; ˇ W I ! X with ˛.1/ D ˇ.0/, we can define the join
˛  ˇ W I! X as follows:

˛  ˇ.t/ D
(
˛.2t/ if 0 � t � 1=2,

ˇ.2t � 1/ if 1=2 � t � 1.

The inverse ˛ W I! X of a path ˛ is defined by ˛ .t/ D ˛.1� t/ for each t 2 I.
For another pair of paths ˛0, ˇ0, the following holds:

˛0 ' ˛; ˇ0 ' ˇ rel. @I ) ˛  ˇ ' ˛0  ˇ0; ˛ ' ˛0 rel. @I.

Moreover, for three paths ˛; ˇ; � W I! X with ˛.1/ D ˇ.0/ and ˇ.1/ D �.0/,

17Here, RP2 is the real projective plane and RP3 is the 3-dimensional real projective space. For
example, refer to Hatcher’s book “Algebraic Topology.”
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.˛  ˇ/  � ' ˛  .ˇ  �/ rel. @I;

˛  ˛ ' c˛.0/; ˛  ˛ ' c˛.1/ rel. @I,

where cx W I! X is the constant path with cx.I/ D fxg. A path ˛ W I! X is called
a loop (at x) if ˛.0/ D ˛.1/ (D x).

For each pointed space .X; x0/, we denote˝.X; x0/ D C..I; @I/; .X; x0//, which
is the set of all loops in X (at x0). The space ˝.X; x0/ admitting the compact-open
topology is called the loop space. The base point of ˝.X; x0/ is the constant map
cx0 W I ! fx0g � X , denoted by 0. Each pointed map f W .X; x0/ ! .Y; y0/

induces the pointed map f� W ˝.X; x0/ ! ˝.Y; y0/ defined by f�.˛/ D f ˛

(cf. 1.1.3 (1)). Now, we can define the fundamental group �1.X; x0/ or the first
homotopy group of X at x0 (or .X; x0/) as follows:

�1.X; x0/ D Œ.I; @I/; .X; x0/� D ˝.X; x0/='
with the operation Œ˛�Œˇ� D Œ˛  ˇ� and the inverse Œ˛��1 D Œ˛ �, where Œ˛� is the
equivalence class of ˛ 2 ˝.X; x0/ with respect to '.18 In general, �1.X; x0/ is not
commutative (i.e., non-Abelian). By the way, we have �1.X; x0/ D �0.˝.X; x0//

by Proposition 1.1.2.
For each n > 1 and each ˛; ˇ 2 C..In; @In/; .X; x0//, we define ˛  ˇ and

˛ 2 C..In; @In/; .X; x0// as follows:

˛  ˇ.t1; : : : ; tn/ D
(
˛.2t1; t2; : : : ; tn/ if 0 � t1 � 1=2,

ˇ.2t1 � 1; t2; : : : ; tn/ if 1=2 � t1 � 1;

˛ .t1; : : : ; tn/ D ˛.1 � t1; t2; : : : ; tn/:
Then, for each ˛; ˛0; ˇ; ˇ0; � 2 C..In; @In/; .X; x0//,

˛ ' ˛0; ˇ ' ˇ0 ) ˛  ˇ ' ˛0  ˇ0; ˛ ' ˛0 I
.˛  ˇ/  � ' ˛  .ˇ  �/ I ˛  ˛ ' ˛  ˛ ' 0:19

Furthermore, we can see that ˛  ˇ ' ˇ  ˛. Thus, we have the additive group

�n.X; x0/ D Œ.In; @In/; .X; x0/� D C..In; @In/; .X; x0//=';
with the operation of addition Œ˛�C Œˇ� D Œ˛  ˇ� and the inverse �Œ˛� D Œ˛ � of
Œ˛�. The group�n.X; x0/ is called the n-th homotopy group ofX at x0 (or .X; x0/).

Every pointed map f W .X; x0/ ! .Y; y0/ induces the homomorphisms f] W
�n.X; x0/! �n.Y; y0/, n 2 N, defined by f]Œ˛� D Œf ˛�. For another pointed map

18For loops ˛; ˇ 2 ˝.X; x0/, ˛ ' ˇ means ˛ ' ˇ rel. @I.
19For ˛; ˇ 2 C..In; @In/; .X; x0//, ˛ ' ˇ means ˛ ' ˇ rel. @In .
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f 0 W .X; x0/ ! .Y; y0/, f 0] D f] if f 0 ' f .20 For each pair of pointed maps
f W .X; x0/ ! .Y; y0/ and g W .Y; y0/ ! .Z; z0/, we have .gf /] D g]f] and
.idX/] D id�n.X;x0/. If f W .X; x0/ ! .Y; y0/ is a pointed homotopy equivalence
(i.e., there is a pointed map g W .Y; y0/ ! .X; x0/ such that gf ' idX rel. x0 and
fg ' idY rel. y0) then f] is an isomorphism (with .f]/�1 D g]).

For a pointed space .X; x0/, �0.X; x0/ is defined as the pointed set �0.X/ whose
base point is the path-component of X containing x0. Then, a pointed map f W
.X; x0/! .Y; y0/ induces the pointed function f] W �0.X; x0/! �0.Y; y0/.

Suppose that x0; x1 2 X are contained in the same path-component of X .
Then, we have a path ! W I ! X from x0 to x1. For each n 2 N and each
˛ 2 C..In; @In/; .X; x1//, we define ˛! 2 C..In; @In/; .X; x0// as follows:

˛!.z/ D
(
˛.2z � 1

2
1/ if k2z � 1k1 � 1

2
,

!.2 � 2k2z� 1k1/ if k2z � 1k1 � 1
2
.

where kzk1 D maxfjz.i/j j i D 1; : : : ; ng and 1 D .1; : : : ; 1/ 2 R
n. Then, !

induces the isomorphism !� W �n.X; x1/ ! �n.X; x0/ defined by !�Œ˛� D Œ˛!�,
where .!�/�1 D ! � . For a path !0 W I ! X with !0.0/ D x0 and !0.1/ D x1,
if ! ' !0 rel. @I then !� D !0�. If !00 W I ! X is another path with !00.0/ D x1
and !00.1/ D x2 then .!  !00/� D !�!00� W �n.X; x2/ ! �n.X; x0/. When X is
path-connected, �n.X; x0/ Š �n.X; x1/ for any pair of points x0; x1 2 X .

Let h W X � I ! Y be a homotopy with h0 D f and h1 D f 0. For each
x0 2 X , the homotopy h gives a path ! W I ! Y defined by !.t/ D h.x0; t/.
For each ˛ 2 C..In; @In/; .X; x0//, h.˛ � id/ is a homotopy from f ˛ to f 0˛ and
h.˛.@In/ � ftg/ D f!.t/g. Then, it can be seen that f ˛ ' .f 0˛/! rel. @In. Thus, it
follows that f] D !�f 0] , that is, the following diagram commutes:

�n.Y; f
0.x0//

!
��n.X; x0/

f 0

]

f] �n.Y; f .x0//:

Using this fact, we can show that every homotopy equivalence f W X ! Y induces
the isomorphisms f] W �n.X; x0/ ! �n.Y; f .x0//, n 2 N, x0 2 X . In fact, let
g W Y ! X be a homotopy inverse of f , that is, gf ' idX and fg ' idY .
A homotopy from gf to id gives a path ! W I ! X from gf .x0/ to x0 and a
homotopy from fg to idY gives a path !0 W I ! Y from fgf .x0/ to f .x0/. For
each x0 2 X and n 2 N, we have the following commutative diagram:

20For pointed maps f; f 0 2 C..X; x0/; .Y; y0//, f 0 ' f means f 0 ' f rel. x0.
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�n.X; x0/
!

�

f]

�n.X; gf .x0//

f]

�n.Y; f .x0//

g]

!0

�

�n.Y; fgf .x0//;

where it should be noted that the left and the right f] in the diagram are different
from each other. Since g]f] D !� and f]g] D !0� are isomorphisms, g] is
also an isomorphism. Then, it follows that f] W �n.X; x0/ ! �n.Y; f .x0// is an
isomorphism.

For each n � 2, we define

Jn�1 D .@In�1 � I/[ .In�1 � f1g/:
Identifying In�1 D In�1 � f0g � In, we have

In�1 [ Jn�1 D @In and In�1 \ Jn�1 D @In�1:

For a space X with x0 2 A � X , the relative n-th homotopy group of .X;A/ at
x0 is defined as the group

�n.X;A; x0/ D Œ.In; @In; Jn�1/; .X;A; x0/�

with the operations defined by the analogy of �n.X; x0/. In general, the group
�2.X;A; x0/ is non-commutative, so we describe it as a multiplicative group like the
fundamental group. On the other hand, for n � 3, �n.X;A; x0/ is represented as the
additive group because it is commutative. It should be noted that �n.X; fx0g; x0/ D
�n.X; x0/. We also define

�1.X;A; x0/ D C..I; @I; 0/; .X;A; x0//=';
which is regarded as the pointed set whose base point is the homotopy class Œcx0 �.
As in the case with pointed spaces, every map f W .X;A; x0/! .Y; B; y0/ induces
the homomorphisms f] W �n.X;A; x0/ ! �n.Y;B; y0/, n � 2, and the pointed
function f] W �1.X;A; x0/! �1.Y;B; y0/.

For each n � 2, let @ W �n.X;A; x0/ ! �n�1.A; x0/ be the homomorphism in-
duced by the restriction operator, i.e., @Œ˛� D Œ˛jIn�1�, which is called the boundary
operator. In addition, we define the pointed function @ W �1.X;A; x0/! �0.A; x0/

as follows: @Œ˛� is the path-component of ˛.1/ for each ˛ 2 C..I; @I; 0/; .X;A; x0//.
Then, the following diagram commutes:



236 4 Simplicial Complexes and Polyhedra

�n.A; x0/
i]

.f jA/]

�n.X; x0/
j]

f]

�n.X;A; x0/
@

f]

�n�1.A; x0/

.f jA/]

�n.B; y0/
i]

�n.Y; y0/
j]

�n.Y; B; y0/
@

�n�1.B; y0/;

where the i] are the homomorphisms induced by the inclusions i W .A; x0/ � .X; x0/
and i W .B; y0/ � .Y; y0/ and the j] are the ones induced by the inclusions j W
.X; fx0g; x0/ � .X;A; x0/ and j W .Y; fy0g; y0/ � .Y; B; y0/. Moreover, im i] D
ker j], im j] D ker @ and im @ D ker i]. Namely, the following sequence is exact:

� � � @

�n.A; x0/
i]

�n.X; x0/
j]

�n.X;A; x0/
@

�n�1.A; x0/
i]

� � � @

�1.A; x0/
i]

�1.X; x0/

j]

�1.X;A; x0/
@

�0.A; x0/
i]

�0.X; x0/:

This sequence is called the homotopy exact sequence of .X;A; x0/.
Let ! W I! A be a path from x0 to x1 and

˛ 2 C..In; @In; Jn�1/; .X;A; x1//:

We now define ˛! somewhat differently from the case of pointed spaces, that is,

˛!.z/ D
(
˛.2z.1/� 1

2
; : : : ; 2z.n� 1/� 1

2
; 2z.n// if kz0k1 � 1

2
,

!.2 � 2kz0k1/ if kz0k1 � 1
2
,

where z0 D .2z.1/� 1; : : : ; 2z.n � 1/� 1; z.n//:
Now, similar to the case of pointed spaces, we can define the isomorphism !� W
�n.X;A; x1/ ! �n.X;A; x0/ by !�Œ˛� D Œ˛!�. Then, the following diagram
commutes:

�n.A; x1/
i]

!
�

�n.X; x1/
j]

!
�

�n.X;A; x1/
@

!
�

�n�1.A; x1/

!
�

�n.A; x0/
i]

�n.X; x0/
j]

�n.X;A; x0/
@

�n�1.A; y0/:
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Thus, if A is path-connected then �n.X;A; x0/ Š �n.X;A; x1/ for any pair of
points x0; x1 2 A. In this case, it is acceptable to denote �n.X;A/ without the base
point x0.

The proof of the following proposition is quite elementary:

Proposition 4.14.1. For pointed spaces .X1; x1/; : : : ; .Xk; xk/ and n 2 N,

�n.X1 � � � � �Xk; .x1; : : : ; xk// Š �n.X1; x1/ � � � � � �n.Xk; xk/:
Proof. We have the following isomorphism

' W �n.X1 � � � � �Xk; .x1; : : : ; xk//! �n.X1; x1/ � � � � � �n.Xk; xk/I
'Œ˛� D ..pr1/]Œ˛�; : : : ; .prk/]Œ˛�/ D .Œpr1˛�; : : : ; Œprk˛�/:

Indeed, for each set of maps ˛i W .In; @In/ ! .Xi ; xi /, i D 1; : : : ; k, we have
the map

˛ W .In; @In/! .X1 � � � � �Xk; .x1; : : : ; xk//
defined by ˛.x/ D .˛1.x/; : : : ; ˛k.x//. Then, '.Œ˛�/ D .Œ˛1�; : : : ; Œ˛k�/. Hence, '
is an epimorphism. If every ˛1, . . . , ˛k are null-homotopic, then the map ˛ is null-
homotopic, which means that ' is a monomorphism. ut

For additive groups G1; : : : ; Gk , the direct product G1 � � � � � Gk is regarded as
the direct sum G1 ˚ � � � ˚Gk . Thus, when n � 2 in Theorem 4.14.1,

�n.X1 � � � � �Xk; .x1; : : : ; xk// Š �n.X1; x1/˚ � � � ˚ �n.Xk; xk/:
Proposition 4.14.2. For every pair of pointed spaces .X; x0/ and .Y; y0/, there
exists a natural bijection

' W C..X � I;HX/; .Y; y0//! C..X; x0/; .˝.Y; y0/; cy0 //;

whereHX D .X � @I/[ .fx0g � I/. Here, ' is natural in the following sense: given
pointed maps f W .X 0; x00/ ! .X; x0/ and g W .Y; y0/ ! .Y 0; y00/, the diagrams
below are commutative:

C..X 0 � I;HX 0/; .Y; y0//
'

C..X 0; x00/; .˝.Y; y0/; cy0//

C..X � I;HX/; .Y; y0//
'

.f �id/�

g
�

C..X; x0/; .˝.Y; y0/; cy0//

f �

.g
�

/
�

C..X � I;HX/; .Y
0; y00//

'
C..X; x0/; .˝.Y 0; y00/; cy0

0
//:
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Proof. We define the functions

' W C..X � I;HX/; .Y; y0// 3 k 7! '.k/ 2 C..X; x0/; .˝.Y; y0/; cy0 //;

 W C..X; x0/; .˝.Y; y0/; cy0 // 3 k 7!  .k/ 2 C..X � I;HX/; .Y; y0//

by '.k/.x/.s/ D k.x; s/ and  .k/.x; s/ D k.x/.s/, respectively. It is easy to see
that  ' D id and ' D id. Then, ' is a bijection with '�1 D  .

To show the commutativity of the diagram, let k 2 C..X � I;HX/; .Y; y0//. For
each x0 2 X 0 and s 2 I,

'..f � id/�.k//.x0/.s/ D '.k.f � id//.x0/.s/ D k.f � id/.x0; s/

D k.f .x0/; s/ D '.k/.f .x0//.s/ D f �.'.k//.x0/.s/:
Hence, '..f � id/�.k// D f �.'.k//. On the other hand, for each x 2 X and s 2 I,

'.g�.k//.x/.s/ D '.gk/.x/.s/ D gk.x; s/ D g.'.k/.x/.s//
D g�.'.k/.x//.s/ D .g�/�.'.k//.x/.s/:

Hence, '.g�.k// D .g�/�.'.k//. ut
In the above situation, given a homotopy h W X � I� I! Y such that ht .HX/ D

fy0g for every t 2 I, we have the homotopy '.h/ W X � I ! ˝.Y; y0/ defined by
'.h/t D '.ht /, that is, '.h/.x; t/.s/ D '.ht /.x/.s/ D ht .x; s/ D h.x; s; t/. Then,
' induces the function

˚ W Œ.X � I;HX/; .Y; y0/�! Œ.X; x0/; .˝.Y; y0/; cy0 /�:

Given a homotopy h W X � I ! ˝.Y; y0/ such that ht .x0/ D cy0 for every
t 2 I, we have the homotopy  .h/ W X � I � I ! Y defined by  .h/t D  .ht /,
that is,  .h/.x; s; t/ D  .ht /.x; s/ D ht .x/.s/ D h.x; t/.s/. Then,  induces the
function

� W Œ.X; x0/; .˝.Y; y0/; cy0 /�! Œ.X � I;HX/; .Y; y0/�:

Furthermore, given a homotopy h W X � I� I! Y such that ht .HX/ D fy0g for
every t 2 I,  .'.h//t D  .'.ht // D ht . Similarly, given a homotopy h W X � I!
˝.Y; y0/ such that ht .x0/ D cy0 for every t 2 I, '. .h//t D '. .ht // D ht . Then,
it follows that ˚ is a bijection with ˚�1 D � . Thus, we have the following:

Proposition 4.14.3. For every two pointed spaces .X; x0/ and .Y; y0/, there exists
a natural bijection

˚ W Œ.X � I;HX/; .Y; y0/�! Œ.X; x0/; .˝.Y; y0/; cy0/�;

where HX D .X � @I/ [ .fx0g � I/. Here, ˚ is natural in a similar sense to
Proposition 4.14.2. ut
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In the above situation, replace .X; x0/ and .Y; y0/ with .In; @In/ and .X; x0/,
respectively. Since .X � I;HX/ corresponds to .InC1; @InC1/, we have a bijection

˚ W Œ.InC1; @InC1/; .X; x0/�! Œ.In; @In/; .˝.X; x0/; cx0/�;

that is, ˚ W �nC1.X; x0/ ! �n.˝.X; x0/; cx0/. As can be easily seen, '.˛  ˛0/ D
'.˛/  '.˛0/ and '.˛ / D '.˛/ for each ˛; ˛0 2 C..InC1; @InC1/; .X; x0//.
Hence, ˚ W �nC1.X; x0/ ! �n.˝.X; x0/; cx0/ is an isomorphism. Thus, we have
the following theorem:

Theorem 4.14.4. For every pointed space .X; x0/ and n 2 N,

�n.˝.X; x0/; cx0/ Š �nC1.X; x0/: ut
Note. Recall that the loop space˝.X; x0/ has the operations ˛  ˇ and ˛ , which
induce the operations of the fundamental group�1.X; x0/. Using these operations of
˝.X; x0/, we can define the operations˛ Oˇ and ˛Oon C..In; @In/; .˝.X; x0/; cx0 //
as follows:

.˛ Oˇ/.z/ D ˛.z/  ˇ.z/ and ˛O.z/ D ˛.z/ for each z 2 In.

The operations of the homotopy group �n.˝.X; x0/; cx0/ are also induced by
the above operations. In fact, we can define the operations ˛ ˇ and ˛ on
C..InC1; @InC1/; .X; x0// as follows:

˛ ˇ.t1; : : : ; tnC1/ D
(
˛.t1; : : : ; tn; 2tnC1/ if 0 � tnC1 � 1=2,

ˇ.t1; : : : ; tn; 2tnC1 � 1/ if 1=2 � tnC1 � 1,

˛ .t1; : : : ; tnC1/ D ˛.t1; : : : ; tn; 1 � tnC1/;
which induce the operations of the homotopy group�n.˝.X; x0/; cx0/, i.e., ˛ ˇ '
˛  ˇ and ˛ ' ˛ . Let  (D '�1) be the natural bijection in the proof of
Proposition 4.14.2. For each ˛; ˇ 2 C..In; @In/; .˝.X; x0/; cx0//,

 .˛ Oˇ/ D  .˛/ .ˇ/ '  .˛/   .ˇ/ D  .˛  ˇ/ and

 .˛O/ D  .˛/ '  .˛/ D  .˛ /;
hence ˛ Oˇ ' ˛  ˇ and ˛O ' ˛ .

Inductively, we can define ˝n.X; x0/ D ˝.˝n.X; x0/; 0/. Then, we have

�n.X; x0/ D �0.˝n.X; x0/; 0/ D �1.˝n�1.X; x0/; 0/:

Let e1 D .1; 0; : : : ; 0/ 2 R
nC1. For each n 2 N,

.In=@In; @In=@In/ � .Sn; e1/ and

.InC1=Jn; @InC1=Jn; Jn=Jn/ � .BnC1;Sn; e1/:
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Then, C..In; @In/; .X; x0// and C..In; @In; Jn�1/; .X;A; x0// can be identified with
C..Sn; e1/; .X; x0// and C..Bn;Sn�1; e1/; .X;A; x0//, respectively. In particular,
C..S1; e1/; .X; x0// can be regarded as the loop space˝.X; x0/. Thus, we can make
the following identifications:

�n.X; x0/ D Œ.Sn; e1/; .X; x0/� and

�nC1.X;A; x0/ D Œ.BnC1;Sn; e1/; .X;A; x0/�:
In this case, the boundary operator @ W �nC1.X;A; x0/ ! �n.A; x0/ is defined by
@Œ˛� D Œ˛jSn�1�.

When X (resp. A � X ) is path-connected, as observed before, it is ac-
ceptable to denote �n.X/ (resp. �n.X;A/) without a base point. However, this
does not mean that �n.X/ (resp. �n.X;A/) can be identified with ŒSn; X� (resp.
Œ.Bn;Sn�1/; .X;A/�). It is said that X is simply connected if it is path-connected
and �1.X; x0/ D f0g for any/some x0 2 X . The latter condition is equivalent to
the condition that every map ˛ W S1 ! X is null-homotopic or ˛ extends over B2.
When X (resp. A) is simply connected, �n.X/ (resp. �n.X;A/) can be identified
with ŒSn; X� (resp. Œ.Bn;Sn�1/; .X;A/�). In fact, we have the following proposition:

Proposition 4.14.5. (1) If X is simply connected, for any x0 2 X and n � 2, the
inclusion

i W C..Sn; e1/; .X; x0// � C.Sn; X/

induces a bijection from �n.X; x0/ onto ŒSn; X�.
(2) If A � X is simply connected, for any x0 2 A and n � 2, the inclusion

i W C..Bn;Sn�1; e1/; .X;A; x0// � C..Bn;Sn�1/; .X;A//

induces a bijection from �n.X;A; x0/ onto Œ.Bn;Sn�1/; .X;A/�.

Proof. (1): For each ˛ 2 C.Sn; X/, take a path ! W I ! X from ˛.e1/ to x0.
Applying the Homotopy Extension Theorem 4.3.3, we can obtain a homotopy h W
Sn � I ! X such that h0 D ˛ and h.e1; t/ D !.t/ for each t 2 I. Thus, ˛
is homotopic to the map h1 2 C..Sn; e1/; .X; x0//. This means that i induces the
surjection.

Let ˛; ˇ 2 C..Sn; e1/; .X; x0// and assume that there is a homotopy h W Sn� I!
X from ˛ to ˇ. Since X is simply connected, we have a map k W I2 ! X such that
k.t; 0/ D h.e1; t/ and k.0; t/ D k.1; t/ D k.t; 1/ D x0 for each t 2 I. Applying the
Homotopy Extension Theorem 4.3.3, we have a homotopy Q' W Sn � I � I! X that
is an extension of the homotopy

' W ..Sn � f0; 1g/[ .fe1g � I// � I! X

defined by 't.x; 0/ D h.x; 0/ D ˛.x/ and 't.x; 1/ D h.x; 1/ D ˇ.x/ for each
x 2 Sn, and 't.e1; s/ D k.s; t/ for each s 2 I. Then, Q'1 W Sn�I! X is a homotopy
from ˛ to ˇ with Q'1.e1; t/ D x0 for every t 2 I. This means that i induces the
injection.
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(2): For each ˛ 2 C..Bn;Sn�1/; .X;A//, take a path ! W I! A from ˛.e1/ to x0.
Applying the Homotopy Extension Theorem 4.3.3 twice, we can obtain a homotopy
h W Bn � I ! X such that h0 D ˛, h.Sn�1 � I/ � A and h.e1; t/ D !.t/ for each
t 2 I. Thus, ˛ is homotopic to the map h1 2 C..Bn;Sn�1; e1/; .X;A; x0//. This
means that i induces the surjection.

Let ˛; ˇ 2 C..Bn;Sn�1; e1/; .X;A; x0// and assume that there is a homotopy
h W Bn�I! X from ˛ to ˇ such that h.Sn�1�I/ � A. SinceA is simply connected,
we have a map k W I2 ! A such that k.t; 0/ D h.e1; t/ and k.0; t/ D k.1; t/ D
k.t; 1/ D x0 for each t 2 I. Applying the Homotopy Extension Theorem 4.3.3
twice, we have a homotopy Q' W Bn � I � I! X such that Q'.Sn�1 � I � I/ � A and
Q' is an extension of the homotopy

' W ..Bn � f0; 1g/[ .fe1g � I// � I! X

defined by 't.x; 0/ D h.x; 0/ D ˛.x/ and 't.x; 1/ D h.x; 1/ D ˇ.x/ for each
x 2 Bn, and 't .e1; s/ D k.s; t/ for each s 2 I. Then, Q'1 W Bn � I ! X is a
homotopy from ˛ to ˇ with Q'1.e1; t/ D x0 for every t 2 I. This means that i
induces the injection. ut

If X is not simply connected, for two maps ˛; ˛0 W Sn ! X with ˛.e1/ D ˛0.e1/,
˛ ' ˛0 does not imply ˛ ' ˛0 rel. e1. However, we have the following proposition:

Proposition 4.14.6. For a map ˛ W Sn ! X , the following are equivalent:

(a) ˛ extends over BnC1;
(b) ˛ is null-homotopic, i.e., Œ˛� D 0 2 ŒSn; X�;
(c) ˛ ' c˛.e1/ rel. e1, i.e., Œ˛� D 0 2 �n.X; ˛.e1//.
Proof. The implication (c)) (b) is obvious. For (b)) (a), let h W Sn � I! X be
a homotopy from ˛ to a constant map. Then, ˛ extends to the map ˇ W BnC1 ! X

defined by

ˇ.x/ D
(
h.kxk�1x; 1 � kxk/ if x 6D 0,

h1.e1/ if x D 0.

For (a)) (c), using an extension ˇ W BnC1 ! X of ˛, we can define the homotopy
h W Sn � I! X by h.x; t/ D ˇ..1� t/x C te1/, which realizes ˛ ' 0 rel. e1. ut

Even if A � X is not simply connected, we have the following:

Proposition 4.14.7. For a map ˛ W .BnC1;Sn/ ! .X;A/, the following are
equivalent:

(a) There is a map ˇ W BnC1 ! A such that ˇjSn D ˛jSn and ˛ ' ˇ rel. Sn;
(b) ˛ ' 0 by a homotopy h W BnC1 � I ! X such that h.Sn � I/ � A, i.e.,

Œ˛� D 0 2 Œ.BnC1;Sn/; .X;A/�;
(c) ˛ ' 0 by a homotopy h W BnC1 � I ! X such that h.Sn � I/ � A and

h.fe1g � I/ D f˛.e1/g, i.e., Œ˛� D 0 2 �nC1.X;A; ˛.e1//.
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Proof. The implications (c) ) (b) ) (a) are trivial. Given the homotopy in
condition (a), we can connect it with a similar homotopy to that in the proof of
(a)) (c) in Proposition 4.14.6 to obtain the homotopy in (c). ut

Concerning the homomorphism induced by a map, we can state that:

Proposition 4.14.8. For a map f W X ! Y , the following are equivalent:

(a) f] W �n.X; x0/! �n.Y; f .x0// is a monomorphism for every x0 2 X ;
(b) For each map ˛ W Sn ! X , f ˛ ' 0 rel. e1 implies ˛ ' 0 rel. e1;
(c) Any map ˛ W Sn ! X is null-homotopic if f ˛ ' 0;
(d) Any map ˛ W Sn ! X extends over BnC1 if f ˛ extends over BnC1.

Proof. Identifying .In=@In; @In=@In/ D .Sn; e1/, we can easily obtain the equiva-
lence (a), (b). By Proposition 4.14.6, conditions (b), (c), and (d) are equivalent to
each other. ut

The following result can be obtained in the same way as (a) , (b) in
Proposition 4.14.8:

Proposition 4.14.9. For a map f W X ! Y , the following are equivalent:

(a) f] W �n.X; x0/! �n.Y; f .x0// is an epimorphism for every x0 2 X ;
(b) For each map ˇ W Sn ! Y , there is a map ˛ W Sn ! X such that f ˛.e1/ D

ˇ.e1/ and f ˛ ' ˇ rel. e1. ut
The following proposition can be obtained by the homotopy exact sequence:

Proposition 4.14.10. For a pair .X;A/ of spaces, let i W A � X be the inclusion
map. For each n 2 N and x0 2 A, the following hold:

(1) i] W �n.A; x0/! �n.X; x0/ is a monomorphism if �nC1.X;A; x0/ D f0g;
(2) i] W �n.A; x0/! �n.X; x0/ is an epimorphism if �n.X;A; x0/ D f0g;
(3) i] W �n.A; x0/ ! �n.X; x0/ is an isomorphism if �nC1.X;A; x0/ D f0g and

�n.X;A; x0/ D f0g;
(4) �nC1.X;A; x0/ D f0g if i] W �n.A; x0/ ! �n.X; x0/ is a monomorphism and

i] W �nC1.A; x0/! �nC1.X; x0/ is an epimorphism.

Direct Proof. First of all, note that (3) is a combination of (1) and (2).

(1): Let ˛ W Sn ! A be a map such that ˛ ' 0 inX . According to Proposition 4.14.6, ˛
extends to a map ˇ W BnC1 ! X . Then, Œˇ� 2 �nC1.X; A/ D f0g, so there is a homotopy
h W BnC1 � I ! X such that h.Sn � I/ � A, h0 D ˇ, and h1 is a constant map. Hence,
˛ ' 0 in A by the restriction hjSn � I. Thus, i] is a monomorphism.

(2): Each map ˛ W .In; @In/! .X; x0/ can be regarded as

˛ 2 C..In; @In; Jn�1/; .X; A; x0//;

and then Œ˛� 2 �n.X;A; x0/ D f0g. Hence, there is a homotopy h W In � I! X such that
h.@In � I/ � A, h.Jn�1 � I/ D fx0g, h0 D ˛, and h1.In/ D fx0g. We define ˛0 W In! A

as follows:
˛0.z/ D h..z.1/; : : : ; z.n� 1/; 0/; z.n// for each z 2 In.

Then, ˛0.@In/ D fx0g, that is, ˛0 W .In; @In/ ! .A; x0/. It is easy to see that ˛0 ' ˛ rel.
@In in X . Therefore, i] is an epimorphism.
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(4): Let ˛ 2 C..InC1; @InC1; Jn/; .X; A; x0//. Note that ˛ itself is a homotopy realizing
˛jIn ' 0 rel. @In in X . Since i] W �n.A; x0/ ! �n.X; x0/ is a monomorphism, it follows
that ˛jIn ' 0 rel. @In in A. By the Homotopy Extension Theorem 4.3.3, we have a
homotopy h W InC1 � I ! X such that h0 D ˛, h.In � I/ � A, and h.Jn � I/ D fx0g.
Then, h1 2 C..InC1; @InC1/; .X; x0//. Since i] W �nC1.A; x0/ ! �nC1.X; x0/ is an
epimorphism, we have ˛0 2 C..InC1; @InC1/; .A; x0// such that ˛0 ' h1 rel. @InC1 in
X . Now, we define a homotopy k W InC1 � I! X as follows:

k.z; t /D
(
˛0.z.1/; : : : ; z.n/; z.nC 1/C t / if z.nC 1/C t � 1,

x0 otherwise.

Then, k0 D ˛0, k1 D cx0 , k.I
n � I/ D ˛0.InC1/ � A, and k.Jn � I/ D fx0g. Thus, we

have Œ˛� D Œh1� D Œ˛0� D 0 2 �nC1.X; A; x0/. ut
Now, in the framework of the homotopy groups, we will give a characterization

of n-equivalences. The condition .�/i can be divided into two conditions as follows:

Lemma 4.14.11. Let i 2 N. For a map f W X ! Y , condition .�/i is equivalent
to the combination of the following two conditions:

.�mono
i�1 / f] W �i�1.X; x0/! �i�1.Y; f .x0// is a monomorphism for every x0 2 X ;

.�
epi
i / f] W �i .X; x0/! �i .Y; f .x0// is an epimorphism for every x0 2 X .

Proof. .�/i ) .�mono
i�1 /C.�epi

i /: The case i D 1 is Proposition 4.13.2. When i > 1,
since .�/i implies (d) of Proposition 4.14.8, we have .�mono

i�1 /.
To see .�epi

i /, let x0 2 X and ˇ W Si ! Y be a map with ˇ.e1/ D f .x0/.
Identifying .Bi =@Bi ; @Bi =@Bi / D .Si ; e1/, let q W .Bi ;Si�1/ ! .Si ; e1/ be the
quotient map. We can apply .�/i to obtain a map N̨ W Bi ! X such that N̨ .Si�1/ D
fx0g and f N̨ ' ˇq rel. Si�1 in Y . Since N̨ .Si�1/ D fx0g is a singleton, the map N̨
induces a map Q̌ W Si ! X such that N̨ D Q̌q. Then, Q̌.e1/ D x0 and f Q̌ ' ˇ rel.
e1 in Y because f Q̌q D f N̨ ' ˇq rel. Si�1.
.�mono

i�1 / C .�epi
i / ) .�/i : Let ˛ W Si�1 ! X and ˇ W Bi ! Y be maps such

that f ˛ D ˇjSi�1. Due to Proposition 4.14.8, .�mono
i�1 / implies that ˛ extends to a

map ˛0 W Bi ! X . Let � W Si ! Y be the map defined by � jSiC D f ˛0prRi jSiC and
� jSi� D ˇprRi jSi�, where

SiC D Si \ .Ri � Œ0;1// and Si� D Si \ .Ri � .�1; 0�/:

Replacing e1 with eiC1 D .0; : : : ; 0; 1/ 2 R
iC1, we can apply .�epi

i / to obtain a
map � 0 W Si ! X such that � 0.eiC1/ D ˛0.0/ and f � 0 ' � rel. eiC1. Similarly, let
q W Bi ! Si be the quotient map with q.Si�1/ D feiC1g, where we can assume that
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pr
Ri q.x/ D 2x if kxk � 1=2 and pr

Ri q.x/ D .2 � 2kxk/kxk�1x if kxk � 1=2.
Then, we can define a map N̨ W Bi ! X as follows:

N̨ .x/ D
(
� 0q.2x/ if kxk � 1=2,

˛0..2kxk � 1/kxk�1x/ if kxk � 1=2.

Since f � 0 ' � rel. eiC1, it follows that f N̨ ' ˇ0 rel. Si�1, where ˇ0 W Bi ! Y is
defined as follows:

ˇ0.x/ D
(
�q.2x/ if kxk � 1=2,

f ˛0..2kxk � 1/kxk�1x/ if kxk � 1=2.

Observe that

�q.2x/ D ˇpr
Ri q.2x/ D ˇ.4x/ if kxk � 1=4, and

�q.2x/ D f ˛0pr
Ri q.2x/ D f ˛0..2 � 4kxk/kxk�1x/ if 1=4 � kxk � 1=2.

Now, it is easy to see that ˇ0 ' ˇ00 rel. Si�1, where ˇ00 W Bi ! Y is defined by

ˇ00.x/ D
(
ˇ.4x/ if kxk � 1=4,

f ˛0.kxk�1x/ D f ˛.kxk�1x/ if kxk � 1=4.

Then, it follows that ˇ00 ' ˇ rel. Si�1. Thus, we have f N̨ ' ˇ rel. Si�1. ut
The above Lemma 4.14.11 yields the following characterization of

n-equivalences:

Theorem 4.14.12. Let n 2 N [ f1g. A map f W X ! Y is an n-equivalence if
and only if f induces the bijection f] W �0.X/! �0.Y / and, for every x0 2 X , f] W
�i .X; x0/! �i .Y; f .x0// is an isomorphism for every i < n and f] W �n.X; x0/!
�n.Y; f .x0// is an epimorphism (if n <1).21 ut

Since every homotopy equivalence f W X ! Y induces the isomorphisms f] W
�n.X; x0/ ! �n.Y; f .x0//, n 2 N, x0 2 X , it is a weak homotopy equivalence by
Theorem 4.14.12. Thus, Proposition 4.13.1 is a corollary of Theorem 4.14.12.

In the case that f is the inclusion, by combining Theorem 4.14.12 and Proposi-
tion 4.14.10, we have the following characterization:

Corollary 4.14.13. For each n 2 N, the inclusion X � Y is an n-equivalence
if and only if each path-component of Y contains exactly one path-component ofX ,
�i .Y;X; x0/ D f0g for each i � n and x0 2 X . ut

21 This is the definition of an n-equivalence in Homotopy Theory. However, the literature is not
consistent on the use of the term “n-equivalence” (some texts require that f] W �n.X; x0/ !
�n.Y; f .x0// is an isomorphism).
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For a 1-equivalence f W X ! Y , conditions .�mono
i / and .�epi

i / can be modified
to the conditions without base points in the next two propositions.

Proposition 4.14.14. For a 1-equivalence f W X ! Y , condition .�mono
i / is

equivalent to the following condition:

.�mono
i /0 f induces the injection from ŒSi ; X� to ŒSi ; Y �, that is, any two maps ˛; ˛0 W

Si ! X are homotopic if f ˛ ' f ˛0 in Y .

Proof. When ˛0 is a constant map, .�mono
i /0 is equal to condition (c) of Proposi-

tion 4.14.8, so we have the implication .�mono
i /0) .�mono

i /.
.�mono

i / ) .�mono
i /0: For maps ˛; ˛0 W Si ! X , assume that f ˛ ' f ˛0 in Y .

Let h W Si � I ! Y be a homotopy from f ˛0 to f ˛. Since f is a 1-equivalence,
there is a path � W I ! X from ˛0.e1/ to ˛.e1/ such that f � ' hj rel. @I, where
j W I ! fe1g � I � Si � I is the natural injection. We have a map r W Si ! Si

such that r ' id rel. e1 and r.Si \ pr�11 .RC// D fe1g, where pr1 W RiC1 ! R is the
projection onto the first factor. We define maps ˛00 W Si ! X and ˇ W Si ! Y as
follows:

˛00.x/ D
(
˛0r.x/ if x.1/ � 0,

�.x.1// if t � 1,
and ˇ.x/ D

(
f ˛0r.x/ if x.1/ � 0,

hj.x.1// if t � 1.

Then, ˛00 ' ˛0r ' ˛0 and ˛00.e1/ D ˛.e1/. Since f � ' hj rel. @I, it follows that
f ˛00 ' ˇ rel. e1. On the other hand, we have a map ' W Si � I ! Si � I such that
' ' id rel. Si � f1g, '.fe1g � I/ D f.e1; 1/g,

'.x; 0/ D
(
j.x.1// if x.1/ � 0,

'.x; 0/ D r.x/ if x.1/ � 0.

Then, h' is a homotopy from ˇ to f ˛ with h'.fe1g � I/ D fˇ.e1/g, which means
that ˇ ' f ˛ rel. e1. Hence, f ˛00 ' f ˛ rel. e1. It follows from .�mono

i / that ˛00 ' ˛
rel. e1. Since ˛00 ' ˛0, we have ˛ ' ˛0 in X . ut
Proposition 4.14.15. For a 1-equivalence f W X ! Y , condition .�

epi
i / is

equivalent to the following:

.�
epi
i /
0 f induces the surjection from ŒSi ; X� to ŒSi ; Y �, that is, for each map ˇ W

Si ! Y , there is a map ˛ W Si ! X such that f ˛ ' ˇ in Y .

Proof. .�epi
i / ) .�

epi
i /
0: Let ˇ W Si ! Y be a map. According to Proposi-

tion 4.13.2(1), there exists a path � W I ! Y with x0 2 X such that �.0/ D ˛.e1/
and �.1/ D f .x0/. Using the map r W Si ! Si from the proof of .�mono

i / )
.�mono

i /0 in Proposition 4.14.14, we define a map ˇ0 W Si ! Y by

ˇ0.x/ D
(
ˇr.x/ if x.1/ � 0,

�.x.1// if x.1/ � 0.

Then, ˇ0 ' ˇr ' ˇ and ˇ0.e1/ D f .x0/. By .�epi
i /, we have a map ˛ W Si ! X

such that f ˛ ' ˇ0 rel. e1, hence f ˛ ' ˇ.
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.�
epi
i /
0 ) .�

epi
i /: Let x0 2 X and ˇ W Si ! Y be a map with ˇ.e1/ D f .x0/. By

.�
epi
i /
0, we have a map ˛0 W Si ! X such that f ˛0 ' ˇ in Y . Let h W Si�I! Y be a

homotopy from f ˛0 to ˇ. Since f is a 1-equivalence, we have a path � W I! X with
�.0/ D ˛0.e1/, �.1/ D x0, and f � ' hj rel. @I, where j W I! fe1g � I � Si � I
is the natural injection. Using the above map r W Si ! Si , we now define maps
˛ W Si ! X and ˇ0 W Si ! Y as follows:

˛.x/ D
(
˛0r.x/ if x.1/ � 0,

�.x.1// if x.1/ � 0,
and ˇ0.x/ D

(
f ˛0r.x/ if x.1/ � 0,

hj.x.1// if x.1/ � 0.

Since f � ' hj rel. @I, it follows that f ˛ ' ˇ0 rel. e1. Moreover, consider the
same map ' W Si � I ! Si � I used in the proof of .�mono

i / ) .�mono
i /0 of

Proposition 4.14.14. Then, h' is a homotopy from ˇ0 to ˇ with h'.fe1g � I/ D
fˇ.e1/g, which means that ˇ0 ' ˇ rel. e1. Thus, we have f ˛ ' ˇ rel. e1. ut

Theorem 4.14.12 can be reformulated using Propositions 4.14.14 and 4.14.15. In
particular, we have the following corollary:

Corollary 4.14.16. A map f W X ! Y is a weak homotopy equivalence if and only
if f is a 1-equivalence and f induces the bijection between ŒSn; X� and ŒSn; Y � for
every n � 1. ut

Notes for Chap. 4

There are no good textbooks for studying non-locally finite simplicial complexes or infinite-
dimensional simplicial complexes. For the study of Piecewise Linear (PL) Topology, we recom-
mend

• C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer Study
Edition, (Springer-Verlag, Berlin, 1982)

The following classical lecture notes are still excellent resources for PL Topology:

• J.F.P. Hudson, Piecewise Linear Topology (W.A. Benjamin, Inc., New York, 1969)
• J. Stallings, Lectures on Polyhedral Topology (Tata Institute, Bombay, 1967)
• E.C. Zeeman, Seminar on Combinatorial Topology (Institute des Hautes Etude Sci., Paris,

1963)

Stellar subdivisions are discussed in Volume I of

• L.C. Glaser, Geometrical Combinatorial Topology, Vol.I, Vol.II (Van Nostrand Reinhold Co.,
New York, 1970, 1972)

There are many good textbooks on homotopy groups. Here we list two of them, a classical one
and a recent one:

• S.-T. Hu, Homotopy Theory (Academic Press, Inc., New York, 1959)
• A. Hatcher, Algebraic Topology (Cambridge Univ. Press, Cambridge, 2002)
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The example of Proposition 4.3.2 was given by Dowker [4]. The German terminology
“Hauptvermutung” was introduced by Kneser [10], but it was claimed by Poincaré [17, 18] and
formulated in 1908 as a conjecture by Steinitz [23] and Tietze [24]. In 1961, Hauptvermutung for
polyhedra was disproved by Milnor [14]. In 1969, Kirby and Siebenmann [9] demonstrated that
Hauptvermutung does not hold for n-manifolds for n � 5. Nevertheless, it was discovered in [21]
that for any two countable simplicial complexes K and L, jKj ' jLj implies K �s F.N/ Š
L �s F.N/, where F.N/ is the countable infinite full complex. The completions of the metrics 
K
and 
1

K on jKj are discussed in [20]. The proof of Proposition 4.6.5 presented in this book is given
by A. Yamashita.

Theorem 4.7.11 was established by Whitehead [25]. A characterization of admissible subdivi-
sions in Lemma 4.8.1 can be found in [7] and the one in Theorem 4.8.4 in [15]. Theorem 4.8.8
was established by Henderson [7]. However, his proof is valid only for locally finite-dimensional
complexes, and the complete proof presented here was given in [22].

The nerves of open covers were introduced by Alexandroff [1, 2] and canonical maps by
Kuratowski [11]. Theorems 4.9.6 and 4.9.9 were given by Dowker [3, 4]. In Theorem 4.9.6, it
can be asserted that id W jKj ! jKjm is a fine homotopy equivalence, which will be defined in
Sect. 6.7. This can be obtained by combining Theorems 4.9.6 and 4.8.8. For an alternative proof,
refer to [19].

The compact case of Theorem 4.10.10 was established by Freudenthal [6]. In fact, he proved
that every compactum X is homeomorphic to the inverse limit of an inverse sequence of compact
polyhedra of dim � dimX (cf. Corollary 5.2.6). In [8, 7.2], Theorem 4.10.10 was proved under the
assumption that every open cover of X has an open refinement whose nerve is finite-dimensional.
In fact, this is proved in a more general setting (for a complete uniform space). It follows from
[16, Theorem 3.2] that every paracompact space is homeomorphic to the inverse limit of an inverse
system of polyhedra (with the Whitehead topology), but this does not imply that every metrizable
space is homeomorphic to the inverse limit of an inverse sequence of polyhedra with the metric
topology.

The countable case of Theorem 4.12.3 was proved in the proof of [26, Theorem 13]. The

simplicial mapping cylinder defined in Sect. 4.12 is different from the mapping cylinder of a

simplicial map in [25]. Note that our collapsing is simplicial. Theorem 4.12.1 was first established

by Whitehead [27] in the separable case and extended by Milnor [13] to the general case. The

mapping cylinder technique used in the proof of Theorem 4.12.1 was essentially invented by

Mather [12] (cf. [5]).
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24. H. Tietze, Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten. Monat.

Math. und Phys. 19, 1–118 (1908)
25. J.H.C. Whitehead, Simplicial spaces, nuclei, and m-groups. Proc. Lond. Math. Soc. (2) 45,

243–327 (1939)
26. J.H.C. Whitehead, Combinatorial homotopy, I. Bull. Am. Math. Soc. 55, 213–245 (1949)
27. J.H.C. Whitehead, A certain exact sequence. Ann. Math. 52, 51–110 (1950)

www.archive.org/details/uvresdehenripoin06poin
www.archive.org/details/uvresdehenripoin06poin
www.archive.org/details/uvresdehenripoin06poin
www.archive.org/details/uvresdehenripoin06poin


Chapter 5
Dimensions of Spaces

For an open cover U of a space X , ordU D supfcardU Œx� j x 2 Xg is called
the order of U . Note that ordU D dimN.U/ C 1, where N.U/ is the nerve of U .
The (covering) dimension of X is defined as follows: dimX � n if each finite
open cover of X has a finite open refinement U with ordU � n C 1. and then,
dimX D n if dimX � n and dimX 6< n. By dimX D �1, we mean that X D ;.
We say that X is n-dimensional if dimX D n and that X is finite-dimensional
(f.d.) (dimX < 1) if dimX � n for some n 2 !. Otherwise, X is said to be
infinite-dimensional (i.d.) (dimX D 1). The dimension is a topological invariant
(i.e., dimX D dimY if X � Y ).

This chapter is devoted to lectures on Dimension Theory. Fundamental theorems
are proved and some examples of infinite-dimensional spaces are given. In this
context, we discuss the Brouwer Fixed Point Theorem and the characterization of
the Cantor set. We also construct finite-dimensional universal spaces such as the
Nöbeling spaces and the Menger compacta.

We will use the results in Chaps. 2 and 4. In particular, we will need the combinatorial
techniques treated in Chap. 4. Also, the concept of the nerves of open covers is very
important in Dimension Theory.

5.1 The Brouwer Fixed Point Theorem

It is said that a space X has the fixed point property if any map f W X ! X has a
fixed point, i.e., f .x/ D x for some x 2 X . In this section, we prove the following
Brouwer Fixed Point Theorem:

Theorem 5.1.1 (BROUWER FIXED POINT THEOREM). For every n 2 N, the n-
cube In has the fixed point property.

To prove this theorem, we need two lemmas. Let K be a simplicial complex
and K 0 a simplicial subdivision of K . A simplicial map h W K 0 ! K is called a

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics,
DOI 10.1007/978-4-431-54397-8 5, © Springer Japan 2013
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Sperner map if for each v 2 K 0.0/, h.v/ is a vertex of the carrier cK.v/.0/ of v inK ,
equivalently v 2 OK.h.v//. In other words, h is a simplicial approximation of idjKj.
Indeed, for each x 2 jK 0j D jKj, cK0.x/ � cK.x/. Since cK.v/ � cK.x/ for every
v 2 cK0.x/.0/, it follows that h.cK0.x/.0// � cK.x/

.0/, hence h.x/ 2 h.cK0.x// �
cK.x/.

Lemma 5.1.2 (SPERNER). Let � be an n-simplex, and K 0 a subdivision of F.�/,
where F.�/ is the natural triangulation of � . If h W K 0 ! F.�/ is a Sperner map,
then the number of n-simplexes � 0 2 K 0 such that h.� 0/ D � is odd; hence, there
exists such an n-simplex � 0 2 K 0.
Proof. We prove the lemma by induction with respect to n. The case n D 0 is
obvious. Assume the lemma has been established for any .n � 1/-simplex. Let 
be an .n � 1/-face of � . Then, h./ �  . The natural triangulation F./ of  is a
subcomplex of F.�/. Let L0 be the subdivision of F./ induced byK 0. As is easily
observed, hj W L0 ! F./ is also a Sperner map. Let a be the number of .n � 1/-
simplexes  0 2 L0 such that h. 0/ D  . Then, a is odd by the inductive assumption.
Let S be the set of all .n � 1/-simplexes  0 2 K 0 such that h. 0/ D  . For each
n-simplex � 0 2 K 0, let b.� 0/ denote the number of faces  0 of � 0 that belong to S,
i.e., h. 0/ D  . Then, it follows that

b.� 0/ D

8
ˆ̂
<

ˆ̂
:

2 if h.� 0/ D  I
1 if h.� 0/ D � I
0 otherwise.

Let c be the number of n-simplexes � 0 2 K 0 such that h.� 0/ D � . Then,

X

� 02K0nK0

.n�1/

b.� 0/ � c is even.

On the other hand, a is equal to the number of .n � 1/-simplexes  0 of S such that
 0 �  . For each  0 2 S,  0 is a common face of exactly two n-simplexes of K 0 if
and only if  0 6�  . Hence,

X

� 02K0nK0

.n�1/

b.� 0/� a is even.

Therefore, a � c is also even. Recall that a is odd. Thus, c is also odd. ut
Lemma 5.1.3. Let � D hv1; : : : ; vnC1i be an n-simplex and F1; : : : ; FnC1 be closed
sets in � . If hvi.1/; : : : ; vi.m/i � Fi.1/[ � � � [Fi.m/ for each 1 � i.1/ < � � � < i.m/ �
nC 1, then F1 \ � � � \ FnC1 6D ;.
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Proof. Assume that F1 \ � � � \ FnC1 D ;. Then,

U D ˚� n F1; : : : ; � n FnC1
� 2 cov.�/:

Let K 0 be a subdivision of F.�/ that refines U . For each v 2 K 0.0/, choose a vertex
vi of the carrier of v in F.�/ so that v 2 Fi , and let h.v/ D vi . Then, we have a
Sperner map h W K 0 ! F.�/. By Lemma 5.1.2, there is a simplex � 0 2 K 0 such
that h.� 0/ D � . Write � 0 D hv01; : : : ; v0nC1i so that h.v0i / D vi . By the definition of h,
v0i 2 Fi for each i D 1; : : : ; nC 1. Thus, � 0 is not contained in any � n Fi , which is
a contradiction. ut
Proof of Theorem 5.1.1. It suffices to show that any map f W �n ! �n has a fixed
point, where �n � R

nC1 is the standard n-simplex. For each i D 1; : : : ; nC 1, let

Fi D
˚
x 2 �n

ˇ
ˇ pri .f .x// � pri .x/

�
;

where pri W RnC1 ! R is the projection onto the i -th factor. Then, Fi is closed in
�n. Moreover, each face  D hei.1/; : : : ; ei.m/i � �n is contained in Fi.1/ [ � � � [
Fi.m/, where fe1; : : : ; enC1g is the canonical orthonormal basis for RnC1. In fact, if
x 2  then

mX

jD1
pri.j /.f .x// � 1 D

mX

jD1
pri.j /.x/;

which implies that pri.j /.f .x//�pri.j /.x/ for some j D 1; : : : ; m. By Lemma 5.1.3,
we have a point a 2 F1 \ � � � \ FnC1. Since 0 � pri .f .a// � pri .a/ for each
i D 1; : : : ; nC 1 and

nC1X

iD1
pri .f .a// D 1 D

nC1X

iD1
pri .a/;

it follows that pri .f .a// D pri .a/ for each i D 1; : : : ; n C 1, which means that
f .a/ D a. ut

The following is the infinite-dimensional version of Theorem 5.1.1:

Corollary 5.1.4. The Hilbert cube IN has the fixed point property.

Proof. For each n 2 N, let pn W IN ! In be the projection onto the first n factors
and in W In ! IN the natural injection defined by

in.x/ D .x.1/; : : : ; x.n/; 0; 0; : : : /:

For each map f W IN ! IN, consider the map fn D pnf in W In ! In.
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IN

pn

f

IN

pn

In

in

fn

In

By the Brouwer Fixed Point Theorem 5.1.1, fn has a fixed point. We define

Kn D
˚
x 2 IN

ˇ
ˇ pnf .x/ D pn.x/

�
;

which is closed in IN and Kn � KnC1 for each n 2 N. Moreover,Kn 6D ;. Indeed,
if y 2 In is a fixed point of fn, then pnf .in.y// D fn.y/ D y D pn.in.y//, i.e.,
in.y/ 2 Kn. By compactness, we have a 2 Tn2NKn. Since pnf .a/ D pn.a/ for
every n 2 N, we have f .a/ D a. ut

As another corollary of the Brouwer Fixed Point Theorem 5.1.1, we have the
following:

Corollary 5.1.5 (NO RETRACTION THEOREM). There does not exist any map
r W Bn ! Sn�1 with r jSn�1 D id.1

Proof. Suppose that there is a map r W Bn ! Sn�1 with r jSn�1 D id. We define
a map f W Bn ! Bn by f .x/ D �r.x/. Then, f has no fixed points, which
contradicts the Brouwer Fixed Point Theorem 5.1.1. ut
Remark 1. It should be noted that the Brouwer Fixed Point Theorem 5.1.1 can
be derived from the No Retraction Theorem 5.1.5. Indeed, if there is a map
f W Bn ! Bn without fixed points, then we have a map r W Bn ! Sn�1 such
that x 2 hf .x/; r.x/i for each x 2 Bn, which implies that r jSn�1 D id. In fact,
such a map r can be defined as follows:

r.x/ D .1C ˛.x//x � ˛.x/f .x/;
where ˛.x/ � 0 can be obtained by solving the equation

˛.x/2kx � f .x/k2 C 2˛.x/hx � f .x/; xi C kxk2 � 1 D 0;
where hy; zi D Pn

iD1 y.i/z.i/ is the inner product (Fig. 5.1). Therefore, the No
Retraction Theorem 5.1.5 implies that In � Bn has the fixed point property. Thus,
the Brouwer Fixed Point Theorem 5.1.1 and the No Retraction Theorem 5.1.5 are
equivalent.

1Such a map r is called a retraction, which will be discussed in Chap. 6.
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x

f .x/

Bn
r.x/

Sn�1

Fig. 5.1 The construction of r

Note. In Algebraic Topology, the homotopy groups or the homology groups are used to
prove the No Retraction Theorem 5.1.5, and then the Brouwer Fixed Point Theorem 5.1.1
is proved as the above Remark 1.

Using the Tietze Extension Theorem 2.2.2, we have the following extension
theorem:

Theorem 5.1.6. Let A be a closed set in a normal space X and n 2 N.

(1) Every map f W A! Bn extends over X .
(2) Every map f W A! Sn�1 extends over a neighborhood of A in X .

Proof. By the coordinate-wise application of the Tietze Extension Theorem 2.2.2,
each map f W A! In can be extended overX , which implies (1) because Bn � In.

To prove (2), let f W A ! Sn�1 be a map. By (1), f extends to a map Qf W
X ! Bn. Then, W D Qf �1.Bn n f0g/ is an open neighborhood of A in X . Let
r W Bn n f0g ! Sn�1 be the radial projection, i.e., r.x/ D x=kxk. Then, r Qf jW W
W ! Sn�1 is an extension of f . ut

Using the No Retraction Theorem 5.1.5 and Theorem 5.1.6, we can obtain the
following characterization of boundary points of a closed set X in Euclidean space
R
n:

Theorem 5.1.7. Let X be a closed subset of Euclidean space R
n. For a point x 2

X , x 2 bdX if and only if each neighborhoodU of x inX contains a neighborhood
V of x in X such that every continuous map f W X n V ! Sn�1 extends to a
continuous map Qf W X ! Sn�1.

Proof. To show the “only if” part, for each neighborhoodU of x inX , choose " > 0
so that B.x; "/\X � U . Then, V D B.x; "/\X is the desired neighborhood of x
in X . Indeed, every map f W X n V ! Sn�1 can be extended to a map g W X ! Bn

by Theorem 5.1.6. Choose 0 < ı < " so that g.X n B.x; ı// � Bn n f0g. Let r W
Bn n f0g ! Sn�1 be the canonical radial retraction (i.e., r.y/ D kyk�1y). Because
x 2 bdX , we have z 2 B.x; 1

2
." � ı// n X . Let � D 1

2
."C ı/ > 0. Observe that

B.x; ı/ � B.z; �/ � B.x; "/. We define a map h W X ! X n B.z; �/ � X n B.x; ı/
by hjX n B.z; �/ D id and
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h.y/ D zC �

ky � zk .y � z/ for y 2 X \ B.z; �/.

Then, rgh W X ! Sn�1 is a continuous extension of f .
To prove the “if” part, assume that x 2 intX . Then, B.x; ı/ � X for some

ı > 0. By the condition, B.x; ı/ contains a neighborhood V of x such that every
map f W X n V ! Sn�1 extends to a map Qf W X ! Sn�1. It is easy to construct a
retraction

r W Rn n fxg ! bd B.x; ı/ � Sn�1:

Then, r jX n V extends to a retraction Qr W X ! bd B.x; ı/. Since B.x; ı/ � X ,
bd B.x; ı/ is a retract of B.x; ı/, which contradicts the No Retraction Theorem 5.1.5
because .B.x; ı/; bd B.x; ı// � .Bn;Sn�1/. Thus, we have x 2 bdX . ut

As a corollary of Theorem 5.1.7, we have the so-called INVARIANCE OF

DOMAIN:

Corollary 5.1.8 (INVARIANCE OF DOMAIN). For each X; Y � R
n, X � Y

implies intX � intY .

Proof. Let h W X ! Y be a homeomorphism. For each x 2 bdX and each
neighborhood U of h.x/ in Y , h�1.U / is a neighborhood of x in X that contains
a neighborhood V of x such that every map f W X n V ! Sn�1 extends to a map
Qf W X ! Sn�1. Then, h.V / is a neighborhood of h.x/ in Y such that h.V / � U ,

and every continuous map g W Y n h.V / ! Sn�1 extends to a continuous map
Qg W Y ! Sn�1. Indeed, gh W X n V ! Sn�1 extends to a continuous map
Qf W X ! Sn�1. Then, Qf h�1 W Y ! Sn�1 is a continuous extension of g. ut

5.2 Characterizations of Dimension

Recall that we define dimX � n if each finite open cover of X has a finite open
refinement U with ordU � nC 1. The following lemma shows that the refinement
U in this definition need not be finite.

Lemma 5.2.1. Let U be an open cover of a space X and V an open refinement
of U . Then, U has an open refinement W D fWU j U 2 Ug such that WU � U

for each U 2 U and cardW Œx� � cardV Œx� for each x 2 X , which implies that
ordW � ordV and if U is (locally) finite (or -discrete) then so is W .

Proof. Let ' W V ! U be a function such that V � '.V / for each V 2 V . For each
U 2 U , define

WU D
[
'�1.U / D

[˚
V 2 V

ˇ
ˇ '.V / D U �:

Then, W D fWU j U 2 Ug is the desired refinement of U . ut
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The following is a particular case of the Open Cover Shrinking Lemma 2.7.1,
which is easily proved directly.

Lemma 5.2.2. Each finite open cover fU1; : : : ; Ung of a normal space X has an
open refinement fV1; : : : ; Vng such that clVi � Ui for each i D 1; : : : ; n.

Proof. Using the normality of X , Vi can be inductively chosen so that

clVi � Ui and V1 [ � � � [ Vi [ UiC1 [ � � � [ Un D X: ut

We now prove the following characterizations of dimension:

Theorem 5.2.3. For n 2 ! and a normal spaceX , the following are equivalent:

(a) dimX � n;
(b) Every open cover fU1; : : : ; UnC2g of X has an open refinement V with ordV �

nC 1;
(c) For each open cover fU1; : : : ; UnC2g of X , there exists an open cover fV1; : : : ;

VnC2g of X such that V1 \ � � � \ VnC2 D ; and clVi � Ui for each
i D 1; : : : ; nC 2;

(d) For every open cover fU1; : : : ; UnC2g of X , there exists a closed cover fA1; : : : ;
AnC2g of X such thatA1\� � �\AnC2D; andAi � Ui for each iD1; : : : ; nC2;

(e) For every k � n, each map f W A! Sk of any closed set A in X extends over
X ;

(f) Each map f W A! Sn of any closed set A in X extends over X .

Proof. Consider the following diagram of implications:

(a)
triv.

(b)
(5.2.1)+(5.2.2)

(c)

triv.

(5.2.2)

(e) (f) (d)

The implications (a)) (b) and (c)) (b) are obvious. By Lemmas 5.2.1 and 5.2.2,
we have (b) ) (c), hence (b) , (c). The implication (c) ) (d) follows from
Lemma 5.2.2 (or, (d) can be obtained by twice using (c)). Lastly, we prove the
implications (d)) (b)) (f)) (e)) (a).

(d)) (b): In condition (d), note that

˚
X n A1; : : : ; X nAnC2

� 2 cov.X/:

By Lemma 5.2.2, we have a closed cover fB1; : : : ; BnC2g ofX such thatBi � XnAi
for each i D 1; : : : ; nC 2. Observe

.X n B1/ \ � � � \ .X n BnC2/ D X n .B1 [ � � � [ BnC2/ D ;:
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For each i D 1; : : : ; nC 2, let Vi D Ui nBi � Ui . Since Ai � Ui \ .X nBi / D Vi ,
we have V D fV1; : : : ; VnC2g 2 cov.X/. Moreover, V1 \ � � � \ VnC2 D ;, which
means ordV � nC 1.

(b)) (f): Let�nC1 be the standard .nC1/-simplex andK D F.@�nC1/ (i.e., the
simplicial complex consisting of all proper faces of�nC1). Then, jKjD@�nC1 � Sn.
To extend a given map f W A ! Sn over X , we consider Sn D jKj. By
Theorem 5.1.6(2), f W A ! jKj is extended to a map Qf W clW ! jKj, where
W is an open neighborhood of A in X . Note that cardK.0/ D nC 2. By (b), X has
a finite open cover V such that ordV � nC 1 and

V 	 ˚ Qf �1.OK.v// [ .X n clW /
ˇ
ˇ v 2 K.0/

�
:

We have a function ' W V ! K.0/ such that

V � Qf �1.OK.'.V ///[ .X n clW / for each V 2 V ;

which defines a simplicial map ' W N.V/ ! K because every n C 1 many
vertices span a simplex of K and each simplex of N.V/ has at most n C 1 many
vertices. Since V is finite, there is a canonical map g W X ! jN.V/j for N.V/ by
Theorem 4.9.4. For each x 2 W , Qf .x/ and 'g.x/ are contained in the same simplex
of K . In fact, let � 2 K be the carrier of Qf .x/, i.e., Qf .x/ 2 rint � . Then, for each
V 2 V Œx�,

x 2 V \W � Qf �1.OK.'.V ///;
hence Qf .x/ 2 OK.'.V //. Thus, we have Qf .x/ 2 T

V 2V Œx� OK.'.V //, which

implies that '.V / 2 �.0/ for each V 2 V Œx�, i.e., h'.V Œx�/i � � . On the other
hand, g.x/ 2 hV Œx�i, which implies

'g.x/ 2 '.hV Œx�i/ D h'.V Œx�/i � �;

so 'g.x/; Qf .x/ 2 � . Thus, we can define a map h W X � f0g [ W � I ! jKj as
follows:

h.x; 0/ D 'g.x/ for x 2 X and

h.x; t/ D .1 � t/'g.x/C t Qf .x/ for .x; t/ 2 W � I:

Let k W X ! I be an Urysohn map with X nW � k�1.0/ and A � k�1.1/. Then,
an extension f � W X ! jKj of f can be defined by f �.x/ D h.x; 0/ (D 'g.x/)
for x 2 X nW and f �.x/ D h.x; k.x// for x 2 W .

(f)) (e): By induction on k � n, we show that each map f W A! SkC1 of any
closed set A in X extends overX . Let

SkC1C D SkC1 \ .RkC1 �RC/ and SkC1� D �SkC1C ;
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U
C

U
�

Sk

SkC1
�

SkC1
C

f �1.SkC1
C

/

f �1.SkC1
�

/

f �1.Sk/

fX0

A

X

SkC1

Fig. 5.2 Extending a map f W A! SkC1

where we identify Sk D Sk � f0g D SkC1C \ SkC1� � SkC1. We have disjoint open
sets UC and U� in X such that

UC \ A D A n f �1.SkC1� / and U� \ A D A n f �1.SkC1C /:

In fact, by Theorem 5.1.6(2), f extends to a map f 0 W U ! SkC1 of an open
neighborhood of A in X . Then, U˙ D f 0�1.SkC1 n SkC1� / are the desired open sets.

Now, let X0 D X n .UC [ U�/ and A0 D A \ X0 D f �1.Sk/ (Fig. 5.2). Since
f jA0 W A0 ! Sk extends over X by the inductive assumption, f jA0 extends to a
map f0 W X0! Sk . Let

XC D X0 [ UC D X n U� and X� D X0 [ U� D X n UC;

which are closed inX , and hence they are normal. Note thatX0 is closed in bothXC
and X�. Since SkC1C � SkC1� � BkC1, f0 extends to maps fC W XC ! SkC1C and

f� W X� ! SkC1� by Theorem 5.1.6(1). Then, the desired extension Qf W X ! SkC1
of f can be defined by Qf jXC D fC and Qf jX� D f�.

(e) ) (a): For each finite open cover U of X , let K D N.U/ be the nerve of
U with f W X ! jKj a canonical map (cf. Theorem 4.9.4). If f .X/ � jK.n/j,
f �1.OK.n// 2 cov.X/ is a finite open refinement of U and

ordf �1.OK.n// � ordOK.n/ D dimK.n/ C 1 � nC 1:

Otherwise, choose m > n so that f .X/ � jK.m/j but f .X/ 6� jK.m�1/j. Let
�1; : : : ; �k be the m-simplexes of K . Since @�i � Sm�1 and m � 1 � n, we have
maps fi W X ! @�i such that fi jf �1.@�i / D f jf �1.@�i / by (e). Let f 0 W X ! jKj
be the map defined by
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f 0jf �1.jK.m�1/j/ D f jf �1.jK.m�1/j/ and

f 0jf �1.�i / D fi jf �1.�i / for each i D 1; : : : ; k.

Then, f 0.X/�jK.m�1/j. Since cK.f 0.x//�cK.f .x//�hU Œx�i for each x2X , f 0
is still a canonical map. By the downward induction on m�n, we can obtain a
canonical map f W X!jKj such that f .X/�jK.n/j. This completes the proof. ut
Remark 2. In the above proof of (e)) (a), instead of a finite open cover U of X ,
let us take a local finite open cover U whose nerve K D N.U/ is locally finite-
dimensional (l.f.d.). It can be shown that U has a locally finite open refinement V
with ordV � nC 1 (i.e., dimN.V/ � n).

Indeed, since K is the nerve of a locally finite open cover, by Theorem 4.9.4, we
have a canonical map f W X ! jKj such that each x 2 X has a neighborhood Vx
in X with f .Vx/ � jKxj for some finite subcomplex Kx of K . Note that K might
be infinite-dimensional.

Now, consider the following subcomplexes of K:

Ki D K n
˚
� 2 K ˇ

ˇ dim � > n; � is principal in Ki�1
�

D K.n/ [ ˚� 2 Ki�1
ˇ
ˇ � is not principal in Ki�1

�
; i 2 N;

where K0 D K . Then, K.n/ D T
i2NKi because K is l.f.d. We will inductively

construct canonical maps fi W X ! jKj, i 2 N, such that

fi jf �1i�1.jKi j/ D fi�1jf �1i�1.jKi j/; fi .X/ � jKi j and

fi .Vx/ � jKxj for each x 2 X ,

where f0 D f . Suppose fi�1 have been constructed. For each � 2 Ki�1 nKi , since
dim � > n, we can apply (e) to obtain an extension f� W X ! @� of fi�1jf �1i�1.@�/.
We can define fi W X ! jKj as follows:

fi jf �1i�1.jKi j/ D fi�1jf �1i�1.jKi j/ and

fi jf �1i�1.�/ D f� jf �1i�1.�/ for each � 2 Ki�1 nKi .

Then, fi .X/ � jKi j. Since fi .f �1i�1.�// � @� � � for each � 2 Ki�1nKi , it follows
that fi .Vx/ � jKxj for each x 2 X , so fi is continuous because each Kx is finite.
Moreover, cK.fi .x// � cK.fi�1.x// for each x 2 X , hence fi is also a canonical
map.

For each x 2 X , since Kx is finite, K.n/
x D Kx \ Ki.x/ for some i.x/ 2 N.

For every i � i.x/, because Kx \ Ki D Kx \ Ki.x/, we have fi jVx D fi.x/jVx .
Therefore, we can define a map Qf W X ! jK.n/j by Qf jVx D fi.x/jVx for each
x 2 X . Then, V D Qf �1.OK.n// 2 cov.X/ is an open refinement of U with ord �
nC 1. By applying Lemma 5.2.1, we can obtain the desired refinement V of U .
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When X is paracompact, since every open cover of X has a locally finite (and
-discrete) open refinement with the l.f.d. nerve by Theorem 4.9.9, if dimX � n,
then an arbitrary open cover of X has a (locally finite -discrete) open refinement
V with ordV � nC 1 by the above remark. Since the converse obviously holds, we
have the following characterization:

Theorem 5.2.4. For n 2 ! and a paracompact space X , dimX � n if and only
if an arbitrary open cover of X has a (locally finite -discrete) open refinement V
with ordV � nC 1. ut

Instead of Theorem 4.9.9, we can use Theorem 4.9.10 to obtain the following
corollary:

Corollary 5.2.5. Let X be regular Lindelöf and n 2 !. Then, dimX � n if
and only if an arbitrary open cover of X has a (star-finite and countable) open
refinement V with ordV � nC 1. ut

In the proof of Theorem 4.10.10, we can apply Theorem 5.2.4 (Corollary 5.2.5)
to obtain Ui with ordUi � nC 1, namely dimKi � n. By Remark 16 at the end of
Sect. 4.10, we have the following version of Theorem 4.10.10 (Corollaries 4.10.11
and 4.10.12).

Corollary 5.2.6. Every completely metrizable space X with dimX � n < 1 is
homeomorphic to the inverse limit of an inverse sequence .jKi jm; fi /i2N of metric
polyhedra and PL maps such that dimKi � n, cardKi � @0w.X/, and fi W
KiC1! SdKi is simplicial. Moreover, if X is compact metrizable (resp. separable
and completely metrizable), then each jKi jm D jKi j is compact (resp. locally
compact). If X is separable and locally compact metrizable, each jKi jm D jKi j
is locally compact and each fi is proper. ut

Now, we can prove the following theorem:

Theorem 5.2.7. For each n 2 N, dim Bn D n.

Proof. For any U 2 cov.�n/, �n has a triangulation K such that OK 	 SK 	 U
(Corollary 4.7.7). Since ordOK D dimK C 1 D n C 1 and jKj D �n � Bn, it
follows that dim Bn � n. If dim Bn � n� 1, then we apply Theorem 5.2.3 to obtain
a map r W Bn ! Sn�1 such that r jSn�1 D id, which contradicts the No Retraction
Theorem 5.1.5. Consequently, we have dim Bn D n. ut
Proposition 5.2.8. For a normal spaceX , if there exists a map f W X ! Sn that is
not null-homotopic, then dimX � n.

Proof. Define SnC and Sn� as in the proof of Theorem 5.2.3 (f)) (e) and identify
Sn�1 D SnC \ Sn� � Sn. If dimX � n � 1 then f jf �1.Sn�1/ extends to a map
f 0 W X ! Sn�1 by Theorem 5.2.3. We can define a map g W X ! Sn as follows:

gjf �1.SnC/ D f 0jf �1.SnC/ and gjf �1.Sn�/ D f jf �1.Sn�/:
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Then, g ' f rel. f �1.Sn�/. Indeed, we have a homeomorphism ' W SnC ! Bn with
'jSn�1 D id. Then, 'f jf �1.SnC/ ' 'f 0jf �1.SnC/ rel. f �1.Sn�1/ in Bn, which
is realized by the straight-line homotopy. Hence, f jf �1.SnC/ ' f 0jf �1.SnC/ rel.
f �1.Sn�1/ in SnC, which implies g ' f rel. f �1.Sn�/. Since g.X/ � Sn� � Bn, it
follows that f ' g ' 0. This is a contradiction. ut
Remark 3. The converse of Proposition 5.2.8 does not hold. In fact, if X is an n-
dimensional contractible space then every map f W X ! Sn is null-homotopic.

Using simplicial complexes, we can characterize the dimension of paracompact
spaces as follows:

Theorem 5.2.9. Let X be paracompact and n 2 !. Then, dimX � n if and only
if, for every simplicial complex K , each map f W X ! jKj (or f W X ! jKjm) is
contiguous to a map g W X ! jK.n/j (or g W X ! jK.n/jm). In this case, each g.x/
is contained in the carrier cK.f .x// 2 K of f .x/.

Proof. First, we will show the “if” part. Each (finite) open cover U ofX has an open
star-refinementV . LetK D N.V/ be the nerve of V . A canonical map f W X ! jKj
is contiguous to a map g W X ! jK.n/j. Then, g�1.OK.n// 2 cov.X/ with

ordg�1.OK.n// � ordOK.n/ D dimK.n/ C 1 � nC 1:

Let V 2 V D K.0/ and x 2 g�1.OK.n/.V //. We have  2 K such that f .x/; g.x/ 2
 . Then, cK.f .x// �  and V 2 .0/. Since f is canonical, we have cK.f .x//.0/ �
V Œx� (Proposition 4.9.1). It follows that V \ V 0 6D ; and x 2 V 0 for any V 0 2
cK.f .x//

.0/, which implies x 2 st.V;V/. Thus, g�1.OK.n/.V // � st.V;V/, which
means g�1.OK.n// 	 U . Therefore, dimX � n.

To prove the “only if” part, let f W X ! jKj be a map. Because dimX � n,
X has an open cover U 	 f �1.OK/ with ordU � n C 1 by Theorem 5.2.4. Let
L D N.U/ be the nerve of U with ' W X ! jLj a canonical map. Then, we
have a function  W L.0/ D U ! K.0/ such that U � f �1.OK. .U ///, i.e.,
f .U / � OK. .U //. By Proposition 4.4.5,  W L.0/ ! K.0/ induces the simplicial
map  W L ! K . Since dimL � n, it follows that  '.X/ �  .jLj/ � jK.n/j.
Thus, we have a map g D  ' W X ! jK.n/j.

We will show that g.x/ 2 cK.f .x// for every x 2 X . For each x 2 X , '.x/ 2
hU Œx�i 2 L because ' is canonical. Then, g.x/ D  '.x/ 2  .hU Œx�i/ 2 K . For
each U 2 U Œx�, f .x/ 2 f .U / � OK. .U //, which means  .U / 2 cK.f .x//.0/.
Hence,  .hU Œx�i/ � cK.f .x//. Thus, g.x/ 2 cK.f .x// for every x 2 X . ut
Remark 4. In the above proof of the “only if” part, when K is locally finite-
dimensional, we can apply the same argument used in Remark 2 to obtain a map
g W X ! jK.n/j contiguous to f .

As a corollary of Theorems 5.2.7 and 5.2.9, we have the following:

Corollary 5.2.10. For any simplicial complexK ,
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dimK D dim jKj D dim jKjm:

Proof. An n-simplex � 2 K is closed in both jKj and jKjm, and dim � D n by
Theorem 5.2.7. By the definition of dimension, dim jKj � dim � and dim jKjm �
dim � . On the other hand, combining Theorem 5.2.9 with the Simplicial Approxi-
mation Theorem 4.7.14, we arrive at dim jKj � dimK and dim jKjm � dimK . ut

Since the n-dimensional Euclidean space Rn has an n-dimensional triangulation,
we have the following corollary:

Corollary 5.2.11. For each n 2 N, dimR
n D n. ut

Let A and B be disjoint closed sets in a space X . A closed set C in X is called
a partition between A and B in X if there exist disjoint open sets U and V in X
such that A � U , B � V , and X n C D U [ V . A family .A� ; B� /�2� of pairs of
disjoint closed sets in X is inessential in X if there are partitions L� between A�
and B� with

T
�2� L� D ;. Note that if one of A� or B� is empty then .A� ; B� /

is inessential. If .A� ; B�/�2� is not inessential in X (i.e.,
T
�2� L� 6D ; for any

partitions L� between A� and B� ), it is said to be essential in X .
A map f W X ! In is said to be essential if every map g W X ! In with

gjf �1.@In/ D f jf �1.@In/ is surjective, where it should be noted that g is also
essential. It is said that f is inessential if it is not essential, i.e., there is a map
g W X ! In such that gjf �1.@In/ D f jf �1.@In/ and g.X/ 6D In. Then, for an
inessential map f W X ! In, there is a map g W X ! @In such that gjf �1.@In/ D
f jf �1.@In/.

Lemma 5.2.12. For two maps f; g W X ! Bn, if f .x/ 6D g.x/ for any x 2 X , then
there is a map h W X ! Sn�1 such that hjf �1.Sn�1/ D f jf �1.Sn�1/.
Proof. In the same way as for the map r in the remark for the No Retraction
Theorem 5.1.5, we can obtain a map h W X ! Sn�1 such that f .x/ 2 hh.x/; g.x/i
for each x 2 X , which implies hjf �1.Sn�1/ D f jf �1.Sn�1/. ut

For a map f W X ! Bn with f .X/ 6D Bn, by taking g as a constant map, the
following is a special case of Lemma 5.2.12.

Lemma 5.2.13. If a map f W X ! Bn is not surjective, then there is a map h W
X ! Sn�1 such that hjf �1.Sn�1/ D f jf �1.Sn�1/. ut
Proposition 5.2.14. Let X be a normal space and h W X � I ! In be a homotopy
such that h0 is essential and h.f �1.@In/ � I/ � @In. Then, h1 is also essential,
hence it is surjective.

Proof. Let h0 D f and assume that h1 is inessential. By Lemma 5.2.13, there is
a map g W X ! @In such that gjh�11 .@In/ D h1jh�11 .@In/. Then, f �1.@In/ �
h�11 .@In/ and h1 ' g rel. h�11 .@In/ by the straight-line homotopy:

.1 � t/h1.x/C tg.x/ for each .x; t/ 2 X � I.
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Connecting this to h, we obtain a homotopy ' W X � I! In such that

'.f �1.@In/ � I / � @In; '0 D f and '1 D g:

Then, A D prX.'
�1.Œ 1

3
; 2
3
�n// is a closed set in X . Observe

'�1.Œ 1
3
; 2
3
�n/\ .f �1.@In/ � I/ D ;;

which implies A \ f �1.@In/ D ;. Taking an Urysohn map k W X ! I with
k.f �1.@In// D 0 and k.A/ D 1, we define a map g0 W X ! In as follows:

g0.x/ D '.x; k.x// for each x 2 X .

Then, g0jf �1.@In/ D f jf �1.@In/ but g0.X/ 6D In. In fact, g0.A/ D g.A/ � @In

and

g0.X n A/ � '..X nA/ � I/ � '�.X � I/ n '�1.Œ 1
3
; 2
3
�n/
� � In n Œ 1

3
; 2
3
�n:

This is a contradiction because h0 D f is essential. ut
Essential maps can be characterized as follows:

Theorem 5.2.15. Let X be a normal space. For a map f W X ! In, the following
are equivalent:

(a) f is essential;
(b) For each map g W X ! In, there is some x 2 X such that f .x/ D g.x/;
(c) .f �1.pr�1i .0//; f �1.pr�1i .1///niD1 is essential in X .

Proof. The implication (a)) (b) follows from Lemma 5.2.12.
(b) ) (c): Assume that .f �1.pr�1i .0//; f �1.pr�1i .1///niD1 is inessential, that

is, there are partitions Li between f �1.pr�1i .0// and f �1.pr�1i .1// such thatTn
iD1 Li D ;. Then, we have disjoint open sets Ui and Vi in X such that

X n Li D Ui [ Vi ; f �1.pr�1i .0// � Ui and f �1.pr�1i .1// � Vi :

Applying Lemma 5.2.2 to the open cover fX n Li j i D 1; : : : ; ng of X , we have a
closed cover fFi j i D 1; : : : ; ng of X such that Fi � X n Li D Ui [ Vi , where we
may assume that

f �1.pr�1i .0//[ f �1.pr�1i .1// � Fi :
Each Ui \ Fi D Fi n Vi and Vi \ Fi D Fi n Ui are disjoint closed sets in X . Using
Urysohn maps for Ui \ Fi and Vi \ Fi , we can define a map g W X ! In such that
pri g.Ui \ Fi / D 1 and pri g.Vi \ Fi / D 0. Observe



5.2 Characterizations of Dimension 263

n[

iD1
.Ui \ Fi /[ .Vi \ Fi / D

n[

iD1
.Ui [ Vi /\ Fi D

n[

iD1
Fi D X;

.pri f /
�1.1/ � Vi � X n Ui and .pri f /

�1.0/ � Ui � X n Vi :

It follows that g.x/ 6D f .x/ for any x 2 X .
(c)) (a): Suppose that f is inessential. Then, there is a map h W X ! @In with

hjf �1.@In/ D f jf �1.@In/ by Lemma 5.2.13. Note that

f �1.pr�1i .0// � h�1.pr�1i .0// and f �1.pr�1i .1// � h�1.pr�1i .1//:

Each h�1.pr�1i . 12 // is a partition between f �1.pr�1i .0// and f �1.pr�1i .1//, and then

n\

iD1
h�1.pr�1i . 12 // D h�1. 12 ; : : : ; 12 / D ;:

Thus, .f �1.pr�1i .0//; f �1.pr�1i .1///niD1 is inessential. ut
The Brouwer Fixed Point Theorem 5.1.1 means that the identity map of In

satisfies condition (b) in Theorem 5.2.15, hence we have the following corollary:

Corollary 5.2.16. The family .pr�1i .0/; pr�1i .1//niD1 is essential in In. ut
Remark 5. Due to Theorem 5.2.15, this Corollary 5.2.16 is equivalent to the
Brouwer Fixed Point Theorem 5.1.1.

Using essential families and essential maps, we can also characterize dimension
as follows:

Theorem 5.2.17 (EILENBERG–OTTO; ALEXANDROFF). Let X be a normal
space and n 2 N. Then, the following are equivalent:

(a) dimX � n;
(b) X has an essential map f W X ! In;
(c) X has an essential family of n pairs of disjoint closed sets.

Proof. The implication (b) ) (c) follows from Theorem 5.2.15. For an essential
map f W X ! In, f jf �1.@In/ W f �1.@In/ ! @In cannot extend to any map from
X to @In, which means dimX � n by Theorem 5.2.3. Thus, we have also (b))
(a). The implications (a)) (b) and (c)) (b) remain to be proved.

(a)) (b): By Theorem 5.2.3, there exists a map f 0 W A! @In of a closed set A
inX that cannot extend overX . Nevertheless, f 0 can be extended to a map f W X !
In by Theorem 5.1.6(1). If there is a map g W X ! In such that g.x/ 6D f .x/ for any
x 2 X , then we have a map h W X ! @In such that hjf �1.@In/ D f �1jf �1.@In/ by
Lemma 5.2.12. This is a contradiction because h is an extension of f 0. Therefore,
for each map g W X ! In, there is some x 2 X such that f .x/ D g.x/. By
Theorem 5.2.15, f is essential.
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(c)) (b): Let .Ai ; Bi /niD1 be an essential family of n pairs of disjoint closed sets
in X . Using Urysohn maps for Ai and Bi , we can define a map f W X ! In so that
pri f .Ai / D 0 and pri f .Bi / D 1 for each i D 1; : : : ; n. Since Ai � f �1.pr�1i .0//
and Bi � f �1.pr�1i .1//, it follows that .f �1.pr�1i .0//; f �1.pr�1i .1///niD1 is
essential, which means that f is essential according to Theorem 5.2.15. ut

Conditions (b) and (c) are called the ALEXANDROFF CHARACTERIZATION the
EILENBERG–OTTO CHARACTERIZATION of dimension. Using Theorem 5.2.17, we
can easily show the following corollary:

Corollary 5.2.18. Every non-degenerate 0-dimensional normal space is discon-
nected. Equivalently, every non-degenerate connected normal space is positive
dimensional. ut

5.3 Dimension of Metrizable Spaces

In this section, we will give characterizations of dimension for metrizable spaces.
For metric spaces, the following characterization can be established:

Theorem 5.3.1. Let X D .X; d/ be a metric space. Then, dimX � n if and only if
X has a sequence U1 
 U2 
 � � � of (locally finite -discrete) open covers such that
ordUi � nC 1 and limi!1meshUi D 0.

Proof. When dimX � n, using the “only if” of Theorem 5.2.4, we can inductively
construct locally finite -discrete open covers U1 
 U2 
 � � � of X such that
ordUi � nC 1 and limi!1meshUi D 0. Thus, the “only if” part holds.

To show the “if” part, let W be a finite open cover of X . We have a function
'i W UiC1 ! Ui such that U � 'i.U / for each U 2 UiC1. For each j > i , let
'i;j D 'i ı � � � ı 'j�1 W Uj ! Ui and 'i;i D idUi .

For each i 2 N, let

Xi D
[˚

U 2 Ui
ˇ
ˇ st.U;Ui / is contained in some W 2W

�
:

Then, X1 � X2 � � � � and X DSi2NXi because limi!1meshUi D 0. Moreover,
let U 0i D Ui ŒXi � and U 00i D U 0i n Ui ŒXi�1�, where X0 D ;.

For each i 2 N and U 2 U 0i , we define

ki .U / D min
˚
k � i ˇˇ 'k;i .U /\ Xk 6D ;

�
:

Observe that 'ki .U /;i .U / 2 U 00ki .U / and kki .U /.'ki .U /;i .U // D ki .U /. As is easily
seen, U 00i \ U 00j D ; if i 6D j . For each U 2 Si2N U 00i , there is a unique j.U / 2 N

such that U 2 U 00j.U /. Then, we can define

U � D
[˚

U 0 \Xi
ˇ
ˇ U 0 2 U 0i ; i � j.U / D ki .U 0/; 'j.U /;i .U 0/ D U

� � U:
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Note that if kj.U /.U / < j.U / then U � D ;.
Each x 2 X is contained in some Xi , hence x 2 U 0 \ Xi for some U 0 2 U 0i . Let

U D 'ki .U 0/;i .U
0/ 2 U 00ki .U 0/. Then, ki .U 0/ D j.U / and x 2 U 0 \ Xi � U �. Thus,

we have
V D ˚U � ˇˇ U 2Si2N U 00i

� 2 cov.X/:

Each U 2 U 00i meets Xi , hence it meets some U 0 2 Ui such that st.U 0;Ui / is
contained in some W 2W . Then, U � � U � st.U 0;Ui / � W . Therefore, V 	W .

For each x 2 X , choose k 2 N so that x 2 Xk n Xk�1. For each U � 2 V Œx�, we
can find U 0 2 U 0i such that i � j.U / D ki .U 0/, 'j.U /;i .U 0/ D U , and x 2 U 0\Xi .
Then, k � i because x 2 Xi and x 62 Xk�1. Thus, we have 'k;i .U 0/ 2 UkŒx�. On
the other hand, j.U / � k because U \ Xk 6D ; and U \ Xj.U/�1 D ;. Then,
'j.U /;k'k;i .U

0/ D 'j.U /;i .U
0/ D U . This means that V Œx� 3 U � 7! 'k;i .U

0/ 2
UkŒx� is a well-defined injection. Therefore,

cardV Œx� � cardUkŒx� � ordUk � nC 1:

The proof is complete. ut
Applying Theorem 5.3.1, we can show that the inverse limit preserves the

dimension.

Theorem 5.3.2. Let X D lim �.Xi ; fi / be the inverse limit of an inverse sequence
.Xi ; fi /i2N of metrizable spaces. If dimXi � n for infinitely many i 2 N then
dimX � n.

Proof. By Corollary 4.10.4, we may assume that dimXi � n for every i 2 N.
Recall that X is the following subspace of the product space

Q
i2NXi :

X D ˚x 2 Qi2NXi
ˇ
ˇ x.i/ D fi .x.i C 1// for every i 2 N

�
:

We define d 2 Metr.X/ as follows:

d.x; y/ D sup
i2N

minfdi.x.i/; y.i//; 2�i g;

where di 2 Metr.Xi /. For each i 2 N, we can inductively choose Vi 2 cov.Xi / so
that ordVi � nC 1,

Vi 	 .fj : : : fi�1/�1.Vj / and meshfj : : : fi�1.Vi / < 2�i for j < i:

Let Ui D p�1i .Vi / 2 cov.X/, where pi D pri jX W X ! Xi is the inverse limit
projection. Then, U1 
 U2 
 � � � , ordUi � nC 1, and meshUi < 2�i . Therefore,
dimX � n by Theorem 5.3.1. ut

The following is obvious by definition:

• If Y is a closed set in X then dimY � dimX .
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There exists a 0-dimensional compact space X that contains a subspace Y with
dimY > 0. Such a space will be constructed in Sect. 5.5 (cf. Theorem 5.5.3).
However, when X is metrizable, we have the following theorem as a corollary of
Theorem 5.3.1.

Theorem 5.3.3 (SUBSET THEOREM). For every subset Y of a metrizable space
X , dimY � dimX . ut

We can apply Theorem 5.3.1 to prove the following completion theorem:

Theorem 5.3.4. Every n-dimensional metrizable space X can be embedded in an
n-dimensional completely metrizable space as a dense set.

Proof. We can regard X as a dense subset of a complete metric space Y D .Y; d/

(Corollary 2.3.10). Applying Theorem 5.3.1, we can obtain a sequence U1 
 U2 

� � � 2 cov.X/ such that ordUi � n C 1 and meshd Ui ! 0 as i ! 1. For each
i 2 N, there is a collection QUi of open sets in Y such that QUi jX D Ui . Then,
ord QUi D ordUi � nC 1 and meshd QUi D meshd Ui . For each i 2 N, Gi D S QUi is
an open set in Y . Thus, we have a Gı-set QX D T

i2NGi in Y and X is dense in QX .
According to Theorem 2.5.3(2), QX is completely metrizable. Moreover, dim QX �
n by Theorem 5.3.1 and dim QX � n by Theorem 5.3.3. Consequently, we have
dim QX D n. ut

A subset of a space X is called a clopen set in X if it is both closed and open in
X . A clopen basis for X is an open basis consisting of clopen sets. For metrizable
spaces, we characterize the 0-dimensionality as follows:

Theorem 5.3.5. For a metrizable space X . 6D ;/, dimX D 0 if and only if X has
a -locally finite clopen basis.

Proof. First, assume that dimX D 0 and let d 2 Metr.X/. By Theorem 5.3.1, X
has a sequence of locally finite open covers B1 
 B2 
 � � � such that ordBi D 1

and limi!1meshBi D 0. Note that each B 2 Bi is clopen in X because B D
X nSfB 0 2 Bi j B 0 6D Bg. It is easy to see that B D S

i2N Bi is a -locally finite
clopen basis for X .

To show the “if” part, let B D S
i2N Bi be a -locally finite clopen basis for X ,

where each Bi is locally finite. Let fU1; U2g 2 cov.X/. For each i 2 N, let

V2i�1 D
[˚

B 2 Bi
ˇ
ˇ B � U1

�
and V2i D

[˚
B 2 Bi

ˇ
ˇ B � U2

�
:

Because Vi is clopen, we have an open set Wi D Vi nSj<i Vj in X . Then, W D
fWi j i 2 Ng is an open refinement of fU1; U2g. Indeed, W2i�1 � U1, W2i � U2,
and [

i2N
Wi D

[

i2N
Vi D

[

i2N
V2i�1 [

[

i2N
V2i D U1 [ U2 D X:

Since ordW � 1 by definition, we have dimX � 0 by Theorem 5.2.3. ut
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Using the above characterization, we can easily show that dimQ D dim.R n
Q/ D 0 and dim�0 D 0, where �0 is the Cantor (ternary) set. The following
theorem can also be easily proved by applying this characterization.

Theorem 5.3.6. The countable product of 0-dimensional metrizable spaces is 0-
dimensional. ut

The following simple lemma is very useful in Dimension Theory.

Lemma 5.3.7 (PARTITION EXTENSION). Let A, B be closed and U , V be open
sets in a metrizable space X such that A � U and B � V and clU \ clV D ;.
For any subspace Y of X , if Y has a partition S between Y \ clU and Y \ clV ,
then X has a partition L between A and B with Y \ L � S .

Proof. Let U 0 and V 0 be disjoint open sets in Y such that Y n S D U 0 [ V 0,
Y \clU � U 0, and Y \clV � V 0. From U \V 0 D ;, it follows thatA\cl V 0 D ;.
Then,

.A[ U 0/ \ cl.B [ V 0/ D .A[ U 0/\ .B [ clV 0/ D ;:
Similarly, we have .B [ V 0/ \ cl.A [ U 0/ D ;. Let d 2 Metr.X/ and define

U 00 D ˚x 2 X ˇ
ˇ d.x;A [ U 0/ < d.x;B [ V 0/� and

V 00 D ˚x 2 X ˇ
ˇ d.x;B [ V 0/ < d.x;A [ U 0/�:

Then, U 00 and V 00 are disjoint open sets in X , A [ U 0 � U 00, and B [ V 0 � V 00.
Hence, L D X n .U 00 [ V 00/ is the desired partition. ut

Note that it does not suffice to assume that S is a partition between A \ Y and
B \ Y in Y . In fact, A D Œ�1; 0�� f0g and B D Œ0; 1�� f1g are disjoint closed sets
in X D R

2. Let
Y D R

2 n �Q � 2
� � X;

where 2 D f0; 1g is the discrete space of two points. Then, S D f0g�R is a partition
between A \ Y and B \ Y in Y but X has no partition L between A and B such
that Y \L � S .

Using partitions, we can characterize the dimension for metrizable spaces as in
the following theorem:

Theorem 5.3.8. Let X be metrizable and n 2 !. Then, dimX � n if and only if,
for any pair of disjoint closed setsA andB inX , there is a partitionL inX between
A and B with dimL � n � 1.

Proof. To prove the “if” part, let .Ai ; Bi /
nC1
iD1 be a family of pairs of disjoint closed

sets in X . Let LnC1 be a partition between AnC1 and BnC1 with dimLnC1 � n� 1.
For each i D 1; : : : ; n, let Ui and Vi be open sets in X such that Ai � Ui , Bi �
Vi and clUi \ clVi D ;. By Theorem 5.2.17, LnC1 has partitions Si between
LnC1 \ clUi and LnC1 \ clVi such that

Tn
iD1 Si D ;. By the Partition Extension

Lemma 5.3.7, X has partitions Li between Ai and Bi such that Li \ LnC1 � Si .
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Then,
TnC1
iD1 Li �

Tn
iD1 Si D ;. Therefore, .Ai ; Bi /

nC1
iD1 is inessential. Thus, we

have dimX � n by Theorem 5.2.17.
To show the “only if” part, let d 2 Metr.X/ such that dist.A;B/ > 1. (Such a

metric can be obtained by a metric for X and an Urysohn map for A and B .) Using
Theorem 5.2.4 (cf. Theorem 5.3.1), we can construct a sequence .Ui /i2N of locally
finite open covers of X such that ordUi � nC 1, meshUi < i�1, and U cl

iC1 	 Ui .
Let A0 and B0 be open neighborhoods of A and B in X , respectively, such that
dist.A0; B0/ > 1. We inductively define sets Ai and Bi (i 2 N) as follows:

Ai D X n
[˚

clU
ˇ
ˇ U 2 Ui ŒBi�1�

�
and

Bi D X n
[˚

clU
ˇ
ˇ U 2 Ui n Ui ŒBi�1�

�
:

Then, Ai \ Bi D ;. Because of the local finiteness of U cl
i , Ai and Bi are open

in X . Since Bi�1 \ U D ; if and only if Bi�1 \ clU D ; for each U 2 Ui , it
follows that Bi�1 � Bi for each i 2 N. Then, Ui ŒBi�1� � Ui ŒBi �. We also have
Ui ŒBi � � Ui ŒBi�1�. Indeed, each U 2 Ui ŒBi � contains some point of Bi , where that
point does not belong to any member of Ui n Ui ŒBi�1�. This means U 2 Ui ŒBi�1�.
Therefore, Ui ŒBi � D Ui ŒBi�1� for each i 2 N.

We will show that clAi�1 � Ai for each i 2 N. This follows from the fact that
clAi�1 \ clU D ; for each U 2 Ui ŒBi�1�. This fact can be shown as follows:
The case i D 1 follows from meshU1 < 1 and dist.A0; B0/ > 1. When i > 1, for
each U 2 Ui ŒBi�1�, clU is contained in some V 2 Ui�1. Since V 2 Ui�1ŒBi�1� D
Ui�1ŒBi�2�, it follows thatAi�1\V D ;, and hence clAi�1\V D ;, which implies
clAi�1 \ clU D ;.

For each i 2 N, let Li D X n .Ai [ Bi/ and let L D T
i2NLi . Then, L is

a partition between A and B . Indeed, X n L D �S
i2N Ai

� [ �Si2NBi
�
, A �S

i2NAi , B �
S
i2NBi , and


[

i2N
Ai

�

\

[

i2N
Bi

�

D
[

i;j2N
.Ai \ Bj / D

[

i;j2N
.Amaxfi;j g \ Bmaxfi;j g/

D
[

i2N
.Ai \ Bi/ D ;:

For each i 2 N, we have

Wi D
˚
U \L ˇˇ U 2 Ui ŒBi�1�

� 2 cov.L/:

Indeed, each x 2 L is not contained in AiC1, so x 2 clV for some V 2 UiC1ŒBi �.
Choose U 2 Ui so that clV � U . Then, U 2 Ui ŒBi � D Ui ŒBi�1�, hence x 2
U \ L 2 Wi . Therefore, Wi 2 cov.L/. Note that meshWi � meshUi < i�1.
Moreover, WiC1 	 Wi because each V 2 UiC1ŒBi � is contained in some U 2 Ui ,
where U 2 Ui ŒBi � D Ui ŒBi�1�.
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We will show that ordWi � n. Suppose that there are n C 1 many distinct
U1; : : : ; UnC1 2 Ui ŒBi�1� that contain a common point x 2 L. Since x 62 Bi ,
x 2 clUnC2 for some UnC2 2 Ui n Ui ŒBi�1�. Since

TnC1
jD1 Uj is a neighborhood of

x, it follows that
TnC2
jD1 Uj 6D ;, which is contrary to ordUi � nC 1. Therefore, we

have dimL � n� 1 by Theorem 5.3.1 ut
Remark 6. It should be noted that the Partition Extension Lemma 5.3.7 and the “if”
part of Theorem 5.3.8 are valid for completely normal (= hereditarily normal) spaces
(cf. Sect. 2.2).

5.4 Fundamental Theorems on Dimension

In this section, we prove several fundamental theorems on dimension. We begin
with two types of sum theorem.

Theorem 5.4.1 (COUNTABLE SUM THEOREM). Let X D S
i2N Fi be normal

and n 2 !, where each Fi is closed in X . If dimFi � n for every i 2 N, then
dimX � n.

Proof. It suffices to show the case n < 1. Let fU1; : : : ; UnC2g 2 cov.X/. By
induction on i 2 N, we can define Ui D fUi;1; : : : ; Ui;nC2g 2 cov.X/ so that

clUi;j � Ui�1;j and Ui;1 \ � � � \ Ui;nC2 \ Fi D ;;

where U0;j D Uj . Indeed, assume that Ui�1 has been defined, where F0 D ;. By
Theorem 5.2.3, we have fVi;1; : : : ; Vi;nC2g 2 cov.Fi / such that

Vi;j � Ui�1;j and Vi;1 \ � � � \ Vi;nC2 D ;:

Let Wi;j D Vi;j [ .Ui�1;j n Fi /. Then, fWi;1; : : : ;Wi;nC2g 2 cov.X/. By normality,
we can find Ui D fUi;1; : : : ; Ui;nC2g 2 cov.X/ such that clUi;j � Wi;j . Observe
that Ui is as desired.

For each j D 1; : : : ; nC2, let Aj D Ti2NUi;j . Observe thatAj DTi2N clUi;j
is closed in X . Since

A1 \ � � � \AnC2 \ Fi � Ui;1 \ � � � \ Ui;nC2 \ Fi D ;;

we have A1 \ � � � \ AnC2 D ;. For each x 2 X , fi 2 N j x 2 Ui;j g is infinite for
some j . Then, x 2 Ti2NUi;j D Aj . Hence, X D A1 [ � � � [ AnC2. According to
Theorem 5.2.3, we have dimX � n. ut
Theorem 5.4.2 (LOCALLY FINITE SUM THEOREM). Let X be normal and n 2
!. If X has a locally finite closed cover fF� j � 2 �g such that dimF� � n for
each � 2 �, then dimX � n.
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Proof. We may assume that n <1,� D .�;�/ is a well-ordered set, andFmin� D
;. Let fU1; : : : ; UnC2g 2 cov.X/. Using transfinite induction, we will define U� D
fU�;1; : : : ; U�;nC2g 2 cov.X/ so that

Umin�;j D Uj ; U�;1 \ � � � \ U�;nC2 \ F� D ;; and

� < �) U�;j � U�;j ; U�;j n U�;j �
[

��	��
F	:

Suppose that U� has been obtained for � < �. Let U 0�;j D
T
�<� U�;j . Then,

fU 0�;1; : : : ; U 0�;nC2g 2 cov.X/. Indeed, if there exists �0 D maxf� 2 � j � < �g,
then U 0�;j D U�0;j for each j D 1; : : : ; nC 2. Otherwise, for each x 2 X , choose
an open neighborhood U of x in X that meets only finitely many F�. Then, there
exists �1 < � such that U \ F� D ; for �1 � � < �. If x 2 U�1;j 2 U�1 , then
U \ U�1;j � U�;j for �1 � � < � because

.U \ U�1;j / n U�;j �
[

�1�	��
.U \ F	/ D ;:

It follows that

x 2 U \ U�1;j �
\

�1��<�
U�;j D

\

�<�

U�;j D U 0�;j :

We apply Theorem 5.2.3 to obtain fV�;1; : : : ; V�;nC2g 2 cov.F�/ such that V�;j �
U 0�;j and V�;1 \ � � � \ V�;nC2 D ;. Now, let U�;j D V�;j [ .U 0�;j n F�/. Then,
fU�;1; : : : ; U�;nC2g 2 cov.X/ is the desired open cover. In fact, if � < � then

U�;j n U�;j � F� [
�
.U�;j n F�/ n .U 0�;j n F�/

� � F� [



U�;j n
\

	<�

U	;j

�

� F� [
[

�<	<�

.U�;j n U	;j / D
[

��	��
F	:

The proofs of the other properties are easy.
For each j D 1; : : : ; n C 2, let U �j D

T
�2� U�;j . Then, similar to the above,

fU �1 ; : : : ; U �nC2g 2 cov.X/. Clearly, U �j � Uj and U �1 \� � �\U �nC2 D ;. Therefore,
dimX � n by Theorem 5.2.3. ut

The following corollary is a combination of Theorems 5.4.1 and 5.4.2:

Corollary 5.4.3. Let X be a normal space and n 2 !. If X has a -locally finite
closed cover fF� j � 2 �g such that dimF� � n for each � 2 �, then dimX � n.

ut
The next corollary follows from Theorem 5.4.2:
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Corollary 5.4.4. Let X be a paracompact space and n 2 !. If each point of X has
a closed neighborhood with dim � n, then dimX � n.

Proof. Since X is paracompact and each point of X has a closed neighborhood
with dim � n, X has a locally finite open cover U such that dim clU � n for each
U 2 U . Then, U cl is also locally finite in X , hence dimX � n by Theorem 5.4.2.

ut
Remark 7. Corollary 5.4.4 can also be proved by applying Michael’s Theorem on
local properties of closed sets (Corollary 2.6.6). In this case, the proof is reduced
to showing that if X is the union of two closed sets X1 and X2 with dimXi � n,
i D 1; 2, then dimX � n.

In the remainder of this section, we consider only metrizable spaces. The real
line R is 1-dimensional and we can decompose R into two 0-dimensional subsets Q
and R nQ. This can be generalized as follows:

Theorem 5.4.5 (DECOMPOSITION THEOREM). LetX be metrizable and n 2 !.
Then, dimX � n if and only if X is covered by nC 1 many subsets X1; : : : ; XnC1
with dimXi � 0.

Proof. To prove the “if” part, let U be a finite open cover of X . Since dimXi � 0,
Xi has a finite open cover Vi such that Vi 	 U and ordVi � 1. For each V 2 Vi ,
choose an open set W.V / in X so that W.V / \ Xi D V and W.V / is contained in
some member of U . Note that clW.V / \ Xi D V because V is also closed in Xi .
For each V 2 Vi , let

QV D W.V / n
[˚

clW.V 0/
ˇ
ˇ V 6D V 0 2 Vi

�
:

Then, QVi D f QV j V 2 Vig is a collection of disjoint open sets in X that covers
Xi and refines U . Observe that QV D SnC1

iD1 QVi is an open refinement of U with
ordV � nC 1. Therefore, dimX � n.

The “only if” part can be easily obtained by induction once the following
proposition has been proved. ut
Proposition 5.4.6. Let X be metrizable and dimX � n < 1. Then, X D Y [ Z
for some Y;Z � X with dimY � n � 1 and dimZ � 0.

Proof. Assume that X is a metric space. For each i 2 N, let Ui be a locally finite
open cover of X with meshUi < i�1. By paracompactness (Lemma 2.6.2) or
normality (Lemma 2.7.1), X has a closed cover fFU j U 2 Ui g such that FU � U
for all U 2 Ui . For each U 2 Ui , we apply Theorem 5.3.8 to obtain an open set BU
such that

FU � BU � clBU � U and dim bdBU � n � 1:
It is easy to see that B D fBU j U 2 Ui ; i 2 Ng is a -locally finite open basis
for X . Let

Y D
[˚

bdB
ˇ
ˇ B 2 B

�
and Z D X n Y:
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According to Corollary 5.4.3, dimY � n� 1. Since fB \Z j B 2 Bg is a -locally
finite clopen basis for Z, we have dimZ � 0 by Theorem 5.3.5. ut

In the above proof of Proposition 5.4.6, the following two facts have been
proved:

(1) Each metrizable space X with dimX � n has a -locally finite open basis B
such that dim bdB � n � 1 for every B 2 B.

(2) If a metrizable spaceX has such a basis B thenX D Y [Z for some Y;Z � X
with dimY � n � 1 and dimZ � 0.

In (2), Y is covered by n many subsets with dim � 0 by the Decomposition
Theorem 5.4.5. Hence, X is covered by n C 1 many subsets with dim � 0. By
the Decomposition Theorem 5.4.5 again, we have dimX � n. Thus, (1) implies
dimX � n. Consequently, we have the following characterization of dimension,
which is a generalization of Theorem 5.3.5:

Theorem 5.4.7. Let X be metrizable and n 2 !. Then, dimX � n if and only if X
has a -locally finite open basis B such that dim bdB � n� 1 for each B 2 B. ut

The following theorem is obtained as a corollary of the Decomposition Theo-
rem 5.4.5:

Theorem 5.4.8 (ADDITION THEOREM). For any two subspaces X and Y of a
metrizable space,

dimX [ Y � dimX C dimY C 1: ut

Regarding the dimension of product spaces, we have the following theorem:

Theorem 5.4.9 (PRODUCT THEOREM). For any metrizable spaces X and Y ,

dimX � Y � dimX C dimY:

Proof. If dimX D 1 or dimY D 1, the theorem is obvious.
When dimX , dimY <1, we prove the theorem by induction on dimXCdimY .

The case dimX D dimY D 0 is a consequence of Theorem 5.3.6. Assume the
theorem is true for any two spaces X and Y with dimX C dimY < k. Now, let
dimX D m, dimY D n, and mC n D k. According to Theorem 5.4.7, X and Y
have -locally finite open bases BX and BY such that dim bdB � m � 1 for each
B 2 BX and dim bdB � n � 1 for each B 2 BY . Then,

B D ˚B1 � B2
ˇ
ˇ B1 2 BX and B2 2 BY

�

is a -locally finite open basis for X � Y . For each B1 2 BX and B2 2 BY ,

bd.B1 � B2/ D .bdB1 � clB2/[ .clB1 � bdB2/:
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Hence, dim bd.B1�B2/ � mCn�1 by the inductive assumption and Theorems 5.4.1
or 5.4.2. Then, we have dimX � Y � mC n by Theorem 5.4.7. ut
Remark 8. In Theorem 5.4.9, the equality dimX � Y D dimX C dimY does
not hold in general. In fact, there exists a separable metrizable space X such that
dimX2 6D 2 dimX . Such a space will be constructed in Theorem 5.12.1. However, if
one ofX or Y is a locally compact polyhedron or a metric polyhedron (cf. Sect. 4.5),
the equality does hold. This will be proved in Theorem 7.9.7.

5.5 Inductive Dimensions

In this section, we introduce two types of dimension defined by induction. First, the
large inductive dimension IndX of X can be defined as follows: Ind; D �1 and
IndX � n if each closed set A � X has an arbitrarily small open neighborhood V
with Ind bdV � n�1. Then, we define IndX D n if IndX � n and IndX 6� n�1.
We write IndX < 1 if IndX � n for some n 2 N, and otherwise IndX D 1.
Observe the following:

• If Y is a closed set in X then IndY � IndX .

For an open set G and a closed set F in X ,

bd clG D clG n int clG � clG nG D bdG and

bd intF D cl intF n intF � F n intF D bdF:

Then, IndX � n if and only if each closed setA inX has an arbitrarily small closed
neighborhood V with Ind bdV � n � 1.

As is easily observed, IndX � n if and only if, for any two disjoint closed sets
A andB in X , there is a partitionL between A andB with IndL � n�1. Note that
Ind; D dim; D �1. The next theorem follows, by induction, from Theorem 5.3.8.

Theorem 5.5.1. For every metrizable space X , dimX D IndX . ut
Next, the small inductive dimension indX ofX is defined as follows2: ind; D

�1 and indX � n if each point x 2 X has an arbitrarily small open neighborhood
V with ind bdV � n� 1; and then indX D n if indX � n and indX 6� n� 1. We
write indX <1 if indX � n for some n 2 N, and otherwise indX D1. Now,

• indY � indX for an arbitrary subset Y � X .

Then, indX � n if and only if each point x of X has an arbitrarily small closed
neighborhood V with ind bdV � n � 1.

2In this chapter, spaces are assumed normal, but the small inductive dimension also makes sense
for regular spaces.
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By definition, indX � IndX and ind; D Ind; D dim; D �1. As is easily
shown, indX � n if and only ifX has an open basis B such that ind bdB � n�1 for
everyB 2 B. Comparing this with Theorem 5.4.7, one might expect that the equality
indX D IndX D dimX holds for an arbitrary metrizable space X . However,
there exists a completely metrizable space X such that indX 6D IndX . Before
constructing such a space, we first prove the following Coincidence Theorem:

Theorem 5.5.2 (COINCIDENCE THEOREM). For every separable metrizable
space X , the equality dimX D IndX D indX holds.

Proof. Because indX � IndX and IndX D dimX , it is enough to show that
dimX � indX when indX < 1. We will prove this by induction on indX .
Assume that dimX � indX for every separable metrizable space X with indX <

n. Now, let indX D n. Then, X has an open basis B such that ind bdB � n � 1
for every B 2 B. Since X is separable metrizable, X has a countable open basis
fVi j i 2 Ng. We define

P D ˚.i; j / 2 N
2
ˇ
ˇ Vi � B � Vj for some B 2 B

�
:

For each p D .i; j / 2 P , choose Bp 2 B so that Vi � Bp � Vj . Then, fBp j p 2
P g is a countable open basis for X such that dim bdBp � ind bdBp � n � 1 for
each p 2 P . By Theorem 5.4.7, we have dimX � n. ut

In the non-separable case, we have the following theorem:

Theorem 5.5.3. There exists a completely metrizable spaceZ such that indZ D 0
but IndZ D dimZ D 1. Furthermore, Z has a 0-dimensional compactification.

Example and Proof. Let ˝ D Œ0; !1/ be the space of all countable ordinals with
the order topology. Note that the space ˝ D Œ0; !1� is compact and 0-dimensional.
In fact, for each open cover U of ˝ , we can inductively choose !1 D ˛0 > ˛1 >

˛2 > � � � so that each .˛i ; ˛i�1� is contained in some member of U . Since ˝ is
well-ordered, some ˛n is equal to 0. Thus, U has a finite open refinement f0g [
f.˛i ; ˛i�1� j i D 1; : : : ; ng, which is pair-wise disjoint.

Our space is constructed as a subspace of the product ˝N. Let L be the subset
of ˝ consisting of infinite limit ordinals and S D ˝ n L. For each k 2 N, let
Sk D f˛ C k j ˛ 2 Lg. We define

Z D ˚z 2 ˝N
ˇ
ˇ z.k/ 2 L) z.kC1/ D z.k/Ck; z.kCj / 2 Sk for j > 1

�
:

By definition, we have ind˝N D 0, so indZ D 0. On the other hand, we can write
Z D SN [Sk2NZk , where

Zk D
˚
z 2 Z ˇ

ˇ z.k/ 2 L� � Sk�1 � L � SN

k :

Since S is a discrete space, it follows from Theorem 5.3.6 that dimSN D 0.
As is easily seen, each Zk is homeomorphic to Sk�1 � SN

k via the following
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correspondence:

Zk 3 z 7! .z.1/; : : : ; z.k � 1/; z.k C 1/; z.k C 2/; : : : / 2 Sk�1 � SN

k ;

where z.k C 1/ D z.k/C k. Then, it follows that dimZk D 0 for each k 2 N.
(Neighborhood bases) For each ˛ 2 L, choose �1.˛/ < �2.˛/ < � � � < ˛ so that

supi2N �i .˛/ D ˛. Each z 2 Z has the neighborhood basis fUn.z/ j n 2 Ng defined
as follows:

Un.z/ D

8
ˆ̂
<

ˆ̂
:

˚
x 2 Z ˇ

ˇ x.i/ D z.i/ for i � n� if z 2 SN;
˚
x 2 Z ˇ

ˇ x.i/ D z.i/ for k 6D i � k C n,

and �n.z.k// < x.k/ � z.k/
�

if z 2 Zk:

Note that each Un.z/ is clopen in Z, but fUn.z/ j z 2 SNg is not locally finite at the
point .!; !C1; !C1; : : : / in Z (cf. Theorem 5.3.5). The following statements can
be easily proved:

(1) If z; z0 2 SN or z; z0 2 Zk , then Un.z/\ Un.z0/ 6D ; ) Un.z/ D Un.z0/.
(2) If z 2 Zk , z0 2 Zk0 , and k < k0 < nC k, then Un.z/ \ Un0.z0/ D ; for every

n0 2 N.
(3) If z 2 SN, z0 2 Zk , and n < k, then Un.z/ \ Un0.z0/ 6D ; ) Un0.z0/ � Un.z/.
Furthermore, we have the following:

(4) For any z 2 SN and n 2 N, there exists somem > n such thatUm.z/\Um.z0/ D
; for every z0 2Sk�n Zk .

In fact, if z.n C 1/ 62 Sk for any k � n, then UnC1.z/ \ UnC1.z0/ D ; for every
z0 2 Sk�n Zk . If z.n C 1/ 2 Sk for some k � n, then Um.z/ \ Um.z0/ D ; for
every m > n and z0 2 Sk 6Dj�n Zj . On the other hand, because z.k C 1/ 2 S , we
can write z.k C 1/ D ˛ C r , where ˛ 2 L [ f0g and r 2 N. If ˛ D 0 or r 6D k,
then Um.z/ \ Um.z0/ D ; for every m > k and z0 2 Zk . When ˛ 2 L and r D k,
choose m > k so that z.k/ 62 .�m.˛/; ˛�. Then, it follows that Um.z/ \ Um.z0/ D ;
for every z0 2 Zk .

Note that each Zk is closed in Z by (2) and (4). Then, as mentioned before, we
have dimZ � 1.

(Metrizability) To prove the metrizability, by the Frink Metrization Theo-
rem 2.4.1 it suffices to show that, for each z 2 Z and n 2 N, there exists m 2 N so
that Um.z/ \ Um.z0/ 6D ; implies Um.z0/ � Un.z/.

When z 2 Zk for some k 2 N, if z0 2 Sk0<k Zk0 or z0 2 Sk<k0<nC2k Zk0 then
UnCk.z/ \ UnCk.z0/ D ; by (2). Assume UnCk.z/ \ UnCk.z0/ 6D ;. If z0 2 SN [S
k0>nCk Zk0 , then UnCk.z0/ � Un.z/ by definition. If z0 2 Zk , then UnCk.z0/ D

UnCk.z/ � Un.z/ by (1). Thus, we have

UnCk.z/\ UnCk.z0/ 6D ; ) UnCk.z0/ � Un.z/:
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For z 2 SN, we can choosem > n by (4) such that Um.z/\Um.z0/ D ; for every
z0 2 Sk�n Zk . Assume Um.z/ \ Um.z0/ 6D ;. Then, z0 2 SN or z0 2 Zk for some
k > n. If z0 2 SN, then Um.z0/ D Um.z/ � Un.z/ by (1). If z0 2 Zk for some k > n,
then Um.z0/ � Un.z/ by (3). Thus, we have

Um.z/ \ Um.z0/ 6D ; ) Um.z
0/ � Un.z/:

(Complete metrizability) Because of Theorem 2.5.5, to show the complete
metrizability of Z, it is enough to prove that Z is a Gı-set in the compact space

˝
N

. Extend each Un.z/ to a neighborhood of z in ˝
N

as follows:

QUn.z/ D

8
ˆ̂
<

ˆ̂
:

˚
x 2 ˝N ˇˇ x.i/ D z.i/ for i � n� for z 2 SN;
˚
x 2 ˝N ˇˇ x.i/ D z.i/ for k 6D i � k C n,

and �n.z.k// < x.k/ � z.k/
�

for z 2 Zk:

Then, each Wn D S
z2Z QUn.z/ is an open neighborhood of Z in ˝

N

and Z DT
n2NWn. Indeed, if x 2 Tn2NWn n SN, then x.k/ 2 L for some k 2 N. For

n > k, choose zn 2 Z so that x 2 QUn.zn/. Since x.k/ 2 L and k < n, it follows
that zn 62 SN [Sk0 6Dk Zk0 , i.e., zn 2 Zk . Then, x.kC i/ D zn.kC i/ 2 Sk for each
0 < i � n and �n.zn.k// < x.k/ � zn.k/. Since x.kC1/ D zn.kC1/ D zn.k/Ck,
every zn.k/ is identical, say z.k/. Since z.k/ D sup �n.z.k//, we have x.k/ D z.k/.
Taking n 2 N arbitrarily large, we can see that x.i/ 2 Sk for any i > k. Hence,
x 2 Zk � Z.

(1-dimensionality) It has been shown that Z is metrizable and each Zk is closed
inZ. Then, applying the Countable Sum Theorem (5.4.1) and the Addition Theorem
(5.4.8), we have dimZ � 1.

To see that dimZ > 0, assume dimZ D 0. Let W D fW˛ j ˛ 2 ˝g 2 cov.Z/,
whereW˛ D fz 2 Z j 0 � z.2/ � ˛g. By the assumption,W has an open refinement
V with ordV � 1. Then, V is discrete in Z. Here, we call s 2 Sn regular if there
exist f WLi2N Si ! S and V 2 V such that R.sIf / � V , where

R.sIf / D ˚x 2 SN
ˇ
ˇ x.i/ D s.i/ for i � n and

x.nC i/ � f .x.n/; : : : ; x.nC i � 1// for i 2 N
�
:

Otherwise, s is said to be irregular.
First, we verify the following fact:

(5) Every s 2 S is irregular.

For each f W Li2N Si ! S and ˛ 2 ˝ , define s˛f 2 SN as follows: s˛f .1/ D s,
s˛f .2/ D maxfs; f .s/; ˛ C 1g, and s˛f .i C 1/ D f .s˛f .1/; : : : ; s

˛
f .i// for i � 2.

Then, s˛f 2 R.sIf / nW˛ . Hence, R.sIf / is not contained in any V 2 V .
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Next, we show the following fact:

(6) If s 2 Sn is irregular, then .s; t/ 2 SnC1 is irregular for some t 2 S .

Suppose that .s; t/ is regular for every t 2 S , that is, there are ft WLi2N Si ! S

and Vt 2 V such that R.s; t Ift / � Vt . When there exist a 2 S and V 2 V such that
Vt D V for t � maxfa; fa.a/g, we define f WLi2N Si ! S by

f .t/ D maxfa; fa.a/g for t 2 S and

f .t1; : : : ; ti / D ft2.t2; : : : ; ti / for .t1; : : : ; ti / 2 Si , i � 2.

For x 2 R.sIf /, let t D x.nC 1/. Then, x 2 R.s; t Ift / because

x.nC 1C i/ � f .x.n/; : : : ; x.nC i//
D ft .x.nC 1/; : : : ; x.nC 1C .i � 1/// for i 2 N.

Moreover, t D x.n C 1/ � f .x.n// D maxfa; fa.a/g � a. Hence, R.sIf / �S
t�a R.s; t Ift / � V , which contradicts the irregularity of s. Therefore, we can

obtain an increasing sequence a1 < a2 < � � � in S such that Vai 6D VaiC1
and

aiC1 � fai .ai /. Let ˛ D supi2N ai 2 L and b0 D ˛ C nC 1. For each j 2 N, we
can inductively choose bj 2 SnC1 so that

bj � sup
i2N

fai .ai ; b0; : : : ; bj�1/:

Then, we have

z D .s.1/; : : : ; s.n/; ˛; b0; b1; b2; : : : / 2 ZnC1 and

zi D .s.1/; : : : ; s.n/; ai ; b0; b1; b2; : : : / 2 R.s; ai Ifai / � Vai ;

where limi!1 zi D z. This contradicts the discreteness of V because Vai 6D VaiC1
.

By (5) and (6), we obtain s 2 SN such that each .s.1/; : : : ; s.n// 2 Sn is
irregular. Then, s is contained in some V 2 V , from which Un.s/ � V for some
n 2 N, which implies that .s.1/; : : : ; s.n// is regular. This is a contradiction.

(0-dimensional compactification) Finally, we will show that cl
˝

N Z is a 0-

dimensional compactification of Z. It suffices to show that dim˝
N D 0. Because

˝
N

is compact, each open cover U of ˝
N

has a finite refinement

˚
p�1mi

�Qmi
jD1Œ˛i;j ; ˇi;j �

� ˇ
ˇ i D 1; : : : ; n�;

where pk W ˝N ! ˝
k

is the projection onto the first k factors. We write

f˛i;j ; ˇi;j j i D 1; : : : ; nI j D 1; : : : ; mi g D f�k j k D 1; : : : ; `g;
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where �k < �kC1 for each k D 1; : : : ; ` � 1. Note that �1 D 0 and �` D !1. Then,
U has the following pair-wise disjoint open refinement:

˚
p�1m

�Qm
jD1.�kj�1; �kj �

� ˇ
ˇ kj D 1; : : : ; `

�
;

where m D maxfm1; : : : ; mng and .�0; �1� D f0g. Therefore, dim˝
N D 0. This

completes the proof. ut
Remark 9. According to Theorem 5.5.3, there exists a 0-dimensional compact
space that contains a 1-dimensional subspace. Thus, in the Subset Theorem 5.3.3,
metrizability cannot be replaced by compactness.

Remark 10. The inequality dimX � IndX holds for any completely normal (=
hereditarily normal) space X because the “if” part of Theorem 5.3.8 is valid for
such a space, as was pointed out in Remark 6 (at the end of Sect. 5.3).

5.6 Infinite Dimensions

In this section, several types of infinite dimensions are defined and discussed.
According to Theorem 5.2.17, dimX D 1 if and only if X has an essential
family of n pairs of disjoint closed sets for any n 2 N. A space X is said to be
strongly infinite-dimensional (s.i.d.) if X has an infinite essential family of pairs
of disjoint closed sets. Obviously, if X is s.i.d. then dimX D1. It is said that X is
weakly infinite-dimensional (w.i.d.) if dimX D 1 and X is not s.i.d.,3 that is, for
every family .Ai ; Bi /i2N of pairs of disjoint closed sets in X , there are partitionsLi
between Ai and Bi such that

T
i2NLi D ;.

Theorem 5.6.1. The Hilbert cube IN is strongly infinite-dimensional.

Proof. For each i 2 N, let

Ai D
˚
x 2 IN

ˇ
ˇ x.i/ D 0� and Bi D

˚
x 2 IN

ˇ
ˇ x.i/ D 1�:

Then, .Ai ; Bi /i2N is essential in IN. Indeed, for each i 2 N, let Li be a partition
between Ai and Bi . For each n 2 N, let jn W In ! IN be the natural injection
defined by

jn.x/ D .x.1/; : : : ; x.n/; 0; 0; : : : /:
Then, for each i � n, j�1n .Li / is a partition between

j�1n .Ai / D
˚
x 2 In

ˇ
ˇ x.i/ D 0� and j�1n .Bi / D

˚
x 2 In

ˇ
ˇ x.i/ D 1�:

3In many articles, the infinite dimensionality is not assumed, i.e., w.i.d. = not s.i.d., so f.d. implies
w.i.d. However, here we assume the infinite dimensionality because we discuss the difference
among infinite-dimensional spaces.
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Since .j�1n .Ai /; j
�1
n .Bi //

n
iD1 is essential in In (Corollary 5.2.16), we haveTn

iD1 j�1n .Li / 6D ;, hence
Tn
iD1 Li 6D ;. Since IN is compact, it follows thatT

i2NLi 6D ;. ut
By definition, a space is strongly infinite-dimensional if it contains an s.i.d.

closed subspace. Then, it follows from Theorem 5.6.1 that every space containing a
copy of IN is strongly infinite-dimensional. For example, `1, `2, and R

N are s.i.d.4

Moreover, rint Q D Sn2NŒ�1C 2�n; 1 � 2�n�N and IN n .0; 1/N are also s.i.d.5

It is said that X is countable-dimensional (c.d.) if X is a countable union of
f.d. normal subspaces, where it should be noted that subspaces of normal spaces
need not be normal (cf. Sect. 2.10). A metrizable space is countable-dimensional
if and only if it is a countable union of 0-dimensional subspaces, because an f.d.
metrizable space is a finite union of 0-dimensional subspaces by the Decomposition
Theorem 5.4.5.

Theorem 5.6.2. A countable-dimensional metrizable space X with dimX D 1
is weakly infinite-dimensional. In other words, any strongly infinite-dimensional
metrizable space is not countable-dimensional.

Proof. Let .Ai ; Bi /i2N be a family of pairs of disjoint closed sets in X . We can
write X D S

i2NXi , where dimXi D 0. From Theorem 5.2.17 and the Partition
Extension Lemma 5.3.7, it follows that for each i 2 N,X has a partitionLi between
Ai and Bi such that Li \Xi D ;. Then, we have

\

i2N
Li D


\

i2N
Li

�

\

[

i2N
Xi

�

D
[

i2N

0

@

\

j2N
Lj

�

\ Xi
1

A

�
[

i2N
.Li \ Xi/ D ;:

Therefore,X is w.i.d. ut
According to Theorem 5.6.2, the space

L
n2N In and its one-point compactifica-

tion are c.d., hence they are w.i.d. The following space is also c.d. (so w.i.d.):

INf D
˚
x 2 IN

ˇ
ˇ x.i/ D 0 except for finitely many i

�
:

There exists a w.i.d. compactum that is not c.d. As is easily seen, any subspace of a
c.d. metrizable space is also c.d. However, a subspace of a w.i.d. metrizable space
need not be w.i.d. Such a compactum will be constructed in Theorem 5.13.1.

4It is known that `1 � `2 � R
N, where the latter homeomorphy was proved by R.D. Anderson.

5Since rint Q and IN n .0; 1/N are not completely metrizable, they are not homeomorphic to R
N,

but it is known that rint Q� IN n .0; 1/N .
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Now, we introduce a strong version of countable dimensionality. We say that X
is strongly countable-dimensional (s.c.d.) if X is a countable union of f.d. closed
subspaces. The space

L
n2N In, its one-point compactification, and the space INf are

s.c.d. Every s.c.d. space is c.d. but the converse does not hold. Let 	! be the subspace
of the Hilbert cube IN defined as follows:

	! D
˚
x 2 IN

ˇ
ˇ x.i/ 2 I nQ except for finitely many i

�
:

Theorem 5.6.3. The space 	! is countable-dimensional but not strongly countable-
dimensional.

Proof. Since 	! is the countable union of subspaces

˚
x 2 IN

ˇ
ˇ x.i/ 2 I nQ for i � n� � In � .I nQ/N;

it follows that 	! is c.d. Moreover, dim 	! D 1 because In � f0g � 	! for any
n 2 N.

Assume that 	! is s.c.d., that is, 	! D Sn2N Fn, where each Fn is f.d. and closed
in 	! . Consider the subspace .InQ/N � 	! . Since .InQ/N is completely metrizable,
at least one Fn \ .I n Q/N has the non-empty interior in .I n Q/N by the Baire
Category Theorem 2.5.1. Then, we have a non-empty open set U in 	! such that
U \ .I n Q/N � Fn \ .I n Q/N. Since U contains a copy of every n-cube In, it
follows that dimU D 1, hence U n Fn 6D ; because dimFn <1. Since .I nQ/N
is dense in 	! , we have

�
U \ .I nQ/N� n �Fn \ .I nQ/N

� D .U n Fn/\ .I nQ/N 6D ;;

which is a contradiction. Therefore, 	! is not s.c.d. ut
A collection A of subsets of X is locally countable if each x 2 X has a neigh-

borhood U that meets only countably many members of A, i.e., cardAŒU � � @0.
Basic Properties of (Strong) Countable-Dimension 5.6.4.

(1) If X is a countable union of countable-dimensional subspaces, then X is
countable-dimensional.

(2) If X is a countable union of strongly countable-dimensional closed subspaces,
then X is strongly countable-dimensional.

(3) Every closed subspace of a (strongly) countable-dimensional space is (strongly)
countable-dimensional. For a metrizable space, this is valid for a non-closed
subspace, that is, every subspace of a (strongly) countable-dimensional metriz-
able space is (strongly) countable-dimensional.

The proofs of the above three items are trivial by definition.

(4) A paracompact space X is (strongly) countable-dimensional if each point x 2
X has a (strongly) countable-dimensional neighborhood.
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Sketch of Proof. Let P be the property of closed sets in X being c.d. (or s.c.d.).
Apply Michael’s Theorem on local properties (Corollary 2.6.6). To show (F-3), use
the Locally Finite Sum Theorem 5.4.2.

(5) If a paracompact space X has a locally countable union of countable-
dimensional subspaces then X is countable-dimensional.

(6) If a paracompact space X has a locally countable union of strongly countable-
dimensional closed subspaces then X is strongly countable-dimensional.

Sketch of Proof of (5) (and (6)). Let A be a locally countable (closed) cover of X such
that each A 2 A is c.d. (s.c.d.). Each x 2 X has an open neighborhood Vx in X such
that AŒVx� is countable. Then, st.Vx;A/ D S

AŒVx� is a c.d. (s.c.d.) neighborhood of
x in X .

From Theorem 5.3.8, it follows that any finite-dimensional metrizable space X
contains an n-dimensional closed set for every n � dimX . However, this is not
true for an infinite-dimensional space. Namely, there exists an infinite-dimensional
compactum such that every subset with dim 6� 0 is infinite-dimensional. Such a
space is called a hereditarily infinite-dimensional (h.i.d.) space. We will construct
an h.i.d. compactum in Theorem 5.13.4.

Next, we introduce infinite-dimensional versions of inductive dimensions. By
transfinite induction on ordinals ˛ � !, the large transfinite inductive dimension
trIndX and the small transfinite inductive dimension trindX are defined as
follows: trIndX < ! means that IndX < 1 and trIndX � ˛ if each closed
set A � X has an arbitrarily small open neighborhood V with trInd bdV < ˛.
Similarly, trindX < ! means that indX < 1 and trindX � ˛ if each x 2 X
has an arbitrarily small open neighborhood V with trind bdV < ˛. Then, we define
trIndX D ˛ (resp. trindX D ˛) if trIndX � ˛ (resp. trindX � ˛) and trIndX 6� ˇ
(resp. trindX 6� ˇ) for any ˇ < ˛. It should be noted that trIndX < ! (resp.
trindX < !) implies trIndX D IndX < 1 (resp. trindX D indX < 1). Using
transfinite induction, we can show that if trIndX D ˛ (resp. trindX D ˛) and
ˇ < ˛, then X contains a closed set A with trIndA D ˇ (resp. trindA D ˇ).

Lemma 5.6.5. If trIndX D ˛ (resp. trindX D ˛) and ˇ < ˛, thenX has a closed
set Y such that trIndY D ˇ (resp. trindY D ˇ).

Proof. Because of the similarity, we prove the lemma only for trInd. Assume that
the lemma holds for any ordinal < ˛. Since trIndX 6� ˇ, X has disjoint closed
sets A and B such that trIndL 6< ˇ for any partition L between A and B . On the
other hand, since trIndX � ˛, there is a partition L between A and B such that
trIndL < ˛. If ˇ D trIndL, then L is the desired Y . When ˇ < trIndL, by the
inductive assumption, L has a closed set Y with trIndY D ˇ. ut

It is said that a space X has large (or small) transfinite inductive dimension
(abbrev. trInd (or trind)) if trIndX � ˛ (or trindX � ˛) for some ordinal ˛.

Proposition 5.6.6. For a space X , the following statements hold:

(1) If X has trInd, then X has trind and trindX � trIndX .
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(2) If X has trind, then every subspace A of X also has trind, where trindA �
trindX .

(3) If X has trInd, then every closed subspace A of X has trInd, where trIndA �
trIndX .

(4) IfX has no trInd, thenX has a closed setA with an open neighborhoodU such
that the boundary of each neighborhood of A contained in U has no trInd.

(5) IfX has no trind, thenX has a point x 2 X with an open neighborhoodU such
that the boundary of each neighborhood of x contained in U has no trind.

Proof. Statements (1)–(3) are easily proved by the definitions.
(4): Let P be the collection of pairs .A;U / of closed sets A in X and open sets

U in X with A � U . Suppose that for each .A;U / 2 P , A has a neighborhood
V.A;U / in X such that clV.A;U / � U and bdV.A;U / has trInd. Take an ordinal ˛ so
that ˛ > trInd bdV.A;U / for every .A;U / 2 P . Then, IndX � ˛, so X has trInd.

(5): In the proof of (4), replace the closed sets A in X with points x 2 X . ut
We now prove that the converse of Proposition 5.6.6(1) does not hold.

Theorem 5.6.7. The strongly countable-dimensional space
L

n2N In has no trInd
but trind

L
n2N In D !.

Proof. Each point of
L

n2N In is contained in some In, hence trind
L

n2N In � !.
Because ind

L
n2N In D1, we have trind

L
n2N In D !.

On the other hand, assume that
L

n2N In has trInd, i.e., trInd
L

n2N In D ˛

for some ordinal ˛. Then, ˛ � ! because dim
L

n2N In D 1. By Lemma 5.6.5,L
n2N In contains a closed set X with trIndX D !. For each n 2 N, let

Xn D X \ In. Then, each Xn is finite-dimensional, but supn2N dimXn D 1
because X D L

n2NXn. By Theorem 5.3.8, we have disjoint closed sets An and
Bn in Xn such that dimL � dimXn � 1 for any partition L between An and Bn in
Xn. Then, A D L

n2N An and B D L
n2NBn are disjoint closed sets in X . Since

trIndX D !, we have a partition L in X between A and B such that trIndL < !,
i.e., dimL < 1. Choose n 2 N so that dimXn > dimL C 1. Then, Xn \ L is a
partition in Xn between An and Bn and dimXn \L � dimL < dimXn � 1. This is
a contradiction. Therefore,

L
n2N In has no trInd. ut

The above Theorem 5.6.7 also shows that the converse of the following theorem
does not hold.

Theorem 5.6.8. A metrizable space is countable-dimensional if it has trInd.

Proof. This can be proved by transfinite induction. Assume that all metrizable
spaces with trInd < ˛ are c.d. and let X be a metrizable space with trIndX D ˛.
By the analogy of Proposition 5.4.6, we can construct a -locally finite basis B for
X such that trInd bdB < ˛ for each B 2 B. Let

Y D
[˚

bdB
ˇ
ˇ B 2 B

�
and Z D X n Y:
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Then, dimZ � 0 by Theorem 5.3.5. On the other hand, by the assumption, bdB is
c.d. for all B 2 B. Then, Y is also c.d. by 5.6.4(5) and (1). Therefore,X is c.d. ut

The following theorem can be proved in a similar manner (cf. the proof of
Theorem 5.5.2).

Theorem 5.6.9. A separable metrizable space is countable-dimensional if it has
trind. ut
Remark 11. In Theorem 5.6.9, it is unknown whether the separability is necessary
or not, that is, the existence of a metrizable space that has trind but is not c.d. is
unknown.

As we saw in Theorem 5.6.7, the converse of Theorem 5.6.8 is not true in general,
but it is true for compacta. Namely, the following theorem holds:

Theorem 5.6.10. A compactum has trInd if and only if it is countable-dimensional.

Proof. It is enough to prove the “if” part. Let X be compact and X D S
n2NAn,

where dimAn � 0 for each n 2 N. Suppose that X has no trInd. Then, by
Proposition 5.6.6(4), X has a closed set A with an open neighborhood U such
that the boundary of each neighborhood of A contained in U has no trInd. Since
dimA1 � 0, we can use the Partition Extension Lemma 5.3.7 to find a closed
neighborhood V1 of A contained in U such that bdV1 \A1 D ;. Then,X1 D bdV1
has no trInd andX1\A1 D ;. By the same argument, we have a closed setX2 � X1
that misses A2 and has no trInd. Thus, by induction, we can obtain closed sets
X1 � X2 � � � � such that each Xn has no trInd and Xn \An D ;. Then,

\

n2N
Xn D

\

n2N
Xn \

[

n2N
An �

[

n2N
.Xn \An/ D ;;

which contradicts the compactness of X . ut
Although

L
n2N In has no trInd (Theorem 5.6.7), the one-point compactification

of
L

n2N In has trInd by Theorem 5.6.10. Thus, even if a space X has trInd, it does
not imply that a subspace A of X has trInd, that is, Theorem 5.6.6(3) does not hold
without the closedness of A.

Theorem 5.6.11. A completely metrizable space has trind if it is countable-
dimensional.

Proof. Let X D .X; d/ be a complete metric space and X D S
n2NAn,

where dimAn � 0 for each n 2 N. Suppose that X has no trind. Then, by
Proposition 5.6.6(5), X has a point a with an open neighborhood U such that
the boundary of each neighborhood of a contained in U has no trind, where we
may assume that diamU < 2�1. In the same way as for Theorem 5.6.10, we can
inductively obtain non-empty closed sets X1 � X2 � � � � such that Xn \ An D ;
and diamXn < 2�n for each n 2 N. Then,

\

n2N
Xn D

\

n2N
Xn \

[

n2N
An �

[

n2N
.Xn \ An/ D ;:
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However, the completeness ofX implies
T
n2NXn 6D ;. This is a contradiction. ut

Combining Theorems 5.6.9 and 5.6.11, we have the following corollary:

Corollary 5.6.12. A separable completely metrizable space has trind if and only if
it is countable-dimensional. ut

The next theorem shows that the “if” part of Theorem 5.6.11 does not hold
without the completeness.

Theorem 5.6.13. The strongly countable-dimensional space INf has no trind.

To prove this theorem, we need the following two lemmas:

Lemma 5.6.14. LetX be a subspace of a metrizable spaceM . Then, every open set
U inM contains an open set U 0 inM such thatX\U 0 D X\U andX\clM U 0 D
clX.X \ U 0/, hence X \ bdM U 0 D bdX.X \ U 0/.
Proof. Take d 2 MetrM and define

U 0 D ˚x 2 U ˇ
ˇ d.x;X \ U / < d.x;X n U /�:

Then,X\U 0 D X\U . Evidently, clX.X\U 0/ � X\clM U 0. Assume that clX.X\
U 0/ D clX.X \U / 6D X \ clM U 0, that is, we have x 2 X \ clM U 0 n clX.X \U /.
For each " > 0, we have y 2 U 0 so that d.x; y/ < 1

2
minf"; d.x;X \ U /g. Since

d.y;X \ U / < d.y;X n U /, it follows that

d.x;X n U / � d.y;X n U /� d.x; y/
> d.y;X \ U /� 1

2
d.x;X \ U / D 1

2
d.x;X \ U / > 0:

On the other hand, x 62 X \ U , i.e., x 2 X n U , which is a contradiction. ut
Lemma 5.6.15. Let M be a separable metrizable space and X � M with
trindX � ˛. Then, X is contained in some Gı-set X� in M with trindX� � ˛.

Proof. Assuming that the lemma is true for any ordinal < ˛, we will show the
lemma for ˛. For each i 2 N, applying Lemma 5.6.14, we can find a countable
open collection Ui in M such that X � Xi D SUi , meshUi < 1=i , and trindX \
bdM U < ˛ for each U 2 Ui , where X \ bdM U D bdX.X \ U / for each U 2 Ui .
By the inductive assumption, for each U 2 Ui , there is a Gı-set GU in M such that
X \ bdM U � GU and trindGU < ˛. Then,

X� D
\

i2N
Xi \

\

i2N

\

U2Ui
.GU [ .M n bdM U //

D
\

i2N
Xi n

[

i2N

[

U2Ui
.bdM U nGU /
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is a Gı-set in M and X � X�. For any i 2 N, every x 2 X� is contained in some
U 2 Ui . Then, diamX� \ U < 1=i and

bdX�.X� \ U / D clX�.X� \ U / n U
� .X� \ clM U / n U D X� \ bdM U � GU ;

which implies trindX� \ bdM U < ˛. Thus, each point x 2 X� has an arbitrarily
small neighborhood V with trind bdX� V < ˛. Hence, trindX� � ˛. ut
Proof of Theorem 5.6.13. Assume that INf has trind. According to Lemma 5.6.15,

INf is contained in some Gı-set G in IN that also has trind. Then, G is c.d. by

Theorem 5.6.9. We show that G contains a copy of IN, hence G is s.i.d., which
contradicts Theorem 5.6.2. Thus, we obtain the desired result.

Let G D T
k2N Uk, where Uk is open in IN. Note that 0 D .0; 0; : : : / 2 INf �

G � U1. Choose n1 2 N and a1; : : : ; an1 2 .0; 1/ so that

˚
x 2 IN

ˇ
ˇ x.i/ � ai for i D 1; : : : ; n1

� � U1:

Note that
Qn1
iD1Œ0; ai � � f0g � INf � U2. According to the Wallace Theorem 2.1.2,

we can choose n2 2 N and an1C1; : : : ; an2 2 .0; 1/ so that n2 > n1 and

˚
x 2 IN

ˇ
ˇ x.i/ � ai for i D 1; : : : ; n2

� � U2:

By induction, we can obtain an increasing sequence ni of natural numbers and a
sequence ai 2 .0; 1/ such that

˚
x 2 IN

ˇ
ˇ x.i/ � ai for i D 1; : : : ; nk

� � Uk for each k 2 N:

Then, G D Tk2NUk contains
Q
i2NŒ0; ai � � IN. ut

Remark 12. There exists a slightly stronger version of the weak infinite dimension.
We say that X is weakly infinite-dimensional in the sense of Smirnov (S-w.i.d.)
if dimX D 1, and for every family .Ai ; Bi /i2N of pairs of disjoint closed sets
in X , there are partitions Li between Ai and Bi such that

Tn
iD1 Li D ; for some

n 2 N. To distinguish w.i.d. from S-w.i.d. the term “weakly infinite-dimensional
in the sense of Alexandroff (A-w.i.d.)” is used. Obviously, every S-w.i.d. space is
(A-)w.i.d. For compact spaces, the converse is also true, that is, the two notions of
weak infinite dimension are equivalent. It was shown in [32] that the Stone–Čech
compactification of a normal space X is w.i.d. if and only if X is S-w.i.d.6

6Refer to Engelking’s book “Theory of Dimensions, Finite and Infinite,” Problem 6.1.E.
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5.7 Compactification Theorems

Note that every separable metrizable space X has a metrizable compactification.
Indeed, embedding X into the Hilbert cube IN (Corollary 2.3.8), the closure of X
in IN is a metrizable compactification ofX . On the other hand, every n-dimensional
metrizable space can be embedded in an n-dimensional completely metrizable space
as a dense set (Theorem 5.3.4). In this section, we show that every n-dimensional
separable metrizable space has an n-dimensional metrizable compactification and
that every c.d. (resp. s.c.d.) separable completely metrizable space has a c.d. (resp.
s.c.d.) metrizable compactification.

Note. Here is an alternative proof of Corollary 2.3.8. Let X D .X; d/ be a separable
metric space with fai j i 2 Ng a countable dense set. For each i 2 N, we define a map
fi W X ! I by fi .x/ D minf1; d.x; ai /g for each x 2 X . Then, the map f W X ! IN

defined by f .x/D .fi .x//i2N is an embedding. Indeed, for x 6D y 2 X , choose ai so that
d.x; ai / < minf1; 1

2
d.x; y/g. Then, fi .x/ < fi .y/ because

fi .x/ D d.x; ai / <
1
2
d.x; y/ < d.x; y/� d.x; ai / � d.y; ai /:

Thus, f is injective. If f is not an embedding, then there are x; xn 2 X , n 2 N, and
0 < ı < 1 such that limn!1

f .xn/ D f .x/ but d.xn; x/ � ı for all n 2 N. Choose ai so
that d.x; ai / <

1
3
ı. Then, we have fi .x/ < 1. For sufficiently large n 2 N,

fi .xn/� fi .x/ D d.xn; ai /� d.x; ai /
� d.xn; x/� 2d.x; ai / > ı � 2

3
ı D 1

3
ı;

which contradicts limn!1

fi .xn/ D fi .x/. Therefore, f is an embedding.

Recall that a metric spaceX D .X; d/ or a metric d is said to be totally bounded
provided that, for any " > 0, there is a finite set A � X such that d.x;A/ < " for
every x 2 X , i.e., X D S

a2A Bd .a; "/. It is now easy to show that X is totally
bounded if and only if, for any " > 0,X has a finite open cover U with meshU < ".
Then, every compact metric space is totally bounded. As is easily seen, any subspace
of a totally bounded metric spaceX is also totally bounded with respect to the metric
inherited from X .

Theorem 5.7.1. A metrizable space is separable if and only if it has an admissible
totally bounded metric.

Proof. If a metrizable space X is separable, then X can be embedded in the Hilbert
cube IN. Restricting a metric for IN, we can obtain an admissible totally bounded
metric on X .

Conversely, if X has an admissible totally bounded metric d , then X has finite
subsets Ai , i 2 N, so that d.x;Ai / < 2�i for every x 2 X . Then, A D S

i2NAi is
a countable dense subset of X . Hence, X is separable. ut
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Theorem 5.7.2 (COMPACTIFICATION THEOREM). Every n-dimensional sepa-
rable metrizable space has an n-dimensional metrizable compactification.

Proof. Let X be a separable metrizable space with dimX D n. By Theorem 5.7.1,
X has an admissible totally bounded metric d . For each i 2 N, X has a finite open
cover Ui D fUi;j j j D 1; : : : ; mig such that ordUi � n C 1, meshd Ui < 2�i ,
and meshfi 0;j 0.Ui / < 2�i for i 0 < i and j 0 � mi 0 , where fi;j W X ! I is the map
defined by

fi;j .x/ D d.x;X n Ui;j /
Pmi

kD1 d.x;X n Ui;k/
:

For each i 2 N, we define a map fi W X ! Imi by

fi .x/ D .fi;1.x/; : : : ; fi;mi .x//:

Then, the map f W X !Q
i2N Imi defined by f .x/ D .fi .x//i2N is an embedding.

Indeed,
S
i2N Ui D fUi;j j i 2 N; j � mi g is an open basis for X . Since x 2 Ui;j

if and only if fi;j .x/ > 0, it follows that f is injective, and

f .Ui;j / D f .X/ \
˚
z 2Qi2N Imi

ˇ
ˇ z.i/.j / > 0

�
:

The closure QX of f .X/ in
Q
i2N Imi is a metrizable compactification of X . Let 


be the admissible metric for
Q
i2N Imi defined by 
.z; z0/ D supi2N 2�i 
i .z.i/; z0.i//,

where 
i is the metric for Imi defined by


i .x; y/ D max
˚jx.j / � y.j /j ˇˇ j D 1; : : : ; mi

�
for x; y 2 Imi :

For each i 2 N and j � mi , letWi;j D fz 2 QX j z.i/.j / > 0g. Then,Wi;j\f .X/ D
f .Ui;j / is dense in Wi;j . For i 0 < i

diam
i 0
fi 0.Ui;j / D max

˚
diamfi 0;j 0.Ui;j /

ˇ
ˇ j 0 � mi 0

�
< 2�i :

Thus, it follows that diam
 Wi;j D diam
 f .Ui;j / � 2�i . For each z 2 QX , we have
xn 2 X , n 2 N, such that f .xn/ ! z (n ! 1). Note that

Pmi
jD1 fi;j .xn/ D 1.

For each i 2 N, we can find j � mi such that fi;j .xn/ � 1=mi for infinitely many
n 2 N. Because fi;j .xn/ ! z.i/.j / (n ! 1), we have z.i/.j / � 1=mi , i.e., z 2
Wi;j . Therefore, Wi D fWi;j j j D 1; : : : ; mig 2 cov. QX/ with mesh
Wi � 2�i .
Since Wi;j \ f .X/ D f .Ui;j / and f .X/ is dense in QX , it follows that ordWi D
ordf .Ui / D ordUi � nC 1. Since QX is compact, we can find i1 < i2 < � � � in N

so that Wi1 
 Wi2 
 � � � . Then, dim QX � n by Theorem 5.3.1. On the other hand,
dimX � dim QX by the Subset Theorem 5.3.3. Thus, we have dim QX D n. ut

In the above proof, suppose now that X is a closed subset of a separable
metrizable space Y and d is an admissible totally bounded metric for Y . Then,
Y has open covers Vi D fVi;j j j D 1; : : : ; mig such that ordVi ŒX� � n C 1,
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meshd Vi < 2�i , and meshgi 0 ;j 0.Vi / < 2�i for i 0 < i and j 0 � mi 0 , where
gi;j W Y ! I is the map defined by

gi;j .y/ D d.y; Y n Vi;j /
Pmi

kD1 d.y; Y n Vi;k/
:

As for f in the above proof, using maps gi;j , we can define an embedding g W Y !
Q
i2N Imi . The closure QY of g.Y / in

Q
i2N Imi is a metrizable compactification of Y

such that dim cl QY X D dimX . Furthermore, we can strengthen this as follows:

Theorem 5.7.3. Let X be a separable metrizable space and X1;X2; : : : be closed
sets in X . Then, there exists a metrizable compactification QX of X such that
dim cl QX Xi D dimXi .

Sketch of Proof. Assume that dimXi D ni < 1. Let d be an admissible totally bounded
metric for X . Construct open covers Ui;j D fUi;j;k j k D 1; : : : ; m.i; j /g of X so that
ord Ui;j ŒXi � � niC1, meshd Ui;j < 2�i�j , and mesh fi 0 ;j 0 ;k0 .Ui;j / < 2�i�j for i 0Cj 0 <

i C j and k0 � m.i 0; j 0/, where fi;j;k W X ! I is the map defined by

fi;j;k .x/D d.x; X n Ui;j;k /
Pm.i;j /

lD1 d.x; X n Ui;j;l /
:

As above, we can now use these maps fi;j;k to define an embedding

f W X !Y

n2N

Y

iCjDnC1

Im.i;j /:

The desired compactification of X is obtained as the closure QX of f .X/ in the compactumQ
n2N

Q
iCjDnC1 Im.i;j / .

Next, we show the following theorem:

Theorem 5.7.4. Every separable completely metrizable space X has a metrizable
compactification �X such that the remainder �X nX is a countable union of finite-
dimensional compact sets, hence it is strongly countable-dimensional.

Proof. We may assume that X is a subset of a compact metric space Z D .Z; d/

with diamZ � 1. Since X is completely metrizable, we can write X D T
i2NGi ,

where G1 � G2 � � � � are open in Z. Since each Gi is totally bounded, Gi has a
finite open cover Ui with meshUi < 2�i . We can write

S
i2N Ui D fUn j n 2 Ng.

Let f W Z ! IN be a map defined by

f .z/.n/ D d.z; X n Un/; n 2 N:

Then, f jX is an embedding. In fact, if x 6D y 2 X , there exists some Un such
that x 2 Un but y 62 Un. Then, f .x/.n/ 6D 0 D f .y/.n/, which implies that
f .x/ 6D f .y/. For each x 2 X and each neighborhood U of x in X , choose n 2 N

so that x 2 Un \ X � U . Since

f .Un \ X/ D f .X/ \
˚
x 2 IN

ˇ
ˇ x.n/ > 0

�
;

f .U / is a neighborhood of f .x/ in f .X/.
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Let �X be the closure of f .X/ in IN. Identifying X with f .X/, �X is a
compactification of X . Note that �X � f .Z/. If f .z/.n/ > 0 for infinitely many
n 2 N, then z is contained in infinitely manyGi , which implies that z 2 Ti2NGi D
X . Thus, we have f .Z/ n f .X/ � INf , hence �X n X � INf . Since X is completely
metrizable, X is Gı in �X , hence �X n X is F in �X . Consequently, �X n X is a
countable union of f.d. compact sets. ut

Now, we prove a compactification theorem for (strongly) countable-dimensional
spaces:

Theorem 5.7.5. Every (strongly) countable-dimensional separable completely metriz-
able space has a (strongly) countable-dimensional metrizable compactification.

Proof. The c.d. case is a direct consequence of Theorem 5.7.4. To prove the s.c.d.
case, let X be a separable completely metrizable space with X D S

i2NXi , where
eachXi is closed inX , dimXi <1, andX1 � X2 � � � � . By Theorem 5.7.3,X has
a metrizable compactification Y such that dim clY Xi D dimXi . By the complete
metrizability of X , we can write X D T

i2N Ui , where each Ui is open in Y and
Y D U1 � U2 � � � � . LetZ D Si2NUi \ clY Xi . Then,X D Si2NXi � Z. Since
each Ui \ clY Xi is an F -set in Y , Z is a countable union of f.d. compact sets.

We show that Y nZ DSi2N..Y n clY Xi/ nUiC1/, which is an F -set in Y . For
each y 2 Y nZ, let i0 D maxfi 2 N j y 2 Ui g. Then, y 2 Ui0nUi0C1, which implies
y 62 clY Xi0 because y 62 Z. Hence, y 2 .Y nclY Xi0/nUi0C1. On the other hand, for
each z 2 Z, we have i1 such that z 2 Ui1\clY Xi1 . For i � i1, z 62 .Y nclY Xi/nUiC1
because z 2 clY Xi1 � clY Xi . For i < i1, z 62 .Y nclY Xi/nUiC1 because z 2 Ui1 �
UiC1. Thus, Z is a Gı-set in a compactum Y , hence it is completely metrizable.

Now, applying Theorem 5.7.4, we have a metrizable compactification QZ of
Z such that QZ n Z is a countable union of f.d. compact sets. Then, QZ is a
compactification of X and it is a countable union of f.d. compact sets, hence it
is s.c.d. ut

5.8 Embedding Theorem

Recall that every separable metrizable space X can be embedded into the Hilbert
cube IN (Corollary 2.3.8). As a finite-dimensional version of this result, we prove
the following theorem:

Theorem 5.8.1 (EMBEDDING THEOREM). Every separable metrizable space
with dim � n can be embedded in I2nC1, and can hence be embedded in the
Euclidean space R2nC1.

Remark 13. In Theorem 5.8.1, the cube I2nC1 cannot be replaced by a smaller
dimensional cube. In fact, there exist n-dimensional compact polyhedra that cannot
be embedded into I2n. See Fig. 5.3.
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6,! I2K.�4/.1/ �

Fig. 5.3 A 1-dimensional polyhedron that cannot be embedded in I2

To prove Theorem 5.8.1, we introduce a new notion. Now, let X D .X; d/ be
a compact metric space. Given " > 0, a map f W X ! Y is called an "-map if
diamf �1.y/ < " for each y 2 Y . Then, a map f W X ! Y is an embedding if and
only if f W X ! Y is an "-map for every " > 0.

Lemma 5.8.2. Let f W X ! Y be an "-map from a compact metric space X D
.X; d/ to a metric space Y D .Y; 
/. Then, there is some ı > 0 such that any map
g W X ! Y with 
.f; g/ < ı is an "-map.

Proof. Since f is a closed map, each y 2 Y has an open neighborhood Vy in Y
such that diamf �1.Vy/ < ". Since X is compact, we can choose ı > 0 so that
each B
.f .x/; 2ı/ is contained in some Vy , hence diamf �1.B
.f .x/; 2ı// < ".
Let g W X ! Y be a map with 
.f; g/ < ı. For y 2 Y and x; x0 2 g�1.y/,


.f .x/; f .x0// � 
.f .x/; g.x//C 
.f .x0/; g.x0// < 2ı;

which implies that g�1.y/ � f �1.B
.f .x/; 2ı//. Therefore, diamg�1.y/ < ", that
is, g is an "-map. ut

For spaces X and Y , let Emb.X; Y / denote the subspace of C.X; Y / consisting
of all closed embeddings.

Theorem 5.8.3. Let X D .X; d/ be a compact metric space and Y D .Y; 
/ a
complete metric space. Assume that for each " > 0 and ı > 0, every map f W X !
Y is ı-close to an "-map. Then, every map f W X ! Y can be approximated by an
embedding, that is, Emb.X; Y / is dense in the space C.X; Y / with the sup-metric.

Proof. For each n 2 N, let Gn be the set of all 2�n-maps from X to Y . Then, Gn is
open and dense in the space C.X; Y / by Lemma 5.8.2 and the assumption. By the
Baire Category Theorem 2.5.1, Emb.X; Y / D T

n2NGn is also dense in C.X; Y /,
hence so is the set of embeddings of X into Y . ut

The following is called the GENERAL POSITION LEMMA:

Lemma 5.8.4 (GENERAL POSITION). Let fUi j i 2 Ng be a countable open
collection in R

n and A � R
n with cardA � @0 such that each nC 1 many points of
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A are affinely independent. Then, there existsB D fvi j i 2 Ng such that vi 2 Ui nA
for each i 2 N and each nC 1 many points of A[ B are affinely independent.

Proof. Assume that v1 2 U1, . . . , vk 2 Uk have been chosen so that each n C 1
many points of A[ fv1; : : : ; vkg are affinely independent. Using the Baire Category
Theorem 2.5.1 and the fact that every .n� 1/-dimensional flat (= hyperplane) in R

n

is nowhere dense in R
n, we can find a point

vkC1 2 UkC1 n
[˚

flfx1; : : : ; xkg
ˇ
ˇ xi 2 A [ fv1; : : : ; vkg

�
:

Then, each n C 1 many points of A [ fv1; : : : ; vkC1g are affinely independent. By
induction, we can obtain the desired set B D fvi j i 2 Ng � R

n. ut
Because every separable metrizable space has a metrizable compactification

with the same dimension by the Compactification Theorem 5.7.2, the Embedding
Theorem 5.8.1 can be obtained as a corollary of the next theorem:

Theorem 5.8.5 (EMBEDDING APPROXIMATION). Let X be a compact metric
space with dimX � n. Then, every map f W X ! I2nC1 can be approximated
by embeddings, that is, for each " > 0, there is an embedding h W X ! I2nC1 that
is "-close to f . In particular, every compact metrizable space with dim � n can be
embedded in I2nC1.

Proof. Because of Theorem 5.8.3, it is enough to show that for each " > 0 and
ı > 0, every map f W X ! I2nC1 is ı-close to an "-map. We have a finite open
cover U of X such that ordU � n C 1, meshU < ", and meshf .U/ < ı=2.
Let K D N.U/ be the nerve of U . A canonical map ' W X ! jKj is an "-map
because '�1.OK/ 	 U . By the General Position Lemma 5.8.4, we have points
vU 2 I2nC1, U 2 U , such that d.vU ; f .U // < ı=2 and every 2nC 2 many points
vU1; : : : ; vU2nC2

are affinely independent. We can define a map g W jKj ! I2nC1 as
follows: g.U / D vU for each U 2 U D K.0/ and g is linear on each simplex ofK1.
Then, g is injective. Hence, h D g' W X ! I2nC1 is an "-map. For each x 2 X , let
U Œx� D fU1; : : : ; Ukg. Then,

kvUi � f .x/k � d.vUi ; f .Ui //C diamf .Ui / < ı:

Since B.f .x/; ı/ is convex, it follows that

g'.x/ 2 g.hU1; : : : ; Uki/ D hvU1; : : : ; vUk i � B.f .x/; ı/:

Therefore, h D g' is ı-close to f . ut
We generalize a non-compact version of the Embedding Approximation The-

orem 5.8.5. Given U 2 cov.X/, a map f W X ! Y is called a U -map if
f �1.V/ 	 U for some V 2 cov.Y /. By CU .X; Y /, we denote the subspace of
C.X; Y / consisting of all U-maps. In the case that X is a compact metric space, let
" > 0 be a Lebesgue number for U 2 cov.X/. Then, every U-map is an "-map.
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Conversely, if U D fB.x; "/ j x 2 Xg, then every "-map f W X ! Y is a U-map.
Indeed, f is closed because of the compactness of X . For each y 2 f .X/, take
xy 2 f �1.y/. Since f �1.y/ � B.xy; "/, y has an open neighborhood Vy in Y such
that f �1.Vy/ � B.xy; "/. Then,

V D fVy j y 2 f .X/g [ fY n f .X/g 2 cov.Y / and f �1.V/ 	 U :

Recall that if Y is completely metrizable then the space C.X; Y / with the
limitation topology is a Baire space (Theorem 2.9.4). The limitation topology is
the topology in which fV.f / j V 2 cov.Y /g is a neighborhood basis of each
f 2 C.X; Y /,7 where

V.f / D ˚g 2 C.X; Y /
ˇ
ˇ g is V-close to f

�
:

In the following two lemmas, let Y be an arbitrary paracompact space.

Lemma 5.8.6. For each U 2 cov.X/, CU .X; Y / is open in the space C.X; Y / with
the limitation topology.

Proof. For each f 2 CU .X; Y /, f �1.V/ 	 U for some V 2 cov.Y /. Let W 2
cov.Y / such that stW 	 V . For each g 2 W.f /, f .g�1.W// 	 stW 	 V , so
g�1.W/ 	 f �1.V/ 	 U , which implies g 2 CU .X; Y /. ut
Lemma 5.8.7. For each complete metric space X D .X; d/, Emb.X; Y / DT
n2N CUn.X; Y /, where Un 2 cov.X/ with meshUn < 2�n. Thus, when X is a

completely metrizable space, Emb.X; Y / is a Gı-set in the space C.X; Y / with the
limitation topology.

Proof. Obviously, Emb.X; Y / � Tn2N CUn.X; Y /. Every f 2 Tn2N CUn.X; Y / is
injective. For xn 2 X , n 2 N, if .f .xn//n2N is convergent, then .xn/n2N is Cauchy,
so it is convergent. This means that f is closed, hence f 2 Emb.X; Y /. Thus, we
have Emb.X; Y / DTn2N CUn.X; Y /. ut

When Y is completely metrizable, the space C.X; Y / with the limitation
topology is a Baire space by Theorem 2.9.4. Then, by Lemmas 5.8.6 and 5.8.7,
Theorem 5.8.3 can be generalized as follows:

Theorem 5.8.8. Let X and Y be completely metrizable spaces. Suppose that, for
each U 2 cov.X/, CU .X; Y / is dense in the space C.X; Y / with the limitation
topology. Then, Emb.X; Y / is also dense in C.X; Y /. In other words, if every map
f W X ! Y is approximated by U-maps for each U 2 cov.X/, then every map
f W X ! Y is approximated by closed embeddings. ut

7When Y is paracompact, fV.f / j V 2 cov.Y /g is a neighborhood basis of each f 2 C.X; Y /
and the topology is Hausdorff.
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We consider the case thatX and Y are locally compact metrizable. Let CP .X; Y /
be the subspace of the space C.X; Y / with the limitation topology consisting of all
proper maps.8 Then, the space CP .X; Y / is a Baire space by Theorem 2.9.8. It
should be noted that Emb.X; Y / � CP .X; Y /. Moreover, if X is non-compact,
then any constant map of X to Y is not proper, which implies that Emb.X; Y / is
not dense in the space C.X; Y / with the limitation topology because CP .X; Y / is
clopen in C.X; Y / due to Corollary 2.9.7. For an open cover U 2 cov.X/ consisting
of open sets with the compact closures, we have CU .X; Y / � CP .X; Y /.

Indeed, for each f 2 CU .X; Y /, let V be a locally finite open cover of Y such that
f �1.V/ 	 U . Each compact set A in Y meets only finitely many V1; : : : ; Vn 2 V ,
where each f �1.Vi / is contained in some Ui 2 U . Then, f �1.A/ � Sn

iD1 clUi . SinceSn
iD1 clUi is compact, f �1.A/ is also compact.

The following theorem is the locally compact version of Theorem 5.8.8:

Theorem 5.8.9. Let X and Y be locally compact metrizable spaces. If CU .X; Y /
is dense in the space CP .X; Y / with the limitation topology for each open cover
U of X consisting of open sets with the compact closures, then Emb.X; Y / is also
dense in CP .X; Y /. ut

Now, we show the following locally compact version of the Embedding Approx-
imation Theorem 5.8.5:

Theorem 5.8.10 (EMBEDDING APPROXIMATION). Let X be a locally compact
separable metrizable space with dimX � n. Then, Emb.X;R2nC1/ is dense in the
space CP .X;R2nC1/ with the limitation topology, that is, for each open cover U
of R2nC1, every proper map f W X ! R

2nC1 is U-close to a closed embedding
h W X ! R

2nC1.

Proof. Because of Theorem 5.8.9, it suffices to show that CU .X; Y / is dense in
CP .X;R2nC1/ for each U 2 cov.X/, that is, for any V 2 cov.R2nC1/, every proper
map f W X ! R

2nC1 is V-close to some U-map h W X ! R
2nC1.

We can find W 2 cov.R2nC1/ such that W is star-finite (ordW � 2n C 2),
clW is compact for each W 2 W , and fhst.x;W/i j x 2 Xg 	 V . By replacing
a refinement with U , we may assume that U 	 f �1.W/ (i.e., f .U/ 	 W), U is
countable, and ordU � n C 1 (cf. Corollary 5.2.5). Write U D fUi j i 2 Ng and
choose Wi 2 W , i 2 N, so that f .Ui / � Wi . Let K D N.U/ be the nerve of U
with ' W X ! jKj a canonical map. Then, dimK � n and ' is a U-map because
'�1.OK.U // � U for each U 2 U D K.0/.

By the General Position Lemma 5.8.4, we have points vi 2 R
2nC1, i 2 N, such

that vi 2 Wi and every 2nC 2 many points vi1 ; : : : ; vi2nC2
are affinely independent.

Then, we have a PL-map g W jKj ! R
2nC1 such that g.Ui / D vi 2 Wi for each

Ui 2 K.0/ D U and gj is affine on each simplex  2 K . For each pair of simplexes
; � 2 K , g..0/ [ �.0// is affinely independent, which implies that gj [ � is an
embedding. Hence, g is injective.

8In this case, a proper map coincides with a perfect map (Proposition 2.1.5).
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To prove that g is a closed embedding, let A be a closed set in jKj. Each y 2
clg.A/ is contained in some W 2 W . By the star-finiteness of W , W ŒW � is finite,
hence g.K.0// \W is finite. Since K is star-finite, W \ g./ 6D ; for only finitely
many simplexes  2 K . Let

˚
 2 K ˇ

ˇ W \ g./ 6D ;� D f1; : : : ; mg:

Since g is injective, it follows that W \ g.A/ D Sm
iD1 W \ g.A \ i /, which is

closed in W , and hence y 2 g.A/. Therefore, g.jKj/ is closed in R
2nC1.

It remains to be shown that the U-map g' W X ! Y is V-close to f . For each
x 2 X , take the carrier  2 K of '.x/ and let .0/ D fUi1; : : : ; Uik g. Then,

g.'.x// 2 g./ D hg..0//i D hvi1 ; : : : ; vik i:

On the other hand, since x 2 Ui1 \� � �\Uik , we have f .x/ 2 Wi1 \� � �\Wik . Then,
it follows that vi1 ; : : : ; vik 2 st.f .x/;W/. Recall that hst.f .x/;W/i is contained in
some V 2 V . Then, we have g.'.x//; f .x/ 2 V . Thus, g' is V-close to f . ut
Remark 14. In the Embedding Approximation Theorem 5.8.10, a map f W X !
R
2nC1 cannot be approximated by closed embeddings if f is not proper. Indeed,

A D f �1.a/ is not compact for some a 2 R
2nC1. If h W X ! R

2nC1 is a
closed embedding then h.A/ is closed in R

2nC1. Because h.A/ is non-compact,
it is unbounded, hence supx2A kh.x/ � f .x/k D 1.

We now show the following proposition:

Proposition 5.8.11. Let X be a paracompact space and n 2 !. Suppose that for
each U 2 cov.X/, there exist a paracompact space Y with dimY � n and a U-map
f W X ! Y . Then, dimX � n.

Proof. For each U 2 cov.X/, we have a U-map f W X ! Y such that dimY � n.
Then, by Theorem 5.2.4, we have V 2 cov.Y / such that f �1.V/ 	 U and ordV �
nC1. Note that ordf �1.V/ � nC1. Therefore, dimX � n by Theorem 5.2.4. ut

When X is a metric space, using Theorem 5.3.1 instead of Theorem 5.2.4, we
have the following:

Proposition 5.8.12. Let X be a metric space and n 2 !. Suppose that for each
" > 0, there exist a paracompact space Y with dimY � n and a closed "-map
f W X ! Y . Then, dimX � n. ut

5.9 Universal Spaces

Given a class C of spaces, a space Y 2 C is called a universal space for C if every
space X 2 C can be embedded into Y . The Hilbert cube IN and R

N are universal
spaces for separable metrizable spaces (Corollary 2.3.8) and the countable power
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J.� /N of the hedgehog is the universal space for metrizable spaces with weight
� card� (Corollary 2.3.7).9

In this section, we show the existence of universal spaces for metrizable spaces
with dim � n, and for countable-dimensional and strongly countable-dimensional
metrizable spaces.

First, we will show that the space INf is also a universal space for strongly
countable-dimensional separable metrizable spaces.

Lemma 5.9.1. Let X be a separable metrizable space and X0 � X1 be closed
sets in X with dimX1 � n. Then, there exists a map f W X ! I2nC2 such that
X0 D f �1.0/ and f jX1 n X0 is an embedding.

Proof. Applying the Tietze Extension Theorem 2.2.2 coordinate-wise, we can
extend an embedding of X1 into I2nC1 obtained by Theorem 5.8.1 to a map
h W X ! I2nC1. Let g W X ! I be a map with g�1.0/ D X0. We define a map
f W X ! I2nC2 D I2nC1 � I by f .x/ D .g.x/h.x/; g.x//. Then, f �1.0/ D X0. It
is easy to prove that f jX1 nX0 is injective. To see that f jX1 nX0 is an embedding,
let x; xi 2 X1 n X0, i 2 N, and assume that f .x/ D limi!1 f .xi /. Since
g.xi / ! g.x/ and g.xi /; g.x/ > 0, we have g.xi /�1 ! g.x/�1, which implies
that h.xi / ! h.x/ in I2nC1, hence xi ! x in X . Therefore, f jX1 n X0 is an
embedding. ut
Theorem 5.9.2. The space INf is a universal space for strongly countable-
dimensional separable metrizable spaces.

Proof. Let X be an s.c.d. separable metric space. We can write X D S
k2NXk ,

where X1 ¤ X2 ¤ � � � are closed in X and dimXk D nk <1. By Theorem 5.7.3,
X has a metrizable compactification Y such that dim clY Xk D dimXk D nk . By
Lemma 5.9.1, we have maps fk W Y ! I2nkC2 (k 2 N) such that f �1k .0/ D
clY Xk�1 and fkj clY Xk nclY Xk�1 is an embedding for each k 2 N, whereX0 D ;.
We define a map f W Y ! Q

k2N I2nkC2 D IN by f .x/ D .fk.x//k2N. Then,
f jSk2N clY Xk is injective. By definition, f .

S
k2N clY Xk/ � INf . For y 2 Y , if

f .y/ 2 INf then fkC1.y/ D 0 for some k 2 N, which means that y 2 clY Xk . Then,
it follows that

f .A/ \ INf D f
�
A \Sk2N clY Xk

�
for each A � Y :

Since f is a closed map, the restriction f jSk2N clY Xk W Sk2N clY Xk ! INf is
also a closed map. Therefore, f jSk2N clY Xk is an embedding, hence so is f jX .
This completes the proof. ut

For each n 2 !, let

	n D
˚
x 2 IN

ˇ
ˇ x.i/ 2 I nQ except for n many i

�
:10

9Usually, the phrase “the class of” is omitted.
10Recall that 	0 denotes the space R nQ. Then, 	0 ¤ 	0 but 	0 � ..�1; 1/ nQ/N � 	0.
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Then, 	0 D .I n Q/N � 	1 � 	2 � � � � � 	! D S
n2! 	n. Recall that 	! is c.d. but

not s.c.d. (Theorem 5.6.3). We will show that 	n is a universal space for separable
metrizable spaces with dim � n and that 	! is the universal space for c.d. separable
metrizable spaces. To avoid restricting ourselves to separable spaces, we construct
non-separable analogues to 	n and 	! .

Let � be an infinite set. Recall that the hedgehog J.� / is the closed subspace of
`1.� / defined as

J.� / D ˚x 2 `1.� /
ˇ
ˇ x.�/ 2 I for all � 2 � and

x.�/ 6D 0 for at most one � 2 � �

D
[

�2�
h0; e�i D

[

�2�
Ie� � `1.� /:

Then, dimJ.� / D 1. Let

P.� / D ˚x 2 J.� / ˇˇ x.�/ 2 .I nQ/[ f0g� D f0g [
[

�2�
.I nQ/e� :

Observe P.� / D f0g [Si2N Pi , where Pi D P.� / n B.0; 1=i/. Each Pi is the
discrete union of 0-dimensional closed sets in P.� / that are homeomorphic to InQ,
hence dimPi D 0 by the Locally Finite Sum Theorem 5.4.2. Then, dimP.� / D 0
by the Countable Sum Theorem 5.4.1. Now, we define

	!.� / D
˚
z 2 J.� /N ˇˇ z.i/ 2 P.� / except for finitely many i

�
:

Observe that 	!.� / is the countable union of subspaces that are homeomorphic
to J.� /n � P.� /N. Since dimJ.� /n � P.� /N � n (Product Theorem 5.4.9 and
Theorem 5.3.6) and J.� /n contains a copy of In, we have dimJ.� /n�P.� /N D n.
Therefore, it follows that 	!.� / is c.d. For each n 2 !, we define

	n.� / D
˚
z 2 J.� /N ˇˇ z.i/ 2 P.� / except for n many i

�
:

Then, 	0.� / D P.� /N � 	1.� / � 	2.� / � � � � � 	!.� / DSn2! 	n.� /.

Theorem 5.9.3. For each n 2 !, dim 	n.� / D dim 	n D n.

Proof. We only give a proof of dim 	n.� / D n because dim 	n D n is similar and
simpler.

We already proved that dim 	0.� / D dimP.� /N D 0. Assuming that
dim 	n�1.� / D n � 1 and n > 0, we now prove that dim 	n.� / D n. We can
write

	n.� / D 	0.� /[
[

i2N

[

q2..0;1�\Q/

[

�2�
	n.i; q; �/;
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where 	n.i; q; �/ is a closed set in 	n.� / defined as follows:

	n.i; q; �/ D
˚
z 2 	n.� /

ˇ
ˇ z.i/.�/ D q�:

Since f	n.i; q; �/ j � 2 � g is discrete in 	n.� / and 	n.i; q; �/ � 	n�1.� /,S
�2� 	n.i; q; �/ is an .n�1/-dimensional closed set in 	n.� / by the Locally Finite

Sum Theorem 5.4.2. Then, dim 	n.� / � n by the Countable Sum Theorem 5.4.1
and the Addition Theorem 5.4.8. Since 	n.� / contains an n-dimensional subspace
J.� /n�P.� /N, we have dim 	n.� / � n, hence dim 	n.� / D n. The result follows
by induction. ut

We will show that the space 	n.� / is a universal space for metrizable spaces with
dim � n and weight � card� , and that the space 	!.� / is a universal space for
c.d. metrizable spaces with weight � card� .

Lemma 5.9.4. Let X be a metrizable space and X0;X1; � � � � X with dimXn � 0.
Suppose that L0 D ;, L1; : : : ; Lm�1 are closed sets in X satisfying the following
condition:

./ No x 2 Xn are contained in nC 1 many sets Li .

Then, for each pair .A;B/ of disjoint closed sets in X , there exists a partition Lm
in X between A and B that does not violate the condition ./.
Proof. Let C0 D X0. For n < m, define

Cn D
[˚

Xn \Tn
jD1 Lij

ˇ
ˇ 0 � i1 < i2 < � � � < in < m

�
:

Then, Ci \ Cj D ; for i 6D j by (). Let D D Sm�1
iD0 Ci . For each n < m � 1,

Sm�1
iDnC1 Ci is contained in the closed set

F D
[˚TnC1

jD1 Lij
ˇ
ˇ 0 � i1 < i2 < � � � < inC1 < m

�
:

Note that F \Sn
iD0 Xi D ; by (). For this reason,

Sn
iD0 Ci D D n F is open in

D. Therefore, each Cn DSn
iD0 Ci n

Sn�1
iD0 Ci is an F -set inD. It follows from the

Subset Theorem 5.3.3 and the Countable Sum Theorem 5.4.1 that dimD � 0.
Using Theorem 5.2.17 and the Partition Extension Lemma 5.3.7, we obtain a

partition Lm between A and B such that Lm \ D D ;. Condition () is trivial
for n � m. For n < m, if x 2 Xn is contained in n many sets Li (i < m), then
x 2 Cn � D, which implies x 62 Lm. Therefore, condition () is satisfied. ut
Lemma 5.9.5. Let X be a metrizable space and X0;X1; � � � � X with dimXn � 0
and let a < b 2 R. Then, for any sequence .Ai ; Bi /i2N of pairs of disjoint closed
sets in X , there exist maps fi W X ! Œa; b�, i 2 N, such that Ai D f �1i .a/,
Bi D f �1i .b/, and

card
˚
i 2 N

ˇ
ˇ fi .x/ 2 .a; b/\Q

� � n for x 2 Xn.
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Proof. Let fqj j j 2 Ng D .a; b/\Q, where qi 6D qj if i 6D j . For each j 2 N, let

ıj D min
˚
qi � a; b � qi ; jqi � qi 0 j

ˇ
ˇ i; i 0 � j; i 6D i 0�;

and define aj D qj � 2�j�1ıj and bj D qj C 2�j�1ıj . For each i 2 N, let
fi;0 W X ! Œa; b� be a map with Ai D f �1i;0 .a/ and Bi D f �1i;0 .b/. We construct
maps fi;j W X ! Œa; b�, i; j 2 N, so as to satisfy the following conditions:

(1) Ai D f �1i;j .a/ and Bi D f �1i;j .b/;
(2) fi;j .x/ 6D fi;j�1.x/) fi;j�1.x/; fi;j .x/ 2 .aj ; bj /

(i.e., fi;j jf �1i;j�1.Œa; aj � [ Œbj ; b�/ D fi;j�1jf �1i;j�1.Œa; aj � [ Œbj ; b�/);
(3) No x 2 Xn are contained in nC 1 many f �1i;j .qj /.

For each .i; j / 2 N
2, let k.i; j / D 1

2
.i C j � 2/.i C j � 1/ C j 2 N. Then,

.i; j / is the k.i; j /-th element of N2 in the ordering

.1; 1/; .2; 1/; .1; 2/; .3; 1/; .2; 2/; .1; 3/; : : : :

By induction on k.i; j /, we construct maps fi;j satisfying conditions (1), (2), and
(3) above. Assume that fi 0 ;j 0 have been defined for k.i 0; j 0/ < m. We will define
fi;j for k.i; j / D m. Applying Lemma 5.9.4 to L0 D ;, Lk.i 0;j 0/ D f �1i 0;j 0

.qj 0/,

k.i 0; j 0/ < m, A D f �1i;j�1.Œa; aj �/, and B D f �1i;j�1.Œbj ; b�/, we obtain a partition
Lm in X between A and B such that

() No x 2 Xn are contained in nC 1 many sets Li .

Then, we can easily obtain a map fi;j W X ! Œa; b� such that Lm D f �1i;j .qj / and
fi;j jA[ B D fi;j�1jA[ B , for which conditions (1), (2), and (3) are satisfied.

Since bj � aj D 2�j ıj , it follows from (2) that jfi;j .x/ � fi;j�1.x/j < 2�j ıj
for each x 2 X . Then, .fi;j /j2N uniformly converges to a map fi W X ! Œa; b�

and jfi;j .x/ � fi .x/j � 2�j ıj . For each x 2 Ai , fi .x/ D limj!1 fi;j .x/ D a

by (1). For each x 2 X n Ai , we have k D minfj 2 N j fi;0.x/ > aj g because
fi;0.x/ > a D infj2N aj . Then, fi;0.x/ D fi;1.x/ D � � � D fi;k�1.x/ > ak and
fi;k.x/ > ak D qk � 2�k�1ık , hence

fi .x/ � fi;k.x/ � 2�kık > qk � ık � qk � .qk � a/ D a:
Therefore, Ai D f �1i .a/. Similarly, we have Bi D f �1i .b/.

For each x 2 Xn, let

M D ˚i 2 N
ˇ
ˇ fi;j .x/ D qj for some j 2 N

�
:

Then, M has at most n many elements by (3). For i 2 N n M and j 2 N, let
K D fk > j j fi;k.x/ 6D fi;j .x/g. If K D ;, then fi .x/ D fi;j .x/ 6D qj because
i 62 M . Otherwise, let k D minK > j � 1. Since fi;k�1.x/ D fi;j .x/ 6D fi;k.x/,
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we have ak < fi;k.x/ < bk by (2). Then, jfi;k.x/ � qj j � ık � 2�k�1ık . On the
other hand, jfi .x/ � fi;k.x/j < 2�kC1ık. Therefore,

jfi .x/ � qj j � jfi;k.x/ � qj j � jfi .x/ � fi;k.x/j
> ık � 2�k�1ık � 2�kC1ık > 1

4
ık > 0:

Thus, cardfi j fi .x/ 2 .a; b/ \Qg � n for x 2 Xn. ut
Proposition 5.9.6. Let X be a metrizable space and � be an infinite set with
w.X/ � card� . For each sequence X0;X1; � � � � X with dimXn � 0, there exists
an embedding h W X ! J.� /N such that h.Xn/ � 	n.� /.
Proof. By Corollary 2.3.2, X has an open basis B D S

i2N Bi , where each Bi is
discrete in X . Then, as is easily observed, cardBi � w.X/ � card� , hence we
have �i � � , i 2 N, such that cardBi D card�i and �i \ �j D ; if i 6D j .
For each i 2 N, we write Bi D fB� j � 2 �ig, where B� 6D B� 0 if � 6D � 0.
Let Ai D X nS�2�i B� . We apply Lemma 5.9.5 to obtain maps fi W X ! Œ0; 1�,
i 2 N, such that Ai D f �1i .0/ and cardfi 2 N j fi .x/ 2 .0; 1/ \ Qg � n for
x 2 Xn. We define hi W X ! J.� / by

hi .x/.�/ D
(
fi .x/ if x 2 B� , � 2 �i ,
0 otherwise.

In other words, hi.x/ D fi .x/e� for x 2 B� , � 2 �i , and hi .x/ D 0 for x 2 Ai .
The desired embedding h W X ! J.� /N can be defined by h.x/ D .hi .x//i2N.
Indeed, if x 6D y 2 X , then x 2 B� and y 62 B� for some � 2 �i . Then, hi .x/.�/ D
fi .x/ > 0 D hi .y/.�/. Thus, h is injective. For each � 2 �i , U� D fz 2 J.� /N j
z.i/.�/ > 0g is open in J.� /N. Observe that h.B� / D U� \ h.X/. Therefore, h is
an embedding of X into J.� /N. For x 2 Xn,

cardfi 2 N j hi .x/ 62 P.� /g D cardfi 2 N j fi .x/ 2 Q n f0gg � n:
Then, it follows that h.Xn/ � 	n.� /. ut
Theorem 5.9.7. Let � be an infinite set. The space 	n.� / is a universal space for
metrizable spaces X with w.X/ � card� and dimX � n, and the space 	!.� /
is a universal space for countable-dimensional metrizable spaces X with w.X/ �
card� .

Proof. We can write X D S
i2! Xi , where dimXi � 0 and Xi D ; for i > n if

dimX D n. The theorem follows from Proposition 5.9.6. ut
Let X be a separable metrizable space with dimX � n. In the proof of

Proposition 5.9.6, we can take a Bi with only one element. Then, replacing I with
Œa; 1�where a 2 InQ, the map h W X ! Œa; 1�N � IN defined by h.x/ D .fi .x//i2N
is an embedding such that h.Xn/ � 	n. Similar to Theorem 5.9.7, we have the
following separable version:
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Theorem 5.9.8. The space 	n is a universal space for separable metrizable spaces
with dim � n and the space 	! is a universal space for countable-dimensional
separable metrizable spaces. ut

Next, recall that INf is s.c.d. We now define

K! D
[

n2N
	n �

�
.0; 1�n � f0g� � 	! � INf :

11

For an infinite set � , we define

K!.� / D
[

n2N
	n.� / �

�
.0; 1�n � f0g� � 	!.� / � INf � J.� /N � IN:

Then, K! is separable and w.K!.� // D card� . Moreover, K!.� / and K! are
s.c.d. Indeed, for .x; y/ 2 K!.� /,

.x; y/ 2
n[

iD1
	i .� / �

�
.0; 1�i � f0g�, y.nC 1/ D 0:

Hence,
Sn
iD1 	i .� / � ..0; 1�i � f0g/ is a closed set in K!.� /, which is finite-

dimensional by the Product Theorem 5.4.9 and the Addition Theorem 5.4.8.

Theorem 5.9.9. Let � be an infinite set. The spaceK!.� / is a universal space for
strongly countable-dimensional metrizable spaces X with w.X/ � card� .

Proof. We can write X D S
i2N Fi , where each Fi is closed in X , dimFi � i � 1,

and Fi � FiC1 for each i 2 N. By the Decomposition Theorem 5.4.5, we have a
sequence X1;X2; � � � � X such that dimXn � 0 and

F1 D X1; F2 n F1 D X2 [ X3; F3 n F2 D X4 [ X5 [ X6; : : : ;
i.e., Fi n Fi�1 D Sk.i/

nDk.i�1/C1 Xn, where F0 D ; and k.i/ D 1
2
i.i C 1/. We apply

Proposition 5.9.6 to obtain an embedding h W X ! J.� /N such that h.Xn/ �
	n.� / for each n 2 N. For each i 2 N, let fi W X ! I be a map with f �1i .0/ D
Fi�1, and define a map f W X ! IN as follows:

f .x/ D .f1.x/; f2.x/; f2.x/; f3.x/; f3.x/; f3.x/; : : : /;
where each fi .x/ appears i times, i.e., prnf D fi for k.i�1/C1 � n � k.i/. Now,
we can define the embedding g W X ! J.� /N � IN by g.x/ D .h.x/; f .x//. For
each x 2 X , choose i 2 N and k.i �1/C1 � n � k.i/ so that x 2 Xn � Fi nFi�1.
Then, h.x/ 2 h.Xn/ � 	n.� / � 	k.i/.� /. Since x 2 Fi n Fi�1, it follows that

11This is different from the usual notation. In the literature for Dimension Theory, this space is
represented by K!.@0/ and K! stands for INf .
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fj .x/ > 0 for j � i and fj .x/ D 0 for j � i C 1, i.e., prj f .x/ > 0 for j � k.i/
and prj f .x/ D 0 for j � k.i/C 1. Therefore, f .x/ 2 .0; 1�k.i/ � f0g � IN. Thus,
we have

g.x/ D .h.x/; f .x// 2 	k.i/.� / �
�
.0; 1�k.i/ � f0g� � K!.� /:

Consequently,X can be embedded into K!.� /. ut
Similarly, we can obtain the following separable version:

Theorem 5.9.10. The space K! is a universal space for strongly countable-
dimensional separable metrizable spaces. ut

5.10 Nöbeling Spaces and Menger Compacta

In this section, we shall construct two universal spaces for separable metrizable
spaces with dim � n, which are named the n-dimensional Nöbeling space and the
n-dimensional Menger compactum.

In the previous section, we defined the universal space 	n. In the definition of 	n,
we replace IN with R

2nC1 to define the n-dimensional Nöbeling space 	n, that is,

	n D ˚x 2 R
2nC1 ˇˇ x.i/ 2 R nQ except for n many i

�

D ˚x 2 R
2nC1 ˇˇ x.i/ 2 Q at most n many i

�
;

which is the n-dimensional version of the space of irrationals 	0 D R n Q. Similar
to Theorem 5.9.3, we can see dim 	n D n. Observe

R
2nC1 n 	n D ˚x 2 R

2nC1 ˇˇ x.i/ 2 Q at least nC 1 many i
�
;

which is a countable union of n-dimensional flats that are closed in R
2nC1. Then, 	n

is a Gı-set in R
2nC1, hence it is completely metrizable. Thus, we have the following

proposition:

Proposition 5.10.1. The space 	n is a separable completely metrizable space with
dim 	n D n. ut

Moreover, 	n has the additional property:

Proposition 5.10.2. Each point of 	n has an arbitrarily small neighborhood that
is homeomorphic to 	n. In fact, 	n \Q2nC1

iD1 .ai ; bi / � 	n for each ai < bi 2 Q,
i D 1; : : : ; 2nC 1.

Proof. Let ' W R! .�1; 1/ be the homeomorphism defined by

'.t/ D t

1C jt j



'�1i .s/ D s

1 � jsj
�

:
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We define a homeomorphism h W R2nC1 !Q2nC1
iD1 .ai ; bi / as follows:

h.x/ D .h1.x.1//; : : : ; h2nC1.x.2nC 1///;
where hi W R! .ai ; bi / is the homeomorphism defined by

hi .t/ D bi � ai
2

.'.t/C 1/C ai :

Since hi .Q/ D Q \ .ai ; bi /, we have h.	n/ D 	n \Q2nC1
iD1 .ai ; bi /. ut

We will show the universality of 	n.

Theorem 5.10.3. The n-dimensional Nöbeling space 	n is a universal space for
separable metrizable spaces with dim � n.

According to the Compactification Theorem 5.7.2, every n-dimensional sep-
arable metrizable space X has an n-dimensional metrizable compactification.
Theorem 5.10.3 comes from the following proposition:

Proposition 5.10.4. For each locally compact separable metrizable space X with
dimX � n and U 2 cov.R2nC1/, every proper map f W X ! R

2nC1 is U-close to
a closed embedding g W X ! 	n. If X is compact, then R

2nC1 can be replaced by
I2nC1.

This can be shown by a modification of the proof of the Embedding Approxima-
tion Theorem 5.8.10 (or 5.8.5). To this end, we need the following generalization of
Theorem 5.8.9:

Lemma 5.10.5. Let X and Y be locally compact metrizable spaces and Y0 DT
n2NGn � Y , where each Gn is open in Y (hence Y0 is a Gı-set in Y ). Suppose

that for each n 2 N and each open cover U of X consisting of open sets with the
compact closures, CU .X;Gn/ is dense in the space CP .X; Y / with the limitation
topology. Then, Emb.X; Y0/ is dense in CP .X; Y /.

Proof. Observe that

Emb.X; Y0/ D Emb.X; Y /\ C.X; Y0/

D
\

n2N
CUn.X; Y /\

\

n2N
C.X;Gn/ D

\

n2N
CUn.X;Gn/;

where Un 2 cov.X/ consists of open sets with the compact closures and meshUn <
2�n. By the assumption, each CU .X;Gn/ is open and dense in CP .X; Y /. Since
CP .X; Y / is a Baire space by Theorem 2.9.8, we have the desired result. ut
Proof of Proposition 5.10.4. According to the definition of 	n, we can write

	n D R
2nC1 n

[

i2N
Hi D

\

i2N
.R2nC1 nHi/;
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I

R1

R2

I

I nR1
I nR2

.I nR1/\ .I nR2/R1 [ R2
Fig. 5.4 Rk and I nRk

where each Hi is an n-dimensional flat. Because of Lemma 5.10.5, it suffices to
show that, for each n-dimensional flatH in R

2nC1 and each U 2 cov.X/ consisting
of open sets with the compact closure, CU .X;R2nC1 n H/ is dense in the space
CP .X;R2nC1/ with the limitation topology.

In the proof of 5.8.10, we can choose vi 2 R
2nC1, i 2 N, to satisfy the additional

condition that the flat hull of every nC 1 many points vi1 ; : : : ; vinC1
misses H (i.e.,

flfvi1 ; : : : ; vinC1
g \ H D ;). Thus, we can obtain the PL embedding g W jKj !

R
2nC1 such that g.jKj/\H D ;. The map g' W X ! R

2nC1 nH is a U-map that
is V-close to f .

If X is compact, we can replace R
2nC1 by I2nC1 to obtain the additional

statement. ut
Remark 15. It is known that if X is a separable completely metrizable space with
dimX � n, then every map f W X ! 	n can be approximated by closed
embeddings h W X ! 	n. Refer to Remark 14.

Before defining the n-dimensional Menger compactum, let us recall the construc-
tion of the Cantor (ternary) set�0. We can geometrically describe�0 � I as follows:
For each k 2 N, let

Rk D
3k�1�1[

mD0
.m=3k�1 C 1=3k;m=3k�1 C 2=3k/ � I:

Then, �0 DTk2N.I nRk/ D I nSk2NRk (Fig. 5.4). Observe that

k\

iD1
.I nRi/ D Œ0; 3�k�C V 0

k ; where V 0
k D

(
kX

iD1

2x.i/

3i

ˇ
ˇ
ˇ
ˇ
ˇ
x 2 2k

)

:

Moreover, f3�k�0 C v j v 2 V 0
k g is an open cover of �0 with ord D 1, where

�0 � 3�k�0 C v D �0 \ .Œ0; 3�k�C v/

D �0 \ ..�3�k�1; 3�k C 3�k�1/C v/:
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II

R1 R2

Fig. 5.5 I3 nM3
1 and I3 nM3

2

Fig. 5.6 M3
1 and M3

2

As the n-dimensional version of�0, the n-dimensional Menger compactum�n

is defined as follows: For each k 2 N, let

M2nC1
k D ˚x 2 I2nC1

ˇ
ˇ x.i/ 2 I nRk except for n many i

�

D ˚x 2 I2nC1
ˇ
ˇ x.i/ 2 Rk at most n many i

�
;

where it should be noted that

I nM2nC1
k D ˚x 2 I2nC1

ˇ
ˇ x.i/ 2 Rk at least nC 1 many i

�
:

Now, we define �n D T
k2NM

2nC1
k . Since each M2nC1

k is compact, �n is also
compact. See Figs. 5.5–5.7.

Proposition 5.10.6. For each n 2 N, dim�n D n.
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1
3
M3
1

Fig. 5.7 M3
1 \M3

2

Proof. Since �n contains every n-face of I2nC1, it follows that dim�n � n. We can
apply Proposition 5.8.12 to see dim�n � n. We use the metric d 2 Metr.I2nC1/
defined by

d.x; y/ D maxfjx.i/� y.i/j j i D 1; : : : ; 2nC 1g:
For each " > 0, choose k 2 N so large that 2=3k < ". Let K be the cell complex
consisting of all faces of .2nC 1/-cubes

2nC1Y

iD1

�
mi � 1
3k�1

;
mi

3k�1



� I2nC1; mi D 1; : : : ; 3k:

Since �n � M2nC1
k , it suffices to construct an "-map of M2nC1

k to jK.n/j, where
K.n/ is the n-skeleton of K .

For each C 2 K with dimC > n, let rC W C nf OC g ! @C be the radial retraction,
where OC is the barycenter of C and @C is the radial boundary of C . Observe that
M2nC1
k \C � C n f OC g and rC .M

2nC1
k \C/ �M2nC1

k \ @C . For eachm � n, we
can define a retraction

rm WM2nC1
k \ jK.mC1/j !M2nC1

k \ jK.m/j
by rmjC D rC for each .m C 1/-cell C 2 K . Since jK.n/j � M2nC1

k , we have a
retraction

r D rn � � � r2n WM2nC1
k ! jK.n/j:

By construction, r�1.x/ � st.x;K/ for each x 2 jK.n/j. Since meshK D
1=3k�1 < "=2, it follows that r is an "-map. ut

For each k 2 N, �n � 3�k�n � Œ0; 3�k�. Let

V n
k D

˚
v 2 3�kZ2nC1 ˇˇ Œ0; 3�k�2nC1 C v �M2nC1

k

�
:
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Then, M2nC1
k D S

v2V nk .Œ0; 3
�k�2nC1 C v/ and �n D 3�k�n C V n

k . Thus, we have
the following proposition:

Proposition 5.10.7. Every neighborhood of each point of�n contains a copy of�n.
ut

We will show the universality of �n.

Theorem 5.10.8. The n-dimensional Menger compactum �n is a universal space
for separable metrizable spaces with dim � n.

Proof. By Theorem 5.10.3, it suffices to prove that every compact set X in I2nC1 \
	n can be embedded in �n.

First, note that

X � ˚x 2 I2nC1
ˇ
ˇ x.i/ 6D 1=2 except for n many i

�
:

Then, we have a rational q1 > 0 such that

X � ˚x 2 I2nC1
ˇ
ˇ x.i/ 2 I n RX1 except for n many i

�
;

where RX1 D .1=2� q1; 1=2C q1/ � .0; 1/. Let AX1 D f1=2� q1; 1=2C q1g be the
set of end-points of RX1 and let g1 W I ! I be the PL homeomorphism defined by
g1.0/ D 0, g1.1/ D 1, and g1.1=2˙ q1/ D 1=2˙ 1=6, i.e., g1.AX1 / D f1=3; 2=3g.
Observe that jg1.s/� sj < 3�1 for every s 2 I.

LetBX
1 be the set of mid-points of components of InAX1 , i.e.,BX

1 D f1=2; 1=22�
q1=2; 3=2

2C q1=2g � Q. Note that

X � ˚x 2 I2nC1
ˇ
ˇ x.i/ 2 I n BX

1 except for n many i
�
:

Then, we have a rational q2 > 0 such that 2q2 is smaller than the diameter of each
component of I n AX1 , and

X � ˚x 2 I2nC1
ˇ
ˇ x.i/ 2 I n RX2 except for n many i

�
;

whereRX2 D
S
b2BX1 .b�q2; bCq2/. LetAX2 be the set of end-points of components

of RX2 and let g2 W I ! I be the PL homeomorphism defined by g2.0/ D 0,
g2.1/ D 1, g2.AX1 [ AX2 / D fm=32 j m D 1; : : : ; 32 � 1g. Then, g2jAX1 D g1jAX1
and jg2.s/� g1.s/j < 3�2 for every s 2 I.

Let BX
2 be the set of mid-points of components of In.AX1 [AX2 /. Then,BX

2 � Q.
Since

X � ˚x 2 I2nC1
ˇ
ˇ x.i/ 2 I n BX

2 except for n many i
�
;

we have a rational q3 > 0 such that 2q3 is smaller than the diameter of each
component of I n .AX1 [ AX2 /, and

X � ˚x 2 I2nC1
ˇ
ˇ x.i/ 2 I n RX3 except for n many i

�
;
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Fig. 5.8 Homeomorphisms g1, g2, . . .

whereRX3 D
S
b2BX2 .b�q2; bCq2/. LetAX3 be the set of end-points of components

of RX3 and let g3 W I ! I be the PL homeomorphism defined by g3.0/ D 0,
g3.1/ D 1, g3.AX1 [AX2 [AX3 / D fm=33 j m D 1; : : : ; 33�1g. Then, g3jAX1 [AX2 D
g2jAX1 [AX2 and jg3.s/� g2.s/j < 3�3 for every s 2 I — (Fig. 5.8).

By induction, we obtain RXk ;A
X
k � I (k 2 N) such that RXk is the union of 3k�1

many disjoint open intervals, AXk is the set of all end-points of components of RXk ,
each component of RXk is contained in some component of I n AXk�1, and

X � ˚x 2 I2nC1
ˇ
ˇ x.i/ 2 I nRXk except for n many i

�
:

Hence, X is contained in

�nX D
\

k2N

˚
x 2 I2nC1

ˇ
ˇ x.i/ 2 I nRXk except for n many i

�
:

At the same time, we have the PL homeomorphisms gk W I! I, k 2 N, such that

gk.0/ D 0; gk.1/ D 1; gk
�Sk

iD1 AXi
� D fm=3k j m D 1; : : : ; 3k � 1g;

gk

ˇ
ˇ
ˇ
ˇ

k�1[

iD1
AXi D gk�1

ˇ
ˇ
ˇ
ˇ

k�1[

iD1
AXi and

ˇ
ˇgk.s/� gk�1.s/

ˇ
ˇ < 3�k for every s 2 I.

Then, .gk/k2N uniformly converges to a map g W I ! I. Since A D S1
iD1 AXi is

dense in I and g mapsA onto fm=3k j k 2 N; m D 1; : : : ; 3k�1g in the same order,
it follows that g is bijective, hence g is a homeomorphism. Let h W I2nC1 ! I2nC1
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be the homeomorphism defined by h.x/ D .g.x.1//; : : : ; g.x.2n C 1/// . As is
easily observed, h.�nX/ D �n, hence h.X/ � �n. ut

We also have the following theorem:

Theorem 5.10.9. Let X be a compactum with dimX � n. Then, every map f W
X ! �n can be approximated by embeddings into �n.

Proof. By Proposition 5.10.4, f can be approximated by embeddings f 0 into
M2nC1
k \ 	n for an arbitrarily large k 2 N. Replacing X by f 0.X/ in the proof

of Theorem 5.10.8, we can take RXi D Ri and gi D id for i � k. Therefore, f can
be approximated by embeddings like hf 0. ut

5.11 Total Disconnectedness and the Cantor Set

A space X is said to be totally disconnected provided that, for any two distinct
points x 6D y 2 X , there is a clopen setH inX such that x 2 H but y 62 H (i.e., the
empty set is a partition between any two distinct points). Equivalently, for each x 2
X the intersection of all clopen sets containing x is the singleton fxg. According to
Theorem 5.3.8, the 0-dimensionality implies the total disconnectedness. We say that
X is hereditarily disconnected if every non-degenerate subset ofX is disconnected
(i.e., every component of X is a singleton). Clearly, the total disconnectedness
implies the hereditary disconnectedness. Therefore, we have the following fact:

Fact. Every 0-dimensional space is totally disconnected, and every totally discon-
nected space is hereditarily disconnected.

The converse assertions are true for compact spaces. To see this, we prove the
following lemma:

Lemma 5.11.1. Let X be compact, x 2 X , and C be the intersection of all clopen
sets in X containing x.

(1) For each open neighborhood U of C in X , there is a clopen set H in X such
that C � H � U .

(2) C is the component of X containing x.

Proof. (1): Let H be all the clopen sets in X containing x. Since X n U is compact
and fX nH ˇ

ˇ H 2 Hg is its open cover in X , there are H1; : : : ;Hn 2 H such that

X n U �
n[

iD1
.X nHi/ D X n

n\

iD1
Hi :

Thus, we have H DTn
iD1 Hi 2 H and C � H � U .
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(2): Since C clearly contains the component of X containing x, it suffices to
show that C is connected. Now assume that C D A [ B , where A and B are
disjoint closed sets in C and x 2 A. From the normality, it follows that there are
disjoint open sets U and V in X such that A � U and B � V . By (1), we have a
clopen set H in X such that C � H � U [ V . Since H \ U is open in X and
H n V is closed in X , H \ U D H n V is clopen in X . Then, C � H \ U � U ,
which implies that B � C \ V D ;. Thus, C is connected. ut
Theorem 5.11.2. For every non-empty compact space X , the following are equiv-
alent:

(a) dimX D 0;
(b) X is totally disconnected;
(c) X is hereditarily disconnected.

Proof. The implications (a)) (b)) (c) follow from the above Fact. Here, we will
prove the converse implications.

(c)) (b): For each x 2 X , the intersection of all clopen sets in X containing
x is a component of X by Lemma 5.11.1(2). It is, in fact, the singleton fxg, which
means that X is totally disconnected.

(b)) (a): Let U be a finite open cover of X . Each x 2 X belongs to some U 2
U . Because of the total disconnectedness of X , the singleton fxg is the intersection
of all clopen sets in X containing x. By Lemma 5.11.1(1), we have a clopen set Hx

in X such that x 2 Hx � U . From the compactness, it follows that X D Sn
iD1 Hxi

for some x1; : : : ; xn 2 X . Let

V1 D Hx1; V2 D Hx2 nHx1 ; : : : ; Vn D Hxn n .Hx1 [ � � � [Hxn�1 /:

Then, V D fV1; : : : ; Vng is an open refinement of U and ordV D 1. Hence, we have
dimX D 0. ut

The implications (c) ) (b) ) (a) in Theorem 5.11.2 do not hold in general.
In the next section, we will show the existence of nonzero-dimensional totally
disconnected spaces, i.e., counter-examples for (b)) (a). Here, we give a counter-
example for (c)) (b) via the following theorem:

Theorem 5.11.3. There exists a separable metrizable space that is hereditarily
disconnected but not totally disconnected.

Example and Proof. Take a countable dense set D in the Cantor set �0 and define

X D D �Q [ .�0 nD/ � .R nQ/ � �0 � R:

Let p W X ! �0 be the restriction of the projection of �0 � R onto �0.
First, we show that X is hereditarily disconnected. Let A � X be a non-

degenerate subset. When cardp.A/ > 1, since �0 is hereditarily disconnected,
p.A/ is disconnected, which implies that A is disconnected. When cardp.A/ D 1,
A � p.A/�Q � Q or A � p.A/� .R nQ/ � R nQ. Since both Q and R nQ are
hereditarily disconnected, A is disconnected.
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Next, we prove that X is not totally disconnected. Assume that X is totally
disconnected and let x0 2 D � �0. Because .x0; 0/; .x0; 1/ 2 X , we have closed
sets F0 and F1 in �0�R such thatX � F0[F1, F0\F1\X D ;, and .x0; i/ 2 Fi .
Then, F0 \X and F1 \X are clopen in X . Choose an open neighborhoodU0 of x0
in �0 so that

.U0 \D/ � fig D U0 � fig \X � Fi for i D 0; 1:
Since Fi is closed in �0 � R and D is dense in �0, it follows that U0 � fig � Fi .
For each r 2 Q, let

Cr D
˚
x 2 U0

ˇ
ˇ .x; r/ 2 F0 \ F1

�
:

Then, each Cr is closed and nowhere dense in U0. Indeed, for each x 2 U0 n Cr ,
because .x; r/ 62 F0 \ F1 and F0 \ F1 is closed in �0 � R, x has a neighborhood
U in U0 such that U � frg \ F0 \ F1 D ;. Then, .y; r/ 62 F0 \ F1 for all y 2 U ,
i.e., U \Cr D ;, so Cr is closed in U0. Since F0 \ F1 \X D ; and .x; r/ 2 X for
x 2 D, we have Cr � U0 nD, which implies that Cr is nowhere dense in U0.

We will show that U0 nD D Sr2QCr . Then,

U0 D
[

r2Q
Cr [

[

x2D\U0
fxg;

which is contrary to the Baire Category Theorem 2.5.1. Thus, it would follow that
X is not totally disconnected. For each x 2 U0 nD,

fxg � R D cl�0�Rfxg � .R nQ/ � cl�0�RX � F0 [ F1:
If x 62 Sr2QCr , then F0 \ F1 \ fxg � Q D ; because x 62 Cr for all r 2 Q.
Therefore,

F0 \ F1 \ fxg � R D F0 \ F1 \ fxg � .R nQ/ � F0 \ F1 \ X D ;:
Because .x; i/ 2 Fi \ fxg � R, this contradicts the connectedness of R. Therefore,
x 2 Sr2Q Cr and the proof is complete. ut

In the remainder of this section, we give a characterization of the Cantor set �0

and show that every compactum is a continuous image of �0. Recall that �0 � 2N,
where 2 D f0; 1g is the discrete space of two points. In the following, �0 can be
replaced by 2N (cf. Sect. 1.1).

Theorem 5.11.4 (CHARACTERIZATION OF THE CANTOR SET). A space X is
homeomorphic to the Cantor set �0 if and only if X is a totally disconnected
compactum with no isolated points.

Proof. It suffices to show the “if” part. Since �0 � 2N, we will construct a
homeomorphismh W 2N ! X . Let d 2 Metr.X/with diamX < 1. First, note that

() Each non-empty open set in X can be written as the disjoint union of an
arbitrary finite number of non-empty open sets.
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In fact, because X has no isolated points, each non-empty open set U in X is non-
degenerate and dimU D 0 by Theorem 5.11.2 and the Subset Theorem 5.3.3. We
apply Theorem 5.2.3 iteratively to obtain the fact ().

Using the fact (), we will construct a sequence 1 D n0 < n1 < � � � in N and

En D
˚
E.x/

ˇ
ˇ x 2 2n

� 2 cov.X/; n 2 N;

so that

(1) Each E.x/ 2 En is non-empty, so non-degenerate;
(2) mesh Eni < 2�i ;
(3) E.x/ \ E.y/ D ; if x 6D y 2 2n; and
(4) E.x/ D E.x.1/; : : : ; x.n/; 0/ [E.x.1/; : : : ; x.n/; 1/ for all x 2 2n.

By (), we have E1 D fE.0/;E.1/g 2 cov.X/ such that E.0/ and E.1/ are non-
empty,E.0/\E.1/ D ;, and mesh E1 � diamX < 1 D 20. Assume that 1 D n0 <
� � � < ni�1 and E1; : : : ; Eni�1 have been defined. For each x 2 2ni�1 , E.x/ 2 Eni�1
is a compactum as a clopen set in X . Since dimE.x/ D 0, E.x/ has a finite open
cover Ux with ordUx D 1 and meshUx < 2�i (Theorem 5.3.1). Choose m 2 N so
that cardUx � 2m for each x 2 2ni�1 . Using the fact (), as a refinement of Ux , we
can obtain

Ex D
˚
E.x; y/

ˇ
ˇ y 2 2m

� 2 cov.E.x//;

where E.x; y/ 6D ; for every y 2 2m. Then, mesh Ex < 2�i . We define ni D
mC ni�1 > ni�1 and

Eni D
[

x22ni�1

Ex D
˚
E.x; y/

ˇ
ˇ .x; y/ 2 2ni�1 � 2m D 2ni

�
:

Thus, we have Eni 2 cov.X/ with mesh Eni < 2�i . By the downward induction
using formula (4), we can define Eni�1; : : : ; Eni�1C1 2 cov.X/. Therefore, we obtain
E1; : : : ; Eni 2 cov.X/.

For each x 2 2N,
T
n2NE.x.1/; : : : ; x.n// 6D ; because of the compactness

of X . Since

lim
n!1 diamE.x.1/; : : : ; x.n// D 0;

we can define h W 2N ! X by

fh.x/g D
\

n2N
E.x.1/; : : : ; x.n//:

To show that h is a homeomorphism, it suffices to prove that h is a continuous
bijection because 2N is compact. For each " > 0, choose i 2 N so that 2�i < ".
Then, mesh Eni < " by (2). For each x; y 2 2N, x.1/ D y.1/; : : : ; x.ni / D y.ni /

imply h.x/; h.y/ 2 E.x.1/; : : : ; x.ni // 2 Eni , so d.h.x/; h.y// < ". Hence, h is
continuous. It easily follows from (3) that h is injective. By (4), for each y 2 X , we
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can inductively choose x.n/ 2 2, n 2 N, so that y 2 E.x.1/; : : : ; x.n//. Then, we
have x 2 2N such that y 2 Tn2NE.x.1/; : : : ; x.n//, i.e., y D h.x/. Hence, h is
surjective. This completes the proof. ut

The Cantor set is very important because of the following theorem:

Theorem 5.11.5. Every compactumX is a continuous image of the Cantor set, that
is, there exists a continuous surjection f W �0 ! X .

The proof consists of a combination of the following two propositions.

Proposition 5.11.6. Every separable metrizable space X is a continuous image of
a subspace of the Cantor set.

Proof. We have a natural continuous surjection ' W �0 ! I defined by
'.
P

i2N 2xi=3i / D
P

i2N xi=2i , where xi 2 2 D f0; 1g. Since .�0/N � �0,
the Hilbert cube IN is a continuous image of the Cantor set. Therefore, the result
follows from the fact that every separable metrizable space can be embedded in IN

(Corollary 2.3.8). ut
Proposition 5.11.7. Any non-empty closed set A in �0 is a retract of �0, that is,
there is a map r W �0 ! A with r jA D id.

Proof. Since �0 � 2N, we may replace �0 by 2N. For each x 2 2N and n 2 N, we
inductively define xA.n/ 2 2 as follows:

xA.n/ D
(
x.n/ if .xA.1/; : : : ; xA.n � 1/; x.n// 2 pn.A/;
1 � x.n/ otherwise;

where pn W 2N ! 2n is the projection onto the first n factors. Since A 6D ;,
.xA.1/; : : : ; xA.n// 2 pn.A/ for each n 2 N. Since A is closed in 2N, it follows
that xA D .xA.n//n2N 2 A. It is obvious that xA D x for x 2 A. We can define a
retraction r W 2N ! A by r.x/ D xA. For each x; y 2 2N,

pn.x/ D pn.y/) pn.r.x// D pn.xA/ D pn.yA/ D pn.r.y//;
hence r is continuous. ut

5.12 Totally Disconnected Spaces with dim 6D 0

In this section, we will construct totally disconnected separable metrizable spaces
X with dimX 6D 0. The first example called the Erdös space is constructed in the
proof of the following theorem. This space is also an example of spaces X such that
dimX2 6D 2 dimX .

Theorem 5.12.1. There exists a 1-dimensional totally disconnected separable
metrizable space X that is homeomorphic to X2 D X �X .
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Example and Proof. The desired space X is a subspace of the Hilbert space `2
defined as follows:

X D ˚x 2 `2
ˇ
ˇ x.i/ 2 Q for all i 2 N

�
:

The space `2 � `2 has the norm k.x; y/k D .kxk2 C kyk2/1=2. Then, the map
h W `2 � `2 ! `2 defined by h.x; y/.2i � 1/ D x.i/ and h.x; y/.2i/ D y.i/ is an
isometry, hence it is a homeomorphism. Since h.X�X/ D X , we haveX�X � X .

To prove the total disconnectedness of X , let x 6D y 2 X . Then, x.i0/ 6D y.i0/

for some i0 2 N. Without loss of generality, we may assume that x.i0/ < y.i0/.
Choose t 2 R n Q so that x.i0/ < t < y.i0/. Then, H D ˚

z 2 X j z.i0/ < tg is
clopen in X and x 2 H but y 62 H . Hence, X is totally disconnected.

Note that dimX D indX by the Coincidence Theorem 5.5.2. Next, we show that
indX > 0 and indX � 1. If so, we would have dimX D indX D 1.

To show that indX > 0, it suffices to prove that bdU 6D ; for every open
neighborhood U of 0 contained in B.0; 1/ D fx 2 X j kxk < 1g. We can
inductively choose a1; a2; � � � 2 Q so that

xn D .a1; : : : ; an; 0; 0; : : : / 2 U and d.xn;X n U / < 1=n:
In fact, when a1; : : : ; an have been chosen, let

k0 D min
˚
k 2 N

ˇ
ˇ .a1; : : : ; an; k=.nC 2/; 0; 0; : : : / 62 U

�
:

Then, .k0 � 1/=.n C 2/ 2 Q is the desired anC1. Since
Pn

iD1 a2i < 1 for each n,
it follows that

P1
iD1 a2i � 1 < 1, hence x0 D .ai /i2N 2 X . Since xn ! x0

(n!1), it follows that x0 2 clU . On the other hand, since d.xn;X n U / < 1=n,
we have x0 2 cl.X n U /. Therefore, x0 2 bdU .

To show that indX � 1, it suffices to prove that each Fn D fx 2 X j kxk D
1=ng is 0-dimensional. Note that Fn � Q

N as sets. Furthermore, the topology on Fn
coincides with the product inherited from the product space QN (Proposition 1.2.4).
Since dimQ

N D 0, we have dimFn D 0 by the Subset Theorem 5.3.3. The proof is
complete. ut

To construct totally disconnected metrizable spaces X of arbitrarily large
dimensions, we need the following lemmas:

Lemma 5.12.2. Let .A� ; B� /�2� be an essential family of pairs of disjoint closed
sets in a compact spaceX and �0 2 � . For each � 2 � n f�0g, let L� be a partition
between A� and B� in X and L D T

�2� nf�0g L� . Then, L has a component that
meets both A�0 and B�0 .

Proof. Assume that L has no components that meet both A�0 and B�0 . Let D be
the union of all components of L that meet A�0 , where we allow the case D D ;
or D D L. For each x 2 L nD, the component Cx of L containing x misses A�0 .
By Lemma 5.11.1(1), we have a clopen set Ex in L such that Cx � Ex � L n A�0 .
For each y 2 Ex, the component Cy of L with y 2 Cy is contained in Ex, hence
Cy \ A�0 D ;. Then, it follows that Ex � L nD. Therefore, L nD is open in L,
that is, D is closed in L, so it is compact.
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For each x 2 D, the component ofL containing x missesB�0 by the assumption.
As above, we have a clopen set Ex in L such that x 2 Ex � L n B�0 . Since D is
compact,D �Sn

iD1 Exi for some x1; : : : ; xn 2 D. Then, E D Sn
iD1 Exi is clopen

in L and A�0 \L � D � E � L n B�0 .
By the normality of X , we have disjoint open sets U and V in X such that

A�0 [ E � U and B�0 [ .L n E/ � V . Then, L�0 D X n .U [ V / is a partition
between A�0 and B�0 in X and

T
�2� L� D L \ L�0 D ;. This is contrary to

the essentiality of .A� ; B�/�2� . Therefore, L has a component that meets both A�0
and B�0 . ut
Lemma 5.12.3. Let X be a compactum and f W X ! Y be a continuous
surjection. Then, X has a Gı-subset S that meets each fiber of f at precisely one
point, that is,

card.f �1.y/ \ S/ D 1 for each y 2 Y:
Proof. We may assume that X � IN. For each y 2 Y , since f �1.y/ is non-empty
and compact, we can define g.y/ 2 X as follows:

g.y/.1/ D min pr1.f
�1.y// and

g.y/.n/ D min prn
�
f �1.y/ \Tn�1

iD1 pr�1i .g.y/.i//
�

for n > 1.

Then, ; 6D f �1.y/ \Tn
iD1 pr�1i .g.y/.i// � pr�1n .g.y/.n//. By the compactness

of f �1.y/, we have

; 6D f �1.y/ \
\

i2N
pr�1i .g.y/.i// �

\

n2N
pr�1n .g.y/.n// D fg.y/g;

which means g.y/ 2 f �1.y/. Thus, the set S D fg.y/ j y 2 Y g meets each fiber
of f at precisely one point.

For each n;m 2 N, let

Fn;m D
˚
x 2 X ˇ

ˇ 9z 2 X such that z.i/ D x.i/ for i < n;

z.n/ � x.n/ � 1
m

and f .z/ D f .x/�:
Since X is a compactum, it is easy to see that Fn;m is closed in X , hence Un;m D
X nFn;m is open inX . We show that S D Tn;m2NUn;m, which is a Gı-set in X . For
each y 2 Y , if z 2 X , z.i/ D g.y/.i/ for all i < n and z.n/ � g.y/.n/ � 1

m
, then

f .z/ 6D y D f .g.y//; otherwise g.y/.n/ � z.n/ (< g.y/.n/) by the definition of
g.y/. Thus, g.y/ 2 Un;m for all n;m 2 N, i.e., S � Tn;m2N Un;m. Conversely, for
each x 2 Tn;m2NUn;m, let y D f .x/ (i.e., x 2 f �1.y/). Then, x D g.y/ 2 S .
Otherwise, let n D minfi 2 N j x.i/ 6D g.y/.i/g. Since g.y/.n/ < x.n/ by
the definition of g.y/, it follows that g.y/.n/ � x.n/ � 1

m
for some m 2 N, i.e.,

x 2 Fn;m D X n Un;m, which is a contradiction. ut
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For a metric space X D .X; d/, let Comp.X/ be the space of all non-empty
compact sets in X that admits the Hausdorff metric dH defined as follows:

dH .A;B/ D inf
˚
r > 0

ˇ
ˇ A � Nd .B; r/; B � Nd .A; r/

�

D max
˚

supa2A d.a; B/; supb2B d.b; A/
�
:

According to the following proposition, the topology of Comp.X/ induced by the
Hausdorff metric dH coincides with the Vietoris topology defined in Sect. 3.8.

Proposition 5.12.4. For a metric space Y D .Y; d/, the Vietoris topology on
Comp.Y / is induced by the Hausdorff metric dH . Consequently, the space Comp.X/
with the Vietoris topology is metrizable if Y is metrizable.

Proof. For each A 2 Comp.Y / and r > 0, we can choose a1; : : : ; an 2 A so that
A �Sn

iD1 B.ai ; r=2/. Then,

A 2

 n[

iD1
B.ai ; r=2/

�C
\

n\

iD1
B.ai ; r=2/� \ Comp.Y / � BdH .A; r/;

which means that BdH .A; r/ is a neighborhood of A in the Vietoris topology.12

Let A 2 Comp.Y /. For each open set U in Y with A 2 U�, taking a 2 A \ U ,
we have BdH .A; d.a; Y n U // � U�. On the other hand, for each open set U in Y
with A 2 UC, we have BdH .A; ı/ � UC, where ı D dist.A; Y n U / > 0. Thus,
fBdH .A; r/ j r > 0g is a neighborhood basis at A 2 Comp.Y /. ut

Note. When Y D .Y; d/ is a bounded metric space, the Hausdorff metric dH is
defined on the set Cld.Y / consisting of all non-empty closed sets in Y , which induces
a topology different from the Vietoris topology if Y is non-compact. If Y is unbounded,
then dH .A; B/ D 1 for some A;B 2 Cld.Y /. But, even in this case, dH induces the
topology on Cld.Y /. We should note that this topology is dependent on the metric d . For
example, Cld.R/ is non-separable with respect to the Hausdorff metric induced by the usual
metric. In fact, it has no countable open basis because P0.N/ is an uncountable discrete
set of Cld.R/. On the other hand, R is homeomorphic to the unit open interval .0; 1/ and
Cld..0; 1// is separable with respect to the Hausdorff metric induced by the usual metric
because Fin..0; 1// is dense in Cld..0; 1//.

As observed in Sect. 3.8, the space Cld.Y /with the Vietoris topology is Hausdorff if and
only if Y is regular. Here, it is remarked that Cld.Y / is metrizable if and only if Y is compact
and metrizable. Indeed, if Y is compact metrizable then Cld.Y / D Comp.Y / is metrizable
by Proposition 5.12.4. Conversely, if Y is non-compact then Y contains a countable discrete
set. Then, P0.N/ D Cld.N/ can be embedded into Cld.Y / as a subspace, which implies
that P0.N/ is metrizable. Note that P0.N/ is separable because Fin.N/ is dense in P0.N/.
Thus, P0.N/ is second countable. Let B be a countable open base for P0.N/. For each
A 2 P0.N/, choose BA 2 B so that A 2 BA � AC. When A 6D A0 2 P0.N/, we
may assume A n A0 6D ;. Then, A 62 BA0 . Hence, we have BA 6D BA0 . Consequently,
card B � cardP0.N/ D 2@0 , which is a contradiction.

12Recall U� D fA � Y j A\ U 6D ;g and UC D fA � Y j A � U g.
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Theorem 5.12.5. Let X D .X; d/ be a metric space.

(1) If X is totally bounded then so is Comp.X/ with respect to dH .
(2) If X is complete then so is Comp.X/ with respect to dH .
(3) If X is compact then so is Comp.X/.

Proof. (1): For each " > 0, we have F 2 Fin.X/ such that d.x; F / < " for every
x 2 X . Then, Fin.F / is a finite subset of Comp.X/. For each A 2 Comp.X/, let
FA D fz 2 F j d.z; A/ < "g. For each x 2 A, we have z 2 F such that d.x; z/ < ",
which implies that z 2 FA. Then, FA 6D ; (i.e., FA 2 Fin.F /) and dH .A; FA/ < ".
Hence, Comp.X/ is totally bounded.

(2): Let .An/n2N be a Cauchy sequence in Comp.X/. If .An/n2N has a convergent
subsequence, then .An/n2N itself is convergent. Hence, it can be assumed that
dH.An;Ai / < 2

�n�1 for each n < i . Then, we prove that .An/n2N converges to

A0 D
\

n2N
cl N.An; 2�n/ 2 Comp.X/:

To this end, since A0 is closed in X and A0 � N.An; 2�nC1/ for each n 2 N, it
suffices to show that A0 is totally bounded and An � N.A0; 2�n/ for each n 2 N.

First, we show that An � N.A0; 2�n/. For each x 2 An, inductively choose
xi 2 Ai , i > n, so that d.xi ; xi�1/ < 2�i , where x D xn. Since .xi /i�n is a Cauchy
sequence in X , it converges to some x0 2 X . For each i � n,

d.xi ; x0/ �
1X

jDi
d.xj ; xjC1/ <

1X

jDi
2�j�1 D 2�i ;

hence d.x0; Ai / < 2�i and d.x0; x/ < 2�n. Moreover, for each i < n,

d.x0; Ai / � d.x0; x/C d.x;Ai / < 2�n C 2�i�1 � 2�i :
Therefore, x0 2 Ti2N N.Ai ; 2�i / � A0, so A0 6D ; and x 2 N.A0; 2�n/.

To see the total boundedness ofA0, let " > 0. Choose n 2 N so that 2�nC1 < "=3,
and take a finite "=3-dense subset fu1; : : : ; ukg of An.13 For each i D 1; : : : ; k,
choose vi 2 A0 so that d.ui ; vi / < 2�n. Then, fv1; : : : ; vkg is an "-dense subset of
A0. Indeed, for each x 2 A0, we have y 2 An such that d.x; y/ < 2�nC1. Then,
d.y; ui / < "=2 for some i D 1; : : : ; k. Hence,

d.x; vi / � d.x; y/C d.y; ui /C d.ui ; vi / < 2�nC1 C "=3C 2�n < ":
(3): This is a combination of (1) and (2). ut

Theorem 5.12.6. For each n 2 N, there exists an n-dimensional totally discon-
nected separable completely metrizable space. In addition, there exists a strongly
infinite-dimensional totally disconnected separable completely metrizable space.

13In a metric space X D .X; d/, A � X is said to be "-dense if d.x; A/ < " for each x 2 X .
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A0 B0

It D p0.y/ t 0

˛.t/ D ˛.t 0/y

Fig. 5.9 ˛.t/, t 2 �0

Proof (Example and Proof). To construct the examples simultaneously, let X D
I � I� and d 2 Metr.X/ where � D f1; : : : ; ng in the n-dimensional case and
� D N in the infinite-dimensional case. Let p0 W X ! I be the projection onto the
first factor. Put A0 D p�10 .0/ and B0 D p�10 .1/ and define

E D ˚E 2 Comp.X/
ˇ
ˇ E is connected; E \ A0 6D ;; E \ B0 6D ;

�
:

Then, E is closed in Comp.X/. Indeed, let D 2 Comp.X/ n E . When D is not
connected, it can be written as the disjoint union of two non-empty closed subsets
D1 and D2. Let " D 1

2
distd .D1;D2/ > 0. Then, every E 2 BdH .D; "/ is

not connected because E is contained in Nd .D1; "/ [ Nd .D2; "/ and meets both
Nd .D1; "/ and Nd .D2; "/. Hence, BdH .D; "/ \ E D ;. If D \ A0 D ;, then
Nd .D; ı/ \ A0 D ;, where ı D distd .A0;D/ > 0. Every E 2 BdH .D; ı/ also
misses A0, which implies BdH .D; ı/ \ E D ;. The case D \ B0 D ; is identical.

Since Comp.X/ is compact by Theorem 5.12.5(3), E is also compact. Then, we
have a map ˛ W �0 ! E of the Cantor set �0 onto E by Theorem 5.11.5. We define

Y D ˚y 2 p�10 .�0/
ˇ
ˇ y 2 ˛p0.y/

� � X:
Obviously, p0.Y / � �0. For each t 2 �0, since ˛.t/ is a continuum that meets
both A0 and B0, it follows that p0˛.t/ D I, so t D p0.y/ for some y 2 ˛.t/,
where y 2 Y (Fig. 5.9). Thus, we have p0.Y / D �0. Moreover, Y is closed in
X , so is compact. Indeed, let .yi /i2N be a sequence in Y converging to y 2 X .
Since p0.yi / 2 �0 for every i 2 N and .p0.yi //i2N converges to p0.y/, we have
p0.y/ 2 �0. Since yi 2 ˛p0.yi / for every i 2 N and .˛p0.yi //i2N converges to
˛p0.y/ in E , it easily follows that y 2 ˛p0.y/, hence y 2 Y .

By Lemma 5.12.3, Y has a Gı-subset S such that

card.p�10 .t/ \ S/ D 1 for each t 2 �0.
Since Y is compact, S is completely metrizable. Since p0jS W S ! �0 is a
continuous bijection and �0 is totally disconnected, it follows that S is also totally
disconnected. Moreover,S\E 6D ; for everyE 2 E . Indeed, because E D ˛p0.S/,
we can find y 2 S � Y such that E D ˛p0.y/, where y 2 ˛p0.y/ D E .

Now, for each i 2 � , let pi W X ! I be the projection onto the i -th coordinates of
the second factor I� . Since p�1i .0/; p�1i .1/ 2 E , it follows that Ai D S \p�1i .0/ 6D
; and Bi D S \ p�1i .1/ 6D ;. Then, .Ai ; Bi /i2� is essential in S . In fact, by the
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Partition Extension Lemma 5.3.7, for each partition Li between Ai and Bi in S ,
we have a partition QLi between p�1i .0/ and p�1i .1/ in X such that QLi \ S � Li .
According to Lemma 5.12.2, the intersection of the partions QLi has a component
E 2 E . Then,

T
i2� Li � E \ S 6D ;. Therefore, S is s.i.d. when � D N. In the

case that � D f1; : : : ; ng, dimS � n by Theorem 5.2.17. Since S � �0 � I� ,
dimS � n by the Subset Theorem 5.3.3 and the Product Theorem 5.4.9, hence
dimS D n. ut

5.13 Examples of Infinite-Dimensional Spaces

In this section, we construct two infinite-dimensional compacta. One is weakly
infinite-dimensional but not countable-dimensional.The other is hereditarily infinite-
dimensional. First, we present the following theorem:

Theorem 5.13.1. There exists a weakly infinite-dimensional compact metrizable
space that contains a strongly infinite-dimensional subspace, and hence it is not
countable-dimensional.

Example and Proof. Let S be an s.i.d. totally disconnected separable completely
metrizable space (Theorem 5.12.6) and let X D �S be a compactification of S with
the c.d. remainder (Theorem 5.7.4). Then, we show that X is the required example.

First, X contains the s.i.d. subset S , so X is not c.d. (Theorem 5.6.2). To see that
X is w.i.d., let .Ai ; Bi /i2! be a family of pairs of disjoint closed sets in X . Since
X nS is c.d.,X nS D Si2NXi , where dimXi D 0 for each i 2 N. For each i 2 N,
by Theorem 5.3.8 and the Partition Extension Lemma 5.3.7, X has a partition Li
between Ai and Bi such that Li \ Xi D ;. Then,

L D
\

i2N
Li �

\

i2N
X nXi D X n

[

i2N
Xi D S:

If L 6D ;, then L is compact and totally disconnected, which implies dimL D 0 by
Theorem 5.11.2. Again by Theorem 5.3.8 and the Partition Extension Lemma 5.3.7,
X has a partition L0 between A0 and B0 such that L0 \ L D ;, which meansT
i2! Li D ;. ut
For a compact space X and a metric space Y D .Y; d/, let C.X; Y / be the

space of all maps from X to Y admitting the topology induced by the sup-metric
d.f; g/ D supx2X d.f .x/; g.x//, which is identical to the compact-open topology
because X is compact (cf. 1.1.3(6)). Then, from 1.1.3(5), we have the following
lemma:

Lemma 5.13.2. Let X be a compactum and Y D .Y; d/ be a separable metric
space. The space C.X; Y / is separable.
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Note. This lemma can be proved directly as follows:

Sketch of Direct Proof. Let fUi j i 2 Ng and fVj j j 2 Ng be open bases for X and Y ,
respectively. For each i; j 2 N, let

Wi;j D ˚
f 2 C.X; Y /

ˇ
ˇ f .clUi / � Vj �:

It is easy to prove that each Wi;j is open in C.X; Y /.
To see that fWi;j j i; j 2 Ng is an open subbase for C.X; Y /, let f 2 C.X; Y / and

" > 0. For each x 2 X , choose i.x/; j.x/ 2 N so that x 2 Ui.x/ , diamVj.x/ < "

and f .clUi.x// � Vj.x/ , i.e., f 2 Wi.x/;j.x/ . Because of the compactness of X , we have
x1; : : : ; xn 2 X such that X D Ui.x1/ [ � � �Ui.xn/. Then, observe f 2Tn

kD1 Wi.xk /;j.xk / �
Bd .f; "/.

To construct a hereditarily infinite-dimensional space, we need the following key
lemma:

Lemma 5.13.3. Let C � I be homeomorphic to the Cantor set, n 2 N, and � �
N n fng such that � and N n � are infinite. Then, there exists a collection fSi j
i 2 � g of partitions Si between Ai D pr�1i .0/ and Bi D pr�1i .1/ in IN such that
every subset X � T

i2� Si is strongly infinite-dimensional if C � prn.X/, where
pri W IN ! I is the projection of IN onto the i -th factor.

Proof. Without loss of generality, we may assume that n D 1 and � D f2i j i 2
Ng. For each i 2 N, let Ci D pr�1i .Œ0; 14 �/ and Di D pr�1i .Œ 34 ; 1�/. We define

˝ D ˚f 2 C.IN; IN/
ˇ
ˇ8i 2 N; f �1.Ai / D C2i ; f �1.Bi / D D2i

�
:

Since ˝ is separable by Lemma 5.13.2, there exist T � C and a continuous
surjection  W T ! ˝ by Proposition 5.11.6. Let E D pr�11 .T / � IN and define a
map ' W E ! IN by '.x/ D . pr1.x//.x/. For each i 2 N,

'�1.Ai / D
˚
x 2 E ˇ

ˇ '.x/ D . pr1.x//.x/ 2 Ai
�

D ˚x 2 E ˇ
ˇ x 2 . pr1.x//

�1.Ai / D C2i
� D E \ C2i

and similarly '�1.Bi / D E\D2i . Since pr�1i . 12 / is a partition betweenAi andBi in
IN, '�1.pr�1i . 12 // is a partition between C2i \E andD2i \E in E . By the Partition
Extension Lemma 5.3.7, we have a partition S2i betweenA2i andB2i in IN such that
S2i \E � '�1.pr�1i . 12 //. It should be noted that .A2i \ pr�11 .x/; B2i \ pr�11 .x//i2N
is essential in pr�11 .x/ for every x 2 C . Then, pr�11 .x/ \

T
i2N S2i 6D ; for every

x 2 C , hence C � pr1
�T

i2N S2i
�
.

Take X � T
i2N S2i such that C � pr1.X/. We will show that X is s.i.d., that

is, X has an infinite essential family of pairs of disjoint closed sets. For each i 2 N,
let C 0i D pr�1i .Œ0; 13 �/ \ X and D0i D pr�1i .Œ 23 ; 1�/ \ X . To see that .C 02i ;D02i /i2N is
essential, letLi be a partition between C 02i andD02i inX . By the Partition Extension
Lemma 5.3.7, we have a partitionHi betweenC2i andD2i in IN such thatHi\X �
Li . There is a map fi W IN ! I such that f �1i .0/ D C2i , f �1i .1/ D D2i , and
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f �1i . 1
2
/ D Hi .14 Indeed, letUi and Vi be disjoint open sets in IN such thatC2i � Ui ,

D2i � Vi , and X n Hi D Ui [ Vi . We can take maps gi W X n Vi ! I and
hi W X n Ui ! I such that g�1i .0/ D C2i , g�1i .1/ D Hi , h�1i .0/ D Hi , and
h�1i .1/ D D2i (cf. Theorem 2.2.6). The desired fi can be defined by

fi .x/ D
(
1
2
gi .x/ if x 2 X n Vi ,
1
2
C 1

2
hi .x/ if x 2 X n Ui .

Now, we define a map f W IN ! IN by f .x/ D .fi .x//i2N. For each i 2 N,
f �1.Ai / D f �1.pr�1i .0// D f �1i .0/ D C2i and similarly f �1.Bi / D D2i , which
implies that f 2 ˝ D  .T /, hence f D  .t/ for some t 2 T . Since T � C �
pr1.X/, we have x 2 X such that t D pr1.x/. Then, '.x/ D . pr1.x//.x/ D f .x/.
On the other hand, since x 2 pr�11 .T / D E , we have

x 2 X \E �
\

i2N
S2i \E �

\

i2N
'�1.pr�1i . 12 // D '�1. 12 ; 12 ; : : : /:

Then, f .x/ D '.x/ D . 1
2
; 1
2
; : : : /, i.e., fi .x/ D 1

2
for each i 2 N, hence x 2T

i2NHi \ X �Ti2NLi . Therefore, .C 02i ;D02i /i2N is essential. ut
Theorem 5.13.4. There exists a hereditarily infinite-dimensional compact met-
rizable space.

Example and Proof. Let fCn j n 2 Ng be a collection of Cantor sets in I such
that every non-degenerate subinterval of I contains some Cn. Let �i;n (i; n 2 N)
be disjoint infinite subsets of N n f1g such that i 62 �i;n. For each i; n 2 N, by
Lemma 5.13.3, we have a compact set Si;n � IN that is the intersection of partitions
between Aj D pr�1j .0/ and Bj D pr�1j .1/ (j 2 �i;n) and has the property that
X � Si;n is s.i.d. if Cn � pri .X/.

We will show that S D T
i;n2N Si;n is h.i.d. Since S is the intersection of

partitions between Aj and Bj (j 2 S
i;n2N �i;n) and .Aj ; Bj /j2N is essential,

S meets every partition between A1 and B1, which implies that dimS 6D �1; 0.
Now, let ; 6D X � S . In the case that dim pri .X/ D 0 for every i 2 N,
since dim

Q
i2N pri .X/ D 0 by Theorem 5.3.6 and X � Q

i2N pri .X/, we have
dimX D 0 by the Subset Theorem 5.3.3. When dim pri .X/ 6D 0 for some i 2 N,
pri .X/ contains a non-degenerate subinterval of I, hence it contains some Cn. Then,
it follows that X is s.i.d. ut

14Refer to the last Remark of Sect. 2.2.
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5.14 Appendix: The Hahn–Mazurkiewicz Theorem

The content of this section is not part of Dimension Theory but is related to
the content of Sect. 5.11. According to Theorem 5.11.5, every compact metrizable
space is the continuous image of the Cantor (ternary) set �0. In this section, we will
prove the following characterization of the continuous image of the interval I:

Theorem 5.14.1 (HAHN–MAZURKIEWICZ). A space X is the continuous image
of the interval I if and only if X is a locally connected continuum.15

Here, X is locally connected if each point x 2 X has a neighborhood basis
consisting of connected neighborhoods. Because of Theorem 5.14.1, a locally con-
nected continuum is called a Peano continuum in honor of the first mathematician
who showed that the square I2 is the continuous image of the interval I.

The continuous image of a continuum is also a continuum, where the metrizability
follows from 2.4.5(1). Since every closed map is a quotient map, the “only if” part
of Theorem 5.14.1 comes from the following proposition:

Proposition 5.14.2. Let f W X ! Y be a quotient map. If X is locally connected,
then so is Y . Namely, the quotient space of a locally connected space is also locally
connected.

Proof. Let y 2 Y . For each open neighborhoodU of y in Y , let C be the connected
component of U with y 2 C . SinceX is locally connected, each x 2 f �1.C / has a
connected neighborhood Vx � f �1.U /. Note that f .Vx/ is connected, f .Vx/ � U ,
and f .Vx/ \ C 6D ;. Since C is a connected component of U , it follows that
f .Vx/ � C , hence Vx � f �1.C /. Therefore, f �1.C / is open in X , which means
that C is open in Y . Thus, C is a connected neighborhood of y in Y with C � U .

ut
To prove the “if” part of Theorem 5.14.1, we introduce a simple chain in a metric

space X D .X; d/. A finite sequence .U1; : : : ; Un/ of connected open sets16 in X is
called a chain (an "-chain) if

Ui \ UiC1 6D ; for each i D 1; : : : ; n � 1
(and diamUi < " for every i D 1; : : : ; n), where n is called the length of this chain.
A chain is said to be simple provided that

clUi \ clUj D ; if ji � j j > 1.17

15Recall that a continuum is a compact connected metrizable space.
16In general, each link Ui is not assumed to be connected and open.
17This condition is stronger than usual, and is adopted to simplify our argument. Usually, it is said
that .U1; : : : ; Un/ is a simple chain if Ui \ Uj 6D ; , ji � j j � 1. However, in our definition,
Ui \ Uj 6D ; , clUi \ clUj 6D ; , ji � j j � 1.
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It is said that two distinct points a; b 2 X are connected by a simple ("-)chain
.U1; : : : ; Un/ if a 2 U1 n clU2 and b 2 Un n clUn�1 (when n D 1, this means
a; b 2 U1), where .U1; : : : ; Un/ is called a simple ("-)chain from a to b. Given open
sets U and V in X with dist.clU; clV / > 0, it is said that U and V are connected
by a simple ("-)chain .U1; : : : ; Un/ if

U \ U1 6D ;; clU \ cl.U2 [ � � � [ Un/ D ;;
V \ Un 6D ;; and clV \ cl.U1 [ � � � [ Un�1/ D ;;

where .U1; : : : ; Un/ is called a simple ("-)chain from U to V . When U is connected
(and diamU < "), .U; U1; : : : ; Un; V / is a simple ("-)chain.

Lemma 5.14.3. Let X D .X; d/ be a connected, locally connected metric space,
and a 6D b 2 X . Then, the following hold:

(1) Each pair of distinct points are connected by a simple "-chain for any " > 0.
(2) Each pair of open sets U and V in X with clU \ clV D ; are connected by a

simple "-chain for any " > 0.
(3) Each pair of open sets U and V in X with dist.U; V / > 0 are connected by a

simple chain of length n for any n 2 N.

Proof. (1): Let W be the subset of X consisting of all points x 2 X satisfying the
following condition:

• a and x are connected by a simple "-chain.

Then,W is open inX by the definition. Using the local connectedness ofX , we can
easily show that a 2 W and X nW is open in X . Since X is connected, it follows
that W D X . Then, we have b 2 W . This gives (1).

(2): Take points a 2 U to b 2 V and apply (1) to them, we have a simple "-chain
.W1; : : : ;Wm/ from a to b. Let

k0 D maxfi j clWi \ clU 6D ;g > 1 and

k1 D minfi � k0 j clWi \ clV 6D ;g � k0:
If Wk0 \ U 6D ;, then .Wk0; : : : ;Wk1/ is a simple "-chain from U to V . When
Wk0 \ U D ; or Wk1 \ V D ; (except for the case that k0 D k1 and Wk0 \ U D
Wk0 \ V D ;), we take a connected open neighborhood U 0 of some x 2 clWk0 \
clU with diamU 0 < " � diamWk0 or a connected open neighborhood V 0 of some
y 2 clWk1 \ clV with diamV 0 < " � diamWk1 (in the except case, diamU 0,
diamV 0 < 1

2
."� diamWk0/). Then, replacingWk0 by U 0[Wk0 orWk1 by V 0 [Wk1

(in the except case, replacingWk0 D Wk1 by U 0[V 0[Wk0 ), we can obtain a simple
"-chain from U to V .
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(3): For each n 2 N, let " D n�1 dist.U; V / > 0. By (2), we have a simple
"-chain .W1; : : : ;Wk/ from U to V . Then, n < k because

dist.U; V / � diamW1 C � � � C diamWk < k" D n�1k dist.U; V /:

Hence, U and V are connected by a simple chain .W1; : : : ;
Sk
iDn Wi / of length n.

ut
Recall that X is path-connected if every pair of points x; y 2 X can be

connected by a path, i.e., there is a path f W I! X with f .0/ D x and f .1/ D y.
It is said that X is arcwise connected if every two distinct points x; y 2 X can
be connected by an arc, i.e., there is an arc f W I ! X with f .0/ D x and
f .1/ D y.18 A space X is locally path-connected (or locally arcwise connected)
if each neighborhood U of each point x 2 X contains a neighborhood V of x
such that every two (distinct) points y; y0 2 V can be connected by a path (or an
arc) in U . According to the following lemma, the local path-connectedness and
the local arcwise connectedness can be defined in the same manner as the local
connectedness.

Lemma 5.14.4. For a locally path-connected (or locally arcwise connected) space
X , the following hold:

(1) Every component of X is open and path-connected (or arcwise connected).
(2) Each point of a locally path-connected (or locally arcwise connected) space X

has a neighborhood basis consisting of path-connected (or arcwise connected)
open neighborhoods.

Proof. (1): For each x 2 X , let W be a subset of X consisting of all points
connected with x by a path (or an arc) inX (and x itself). Then, it is easy to see that
W is a connected clopen set in X , and hence it is a component of X .

(2): Every open neighborhoodU of each x 2 X is also locally path-connected (or
locally arcwise connected). It follows from (1) that the component of U containing
x is a path-connected (or arcwise connected) open neighborhood of x. ut

Obviously, every arcwise connected (resp. locally arcwise connected) space
is path-connected (resp. locally path-connected), and every path-connected (resp.
locally path-connected) space is connected (resp. locally connected). However,
according to the following theorem, for connected locally compact metrizable
spaces, the local connectedness implies the local arcwise connectedness.

Theorem 5.14.5. Every connected, locally connected, locally compact metrizable
space X is arcwise connected and locally arcwise connected.

Proof. Because of the local compactness of X and 2.7.7(1), it can be assumed that
X D .X; d/ is a metric space such that B.x; 1/ is compact for each x 2 X , so
X D .X; d/ is complete. Let a; b 2 X be two distinct points. By induction on

18Recall that an arc is an injective path, i.e., an embedding of I.
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U i
j

j

2n.i/
D 2n.iC1/�n.i/j

2n.iC1/

j C 1
2n.i/

D 2n.iC1/�n.i/.j C 1/
2n.iC1/

U i
jC1

U
iC1

2n.iC1/�n.i/.jC1/

2n.iC1/�n.i/.j C 1/� 1
2n.iC1/

U
iC1

2n.iC1/�n.i/.jC1/�1
U
iC1

2n.iC1/�n.i/j

U
iC1

2n.iC1/�n.i/j�1
U
iC1

2n.iC1/�n.i/jC1

2n.iC1/�n.i/j C 1
2n.iC1/

2n.iC1/�n.i/j C 2
2n.iC1/

U i
j�1

U
iC1

2n.iC1/�n.i/jC2

Fig. 5.10 Illustration of condition (2)

i 2 N, we will construct a simple 2�i -chain .U i
0 ; U

i
1 ; : : : ; U

i
2n.i/�1/ from a to b

so that

(1) n.1/ < n.2/ < � � � ; and
(2) U iC1

k � U i
j for 2n.iC1/�n.i/j � k < 2n.iC1/�n.i/.j C 1/ (Fig. 5.10).

Since X is locally connected, a and b have connected open neighborhoods
U and V , respectively, such that diamU , diamV < 2�1, and clU \ clV D ;.
Using Lemma 5.14.3(2), we can obtain n.1/ � 2 and a simple 2�1-chain
.U 1

1 ; : : : ; U
1
2n.1/�2/ in X from U to V . Let U 1

0 D U and U 1
2n.1/�1 D V . Thus, we

have a simple 2�1-chain .U 1
0 ; : : : ; U

1
2n.1/�1/ from a to b.

Next, suppose that a simple 2�i -chain .U i
0 ; U

i
1 ; : : : ; U

i
2n.i/�1/ from a to b has

been obtained. Let U and V be connected open neighborhoods of a and b in X ,
respectively, such that clU � U i

0 and clV � U i
2n.i/�1. Since each U i

j is connected
and locally connected, we can apply inductively Lemma 5.14.3(2) to obatin a simple
2�.iC1/-chain .V j

0 ; : : : ; V
j

k.j // inU i
j fromU i

j\V j�1
k.j�1/ toU i

j\U i
jC1, where V �1k.�1/ D

U and U i
2n.i/
D V . Choose n.i C 1/ > n.i/ so that

2n.iC1/�n.i/ > max
˚
k.j /

ˇ
ˇ j D 0; 1; : : : ; 2n.i/ � 1�:
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V
j

k.j /

W
j

m.j/
W

j
0

V
j

k.j /�1

W
j
1

U i
j

U i
jC1

Fig. 5.11 A simple chain .W j
0 ;W

j
1 ; : : : ; W

j

m.j// in V j

k.j /

For each j D 0; 1; : : : ; 2n.i/ � 1, let m.j / D 2n.iC1/�n.i/ � k.j / � 1 (i.e.,
k.j / C m.j / D 2n.iC1/�n.i/ � 1). By Lemma 5.14.3(3), we have a simple chain
.W

j
0 ; : : : ;W

j

m.j // in V j

k.j / from V
j

k.j / \ V j

k.j /�1 and V j

k.j / \ V jC1
1 (Fig. 5.11). Now,

we define

U iC1
2n.iC1/�n.i/j

D V j
0 ; : : : ; U

iC1
2n.iC1/�n.i/jCk.j /�1 D V

j

k.j /�1;

U iC1
2n.iC1/�n.i/jCk.j / D W

j
0 ; � � � ; U iC1

2n.iC1/�n.i/jC2n.iC1/�n.i/�1 D W
j

m.j /;

which are contained in U i
j . Let U iC1

0 D U and U iC1
2n.iC1/�1 D V . Then, .U iC1

0 ; U iC1
1 ;

: : : ; U iC1
2n.iC1/�1/ is the desired simple 2�.iC1/-chain.

For each x 2 2N D f0; 1gN, observe 0 �Pn.i/
jD1 2n.i/�j x.j / � 2n.i/ � 1 and

n.i/X

jD1
2n.i/�j x.j / D 2n.i/�n.i�1/

n.i�1/X

jD1
2n.i�1/�j x.j /C

n.i/X

jDn.i�1/C1
2n.i/�j x.j /;

where 0 �Pn.i/

jDn.i�1/C1 2n.i/�j x.j / < 2n.i/�n.i�1/. Then, it follows from (4) that

U i
Pn.i/
jD1 2

n.i/�j x.j /
� U i�1

Pn.i�1/
jD1 2n.i�1/�j x.j /

:

By (3) and the completeness of X , the following is a singleton:
\

i2N
clU i

Pn.i/
jD1 2

n.i/�j x.j /
6D ;:

Then, we have a map f W 2N ! X such that
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ff .x/g D
\

i2N
clU i

Pn.i/
jD1 2

n.i/�j x.j /
;

where f .0/ D a and f .1/ D b. For x; y 2 2N, if x.j / D y.j / for j < 2n.i/, then

f .x/; f .y/ 2 U i
Pn.i/
jD1 2

n.i/�j x.j /
D U i

Pn.i/
jD1 2

n.i/�j y.j /
;

hence d.f .x/; f .y// < 2�i by (2), which implies that f is continuous.
Let ' W 2N ! I be the quotient map defined by '.x/ DP1

iD1 2�i x.i/. For each
x; y 2 2N, we will show that '.x/ D '.y/ if and only if f .x/ D f .y/, hence f
induces the embedding h W I! X with h.0/ D a and h.1/ D b.

First, suppose that '.x/ D '.y/, i.e.,
P1

iD1 2�ix.i/ D
P1

iD1 2�i y.i/. When
x 6D y, let k D minfi 2 N j x.i/ 6D y.i/g, where we may assume that x.k/ D 1

and y.k/ D 0. Then,

1X

iD1
2�i x.i/ �

kX

iD1
2�i x.i/ D

k�1X

iD1
2�ix.i/C 2�k

D
kX

iD1
2�iy.i/C

1X

jDkC1
2�j �

kX

iD1
2�i y.i/;

which implies that x.i/ D 0 and y.i/ D 1 for every i > k. Thus, we have

k�1X

jD1
2k�1�j x.j / D

k�1X

jD1
2k�1�j y.j / and

mX

jD1
2m�j x.j / D

mX

jD1
2m�j y.j /C 1 for everym � k.

Then, it follows that

U i
Pn.i/
jD1 2

n.i/�j x.j /
\ U i

Pn.i/
jD1 2

n.i/�j y.j /
6D ; for every i 2 N,

which implies that d.f .x/; f .y// D 0 by (3), hence f .x/ D f .y/.
Conversely, suppose that f .x/ D f .y/. For every i 2 N,

U i
Pn.i/�1
jD1 2n.i/�j x.j /

\ U i
Pn.i/�1
jD1 2n.i/�j y.j /

6D ;;

which means
ˇ
ˇ
Pn.i/

jD1 2n.i/�j x.j / �
Pn.i/

jD1 2n.i/�j y.j /
ˇ
ˇ � 1. Therefore,

j'.x/ � '.y/j D
ˇ
ˇ
ˇ
ˇ

1X

jD1
2�j x.j / �

1X

jD1
2�j y.j /

ˇ
ˇ
ˇ
ˇ
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D lim
i!1

ˇ
ˇ
ˇ
ˇ

n.i/�1X

jD1
2�j x.j / �

n.i/�1X

jD1
2�j y.j /

ˇ
ˇ
ˇ
ˇ

D lim
i!1 2

�n.i/
ˇ
ˇ
ˇ
ˇ

n.i/�1X

jD1
2n.i/�j x.j / �

n.i/�1X

jD1
2n.i/�j y.j /

ˇ
ˇ
ˇ
ˇ

� lim
i!1 2

�n.i/ D 0;

that is, '.x/ D '.y/. Thus, we have proved that X is arcwise connected.
Finally, note that every neighborhood of each point x 2 X contains a connected

open neighborhood U in X . Since U is also completely metrizable, it follows that
U is also arcwise connected. This means that X is locally arcwise connected. ut

By the “only if” part of Theorems 5.14.1 and 5.14.5, we have the following
corollary:

Corollary 5.14.6. Let X be an arbitrary space. Then, each pair of distinct points
x 6D y 2 X are connected by a path in X if and only if they are connected by an
arc in X . In this case, the image of the arc is contained in the image of the path.

Proof. The “if” part is obvious. To see the “only if” part, let f W I ! X be a
path with f .0/ D x and f .1/ D y. Since the image f .I/ is a locally connected
continuum (i.e., a Peano continuum) by the “only if” part of Theorem 5.14.1, we
have an arc from x to y in f .I/ (� X ) by Theorem 5.14.5. ut

Thus, we know that there is no difference between the (local) path-connectedness
and the (local) arcwise connectedness of an arbitrary space. This allows us to sate
the following:

Corollary 5.14.7. An arbitrary space X is path-connected if and only if X is
arcwise connected. Moreover,X is locally path-connected if and only ifX is locally
arcwise connected. ut

A metric space X D .X; d/ is said to be uniformly locally path-connected
provided that, for every " > 0, there is ı > 0 such that each pair of points x; y 2 X
with d.x; y/ < ı can be connected by a path with diam < ".

Proposition 5.14.8. A compact metric spaceX is uniformly locally path-connected
if it is locally path-connected.

Proof. For each " > 0, we apply Lemma 5.14.4(2) to obtain U 2 cov.X/ consisting
of path-connected open sets with meshU < ". Let ı > 0 be a Lebesgue number for
U . Then, each pair of points x; y 2 X with d.x; y/ < ı can be connected by a path
with diam < ". ut

We are now ready to prove the “if” part of the Hahn–Mazurkiewicz Theo-
rem 5.14.1.



328 5 Dimensions of Spaces

Proof of the “if” part of Theorem 5.14.1. We may assume that X D .X; d/ is a
compact connected metric space. Let �0 be the Cantor (ternary) set in I. By Theo-
rem 5.11.5, there exists a continuous surjection f W �0 ! X . By Theorem 5.14.5,
X is path-connected and locally path-connected (arcwise connected and locally
arcwise connected). According to Proposition 5.14.8, we have ı1 > ı2 > � � � > 0

such that every two distinct points within ın can be connected by a path with
diam < 1=n, where we may assume that ın � 1=n.

Because of the construction of �0, the complement I n�0 has only finitely many
components Ci D .ai ; bi /, i D 1; : : : ; m, such that d.f .ai /; f .bi // � ı1. Indeed,
there is some k 2 N such that

a; b 2 �0; ja � bj < 3�k ) d.f .a/; f .b// < ı1;

�
i.e., d.f .a/; f .b// � ı1) ja � bj � 3�k

�
;

which implies that m � Pk
iD1 2i�1. For each i D 1; : : : ; m, let fi W clCi D

Œai ; bi � ! X be a path with fi .ai / D f .ai / and fi .bi / D f .bi /. Then, we can
extend f to the map

f 0 WM D �0 [
m[

iD1
clCi ! X

that is defined by f 0j clCi D fi for each i D 1; : : : ; m.
For each component C D .a; b/ of I n M (which is a component of I n �0),

f .a/ D f .b/ or 0 < d.f .a/; f .b// < ı1. In the former case, let fC W clC D
Œa; b�! X be the constant path with fC .Œa; b�/ D ff .a/g (D ff .b/g). In the latter
case, choose n 2 N so that ınC1 � d.f .a/; f .b// < ın and take a path fC W clC D
Œa; b� ! X such that fC .a/ D f .a/, fC .b/ D f .b/, and diamfC .Œa; b�/ < 1=n.
Then, f 0 can be extended to the map f � W I ! X by f �j clC D fC for every
component C of I nM .

It remains to verify the continuity of f �. Since each componentC of InM is an
open interval, the continuity of f � at a point of I nM follows from the continuity
of fC . The continuity of f � at a point of intM comes from the continuity of
f 0. We will show the continuity of f � at a point x 2 bdM (D �0). For each
" > 0, choose n 2 N so that 1=n < "=2. Since f 0 is continuous at x, we
have a neighborhood U of x in I such that f 0.U \ M/ � B.f 0.x/; ın=2/
(� B.f �.x/; "=2/ because ın � 1=n < "=2). In the case that x 62 bdC for
any component C D .a; b/ of I n M with d.f .a/; f .b// � ın, U can be
chosen so that U \ clC D ; for any component C D .a; b/ of I n M with
d.f .a/; f .b// � ın. In the case x 2 bdC0 for some component C0 D .a0; b0/

of I nM with d.f .a0/; f .b0// � ın (such a component C0 is unique if it exists),
U can be chosen so that fC0.U \ C0/ � B.f 0.x/; "=2/. Now, let C D .a; b/ be a
component of I nM with clC \ U 6D ;. Then, a 2 U \M or b 2 U \M , and so
d.f 0.a/; f 0.x// < "=2 or d.f 0.b/; f 0.x// < "=2, respectively. If f 0.a/ D f 0.b/,
then f �.C / D fC .C / D ff .a/g � B.f 0.x/; "=2/. If 0 < d.f .a/; f .b// < ın,
then diamfC .Œa; b�/ < 1=n < "=2, which implies that f �.C / D fC .Œa; b�/ �
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B.f 0.x/; "/. When d.f .a/; f .b// � ın, it follows that x 2 bdC , which means that
C D C0. Then, f �.U \ C/ D fC0.U \ C0/ � B.f 0.x/; "=2/. Consequently, we
have f �.U / � B.f �.x/; "/. This completes the proof. ut

Notes for Chap. 5

Below, we list only three among textbooks on Dimension Theory:

• R. Engelking, Theory of Dimensions, Finite and Infinite, Sigma Ser. in Pure Math. 10
(Heldermann Verlag, Lembo, 1995)

• W. Hurewicz and H. Wallman, Dimension Theory (Princeton University Press, Princeton, 1941)
• K. Nagami, Dimension Theory (Academic Press, Inc., New York, 1970)

For a more comprehensive study of Dimension Theory, we refer to Engelking’s book, which
also contains excellent historical notes. Nagami’s book is quite readable and contains an appendix
titled “Cohomological Dimension Theory” by Kodama. The classical book by Hurewicz and
Wallman is still a worthwhile read. Nothing fundamental has yet changed in the framework of
Dimension Theory since its publication. In this book, Hurewicz and Wallman discuss the Hausdorff
dimension, which is useful in the field of Fractal Geometry. However, we do not discuss this here.
In the following textbook of van Mill, Chap. 5 is devoted to Dimension Theory, and was used to
prepare the last two sections of this chapter.

• J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland
Math. Library 43 (Elsevier Sci. Publ. B.V., Amsterdam, 1989)

The definition of dim, which is due to Čech [11], is based on a property of covers of In

discovered by Lebesgue [28]. The Brouwer Fixed Point Theorem 5.1.1 was established in [8].
The proof using Sperner’s Lemma 5.1.2 in [53] is due to Knaster et al. [26].

The equivalence between (a), (b), and (d) in Theorem 5.2.3 was established by Hemmingsen
[20] and the equivalence between (a) and (d) was proved independently by Alexandroff [2] and
Dowker [12]. The equivalence between (a) and (f) was first established for compact metrizable
spaces by Hurewicz [23] and for normal spaces by Alexandroff [2], Hemmingsen [20], and Dowker
[12], independently.

The compact case of Corollary 5.2.6 was established by Freudenthal [17], and was generalized
to compact Hausdorff spaces by Mardešić [33].

In [22], a map f W X ! In is called a universal map if it satisfies condition (b) in
Theorem 5.2.15. The equivalence between (b) and (c) in Theorem 5.2.15 is due to Holszyński
[22]. The equivalence between (a) and (b) in Theorem 5.2.17 was established by Alexandroff [1].
The equivalence between (a) and (c) in Theorem 5.2.17 was first established by Eilenberg and Otto
[14] in the separable metrizable case and extended to normal spaces by Hemmingsen [20].

Theorem 5.3.1 was established by Vopěnka [55] and Theorem 5.3.2 was proved by Nagami
[40]. The Subset Theorem was proved by Dowker [13]. The Countable Sum Theorem (5.4.1) was
established by Čech [11] and the Locally Finite Sum Theorem (5.4.2) was proved independently
by Morita [Mo] and Katětov [24]. The Addition Theorem (5.4.8) was proved by Smirnov [52]. The
Decomposition and Product Theorems (5.4.5, 5.4.9) were proved independently by Katětov [24]
and Morita [39].

An inductive definition of dimension was outlined by Poincaré [44]. The first precise definition
of a dimension function was introduced by Brouwer [9]. His function coincides with Ind in the
class of locally connected compact metrizable spaces. The definition of Ind was formulated by
Čech [10]. On the other hand, the definition of ind was formulated by Urysohn [54] and Menger
[37]. The first example in Theorem 5.5.3 was constructed by Roy [47,48] but the example presented
here was constructed by Kulesza [27] and the proof of dim > 0 was simplified by Levin [31].
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The weak infinite dimension was first introduced by Alexandroff in [3]. In Remark 12, we
mentioned the weak infinite dimension in the sense of Smirnov, which was first studied in [32] and
[51].

Theorem 5.7.4 is due to Lelek [30] and the simple proof presented here is taken from Engelking
and Pol [15].

In [42], Nöbeling introduced the spaces 	n and showed their universality. The spaces �n were
introduced by Menger [38], who showed that the universality �1 is a universal space for compacta
with dim � 1. Theorem 5.10.8 is due to Bothe [6]. In [29], Lefschetz constructed a universal space
for compacta with dim � n. In [5], Bestvina gave the topological characterization of �n. Using
Bestvina’s characterization, we can see that Lefschetz’ universal space is homeomorphic to�n; the
result for n D 1 had been obtained by Anderson [4]. Recently, in [41], Nagórko established the
topological characterization of 	n.

The total disconnectedness and the hereditary disconnectedness were respectively introduced
by Sierpiński [50] and Hausdorff [19]. The example of Theorem 5.11.3 is due to Knaster and
Kuratowski [25] (their example is the one in the Remark).

The example of Theorem 5.12.1 was described by Erdös [16]. Lemma 5.12.3 is due to Bourbaki
[7, Chap. 9] and the proof presented here is due to van Mill (Chap. 5 in his book listed above). The
first completely metrizable nonzero-dimensional totally disconnected space was constructed by
Sierpiński [50] (his example is 1-dimensional). Theorem 5.12.6 was established by Mazurkiewicz
[36] but the example and proof presented here is due to Rubin et al. [49] with some help from [45].

The example of Theorem 5.13.1 is presented by Pol [45]. Theorem 5.13.4 is due to Walsh [56]
but the example given here is due to Pol [46]. The earlier example of a compact metrizable space,
whose compact subsets are all either 0-dimensional or infinite-dimensional, was constructed by
Henderson [21].

In 1890, Peano [43] showed that the square I2 is the continuous image of I. The Hahn–
Mazurkiewicz Theorem 5.14.1 was independently proved by Hahn [18] for planar sets and by
Mazurkiewicz [34] for subspaces of Euclidean space. In [35], Mazurkiewicz gave a systematic
exposition.

For more details, consult the historical and bibliographical notes at the end of each section of

Engelking’s book.
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28. H. Lebesgue, Sur la non-applicabilité de deux domaines appartenant respectivement à des

espaces à n et nC p dimensions. Math. Ann. 70, 166–168 (1911)
29. S. Lefschetz, On compact spaces. Ann. Math. 32, 521–538 (1931)
30. A. Lelek, On the dimensionality of remainders in compactifications (Russian). Dokl. Akad.

Nauk SSSR 160, 534–537 (1965); English translation in Sov. Math. Dokl. 6, 136–140 (1965)
31. M. Levin, A remark on Kulesza’s example. Proc. Am. Math. Soc. 128, 623–624 (2000)
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Chapter 6
Retracts and Extensors

A subset A of a space X is called a retract of X if there is a map r W X ! A

such that r jA D id, which is called a retraction. As is easily observed, every retract
of a space X is closed in X . A neighborhood retract of X is a closed set in X
that is a retract of some neighborhood in X . A metrizable space X is called an
absolute neighborhood retract (ANR) (resp. an absolute retract (AR)) if X is a
neighborhood retract (or a retract) of an arbitrary metrizable space that contains X
as a closed subspace. A space Y is called an absolute neighborhood extensor for
metrizable spaces (ANE) if each map f W A ! Y from any closed set A in an
arbitrary metrizable space X extends over some neighborhood U of A in X . When
f can always be extended overX (i.e.,U D X in the above), we call Y an absolute
extensor for metrizable spaces (AE). As is easily observed, every metrizable ANE
(resp. a metrizable AE) is an ANR (resp. an AR). As will be shown, the converse
is also true. Thus, a metrizable space is an ANE (resp. an AE) if and only if it is an
ANR (resp. an AR).

This chapter is devoted to lectures on ANR Theory (Theory of Retracts). We will
prove the basic properties, fundamental theorems, and various characterizations of
ANEs and ANRs.

The results in Chaps. 2 and 4 are used frequently. For topological linear spaces, refer
to Chap. 3. To characterize countable-dimensional ANRs, finite-dimensional ANEs and
ANRs, we need some theorems from Chap. 5.

6.1 The Dugundji Extension Theorem and ANEs

Recall that a topological linear space E is locally convex if 0 2 E has a
neighborhood basis consisting of convex sets. In this section, we prove the following
extension theorem:

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics,
DOI 10.1007/978-4-431-54397-8 6, © Springer Japan 2013
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Theorem 6.1.1 (DUGUNDJI EXTENSION THEOREM). LetE be a locally convex
topological linear space,X be a metrizable space, andA be closed inX . Then, each
map f W A! E can be extended to a map Qf W X ! E such that the image Qf .X/
is contained in the convex hull hf .A/i of f .A/.

Due to the above Theorem 6.1.1, every locally convex topological linear space
and its convex set are AEs, and, if they are metrizable, then they are ARs.

Recall that every metrizable spaceX is paracompact, that is, any open cover ofX
has a locally finite open refinement (Theorem 2.3.1), and that, for each locally finite
open cover U 2 cov.X/,X has a partition of unity .�U /U2U such that supp�U � U
for each U 2 U (Theorem 2.7.2), where supp�U D cl��1U ..0; 1�/.

Note. For a locally finite open cover U of a metric space X D .X; d/, a partition of unity
can be directly defined as follows: For each U 2 U , define a map �U W X ! I by

�U .x/D d.x; X n U/
P

V2U d.x; X n V / :

Then, .�U /U2U is a partition of unity on X such that ��1
U ..0; 1�/ D U (hence supp �U D

clU ) for each U 2 U .
By shrinking U (the Open Cover Shrinking Lemma 2.7.1), we can require supp �U � U .

The following is a key to the proof of Theorem 6.1.1:

Lemma 6.1.2. Let X D .X; d/ be a metric space and A 6D ; be a proper closed
set in X . Then, there exists a locally finite open cover U of X n A with aU 2 A,
U 2 U , such that x 2 U 2 U implies d.x; aU / � 2d.x;A/.
Proof. Let U be a locally finite open cover of X nA such that

U 	 ˚B.x; 1
4
d.x; A//

ˇ
ˇ x 2 X n A�:

For each U 2 U , choose xU 2 X n A so that U � B.xU ; 14d.xU ; A//, and then
choose aU 2 A so that d.xU ; aU / < 5

4
d.xU ;A/. If x 2 U 2 U then

d.x; aU / � d.x; xU /C d.xU ; aU / < 3
2
d.xU ;A/ < 2d.x;A/

because d.x;A/ � d.xU ;A/ � d.x; xU / > 3
4
d.xU ;A/. ut

We call the above .aU /U2U a Dugundji system for A � X .
Proof of Theorem 6.1.1. By the above lemma, we have a Dugundji system .aU /U2U
forA � X . Let .�U /U2U be a partition of unity onX nA such that supp�U � U for
each U 2 U . (Here, it is enough to require that ��1U ..0; 1�/ � U for each U 2 U .)
We define Qf W X ! E as follows:

Qf .x/ D
(
f .x/ if x 2 A;
P

U2U �U .x/f .aU / if x 2 X n A:
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By the local finiteness of U , Qf is continuous at x 2 X n A. To prove the continuity
of Qf at a 2 A, let V be any convex neighborhood of f .a/ inE . From the continuity
of f , we have ı > 0 such that f .B.a; ı/ \ A/ � V . For each x 2 B.a; 1

3
ı/ n A, if

�U .x/ 6D 0 then x 2 U , hence

d.a; aU / � d.a; x/C d.x; aU / � d.a; x/C 2d.x;A/ � 3d.x; a/ < ı;
which implies f .aU / 2 V . From the convexity of V , it follows that Qf .x/ 2 V .
Thus, Qf .x/ 2 V for all x 2 B.a; 1

3
ı/. ut

Remark 1. It is easy to show that C.X;E/ and C.A;E/ are topological linear
spaces with respect to the compact-open topology. If E is locally convex, so is
C.X;E/.

In fact, let U be an open neighborhood basis at 0 2 E . The set of all non-empty compact
sets in X is denoted by Comp.X/. For each K 2 Comp.X/ and U 2 U , let

W.K; U / D ff 2 C.X;E/ j f .K/ � U g:
Then, the following W satisfies all conditions of Proposition 3.4.1:

W D fW.K; U / j K 2 Comp.X/; U 2 Ug:
Let R W C.X;E/ ! C.A;E/ be the restriction operator, i.e., R.f / D f jA for

each f 2 C.X;E/. Then, R is linear and continuous. Fixing a Dugundji system
.aU /U2U for A � X and a partition of unity .�U /U2U , the extension operator L W
C.A;E/! C.X;E/ is defined by L.f / D Qf as above. Then, RıL D id and L is
linear by definition. Moreover,L is continuous.

To prove the continuity of L at 0 2 C.A;E/, let V be a neighborhood of 0 2
C.X;E/. Then, we have a compact set K in X and an open convex neighborhood
W of 0 2 E such that

˚
g 2 C.X;E/

ˇ
ˇ g.K/ � W � � V:

It suffices to find a compact setKA � A such that f .KA/ � W implies Qf .K/ � W
for f 2 C.A;E/. We define

KA D
˚
aU

ˇ
ˇ U 2 U ŒK�

� [ .A\K/:
For f 2 C.A;E/, f .KA/ � W implies Qf .K/ � W by the convexity of W and
the definition of Qf . To prove the compactness of KA, it suffices to show that every
sequence .ak/k2N inKA has a convergent subsequence. If ak 2 A\K for infinitely
many k 2 N, the compactness of KA follows from the compactness of A \ K .
Otherwise, we may assume that ak 2 A n K for all k 2 N, i.e., ak D aUk for
some Uk 2 U ŒK�, where we may also assume that Uk 6D Uk0 if k 6D k0. For each
k 2 N, we have xk 2 Uk\K . By the compactness ofK , .xk/k2N has a subsequence
.xkj /j2N converging to some x0 2 K . Since fUkj j j 2 Ng is locally finite inX nA,
it follows that x0 2 K \ A � KA. Hence,

d.xkj ; akj / D d.xkj ; aUkj / � 2d.xkj ; A/ � 2d.xkj ; x0/! 0;

which implies that .akj /j2N also converges to x0. Therefore,KA is compact.
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Remark 2. When E D .E; k � k/ is a normed linear space, let CB.X;E/ be the
normed linear space of all bounded maps with the sup-norm kf k D supx2X kf .x/k.
For a closed set A in X , given a Dugundji system .aU /U2U and a partition of unity
.�U /U2U , Theorem 6.1.1 gives the extension operator L W CB.A;E/! CB.X;E/,
which is an isometry (i.e., kL.f /k D kf k for every f 2 CB.A;E/). In this case,
the restriction operator R W CB.X;E/ ! CB.A;E/ satisfies kR.f /k � kf k for
every f 2 CB.X;E/.

Remark 3. In Theorem 6.1.1, the local convexity is essential. Actually, there exists
a metric linear space that is not an AE (i.e., an AR). Such an example will be
constructed in Sect. 7.12.

Remark 4. Theorem 6.1.1 is valid even if E is a Fréchet space and X is a
paracompact space. Namely, every Fréchet space is an AE for paracompact spaces.
Indeed, applying the Michael Selection Theorem 3.8.8 to the set-valued function
' W X 3 x 7! clhf .A/i 2 Conv.E/, we can extend f to a map Qf W X !
clhf .A/i � E . Here, the complete metrizability is required for clhf .A/i rather
than E itself. As a result, every complete convex set in a locally convex metric
linear space is an AE for paracompact spaces.

A polyhedron (with the Whitehead topology) is another example of an ANE.
To prove this, we need the following lemma:

Lemma 6.1.3. Let X be metrizable and A � X . Then, each open set U in A can
be extended to an open set E.U / in X so that

(1) E.;/ D ;, E.A/ D X ;
(2) E.U /\ A D U ;
(3) U � V ) E.U / � E.V /;
(4) E.U \ V / D E.U / \E.V /.
Proof. Using d 2 Metr.X/, for each open set U in A, we define

E.U / D ˚x 2 X ˇ
ˇ d.x; U / < d.x;A n U /g;

where d.x;;/ D 1. Then, E.U / is an open set in X . Conditions (1), (2), and (3)
are obvious. We showE.U /\E.V / � E.U \V /, which implies (4) by combining
(3). For each x 2 E.U /\E.V /, it suffices to prove

() d.x; U \ V / < d.x;A n .U \ V // D min
˚
d.x;A n U /; d.x;A n V /�.

Then, without loss of generality, we may assume that

d.x;A n .U \ V // D d.x;A n U / � d.x;A n V /:

Since x 2 E.U /, there exists a y 2 U such that d.x; y/ < d.x;A n U /. Then, it
follows that d.x; y/ < d.x;A n V /, which implies that y 2 V . Hence, y 2 U \ V ,
so we have the inequality (). ut
Theorem 6.1.4. The polyhedron jKj of any simplicial complexK is an ANE.
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Proof. Let X be a metrizable space and f W A ! jKj be a map from a closed
set A in X to jKj. Let .ˇv.x//v2K.0/ be the barycentric coordinate of x 2 jKj.
Since ˇv W jKj ! I is continuous, each Uv D f �1.OK.v// is open in A, where
OK.v/ D ˇ�1v ..0; 1�/ is the open star at v with respect to K . We show that fUv j
v 2 K.0/g is locally finite in A. Assume that it is not locally finite at x0 2 A. Since
fv 2 K.0/ j x0 2 Uvg D cK.f .x0//

.0/ is finite, we can choose x1; x2; � � � 2 A and
v1; v2; � � � 2 K.0/ so that x0 62 Uvn , xn 2 Uvn , limn!1 xn D x0, and vn 6D vm if
n 6D m. Then, f .x0/ D limn!1 f .xn/. On the other hand, each  2 K does not
meet OK.v/ except for v 2 .0/, so it contains only finitely many f .xn/, which
implies that ff .xn/ j n 2 Ng is closed in jKj. Hence, f .x0/ D f .xn/ for some
n 2 N, which is contrary to x0 62 Uvn .

Now, for each x 2 A, choose an open neighborhood Vx of x in A so that Vx \
Uv D ; except for finitely many v 2 K.0/. Let V be an open neighborhood of A in
X such that clV �Sx2A E.Vx/, where E.U / is defined in Lemma 6.1.3. For each
v 2 K.0/, we define QUv D E.Uv/ \ V . Then, f QUv j v 2 K.0/g is locally finite in X .
We can apply the Tietze Extension Theorem 2.2.2 to construct a map gv W X ! I
such that gvjA D ˇv ı f and gv.X n QUv/ D 0. Then, g D P

v2K.0/ gv W X ! RC
is well-defined and continuous. Since g.x/ DPv2K.0/ ˇvf .x/ D 1 for each x 2 A,
we have an open neighborhoodW D g�1..0;1// of A in X . We can extend f to
Qf W W ! jKj by

Qf .x/ D
X

v2K.0/

gv.x/

g.x/
v




i.e., ˇv. Qf .x// D gv.x/

g.x/

�

:

Then, Qf is well-defined and continuous. Indeed, for each x 2 W , only finitely many
gv.x/ are nonzero, say

˚
v 2 K.0/

ˇ
ˇ gv.x/ 6D 0

� D ˚v1; � � � ; vn
�
:

Then, it follows that

E
�Tn

iD1 Uvi

� D E.Uv1 /\ � � � \ E.Uvn/ � QUv1 \ � � � \ QUvn 6D ;;

which implies that
Tn
iD1 Uvi 6D ;, i.e.,

Tn
iD1 OK.vi / 6D ;. Therefore, Qf .x/ 2

hv1; � � � ; vni 2 K . Thus, we have Qf .x/ 2 jKj. Each x 2 W has a neighborhood
Wx in W that meets only finitely many g�1v ..0;1//, v 2 K.0/, i.e., Qf .Wx/ � jLj
for a finite subcomplex L of K . Since Qf jVx W Vx ! jLjm D jLj is continuous,
Qf W W ! jKj is also continuous. ut

Remark 5. Since every metrizable ANE is an ANR, it follows that jKj (D jKjm)
is an ANR for every locally finite simplicial complex K . If K is not locally finite,
then there are many maps from a compactum to jKjm that are not continuous with
respect to the Whitehead topology. Indeed, K contains a subcomplex L such that
jLjm is homeomorphic to the hedgehog

J.N/ D ˚x 2 `1
ˇ
ˇ x.i/ 2 I for all i 2 N and

x.i/ 6D 0 at most one i 2 N
� � `1:
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Fig. 6.1 Extending a map using a contraction

It is easy to construct a map f W I ! jLjm D J.N/ such that f .1=i/ D 2�iei
for each i 2 N. Then, f W I ! jLj (� jKj) is not continuous because f .I/
is not contained in the polyhedron of any finite subcomplex of L. In the next
section, we will show that jKjm is an ANR for an arbitrary simplicial complex K
(Theorem 6.2.6).

LetX be a space andA � X . It is said thatA is contractible inX if the inclusion
map A � X is null-homotopic, i.e., there is a homotopy h W A � I ! X such that
h0 D id and h1 is constant. Such a homotopy h is called a contraction of A in X . If
A D X , we simply say that X is contractible and h is called a contraction of X .
A space X is contractible if and only if X has the homotopy type of a singleton.

Theorem 6.1.5. A contractible ANE is an AE.

Proof. Let X be a metrizable space, A be a closed set in X , and Y be an ANE
with a contraction h. Each map f W A ! Y extends to a map Qf W U ! Y from
a neighborhood U of A in X . Choose an open neighborhood V of A in X so that
clV � U , and let k W X ! I be an Urysohn map with k.A/ D 0 and k.X nV / D 1.
We can extend f to a map Nf W X ! Y by Nf .X n V / D h1.Y / and

Nf .x/ D h. Qf .x/; k.x// for each x 2 clV:

See Fig. 6.1. ut
By Theorem 5.1.6(2) and the No Retraction Theorem 5.1.5, the unit sphere Sn is

an ANE but not an AE. Then, we have the following corollary:

Corollary 6.1.6. For every n 2 !, the unit sphere Sn is not contractible.

For any full complex K , jKj is contractible. Indeed, fixing v0 2 K.0/, we can
define a contraction h W jKj � I! jKj by

ˇv.h.x; t// D .1 � t/ˇv.x/C tˇv.v0/; v 2 K.0/:
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Thus, we have the following:

Corollary 6.1.7. The polyhedron jKj of a full complexK is an AE. ut
Recall that a tower X1 � X2 � � � � of spaces is said to be closed if each Xn is

closed in XnC1.

Theorem 6.1.8. For a closed tower Y1 � Y2 � � � � of ANEs, the direct limit Y D
lim�!Yn is also an ANE.

Proof. Let f W A! Y be a map from a closed set A in a metric spaceX D .X; d/.
For each n 2 N, let An D f �1.Yn/ and define

Xn D
˚
x 2 X ˇ

ˇ d.x;An/ � d.x;A n An/
�
:

Then, each Xn is closed in X and Xn \A D An. By induction, we can obtainN1 �
N2 � � � � � X and maps fn W A [Nn ! Y such that Nn is a closed neighborhood
of An in Xn, fn.Nn/ � Yn, and fnjA [ Nn�1 D fn�1, where N0 D ;, f0 D f .
Indeed, assume that fn has been obtained. Since YnC1 is an ANE and AnC1 [Nn is
a closed subset of XnC1, AnC1 [ Nn has a closed neighborhoodNnC1 in XnC1 and
fnjAnC1[Nn W AnC1[Nn ! YnC1 extends to a map f 0 W NnC1 ! YnC1. The map
fnC1 is defined by fnC1jA D f and fnC1jNnC1 D f 0. Let N DSn2N intX Nn and
define Qf W N ! Y by Qf j intX Nn D fnj intX Nn. If A � Sn2N intX Nn, then N is
a neighborhood of A in X and the continuity of Qf follows from that of each fn.

Since each Nn is a neighborhood of An in Xn, it suffices to show that A �S
n2N intX Xn. On the contrary, assume that there is an a 2 A n Sn2N intX Xn.

Then, a is contained in some Ak . For each i 2 N, we can choose xi 2 X n XkCi so
that limn!1 xi D a. By the definition ofXi , d.xi ; ai / < d.xi ; AkCi / for some ai 2
AnAkCi . Since d.xi ; ai / < d.xi ; a/, it follows that limn!1 ai D a, hence f .a/ D
limi!1 f .ai /. On the other hand, ff .ai / j i 2 Ng is closed in Y because each YkCi
contains only finitely many points f .aj /. Therefore, f .a/ D f .ai / for some i 2 N,
hence f .a/ 62 YkCi , which is a contradiction. Thus, the proof is complete. ut

Now, we list the basic properties of ANEs, which can be easily proved.

Basic Properties of ANEs 6.1.9.

(1) An arbitrary product of AEs is an AE and a finite product of ANEs is an ANE.

Sketch of Proof. Extend coordinate-wise.

(2) A retract of an AE is an AE and a neighborhood retract of an ANE is an ANE.

Sketch of Proof. Compose an extension with a retraction.

(3) Any open set in an ANE is also an ANE.

Sketch of Proof. Restrict an extension.

(4) A topological sum of ANEs is an ANE.
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Fig. 6.2 The union of two open ANEs

Sketch of Proof. Let f W A!L
�2� Y� be a map from a closed set A in a metrizable

space X , where each Y� is an ANE. Extend each f jf �1.Y�/ over a neighborhood in
E.f �1.Y�//, where E is the extension operator in Lemma 6.1.3.

(5) Let Y D Y1 [ Y2, where Yi is open in Y . If Y1 and Y2 are ANEs, then so is Y .

Sketch of Proof. Let f W A! Y be a map of a closed set A � X . Separate f �1.Y1 n
Y2/ and f �1.Y2 n Y1/ by open sets U1 and U2 in X . By extending f j W A n .U1 [
U2/! Y1\ Y2 over a closed neighborhood W inX n .U1 [U2/, we first extend f to
f 0 W A[W ! Y . Then, extending f 0j W .A \ Ui /[W ! Yi over a neighborhood
in Ui [W (i D 1; 2), we can obtain an extension of f . Refer to Fig. 6.2.

(6) (HANNER’S THEOREM) A paracompact space is an ANE if it is locally an ANE,
i.e., each point has an ANE neighborhood.

Sketch of Proof. Applying Michael’s Theorem 2.6.5 on local properties, the proof
follows from (3), (4), and (5).

In the above, (4) and (5) are special cases of (6). Combining (6) with Theorem 6.1.1,
every n-manifold (with boundary) is an ANE.1 Due to 2.6.7(4), it is metrizable, hence
it is an ANR.

(7) Let Y D Y1 [ Y2, where Yi is closed in Y . If Y1, Y2, and Y1 \ Y2 are ANEs
(AEs) then so is Y . If Y and Y1 \ Y2 are ANEs (AEs), then so are Y1 and Y2.

Sketch of Proof. The first assertion is similar to (5). Now, U1 and U2 are disjoint open
sets such that U1 \ AD f �1.Y1 n Y2/ and U2 \ A D f �1.Y2 n Y1/ (Fig. 6.3).

For the second assertion, let f W A! Y1 be a map of a closed set A � X . First,
extend f to a map Qf W U ! Y of a neighborhood U of A in X . Then, extending
Qf j W Qf �1.Y1\ Y2/! Y1\ Y2 over a neighborhood U0 of Qf �1.Y1\ Y2/ in Qf �1.Y2/,

we can extend Qf j Qf �1.Y1/ over U1 D Qf �1.Y1/[ U0. See Fig. 6.4.

1A paracompact space M is called an n-manifold (possibly with boundary) if each point has a
neighborhood that is homeomorphic to an open set in In. The boundary @M of M is the subset of
M consisting of all points with no neighborhood homeomorphic to an open set in R

n. The interior
IntM D M n @M is an n-manifold without boundary. It is known that the boundary @M is an
.n� 1/-manifold without boundary.
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Fig. 6.4 Two closed sets whose union and intersection are ANEs

(7) For a compactum X and an ANE (resp. AE) Y , the space C.X; Y / of all maps
from X to Y with the compact-open topology is an ANE (resp. AE).

Sketch of Proof. Let Z be a metrizable space with C a closed set. A map f W C !
C.X; Y / induces a map g W C � X ! Y by 1.1.3(4). Then, g extends over a
neighborhood W of C � X in Z � X . By the compactness of X , U � X � W

for some neighborhood U of C in Z. The extension of g induces a map from U to
C.X; Y / by Proposition 1.1.1.

(8) For a pair .X;A/ of compacta and a pair .Y; B/ of ANEs, the space C..X;A/;
.Y; B// of all maps from .X;A/ to .Y; B/ with the compact-open topology is
an ANE, where B is not necessarily closed in Y .

Sketch of Proof. Let Z be a metrizable space with C a closed set. A map f W C !
C..X; A/; .Y; B// induces a map g W .C�X;C�A/! .Y; B/ (cf. 1.1.3(4)). As in (8),
extend gjC�A to a map g0 W V �A! B , where V is a closed neighborhood of C�A
inZ�A. Define g00 W .C�X/[.V �A/! Y by g00jC�X D g and g00jV �AD g0.
Next, extend g00 over a neighborhood W of .C � X/ [ .V � A/ in Z � X and find
a neighborhood U of C in Z so that U � V and U � X � W . The restriction of
this extension of g00 to U �X induces an extension Qf W U ! C..X; A/; .Y; B// of f
(cf. Proposition 1.1.1).
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6.2 Embeddings of Metric Spaces and ANRs

In this section, we first prove the following embedding theorem:

Theorem 6.2.1 (ARENS–EELLS EMBEDDING THEOREM). Every (complete)
metric spaceX can be isometrically embedded in a (complete) normed linear space
E with densE D @0 densX as a linearly independent closed set.

Proof. When X is finite, let X 0 D X [ fyi j i 2 Ng, where yi 62 X and yi 6D yj if
i 6D j . The metric d of X can be extended to a metric on X 0 by defining

d.yi ; yj / D 1 for i 6D j and d.x; yi / D diamX for x 2 X .

The linear span of X in the normed linear space obtained for X 0 is the desired one.
Thus, we may assume that X is infinite.

Let X� D X [ fy0g, where y0 62 X . Fix a point x0 2 X and extend the metric d
of X to a metric on X� by defining

d.x; y0/ D d.y0; x/ D d.x; x0/C 1 for x 2 X .

By Fin.X�/, we denote the set of all non-empty finite subsets of X�, and by
`1.Fin.X�// the Banach space of all bounded real functions on Fin.X�/ with the
sup-norm k � k. For each x 2 X�, we define '.x/ 2 `1.Fin.X�// by

'.x/.F / D d.x; F / � d.y0; F / for F 2 Fin.X�/;

where j'.x/.F /j � d.x; y0/ D d.x; x0/C 1. Then, k'.x/ � '.y/k D d.x; y/ for
each x; y 2 X�. Indeed, for each F 2 Fin.X�/,

j'.x/.F /� '.y/.F /j D jd.x; F /� d.y; F /j
� d.x; y/ D j'.x/.fyg/� '.y/.fyg/j:

Thus, we have an isometry ' W X� ! `1.Fin.X�//, where it should be noted that
'.y0/ D 0. Let E be the linear subspace of `1.Fin.X�// spanned by '.X/, i.e.,

E D ˚Pn
iD1 �i'.xi /

ˇ
ˇ n 2 N; �i 2 R and xi 2 X

�
:

We show that densE D densX when X is infinite. Take a dense set D in X with
cardD D densX , and define

ED D
˚Pn

iD1 �i'.xi /
ˇ
ˇ n 2 N; �i 2 Q and xi 2 D

�
:

Then, ED is dense in E and cardED D @0 cardD D densX .
We show that '.X/ is closed in E . Let f D Pm

iD1 �i'.yi / 2 E and xn 2 X ,
n 2 N, such that '.xn/ converges to f . Let F D fy0; y1; � � � ; ymg 2 Fin.X�/.
Then, d.xn; F / D '.xn/.F / converges to
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f .F / D
mX

iD1
�i'.yi /.F / D

mX

iD1
�id.yi ; F / D 0:

Since F is finite and d.y0;X/ D 1, .xn/n2N has a subsequence that converges to
some y 2 F n fy0g � X , so f D '.y/ 2 '.X/. Therefore, '.X/ is closed in E . If
X is complete, '.X/ is closed in `1.Fin.X�//, so is closed in the closure clE of
E in `1.Fin.X�//.

Finally, we show that '.X/ is linearly independent. Let
Pm

iD1 �i'.xi / D 0,
where �i 2 R, xi 2 X , and xi 6D xj if i 6D j . Then,

mX

iD1
�i .d.xi ; F /� d.y0; F // D 0 for each F 2 Fin.X�/:

For each i D 1; : : : ; m, applying this to

Fi D fy0; x1; � � � ; xmg n fxi g 2 Fin.X�/;

we have �id.xi ; Fi / D 0, hence �i D 0 because d.xi ; Fi / 6D 0. ut
Remark 6. Due to Theorem 2.3.9, every metric space X can be embedded into the
Banach space CB.X/ by the isometry ' W X ! CB.X/ defined as above, i.e.,
'.x/.z/ D d.x; z/� d.x0; z/, where x0 2 X is fixed. In this case, '.X/ is closed in
the convex hull h'.X/i.

Indeed, for each f 2 h'.X/i n '.X/, write f D Pn
iD1 ti'.xi /, where xi 2 X , ti 2 I

with
Pn

iD1 ti D 1. Choose ı > 0 so that kf � '.xi /k > ı for every i D 1; : : : ; n.
To prove B.f; ı/ \ '.X/ D ;, assume the contrary, i.e., kf � '.x/k � ı for some
x 2 X . Then,

Pn
iD1 ti d.xi ; x/ D jf .x/� '.x/.x/j � ı, which implies that d.x; xi / � ı

for some i D 1; : : : ; n. On the other hand, jf .x/.z/ � '.xi /.z/j > ı for some z 2 X .
However, jf .x/.z/� '.xi /.z/j �

ˇ
ˇPn

iD1 ti .d.xi ; z/� d.x; z//
ˇ
ˇ � d.x; xi / � ı, which is

a contradiction.

The following is a very useful procedure to extend homeomorphisms.

Theorem 6.2.2 (KLEE’S TRICK). Let E and F be metrizable topological linear
spaces that are AEs and let A and B be closed sets in E and F , respectively. Then,
each homeomorphism f W A � f0g ! f0g � B extends to a homeomorphism Qf W
E � F ! E � F .

Proof. Let iE W E ! E�f0g � E�F and iF W F ! f0g�F � E�F be the natural
injections. Then, prF ıf ıiE jA W A ! F and prEıf �1ıiF jB W B ! E extend to
maps g1 W E ! F and g2 W F ! E , respectively. We define homeomorphisms
f1; f2 W E � F ! E � F as follows:

f1.x; y/ D .x; y C g1.x// and f2.x; y/ D .x C g2.y/; y/:

Then, the homeomorphism Qf D f �12 ıf1 W E � F ! E � F is an extension of f
(cf. Fig. 6.5). Indeed, for each x 2 A, f .x; 0/ D .0; prF f .x; 0// and then
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Fig. 6.5 Klee’s trick

Qf .x; 0/ D f �12 .x; g1.x// D .x � g2.g1.x//; g1.x//
D .x � prEıf �1.0; prF ıf .x; 0//; prF ıf .x; 0//
D .x � prEıf �1.f .x; 0//; prF ıf .x; 0//
D .0; prF ıf .x; 0// D f .x; 0/: ut

As a corollary, we prove the following metric extension theorem:

Theorem 6.2.3 (HAUSDORFF’S METRIC EXTENSION THEOREM). Let A be a
closed set in a (completely) metrizable spaceX . Every admissible (complete) metric
on A extends to an admissible (complete) metric on X .

Proof. By Theorem 6.2.1, we have a closed embedding g W X ! E of X into a
(complete) normed linear spaceE D .E; k � kE/. Let d be an admissible (complete)
metric on A. Again, by Theorem 6.2.1, we have a closed isometry h W A ! F of
A D .A; d/ into a (complete) normed linear space F D .F; k � kF /. Since E and F
are AEs by the Dugundji Extension Theorem 6.1.1, we can apply Theorem 6.2.2 to
obtain a homeomorphism f W E � F ! E � F such that

f .g.x/; 0/ D .0; h.x// for all x 2 A:
Let i W E ! E �f0g � E �F be the natural injection. Then, f ıiıg W X ! E �F
is a closed embedding of X into the product normed linear space E � F with the
norm

k.x; y/k D kxkE C kykF :
Since f ıiıgjA is an isometry with respect to d and k � k, we can extend d to a
(complete) metric Qd on X as follows:

Qd.x; y/ D kf ıiıg.x/ � f ıiıg.y/k: ut
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In Theorem 6.2.1, if an embedding is not required to be an isometry, we have the
following:

Theorem 6.2.4. Every completely metrizable space can be embedded in a Hilbert
space with the same density as a closed set. Moreover, every metrizable space can
be embedded in a pre-Hilbert space (that is, a linear subspace of a Hilbert space)
with the same density as a closed set.

Proof. Let X D .X; d/ be a metric space. We may assume that X is infinite.
For each n 2 N, X has a locally finite partition of unity .f� /�2� .n/ such that
diam suppf� < 2�n for each � 2 � .n/, which implies that f� .x/f�.y/ D 0 if
d.x; y/ � 2�n. Let � D Sn2N � .n/, where it can be assumed that � .n/\� .m/ D
; if n 6D m. For each � 2 � , let g� D 2�nf� , where � 2 � .n/. We define

h W X ! `2.� / by h.x/ D .g� .x/
1
2 /�2� . Observe that h.X/ is contained in the

unit sphere of `2.� /. Then, the continuity of h follows from the continuity of g� ,
� 2 � (Proposition 1.2.4). It is easy to show that

2�n � d.x; y/ .< 2�nC1/ ) kh.x/ � h.y/k2 � 2�nC1 .> d.x; y//:
Hence, the inverse h�1 of h is uniformly continuous. Thus, h is an embedding.
Since .f� /�2� .n/ is locally finite, we have card� .n/ � w.X/ D densX , hence
card� � densX . Observe

densX � dens `2.� / D card� � densX;

so we have dens `2.� / D densX . When X is complete, h.X/ is also complete, so
closed in `2.� /.

When X is not complete, let E be the linear subspace of `2.� / generated by
h.X/. We now show that h.X/ is closed in E . Let y 2 clE h.X/. Then, y DPm

iD1 tih.xi / for some xi 2 X and ti 2 R. We may assume that xi 6D xj if i 6D j

and ti 6D 0 for all i . Suppose that m > 1. Choose n 2 N so that d.xi ; xj / � 2�nC1
if i 6D j . For each i D 1; : : : ; m, we have �i 2 � .n/ such that f�i .xi / > 0, i.e.,
h.xi /.�i / > 0. If i 6D j then f�i .xj / D 0, i.e., h.xj /.�i / D 0. Hence, y.�i / > 0.
Since y 2 cl h.X/, we have x 2 X such that h.x/.�i / > 0, i.e., f�i .x/ > 0 for all
i . This implies that d.x; xi / < 2�n for each i , hence d.x1; x2/ < 2�nC1, which is a
contradiction. Therefore, y D t1h.x1/. Observe that y.�/ � 0 for every � 2 � and
kyk D 1. Thus, we have y D h.x1/. Hence, h.X/ is closed in E . ut

Note. By Corollary 3.8.12 and the Arens–Eells Embedding Theorem 6.2.1, every com-
pletely metrizable space X can be embedded in `1.� / as a closed set, where card � D
densX . It is known that `1.� / � `2.� /. Thus, we have an alternative proof for
Theorem 6.2.4.
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As is easily observed, a metrizable AE (resp. ANE) is an AR (resp. ANR).
The converse is also true by the Arens–Eells Embedding Theorem 6.2.1 (or
Theorem 6.2.4), the Dugundji Extension Theorem 6.1.1, and 6.1.9(2). Thus, we
have the following theorem:

Theorem 6.2.5. For a metrizable space X , the following hold:

(1) X is an AR if and only if X is an AE.
(2) X is an ANR if and only if X is an ANE. ut

The following theorem corresponds to Theorem 6.1.4:

Theorem 6.2.6. For any simplicial complex K , jKjm is an ANR.

Proof. We can regard K as a subcomplex of the full simplicial complex F with
F .0/ D K.0/. Note that the canonical representation ˇF W jF j ! `1.F

.0// is
an isometry with respect to the metric 
F (cf. Sect. 4.5) and ˇF .jF j/ is a convex
set in `1.F .0//. Then, jF jm is an AE by Theorem 6.1.1. Combining 6.1.9(2) with
Theorem 6.2.5(2), it suffices to show that jKjm is a neighborhood retract of jF jm
(refer to 6.2.10(2)).

By Theorem 4.6.7, jKjm D j Sd2 Kjm and jF jm D j Sd2 F jm as spaces. Let

N D
[

v2.Sd2 K/.0/

St.v;Sd2 F /:

Then, N is a subcomplex of Sd2 F and jN j is a neighborhood of jKj in jF jm. Each
vertex v 2 N.0/ is the barycenter of  2 SdF with  \ jKj 6D ;, where it should be
noted that  \ jKj D h.0/ \ jKji 2 SdK . Let r0.v/ be the barycenter of  \ jKj.
Then, for v1; : : : ; vn 2 N.0/,

hv1; : : : ; vni 2 N ) hr0.v1/; : : : ; r0.vn/i 2 Sd2 K:

Hence, the function r0 W N.0/ ! .Sd2 K/.0/ defines the simplicial map r W N !
Sd2 K . By definition, r j Sd2 K D id, which means that r is a retraction. Thus, jKjm
is a neighborhood retract of jF jm. This completes the proof. ut

Let X be a subspace of Y . A homotopy h W X � I ! Y with h0 D id is
called a deformation of X in Y . When X D Y , h is called a deformation of X .
A subset A of X is said to be a deformation retract of X if there is a homotopy
h W X � I ! X such that h0 D id and h1 is a retraction of X onto A, where h1 is
called a deformation retraction ofX ontoA. When ht jA D id for all t 2 I, we call
A a strong deformation retract ofX and h1 a strong deformation retraction ofX
onto A. A deformation retraction (resp. a strong deformation retraction) r W X ! A

(� X ) is a retraction with r ' idX (resp. r ' idX rel. A). A closed set A in X is
called a neighborhood deformation retract of X if A has a neighborhoodU in X
with a homotopy h W U � I! X such that h0 D id and h1 is a retraction of U onto
A, where h1 is called a deformation retraction of U ontoA inX . When ht jA D id
for all t 2 I, we call A a strong neighborhood deformation retract of X and h1 a
strong deformation retraction of U onto A in X .
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Proposition 6.2.7. A retract of an AR is a strong deformation retract and a
neighborhood retract of an ANR is a strong neighborhood deformation retract.

Proof. Let X be an ANR and A be a closed set in X with r W U ! A a retraction
of an open neighborhood U of A in X . Since X is an ANE by Theorem 6.2.5, we
have a neighborhood W of U � f0; 1g [ A � I in U � I and a map h W W ! X

such that h.x; 0/ D x, h.x; 1/ D r.x/ for x 2 U , and h.x; t/ D x for x 2 A.
Choose a neighborhood V of A in U so that V � I � W . Then, hjV � I is the
desired homotopy. When X is an AR, we can take U D X and W D X � I in
the above. ut
Remark 7. By Proposition 6.2.7, a deformation retract of an AR is a strong
deformation retract. In Sect. 6.4, it will be proved that this is valid for any ANR, that
is, a deformation retract of an ANR is a strong deformation retract (Theorem 6.4.4).

A space X is locally contractible if each neighborhood U of any point x 2 X
contains a neighborhood of x that is contractible in U . The following proposition
can be proved by letting A D fxg in the proof of Proposition 6.2.7:

Proposition 6.2.8. Every ANR is locally contractible and every AR is contractible.
ut

By Theorems 6.1.5 and 6.2.5, a contractible ANR is an AR. Thus, we have the
following characterization of ARs:

Corollary 6.2.9. A metrizable space is an AR if and only if it is a contractible ANR.
ut

By Theorem 6.2.5, we can translate 6.1.9 as follows:

Basic Properties of ANRs 6.2.10.

(1) A countable product of ARs is an AR and a finite product of ANRs is an ANR.

The metrizability requires the countable product.

(2) A retract of an AR is an AR and a neighborhood retract of an ANR is an ANR.
(3) Any open set in an ANR is also an ANR.
(4) (HANNER’S THEOREM) A paracompact space is an ANR if it is locally an

ANR, that is, each point has an ANR neighborhood.

See the remark on 6.1.9(6). The metrizability of X follows from 2.6.7(4). Every n-
manifold is an ANR.

(5) Let X D X1 [ X2, where Xi is closed in X , i D 1; 2. If X1, X2, and X1 \ X2
are ANRs (ARs) then so is X . If X and X1 \ X2 are ANRs (ARs), then so are
X1 and X2.

Sketch of Proof. In the first assertion, the metrizability of X follows from 2.4.5(2).
The second assertion can also be proved by showing that X1 and X2 are neighborhood
retracts of X (cf. (2)).
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(6) The space C.X; Y / of all maps from a compactum X to an ANR (resp. an AR)
Y with the compact-open topology is an ANR (resp. an AR).

For the metrizability of C.X; Y /, refer to 1.1.3(6).

(7) For a locally compact separable metrizable space X and an AR Y , the space
C.X; Y / of all maps from X to Y with the compact-open topology is an AR.

Sketch of Proof. Regard Y as a retract of a normed linear space E by the Arens–Eells
Embedding Theorem 6.2.1. Then, C.X; Y / can be regarded as a retract of C.X;E/
by 1.1.3(1), where C.X;E/ is a locally convex topological linear space by Remark
1 in Sect. 6.1, and hence is an AE by the Dugundji Extension Theorem 6.1.1. Since
C.X;E/ is metrizable by 1.1.3(7), it is an AR, so C.X; Y / is an AR.

(8) There exists a locally compact separable metrizable spaceX such that the space
C.X;S1/ with the compact-open topology is not locally path-connected, so it is
not an ANR (cf. 6.1.9(8)).

Example. Let X D S
i2N.S

1C 2ie1/ be a subspace of R2 and define a map f W X !
S1 by

f .x C 2i; y/ D ..�1/i x; y/ for every .x; y/ 2 S1.

For each n 2 N, letXn D Sn
iD1.S

1C2ie1/ and rn W X ! Xn be the retraction defined
by rn.X nXn/ D f.2nC1/e1g. Each neighborhood U of f in C.X; S1/ contains some
f rn. But f rn 6' f in S1, which means that f rn and f cannot be connected by any
path in C.X; S1/.

6.3 Small Homotopies and LEC Spaces

For a space X , let �X denote the diagonal of X2, that is,

�X D
˚
.x; x/

ˇ
ˇ x 2 X� � X2:

For each A � X2 and x 2 X , we define A.x/ D fy 2 X j .x; y/ 2 Ag.
Each neighborhood U of �X in X2 gives every x 2 X its neighborhood U.x/
simultaneously. Given an open cover U of X , we have an open neighborhood
W D S

U2U U 2 of �X in X2, where W.x/ D st.x;U/ for each x 2 X . Such
open neighborhoods of �X in X2 form a neighborhood basis of �X . Indeed, let U
be an open neighborhood of �X in X2. Each x 2 X has an open neighborhood Vx
in X such that V 2

x � U . Thus, we have an open cover V D fVx j x 2 Xg such thatS
x2X V 2

x � U
A space X said to be locally equi-connected (LEC) if the diagonal �X of X2

has a neighborhoodU and there is a map � W U � I! X such that

�.x; y; 0/ D x and �.x; y; 1/ D y for each .x; y/ 2 U and

�.x; x; t/ D x for each x 2 X and t 2 I,
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where I 3 t 7! �.x; y; t/ 2 X is a path from x to y in X . Such a map � is called
an equi-connecting map for X . If U D X2, X is said to be equi-connected (EC).
For example, every convex setX in a topological linear space is EC, where a natural
EC map � is defined by

�.x; y; t/ D .1 � t/ � x C t � y:
In particular, every topological linear space is EC. More generally, a contractible
topological groupX is also EC and a semi-locally contractible topological groupX
is LEC, where X is said to be semi-locally contractible if each point of X has a
neighborhood that is contractible in X . In fact, let ' W V � I! X be a contraction
of a neighborhood of the unit 1 2 X (V D X when X is contractible). Then,
U D f.x; y/ j x � y�1 2 V g is a neighborhood of �X in X2 (U D X2 if V D X ).
We can define an equi-connecting map � W U � I! X by

�.x; y; t/ D '.1; t/�1 � '.x � y�1; t/ � y:
The following proposition is easily proved:

Proposition 6.3.1. An AR is EC and an ANR is LEC.

Sketch of Proof. An equi-connecting map � for an AR (or an ANR) X can be obtained as
an extension of the map of .X2 � f0; 1g/ [ .�X � I/ to X defined by the conditions of an
equi-connecting map.

The converse of Proposition 6.3.1 does not hold (cf. Remark 3 after Proof of
Theorem 6.1.1; Sect. 7.12).

Now, we will characterize LEC spaces via the following theorem.

Theorem 6.3.2. For an arbitrary space X ,

(1) X is EC if and only if �X is a strong deformation retract of X2, and
(2) X is LEC if and only if�X is a strong neighborhood deformation retract ofX2.

Proof. To prove the “only if” part of both (1) and (2), let � W U � I ! X be an
equi-connecting map for X , where U D X2 for (1) or U is a neighborhood of
�X in X2 for (2). Let h W U � I ! X2 be the homotopy defined by h.x; y; t/ D
.x; �.x; y; 1 � t//. Then, h0 D id, ht j�X D id for each t 2 I, and h1 is a retraction
of U onto �X .

To show the “if” part of (1) and (2), let h W U � I ! X2 be a homotopy such
that h0 D id, ht j�X D id for each t 2 I and h1 is a retraction of U onto �X , where
U D X2 orU is a neighborhood of�X in responce to (1) or (2). An equi-connecting
map � W U � I! X for X can be defined as follows:

�.x; y; t/ D
(

pr1h.x; y; 2t/ for 0 � t � 1
2
;

pr2h.x; y; 2 � 2t/ for 1
2
� t � 1;

where pr1; pr2 W X2 ! X are the projections onto the first and the second
coordinates, respectively. ut
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By the proof of Theorem 6.3.2, for every LEC space X , the diagonal �X has a
neighborhood U in X2 with a pr1-preserving homotopy h W U � I! X2 such that
h0 D id, h1 W U ! �X is a retraction and ht j�X D id for all t 2 I, where h is
pr1-preserving if pr1ht D pr1jU for each t 2 I. Thus, every LEC space X has the
following property:

() Each neighborhood U of �X in X2 contains a neighborhood V of �X with a
pr1-preserving homotopy h W V � I! U such that h0 D id and h1.V / D �X .

In the above (), for each x 2 X , U.x/ D fy 2 X j .x; y/ 2 U g is a neighborhood
of x in X . We say that X is unified locally contractible (ULC)2 when X has
the above property (). A ULC space is locally contractible, but, as will be seen, the
converse does not hold. As seen in the above, an LEC space is ULC but the converse
is unknown.

Question If X is ULC, is X LEC?

Theorem 6.3.3. Let X be a space such that X2 is normal.3 Then, X is EC if and
only if X is contractible and LEC.

Proof. An equi-connecting map � W X2 � I ! X induces the contraction h W
X � I! X defined by h.x; t/ D �.x; x0; t/, where x0 2 X is fixed. Thus, we have
proved the “only if” part.

To show the “if” part, let X be contractible and LEC. By Theorem 6.3.2,�X has
an open neighborhood U in X2 and there is a homotopy h W U � I! X2 such that
h0 D id, ht j�X D id for each t 2 I, and h1.U / D �X . On the other hand, X has
a contraction ' W X � I ! X . Note that .'.x; t/; '.x; t// 2 �X for each x 2 X
and t 2 I. Hence, there exists an open neighborhood V of �X in X2 such that
.'.x; t/; '.y; t// 2 U for .x; y/ 2 V and t 2 I. Let k W X2 ! I be an Urysohn map
with k.�X/ D 0 and k.X2 n V / D 1. Observe that .'.x; k.x; y//; '.y; k.x; y/// 2
U for every .x; y/ 2 X2. Then, we can define a homotopy Qh W X2 � I ! X2 as
follows:

Qh.x; y; t/ D
(
.'.x; 2k.x; y/t/; '.y; 2k.x; y/t// for 0 � t � 1

2
;

h.'.x; k.x; y//; '.y; k.x; y//; 2t � 1/ for 1
2
� t � 1:

Observe that Qh0 D id, Qht j�X D id for each t 2 I, and Qh1.X2/ D �X . Therefore,
�X is a strong deformation retract of X2. Consequently, it follows from Theorem
6.3.2 that X is EC by Theorem 6.3.2. ut

2This concept was introduced by F.D. Ancel. He adopted the term “uniformly locally contractible”
but here we replace “uniformly” by “unified” because we say that a metric space X is uniformly
locally contractible if, for each " > 0, there is some ı > 0 such that B.x; ı/ is contractible in
B.x; "/ for each x 2 X .
3As we saw in 2.10.2, the Sorgenfrey line S is (perfectly) normal but S2 is not normal.
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Let V be an open refinement of an open cover U of a space X . We call V an
h-refinement (resp. „-refinement) of U if any two V-close maps f; g W Y ! X

defined on an arbitrary space Y are U-homotopic (resp. U-homotopic rel. fy 2 Y j
f .y/ D g.y/g), where we write

V 	
h
U or U 


h
V

�
resp. V 	

„
U or U 


„
V
�
:

Using „-refinements, we can characterize LEC spaces as follows:

Theorem 6.3.4. A space X is LEC if and only if each open cover of X has an
„-refinement.

Proof. To prove the “only if” part, let � W U � I ! X be an equi-connecting map
for X and U 2 cov.X/. For each x 2 X , choose Ux 2 U so that x 2 Ux. From the
continuity of �, each x 2 X has an open neighborhood Vx such that V 2

x � U and
�.V 2

x � I/ � Ux . Then, V D fVx j x 2 Xg is the desired refinement of U . Indeed,
any two V-close maps f; g W Y ! X of an arbitrary space Y are U-homotopic by a
homotopy h W Y � I! X defined by h.y; t/ D �.f .y/; g.y/; t/.

Now, we show the “if” part. By the condition, the open cover U D fXg has an
„-refinement V . Then, U D SV 2V V 2 is a neighborhood of�X in X2. Since pr1jU
and pr2jU are V-close and pr1j�X D pr2j�X , we have a homotopy � W U � I! X

such that �0 D pr1jU , �1 D pr2jU and �t j�X D pr1j�X D pr2j�X for each t 2 I.
This homotopy � is an equi-connecting map for X . ut

By Proposition 6.3.1, we have the following corollary:

Corollary 6.3.5. Every open cover of an ANR has an „-refinement (hence, it has
an h-refinement). ut
Theorem 6.3.6. A paracompact space X is ULC if and only if each open cover
of X has an h-refinement.

Proof. To prove the “only if” part, for each U 2 cov.X/, let U 0 be a star-refinement
of U . Then, W D S

U2U 0

U 2 contains a neighborhoodW0 of �X in X2 with a pr1-
preserving homotopy h W W0�I! W such that h0 D id and h1.W0/ D �X . Choose
V 2 cov.X/ so that

S
V2V V 2 � W0. Observe that V � st.x;U 0/ for each V 2 V

and x 2 V . Then, it follows that V 	 U . Moreover, V is an h-refinement of U .
Indeed, let f; g W Y ! X be V-close maps. Since .f .y/; g.y// 2 W0 for each y 2
Y , we can define a homotopy h� W Y � I ! X by h�.y; t/ D pr2h.f .y/; g.y/; t/.
Then, h�0 D g and h�1 D f . For each y 2 Y and t 2 I, since h.f .y/; g.y/; t/ 2 W ,
we have U 2 U 0 such that .f .y/; h�.y; t// D h.f .y/; g.y/; t/ 2 U 2, resulting in
U 2 U 0Œf .y/� and h�.y; t/ 2 U . Therefore, h�.fyg � I/ � st.f .y/;U 0/. Thus, h�
is a U-homotopy.

To show the “if” part, letW be a neighborhood of�X inX2. Choose U 2 cov.X/
so that

S
U2U U 2 � W . Taking an h-refinement V of U , define W0 D S

V2V V 2.
Then,W0 is a neighborhood of�X inW . Since pr1jW0 and pr2jW0 are V-close, there
is a U-homotopyh W W0�I! X such that h0 D pr1jW0 and h1 D pr2jW0. We define
a pr1-preserving homotopy Qh W W0 � I ! X2 by Qh.x; y; t/ D .x; h.x; y; 1 � t//.
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Then, Qh0 D id and Qh1.W0/ D �X . For each .x; y/ 2 W0, h.f.x; y/g�I/ is contained
in some U 2 U , which implies that Qh.f.x; y/g � I/ � U 2. Therefore, we have
Qh.W0 � I/ � W . ut

Next, consider the following related theorem:

Theorem 6.3.7. A space X has an open cover U such that any two U-close maps
f; g W Y ! X defined on an arbitrary space Y are homotopic (i.e., U is an h-
refinement of fXg) if and only if �X is a neighborhood deformation retract of X2.

Proof. To show the “only if” part, given an open cover U in the condition, W DS
U2U U 2 is a neighborhood of �X in X2. Since pr1jW and pr2jW are U-close,

there is a homotopy h W W � I ! X such that h0 D pr1jW and h1 D pr2jW . Then,
we can define Qh W W � I ! X2 by Qh.x; y; t/ D .x; h.x; y; 1 � t//. Observe that
Qh0 D id and Qh1 W W ! �X is a retraction. Thus,�X is a neighborhood deformation
retract of X2.

To prove the “if” part, let W be a neighborhood of �X in X2 and ' W W � I!
X2 a homotopy such that '0 D id and '1 W W ! �X is a retraction. Then, we
have U 2 cov.X/ such that U 2 � W for each U 2 U . Any two U-close maps
f; g W Y ! X of an arbitrary space Y are homotopic by a homotopy h W Y � I! X

defined as follows:

h.y; t/ D
(

pr1'.f .y/; g.y/; 2t/ for 0 � t � 1
2
;

pr2'.f .y/; g.y/; 2 � 2t/ for 1
2
� t � 1: ut

In general, a locally contractible space is not ULC, as shown in the following
theorem:

Theorem 6.3.8 (BORSUK). There exists a continuumX such that each point has a
neighborhood basis consisting of contractible neighborhoods but the cover fXg has
no h-refinements (hence, X is not ULC).

Example and Proof. Let X0 D fx 2 IN j x.1/ D 0g and, for each n 2 N, let
Xn D @Cn be the boundary n-sphere of the .nC 1/-cube

Cn D
�
.nC 1/�1; n�1� � In � f0g � f0g � � � � � IN:

Then, we prove that X D Sn2! Xn (� IN) is the desired continuum.
First, we show that each point of X has a neighborhood basis consisting of

contractible neighborhoods. Since
S
n2NXn D X n X0 is a polyhedron that is open

in X , each x 2 Sn2NXn has such a neighborhood basis. When x 2 X0, for each
neighborhood U of x in X , we can find m � 2 and a convex neighborhood W of
.x.2/; : : : ; x.m// in Im�1 such that p�1m .Œ0;m�1� �W / � U , where pm W X ! Im

is the restriction of the projection onto the first m coordinates. When x.mC 1/ � 1
2

(resp. � 1
2
), we define a neighborhood V of x in X as follows:

V D p�1mC1.Œ0;m�1� �W � Œ0; 1//
�
resp. p�1mC1.Œ0;m�1� �W � .0; 1�/

�
:
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Fig. 6.6 Borsuk’s example

Then, V � U and V is contractible. Indeed, let

V0 D p�1mC1.f0g �W � f0g/ � X0
�
resp. p�1mC1.f0g �W � f1g/

�
and

V1 D p�1mC1.Œ0;m�1� �W � f0g/
�
resp. p�1mC1.Œ0;m�1� �W � f1g/

�
:

Then, V1 is a strong deformation retract of V by a deformation h W V � I ! V

sliding along the .mC 1/-th coordinate, and V0 is a strong deformation retract of V1
by a deformation g W V1 � I! V1 sliding along the first coordinate (Fig. 6.6). Since
V0 is contractible, V is also contractible.

Next, we show that fXg has no h-refinements. On the contrary, assume that fXg
has an h-refinement U 2 cov.X/. By the compactness of X , we can take m 2 N

such that fX \ p�1m .x/ j x 2 Img 	 U . Then, the map f W X ! X defined by
f .x/ D .x.1/; : : : ; x.m/; 0; 0; : : : / is U-close to id, hence f ' id. Let r W X ! Xm
be a retraction defined as follows:

r.x/ D

8
ˆ̂
<

ˆ̂
:

..mC 1/�1; x.2/; : : : ; x.mC 1/; 0; 0; : : : / if x.1/ � .mC 1/�1;

.m�1; x.2/; x.3/; : : : / if x.1/ � m�1;
x otherwise.

Then, id D r jXm ' rf jXm W Xm ! Xm. Moreover,

rf .Xm/ D f .Xm/ D Œ.mC 1/�1;m�1� � Im�1 � f0g � � � � ;

hence rf jXm ' 0. Thus, Sm � Xm is contractible, which contradicts Corol-
lary 6.1.6. ut
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Fig. 6.7 The union of two open LEC spaces

Basic Properties of LEC Spaces 6.3.9.

(1) An arbitrary product of EC spaces is EC and a finite product of LEC spaces is
LEC.

Sketch of Proof. Define an equi-connecting map coordinate-wise.

(2) A retract of an EC space is EC and a neighborhood retract of an LEC space
is LEC.

Sketch of Proof. Compose a retraction with the restriction of an equi-connecting map.

(3) Any open set in an LEC space is LEC.

Sketch of Proof. Restrict an equi-connecting map.

(4) Let X D X1 [ X2, where Xi is open in X . Suppose that X2 is normal. If X1
and X2 are LEC, then so is X .

Sketch of Proof. Apply Theorem 6.3.2. Note thatX0 D X1\X2 is also LEC by (3). For
i D 0; 1; 2, we have a neighborhood Ui of �Xi in X2

i and a homotopy hi W Ui � I!
X2
i such that hi0 D id, hi1 is a retraction onto �Xi and hit j�Xi D id for all t 2 I.

Choose open sets V0, V 0

0 , V1, V2 in X2 so that

clV1 \ clV2 D ;; �X nX2
2 � V1 � U1; �X nX2

1 � V2 � U2;
�X n .V1 [ V2/ � V0 � clV0 � V 0

0 � clV 0

0 � U0
and h0.clV 0

0 � I/ � U1 \ U2. Then, V D V0 [ V1 [ V2 is a neighborhood of �X in
X2. Using hi (i D 0; 1; 2) and an Urysohn map k W X2 ! I with k.X2 nV 0

0 / D 0 and
k.clV0/ D 1, define a homotopy h W V � I! X2 such that h0 D id, h1 is a retraction
onto �X , and ht j�X D id for all t 2 I. See Fig. 6.7.

(5) A metrizable space X is LEC if each point of X has an LEC neighborhood
in X .

Sketch of Proof. Apply Michael’s Theorem 2.6.5 on local properties.
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Fig. 6.8 An extension of a homotopy

6.4 The Homotopy Extension Property

We say that a space Y has the homotopy extension property (HEP) for metrizable
spaces provided any map f W A ! Y of a closed set A in an arbitrary metrizable
space X extends over X if f is homotopic to a map extending over X . Due to
the following theorem, every ANE has the HEP for metrizable spaces.

Theorem 6.4.1 (HOMOTOPY EXTENSION THEOREM). Let Y be an ANE, U be
an open cover of Y , and h W A � I ! Y be a U-homotopy of a closed set A in
a metrizable space X . If h0 extends to a map f W X ! Y , then h extends to a
U-homotopy Qh W X � I! Y with Qh0 D f .

Proof. Since Y is an ANE, h extends to a map h0 W W ! Y from a neighborhood
W of X � f0g[A� I in X � I such that h0.x; 0/ D f .x/ for each x 2 X . For each
a 2 A, choose Ua 2 U so that h0.fag � I/ D h.fag � I/ � Ua. Then, each a 2 A
has an open neighborhood Va in X such that Va � I � W and h0.Va � I/ � Ua.
Let V D S

a2A Va and let k W X ! I be an Urysohn map with k.X n V / D 0

and k.A/ D 1. Then, the desired homotopy Qh W X � I ! Y can be defined by
Qh.x; t/ D h0.x; tk.x//. See Fig. 6.8. ut

Using Corollary 6.3.5, we can prove another Homotopy Extension Theorem:

Theorem 6.4.2. Any open cover U of an ANR Y has an open refinement V
satisfying the following condition:

./ For any V-homotopy h W A� I! Y of a closed set A in a metrizable space X ,
if h0 and h1 extend to V-close maps f; g W X ! Y , respectively, then h extends
to a U-homotopy Qh W X � I! Y such that h0 D f and h1 D g.

Proof. By Corollary 6.3.5, we can take open refinements of U as follows:

V 	
h
W 0 �	W 	

h
U 0 �	 U :
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Fig. 6.9 An extension of a homotopy

We will show that V is the desired refinement. Let h W A � I ! Y be a V-
homotopy of a closed set A in a metrizable space X such that h0 and h1 extend
to V-close maps f; g W X ! Y , respectively. Then, we have a W 0-homotopy h0 W
X � I ! Y such that h00 D f and h01 D g. On the other hand, h extends to a map
h00 W A � I [X � f0; 1g ! Y defined by h00.x; 0/ D f .x/ and h00.x; 1/ D g.x/ for
all x 2 X . Since h0jA� I[X � f0; 1g and h00 are W-close, there is a U 0-homotopy

' W .A � I [ X � f0; 1g/� I! Y

such that '0 D h0jA� I[X � f0; 1g and '1 D h00 (cf. Fig. 6.9). By Theorem 6.4.1,
' extends to a U 0-homotopy Q' W .X � I/� I! Y such that Q'0 D h0 and Q'1jA� I[
X � f0; 1g D h00. Then, Qh D Q'1 W X � I ! Y is a U-homotopy such that Qh0 D f ,
Qh1 D g, and QhjA � I D h. ut

Using the HEP, we can characterize ANRs as follows:

Theorem 6.4.3. For a metrizable space X , the following are equivalent:

(a) X is an ANR;
(b) X is semi-locally contractible and has the HEP for metrizable spaces;
(c) X has an open cover V such that for any V-homotopy h W A�I! X of a closed

set A in a metrizable space Y , if h0 and h1 respectively extend to V-close maps
f; g W Y ! X , then h extends to a homotopy Qh W Y � I! X such that h0 D f
and h1 D g;

(d) X is locally contractible and has an open cover V such that for any V-homotopy
h W A� I! X of a closed set A in a metrizable space Y , if h0 extends to a map
f W Y ! X then h extends to a homotopy Qh W Y � I! X such that Qh0 D f ;

(e) Each x 2 X has a neighborhood V in X such that any map f W A ! V of a
closed set A in a metrizable space Y extends to a map Qf W Y ! X ;

(f) Each x 2 X has a neighborhood V in X such that any map f W A ! V of
a closed set A in a metrizable space Y extends to a map Qf W V ! X of a
neighborhood V of A in Y to X .
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Sketch of Proof. Observe the following implications:

(c) (a)

(6.2.8)
(6.4.2)

(6.2.8)
(6.4.1)

(b)

(d) (f) (e)
triv.

(b) (or (d))) (e): Choose a neighborhood V of x 2 X so as to be contractible in X (or
in some member of V in (d)).

(c)) (d): Take V such as in (c). Each x 2 X is contained in some V 2 V . Using (c),
construct a contraction g W V � I! X so that gt .x/ D x for each t 2 I. Restricting g to a
small neighborhood of x, we can show the local contractibility. For f and h of (d), applying
(c) to the V-homotopy h� W A � I! X defined by h�

t D h2t for t � 1
2

and h�

t D h2�2t

for t � 1
2
, we can obtain an extension of h.

(f) ) (a): In condition (f), intV is an ANE, hence an ANR. Then, Hanner’s
Theorem 6.2.10(4) can be applied.

Using the Homotopy Extension Theorem 6.4.1, we can prove the following
theorem, which was announced in the remark after Proposition 6.2.7:

Theorem 6.4.4. A deformation retract of an ANR is a strong deformation retract.

Proof. Let A be a deformation retract of an ANR X . Then, there is a homotopy
h W X � I! X such that h0 D id and h1 W X ! A is a retraction. Since h1h1 D h1
and h1jA D id, we can define a homotopy

' W .A � I [X � f0; 1g/� I! X

as follows:

'.x; t; s/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

ht.1�s/.x/ if x 2 A,

h1�sh1.x/ if t D 1,

x if t D 0,

ht .x/ if s D 0.

Refer to Fig. 6.10. Since '0 extends to h, ' extends a homotopy Q' W .X�I/�I! X

by the Homotopy Extension Theorem 6.4.1. Then, h0 D Q'1 W X � I ! X is a
homotopy such that h0t jA D h0jA D id for every t 2 I, h01 D h0h1 D h1, and
h00 D id. Thus, h01 is a strong deformation retraction of X onto A, so A is a strong
deformation retract of X . ut

6.5 Complementary Pairs of ANRs

First, we prove the following lemma, which is often used in extending maps.
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Fig. 6.10 The homotopy '

Lemma 6.5.1 (C.H. DOWKER). Let X and Y be metrizable spaces and f W A!
Y be a map of a closed set A in X . Suppose there exists a homotopy h W A� I! Y

such that h0 D f and hjA � .0; 1� extends over a neighborhoodW of A � .0; 1� in
X � .0; 1�. Then, f extends over a neighborhood of A in X . If X � f1g � W , then
f extends over X .

Proof. For simplicity, let d stand for admissible metrics of X and Y as well as the
metric on X � I defined as follows:

d..x; t/; .x0; t 0// D maxfd.x; x0/; jt � t 0jg:
We may assume that h is defined on the set W [ A � f0g and that hjA � I and
hjW are continuous. However, it is not assumed that h is continuous. First, we find
a neighborhoodW � ofA�.0; 1� inX�.0; 1� such thatW � � W and hjW �[A�f0g
is continuous. To this end, for each .a; t/ 2 A � .0; 1�, choose a neighborhood
W.a; t/ of .a; t/ in W so that diamW.a; t/ < 1

2
t and diamh.W.a; t// < 1

2
t . Then,

W � D S
.a;t/2A�.0;1� W.a; t/ is a neighborhood of A � .0; 1� in X � .0; 1�. To

verify the continuity of hjW � [ A � f0g at .a; 0/ 2 A � f0g, let " > 0. By the
continuity of hjA � I at .a; 0/, we can choose ı > 0 so that, if .a0; t 0/ 2 A � I
and d..a; 0/; .a0; t 0// < ı, then d.h.a; 0/; h.a0; t 0// < 1

2
". Let .x; t/ 2 W � with

d..a; 0/; .x; t// < 1
2

minfı; "g. Then, we have .a0; t 0/ 2 A� .0; 1� such that .x; t/ 2
W.a0; t 0/, resulting in d..x; t/; .a0; t 0// < 1

2
t 0 and d.h.x; t/; h.a0; t 0// < 1

2
t 0. Since

jt � t 0j < 1
2
t 0, it follows that 1

2
t 0 < t < 1

2
minfı; "g. Thus, d..x; t/; .a0; t 0// < 1

2
ı

and d.h.x; t/; h.a0; t 0// < 1
2
". Since

d..a; 0/; .a0; t 0// � d..a; 0/; .x; t//C d..x; t/; .a0; t 0// < ı;
it follows that d.h.a; 0/; h.a0; t 0// < 1

2
". Then,

d.h.a; 0/; h.x; t// � d.h.a; 0/; h.a0; t 0//C d.h.a0; t 0/; h.x; t// < ":
Therefore, hjW � [ A � f0g is continuous at .a; 0/.
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Fig. 6.11 Extending a map

Choose open neighborhoods Un of A in X , n 2 N, so that Un � Œ2�n; 1� � W �,
clUnC1 � Un, and

T
n2N Un D A. Take maps kn W X ! Œ0; 2�n�, n 2 N, so

that kn.clUnC1/ D 0 and kn.X n Un/ D 2�n, and define a map k W X ! I by
k.x/ D P

n2N kn.x/. Observe that k�1.0/ D A and k.x/ 2 Œ2�n; 2�nC1� for each
x 2 Un nUnC1, which implies that .x; k.x// 2 A� f0g [W � for all x 2 U1. Then,
f extends to a map Qf W U1 ! Y defined by Qf .x/ D h.x; k.x//. See Fig. 6.11.

If X � f1g � W , we define W � D S
.a;t/2A�.0;1� W.a; t/ [ X � f1g. Then, the

map Qf above can be defined over X . ut
Remark 8. In the above proof, it is not enough to take a map k with k�1.0/ D A.
Indeed, we define a map

h W I � .0; 1� [ f0g � f0g ! R

by h.x; t/ D x=t if t 6D 0 and h.0; 0/ D 0, where .X;A/ D .I; f0g/, Y D R

and W D I � .0; 1�. Moreover, let k D id W I ! I. Then, k�1.0/ D f0g. Using
this k, we define Qf W I ! R as in the above proof, i.e., Qf D h.x; k.x// for each
x 2 I. Then, Qf is not continuous at 0 2 I because Qf .0/ D h.0; 0/ D 0, but
Qf .x/ D h.x; k.x// D x=k.x/ D 1 if x 6D 0.

Applying Lemma 6.5.1, we prove the following theorem:

Theorem 6.5.2 (KRUSE–LIEBNITZ). Let X be metrizable and A be a strong
neighborhood deformation retract of X . If A and X n A are ANRs, then so is X .

Proof. From the assumption, we have a homotopy h W clU � I ! X of an open
neighborhoodU of A in X such that h0 D id, h1 is a retraction of clU onto A, and
ht jA D id for every t 2 I. Given an admissible metric d for X , we may assume
that diamh.fxg � I/ < 1 for every x 2 U . Let f W B ! X be a map from a closed
set B in an arbitrary metrizable space Y . We apply Lemma 6.5.1 to extend f over
a neighborhood of B in Y .
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Fig. 6.12 Extensions of h1f jf �1.U / and f jf �1.X n A/

Note that f �1.U / and f �1.X nA/ are closed in Y nf �1.X nU / and Y nf �1.A/,
respectively. Since A and X nA are ANRs, maps h1f jf �1.U / and f jf �1.X nA/
extend to maps f 0 W V 0 ! A and f 00 W V 00 ! X n A, respectively, where V 0
and V 00 are open sets in Y n f �1.X n U / and Y n f �1.A/, respectively, such that
V 0 \ B D f �1.U / and V 00 \ B D f �1.X n A/. Observe that

V 0 \ V 00 \ B D f �1.U n A/ and f 0jV 0 \ V 00 \ B D h1f 00jV 0 \ V 00 \ B:
Note that every open cover of an ANR has an „-refinement by Corollary 6.3.5.
Then, we can find an open set V0 in V 0 \ V 00 such that V0 \B D V 0 \ V 00 \B and
f 0jV0 ' h1f 00jV0 rel. V0 \ B . Let ' W V0 � I! A be a homotopy such that

'0 D f 0jV0; '1 D h1f 00jV0 and 't jV0 \ B D f 0jV0 \ B for all t 2 I.

Choose disjoint open sets V1 and V2 in Y so that f �1.A/ � V1 � V 0 and B n
f �1.U / � V2 � V 00. Then, V D V0 [ V1 [ V2 is an open neighborhood of B in Y .
Refer to Fig. 6.12.

The functionU 3 x 7! diamh.fxg�I/ 2 I is continuous. Indeed, for each x 2 U
and " > 0, using the compactness of I, we can find ı > 0 such that d.x; x0/ < ı

implies d.h.x; t/; h.x0; t// < "=2 for every t 2 I. Let x0 2 U with d.x; x0/ < ı.
For each t0; t1 2 I,

d.h.x0; t0/; h.x0; t1// � d.h.x; t0/; h.x; t1//
C d.h.x; t0/; h.x0; t0//C d.h.x; t1/; h.x0; t1//

< diamh.fxg � I/C ";
which implies that

diamh.fx0g � I/ � diamh.fxg � I/C ":
Replacing x0 with x in the above, we have

diamh.fxg � I/ � diamh.fx0g � I/C ":
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Fig. 6.13 The map g

Let ˛ W .V n V0/ [ B ! I be an Urysohn map with ˛.V1 n V0/ D 0 and
˛.V2 n V0/ D 1. We define the map ˇ W .V n V0/ [ B ! I by ˇ.V1 n V0/ D 0,
ˇ.V2 n V0/ D 1, and

ˇ.x/ D min
˚
1; diamh.ff .x/g � I/C ˛.x/� for x 2 f �1.clU /:

Note that diamh.ff .x/g � I/ � ˇ.x/ for every x 2 f �1.clU / and ˇ�1.0/\ B D
f �1.A/. By the Tietze Extension Theorem 2.2.2, ˇ extends to a map � W V ! I.
Observe that ��1..0; 1// � V0, ��1.Œ0; 1// � V 0, and ��1..0; 1�/ � V 00. Then, we
can define a map g W V � .0; 1�! X as follows:

g.x; t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

f 00.x/ if t � �.x/;
h.f 00.x/; �.x/�1t � 1/ if �.x/ � t � 2�.x/;
'.x; 3 � �.x/�1t/ if 2�.x/ � t � 3�.x/;
f 0.x/ if t � 3�.x/:

Refer to Fig. 6.13. For each .x; t/ 2 B � .0; 1�, we have d.g.x; t/; f .x// � t .
Indeed, recall ˇjB D � jB and 't jV0 \ B D h1f jV0 \ B for every t 2 I. Observe
the following:

t � �.x/) g.x; t/ D f .x/I
�.x/ � t � 2�.x/) d.g.x; t/; f .x// � diamh.ff .x/g � I/ � �.x/ � t I

t � 2�.x/) d.g.x; t/; f .x// D d.h1f .x/; f .x// � �.x/ � t:
Therefore, gjB � .0; 1� can be extended to the homotopy Qg W B � I ! X with
Qg0 D f . By Lemma 6.5.1, f extends over a neighborhood of B in Y . ut

Recall that a perfect map f W X ! Y is a closed map such that f �1.y/ is
compact for every y 2 Y . The perfect image of a metrizable space is also metrizable
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(2.4.5(1)). As a corollary of Theorem 6.5.2, we have the following theorem on the
adjunction spaces:

Theorem 6.5.3 (BORSUK–WHITEHEAD–HANNER). Let X and Y be ANRs and
f W A! Y be a map from a closed set A in X . Then, the adjunction space Y [f X
is an ANR if f is perfect and A is an ANR.

Proof. Since A is a strong neighborhood deformation retract of X by Proposi-
tion 6.2.7, it follows that Y is a strong neighborhood deformation retract of Y [f X .
The result follows from Theorem 6.5.2. ut

As special cases of Theorem 6.5.3, we have the following:

Corollary 6.5.4. For any perfect map f W X ! Y between ANRs, the mapping
cylinderMf is an ANR. ut

When Y is a singleton in the above, the mapping cylinderMf is regarded as the
cone .X � I/=.X � f0g/. Since a contractible ANR is an AR (Corollary 6.2.9), we
have the following corollary:

Corollary 6.5.5. The cone .X �I/=.X �f0g/ over a compact ANRX is an AR. ut
Mapping cylinders are very useful, as seen in Sect. 4.12. However, they are not,

in general, metrizable. We introduce the mapping cylinder that is different from the
quotient space. For a map f W X ! Y , let

M.f / D Y [ �X � .0; 1�� .the disjoint union/;

whose topology is generated by open sets in X � .0; 1� and sets U [ .f �1.U / �
.0; "//, where U is open in Y and 0 < " < 1. Then, we have the natural continuous
bijection �f WMf !M.f /, where �f jY D id and �f jX � .0; 1� D id.

When X and Y are bounded closed sets in normed linear spaces E and F ,
respectively, we can define a closed embedding ' WM.f /! E�F �R as follows:
'.y/ D .0; y; 0/ for each y 2 Y and

'.x; t/ D .tx; .1 � t/f .x/; t/ for each .x; t/ 2 X � .0; 1�.

To verify the continuity at y 2 cl f .X/, let " > 0. Choose ı1 > 0 so that .1� t /B.y; ı1/ �
B.y; "/ if 0 < t < ı1. Since X is bounded in E , we have 0 < ı < ı1 (< ") such that
ıX � B.0; "/. Let U D Y \B.y; ı/. Then, U [f �1.U /� .0; ı/ is an open neighborhood
of y in M.f / and

'
�
U [ .f �1.U / � .0; ı//� � B.0; "/� B.y; "/� .�"; "/:

To verify the closedness of ', let .zi /i2N be a sequence in M.f / such that .'.zi //i2N

converges to .x; y; t / 2 E�F�R. We will show that .zi /i2N has a convergent subsequence.
Then, we may assume that zi 2 Y for every i 2 N or zi 2 X � .0; 1� for every i 2 N.
In the first case, since '.zi / D .0; zi ; 0/, .zi /i2N converges to y. In the second case, let
zi D .xi ; ti / for each i 2 N. Then, t D limi!1

ti 2 I. Hence, x D t limi!1

xi and
y D .1� t / limi!1

f .xi /. If t > 0 then limi!1

xi D t�1x, where t�1x 2 X because
X is closed inE . Hence, .zi /i2N is convergent. When t D 0, we have limi!1

f .xi / D y,
where y 2 Y because Y is closed in F . For each open neighborhood U of y in Y and
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0 < " < 1, we have i0 2 N such that i � i0 implies ti < " and f .xi / 2 U , i.e.,
zi D .xi ; ti / 2 U [ f �1.U / � .0; "/, which means that .zi /i2N is convergent.

Due to the Arens–Eells Embedding Theorem 6.2.1, every metrizable (resp.
completely metrizable) space can be embedded into a normed linear space (resp. a
Banach space). Then,M.f / is (completely) metrizable if X and Y are. The metriz-
ability ofM.f / can also be shown by applying the Bing Metrization Theorem 2.3.4.

For any map f W X ! Y , we can identifyM.f / withMf as sets (by the natural
map �f ), but the topology of Mf is finer than the topology of M.f /. Let qf W
Y ˚ .X � I/ ! Mf be the quotient map. If f W X ! Y is perfect, M.f / D Mf

as spaces, where the natural map �f is a homeomorphism.

Indeed, for each neighborhood U of y 2 Y nf .X/ inMf , since f �1.y/�f0g � qf .U /\
.X�I/ and f �1.y/ is compact, we have a neighborhoodW of f �1.y/ inX with ı 2 .0; 1/
such thatW � Œ0; ı/ � qf .U /\ .X � I/. Since f is closed, there is a neighborhood V of y
in Y such that f �1.V / � W and V � qf .U /\Y . Then, V [.f �1.V /�.0; ı// � �f .U /.
Thus, �f .U / is a neighborhood of y inM.f /.

We also call M.f / the mapping cylinder of f (or the metrizable mapping
cylinder of f when we need to distinguish it from Mf ). As with Mf , we define
the collapsing cf W M.f / ! Y , which is continuous. Then, cf ' id rel. Y in
M.f / by the homotopy hf W M.f / � I ! M.f / defined in the same manner as
hf WMf � I!Mf . Hence, Y is a strong deformation retract ofM.f /. The natural
map �f qf W Y ˚ .X � I/ ! M.f / is abbreviated by qf , the same notation as the
natural quotient map.

From Theorem 6.5.2 we deduce:

Corollary 6.5.6. For any map f W X ! Y between ANRs, the mapping cylinder
M.f / is an ANR. ut

The mapping cylinderM.idX/ D MidX of the identity map idX of X is regarded
as the product space X � I. WhenX is a subspace of Y , the mapping cylinderM.i/
of the inclusion map i W X � Y can be regarded as a subspace .Y � f0g/[ .X � I/
of the product space Y � I, but Mi cannot be regarded thus unless X is closed in Y
(cf. Sect. 4.11). If Y D f0g, we denote C.X/ DM.f /, i.e.,

C.X/ D f0g [ .X � .0; 1�/;
which has the topology generated by open sets in the product space X � .0; 1� and
sets f0g[ .X � .0; "//, where 0 < " � 1. We call C.X/ the (metrizable) cone over
X . The following subspace of C.X/ is called the (metrizable) open cone overX :

Co.X/ D f0g [ .X � .0; 1//:
Then, C.X/ and Co.X/ are contractible.

Corollary 6.5.7. The cone C.X/ over any ANR X is an AR. Hence, so is the open
cone Co.X/. ut
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For a map to a paracompact space, we have the following lemma:

Lemma 6.5.8. Let Y be a paracompact space and f W X ! Y be a map. For each
open cover U of M.f /, Y has a locally finite open cover V with a map ˛ W Y !
.0; 1/ such that, for each V 2 V , V [ .f �1.V / � .0; sup˛.V /�/ is contained in
some member of U .

Proof. For each y 2 Y , let

�.y/ D sup
˚
s 2 .0; 1/ ˇˇ 9U 2 U ; 9V : open in Y such that

y 2 V [ .f �1.V / � .0; s// � U � > 0

Then, � W Y ! .0; 1/ is lower semi-continuous (l.s.c.). By Theorem 2.7.6, we
have a map ˛ W Y ! .0; 1/ such that ˛.y/ < �.y/ for every y 2 Y . For each
y 2 Y , we have sy > ˛.y/ and an open neighborhood Vy of y in Y such that
Vy [ .f �1.Vy/ � .0; sy// is contained in some U 2 U and ˛.y0/ < sy for every
y0 2 Vy . Let V 2 cov.Y / be a locally finite open refinement of the open cover
fVy j y 2 Y g. Then, ˛ and V are as required. ut

As seen above, the topology of M.f / is different from that of Mf , but we have
the following theorem:

Theorem 6.5.9. For each map f W X ! Y , the natural bijection �f W Mf !
M.f / is a homotopy equivalence with a homotopy inverse  W M.f /! Mf such
that

 �f ' id rel. Y [ .X � f1g/ and �f  ' id rel. Y [ .X � f1g/;

hence M.f / ' Mf rel. Y [ X � f1g. If Y is paracompact, for each open cover U
of M.f /, the homotopy inverse  can be chosen such that

 �f '��1
f .U/ id rel. Y [ .X � f1g/ and �f  'U id rel. Y [ .X � f1g/:

Proof. We first prove the case where Y is paracompact. By Lemma 6.5.8, for each
open cover U ofM.f /, we have a map ˛ W Y ! .0; 1/ such that

˚fyg [ .f �1.y/ � .0; ˛.y/�/ ˇˇ y 2 Y � 	 U :

Let qf W Y ˚ .X � I/ ! Mf be the quotient map. Then, we can define a map
 WM.f /!Mf by  jY D qf jY and

 .x; s/ D

8
ˆ̂
<

ˆ̂
:

qf .x; s/ D .x; s/ if x 2 X; s � ˛.f .x//;
qf .x; 2s � ˛.f .x/// if x 2 X; ˛.f .x//=2 � s � ˛.f .x//;
qf .x; 0/ D f .x/ if x 2 X; 0 < s � ˛.f .x//=2:
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The continuity of  follows from that of  jX � .0; 1� and  jW , where

W D Y [ ˚.x; s/ 2 X � .0; 1� ˇˇ s < ˛.f .x//=2�:
Now, we define a homotopy h W .Y ˚ .X � I// � I ! Y ˚ .X � I/ as follows:

h0 D id, ht jY D id for each t 2 I, and

ht .x; s/ D

8
ˆ̂
<

ˆ̂
:

.x; s/ if x 2 X; s � t˛.f .x//;

.x; 2s � t˛.f .x/// if x 2 X; t˛.f .x//=2 � s � t˛.f .x//;

.x; 0/ if x 2 X; s � t˛.f .x//=2:
Then, as is easily shown, h induces a U-homotopy h0 WM.f /� I!M.f / and the
��1f .U/-homotopy h00 WMf � I!Mf such that

h00 D id; h01 D �f  ; and h0t jY [ .X � f1g/ D id for each t 2 I;

h000 D id; h001 D  �f ; and h00t jY [ .X � f1g/ D id for each t 2 I.

The continuity of h0 can be verified as follows: Since �f W Mf !M.f / is continuous, the
continuity of h0jM.f /� .0; 1� can be shown in a manner similar to that of  . Observe that
X � .0; 1� � f0g has the following open neighborhood in M.f /� I:

W 0 D ˚
.x; s; t / 2 X � .0; 1� � I

ˇ
ˇ s > t˛.f .x//

�
:

The continuity of h0jW 0 is obvious. For each neighborhood V of y in Y and " 2 .0; 1/, it
is easy to show that

h0..V [ .f �1.V /� .0; "/// � I/ � V [ .f �1.V /� .0; "//:
Thus, h0 is also continuous at .y; 0/.

In the general case, since there are no covering estimations, we can take a
constant map as ˛ (e.g., ˛.y/ D 1

2
) in the above proof. ut

For maps fi W Xi ! Xi�1, i D 1; : : : ; n, let M.f1; : : : ; fn/ D Sn
iD1 M.fi /

be the adjunction space, where each Xi � f1g � M.fi/ is identified with
Xi � M.fiC1/. We call M.f1; : : : ; fn/ the mapping telescope of f1; : : : ; fn.
By Theorem 6.5.9, Theorems 4.11.1 and 4.11.2 are also valid for the metrizable
mapping cylinders.

Corollary 6.5.10. For maps f; g W X ! Y , the following conditions are
equivalent:

(a) f ' g;
(b) M.f / 'M.g/ rel. Y [ X � f1g;
(c) There is a map ' WM.f /!M.g/ with 'jY [ X � f1g D id. ut
Corollary 6.5.11. For maps f W X ! Y and g W Y ! Z, M.gf / ' M.g; f / rel.
Z [ X � f1g. ut

These corollaries can also be proved directly in the same manner as Theo-
rems 4.11.1 and 4.11.2.
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6.6 Realizations of Simplicial Complexes

Let X be a space and U 2 cov.X/. Let K be a simplicial complex and L be a
subcomplex of K with K.0/ � L. Then, a map f W jLj ! X is called a partial
U-realization of K in X if ff . \ jLj/ j  2 Kg 	 U . A full U-realization of K
in X is a map f W jKj ! X such that ff ./ j  2 Kg 	 U . We call V 2 cov.X/ a
Lefschetz refinement of U and denote

V 	
L
U or U 


L
V

if V 	 U and any partial V-realization of an arbitrary simplicial complex in
X extends to a full U-realization in X . The following is called LEFSCHETZ’S

CHARACTERIZATION of ANRs.

Theorem 6.6.1 (LEFSCHETZ). A metrizable space X is an ANR if and only if any
open cover of X admits a Lefschetz refinement.

Proof. To prove the “only if” part, by the Arens–Eells Embedding Theorem 6.2.1,
we may assume that X is a closed set in a normed linear space E . Then, we have
an open neighborhood W of X in E and a retraction r W W ! X . For each open
cover U of X , r�1.U/ is an open cover of W , which has a refinement V consisting
of open convex sets in E . We show that V jX is a Lefschetz refinement of U .

Let K be a simplicial complex, L be a subcomplex of K with K.0/ � L, and
let f0 W jLj ! X be a partial .V jX/-realization of K . By induction, we can obtain
maps fn W jL [K.n/j ! W , n 2 N, so that

fn
ˇ
ˇjL [K.n�1/j D fn�1 and

fn. \ jL [K.n/j/ � hf0. \ jLj/i for each  2 K:

Indeed, given fn�1, then for each  2 K.n/ n .L [ K.n�1//, fn�1j@ extends to a
map f W  ! hf0. \ jLj/i by the Dugundji Extension Theorem 6.1.1. Thus, fn
can be defined by fnj D f for  2 K.n/ n .L [ K.n�1//. For each  2 K , we
write  \jL[K.n/j D Sm

iD1 i , where i 2 L[K.n/ for each i D 1; � � � ; m. Then,

fn. \ jL [K.n/j/ D
m[

iD1
fi .i / �

m[

iD1
hf0.i \ jLj/i � hf0. \ jLj/i:

Let f W jKj ! W be the map defined by f jjL [ K.n/j D fn. For each  2 K ,
f0. \ jLj/ is contained in some V 2 V , which implies that

f ./ � hf0. \ jLj/i � V:
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Fig. 6.14 The nerves Kn and Ln

Thus, f is a full V-realization of K in W . Since V 	 r�1.U/, rıf W jKj ! X is a
full U-realization of K in X , which is an extension of f0.

To prove the “if” part, it suffices to show that X is an ANE. Let f W A! X be
a map from a closed set A in a metrizable space Y . Given d 2 Metr.X/, take open
covers of X as follows:

U1 

L
V1
�
 U2 


L
V2
�
 U3 


L
V3
�
 � � � ;

where meshUn < 2�n for each n 2 N. For each n 2 N, let

Wn D
˚
f �1.U / � Jn

ˇ
ˇ U 2 UnC2

�
;

where J1 D .2�1; 1� and Jn D .2�n; 2�n3/ for n > 1. Then, W D S
n2NWn is an

open cover of A � .0; 1�. Let K be the nerve of W with ' W A � .0; 1� ! jKj a
canonical map. For each n 2 N, letKn andLn be the nerves of Wn[WnC1 and Wn,
respectively, which are naturally regarded as subcomplexes of K (Fig 6.14). Then,
we have

K D
[

n2N
Kn; Kn \KnC1 D LnC1 and Ln \ LnC1 D ;:

For each n 2 N, let g0n W jL.0/n j ! X be a map such that g0n.W / 2 f prA.W / for
each W 2 Wn. Observe that g0n is a partial VnC1-realization of Ln in X . Then, g0n
extends to a full UnC1-realization gn W jLnj ! X . We define h0n W jLn[LnC1j ! X

by h0njjLnj D gn and h0njjLnC1j D gnC1. Observe that h0n is a partial Vn-realization
ofKn in X . Then, h0n extends to a full Un-realization hn W jKnj ! X . We can define
a map h W jKj ! X by hjjKnj D hn. Thus, we have the map h' W A � .0; 1�! X .

For each .a; t/ 2 A � .0; 1�, let  2 K be the carrier of '.a; t/ and W 2 .0/.
Since ' is a canonical map, we have .a; t/ 2 W (Proposition 4.9.1). When  2 Kn,
h./ D hn./ is contained in some U 2 Un, hence h'.a; t/ 2 U . Moreover, since
W 2Wn [WnC1, we have
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h.W / D g0i .W / 2 f prA.W /\ U (where i D n or nC 1),

f .a/ 2 f prA.W / 2 UnC2 [ UnC3 and t > 2�n�1:

Then, it follows that

d.h'.a; t/; f .a// � d.h'.a; t/; h.W //C d.h.W /; f .a//
� diamU C diamf prA.W /

< 2�n C 2�n�2 < 2�n�13 < 3t:

Therefore, h' can be extended to a homotopy Qh W A � I! X by Qh0 D f .
On the other hand, since jKj is an ANE, ' extends over a neighborhood of A �

.0; 1� in Y � .0; 1�, hence so does h'. Then, we can apply Lemma 6.5.1 to extend
f over a neighborhood of A in Y . ut

Recall that a space X is homotopy dominated by a space Y if there are maps
f W X ! Y and g W Y ! X such that gf ' idX . If gf 'U idX for an open cover
U of X (resp. gf '" idX for " > 0), we say that X is U-homotopy dominated
(resp. "-homotopy dominated) by Y . The following theorem is HANNER’S

CHARACTERIZATION of ANRs.

Theorem 6.6.2 (HANNER). For a metric space X D .X; d/, the following are
equivalent:

(a) X is an ANR;
(b) For each open cover U of X , there is a simplicial complex K such that X is

U-homotopy dominated by jKj;
(c) For any " > 0, X is "-homotopy dominated by an ANE.

Proof. The implication (b)) (c) follows from the fact that jKj is an ANE for any
simplicial complexK . We will prove the implications (a)) (b) and (c)) (a).

(a)) (b): For each open cover U of X , applying Theorems 6.6.1 and 6.3.6 with
Proposition 6.3.1, we can take open refinements as follows:

U 

h
V �
 V 0 


L
W �
W 0:

LetK be the nerve of W 0 with a canonical map f W X ! jKj. For eachW 2W 0 D
K.0/, choosing g0.W / 2 W , we can obtain a partial W-realization g0 W K.0/ ! X

of K , which extends to a full V 0-realization g W jKj ! X of K . Observe that gf is
V-close to idX , which means gf 'U idX . Thus,X is U-homotopy dominated by K .

(c)) (a): We show thatX is an ANE. Let f W A! X be a map of a closed setA
in a metrizable space Y . For each n 2 N, we have an ANE Xn, maps jn W X ! Xn
and kn W Xn ! X , and a 3�n-homotopy hn W X � I ! X with hn0 D idX and
hn1 D knjn. For each n 2 N, let I 0n D Œ3�n2; 3�.n�1/� and I 00n D Œ3�n; 3�n2�.
Since each Xn is an ANE, jnf extends to a map fn W Un ! Xn from an open
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neighborhood Un of A in Y . We may assume that UnC1 � Un for each n 2 N. For
each n 2 N, we define a map g0n W Un � I 0n ! X by

g0n.y; t/ D hnC1.knfn.y/; 3 � 3nt/:

Then, for each y 2 Un,

g0n.y; 3�.n�1// D knfn.y/ and g0n.y; 3�n2/ D knC1jnC1knfn.y/:

Also, for each .a; t/ 2 A � I 0n,

d.g0n.a; t/; f .a// D d.hnC1.knjnf .a/; 3 � 3nt/; f .a//
� 3�.nC1/ C 3�n < 3�n2 � t:

For each n 2 N, let

An D A � I 00n [ UnC1 � @I 00n � UnC1 � I 00n :

We define a map h0n W An ! XnC1 as follows:

h0n.y; t/ D

8
ˆ̂
<

ˆ̂
:

jnC1knfn.y/ if .y; t/ 2 UnC1 � f3�n2g,
fnC1.y/ if .y; t/ 2 UnC1 � f3�ng,
jnC1hn.f .y/; 3nt � 1/ if .y; t/ 2 A � I 00n .

Since XnC1 is an ANE, h0n extends to a map h00n W Vn ! XnC1 of a neighborhood Vn
of An in UnC1 � I 00n . Thus, we obtain the map g00n D knC1h00n W Vn ! X . Observe,
for each y 2 UnC1,

g00n.y; 3�n2/ D knC1jnC1knfn.y/ and g00n.y; 3�n/ D knC1fnC1.y/
and for each .a; t/ 2 A � I 00n ,

d.g00n.a; t/; f .a// D d.knC1jnC1hn.f .a/; 3nt � 1/; f .a//
< 3�.nC1/ C 3�n < 3�n2 � 2t:

Then,W D Sn2N..Un� I 0n/[Vn/ is a neighborhood of A� .0; 1� in Y � .0; 1�. We
define a map g W W ! X by

gjUn � I 0n D g0n and gjVn D g00n :

Since d.g.a; t/; f .a// < 2t for each .a; t/ 2 A� .0; 1�, we can apply Lemma 6.5.1
to extend f over a neighborhood of A in X . — Fig. 6.15. ut

Remark 9. In condition (b) of Theorem 6.6.2, we can take K as a locally finite-
dimensional simplicial complex with cardK.0/ � w.X/. Indeed, if X is finite,
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Fig. 6.15 Extension using Lemma 6.5.1

then X is itself a 0-dimensional simplicial complex. When X is infinite, by
Theorem 4.9.9, each open cover ofX has a locally finite -discrete open refinement
with the locally finite-dimensional nerve. Then, in the proof of (a) ) (b), we
can take W 0 such that W 0 is -discrete and the nerve K of W 0 is locally finite-
dimensional. It follows that

cardK � @0 cardW 0 � @0w.X/ D w.X/:

Corollary 6.6.3. Let f W X ! Y be a map from a paracompact space X to an
ANR Y and U an open cover of Y . Then, each open cover V of X has an open
refinement W with a map  W jN.W/j ! Y such that  ' 'U f for any canonical
map ' W X ! jN.W/j.
Proof. Let U 0 2 cov.Y / be such that stU 0-close maps are U-homotopic. By
Theorem 6.6.2, we have a simplicial complex K with maps ' 0 W Y ! jKj and
 0 W jKj ! Y such that  0' 0 'U 0 idY , hence f 'U 0  0' 0f . Replacing K
with a small subdivision, we may assume that OK 	  0�1.U 0/ (Theorem 4.7.11).
Let W 2 cov.X/ be a common refinement of .' 0f /�1.OK/ and V . Assigning to
each W 2 W D N.W/.0/ a g.W / 2 K.0/ such that W � ' 0�1.OK.g.W ///,
we can obtain a simplicial map g W N.W/ ! K . Thus, we have a map  D
 0g W jN.W/j ! Y . Let ' W X ! jN.W/j be a canonical map, that is,
'�1.ON.W/.W // � W for each W 2 W . For each x 2 X , choose W 2 W
so that x 2 '�1.ON.W/.W //. Then, g'.x/ 2 g.ON.W/.W // � OK.g.W // and
' 0f .x/ 2 ' 0f .W / � OK.g.W //. Since  0.OK/ 	 U 0, it follows that  ' D  0g'
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is U 0-close to  0' 0f . Consequently,  ' is stU 0-close to f , which implies that
 ' 'U f . ut
Remark 10. In Corollary 6.6.3, W can be taken to be locally finite and -discrete
inX and to have a locally finite-dimensional nerveN.W/ (cf. Theorem 4.9.9). If X
is separable, we can take a star-finite countable open refinement W , which has the
locally finite nerveN.W/ (cf. Theorem 4.9.10). When X is compact, we can take a
finite open refinement W .

By Theorem 6.6.2 and Corollary 4.12.4, we have the following corollary:

Corollary 6.6.4. Every ANRX has the homotopy type of a locally finite-dimensional
simplicial complex K with cardK.0/ � w.X/. In particular, every separable ANR
has the homotopy type of a countable locally finite simplicial complex. ut

For every simplicial complex K , we have jKj ' jKjm by Theorem 4.9.6 and
jKjm is an ANR by Theorem 6.2.6. Then, we have the following corollary:

Corollary 6.6.5. A space X has the homotopy type of a simplicial complex if and
only if it has the homotopy type of an ANR. ut

Moreover, by Corollary 4.13.10, we can obtain:

Corollary 6.6.6. Let X and Y be ANRs. Then, every weak homotopy equivalence
f W X ! Y is a homotopy equivalence. ut

A subset A � X is said to be homotopy dense in X if there exists a homotopy
h W X � I! X such that h0 D id and h.X � .0; 1�/ � A. When X is paracompact,
for each open cover U 2 cov.X/, X is U-homotopy dominated by A and A is
U jA-homotopy dominated by X . In fact, we have a lower semi-continuous function
� W X ! .0; 1� defined by

�.x/ D supft 2 I
ˇ
ˇ h.fxg � Œ0; t �/ � U for some U 2 U

�
:

By Theorem 2.7.6, there is a map ˛ W X ! .0; 1� such that ˛.x/ < �.x/ for each
x 2 X . We can define a U-homotopy h˛ W X � I ! X by h˛.x; t/ D h.x; t˛.x//.
Then, h˛1 W X ! A, h˛1 'U idX in X , and h˛1 jA 'U idA in A. Thus, from
Theorem 6.6.2, we have the following corollary:

Corollary 6.6.7. Let X be a metrizable space and A be a homotopy dense subset
of X . Then, X is an ANR if and only if A is an ANR. ut

Evidently, if A � B � X and A is homotopy dense in X , then B is also
homotopy dense in X . For any A � @In, In n A is homotopy dense in In. As is
easily observed, the radial interior rint Q D S

n2NŒ�1 C 2�n; 1 � 2�n�N and the
pseudo-interior .�1; 1/N of the Hilbert cube Q D Œ�1; 1�N are homotopy dense in
Q. By the following proposition, Qf D Œ�1; 1�Nf and .�1; 1/Nf are also homotopy
dense in Q.
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Proposition 6.6.8. Let x0 2 A � X . If A is homotopy dense in X and X is
contractible then the following set AN

f is homotopy dense in XN:

AN

f D
˚
x 2 AN

ˇ
ˇ x.n/ D x0 except for finitely many n 2 N

�
:

Proof. We have a homotopy h W X � I ! X such that h0 D id, ht .X/ � A for
every t > 0, and h1.X/ D fx0g. Indeed, let f W X � I ! X be a contraction and
g W X � I ! X be a homotopy such that g0 D id and gt .X/ � A for every t > 0.
Then, h can be defined by

ht .x/ D
(
g2tf2t .x/ for 0 � t � 1=2,

g2�2t f2�2t .x0/ for 1=2 � t � 1.

Now, we define the homotopy ' W XN � I! XN as follows: '0 D id,

'1.x/ D .x0; x0; x0; : : : /
'2�1 .x/ D .h2�1 .x.1//; x0; x0; : : : /

'2�2 .x/ D .h2�2 .x.1//; h2�1 .x.2//; x0; x0; : : : /

:::

'2�n.x/ D .h2�n .x.1//; h2�nC1 .x.2//; : : : ; h2�1 .x.n//; x0; x0; : : : /

:::

and for 2�n < t < 2�nC1,

't.x/ D .ht .x.1//; : : : ; h2n�2t x.n � 1/; h2n�1t .x.n//; x0; x0; : : : /:

Then, 't.XN/ � AN

f for every t > 0. ut
A space X is said to be homotopically trivial if, for each n 2 N, every map

f W Sn�1 ! X is null-homotopic, that is, f extends over Bn. As is easily observed,
X is homotopically trivial if and only if the map from X to the singleton f0g is a
weak homotopy equivalence.

Proposition 6.6.9. Let K be a simplicial (or cell) complex and L be a subcomplex
of K . If X is homotopically trivial then any map f W jLj ! X extends to a map
Qf W jKj ! X .

Proof. For each n 2 !, let Kn D K.n/ [ L. Then, K D S
n2! Kn. Since X is

homotopically trivial, we can inductively construct maps fn W jKnj ! X , n 2 !, so
that fnjjKn�1j D fn�1, where K�1 D L and f�1 D f . The desired extension Qf is
defined by Qf jjKnj D fn for each n 2 !. ut
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Every contractible space is homotopically trivial. For an ANR X , the converse is
also true. In fact, if X is homotopically trivial, it follows from Corollary 6.6.6 that
X is homotopy equivalent to the singleton f0g, which means that X is contractible.
As a consequence, the following characterization follows from Corollary 6.2.9:

Theorem 6.6.10. A metrizable space is an AR if and only if it is a homotopically
trivial ANR. ut

6.7 Fine Homotopy Equivalences

For an open cover U of a space Y , a map f W X ! Y is called a U-homotopy
equivalence if there is a map g W Y ! X such that gf 'f �1.U/ idX and fg 'U
idY , where g is called a U-homotopy inverse of f . For every simplicial complex
K , id W jKj ! jKjm is an OK -homotopy equivalence (cf. Theorem 4.9.6). We call
f W X ! Y a fine homotopy equivalence if f is a U-homotopy equivalence for
each open cover U of Y . For example, ifX D Y �Z andZ is contractible, then the
projection prY W X ! Y is a fine homotopy equivalence. Note that the image of a
fine homotopy equivalence is dense in its range (or codomain).

Proposition 6.7.1. A subset X of a metrizable space Y is homotopy dense in Y if
and only if the inclusion map X � Y is a fine homotopy equivalence.

Proof. The “only if” part was shown in the arguments before Corollary 6.6.7.
To prove the “if” part, assume that the inclusion map X � Y is a fine homotopy

equivalence and let d 2 Metr.Y /. For each n 2 N, we have a map fn W Y ! X

with 3�n-homotopies '.n/ W Y � I! Y and .n/ W X � I! X such that '.n/0 D idY ,

'
.n/
1 D fn, .n/0 D idX , and .n/1 D fnjX . We can define a homotopy h W Y �I! Y

as follows: h0 D id and for t > 0,

ht D
(
fi'

.iC1/
3�3i t if 3�i 2 � t � 3�iC1,

 
.i/

3i t�1fiC1 if 3�i � t � 3�i 2.

Then, d.ht ; id/ < 2t because

d.ht ; id/ < 3
�i C 3�i�1 < 3�i 2 if 3�i � t � 3�iC1.

Hence, h is continuous at points of Y �f0g. Since h.Y � .0; 1�/ � X , it follows that
X is homotopy dense in Y . ut
Proposition 6.7.2. For each map f W X ! Y , both of the collapsings cf W
M.f /! Y and cf WMf ! Y are fine homotopy equivalences.

Proof. Let j W Y !M.f / be the inclusion map. Then, cf j D idY . The homotopy
hf WM.f /� I!M.f / is a c�1f .U/-homotopy from cf D jcf to idM.f / for every
U 2 cov.Y /. Thus, cf W M.f / ! Y is a fine homotopy equivalence. The same
proof is valid for cf WMf ! Y . ut
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The following has been shown in Theorem 6.5.9 as an additional statement:

Proposition 6.7.3. Let Y be a paracompact space. For each map f W X ! Y , the
natural bijection �f WMf !M.f / is a fine homotopy equivalence. ut

Here, we note the following:

Proposition 6.7.4. Let f W X ! Y be a fine homotopy equivalence and Z be a
paracompact space. Then, a map g W Y ! Z is a fine homotopy equivalence if and
only if gf is a fine homotopy equivalence.

X
f

gf

Y

g

Z

Proof. First, assume that g is a fine homotopy equivalence. For each U 2 cov.Z/,
we have V 2 cov.Z/ such that st2 V 	 U . Then, g has a V-homotopy inverse
g0 W Z ! Y and f has a g�1.V/-homotopy inverse f 0 W Y ! X . We show that
f 0g0 is a U-homotopy inverse of gf . Since g.g�1.V// 	 V , we have gff 0g0 'V
gg0 'V idZ , hence gff 0g0 'U idZ . On the other hand,

f 0g0gf 'f 0.g�1.V// f
0f 'f �1.g�1.V// idX ;

where f 0.g�1.V// 	 f �1.g�1.stV//. Hence, f 0g0gf 'f �1.g�1.U// idX . Thus, gf
is a fine homotopy equivalence.

Next, assume that gf is a fine homotopy equivalence. For each U 2 cov.Z/,
we have V 2 cov.Z/ such that st3 V 	 U . Then, f has a g�1.V/-homotopy inverse
f 0 W Y ! X and gf has a V-homotopy inverse h W Z ! X . Since f hg.g�1.V// 	
f h.V/, we have

f hg 'f h.V/ f hgff 0 'g�1.V/ ff
0 'g�1.V/ idY ;

where f h.V/ 	 g�1.stV/ because gf h.V/ 	 stV . Hence, f hg 'g�1.U/ idY . On
the other hand, gf h 'V idZ . Thus, g is a fine homotopy equivalence. ut

From Theorem 6.6.2, it follows that the range of a fine homotopy equivalence of
an ANR is an ANR if it is metrizable. This extends as follows:

Theorem 6.7.5 (G. KOZLOWSKI). Let f W X ! Y be a map from an ANR X to
a metrizable space Y such that f .X/ is dense in Y and, for each open cover U of
Y , there is a map g W Y ! X with gf 'f �1.U/ idX . Then, f is a fine homotopy
equivalence and Y is an ANR.
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Proof. First, we prove the following two claims:

Claim (1). For a map g W Y ! X , if gf is f �1.U/-close to idX then fg is stU-
close to idY .

For each y 2 Y , choose U1, U2 2 U so that y 2 U1 and fg.y/ 2 U2, i.e.,
y 2 U1 \ .fg/�1.U2/. Since f .X/ is dense in Y , we have an x 2 X such that
f .x/ 2 U1 \ .fg/�1.U2/. Since gf is f �1.U/-close to idX , we have a U3 2 U
such that x, gf .x/ 2 f �1.U3/, i.e., f .x/, fgf .x/ 2 U3. Then, U1 \ U3 6D ; and
U2 \ U3 6D ;. Hence, it follows that y, fg.y/ 2 st.U3;U/.

Claim (2). Each open cover U of Y has an open refinement V such that f �1.V/ is
an h-refinement of f �1.U/.

For an open star-refinement W of U , we have a map g W Y ! X such that
gf 'f �1.W/ idX . By Corollary 6.3.5, f �1.W/ has an h-refinement W 0. Let
V 2 cov.Y / be a common refinement of g�1.W 0/ and U . Then, V is the desired
refinement. Indeed, let k; k0 W Z ! X be f �1.V/-close maps. Then, gf k and
gf k0 are W 0-close, so gf k 'f �1.W/ gf k

0. Since gf 'f �1.W/ idX , it follows that
k 'st f �1.W/ k

0, so k 'f �1.U/ k0.
Now, we will prove the theorem. Because of Theorem 6.6.2, it suffices to show

that f is a fine homotopy equivalence. For each open cover U of Y , Y has an
admissible metric 
 such that fB
.y; 1/ j y 2 Y g 	 U (2.7.7(1)). Using Claim (2)
inductively, we can take Ui 2 cov.Y /, i 2 !, such that

U0
�
 U1

�
 � � � ; meshUn < 2�n�1 and f �1.Un/ 	
h
f �1.Un�1/:

By the condition on f , we have maps gn W Y ! X , n 2 N, such that
gnf 'f �1.UnC2/

idX . Then, fgn is UnC1-close to idY by Claim (1). Since fgn and
fgnC1 are Un-close, that is, gn and gnC1 are f �1.Un/-close, we have an f �1.Un�1/-
homotopy hn W Y � I! X such that hn;0 D gn and hn;1 D gnC1. Let h W Y � I! Y

be the homotopy defined as follows:

h.y; t/ D
(
f hn.y; 2 � 2nt/ if 2�n � t � 2�nC1; n 2 N

y if t D 0:

Then, h is a U-homotopy with h0 D idY and h1 D fg1. Indeed, for each y 2 Y ,

diamh.fyg � I/ D diamh.fyg � .0; 1�/ D diam
[

n2N
f hn.fyg � I/

�
X

n2N
meshUn�1 <

X

n2N
2�n D 1:

Thus, we have fg1 'U idY . Recall g1f 'f �1.U3/ idX . Then, it follows that g1 is a
U-homotopy inverse of f . Consequently, f is a fine homotopy equivalence. ut
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In view of Proposition 6.7.1, Theorem 6.7.5 yields the following:

Corollary 6.7.6. Let X be an ANR that is a dense set in a metrizable space Y .
Suppose that, for each open cover U of Y , there is a map g W Y ! X with gjX 'U
idX in X . Then, X is homotopy dense in Y and Y is an ANR. ut

Using the mapping cylinders, we can characterize fine homotopy equivalences
between ANRs as follows:

Theorem 6.7.7. For a map f W X ! Y between ANRs, the following are
equivalent:

(a) f is a fine homotopy equivalence;
(b) X � .0; 1� is homotopy dense in M.f /;
(c) The natural map qf W X � I!M.f / is a fine homotopy equivalence.

Proof. Because of Proposition 6.7.1, condition (b) means that the inclusion X �
.0; 1� � M.f / is a fine homotopy equivalence. The equivalence (b), (c) follows
from Proposition 6.7.4.

X � .0; 1� � X � I

qf

M.f /

\

(c) ) (a): Since the projection prX W X � I ! X and the collapsing cf W
M.f / ! Y are fine homotopy equivalences (Proposition 6.7.2), we can apply
Proposition 6.7.4 to see that if the natural map qf W X � I ! M.f / is a fine
homotopy equivalence, then f W X ! Y is a fine homotopy equivalence.

X � I
qf

prX

M.f /

cf

X
f

Y

(a)) (b): Due to Corollary 6.7.6, for each open cover U of M.f /, it suffices to
construct a map k WM.f /! X � .0; 1� such that kjX � .0; 1� is U-homotopic to id
inX � .0; 1�. By Lemma 6.5.8, we have an open cover V with a map ˛ W Y ! .0; 1/

such that, for each V 2 V ,

V [ .f �1.V / � .0; sup˛.V /�/
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is contained in some member of U . Then, there exist a map g W Y ! X and an
f �1.V/-homotopy h W X � I ! X such that h0 D idX and h1 D gf . We define a
map k WM.f /! X � .0; 1� as follows:

k.x; s/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.x; s/ if x 2 X and s � f̨ .x/,

.h.x; .2 f̨ .x/ � 2s/= f̨ .x//; s/
if x 2 X and f̨ .x/=2 � s � f̨ .x/,

.gf .x/; f̨ .x/=2/ if x 2 X and s � f̨ .x/=2,

and k.y/ D .g.y/; f̨g.y/=2/ for y 2 Y . Then, kjX � .0; 1� is U-homotopic to id
in X � .0; 1� by the homotopy ' W X � .0; 1� � I! X � .0; 1� defined as follows4:

't.x; s/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

.x; s/ if x 2 X and s � f̨ .x/,

.h.x; t.2 f̨ .x/ � 2s/= f̨ .x//; s/
if x 2 X and f̨ .x/=2 � s � f̨ .x/,

.ht .x/; .1 � t/s C t f̨ .x/=2/
if x 2 X and s � f̨ .x/=2.

This completes the proof. ut
Remark 11. In Theorem 6.7.7, the implications (b) , (c) ) (a) hold for any
metrizable spaces X and Y . In fact, for a map f W X ! Y between metrizable
spaces, the following are equivalent:

(a) For each open cover U of Y , there is a map g W Y ! X such that gf 'f �1.U/
idX ;

(b) For each open cover U of M.f /, there is a map g W M.f / ! X � .0; 1� such
that gjX � .0; 1� 'U id in X � .0; 1�;

(c) For each open cover U of M.f /, there is a map g W M.f / ! X � I such that
gqf 'q�1

f .U/ idX�I.

It should be remarked that if X is an ANR then condition (a) above implies that f
is a fine homotopy equivalence and that Y is also an ANR by Theorem 6.7.5.

Regarding the inverse limit of an inverse sequence of ANRs, we have the
following theorem:

Theorem 6.7.8. Let X D lim �.Xi ; 'i / be the inverse limit of an inverse sequence
.Xi ; 'i /i2N of completely metrizable ANRs such that each bonding map 'i W
XiC1 ! Xi is a fine homotopy equivalence. Then, X is an ANR. Moreover, if X1 is
an AR (so every Xi is an AR), then X is an AR.

4It is not required that k 'U id inM.f /.
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Proof. Let f W A ! X be a map from a closed set A in a metrizable space Y . For
each i 2 N, let pi W X ! Xi be the inverse limit projection. Take an admissible
complete metric di forXi and choose Ui 2 cov.Xi/ so that meshdj 'j;i .Ui / < 2�i�1
for each j � i , where 'i;i D id and 'j;i D 'j'jC1 � � �'i�1 W Xi ! Xj for j < i .
Since 'i is a fine homotopy inverse, it has a Ui -homotopy inverse  i W Xi ! XiC1.

Now, since X1 is an ANR, the map p1f extends to a map f1 W U ! X1 of a
neighborhoodU of A in Y . By induction, we can obtain maps fi W U ! Xi , i 2 N,
such that fi jA D pif and dj .'j;ifi ; 'j;iC1fiC1/ < 2�i for each j � i . Indeed,
suppose that fi has been obtained. Then,

piC1f ''�1
i .Ui /  i'ipiC1f D  ipif D  ifi jA:

By the Homotopy Extension Theorem 6.4.1, piC1f extends to a map fiC1 W U !
XiC1 that is '�1i .Ui /-homotopic to  ifi , hence 'iC1fiC1 is stUi -close to fi , which
implies that dj .'j;iC1fiC1; 'j;i fi / < 2�i .

For each j 2 N, since dj is complete, we have a map Qfj D limi!1 'j;ifi W
U ! Xj . Then, it follows that

'j QfjC1 D 'j
�

limi!1 'jC1;ifi
� D lim

i!1'j;ifi D Qfj :

Therefore, we have a map Qf W U ! X such that pj Qf D Qfj for every j 2 N. Since
pj Qf jA D Qfj jA D pj f for every j 2 N, it follows that Qf jA D f .

If X1 is an AR, we can take U D X1 in the above. Then, f extends over Y . ut
Remark 12. In Theorem 6.7.8, it suffices to require of each bonding map 'i the
condition that for any Ui 2 cov.Xi /, there is a map  i W Xi ! XiC1 such that
 i'i ''�1

i .Ui / idXiC1
and 'i i is Ui -close to idXi . In this case, since 'i.XiC1/

is dense in Xi , the map 'i W XiC1 ! Xi is a fine homotopy equivalence by
Theorem 6.7.5.

6.8 Completions of ANRs and Uniform ANRs

For a metric space X D .X; d/, a sequence U D .Un/n2N of open covers of X is
called a zero-sequence if limn!1meshUn D 0. For a zero-sequence U , we define
the telescope Tel.U/ as follows:

Tel.U/ D
[

n2N
N.Un [ UnC1/;

where N.Un [ UnC1/ is the nerve of Un [ UnC1 and we regard Un \ Um D ; for
n 6D m as the sets of vertices of the nerves. The following characterization of ANRs
is due to Nguyen To Nhu:
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Theorem 6.8.1 (NGUYEN TO NHU). A metric space X D .X; d/ is an ANR if
and only if X has a zero-sequence U D .Un/n2N of open covers with a map f W
jTel.U/j ! X satisfying the following conditions:

(i) f .U / 2 U for each U 2Sn2N Un D Tel.U/.0/;
(ii) limn!1meshff ./ j  2 N.Un [ UnC1/g D 0.

Proof. To prove the “only if” part, by the Arens–Eells Embedding Theorem 6.2.1,
we may assume that X is a neighborhood retract of a normed linear space E . Let
r W W ! X be a retraction of an open neighborhoodW ofX inE ontoX . For each
n 2 N, let Vn be a collection of open convex sets in E such that X � S

Vn � W
and mesh r.Vn/ < 2�n. Then, we have a zero-sequence U D .Un/n2N of open
covers of X such that stUn 	 Vn and UnC1 	 Un. Choosing f0.U / 2 U for each
U 2 S

n2N Un D Tel.U/.0/, we have a map f0 W Tel.U/.0/ ! X � E , which
extends to a map f W jTel.U/j ! E such that f j is affine on each simplex
 2 Tel.U/. For each  2 Tel.U/, we have n./ 2 N and U 2 .0/ such that
 2 N.Un./ [ Un./C1/ and U 2 Un./. Since Un./C1 	 Un./, it follows that
f0.

.0// � st.U;Un.//, which is contained in some V 2 Vn./. By the convexity
of V , f ./ � V 2 Vn./. Hence, f .jTel.U/j/ � W . Thus, we have the map
rf W jTel.U/j ! X , which satisfies condition (i) because rf is an extension of f0.
For each  2 Tel.U/, diam rf ./ � mesh r.Vn.// < 2�n./, which means that rf
satisfies condition (ii).

To prove the “if” part, let U D .Un/n2N be a zero-sequence of open covers of X
and f W jTel.U/j ! X be a map satisfying conditions (i) and (ii). For each n 2 N,
let 'n W X ! jN.Un/j be a canonical map. For each x 2 X , let n;x be the simplex
ofN.Un[UnC1/ spanned by vertices of the carrier of 'n.x/ inN.Un/ and the carrier
of 'nC1.x/ in N.UnC1/. Then, 'n.x/; 'nC1.x/ 2 n;x . Thus, we have a homotopy
gn W X � I! jN.Un [ UnC1/j such that

gn0 D 'n; gn1 D 'nC1 and gn.fxg � I/ � n;x for each x 2 X .

Then, each fgnt is ˛n-close to id, where

˛n D sup
i�n

meshUi Cmesh
˚
f ./

ˇ
ˇ  2 N.Ui [ UiC1/

�
:

Indeed, each x 2 X is contained in some U 2 Un \ .0/n;x and f .U / 2 U , hence

d.x; fgn.x; t// � d.x; f .U //C d.f .U /; fgn.x; t//
� diamU C diamf .n;x/

� meshUn C diamf .n;x/ � ˛n:

Thus, we can define a homotopy h W X � I! X as follows:
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h.x; t/ D
(
fgn.x; 2 � 2nt/ if 2�n � t � 2�nC1; n 2 N;

x if t D 0:

Observe that h0 D id, h2�nC1 D f 'n, and diamh.fxg � Œ0; 2�nC1�/ � 2˛n for each
x 2 X . Hence, f 'n is 2˛n-homotopic to id, which implies that X is 2˛n-homotopy
dominated by N.Un/. Since limn!1 ˛n D 0, X is an ANR by Theorem 6.6.2. ut
Remark 13. In Theorem 6.8.1, if f .jTel.U/j/ is contained in some A � X , then
the homotopy h in the proof above satisfies h.X�.0; 1�/ � A, henceA is homotopy
dense in X .

Corollary 6.8.2. LetX be a subset of a metric spaceM D .M; d/. IfX is an ANR,
then X is homotopy dense in some Gı-set Y in M , hence Y is also an ANR.

Proof. By Theorem 6.8.1,X has a zero-sequenceU D .Un/n2N of open covers with
a map f W jTel.U/j ! X satisfying conditions (i) and (ii) in Theorem 6.8.1. Using
the operator E as in Lemma 6.1.3 to extend open sets in X to open sets in M , we
define

Y D clM X \
\

n2N

[

U2Un
E.U /:

Then, Y is a Gı-set in M and X � Y � clM X . For each n 2 N, let

eUn D fY \E.U / j U 2 Ung 2 cov.Y /:

Then, eU D .eUn/n2N is a zero-sequence because mesheUn D meshUn ! 0 (as
n!1). Observe Tel.eU/ � Tel.U/ by the correspondence Y \E.U /$ U . Then,
the map f W jTel.eU/j ! X � Y satisfies conditions (i) and (ii) in Theorem 6.8.1.
By the above remark, we have the result. ut

Since every metrizable space X can be embedded into a completely metrizable
space M (e.g., the metric completion of X for some admissible metric), Corol-
lary 6.8.2 yields:

Corollary 6.8.3. Every ANR is contained in a completely metrizable ANR as a
homotopy dense subset. ut

Let X D .X; d/ and Y D .Y; 
/ be metric spaces and A be a closed set in
X . A map f W X ! Y is said to be uniformly continuous at A if, for each
" > 0, there is a ı > 0 such that for each x 2 X and a 2 A, d.x; a/ < ı implies

.f .x/; f .a// < ".5 We call A a uniform retract of X if there is a retraction
r W X ! A that is uniformly continuous at A. A uniform neighborhood of A in
X is a subset U of X with dist.A;X n U / > 0, that is, there is a ı > 0 such that
B.a; ı/ � U for all a 2 A. We call A a uniform neighborhood retract of X if A

5We do not use the preposition “on” but “at” here. When we say that f W X ! Y is uniformly
continuous on A, it means that f jA is uniformly continuous.
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is a uniform retract of a uniform neighborhood of A in X . It is easy to see that every
compact (neighborhood) retract of X is a uniform (neighborhood) retract. Observe
that the following closed set in the Euclidean plane R2 is homeomorphic to the real
line R but is not a uniform (neighborhood) retract of R2:

˚
.x; y/ 2 R

2
ˇ
ˇ y D x�1; x � 1�[ �f1g � I

� [ �Œ1;1/ � f0g�:

A metric space X is called a uniform AR (a uniform ANR) if X is a uniform
retract (a uniform neighborhood retract) of an arbitrary metric space that contains
X as a closed metric subspace (i.e., the inclusion of X is an isometrically closed
embedding). A metric space Y is called a uniform AE (a uniform ANE) if for
any closed set A in an arbitrary metric space X , any uniformly continuous map
f W A ! Y extends to a map Qf W X ! Y (a map Qf W U ! Y of a uniform
neighborhood ofA inX ) that is uniformly continuous atA. It should be noted that a
metric space uniformly homeomorphic to a uniform AE (or a uniform ANE) is also
a uniform AE (or a uniform ANE). Like ANRs and ANEs, we have the following
theorem:

Theorem 6.8.4. A metric space X is a uniform AR (resp. a uniform ANR) if and
only if X is a uniform AE (resp. a uniform ANE).

Proof. The “if” part is trivial. We prove the “only if” part for the case where X is a
uniform ANR. By the Arens–Eells Embedding Theorem 6.2.1, we may assume that
X is a closed set in a normed linear space E D .E; k � k/. Then, there is a uniform
retraction r W G ! X of a uniform neighborhoodG of X in E . It is easy to prove
the following:

./ For each " > 0, there exists a �."/ > 0 such that if S � X and diamS � �."/
then hSi � G and diam r.hSi/ < ".

Let Y D .Y; d/ be a metric space and f W A ! X be a uniformly continuous
map from a closed set A in Y . For each " > 0, we have ˇ."/ > 0 such that for any
a; a0 2 A, d.a; a0/ < ˇ."/ implies kf .a/ � f .a0/k < ". For each a 2 A, let

Va D
˚
y 2 Y n A ˇˇ d.y; a/ < 2d.y;A/�:

Then, Y n A has a locally finite partition of unity .�a/a2A subordinated to the open
cover fVa j a 2 Ag. For each " > 0, we define ı."/ D 1

3
ˇ. 1

2
�."// > 0 and

U D ˚y 2 Y ˇ
ˇ d.y;A/ < ı.1/

�
:

Then, U is a uniform neighborhood of A in Y . We extend f to Qf W U ! X by

Qf .y/ D
(
f .y/ if y 2 A;
r
�P

a2A �a.y/f .a/
�

if y 2 U n A:
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Then, Qf is well-defined and uniformly continuous at A. Indeed, let y 2 U n A,
a 2 A, and d.y; a/ < ı."/. If �a0.y/ 6D 0 then d.y; a0/ < 2d.y;A/ < 2ı."/, so
d.a; a0/ < ˇ.1

2
�."//, which implies kf .a/ � f .a0/k < 1

2
�."/. Thus,

diam
�ff .a0/ j �a0.y/ 6D 0g [ ff .a/g� � �."/:

When " D 1,
P

a02A �a0.y/f .a0/ 2 G by (), which shows the well-definedness
of Qf . Since Qf .y/ D r

�P
a02A �a0.y/f .a0/

�
, we have k Qf .y/ � f .a/k < " by (),

hence Qf is uniformly continuous at A.
If X is a uniform AR, we can take G D E in the above. Then, Qf can be defined

over Y , which means that X is a uniform AE. ut
Remark 14. The above proof is also valid even if X is a closed set in a convex set
C in E and G is a neighborhood of X in C . Moreover, in the case where E is not a
normed linear space, if condition () is satisfied, then the proof can be carried out.

If X itself is a convex set in a locally convex metric linear space E , let
G D C D X and r D id in the above remark. Condition () is satisfied with
respect to the linear metric for E .6 Indeed, by the local convexity of E , each 1

2
"-

neighborhood of 0 2 E contains a convex neighborhood of 0, which contains some
�."/-neighborhood of 0. If S � X with diamS < �."/, then hSi � C D X and
diamhSi < ". Thus, we have the following theorem:

Corollary 6.8.5. Every convex set in a locally convex metric linear space is a
uniform AE, and is hence a uniform AR. ut

According to Corollary 6.3.5, every open cover U of an ANR X has an h-
refinement V , that is, any two V-close maps intoX are U-homotopic. The following
is a uniform version of this:

Theorem 6.8.6. Let X be a uniform ANR. Then, for each " > 0, there is ı > 0 such
that any two ı-close maps of an arbitrary space to X are "-homotopic.

Proof. By the Arens–Eells Embedding Theorem 6.2.1, we can consider X as a
closed set in a normed linear space E D .E; k � k/. Since X is a uniform ANR,
X has a uniform neighborhood U with a retraction r W U ! X that is uniformly
continuous at X . For each " > 0, we have ı > 0 such that ı < dist.X;E n U / and,
for each x 2 X and y 2 U , d.x; y/ < ı implies kx � r.y/k < "=2. Then, any
two ı-close maps f; g W Y ! X are "-homotopic by the homotopy h W Y � I! X

defined as follows:

h.y; t/ D r..1 � t/f .y/C tg.y//: ut

The following is a variant of Theorem 6.6.10.

6The linear metric can be replaced by any admissible invariant metric.
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Theorem 6.8.7. A uniform ANR is a uniform AR if and only if it is homotopically
trivial.

Proof. If a uniform ANR X is homotopically trivial, then X is an AR by
Theorem 6.6.10. Let Y D .Y; d/ be a metric space and f W A ! X be a
uniformly continuous map from a closed set A in Y . Since X is a uniform ANE by
Theorem 6.8.4, f extends to a map Qf W U ! X of a uniform open neighborhood
U in Y that is uniformly continuous at A. Choose a uniform neighborhood V of A
in Y so that clV � U . Since X is an AE, Qf j clV extends to a map Nf W Y ! X .
Obviously, Nf is uniformly continuous at A. Therefore,X is a uniform AE, hence it
is a uniform AR by Theorem 6.8.4. ut

When several metric spaces with common points appear, we denote by BX.x; r/
the open ball in the space X (centered at x with radius r).

Lemma 6.8.8. A uniform ANR X is homotopy dense in every metric space Z that
containsX isometrically as a dense subset.

Proof. In the proof of the “only if” part of Theorem 6.8.1, since the retraction r W
W ! X can be assumed to be a retraction of a uniform open neighborhoodW ofX
in a normed linear spaceE that is uniformly continuous atX , we can take ı1 > ı2 >
� � � > 0 so that limn!1 ın D 0, BE.x; ın/ � W , and diam r.BE.x; ın// < 2�n for
every x 2 X and n 2 N. Let Vn D fBE.x; ın/ j x 2 Xg and Un D fBX.x; ın=3/ j
x 2 Xg. Then, U D .Un/n2N is a zero-sequence of open covers of X . Observe
that stUn 	 Vn and UnC1 	 Un. Take any map f0 W Tel.U/.0/ ! X such that
f0.U / 2 U . Similar to the proof of Theorem 6.8.1, we can extend f0 to a map f
satisfying conditions (i) and (ii) in Theorem 6.8.1.

For each n 2 N, let QUn D fBZ.x; ın=3/ j x 2 Xg. Then, QU D . QUn/n2N is a
zero-sequence of open covers of Z. By the same argument as in Corollary 6.8.2, we
can show that X is homotopy dense in Z. ut
Theorem 6.8.9. For a metric space X , the following are equivalent:

(a) X is a uniform ANR;
(b) Every metric spaceZ containingX isometrically as a dense subset is a uniform

ANR and X is homotopy dense in Z;
(c) X is isometrically embedded in some uniform ANR Z as a homotopy dense

subset.

Proof. The implications (a)) (c) and (b)) (a) are obvious by considering ZDX .
(a)) (b): LetZ be a metric space containingX isometrically as a dense subset.

Then, X is homotopy dense in Z by Lemma 6.8.8. To prove that Z is a uniform
ANR, assume thatZ is a closed set in a metric space Y . Let Y 0 D Y n.ZnX/. Since
X is a closed set in Y 0, there is a retraction r W U ! X of a uniform neighborhood
U of X in Y 0 that is uniformly continuous at X . Then, V D U [ Z is a uniform
neighborhood of Z in Y . We extend r to Qr W V ! Z by Qr jZ n X D id. It is easy to
see that Qr is uniformly continuous at Z. Hence, Z is a uniform ANR.
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0
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Fig. 6.16 The homeomorphism '

(c) ) (a): Let Y D .Y; d/ be a metric space and f W A ! X be a
uniformly continuous map from a closed set A in Y . Since Z is a uniform ANE by
Theorem 6.8.4, f extends to a map Qf W U ! Z of a uniform open neighborhoodU
ofA in Y that is uniformly continuous at A, where we may assume that d.y;A/ � 1
for all y 2 U . On the other hand, we have a homotopy h W Z � I ! Z such that
h0 D id and ht .Z/ � X for all t > 0. Pushing the image of Qf into X by this
homotopy, we can define a map U 3 y 7! h. Qf .y/; d.y;A// 2 X extending f .
Unfortunately, in general, this is not uniformly continuous atA, so we need to adjust
the homotopy h.

It is easy to construct maps ˛n W Z ! .0; 1/, n 2 N, such that ˛nC1.z/ < ˛n.z/
(� 2�n) and diamh.fzg � Œ0; ˛n.z/�/ < 2�n. There exists a homeomorphism ' W
Z � I! Z � I such that prZ' D prZ , 'jZ � f0; 1g D id, and

'.z; 2�n/ D .z; ˛n.z// for each z 2 Z and n 2 N.

See Fig. 6.16. Then, it follows that d.z; h'.z; t// < 2�n if t < 2�n. We define an
extension f 0 W U ! X of f by f 0.y/ D h'. Qf .y/; d.y;A// for each y 2 U . For
each " > 0, choose n 2 N so that 2�nC1 < ". Since Qf is uniformly continuous at
A, we have 0 < ı < 2�n such that if y 2 U , a 2 A, and d.y; a/ < ı (< 2�n), then
d. Qf .y/; f .a// < 2�n, resulting in

d.f 0.y/; f .a// � d.h'. Qf .y/; d.y;A//; Qf .y//C d. Qf .y/; f .a//
< 2�n C 2�n D 2�nC1 < ":

Therefore, f 0 is also uniformly continuous at A. Thus, X is a uniform ANE, hence
a uniform ANR by Theorem 6.8.4. ut

By Theorem 6.8.9 (combined with Theorem 6.8.7), we have the following
corollary, which shows an advantage of the concepts of uniform ARs and uniform
ANRs.
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Corollary 6.8.10. A metric space X is a uniform ANR (resp. a uniform AR) if and
only if the metric completion QX of X is a uniform ANR (resp. a uniform AR) and X
is homotopy dense in QX . ut

Regarding admissible metrics on ANRs, we prove the following theorem:

Theorem 6.8.11. For any admissible metric d on an AR (resp. ANR) X , X has an
admissible metric 
 � d such that .X; 
/ is a uniform AR (resp. uniform ANR),
where if d is bounded then so is 
.

Proof. Since an AR is a contractible ANR (Corollary 6.2.9), by Theorem 6.8.7, it
is enough to prove the case where X is an ANR. By the Arens–Eells Embedding
Theorem 6.2.1, we may assume that X is a neighborhood retract of a normed
linear space E , i.e., there is a retraction r W G ! X of a neighborhood G of X
in E . Then, as noted in Remark 14 on the proof of Theorem 6.8.4, it suffices to
construct an admissible metric 
 � d on X that satisfies condition () in the proof
of Theorem 6.8.4.

By induction, we will construct admissible metrics 
i , i 2 N, for X such that,
for each n 2 N and A � X ,

diam
i A � 2�n) hAi � G; diam
i�1 r.hAi/ � n�12�n;
where 
0 D d . Assume 
i�1 has been defined. By the continuity of r , X has open
covers U in, n 2 N, such that

hU i � G and diam
i�1 r.hU i/ � n�12�n for each U 2 U in.

Then, X has admissible metrics d in, n 2 N, such that fBd in .x; 1/ j x 2 Xg 	 U in (cf.
2.7.7(1)). We now define 
i as follows:


i .x; y/ D
1X

nD1
min

˚
d in.x; y/; 2

�n�:

It is easy to prove that 
i is an admissible metric for X . Since 
i .x; y/ � 2�n
implies d in.x; y/ � 2�n, it follows that A � X with diam
i A � 2�n is contained in
some U 2 U in. Then, 
i satisfies the condition.

Now, we define a metric on X as follows:


.x; y/ D 
0.x; y/C
1X

iD1
min

˚

i .x; y/; 2

�iC1�:

It is easy to see that 
 is an admissible metric forX and, if d D 
0 is bounded, then
so is 
. Let A � X such that diam
 A � 1

2
. Since diam
1 A � 1

2
, hAi � G. Choose

n 2 N so that 2�n�1 < diam
 A � 2�n. Since diam
i A � 2�n for each i � n,
diam
i r.hAi/ � n�12�n for each i < n. Hence,

diam
 r.hAi/ � 2�n C
X

i�n
2�iC1 D 10 � 2�n�1 < 10 diam
 A:

Then, 
 satisfies condition (). ut
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6.9 Homotopy Types of Open Sets in ANRs

In this section, we will prove the following characterization of ANRs:

Theorem 6.9.1 (CAUTY). A metrizable space X is an ANR if and only if every
open set in X has the homotopy type of an ANR, i.e., the homotopy type of a
simplicial complex (cf. Corollary 6.6.5).

To prove the “if” part of this theorem, we use the mapping cylinders and the
mapping telescopes discussed in Sect. 6.5. For maps fi W Xi ! Xi�1, i D 1; : : : ; n,
we regard

M.f1; : : : ; fn/ D X0 [ X1 � .0; 1�[ � � � [ Xn � .n � 1; n�;

whereM.fi/ is identified with Xi�1�fi � 1g[Xi � .i � 1; i � by reparameterizing.
The following fact states in detail Corollary 6.5.11.

Fact 1. For maps f W X ! Y and g W Y ! Z, let ' W M.g; f / ! M.gf / and
 WM.gf /!M.g; f / be the maps defined as follows: 'jZ D  jZ D idZ ,

'.x; s/ D
(
.x; s � 1/ for .x; s/ 2 X � .1; 2�;
g.x/ for .x; s/ 2 Y � .0; 1�I

 .x; s/ D
(
.x; 2s/ for .x; s/ 2 X � . 1

2
; 1�;

.f .x/; 2s/ for .x; s/ 2 X � .0; 1
2
�:

Then,  ' ' id rel. Z˚X � f2g and ' ' id rel. Z˚X � f1g by the homotopies
� W M.g; f / � I ! M.g; f / and � W M.gf / � I ! M.gf / defined as follows:
�t jZ D �t jZ D id and

�t .x; s/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�
x;
2.s � t/
2 � t

�
for .x; s/ 2 X � .1C 1

2
t; 2�;

.f .x/; 2s � 1 � t/ for .x; s/ 2 X � .1; 1C 1
2
t �;

.x; s � t/ for .x; s/ 2 Y � .t; 1�;
g.x/ for .x; s/ 2 Y � .0; t �I

�t .x; s/ D
8
<

:

�
x;
2s � t
2 � t

�
for .x; s/ 2 X � . 1

2
t; 1�;

gf .x/ for .x; s/ 2 X � .0; 1
2
t �:

Then, we can state

(1) �t .fxg � .1; 2�/ � ff .x/g � .0; 1�[ fxg � .1; 2� for x 2 X and t 2 I;
(2) �t .fyg � .0; 1�/ � fg.y/g [ fyg � .0; 1� for y 2 Y and t 2 I;
(3) �t .fxg � .0; 1�/ � fgf .x/g [ fxg � .0; 1� for x 2 X and t 2 I.
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We can now also state the following fact:

Fact 2. Let f W X ! Y , g W Y ! X be maps and h W X � I ! X be a
homotopy such that h0 D id and h1 D gf . Define maps Qf W X � I ! M.f /,
Qg WM.f /! X � I, Nf W X � I!M.g/, and Ng WM.g/! X � I as follows:

Qf .x; t/ D
(
.x; t/ for t > 0,

f .x/ for t D 0,

�
i.e., Qf D qf jX � I

�I
8
ˆ̂
<

ˆ̂
:

Qg.x; s/ D
(
.h2�2s.x/; s/ for .x; s/ 2 X � . 1

2
; 1�,

.gf .x/; s/ for .x; s/ 2 X � .0; 1
2
�,

Qg.y/ D .g.y/; 0/ for y 2 Y ;

Nf .x; s/ D
(
.f .x/; 2s � 1/ for .x; s/ 2 X � . 1

2
; 1�,

h2s.x/ for .x; s/ 2 X � Œ0; 1
2
�;

(
Ng.y; s/ D .g.y/; s/ for .y; s/ 2 Y � .0; 1�,
Ng.x/ D .x; 0/ for x 2 X .

Furthermore, define the homotopies Qh; Nh W X � I � I! X � I as follows:

Qht .x; s/ D
(
.h.2�2s/t .x/; s/ for .x; s; t/ 2 X � . 1

2
; 1� � I,

.ht .x/; s/ for .x; s; t/ 2 X � Œ0; 1
2
� � I;

Nht .x; s/ D
(
.ht .x/; .1C t/s � t/ for .x; s; t/ 2 X � . 1

2
; 1� � I,

.h2st .x/; .1 � t/s/ for .x; s; t/ 2 X � Œ0; 1
2
� � I.

Then,

(1) Qh0 D id and Qh1 D Qg Qf ;
(2) Qf jX � f1g D QgjX � f1g D id and Qht jX � f1g D id for every t 2 I;
(3) Qht .x; 0/ D .ht .x/; 0/ for each x 2 X and t 2 I;
(4) Qh.f.x; s/g � I/ � h.fxg � I/ � fsg for each .x; s/ 2 X � I;
(5) Qg.ff .x/g [ fxg � .0; 1�/ � h.fxg � I/ � I for each x 2 X ;
(6) Nh0 D id and Nh1 D Ng Nf ;
(7) Nht jX � f0g D id for every t 2 I;
(8) Nht .x; 1/ D .ht .x/; 1/ for each x 2 X and t 2 I;
(9) Nh.fxg � I � I/ � h.fxg � I/ � I for each x 2 X ;

(10) Ng.fg.y/g [ fyg � .0; 1�/ � fg.y/g � I for each y 2 Y .

Remark 15. We can define Qg WM.f /! X � I as follows:

(
Qg.x; s/ D .h1�s.x/; s/ for .x; s/ 2 X � .0; 1�,
Qg.y/ D .g.y/; 0/ for y 2 Y .
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This definition is natural, but the continuity of Qg is not guaranteed because of the
topology of M.f /.

The following is the key lemma for Theorem 6.9.1.

Lemma 6.9.2. Suppose that X is a metrizable space such that each open set in
X has the homotopy type of some ANR. Let Y0 be an ANR, X0 be a closed set in
X , W0 be an open set in X with X0 � W0, V0 be an open cover of W0, and let
f0 W W0 ! Y0, g0 W Y0 ! W0 be maps and h0 W W0 � I ! W0 be a V0-homotopy
such that h00 D id and h01 D g0f0. Given a discrete open collection W in X , let
W1 DSW and

V D V0 [W [ ˚V [W ˇ
ˇ V 2 V0; W 2W ŒV �

�
:

Then, there exists an ANR Y such that Y contains Y0 as a closed set, f0jX0 and g0
extend to maps Qf W W0 [W1 ! Y and Qg W Y ! W0 [W1, respectively, and there
is a V-homotopy Qh W .W0 [W1/ � I! W0 [W1 such that Qh0 D id, Qh1 D Qg Qf , and
QhjX0 � I D h0jX0 � I.

Proof. Choose a closed neighborhood N of X0 in X so that N � W0, and let
˛ W W0 [ W1 ! Œ0; 1� be an Urysohn map with ˛.N [ .W0 n W1// D 0 and
˛.W1 nW0/ D 1. We define

S D W0 � Œ0; 16 � [ .W0 \W1/ � Œ 16 ; 56 � [W1 � Œ 56 ; 1� � X � I

and an embedding j W W0 [W1 ! S by j.x/ D .x; ˛.x//. Let r D prX jS W S !
W0 [W1. Then, rj D id and j.N [ .W0 nW1// � W0 � f0g.

By the hypothesis, there are ANRs Y1, Y� and homotopy equivalences f1 W W1 !
Y1, f� W W0 \W1 ! Y� with homotopy inverses g1 and g�, respectively. Since W
is discrete, Y1 and Y� can be written as Y1 DL

W 2W Y W1 , Y� DL
W 2W Y W� , and

f W
1 D f1jW W W ! Y W1 , f W� D f�jW0 \ W W W0 \ W ! Y W� are homotopy

equivalences with gW1 D g1jY W1 W Y W1 ! W , gW� D g�jY W� W Y W� ! W0 \ W
homotopy inverses, respectively. Let

Y D M.f0g�/ [Y
�

�f1gM.f1g�/:

Then, Y is an ANR by Corollary 6.5.6 with 6.2.10(5). By identifying Y0 D Y0 �
f0g �M.f0g�/, Y contains Y0 as a closed set. We will construct maps f W S ! Y ,
g W Y ! S and an r�1.V/-homotopy h W S � I! S such that h0 D id, h1 D gf ,
f .x; 0/ D f0.x/ for each x 2 W0, g.y/ D .g0.y/; 0/ for each y 2 Y0, and

ht .x; 0/ D
(
.h01.x/; 0/ for x 2 W0 and 1

2
� t � 1,

.h02t .x/; 0/ for x 2 W0 and 0 � t � 1
2
.
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Fig. 6.17 The maps f 0 and g0

Then, the maps Qf D fj and Qg D rg are the desired ones and the V-homotopy Qh is
defined as follows:

Qht .x/ D rh.1Cˇ.x//�1t j.x/ D rh.1Cˇ.x//�1t .x; ˛.x//;

where ˇ W W0 [ W1 ! I is an Urysohn map with ˇ..W0 [ W1/ n N/ D 0 and
ˇ.X0/ D 1. Indeed, Qf .x/ D f .x; 0/ D f0.x/ for x 2 X0, Qg.y/ D rg.y/ D g0.y/

for y 2 Y0 and Qht .x/ D rh2�1t .x; 0/ D h0t .x/ for .x; t/ 2 X0 � I. For every
x 2 W0 [ W1, Qh0.x/ D rh0.x; ˛.x// D x. If x 62 N , then Qh1.x/ D rh1j.x/ D
rgfj.x/ D Qg Qf .x/. When x 2 N , since .1C ˇ.x//�1 � 1

2
, it follows that

Qh1.x/ D rh.1Cˇ.x//�1.x; 0/ D h01.x/ D g0f0.x/ D Qg Qf .x/:

For i D 0; 1, let ji W W0 \W1 ! Wi be the inclusion. We define

T DM.f0; j0; g�/[Y
�

�f3gM.f1; j1; g�/:

Using Fact 2, we can obtain maps f 0 W S ! T , g0 W T ! S and a homotopy
h0 W S�I! S such that h00 D id, h01 D g0f 0, h0t .x; 0/ D .h0t .x/; 0/ for each x 2 W0

and t 2 I (cf. Fig. 6.17). The following are consequences of the construction:
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(1) h0t j.W0 \W1/ �
�
Œ 1
6
; 1
3
� [ Œ 2

3
; 5
6
�
� D id for each t 2 I;

(2) Each h0t preserves components of .W0 \W1/ � Œ 13 ; 12 �, .W0 \W1/ � Œ 12 ; 23 �, and
W1 � Œ 56 ; 1�;

(3) h0.fxg � Œ0; 1
6
� � I/ � h0.fxg � I/ � Œ0; 1

6
� for each x 2 W0;

(4) g0.fg�.y/g� .0; 2�[fyg� .2; 3�/ � h0.fg�.y/g� I� .0; 1�[fg�.y/g� .1; 3�/
for each y 2 Y�;

(5) g0.ff0.x/g � f0g [ fxg � .0; 2�/ � h0.fxg � I/ � I [ fxg � .1; 2� for each
x 2 W0 \W1;

(6) g0.ff0.x/g � f0g [ fxg � .0; 1�/ � h0.fxg � I/ � I for each x 2 W0.

Now, we can use Fact 1 to obtain maps f 00 W T ! Y , g00 W Y ! T and a
homotopy h00 W T � I! T such that h000 D id and h001 D g00f 00. Then, the following
statements hold:

(7) h00t jY0 � f0g ˚ Y� � f3g ˚ Y1 � f0g D id for each t 2 I;
(8) Each h00t preserves components of M.f1; j1; g�/;
(9) h00.fyg � .2; 3� � I/ � fg�.y/g � .0; 2�[ fyg � .2; 3� for y 2 Y�;

(10) h00.fxg � .0; 2� � I/ � ff0.x/g � f0g [ fxg � .0; 2� for x 2 W0 \W1;
(11) h00.fxg � .0; 1� � I/ � ff0.x/g � f0g [ fxg � .0; 1� for x 2 W0.

Thus, we have the maps f D f 00f 0 W S ! Y , g D g0g00 W Y ! S and the
homotopy h W S � I! S defined by

ht D
(
g0h002t�1f 0 for t � 1

2
;

h02t for t � 1
2
:

Then, h0 D id and h1 D gf . Since h0 is a V0-homotopy, it is easy to prove that h is
a r�1.V/-homotopy. Thus, the proof is complete. ut

Now, we can prove Theorem 6.9.1:

Proof of Theorem 6.9.1. We must prove the “if” part. For any open cover U of X ,
we will show that X is U-homotopy dominated by an ANE. Then, it will follow
from Theorem 6.6.2 that X is an ANR.

Let K be the nerve of U with ' W X ! jKj a canonical map. For each simplex
 2 K , let X D '�1.j St. O;Sd2 K/j/, where O is the barycenter of  . Then,
X DS2K X . For each n 2 !, choose an open set Wn in X so that

[

2K.n/nK.n�1/

X � Wn � clWn �
[

2K.n/nK.n�1/

'�1.OSdK. O//;

where f'�1.OSdK. O// j  2 K.n/ n K.n�1/g is pair-wise disjoint. For each  2
K.n/ nK.n�1/, let W D Wn \ '�1.OSdK. O//. Then,

X � W � clW � '�1.OSdK. O//
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and Wn D fW j  2 K.n/ n K.n�1/g is a discrete open collection in X withS
Wn D Wn. For each n 2 !, we define

Vn D
n[

iD0
Wi D

[

2K.n/

W and Xn D
[

2K.n/

X � Vn:

Note that Vn D Vn�1 [Wn. For each  2 K ,

 �
[

v2\.Sd2 K/.0/

O.v;Sd2 K/

�
[

v2\.Sd2 K/.0/

j St.v;Sd2 K/j D
[

��
j St. O� ;Sd2 K/j:

Hence, we have X D Sn2! intXn. We inductively define

Vn D Vn�1 [Wn [
˚
V [W ˇ

ˇ V 2 Vn�1; W 2WnŒV �
�
;

where V0 DW0. Then, each Vn is an open cover of Vn. By induction, it can be seen
that for each V 2 Vn, there are some 0; 1; : : : ; k 2 K.n/ such that dim 0 < � � � <
dim k (hence k � n), 0 \ � � � \ k 6D ;, and V D Tk

iD0 Wi . Take v 2Tk
iD0 

.0/
i .

Then, we have
V � '�1�Sk

iD0 OSdK. Oi /
� � '�1.OK.v//;

which means that Vn 	 U .
For each v 2 K.0/, Wv has the homotopy type of an ANR Yv. Let Y0 DL
v2K.0/ Yv. Since V0 D W0 is discrete in X and V0 D W0, there exist two maps

f0 W V0 ! Y0, g0 W Y0 ! V0 and a V0-homotopy h0 W V0 � I ! V0 with
h00 D g0f0 and h01 D id. By Lemma 6.9.2, we have an ANR Y1, maps f1 W V1 ! Y1,
g1 W Y1 ! V1 and a V1-homotopy h1 W V1 � I! V1 such that h10 D g1f1, h11 D id,
Y0 � Y1, f1jX0 D f0jX0, g1jY0 D g0, and h1jX0 � I D h0jX0 � I. Again, using
Lemma 6.9.2, we obtain an ANR Y2, maps f2 W V2 ! Y2 and g2 W Y2 ! V2,
and a V2-homotopy h2 W V2 � I ! V2 such that h20 D g2f2, h21 D id, Y1 � Y2,
f2jX1 D f1jX1, g2jY1 D g1, and h2jX1 � I D h1jX1 � I. Thus, we apply
Lemma 6.9.2 inductively to obtain a tower Y0 � Y1 � Y2 � � � � of ANRs with
maps fn W Vn ! Yn, gn W Yn ! Vn and Vn-homotopies hn W Vn � I ! Vn
such that hn0 D gnfn, hn1 D id, fnjXn�1 D fn�1jXn�1, gnjYn�1 D gn�1, and
hnjXn�1 � I D hn�1jXn�1 � I. Let Y D lim�!Yn. We can define maps f W X ! Y ,
g W Y ! X , and a U-homotopy h W X � I ! X as follows: f jXn D fnjXn,
gjYn D gn, and hjXn�I D hnjXn�I for n � 0. Then, h0 D gf and h1 D id, hence
X is U-homotopy dominated by Y . Moreover, Y is an ANE by Theorem 6.1.8. This
completes the proof. ut
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6.10 Countable-Dimensional ANRs

Recall that X is countable-dimensional if X D S
i2N Ai for some countably many

subsets Ai � X with dimAi � 0 (cf. Sect. 5.6). By the Decomposition Theorem
5.4.5 in Dimension Theory, every n-dimensional metrizable space is the union of at
most n C 1 many 0-dimensional subspaces, hence it is countable-dimensional. In
this section, we prove the following theorem:

Theorem 6.10.1. Every countable-dimensional locally contractible metrizable
space is an ANR.

First, we introduce a covering property related to countable-dimensionality.
A space X has Property C provided for any open covers Un of X , n 2 N, there
exists an open cover V D Sn2N Vn of X such that each Vn is pair-wise disjoint and
Vn 	 Un.

Lemma 6.10.2. Let X be a metrizable space. If X D S
i2N Ai and each Ai has

Property C , then X also has Property C .

Proof. Let Un 2 cov.X/, n 2 N. Take a bijection k W N�N! N. Having Property
C , each Ai has an open cover V 0i D

S
j2N V 0.i;j / such that each V 0.i;j / is pair-wise

disjoint and V 0.i;j / 	 Uk.i;j /. For each V 2 V 0.i;j /, choose U.V / 2 Uk.i;j / so that
V � U.V /, and define

QV D ˚x 2 U.V / ˇˇ d.x; V / < d.x;Ai n V /
� D U.V / \E.V /;

where E.V / is the open set in X defined in the proof of Lemma 6.1.3. Then, QV is
open in X and QV \ Ai D V . For each n 2 N, let Vn D f QV j V 2 V 0

k�1.n/
g. Then,

each Vn is pair-wise disjoint and Vn 	 Un. Since
S
j2N Vk.i;j / is an open cover of

Ai in X , V DSn2N Vn is an open cover of X D Si2NAi . ut
Lemma 6.10.3. Let X be a metrizable space that has Property C . Then, every F
set in X also has Property C .

Proof. It is easy to see that any closed set in X has Property C . Then, we can apply
Lemma 6.10.2 to complete the proof. ut
Theorem 6.10.4. Every countable-dimensional metrizable space has Property C .

Proof. Since any open cover of a 0-dimensional space has a discrete open refine-
ment, any 0-dimensional space has Property C . Then, applying Lemma 6.10.2, we
complete the proof. ut
Lemma 6.10.5. If X has Property C , then X � I also has Property C .

Proof. Let Un 2 cov.X � I/, n 2 N. Using the compactness of I, we can easily find
Wn 2 cov.X/, n 2 N, and partitions 0 D tW0 < tW1 < � � � < tWk.W / D 1, W 2 Wn,
so that

W�n D
˚
W � JWi

ˇ
ˇ W 2Wn; i D 0; 1; � � � ; k.W /

� 	 U2n ^ U2n�1;
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where JW0 D Œ0; tW1 /, J
W
k.W / D .tWk.W /�1; 1� and JWi D .tWi�1; tWiC1/ for 0 < i <

k.W /. Since X has Property C , X has an open cover V D Sn2N Vn such that each
Vn is pair-wise disjoint and Vn 	 Wn. For each V 2 Vn, choose W.V / 2 Wn so
that V � W.V /. For each n 2 N, let

V�2n D
˚
V � JW.V /2i

ˇ
ˇ V 2 Vn; 0 � i � 1

2
k.W.V //

�
and

V�2n�1 D
˚
V � JW.V /2iC1

ˇ
ˇ V 2 Vn; 0 � i � 1

2
.k.W.V // � 1/�:

We have V� DSn2N V�n 2 cov.X � I/, where each V�n is pair-wise disjoint. Since

V�2n�1;V�2n 	W�n 	 U2n�1 ^ U2n;

it follows that V�n 	 Un for each n 2 N. Hence, X � I has Property C . ut
By Lemmas 6.10.3 and 6.10.5, we have the following proposition:

Proposition 6.10.6. If X is metrizable and has Property C , then X � .0; 1� also
has Property C . ut

By Theorem 6.10.4, we can obtain Theorem 6.10.1 as a corollary of the following
Extension Theorem:

Theorem 6.10.7. Let A be a closed set in a metrizable space X such that A has
Property C , and let Y be a locally contractible metrizable space. Then, any map
f W A! Y extends over a neighborhood of A in X .

Proof. Inductively take open covers of Y :

U1 
 V1
�
 U2 
 V2

�
 U3 
 � � � ;

so that meshUn < 2�n and each member of Vn is contractible in some member of
Un. For each n 2 N, let

U�n D
˚
f �1.U / � Jm

ˇ
ˇ m 2 N; U 2 U2nCm

� 2 cov.A � .0; 1�/;

where J1 D .1=2; 1� and Jm D .2�m; 2�m3/ for m > 1. Since A � .0; 1� has
Property C , it has an open cover W D S

n2N Wn such that each Wn is pair-wise
disjoint and Wn 	 U�n .

For each W 2 W , choose n.W /, m.W /, k.W / 2 N, U.W / 2 Uk.W /, V.W / 2
Vk.W /�1, and QU .W / 2 Uk.W /�1 as follows:

(1) W 2Wn.W /,
(2) W � f �1.U.W // � Jm.W / 2 U�n.W /,
(3) U.W / 2 Uk.W /, k.W / D 2n.W /Cm.W /,
(4) st.U.W /;Uk.W // � V.W / 2 Vk.W /�1,
(5) V.W / is contractible in QU .W / 2 Uk.W /�1,
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and let  W W V.W / � I ! QU .W / be a contraction, that is,  W0 D id and
 W1 .V .W // D fxW g, where xW 2 QU .W /.

Let K be the nerve of W with ' W A � .0; 1�! jKj a canonical map. Since jKj
is an ANE, ' extends to a map Q' W N ! jKj over a neighborhoodN of A � .0; 1�
in X � .0; 1�. We will construct a map g W jKj ! Y so that d.g'.a; t/; f .a// < t

for each .a; t/ 2 A � .0; 1�. Then, g' W A � .0; 1� ! Y would be extended over
A � I by f . Hence, we could apply Lemma 6.5.1 to extend f over a neighborhood
of A in X .

For each  2 K , take a vertex W./ 2 .0/ (� W) such that n.W.// D
minfn.W / j W 2 .0/g. Then, such a vertex W./ 2 .0/ is unique. Indeed,
n.W / < n.W 0/ or n.W 0/ < n.W / for W 6D W 0 2 .0/ because each Wn is
pair-wise disjoint. Next, let 0 be the .n � 1/-face of  such that W./ 62 0, i.e.,
 D h0 [ fW./gi. Then, each point of  can be represented as

.1 � t/zC tW./; t 2 I; z 2 0:

Here, we should notice that, if � <  and W./ 2 �.0/, then W.�/ D W./ and
�0 < 0.

We will show

(6) QU .W / � V.W.// for everyW 2 .0/.
Since Jm.W.// \ Jm.W / 6D ;, we have jm.W.// � m.W /j � 1, which implies
k.W.// < k.W / by (3). Since Uk.W /�1 	 Uk.W.//, QU.W / is contained in some
member of Uk.W.//. On the other hand, U.W / \ U.W.// 6D ; by (2). Since
U.W / � QU .W /, we have QU .W /\ U.W.// 6D ;. Thus, it follows from (4) that

QU .W / � st.U.W.//;Uk.W./// � V.W.//:

Now, let g0 W jK.0/j ! Y be a map such that g0.W / D xW 2 QU .W / for
each W 2 K.0/. Assume that we have maps gi W jK.i/j ! Y , i < n, such that
gi jjK.i�1/j D gi�1 and, if  2 K.i/, t 2 I and z 2 0, then gi�1.z/ 2 QU .W.0// �
V.W.// and

gi ..1 � t/zC tW.// D  W./.gi�1.z/; t/ 2 QU .W.//:

For each n-simplex  2 K , we have gn�1.0/ � QU .W.0// � V.W.// by the
above assumption and (6). Then, we can define a map g W  ! QU .W.// � Y as
follows:

g ..1 � t/zC tW.// D  W./.gn�1.z/; t/:
It is easy to prove that g j@ D gn�1j@ . Hence, gn�1 extends to the map gn W
jK.n/j ! Y defined by gnj D g for each n-simplex  2 K , where if  2 K.n/,
t 2 I, and z 2 0, then

gn..1 � t/zC tW.// D  W./.gn.z/; t/ 2 QU .W.//:
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By induction, we have maps gn, n 2 N, satisfying the above condition. Let g W
jKj ! Y be the map defined by gjjK.n/j D gn. Then, g./ � QU .W.// for each
 2 K .

It remains to show that d.g'.a; t/; f .a// < t for each .a; t/ 2 A�.0; 1�. Let  2
K be the carrier of '.a; t/. Then, .a; t/ 2 W./, which implies that t 2 Jm.W.//,
f .a/ 2 U.W.// � QU .W.// and g'.a; t/ 2 QU .W.//. Hence, t > 2�m.W.// �
2�k.W.//C2 and

d.g'.a; t/; f .a// � diam QU .W.// � meshUk.W.//�1 < 2�k.W.//C1 < t:

This completes the proof. ut

6.11 The Local n-Connectedness

In this section, we need a few results from Chap. 5: Theorem 5.2.3, the No
Retraction Theorem 5.1.5, the General Position Lemma 5.8.4, and Sect. 5.10.

A space X is said to be n-connected (C n) if each map f W Si ! X , i � n,
extends over BiC1.7 Being 0-connected means being path-connected. We also say
thatX is simply connected instead of 1-connected. Note that Sn is .n�1/-connected
but not n-connected by Theorem 5.2.3 and the No Retraction Theorem 5.1.5. We
also say that X is locally n-connected (LC n) if for each x 2 X , each neighborhood
U of x contains a neighborhood V of x such that any map f W Si ! V , i � n,
extends to a map Qf W BiC1 ! U . To be LC0 means to be locally path-connected.
A space X is said to be locally simply connected instead of locally 1-connected.
We say that X is C 1 (or LC 1) if X is Cn (or LCn/ for all n 2 !. Being C1
means being homotopically trivial. Every locally contractible space X is LC1 but,
in general, the converse does not hold. In fact, beingLC1 does not imply that every
point has an arbitrarily small homotopically trivial (C1) neighborhood.

Example 6.11.1 (BORSUK). There exists an LC1 continuum that has a point
without homotopically trivial neighborhoods, so it is not locally contractible.

Example and Proof. For each i 2 N, let ui D 2�ie1; vi D 2�i�13e1 2 `2 and let
Si be the i -dimensional sphere in `2 centered at vi with radius 2�i�1, i.e., Si D
vi C 2�i�1Si , where we identify Si D Si � f0g � `2. Note that Si \ SiC1 D fuig
and Si \ Sj D ; if ji � j j > 1. For each n 2 N, let Xn D f0g [S1iDn Si � `2.
Then, X1 is compact and connected. Each Xn is the closed 2�nC1-neighborhood of
the point 0 in X1. As is easily observed, every Sn is a retract of X1. Since Sn is not
contractible, it follows that Sn is not contractible in any set containing Sn. Then,
any neighborhood of 0 in X1 is not homotopically trivial because it contains Sn for
sufficiently large n. On the other hand, X1 is locally contractible at any point of
X1 n f0g. It remains to show that X1 is LC1 at the point 0.

7In terms of homotopy groups, this means that �i .X; x0/D f0g for every x0 2 X and i � n.
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f �1.uj�1/ f �1.uj�2/

Uj�1

f �1.Sj�1 n fuj�1g/

f �1.Xj n fuj�1g/

BiC1 Si
Uj

Fig. 6.18 Open sets UJ

To prove thatX1 is LC1 at 0, it suffices to show thatXm is n-connected for each
m > n, that is, each map f W Si ! Xm, i � n, extends over BiC1. First, we take
open sets Uj in BiC1, j � m, such that

f �1.Xj n fuj�1g/ � Uj � clUj � Uj�1 n f �1.Sj�1 n fuj�1g/:

In fact, let Um D BiC1 nf �1.um�1/ and suppose that Uj�1 has been obtained. Since
cl f �1.Xj n fuj�1g/ � f �1.Xj / and

cl
�
.BiC1 n Uj�1/[ f �1.Sj�1 n fuj�1g/

� � .BiC1 n Uj�1/ [ f �1.Sj�1/;

f �1.Xj n fuj�1g/ and .BiC1 nUj�1/[ f �1.Sj�1 n fuj�1g/ are separated in BiC1.
By complete normality,8 BiC1 has the desired open set Uj . — Fig. 6.18.

Next, for each j � m, observe that f .Si \ bdUj / D fuj�1g and

f .Si \ .clUj n UjC1// � Xj n .XjC1 n fuj g/ D Sj :

Since dim.clUj nUjC1/ D iC1 � j , we can apply Theorem 5.2.3 to obtain a map
fj W clUj n UjC1! Sj (� Sj ) such that

fj .bdUj / D fuj�1g; fj .bdUjC1/ D fuj g; and

fj jSi \ .clUj n UjC1/ D f jSi \ .clUj n UjC1/:

Now, we can define a map Qf W BiC1 ! Xm as follows:

Qf j clUj n UjC1 D fj for j � m;
Qf .BiC1 n Um/ D fum�1g; and Qf �Tj�m Uj

� D f0g:

Then, Qf is an extension of f . Hence, Xm is LCn. ut

8Due to Theorem 2.2.5, X is completely normal if and only if X is hereditarily normal.
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Remark 16. In the above example, for a fixed n 2 N, let Si be the n-dimensional
sphere in `2 centered at vi with radius 2�i�1, i.e., Si D vi C 2�i�1Sn. Then, a
similar proof shows that f0g [Si2N Si is LCn�1 but not LCn. Thus, we have an
n-dimensional continuum that is LCn�1 but not LCn.

The universal spaces 	n and �n are also LCn�1 but not LCn as we now
explain (cf. Sect. 5.10). The n-dimensional universal Nöbeling space 	n is defined
as follows:

	n D ˚x 2 R
2nC1 ˇˇ x.i/ 2 R nQ except for n many i

�

D ˚x 2 R
2nC1 ˇˇ x.i/ 2 Q at most n many i

�
:

For each k 2 N, let

Rk D
3k�1�1[

mD0
.m=3k�1 C 1=3k;m=3k�1 C 2=3k/ � I:

The intersection
T
k2N.I n Rk/ (D I n Sk2NRk) is the Cantor (ternary) set �0.

The n-dimensional universal Menger compactum �n is defined as the intersection
�n DTk2NM

2nC1
k , where

M2nC1
k D ˚x 2 I2nC1

ˇ
ˇ x.i/ 2 I nRk except for n many i

�

D ˚x 2 I2nC1
ˇ
ˇ x.i/ 2 Rk at most n many i

�
:

Theorem 6.11.2. The n-dimensional universal Nöbeling space 	n and the n-
dimensional universal Menger compactum �n are Cn�1 and LCn�1, but they are
neither Cn nor LCn at any point.

Proof. To prove that 	n is notCn orLCn at any point, it suffices to show that for any
neighborhoodV of x 2 	n, there is a map f W Sn ! V that is not null-homotopic in
	n. Choose ai < bi 2 RnQ, i D 1; : : : ; 2nC1, so that 	n\Q2nC1

iD1 Œai ; bi � � V , and
define C D QnC1

iD1 Œai ; bi � � R
nC1. Take a point v 2 Q

nC1 \ intC � R
nC1. Then,

we have a retraction r W RnC1nfvg ! @C . Since fvg�Rn � R
2nC1n	n, we have the

map rp W 	n ! @C , where p W 	n ! R
nC1nfvg is the restriction of the projection of

R
2nC1 onto the first nC1 factors. Now, let u D .anC2; : : : ; a2nC1/ 2 .RnQ/n. Then,

@C�fug � 	n by the definition of 	n. Let f W Sn ! @C�fug be a homeomorphism.
Assume that f is null-homotopic in 	, that is, f extends to a map Qf W BnC1 ! 	n.
The map f �1rp Qf W BnC1! Sn is a retraction, which contradicts the No Retraction
Theorem 5.1.5. Hence, f is not null-homotopic in 	.

By analogy, we can show that for any neighborhood V of x 2 �n, there is a map
f W Sn ! V that is not null-homotopic in �n. In the above, replacing 	n and Œai ; bi �
with �n and Œ.mi �1/=3k;mi=3

k�,mi 2 N, respectively, and defining the points v; u
by
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v D ..m1 � 1
2
/=3k; : : : ; .mnC1 � 1

2
/=3k/ and

u D .mnC2=3k; : : : ; m2nC1=3k/;

the same arguments apply.

Suppose that 	n and �n inherit the metric of R2nC1 induced by the norm

kxk1 D max
˚jx.i/j ˇˇ i D 1; : : : ; 2nC 1�:

Let m � n and denote K D F.�m/ and L D F.@�m/. To show that 	n and
�n are Cn�1 and LCn�1, it suffices to show that every map f W jLj ! 	n (resp.
f W jLj ! �n), m � n, extends to a map Qf W jKj ! 	n (resp. Qf W jKj ! �n)
with diam Qf .jKj/ � 2 diamf .jLj/ (resp. diam Qf .jKj/ � 12 diamf .jLj/). Since
C DQ2nC1

iD1 pri f .jLj/ is an AE, f extends to a map f0 W jKj ! C , where

diamf .jLj/ � diamf0.jKj/ � diamC D diamf .jLj/:

Then, we will deform f0 to a map Qf W jKj ! 	n (resp. Qf W jKj ! �n) such that
Qf jjLj D f and d. Qf ; f0/ < 1

2
diamC (resp. d. Qf ; f0/ < 6 diamC ).

The case of 	n: We write 	n D R
2nC1 n Si2NHi , where each Hi is an n-

dimensional flat. By induction, we will construct maps fk W jKj ! R
2nC1 nSk

iD1 Hi , k 2 N, such that fkjjLj D f and d.fk; fk�1/ < "k=2, where "k > 0

is defined as follows: "0 D diamC and

"k D min
˚
"k�1=2; dist.f .jLj/;Hk/;

1
2

dist.fk�1.jKj/;Hk�1/
�
> 0:

Observe
P1

iDk "i=2 � "k � 2�k diamC . Then, .fi /i2N is Cauchy, so it converges to
a map Qf W jKj ! R

2nC1 by the completeness of C.jKj;R2nC1/, where Qf jjLj D f
and d. Qf ; f0/ � "1 � 1

2
diamC . Since d. Qf ; fi / � "iC1 for each i 2 N, it follows

that
dist. Qf .jKj/;Hi/ � dist.fi .jKj/;Hi/ � "iC1 � "iC1 > 0;

hence Qf .jKj/ � R
2nC1 nSi2NHi D 	n.

Now, assume that f0; : : : ; fk�1 have been obtained. Then, "k > 0 is defined as
above. ChooseK 0 C K so that diamhfk�1./i < "k=2 for every  2 K 0, and let L0
be the subcomplex of K 0 with L0 C L. Then, for each  2 K 0 with  \ jLj 6D ;,
we have

dist.hfk�1./i;Hk/ � dist.N.f .jLj/; "k=2/;Hk/ � "k=2:

Since Hk is an n-dimensional flat in R
2nC1 and dimK D m � n, we can apply the

General Position Lemma 5.8.4 to find points pv 2 R
2nC1, v 2 K 0.0/ n L0.0/, such

that kpv � fk�1.v/k < "k=2 and

flfpv1 ; : : : ; pvmC1
g \Hk D ; for every v1; : : : ; vmC1 2 K 0.0/ n L0.0/.
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Using the barycentric coordinates, we can define a map fk W jKj ! R
2nC1 nHk as

follows:

fk.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

X

v2K0

.0/nL0

.0/

ˇK
0

v .x/pv if ˛.x/ D 0,

˛.x/f
�P

v2L0

.0/ ˛.x/�1ˇK0

v .x/v
�C

X

v2K0

.0/nL0

.0/

ˇK
0

v .x/pv

if ˛.x/ > 0,

where ˛.x/ D P
v2L0

.0/ ˇK
0

v .x/. Then, fkjjLj D f . In the above definition, if
˛.x/ 6D 1 then

X

v2K0

.0/nL0

.0/

ˇK
0

v .x/pv D .1 � ˛.x//
X

v2K0

.0/nL0

.0/

ˇK
0

v .x/

1 � ˛.x/pv;

where 1 � ˛.x/ D P
v2K0

.0/nL0

.0/ ˇK
0

v .x/. Since kpv � fk�1.v/k < "k=2 for each

v 2 K 0.0/ n L0.0/, it follows that kfk.x/ � fk�1.x/k < "k=2 for each x 2 jKj. This
completes the induction.

The case of �n: Recall �n D T
k2NM

2nC1
k � I2nC1. Take the largest number

k0 2 ! such that 2 diamC � 1=3k0. Then, 1=3k0 < 6 diamC . For each i D
1; : : : ; 2nC 1, let mi 2 N be the smallest number such that max pri .C / � mi=3

k0 .
Then, f0.jKj/ is contained in the following cube:

D D
2nC1Y

iD1

�
mi � 1
3k0

;
mi

3k0



:

Observe D � Tk0�1
iD1 M

2nC1
i . We have a homeomorphism ' W .D;D \ �n/ !

.I2nC1; �n/ defined by

'.x/ D 3k0x � .m1 � 1; : : : ; m2nC1 � 1/:

Refer to Fig. 5.7. If the map 'f0 W jKj ! I2nC1 can be deformed to a map f 0 W
jKj ! �n, then ef0 D '�1f 0 W jKj ! D \ �n is the desired one. Thus, we may
assume that D D I2nC1.

By induction, we will construct maps fk W jKj ! Tk
iD1 M

2nC1
i , k 2 N, such

that fkjjLj D f and fk is 2=3k-close to fk�1. Since
P1

iDk 2=3i D 1=3k�1, it
follows that .fi /i2N is Cauchy and thus converges to a map Qf W jKj ! I2nC1 with
Qf jjLj D f . Since Qf is the limit of fj W jKj !Tk

iD1 M
2nC1
i , j � k, it follows that

Qf .jKj/ � �n DTi2NM
2nC1
i .
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Assume that f0; : : : ; fk�1 have been obtained. Let

S D ˚m=3k�1 C 3=.3k2/ ˇˇ m D 0; : : : ; 3k�1 � 1� and

T D ˚x 2 R
2nC1 ˇˇ x.i/ 2 S at least nC 1 many i

�
:

Then, S consists of mid-points of components of Rk�1, T is a finite union of n-
dimensional flats in R

2nC1 and

M2nC1
k D I2nC1 n N.T; 1=.3k2//:

Note that M2nC1
k and

Tk�1
iD1 M

2nC1
i are the polyhedra of subcomplexes of the cell

complex consisting of all faces of the following cubes:

2nC1Y

iD1

�
mi � 1
3k

;
mi

3k



� I2nC1; mi 2 f1; : : : ; 3kg:

Choose a simplicial subdivision K 0 C K so that diamfk�1./ < 1=.3k4/ for each
 2 K 0. As in the case of 	n, we can apply the General Position Lemma 5.8.4 to find
points pv 2 I2nC1, v 2 K 0.0/ n f �1k�1.M

2nC1
k /, so that pv and fk�1.v/ are contained

in the same cube in the above and

flfpv1 ; : : : ; pvmC1
g \ T D ;

for everymC 1 many v1; : : : ; vmC1 2 K 0.0/ n f �1k�1.M
2nC1
k /. Then, in the same way

as fk in the case of 	n, we can define a map g W jKj ! Tk�1
iD1 M

2nC1
i n T such that

gjf �1k�1.M
2nC1
k / D fk�1 and g is 3�k-close to fk�1. On the other hand, we have a

retraction h W I2nC1 n T ! M2nC1
k such that h.

Tk�1
iD1 M

2nC1
i n T / D Tk

iD1 M
2nC1
i

and h is 3�k-close to id. Then, hg is the desired map fk . This completes the
induction. ut

6.12 Finite-Dimensional ANRs

A space Y is called an absolute neighborhood extensor for metrizable spaces of
dimension � n (or an ANE(n)) if each map f W A ! Y from any closed set A in
a metrizable space X of dimX � n extends over some neighborhoodU of A in X .
When f can always be extended over X (i.e., U D X in the above), we call Y
an absolute extensor for metrizable spaces of dimension � n (or an AE(n)).
In this section, we show that the local n-connectedness characterizes ANE(nC 1)s
and n-dimensional ANRs.
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For a metrizable space X , dimX � n if and only if each open cover U of X has
an open refinement V with ordV � nC1.9 We use the following facts of Dimension
Theory:

(i) If dimX � n then dimX � I � nC 1 — the Product Theorem 5.4.9.
(ii) For any subset A of a metrizable space X , dimA � dimX—the Subset

Theorem 5.3.3.

In Lemma 6.1.2, given a proper closed set A 6D ; in a metric space X D .X; d/,
we obtained a Dugundji system .aU /U2U , i.e., U is a locally finite open cover of
X n A with aU 2 A, U 2 U , such that x 2 U 2 U implies d.x; aU / � 2d.x;A/.
If dimX n A � nC 1, we can take U with the additional condition that ordU �
n C 2, i.e., dimN.U/ � n C 1, where N.U/ is the nerve of U . Thus, we have the
following variant:

Lemma 6.12.1. Let X D .X; d/ be a metric space and A 6D ; be a proper closed
set inX such that dimX nA � nC1. Then, there exists a Dugundji system .aU /U2U
for A � X such that dimN.U/ � nC 1. ut

An open refinement V of U 2 cov.X/ is called a C n-refinement of U if each
V 2 V is contained in some U 2 U such that any map f W Si ! V , i � n, extends
to a map Qf W BiC1 ! U . We call V an n-Lefschetz refinement of U if any partial
V-realization of an arbitrary simplicial complex with dim � n in X extends to full
U-realization in X . We denote

V 	
Cn

U or U 

Cn

V



resp. V 	
Ln

U or U 

Ln

V
�

when V is a Cn-refinement (resp. an n-Lefschetz refinement) of U .

Lemma 6.12.2. For an LCn paracompact space Y , each open cover U of Y has
an .nC 1/-Lefschetz refinement.

Proof. Since Y is LCn, U has the following open refinements:

U D VnC1
�
 Un 


Cn
Vn
�
 Un�1 


Cn�1
Vn�1

�
 � � � �
 U0 

C0

V0:

Let K be a simplicial complex with dimK � n C 1, L be a subcomplex of K
with K.0/ � L, and f W jLj ! Y be a partial V0-realization of K . By induction,
we can define partial Vi -realizations fi W jL [ K.i/j ! Y of K such that fi jjL [
K.i�1/j D fi�1, where f0 D f . Indeed, assume that fi�1 has been defined. For
each  2 K.i/ n .L [ K.i�1//, choose V 2 Vi�1 so that fi�1.@/ � V . Since
Vi�1 is a C i�1-refinement of Ui�1, fi�1j@ extends to a map f W  ! U for some
U 2 Ui�1. Thus, fi can be defined by fi j D f for  2 K.i/ n .L [ K.i�1//.

9In the definition of dimension, U and V are required to be finite. However, by Theorem 5.2.4, this
requirement is not necessary for paracompact spaces (so metrizable spaces).
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For each  2 K , we can write  \ jL [K.i/j D Sk
jD1 j , where j 2 L [K.i/.

Since each fi .j / is contained in some Uj 2 Ui�1 and f ..0// is contained in
some U0 2 Ui�1, it follows that fi .jF./.i/j/ � st.U0;Ui�1/. Since Ui is a star-
refinement of Vi , fi is a Vi -realization of K . Note that fnC1 is a full U-realization
of K . Therefore, V0 is an .nC 1/-Lefschetz refinement of U . ut

Now, we prove the following characterization of ANE(n)s:

Theorem 6.12.3. Let n 2 !. For a metrizable space Y , the following are
equivalent:

(a) Y is LCn;
(b) Y is an ANE.nC 1/;
(c) If A is a closed set in a metrizable spaceX with dimX nA � nC 1, then every

map f W A! Y extends over a neighborhood of A in X ;
(d) If A is a closed set in a metrizable space X with dimA � n, then every map

f W A! Y extends over a neighborhood of A in X ;
(e) Each open cover U of Y has an .nC 1/-Lefschetz refinement;
(f) Each neighborhood U of any y 2 Y contains a neighborhood V of y in Y

such that every map f W X ! V of a metrizable space X with dimX � n is
null-homotopic in U .

Proof. The implication (a) ) (e) is Lemma 6.12.2. The implication (f) ) (a) is
trivial and (c)) (b) follows from (ii). We show the implications (a)) (c), (b))
(f), and (e)) (d)) (f).

(e) (a)
(6.12.2)

(c)

(ii)

(d) (f)

triv.

(b)

(a)) (c): We may assume that X and Y are metric spaces. For simplicity, let d
stand for both metrics of X and Y . By (a), we can take open covers of Y as follows:

V0 D fY g �
 U1 

Cn

V1
�
 U2 


Cn
V2
�
 � � �

and meshVi < 2�i for each i 2 N. By Lemma 6.12.1, we have a Dugundji system
.aW /W 2W for A � X such that dimN.W/ � nC 1. Let ' W X n A! jN.W/j be
a canonical map, i.e., '.x/ 2 hW Œx�i for each x 2 X n A (cf. Proposition 4.9.1).
For each  2 N.W/, let A./ D faW j W 2 .0/g � A. Let K0 be the subcomplex
of N.W/ consisting of all simplexes  2 N.W/ such that f .A.// is a singleton.
Obviously,K.0/

0 D N.W/.0/ DW . For each  2 N.W/ nK0, let

k./ D max
˚
i 2 ! ˇˇ f .A.// � V for some V 2 Vi

�
;
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and choose V0./ 2 Vk./ so that f .A.// � V0./. Observe that if  2 N.W/nK0

and  < � , then � 2 N.W/ n K0 and k./ � k.�/. We define a subcomplex
K � N.W/ as follows:

K D K0 [
˚
 2 N.W/

ˇ
ˇ k./ � nC 1�:

For each i 2 N, let Ki D K0 [K.i/. Note that K D KnC1. Let g0 W jK0j ! Y

be the map defined by g0./ D f .A.// for each  2 K0. Then, observe

g0. \ jK0j/ D f .A.// � V0./ 2 Vk./ for each  2 K nK0.

For each 1-simplex  2 K1 nK0, we have U0./ 2 Uk./ such that g0j@ D g0j.0/
extends to a map g W  ! U0./. Then, we can extend g0 to a map g1 W jK1j ! Y

defined by g1j D g for  2 K1 nK0. For each  2 K nK0,

g1. \ jK1j/ � St.V0./;Uk.// 2 St.Vk./;Uk.// 	 StUk./ 	 Vk./�1;

hence g1. \ jK1j/ is contained in some V1./ 2 Vk./�1. Next, for each 2-simplex
 2 K2 nK1, we have U1./ 2 Uk./�1 such that g1j@ extends to a map g W  !
U1./. Then, as above, we can extend g1 to a map g2 W jK2j ! Y such that, for
each  2 K nK0, g2. \ jK2j/ is contained in some V2./ 2 Vk./�2. We continue
this process nC 1 times to obtain a map g D gnC1 W jKj D jKnC1j ! Y such that,
for each  2 K D KnC1, g./ is contained in some VnC1./ 2 Vk./�n�1.

Now, we define Qf W A [ '�1.jKj/ ! Y by Qf jA D f and Qf j'�1.jKj/ D
g'j'�1.jKj/. It remains to be shown that A [ '�1.jKj/ is a neighborhood of A
in X and Qf is continuous. To this end, it suffices to prove that A [ '�1.jKj/ is a
neighborhood of each a 2 bdX A in X and Qf is continuous at each a 2 bdX A. We
will prove these claims at the same time. For each a 2 bdX A and " > 0, choose
i � n C 1 and V 2 Vi so that 2�i .1 C 2nC1/ < " and f .a/ 2 V . Then, we have
ı > 0 such that f .A \ B.a; ı// � V . For x 2 X n A with d.x; a/ < ı=3, let
x 2 N.W/ be the carrier of '.x/. For every W 2 .0/x , since x 2 W 2 W , we
have d.x; aW / � 2d.x;A/ � 2d.x; a/, hence

d.a; aW / � d.x; a/C d.x; aW / � 3d.x; a/ < ı:

Then, f .A.x// � V 2 Vi , which implies that k.x/ � i � nC 1, hence x 2 K .
Therefore, '.x/ 2 jKj. Thus, A [ '�1.jKj/ is a neighborhood of a in X . On the
other hand, note that

f .a/ 2 V; g..0/x / D f .A.x// � V and

g.x/ � VnC1.x/ 2 Vk.x/�n�1:
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Then, it follows that

d.f .a/; g'.x// � diamV C diamVnC1.x/

< 2�i C 2�k.x/CnC1 � 2�i .1C 2nC1/ < ":

Therefore, Qf is continuous at a 2 bdX A. The continuity of Qf on intX A['�1.jKj/
is obvious. Thus, f is extended over a neighborhood of A in X .

(e)) (d): Given d 2 Metr.Y /, we take open covers of Y as follows:

U1 

LnC1

V1
�
 U2 


LnC1
V2
�
 U3 


LnC1
V3
�
 � � �

and meshUi < 2�i�1 for each i 2 N. Since dimA � n, A has open covers Wi ,
i 2 N, such that ordWi � nC 1 and Wi 	 f �1.UiC2/ ^Wi�1, where W0 D fAg.
For each i 2 N, let Ki be the nerve of Wi with 'i W A ! jKi j a canonical map.
Then, dimKi � n. Extending a partial ViC1-realization of Ki defined on K.0/

i , we
can obtain a full UiC1-realization pi W jKi j ! Y such that

pi.W / 2 f .W / for eachW 2 K.0/
i DWi .

Since WiC1 	Wi , there is a simplicial map  i W KiC1! Ki such that

W �  i.W / 2 K.0/
i DWi for each W 2 K.0/

iC1 DWiC1.

Choosing an order on K.0/
i so that Ki is an ordered simplicial complex, we have

the simplicial mapping cylinder Z i of  i . Then, dimZ i � n C 1 and Z.0/
 i
�

Ki ˚KiC1. Observe that pi ˚piC1 W jKi j ˚ jKiC1j ! Y is a partial Vi -realization
of Z i . Then, we have a full Ui -realization gi W jZ i j ! Y such that gi jjKi j D pi
and gi jjKiC1j D piC1. On the other hand, we also have a map hi W A � I! jZ i j
such that hi .a; 0/ D 'i .a/ and hi .a; 1/ D 'iC1.a/. Indeed, 'i and  i'iC1 are
canonical maps for the cover Wi , hence they are contiguous (Corollary 4.9.2) and
hi can be defined as follows:

hi .a; t/ D
(
Nq i .'iC1.a/; 2t � 1/ if t � 1

2
,

.1 � 2t/'i .a/C 2t i'iC1.a/ if t � 1
2
,

where Nq i W jKi j ˚ jKiC1 � I j ! jZ i j is the quotient map (Fig. 6.19). For each
.a; t/ 2 A � Œ0; 1/, the carrier of hi .a; t/ in Z i has a vertexW 2Wi Œa�. Then,

gi .W / D pi .W / 2 f .W / � st.f .a/;UiC2/:

Since gi is a full Ui -realization of Z i , it follows that gihi .a; t/ 2 st.f .a/;Vi�1/.
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'iC1

'i

hi

A

I

KiC1

Ki

Y
gi

pi

piC1

Z i

Z iA� I
gi

Y

 i'iC1
1
2

0

1

Fig. 6.19 The maps hi and gi

A

K1

Y

g1

g2

Z 1

2�1

0

1

2�2 Z 2

K D[

i2N

Z i

X

I

A � .0; 1� Y
g'

K2

K3

'1

'2

'3

Fig. 6.20 The maps ' and g

Now, we have a simplicial complex K D S
i2NZ i and a map g W jKj ! Y

defined by gjZ i D gi for each i 2 N. We also define a map ' W A � .0; 1�! jKj
as follows:

'.a; t/ D hi .a; 2 � 2i t/ for 2�i � t � 2�iC1.
See Fig. 6.20. Since jKj is an ANE, the map g' W A � .0; 1� ! Y extends over a
neighborhood of A � .0; 1� in X � .0; 1�. On the other hand, for each a 2 A and
2�i < t � 2�iC1,

g'.a; t/ D gihi .a; 2 � 2i t/ 2 st.f .a/;Ui�1/;

which implies that d.g'.a; t/; f .a// < 2�i < t . Hence, g' can be extended over
A � I by f . Thus, we can apply Lemma 6.5.1 to extend f over a neighborhood of
A in X .

(b) (or (d)) ) (f): Let d 2 Metr.Y / and assume that condition (f) does not
hold. Then, we have a point y0 2 Y , an open neighborhood U of y0 in Y and
maps fi W Xi ! U , i 2 N, such that each Xi is a metrizable space, dimXi � n,
fi .Xi/ � B.y0; 2�i /, and each fi is not null-homotopic. Take v0 62 Li2NXi � I
and let

X D fv0g [
M

i2N
Xi � I and A D fv0g [

M

i2N
Xi � f0; 1g;
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where X admits the topology generated by the open sets in Xi � I and fv0g [L
j�i Xj � I, i 2 N. Then,X is metrizable by the Bing Metrization Theorem 2.3.4

and A is closed in X . By facts (i) and (ii) mentioned at the beginning of this section,
dimXi � I � n C 1 and dimXi � f0; 1g � n for every i 2 N. By definition, it is
easy to show that dimX � n C 1 and dimA � n. We define a map f W A ! U

by f .v0/ D y0, f .x; 0/ D fi .x/, and f .x; 1/ D y0 for x 2 Xi . Then, f extends
over a neighborhoodW of A inX by (b) (or (d)). Note thatW contains someXi � I
that maps into U by the extension of f . This means that fi is null-homotopic in U ,
which is a contradiction. ut
Remark 17. The following conditions can also be added to the list of Theo-
rem 6.12.3, as variants of (a) (or (f)) corresponding to (b), (c), and (d).

(b’) Each neighborhood U of any point y in Y contains a neighborhood V of y in
Y such that every map f W A ! V defined in a closed set A in a metrizable
space X with dimX � nC 1 extends to a map Qf W X ! U ;

(c’) Each neighborhood U of any point y in Y contains a neighborhood V of y in
Y such that every map f W A ! V defined in a closed set A in a metrizable
space X with dimX n A � nC 1 extends to a map Qf W X ! U ;

(d’) Each neighborhood U of any point y in Y contains a neighborhood V of y in
Y such that every map f W A ! V defined in a closed set A in a metrizable
space X with dimA � n extends to a map Qf W X ! U .

Sketch of Proof. For y 2 V � U in each of these conditions, given a map f W X ! V

of a metrizable space X with dimX � n, let h W X � f0; 1g ! V be the map defined by
h.x; 0/ D f .x/ and h.x; 1/ D y for x 2 X . Then, h can be extended to a homotopy giving
f ' 0 in U . Thus, each of (b’), (c’), and (d’) implies condition (f) in Theorem 6.12.3.

The proofs of the implications (b)) (b’), (c)) (c’), and (d)) (d’) are similar to the
proof of (b) (or (d))) (f) in Theorem 6.12.3.

As in Proposition 6.6.9, we can prove the following lemma:

Lemma 6.12.4. Let K be an .nC1/-dimensional simplicial complex and L be a
subcomplex of K . If X is n-connected, then any map f W jLj!X extends over jKj.

ut
Using this lemma and Theorem 6.12.3, we can obtain the following characteri-

zation of AE(n)s:

Theorem 6.12.5. Let n 2 !. For a metrizable space Y , the following are
equivalent:

(a) Y is Cn and LCn;
(b) Y is an AE.nC 1/;
(c) If A is a closed set in a metrizable spaceX with dimX nA � nC 1, then every

map f W A! Y extends over X ;
(d) If A is a closed set in a metrizable space X with dimA � n, then every map

f W A! Y extends over X .
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Proof. The implication (c) ) (b) follows from (ii). Since conditions (b) and (d)
imply that Y is n-connected, the implications (b) ) (a) and (d) ) (a) can be
obtained by Theorem 6.12.3.

In the proof of Theorem 6.12.3 (a)) (c), if Y is n-connected, the map g W jKj !
Y can be extended over jN.W/j by Lemma 6.12.4, hence Qf can be defined overX .
Thus, the implication (a)) (c) of this theorem also holds.

In the proof of Theorem 6.12.3 (e)) (d), we may assume that diamY < 2�3. If
Y is n-connected, we can take Ui D Vi D fY g for i D 1; 2; 3, so we can also take
W1 D fAg. Now, since 'jA� f1g is a constant map and jKj is an ANE, g' extends
over a neighborhood of A � .0; 1� [ X � f1g in X � .0; 1�. Therefore, f extends
over X by Lemma 6.5.1. Since condition (a) of this theorem implies condition (e)
of Theorem 6.12.3, we have the implication (a)) (d). ut

By Theorems 6.12.3 and 6.12.5, we have the following characterization of ARs
and ANRs of dimension� n:

Corollary 6.12.6. Let X be a metrizable space with dimX � n.

(1) X is an AR if and only if X is Cn and LCn (i.e., X is an AE.nC 1/).
(2) X is an ANR if and only if X is LCn (i.e., X is an ANE.nC 1/). ut
Theorem 6.12.7. Let f W X ! Y be a map from a paracompact space X with
dimX � n to an LCn�1 paracompact (resp. an LCn metrizable) space Y and let
U be an open cover of Y . Then, each open cover V of X has an open refinement W
with ordW � nC1 (i.e., dimN.W/ � n) and a fullU-realization W jN.W/j ! Y

such that  ' is U-close (resp. U-homotopic) to f for any canonical map ' W X !
jN.W/j.
Proof. By Lemma 6.12.2 and the paracompactness of Y , we can take the following
open refinements of U 2 cov.Y /:

U �
 U1 

Ln

U0
�
 U 0:

By Theorem 5.2.4, f �1.U 0/ and V have a common open refinement W 2 cov.X/
with ordW � nC 1 (i.e., dimN.W/ � n). For simplicity, we denoteK D N.W/.
For each W 2 W D K.0/, choosing UW 2 U 0 so that f .W / � UW and taking a
point  0.W / 2 UW , we have a partial U0-realization  0 W K.0/ ! Y of K , which
extends to a full U1-realization  W jKj ! Y of K . It is easy to prove that  ' is
U-close to f for any canonical map ' W X ! jN.W/j.

If Y is a metrizable ANE(nC 1), we can take d 2 Metr.Y / so that fBd .x; 1/ j
x 2 Y g 	 U by 2.7.7(1). For each i 2 N, take Ui ;Vi 2 cov.Y / such that

ViC1
�	 Ui

�	 Vi 	
LnC1

Bi D fBd .x; 2�i�3/ j x 2 Y g:

By the above argument, we can obtain Wi 2 cov.X/ and a full Ui -realization  i W
jKi j ! Y of the nerveKi of Wi such that W1 	 V , WiC1 	Wi , ordWi � nC 1,
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and i'i is Vi -close to f , where 'i W X ! jKi j is any canonical map for Wi . Since
WiC1 	 Wi , there is a simplicial map ki W KiC1 ! Ki such that ki'iC1 is also a
canonical map for Wi (cf. Sect. 4.9). Then,  iki'iC1 is also Vi -close to f . Since 'i
and ki'iC1 are contiguous, we can define a map '�i W X � I! jZki j by

'�i .x; t/ D
(
Nqki .'iC1.x/; 2t � 1/ if 1

2
� t � 1,

.1 � 2t/'i .x/C 2tki'iC1.x/ if 0 � t � 1
2
,

where Nqki W jKi j˚ jKiC1� I j ! Zki is the natural simplicial map from the product
simplicial complex KiC1 � I of KiC1 and I D fI; 0; 1g to the simplicial mapping
cylinder Zki of ki (cf. Sect. 4.12). Since  iki is a full Ui -realization of KiC1 and
 iC1 is a full UiC1-realization of KiC1, it follows that  i and  iC1 induce a partial
Vi -realization of Zki . Since dimZki � n C 1, we have a full Bi -realization  �i W
jZki j ! Y such that  �i jjKi j D  i and  �i jjKiC1j D  iC1. Observe that

 �i '�i .fxg � I/ � st2. i'i .x/;Bi /;

hence diam �i '�i .fxg � I/ < 2�i for each x 2 X . Then, we can define a homotopy
h W X � I! Y as follows:

h0 D f and h.x; t/ D  �i '�i .x; 2 � 2i t/ for 2�i � t � 2�iC1.

Since diamh.fxg � I/ < 1 for each x 2 X , we have f 'U h1 D  1'1. ut
Remark 18. In Theorem 6.12.7, W can be taken as in Corollary 6.6.3, so as to
be locally finite and -discrete in X (cf. Theorem 5.2.4). When X is separable, a
star-finite countable open refinement W can be taken, hence jN.W/j is separable
and locally compact (cf. Corollary 5.2.5). If X is compact then W is finite, hence
jN.W/j is compact.

The following is easily seen by the same argument as in the above proof:

Proposition 6.12.8. Let U ;V ;W 2 cov.Y / such that

W �	 V 	
LnC1

U :

Let P be a polyhedron with dimP � n and Q be a subpolyhedron of P . If two
maps f; g W P ! Y are W-close and f jQ D gjQ, then f 'U g rel. Q.

Proof. Given maps f; g W P ! Y that are W-close and f jQ D gjQ, we define a
map

h0 W .Q � I/ [ .P � f0; 1g/! Y

by h0.x; 0/ D f .x/ and h0.x; 1/ D g.x/ for each x 2 P and h0jQ � I D f prQ.
LetK be a triangulation of P such thatQ is triangulated by a subcomplex ofK and
K 	 f �1.W/ ^ g�1.W/. Give an order on K.0/ so that K is an ordered simplicial
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complex. Then, the product simplicial complex K �s I is a triangulation of P � I,
where I D fI; 0; 1g is the ordered simplicial complex with jI j D I. Moreover,

.K �s I /.0/ � .Q � I/[ .P � f0; 1g/:
Since h0 is a partial V-realization of K �s I , it extends to a full U-realization h W
P � I ! Y of K �s I . Then, h is a U-homotopy realizing f 'U g rel. Q. Thus,
the proof is complete. ut

An open refinement V of U 2 cov.Y / is called an hn-refinement of U if any
two V-close maps f; g W X ! Y defined on an arbitrary metrizable space X with
dimX � n are U-homotopic, where we denote

V 	
hn

U or U 

hn

V :

Theorem 6.12.9. A metrizable space Y is LCn (i.e., an ANE.nC 1/) if and only if
every open cover of Y has an hn-refinement.

Proof. To prove the “if” part, it suffices to show that Y is LCn by Theorem 6.12.3.
For each y 2 Y and each open neighborhood U of y in Y , the open cover U D
fU; Y n fygg of Y has an hn-refinement V . Let V 2 V such that y 2 V . Then,
V � U . For each i � n, every map f W Si ! V is V-close to the constant map cy
with cy.Si / D fyg, hence f 'U cy , which means f ' cy in U . Therefore, Y is
LCn.

Now, we will show the “only if” part. Each U 2 cov.Y / has the following open
refinements:

U �
 U1
�
 U0 


LnC1
V0 
 st2 V 
 V :

Let X be a metrizable space with dimX � n and f; g W X ! Y be maps that
are V-close. By Theorem 6.12.7, X has open covers Wi and full V-realizations
 i W jN.Wi /j ! Y , i D 1; 2, such that dimN.Wi / � n,  1'1 'V f , and
 2'2 'V g for any canonical maps 'i W X ! jN.Wi /j. Take a common refinement
W 2 cov.X/ of W1 and W2 with dimN.W/ � n and let ' W X ! jN.W/j be a
canonical map. We have refining simplicial maps ki W N.W/ ! N.Wi /, i D 1; 2,
i.e., W � ki .W / for each W 2 W D N.W/.0/. Then, ki' is also a canonical map
for N.Wi / (Corollary 4.9.3).

jN.W1/j
 1

jN.W/j

k1

k2

X
' f

g

'1

'2

Y

jN.W2/j
 2
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For each principal simplex  2 N.W/, take x 2 T
W 2.0/ W . Since ' is a

canonical map, it follows that '.x/ 2  . On the other hand, we have V 2 V such
that f .x/; g.x/ 2 V . Then,  1k1'.x/;  2k2'.x/ 2 st.V;V/. Since  i is a full
V-realization of N.Wi /,  iki is a full V-realization of N.W/, so it follows that

 1k1./ [  2k2./ � st2.V;V/ 2 st2 V 	 V0:

Thus,  1k1 and  2k2 induce a partial V0-realization of the product simplicial
complex N.W/ �s I , where we regard N.W/ as an ordered complex by giving
an order on W D N.W/.0/. Then, we have a full U0-realization

 W jN.W/�s I j D jN.W/j � I! Y;

which is a U1-homotopy with  0 D  1k1 and  1 D  2k2. Thus, we have

f 'V  1k1' 'U1  2k2' 'V g:

Therefore, f 'U g. ut
Remark 19. The above proof is valid even if X is paracompact, but we need the
metrizability of Y (cf. Theorem 6.12.7).

A subset Z in a space Y is said to be n-homotopy dense provided that, for each
map f W X ! Y from an arbitrary metrizable spaceX with dimX � n, there exists
a homotopy h W X �I! Y such that h0 D f and h.X �.0; 1�/ � Z. The following
two theorems are the ANE(n) versions of Corollary 6.6.7:

Theorem 6.12.10. Every n-homotopy dense set Z in an ANE.n/ Y is also an
ANE.n/. If Y is an AE.n/ then so is Z.

Proof. Let A be a closed set in a metrizable space X with dimX � n. Each map
f W A ! Z extends to a map g W U ! Y , where U is a neighborhood U of A in
X . Since dimU � n, there exists a homotopy h W U � I! Y such that h0 D g and
h.A � .0; 1�/ � Z. Take d 2 Metr.X/ such that diamd .X/ � 1 and define a map
Qf W U ! Z by Qf .x/ D h.x; d.x;A//. Then, Qf is an extension of f . Thus, Z is

an ANE(n). When Y is an AE(n), we can take U D X in the above, hence Z is an
AE(n). ut
Theorem 6.12.11. If a metrizable space Y contains an .n � 1/-homotopy dense
set Z that is an ANE.n C 1/, then Y is an ANE.n/. If Z is an .n � 1/-connected
ANE.nC 1/, then Y is an AE.n/.

Proof. We will verify condition (d) of Theorem 6.12.3. Let A be a closed set in
a metrizable space X with dimA � n � 1. For each map f W A ! Y , there is
a homotopy h W A � I ! Y such that h0 D f and h.A � .0; 1�/ � Z. Since
dimA� .0; 1� � n and A� .0; 1� is closed in X � .0; 1�, the restriction hjA� .0; 1�
extends over a neighborhood W of A � .0; 1� in X � .0; 1�. Due to Lemma 6.5.1,
this implies that f extends over a neighborhood of A in X .
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Since Z is .n� 1/-homotopy dense in Y , every map g W Sn�1 ! Y is homotopic
to a map g0 W Sn�1 ! Z. When Z is .n � 1/-connected, since g0 is null-homotopic
inZ, g is null-homotopic in Y , hence Y is also .n�1/-connected. Since an .n�1/-
connected ANE(n) is AE(n) by Theorem 6.12.5, we have the additional statement.

ut

6.13 Embeddings into Finite-Dimensional ARs

Since a normed linear space is an AR by Theorems 6.1.1 and 6.2.5, the Arens–Eells
Embedding Theorem 6.2.1 means that every metrizable space can be embedded
in an AR as a closed set. In this section, we consider the finite-dimensional
version of this fact. Here, we need more theorems from Dimension Theory, e.g.,
Theorems 5.3.4, 5.3.2, Corollary 5.2.6, etc.

The n-dimensional Menger compactum �n and the n-dimensional Nöbeling
space 	n are AE(n)s by Theorems 6.11.2 and 6.12.5. Then, Theorems 5.10.3
and 5.10.8 imply that every compact metrizable space with dim � n can be
embedded in an n-dimensional separable metrizable AE(n) as a closed set.10

First, we prove the following theorem:

Theorem 6.13.1. Every n-dimensional metrizable space X can be embedded as a
closed set in an .nC1/-dimensional AR T .X/ of the same weight. IfX is completely
metrizable, compact, separable, or separable locally compact, then so is T .X/,
respectively.

Proof. WhenX is finite,X can be embedded in the interval I. Then, we may assume
thatX is infinite. By Theorem 5.3.4, we may also assume thatX is a dense subspace
of a complete metric space eX with dimeX D n, where eX D X if X is completely
metrizable. By Corollary 5.2.6, eX is homeomorphic to the inverse limit lim �K of an
inverse sequence K D .jKi jm; fi /i2N of metric polyhedra and PL maps such that
cardKi � w.X/, dimKi � n, and each fi W KiC1 ! SdKi is simplicial. Note that
dimKi D n for sufficiently large i 2 N. Otherwise, dimeX D dim lim �K < n by

Theorem 5.3.2. We identify eX D lim �K.
To consider the simplicial mapping cylinder Zfi of each simplicial map fi W

KiC1 ! SdKi , we regard KiC1 as an ordered simplicial complex. Let T1 D 0 
SdK1 be the simplicial cone over SdK1. Moreover, we may assume that jZfi j \
jZfj j D ; for ji � j j > 1 and jT1j \ jZfi j D ; for i > 1. We define

10In fact, every separable completely metrizable space with dim � n can be embedded in 	n as a
closed set (cf. Remark 15 on Theorem 5.10.3).
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K1 K2

Zf1 Zf2
eX D lim �K

0 T1 T2 T3

Fig. 6.21 The space T .eX/

Tk D T1 [
k�1[

iD1
SdSdKi Zfi for k > 1 and

T D
[

i2N
Ti D T1 [

[

i2N
SdSdKi Zfi ;

where SdSdKi Zfi is the barycentric subdivision of Zfi relative to the subcomplex
SdKi � Zfi . Observe that T is a simplicial complex with cardT .0/ � @0w.X/ and
T1 � T2 � � � � are subcomplexes of T , where dimT D n C 1 because dimTi D
nC 1 for sufficiently large i 2 N (Fig. 6.21). It should be noted that

S
i2NZfi , in

general, is not a simplicial complex.
With respect to eX \ jT j D ;, we define �i W jT j [ eX ! jTi j, i 2 N, as follows:

�i .x/ D

8
ˆ̂
<

ˆ̂
:

x if x 2 jTi j,
Ncfi � � � Ncfj .x/ if x 2 jZfj j; j � i ,
pi .x/ if x 2 eX ,

where Ncfi W Zfi ! SdKi is the simplicial collapsing map and pi W eX D lim �K !
jKi jm is the projection. Note that �i�j D �i for i � j . Let T .eX/ be the space jT j [
eX with the coarsest topology such that every �i W jT j [ eX ! jTi jm is continuous,
that is, the topology generated by sets ��1i .U /, where i 2 N and U is open in jTi jm.
It should be noted that if U � jTi j n jKi j then ��1i .U / D U , which implies that
jTi jm is a subspace of T .eX/ and jT jm is an open subspace of T .eX/. Evidently, jT jm
is dense in T .eX/.

For each x 2 eX , f��1i .st.pi .x/;Ki // j i 2 Ng is a neighborhood basis at
x in T .eX/, where st.pi .x/;Ki / D j St.cKi .pi .x//;Ki /j. Indeed, the open star
OTiC1

.piC1.x// is open in jTiC1jm and

�i.�
�1
iC1.OTiC1

.piC1.x//// � �i.OTiC1
.piC1.x///

� Ncfi .st.piC1.x/;Zfi // � st.pi .x/;SdKi/ � st.pi .x/;Ki /;
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hence x 2 ��1iC1.OTiC1
.piC1.x/// � ��1i .st.pi .x/;Ki //, which means that

��1i .st.pi .x/;Ki // is a neighborhood of x in T .eX/. Moreover, if U is an open set
in jTi jm and x 2 ��1i .U /, then U \ jKi j is an open neighborhood of pi .x/ D �i.x/
in jKi jm. By Remark 16 at the end of Sect. 4.10,

mesh
Ki fi;iCk.KiCk/ � mesh
Ki fi;iCk�1.SdKiCk�1/ � 2 �



n

nC 1
�k
;

where fi;iCk D fi � � �fiCk�1 W jKiCkj ! jKi j.11 Then, we can choose k 2 N so
that fi;iCk.st.piCk.x/;KiCk// � U , hence

��1iCk.st.piCk.x/;KiCk// � ��1i .fi;iCk.st.piCk.x/;KiCk/// � ��1i .U /:

Let ci W jTiC1jm D jTi j [ jZfi j ! jTi jm be the strong deformation retraction
extending the collapsing Ncfi . Then, we have the following commutative diagram:

jT1jm
[

jT2jm
c1

�
[

jT3jm
c2

�
[

� � �
c3

�
� � �

jK1jm jK2jm
f1

jK3jm
f2

� � �
f3

We regard eX as the inverse limit of the lower sequence. The space T .eX/ can be
regarded as the inverse limit of the upper sequence with �i W T .eX/ ! jTi jm the
projection (cf. Theorem 4.10.6).

As already noted, jT jm is an open dense subspace of T .eX/, hence eX is a closed
subspace of T .eX/ and w.T .eX// D w.jT jm/ D w.X/. Due to Theorem 4.5.9, each
jTi jm is completely metrizable because Ti is finite-dimensional. Therefore, T .eX/ is
also completely metrizable by Proposition 4.10.9(2). Since dim jTi jm D dim Ti for
each i 2 N (Corollary 5.2.10), we have dimT .eX/ D n C 1 by Theorem 5.3.2 (or
the Countable Sum Theorem 5.4.1).

For each i 2 N, let Zi D fc�1i ./ j  2 SdKig. Then,

�i D ci�iC1 'Zi �iC1 rel. jTi j

by the homotopy hi extending hfi .�iC1 � idI/j.T .eX/ n jTi j/ � I. For each x 2 eX
and k � i ,

hi .��1k .OKk.pk.x/// � I/ � ��1k .st.pk.x/;Kk//:

11In general, fi;iC2 D fifiC1 is not simplicial with respect to KiC2 and Sd2 Ki because fi .O�/ is
not necessarily the barycenter of the simplex fi .�/ 2 SdKi for � 2 KiC1.
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Indeed, for each y 2 ��1k .OKk.pk.x///, choose  2 SdKi so that hi .fyg � I/ �
c�1i ./ � ��1i ./. Then, hi0.y/ D �i .y/ 2 c�1i ./ \ jKi j D  . Choose a simplex
� 2 Kk so that �k./ � � . Since �khi0.y/ 2 � and

�kh
i
0.y/ D �k�i .y/ D �k.y/ 2 OKk.pk.x//;

it follows that pk.x/ 2 � , i.e., � � st.pk.x/;Kk/. Thus, we have

�kh
i .fyg � I/ � �k��1i ./ � �k./ � � � st.pk.x/;Kk/:

Connecting homotopies hi , i 2 N, we can define a homotopy h W T .eX/ � I !
T .eX/ such that h0 D id, h2�iC1 D �i for each i 2 N, and h.T .eX/ � .0; 1�/ � jT j.
The continuity of h at a point .x; 0/ 2 eX � f0g follows from the fact that each
��1k .OKk .pk.x/// is an open neighborhood of x in T .eX/ and

[

i�k
hi .��1k .OKk .pk.x/// � I/ � ��1k .st.pk.x/;Kk//:

Hence, jT jm is homotopy dense in T .eX/, which implies T .eX/ is an ANR
(Corollary 6.6.7). Since h1.T .eX// D j0  SdK1j is contractible, so is T .eX/, hence
T .eX/ is an AR (Corollary 6.2.9).

Except for the case where X is separable and locally compact, the desired space
T .X/ is defined as the subspace T .X/ D jT j [ X of T .eX/. Indeed, X is closed in
T .X/, w.T .X// D w.X/, and dimT .X/ D n C 1. In the above, h.T .X/ � I/ �
T .X/, so T .X/ is an AR for the same reason as T .eX/.

When X is completely metrizable, since eX D X , T .X/ D T .eX/ is completely
metrizable. When X is compact, since eachKi is finite due to Corollary 5.2.6, each
jTi jm is compact, hence so is T .X/ D T .eX/ by Proposition 4.10.9(1). If X is
separable then so is eX , hence each Ki is countable due to Corollary 5.2.6, which
implies that T is also countable, so T .X/ is separable. If X is separable and locally
compact, the above T .X/ is not locally compact at 0 2 K.0/

0 unless K1 is finite.
Thus, some modification is necessary for the additional statement to be valid.

(The case that X is separable and locally compact) In the above construction,
each Ki is countable and locally finite and each fi is proper by Proposition 5.2.6.
If K1 is disconnected, let L1, L2, . . . be the components of K1 and take vertices
v1 2 L.0/1 , v2 2 L.0/2 , . . . . Adding new 1-simplexes hv1; v2i, hv2; v3i, . . . toK1, we can
assume thatK1 is connected. Moreover, instead ofK0 D f0g and T1 D 0SdK1, let
K0 D ![fŒi �1; i � j i 2 Ng be the natural triangulation of RC D Œ0;1/ and T1 D
Zf0 the simplicial mapping cylinder for a proper simplicial map f0 W SdK1 ! K0.
Then, T would be countable and locally finite, hence T .X/ would be separable and
locally compact.

Now, we will construct a proper simplicial map f0 W SdK1 ! K0. For each
i 2 N, let

Vi D fv 2 SdK.0/
1 j hv; ui 2 SdK1 for some u 2 Vi�1g;
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where V0 D fv0g, v0 2 SdK.0/
1 . Then, .SdK1/

.0/ D S
i2! Vi because SdK1 is

connected. We can define a simplicial map f0 W SdK1 ! K0 by

f0.v/ D minfi 2 ! j v 2 Vi g for each v 2 .SdK1/
.0/.

Since SdK1 is locally finite, each Vi is finite, hence the map f0 W jK1jm D
j SdK1jm ! jK0jm D RC is proper. Thus, each jTi jm is locally compact
and each ci is also proper. Therefore, T .X/ D T .eX/ is locally compact by
Proposition 4.10.9(3). Since jK0jm D RC is a deformation retract of T .X/, it
follows that T .X/ is contractible, hence T .X/ is an AR. ut

In Theorem 6.13.1 above, we cannot take dimT .X/ D dimX D n, that is, an n-
dimensional metrizable space cannot, in general, be embedded in an n-dimensional
AR (nor an n-dimensional ANR). Neither the n-dimensional universal Nöbeling
space 	n nor the n-dimensional universal Menger compactum �n can be embedded
in any n-dimensional ANR. Otherwise, they would be retracts of an n-dimensional
ANR because they are n-dimensional AE(n)s by Theorems 6.11.2 and 6.12.5. But
this is impossible because they are not ANRs by Theorem 6.11.2 (cf. 6.2.10(2)).

It should be noted that every separable n-dimensional metrizable space can be
embedded into 	n and �n, which are n-dimensional AE(n)s by Theorems 5.10.3
and 5.10.8. Without separability, we can obtain the same embedding theorem:

Theorem 6.13.2. Every n-dimensional metrizable space X can be embedded in an
n-dimensional metrizable AE.n/ S.X/ with w.S.X// D w.X/ as a closed set. If X
is completely metrizable, compact, separable, or separable locally compact, then so
is S.X/, respectively.

To prove this theorem, we employ the following lemmas:

Lemma 6.13.3. Let f W K ! L be a simplicial map between simplicial complexes
and X be a metrizable space with dimX � n � 1. Then, for each map g W X !
jZ.n/

f jm, g 'Z Ncf g D fg rel. g�1.jLj/, where Ncf W Zf ! L is a simplicial

collapsing and Z D fNc�1f ./ j  2 Lg.
Proof. Let f 0 D f jK.n�1/ W K.n�1/! L.n/. Then, observe

Z
.n�1/
f � Zf 0 � Z.n/

f and jZf 0 j n jKj D jZ.n/

f j n jKj:

By Theorem 5.2.9, we have a map g0 W X ! jZ.n�1/
f jm such that g0.x/; g.x/ 2 x ,

where x D cZf .g.x// 2 Z
.n/

f is the carrier of g.x/. Taking an Urysohn map

k W X ! I with k.g�1.jLj// D 0 and k.g�1.jKj// D 1, we can define a homotopy
h W X � I! jZ.n/

f jm as follows:

h.x; t/ D .1 � k.x/t/g.x/ C k.x/tg0.x/ for each .x; t/ 2 X � I.
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Then, h0 D g, ht jg�1.jLj/ D gjg�1.jLj/ for each t 2 I, and h1.X/ � jZf 0 j.
Hence, we have

g ' h1 ' Ncf 0h1 D Ncf h1 ' Ncf g rel. g�1.jLj/,

where these homotopies are given by ht , Nhf
0

t h1, and Ncf h1�t , respectively. For each
x 2 X n g�1.jLj/,

h.fxg � I/ � x; Ncf h.fxg � I/ � Ncf .x/ and

Nhf 0

.fh1.x/g � I/ � Nc�1f . Ncf .x//:

This completes the proof. ut

Lemma 6.13.4. Let 0K be the simplicial cone over a simplicial complexK . Then,
the n-skeleton .0 K/.n/ is .n � 1/-connected.

Proof. Regarding 0  K as the simplicial mapping cylinder of the constant map of
K , we can apply Lemma 6.13.3 to show that every map g W Sn�1 ! .0  K/.n/ is
homotopic to the map of K to f0g, hence g ' 0. ut
Proof of Theorem 6.13.2. Modifying the proof of Theorem 6.13.1, we will construct
S.X/ as a closed subspace of T .X/. Let S1 D T .n/1 D .0  SdK1/

.n/,

Sk D S1 [
k�1[

iD1
SdSdKi Z

.n/

fi
� T .n/k for k > 1 and

S D
[

i2N
Si D S1 [

[

i2N
SdSdKi Z

.n/

fi
� T .n/:

Since Z.n/

fi
D Z

fi jK.n�1/

iC1

[KiC1, it follows that

SdSdKi Z
.n/

fi
D SdSdKi Zfi jK.n�1/

iC1

[ SdKiC1;

which is not equal to .SdSdKi Zfi /
.n/ if dimKiC1 D n. Restricting the strong

deformation retraction ck W jTkC1jm ! jTkjm, we have the retraction c0k WjSkC1jm ! jSkjm, which is no longer a strong deformation retraction.
Let S.eX/ D jS j [ eX be the n-dimensional closed subspace of T .eX/, which is

regarded as the inverse limit of the middle sequence in the following commutative
diagram:
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jT1jm
[

jT2jm
c1

�
[

jT3jm
c2

�
[

� � �
c3

�
� � �

jS1jm
[

jS2jm
c0

1

�
[

jS3jm
c0

2

�
[

� � �
c0

3

�
� � �

jK1jm jK2jm
f1

jK3jm
f2

� � �
f3

Then, the projection � 0i W S.eX/ ! jSi jm is the restriction of the projection �i W
T .eX/! jTi jm, where we no longer have that � 0i D c0i � 0i ' � 0iC1 rel. jSi j.

The space S.X/ is the closed subspace jS j[X D S.eX/\T .X/ of T .X/, hence,
if X is completely metrizable, compact or separable, then so is S.X/, respectively.
WhenX is separable and locally compact, in the same way as T .X/, we can modify
S.X/ to be separable and locally compact.

We will now apply Theorem 6.12.11 to prove that S.X/ is an AE(n). Since
S.X/ n X D jS jm is an ANE as a polyhedron with the metric topology, it suffices
to show that jS jm is .n � 1/-homotopy dense in S.X/ and .n � 1/-connected.

(The .n � 1/-homotopy denseness) Let g W Z ! S.X/ be a map of a metrizable
space Z with dimZ � n� 1. For each i 2 N, let Zi D fc0i�1./ j  2 SdKig. Due
to Lemma 6.13.3, we have

� 0i g D c0i � 0iC1g 'Zi �
0
iC1g rel. g�1.jSi j/

by a Zi -homotopy hi W Z � I ! jSiC1jm � S.X/. Connecting these homotopies,
we can define a homotopy h W Z � I ! S.X/ such that h0 D g, h2�iC1 D � 0i g
for each i 2 N and h.Z � .0; 1�/ � jS j. The continuity of h at a point .z; 0/ 2
g�1.X/ � f0g � Z � I is guaranteed by the following fact:

hi .g�1� 0k�1.OKk.pkg.z/// � I/ � � 0k�1.st.pk.g.z//;Kk//

for each z 2 g�1.X/ and k � i .

This can be verified in a manner analogous to Theorem 6.13.1. Therefore, jS jm is
.n � 1/-homotopy dense in S.X/.

(The .n � 1/-connectedness) In the above, let Z D Sn�1. Then, every map g W
Sn�1 ! S.X/ is homotopic to a map g0 W Sn�1 ! jS1j. Since S1 D T

.n/
1 D

.0  SdK1/
.n/ is .n � 1/-connected by Lemma 6.13.4, we have g ' g0 ' 0. This

completes the proof. ut
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Notes for Chap. 6

For supplementary results and examples, refer to the following classical books of Borsuk and Hu.
One can find interesting examples in Borsuk’s book, Chap. VI. In Hu’s book, ANEs are discussed
not only for the class of metrizable spaces but also for a more general class.

• K. Borsuk, Theory of Retracts, Monog. Mat. 44 (Polish Sci. Publ., Warsaw, 1966).
• S.-T. Hu, Theory of Retracts (Wayne State Univ. Press, Detroit, 1965).

The theory has developed considerably since the publication of these books. Many important
results have been gained and many problems have been solved. Some of them have been treated
in this chapter while others have not. Many interesting examples can be seen in numerous existing
articles. Especially, in 1994, Cauty constructed a metric linear space that is not an AR. This very
important result will be proved in Sect. 7.12. For history of ANR theory (theory of retracts), refer
to the article of Madešić [28].

Theorem 6.1.1 was established in [12]. The remark on 6.1.1 is taken from Michael [29].
Theorem 6.1.9(6) is due to Hanner [17].

Theorem 6.2.1 was established in [3], but the short proof presented here is due to Toruńczyk
[35]. For another short proof, see [30]. Theorem 6.2.2 was the trick used in [23]. Theorem 6.2.3
was established in [18] and the proof presented here is due to Toruńczyk [35]. The first assertion
of Theorem 6.2.4 was established in [10].

Theorem 6.3.2 was established in [13] and Theorem 6.3.4 was proved independently in [13] and
[21]. For conditions that LEC spaces are ANRs, refer to [9]. The notion of ULC was introduced
in [2], but we use the word “unified” instead of “uniformly.” The example for Theorem 6.3.8 was
constructed in [5] as a locally contractible compactum that is not an ANR, and it was shown in
[13] that this is not LEC.

The first version of Theorem 6.4.1 is due to Borsuk [4].
Lemma 6.5.1 is proved by Dowker [11] in a more general setting (X is countably paracompact

normal and A is a closed Gı). Theorem 6.5.2 was established in [26] and Theorem 6.5.3 was
essentially proved in successive stages by [37], and [17].

Theorems 6.6.1 and 6.6.2 are due to Lefschetz [27] and Hanner [17], respectively. The present
proof of the implication (c)) (a) in Theorem 6.6.2 follows Dowker’s idea [11]. Theorem 6.7.5
was established in [25] (cf. [14]). The compact case of Theorem 6.7.8 can be obtained as a corollary
of the result in [8].

Theorem 6.8.1 was established by Nguyen To Nhu [32] and the proof presented here is due to
Sakai [33]. The concept of a uniform retract (or a uniform retraction) was introduced by Michael
[31]; it is called a regular retract (or retraction) in [36]. Theorem 6.8.11 was proved by Michael
[31] and Toruńczyk [36], independently. For characterizations of (finite-dimensional) uniform ARs
and ANRs, refer to [31].

Theorem 6.9.1 was conjectured by Geoghegan [15] and proved by Cauty [7]. The proof
presented here is due to Sakai [34].

The result of Sect. 6.10 was first proved in [19] for  -compact spaces and then generalized in
[16]. The property C was named in [20]. The definition of Sect. 6.10 is due to [1].

Theorem 6.13.1 was proved in [6]. The proof presented here is due to

Kodama [24]. Theorem 6.13.2 was implicitly proved in [22].
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voisinage. Fund. Math. 35, 175–180 (1948)

6. H.G. Bothe, Eine Einbettung m-dimensionaler Mengen in einen .m C 1/-dimensionalen
absoluten Retrakt. Fund. Math. 52, 209–224 (1963)
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Chapter 7
Cell-Like Maps and Related Topics

A compact set A 6D ; in X is said to be cell-like in X if A is contractible in every
neighborhood of A in X . A compactum X is cell-like if X is cell-like in some
metrizable space that contains X as a subspace. It will be seen that X is cell-like
in every ANR that contains X as a subspace (Theorem 7.1.2). A cell-like (CE)
map is a perfect (surjective) map f W X ! Y such that each fiber f �1.y/ is cell-
like. The concept of cell-like maps is very important in Geometric Topology. It has
been mainly developed in Shape Theory and Decomposition Theory. For infinite-
dimensional manifolds (in particular Hilbert cube manifolds), this concept is one of
the main tools.

In the first six sections of this chapter, we will discuss several fundamental
properties of cell-like maps and related concepts. The remainder of the chapter will
be devoted to some associated topics. In Sect. 7.10, we will construct an infinite
dimensional compactum with finite cohomological dimension, which implies that
there exists a cell-like map of a finite-dimensional compactum onto an infinite-
dimensional compactum. In Sect. 7.12, we will use this example to construct a linear
metric space that is not an AR.

This chapter is based on results in Chaps. 2–6. In Sect. 7.7 and 7.10, we will use some
results from Algebraic Topology without proofs. Thus, these sections are not self-contained.
Moreover, the construction of Sect. 7.12 requires an open cell-like map of a finite-
dimensional compactum onto an infinite-dimensional compactum. Using Walsh’s result on
open maps, the cell-like map in Sect. 7.10 can be remade to be open. However, we will not
give the proof of Walsh’s result because it is beyond the scope of this book.

7.1 Trivial Shape and Related Properties

In this section, we introduce some properties related to cell-like compacta. First,
note that every contractible compactum is cell-like but that the converse is not true.
The sin.1=x/-curve

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics,
DOI 10.1007/978-4-431-54397-8 7, © Springer Japan 2013
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f0g � Œ�1; 1� [
�

.x; y/ 2 R
2

ˇ
ˇ
ˇ
ˇ y D sin

1

x
; 0 < x � 1

	

is a typical example of a non-contractible cell-like compactum. The cell-likeness of
this compactum comes from the following:

Proposition 7.1.1. Let X1 � X2 � � � � be a nested sequence of contractible non-
empty compacta. Then, X DTi2NXi is cell-like.

Proof. Every neighborhood U of X in X1 contains some Xi . Since Xi is con-
tractible, X is contractible in U . ut

It is said that a non-empty closed set A in X has Property U V � in X (simply A
is U V � in X ) if each neighborhood U of A in X contains a neighborhood V of A
that is contractible in U . A metrizable space X is said to be U V � if X is UV � in
some ANR that containsX as a closed subspace.1 It is said that X has trivial shape
if any map from X to an arbitrary ANR is null-homotopic; equivalently, any map
from X to an arbitrary polyhedron is null-homotopic (Corollary 6.6.5).

Theorem 7.1.2. For a metrizable space X ( 6D ;), the following are equivalent:

(a) X has trivial shape;
(b) X is contractible in every ANR that containsX as a closed set;
(c) X is contractible in every neighborhood in some metrizable space that contains

X as a closed set;
(d) X is UV � in any ANR that containsX as a closed set;
(e) X is UV �;
(f) X is UV � in some metrizable space that containsX as a closed set.

In particular, a compactum is cell-like if and only if it has trivial shape.

Proof. Consider the following diagram of implications. Every implication is trivial
except for the two marked with asterisks.

(a) (c)
�

(f)

(b)
.6.2.1/

�
(d)

.6.2.1/
(e)

(c)) (a): Assume thatX is closed in a metrizable spaceM andX is contractible
in every neighborhood in M . For any ANR Y , every map f W X ! Y extends over
an open neighborhood U of X in M . Let Qf W U ! Y be an extension of f . There
exists a contraction h W X � I ! U . Then, Qf h W X � I ! Y is a homotopy such
that Qf h0 D f and Qf h1 is constant.

1In other literature, Property U V � is called Property U V 1.
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(b)) (d): Let Y be an ANR containing X as a closed subspace. For each open
neighborhood U of X in Y , we have a contraction h W X � I! U by (b). Since U
is an ANR, we have a neighborhood V of X in U and a homotopy Qh W V � I! U

such that Qh0 D id and Qh1 is a constant map. Thus, X is UV � in Y . ut
Due to Theorem 7.1.2, aUV � compactum is equal to a cell-like compactum. The

term “cell-like” is used only for compacta but “UV �” is used without compactness.

Note. When X is a compactum, the term “metrizable” in condition (c) can be replaced by
the term “normal.” Indeed, assume that X is contractible in every neighborhood in some
normal space Y that contains X . We can regard X as a closed subspace of the Hilbert cube
Q D Œ�1; 1�N. Then, it suffices to show that X is contractible in every neighborhood U in
Q. By the coordinate-wise application of the Tietze Extension Theorem 2.2.2, we have a
map f W Y ! Q with f jX D id. Because f �1.U / is a neighborhood of X in Y , we have
a contraction h W X � I! f �1.U /. Hence, f h W X � I! U is a contraction, that is, X
is contractible in U .

Let n 2 !. A closed set A � X has Property U V n in X (or simply A is U V n

in X ) if each neighborhoodU of A in X contains a neighborhood V of A such that,
for each 0 � i � n, every map f W Si ! V is null-homotopic in U . We say that A
has Property U V 1 in X (or A is U V 1 in X ) if it is UV n in X for every n 2 N.
A metrizable space X is said to be U V n (resp. U V 1) if X is UV n (resp.UV1) in
some ANR that contains X as a closed subspace.2

Proposition 7.1.3. A metrizable space X is UV n (resp.UV1) if and only if X is
UV n (resp.UV1) in every ANR that containsX as a closed subspace.

Proof. Since the UV1 case follows from the UV n case and the “if” part is trivial,
it suffices to show the “only if” part of the UV n case.

Let Y1 and Y2 be ANRs containingX as a closed subspace. Then, we have maps
' W W1 ! Y2 and  W W2 ! Y1 such that 'jX D  jX D id. Assume that X is
UV n in Y1. For each open neighborhood U of X in Y2, '�1.U / is a neighborhood
of X in Y1, which contains a neighborhood V 0 of X such that for each 0 � i � n,
every map g W Si ! V 0 is null-homotopic in '�1.U /. Because U is an ANR, there
is a U 2 cov.U / that is an „-refinement of fU g (Corollary 6.3.5). We can easily find
a neighborhood V of X in U such that ' jV is U-close to id and V �  �1.V 0/.
Then, for each map f W Si ! V , the map  f W Si ! V 0 is null-homotopic in
'�1.U /, hence

f ' .' jV /f D ' f ' 0 in U .

Therefore,X is UV n in Y2. Thus, we have the “only if” part. ut
Note that X is UV n in X itself if and only if X is n-connected. Then, we have

the following:

Corollary 7.1.4. An ANR is UV n if and only if it is n-connected. Consequently, a
UV1 ANR is the same as an AR. ut

2Our Property U V 1 is weaker than in most other literature (cf. the previous footnote 1).
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We show that Property UV 0 characterizes connectedness.

Proposition 7.1.5. A metrizable space X is UV 0 if and only if X is connected.

Proof. Regard X as a closed set in a normed linear space Y (Theorem 6.2.1).
It is easy to show that if X is not connected then X is not UV 0 in Y , that is, the
“only if” part holds. Each neighborhood U of X in Y has a cover B consisting
of open balls. If X is connected, then, for each two B;B 0 2 BŒX�, there are
B0;B1; : : : ; Bn 2 B such that B0 D Bn D B , and each Bi meets Bi�1, which
implies that st.X;B/ is path-connected. Thus, we have the “if” part. ut

According to Theorem 7.1.2, Property UV � characterizes the trivial shape. For
a finite-dimensional space, we have the following:

Theorem 7.1.6. An n-dimensional metrizable spaceX has trivial shape if and only
if X is UV n. Consequently, an n-dimensional compactum is cell-like if and only if
it is UV n.

Proof. Since the “only if” part is trivial, it suffices to show the “if” part. Assuming
that X is UV n in an ANR Y , we will show that X is contractible in each open
neighborhood U of X in Y . Choose open neighborhoodsU D VnC1 � � � � � V1 �
V0 of X in Y so that every map f W Si ! Vi is null-homotopic in ViC1. Since V0 is
an ANR and dimX D n, we can apply Theorem 6.12.7 and Corollary 6.3.5 to obtain
a simplicial complexL with dimL � n and maps f W X ! jLj, g W jLj ! V0 such
that gf ' idX in V0. LetK D v0 L be the simplicial cone overL with v0 the cone
vertex. Then, dimK � nC 1. For each 0 � i � nC 1, we denote Ki D K.i/ [ L.
Note that K0 D fv0g [ L. Taking any point h0.v0/ 2 V0, we can extend g to a
map h0 W jK0j ! V0. Suppose that g extends to a map hi W jKi j ! Vi . For each
.i C 1/-simplex � 2 K n L, hi j@� W @� ! Vi extends to a map h� W � ! ViC1. We
define a map hiC1 W jKiC1j ! ViC1 by hiC1j� D h� , which is an extension of g.
By induction, we have a map h D hnC1 W jKj ! VnC1 � U such that hjjLj D g.
Thus, g ' 0 in U , hence idX ' gf ' 0 in U , that is, X is contractible in U . By
virtue of Theorem 7.1.2,X has trivial shape. ut

Due to Corollary 4.10.11, every compactum X is the inverse limit of an inverse
sequence .Xi ; fi / of compact polyhedra and PL maps. The following lemma is
useful when treating the inverse limits:

Lemma 7.1.7. Let X be the inverse limit of an inverse sequence .Xi ; fi /i2N of
compacta with projections pi W X ! Xi , i 2 N, and let P be a space with the
homotopy type of a simplicial complex.

(1) For every map g W X ! P , there exist some i0 2 N and maps gi W Xi ! P ,
i � i0, such that gipi ' g.

(2) Let g; g0 W Xi0 ! P be maps. If gpi0 ' g0pi0 , then there is some j0 � i0 such
that gfi0;j ' g0fi0;j for every j � j0, where fi;j D fi � � �fj�1 for i < j and
fi;i D idXi .
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Proof. Since P has the homotopy type of an ANR (Corollary 6.6.5), we may
assume that P is an ANR. Recall X D lim �.Xi ; fi / �

Q
i2NXi and pi D pri jX ,

i 2 N (cf. Sect. 4.10). Then, fipiC1 D pi . For each i 2 N, let zi 2 Xi be fixed and
define an embedding 'i W Xi !Q

i2NXi by

'i.x/ D .f1;i .x/; : : : ; fi�1;i .x/; x; ziC1; ziC2; : : : /:

Then, limi!1 'ipi D id. For each n 2 N, let

X�n D
˚
x 2Qi2NXi

ˇ
ˇ x.i/ D fi;n.x.n// for each i � n�:

Then,
T
i2NX�i D X .

(1): Because P is an ANR, g extends to a map Qg W U ! P over an open
neighborhood U of X in

Q
i2NXi . Then, X�n � U for some n 2 N. For each

i � n, since 'i.Xi / � X�i � X�n , we have a map gi D Qg'i W Xi ! P . Since
limi!1 'ipi D id, we have limn�i!1 gipi D g. Hence, gipi ' g for sufficiently
large i � n.

(2): Extending a homotopy from gpi to g0pi over the following set

� D .X � I/ [ .Qi2NXi � f0; 1g/;

we have a map h W � ! P such that h.x; 0/ D g.x.i// D gpri .x/ and h.x; 1/ D
g0.x.i// D g0pri .x/ for each x 2 Qi2NXi . Since P is an ANR, h extends to a map
Qh W U �I! P , whereU is an open neighborhood ofX in

Q
i2NXi . Then,X�j0 � U

for some j0 � i0. For every j � j0, 'j .Xj / � I � X�j � I � U . Consequently, we

have a homotopy h0 D Qh.'j � idI/ W Xj � I! P . For each x 2 Xj ,

h00.x/ D Qh.'j .x/; 0/ D h.'j .x/; 0/ D gpri 'j .x/ D gfi;j .x/;

i.e., h00 D gfi;j . Similarly, we have h01 D g0fi;j . Therefore, gfi;j ' g0fi;j . ut
Remark 1. As we saw in the proof above, in Lemma 7.1.7(1), when P is an
ANR, there exist some n 2 N and maps gi W Xi ! P , i � n, such that
limn�i!1 gipi D g.

The cell-likeness of the inverse limits can be characterized as follows:

Theorem 7.1.8. Let X be the inverse limit of an inverse sequence .Xi ; fi /i2N of
compact ANRs and pi W X ! Xi , i 2 N, be the projections. Then, the following are
equivalent:

(a) X is cell-like;
(b) pi ' 0 for every i 2 N;
(c) For each i 2 N, there is a j � i such that fi;j ' 0.

Proof. The implication (b) ) (c) follows from Lemma 7.1.7(2). Because pi D
fi;j pj , the implication (c)) (b) is trivial.
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(a)) (b): By Theorem 7.1.2,X has trivial shape. Since everyXi is an ANR, the
implication (a)) (b) is trivial.

(b)) (a): Let g W X ! P be a map fromX to an ANR P . By Lemma 7.1.7(1),
there exist some i 2 N and a map g0 W Xi ! P such that g0pi ' g. Since pi ' 0, it
follows that g ' 0. Thus,X has trivial shape, hence it is cell-like by Theorem 7.1.2.

ut
Remark 2. The implications (c)) (b)) (a) hold without the assumption that each
Xi is an ANR. This is a generalization of Proposition 7.1.1.

Concerning the UV n properties, we have the following characterization:

Theorem 7.1.9. Let X be the inverse limit of an inverse sequence .Xi ; fi /i2N of
compact ANRs and pi W X ! Xi , i 2 N, be the projections. Then, the following are
equivalent:

(a) X is UV n;
(b) For each i 2 N, there is a j � i such that fi;j ˛ ' 0 for every map ˛ W Sk !

Xj , 0 � k � n.

Proof. We can regardX as a closed set in the Hilbert cube Q.
(a) ) (b): For each i 2 N, since Xi is an ANR, pi W X ! Xi extends to a

map Qpi W U ! Xi over a neighborhood U of X in Q. Then, U contains an open
neighborhoodV ofX such that, for each 0 � i � n, every map from Si to V is null-
homotopic in U . Because V is an ANR, applying Lemma 7.1.7(1) to the inclusion
X � V , we can obtain some j 0 � i and a map g W Xj 0 ! V such that gpj 0 ' idX
in V . Since Qpigpj 0 ' Qpi jX D pi D fi;j 0pj 0 , it follows from Lemma 7.1.7(2)
that Qpigfj 0;j ' fi;j 0fj 0;j D fi;j for some j � j 0. For 0 � k � n and each map
˛ W Sk ! Xj , we have gfj 0;j ˛ ' 0 in U , hence fi;j ˛ ' Qpigfj 0;j ˛ ' 0 in Xi .

(b)) (a): For each open neighborhoodU of X in Q, applying Lemma 7.1.7(1)
to the inclusionX � U , we can obtain some i 2 N and a map g W Xi ! U such that
gpi ' idX in U . Then, there is some j � i such that fi;j ˛ ' 0 for every map ˛ W
Sn ! Xj . Because Xj is an ANR, pj W X ! Xj extends to a map Qpj W V 0 ! Xj
over a neighborhood V 0 of X in Q. Since gfi;j Qpj jX D gfi;j pj D gpi ' idX in
the ANR U , X has a neighborhood V in Q such that V � V 0 and gfi;j Qpj jV ' idV
in U . For 0 � k � n and each map ˛ W Sk ! V , we have ˛ ' gfi;j Qpj˛ ' 0

in U . ut

7.2 Soft Maps and the 0-Dimensional Selection Theorem

A map f W X ! Y is said to be soft (n-soft) provided that, for any metrizable space
Z (with dimZ � n) and any map g W C ! X of a closed set C of Z, if fg extends
to a map h W Z ! Y then g extends to a map Qg W Z ! X with f Qg D h.
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X
f

Y

C

g

� Z

Qg
h

In the above, if Y is an AE or an ANE (an AE(n) or an ANE(n)) then so is
X . Replacing the pair .Z;C / with a polyhedral pair3 (with dim � n), we can
introduce a polyhedrally soft map (a polyhedrally n-soft map). By the following
proposition, every (n-)soft map is polyhedrally (n-)soft.

Proposition 7.2.1. For a map f W X!Y to be polyhedrally soft (resp. polyhedrally
n-soft), it is necessary and sufficient that, for any map ˛ W Si�1 ! X , i 2 N

(resp. i � n), if f ˛ extends to a map ˇ W Bi ! Y then ˛ extends to a map Q̨ W Bi !
X with f Q̨ D ˇ.

X
f

Y

Si�1

˛

� Bi

Q̨
ˇ

Consequently, a map f W X ! Y is polyhedrally soft if and only if f is polyhedrally
n-soft for every n 2 !.

To show the sufficiency, let K be a simplicial complex with L a subcomplex of K , and let
g W jLj ! X and h W jKj ! Y be maps with fg D hjjLj. We inductively construct maps
gi W jK.i/ [ Lj ! X , i 2 ! (resp. i � n), so that each gi is an extension of gi�1 and
fgi D hjjK.i/ [ Lj, where g

�1 D g. This can be done by applying the condition to each
simplex in K.i/ n .K.i�1/ [ L/. Then, the desired extension Qg W jKj ! X of g can be
defined by QgjjK.i/j D gi jjK.i/j for each i 2 ! (resp. Qg D gn).

Evidently, every polyhedrally soft map is a weak homotopy equivalence and
every polyhedrally n-soft map is an n-equivalence (cf. Sect. 4.13).

soft poly. soft weak homot. equiv.

n-soft poly. n-soft n-equiv.

We have the following characterization of polyhedrally 0-soft maps:

3That is, Z D jKj and C D jLj for some simplicial complex K and a subcomplex L � K .
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Proposition 7.2.2. A map f W X ! Y is polyhedrally 0-soft if and only if f is
surjective.

Proof. Because 0-dimensional polyhedra are discrete, it is trivial that a surjective
map is polyhedrally 0-soft. To prove the converse, for each y 2 Y , consider the pair
.fyg;;/ in the definition of a polyhedrally 0-soft map. Then, we can find x 2 X
such that f .x/ D y. ut
Proposition 7.2.3. When Y is metrizable, every 0-soft map f W X ! Y is a
surjective open map.

Proof. According to Proposition 7.2.2, f is surjective. Suppose that f is not open.
Then, X has an open set U with x 2 U such that f .x/ 62 intf .U /. We have yn 2
Y nf .U /, n 2 N, such that f .x/ D limn!1 yn. Since Z D ff .x/g[ fyn j n 2 Ng
is 0-dimensional, we have a map g W Z ! X such that g.f .x// D x and fg D idZ ,
which causes a contradiction. ut

If X is completely metrizable, the converse of Proposition 7.2.3 above is also
true. This will be shown as a corollary of the following 0-Dimensional Selection
Theorem, which can be proved by the same strategy as the Michael Selection
Theorem 3.8.8.

Theorem 7.2.4 (0-DIMENSIONAL SELECTION THEOREM). Let X be a para-
compact space with dimX D 0 and Y D .Y; d/ be a metric space. Then, every
lower semi-continuous (l.s.c.) closed-valued function ' W X ! Cld.Y / admits a
selection if each '.x/ is d -complete. In addition, if A is a closed set in X then each
selection f W A! Y for 'jA can extend to a selection Qf W X ! Y for '.

Proof. We may assume that diamY < 1. By induction, we will construct maps
fi W X ! Y , i 2 N, such that

d.fi.x/; '.x// < 2
�i and d.fiC1.x/; fi .x// < 2�iC2 for every x 2 X .

Assume that fn�1 has been obtained, where f0 is any map. We define a closed-
valued function  W X ! Cld.Y / as follows:

 .x/ D clY
�
'.x/ \ B.fn�1.x/; 2�nC1/

�
for each x 2 X .

Let W D S
y2Y B.y; 2�nC1/ � fyg. Since B.y; 2�n/2 � W for every y 2 Y , W is

a neighborhood of the diagonal �Y in Y 2. Therefore,  is l.s.c. by Lemmas 3.8.5
and 3.8.3.

For each y 2 Y , let

Vy D fx 2 X j  .x/ \ B.y; 2�n/ 6D ;g:

Since  is l.s.c., each Vy is open in X . By the 0-dimensionality, X has an open
cover U 	 fVy j y 2 Y g with ordU D 1 (cf. Theorem 5.2.4). For each U 2 U ,
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choose y.U / 2 Y so that U � Vy.U /. Then, we have a map fn W X ! Y such that
fn.x/ D y.U / for every x 2 U 2 U . Observe that d.fn.x/;  .x// < 2�n for every
x 2 X , which means that d.fn.x/; '.x// < 2�n and d.fn.x/; fn�1.x// < 2�nC3.

The rest of the proof is similar to that of the Michael Selection Theorem 3.8.8.
ut

Now, as a corollary of Theorem 7.2.4, we can obtain the following characteriza-
tion of 0-soft maps:

Corollary 7.2.5. Let X is be a completely metrizable and Y be a metrizable space.
Then, a map f W X ! Y is 0-soft if and only if f is surjective and open.

Proof. The “only if” part is Proposition 7.2.3. To see the “if” part, let Z be a 0-
dimensional metrizable space and C a closed set in Z. Given maps g W C ! X

and h W Z ! Y such that fg D hjC , note that f �1h W Z ! Cld.X/ is an l.s.c.
closed-valued function (cf. Proposition 3.8.1) and g is a selection for f �1hjC . We
can apply Theorem 7.2.4 to extend g to a selection Qg W Z ! X . Then, f Qg D h. ut

We have variety in the definition of softness. A map f W X ! Y is
said to be homotopically soft (homotopically n-soft) (resp. approximately soft
(approximately n-soft)) provided that, for any metrizable space Z (with dimZ �
n), any map g W C ! X of a closed set C in Z and each open cover U of Y , if fg
extends to a map h W Z ! Y then g extends Qg W Z ! X such that f Qg 'U h rel.C
(resp.f Qg is U-close to h).

X
f

Y

C

g

� Z

Qg

'U
h

Replacing the pair .Z;C /with a pair of polyhedra (with dim � n), we can introduce
a polyhedrally homotopically soft map (a polyhedrally homotopically n-soft
map) or a polyhedrally approximately soft map (a polyhedrally approximately
n-soft map).

poly. approx. soft poly. homot. soft weak homot.equiv.

poly. approx. n-soft poly. homot. n-soft n-equiv.

Proposition 7.2.6. When Y is paracompact, every approximately (n-)soft map f W
X ! Y is polyhedrally approximately (n-)soft.
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Proof. Let K be a simplicial complex (with dimK � n) and L be a subcomplex
of K with a map g W jLj ! X such that fg extends to a map h W jKj ! Y . For
each open cover U of Y , we will show that g extends to a map Qg W jKj ! X such
that f Qg is U-close to h. Because Y is paracompact, U has an open star-refinement
V . Due to Whitehead’s Theorem 4.7.11 on small subdivisions, replacing K with a
subdivision, we may assume that K 	 h�1.V/. Moreover, replacing K by SdL K ,
we may also assume that L is full in K . We denote ' D idjKj W jKj ! jKjm. By
Theorem 4.9.6, we have a map W jKjm ! jKj such that ' 'K id and ' 'K id
by the straight-line homotopy. Since L is full in K , it follows that  'jjLj 'L id
and ' jjLjm 'L id by the straight-line homotopy. Because f is approximately
(n-)soft, the map g jjLj extends a map g0 W jKjm ! X such that fg0 is V-close
to h .

X
f

Y

jLj

g

'

jLjm
 

� jKjm
 

g0

jKj
'

Qg
h

Since K 	 h�1.V/, it follows that L 	 g�1f �1.V/, consequently

g0'jjLj D g 'jjLj 'f �1.V/ g:

By the Homotopy Extension Theorem 4.3.3, g extends to a map Qg W jKj ! X

such that Qg 'f �1.V/ g0', hence f Qg 'V fg0'. Since fg0' is V-close to h ' and
h ' 'V h, it follows that f Qg is U-close to h. ut
Remark 3. In the above proof, if f W X ! Y is homotopically (n-)soft, then
g jjLj can be extended to a map g0 W jKjm ! X such that fg0 'V h rel. jLjm,
so fg0' 'V h ' rel. jLj. But f QgjjLj D hjjLj 6D fg 'jjLj D fg0'jjLj and
h 'jjLj 6D h in general. Then, we cannot conclude that f Qg 'U h rel. jLj.
However, it is also true that every homotopically (n-)soft map f W X ! Y is
polyhedrally approximately (n-)soft when Y is paracompact. This will be shown in
the next section.

The following lemma is easy but useful for constructing approximations of maps
to paracompact spaces:

Lemma 7.2.7. Given a sequence of open covers of Y as follows:

U �
 U1
�
 U2

�
 � � � ;

let WiC1 D st.Wi ;UiC1/, where W1 D U1. Then, st.Wi ;Ui / 	 U for every i 2 N.

This lemma can be shown by induction because

st.Wi ;Ui / D st.st.Wi�1;Ui /;Ui / 	 st.Wi�1; stUi / 	 st.Wi�1;Ui�1/:
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Theorem 7.2.8. Let Y be a paracompact space. A map f W X ! Y is polyhedrally
homotopically soft if and only if f is polyhedrally homotopically n-soft for every
n 2 !.

Proof. The “only if” part is obvious. To prove the “if” part, let K be a simplicial
complex with L a subcomplex of K , and let g W jLj ! X and h W jKj ! Y be
maps with fg D hjjLj. Since Y is paracompact, each open cover U 2 cov.Y / has
open refinements as follows:

U �
 U0
�
 U1

�
 U2
�
 � � � :

For each i 2 N, let Wi D st.Wi�1;Ui /, where W0 D U0. By Lemma 7.2.7,
st.Wi ;Ui / 	 U for every i 2 N.

We will inductively construct maps gi W jK.i/ [ Lj ! X , hi W jKj ! Y and
Ui -homotopies '.i/ W jKj � I! Y , i 2 N, such that

gi jjK.i�1/ [Lj D gi�1; fgi D hi jjK.i/ [ Lj; '.i/0 D hi�1; '.i/1 D hi ;
'
.i/
t jjK.i�1/ [Lj D hi�1jjK.i�1/ [Lj D fgi�1 for every t 2 I,

where g�1 D g and h�1 D h. Suppose that gn�1, hn�1, and '.n�1/ have been
defined.

X
f

Y

jK.n�1/ [ Lj

gn�1

� jK.n/ [ Lj

gn

� jKj

hn�1

jKj

hn

'Un

By the polyhedral homotopy n-softness of f , the map gn�1 extends to a map gn W
jK.n/ [ Lj ! X such that

fgn 'Un hn�1jjK.n/ [ Lj rel. jK.n�1/ [Lj.
Using the Homotopy Extension Theorem 4.3.3, we have a Un-homotopy '.n/ W jKj�
I! Y such that

'
.n/
0 D hn�1; '.n/1 jjK.n/ [Lj D fgn and

'
.n/
t jjK.n�1/ [ Lj D hn�1jjK.n�1/ [Lj for each t 2 I.

The map hn is defined by hn D '.n/1 W jKj ! Y .
Now, we can extend g to the map Qg W jKj ! X defined by QgjjK.i/[Lj D gi for

each i 2 !. Let ' W jKj � I! Y be a homotopy defined as follows: '0 D f Qg and

'.x; t/ D '.i/.x; 2 � 2iC1t/ if 2�i�1 � t � 2�i , i 2 !.



432 7 Cell-Like Maps and Related Topics

Then, '1 D '
.0/
0 D h�1 D h and 't jjLj D hjjLj D fg D f QgjjLj for every t 2 I.

The continuity of ' at each point in jKj � f0g follows from the continuity of 'j � I
for each simplex  2 K , where if dim  D k then

't j D hkj D fgkj D f Qgj D '0j for every t � 2�k�1.
For each x 2 jKj and n 2 N,

'.fxg � Œ2�n�1; 1�/ D '.fxg � Œ2�n; 1�/[ '.n/.fxg � I/

� st.'.fxg � Œ2�n; 1�/;Un/:
Since '.fxg � Œ2�1; 1�/ D '.0/.fxg � I/ is contained in some member of U0 D
W0, it follows that '.fxg � Œ2�n�1; 1�/ is contained in some member of Wn. In
addition, note that '.fxg � Œ0; 2�k�1�/ D ff Qg.x/g for sufficiently large k 2 N.
Then, '.fxg � I/ is contained in some member of U . Hence, ' is a U-homotopy.
Thus, we have f Qg 'U h rel.L. ut
Remark 4. If f is polyhedrally approximately n-soft for every n 2 !, the above
arguments are not valid to prove that f is polyhedrally approximately soft because
we cannot apply the Homotopy Extension Theorem 4.3.3.

Every open cover U of an ANR (resp. a metrizable ANE(n C 1)) Y has an
„-refinement (resp.hn-refinement) V 2 cov.Y / by Proposition 6.3.1 and Theo-
rem 6.3.4 (resp. Theorem 6.12.9). Therefore, we have the following:

Proposition 7.2.9. Let Y be a metrizable space and f W X ! Y be a map.

(1) When Y is LCn, i.e., Y is an ANE.nC 1/, f is (polyhedrally) homotopically
n-soft if and only if f is (polyhedrally) approximately n-soft.

(2) When Y is LC1, f is polyhedrally homotopically soft if and only if f is
polyhedrally approximately soft.

(3) When Y is an ANR, f is homotopically soft if and only if f is approximately
soft. ut

A polyhedrally approximately 0-soft map is simply a map with the dense image.
We can state this formally as follows:

Proposition 7.2.10. A map f W X ! Y is polyhedrally approximately 0-soft if and
only if f .X/ is dense in Y .

Sketch of Proof. For the “if” part, note that 0-dimensional polyhedra are discrete. To see
the “only if” part, for each y 2 Y and each open neighborhood V of y in Y , consider
.Z; C / D .fyg;;/, h D id, and U D fY n fyg; V g in the definition of a polyhedrally
approximately 0-soft map.
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7.3 Hereditary n-Equivalence and Local Connections

A map f W X ! Y is called a hereditary n-equivalence if f jf �1.U / W
f �1.U / ! U is an n-equivalence for every open set U in Y , that is, it satisfies
the following condition .�/i for each i D 0; : : : ; n:

.�/i For each map ˛ W Si�1 ! f �1.U /, if f ˛ extends to a map ˇ W Bi ! U then
˛ extends to a map N̨ W Bi ! f �1.U / such that f N̨ ' ˇ rel. Si�1,

where B0 D f0g and S�1 D ;.

f �1.U /
f

U

Si�1

˛

� Bi
N̨

'
ˇ

A map f W X ! Y is a hereditary 0-equivalence if and only if every y 2 Y

can be connected with an arbitrarily close point of f .X/ by a small path. A
hereditary weak homotopy equivalence is a map f W X ! Y such that
f jf �1.U / W f �1.U / ! U is a weak homotopy equivalence for every open set U
in Y ; equivalently, it is a hereditary n-equivalence for every n 2 !. The following
statements are easily proved:

• Every polyhedrally homotopically n-soft map is a hereditary n-equivalence.
• Every polyhedrally homotopically soft map is a hereditary weak homotopy

equivalence.

Sketch of Proof. The second statement follows from the first statement. Let f W X ! Y be
a polyhedrally homotopically n-soft map and U be an open set in Y . For maps ˛ W Si�1 !
f �1.U / and ˇ W Bi ! U with ˇjSi�1 D f ˛, consider U D fU; Y n ˇ.Bi /g 2 cov.Y /.

If Y is paracompact, the converse statements are also true.

Theorem 7.3.1. Let Y be a paracompact space. Then, a map f W X ! Y is a
hereditary n-equivalence if and only if f is polyhedrally homotopically n-soft.

Proof. The “if” part has been shown previously. To prove the “only if” part, let
.P;Q/ be a pair of polyhedra with dimP � n, and let g W Q! X and h W P ! Y

be maps with fg D hjQ. For each U 2 cov.Y /, take open refinements as follows:

U D Un
�
 Un�1

�
 � � � �
 U0
�
 V :

Then,P has a triangulationK such thatQ is triangulated by a subcomplex ofK and
K 	 h�1.V/ (Theorem 4.7.11). We will inductively define maps gi W Q[ jK.i/j !
X with homotopies '.i/ W .Q [ jK.i/j/ � I! Y , i D 0; : : : ; n, such that
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gi jQ [ jK.i�1/j D gi�1; '.i/j.Q [ jK.i�1/j/ � I D '.i�1/;
f'.i/. � I/ j  2 K.i/g 	 Ui ; '.i/0 D hjQ [ jK.i/j and '

.i/
1 D fgi ;

where g�1 D g and '.�1/ D hprQ W Q � I! Y . Then, g can be extended to a map
gn W P ! X such that fgn 'U h rel.Q.

Suppose that gi�1 and '.i�1/ have been defined. For each i -simplex  2 K with
 6� Q, since K 	 h�1.V/ and st.V ;Ui�1/ 	 Ui , we can choose U 2 Ui so that

'.i�1/.. � f0g/[ .@ � I// � st.h./;Ui�1/ � U:

Then, fgi�1.@/ � U , i.e., gi�1.@/ � f �1.U/. Take a homeomorphism

� W  ! . � f0g/[ .@ � I/

such that �.x/ D .x; 1/ for each x 2 @ . Consider the map h D '.i�1/� W
 ! U . Then, h j@ D fgi�1j@ . Because f jf �1.U/ W f �1.U/ ! U is an
n-equivalence, gi�1j@ extends to a map g W  ! f �1.U/ such that fg ' h
rel. @ .

f �1.U/
f j

U  � I
'

@

gn�1j

� 

h
g

�

�
. � f0g/[ .@ � I/

'.i�1/j
[

Using a homotopy from h to fg rel. @ , we can easily construct a homotopy
' W  � I! U such that '1 D fg and

' j. � f0g/[ .@ � I/ D h��1 :

The last condition means that '0 D hj and ' j@ � I D '.i�1/j@ � I. Summing
up these g and ' , we can obtain the desired extensions gi and '.i/ of gi�1 and
'.i�1/, respectively. ut

Combining Theorems 7.3.1 and 7.2.8, we have the following:

Corollary 7.3.2. Let Y be a paracompact space. Then, a map f W X ! Y

is a hereditary weak homotopy equivalence if and only if f is a polyhedrally
homotopically soft map. ut

As in the case of polyhedrally homotopically (n-)soft maps, it is easy to see
that every homotopically n-soft map is a hereditary n-equivalence and every
homotopically soft map is a hereditary weak homotopy equivalence. Then, by
Corollary 7.3.2, we have the following:
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Corollary 7.3.3. When Y is paracompact, every homotopically (n-)soft map f W
X ! Y is a polyhedrally homotopically (n-)soft map. ut

A map f W X ! Y is called a local n-connection (resp. a strong local n-
connection) if f .X/ is dense in Y and every neighborhood U of each y 2 Y

contains a neighborhood V of y such that, for each 0 � i < n, every map g W Si !
f �1.V / is null-homotopic in f �1.U / and, for each map g W Sn ! f �1.V /, fg ' 0
in U (resp.g ' 0 in f �1.U /, i.e., for each 0 � i � n, every map g W Si ! f �1.V /
is null-homotopic in f �1.U /).

f �1.V / � f �1.U /
f

U

Si

g

� BiC1

Qg
h

The following are direct consequences of the definitions:

• Every hereditary .nC 1/-equivalence is a strong local n-connection.
• Every strong local n-connection is a local n-connection.
• Every local n-connection is a strong local .n � 1/-connection.

Moreover, note that a map f W X ! Y is a strong local n-connection if and only if
f .X/ is dense in Y and each open cover U of Y has an open refinement V such that
f �1.V/ is a Cn-refinement of f �1.U/. We call f a local 1-connection if f is a
(strong) local n-connection for every n 2 !. A map f W X ! Y is called a local
�-connection if f .X/ is dense in Y and every neighborhood U of each y 2 Y
contains a neighborhood V of y such that f �1.V / is contractible in f �1.U /. If
f is a closed map, each non-empty fiber f �1.y/ has trivial shape. A perfect local
-connection is simply a cell-like map.

Theorem 7.3.4. Let Y be a paracompact space. Then, for a map f W X ! Y , the
following statements are equivalent:

(a) f is a strong local n-connection;
(b) f is polyhedrally approximately .nC 1/-soft;
(c) f is a hereditary .nC 1/-equivalence.

Proof. The equivalence (b) , (c) is the statement of Theorem 7.3.1 and the
implication (c) ) (a) has been proved. Consequently, it remains to show the
implication (a)) (b).

(a) ) (b): Since f is a strong local n-connection, each U 2 cov.Y / has the
following open refinements:

U �
 VnC1
�
 UnC1 
 Vn

�
 � � � �
 U1 
 V0
�
 U0
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such that f �1.UiC1/ 

C i
f �1.Vi /. Then, it follows that

f �1.VnC1/
�
 f �1.UnC1/ 


Cn
f �1.Vn/

�


� � � �
 f �1.U1/ 

C0
f �1.V0/

�
 f �1.U0/:

By the same arguments as in the proof of Lemma 6.12.2, we can prove that

f �1.V0/ 	
LnC1

f �1.VnC1/:

Let .P;Q/ be a pair of polyhedra with dimP � n C 1, and let g W Q ! X and
h W P ! Y be maps such that fg D hjQ. Then, P has a triangulationK such that
Q is triangulated by a subcomplex ofK andK 	 h�1.U0/ (Theorem 4.7.11). Since
f .X/ is dense in Y , we can extend g to a map g0 W Q [ jK.0/j ! X such that fg0
is U0-close to hjQ [ jK.0/j. Then, g0 is a partial f �1.V0/-realization of K , which
extends to a full f �1.VnC1/-realization Qg W P D jKj ! X .

X
f

Y

Q

g

� Q [ jK.0/j

g0

� P

Qg
h

Each x 2 P is contained in some � 2 K . Then, we have V 2 VnC1 such that
Qg.�/ � f �1.V /, i.e., f Qg.�/ � V . On the other hand, h.�/ is contained in some
V0 2 V0. Take v 2 �.0/. Then, f Qg.v/ D fg0.v/ and h.v/ are contained in the same
U0 2 U0, hence f Qg.x/; h.x/ 2 st.U0;VnC1/. Consequently, f Qg is U-close to h. ut

If Y is LCn, we have the following proposition:

Proposition 7.3.5. Let Y be LCn and f W X ! Y be a map.

(1) If f is polyhedrally approximately n-soft then f is a local n-connection.
(2) If f is polyhedrally approximately .n C 1/-soft then f is a strong local

n-connection.

Proof. First, note that a polyhedrally approximately 0-soft map has the dense image
by Proposition 7.2.10. Since Y is LC0, every y 2 Y can be connected with an
arbitrarily close point of f .X/ by a small path, which means that f is a local
0-connection.

Since Y is LCn, every open neighborhood U of each y 2 Y contains a
neighborhood V of y such that, for 0 � i � n, every map g W Si ! V extends
to a map Qg W BiC1 ! U . Now, let 0 � i � n and g W Si ! f �1.V / be a map. Then,
fg extends to a map h W BiC1 ! U .
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f �1.V / � f �1.U /
f

U

Si

g

� BiC1
h

When f is polyhedrally approximately n-soft, if 0 � i � n � 1 then g extends
to a map Qg W BiC1 ! X such that f Qg is U-close to h, where

U D fY n h.BiC1/; U g 2 cov.Y /:

Then, f Qg.BiC1/ � U , i.e., Qg.BiC1/ � f �1.U /. This means that f is a local n-
connection. If f is polyhedrally approximately .nC 1/-soft, this argument is valid
for all 0 � i � n, which shows that f is a strong local n-connection. ut
Theorem 7.3.6. Let Y be a metrizable space. Every local n-connection f W X !
Y is polyhedrally homotopically n-soft.

Proof. We may assume that Y D .Y; d/ is a metric space. In the case n D 0, it
suffices to show that for each y 2 Y and for each " > 0, there is an x 2 X such that
f .x/ is connected with y by a path in the "-neighborhood B.y; "/ � Y . We can
choose open neighborhoods U1 � U2 � � � � of y in Y such that, for every pair of
points x; x0 2 f �1.Ui/, f .x/ and f .x0/ are connected by a path in B.y; 2�iC1"/.
Since f .X/ is dense in Y , we have points xi 2 f �1.Ui/. Taking paths hi W I !
B.y; 2�iC1"/ with hi .0/ D xi and hi .1/ D xiC1, we can define a path h W I !
B.y; "/ as follows:

h.0/ D y and h.t/ D hi .2 � 2i t/ for 2�i � t � 2�iC1.

Assuming the theorem is valid for n� 1, we prove the theorem for n. Let .P;Q/
be a pair of polyhedra with dimP D n, and let g W Q ! X and h W P ! Y be
maps such that fg D h. Each U 2 cov.Y / has refinements

U �
 U1 
 V1
�
 U2 
 V2

�
 � � � ;

such that meshUi < 2�i and the following condition hold:

• Each V 2 Vi is contained in some U 2 Ui such that, for each map ˛ W Sn !
f �1.V /, f ˛ ' 0 in U , that is, f ˛ extends to a map ˇ W BnC1 ! U .

For convenience, we denote Wi D UiC2. Then,

st3Wi D st.Wi ; stWi / 	 Vi and WiC1 	Wi :
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For each i 2 N, letKi be a triangulation of P such thatKi 	 h�1.Wi / andKiC1 C
Ki . Then, note that jK.n�1/

i j � jK.n�1/
iC1 j.

By the inductive assumption, we have a map g0i W Q [ jK.n�1/
i j ! X such that

g0i jQ D g and fg0i 'Wi hjQ [ jK.n�1/
i j rel.Q. Let

 .i/ W .Q [ jK.n�1/
i j/ � I! Y

be a Wi -homotopy such that  .i/0 D hjQ [ jK.n�1/
i j,  .i/1 D fg0i , and  .i/t jQ D

hjQ D fg for each t 2 I. Applying the Homotopy Extension Theorem 4.3.3, we
can extend fg0i to a map hi W P ! Y such that hi 'Wi h rel.Q. Since f is
polyhedrally approximately n-soft by Theorem 7.3.4, we can extend g0i to a map
gi W P ! X such that fgi is Wi -close to hi , hence fgi is stWi -close to h. Let

'i W .P � f0; 1g/[ .Q � I/! X

be the map defined by 'i .x; t/ D g.x/ for each .x; t/ 2 Q � I, 'i.x; 0/ D gi .x/,
and 'i .x; 1/ D giC1.x/ for each x 2 P . Then, f 'i extends to the map

 i W .P � f0; 1g/[ ..Q [ jK.n�1/
i j/ � I/! Y

defined as follows:  i jP � f0; 1g D f 'i jP � f0; 1g and

 i .x; t/ D

8
ˆ̂
<

ˆ̂
:

 .i/.x; 1 � 2t/ if t � 1

2
,

 .iC1/.x; 2t � 1/ if t � 1

2
.

Since f is polyhedrally approximately n-soft, we can extend 'i to a map

Q'i W .P � f0; 1g/[ ..Q [ jK.n�1/
i j/ � I/! X

such that f Q'i is Wi -close to  i .
For each n-simplex  2 Ki with  6� Q, h./ is contained in some W 2 Wi .

Since fgi is stWi -close to h, we have

fgi ./ [ fgiC1./ � st.W; stWi / 2 st3Wi 	 Vi :

On the other hand,  i .@ � I/ � st.W;Wi / by the definition of  i . Since f Q'i is
Wi -close to  i , it follows that

f Q'i.@ � I/ � st.st.W;Wi /;Wi / 2 st2Wi 	 Vi :

Consequently, there is some V 2 Vi such that

f Q'i.. � f0; 1g/[ .@ � I// D fgi ./ [ fgiC1./ [ f Q'i.@ � I/ � V:
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Then, we have U 2 Ui and a map   W  � I! U such that

  j. � f0; 1g/[ .@ � I/ D f Q'i j. � f0; 1g/[ .@ � I/:

Pasting these   , we can obtain a Ui -homotopy Q i W P � I! Y , that is, Q i j � I D
  j � I for each n-simplex  2 Ki with  6� Q. Observe that

Q i .x; t/ D f Q'i .x; t/ D f 'i .x; t/ D fg.x/ for each .x; t/ 2 Q � I.

Now, we define  � W P � I! Y by  �0 D h and

 �.x; t/ D Q i.x; 2 � 2i t/ if 2�i � t � 2�iC1, i 2 N:

Clearly  � is continuous at each point of P � .0; 1�. To verify the continuity of  �
at each point of P � f0g, let x 2 P and " > 0. By the continuity of h, we have
a neighborhood U of x in P such that diamh.U / < "=2. Choose k 2 N so that
2�k < "=2. For each x0 2 U and t 2 .0; 2�k/,

d. �.x0; t/;  �.x; 0// � d. �.x0; t/;  �.x0; 0//C d.h.x0/; h.x//
� diam �.fx0g � Œ0; 2�k�/C diamU

�
1X

iDkC1
diam Q i.fx0g � I/C "=2

<

1X

iDkC1
meshUi C "=2 < 2�k C "=2 < ":

Thus,  � is continuous. Observe that  � is a U-homotopy and  �t jQ D fg

for every t 2 I. Then, fg1 D  �1 'U h rel.Q. Therefore, f is polyhedrally
homotopically n-soft. ut

All the results can be summarized as follows:

loc. n-connection

metriz.

strong loc. .n � 1/-connection

paracomp.

poly. homot. n-soft poly. approx. n-soft

LCn

LCnmetriz.
paracomp.

hered. n-equivalence
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Corollary 7.3.7. When Y be an LCn metrizable space, the following five condi-
tions for a map f W X ! Y are equivalent:

(a) f is a local n-connection;
(b) f is a strong local .n� 1/-connection (f .X/ is dense in Y when n D 0);
(c) f is polyhedrally approximately n-soft;
(d) f is polyhedrally homotopically n-soft;
(e) f is a hereditary n-equivalence.

If Y is an LCn�1 paracompact space, conditions (b) and (c) are equivalent. If Y is
an LCn paracompact space, three conditions (a), (b), and (c) are equivalent, and
conditions (d) and (e) are equivalent. ut

Combining Proposition 7.2.8 with the above, we have

hered. weak homot. equiv.

paracomp.

loc.1-connection

metriz.
paracomp.

poly. homot. soft poly. approx. soft

LC1

LC1metriz.

Corollary 7.3.8. When Y is an LC1 metrizable space, the following four condi-
tions for a map f W X ! Y are equivalent:

(a) f is a local1-connection;
(b) f is polyhedrally approximately soft;
(c) f is polyhedrally homotopically soft;
(d) f is a hereditary weak homotopy equivalence.

If Y is an LC1 paracompact space, conditions (a) and (b) are equivalent and
conditions (c) and (d) are equivalent. ut
Theorem 7.3.9. Let f W X ! Y be a local n-connection and Y be metrizable.
Then, Y is LCn.

Proof. Let y 2 Y and U be an open neighborhood of y in Y. Because f is a local
n-connection, we have an open neighborhood V of y such that fg ' 0 in U for
each map g W Si ! f �1.V /, where 0 � i � n. For 0 � i � n and for each
map h W Si ! V , let U D fV; Y n h.Si /g 2 cov.Y /. Since f is polyhedrally
homotopically n-soft by Theorem 7.3.6, we have a map g W Si ! X such that
fg 'U h, which means that fg ' h in V and g.Si / � f �1.V /. Since fg ' 0 in
U , it follows that h ' 0 in U . ut
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7.4 Fine Homotopy Equivalences Between ANRs

Recall that a map f W X ! Y is a fine homotopy equivalence if f has a U-
homotopy inverse g W Y ! X for each open cover U of Y , that is, gf 'f �1.U/ idX
and fg 'U idY.

Proposition 7.4.1. Let f W X ! Y be a fine homotopy equivalence and Y be
regular.

(1) If Y is locally contractible then f is a local -connection.
(2) If Y is LCn then f is a strong local n-connection.
(3) If Y is LC1 then f is a local1-connection.

Proof. Assertion (3) is a direct consequence of (2). The following is a proof of (1)
(resp. (2)).

For each y 2 Y and each open neighborhood U of y in Y , choose open
neighborhoodsV � W of y so that clW � U and V is contractible inW (resp.˛ '
0 inW for every map ˛ W Si ! V , 0 � i � n) and let U D fU; Y nclW g 2 cov.Y /.
Then, f has a U-homotopy inverse g W Y ! X . Observe that gf jf �1.V / ' id in
f �1.U /. On the other hand, gf jf �1.V / ' 0 in g.W / (gf ˛ ' 0 in g.W / for every
map ˛ W Si ! f �1.V /, 0 � i � n). Since fg.W / � st.W;U/ D U , it follows that
g.W / � f �1.U /. Therefore, f �1.V / is contractible in f �1.U / (˛ ' 0 in f �1.U /
for every map ˛ W Si ! f �1.V /, 0 � i � n). ut
Proposition 7.4.2. Let f W X ! Y be a fine homotopy equivalence and Y be
paracompact.

(1) If X is an ANR, then f is approximately soft.
(2) If both X and Y are ANRs, then f is homotopically soft.

Proof. Because (2) is a combination of (1) and Proposition 7.2.9(3), it suffices to
show (1).

Let Z be a metrizable space and g W C ! X be a map of a closed set C in
Z such that fg extends to a map h W Z ! Y . For each U 2 cov.Y /, let V be an
open star-refinement of U . We have a map k W Y ! X such that f k 'V idY and
kf 'f �1.V/ idX . Then, g 'f �1.V/ kfg D khjC .

X
f

Y

k

C

g

� Z

h
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By the Homotopy Extension Theorem 6.4.1, g can be extended to a map Qg W Z ! X

that is f �1.V/-homotopic to kh. Then, f Qg 'V f kh 'V h, so f Qg 'U h.4 ut
A fine homotopy equivalence between ANRs is characterized as follows:

Theorem 7.4.3. For a map f W X ! Y between ANRs, the following are
equivalent:

(a) f is a fine homotopy equivalence;
(b) f is approximately (= homotopically) soft;
(c) f is polyhedrally approximately (= homotopically) soft;
(d) f is a hereditary weak homotopy equivalence;
(e) f is a local1-connection;
(f) f is a local -connection.

Proof. In the following diagram of implications, the equivalence among (c), (d),
and (e) has been shown in Corollary 7.3.8. The implications (b) ) (c) and (f)
) (e) are trivial. The implications (a) ) (b) and (a) ) (f) have been shown in
Propositions 7.4.2 and 7.4.1, respectively. Thus, it remains to show the implication
(c)) (a).

(b)

(7.2.1)

(a)
(7.4.2) (7.4.1)

(f)

triv.

(c)
(7.3.8)

(d)
(7.3.8)

(e)

(c)) (a): For each U 2 cov.Y /, let V 2 cov.Y / such that st3 V 	 U . Since Y
is an ANR, we have a polyhedron PY with maps 'Y W Y ! PY and  Y W PY ! Y

such that  Y 'Y 'V idY , and apply (c) to obtain a map g W PY ! X such that
fg 'V  Y .

X
f

Y Y

'Y
PY

g

'V  Y
'V

Since fg'Y 'V  Y 'Y 'V idY , we have a stV-homotopy h W Y � I! Y such that
h0 D idY and h1 D fg'Y .

Choose W 2 cov.X/ so that

W 	 f �1.V/ and W 	 .g'Y f /�1.f �1.V//:

4It is not shown that f Qg 'U h rel.C .
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Because X is an ANR, we have a polyhedron PX with maps 'X W X ! PX and
 X W PX ! X such that  X'X 'W idX . We define a stV-homotopy � W PX � I!
Y and a map � W PX � f0; 1g ! X as follows:

�.x; t/ D h.f  X.x/; t/I �.x; 0/ D  X.x/; �.x; 1/ D g'Y f  X.x/:

Then, �jPX�f0; 1g D f �. Indeed, �.x; 0/ D h0f  X.x/ D f  X.x/ and �.x; 1/ D
h1 X.x/ D fg'Y f  X.x/.

X
f

Y

PX � f0; 1g

�

� PX � I

�

Q�

V

By (c), we can obtain an f �1.st2 V/-homotopy Q� W PX � I ! X that extends �.
Let Qh W X � I! X be the f �1.st2 V/-homotopy defined by Qh.x; t/ D Q�.'X.x/; t/.
Then,

Qh0 D Q�0'X D  X'X 'W idX and

Qh1 D Q�1'X D g'Y f  X'X 'g'Y f .W/ g'Y f:

Since W ; g'Y f .W/ 	 f �1.V/ and st3 V 	 U , it follows that g'Y f 'f �1.U/ idX .
ut

Since every open set in an ANR is an ANR, Theorem 7.4.3 yields the following
corollary:

Corollary 7.4.4. Let f W X ! Y be a fine homotopy equivalence between ANRs.
Then, for every open set U in Y , f jf �1.U / W f �1.U /! U is also a fine homotopy
equivalence. ut
Corollary 7.4.5. Let f W X ! Y be a fine homotopy equivalence between ANRs. If
A � Y is contractible in an open neighborhoodU in Y , then f �1.A/ is contractible
in f �1.U /.

Proof. By Corollary 7.4.4, f jf �1.U / W f �1.U / ! U has a homotopy inverse
g W U ! f �1.U /. Let h W f �1.U / � I ! f �1.U / be a homotopy with h0 D id
and h1 D gf jf �1.U /. On the other hand, we have a contraction k W A�I! U , that
is, k0 D id and k1 is constant. Then, we can define a contraction ' W f �1.A/� I!
f �1.U / as follows:

'.x; t/ D
(
h.x; 2t/ if t � 1=2,

gk.f .x/; 2t � 1/ if t � 1=2. �
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Due to Proposition 6.7.1, a subset X of a metrizable space Y is homotopy dense
in Y if and only if the inclusion X � Y is a fine homotopy equivalence. Applying
Theorem 7.4.3 to the inclusion X � Y , we have the following:

Corollary 7.4.6. Let X and Y be ANRs such that X is a dense subset of Y . Then,
the following are equivalent:

(a) X is homotopy dense in Y ;
(b) For each open set U in Y , the inclusion U \ X � U is a weak homotopy

equivalence, i.e., for each n 2 N, if a map ˛ W Sn�1 ! U \X extends to a map
ˇ W Bn ! U then ˛ extends to a map Q̨ W Bn ! U \ X such that Q̨ ' ˇ in U
rel. Sn�1;

(c) Every neighborhood U of each y in Y contains a neighborhood V of y in Y
such that every map ˛ W Sn�1 ! V \ X is null-homotopic in U \ X for each
n 2 N. ut

Now, we prove the following theorem:

Theorem 7.4.7. Let X and Y be ANRs and f D limi!1 fi W X ! Y be the
uniform limit of fine homotopy equivalences with respect to some d 2 Metr.Y /.
Then, f is also a fine homotopy equivalence.

Proof. According to Theorem 7.4.3, it suffices to show that f is a local 1-
connection. Since each fi .X/ is dense in Y , it follows that f .X/ is dense. Every
open neighborhood U of each y in Y contains an open neighborhood V of y such
that V is contractible in U . For each n 2 N, let ˛ W Sn ! f �1.V / be a map. Then,
f ˛ extends to a map ˇ W BnC1 ! U . Let

ı D dist.ˇ.BnC1/; Y n U / > 0:

Since Y is an ANR, the open cover fB.y; ı=6/ j y 2 Y g of Y has an h-refinement
V 2 cov.Y / (Corollary 6.3.5). Because f ˛.Sn/ is compact, we have " > 0 such
that fB.f ˛.x/; "/ j x 2 Sng 	 V . Indeed, find xi 2 Sn and "i > 0, i D 1; : : : ; k,
such that

fB.f ˛.xi /; 2"i / j i D 1; : : : ; kg 	 V and f ˛.Sn/ �
k[

iD1
B.f ˛.xi /; "i /:

Then, minf"i j i D 1; : : : ; kg > 0 is the desired " > 0. Choose i 2 N so that
fi is "-close to f , which implies that fi˛ 'ı=3 f ˛ D ˇjSn. By the Homotopy
Extension Theorem 6.4.1, fi˛ extends to a map ˇ0 W BnC1 ! Y such that ˇ0 'ı=3 ˇ.
Since fi is polyhedrally approximately soft by Theorem 7.4.3, ˛ extends to a map
Q̨ W BnC1 ! X such that d.fi Q̨ ; ˇ0/ < ı=3. Observe that

d.f Q̨ ; ˇ/ � d.f Q̨ ; fi Q̨ /C d.fi Q̨ ; ˇ0/C d.ˇ0; ˇ/ < ı:

Then, f Q̨ .BnC1/ � U , i.e., Q̨ .BnC1/ � f �1.U /. ut
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7.5 Hereditary Shape Equivalences and UV n Maps

Recall that ŒX; Y � is the set of the homotopy classes of maps from X to Y . For any
space P , a map h W X ! Y induces a function h� W ŒY; P � ! ŒX; P � defined by
h�.Œf �/ D Œf h� for each map f W Y ! P .

X
h

g
'

Y

f

P

Fact. For every space X , Y , Z, and P , the following statements hold:

(1) The identity idX W X ! X induces the identity idŒX;P � W ŒX; P � ! ŒX; P �, i.e.,
.idX/� D idŒX;P �.

(2) The composition h2h1 W X ! Z of two maps h1 W X ! Y and h2 W Y ! Z

induces the composition h�1 h�2 W ŒZ; P �! ŒX; P � of h�2 W ŒZ; P �! ŒY; P � and
h�1 W ŒY; P �! ŒX; P �, i.e., .h2h1/� D h�1 h�2 .

A map h W X ! Y is said to be a shape equivalence if the function h� W
ŒY; P �! ŒX; P � is a bijection for every ANR P , equivalently for every polyhedron
P (Corollary 6.6.5). Observe the following:

(i) Every homotopy equivalence is a shape equivalence.
(ii) The composition of shape equivalences is also a shape equivalence.

Remark 5. We do not give the definition that X and Y have the same shape type,
but it is not defined by the existence of a shape equivalence h W X ! Y . It should be
noted that if there is a shape equivalence h W X ! Y then X and Y have the same
shape, but the converse does not hold.

The following is easy to prove:

Proposition 7.5.1. The following are equivalent for a space X 6D ;:

(a) X has trivial shape;
(b) The map of X to the singleton f0g is a shape equivalence;
(c) For every x 2 X , the inclusion fxg ,! X is a shape equivalence:
(d) There is some x 2 X such that the inclusion fxg ,! X is a shape equivalence.

ut
Corollary 7.5.2. Let h W X ! Y be a shape equivalence. Then,X has trivial shape
if and only if Y has trivial shape. WhenX and Y are compacta,X is cell-like if and
only if Y is cell-like. ut

A map h W X ! Y is said to be a hereditary shape equivalence if hjh�1.A/ W
h�1.A/! A is a shape equivalence for any closed set A in Y . In this case, h.X/ D
Y and each fiber h�1.y/ has trivial shape. Then, every hereditary shape equivalence
is cell-like if it is perfect.
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Theorem 7.5.3. Every closed fine homotopy equivalence h W X ! Y between
metrizable spaces is a hereditary shape equivalence.

Proof. Let A be a closed set in Y and P be an ANR. Each map f W h�1.A/ ! P

extends to a map Qf W U ! P from an open neighborhood U of h�1.A/ in X .
Because h is a closed map, there is an open neighborhood V of A in Y such
that h�1.V / � U . Let V D fV; Y n Ag 2 cov.Y /. Since h is a fine homotopy
equivalence, it has a V-homotopy inverse g W Y ! X , i.e., hg 'V id and
gh 'h�1.V/ id. Observe that ghjh�1.A/ ' idh�1.A/ in h�1.V / � U . Then, we

have a map Qf gjA W A! P such that Qf ghjh�1.A/ ' Qf jh�1.A/ D f .
Now, let f0; f1 W A ! P be maps such that f0hjh�1.A/ ' f1hjh�1.A/. Since

P is an ANR, A has an open neighborhood W in Y with maps Qf0; Qf1 W W ! P

that are extensions of f0 and f1, respectively. Then, Qf0hjh�1.A/ ' Qf1hjh�1.A/.
We can choose an open neighborhood U of h�1.A/ in X so that U � h�1.W /
and Qf0hjU ' Qf1hjU . As before, there is an open neighborhood V of A in Y such
that V � W , h�1.V / � U , and h has a V-homotopy inverse g W Y ! X , where
V D fV; Y n Ag 2 cov.Y /. Since hgjA ' idA in V and g.A/ � h�1.V / � U , it
follows that

f0 D Qf0jA ' Qf0hgjA D . Qf0hjU /.gjA/
' . Qf1hjU /.gjA/ D Qf1hgjA ' Qf1jA D f1: �

A surjective map f W X ! Y is called a U V � map if each fiber f �1.y/ is
UV �; equivalently, each fiber f �1.y/ has trivial shape by Theorem 7.1.2.

• A perfect UV � map is the same as a cell-like map.

For n 2 ! [ f1; g, f W X ! Y is a U V n map if each fiber f �1.y/ is UV n. For a
closed surjective map f W X ! Y , ifX is an ANR, then the following equivalences
hold:

f is UV n , f is a strong local n-connection;

f is UV1 , f is a local1-connection;

f is UV � , f is a local -connection.

For closed surjective maps, we have the following version of Theorem 7.4.3:

Theorem 7.5.4. For a closed surjective map f W X ! Y between ANRs X and Y ,
the following are equivalent:

(a) f is a fine homotopy equivalence;
(b) f is a UV1 map (= a local1-connection);
(c) f is a UV � map (= a local -connection);
(d) f is a hereditary shape equivalence.
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If f is a perfect map, the following is also equivalent to the above:

(e) f is a cell-like map.

Proof. The equivalence among (a) through (c) has been obtained by Theorem 7.4.3.
The implication (a)) (d) has been shown in Theorem 7.5.3. Condition (d) implies
that each fiber f �1.y/ has trivial shape. Because X is an ANR, f is a closed UV �
map. Thus, we have (d)) (c). ut
Remark 6. Let X be the sin.1=x/-curve given at the beginning of Sect. 7.1 and
f D pr1jX W X ! Y D I, where pr1 W R2 ! R is the projection onto the
first factor. Then, f is cell-like (UV �) but not a (fine) homotopy equivalence nor
polyhedrally approximately 1-soft. Hence, in Theorem 7.5.4, it is essential thatX is
an ANR. Moreover, in general, a cell-like map is not a shape equivalence, hence it is
not a hereditary shape equivalence. Such examples will be given in Theorems 7.7.5
and 7.7.8.

Corollary 7.5.5. Let X , Y , and Z be ANRs. For each two cell-like maps f W X !
Y and g W Y ! Z, the composition gf W X ! Y is also a cell-like map.

Proof. It is easy to show that the composition of hereditary shape equivalences is
also a hereditary shape equivalence. Then, the result follows from Theorem 7.5.4.

ut
Remark 7. In general, the composition of cell-like maps is not cell-like. Such an
example will be seen in Remark 11 in Sect. 7.7.

The following proposition will be used in Sect. 7.7.

Proposition 7.5.6. For each map f W A ! Y of a closed set A in a metrizable
space X , let

h WMf [ .X � f1g/! Y [f X
be the map defined by hjMf D cf and h.x; 1/ D x for each x 2 X n A, where cf
is the collapsing of the mapping cylinder. Then, h is a shape equivalence.

Proof. First, we extend f to the map Qf W X ! Y [f X by Qf jX n A D id, that is,
Qf is the restriction of the natural quotient map from Y ˚ X onto Y [f X . Then,
Mf [ .X � f1g/ �M Qf and h D c Qf jMf [ .X � f1g/, where the collapsing c Qf is a
homotopy equivalence, and is therefore a shape equivalence.

Mf [ .X � f1g/

h

� M Qf

c
Qf

Y [f X
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A X n A

I

Mf

M
Qf

X n AY

X � f1g X � f1g
q

X � I

Fig. 7.1 Mf [ .X � f1g/ �M Qf

Since the composition of shape equivalences is a shape equivalence, it suffices to
show that the inclusion i WMf [ .X � f1g/ ,!M Qf is a shape equivalence, that is,

i� W ŒM Qf ; P �! ŒMf [ .X � f1g/; P �

is bijective for each ANR P . IdentifyingX nA D .X nA/� f0g, we can regard the
mapping cylinderM Qf as follows:

M Qf D Y [f ıprAjA�f0g .X � I/:

Let q W Y ˚ .X � I/!M Qf be the natural quotient map. See Fig. 7.1.
To show that i� is surjective, let p WMf [ .X � f1g/! P be a map. Regarding

' D pqjA� I as a homotopy such that '1 extends over X , we apply the Homotopy
Extension Theorem 6.4.1 to obtain a map Q' W X � I! P such that

Q'j.A � I/ [ .X � f1g/ D pqj.A � I/[ .X � f1g/:

Then, it follows that

Q'jA � f0g D pqjA � f0g D .pjY /f prAjA � f0g:

Thus, we have the map Qp W M Qf ! P such that QpjY D pjY and QpqjX � I D Q',
hence Qpi D QpjMf [ X � f1g D p.

Mf [ .X � f1g/

p

� M Qf
Qp

P Y ˚ .X � I/
p˚Q'

q

.A � I/ [ .X � f1g/

qj
pqj

� X � I

qjQ'
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A X n A

I

Mf � I

M
Qf � I

X n AY

r

X � f1g � I X � f1g � I
X � I� I

˘ D

Fig. 7.2
��
Mf [ .X � f1g/

� � I
�[ �M

Qf � f0; 1g
� �M

Qf � I

To show that i� is injective, let p; p0 W M Qf ! P such that pi ' p0i . Pasting p,
p0 and a homotopy from pi to p0i , we define a map  W D ! P on the set

D D ��Mf [ .X � f1g/
�� I

� [ �M Qf � f0; 1g
�
;

which is regarded as the adjunction space .Y � I/ [ Lf ˘ , where

˘ D .A � I � I/[ .X � f1g � I/[ .X � I � f0; 1g/ � X � I � I and

Lf D .f ı prAjA � f0g/� idI W A � f0g � I! Y � I:

We make the following identification:

M Qf � I D .Y � I/ [ Lf .X � I � I/;

where the natural quotient map is denoted by

r D q � idI W .Y � I/˚ .X � I � I/ D �Y ˚ .X � I/
� � I!M Qf � I:

Then, r..Y � I/˚˘/ is the domain of  . — Fig. 7.2.
Now, we regard the map  r j.A � I � I/ [ .X � I � f0; 1g/ as a homotopy that

realizes

 r j.A � f0g � I/[ .X � f0g � f0; 1g/
'  r j.A � f1g � I/[ .X � f1g � f0; 1g/:

Since  r j.A� f1g� I/[ .X � f1g� f0; 1g/ extends overX � f1g� I, we apply the
Homotopy Extension Theorem 6.4.1 to obtain a map ' W X � I � I! P such that
'j˘ D  r j˘ . Then, it follows that

'jA� f0g � I D  r jA � f0g � I D . jY / Lf :
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Therefore, we have the homotopy Q WM Qf � I! P such that Q r D '.

M Qf � f0; 1g � D

 

� M Qf � I

Q 

P .Y � I/˚ .X � I � I/
 j˚'

r

X � I � f0; 1g � ˘

r j
 r j

� X � I � I

r j'

Since Q jM Qf � f0; 1g D  jM Qf � f0; 1g, Q is a homotopy realizing p ' p0. ut

7.6 The Near-Selection Theorem

Recall that X has Property C if, for any open covers Un of X , n 2 N, X has an
open cover V D S

n2N Vn such that each Vn is pairwise disjoint and Vn 	 Un
(see Sect. 6.10). Every countable-dimensional metrizable space has Property C
(Proposition 6.10.4).

Theorem 7.6.1 (HAVER’S NEAR-SELECTION THEOREM). Let X be a -com-
pact metrizable space with Property C, Y D .Y; d/ be a metric ANR, and ' W
X ! Comp.Y / be a continuous set-valued function such that each '.x/ is cell-
like. For each map ˛ W X ! .0;1/, there exists a map h W X ! Y such that
d.h.x/; '.x// < ˛.x/ for every x 2 X .

Proof. We may assume that X is a metric space. Let X D S
n2NXn, where X1 �

X2 � � � � are compact. We can inductively choose ın > 0 so that ın � 2�n�3 and
N.'.x/; 2ın/ is contractible in N.'.x/; ın�1/ for each x 2 Xn, where ı0 D 2�3.
Indeed, assume that ın�1 > 0 is chosen. Because '.x/ is compact and UV �, we
have ıx > 0 such that N.'.x/; ıx/ is contractible in N.'.x/; ın�1=2/, where ıx �
ın�1=2. Since ' is continuous, each x 2 Xn has an open neighborhood Vx such that
dH.'.x/; '.x

0// < ıx=2 for any x0 2 Vx . Observe that x0 2 Vx implies

N.'.x0/; ıx=2/ � N.'.x/; ıx/ and N.'.x/; ın�1=2/ � N.'.x0/; ın�1/:

By the compactness of Xn, we have x1; : : : ; xk 2 Xn such that Xn � Sk
iD1 Vxi .

Then, 1
2

minfıxi =2 j i D 1; : : : ; kg > 0 is the desired ın > 0.
By the continuity of ' and the compactness ofXn, we can take "1 > "2 > � � � > 0

such that if x 2 Xn and x0 2 X with d.x; x0/ < 2"n then dH.'.x/; '.x0// < ın,
that is, '.x/ � N.'.x0/; ın/ and '.x0/ � N.'.x/; ın/.
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We will construct collectionsV1, V2, . . . of open sets inX satisfying the following
conditions:

(1) V D Si2N Vi 2 cov.X/;
(2) Each Vi is pairwise disjoint;
(3) meshVi < "i ;
(4) Each open set in Vi meets Xi ;
(5) ˛.x/ > 2�i�1 for x 2 SVi ;
(6) Vi \ Vj D ; if i 6D j .

Let k W N2 ! N be a bijection such that k.i; n/ � i for every .i; n/ 2 N
2 (e.g.,

k.i; n/ D 2n�1.2i �1/ � i ). Without loss of generality, we can assume that ˛.x/ �
1 for all x 2 X . For each i; j 2 N, let

Xi;j D Xi \ ˛�1.Œ2�j ; 2�jC1�/:

Since each Xi;j has Property C by Lemma 6.10.3, we have collections Vj;k.i;n/,
n 2 N, of open sets in

˛�1
�
.2�j � 2�j�2; 2�jC1 C 2�j�2/�

such that
S
n2N Vj;k.i;n/ coversXi;j , each Vj;k.i;n/ is pairwise disjoint, and

meshVj;k.i;n/ < "jC2k.i;n/�2:

It can be assumed that the open sets of Vj;k.i;n/ meet Xi;j , so they meet XjC2k.i;n/�2
because Xi;j � Xi � XjC2k.i;n/�2. Then, the following conditions hold:

(7)
S
m2N Vj;m covers ˛�1.Œ2�j ; 2�jC1�/;

(8) Each Vj;m is pairwise disjoint;
(9) meshVj;m < "jC2m�2;

(10) Every open set of Vj;m meets XjC2m�2;
(11) Every open set of Vj;m is contained in

˛�1
�
.2�j � 2�j�2; 2�jC1 C 2�j�2/�:

We define Vi as follows:

V2i�1 D
i[

mD1
V2i�2mC1;m and V2i D

i[

mD1
V2i�2mC2;m:

For j;m 2 N, let n D jC2m�2. If n D 2i�1 then j D n�2mC2 D 2i�2mC1,
and if n D 2i then j D n � 2m C 2 D 2i � 2m C 2. Consequently, Vj;m � Vn.
Therefore, (1) follows from (7); (2) follows from (8) and (11); (3) follows from (9);
(4) follows from (10); (5) follows from (11). By replacing Vn with Vn nSi<n Vi ,
condition (6) is satisfied without failing the other conditions.
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Let K be the nerve of V D S
i2N Vi 2 cov.X/ with p W X ! jKj a canonical

map. For each V 2 Vi , take xV 2 V \ Xi (cf. (4)) and yV 2 '.xV /. Then, we have
a contraction

rV W N.'.xV /; 2ıi / � I! N.'.xV /; ıi�1/

such that rV1 .N.'.xV /; 2ıi // D fyV g (rV0 D id). For each n-simplex  2 K , let
V./ 2 Vi./ be the vertex of  such that i./ D minfi 2 N j .0/ \ Vi 6D ;g
(cf. (2)), and let 0 be the .n� 1/-face of  with V./ 62 0. For each n 2 N, let

Kn D
˚
 2 K ˇ

ˇ .0/ �Sn
iD1 Vi

�
:

Then,K D Sn2NKn.
We will inductively construct maps gn W jKnj ! Y , n 2 N, such that

gnjjKn�1j D gn�1 and, for  2 Kn, t 2 I, and z 2 0,
() gn..1 � t/zC tV .// D rV./.gn.z/; t/ 2 N.'.xV.//; ıi./�1/.

Since K1 D K
.0/
1 D V1 by (2), we can first define g1 W jK1j ! Y by g1.V / D yV

for each V 2 V1. Suppose that g1; : : : ; gn�1 have been defined. For j � n, let

Kn;j D
˚
 2 K ˇ

ˇ .0/ �Sn
iDj Vi

� � Kn:

Observe that Kn;n D K
.0/
n;n D Vn by (2), Kn;j � Kn;j�1, and Kn D Kn;1. We

define gn;n W jKn;nj ! Y by gn;n.V / D yV for each V 2 Vn. Now, suppose that
gn;i W jKn;i j ! Y , i > j , have been defined such that

(12) gn;i jjKn;iC1j D gn;iC1;
(13) gn;i jjKn�1;i j D gn�1jjKn�1;i j;
(14) gn;i ./ � N.'.xV.//; ıi./�1/ for  2 Kn;i ;
(15) gn;i satisfies () for  2 Kn;i , t 2 I, and z 2 0.
For each  2 Kn;j n Kn;jC1, V./ 2 Vj and 0 2 Kn;jC1. By the inductive
hypothesis on gn;jC1,

gn;jC1.0/ � N.'.xV.0//; ıi.0/�1/ � N.'.xV.0//; ıj /:

On the other hand, since V.0/ \ V./ 6D ;, it follows that

d.xV.0/; xV.// � diamV.0/C diamV./ < "i.0/ C "j < 2"j :

Since xV./ 2 Xj , we have '.xV.0// � N.'.xV.//; ıj /, hence gn;jC1.0/ �
N.'.xV.//; 2ıj /. Then, gn;jC1 can be extended to the map gn;j W jKn;j j ! Y by

gn;j ..1� t/zC tV .// D rV./.gn;jC1.z/; t/ 2 N.'.xV.//; ıj�1/

for  2 Kn;j nKn;jC1, t 2 I and z 2 0,
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where j D i./. Then, gn;j satisfies (12), (14), and (15) by definition. Since gn�1
satisfies (), it follows that gn;j jjKn�1;j j D gn�1jjKn�1;j j, i.e., (13) is also satisfied.
By downward induction on j , we can obtain the map gn D gn;1 W jKnj D jKn;1j !
Y that extends gn�1 and satisfies ().

Now, let g W jKj ! Y be the map defined by gjjKnj D gn. For each x 2 X ,
let  2 K be the carrier of p.x/. Since p is a canonical map for the nerve K of
V , we have x 2 V./ 2 Vi./, hence d.x; xV.// � meshVi./ < "i./ by (3) and
˛.x/ > 2�i./�1 by (5). Since xV./ 2 Xi./, it follows that

gp.x/ 2 g./ � N.'.xV.//; ıi./�1/

� N.N.'.x/; ıi.//; ıi./�1/ � N.'.x/; 2ıi./�1/:

Therefore, we have

d.gp.x/; '.x// < 2ıi./�1 � 2�i./�1 < ˛.x/:

Thus, gp W X ! Y is the desired map. ut

7.7 The Suspensions and the Taylor Example

In this section, using a K-theory result of J.F. Adams, we will construct the
Taylor example, that is, a compactum that is not cell-like but has the Hilbert cube
Q D Œ�1; 1�N as its cell-like image. Moreover, using the Taylor example, we will
construct a cell-like map of Q onto a compactum that is not an ANR. Here, we use
the TORUŃCZYK CHARACTERIZATION OF THE HILBERT CUBE:5

Theorem 7.7.1 (TORUŃCZYK). A space X is homeomorphic to the Hilbert cube
Q if and only if X is a compact AR that has the disjoint cells property, that is,
for each n 2 N, each pair of maps f; g W In ! X can be approximated by maps
f 0; g0 W In ! X with disjoint images, i.e., f 0.In/ \ g0.In/ D ;. ut

The suspension ˙X of a spaceX is the following quotient space of Œ�1; 1��X :

˙X D Œ�1; 1� �X=ff�1g �X; f1g �Xg;
where f�1g �X and f1g �X are regarded as two distinct points. Let qX W Œ�1; 1��
X ! ˙X be the quotient map. For each map f W X ! Y , there exists a unique
map˙f W ˙X ! ˙Y such that qY ı .id� f / D .˙f / ı qX , that is, the following
diagram is commutative:

5For this proof, refer to van Mill’s book “Infinite-Dimensional Topology” mentioned in the Preface.
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Œ�1; 1� �X
qX

id�f
Œ�1; 1� � Y

qY

˙X
˙f

˙Y:

It should be noted that ˙ idX D id˙X and ˙g˙f D ˙.gf / for each pair of maps
f W X ! Y and g W Y ! Z.

Observe that the suspension˙X is the union of two cones

I �X=f1g �X and Œ�1; 0� �X=f�1g �X:
Since the cone over a compact ANR is an AR by Corollary 6.5.5, the next
proposition follows from 6.2.10(5)

Proposition 7.7.2. For every compact ANR X , the suspension˙X is an ANR. ut
Proposition 7.7.3. For each cell-like compactum X , the suspension ˙X is also
cell-like.

Proof. Embed X into the Hilbert cube Q. Then, it suffices to prove that ˙X is
cell-like in ˙Q. Let qQ W Œ�1; 1� � Q ! ˙Q be the quotient map. For each
neighborhood U of ˙X in ˙Q, we can choose a neighborhood V of X in Q

so that qQ.Œ�1; 1� � V / � U . Since X is cell-like in Q, there is a contraction
h W X � I! V , which induces the homotopy

Qh W ˙X � I! qQ.Œ�1; 1� � V / � U
such that Qht D ˙ht for each t 2 I. Then, Qh0 D id and Qh1.˙X/ D h1.X/�Œ�1; 1� �
Œ�1; 1�, which implies that ˙X is contractible in U . Consequently,˙X is cell-like
in ˙Q. ut
Proposition 7.7.4. Let X D lim �.Xi ; fi / be the inverse limit of an inverse sequence
.Xi ; fi /i2N of compacta with pi W X ! Xi , i 2 N, the projections of the inverse
limit. Then, there exists the unique homeomorphism h W ˙X ! lim �.˙Xi ;˙fi /
such that qih D ˙pi for each i 2 N, where each qi W lim �.˙Xi ;˙fi / ! ˙Xi is
the inverse limit projection.

Proof. Let qX W Œ�1; 1� �X ! ˙X and qXi W Œ�1; 1� �Xi ! ˙Xi , i 2 N, be the
quotient maps. For .t; x/ 2 Œ�1; 1� �X and i 2 N,

.˙fi /qXiC1
.t; x.i C 1// D qXi .t; fi .x.i C 1/// D qXi .t; x.i//:

Then, we can define a map h W ˙X ! lim �.˙Xi ;˙fi / as follows:

hqX.t; x/ D
�
qXi .t; x.i//

�
i2N D

�
.˙pi /qX.t; x/

�
i2N;



7.7 The Suspensions and the Taylor Example 455

which means that qih D ˙pi for each i 2 N. The uniqueness of the map h follows
from the last condition.6 We will show that h is bijective, which implies that h is a
homeomorphism because ˙X is compact.

Œ�1; 1� �X
qX

id�pi

˙X
h

˙pi

lim �.˙Xi ;˙fi /

qi

� Q
i2N˙Xi

Œ�1; 1� �Xi
qXi

˙Xi

To prove that h is surjective, let .qXi .ti ; xi //i2N 2 lim �.˙Xi ;˙fi /. For each
i 2 N,

qXi .ti ; xi / D .˙fi /qXiC1
.tiC1; xiC1/ D qXi .tiC1; fi .xiC1//;

which implies that t1 D t2 D � � � D t . If t 6D ˙1 then fi .xiC1/ D xi for every
i 2 N. When t D ˙1, we may assume that fi .xiC1/ D xi . Then, x D .xi /i2N 2 X .
It follows that hqX.t; x/ D .qXi .ti ; xi //i2N.

To show that h is injective, let .t; x/; .t 0; x0/ 2 Œ�1; 1� � X and assume that
hqX.t; x/ D hqX.t 0; x0/. For each i 2 N,

qXi .t; pi .x// D qihqX.t; x/ D qihqX.t 0; x0/ D qXi .t 0; pi .x0//:

Then, we have t D t 0. If t D t 0 D ˙1 then qX.t; x/ D qX.t
0; x0/. When t D t 0 6D

˙1, it follows that pi .x/ D pi .x
0/ for every i 2 N, which means x D x0, hence

qX.t; x/ D qX.t 0; x0/. ut
For each n 2 N, the n-fold suspension ˙nX is inductively defined by ˙nX D

˙.˙n�1X/, where˙0X D X . For a map f W X ! Y , let

˙nf D ˙.˙n�1f / W ˙nX D ˙.˙n�1X/! ˙nY D ˙.˙n�1Y /;

where ˙0f D f . The twofold suspension ˙2X is also called the double
suspension. Observe

˙2X D Œ�1; 1�2 �X=˚f˙1g � Œ�1; 1� �X; f.t;˙1/g �X ˇ
ˇ �1 < t < 1g�

D ˙Œ�1; 1� �X=˚fzg �X ˇ
ˇ z 2 @˙Œ�1; 1��;

where˙Œ�1; 1� � B2 and

@˙Œ�1; 1� D ˚f˙1g � Œ�1; 1�� [ �.�1; 1/� f˙1g� � S1:

6We can apply Theorem 4.10.6 to show the existence and the uniqueness of h.
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Furthermore, regarding Œ�1; 1� D ˙f0g, we can write ˙Œ�1; 1� D ˙2f0g. Then,
we can also write

˙2X D ˙2f0g �X=˚fzg �X ˇ
ˇ z 2 @˙2f0g�:

By induction, we can show that

˙nX D ˙nf0g �Xı˚fzg �X ˇ
ˇ z 2 @˙nf0g�;

where @˙nf0g is the boundary .n � 1/-sphere of ˙nf0g � Bn. Indeed, assume the
above equality holds. Then, it follows that

˙nC1X D ˙�˙nX
�

D ˙�˙nf0g �Xı˚fzg �X ˇ
ˇ z 2 @˙nf0g��

D Œ�1; 1� �˙nf0g �Xı˚f˙1g �˙nf0g �X;
ftg � fzg �X ˇ

ˇ �1 < t < 1; z 2 @˙nf0g�

D ˙nC1f0g �Xı˚fzg �X ˇ
ˇ z 2 @˙nC1f0g�;

where the last equality comes from the following facts:

˙nC1f0g D Œ�1; 1� �˙nf0gı˚f˙1g �˙nf0g� and

@˙nC1f0g D ˚f˙1g �˙nf0g�[ �.�1; 1/� @˙nf0g�:

As we have just seen, the n-fold suspension ˙nX is the quotient space of
˙nf0g � X , where the quotient map is denoted by qnX W ˙nf0g � X ! ˙nX .
For each map f W X ! Y , the map ˙nf W ˙nX ! ˙nY is induced by the
map id � f W ˙nf0g � X ! ˙nf0g � Y , i.e., ˙nf is defined by the following
commutative diagram:

˙nf0g �X
qnX

id�f
˙nf0g � Y

qnY

˙nX
˙nf

˙nY

Remark 8. Since ˙nf0g � In, we can regard

˙nX D In �Xı˚fzg �X ˇ
ˇ z 2 @In

�
:

In this case, ˙m˙nX � ˙mCnX but ˙m˙nX 6D ˙mCnX because
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˙mCnX D ImCn �Xı˚fzg �X ˇ
ˇ z 2 @ImCn

�
but

˙m˙nX D ImCn �Xı˚fyg � In �X; fy0g � fzg �X ˇ
ˇ

y 2 @Im; y0 2 Im n @Im; z 2 @In
�
:

In his paper [1] (References in Notes for Chap. 7), Adams constructed a compact
polyhedron A with a map ˛ W ˙rA ! A from the r-fold suspension of A onto A
such that every composition

˛ ı˙r˛ ı � � � ı˙.i�1/r˛ W ˙irA! A

is essential, i.e., it is not null-homotopic. Using this map, we can construct a cell-like
map that is not a shape equivalence, which is the subject of the following theorem:

Theorem 7.7.5 (TAYLOR). There exists a cell-like map f W X ! Q of a
compactum X onto the Hilbert cube Q such that X is not cell-like, that is, f is
not a shape equivalence, where X is homeomorphic to the r-fold suspension˙rX .

Proof. Let X be the inverse limit of the inverse sequence:

A ˙rA
˛

˙2rA
˙r˛ � � �˙2r˛

where A is the compact polyhedron with the map ˛ W ˙rA ! A constructed by
Adams. Let 
i W X ! ˙.i�1/rA, i 2 N, be the inverse limit projections, where
˙0A D A. If X is cell-like, then 
1 ' 0 by Theorem 7.1.8. Note that every ˙irA

is an ANR by Proposition 7.7.2. Applying Lemma 7.1.7 (both (1) and (2)), we can
find some j 2 N such that

˛ ı˙r˛ ı � � � ı˙.j�1/r˛ ' 0;

which is a contradiction. Thus, X is not cell-like. Moreover, by Proposition 7.7.4,
˙rX is homeomorphic to the inverse limit of

˙rA ˙2rA
˙r˛

˙3rA
˙2r˛ � � � ;˙3r˛

hence˙rX � X (Corollary 4.10.4).
We regard ˙irA as the quotient space of ˙irf0g � A with the quotient map

qirA W ˙irf0g�A! ˙irA such that qirA .fzg�A/ is a singleton for each z 2 @˙irf0g.
Let fi W ˙irA! ˙irf0g be the map induced by the projection of ˙irf0g � A onto
˙irf0g. Because˙.iC1/rf0g D ˙ir˙rf0g is the quotient space of˙irf0g �˙rf0g,
we have the map

'i W ˙.iC1/rf0g D ˙ir˙r f0g ! ˙irf0g;
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which is induced by the projection of˙ir f0g�˙rf0g onto˙irf0g, that is, the map
'i is defined by the following commutative diagram:

˙irf0g �˙rf0g
pr˙ir f0g

qir
˙r f0g

˙irf0g ˙ir˙r f0g D ˙.iC1/rf0g
'i

In the above, pr˙irf0g is a fine homotopy equivalence. Since qir
˙r f0g is cell-like, it

is also a fine homotopy equivalence. By Proposition 6.7.4, 'i is a fine homotopy
equivalence. On the other hand, we have the embedding i W ˙irf0g ! ˙.iC1/rf0g
defined by  i.x/ D qir˙r f0g.x; 0/. Therefore, 'i i D id.

By diagram chasing, we can see fi˙ir˛ D 'ifiC1. In the diagram below, the
circumference and the upper right square commute. Moreover, q.iC1/rA .qi rf0g�id/ D
qir˙rA.id � q1/ is surjective. Hence, the botom rectangle also commutes.

˙irf0g �˙r f0g � A
id�qrA

qir
˙r f0g

�id

˙ir˙r f0g � A

˙irf0g � A
qirA

pr˙ir f0g

˙irf0g �˙rA
id�˛

qir
˙r A

˙.iC1/rf0g �A

q
.iC1/r
A

pr
˙.iC1/r

f0g˙irA

fi

˙ir˙rA
˙ir˛

˙.iC1/rA

fiC1

˙irf0g ˙.iC1/rf0g
'i

Thus, we have the following commutative diagram:

A ˙rA

f1

˛

˙2rA

f2

˙r˛

˙3rA

f3

˙2r˛ � � �˙3r˛

˙rf0g ˙2r f0g
'1

˙3r f0g
'2

� � �
'3
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Let Y D lim �˙
irf0g be the inverse limit of the bottom sequence and pi W Y !

˙irf0g, i 2 N, the inverse limit projections. Then, we have the map f D lim � fi W
X ! Y defined by the maps fi . It remains to show that Y �Q and f W X ! Y is
cell-like.

To show Y � Q, we use the Toruńczyk characterization of Q (Theorem 7.7.1).
As observed in the above, each bonding map 'i is a fine homotopy equivalence,
hence Y is a compact AR by Theorem 6.7.8. Recall that there are embeddings  i W
˙irf0g ! ˙.iC1/rf0g, i 2 N, such that 'i i D id. We can define an embedding
N i W ˙irf0g ! Y , i 2 N, as follows:

N i.x/ D .'1;i .x/; : : : ; 'i�1;i .x/; x;  i;iC1.x/;  i;iC2.x/; : : : /;
where 'j;i D 'j � � �'i�1 for j < i and  i;j D  j�1 � � � i for j > i . Then,
pi N i D id for each i 2 N and limi!1 N ipi D idY . Since ˙irf0g � Iir for each
i 2 N, we can apply Theorem 5.8.1 to see that Y has the disjoint cells property, that
is, for each n 2 N and U 2 cov.Y /, each pair of maps f; g W In ! Y are U-close to
map f 0; g0 W In ! Y with f 0.In/ \ g0.In/ D ;. By the Toruńczyk characterization
of the Hilbert cube, we have Y �Q.

To prove that f is cell-like, let y D .yi /i2N 2 Y D lim �˙
irf0g. Consider the

following commutative diagram:

˙r f0g �A

[

˙2r f0g � A
id�˛qrA

[

˙3rf0g � A
id�˛qrA

[

� � �
id�˛qrA

fy1g � A
q1

fy2g � A
q2

fy3g � A
q3

� � �

f �11 .y1/

\

f �12 .y2/

\

f �13 .y3/

\

� � �

˙rA ˙2rA
˙r˛

˙3rA
˙2r˛

� � �
˙3r˛

The inverse limit of the third sequence is f �1.y/. Recall that X D lim �˙
irA is a

subspace of the product space
Q
i2N˙irA. For each neighborhood U of f �1.y/

in
Q
i2N˙irA, we will show that f �1.y/ is contractible in U , which implies that

f �1.y/ is cell-like by Theorem 7.1.2.
For each j 2 N, let

Yj D
˚
x 2 Qi�j ˙irA

ˇ
ˇ x.j / 2 f �1j .yj /;

8i < j; x.i/ D �˙ir˛ ı � � � ı˙.j�1/r˛
�
.x.j //

�
:
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Then, Yj �Qi>j ˙
irA is compact and

f �1.y/ D
\

j2N

 

Yj �
Y

i>j

f �1i .yi /

!

D
\

j2N

 

Yj �
Y

i>j

˙irA

!

� U �
Y

i2N
˙irA:

Hence, we can find j 2 N such that Yj �Qi>j ˙
irA � U . For each i > j , f �1i .yi /

is contractible in ˙irA. Indeed, recall

˙irA D .˙ir f0g �A/ı˚fzg � A ˇˇ z 2 @˙irf0g�:

Then, f �1i .yi / is a singleton if yi 2 @˙ir f0g. When yi 2 ˙irf0g n @˙ir f0g, take
a path � W I ! ˙irf0g from �.0/ D yi to �.1/ 2 @˙ir f0g and define a homotopy
h W fyig � A � I ! ˙irf0g � A by h.yi ; x; t/ D .�.t/; x/. Then, h induces a
contraction Qh of f �1i .yi / in ˙irA:

fyi g � A � I

qi�id

h

˙irf0g � A
qi

f �1i .yi / � I
Qh

˙irA

It follows that YjC1 �Qi>jC1 f �1i .yi / is contractible in Yj �Qi>j ˙
irA, which

implies that f �1.y/ is contractible in U . Therefore, f �1.y/ is cell-like. ut
Remark 9. In the above proof, as mentioned in Remark 8, we can regard

˙nA D In �Aı˚fzg � A ˇˇ z 2 @In
�
:

In this case, recall that˙ir˙rA 6D ˙.iC1/rA. For each i 2 N, the projection of Iir�
A onto Iir induces the map fi W ˙irA ! Iir . In the literature explaining Taylor’s
example (as in Taylor’s original paper [21], References in Notes for Chap. 7), the
map f W X ! Q is constructed using the following diagram:

A ˙rA

f1

˛

˙2rA

f2

˙r˛

˙3rA

f3

˙2r˛ � � �˙3r˛

Ir I2r
pr

I3r
pr

� � �
pr
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However, the domain of the map ˙ir˛ is ˙ir˙rA, which is not ˙.iC1/rA.
If ˙ir˙rA is identified with ˙.iC1/rA by a homeomorphism then the above
diagram is not commutative. Although ˙ir˙rA can be regarded as the quotient
space of I.iC1/r �A, the projection of I.iC1/r �A onto I.iC1/r does not induce a map
of ˙ir˙rA onto I.iC1/r .

Remark 10. We can also regard

˙nA D Bn � Aı˚fzg � A ˇˇ z 2 Sn�1
�
:

As above, ˙.iC1/rA 6D ˙ir˙rA. For each i 2 N, the projection of Bir � A onto
Bir induces the map fi W ˙irA ! Bir . Then, we can construct a homeomorphism
N�i W ˙ir˙rA! ˙irA so that the following diagram commutes:

˙irA

fi

˙ir˙rA
˙ir˛ N�i

�
˙.iC1/rA

fiC1

Bir B.iC1/r
prBi r

In fact, we have a surjective map �i W Bir � Br ! B.iC1/r defined by

�i .y; z/ D
�
y;
p
1 � kyk2z� for each .y; z/ 2 Bir � Br .

Then, �i j.Bir n Sir�1/ � Br is injective,

��1i .S.iC1/r�1/ D .Sir�1 � Br /[ .Bir � Sr�1/;

��1i .�i .y// D ��1i .y; 0/ D fyg � Br for each y 2 Sir�1

and �i is Bir -preserving, that is, the following diagram commutes:

Bir � Br

prBi r

�i

B.iC1/r

prBi r j
Bir

Observe

˙ir˙rA D Bir � Br � Aı˚fyg � Br �A; fy0g � fzg � A ˇˇ
y 2 Sir�1; y0 2 Bir n Sir�1; z 2 Sr�1

�

D Bir � Br � Aı˚��1i .z/ �A ˇˇ z 2 S.iC1/r
�
:
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Then, �i � idA induces the desired homeomorphism N�i W ˙ir˙rA ! ˙.iC1/rA.
Indeed, let qnX W Bn �X ! ˙nX be the quotient map. Then, the following diagram
commutes:

Bir � Br � A
�i�idA

idBi r�qrA

Bir � A

prBi r

qirA

Bir �˙rA
idBi r�˛

qir
˙r A

B.iC1/r � A
q
.iC1/r
A

prB.iC1/r˙irA

fi

˙ir˙rA
˙ir˛ �i

�
˙.iC1/rA

fiC1

Bir B.iC1/r
prBi r

In this case, Y is defined as the inverse limit of the inverse sequence

Br B2r
prBr

B3r
prB2r � � �

prB3r

However, it is not trivial that Y is homeomorphic to Q.

Remark 11. Using the Taylor example, we can prove that the composition of cell-
like maps is not a cell-like map in general. In fact, the composition c ıf W X ! f0g
of the constant map c W Q ! f0g and Taylor’s cell-like map f W X ! Q is not a
cell-like map.

It should be noted that Taylor’s cell-like map is not a shape equivalence by
Corollary 7.5.2. Thus, in general, a cell-like map need not be a shape equivalence
but we do have the following theorem:

Theorem 7.7.6. Let f W X ! Y be a cell-like map between metrizable spaces. If
f �1.y/ is a singleton except for finitely many y 2 Y , then f is a hereditary shape
equivalence.

In this theorem, Y � X=ff �1.y1/; : : : ; f �1.yk/g for some finite y1; : : : ; yk 2
Y . Since the composition of shape equivalences is a shape equivalence, this theorem
can be easily reduced to the following special case:

Theorem 7.7.7. For each cell-like compactum A in a metrizable space X , the
quotient map p W X ! X=A is a shape equivalence.

Proof. In Proposition 7.5.6, when Y is a singleton, we can identify Y [f X D X=A
andMf D A� I=A� f0g, whereMf [ .X � f1g/ can be regarded as the following
space:

Z D .A � I=A � f0g/[ .X � f1g/:
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A

X

I
h

A� I=A � f0g

g0

g

Fig. 7.3 Extending a homotopy h W gi ' g0i

Then, we have a shape equivalence h W Z ! X=A such that hi D q, where
i.x/ D .x; 1/ for each x 2 X . Thus, it suffices to show that i W X ! Z is a
shape equivalence, i.e., i� W ŒZ; P �! ŒX; P � is bijective for each ANR P .

Let f W X ! P be a map. According to Theorem 7.1.2, A has trivial shape,
hence f jA ' 0. Then, we have a map Qf W A�I=A�f0g ! P such that Qf i jA D f ,
which extends to a map g W Z ! P such that gi D f . Therefore, i� is surjective.

To show that i� is injective, let g; g0 W Z ! P be maps with a homotopy h W
X � I! P such that h0 D gi and h1 D g0i . Observe that

.A � f1g � I/[ ..A � I=A � f0g/� f0; 1g/ � ˙A;

which is cell-like by Proposition 7.7.3, so it has trivial shape by Theorem 7.1.2.
Regarding .A � I=A � f0g/ � I as the cone over the above space, we know that
.A � I=A � f0g/ � I is contractible. Then, we can apply the Homotopy Extension
Theorem 6.4.1 to obtain a map

h0 W .A � I=A � f0g/� I! P

such that h0.x; 1; t/ D h.x; t/ for each x 2 A and t 2 I, h0.z; 0/ D g.z/ and
h0.z; 1/ D g0.z/ for each z 2 A � I=A � f0g. Then, h0 extends to a homotopy
Qh W Z � I! P such that Qhi D h, hence Qh0 D g and Qh1 D g0. — Fig. 7.3. ut

Using the Taylor example, we can also obtain the following theorem:

Theorem 7.7.8. There exists a cell-like map g WQ! Y of the Hilbert cube Q onto
a compactum Y that is not cell-like, which means that g is not a shape equivalence.

Proof. Let Q0 and Q1 be copies of Q, f W X ! Q0 be Taylor’s cell-like map
obtained in Theorem 7.7.5, and embed X into Q1. We define Y D Q0 [f Q1. The
quotient map g W Q1 ! Y is cell-like. Indeed, for each y 2 Y , if y 2 Q1 n X then
g�1.y/ D fyg, and if y 2 Q0 then g�1.y/ D f �1.y/ is cell-like.

Assume that Y is cell-like. Because we have a shape equivalence h WMf [.Q1�
f1g/! Y by Proposition 7.5.6, it follows from Corollary 7.5.2 thatMf [.Q1�f1g/
is cell-like. On the other hand, the natural map



464 7 Cell-Like Maps and Related Topics

q WMf [ .Q1 � f1g/! .Mf [ .Q1 � f1g//=fQ0;Q1 � f1gg � ˙X

is a shape equivalence by Theorem 7.7.6. Hence, ˙X is also cell-like. Using
Proposition 7.7.3 inductively, it follows that ˙rX is cell-like. But ˙rX � X is
not cell-like, which is a contradiction. Thus, Y is not cell-like. ut

7.8 The Simplicial Eilenberg–MacLane Complexes

For each n 2 N, �n.Sn/ 6D f0g by the No Retraction Theorem 5.1.5. In fact, it is
known that �n.Sn/ is an infinite cyclic group generated by ŒidSn �, that is, �n.Sn/ Š
Z. It follows from Theorem 5.2.3 that �m.Sn/ D f0g form < n, and it is known that
�m.S1/ D f0g for any m > 1. However, for each n > 1, there is some m > n such
that �m.Sn/ 6D f0g. For instance, �3.S2/ Š Z. For these facts, refer to any textbook
on Homotopy Theory or Algebraic Topology.

There exists a space K.Z; n/ such that

�n.K.Z; n// Š Z and �m.K.Z; n// D f0g if m 6D n.

Such a space K.Z; n/ is called the Eilenberg–MacLane space (of type .Z; n/),
which is unique up to homotopy type. The unit circle S1 is K.Z; 1/. It is easy to
see the homotopical uniqueness of K.Z; 1/, that is, if X is a path-connected space
homotopy dominated by a simplicial complex such that �1.X/ Š Z and �m.X/ D
f0g for any m > 1, then X has the homotopy type of S1. Indeed, let f W S1 ! X

be a map such that Œf � 2 �1.X/ is a generator of �1.X/ Š Z. Then, f induces
an isomorphism f] W �1.S1/ ! �1.X/ because f].ŒidS1 �/ D Œf �. For each m > 1,
f] W �m.S1/ ! �m.X/ is an isomorphism because �m.S1/ D �m.X/ D f0g.
Therefore, f is a weak homotopy equivalence by Theorem 4.14.12, hence it is a
homotopy equivalence by Corollary 4.13.10. In general, given an Abelian groupG,
there exists a space K.G; n/ such that �n.K.G; n// Š G and �m.K.G; n// D f0g
ifm 6D n. The spaceK.G; n/ is also called the Eilenberg–MacLane space (of type
.G; n/), which is unique up to homotopy type.7

For each n > 1, we will construct the space K.Z; n/ as a countable simplicial
complex such that F.@�.nC1// is its subcomplex and @�.nC1/ is a mapping .nC 1/-
deformation retract of jK.Z; n/j for metrizable spaces. Here, a closed set A in a
space X is a mapping .nC 1/-deformation retract of X for a class C of spaces if
the following condition is satisfied:

(DnC1) For any space Z 2 C with dimZ � n C 1 and each map f W Z ! X ,
there is a map g W Z ! A such that gjf �1.A/ D f jf �1.A/ and f ' g

7As usual, the Eilenberg–MacLane space K.G; n/ is constructed as a CW-complex, which has the
homotopy type of a simplicial complex.
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rel.f �1.A/, that is, there exists a homotopy h W Z � I ! X such that
h0 D f , h1 D g, and ht jf �1.A/ D f jf �1.A/ for every t 2 I.

One should remark the following:

• If A is a mapping .nC 1/-deformation retract of X for compact polyhedra then
the inclusion i W A � X is an .nC 1/-equivalence.

In the above, when X is path-connected, the inclusion map i W A � X induces
the isomorphisms i] W �m.A/ ! �m.X/, m � n, and the epimorphism i] W
�nC1.A/ ! �nC1.X/ (Theorem 4.14.12). Using this fact, we will prove the
homotopical uniqueness of K.Z; n/ (Theorem 7.8.6).

For polyhedra, we have the following:

Proposition 7.8.1. Let K be a simplicial complex with L a subcomplex of K . If
jLj is a mapping .n C 1/-deformation retract of jKj for metrizable spaces and
L � K.nC1/, then jLj is a retract of jK.nC1/j.
Proof. By Theorem 4.9.6 with Remark 14, ' D id W jKj ! jKjm is a homotopy
equivalence that has a homotopy inverse  W jKjm ! jKj such that the restriction
 jjLj is a homotopy inverse of 'jjLj D id W jLj ! jLjm. Since jLj is a
mapping .n C 1/-deformation retract of jKj for metrizable spaces, there is a map
f W jK.nC1/jm ! jLj such that f jjLj D  jjLj and f '  rel. jLj. Thus, we have
a map f 'jjK.nC1/j W jK.nC1/j ! jLj. Because f 'jjLj D . jjLj/.'jjLj/ ' id
in jLj, we can apply the Homotopy Extension Theorem 4.3.3 to obtain a retraction
r W jK.nC1/j ! jLj homotopic to f 'jjK.nC1/j in jKj. ut

Before constructing the simplicial Eilenberg–MacLane complex, we will show
the following:

Lemma 7.8.2. Let .B�; S�/, � 2 �, be pairwise disjoint copies of the pair
.BnC2;SnC1/ and h W L�2� S� ! X be a map. Then, X is a mapping .n C 1/-
deformation retract of the adjunction space X [hL�2� B� for normal spaces.

Proof. Let f W Z ! X[hL�2� B� be a map from a normal spaceZ with dimZ �
n C 1. For each � 2 �, let C� � B� such that .B�; C�/ � .BnC2; 1

2
BnC2/. Since

dimf �1.C�/ � n C 1 and bdC� � SnC1, we can apply Theorem 5.2.3 to obtain
a map f� W f �1.C�/ ! bdC� such that f�jf �1.bdC�/ D f jf �1.bdC�/. By
Theorem 5.1.6(1), f jf �1.C�/ ' f� rel.f �1.bdC�/ in C�. Because ff �1.C�/ j
� 2 �g is discrete in Z, we can define a map

f 0 W Z ! X [hL�2�.B� n intC�/

by f 0jf �1.C�/ D f� for each � 2 � and

f 0jZ n f �1�L�2� intC�
� D f jZ n f �1�L�2� intC�

�
:

Then, f 0 ' f rel.f �1.X/. On the other hand, we have a retraction
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r W X [hL�2�.B� n intC�/! X

such that r ' id rel.X . The map g D rf 0 W Z ! X is the desired one because
g D rf 0 ' f 0 ' f rel. f �1.X/. ut
Proposition 7.8.3. For every connected simplicial complex K and n 2 N, there
exists a simplicial complex QK containingK as a subcomplex such that �nC1.j QKj/ D
0 and jKj is a mapping .nC1/-deformation retract of j QKj for normal spaces, hence
i] W �m.jKj/! �m.j QKj/ is an isomorphism form � n. Moreover, ifK is countable
then so is QK.

Proof. Here, we identify SnC1 D @�nC2. By the Simplicial Approximation
Theorem 4.7.14, we can write �nC1.jKj/ D fŒh�� j � 2 �g,8 where h� W L� ! K is
a simplicial map of L� D Sdn� F.@�nC2/ for some n� 2 N. If K is countable, then
� is also countable. For each � 2 �, we have K� C F.�nC2/ with L� � K�. For
example, take a point v 2 rint�nC2 and let K� D L� [ fvg [ fh [ fvgi j  2 L�g
(cf. Proof of Theorem 4.6.2). Then, .jK�j; jL�j/ � .BnC2;SnC1/. Regarding K�,
� 2 �, as a pairwise disjoint collection, we have a simplicial complex

L
�2� K�

and its subcomplex
L

�2� L�. Let h WL�2� L� ! K be the simplicial map defined
by hjL� D h� for each � 2 �. The desired simplicial complex QK can be defined
as QK D Z.h/ [L�2� K�, where Z.h/ is the simplicial mapping cylinder of h. If
K is countable, then so is QK because � is countable and each K� is finite. Since
j QKj is homeomorphic to the adjunction space jKj [h L�2� jK�j, it follows from
Lemma 7.8.2 that jKj is a mapping .nC 1/-deformation retract of j QKj. Hence, the
inclusion i W jKj � j QKj is an .n C 1/-equivalence. In particular, the inclusion i
induces the epimorphism i] W �nC1.jKj/! �nC1.j QKj/. Since every h� ' 0 in j QKj,
it follows that �nC1.j QKj/ D i].�nC1.jKj// D f0g. ut

Now, we will construct the simplicial Eilenberg–MacLane complex K.Z; n/
for each n � 2. We apply Proposition 7.8.3 inductively to obtain a tower

F.@�nC1/ D K0 � K1 � K2 � � � �

of countable simplicial complexes such that each jKk�1j is a mapping .n C k/-
deformation retract of jKkj for normal spaces, �m.jKkj/ D f0g for n 6D m � nCk,
and the inclusion ik W @�nC1 � jKkj induces the isomorphism .ik/] W �n.@�nC1/!
�n.jKkj/. Then, the countable simplicial complex K.Z; n/ D S

k2! Kk is the
desired complex. Indeed, by virtue of Proposition 4.2.6, each map f W Sm !
jK.Z; n/j has the image f .Sm/ contained in some jKkj and if f ' g in jK.Z; n/j
for maps f; g W Sm ! jK.Z; n/j then f ' g in some jKkj. So, it follows that

�n.jK.Z; n/j/ Š �n.@�nC1/ Š Z and �m.jK.Z; n/j/ D f0g if m 6D n.

8It suffices to take a set fŒh�� j � 2 �g generating the group �nC1.jKj/. Then, if �nC1.jKj/ is
finitely generated, we can take a finite set as �.
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Fig. 7.4 Extending a homotopy h

By the same argument, it is easy to prove that @�nC1 is a mapping .n C 1/-
deformation retract of jK.Z; n/j for compact spaces.

To show that @�nC1 is a mapping .n C 1/-deformation retract of jK.Z; n/j for
metrizable spaces, we use the following lemma:

Lemma 7.8.4. Suppose thatA is a mapping .nC1/-deformation retract of an ANE
X for metrizable spaces. Let f W Z ! X be a map of a metrizable space Z with
dimZ � n C 1 and a homotopy h W Z0 � I ! X of a closed set Z0 in Z with
ı > 0 such that h0 D f jZ0, h1.Z0/ � A, ht D h1 for every t 2 Œ1 � ı; 1�, and
ht jZ0 \ f �1.A/ D f jZ0 \ f �1.A/ for every t 2 I. Then, h extends to a homotopy
Qh W Z � I! X such that Qh0 D f , Qh1.Z/ � A, Qht D Qh1 for every t 2 Œ1 � ı=2; 1�,
and Qht jf �1.A/ D f jf �1.A/ for every t 2 I.

Proof. BecauseX is an ANE, h can be extended to a homotopy Nh W Z�I! X such
that Nh0 D f and Nht jf �1.A/ D f jf �1.A/ for every t 2 I. Since A is a mapping
.nC 1/-deformation retract of X , we have a homotopy h0 W Z � I! X such that

h00 D Nh1�ı; h01.Z/ � A and h0t j Nh�11�ı.A/ D Nh1�ıj Nh�11 .A/ for every t 2 I.

The desired homotopy Qh W Z � I! X can be defined as follows:

Qht D

8
ˆ̂
<

ˆ̂
:

Nht if t � 1 � ı,
h02.t�1Cı/=ı if 1� ı � t � 1 � ı=2,

h01 if t � 1 � ı=2.

Indeed, Qh0 D Nh0 D f and Qht D h01 for every t 2 Œ1� ı=2; 1�. SinceZ0[f �1.A/ �Nh�11 .A/, it follows that h0t jZ0 D Nh1jZ0 D h1 and h0t jf �1.A/ D Nh1jf �1.A/ D
f for every t 2 I. Then, QhjZ0 � I D h and Qht jf �1.A/ D f for every t 2 I.
— Fig. 7.4. ut

Proposition 7.8.5. For each n � 2, @�nC1 is a mapping .n C 1/-deformation
retract of jK.Z; n/j for metrizable spaces.
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Fig. 7.5 Homotopies h.i/

Proof. Observe that jK.Z; n/j D lim�!jKkj, where .Ki /i2! is the tower defining
K.Z; n/. Then, each jKi j is a mapping .n C 1/-deformation retract of KiC1 for
normal spaces, hence for metrizable spaces. Let f W Z ! jK.Z; n/j be a map from
a metrizable space Z with dimZ � n C 1. For each i 2 !, let Zi D f �1.jKi j/.
Then, Z0 � Z1 � � � � and Z D S

i2! Zi . By induction, we define homotopies
h.i/ W Zi � I! jKi j, i 2 !, such that

h.i/jZi�1 � I D h.i�1/; h.i/t D f jZi for 0 � t � 2�i ,
h
.i/
t jZi \ f �1.@�nC1/ D f jZi \ f �1.@�nC1/ for t 2 I,

h.i/.Zi � Œ2�j ; 2�jC1�/ � jKj j; h.i/2�j .Zi / � jKj j for j < i and

h
.i/
t D h.i/2�j for 2�j � 2�i�1 � t � 2�j , j < i .

The homotopy h.0/ W Z0 � I ! jK0j is defined by h.0/t D f jZ0 for t 2 I. Assume
that h.i/ has been defined. For each j D 0; 1; : : : ; i C 1, let

Lj D
�
Zi � I

� [ �ZiC1 � Œ0; 2�j �
�
:

The homotopy h.i/ can be extended over LiC1 by .f jZiC1/ � id. Then, using
Lemma 7.8.4 iteratively, we extend this overLi � � � � � L1 � L0 D ZiC1� I step-
by-step. Thus, we can obtain the homotopy h.iC1/ W ZiC1 � I ! jKiC1j satisfying
the conditions. — Fig. 7.5.

According to Theorem 2.8.6(2), each z 2 Z has a neighborhoodV inZ such that
f .V / � jKi j for some i 2 !, which means that V � Zi , so z 2 intZi . Therefore,
Z DSi2! intZi . Thus, we can define a homotopy h W Z�I! jK.Z; n/j by hjZi�
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I D h.i/ for each i 2 !. Then, h0 D f , h1.Z/ � @�nC1 and ht jf �1.@�nC1/ D
f jf �1.@�nC1/ for every t 2 I. ut

The homotopical uniqueness of the Eilenberg–MacLane spaces can be derived
from the following theorem:

Theorem 7.8.6. Let n 2 N and suppose that X is a path-connected space
homotopy dominated by a simplicial complex such that �n.X/ Š Z and �m.X/ D 0
for every m 6D n. Then, X has the homotopy type of the simplicial Eilenberg–
MacLane complex K.Z; n/ constructed above.

Proof. The case n D 1 has been seen already. For n � 2, let .Ki/i2! be the tower
in the definition of K.Z; n/. Take a homeomorphism ' W jK0j ! Sn and a map
˛ W Sn ! X such that Œ˛� is a generator of �n.X/ Š Z. Let f0 D ˛' W jK0j !
X . To extend f0 to a map f W jK.Z; n/j ! X , we inductively construct maps
fi W jKi j ! X , i 2 N, such that fi jjKi�1j D fi�1, and then f can be defined
by f jjKi j D fi . In fact, the construction of Ki from Ki�1 is as follows: Taking
a simplicial map h W L�2� L� ! Ki�1 such that each L� is a triangulation of
SnCi and fŒhjL�� j � 2 �g D �nCi .jKi�1j/ (or fŒhjL�� j � 2 �g generates
�nCi .jKi�1j/), we define Ki D Z.h/ [L�2� K�, where K� is a triangulation of
BnCiC1 with L� � K�. For each � 2 �, the map fi�1hjL� W SnCi ! X is null-
homotopic because of �nCi .X/ D f0g. Hence, fi�1 extends over Z.hjL�/ [ K�.
Thus, fi�1 extends to a map fi W jKi j ! X .

It remains to show that f is a homotopy equivalence. By virtue of Corol-
lary 4.13.10, it suffices to verify that f is a weak homotopy equivalence. For
m 6D n, f] W �m.jK.Z; n/j/! �m.X/ is an isomorphism because �m.jK.Z; n/j/ D
�m.X/ D f0g. Recall that the inclusion jK0j D @�nC1 � jK.Z; n/j is an .nC 1/-
equivalence, hence it induces the isomorphism from �n.jK0j/ onto �n.jK.Z; n/j/.
On the other hand, .f0/] W �n.jK0j/ ! �n.X/ is an isomorphism because it
sends a generator of �n.jK0j/ Š Z to that of �n.X/ Š Z. Then, it follows that
f] W �n.jK.Z; n/j/ ! �n.X/ is also an isomorphism. Consequently, f is a weak
homotopy equivalence. ut

For a pair .X;A/ of spaces, a map f W .Y; B/! .Z;C / induces the map

f� W C..X;A/; .Y; B//! C..X;A/; .Z;C //;

which is defined by f�.k/ D f ı k (cf. 1.1.3(1)).

Lemma 7.8.7. Let f; f 0 W .Y; B/ ! .Z;C / with f ' f 0 (as maps of pairs). For
each pair .X;A/ of spaces,

f� ' f 0� W C..X;A/; .Y; B//! C..X;A/; .Z;C //:

Proof. Let h W .Y � I; B � I/! .Z;C / be a homotopy from f to f 0. We define

Qh W C..X;A/; .Y; B// � I! C..X;A/; .Z;C //
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by Qh.g; t/ D ht ıg. To see the continuity of Qh, for each compact setK � X and each
open set U � Z, let .g; t/ 2 Qh�1.hKIU i/. Since h.g.K/� ftg/ D ht .g.K// � U ,
we can choose open sets V � Y and W � I so that g.K/ � ftg � V � W and
h.V �W / � U . Then, g 2 hKIV i and t 2 W . For each g0 2 hKIV i and s 2 W ,

hs.g
0.K// D h.g0.K/� ft 0g/ � h.V �W / � U;

hence Qh.g0; t 0/ 2 hKIU i. Thus, we have hKIV i � W � Qh�1.hKIU i/. Conse-
quently, Qh�1.hKIU i/ is open in C.X; Y / � I. ut
Proposition 7.8.8. For each pair .X;A/ of spaces, .Y; B/ ' .Y 0; B 0/ implies

C..X;A/; .Y; B// ' C..X;A/; .Y 0; B 0//:

Proof. Let f W .Y; B/ ! .Y 0; B 0/ be a homotopy equivalence with g a homotopy
inverse. Then, f and g induce the maps

f� W C..X;A/; .Y; B// ' C..X;A/; .Y 0; B 0// and

g� W C..X;A/; .Y 0; B 0// ' C..X;A/; .Y; B//

defined by f�.k/ D f ık and g�.k/ D gık, respectively. By virtue of Lemma 7.8.7,
we have g�f� D .gf /� ' id and f�g� D .fg/� ' id. ut
Corollary 7.8.9. For each simplicial complex K with v0 2 K.0/, the loop space
˝.jKj; x0/ has the homotopy type of a simplicial complex.

Proof. By virtue of Proposition 7.8.8,

˝.jKj; x0/ D C..I; @I/; .jKj; x0// ' C..I; @I/; .jKjm; x0//;

where the last space is an ANR by 1.1.3(5) and 6.1.9(9). Then, we have the result
by Corollary 6.6.5. ut

Recall that �n.˝.X; x0/; cx0/ Š �nC1.X; x0/ for any pointed space .X; x0/ and
n 2 N (Theorem 4.14.4). Then, combining Theorem 7.8.6 with Corollary 7.8.9, we
have the following corollary:

Corollary 7.8.10. For each n 2 N, the loop space ˝.jK.Z; n C 1/j; v/ has the
homotopy type of jK.Z; n/j, where v 2 jK.Z; nC 1/j is any point. ut

The wedge sum (or the one-point union) X1 _ � � � _ Xk of pointed spaces
X1 D .X1; x1/, . . . , Xk D .Xk; xk/ is defined as the quotient space

X1 _ � � � _Xk D .X1 ˚ � � � ˚Xk/=fx1; : : : ; xng;
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which is also defined as the following subspace of the product space
Qn
iD1 Xi :

X1 _ � � � _ Xk D
˚
x 2Qk

iD1 Xi
ˇ
ˇ x.i/ D xi except for one i

�
:

When .Xi ; xi / D .X; x0/ for every i D 1; : : : ; k, we write
Wk

X instead of X _
� � � _ X .

We use the following theorem but leave the proof to any textbook on Homotopy
Theory or Algebraic Topology.

Theorem 7.8.11. For every n � 2 and k 2 N, �i .
Wk Sn/ D f0g for i < n and

�n.
Wk Sn/ Š Z

k .9

Proposition 7.8.12. For each m > n, jF.�m/.n/j ' Wk Sn, where k D mCnC1.
Consequently, �i .jF.�m/.n/j/ D f0g for i < n and �n.jF.�m/.n/j/ Š Z

k .

Proof. Since P D j St.emC1; F .�m/.n//j is a compact AR, the quotient space
jF.�m/.n/j=P is a compact ANR by Theorem 6.5.3, where the quotient map q W
jF.�m/.n/j ! jF.�m/.n/j=P is a (fine) homotopy equivalence by Theorem 7.5.4.
Thus, we have jF.�m/.n/j ' jF.�m/.n/j=P . The latter space is homeomorphic toWk Sn. ut

In the construction of the simplicial Eilenberg–MacLane complex K.Z; n/,
replacing the starting complex F.@�nC1/ with a connected simplicial complex L,
we can obtain a connected simplicial complex K.L; n/ such that �i .jK.L; n/j/ D
f0g for i > n and jLj is a mapping .n C 1/-deformation retract of jK.L; n/j for
metrizable spaces. Then, the inclusion jLj � jK.L; n/j is an .nC 1/-equivalence,
hence �i .jK.L; n/j/ Š �i .jLj/ for i � n.

Now, for each n � 2 and k 2 N, let L be a triangulation of
Wk Sn. We can obtain

the simplicial Eilenberg–MacLane complex K.Zk; n/ such that jLj is a mapping
.nC 1/-deformation retract of jK.Zk; n/j for metrizable spaces. It should be noted
that K.Zk; n/ is also countable. In the same way as for Theorem 7.8.6, we can
prove the homotopical uniqueness of K.Zk; n/. Indeed, let X be a path-connected
space homotopy dominated by a simplicial complex such that �n.X/ Š Z

k and
�i .X/ D f0g for every i 6D n. Using generators of �n.X/, we define a map ' W
jLj � Wk Sn ! X . By the construction of K.Zk; n/, we can inductively extend '
to a map f W jK.Zk; n/j ! X . Then, f is a weak homotopy equivalence, so f is a
homotopy equivalence by Corollary 4.13.10.

Since �n.jK.Z; n/jk/ Š Z
k and �i .jK.Z; n/jk/ D f0g for i 6D n by

Proposition 4.14.1, we have the following:

Proposition 7.8.13. For each n � 2 and k 2 N, the product space jK.Z; n/jk has
the homotopy type of jK.Zk; n/j. ut

9Here, Zk Š Z˚ � � � ˚ Z (k many). When n D 1, this is not true but �1.
Wk S1/ is isomorphic to

the free product Z � � � � � Z (k many) by Theorem of Seifert and Van Kampen.
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In the rest of this section, we will construct the so-called simplicial Edwards–
Walsh complex, which will be used in Sect. 7.10.

Proposition 7.8.14. Let K be a simplicial complex and n � 2. There exist
countable simplicial complexesK ,  2 K , such that

(1) jK j D  if dim  � n;
(2) K 0 � K if  0 < ;
(3) jK j \ jK 0 j D jK\ 0j for each ;  0 2 K;
(4) .jK j; @/ � .jK.Z; n/j; @�nC1/ for each .nC 1/-simplex  2 K;
(5) jK j ' jK.Z; n/jk.m/ if dim  D m > nC 1 (where k.m/ D mCnC1);
(6) If dim  � nC 1, then jK@ j is a mapping .nC 1/-deformation retract of jK j

for metrizable spaces, where K@ D S 0< K 0 .

Proof. For every  2 K.n/, let K D F./. Suppose that K have been defined for
all  2 K.m/. For each .mC 1/-simplex  2 K , let

L;i D
[
fK 0 j  0 < ; dim  0 D ig; n < i � m:

Then, F./.n/ D L;n � L;nC1 � � � � � L;m D K@ are simplicial complexes by
(1), (2), and (3). Using (3) and (6), we can show that jL;i j is a mapping .n C 1/-
deformation retract of jL;iC1j for metrizable spaces. As observed in the above, we
can construct a simplicial complex K D K.K@ ; n/ such that �i .jK j/ D f0g for
i > n and jK@ j is a mapping .n C 1/-deformation retract of jK j for metrizable
spaces. Then, it follows that .n/ D jL;nj is a mapping .nC 1/-deformation retract
of jK j for metrizable spaces, which implies that the inclusion .n/ � jK j is an
.nC1/-equivalence. Since �i .jK j/ Š �i ..n// for i � n, we have �i .jK j/ D f0g
for i < n and �n.jK j/ Š Z

k.mC1/ by Proposition 7.8.12. From the homotopy
uniqueness and Proposition 7.8.13, it follows that

jK j ' jK.Zk.mC1/; n/j ' jK.Z; n/jk.mC1/:

Thus, we have a simplicial complex K satisfying (2), (5), and (6). Moreover, we
can constructK for every .mC 1/-simplex  2 K so that jK j \ jK 0j D jK\ 0j,
that is, (3) is satisfied. By induction, we obtain the desired result. ut

In Proposition 7.8.14, we have the following simplicial complex:

EW.K; n/ D
[

2K
K D K.n/ [

[

2KnK.n/

K:

We call EW.K; n/ the simplicial Edwards–Walsh complex for K . Since each
K is countable, if K is countable then so is EW.K; n/. There exists a map $ W
jEW.K; n/j ! jKj such that $ jjK.n/j D id and

$�1./ D jK j ' jK.Z; n/jk.dim/ for each  2 K nK.n/,
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which is called an associate map ofEW.K; n/. Indeed, we inductively define maps
$ W jK j !  ,  2 K , such that$�1 .@/ D jK@ j and$ jjK 0j D $ 0 for each
 0 <  . Let$ D id for every  2 K.n/ and assume that$ W jK j !  have been
defined for every  2 K.m/. For each .mC1/-simplex  2 K , let$@ W jK@ j ! @

be the map defined by $@ jjK 0j D $ 0 for each  0 <  . Since $@ ' 0 in
 , $@ can be extended to a map $ W jK j !  by the Homotopy Extension
Theorem 4.3.3, where we can modify$ to satisfy the condition$�1 .@/ D jK@ j
because rint  is homotopy dense in  and jK@ j is a zero set in jK j, i.e., f �1.0/ D
jK@ j for some map f W jK j ! I (cf. Proposition 4.2.2).10 Then, the map $ is
defined by $ jjK j D $ for each  2 K . We prove the following proposition
regarding the map $ W jEW.K; n/j ! jKj:
Proposition 7.8.15. For each simplicial complexK and n � 2, let$ W jEW.K; n/j !
jKj be an associate map of the simplicial Edwards–Walsh complex EW.K; n/.
Then, for each subcomplexL ofK and a map g W jLj ! jK.Z; n/j, the composition
g$ j$�1.jLj/ extends over jEW.K; n/j.

jEW.K; n/j
$

h

� $�1.jLj/
$ j

jK.Z; n/j

jKj � jLj
g

Proof. Because jK.Z; n/j is .n � 1/-connected, we can extend g over jLj [ jK.n/j
by skeleton-wise induction. Then, we can assume that K.n/ � L. For each
.n C 1/-simplex  2 K n L, jK@ j D @ and .jK j; @/ � .jK.Z; n/j; @�nC1/,
hence @ is a mapping .n C 1/-deformation retract of jK j for metrizable spaces.
By Proposition 7.8.1, @ is a retract of jK.nC1/

 j. Therefore, the composition
g$ j$�1.jLj/ extends to a map

h0 W $�1.jLj/[ ˇˇEW.K; n/.nC1/ˇˇ! jK.Z; n/j:

Since �m.jK.Z; n/j/ D f0g for everym > n, we can extend h0 over jEW.K; n/j by
skeleton-wise induction. ut

10Since SdL is a full subcomplex of SdK , such a simplicial map f can be defined by
f ..SdL/.0// D f0g and f ..SdK/

.0/ n .SdL/.0// D f1g.
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7.9 Cohomological Dimension

In this section, using the Eilenberg–MacLane complexes defined in the previous
section, we define the cohomological dimension and discuss its relationship with the
(covering) dimension. We apply the cohomological dimension to prove that dimX�
P D dimX C dimP for every metrizable space X and every locally compact (or
metric) polyhedron P (Theorem 7.9.7). This result was announced in Sect. 5.4.

In Theorem 5.2.3, the (covering) dimension is characterized as follows:

• For a normal spaceX , dimX � n if and only if, for eachm � n and each closed
set A in X , every map f W A! Sm extends overX .

Replacing Sm by jK.Z; m/j, we define dimZX � n,11 that is,

• dimZX � n if and only if, for each m � n and each closed set A in X , every
map f W A! jK.Z; m/j extends overX .

It is clear from this definition that dimZX � n implies dimZX � m for any m >

n. Then, it can be defined that dimZX D n if dimZX � n and dimZX 6< n.
Moreover, dimZX D 1means that dimZX 6� n for any n 2 N. We call dimZX the
cohomological dimension ofX .12 Using the Eilenberg–MacLane complexK.G; n/
instead of K.Z; n/, we can also define the cohomological dimension dimG X with
respect to G.

Due to Theorem 5.2.3, to assert dimX � n, it suffices to examine the
extensibility for maps from closed sets in X to the n-dimensional sphere Sn, and
it is not necessary to examine for Sm for m > n. For the cohomological dimension,
we have the same situation, sated as follows:

Theorem 7.9.1. For a metrizable space X , dimZX � n if and only if X satisfies
the following condition:

(e)n Every map f W A! jK.Z; n/j of each closed set A in X extends over X .

The “only if” part of Theorem 7.9.1 is obvious and the “if” part can be obtained
by induction and the following lemma:

Lemma 7.9.2. For a metrizable space X , the condition (e)n implies (e)nC1.

To prove this lemma, we use a path space. The path space P.X; x0/ on a pointed
space .X; x0/ is defined as follows:

P.X; x0/ D C..I; 0/; .X; x0//;

11In Chigogidze’s book “Inverse Spectra,” the notation dimZ X is used.
12The cohomological dimension dimZ X was originally defined as the maximum of the number
n 2 ! such that LHn.X;A/ 6D 0 for every closed set A in X , where LHn.X;A/ is the n-th relative
Čech cohomology group. This is why dimZ is called the cohomological dimension.
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and it admits the compact-open topology. Let e1 W P.X; x0/ ! X be the map
defined by e1.˛/ D ˛.1/ (cf. 1.1.3(3)). Then, e�11 .x0/ is simply the loop space
˝.X; x0/ (cf. Sect. 4.14).

A map p W E ! B is called a Hurewicz fibration if it has the homotopy lifting
property for an arbitrary space Z, that is, given a homotopy h W Z � I! B and a
map f W Z ! E with pf D h0, there exists a homotopy Qh W Z � I! E such that
p Qh D h and Qh0 D f .

Proposition 7.9.3. For every pointed space .X; x0/, the following statements
hold:

(1) The path space P.X; x0/ is contractible;
(2) The map e1 W P.X; x0/ ! X is a Hurewicz fibration whose image is the path-

component of X containing x0;
(3) If x 2 X belongs to the same path-component as x0 then e�11 .x/ ' e�11 .x0/ D

˝.X; x0/;
(4) If A is a subset of the path-component of X containing x0 and there is a

contraction h W A � I ! A such that h1.A/ D fag and ht .a/ D a for every
t 2 I, then e�11 .A/ ' ˝.X; x0/.

Proof. (1): We have the contraction h W P.X; x0/ � I ! P.X; x0/ defined by
h.˛; t/.s/ D ˛..1 � t/s/ for each .˛; t/ 2 P.X; x0/ � I and s 2 I (cf. 1.1.3(4)).

(2): It is trivial that the image of e1 is the path-component of X containing x0.
To prove that e1 W P.X; x0/ ! X is a Hurewicz fibration, let h W Z � I ! X be a
homotopy and f W Z ! P.X; x0/ a map with e1f D h0, that is, h0.z/ D e1f .z/ D
f .z/.1/ for every z 2 Z. We can define a map h0 W Z � I � I! X as follows:

h0.z; t; s/ D
(
f .z/..t C 1/s/ if 0 � s � .t C 1/�1,
h.z; .t C 1/s � 1/ if .t C 1/�1 � s � 1.

Then, h0 induces the map Qh W Z � I ! C.I; X/ defined by Qh.z; t/.s/ D h0.z; t; s/.
Observe that

Qh.z; t/.0/ D f .z/.0/ D x0; Qh.z; 1/.s/ D f .z/.s/ and

e1 Qh.z; t/ D Qh.z; t/.1/ D h.z; t/:

Thus, we have a homotopy Qh W Z � I! P.X; x0/ such that Qh0 D f and e1 Qh D h.
(3): Take any ! 2 e�11 .x/ and define maps f W e�11 .x/ ! e�11 .x0/ and g W

e�11 .x0/ ! e�11 .x/ by f .˛/ D ˛  ! and g.ˇ/ D ˇ  !. It is easy to see that
gf ' id and gf ' id. Refer to Sect. 4.14

(4): Due to (3), it suffices to show that e�11 .A/ ' e�11 .a/. By virtue of (2), we can
obtain a homotopy Qh W e�11 .A/�I! e�11 .A/ such that Qh0 D id and e1 Qh D h.e1�id/.
Therefore,

Qhje�11 .a/ � I W e�11 .a/ � I! e�11 .a/
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is a homotopy from id to Qh1je�11 .a/. Hence, the inclusion e�11 .a/ � e�11 .A/ is a
homotopy equivalence. ut

The following can be proved by analogy to 6.1.9(9):

Lemma 7.9.4. Let X1;X2 be closed sets in a compactumX such thatX1\X2 D ;
or X1 � X2, and let Y be an ANE with Y1; Y2 � Y that are also ANEs. Then, the
space C..X;X1;X2/; .Y; Y1; Y2// with the compact-open topology is an ANE. ut

Now, we will show Lemma 7.9.2.

Proof of Lemma 7.9.2. Let f W A! K.Z; nC 1/ be a map from a closed set A in
a metrizable space X . We will show that f extends overX . Consider the fibration

e1 W E D P.jK.Z; nC 1/j; v0/! jK.Z; nC 1/j;

where v0 2 K.Z; nC 1/.0/. Then, E is an AE by Proposition 7.9.3(1) and 6.1.9(9)
(or Lemma 7.9.4 above). For each subcomplex L of K.Z; n C 1/, e�11 .jLj/ is an
ANE by Lemma 7.9.4 because

e�11 .jLj/ D C..I; f0g; f1g/; .jK.Z; nC 1/j; fv0g; jLj//:

For each i 2 !, we define

Ei D e�11 .jK.Z; nC 1/.i/j/ � E and Ai D f �1.jK.Z; nC 1/.i/j/ � A:

Then, E DSi2! Ei and A D Si2! Ai .

e�11 ./ � Ei � E D P.jK.Z; nC 1/j; v0/
e1

f �1./

f

� Ai

fi

� A
f

jK.Z; nC 1/j

We will inductively construct the maps fi W Ai ! Ei , i 2 !, such that
fi jAi�1 D fi�1 and fi .f �1.// � e�11 ./ for every  2 K.Z; n C 1/.i/. Let
f0 W A0 ! E0 be a map such that e1f0 D f jA0. For instance, it can be
defined so that f0.f �1.v// is a singleton for each vertex v 2 K.Z; n C 1/.0/.
Assume that fi�1 has been constructed. For each i -simplex  2 K.Z; n C 1/,
fi�1.f �1.@// � e�11 .@/. Due to Proposition 7.9.3(4) and Corollary 7.8.10,

e�11 ./ ' ˝.jK.Z; nC 1/j; v0/ ' jK.Z; n/j:
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Hence, we can apply the condition (e)n to extend fi�1jf �1.@/ over X . By
restricting this extension, we have a map f W f �1./ ! e�11 ./ such that
f jf �1.@/ D fi�1jf �1.@/. Then, the desired map fi W Ai ! E can be defined
by fi jf �1./ D f jf �1./ for each i -simplex  2 K.Z; nC 1/.

Now, we define Qf W A ! E by Qf jAi D fi for every i 2 !. Because A is
metrizable, each x 2 A has a neighborhood Ux in A such that f .Ux/ � jK.Z; nC
1/.k/j for some k 2 ! (cf. 4.2.16(5)). In other words, Ux � Ak , which means
Qf jUx D fkjUx. Therefore, Qf is continuous. Moreover, for each x 2 A, f .x/ is

contained in an i -simplex  2 K.Z; nC 1/. Then,

Qf .x/ D fi .x/ 2 fi .f �1.// � e�11 ./;

i.e., e1 Qf .x/ 2  . Thus, e1 Qf is contiguous to f , which implies e1 Qf ' f . SinceE is
contractible by Proposition 7.9.3(1), the map Qf extends overX , hence so does e1 Qf .
Therefore, f also extends over X by the Homotopy Extension Theorem 6.4.1. ut

Because S1 � jK.Z; 1/j, the following is a direct consequence of Theorems 5.2.3
and 7.9.1:

• For every metrizable space X , dimZX � 1 if and only if dimX � 1.

For finite-dimensional metrizable spaces, the cohomological dimension coincides
with the (covering) dimension, which can be stated as follows:

Theorem 7.9.5. For every metrizable space X , dimZX � dimX . If X is finite-
dimensional, then dimZX D dimX .

Proof. The case dimX D 1 is trivial. Then, it suffices to show the finite-
dimensional case, i.e., dimX D n <1 implies dimZX D n.

Let f W A ! jK.Z; n/j be a map from a closed set A in X . Since @�nC1 is
a mapping .n C 1/-deformation retract of jK.Z; n/j for metrizable spaces, f is
homotopic to a map g W A ! @�nC1. Because of dimX D n, g extends to a map
Qg W X ! @�nC1 � Sn. Since jK.Z; n/j is an ANE, f also extends over X by the
Homotopy Extension Theorem 6.4.1. Hence, we have dimZX � n.

Now, assume that dimZX � n � 1. Let A be a closed set in X . Then, every map
f W A ! @�n � Sn�1 extends to a map Qf W X ! jK.Z; n � 1/j. Since @�n is
a mapping n-deformation retract of jK.Z; n � 1/j for metrizable spaces, we have a
map g W X ! @�n such that gjA D Qf jA D f , that is, g is an extension of f . This
means that dimX � n � 1, which is a contradiction. Consequently, dimZX D n.

ut
Now, using the cohomological dimension, we can prove the following lemma:

Lemma 7.9.6. For every metrizable space X , dimX � I D dimX C 1, where we
mean1C 1 D 1.

Proof. We may assume that dimX D n < 1. Since dimX � I � n C 1 by the
Product Theorem 5.4.9, it suffices to show that dimX � I � n C 1. Since X � I
contains a copy of I, we have the case n D 0. Consequently, we may assume that
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n > 0. Since dimX D dimZX D n by Theorem 7.9.5, we have a map f W A !
jK.Z; n� 1/j of a closed set A in X that cannot extend overX . Take a point x0 2 A
and let v D f .x0/ 2 jK.Z; n � 1/j. Let i W A � X be the inclusion. Then, the
following map is not surjective:

i� W C..X; x0/; .jK.Z; n � 1/j; v//! C..A; x0/; .jK.Z; n � 1/j; v//:

Since the loop space ˝.jK.Z; n/j; v/ has the homotopy type of K.Z; n � 1/ by
Corollary 7.8.10, we can replace jK.Z; n � 1/j by ˝.jK.Z; n/j; v/. According to
Proposition 4.14.2, we have the following commutative diagram:

C..X � I;HX/; .jK.Z; n/j; v//
'

.i�idI/
�

C..X; x0/; .˝.jK.Z; n/j; v/; cv//

i�

C..A � I;HA/; .jK.Z; n/j; v//
'

C..A; x0/; .˝.jK.Z; n/j; v/; cv//;

where both ' are bijective and the right i� is not surjective, hence the left .i � idI/
�

is not surjective. Then, we have a map g W A � I! jK.Z; n/j such that g.HA/ D v
and g cannot extend over X � I, which means that dimZX � I > n. Because X � I
is finite-dimensional, dimX � I D dimZX � I � nC 1 by Theorem 7.9.5. ut
Theorem 7.9.7. Let P be a locally compact polyhedron or P D jKjm be the
polyhedron of an arbitrary simplicial complexK with the metric topology. For every
metrizable space X ,

dimX � P D dimX C dimP:

Proof. Since dimX�P � dimXCdimP by the Product Theorem 5.4.9, it suffices
to show that dimX � P � dimX C dimP . If dimP D 1 then dimX � P D 1
because P can be embedded into X �P as a closed set. Then, we may assume that
dimP D n <1. In this case, P contains an n-simplex  , which is homeomorphic
to some In. Inductively applying Lemma 7.9.6, we have

dimX �  D dimX � In D dimX C n:

Since X �  is a closed set in X � P , it follows that dimX � P � mC n. ut
In the remainder of this section, we will prove the following theorem, which

means that any cell-like map does not raise the cohomological dimension:

Theorem 7.9.8. Let f W X ! Y be a cell-like map between compacta. Then,
dimZ Y � dimZX .

This is the direct consequence of the following theorem:

Theorem 7.9.9. Let f W X ! Y be a UV n map between compacta. If dimZX � n
then dimZ Y � n.
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To prove this theorem, we need the following Vietoris–Begle-type mapping
theorem:

Theorem 7.9.10. Let f W X ! Y be a UV n�1 map between compacta and P an
ANR (or a polyhedron) with �i .P / D f0g for i � n. Then, f � W ŒY; P �! ŒX; P � is
a bijection.

Note that it suffices to prove only the ANR case. To prove Theorem 7.9.10, we
will prove the following lemma:

Lemma 7.9.11. Let f W X ! Y be a UV n�1 map between compacta and P an
ANR with �i .P / D f0g for i � n. Suppose thatA is a closed set in Y and f jf �1.A/
is an embedding. Then, a map ˛ W A ! P from A to an ANR P extends over Y if
f̨ jf �1.A/ extends over X .

X

f

ˇ

� f �1.A/

f j P

Y

Q̨

� A

˛

Proof. Let pr1 W Q D IN ! I be the projection of the Hilbert cube Q onto the first
factor. EmbedX and Y as closed sets in pr�11 .1/ � Q and let

QX DQ n .pr�11 .1/ nX/ and QY DQ n .pr�11 .1/ n Y /:

Since QX and QY are homotopy dense in Q, it is easy to extend f to a map Qf W
QX ! QY such that Qf .QX nX/ � QY nY , i.e., Qf �1.Y / D X , which implies that
Qf �1.y/ D f �1.y/ for every y 2 Y . The maps ˛ and ˇ extend to maps Q̨ W R! P

and Q̌ W M ! P , where M and R are open neighborhoods of X and A in QX and
QY , respectively. Because Qf is closed and Qf �1.Y / D X � M , we have an open
neighborhoodN of Y in QY such that Qf �1.N / �M .

Take open covers of P as follows:

fP g 

h
W0

�
W1 

L
W2

�
W3:

Replacing R by a smaller one, we can assume that Q̌j Qf �1.R/ and Q̨ Qf j Qf �1.R/ are
W3-close because

Q̌j Qf �1.A/ D ˇjf �1.A/ D f̨ jf �1.A/ D Q̨ Qf j Qf �1.A/:
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Choose an open cover V0 of Y in QY so that

st.A;V0/ � R and V0ŒA� 	 Q̨�1.W3/:

Let U0 be an open cover of Y inN with stU0 	 V0. We can inductively choose open
covers Ui , Vi of Y in N , i D 1; : : : ; n, as follows:

Qf �1.Vi / 	
Cn�1

Qf �1.Ui�1/ and stUi 	 Vi :

Indeed, assume that Vi�1 has been obtained and take an open star-refinement Ui�1
of Vi�1. Each y 2 Y is contained in some Uy 2 Ui�1. Then, f �1.y/ D Qf �1.y/ �
Qf �1.Uy/. Since f �1.y/ is UV n, f �1.y/ has an open neighborhood V 0y in M such

that any map from Sj to V 0y extends to a map from BjC1 to Qf �1.Uy/ for each

j � n � 1. Because Qf is closed, y has an open neighborhood Vy in N such that
Qf �1.Vy/ � V 0y (� Qf �1.Uy/). Therefore, Vi D fVy j y 2 Y g is an open cover of Y

in N that has the desired property.
Since Y is compact, the open cover fU \ Y j U 2 UnŒY �g of Y has a finite

subcover U 2 cov.Y /. Let K D N.U/ be the nerve of U with ' W Y ! jKj a
canonical map. For each vertex U 2 K.0/ D U , choose a point  0.U / 2 f �1.U /,
where  0.U / 2 f �1.U \ A/ for U 2 U ŒA�. Thus, we have a map  0 W jK.0/j !
X � M . Since stU 	 Vn, it follows that  0 is a partial Qf �1.Vn/-realization of K .
Assume that  0 extends to a partial Qf �1.Vn�iC1/-realization i�1 W jK.i�1/j !M .
For each i -simplex  2 K , there is some V 2 Vn�iC1 such that  i�1.@/ �Qf �1.V /. Then, we have some U 2 Un�i such that V � U and  i�1j@ extends
to a map  W  ! Qf �1.U/. Now, we can extend i�1 to the map i W jK.i/j !M

by  i j D   for each i -simplex  2 K . For every  2 K , there is V 2 Vn�iC1
such that  i�1..i�1// � Qf �1.V /, hence

 i.
.i// � st. Qf �1.V /; Qf �1.Un�i //
2 st. Qf �1.Vn�iC1/; Qf �1.Un�i //
	 st Qf �1.Un�i / 	 Qf �1.Vn�i /:

Thus,  i is a partial Qf �1.Vn�i /-realization of K . By induction, we can obtain a
partial Qf �1.V0/-realization  n W K.n/!M .

The nerve L D N.U ŒA�/ of U ŒA� is a subcomplex of K . For each  2 L, we
have V 2 V0 such that  n..n// � Qf �1.V /, where V \A 6D ; because  n..0// �Qf �1.V \A/. Then, Q̨ .V / is contained in some W 2W3, hence

Q̨ Qf  n..n// � Q̨ .V / � W:

Since Q̌j Qf �1.R/ and Q̨ Qf j Qf �1.R/ are W3-close and V � R, it follows that
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Q̌ n..n// � st.W;W3/ 2 stW3 	W2:

Therefore, Q̌ njjL.n/j is a partial W2-realization of L, which extends to a full W1-
realization � W jLj ! P .

For each a 2 A, '.a/ is contained in some  2 L, where �./ is contained in
some W 2W1. Since .0/ � U Œa�, it follows that

�..0// D Q̌ n..0// D ˇ 0..0//
2 f̌ �1.st.a;U/ \ A/ � ˛.st.a;U/ \ A/
� st.˛.a/; Q̨ .U// � st.˛.a/;W3/;

hence W \ st.˛.a/;W3/ 6D ;. Then, ˛ and �'jA are W0-close, which implies
˛ ' �'jA.

On the other hand, we can define a map �n W jK.n/j [ jLj ! P by �njjK.n/j D
Q̌ n and �njjLj D � . Since �i .P / D f0g for every i � n, by skeleton-wise

induction, we can construct maps �i W jK.i/j [ jLj ! P , i � n, such that
�iC1jjK.i/j [ jLj D �i . Because dimK D m < 1 because K is finite, we have
a map �m' W Y ! P . As we saw in the above, �m'jA D �'jA ' ˛. By the
Homotopy Extension Theorem 6.4.1, ˛ can be extended over Y . ut

Proof of Theorem 7.9.10. First, we show that f � is surjective. Consider the
mapping cylinderMf , where we identifyX D X�f1g �Mf . Let q W X�I!Mf

be the restriction of the quotient map. Then, q is a UV n�1 map and q�1.X/ D
X � f1g � X � I. For every map ˛ W X ! P , the map ˛prX W X � I ! P is an
extension of ˛qjq�1.X/.

X � I

q

˛prX

� q�1.X/

qj P

Mf

Q̨

� X

˛

Applying Lemma 7.9.11, we have a map Q̨ W Mf ! P . Since the collapsing cf W
Mf ! Y is a strong deformation retraction, it follows that

. Q̨ jY /f D . Q̨ jY /cf jX ' Q̨ jX D ˛:

Thus, we have f �Œ Q̨ jY � D Œ˛�.
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Next, we show that f � is injective. The double mapping cylinderDMf is defined
as the adjunction space

DMf D .Y � @I/ [f �id@I .X � I/:

The map f � idI W X � I ! Y � I induces the map Nf W DMf ! Y � I, which is
a UV n�1 map and Nf jY � @I D id. Let ˛0; ˛1 W Y ! P be maps with f �Œ˛0� D
f �Œ˛1�, i.e., ˛0f ' ˛1f . Then, a homotopy h W X � I ! P from ˛0f to ˛1f
induces the map Nh W DMf ! P .

DMf

Nf

Nh

� Y � @I

id P

Y � I

Qh

� Y � @I

˛0˚˛1

Applying Lemma 7.9.11, we have a map Qh W Y � I ! P such that QhjY � @I D
NhjY �@I, which means that Qh is a homotopy from ˛0 to ˛1. Consequently, it follows
that Œ˛0� D Œ˛1�. ut

Now, we prove Theorem 7.9.9.

Proof of Theorem 7.9.9. Let f W X ! Y be a UV n map with dimZX � n. For
each closed set A in Y , we denote fA D f jf �1.A/ W f �1.A/ ! A. Then, fA is
also a UV n map. Let i W A � Y and j W f �1.A/ � X be the inclusions. We have
the following commutative diagram:

ŒY; jK.Z; n/j�
f �

i�

ŒA; jK.Z; n/j�
f �

A

ŒX; jK.Z; n/j�
j�

Œf �1.A/; jK.Z; n/j�:

According to Theorem 7.9.10, both vertical f � and f �A are bijective. Because
dimZX � n, j � is surjective, consequently so is i�. This means that dimZ Y � n.

ut
As a corollary of Theorem 7.9.10, we have the following:

Corollary 7.9.12. Let f W X ! Y be a cell-like map between compacta and P
an ANR (or a polyhedron) with �i .P / D f0g except for finitely many i 2 N. Then,
f � W ŒY; P �! ŒX; P � is a bijection. ut
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Remark 12. As we saw in the previous section, a cell-like map f W X ! Y is
not a shape equivalence even if X or Y is a compact AR. Therefore, the homotopy
condition on P is essential in Corollary 7.9.12.

7.10 Alexandroff’s Problem and the CE Problem

In Sect. 7.9, we have shown that dimZX � dimX for every compact space X and
dimZX D dimX if X is finite-dimensional (Theorem 7.9.5). Then, it is natural to
ask the following question:

• Does there exist an infinite-dimensional compactum with finite cohomological
dimension dimZ?

This problem is called Alexandroff’s Problem. Recall that it has been shown in
Sect. 7.9 that any cell-like map between compacta does not raise the cohomological
dimension (Theorem 7.9.8). So, it is also natural to ask the following question:

• Do cell-like maps of compacta raise the dimension?

This is called the CE Problem. These two problems are equivalent. In fact, this
section has the purpose of establishing the following theorem:

Theorem 7.10.1. For every compactumX , the following are equivalent:

(a) dimZX � n;
(b) There exists a cell-like map f W Y ! X for some compactum Y with

dimY � n.

In the next section, we will give an affirmative answer to Alexandroff’s Problem,
so the CE Problem is also positively answered.

To prove Theorem 7.10.1, we first establish a criterion to estimate the coho-
mological dimension of the inverse limit via the bonding maps. For each map
f W X ! Y from a compact space X to a metric space Y D .Y; d/ and n;m 2 N,
we define ˛n.f / and ˛mn .f / as follows:

˛n.f / D inf
˚
d.f; g/ W g 2 C.X; Y /; dimg.X/ � n�I

˛mn .f / D sup
˚
˛n.f jA/ W A 2 Cld.X/; dimA � m�:

Theorem 7.10.2. Let X D lim �.Xi ; fi / be the inverse limit of an inverse sequence
of compact metric polyhedra. Then, the following conditions are equivalent:

(a) dimZX � n;
(b) limj!1 ˛nC1n .fi;j / D 0 for each i 2 N,

where fi;j D fi � � �fj�1 W Xj ! Xi for i < j .
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Proof. (b)) (a): Let A be a closed set in X and g W A! jK.Z; n/j be a map. For
each i 2 N, let Ai D pi .A/, where pi W X ! Xi is the inverse limit projection.
Then, A D lim �.Ai ; fi jAiC1/ and each pi jA is the inverse limit projection. By
Lemma 7.1.7, we have some i 2 N and a map gi W Ai ! jK.Z; n/j such that
gipi jA ' g. Since jK.Z; n/j is an ANE, gi extends to a map Qgi W U ! jK.Z; n/j
over a neighborhood U of Ai in Xi . Let " D 1

4
dist.Ai ; Xi n U / > 0. Because Xi

is a compact ANR, we can find 0 < ı < " such that every pair of ı-close maps to
Xi are "-homotopic in Xi . By (b), we can choose j > i so that ˛nC1n .fi;j / < ı.
Let K be a triangulation of Xj with meshfi;j .K/ < " (Corollary 4.7.7) and
let L be the subcomplex of K with jLj D st.Aj ;K/. Then, we have a map
h0 W jK.nC1/j ! Xi such that dimh0.jK.nC1/j/ � n and d.h0; fi;j jjK.nC1/j/ < ı,
hence h0 '" fi;j jjK.nC1/j. By the Homotopy Extension Theorem 6.4.1, h0 extends
to a map h W jKj D Xj ! Xi such that h '" fi;j . Then, meshh.K/ < 3", hence
h.jLj/ � U and hjjLj ' fi;j jjLj in U . Thus, we have the map QgihjjLj W jLj !
jK.Z; n/j and QgihjjLj ' Qgifi;j jjLj.

Recall that @�nC1 is a mapping .n C 1/-deformation retract of jK.Z; n/j for
metrizable spaces. Since dimh.jL.nC1/j/ � n and h.jL.nC1/j/ � U , we have a map
g0 W h.jL.nC1/j/ ! @�nC1 � Sn such that g0jD D Qgi jD and g0 ' Qgi jh.jL.nC1/j/
rel.D, where

D D Qg�1i .@�nC1/ \ h.jL.nC1/j/:
Because dimh.jK.nC1/j/ � n, the map g0 extends to a map Qg0 W h.jK.nC1/j/ !
@�nC1 � Sn. Then, Qg0hjjL.nC1/j D g0hjjL.nC1/j ' QgihjjL.nC1/j. By the Homotopy
Extension Theorem 6.4.1, we can obtain a map g00 W jLj ! jK.Z; n/j such that
g00jjL.nC1/j D Qg0hjjL.nC1/j and g00 ' QgihjjLj. Thus, we have a map g000 W jK.nC1/j[
jLj ! jK.Z; n/j defined by g000jjK.nC1/j D Qg0h and g000jjLj D g00. On the other
hand, for everym > n, every map from Sm to jK.Z; n/j extends over BmC1 because
�m.jK.Z; n/j/ D 0. By skeleton-wise induction, we can extend g000 to a map g� W
jKj D Xj ! jK.Z; n/j. Then, it follows that

g�pj jA D g00pj jA ' Qgihpj jA ' Qgifi;j pj jA D Qgipi jA ' g;

hence g can be extended overX by the Homotopy Extension Theorem 6.4.1.
(a) ) (b): For each j 2 N and " > 0, we have to find k0 � j so that

˛nC1n .fj;k/ < " for every k � k0. We assume that dimXj > n because the
other case is obvious. Let K be a triangulation of Xj with meshK < "=2

(Corollary 4.7.7). Let EW.K; n/ be the simplicial Edwards–Walsh complex for K .
Recall that K.n/ � EW.K; n/ D S

2K K , where K ,  2 K , are simplicial
complexes obtained by Proposition 7.8.14. Suppose that the map pj jp�1j .jK.n/j/ W
p�1j .jK.n/j/! jEW.K; n/j extends to a map gm W p�1j .jK.m/j/! jEW.K; n/j for

m � n such that gm.p�1j .// � jK j for each  2 K.m/. For each .mC 1/-simplex
 2 K , observe that

gm.p
�1
j .@// �

[

 0<

jK 0 j � jK j ' jK.Z; n/jk for some k 2 N.
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Since dimZ p
�1
j ./ � dimZX � n, gmjp�1j .@/ extends to a map g W

p�1j ./ ! jK j. By virtue of Proposition 7.8.14(3), the map gmC1 can be defined
by gmC1jp�1j ./ D g for every .mC 1/-simplex  2 K .

Now, we have obtained the map gdimK W X ! jEW.K; n/j, which extends to a
map g W U ! jEW.K; n/j over a neighborhoodU of X in

Q
j2NXj . Observe that

g.pr�1j ./ \ X/ D g.p�1j .// � jK j for each  2 K .

Then, X has a neighborhood V � U in
Q
i2NXi such that

g.pr�1j ./ \ V / � int st.jK j; EW.K; n// for each  2 K .

We use the same notationX�i as in the proof of Lemma 7.1.7. BecauseX is compact,
we can choose k0 > j so that

X�k0 D
˚
x 2Qi2NXi

ˇ
ˇ x.i/ D fi;k.x.k// for i < k

� � V:

Let z 2Qi2NXi be fixed and define an embedding 'i W Xi ! X�i by

'i.x/ D .f1;i .x/; : : : ; fi�1;i .x/; x; z.i C 1/; z.i C 2/; : : : /:

Then, for every k � k0, the following statement holds:

(*) If x 2 Xk , fj;k.x/ 2  2 K , and g'k.x/ 2 jK 0 j,  0 2 K , then  \  0 6D ;.

Indeed, since fj;k D prj 'k, we have 'k.x/ 2 pr�1j ./ \ V , hence g.'k.x// 2
int st.jK j; EW.K; n//. It follows that jK j \ jK 0 j 6D ;, which implies that  \
 0 6D ; by Proposition 7.8.14(3).

Let A be a closed set in Xk with dimA � n C 1 and consider the restriction
fj;kjA W A ! Xj D jKj. Using Proposition 7.8.14(6), we can obtain a map  W
A! jK.n/j such that each .x/ is contained in .n/ for some  2 K with g'k.x/ 2
jK j and

 j.g'k/�1.jK.n/j/\ A D g'j j.g'k/�1.jK.n/j/\ A;
where the carrier of fj;k.x/ in K meets  by (*). Then, d.fj;k.x/;  .x// �
2meshK < ". This means that ˛nC1n .fj;k/ < ". ut

Let X D .X; dX/ and .Y; dY / be metric spaces. A map f W X ! Y is said to
be non-expansive if dY .f .x/; f .x0// � dX.x; x0/ for every x; x0 2 X . An inverse
sequence .Xi ; fi /i2N of metric spaces Xi D .Xi ; di / is said to be non-expansive
if every bonding map fi is non-expansive. For every inverse sequence .Xi ; fi /i2N
of metrizable spaces, we have di 2 Metr.Xi/, i 2 N, such that .Xi ; fi /i2N is non-
expansive. Indeed, for each i 2 N, let d 0i 2 Metr.Xi/. The desired metric di for Xi
can be defined as follows:
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di .x; y/ D
X

j�i
d 0j .fj;i .x/; fj;i .y//;

where fj;i D fj � � �fi�1 W Xi ! Xj and fi;i D id.

Lemma 7.10.3. Let X and Y be the inverse limits of inverse sequences .Xi ; fi /i2N
and .Yi ; gi /i2N with pi W X ! Xi and qi W Y ! Yi the projections,
respectively. Suppose that each Yi has an admissible complete metric di such that
.Yi ; gi /i2N is non-expansive. Then, given maps hi W Xi ! Yi , i 2 N, such
that

P
i2N di .hifi ; gi hiC1/ < 1, there exists a map h W X ! Y such that

di.hipi ; qih/ �Pj�i dj .hj fj ; gj hjC1/.

Proof. Since gi;j is non-expansive for i < j , it follows that

di.gi;j hj pj ; gi;jC1hjC1pjC1/ � dj .hj pj ; gj hjC1pjC1/
D dj .hj fj pjC1; gj hjC1pjC1/ � dj .hj fj ; gj hjC1/:

Then, for each i < j < k,

di .gi;j hjpj ; gi;khkpk/ � di .gi;j hjpj ; gi;jC1hjC1pjC1/
C � � � C di.gi;k�1hk�1pk�1; gi;khkpk/

� dj .hj fj ; gj hjC1/C � � � C dk�1.hk�1fk�1; gk�1hk/:

Now, for each " > 0, choose k 2 N so that
P

j�k dj .hj fj ; gj hjC1/ < ". Then, for
each j 0 > j � k,

di .gi;j hjpj ; gi;j 0hj 0pj 0/ � dj .hj fj ; gj hjC1/
C � � � C dj 0�1.hj 0�1fj 0�1; gj 0�1hj 0/ < ":

Therefore, .gi;j hj pj /j�i is a Cauchy sequence in C.X; Yi / with the sup-metric.
Since Yi D .Yi ; di / is complete, so is C.X; Yi /, hence .gi;j hjpj /j�i converges to
a map h0i W X ! Yi . It should be noted that gi�1h0i D h0i�1 for each i 2 N. We can
define a map h W X ! Y by h.x/ D .h0i .x//i2N. For each i 2 N and "0 > 0, choose
j > i so that di .gi;j hj pj ; h0i / < "0. Then,

di .hipi ; qih/ D di .hipi ; h0i /
� di .hipi ; gihiC1piC1/C di.gi;iC1hiC1piC1; gi;iC2hiC2piC2/

C � � � C di.gi;j�1hj�1pj�1; gi;j hjpj /C di .gi;j hj pj ; h0i /
� di .hifi ; gihiC1/C diC1.hiC1fiC1; giC1hiC2/

C � � � C di .gi;j�1hj�1fj�1; gi;j hj /C "0:
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Therefore, di.hipi ; qih/ � P
j�i dj .hj fj ; gj hjC1/ for each i 2 N. This

completes the proof. ut
Now, we can prove Theorem 7.10.1.

Proof of Theorem 7.10.1. The implication (b) ) (a) is obtained by combining
Theorem 7.9.5 and Theorem 7.9.8.

(a)) (b): By Corollary 4.10.11, we may assume that X D lim �.Xi ; fi /, where
each Xi is a compact polyhedron. By pi W X ! Xi , we denote the inverse limit
projection. As observed in the above, we can give an admissible metric di for each
Xi such that every fi W XiC1! Xi is non-expansive.

By the uniformly local contractibility of compact metric polyhedra and Theo-
rem 7.10.2, we can inductively take two sequences 1 D "0 > "1 > "2 > � � � > 0 and
1 D k.1/ < k.2/ < � � � 2 N so that

(1) 2"i < "i�1 and the 2"i-neighborhood B.x; 2"i / of each point x 2 Xk.i/ is
contractible in the "i�1-neighborhood B.x; "i�1/;

(2) ˛nC1n .fk.i/;k.iC1// < "i=3.

Then, (1) implies that "i < 2�.i�j /"j for every i > j . Hence,
P

i>j "i < "j .
Triangulate each Xk.i/ by a simplicial complexKi with meshKi < "i=3. By (2),

we have a map g0i W jK.nC1/
iC1 j ! jKi j such that

dk.i/.g
0
i ; fk.i/;k.iC1/jjK.nC1/

iC1 j/ < "i=3 and dimg0i .jK.nC1/
iC1 j/ � n:

Pushing the image g0i .jK.nC1/
iC1 j/ into jK.n/

i j by Theorem 5.2.9, we can obtain a map

g00i W jK.nC1/
iC1 j ! jK.n/

i j with dk.i/.g00i ; g0i / � meshKi < "i=3. For each i 2 N,

let Yi D jK.n/
i j and gi D g00i jYiC1 W YiC1 ! Yi . Thus, we have an inverse

sequence .Yi ; gi /i2N with Y D lim �.Yi ; gi / 6D ; (cf. 4.10.9(1)), where the inverse
limit projection is denoted by qi W Y ! Yi . According to Theorem 5.3.2, we have
dimY � n. We can regard X D lim �.Xk.i/; fk.i/;k.iC1// (Corollary 4.10.4). Because
dk.i/.gi ; fk.i/;k.iC1/jYiC1/ < 2"i=3, we can apply Lemma 7.10.3 to the inclusions
hi W Yi � Xk.i/, i 2 N, to obtain a map h W Y ! X such that

dk.i/.pk.i/h; qi / �
X

j�i
2"j =3 < 2"i�1=3 for each i 2 N.

We will now show that h is cell-like. For each point x 2 X , we write xi D
pk.i/.x/ 2 Xk.i/ for each i 2 N. Recall that fk.i/;k.iC1/ is non-expansive. For each
y 2 YiC1, we have

dk.i/.xi ; gi .y// � dk.i/.fk.i/;k.iC1/.xiC1/; fk.i/;k.iC1/.y//
C dk.i/.fk.i/;k.iC1/.y/; gi .y//

< dk.iC1/.xiC1; y/C 2"i=3:
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Then, it follows that

gi .B.xiC1; "i /\ YiC1/ � B.xi ; "i C 2"i=3/\ Yi � B.xi ; "i�1/\ Yi :

Since Yi D jK.n/
i j and meshKi < "i=3, we have Qi D B.xi ; "i�1/ \ Yi 6D ;.

Thus, we have an inverse sequence .Qi ; gi jQiC1/i2N. The inverse limit Q D
lim �.Qi ; gi jQiC1/ 6D ; is a subspace of Y and qi jQ, i 2 N, are the projections
(cf. Propositions 4.10.8(2) and 4.10.9(1)).

We will show that h�1.x/ D Q. For each y 2 Q,

dk.i/.pk.i/h.y/; xi / � dk.i/.pk.i/h.y/; qi .y//C dk.i/.qi .y/; xi /
< 2"i�1=3C "i�1 < 2"i�1:

Then, limi!1 dk.i/.pk.i/h.y/; xi / D 0, which implies that h.y/ D x, that is, y 2
h�1.x/. Conversely, if y 2 Y nQ then qi .y/ 62 Qi for some i 2 N, which means
that dk.i/.qi .y/; xi / > "i�1. Since dk.i/.pk.i/h.y/; qi .y// < 2"i�1=3, it follows that
pk.i/h.y/ 6D xi D pk.i/.x/, hence h.y/ 6D x, i.e., y 2 Y n h�1.x/.

It remains to prove that Q is cell-like. By Remark 2 of Theorem 7.1.8, for each
i 2 N, it suffices to find j > i so that gi;j jQj ' 0. Observe that

giC1;iC3.QiC3/ D giC1giC2.B.xiC3; "iC2/\ YiC3/
� giC1.B.xiC2; "iC1/ \ YiC2/
� B.xiC1; 2"iC1/ \ YiC1;

which implies that giC1;iC3.QiC3/ is contractible in B.xiC1; "i / by (1). Since
dimgiC1;iC3.QiC3/ � I � n C 1, pushing this contraction into jK.nC1/

iC1 j by
Theorem 5.2.9, we can conclude that giC1;iC3.QiC3/ is contractible in B.xiC1; "iC
"iC1=3/\ jK.nC1/

i j. On the other hand, similar to gi ,

dk.i/.xi ; g
00
i .y// < dk.iC1/.xiC1; y/C 2"i=3 for each y 2 jK.nC1/

i j.

Then, it follows that

g00i
�
B.xiC1; "i C "iC1=3/\ jK.nC1/

i j� � B.xi ; "i C "iC1=3C 2"i=3/\ Yi
� B.xi ; "i�1/\ Yi D Qi:

Thus, gi;iC3.QiC3/ is contractible in Qi . This completes the proof. ut
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In the rest of this section, we will give an affirmative answer to Alexandroff’s
Problem:

Theorem 7.10.4 (DRANISHNIKOV; DYDAK–WALSH). There exists an infinite-
dimensional compactum X with finite cohomological dimension (dimZX D 2).

Remark 13. In Theorem 7.10.4, dimZX D 3 for the first example constructed by
Dranishnikov, but dimZX D 2 due to Dydak–Walsh’s construction, where one
should recall that dimZX � 1 if and only if dimX � 1.

Combining Theorem 7.10.4 with Theorem 7.10.1, we have the following positive
answer to the CE Problem:

Corollary 7.10.5. There exists a cell-like map f W X ! Y from a 2-dimensional
compactumX onto an infinite-dimensional compactum Y . ut

A map f W X ! Y is said to be monotone if f �1.y/ is connected for every
y 2 Y . The following profound theorem on approximations by open maps was
proved by J.J. Walsh. It is beyond the scope of this book to present the proof; refer
instead to [24] (References in Notes for Chap. 7).

Theorem 7.10.6 (J.J. WALSH). Let M be a compact connected (topological) n-
manifold (possibly with boundary), where n � 3. Every monotone map f WM ! Y

of M onto a metrizable space Y can be approximated by open maps g W M ! Y

such that g�1.y/ and f �1.y/ have the same shape type for each y 2 Y .13 In
particular, every cell-like map f WM ! Y can be approximated by a cell-like open
map.

Let f W X ! Y be a cell-like map from a 2-dimensional compactum X onto an
infinite-dimensional compactum Y as in Corollary 7.10.5. Embed the compactumX

into S5 (or I5), and consider the adjunction space Y [f S5 (or Y [f I5). Restricting
the quotient map, we can obtain a cell-like map g W S5 ! Y [f S5 (or g W I5 !
Y [f I5). Because S5 (or I5) is a compact connected 5-manifold (with boundary),
we can apply Walsh’s Theorem 7.10.6 to obtain the following corollary:

Corollary 7.10.7. There exists a cell-like open map from S5 (or I5) onto an infinite-
dimensional compactum. ut

To prove Theorem 7.10.4, we introduce the cohomological dimension of a map
f W X ! Y . We define dimZ f � n provided that, for each map g W A! K.Z; n/

from a closed set A in Y , gf jf �1.A/ extends overX .

13More generally, this theorem is valid for a quasi-open (or quasi-monotone) map, where f is said
to be quasi-open or quasi-monotone if f .U / D V for each open set V in Y and each component
U of f �1.V /.
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X

f

h

� f �1.A/

f j

jK.Z; n/j

Y � A

g

We define dimZ f D n if dimZ f � n and dimZ f 6< n. Then, it is obvious
that dimZ idX D dimZX . When Y D jKj is the polyhedron of a simplicial
complexK , we define the cohomological dimension with respect toK as follows:
dimZ.f;K/ � n provided that, for each subcomplex L � K and each map
g W jLj ! jK.Z; n/j, the composition gf jf �1.jLj/ extends over X . Using this
terminology, Proposition 7.8.15 can be reformulated as follows:

• For each simplicial complex K and n � 2, let $ W jEW.K; n/j ! jKj be
an associate map of the simplicial Edwards–Walsh complex EW.K; n/. Then,
dimZ.$;K/ � n.

The following is trivial by definition:

Lemma 7.10.8. Let f W X ! jKj be a map with dimZ.f;K/ � n. Then,
dimZ.f jY;K/ � n for every Y � X . ut
Lemma 7.10.9. Let X be the inverse limit of an inverse sequence .jKi j; fi /i2N of
compact metric polyhedra. If limj!1meshfi;j .Kj / D 0 and dimZ.fi ;Ki/ � n

for each i 2 N then dimZX � n.

Proof. Let g W A! jK.Z; n/j be a map from a closed set A in X . For each i 2 N,
let Ai D pi.A/, where pi W X ! jKi j is the inverse limit projection. Then, A D
lim �.Ai ; fi jAiC1/ and each pi jA is the inverse limit projection. By Lemma 7.1.7, we
have some i 2 N and a map gi W Ai ! jK.Z; n/j such that gipi jA ' g. Then,
gi extends to a map Qgi W U ! jK.Z; n/j over a neighborhood U of Ai in jKi j.
Since limj!1meshfi;j .Kj / D 0, we can find j � i so that fi;j .st.Aj ;Kj // D
st.Ai ; fi;j .Kj // � U , where st.Aj ;Kj / D jLj for some subcomplex L of Kj .
Observe that

AjC1 D pjC1.A/ � f �1j .Aj / � f �1j .st.Aj ;Kj // D f �1j .jLj/ � jKjC1j:

Because dimZ.fj ;Kj / � n, there is a map gjC1 W jKjC1j ! jK.Z; n/j such that

gjC1jf �1j .st.Aj ;Kj // D Qgifi;jC1jf �1j .st.Aj ;Kj //:

Thus, we have a map gjC1pjC1 W X ! jK.Z; n/j. Then, it follows that

gjC1pjC1jA D Qgifi;jC1pjC1jA D gipi jA ' g:
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Therefore, g extends over X by the Homotopy Extension Theorem 6.4.1. ut
For a pointed space .Y; y0/, let ˝.Y; y0/ be the loop space, that is,

˝.Y; y0/ D C..I; @I/; .Y; y0// D C..S1; e1/; .Y; y0//;

where the constant loop cy0 is the base point of ˝.Y; y0/. For each i > 1,
˝i.Y; y0/ D ˝.˝i.Y; y0/; c�/, where c� is the constant loop at the base point
 2 ˝i�1.Y; y0/ and ˝0.Y; y0/ means Y D .Y; y0/ itself. Here, omitting the
base point, we simply write ˝iY instead of ˝i.Y; y0/. To prove Theorem 7.10.4,
we need three more lemmas whose proofs are not given because more algebraic
preliminaries would be necessary. For their proofs, refer to the paper by Dydak and
Walsh [8] (References in Notes for Chap. 7).

Lemma 7.10.10. 14 Let .X; x0/, .Y; y0/ be pointed polyhedra, K be a countable
simplicial complex, and p W X ! jKj be a map with the following properties:

(1) p�1.jLj/ is a subpolyhedron of X for every subcomplex L of K;
(2) There is some i0 � 2 such that Œp�1./;˝iY � D f0g for every  2 K and

i � i0.
Then, p induces the isomorphisms

p� W Œ.K; p.x0//; .˝iY;/�! Œ.X; x0/; .˝
iY;/�; i � i0:

Let EW.K; n/ be the simplicial Edwards–Walsh complex for a simplicial
complexK and n � 2. It should be noted that ifK is countable then so isEW.K; n/.
Then, an associate map$ W jEW.K; n/j ! jKj has property (1) of Lemma 7.10.10
because $�1.jLj/ is a subpolyhedron of jEW.K; n/j for every subcomplex L of
K . Recall that $�1./ D  for each  2 K.n/ and $�1./ ' jK.Z; n/jk.dim / for
each  2 K nK.n/.

Lemma 7.10.11. For each n � 2 and k � 1, ŒjK.Zk; n/j;˝iSm� D f0g if m is odd
and i � m or if m is even and i � 2m � 1.

In Lemma 7.10.11, when n D 2 and m D 3, ŒjK.Zk; 2/j;˝iS3� D f0g for each
k � 1 and i � 3. Then, an associate map$ W jEW.K; 2/j ! jKj satisfies condition
(2) of Lemma 7.10.10, where Y D S3, n D 2, and i0 D 3. Consequently,$ induces
isomorphisms

$� W ŒjKj;˝3S3�! ŒjEW.K; 2/j;˝3S3�:

14This lemma is formulated in a more general setting in [8] and called the COMBINATORIAL

VIETORIS–BEGLE THEOREM, where X is a k-space (i.e., compactly generated) and property (1)
is that the inclusion p�1.jLj/ � X is a cofibration for every subcomplex L of K . Due to the
Homotopy Extension Theorem 4.3.3, for an arbitrary simplicial complex K and any subcomplex
L of K , the inclusion jLj � jKj is a cofibration.
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Therefore, for a map f W jKj ! ˝3S3,

f 6' 0 , f$ 6' 0:

Lemma 7.10.12. Let K D S
i2NKi be a countable simplicial complex, where

K1 � K2 � � � � are finite subcomplexes of K . Let .Y; y0/ be a pointed polyhedron
and i0 � 3 such that �i .Y; y0/ is finite for each i � i0. For a map f W jKj !
˝i.Y; y0/, i � i0 � 1, if f jjKj j ' 0 for every j 2 N then f ' 0.

It is known that �i .S2n�1/ is finite for every i > 2n � 1.15 In particular,
�i .˝

3S3/ Š �iC3.S3/ is finite for every i 2 N. Moreover, �m.˝3S3/ Š
�mC3.S3/ 6D f0g for some m � 3.16 Then, we have a map f W Sm ! ˝3S3

with f 6' 0 for some m � 3.

Theorem 7.10.13 (DYDAK–WALSH). For a map f W Sm ! ˝3S3 with f 6' 0

(m � 3), there exists a map g W X ! Sm of a compactumX with dimZX � 2 such
that g 6' 0.

Proof. Let K1 D F.@�mC1/ and identify jK1j D Sm. Thus, we can regard f W
jK1j ! ˝3S3. We will inductively construct maps gi W jKiC1j ! jKi j, i 2 N,
so that .jKi j; gi /i2N satisfies the conditions of Lemma 7.10.9 for n D 2, and the
compositions fg1;i D fg1 � � �gi�1 W jKi j ! ˝3S3 are not null-homotopic (i.e.,
fg1 � � �gi 6' 0). Then, X D lim �.jKi j; gi / and the inverse limit projection p1 W
X ! jK1j are the desired compactum and map. Indeed, dimZX � 2 by virtue of
Lemma 7.10.9. Moreover, fp1 6' 0 by Lemma 7.1.7(2), which implies that p1 6' 0.

Let EW.K1; 2/ be the simplicial Edwards–Walsh complex for K1. Then, as
observed above, an associate map $1 W jEW.K1; 2/j ! jK1j satisfies conditions
(1) and (2) of Lemma 7.10.10, hence it follows that f$1 6' 0. By Lemma 7.10.12,
f$1jjK2j 6' 0 for some finite subcomplex K2 of EW.K1; 2/. Let g1 D $1jjK2j
and replace K2 by a subdivision such that meshg1.K2/ < 2

�1.
Next, let $2 W jEW.K2; 2/j ! jK2j be an associate map of the simplicial

Edwards–Walsh complex EW.K2; 2/ for K2. By the analogy of g1, we can apply
Lemma 7.10.10 to have .fg1/$2 6' 0. By Lemma 7.10.12, .fg1/$2jjK3j 6' 0 for
some finite subcomplex K3 of EW.K2; 2/. Let g2 D $2jjK3j and replace K3 by a
subdivision such that meshg1g2.K3/ < 2

�2 and meshg2.K3/ < 2
�2.

15For example, see Theorem 7.1 in Chap. XI of Hu’s book “Homotopy Theory.” More generally,
�i .Sn/ is finite for every i > n except for �4k�1.S2k/ (cf. Hatcher’s book “Algebraic Topology,”
p.339).
16In fact, �6.S3/ Š Z12 by Theorem 16.1 in Chap. XI of Hu’s book “Homotopy Theory.”



7.11 Free Topological Linear Spaces Over Compacta 493

jEW.K1; 2/j
$1 [

jEW.K2; 2/j
$2 [

˝3S3 jK1j
f

jK2j
g1

jK3j
g2

� � �
g3

Inductively, let $i W jEW.Ki; 2/j ! jKi j be an associate map of the simplicial
Edwards–Walsh complex EW.Ki; 2/ for Ki . Applying Lemma 7.10.10 we have
.fg1 � � �gi�1/$i 6' 0. By Lemma 7.10.12, .fg1 � � �gi�1/$i jjKiC1j 6' 0 for some
finite subcomplexKiC1 of EW.Ki; 2/. Let gi D $i jjKiC1j and replace KiC1 by a
subdivision such that meshgj � � �gi .KiC1/ < 2�i for every j � i . This completes
the proof. ut

Now, we can prove Theorem 7.10.4.

Proof of Theorem 7.10.4. An example X in Theorem 7.10.13 is an infinite-
dimensional compactum with dimZX � 2. Since X has a map g W X ! Sm

with g 6' 0, we have dimX � m � 3 by Proposition 5.2.8, which implies that
X is infinite-dimensional by Theorem 7.9.5. Recall that dimZX � 1 if and only if
dimX � 1. Then, it follows that dimZX D 2. ut

7.11 Free Topological Linear Spaces Over Compacta

Recall that the free topological linear space over a space X is a topological linear
spaceL.X/ that containsX as a subspace and has the following extension property:

(LE) For an arbitrary topological linear space F , every map f W X ! F of X
uniquely extends to a linear map17 Qf W L.X/! F .

If the free topological linear space L.X/ exists then it is uniquely determined
up to linear homeomorphism. For every Tychonoff space X , there exists the
free topological linear space L.X/ over X (Theorem 3.9.2), which is regular
(Lemma 3.9.1(2)). In addition,X is a Hamel basis for L.X/ (Lemma 3.9.1(1)).

In this section, to study topological and geometrical structures of L.X/, we will
reconstruct L.X/ for a compactum X . Because L.X/ is a linear space with X a
Hamel basis, it can be algebraically identified with the following linear space:

R
X
f D

˚
� 2 R

X
ˇ
ˇ �.x/ D 0 except for finitely many x 2 X�;

17That is, a continuous linear function.
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where each x 2 X is identified with ıx 2 R
X
f defined by

ıx.y/ D
(
1 if y D x,

0 if y 6D x.

We define � WLn2N.Xn � R
n/! L.X/ as follows:

�.x; �/ D
nX

iD1
�.i/x.i/ for .x; �/ 2 Xn � R

n.

We equip L.X/ with the topology such that � is a quotient map. Identifying X D
X � f1g � X � R, � jX is the inclusion of X into L.X/, which is continuous. For
an arbitrary topological linear space F , every map f W X ! F uniquely extends to
a linear map Qf W L.X/! F because X is a Hamel basis of L.X/. Since

Qf �.x; �/ D
nX

iD1
�.i/f .x.i// for .x; �/ 2 Xn �R

n,

it follows that Qf � W Ln2N.Xn � R
n/ ! F is continuous, which means that Qf

is continuous. Consequently, L.X/ has the property (LE). Then, it follows that the
inclusion of X into L.X/ is an embedding.

Indeed, for each open set U in X and x 2 U , let f W X ! I be a map with f .x/ D 0 and
f .X n U/ D 1, where it suffices to assume that X is Tychonoff. By (LE), f extends to a
linear map Qf W L.X/! R. Then, x 2 Qf �1..� 1

2
; 1
2
//\X � U . This means thatU is open

with respect to the topology of X inherited from L.X/ (cf. Remark before Theorem 3.9.2).

Each z 2 L.X/ n f0g can be uniquely represented as follows:

z D
nX

iD1
�ixi ; xi 2 X; �i 2 R n f0g;

where xi 6D xj if i 6D j . This is called the irreducible representation of z. In
this case, we denote supp.z/ D fx1; : : : ; xng, which is called the support of z. For
convenience, let supp.0/ D ;.

To prove the Hausdorffness of L.X/, for each z 6D z0 2 L.X/, it suffices to find
a map f W L.X/ ! R such that f .z/ 6D f .z0/. When supp.z/ 6D supp.z0/, we
may assume that there is x0 2 supp.z/ n supp.z0/. By (LE), we have a linear map
f W L.X/! R such that

f .x0/ D 1 and f ..supp.z/ [ supp.z0// n fx0g/ D 0:
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Then, f .z/ 6D 0 D f .z0/. When supp.z/ D supp.z0/, we have the following
irreducible representations:

z D
nX

iD1
�ixi ; z0 D

nX

iD1
�0i xi ; xi 2 X; �i ; �0i 2 R n f0g:

Then, we may assume that �0 6D �00. By (LE), there exists a linear map f W L.X/!
R such that f .x0/ D 1 and f .supp.z/ n fx0g/ D 0. Then, f .z/ D �0 6D �00 D f .z0/.

To prove thatL.X/ is the free topological linear space overX , it remains to show
the continuity of addition and scalar multiplication. For each n 2 N, we denote
�n D � jXn � R

n and we define

Ln.X/ D
˚
z 2 L.X/ ˇˇ card supp.z/ � n�

D �n.Xn �R
n/ � L.X/:

For r > 0, let Ln.X; r/ D �n.Xn � r˙n/ � Ln.X/, where

˙n D ˚� 2 R
n
ˇ
ˇ Pn

iD1 j�.i/j � 1
�
:

Then, all Ln.X/ and Ln.X; r/ are closed in L.X/, hence the restrictions � jXn�Rn
and � jXn � r˙n are quotient maps.

Indeed, for each z 2 L.X/ n Ln.X/, let supp.z/ D fx1; : : : ; xmg, where m D
card supp.z/ > n. By (LE), we have a linear map f W L.X/! R

m such that f .xi / D ei
for each i D 1; : : : ; m. Then, f �1.Rm n f0g/ is an open neighborhood of z in L.X/ that
does not meet Ln.X/. Therefore, Ln.X/ is closed in L.X/.

For each z 2 L.X/ nLn.X; r/, we have the irreducible representation:

z D
nX

iD1

�ixi ; xi 2 X; �i 2 R n f0g:

By (LE), we have a linear map f W L.X/ ! R
n such that f .xi / D ei for each i D

1; : : : ; n. Let
U D ˚

� 2 R
n
ˇ
ˇ
Pn

iD1 j�.i/j > r
�
:

Then, f �1.U / is an open neighborhood of z in L.X/ that misses Ln.X; r/. Therefore,
Ln.X; r/ is closed in L.X/.

It should be noted that if X is compact metrizable then so is Ln.X; r/ for each
n 2 N and r > 0 because � jXn � r˙n W Xn � r˙n ! Ln.X; r/ is a perfect map
(see 2.4.5(1)).

Now, we consider the tower L1.X; 1/ � L2.X; 2/ � � � � , where L.X/ DS
n2NLn.X; n/. Then, we can show the following:

Lemma 7.11.1. L.X/ D lim�!Ln.X; n/.

Proof. LetA � L.X/ and assume thatA\Ln.X; n/ is closed inLn.X; n/ for every
n 2 N. Then, each ��1.A/\ .Xn�n˙n/ is closed in Xn�Rn. Let x0 2 X be fixed.
For each n < m 2 N, we define the embedding hn;m W Xn �R

n ! Xm �R
m by
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hn;m.x1; : : : ; xnI�1; : : : ; �n/ D .x1; : : : ; xn; x0; : : : ; x0I�1; : : : ; �n; 0; : : : ; 0/:

Because �hn;m D � jXn �R
n and h�1n;m.Xm �m˙m/ D Xn �m˙n, we have

h�1n;m
�
��1.A/ \ .Xm �m˙m/

� D ��1.A/\ .Xn �m˙n/:

Hence, ��1.A/\ .Xn�m˙n/ is closed inXn �Rn for eachm > n. SinceXn �Rn
has the weak topology with respect to fXn�m˙n j m > ng, it follows that ��1.A/\
.Xn �Rn/ is closed in Xn �Rn. Then, ��1.A/ is closed in

L
n2N.Xn �Rn/, which

means that A is closed in L.X/. ut
Remark 14. For a compactumX , as mentioned before Lemma 7.11.1, eachLn.X; n/
is also compact metrizable. Thus, L.X/ is the direct limit of a tower of compacta.
Therefore, L.X/ is perfectly normal and paracompact by Corollary 2.8.8, hence it
is hereditarily normal (= completely normal) (Theorem 2.2.7).

Recall that lim�!Xn�lim�! Yn D lim�!.Xn�Yn/ if eachXn and Yn are locally compact
(Proposition 2.8.4). Using this fact, we can prove the following:

Lemma 7.11.2. L.X/ is a topological linear space.

Proof. Since L.X/ D lim�!Ln.X; n/ by Lemma 7.11.1 and each Ln.X; n/ is
compact, it follows that L.X/ � L.X/ D lim�!.Ln.X; n/ �Ln.X; n// and

�n � �n W .Xn � n˙n/ � .Xn � n˙n/! Ln.X; n/ � Ln.X; n/

is a quotient map. Then, the addition a is continuous according to the following
commutative diagram:

.Xn � n˙n/ � .Xn � n˙n/

�n��n

Na
X2n � 2n˙2n

�2n

Ln.X; n/ � Ln.X; n/
a

L2n.X; 2n/;

where Na..x; �/; .x0; �0// D ..x; x0/; .�; �0//.
Since R D lim�!Œ�n; n�, we have L.X/ � R D lim�!.Ln.X; n/ � Œ�n; n�/ and

�n � id W .Xn � n˙n/ � Œ�n; n�! Ln.X; n/ � Œ�n; n�

is a quotient map. The scalar multiplicationm is continuous because of the following
commutative diagram:
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.Xn � n˙n/ � Œ�n; n�

�n�id

Nm
Xn2 � n2˙n2

�
n2

Ln.X; n/ � Œ�n; n�
m

Ln2.X; n
2/;

where Nm..x; �/; t/ D .x; : : : ; x; t�; 0; : : : ; 0/. ut
Consequently, we have arrived at the following theorem:

Theorem 7.11.3. For every compact space X , L.X/ is the free topological linear
space over X . ut

Let X and Y be compact spaces. For each map f W X ! Y , we have a unique
continuous linear map f\ W L.X/ ! L.Y / which is an extension of f . This is
functorial, that is, .gf /\ D g\f\ for any maps f W X ! Y and g W Y ! Z, and
idL.X/ D .idX/\. Thus, we have a covariant functor from the category of compact
spaces into the category of topological linear spaces.

Next, we will look into the geometrical structure of the free topological linear
space L.X/.

Lemma 7.11.4. For each n < m 2 N and r > 0,

Ln.X/ \ Lm.X; r/ D Ln.X; r/:

Proof. Clearly, Ln.X; r/ � Ln.X/ \ Lm.X; r/. For z 2 Ln.X/ \ Lm.X; r/, we
can write z D Pp

iD1 tixi , where p � n, ti 6D 0, and xi 6D xj for i 6D j . On
the other hand, because z 2 Lm.X; r/, there is .y; �/ 2 Xm � r˙m such that z DPm

jD1 �.j /y.j /. Then, we have

pX

iD1
jti j D

pX

iD1

ˇ
ˇ
ˇ
ˇ

X

y.j /Dxi
�.j /

ˇ
ˇ
ˇ
ˇ �

pX

iD1

X

y.j /Dxi
j�.j /j �

mX

jD1
j�.j /j � r:

We define .y0; �0/ 2 Xn � r˙n as follows:

y0.i/ D
(
xi if i � p,

x1 if i > p,
and �0.i/ D

(
ti if i � p,

0 if i > p.

Then, it follows that

z D
pX

iD1
tixi D

nX

iD1
�0.i/y0.i/ D �n.y0; �0/ 2 Ln.X; r/: �
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Proposition 7.11.5. Each Ln.X/ is closed in L.X/, which is the direct limit of the
tower Ln.X; 1/ � Ln.X; 2/ � � � � , i.e., Ln.X/ D lim�!Ln.X;m/.

Proof. For each m � n 2 N, Ln.X/ \ Lm.X;m/ D Ln.X;m/ is closed in L.X/
by compactness. Thus, Ln.X/ is closed in L.X/ by Lemma 7.11.1, hence it follows
that Ln.X/ D lim�!Ln.X;m/ (cf. Remark for Proposition 2.8.1). ut

Now, for each n 2 N, let

Sn.X/ D Ln.X/ n Ln�1.X/ D
˚
z 2 L.X/ ˇˇ card supp.z/ D n�;

where L0.X/ D f0g. Then, each Sn.X/ is open in Ln.X/ by Proposition 7.11.5.
Let V1; : : : ; Vn be n many pairwise disjoint open sets in X . Observe that U D
�n.
Qn
iD1 Vi � .R n f0g/n/ is an open set in Sn.X/ and

��1n .U / D
M

�2Sn

nY

iD1
V�.i/ � .R n f0g/n;

where Sn is the n-th symmetric group. For each � 2 Sn, the restriction
�njQn

iD1 V�.i/ � .R n f0g/n is a homeomorphism onto U as it is a bijective quotient
map.

In general, a map p W QX ! X is called a covering projection if each x 2 X
has an open neighborhood U evenly covered by p, that is, there are disjoint open
sets U�, � 2 �, such that p�1.U / DS�2� U� and each pjU� is a homeomorphism
onto U . Therefore, we have obtained the following proposition:

Proposition 7.11.6. For each n 2 N, �nj��1n .Sn.X// is a covering projection over
Sn.X/ such that card ��1n .x/ D nŠ for each x 2 Sn.X/. In particular, each point of
Sn.X/ has an open neighborhood that is homeomorphic to an open set in Xn �Rn.

ut
As a corollary, we have the following:

Corollary 7.11.7. If X is compact metrizable, then each Sn.X/ is locally compact,
metrizable, and -compact.

Proof. It follows from Proposition 7.11.6 that Sn.X/ is locally compact and locally
metrizable. Since a locally metrizable paracompact space is metrizable (2.6.7(4)),
Sn.X/ is metrizable (this also follows from the fact that the perfect image of
a metrizable space is metrizable (2.4.5(1))). Because of the perfect normality of
Ln.X/, the open set Sn.X/ is F in Ln.X/. The -compactness of Sn.X/ follows
from that of Ln.X/. ut

By Corollary 5.4.4 and Hanner’s Theorem 6.2.10(4), we also have the following
corollaries:



7.12 A Non-AR Metric Linear Space 499

Corollary 7.11.8. For a finite-dimensional compactum X , each Sn.X/ is finite-
dimensional, hence so is Ln.X/. Consequently,L.X/ is a countable union of finite-
dimensional compact sets, hence L.X/ is strongly countable-dimensional. ut

As for the following, recall that a locally ANR paracompact space is an ANR
(6.2.10(4)).

Corollary 7.11.9. For a compact ANR X , each Sn.X/ is an ANR. ut
The following lemma will be used in the next section.

Lemma 7.11.10. For each n 2 N and 0 < r < s, the following statements hold:

(i)
Pn

iD1 tixi 2 Sn.X/\ Ln.X; r/ implies
Pn

iD1 jti j � r;
(ii) Sn.X/ \ Ln.X; s/ is a neighborhood of Sn.X/\ Ln.X; r/ in Sn.X/.

Proof. (i) This is trivial (cf. the proof of Lemma 7.11.4).
(ii) For each z D Pn

iD1 tixi 2 Sn.X/ \ Ln.X; r/, we have disjoint open sets
U1; : : : ; Un in X such that xi 2 Ui . Because 0 <

Pn
iD1 jti j � r < s by (i), we can

choose 0 < ai < ti < bi so that 0 <
Pn

iD1 jt 0i j < s if ai < t 0i < bi . Then,

Uz D �n
�Qn

iD1 Ui �
Qn
iD1.ai ; bi /

� � Sn.X/\ Ln.X; s/

is an open neighborhood of z in Sn.X/, which implies the desired result. ut

7.12 A Non-AR Metric Linear Space

By the Dugundji Extension Theorem 6.1.1, every locally convex topological linear
space is an AE. In this section, we show that the local convexity is essential. This
involves the following theorem:

Theorem 7.12.1. There exists a -compact metric linear space that is not an AE,
hence it is not an AR.

To construct such a space, we use the free topological linear space L.X/ over
a compactum X . Note that L.X/ is the direct limit of compacta according to the
remark after Lemma 7.11.1. Then, L.X/ is perfectly normal and paracompact,
hence it is also hereditarily normal (= completely normal) (Remark 14). Let MX

be the set of all continuous metrics d on L.X/ such that .L.X/; d/ is a metric
linear space. Conventionally, open sets, neighborhoods, closures, etc. in .L.X/; d/
are called d -open sets, d -neighborhoods, d -closures, etc. In addition, continuous
maps with respect to d are said to be d -continuous.

Lemma 7.12.2. Each neighborhood U of 0 2 L.X/ is a d -neighborhood of 0 for
some d 2MX . In particular, MX 6D ;.
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Proof. Since L.X/ is a perfectly normal topological linear space (Remark 14),
L.X/ has open sets U1 � U2 � � � � such that

U1 � U; UiC1 C UiC1 � Ui ; Œ�1; 1�UiC1 � Ui and f0g D
\

i2N
Ui :

For each x 2 L.X/, because each Ui is a neighborhood of 0 D 0x 2 L.X/, we
can find s > 0 such that sx 2 Ui , i.e., x 2 s�1Ui . By Proposition 3.4.1, fUi j i 2
Ng is a neighborhood basis at 0 in some topology of L.X/, which makes L.X/ a
topological linear space. By Theorem 3.6.1, this topology is metrizable and coarser
than the original topology. Moreover, U is a neighborhood of 0 in this topology
because U1 � U . Thus, we have the desired result. ut
Lemma 7.12.3. For a compactumX , the following statements hold:

(i) Given di 2 MX , i 2 N, there exists some d 2 MX such that idL.X/ W
.L.X/; d/! .L.X/; di / is continuous for every i 2 N;

(ii) Each open set U in L.X/ is d -open for some d 2MX ;
(iii) For an arbitrary metric space Y and A � L.X/, each map f W A ! Y is

d -continuous for some d 2MX ;
(iv) For each metrizable subset A � L.X/ and d0 2 MX , there is d 2 MX such

that d � d0 and d jA2 2 Metr.A/.

Proof. (i) Note that the product space F D Q
i2N.L.X/; di / is a metrizable

topological linear space. Let d W L.X/ ! F be the diagonal injection (i.e.,
d.x/.i/ D x for each i 2 N). Then, d is continuous and linear. The desired metric
can be defined by d and an admissible metric for F .

�
For example, d.z; z0/ D

supi2N minfi�1; di .z; z0/g or d.z; z0/ DPi2N minf2�i ; di .z; z0/g.
�

(ii) For each x 2 U , U � x is a neighborhood of 0 in L.X/. By Lemma 7.12.2,
U � x is a dx-neighborhood of 0 for some dx 2 MX . Choose rx > 0 so that
Bdx .0; rx/ � U � x and let Vx D Bdx .0; rx/ C x � U . Note that Vx is also
open in L.X/. On the other hand, we have a tower D1 � D2 � � � � of compacta
with L.X/ D lim�!Di . Then, U D S

i2N.U \ Di/ and each U \ Di is separable
metrizable. It is easy to prove that U is covered by a countable subcollection of
fVx j x 2 U g, say U D S

i2N Vxi . By (i), we have d 2 MX such that idL.X/ W
.L.X/; d/! .L.X/; dxi / is continuous for every i 2 N. Since each Vxi is d -open,
U DSi2N Vxi is also d -open.

(iii) For each x 2 A and i 2 N, choose an open neighborhoodVi .x/ of x inL.X/
so that diamf .Vi .x/ \ A/ < 1=i . Then, Vi.x/ is dxi -open for some dxi 2 MX by
(ii). Here, we write L.X/ D lim�!Di as in the proof of (ii). Because A D Sn2N.A\
Dn/ and each A \ Dn is separable metrizable, we can obtain fxj j j 2 Ng � A

such that A � S
j2N Vi.xj / for every i 2 N. By (i), we have d 2 MX such that

idL.X/ W .L.X/; d/ ! .L.X/; d
xj
i / is continuous, hence every Vi .xj / is d -open.

For each x 2 A and i 2 N, choose j 2 N so that x 2 Vi .xj /. Since Vi .xj / is
a d -open neighborhood of x and diamf .Vi .xj / \ A/ < 1=i , it follows that f is
d -continuous.
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(iv) Take d 0 2 Metr.A/ and apply (iii) to obtain d 00 2 MX such that idA W
A ! .A; d 0/ is d 00-continuous. Note that idA W A D .A; d 0/ ! .A; d 00jA2/ is also
continuous, hence it is a homeomorphism. Therefore, d 00jA2 2 Metr.A/. We define
a metric on L.X/ as follows:

d.z; z0/ D max
˚
d 00.z; z0/; d0.z; z0/

�
:

Then, it is easy to see that d 2MX is the desired metric. ut
Lemma 7.12.4. LetE and F be metrizable topological linear spaces and h W E !
F a continuous linear surjection. If E and F are ARs, then for each open set U in
F , hjh�1.U / W h�1.U /! U is a fine homotopy equivalence.

Proof. For every neighborhoodV of each y 2 F , choose an open neighborhoodW
of 0 2 F so that tW � W for t 2 I andW C y � V . Then,

h�1.W C y/ D h�1.W /C x for each x 2 h�1.y/.

Since th�1.W / � h�1.W / for t 2 I, it follows that h�1.W / is contractible.
Thus, h�1.W C y/ is a contractible open neighborhood of h�1.y/ in h�1.V /.
Hence, h is a local -connection. It follows from Theorem 7.4.3 that h is a
fine homotopy equivalence. Due to Corollary 7.4.4, for each open set U in F ,
hjh�1.U / W h�1.U /! U is also a fine homotopy equivalence. ut

Since there exists a cell-like open map from a finite-dimensional compactum
onto an infinite-dimensional compactum (Corollary 7.10.7), Theorem 7.12.1 can be
derived from the following theorem:

Theorem 7.12.5. LetX be an infinite-dimensional compactum with a cell-like open
map f W Y ! X of a finite-dimensional compact ANR Y . Then, the free topological
linear spaceL.X/ overX has a continuous metric d such that .L.X/; d/ is a metric
linear space but is not an AR.

Proof. Let dimY � m. Because X is infinite-dimensional, we have a closed set A
in X and a map g W A! Sm that cannot extend over X (Theorem 5.2.3). Since Sm

is an ANE for normal spaces (Theorem 5.1.6(2)), A has an open neighborhood W
in L.X/ such that 0 62 clW and g extends to a map Ng W clW ! Sm. Observe that

Ngf\jY \ f �1\ .clW / D Ngf jY \ f �1\ .clW /:

Later, using Haver’s Near-Selection Theorem 7.6.1 and the fact that dimY � m
and f is a cell-like open map, we will prove the following claim:

Claim. There exists an open neighborhood U of X [ clW in L.X/ and the map
Ngf\ extends to a map h W f �1\ .U /! Sm.
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By virtue of Lemma 7.12.3, we have d 2 MX such that U and W are d -open
and Ng is d -continuous. Again, by Lemma 7.12.3, we have d 0 2MY such that

f\ W .L.Y /; d 0/! .L.X/; d/ and h W .f �1\ .U /; d 0/! Sm

are continuous. Thus, we have the following commutative diagram of metric spaces
and maps:

.L.Y /; d 0/

f\

� f �1\ .U /

f\

�

h

f �1\ .W /

f\

Ngf\
Sm

.L.X/; d/ � U

k1

� W

k2

Ng

X

[
� A

[
g

Since L.Y / is a countable union of finite-dimensional compact sets by Corol-
lary 7.11.8, it follows that .L.Y /; d 0/ is (strongly) countable-dimensional. There-
fore, .L.Y /; d 0/ is an AR by Corollaries 6.10.1 and 6.2.9.

Suppose that .L.X/; d/ is an AR. Then, f\jf �1\ .U / and f\jf �1\ .W / are

homotopy equivalences by virtue of Lemma 7.12.4. Let k1 W U ! f �1\ .U / and

k2 W W ! f �1\ .W / be their homotopy inverses. Observe that

hk1jW ' hk1f\k2 ' hk2 D Ngf\k2 ' NgjW:

Thus, we have hk1jA ' g. By the Homotopy Extension Theorem 6.4.1, g extends
over U . This contradicts the fact that g cannot extend over X . Consequently,
.L.X/; d/ is not an AR. ut

To prove the Claim, we need the following lemma, which easily follows from
Lemma 7.12.3:

Lemma 7.12.6. There exists some dY 2 MY such that f �1\ .clW / and every

f �1\ .Ln.X// are dY -closed and Ngf\jf �1\ .clW / W f �1\ .clW / ! Sm is dY -
continuous. ut

Recall that Comp.Z/ is the space of all non-empty compact sets in a space
Z with the Vietoris topology. When Z D .Z; d/ is a metric space, the Vietoris
topology of Comp.Z/ is induced by the Hausdorff metric dH . Then, by Theo-
rem 5.12.5(3), if Z is compact metrizable then so is Comp.Z/. One should also
recall that Sn.X/ D Ln.X/ n Ln�1.X/ is metrizable by Corollary 7.11.7.
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Lemma 7.12.7. For each z 2 Sn.X/, 'n.z/ D f �1\ .z/ \ Sn.Y / is a cell-
like compactum, and the set-valued function 'n W Sn.X/ ! Comp.Sn.Y // is
continuous.

Proof. We write z DPn
iD1 tixi by the irreducible representation. Since f �1.xi / \

f �1.xj / D ; for i 6D j , it follows that

'n.z/ D
nX

iD1
tif
�1.xi / D

˚Pn
iD1 tiyi

ˇ
ˇ yi 2 f �1.xi /

� �
nY

iD1
f �1.xi /;

where each f �1.xi / is a cell-like compactum. Then, 'n.z/ is also a cell-like
compactum.

To show that 'n is upper semi-continuous (u.s.c.), let U be an open set in Sn.Y /
such that 'n.z/ DPn

iD1 tif �1.xi / � U . Choose disjoint open sets V1; : : : ; Vn in Y
and ı > 0 so that

f �1.xi / � Vi ; ı < min
˚jti j

ˇ
ˇ i D 1; : : : ; n� and

nX

iD1
.ti � ı; ti C ı/Vi � U:

Because f is a closed map, each xi has an open neighborhood Wi in X such that
f �1.Wi / � Vi . Let

W D
nY

iD1
Wi �

nY

iD1
.ti � ı; ti C ı/ � Xn � R

n:

Then, �n.W / is an open neighborhood of z in Sn.X/. For each .x; �/ 2 W ,

'n.�n.x; �// D
nX

iD1
�.i/f �1.x.i// �

nX

iD1
.ti � ı; ti C ı/Vi � U:

Therefore, 'n is u.s.c.
Next, to prove that 'n is l.s.c., let U be an open set in Sn.Y / that meets 'n.z/ DPn
iD1 tif �1.xi /. Choose yi 2 f �1.xi /, i D 1; : : : ; n, so that

Pn
iD1 tiyi 2 U . Since

yi 6D yj for i 6D j , we have disjoint open sets V1; : : : ; Vn in Y and ı > 0 such that

yi 2 Vi ; ı < min
˚jti j

ˇ
ˇ i D 1; : : : ; n� and

nX

iD1
.ti � ı; ti C ı/Vi � U:

Because f is an open map, each f .Vi / is an open neighborhood of xi D f .yi / in
X . Now, let

W D
nY

iD1
f .Vi / �

nY

iD1
.ti � ı; ti C ı/ � Xn � R

n:
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Then, �n.W / is an open neighborhood of z in Sn.X/. For each .x; �/ 2 W ,
'n.�n.x; �//\U 6D ;. Indeed, choose y0i 2 Vi , i D 1; : : : ; n, so that f .y0i / D x.i/.
Then, it follows that

nX

iD1
�.i/y0i 2

nX

iD1
�.i/f �1.x.i// D 'n.�n.x; �// and

nX

iD1
�.i/y0i 2

nX

iD1
.ti � ı; ti C ı/Vi � U:

Therefore, 'n is l.s.c. ut
Now, we will prove the Claim.

Proof of Claim. In the following, we will inductively construct closed sets Vn �
V 0n � Ln.X/ and maps hn W f �1\ .V 0n [ clW / ! Sm, n 2 N, so as to satisfy the
conditions below:

(1) Ln.X/ \ .X [ clW / � intn Vn � Vn � intn V 0n;
(2) Ln.X/ \ VnC1 D Vn and Ln.X/ \ intnC1 VnC1 D intn Vn;
(3) hnjf �1\ .clW / D Ngf\jf �1\ .clW /;

(4) hnC1jf �1\ .V 0n [ clW / D hn,

where we denote intn A D intLn.X/ A for A � Ln.X/. Then, V D S
n2N Vn is

a closed neighborhood of X [ clW in L.X/ D lim�!Ln.X/ by (1) and (2). Since

L.Y / D lim�!Ln.Y / and f �1\ .Ln.X// � Ln.Y /, it follows from Proposition 2.8.2
and (2) that

f �1\ .V / D lim�!
�
f �1\ .V / \Ln.Y /

� D lim�!
�
f �1\ .Vn/\ Ln.Y /

�
:

Then, by (4), we have the map h1 W f �1\ .V / ! Sm such that h1jf �1\ .Vn/ D
hnjf �1\ .Vn/, hence h1jf �1\ .clW / D Ngf\jf �1\ .clW / by (3). Thus, we have U D
intV and h D h1jf �1\ .U /, which are needed in the Claim.

The first step. Because dimY � m, the map Ngf jY \ f �1\ .clW / extends over Y

(Theorem 5.2.3), hence the map Ngf extends to a map h0 W Y [ f �1\ .clW / ! Sm.
Since Sm is an ANE for normal spaces (Theorem 5.1.6(2)), h0 extends to a map
Nh0 W G0 ! Sm from an open neighborhoodG0 of Y [f �1\ .clW / inL.Y /. Consider
the following diagram:



7.12 A Non-AR Metric Linear Space 505

G0

[

Nh0

Y [ f �1\ .clW / �
f\

h0

f �1\ .clW /

f\

Ngf\
Sm

X [ clW � clW

Ng
� A

g

Recall that '1 W S1.X/ ! Comp.S1.Y // is the continuous set-valued function
defined by '1.z/ D f �1\ .z/ \ S1.Y / (Lemma 7.12.7). Then, we have the following
open set in S1.X/:

M1 D
˚
z 2 S1.X/

ˇ
ˇ '1.z/ � G0

�
;

which is open in L1.X/ because S1.X/ is open in L1.X/. Observe that

'1.x/ D f �1.x/ � Y � G0 for x 2 X and

'1.z/ � f �1\ .z/ � f �1\ .clW / � G0 for z 2 L1.X/ \ clW ,

hence L1.X/ \ .X [ clW / � M1. Therefore, we can find closed sets V1 � V 01 �
L1.X/ such that

L1.X/ \ .X [ clW / � int1 V1 � V1 � int1 V 01 � V 01 �M1:

Since f\ is continuous, we have the continuous set-valued function

Q'1 D '1f\jf �1\ .M1/ W f �1\ .M1/! Comp.S1.Y / \G0/:

For each y 2 f �1\ .M1/, Q'1.y/ D '1.f\.y// is a cell-like compactum by
Lemma 7.12.7. Since S1.Y / is finite-dimensional, -compact, and metrizable
(Corollaries 7.11.7 and 7.11.8), so is the F -set f �1\ .M1 n clW / D f �1\ .M1/ n
f �1\ .clW / in S1.Y /. Moreover, S1.Y / \ G0 is an ANR because so is S1.Y /
(Corollary 7.11.9). By virtue of Lemma 7.12.3(iv), we have d1 2 MY such
that d1 � dY and d1jS1.Y /2 2 Metr.S1.Y //, where dY is the metric obtained
by Lemma 7.12.6. Note that f �1\ .clW / is d1-closed and Ngf\jf �1\ .clW / is d1-
continuous. We can apply Haver’s Near-Selection Theorem 7.6.1 to obtain a map

�1 W f �1\ .M1 n clW /! S1.Y /\G0

such that d1.�1.y/; Q'1.y// < d1.y; f �1\ .clW // for every y 2 f �1\ .M1 n clW /.
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G0

[
Nh0

� S1.Y /\G0
Nh0

Comp.S1.Y /\G0/

\

f �1\ .clW /

f\

Ngf\
Sm f �1\ .M1 n clW /

f\

Nh0�1

Q'1
�1

Comp.S1.Y //

clW

Ng
M1 n clW

'1

� M1 � S1.X/

'1

Then, we can define h1 W f �1\ .V 01 [ clW /! Sm as follows:

h1.y/ D
(
Ngf\.y/ if y 2 f �1\ .clW /;
Nh0�1.y/ if y 2 f �1\ .V 01 n clW /:

We will verify the continuity of h1. Since f �1\ .V 01 n clW / is an open set in

f �1\ .V 01 [ clW /, we have to show the continuity of h1 at each y 2 f �1\ .clW /.
To this end, we will show that h1 is d1-continuous at y because id W L.Y / !
.L.Y /; d1/ is continuous. Since h1jf �1\ .clW / D Ngf\jf �1\ .clW / is d1-continuous,
it suffices to prove that

lim
i!1d1.yi ; y/ D 0; yi 2 f

�1
\ .V 01 n clW / ) lim

i!1
Nh0�1.yi / D Ngf\.y/:

Since Q'1 W f �1\ .M1/! Comp.S1.Y / \G0/ is u.s.c. and

d1.�1.yi /; Q'1.yi // < d1.yi ; f �1\ .clW // � d1.yi ; y/;

it follows that f�1.yi / j i 2 Ng [ Q'1.y/ is compact, hence .�1.yi //i2N has a
convergent subsequence .�1.yij //j2N. Since d1.�1.yij /; Q'1.y// ! 0, .�1.yij //j2N
converges to some

z 2 Q'1.y/ D '1.f\.y// D f �1\ .f\.y// \ S1.Y / � f �1\ .clW /:

Then, . Nh0�1.yij //j2N converges to Nh0.z/ D Ngf\.z/ D Ngf\.y/. By the same
argument, any subsequence of . Nh0�1.yi //i2N has a subsequence converging to
Ngf\.y/. This means that limi!1 Nh0�1.yi / D Ngf\.y/.

The inductive step. Assume that Vn�1, V 0n�1, and hn�1 have been constructed.
Because Sm is an ANE for normal spaces, hn�1 extends to a map Nhn�1 W Gn�1 !
Sm from an open neighborhood Gn�1 of f �1\ .V 0n�1 [ clW / in L.Y /. Recall that
'n W Sn.X/ ! Comp.Sn.Y // is the continuous set-valued function defined by
'n.z/ D f �1\ .z/ \ Sn.Y / (Lemma 7.12.7). Let
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Mn D
˚
z 2 Sn.X/

ˇ
ˇ 'n.z/ � Gn�1

�
and Nn D Mn [ intn�1 V 0n�1:

Then,Mn is open in Sn.X/, hence in Ln.X/.
We will show that Nn is open in Ln.X/. Suppose that Nn is not open in Ln.X/.

Then, Nn \ Ln.X;m/ is not open in Ln.X;m/ for some m 2 N because Ln.X/ D
lim�!Ln.X;m/ (Proposition 7.11.5). Since X is compact metrizable, Ln.X;m/ D
�n.X

n �m˙n/ is also compact metrizable. Then, there is some z 2 Nn \Ln.X;m/
that is the limit of zi 2 Ln.X;m/nNn. SinceMn is open inLn.X/, it follows that z 2
intn�1 V 0n�1 � Ln�1.X/. Then, Ln�1.X/ contains only finitely many zi . Otherwise,
infinitely many zi would be contained in intn�1 V 0n�1 � Nn. Consequently, we may
assume that zi 2 Sn.X/ D Ln.X/ n Ln�1.X/ for every i 2 N. Since zi 62 Mn, we
have yi 2 'n.zi / nGn�1. Recall that 'n.zi / D f �1\ .zi /\ Sn.Y /. Then,

f\.yi / D zi 2 Ln.X;m/\ Sn.X/ D �n.Xn �m˙n/ \ Sn.X/:

Since yi 2 Sn.Y /, it follows that yi 2 Ln.Y;m/ D �n.Y
n � m˙n/. Because

Ln.Y;m/ is compact, we may assume that limi!1 yi D y 2 Ln.Y;m/. Then,

f\.y/ D lim
i!1f\.yi / D lim

i!1 zi D z;

hence y 2 f �1\ .z/ � f �1\ .V 0n�1/ � Gn�1. Therefore, yi 2 Gn�1 for sufficiently
large i 2 N, which is a contradiction. Thus,Nn is open in Ln.X/.

For each z 2 Sn.X/\ clW , we have

'n.z/ � f �1\ .z/ � f �1\ .clW / � Gn�1:

Hence, Sn.X/\ clW �Mn. Then, it follows that

Ln.X/ \ .X [ clW / D .Sn.X/\ clW / [ �Ln�1.X/\ .X [ clW /
�

�Mn [ intn�1 V 0n�1 D Nn:

SinceL.X/ is hereditarily normal (= completely normal) (Remark 14), so isLn.X/,
hence, we can find an open set QV in Ln.X/ such that

(5)
�
Ln.X/\ .X [ clW /

� [ intn�1 Vn�1 � QV and
(6) cl QV \ �.Ln�1.X/ n Vn�1/ [ .Ln.X/ nNn/

� D ;.

Let Vn D Vn�1 [ cl QV � Nn. Then, it follows from (6) that

Ln�1.X/ \ Vn � Vn�1 � Ln�1.X/\ Vn;
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Ln�1.X/A

Vn�1

V 0

n�1

Ln.X/\ clW
Ln.X/

Mn

Nn DMn [ intn�1 V
0

n�1

X

V 0

n

Vn

Fig. 7.6 Mn, Nn, and Vn

hence Ln�1.X/\ Vn D Vn�1. Moreover, by (5),

intn�1 Vn�1 � Ln�1.X/\ QV � Ln�1.X/\ intn Vn

� intn�1.Ln�1.X/ \ Vn/ D intn�1 Vn�1:

Thus, we have Ln�1.X/\ intn Vn D intn�1 Vn�1. Choose a closed set V 0n � Ln.X/
so that Vn � intn V 0n � V 0n � Nn. Thus, we have obtained Vn and V 0n satisfying
conditions (1) and (2) (Fig. 7.6).

Because f\ is continuous, we have the continuous set-valued function

Q'n D 'nf\jf �1\ .Mn/ W f �1\ .Mn/! Comp.Sn.Y / \Gn�1/;

where Sn.Y /\Gn�1 is an ANR because so is Sn.Y / (Corollary 7.11.9). Since Sn.Y /
is finite-dimensional-compact and metrizable (Corollaries 7.11.7 and 7.11.8), so is
theF -set f �1\ .MnnclW / D f �1\ .Mn/nf �1\ .clW / in Sn.Y /. By the analogy of d1,

we apply Lemma 7.12.3(iv) to obtain dn 2MY such that dn � dY and dnjSn.Y /2 2
Metr.Sn.Y //. Then, f �1\ .Ln�1.X/ [ clW / D f �1\ .Ln�1.X// [ f �1\ .clW / is dn-

closed and Ngf\jf �1\ .clW / is dn-continuous.
Due to Lemma 7.11.10(ii), Sn.Y /\Ln.Y;mC 1/ is a neighborhood of Sn.Y /\

Ln.Y;m/ in Sn.Y / for each m 2 N. Then, we have an l.s.c. function �n W Sn.Y /!
.0;1/ defined by

�n.y/ D 1
2
dn.y; Sn.Y / nLn.Y;mC 1//

if y 2 Sn.Y /\ Ln.Y;m/ n Ln.Y;m � 1/, m 2 N.

Indeed, assume that y 2 Sn.Y / \ Ln.Y;m/ n Ln.Y;m � 1/ and �n.y/ > t , i.e.,
1
2
dn.y; Sn.Y / n Ln.Y;mC 1// > t . Then, the following Vy is a neighborhood of y

in Sn.Y /:
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Vy D
˚
y0 2 Sn.Y /

ˇ
ˇ 1
2
dn.y

0; Sn.Y / n Ln.Y;mC 1// > t
�

\ Ln.Y;mC 1/ nLn.Y;m � 1/:

For each y0 2 Vy , if y0 2 Ln.Y;m/ then

�n.y
0/ D 1

2
dn.y; Sn.Y / n Ln.Y;mC 1// > t;

and if y0 62 Ln.Y;m/ then

�n.y
0/ D 1

2
dn.y; Sn.Y / nLn.Y;mC 2//

� 1
2
dn.y; Sn.Y / nLn.Y;mC 1// > t:

Applying Theorem 2.7.6, we have a map � W Sn.Y /! .0; 1/ such that 0 < �n.y/ <
�n.y/. Then, it follows that

�n.y/ <
1
2
dn.y; Sn.Y / n Ln.Y;mC 1//

for each y 2 Sn.Y /\Ln.Y;m/ and m 2 N.

Because each Q'n.y/ is compact, we can define N�n W f �1\ .Mn n clW / ! .0; 1/

by N�n.y/ D min �n Q'n.y/. To prove the continuity of N�n, observe that the following
set-valued function is continuous:

f �1\ .Mn n clW / 3 y 7! �n Q'n.y/ 2 Comp..0; 1//:

For each y 2 f �1\ .Mn n clW / and " > 0, we have ı > 0 such that

dn.y; y
0/ < ı) dH .�n Q'n.y/; �n Q'n.y0// < ";

where dH is the Hausdorff metric on Comp..0; 1// induced by the metric d.t; t 0/ D
jt � t 0j. When dH .�n Q'n.y/; �n Q'n.y0// < ", we can find t 2 �n Q'n.y/ and t 0 2
�n Q'n.y0/ such that jt � N�n.y0/j < " and jt 0 � N�n.y/j < ". Then, N�n.y/ � t <

N�n.y0/C " and N�n.y0/ � t 0 < N�n.y/C ", which means that j N�n.y/ � N�n.y0/j < ".
As in the first step, we apply Haver’s Near Selection Theorem 7.6.1 to obtain a

map
�n W f �1\ .Mn n clW /! Sn.Y /\Gn�1

satisfying

dn.�n.y/; Q'n.y// < min
˚
dn.y; f

�1
\ .Ln�1.X/[ clW //; N�n.y/

�
:
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Gn�1

[
Nhn�1

� Sn.Y /\Gn�1
Nhn�1

Comp.Sn.Y / \Gn�1/

\

f �1\ .V 0n�1 [ clW /
hn�1

Sm f �1\ .Mn n clW /

f\

Nhn�1�n

Q'n
�n

Comp.Sn.Y //

Mn n clW

'n

� Mn � Sn.X/

'n

Here, it should be remarked that the distance between Nhn�1�n.y/ and Nhn�1.y/
converges to 0 as y tends to f �1\ .clW / but it does not always decrease as y tends

to f �1\ .V 0n�1 n clW /.

We will show that the line segment from Nhn�1�n.y/ to Nhn�1.y/ is contained in
Gn�1 if y is close to f �1\ .V 0n�1 n clW /. To see this, let

Rn D
˚
y 2 f �1\ .Mn n clW /

ˇ
ˇ hy; �n.y/i � Gn�1

�
and

Tn D Rn [ f �1\ .intn�1 V 0n�1 [ clW /:

Note that f �1\ .Mn n clW / is open in f �1\ .Ln.X/ [ clW /. Since Gn�1 is open in

L.Y / and �n is continuous, it follows that Rn is open in f �1\ .Ln.X/ n clW /, hence

so in f �1\ .Ln.X/ [ clW /.

We now show that Tn is open in f �1\ .Ln.X/ [ clW /. Assume that Tn is not

open in f �1\ .Ln.X/ [ clW /. Because f �1\ .Ln.X/ [ clW / is closed in L.Y / D
lim�!Ln.Y;m/ (Proposition 7.11.5), we have

f �1\ .Ln.X/ [ clW / D lim�!
�
f �1\ .Ln.X/ [ clW /\ Ln.Y;m/

�
:

Then, Tn\Ln.Y;m/ is not open in f �1\ .Ln.X/[clW /\Ln.Y;m/ for somem 2 N,
hence we have z 2 Tn \Ln.Y;m/ which is the limit of

zi 2 f �1\ .Ln.X/ [ clW /\ Ln.Y;m/ n Tn; i 2 N:

Since Rn is open in f �1\ .Ln.X/ [ clW / and zi 62 Rn, i 2 N, it follows that

z 2 f �1\ .intn�1 V 0n�1[ clW /. Note thatNn is open in Ln.X/, Ln.X/\ clW � Nn,
and intn�1 V 0n�1 � Nn, henceNn[clW is a neighborhood of f\.z/ inLn.X/[clW .
Therefore, we may assume that zi 2 f �1\ .Nn [ clW / for every i 2 N. Then,

zi 2 f �1\ .Mn n clW / because zi 62 f �1\ .intn�1 V 0n�1 [ clW /. Since zi 62 Rn, we
have hzi ; �n.zi /i 6� Gn�1.
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On the other hand, since zi 2 Ln.Y;m/, it follows that f\.zi / 2 Ln.X;m/.
Note that f\.zi / 2 Mn � Sn.X/. Then, f\.zi / 2 Sn.X/ \ Ln.X;m/. For z0 DPn

jD1 tj yj 2 Sn.Y /, by Lemma 7.11.10(i),

f\.z
0/ D

nX

jD1
tj f .yj / 2 Sn.X/ \Ln.X;m/) z0 2 Ln.Y;m/:

Thus, it follows that

Q'n.zi / D 'n.f\.zi // D f �1\ .f\.zi //\ Sn.Y / � Sn.Y /\ Ln.Y;m/;

hence �n.zi / 2 Ln.Y;mC 1/ because

dn.�n.zi /; Q'n.zi // < N�n.zi / D min �n Q'n.zi /
D 1

2
min

˚
dn.y; Sn.Y / nLn.Y;mC 1//

ˇ
ˇ y 2 Q'n.zi /

�
:

Since Ln.Y;mC1/ is compact metrizable, so is Comp.Ln.Y;mC1// (Theorem
5.12.5(3)). Then, we may assume that �n.zi / converges to some a2Ln.Y;mC1/ and
also Q'n.zi / converges to someK 2 Comp.Ln.Y;mC1//. Since f\. Q'n.zi // D f\.zi /
converges to f\.z/, it follows that K � f �1\ .f\.z//. Observe that

lim
i!1dn.�n.zi /; Q'n.zi // � lim

i!1dn
�
zi ; f

�1
\ .Ln�1.X/ [ clW /

�

� lim
i!1dn.zi ; z/ D 0:

Hence, limi!1 dn.a; Q'n.zi // D 0. Since Ln.Y;mC1/ is compact, dn is admissible
on Ln.Y;mC 1/, hence a 2 K � f �1\ .f\.z//. By the linearity of f\, f �1\ .f\.z// is
a flat, which is convex. Then, it follows that

hz; ai � f �1\ .f\.z// � f �1\ .V 0n�1 [ clW / � Gn�1:

Since hzi ; �n.zi /i converges to hz; ai in Comp.Ln.Y;m C 1//, hzi ; �n.zi /i � Gn�1
for sufficiently large i 2 N, which is a contradiction. Consequently, Tn is open in
f �1\ .Ln.X/ [ clW /.

Now, choose an open set B in f �1\ .Ln.X/[ clW / so that

f �1\ .V 0n�1 [ clW / � B � clB � Tn

and let ˇ W f �1\ .Ln.X/ [ clW /! I be a Urysohn map with

ˇ.clB/ D 0 and ˇ.f �1\ .Ln.X/ [ clW / n Tn/ D 1:
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From the definition of Tn, it follows that

.1 � ˇ.y//y C ˇ.y/�n.y/ 2 Gn�1 for y 2 f �1\ .Mn n clW /.

On the other hand,

f �1\ .V 0n [ clW / n B � f �1\ .Nn [ clW / n f �1\ .V 0n�1 [ clW /

D f �1\ .Mn n clW /:

Then, we can define a map hn W f �1\ .V 0n [ clW /! Sm by

hn.y/ D
( Nhn�1.y/ if y 2 clB ,
Nhn�1..1 � ˇ.y//y C ˇ.y/�n.y// if y 62 B .

Because Nhn�1 is an extension of hn�1, the map hn satisfies conditions (3) and (4).
This completes the proof. ut

Notes for Chap. 7

As mentioned at the beginning of this chapter, the concept of cell-like maps is profoundly related
to Shape Theory and Decomposition Theory. For insight into these theories, refer to the following
textbooks:

• S. Mardešić and J. Segal, Shape Theory, North-Holland Math. Library 26 (Elsevier Sci. B.V.,
Amsterdam, 1982)

• A. Chigogidze, Inverse Spectra, North-Holland Math. Library 53 (Elsevier Sci. B.V., Amster-
dam, 1996)

• R.J. Davarmann, Decomposition of Manifolds, Pure and Appl. Math. 124 (Academic Press,
Inc., Orlando, 1986)

Shape Theory was founded by K. Borsuk in 1968. As a textbook of Shape Theory, his own book
gives a good introduction:

• K. Borsuk, Theory of Shape, Monog. Mat. 59 (Polish Sci. Publ., Warsaw, 1975)

To study cell-like maps, a background in Algebraic Topology is required. There exist many
textbooks on Algebraic Topology. Among them, we recommend the following:

• E. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966)
• S.-T. Hu, Homotopy Theory (Academic Press, Inc., New York, 1959)
• A. Hatcher, Algebraic Topology (Cambridge Univ. Press, Cambridge, 2002)

The paper [13] gives a good survey of cell-like maps up to the mid-1970s. A compactum A

in an n-manifold M is called cellular if A has an arbitrarily small neighborhood in M that is
homeomorphic to Bn. In other words, A can be written as A D T

i2N Bi , where Bi � Bn

and BiC1 � intBi . Every cellular compactum is cell-like but the converse does not hold. The
Whitehead continuum is an example of non-cellular cell-like compacta (see Daverman’s book, pp.
68–69).
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The concept of the (n-)soft map was introduced by Shchepin in [19] and generalized to the
(polyhedrally) approximately (n-)soft map in [20]. These are discussed in Chigogidze’s book
above. The 0-Dimensional Selection Theorem 7.2.4 was established by Michael [14, 15]. In [10],
Kozlowski introduced the concept of the local n-connection and proved Theorem 7.3.6.

The Toruńczyk characterization of the Hilbert cube Q (Theorem 7.7.1) was established in [23].
This characterization (more generally, the Toruńczyk characterization of Q-manifolds) is the main
theme of van Mill’s book “Infinite-Dimensional Topology” mentioned in the Preface. The author’s
second book “Topology of Infinite-Dimensional Manifolds” can also be referred to. The result of
Adams used in Sect. 7.7 appeared in [1]. It also follows from the work of Toda [22]. The Taylor
example in Theorem 7.7.5 was constructed in [21] (cf. [18]). The example of Theorem 7.7.8 is
due to Keesling [9]. Using the Taylor example, many counter-examples are constructed in ANR
Theory. For example, in [16], van Mill constructed a map f WQ! Y of the Hilbert cube Q onto
a non-AR compactum Y such that f �1.y/ � Q for every y 2 Y , and in [17] he also constructed
a separable metrizable space X such that, for each compact set A in an arbitrary metrizable space
Y , every map f W A! X extends over Y but X is not an ANR.

Usually, the Eilenberg–MacLane complexes are constructed as CW-complexes, but we con-
structed them as simplicial complexes in Sect. 7.8.

Theorem 7.9.1 was originally proved by Cohen [4] but the proof presented here is based
on an idea of S. Ferry, which appeared in Appendix A in [25]. The proof of Theore 7.9.12
(7.9.10) appeared in [25], and is based on Kozlowski’s technique in [11]. Theorem 7.9.5 was
established by Alexandroff [2]. It was shown by Edwards that Alexandroff’s Problem is equivalent
to the CE Problem. Theorems 7.10.1 and 7.10.2 are due to Edwards (see [25]). The existence
of dimension-raising cell-like maps was first shown by A. Dranishnikov [5, 6]. Lemma 7.10.10
and Theorem 7.10.13 were established by Dydak and Walsh [8]. In [12], Kozlowski and Walsh
proved that the image of a cell-like map of a compact 3-dimensional manifold is always
finite-dimensional. It remains unsolved whether there exists a cell-like map of I4 onto an infinite-
dimensional compactum. There are good surveys on Cohomological Dimension Theory [7].
Walsh’s Theorem 7.10.6 on approximations by open maps was proved in [24].

The example of Theorem 7.12.1 was constructed in [3].
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Preface

p. vii, line 9 from top, 1966 should read as 1967

Chapter 1

p. 1, line 12 from bottom: Insert “ — half line” before ‘;’.
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p. 19, line 9 from top: n 2 � should read as n 2 N

Chapter 2
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Chapter 4
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p. 160, line 10 from bottom: polyhedra should read as polyhedron
p. 186, line 4 from top: K 0.0/ should read as K 0.0/

p. 187, line 2 from top: Insert “If x 2 K.0/ then Kx D K.”

Chapter 5

p. 249, line 3 from top: Insert “dim X” after ‘dimension’
p. 249, line 4 from top: n C 1. and should read as n C 1, and
p. 254, line 15–21: This proof is only for the case X and Y are closed in R

n.
For the general case, the proof should be written as follows:

Proof. For each homeomorphism h W X ! Y , we will show that h.int X/ � int Y .
Then, applying this to the inverse homeomorphism h�1 W Y ! X , we can also
obtain h�1 .int Y / � int X , that is, int Y � h.int X/. Thus, we will have h.int X/ D

int Y .
To see h .int X/ � int Y , note that each x 2 int X has a compact neighborhood

C in R
n with C � X . Since int h .C / � int Y , we may show that h .x/ 2 int h .C /.

On the contrary, assume that h .x/ 2 bd h .C /. For each neighborhood U of x in
C , h .U / is a neighbourhood of h .x/ in h .C /. We can apply Theorem 5.1.7 to
find a neighbourhood V of h .x/ in h .C / such that V � h .U / and every map
g W h .C / n V ! Sn�1 extends to a map Qg W h .C / n V ! Sn�1. Then, h�1 .V / is a
neighborhood of x in C with h�1 .V / � U . For every map f W C nh�1 .V / ! Sn�1,
f h�1 W h .C / ! Sn�1 can be extended to a map Qf W h .C / ! Sn�1. Then, Qf h W

C ! Sn�1 is an extension of f . Due to Theorem 5.1.7, this means that x 2 bd C ,
which is a contradiction. Therefore, h .x/ 2 int h .C /. ut

p. 261, line 6 from bottom: f �1 should read as h�1
0

p. 263, line 14 from top: Insert the following at the end of the sentence:

Corollary 5.2.16 is valid even if n D 1. In fact,
�
pr�1

i .0/ ; pr�1
i .1/

�
i2N

is essential
in IN. This will be shown in the proof of Theorem 5.6.1.

p. 264, line 6 from top: Insert “and” between ‘CHARACTERIZATION’ and ‘the’.
p. 264, line 7 from top: Insert “respectively” after ‘dimension’
p. 268, line 12 from top: Since should read as Note that U i

p. 268, line 12 from top: it should read as Ui . Then, it
p. 293, line 16 from bottom: Y should read as R2nC1

p. 316, line 6 from bottom: ©=2 should read as ©=3

p. 319, line 13 from top: n 2 N; and should read as and n 2 N. For any infinite set
p. 319, line 14 from top: Delete ‘such that . . . infinite. Then’.
p. 320, line 6 from bottom: B1 should read as B1 in IN.
p. 320, line 6 from bottom: Replace ‘which implies that’ by the following:

By Lemma 5.3.7, if P is a partition between A1 \ S and B1 \ S in S , then there
is a partition P 0 between A1 and B1 in IN such that P 0 \ S � P . Then, it follows
that P ¤ ;. Due to Theorem 5.2.17, this means that dim S � 1, that is,
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Chapter 6

p. 346, line 11 from bottom: homotopy should read as deformation
p. 346, line 10 from bottom: Delete ‘h0 D id and’.
p. 346, line 1 from bottom: Add the following:

It is said that X is deformable into A .� X/ if there is a deformation h W X �

I ! X with h1 .X/ � A. A retract A of X is a deformation retract of X if X is
deformable into A (refer 6.2.10(9)).

p. 348: Insert the following before Section 6.3:

(9) A subset A of a space X is a deformation retract if and only if X is deformable
into A and A is a retract of X .

To see the “if” part, let h W X � I ! X be a deformation with h1 .X/ � A and
let r W X ! A be a retraction. Using the fact that rh1 D h1, we can define a
homotopy from idX to r .

p. 363, line 5 from top: Add “as a closed set” after ‘Banach space)’.
p. 371, line 5 from top: 4.9.10 should read as 4.9.11

Index

p. 516, right-side line 2 from bottom: cellurality should read as cellularity
p. 518, left-side line 12 from top: hedgehog, 33 should read as hedgehog, 33, 296
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0-dimensional,

characterization, 266
0-soft, 428, 429
C.A;K/, 186
Cn, n-connected, 395
Cn-refinement, 401
F -hereditary property, 49
F -norm, 112
F -normed linear space, 112
F -space, 115
G-hereditary property, 49
K.G; n/, 464
K.Z; n/, 464
K! , 300
K!.� /, 300
LCn, locally n-connected, 395
N.A;K/, 186
UV � map, 446
UV n map, 446
UV1, 423
UC, U�, 121
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X ' Y , 7
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A^ B, 5
AŒY �, 5
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U-homotopic, 8
U-homotopy, 8
U-homotopy equivalence, 373
U-map, 291, 292
U.f /, 61
P.Y /, 121
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Emb.X; Y /, 290, 292
Fin.� /, 11
F1.Y /, 122
Homeo.X/, 62
Nd .A; "/, N.A; "/, 3
�0, 3
�n, 304, 397
	0, 3
	n, 301, 397
	n, 295
	n.� /, 296
	! , 280
	!.� /, 296
Ind, 273
Metr.X/, 2
MetrB.X/, 62
Metrc.X/, 62
V.U1; : : : ; Un/, 122
cov.X/, 5
densX , 2
diamd A, diamA, 3
distd .A; B/, dist.A; B/, 3
ind, 273
meshd A, meshA, 3
trInd, 281
trind, 281
Bd .x; "/, B.x; "/, 3
�0.X/, 227
�0.X; x0/, 234P

�2� x.�/, 14
"-close, 8
"-homotopic, 8
"-map, 290
c.X/, 2
d.x; A/, 3
f ' 0, 6
f ' g, 6
f ' g rel. A, 8
f 'U g, 8
f '" g, 8
h-refinement, 351
hn-refinement, 409
n-Lefschetz refinement, 401
n-dimensional, 249
n-equivalence, 225
n-homotopy dense, 410
w.X/, 2

absolutely Gı , 40
abstract complex, 195
Addition Theorem, 272
adjunction space, 5
admissible subdivision, 185

AE(n), absolute extensor for metrizable spaces
of dimension � n, 400

AE, absolute extensor, 333
affine function (or map), 74, 77
affine hull, 73
affine set, 71
affinely independent, 73
Alexandroff’s Problem, 483, 489
ANE(n), absolute neighborhood extensor for

metrizable spaces of dimension � n,
400

ANE, absolute neighborhood extensor, 333
ANR with dim � n, 407
ANR, absolute neighborhood retract, 333
AR with dim � n, 407
AR, absolute retract, 333
arc, 6
arcwise connected, 323
Arens-Eells Embedding Theorem, 342

Baire Category Theorem, 39
Baire property, 39
Baire space, 39, 64
barycenter of a simplex, 135
barycentric coordinate, 163
barycentric refinement, 37
barycentric subdivision, 173
base point, 2
bonding map, 204
boundary of a cell, 134
boundary operator, 235, 240
Brouwer Fixed Point Theorem, 249

canonical map, 197
canonical representation of a simplicial

complex, 163
Cantor (ternary) set, 3
Cantor set, 3, 310, 312
carrier, 142
CE map, 421
CE Problem, 483
Čech-complete, 43
cell,

principal, 142
cell, (linear cell), 133
cell-like compactum, 421
cell-like map, 421
Cell-Like Mapping Problem, 483
cell-like open map, 489
cellular, 512
cellurality, 2
chain; "-chain, 321
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characterization of AE(n)s, 406
characterization of ANE(n)s, 402
characterization of ANRs,

by HEP, 356
Cauty, 386
Hanner, 368
Lefschetz, 366
Nguyen To Nhu, 378

characterization of ARs, 347, 373
Characterization of dimension,

Alexandroff, 263
Eilenberg–Otto, 263

characterization of LEC-ness, 349, 351
Characterization of the Cantor Set, 310
circled, 96
clopen basis, 266
clopen set, 266
closed convex hull, 99
Closed Graph Theorem, 118
closed tower, 58
cohomological dimension, 474
cohomological dimension of a map, 489
Coincidence Theorem, 274
collapsing, 363
collectionwise normal, 45
combinatorially equivalent, 161
compact-open topology, 9, 10
Compactification Theorem, 287
compactum (compacta), 2
completely metrizable,

characterization, 40–42
completely normal, 29
complex,

cell, 140
countable, 141
finite, 141
finite-dimensional (f.d.), 141
infinite, 141
infinite-dimensional (i.d.), 141
locally countable, 145
locally finite, 145
locally finite-dimensional (l.f.d.), 145
ordered, 147
simplicial, 141

cone, 89, 213
cone, metrizable, 363
contiguous, 154, 164, 200
continuous set-valued function, 121
continuum (continua), 2
contractible, 338
contraction, 338
convergent (infinite sum), 14
convex, 75
convex hull, 76

core, 87
Countable Sum Theorem, 269
countable-dimensional (c.d.), 279
cover, 5
covering dimension, (dim), 249
covering projection, 498
cozero set, 29

Decomposition Theorem, 271
deformation, 346
deformation retract, 346, 357
deformation retraction, 346, 357
density, 2
derived subdivision, 173
dimension,

— of a complex, 141
— of a convex set, 76
— of a flat, 74
— of a simplex, 133
— of a simplicial complex, 260
— of a space, 249
— of an abstract complex, 195
characterization, 255, 259, 263, 264, 267

direct limit, 55
discrete, 30
double suspension, 455
Dugundji Extension Theorem, 334
Dugundji system, 334

EC, equi-connected, 349
Eilenberg–MacLane space, 464
Embedding Approximation Theorem, 291, 293
Embedding Theorem, 289
equi-connecting map, 349
Erdös space, 312
essential family, 261
essential map, 261
evenly covered, 498
extension, 6
extreme point, 79, 137

f.i.p., 21, 41
face, 79, 137
fine homotopy equivalence, 373, 374
finite intersection property, 21, 41
finite-dimensional (f.d.) , 249
fixed point property, 249
flat, 71
flat hull, 73
free topological linear space, 128, 493
Fréchet space, 115, 125, 336
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full complex, 143
full realization, 366
full simplicial complex, 143
full subcomplex, 143
fundamental group, 233

General Position Lemma, 196, 290
geometrically independent, 73

Hahn–Banach Extension Theorem, 86
Hauptvermutung, 161
Hausdorff metric, 315
Hausdorff’s Metric Extension Theorem, 344
hedgehog, 33
hereditarily disconnected, 308
hereditarily infinite-dimensional (h.i.d.), 281
hereditarily normal, 29
hereditarily paracompact, 51
hereditary n-equivalence, 433
hereditary shape equivalence, 445
hereditary weak homotopy equivalence, 433
Hilbert cube,

fixed point property, 251
universality, 34

homogeneous, 96
homotopic, 6
homotopically trivial, 372
homotopy, 6
homotopy class, 6
homotopy dense, 371
homotopy dominate, 222
homotopy dominate by a simplicial complex,

222
homotopy dominated, 368
homotopy equivalence, 7
homotopy equivalent, 7
homotopy exact sequence, 236
homotopy extension property (HEP), 355
Homotopy Extension Theorem,

— for ANEs, 355
— for cell complexes, 153

homotopy group, 233
homotopy inverse, 7
homotopy lifting property, 475
homotopy relative to a set, 8
homotopy type, 7
homotopy type of a simplicial complex, 222
Hurewicz fibration, 475
hyperplane, 72

inductive dimension,

large, 273
small, 273

inessential family, 261
infinite-dimensional (i.d.), 249
interior of a cell, 134
Invariance of Domain, 254
invariant metric, 109
inverse limit, 204
inverse of a path, 232
inverse sequence, 204

join, 136
join of paths, 232
joinable, 136

Klee’s Trick, 343

large inductive dimension, (Ind), 273
large transfinite inductive dimension, 281
Lavrentieff Gı-Extension Theorem, 43
Lavrentieff Homeomorphism Extension

Theorem, 44
LEC, locally equi-connected, 348
Lefschetz refinement, 366
limitation topology, 61, 62, 292
Lindelöf, 49
linear in the affine sense, 77
linear manifold or variety, 71
linear metric, 112
linear span, 12
linearly accessible, 79
link in a complex, 144
local �-connection, 435
local1-connection, 435
local n-connection, 435, 513
local path-connected, 395
locally arcwise connected, 323
locally connected, 321
locally contractible, 347
locally convex, 100, 333
locally finite, 30
Locally Finite Sum Theorem, 269
locally finite-dimensional nerve, 200
locally path-connected, 323
locally simply connected, 395
loop, 233
loop space, 233, 491
lower semi-continuous (l.s.c.),

— real-valued function, 53
— set-valued function, 121
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mapping .nC 1/-deformation retract, 464
mapping cylinder, 213
mapping cylinder, metrizable, 363
mapping telescope, 365
Menger compactum, �n, 304, 397
metric linear space, 112
metric polyhedron, 163
metric topology of a polyhedron, 163
Metrization Theorem,

Alexandroff–Urysohn, 35
Bing, 32
Frink, 35
Nagata-Smirnov, 32
Urysohn, 33

Minkowski functional, 88
Minkowski norm, 89
monotone map, 489

neighborhood deformation retract, 346
neighborhood retract, 333
nerve, 197
nested sequence, 205
non-expansive inverse sequence, 485
non-expansive map, 485
null-homotopic, 6
Nöbeling space, 	n, 301, 397

one-point union, 470
open cone, metrizable, 363
Open Cover Shrinking Lemma, 51
Open Mapping Theorem, 119
open star, 144, 163, 186
order of an open cover, 249
ordered complex, 147

paracompact,
characterization, 46, 53
definition, 45

partial realization, 366
partition, 261
Partition Extension Lemma, 267
partition of unity,

— (weakly) subordinated to an open cover,
52

locally finite, 52
path, 6
path-component, 227
path-connected, 323, 395
Peano continuum, 321
perfect map, 24
perfectly normal, 29

PL Approximation Theorem, 185, 195
PL homeomorphism, piecewise linear

homeomorphism, 160
PL map, piecewise linear map, 156
point-finite, 51
pointed space, 2
pointwise convergence topology, 20
polyhedrally 0-soft, 428
polyhedron, 141, 149
product cell complex, 150
product simplicial complex, 152
Product Theorem, 272
proper face, 137
proper map, 24, 64
proper PL map, 162
Property C , 392
Property UV �, 422
Property UV n, 423
Property UV1, 422, 423

quasi-monotone map, 489
quasi-open map, 489
quotient F -normed linear space, 116
quotient linear space, 98
quotient normed linear space, 116

radial boundary, 79
radial closure, 79
radial interior, 78
refine, 5
refinement, 5
refinements by open balls, 37, 38, 54
refining simplicial map, 198
relative n-th homotopy group, 235
retract, 333
retraction, 333

selection, 121
semi-locally contractible, 349
separated, 26
Separation Theorem, 89, 99
shape equivalence, 445
simple chain, 321
simplex, 133
simplicial approximation, 184
Simplicial Approximation Theorem, 185, 195
simplicial complex, 141
simplicial cone, 217
simplicial Eilenberg–MacLane complex, 466,

471
simplicial homeomorphism, 161
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simplicial isomorphism, 161
simplicial map, 158
simplicial map between abstract complexes,

197
simplicial mapping cylinder, 217
simplicially isomorphic, 161
simply connected, 240, 395
skeleton,

— of a cell complex, 142
— of an abstract complex, 195

small inductive dimension, (ind), 273
small transfinite inductive dimension, 281
soft (n-soft),

— map, 426
approximately, 429
homotopically, 429
polyhedrally, 427
polyhedrally approximately, 429
polyhedrally homotopy, 429

Sorgenfrey line, 67
Sorgenfrey plane, 67
Sperner map, 250
Sperner’s Lemma, 250
star, 35
star in a complex, 144
star-finite open cover, 200
star-refinement, 37
starring, 187
stellar subdivision, 187
Stone–Čech compactification, 23
straight-line homotopy, 155, 164
strong deformation retract, 346, 357
strong deformation retraction, 346, 357
strong local n-connection, 435
strong neighborhood deformation retract, 346
Strong Separation Theorem, 100
strongly countable-dimensional (s.c.d.), 280
strongly infinite-dimensional (s.i.d.), 278
subcomplex,

— of a cell complex, 142
— of a simplicial complex, 195

subdivision,
— of a cell complex, 146
simplicial, 146

sublinear, 85
subpolyhedron, 149
subsequence of an inverse sequence, 206
Subset Theorem, 266
sup-metric, 8
support,

— of a map, 52
suspension, 453
suspension,
n-fold, 455

telescope, 378
the opposite face, 137
the simplicial Edwards–Walsh complex, 472
Theorem,

Borsuk–Whitehead–Hanner, 362
Dydak–Walsh, 492
Hahn-Mazurkiewicz, 321
Hanner’s, 340, 347
Henderson–Sakai, 191
Kozlowski, G.,, 374
Kruse–Liebnitz, 359
Mazur, 19
Michael, 49
Stone, A.H., 31
Tychonoff, 21
Wallace, 22
Walsh, 489
Whitehead, J.H.C., 183
Whitehead–Milnor, 222

Tietze Extension Theorem, 27
topological group, 96
topological linear space, 94
topological sum, 6
topologically bounded, 101
totally bounded, 108, 286
totally disconnected, 308
transfinite inductive dimension,

large, 281
small, 281

triangulation, 149
trivial shape, 422
Tychonoff plank, 66

ULC, unified locally contractible, 350
uniform AE, 381
uniform ANE, 381
uniform ANR, 381
uniform AR, 381
uniform convergence topology, 8, 20
uniform neighborhood, 380
uniform neighborhood retract, 380
uniform retract, 380
uniformly continuous at A, 380
uniformly locally contractible, 350
uniformly locally path-connected, 327
universal map, in the sence of Holszyński, 329
universal space, 294
upper semi-continuous (u.s.c.),

— real-valued function, 53
— set-valued function, 121

Urysohn map, 28
Urysohn’s Lemma, 28
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vertex,
— of a simplex, 133
— of a cell, 136

Vietoris topology, 121, 315

weak homotopy equivalence, 226, 246
weak topology, 6
weak topology of a polyhedron, 141
weakly infinite-dimensional in the sense of

Alexandroff (A-w.i.d.), 285

weakly infinite-dimensional in the sense of
Smirnov (S-w.i.d.), 285

weakly infinite-dimensional (w.i.d.), 278
wedge, 89
wedge sum, 470
weight, 2
Whitehead topology of a polyhedron, 141

zero set, 29
zero-sequence, 378
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