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    Abstract     An experiment was conducted to test the survival rates, growth (calcifi cation), 
and reproduction capacities of three benthic foraminiferal species ( Ammonia tepida, 
Melonis barleeanus  and  Bulimina marginata ) under strongly oxygen- depleted con-
ditions alternating with short periods of anoxia. Protocols were determined to use 
accurate methods (1) to follow oxygen concentrations in the aquaria (continuously 
recorded using microsensors), (2) to distinguish live foraminifera (fl uorogenic 
probe), (3) to determine foraminiferal growth (calcein-marked shells and automatic 
measurement of the shell size). Our results show a very high survival rate, and 
growth of  A. tepida  and  M. barleeanus  in all experimental conditions, suggesting 
that survival and growth are not negatively impacted by hypoxia. Unfortunately, no 
reproduction was observed for these species, so that we cannot draw fi rm conclu-
sions on their ability to reproduce under hypoxic/anoxic conditions. The survival 
rates of  Bulimina marginata  are much lower than for the other two species. In the 
oxic treatments, the presence of juveniles is indicative of reproductive events, which 
can explain an important part of the mortality. The absence of juveniles in the 
hypoxic/anoxic treatments could indicate that these conditions inhibit reproduction. 
Alternatively, the perceived absence of juveniles could also be due to the fact that 
the juveniles resulting from reproduction (causing similar mortality rates as in the 
oxic treatments) were not able to calcify, and remained at a propagule stage. 
Additional experiments are needed to distinguish these two options.  
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10.1         Introduction 

 Oxygen defi ciency is one of the most widespread harmful effects for aerobic organ-
isms in the marine environment. Over the past 10 to 15 years the number of coastal 
areas affected by seasonal hypoxia in the bottom waters has spread rapidly, mainly 
due to anthropogenically induced eutrophication (Diaz and Rosenberg  1995 ; Diaz 
and Rosenberg  2008 ). While hypoxic and anoxic events (hypoxic < 63 μM O 2 , 
anoxic = below the detection limit of microsensors, following Middelburg and 
Levin  2009 ) existed throughout geological time, their occurrence in shallow marine 
and estuarine areas is clearly increasing. Global warming will probably enhance 
these effects and will enlarge the affected areas (Justic et al.  2003 ). 

 In most marine environments, only the top centimeter or millimeter of the sediment 
contain oxygen (Jørgensen and Revsbech  1989 ), because it is quickly consumed 
by biological and chemical processes (Wenzhöfer and Glud  2004 ). The oxygen con-
tent, which usually shows an exponential downward decrease, is the result of the 
equilibrium between downward oxygen diffusion from the bottom water into the 
sediment and the consumption of the oxygen used for the degradation of organic 
matter by aerobic organisms (Glud  2008 ). Oxygen defi ciency may be caused by 
increased organic matter supplies and/or a decrease of the bottom water ventilation. 
At greater water depths, less organic matter reaches the seafl oor, and less carbon is 
degraded in the sediment. Consequently, in general, in fi ned-grained organic-rich 
sediments in marine coastal areas, oxygen penetration is only a few millimeters 
(e.g.    Jørgensen  2005 ) compared to several centimeters in the deep sea (Wenzhöfer 
and Glud  2004 ). In addition, other important factors controlling oxygen availability in 
sediments are photosynthetic benthic microorganisms (Revsbech et al.  1986 ), such as 
diatoms which form biofi lms in the intertidal zone and burrowing macrofauna which 
increase oxygen penetration into the sediment (bio- irrigation) in deeper ecosystems 
(e.g. Aller  1994 ). 

 In environments with hypoxic bottom waters, oxic organic matter degradation is 
decreased but remineralization will continue using nitrates, sulfates and metal oxides. 
In permanently anoxic or sulfi dic settings, most oxidants have been exhausted and 
early diagenetic processes in the sediments are dominated by sulfate reduction, 
methanogenesis and anaerobic oxidation of methane (Treude  2012 ). 

 Marine faunas are strongly affected by hypoxic and anoxic events, particularly 
the benthic fauna living at the sediment-water interface and within the superfi cial 
sediment. In general meiofauna is less sensitive to hypoxia and anoxia than macro-
fauna and megafauna (Josefson and Widbom  1988 ; Moodley et al.  1998 ). Obligate 
or facultative anaerobes occur in some meiofaunal protists groups including 
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fl agellates, ciliates and foraminifera (Fenchel  2012 ). The diversity of anaerobic 
metabolic pathways applied by eukaryotes is much more restricted than the wide 
range of processes that enable prokaryotes to live and grow in the absence of free 
oxygen. Still, new fi ndings show from time to time that eukaryotic organisms have 
developed some unexpected strategies to exert all basic life functions (survival, 
growth, reproduction) under anaerobic conditions (Oren  2012 ). However, anaerobic 
respiration using oxidized compounds of nitrogen, sulfur and other elements remain 
very rare among eukaryotes. Following observations that foraminifera may prolifer-
ate in anoxic environments (reviews in Bernhard and Sen Gupta  1999 ; Geslin et al. 
 2004 ), Risgaard-Petersen et al. ( 2006 ) discovered that a foraminiferal species 
( Globobulimina turgida ) that usually lives in the oxygen-free zone of the sediment 
can use nitrate as electron acceptor and perform full denitrifi cation forming N 2  as 
end product. This species is able to accumulate a large quantity of nitrate in its cell, 
allowing it to employ anaerobic metabolism for at least 3 months (Piña-Ochoa et al. 
 2010b ). Piña-Ochoa et al. ( 2010a ) recently showed that many other benthic forami-
niferal species store nitrate in their cell, suggesting that nitrate reduction can poten-
tially be applied by a wide range of species. A gene for nitrate reduction has recently 
been found in  Bolivina argentea  (Bernhard et al.  2012 ), suggesting that in this spe-
cies denitrifi cation could at least partially be performed by the foraminifera them-
selves, and not entirely by symbiotic bacteria, such has been shown for allogromiid 
foraminifera (Bernhard et al.  2011 ). However, some foraminiferal species known to 
be tolerant to hypoxic and anoxic conditions do not store nitrate in their cell, strongly 
suggesting that they are not able to denitrify (Piña-Ochoa et al.  2010a ). For exam-
ple, this is the case of  Ammonia tepida , a dominant shallow water species, often 
observed in deeper layers in hypoxic or anoxic sediments (e.g. Kitazato  1994 ; 
Bouchet et al.  2009 ). Also  Bulimina marginata  and  Melonis barleeanus,  which have 
often been observed in deeper sediment layers, and are therefore suspected to be 
facultative anaerobes, do not show elevated concentrations of nitrate in their cell 
(Piña-Ochoa et al.  2010a ). 

 In the present paper, we want to focus on the response of these somewhat enig-
matic species to alternating hypoxic and anoxic conditions. We were especially 
interested to determine their survival rate and growth capacity under hypoxic condi-
tions and their ability to shift to nitrate reduction during short periods of anoxia. 

 To answer these questions, we studied in the laboratory the behavior of these 
three species ( Ammonia tepida ,  Bulimina marginata  and  Melonis barleeanus ) under 
different oxygen regimes, using adequate methods to distinguish live specimens, to 
observe the growth of living individuals, and to identify reproduction events. Three 
different treatments were applied: (1) oxic conditions with available nitrate, (2) 
strongly hypoxic to anoxic (nitrogen-fl ushed) conditions with nitrate and (3) strongly 
hypoxic to anoxic (nitrogen-fl ushed) conditions without nitrate. We expected that 
the third treatment would allow us to observe the ability of the three species to 
survive short periods of anoxia without having the possibility to store nitrate and/or 
to denitrify.  
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10.2     Ecological Characteristics of the Three Tested Species 

10.2.1      Ammonia tepida  

  Ammonia tepida  is a cosmopolitan species occurring in intertidal mudfl ats, brackish 
lagoons, estuaries and shallow marine areas that are extremely variable environ-
ments both temporally and spatially (Debenay et al.  2000 ; Murray  2006 ). It is a 
common species, which is able to survive a wide range of temperature, salinity 
and other environmental parameters varying on seasonal or daily scales (e.g. 
Bradshaw  1961 ; Schnitker  1974 ; Walton and Sloan  1990 ). It is a free living super-
fi cial to infaunal species in muddy to silty or fi ne sandy sediments (e.g. Debenay 
et al.  1998 ). 

  Ammonia tepida  has been extensively studied for various attributes, such as 
geographic distribution, ecology, biology, life-cycles, morphology, structure, and 
dependence of environmental parameters such as temperature and salinity (e.g., 
Bradshaw  1957 ,  1961 ; Schnitker  1974 ; Poag  1978 ; Jorissen  1988 ; Walton and Sloan 
 1990 ; Goldstein and Moodley  1993 ; Geslin et al.  1998 ; Stouff et al.  1999a ,  b ; Pascal 
et al.  2008 ).  Ammonia tepida  is considered as a deposit feeder and has been found 
feeding on algae (e.g. Moodley et al.  2000 ), bacteria (Goldstein and Corliss  1994 ; 
Langezaal et al.  2005 ; Pascal et al.  2008 ) and other meiofaunal groups (Dupuy et al. 
 2010 ). The congener  Ammonia  sp. shows a rapid uptake of freshly deposited algal 
carbon (Moodley et al.  2000 ). 

 The large morphological variability of the genus  Ammonia  has led to consider-
able diffi culties in species identifi cation and more than 40 species and subspecies 
(or varieties) of recent  Ammonia  have been described worldwide under the generic 
names  Ammonia, Streblus , and  Rotalia  (Ellis and Messina  1940 ). Recent studies 
have shown that the total number of genetically distinct and morphologically sepa-
rable living species of  Ammonia  worldwide is likely to exceed 25–30 (Hayward 
et al.  2004 ). Comparing the morphology of  Ammonia tepida  collected in the 
Aiguillon Bay with the pictures presented by Hayward et al. ( 2004 ), our morpho-
logical range contains morphotypes close to molecular type T1. 

  Ammonia tepida  is reported to be able to live in oxic and hypoxic conditions 
(Moodley and Hess  1992 ; Koho and Piña-Ochoa  2012 ). It has been found both in 
epifaunal and infaunal microhabitats (Kitazato  1994 ; Debenay et al.  1998 ). Bouchet 
et al. ( 2009 ) found Rose Bengal stained specimens below 20 cm in the sediment. 
However, it is still not 100 % clear whether this species is able to live in anoxic sedi-
ments, and, if this is the case, whether it uses an anaerobic metabolism or if it is able 
to survive in oxic microniches created by bioturbation. We expected our experiment 
to confi rm or discount the ability of  A. tepida  to survive and to calcify under strongly 
hypoxic conditions lasting for two months and to clarify its capacity to denitrify 
during short periods of anoxia.  
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10.2.2      Bulimina marginata  

  Bulimina marginata  is a cosmopolitan species found in various oceans around the 
world (e.g. Jorissen  1988 ; Corliss  1991 ; Jannink et al.  1998 ; Jorissen et al.  1998 ; De 
Rijk et al.  1999 ,  2000 ; Schmiedl et al.  2000 ;    Mojtahid et al.  2006 ,  2008 ,  2010 ; 
Mojtahid  2007 ; Pucci et al.  2009 ).  Bulimina marginata  lives at a wide range of water 
depths, from the continental shelf between 10 and 150 m water depth (e.g. Barmawidjaja 
et al.  1992 ; Fontanier et al.  2002 ;    Langezaal et al.  2005 ) to continental slope and bathyal 
environments, down to 2,200 m water depth (e.g. Jorissen et al.  1998 ; De Rijk et al. 
 1999 ,  2000 ). Abundant faunas of this species have also been described in submarine 
canyon environments (Schmiedl et al.  2000 ; Hess et al.  2005 ; Koho et al.  2007 ; 
Hess and Jorissen  2009 ). 

 Several studies indicate that  B. marginata  is a eutrophic taxon typical of fi ne 
grained muddy sediments with high food availability (e.g., Jorissen  1988 ; De Rijk 
et al.  2000 ).  Bulimina marginata  is generally considered as a detritivore. It occurs 
alive in shallow infaunal microhabitats in the topmost centimeters of the sediment, 
but abundant Rose Bengal stained assemblages have also been described in much 
deeper sediment layers (e.g. Kitazato  1989 ; Jorissen et al.  1998 ; Jorissen  1999 ). 
The presence of such deep assemblages may be related to macrofaunal burrows. 

 In several older studies,  B. marginata  has been considered as a good marker of 
low oxygen conditions (e.g.    Phleger and Soutar  1973 ; van der Zwaan and Jorissen 
 1991 ; Sen Gupta and Machain-Castillo  1993 ; Bernhard and Sen Gupta  1999 ). It is 
supposed to support periodic episodes of anoxia or hypoxia (Pucci et al.  2009 ).  

10.2.3      Melonis barleeanus  

  Melonis barleeanus  is a typical species of open marine settings from the lower con-
tinental shelf to bathyal environments (e.g. Schmiedl et al.  2000 ; Fontanier et al. 
 2002 ,  2008 ). Rich assemblages have also been described in submarine canyons 
(Koho et al.  2008 ; Nardelli et al.  2010 ; Phipps et al.  2012 ). 

  Melonis barleeanus  is commonly described as an intermediate infaunal species 
(Jorissen et al.  1998 ). This species is most often found in hypoxic sediments where 
pore-water nitrate concentrations are maximal (Jorissen et al.  1998 ; Fontanier et al. 
 2005 ; Koho et al.  2008 ; Mojtahid et al.  2010 ), and is assumed to feed on degraded 
organic detritus (e.g. Caralp  1989 ; Fontanier et al.  2002 ). Although only very low 
nitrate concentrations have been measured in  Melonis barleeanus,  (intracellular 
NO 3  −  content: 0.6 ± 0.2 mM; Piña-Ochoa et al.  2010a ), it has been considered as a 
potential denitrifi er because of its systematic appearance in nitrate-rich sediment 
layers (Koho and Piña-Ochoa  2012 ).   
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10.3     Methodology 

10.3.1     Experimental Design 

10.3.1.1     Foraminiferal Collection and Storage in the Laboratory 

    Ammonia tepida  

    Superfi cial sediment was sampled at low tide on the 9th of February 2011 in the 
intertidal area of the Bay of Aiguillon (French Atlantic coast). This area is known for its 
very rich live faunas of  Ammonia tepida  (Pascal et al.  2008 ). In the fi eld, the sediment 
was immediately sieved, using a 150-μm mesh and local seawater. The fraction >150 μm, 
containing large amounts of foraminifera, was transported to the culture laboratory at 
the University of Angers and maintained at 14 °C until the beginning of the experi-
ment. On the 15th of April 2011 (one month before the beginning of the experiment), 
 Ammonia tepida  was incubated in a calcein solution (Bernhard et al.  2004 ).  

    Bulimina marginata  

 Sediment cores were sampled in the Bay of Biscay at station K (Lat. 43°38′N, Long. 
1°43′W, water depth 650 m depth) on the 4th of February 2011 with a classical 
Barnett multi-tube corer (Barnett et al.  1984 ). The two fi rst centimeters were sliced 
from the subsurface, placed in containers with seawater and transported to the labo-
ratory where they were stored at 10 °C until the beginning of the experiment.  

    Melonis barleeanus  

 Sediment cores were sampled with a MUC8 + 4 multi-tube corer in Nazaré Canyon 
at station 161 (Lat. 39°35′N, Long. 9°24′W, water depth 918 m) on the 20th of 
March 2011. The two fi rst centimeters were sliced from the subsurface, placed in 
containers with seawater and transported to the laboratory where they were stored 
at 12 °C until the beginning of the experiment.   

10.3.1.2     Identifi cation and Collection of Living Organisms 

 One week before the start of the experiment, sediments from the 3 different locations 
were sieved with fi ltered (0.45 μm) seawater over a 150-μm mesh and living foramin-
ifera were picked. To ascertain the vitality of the selected specimens, each foraminifer 
was placed in a thin layer of fi ne-grained (<38 μm) sediment for approximately 12 h. 
Only the specimens that had moved, and had produced a burrow or trace on the sedi-
ment were considered alive and selected for the experiment.  
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10.3.1.3     Experimental Set-Up 

 Three different conditions were tested in three different aquaria with the same 
temperature (12.0 ± 0.3 °C) and salinity (35.4 ± 0.2). 

 Aquarium “OxN” (Oxic + Nitrate) contained well oxygenated artifi cial seawater 
(ASW) with 50 μM NO 3 . High oxygen concentrations were maintained by continu-
ously bubbling seawater with air. Aquarium “HypN” (low [O 2 ] + Nitrate) and aquarium 
“Hyp” (low [O 2 ] without nitrate) were both maintained under low oxygen condi-
tions and contained ASW with 50 μM NO 3  for HypN or nitrate-free water for Hyp. 
Hypoxic conditions were obtained by a continuous introduction of N 2  gas mixed 
with 0.04 % CO 2  (to keep the pH stable (Piña-Ochoa et al.  2010b )) into the over-
lying water. Oxygen concentrations were measured at least ones a day with a 
Clark-type microelectrode with a 100 μm thick tip (Revsbech  1989 ). The sensors 
were regularly 2-point calibrated in air-saturated ASW (temperature 12 °C, salinity 35) 
and in anoxic alkaline ascorbate. 

 Specimens were introduced into the aquaria in glass vials (20 mL each) with a 
thin layer of fi ne-grained sieved sediment (<38 μm) fi lled up with ASW, in order to 
create more ‘natural’ conditions for the foraminifera. Each vial was closed with a 
net (100 μm mesh) to keep the foraminifera within the vials.  

10.3.1.4     Survival Experiment 

 Living adult specimens of the three selected species  Ammonia tepida, Melonis bar-
leeanus  and  Bulimina marginata  were introduced in 45 species-specifi c glass vials 
(one vial per sampling time per species per aquarium): 20 specimens per vial for 
 A. tepida , 20 for  M. barleeanus  and 11 for  B. marginata . Each aquarium contained 
5 vials with  A. tepida , 5 vials with  M. barleeanus  and 5 vials with  B. marginata . 
The vial position in the aquaria was randomly defi ned to avoid any spatial effect on 
the foraminiferal survival rates. 

 The experiment started on the 16th of May 2011 and ran for 56 days. Three vials 
(one per species) were sampled in each aquarium after 7 days (T = 1), 14 days 
(T = 2), 29 days (T = 3), 45 days (T = 4) and 56 days (T  =  5). The contents 
 (sediment + foraminifera) of the vials were transferred to Petri dishes and foramin-
ifera were picked out. Nets and vials were checked under a stereomicroscope to pick 
also the specimens that had migrated upward (along the walls of the vials). 

 The majority of introduced foraminifera were recovered at the end of the experi-
ment (80–100 % with one exception of 61 % at  T  = 3 in the HypN condition for 
 B. marginata ). In some cases, juveniles were born during the experiment; they have 
been counted as well. Living specimens were recognized using a fl uorescence tech-
nique. The fl uorescence technique is a powerful, reliable and quick method to iden-
tify living individuals in experimental setups (Bernhard et al.  1995 ; Pucci et al. 
 2009 ; Morigi and Geslin  2009 ; Piña-Ochoa et al.  2010b ; Koho et al.  2011 ; Heinz 
and Geslin  2012 ), particularly under anoxic conditions. Incubation in fl uorogenic 
probes causes live specimens to become fl uorescent. The fl uorogenic probe used in 
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this experiment was fl uorescein diacetate (FDA; Bernhard et al.  1995 ), which was 
diluted in a dimethyl sulfoxide solution and ASW in order to obtain a fi nal solution of 
100 μM FDA. Specimens were picked out at the end of experiment directly in the vials 
when it was possible or after sieving (>63 μm). They were incubated in ASW- FDA 
solution for 10–20 h. Foraminifera were then picked out and placed in ASW with no 
FDA. Specimens were inspected individually for fl uorescence using an Olympus 
SZX12 with a light fl uorescent source Olympus URFL-T. Survival rates were 
calculated for each species and for each experimental condition.  

10.3.1.5     Growth Experiment 

 To study their growth ability under the various experimental conditions, one vial per 
species was added to each aquarium (Ox, HypN, Hyp). For  A. tepida  and  B. mar-
ginata , calcein-marked living specimens were added; 50 semi-adults of  A. tepida  at 
T = 0 and 20 juveniles (3 chambers) of  B. marginata  at T = 1. Thanks to the calcein 
stain of the introduced tests, the newly formed chambers, calcifi ed under controlled 
conditions, could be easily identifi ed (Bernhard et al.  2004 ; Barras et al.  2009 ) and 
counted. Additionally, at the end of the experiment, all specimens were measured 
using an automatic particle analyzer (see description below). Specimens that did 
not calcify new chambers were used to estimate the initial size whereas specimens 
that calcifi ed new chambers allowed us to determine the average size increase of 
 A. tepida  and  B. marginata  in each condition. 

 For  M. barleeanus , specimens were not calcein-marked beforehand. To evaluate 
their growth during the experiments, the size of all introduced specimens (10 adult 
individuals per condition) was measured at the start (T = 0) and the end (T = 5) of the 
experiment using an automatic particle analyzer (see below).   

10.3.2     Size Measurements Using an Automatic 
Particle Analyser 

 Automated particle analysis has been carried out with a fully automated incident 
light microscope system. Images are acquired and particles are analyzed with analy-
SIS FIVE (SIS/Olympus © ) software supported by a software add-in developed by 
MAS © . Samples are measured automatically under a Leica Z16APO monocular 
microscope (plan-apochromatic objective). Images are captured with a CC12 colour 
camera (SIS © ). Constant illumination of samples is provided by a Leica ©  CLS100X 
light source and a Leica ©  ring-light. This setup is the second generation of a particle 
analyzing system developed by Jörg Bollmann (Bollmann et al.  2004 ; Movellan 
et al.  2012 ).  

E. Geslin et al.



171

10.3.3     Metabolism: Oxygen Respiration Rates 

 In order to estimate the amount of oxygen needed for foraminiferal aerobic metabolism, 
respiration rates of  M. barleeanus  were measured using a Clark type O 2  microsensor 
(Revsbech  1989 ) according to the methodology of Geslin et al. ( 2011 ), so that our 
results are totally comparable to their data. Four measurements were performed 
for  M. barleeanus  with 4 to 7 specimens per analysis. Aerobic respiration rates of 
 A. tepida  from Aiguillon Bay and  B. marginata  from Bay of Biscay were not mea-
sured because data are available in Geslin et al. ( 2011 ).  

10.3.4     Internal Nitrate Contents in Foraminifera 

 In order to follow the intracellular nitrate contents in the foraminiferal cells during 
the experiment, living specimens of the 3 studied species were selected in each 
condition at each sampling time (except for  A. tepida  at T = 4 and T = 5). One speci-
men was required for intracellular nitrate measurement. A total of 147 specimens 
were analyzed with 10–24 specimens per condition and per time. Each specimen 
was rinsed in nitrate-free ASW, transferred to PCR tubes and stored at −20 °C. They 
were analyzed for nitrate content using the VCl 3  reduction method (Braman and 
Hendrix  1989 ) on a chemiluminescence detector (Model CLD 86, Eco Physics AG) 
as described by Risgaard-Petersen et al. ( 2006 ) and Høgslund et al. ( 2008 ). 
Biovolumes were determined according to Geslin et al. ( 2011 ) in order to calculate 
the nitrate concentration in each individual.  

10.3.5     Statistical Analyses 

 Two different parametric statistical procedures were used to test the effect of the 
experimental conditions (OxN, HypN and Hyp) and of time on the foraminiferal 
survival rates and growth. Due to the binomial nature of the response variable 
“survival” (i.e. dead or alive; 0 or 1) we used generalized linear model (GLM, 
Nelder and Wedderburn,  1972 ) procedures of R (R Development Core Team,  2011 ). 
In these GLM procedures we tested the effect of the quantitative independent vari-
able “Time” and the qualitative independent variables “Conditions” (OxN, HypN 
and Hyp) and “Species” ( M. barleeanus ,  A. tepida  and  B. marginata ). This proce-
dure allowed us to determine for each of the variables whether it had a signifi cant 
effect on survival (expressed as a Deviance and a Chi probability) and if so, to 
quantify the effect (giving an estimate of a coeffi cient for which the signifi cance 
was expressed with z and p statistics). 
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 Because of the normality of the response variable (the dependant variable), we 
used linear models (LM, Chambers  1992 ) to quantify the effect of both “Conditions” 
and “Time” and their interaction on the size of the foraminifera (the Maximum 
Diameter or Length in μm according the species). In order to identify the effect of 
the conditions on each species we ran three models, one for each species. This pro-
cedure consists of two steps. The fi rst one allows us to determine whether one or 
several independent variables (depending on the species: Time, Conditions or the 
Time*Conditions interaction) has a signifi cant effect on the individual size (after an 
analysis of variance, expressed with F and the associated probability statistics). 
The aim of the second step was to quantify how each variable affects the foraminif-
eral size (expressed with an estimated coeffi cient, for which a Student’s t-test is 
realized to see if the estimate is signifi cantly different from zero, associated with a 
t and its probability statistics). As the method used to determine the growth is 
slightly different for the three species we have to use different independent variables 
for each species. Both for  A. tepida  and  B. marginata,  the initial size was not mea-
sured at the beginning of the experiment but was estimated on the basis of the fi nal 
size of the individuals that did not grow during the experiment. For these two species, 
we tested the effect of the qualitative dependent variable coded with 4 terms: “T5.
NoGrowth”, “T5.OxN”, “T5.HypN” and “T5.Hyp”. For  M. barleeanus , we tested the 
effect of Time, Conditions and of the interaction Time*Conditions on the dependant 
variable Maximum Diameter. For all procedures we used a 0.05 signifi cance level.   

10.4     Results 

10.4.1     Monitoring of the Oxygen Conditions 

 During all the experiment in aquaria Hyp and HypN, oxygen concentrations were 
lower than 90 μmol L −1  (~2 mL L −1    ) and several short anoxic periods occurred (up 
to 6 days). Average O 2  concentrations are 10 ± 13 and 14 ± 18 μmol L −1  in aquaria 
HypN and Hyp, respectively.  

10.4.2     Survival Rates of Adult Specimens 

10.4.2.1     Infl uence of Incubation Time Under Oxic Conditions 

 Under oxic conditions (OxN), the survival rates of  A. tepida  (84–100 %) and 
 M. barleeanus  (87–95 %) are very high; whereas the survival rate of  B. marginata  
(36–64 %) is much lower (Figs.  10.1 ,  10.2  and  10.3 ). GLModels show that there is 
a signifi cant “Species” effect with  B. marginata  exhibiting a lower survival rate 
(Table  10.1 ). There is no signifi cant effect of the incubation time and of the interaction 
Time × Species    on the survival rates of the three species (Table  10.1 ) . 
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10.4.2.2           Infl uence of Hypoxic Conditions 

 Specimens of the three tested species were found alive in both hypoxic conditions, 
until the end of the experiment. The survival rates (SR) are very high in both tested 
conditions for  A. tepida  (Fig.  10.1 , 90–100 % for HypN, 89–100 % for Hyp, 
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  Fig. 10.1    Survival rates of  Ammonia tepida  after 7, 14, 29, 43 and 56 days under three experimental 
conditions       
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  Fig. 10.2    Survival rates of  Melonis barleeanus  after 7, 14, 29, 43 and 56 days under three experi-
mental conditions       
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respectively) as well as for  M. barleeanus  (Fig.  10.2 , 80–100 % for HypN, 75–100 % 
for Hyp) (Table  10.1 ). For  B. marginata , the survival rates are signifi cantly lower 
than for the other two species (22–70 % for HypN, 33–67 % for Hyp, respectively) 
(Table  10.1 , Fig.  10.3 ). None of the three studied species exhibit signifi cant dif-
ferences in their survival rates between the different sampling times in hypoxic 
conditions alternating with short (up to 6 days) periods of anoxia with or without 
nitrates. No signifi cant difference is observed between the aquaria with and without 
nitrate (Table  10.1 ).   

0

10

20

30

40

50

60

70

80

90

100

7 14 29 43 56

Time (days)

Su
rv

iv
al

 r
at

e 
(%

)

OxN

HypN

Hyp

  Fig. 10.3    Survival rates of  Bulimina marginata  after 7, 14, 29, 43 and 56 days under three experi-
mental conditions       

       Table 10.1    Effect of the experimental conditions on survival rates of the 
three species under oxic conditions (upper panel) and under all conditions 
(lower panel)   

 Df  Deviance  p(Chi) 

  Infl uence of incubation time under oxic conditions  
 Species effect  2   46.9  6.6 × 10 −11  
 Incubation time effect  1    0.7  0.39 
 Interaction Incubation time × Species  2    1.8  0.40 

  Infl uence of hypoxic conditions  
 Species effect  2  151.9  <2 × 10 −16  
 Incubation time effect  1    2.7  0.10 
 Conditon effect  2    0.2  0.92 

  The Degrees of freedom (Df), the Deviance and the probability (p(Chi)) statis-
tic values are presented for every tested variables  
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10.4.3     Reproduction 

 No juveniles were obtained for  A. tepida  and  M. barleeanus,  whereas reproduction 
events occurred in the vials containing adult specimens of  B. marginata . Juveniles 
were only found in the OxN aquaria: 80, 37 and 142 juveniles were counted at T = 1, 
T = 3 and T = 4 respectively.  

10.4.4     Growth 

 At T = 5 (56 days), 64–84 % of the  A. tepida  semi-adult specimens introduced in the 
vials for the growth experiment were found. For this species, growth was assessed 
through the observation of additional chambers calcifi ed during incubation (use of 
calcein labeling). The percentage of specimens that added at least one chamber in 
OxN, HypN and Hyp aquaria was 81 %, 60 % and 82 %, respectively (n = 50 for 
each condition). They added 1 or 2 chambers with the exception of a single speci-
men that added 3 new chambers. In order to study the size increase for  A. tepida , the 
average size of all the individuals that did not add any new chambers was compared 
with the average size of individuals that calcifi ed new chambers (Fig.  10.4 ).

   According to the size measurements, the individuals of  A. tepida  that added new 
chambers were signifi cantly wider than the ones that did not exhibit newly formed 
chambers (Df = 3, F = 3.05, p = 0.03). The average difference of maximum diameter 
between specimens that added new chambers and those who did not is +27.4, +17.5 
and +28.2 μm in OxN, HypN and Hyp conditions, respectively (Fig.  10.4 , Table  10.2 ). 
The size difference between individuals with and without chamber addition was 
signifi cant in both the OxN and Hyp aquaria, but was not signifi cant in the HypN 
aquaria (Table  10.2 ).

  Fig. 10.4    Growth of  Ammonia tepida : comparison of the size of the individuals that did not add 
new chambers (T5.NoGrowth) and those that calcifi ed one or more new chambers (T5), for each 
tested condition (OxN, HypN, Hyp). On the box-and-whisker plot the two borders of each box are 
the fi rst and third quartile while whiskers are 1.5 times the interquartile range of the lower and 
higher quartiles       
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   All specimens of  B. marginata  introduced in the aquaria at T = 1 (7 days) for the 
growth experiment (20 three-chambered juveniles for each treatment) were found at 
T = 5 (56 days). The percentage of specimens that added at least one chamber in 
OxN, HypN and Hyp aquaria was 15, 25 and 30 %, respectively. Although only 
three specimens calcifi ed in oxic conditions, each of these specimens added 2 or 3 
new chambers. Conversely, the 11 specimens from hypoxic aquaria (5 in HypN and 
6 in Hyp) that added new chambers added a single chamber, with the exception of a 
single specimen that added 2 chambers. In all three experimental conditions, at 
T = 5, specimens that added new chambers had a signifi cantly larger maximum 
length than specimens that did not add new chambers (Fig.  10.5 , Df = 3, F = 49.7, 
p = 8.35e-16 and Table  10.3 ). The average difference in maximum length between 
specimens with and without chamber addition was 95.7, 41.7 and 30.0 μm for OxN, 
HypN and Hyp, respectively (Table  10.3 ). A complementary statistical analysis shows 
that the size of the individuals that grew in the OxN conditions is signifi cantly 

    Table 10.2    Effect of the experimental conditions on the maximum diameter 
of  A. tepida : estimation of the coeffi cient, its standard error (Std. error) and the 
t and p statistics for the linear model   

 Maximum diameter (μm)  Statistical parameter 

 Estimate  Std. error  t  p 

 Intercept (T5.NoGrowth)  280.0  7.5  37.6  <2.1 × 10 −16  
 T5.OxN  27.4  10.9  2.5   0.01 
 T5.HypN  17.5  11.1  1.6   0.12 
 T5.Hyp  28.2  10.5  2.7   0.01 

  Note that the estimated Intercept corresponds to average of the reference cate-
gory (here T5.NoGrowth) whereas all other estimated values are indicative of 
the average difference between the experimental and the reference population  

  Fig. 10.5    Growth of  Bulimina marginata : comparison of the size of the individuals that did not 
add new chambers (T5.NoGrowth) and those that calcifi ed one or more new chambers (T5), for 
each tested condition (OxN, HypN, Hyp). On the box-and-whisker plot the two borders of each 
box are the fi rst and third quartile while whiskers are 1.5 times the interquartile range of the lower 
and higher quartiles       
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higher than the size of the individuals that grew in both hypoxic conditions. 
Summarizing, it appears that hypoxic conditions do not have a negative effect on the 
number of specimens that add new chambers. Conversely, for specimens that added 
new chambers, more chambers were added in oxic conditions, and consequently, the 
size difference was larger. Finally, the presence/absence of nitrate in the seawater 
has no signifi cant impact on chamber addition.

    All 10 incubated specimens of  M. barleeanus  were found in the Hyp aquarium, 
whereas 9 from the 10 individuals were found in the OxN and HypN aquaria. In the 
case of  M. barleeanus , the same specimens were measured at T = 0 and T = 5, so that 
the obtained values can be directly compared. In all three experimental conditions, 
the size increase between T = 0 and T = 5 (Fig.  10.6 ) was statistically signifi cant 
(Df = 1, F = 25.2, p = 6.32.10 −6 ), with an average increase of 81.6 μm, 85.9 μm and 
80.3 μm for OxN, HypN and Hyp, respectively. No signifi cant difference was found 
between the three experimental conditions (OxN, HypN, Hyp) (Df = 2, F = 0.05, 
p = 0.95). It appears that, just as for  A. tepida , strong hypoxic conditions alternating 
with short periods of anoxia do not inhibit the growth of  M. barleeanus .

    Table 10.3    Effect of the experimental conditions on the maximum diameter of 
 B. marginata : estimation of the coeffi cient, its standard error (Std. error) and the 
t and p statistics for the linear model   

 Maximum diameter (μm)  Statistical parameter 

 Estimate  Std. error  t  p 

 Intercept (T5.NoGrowth)  140.0  2.2  62.9  <2.1 × 10 −16  
 T5.OxN  95.7  9.0  10.6   4.5 × 10 −15  
 T5.HypN  41.7  7.1  5.9   2.5 × 10 −7  
 T5.Hyp  30.0  6.6  4.6   2.6 × 10 −5  

  Note that the estimated Intercept corresponds to average of the reference cate-
gory (here T5.NoGrowth) whereas all other estimated values are indicative of 
the average difference between the experimental and the reference population  

  Fig. 10.6    Growth of  Melonis barleenus  between T0 and T5 for each tested condition (OxN, 
HypN, Hyp). On the box-and-whisker plot the two borders of each box are the fi rst and third quartile 
while whiskers are 1.5 times the interquartile range of the lower and higher quartiles       
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10.4.5        Respiration Rates 

 Oxygen respiration measurements were performed for  M. barleeanus.  The observed 
values were 0.32 nL ± 0.26 O 2  cell −1  h −1  (Table  10.4 ).

10.4.6        Intracellular Nitrate Content in Foraminifera 

 In the following part, data of intracellular nitrate content of the 3 studied species are 
introduced without taking into account the different tested conditions. In a second 
part, data are presented as a function of time for each species. 

 Nitrate contents were measured in 29, 57 and 61 specimens of  A. tepida ,  M. bar-
leeanus  and  B. marginata,  respectively. Nitrate was detected within the cell of indi-
viduals of all three species, but about 40 % of the measured  B. marginata  and 
 A. tepida  individuals show no measurable nitrate in their cell (Table  10.5 ). The aver-
age values of nitrate contents are 16 ± 5, 61 ± 10 and 40 ± 7 pmol NO 3  −  per cell for 
 A. tepida, M. barleeanus  and  B. marginata  respectively. The values of intracellular 
nitrate contents show a large intra-specifi c variability. For example, the average value 
of all measured  A. tepida  is 16 pmol NO 3  −  cell −1  with a standard error of the mean 
(SEM) of 5 pmol cell −1 , a minimum value of 0 and a maximum value of 114 pmol cell −1  
(n = 31) (Table  10.5 ). Taking into account the biovolume of each specimen, the con-
centrations in the cell can be calculated. The average concentrations of intracellular 
nitrate are varying between 3 and 12 mM according to the species (Table  10.5 ). 
These values are much higher than in the surrounding environments (max. 50 μM 
NO 3  − ), underlining the ability for each of these three species to store nitrate.

   Figure  10.7  shows the evolution of nitrate contents with time for each condition 
and each species. No signifi cant trend is detectable except for  B. marginata  in the 
hypoxic aquarium without additional nitrate (p < 0.05). In this case, nitrate contents 
decreased with time.

     Table 10.4    Respiration rates (average value and standard error of the replicate measurements) of 
benthic foraminifera studied in the present paper with detailed data on their size (average size of 
maximal diameter or length and estimated biovolume)   

 Species  Location 

 Average 
size of max. 
Diam/Length 

 Biovolume 
(μm 3 ): 
Mean (SE) 

 RR (nL O2 
cell −1  h −1 ) 

 References  Mean  SE  n 

  Melonis 
barleeanus  

 Portugal 
Continental 
Margin 

 347  8.6E+06 
(7.2E+06) 

 0.32  0.26  3  Our data 

  Ammonia tepida   Aiguillon Bay  541  3.1E+07 
(3.2E+06) 

 2.01  0.07  4  Geslin et al. 
( 2011 ) 

  Bulimina 
marginata  

 Bay of Biscay  369  8.0E+06 
(6.4E+05) 

 0.42  0.07  3  Geslin et al. 
( 2011 ) 
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10.5         Discussion 

10.5.1     Species Responses to Hypoxic Conditions 

 The high survival rates obtained under oxic conditions during long-term laboratory 
incubation for  Ammonia tepida  are not really surprising. In fact, this species is 
known to be well adapted to laboratory conditions (e.g. Bradshaw  1957 ,  1961 ; 
Schnitker  1974 ; Goldstein and Moodley  1993 ; Schmidt et al.  1957 ; Stouff et al. 
 1999a ,  b ; Le Cadre et al.  2003 ; Dissard et al.  2010a ,  b ). According to the literature, 
this species is resistant to various types of environmental stress (Murray  2006 ). 
 Ammonia tepida  is a common species in intertidal mud-fl ats where the oxygen 
penetration depth is very low (few millimeters). Rose Bengal stained specimens 
have been observed either on top of the sediment (e.g. Alve and Murray  2001 ) or 
deeper in the sediment where conditions are mainly anoxic (Frankel  1975 ; Buzas 
 1977 ; Kitazato  1994 ; Bouchet et al.  2007 ). Consequently,  A. tepida  is often consid-
ered as a species resistant to oxygen- depleted conditions (Moodley and Hess 
 1992 ). However, it is still not clear if  A. tepida  inhabits the anoxic part of the 
sediment or occupies oxic microhabitats created by burrowing macrofauna. Our 
experiment confi rms the capacity of  A. tepida  to survive hypoxic conditions (at least 
2 months) alternating with short anoxic periods (up to 6 days). 

 Similar experimental observations were reported by Moodley and Hess ( 1992 ) for 
 Ammonia beccarii . They observed the activity of this species after 6 days of incuba-
tion under low oxygen conditions (12 μM) and 24 h of anoxia. After a longer anoxic 
incubation experiment, Moodley et al. ( 1997 ) noted that specimens of the genus 
 Ammonia  were found alive (Rose Bengal stained) after 78 days of putative anoxia. 

     Table 10.5    Intracellular nitrate contents recorded in the present study compared to the previous 
published data for the same species. n is the number of measured specimens      

 Species  Reference  Location 

 Nitrate Content 
(pmol per cell)  NO 3  −  

(mM) a  

 n 

 Min  Max  Average 

  Ammonia tepida   Our data  Aiguillon Bay  0  114  16 (5)   3 (1)  29 
  Melonis barleeanus   Our data  Portugal Margin  0  462  61 (10)   8 (1)  57 
  Bulimina marginata   Our data  Bay of Biscay  0  220  40 (7)  12 (2)  61 
  Ammonia tepida   Piña-Ochoa et al. 

( 2010a ,  b ) 
 Aiguillon Bay  0  58  13   0  15 

  Melonis barleeanus   Piña-Ochoa et al. 
( 2010a ,  b ) 

 North sea  1  27   9   1  7 

  Melonis barleeanus   Piña-Ochoa et al. 
( 2010a ,  b ) 

 Rhone delta  0  0   0   0  2 

  Bulimina marginata   Piña-Ochoa et al. 
( 2010a ,  b ) 

 Bay of Biscay  40  60  40   4  14 

   a Values are mean values. Standard Error of the Mean (SEM) is given in parentheses  
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However, using the Rose Bengal staining method in experimental studies is problem-
atic; the number of living individuals may be totally unrealistic, since cytoplasm may 
stain for prolonged periods of time after the death of the organism, especially in 
anoxic conditions (Bernhard  1988 ). 

  Fig. 10.7    Nitrate content (pmol cell −1 ) recorded in the cell of the three species along the incubation 
time. The  red line  is statistically signifi cant (only the case for  B. marginata , Hyp)       
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  Ammonia tepida  is also known to be able to add chambers under laboratory 
condition (e.g. Bradshaw  1957 ,  1961 ; Goldstein and Moodley  1993 ; Stouff et al. 
 1999a ,  b ; de Nooijer et al.  2009 ). In our case, growth was proven in all tested condi-
tions by the observations of additional chambers not marked by calcein. Bradshaw 
( 1961 ) reported growth rates of  Ammonia tepida  collected mainly in mud-fl ats 
(California, USA). He noted a growth of approximately 40 μm for adult specimens 
after 60 days at 15 °C. The values presented by Bradshaw ( 1961 ) are of the same 
order of magnitude as ours. Under oxic conditions, specimens of  A. tepida  that 
added new chambers (lack of calcein marking) were, on average, 27 μm larger in 
diameter than specimens that did not add chambers after 56 days of incubation. 
Our slightly lower values may be due to the fact that unlike Bradshaw ( 1961 ), we 
did not add food before or during the experiment. However, according to the large 
range of morphological and molecular types of  Ammonia tepida , the specimens studied 
by Bradshaw ( 1961 ) were not necessarily conspecifi cs with our specimens. 

 Asexual reproduction has often been observed in  A. tepida  under laboratory 
conditions (Bradshaw  1957 ,  1961 ; Schnitker  1974 ; Goldstein and Moodley  1993 ; 
Stouff et al.  1999a ; Diz et al.  2012 ). However, in our case, no reproduction (produc-
tion of juveniles) was observed, not even in the oxic treatment. This may be due to 
low food availability in our experimental setup. In fact, Bradshaw ( 1961 ) has exper-
imentally shown that  A. tepida  reproduces when food is added. Because of this 
absence of reproduction under oxic conditions, the results are inconclusive. 

 According to the literature, this is the fi rst time that  M. barleeanus  has been used 
for an experimental study. The high survival rates obtained under oxic conditions 
show the ability of this species to survive under laboratory conditions. This result is 
very promising for future laboratory experiments using  M. barleeanus . The major-
ity of the specimens also survive 56 days of strong hypoxia alternating with short 
anoxic periods, with or without added nitrates.  Melonis barleeanus  is one of the 
most typical intermediate infaunal foraminiferal species (Jorissen  1999 ). It nor-
mally lives in a specifi c microhabitat at some millimeters or centimeters in the 
sediment, where oxygen is strongly diminished, and where nitrate reduction is max-
imal (Jorissen et al.  1995 ,  1998 ; Fontanier et al.  2005 ; Koho et al.  2008 ; Mojtahid 
et al.  2010 ). 

 Our comparison of tests sizes at the beginning and end of the experiment indicates 
that  M. barleeanus  is able to calcify under the three imposed laboratory conditions. 
Oxygen concentration had no signifi cant effect on the growth rate of  M. barleeanus,  
so that calcifi cation does not seem to be affected by such conditions. The fact 
that no reproduction was observed may be explained, like with  A. tepida , by the fact 
that no food was added during the experiment. However, since reproduction of this 
species has never been observed before in laboratory conditions, it is diffi cult to 
draw fi rm conclusions on this subject. 

 Surprisingly,  Bulimina marginata  was strongly affected by all our laboratory con-
ditions, with low survival rates, both under oxic and hypoxic conditions. This result 
is surprising because, unlike many other deep-sea foraminiferal taxa , B. marginata  
previously showed a good adaptation to laboratory conditions (Wilson- Finelli et al. 
 1998 ; Havach et al.  2001 ; Hintz et al.  2004 ,  2006a ,  b ; McCorkle et al.  2008 ; Barras 
et al.  2009 ,  2010 ; Filipsson et al.  2010 ). 
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 Nevertheless, our results show no signifi cant difference between the three different 
treatments. The survival rates of  B. marginata  are not signifi cantly lower in the 
aquaria with long-term hypoxia alternating with short anoxic periods, with or without 
nitrate. This result is in agreement with the literature.  Bulimina marginata  is known 
to be able to live under hypoxic and anoxic conditions in the natural environment 
(Bernhard and Sen Gupta  1999 ). In many older studies,  B. marginata  has been 
considered as a good marker of low oxygen conditions (e.g. Phleger and Soutar 
 1973 ; van der Zwaan and Jorissen  1991 ; Sen Gupta and Machain-Castillo  1993 ; 
Bernhard and Sen Gupta  1999 ). However, some experimental studies have shown 
that oxygen-depleted conditions can have a negative effect on this species. In a 
24-day experiment, the survival rate of  B. marginata  in nitrogen-fl ushed waters was 
signifi cantly lower than in the oxic controls (Bernhard and Alve  1996 ). According 
to Ernst et al. ( 2005 ),  B. marginata  was hardly infl uenced by hypoxia, but higher 
abundances where observed in oxygenated microcosms. Alve and Bernhard ( 1995 ) 
noticed that specimens migrated to the sediment surface and occurred on polychaete 
tubes when the oxygen condition became lower than 0.2 mL L −1 . They interpreted 
this migration as behavior to avoid decreasing oxygen contents within the sediment. 
Conversely, Moodley et al. ( 1998 ) performed laboratory experiments to test the 
viability of foraminifera in anoxia;  Bulimina marginata  was still found alive 
(Rose Bengal stained) after a maximum of 21 days of anoxic incubation. 

 In our study, growth of juveniles of  B. marginata  was recorded in oxic as well as 
hypoxic conditions. Although the percentage of individuals that added new cham-
bers is lower in oxic conditions (15 % versus 25 % and 30 % in the hypoxic aquaria), 
the number of added chambers was higher than in hypoxic conditions. Unfortunately, 
our dataset is too limited to draw any fi rm conclusion. 

  Bulimina marginata  is able to reproduce under oxic conditions, producing juve-
niles which have grown and calcifi ed. Such reproductions were observed at T1, T3 
and T4 with 80, 37 and 142 counted juveniles, respectively. In experiences described 
by Barras et al. ( 2009 ), in which low quality food was added, adult specimens of  B. 
marginata  produced an average of 30 juveniles per reproduction event. If the num-
ber of juveniles per reproduction had been the same in our experiments, we can 
estimate the numbers of adults that reproduced (3 at T1, 1 at T3 and 4 to 5 at T4). 
The apparent absence of reproduction in our hypoxic aquaria contrasts with results 
obtained by Alve and Bernhard ( 1995 ). During a 4-week mesocosm experiment 
with low oxygen conditions, these authors observed Rose Bengal stained juveniles 
of  B. marginata,  suggesting that reproduction took place. 

 Two main facts stand out in the data obtained for  B. marginata : (1) the survival 
rates of  B. marginata  are low in all tested conditions, and (2) juveniles were observed 
under oxic conditions but not under hypoxic conditions. According to the literature, 
 Bulimina marginata  is relatively easy to keep alive, and reproduction can be 
obtained under laboratory condition by feeding them with fresh or frozen diatoms 
or green algae (Hintz et al.  2004 ,  2006a ,  b ; McCorkle et al.  2008 ; Barras et al.  2009 ; 
Filipsson et al.  2010 ). However, no reproduction was observed when no additional 
food was added to the cultures (C. Barras, Pers. Com). To explain our surprising 
observations, three contrasted hypotheses can be envisaged. 
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  Hypothesis 1 

 In our experiment, high mortality rates of  B. marginata  could be explained by 
unfavorable conditions in our aquaria due to the lack of fresh organic matter. The only 
source of foraminiferal food was the organic matter existing in the fi ne sediment 
added. We chose not to add food in order to avoid complex geochemical processes 
in the vials. However, reproduction occured under oxic conditions. Boltovskoy and 
Wright ( 1976 ) discussed how reproduction could be a stress response or a response 
to favorable conditions. Our results may lead to contradictory hypothesis. Either 
food is lacking and could explain high mortality rate and reproduction events as a 
response to stress condition; or food is not a limiting factor and reproduction 
occurred in response to favorable condition. In this case, another parameter may be 
responsible for the death of  B. marginata .  

  Hypothesis 2 

 The absence of juvenile specimens in the hypoxic/anoxic treatments suggests that 
hypoxic conditions have a negative impact on reproduction. We could hypothesize 
that foraminifera did not reproduce under hypoxia, which could lead a decrease of 
the metabolic rate. Such a diminished metabolic rate could be suffi cient for cell 
growth and calcifi cation, but insuffi cient for reproduction.  

  Hypothesis 3 

 Asexual reproduction of foraminifera usually results in the death of the parent 
individual, creating the presence of empty adult tests (Lee et al.  1991 ; Barras et al. 
 2009 ). For  Bulimina marginata , Barras et al. ( 2009 ) observed that all adults died 
after reproduction. In our study, reproduction occurred in oxic conditions explain-
ing a large part of the empty adult tests, thereby contributing in a signifi cant way to 
the low survival rates observed for  B. marginata . Very similar survival rates were 
observed under oxic and hypoxic conditions. We may therefore wonder if the low 
survival rates in hypoxic conditions could also be partly explained by reproduction 
events. The only evidence we have that no reproduction took place in the hypoxic 
aquaria is the absence of juveniles. However, Alve and Goldstein ( 2003 ) demon-
strated by experimental approaches that reproduction of foraminifera produces 
propagules (uncalcifi ed chamber smaller than 63 μm) which are able to stay in the 
sediment for at least 4 months without any growth and calcifi cation. This phenome-
non may also have occurred in our experiment. Specimens of  B. marginata  may have 
reproduced and, perhaps, the produced propagules never calcifi ed. At the end of the 
experiment, sediment and water containing foraminifera were sieved over a 63 μm 
mesh and >63 μm fractions were observed. With this protocol, it is very well possible 
that propagules <63 μm were present at the end of the hypoxic experiments.  

 A very important consequence of this hypothesis would be that hypoxia does 
not have an impact on reproduction but does have a large impact on propagule 
calcifi cation, which did not take place. Our results, obtained for the growth rates 
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(chamber addition and calcifi cation) of  B. marginata,  support this idea (lower 
calcifi cation rate under hypoxia than under oxic conditions). The ultimate conse-
quence of this hypothesis would be that the successive disappearance of foraminiferal 
species after long term hypoxia/anoxia (as observed in Mediterranean sapropels, 
e.g., Jorissen  1999 ) would not be explained by adult mortality, but rather because 
juveniles are unable to calcify. Unfortunately, our present data set does not allow 
us to make fi rm conclusions at this moment; additional experiments are needed to 
confi rm or refute this hypothesis.  

10.5.2     Metabolism in Hypoxic Conditions 

 Aerobic respiration rates that were measured in this study for  Melonis barleenus  
(0.32 nL O 2  cell −1  h −1  (±0.26)) are in the same range as those published by Geslin 
et al. ( 2011 ), who reported a minimum respiration rate value of 0.09 nL O 2  cell −1  h −1  
(±0.02) for  Rectuvigerina phlegri  and a maximum value of 5.27 nL cell −1  h −1  (±0.52) 
for  Ammonia beccarii . As it has been shown previously, respiration rates of fora-
minifera vary in function of cell size following the equation R = 3.98 10 −3  BioVol 0.88  
(with respiration rate (R) expressed in nL O 2  h −1  and biovolume (BioVol) in μm −3 ), 
for the 17 species studied (Geslin et al.  2011 ). The same authors showed that ben-
thic foraminifers have lower oxygen respiration rates than other groups of meio-
fauna, even when standardized for biovolume. This suggests that foraminifera have 
a relatively low oxygen demand, which may explain why their aerobic metabolism 
is less affected by low oxygen contents (our hypoxic treatments). The lower respira-
tion rate may refl ect a lower metabolic rate; which could in turn be explained by the 
low degree of activity of the foraminifera. A relatively low metabolic rate is advan-
tageous for organisms exposed to environmental stress (Theede et al.  1969 ). In this 
specifi c case of oxygen defi ciency, a low metabolic rate may help the foraminifer to 
preserve its energy pool during short anoxic periods.  

10.5.3     Intracellular Nitrate Content 

10.5.3.1     Average Data of Intracellular Nitrate Content 

 The intracellular nitrate contents recorded in the present study are in the same order 
of magnitude as the data published by Piña-Ochoa et al. ( 2010a ). The average of 
intracellular nitrate contents calculated for the numerous measurements made for 
the three studied species varies between 16 to 61 pmol NO 3  −  per cell (Table  10.4 ) 
whereas measurements reported by Piña-Ochoa et al. ( 2010a ) range between 3 to 
40 pmol NO 3   −   cell −1 . However, the nitrate concentrations of the three studied species 
are still very low (max. value 462 pmol NO 3  −  per cell) compared to the much higher 
values reported by Piña-Ochoa et al. ( 2010a ) for  Cyclammina cancellata  
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(45,500 pmol NO 3  −  per cell) or  Globobulimina turgida  (18,000 pmol NO 3  −  per cell). 
The high concentrations of intracellular nitrates allow these two species to respire 
nitrates under anoxia for at least 3 months (Piña-Ochoa et al.  2010a ). 

  Ammonia tepida  was reported as non nitrate-storage species by Piña-Ochoa et al. 
( 2010a ). In our case, a higher number of specimens was measured (n = 29) and, 
although 13 specimens showed no intracellular nitrate, the other had intracellular 
nitrate with a maximum value of 114 pmol NO 3  −  per cell (23.3 mM of NO 3  − ). 
Knowing that the maximum concentration of nitrate in the surrounding sea water is 
50 μM, these new data show that also  A. tepida  is able to store nitrate in their cells. 
However, these results do not imply that this species is also actively denitrifying. In 
Piña-Ochoa et al. ( 2010a ), no positive denitrifi cation rates were obtained for 
 Ammonia tepida . However, it is probable that this negative result is explained by the 
fact that the specimens used by Piña-Ochoa et al. ( 2010a ) did not contain any intra-
cellular nitrate. In order to clarify this point, denitrifi cation rates should be mea-
sured using specimens with elevated intracellular nitrate contents. 

 The specimens of  M. barleeanus  measured in the present study show higher nitrate 
contents than those reported by Piña-Ochoa et al. ( 2010a ). However, the nitrate con-
tents of  M. barleeanus  are still very low compared to other species such as  Uvigerina 
elongatastriata  (5,400 pmol NO 3  −  per cell), which occupies the same intermediate 
infaunal microhabitat as  M. barleeanus  (e.g., Koho et al.  2008 ; Mojtahid et al.  2010 ). 
Piña-Ochoa et al. ( 2010a ) suggested that  M. barleeanus  would not be able to denitrify 
because of the insuffi cient amount of nitrate available in the cell. In the light of our 
new data, this conclusion should be reconsidered. However, in order to ascertain that 
 M. barleeanus  is indeed able to respire nitrate under anoxia, it is absolutely necessary 
to measure denitrifi cation rates. The fact that roughly all analyzed specimens of 
 M. barleeanus  collected on the continental Margin off Portugal contain intracellular 
nitrate (n = 55, our study) whereas specimens collected in the Rhone delta (n = 2, Piña-
Ochoa et al.  2010a ) did not (Table  10.4 ), suggests that environmental parameters 
infl uence the nitrate content of this species.  

10.5.3.2     Impact of the Three Tested Conditions on Intracellular 
Nitrate Contents 

 The intra-specifi c variability of intracellular nitrate concentrations within a population 
is high. The same observation was made by Koho et al. ( 2011 ) who reported that the 
nitrate concentration in single individuals of living  G. turgida  ranged from 0 to 
32,541 pmol N per cell, corresponding to average concentrations of 3,929 ± 4,590 and 
8,999 ± 9,023 pmol N per cell (SEM higher than the mean) in two replicate cores. 
A similarly high intra-population variability in nitrate concentrations has also been 
noted by Piña-Ochoa et al. ( 2010a ,  b ) and Bernhard et al. ( 2011 ,  2012 ). Because of this 
high variability, it is not easy to follow the story of the intracellular nitrate in individual 
foraminifera. Nevertheless, our data show a single statistically signifi cant trend. 

 Intracellular nitrate contents do not show signifi cant changes with time for 
 Ammonia tepida  and  Melonis barleeanus  (Fig.  10.7 ). If these species are able to 
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denitrify, we could expect that they should use nitrate at least during the short 
 periods of anoxia. This should lead to a decrease of their intracellular nitrate con-
centration in the hypoxic aquaria without nitrate during anoxia. Furthermore, if 
these 2 species would shift to nitrate respiration in case of anoxia, in the hypoxic 
aquaria without nitrate they should die after the exhaustion of their pools of intracel-
lular nitrate. Therefore, all our data suggest that  A. tepida  and  M. barleeanus  did not 
denitrify but nevertheless survived hypoxia and short periods of anoxia. 

 The only signifi cant trend is the decrease of nitrate contents in  B. marginata  with 
time in hypoxic conditions without nitrate which could be explained by the fact that 
this taxon has indeed used nitrate for foraminiferal denitrifi cation during the short 
periods of anoxia. It is possible that such a decreasing trend in nitrate content has 
not been observed in the hypoxic aquaria with nitrate because the foraminifera have 
recharged their intracellular nitrate pool after each of the anoxic periods. Our data 
therefore suggest the capacity of  B. marginata  to denitrify. However, the signifi cant 
trend could be discussed because of the high variability of nitrate content. The pre-
vious suggestions should be resolved by additional studies with measurements of 
denitrifi cation rates.   

10.5.4     Discussion Regarding Experimental Methodologies 

10.5.4.1     Survival Determination 

 Working with foraminifera in oxygen-depleted environments can be problematic 
because of the determination of living foraminifera  during the experiment. Observation 
of Rose Bengal stained cytoplasm inside the test is not suffi cient to judge vitality 
when incubations are performed under oxygen-depleted conditions or for short peri-
ods of time, because cytoplasm can be retained in dead specimens for weeks to months 
(e.g. Bernhard  1988 ; Hannah and Rogerson  1997 ). Accurate methods to distinguish 
living foraminifera are needed. We chose to use fl uorogenic probes which are non 
fl uorescent compounds that produce a fl uorescent product after modifi cation by intra-
cellular esterases that are only active in living individuals. Two different fl uorogenic 
probes may be used: CTG (Cell Tracker Green) and FDA (Bernhard et al.  1995 , 
 2006 ). CTG is a fl uorogenic probe producing fl uorescence which can be fi xed with 
formalin (Bernhard et al.  2006 ; Pucci et al.  2009 ). Fixed samples may be observed 
after the fi xation (weeks to months) using an epifl uorescence binocular. On the oppo-
site, FDA, another fl uorogenic probe, cannot be fi xed with formalin (Bernhard,  2000 ) 
so that samples treated with FDA have to be observed few hours after the incubation. 
Consequently, CTG is more practical when the amount of samples to observe is too 
high to be treated within a few hours. The inconvenience of this probe is its prohibitive 
price. In our case, we observed the fl uorescence of FDA incubated specimens a few 
hours after the end of the experiment to assess vitality. The same protocol was used by 
Piña-Ochoa et al. ( 2010b ) and Koho et al. ( 2011 ).  
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10.5.4.2     Growth Observations 

 In our study, two methodologies were used to determine growth of the incubated 
specimens: introduction of marked-shell specimens using calcein (Bernhard et al. 
 2004 ) and automatic measurements of the foraminiferal shell size before and after 
the experiment. The advantage of the calcein method is to be able to detect growth 
of specimens even if growth is very small (e.g. one chamber) and to determinate the 
number of additional chambers (unmarked) calcifi ed during the incubation. 
Determination of growth is also possible with precise size measurements when con-
sidering each specimen separately at the beginning and at the end of the experiment. 
However, when considering the average size of a pool of individuals, which is the 
case in our study (practically impossible to have 1 specimen per vial and a statisti-
cally signifi cant numbers of individuals per condition), a slight growth of a limited 
number of individuals of this pool might be hidden in the standard error of the aver-
age size of all specimens.  

10.5.4.3     Reproduction 

 In many experiments, reproduction events are identifi ed thanks to the produc-
tion of juveniles (e.g. Le Cadre and Debenay  2006 ; Barras et al.  2009 ). The fi rst 
step of the foraminiferal life is a single uncalcifi ed chamber called a “propagule” 
(Alve and Goldstein  2003 ). These progagules may calcify chambers in order to 
become juvenile foraminifera, but they also may remain as uncalcifi ed propa-
gules for many weeks to months (Alve and Goldstein  2003 ). Consequently, 
reproduction events may occur without the production of calcified juveniles. 
To prove accurately the occurrence of reproduction events during experiments, it 
is therefore necessary to observe the entire samples (no sieving) and particu-
larly the small fraction (< 63 μm) with a microscope in order to avoid loss of 
propagules.    

10.6     Conclusion 

  Ammonia tepida  and  Melonis barleeanus  show a similar response to hypoxic conditions 
alternating with short periods of anoxia. We have recorded similarly very high 
survival rates under oxic and hypoxic conditions as well as similar growth rates. 
No reproduction was observed, which may be due to the lack of added food. 
Therefore, additional experiments are needed to demonstrate their ability to repro-
duce under low oxygen conditions. 

  Bulimina marginata  shows a very different response. The survival rates are much 
lower, but there was no signifi cant difference in survival between the oxic and 
hypoxic/anoxic treatments. 
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 It is possible that the high mortality is due to unfavorable experimental conditions 
(e.g. lack of food). Alternatively, the observation of juveniles in the oxic treatment 
suggests that the high mortality rate may be at least partially due to reproduction. 
The absence of calcifi ed juveniles in the hypoxic/anoxic treatments can result from 
an absence of reproduction (in which case hypoxia would inhibit reproduction), but 
could also be explained by the incapacity of the juveniles to calcify, forcing them to 
stay at a propagule stage. 

 Intracellular nitrate contents suggest that  B. marginata  may be able to denitrify 
during short periods of anoxia. 

 This study allows us to propose future experimental work with interesting species 
such as  M. barleeanus  which was not previously used for laboratory experiments.     
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