
Chapter 5

Zebrafish Olfactory System

Yoshihiro Yoshihara

Abstract Similar to other animal species, fishes efficiently use the sense of smell

for locating food, detecting danger, communicating social information, and mem-

orizing beneficial and detrimental conditions. This review summarizes recent

advances in our knowledge of the olfactory system in the zebrafish (Danio rerio),
which has become one of the most useful and important model organisms in

neurobiology. Olfactory receptors belonging to the OR, V1R, V2R, and TAAR

families are differentially expressed in three types of the olfactory sensory neurons

(ciliated, microvillus, and crypt) in the olfactory epithelium. In the olfactory bulb,

nine glomerular clusters are clearly delineated by anatomical features and mole-

cular markers, serving as functional units important for odor information categori-

zation, coding, and processing. Individual output neurons of the olfactory bulb

project axons to a combination of four major target regions in the forebrain: the

posterior zone of dorsal telencephalon, the ventral nucleus of ventral telencephalon,

the posterior tuberculum, and the right habenula. Distinct modes of odor informa-

tion decoding are employed by the individual olfactory centers: either nonselective

or biased as well as either diffuse or convergent, which contribute to eliciting

different physiological and behavioral responses. By taking advantage of its small

brain, transparency of larvae, and amenability to various genetic and imaging

techniques, zebrafish will pave the way toward understanding the functional

organization of the olfactory system as a whole.
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5.1 Introduction

Many chemical cues pervade the aquatic environment of fish, activate the olfactory

system, and elicit various physiological and behavioral responses. Fish can detect a

huge variety of odorants that are emitted from objects and dissolved in the water,

such as amino acids, nucleotides, bile acids, amines, steroids, and prostaglandins.

The fish olfactory system is highly elaborated to receive and discriminate these

odorant molecules, to transmit their signals to the brain, and to evoke fundamental

behaviors important for survival of individuals and preservation of species, includ-

ing food finding, predator avoidance, social communication, mate choice, and

spawning migration (Sorensen and Caprio 1998; Zielinski and Hara 2007;

Yoshihara 2009).

Zebrafish, a freshwater small teleost fish commonly available in pet shops, offers

numerous advantages over other vertebrates for biological studies. Zebrafish are

easy to grow and produce large clutches of eggs (100–200 per mating) through

external fertilization (Westerfield 1995). The embryos develop quickly, hatching

as early as 3 days post fertilization (dpf), and start to swim at 5 dpf. The zebrafish

embryos are optically transparent throughout early developmental stages, enabling

us to observe organogenesis and morphogenesis in vivo. In particular, transgenic

expression of green fluorescent protein (GFP) and its derivatives in selected cell

types greatly facilitates the live imaging of dynamic developmental events such as

cell division, cell migration, and neural circuit formation. Furthermore, it has

recently become possible to image functional neural activities in living transgenic

embryos in which genetically engineered, highly sensitive Ca2+ indicators are

expressed (Ahrens et al. 2013; Muto et al. 2013).

Another major advantage of using the zebrafish is its amenability of various

genetic engineering techniques in both forward and reverse directions, including

mutagenesis, transgenesis, gene knockdown, and gene knockout. Most recently, in

particular, the whole genome sequence of zebrafish has been reported (Howe

et al. 2013), and disruptive mutations in more than 38 % of all known protein-

coding regions were identified (Kettleborough et al. 2013). These mutant fish will

become available to the scientific community, which undoubtedly accelerate the

zebrafish research in all fields of biology. In addition to these basic techniques,

more advanced genetic methods have been developed in the zebrafish, such as the

Tol2 transposon-mediated gene trap approach combined with the Gal4/UAS system

(Asakawa et al. 2008: Koide et al. 2009), retrovirus-mediated large-scale enhancer

trap screening (Ellingsen et al. 2005), Cre/loxP- and/or Gal4/UAS-mediated single-

cell mosaic labeling analysis (Sato et al. 2007a; Miyasaka et al. 2009; Miyasaka

et al. 2014), and TALEN- or CRISPR/Cas-mediated genome editing (Bedell

et al. 2012; Hwang et al. 2013; Zu et al. 2013). Thus, the zebrafish is one of the

most useful vertebrate species with which we can perform both forward and reverse

genetic analyses, similar to Drosophila melanogaster and Caenorhabditis elegans.
This review highlights recent progress in our knowledge on the zebrafish olfactory

system with special emphasis on neuroanatomical and functional correlates.

72 Y. Yoshihara



5.2 Olfactory Sensory Neurons

In many mammals, two functionally distinct classes of chemicals (odorants and

pheromones) are detected by different types of sensory neurons located in two

anatomically segregated olfactory organs in the nose: the olfactory epithelium

(OE) and the vomeronasal organ (Buck 2000; Mombaerts 2004). Volatile odorants

are received by a huge repertoire of odorant receptors (ORs: ~1,200 genes in mice)

expressed by ciliated olfactory sensory neurons (OSNs) in the OE, and the infor-

mation is transferred to the main olfactory bulb (OB). On the other hand, phero-

mones are mostly received by two families of vomeronasal receptors, V1Rs and

V2Rs (each ~150 genes in mice), expressed by microvillus sensory neurons in the

vomeronasal organ, which project axons to the accessory OB. In addition, recent

studies have identified trace amine-associated receptors (TAARs) as the fourth

family of olfactory receptors that are expressed by ciliated OSNs and take charge

of specific pheromone or kairomone signaling (Liberles and Buck 2006; Ferrero

et al. 2011; Li et al. 2013; Dewan et al. 2013).

In contrast, the anatomical organization of the olfactory system in fish species is

different from that of mammals. Teleost fishes including zebrafish possess only a

single type of olfactory organ called the olfactory rosette that contains three

morphologically distinct types of OSNs: ciliated, microvillus, and crypt OSNs

(Fig. 5.1) (Hansen and Zeiske 1998; Hansen et al. 2003, 2004). All these OSN

types innervate the same OB via a tightly fasciculated bundle of olfactory nerves.

Two major types of OSNs are the ciliated and microvillus neurons that differ from

one another with respect to morphology and their relative positions in the OE.

The ciliated OSNs are situated in the deep layer of the OE, project a long dendrite,

and extend several long cilia into the lumen of the nasal cavity. The microvillus

OSNs are located in the superficial layer, project a shorter dendrite, and emanate

tens of short microvilli. The third OSN type is crypt cells, which account for only a

small population in the OE, are located in the most superficial part of the OE, and

have unique ovoid cell bodies bearing microvilli as well as submerged short cilia.

5.3 Olfactory Receptors

The ciliated, microvillus, and crypt OSNs display distinct profiles of functional

molecular expression (Yoshihara 2009). The most noteworthy and functionally

important is the expression of different families of olfactory receptors. The

zebrafish genome harbors ~140 OR-type, 6 V1R-type, ~50 V2R-type, and ~100

TAAR-type olfactory receptor genes (Alioto and Ngai 2005, 2006; Hashiguchi and

Nishida 2006, 2007; Ngai and Alioto 2007; Saraiva and Korsching 2007). The

expression of OR-type olfactory receptors is observed in ciliated OSNs in teleost

fishes, whereas V2R-type olfactory receptors are found in the microvillus OSNs

(Cao et al. 1998; Speca et al. 1999; Hansen et al. 2004; Sato et al. 2005). It has been
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reported that mammalian ORs detect hydrophobic, volatile molecules, and V2Rs

recognize hydrophilic, highly water-soluble compounds (Mombaerts 2004). There-

fore, it is likely that the ciliated and microvillus OSNs in fish also take charge of

detecting chemical compounds with different physical properties (e.g., hydrophobic

bile acids vs. hydrophilic amino acids) through the two distinct families of olfactory

Fig. 5.1 Three types of olfactory sensory neurons (OSNs) in zebrafish. The upper drawing
depicts morphological features of ciliated (orange), microvillus (green), and crypt (blue) OSNs.
Lower panels show representative electron microscopic images of three OSNs. (Courtesy of Drs.

Takumi Akagi and Tsutomu Hashikawa, RIKEN Brain Science Institute)
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receptors (ORs andV2Rs). Several lines of evidence support this notion, based

on molecular biological, electrophysiological, and activity-dependent labeling

experiments (Michel and Derbidge 1997; Speca et al. 1999; Michel 1999; Lipschitz

and Michel 2002; Nikonov and Caprio 2007). In contrast, V1R-type olfactory

receptors are expressed in either the crypt cells or a small subset of the microvillus

OSNs (unpublished observations). Intriguingly, the crypt cells express only one of

the six V1R-type olfactory receptors, V1R4 (Oka et al. 2012).

The gene repertoires of OR-, V1R-, and V2R-type olfactory receptors in

zebrafish are significantly smaller than those in mouse by an order of magnitude

(Shi and Zhang 2009). In contrast, the zebrafish genome is equipped with as many

as ~100 genes for TAAR-type olfactory receptors that far exceed TAAR genes in

any other organisms examined (e.g., 6 in human, 17 in rat, 16 in mouse, 13 in Fugu

fish) (Gloriam et al. 2005; Korsching 2009; Shi and Zhang 2009). Such a huge

diversity of TAAR genes in the zebrafish suggests the possibility that this fish

species can detect and discriminate various amine compounds. Although it remains

unknown what physiological and behavioral responses are induced by amines in

the environmental water, it is likely that these amines play some important roles as

odorants, pheromones, or kairomones in the zebrafish.

In mouse, each OSN expresses only one type of OR gene of a repertoire of

~1,200 genes equipped in the genome (Chess et al. 1994; Serizawa et al. 2003; Mori

and Sakano 2011). This “one neuron–one receptor” rule enables individual OSNs to

respond to a range of odorants that bind to the expressed ORs. In other words, OSNs

expressing a given OR are tuned to a particular molecular receptive range. Is the

one neuron–one receptor rule applicable also to the zebrafish olfactory system?

Individual OR-type olfactory receptor genes are expressed in a small population of

OSNs, ranging from 0.5 % to 2 % (Barth et al. 1996). Double-fluorescence in situ

hybridization experiments revealed that most combinations of two OR-type recep-

tor probes label nonoverlapping populations of OSNs (Barth et al. 1997; Sato

et al. 2007b). These results support the notion that the zebrafish OSNs fundamen-

tally obey the one neuron–one receptor rule. However, two exceptional cases have

been reported for particular olfactory receptors, in which “one neuron–multiple

receptors” is true. One is the case for a subpopulation of ciliated OSNs expressing

the OR103 family members: OR103-1-positive OSNs simultaneously express

OR103-2 and/or OR103-5 (Sato et al. 2007b). Coexpression of multiple

chemosensory receptors has been shown in several populations of OSNs in

C. elegans and Drosophila (Troemel et al. 1995; Goldman et al. 2005). For

example, a single AWC neuron in C. elegans expresses multiple olfactory recep-

tors, responds to various odorants without discrimination, and mediates attractive

behavior to all these odorants (Bargmann et al. 1993; Troemel et al. 1995).

By analogy, it is likely that zebrafish do not need to discriminate a range of odorants

received by the individual OR103 subfamily members. These OSNs expressing

multiple OR103 members thus may integrate odor information at the most periph-

eral level, leading to particular behavioral or endocrine responses. The other case

is a broad expression of a V2R-type receptor, OlfCc1 (VR5.3; V2rl1), in almost all

microvillus OSNs (Sato et al. 2005). This situation is reminiscent of Drosophila
Orco (Or83b) and mouse V2R2 olfactory receptors (Larsson et al. 2004; Martini
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et al. 2001). Drosophila Orco is broadly expressed in almost all OSNs together

with a selectively expressed OR and plays a general role as a hetero-dimerization

partner for the selected regular OR to constitute a cation channel (Sato et al. 2008;

Wicher et al. 2008). In conclusion, both “one neuron–one receptor” and “one

neuron–multiple receptor” cases are observed in zebrafish, probably depending

on the divergence of relevant functions in distinct types of OSNs.

5.4 Glomeruli

Glomeruli are spherical neuropils deployed on the surface of the OB where odor

information is transmitted across a synapse from OSNs to the second-order neurons

in the OB. Orderly arranged glomerular architecture is observed in fishes, similar to

mammals and insects. There are about 140 glomeruli in zebrafish, among which

27 glomeruli are clearly identifiable whereas others are ambiguous, tiny, or some-

times fused (Baier and Korsching 1994; Braubach et al. 2012). Although the bound-

aries of individual glomeruli in zebrafish are, in most cases, not so clear as those in

mice and Drosophila, a unique feature of glomerular organization is observed in the

zebrafish: the presence of easily discernible glomerular clusters (Fig. 5.2). Based on

their spatial locations, shapes, and molecular markers, nine glomerular clusters can be

delineated and designated as dorsal glomerular cluster (dG), dorso-lateral (dlG),

lateral (lG), medio-anterior (maG), medio-posterior (mpG), medio-dorsal (mdG),

ventro-anterior (vaG), ventro-medial (vmG), and ventro-posterior (vpG) (Braubach

et al. 2012). Individual glomerular clusters display characteristic molecular receptive

ranges and play crucial roles as functional units for coding of structurally and

functionally different odor categories (see following).

A recent study revealed that the zebrafish OB glomeruli can be classified

into two distinct groups with respect to developmental process, anatomical size,

and structural/functional stability: early-generated, highly stereotypic, large, stable

glomeruli versus later-developing, smaller, plastic glomeruli (Braubach et al. 2013).

The maturation of small glomeruli is heavily dependent on olfactory experience,

and they are variable across individuals, whereas large and identifiable glomeruli

grow steadily irrespective of sensory inputs. Thus, the two types of glomeruli form

at different times and display distinct maturation mechanisms in either sensory input-

dependent or input-independent manners, probably reflecting their involvement in

different types of olfactory outputs: experience-dependent plastic responses versus

hard-wired innate responses.

5.5 Olfactory Axon Projection

A number of neuroanatomical tracing studies were conducted for analysis of neural

circuitry in the fish olfactory system (Morita and Finger 1998; Hamdani et al. 2001;

Hamdani and Doving 2002, 2006; Hansen et al. 2003). For example, a lipophilic
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fluorescent tracer, DiI, was injected into a small area of the OB, taken up by

olfactory axon terminals in glomeruli, and retrogradely transported to the OE.

Subsequently, the types of DiI-labeled OSNs were determined on the basis of

cellular morphology and location in the OE. Their results implied a tendency of
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Fig. 5.2 Glomerular clusters and odor map in the zebrafish olfactory bulb (OB). (a) Whole-mount

OB immunostained with anti-SV2 antibody, viewed from dorsal, lateral, and ventral sides.

(b) Eight glomerular clusters and 29 identifiable glomeruli. (c) Odor map. Nuc nucleotides, SE
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axonal segregation from the distinct types of OSNs to different regions of the OB.

However, it was impossible with such a conventional tracing method to elucidate

detailed patterns of axon projection from the distinct types of OSNs to individual

glomeruli.

The introduction of genetic technology such as transgenesis and gene trap

approaches opened a new avenue in the zebrafish olfactory research and unam-

biguously solved the issue on axonal wiring from the OE to the OB (Miyasaka

et al. 2005, 2007; Sato et al. 2005, 2007b; Koide et al. 2009). The two major types

of OSNs, ciliated and microvillus OSNs, can be differentially labeled with spec-

trally distinct fluorescent proteins (e.g., RFP and Venus) under the control of

zebrafish OMP and TRPC2 gene promoters, respectively (Sato et al. 2005). In

these double transgenic zebrafish (OMP-RFP; TRPC2-Venus), fluorescence images

of whole-mount OB clearly show that the ciliated OSNs project axons mostly to the

dorsal and medial regions of the OB, whereas the microvillus OSNs project axons

to the lateral region. A careful histological analysis of OB sections indicates that

the two distinct types of OSNs innervate different glomeruli in a mutually exclusive

manner. Importantly, there is no double-positive glomerulus that receives conver-

gent inputs from both types of OSNs. Together with immunohistochemical results

with several marker antibodies (Braubach et al. 2012) and transgene expression

patterns in specific subsets of OSNs in several gene trap lines (Koide et al. 2009),

the primary olfactory projection in the zebrafish is summarized in Fig. 5.2b.

According to the nomenclature of identifiable glomeruli and glomerular clusters

in the zebrafish OB by Braubach et al. (2012), the ciliated OSNs project their axons

to the maG, vaG, dG, and dlG clusters, mpG glomerulus, lG2 glomerulus, and most

of vmG glomeruli, whereas the microvillus OSNs innervate all glomeruli in the lG

cluster except for lG2, one of the two vpG glomeruli, and several mdG glomeruli.

The third minor type of OSNs, crypt cells, send axons to at least one particular

glomerulus mdG2, as demonstrated by the immunohistochemical staining of the

OB with antibody against crypt cell-specific S100 calcium-binding protein

(Germana et al. 2004, 2007; Oka et al. 2012; Braubach et al. 2012). These segre-

gated neural pathways are important prerequisites for representation of distinct

olfactory information on the OB as an “odor map” (see following).

5.6 Odor Map

The odor map is a central representation of chemical structural features in odorants

that are systematically arranged on a two-dimensional glomerular sheet of the first

relay station along the olfactory neural circuitry (Mori et al. 1999; Mori and Sakano

2011). In other words, each glomerulus represents a single olfactory receptor and

is tuned to specific molecular features of odorants that can activate the receptor.

The concept of the odor map was first described in the rabbit OB by electrophysio-

logical single-unit recording of spike discharges from mitral and tufted cells to odor

stimuli (Mori et al. 1992) and subsequently confirmed in various mammalian and
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insect species upon the emergence and refinement of neural activity imaging

techniques (Rubin and Katz 1999; Uchida et al. 2000; Wang et al. 2003; Mori

et al. 2006; Vosshall and Stocker 2007; Mori and Sakano 2011).

A series of pioneering studies measuring glomerular activities with conventional

voltage-sensitive dyes or Ca2+ indicators demonstrated the existence of an odor

map also in the zebrafish OB (Friedrich and Korsching 1997, 1998; Fuss and

Korsching 2001). Thereafter, genetically engineered Ca2+ probes (e.g., Inverse

Pericam; GCaMP) were introduced to analyze the developmental and functional

aspects of the zebrafish OB odor map in a more detailed and comprehensive manner

(Li et al. 2005; unpublished observation). Furthermore, an immunohistochemical

analysis using anti-phosphorylated Erk (MAP kinase) antibody has recently turned

out to be a convenient and powerful tool to visualize glomerular activation upon

odorant stimulation (unpublished observation). These findings revealed that various

kinds of water-soluble compounds are represented on the surface of the OB in a

highly systematic fashion and that the glomerular clusters play important roles as

functional units for coding of different categories of odorants (Fig. 5.2c). For

example, the dG cluster responds predominantly to bile acids, whereas the dlG

cluster is exclusively devoted to amines (see following). Although the majority of

glomeruli display specific activation to particular odorants, there is one glomerulus

in the maG cluster that responds to various different odorants without selectivity.

This glomerulus might function as a “generalist” to elicit olfactory alertness,

responding to the presence of any odor stimuli (unpublished observation).

5.6.1 Amino Acids

Amino acids strongly attract fishes as food-derived odorants (Steele et al. 1990, 1991;

Koide et al. 2009). Zebrafish are capable of discriminating between different amino

acids (Miklavc and Valentincic 2012). Amino acids are detected mostly by micro-

villus OSNs through binding to V2R-type olfactory receptors (Speca et al. 1999;

Hansen et al. 2003; Luu et al. 2004) and activate multiple glomeruli in the lG cluster

(Friedrich and Korsching 1997, 1998; Fuss and Korsching 2001). Structural features

of side chains in individual amino acids (e.g., long or short; hydrophilic or hydro-

phobic; acidic, neutral, or basic) are represented as a combinatorial code in spatially

confined glomerular groups in the lateral cluster.

5.6.2 Bile Acids

Bile acids are biliary steroids synthesized in the liver, stored in the gallbladder,

secreted into the intestine, and reabsorbed by the enterohepatic system. Interestingly,

various fishes produce species-specific bile acid derivatives, such as cyprinol

sulfate in carp (Cyprinus carpio), petromyzonol sulfate in sea lamprey
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(Petromyzon marinus), and myxinol disulfate in hagfish (Mixni) (Hagey et al. 2010),
suggesting their potential roles in olfactory-mediated social interaction. In the sea

lamprey, for example, specific bile acids are released into the environment to act as

sex and migratory pheromones, respectively (Li et al. 2002; Sorensen et al. 2005). In

zebrafish, taurocholic acid activates a population of OSNs (Michel and Lubomudrov

1995) and induces a significant attractive response (Koide et al. 2009). Bile acids

activate ciliated OSNs possibly via the OR-type olfactory receptors -Golf- cyclic

AMP signaling cascade (Hansen et al. 2003; unpublished observation). In the

zebrafish OB, various bile acids elicit strong responses in the dG cluster and the

anterior part of the vmG cluster (Friedrich and Korsching 1998; unpublished obser-

vation). The activity patterns induced by different bile acids show a similar but not

identical distribution, indicating that distinct molecular features in bile acids are

represented in the dG and vmG clusters in a combinatorial manner.

5.6.3 Amines

Although the physiological functions as odorants are enigmatic, amines should be

definitely important olfactory stimuli to zebrafish from the following three reasons.

First, the zebrafish genome is equipped with the largest number of amine receptors,

TAARs, in all animal species examined (Gloriam et al. 2005; Korsching 2009;

Shi and Zhang 2009). Second, several amine compounds induce strong electro-

olfactogram responses in the zebrafish OE (Michel et al. 2003). Third, the dlG

cluster in the OB is almost completely devoted to amine responses (unpublished

observation). The dlG is composed of several tens of small glomeruli, among which

five glomeruli (dlG1-5) are identifiable based on their unique position, morphology,

and molecular expression (Braubach et al. 2012). Distinct glomeruli in the dlG tend

to be activated by structurally different categories of amines: dlG4 by primary

amines, dlG5 by polyamines, and many glomeruli in the anterior part of dlG by

secondary and tertiary amines. Thus, there is a clear topographic map for structural

features of amines in the dlG.

5.6.4 Nucleotides

Nucleotides such as ATP, IMP, and ITP induce excitatory responses in fish OE and

bulbar neurons (Kang and Caprio 1995; Nikonov and Caprio 2001), possibly acting

as feeding cues together with amino acids (Carr 1988). An immunohistochemical

analysis with anti-phospho-Erk antibody revealed that nucleotides activate a small

population of OSNs bearing a short dendrite and locating in the apical portion of OE

(unpublished observation). However, these OSNs are positive for OMP promoter-

driven RFP, but negative for TRPC2 promoter-driven GFP (Sato et al. 2005).

Thus, nucleotides appear to activate a peculiar subset of ciliated OSNs whose

morphology is similar to that of microvillus OSNs. Because the amine moiety is
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contained in structure of purines and pyrimidines, it is likely that nucleotides are

detected by ciliated OSNs expressing TAARs. In the OB, nucleotides activate a

specific single glomerulus lG2 belonging to the lG cluster (Koide et al., in prepa-

ration). Although all other glomeruli in the lG cluster are innervated by microvillus

OSNs, only the lG2 is innervated by Golf-positive ciliated OSNs (Braubach

et al. 2012). However, it remains largely unknown what physiological or behavioral

responses are induced by nucleotides as olfactory stimulants in zebrafish.

5.6.5 Sex Pheromones

Two classes of sex pheromones, primers and releasers, acting on different steps

of reproductive responses have been identified in various teleost fishes: steroid

derivatives and prostaglandins, respectively (see following for details). In zebrafish

OB, two sex pheromones evoke neural responses in only one or two glomeruli

(Friedrich and Korsching 1998; Koide et al., in preparation). A primer pheromone,

17α,20β-dihydroxy-4-pregnen-3-one-20-sulfate (17,20P-S), activates a single or

few glomeruli in the maG cluster, whereas a releaser pheromone, prostaglandin

F2α (PGF2α), activates two glomeruli in the vmG cluster.

5.6.6 Skin Extract

In various fish species, putative alarm pheromones released from the injured skin of

conspecifics induce robust aversive responses of other nearby fish (see following).

Although two candidate molecules were reported as alarm pheromones in zebrafish

(Pfeiffer et al. 1985; Mathuru et al. 2012), their validity still remains controversial.

When the conspecific skin extract, a mixture of various compounds including a

putative alarm pheromone, is applied to the OE, three glomerular foci are specifi-

cally activated in the OB: the anterior part of the dG cluster, the most anterior

glomerulus (lG4) in the lG cluster, and one glomerulus (vpG2) in the vpG cluster

(unpublished observation). At present, however, it remains unknown which glo-

merulus (or glomerular combination) is responsible for mediating the aversive

responses to the alarm pheromone.

In addition to the aforementioned spatial representation of odorant structural

features on the OB, several electrophysiological and activity imaging studies

proposed the temporal coding of odor quality and intensity and the odor information

processing by neuronal populations in the fish OB (Kang and Caprio 1995; Frie-

drich and Laurent 2001; Friedrich et al. 2004; Niessing and Friedrich 2010;

Wiechert et al. 2010). For details, see reviews by Laberge and Hara (2001),

Friedrich (2006), and Friedrich et al. (2009).
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5.7 Higher Olfactory Centers

Odorant and pheromone information represented on the glomerular map of the OB

is next transferred via the second-order projection neurons, mitral cells, to several

distinct regions in the forebrain. In these higher olfactory centers, the information is

decoded and processed in different manners to perceive, discriminate, and memo-

rize odorants, to change hormonal secretion and reproductive activity, and to elicit

various olfactory behaviors such as attraction to foods, escape from predators,

social communication with company, and spawning migration to home rivers.

Compared with a wealth of knowledge on functional correlates in the OE and

OB, little has been elucidated on the molecular, cellular, and circuit mechanisms

underlying odor coding and processing in higher olfactory centers in fish (Nikonov

et al. 2005). However, physiological and anatomical studies have begun to shed

light on basic principles of odor information representation and computation in the

secondary olfactory circuitry of zebrafish (Yaksi et al. 2009; Miyasaka et al. 2009;

Blumhagen et al. 2011). In particular, the most recent study combining a genetic

single-neuron labeling method with the image registration system has uncovered a

nearly comprehensive axon projection map from the OB to higher bran centers in

zebrafish larvae (Miyasaka et al. 2014).

The OB output neurons project axons to the four major target regions in the

forebrain: the posterior zone of dorsal telencephalon (Dp), the ventral nucleus of

ventral telencephalon (Vv), the posterior tuberculum (PT), and the right habenula

(rHb) (Fig. 5.3). In addition, approximately one-third of OB output neurons

send axonal branches back into the OB ipsilaterally, contralaterally, or both.

The higher olfactory centers receive odor information from OB glomeruli (and

glomerular clusters) in a highly specific manner, either nonselective or biased as

well as either diffuse or convergent, which is important for eliciting different

olfactory outputs.

Optic Tectum Cerebellum

Brainstem

Hypothalamus

Pituitary

Telencephalon Dp

OB
OE

Vv

rHb

PT

Fig. 5.3 Secondary olfactory pathway from the OB to higher brain centers. The four major targets

of OB output neurons are highlighted: Dp (yellow), Vv (pink), rHb (light blue), and PT (green)
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5.7.1 Posterior Zone of the Dorsal Telencephalon (Dp)

The Dp, a pallial structure located in the dorsoposterior telencephalon, constitutes

the largest part of the secondary olfactory centers in zebrafish. Genetic single-

neuron visualization revealed that all the labeled OB output neurons project

axons to the Dp with extensive overlap. Within the Dp, the large core region

samples intermingled inputs from all the glomerular clusters (Fig. 5.4), thus trans-

forming topographic information in the OB to broad and sparse representations

(Miyasaka et al. 2014). An optical imaging study showed that individual Dp

neurons extract information about discrete combinations of odorant molecular

features from ensembles of glomeruli to establish representations of higher-order

olfactory objects (Yaksi et al. 2009). These anatomical and functional features of

the central Dp indicate that it may correspond to the piriform cortex in mammals

(Ghosh et al. 2011; Miyamichi et al. 2011; Sosulski et al. 2011; Igarashi et al. 2012)

and the mushroom body in Drosophila (Jefferis et al. 2007; Lin et al. 2007;

maG vaG vmG dG dlG lG vpG mdG

Vv (vTel) Dp (pTel) PT
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bulb
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of ventral 

telencephalon
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?

Fig. 5.4 Odor information flows from the olfactory epithelium (OE) to the OB and further to

higher olfactory centers. Three types of OSNs express distinct receptors and other functional

molecules and project axons to different sets of glomerular clusters. The odor information received

by distinct glomerular clusters in the OB is next transferred to the four brain regions in higher

olfactory centers, where different modes of odor information decoding are performed: either

nonselective or biased and either sparse or convergent
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Caron et al. 2013), where information from the OB and the antennal lobe is

computed for odor discrimination and olfactory memory. In contrast, the marginal

portion of Dp is divided into several subregions that receive biased inputs from

particular glomerular clusters. Thus, these Dp subregions could specifically respond

to distinct categories of odorants (Miyasaka et al. 2014). This notion is supported by

the fact that the anterior and posterior parts of Dp show biased responses to bile

acids and amino acids, respectively (Yaksi et al. 2009).

5.7.2 Ventral Nucleus of the Ventral Telencephalon (Vv)

Another telencephalic target of OB output neurons is the Vv, a subpallial region

in the ventro-anterior telencephalon. Although the Vv is thought to be equivalent to

the septum and striatum in mammals, based on the expression patterns of molecular

markers (Ganz et al. 2012; Wullimann and Mueller 2004), it remains largely

unknown what brain functions the Vv neurons exert in fish. In contrast to the Dp,

which is innervated by all the OB output neurons, the Vv receives massive inputs

from particular glomerular clusters: maG, vaG, vmG, and dG (Fig. 5.4) (Miyasaka

et al. 2014). These four glomerular clusters are innervated by ciliated OSNs expres-

sing OR-type olfactory receptors that detect socially relevant odor cues such as bile

acids and prostaglandins. Because the Vv neurons are reciprocally connected with

the preoptic and hypothalamic areas (Rink and Wullimann 2004), the Vv might

have some role in transformation of the odor and pheromone information into

various social behaviors and endocrine responses.

5.7.3 Posterior Tuberculum (PT)

In addition to the two major telencephalic targets, the OB output neurons directly

send axons to two diencephalic regions in zebrafish. One is the posterior tuberculum

(PT), a hypothalamus-related region containing groups of dopaminergic neurons

(Schweitzer et al. 2012). One or two axon branches of OB output neurons emanate

from the posterior telencephalon, extend a long distance through the medial fore-

brain bundle, and finally reach the PT (Miyasaka et al. 2014). These axons appear to

make close contacts with the dopaminergic neurons in the PT. The PT receives

convergent inputs from all the glomerular clusters (Fig. 5.4), suggesting a wide

range of responsiveness of PT neurons to various odor stimuli. In the sea lamprey,

a group of dopaminergic neurons in the PT mediates olfactory-locomotor transfor-

mation by relaying the odor information from the OB to the reticulospinal neurons

via the mesencephalic locomotor region (Ren et al. 2009; Derjean et al. 2010).

Therefore, it is likely that the OB–PT pathway drives the descending neural

circuitry for locomotion also in zebrafish, irrespective of odor classes and output
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responses, either attraction or aversion. A small population of dopaminergic

neurons in the zebrafish PT sends ascending projection to the ventral telencephalon

(Tay et al. 2011), which is reminiscent of dopaminergic neurons in the ventral

tegmental area and the substantia nigra in mammals. Thus, the OB–PT pathway

might be also involved in controlling brain functions such as motivation, reward,

and emotions.

5.7.4 Right Habenula (rHb)

The habenula is an epithalamic structure conserved among all vertebrate species.

In mammals, the habenula relays information from the forebrain to the midbrain

nuclei such as the interpeduncular nucleus, the raphe nuclei, the substantia nigra,

and the ventral tegmental area to regulate the activities of serotonergic and dopa-

minergic systems. The mammalian habenula is subdivided into medial and lateral

nuclei, which correspond to the dorsal and ventral habenula in zebrafish, respec-

tively (Amo et al. 2010). The dorsal habenula in zebrafish exhibits prominent left–

right asymmetry in terms of the developmental timing, molecular expression, and

size ratio of medial and lateral subnuclei (Bianco and Wilson 2009; Okamoto

et al. 2012). The medial and lateral subnuclei of the dorsal habenula innervate the

ventral and dorsal parts of the interpeduncular nucleus, respectively (Aizawa

et al. 2005). Two prominent features are observed in the neural connection from

the OB to the habenula. First, the habenula receives strongly biased olfactory inputs

predominantly from two glomerular clusters, mdG and vmG (Fig. 5.4) (Miyasaka

et al. 2014). Therefore, it is likely that the OB–habenula pathway may constitute

part of a hard-wired circuit conveying particular odor information to evoke stereo-

typed responses such as innate olfactory behavior. Second, the OB output neurons

project axons only to the right habenula (rHb) but not to the left habenula,

displaying clear left–right asymmetry of neural circuitry (Miyasaka et al. 2009).

Within the rHb, axon termination is specifically observed in the medial subnucleus,

suggesting that the odor information conveyed to the rHb is next transferred to the

ventral part of the interpeduncular nucleus. Two recent studies reported that the

habenula plays a crucial role in controlling fear responses in zebrafish (Agetsuma

et al. 2010; Lee et al. 2010), although the involvement of olfactory inputs has not

yet been investigated.

5.8 Olfactory Behaviors in Zebrafish

Finding foods, escaping from danger, and mating with a partner are the most basic

behaviors commonly observed in various animal species. Odorants and pheromones

in the aquatic environment activate olfactory receptors and neural circuits, media-

ting these innate behaviors also in zebrafish. In addition, zebrafish can be utilized
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for analyses of odor-associated short-term memory (olfactory conditioning), as well

as extremely long-lasting memory (olfactory imprinting) reminiscent of salmon

homing behavior.

5.8.1 Foraging Behavior

Attraction toward food sources is one of the fundamental behaviors needed for

animals to survive. Amino acids contained in the diet are indispensable for fishes

not only as nutrients but also as odorants. Zebrafish exhibit robust appetitive

behavior to amino acids including attraction and increased turning, recognizing

them as potential feeding cues (Steele et al. 1990, 1991: Braubach et al. 2009).

When a hungry zebrafish is placed into a tank of water with amino acids pumped

into one corner, the fish tend to spend more time near the amino acids (Fig. 5.5c).

The primary olfactory circuitry mediating this attractive behavior was elucidated

by a combination of genetic, anatomical, and behavioral approaches (Koide

et al. 2009). First, three gene trap and transgenic zebrafish lines were established

in which the Gal4 transactivator is expressed in three distinct populations of OSNs

innervating different glomerular clusters (Fig. 5.5a,b). Next, synaptic transmission

from each population of OSNs to the OB neurons was selectively blocked by Gal4/

UAS-mediated expression of tetanus neurotoxin that specifically cleaves VAMP2

(synaptobrevin), a synaptic vesicle protein required for exocytocis (Fig. 5.5d).

The attractive response of zebrafish to amino acids was completely abolished

only when the synaptic transmission to the lG cluster was silenced. These results

clearly demonstrate the functional significance of the OSNs innervating the lG in

the amino acid-mediated feeding behavior in zebrafish. However, it remains totally

unknown how the amino acid information in the lG is read and transformed by

neurons in higher olfactory centers to elicit the attractive response.

5.8.2 Alarm Response

In 1938, the Austrian ethologist Karl von Frisch discovered the existence of an

alarm substance, the so-called Schreckstoff (German for “scary stuff”), in minnows

(von Frisch 1938). When a minnow in a shoal was accidentally injured, von Frisch

noticed that the other fish in the same tank displayed conspicuously frightened

reactions: darting and freezing. Subsequent experiments demonstrated that putative

alarm substances are contained in specialized cells (alarm substance cells or club

cells) in the fish skin, released into water upon injury, and activate specific olfactory

neural circuitry in its shoaling company to notify the presence of danger (Lebedeva

et al. 1975; Pfeiffer 1977; Kasumyan and Lebedeva 1975). The Schreckstoff-

induced alarm response is observed in the superorder Ostariophysi that

includes approximately two-third of freshwater fish species including zebrafish.
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Fig. 5.5 Genetic dissection of olfactory neural circuitry mediating attraction to amino acids.

(a) A principle of Gal4/UAS system in zebrafish. (b) GFP fluorescence in whole-mount OBs from

three transgenic lines expressing Gal4 and GFP in different populations of OSNs. Axon innervations

of differential glomerular clusters are observed among the three transgenic lines. (c) Left: A

behavioral assay setup. Right: Representative swimming paths of zebrafish on amino acid applica-

tion. Results are presented for every 1 min before and after the application of amino acid mixture.

(d) Synaptic transmission blockade by forced expression of tetanus neurotoxin (TeTxLC).

Left: TeTxLC-mediated blockade of synaptic transmission by specific cleavage of VAMP2 in

synaptic vesicles. Right: The attractive responses to amino acids for individual genotypes are

represented by the preference index (Y-axis). The OE-removed fish and the SAGFF27A; UAS:

TeTxLC double-transgenic fish show no preference, demonstrating the importance of the lateral

glomerular cluster in the attraction to amino acids. (Modified from Koide et al. 2009)



Upon application of a conspecific skin extract, most zebrafish display a robust,

biphasic response in the bottom of a tank: burst swimming followed by freezing

(Speedie and Gerlai 2008). Although two structurally unrelated molecules were

reported as candidates of fish alarm substances, hypoxanthine-3N-oxide (Pfeiffer

et al. 1985) and chondroitin sulfate (Mathuru et al. 2012), the real identity of

Schreckstoff is still a mystery. As already mentioned, our calcium imaging and

anti-phospho-Erk immunohistochemical experiments have identified three glome-

rular foci in the zebrafish OB that are strongly activated by the skin extract

(unpublished observation). It is conceivable that plural components in the skin

extract activating different glomeruli may coordinately evoke the alarm response

through some coincidence-detection mechanism in higher olfactory centers.

5.8.3 Reproductive Behavior

Two types of sex pheromones, steroids and prostaglandins, that have been identified

in female goldfish are secreted at different steps of the estrus cycle and sequentially

act on male fish for successful reproduction (Sorensen et al. 1998; Sorensen and

Caprio 1998). Two steroid derivatives, 17α,20β-dihydroxy-4-pregnen-3-one
(17,20P) and its sulfated form (17,20P-S), are secreted from female goldfish at a

preovulatory stage and act on males as primer pheromones that change the male

endocrine-gonadal responses (Stacey et al. 1989). 17,20P and 17,20P-S evoke a

rapid increase in luteinizing hormone release from the pituitary, leading to sper-

matogenesis in several hours (DeFraipont and Sorensen 1993). In zebrafish, only

17,20P-S appears an active pheromone that is sensed by a small subset of ciliated

OSNs and activates a single or few glomeruli in the maG cluster (Friedrich and

Korsching 1998; unpublished observation). During ovulation in zebrafish as well as

goldfish, prostaglandin F2α (PGF2α) and its metabolite 15-keto-PGF2α are syn-

thesized and secreted in female urine, acting on male fish as releaser pheromones

(Sorensen et al. 1988). The male sexual behavior upon stimulation with these

releaser pheromones includes increased swimming activity, attraction to females,

nudging (abdomen touch), and quivering. PGF2α and 15-keto-PGF2α activate a

selective olfactory pathway involving two glomeruli in the vmG cluster in zebrafish

(Friedrich and Korsching 1998; unpublished observation). Future studies are

awaited for the identification of pheromonal receptors for 17,20P-S and PGF2α,
and the dissection of higher-order neural circuitry mediating endocrine

and behavioral responses evoked by these sex pheromones.

5.8.4 Olfactory Conditioning

Similar to other animal species, fish can be conditioned to associate odors with

either aversive or attractive stimuli. The aversive conditioning experiments include

electrical shock to catfish (Little 1977), lithium chloride injection to goldfish
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(Manteifel and Karelina 1996), and conspecific skin extract (Schreckstoff) exposure

to zebrafish (Suboski et al. 1990), all of which were associated with particular

odorants. In contrast, fish also can associate odorants with positive reinforcement

stimuli such as food rewards (Herbert and Atema 1977; Valentincic et al. 2000;

Braubach et al. 2009; Miklavc and Valentincic 2012). Thus, zebrafish can learn and

memorize odor-associated behavioral tasks reliably in standard conditioning para-

digms. Hence, it is now possible to analyze these learning behaviors with a com-

bination of genetic, optical imaging, electrophysiological, and neuroanatomical

methods for elucidation of neural circuit mechanisms underlying olfactory memory

and behavioral plasticity.

5.8.5 Olfactory Imprinting

One of the most widely known olfactory imprinting behaviors is homing of salmon

to their mother-rivers. Juvenile salmon imprint on the odors of their natal stream,

then migrate to sea, and grow up to be adults. After several years in the sea, the

adult salmon return to their home river for reproduction by navigating through the

environment using various sensory cues including the odors of their natal stream

(Scholz et al. 1976; Dittman and Quinn 1996; Yamamoto et al. 2010). Although

zebrafish do not display homing behavior in nature, Harden et al. (2006) reported

that zebrafish in laboratories can form and retain olfactory memories experienced in

juveniles, similar to those observed in salmons. Zebrafish were exposed to an

artificial odorant, phenylethyl alcohol (PEA), for the first 3 weeks post fertilization,

then raised in ordinary water up to adult stage, and subjected to a preference test in a

Y-maze. As a result, the PEA-exposed zebrafish showed significant preference to

this odorant whereas the control fish did not. Thus, zebrafish clearly remember

the odor to which they were exposed as juveniles, rendering this fish species as

an attractive model organism for studying olfactory imprinting or long-lasting

olfactory memory.

5.9 Conclusions and Perspectives

These two decades since the discovery of odorant receptor genes by Buck and Axel

(1991) have witnessed great advances in our understanding of the functional

architecture of the primary olfactory system. Multigene families encoding odorant

and pheromone receptors were identified in various animal species (see Chap. 2 by

Touhara). The axon guidance mechanism for establishing neural connectivity

patterns from the OE to the OB was clarified (see Chap. 3 by Sakano). The concept

of the “odor map” was established as the internal representation of odorant mole-

cular features in the OB, demonstrating the importance of glomerular modules as

functional units for odor coding and processing (see Chap. 4 by Mori). Therefore, it
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is high time for us to contemplate, hypothesize, and investigate the functional

architecture of the secondary and tertiary olfactory circuitry from the OB to the

cortex and beyond, linking odor inputs to various higher-order brain functions such

as perception, emotion, memory, decision making, and consciousness. In our efforts

toward understanding the olfactory system as a whole, the zebrafish will undoub-

tedly become an ideal model vertebrate in the next decade, with its tiny but well-

organized brain, sophisticated olfactory circuits, and robust olfactory behaviors, as

well as amenability of various state-of-the-art genetic techniques.
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