
Chapter 6
Magnetospheric MHD Resonances
and ULF Pulsations

Abstract This chapter deals with the low-frequency MHD oscillation of the whole
magnetosphere and ULF pulsations including their origins and magnetospheric
plasma instabilities. We discuss briefly magnetospheric models and the generation
of field-line resonances (FLRs) and cavity modes. Properties of MHD waves
propagating in the solar wind are covered. In the remainder of this chapter we
examine source mechanisms of natural electromagnetic ULF noises.
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• Space weather • ULF electromagnetic noises

6.1 Structure of Global Magnetospheric Oscillations

6.1.1 An Axisymmetric Magnetosphere Model

It is customary to believe that the MHD oscillation of the whole magnetosphere was
originally studied by Dungey (1954) who derived equations for the eigen oscillation
of an axisymmetric magnetosphere. The normal magnetospheric MHD oscillation,
which is independent of azimuthal angle ', can be split into two practically
uncoupled modes: toroidal and poloidal modes depending on their polarization.
In the poloidal modes, the electric field oscillates in the azimuthal direction, while
the magnetic field and plasma velocity pulsate across magnetic shells. By contrast,
in the case of the toroidal modes, the electric field is in the meridional plane,
while the magnetic field and plasma velocity oscillate in the azimuthal direction.
These types of the magnetospheric MHD oscillation have been studied intensively
for several decades and much is now known of their properties (Radoski 1967a,b;
Radoski and Carovillano 1969; Cummings et al. 1969; Krylov and Lifshitz 1984).
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210 6 Magnetospheric MHD Resonances and ULF Pulsations

The neutral gas is so rarefied at magnetospheric heights that the number density
of ions is much greater than that of neutrals, so that the plasma can be considered
fully ionized in this region. Furthermore, the plasma itself is so tenuous that �ei �
�i and thus the medium can be treated as a collisionless magnetized plasma. In such
a case we can use the MHD approach, in which, as we have noted in Sect. 1.2.2, the
plasma is considered as a single fluid having infinite conductivity. This means that
in a reference frame moving at plasma velocity V the electrical field E0 D ECV�B
vanishes in both directions parallel and perpendicular to B, whence it follows that
in a reference frame fixed to the Earth E D B � V.

The magnetospheric plasma dynamics is described by Eq. (1.13), which relates
the plasma velocity to the forces acting on the plasma. This equation in its general
form contains the pressure gradient, the terms describing the gravitational and
“viscous” forces, and the magnetic/Ampere’s force given by j � B. In the reference
frame fixed to the Earth this equation includes all the inertial forces acting on
the plasma due to the Earth spin. The pressure gradient and the magnetic force
dominate if the typical frequencies are smaller than 0:1Hz. In this frequency range
the gravity, viscosity, and inertial terms in Eq. (1.13) can be neglected.

Following Dungey (1954, 1963) we first assume that the geomagnetic field and
electric currents in the magnetosphere are large enough so that the magnetic force
in Eq. (1.13) is much greater than the pressure gradient. It should be noted that
the plasma motion parallel to the magnetic field lines must be due to only the
pressure gradient rP since the magnetic force j�B is always perpendicular to B. On
the other hand the plasma motion parallel to B does not greatly affect the magnetic
field. In this picture the cancel of rP in Eq. (1.13) is not so a burdensome condition.
Finally, we have

�dV=dt D j � B; (6.1)

where � is the plasma mass density, and the total time-derivative d=dt is given by
Eq. (1.12). To treat the plasma dynamics, Maxwell’s equations are required, whose
full forms are given by Eqs. (1.1)–(1.4). Since the vacuum displacement current
@tD can be ignored due to the high plasma conductivity, Eq. (1.1) is simplified to
the form in which the curl of magnetic field is related to the conduction current j
through Eq. (1.5).

Substituting E D B � V into Eq. (1.2) gives Eq. (1.18). The meaning of this
equation is that the magnetic field is frozen to the conducting plasma and thus can
be considered to move with the plasma. The concept of “frozen-in” magnetic field
lines has been discussed in more detail in Sect. 1.2.1.

Let ıB be the small perturbation of the ambient/geomagnetic field B0, so that
B D B0 C ıB, and jıBj � jB0j. The unperturbed geomagnetic field B0 is not
a function of time. In the first approximation, one can replace the term V � B
in Eq. (1.18) with V � B0. After these simplifications we come to the following
equation:

@t ıB Dr � .V � B0/ : (6.2)
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The same approximations can be applied to Eq. (1.35) to yield

E D B0�V: (6.3)

Here E denotes the perturbation of the electric field since a constant electric field
is assumed to be absent. Returning to the equation of motion (6.1) and substituting
Eq. (1.5) for j into this equation, we have

�0�dV=dt D .r � B/ � B: (6.4)

In what follows we restrict our analysis to the case of a dipole approximation of the
geomagnetic field B0, given by Eq. (1.30). Substituting B D B0 C ıB into Eq. (6.4),
taking into account that r � B0 D 0, and considering the small amplitude waves, so
that dV=dt � @tV, the equation of plasma motion is reduced to

�0�@tV D .r � ıB/ � B0: (6.5)

Taking the cross product of both sides of Eq. (6.5) with B0 and substituting
Eq. (6.3) for B0�V into this equation yields

�0�@tE D B0 � Œ.r � ıB/ � B0� : (6.6)

Now we should use Eq. (1.55) for triple cross product with A1 D A3 D B0 and
A2 D ıB. Applying this equation to the right-hand side of Eq. (6.6) yields

�0�@tE D B2
0 .r � ıB/ � B0 ŒB0 � .r � ıB/� : (6.7)

The set of Eqs. (6.2), (6.3), and (6.7) constitutes the suitable single-fluid descrip-
tion of dynamics of a magnetized plasma. A general analytical solution of the
plasma dynamics problem is not yet at hand although the numerical solutions, which
can be applied to the actual magnetosphere, have been studied in detail (e.g., see Lee
and Lysak 1989, 1990; Alperovich and Fedorov 2007).

As we have noted above, to the first order the Earth magnetic field is described
through the dipole approximation. If the polar z axis is positive parallel to the Earth’s
magnetic moment Me and the origin of the coordinate system is in the Earth center,
then the Earth’s dipole magnetic field is the axially symmetrical one and has only
the components Br and B� given by Eq. (1.33) while B' D 0.

In this approximation we consider the axially symmetrical problem, in which
all the values are independent on '. As we shall see, in this case the equation
set is split into two independent parts: the first one contains the components of
electromagnetic perturbations ıB' , Er , E� and azimuthal velocity V' , and the
second one contains the components ıBr , ıB� , E' , Vr , and V� . The first mode is
referred to as the shear Alfvén wave and the next one is the FMS/compressional
wave. According to geophysical terminology, the standing quasi-Alfvén wave which
contains the azimuthal magnetic field ıB' is termed the toroidal mode, while the
standing compressional wave .ıBr ; ıB�/ is referred to as the poloidal mode.
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So, the polarization of the Alfvén oscillations differs from that of the poloidal
mode. The electric field of the poloidal mode has only an azimuthal component,
while the magnetic field perturbations and plasma velocity are directed across the
magnetic shell.

6.1.2 Toroidal Mode

The shear Alfvén mode could have an important role to play in the generation
of field line resonances (FLRs hereafter). These kinds of standing waves in the
magnetosphere have frequently been observed onboard the satellites (e.g., see
Glassmeier 1995) so that a spatial structure and the source mechanisms of these
waves are of a special interest in geophysical studies.

Using the spherical coordinates, the azimuthal components of Eq. (6.2) can be
written as

@t ıB' D r�1 f@r Œr .V � B0/� � � @� Œ.V � B0/r �g : (6.8)

Substituting the angular and radial components of V � B0 into Eq. (6.8) yields

@t ıB' D r�1 ˚@r
�
rV'Br

� � @�
�
V'B�

��
: (6.9)

The components Br and B� of undisturbed Earth’s magnetic field are given
by Eq. (1.33). Substituting these components into Eq. (6.9) and rearranging this
equation yields

@t ıB' D r sin � .B0 � r/
�

V'

r sin �

�
; (6.10)

where we have introduced the differential operator acting on the functions of
variables r and � :

B0 � r D �0Me

4�r3

�
2 cos �@r C sin �

r
@�

�
: (6.11)

Here Me denotes the Earth’s magnetic dipole moment.
The azimuthal component of the equation of motion (6.5) has the form

�@tV' D Me

4�r4

˚
@�
�
ıB' sin �

�C 2 cos �@r
�
rıB'

��
: (6.12)

Combining this equation with Eq. (1.33) for the components Br and B� and
rearranging, we find that

�0�r sin �@tV' D .B0 � r/ �r sin �ıB'
�
: (6.13)
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The electric field components can be found from Eq. (6.3)

Er D B�V'; E� D �BrV': (6.14)

It is interesting to note that the scalar product of the electric field (6.14) with the
vector B0 D .Br ; B� ; 0/ equals zero, that is, the vector E is perpendicular to the
Earth’s dipole magnetic field B0. This implies that the electric field of the toroidal
mode is perpendicular to the Earth magnetic field shells.

Considering the toroidal mode, we are thus left with the set of Eqs. (6.10), (6.13),
and (6.14) for the functions ıB' , V' , Er , and E� . To study the standing waves, in
effect finding the normal modes of the axisymmetric magnetosphere, all perturbed
quantities are considered to vary as exp .�i!t/, where ! is the frequency. Replacing
the time-derivatives @t with the factor �i! and eliminating ıB' from Eqs. (6.10)
and (6.13) yields

�0�r!
2 sin �V' C .B0 � r/

�
r2 sin2 � .B0 � r/

�
V'

r sin �

��
D 0: (6.15)

The only differential operator occurred at this equation is the operator .B0 � r/,
which defines in fact the directional derivative. In other words, this equation contains
only derivative along the magnetic field lines. This means that Eq. (6.15) describes
oscillations of the azimuthal velocity V' and magnetic shells that originate from the
rotation of the field lines about the symmetry axis. Each magnetic shell can vibrate
independently of each other. All the field lines belonging to the same magnetic shell
must vibrate synchronously, that is, the magnetic shell vibrates as a whole. To study
eigen oscillations of the shell, therefore, it is sufficient to consider the oscillations
of one of the magnetic field lines.

Equation (6.15) should be supplemented by the proper boundary conditions at
the ends of the magnetic field lines, that is at the points where the field lines
intersect the high conducting ionospheric E layer and the Earth’s surface. The skin-
depth in the ionosphere at frequencies f . 0:1Hz exceeds the thickness of the
ionospheric conductive layer. In this notation, the E layer is usually treated in a
“thin” ionosphere approximation, while the Earth can be considered as a perfect
conductor, which reflects the electromagnetic waves totally. More usually we use
the boundary conditions of the impedance type in which the electric and magnetic
field components tangential to the ionosphere are related in a linear fashion.

In order to make our consideration as transparent as possible we, however, choose
a simplified approximation, considering the wave reflection off a perfect conductor
surface. In such a case, the boundary condition at the end of field line is E D 0. On
account of Eq. (6.14) one can derive the boundary condition V' D 0 at the ends of
the magnetic field line. It should be noted that these relations can serve as proper
boundary conditions rather for the sunlit ionosphere because of the high ionospheric
conductivity at daytime.

The field line shape of the dipole magnetic field is described by Eq. (1.34). This
equation relates the polar radius, r , to the magnetic latitude 	. If polar angle � is
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expressed through the magnetic latitude 	 (northern hemisphere) via 	 D � � �=2,
the equation for magnetic field lines can be written as r D LRe sin2 � , where Re is
the mean Earth radius, L is the McIllwain parameter. In this notation the operator
B0 � r taken along the field line can thus be rewritten as

B0 � r D �0Me

4�L4R4e sin7 �

d

d�
: (6.16)

Substituting Eq. (6.16) for B0 � r into Eq. (6.15) and rearranging yields (Dungey
1954, 1963; Cummings et al. 1969)

d

d�

�
1

sin �

d

d�

V'

sin3 �

�
C �

�
4�R4e

�2
L8!2 sin10 �

�0M2
e

V' D 0: (6.17)

We recall that the plasma velocity V' in Eq. (6.17) must be equal to zero
at two intersection points where the corresponding field line crosses the bottom
of the ionosphere. Substituting r D Re into Eq. (1.34) one can find the angles
corresponding to these intersection points. We are thus left with the equation
sin2 �0 D cos2 	0 D L�1 for the sought polar angles �0 and magnetic latitude 	0.
Finally, the proper boundary conditions for Eq. (6.17) take the form V' .�0/ D
V' .� � �0/ D 0, where �0 D arcsinL�1=2 and � � �0 is the angle corresponding to
the conjugate intersection point. The atmospheric depth is disregarded here.

Owing to the complexity of Eq. (6.17) the general analysis of this differential
equation encounters some difficulty. As would be expected, considering the finite
length of the field line segment bounded these two interception points, the given
boundary problem has periodic solutions. The fundamental toroidal mode of
Eq. (6.17) has numerically been studied by Dungey (1954, 1963). For example,
according to this calculation made at the plasma density � D 10�18 kg=m3, the
period of the fundamental mode can be approximated by the formula

T � 0:6

sin8 �0
; (in second). (6.18)

Taking the numerical values of the magnetic latitude 	0 D 45ı, 55ı, 65ı and 70ı;
the typical periods of the fundamental mode are as follows: T D 10 s, 54 s, 11min
and 55min, correspondingly, while the corresponding eigenfrequencies lie much
below the IAR and Schumann resonances.

Thus, Eq. (6.17) describes the toroidal field oscillation in the magnetosphere
or the standing shear quasi-Alfvén waves in the dipole approximation of the
geomagnetic field. In this case the plasma velocity has only an azimuthal component
and the “frozen in” magnetic field lines therefore vibrate within the resonance
shell. The toroidal (twisting) oscillations manifest themselves through the azimuthal
magnetic component and through the electric component orthogonal to the magnetic
shell. Such quasi-Alfvén modes are referred to as the class of the FLRs.
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6.1.3 Poloidal Mode

Now we consider another important mode of the magnetospheric oscillations, that
is, the poloidal (breathing) mode, which contains the set of field components ıBr ,
ıB� , Vr , V� , and E' . In contrast to the toroidal mode, which is mainly due to the
shear Alfvén waves the poloidal mode is caused by the compressional waves, which
propagate isotropically. To treat the basic properties of this mode we first take the
azimuthal component of Eq. (6.7)

� i�0�!E' D r�1B2
0 Œ@r .rıB�/ � @�ıBr � : (6.19)

As before all the functions are assumed to vary as exp .�i!t/.
Maxwell equation r � E D i!ıB in spherical coordinates now is reduced to

@�
�
sin �E'

� D i!ıBrr sin �; (6.20)

r�1@r
�
rE'

� D �i!ıB� : (6.21)

The set of Eqs. (6.19)–(6.21) can be solved for E' to yield the equation for poloidal
mode

!2r

V 2
A

E' C @2r
�
rE'

�C 1

r
@�

�
1

sin �
@�
�
sin �E'

�� D 0: (6.22)

Moreover the azimuthal plasma velocity V' D 0 while the components Vr and V�
can be expressed through E' as follows:

Vr D �B�
B2
0

E'; V� D Br

B2
0

E': (6.23)

It follows from Eq. (6.23) that the scalar product of the poloidal mode velocity
Vp D .Vr ; V� ; 0/ with B0 is equal to zero so that the plasma velocity Vp is
perpendicular to the magnetic shell in contrast to the quasi-Alfvén oscillations.
The poloidal mode is not guided by the field lines and can cover the whole
magnetosphere or the large part of that. These modes are referred to as the
class of cavity modes, which can propagate via FMS/compressional waves. In a
homogeneous plasma, the phase velocity of the compressional waves is independent
of the angle included between the plasma velocity vector and the geomagnetic field.
Not surprisingly, the cavity oscillations due to compressional waves can fill the
whole magnetosphere and the cavity mode spectrum is dependent on conditions
at the outer boundary of the magnetosphere, that is, at the magnetopause.

Notice that the FMS/poloidal mode results in considerable variations of the field-
aligned magnetic field, whereas the field-aligned electric current is small. On the
contrary, the field-aligned current of the toroidal quasi-Alfvén mode has a finite
value while the longitudinal magnetic field is small.
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6.1.4 Azimuthal Harmonics

From the above analysis it is clear that in the axisymmetric magnetosphere model
the basic equations can be split into two independent sets for the shear Alfvén and
compressional waves, which can propagate independently of each other. According
to the FLR theory, the magnitude of the standing shear Alfvén wave can reach
a peak value in the vicinity of resonance magnetic shells under certain resonant
conditions, whereas the standing compressional wave is associated with variations
of the magnetic field perpendicular to the magnetic shells (Radoski 1967a; Radoski
and Carovillano 1969; Southwood 1974; Chen and Hasegawa 1974; Krylov and
Fedorov 1976; Krylov and Lifshitz 1984). In a general way, that is, in an arbitrary
ambient magnetic field, the MHD-wave equations for these modes can be coupled.
For example, if ' dependence of the normal modes is taken into account, all
the functions should be expanded in a series of azimuthal harmonics exp .im'/,
where m D 0; 1; 2; : : : is azimuthal wave number. Ignoring the ' dependence, we
thereby have chosen m D 0 in the above equations. Furthermore, the shear and
compressional Alfvén waves in the magnetospheric plasma can be coupled through
the boundary conditions at the conducting E-layer of the ionosphere due to both the
tensor character of the ionospheric plasma conductivity and finite value of Hall and
Pedersen conductivities.

Ifm ¤ 0 andm ¤ 1, the set of MHD equations for magnetospheric oscillations
does not reduce to independent equations for the toroidal and poloidal modes.
Nevertheless, away from the resonance magnetic shells the coupling between these
modes is weak under the requirement that m � 1, and in the first approximation
they can be considered as independent modes. The interactions between the toroidal
and poloidal modes become significant only in a narrow region in the vicinity of the
resonance shell (Leonovich and Mazur 1993; Leonovich 2000).

In the case of m � 1 the coupling between the shear Alfvén and compressional
modes is so strong that they cannot be divided into two individual modes. Both
of these modes manifest themselves as a single MHD mode, which is more likely
to be similar to the Alfvén wave rather than to compressional one (Leonovich and
Mazur 1993; Leonovich 2000). Nevertheless, such a quasi-Alfvén wave combines
the properties of both modes, i.e., strong localization across the magnetic shell, that
is typical for the shear Alfvén wave, and the presence of a considerable constituent
of the field-aligned magnetic field variations, that is typical for the compressional
wave.

Ifm ! 1, the azimuthal scale across the main magnetic field tends to zero. This
implies that the derivatives over ' in the MHD equations become much greater than
those with respect to other variables. For this special case the MHD-wave equations
can be split into two independent groups in analogy to the case ofm D 0. As would
be expected, considering the small value of the transverse scale, the plasma velocity
V' is small and the plasma movement is mainly concentrated within the meridional
plane (Dungey 1954, 1963).
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6.2 Field-Line Resonance (FLR)

6.2.1 MHD Box Model

We now take up one more viewpoint on the magnetospheric resonances. To study
the MHD-waves coupling in a little more detail, however, we need to consider
a simple approximate model of the magnetosphere sketched in Fig. 6.1. In the
model the dipole geomagnetic field lines are replaced by straightened field lines
in such a way that the area marked in Fig. 6.1 with M is transformed into the
parallelepiped/box magnetosphere shown in the bottom of Fig. 6.1. The y axis
which was originally in the west–east direction is now transformed into a straight
line that is infinite in length. In this picture the y-coordinate in the box model
corresponds to the azimuthal direction/coordinate ' in the reference frame fixed
to the Earth spin axis.

The box contains a cold magnetized plasma immersed in a straight magnetic
field, B0 D B0 .x/ Oz, which is a function of x. Both the plasma mass density, �,
and the Alfvén velocity, VA, also depend on only x, which plays a role of radial
coordinate in the equatorial plane. The magnetic field lines are finite in length in the
z direction and there are boundary conditions at the ends of lines. The box surfaces
z D 0 and z D l1 correspond to the southern and northern ionospheres. The box
surface x D 0 represents the equatorial region of the ionosphere while the plane
x D l2 corresponds to the outer boundary of the magnetosphere. This model was
originally suggested by Radoski (1966, 1967a,b) and has been termed the MHD box.

Magnetopause

Ionosphere

Ionosphere

Ionosphere

Plasmapause

B0

z 

x

y 

B0

M
N

S

l1

l20 

Fig. 6.1 Sketch of MHD-box model of the magnetosphere. The figure is partly adapted from
Southwood and Kivelson (1982)
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Plasma oscillations can be excited by sources situated both inside and outside
the box. In order to take into account the internal source of excitation of the normal
modes we now add the driven current, Jd , to the conduction current on the right-
hand side of Maxwell equation (1.5). The driven current is assumed to be a given
function. Hence, Eq. (6.5) for the plasma motion is reduced to

�0�@tV D .r � ıB/ � B0 � �0 .Jd � B0/: (6.24)

As is seen from Eqs. (6.3) and (6.24) the electric field E and the plasma
acceleration @tV are perpendicular to the unperturbed magnetic field B0. So we seek
for the solution of the problem in the form E D �

Ex;Ey; 0
�

and V D �
Vx; Vy; 0

�
.

All perturbed quantities are considered to vary as exp
�
ikyy

�
, where ky is the

perpendicular wave number. Thus Eq. (6.24) is reduced to

�0�@tVx D �
@zıBx � @xıBz � �0Jy

�
B0; (6.25)

�0�@tVy D �
@zıBy � ikyıBz C �0Jx

�
B0; (6.26)

where Jx and Jy are the projections of the driven current Jd .
In this approach the Faraday’s law (1.2) reads

@zEy D @t ıBx; (6.27)

@zEx D �@t ıBy; (6.28)

ikyEx � @xEy D @t ıBz: (6.29)

The plasma velocity is related to the electric field through Eq. (6.3), that is

Vy D �Ex=B0; Vx D Ey=B0: (6.30)

Substituting Vx and Vy into Eqs. (6.25) and (6.26) we come to the set of equations
for the electromagnetic fields. If ky D 0, this set is split into two uncoupled
sets of equation describing the shear Alfvén

�
Ex; ıBy; Vy

�
and FMS waves�

Ey; ıBx; ıBz; Vx
�
. A close analogy exists with axisymmetric magnetic field, in

which, as we have noted, both the modes are uncoupled in an extreme case of
azimuthal harmonics with m D 0. It should be noted that the first mode .Ex/
corresponds to the toroidal field in the axisymmetric magnetosphere, whereas the
second mode

�
Ey
�

corresponds to the poloidal field.
Assuming that all the perturbed quantities vary in time as exp .�i!t/ and solving

this set of equations for Ex and Ey we come to the following wave equations:

�
@2z C !2=V 2

A

�
Ex D �i�0!Jx; (6.31)

�
@2x C @2z C !2=V 2

A

�
Ey D �i�0!Jy; (6.32)
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where

VA .x/ D B0 .x/

Œ�0� .x/�
1=2
; (6.33)

is the Alfvén velocity. Despite the fact that the wave equations (6.31) and (6.32) are
independent, both the MHD modes can be coupled through the boundary conditions
at the E region of the ionosphere. So we need to consider the effect of the boundary
conditions on the spectrum of normal oscillations.

6.2.2 FLR Eigenfrequencies

For all frequencies of interest here theE region of the ionosphere can be considered
as a thin conductive layer with integral Pedersen and Hall conductivities. The
boundary condition (5.26) at the E layer relates the jump of horizontal magnetic
field across this layer to the horizontal electric field. We recall that the interaction
between the magnetospheric MHD waves and the ionosphere depends on value of
the dimensionless parameters ˛P and ˛H , which are equal to the ratio of height-
integrated Pedersen †P and Hall †H conductivities to the Alfvén wave parallel
conductance of the magnetosphere †w D .�0VA/

�1. As would be expected,
considering the FLRs due to the shear Alfvén waves propagation, the ionospheric
Pedersen conductivity plays an important role in closing of the field-aligned Alfvén
currents in the ionosphere, that is in the closing of the field lines perpendicular
to B. In this picture the Hall conductivity in the ionosphere is of minor importance
and in the first approximation it can be ignored (e.g., Krylov and Fedorov 1976;
Krylov and Lifshitz 1984). In this approach the wave perturbations coming from the
magnetosphere cannot penetrate through the conducting ionosphere so that we can
neglect the variations of the magnetic field below the ionosphere. In this way the
boundary condition (5.26) at the ionosphere reduces to

ıBy D ˙�0†Ṗ Ex; and � ıBx D ˙�0†Ṗ Ey; (6.34)

where the sign plus on the right-hand side of Eq. (6.34) corresponds to the northern
ionosphere .z D l1/ and the sign minus corresponds to the southern ionosphere
.z D 0/. Furthermore, †C

P stands for the height-integrated Pedersen conductivity
of the northern ionosphere while †�

P denotes the same value for the southern
ionosphere. Combining Eqs. (6.27), (6.28), and (6.34) we finally obtain

@zE? D ˙i!�0†Ṗ E?; (6.35)

where E? D �
Ex;Ey

�
and z D 0 or l1.

We choose first to study the free Alfvén oscillations at Jx D 0. In such a case
the solution of Eq. (6.31) can be written

Ex D C1 exp .i!z=VA/C C2 exp .�i!z=VA/; (6.36)
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where C1 and C2 are undetermined constants. Substituting Eq. (6.36) for Ex into
boundary conditions (6.35) we come to an algebraic set of equations for constants
C1 and C2. This set of equations has a nontrivial solution under the requirement that
the system determinant equals to zero, whence it follows

exp

�
�2i!l1

VA

�
D RCR�; (6.37)

where

RC D 1 � ˛C
P

1C ˛C
P

and R� D 1 � ˛�
P

1C ˛�
P

(6.38)

denote the reflection coefficients for the northern and southern ionospheres, respec-
tively. These coefficients vary from 1 to �1 with changing ˛Ṗ from zero to infinity.

Decomposing the frequency in Eq. (6.37) into its real and imaginary parts, ! D
!0 C i!00, one finds the solution of Eq. (6.37) in the form

!0
n .x/ D �nVA .x/ =l1; (6.39)

when RCR� > 0 and

!0
n .x/ D f�VA .x/ =l1g .n � 1=2/; (6.40)

when the inverse inequality, RCR� < 0, is valid. Here n is integer, n D 1; 2; : : : In
both of these cases the imaginary part of the frequency is given by

!00 .x/ D VA .x/

2l1
ln jRCR�j : (6.41)

If ky ¤ 0, the general solution and eigenfunctions of the problem are found
in Appendix F. In this case the normal modes are coupled through the boundary
conditions at the conjugate ionospheres. The sole exception corresponds to two
opposite extreme cases of zeroth and infinite Pedersen conductivities when the
shear Alfvén and FMS modes become independent. In these extreme cases the wave
vector kn D !0

n=VA in Eq. (6.39) coincides with that given by Eq. (6.125).
The general solution of the problem can be expanded in a series of the

orthonormal eigenfunctions, qn .z/, given by Eq. (6.126). Arbitrary perturbations of
Ex and ıBy appear as a sum of modes, each of which changes harmonically in time.
Considering the amplitudes Exn and ıByn of the normal oscillation with frequency
! D !n .x/ and rearranging Eq. (6.126) we get

Exn / qn D sin knz

kn
C i cos knz

kn˛
�
P

; ıByn / dqn

d z
; (6.42)
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where kn D !n=VA D �
!0
n C i!00� =VA is not a function of x and the real and

imaginary parts of ! are given by Eqs. (6.39)–(6.41).
As long as x is fixed, Eqs. (6.39)–(6.41) describe the spectrum of normal Alfvén

oscillations. It should be emphasized that this spectrum depends on x and thus is
continuous. The real part of the frequency !0

n .x/ represent the eigenfrequency of
the n-th harmonic. Notice that all the eigenfrequencies are equidistant, whereas the
damping factor !00 .x/ is independent of n: From these equations it is clear that
the magnetic shell which has a constant value of x will vibrate as a whole. In this
picture all the segments of the field lines at constant x will covibrate so that it is
sufficient to study the normal oscillations of one of these field lines. The net Alfvén
perturbations can be thus considered as a superposition of the independent normal
oscillations of the field lines/magnetic shells.

It is clear that Eq. (6.39) describes the frequencies of the half-wave mode in such
a way that an integer number of half-waves lies on the field line while Eq. (6.40)
corresponds to the quarter-wave mode. In this case the field line length equals to
1=4, 3=4, 5=4 : : : of the wavelength.

This kind of field line oscillations has a close analogy with normal oscillations of
a taut elastic string. The sense of the magnetic force is similar to that of elastic forces
due to tension in a stretched string since the restoring force in Alfvén oscillations
arises due to tension in the magnetic field line. In addition, the shear Alfvén waves
play a role of the transverse elastic waves propagating along the string.

In the framework of the “MHD-box” model, we note that the energy loss is
mostly due to the Joule dissipation at the ends of field lines, that is in the ionosphere.
The interpretation we make is that the Joule dissipation results from the Pedersen
conductivity, which is subject to diurnal variations. It is usually the case that at the
nighttime ionosphere†P is much smaller than†w so that the parameter ˛P is small.
On the contrary, at the dayside ionosphere the plasma conductivity is so high that
˛P is greater than unity.

Consider first the extreme case of a small Pedersen conductivity in the conjugate
ionospheres when ˛P tends to zero at both ends of the field line, that means that
RCR� > 0. From here it follows that the set of eigenfrequencies, !0

n .x/, is
described by Eq. (6.39), while the damping factor, !00 .x/, in Eq. (6.41) tends to
zero. As it is seen from Eq. (6.42), in this case @zEx D 0 at the ends of field line.
This means that the transverse electric field Ex has a node in the equatorial plane
and it has the antinodes at the ends of the field line. The same is true for the plasma
velocity Vy , which is related to Ex through Eq. (6.30). On the contrary, it follows
from Eq. (6.42) that the transverse magnetic field ıBy has the nodes at the ends
of the field line. To illustrate this, the symmetrical profiles of the first and second
harmonics of ıBy are shown in Fig. 6.2 with solid .n D 1/ and dotted .n D 2/ lines.

Before leaving this case it is useful to return to the analogy between the field
lines and elastic strings. Considering the taut elastic string dead at its two ends and
replacing VA by the velocity of the elastic wave, we note that Eq. (6.39) can describe
the eigenfrequencies of the elastic string with the length l1.



222 6 Magnetospheric MHD Resonances and ULF Pulsations

δ 
B

y 
/δ

 B
m
ax

z/ l1

0.5 1
−1

−0.5

0

0.5

1

1

2

Fig. 6.2 Profiles of the standing Alfvén waves at the magnetospheric shell in the extreme cases
˛˙
P ! 0. The first and second harmonics of the transverse magnetic field ıBy are shown with

solid .n D 1/ and dotted .n D 2/ lines

In the inverse case of ˛Ṗ ! 1, the set of eigenfrequencies is defined by
Eq. (6.39) as before. Moreover, the damping factor in Eq. (6.41) is equal to zero
as well. In this case Ex D 0 at the ends of field line. The interpretation we
make is that the Joule dissipation of energy in the ionosphere can be neglected
since the electromagnetic field cannot penetrate into the ionosphere due to its
infinite conductivity. The components Ex and Vy have an antinode in the equatorial
plane and the nodes at the ends of the field line, whereas ıBy has the antinodes at
the ends of the field line. Notice that the analogous eigenfrequencies have the elastic
string dead in its middle.

If ˛Ṗ is finite and nonzero, Eqs. (6.39)–(6.41) generally describe the spectrum of
damped Alfvén oscillations, which are similar to oscillations of the stretched elastic
string with energy losses at the claimed end points.

If a homogeneous confined space is studied, it is usually the case that the
spectrum of normal field oscillations is discrete. On the basis of the “MHD-box”
model, we have found, however, that the spectrum of the Alfvén oscillations is
continuous. It is not surprising that there is one-dimensional (1D) inhomogeneity
across straight field lines. In some sense, the actual Earth magnetic field is
inhomogeneous across the magnetic shells. This implies that the spectrum of the
FLR of the Earth magnetic field depends on the magnetic shell, which is a function
of the McIllwain parameter L. Under nominal magnetospheric conditions one may
expect an increase of the oscillation period with L or with radial distance, at
least at auroral latitude. Below we show that this conclusion is consistent with the
observations. It can be shown that in a curvilinear magnetic field the major features
of the FLR are the same except for the effect of polarization splitting of the FLR-
spectrum. This effect is due to the difference of the convergency/divergency rate of
the magnetic field lines within the meridional and equatorial plains. The interested
reader is referred to the text by Leonovich and Mazur (1993) and Leonovich (2000)
for details about the dependence of the FLR-resonance frequencies on polarization.
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6.2.3 Cavity Mode

In this section we consider as before ky D 0 in order to treat each wave mode sepa-
rately. In a cold homogeneous plasma the phase velocity of the compressional/FMS
wave is independent of the angle between the wave vector k and the external
magnetic field B0. In the MHD box model the properties of this mode are defined
by Eq. (6.32), which is an ordinary 2D (two dimensional) wave equation for an
inhomogeneous plasma. This means that in contrast to the Alfvén waves which are
guided by the field lines, the compressional waves can propagate in all directions
and fill the whole resonance cavity. In the magnetosphere these waves are therefore
referred to as the class of cavity modes.

We will seek for the solution of Eq. (6.32) in terms of the series

Ey D
X

n

An .x/ qn .z/; (6.43)

where the orthonormal eigenfunctions qn .z/ of the problem are given by
Eq. (6.126). These eigenfunctions satisfy the boundary conditions (6.34) at the
southern .z D 0/ and at the northern ionospheres .z D l1/. Substituting Eq. (6.43)
for Ey and Eq. (6.126) for qn into Eq. (6.32) yields

1X

mD1

˚
A00
m C �

k2A � k2m
�
Am
�
qm D �i�0!Jy; (6.44)

where kA .x/ D !=VA .x/, and the prime denotes derivative with respect to x.
The eigenvalues kn .!/ are the roots of Eq. (6.123). In two extreme cases of the
non-conducting ionosphere

�
†Ṗ D 0

�
and of the perfect conducting ionosphere�

†Ṗ ! 1�
there are only real roots

kn D �n=l1; where n D 1; 2; 3 : : : ; (6.45)

which are independent of the frequency !. Overall, if the Pedersen conductivities
†Ṗ are finite and nonzero values, the eigenvalues are complex.

Consider first the problem of free oscillations assuming for the moment that
Jy D 0. Multiplying both sides of Eq. (6.44) by qn .z/, integrating these equations
over z from 0 to l1 and using the condition (6.127) of orthogonality of the
eigenfunctions qn .z/, we come to

A00
n C 
2An D 0; (6.46)

where


2 .x/ D k2A .x/ � k2n .!/: (6.47)
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The plasma velocity normal to the boundaries of equatorial ionosphere and
magnetopause is assumed to be equal to zero, that is Vx D 0 at x D 0 and
x D l2. From Eq. (6.30) it follows that Ey and An are both zero at x D 0

and x D l2. Equation (6.46) under this homogeneous boundary condition is a
special case of the so-called Sturm–Liouville problem for determination of the
resonance frequencies of the cavity mode. To estimate the fundamental frequency
of the normal oscillations, consider the case of constant Alfvén speed when the
parameter 
 in Eq. (6.47) is independent of x. The solution of Eq. (6.46) can be
thus written as An D Cn sin 
x, where Cn is the undetermined constant. Under
boundary conditions alluded to above the parameter 
 is given by an equation similar
to Eq. (6.45), that is


m D �m=l2; (6.48)

where m is integer. For simplicity, the eigenvalues kn .!/ is assumed to be given by
Eq. (6.45). Combining this equation with Eqs. (6.47) and (6.48) we obtain the set of
resonance frequencies

!n;m D VA

�
n2

l21
C m2

l22

�1=2
: (6.49)

In the framework of the MHD box model the curvature of Earth magnetic
field is ignored. To give a numerical estimate of the fundamental eigenfrequency
.n D m D 1/, it is necessary at this point to find a suitable estimate of the
parameters appearing in Eq. (6.49). We recall that the x axis approximates the
radial direction. If the outer boundary of the magnetosphere l2 D LRe corresponds
to the McIllwain parameter L � 5, the corresponding length of the field line
l1 � 7:7Re . Substituting the Earth radius Re D 6:4 � 103 km and the Alfvén
speed VA D 103 km/s into Eq. (6.49), we get f11 D !11= .2�/ � 0:02Hz. The
cavity resonance period of the fundamental harmonic is about T11 D f �1

11 � 50 s.
It should be noted that we have obtained only the rough estimate of the period and
frequency of the fundamental harmonic.

As would be expected, an FMS-wave in the magnetosphere may increase in
amplitude as the wave frequency is close to the frequencies of the global resonances.
This kind of oscillations can cover a significant part of the magnetosphere. In the
framework of the MHD box model the properties of the cavity mode are similar to
that of the TE mode excited in the inhomogeneous resonator. Since the y direction
corresponds to the azimuthal coordinate of the magnetosphere, the transverse
electric field Ey corresponds to the azimuthal component E� . In some sense, the
cavity mode is identical in its properties to the poloidal mode in the curved magnetic
field. Some concerns about the mode coupling and the energy dissipation are found
in the next sections.
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6.2.4 The Mode Coupling

In this section we consider the field variations excited by the plasma perturbations
coming from the outer space into the magnetosphere. Such perturbations can be
resulted from the interaction between the solar wind and the Earth’s magnetic field
at the magnetopause. The curvature of the magnetospheric boundary is ignored
since the perturbations wavelength is assumed to be much smaller than the size
of the magnetospheric cavity. The MHD box model of the medium is a reasonable
approximation at this point to proceed analytically and to treat the FLR structure.

The inner region of the magnetosphere is assumed to be free of the driv-
ing/external current so that Jy D 0. To specify the problem, we assume that Ey
is a given function at the magnetospheric boundary x D l2. As one example, let
Ey D E0 .z/ exp

��i!t C ikyy
�

at the box surface x D l2 while Ey D 0 at
x D 0. This function can describe the perturbation coming from outer space into
the magnetosphere or the surface wave generated at the magnetopause. Here ! is
the frequency of this wave. (In general ! is a complex value.) The inhomogeneous
boundary conditions at x D l2 are important in the sense that they play a role of
source of field variations in the magnetosphere.

If ky D 0, then the shear Alfvén and compressional waves are described by
independent Eqs. (6.31)–(6.32). As before we seek for the solution for Ey in terms
of the series (6.43) in eigenfunctions qn .z/ where the expansion coefficients An .x/
satisfy the differential equation (6.46). If the boundary function E0 .z/ can be
expressed as a series of eigenfunctions qn .z/, that is

E0 .z/ D
X

n

dnqn .z/; (6.50)

then the expansion coefficients are given by

dn D
l1Z

0

E0 .z/ qn .z/ d z: (6.51)

Whence it follows that the boundary conditions reduce to An .0/ D 0 and
An .l1/ D dn.

We will study Eq. (6.46) by using a qualitative method since the explicit form
of the function VA .x/ is unknown. As is seen from Eq. (6.33), the Alfvén speed
depends on both the Earth magnetic field B0 and the plasma density. The plasma
density falls off more rapidly with distance x than B0 does, and hence the Alfvén
speed generally increases with distance. At the outer boundary of the magnetosphere
.x D l1/ the Alfvén speed is on one or two order of magnitude greater than that at
the conducting layer of the ionosphere .x D 0/. Furthermore, if near the boundary
x D l1 the wave frequency is so small that the inequality !=VA .x/ � jkn .!/j
takes place, then the parameter 
 in Eq. (6.46) is approximately constant. This means
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that the exponential functions can fit the approximate solutions of Eq. (6.46) in this
region. For example, considering for the moment that VA is a constant, we get

An D dn
sinh	nx

sinh	nl1
; where 	n D �

k2n � k2A
�1=2

: (6.52)

It follows from this equation that the boundary perturbations Ey decay in amplitude
with decreasing the distance x due to the exponential fall off of all the coeffi-
cients An. The interpretation we make is that the FMS waves must attenuate when
propagating from the outer boundary to the inner region of the magnetosphere. This
tendency is valid for the case of space-varying Alfvén speed except for the region
where the FLR occurs.

In the resonance region the coupling of the shear Alfvén and the FMS waves
cannot be ignored. The mode coupling is studied in more detail in Appendix F.
As we have noted above, if ky ¤ 0, then Eqs. (6.25)–(6.29) cannot be split into
two independent sets of equations. In this case the FMS wave can excite the shear
Alfvén wave and vice versa. The interaction between these two modes may greatly
affect the field amplitude as the resonance condition

k2A .x/ D k2n (6.53)

holds true. If x D � is a root of Eq. (6.53), then at this point the wave frequency
! equals to one of the Alfvén resonance frequencies !n .x/ that are given by
Eqs. (6.39)–(6.41).

As has already been stated in Appendix F, the amplitude the Alfvén mode which
includes the components ıBy , Ex , and Vy , has a peak of Lorentz form near the
FLR position x D � . The schematic representation of the amplitude of ıBy as a
function of x=� is displayed in Fig. 6.3 with solid line 1. According to Eqs. (6.139)
and (6.141), the amplitude of the components ıBx , Ey , and Vx has a maximum at
the same resonance point but this maximum is not so distinct as is shown in Fig. 6.3
with dashed line 2. It is worth mentioning that, as shown in Appendix F, the phase of
the resonance components Ex and ıBy , changes by � when crossing the maximum.

The next singular point x D 
, can be found from the following equation

k2A .x/ D k2n C k2y: (6.54)

The implication here is that the roots of this equation correspond to turning points
x D 
 where solutions change from being oscillatory in nature to characteristically
growing or decaying with coordinate x. At the turning point the wave reflection
occurs. It should be noted that if VA .x/ is not a monotonic function there may be
more turning and resonance points.

The MHD box model is based on an idealized field geometry that ignores
the magnetic field line curvature and dip angle but includes the field variations
with radial distance and boundary conditions at the ionosphere and magnetopause.
The MHD box model provides us with a qualitative theory of the FLR in the



6.2 Field-Line Resonance (FLR) 227

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|B
x|

2 ,
 |B

y|
2

x

1

2

Fig. 6.3 The perpendicular magnetic field components in the vicinity of field line resonance

position versus normalized variable x=�n. The components
ˇ
ˇıBy

ˇ
ˇ2 and jıBx j2 are shown with solid

line 1 and dashed line 2, respectively

magnetosphere. We recall that in the model the coordinate x plays a role of the radial
distance in the actual magnetosphere. In this picture the resonance components,
ıBy and Ex , are analog of the azimuthal magnetic field variations and the radial
electric field variations, respectively. A schematic plot of the amplitude variations
as a function of L-shell is shown Fig. 6.4.

As one example, consider the MHD wave excited due to, say, plasma instabilities
at the magnetopause. A scheme of penetration of MHD wave from the magneto-
spheric boundary into its inner region can be summarized as follows. At first the
initial perturbations propagate as an FMS-wave from the magnetospheric boundary
to the turning point where wave reflection occurs. The electromagnetic field in this
region may be oscillatory in character. Once the turning point has been passed, the
amplitude of the FMS-wave falls off exponentially with distance up to the region
where the FLR conditions will occur. This implies that in this region the wave
frequency becomes close to the Alfvén resonance frequency of the magnetic shell.
In the vicinity of the resonance shell the energy of the FMS-wave is transferred in
part into the energy of the Alfvén oscillations by virtue of the mode coupling to
the shear Alfvén and FMS modes. The shear Alfvén wave can get trapped in this
region thereby exciting the FLR. At the resonance point a phase shift of � between
the toroidal field components (ıBy and Ex in the box model) on both sides of the
resonance is apparent. Some complication arises in this scenario as there are several
turning points or resonance shells.
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Fig. 6.4 A schematic plot of amplitude variations of FMS wave excited at the magnetopause
and sense of the wave polarization as a function of L-shell in the magnetosphere. 1—solar wind,
2—magnetopause, 3—boundary surface wave caused by Kelvin–Helmholz instability, 4—plot of
wave amplitude, 5—resonance field line

Attenuation of the resonance oscillation is basically due to the Joule dissipation
caused by the Pedersen conductivity in the ionosphere. In addition, azimuthal
propagation of the waves leads to the energy losses in the magnetotail.

The Hall conductivity scarcely affects the FLR but it may play a crucial role
in occurrence of the magnetic perturbations under the ionosphere, that is in the
atmosphere and on the ground surface. As the Hall conductivity is ignored, the
incident shear Alfvén wave cannot excite the field perturbation in the atmosphere.
If only the Hall conductivity is finite, the shear Alfvén wave can be transformed
in the ionosphere into both the reflected and transmitted field of the FMS wave.
In other words, the FLR-related field observed on the ground builds up as a result
of the mode coupling in the ionosphere via the Hall conductivity followed by the
penetration of the FMS mode through the atmosphere towards the ground.

A variety of mechanisms of coupling between the shear Alfvén and FMS waves
in a realistic magnetospheric environment have been studied in numerous papers.
With some care the terms “shear Alfvén wave” and “FMS” are applicable to the
actual MHD waves propagating in the magnetosphere since in most cases these
pure eigenmodes do not exist. However these two terms are extremely important
for understanding of wave processes in the planetary magnetosphere. The interested
reader is referred to the text by Glassmeier (1995) for a more complete review on
mode coupling in actual magnetosphere.
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6.2.5 Wave Polarization

As we have noted above, near the resonance the phase of the resonance components
changes by � abruptly, so one may expect a corresponding change in the wave
polarization in the vicinity of the resonance point. From Eq. (6.131) it follows that
the amplitudes of Ex and Ey are related through

Ex

Ey
� iky	

k2A � k2n � k2y


dEy

dx

1

Ey
: (6.55)

In the region x < 
 the sense of polarization depends on only the signs of ky and
dEy=dx. In other words, the sense of polarization is a function of the direction of
propagation in y, and it depends on whether the amplitude increases or decreases
with the radial distance (Southwood 1974).

In the vicinity of the resonance point x D � Eq. (6.55) is reduced to

Ex

Ey
� � i

ky

dEy

dx

1

Ey
: (6.56)

This implies that the sense of polarization switches on each side of a maximum and
or minimum in amplitude. For example, consider an eastward propagating MHD
wave, which corresponds to ky > 0. In the region where dEy=dx < 0 the wave is
the clockwise-polarized and vice versa. We recall that the y axis corresponds to the
west–east direction, while x axis is in radial direction. In this picture the expected
polarization and the wave amplitude as a function of L for magnetic equator plane
is schematically shown at the upper panel of Fig. 6.4. For the resonance shell
the polarization tends to be linear. In the case of a westward propagating wave�
ky < 0

�
the sense of polarization is reversed. Looking down on the Earth from

above in the northern hemisphere, this wave would have clockwise polarization
south of the resonant site � and anticlockwise polarization north of the resonance.
These properties of the polarization would thus be expected to be valid on the ground
despite the influence of the conducting E layer of the ionosphere.

On the basis of data recorded at a chain of stations at geomagnetic latitudes
between 59ıN and 77ıN within 2ı of longitude 302ıE Samson et al. (1971) have
studied the diurnal and latitude variations of the amplitude and polarization of
the long-period pulsation. Their basic results for fixed frequency of 5mHz are
schematically shown in Fig. 6.5. The pulsation amplitude reaches a peak value at
the line which belongs to auroral zone. Across this line the rotation sense of the
horizontal polarization changes from counterclockwise to clockwise or vice versa at
midday.

It is generally believed that the ULF pulsations in the frequency range
10�2–10�3 Hz originate from the interaction between the solar wind and planetary
magnetosphere. In this picture an FMS wave propagating in the magnetosphere
can build up as a result of Kelvin–Helmholtz instability at the magnetopause.
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Fig. 6.5 A schematic plot of the diurnal and latitudinal variations of the amplitude and sense of
rotation of the horizontal component for 5mHz pulsations as observed by Samson et al. (1971).
The amplitude of the pulsations reaches a peak value at auroral zone, with latitude changing in
local time as shown with line of maximal intensity. The horizontal polarization switches sense
across this line. Taken from Glassmeier (1995)

When propagating from the magnetopause into the magnetosphere the FMS wave
decays in amplitude until the resonance point will occur, as shown in Fig. 6.4. The
switch in polarization at this point is consistent with waves propagating eastwards�
ky < 0

�
in the afternoon and westwards

�
ky > 0

�
in the morning. On account of

the fact that the radial derivative of the azimuthal electric component (dEy=dx
in the MHD-box model) changes sign across the resonant point, a four-quadrant
pattern arises due to the FLR phenomenon much as observed by Samson et al.
(1971) (Fig. 6.5).

6.2.6 Effect of the Ionosphere on Ground-Based Observation

As has already been stated, the amplitude of the FMS-waves falls off exponentially
as they propagate towards the ionosphere and their amplitude becomes smaller than
that of Alfvén waves. This means that the polarization of the MHD waves incident
to the ionosphere can be considered to be basically corresponding to that of Alfvén
mode.

The ionospheric plasma may greatly affect the ground-based observation of the
ULF pulsations. The dominant effect is the attenuation of MHD waves and rotation
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Fig. 6.6 A schematic illustration of the electric current system and magnetic perturbations resulted
from Alfvén wave interaction with the ionosphere

of polarization mainly due to the conducting E layer of the ionosphere. The high
frequency range of the signal spectrum undergoes strong attenuation since the skin
length of the conducting ionosphere is inversely proportional to the square root of
frequency. In other words, the ionosphere acts as a spatial low-pass filter for the
signals observed on the ground.

To illustrate the rotation of polarization, we will consider the effect of an
incident Alfvén wave on the high-latitude ionosphere. To make our consideration as
transparent as possible, the Earth magnetic field is assumed to be homogenous and
positively parallel to vertical z axis. A plane harmonic Alfvén wave propagates
along the magnetic field perpendicular to the ionosphere that are in the plane x; y.
All perturbed values are assumed to vary as exp .iky � i!t/. In the magnetosphere
the Alfvén wave carries transverse polarization of electromagnetic perturbations
and field-aligned current, jk, as schematically shown in Fig. 6.6. The conducting
E layer of the ionosphere shorts out the field-aligned current thereby exciting the
sheet current system. As the magnetic ıB and the electric E perturbations in the
magnetosphere are directed along the x and y axes, respectively, the Pedersen
current jP D �PE in the E layer of the ionosphere is parallel to y axis while
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the Hall current jH D �H .Oz � E/ is parallel to x axis. The Pedersen and the Hall
conductivities of the E layer are assumed to be constant.

Thus the field-aligned currents of the incident and reflected Alfvén waves and the
ionospheric sheet system of currents, shown in Fig. 6.6, can be split into poloidal
and toroidal current systems. The first one includes the field-aligned currents and
the ionospheric Pedersen currents. In such a case the magnetic perturbation, ıBp ,
are concentrated inside the poloidal current system so that the magnetic effect is
undetectable below the ionosphere. In general, formal proof of this assertion can
be found in McHenry and Clauer (1987). The toroidal system builds up as a result
of the Hall currents flowing in the E layer of the ionosphere. In our model these
currents are closed in the infinity .x ! ˙1/. The magnetic field of the toroidal
currents, ıBt , is perpendicular to ıBp . This means that the magnetic perturbations
in the atmosphere are perpendicular to the magnetospheric field of the Alfvén wave.
The ionosphere therefore changes the wave polarization by 90ı. In our model
we have ignored the field line curvature and the inhomogeneous distribution of
the Pedersen and Hall conductivities in the ionosphere. Actually the ionosphere
produces a rotation of the polarization plane in the angle range from 0ı to 90ı.
The detailed calculations of this problem are found in numerous papers (e.g., see
review by Glassmeier 1995 for details). Notice that the latitude variations of the
ULF pulsation period, as observed in space and on the ground, are in favor of
the ionospheric rotation effect. In particular the latitude dependence of the Alfvén
resonance oscillations in space is detected in azimuthal component (D component),
whereas the ground-based observation exhibits the same dependence in meridional
field (H component) that is consistent with the rotation of components by the
angle 90ı.

6.3 Sources of ULF Pulsations

6.3.1 Observations of ULF Pulsations

Observations and study of ULF MHD waves is certainly necessary as they transmit
energy, momentum, and most importantly they provide us with information about
magnetospheric dynamics. A variety of these waves occurring in the magnetosphere
and ionosphere result in the generation of ULF geomagnetic pulsations that
have been identified in both ground-based and satellite observations. Periods and
frequencies of the ULF pulsation vary from 0:2 to 600 s, and from several milliHertz
to several Hertz, respectively. Below is the frequency range of magnetic storms. The
amplitudes of the ULF pulsation typically change from 0:1 to 50 nT.

In standard geophysical practice the ULF pulsations are classified according to
their period. They can be also divided into two classes depending on whether the
pulsation accompany substorms or not (e.g., see Jacobs 1970; Nishida 1978). The
latter class includes the regular quasiharmonic oscillations, which are termed Pc
oscillations (Pulsations continuous). This class of the ULF pulsations can be in turn
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Fig. 6.7 A Pc5 pulsation event recorded at the ground-based observatory of the Scandinavian
Magnetometer Array in the Finmark (shown with MAT) and in the magnetosphere by the geosta-
tionary satellite GEOS 2 (shown with GEOS). The H and D components of the magnetic variations
have been recorded at the ground-based station while the components of electric variations,Er and
E� , were measured on board the satellite. Units of the magnetic and electric variations are nT and
0:1mV/m, respectively. Taken from Glassmeier (1995)

split into five spectral subclasses Pc1 (period 0.2–5 s), Pc2 (5–10 s), Pc3 (10–45 s),
Pc4 (45–150 s), and Pc5 (150–600 s). The period of the Pc oscillations are controlled
by both the parameters of interplanetary space and the resonance properties of the
Earth magnetosphere. The class of irregular pulsations, which have been termed
Pi pulsations (Pulsations irregular), consists of two subclasses Pi1 (1–40 s) and Pi2
(40–150 s). These pulsations are a signature of onset of magnetospheric substorms
which build up as a result of the plasma and solar energy penetration into the
magnetosphere from the interplanetary space during magnetic storms and active
processes on the Sun. Certainly, this classification is fairly relative. There are
complicated and unusual pulsations, in which the regular and irregular oscillations
are mixed.

The typical amplitude of Pc5 pulsations, about 10–50 nT, is the largest among
the ULF pulsation. An example of Pc5 pulsations simultaneously observed at
the ground-based station and in the magnetosphere by the geostationary satellite
GEOS 2 is shown in Fig. 6.7 (Glassmeier 1995). This event is in favor of the
magnetospheric origin of the Pc5 pulsations. The Pc5 pulsations are latitude-
dependent and are frequently localized within narrow regions extended along
geomagnetic parallels. It is usually the case that the period of the Pc5 pulsation falls
off with decreasing latitude of the sighting point (Ohl 1962, 1963; Annexstad and
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Fig. 6.8 Large-scale ULF pulsations observed at the geomagnetic observatories Wingst (Wn),
Göttingen (Gt), and Fürstenfeldbruck (Fu). H and D components of the magnetic variations are
displayed in the upper and bottom panels, respectively. Taken from Voelker (1962), and Glassmeier
(1995)

Wilson 1968). This property keeps partly for the case of Pc4 pulsation. It should
be noted that at the latitudes below 50ı � 60ı these pulsations can be masked by
the global magnetic variations with time-independent period. The fundamental Pc5
pulsations occur primary in the sunlit hemisphere. This asymmetry probably arises
from magnetospheric structure asymmetries, which result from the existence of the
magnetotail and the plasmospheric convexity in the nightside magnetosphere.

The damped-type Pc3–Pc4 oscillations of global extension are illustrated in
Fig. 6.8 (Voelker 1962). These oscillations with latitude-dependent period have
been recorded at three ground-based stations located at Wingst (the northernmost
station), Göttingen, and Fürstenfeldbruck (the southernmost station). The increase
of the oscillation period with L is compatible with the above analysis. The typical
amplitude of the Pc4 pulsations varies within 5–20 nT while the Pc3 amplitude is
smaller than 10 nT.

Other kind of the damped-type oscillations is shown in Fig. 6.9 (Glassmeier
1995). The H-component of the geomagnetic variations caused by a magnetospheric
substorm is displayed at the upper panel. The sharp decrease of the magnetic field at
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Fig. 6.9 An example of magnetic field variations during an isolated magnetospheric substorm
(upper panel) and a Pi2 pulsation (bottom panel). The data displayed in the bottom panel are high
pass filtered time series of the upper record. Taken from Glassmeier (1995)

21:57 UT is an evident signature of the substorm onset. The data at the bottom panel
is high pass filtered to yield a magnetogram of the Pi2 pulsation with period about
150 s and amplitude about 10 nT. The trains of Pi2 pulsations are usually observed
at the nightside of the Earth. Their amplitude about 1–50nT tends to maximize in
the vicinity of aurora region at midnight.

The long-period pulsation trains, such as Pc3, Pc4, Pc5, and Pi2 pulsations, are
believed to be due to eigenoscillations of the Earth magnetosphere (Kato 1962;
Zibyn and Yu 1965). The Alfvén oscillations can explain the basic properties of
the Pc5 pulsations and, in some cases, the patterns of the Pc4 pulsations. The
observed dependence of pulsation period on the latitude is consistent with that
predicted by the FLR theory we have treated in the previous sections (Guglielmi
and Troitskaya 1973). Likewise, a number of pulsation events exhibit a rather
localized wavefield of extension 100–200 km in north–south direction and about
500–1;000 km in east–west direction (Glassmeier 1980). The additional argument
that is in favor of the resonance origin of the Pc4, Pc5 pulsations is that these
pulsations are well correlated at the magneto-conjugate points (Guglielmi and
Troitskaya 1973). Lanzerotti and Fukunishi (1974) have found that in the ground
magnetic observation the odd mode of the Alfvén oscillations is prevailed so that the
amplitude of the oscillation reaches a peak value at the equator. On the other hand
the amplitude of these pulsations grows with increase of the latitude (Ziesolleck
et al. 1993). This suggests that the source of the pulsations is at the periphery of
the magnetosphere. The fundamental mode of the FLR oscillations manifests itself
through Pc5 pulsations as observed on board the satellites OGO 5 and GEOS 2
(Singer and Kivelson 1979; Junginger et al. 1984). A signature of the fundamental
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mode together with higher harmonic of the same field-line shell has been detected
by Singer et al. (1979), Baumjohann and Glassmeier (1984) and Engebretson et al.
(1986).

A detailed review of observations of the ULF pulsation is outside the scope of
this section, and the interested reader is referred to the excellent tutorial review by
Glassmeier (1995) for detail about the horizontal polarization, wave propagation
across the ambient magnetic field and other properties of the ULF fields.

Only a few observations may have interpreted as global poloidal eigenoscillations
that may be associated with the cavity mode (Higbie et al. 1982; Kivelson et al.
1984). An observational hint toward the existence of cavity mode has been reported
by Crowley et al. (1987) on the basis of measurements of the ionospheric Pedersen
conductivity and damping rates of the ULF pulsations

The short-period pulsations such as Pi1, Pc1, Pc2 contain a wide variety of
shape compared to the long-period pulsations. To describe this diversity of the
short-period pulsations, we use the additional nomenclature including “pearl-type
micropulsations,” “interval of pulsations of diminishing periods” (IPDP), “hydro-
magnetic whistler,” “pulsation burst” (Guglielmi and Troitskaya 1973), “continuous
emissions”, and so on. A typical amplitude of the short-period pulsations is smaller
than 1 nT, and these pulsations cover the frequency range from 0:025 to 5Hz. It
is generally believed that the main excitation of the short-period pulsations is due
to kinetic plasma instabilities (Trakhtengerts and Rycroft 2008) resulted in the
generation of MHD and ion-cyclotron waves in the frequency range of Pi1, Pc1,
and Pc2.

6.3.2 Kelvin–Helmholtz Instability at the Magnetopause

The most prominent mechanism for Pc5 pulsations is thought to be the Kelvin–
Helmholtz instability at the Earth’s magnetopause (Dungey 1954). This effect is
believed to be due to surface waves propagating at the flanks of the magnetopause.
The surface wave may be in turn excited due to the interaction between the solar
wind and the planetary magnetic field as illustrated in Fig. 6.4 (Atkinson and
Watanabe 1966; Kivelson and Southwood 1985). This kind of instability may arise
in a fluid flow at the boundary between two regions which are separated by a
tangential discontinuity of the fluid velocity. This means that the fluid flow velocities
are both parallel to the boundary and have a jump across the boundary whereas
the fluid pressure is kept continuous. Consider a small random variation of the
equilibrium position of the boundary. This variation, shown in Fig. 6.10 with a bulge
of the boundary surface, results in restriction of the effective cross section of the flow
in the upper region. From the principle of the fluid flux conversation it follows that
the fluid velocity V must increase in this region. According to Bernoulli’s law for
an inviscid fluid
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P1 < P2

V1

V2

P2

Fig. 6.10 A schematic illustration of the mechanism of Kelvin–Helmholtz instability in an
inviscid fluid. The tangential discontinuity of a fluid flow is shown with dotted line. V1 and V2

denote the unperturbed velocities of the fluid flow on both sides of the tangential discontinuity.
The fluid pressure, P1, just over the bulge of the boundary is smaller than that under the bulge

�V 2

2
C P D const; (6.57)

a flow velocity increase is accompanied by the fluid pressure decrease over the bulge
shown in Fig. 6.10. The pressure difference between two regions leads to further
enhancement of the instability and the initial perturbation of the boundary position
that result in the generation of surface waves.

In familiar hydrodynamics the tangential discontinuities are always unstable
with respect to small perturbations that result in their fast turbulization. Magnetic
field stabilizes the flow of conducting fluid in such a way that the tangential
discontinuities in the fluid may be stable. This is due to the fact that the fluid velocity
perturbations across the ambient magnetic field give rise to extension of the field
lines frozen in the conducting fluid that in turn results in the generation of forces
aiming to restore the unperturbed fluid flow.

The condition of instability of the tangential discontinuity in a conducting
fluid/plasma is the following (e.g., see the text by Landau and Lifshitz 1982 for
details)

B2
1 C B2

2

�0
<

�1�2

�1 C �2
.V1 � V2/2 ; (6.58)

where B1 and B2 are magnetic fields on both sides of the boundary, �1 and �2 are
the corresponding fluid/plasma densities, and V1 � V2 stands for the relative flow
velocity.

This equation can be applied to the Kelvin–Helmholtz instability arising in the
magnetospheric plasma at the magnetopause. In such a case �1, V1, and B1 may
denote the plasma and field parameters of solar wind in the magnetosheath while the
same values with inferior index 2 describe the magnetospheric plasma. To estimate
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this effect we suppose that �1 � �2, and B1 � B2. On account of the relation
V1 � V2 we also assume that there are no plasma motion in the magnetosphere,
i.e., V2 � 0. Substituting these values into Eq. (6.58) yields

V1 > 4VA: (6.59)

The implication here is that if only the plasma flow in the magnetosheath is super-
Alfvénic, then the Kelvin–Helmholtz instability can develop. As alluded to earlier
in Sect. 1.2, the solar wind is supersonic near the Earth orbit. Across the bow shock
shown in Fig. 1.8, the solar wind density and temperature increase abruptly whereas
the wind velocity decreases, allowing for the presence of subsonic flow around the
Earth magnetosphere. In other words, in the vicinity of local magnetic noon the solar
wind flow stalls and becomes sub-Alfvénic. Toward the flanks of the magnetosphere
the stream accelerates in a such way that the flow velocity becomes super-Alfvénic
again. This implies that the Kelvin–Helmholtz instability may occur at the flanks of
the magnetosphere, i. e., around dusk and dawn.

A number of experimental data is consistent with the solar-wind-related mecha-
nism for excitation of the Kelvin–Helmholtz instability followed by the long-period
ULF pulsations (e. g., see the text by Glassmeier 1995). First, it is usually the case
that the Pc5 pulsations are observed at the flanks of the magnetosphere, especially
at the downside, that are in favor of the mechanism of the Kelvin–Helmholtz
instability. Moreover, analysis of the observation shows that the vector of the phase
wave velocity is directed toward the tail of the magnetosphere. Second, the ULF
pulsation activity and polarization characteristics are clearly controlled by the solar
wind.

As discussed above, the instability of the tangential discontinuity may result in
the turbulization of plasma flow followed by generation of a rather broad spectrum
of perturbations. This mechanism is capable of exciting different FLRs, which
may therefore form a continuous spectrum of the resonant field. This conclusion
contradicts with the observations since there usually occurs only one resonance.
To explain this contradiction Kivelson and Southwood (1985) have suggested that
the Kelvin–Helmholtz instability caused by surface waves first results in excitation
of the fundamental and higher harmonics cavity modes, that is the global poloidal
eigenoscillations of the magnetosphere. As has already been stated, the spectrum of
cavity modes is discrete. When these modes are excited they produce a frequency
filter for wideband spectrum of the initial perturbations. At this point the FLRs
can be excited by virtue of the shear Alfvén mode coupling to the resonant cavity
modes. In other words, the energy of unstable surface waves may transform into the
energy of poloidal oscillations which in turn can propagate across field lines up to
the resonance magnetic shell thereby producing the FLR due to the mode coupling.
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6.3.3 Magnetospheric Plasma Instabilities

Instabilities of the internal magnetospheric plasma distributions can be another
mechanism for generation of the ULF pulsations. For one example, consider now
kinetic instabilities which result in the generation of MHD and ion-cyclotron waves
in the frequency range of Pc1, Pc2, and Pi1 pulsations. In a linear approximation the
ion-cyclotron instability arises from the energy exchange between the wave field and
charged particles. This interaction becomes the most effective under the resonance
condition (e.g., see the texts by Ginzburg (1970), and Trakhtengerts and Rycroft
(2008) for detail)

! � kzVz D n�i ; (6.60)

where ! is the wave frequency, Vz is projection of the thermal velocity of particles
on ambient magnetic field, kz is the same projection of wave vector, �i is
gyrofrequency of the ions, and n is integer, that is n D 0;˙1;˙2; : : : The kinematic
meaning of this condition can be understood in a local reference frame fixed at the
Larmor center of the particle. In this reference frame the wave frequency !0 D
! � kzVz either equals zero .n D 0/ or a multiple of the ion gyrofrequency .n ¤ 0/.
Depending on the plasma particle distribution of the velocities the interaction
between the MHD wave and the resonant particles may result in either enhancement
or damping of the magnitude of oscillation.

This kind of the plasma instability can be due to the energetic protons
(� 10–100 keV) of the ring current region (L � 3–6) because of anisotropy of
the proton distributions with respect to the proton velocities (Cornwall 1965). The
kinetic energy of the plasma particles trapped in the ring current region can thus
serve as a source for energy transfer towards the ULF pulsations due to either
ion-cyclotron instability mechanism or collisionless Landau damping. Notice that
despite small concentration the helium ions present in plasma of the radiation
ring may greatly affect the ion-cyclotron instability in the frequency range of Pc1
(Dowden 1966).

The particle bounce motion between the mirror points above the northern and
southern ionospheres may cause the resonance interaction between the bounce
motion and the MHD waves. The bounce motion is accompanied by large-scale
drift of the plasma particles approximately perpendicular to the Earth magnetic field
lines. This drift caused by the gradient and curvature of the Earth magnetic field
take the particles entirely around the Earth as shown in Fig. 1.10. The MHD wave
field can resonate with the bounce and drift plasma motions as the wave frequency
is related to the bounce and drift frequencies through special resonance condition
(Karpman et al. 1977; Southwood 1980). Moreover, the deviation of the particle
distribution function from the equilibrium function is necessary to provide the drift-
bounce instability. It is believed that this mechanism is capable of explaining the
origin of small-scale (wave numberm � 50–100) azimuthal poloidal Pc4 pulsations
and giant pulsations Pg (Takahashi 1988).
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Available candidates for a source of the ULF pulsations are the so-called firehose
and drift mirror plasma instabilities, which are driven by anisotropies of the plasma
pressure. We cannot come close to exploring these topics in any detail, but the
interested reader is referred to the text by Glassmeier (1995) for a more complete
treatise on magnetospheric plasma instabilities.

6.3.4 MHD Waves Propagating in Solar Wind

An indirect hint toward the existence of a variety of MHD waves, which can
propagate in the solar wind, has been provided by numerous observations and
has been supported by a number of theoretical studies (e.g., Kwok and Lee 1984;
Takahashi et al. 1984; Yumoto 1984; Engebretson et al. 1987). A wide variety of
the solar-wind-generated waves cover a wideband frequency range including ULF
pulsations region. It appears that such waves can cross the Earth’s bow shock,
magnetosheath, magnetopause and then penetrate deep into the magnetosphere and
plasmasphere. There may also be an indirect way for the energy transfer from
the interplanetary space to the magnetosphere. For example, the Alfvén and FMS
wave energy can be transferred into the particle kinetic energy and back to the wave
energy via ionospheric interactions.

6.3.5 Reconstruction of the Magnetospheric Configuration

All the excitation mechanisms alluded to above share a common trait since they
are generated from the different kinds of plasma instabilities that can arise inside
the magnetosphere, at the magnetopause, or outside the magnetosphere in the solar
wind. In some sense, these mechanisms can serve as more or less permanent sources
of the ULF pulsations. In the next subsection we consider more impulsive sources
such as SSC and magnetic storm associated Pc5 pulsations and fast transients. The
SSC is due to the sudden changes of the solar wind flow followed by variations
of the dynamic pressure from the solar wind on the Earth’s magnetosphere, that
in turn may be sufficient in order to change position of the dayside magnetopause.
The large-scale reconstruction of the magnetopause and the whole magnetosphere
results in the generation of ULF pulsations, which is believed to be almost
axisymmetric. The azimuthal wave numbers m associated with these pulsations
seem to be close to zero. This means that both main modes of the magnetospheric
eigenoscillations, i.e., toroidal and poloidal modes, can propagate through the
magnetosphere independently of each other. It appears that a number of ULF
pulsations are related to magnetospheric substorms in the magnetotail (Baumjohann
and Glassmeier 1984).
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6.4 ULF Electromagnetic Noises

6.4.1 Main Sources of the ULF Noises

The global electromagnetic resonances which have been considered in this section,
cover a wide frequency range from several mHz to 30–35 Hz. The first Schumann
resonances cover the overall range from 7–8 to 30–35 Hz, which are in the ELF
frequency band. The IAR eigenfrequencies lie in the range from 0.5–0.25 to 3–5 Hz.
The FLRs and the cavity mode eigenfrequencies are below this range since they
typically cover the interval 10�2–10�3 Hz. In what follows we focus on the natural
ULF noise, that is at the frequencies which are even smaller than above resonant
frequencies covering the range of the global electromagnetic resonances.

The Earth electromagnetic field is subject to a variety of random forces such as
the variations of solar radiations, incident MHD waves and global magnetospheric
resonances, fluctuation of the ionospheric currents, changes in the world thunder-
storm activity, and so on. A variety of magnetospheric MHD waves acting on the
Earth ionosphere give rise to a wideband spectrum of electromagnetic perturbations,
which can be detected on the ground surface. Throughout the frequency range from
HF to ULF the flux density of natural magnetic variations increase with a decrease
in frequency in such a way that the amplitude of the spectral density varies from
10�21–10�24 W/(m2 Hz) at frequency 109–1010 Hz up to 10�3–10�1 W/(m2 Hz) at
frequency � 10�3 Hz (Lanzerotti 1978). Figure 6.11 taken from Lanzerotti et al.
(1990) shows spectra of background magnetic variations measured in the wideband
frequency range, which cover the ten-decades from 10�5 to 105 Hz. Interestingly
enough the noise in the ELF/VLF range is an overall approximate inverse relation
between the noise amplitude and frequency (Lanzerotti et al. 1990; Fraser-Smith
1995). This implies that there is an overall approximate inverse relation between the
noise power amplitude and frequency. Notice that a power law spectrum of noise,
which is referred to as the class of 1=f noise, or flicker noise, is usually observed
in all electric devices over a very broad frequency range (e.g., see Rytov et al.
1978; Weissman 1988). There exists other tendency in the frequency range from
10�5 to 10�1 Hz where in the first approximation the noise amplitude is inversely
proportional to f �1:5. As indicated in Fig. 6.11, the spectrum of the noise amplitude
in the intermediate interval can be approximated by a power law proportional to f �n
with the exponent n laying in the range 1:0–1:5. However, the value of n appears to
vary considerably, depending on the case study, measurement technique and on the
instruments arranged at the ground-recording station.

Knowledge of these tendencies for the natural low-frequency noise is of special
interest in geophysical studies, since it gives information about spatiotemporal
variations of the natural ULF electromagnetic noise and their source mechanism.
This knowledge is also important from a scientific point of view, because, as pointed
out by Fraser-Smith (1995), it is not understood at present why there exists such a
relation between the ULF noise amplitude and frequency.
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Fig. 6.11 Measured monthly average 3-h power spectra for magnetic field variations. The data
were gathered at Arrival Heights, Antarctica near McMurdo Station, during June 1986. Taken
from Lanzerotti et al. (1990)

To a certain extent the sources of the natural ULF variations can be divided
into two general classes, depending on whether they are external or internal to the
magnetosphere. It is now generally accepted that the external sources are mainly
due to the interaction of the Earth’s magnetosphere with solar wind and with MHD
waves coming from outer space. Under certain orientation of the interplanetary
magnetic field (IMF) and the Earth’s magnetic field lines, when partial reconnection
of the field lines occurs, the small quasiperiodic variations of the IMF (� 10 nT)
may result in generation of the ground-based variations with amplitude of about
several hundred Tesla (Pilipenko et al. 2000). The energy of turbulent noise
generated in the magnetosheath can penetrate through the magnetopause and thus
can get trapped in the magnetosphere thereby exciting ULF noise and MHD waves.
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An important example of internal sources is the global lightning activity,
considering that there is about 2� 103 thunderstorm in progress around the world at
any time.

The sources of natural ULF noise covering the frequency range 10�4–10�2 Hz
have not yet been adequately explored. It is customary to conjecture that the MHD
waves traveling through the magnetosphere can transfer a variety of electromagnetic
noises from the outer regions of the magnetosphere towards the Earth. The high
frequency region of the noise spectrum is lost in the conducting E layer of the
ionosphere. In this picture the E layer plays a major role in formation of the ULF
noise in the neutral atmosphere. Furthermore, the ionospheric current variations due
to fluctuations of the ionospheric plasma conductivity and of neutral wind velocity
can produce an additional random perturbation in the ULF region.

6.4.2 Model and Basic Equations

In what follows we focus our attention on the two possible sources, which are
the incident MHD waves and the ionospheric current fluctuations originated from
variation of the neutral gas flow in the altitude range of the ionospheric E layer.
The field fluctuations in the magnetosphere and ionosphere can excite a random
electromagnetic field in the atmosphere and on the ground surface. At first we
consider the fields of the MHD wave and of the wind-driven currents in the
ionosphere as given deterministic functions, which play a role of forcing functions.
Solving this problem we can find the transfer matrices, which relate the fields in
the ionosphere and magnetosphere with the fields in neutral atmosphere. Since the
characteristic spatial size of the ULF variations is supposed to be smaller than the
Earth radius, the curvature of the magnetic field lines is disregarded. This implies
that the undisturbed geomagnetic field is considered as a homogeneous one.

To approximate the actual variation of medium parameters with altitude, we
consider a plane-stratified medium model, which consists of the magnetosphere,
conducting ionosphere, neutral atmosphere and conducting earth, as shown in
Fig. 6.12. Consider first the conducting E layer of the ionosphere. We use a
traditional coordinate system in which the y axis is directed westward, the x axis
to the north, and z axis vertically upward. The origin of the local coordinate system
is situated on the boundary between the bottom of the ionosphere and the neutral
atmosphere. The vector of the Earth magnetic field is situated at the meridional x; z
plane and makes an angle � with respect to the horizontal axis x. The inclination
angle is chosen in such a way that � is positive for the northern hemisphere.

Let ıB be a small perturbation of the geomagnetic field B0, i.e., ıB � B0.
In the frequency range of interest the conduction current is much greater than the
displacement one so the Ampere’s law (1.5) holds at the E-layer. The Ohm’s law
for the ionospheric plasma of the E-layer is given by Eq. (2.6). Combining these
equations we get
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Fig. 6.12 Schematic illustration of a stratified medium model
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where as before �k denotes the field-aligned plasma conductivity, �H and �P are the
Hall and Pedersen conductivities. Here we made use of the following abbreviations:

Ek D Ex cos � �Ez sin �; (6.64)

J? D �P .Ex sin � CEz cos �/C �HEy: (6.65)

The wind-driven current density is given by

J .w/x D B0
�
�HV? � �PVy

�
sin �; J .w/z D J .w/x cot �;

J .w/y D B0
�
�HV? C �PVy

�
; (6.66)

where Vx , Vy and Vz are the component of the mass velocity of the neutral wind,
and V? D Vx sin � C Vz cos � . Notice that the neutral gas dominates below 130 km
in such a way that the charged particles cannot greatly affect the neutral gas
flow. This implies that the mass gas velocity can be considered as a given/forcing
function which affects the electromagnetic fields and conduction currents inside the
conductingE layer of the ionosphere. Furthermore, the parallel plasma conductivity
in this region is much greater than the Hall and Pedersen ones. Assuming that
�k ! 1, the parallel electric field Ek thus becomes zero, i.e.,

Ez sin � D Ex cos �: (6.67)
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In order to eliminate the nonzero parallel current �kEk from Eqs. (6.61)
and (6.63) one should slightly rearrange these equations. Equation (6.61) multiplied
by sin � plus equation (6.63) multiplied by cos � gives

�
@yıBz � @zıBy

�
sin � C �

@xıBy � @yıBx
�

cos � D �0

	
J? C J .w/x sin � C J .w/z cos �



:

(6.68)

In the frequency range f < 0:1Hz the thickness, l , of the E layer is much
smaller than the skin-depth in the ionosphere. In this notation the “thin” layer
approximation can be used in order to derive the boundary conditions at the E
layer of the ionosphere. This approximation is described in more detail in Sect. 5.
Integrating of Eq. (6.68) with respect to z across the E-layer, making formally
l ! 0, and taking into account Eq. (6.67), gives the boundary conditions at z D 0

� sin �
�
ıBy

� D �0

	
†PEx= sin � C†HEy C I .w/



; (6.69)

where the square brackets denote the jump of magnetic field across the E-layer,
†P and †H are the height-integrated Pedersen and Hall conductivities given by
Eq. (5.25). Here I .w/ D I .w/x sin �CI .w/z cos � stands for the height-integrated wind-
driven currents, i.e.

I .w/x D
lZ

0

J .w/x d z and I .w/z D
lZ

0

J .w/z d z: (6.70)

Similarly, integrating of Eq. (6.62) with respect to z across the E-layer yields

ŒıBx� D �0

	
†PEy �†HEx= sin � C I .w/y



; (6.71)

where I .w/y is another component of the height-integrated wind-driven current, i.e.

I .w/y D
lZ

0

J .w/y d z: (6.72)

In the framework of our model the region above the E-layer is supposed to be
the area consisting solely of a cold collisionless plasma, which is described by
Eq. (5.2). In the ULF frequency range the absolute value of parallel components
of the plasma dielectric permittivity, "k, is much greater than perpendicular ones
and thus can be assumed to be infinite. This means that the parallel electric field Ek
equals approximately zero, and we come to Eq. (6.67). Thus, we can eliminate the
parallel current from Eq. (5.2) in analogy to the procedure used for the derivation of
Eq. (6.68). Whence, we get
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�
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where VA D c="
1=2

? is the Alfvén velocity. These equations should be supplemented
by the Faraday’s law given by Eq. (4.2), where B should be replaced by ıB.
The neutral atmosphere .�d < z < 0/ is considered as an insulator, and the solid
Earth .z < �d/ as a uniform conductor with a constant conductivity �g . If the
displacement current in both media is disregarded, the electromagnetic perturbations
are described by Eqs. (5.27) and (5.28).

6.4.3 Transfer Matrices

Solution of the above problem with proper boundary conditions relates the magnetic
perturbations on the ground surface with the forcing functions, i.e., the amplitudes
of the MHD waves and of the wind-driven ionospheric current. We seek for the
solution of the problem in the form of spatiotemporal Fourier transform. This
implies that all quantities vary as exp.ik � R � i!t/, where k is horizontal wave
vector, and R D .x; y/. Let ıb .k; !; z/ and ıe .k; !; z/ be Fourier transforms
of the magnetic and electric field variations, respectively. Let ıb.m/ .k; !/ be the
spectral amplitude of the incident Alfvén and FMS waves in the ionosphere, while
ıI.w/ .k; !/ stands for the height-integrated wind-driven ionospheric current. This
latter value denotes a Fourier transform of the functions I .w/x , I .w/y and I .w/z given
by Eqs. (6.70) and (6.72), respectively. In consequence of linearity of both Maxwell
equations and boundary conditions, the spectral densities of the ionospheric and
atmospheric fields are coupled in a linear fashion through the transfer matrices
OM.w/ .k; !; z/ and OM.m/ .k; !; z/

ıb .k; !; z/ D OM.w/ .k; !; z/ � ıI.w/ .k; !/C OM.m/ .k; !; z/ � ıb.m/ .k; !/: (6.75)

We now omit the detailed derivation of the transfer matrices. The interested
reader is referred to the paper by Surkov and Hayakawa (2007, 2008) for details.
If the vertical ambient magnetic field is assumed then an analytical solution of the
problem can be found for arbitrary value of k. As the magnetic field B0 is vertically
downward one should therefore substitute � D �=2 in the basic equations. In such
a case the set of Eqs. (6.73), (6.74), and (4.2) can be split into two independent sets,
which describe the shear Alfvén and FMS waves propagating in the magnetospheric
plasma. Similarly, the set of Eqs. (5.27) and (5.28) for the atmosphere and the
ground can be split into two independent sets, which describe the TM and TE modes
in the atmosphere. These two modes are coupled through boundary conditions at
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the ionosphere, that is via Eqs. (6.69), (6.71) and via the continuity condition for
ıb and for the horizontal components of ıe. In this notation the wavefield of the
incident Alfvén and FMS waves in the magnetosphere is assumed to be given
functions whereas the waves reflected from the ionosphere should be found to fit
the solutions in the magnetosphere and the atmosphere. Considering the large-scale
perturbations with the scale size 2�=k � 103 km, we restrict our analysis on an
extreme case of ! � kVA � 30Hz (f D !=2� � 5Hz) and even on the case of
stronger inequality ! � k2x=

�
�0�g

� � 0:03Hz (f � 0:005Hz). In such a case

the matrix OM.w/ for the ground surface z D �d can be simplified to

OM.w/ � i�0 exp .�kd/
2g3

0

@
ikxf�=k ikxfC=k 0
ikyf�=k ikyfC=k 0
f� fC 0

1

A; (6.76)

where g3 D 1C ˛P . Here we made use of the following abbreviations:

fC D ky˛H C kxg3

k
; f� D kx˛H � kyg3

k
; : (6.77)

The third column in the matrix consists of zeros because the wind velocity
component parallel to the vertical magnetic field B0 cannot excite the magnetic
perturbations. The similar expression for matrix OM.m/ can be found in the paper
by Surkov and Hayakawa (2008).

Furthermore, the study is simplified if the components of the horizontal wave
vector satisfy the requirement kx � ky . This implies that the azimuthal scale
size of the perturbations is much greater than that of the meridional perturbations.
In fact, we assume a 1D distribution of the height-integrated ionospheric current,
ıI.w/ .x; t/, as a source of 2D random electromagnetic fields in the surroundings.
The east–west neutral winds at the altitude range of the E layer can excite the
ring current in the ionosphere thereby producing this type of perturbations. For one
more example, it is worth mentioning that the Pc5 pulsations have a rather localized
wavefield of extension 100–200 km in north–south direction.

On the basis of this simplifying assumption, the analytic form of the transfer
matrices can be simplified. Considering the large-scale perturbations the matrix
OM.w/ at z D �d is given by

OM.w/ � i�0 exp .�kd/
2g2

0

@
i˛H sin � ig2 i˛H cos �

0 0 0

k˛H sin �=kx kg2=kx k˛H cos �=kx

1

A; (6.78)

where g2 D ˛P C sin � . The TM mode in the atmosphere contains the components
ıby , ıex , and ıez that are identical with those of the shear Alfvén wave in the
magnetosphere. Both these modes ares coupled by virtue of boundary conditions
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at z D 0. The second strings in the matrices consist of zeros because ıby D 0

everywhere under the ionosphere including at z D �d . This means that the magnetic
field due to Alfvén mode cannot penetrate through the conducting ionosphere to
generate the magnetic perturbations in the atmosphere on the ground surface. So, in
this model only the TE mode which includes the components ıbx , ıbz, and ıey can
contribute to the magnetic variation in the atmosphere.

As is seen from these two expressions for OM.w/, the propagation of the ULF per-
turbations through the conducting ionosphere and the neutral atmosphere towards
the ground is accompanied by the wavefield damping with the exponential factor
exp .�kd/. It should be noted that in the low-frequency limit the transfer matrix is
not a function of frequency. One may suppose that these conclusions hold not only
for the cases examined above but also for an arbitrary angle � and wave vector k.

6.4.4 Correlation Matrix of Random Fields

In this section the MHD waves propagating from the magnetosphere towards the
ionosphere and the ionospheric wind-driven currents are treated as the random
functions of coordinate and time. Let ıB .r; t / and ıE .r; t / be the random elec-
tromagnetic variations at the point r D .x; y; z/ produced by the fluctuations of
the random electromagnetic fields in the ionosphere. In practice, the mean value of
the random magnetic variations is close to zero. Therefore, we will be interested
in the correlation matrix/product moment, which has the form

‰.B/
nm

�
r; t; r0; t 0

� D ˝
ıBn .r; t / ıB�

m

�
r0; t 0

�˛
; (6.79)

where the brackets hi denotes the averaging over all available realizations of the
random process, the symbol 	 denotes a complex-conjugate value and the inferior
indexes n and m are taken on the values x, y, and z. This correlation matrix
describes the spatial and temporal correlation of the field components ıBn .r; t / and
ıB�

m .r
0; t 0/ taken at different points r and r0, and at different time t and t 0.

In a similar fashion we may introduce the correlation matrix,‰.E/
nm , of the electric

field fluctuations. Notice that Eq. (6.79) satisfies both real and complex random
fields. In a similar fashion we may introduce the correlation matrix of the forcing
function fluctuations, ‰.m/

nm and ‰.w/
nm .

It is clear that the spectral amplitudes of the forcing functions, ıb.m/ .!;k/
and ıI.w/ .!;k/, and of the magnetic, ıb .k; !; z/, and electric, ıe .k; !; z/, field
fluctuations are random functions as well. By contrast, the transfer matrices are con-
sidered to be deterministic/given functions. The spectra of random electromagnetic
fluctuations on the ground surface are related to the spectral amplitudes, ıb.m/ .!;k/
and ıI.w/ .!;k/, through the linear equation (6.75).
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Considering the ground-based observation we first study the spectral density of
correlation matrix of the magnetic perturbations given by

 .B/
nm

�
!;k; !0;k0� D ˝

ıbn .!;k/ ıb�
m

�
!0;k0�˛ ; (6.80)

where the symbols in the brackets denote the spectral amplitudes of the ground-
based field fluctuations.

Substituting Eq. (6.75) for ıb into Eq. (6.80) and rearranging yields

 .B/
nm D

3X

lD1

3X

pD1

	 OM.w/
nl

OM.w/�
mp  

.w/
lp C OM.m/

nl
OM.m/�
mp  

.m/

lp



; (6.81)

where

 
.w/
lp D

D
ıI

.w/
l .!;k/ ıI .w/�p

�
!0;k0�E ; (6.82)

 
.m/

lp D
D
ıb

.m/

l .!;k/ ıb.m/�p

�
!0;k0�E : (6.83)

Here we have assumed that the forcing functions, ıb.m/ .!;k/ and ıI.w/ .!;k/, are
statistically independent of each other.

In what follows we focus on the correlation matrix, which describes the
contribution of the ionospheric wind-driven currents to the natural electromagnetic
noise observed on the ground surface. We choose first to study the case of vertical
Earth’s magnetic field. The fluctuations of height-integrated ionospheric current,
ıI.w/ .R; t /, is considered as a 2D random field of R D .x; y/. This random field is
assumed to be uniform in time so that shift of the initial time has no effect on the
random process. In this notation the spatiotemporal correlation functions, ‰.w/

lp , and
their linear combination in Eq. (6.81) depend on the time difference � D t�t 0. If the
random field is uniform in space, the shift of the origin of coordinate system O is
insignificant, so that the correlation functions must depend on only relative distance
L D jLj D ˇ̌

R � R0 ˇ̌. Since the plasma conductivity is anisotropic in the E layer,

‰
.w/
lp cannot depend only on relative distance. So we assume that ‰.w/

lp is a function
of both Lx D jx � x0j and Ly D jy � y0j. In such a case the spectral density of this
random process is delta-correlated both over kx , ky and !

 
.w/
lp

�
k; !;k0; !0� D ı

�
! � !0� ı

	
kx � k0

x



ı
	
ky � k0

y



Glp .!;k/: (6.84)

Here the function Glp .!; k/ is derivable through the spatial distribution of the

correlation function ‰.w/
lp .L; !/

Glp .!;k/ D 1

4�2

1Z

�1

1Z

�1
‰
.w/
lp .L; !/ exp .�ik � L/ dLxdLy: (6.85)
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Now we choose for study the Gaussian-shaped form of the correlation function.
Since the random fields are anisotropically distributed on the ground surface, the
function ‰.w/

lp .L; !/ may depend on two correlation radii, so it can be chosen in the
form

‰
.w/
lp .L; !/ D Flp .!/ exp

 

� L2x
�2x .!/

� L2y

�2y .!/

!

: (6.86)

The radii �x .!/ and �y .!/ characterize the correlations of the wind-current
fluctuation in the x and y-directions, respectively. The functions Flp .!/ depend

on how the height-integrated current I .w/l is correlated with the current I .w/p .
In particular, if these currents are statistically independent of each other, then
Flp .!/ D 0. In the subsequent discussion we define both the specific form of the
correlation radius and the factor Flp .!/.

Substituting Eq. (6.86) for ‰.w/
lp into Eq. (6.85), performing integration over Lx

and Ly , yields

Glp .!;k/ D Flp�x�y

4�
exp

 

�k
2
x�

2
x C k2y�

2
y

4

!

: (6.87)

In situ measurements the horizontal magnetic field variations are greater than the
vertical one. As one example, we consider now the correlation function‰.B/

xx .L; !/.
In fact, this correlation function describes the spatial correlation of the spectral com-
ponents ıBx .r; !/ and ıB�

x .r
0; !/ taken at different points r and r0 at frequency !.

For practical purposes, it is interesting to study the spectral density/power spectrum,
which is based on a single-stationed three-component magnetometer recording.
If the data for the power spectra is gathered in a single point, only autocorrelation
function is available. In this notation, substituting Eqs. (6.76), (6.84), (6.87) into
Eq. (6.81), applying an inverse Bessel transform, and setting L D R � R0 D 0,
yields

‰.B/
xx .0; !/ D �20�x�y

16�g3

1Z

�1

1Z

�1

˚
Fxxf

2� C �
Fxy C Fyx

�
f�fC C Fyyf

2C
�

� exp

 

�k
2
x�

2
x C k2y�

2
y

4
� 2kd

!
k2x
k2
dkxdky; (6.88)

In the extreme case of small correlation radii, i.e., 2d � �x; �y , one can find that

‰.B/
xx .!/ D ‰.B/

xx .0; !/ � �20�x .!/ �y .!/‚ .!/

256d2
; (6.89)
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where

‚.!/ D
�
3˛2H
g3

C g3

�
Fxx .!/C

�
˛2H
g3

C 3g3

�
Fyy .!/

C2˛H
˚
Fxy .!/C Fyx .!/

�
: (6.90)

Within the altitudes of the E-layer the ratio of plasma to neutrals number
densities is 10�7–10�9 for the day- and night-time conditions, respectively. This
means that the motions of electrons and ions practically have no effect on the pattern
of neutral has flow. In contrast, the moving neutrals drag the ions thereby exciting
the wind-driven ionospheric currents. In our model we leave out of account the
diurnal variations and fluctuation of the ionospheric plasma conductivity due to the
variation of solar radiation and other causes. This implies that the spatiotemporal
distribution of the wind-driven currents is basically governed by the hydrodynamic
processes and fluctuations of the neutrals flow in the ionosphere. Such fluctuations
may propagate with the velocities of acoustic and atmospheric gravity waves, which
frequently occur at the altitudes of the E-layer. In this picture the correlation radius,
�c .!/, of the random fields can be roughly estimated as (Surkov and Hayakawa
2007)

�c .!/ � Va .!/ T D 2�Va .!/

!
: (6.91)

Here Va .!/ denotes the acoustic wave velocity or the mass velocity of the neutrals
and T stands for a typical period of ionospheric parameter variations.

Finally, using Eq. (6.91) to estimate the correlation radii, �x and �y , we obtain
the following rough estimate of the power spectrum

‰.B/
xx .!/ � �20�

2V 2
a .!/‚ .!/

64!2d2
: (6.92)

In a similar fashion we may examine the 2D field of the electromagnetic
fluctuations that can be expressed via the transfer matrix (6.78). Using this line
of reasoning, the spectral density of correlation matrix  .B/

nm is found to be given by
Eq. (6.81) where the coefficients OM.w/

nl and OM.w/�
mp stand for the components of the

matrix (6.81). The 1D random fields, ıI.w/ .x; t/, of the height-integrated currents
is considered to be uniform in the ionosphere in such a way that the spatiotemporal
correlation functions, ‰.w/

lp , and their linear combinations depend only on the time
difference � D t � t 0 and relative distance � D jx � x0j. As before we choose
for study the Gaussian-shaped form of the correlation function of the ionospheric
current fluctuations

‰
.w/
lp .�; !/ D Flp .!/ exp

�
� �2

�2c .!/

�
; (6.93)
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where �c .!/ stands for the correlation radius. The spectral density of this random
process is given by

 
.w/
lp

�
kx; !; k

0
x; !

0� D ı
�
! � !0� ı

�
kx � k0

x

�
Glp .kx; !/; (6.94)

where ı denotes Dirac’s function and

Glp .kx; !/ D Flp .!/ �c .!/

2�1=2
exp

�
�k

2
x�

2
c .!/

4

�
: (6.95)

Combining these equations, applying an inverse Fourier transform, and performing
the integration over k0

x and kx , leads to the spatial distribution of the spectral density
of the horizontal magnetic field variations. Setting � D x � x0 D 0 yields

‰.B/
xx .!/ D �20‚1 .!/

4
exp

�
4d2

�2c .!/

�

1 � erf

�
2d

�c .!/

��
; (6.96)

where erf .x/ denotes the error function. Here the function ‚1 .!/ is given by

‚1 .!/ D
3X

lD1

3X

pD1
Om.w/
xl Om.w/�

xp Flp .!/; (6.97)

where Om.w/
lp stands for the matrix elements appearing in Eq. (6.78). When consider-

ing the extreme case 2d � �c , Eq. (6.96) is simplified to

‰.B/
xx .!/ D �20‚1 .!/ �c .!/

8�1=2d
: (6.98)

Substituting Eq. (6.91) for �c .!/ into Eq. (6.98) gives the estimate of the power
spectrum on the ground surface for the case of 1D distributions of the ionospheric
current fluctuations

‰.B/
xx .!/ � �20�

1=2‚1 .!/ Va .!/

4!d
: (6.99)

When this result is compared with Eq. (6.92), it is apparent that the 2D-case
correlation function falls off more rapidly with frequency than does the 1D-case
correlation function. In the analysis that follows, we show that Eq. (6.92) is better
consistent in magnitude with the observations than does Eq. (6.99).
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Fig. 6.13 A simplified model of random ionospheric currents that are used to gain better
understanding of the solution with rigorous formulation of the problem. The current fluctuations
are correlated inside each cell with sizes �x and �y but not correlated with respect to each other. R
is the position vector drawn from the cell to the observation point, and ıB1 is the magnetic variation
caused by the current element I1ıl

6.4.5 Rough Estimate of Spectral Density

To gain better understanding of the results alluded to above, it is necessary to
give a simple interpretation of these results on the basis of a simplified model
of the medium. To be specific, we consider E region of the ionosphere as a thin
isotropically conducting layer, and only the wind-driven current flowing in the
y-direction is taken into account. First, we note that the fluctuations of this current
can be considered as the correlated current fluctuations inside the region with
horizontal sizes of the order of �x .!/ and �y .!/. Consider such a region as shown
in Fig. 6.13 with the shaded area, as an elementary current element. The magnetic
perturbations, ıB1, originated from a solitary current element on the ground surface
can be estimated via Biot–Savart law

ıB1 D �0rI1ıl

4� .r2 C y2/
3=2
; (6.100)

where I1ıl denotes the current moment, r D �
x2 C d2

�1=2
is the distance shown in

Fig. 6.13, and d is thickness of the neutral atmosphere. The horizontal component
is related to ıB1 through ıB1x D ıB1 cos' D ıB1d=r . The effective length of the
current element is estimated as follows: ıl � �y while the current amplitude can be
expressed through the height-integrated wind-driven current density, I .w/y , via I1 �
I .w/y �x . Dividing the ionosphere into the “coherent” regions with sizes �x and �y as
shown in Fig. 6.13, we obtain that the number of such “coherent” currents covering
the area dxdy is of the order of dN � dxdy=

�
�x�y

�
. Since these currents are
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uncorrelated, the net amplitude of the magnetic variations is close to zero whereas
the sum of squared amplitudes is proportional to dN ; that is, the contribution of the
area dxdy is of the order of d .ıBx/

2 D ıB2
1xdN . Combining above relationships

with Eq. (6.100) and integrating gives the amplitude of the net squared magnetic
variations

ıB2
x D

�20

	
I .w/y


2
�x�y

16�2

1Z

�1

1Z

�1

dxdy

.x2 C y2 C d2/
3
: (6.101)

Performing integration over x and y, taking into account that the power spectrum

of the magnetic noise is proportional to ıB2
x , and replacing

	
I .w/y


2
by the spectral

density of random current fluctuation ‚.!/, we obtain

‰.B/
xx .!/ D �20�x .!/ �y .!/‚ .!/

32�d2
: (6.102)

This rough estimate coincides with Eq. (6.89) to an accuracy of the numerical factor
�=8. This detailed calculation made in previous sections is totally consistent with
the simple model presented above.

6.4.6 Flicker-Noise of Ionospheric Currents

The ionospheric currents and conductivity are subject to violent changes from
the action of many forces: variations of the solar radiation, MHD waves and
particle precipitation from the magnetosphere, fluctuations of the plasma number
density, turbulence occurring in the plasma and neutral gas flows, and etc. A close
analogy exists with conductivity of the electric devices, in which the low-frequency
current fluctuations are supposed to be due to slow fluctuations of both the medium
resistance and the source emissivity, which are in turn provided by a superposition
of a great number of random processes with different relaxation times. This kind
of electromagnetic noise is termed flicker-noise or 1=f noise since overall the
power spectrum of this noise, F .f /, tends to decrease inversely proportional to
the frequency, i.e.,

F .f / D K
hJ im
f n

; (6.103)

where hJ i is the mean current density, K, m, and n are the empirical constants,
and f D != .2�/ is frequency. The exponent n in Eq. (6.103) varies within the
interval 0:8 < n < 1:2, but in most cases n is close to unity while m � 2

(Rytov et al. 1978; Weissman 1988). This universal dependence has been observed
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in gas-discharge devices, electrolytes, granulated resistance, germanium and silicon
diodes, photoelectric cells, contact resistances, thermistor, and etc. Surprisingly,
our understanding of the flicker-noise is not so good as it should be, given its
commonplace occurrence. This type of noise is supposed to be provided by a
superposition of a large number of random processes with different relaxation times,
including slow fluctuations of both the medium resistance and the source emissivity.

Here we assume the presence of the flicker-noise in the spectral density of
the ionospheric wind-driven currents. In such a case the mean current density in

Eq. (6.103) should be replaced by the mean height-integrated currents,
D
I
.w/
l I .w/p

E1=2
,

in such a way that Eq. (6.103) is transformed to

Flp .f / D K

D
I
.w/
l I .w/p

Em=2

f n
; (6.104)

Notice that if the currents I .w/l and I .w/p are uncorrelated, then the function Flp .f /
vanishes.

Substituting Eq. (6.104) into Eq. (6.92) gives an order-of-magnitude estimate of
power spectrum on the ground surface. For simplicity we choose the case Fxy D
Fyx D 0 and m D 2 that gives

‰.B/
xx D �20V

2
a K

256d2f 2Cn


�
3˛2H
g3

C g3

� D
I .w/x

E2 C
�
˛2H
g3

C 3g3

� D
I .w/y

E2�
(6.105)

where
˝
I .w/

˛
stands for the mean amplitude of the height-integrated ionospheric

current, which can be estimated as

D
I .w/x

E
D B0

�
†H hV?i �†P

˝
Vy
˛�

sin �;
D
I .w/y

E
D B0

�
†H hV?i C†P

˝
Vy
˛�
; (6.106)

If the dispersion of the acoustic wave velocity is neglected, that is, Va is a constant
value, then the spectral density‰.B/

xx .f / is inversely proportional to f nC2. Recently
Surkov and Hayakawa (2007) have found that the presence of flicker noise in the
atmospheric background current, can provide the same dependence of the ULF
power spectrum on frequency.

To make a theoretical plot of the spectral amplitude we use the numerical
values of the ionospheric and atmospheric parameters alluded to above. Taking
the notice that VA D 5 � 102 km/s is best suited in the altitude range of the E
layer, the ionospheric parameters ˛P D 3:14 and ˛H D 4:71 are chosen for
the daytime ionosphere while ˛P D 0:126 and ˛H D 0:188 for the nighttime
conditions. The mass velocity of the neutral gas in the ionosphere is estimated as˝
Vy
˛ � hV?i � Va � 102 m/s and the angle of magnetic field inclination � D �=2.
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Fig. 6.14 Measured monthly average 3-h power spectra taken from Lanzerotti et al. (1990)
(curve 1) and calculated power spectra of magnetic noise for the nighttime (2) and daytime
(3) ionospheric parameters. The numerical calculations from improved equation (6.107) are shown
with lines 20 and 30

The parameters appearing in empirical Eq. (6.103) is chosen as follows: K D 1 and
m D 2. When Eq. (6.105) is compared with the evidence from ULF measurements
(Lanzerotti et al. 1990), it is apparent that the spectral index n D 1 is a best fit value.

A model calculation of the square root of the spectral amplitude with a best fit
value n D 1 and of the power spectrum recorded at Arrival Heights, Antarctica
in June 1986 (Lanzerotti et al. 1990) are presented in Fig. 6.14 as a function of
frequency f . The observational data taken from Lanzerotti et al. (1990) are shown
with line 1 while our model calculations are plotted with line 2 (daytime conditions)
and 3 (nighttime conditions). It is obvious from Fig. 6.14 that the observational
data are sandwiched between the theoretical lines 1 and 2. It should be noted that
there are some uncertainties in the ionospheric current parameters, for example, in
the constant K in Eq. (6.104).

We recall that 1D distribution of the ionospheric wind-driven currents results in
the 2D spectral amplitude in inverse proportion to the squared frequency, which in
turn leads to a discrepancy between the predicted and measured spectra.

The observational data slightly deviate from the straight line as is seen in the
upper corner of Fig. 6.14. In this frequency range the correlation radius may be
greater than or equal to the distance between the Earth and the ionosphere. In such
a case the approximate solution given by Eq. (6.89) should be replaced by the more
accurate solution. To gain better understanding of this behavior of the observational
data, consider the case �x D �y D �c .!/. Substituting Eqs. (6.84), (6.87) into
Eq. (6.81) and applying an inverse Bessel transform yields

‰.B/
xx .!/ D �20‚ .!/

32

�
1 � 2�1=2d

�c .!/
exp

�
4d2

�2c .!/

�

1 � erf

�
2d

�c .!/

���
:

(6.107)

Given the above parameters and based on Eq. (6.107), the numerical calculations
are shown in Fig. 6.14 with lines 20 and 30. In the low-frequency limit, when
�c .!/ � 2d , the expression in square bracket tends to unity whence it follows
that ‰.B/

xx .!/ / ‚.!/ / !�1. This means that the spectral index of the power
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spectrum must fall off with a decrease in frequency followed by the decrease in
inclination angle of the lines 20 and 30 as shown in Fig. 6.14.

The lines 3 and 30, which correspond to the nighttime parameters of the
ionosphere, lie below the experimental data. To explain this discrepancy with
observations, one may assume the presence of supplementary sources, which
contribute the ULF noise at nighttime.

6.4.7 Neutral Gas Turbulence

Turbulence of neutral gas flow in the altitude range of the E layer can serve as an
alternative excitation source of the ULF electromagnetic noise. As we have noted
above, if a neutral gas flow is stirred in some region with size 	, turbulization of
flow may occur in a so-called inertial subrange, 	�1 � k � 	�1Re3=4, in k
space. It is usually the case that the Reynolds number, Re, tends to maximize in
the vicinity of turbopause and it can be large enough in the E-layer, that is about
102–104 as it follows from the assessment we made in Sect. 5.3.6. The Kolmogorov
spectrum covers the frequency range given by Eq. (5.72). Assuming for the moment
that the smoothed mean mass velocity of the gas flow is V D 102 m/s, and the
typical scale of the turbulization of flow is 	 D 102 km we get the estimate
1:6 � 10�4 � f � .0:005–0:16/Hz. According to the Kolmogorov theory for
an isotropic homogeneous medium, in this frequency region the mechanical energy
of the turbulent flow has a power law spectrum / k�5=3.

The correlation matrix of the ionospheric wind-driven current can be expressed

through the spectral density of the mass velocity fluctuations
D
ıVlıV

�
p

E
which in

turn is proportional to the spectral density of the mechanical energy. Since the
typical frequencies of turbulent pulsations are evaluated as ! � kV , we can
thus assume that the functions Flp .!/ / !�5=3. Considering 2D distribution
of the height-integrated currents in the ionosphere we come to the dependence
‰.B/
xx .!/ / !�11=3. The spectral index 11=3 of the correlation function ‰.B/

xx .!/

slightly differs from the best fit value 3, which corresponds to the data shown in
Fig. 6.14. The best hope for that is the case of 1D distribution of the wind-driven
ionospheric currents when we obtain ‰.B/

xx .!/ / !�8=3.

6.4.8 Random Variations of Background Atmospheric
Current and Conductivity

The mean value of the background atmospheric current density due to atmospheric
conductivity is about .3:5–4/ � 10�12 A=m2. Recently Davydenko et al. (2004)
have studied the electric environment of a mesoscale convective system (MCS).
The typical size of the MCS-trailing stratiform region was estimated to be about
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Fig. 6.15 A schematic drawing of current fluctuations in the vicinity of large-scale atmospheric
inhomogeneities

200 km and the total vertical current in this region was 25A, which is much
greater than the contribution of an isolated thunderstorm (� 0:4A). In the region
surrounding the thunderstorm, the atmospheric current density reached a peak value
of about .3:5–1:2/ � 10�9 A=m2. Interestingly, both the atmospheric current in the
MCS-trailing stratiform region and the mean current due to lightnings discharges
were upward-directed. Considering the important role played by the atmospheric
background current in formation of the global electric circuit, it is expected that the
random current fluctuations may attribute to the electromagnetic noise.

In this notation the atmospheric current flowing in the vicinity of large-scale
atmospheric inhomogeneities such as thunderstorms or hurricanes is treated as a
stochastic process. We estimate the spectrum and amplitude of correlation function
of the electromagnetic noise caused by the random current and conductivity
fluctuations and discuss whether such a noise contributes to natural electromagnetic
background in the range of 10�4–10�2 Hz.

Following Surkov and Hayakawa (2007) we assume that the current variations
are upward or downward inside the perturbed region and are zero outside, as shown
in Fig. 6.15. To simplify the problem the actual inhomogeneous region labeled 1 is
replaced by a cylindrical region with the radius a and the height h labeled 2. As
before the random current fields are assumed to be steady, uniform, and isotropic
inside the inhomogeneity, which, in turn, implies that the spectral density of the
process is delta-correlated. To relate the electromagnetic spectra with current fields,
a transfer matrix should be found, and then we can calculate the correlation matrix
and power spectra of the random electromagnetic field.

In order to derive the main results we consider a simple way using the following
line of reasoning. First, we note that the fluctuations of the atmospheric current
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2rc

2a

I1

Fig. 6.16 A simplified model used to give simple interpretation and to indicate physical meaning
of the results. The atmospheric current fluctuations are correlated inside each vertical cylinder but
are not correlated with respect to each other

can be considered as the correlated current fluctuations inside the vertical cylinder
with radius of the order of �c .!/. The net current flowing through the cross-
section of this cylinder is estimated as I1 D ��2c hıJ i, where hıJ i is the mean
amplitude of the current density fluctuations. In the first approximation we neglect
the coupling due to the magnetic field generated by each current cylinder. Dividing
the whole perturbed region into parts/cylinders with radii �c , as shown in Fig. 6.16,
we obtain that the number of such “coherent currents” is of the order ofN � a2=�2c .
Since these currents are uncorrelated, the net amplitude of the electric current
variations is proportional to the square root of the current number, that is I D
I1N

1=2 D �a�c hıJ i. At far distances the magnetic field of the vertical current
can be expressed through the current moment Ih. Assuming for the moment that
the non-conductive atmosphere with thickness d is “sandwiched” between two
conductive plates, which approximate the ionosphere and the ground, the solution
of the problem is given by Eq. (4.40). Replacing the current moment M .!/ by the
value Ih and taking into account that cot .�=2/ � 2=� � 2Re=r yields

ıB� D �0Ih

2�rd
; (6.108)

where ıB� denotes the azimuthal magnetic field and r is radial distance to the
vertical current moment. If the exponential atmospheric conductivity [Eq. (3.1)] is
allowed for, the parameter d in Eq. (6.10) should be replaced by the vertical scale,
H , of the conductivity variations with height. Such a characteristic scale can serve
as an effective thickness of “insulator” layer. Substituting I andH into Eq. (6.108),
we obtain
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ıB� D �0a�ch

2rH
hıJ i : (6.109)

Taking into account that the power spectrum of the magnetic noise is proportional
to ıB2

� and replacing hıJ i2 by the spectral density of random current fluctuation
F .f / yields

‰.B/ .r; f / �
�
�0a�ch

2rH

�2
F .f /; (6.110)

where f D != .2�/.
The background atmospheric currents mainly depend on the air conductivity

which, in turn, is subject to violent changes from the action of the winds, precip-
itations, air humidity, pressure and temperature and etc. Thus, there may be many
causes of the background conductivity and current fluctuations. This means that
there may be the same mechanisms, which lead to the flicker-noise spectral density.
Substituting Eq. (6.103) for F .!/ and Eq. (6.91) for �c .f / into Eq. (6.110), we
finally obtain the rough estimate of the power spectrum

‰.B/ .r; f / � K hıJ im
f nC2

�
�0aVah

2rH

�2
: (6.111)

When h � H , the above equation coincides with the result obtained by Surkov and
Hayakawa (2007) to an accuracy of factor 2.

On the basis of the assumption that the ULF atmospheric background current
fluctuations exhibit a power law noise with the spectral index n we have found that
the power spectra of magnetic noise must vary on overall inversely proportional
to f nC2. It is interesting to note that if n is close to unity, then the magnetic
noise power spectra vary as f �3, which is totally compatible with the measured
dependence in the frequency range of 5 � 10�4 to 5 � 10�2 Hz (Lanzerotti et al.
1990).

The theoretical line calculated from Eq. (6.111) approximately coincides with
line 3 shown in Fig. 6.14 that is lower, but nearly parallel to the experimental
data shown with line 1. It should be noted that we have considered only a single
atmospheric inhomogeneity as the source of the electromagnetic noise. Meanwhile,
the worldwide thunderstorms, whirlwinds, or hurricanes, which are in progress
around the world at any time, may contribute to the net electromagnetic nose.

Before leaving this section, it should be noted that the ULF electric field noise in
the atmosphere due to background current variations is estimated to be of the order
of 20–0.7�V=.m Hz1=2/ (Surkov and Hayakawa 2007). Such electric variations are
practically undetectable since its amplitude lies below the actual electric noise level.
This leads us to the conclusion that the atmospheric electric noise must arise due to
another causes.
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It should be emphasized that the mechanism we have treated above is not unique
because other mechanisms of 1=f noise such as MHD waves and solar activity
might also be operative.

6.4.9 Electric Field Pulsations at Fair-Weather Conditions

In this section we consider reasonably steady status of the Earth’s electric field. This
implies that no processes of charge separation are taking place in the atmosphere
(Chalmers 1967). Here we focus our attention alone on short-term ULF electric
field pulsations at fair-weather conditions in lower atmosphere. The study of the
pulsations of both the atmospheric electric field and charge density is indicative
of the existence of certain relation between these pulsations and the turbulent
stirring of charged particles in surface air as well as the drift of space charge
(e.g., see the papers by Ogden and Hutchinson 1970; Yerg and Johnson 1974;
Anderson 1982; Hoppel et al. 1986; Anisimov et al. 1999). It is believed that the
charge density behaves like a passive air-entraining admixture and the electric field
spectra are therefore controlled by the neutral-gas turbulence that can drag the aero-
electric structures in the near-surface atmospheric layer. In contrast to the traditional
problem of the atmospheric turbulence which deals with the fluctuations of mass
velocity and gas temperature, the electric field fluctuations are nonlocal values since
they depend on the spatial distribution of atmospheric charges around observation
point. Thus, the electric field and charge density pulsations in the lower atmosphere
are a significant indicator of atmospheric dynamics at fair-weather conditions.

Anisimov et al. (2002) have reported that at the frequencies of 0:01–0:1Hz the
spectral density,  .E/, of the electric field pulsations in the surface atmospheric
layer obeys the power law  .E/ / f �n. Under the fair-weather and fog conditions,
the spectral index n varies in the range of 1.23–3.36 with the most probable value
from 2:25 to 3:0. The study of the temporal variations has shown that the structured
pulsations alternate with unstructured variations of the electric field. The spectral
index of the structured pulsation lies within interval 2.03–3.36 whereas the spectra
of the unstructured variations is characterized by n D 1:23–2:89. Furthermore, these
latter variations have small amplitude and energy.

The structured pulsations are thought to be due to the aero-electric structures
flying at a low altitude, which is of the order of the structure size. As would be
expected, the main energy of the aero-electric pulsation is concentrated in the near-
surface atmospheric layer. The theory predicts the spectral density of such electric
variations to be  .E/ / f �11=3.

The unstructured variations can be resulted from the distant submesoscale aero-
electric structures, which move along with mean atmospheric air flow. If the
turbulent pulsations in these structures lie in the inertial subrange, the Kolmogorov
theory predicts that the power spectrum of the pulsations is proportional to f �5=3.
The spatial horizontal size of such structures is estimated as 0.5–1 km and their
lifetime is not less than 10–20 min.
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Under fog conditions the amplitude of electric pulsation was found to increase
more than one order of magnitude whereas the spectral index of the fog aeroelectric
field pulsations does not differ drastically from the fair-weather spectrum index
(Anisimov et al. 2002).

6.4.10 Monitoring of Near-Earth Plasma

The measurements of the global electromagnetic resonances and ULF fields is
extremely important in the study of both the magnetospheric plasma dynamics
and the Earth’s magnetosphere status as a whole. There exists a close analogy
with seismology, in which seismic waves are used to study the Earth’s interior
structure. The fundamental difference between the two areas is that the position
and spectrum of the seismic sources are usually known with assurance whereas
we have only a rough measure of the source properties of the MHD waves
incident to the ionosphere. The monitoring of near-earth plasma density and the
study of the ionosphere conductivity have their basis in separating the resonance
effects from the ULF natural and man-made noises. The idea of hydromagnetic
diagnostics of the magnetosphere based on the resonance spectrum of a field line
was originally suggested by Obayashi (1958) and Dungey (1963). The problem
of the diagnostics can be split into two basic tasks; that is, the measurement of
the FLR-frequencies and solution of the inverse problems to determine plasma
parameters in the magnetosphere (Guglielmi 1974, 1989; Baransky et al. 1985,
1990). Plausibility of this technique is restricted by an instability of the solution
of the inverse problem since this solution is rather sensitive to small perturbations
of the initial data. In practice, such perturbations are present not only due to the
measurement inaccuracy but also because of the variability of the magnetosphere
itself.

Much progress toward better understanding of the global ULF electromagnetic
resonances and noises has been achieved in the past decades, that results in the
appearance of “hydromagnetic seismology” of the near-earth space.

6.4.11 Space Weather

Overall the space weather describes today’s status of the space environment includ-
ing the conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and
thermosphere. When the space environment is disturbed by the variable output of
particles and radiation from the Sun, it can influence the performance and reliability
of space-borne equipment including computer memories. The geomagnetic storms,
substorms, cosmic and solar rays give rise to degradation of spacecraft material,
primarily solar battery. The interrelation between the fluxes of high energy particles
and onboard anomalies has been well documented. The failure quota due to
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geophysical factors can reach about 60% of total spacecraft failures (e.g., Pilipenko
et al. 2006). Drastic deterioration of the space weather, that is fast increase in
solar and geomagnetic activity, may greatly affect the ground-based technological
systems and can endanger human life or health. At geostationary orbits the most
dangerous effect is the influence of energetic particles on spacecraft performance.
Depending on the particle energy, it can produce electrostatic charging followed by
the faulty operation of electronics. The space-borne equipment errors have occurred
during a magnetospheric storm just after a sharp enhancement of the relativistic
electrons flux in the magnetosphere. The effect of these electrons is appearance of
static negative charges, which can be irregularly distributed on the satellite surface
because of different electric properties of surface elements. The potential drop
between adjacent details of the satellite can reach tenth kilovolts that may result
in dielectric breakdown and solar battery damage. Due to that the magnetospheric
electrons with energy about 100 keV are termed “killer electrons.” One of the best
known events is a breakdown of American satellite TELSTAR during a magnetic
storm in 1997, that resulted in the paging disconnection in considerable regions of
the USA.

Sudden magnetospheric perturbations may greatly affect systems of commu-
nication and navigation including satellite navigation (GPS, GALLILEO and
GLONASS) which in turn result in unforeseen contingencies (e.g., Yasuda et al.
2011; Takada et al. 2012). Air carriage comes up against such serious problems
as a complete or particular loss of communication during the flight, delay of
flight or changing of the flight routine, increase in fuel consumption, and fall off
of gross weight. Moreover, the fluxes of high energy protons (with the energies
greater than 100 MeV) of the solar flares can trigger health hazard for pilots and air
travelers because of enhanced radiation background onboard. For example, the FAA
(Federal Aviation Administration), which is primarily responsible for the safety and
regulation of civil aviation in the USA, has reported that due to the strong solar flares
on October 29 and 30, 2003 the global American system of precise GPS-positioning
WAAS (Wide Area Augmentation System) was nonserviceable for aviation for 15
and 11 h, respectively. The intense radio bursts of clockwise-polarized waves in the
frequency range of L1 and L2, which is usually used for satellite navigation, have
been observed on December 2006. This results in the complete loss of GPS-signal
for 10 min. With the current trend in miniaturization of electronic equipment, the
impact of solar energetic particles greatly increases the risk of radiation damage
of particular elements which may result in false operation and the generation of
incorrect commands. For example, the failure probability of main memory module
due to an impact of individual solar high energy particle was estimated to be one
event per 200 h during the flight in polar region.

In the interest of air traffic, the space weather monitoring needs to include
measurements of solar particle fluxes and Roentgen radiation, ejections of coronal
plasma, and other characteristics of the solar activity provided by geostationary
satellites as well as the observations of the particle flux variations in polar region and
Earth radiation belts provided by polar satellites. Indices of solar and geomagnetic
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activities, measurements of absorption in D region of the ionosphere and polar cap,
and other ground-based observations provide us with additional information (Burov
et al. 2013).

For monitoring and study of the space weather the modern geophysics has a
powerful tool such as space stations between the Sun and the Earth, flotilla of
satellites in near-earth orbits, solar radio-telescopes, a network of ground-based
radars and magnetometers. One of the challenges of magnetospheric research is
to know enough about the solar activity and geomagnetic storms to make it possible
for us to forecast the space weather. Much emphasis has been put on studies of
this problem during the last few decades due to the increasing deployment of
radiation- current- and field-sensitive systems in space and complex technological
systems on the Earth. Despite much success in the study of this problem, the space
weather forecasting has not become purely an engineering problem and it remains a
formidable task to be accomplished.

Appendix F: FLR Structure

In Sect. 6.2 we study the FLR theory on the basis of the “MHD box” model.
The plasma dynamics is described by Eqs. (6.25)–(6.30) where all the perturbed
quantities are assumed to vary as exp

��i!t C ikyy
�
. Eliminating the plasma

velocity from this set of equations we are thus left with the set

i!Ex=V
2
A D @zıBy � ikyıBz C �0Jx; (6.112)

�i!Ey=V 2
A D @zıBx � @xıBz � �0Jy; (6.113)

@zEy D �i!ıBx; (6.114)

@zEx D i!ıBy; (6.115)

@xEy � ikyEx D i!ıBz: (6.116)

Eliminating the variations of magnetic fields ıBx , ıBy , and ıBz from Eqs. (6.112)–
(6.116) we come to the set

�
@2z C k2A

�
Ex D iky

�
@xEy � ikyEx

� � i�0!Jx; (6.117)
�
@2x C @2z C k2A

�
Ey D iky@xEx � i�0!Jy; (6.118)

where k2A D !2=V 2
A . Notice that if ky D 0, Eqs. (6.117) and (6.118) are similar

to Eqs. (6.31) and (6.32). The boundary conditions at the “MHD box” sides, which
correspond to the northern .z D l1/ and the southern ionospheres .z D 0/, are given
by Eq. (6.35)

Using a variable separation method, we seek for the solution of Eqs. (6.117)
and (6.118) in terms of the series



Appendix F: FLR Structure 265

Ex D
X

n

an .x/ qn .z/ and Ey D
X

n

bn .x/ qn .z/; (6.119)

where the eigenfunctions, qn .z/, of the problem must satisfy the following equation

d2qn

d z2
C k2nqn D 0; (6.120)

where kn denotes the eigenvalues of the problem. The solution of Eq. (6.120) is
given by

qn D C1 sin knz C C2 cos knz: (6.121)

To find the undetermined constantsC1,C2 and the eigenvalues, one should substitute
Eq. (6.119) for Ex and Ey into boundary conditions (6.35) to yield

dqn

d z
D ˙i!�0†Ṗ qn: (6.122)

Here the sign plus and †C
P correspond to the northern ionosphere, i.e., z D l1,

while the sign minus and †�
P correspond to the southern ionosphere, i.e., z D 0.

Substituting Eq. (6.121) for qn into Eq. (6.122) and rearranging, we come to the set
of algebraic equations for the constants C1 and C2. These equations have nontrivial
solutions under the requirement that

exp .�2iknl1/ D .1 �XC/ .1 �X�/
.1CXC/ .1CX�/

; (6.123)

where

X˙ D �0!†Ṗ
kn

: (6.124)

Consider first two opposite extreme cases of zeroth and infinite Pedersen
conductivities. If †P D 0 at both the conjugate ionospheres, the right-hand side
of Eq. (6.123) is equal to unity. The same is true in the inverse case of the perfectly
conducting ionosphere when both †Ṗ and X˙ tend to infinity. In these extreme
cases Eq. (6.123) has only real roots

kn D �n=l1; (6.125)

where n D 1; 2; 3 : : : Moreover, these eigenvalues are independent of both the
frequency ! and coordinate x.

In a general case of finite †Ṗ Eq. (6.123) has a discrete spectrum of com-
plex eigenvalues kn. The normalized eigenfunctions of the problem that obey
Eqs. (6.120) and (6.122) can be written as
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qn D sin knz

kn
C i cos knz

�0!†
�
P

: (6.126)

First of all we note that these functions satisfy both Eq. (6.120) and the boundary
condition (6.122) at z D 0. Moreover, substituting Eq. (6.126) for qn into the
boundary condition (6.122) at z D l1 we come to the identity taking into account
Eq. (6.123).

It can be shown that these eigenfunctions form a set of orthonormal functions in
the sense that

l1Z

0

qn .z/ qm .z/ d z D ınm; (6.127)

where ınm denotes the Kronecker symbol

ınm D


1; n D mI
0; n ¤ m:

(6.128)

To find the functions an .x/ and bn .x/ we substitute Eq. (6.119) for Ex and Ey
into Eqs. (6.117) and (6.118)

X

m

�
k2A � k2m

�
amqm D iky

X

m

�
b0
m � ikyam

�
qm � i�0!Jx; (6.129)

X

m

˚
b00
m C �

k2A � k2m
�
bm
�
qm D iky

X

m

a0
mqm � i�0!Jy; (6.130)

where the prime denotes derivative with respect to x.
Now we consider free oscillations of the electromagnetic field in the MHD

box. In other words, the sources of the driving/external currents and perturbations
are assumed to be “turn off” so that Jx D Jy D 0. Multiplying both sides of
Eqs. (6.129) and (6.130) by qn .z/, integrating these equations over z from 0 to l1
and using the orthogonality condition (6.127) we are thus left with the set

ikyb
0
n D

	
k2A � k2n � k2y



an; (6.131)

ikya
0
n D b00

n C
	
k2A � k2n



bn: (6.132)

Eliminating an from Eqs. (6.131) and (6.132) and rearranging, we obtain

b00
n � k2y

�
k2A
�0
b0
n

�
k2A � k2n

� 	
k2A � k2n � k2y


 C
	
k2A � k2n � k2y



bn D 0: (6.133)
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The solution of Eq. (6.133) depends on the boundary conditions at x D 0

and x D l2. Without specifying these boundary conditions, we now will study
the differential equation (6.133) to find some features which are common to all
solutions. This equation exhibits strong singularities found in the denominator of
its second term. Assuming for the moment that kA .x/ D !=VA .x/ is a monotonic
function of x, then Eq. (6.133) may have two regular singular points, say x D �;

where

k2A .�/ D k2n; (6.134)

and x D 
 where

k2A .
/ D k2n C k2y: (6.135)

Following Southwood (1974), we suppose that the value of 
 in Eq. (6.135) is
real and consider a small neighborhood of the singular point x D 
 where the
function k2A can be expanded in a power series of x � 
, that is, k2A � k2n C k2y C
�
k2A
�0
.x � 
/ C o .x � 
/. Here the derivative

�
k2A
�0

is taken at x D 
. In the first
approximation Eq. (6.133) is thus reduced to

b00
n � b0

n

x � 
 C �
k2A
�0
.x � 
/ bn D 0: (6.136)

Southwood (1974) has shown that two independent solutions of Eq. (6.136) are
finite at the singular point x D 
. The implication of this singularity is that x D 


corresponds to a turning point, where the solutions change in character. We cannot
come close to exploring this problem in any detail, but we need to note that this point
divides a space of MHD box into two regions. In the first region the solutions are
quasioscillatory in nature, whereas in the next one the solutions are monotonically
increasing or decreasing functions of distance. In other words, the point x D 


corresponds to a turning point where solutions change from being oscillatory in
nature to characteristically growing or decaying with coordinate x.

More importantly, the solution can be infinite at the next singular point, x D � ,
which corresponds to the FLR conditions. Indeed, substituting kn D kA into
Eqs. (6.123) and (6.124) we come to Eq. (6.37), which describes the resonance
frequencies of the Alfvén oscillations. The implication here is that if k2A .�/ D k2n
then the field line at x D � will resonate with the shear Alfvén wave since the wave
frequency ! equals to one of the Alfvén resonance frequencies.

If the energy dissipation in the conjugate ionospheres is neglected, the eigen-
values are given by kn D �n=l1, that is, they are real whence it follows that the
resonant point � is real as well. In the dissipative case the parameter k2n is a complex
value so that the roots of Eq. (6.134) are in the complex plane x. Decomposing the
roots xn into its real and imaginary parts, we obtain xn D �n C iın. In what follows
we do not specify the value and sign of ın.
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Expanding k2A in a power series of x � .�n C iın/ we can reduce Eq. (6.133) to
the form

b00
n C b0

n

x � �n � iın � k2ybn D 0: (6.137)

The general solution of Eq. (6.137) is given by

bn D AI0 . Qx/C BK0 . Qx/; (6.138)

where Qx D ky .x � �n � iın/ is a dimensionless variable, I0 and K0 are modified
Bessel functions of order zero, and A and B denote arbitrary constants. We recall
that this solution is valid only near the singular points xn D �n C iın.

It should be noted that the function K0 has a logarithmic singularity in the
neighborhood of zero point, i.e., K0 . Qx/ / � ln Qx as Qx ! 0. This means that if
the energy dissipation is negligible, that is to say ın D 0, then the function K0 is
logarithmically infinite at x D �n. Not surprisingly, the amplitude of the resonance
may tend to infinity as the energy loss is ignored. Actually, the dissipation factor
ın ¤ 0 so that for real x the solution (6.138) exhibits finite behavior near the point
x D �n. This notation has concerns with the electric field given by Eq. (6.119). In
the vicinity of the resonant shell at x D �n we obtain the following asymptotic
formula:

Ey / .ln Qx/ qn .z/; (6.139)

Substituting k2A D k2n into Eq. (6.131) gives an D �ib0
n=ky whence it follows that

Ex / qn .z/ = Qx: (6.140)

Combining Eqs. (6.114) and (6.115) with Eqs. (6.139) and (6.140), we obtain

ıBx / ln Qx dqn .z/
d z

; (6.141)

ıBy / 1

Qx
dqn .z/

d z
: (6.142)

In order to find ıBz one should use the series development ofK0 . Qx/ up to the terms
� Qx2 ln Qx. As a result we get

ıBz /
�
1C Qx2

2
ln Qx

�
qn .z/: (6.143)

As is seen from the above equations, the field components Ex and ıBy , which
contain the factor Qx�1, reach a peak value near the point x D �n whereas the
components Ey and ıBx have logarithmic, that is, weak singularities, and ıBz is
a slowly varying function of Qx in this region.
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To study the shape of resonance components, Ex and ıBy , in a little more detail
we use the representation of Qx�1 in the form

1

Qx D exp .i'/
n
.x � �n/2 C ı2n

o1=2 ; (6.144)

where the argument ' of complex number is determined via

tan' D ın

x � �n : (6.145)

It is clear from Eq. (6.144) that near the resonant point the dependence jExj2
and

ˇ̌
ıBy

ˇ̌2
on x has a form of Lorentz’s curve outlined in Fig. 6.3. The normalized

component
ˇ̌
ıBy

ˇ̌2
versus normalized variable x=�n is sketched in this figure with

solid line 1. The Lorentz’s curve has a maximum at x D �n and the parameter jınj
is the characteristic half-width of this maximum. The argument/phase ' of Ex and
ıBy changes by � when crossing the maximum. A schematic plot of the component
ıBx is shown in Fig. 6.3 with dashed line 2.

In conclusion it should be noted that if VA .x/ is not a monotonic function there
may be more turning and resonance points.
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