
Chapter 5
MEM Analysis of the ρ Meson Sum Rule

5.1 Introduction

The technique of QCD sum rules is well known for its ability to reproduce various
properties of hadrons (Shifman et al. 1979; Reinders et al. 1985). Using dispersion
relations, this method connects perturbative and non-perturbative sectors of QCD,
and therefore, allows one to describe inherently non-perturbative objects such as
hadrons by the operator product expansion (OPE), which is essentially a perturba-
tive procedure. The higher-order terms of the OPE contain condensates of various
operators, which incorporate information on the QCD vacuum. Hence, QCD sum
rules also provide us with nontrivial relations between the properties of hadrons and
the QCD vacuum.

Since the early days of the development of QCD sum rules, the range of appli-
cations of this method has been constantly expanding, which has helped to explain
many aspects of the behavior of hadrons. Nevertheless, QCD sum rules have always
been subject to (justified) criticism. One part of this criticism is of mainly technical
nature, pointing out that the analysis of QCD sum rules often is not done with the
necessary rigor, namely, that the OPE convergence and/or the pole dominance con-
dition are not properly taken into account. Many of the recent works that followed
the claimed discovery of the pentaquark Θ+(1540) are examples of such a lack of
rigor. Nonetheless, these technical problems can be overcome if the analysis is done
carefully enough (Gubler et al. 2009a, b).

The second part of the criticism against QCD sum rules is more essential. It is
concerned with the ansatz taken to parametrize the spectral function. For instance,
it is common to assume the “pole + continuum” functional form, where the pole
represents the hadron in question and the continuum stands for the excited and
scattering states. While this ansatz may be justified in cases where the low-energy
part of the spectral function is dominated by a single pole and the continuum states
become important only at higher energies (the ρ-meson channel for instance is such
a case), it is not at all clear if it is also valid in other cases. For example, as shown
in Kojo and Jido (2008), where the σ -meson channel was investigated using QCD
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sum rules, it can be difficult to distinguish the continuum spectrum from a broad
resonance, because they lead to a similar behavior of the “pole” mass and residue
as functions of the Borel mass. Moreover, using the “pole + continuum” ansatz, the
outcome of the analysis usually depends on unphysical parameters such as the Borel
mass or the threshold parameter, and it is not always a trivial matter to determine
these parameters in a consistent way. After all, the ansatz of parametrizing the spectral
function makes a full error estimation impossible in QCD sum rules.

As a possible solution to these problems, we proposed in Gubler and Oka (2010) to
analyze QCD sum rules with the help of the Maximum Entropy Method (MEM). This
method has already been applied to Monte-Carlo studies in both condensed matter
physics (Jarrel and Gubernatis 1996) and lattice QCD (Nakahara et al. 1999; Asakawa
et al. 2001), and has applications in many other areas (Wu 1997). It makes use of
Bayes’ theorem of probability theory, which helps to incorporate known properties
of the spectral function such as positivity and asymptotic values into the analysis
and finally makes it possible to obtain the most probable spectral function without
having to introduce any additional a priori assumptions about its explicit form. It
even allows us to estimate the error of the obtained spectral function. Therefore,
using this approach, it should in principle be possible to study the spectral function
of any channel, including those for which the “pole + continuum” assumption is not
appropriate.

However, as a first step it is indispensable to check whether QCD sum rules are a
suitable target for MEM and if it is possible to obtain any meaningful information on
the spectral function by this method. To provide an answer to these questions is the
main object of this chapter. To carry out this check, we have chosen to investigate
the sum rule of the ρ-meson. This channel is one of the first subjects that have
been studied in QCD sum rules and it is fair to say that it is the channel where this
method has so far seen its most impressive success. As mentioned earlier, it is a case
where the “pole + continuum” ansatz works well and we thus do not expect to gain
anything really new from this analysis. Nevertheless, apart from the aspect of testing
the applicability of our new approach, we believe that it is worth examining this
channel once more, as MEM also provides a new viewpoint of looking at various
aspects of this particular sum rule.

5.2 Analysis Using Mock Data

The uncertainties that are involved in QCD sum rule calculations mainly originate
from the ambiguities of the condensates and other parameters such as the strong
coupling constant or the quark masses. These uncertainties usually lead to results
with relative errors of about 20 %. It is therefore not a trivial question if MEM can
be used to analyze the QCD sum rule results, or if the involved uncertainties are too
large to allow a sufficiently accurate application of the MEM procedure.

To investigate this question in detail, we carry out the MEM analysis using mock
data and realistic errors. Furthermore, we will study the dependence of the results
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on various choices of the default model m(ω) and determine which one is the most
suitable for our purposes. This analysis will also provide us with an estimate of the
precision of the final results that can be achieved by this method and what kind of
general structures of the spectral function can or cannot be reproduced by the MEM
procedure.

5.2.1 Generating Mock Data and the Corresponding Errors

Following Asakawa et al. (2001) and Shuryak (1993), we employ a relativistic Breit-
Wigner peak and a smooth function describing the transition to the asymptotic value
at high energies for our model spectral function of the ρ-meson channel:
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The values used for the various parameters are

mρ = 0.77 GeV, mπ = 0.14 GeV

ω0 = 1.3 GeV, δ = 0.2 GeV,

gρππ = 5.45, αs = 0.5, (5.2)

Fρ = mρ

gρππ

= 0.141 GeV.

The spectral function of Eq. (5.1) is then substituted into Eq. (4.1) and the integration
over ω is performed numerically to obtain the central values of the data points of
Gmock(M). (In this section, we will use Gmock(M) instead of GOPE(M) to make it
clear that we are analyzing mock data.)

We now also have to put some errors σ(M) to the function Gmock(M). To make
the analysis as realistic as possible, we will use exactly the same errors as in the
actual investigation of the OPE results. How these errors are obtained will be dis-
cussed later, in the section where the real OPE results are analyzed. We just mention
here that when analyzing the OPE results, we will use three different parametriza-
tions for the condensates and other parameters, namely, those given in Colangelo and
Khodjamirian (2001), Narison (2004), Ioffe (2006) (see Table 5.1). These parame-
trizations lead to different estimations of the errors, but for the mock data analysis of
this section, these differences are not very important. Here, we will therefore mainly
use the errors obtained from the parameters of Ioffe (2006). The resulting function
Gmock(M) is given in Fig. 5.1, together with the range Gmock(M) ± σ(M).

http://dx.doi.org/10.1007/978-4-431-54318-3_4


80 5 MEM Analysis of the ρ Meson Sum Rule

0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

0  0.5 1  1.5 2  2.5 3

G
m

oc
k

(M
)

M [GeV]

with ρ -meson peak
without ρ -meson peak

Fig. 5.1 Central values of the mock data (red line) obtained by numerically integrating Eq. (4.1)
with Eq. (5.1). The errors of the data, extracted from the parameters of Ioffe (2006), are indicated
by the gray region. The lower boundary of the shown errors corresponds to Mmin, below which the
OPE does not converge. For comparison, the integral of Eq. (4.1) is also shown for the case when
only the continuum part, the second term of Eq. (5.1), is taken for the spectral function (green line)

5.2.1.1 Determination of the Analyzed Borel Mass Region

Next, we have to decide what range of M to use for the analysis. For the lower
boundary, we can employ the usual convergence criterion of the OPE such that the
contribution of the highest-dimensional operators is less than 10 % of the sum of all
OPE terms. This is a reasonable choice, as the errors originating from the ranges
of condensate values lead to uncertainties of up to 20 %, and it would therefore not
make much sense to set up a more strict convergence criterion. For the parameters
of Ioffe (2006), this gives Mmin = 0.77 GeV.

Considering the upper boundary of M , the situation is less clear. In the conven-
tional QCD sum rule analysis, it is standard to use the pole dominance condition,
which makes sure that the contribution of the continuum states does not become too
large. As we do not resort to the “pole + continuum” ansatz in the current approach,
the pole dominance criterion does not have to be used and one can, in principle,
choose any value for the upper boundary of M . Nevertheless, because we are mainly
interested in the lowest resonance peak, we will use a similar pole dominance cri-
terion as in the traditional QCD sum rules. By examining the mock data in Fig. 5.1,
one sees that while the resonance pole contributes most strongly to the data around
M ∼ 1 GeV, the contributions from the continuum states grow with increasing M
and finally start to dominate the data for values that are larger than 1.5 GeV. We
will therefore use Mmax = 1.5 GeV as the upper boundary of M for the rest of this
chapter. The dependence of the final results on this choice is small, as will be shown
later in Fig. 5.4.

http://dx.doi.org/10.1007/978-4-431-54318-3_4
http://dx.doi.org/10.1007/978-4-431-54318-3_4
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Finally, the values of the NM data points of Gmock(M) between Mmin and Mmax
are randomly generated, using Gaussian distributions with standard deviations σ(M),
centered at the values obtained from the integration of Eq. (4.1). The ranges of values
of Gmock(M) are indicated by the gray region in Fig. 5.1. We take 100 data points
for functions of the Borel mass M (NM = 100) and have checked that the results of
the analysis do not change when this value is altered. For functions of the energy ω,
600 data points are taken (Nω = 600).

5.2.2 Choice of an Appropriate Default Model

It is important to understand the meaning of the default model m(ω) in the present
calculation. It is in fact used to fix the value of the spectral function at high and low
energies, because the function GOPE(M) contains only little information on these
regions. This can be understood firstly by considering the property of the kernel

K (M, ω) = 2ω

M2 e−ω2/M2
, (5.3)

which is zero at ω = 0. GOPE(M) therefore contains no information on ρin(ω = 0)

and the corresponding result of the MEM analysis ρout(ω = 0) will thus always
approach the default model, as GOPE(M) does not constrain its value. Secondly, we
use GOPE(M) only in a limited range of M , because the operator product expansion
diverges for small M and the region of very high GOPE(M) is dominated by the high-
energy continuum states, which we are not interested in. The region of the spectral
function, which contributes most strongly to GOPE(M) between Mmin and Mmax,
lies roughly in the range between ωmin (� Mmin) and ωmax (� Mmax), as can be for
instance inferred from Fig. 5.1. ρout(ω) will then approach the default model quite
quickly outside of this region, because there is no strong constraint from GOPE(M).
This implies that the values of ρout(ω) at the boundaries are fixed by the choice of the
default model and one should therefore consider these boundary conditions as inputs
of the present analysis. Once these limiting values of ρ(ω) are chosen, the MEM
procedure then extracts the most probable spectral function ρout(ω) given GOPE(M)

and the boundary conditions supplied by m(ω).
To illustrate the importance of choosing appropriate boundary conditions, we

show the results of the MEM analysis for a constant default model, with a value
fixed to the perturbative result at high energy. Here, the boundary condition for the
low energy is not correctly chosen, because the spectral function is expected to vanish
at very low energy. The result is given in Fig. 5.2 and clearly shows that ρout(ω) does
not reproduce ρin(ω).

This is in contrast to the corresponding behavior in lattice QCD, where it suffices
to take a constant value of the spectral function, chosen to be consistent with the
high-energy behavior of the spectral function to obtain correct results. The reason
for this difference is mainly that the OPE in QCD sum rules is not sensitive to the

http://dx.doi.org/10.1007/978-4-431-54318-3_4
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Fig. 5.2 Outcome of the MEM analysis using a constant default model with its value fixed to the
perturbative result (green line). ρin(ω) is the function that was used to produce the mock data (blue
line), given in Eq. (5.1), and ρout(ω) shows the result of the MEM procedure (red line)

low-energy part of the spectral function, owing to the properties of the kernel and our
limitations in the applicability of the OPE. Most importantly, the information that
there is essentially no strength in the spectral function below the rho-meson peak, is
stored in the region of the Borel mass M around and below M = 0.5 GeV. However,
as the OPE does not converge in this region, it is not available for our analysis and
we therefore have to use the default model to adjust the spectral function to the
correct behavior. On the other hand, in lattice QCD, it is possible to calculate the
correlator reliably at sufficiently high euclidean time, where the effective mass plot
reaches a plateau and thus only the ground state contributes. Therefore, it seems
that from lattice QCD one can gain sufficient information on the low-energy part of
the spectral function, and one does not need to adjust the default model to obtain
physically reasonable results.

For the present analysis, we introduce the following functional form, to smoothly
connect low- and high-energy parts of the default model,

m(ω) = 1

4π2

(
1 + αs

π

) 1

1 + e(ω0−ω)/δ
, (5.4)

which is close to 0 at low energy and approaches the perturbative value 1+ αs
π

at high
energy, changing most significantly in the region between ω0 − δ and ω0 + δ. This
function can be considered to be the counterpart of the “continuum” in the “pole +
continuum” assumption of

ImΠ(s) = π |λ|2δ(s − m2) + θ(s − sth) ImΠOPE(s), (5.5)
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where δ is essentially taken to be 0 and the threshold parameter sth corresponds to ω0.
Equation (5.4) nevertheless enters into the calculation in a very different way than
the second term of Eq. (5.5) in the conventional sum rules, and one should therefore
not regard these two approaches to the continuum as completely equivalent.

We have tested the MEM analysis of the mock data for several values of ω0 and δ

and the results are shown in Fig. 5.3. One sees that in the cases of d and e, the sharply
rising default model induces an artificial peak in the region of ω0. Even though these
peaks are statistically not significant, they may lead to erroneous conclusions. We
will therefore adopt only default models, for which only small artificial structures
appear, such as in the case of a–c. Comparing these three figures, it is observed that
the error of the spectral function relative to the height of the ρ-meson peak is smallest
for the parameters of c. We therefore adopt this default model with ω0 = 2.0 and
δ = 0.1 GeV in the following investigations.

It is worth considering the results of Fig. 5.3 also from the viewpoint of the depen-
dence of the peak position on the default model. It is observed that even though the
height of the ρ-meson peak varies quite strongly depending on which default model is
chosen, its position only varies in a range of ±40 MeV, which shows that the present

0 1 2 3 4 5 6

ω [GeV]

ω0 = 2.5 GeV
δ = 0.1 GeV

ω0 = 2.0 GeV
δ = 0.1 GeV

0

 0.02

 0.04

 0.06

 0.08

 0.1

ρ(
ω) ω0 = 2.0 GeV

δ = 0.2 GeV

(a)
ω0 = 1.5 Ge V
δ = 0.1 Ge V

default model
ρ

in
(ω)

ρout (ω)

ω0 = 2.0 GeV
δ = 0.05 Ge V

(b) (c) (d)

(e)

Fig. 5.3 Results of the MEM investigation of mock data with various default models. As in Fig. 5.2,
the red lines stand for the output of the analysis ρout(ω), the green lines for the default model with
the parameters shown in the figure, and the blue lines for the input function ρin(ω) of Eq. (5.1).
The horizontal bars show the values of the spectral function, averaged over the peaks 〈ρout〉ω1,ω2

and the corresponding ranges 〈ρout〉ω1,ω2 ± 〈δρout〉ω1,ω2 . Their extent shows the averaged interval
(ω1, ω2). For figures c, d and e, the lower error bars of the second peak are not shown because they
lie below ρ(ω) = 0
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evaluation of the lowest pole position does not strongly depend on the detailed val-
ues of ω0 and δ. This behavior should be compared with the results of the usual
sum rules, where the dependence of the pole mass on the threshold parameter sth is
stronger. On the other hand, we have to mention that ω0 should not be chosen to have
a value much below ω0 = 1.5 GeV, because, in this region, the artificial structures
discussed above start to interfere with the ρ-meson peak. Moreover, if the default
model approaches the limit shown in Fig. 5.2, where m(ω) is just a constant fixed to
the asymptotic value at high energy, the ρ-meson peak will gradually disappear.

5.2.3 Investigation of the Stability of the Obtained
Spectral Function

Next, we will briefly discuss the dependence of our results on the upper boundary of
the employed Borel mass region Mmax. In Fig. 5.4, we show the results for the values
Mmax = 1.5, 2.0 and 2.5 GeV. Here, the default model with parameters ω0 = 2.0
and δ = 0.1 GeV was used. The spectral functions of these three cases almost
coincide and have the same qualitative features. Quantitatively, the peak position of
the ρ-meson is shifted only 20 MeV when Mmax is raised from 1.5 to 2.5 GeV.

Let us also check how the results of the analysis are affected by a different choice
of parameters, leading to altered magnitudes of error and also differing lower bound-
aries of the Borel mass Mmin. Of the three parameter sets used in this study, given in
Table 5.1, the errors of Colangelo and Khodjamirian (2001) are rather small, while
the errors of Narison (2004) and Ioffe (2006) are larger and have about the same
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Fig. 5.4 MEM results for three different values of the upper boundary of the Borel mass Mmax.
For the default model, the same version as in Fig. 5.3, c was used. Thus, the red line of this figure
is the same as the one of Fig. 5.3, c
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Fig. 5.5 Findings of the MEM analysis with different error estimations and lower boundaries of
the Borel mass Mmin. For the default model, the same version as in Fig. 5.3c was used. The red line
uses parameters of Colangelo and Khodjamirian (2001), the green line those of Narison (2004) and
the blue line those of Ioffe (2006). Note that we use for this plot the same mock data for all three
cases and vary only the errors and Mmin

overall magnitude. Moreover, Mmin, which is determined from the OPE conver-
gence criterion mentioned earlier, takes values Mmin = 0.72 GeV for Colangelo and
Khodjamirian (2001), 0.83 GeV for Narison (2004) and 0.77 GeV for Ioffe (2006).
To understand how these parameters affect the MEM analysis, the results of the cal-
culation using the same central values for the mock data, but different errors and
Mmin, are shown in Fig. 5.5. It is observed that the spectral functions are very similar
and depend only weakly on the choice of errors and Mmin.

Finally, it is important to confirm whether the lowest peak that we have observed
in all the results so far really originates from the ρ-meson peak of the input spectral
function. In other words, we have to verify that the lowest peak obtained from the
MEM analysis really disappears when the ρ-meson peak is removed from the input
spectral function. The result for this case is given in Fig. 5.6. We see that while we
get the same (non-significant) peak around 2.0 GeV as before, which is induced
by the sharply rising default model in this region, the lower peak has completely
disappeared. This confirms that the lower peak is directly related to the ρ-meson
peak and is not generated by any other effects of the calculation.

5.2.4 Estimation of the Precision of the Final Results

To obtain an estimate of the precision of the current approach, let us now turn to the
numerical results of our analysis of mock data. We regard part c of Fig. 5.3 as our
main result, the central value of the peak being mρ,out = 0.84 GeV. The shift from
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Fig. 5.6 Outcome of the
MEM analysis using mock
data without the ρ-meson
peak. ρin(ω) (blue line) is
the function that was used to
produce the mock data and
ρout(ω) (red line) shows the
result of the MEM procedure.
For the default model, the
same version as in Fig. 5.3c
was used (green line)
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the true value of mρ,in = 0.77 GeV is caused by the errors of the involved parameters
and by the fact that we cannot use all the data points of Gmock(M), but only the ones
for which we have some confidence that the OPE converges.

Furthermore, as discussed above, there are some additional uncertainties of ±40
MeV coming from the choice of the default model and ±20 MeV from the value of
Mmax. The overall error is then obtained by taking the root of the sum of all squared
errors and rounding it up. This gives

Δmρ � ±90 MeV, (5.6)

which is quite large but seems to be realistic when one considers the large errors of the
condensates that are involved in the calculation. For the other parametrizations, we
get similar results, specifically, Δmρ � ±60 MeV for Colangelo and Khodjamirian
(2001) and Δmρ � ±100 MeV for Narison (2004).

Having the spectral function at our disposal, it becomes possible to extract the
coupling strength of the interpolating field to the ρ-meson state, the quantity corre-
sponding to Fρ in Eq. (5.1). We obtain this coupling strength by fitting the spectral
function in the region of the ρ-meson resonance with a relativistic Breit-Wigner peak
of the same functional form as the first term of Eq. (5.1) plus a second-order polyno-
mial to describe the continuum background. In order that the background does not
become negative and does not contribute to the peak, we have restricted the coef-
ficients of the polynomial to positive values. An example of the resulting curves is
given in Fig. 5.7. For part c of Fig. 5.3, we get a value of Fρ,out = 0.178 GeV, which
is somewhat larger than the true value of Fρ,in = 0.141 GeV. It is not a surprise
that the precision of this quantity is worse than that of the peak position, because the
shape of the peak is deformed quite strongly owing to the MEM analysis. As can
be suspected when looking at Fig. 5.3, there is also a fairly large uncertainty coming
from the choice of the default model, which is about ±0.031 GeV. On the other hand,
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Fig. 5.7 An example of a result of the fitting procedure described in the text. For the spectral
function (red line) ρout(ω), we use here the same as in Fig. 5.3c. For the peak, a relativistic Breit-
Wigner form is employed (green line), while the background is parametrized by a second-order
polynomial with positive valued coefficients (blue line)

we found that the dependence on the boundaries of the fitting region and on Mmax is
very small, being ±0.003 and ±0.001 GeV, respectively. Altogether, this gives the
following error for Fρ :

ΔFρ � ±0.049 GeV. (5.7)

A similar analysis for the parameters of Colangelo and Khodjamirian (2001) gives
ΔFρ � ±0.038 GeV and ΔFρ � ±0.049 GeV for Narison (2004).

As one further point, it is important to investigate if and how the precision of the
MEM analysis improves once the OPE data will be available with better precision.
To answer this question, we have repeated the analysis using an error with a smaller
magnitude and have found that, concerning the pole position, the reproducibility
indeed improves with a smaller error. For instance, using the errors obtained from the
Ioffe parameters of Ioffe (2006), we get mρ,out = 0.84 GeV, but when we reduce the
errors by hand to 20 % of their real value, the result shifts to mρ,out = 0.78 GeV, which
almost coincides with the correct value of mρ,in = 0.77 GeV. To a lesser degree, the
same is true for the residue. Its value changes from Fρ,out = 0.178 GeV to Fρ,out =
0.167 GeV with reduced error values, compared with the input value of Fρ,in = 0.141
GeV, which is also an improvement. On the other hand, we could not observe a
significantly better reproducibility of the width with the reduced error values.

These results show that the MEM analysis of QCD sum rules has the potential to
become more accurate in obtaining the position and the residue of the ρ-meson pole,
once the values of the condensates are known with better precision. At the same time,
it has to be noted that an accurate determination of the width seems to be difficult
to achieve in the current approach even with smaller errors. The reason for this is
discussed in the following section.
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Fig. 5.8 Two versions of Gmock(M), the red line showing the one with the standard value for the
width as given in Eqs. (5.1) and (5.2), and the green line giving a version where Γρ(ω) of Eq. (5.1)
is doubled and Fρ = 0.149 GeV is used

5.2.5 Why it is Difficult to Accurately Determine the Width
of the ρ Meson

We have so far focused our discussion on the reproduction of the parameters mρ and
Fρ of the spectral function and have shown that, by the MEM analysis, they could
be reproduced with a precision of approximately 20 %. Considering now the width
Γρ , the situation turns out to be quite different, as can be observed for instance in
Fig. 5.3. We see there that the values of the width come out about twice as large as
in the input spectral function of Eq. (5.1).

The reason for this difficulty of reproducing the width lies in the small dependence
of Gρ(M) on Γρ . This is illustrated in Fig. 5.8. We see there that the curve obtained
from our model spectral function of Eqs. (5.1) and (5.2) and the one generated from
a spectral function for which the width of the ρ-meson peak has been doubled and
a slightly larger value for Fρ has been used (Fρ = 0.149 GeV compared with the
standard value of 0.141 GeV), almost coincide. This means that with the precision
available for our QCD sum rule analysis, it is practically impossible to distinguish
between these two cases. Examining the curves of Fig. 5.8 a bit more carefully, it
is found that the most prominent difference between them lies in the region of 0.5
GeV or below. However, this region cannot be accessed by the current calculation,
as the OPE does not converge well for such small values of M . Furthermore, even
if we could have calculated the OPE to higher orders and would thus have some
knowledge about GOPE(M) in the region below 0.5 GeV, this would most likely
not help much, as the uncertainty here will be large owing to the large number of
unknown condensates that will appear at higher orders of the OPE. We therefore
have to conclude that it is not possible to say anything meaningful about the width
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of the ρ-meson peak at the current stage. To predict the width, the OPE has to be
computed to higher orders and the various condensates have to be known with much
better precision than they are today.

5.3 Analysis Using the OPE Results

5.3.1 The ρ Meson Sum Rule

Carrying out the OPE and applying the Borel transformation, we obtain the left-
hand side of Eq. (4.1), GOPE(M). In the case of the vector meson channel, we use
the operator

jμ = 1

2
(ūγμu − d̄γμd), (5.8)

which stands for J in Eq. (3.1) and take the terms proportional to the structure qμqν −
q2gμν . We then arrive at the following expression for GOPE(M), where the OPE has
been calculated up to dimension 6:

GOPE(M) = 1

4π2

(
1 + η(αs)

)
+

(
2m〈q̄q〉 + 1

12

〈αs

π
G2〉) 1

M4

− 112π

81
αsκ〈q̄q〉2 1

M6 + · · · , (5.9)

η(αs) =αs

π
+ 0.154α2

s − 0.372α3
s + · · · .

Here, αs is the usual strong coupling constant, given as g2

4π
, m stands for the (aver-

aged) quark mass of the u- and d-quarks, and 〈q̄q〉 is the corresponding quark con-
densate. Meanwhile, the gluon condensate

〈
αs
π

G2
〉

is an abbreviated expression for〈
αs
π

Ga
μνGaμν

〉
and κ parametrizes the breaking of the vacuum saturation approxima-

tion, which has been used to obtain the above result for κ = 1.
A few comments about this result are in order here. For the perturbative term,

which is known up to the third order in αs , we have taken the number of flavors to be
N f = 4. Note that only the second and third terms of η(αs) depend (weakly) on N f

(Surguladze and Samuel 1996) and that the final results of the analysis are thus not
affected by this choice. We have not considered the running of αs in deriving Eq. (5.9)
for simplicity. If the running is taken into account, the coefficient of the third term
of η(αs) changes due to the Borel transformation, as was shown in Shifman (1998).
Nevertheless, this again leads only to a minor change in the whole expression of
Eq. (5.9) and does not alter any of the results shown in the following. Considering
the terms proportional to 1/M4, the first-order corrections of the Wilson coefficients
are in fact known (Surguladze and Samuel 1996), but we have not included them
here as the values of the condensates themselves have large uncertainties, and it is

http://dx.doi.org/10.1007/978-4-431-54318-3_4
http://dx.doi.org/10.1007/978-4-431-54318-3_3
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Table 5.1 Values of the parameters used in the calculation. These have been adjusted to the renor-
malization scale of 1 GeV

Colangelo and Khodjamirian (2001) Narison (2004) Ioffe (2006)

〈q̄q〉 [GeV3] −(0.24 ± 0.01)3 −(0.238 ± 0.014)3 −(0.248 ± 0.013)3〈
αs
π

G2
〉 [GeV4] 0.012 ± 0.0036 0.0226 ± 0.0029 0.009 ± 0.007

κ 1 2.5 ± 0.5 1.0 ± 0.1
αs 0.5 0.50 ± 0.07 0.57 ± 0.08

therefore not necessary to determine the corresponding coefficients with such a high
precision. It is nonetheless important to note that these corrections are small (namely
of the order of 10 % or smaller, compared with the leading terms) and thus do not
introduce any drastic changes into the sum rules.

5.3.1.1 Values of the Parameters and Their Uncertainties

There are various estimates of the values of the condensates and their ranges. We
will employ the ones given in three recent publications: Colangelo and Khodjamirian
(2001), Narison (2004), Ioffe (2006). The explicit values are given in Table 5.1,
where they have been adjusted to the renormalization scale of 1 GeV. For the central
value of m〈q̄q〉, we make use of the Gell-Mann-Oakes-Renner relation, which gives
m〈q̄q〉 = − 1

2 m2
π f 2

π and take the experimental values of mπ and fπ for all three
cases, leading to

m〈q̄q〉 = −8.5 × 10−5 GeV4. (5.10)

Note that due to its smallness, the term containing m〈q̄q〉 does not play an important
role in the sum rules of Eq. (5.9). The values of Table 5.1 agree well for 〈q̄q〉 and αs ,
while they differ considerably for

〈
αs
π

G2
〉

and κ . Namely, Narison (2004) employs
values for

〈
αs
π

G2
〉

and κ that are about two times larger than those of Colangelo
and Khodjamirian (2001) and Ioffe (2006). Considering the error estimates of the
parameters, Colangelo and Khodjamirian (2001) uses altogether the smallest errors
as the breaking of the vacuum saturation approximation is not considered and only
a fixed value for αs is employed. Comparing the results obtained from these three
parameter sets will provide us with an estimate of the order of the systematic error
inherent in the current calculation.

5.3.1.2 Determination of the Errors of GOPE(M)

As can be inferred from Eq. (5.9) and Table 5.1, the uncertainty of GOPE(M) will vary
as a function of M and will be larger for small values of M because the contributions
of the higher-order terms with large uncertainties of the condensates become more
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Fig. 5.9 An example of
the distributed values of
GOPE(M) for M = 0.84 GeV.
Here, the parameters of Ioffe
(2006) have been used
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important in that region. To accurately estimate this error, we follow Leinweber
(1997) and numerically generate Gaussianly distributed values for the condensates,
and then examine the distribution of the resulting values of GOPE(M). For illustration,
we show the values of GOPE(M = 0.84 GeV) in Fig. 5.9, where the parameter
estimates of Ioffe (2006) have been used. σ(M), the error of GOPE(M), can then be
easily extracted from this distribution by using the formula of the standard deviation
of a given set.

As for the analysis of the mock data, the data points of GOPE(M) are randomly
generated, using Gaussian distributions with standard deviations σ(M), centered at
GOPE(M) of Eq. (5.9). We here again take NM = 100 and Nω = 600. Mmin is
determined from the 10 % convergence criterion and Mmax is fixed to 1.5 GeV.

5.3.2 Results of the MEM Analysis

Having finished all the necessary preparations, we now proceed to the actual MEM
analysis of the real OPE data. First, we show the central values of the right-hand side
of Eq. (5.9) and the corresponding errors for the three parameter sets of Colangelo
and Khodjamirian (2001), Narison (2004), Ioffe (2006) on the left side of Fig. 5.10.
Comparing these figures with Fig. 5.1, we see that the OPE results and the mock data
obtained from Eq. (5.1) exhibit a very similar behavior, even in the region smaller
than Mmin, below which we have no control over the convergence of the OPE.

Using these data, we have carried out the MEM analysis. For the default model,
we have adapted the function

m(ω) = 1

4π2

(
1 + η(αs)

) 1

1 + e(ω0−ω)/δ
(5.11)
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Fig. 5.10 On the left, the central values of GOPE(M) (red lines) with the errors σ(M) (gray region)
are given. The lower boundary of the shown errors corresponds to Mmin, below which the OPE does
not converge. These plots should be compared with Fig. 5.1. On the right, the results of the MEM
analysis using these OPE data are displayed (red lines). The green lines show the default model, and
the horizontal bars stand for the values of the spectral function, averaged over the peaks 〈ρout〉ω1,ω2

and the corresponding ranges 〈ρout〉ω1,ω2 ± 〈δρout〉ω1,ω2 . Their extent shows the averaged interval
(ω1, ω2). For the lower two figures the lower error bars of the second peak are not shown because
they lie below ρ(ω) = 0
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Table 5.2 Final results for the three parameter sets. The respective errors are determined from our
analysis of mock data in the previous section

Colangelo and Khodjamirian (2001) Narison (2004) Ioffe (2006) Experiment

mρ (GeV) 0.75 ± 0.06 0.84 ± 0.10 0.83 ± 0.09 0.77
Fρ (GeV) 0.172 ± 0.038 0.190 ± 0.049 0.186 ± 0.049 0.141

with parameters ω0 = 2.0 and δ = 0.1 GeV, which we have found in our investigation
of the mock data to give the best reproduction of the ρ-meson peak with the smallest
relative error and no large artificial peaks. The results are shown on the right side of
Fig. 5.10. We clearly see that all three data sets give a significant lowest peak, which
corresponds to the ρ-meson resonance. To determine the peak position, we simply
adopt the value, where the peak reaches its highest point. The uncertainty of this
quantity has already been estimated in our mock-data analysis and we employ the
number that has been obtained there to specify the error of our final results that are
given in the first line of Table 5.2.

Next, fitting the spectral functions of Fig. 5.10 to a relativistic Breit-Wigner peak
plus a second-order polynomial background, as was done in Fig. 5.7, we have deter-
mined the coupling strength Fρ from our obtained spectral function, leading to the
results given in the second line of Table 5.2. As could be expected from our experience
with the mock data, we get results that are all somewhat larger than the experimental
value.

5.3.2.1 Dependence of the ρ-Meson Peak on the Values
of the Condensates

Looking at Tables 5.1 and 5.2, it is interesting to observe that even though the para-
meter sets of Narison (2004) and Ioffe (2006) are quite different, they lead to almost
identical results. This fact can be explained from the dependences of the properties
of the ρ-meson resonance on 〈q̄q〉, 〈αs

π
G2

〉
and κ , as will be shown in this subsection.

Investigating the relation between the ρ-meson resonance and the condensates is
also interesting in view of the behavior of this hadron at finite temperature or density,
as the values of the condensates will change in such environments. This will in turn
alter the QCD sum rule predictions for the various hadron properties. A detailed
study of this kind of behavior of the ρ-meson is nevertheless beyond the scope of the
present paper and is left for future investigations. Here, we only discuss the change
in the mass of the ρ-meson when the values of the condensates are modified by hand.
The behavior of the peak position mρ is shown in Fig. 5.11.

For obtaining these results, we have used the errors of Colangelo and Khod-
jamirian (2001) and the corresponding values of κ and αs , but have confirmed that
the qualitative features of Fig. 5.11 do not depend on the explicit values of these
parameters. It is seen that while mρ decreases somewhat when 〈αs

π
G2〉 increases,

its value grows quite strongly when 〈q̄q〉 increases, irrespective of the value of the
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Fig. 5.11 a The mass mρ

shown as a function of the
gluon condensate 〈 αs

π
G2〉.

Here, the value of 〈q̄q〉 =
−(0.24)3 GeV3 has been used
for the quark condensate.
b mρ shown as a function of
the quark condensate 〈q̄q〉 for
three different values of the
gluon condensate. To obtain
these plots, the errors of
Colangelo and Khodjamirian
(2001) have been used
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gluon condensate. We found that the coupling strength Fρ shows the same qualita-
tive behavior, slightly decreasing with increasing 〈αs

π
G2〉, and strongly increasing

with increasing 〈q̄q〉. A similar tendency for mρ and Fρ has also been observed in
Leinweber (1997). This result shows that the quark condensate plays an essential
role in determining the properties of the ρ-meson.

It is important to note here that the correlation between mρ and 〈q̄q〉 to a large
part occurs due to the last term in GOPE(M) of Eq. (5.9), which contains the squared
quark condensate. This means that a similar (but weaker) correlation exists between
mρ and κ , which is also present in the last term of GOPE(M). Hence, we can now
understand why the parameters of Narison (2004) and Ioffe (2006) give such similar
results: while the large value of the gluon condensate of Narison (2004) should lead
to a smaller mρ , this effect is compensated by the large value of κ , which shifts the
mass upwards. Therefore, the sum of these changes cancel each other out to a large
degree, the net effect being almost no change in the spectral function for both cases.
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5.4 Summary and Conclusion

We have applied the MEM technique to the problem of analyzing QCD sum rules.
Using MEM has the advantage that we are not forced to introduce any explicit
functional form of the spectral function, such as the “pole + continuum” ansatz
that has often been employed in QCD sum rule studies. This therefore allows us to
investigate any spectral function without prejudice to its actual form. Furthermore,
with this technique, we have direct access to the spectral function without the need
for interpreting quantities that depend on unphysical parameters such as the Borel
mass M and the threshold parameter sth.

To check whether it is really possible to apply MEM to QCD sum rules, we
have investigated the vector meson channel in detail, first with mock data obtained
from a realistic model spectral function, and then with the actual Borel-transformed
results of the operator product expansion. The main results of this investigation are
summarized as follows:

• Most importantly, demonstrating that it is possible to extract a significant peak in
the spectral function, which corresponds to the ρ-meson resonance, we could show
that the MEM technique is quite useful for analyzing QCD sum rules. For both
mock or OPE data, we were able to reproduce the experimental ρ-meson mass mρ

with a precision of about 10 % and the coupling strength Fρ with a precision of
about 30 %.

• We have found that owing to the properties of the kernel of Eq. (5.3), the default
model m(ω) has to be chosen according to the correct behavior of the spectral
function at low energy. We therefore have taken a default model that tends to zero
at ω = 0. On the other hand, to give the correct behavior at large energies, the same
default model is constructed to approach the perturbative value in the high-energy
region.

• The position of the ρ-meson peak in the spectral function has turned out to be quite
stable against changes in various parameters of the calculation, such as the details
of the default model or the range of the analyzed Borel mass region. We have
shown that changing these parameters leads to a fluctuation of the peak position
of only 20–50 MeV.

• Concerning the width of the lowest lying peak, we are unable to reproduce the value
of the input spectral function of the mock data with any reasonable precision and
have shown that the reason for this difficulty comes from the insufficient sensitivity
of the data Gρ(M)on the detailed form of theρ-meson peak. To accurately estimate
the width, one needs not only to go to higher orders in the OPE, but also has to have
much more precise information on the values of the condensates than is available
today.

• Accompanied by a steep rise in the default model m(ω), we have observed the
appearance of artificial peaks in the output spectral function of the MEM analysis.
These peaks are MEM artifacts and one has to be careful not to confuse them with
the actual peaks that are predicted using the OPE data.
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These results are promising and encourage us to apply this approach to other channels,
including baryonic ones. It would also be interesting to apply this method to the
behavior of hadrons at finite density or temperature, as it would become possible
to directly observe the change in the spectral function in hot or dense environments
by this approach. Furthermore, it would be of interest to study the various exotic
channels, containing more than three quarks. In these channels, the scattering states
presumably play an important role and the Bayesian approach of this paper could help
clarify the situation and provide a natural way of distinguishing genuine resonances
from mere scattering states.

Even though these are interesting subjects for future studies, we want to emphasize
here that the uncertainties involved for each channel can differ considerably and one
thus should always carry out a detailed analysis with mock data for each case, before
investigating the actual sum rules. This procedure is necessary to check whether it
is possible to obtain meaningful results from the MEM analysis of QCD sum rules.
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