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Supervisor’s Foreword

Quantum chromodynamics (QCD) has been established as the fundamental theory
of the strong interaction of elementary particles, as a part of the standard model.
The elements of QCD are quarks and gluons, which have a special internal degree
of freedom, called ‘‘color’’ and interact with one another under the principle of the
quantum gauge theory. Although the theory looks very simple as written down in
one line (Lagrangian), it generates mysteriously a large variety of phenomena
through the interactions of hadrons, such as proton, neutron, pion, and so on, which
are made of quarks and gluons. This field of research, called hadron physics, has
been developed in the past several decades through the close collaboration of
experimentalists and theorists.

This volume of Springer Theses Series is devoted to present a newly developed
analysis method of hadron spectra from the first principle of QCD. One of the
serious difficulties in describing structures and interactions of hadrons from QCD
is that the interactions of quarks and gluons are too strong at low energies to be
treated by perturbation theory. As a consequence, quarks and gluons are always
‘‘confined’’ into a colorless (color-neutral) entity at low density and temperature
and thus cannot be isolated or directly examined in the laboratory. Not many non-
perturbative methods of analyzing QCD are known, and the QCD sum rule is one
such semi-analytic method, while lattice QCD is a popular numerical method that
requires huge computer power.

Dr. Philipp Gubler, in collaboration with a few members of Tokyo Institute of
Technology and Kyoto University, has developed a new method of computing the
hadron spectrum using the QCD sum rule approach. The QCD sum rule method,
invented by M. A. Shifman, A. I. Vainshtein, V. I. Zakharov in 1979, has been
successful in extracting masses of hadrons. The conventional analysis method,
however, requires an assumption about the form of the spectral function and thus
cannot be applied to cases where the shape of the spectral function is not known.
The new method is based on the Bayesian inference theory and called maximum
entropy method (MEM), which provides us with the most probable spectral
function from given information by QCD. Dr. Gubler has applied the method to
analyses of various hadron spectra and confirmed that the method works well and
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indeed is superior to the conventional method of extracting the hadron spectrum
from the QCD sum rule.

One important application happens to be temperature dependence of the spectra
of heavy quarkonia, i.e., bound states of a heavy quark and a heavy antiquark. The
subject is related to a phase transition of QCD at high temperature. There, quarks
and gluons are supposed to become de-confined and form a plasma-like matter.
Such matter may have been created at the beginning of our Universe, just after the
Big Bang, while on the Earth, high-energy collisions of heavy ions will produce
such matter for a short period. In 1986, T. Matsui and H. Satz proposed that the
spectrum of heavy quarkonia is drastically modified in the plasma-like matter so
that the formation of such matter can be detected by observing the dilepton
spectrum in heavy ion collisions. Thus, theoretical study of heavy quarkonia in
QCD at finite temperature is very important. According to the present analysis,
QCD sum rules show that the quarkonia peaks in the spectral functions dissolve at
finite temperature consistently with the Matsui-Satz prediction, while the disso-
ciation temperatures are found to depend on the individual states. This volume
contains all the details of this analysis and also other applications of this new
method. We expect to have further applications and developments of this method,
some of which have been already published after the thesis is accepted.

Dr. Philipp Gubler completed the doctoral course at the Graduate School of
Science and Engineering, Tokyo Institute of Technology, in March 2012. Tokyo
Institute of Technology is the leading Japanese National University in the fields of
science and engineering and marked its 130th anniversary in 2011. The Depart-
ment of Physics is one of the largest department with about 70 faculty members,
200 undergraduate students, and 180 graduate students. We joined the Springer
Theses project in 2011 and Dr. Gubler is the first winner of the honor of being
selected from the 18 successful doctoral theses in the academic year from
Department of Physics at Tokyo Institute of Technology. I am very happy to
introduce his achievement for the doctoral degree and also feel very honored to
have supervised his 5-year study at our graduate school.

Tokyo, October 2012 Makoto Oka

x Supervisor’s Foreword
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Introduction and Review



Chapter 1
Introduction

1.1 Describing Hadrons from QCD

The theory of Quantum Chromodynamics (QCD) is by now firmly established to be
the correct framework to describe the phenomena of the strong interaction, which
governs the dynamics of quarks and gluons and, indirectly, of hadrons (Han and
Nambu 1965; ’t Hooft 1971a, b; Fritzsch et al. 1973; Gross and Wilczek 1973;
Politzer 1973). Especially for processes occurring at a high energy scale, perturbative
calculations based on QCD provide a very accurate description due to asymptotic
freedom (Muta 1998). However, for systems where low energy scales are dominant
(such a hadrons), it is much more difficult to make quantitative predictions form
QCD, as perturbation theory is of no use here because of the large coupling constant
at low energies. Therefore, it is necessary to implement non-perturbative methods
to extract the properties of hadrons from QCD, and many such methods have been
developed and applied to hadronic systems during the last decades. These methods
can be generally divided into two groups. Firstly, there are those which make use
of the techniques of effective field theories and employ the lowest lying mesons
and baryons as their fundamental degrees of freedom. The second group directly
computes the hadronic observables from the Lagrangian of QCD and hence relies
on the language of quarks and gluons.

One representative example of the first group is chiral perturbation theory
(Weinberg 1979; Gasser and Leutwyler 1984) with its various branches. In the most
simple version of this theory, one considers the chiral symmetry and its dynam-
ical breaking to be most fundamental and constructs the most general effective
Lagrangian from the Nambu-Goldstone bosons (the pions), which occur due to the
breaking of the chiral symmetry. The most general Lagrangian which satisfies chiral
symmetry in principle contains an infinite number of terms, but as has been shown
by Weinberg (1979), it is possible to introduce a power counting scheme in the
energy scale p of the theory which allows to order the various terms of the general
Lagrangian and to carry out a systematic expansion in terms of the scale p. If one
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4 1 Introduction

however takes the energy to be too large, this expansion breaks down, which is natural
from the nature of the theory being an effective theory.

As for the second group, which makes use of quarks and gluons as their degrees of
freedom, the most powerful method nowadays is lattice QCD (Wilson 1974; Creutz
1983), which approximates the continuous space-time by a discrete lattice of finite
extent and calculates the expectation value of any desired quantity by numerical
evaluation of the path integrals of the gluonic fields defined on the lattice. This pro-
cedure is completely non-perturbative and does not contain any truncated expansion
such as the one mentioned above for chiral perturbation theory. However, numeri-
cal lattice simulations have turned out to be numerically very costly and it is only
recently that simulations at realistically small quark masses and with dynamical
quarks taken into account have become possible (Aoki et al. 2010; Durr et al. 2011).
Furthermore, to compare the results obtained on the lattice with experiment, one in
principle has to take the continuum and large volume limit of the lattice values which
requires calculations at various lattice spacings and volumes, which is a highly time
consuming task. These difficulties will however eventually be overcome once more
powerful computers and more efficient algorithms are available and one can thus
expect substantial and continuous progress in this field in the coming years.

Another method which is directly based on the QCD Lagrangian is the QCD sum
rule approach (Shifman et al. 1979a, b), which will be the basic tool employed in this
thesis. It can be considered to be of a complementary character compared to lattice
QCD because it is analytic and can be used in continuum space-time in an infinite
volume with arbitrary quark masses. On the other hand, it uses certain approximations
which limit its precision to about 10 ∼ 20 %. Therefore, its predictions are only of
a half-qualitative—half-quantitative nature, but they still contain many important
physical insights. Among them, probably the most interesting one is the feature of
providing non-trivial relations between hadronic observables and the properties of
the QCD vacuum characterized by various condensates. This aspect will be discussed
in detail in the course of this thesis.

Finally let us also briefly mention the approach based on the Schwinger-Dyson
equations (Dyson 1949; Schwinger 1951; Roberts and Williams 1994), which also
makes direct use of the QCD Lagrangian. In this approach, resummation techniques
of Feynman diagrams are employed to incorporate non-perturbative effects into the
calculation, but as it is the case for QCD sum rules, one necessarily needs to make
some approximations in order to carry out the analysis in a finite amount of time,
and thus can only get results with a limited precision.

Furthermore, note that there are also other methods, which do not fall into the
two categories discussed above. The most prominent examples are non-relativistic
QCD (NRQCD) (Caswell and Lepage 1986) and potential non-relativistic QCD
(pNRQCD) (Brambilla et al. 2005), which are effective theories, but still use
(heavy) quarks as their fundamental degrees of freedom. Another such case is the
Nambu-Jona-Lasinio (NJL) model (Nambu and Jona-Lasinio 1961a, b), which uses
an effective theory of quarks to model the breaking of chiral symmetry.

In all, one can understand from the above description that there are nowadays
many numerical and analytical approaches available for the description of hadrons,
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each with strengths and weaknesses and each providing some specific viewpoint of
the numerous phenomena in which hadrons are involved. Hence it at present does
not seem to be appropriate to just rely on one method for obtaining a thorough
understanding of the hadronic world, but rather to have in mind all the various
approaches with their differing degrees of freedom to grasp the whole richness of
the processes governed (on the most fundamental level) by QCD. However, from a
practical point of view, one can of course not do everything at once and thus has to
concentrate on one specific method. For this thesis, this method will be QCD sum
rules.

1.2 QCD Sum Rules and Its Ambiguities

The method of QCD sum rules was developed by the members of the ITEP group
in Moscow, Russia (Shifman et al. 1979a, b) and was widely used to investigate the
properties of many hadronic ground states in the eighties (Reinders et al. 1985). It
was especially popular back then because lattice QCD simulations were still in their
early stages of development and thus not yet as precise as they are today. Later, the
sum rules were generalized to study the behavior of hadrons at finite temperature
(Bochkarev and Shaposhnikov 1986; Hatsuda et al. 1993) and density (Drukarev and
Levin 1988a, b; Cohen et al. 1991; Hatsuda and Lee 1992). This is still an active field
of study because of the relations mentioned in the last section between the properties
of hadrons and the condensates, which QCD sum rules provide. Extending these
relations to finite temperature or density therefore makes it possible to interpret the
changes of, for instance, hadron masses in matter as shifts of a specific combination of
condensates and thus to changes of the QCD vacuum in a hot or dense environment.

As will be discussed in detail in Chap. 3, QCD sum rules can essentially be
described as a certain class of integrals over some hadronic spectral function ρ(ω):

G(x) =
∫ ∞

0
dωK (x, ω)ρ(ω). (1.1)

Here, K (x, ω) is some kernel, whose concrete analytic forms can be found in Chap. 3.
In principle, ρ(ω) contains all information on the physical states, but all we can
directly calculate is the left-hand side of Eq. (1.1), G(x), which is obtained by the
so-called operator product expansion. However, G(x) can not be evaluated with
full accuracy as it contains several condensates at the higher orders of the operator
product expansion, for which precise information is usually not available. Hence,
the left-hand side of Eq. (1.1) involves considerable uncertainties, which makes the
evaluation of the spectral function ρ(ω) a very difficult task. Precisely speaking, this
is in fact an ill-posed problem and cannot be solved analytically. Therefore, is has
been common practice in QCD sum rule studies to make some simple assumption
about the functional form of ρ(ω), parametrize it with a small number of parameters
and fit it with the help of Eq. (1.1). This approach has been successful, especially for

http://dx.doi.org/10.1007/978-4-431-54318-3_3
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channels, for which one already has some prior information on the spectrum and can
thus make reasonable guesses about the form of ρ(ω).

However, if one does not know much about the form of the spectral function of
interest (for example, about its behavior at finite temperature and density), a fit of
ρ(ω) using some specific ansatz, can lead to ambiguous or even misleading results,
and it thus would be helpful if one could analyze Eq. (1.1) in a more general and
unbiased manner. We propose in this thesis that such an analysis is possible by the
use of the maximum entropy method (MEM), based on Bayesian inference theory.
The main advantage of such an approach is the possibility of analyzing the sum
rule of Eq. (1.1), without any assumptions about its functional form. This feature is
especially useful for the investigations of hadrons at finite temperature or density as
in this case one does usually not know much about the general behavior of the spectral
function and thus should better be able to analyze it without strong constraints.

1.3 Hadrons in a Hot and/or Dense Environment

In recent years, the probably most actively investigated topic related to QCD has been
the problem of understanding and specifying the phase diagram of QCD (Fukushima
and Hatsuda 2011). During the last two decades, these studies have been stimulated
by the enormous effort that has been invested into the dedicated heavy-ion collision
experiments at CERN and at the Brookhaven National Laboratory and this stimula-
tion will continue as the LHC at CERN has just started its operation and first exciting
results are becoming available. While these experiments probe matter at high tem-
perature and low density, there are also other facilities which rather aim to create
and investigate matter at high density and low temperature. One example is J-PARC
in Japan, at which, among other scientific goals, the behavior of various hadrons in
a dense environment will be studied. Moreover, the planned FAIR facility at GSI,
will hopefully provide valuable information on the behavior of matter at very high
density, which has so far not been accessible at past and present experiments.

At the same time, there has been much progress in the theoretical description of the
QCD phase diagram, on one hand based on advancements of numerical techniques
used for lattice QCD (whose applications are, however, still largely confined to
the zero- or low-density region of the phase diagram, due to the “sign problem”
(Nakamura 1984)), on the other hand based on the developments in the understanding
of effective theories of QCD at finite temperature and density.

There is, however, a considerable gap between these experimental and theoretical
efforts, because all one can measure in an experiment are hadronic and other physical
observables that appear as a result of the experiment and not the properties of matter
itself. Therefore, one somehow has to deduce these properties from, for instance,
the abundances and distributions of certain hadrons in a specific experiment. A large
amount of work has been and is still being done to fill this gap and reviewing all
of it is beyond the scope of this thesis and of my present knowledge. However, one
important part of these efforts is to understand how hadrons behave in a hot and dense
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environment, and it is my personal hope that the results presented in this thesis will
provide a novel and useful tool for investigating this sort of problem.

This then leads me directly to the motivation for my thesis, which is outlined in
the next section.

1.4 Motivation and Purpose of this Thesis

The motivation for the studies presented in this thesis is based on the considerations
of the preceding two sections. First of all, our aim is to investigate whether the
maximum entropy method can be used to analyze QCD sum rules, and if yes, what
structures of the spectral function can be extracted. As this kind of approach has
never been tried before, this step is crucial for making sure that the method works
properly and for correctly interpreting the output of the analyses. Secondly, it is
our purpose to illustrate the use of the developed method in a concrete example of
physical interest and to show that the MEM analysis of QCD sum rules really is able
to provide interesting results on the behavior of the spectral function in hot or dense
matter, which could not have been obtained with the conventional analysis.

To test the ability of MEM to extract the spectral function from the sum rules, we
first analyze two well known channels in the vacuum: the ρ meson and the nucleon
channel. As is shown in detail in Chaps. 5 and 6, we find in these investigations
that the MEM procedure can be applied to QCD sum rules and that the positions
and residues (value of the integrated spectral function in the peak-region) can be
approximately reproduced by our method. We, however, also find that details of the
spectral function, such as the width of the peaks, can not be properly reproduced due
to the limited resolution of the MEM analysis.

Next, we go on and analyze various quarkonium sum rules at zero and finite
temperature (see Chap. 7 for details). Charmonia (in particular J/ψ) are considered
to be a suitable probe for the experimental determination of the properties of the
quark-gluon plasma (QGP) created in heavy ion collisions (Matsui and Satz 1986),
and have thus been intensively studied for many years. However, their behavior
at finite temperature is still not completely understood at present, and our goal is to
provide new and independent information on this system based on QCD. We show in
our analysis that charmonium peaks of the vector, pseudoscalar, scalar and axialvector
channel experience a sudden change above the deconfinement temperature Tc and
melt quickly into the continuum around 1.0 Tc ∼ 1.2 Tc. Furthermore, due to the
heavy bottom quark mass, bottomonia are expected to persist as bound states up to
higher temperatures, as they are more tightly bound. Thus, they can be useful for
the study the QGP at higher temperatures, which has been experimentally produced
in the recent heavy ion collisions at the LHC. We therefore have examined several
bottomonium channels and have deduced the corresponding melting temperatures
which roughly lie in the region of 2.0 Tc ∼ 3.0 Tc.

Another goal of the present thesis is of somewhat more technical nature. Namely,
we want to investigate which kind of kernel is most suitable for the MEM analysis

http://dx.doi.org/10.1007/978-4-431-54318-3_5
http://dx.doi.org/10.1007/978-4-431-54318-3_6
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of the sum rules of Eq. (1.1). As we will show in the following chapters, in QCD
sum rule studies, one is not restricted to one unique form of K (x, ω), but in principle
has an infinite number of choices. Up to now, the so-called Borel kernel has been
the one used most frequently, but this is not necessarily the best one for an MEM
analysis. Indeed, as we will see in our study of a toy model and the nucleon sum
rule, the Gaussian kernel has turned out to be more effective. On the other hand,
for our study of quarkonium at finite temperature, the traditional Borel kernel was
more suitable, as the Gaussian kernel had problems in reproducing a flat continuum
structure. Therefore, our results indicate that there is no single best choice and one
thus should choose the kernel depending on what channel one wants to study. This
will be our attitude during this thesis and we hence will use both the Borel and
Gaussian kernels in the following investigations.

1.5 Outline of the Thesis

The thesis is organized as follows.
Part I deals with general issues of QCD and the methods we use for the analysis.

After the introduction of this chapter, the properties of QCD are briefly reviewed in
Chap. 2. Here basic concepts such as asymptotic freedom, chiral symmetry and the
phases of QCD are explained, as they are fundamental for the understanding of the
following chapters. Then, we recapitulate the ideas of QCD sum rules in Chap. 3.
Because this method is the main tool used in this thesis, we discuss it in some detail,
including several appendices with concrete calculations. In the last section of this
chapter, we furthermore discuss the problem of parity projection of baryonic sum
rules and clarify some technical problems that have been recently discussed in the
literature (Jido et al. 1996; Kondo et al. 2006; Ohtani et al. 2013). Next, we explain
the details of the maximum entropy method in Chap. 4, especially focusing on its
application to QCD sum rules. This discussion is partly based on Gubler and Oka
(2010). Moreover, in the last part of this chapter, the MEM analysis of certain sum
rules based on a non-relativistic potential model, which have some resemblance to
the real QCD sum rules, is discussed for illustration and as a first check of the validity
of the method.

Part II is then devoted to applications of MEM to the actual QCD sum rules of
several channels. In Chap. 5, the ρ meson case is discussed on the basis of Gubler and
Oka (2010). As a second application, the nucleon channel is investigated in Chap. 6.
The calculations of this chapter were done mainly by Mr. Keisuke Ohtani, a younger
colleague at our lab at TokyoTech. The related publication is Ohtani et al. (2011).
The last application then deals with the behavior of quarkonia at finite temperature
and is presented in Chap. 7, which is work done partly in collaboration with Mr. Kei
Suzuki of the same TokyoTech lab and Dr. Kenji Morita from the Yukawa Institute
for Theoretical Physics, Kyoto University. The content of this chapter is based on
Gubler et al. (2011) and Suzuki et al. (2013).

http://dx.doi.org/10.1007/978-4-431-54318-3_2
http://dx.doi.org/10.1007/978-4-431-54318-3_3
http://dx.doi.org/10.1007/978-4-431-54318-3_4
http://dx.doi.org/10.1007/978-4-431-54318-3_5
http://dx.doi.org/10.1007/978-4-431-54318-3_6
http://dx.doi.org/10.1007/978-4-431-54318-3_7
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Finally, part III contains the concluding remarks. Here, we will also try to give an
outlook for possible future work related to the studies presented in this thesis.
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Chapter 2
Basic Properties of QCD

2.1 The QCD Lagrangian

In this and the following sections, the basic properties of QCD will be briefly
discussed. A more detailed exposure of the many facets of QCD can be found in
various textbooks, such as Yndurain (1983), Greiner et al. (1994), Ioffe et al. (2010).

QCD is a non-abelian SU (3) gauge theory with color charges as the generators
of the gauge group. Its Lagrangian can be given as

LQCD =
∑

f

q f (i �D − m f )q f − 1

4
Ga
μνGaμν, (2.1)

where q f are the quark fields with flavor f , which runs over all presently known
six flavors u, d, s, c, b, t with the corresponding masses m f . The quark fields in
fact have two more indices, which are omitted above for simplicity. One is a spinor
index running from 1 to 4, showing that the quark (and its anti-particle) are spin-1/2
particles, the other is a color index with values from 1 to 3, meaning that the quarks live
in the fundamental representation of the SU (3) gauge group. The covariant derivative
�D contains the coupling between the quarks and gauge fields and is defined as

�D = γ μ(∂μ − ig Aμ). (2.2)

Here, the gluon field Aμ is a 3 × 3 matrix and lives in the adjoint representation of
the SU (3) gauge group. Using the Gell-Mann matrices λa , it can be expanded as
Aμ = 1/2

∑
a λ

a Aa
μ (a = 1 ∼ 8). Furthermore, g stands for the gauge coupling

constant. Finally, the last term of Eq. (2.1) represents the dynamics of the gluonic
fields only. It can be expressed in terms of the field strength tensor Ga

μν , which is
obtained from the gluon fields as

Ga
μν = ∂μAa

ν − ∂ν Aa
μ + g f abc Ab

μAc
ν, (2.3)

where f abc are the structure constants of the SU (3) gauge group.

P. Gubler, A Bayesian Analysis of QCD Sum Rules, Springer Theses, 11
DOI: 10.1007/978-4-431-54318-3_2, © Springer Japan 2013
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Note that in the simple description of this section, we have omitted ghost fields
and possible gauge fixing terms, which are introduced during the quantization of the
theory (Faddeev and Popov 1967).

2.2 Asymptotic Freedom

One important piece of evidence, suggesting that QCD is indeed the true theory to
describe the strong interaction, was provided by the discovery of asymptotic freedom
(Gross and Wilczek 1973; Politzer 1973). This property, which essentially means
that the coupling constant g appearing in Eqs. (2.2) and (2.3) becomes small at large
energies, can be derived through the renormalization procedure of QCD. As in any
field theory, the perturbative quantum (loop) corrections in QCD contain ultra-violet
divergences, which have to be renormalized for the theory to produce meaningful
results. If (as it is the case for QCD) the theory is renormalizable, all these divergences
can be absorbed into a redefinition of the bare coupling constant g, the bare masses
m f and the fields q and A. However, this redefinition will depend on the energy scale
μ, at which the renormalization is carried out, therefore introducing some dependence
of the parameters of the theory on μ. As μ is an arbitrary parameter, which has been
introduced by hand, the observables calculated from the theory should not depend on
it. This requirement leads to several renormalization group equations (Callan 1970;
Symanzik 1970), in which the part dealing with the coupling constant g is given as,

μ
∂g

∂μ
= β(g), (2.4)

where β(g) is the β-function, which can be perturbatively calculated for small g. In
QCD, this function has the following form (as an expansion in g):

β(g) = −β0g3 − β1g5 + · · · , (2.5)

β0 = 1

(4π)2

(
11 − 2

3
N f

)
, (2.6)

β1 = 1

(4π)4

(
102 − 38

3
N f

)
, (2.7)

N f being the number of flavors. The fact that β0 is positive and that therefore β(g)
is negative for sufficiently small values of g has been revealed in the papers of Gross
and Wilczek (1973), Politzer (1973) and is equivalent to asymptotic freedom, as will
be seen below.

Solving Eq. (2.4) and keeping for simplicity only the leadingβ0 term, the following
result can be obtained:

αs(μ) = 1

4π ln(μ2/Λ2
QCD)

. (2.8)
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Fig. 2.1 The value of αs as a function of the energy Q, obtained from the β-function including
corrections up to 4-loops (Bethke 2009). The shaded region shows its corresponding numerical
uncertainty. The discontinuity seen in the plot at around 1.5 GeV stems from the matching between
the 3- and 4-flavor β-function, which has to be implemented in this energy region

Here, αs stands for g2/(4π) and the integration constantΛQCD is known as the QCD
scale parameter. Its actual value is about 200–300 MeV, depending on how many
flavors one considers to be active. From this equation, one sees that the value αs

decreases with larger energy μ. Nowadays, the β-function is known up to 4-loops
(g9) (Bethke 2009), giving values of αs as shown in Fig. 2.1. As can be observed from
this figure, as long as the energy scale Q is much larger than ∼1 GeV, αs is small
and a perturbative treatment is meaningful, while for energy scales around or below
∼1 GeV, αs becomes so large that a perturbative expansion will eventually break
down. It is therefore clear that non-perturbative methods are necessary for studying
low-energy QCD processes.

2.3 Symmetries of QCD

2.3.1 Gauge Symmetry

Gauge symmetry is in a certain sense the most important symmetry of QCD, as the
QCD Lagrangian was indeed constructed on the basis of gauge invariance. It demands
that the theory should be invariant under the following gauge transformation.The
fermionic fields change as

q ′(x) = U (x)q(x), (2.9)
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where U (x) is a 3 × 3 unitary matrix in color space, which generally depends on the
space-time point x . Because of this dependence, Eq. (2.9) is a local transformation
and the corresponding gauge symmetry a local symmetry. At the same time, the
gauge fields Aμ(x) are transformed as

A′
μ(x) = U (x)Aμ(x)U

†(x)+ i

g
U (x)∂μU †(x), (2.10)

with the same U (x) as in Eq. (2.9). It is not difficult to show that these transformations
act on the covariant derivative of Eq. (2.2) in the following way:

D′
μ(x) = U (x)Dμ(x)U

†(x). (2.11)

This then immediately shows that the first term of the Lagrangian in Eq. (2.1), which
describes the motion of the quark fields, is gauge invariant. For the second term,
involving only gluonic fields and their mutual interactions, it is convenient to note
that the field strength tensor of Eq. (2.3) (contracted with 1

2λ
a) can be expressed as

Gμν(x) = i

g
[Dμ, Dν], (2.12)

from which, together with Eq. (2.11), it follows that this object transforms as

G ′
μν(x) = U (x)Gμν(x)U

†(x). (2.13)

As the last term of Eq. (2.1), can be written down as the trace of two Gμν(x)’s with
contracted Lorentz indices, one can see from Eq. (2.13) that it is also gauge invariant,
as it should be.

In actual calculations, one often makes use of the freedom of choosing a gauge
to simplify the algebraic manipulations. For calculations of the operator product
expansion in QCD sum rules, for instance, the so-called Fock-Schwinger gauge is
a convenient choice, as we will discuss in Chapter 3 and Appendix B. On the other
hand, any physical result obtained from QCD should not depend on the gauge, in
which it was calculated. Therefore, to verify the gauge independence of some result
can serve as a useful check of the calculation. Furthermore, for formulating QCD on
a space-time lattice in order to carry out Monte-Carlo simulations, gauge invariance
also has provided essential guidance (Wilson 1974).

2.3.2 Chiral Symmetry

As will be explained below, chiral symmetry is not an exact symmetry of the QCD
Lagrangian of Eq. (2.1), but is only valid in the limit of small quark masses. However,
because the masses of the u- and d-quarks are much smaller than ΛQCD, the typical
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scale of QCD, these can be treated as small perturbations. Therefore chiral symmetry
becomes a useful concept, at least for the u- and d-quark sector, which plays the most
prominent role in almost all low-energy hadronic processes.

To discuss chiral symmetry, one first has to introduce left-handed and right-handed
quarks, which are defined as follows

qL = PLq, qR = PRq, (2.14)

with

PL = 1

2
(1 − γ5), PR = 1

2
(1 + γ5). (2.15)

Here, it is clear that the projection operators PL,R satisfy the necessary conditions
P2

L,R = PL,R, PL PR = 0, PL + PR = 1. Rewriting the QCD Lagrangian of Eq. (2.1)
with the help of the left- and right-handed quark fields of Eq. (2.14), we obtain

LQCD = qLi �DqL + qRi �DqR − qLmqR − qRmqL − 1

4
Ga
μνGaμν, (2.16)

where we have omitted the sum over the flavors for simplicity of notation. It is seen in
the above equation that, if the quark mass m approaches 0, the left- and right-handed
quarks completely decouple and behave as independent degrees of freedom. Ignoring
the mass terms for a moment, it is also observed that this Lagrangian has a global
symmetry, corresponding to certain unitary transformations of the quark fields:

q ′
L = ULqL, UL ∈ U (N f )L, (2.17)

q ′
R = URqR, UR ∈ U (N f )R. (2.18)

Here, UL,R are unitary N f × N f matrices, operating in the flavor space of the quark
fields. As only the u- and d-quarks (and, to a lesser degree, the s-quarks) can be
considered to be light, N f here is usually taken to be 2 or 3. Among the symmetries
contained in Eqs. (2.17) and (2.18), two have a somewhat special character. Firstly,
U (1)V, standing for the case, in which UL and UR are diagonal and equal, represents
the quark number conservation in the strong interaction. This symmetry even holds
when the finite quark masses are taken into account and is valid at both the classic
and quantum level. Secondly, the symmetry of U (1)A, in which UL and UR are
diagonal as well, but represent rotations in the opposite direction, is violated by
quantum corrections, leading to the axial anomaly (Bell and Jackiw 1969; Adler
1969). Therefore, even if the quark masses are exactly 0, this symmetry is broken.

Removing the two subgroups U (1)V and U (1)A discussed above, we are left with
the symmetries corresponding to SU (N f )L × SU (N f )R, which are usually referred
to as chiral symmetry. The respective transformations can be parametrized as
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q ′
L = eiθa

L ta
qL, eiθa

L ta ∈ SU (N f )L, (2.19)

q ′
R = eiθa

R ta
qR, eiθa

R ta ∈ SU (N f )R, (2.20)

with a = 1 ∼ N 2
f −1 and ta being the generators of SU (N f ). θa

L,R are arbitrary real
parameters.

Even though the QCD Lagrangian possesses chiral symmetry as described in
Eqs. (2.19) and (2.20), this symmetry is not fully realized in the QCD vacuum.
Specifically, it is instead believed to be dynamically broken (Nambu and Jona-Lasinio
1961a, b), the symmetry breaking pattern being

SU (N f )L × SU (N f )R → SU (N f )V, (2.21)

where the transformation corresponding to SU (N f )V is such that both rotations of
Eqs. (2.19) and (2.20) are the same (θa

L = θa
R). The simplest order parameter for such

a partial breaking of chiral symmetry is the quark condensate, expressed as

〈qq〉 = 〈qLqR〉 + 〈qRqL〉. (2.22)

Here, contraction and summation over Dirac-, color- and flavor-indices are implicitly
assumed. It is clear that the quark condensate (if it has a finite value) generally
changes its form under arbitrary transformations of Eqs. (2.19) and (2.20), but is
invariant under SU (N f )V, making it an appropriate order parameter for the symmetry
breaking pattern of Eq. (2.21).

The value of the quark condensate nowadays can be obtained from first principle
lattice QCD calculations (Fukaya et al. 2010). The earliest estimation, however, relied
on the Gell-Mann-Oakes-Renner relation (Gell-Mann et al. 1968), based on general
considerations of chiral symmetry. It gives (with N f = 2),

f 2
πm2

π = −mq〈uu + dd〉, (2.23)

where fπ and mπ are the pion decay constant and pion mass, respectively. The values
of these parameters can be obtained from experiment. mq stands for the averaged
quark mass of u- and d-quarks, which can not be directly extracted from experimental
studies, but has to be estimated by other methods (Gasser and Leutwyler 1982).
Finally, assuming that the value for the condensate of the u- and d-quarks is the
same, one arrives at the following number:

〈uu〉 = 〈dd〉 	 −(240 MeV)3. (2.24)

In addition, QCD sum rule studies provide estimates for the s-quark condensate 〈ss〉,
which gives an about 20 % reduced value, compared to Eq. (2.24) (Reinders et al.
1985).
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2.3.3 Dilatational Symmetry

The dilatational symmetry, similarly to chiral symmetry, only holds in the limit
of vanishing quark masses. In this limit, the QCD Lagrangian involves no explicit
energy scale and the theory is therefore scale invariant. This means that the energy
dependence of any physical quantity is fixed by its dimension,

F(E, p1, p2, . . . ) = EdF f
( p1

E
,

p2

E
, . . .

)
, (2.25)

where dF stands for the dimension of the quantity F and f is a dimensionless
function.

Infinitesimal scale transformations can be parametrized by the following coordi-
nate redefinition

x ′
μ = xμ + εxμ, (2.26)

with the infinitesimal parameter ε. The N other current derived from this transfor-
mation reads as

jμ = xνT νμ , (2.27)

T νμ being the energy momentum tensor. This gives

∂μ jμ = Tμμ . (2.28)

Therefore, the dilatational symmetry is valid if the right hand side of the above
equation vanishes. Classically, the trace of the energy momentum tensor Tμμ only
receives non-zero contributions from terms involving finite quark masses. However,
quantum fluctuations lead to additional effects due to the so-called trace anomaly
(Crewther 1972; Chanowitz and Ellis 1972; Collins et al. 1977). Taking this contri-
bution into account, one obtains

Tμμ = β

2g
Ga
μνGaμν +

∑
f

m f q f q f , (2.29)

where the first term originates from the trace anomaly. β is the β-function of QCD,
which has already appeared in Eq. (2.4). It therefore follows from Eqs. (2.28) and
(2.29), that the dilatational symmetry is not only broken by the finite quark masses,
but also by quantum effects. This can be understood from the fact that in quantum
field theory, a renormalization point μ has to be introduced, thus leading to a new
scale that violates the symmetry of Eq. (2.25).
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2.3.4 Center Symmetry

The center (or Z(Nc)) symmetry of QCD has a somewhat different character from
the ones discussed so far, as it is a symmetry of QCD at finite temperature, and is only
exactly valid when all quarks are infinitely heavy. As will be discussed below, this
symmetry is related to the confinement-deconfinement transition of QCD at finite
temperature (McLerran and Svetitsky 1981; Svetitsky and Yaffe 1982).

For discussing the center symmetry, it first has to be remembered that in quantum
field theory at finite temperature one takes the time axis to be imaginary (t → −iτ ,
τ being a real parameter) and all bosonic fields have to satisfy periodic boundary
conditions with respect to this axis, the period being 1/T (Le Bellac 1996). Now, it is
noticed that one can gauge transform the periodic gluon field according to Eq. (2.10)
with a transformation matrix U (x), which does not necessarily need to be periodic:

U (τ + 1/T, x) = zU (τ, x). (2.30)

Here, z must be an element of SU (Nc). Substituting this gauge transformation matrix
into Eq. (2.10), one obtains

A′
μ(τ + 1/T, x) = zA′

μ(τ, x)z† + i

g
z∂μz†. (2.31)

In order for this transformed gauge field to be periodic, the right-hand side of the
above equation should be equal to A′

μ(τ, x), and this can only happen if z can be
interchanged with any other SU (Nc) matrix and does not depend on the space-time
coordinates at all. Therefore, z has to be proportional to the identity matrix 1 with a
constant coefficient. As z is an element of SU (Nc), its possible realizations turn out
to be

z = e2π in/Nc 1, (n = 0, 1, . . . , Nc − 1). (2.32)

These matrices commute with any member of the SU (Nc) group, are called the
center of SU (Nc) and are denoted as Z(Nc).

While the action for the pure SU (Nc) theory is invariant under the center
symmetry, one can consider other gauge invariant operators constructed from glu-
onic fields, for which this is not the case. Among them, the Polyakov loop (Polyakov
1978), defined as the path-ordered product the gauge field, directed in the imaginary
time direction from 0 to 1/T , is most simple:

L(x) = 1

Nc
Tr

{
P exp

[
ig

∫ 1/T

0
dτ A4(τ, x)

]}
. (2.33)

It can be shown that the Polyakov loop transforms as

L ′(x) = zL(x), (2.34)
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under the center symmetry transformation, where z stands for the constant factor in
front of the identity matrix in Eq. (2.32). Hence, as long as it does not vanish, the
Polyakov loop is not invariant under the Z(Nc) transformation and therefore serves
as an order parameter of the corresponding center symmetry. In other words, if L(x)
takes a finite value, the center symmetry is spontaneously broken.

Additionally, it should be mentioned here that the Polyakov loop of Eq. (2.33)
also has significant implications related to deconfinement of quarks. Namely, the
expectation value of L(x) can be related to the free energy of a single quark (Polyakov
1978; Susskind 1979),

〈L(x)〉 = e−ΔFq/T , (2.35)

where ΔFq is the difference between the free energy of a system with and without
a single deconfined quark. As long as the quarks are confined, such a free energy of
a quark should be infinitely large, and the Polyakov loop should thus vanish. On the
other hand, for a system in the deconfined phase, the respective quark free energy
should have a finite value, meaning that the Polyakov loop will have a value larger
than 0.

2.4 Phases of QCD

The phases of QCD at various values of temperature and density continue to be
intensively studied both theoretically and experimentally. For a recent review of the
current statues in theory, see Fukushima and Hatsuda (2011). However, despite of
these efforts, there are still many open questions and fully established facts are rather
rare. In this short introduction, we will not discuss all open issues in detail, but can
only give a broad overview about what is known about the properties of QCD in a
hot or dense medium.

In Fig. 2.2 a sketch of the QCD phase diagram is given. One can see in this
figure that there are essentially three phases. Firstly, there is the hadron gas phase
at low temperature and density, where both the vacuum in which we live in and
nuclear matter are located. Secondly, the quark-gluon plasma phase is realized at high
temperature (Cabibbo and Parisi 1975), in which quarks and gluons are deconfined
and behave as weakly interacting particles. Thirdly, the color superconductor phase is
expected to appear at high density and low temperature, where quarks are believed to
form Cooper pairs, leading to color superconductivity (Barrois 1977; Bailin and Love
1984). It however has to be noted here, that many features of this phase diagram are
not well understood. Especially for the region of moderately high chemical potential
and low temperature, where the three phases meet, there is no conclusive picture
available, yet. This is so because in this domain, neither perturbative methods nor
lattice QCD calculations (Wilson 1974) can be reliably applied, and one therefore
has to resort to model calculations.

The region of the QCD phase diagram that is perhaps best known is located around
zero chemical potential, as here lattice QCD calculations are available. Particularly
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Fig. 2.2 Sketch of the various phases of QCD, as a function of the temperature and the baryon
chemical potential, which is related to the baryon density

interesting is the transition region between the hadron and quark-gluon plasma phase,
which has been investigated in detail in past studies. The behavior of this transition
depends on the flavor content of the theory, as illustrated in the Columbia plot,
shown in Fig. 2.3. For the purely gluonic case with no active flavors, which is most
easily studied on the lattice because the quenched approximation can be used here,
it is found that the transition is of first-order (Fukugita et al. 1990), with a critical
temperature of about Tc 	 260–270 MeV. This situation corresponds to the top-right
corner of Fig. 2.3.

On the other hand, due to technical difficulties related to the description of quarks
on the lattice, massless quarks can at present not be reliably treated in lattice QCD
and one has to consider other methods in this case. A quite general method for
handling this problem is the Ginzburg-Landau approach, in which one writes down
a general effective Lagrangian in terms of an appropriate order parameter of chiral
symmetry (Pisarski and Wilczek 1984). Furthermore, taking into account the effect
of the UA(1) or axial anomaly (Kobayashi and Maskawa 1970; ’t Hooft 1976), one
obtains

Leff = 1

2
Tr∂Φ†∂Φ + a

2
TrΦ†Φ

+ b1

4!
(
TrΦ†Φ

)2 + b2

4! Tr
(
Φ†Φ

)2

− c

2

(
detΦ + detΦ†). (2.36)
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Fig. 2.3 The Columbia plot for QCD at zero density, depicting the nature of the confinement-
deconfinement or chiral transition at finite temperature for various flavors. The top-right corner
describes the purely gluonic transitions with infinitely heavy quarks, while the bottom-left corner
stands for the chiral transitions with three massless quarks

Here,Φ is a N f × N f matrix and stands for the order parameter of chiral symmetry.
Under a chiral SU (N f )L × SU (N f )R transformation, it changes as

Φ ′ = VLΦVR, (2.37)

while under the axial UA(1) transformation, it changes as

Φ ′ = eiαΦ. (2.38)

It can be seen from the above equations that the first four terms of the Lagrangian of
Eq. (2.36) are invariant under both SU (N f )L×SU (N f )R and UA(1) transformations,
while the last terms breaks the UA(1) symmetry. Therefore, this last term explicitly
incorporates the effect of the chiral anomaly.

Analyzing now the thermal properties of Eq. (2.36), one finds that for N f = 2
this Lagrangian is equivalent to the φ4 model, which possesses the O(4) symmetry.
This model is known to have a second order phase transition. On the other hand,
for N f = 3, due to the cubic interaction introduced by the axial anomaly term, the
model exhibits a first order transition. These considerations lead to the picture shown
in Fig. 2.3, where on the right side the transition changes from first order at the bottom
(N f = 3) to second order on the top (N f = 2). For a more detailed discussion of
this issue, see Chap. 6 of Yagi et al. (2005).

Finally, let us consider more realistic cases, which lie close to the physical point,
indicated by the black dot in Fig. 2.3. Even though still challenging due to the light u
and d quark masses, lattice simulations are now at the stage of becoming possible in

http://dx.doi.org/10.1007/978-4-431-54318-3_6
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such a regime. Most of these simulations employ the staggered fermions (Susskind
1977; Sharatchandra et al. 1981), while some also use the Wilson fermion formalism
(Wilson 1975). Recent results of such studies suggest that the transition at the physi-
cal point is smooth crossover (Aoki et al. 2006). Furthermore, the value of the critical
temperature has been evaluated by various groups, the latest results giving an aver-
aged value of roughly 170 MeV, with a scatter of about 20 MeV (Aoki et al. 2009;
Bazavov et al. 2009; Bornyakov et al. 2010; Cheng et al. 2009; Borsanyi et al. 2010).
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Chapter 3
Basics of QCD Sum Rules

3.1 Introduction

The method of QCD sum rules was invented in the late seventies (Shifman et al.
1979a, b) and then further developed in the subsequent years (Ioffe 1981a, b; Rein-
ders et al. 1985). It is a useful tool in hadron phenomenology, to obtain a qualitative
(in some cases even quantitative) understanding of the properties of hadrons. To do
this, one exploits the analytic properties of various correlation functions of certain
interpolating fields to connect two separate limits of QCD. On one hand, we have the
high energy (or short distance) limit, where asymptotic freedom makes it possible
to use perturbative methods to describe the behavior of quarks and gluons, which
are the active degrees of freedom in this regime. Concretely, the operator product
expansion (OPE) can be employed to evaluate the correlators, explicitly calculat-
ing its perturbative parts, while the non-perturbative contributions are stored in the
vacuum expectation values of gauge invariant operators. On the other hand, in the
low energy (or large distance) limit, the relevant degrees of freedom are the hadrons,
whose properties we aim to extract by the sum rules. By this procedure, we can then
connect non-perturbative information of the QCD vacuum, parametrized as various
vacuum condensates, with the physical quantities of actual hadrons. Discussions on
early applications of QCD sum rules, their extensions to a broader range of systems
as well as technical details of the actual calculations can be found in various reviews
and books (Shifman 1998; Colangelo and Khodjamirian 2001; Leinweber 1997; Ioffe
et al. 2010; Pascual and Tarrach 1984; Kojo 2008), on which I partly relied when
writing this review.

As the most simple case, let us consider the two-point function (in the following
referred to as “correlator”) of an interpolating field J (x), which is composed of
quark- and/or gluon-fields and carries the quantum number of the hadronic state that
we aim to investigate:

Π(q2) = i
∫

d4xeiqx 〈0|T [J (x) J̄ (0)]|0〉. (3.1)

P. Gubler, A Bayesian Analysis of QCD Sum Rules, Springer Theses, 25
DOI: 10.1007/978-4-431-54318-3_3, © Springer Japan 2013
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Starting from this expression, the analyticity of the function Π(q2) in the whole
imaginary plane of the variable q2 except the positive part of the real axis allows one
to write down the dispersion relation

Π(q2) = 1

π

∫ ∞

0
ds

ImΠ(s + iε)

s − q2

=
∫ ∞

0
ds
ρ J (s)

s − q2 , (3.2)

where the spectral function related to the interpolating field J (x) has been defined
as 1

π
Π(s + iε) = ρ J(s). The above equation connects the region of the correlator

where calculations using perturbation theory are, in principle, possible (|q2| → ∞)
with the region which is of actual physical interest (q2 ∼ E2

ground state). A detailed
derivation of Eq. (3.2) can be found in Appendix A.

3.1.1 The Theoretical Side

For extracting information on the spectral function ρ J(s) from the sum rule of
Eq. (3.2), one first needs to calculate its left hand side, Π(q2) in the deep Euclidean
region, where −q2 goes to ∞. This is done by perturbative methods, but simple
minded perturbation theory is not enough. Even though, due to asymptotic freedom,
the coupling constant approaches 0 at |q2| → ∞, there are sizable non-perturbative
contributions, which have to be taken into account. For this purpose, the authors of
Shifman et al. (1979a, b) proposed to use the OPE, originally developed by Wilson
Wilson (1969), to incorporate the non-perturbative effects of the low-energy vacuum
fields interacting with the high-energy quarks and gluons induced by the external
current J (x).

This treatment leads to an expansion of the correlator into a various local operators
Od , ordered by their mass dimension d and the corresponding Wilson coefficients:

Π(q2) =
∑

d

Cd(q
2)〈0|Od |0〉. (3.3)

As the local operators are sandwiched between the vacuum state, only Lorentz- and
Gauge-invariant operators with positive parity are allowed in the above expansion.
The leading operator is the unit operator (O0 = 1) and its Wilson coefficient stands
for the correlator of Eq. (3.1), evaluated by standard perturbation theory. The next
operators in the expansion can be constructed from all possible Lorentz- and Gauge-
invariant local combinations of quark and gluon fields:
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dim. 3 : 〈0|qq|0〉,
dim. 4 : 〈0|Ga

μνGaμν |0〉,
dim. 5 : 〈0|qσμν λ

a

2
Gaμνq|0〉,

dim. 6 : 〈0|qqqq|0〉, 〈0|qγ5qqγ5q|0〉, (3.4)

〈0|q λ
a

2
qq
λa

2
q|0〉, 〈0|qγ μ λ

a

2
qqγμ

λa

2
q|0〉, . . .

〈0|g3 f abcGaν
μ Gbλ

ν Gcμ
λ |0〉,

. . .

The vacuum expectation values of these operators are usually referred to as
“condensates”. Among these shown above, only the ones up to dimension 5 have
been thoroughly studied and more or less reliable estimates on their actual values
exist. As for the many possible versions of the four-quark condensates, they can all be
related to the square of the chiral condensate of dimension 3, if one uses Fierz trans-
formation in combination with the vacuum saturation approximation (which will be
discussed later). The dimension 6 gluon condensate can also be related to the dimen-
sion 4 gluon condensate, with the help of the dilute instanton gas model (Novikov
et al. 1979). For condensates with even higher dimension, the uncertainty of their
values is much larger, as the validity of the above mentioned approximations used
for the dimension 6 condensates is not at all established. Therefore, to obtain reliable
results it is important that the OPE is dominated by the first few dimensional terms,
and that the contributions from condensates larger that 6 only give small corrections.

3.1.2 The Phenomenological Side

Coming back to the dispersion relation in Eq. (3.2), we now consider the right hand
side. Using the optical theorem and inserting a complete set of intermediate hadronic
states, we can write

ImΠ(q2) = 1

2

∑
n

〈0|J |n(pn)〉〈n(pn)|J |0〉dτn(2π)
4δ(4)(q − pn), (3.5)

where n is summed over all hadronic states coupling to J , including sums over
polarizations. dτn denotes the integration over the phase space of the states |n〉. To
calculate the spectral function ρ(s) = 1/π ImΠ(s +ε) and to completely understand
its behavior is one of the major goals of hadron physics and can not be done easily.

As the sum rule of Eq. (3.2) only provides information on an integral over the spec-
tral function, one can only hope to extract from it some bulk properties of the spec-
trum, but not all its detailed features. Therefore, traditionally it has been the custom
in practical sum rule analyses to make a deliberated guess on the concrete structure
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of the spectral function, parametrize this structure with a small number of parameters
and finally fit these parameters with the help of the sum rule. In this thesis, we will
adopt a different approach, trying to obtain the spectral function directly from the
sum rule with the help of the maximum entropy method. The details of this procedure
are explained in Chapter 4 of this thesis.

Here, the conventional approach to the sum rules will be explained, which is
important for understanding the motivation for the Bayesian approach, proposed in
the present work. As a first step, Eq. (3.5) is divided into two energy regions:

ImΠ(s) ≡ θ(sth − s)ImΠ<(s)+ θ(s − sth)ImΠ
>(s). (3.6)

sth is the so-called threshold parameter and marks the boundary of the two domains.
The high energy part of the correlator is then approximated using the quark-hadron
duality (Poggio et al. 1976), which connects the hadronic spectral function with the
perturbative calculations using the OPE technique, for which the degrees of freedom
are quarks and gluons:

ImΠ>(s) ≈ ΠOPE(s). (3.7)

This approximation is only valid at sufficiently high energies, where the perturbative
terms dominate over the low-energy correlations.

Usually, one is interested in the ground state or lowest resonance coupling to
J (x), which lies below the threshold parameter sth . Here, QCD sum rules often use
the one pole approximation, completely ignoring the possible width of the state and
potentially occurring scattering states. Such scattering states may be present even
below the lowest peak, if it is a resonance. The one pole approximation is given as

ImΠ<(s) ≈ π |λ|2δ(s − m2), (3.8)

where m is the mass of the perceived ground state and |λ|2 is the coupling strength
of the pole to the interpolating field J (x). Equations (3.7) and (3.8) are the basic
assumptions of the usual QCD sum rule analysis and especially in the case of Eq. (3.8),
one in principle does not know if it is accurate without any additional information.
Thus, the validity of these assumptions has to be carefully checked in the course of
the calculation.

3.1.3 Practical Versions of the Sum Rules

Even though we have already obtained a sum rule in Eq. (3.2), it is for several reasons
not very useful in this form. First of all, the integral over the spectral function most
likely does not converge to a finite value. As explained in Appendix A, this problem
can be cured by introducing subtraction terms, which are polynomials in q2 with
infinite coefficients. However, at this point, both sides of Eq. (3.2) still diverge and
the sum rule is therefore quite useless in practice. Furthermore, experience of actual
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OPE calculations show that the convergence of the expansion in the present form is
slow and high-order terms can be quite important.

To improve the situation, it was proposed in Shifman et al. (1979a, b) to use the
Borel transformation L̂ M , which is defined as

Π(M2) ≡ L̂ MΠ(q
2) ≡ lim

−q2,n→∞,

−q2/n=M2

(−q2)n

(n − 1)!
(

d

dq2

)n

Π(q2). (3.9)

After applying this operator to the dispersion relation of Eq. (3.2), one obtains

Π(M2) = 1

M2

∫ ∞

0
dse−s/M2

ρ J(s). (3.10)

As one can see in Eq. (3.9), the Borel transformation includes an infinite number of
derivatives, therefore all subtraction terms automatically vanish. At the same time,
the high energy part of the dispersion integral is exponentially suppressed, meaning
that the integral now converges to a finite value (as long as the spectral function itself
does not grow exponentially, which is not the case in practice).

Some typical and useful examples of the Borel transformation are shown below,

L̂ M (q
2)k = 0, (3.11)

L̂ M (q
2)k ln(−q2) = −k!(M2)k, (3.12)

L̂ M

( 1

q2

)k = (−1)k

(k − 1)!
( 1

M2

)k
, (3.13)

L̂ M

( 1

s − q2

)k = 1

(k − 1)!
( 1

M2

)k
e−s/M2

. (3.14)

Here, k is a positive integer, and M the so-called Borel mass. As will be discussed
later, higher dimensional terms are usually proportional to (1/q2)k , the power grow-
ing with dimension. Hence, it is observed in Eq. (3.13) that higher dimensional terms
of the OPE are suppressed by an additional factor of 1

(k−1)! , which considerably
improves the convergence of the OPE.

The Borel transformed sum rule is, however, not the only way to improve the
behavior of Eq. (3.2). As we will see in Chap. 6 of this thesis, there are cases in
which one can do better. For instance, in Bertlmann et al. (1985), a Gaussian kernel
was derived instead of the exponential one in Eq. (3.10). This leads to the “Gaussian
sum rules”, which can be given as,

Π(s, τ ) = 1√
4πτ

∫ ∞

0
dte− (t−s)2

4τ ρ J(t), (3.15)

where s and τ are free parameters and correspond to the Borel mass M in the Borel
sum rule case. The advantage of this sum rule is that two parameters can be varied,

http://dx.doi.org/10.1007/978-4-431-54318-3_6
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allowing one to extract more information on the spectral function ρ J(t) from the sum
rule. Furthermore, the kernel of the Gaussian sum rule has a distinct peak at t = s,
which means that the various peak structures that might be present in the spectral
function are more likely to be preserved in Π(s, τ ), rather than washed out as it is
often the case for the Borel sum rule.

To summarize, Eqs. (3.10) and (3.15) are the final forms of the sum rules that will
be repeatedly appear in this work. The goal is now to analyze these equations and to
extract as much information as possible from them with the least amount of artificial
assumptions. Our proposed approach of how to deal with this task will be discussed
in Chap. 4 of this thesis.

3.2 More on the Operator Product Expansion

The operator product expansion (OPE) has already appeared in Eq. (3.3) of the
preceding section. As this expansion plays a key role for the formulation of QCD
sum rules, we will discuss it in more detail below.

3.2.1 Theoretical Foundations

The original idea of the OPE, proposed by Wilson (1969), can be formulated as
follows:

T
[
Â(x)B̂(y)

] x→y−−−→
∑

n

Cn(x − y)Ôn
( x + y

2

)
. (3.16)

Spelled out in words, the above statement means that when two local operators
are located at nearby space-time points, they can be rewritten as a series of local
operators, defined at the average point between the two original operators, with
respective numerical coefficients (the “Wilson coefficients”), which can be calculated
perturbatively, due to asymptotic freedom of QCD. Fourier transforming the relation
of Eq. (3.16) into momentum space and assuming that the local operators Ôn do not
depend on the space-time coordinates, we get,

i
∫

d4xeiq(x−y)T
[
Â(x)B̂(y)

] |q2|→∞−−−−−→
∑

n

Cn(q
2)Ôn . (3.17)

It can be explicitly shown that the correlator at |q2| → ∞ corresponds to the short
distance limit of Eq. (3.16) (Colangelo and Khodjamirian 2001). This Fourier trans-
formed OPE makes it more apparent that one here essentially carries out a division of
scales (also referred to as “factorization”), meaning that the perturbative high energy
part goes into the Wilson coefficients, while the low energy parts contribute to the
local operators.

http://dx.doi.org/10.1007/978-4-431-54318-3_4
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The OPE is formulated to be a relation between operators, therefore it does not
depend on what kind of matrix elements one calculates from Eqs. (3.16) and (3.17).
Thus, the OPE provides some universal relations between various different matrix
elements, which belong to different processes. These relations are exploited espe-
cially in the analysis of deep inelastic scattering, where the OPE has proven to be a
very useful tool (Muta 1998). However, one should keep in mind that, even today,
the formulation of the OPE is in fact not yet complete. Even though the correct-
ness of the OPE was proven by Zimmermann in a completely perturbative regime
(Zimmermann 1970), no proof for it is given for the case when non-perturbative
effects are included. This situation is not very satisfactory and a proof for the general
non-perturbative case is certainly desirable. However, the success of the OPE in its
many places of application does at least provide convincing evidence for its validity.

3.2.1.1 Ordering of Operators According to Their Dimension

To understand why the OPE is a valid expansion and why usually only the first few
terms suffice to obtain reliable results, one can refer to an easy argument by dimen-
sional analysis. In the short distance (or large energy) limit x → y, quark masses and
other low energy scales can be ignored, meaning that the only dimensionful quantity
appearing in the Wilson coefficients is (x − y)2. Thus, in this limit, the functional
dependence of Cn(x − y) is fixed by its dimension. Denoting the mass dimensions
of Â(x), B̂(y) and Ôn as dA, dB and dn , respectively, Cn(x − y) will behave in the
following way:

Cn(x − y)
x→y−−−→

(
1

(x − y)2

)(dA+dB−dn)/2

. (3.18)

As the dimension of the condensates becomes larger, the corresponding singularities
are weakened, until at a certain dimension they vanish completely. In momentum
space the above relation is rewritten as

Cn(q
2)

|q2|→∞−−−−−→ (q2)(dA+dB−dn−4)/2 log(−q2)

(dA + dB − dn − 4 ≥ 0), (3.19)

Cn(q
2)

|q2|→∞−−−−−→ (q2)(dA+dB−dn−4)/2

(dA + dB − dn − 4 < 0).

Here, it is seen that the in the limit of |q2| → ∞, the terms corresponding to the
operators with the lowest dimension dn dominate the expansion.

It is, however, important to note that in reality, the behavior of the OPE is not
as simple as the above argument suggests. Most importantly, the numerical factors
appearing in front of the expressions of Eq. (3.19) can be large and thus distort the
ordering of the various terms according to their dimension. As was pointed out in
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Ioffe (1981a, b), the lowest order terms usually contain a number of loops, which are
numerically suppressed due to the momentum integral related to the loops. At higher
orders of the OPE, these loops are cut, which leads to an enhancement of higher order
terms compared to the leading order. Therefore, as a simple rule, one should include
all orders in the OPE until the loops are cut, to make sure the expansion converges.

3.2.1.2 Accurate Treatment of Factorization

After the OPE was applied to low energy QCD in the framework of QCD sum rules,
some criticism was raised by several authors about the validity of this expansion
(Quinn and Gupta 1982; David 1984), pointing out that there are problems for the
OPE in a theory with spontaneously broken symmetries and that there are ambiguities
in the definition of condensates due to IR singularities. Later, these issues were
addressed in Novikov et al. (1985), in which an unambiguous definition of the OPE
was given. Essentially, the idea is that the simple expression of Eq. (3.3) is in fact
not completely correct, but should be written down including a scale μ, specifying
the energy at which one separates the high- and low-energy contributions:

Π(q2) =
∑

d

Cd(q
2, μ)〈0|Od |0〉(μ). (3.20)

Here, both the Wilson coefficients Cd(q2, μ) and the condensates 〈0|Od |0〉(μ)
depend on the factorization scale μ. However, as a whole, this expression should
not depend on μ and hence these dependencies of the different parts cancel.

What this means is that the factorization of the OPE should not be considered
to be a division between perturbative and non-perturbative contributions, but rather
between high-energy (“hard”) and low-energy (“soft”) parts. How this works has been
beautifully shown in Shifman (1998), where, as an example, the gluonic contribution
to a mesonic correlator was discussed and the division between the hard and soft
domain was explicitly carried out. Here, we will only explain the general idea of this
procedure. Consider for instance the integral,

∫ ∞

0
dq2Gfull(q

2), (3.21)

in which Gfull(q2) is a full propagator (or a combination of several of them)
contributing to some correlator. One can now easily divide this integral into a hard
and a soft part, the division scale being μ:

∫ ∞

0
dq2Gfull(q

2) =
∫ ∞

μ2
dq2Gfull(q

2)+
∫ μ2

0
dq2Gfull(q

2). (3.22)

The hard part can be replaced by the corresponding perturbative propagator, while
the soft part is parametrized by the appropriate condensates 〈OG〉(μ):
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∫ ∞

0
dq2Gfull(q

2) �
∫ ∞

μ2
dq2Gpert(q

2)+ 〈OG〉(μ). (3.23)

Formally, this is the correct way to implement the factorization in some OPE
calculation. However, in practice such a clear division is not always feasible and
one usually follows a much simpler method. Namely, one carries out the full pertur-
bative calculation without the lower boundary μ2:

∫ ∞

0
dq2Gfull(q

2) �
∫ ∞

0
dq2Gpert(q

2)+
{
〈OG〉(μ)−

∫ μ2

0
dq2Gpert(q

2)

}

=
∫ ∞

0
dq2Gpert(q

2)+ 〈O
′
G〉(μ). (3.24)

In this way, the perturbative part of the low energy domain is included into the
effective condensates 〈O

′
G〉(μ). Of course, this treatment is only possible if the

perturbative part below μ contains no divergences. If it does, one has to go back to
the original form of the factorization, given in Eq. (3.23).

In Novikov et al. (1985), some arguments are given that in QCD, in contrast to
other cases such as the λφ4 theory or the O(N ) sigma model at low N , the pertur-
bative effects on the effective condensates 〈O

′
G〉(μ) are small and can be essentially

neglected. This situation can be related to the existence of a suitable “window” of
the factorization scale μ (not to be confused with the “Borel window” appearing
in conventional QCD sum rule analyses). Within this window, μ is large enough
so that αs(μ)/π  1 and at the same time small enough so that the perturbative
contributions to 〈O

′
G〉(μ) are small.

3.2.2 Calculation of Wilson Coefficients

Here, we show the fundamental steps of how to obtain the various Wilson coefficients.
Derivations of some formulae appearing in this section can be found in the appen-
dices. We here concentrate on the light quark sector, in which the quark masses can be
treated as small perturbations. Calculations using heavy quark masses are discussed
for instance in Novikov et al. (1984).

3.2.2.1 Fock-Schwinger Gauge

The Fock-Schwinger gauge (Fock 1937; Schwinger 1954) is defined as

(x − x0)
μAa

μ(x) = 0, (3.25)
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where x0 is a space-time point that can be freely chosen. For simplicity, it is usually
taken to be 0, which will be done in the following discussion. The merit of using this
gauge is that one can derivatively expand the gluon and quark fields in a covariant way,
which was first pointed out in Cronstrom (1980) and further discussed in Dubovikov
and Smilga (1981), Shifman (1980). Specifically, one obtains,

Aa
μ(x) = 1

2
xνGa

νμ(0)+ 1

3
xνxα[DαGνμ(0)]a

+ 1

8
xνxαxβ [DαDβGνμ(0)]a + · · · (3.26)

for the gluon fields and

q(x) = q(0)+ xαDαq(0)+ 1

2
xαxβDαDβq(0)+ · · · (3.27)

for the quark fields. Note that even though we have used the same notation, the
covariant derivatives in Eqs. (3.26) and (3.27) belong to the adjoint and fundamental
representation, respectively. A detailed derivation of the above equations is given in
Appendix B.

3.2.2.2 The Quark-Propagator in a Non-perturbative Background

As a first step of the actual OPE calculation, it is convenient to derive the quark
propagator in the non-perturbative QCD vacuum, which can then be used repeatedly.
For this, we will rely on the Fock-Schwinger gauge and treat the quark mass mq as
a small parameter, retaining only terms up to the first power of mq . Furthermore,
we give all the results in the x-representation, which will proof to be useful in later
calculations.

Relegating the derivation to Appendix C, we here directly give the final form of
the quark propagator in a non-perturbative background:

〈0|T [qa
i (x)q

b
j (0)]|0〉

≈ i

2π2x4 ( � x)i jδ
ab − mq

22π2x2 δi jδ
ab − ig

25π2x2
Gk
μν(σ

μν � x+ � xσμν)i j

(
λk

2

)ab

− gmq

25π2
ln

(
− x2Λ2

4
+ 2γE M

)
Gk
μν(σ

μν)i j

(
λk

2

)ab

(3.28)

− 1

223
δi jδ

ab〈qq〉 + imq

243
( � x)i jδ

ab〈qq〉 − x2

263
δi jδ

ab〈qgσGq〉

+ imq x2

2732 ( � x)i jδ
ab〈qgσGq〉 − π2x4

2833 δi jδ
ab〈qq〉〈αs

π
G2〉

+ O(m2
q , g2)
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Here, a, b are color indices, while i, j stand for the Dirac indices. Furthermore, γE M

is the Euler-Mascheroni constant, which has the value γE M = 0.57721 . . .. The first
term in the third line of Eq. (3.28) with ln

(− x2Λ2

4 + 2γE M
)

corresponds to an IR
singularity, which arises because of the perturbative treatment of the quark mass mq .
Using the techniques explained in Appendix C, one can in principle systematically
calculate higher orders, which is indeed necessary in certain cases.

3.2.2.3 Non-perturbative Coupling of Quarks and Gluons

As one further step, the non-perturbative contractions of a gluon and a quark must
be calculated. These will, at least in leading order, be proportional to the mixed
condensate 〈qgσGq〉. For this we have to carry out the OPE of the following operator:

〈0|qa
i (x)gGk

μν(0)q
b
j (0)|0〉 = 〈0|qa

i (0)gGk
μν(0)q

b
j (0)|0〉

+ xα〈0|Dαqa
i (0)gGk

μν(0)q
b
j (0)|0〉 + · · · (3.29)

For these first two terms, the derivation can be found in the Appendix D, where their
final form is obtained as

〈0|qa
i (x)gGk

μν(0)q
b
j (0)|0〉 ≈ − (σμν)i j

263

(
λk

2

)ab

〈qgσGq〉

+ imq

283
( � xσμν − σμν � x)i j

(
λk

2

)ab

〈qgσGq〉
+ O(m2

q , g2). (3.30)

3.2.2.4 A Simple Example

To show the procedure of an actual calculation, we demonstrate in this subsection the
OPE of the vector current, composed of an (anti-) u and a d quark, which strongly
couples to the ρ-meson in the low energy domain. The OPE of this current will be
analyzed by the MEM technique in Chap. 5 of this thesis.

Our aim here is to carry out the OPE of the following correlator:

Πμν(q) = i
∫

d4eiqx 〈0|T[ jμ(x) j†
ν (0)]|0〉 = (qμqν − q2gμν)Π(q

2). (3.31)

Here the operator jμ(x) is defined as jμ(x) = ū(x)γμd(x). The last equality in the
above equation follows from the fact that jμ(x) is a conserved current. Therefore, to
simplify the calculations, we can directly work with the contracted correlator,

http://dx.doi.org/10.1007/978-4-431-54318-3_5
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Fig. 3.1 The leading perturbative diagram contributing to the OPE of the vector current correlator
of Eq. (3.31)

Πμ
μ (q) = −3q2Π(q2). (3.32)

For light quarks, it is most convenient to perform the OPE directly in x-space and to
implement the Fourier transform only at the very end of the calculation, which we
will do in the following.

The first step is to contract the quark operator by the Wick theorem. This gives

〈0|T[ jμ(x) j†
μ(0)]|0〉 = −Tr[S(x)γ μS(−x)γμ], (3.33)

where the trace Tr is taken for both spinor and color indices. S(x) stands for the
quark propagator of Eq. (3.28), which contains both perturbative and non-perturbative
contributions.

Let us now calculate the leading perturbative term, which corresponds to the
Feynman diagram of Fig. 3.1. For this, we simply have to substitute the first term of
Eq. (3.28) into Eq. (3.33) and take the traces, which leads to

〈0|T[ jμ(x) j†
μ(0)]|0〉

∣∣∣∣
leading pert.

= 6

π4

1

x6 . (3.34)

To calculate the first order αs correction of the perturbative term, one needs to
calculate the diagrams shown in Fig. 3.2. This calculation has to be done in momen-

Fig. 3.2 The diagrams contributing to the first order αs correction of the perturbative OPE term
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tum space and is quite involved. Therefore, we do not discuss it here and refer the
reader to literature (Colangelo and Khodjamirian 2001; Schwinger 1998) for details.

The next term would in principle be the one with the quark condensate with mass
dimension 3. This term, however vanishes due to chiral symmetry. Therefore, we
now consider the next order, which involves condensates with mass dimension 4.
For demonstration of the method, we calculate the Wilson coefficient for the gluon
condensate, for which we have to evaluate the diagrams shown in Fig. 3.3. Here
we notice that in the limit of vanishing quark mass, the quark propagator with two
attached gluons vanishes (Ioffe et al. 2010) and is therefore strongly suppressed
for light quarks. Therefore, we only have to calculate the graph on the left side of
Fig. 3.3. (Note, however, that for heavy quarks, all three graphs give contributions of
comparable size and thus have to be taken into account (Novikov et al. 1984).)

The concrete evaluation of the relevant diagram of Fig. 3.3 is then quite sim-
ple. One substitutes the third term of Eq. (3.28) into Eq.(3.33), takes the traces and
contracts the gluon operators according to

〈Gk
μνGl

ρσ 〉 = δkl

253
(gμρgνσ − gμσ gνρ)〈G2〉. (3.35)

At the end of the calculation, we get

〈0|T[ jμ(x) j†
μ(0)]|0〉

∣∣∣∣
gluon cond.

= − 1

24

1

x2 〈αs

π
G2〉. (3.36)

The calculation can be continued to include more higher order terms, up to the
point when the expansion is expected to converge. As a last step, one then Fourier
transforms the obtained results back to momentum space with the help of the formulae
given in Appendix F.

Fig. 3.3 The diagrams contributing to the Wilson coefficient of the gluon condensate. In the light
quark case, the diagram on the left gives the dominant contribution, while the other two are sup-
pressed
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3.3 More on the QCD Vacuum

The vacuum expectation values of Lorentz- and gauge-invariant operators are fun-
damental parameters of QCD. As they are genuinely non-perturbative objects, their
values cannot be calculated analytically and have to be determined by more involved
methods. In the following, the values of the most important condensates and their
derivation is briefly reviewed.

3.3.1 The Quark Condensate

As already discussed in Sect. 2.3.2, a finite value of the quark condensate signals
the spontaneous breaking of the chiral symmetry. 〈qq〉 is therefore probably the
most important and most well-known of all the condensates. Its properties have been
discussed already many years ago, and its value (for the light quarks) can be obtained
via the Gell-Mann-Oakes-Renner relation of Eq. (2.23), approximately giving

〈qq〉 = −(240 ± 10 MeV)3. (3.37)

In all the considerations above, the exact realization of the isospin symmetry has been
assumed. Moreover, the value of (3.37) is in fact scale dependent due to logarithmical
quantum corrections and thus, a renormalization scale has to be given to make it fully
determined. The value given above corresponds to the scale of μ ∼ 1 GeV.

For determining the condensate of the strange quark condensate 〈ss〉, mainly the
QCD sum rule analyses of the octet strange baryons have been used (Reinders et al.
1985). These give

〈ss〉
〈qq〉 = 0.8 ± 0.2. (3.38)

This is one example, where the value of a condensate actually has been constrained
by a QCD sum rule result.

3.3.2 The Gluon Condensate

The gluon condensate 〈αs
π

G2〉 is another important quantity of QCD, closely con-
nected to the trace of the energy-momentum tensor. The derivation of its value has
first been given in the founding papers of the QCD sum rule approach (Shifman et al.
1979a, b). There, a calculation of the charmonium sum rules was used to extract the
value of

〈
αs
π

G2
〉
. As a result

〈αs

π
G2

〉
= (0.012 ± 0.004)GeV4 (3.39)

http://dx.doi.org/10.1007/978-4-431-54318-3_2
http://dx.doi.org/10.1007/978-4-431-54318-3_2
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was obtained. Some later evaluations lead to values quite close to the one above
used (Reinders et al. 1985), while others have yielded values about two times larger
(Narison 2004), four to five times larger (Marrow et al. 1987), about two times smaller
(Ioffe et al. 2010) or even consistent with zero (Brodsky and Shrock 2011). Thus, it
has to be said that the uncertainty in the value of

〈
αs
π

G2
〉

is still very large.

3.3.3 The Mixed Condensate

The mixed condensate 〈qgσGq〉 is a further quantity, which appears in the OPE
of QCD sum rules. It is constructed from quarks and gluons and is therefore called
the mixed condensate. Although its dimension is five and it thus appears only at
relatively high orders compared to the above two condensates, it actually plays a
quite important role in the determination of the masses of various baryons.

For the light u, d quarks, the mixed condensate is usually parametrized relative to
the quark condensate:

〈qgσGq〉
〈qq〉 ≡ m2

0. (3.40)

The value of m2
0 has been estimated in the early days of the QCD sum rule approach

(Belyaev and Ioffe 1982) and has since not much changed:

m2
0 = (0.8 ± 0.1)GeV2. (3.41)

There is also an estimate of 〈qgσGq〉 by lattice QCD (Doi et al. 2003), which gives
a value much larger than the one obtained by QCD sum rules (∼2.5 GeV2). This
disagreement between the results of these two approaches certainly needs further
investigation. We will use the value of (3.41) in our calculations.

The mixed condensate for the strange quarks 〈qgσGq〉 is parametrized similarly
to Eq. (3.40):

〈sgσGs〉
〈ss〉 ≡ m2

1. (3.42)

Its value has been estimated to be the same as for the light quarks (Beneke and Dosch
1992):

m2
1 = (0.8 ± 0.1)GeV2. (3.43)

3.3.4 Higher Order Condensates

There are two sorts of condensates with mass dimension six. Firstly there is the
three-gluon condensate 〈g3 fabcGaν

μ Gbλ
ν Gcμ

λ 〉, where fabc are the structure constants
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of the SU(3) group. The value of this condensate is not very well known and only a
crude estimate based on the dilute instanton gas model exists (Novikov et al. 1979).
This model gives

〈g3 fabcGaν
μ Gbλ

ν Gcμ
λ 〉 ≈ 0.045 GeV6. (3.44)

There have also been attempts to calculate this quantity on the lattice (Panagopoulos
and Vicari 1990), but the results are not yet conclusive and more research is needed
for obtaining a reliable estimate.

Secondly, there are the condensates containing four quarks. Generally, these can
be expressed as

〈qi
αqk

βql
γ gm

δ 〉, (3.45)

where the color and spinor indices have to be contracted to give a singlet, a task for
which there exist various combinations. The resulting condensates are, however, only
very poorly known and one usually resorts to the vacuum saturation approximation,
which reads as follows:

〈qi
αqk

βql
γ qm
δ 〉 � 1

144
(δimδklδαδδβγ − δilδkmδαγ δβδ)〈qq〉2. (3.46)

What this equation essentially means is that one inserts a complete set of states
between the two pairs of quarks and assumes that the vacuum part gives the dominant
contribution. This approximation can be justified in the limit of an infinite number
of colors Nc (Novikov et al. 1984), but it is not clear to what degree it holds for QCD
with Nc = 3. For parametrizing the violation of this approximation, a factor κ is
sometimes introduced, which is simply multiplied to Eq. (3.46). Estimates for this
parameter range from close to 1 (Ioffe et al. 2010), 2 ∼ 3 (Narison 2004), up to ∼6
(Leinweber 1997).

For the operators containing even more quarks or gluons, the vacuum saturation
approximation discussed above is frequently used, even though the accuracy of this
approximation is not properly justified for the various operators that appear at higher
orders. Therefore it has to be admitted that the OPE results at higher orders become
quite ambiguous. Thus, it is desirable that the OPE converges sufficiently fast, so
that these terms do not have to be taken into account. In all, it can be said that the
OPE calculation of higher order terms leaves room for further improvement of the
QCD sum rule method.

3.4 Parity Projection for Baryonic Sum Rules

The problem of how to accurately project out positive or negative states from baryonic
sum rules has been discussed only quite recently and is still not completely resolved.
In this section, we introduce an improved method for constructing the parity projected
sum rules, with which we hope to clarify this issue.
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3.4.1 The Problem of Parity Projection in Baryonic Sum Rules

In contrast to mesons, the operators with quantum numbers of baryons couple to states
of both parity, and one can thus not simply fix this quantum number by choosing an
appropriate interpolating field. For illustration, let us consider the spatial inversion
operation applied to a general Dirac operator η(t, x) for a spin 1

2 state.

η(t, x) → ±γ0η(t,−x) (3.47)

The parity of this operator can be switched by simply multiplying γ5:

γ5η(t, x) → ±γ5γ0η(t,−x) = ∓γ0γ5η(t,−x). (3.48)

Therefore, η(t, x) couples to both positive and negative parity states. Supposing that
the intrinsic parity of η(t, x) is positive, we thus get:

〈0|η(x)|n+(q)〉 = λn+u+(p)e−iqx ,

〈0|η(x)|n−(q)〉 = λn−γ5u−(p)e−iqx . (3.49)

Here, u±(q) are Dirac spinors with positive and negative parity and λn± parameters
corresponding to the strength of the coupling of η to the state |n〉. Using these
definitions, the correlator of η will have the following form (in which the continuum
states are omitted for simplicity):

Π(q) = i
∫

d4xeiqx 〈0|T [η(x)η(0)]|0〉

=
∑

n

{
−|λn+|2 �q + mn+

q2 − (mn+)2 + iε
− |λn−|2 �q − mn−

q2 − (mn−)2 + iε

}

≡�qΠ1(q
2)+Π2(q

2). (3.50)

When only the sum rule for Π1(q2) is used, it is not possible to determine the
parity of the state contributing to some specific pole, as both positive and negative
parity states couple to its spectral function:

1

π
ImΠ1(q

2) =
∑

n

[∣∣λn+
∣∣2
δ(q2 − (mn+)2)+ ∣∣λn−

∣∣2
δ(q2 − (mn−)2)

]
. (3.51)

In contrast, Π2(q2) contains the positive and negative parity states with different
signs:

1

π
ImΠ2(q

2) =
∑

n

[∣∣λn+
∣∣2

mn+δ(q2 − (mn+)2)− ∣∣λn−
∣∣2

mn−δ(q2 − (mn−)2)
]
. (3.52)
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Thus, the problem of parity projection boils down to consistently disentangling the
contributions of positive and negative parity to the spectral functions of Eqs. (3.51)
and (3.52).

3.4.2 Use of the “Old Fashioned” Correlator

As a solution to the problem discussed above, the use of the “old fashioned” correlator
in the rest frame (q = 0) was proposed in Jido et al. (1996),

Πof(q0) = i
∫

d4xeiqxθ(x0)〈0|η(x)η̄(0)|0〉
∣∣∣
q=0

≡ γ0Π
of
1 (q0)+Πof

2 (q0), (3.53)

where the essential difference to Eq. (3.50) is the insertion of the Heaviside step-
function θ(x0) before carrying out the Fourier transform. Let us examine the effect of
this step-function. First, we note that η(x)η̄(0) can be replaced by the corresponding
time-ordered product T [η(x)η̄(0)]. (Alternatively, we could have started directly
from Eq. (3.53) with T [η(x)η̄(0)] instead of η(x)η̄(0).) Next, we use Eq. (3.50) and
the Fourier transform of the Heaviside step-function, giving

Πof(q0)

=
∫

d4xeiqx 1

2π i

∫
dk0

1

k0 − iε
eik0x0

∫
d4 p

(2π)4
e−i px

×
∑

n

{
−|λn+|2 � p + mn+

p2 − (mn+)2 + iε
− |λn−|2 � p − mn−

p2 − (mn−)2 + iε

}∣∣∣∣
q=0

(3.54)

= 1

2π i

∫
dk0

1

k0 − iε

∑
n

{
−|λn+|2 (k0 + q0)γ0 − q · γ + mn+

(k0 + q0)2 − q2 − (mn+)2 + iε

− |λn−|2 (k0 + q0)γ0 − q · γ − mn−
(k0 + q0)2 − q2 − (mn−)2 + iε

}∣∣∣∣
q=0

.

The integrand of the above result contains three poles, two in the upper half of the
imaginary plane of k0 and one in the lower half. Therefore, closing the contour of
integration in the lower half and using the Cauchy theorem, we pick up the residue
of one pole and get

Πof(q0)

= 1

2

∑
n

{
−|λn+|2 1

q0 −
√

q2 + (mn+)2 + iε

⎡
⎣γ0 − q · γ − mn+√

q2 + (mn+)2 − iε

⎤
⎦
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− |λn−|2 1

q0 −
√

q2 + (mn−)2 + iε

[
γ0 − q · γ + mn−√

q2 + (mn−)2 − iε

]}∣∣∣∣
q=0

(3.55)

= 1

2

∑
n

{
−|λn+|2 1

q0 − mn+ + iε
(γ0 + 1)− |λn−|2 1

q0 − mn− + iε
(γ0 − 1)

}
.

From this result it can be understood that the functionsΠof
1 (q0) andΠof

2 (q0) contain
only poles in the positive q0 region and that they are analytic for Im q0 ≥ 0.

Furthermore, by applying the projection operator 1
2 (γ0 ±1) to the “old fashioned”

correlator of Eq. (3.53) and taking the trace over the spinor indices, we are able to
construct functions that only contain positive or negative parity states, as

1

2
Tr

[1

2
(γ0 ± 1)Πof(q0)

] = Πof
1 (q0)±Πof

2 (q0) ≡ Π±(q0)

= −
∑

n

|λn±|2 1

q0 − mn± + iε
. (3.56)

The imaginary parts ofΠ±(q0) defined above then give the desired parity projected
spectral functions:

1

π
ImΠ±(q0) =

∑
n

|λ+
n |2δ(q0 − m±

n ). (3.57)

These can, however, not be calculated directly because perturbation theory is not
reliable in the low q0 region, but only at |q0| → ∞. We thus have to rely on the
analytic properties ofΠ±(q0), which allows us to extract information on the spectral
functions via certain sum rules, that we will discuss in the next subsection.

3.4.3 Construction of the Sum Rules

We now use the analyticity of the functions Π±(q0) to construct the sum rules.
To do that, we first have to remember that there are two distinct ways of expressing
Π±(q0). The first expression uses the OPE and is written down in the language of the
elementary degrees of freedom of QCD. In the following discussion we denote it as
Π±

OPE(q0). This expression is only reliable at high energies. The second one employs
the hadronic degrees of freedom, contained in the experimentally observable physical
spectrum. We have already given its concrete form in Eq. (3.56) and in the following
denote it as Π±

Phys.(q0).
To construct the sum rules, we consider the contour integral

∮
C

dq0
[
Π±

OPE(q0)−Π±
Phys.(q0)

]
W (q0) = 0, (3.58)
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q
0

C

Fig. 3.4 The contour integral C on the complex plane of the variable q0, used in Eq. (3.58). For
the actual calculations, the radius of the half circle of C is taken to infinity. The wavy line denotes
the non-analytic cut (or poles) of Π±(q0) on the positive side of the real axis. Compared to the
discussion in the main text, we have here slightly shifted the contour away from the real axis into
the upper half of the imaginary plane for better visuality

where the contour C is given in Fig. 3.4. W (q0)must be analytic in the upper half of
the imaginary plane and real on the real axis. As long as it satisfies these conditions,
it can be arbitrarily chosen. That Eq. (3.58) gives 0 follows from the analyticity of
both Π±

OPE(q0) and Π±
Phys.(q0). In other words, there are no poles or cuts inside

of the contour C . We know from asymptotic freedom that the perturbative expres-
sion Π±

OPE(q0) approaches the hadronic one at |q0| → ∞. Thus, the integrand of
Eq. (3.58) vanishes on the half circle of C , whose radius is taken to infinity. There-
fore, we are left with the section of C which runs along the real axis and can write
down the sum rule as

∫ ∞

−∞
dq0Π

±
Phys.(q0)W (q0) =

∫ ∞

−∞
dq0Π

±
OPE(q0)W (q0). (3.59)

Finally, taking the imaginary part of the above equation we get

∫ ∞

0
dq0ρ

±
Phys.(q0)W (q0) =

∫ ∞

−∞
dq0ρ

±
OPE(q0)W (q0), (3.60)

where the definitions ρ±
Phys.(q0) ≡ 1

π
ImΠ±

Phys.(q0) and ρ±
OPE(q0) ≡ 1

π
ImΠ±

OPE(q0)

were used. Moreover, on the left-hand side, we have exploited the fact thatΠ±
Phys.(q0)

only has poles on the positive side of the real axis (see Eq. (3.56)) and have hence
restricted the integral to this region.

The authors of Jido et al. (1996) have also restricted to integral on the right-hand
side of Eq. (3.60) to positive values. Even though this procedure is roughly correct,
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it leads to ambiguities in the higher order OPE terms, which in the chiral limit have
poles at q0 = 0. The problem here is that one does not know, whether these poles
should be included into the integral of positive values, as they lie just on the border.
Furthermore, in Jido et al. (1996) the imaginary part of the time ordered correlator
was used instead of ImΠ±

OPE(q0), which in principle should be derived from the “old
fashioned” correlator of Eq. (3.53). As was pointed out in Kondo et al. (2006), it is
not entirely clear whether this prescription is justifiable. Therefore, in this study, we
implement two essential improvements as compared to Jido et al. (1996): (1) We
do not use the time ordered correlator, but derive all results directly from the “old
fashioned” correlator of Eq. (3.53). (2) We do not restrict the region of integration of
the OPE side of Eq. (3.60) to positive values and therefore remove the ambiguities
that might occur for higher order OPE terms. How this is done will be explained in
the next subsection.

3.4.4 General Analysis of the Sum Rules
for Three-Quark Baryons

The OPE result of a time ordered correlator with interpolating fields containing three
quarks can in coordinate space generally be expressed as

Π(x) = [
C (0)

x
1

(x2 − iε)5
+ C (4)

x
1

(x2 − iε)3

+ C (6)
x

1

(x2 − iε)2
+ C (8)

x
1

x2 − iε
+ · · · ] � x (3.61)

+ C (3)
x

i

(x2 − iε)4
+ C (5)

x
i

(x2 − iε)3

+ C (7)
x

i

(x2 − iε)2
+ C (9)

x
i

x2 − iε
+ · · ·

Here, C (n)
x are constants containing condensates with a total mass dimension n and

dimensionless numerical factors. This equation is only correct as long as we work at
leading order in αs for the Wilson coefficients, because higher order corrections may
involve additional logarithmic dependencies on x2. In momentum space, this gives,

Π(q) = [
C (0)

q q4 ln(−q2 − iε)+ C (4)
q ln(−q2 − iε)

+ C (6)
q

1

q2 + iε
+ C (8)

q
1

(q2 + iε)2
+ · · · ] �q (3.62)

+ C (3)
q q2 ln(−q2 − iε)+ C (5)

q ln(−q2 − iε)

+ C (7)
q

1

q2 + iε
+ C (9)

q
1

(q2 + iε)2
+ · · · ,
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where, as above, C (n)
q contains condensates and numerical factors. Furthermore, we

here have neglected all polynomials in q2, as they are not relevant for the further
discussion. Also, note that we here have used the conventional Fourier transform,
not the one with a step function as in Eq. (3.53).

Starting from these results, the question is now how to calculate the right-hand
side of Eq. (3.60), from these results, which is all we need to get to the final form of
the sum rules. This is a straightforward mathematical exercise: one plugs Eq. (3.61)
into Eq. (3.53) and calculates the necessary integrals. One key ingredient for this
calculation is the use of the Fourier transformed Heaviside step function of Eq. (F.6).
Furthermore, we also mention that for the terms up to dimension 5, it is convenient to
work in coordinate space while for terms with mass dimension 6 or larger, it is better
to start from the momentum space expression of Eq. (3.62). We leave the detailed
derivation to Appendix F and show here only the final result, which is obtained as

Πof (q0) =
[
C (0)

q q5
0 ln(−q0 − iε)+ C (4)

q q0 ln(−q0 − iε)+ 1

2
C (6)

q
1

q0 + iε

+ 1

4
C (8)

q
1√
q2

1

(q0 − √
q2 + iε)2

∣∣∣
q=0

+ · · ·
]
γ0 (3.63)

+ C (3)
q q2

0 ln(−q0 − iε)+ C (5)
q ln(−q0 − iε)

+ 1

2
C (7)

q
1√
q2

1

q0 − √
q2 + iε

∣∣∣
q=0

+ 1

4
C (9)

q

[ 1

(
√

q2)2

1

(q0 − √
q2 + iε)2

− 1

(
√

q2)3

1

q0 − √
q2 + iε

]∣∣∣
q=0

+ · · ·

Here, we have set
√

q2 = 0 wherever this limit does not lead to divergencies. As
one can see in the above equation, we are seemingly running into problems for terms
with dimension 7 and higher, as the limit

√
q2 → 0 leads to a divergence for these

terms. However, as we will see below, after substituting Eq. (3.63) into Eq. (3.60) and
evaluating the integral over q0, these divergences in fact vanish, leaving only finite
expressions for the final form of the sum rules.

Let us now carry out this last step and calculate the right hand side of Eq. (3.60). For
this, we consider two classes of weight functions W (q0), one which is an even func-
tion of q0, We(q0) = F(q2

0 ), the other being an odd function, Wo(q0) = q0 F(q2
0 ).

Here, F(q2
0 ) should be an analytic function on the upper half of the imaginary plane

and take only real values on the real axis.
The contributions of the terms of dimension 0, 3, 4, 5, and 6 to the sum rules

can be easily obtained. As can be observed from Eq. (3.63), their imaginary part
is either proportional to a step function θ(q0) (dimension 0–5) or to a δ function
δ(q0) (dimension 6). The calculation of the higher order terms is somewhat more
involved and we thus explicitly show their evaluation here. First, we note that in
the limit

√
q2 → 0, the imaginary parts of the terms of dimension 7, 9, . . . are
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odd functions of q0, while the ones of dimension 6, 8, 10, . . . are even functions of
q0. A proof for this statement is given in Sect. F.2.3 of Appendix F. We thus can
immediately conclude that the terms with dimension 7, 9, . . . vanish when the even
weight function We(q0) is used while the terms of dimension 6, 8, 10, . . . vanish if
the odd weight function Wo(q0) is used. Therefore, all we have to do is to evaluate
the remaining non-vanishing parts.

For dimension 7, we have

− 1

2
√

q2
C (7)

q

∫
dq0δ(q0 −

√
q2)q0 F(q2

0 )

∣∣∣
q=0

= −1

2
C (7)

q F(0). (3.64)

Next, dimension 8 gives

1

4
√

q2
C (8)

q

∫
dq0δ

′(q0 −
√

q2)F(q2
0 )

∣∣∣
q=0

= − 1

2
√

q2
C (8)

q

∫
dq0δ(q0 −

√
q2)q0 F ′(q2

0 )

∣∣∣
q=0

= −1

2
C (8)

q F ′(0). (3.65)

Finally, dimension 9 is evaluated as

1

4
C (9)

q

[
1

(
√

q2)2

∫
dq0δ

′(q0 −
√

q2)q0 F(q2
0 )

+ 1

(
√

q2)3

∫
dq0δ(q0 −

√
q2)q0 F(q2

0 )

]∣∣∣∣
q=0

(3.66)

= 1

4
C (9)

q

[
− 1

(
√

q2)2

∫
dq0δ(q0 −

√
q2)[F(q2

0 )+ 2q2
0 F ′(q2

0 )]

+ 1

(
√

q2)2
F(0)

]∣∣∣∣
q=0

= −1

2
C (9)

q F ′(0).

We have explicitly checked that for the dimension 10 term, all potential divergences
vanish in a similar fashion. Thus, the same procedure could presumably be continued
to even higher orders, but this is not of much practical use as the OPE is only available
up to terms of dimension 9 at present.

Let us also mention that if αs corrections to the Wilson coefficients are included,
oddness (evenness) of the imaginary parts of the dimension 7, 9, . . . (6, 8, 10, . . .)
terms no longer holds due to the additional logarithmic dependencies on q0. Thus,
the sum rules with an We(q0) (Wo(q0)) weight function do get contributions from
the dimension 7, 9, . . . (6, 8, 10, . . .) terms, but only at subleading order in αs . The
detailed form of these αs corrections are given elsewhere (Ohtani et al. 2013), here
we for simplicity concentrate only on the results at leading order.
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Assembling the findings of the preceding paragraphs, we can now write down the
sum rules. For the even weight function We(q0), we get

∫ ∞

0
dq0ρ

±
Phys.(q0)We(q0) =

∫ ∞

0
dq0ρ

±
Phys.(q0)F(q

2
0 )

= −C (0)
q

∫ ∞

0
dq0q5

0 F(q2
0 )∓ C (3)

q

∫ ∞

0
dq0q2

0 F(q2
0 )

(3.67)

− C (4)
q

∫ ∞

0
dq0q0 F(q2

0 )∓ C (5)
q

∫ ∞

0
dq0 F(q2

0 )

− 1

2
C (6)

q F(0)− 1

2
C (8)

q F ′(0)+ · · · ,

while for the odd weight function Wo(q0), the sum rules reads as follows:

∫ ∞

0
dq0ρ

±
Phys.(q0)Wo(q0) =

∫ ∞

0
dq0ρ

±
Phys.(q0)q0 F(q2

0 )

= −C (0)
q

∫ ∞

0
dq0q6

0 F(q2
0 )∓ C (3)

q

∫ ∞

0
dq0q3

0 F(q2
0 )

(3.68)

− C (4)
q

∫ ∞

0
dq0q2

0 F(q2
0 )∓ C (5)

q

∫ ∞

0
dq0q0 F(q2

0 )

∓ 1

2
C (7)

q F(0)∓ 1

2
C (9)

q F ′(0)+ · · ·

The sum rule of Eq. (3.67) has been considered in Jido et al. (1996), while the one
of Eq. (3.68) is to our knowledge formulated here for the first time. Eq. (3.68) has
the disadvantage of an additional power of q0 compared to Eq. (3.67), which will
enhance the contributions from the continuum to the sum rules. On the other hand,
the contribution of the four-quark condensate of dimension 6 vanishes (or, the be more
accurate, is suppressed byαs) for Eq. (3.68). As this term contains large uncertainties,
Eq. (3.68) has the potential to be more reliable. To establish which sum rule is more
useful, a detailed study of both Eqs. (3.67) and (3.68) is certainly necessary. Also
note that if one employs the maximum entropy method (to be discussed in the next
chapter) to analyze the sum rules, it even becomes possible to study both sum rules
at the same time.

As a last point of this section, we briefly touch on the issue of what function
should be chosen for the weight function F(q2

0 ). The traditionally favored choice
has been the Borel weight function, given as

F(q2
0 ,M) = e−q2

0/M2
. (3.69)
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However, our recent study (Ohtani et al. 2011) of the (non parity projected) nucleon
sum rules suggests that rather the Gaussian weight function,

F(q2
0 , s, τ ) = 1√

4πτ
e−(q2

0 −s)2/(4τ), (3.70)

is in fact to be preferred. Again, a more detailed discussion of this question has to
be relegated to another publication (Ohtani et al. 2013).
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Chapter 4
The Maximum Entropy Method

4.1 Basic Concepts

In this section, the essential steps of the MEM procedure are reviewed in brief.
For details on applications in condensed matter physics, see Jarrel and Gubernatis
(1996). Furthermore, Nakahara et al. (1999) and Asakawa et al. (2001) discuss the
implementation of this method to lattice QCD. For the application of MEM to Dyson-
Schwinger studies, see also Nickel (2007).

The basic problem that is solved with the help of MEM is the following. Suppose
one wants to calculate some function ρ(ω), but has only information about an integral
of ρ(ω) multiplied by a kernel K(x, ω):

GOPE(x) =
∫ ∞

0
dωK(x, ω)ρ(ω) ≡ Gρ(x). (4.1)

Let us first explain the above notation, which will be used throughout this chapter.
GOPE(x) stands for the result of the operator product expansion after having com-
pleted the Borel transform or other procedures to derive the final form of the sum
rules. On the other hand, Gρ(x) represents the result of the integration of the spectral
function ρ(ω) over ω with the kernel K(x, ω) as a weight function and hence implic-
itly depends on ρ(ω). Equation (4.1) corresponds to Eqs. (3.10), (3.15) or (3.60),
where x becomes either the Borel mass M or s, τ , the parameters appearing in the
Gaussian sum rules. When GOPE(x) is known only with limited precision or is only
calculable in a limited range of x , the problem of obtaining ρ(ω) from GOPE(x) is
ill-posed and will not be analytically solvable.

The idea of the MEM approach is now to use Bayes’ theorem, by which additional
information about ρ(ω) such as positivity and/or its asymptotic behavior at small or
large energies can be added to the analysis in a systematic way and by which one can

P. Gubler, A Bayesian Analysis of QCD Sum Rules, Springer Theses, 51
DOI: 10.1007/978-4-431-54318-3_4, © Springer Japan 2013
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finally deduce the most probable form of ρ(ω). Bayes’ theorem can be written as

P[ρ|GOPE H ] = P[GOPE|ρH ]P[ρ|H ]
P[GOPE|H ] , (4.2)

where prior knowledge about ρ(ω) is denoted as H , and P[ρ|GOPE H ] stands for
the conditional probability of ρ(ω) given GOPE(x) and H . The above equation can
be easily derived with the help of the formula of the joint probability of ρ(ω) and
GOPE(x):

P[ρGOPE|H ] = P[ρ|GOPE H ]P[GOPE|H ] = P[GOPE|ρH ]P[ρ|H ]. (4.3)

Maximizing the functional P[ρ|GOPE H ] will give the most probable form of ρ(ω).
P[GOPE|ρH ] is the “likelihood function” and P[ρ|H ] the “prior probability”. Ignor-
ing the prior probability and maximizing only the likelihood function corresponds
to the ordinary χ2-fitting. The constant term P[GOPE|H ] in the denominator is just
a normalization constant and can be dropped as it does not depend on ρ(ω).

4.1.1 The Likelihood Function and the Prior Probability

We will now discuss the likelihood function and the prior probability one after
the other. Considering first the likelihood function, it is assumed that the function
GOPE(x) is distributed according to uncorrelated Gaussian distributions. For our
analysis of QCD sum rules, we will numerically generate uncorrelated Gaussianly
distributed values for GOPE(x), which satisfy this assumption. We can therefore write
for P[GOPE|ρH ]:

P[GOPE|ρH ] = e−L[ρ],

L[ρ] = 1

2(xmax − xmin)

∫ xmax

xmin

dx

[
GOPE(x)− Gρ(x)

]2

σ 2(x)
. (4.4)

We here note that if GOPE(x) is evaluated using Monte-Carlo methods, the correlation
between the values of GOPE(x) at different x have to be taken into account by the use
of the covariance matrix (Jarrel and Gubernatis 1996; Asakawa et al. 2001). σ(x)
stands for the uncertainty of GOPE(x) at the corresponding values of x . In practice,
we will discretize both the integrals in Eqs. (4.1) and (4.4) and take Nω data points
for ρ(ω) in the range ωmin ∼ ωmax and Nx data points for GOPE(x) and Gρ(x) in
the range from xmin to xmax. This gives

GOPE(xi ) =
ωmax∑

ω j =ωmin

dωK (xi , ω j )ρ(ω j ) ≡ Gρ(xi ), (4.5)
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with dω = (ωmax − ωmin)/Nω for Eq. (4.1), and

L(ρ) = 1

2(xmax − xmin)

xmax∑
xi =xmin

dx
[GOPE(xi )− Gρ(xi )]2

σ 2(xi )
, (4.6)

with dx = (xmax − xmin)/Nx for Eq. (4.4).
The prior probability parametrizes the prior knowledge of ρ(ω) such as positivity

and the values at the limiting points, and is given by the Shannon-Jaynes entropy
S[ρ]:

P[ρ|H ] = eαS[ρ],

S[ρ] =
∫ ∞

0
dω

[
ρ(ω)− m(ω)− ρ(ω) log

(
ρ(ω)

m(ω)

)]
. (4.7)

It can be either derived from the law of large numbers or axiomatically constructed
from requirements such as locality, coordinate invariance, system independence and
scaling, as shown in Appendix G. For our purposes, it is important to note that this
functional gives the most unbiased probability for the positive function ρ(ω). The
scaling factor α that is newly introduced in Eq. (4.7) will be integrated out in a later
step of the MEM procedure. The function m(ω), which is also introduced in Eq. (4.7),
is the so-called “default model”. In the case of no available data GOPE(x), the MEM
procedure will just give m(ω) for ρ(ω) because this function maximizes P[ρ|H ].
The default model is often taken to be a constant, but one can also use it to incorporate
known information about ρ(ω) into the calculation. In our QCD sum rule analysis,
we will sometimes use m(ω) to fix the value of ρ(ω) at both very low and large
energies. As for the other integrals above, we will discretize the integral in Eq. (4.7)
in the actual calculation and approximate it as a sum of Nω data points, giving

S(ρ) =
ωmax∑

ω j =ωmin

dω

[
ρ(ω j )− m(ω j )− ρ(ω j ) log

(
ρ(ω j )

m(ω j )

)]
, (4.8)

where dω is the same as for Eq. (4.5).

4.1.2 The Numerical Analysis

Assembling the results from the last section, we obtain the final form for the proba-
bility P[ρ|GOPE H ]:

P[ρ|GOPE H ] ∝ P[GOPE|ρH ]P[ρ|H ]
= eQ[ρ], (4.9)

Q[ρ] ≡ αS[ρ] − L[ρ].
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It is now merely a numerical problem to obtain the form of ρ(ω) that maximizes
Q[ρ] and, therefore, is the most probable ρ(ω) given GOPE(M) and H . As we show
in Appendix H, it can be proven that the maximum of Q[ρ] is unique if it exists and,
therefore, the problem of local minima does not occur. For the numerical determi-
nation of the maximum of Q[ρ], we use the Bryan algorithm (Bryan 1990), which
uses the singular-value decomposition to reduce the dimension of the configuration
space of ρ(ω) and, therefore, largely shortens the necessary calculation time. We
have also introduced some slight modifications to the algorithm, the most important
one being that once a maximum is reached, we add to ρ(ω) a randomly generated
small function and let the search start once again. If the result of the second search
agrees with the first one within the requested accuracy, it is taken as the final result. If
not, we add to ρ(ω) another randomly generated function and start the whole process
from the beginning. We found that this convergence criterion stabilizes the algorithm
considerably.

Once a ρα(ω) that maximizes Q[ρ] for a fixed value of α is found, this parameter
is integrated out by averaging ρ(ω) over a range of values of α and assuming that
P[ρ|GOPE H ] is sharply peaked around its maximum P[ρα|GOPE H ]:

ρout(ω) =
∫

[dρ]
∫

dαρ(ω)P[ρ|GOPE H ]P[α|GOPE H ]

�
∫

dαρα(ω)P[α|GOPE H ]. (4.10)

This ρout(ω) is our final result. To estimate the above integral, we once again make
use of Bayes’ theorem to obtain P[α|GOPE H ]:

P[α|GOPE H ] =
∫

[dρ]P[GOPE|ρHα]P[ρ|Hα]P[α|H ]/P[GOPE|H ]

∝ P[α|H ]
∫

[dρ]eQ(ρ) (4.11)

∝ P[α|H ] exp
[1

2

∑
k

log
α

α + λk
+ Q[ρα]

]
.

Here, λk represents the eigenvalues of the matrix

Λi j = √
ρi

∂2L

∂ρi∂ρ j

√
ρ j

∣∣∣∣
ρ=ρα

, (4.12)

where ρi stands for the discretized data points of ρ(ω): ρi ≡ ρ(ωi )Δω, with Δω ≡
ωmax−ωmin

Nω
and ωi ≡ i

Nω
(ωmax − ωmin)+ ωmin. To get to the final form of the lowest

line of Eq. (4.11), we have expanded ρ(ω) around ρα(ω) and carried out the Gaussian
integrals over δρ(ω) ≡ ρ(ω)−ρα(ω). Furthermore, we made use of the fact that the
measure [dρ] is given as
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Fig. 4.1 A typical example of the probability P[α|GOPE H ], which was obtained from the
analysis of mock data of the ρ meson channel. The dashed line corresponds to the value of
0.1 × P[αmax|GOPE H ], from which the boundaries of the integration region, αlow and αup, are
determined

[dρ] ≡
∏

i

dρi√
ρi
, (4.13)

which we have derived in Appendix G. In Eq. (4.11), we still have to specify P[α|H ],
for which one uses either Laplace’s rule with P[α|H ] = const. or Jeffreys’ rule
with P[α|H ] = 1

α
. We will employ Laplace’s rule throughout this study, but have

confirmed that the analysis using Jeffreys’ rule gives essentially the same results.
To give an idea of the behavior of the probability P[α|GOPE H ], a typical exam-

ple of this function is shown in Fig. 4.1. Its qualitative structure is the same for
all the cases studied in this thesis. To calculate the integral of Eq. (4.10), we first
determine the maximum value of P[α|GOPE H ], which has a pronounced peak:
P[αmax|GOPE H ]. Then, we obtain the lower and upper boundaries of the integration
region (αlow, αup) from the condition P[α|GOPE H ] > 0.1 × P[αmax|GOPE H ] and
normalize P[α|GOPE H ] so that its integral within the integration region gives 1.
After these preparations, the average of Eq. (4.10) is evaluated numerically.

4.1.3 Error Estimation

As a last step of the MEM analysis, we have to estimate the error of the obtained
result ρout(ω). The error is calculated for averaged values of ρout(ω) over a certain
interval (ω1, ω2), as shown below.

The variance of ρ(ω) from its most probable form for fixed α, δρ(ω), averaged
over the interval (ω1, ω2), is defined as
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〈(δρ)2〉ω1,ω2 ≡ 1

(ω2 − ω1)2

∫
[dρ]

∫ ω2

ω1

dωdω′δρ(ω)δρ(ω′)P[ρ|GOPE H ]

= − 1

(ω2 − ω1)2

∫ ω2

ω1

dωdω′
(

δ2 Q

δρ(ω)δρ(ω′)

)−1∣∣∣∣
ρ=ρα

, (4.14)

where again the definition of Eq. (4.13) and the Gaussian approximation for the
probability P[ρ|GOPE H ] were used. Taking the root of this expression and averaging
over α in the same way as was done for ρα(ω), we obtain the final result of the error
δρout(ω), averaged over the interval (ω1, ω2):

〈δρout〉ω1,ω2 =
∫ αup

αlow

dα
√

〈(δρ)2〉ω1,ω2 P[α|GOPE H ]. (4.15)

The interval (ω1, ω2) is usually taken to cover a peak or some other structure of inter-
est. The formulas of this subsection will be used to generate the error bars of the
various plots of ρout(ω), shown in the following parts of this thesis. The use of the
error bars is illustrated in Fig. 4.2.

4.2 Sample MEM Analysis of a Toy Model

Before doing the MEM analysis of the actual QCD sum rules, that will be discussed
in the second part of this thesis, we here give a brief account of a test analysis of sum
rules that can be constructed from a simple non-relativistic potential model. Such sum

Fig. 4.2 An illustration of the meaning of the error bars used throughout the thesis. Here, the solid
line which has a peak stands for the spectral function ρ(ω). As discussed in the main text, the bars
indicate the height of the mean value 〈ρ〉ω1,ω2 of the spectral function over the interval (ω1, ω2)
and the of the corresponding errors added to and subtracted from it, namely 〈ρ〉ω1,ω2 ± 〈δρ〉ω1,ω2
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rules were discussed already in the early days of QCD sum rule studies (Vainshtein
et al. 1980), and have since served as a suitable test case for novel analysis methods
in this field (Whitenton et al. 1983; Lucha et al. 2007). We will in this section discuss
the MEM analysis of such a potential model. The purpose of this exercise is firstly
to investigate what one can hope to achieve with this method and secondly to find
out what sort of kernel is most suitable for the MEM analysis of the sum rules.

4.2.1 Construction of the Sum Rules

The general problem to be discussed here can be described by the Schrödinger
equation

Hψ(x) ≡
[

− 1

2m
∇2 + V (x)

]
ψ(x) = Eψ(x), (4.16)

for which we will specifically treat the case of a three-dimensional oscillator:

V (x) = mω2

2
x2. (4.17)

Let us consider the Greens’s function of this system, which we define as

G(x, y, E) ≡ 〈x| 1

E − H
|y〉 =

∑
n

ψn(x)ψ∗
n (y)

E − En
, (4.18)

where we have inserted a complete set of states to obtain the last equation. En

represents the eigenvalue of the n’th state andψn is the corresponding eigenfunction.
Here, we will only use the case, for which x and y are 0. This gives,

G(E) ≡ G(0, 0, E) =
∑

n

|ψn(0)|2
E − En

. (4.19)

The coefficients |ψn(0)|2 are known exactly and can be given as

|ψn(0)|2 = (2n + 1)!!
2nn!

(
mω

π

)
, (4.20)

which scales as
√

En with increasing n. As En is certainly real and positive in the
present case, we can understand from the above equation that G(E) is analytic in
the whole imaginary plane of E except on the positive side of the real axis, where
the poles of the eigenstates are located. Therefore, making use of this analyticity and
following for instance (Giménez et al. 1991), we can write down a general class of
sum rules as
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∮
C(|E |=R)

G(E)W (E)d E = −2i
∫ R

0
ImG(E + iε)W (E)d E, (4.21)

where the weight function W (E) must be analytic in the region where G(E) is ana-
lytic and must satisfy W (E∗)∗ = W (E). As long as W (E) obeys these constraints,
it can be arbitrarily chosen. The contour C(|E | = R) stands for a circle of radius R.
We will in the following considerations always take the limit R → ∞.

For the simple harmonic oscillator potential of Eq. (4.17), the Greens’s function
of Eq. (4.18) and accordingly both sides of Eq. (4.21) are of course already known
analytically, the poles appearing in the spectral function (which is proportional to
ImG(E + iε)) being located at

En = (2n + 3

2
)ω (n = 0, 1, 2, . . . ). (4.22)

Hence, the sum rules that we have formulated here are of no real practical use.
However, in the case of the actual QCD sum rules, we in principle do not know much
about the details of the spectral function and can only approximately evaluate the left
hand side of Eq. (4.21) with the help of the operator product expansion (OPE). We
thus in reality only have the sum rule to extract information on the spectral function.
We will simulate this situation here by replacing the exact result of the left hand side
by an expansion in ω2, which has properties analog to the OPE in real QCD.

4.2.1.1 Borel Sum Rule

As a first example, we will formulate and analyze the sum rule with the traditional
Borel weight function, given as

W (M, E) = e−E/M . (4.23)

Using Eq. (4.19), one can see that the left hand side of Eq. (4.21) then can be rewritten
as

∮
C(|E |=R)

G(E)W (M, E)d E =
∮

C(|E |=R)
G(E)e−E/M d E

= 2π i
∑

n

|ψn(0)|2e−En/M (4.24)

= 2π i〈0|e−H/M |0〉.

We can observe from the last line of the above equations, that this expression in fact
represents the amplitude (times 2π i) for a transition starting at x = 0 and being back
at the origin again after an imaginary time of −i/M . The value for this amplitude is
known analytically (Feynman and Hibbs 1965) and can be given as,
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〈0|e−H/M |0〉 =
[ mω

2π sinh(ω/M)

]3/2
. (4.25)

On the other hand, defining the spectral function as

ρ(E) = − 1

π
ImG(E + iε) =

∑
n

|ψn(0)|2δ(E − En), (4.26)

and assembling the of Eqs. (4.21), (4.24) and (4.25), we obtain the following sum
rule, [ mω

2π sinh(ω/M)

]3/2 =
∫ ∞

0
ρ(E)e−E/M d E . (4.27)

Here, both sides are still exact, but we now suppose that we do not know ρ(E) and
the left hand side only as an expansion in ω2/M2. We then get,

(
m M

2π

)3/2[
1 − 1

4

(
ω

M

)2

+ 19

480

(
ω

M

)4

− 631

120960

(
ω

M

)6

+ · · ·
]

�
∫ ∞

0
ρ(E)e−E/M d E, (4.28)

which is a sum rule that has been discussed many times in the literature (Pascual and
Tarrach 1984; Vainshtein et al. 1980; Whitenton et al. 1983; Lucha et al. 2007).

4.2.1.2 Gaussian Sum Rule

One of course does not have to restrict to sum rules to the weight function of
Eq. (4.23), but can also consider alternative choices. One such alternative is the
Gaussian kernel, given as

W (s, τ, E) = 1√
4πτ

e−(E−s)2/(4τ). (4.29)

To derive the sum rule for this case, it is not necessary to obtain the exact form of the
Green’s function, as it was done in Eq. (4.27) for the previous example. Instead, we
can directly use the results of Eq. (4.28), derive a spectral function corresponding to
each term of the expansion and make use of these spectral functions to calculate the
“OPE side” of the sum rule.

Specifically, we first find the relation
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(
m M

2π

)3/2[
1 − 1

4

(
ω

M

)2

+ 19

480

(
ω

M

)4

− 631

120960

(
ω

M

)6

+ · · ·
]

= −
(

m3

8π4

)1/2 ∫
C′

√
E

[
1 + 1

6

(
ω

E

)2

− 19

512

(
ω

E

)4

(4.30)

+ 631

8195

(
ω

E

)6

− · · ·
]

e−E/M d E,

for which the contour C′ is shown in Fig. 4.3. One might worry that there could appear
a divergence from the part of the path integral around the origin. Such a divergence
indeed occurs from the various parts of C′, but cancels once they are added and
therefore causes no problem.

To illustrate this cancellation, we here explicitly derive the second term of
Eq. (4.33), where the divergence turns up first. We thus have to consider the fol-
lowing contour integral: ∫

C′
1√
E3

e−E/M d E . (4.31)

The contour C′ can be split into two parts, one circling around the origin (C′
1) and

the other one running above and below the positive real axis (C′
2). For the first part,

we take the radius of the contour to be ε (which is infinitesimally small and should
be taken to be 0 at the end of the calculation) and obtain,

∫
C′

1

1√
E3

e−E/M d E = i

ε1/2

∫ 2π

0
dθe−iθ/2 = 4

ε1/2 , (4.32)

E

C’

E

C’

Fig. 4.3 The contour integral C′ on the complex plane of the variable E , used for deriving Eq. (4.33).
The wavy line denotes the cut of the integrand on the positive side of the real axis



4.2 Sample MEM Analysis of a Toy Model 61

where we have changed the integration variable from E to θ , using E = εeiθ .
Furthermore, we have dropped all higher orders of ε, which are irrelevant here.
Next, the second part gives

∫
C′

2

1√
E3

e−E/M d E = −2
∫ ∞

ε

d E
1√
E3

e−E/M

= − 4

ε1/2 + 4

M

∫ ∞

ε

d E
1√
E

e−E/M (4.33)

= − 4

ε1/2 + 4
√
π

M1/2 .

Hence, we see that the divergences of both parts indeed cancel and get

∫
C′

1√
E3

e−E/M d E = 4
√
π

M1/2 , (4.34)

as the final result, which was used in Eq. (4.33). The evaluation of the higher order
terms are more complicated but the procedure is essentially the same.

Having obtained Eq. (4.30), all we have to do now is to replace e−E/M with the
kernel of the Gaussian sum rule, given in Eq. (4.29), and carry out the path integral
along C′. After this integration is done, we can write the Gaussian sum rules as
follows:

(
2m3√τ
π5

)1/2[
G0

(
s√
4τ

)
+ 1

8

ω2

τ
G1

(
s√
4τ

)
+ 19

640

ω4

τ 2 G2

(
s√
4τ

)

+ 631

64512

ω6

τ 3 G3

(
s√
4τ

)
+ · · ·

]
(4.35)

� 1√
4πτ

∫ ∞

0
ρ(E)e−(E−s)2/(4τ)d E .

Here, the functions Gn(x) are defined as,

G0(x) =
∫ ∞

−x
dy

√
y + xe−y2

,

G1(x) =
∫ ∞

−x
dy

√
y + x(1 − 2y2)e−y2

,

G2(x) =
∫ ∞

−x
dy

√
y + x(1 − 4y2 + 4

3
y4)e−y2

, (4.36)

G3(x) =
∫ ∞

−x
dy

√
y + x(1 − 6y2 + 4y4 − 8

15
y6)e−y2

,

· · ·
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For doing actual calculations, we evaluate the above integrals numerically.

4.2.2 MEM Analysis of the Borel Sum Rules

After having constructed the sum rules, we can now analyze them with the maximum
entropy method, according to the procedures described in this chapter. As can be seen
for instance in Eq. (4.4), we however first have to determine the error of the “OPE
side” of the sum rules as a function of M for obtaining an accurate description of the
likelihood function. In the analysis of the real QCD sum rules, we will statistically
evaluate this error from the uncertainties of the various condensates that appear in
the OPE, as will be explained in Chap. 5. For the present case, we simulate these
conditions by assuming that the numerical factors appearing in the expansion of
Eq. (4.28) have a certain amount of uncertainty.

First we consider the case, in which all terms (except the leading term, which we
assume to be known exactly) have an uncertainty of 1 %. From the point of view
of simulating the actual QCD sum rules, this is of course overly optimistic, as most
of the condensates have an error of the order of 10 %. A more realistic case will be
discussed later. Before giving the results of the MEM analysis, we show the “OPE
data” of the left hand side of Eq. (4.28), with the corresponding error in Fig. 4.4. Here
and in all what follows, we set m = ω and give all results in units of ω for simplicity.
We clearly see in the figure that the expansion starts to deviate from the exact result
around M/ω = 0.5 and explodes below this value. Therefore one should only use
the “OPE data” in the regions of M , where the expansion converges. Usually, the
lower boundary of the admittable window is determined by the convergence criterion,
which demands that the contribution of the highest order term should be less than
10 % of the whole expansion. This criterion gives Mmin/ω = 0.49 and we can
see from Fig. 4.4 that this choice is reasonable. Furthermore, we can also observe
from Fig. 4.4 that the ground state dominates the sum rules for values of M/ω up to
around 0.75. One can therefore conclude that there exists a sizable “Borel window”
in this particular case, where both the OPE is under control and the ground state
dominates the sum rules. As in the present MEM analysis we are also interested in
possible excited states, we take the somewhat larger value of Mmax/ω = 1.25 for the
upper boundary of the used Borel mass region. For the present analysis, we use 100
data points for the OPE (NM = 100) and 800 data points for the spectral function
(Nω = 800), setting ωmin to 0 and ωmax to 8 ω.

Let us now turn to the results of the MEM analysis. The obtained spectral func-
tion is shown in Fig. 4.5, together with the corresponding error in the region of the
lowest peak and the used default model. Note that in this figure, the spectral function
is divided by

√
E/ω so that its peaks reach a constant strength at high energies.

Figure 4.5 clearly shows that the position of the lowest peak is reproduced quite well
by the MEM analysis. Numerically, the obtained peak lies at E/ω = 1.53 which is
close to the true value of E/ω = 1.50. However, we also observe that the width of
the lowest peak is large, opposed to the exact spectral function, where this peak is a

http://dx.doi.org/10.1007/978-4-431-54318-3_5
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Fig. 4.4 The expansion of Eq. (4.28), normalized by its leading terms is shown by the red line.
Here, we have included the first 6 terms of the expansion. Our assumed error of this expression is
indicated by the gray band, which is shown for 0.49 ≤ M/ω ≤ 1.25, the region which is used for
the MEM analysis. The blue line shows the corresponding exact result of Eq. (4.27). Furthermore,
the contribution of the ground state (E0 = 3/2ω) is shown by the green line
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Fig. 4.5 The spectral function obtained from the MEM analysis of Eq. (4.28) with small error (red
line). The horizontal bars give the error of the spectral function, averaged over the region indicated
by the horizontal length of the bars, as illustrated in Fig. 4.2. For all the following figures of this
thesis, we will use the same conventions for the error bars. The employed default model is shown by
the green line. The vertical blue lines indicate the positions of the poles of the true spectral function

delta function. Hence, this width is a pure artifact of the MEM analysis. Furthermore,
we see no sign of the excited states in Fig. 4.5 and therefore have to conclude that it is
not possible to extract any information on the excited states with the present setting.
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Fig. 4.6 Same as in Fig. 4.5, but with a different default model used for the MEM analysis. a A
constant default model close to 0 (10−3 × high energy limit) is employed (therefore it is not visible
in the figure). b The default model is a smooth step function, as shown by the green line

One might wonder how strong the above results depend on the choice of the
default model. To investigate this question, we repeat the same analysis with two
other default models, one with a value close to zero (10−3 × high energy limit) and
another one with a smooth step function like behavior. Both of these default models
will play a role in the further course of this thesis. The results of these analyses
are shown in Fig. 4.6. One can see in the figures that while the lowest peak is quite
stable, the resultant spectral functions significantly differ in the high energy region.
Numerically, the lowest peak can be found at E/ω = 1.60 for the default model
close to 0, while it is located at E/ω = 1.66 for the smooth step-function like default
model. The differences between these results should give an idea of the systematic
errors involved with the current MEM analysis. Furthermore, we can see that the
high-energy limit of the obtained spectral function is essentially determined by the
default model. This is so because the region of the Borel mass M that we use for our
analysis strongly depends on the spectral function in the region of the ground state,
while it is not very sensitive to the behavior of the spectral function at high energy.

Next, we consider a somewhat more realistic situation. To be more specific, we
take the uncertainty of the first condensate appearing in the expansion (which means
the second term in Eq. (4.28)) to be 1 %, because it is usually known quite accurately,
and for all the remaining condensates to be 10 %. The error for this case is shown by
the gray region of Fig. 4.7, which should be compared to the one shown in Fig. 4.4.
The result of the corresponding MEM analysis is given in Fig. 4.8, where we have
used the same constant default model as in Fig. 4.5. One can see from this result that
here even the ground state is almost completely washed out and it therefore seems
to be difficult to extract any valuable information from the sum rule by the MEM
analysis.

To check if it is possible to improve the reproducibility of the MEM procedure
by another choice of the default model, we repeat the above analysis with two other
default models, as before. The results are shown in Fig. 4.9. It is observed in these
figures, that while the flat default model close to 0 does not give reasonable results,
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Fig. 4.7 Same as in Fig. 4.4, but with more realistic errors. For details, see the main text
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Fig. 4.8 Same as in Fig. 4.5, but with more realistic errors

it is possible to recover the ground state peak at E/ω = 1.56 with the smooth
step-function like default model. This finding indicates that, surprisingly, even with
uncertainties as large as the ones shown in Fig. 4.7, it is still possible the extract
information on the ground state from the sum rule if a suitable default model is
chosen. We will encounter a similar case in the analysis of the Borel sum rule of the
ρ meson channel. The situation is, however, not entirely satisfactory as the results
depend on the default model and the error of the obtained spectral function is large, as
can be observed in the right plot of Fig. 4.9. We will therefore consider the Gaussian
sum rule in the next section, to examine if it is possible to improve the results obtained
so far.
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Fig. 4.9 Same as in Fig. 4.6, but with more realistic errors

4.2.3 MEM Analysis of the Gaussian Sum Rules

In this section, we analyze the Gaussian sum rules of the harmonic oscillator potential
model, given in Eqs. (4.35) and (4.36). As in the case of the Borel sum rule, we first
have to determine the region of the parameters s and τ used for the MEM analysis.
Because we now have two parameters instead of one, this task becomes somewhat
more complicated. Here, we simply choose four different values of τi (i = 1 ∼ 4),
and determine the boundaries of s for each value of τi separately. The lower boundary
of s is as usual fixed by the 10 % convergence criterion of the OPE, while we set the
upper boundary to 3.0 ω for all τi . The detailed values of the employed regions are
shown below.

τ1 = 0.75ω2, s1,min = −3.39ω, s1,max = 3.0ω, (4.37)

τ2 = 1.0ω2, s2,min = −4.57ω, s2,max = 3.0ω, (4.38)

τ3 = 1.25ω2, s3,min = −6.33ω, s3,max = 3.0ω, (4.39)

τ4 = 1.5ω2, s4,min = −7.41ω, s4,max = 3.0ω. (4.40)

Some comments are in order here. Firstly, let us discuss the method of using
the two variables of s and τ at the same time, compared to Sect. 4.1, where only
one variable x was considered. Generalizing the method from one variable to two is
straightforward, as one only needs to redefine the kernel and the likelihood function.
Specifically, we use
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G(xi ) =
ωmax∑

ω j =ωmin

K (xi , ω j )ρ(ω j )dω

↓

G(si , τk) =
ωmax∑

ω j =ωmin

K (si , τk, ω j )ρ(ω j )dω,

and

L(ρ) = 1

2(xmax − xmin)

xmax∑
xi =xmin

dx
[GOPE(xi )− Gρ(xi )]2

σ 2(xi )

↓

L(ρ) =
τmax∑

τk=τmin

sk,max∑
si =sk,min

dsk
1

2(sk,max − sk,min)

[GOPE(si , τk)− Gρ(si , τk)]2

σ 2(si , τk)
.

In the present analysis, we take 4 data points for τ(Nτ = 4), and 50 data points for
s (Ns = 50) at each τi and 800 data points for ω (Nω = 800). Furthermore, we fix
ωmin and ωmax to 0 and 8 ω, respectively.

As a second point, it may seem somewhat counterintuitive that we use negative
values for the parameter s here, as one would naively expect, that the region where
s takes values close to the lowest peak position are most sensitive to its properties.
As we will however see below in Fig. 4.10, the OPE at positive s values contain
considerable contributions from the excited states and it is only for negative s values
that the ground state dominates the sum rules. For a related discussion in the context
of the nucleon sum rules, see Sect. 6.4.1 of this thesis.

The results of the OPE, together with the exact result summed up to all orders is
shown in Fig. 4.10. In the same figure, the contribution of the ground state is also
indicated. We clearly see that, in contrast to the Borel sum rule result given in Fig. 4.4,
there is a quite large window, in which the ground state completely dominates the
sum rules and where the OPE is convergent. This observation lets one hope that the
spectral function can be extracted more accurately than that for the Borel sum rule.
As we will see below, this is indeed the case.

The errors shown by the gray bands in Fig. 4.10 are, as before, obtained by assum-
ing that all “condensates” have an uncertainty of 1 %. We now show the extracted
spectral functions for this case in Fig. 4.11, which should be compared to the earlier
result of Fig. 4.5 of the Borel sum rule. It is obvious from the two figures, that the
Gaussian sum rule considerably improves the extraction of the spectral function. We
here not only get a sharp peak for the ground state, but also can determine the position
of the first excited state with high precision. Quantitatively, the extracted ground state
lies at E/ω = 1.49 and the first excited state at E/ω = 3.51, thus both are being
obtained with an error of below 1 %. Surprisingly, there even appears a third peak
which lies in the region of the second excited state. It is found at E/ω = 5.74, which

http://dx.doi.org/10.1007/978-4-431-54318-3_6
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Fig. 4.10 The expansion of Eq. (4.35), normalized by its leading terms is shown by the red lines
for four values of τ . Here, we have included the first 6 terms of the expansion. Our assumed error
of this expression is indicated by the gray bands, which are shown for the regions of s which are
used for the MEM analysis. The blue lines give the corresponding exact result. Furthermore, the
contribution of the ground state (E0 = 3/2ω) is shown by the green line

is somewhat larger than the correct value, but still within a precision of 5 %. We have
also repeated the same analysis with different default model as in Fig. 4.6 for the
Borel sum rules. The results almost completely coincide, and we therefore do not
show them here. In all, we can conclude that the MEM analysis of the Gaussian sum
rule works very well, shows no dependence on the default model and even makes it
possible to obtain reliable information on the excited states of this simple potential
model.

The results obtained above are promising, the used errors being, however, unreal-
istically small. We therefore, repeat the same analysis with an error closer to reality.
As for the Borel sum rule, we take the error of the first condensate to be 1 % and the
rest 10 %. The uncertainty of the OPE that we obtain in this way is shown by the
gray regions of Fig. 4.12. Using these errors, we extract the spectral function given
in Fig. 4.13. The figure shows that due to the increased error, the peaks develop an
artificial width, which implies a reduced resolution of the MEM. However, we still
get clear peaks of the ground state and first excited state at positions E/ω = 1.46
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Fig. 4.11 The spectral function obtained from the MEM analysis of Eq. (4.35) with small error (red
line). The horizontal bars give the error of the spectral function, averaged over the region indicated
by the horizontal length of the bars. The employed default model is shown by the green line. Finally,
the exact positions of the input spectral function peaks are indicated by the blue vertical lines

and E/ω = 3.54, which means that their deviation from the true value is still below
3 %. On the other hand, the third peak is now considerably washed out and its posi-
tion is moved upwards and presumably overlaps with the next higher peak, so that it
becomes difficult to extract useful information on the second excited state.

To see whether these results are stable against changes of the default model, we
give the results of the MEM analysis using different default models in Fig. 4.14. We
can observe in these figures that the existence of the first two peaks does not depend
on the details of the default model. We also see that, while their width and height can
change, their position is stable. Quantitatively, they are found at E/ω = 1.49 and
E/ω = 3.51 for the default model close to 0, while their position is at E/ω = 1.48
and E/ω = 3.48 for the smooth step-function like default model. This indicates that
the width of the peaks is a pure MEM artifact and should not be considered to be
property of the real spectral function, while the positions of the (lower) peaks, indeed
do reflect the properties of the true spectral function.

4.2.3.1 Up to Which Order Do We Need to Calculate the OPE?

For this simple model, we can calculate the OPE accurately up to any desired order.
We can therefore here ask the question up to which order we really need to calculate
the OPE for obtaining reliable information on the first few lowest peaks in the spectral
function. To investigate this issue, we carry out the MEM analysis for the Gaussian
sum rules with various orders of the OPE taken into account. In this calculation, we
do not only incorporate the change of the OPE at different orders, but also the shifts
of the allowed window, in which the OPE is converging and furthermore the variation
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Fig. 4.12 Same as in Fig. 4.10, but with more realistic errors. For details, see the main text
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Fig. 4.15 The results of the MEM analysis of the Gaussian sum rules, when only a limited order of
the OPE is taken into account. For this figure, the same default model as in Fig. 4.13 was employed

of the error introduced by the higher orders of the OPE. The results are shown in
Fig. 4.15.

Examining this plot in detail, we see that for obtaining the ground state at the
approximately correct position, we in fact only need the first two OPE terms besides
the leading order. This is good news for the actual QCD sum rule studies because
for QCD usually only the first two or three OPE terms are known accurately, and
further terms suffer from rather large uncertainties due to our lack of knowledge of
the values of the higher dimensional condensates. Moreover, we observe that with
the first two OPE terms, we also get a peak corresponding to the first excited state,
however with a somewhat reduced precision compared to the ground state. This
precision is improved if two more terms are taken into account.
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Here, we also comment on the reduction (increase) of the height (width) of the
ground state peak, which occurs if more than two terms of the OPE are incorporated
into the analysis. This happens simply because, by including the higher order terms,
we automatically increase the error of the OPE due to the uncertainties of the con-
densates. A larger error leads to a smaller resolution for the MEM procedure and
thus to a smaller and broader peak.

4.2.4 Summary of Toy Model Analysis

Let us briefly summarize what we have learned from the potential model analysis
described in the preceding sections.

• Both Borel and Gaussian sum rules contain valuable information on the existence
and position of the lowest lying peak of the spectrum, which can in principle be
extracted from an MEM analysis. However, for the Borel sum rule with realistic
errors, this is only possible for suitable choice of the default model.

• The Gaussian sum rule clearly works better that the Borel sum rule, mainly because
it provides a larger parameter window, in which the ground state dominates the
sum rule and the OPE converges, as can be seen in Fig. 4.10. In contrast to the
Borel sum rule, it makes it even possible to obtain the position of the first excited
state with high precision.

• For extracting the position of the ground state, it is sufficient to calculate the first
two terms of the OPE, while for the first excited state, the first four terms are
necessary if one wants to achieve high precision.

The above observations provide us with a useful conceptual guide for the analysis
of the actual QCD sum rules, that will be carried out in the following chapters.
One, however, has to keep in mind that the potential model discussed here does not
necessarily has exactly the same features as QCD and one thus cannot be sure that
the above findings are also true for the real QCD sum rules. For instance, the model
considered here does not have a continuum, which usually appears somewhere above
(or below) the lowest peak in the various QCD spectra. This continuum will in reality
make the extraction of the excited states much more difficult than for the simple case
considered here.
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Chapter 5
MEM Analysis of the ρ Meson Sum Rule

5.1 Introduction

The technique of QCD sum rules is well known for its ability to reproduce various
properties of hadrons (Shifman et al. 1979; Reinders et al. 1985). Using dispersion
relations, this method connects perturbative and non-perturbative sectors of QCD,
and therefore, allows one to describe inherently non-perturbative objects such as
hadrons by the operator product expansion (OPE), which is essentially a perturba-
tive procedure. The higher-order terms of the OPE contain condensates of various
operators, which incorporate information on the QCD vacuum. Hence, QCD sum
rules also provide us with nontrivial relations between the properties of hadrons and
the QCD vacuum.

Since the early days of the development of QCD sum rules, the range of appli-
cations of this method has been constantly expanding, which has helped to explain
many aspects of the behavior of hadrons. Nevertheless, QCD sum rules have always
been subject to (justified) criticism. One part of this criticism is of mainly technical
nature, pointing out that the analysis of QCD sum rules often is not done with the
necessary rigor, namely, that the OPE convergence and/or the pole dominance con-
dition are not properly taken into account. Many of the recent works that followed
the claimed discovery of the pentaquark Θ+(1540) are examples of such a lack of
rigor. Nonetheless, these technical problems can be overcome if the analysis is done
carefully enough (Gubler et al. 2009a, b).

The second part of the criticism against QCD sum rules is more essential. It is
concerned with the ansatz taken to parametrize the spectral function. For instance,
it is common to assume the “pole + continuum” functional form, where the pole
represents the hadron in question and the continuum stands for the excited and
scattering states. While this ansatz may be justified in cases where the low-energy
part of the spectral function is dominated by a single pole and the continuum states
become important only at higher energies (the ρ-meson channel for instance is such
a case), it is not at all clear if it is also valid in other cases. For example, as shown
in Kojo and Jido (2008), where the σ -meson channel was investigated using QCD

P. Gubler, A Bayesian Analysis of QCD Sum Rules, Springer Theses, 77
DOI: 10.1007/978-4-431-54318-3_5, © Springer Japan 2013
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sum rules, it can be difficult to distinguish the continuum spectrum from a broad
resonance, because they lead to a similar behavior of the “pole” mass and residue
as functions of the Borel mass. Moreover, using the “pole + continuum” ansatz, the
outcome of the analysis usually depends on unphysical parameters such as the Borel
mass or the threshold parameter, and it is not always a trivial matter to determine
these parameters in a consistent way. After all, the ansatz of parametrizing the spectral
function makes a full error estimation impossible in QCD sum rules.

As a possible solution to these problems, we proposed in Gubler and Oka (2010) to
analyze QCD sum rules with the help of the Maximum Entropy Method (MEM). This
method has already been applied to Monte-Carlo studies in both condensed matter
physics (Jarrel and Gubernatis 1996) and lattice QCD (Nakahara et al. 1999; Asakawa
et al. 2001), and has applications in many other areas (Wu 1997). It makes use of
Bayes’ theorem of probability theory, which helps to incorporate known properties
of the spectral function such as positivity and asymptotic values into the analysis
and finally makes it possible to obtain the most probable spectral function without
having to introduce any additional a priori assumptions about its explicit form. It
even allows us to estimate the error of the obtained spectral function. Therefore,
using this approach, it should in principle be possible to study the spectral function
of any channel, including those for which the “pole + continuum” assumption is not
appropriate.

However, as a first step it is indispensable to check whether QCD sum rules are a
suitable target for MEM and if it is possible to obtain any meaningful information on
the spectral function by this method. To provide an answer to these questions is the
main object of this chapter. To carry out this check, we have chosen to investigate
the sum rule of the ρ-meson. This channel is one of the first subjects that have
been studied in QCD sum rules and it is fair to say that it is the channel where this
method has so far seen its most impressive success. As mentioned earlier, it is a case
where the “pole + continuum” ansatz works well and we thus do not expect to gain
anything really new from this analysis. Nevertheless, apart from the aspect of testing
the applicability of our new approach, we believe that it is worth examining this
channel once more, as MEM also provides a new viewpoint of looking at various
aspects of this particular sum rule.

5.2 Analysis Using Mock Data

The uncertainties that are involved in QCD sum rule calculations mainly originate
from the ambiguities of the condensates and other parameters such as the strong
coupling constant or the quark masses. These uncertainties usually lead to results
with relative errors of about 20 %. It is therefore not a trivial question if MEM can
be used to analyze the QCD sum rule results, or if the involved uncertainties are too
large to allow a sufficiently accurate application of the MEM procedure.

To investigate this question in detail, we carry out the MEM analysis using mock
data and realistic errors. Furthermore, we will study the dependence of the results
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on various choices of the default model m(ω) and determine which one is the most
suitable for our purposes. This analysis will also provide us with an estimate of the
precision of the final results that can be achieved by this method and what kind of
general structures of the spectral function can or cannot be reproduced by the MEM
procedure.

5.2.1 Generating Mock Data and the Corresponding Errors

Following Asakawa et al. (2001) and Shuryak (1993), we employ a relativistic Breit-
Wigner peak and a smooth function describing the transition to the asymptotic value
at high energies for our model spectral function of the ρ-meson channel:

ρin(ω) = 2F2
ρ

π

Γρmρ

(ω2 − m2
ρ)

2 + Γ 2
ρ m2

ρ

+ 1

4π2

(
1 + αs

π

) 1

1 + e(ω0−ω)/δ , (5.1)

Γρ(ω) = g2
ρππ

48π
mρ

(
1 − 4m2

π

ω2

)3/2
θ(ω − 2mπ ).

The values used for the various parameters are

mρ = 0.77 GeV, mπ = 0.14 GeV

ω0 = 1.3 GeV, δ = 0.2 GeV,

gρππ = 5.45, αs = 0.5, (5.2)

Fρ = mρ

gρππ
= 0.141 GeV.

The spectral function of Eq. (5.1) is then substituted into Eq. (4.1) and the integration
over ω is performed numerically to obtain the central values of the data points of
Gmock(M). (In this section, we will use Gmock(M) instead of GOPE(M) to make it
clear that we are analyzing mock data.)

We now also have to put some errors σ(M) to the function Gmock(M). To make
the analysis as realistic as possible, we will use exactly the same errors as in the
actual investigation of the OPE results. How these errors are obtained will be dis-
cussed later, in the section where the real OPE results are analyzed. We just mention
here that when analyzing the OPE results, we will use three different parametriza-
tions for the condensates and other parameters, namely, those given in Colangelo and
Khodjamirian (2001), Narison (2004), Ioffe (2006) (see Table 5.1). These parame-
trizations lead to different estimations of the errors, but for the mock data analysis of
this section, these differences are not very important. Here, we will therefore mainly
use the errors obtained from the parameters of Ioffe (2006). The resulting function
Gmock(M) is given in Fig. 5.1, together with the range Gmock(M)± σ(M).

http://dx.doi.org/10.1007/978-4-431-54318-3_4
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Fig. 5.1 Central values of the mock data (red line) obtained by numerically integrating Eq. (4.1)
with Eq. (5.1). The errors of the data, extracted from the parameters of Ioffe (2006), are indicated
by the gray region. The lower boundary of the shown errors corresponds to Mmin, below which the
OPE does not converge. For comparison, the integral of Eq. (4.1) is also shown for the case when
only the continuum part, the second term of Eq. (5.1), is taken for the spectral function (green line)

5.2.1.1 Determination of the Analyzed Borel Mass Region

Next, we have to decide what range of M to use for the analysis. For the lower
boundary, we can employ the usual convergence criterion of the OPE such that the
contribution of the highest-dimensional operators is less than 10 % of the sum of all
OPE terms. This is a reasonable choice, as the errors originating from the ranges
of condensate values lead to uncertainties of up to 20 %, and it would therefore not
make much sense to set up a more strict convergence criterion. For the parameters
of Ioffe (2006), this gives Mmin = 0.77 GeV.

Considering the upper boundary of M , the situation is less clear. In the conven-
tional QCD sum rule analysis, it is standard to use the pole dominance condition,
which makes sure that the contribution of the continuum states does not become too
large. As we do not resort to the “pole + continuum” ansatz in the current approach,
the pole dominance criterion does not have to be used and one can, in principle,
choose any value for the upper boundary of M . Nevertheless, because we are mainly
interested in the lowest resonance peak, we will use a similar pole dominance cri-
terion as in the traditional QCD sum rules. By examining the mock data in Fig. 5.1,
one sees that while the resonance pole contributes most strongly to the data around
M ∼ 1 GeV, the contributions from the continuum states grow with increasing M
and finally start to dominate the data for values that are larger than 1.5 GeV. We
will therefore use Mmax = 1.5 GeV as the upper boundary of M for the rest of this
chapter. The dependence of the final results on this choice is small, as will be shown
later in Fig. 5.4.

http://dx.doi.org/10.1007/978-4-431-54318-3_4
http://dx.doi.org/10.1007/978-4-431-54318-3_4
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Finally, the values of the NM data points of Gmock(M) between Mmin and Mmax
are randomly generated, using Gaussian distributions with standard deviationsσ(M),
centered at the values obtained from the integration of Eq. (4.1). The ranges of values
of Gmock(M) are indicated by the gray region in Fig. 5.1. We take 100 data points
for functions of the Borel mass M (NM = 100) and have checked that the results of
the analysis do not change when this value is altered. For functions of the energy ω,
600 data points are taken (Nω = 600).

5.2.2 Choice of an Appropriate Default Model

It is important to understand the meaning of the default model m(ω) in the present
calculation. It is in fact used to fix the value of the spectral function at high and low
energies, because the function GOPE(M) contains only little information on these
regions. This can be understood firstly by considering the property of the kernel

K (M, ω) = 2ω

M2 e−ω2/M2
, (5.3)

which is zero at ω = 0. GOPE(M) therefore contains no information on ρin(ω = 0)
and the corresponding result of the MEM analysis ρout(ω = 0) will thus always
approach the default model, as GOPE(M) does not constrain its value. Secondly, we
use GOPE(M) only in a limited range of M , because the operator product expansion
diverges for small M and the region of very high GOPE(M) is dominated by the high-
energy continuum states, which we are not interested in. The region of the spectral
function, which contributes most strongly to GOPE(M) between Mmin and Mmax,
lies roughly in the range between ωmin (� Mmin) and ωmax (� Mmax), as can be for
instance inferred from Fig. 5.1. ρout(ω) will then approach the default model quite
quickly outside of this region, because there is no strong constraint from GOPE(M).
This implies that the values of ρout(ω) at the boundaries are fixed by the choice of the
default model and one should therefore consider these boundary conditions as inputs
of the present analysis. Once these limiting values of ρ(ω) are chosen, the MEM
procedure then extracts the most probable spectral function ρout(ω) given GOPE(M)
and the boundary conditions supplied by m(ω).

To illustrate the importance of choosing appropriate boundary conditions, we
show the results of the MEM analysis for a constant default model, with a value
fixed to the perturbative result at high energy. Here, the boundary condition for the
low energy is not correctly chosen, because the spectral function is expected to vanish
at very low energy. The result is given in Fig. 5.2 and clearly shows that ρout(ω) does
not reproduce ρin(ω).

This is in contrast to the corresponding behavior in lattice QCD, where it suffices
to take a constant value of the spectral function, chosen to be consistent with the
high-energy behavior of the spectral function to obtain correct results. The reason
for this difference is mainly that the OPE in QCD sum rules is not sensitive to the

http://dx.doi.org/10.1007/978-4-431-54318-3_4
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Fig. 5.2 Outcome of the MEM analysis using a constant default model with its value fixed to the
perturbative result (green line). ρin(ω) is the function that was used to produce the mock data (blue
line), given in Eq. (5.1), and ρout(ω) shows the result of the MEM procedure (red line)

low-energy part of the spectral function, owing to the properties of the kernel and our
limitations in the applicability of the OPE. Most importantly, the information that
there is essentially no strength in the spectral function below the rho-meson peak, is
stored in the region of the Borel mass M around and below M = 0.5 GeV. However,
as the OPE does not converge in this region, it is not available for our analysis and
we therefore have to use the default model to adjust the spectral function to the
correct behavior. On the other hand, in lattice QCD, it is possible to calculate the
correlator reliably at sufficiently high euclidean time, where the effective mass plot
reaches a plateau and thus only the ground state contributes. Therefore, it seems
that from lattice QCD one can gain sufficient information on the low-energy part of
the spectral function, and one does not need to adjust the default model to obtain
physically reasonable results.

For the present analysis, we introduce the following functional form, to smoothly
connect low- and high-energy parts of the default model,

m(ω) = 1

4π2

(
1 + αs

π

) 1

1 + e(ω0−ω)/δ , (5.4)

which is close to 0 at low energy and approaches the perturbative value 1+ αs
π

at high
energy, changing most significantly in the region between ω0 − δ and ω0 + δ. This
function can be considered to be the counterpart of the “continuum” in the “pole +
continuum” assumption of

ImΠ(s) = π |λ|2δ(s − m2)+ θ(s − sth) ImΠOPE(s), (5.5)
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where δ is essentially taken to be 0 and the threshold parameter sth corresponds toω0.
Equation (5.4) nevertheless enters into the calculation in a very different way than
the second term of Eq. (5.5) in the conventional sum rules, and one should therefore
not regard these two approaches to the continuum as completely equivalent.

We have tested the MEM analysis of the mock data for several values of ω0 and δ
and the results are shown in Fig. 5.3. One sees that in the cases of d and e, the sharply
rising default model induces an artificial peak in the region of ω0. Even though these
peaks are statistically not significant, they may lead to erroneous conclusions. We
will therefore adopt only default models, for which only small artificial structures
appear, such as in the case of a–c. Comparing these three figures, it is observed that
the error of the spectral function relative to the height of the ρ-meson peak is smallest
for the parameters of c. We therefore adopt this default model with ω0 = 2.0 and
δ = 0.1 GeV in the following investigations.

It is worth considering the results of Fig. 5.3 also from the viewpoint of the depen-
dence of the peak position on the default model. It is observed that even though the
height of theρ-meson peak varies quite strongly depending on which default model is
chosen, its position only varies in a range of ±40 MeV, which shows that the present
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Fig. 5.3 Results of the MEM investigation of mock data with various default models. As in Fig. 5.2,
the red lines stand for the output of the analysis ρout(ω), the green lines for the default model with
the parameters shown in the figure, and the blue lines for the input function ρin(ω) of Eq. (5.1).
The horizontal bars show the values of the spectral function, averaged over the peaks 〈ρout〉ω1,ω2

and the corresponding ranges 〈ρout〉ω1,ω2 ± 〈δρout〉ω1,ω2 . Their extent shows the averaged interval
(ω1, ω2). For figures c, d and e, the lower error bars of the second peak are not shown because they
lie below ρ(ω) = 0
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evaluation of the lowest pole position does not strongly depend on the detailed val-
ues of ω0 and δ. This behavior should be compared with the results of the usual
sum rules, where the dependence of the pole mass on the threshold parameter sth is
stronger. On the other hand, we have to mention that ω0 should not be chosen to have
a value much below ω0 = 1.5 GeV, because, in this region, the artificial structures
discussed above start to interfere with the ρ-meson peak. Moreover, if the default
model approaches the limit shown in Fig. 5.2, where m(ω) is just a constant fixed to
the asymptotic value at high energy, the ρ-meson peak will gradually disappear.

5.2.3 Investigation of the Stability of the Obtained
Spectral Function

Next, we will briefly discuss the dependence of our results on the upper boundary of
the employed Borel mass region Mmax. In Fig. 5.4, we show the results for the values
Mmax = 1.5, 2.0 and 2.5 GeV. Here, the default model with parameters ω0 = 2.0
and δ = 0.1 GeV was used. The spectral functions of these three cases almost
coincide and have the same qualitative features. Quantitatively, the peak position of
the ρ-meson is shifted only 20 MeV when Mmax is raised from 1.5 to 2.5 GeV.

Let us also check how the results of the analysis are affected by a different choice
of parameters, leading to altered magnitudes of error and also differing lower bound-
aries of the Borel mass Mmin. Of the three parameter sets used in this study, given in
Table 5.1, the errors of Colangelo and Khodjamirian (2001) are rather small, while
the errors of Narison (2004) and Ioffe (2006) are larger and have about the same
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Fig. 5.4 MEM results for three different values of the upper boundary of the Borel mass Mmax.
For the default model, the same version as in Fig. 5.3, c was used. Thus, the red line of this figure
is the same as the one of Fig. 5.3, c
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Fig. 5.5 Findings of the MEM analysis with different error estimations and lower boundaries of
the Borel mass Mmin. For the default model, the same version as in Fig. 5.3c was used. The red line
uses parameters of Colangelo and Khodjamirian (2001), the green line those of Narison (2004) and
the blue line those of Ioffe (2006). Note that we use for this plot the same mock data for all three
cases and vary only the errors and Mmin

overall magnitude. Moreover, Mmin, which is determined from the OPE conver-
gence criterion mentioned earlier, takes values Mmin = 0.72 GeV for Colangelo and
Khodjamirian (2001), 0.83 GeV for Narison (2004) and 0.77 GeV for Ioffe (2006).
To understand how these parameters affect the MEM analysis, the results of the cal-
culation using the same central values for the mock data, but different errors and
Mmin, are shown in Fig. 5.5. It is observed that the spectral functions are very similar
and depend only weakly on the choice of errors and Mmin.

Finally, it is important to confirm whether the lowest peak that we have observed
in all the results so far really originates from the ρ-meson peak of the input spectral
function. In other words, we have to verify that the lowest peak obtained from the
MEM analysis really disappears when the ρ-meson peak is removed from the input
spectral function. The result for this case is given in Fig. 5.6. We see that while we
get the same (non-significant) peak around 2.0 GeV as before, which is induced
by the sharply rising default model in this region, the lower peak has completely
disappeared. This confirms that the lower peak is directly related to the ρ-meson
peak and is not generated by any other effects of the calculation.

5.2.4 Estimation of the Precision of the Final Results

To obtain an estimate of the precision of the current approach, let us now turn to the
numerical results of our analysis of mock data. We regard part c of Fig. 5.3 as our
main result, the central value of the peak being mρ,out = 0.84 GeV. The shift from
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Fig. 5.6 Outcome of the
MEM analysis using mock
data without the ρ-meson
peak. ρin(ω) (blue line) is
the function that was used to
produce the mock data and
ρout(ω) (red line) shows the
result of the MEM procedure.
For the default model, the
same version as in Fig. 5.3c
was used (green line)
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the true value of mρ,in = 0.77 GeV is caused by the errors of the involved parameters
and by the fact that we cannot use all the data points of Gmock(M), but only the ones
for which we have some confidence that the OPE converges.

Furthermore, as discussed above, there are some additional uncertainties of ±40
MeV coming from the choice of the default model and ±20 MeV from the value of
Mmax. The overall error is then obtained by taking the root of the sum of all squared
errors and rounding it up. This gives

Δmρ � ±90 MeV, (5.6)

which is quite large but seems to be realistic when one considers the large errors of the
condensates that are involved in the calculation. For the other parametrizations, we
get similar results, specifically, Δmρ � ±60 MeV for Colangelo and Khodjamirian
(2001) and Δmρ � ±100 MeV for Narison (2004).

Having the spectral function at our disposal, it becomes possible to extract the
coupling strength of the interpolating field to the ρ-meson state, the quantity corre-
sponding to Fρ in Eq. (5.1). We obtain this coupling strength by fitting the spectral
function in the region of the ρ-meson resonance with a relativistic Breit-Wigner peak
of the same functional form as the first term of Eq. (5.1) plus a second-order polyno-
mial to describe the continuum background. In order that the background does not
become negative and does not contribute to the peak, we have restricted the coef-
ficients of the polynomial to positive values. An example of the resulting curves is
given in Fig. 5.7. For part c of Fig. 5.3, we get a value of Fρ,out = 0.178 GeV, which
is somewhat larger than the true value of Fρ,in = 0.141 GeV. It is not a surprise
that the precision of this quantity is worse than that of the peak position, because the
shape of the peak is deformed quite strongly owing to the MEM analysis. As can
be suspected when looking at Fig. 5.3, there is also a fairly large uncertainty coming
from the choice of the default model, which is about ±0.031 GeV. On the other hand,
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Fig. 5.7 An example of a result of the fitting procedure described in the text. For the spectral
function (red line) ρout(ω), we use here the same as in Fig. 5.3c. For the peak, a relativistic Breit-
Wigner form is employed (green line), while the background is parametrized by a second-order
polynomial with positive valued coefficients (blue line)

we found that the dependence on the boundaries of the fitting region and on Mmax is
very small, being ±0.003 and ±0.001 GeV, respectively. Altogether, this gives the
following error for Fρ :

ΔFρ � ±0.049 GeV. (5.7)

A similar analysis for the parameters of Colangelo and Khodjamirian (2001) gives
ΔFρ � ±0.038 GeV and ΔFρ � ±0.049 GeV for Narison (2004).

As one further point, it is important to investigate if and how the precision of the
MEM analysis improves once the OPE data will be available with better precision.
To answer this question, we have repeated the analysis using an error with a smaller
magnitude and have found that, concerning the pole position, the reproducibility
indeed improves with a smaller error. For instance, using the errors obtained from the
Ioffe parameters of Ioffe (2006), we get mρ,out = 0.84 GeV, but when we reduce the
errors by hand to 20 % of their real value, the result shifts to mρ,out = 0.78 GeV, which
almost coincides with the correct value of mρ,in = 0.77 GeV. To a lesser degree, the
same is true for the residue. Its value changes from Fρ,out = 0.178 GeV to Fρ,out =
0.167 GeV with reduced error values, compared with the input value of Fρ,in = 0.141
GeV, which is also an improvement. On the other hand, we could not observe a
significantly better reproducibility of the width with the reduced error values.

These results show that the MEM analysis of QCD sum rules has the potential to
become more accurate in obtaining the position and the residue of the ρ-meson pole,
once the values of the condensates are known with better precision. At the same time,
it has to be noted that an accurate determination of the width seems to be difficult
to achieve in the current approach even with smaller errors. The reason for this is
discussed in the following section.



88 5 MEM Analysis of the ρ Meson Sum Rule

0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

0  0.5 1  1.5 2  2.5 3

G
m

oc
k
(M

)

M [GeV]

standard width
doubled width

Fig. 5.8 Two versions of Gmock(M), the red line showing the one with the standard value for the
width as given in Eqs. (5.1) and (5.2), and the green line giving a version where Γρ(ω) of Eq. (5.1)
is doubled and Fρ = 0.149 GeV is used

5.2.5 Why it is Difficult to Accurately Determine the Width
of the ρ Meson

We have so far focused our discussion on the reproduction of the parameters mρ and
Fρ of the spectral function and have shown that, by the MEM analysis, they could
be reproduced with a precision of approximately 20 %. Considering now the width
Γρ , the situation turns out to be quite different, as can be observed for instance in
Fig. 5.3. We see there that the values of the width come out about twice as large as
in the input spectral function of Eq. (5.1).

The reason for this difficulty of reproducing the width lies in the small dependence
of Gρ(M) on Γρ . This is illustrated in Fig. 5.8. We see there that the curve obtained
from our model spectral function of Eqs. (5.1) and (5.2) and the one generated from
a spectral function for which the width of the ρ-meson peak has been doubled and
a slightly larger value for Fρ has been used (Fρ = 0.149 GeV compared with the
standard value of 0.141 GeV), almost coincide. This means that with the precision
available for our QCD sum rule analysis, it is practically impossible to distinguish
between these two cases. Examining the curves of Fig. 5.8 a bit more carefully, it
is found that the most prominent difference between them lies in the region of 0.5
GeV or below. However, this region cannot be accessed by the current calculation,
as the OPE does not converge well for such small values of M . Furthermore, even
if we could have calculated the OPE to higher orders and would thus have some
knowledge about GOPE(M) in the region below 0.5 GeV, this would most likely
not help much, as the uncertainty here will be large owing to the large number of
unknown condensates that will appear at higher orders of the OPE. We therefore
have to conclude that it is not possible to say anything meaningful about the width



5.2 Analysis Using Mock Data 89

of the ρ-meson peak at the current stage. To predict the width, the OPE has to be
computed to higher orders and the various condensates have to be known with much
better precision than they are today.

5.3 Analysis Using the OPE Results

5.3.1 The ρ Meson Sum Rule

Carrying out the OPE and applying the Borel transformation, we obtain the left-
hand side of Eq. (4.1), GOPE(M). In the case of the vector meson channel, we use
the operator

jμ = 1

2
(ūγμu − d̄γμd), (5.8)

which stands for J in Eq. (3.1) and take the terms proportional to the structure qμqν−
q2gμν . We then arrive at the following expression for GOPE(M), where the OPE has
been calculated up to dimension 6:

GOPE(M) = 1

4π2

(
1 + η(αs)

)
+

(
2m〈q̄q〉 + 1

12

〈αs

π
G2〉) 1

M4

− 112π

81
αsκ〈q̄q〉2 1

M6 + · · · , (5.9)

η(αs) =αs

π
+ 0.154α2

s − 0.372α3
s + · · · .

Here, αs is the usual strong coupling constant, given as g2

4π , m stands for the (aver-
aged) quark mass of the u- and d-quarks, and 〈q̄q〉 is the corresponding quark con-
densate. Meanwhile, the gluon condensate

〈
αs
π

G2
〉

is an abbreviated expression for〈
αs
π

Ga
μνGaμν

〉
and κ parametrizes the breaking of the vacuum saturation approxima-

tion, which has been used to obtain the above result for κ = 1.
A few comments about this result are in order here. For the perturbative term,

which is known up to the third order in αs , we have taken the number of flavors to be
N f = 4. Note that only the second and third terms of η(αs) depend (weakly) on N f

(Surguladze and Samuel 1996) and that the final results of the analysis are thus not
affected by this choice. We have not considered the running ofαs in deriving Eq. (5.9)
for simplicity. If the running is taken into account, the coefficient of the third term
of η(αs) changes due to the Borel transformation, as was shown in Shifman (1998).
Nevertheless, this again leads only to a minor change in the whole expression of
Eq. (5.9) and does not alter any of the results shown in the following. Considering
the terms proportional to 1/M4, the first-order corrections of the Wilson coefficients
are in fact known (Surguladze and Samuel 1996), but we have not included them
here as the values of the condensates themselves have large uncertainties, and it is

http://dx.doi.org/10.1007/978-4-431-54318-3_4
http://dx.doi.org/10.1007/978-4-431-54318-3_3
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Table 5.1 Values of the parameters used in the calculation. These have been adjusted to the renor-
malization scale of 1 GeV

Colangelo and Khodjamirian (2001) Narison (2004) Ioffe (2006)

〈q̄q〉 [GeV3] −(0.24 ± 0.01)3 −(0.238 ± 0.014)3 −(0.248 ± 0.013)3〈
αs
π

G2
〉 [GeV4] 0.012 ± 0.0036 0.0226 ± 0.0029 0.009 ± 0.007

κ 1 2.5 ± 0.5 1.0 ± 0.1
αs 0.5 0.50 ± 0.07 0.57 ± 0.08

therefore not necessary to determine the corresponding coefficients with such a high
precision. It is nonetheless important to note that these corrections are small (namely
of the order of 10 % or smaller, compared with the leading terms) and thus do not
introduce any drastic changes into the sum rules.

5.3.1.1 Values of the Parameters and Their Uncertainties

There are various estimates of the values of the condensates and their ranges. We
will employ the ones given in three recent publications: Colangelo and Khodjamirian
(2001), Narison (2004), Ioffe (2006). The explicit values are given in Table 5.1,
where they have been adjusted to the renormalization scale of 1 GeV. For the central
value of m〈q̄q〉, we make use of the Gell-Mann-Oakes-Renner relation, which gives
m〈q̄q〉 = − 1

2 m2
π f 2

π and take the experimental values of mπ and fπ for all three
cases, leading to

m〈q̄q〉 = −8.5 × 10−5 GeV4. (5.10)

Note that due to its smallness, the term containing m〈q̄q〉 does not play an important
role in the sum rules of Eq. (5.9). The values of Table 5.1 agree well for 〈q̄q〉 and αs ,
while they differ considerably for

〈
αs
π

G2
〉

and κ . Namely, Narison (2004) employs
values for

〈
αs
π

G2
〉

and κ that are about two times larger than those of Colangelo
and Khodjamirian (2001) and Ioffe (2006). Considering the error estimates of the
parameters, Colangelo and Khodjamirian (2001) uses altogether the smallest errors
as the breaking of the vacuum saturation approximation is not considered and only
a fixed value for αs is employed. Comparing the results obtained from these three
parameter sets will provide us with an estimate of the order of the systematic error
inherent in the current calculation.

5.3.1.2 Determination of the Errors of GOPE(M)

As can be inferred from Eq. (5.9) and Table 5.1, the uncertainty of GOPE(M)will vary
as a function of M and will be larger for small values of M because the contributions
of the higher-order terms with large uncertainties of the condensates become more
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Fig. 5.9 An example of
the distributed values of
GOPE(M) for M = 0.84 GeV.
Here, the parameters of Ioffe
(2006) have been used
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important in that region. To accurately estimate this error, we follow Leinweber
(1997) and numerically generate Gaussianly distributed values for the condensates,
and then examine the distribution of the resulting values of GOPE(M). For illustration,
we show the values of GOPE(M = 0.84 GeV) in Fig. 5.9, where the parameter
estimates of Ioffe (2006) have been used. σ(M), the error of GOPE(M), can then be
easily extracted from this distribution by using the formula of the standard deviation
of a given set.

As for the analysis of the mock data, the data points of GOPE(M) are randomly
generated, using Gaussian distributions with standard deviations σ(M), centered at
GOPE(M) of Eq. (5.9). We here again take NM = 100 and Nω = 600. Mmin is
determined from the 10 % convergence criterion and Mmax is fixed to 1.5 GeV.

5.3.2 Results of the MEM Analysis

Having finished all the necessary preparations, we now proceed to the actual MEM
analysis of the real OPE data. First, we show the central values of the right-hand side
of Eq. (5.9) and the corresponding errors for the three parameter sets of Colangelo
and Khodjamirian (2001), Narison (2004), Ioffe (2006) on the left side of Fig. 5.10.
Comparing these figures with Fig. 5.1, we see that the OPE results and the mock data
obtained from Eq. (5.1) exhibit a very similar behavior, even in the region smaller
than Mmin, below which we have no control over the convergence of the OPE.

Using these data, we have carried out the MEM analysis. For the default model,
we have adapted the function

m(ω) = 1

4π2

(
1 + η(αs)

) 1

1 + e(ω0−ω)/δ (5.11)
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Fig. 5.10 On the left, the central values of GOPE(M) (red lines) with the errors σ(M) (gray region)
are given. The lower boundary of the shown errors corresponds to Mmin, below which the OPE does
not converge. These plots should be compared with Fig. 5.1. On the right, the results of the MEM
analysis using these OPE data are displayed (red lines). The green lines show the default model, and
the horizontal bars stand for the values of the spectral function, averaged over the peaks 〈ρout〉ω1,ω2

and the corresponding ranges 〈ρout〉ω1,ω2 ± 〈δρout〉ω1,ω2 . Their extent shows the averaged interval
(ω1, ω2). For the lower two figures the lower error bars of the second peak are not shown because
they lie below ρ(ω) = 0
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Table 5.2 Final results for the three parameter sets. The respective errors are determined from our
analysis of mock data in the previous section

Colangelo and Khodjamirian (2001) Narison (2004) Ioffe (2006) Experiment

mρ (GeV) 0.75 ± 0.06 0.84 ± 0.10 0.83 ± 0.09 0.77
Fρ (GeV) 0.172 ± 0.038 0.190 ± 0.049 0.186 ± 0.049 0.141

with parametersω0 = 2.0 and δ = 0.1 GeV, which we have found in our investigation
of the mock data to give the best reproduction of the ρ-meson peak with the smallest
relative error and no large artificial peaks. The results are shown on the right side of
Fig. 5.10. We clearly see that all three data sets give a significant lowest peak, which
corresponds to the ρ-meson resonance. To determine the peak position, we simply
adopt the value, where the peak reaches its highest point. The uncertainty of this
quantity has already been estimated in our mock-data analysis and we employ the
number that has been obtained there to specify the error of our final results that are
given in the first line of Table 5.2.

Next, fitting the spectral functions of Fig. 5.10 to a relativistic Breit-Wigner peak
plus a second-order polynomial background, as was done in Fig. 5.7, we have deter-
mined the coupling strength Fρ from our obtained spectral function, leading to the
results given in the second line of Table 5.2. As could be expected from our experience
with the mock data, we get results that are all somewhat larger than the experimental
value.

5.3.2.1 Dependence of the ρ-Meson Peak on the Values
of the Condensates

Looking at Tables 5.1 and 5.2, it is interesting to observe that even though the para-
meter sets of Narison (2004) and Ioffe (2006) are quite different, they lead to almost
identical results. This fact can be explained from the dependences of the properties
of the ρ-meson resonance on 〈q̄q〉, 〈αs

π
G2

〉
and κ , as will be shown in this subsection.

Investigating the relation between the ρ-meson resonance and the condensates is
also interesting in view of the behavior of this hadron at finite temperature or density,
as the values of the condensates will change in such environments. This will in turn
alter the QCD sum rule predictions for the various hadron properties. A detailed
study of this kind of behavior of the ρ-meson is nevertheless beyond the scope of the
present paper and is left for future investigations. Here, we only discuss the change
in the mass of the ρ-meson when the values of the condensates are modified by hand.
The behavior of the peak position mρ is shown in Fig. 5.11.

For obtaining these results, we have used the errors of Colangelo and Khod-
jamirian (2001) and the corresponding values of κ and αs , but have confirmed that
the qualitative features of Fig. 5.11 do not depend on the explicit values of these
parameters. It is seen that while mρ decreases somewhat when 〈αs

π
G2〉 increases,

its value grows quite strongly when 〈q̄q〉 increases, irrespective of the value of the
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Fig. 5.11 a The mass mρ

shown as a function of the
gluon condensate 〈 αs

π
G2〉.

Here, the value of 〈q̄q〉 =
−(0.24)3 GeV3 has been used
for the quark condensate.
b mρ shown as a function of
the quark condensate 〈q̄q〉 for
three different values of the
gluon condensate. To obtain
these plots, the errors of
Colangelo and Khodjamirian
(2001) have been used
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gluon condensate. We found that the coupling strength Fρ shows the same qualita-
tive behavior, slightly decreasing with increasing 〈αs

π
G2〉, and strongly increasing

with increasing 〈q̄q〉. A similar tendency for mρ and Fρ has also been observed in
Leinweber (1997). This result shows that the quark condensate plays an essential
role in determining the properties of the ρ-meson.

It is important to note here that the correlation between mρ and 〈q̄q〉 to a large
part occurs due to the last term in GOPE(M) of Eq. (5.9), which contains the squared
quark condensate. This means that a similar (but weaker) correlation exists between
mρ and κ , which is also present in the last term of GOPE(M). Hence, we can now
understand why the parameters of Narison (2004) and Ioffe (2006) give such similar
results: while the large value of the gluon condensate of Narison (2004) should lead
to a smaller mρ , this effect is compensated by the large value of κ , which shifts the
mass upwards. Therefore, the sum of these changes cancel each other out to a large
degree, the net effect being almost no change in the spectral function for both cases.



5.4 Summary and Conclusion 95

5.4 Summary and Conclusion

We have applied the MEM technique to the problem of analyzing QCD sum rules.
Using MEM has the advantage that we are not forced to introduce any explicit
functional form of the spectral function, such as the “pole + continuum” ansatz
that has often been employed in QCD sum rule studies. This therefore allows us to
investigate any spectral function without prejudice to its actual form. Furthermore,
with this technique, we have direct access to the spectral function without the need
for interpreting quantities that depend on unphysical parameters such as the Borel
mass M and the threshold parameter sth.

To check whether it is really possible to apply MEM to QCD sum rules, we
have investigated the vector meson channel in detail, first with mock data obtained
from a realistic model spectral function, and then with the actual Borel-transformed
results of the operator product expansion. The main results of this investigation are
summarized as follows:

• Most importantly, demonstrating that it is possible to extract a significant peak in
the spectral function, which corresponds to the ρ-meson resonance, we could show
that the MEM technique is quite useful for analyzing QCD sum rules. For both
mock or OPE data, we were able to reproduce the experimental ρ-meson mass mρ

with a precision of about 10 % and the coupling strength Fρ with a precision of
about 30 %.

• We have found that owing to the properties of the kernel of Eq. (5.3), the default
model m(ω) has to be chosen according to the correct behavior of the spectral
function at low energy. We therefore have taken a default model that tends to zero
atω = 0. On the other hand, to give the correct behavior at large energies, the same
default model is constructed to approach the perturbative value in the high-energy
region.

• The position of the ρ-meson peak in the spectral function has turned out to be quite
stable against changes in various parameters of the calculation, such as the details
of the default model or the range of the analyzed Borel mass region. We have
shown that changing these parameters leads to a fluctuation of the peak position
of only 20–50 MeV.

• Concerning the width of the lowest lying peak, we are unable to reproduce the value
of the input spectral function of the mock data with any reasonable precision and
have shown that the reason for this difficulty comes from the insufficient sensitivity
of the data Gρ(M)on the detailed form of theρ-meson peak. To accurately estimate
the width, one needs not only to go to higher orders in the OPE, but also has to have
much more precise information on the values of the condensates than is available
today.

• Accompanied by a steep rise in the default model m(ω), we have observed the
appearance of artificial peaks in the output spectral function of the MEM analysis.
These peaks are MEM artifacts and one has to be careful not to confuse them with
the actual peaks that are predicted using the OPE data.
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These results are promising and encourage us to apply this approach to other channels,
including baryonic ones. It would also be interesting to apply this method to the
behavior of hadrons at finite density or temperature, as it would become possible
to directly observe the change in the spectral function in hot or dense environments
by this approach. Furthermore, it would be of interest to study the various exotic
channels, containing more than three quarks. In these channels, the scattering states
presumably play an important role and the Bayesian approach of this paper could help
clarify the situation and provide a natural way of distinguishing genuine resonances
from mere scattering states.

Even though these are interesting subjects for future studies, we want to emphasize
here that the uncertainties involved for each channel can differ considerably and one
thus should always carry out a detailed analysis with mock data for each case, before
investigating the actual sum rules. This procedure is necessary to check whether it
is possible to obtain meaningful results from the MEM analysis of QCD sum rules.
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Chapter 6
MEM Analysis of the Nucleon Sum Rule

6.1 Introduction

The use of QCD sum rules in studies investigating the properties of baryons has
already a long history. Since the seminal papers of Shifman et al. (1979a, b), in
which the QCD sum rule method was developed and the subsequent first application
to baryonic channels by Ioffe (1981a, b), the sum rules of the nucleon have been
continuously improved by including higher orders in the perturbative Wilson coef-
ficients (Krasnikov et al. 1983; Chung et al. 1984; Jamin 1988; Ovchinnikov et al.
1991; Shiomi and Hatsuda 1995; Sadovnikova et al. 2005) or non-perturbative power
corrections (Chung et al. 1984; Belyaev and Ioffe 1982; Leinweber 1990). This even
led to attempts to determine the mass difference between the neutron and the proton
(Yang et al. 1993), which certainly is a very difficult task because of the smallness
of this difference compared to hadronic scales. Another important development was
initiated in a paper by Leinweber (1997), in which among other technical points, the
choice of the interpolating field made by Ioffe was criticized and a new statistical
method for the analysis of QCD sum rules was introduced. Furthermore, QCD sum
rules also have been used to investigate the nucleon properties in nuclear matter
(Hatsuda et al. 1991; Cohen et al. 1995; Drukarev et al. 2010) or at finite temperature
(Adami and Zahed 1992).

However, in all these studies it was necessary to model the spectral function
according to some specific functional form, the “pole + continuum”-ansatz being the
most popular one. Such a procedure inevitably incorporates strong assumptions on the
spectral function into the analysis. This strategy works well when the actual spectral
function has some resemblance with the chosen model, but will of course fail if this
is not the case. For instance, as is known from studies using both QCD sum rules and
lattice QCD, certain linear combinations of interpolating fields, which in principle
carry the quantum numbers of the nucleon, couple to the nucleon ground state only
very weakly. A QCD sum rule analysis of such interpolating fields, which uses
the “pole + continuum” ansatz, can only lead to ambiguous results. The problems
become even more severe in studies of the spectral function at finite temperature
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or density, as the validity of the phenomenological “pole + continuum” ansatz for
the spectral function in such an environment becomes less certain, rendering it more
difficult to make educated guesses about its actual form.

In this chapter, it is our main purpose to examine if and to what extent the MEM
analysis can be applied to the sum rule of the nucleon, in order to solve the above
mentioned problems (Ohtani et al. 2011). Throughout our investigations, we found
that the MEM analysis of the Borel sum rule

GOPE(M) = 1

M2

∫ ∞

0
dte− t

M2 ρ(t), (6.1)

in fact fails to satisfactorily extract the nucleon spectral function in the ground state
region. As we will discuss later in detail, this failure is mainly caused by the large con-
tribution of the continuum to the OPE side of Eq. (6.12), which strongly deteriorates
the contribution of the nucleon pole.

On the other hand, the Gaussian sum rule (Bertlmann et al. 1985; Orlandini et al.
2001)

GOPE(s, τ ) = 1√
4πτ

∫ ∞

0
dte− (t−s)2

4τ ρ(t), (6.2)

which, for the nucleon, is formulated for the first time in this paper, turns out to give
better results and allows us to resolve the nucleon pole from the continuum. There
are essentially two reasons for the superiority of the sum rule of Eq. (6.2). First of
all, the kernel of Eq. (6.2), a Gaussian centered at s with a width of

√
2τ , collects

more information on the spectral function ρ(t) than the one in Eq. (6.12) when the
integration over t is carried out. This is especially true for small values of the width τ ,
which we, however, cannot take arbitrarily small because below a certain threshold,
the convergence of the operator product expansion (OPE) becomes poor. A similar
situation occurs in the Borel sum rules, where the Borel mass is restricted from below
due to the OPE convergence. The second reason also can be related to the kernel of
Eq. (6.2), containing two parameters s and τ , which can be freely chosen as long
as the OPE converges. This freedom allows us to vary two parameters at the same
time in the MEM analysis, leading to reasonable results for the extracted spectral
function. Similar experiences also have been made in nuclear structure studies, where
the Lorentz kernel has proven to be useful (Efros et al. 1994, 2007).

Furthermore, using the MEM analysis of the Gaussian sum rules, we are able to
extract the spectral function not only in cases where the interpolating field strongly
couples to the nucleon ground state and thus the “pole + continuum” ansatz should
be valid, but also in cases where only higher energy states contribute to the sum rules
and hence the conventional analysis most likely fails to give meaningful results.
This advantage is especially useful for examining which kind of interpolating field
couples strongly to the nucleon ground state and is thus a suitable interpolating field
for the analysis, a question with a long and controversial history in QCD sum rules
studies (Ioffe 1981a, b; Leinweber 1997; Chung et al. 1982a, b; Ioffe 1983; Dosch
et al. 1989). Our MEM analysis of the general operator given in Eq. (6.5) strongly
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suggests that the nucleon ground state only couples to η1(x) (β = 0) and not to η2(x)
(β = ∞) (see Eqs. (6.3) and (6.4) in Sect. 6.2). In addition, we have obtained some
hints of excited states coupling to η2(x). These issues will be discussed in detail in
Sect. 6.4.3.

This chapter is organized as follows. In Sect. 6.2, the details of the Borel and
Gaussian sum rule for the nucleon are explained. Next, the results of the analysis
using the Borel sum rule in combination with MEM are presented in Sect. 6.3. In
Sect. 6.4, the results of the analysis for the Gaussian sum rule are outlined, and in
Sect. 6.4.3, the differences of the obtained spectral functions depending on the choice
of the interpolating fields are discussed. Finally, the summary and conclusions are
given in Sect. 6.5.

6.2 QCD Sum Rules for the Nucleon

The method of QCD sum rules is used to carry out the analysis of the spectral function
as follows. First, we choose an interpolating field which has the quantum numbers
of the nucleon, then its correlation function is calculated in the deep Euclidean
4-momentum region. Alternatively, the same correlation function at the physical 4-
momentum region is expressed by the spectral function of the nucleon channel. The
sum rules can then be constructed by equating the two expressions using a dispersion
relation.

For the nucleon, there are two independent local interpolating operators,

η1(x) = εabc(uT a(x)Cγ5db(x))uc(x), (6.3)

η2(x) = εabc(uT a(x)Cdb(x))γ5uc(x). (6.4)

Here, abc are color indices, C is the charge conjugation matrix and T stands for
the transposition operation. The spinor indices are omitted for simplicity. A general
interpolating operator can thus be expressed as

η(x) = η1(x)+ βη2(x), (6.5)

where β is a real parameter. Here, the case of β = −1 is identified as the so-called
“Ioffe current” (Ioffe 1981a, b), which is often used in QCD sum rule studies of the
nucleon.

Using this interpolating operator, we define the correlation function as

Π(q) = i
∫

eiqx 〈0|T [η(x)η(0)]|0〉d4x

= q/
1(q
2)+Π2(q

2). (6.6)
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The imaginary part of Π1(q2) satisfies the positivity condition, ImΠ1(q2) ≥ 0,
while ImΠ2(q2) is not necessarily positive due to contributions of negative parity
states. The positivity condition is, however, essential for the application of the MEM
method and we thus consider only Π1(q2) in the following. To make use of the
information contained in ImΠ2(q2), one would have to analyze the parity projected
sum rules (Jido et al. 1996), which we plan to investigate in the future. In the deep
Euclidean region (−q2 → ∞), Π1(q2) can be calculated by using the operator
product expansion (OPE). Including operators up to dimension 8, we get

Π1(q
2) = −5 + 2β + 5β2

128(2π)4
q4 ln(−q2)

− 5 + 2β + 5β2

256(2π)2
〈αs

π
G2〉 ln(−q2)

− 7 − 2β − 5β2

24
〈qq〉2 1

q2 (6.7)

− 13 − 2β − 11β2

96
〈qq〉〈qgσ · Gq〉 1

q4

≡ ΠOPE(q
2)

To obtain Eq. (6.7), several approximations have been implemented. Firstly, only the
lowest order in αs is taken into account. The validity of this approximation is not
obvious, because it is known that the first order αs corrections are significant and
lead to a considerable increase of the continuum contribution (Leinweber 1997).
Nevertheless, our main goal of this paper is to examine whether the MEM analysis
can be applied to the nucleon sum rule or not, and we thus ignore the αs corrections
here. For a more quantitative future analysis, the higher order corrections should
certainly be taken into account. The second approximation arises from the use of the
vacuum saturation, by which 〈qqqq〉 and 〈qqqgσ · Gq〉 can be formally reduced
to 〈qq〉2 and 〈qq〉〈qgσ · Gq〉, respectively. Although this approximation can be
justified in the large Nc limit (Shifman et al. 1979a, b), it is not clear to what extent
it is trustable at Nc = 3. Nonetheless, for the present qualitative analysis, we will
assume this approximation to be valid.

As already mentioned, Π1(q2) can also be expressed in terms of the physical
spectral function using the dispersion relation:

Π1(q
2) = 1

π

∫ ∞

0

ImΠ1(t)

t − q2 dt =
∫ ∞

0

ρ(t)

t − q2 dt

≡ Πρ(q
2), (6.8)

where the definition ImΠ1(t) = πρ(t) is used for the spectral function. Our goal
is now to extract ρ(t) from the sum rule obtained by equating Eqs. (6.7) and (6.8).
It should be noted here that subtractions are necessary in order to make the inte-
gral of Eq. (6.8) convergent. In the case of the nucleon, the subtraction terms are
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Π1(0)+Π ′
1(0)q

2 + Π ′′
1 (0)
2 q4, which will disappear after transforming Eq. (6.8) into

the Borel or Gaussian sum rules. How this is done will be explained in the following
subsections.

6.2.1 Borel Sum Rule

In the case of the Borel sum rule, we transformΠ1(q2) using the Borel transformation
B̂M , defined below:

B̂M = lim
−q2,n→∞
−q2/n=M2

(−q2)n

(n − 1)!
(

d

dq2

)n

. (6.9)

Applying B̂M to Eq. (6.7), we get for GOPE(M) ≡ B̂MΠOPE(q2):

GOPE(M) = 5 + 2β + 5β2

64(2π)4
M4

+ 5 + 2β + 5β2

256(2π)2

〈αs

π
G2

〉
(6.10)

+ 7 − 2β − 5β2

24
〈qq〉2 1

M2

− 13 − 2β − 11β2

96
〈qq〉〈qgσ · Gq〉 1

M4 .

Meanwhile, applying the Borel transformation to Eq. (6.8), Gρ(M) ≡ B̂MΠρ(q2)

is obtained as:

Gρ(M) = 2

M2

∫ ∞

0
e− ω2

M2 ωρ(ω)dω. (6.11)

Here, t = ω2 was used. Note that at this point, the subtraction terms have been
eliminated and the integral of the right hand side converges. This leads us to the final
form of the Borel sum rule,

GOPE(M) = Gρ(M) = 2

M2

∫ ∞

0
e− ω2

M2 ωρ(ω)dω. (6.12)

6.2.2 Gaussian Sum Rule

The Gaussian sum rule, first introduced in Bertlmann et al. (1985), exhibits another
way of improving Eq. (6.8). Based on the idea of local duality, it provides a formu-
lation for the convolution of the spectral function with a Gaussian kernel. As this
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sort of sum rule is not often discussed in the literature and the specific case of the
nucleon has to our knowledge not even been formulated, we will explain each step
in some detail, following closely the formulation given in Orlandini et al. (2001).

Going to the complex plane of q2 and taking the difference between Π1(q2 =
s + iΔ) and Π1(s − iΔ) of Eq. (6.8), where s and Δ are real, we obtain

Π1(s + iΔ)−Π1(s − iΔ)

2iΔ
=

∫ ∞

0

ρ(t)

(t − s)2 +Δ2 dt. (6.13)

At this stage, the integral above is not convergent and the subtraction terms are not
yet fully eliminated. Applying the following Borel transform B̂4τ :

B̂4τ = lim
Δ2,n→∞
Δ2/n=4τ

(−Δ2)n

(n − 1)!
(

d

dΔ2

)n

, (6.14)

and using

B̂4τ

[
1

(t − s)2 +Δ2

]
= 1

4τ
e− (t−s)2

4τ , (6.15)

we get

2

√
τ

π
B̂4τ

(
Π1(s + iΔ)−Π1(s − iΔ)

2iΔ

)
= 1√

4πτ

∫ ∞

0
dte− (t−s)2

4τ ρ(t)

≡ Gρ(s, τ ). (6.16)

Here, the subtraction terms have disappeared and the integral in the above equation
is convergent.

As a next step, we will now show that Eq. (6.16) can also be rewritten by using
the inverse Laplace transform L̂−1. Using

1

(t − s)2 +Δ2 = L̂[e−x(t−s)2 ]

=
∫ ∞

0
e−Δ2x e−x(t−s)2 dx,

the kernel e−x(t−s)2 can be re-expressed by L̂−1:

e−x(t−s)2 = L̂−1
[

1

(t − s)2 +Δ2

]

= 1

2π i

∫ b+i∞

b−i∞
eΔ

2x 1

(t − s)2 +Δ2 dΔ2. (6.17)

Setting x = 1
4τ , the left-hand side of Eq. (6.16) can thus be rewritten as
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(b)

Γc
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Γ1′

Γ2′
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Γ4

Γ5
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t

Fig. 6.1 a Contour of integration Γ1 + Γ2 in Eq. (6.18). The branch cut of Π1(−t) is represented
by the wavy line on the negative real axis. b Closed contour C(R) of Eq. (6.19). The outer lines
Γ3, Γ4 and Γ5 are a part of the circle of radius R centered at −s, while Γε denotes a circular line
with radius ε, centered at the origin. The branch cut of Π1(−t) is represented by the wavy line on
the negative real axis and the contour Γc is the straight line of the contour above and below the
branch cut. The contours Γ ′

1 and Γ ′
2 are parts of Γ1 and Γ2, respectively

1√
4πτ

L̂−1
[
Π1(s + iΔ)−Π1(s − iΔ)

2iΔ

]

= 1√
4πτ

1

2π i

∫ b+i∞

b−i∞

[
Π1(s + iΔ)−Π1(s − iΔ)

2iΔ

]
e
Δ2
4τ dΔ2.

Then, replacing s + iΔ by −t in the first and s − iΔ by −t in the second term, we
get

Gρ(s, τ ) = 1√
4πτ

1

2π i

∫
Γ1+Γ2

Π1(−t)exp

(
− (t + s)2

4τ

)
dt (6.18)

where the contour Γ1 + Γ2 is shown in Fig. 6.1a.
Next, to obtain a sum rule that is practically usable, we consider the contour C(R)

shown in Fig. 6.1b. Taking the limit R → ∞ and ε → 0, we are led to the equation
given below:

Gρ(s, τ ) = − lim
R→∞

1√
4πτ

1

2π i

∫
Γc+Γε

Π1(−t)exp

(
− (t + s)2

4τ

)
dt. (6.19)

Substituting the right-hand side of Eq. (6.7) into Eq. (6.19) and examining the various
terms, we see that the perturbative and dimension four terms only give contributions
on the contour Γc. Meanwhile, the dimension six and eight terms do not have a
branch discontinuity, but a pole at t = 0 and therefore only contribute on Γε. Using
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∫ 0

−∞
exp

(
− (t + s)2

4τ

)
dt = √

τπ

[
1 + erf

(
s

2
√
τ

)]
(6.20)

where the error function erf(x) is defined as

erf(x) = 2√
π

∫ x

0
e−x2

dx (6.21)

and

− 1

2π i

∫
Γε

1

tn
exp

(
− (t + s)2

4τ

)
dt = lim

t→0

1

(n − 1)!
dn−1

dtn−1 exp

(
− (t + s)2

4τ

)

(6.22)

(n = 1, 2, . . . ),

we obtain

GOPE(s, τ ) = 5 + 2β + 5β2

128(2π)4

×
[
τ

(
1 + s2

2τ

) [
1 + erf

(
s

2
√
τ

)]
+ s

√
τ√
π

exp

(
− s2

4τ

)]

+ 5 + 2β + 5β2

512(2π)2
〈αs

π
G2〉

[
1 + erf

(
s

2
√
τ

)]
(6.23)

+ 1√
πτ

7 − 2β − 5β2

48
〈qq〉2exp

(
− s2

4τ

)

+ 1√
πτ

13 − 2β − 11β2

384
〈qq〉〈qgσ · Gq〉 s

τ
exp

(
− s2

4τ

)
.

This then finally leads to the following form of the Gaussian sum rule, from which
information of the spectral function ρ(ω) can be extracted:

GOPE(s, τ ) = Gρ(s, τ ) = 2√
4πτ

∫ ∞

0
dω · ωe− (ω2−s)2

4τ ρ(ω). (6.24)

Here, we have again set t = ω2.

6.3 Analysis Using the Borel Sum Rule

In this section, we will analyze the nucleon spectral function for the Borel sum rule. It
is easily understood from dimensional considerations that unlike in the meson case,
the contribution of the continuum states to the baryon spectral function is proportional
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to ω4 and thus strongly enhanced. As was done in similar studies using MEM and
lattice QCD, we will therefore analyze ρ(ω)/ω4 instead of ρ(ω) and hence from
now on denote ρ(ω)/ω4 as ρ(ω), leading to the equations below:

GOPE(M) = Gρ(M) =
∫ ∞

0
dωK (M, ω)ρ(ω), (6.25)

K (M, ω) = 2ω5

M2 e−ω2/M2
. (6.26)

6.3.1 Analysis Using Mock Data

In order to check the effectiveness of MEM to extract the spectral function of the
nucleon, we first carry out an analysis using mock data. The employed mock spectral
function is given below:

ρmock(ω) = λ2

2M5
N

δ(ω − MN )+ 5 + 2β + 5β2

128(2π)4
1

1 + e
(ω0−ω)

δ

, (6.27)

where we use the following values for the various parameters:

MN = 940 MeV, ω0 = 1.3 GeV,

δ = 0.05 GeV, λ2 = 0.19

(2π)4
GeV6. (6.28)

Here, ρmock(ω) is constructed to have a narrow ground state pole and a continuum,
which approaches the perturbative value at high energy. Defining now

Gmock(M) ≡
∫ ∞

0
dωK (M, ω)ρmock(ω), (6.29)

we apply the MEM procedure to

Gmock(M) = Gρ(M) =
∫ ∞

0
dωK (M, ω)ρ(ω). (6.30)

The residue of the nucleon pole λ was fitted so that the function Gmock(M)matches
GOPE(M) at β = −1 in the analyzed Borel mass region. For comparison, GOPE(M)
and Gρ(M) are shown in Fig. 6.2. The values of the parameters appearing in Eq. (6.7)
are given in Table 6.1. As can be observed in Fig. 6.2, GOPE(M) and Gρ(M) are
consistent within the range of the error, which shows that the “pole + continuum”
ansatz describes the OPE data well. However, this does not necessarily imply that
the integral of Eq. (6.30) can be reliably inverted and that valid information on the
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Fig. 6.2 Comparison of the mock data and the OPE data at β = −1. The solid red line shows
GOPE(M) of Eq. (6.10), with the respective error indicated by the gray region. The dashed blue line
denotes Gmock(M) for which the mock spectral function of Eq. (6.27) was used

Table 6.1 Values of the parameters appearing in the OPE, taken from Colangelo and Khodjamirian
(2001)

Condensates 〈q̄q〉[GeV3] 〈 αs
π

G2〉[GeV4] 〈q̄gσ · Gq〉/〈q̄q〉[GeV2]
Used values −(0.24 ± 0.01)3 0.012 ± 0.0036 0.8 ± 0.2

nucleon pole can be extracted. To investigate to what extent this is possible, we now
analyze Gmock(M). For a realistic analysis, we here employ the error obtained from
GOPE(M), thus σmock(M) = σOPE(M).

To use MEM, we must at first fix the default model m(ω). A reasonable choice
for m(ω) should reflect our prior knowledge on the spectral function such as the
asymptotic behavior at low or high energy. To test several possible choices, we here
introduce three types of default models. The first one is a constant consistent only
with the asymptotic behavior of the spectral function at low energy, therefore lying
close to 0:

mflat(ω) = 1.0 × 10−6. (6.31)

The detailed value of mflat is not so important, as long as it can be considered to be
small enough compared to the asymptotic value at high energy. As we will discuss in
more detail in the section dealing with the gaussian sum rule, we indeed have found
that the position of the lowest lying pole and its residue of the obtained spectral
functions depend on the value of mflat only weakly. The second default model is also
a constant which now reflects the asymptotic behavior at high energy:

masym(ω) = 5 + 2β + 5β2

128(2π)4
. (6.32)
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The third one is a combination of the first two with the correct behavior at both high
and low energy:

mhybr(ω) = 5 + 2β + 5β2

128(2π)4
1

1 + e(ω0−ω)/δ , (6.33)

ω0 = 1.8 GeV, δ = 0.1 GeV.

In the following, the analysis is carried out at β = −1. In the case of the con-
ventional method, which assumes the spectral function to have a specific functional
form such as the “pole + continuum” ansatz, the analyzed Borel mass region is
restricted so that the ratio of the highest dimensional term is less than 0.1 of the whole
GOPE(M) to have some confidence on the OPE convergence. The Borel mass region
is further limited by the condition that the contribution from the continuum states
in Gρ(M) should be less than 0.5 to make sure that the lowest pole dominates the
sum rule. The Borel mass region determined according to these restrictions becomes
0.91 GeV ≤ M ≤ 0.97 GeV. As pointed out in Leinweber (1997), this region is
very narrow and thus we expect that it will be very difficult to extract ρ(ω) in a wide
range of ω with this small amount of available information. Although, when using
MEM, we can in principle employ values of M above 0.97 GeV, we here first analyze
the spectral function using the Borel mass region 0.91 GeV ≤ M ≤ 0.97 GeV. The
results are shown in Fig. 6.3.

It is clear from Fig. 6.3, that the obtained lowest peaks lie much above the input
value of 940 MeV. Hence, as expected, we cannot extract much information on the
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Fig. 6.3 Spectral functions extracted from Gmock(M) using various default models at β = −1.
The analyzed Borel mass region is 0.91 GeV ≤ M ≤ 0.97 GeV. The red lines show ρout(ω),
the blue lines depict the input mock spectral function and the green lines stand for the default
model. As explained in Fig. 4.2 of Chap. 4, the three horizontal lines correspond to the value of
the spectral function, averaged over the peak, 〈ρout〉ω1,ω2 and the respective upper and lower value,
〈ρout〉ω1,ω2 +〈δρout〉ω1,ω2 and 〈ρout〉ω1,ω2 −〈δρout〉ω1,ω2 . Similar horizontal lines in following figures
are understood to have the same meaning

http://dx.doi.org/10.1007/978-4-431-54318-3_4
http://dx.doi.org/10.1007/978-4-431-54318-3_4
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nucleon pole from this sum rule. Especially, in the case of the default model masym(ω),
the spectral function in the low energy region approaches masym(0) and we can only
observe a small lowest peak. A similar tendency was observed in theρ-meson channel
(see Chap. 5). We will therefore abandon this default model in the following. In the
case of mflat(ω), although the high energy behavior wrongly approaches 0 at high
energy, the low energy behavior, which is the main focus of our interest, seems to
be reasonable. On the other hand, using mhybr(ω) leads to the correct behavior at
both high and low energy. From these results, we can infer that the default model
completely determines the asymptotic values of the spectral function. This behavior
at high and low energy should therefore be considered to be an input in the current
analysis. This can be understood from the properties of the kernel K (M, ω), leading
to a function Gρ(M), which is insensitive to the values of ρ(ω) at large and small
values of ω. From the behavior of K (M, ω), we can also expect that increasing
the upper boundary of M allows the analysis to become sensitive to ρ(ω) at higher
energy regions.

For investigating this case, we analyze the spectral function under the condition
of Mmin = 0.91 GeV and Mmax = 1.4 GeV. The results are shown in Fig. 6.4. When
using mflat(ω), the resulting spectral function at high energy oscillates around the
continuum value before approaching the default model. This is plausible, because
the input spectral function has the “pole + continuum” structure, which the MEM
analysis is trying to simulate with the given limited information of Gmock(M). Nev-
ertheless, the MEM procedure cannot reproduce the mass of the nucleon, whatever
default model or Borel mass range is used.

 0
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ρ(
ω

)×
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ρin(ω)

ρout (ω)

Fig. 6.4 Spectral functions extracted from Gmock(M) using various default models at β = −1.
The analyzed Borel mass region is 0.91 GeV ≤ M ≤ 1.4 GeV. The red lines show ρout(ω), the blue
lines depict the input mock spectral function and the green lines stand for the default model

http://dx.doi.org/10.1007/978-4-431-54318-3_5
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Fig. 6.5 Spectral functions extracted from GOPE(M) using various default models at β = −1. The
analyzed Borel mass region is 0.91 GeV ≤ M ≤ 0.97 GeV. The red lines show ρout(ω), the vertical
blue lines indicate the position of the nucleon ground state and the green lines stand for the default
model

6.3.2 Analysis Using OPE Data

Similar to the previous section, we now carry out the analysis using the real OPE data,
GOPE(M), even though from our experience of the mock data analysis, we cannot
expect to obtain meaningful results. We analyze the spectral function by setting the
analyzed Borel mass region to 0.91 GeV ≤ M ≤ 0.97 GeV, as in the last section.
The results are shown in Fig. 6.5. Using a wider Borel mass region leads to spectral
functions very similar to the ones shown in Fig. 6.4. As in the mock data analysis, the
MEM procedure does not succeed to reproduce the nucleon peak. The main reason
for this failure can be traced back to the slow convergence of the OPE and to the
large contribution of continuum to the sum rule. These factors severely reduce the
information of the lowest nucleon pole that can be extracted from GOPE(M).

6.4 Analysis Using the Gaussian Sum Rule

In case of the Gaussian sum rule, the analysis is carried out using the following
equations:

GOPE(s, τ ) = Gρ(s, τ ) =
∫ ∞

0
dωK (s, τ, ω)ρ(ω), (6.34)

K (s, τ, ω) = 2ω5

√
4πτ

e− (ω2−s)2
4τ . (6.35)
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As before, we set β = −1 and the results will be shown in terms of the dimensionless
spectral function.

6.4.1 Analysis Using Mock Data

As for the Borel sum rule, we use Eq. (6.27) as mock data and Eqs. (6.31–6.33) for
the default model. As a first step, we must determine the ranges of s, τ used in the
analysis. From the property of the kernel, we expect that Gρ at small values of τ will
be more sensitive to narrow structures such as the lowest peak, while Gρ at larger
values will to a large extent be fixed by the continuum. Hence, to extract as much
information as possible from Gmock(s, τ ), we use several values of τ at the same
time, which are τ = 0.5, 1, 1.5, 2 GeV4. From

lim
τ→0

1√
4πτ

e− (ω2−s)2
4τ = δ(ω2 − s), (6.36)

one understands that in the limit τ → 0,Gρ(s, τ ) in principle should approach the
spectral function as

lim
τ→0

Gρ(s, τ ) = s2ρ(
√|s|). (6.37)

However, it is not possible to take this limit, because the OPE is an expansion in
powers of 1/

√
τ as can be seen in Eq. (6.23), meaning that the convergence of the

expansion worsens with lower values of τ .
Turning now to the parameter s, similar to the Borel sum rule case, we determine its

range from the convergence in GOPE(s, τ ) and the contribution from the continuum
in Gρ(s, τ ). The analyzed regions of s and τ are shown in Table 6.2. Here, we denote
the upper and lower boundaries of s at each τ as smax and smin, respectively.

In the present analysis, we take 4 data points for τ(Nτ = 4), and 25 data points
for s (Ns = 25) at each τ k and adjust ωmin and ωmax to 0 and 6 GeV, respectively.
sk

max and sk
min at each τ k are given in Table 6.2, and dsk is (sk

max − sk
min)/Ns .

A comment is in order here on the ranges of the variable s, shown in Table 6.2. It
is seen that to the most part, we use negative values for s, which may seem somewhat
counterintuitive as, naively, the kernel of Eq. (6.35) seems to have a peak at

√
s,

when considered as a function of ω. Therefore one would expect values of s around
1 GeV to give a Gρ(s, τ ) that is most sensitive to the spectral function in the region

Table 6.2 The analyzed ranges of the variable s for the employed values of τ

τ [GeV4] 0.5 1.0 1.5 2.0

smin[GeV2] −0.79 −1.84 −2.96 −4.13
smax[GeV2] 0.94 0.02 −0.97 −2.00
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Fig. 6.6 Three examples of the kernel K (s, τ, ω). The red line shows K (s, τ, ω) for s =
−0.79 GeV2, the green line for s = 0.0 and the blue line for s = 0.94 GeV2. In all three cases, τ
is fixed to τ = 0.5 GeV4

of the nucleon pole. However, this is not the case because the kernel is distorted due
to the ω5-factor in front of the Gaussian of Eq. (6.35). For example, for constructing
a kernel with a maximum value at 1 GeV which is the energy region which we are
mostly interested in, s becomes 1–5τ and, in the case of τ = 0.5, 1, 1.5, 2 GeV4, has
a negative value. This is illustrated in Fig. 6.6, where one can see that only kernels
with negative s have peaks around 1 GeV. From these arguments, we can understand
that it is necessary and important to use negative values of s in the analysis of the
Gaussian sum rules.

Let us now discuss the obtained spectral functions, which are shown in Fig. 6.7.
Their detailed numerical results are given in Table 6.3. It is observed that, compared
with the Borel sum rule, the reconstruction of the lowest lying peak has considerably
improved. Nevertheless, it is seen in Table 6.3 that its position is shifted upwards
about 120 ∼ 180 MeV, which should give an idea of the precision attainable with
this method. To evaluate the residue of the first peak, we first have to define the region
ω over which the peak can be considered to be the dominant contribution. The left
edge of the first peak is determined to be the point whose height is 1/30 of the peak
vertex and the right edge so that the center between the left and the right edge lies
on the peak vertex. The residue is then obtained by simply integrating ρ(ω) over the
peak region, indicated by the horizontal length of the error bars. Table 6.3 shows that
the residue of the first peak gives about 80 % of the input value of the mock data.
Since the default model mflat(ω) leads to a peak position and residue closest to the
input values we will use only mflat(ω) as the default model in the following.

Here, we comment on the width of the peaks appearing in the obtained spectral
functions. One might wonder why these peaks have a finite width even though the
input mock data only contains a zero width pole. There are two important aspects
related to this point. Firstly, one should note that the OPE side of the sum rule is rather
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Fig. 6.7 Spectral functions extracted from Gmock(s, τ ) using various default models at β = −1.
The analyzed regions of s and τ are shown in Table 6.2. The red lines show ρout(ω), the blue lines
depict the input mock spectral function and the green lines stand for the default model

Table 6.3 Position of the peaks (in MeV) and values of the corresponding residues (in 10−5 GeV),
obtained from a mock data analysis with three default models at β = −1. Here, the given values
of the mock data residue is defined as λ2/(2M5

N ). The errors are estimated by evaluating the half
width of the obtained first peak

Mockdata mflat mhybr masym

Position of 1st peak [MeV] 940 1060 ± 140 1120 ± 100 1080 ± 410
Position of 2nd peak [MeV] – 1850 1970 1960
Residue of 1st peak [10−5GeV] 8.3 7.0 6.0 –

insensitive to the value of the width, because this information is largely lost after the
integration over the spectral function in Eqs. (6.1) or (6.2). This is so as long as the
parameters governing the scales of these integrals (M or τ 1/4) are much larger than
the width of the peak of interest. This point was discussed explicitly for the ρ-meson
channel in Chap. 5 of this thesis (see also Gubler and Oka (2010)). Secondly, one
should remember that MEM is a statistical method, that can only provide the most
probable form of the spectral function, given the information available. This most
likely spectral function depends not only on the input data but also on their error.
Generally, a larger error makes a peak broader and smaller in magnitude, therefore
introducing an artificial width connected to the error of the OPE data.

Next, to study the dependence of the results on the range of s, we fix smax to
1.0 GeV2, 1.5 GeV2 and 2.0 GeV2 for all values of τ , and redo the analysis. The
results are shown in Fig. 6.8 and Table 6.4. From Table 6.4, one can observe that
the position and residue of the first peak depends on smax only weakly, while the
position of the second peak is quite sensitive to the value of smax. Furthermore,

http://dx.doi.org/10.1007/978-4-431-54318-3_5
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Table 6.4 Position of the peaks and values of the corresponding residues. Here, the default model
mflat(ω) and various smax values were used. The errors are estimated by evaluating the half width
of the obtained first peak

smax[GeV2] 1.0 1.5 2.0

Position of 1st peak [MeV] 1090 ± 140 1100 ± 140 1100 ± 150
Position of 2nd peak [MeV] 1980 2020 –
Residue of 1st peak [10−5GeV] 6.7 6.5 6.3

from the Fig. 6.8, it can be understood that the second peak rather represents the
continuum, around which the MEM output oscillates.

Finally, we discuss the dependence of the spectral function on the parameters
appearing in the default models. In the case of the flat default models as given in
Eqs. (6.31) and (6.32), we have carried out analyses using several height values
(spanning over several orders of magnitude). The results are shown in Fig. 6.9. It
is clear that the detailed values have little influence on the position of the nucleon
pole. Extracting the corresponding residues, it is understood that their values also
depend on the height value only weakly. Specifically, the pole positions for the curves
shown in Fig. 6.9 coincide within 1 % and the residues within 6 %. In the case of a
hybrid default model as given in Eq. (6.33), we also carried out analyses using several
parameter combinations, the result being that the positions of the obtained first peaks
did depend on the parameter combinations only weakly.

In all, we conclude that using the Gaussian sum rule, the reconstruction of the
properties of the ground state peak is largely improved compared to the Borel sum
rule. This claim can be substantiated by considering the obtained pole of the nucleon,
which is found at about 1.5 GeV for the Borel sum rule. This value is certainly not
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Fig. 6.9 The spectral functions extracted from Gmock(s, τ ), using various height values for the flat
default model mflat(ω). The concrete numerical values are given in the figure

Table 6.5 Positions of the first and second peaks (in MeV) and the corresponding residue of the
first peak (in 10−5 GeV) obtained from the analyses using OPE data at β = −1 and the default
model mflat(ω). The errors are estimated by evaluating the half width of the obtained first peak

smax[GeV2] cont. 1.0 1.5 2.0

Position of 1st peak [MeV] 990 ± 130 1040 ± 140 1060 ± 150 1050 ± 150
Position of 2nd peak [MeV] 1840 1920 – 1800
Residue of 1st peak [10−5GeV] 7.9 7.0 6.6 6.3

satisfactory in view of the precision of QCD sum rules, which is expected to be about
10 ∼ 20 %. On the other hand, in the case of the Gaussian sum rule, the position
of the reconstructed nucleon pole agrees with the mock data within the range of
20 %. Hence, the Gaussian sum rule is more suitable for the analysis of the nucleon
channel, especially for the present MEM analysis, in which only Π1 can be used.

6.4.2 Analysis Using OPE Data

Next, we carry out the analysis using GOPE(s, τ ). We apply the MEM in the same
regions of s and τ used in the mock data analysis. The results are shown in Fig. 6.10,
while the numerical details are given in Table 6.5. The behavior of the results is similar
to those of the mock data analysis. We observe that the positions of the lowest peak lie
quite close to the experimental value. Besides a clearly resolved first peak, the spectral
function exhibits one or two higher peaks which oscillate around the asymptotic high
energy limit. In principle, this part could also contain nucleon resonances with both
positive and negative parity. With the present resolution achievable with the MEM
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Fig. 6.10 Spectral functions extracted from the MEM analysis using GOPE(s, τ ) and mflat(ω) at
β = −1. The red lines show ρ(ω) and the green lines stands for the asymptotic value of the spectral
function at high energy. (Note that ρ(ω) is normalized by 1

ω4 .) In the top figure (a), the values of
s and τ given in Table 6.2 are used, while for the other figures (b, c and d) the values of smax are
fixed as indicated. The vertical blue lines are placed at the positions of the experimental mass value
of the nucleon ground state

technique, it however seems to be rather difficult to resolve these resonances from
the continuum. Using the parity projected sum rules (Jido et al. 1996), which can
also be analyzed by the MEM approach, might improve the situation.

6.4.3 Investigation of the β Dependence

The coupling strengths of the nucleon ground state and its excited states depend on the
choice of the interpolating operator, i.e., on the value of β. To investigate the nature
of this dependence, we let β vary as −1.5,−0.5, 0.0, 0.5, 1.0, 1.5,∞ and extract
the corresponding spectral functions. For τ , we have chosen 0.5, 1.0, 1.5, 2.0 GeV4

as before and smin is determined from the OPE convergence condition at each β.
In the case of β = 1, smin is determined from the dimension 4 term because the
higher dimensional terms vanish for this choice. To obtain information not only on
the spectral function around 1 GeV, but also in the region of possible excited states,
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Table 6.6 Values of smin [GeV2] at each β and τ [GeV4]. smax is fixed to 2.0 GeV2

β −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 ∞
τ = 0.5 GeV4 −0.40 −0.79 −0.39 −0.35 −0.43 0.92 −0.23 1.04
τ = 1.0 GeV4 −1.21 −1.84 −0.96 −0.87 −1.10 0.12 −0.93 −0.36
τ = 1.5 GeV4 −2.12 −2.96 −1.63 −1.47 −1.87 −0.76 −1.74 −0.88
τ = 2.0 GeV4 −3.07 −4.13 −2.34 −2.13 −2.68 −1.66 −2.60 −1.45

 0
 1
 2
 3
 4
 5
 6

 0  1  2  3

ρ(
ω

)/
N

(β
)

ω [GeV]

β = -1.5

 0  1  2  3

ω [GeV]

β = -1.0

 0  1  2  3  4

ω [GeV]

β = -0.5
 0
 1
 2
 3
 4
 5
 6

ρ(
ω

)/
N

(β
)

β = 0.0 β = 0.5 β = 1.0
 0
 1
 2
 3
 4
 5
 6
 7

ρ(
ω

)/
N

(β
)

β = 1.5(a) (b)

(c) (d) (e)

(h)(g)(f)

β = ∞

MN (exp.)
ρ from GOPE

Fig. 6.11 Spectral functions (red lines) obtained from the MEM analyses of OPE data for various
values of β, normalized by the factor N (β). The values smin are given in Table 6.6 and smax is fixed
to 2.0 GeV2. The vertical blue lines are placed at the positions of the experimental mass value of
the nucleon ground state

smax is not determined from the dominance of the lowest lying state in Gρ(s, τ ) but
is fixed to 2.0 GeV2. The explicit values of smin are given in Table 6.6.

Note that β = ∞ should not be taken literally, but just means that we use the cor-
relator of only η2(x) (which is the coefficient of β2 in Eq. (6.7)) for the analysis. The
resulting spectral functions and their numerical properties are shown in Fig. 6.11and
Table 6.7. For a better comparison, we have normalized the spectral functions in
Fig. 6.11 by dividing them by the factor N (β) ≡ (5 + 2β + 5β2)/(128(2π)4), so
that the continuum approaches unity in the high energy limit.

Considering first the lowest peaks at ω ∼ 1 GeV, we see that a peak is clearly
resolved for β = −1.0,−0.5, 0.0 and 0.5, located at about the same position and
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Table 6.7 Positions of the first peaks (in MeV) of the spectral functions shown in Fig. 6.11. For
the cases in which the first peak can be interpreted as the nucleon ground state, the corresponding
residue (in 10−5 GeV) is given as well

β −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 ∞
Position of 1st peak [MeV] 1210 1050 1120 1130 1120 1300 1470 1630
Residue of 1st peak [10−5GeV] – 6.3 5.0 4.8 5.3 – – –
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Fig. 6.12 Spectral functions obtained from a MEM analysis of OPE data with mflat(ω) at β =
−1,−0.5 and 0.5, normalized by N (β). The red lines show the normalized output spectral function
ρ(ω), for which a β independent “refined” criterion was used to determine smin. The details are
explained in the text. For comparison, the spectral functions obtained with the previous β-dependent
criterion are indicated by the green lines

with similar residue values. For the other values of β, no prominent peak is observed.
These results are, however, obtained by using the smin values determined separately
for each β and one could suspect that the choice of smin affects the properties of
the first peak. To study this dependence and to get an idea of the stability of our
results, we redo the analysis, now using values of smin that are determined via a β
independent criterion as advocated in Leinweber (1997, 1995). Taking a closer look
at Table 6.6, it is observed that in the region between β = −1.0 and 0.5, where the
ground state peak can be extracted, the OPE convergence is worst for β = 0.0, giving
the largest value of smin. This implies that it is most reasonable to fix smin to the values
of β = 0.0, so that no values of s are used, where the convergence of the OPE might
be questionable. Using this criterion, we repeat the analysis at β = −1,−0.5, 0.5.
As before, we set smax to 2.0 GeV2. The results are shown and compared to the
previous ones in Fig. 6.12. The numerical details are given in Table 6.8. We see from
these results that some details of the output spectral functions (especially at β = −1)
change when the new criterion is used. The qualitative structure of a clear lowest
peak with a continuum structure at a somewhat higher energy is however not altered.
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Table 6.8 Positions of the first peaks and the corresponding residues of the spectral functions
shown in Fig. 6.12, where a β-independent criterion was used to fix smin. For comparison, the result
for β = 0 is shown as well

β −1.0 −0.5 0.0 0.5

Position of 1st peak [MeV] 1120 1120 1130 1140
Residue of 1st peak [10−5GeV] 5.3 4.9 4.8 5.1
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Fig. 6.13 Non-normalized spectral functions obtained from a MEM analysis using OPE data and
mflat(ω) at β = 0.5, 0,−0.5 and −1.0. The employed smin is fixed to the one at β = 0 and smax to
2.0 GeV2

We also observe from Table 6.8 that the position and residue are almost indepen-
dent of β. This fact becomes even more explicit when we plot the non-normalized
spectral functions for several values of β around β = 0 as shown in Fig. 6.13. This
figure clearly illustrates that, in contrast to the continuum spectra, the property of the
lowest peak is essentially β-independent.

All these results can be naturally interpreted by presuming that the lowest lying
pole couples strongly to η1, and only very weakly to η2. Therefore, the pole appears to
be almost independent of β as long as |β| is small, but disappears when |β| becomes
large and the contribution of η2 dominates the spectral function. The nucleon ground
state pole can be resolved as long as its strength is large enough compared to the
continuum contribution. At about |β| ≥ 1.5, however, this continuum contribution
gets too large to extract information on the lowest peak. These conclusions agree
with the findings of lattice QCD (Leinweber 1995; Sasaki et al. 2002; Melnitchouk
2003) and some earlier suggestions of QCD sum rule studies (Chung et al. 1984), in
which however the experimental mass value of the nucleon ground state peak was
used as an input.

Furthermore, by looking at Table 6.6 and Fig. 6.12, we can also understand why
it is the Ioffe current (β = −1.0), rather than η1, that seems to be most suitable
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for QCD sum rule studies. This comes from the fact that the OPE convergence is
considerably faster for the Ioffe compared to η1, which allows the analysis to become
more sensitive to the lower energy region of the spectral function, therefore providing
more information on the nucleon peak.

As a last point, let us also consider the continuous structure above the nucleon
ground state pole and possible excited states appearing there. It can be observed in
Fig. 6.11 that for most values of β, the spectral function just oscillates around the high
energy limit, similar to the results obtained from the mock data analysis shown in
Fig. 6.8, where we have only included the continuum into the input spectral function
without any resonances. On the other hand, for β = 1.5 and especially β = ∞, the
behavior is somewhat different, showing a quite clear first peak at about 1.6 GeV.
This peak could correspond to one of the nucleon resonances, N(1440), N(1535),
N(1650) or a combination of them. Results of lattice QCD studies (Sasaki et al. 2002;
Melnitchouk 2003) indicate that η2 couples to the negative parity states N(1535) and
N(1650), while the first excited positive parity state lies considerably above the Roper
resonance N(1440). Even though the systematic uncertainties of these calculations
are probably not yet completely under control, these findings suggest that the lowest
peak seen atβ = ∞ corresponds rather to N(1535) or N(1650) and not to N(1440). It,
however, seems to be difficult at the present stage to make any conclusive statements
on the nature of this peak. An analysis of the parity projected sum rules will hopefully
help to clarify this issue.

6.5 Summary and Conclusion

In this chapter, we have applied the MEM technique, which is based on Bayes’
theorem of probability theory to the analysis of the nucleon QCD sum rules. We
have investigated two kinds of sum rules, namely the frequently used Borel sum rule
and the less known Gaussian sum rule. Before analyzing the actual sum rules, we
have first tested the applicability of the MEM approach by constructing and analyzing
realistic mock data. Our findings show that due to the properties of the kernel and
the slow OPE convergence, it appears to be difficult to extract much meaningful
information on the nucleon ground state from the Borel sum rule. Another reason
for this failure may also be that, because only spectral functions satisfying positivity
can be analyzed with the currently available MEM procedure, we cannot use the
chiral odd part Π2(q2) of Eq. (6.6) in the present analysis, which has been claimed
to be more reliable. For instance, in Leinweber (1997) analyses using only Π1(q2)

orΠ2(q2) were carried out and the respective Borel windows examined. As a result,
in case of only usingΠ1(q2), the Borel window is seen to be very narrow, making it
difficult to obtain a reliable estimate for the nucleon mass. On the other hand, when
using onlyΠ2(q2), the Borel window was shown to be sufficiently large, so that the
nucleon mass can be reliably obtained. It therefore would be helpful ifΠ2(q2) could
be used. As long as one uses MEM, this, however, will only become possible when
the parity projected sum rules are employed. As an alternative, we have formulated
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the Gaussian sum rule and found that it allows us to extract more information on
the spectral function and enables us to reconstruct the nucleon ground state with
reasonable precision from both the mock and the OPE data.

As the analysis is done with the MEM technique, we obtain the spectral function
directly and do not have to deal with quantities depending on unphysical parameters
such as the Borel mass. Moreover, we do not have to restrict the spectral function to
the traditional “pole + continuum” form, which allows us to investigate the spectral
function of a large variety of interpolating fields. From this investigation, we have
found that the nucleon pole is independent of the parameterβ of Eq. (6.1) and vanishes
when η2 becomes the dominant contribution of the correlator. Thus we conclude that,
in agreement with findings of lattice QCD, the nucleon ground state couples only to
the interpolating field η1, but not (or only very weakly) to η2. Furthermore, a peak
structure is seen around 1.6 GeV in the spectral function corresponding to η2, which
suggests that some nucleon resonance in this region couples to η2. To clarify the
nature of this peak, more thorough investigations are needed.

In all, we have shown that the MEM technique in combination with the Gaussian
sum rule formulated in this paper is useful for extracting the properties of the nucleon
ground state and may even make it possible to investigate possible excited states.
There are, however, still several open questions to be answered. First of all, we
have so far ignored all radiative αs corrections to the Wilson coefficients. These
corrections are known to be significant and it is therefore important to include them
for a more quantitative analysis. Additionally, possible violations of the vacuum
saturation approximation should also be considered. As a further point, it would be
crucial to separate the contributions from positive and negative parity states to the
spectral function, especially to investigate the excited nucleon resonances. These
issues are left for future investigations.
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Chapter 7
Quarkonium Spectra at Finite Temperature
from QCD Sum Rules and MEM

7.1 Introduction

Since QCD was established to be the theory of strong interactions, quarkonium has
often been used as a suitable probe of its dynamics, owing to the fact that in this system
both perturbative and non-perturbative aspects of QCD play equally important roles
(Novikov et al. 1978).

Especially, the behavior of charmonia in a hot or dense medium has attracted much
interest, as it was suggested some time ago, that in the color-deconfined medium with
a temperature above Tc charmonia will dissolve due to the color Debye screening,
and thus serve as a signal for the formation of quark-gluon plasma (Matsui and
Satz 1986). Testing these early suggestions from first principles of QCD has become
feasible only recently, as new developments in lattice QCD have made it possible
to access the charmonium spectral functions with the help of the maximum entropy
method (MEM) (Asakawa and Hatsuda 2004; Datta et al. 2004; Umeda 2004; Jacovác
et al. 2007). These studies found that the lowest charmonium states (J/ψ and ηc)
survive up to temperatures as high as ∼1.5 Tc or even higher.

On the other hand, bottomonium is expected to persist as a bound state up to higher
temperatures, as it is a smaller system and will thus be affected by the Debye screening
only if the temperature reaches values of a few Tc. Furthermore, bottomonia spectral
functions have, in contrast to their charmonium counterparts, several excited states
lying below the continuum threshold (for instance, Υ (2S) and Υ (3S) in the vector
channel), which add novel and interesting features into the analysis, but also make
an accurate extraction of the spectral functions more difficult, as we will discuss in
the following sections. The behavior of these excited states is presently attracting
considerable interest, as recent heavy-ion collision experiments at the LHC at CERN
have found a significant reduction of the relative yield ofΥ (2S) andΥ (3S) compared
to Υ (1S), when switching from pp to Pb-Pb collisions, which is strong evidence for
the disappearance the excited states at some lower temperature than the ground
state (CMS Collaobation 2011, 2012). Also, first dedicated lattice calculations of

P. Gubler, A Bayesian Analysis of QCD Sum Rules, Springer Theses, 123
DOI: 10.1007/978-4-431-54318-3_7, © Springer Japan 2013



124 7 Quarkonium Spectra at Finite Temperature from QCD Sum Rules and MEM

bottomonium states, which employ the NRQCD Lagrangian as their starting point,
have recently appeared (Aarts et al. 2011a,b).

Besides lattice QCD, the method of QCD sum rules (Shifman et al. 1979a,b) pro-
vides another tool for investigating the properties of hadrons at finite temperature
(Bochkarev and Shaposhnikov 1986; Hatsuda et al. 1993). Using this approach var-
ious charmonium and bottomonium channels were studied recently (Morita and Lee
2008a,b; Song et al. 2009; Morita and Lee 2010), and evidence for a considerable
change of the spectral functions just above Tc (in the charmonium case) was found.
To specify the nature of this change is the major goal of this chapter (see also Gubler
et al. 2011; Suzuki et al. 2013). For this task we employ MEM, which, as we have
shown in this thesis, is applicable to QCD sum rules and has the advantage that one
does not have to introduce any strong assumption about the functional form of the
spectral function.

7.2 Formalism

Let us first recapitulate what sort of information QCD sum rules can provide on the
quarkonium spectral function at finite temperature (Bochkarev and Shaposhnikov
1986; Hatsuda et al. 1993). One considers the time-ordered correlator at finite tem-
perature

Π J(q) = i
∫

d4xeiqx 〈T [ j J(x) j J(0)]〉T , (7.1)

where j J(x) stands for h̄γμh(x) and h̄γ5h(x) in the vector (V) and pseudoscalar
(PS) channel, and for h̄h(x) and (qμqν/q2 − gμν)h̄γ5γ

νh(x) in the scalar (S)
and axial-vector (AV) channel, respectively. Here, the operator h stands either
for a charm or bottom quark. The expectation value 〈O〉T is defined as 〈O〉T ≡
Tr(e−H/T O)/Tr(e−H/T ). Throughout this work, we will set the spatial momentum
of the quarkonium system relative to the thermal medium to be 0; thus, qμ = (ω, 0).
In this circumstance, there is only one independent component in the correlators of
the vector and axial-vector channel. In what follows, we will use the dimensionless
functions Π̃V,AV(q2) ≡ Π

μ,V,AV
μ (q)/(−3q2) and Π̃PS,S(q2) ≡ ΠPS,S(q)/q2 for

the analysis.

7.2.1 Formulation of the Sum Rule

Going to the deep Euclidean region q2 ≡ −Q2 � 0, one can calculate the correlation
functions using the operator product expansion (OPE), giving an expansion in local
operators On with increasing mass dimension n: Π̃ J(q2) = ∑

n CJ
n(q

2)〈On〉T . As
was first discussed in Hatsuda et al. (1993), as long as the temperature T lies below
the separation scale of the OPE, which is of the order of ∼ mh , all the temperature
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effects can be included into the expectation values of the local operators 〈On〉T , while
the Wilson coefficients CJ

n(q
2) are independent of T . Furthermore, to improve the

convergence of the OPE and suppressing the influence of high energy states onto the
sum rule, we apply the Borel transform to the correlator, leading to the final result
of the OPE for ν ≡ 4m2

c/M2, M being the Borel mass:

M J(ν) = e−ν AJ(ν)[1 + αs(ν)a
J(ν)+ bJ(ν)φb(T )

+ cJ(ν)φc(T )+ dJ(ν)φd(T )]. (7.2)

The first two terms in Eq. (7.2) are the leading order perturbative term and its first
order αs correction. The third and fourth terms contain the scalar and twist-2 gluon
condensates of mass dimension 4:

φb(T ) = 4π2

9(4m2
h)

2
G0,

φc(T ) = 4π2

3(4m2
h)

2
G2,

(7.3)

where G0 stands for

G0 =
〈αs

π
Ga
μνGaμν

〉
T
, (7.4)

and G2 is defined as

〈αs

π
GaμσGaν

σ

〉
T

=
(

uμuν − 1

4
gμν

)
G2, (7.5)

uμ being the four velocity of the medium. For the detailed expressions of the Wilson
coefficients of these terms, see Morita and Lee (2010). To evaluate the possible influ-
ence of higher order contributions, we include one more term, which is proportional
to the scalar gluon condensate of dimension 6,

φd(T ) = 1

(4m2
h)

3

〈
g3 f abcGaν

μ Gbλ
ν Gcμ

λ

〉
T
. (7.6)

The Wilson coefficient of this term can be found in Marrow et al. (1987). Note that
this term is highly suppressed in the bottom case, because of the large bottom quark
mass. We can therefore safely neglect it in our investigation of bottomonium states
and only include it for the charmonium sum rules.

The correlator can also be expressed by a dispersion relation, in terms of the
spectral function ρJ(ω) of the channel specified by the operator j J(x). After the
Borel transform one obtains

M J(ν) =
∫ ∞

0
dx2e−x2νρJ(2mh x). (7.7)
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Equating Eqs. (7.2) and (7.7) then gives the final form of the sum rules. In the vector,
axial-vector and scalar channel, an additional constant term contributes to Eq. (7.2),
which originates from a pole at ω = 0 in ρV(ω) (Bochkarev and Shaposhnikov
1986). As this so-called scattering term considerably complicates the analysis, we
eliminate it by taking the derivative of Eqs. (7.2) and (7.7) with respect to ν and
analyze only the resulting derivative sum rule in these channels. For a discussion
on the validity of this procedure in the heavy quark sum rules, see Morita and Lee
(2012).

The usual strategy of analyzing QCD sum rules is to make some reasonable
assumptions on the functional form of the spectral function, and then extract infor-
mation on the lowest lying peak from Eqs. (7.2) and (7.7). This method, however, has
several shortcomings. First of all, the widely used “pole + continuum” ansatz, which
certainly works well at T = 0, may not be appropriate at temperatures above Tc,
where the lowest lying state is expected to be modified and eventually melt into the
c-c̄ continuum, which could become the dominant contribution. Furthermore, it is
not always possible to unambiguously fit a specific ansatz to the OPE results, because
of the occurrence of equally valid solutions. Such a situation arose in Morita and Lee
(2008a, 2010), where it was not possible to determine a unique solution for the used
parametrization of the spectral function. To handle these problems, we propose to
use MEM, which allows us to extract the spectral function from Eqs. (7.2) and (7.7)
without prejudice on its functional form. Moreover, as it is shown in Appendix H, it
can be proven that this method provides a unique solution for the spectral function.

7.2.2 The Temperature Dependence of the Condensates

Let us now describe how the temperature dependencies of the gluonic condensates
are determined. For the scalar and twist-2 gluon condensates with mass dimension
4, we follow the approach proposed in Morita and Lee (2008a, 2010), where, in
the quenched approximation, the energy momentum tensor, expressed using gluonic
operators, was matched with the corresponding quantity written down in form of the
energy density ε and the pressure p, leading to

G0 = Gvac
0 − 8

11

[
ε(T )− 3p(T )

]
,

G2 = −αs(T )

π

[
ε(T )+ p(T )

]
,

(7.8)

for the scalar and twist-2 gluon condensates. The functions ε(T ), p(T ) and αs(T )
were then extracted from quenched lattice QCD data (Boyd 1996; Kaczmarek 2004).
We will in this study use the same numerical values for the T dependent part of G0
and G2 as in Morita and Lee (2010). As is shown there, both G0 and G2 exhibit a
sudden decrease in the vicinity of Tc.
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Let us here make a brief comment on the meaning of the deconfinement tem-
perature Tc. As we here use lattice data in the quenched approximation (which is
consistent with the OPE, in which at the present order no light quarks appear), Tc

takes a value of about 260 MeV (Boyd 1996), which is considerably larger than the
corresponding value of full QCD, which is presently estimated to be in the region
of 150 ∼ 170 MeV (Fukushima and Hatsuda 2011). Therefore, as long as we work
in the quenched approximation (as we do in this work), Tc should have the corre-
sponding value mentioned above. However, if one wants to compare our results with
actual experiments, one should adapt the smaller value obtained in full QCD. When
doing such a rescaling, one of course has to assume, that all quantities involving the
temperature behave the same as a function of T/Tc. For the scalar gluon condensate,
this is known to be approximately true (Miller 2007), while for the twist-2 gluon
condensate it has not been checked yet. To make the findings of our method more
robust, this point should certainly be studied in more detail in future investigations.

It was suggested in previous studies that the OPE of the charmonium sum rules
could break down at temperatures above Tc as higher dimensional operators may
become non-negligible (Morita and Lee 2010). To investigate this possibility, we
include the scalar gluonic condensate with dimension 6, 〈g3 f abcGaν

μ Gbλ
ν Gcμ

λ 〉, about
which much less is known. To our knowledge, at T = 0, there exists only an estimate
based on the dilute instanton gas model, giving

〈g3 f abcGaν
μ Gbλ

ν Gcμ
λ 〉 = 48π2

5ρ2
c

〈αs

π
G2

〉
, (7.9)

where ρc is a representative value for the instanton radius, for which we use the
established value of 0.33 fm (Schafer and Shuryak 1998). Assuming that the relation
above also holds at finite temperature, and taking into account the reduction of ρc

above Tc (Chu and Schramm 1995), we, however, found that the dimension 6 term
does not influence the behavior of the spectral function much in the temperature
region investigated in this chapter. Therefore, we conclude that even though the
relation obtained from the dilute instanton gas model can only be considered to be
a crude estimate, as long as it gives the correct order of magnitude, the contribution
of the dimension 6 condensate is small and does not alter the results obtained in this
study.

7.3 Results of the MEM Analysis for Charmonium

7.3.1 Mock Data Analysis

Before presenting our MEM analysis results of the OPE data, we first show in this
subsection a test analysis using mock data and realistic errors. This will firstly give
an idea on the resolution achievable by the MEM analysis of this channel. Secondly,
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and most importantly, it will also show whether our method is able to reproduce
the potentially occurring melting process of the lowest charmonium peak. Here, we
work entirely in the vector channel, for which detailed experimental information on
the vacuum spectral function is available.

First, we have to specify the spectral function used for the construction of mock
data. We include the three lowest charmonium peaks and a smooth continuum, which
starts to appear in the region of the DD̄ threshold and approaches the perturbatively
calculable limit at high energy. Specificly, this gives

ρmock(ω) =
3∑

i=1

27

32πα2Γi (e
+e−)δ(ω − mi )

+ 1

1 + e(ω0−ω)/δ
1

π
ImΠV

OPE(ω
2
max), (7.10)

where in the first term on the right hand side we made use of the fact that in the vector
channel, the strength of some specific peak is determined from its leptonic width. The
values of the peak masses mi and their leptonic widths Γi (e+e−) can be found in the
PDG (Nakamura 2010). Furthermore, for the parametersω0 and δ, which parametrize
the emergence of the continuum, we use ω0 = 4.34 GeV and δ = 0.2 GeV.

The result of the MEM analysis of mock data constructed from Eq. (7.10) is shown
in Fig. 7.1. For this analysis, we use exactly the same error that will be used in the
investigation of the OPE data of the vector channel at T = 0. We also use the
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Fig. 7.1 The spectral function (red line) obtained from an MEM analysis of mock data constructed
from the input spectral function of Eq. (7.10) (blue line). The green line shows the default model
used in the MEM analysis. As explained in Fig. 4.2 of Chap. 4, the three horizontal lines correspond
to the values of the spectral function, averaged over the peak 〈ρout〉ω1,ω2 and the respective upper
and lower values, 〈ρout〉ω1,ω2 +〈δρout〉ω1,ω2 and 〈ρout〉ω1,ω2 −〈δρout〉ω1,ω2 . Similar horizontal lines
in following figures are understood to have the same meaning
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Fig. 7.2 Same as in Fig. 7.1, but with second (left figure) or first and second (right figure) excited
states removed from the input spectral function

same range of ν, for which the details are specified in the next section. It can be
seen in the figure that, the position of the lowest peak and the continuum are well
reproduced, while the first and second excited states are completely washed out, so
that it is impossible to make any sensible statement about their existence from the
MEM result. Numerically, the position of the lowest peak is obtained as 3.11 GeV,
which should be compared with the corresponding input value of 3.097 GeV.

To get an idea on the effect of the excited states on the extracted spectral function,
we repeat the above analysis, but now remove one or both excited states from the
input spectral function. The result of the corresponding analysis is given in Fig. 7.2.
One can observe from these results, that the second excited state has only very little
influence on the obtained spectral function, as the analysis results of Fig. 7.1 and
the left plot in Fig. 7.2 almost completely coincide, the peak position still being at
3.11 GeV. On the other hand, the first excited state is responsible for the tail on the
high energy side of the lowest peak in Fig. 7.1, which partly vanishes in the right plot
of Fig. 7.2. Additionally, the peak position slightly moves downwards to 3.08 GeV in
this case. In all, we however see that the position and existence of the lowest peak is
quite stable against changes of the excited states and therefore reflects the properties
of the ground state with good accuracy.

Next, we also need to confirm if MEM is able to reproduce a spectral function
with no peaks and only a smooth continuum. This check is important, as the goal of
this study is to determine whether a charmonium peak at a specific temperature has
disappeared from the spectral function or not, and to do this, the MEM technique has
to be able to reproduce both cases (with or without peaks). To this end, we employ for
the input spectral function the simple case of a continuum of non-interacting quarks,
which can be written down as

ρmock(ω) = θ(ω − 2mc)

4π2

√
1 − 4m2

c

ω2

(
1 + 2m2

c

ω2

)
. (7.11)
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Fig. 7.3 The spectral function (red line) obtained from an MEM analysis of mock data constructed
from the input spectral function of Eq. (7.11) (blue line). The green line shows the default model
used in the MEM analysis

As before, we numerically construct mock data from this input spectral function and
then carry out the MEM analysis using this input. The outcome of this procedure
is given in Fig. 7.3. We see from this result, that even though the extracted spectral
function shows some oscillating behavior around the input function, the reproduction
of the continuum structure is reasonably accurate and the mentioned oscillations
are small enough not to be confused with the charmonium peaks obtained earlier.
Therefore, we can conclude that the MEM analysis of this channel is good enough
to distinguish between spectral functions with a clear ground state peak or only a
smooth continuum.

7.3.2 OPE Analysis at T = 0

Let us now turn to the MEM analysis of Eqs. (7.2) and (7.7). First, we investigate
the spectral function at T = 0 for both the two S-wave (vector and pseudoscalar)
and P-wave (scalar and axialvector) channels. To determine the upper boundary of
the region of ν to be analyzed, we employ the criterion that the dimension 6 term
should be smaller than 20 % of the whole OPE expression of Eq. (7.2), which gives
νV

max = 8.03 in the vector, νPS
max = 7.29 in the pseudoscalar, νS

max = 5.67 in the
scalar and νAV

max = 4.74 for the axialvector channel. We keep these values fixed
when going to finite temperature. In fact, in the temperature region around Tc, the

relative contribution of the dimension 6 term at νV,PS,S,AV
max is even smaller, namely,

around 10 % or less. The lower boundary of ν is chosen to be νV,PS,S,AV
min = 0.78,

corresponding to a Borel mass of M = 3.0 GeV. We have checked that the obtained
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spectral functions do not depend much on this choice. For the value of the charm quark
mass mc, we use a recent estimate giving mc(mc) = 1.277 ± 0.026 GeV (Dehnadi
2012), for αs we employ the newest world average αs(MZ ) = 0.1184 ± 0.0007
(Bethke 2009), while for the vacuum gluon condensate Gvac

0 the standard value
Gvac

0 = 0.012±0.0036 GeV4 (Shifman et al. 1979a,b; Colangelo and Khodjamirian
2001) is applied. For the default model m(ω), we use a constant matched to the
perturbative value of the spectral function at high energy, as was done in similar
studies using lattice QCD (Asakawa and Hatsuda 2004). Note, that we here do not
have to introduce a default model, which approaches the expected value of the spectral
function at high and low energy, which was necessary in the ρ meson case, because
the charmonium sum rules contain more information on the region below the ground
state as the quark mass scale mc is fully included in the OPE. This allows us to
use a default model which is only fitted to the high energy behavior of the spectral
function.

The resulting spectral functions are given is Fig. 7.4. We observe in both S-wave
channels a clear ground state peak, corresponding to ηc and J/ψ . The spectral func-
tions also exhibit a second peak, which is, however, not statistically significant. These
second peaks most likely reflect the existence of several excited states, which the
MEM analysis is not able to resolve, quite similar to the situation encountered in
lattice studies. For the P-wave channels we also see peaks close to the expected posi-
tions of χc0 and χc1, which are, however, smaller than the errors of the same region.
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Fig. 7.4 The spectral functions in the pseudoscalar (upper left plot), vector (lower left plot), scalar
(upper right plot) and axialvector (lower right plot) channel at T = 0 (red lines), with the errors
of their averaged values in the peak regions. The horizontal extent and position of the error bars
indicates the region over which the average is taken. The green lines show the default model used
in the MEM analysis
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This means, that, strictly speaking, we can not make any statement about the exis-
tence of these peaks in reality. The fact that they lie very close to the experimentally
observed positions of χc0 and χc1 is nevertheless very suggestive and can at least be
considered as evidence that the peaks we have obtained reflect to some degree the
properties of these P-wave charmonia.

Furthermore, it is seen that the spectral function of the vector, scalar and axi-
alvector channels approach the default model in the region close to ω = 0, which,
however, should not be confused with a contribution of the scattering term. This
behavior is an artifact caused by our usage of the derivative sum rule in this channel
and should thus not be considered to be a physical effect.

Numerically, for the S-wave channels the peak representing ηc lies at 3.02 GeV,
while the one standing for J/ψ is found at 3.06 GeV. Thus, we see that the ground
state in both channels reproduces the experimental value with a precision of the order
of 50 MeV. In the vector channel, the residue can be related to the electronic width
of the corresponding resonance. We can obtain this residue from Fig. 7.4 simply by
integrating the spectral function in the region of the peak, which gives 0.162 GeV2,
which is in good agreement with the experimental value of 0.173 GeV2. On the other
hand, we observe that the hyperfine splitting between ηc and J/ψ is underestimated.
For the P-wave channels, the peak corresponding to χc0 lies at 3.38 GeV, while the
one representing χc1 is found at 3.50 GeV, which as discussed above compares very
well with the experimental values.

These findings are in qualitative agreement with the results obtained in the con-
ventional analysis of the charmonium sum rules. For instance, it was discussed in
Marrow et al. (1987), that for reproducing the experimental values of the hyperfine
splitting, one has to employ a value of the scalar dimension 4 gluon condensate which
is 3–5 times larger than the standard value. We have found the same tendency in our
MEM analysis. It is however not our goal here to fine tune the values of the gluon
condensate and the quark mass to exactly reproduce the vacuum properties of ηc

and J/ψ , as we are mainly interested in a possible change of the properties of these
peaks around Tc. We will therefore use the spectral functions shown in Fig. 7.4 as a
reference, to which the results at finite temperature will be compared.

7.3.3 OPE Analysis at T �= 0

Next, we increase the temperature according to Eq. (7.2). The resulting spectral func-
tions are shown in Fig. 7.5 at temperatures between 0.9 Tc and 1.2 Tc. It is seen in
the figure that the behavior of the spectral functions changes abruptly in the vicinity
of Tc. First, both S-wave ground state peaks experience a shift to lower energies of
the order of 50 MeV, before dissolving quickly into the continuum above the critical
temperature. Investigating the spectral functions in more detail, one observes that
ηc disappears already at T = 1.1 Tc, while J/ψ survives a bit longer, with still a
small bump remaining at T = 1.2 Tc. For the P-wave states, we do not see a down-
ward shift, but only the abrupt disappearance of the peaks around T = 1.0 Tc. It is
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Fig. 7.5 The spectral functions of the pseudoscalar (upper left plot), vector (lower left plot), scalar
(upper right plot) and axialvector (lower right plot) channel at various temperatures around Tc

reassuring to note that our results are consistent with the findings of Morita and Lee
(2008a,b, 2010) in the sense that both observe a negative energy shift of the S-wave
peaks around Tc. In these earlier works, it was, however, not possible to discuss the
possible melting of the peaks because a relativistic Breit-Wigner form for the spectral
function was assumed at all investigated temperatures.

This sudden qualitative change of all the investigated spectral functions mainly
originates from the changes of the third and fourth terms in Eq. (7.2), which can be
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various components. Here, for better visibility, the derivative of Eq. (7.2), divided by its leading
term is shown. b The same quantity is given at various temperature values
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traced back to the rapid adjustment of the thermodynamic quantities ε(T ) and p(T )
around Tc. To illustrate this point, we show the OPE data of Eq. (7.2) of the vector
channel (all the other channels exhibit qualitatively the same behavior) in Fig. 7.6.
Note that, as discussed before, we actually use the derivative of Eq. (7.2) for our
analysis, which is also the quantity given in the figures. From the left plot of Fig. 7.6,
we can observe that the gluon condensate terms are in fact considerably smaller
than the αs corrections, both contributions having however the same sign. The peak
corresponding to the J/ψ obtained in Fig. 7.4 is caused by the effects of these two
gluon condensate and αs terms. Turning now to the right plot, we see that once the
temperature is increased above Tc, the gluon condensate terms switch their sign and
gradually start to cancel the αs corrections (remember, that only the terms containing
gluonic condensates change their values at finite T). Finally, at about T = 1.2 Tc,
both terms cancel each other to a large degree, leaving only the leading term as the
dominant contribution and thus causing the J/ψ-peak to vanish.

For obtaining firm conclusions, one has to test the reliability of the MEM pro-
cedure at finite temperature, where systematic effects decrease the reproducibility
and resolution of the spectral function obtained from MEM. In lattice studies, this
reduced reliability is primarily caused by the reduction of the data points in the imag-
inary time correlator, due to periodicity and the reduction of the maximal time extent.
In the case of QCD sum rules, this problem does not exist, as Eq. (7.2) is given as a
continuous function at any temperature and therefore the same number of data points
can be used. Nevertheless, the reliability of the MEM technique is still reduced at
finite temperature due to the uncertainties of the thermodynamic functions ε(T ) and
p(T ), whose contribution grows with temperature and therefore increases the error
of Eq. (7.2). In order to confirm that the change of the spectral function in Fig. 7.5 is
not an artifact, we reanalyze Eq. (7.2) at T = 0, but use the errors of T �= 0 in the
analysis. The results are then compared to the ones given in Fig. 7.5, to investigate
the net temperature effect on the spectral function. Such a comparison is given in
Fig. 7.7. As the most prominent change happens around 1.0 ∼ 1.1 Tc, we show
representative results of this temperature region. It can be seen in the figure that for
the S-wave channels, even though the height of the peaks of the spectral functions at
T = 0 is indeed reduced because of the increased error, this effect is much smaller
than the actual reduction of the peaks around Tc, seen in Fig. 7.5. For the P-wave
channels, the reduction of the peaks due to the increasing error is even smaller, as
the properties of the peaks change only very little with changing error. We therefore
conclude that the disappearance of the peaks observed in Fig. 7.5 is a physical effect
and is not induced by an artifact of the MEM analysis.

7.3.4 Summary for Charmonium

We have extracted the spectral functions of the pseudoscalar, vector, scalar and
axialvector channel at both zero and finite temperature using a combined analysis of
QCD sum rules and MEM. At T = 0, the MEM technique is able to clearly resolve
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Fig. 7.7 Spectral functions of all four investigated channels at T = 1.0 Tc (T = 1.1 Tc) and T = 0.
The pseudoscalar channel is shown on the top left (a), the vector on the bottom left (b), the scalar
on the top right (c) and the axialvector on the bottom right (d) plot. The green lines show the MEM
results for the OPE at T = 0 with the error of T = 1.0 Tc (T = 1.1 Tc) and the red lines the
corresponding results for both OPE and error at T = 1.0 Tc (T = 1.1 Tc)

the lowest energy peaks, corresponding to the ηc and J/ψ resonances. The positions
of both peaks agree with the experimental values with a precision of about 50 MeV.
On the other hand, the peaks representing the χc0 and χc0 resonances, even though
they are visible in the respective spectral functions, are not statistically significant
and we can thus not make strong statements about their properties. Nevertheless, as
they lie close to the experimental values, we expect the obtained peaks to at least
provide some hints about the fate of the P-wave states at finite T.

At finite temperature, we find that all observed states melt quickly after the tem-
perature is raised above the deconfinement temperature Tc, caused by the sudden
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change of the dimension-4, scalar and twist-2 gluon condensates in this tempera-
ture region. We have checked that this effect is not an artifact of the systematics
of the MEM analysis. These results quantitatively disagree with the earlier findings
of lattice studies which suggest that both ηc and J/ψ can survive at temperatures of
up to 1.5 Tc or higher. It, however, has to be mentioned that our results are in fact
consistent with the latest lattice results (Ding 2010), finding the peaks of ηc and J/ψ
to be largely distorted between 0.73 Tc and 1.46 Tc. It remains to be seen whether or
not the two methods will converge to compatible conclusions when more accurate
analyses will become available in the future.

7.4 Results of the MEM Analysis for Bottomonium

Next, we move on to the MEM analysis of the bottomonium channels. The method is
essentially the same as in the last section, we just have to change the quark mass from
mc to mb. There are, however, several technical differences between the two cases.
Firstly, the contributions of the terms containing gluonic condensates are strongly
suppressed because of the heavier bottom quark mass. This leads to a very good
convergence of the OPE, while the convergence of the αs-expansion of the Wilson
coefficients changes only little. This means, that in contrast to the charmonium case,
the convergence of the OPE expression as a whole should be rather judged by the
perturbative αs-expansion, which is what we will do in this section. Secondly, the
relative importance of the excited states grows for bottomoium, because they lie,
relative to the bottom mass scale, quite close to the ground state and can thus not be
ignored. As we will discuss in what follows, this introduces additional difficulties in
interpreting the MEM analysis results, but also opens the possibility to make some
predictions about the behavior of the excited states at finite temperature.

The results of this section, which are based on Suzuki et al. (2013), have been
mainly obtained by K. Suzuki.

7.4.1 Mock Data Analysis

As before, we first investigate the ability of the MEM technique to reproduce the
structures of interest in the bottomonium spectral functions. We here again only
investigate the vector channel, because experimental information is available for this
case. The used mock spectral function has the following form:

ρmock(ω) =
3∑

i=1

27

8πα2Γi (e
+e−)δ(ω − mi )

+ 1

1 + e(ω0−ω)/δ
1

π
ImΠV

OPE(ω
2
max), (7.12)
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Fig. 7.8 The spectral function (red line) obtained from an MEM analysis of the mock data con-
structed from the input spectral function of Eq. (7.12) (blue line). The green line shows the default
model used in the MEM analysis

Note the different factor in the first term (×4) compared to the charm case of
Eq. (7.10), which originates from the fact that the absolute value the electro-magnetic
charge of the bottom quark is only half as large as the one of the charm quark. We
take the three lowest bottomonium states into account and use ω0 = 12.96 GeV and
δ = 0.8 GeV to describe the continuum part.

The result of the MEM analysis of the mock data constructed from Eq. (7.12) is
given in Fig. 7.8, which should be compared with Fig. 7.1 for the respective char-
monium outcome. We clearly see that here, the first and second excited states lie
relatively close to the ground state and thus have quite a strong influence on the posi-
tion and form of the lowest peak. Numerically, the position of the lowest peak that
we can extract from our analysis turns out to be 9.60 GeV, which is about 140 MeV
above the experimental value of the ground state, which lies at 9.46 GeV. This shift
is caused by the presence of the excited states, which can be confirmed by repeating
the analysis with mock data, in which the excited states are removed, The result of
this check is shown in Fig. 7.9. From these figures, it is observed that once the second
excited state is taken away, the lowest peak moves to 9.54 GeV, which is however still
80 MeV too high. Removing then also the first excited state, the lowest peak of the
resulting MEM analysis is obtained at 9.45 GeV, which agrees with the input value
within a precision of 10 MeV. In conclusion, we have found that the MEM analysis
of this particular bottomonium channel is not able to disentangle the lowest three
narrow states in the spectral function. Therefore, the lowest peak extracted from our
MEM technique should (at least in the vector channel) be considered to be composed
of three overlapping peaks. This of course makes the interpretation of the behavior
of this peak at finite temperature more difficult as it will not always be possible to
determine which of the three original peaks has caused a certain shape-change of the
peak. One can, however, reasonably assume that higher peaks will receive stronger
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Fig. 7.9 Same as in Fig. 7.8, but with second (left figure) or first and second (right figure) excited
states removed from the input spectral function

temperature effects because of their larger spatial extension and thus can still obtain
meaningful conclusions from the MEM analysis. This will be our strategy of this
section.

As a last point, let us, as before, check the validity of our analysis for the case, in
which no existing peak can be found in the spectral function. The result of this test is
given in Fig. 7.10. As for the charm case, the analysis works very well here and we
can hence safely expect the MEM analysis to be able to distinguish between spectral
functions with and without peaks.
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Fig. 7.10 The spectral function (red line) obtained from an MEM analysis of the mock data con-
structed from the input spectral function of Eq. (7.11), in which mc is replaced by mb (blue line).
The green line shows the default model used in the MEM analysis
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7.4.2 OPE Analysis at T = 0

Before showing the analysis results, let us note that, as already mentioned above, we
here determine the upper boundary of the analyzed ν-region from the αs expansion of
the perturbative term of the OPE. This gives νV

max = 8.23 in the vector, νPS
max = 9.33

in the pseudoscalar, νS
max = 7.33 in the scalar and νAV

max = 5.83 for the axialvector
channel. For the lower boundary, we adopt the value, for which the lowest peak
becomes most pronounced, and hence find νV

min = 4.0 in the vector, νPS
min = 4.3 in

the pseudoscalar, νS
min = 4.0 in the scalar and νAV

min = 3.5 for the axialvector channel.
We have checked that our results depend only weakly on the detailed choice of this
lower boundary. The values of the vacuum gluon condensate Gvac

0 and the strong
coupling constant αs are taken to be the same as for the charmonium case. For
the bottom quark mass, we use mb(mb) = 4.167 ± 0.013 GeV (Narison 2012).
As one further point, let us mention the dimension 6 gluon condensate term which
was explicitly taken into account in the preceding charm section. Due to the large
bottom quark mass, this term is suppressed by a factor of ∼4000 compared to the
charmonium sum rules. Because this term was small already for the charm case, we
can safely neglect it for the bottom sum rules in this section.

The obtained spectral functions of the vector, pseudoscalar, scalar and axialvec-
tor channels at zero temperature are shown in Fig. 7.11. The lowest peak of each
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Fig. 7.11 The spectral functions in the pseudoscalar (upper left plot), vector (lower left plot), scalar
(upper right plot) and axialvector (lower right plot) channel at T = 0 (red lines), with the errors
of their averaged values in the lowest peak region. The horizontal extent and position of the error
bars indicates the region over which the average is taken. The green lines show the default model
used in the MEM analysis
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channel is located at mΥ = 9.56 GeV, mηb = 9.51 GeV, mχb0 = 10.15 GeV,
mχb1 = 10.42 GeV. These values are somewhat higher than the experimental masses,
which was however to be expected from our analysis of mock data since the obtained
peaks contain contributions from both the ground and excited states. In the vector
channel, the validity of this picture is confirmed by evaluating the residue of the peak
and comparing it with the values obtained from the leptonic decay width. Concretely,
we obtain 0.0476 GeV for the residue of the lowest peak, while the three lowest peaks
(Υ (1S), Υ (2S) and Υ (3S)) summed give a total residue which is experimentally
found to be 0.0483 GeV.

Another observation that can be made from Fig. 7.10 is that the S-wave peaks
(Υ , ηb) are statistically significant, while for the P-wave channels this is true only
marginally (χb0) or not at all (χb1). This means that the results obtained here for the
later two cases are not conclusive and should be considered to have only indicative
character. This situation will likely be improved once the OPE of these channels is
known with better precision and for a wider range of the Borel mass.

7.4.3 OPE Analysis at T �= 0

The results of the spectral functions at finite temperature are shown in Fig. 7.12.
First, the peak positions for all the channels undergo shift to lower energy regions
with increasing temperature. This behavior suggests that the excited states dissociate
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Fig. 7.12 The bottomonium spectral functions of the pseudoscalar (upper left plot), vector (lower
left plot), scalar (upper right plot) and axialvector (lower right plot) channel at various temperatures
below 3.0 Tc
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at lower temperature than the ground state. Next, the peaks gradually disappear,
become broader and shift to slightly higher energies. At the same time, a continuum-
like structure penetrates into the peak regions and moves downward. Furthermore, it
is meaningful to mention the difference between the behavior of S-wave and P-wave
channels. Υ and ηb exist as a clear peak up to 2.0 Tc and still survive at 2.5 Tc. In the
case of Υ , a bump remains even at T = 3.0 Tc. On the other hand, one can observe
that χb0 and χb1 completely disappear at 2.0 ∼ 2.5 Tc.

Let us here briefly discuss what causes the various bottomonia states to persist as
clear peaks up to higher temperatures than their charmonium counterparts. This dif-
ferent behavior can be explained by the fact that all temperature effects originate from
the gluon condensate terms, which are inversely proportional to the fourth power of
the quark mass. Therefore, as the bottom quarks are more than four times heavier than
the charm quarks, the gluon condensate terms are relatively suppressed by a factor
of more than ∼250 for the bottomonium channels, which necessitates much higher
temperatures for having any sensible effect on the bottomonium spectral functions.
We illustrate this point by showing the OPE of the bottomonium vector channel at
0 and finite temprature in Fig. 7.13, which should be compared with Fig. 7.6. In the
left figure, one sees that at T = 0, the gluon condensate terms are almost completely
negligible due to the suppression mentioned above. Furthermore, the right figure
shows that the cancellation of the αs-correction and the gluon condensate terms,
which was the essential reason for the melting of the charmonium states, is only
partially realized even at T = 3.0 Tc.

In order to confirm that the obtained results are caused by genuine physical effects,
we have to check possible contributions of MEM artifacts at finite temperature. First,
as the contributions of the gluon condensates increase at finite temperature, their
uncertainties magnify the OPE error. Therefore, it is expected that the resolution
of the MEM is reduced and the peaks of the extracted spectral functions become
broader. Thus, to investigate this effect, we reanalyze the spectral functions by using
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Fig. 7.14 Solid lines show the spectral functions of bottomonia obtained from finite temperature
OPE data and the respective error bars. The dashed lines stand for spectral functions at zero tem-
perature using error at corresponding finite temperature. Upper left: pseudo-scalar channel, lower
left: vector channel, upper right: scalar channel, lower right: axial-vector channel

the OPE at T = 0 with error at finite temperature. The result for each channel is
shown as dashed lines in Fig. 7.14. As one can see, although the heights of the peaks
are reduced partly due to the MEM artifact described above, the peaks are still present
in the S-wave (P-wave) channels with the error of T/Tc = 3.0 (T/Tc = 2.5). We
also stress that the MEM artifact does not shift the peak position. From this analysis,
we conclude that the disappearance of the peaks at the finite temperatures is caused
by physical effects and not due to an MEM artifact.

Since the uncertainties involved in the calculation are quite large, as indicated by
the error bars in Fig. 7.14, we can presently not make statements about specific num-
bers for the melting temperatures of the investigated states, but can only restrict the
ranges of temperatures within which the peaks disappear. Concretely, we define
the range of the melting temperatures as follows. The upper limit is determined as
the temperature where the bump (extremum) disappears, while the lower limit taken
as the temperature where the error bar exceeds the lowest-energy peak height of the
spectral function, namely when the peak ceases to be statistically significant. The
error bars for each temperature are shown in Fig. 7.14. The resultant upper and lower
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Table 7.1 Upper and lower limits of the dissociation temperature ranges for the lowest bottomo-
nium states. The precise definition of these limits is given in the text

Channel Vector (Υ (1S)) Pseudoscalar (ηb) Scalar (χb0) Axialvector (χb1)

T/Tc >2.3 >2.1 1.3–2.5 <2.5

limits of the dissociation temperatures are summarized in Table 7.1. Once we are
able to calculate the OPE data with better precision, these temperature ranges will
become narrower, thus allowing us a more accurate determination of the melting
temperatures in the future.

7.4.3.1 Investigation of the Excited States of the Vector Channel

In our MEM analysis of mock data, we have shown that information on the excited
states is included in the lowest peak of the spectral functions extracted from MEM.
For obtaining information on the behavior of these excited states at finite temperature,
we will now try to evaluate the residue of this lowest peak at various temperatures.
However, for this evaluation, we cannot naively integrate the spectral function in
the region of the peak because of the possible contributions of the continuum states
which move downwards into the peak region from high energies as the temperature
increases and which are thus not negligible.

To estimate the residue values with an excluded continuum background, we fit
the obtained spectral functions by using a Breit-Wigner or Gaussian fitting function
for the peak, while the continuum is parametrized by the leading order perturbative
result. Specifically, we use

f (x) = |λ|2
2π

Γ

(x − m)2 + Γ 2/4
+ 1

8π2

√
1 − 4a2

x2

(
2 + 4a2

x2

)
, (7.13)

for the Breit-Wigner + continuum form, in which we have four fitting parameters:
|λ|2, m, Γ , and a. They correspond to the residue, peak position, width, and contin-
uum threshold (2a), respectively. These parameters are then fitted by the Levenberg-
Marquardt method. Furthermore, in order to exclude a possible initial value depen-
dence of the fitting procedure and to investigate the existence of local minima, we
take 200 initial values generated randomly for the four fitting parameters at each
temperature.

The temperature dependence of the residue of the Υ peak which is fitted by the
Breit-Wigner + continuum form of Eq. (7.13) is shown on the left side of Fig. 7.15.
For each temperature, 200 results corresponding to the different initial values are
plotted. For some temperature, we find multiple solutions, which are supposed to be
local minima solutions of the least-square function χ2 in the L-M method. In the
case of the Breit-Wigner + continuum fitting, we find that the local minimum form
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Fig. 7.15 Temperature dependence of the residue of the lowest peak for the vector channel peak
fitted with a Breit-Wigner + continuum (a), and as Gaussian + continuum (b). For each temperature,
we used 200 different initial values for the fitting parameters, which, as a result of the fit, give the
points shown in the plots. This gives us information on the existence of local minima in the least-
square function χ2. The red points are corresponding to true minima (smallest χ2), and gray points
stand for local minima (larger χ2). The fit range is fixed to 7.0–12.0 GeV

three clusters, top, middle, and bottom. For some T/Tc, one sees that the clusters are
diffused and solutions are scattering to interpolate two clusters. There, the minimum
valley of χ2 seems to become flat between the two minima.

The red points at each T/Tc are the true minimum points, where χ2 hits the
minimum. One sees that at low T/Tc, the true minimum is located in the top cluster,
while it moves down to the middle cluster at around T/Tc ∼ 1.5−1.6, and further
down to the bottom cluster at around T/Tc ∼ 1.9−2.0. At T/Tc ≥ 2.5, we have
only one stable solution. The peak positions and the continuum thresholds from the
fitting with the Breit-Wigner + continuum form is shown in Fig. 7.16. Both the peak
positions and continuum threshold undergo a transition towards smaller values at
T/Tc ∼ 1.5−2.0.

To make sure that this fitting analysis is valid, we have repeated the same procedure
with another fitting function, namely a Gaussian + continuum form:

f (x) = |λ|2√
2πσ

exp

[
− (x − m)2

2σ 2

]
+ 1

8π2

√
1 − 4a2

x2

(
2 + 4a2

x2

)
. (7.14)

The respective result is shown in the right side of Fig. 7.15, which reveals a similar
behavior as for the Breit-Wigner fit. It however shows only two clusters of local min-
ima and the transition from the higher to the lower cluster at T/Tc ∼ 1.8−1.9. The
other fitting parameters also show patterns resembling the ones shown in Fig. 7.16,
with small modifications. Therefore, comparing these two fitting results, we observe
that the qualitative behavior of the residue does not depend on the functional form
used for fitting the peak region.

It can be concluded from the above results that the residue of Υ peak decreases
gradually with increasing temperatures and becomes a constant value at higher
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Fig. 7.16 Temperature dependence of the mass and threshold of the fit of Eq. (7.13) to the spectral
function of the vector channel. On the left side, the mass (peak position) is shown while the right side
shows the continuum threshold. As explained in the caption of Fig. 7.15, red points are corresponding
to true minima (smallest χ2), and gray points stand for local minima (larger χ2). The fit range is
fixed to 7.0–12.0 GeV

temperature. Especially, a rapid reduction of the residue is seen at T/Tc = 1.5−2.0.
It should be noted that this behavior does not directly imply that the excited states,
Υ (2S) and Υ (3S), disappear at lower temperatures than the ground state Υ (1S)
because one in principle cannot exclude other possibilities such as simultaneous
reduction of the ground and excited states. Nevertheless, if we assume that the
excited states disappear at lower temperatures than the ground state, our results
suggest that Υ (2S) and Υ (3S) vanish at T/Tc = 1.5−2.0, while Υ (1S) survives up
to T/Tc = 3.0.

7.4.4 Summary for Bottomonium

In summary, we have analyzed the bottomonium spectral functions at zero and finite
temperature by using a newly developed analysis method of QCD sum rules. The
maximum entropy method (MEM) is adapted to extract the spectral function from
the sum rule.

At T = 0, the lowest peak has been obtained for each channel corresponding
to Υ , ηb, χb0, and χb1. Although these mass spectra agree qualitatively with the
experimental values, their peak positions are slightly shifted to higher energies. By
analyzing mock data for the vector channel and evaluating the obtained residue, we
conclude that this disagreement is caused by the contribution of the excited states.

Next, we have investigated the temperature dependence of the spectral functions.
Temperature dependences are taken into account in the gluon condensates, which
are estimated from quenched lattice QCD data at finite temperature. As a result, we
have found that the spectral functions of bottomonia are modified much slower as
functions of T/Tc than those of charmonia, in which the lowest peak disappears
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suddenly at the vicinity of Tc. Using the definitions of the upper and lower limits
of the melting temperature given in Sect. 7.4.3, we find that Υ and ηb survive as a
peak in the spectral functions up to some temperature restricted to the regions of
T/Tc > 2.3 and T/Tc > 2.1, while the dissociation temperatures of χb0 and χb1 are
confined to T/Tc = 1.3−2.5 and T/Tc < 2.5, respectively.

It should be noted, however, that our definition inevitably contains some ambiguity
due to the limitation of the OPE and MEM. Therefore, respective results on the
melting temperature should be regarded as qualitative guides. Furthermore, both P-
wave peaks are not found to be fully significant statistically even at T = 0, which
means that we can not make a definite conclusion about the fate of these states at finite
temparature. To obtain more conclusive results on their behavior, further studies are
needed once more precise information on the OPE is available. The current prediction
of the melting temperatures depends on the extracted temperature dependences of the
gluon condensates. For these we have used quenched lattice QCD data for the energy
density and pressure. To go beyond the quenched approximation, a more detailed
analysis will be required to include full QCD information on the gluon condensates,
which will be the subject of a future investigation.

Our results are qualitatively consistent with previous QCD sum rule analyses
employing a more conventional method (Morita and Lee 2010). As mentioned above,
however, it turns out that our extracted lowest peaks contain excited states as well
as the ground state, so that deformations of such peaks depend on the behavior of
the excited states. Therefore, to extract more detailed information on the spectral
function of the vector channel, we have investigated the temperature dependence
of the residue of the lowest peak obtained from MEM for this channel. Doing this,
we have observed that the residue decreases with increasing temperature, which is
consistent with a picture in which the excited states, Υ (2S) and Υ (3S), dissociate
at lower temperatures than the ground state Υ (1S). Assuming such a scenario, our
results indicate thatΥ (2S) andΥ (3S) disappear in the temperature region of T/Tc =
1.5−2.0.
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Part III
Concluding Remarks



Chapter 8
Summary, Conclusion and Outlook

8.1 Summary and Conclusion

We have developed in this thesis a novel analysis method for QCD sum rules, which
makes use of the maximum entropy method, have tested its validity in a simple toy
model and have applied it to several physical channels, namely the ones for the ρ
meson, nucleon and quarkonium at zero and finite temperature.

Our investigation of the toy model sum rule, which is derived from non-relativistic
quantum mechanics, indicates that MEM indeed is a useful tool for analyzing the sum
rules, as long as the uncertainties of the OPE input are not too large. We also find that
there are considerable differences in the reproducibility of the MEM depending on
which kind of kernel is employed. Specifically, using the Borel kernel of Eq. (4.23)
one can only hope to extract the position of the lowest lying peak, while the Gaussian
kernel of Eq. (4.29) allows one to determine the position of the first excited state as
well. It should however be remembered that the spectral function of the analyzed
toy model only contains well separated discrete peaks and no continuum, which can
largely complicate the extraction of a possible second peak. As a last point, we found
that due to the limited resolution of the MEM procedure, the reconstructed peaks
usually have a finite width, which is not of physical origin, but rather an artifact of
the analysis method. This is a general finding, that holds similarly for all channels
studied in this thesis.

Next, as a first physical application, we have analyzed the Borel sum rule of the
ρ meson channel. This case shows features that are quite similar to the toy model
analyzed before. As was shown in Chap. 5 we can extract the position and residue
of the peak corresponding to the ρ meson with reasonable precision. However, as
the uncertainties of the condensates are quite large, and because the sum rule does
not contain much information on the spectral function in the low energy region, this
extraction works only with a suitable choice of the default model, which incorporates
our prior knowledge about the spectral function both in the high- and low-energy
region. Physically, the perhaps most interesting result of this analysis is the clear
connection that we have shown to exist between the mass of the ρ meson and the
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quark condensate, which is illustrated in Fig. 5.11. This finding shows the important
role played by the quark condensate (and thus of the spontaneous breaking of the
chiral symmetry) for explaining the properties of the ρ meson.

For the analysis of the nucleon channel, which we analyze both for the Borel and
Gaussian sum rule, we observe that, due to the slow convergence of the OPE, the
Borel sum rule does not contain enough information on the ground state peak to be
accurately extracted by MEM. This result is not surprising as this sum rule does not
work well even if one resorts to a more conventional analysis method (Leinweber
1997). However, as could be expected from our discussion of the toy model, our
further analysis shows that the use of the Gaussian kernel improves the precision of
the MEM analysis and makes it possible to study the ground state and even (with a
suitably chosen interpolating field) its excited states. The results of this investigation
are, however not yet conclusive, as it is possible to obtain more detailed information
from the analysis of the parity projected sum rule (Ohtani et al. 2013), for which,
as a by-product of the present study, we have resolved certain technical issues as
explained in Sect. 3.4.

Finally, the last topic studied in this thesis deals with the Borel sum rules of
quarkonia (charmonium and bottomonium) at both zero and finite temperature. As
it was already discussed in the introduction, the analysis of hadrons in hot or dense
matter is a subject, where our novel method can exhibit its full strength, as not much
is known about the spectral function of hadrons in such an environment. Therefore,
our technique of using MEM allows us to study such a system without prejudice,
which has not been possible before. Indeed, we show in Chap. 7 that, after having
tested that we are able to reproduce the quarkonia ground states of several channels at
zero temperature, the corresponding peaks vanish from the spectral function at some
point above the deconfinement temperature Tc, which indicates that these particles
cease to exist as quark-antiquark bound states and instead melt into freely moving
quarks. This finding has important phenomenological impacts, as, for instance the
charmonium vector particle J/ψ (and its possible disappearance) is considered to
be a useful probe for the existence of the quark-gluon plasma (QGP) that is believed
to be produced in current heavy ion collisions at RHIC and the LHC. Considering
furthermore the melting temperatures of the various charmonium and bottomonium
states, one can even imagine that all these states constitute a crude thermometer of
the QGP.

In all, after having studied all the channels mentioned above, we can now
confidently conclude that that MEM is a useful tool for analyzing QCD sum rules,
especially for the cases in which the frequently used “pole + continuum” ansatz is
not applicable. On the other hand, one must always keep in mind, that this method
does not exactly solve the sum rules, but only gives the most probable form of the
spectral function given all the available information. Therefore, it will presumably
never provide the true spectral function, but only a smeared version of it, as the
MEM has only a limited resolution. Nevertheless, we have shown that the method
is accurate enough to give valid information of the properties of the lowest lying
structure of the spectral function, whether it may be a narrow peak or some smooth
continuum.
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8.2 Outlook

One can envisage several directions of development, starting from the work presented
in this thesis. I will here mention a few of them.

First of all, there is still room for improvement for some of the systems studied
in the last few chapters. Specifically, for the nucleon case, it is certainly necessary
to carry out the parity projection, especially for investigating the properties of the
excited states. Furthermore, one should include the αs corrections to the Wilson
coefficients, which are known to be large and could therefore substantially alter the
extracted spectral function. Such work is being done presently (Ohtani et al. 2013).
Moreover, one could extend the analysis to other members of the light baryon octet (or
to members of the decuplet), especially to study its excited states. Of special interest
here is the excited state ofΛ with negative parity (Λ(1405)), which is believed to be
rather a meson-baryon molecule than a genuine three-quark state (Hyodo and Jido
2012).

As for the quarkonium systems at finite T, we have in this thesis only presented
the results for the OPE including first order αs terms and gluon condensates up to
mass dimension 6. For making our predictions more reliable, it would be important
to incorporate further αs- and power-corrections to the OPE side of the sum rule.
For the vector channel, higher order perturbative contributions have in fact already
been calculated (Chetyrkin 1996) and can thus in principle be included into the sum
rules (Ioffe and Zyablyuk 2003). On the other hand, making estimates about non-
perturbative corrections requires detailed knowledge of several gluonic condensates,
including their behavior at finite temperature. Such information can only be acquired
from dedicated lattice QCD simulations and it will thus take some time until such
improvements can really be implemented.

Besides the above mentioned improvements, one can of course also consider
applications to other channels. Clearly, there are many possibilities and I can here
only name only those which I personally believe to be most promising. An interesting
application could for instance be the study of light vector mesons at finite density.
This subject in fact already has quite a long history (Hatsuda and Lee 1992) and
there have been vigorous debates on how to interpret the OPE results in terms of
the spectral function (Koike 1995; Hatsuda et al. 1995; Leupold et al. 1998). Thus,
it would certainly be of great interest to see what the MEM analysis has to say
about this issue. Furthermore, one could also study various baryons with one, two or
three heavy quarks, because the sum rules of these channels potentially contain rich
information on both the low- and high-energy limit of the spectral function due to
the new scale introduced by the heavy quark mass (we have already observed such
a case in the quarkonium sum rules of Chap. 7). By doing such analyses, one can
hope to get more insights about the heavy quark symmetry and new constraints for
the condensates. Finally, let me also mention the study of exotics states containing
four or more quarks (see for instance Nielsen et al. 2010 for a recent review). Close
to nothing is known about the spectral functions of these channels and the “pole
+ continuum” assumption is hence highly questionable, especially as exotic states

http://dx.doi.org/10.1007/978-4-431-54318-3_7
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lie in most cases above a continuum threshold and one thus should be very careful
not to misidentify a mere continuum as a resonance peak. In such a situation, MEM
could provide a useful guide for determining what kind of structures really exist in
the spectral functions of interest.

To conclude, there are still a large number of subjects in this field that can be (or
better, have to be) studied in the future and we hope that the method outlined in this
thesis will be used as a tool for such investigations.
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Appendix A
The Dispersion Relation

The dispersion relation can be derived by calculating the contour integral of Fig. A.1.
Using the Cauchy formula for the functionΠ(s) (which contains a cut in the positive
region of the real axis and is analytic in the rest of the complex plane of s), we can
obtain

Π(q2) = 1

2π i

∮
C

ds
Π(s)

s − q2

= 1

2π i

∮
|s|=R

ds
Π(s)

s − q2 + 1

2π i

∫ R

0
ds
Π(s + iε)−Π(s − iε)

s − q2 , (A.1)

where R is the radius of the outer circle in Fig. A.1. If R is taken to infinity, the first
integral in Eq. (A.1) vanishes ifΠ(q2) decreases sufficiently fast at |q2| ∼ R → ∞.
If this is not the case, subtraction terms have to be considered, as will be discussed
below. The second integral in Eq. (A.1) can be simplified with the help of the Schwarz
reflection principle (Morse and Feshbach 1953; Arfken 1970):

Π(s + iε)−Π(s − iε) = 2iImΠ(s + iε). (A.2)

Let us examine this relation in detail. For this, we consider a complex function
f (z) (representing Π(s)) which is real on the real axis below a certain threshold
point xth, but possesses an imaginary part above xth. Moreover, it is analytic and
continuous on the upper half of the imaginary plane (we call this region D1) except
the region on the real axis above xth. Now, we define the function g(z), defined in the
lower half of the imaginary plane (D2) such that g(z) = f (z) (Here, the bar stands
for complex conjugation). It can be easily shown that the real and imaginary parts
of g(z) satisfy the Cauchy-Riemann conditions, which means that it is an analytic
function in D2. Furthermore, g(z) equals f (z) on the real axis below xth, because
f (z) is real there. Now, from the theory of analytic continuation of analytic functions,
one can proof the following theorem (Morse and Feshbach 1953):
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Fig. A.1 The contour inte-
gral C on the complex plane
of the variable s, used for
deriving the dispersion rela-
tion of Eq. (3.2). The wavy
line denotes the non-analytic
cut of Π(s) on the positive
side of the real axis. Note that
here q2 takes a negative value

q2

s

C

If f is analytic in D1 and g in D2, if f equals g along their common boundary A, and if f
and g are continuous along A, then g is the continuation of f in D2 and vice versa.

In our current setting, this theorem immediately leads to the Schwarz reflexion prin-
ciple, which states that f (z) = f (z) and holds for the whole imaginary plane except
non-analytic part on the real axis above xth.

Therefore, for x > xth and ε being an infinitesimal real constant, we have

f (x − iε) = f (x + iε)

= f (x + iε)− 2iIm f (x + iε), (A.3)

which corresponds to Eq. (A.2). Thus we have finally obtained the dispersion relation
of Eq. (3.2).

Next, let us consider the case, in which the integral Eq. (3.2) diverges. This problem
can be fixed by using subtracted correlators as shown below. For instance, if the
divergence is logarithmic, it suffices to employ the singly subtracted correlator:

Π̃(q2) ≡ Π(q2)−Π(0)

= q2

π

∫ ∞

0
ds

ImΠ(s + iε)

s(s − q2)
.

(A.4)

In this way, one power of s can be included into the denominator, therefore making
the integral convergent. This procedure can be repeated arbitrarily many times, by
subtracting more and more terms from the Taylor expansion of Π(q2) around q2 =
0, thus it is possible to cure divergences of any power. We however note, that by
applying the Borel transformation, which contains infinitely many differentiations
of q2, all subtraction terms (which are polynomials in q2) vanish and the integral of
Eq. (3.2) is automatically turned into convergent one. Therefore, as long as the Borel
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transformation is applied, one usually does not have to worry about divergences
and subtraction terms and can work directly with Eq. (3.2), the original form of the
dispersion relation.
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Appendix B
The Fock-Schwinger Gauge

In this appendix, the derivative expansions of the gluonic and quark fields, given in
Eqs. (3.26) and (3.27), are derived. These expressions are valid only in the Fock-
Schwinger gauge (Fock 1937; Schwinger 1954) (sometimes also referred to as the
“fixed point gauge”),

(x − x0)
μAa

μ(x) = 0, (B.1)

where we set x0 = 0 in the following. The derivation is based on the discussions
given in Dubovikov and Smilga (1981) and Shifman (1980).

Multiplying Ga
μν , which is defined as

Ga
μν = ∂μAa

ν − ∂ν Aa
μ + g fabc Ab

μAc
ν (B.2)

by xμ and using Eq. (B.1), we get (with x0 = 0)

xμGa
μν(x) = xμ∂μAa

ν(x)+ Aa
ν(x). (B.3)

Then, x is replaced by αx after which we integrate by α:

∫ 1

0
dααxμGa

μν(αx) =
∫ 1

0
dαα

d

dα
Aa
ν(αx)+

∫ 1

0
dαAa

ν(αx)

= Aa
ν(x). (B.4)

Here, the first line has been obtained by using

d

dα
Aa
ν(αx) = xμ

∂

∂(αxμ)
Aa
ν(αx) = xμ

α
∂xμAa

ν(αx). (B.5)

Taylor expanding Ga
μν(αx) around αx = 0 on the left hand side of Eq. (B.4) and

carrying out the integration of α, we arrive at
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Aa
ν(x) = 1

2
xμGa

μν(0)+ 1

3
xμxα∂αGa

μν(0)+ 1

8
xμxαxβ∂α∂βGa

μν(0)+ · · · (B.6)

For obtaining the final result, we have to show that the derivative ∂ can be replaced
by the covariant derivative D in the above equation. The Fock-Schwinger gauge
actually makes this substitution possible, as will be shown below.

The Taylor expansion of Eq. (B.1)

xμAa
μ(x) = xμ

[
Aa
μ(0)+ xα∂αAa

μ(0)+ 1

2
xαxβ∂α∂βAa

μ(0)+ · · ·
]

= 0, (B.7)

which has to be valid for any value of xμ, leads to the equations

xμAa
μ(0) = 0,

xμxα∂αAa
μ(0) = 0, (B.8)

. . .

As the covariant derivative applied to gluon fields is defined as

Dμ = ∂μ − igT a Aa
μ, (B.9)

where T a are the generators of SU (3) in the adjoint representation and g is the strong
coupling constant, we can derive the following relations:

xα∂αGa
μν(0) = xαDαGa

μν(0),

xαxβ∂α∂βGa
μν(0) = xαxβ∂αDβGa

μν(0) = xαxβDαDβGa
μν(0), (B.10)

. . .

This shows that the derivatives can be substituted by the covariant derivatives, giving
us thus the final result:

Aa
μ(x) = 1

2
xνGa

νμ(0)+ 1

3
xνxα[DαGνμ(0)]a

+ 1

8
xνxαxβ [DαDβGνμ(0)]a + · · · (B.11)

Next, we consider the quark fields. For this purpose, we simply Taylor expand the
field q(x) around x = 0, giving

q(x) = q(0)+ xμ∂μq(0)+ 1

2! xνxμ∂ν∂μq(0)+ · · · (B.12)

Now, the relations of Eq. (B.10) are valid also for the covariant derivative living in
the fundamental representation,
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Dμ = ∂μ − ig
λa

2
Aa
μ, (B.13)

in which λa are the Gell-Mann matrices. Therefore, as for the gluonic fields above,
we can simply interchange the derivatives of Eq. (B.12) with the covariant derivative,
leading to the desired result:

q(x) = q(0)+ xμDμq(0)+ 1

2! xνxμDνDμq(0)+ · · · (B.14)



Appendix C
The Quark Propagator

To calculate the free quark propagator with no coupling to gluons and no long range
correlations is most simple. It is given in standard textbooks of quantum field theory
(such as Peskin and Schroeder 1995) and we here state only the result:

〈0pert.|T [q(x)q(0)]|0pert.〉 ≡ S0(x) =
∫

d4 pe−i px i

� p − mq

≈
∫

d4 pe−i px
(

i

� p + imq

p2

)
+ O(m2

q) (C.1)

≈ i

2π2

� x
x4 − mq

4π2

1

x2 + O(m2
q)

|0pert.〉 stands for the perturbative vacuum, where all condensates and expectation
values of matter fields vanish. The last line of the above equation gives us the first
two terms of Eq. (3.28).

C.1 Coupling with Gluon Fields

Here, the behavior of the quark propagator SA(x) in an external gluon field is dis-
cussed. Such a propagator satisfies the equation

(i � ∂ + g �A − mq)SA(x) = iδ4(x), (C.2)

and is expanded in powers of the external field Aa
μ(x). Expressed in Feynman dia-

grams, this expansion is shown in Fig. C.1, while mathematically it is given as

SA(x) = S0(x)+
∫

d4 yS0(x − y)ig �A(y)S0(y)

+
∫

d4 yd4zS0(x − y)ig �A(y)S0(y − z)ig �A(z)S0(z)+ · · · (C.3)
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(a) (b) (c)

Fig. C.1 The first three diagrams of the external field expansion. a has already been calculated in
Eq.(C.1). Here, we calculate b while c and the other higher order terms are neglected

Switching to the momentum representation and expressing the gluon field with
the first term of Eq. (3.26), we get for the second term (Fig. C.1b):

∫
d4 yS0(x − y)ig �A(y)S0(y)

≈
∫

d4 y
∫

d4 p

(2π)4

∫
d4q

(2π)4
e−i p(x−y)e−iqy i( � p + mq)

p2 − m2
q

igγ μ

×
(

yα

2
Gαμ(0)

)
i( �q + mq)

q2 − m2
q

=
∫

d4 p

(2π)4
e−i px i( � p + mq)

p2 − m2
q

igγ μ
(

i

2
Gαμ(0)

)
∂

∂qα

(
i( �q + mq)

q2 − m2
q

)∣∣∣∣
q=p

= − i

4
gGμν(0)

∫
d4 p

(2π)4
e−i px σμν( � p + mq)+ ( � p + mq)σμν

(p2 − m2
q)

2 (C.4)

≈ − i

4
gGμν(0)

∫
d4 p

(2π)4
e−i px σμν � p+ � pσμν

p4

− i

2
gmq Gμν(0)σμν

∫
d4 p

(2π)4
1

p4 + O(m2
q)

= − i

32π2 gGμν(0)
σμν � x+ � xσμν

x2

− 1

32π2 gmq Gμν(0)σμν ln

(
− x2Λ2

4
+ 2γE M

)
+ O(m2

q).

This results provides us with terms number three and four of Eq. (3.28).

C.2 Non-Perturbative Contributions

As a next step, we have to consider long range fluctuations of quarks and gluons
in the quark propagator, which are expressed by various condensates such as 〈qq〉,
〈qgσGq〉 or 〈αs

π
G2〉.

For this, we make use of Eq. (3.27), substitute it into

http://dx.doi.org/10.1007/978-4-431-54318-3_3
http://dx.doi.org/10.1007/978-4-431-54318-3_3
http://dx.doi.org/10.1007/978-4-431-54318-3_3
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〈qa
i (x)q

b
j (0)〉, (C.5)

and investigate its first few terms one after the other. For making the following
manipulations easier and more tractable, we have here explicitly denoted the color
and spinor indices as a, b and i , j , respectively. Note also that the non-perturbative
components of the quark (and gluon) fields behave as classical fields that satisfy the
equations of motion. Therefore, is valid to omit the time ordering operator T [. . . ].

For the first term, since it is sandwiched between the vacuum, only the scalar and
color-singlet component survives. We can hence write

〈qa
i (0)q

b
j (0)〉 = Aδabδi j . (C.6)

Taking the contractions of color and spinor indices on both sides and using the fact
that quarks are Fermions and therefore anti-symmetric, we get

A = − 1

12
〈qq〉 (C.7)

for A.
The second term can be expressed as

xμ
〈[

Dμqi (0)
]a

qb
j (0)

〉
= xμ

δab

3
〈Dμqi (0)q j (0)〉, (C.8)

because, like above, only the color-singlet term survives. Then, the Dirac indices i, j
are expanded with the complete set of 1, γ 5, γν, γ

5γν, σνρ , which gives

xμ〈[Dμqi (0)
]a

qb
j (0)〉 = xμ

δab

3

(
−δi j

4
〈q(0)Dμq(0)〉 − γ 5

i j

4
〈q(0)γ 5 Dμq(0)〉

− γ νi j

4
〈q(0)γνDμq(0)〉 + (γ 5γ ν)i j

4
〈q(0)γ 5γνDμq(0)〉

− σ
νρ
i j

4
〈q(0)σνρDμq(0)〉

)
. (C.9)

In this equation, only the third term can have the same quantum numbers as the
vacuum and thus all the other terms vanish. Moreover, the scalar component of
γνDμ can be obtained as gνμ

4 �D, which leads to

xμ〈[Dμqi (0)
]a

qb
j (0)〉 = −xμ

δab

48
(γμ)i j 〈q(0) �Dq(0)〉. (C.10)
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The equation of motion �Dq = −imqq is then used to derive the final result:

xμ〈[Dμqi (0)
]a

qb
j (0)〉 = imq

48
( � x)i jδ

ab〈qq〉. (C.11)

Next, we consider the third term of Eq. (3.27). As before, the only the color singlet
part has to be retained and therefore

1

2
xμxν〈[DμDνqi (0)

]a
qb

j (0)〉 = δab

6
xμxν〈DμDνqi (0)q j (0)〉. (C.12)

Then, we do the same as in Eq. (C.9) and expand the Dirac indices. As is readily
understood, only the component proportional to δi j survives because it is the only
one containing a scalar part with positive parity. We thus get

1

2
xμxν〈[DμDνqi (0)

]a
qb

j (0)〉 = −δi jδ
ab

24
xμxν〈q(0)DμDνq(0)〉. (C.13)

Finally, using the fact that the scalar part of DμDν is gμν
4 D2 and the equation D2 =

1
2 gσGq − m2

qq, which is easily derived from the equation of motion, the following
result is obtained:

1
2 xμxν

〈[
DμDνqi (0)

]a
qb

j (0)
〉
= − x2

96 δi jδ
ab〈q(0)D2q(0)〉

≈ − x2

192δi jδ
ab〈qgσGq〉 + O(m2

q).
(C.14)

The derivation of the fourth term and the fifth term of Eq. (3.27) is more involved,
although the basic techniques are essentially the same. Here, only the results are
stated:

1

6
xμxν xρ

〈
DμDνDρqa

i (0)q
b
j (0)

〉
≈ imq x2

2732 ( � x)i j δ
ab〈qgσGq〉 + O(m2

q , g2), (C.15)

1
24 xμxνxρ xσ

〈
DμDνDρDσ qa

i (0)q
b
j (0)

〉
≈ −π2x4

2833 δi j δ
ab〈qq〉

〈
αs
π G2

〉
+O(m2

q , g2).
(C.16)

The explicit derivation of Eq. (C.15) can be found in Chap. 6 of Ioffe et al. (2010).
Furthermore, we note that for deriving Eq. (C.16), in addition to the method explained
above, the vacuum saturation approximation has been assumed and the contraction
formula for gluon fields

http://dx.doi.org/10.1007/978-4-431-54318-3_3
http://dx.doi.org/10.1007/978-4-431-54318-3_3
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〈Gk
μνGl

ρσ 〉 = δkl

253
(gμρgνσ − gμσ gνρ)〈G2〉 (C.17)

has been used.
Altogether, the results of this section give the remaining non-perturbative terms

of Eq. (3.28).

http://dx.doi.org/10.1007/978-4-431-54318-3_3


Appendix D
Non-Perturbative Coupling of Quarks
and Gluons

In this appendix, we derive the form of the non-perturbative coupling between quarks
and gluons, given in Eq. (3.30). Our starting point is the following expression,

〈
0|qa

i (x)gGk
μν(0)q

b
j (0)|0

〉 = 〈
0|qa

i (0)gGk
μν(0)q

b
j (0)|0

〉
+ xα

〈
0|Dαqa

i (0)gGk
μν(0)q

b
j (0)|0

〉 + · · · , (D.1)

for which we treat each of the two terms separately.

D.1 The First Term

In contrast to the calculations in the preceding appendix, one here has to build a color
octet from the quarks, which is then contracted with the gluon for constructing an
overall color-singlet operator. Therefore, for the first term, we get

〈0|qa
i (0)gGk

μν(0)q
b
j (0)|0〉 = −2

(
λl

2

)ab 〈
0|q j (0)

(
λl

2

)
gGk

μν(0)qi (0)|0
〉

= −1

4

(
λk

2

)ab

〈0|q j (0)gGμν(0)qi (0)|0〉, (D.2)

after which the spinor indices are expanded as in Eq. (C.9). We then obtain

〈
0|qa

i (0)gGk
μν(0)q

b
j (0)|0

〉 = − (σρσ )i j

32

(
λk

2

)ab 〈
0|q(0)σρσ gGμν(0)q(0)|0

〉

= − (σμν)i j

263

(
λk

2

)ab

〈qgσGq〉, (D.3)

which is the final result.
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D.2 The Second Term

The second term of Eq. (D.1) can be calculated in the same way, it is however some-
what more complicated. First, we construct a color octet from the quark fields and
combine it with the octet from the gluon, as before:

xα〈0|Dαqa
i (0)gGk

μν(0)q
b
j (0)|0〉

= −2

(
λl

2

)ab

xα〈0|q j (0)

(
λl

2

)
gGk

μν(0)Dαqi (0)|0〉 (D.4)

= −1

4

(
λk

2

)ab

xα〈0|q j (0)gGμν(0)Dαqi (0)|0〉.

Next, we expand the spinor indices of the quark fields. Doing this, it is clear that only
the terms with γμ or γ5γμ can survive, because from all other terms it is not possible
to construct a scalar operator. Thus we have

〈0|q j (0)gGμν(0)Dαqi (0)|0〉 = (γ β)i j
4 〈0|q(0)γβgGμν(0)Dαq(0)|0〉

− (γ5γ
β)i j

4 〈0|q(0)γ5γβgGμν(0)Dαq(0)|0〉.
(D.5)

Subsequently, we expand the remaining parts into their possible Lorentz structures.
Parity considerations tell us that the first term can only be proportional to gμνgαβ ,
gμαgνβ or gμβgαν and the second term only to εμναβ , giving

〈0|q(0)γβgGμν(0)Dαq(0)|0〉 = Agμνgαβ + Bgμαgνβ + Cgμβgαν, (D.6)

and
〈0|q(0)γ5γβgGμν(0)Dαq(0)|0〉 = Dεμναβ. (D.7)

Contracting Eq. (D.6) with gμνgαβ , gμαgνβ and gμβgαν , we get three equations,
which lead to

A = 0,

B = − 1

12
〈0|q(0)γ ρgGρσ (0)D

σq(0)|0〉, (D.8)

C = 1

12
〈0|q(0)γ ρgGρσ (0)D

σq(0)|0〉.

On the other hand, contracting Eq. (D.7) with εμναβ , we obtain

D = 1

24
〈0|q(0)γ5ε

μναβγβgGμν(0)Dαq(0)|0〉, (D.9)
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which can be rearranged by Eq. (E.21) of Appendix E and the equation of motion for
quarks ( �Dq = −imqq). This gives

D = i

12
〈0|q(0)γ ρgGρσ (0)D

σq(0)|0〉

+ imq

24
〈0|q(0)gσG(0)q(0)|0〉. (D.10)

Now, all we need is an expression of 〈0|q(0)γ ρgGρσ (0)Dσq(0)|0〉 in form of
known condensates. The details of the manipulations necessary for this task are
explained in Chap. 6 of Ioffe et al. (2010) and we here give only the final result:

〈0|q(0)γ ρgGρσ (0)D
σq(0)|0〉

= − 1

2
〈0|q(0)γ ρ

(
λn

2

)
q(0)g

[
DσGρσ (0)

]n|0〉 (D.11)

− mq

2
〈0|q(0)gσG(0)q(0)|0〉.

The first term on the right hand side of the above equation can be rewritten using the
equation of motion for gluons. This gives a term proportional to g2, which we neglect
here. If one wants to calculate higher orders of αs , it however has to be retained.

Assembling the results of Eqs. (D.6)–(D.11) we finally get

〈0|q j (0)gGμν(0)Dαqi (0)|0〉 = mq

253

[
(γν)i j gαμ − (γμ)i j gαν

]〈0|qgσGq|0〉,
(D.12)

which leads to

xα〈0|Dαqa
i (0)gGk

μν(0)q
b
j (0)|0〉

≈ − mq

273

(
λk

2

)ab

[(γν)i j xμ − (γμ)i j xν
]〈0|qgσGq|0〉 + O(g2). (D.13)

The spinor part of this result (γνxμ− γμxν) can be further manipulated according to
formula of Eqs. (E.21) and (E.22) in Appendix E as follows

γνxμ − γμxν = −xλ(gνλγμ − gμλγν)

= −xλ(iεμνλργ5γ
ρ − gμνγλ + γμγνγλ)

= − i

2
( � xσμν + σμν � x)+ iσμν � x (D.14)

= − i

2
( � xσμν − σμν � x),
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which gives

xα〈0|Dαqa
i (0)gGk

μν(0)q
b
j (0)|0〉 ≈ imq

283
( � xσμν − σμν � x)i j

(
λk

2

)ab

〈qgσGq〉
+ O(g2). (D.15)

The final form of the non-perturbative coupling of quarks and gluons is then

〈0|qa
i (x)gGk

μν(0)q
b
j (0)|0〉 ≈ − (σμν)i j

263

(
λk

2

)ab

〈qgσGq〉

+ imq

283
( � xσμν − σμν � x)i j

(
λk

2

)ab

〈qgσGq〉 (D.16)

+ O(m2
q , g2),

which corresponds to Eq. (3.30) of the main text.
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Appendix E
Gamma Matrix Algebra

When doing calculations in the QCD sum rule technique, various properties of gamma
matrices are frequently used. A few of the most convenient formulae concerning these
gamma matrices are given in this appendix. Note that we here use the convention
ε0123 = 1 for the totally antisymmetric Levi-Civita tensor.

{γμ, γν} = 2gμν (E.1)

{γμ, γ5} = 0 (E.2)

σμν ≡ i

2
[γμ, γν] (E.3)

γμγν = gμν − iσμν (E.4)

γ5 ≡ iγ 0γ 1γ 2γ 3 (E.5)

C ≡ iγ 2γ 0 (charge conjugation matrix) (E.6)

C = C∗ = −C† = −CT = −C−1 (E.7)

C2 = −1 (E.8)

Cγ5 = γ5C (E.9)

CΓ T C = +Γ for Γ = γμ, σμν, γ5σμν (E.10)

CΓ T C = −Γ for Γ = γ5, γ5γμ, ( � xσμν + σμν � x) (E.11)

γ μγνγμ = −2γν (E.12)

γ μγαγβγμ = 4gαβ (E.13)
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γ μγαγβγγ γμ = −2γγ γβγα (E.14)

σαβσαβ = 12 (E.15)

σαβγ μγ νσαβ = 4γ νγ μ + 8gμν = 16gμν − 4γ μγ ν (E.16)

σαβ(odd number of γ -matrices)σαβ = 0 (E.17)

( � xσαβ + σαβ � x)( � xσαβ + σαβ � x) = 24x2 (E.18)

( � xσαβ + σαβ � x)γ μ( � xσαβ + σαβ � x) = 8(x2γ μ + 2xμ � x) (E.19)

( � xσαβ + σαβ � x)γ μγ ν( � xσαβ + σαβ � x) =
8(4x2gμν − 2xμγ ν � x + 2xνγ μ � x − x2γ μγ ν) (E.20)

εμνλργ
ρ = −iγ5(gμνγλ − gμλγν + gνλγμ − γμγνγλ) (E.21)

� xσμν + σμν � x = −2εμναβγ5γ
αxβ (E.22)

σμν = i

2
εμνρλγ5σ

ρλ (E.23)

Tr[γμγν] = 4gμν (E.24)

Tr[γμγνγργλ] = 4(gμνgρλ − gμρgνλ + gμλgνρ) (E.25)

Tr[odd number of γ -matrices] = 0 (E.26)

Tr[γμγνγργσ · · · ] = Tr[· · · γσ γργνγμ] (E.27)

Tr[γ5γμγν] = 0 (E.28)

Tr[γ5γμγνγργσ ] = −4iεμνρσ (E.29)

Tr[γμ � xγν � x] = 8xμxν − 4x2gμν (E.30)

Tr[γμ( � xσρλ + σρλ � x)γν � x] = −8i x2(gρμgλν − gρνgλμ)

+ 8i xμ(xρgλν − xλgρν)

+ 8i xν(xλgρμ − xρgλμ) (E.31)

Tr[σρλγ5 � xγμ] = 4εαρλμxα (E.32)

Tr[σρλ � xγμ] = 4i(gρμxλ − gλμxρ) (E.33)

Tr[σμνσρλ] = 4(gμρgνλ − gμλgνρ) (E.34)

Tr[( � xσμν + σμν � x)( � xσρλ + σρλ � x)] = −16εσμναε
σ
ρλβxαxβ (E.35)
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εσμναε
σ
ρλβ = gμρgνλgαβ + gμβgνρgαλ + gμλgνβgαρ

− gνρgμλgαβ − gνβgμρgαλ − gνλgμβgαρ (E.36)

εαβμνε
αβ
ρλ = 2(gμλgνρ − gμρgνλ) (E.37)



Appendix F
The Fourier Transformation

When QCD sum rules of hadrons containing light quarks are considered, one usually
carries out the OPE in coordinate space and Fourier transforms the result back into
momentum space at the end of the calculation. We give in this appendix the necessary
formulae for this task.

F.1 The Standard Case

For the standard Fourier transformation, one can derive (almost) all formulae needed
in practical calculations from

∫
d4xeiqx 1

(x2)n
= i(−1)n

24−2nπ2

Γ (n − 1)Γ (n)
(q2)n−2 ln(−q2)+ Pn−2(q

2), (F.1)

which is valid for n ≥ 2. The derivation of this equation can be found in Novikov et
al. (1984). Pm(q2) stands for a polynomial of q2 of order m. The coefficients of this
polynomial are in fact divergent, but as they will in any case vanish when the Borel
transform is applied, we omit them in the following discussion.

Variations of Eq. (F.1) with various tensor structures can be constructed by taking
appropriate derivatives:

∫
d4xeiqx xμxν . . .

(x2)n
=

(
∂

i∂qμ

)(
∂

i∂qν

)
. . .

∫
d4xeiqx 1

(x2)n
. (F.2)

F.2 The “Old Fashioned” Case

Here, we evaluate the Fourier transforms of the various terms occurring in the “old
fashioned” correlator of Eq. (3.53).
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F.2.1 Dimension 0–5 Terms

For the terms appearing at dimensions 0–5, it is most convenient to work in coordinate
space. Therefore, we directly use the expressions of Eq. (3.61) and substitute them
into Eq. (3.53). For the dimension 5 term, this gives

∫
d4xθ(x0)e

iqx i

(x2 − iε)2
=

∫
dx0θ(x0)e

iq0x0

∫
d3x

i

(x2
0 − x2 − iε)2

e−iq·x. (F.3)

First, we calculate the integrals over the spacial angles θ and φ, leading to

2π

|q|
∫

dx0θ(x0)e
iq0x0

∫ ∞

−∞
dr

r

(r − x0 + iε)2(r + x0 − iε)2
ei |q|r , (F.4)

where we have used the definition r ≡ |x|. Next comes the integral over r , which
can be done in a standard way with the help of the Cauchy theorem. We thus obtain

π2
∫

dx0θ(x0)
1

x0 − iε
eix0(q0−|q|). (F.5)

At this point, we can drop |q|, as there is no danger that the limit |q| → 0 leads to a
divergence. Furthermore, we here introduce the Fourier transformed expression for
the Heaviside step function:

θ(x0) = 1

2π i

∫
dk0

1

k0 − iε
eix0k0 . (F.6)

We then get
π

2i

∫
dk0

∫
dx0

1

k0 − iε

1

x0 − iε
eix0(q0+k0). (F.7)

Making use of Eq. (F.6) now for the integral over x0, giving the final result:

π2
∫ ∞

−q0

dk0
1

k0 − iε
= −π2 ln(−q0 − iε)+ π2 ln(∞ − iε). (F.8)

Here, we encounter a divergence in the second term, which, however, leads to no
relevant contribution to the imaginary part of the correlator, which is the only quantity
that is needed for the sum rules. We can therefore ignore it and hence have obtained
the result used in Eq. (3.63).

The term of dimension 0, 3 and 4 can be calculated in a similar fashion. The main
difference is that due to the larger powers in the denominator, the poles used in the
Cauchy theorem leading to Eq. (F.5) are of a larger degree, which however does not

http://dx.doi.org/10.1007/978-4-431-54318-3_3
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introduce any essential new difficulties. We here give only the results:

dim. 0 :
∫

d4xθ(x0)e
iqx � x
(x2 − iε)5

= − π2

293
γ0q5

0 ln(−q0 − iε),

dim. 3 :
∫

d4xθ(x0)e
iqx i

(x2 − iε)3
= π2

8
q2

0 ln(−q0 − iε), (F.9)

dim. 4 :
∫

d4xθ(x0)e
iqx � x
(x2 − iε)3

= −π
2

4
γ0q0 ln(−q0 − iε).

We here, as above, have taken the limit |q| → 0. Note, however that in all the above
calculations, this limit can be taken only after the integral over r has been carried
out, as otherwise the factor 1/|q| appearing in Eq. (F.4) can not be properly treated.

F.2.2 Dimension 6–10 Terms

For the terms with dimension larger than 5, the calculation is simpler if one starts
from momentum space. This means that we take the expressions of Eq. (3.61) to
substitute them into Eq. (3.53). In fact, the basic steps of the calculation are already
given in Eqs. (3.54) and (3.55) of the main text and the result of the dimension 6 term
can be directly deduced from these equations by setting m± = 0. For the sake of
illustration, we here show the calculation of one more term, the one of dimension 7.

For getting the result of this term we have to evaluate the following integral:

∫
d4xθ(x0)e

iqx
∫

d4 p

(2π)4
e−i px 1

p2 + iε
. (F.10)

Here, we first employ the expression of Eq. (F.6) and perform the integral over x.
This yields

1

2π i

∫
dk0

1

k0 − iε

1

(k0 + q0)2 − q2 + iε
. (F.11)

For calculating the remaining integral over k0, we note that there are three poles in
the integrand, two in the upper half of the imaginary plane, and one in the lower half.
Closing thus the contour in the lower half of the imaginary plane, we pick up the
residue of this single pole, which originates from the second factor of the integrand.
We then obtain the final result as

1

2

1√
q2 − iε

1

q0 − √
q2 + iε

. (F.12)
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As is clear from this expression, we can at this point not take the limit |q| → 0 as it
would lead to a divergence. This problem is only cured after the integral over q0 is
carried out as shown in Eq. (3.64).

The Fourier transforms of the higher order terms can be calculated analogously
and we here show only the results.

dim. 8 :
∫

d4xθ(x0)e
iqx

∫
d4 p

(2π)4
e−i px � p

(p2 + iε)2

= γ0
1

4

1√
q2 − iε

1

(q0 − √
q2 + iε)2

,

dim. 9 :
∫

d4xθ(x0)e
iqx

∫
d4 p

(2π)4
e−i px 1

(p2 + iε)2

= 1

4

[
1

(
√

q2 − iε)2
1

(q0 − √
q2 + iε)2

− 1

(
√

q2 − iε)3
1

q0 − √
q2 + iε

]
.

(F.13)

Note that the result of the dimension 8 term in principle also contains expressions
proportional to q · γ as long as the |q| → 0 limit is not taken. These however vanish
when the traces of Eq. (3.56) are taken and are therefore of no relevance here.

F.2.3 Evenness (Oddness) of Dimension 6, 8,…(7, 9,…) Terms

In this section, we proof the statement made in the main text, that the imaginary parts
of the terms corresponding to dimensions 6, 8, . . . (7, 9, . . .) in Eq. (3.63) are even
(odd) functions of q0, if one takes the limit |q| → 0.

First, by following the same steps that lead from Eq. (F.10) to Eq. (F.11), and setting
|q| = 0, we notice that all terms appearing at dimensions 6, 8, . . . can generally be
written down as

1

2π i

∫
dk0

1

k0 − iε

k0 + q0

[(k0 + q0)2 + iε]n
≡ F1(q0)

= 1

2π i

∫
dk0

1

k0 − iε

k0 + q0

(k0 + q0 + iε)n(k0 + q0 − iε)n
. (n = 1, 2, . . . ) (F.14)

Here, we are ignoring any proportional real constant, including γ0. Similarly, for
dimensions 7, 9, . . . , we get

1
2π i

∫
dk0

1

k0 − iε

1

[(k0 + q0)2 + iε]n
≡ F2(q0)

= 1
2π i

∫
dk0

1

k0 − iε

1

(k0 + q0 + iε)n(k0 + q0 − iε)n
. (n = 1, 2, . . . )

(F.15)
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Next, we take the imaginary parts and, after some simple manipulations, get for
F1(q0)

ImF1(q0) = 1

2i

[
F1(q0)− F1(q0)

]

= − 1

4π

∫
dk0

( 1

k0 − iε
+ 1

k0 − iε

) [
k0 + q0

(k0 + q0 + iε)n(k0 + q0 − iε)n
(F.16)

− −k0 + q0

(−k0 + q0 + iε)n(−k0 + q0 − iε)n

]
,

while the result for F2(q0) is

ImF2(q0) = 1

2i

[
F2(q0)− F2(q0)

]

= − 1

4π

∫
dk0

( 1

k0 − iε

) [
1

(k0 + q0 + iε)n(k0 + q0 − iε)n
(F.17)

− 1

(−k0 + q0 + iε)n(−k0 + q0 − iε)n

]
.

Having the above equations at hand, it is now a trivial matter to show that

ImF1(−q0) = ImF1(q0), (F.18)

and
ImF2(−q0) = −ImF2(q0), (F.19)

which proofs our statement made in the main text, that the imaginary parts of the
terms of dimensions 6, 8, . . . (7, 9, . . .) in the OPE of the “old fashioned” correlator
are even (odd) functions of q0 in the limit |q| → 0.



Appendix G
Derivation of the Shannon-Jaynes Entropy

In this appendix, we will provide two derivations for the Shannon-Jaynes entropy,
given in Eq. (4.7), the first one making use of the law of large numbers, the second
one being an axiomatic construction based on locality, system independence and
scaling. We will mainly follow the explanations given in Asakawa et al. (2001).

G.1 Proof Based on the Law of Large Numbers

The proof of the Shannon-Jaynes entropy can be given by the so-called “monkey
argument”, which basically assumes that the probability of the spectral function
ρ(ω) follows a certain Poisson distribution, as will be explained below.

What we need to derive is the probability of ρ(ω) to be in a specific region V of
its allowed phase space. Formally, this probability can be denoted as

P(ρ ∈ V ) = 1

Z(α)

∫
V
[dρ]W (αS(ρ)), (G.1)

where Z(α) is simply a normalization constant, while α is just an arbitrary parameter,
whose significance will be discussed in the main text. Furthermore, S(ρ) is the
entropy that we want to derive here. Also note that, as P(ρ ∈ V ) should have
the maximum value where S(ρ) is largest, the function W should be a monotone
increasing function.

According to the monkey argument, we now divide the function ρ(ω) into N
ω-regions of the same size and consider a monkey that throws M balls into them.
The throwing process is not completely arbitrary, but is assumed to follow a certain
pattern. Thus, each region has a probability pi (1 ≤ i ≤ N ) to receive a ball, leading
to an expectation value for the number of balls of λi = Mpi . Furthermore, we denote
the actual number of balls that reaches a specific region as ni . From probability theory,
we know that if we take M to be very large and keep λi fixed, the probability of ni to
have a certain value will behave according to a Poisson distribution. Therefore, the

P. Gubler, A Bayesian Analysis of QCD Sum Rules, Springer Theses, 183
DOI: 10.1007/978-4-431-54318-3, © Springer Japan 2013

http://dx.doi.org/10.1007/978-4-431-54318-3_4


184 Appendix G: Derivation of the Shannon-Jaynes Entropy

probability for a certain combination of n = (n1, n2, . . . , nN ) to take place, can be
written down as

P(n) =
N∏

i=1

λ
ni
i e−λi

ni ! . (G.2)

Here, the components of n are integers, and hence can not yet be considered to be a
useful parametrization of the smooth function ρ(ω). We thus introduce a parameter
q, with which we can make n proportional to the function ρ(ω):

ρi = qni , (G.3)

where ρi stands for the value of ρ(ω) in the ith region of ω. Similarly, we can define
the default model as

mi = qλi . (G.4)

We are now in a position to explicitly evaluate the probability of Eq. (G.1) as
follows:

P(ρ ∈ V ) = ∑
n∈V P(n) � 1

q N

∏N
i=1

∫
V dρi

λ
ni
i e−λi

ni !
� 1

(2πq)N/2

∫
V

∏N
i=1

ρi√
ρi

eS(ρ)/q ,
(G.5)

where we have used the Stirling approximation n! � √
2πnen log n−n in the last line.

S(ρ) is given as

S(ρ) =
N∑

i=1

[
ρi − mi − ρi log

(
ρi/mi

)]
, (G.6)

which is equivalent to Eq. (4.7) of the main text. Furthermore, it is seen from
Eqs. (G.1) and (G.5) that q = 1/α and that the measure [dρ] and the normaliza-
tion constant Z(α) can be expressed as

[dρ] =
N∏

i=1

ρi√
ρi
, Z(α) =

(
2π

α

)N/2

. (G.7)

As a last point, we also observe that the function W of Eq. (G.1) is a simple expo-
nential and therefore indeed a monotone increasing function as it should be.

G.2 Proof Based on an Axiomatic Construction

For illustration, we here give another proof for the Shannon-Jaynes entropy, which
is based on the four axioms of locality, coordinate invariance, system independence

http://dx.doi.org/10.1007/978-4-431-54318-3_4
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and scaling. This proof is less intuitive than the one given in the last section, it is,
however, in some sense, more general, as it does not rely on the assumption of the
Poisson distribution used in Eq. (G.2).

As in the last section, our task is to define a real functional, which satisfies the
following condition:

If ρ1 is a more probable function than ρ2, then: S(ρ1) > S(ρ2). (G.8)

Thus, the most probable of all functions can be found by looking for a stationary
point in S( f ), which follows from the equation

δρS(ρ) = 0. (G.9)

Let us now derive the actual form of S(ρ) by considering the four axioms mentioned
above.

G.2.0.1 Locality

This axiom declares that the values of ρ(ω) at various values of ω should indepen-
dently contribute to S(ρ) without any correlation. Therefore, one can conclude that
S(ρ) should be a local function of ρ(ω) and can written down as

S(ρ) =
∫

dωm(ω)φ(ρ(ω), ω), (G.10)

where m(ω) can be considered to be the integration measure and must be positive
definite. Furthermore, φ is an arbitrary function of ρ(ω) and ω, but cannot contain
any derivatives of ρ(ω), as they would lead to correlations between different values
of ω.

G.2.0.2 Coordinate Invariance

The axiom of coordinate invariance demands that S(ρ) does not depend on what sort
of coordinates one uses for the functionρ(ω). In other words, S(ρ) should be invariant
under the coordinate transformation ω′ = ω′(ω). Now, using ρ(ω)dω = ρ′(ω′)dω′
and m(ω)dω = m′(ω′)dω′, one can understand that the right hand side of Eq. (G.10)
can only be invariant if the function ρ(ω) appears in φ divided by m(ω), because of
the relation ρ(ω)/m(ω) = ρ′(ω′)/m′(ω′). Hence, we can express Eq. (G.10) as

S(ρ) =
∫

dωm(ω)φ(ρ(ω)/m(ω)). (G.11)
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G.2.0.3 System Independence

This axiom states that in case of a function ρc(ω1, ω2) having two independent
variables ω1 and ω2, this function can be written as a product of two functions:
ρc(ω1, ω2) = ρ1(ω1)ρ2(ω2). Moreover, the corresponding integration measure can
be divided in the same way: mc(ω1, ω2) = m1(ω1)m2(ω2). A further consequence
of the axiom is that the variance of S(ρc) w.r.t. ρc(ω1, ω2) is given as

δS(ρc)

δρc(ω1, ω2)
= α(ω1)+ β(ω2), (G.12)

where α(ω1) and β(ω2) are functions related to the variance of S(ρc) w.r.t. ρ1(ω1)

and ρ2(ω2), respectively.
Now, using the form for S(ρc) that we have obtained in Eq. (G.11), we can write

down S(ρc) as

S(ρc) =
∫

dω1

∫
dω2mc(ω1, ω2)φ(ρc(ω1, ω2)/mc(ω1, ω2)), (G.13)

which gives

δS(ρc)

δρc(ω1, ω2)
= dφ

d Z

∣∣∣
Z=ρc(ω1,ω2)/mc(ω1,ω2)

≡ σ(Z = ρc(ω1, ω2)/mc(ω1, ω2)).

(G.14)
Next, we act with ∂2/∂ω1∂ω2 on the right hand sides of both Eqs. (G.12) and (G.14).
As these should be equal, we are lead to the following equation for σ(Z):

Z
d2σ(Z)

d Z2 + dσ(Z)

d Z
= 0. (G.15)

The above equation can be easily solved, giving σ(Z) = c1 log(Z)+c2, from which
we finally get the functional form of φ(Z) as

φ(Z) = c1 Z log(Z)+ (c2 − c1)Z + c3, (G.16)

where c1, c2 and c3 are integration constants that are not yet determined at the current
stage. Substituting the result of Eq. (G.16) into Eq. (G.11), S( f ) can now be given as

S(ρ) =
∫

dω
[
c1ρ(ω) log

(
ρ(ω)

m(ω)

)
+ (c2 − c1)ρ(ω)+ c3m(ω)

]
. (G.17)

Using this equation, we get δ2/δρ2S(ρ) = c1/ρ and thus observe that the sign of
c1 completely determines the curvature of S(ρ), as ρ is a positive definite function.
Therefore, in order for S(ρ) to be bounded from above, one has to chose c1 to be
negative.
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G.2.0.4 Scaling

According to this axiom, in case of no additional information available on ρ(ω) (for
instance, from the likelihood function of Eq. (4.4)), the most probable form of ρ(ω)
should be equal to the integration measure m(ω). Thus the maximum of S(ρ) should
be at ρ(ω) = m(ω).

The maximum of S(ρ) of Eq. (G.17) can be obtained from the solution of δS(ρ)
δρ

=
0, which gives

ρ(ω) = m(ω)e−c2/c1 . (G.18)

From this result, we can immediately conclude that for satisfying the scaling axiom,
we need to set c2 = 0. Thus, the form of S(ρ) is now

S(ρ) = −c1

∫
dω

[
ρ(ω)− ρ(ω) log

(
ρ(ω)

m(ω)

)
− c3

c1
m(ω)

]
. (G.19)

As a last task, we still have to determine c1 and c3. Considering first c3, we see from
the above equation that the term proportional to this constant does not depend onρ(ω)
and is therefore not of much relevance in the present discussion. In order for S(ρ)
to vanish when ρ(ω) equals m(ω), one usually chooses c3 = c1 for convenience. As
for c1, we have already mentioned above that it should have a negative value. As can
be observed from Eq. (G.19), its magnitude just becomes an overall normalization
factor in front of the integral over ω, which can be arbitrarily chosen. Usually, one
takes c1 = −1 for simplicity. We thus are lead to

S(ρ) =
∫

dω

[
ρ(ω)− m(ω)− ρ(ω) log

(
ρ(ω)

m(ω)

)]
, (G.20)

which is indeed the Shannon-Jaynes entropy of Eq. (4.7).
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Appendix H
Uniqueness of the Maximum of P[ρ|GH]

It is important for the MEM procedure that there is only one solution for ρ(ω),
which maximizes the conditional probability P[ρ|GH]. We will proof in this short
appendix, that the solution is indeed unique if it exists, following the discussion given
in Asakawa et al. (2001).

For proofing the uniqueness of the solution for ρ(ω), we first have to show the
correctness of the following mathematical statement:

Given a real and smooth function F(x1, x2, . . . , xn) with real variables (x1, x2, . . . , xn) ∈
Rn, for which the matrix ∂2 F/∂xi∂x j is negative definite, the solution of the equations
∂F/∂xi = 0 is unique if it exists.

Note here that the negative definiteness of ∂F/∂xi∂x j can be denoted as

n∑
i, j=1

yi
∂2 F

∂xi∂x j
y j < 0 (∀yi ∈ R/{0}). (H.1)

For showing the above statement, we assume that there are two solutions for
∂F/∂xi = 0, x1 and x2, and define x(t) ≡ x1 + t (x2 − x1) and G(t) ≡ F(x(t)).
From these definitions, we can immediately see that dG(t)/dt satisfies

dG(t)

dt

∣∣∣∣
t=0

= dG(t)

dt

∣∣∣∣
t=1

= 0. (H.2)

Now, from the smoothness of F , the function G(t) must be continuous and differ-
entiable. We can therefore use Rolle’s theorem, which states that between t = 0 and
t = 1, there must be at least one t which satisfies

d2G(t)

dt2 =
n∑

i, j=1

yi
∂2 F

∂xi∂x j

∣∣∣∣
x=x(t)

y j = 0, (H.3)
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which leads to a contradiction with Eq. (H.1). Therefore, the solution of ∂F/∂xi = 0
must be unique if it exists.

Thus, all we have to do for proofing the uniqueness of the solution for ρ(ω), is
to show that Q(ρ) of Eq. (4.9) satisfies the condition analog to Eq. (H.1). Using the
(discretized forms of) the likelihood function and the prior probability of Eqs. (4.4)
and (4.7), we can derive

Nω∑
i, j=1

yi
∂2 Q

∂ρi∂ρ j
y j = − α

Δω

Nω∑
i=1

y2
i

ρi
− Δx

xmax − xmin

Nx∑
j=1

Nω∑
i=1

[
K (x j , ρi )yi

]2

σ 2(x j )
. (H.4)

Here, ρi represents the discretized data points of ρ(ω): ρi ≡ ρ(ωi )Δω, with
Δω ≡ ωmax−ωmin

Nω
and ωi ≡ i

Nω
(ωmax − ωmin) + ωmin. Similarly, x j stands for

x j ≡ j
Nx
(xmax − xmin) + xmin and Δx for Δx ≡ xmax−xmin

Nx
. While the second term

in principle can become 0 for certain values of y, the first term is always negative
because of 0 < α and 0 ≤ ρi . Therefore, we can conclude that

Nω∑
i, j=1

yi
∂2 Q

∂ρi∂ρ j
y j < 0 (∀yi ∈ R/{0}), (H.5)

which, together with the statement shown above, proofs the uniqueness of the max-
imum of P[ρ|GH] if it exists.
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