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Dedicated to the spirit of Takakazu Seki



Postal Stamp (Japan)
T. Seki (mathematician, 1642–1708)
The background shows his expansion of a determinant of order four.



To the best knowledge of Hikosaburo Komatsu, one of the editors, there are no authentic portraits
of T. Seki, even though there are two existing portrayals of him. The image on the postal stamp
shown on the preceding page is based on a painting of T. Seki that is now in the Ichinoseki City
Museum. The image seen above is a scroll painting (kakejiku) of T. Seki that Ishikuro Nobuyoshi
(1760–1836) had an artist draw for ceremonies in his school. (Owned by the Kōju Foundation;
now in the Imizu City Shinminato Museum, Toyama, Japan)







The Use of Sans-serif Type

Emphasized texts in Japanese are usually set in sans-serif type (see [1], p. 226 or [2],
p. 160.) in place of boldface type, which is too thick for Japanese texts.
In this book sans-serif type is used for the same purpose, but with two additional
uses:
One is as an identifier in English of the title of a book written in a language other
than English, or of the name of a person, place, etc. The reader may find the original
(title, etc.) in the Index at the end of the book.
In the Supplements, five of Seki ’s works are published for the first time as a col-
lated edition. Here a character of classical Chinese in sans-serif type means that the
character in question is not taken from any of the documents listed in the notes on
collation following the text, but is chosen at the discretion of the collators.

Editor

References
[1] L. Lamport: LaTeX: A Document Preparation System, User’s Guide and Refer-
ence Manual, Addison-Wesley Publ. Co., 1994.
[2] M. Goossens, F. Mittelbach and A. Samarin: The LaTeX Companion, Addison-
Wesley Publ. Co., 1994.



Foreword

These proceedings are a collection of papers written by lecturers at the International
Conference on the History of Mathematics in Memory of Seki Takakazu (1642?–
1708), held August 25–31, 2008. The conference was one of the main events of
Seki’s 300th memorial. The papers are faithfully based on the lectures, except the
first paper, entitled “Seki Takakazu, His Life and Bibliography”, which contains
new and significant facts discovered later by studying some documents that were
unknown at the time of the original lecture. We are deeply grateful to the document-
holder.

Seki Takakazu was a Japanese mathematician in the early part of the Edo era
and was known as the first to discover the so-called determinants in the world. He
passed away on October 24 in the fifth year of the Hôei period, which corresponds
to December 5, 1708, in the current solar calendar. The year 2008 thus corresponds
to his 300th posthumous anniversary.

In 1907, according to Buddhist custom, the Tokyo Mathematico-Physical Society
observed his 200th posthumous anniversary with a commemorative ceremony on
the occasion of an annual meeting, publishing a book of seven main articles of his
school, and with a conference on Japanese mathematics for a general audience and
publishing the conference proceedings.

In 1958, the Mathematical Society of Japan observed his posthumous 250th an-
niversary as a memorial by organizing a commemorative conference. After a com-
memorative service in front of his tombstone at Jôrinji temple in Benten-chô, Shin-
juku Ward, Tokyo, a conference with lectures on the old Japanese mathematics was
held by the society jointly with the Tokyo Metropolitan Board of Education, the
Shinjuku Ward Board of Education, and others. In the same year, the small area sur-
rounding his tombstone including the monument was designated as a historic site
by the Tokyo Metropolitan Government.

A year later, in 1959, an association of Japanese traditional mathematics was
formed and, in three years, was reorganized as the History of Mathematics Society
of Japan.

In order to commemorate his 300th posthumous anniversary, the executive com-
mittee of Seki’s 300th memorial was organized on May 6, 2007, and decided to

xi



xii Foreword

organize the following commemorative events: a commemorative Buddhist service
at Jôrinji temple; exhibitions in several museums; the International Conference on
the History of Mathematics on the Kagurazaka Campus of the Tokyo University of
Science; lectures and events in connection with the exhibitions; and other events.
The aim of these commemorative events was to honor Seki Takakazu and his math-
ematical works, to inform people about the mathematical achievements in the Edo
era and their later developments, and thus to encourage young mathematical talent
in Japan.

The following is a list of our activities in addition to the International Conference:

• On December 2, 2007, a commemorative Buddhist service at Jôrinji temple, fol-
lowed by a conference on mathematical power in Japan, where a report on the
preparation of commemorative activities was given by representatives of the ex-
ecutive committee, and lectures on education and research in mathematics were
given;

• From January 19 to March 2, 2008, a special exhibition entitled “Seki Takakazu
and the old Japanese mathematics” in the Shinjuku Historical Museum;

• On March 9, 2008, the 10th commendation ceremony of the Sangaku (mathemat-
ical tablet) contest and lectures on old Japanese mathematics in the Edo-Tokyo
Museum;

• From March 6 to April 10, 2008 (the first period), a special exhibition entitled
“Seki Takakazu and the old Japanese mathematics” in the Museum of Science,
Tokyo University of Science;

• From April 15 to May 18, 2008, a special exhibition entitled “Seki Takakazu and
the old Japanese mathematics” in the sea adventure pavilion, Osaka Maritime
Museum;

• From April 26 to June 8, 2008, a special exhibition entitled “Seki Takakazu and
the old Japanese mathematics” in the Ichinoseki City Museum;

• From August 21 to November 3, 2008 (the second period), a special exhibition
entitled “Seki Takakazu and the old Japanese mathematics” in the Museum of
Science, Tokyo University of Science;

• Repair of the tomb and the monument of Seki Takakazu at Jôrinji temple;
• From November 22, 2008, to January 12, 2009, the 7th exhibition on Japanese

scientists and technicians entitled “Japanese Pioneers in Mathematics” in the
Japan Gallery, National Museum of Nature and Science, Ueno, Tokyo;

• On December 6, 2008, a commemorative Buddhist service at Jôrinji temple.

We are proud to report that all of these activities have been successfully carried
out and we are grateful to all people concerned for their heartfelt support and coop-
eration.

Tokyo, October 2011 Hideyuki Majima
Chairman of the Executive Committee of

Seki’s 300th Memorial



Preface

Seki Takakazu (1642?–1708) was a mathematician of the Edo period (1603–1868)
of Japan who made outstanding contributions to the mathematics of the world —
the first time for a Japanese to do so. The Mathematical Society of Japan and the
History of Mathematics Society of Japan hosted the International Conference on the
History of Mathematics in Commemoration of the 300th Posthumous Anniversary
of Seki Takakazu August 25–31, 2008, on the Kagurazaka Campus of the Tokyo
University of Science in Tokyo. This book comprises the proceedings of the con-
ference supplemented with collated texts of five of Seki’s writings and reprints of
papers on these texts.

In ancient Japan, funerals lasted a very long time. It often took more than two
years before the body was finally placed in the tomb. This period was called mog-
ari [殯], during which relatives and others regularly met in front of the coffin and
recalled with tears [誄 shinobigoto wo su] the deeds and wishes of the departed.
During these ceremonies the story of the deceased person was fixed and was later
recorded as his history.

This custom was lost after the introduction of Buddhism and cremation in the
eighth century. However, even today Buddhist families in Japan commonly con-
tinue to have anniversaries 1, 3, 7, 13, 17, 23, and 33 years after a person’s death.
The deceased cannot sleep quietly but are remembered regularly. For a great person
similar ceremonies are held again every 50 or 100 years.

In the case of Seki Takakazu, the commissioner of finance [勘定奉行] in the
Shogunate presided over the 100th posthumous anniversary. Some years earlier,
Honda Toshiaki [本多利明] and other mathematicians of Seki’s School erected a
memorial epitaph beside the tomb. The 200th posthumous anniversary was held by
the Tokyo Mathematico-Physical Society on April 6, 1907. They held a memorial
conference for citizens and published its proceedings and the reprint of the Septe-
nary [七部書] of Seki’s advanced-level papers.

The purpose of our conference on this 300th posthumous anniversary is not dif-
ferent from that of the preceding two.

xiii



xiv Preface

Mencius [孟子] (ca. 372–289 B.C.) is regarded by many Confucians as the most
important successor of Confucius [孔子] (551–479 B.C.). He left the words: “The
legacy of a great person is suddenly lost after five generations. The same is true of a
minor person. I have never been able to be a student of Confucius. I secretly improve
myself by learning from the learned people.” [孟子曰君子之澤五世而斬小人之澤
五世而斬予未得為孔子徒也予私淑諸人也].

The expression “secretly improve myself” [私淑] was understood by Japanese in
the old days to mean choosing a person, not necessarily a living person, as one’s
teacher and learn from the teacher’s writings.

The theories that Seki and his pupils established are far more advanced than was
long supposed. They applied those theories to various problems in geometry and so
on, and left many manuscripts in classical Chinese, which was an international lan-
guage at that time, but few of them had readers for these 300 years. The theoretical
parts, some of which were discovered 80 years before Europeans did, are readable
but their formula calculations in problem solving are almost beyond human abili-
ties. The recent progress in computers and their usage makes it practical to continue
their investigations. We hope that the reader will improve himself by reading these
proceedings.

The Conference was organized by the Organizing Committee consisting of Pro-
fessor Henk Bos (Utrecht, the Netherlands), Professor Karine Chemla (CNRS,
France), Professor Annick Horiuchi (Paris 7, France), Professor Hideki Kawahara
(Tokyo, Japan), Professor Eberhard Knobloch (T. U. Berlin, Germany), Professor
Hikosaburo Komatsu (Tokyo, Japan), Professor Liu Dun (CAS, China) and Profes-
sor Michio Yano (Kyoto Sangyo University, Japan), and by the Local Committee
consisting of Mr. Ken’ichi Sato (President of the History of Mathematics Society
of Japan), Professor Katsuhiko Shimizu (Tokyo Universuty of Science, Japan), Pro-
fessor Keitaro Sekine (Director of the Science Museum of TUS, Japan), and Mr.
Kazuhiko Masuda (Science Museum TUS).

All speakers were invited by either of these Committees.

The Conference received the financial or moral support of the following organi-
zations: The Tokyo Club; Inoue Foundation for Science; Japan–China Science and
Technology Exchange Association; Tokyo University of Science; The Ministry of
Education, Culture, Sports, Science and Technology, Grant-in-aid for Scientific Re-
search on Priority Areas 17083006; Japan Society for the Promotion of Science,
Grant-in-Aid for Scientific Research (C) 20540107.

We would like to thank them for their generous assistance.

Tokyo,
July, 2010

Hikosaburo Komatsu
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Seki Takakazu, His Life and Bibliography

Hideyuki Majima∗

Abstract Seki Takakazu is a Japanese mathematician in the early period of the Edo
era. He is known as the first in the world to study the so-called “resultants and de-
terminants.” However, one had not known so much about his life before the author’s
investigation started about two years ago. On the occasion of the 300th posthumous
anniversary of Seki, the author has found some significant records and facts concern-
ing his family, especially his adoptive father and his first career. Now it is possible
to write a “Curriculum Vitae of Seki Takakazu.”

Moreover, his professional career in the Kōfu fief is now clarified by a document
added in proof at the end of the paper.

Introduction

While Seki Takakazu is a famous mathematician in the Edo era1 as the first person to
study the so-called “resultants and determinants” in the world, [2, pp. 141–158] and
[1], we had not known so much about his life. After the 250th anniversary of Seki’s
death, some documents on his profession were introduced to researchers of history

Hideyuki Majima
Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
e-mail: majima.hideyuki@ocha.ac.jp

∗ This work was partly supported by Grand-in-Aid for Scientific Research (C) 19540117.

1 The Edo era (1603–1867) is divided into several periods; e.g., the Kan’ei [寛永] period (1624–
1644), the Shōhō [正保] period (1644–1648), the Keian [慶安] period (1648-1652), the Manji [万
治] period (1658–1661), the Kambun [寛文] period (1661–1673), the Empō [延宝] period (1673–
1681), the Tenna [天和] period (1681–1684), the Jōkyō [貞享] period (1684–1688), the Genroku
[元禄] period (1688–1704), the Hōei [宝永] period (1704–1711), the Shōtoku [正徳] period (1711–
1716), the Kyōhō [享保] period (1716–1736), and the Kansei [寛政] period (1789–1801). The
Japanese periods do not start from 1 January; e.g. the Kambun period starts from 25 April, 1661
and the following Empō period starts from 21 September, 1673. We also remark here that the
lunar-solar calendar was used during the Edo era.

3.E  Knobloch et al. (eds.), Seki, Founder of Modern Mathematics in Japa
pringer Proceedings in Mathematics & Statistics 39,

pringer Japan 2013 S

n: A Commemoration
o  His Tercentenary, S
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n
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of mathematics. In this 300th posthumous anniversary of Seki, the author has found
some more significant records and facts about Seki’s life by careful reading of the
Annual Records of Tokugawa Shōgunate [S1], the Kōfu Diary [S3], the Kōfu Palace
Diary [S4] and so on. ([S1], [S3] and [S4], etc., refer to Source Books listed at the
end of this paper.) They, together with known facts, for example, written in [2] and
[10], admit us to write a “Curriculum Vitae of Seki Takakazu” as follows:

1 Personal particulars:

1-1 Family name: Seki [關, or関 in the simplified character], born as Uchiyama
[内山],

Popular name [通称 tsūshō]: Shinsuke [新助],
Given name [諱 imina]: Takakazu [孝和].

1-2 Date of birth: not known exactly, but surely between 1640 and 1645.
1-3 Place of birth: Most probably in Edo. In that case, the place marked as the

Guard at the main tower (in the Edo Castle) [御殿主御番 Gotenshu-On-ban]
or the Fire Guard [火之番 Hinoban] on the Map of Edo in the Shōhō period
[正保江戸図 Shōhō Edo-zu].

1-4 Marital status: Married, had two daughters, who died prematurely, and two
adopted sons, Heizō [平蔵] and Shinshichi(rō) [新七 (郎)], the latter being his
nephew, a son of his brother Uchiyama Shingorō (or Shōken) Nagayuki [内山
新五郎 (松軒)永行].

1-5 Home: in front of Tenryūji Temple [天龍寺前] at Yotsuya [四谷] in a period
containing September Genroku 8 (1695).

1-6 Date of death: 24 October Hōei 5 (1708), which corresponds to 5 Decem-
ber 1708 in the Gregorian calendar, given posthumous Buddhist name [法
名 hōmyō], Hōgyōin(-den)-Sōtatsu-Nisshin-Koji [法行院 (殿)宗達日心居士]
and buried in Jōrinji Temple [浄輪寺] Cemetery.

1-7 Family crest: Butterfly [蝶 chō] in a period containing September Genroku
8 (1695) and Seki-phoenix [関鳳凰丸紋 Seki-hō-ō-maru-mon] is carved on
the tombstone.

2 Professional experience:

2-1 November Kambun 5 (1665)-: succeeded his adoptive father Seki Jūrōemon
[十郎右衛門] of the Kōfu fief [甲府藩 Kōfu-han],

December Kambun 5 (1665)-: Member of a Team for Defense [小十人番
士 Kojūnin-Ban-Shi] of the Kōfu fief, salaried by 100 hyo plus an allowance
of 3 nin-fuchi2 from January Kambun 7 (1667).

2 The Tokugawa shōgunate paid salary to retainers by rice or gave them rice-producing land. If the
salary was paid by rice, then hyo [俵] was used as unit and if rice-producing lands were given, then
koku [石] was used as unit. 1 hyo means 40×1.8 liters of rice per year. 1 koku means a lot which
produces 100× 1.8 liters of rice, and as the rate of tax was 40%, 1 koku of rice-producing land
brought the retainer 1 hyo of rice. 1 nin-fuchi [人扶持] means 15×1.8 liters of rice per month of
30 days. It is approximately 330 liters of rice per year or about 5 hyo. 1 nin-fuchi was supposed to
support one servant of the retainer.



Seki Takakazu, His Life and Bibliography 5

(probably, promoted to the Chief of a Team for Defense [小十人組頭
Kojūnin-kumigashira] and got a raise in his salary in some years.)

2-2 Jōkyō 1–2 (1684–1685): signed and sealed copies of some documents of
land survey in Kōshu [甲州] as one of the three responsible officers in charge.
　

(probably, turned to a position in another for some years.)
2-3 September Genroku 8 (1695): Chief of the Division of Provisions [賄頭

Makanai-Gashira] of the Kōfu fief, salaried by 200 hyo plus the executive
allowance of 10 nin-fuchi.

2-4 September Genroku 11 (1698): signed a letter to officers of the Shinshū-
Matsushiro fief [信州松代藩] to draw the boundary between two fiefs as one
of the three responsible officers in charge.

2-5 Genroku 14 (1701)-: Examiner of the Division of Accounts [勘定吟味役
Kanjō-Gimmi-Yaku＝ (勘定頭差添筋)勘定方御用改 (役)] of the Kōfu fief,
salaried by 250 hyo plus an executive allowance of 10 nin-fuchi, in some years,
changed into the salary of 300 hyo in all or plus the executive allowance of 10
nin-fuchi.

2-6 December Hōei 1 (1704): Chief of a Team of Ceremonies in the House-
hold [納戸組頭 Nando-Kumigashira] of the West Castle3 [西の丸] of Toku-
gawa Shōgunate, salaried by 250 hyo plus the executive allowance of 10 nin-
fuchi and later 300 hyo.

2-7 November Hōei 3 (1706): retired [致仕 Chishi] on a pension [小普請
Kobushin] on account of illness.

3 Education and Supervisors: not known exactly, probably self-educated by read-
ing books published in those days, e.g., the Book on Things Old and New [塵劫
記 Jinkōki], the Unquestionable Methods in Mathematics [算法闕疑抄 Sampō-
Ketsugishō], the Platter of Mathematics [算爼 Sanso], the Systematic Treatise of
Arithmetic [算法統宗 Suànfǎ Tǒngzōng], the Yang Hui’s Methods of Mathemat-
ics [楊輝算法 YángHuı̄ Suàn-Fǎ] and An Introduction to Mathematics [算学啓
蒙 Suàn-Xué Qı̌-Méng] etc.

4 Teaching experience: there were some students like Takebe Kataakira [建部賢明]
(1661–1716) and Takebe Katahiro [建部賢弘] (1664–1739) and, from 1676, he
taught them mathematics and wrote the afterwords [跋 batsu] at the end of books
published by students. However, not known where and how he taught them.

5 Completed Research Books:

5-1 Mathematical Methods for Exploring Subtle Points [発微算法 Hatsubi-
Sampō],

5-2 Compendium of Mathematics [括要算法 Katsuyō-Sampō] (posthumously
published),

5-3 Complete Book of Mathematics [大成算経 Taisei-Sankei] (not published).

3 The West Castle was a part of the Edo Castle. Because the heir to Shōgun lived there, the West
Castle was synonymous with the heir himself at that time.
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In the following sections, we discuss each fact and, in particular, newly discov-
ered 1-2, 1-3, 1-5, 1-7, 2-1, 2-2, 2-3, 2-5 and 2-6 on showing new evidence for
researchers of the history of mathematics.

The author has to admit here that this paper is considerably different from his talk
at the Conference. This contains new facts he discovered afterwards, especially con-
cerning Seki’s adoptive father and his first career. However, they are included in this
paper because of their importance. In his talk at the Conference, the author claimed
only that Seki’s adoptive father was not listed in the Kansei Family Trees [S7] of
retainers of the Shōgunate and that his name should be found in the records of the
Kōfu fief. Then, he spent five months to read the Kōfu Diary [S3] very carefully and
succeeded in finding only one possible name for Seki’s adoptive father.

1 Personal Particulars

1.1 Family Name, Given Name and Popular Name:

Takakazu’s full name is Seki Shinsuke Takakazu [關新助孝和] with family name
Seki, popular name Shinsuke and given name Takakazu. Hereafter we will call him
Takakazu, to avoid confusions. Takakazu was born in the Uchiyama family and Seki
is the name of his adoptive family.

Takakazu is the second son of Uchiyama Shichibei Nagaakira [内山七兵衛永明],
according to the records in the Extinct Family Trees [S6], the Kansei Family Trees
[S7] and the Family Tree of the Uchiyama [S9, S16] written in the Kansei period
(1789–1800).4

1.2 Date of Birth:

It is known that Takjakazu’s real father Uchiyama Shichibei Nagaakira became a
guard at the main tower [天守御番 Tenshu-omban] in the Edo Castle on 7 November
Kan’ei 16 (1639) and salaried by 100 koku plus 50 hyo from 15 November Kan’ei
18 (1641). So, the date of Takakazu’s birthday should be after 1640, for he was born
in Edo according to the Extinct Family Trees [S6]5.

Shichibei Nagaakira died on 2 May Shōhō 3 (1646) and Takakazu’s eldest brother
Uchiyama Shichinosuke [内山七之助] (later, Shichinosuke Nagasada [七之助永貞])
succeeded his father as the head of the Uchiyama on 28 November Shōhō 3 (1646)
according to the Family Tree of the Uchiyama [S9, S16].

4 He is, however, the third son according to the family tree of the Seki in the History of Master
Seki [關夫子之由緒 Seki Fūshi no Yuisho] which is a chapter of the Stories of Mathematicians by
Fujita Teishi (1734–1807) [藤定資算家談 Tō-Teishi-Sanka-Dan] (See [9]).
5 This is also confirmed by another Kōfu Samurai Directory added in proof at the end of this paper.
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Recently the author confirmed the date of succession in an official document: a
record in the Annual Records of Tokugawa Shōgunate [S1] reads as follows:

“The following persons to be ordered to succeed their own fathers, (lines omitted).
The late Shichibei to be succeeded,
with 150 koku, by Uchiyama Shichinosuke (lines omitted).
The order was given at the Northern Anteroom of the Room of Azalea
to the persons concerned and their relatives by Minister Izu-no-kami.
The ceremonies were also attended by Ministers Bungo-no-kami and Tsushima-no-kami.”6

Takakazu had an elder sister according to articles on the Uchiyama in the Death
Register [過去帳 Kako-chō] of Jōrinji Temple [4], an elder brother Shichinosuke
Nagasada born in Fujioka before Kan’ei 16 (1639) and two younger brothers Shin-
gorō (or Shōken) Nagayuki [新五郎 (松軒) 永行] and Kojūrō (or Heisuke) Na-
gayoshi [小十郎 (平助)永章] according to the Family Tree of the Uchiyama [S9,
S16]. Judging from the death date of his real father, we can conclude from the facts
mentioned above that Seki Takakazu was born between 1640 and 1645 (See [7]).
Remark. There is another conjecture about the date of his father’s death. Ac-
cording to the Kansei Family Trees [S7], his fourth son Nagayoshi was 65 years old
when he died in the year Kyōhō 20 (1725). If this statement is true, the date of Na-
gaakira’s death should be later than 1725−65 + 1 = 1661. But this contradicts the
record in the Family Tree of the Uchiyama [S9, S16]. In [9], Matsusaburō Fujiwara
left the question open. Muramoto, a descendent of the Uchiyama, conjectured in [8]
that Nagaakira died on 3 May Kambun 2 (1662). Young Ken’ichi Sato [11, p.39]
followed it on showing an evidence from the Tokugawa Samurai Directory [S8]:

“Uchiyama Kojūrō (or Heisuke) Nagayoshi was 45 years old and became a retainer of the
Shōgunate in Hōei 2 (1705).”

Jōchi [3] also supported this conjecture.
We suppose that there might be some mistakes of numbers in the Tokugawa

Samurai Directory (For the details, see Majima [7]). For example, while Takebe
Katahiro was born in Kambun 4 (1664) according to the Family Tree of the Takebe
[S12] written in the Kansei period, he was 43 years old in Hōei 6 (1709) according
to the Tokugawa Samurai Directory; because 1709−1664+1 = 46 > 43, there is a
discrepancy in accounts.

The succession from Nagaakira to his eldest son Shichinosuke (later Nagasada)
took place on 28 November Shōhō 3 (1646) as confirmed by the official record.
Thus their conjecture on the date of Nagaakira’s death is refuted.

6 The original text reads as follows:
　　　一　実子跡目被　仰付之面々之所謂　 (中略)
　　　七兵衛跡
　　　一　百五拾石　内山　七之助　 (中略)
　　　右者躑躅之間次之北之間ニ而被　伝之
　　　右之面々或其身或類親之族招　殿中伊豆守伝
　　　上意之趣豊後守対馬守列座也
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1.3 Place of Birth:

According to the Family Tree of the Uchiyama [S9, S16] written in the Kansei pe-
riod, Uchiyama Shichibei Nagaakira had lived in Fujioka and came to Edo (now
Tokyo) to serve the Tokugawa Shōgunate as a guard at the main tower, given a res-
idence around Ushigome [牛込] (now in Shinjuku-ku, Tokyo). Therefore, the place
of birth of Seki Takakazu is either Fujioka or Edo (See [2]); in the latter case, it is
the place marked as the Guard at the main tower and the Fire Guard on the Map of
Edo in the Shōhō period, near Jōrinji Temple, because his father’s title, the Guard at
the main tower [御天守御番 Gotenshu-on-ban] could be put in other Chinese char-
acters [御殿主御番] with the same meaning and the same Japanese pronunciation.
The place is near Kagurazaka [神楽坂] Station of Tokyo Metro at present (See [7]).

1.4 Marital Status:

Takakazu got married and had two daughters, who unfortunately died prematurely
in Jōkyō 3 (1686) and Genroku 11 (1698), respectively, again according to the Death
Register [4].

According to the Kansei Family Trees [S7] Takakazu had two adopted sons,
Heizō and Shinshichi(rō). The latter was his nephew, i.e. a son of his brother
Uchiyama Shōken Nagayuki and succeeded Takakazu after his death. Unfortunately,
the Seki Family was made to be extinct by the Shōgunate because of the misconduct
of Shinshichi(rō) in Kyōhō 12 (1727) according to the Kansei Family Trees [S7] or
in Kyōhō 20 (1735) according to the Extinct Family Trees [S6] (See [9], [11]).

1.5 Home:

Takakazu was living in front of Tenryūji Temple [天龍寺前] according to the Kōfu
Samurai Directory of Genroku 8 (1695) [S15], in which we find the following lines:

“Chief of division of provisions, the executive allowance of 10 nin-fuchi

[Family Crest] Gotoku, [Address] Residence at Mita,

[Salary] 200 hyo, [Name] Yamori Sukejūrō,

[Family Crest] Butterfly, [Address] Tenryūji-mae,

[Salary] same as Yamori, [Name] Seki Shinsuke.” 7

7 The original text reads as follows:
　　御賄頭　　御役料拾人扶持
　　　五徳　　　三田御屋敷
　　　弐百俵　矢守助十郎
　　　蝶　　　　　天龍寺前
　　　同　　　関新助
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“Tenryūji-mae” is the name of place meaning “in front of Tenryūji Temple” but
there were two places named after “Tenryūji-mae”: one in Ushigome and the other
in Yotsuya. The reason of this confusion is the great fire in Tenna 3 (1683): after
the fire the Tenryūji Temple located in Ushigome was obliged to move to Yotsuya.
Even though the name was used for the place in Ushigome until the end of Edo era,
many records and facts suggest that Takakazu was living at the place in Yotsuya at
that time. The author showed some evidence in an article written in Japanese but do
not enter into the details here (See [7]).

We do not know where he lived in the other periods of his life, but there were
some possibilities (See also [7]).

1.6 Date of Death:

Takakazu died on 24 October Hōei 5 (1708), i.e. 5 December 1708 in the current
solar calendar, was given the posthumous Buddhist name, Hōgyōin(den)-Sōtatsu-
Nisshin-Koji and was buried in Jōrinji Temple Cemetery, located in Shichiken-
teramachi [七軒寺町], Ushigome, Edo.8 The tombstone is still kept in good shape
along with a monument which was originally raised by Honda Toshiaki [本多 (田)
利明] et al. in Kansei 6 (1794) (See [2]), repaired on the occasion of the 250th
posthumous anniversary of Seki Takakazu in 1958.

1.7 Family Crest:

The family crest carved on the tombstone is of Seki-phenix not of crane nor of
butterfly, even though his adoptive family crest was of butterfly according to the
Kōfu samurai Directory of Genroku 8 (1695) [S15] quoted above (cf. [10], [11],
[3]).

A distinct picture of the part was taken by a professional cameraman and was
reproduced in [4]. Here are an example of Seki-phenix and a photo taken by the
author.

8 The present address is Benten-chō [弁天町], Shinjuku-ku [新宿区], Tokyo.
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2 Professional Experience

2.1 On the Seki Family and His First Career

Takakazu’s adoptive father died on 9 August, Kambun 5 (1665), was given posthu-
mous Buddhist name, Ungan-Sōhaku-Shinshi [雲岩宗白信士] and buried in Jōrinji
Temple Cemetery according to the Death Register.

By the Kōfu Diary [S3] of the year Kambun 5 (1665), there was only one posthu-
mous succession of a family named Seki, the popular name of the head of the family
was Jūrōemon [十郎右衛門], and the popular name of adopted heir was Yaemon
[弥右衛門]. The following are quoted from the articles of Kambun 5 (1665) and 7
(1667) of the Kōfu Diary [S3]:

23 November, Kambun 5 (1665)

To be ordered to succeed the late father as the head of family (lines omitted)
Adopted heir to succeed the late Seki Jūrōemon (lines omitted)

18 December, Kambun 5 (1665)

(lines omitted) Seki Yaemon expressed his gratitude to the lord (lines omitted)

21 December, Kambun 5 (1665)

Seki Yaemon be ordered to work as a member of a team for defense of the lord or the fief

18 January, Kambun 7 (1667)

(lines omitted) salaried by 100 hyo succeeding the late adoptive father at this moment, plus
the allowance of 3 nin-fuchi

Seki Yaemon (lines omitted) 9

9 The original text reads as follows:
寛文五年十一月二十三日
　跡目被仰付候次第
　一　但馬守出雲守壱岐守淡路守番頭詰座敷ニ列座有之而被申渡之
　 (養子あるいは実子　父親の跡目、という記載が 6件先にあるが略)
　　　　　　　　　　　　　　　花房平左衛門被仰渡候
　養子関十郎右衛門跡目 (もう一人の跡目の記載があるが略)
　右何茂跡目御定之通被仰付候間勘定頭両人之衆可申合旨但馬守申渡之

寛文五年十二月十八日
　 (何人か跡目のお願いがあるが略)
　関弥右衛門
　右鳥目を以中御座敷縁頬杉戸障子際ニテ御礼
　申上候　殿様中之御座敷囲際ニテ御立座被遊也 (もう一人の跡目のお願いがあるが略)

寛文五年十二月二十一日
　一　衝立之間壱岐守淡路守列座関弥右衛門呼出之
　小十人エ御番被為入候間勤番可仕候也
　御礼御出座無之

寛文七年正月十八日
　 (何人かの加増があるが、前略)
　養父跡目百俵被下之
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These establish the following facts:

Takakazu’s adoptive father was Seki Jūrōemon. Takakazu had another popular name Yae-
mon and succeeded his adoptive father. He was ordered to work as a Member of a Team for
Defense of the Kōfu fief with the salary of 100 hyo plus the allowance of 3 nin-fuchi.

Remark. In the literature (cf. [8], [2], [11], [3] etc.), it is traditionally told that the
popular name of Seki’s adoptive father was Gorōzaemon [五郎左衛門] according to
the Kansei Family Trees [S7]. However, there is no popular name of Seki’s adoptive
father either in the Extinct Family Trees [S6] nor in the History of Master Seki by
Fujita Teishi. In his lecture on 9 March 2008, Tatsuhiko Kobayashi told firstly that
it was Gorōemon according to a copy of the Family Tree of the Uchiyama written
in the Kansei period preserved by the National Archives of Japan [S9]. Then, the
author verified that it was also Gorōemon according to a copy of the Family Tree
of the Uchiyama written in the Kansei period preserved by the Tokyo Metropoli-
tan Archives [S16], and finally found that it should be Jūrōemon [十郎右衛門] by
reading the Kōfu Diary [S3] carefully.
Remark. In the year Kambun 10 (1670) Toramatsu (later, Tsunatoyo) [虎松 (後
に,綱豊)] became the heir of the lord of the Kōfu fief officially under the name of
Matsudaira Tsunashige [松平綱重] ), which was a celebration for the fief. The fourth
Shōgun, Tokugawa Ietsuna [徳川家綱] died in Empō 8 (1680) and was succeeded
by Tokugawa Tsunayoshi [徳川綱吉], who became the fifth Shōgun and gave addi-
tionally a hundred thousand koku to the Kōfu fief of two hundred and fifty thousand
koku. It seems that Takakazu had a chance to be promoted to the Chief of a Team
for Defense with a raise of salary on this occasion.

2.2 Land Survey

Between Jōkyō 1 and 2 (1684–1685), Seki signed and sealed copies of some docu-
ments of land survey in some villages in Kōshū ruled by the Kōfu fief as one of the
three responsible officers in charge; the other two were Ogiwara Magoshirō [荻原
孫四郎] (1635–1694), and Toda Kahei [戸田加 (嘉)兵衛] (1623–1697).

Some of the copies are preserved in the Meiji University museum, the Yamanashi
prefectural museum, and a private museum of abacuses [そろばん Soroban] in
Yamanashi prefecture (cf. [10], [11]).

We wonder whether or not Seki went to the villages to survey lands by himself,
or just signed and sealed documents. However, Ogiwara Magoshirō, the chief of
deputies in the prefecture [代官触頭 Daikan-Furegashira] and Toda Kahei, the su-
perintendent officer [目付役 Metsuke-Yaku], used to go to Kōshū in the Kambun
period for their tasks according to the Kōfu Diary ([S3]) and it is suggested that Seki
also used to go there to survey lands as the youngest responsible officer in charge;
the ages of the other two are known by the Family Tree of the Ogiwara [S10] and by

　今度三人扶持被下
　関弥右衛門 (もう一人の加増があるが略、以下略)
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the Family Tree of the Toda [S11], respectively. He seems capable of commanding
to survey lands by himself because of his mathematical talent.

2.3 Chief of the Division of Provisions of the Kōfu Fief

In some years after the assumed promotion, it is suggested that Seki turned to a
position before Genroku 8 (1695).

The Yamanashi Prefectural Museum is preserving a Kōfu Samurai Directory of
Genroku 8 (1695) [S15]. In it, Seki was a Chief of the Division of Provisions of the
Kōfu fief, salaried by 200 hyo plus the executive allowance of 10 nin-fuchi (cf. [10]).

In the Kōfu Palace Diary [S4], there is one item with his name, and four items
with his title. One record is as follows: two confectioners asked them to offer sweets
to the lord of Kōfu in front of chief senior retainers on the five seasonal festivals
each. Other items are concerned with their subordinates. He seems busy with just
administrative matters, not related to mathematics.

2.4 Drawing Maps

In Genroku 11 (1698), he signed a letter to officers of the Shinshū-Matsushiro fief
to draw the boundary between the two fiefs as one of the three responsible officers
in charge; the other two were Okumura Sakuzaemon [奥村作左衛門] (1653–1734),
the superintendent officer, and Habuto Seizaemon [羽太清左衛門] (1645–1719),
the Chief of Division of Accounts [勘定頭 Kanjō-Gashira] of the Kōfu fief (cf. [11]).

We wonder whether Seki went to the prefecture to draw boundaries by himself
or not. However, he seemed capable of commanding to draw boundary by himself
because of his mathematical talent.

2.5 Examiner of the Division of Accounts

Arai Hakuseki Kimmi [新井白石君美] (1657–1725) was employed by the lord of
Kōfu as a Confucian master from December Genroku 6 (1693) with an allowance
of 40 nin-fuchi. He got a raise of his salary on 25 December Genroku 15 (1702),
namely, salaried by 200 hyo plus the allowance of 20 nin-fuchi. At that time, Seki
Shinsuke (Takakazu) was one of the 7 responsible endorsers on it. Arai recorded it
in his diary [新井白石日記] (cf. [10, the part of Kobayashi]). According to some
Kōfu Samurai Directories [S17], [S2], [S5], [S13],10 it was reasonable because, in

10 There is another Kōfu samurai directory [甲府殿御分限帳 Kōfu-dono go-Bugen-chō], which is
included in the library of Kai [甲斐叢書 Kai-sōsho] and in Collection of document concerning Kai
[甲斐志料集成 Kai-shiryō-shūsei] published in 1935.
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the year Genroku 14 (1701), Seki had been promoted to an examiner attached to
chiefs of the division of accounts11 of the Kōfu fief, salaried by 250 hyo plus the
executive allowance of 10 nin-fuchi, according to the Annual Records of Tokugawa
Shōgunate [S1] and the Kansei Family Trees [S7]. According to some Kōfu Samu-
rai Directory, he, with the title, was told to be supported by the salary of 300 hyo (cf.
[10, the part of Kobayashi]). It seems to be recorded like that because 10 nin-fuchi
was approximately equal to 50 hyo and 250+50=300.

2.6 Chief of a Team of Ceremonies in the Household of the West
Castle

In December Hōei 1 (1704), the lord of Kōfu Matsudaira Tsunatoyo [松平綱豊]
became officially the heir of the fifth Shōgun, Tokugawa Tsunayoshi, and moved
to the West Castle [西の丸] of the Edo Castle. Retainers of Tsunatoyo also moved
to the West Castle of Tokugawa Shōgunate. On this occasion, Seki Takakazu was
promoted to the Chief of a Team of Ceremonies in the Household [納戸組頭Nando-
kumi-Gashira] of the West Castle on 12 December Hōei 1 (1704) and salaried by
250 hyo plus the executive allowance of 10 nin-fuchi and later 300 hyo according
to the Kansei Family Trees [S7]; His salary 200 hyo according to the Extinct Family
Trees [S6], seems to be a mistake (cf. [10, the part of Kobayashi]).

2.7 Retirement on a Pension

On 4 November Hōei 3 (1706), according to the Annual Records of Tokugawa
Shōgunate [S1], he retired on a pension on account of illness. Before his retire-
ment, his adopted son, Shinshichi(rō) Hisayuki [久之], was recognized officially at
the presence of the Shōgun Tokugawa Tsunayoshi, on 1 October Hōei 3 (1706).
Hisayuki succeeded his late adoptive father Takakazu as the head of the Seki family
on 29 December Hōei 5 (1708) according to the Kansei Family Trees [S7]; with the
salary of 300 hyo according to the Tokugawa Samurai Directory [S8]. But the salary
was recorded 200 hyo in the Extinct Family Trees [S6], which seems to be a mistake.
(cf. [10, the part of Kobayashi].)

11 The Examiner of the Division of Accounts [勘定吟味役 Kanjō-Gimmi-Yaku] is originally called
the Examiner Attached to Chiefs of the Division of Accounts [勘定頭差添筋 Kanjō-Gashira-
Sashisoe-no-suji] [S17] and an extra officer of the Division of Accounts [勘定方御用改 (役)
Kanjō-kata-Goyō-Aratame (Yaku)] [S2, S5, S13] in the Kōfu fief.
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3 Education and Supervisors

We know very little about his education. Probably he was self-educated by reading
books published in those days, the Book on Things Old and New [塵劫記 Jinkōki],
the first edition in Kan’ei 4 (1627) and the last edition with 12 open problems in
Kan’ei 18 (1641) by Yoshida Mitsuyoshi [吉田光由] (1598?–1672), the Unques-
tionable Methods in Mathematics [算法闕疑抄 Sampō-Ketsugishō] with preface in
Manji 2 (1659) published in Kambun 1 (1661), by Isomura Yoshinori [礒村吉徳]
(?–1710), the Platter of Mathematics [算俎 Sanso] published in Kambun 3 (1663)
by Muramatsu Shigekiyo [村松茂清] (1608–1695), the Systematic Treatise of Arith-
metic [算法統宗 Suànfǎ Tǒngzōng] published in 1592 by Cheng Dawei [程大位],
the Yang Hui’s Methods of Mathematics [楊輝算法 Yáng Huı̄ Suàn-Fǎ] published
in 1275 in China, reprinted later in Korea and imported into Japan in Bunroku [文
禄] period (1592–1596) and An Introduction to Mathematics [算学啓蒙 Suàn-Xué
Qı̌-Méng] published in 1299 in China by Zhu Shijie [朱世傑], reprinted between
1419 and 1450 in Korea and in 1658 in Japan.12

Here, we discuss on his study of Yang Hui’s Methods of Mathematics. Not only
Seki Takakazu transcribed it, but also correcting mistakes of the original he left
his notes as a revised edition. There are two extant copies: a copy by Ishikuro
Nobuyoshi [石黒信由] is preserved in Shinminato Museum, Toyama, and the other
copy had been preserved by the late Yabuuchi Kiyoshi [薮内清]. Yabuuchi’s one
is dated the last ten days of May, Kambun 13 (1673) [寛文癸丑仲夏下浣日] and
the other one in Shinminato Museum is with the date of the last ten days of May,
Kambun 1 (1661) [寛文辛丑仲夏下浣日].

The copier of the latter one seems to have amended the former one by overwriting
[辛] on [癸] because there were no such days. However, the former one is of the
right form, since the Kambun period lasted for approximately 13 years, followed by
the Empō period, and “21 September Kambun [寛文癸丑]” became “21 September
Empō [延宝癸丑].” Even though Seki had started to read Yang Hui’s Methods of
Mathematics before the last year of Kambun, he seems to have written down the
date after studying it completely (See [12, the part of Ueno]).

Since Takakazu normally succeeded his adoptive father as the head of the Seki
family on 18 December Kambun 5 (1665) and started to work for the Kōfu fief at
the same time, the difference of two dates is of no importance for his career.

Concerning An Introduction to Mathematics, his student, Takebe Katahiro, repro-
duced the original text with appropriate commentaries as the Colloquial Commen-
taries of “An Introduction to Mathematics” in Genroku 3 (1690). It seems that there
was, to some extent, advice from Seki to Takebe.

For calculating an approximation of π , Seki followed the method in the Plat-
ter of Mathematics published in Kambun 3 (1663) by Muramatsu Shigekiyo and
developed the idea more fully. Using the so-called acceleration method, he finally

12 By Haji Dōun [土師道雲] and Hisada Gentetsu [久田玄哲]; in 1672 as “An Introduction to
Mathematics” and Comments [新編算学啓蒙註解 Shimpen Sangaku Keimō Chūkai] by Hoshino
Sukeemon Sanenobu [星野助右衛門実宣] and in 1690 as Colloquial Commentaries of “An Intro-
duction to Mathematics” [算学啓蒙諺解大成 Sangaku Keimō Gennkai Taisei] by Takebe Katahiro.
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declared that he adopted “the number weakly less than 3.14159265359 as the fixed
circle number [定周 teishū] instead of π . The author discussed the reason why Seki
did so. See [6] and [12, the part of Ogawa].

4 Teaching Experience:

There were some students like Mitaki Shirōemon Gunchi [三滝四郎右衛門郡智],
Mimata Hachizaemon Hisanaga [三俣八左衛門久長], Araki Hikoshirō Murahide
[荒木彦四郎村英] and Takebe brothers (cf. the Master Araki’s Comments [荒木彦
四郎村英先生茶談 Araki Hikoshirō Murahide Sensei Sadan])13.

Concerning Takebe Kataakira (1661–1716) and Takebe Katahiro (1664–1739),
we knew by the Biography of the Takebe [S13] written by Kataakira, that Takakazu
taught them mathematics from 1677, and wrote the afterwords [跋 batsu] at the ends
of the Mathematical Methods for Clarifying Slight Signs [研幾算法 Kenki-Sampō]
published in Tenna 3 (1683) and the Colloquial Commentaries of Operations in the
Mathematical Methods for Exploring Subtle Points [発微算法演段諺解 Hatsubi-
Sampō Endan-Genkai] published in Jōkyō 2 (1685) by Takebe Katahiro, the most
brilliant student of Seki. However, it has not been known where and how he taught
them.

In the afterword of the Colloquial Commentaries on Operations, Seki wrote his
opinion on mathematics:

“For what does Mathematics exist? We study it in order to know methods for solving every
problem, easy and difficult. without an exception.

However sophiscated a theory may be, it is unorthodox of mathematics if its solving method
is roundabout one.”14

We suppose that Seki gave his manuscripts to students, they read them making
copies and asked Seki what they could not understand, then he gave answers.
Remark. The Japan Academy preserves a scroll which was told to be a license for
mathematics addressed to Miyachi Shingorō [宮地新五郎] given by Seki Shinsuke
Fujiwara Takakazu [関新助藤原孝和] with his seal. However, young Ken’ichi Sato
doubts whether it was made by Seki and supposes that it was done by Araki (See
[11]).

13 There are several copies, preserved by the Japan Academy [日本学士院], Modern Science Mu-
seum of Tokyo University of Science [東京理科大学近代科学資料館] and so on.
14 The original text reads as follows:
　　算学何為乎学難題易題尽无不明之術也
　　雖説理高尚觧術迂闊者乃算学之異端也
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5 Published Research Works

5.1 Mathematical Methods for Exploring Subtle Points

There is only one book published in his life: the Mathematical Methods for Exploring
Subtle Points [2, pp. 103–120]15 with a preface dated 14 December Empō 2 (1674),
which corresponds to 9 January 1675 in the solar calendar, and an afterword writ-
ten by his students Mitaki Shirōemon Gunchi and Mimata Hachizaemon Hisanaga.
This book was intended to give the answers to all the 15 open problems posed by
Sawaguchi Kazuyuki [沢口一之] in his Mathematical Methods Old and New [古
今算法記 Kokon-Sampōki] published in Kambun 11 (1671). In the book, however,
Seki gave only rough sketches to derive algebraic equations and the degrees of the
final algebraic equations to solve the problems. He did not write in detail how to
derive the final algebraic equations nor gave any numerical solutions.

According to the preface of the book, the Mathematical Methods for Exploring
Subtle Points was published because Seki’s students insisted on reading his answers
to the problems in order to learn mathematics. But, in reality, the book was too
difficult for them to read and people understood Seki’s method only after Takebe
Katahiro published eleven years later the Colloquial Commentaries on Operations
(in the Mathematical Methods for Exploring Subtle Points) in 4 volumes in Jōkyō
2 (1685). Takebe’s Commentaries explained the algebraic expressions side writing
method [傍書法 bōshohō] of Seki for the first time, which were necessary for the
algebraic operations to derive the final equation of one unknown.

There are two versions of the Mathematical Methods for Exploring Subtle Points:
(This fact was found firstly at the present day by young Ken’ichi Sato. See [11]) the
difference was found in the solution to the 7th problem. Seki had corrected the so-
lution after the first publication as a natural behavior of mathematicians and Takebe
published the revised version as the first volume of the Colloquial Commentaries on
Operations.

5.2 Compendium of Mathematics

The Compendium of Mathematics [2, pp. 267–370]16 is a posthumous publication
of Seki’s writings which was edited by his students Araki Hikoshirō Murahide and
Ōtaka Yoshimasa [大高由昌] and was published in four volumes [元亨利亭 gen, kō,
ri, tei].

15 As far as we know, there are left only four copies: each of the three is preserved by the Japan
Academy [日本学士院], Kansai University [関西大学] and Wasan Institute [和算研究所], respec-
tively and one is of private possession. That in Wasan Institute is different from the others.
16 There are relatively many books left, preserved by organizations, the Japan Academy Wasan
Institute and so on.
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There have been several versions (It was also pointed out at the present day by
young Ken’ichi Sato. See [11]): the differences were in the description of the three
persons: Seki Takakazu, Araki Murahide and Ōtaka Yoshimasa (See [11]). However,
by the afterword at the end of the book written by Araki Hikoshirō Murahide, it is
not doubtable that the works were done by Seki Takakazu himself. For example, the
forth book explaines Seki’s calculation of approximations of π .

5.3 Complete Book of Mathematics

This work was written in 1683 through 1711 by Seki and his students Takebe
Kataakira and Takebe Katahiro. The project to compile a collection of mathemat-
ics started in the summer Tenna 3 (1683), with Takebe Katahiro as the head of the
project. They discontinued writing in the middle of the Genroku period, and named
the temporary book of 12 volumes the Complete Collection of Mathematics [算法大
成 Sampō-Taisei]. In those days, Takebe Katahiro was busy with his official duties
and Seki Takakazu was old, ill and not capable of deep thinking of mathematics.
So, from the winter in Genroku 14 (1701), Takebe Kataakira continued to write and
revised it until 1711, and finally finished it as the Complete Book of Mathematics
of 20 volumes.17

This anecdote is based on tthe Biography of the Takebe [S13] written by Takebe
Kataakira. We have no other information about it and no choice not to believe that
it was true. However, we would like to point out that the following things. Firstly,
the purpose of this project seems to publish the collection of Seki’s works: Seki
wrote many manuscripts, for the revised version of Methods of Solving Concealed
Problems [解伏題之法 Kaihukudai no Hō] with the date of 9 September 1683, to
give them to the Takebe brothers near 1683. See [5] by Komatsu. Secondly, we
wonder whether Seki was ill or just busy with his official duties. As was seen in
the previous section, Takakazu was promoted to the Examiner of the Division of
Accounts of the Kōfu fief and got a raise in his salary from the winter of Genroku
14 (1701). He must have been busy with official duties, though, after all, he retired
on a pension on account of illness in Hōei 3 (1706).

The author has a personal experience: he was the dean of faculty some years
ago and busy with many official duties so that he had not much time to think of
mathematical problems deeply.

There are many other books or manuscripts written by Seki. But, the author has
not had much time to investigate them, especially books on astronomy and calen-
dars. So, the reader is kindly referred to other articles in this volume.

17 There are about 20 sets of copies, preserved by organizations, the University of Tokyo [東京大
学], the National Archives of Japan [国立公文書館] and so on [5].
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Source Books:

• Books preserved by the National Diet Library [国立国会図書館]

S1. Annual Records of Tokugawa Shōgunate [年録 Nenroku].
S2. Kōfu Samurai Directory [甲府御分限帳Kōfu go-Bugen-chō], i.e., directory

of retainers belonging to the Kōfu fief.

• Books preserved by the National Archives of Japan [国立公文書館]

S3. Kōfu Diary [甲府日記 Kōfu-Nikki], i.e., Daily records of the Kōfu fief.
S4. Kōfu Palace Diary [甲府御館記Kōfu-Oyakata-ki], i.e., Daily records in the

palace of the lord of Kōfu.
S5. Kōfu samurai Directory of Saishō [甲府宰相綱重卿之御事並御分限帳

Kōfu-Saishō Tsunashige-kyō-no-on-koto narabini go-Bugen-chō], i.e., direc-
tory of retainers belonging to the Kōfu fief.

S6. Extinct Family Trees [断家譜 Dankafu], i.e., Collection of family trees of
extinct families of retainers.

S7. Kansei Family Trees [寛政重修諸家譜 Kansei-chōshū-shokafu], i.e., Col-
lection of family trees of retainers belonging to the Tokugawa Shōgunate in-
quired in the Kansei period (1789–1800).

S8. Tokugawa Samurai Directory [御家人分限帳 Gokenin Bugen-chō], i.e., di-
rectory of retainers belonging to Tokugawa Shōgunate.

S9. Family Tree of the Uchiyama [内山家系譜 Uchiyama Kakei-fu] written in
the Kansei period.

S10. Family Tree of the Ogiwara [荻原家系譜 Ogiwara Kakei-fu] written in the
Kansei period.

S11. Family Tree of the Toda [戸田家系譜 Toda Kakei-fu] written in the Kansei
period.

S12. Family Tree of the Takebe [建部家系譜 Takebe Kakei-fu] written in the
Kansei period.

• Books preserved by the Japan Academy [日本学士院]:

S13 Biography of the Takebe [建部氏伝記 Takebe-shi denki].

• Books preserved by the National Institute of Japanese Literature [国文学研究資
料館]:

S14. Kōfu samurai Directory of Kōmon [甲府黄門次郎様臣下録 Kōfu-kōmon-
jirō-sama-shinka-roku], i.e., directory of retainers belonging to the Kōfu fief.

• Books preserved by the Yamanashi Prefectural Museum [山梨県立博物館]:

S15. Kōfu samurai Directory of Genroku 8 (1695) [甲府様御人衆中分限帳Kōfu-
sama-Goninjūchū Bugen-chō], i.e., directory of retainers of the Kōfu fief in a
period containing September Genroku [元禄] 8 (1695).

• Books preserved by the Tokyo Metropolitan Archives [東京都公文書館]:
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S16. Family Tree of the Uchiyama [内山家系譜 Uchiyama Kakei-fu] written in
the Kansei period.

• Books preserved by the Tokyo Metropolitan Library (the Central Library) [東京
都立図書館 (中央図書館)]:

S17. Kōfu Samurai Directory [甲府分限帳 Kōfu-Bugen chō], i.e., directory of
retainers belonging to the Kōfu fief.

Added in proof

After finishing this article, the author was permitted to read another Kōfu Samurai
Directory [甲府分限帳 Kōfu Bugen-chō] and to print the part of Seki Shinsuke
(Takakazu)’s record, which reads as follows:

[Prefecture of his homeland] Hitachi;
Adoptive father [given Name] Jūrōemon; Real father [name] Uchiyama Shichibei;

[Salary] 250 hyo; [Prefecture of Birth] Musashi (⊃ Edo) ; [Name] Seki Shinsuke;

The executive allowance of 10 nin-fuchi; [Age] 57 in Genroku 14 (1701).

Kambun 5 (1665) His adoptive father Jūrōemon died of a disease. In the same year, or-
dered to succeed the late father as the head of family, salaried by 100 hyo out of the salary
130 hyo of the late father, ordered to work as a member of a team for defense of the Kōfu
fief.
Kambun 7 (1667) Given the allowance of 3 nin-fuchi.

Kambun 10 (1670) Given the salary of 10 hyo in addition.

Empō 8 (1680) Ordered to work as the chief of a team for defense of the Kōfu fief, given
the salary of 90 hyo in addition and canceled the allowance of 3 nin-fuchi.

Genroku 5 (1692) Ordered to work as a chief of the division of provisions.

Genroku 14 (1701) Ordered to work as an examiner attached to the chiefs of the division
of accounts, given the salary of 50 hyo in addition and granted the executive allowance of
10 nin-fuchi.

His adoptive father was listed to belong to the Kōfu fief in Keian 4 (1651).

When he died of a disease, he was being ordered to work as a member of a team for

defense of the Kōfu fief.18

18 The original text reads as follows:
　　　　　　本国常陸　養父関十郎右衛門　実父内山七兵衛　
弐百五拾俵　生国武蔵　　関　新助
　　　御役料拾人扶持　　　　　辛巳五十七
　寛文五乙巳年　養父十郎右衛門病死同年跡式被　仰付御切米高
　百三拾俵之内百俵被下之小十人組御番被　仰付
　同七丁未年　三人扶持被下之
　同十庚戌年　御足米拾俵被下之
　延宝八庚申年　小十人組与頭被　仰付御加増九拾俵被下之　三人扶持者上ル
　元禄五壬申年　御賄頭被　仰付
　同十四辛巳年　御勘定頭ニ差添可相勤旨被　仰付　御加増五拾俵
　御役料拾人扶持被下之
　　養父十郎右衛門儀慶安四辛卯年御帳面ニ而被為附之
　　病死之節者小十人組御番相勤申候
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In the main text, the author explained the facts that he found previously by
reading documents carefully. These records guarantee the corresponding facts cited
above from the Kōfu Samurai Directory, in which there are more information. For
example, Seki was 57 years old in Genroku 14 (1701) according to the above record.
If this is true, he was born in 1645.

According to this Kōfu Samurai Directory, Takebe Katahiro was also recorded to
be 38 years old in Genroku 16 (1703) so that he was born in 1666 by calculation.
However, according to the Family Tree of the Takebe, Takebe Katahiro was born
in Kambun 4 (1664). The author will discuss on this issue of birth years elsewhere
very soon. He will also discuss on the prefecture of Seki’s homeland. Hitachi, which
is the prefecture of the Hanabusa [花房] family of Hanabusa Heizaemon [花房平左
衛門], the messenger between the Seki family and the chief retainers of the Kōfu
fief in Kambun 5 (see 2-1 on p.10).

The author expresses his deep gratitude to the person and his wife who permitted
him to publish Seki Shinsuke (Takakazu)’s record in the Kōfu Samurai Directory of
their possession.
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Some Reflections on Main Lines
of Mathematical Development

Wenlin Li

Abstract There are two major activities of mathematics—theorem-proving and
algorithm-creating. While theorem-proving, which originated in ancient Greece,
had been being the backbone of the deductive tradition in the history of mathemat-
ics, the algorithm-creating, which flourished in ancient and medieval East, formed a
strong algorithmic trend in the evolution of mathematics. The main purpose of this
paper is to argue the indispensable role in advancing the development of mathemat-
ics played by the algorithmic tradition as one of so-called main lines of mathemati-
cal development.

Description of the algorithmic characters of the Oriental mathematics constitutes
the first part of this paper. Some representative Chinese and Wasan algorithms in
ancient and medieval times are observed and their modern implication is discussed.
The second part of the paper analyzes the algorithmic tendency in the origin of
the modern Western mathematics by taking Descartes’ geometry as a case study.
Finally the author proposes some questions about the relation of ancient Oriental
mathematics with main lines of mathematical development for further discussion.

1 Algorithms in Chinese Mathematics

The ancient Oriental mathematics has a strong algorithmic tendency, which paid
more attention to algorithm-creating, especially algorithms for solving equations,
and was therefore very different from the Greek type of mathematics characterized
by the major activity of deductive theorem-proving.
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1.1 Nine Chapters on the Mathematical Art

In the case of ancient Chinese mathematics, such a tendency might have originated
from the Nine Chapters on the Mathematical Art [九章算術 Jiuzhang Suanshu],
in which there is always a paragraph called procedure [術 shu] for each class of
problems at their first appearance. That was, in fact, a method for solving problems
of the class, which was described in an algorithmic form, step by step. Among the
algorithms appeared in the text of Nine Chapters on the Mathematical Art as well
as in the annotations by Liu Hui [劉徽], the following four seem to be fundamental
and of far reaching influence.

The rectangular array method [方程術 Fangcheng Shu]
This method for solving simultaneous linear equations was of three significant ideas:

1. The formal expression of an algebraic equation,
2. Elimination,
3. Negative numbers,

in which rooted more general approach to express algebraic equations and more
complicated elimination of systems of higher equations later in Song and Yuan Dy-
nasties.

The root-extracting method [開方術 Kaifang Shu]
The method listed in Nine Chapters for extracting square and cubic roots is by
nature applicable to solving any quadratic and cubic equations and had been studied
enormously and led eventually to the establishment of an algorithm for numerical
solution of the higher degree equations.

The excess and deficiency method [盈不足術 Ying Buzu Shu]
As an approximating solution of linear equation it was a starting point of a long

series of developments of interpolation which culminated in higher interpolation
[招差術 Zhaocha Shu] companied by the advance of summation of higher order
arithmetic series [垜積術 Duoji Shu] in Song-Yuan dynasty.

The circle dividing method [割圓術 Geyuan Shu]
Though being different from the above three, not in the category of equation-
solving, but it was a typical algorithm of treating geometrical problems and offered
an infinite approximating procedure for calculating π , arc lengths and the area of
circle segments.

Rectangular array → Celestial elements, Four elements
Root-extraction, celestial elements → Positive-negative root-extraction
Excess and deficiency → Higher interpolation, Summation of high powers
Circle dividing → Infinite approximating algorithms
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The algorithmic tradition originated from Nine Chapters and developed around
equation-solving reached its peak in Song and Yuan dynasties in China. To illustrate
the algorithmic feature of such a development we observe mainly two cases here.

1.2 Qin Jiushao’s Book of Mathematics in Nine Chapters

In his Book of Mathematics in nine Chapters [数書九章 Suanshu Jiuzhang] Qin
Jiushao [秦九韶] (1202?–1261) solved the equation of higher degree

f (x) = a0xn +a1xn−1 + · · ·+an−1x+an = 0 (1)

with positive and negative numerical coefficients ai. His method is known as the
positive-negative root-extraction method [正負開方術 Zhengfu Kaifang Shu].

Let a0 > 0, and an < 0. He first obtained the initial figure c of the root x (in Qin’s
term, initial quotient [初商 Shou Shang] by trial and error.

Let x = c+h. Then we have a new equation for h:

f (h) = a0hn +a1hn−1 + · · ·+an−1h+an = 0, (2)

from which Qin suggested the next figure of the root, succeeding quotient [續商 Xu
Shang] and starts the operations all over again. Qin gave a mechanical algorithm for
calculating the coefficients ai of the reduced equations, which is in fact as follows:

實 shi an r1
n−1c+an = r1

n
(= an)

方 fang an−1 r1
n−2c+an−1 = r1

n−1 r2
n−2c+ r1

n−1 = r2
n−1
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上廉 an−2 r1
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. . .
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1

(= a1)
隅 yu a0 a0 a0 a0 a0 a0

(= a0)

The method contained two important conceptual developments of algorithmic
implication:

1. Binomial expansion for integral exponents (Yang Hui triangle);
2. Infinite approximation of irrational number in decimal fractions.
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Qin Jiushao’s procedure was an iterative infinite approximating process which
allows to approximate a real number at any given accuracy. The idea had already
appeared in the root-extraction method itself in Nine Chapters. The text for the
root-extraction method pointed out that there exists unextractable case, for which
Liu Hui added an annotation as follows:

“To find the successive digits of a decimal fraction, set the digits as numerators, and take
ten as the denominator at the first step, one hundred for the second step and so on. The more
the steps, the finer the fractions, till the number omitted . . . is negligible.”

1.3 Zhu Shijie’s Four Elements Method

Let’s simply cite an instance from Zhu Shijie’s work Jade Mirror of Four Elements
[四元玉鑑 Siyuan Yujian] (1303):

Problem Suppose we have a right triangle such that the sum of the shorter leg
[勾 Gou], the longer leg [股 Gu] and the hypotenuse [弦 Xian], divided by the
difference Xian minus Gu is equal to the product Gou times Gu, and that the sum of
the difference Gu minus Gou, and Xian, divided by the difference Xian minus Gou
is equal to Gou. Find Xian.

Zhu did as follows:

1. First this geometrical problem is reduced to a system of algebraic equations (this
is what the ancient Chinese mathematicians often did). Using three Chinese
characters Heaven [天 Tian], Earth [地Di] and Human being [人 Ren] for three
unknowns Gou, Gu and Xian, Zhu expressed the system of equations which
amounts to :

xyz− xy2 − z− x− y = 0,

xz− x2 − z− y+ x = 0,

z2 − x2 − y2 = 0

in modern notations.
2. Applying his eliminating procedure, Zhu eliminated first y, then x and obtained

the single equation in one unknown z:

z4 −6z3 +4z2 +6z−5 = 0.

The last equation could be solved by the standard procedure for numerical so-
lution of equations of higher degrees which was well developed by Song math-
ematicians as mentioned above. Zhu finally obtained z = 5 as the solution re-
quired.

In summary, the algorithmic tradition from Nine Chapters time down to Song-
Yuan Dynasty showed the following main characters:
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1. Arithmetization or algebrization of geometrical problems. Geometrical prob-
lems were usually reduced to algebraic equations, or solved simply by a set of
standard iterative calculation;

2. Paying great attention to seek mechanical algorithms for solving equations;
3. Sophisticated in infinite approximating process.

We may say that it was the activities of above characters constituted the main line
of Chinese mathematics from Han to Song–Yuan, although there appeared much
endeavor for demonstration during Liu (Hui)–Zu (Chongzhi) times which came to
an abrupt end during the sixth century.

2 Algorithms in Wasan

What’s the potential of Song–Yuan mathematics with such characters? There is no
answer in classic Chinese mathematics itself, since it eventually declined after Ming
Dynasty. However, where Chinese mathematics stagnated, Japanese mathematicians
took up and made their breakthrough. It seems that one of original characters of
Wasan mathematicians was the synthetic use of methods they learnt from Chinese
mathematical texts to create more advanced methods. We observe also some exam-
ples.

2.1 Theory of Circles

In calculating volume of a sphere, Japanese mathematicians in the 17th extended the
circle dividing method to the cases of solid figures (see the figure above). Instead of
cutting a circle in plane, they cut a sphere of radius R into n slices of equal height

DiDi+1 =
R
n
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Considering each slice as a frustum, which was in turn considered as a cylinder
with the same height and the average bottom, calculating volumes of each cylinder
and summing up all together, they obtained the approximate volume of the sphere:

Vsphere ≈
n

∑
i=1

π
4
·

AiB2
i +Ai+1B2

i+1

2
· R

n

In his Essential Mathematics [括要算法 Katsuyō Sanpō] Seki Takakazu found
that the differences of neighboring cylinder volumes constitute a geometrical pro-
gression, and used further his accelerated approximation method [増約術 zōyaku
jutsu] to get his result of volume of the sphere more effectively.

2.2 Higher Interpolation Formulas

Seki applied the interpolation creatively to calculate the length of an arc, which
required differences of higher degree and led him to his discovery of Chaotic Inter-
polation Method [混沌招差術 konton shōsajutu]:

f (x) = f (x1)+ k1(x− x1)+ k2(x− x1)(x− x2)+ · · ·+ kn(x− x1)(x− x2) . . .(x− xn)

amounting to Newton’s formulae and enlightened eventually Takebe Katahiro to
introduce infinite series such as sine series.

2.3 Elimination theory for higher equations of multi-unknowns

Integration of rectangular array method and celestial element method gave birth
to the elimination theory for higher equations of multi-unknowns. For the simplest
case of two unknowns {

F(x1,x2) = A0 +A1x1 = 0,

G(x1,x2) = B0 +B1x1 = 0,

A0,A1,B0,B1 being polynomials of unknown x2 only, Zhu Shijie used a process
called Elimination by Out-In Mutual Multiplication [内外互乘相消 Zhongwai Hucheng
Xiangxiao] to eliminate x1 and obtained

H(x2) = A0B1 −A1B0 = 0.

H(x2) is a polynomial of x2 only, and can be solved by celestial element method.
More complicated cases can be solved in principle by repeatedly using the above

Elimination by Mutual Multiplications [互乘相消] process though the calculations
became more and more heavy as the number of unknowns increased. Zhu Shijie
did the work for systems of polynomial equations of up to four unknowns [四元
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術 Siyuan Shu], but the limitation of the number of unknowns expressed on the
counting board prevented him from going further to formalize his method. Japanese
mathematicians did not know Zhu’s work, they used jointly their knowledge of rect-
angular array method and celestial element method to create their own theory of
elimination with two breakthroughs :

1. Their method is applicable in principle to polynomial equations of any number
of unknowns, of which the motivation might be attributed to stronger tendency
of algebrization of geometric problems among Wasan mathematicians such as
[六斜術 rokusha jutu] that made them encounter often cases of multi-unknowns.

2. they formalized the whole operation of elimination that led them to the discov-
ery of determinants (see [3] or [1]).

割圓術 (summation of sequences) → Theory of circles [圓理] (naı̈ve calculus)
方程術 (rectangular array method) → Elimination theory for higher equations
天元術 (celestial element method) of multi-unknowns with the introduction

of determinants
招差術 (interpolation) → Infinite series,
垜積術 (sums of powers) Bernoulli numbers

3 René Descartes’ Geometry

Seki Takakazu was contemporary of Newton and Leibniz, a period which was cru-
cial for European mathematics and two events have been considered as milestones—
the invention of Analytic Geometry and establishment of Calculus. Researches have
shown that in both cases strong algorithmic tendency was embodied. Establishment
of calculus was in fact an achievement of long effort of mankind in search for in-
finitesimal algorithms. The role algorithmic thought played in the process has been
argued convincingly by K. A. Rybnikov [4]. I shall discuss here mainly Descartes’
creation of the analytic geometry as an example.

It is well known that Descartes’ analytical geometry was in fact an algebrization
of geometry, that is already poles apart from the Euclidean way. The further question
is how Descartes created his analytical geometry. By reading of Descartes’ sources
including his methodological works, we could find that the motivation which led
Descartes to his new geometry was even more along with the algorithmic tradition.

In his unfinished work titled Rules for the Direction of the Mind (1619–1628) (ab-
breviated here after as Rules), Descartes criticized strongly the “superficial demon-
stration” of the Greek which did not seem to teach people “why those thing are
so and how they discovered them.” Being convinced that the Greek had made their
discoveries “more frequently by chance,” Descartes felt that there is the need of a
method for finding out the truth. The major objective of the Rules was right to search
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for a general method for finding out the “truth,” which Descartes called “universal
mathematics” (in Latin, “mathesis universalis.”) There is no definition of what the
so-called “universal mathematics” is in Descartes’ works, and it has aroused much
debate among Cartesian scholars. According to Chikara Sasaki, “mathesis univer-
salis” meant in Descartes’ symbolic algebra as the program of algebraic analysis
(see Chikara Sasaki [5]). The rest texts of the Rules after rule IV shows clearly the
algebraic implication of Descartes’ universal mathematics where Descartes offered
in fact a universal problem-solving program which can be summarized as follows:

1. Reduce any kind of problem to a mathematical problem;
2. Reduce any kind of mathematical problem to a problem of algebra;
3. Reduce any problem of algebra to a system of algebraic equations;
4. Reduce the system of algebraic equations to a single equation.

The extant version of the Rules does not offer readers any detail about what
happens after reducing a problem to a single algebraic equation, since the text of
the book which should have originally contained thirty six rules breaks off abruptly
after rule XXI. Nevertheless, a comparative reading of the Rules and Descartes’
Geometry (1637) shows that Descartes realized definitely his program of “universal
mathematics” in the realm of geometry in his classic work Geometry.

The Geometry started from where the Rules broke off, that was reduction of all
geometrical problems to a system of algebraic equations and finally to one single
equation with one single unknown z. Descartes wrote the equations in order of the
highest powers of the unknown:

z = b

z2 = −az+b

z3 = −az2 +b2z− c

z4 = az3 − c3z+d4

etc.

Descartes classified equations by their degrees. Then the whole book of the Ge-
ometry was devoted to the construction of roots of each class of equations by a
standard procedure (see Li Wenlin [2]).

It was to treat constructions of equations of the third and higher degrees that led
Descartes to investigate the nature and classification of both curves and equations
and to the coordinate geometry. Coordinate geometry established firmly Descartes’
position as one of the founders of modern mathematics. For Descartes himself, how-
ever, it was little more than a means for his major concern—the standard construc-
tion of equations of higher degree, by which he was able to algebrize the construc-
tion procedures, i.e. to base them on the step-by-step algebraic calculations. At the
end of his Geometry, Descartes wrote:
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“I hope that posterity will judge me kindly, not only as to the things which I have explained,
but also to those which I have intentionally omitted so as to leave to others the pleasure of
discovery. ”

From the above argument we may conclude that the motivation of Descartes’
creation of analytic geometry had little to do with the deductive and axiomatic ap-
proach, but was rather along the algorithmic and mechanical tradition. In comparing
Descartes’ “universal mathematics” program with the way of ancient Chinese and
Japanese mathematicians for problem-solving by establishing equations as intro-
duced above, it seems that both in character belong to the same line of mathemati-
cal development, though they used different mechanical procedure for solving final
algebraic equations of higher degree (Descartes used the standard construction pro-
cess while Chinese and Japanese mathematicians relied on the mechanical algorithm
for obtaining the numerical solutions) and classified equations according different
principle (Descartes classified equations according to their degree and seemed un-
derestimate the difficulty of reducing a system of algebraic equations to a single
equation since he said no words about how he could do that, while Chinese and
Japanese mathematicians distinguished the complexity of equations by the number
of unknowns).

Above argument does never mean that Descartes had known any works of ancient
Chinese or Japanese mathematicians, but it evokes some essential historiographic
questions.

4 Deductive vs. Algorithmic Mathematics

One of the essential questions is:

What’s the main line of mathematical development?

The research on this regard has been greatly advanced by Professor Wu Wen-
Tsun’s work since the mid-seventies of the last century (see Wu Wen-Tsun [6]).
Wu’s research on the history of mathematics strongly suggests two main lines of
mathematics development:

• Deductive (Greek) line—Theorem-proving;
• Algorithmic (Oriental) line—Equation solving and algorithmic creating.

Both are important levers of progress of mathematics and the parts they played
in development of mathematics cannot be considered interchangeable. However, it
appears that, in contrast with the Greek mathematics, the algorithmic tradition in
mathematics received no enough exploration so far as the aspect of its influence
and transmission. To inspire researches in this field, Wu Wen-Tsun proposed and
sponsored to establish the Silk Road Program on the Mathematical and Astronom-
ical Transmission in the History in 2001. The program encourages and supports
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potential young Chinese scholars to work on the mathematical and astronomical ex-
changes between China and other Asian countries in ancient and medieval times.
In the passed years we have sent scholars to Japan, South Korea and Uzbekistan,
promoted international cooperation, and published works (see the series of [8]).
The program is really a long serious pursuit. We cite Professor Wu’s words in his
Chairman Address for the opening ceremony of the International Congress of Math-
ematicians 2002 (see Wu Wen-Tsun [7]) as a conclusion:

“Modern mathematics has historical roots of diverse civilizations. . . . Today we have rail-
ways, airlines and even information highway instead of the Silk Road, the spirit of Silk
Road-knowledge exchanges and cultural mergence ought to be greatly carried forward.”
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Babylonian Number Theory and Trigonometric
Functions:

Trigonometric Table and Pythagorean Triples in
the Mathematical Tablet Plimpton 322

Kazuo Muroi

Abstract The mathematical cuneiform tablet Plimpton 322 is one of the most im-
portant source materials in history of mathematics. It lists fifteen Pythagorean triples
together with a certain table which suggests that one of the angles of a right-angled
triangle decreases from 45◦ to 31◦, as O. Neugebauer explained in detail. However,
we do not know the principle of constructing the fifteen triples and the true purpose
of the table.

In this paper I shall clarify the mathematical meanings of a few technical terms
which occur in the headings of the four columns of the tablet, and also the construct-
ing principle of the listed numbers by analyzing Babylonian calculation methods. As
a result, we can conclude that the Babylonian scribe of our tablet calculated the fif-
teen Pythagorean triples using the trigonometric table of the first column which was
made by a kind of linear-interpolation.

1 Introduction

In measuring of angles and time in our daily life, we usually use the sexagesimal
system of measurement: degrees for angle, minutes and seconds for both angle and
time. Although it is well known that it has come down to us from Babylonia by
way of Greece, it is not entirely clear when and why the sexagesimal system of
units, such as degrees, minutes and seconds, as well as talents, minas, and shekels
in weight, was invented in Mesopotamia. In order to answer the question with confi-
dence we would have to study tens of thousands of administrative cuneiform tablets
of the third millennium B.C., which vary in form and content from site to site where
the tablets have been excavated. Regrettably or naturally, none of us has undertaken
the task yet. Given the difficulty of the task, we had better leave the question aside
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for the moment and concentrate on the decipherment of individual tablets that may
give us some information about the concept of an angle, for example.

The mathematical cuneiform tablet Plimpton 322, which was published by O.
Neugebauer and A. Sachs (Mathematical Cuneiform Texts) [15] in 1945, is one of
the most important source materials in history of mathematics because it clearly
shows that the Babylonian scribes of the Old Babylonian period (about 1900–1600
B.C.) had a good knowledge of Pythagorean triples [15, pp. 38–41]. In fact, fifteen
Pythagorean triples are listed in the tablet together with a certain table which sug-
gests that one of the angles of a right-angled triangle decreases from 45◦ to 31◦,
as Neugebauer once more emphasized [14, pp. 36–40]. For this reason Plimpton
322 has attracted the attention of both mathematicians and historians of mathemat-
ics since its publication. For example, O. Ore says in his book [16, pp. 170–179]
published in 1948 as follows:

In a new publication of cuneiform texts by Neugebauer and Sachs (1945),
there is included a description of a clay tablet from the Plimpton Library at
Columbia University, which bids fair to be one of the most crucial records in
the history of mathematics.

He points out a possibility that a table of the trigonometric function cosecθ could
be constructed by the values given in the tablet.

Another example is the comment on the tablet by V. Katz [4, p. 31]. After having
attempted to explain how to obtain the Pythagorean triples he says:

Why were the particular Pythagorean triples on this tablet chosen?
Again, we cannot know the answer definitively.

As opposed to these careful opinions, E. Robson [17, p. 167] has confidently formed
a judgment on the contents of Plimpton 322:

I show that the popular view of it as some sort of trigonometric table can-
not be correct, given what is now known of the concept of angle in the Old
Babylonian period.

Thus we are not completely successful in interpreting the Pythagorean triples or
the closely related table in the tablet. There are a couple of reasons for it. First, a
few obscure technical terms occur in the headings of the columns and in the fourth
column itself, as we will see in the next section. Secondly, we do not know the
principle of constructing the fifteen Pythagorean triples of our tablet, although we
know the fact that in another tablet the Babylonians derived Pythagorean triples (3,
4, 5), (5, 12, 13), (7, 24, 25), and (19, 180, 181) from the famous formula attributed
to Pythagoras by Proclus [11]:

m2 +{(m2 −1)/2}2 = {(m2 +1)/2}2, where m is odd.

Thirdly, the left side of the tablet is broken away and so one or two columns must
have been lost forever. In all probability we can reconstruct the lost part if we un-
derstand the constructing principle of the triples.
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2 The technical terms in the headings

On the obverse of the tablet there are four columns, each of which consists of fifteen
lines, which we number I to IV from left to right, while nothing is inscribed on the
reverse. The size of the tablet, 12.7 by 8.8 cm, seems rare since the length between
the sides is longer than the length between the top and the bottom. See Fig. 1 and the
hand-copy of the tablet by Robson [17, p. 171] where two figures are erroneously
copied.

Fig. 1

In the heading of Column I an Akkadian abstract noun takı̄ltum occurs, which
had been obscure for about seventy years and has recently been identified by Muroi
[9] as “completing the square” :

[ta-k]i-il-ti s. i-li-ip-tim

[ša 1 in]-na-as-sà-h
�

u-ú-ma sag i-il-lu-ú
“Completing the square of the hypotenuse from which 1 is subtracted and the
width comes up,” where the restored parts of the text are indicated by square
brackets and Akkadian words are in italics and Sumerian words in roman
letters.

The term takı̄ltum, which never occurs in non-mathematical texts, is the derivative of
the verb kullum “to contain, hold” and its literal meaning is “the one which contains



34 Kazuo Muroi

(something).” The Babylonian scribes must have visualized completing the square
or the factorization of a2 +2ab+b2 = (a+b)2 as involving the fact that the square
contains two smaller squares and two congruent rectangles. See Fig. 2.

As will be seen in the next section, the phrase of the heading has to be understood
as:

(x− y)/2 =
√

{(x+ y)/2}2 −1, where (x+ y)/2 is the hypotenuse and

(x− y)/2 is the width.

Judging from the established meaning of the phrase it is improbable that the
Pythagorean triples in Plimpton 322 were constructed by the general solution for
the indeterminate equation x2 + y2 = z2 :

x = 2pq,y = p2 −q2,z = p2 +q2,where p and q are integers of the form

2α 3β 5γ (α,β ,γ : non-negative integers),

which was first proposed by Neugebauer and Sachs.
The headings of the second and the third columns are respectively the following:

ı́b-si8 sag “The square root on the width.” and
ı́b-si8 s. i-li-ip-tim “The square root on the hypotenuse.”

The literal translations of these terms, which are not found in any other mathe-
matical tablet, might be “the square root of the width” and “the square root of
the hypotenuse,” but it is impossible to understand them to be

√
the width and√

the hypotenuse because the numbers listed in those columns definitely reject these
translations. In fact, under the heading of Col. II are listed the integers of the widths
of the right-angled triangles that were obtained by multiplying the square root of the
square of the width by certain integers. Similarly, the integers of the hypotenuses are
listed in Col. III. See §4, below.

Moreover I would like to comment on the technical term ı́b-si8 which usually
means “square root” or “side of a square.” Neugebauer and Sachs proposed, how-

Fig. 2

ab

ab

b
2

a
2
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ever, “solving number” for a translation of this term in order to cover the several
meanings of the term in their commentary of Plimpton 322. Since this is too vague
and in some cases improper, I have proposed in [7] the translation:

x-e y ı́b-si8 “x corresponds to y.”

The original meaning of the Sumerian verbal phrase ı́b-si8 is “it corresponds to,
it equates to” as many Old Babylonian tables of square roots and one table of expo-
nents and logarithms clearly show: where y =

√
x, y = 16x, or y = log2x is implicitly

assumed [7]. Therefore we can definitely state that “functions” were well known in
Babylonian mathematics. Bearing in mind the basic idea of ı́b-si8 of the Babylo-
nians, that is, “one-to-one correspondence” in modern terminology, we had better
translate it into an appropriate modern term instead of “solving number” depending
upon mathematical circumstances.

The heading of Col. IV is simple and has no problem:

mu-bi-im “Its name.”

This phrase is not a mathematical one and frequently occurs as a heading in lists of
items [18, pp. 284–297]. Under this heading fifteen similar items are written down:

ki-n “the place of n”(n＝ 1, 2, 3 ,…, 15).

It has been assumed that these items only refer to numbering the lines from 1 to 15
common to the four columns. Neugebauer [14, pp. 36–37] says:

The last heading is “its name” which means only “current number,” as is ev-
ident from the fact that the column of numbers beneath it counts simply the
number of lines from “1st” to “15th.” This last column is therefore of no math-
ematical interest.

Similarly Ore [16, p. 176] says:

Clearly the last column only enumerates the lines.

But I doubt that Col. IV is of no mathematical importance because of two reasons.
First it was not common practice for the Babylonian scribes to number the lines of a
text one by one. Secondly we have no example of ki-n (n ≥ 3) in non-mathematical
texts [1, p. 412]. In other words, there is a possibility that ki-n is a mathematical
term. After having reexamined several intelligible mathematical problems in which
ki-n occurs, I have reached the conclusion that it is a mathematical term and it means
“the n-th term” of an arithmetic sequence or of the like. I cite two examples from
Old Babylonian mathematical texts.

(1) Str 364 [12, pp. 248–256]
In the first three problems of Str 364, a triangle is substantially divided into five

trapezoids and one small triangle by five transversals parallel to the base. See Fig. 3.
Their areas from left to right in the figure form an arithmetic sequence:

18,20 15,0 11,40 8,20 5,0 1,40 .
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Fig. 3

The first number 18,20 is named “the upper area” as is usual in Babylonian math-
ematics since the beginning of a line in cuneiform writings is called “the upper” in
contrast to the end “the lower.” The numbers 15,0 and 11,40 are named “the area of
ki-2” and “the area of ki-3” respectively. In the problems the fourth and fifth trape-
zoids are actually treated as one trapezoid and therefore “the area of ki-4” is not 8,
20 but 13,20 (= 8,20 + 5,0). The last number 1,40, “the area of ki-5,” is the area of
the small triangle.

(2) BM 13901 [13, pp. 1–14]
In the eighteenth problem of this large tablet, the sides of three squares under

certain conditions are asked for. Of the three sides 10, 20, and 30, the latter two
numbers in particular are modified by ki-2 and ki-3 respectively. On the other hand,
in the twenty-fourth problem the three sides 30, 25, and 15 are modified by not ki-n
but by Akkadian ordinals:

ištiat “the first,” šanı̄tum “the second,” šaluštum “the third.”

Similarly the three sides of the fifteenth and seventeenth problems do not form an
arithmetic sequence and they are modified by the same Akkadian ordinals.

Thus there existed a specific technical term for the n-th term of an arithmetic
sequence in Babylonian mathematics. The Babylonian scribe of Plimpton 322 must
have used the term ki-n in order to describe the fact that the fifteen numbers in Col. I
are linearly decreasing.

3 How to construct the numbers in Column I

In the first column of our tablet the following fifteen numbers, which are from three
to nine figures in sexagesimal place value notation, are listed. Neither the sexages-
imal point (;) nor the number zero is written down on the tablet, while a blank is
occasionally used to indicate a vacant place.
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Col. I notes

[1;59], 0, 15
[1;56, 56], 58, 14, 50, 6, 15 50, 6 seems to be 56.
[1;55, 7], 41, 15, 33, 45
1;53, 10, 29, 32, 52, 16
1;48, 54, 1, 40 A meaningless blank between 54 and 1.
1;47, 6, 41 40 A meaningless blank between 47 and 6.
1;43, 11, 56, 28, 26, 40
1;41, 33, 45, 14, 3, 45 45, 14 is erroneously written 59.

A meaningless blank between 59 and 3.
1;38, 33, 36, 36
1;35, 10, 2, 28, 27, 24, 26, 40 A blank between 10 and 2.
[1];33, 45
1;29, 21, 54, 2, 15 A meaningless blank between 54 and 2.
1;27, 0, 3, 45
1;25, 48, 51, 35, 6, 40
1;23, 13, 46, 40

The task assigned to us is to clarify the principle by which the Babylonian scribe
calculated these numbers and the practical purpose of them. First of all, we had
better briefly discuss the explanation for the construction of the numbers in Col. I
which was first proposed by E. M. Bruins [2, pp. 191–194] and later followed by
Robson.

In order to obtain the Pythagorean triples of our tablet, the Babylonian scribe
must have used an identity familiar to them, that is:

xy+{(x− y)/2}2 = {(x+ y)/2}2 ,

and he considered xy as the length of a right-angled triangle assuming it to be 1,
(x− y)/2 as the width, and (x + y)/2 as the hypotenuse. Although we know the
fifteen reciprocal pairs of x and y that produce all the numbers in Cols. I, II and
III, we have not understood as yet why such pairs were chosen by him. Having
examined the Babylonians’ calculation methods, the system of the reciprocal tables,
and the meanings of the technical terms occurring in the headings, I have come to
the conclusion that Col. I is a trigonometric table for:

1+ tan2 θ (θ = 45◦,44◦, · · · ,31◦) ,

whose actual values were obtained by linear interpolation or the like where a certain
table of reciprocals must have been used.

We will analyze in more detail the method by which the Babylonians made this
table. As remarked above, they called the side AB (= xy) of the right-angled triangle
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ABC in Fig. 4 uš “the length,” which was assumed to be 1, the side CA (= (x−y)/2)
sag “the width,” and the side BC (= (x+y)/2) s. iliptum “the hypotenuse.” It is most
likely that the two sides AB and CA that contain a right angle were chosen out of
the three sides in order to construct the table in Col. I, because we can see the same
practice of Babylonian mathematics in the definition of the inclination of a plane.
They described the degree of the inclination of a plane, for example, as follows:

In 1 kùš (in height) it ate x kùš of fodder (1 kùš � 50 cm) [5, p. 6], which corre-
sponds to tanϕ = x in Fig. 5, if we use modern symbols. In other words, the Baby-
lonians calculated CA/AB, that is, tanθ (θ = ∠ABC) in the right-angled triangle
ABC. Therefore it is not appropriate to explain according to Neugebauer that Col. I
is a table for (d/l)2, where d is the diagonal (= BC) and l is the length (= AB),
although (d/l)2 is numerically equal to 1+ tan2 θ .

The next step is to calculate tanθ = CA/AB, that is, to obtain such pairs of re-
ciprocals as xy(= 1) and (x− y)/2(= tanθ) for a few particular values of θ . In the
calculation, the scribe must have used a table of reciprocals of many-place numbers
which lists more numbers in an interval than the standard tables. A typical example
of the tables of this kind is the cuneiform tablet AO 6456 [12, pp. 14–22] from the
ancient city Uruk of the third century B.C., in which 157 numbers from 1 to 3 and
their reciprocals are listed in pairs. This tablet probably is a traditional one since we
know the fact that the several themes of the Old Babylonian mathematics had come
down to the Seleucid period (last three centuries B.C.) and we have a few fragments
of the tables of the same kind of the Old Babylonian period [15, pp. 13–16]. In addi-
tion the colophon [6] of AO 6456 seems to suggest that the tradition of mathematics,
at least in Uruk, had been passed on from generation to generation:

per-su reš-tu-u : 1 : a-mu-ú : 2 : a-mu-ú
nu al-til / [i]m mNidintu-Anu a šá mIna-qı́-bit-Anu
a mH

�
un-zu-u lúmaš-maš Anu u An-tum

Urukki-u / qàt mIna-qı́-bit-Anu duru-a-ni-šú

“The first section. ‘1’ is a head number. ‘2’ is a head number. It is not com-
pleted. / The tablet of Nindintu-Anu who is a son of Inaqibit-Anu (who is) a
son of H

�
unzû, the incantation priest of (the gods) Anu and Antum in Uruk. /

(By) the hand of Inaqibit-Anu, his son, (it was written).”

Fig. 4 Fig. 5
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In the following, a part of the tablet of AO 6456 necessary for our understand-
ing of Plimpton 322 is given, in which some numerals erroneously written down
by Inaqibit-Anu have been corrected, and the bold-faced pairs of numbers concern
Col. I. The numbers in square brackets are the ones supplemented by Neugebauer.

x y(= x̄)

1;40 0;36
1;41, 8, 8, 53, 20 0;35, 35, 44, 31, 52, 30
1;41, 15 0;35, 33, 20
[1;41, 43, 30, 56, 15] [0;35, 23, 21, 59, 2, 24]
1;42, 24 0;35, 9, 22, 30
[1;42, 30, 56, 15] [0;35, 6, 59, 45, 11, 6, 40]
1;42, 52, 50, 22, 13, 20 0;34, 59, 31, 12
[1;43, 33, 47, 1, 20] [0;34, 45, 41, 8, 37, 40, 32, 48, 45]
1;43, 40, 48 0;34, 43, 20
1;44, 10 0;34, 33, 36
[1;44, 51, 27, 21, 36] [0;34, 19, 56, 11, 29, 3, 45]
[1;44, 58, 33, 36] [0;34, 17, 36, 47, 24, 26, 40]
1;45, 20, 59, 15, 33, 20 0;34, 10, 18, 45
1;45, 28, 7, 30 0;34, 8
[1;46, 17, 17, 31, 12] [0;33, 52, 12, 37, 55, 59, 40, 14, 48, 53,

20]
1;46, 40 0;33, 45
1;48 0;33, 20

1;48, 30, 25 0;33, 10, 39, 21, 36
1;49, 13, 36 0;32, 57, 32, 20, 37, 30
1;49, 21 0;32, 55, 18, 31, 6, 40
[1;49, 51, 47, 48, 45] [0;32, 46, 4, 48]
1;50, 35, 31, 12 0;32, 33, 7, 30
1;50, 43, 0, 45 0;32, 30, 55, 19, 36, 57, 17, 2, 13, 20
1;51, 6, 40 0;32, 24

1;51, 14, 11, 39, 36, 33, 45 0;32, 21, 48, 26, 40
[1;51, 58, 27, 50, 24] [0;32, 9, 0, 44, 26, 40]
1;52, 30 0;32

[1;53, 1, 41, 2, 30] [0;31, 51, 1, 47, 8, 9, 36]
1;53, 46, 40 0;31, 38, 26, 15
1;53, 54, 22, 30 0;31, 36, 17, 46, 40
1;55, 12 0;31, 15

1;55, 44, 26, 40 0;31, 6, 14, 24
[1;56, 30, 30, 24] [0;30, 53, 56, 34, 20, 9, 22, 30]
1;56, 38, 24 0;30, 51, 51, 6, 40
1;57, 3, 19, 10, 37, 2, 13, 20 0;30, 45, 16, 52, 30
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1;57, 11, 15 0;30, 43, 12
1;57, 57, 53, 16, 48 0;30, 31, 3, 16, 52, 30
[1;58, 5, 52, 48] [0;30, 28, 59, 22, 8, 23, 42, 13, 20]
1;58, 31, 6, 40 0;30, 22, 30
1;58, 39, 8, 26, 15 0;30, 20, 26, 40
[1;59, 34, 27, 12, 36] [0;30, 6, 24, 33, 43, 6, 22, 26, 30, 7, 24,

26,40]
[2] [0;30]

2;0, 25, 38, 14, 52, 25, 29, 46, 0, 29, 37, 0;29, 53, 36, 48, 9
46,40

[2;0, 33, 47, 46, 40] [0;29, 51, 35, 25, 26,24]
2;1, 4, 8, 3, 0, 27 0;29, 44, 6, 28, 51, 27, 46, 36, 32, 42, 52,

17, 26, 54, 48, 53, 20
[2;1, 21, 46, 40] [0;29, 39, 47, 6, 33, 45]
2;1, 30 0;29, 37, 46, 40

[2;2, 4, 13, 7, 30] [0;29, 29, 28, 19, 12]
[2;2, 52, 48] [0;29, 17, 48, 45]
2;3, 1, 7, 30 0;29, 15, 49, 47, 39, 15, 33, 20
2;3, 27, 24, 26, 40 0;29, 9, 36
[2;4,16,32,25,36] [0;28, 58, 4, 17, 11, 23, 47, 20, 37, 30]
2;4, 24, 57, 36 0;28, 56, 6, 40
2;5 0;28, 48

[2;5, 58, 16, 19, 12] [0;28, 34, 40, 39, 30, 22, 13, 20]
[2;6, 25, 11, 6, 40] [0;28, 28, 35, 37, 30]
2;6, 33, 45 0;28, 26, 40
2;8 0;28, 7, 30

[2;8, 8, 40, 18, 45] [0;28, 5, 35, 48, 8, 53, 20]
[2;9, 27, 13, 46, 40] [0;27, 48, 32, 54, 54, 8, 26, 15]
2;9, 36 0;27, 46, 40

2;10, 12, 30 0;27, 38, 52, 48
[2;11, 4, 19, 12] [0;27, 27, 56, 57, 11, 15]
[2;11, 13, 12] [0;27, 26, 5, 25, 55, 33, 20]
2;11, 41, 14, 4, 26, 40 0;27, 20, 15
[2;11, 50, 9, 22, 30] [0;27, 18, 24]
[2;12, 42, 37, 26, 24] [0;27, 7, 36, 15]
[2;12, 51, 36, 54] [0;27, 5, 46, 6, 20, 47, 44, 11, 51, 6, 40]
2;13, 20 0;27

2;15 0;26, 40

[2;15, 38, 1, 15] [0;26, 32, 31, 29, 16, 48]
2;16, 32 0;26, 22, 1, 52, 30
2;16, 41, 15 0;26, 20, 14, 48, 53, 20
[2;18, 14, 24] [0;26, 2, 30]
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[2;18, 23, 45, 56, 15] [0;26, 0, 44, 15, 41, 33, 49, 37, 46, 40]
2;18, 53, 20 0;25, 55, 12

[2;19, 48, 36, 28, 48] [0;25, 44, 57, 8, 36, 47, 48, 45]
[2;19, 58, 4, 48] [0;25, 43, 12, 35, 33, 20]
2;20, 37, 30 0;25, 36

[2;21, 43, 3, 21, 36] [0;25, 24, 9, 28, 26, 59, 45, 11, 6, 40]
[2;22, 13, 20] [0;25, 18, 45]

2;22, 22, 58, 7, 30 0;25, 17, 2, 13, 20
2;24 0;25

[2;24, 40, 33, 20] [0;24, 52, 59, 31, 12]
2;25, 38, 8 0;24, 43, 9, 15, 28, 7, 30
[2;25, 48] [0;24, 41, 28, 53, 20]
[2;26, 29, 3, 45] [0;24, 34, 33, 36]
[2;27, 27, 21, 36] [0;24, 24, 50, 37, 30]
2;27, 37, 21 0;24, 23, 11, 29, 42, 42, 57, 46, 40
2;28, 8, 53, 20 0;24, 18
[2;29, 17, 57, 7, 12] [0;24, 6, 45, 33, 20]
[2;29, 28, 4, 0, 45] [0;24, 5, 7, 38, 58, 29, 5, 57, 12, 5, 55,

33, 20]
[2,30] [0;24]

In Fig. 4 if we assume (x− y)/2 = 1 for θ = 45◦, both x and y will be irrational
numbers and they do not suit the purpose of obtaining (x + y)/2 as a rational num-
ber. So we had better choose, from the table above, the largest number x and its
reciprocal y that satisfy the inequality:　

(x− y)/2 < 1 .

In choosing x, a two figure number in the sexagesimal system would be convenient
for calculation. The most suitable pair of x and y is x = 2;24 and y = 0;25, because
　　

(x− y)/2 = 0;59,30 < 1 ,

whereas x = 2;25,2;26,2;27,2;28 and 2;29 are all so-called irregular numbers, that
is, the numbers whose reciprocals can not be expressed in finite sexagesimal frac-
tions, and another pair, x = 2;30 and y = 0;24 does not satisfy the inequality: 　
　

(x− y)/2 = 1;3 > 1 .

In this way if we choose x = 2;24 and y = 0;25 for θ = 45◦ we obtain the number
of the first line in Col. I:

1+ tan2 θ = {(x+ y)/2}2 = 1;24,302 = 1;59,0,15 .
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Similarly if we assume (x− y)/2 =
√

3/3 for θ = 30◦, x and y will be irrational
numbers and again they are unsuitable for our purpose. Since an approximation to√

3 is 1;45 in Babylonian mathematics, we may choose the smallest number x and
its reciprocal y that satisfy an inequality:　　

(x− y)/2 >
√

3/3 � 1;45/3 = 0;35 ,

and we obtain an approximation to tan31◦. This pair of numbers is x = 1;48 and
y = 0;33,20, because　　

(x− y)/2 = 0;37,20 > 0;35 ,

whereas x = 1;47,1;46,1;45,1;44,1;43,1;42, and 1;41 are all irregular numbers,
and another pair of x = 1;40 and y = 0;36 does not satisfy the inequality:　　　

(x− y)/2 = 0;32 < 0;35 .

The number of the last line in Col. I can be obtained like this from the pair of x =
1;48 and y = 0;33,20 for θ = 31◦ :　　　

1+ tan2 θ = {(x+ y)/2}2 = 1;10,402 = 1;23,13,46,40 .

After the upper and lower bounds of x have been decided, thirteen values of
x between them were carefully chosen so that {(x + y)/2}2 was almost linearly
decreasing, and the table of 1 + tan2 θ (θ = 45◦,44◦, · · · ,31◦) was finally made up
in Col. I. Of the thirteen pairs of x and y the following four pairs surely occur in the
standard table of reciprocals or the like:

(x,y) = (2;13,20, 0;27),(2;5, 0;28,48),(2, 0;30) and (1;52,30, 0;32).

Each number of the thirteen pairs is at most four figures disregarding the sexagesi-
mal point, and each is easy to deal with in calculation.

The Babylonians must have noticed the fact that the value of the function 1 +
tan2 θ is gradually increasing with the angle θ , since they used in particular the
term ki-n (n = 1,2,3, . . . ,15) which is typical of arithmetic sequences in Babylonian
mathematics. See Fig. 6.
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4 How to construct the numbers in Columns II and III

If we calculate (x− y)/2 and (x + y)/2 for each of the fifteen pairs of x and y oc-
curred in Col. I, and if we multiply the results by the smallest positive integer l(n)
(n = 1,2, · · · ,15) that makes them integers, we can obtain the fifteen numbers which
are written down in Col. II and Col. III respectively. As is evident from the heading
of Col. I:

Completing the square of the hypotenuse from which 1 is subtracted and the
width comes up, or (x− y)/2 =

√
{(x+ y)/2}2 −1,

the value of l(n) can be determined by the value of (x+ y)/2 only.
Now let us obtain the Pythagorean triple l(n),b(n) and d(n), for each of the

fifteen pairs of x and y, where b(n) = l(n)×{(x− y)/2} and d(n) = l(n)×{(x +
y)/2}.

(1) x = 2;24 y = 0;25

(x+ y)/2 = 1;24,30 = 2−3 ×3−1 ×5−1 ×132

∴ l(1) = 23 ×3×5 = 2,0

b(1) = 2,0×0;59,30 = 1,59

d(1) = 2,0×1;24,30 = 2,49 .

(2) x = 2;22,13,20 y = 0;25,18,45

(x+ y)/2 = 1;23,46,2,30 = 2−7 ×3−3 ×52 ×193

∴ l(2) = 27 ×33 = 57,36

b(2) = 57,36×0;58,27,17,30 = 56,7

d(2) = 57,36×1;23,46,2,30 = 1,20,25 .
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(3) x = 2;20,37,30 y = 0;25,36

(x+ y)/2 = 1;23,6,45 = 2−6 ×3−1 ×5−2 ×61×109

∴ l(3) = 26 ×3×52 = 1,20,0

b(3) = 1,20,0×0;57,30,45 = 1,16,41

d(3) = 1,20,0×1;23,6,45 = 1,50,49 .

(4) x = 2;18,53,20 y = 0;25,55,12

(x+ y)/2 = 1;22,24,16 = 2−2 ×3−3 ×5−3 ×18541

∴ l(4) = 22 ×33 ×53 = 3,45,0

b(4) = 3,45,0×0;56,29,4 = 3,31,49

d(4) = 3,45,0×1;22,24,16 = 5,9,1 .

(5) x = 2;15 y = 0;26,40

(x+ y)/2 = 1;20,50 = 2−3 ×3−2 ×97

∴ l(5) = 23 ×32 = 1,12

b(5) = 1,12×0;54,10 = 1,5

d(5) = 1,12×1;20,50 = 1,37 .

(6) x = 2;13,20 y = 0;27

(x+ y)/2 = 1;20,10 = 2−3 ×3−2 ×5−1 ×13×37

∴ l(6) = 23 ×32 ×5 = 6,0

b(6) = 6,0×0;53,10 = 5,19

d(6) = 6,0×1;20,10 = 8,1 .

(7) x = 2;9,36 y = 0;27,46,40

(x+ y)/2 = 1;18,41,20 = 2−2 ×3−3 ×5−2 ×3541

∴ l(7) = 22 ×33 ×52 = 45,0

b(7) = 45,0×0;50,54,40 = 38,11

d(7) = 45,0×1;18,41,20 = 59,1 .

(8) x = 2;8 y = 0;28,7,30

(x+ y)/2 = 1;18,3,45 = 2−6 ×3−1 ×5−1 ×1249

∴ l(8) = 26 ×3×5 = 16,0

b(8) = 16,0×0;49,56,15 = 13,19

d(8) = 16,0×1;18,3,45 = 20,49 .

(9) x = 2;5 y = 0;28,48

(x+ y)/2 = 1;16,54 = 2−3 ×3−1 ×5−2 ×769

∴ l(9) = 23 ×3×52 = 10,0

b(9) = 10,0×0;48,6 = 8,1

d(9) = 10,0×1;16,54 = 12,49 .

(10) x = 2;1,30 y = 0;29,37,46,40
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(x+ y)/2 = 1;15,33,53,20 = 2−4 ×3−4 ×5−1 ×8161

∴ l(10) = 24 ×34 ×5 = 1,48,0

b(10) = 1,48,0×0;45,56,6,40 = 1,22,41

d(10) = 1,48,0×1;15,33,53,20 = 2,16,1 .

(11) x = 2 y = 0;30

(x+ y)/2 = 1;15 = 2−2 ×5

∴ l(11) = 1,0 is only one exception to the rule.

b(11) = 45 d(11) = 1,15 .

A right-angled triangle whose sides are 45, 60, and 75 frequently occurs in Babylonian
mathematics.

(12) x = 1;55,12 y = 0;31,15

(x+ y)/2 = 1;13,13,30 = 2−5 ×3−1 ×5−2 ×29×101

∴ l(12) = 25 ×3×52 = 40,0

b(12) = 40,0×0;41,58,30 = 27,59

d(12) = 40,0×1;13,13,30 = 48,49 .

(13) x = 1;52,30 y = 0;32

(x+ y)/2 = 1;12,15 = 2−4 ×3−1 ×5−1 ×172

∴ l(13) = 24 ×3×5 = 4,0

b(13) = 4,0×0;40,15 = 2,41

d(13) = 4,0×1;12,15 = 4,49 .

(14) x = 1;51,6,40 y = 0;32,24

(x+ y)/2 = 1;11,45,20 = 2−2 ×3−3 ×5−2 ×3229

∴ l(14) = 22 ×33 ×52 = 45,0

b(14) = 45,0×0;39,21,20 = 29,31

d(14) = 45,0×1;11,45,20 = 53,49 .

(15) x = 1;48 y = 0;33,20

(x+ y)/2 = 1;10,40 = 3−2 ×5−1 ×53

∴ l(15) = 32 ×5 = 45

b(15) = 45×0;37,20 = 28

d(15) = 45×1;10,40 = 53 .

There are four mistakes in writing of the triples in the tablet; d(2) = 3,12,1 is a
mistake for 1,20,25, b(9) = 9,1 for 8,1, b(13) = 7,12,1(= 2,412) for 2,41, and
b(15) = 56(= 2×28) for 28.

It should be emphasized that the factorization into prime factors like that per-
formed in the above was familiar to the Babylonians. In fact there existed a few
technical terms related to this technique:

maks. arum “factorization (<bundle)” [3, p. 548], [8, p. 128], a-rá-gub-ba “nor-
mal factor”
which was exclusively used for the numbers 1, 2, 3, and 5 [10, pp. 1–8].
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5 Conclusion

Judging from what we have analyzed, we conclude that the cuneiform tablet Plimp-
ton 322 is a table of the Pythagorean triples which was constructed by making use
of a trigonometric table, 1 + tan2 θ (θ = 45◦,44◦, · · · ,31◦), and therefore the con-
cept of angle that a right angle is 90 degrees is discerned in this Old Babylonian
tablet. It is most likely that the lost left part of the tablet listed the lengths of the
triples only, as Neugebauer supposed. I am very pleased if I were a legitimate heir
of Neugebauer and Sachs, because I think that the alleged statement by Robson [17,
p. 179] has now been disproved:

This interpretation [Plimpton 322 represents a trigonometric table of some type] · · · seems
to be the bastard offspring of a passing remark made by Neugebauer and Sachs.

Finally, I would like to pay respect both to the anonymous Babylonian scribe who
had written this marvelous table and to Neugebauer who grasped the true nature of
this mathematical tablet. The following is a summary of the table.

l(n) I II III IV

2, 0 1;59, 0, 15 1, 59 2, 49 1
57, 36 1;56, 56, 58, 14, 50, 6, 15 56, 7 1, 20, 25 2

1, 20, 0 1;55, 7, 41, 15, 33, 45 1, 16, 41 1, 50, 49 3
3, 45, 0 1;53, 10, 29, 32, 52, 16 3, 31, 49 5, 9, 1 4

1, 12 1;48, 54, 1, 40 1, 5 1, 37 5
6, 0 1;47, 6, 41, 40 5, 19 8, 1 6

45, 0 1;43, 11, 56, 28, 26, 40 38, 11 59, 1 7
16, 0 1;41, 33, 45, 14, 3, 45 13, 19 20, 49 8
10, 0 1;38, 33, 36, 36 8, 1 12, 49 9

1, 48, 0 1;35, 10, 2, 28, 27, 24, 26, 40 1, 22, 41 2, 16, 1 10
1, 0 1;33, 45 45 1, 15 11

40, 0 1;29, 21, 54, 2, 15 27, 59 48, 49 12
4, 0 1;27, 0, 3, 45 2, 41 4, 49 13

45, 0 1;25, 48, 51, 35, 6, 40 29, 31 53, 49 14
45 1;23, 13, 46, 40 28 53 15
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1 Mathematics

1.1 The Circle

Volume 5 of Complete Explanation of Measurements [測量全義] (1631) [5] by Xu
Guangqi [徐光啓] etc. gives an elaborate account of Archimedes’ Measurement of
a Circle, introducing the method of exhaustion devised by “an ancient sage” and

giving π an approximate value between 3
10
71

and 3
10
70

.

Fig. 1 Measurement of a circle

In Volume 2 of The Key of Mathematics [数学鑰] (1681) [6], the early Qing

[清] mathematician Du Zhigeng [杜知耕] used 3
1
7

to calculate the circumference of
a circle given its diameter and acknowledged this as the “Westerner Archimedean
method.”

Volume 43 of The Biographies of Mathematicians and Astronomers [畴人傳]
(1799) [7], edited by Ruan Yuan [阮元] and Li Rui [李鋭], is called “Western-
ers,” where original texts from [5], among other books, are quoted in explaining

Archimedes’ work on the circle and sphere; but it also calls 3
10
70

the accurate ratio

[密率] of Zong Chongzhi [祖冲之], i.e. the Chongzhi Legacy Method [冲之遺法].
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1.2 The Sphere

Volume 6 of Complete Explanation of Measurements [5] gives an introduction to
Archimedes’ On the Sphere and Cylinder, including formulas for the volume and
surface of a sphere. It also mentions relevant references in volume 14 of Elements
[幾何原本] (1607) [1], even though the Chinese version of [1] only covers the first
six books at that time.

Volume 43 of [7] states that the surface of the sphere equals four times (the
area of) its great circle, while the volume of a sphere is two-thirds the volume of
a cylinder that circumscribes the sphere. The Fundamental Principles of Calculus
[微積溯源] (1874) [10], translated by John Fryer and Hua Hengfang [華衡芳], says
that the surface of a sphere is four times the area of its great circle, and that is what
Archimedes tried to verify.

1.3 Conics

[5], [6], Elements of Analytical Geometry and of the Differential and Integral Cal-
culus [代微積拾級] (1859) [8], [10] and The Conics [円錐曲線] (1893) [17], all
touch on the topic of conics. Among them [17] states that Archimedes was a con-
temporary of the King She [赦王, 314–256 BC] of the Zhou Dynasty [周代]; that
ancient scholars knew only some of the principles of the geometrical subjects, that it
was not until recently that the significance of conics in astronomy and physics was
recognized, and that conics was the most important topic in geometry.

Fig. 2 Conics [円錐曲綫]
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1.4 Spirals

The subject of spirals appears in volumes 9 and 18 of [8], and volume 9 of The
Origin of Universe [万象一原] (1862) [9] by Xia Luanxiang [夏鸞翔]. In addition,
Illustrative Hydraulics [水学圖説] (1890) [16] translated by John Fryer [傅蘭雅],
says that “the machine designed on a spiral frame was created by a great master
of science in Greece 1200 years earlier and was used to lift water in Egypt. The
machine refers to the hydraulic screw or helix (Gao-Li-Yin [高里因] in Chinese
transliteration)”; The number 1200 is no doubt mistaken for 2200.

Fig. 3 Archimedean spirals

1.5 Spheroids and Conoids

Volume 6 of [5] introduces a method to calculate the volume of a spheroid, which
is purely derived from Euclidian geometry. [8] and [10], on the other hand, use
analytical geometry and calculus to introduce ways to calculate the volumes of other
conoids including the paraboloid of revolution and hyperboloid of revolution.
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Fig. 4 Paraboloid and hyperboloid of evolution

2 Mechanics

2.1 The Lever Principle

Wang Tao’s [王韜] preface to Six Books of Selected Western Knowledge [西学
輯存六種] (1889) [13] points out that mechanics was launched with Archimedes’
study of the lever, while the balance point must first be determined; and all further
mechanical theories are derived from that.

The Chapter “Origins” in Elemental Physics [格物質学] (1902) [20] states that
Archimedes defined the principle of the lever 300 years before the birth of Christ,
but at the time people ignored its significance, while later generations realized its
importance. In the Chapter on the “Principle of Machines,” the principle of the lever
is accurately described.
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Fig. 5 Six books of selected Western knowledge

2.2 Specific Gravity

Volume 2 of Initiatory Textbook of Natural Sciences [格致啓蒙] (1875) [11] states
that when weighed in water, the gold that weighs 19 grams in air weighs 18 grams,
which means that gold weighs 19 times the same volume of water. Therefore, physi-
cists assign the specific gravity of water as 1, while that of gold as 19.
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Fig. 6 Specific gravity in water

2.3 Barycenter

Volume 8 of Textbook of Mechanics [力学課編] (1906) [21] specifically discusses
this issue.

Fig. 7 Centers of gravity
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2.4 Machine Designed

Volume I of Collected Diagrams and Explanations of Wonderful Machines from
the Far West [遠西奇器圖説] (1627) [4], co-translated by Johann Terrenz [鄧玉函]
and Wang Zheng [王徵], says that a great man named Archimedes newly made a
dragon tail screw and spirals etc, and was able to explain the working principle of all
machinery. [20] and Outline of Western Learning [西学考略] (1883) [12] are alike,
with the latter stating that Archimedes lived abroad in Italy.

Fig. 8 Machines

2.5 Flotage

Jointly translated by Alexander Wylie [偉烈亞力] and Wang Tao, Preliminary In-
troduction to Mechanics [重学淺説] (1890) [14] states that mechanics includes dy-
namics and statics, and there is a branch of mechanics that specifically studies gas
and liquids, and that Archimedes once studied the latter; he suggested that for stable
equilibrium to be established in a container filled with liquid, all forces at any partic-
ular point, from all directions, must be the same. In Textbook of Modern Physics [近
世物理学教科書] (1906) [22], compiled by the Ministry of Education, the principle
of flotage is formally called Archimedes’ Principle.
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Fig. 9 On floating bodies

3 Legends

3.1 The Gold Crown of King Hiero

Different legends about Archimedes were wide-spread in China in the Ming [明]
and Qing Dynasties, the most famous of which was concerned with the determina-
tion of the purity of the Cold Crown of the King of Syracuse using Archimedes’
Law of Buoyancy. Originally described by the Roman architect Vitruvius, the story
is widely known in the West as it is both vivid and highly educational, and thanks
to the fact that Archimedes indeed was credited with the work On Floating Bodies.
The first Chinese literature that relates this story is Combined Learning Mathemat-
ical Indicator-General Part [同文算指通編] (1614) [2], compiled by Li Zhizao [李
之藻] and Matteo Ricci. Volume 4 has the following description: 100 units of gold
have been used in manufacturing a gold incense burner. Upon completion, it was
suspected that the goldsmith might have stolen some of the gold through the fraud-
ulent replacement of silver, and yet the burner could not be destroyed to verify its
ingredients. What then? The solution lies in the use of buoyancy of water. Even
though Archimedes’ name was not mentioned and the gold crown has become a
gold incense burner, the story has all the necessary Archimedean components.

Collected Diagrams and Explanations of Wonderful Machines from the Far West
[遠西奇器圖説] (1627) [4] and The Western Mirror of European Learning [欧羅巴
西鏡録] (c. 1620) [3], another book of approximately the same time that deals with
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Western Science, both mention that once while having a bath, Archimedes suddenly
perceived the Law of Buoyancy.

In Qing literature, there are more accounts of this story. These include Initiatory
Textbook of Natural Sciences [格致啓蒙] (1875) [11], Elemental Physics [格物質
学] (1902) [20], and Illustrative Hydraulics [水学圖説] (1890) [16]. In [11] and [20],
Archimedes is described as running naked through the street, excited and shouting
“Eureka,” a Greek word that means “I have found it.”

Fig. 10 King Hieron’s crown

3.2 Defending Syracuse

In his preface to Elements [1], Matteo Ricci [利瑪竇] says: 1600 years before Chris-
tianity had not been popular in the West, wars frequently occurred between the coun-
tries. There emerged a skillful man who was able to defeat the enemies with fewer
soldiers, to defend a solitary city and to withstand enemies from both land and sea,
just like Mo-tse [墨子] in ancient China. What skills did he possess? In fact, he was
only skilled at geometry. These lines obviously refer to the legend of Archimedes
and the defense of Syracuse.
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Fig.11 Defense of Syracuse

At the end of the Qing Dynasty, China had to grapple with internal instability
and foreign aggression. The story of Archimedes using his invented machines in de-
fense of the city and in resisting aggressive enemies became widespread. In Prelim-
inary Introduction to Mechanics [重学淺説] (1890) [14] and The Origin of Western
Learning [西学原始考] (1890) [15], Wang Tao [王韜] mentions the making of iron
hooks at the command of Archimedes, and the capsizing of enemy ships using such
mechanical devises as levers and pulleys. Archimedes was described in Elemental
Physics [20] as using concave mirrors to concentrate the sun’s rays to ignite the
enemy ships. Outline of Western Learning [西学考略] (1883) [12] also states that
Archimedes was able to produce huge mirrors to destroy enemy ships, with a note
saying that although founded on a logical basis, the burning of ships with mirrors in
antiquity could not possibly have happened in reality.

In the preface to Six Books of Selected Western Knowledge [西学輯存六種]
(1889) [13], Wang Tao talks about the death of Archimedes: he was eventually killed
by the enemy, bringing his invention of magical devices to an end, which is a great
shame; in contrast, Archimedes is well-known throughout the whole West for his
work on mechanics.

What is most fascinating is the story of the mathematician Xu Youren [亻余有壬],
who was also governor of Suzhou [蘇州] during the Taiping Rebellion [太平天国
造反]. In 1860 he was responsible for the colossal task of defending the city. When
the battle was perilous, he called to mind his friend Li Shanlan [李善蘭], the most
famous mathematician of that time. He invited Li to discuss the strategy in defeating
the enemy. According to the writings of Li’s nephew, Governor Xu thought that
anyone skilled in mathematics must be good at the art of war, and that if Li came
to him, they would be able to devise tactics to defeat the enemy. So at the brink of
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despair, Xu Youren imagined Li Shanlan to be Archimedes, who was described a
hero for successfully defending Syracuse.

The death of Xu was also dramatic. According to The Biographies of Mathemati-
cians and Astronomers, Series iii [畴人傳三編] (1896) [18], when the rebel forces
broke into the city of Suzhou, Xu tidied up his attire, put on his cap, and went out
to oversee the fighting. He was stabbed in the forehead by the enemy and before he
died, he did not forget to rearrange his official cap. The scene of Archimedes just
before he was killed was again staged here.

3.3 Lifting the Earth

Volume 6 of Textbook of Mechanics [力学課編] (1906) [21] relates the famous story
of lifting the earth although in this case the protagonist is Isaac Newton instead of
Archimedes, with Newton claiming that “If God gives me an infinitely long lever
and a firm enough fulcrum, I can raise the entire Earth.”

Fig. 12 Mechanics (1906)
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3.4 Tombstone

The Roman politician Cicero paid homage to Archimedes’ grave when he was ap-
pointed as the consul of Sicily in 73 BC. It was said that on Archimedes’ tombstone
were engraved a cylinder enclosing a sphere.

In the section “Origins of Western Science” of [12], it is stated: “Archimedes
discovered that the ratio of the volume of a sphere to the volume of the cylinder that
contains it is 2 : 3, and that this is an important law in geometry. He ordered to have
the diagram that shows this relationship curved on his tombstone.” There is also a
note: several hundred years later, someone passed the tomb, and upon seeing the
diagram, knew Archimedes was buried there.

[18] makes mention of a Dutch mathematician Ludolff van Ceulen, who worked
out a value for π to 36 digits, and had the result carved onto his own tombstone in
memory of his calculation. It goes on to say that this was done “in the same way as
Archimedes had a sphere and a cylinder engraved on his tombstone.”

Fig. 13 Outline of Western Learning (1883)

Conclusion

With the diffusion of Western science and technology in China, the deeds and works
of the greatest scientist of antiquity were made known to the intelligentsia of China.
Receiving most attention were his discoveries on conical curves, which are directly
related to the laws of planetary motion and to the trajectories of projectiles, and me-
chanical knowledge which is related to the construction of machines. The magnif-
icent backdrop in China was the Calendar Reform during the Emperor Chongzhen
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reign [崇禎改暦], and the self-strengthening movement [自強運動], corresponding
to the Ming-Qing transition period and the late Qing period, respectively. Concur-
rently, Archimedes became a heroic symbol of knowledge, and an example held in
high esteem by Chinese intellectuals.

As mentioned earlier, this is only a sketch. As for why those subjects I have
just mentioned were especially appreciated by Chinese, instead of others (For in-
stance, the Method, the Sand-Reckoner, as well as the Archimedean Axiom) de-
serves further analysis. Likewise, comparative studies of ancient Chinese mathe-
matics, Chinese culture and the works of Archimedes (such as the Measurements
of the Circle and Sphere, the concept of infinitesimal, as well as the problem of
combinations of tan-gram figures [七巧板]) should also be pursued. And the dif-
fusion of Archimedes’ theories in China after traditional Chinese science had been
integrated into modern science as well as more detailed research by Chinese schol-
ars on Archimedes’ works, along with these other interesting topics, should all be
further explored.
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The Nine Chapters on the Mathematical

Procedures and Liu Hui’s Mathematical Theory

Guo Shuchun

Abstract When discussing ancient mathematical theories, scholars often limit them-
selves to Greek mathematics and, especially to its axiomatic system, which they
use as the standard to evaluate traditional mathematics in other cultures: whichever
failed to form an axiomatic system is considered to be without theory. Therefore,
even those scholars who highly praise the achievements in ancient Chinese mathe-
matics consider that “the greatest deficiency in old Chinese mathematical thought
was the absence of the idea of rigorous proofs” and that there is no formal logic
in ancient Chinese mathematics; in particular it did not have deductive logic. They
further contend that, “in the flight from practice into the realm of pure intellect,
Chinese mathematics did not participate,” [5, p. 151]1 and conclude that Chinese
mathematics has no theory.

I think that Liu Hui’s commentary (263 A.D.) to the Nine Chapters on the Mathe-
matical Procedures, hereafter Nine Chapters, completely proved the formulas and
solutions in Nine Chapters. It, mainly based on deductive logics, elucidated deep
mathematical theories. Even though Nine Chapters itself does not contain mathe-
matical reasoning and proofs, which is a major flaw in the pursuit of mathematical
theory in the history of Chinese mathematics, there are certain correct abstract pro-
cedures that possess a general applicability which should be considered as mathe-
matical theories in Chinese mathematics. Sir Geoffrey Lloyd, after explaining the
difference between Liu Hui’s and Euclid’s mathematics, said “Mais cela ne signifie
pas une absence d’intérêt pour la validation des résultats ou pour la recherche d’une
systématisation” [3, préface, p. xi]. Based on the Nine Chapters, this article will
discuss Liu Hui’s contribution to the mathematical theory in order to stimulate more
fruitful discussions.

Guo Shuchun
Institute for the History of Natural Science, Chinese Academy of Sciences, 55 Zhong Guan Cun
Dong Lu, Zhong Guan Cun, Beijing 100190, P. R. China
e-mail: shuchunguo@gmail.com

1 Needham cited the claim that Chinese mathematics lacks “rigorous proofs,” from his correspon-
dence with the Japanese historian of Chinese mathematics, Yoshio Mikami [三上義夫].
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1 Procedures in Nine Chapters and its Style in which Questions
Associated with Procedures as Examples

Many describe Nine Chapters on the Mathematical Procedures [九章算術 Jiuzhang
suanshu], as a collection of application problems. Generally speaking, such a sim-
plified view is not too off target; however, it needs clarification and merits more
discussions if such a view leads to the misunderstanding that the ancient Chinese
mathematics had no theories. The simple truth is that many who have not studied
Nine Chapters or who had but did not seek to understand fully presume that, based
on this simplified view, Nine Chapters consists of collections of one question, one
answer, and one computational procedure [術 shu]. They further assume that these
procedures are in effect the concrete solutions to the application problems. Such
assumption is completely off base. It does not provide proper and accurate descrip-
tions of Nine Chapters at all.

Fig. 1 The first page of Chapter One in the Nine Chapters, the edition from Southern Song Dynasty
(1127–1279)

In fact, the procedures in Nine Chapters are of different levels of abstractness and
applicability. The relations among problems, answers, and procedures, or, to put it
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differently, the styles in the treatise are rather complicated. We first consider the
relations among the problems, answers, and procedures. Roughly speaking, there
are two different genres:

1. Questions associated with procedures as examples:

For this genre, there are usually multiple procedures with multiple questions, or
one procedure with multiple questions, or one procedure with one question. But they
can be further divided into three types of different scenarios:

(1) The text first listed one or multiple questions and then provided one or several
general abstract procedures; moreover, the questions are only listed the statement
and the answers without calculating procedures containing specific numeric values
from the questions.2

Take the procedure of finding the area of the circular field in the Rectangular
Field [方田 Fangtian] Chapter:3

Now there is a circular field, the circumference of which is 30 bu4 and the diameter of which
is 10 bu. Question: what is [the area of] the field?
Answer: 75 [square] bu.
And there is another circular field, the circumference of which is 181 bu and the diameter
of which is 60 1/3 bu. Question: what is [the area of] the field?
Answer: 11 mu5 90 1/12 [square] bu.
Procedure: The half-circumference multiplied by the half-diameter will yield the area in
[square] bu.

The procedure is equivalent to the formula for the area of a circle:

S =
1
2

Lr, (1)

where S,L, and r are the area, the circumference, and the radius of the circle. Here
these two questions only have the statement of the questions and answers without

2 By an “abstract” procedure, I mean a procedure containing the general description of measure-
ments needed without any numeric values. In particular, it does not utilize the specifically numeri-
cal values appearing in the statement of a question. Instead, the procedure prescribes one or a series
of operations to be performed on measurements without numerical values in words. The general
description of measurements for example can be the diameter or the circumference of a circle or
the number of days for a wild goose to fly from the south sea to the north sea. In this view, proce-
dures of this kind in Nine Chapters are similar to mathematical formulas described with letters a,
b, and c in the modern form.
3 I use two references [6] and [3] for Nine Chapters and Liu Hui’s [劉徽] commentary. For the
circular field method [圓田術 yuantianshu], see [6, pp. 18–19] and [3, pp. 176–179]. Below pages
from both references will be given, for all the text and examples from the Nine Chapters.
4 bu [歩] is a unit of length, 1 bu is equal to 6 chi. The areas and the volumes in the Chinese texts
were, however, also expressed in terms of bu. The context made it clear whether the bu represents
the linear bu, the area bu2, or the volume bu3. The units discussed below, zhang, chi, and cun all
share this characteristic of representing the linear length, the area, and the volume.
5 mu [畝] is a unit of area, equal to 240 bu.
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individual procedures; the circular field method is the procedure for both questions.
Some studies describe this procedure as the procedure for the 32nd question. This
description is obviously not accurate. In Nine Chapters, the entire Rectangular Field
Chapter, the jinglü [経率 jinglü] procedure, qilü [其率 qilü] procedure, and inverse
qilü [反其率 fanqilü] procedure in the Millet and Rice [粟米 Sumi] Chapter, four root-
extracting [開方 kaifang] procedures in the Small Width [少広 Shaoguang] Chapter,
many procedures in the Work Discussing [商功 Shanggong] Chapter, the four fair
labor [均輸 junshu] procedures in the Fair Labor Chapter, five excess-deficiency [盈
不足 yingbuzu] procedures in the Excess-Deficiency Chapter, and five procedure in
the Right Triangle [勾股 Gougu] Chapter are of the type. In the Nine Chapters,
there are a total of seventy three procedures and one hundred and six questions of
this type.

(2) The text first provided abstract procedures and then listed a few examples,
which have the statements of questions and answers without procedures: Take flat-
headed stack [芻童 Chutong] procedure for finding the volume of a frustum in the
Work Discussing Chapter as an example.6

Procedure: Double the upper length and add it to the lower length; also double the lower
length and add it to the upper length; multiply them with their corresponding width. Add
the products together. Use the height or the depth to multiply the sum and divide by 6.

Now there is a frustum with the lower length equal to 2 zhang7, upper length 3 zhang,
the lower width is 3 zhang, the upper width is 4 zhang, and the height is 10 zhang. Question:
What is the volume?
Answer: 26500 [cubic] chi.8

The procedures and questions of finding volumes of other solids are exactly like
this. The questions following the procedure also only have statement of questions
and answers without individual procedures. The procedure preceding the questions
is their common procedure. In this type, there are two general procedures with 10
questions.

(3) The text first provided general procedures and then listed a few questions,
each of which contained the statement of question, the answer, and the calculating
procedure with specific numeric values from the question. The procedure for each
question is basically the application of the general procedure on that particular ques-
tion. To demonstrate this type, we use the ‘suppose’ [今有 Jinyou] procedure in the
Millet and Rice Chapter and some of the 31 questions of conversion involving grains
and rice ([6, pp. 70–78] and [3, pp. 222–227].):　

‘Suppose’ procedure: use the product of the given quantity [of grain in possession] and the
ratio [of the] desired [grain] as the dividend, and the ratio [of the possessed grain] as the
divisor.

6 Here a flat-headed stack is a solid obtained by cutting a rectangular pyramid with a plane parallel
to the base of the pyramid and removing the top part. The flat-headed stack procedure and the
example can be found in [6, pp. 185–186] and [3, pp. 434–439].
7 zhang [丈] is a unit of length, equal to 10 chi.
8 chi [尺] is a unit of length, which is about 23–24 cm.
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Divide the dividend with the divisor. Now there is one dou9 of millet and [we] want to
exchange it for coarse rice [糲米 limi]. Ask: how much [of coarse rice] can be gotten?
Answer: [We] get six sheng10 of coarse rice.
Procedure: Use the millet to exchange for the coarse rice. Multiply [the quantity of millet]
by 3 and then divide [the product] by 5.
Now there are 2 dou and one sheng of millet and [we] want to exchange it for polished rice
[稗米 baimi]. Ask: how much [of polished rice] can be gotten?
Answer: One dou, one and 17/50 sheng of polished rice.
Procedure: Use millet to exchange for polished rice. Multiply [the quantity of millet] by 27
and then divide [the product] by 50.

Following these questions and procedures there are 29 questions of the same
type. Each question is followed by its answer and a procedure; and each proce-
dure is an application of the ‘suppose’ procedure, and therefore we do not repeat
them here. For this type, each problem has the statement of the question, the an-
swer, and its own procedure, which is an application of the ‘suppose’ procedure.
Also belonged to this type are the proportional distribution [衰分 cuifen] procedure
and inverse proportional [返衰分 fangcuifen] procedure with their nine examples
in the Proportional Distribution Chapter, the small width procedure with its eleven
examples in the Work Discussing Chapter, the eleven examples solved by excess-
deficiency procedure in the Excess-Deficiency Chapter, and the rectangular array
[方程 fangcheng] procedure, sign [正負 zhengfu] procedure, and loss and gain [損
益 sunyi] procedure with their eighteen examples in the Rectangular Array Chapter.
In total, there are 7 general procedures, 80 questions, and 78 sub-procedures with
numerical values from the individual questions.

The above three types has a total of 82 general procedures, 196 questions, sub-
procedures with numerical values, constituting 80% of Nine Chapters.

2. The collections of application problems:

In this genre, the text usually consists of one question, one procedure, and one
answer. The degree of generality of the procedures varies:

(1) General procedures applicable to one kind of questions. Take the question of
wild duck and wild goose in the Fair Labor Chapter as an example [6, p. 254] and
[3, pp. 532–533]:

Now a wild duck coming from the South Sea takes 7 days to reach the North Sea; a wild
goose leaving from the North Sea takes 9 days to reach the South Sea. Now both birds leave
[from their respective place at the same time]. Ask: when will they meet?
Answer: 3 and 15/16 days.
Procedure: Take the sum of the numbers of days as the divisor and the product of the days
as the dividend. Divide the dividend by the divisor to get the answer.

This procedure, although did not depart from the subject of days in the question,
did not include the actual numerical values from the question. It is applicable to

9 dou [斗] is a unit of capacity, equal to 10 sheng.
10 sheng [升] is a unit of capacity, which is about 198–210 ml.
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many questions of the same nature. Many problems in the Fair Labor Chapter and
the question of taking a pole and walking out of the door in the Right Triangle
Chapter all belong to this type [6, p. 422] and [3, pp. 742–743].

(2) The actual computation for the concrete questions. Take the question of a
door ajar with certain distance from the door threshold in the Right Triangle Chapter
as an example [6, p. 413] and [3, pp. 714–717].:

Now there is a door ajar and [the ends of the two opened panels] are 1 chi from the door
threshold and 2 cun11 apart. Ask: what is the width of the door?
Procedure: Multiply the one chi by itself. Divide the result by one half of the distance
between the two ends, two cun. Then add to the result by one-half of the distance between
the two ends to get the width of the door.

The procedure incorporates the concrete numbers from the question; therefore it
cannot exist independently from the question. The problems of inverse proportional
distribution [非衰分 feicuifeng] in the Proportional Distribution Chapter, some exam-
ples in the Fair Labor Chapter, the Jade and Stone Hide Each Other [玉石互隱 yushi
huyin] question in the Excess-Deficiency Chapter, and the solutions to right trian-
gle questions and the measuring-the-height-of mountain-from-a-tree question in the
Right Triangle Chapter are of the same type. These two types can be described as
“a collection of application problems.” There are 50 questions of this genre in Nine
Chapters.

Obvious from the analysis above is that, it is not appropriate to summarize Nine
Chapters as a collection of application problems. It is far from the truth that the text
follows the “one-question-one-answer-and-one-procedure” format. In my opinion,
there are at least three different formats for mathematical treatises in the history of
mathematics. The first is represented by Euclid’s Elements, forming an axiomatic
system. The second format is collections of application problems, e.g. Diophantine’
Arithmetics; to paraphrase the words of the German historian, Henkel, “one is still
puzzled by the 101st question after carefully studying the first 100 questions.” Ob-
viously for the most part in Nine Chapters, the text does not conform to either of
the formats in Euclid’s Elements or in Diophantine’s Arithmetics; therefore its for-
mat should be considered in its own right as the third type, i.e. the format centered
around procedures with the questions associated with procedures as examples.

Meanwhile, it is not hard to see from the above analysis that the procedures in
Nine Chapters are not of a single nature in terms of their abstractness and general
applicability. At the very least, there are three varieties. The procedures of the first
kind, in spite of the variations of expressions, share several common characteristics:
the statement of the procedure is the core. Associated with the procedures are ques-
tions as demonstrations of the procedures. The procedures as the core are very ab-
stract, rigorous, and with wide general applicability. When converted to the modern
notion, the procedures become mathematical formulas or the operation procedures.
These procedures are constructive and mechanical. Therefore, we describe the for-
mat of these procedures as “questions associated with procedures as examples.” The

11 cun [寸] is a unit of length, equal to one-tenth of a chi.



The Nine Chapters on the Mathematical Procedures and Liu Hui’s Theory 69

second kind of procedures can be described as abstract procedures connected to one
type of questions with relatively wide applicability. The third kind consists of the
actual computations of questions with actual numerical values.

The former two varieties constitute 90% of the text in Nine Chapters. These
abstract procedures with general and relatively wide applicability should certainly
be recognized as an expression of the mathematical theory.

2 Liu Hui’s Mathematical Definitions and Deductive Reasoning

In order to describe Liu Hui’s contributions to the mathematical theory, we need to
examine Liu Hui’s mathematical definitions and reasoning, especially his deductive
reasoning.

2.1 Liu Hui’s Definitions

Following the tradition of providing definitions to concepts in the Classic of Mo
[墨経 Mojing], Liu Hui provided many rigorous definitions to many mathematical
concepts. For example, the definition of power [冪 mi] as area:

Whenever the width is multiplied with the length, [the result is what we] call mi

Another example is about the definition of fangcheng [方程] as the system of
linear equations [6, p. 353] and [3, pp. 616–617]. Fang [方] means juxtaposing. For
cheng [程] Liu Hui’s annotation says:

‘Cheng’ means to find the standard [of objects]. A group of objects is mixed together. Each
row has [unknown] numbers of objects. The total sum of the products of the numbers and
the objects is expressed. Set the lü [率] for each column.12 If there are two unknown quan-
tities, make the second column; If there are three unknown quantities, make three columns.
Make the number of columns according to the number of unknowns. List one column after
another; that is what we call Fangcheng. The rows do not depend on those besides them and
each of them is based on the information given. [程,課程也.群物総雜.各列有数.総言其
實.令毎行為率.二物者再程.三物者三程.皆如物数程之.竝列為行.故謂之方程.行之左
右無所同存.且為有所據而言耳.]

These are definitions of operations; that is, the definition can be carried out to
obtain what is being defined.

It is worth pointing out that once the definition of a term was given, generally
speaking, the term maintained the same connotation throughout the entire Nine
Chapters.

12 Each object might have two numbers associated with it, one known and the other unknown. For
example, the number of chickens is known but the price of them isn’t. But the sum of the unknown
quantities is given as shi. The concept of lü in the Nine Chapters is rather complicated. I refer the
readers to the discussion in [3, pp. 956–959].
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2.2 Liu Hui’s Deductive Reasoning

Many scholars believe that the ancient Chinese mathematics never used formal
logic. This is fundamentally false. Not only did Liu Hui employ “Learning by anal-
ogy [挙一反三 juyi fansan] Learning by consequence [告往知来 gaowang zhilai],
and draw an analogy [触類而長 chulei erzhang]”13 analogous method to expand
mathematical knowledge, he also utilized formal logic in his general reasoning. He
not only used inductive but also deductive reasoning.
Examples:

(1) Syllogism
There are abundant examples in which Liu Hui employed syllogism. For exam-

ple, in the excess-deficiency procedure, Liu Hui described the situation when both
guessed answers were assumed to be fractions ([6, p. 308] and [3, pp. 560–561]):

Commentary: if both guessed answers are fractions, find the common denominator and
arrange the numerators accordingly. For this question, both guessed answers are fractions,
and therefore find the common denominator and arrange the numerators accordingly.

Take M to be “both guessed answers are fractions;” P, “one should find the com-
mon denominator and arrange the numerators accordingly;” and S, as this particular
problem to be solved. This reasoning has and only has three concepts: (1) the two
assumptions are fractions (the middle item, M), (2) find the common denomina-
tor and arrange the numerators accordingly (former presupposition P), and (3) this
problem (latter presupposition S). Therefore Liu Hui’s reasoning fits perfectly the
AAA rule of syllogism:

The former inference: M → P (A)
The latter inference: S → M (A)
The conclusion: S → P (A)

(2) Relational Reasoning
As a commentator of a mathematical treatise, Liu Hui used many relational rea-

soning, which are special cases of syllogism. Among the relation judgments made
by Liu Hui, the majority of them are of the equality relation. For example, right after
Liu Hui proved one formula for the area of a circle, Liu Hui stated the following in

order to prove another formula S =
1
4

Ld, [6, p. 23] and [3, pp. 560–561]:

Multiply one-half of the circumference and one-half of the diameter [to get the area of a cir-
cle]. But now both the circumference and the diameter are full, therefore the two [numbers
in the] denominator should be multiplied [to get] four. [That is,] use 4 to divide the quantity.

That is to say,

13 These terms are used to describe the teaching method in which students when shown one exam-
ple are expected to understand the analogous problems. These term were Liu Hui’s words in the
preface of Nine Chapters [6, p. 2] and [3, pp. 128–129].
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the known formula: S =
1
2

Lr (equality relation) and

r =
1
2

d (equality relation), therefore

S =
1
2

L× 1
2

d =
1
4

Ld. (equality relation)

The equality relation is reflective and transitive.
Moreover, Liu Hui also used inequality relation in his reasoning. The operation of

sphere volume [開立圓 kai liyuan] procedure in Nine Chapters utilized an incorrect
formula for the volume of a sphere:

V =
9
16

d3,

where V is the volume of a sphere and d is the diameter.14 Liu Hui recorded how
this incorrect formula was derived: Take a cube with the length of its side equal to
the diameter of the sphere d. The ratio of volumes of the cube and the transcribed
circular cylinder inside it is 4:3; the ratio of the volumes of a circular cylinder and the
transcribed sphere inside it is also 4:3, taking 3 as the value of the circumference-
diameter ratio. Therefore the ratio of the volumes of the cube and its transcribed
sphere should be 16:9. That was how the above formula was derived according to
Liu. Liu Hui took the intersection of two perpendicular circular cylinders of the
same diameter and called it matching square cover [牟合方蓋 mohe fanggai] in
Figure 2. Then he described [6, p. 142] and [3, pp. 378–381]:

The square cover has a ratio related to squares; a transcribed sphere in it, a ratio related
to circles. Deducing from this fact, [we ask,] how can those who described the circular
cylinder as related to the ratio related to squares be not wrong?

Fig. 2 matching square cover [牟合方蓋]

His lines of reasoning go as follows:

14 This procedure describes how to find the diameter of a sphere when its volume is given. The
procedure and Liu’s commentary can be found in [6, pp. 141–143] and [3, pp. 378–385].
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matching square cover : a sphere = 4 : π
A circular cylinder : a sphere 	= matching square cover : a sphere

Hence a circular cylinder : a sphere 	= 4 : π

This fundamental overturns the formula in Nine Chapters.

(3) Hypothetical reasoning
The hypothetical reasoning is a commonly used reasoning in mathematical rea-

soning. First, let us examine how Liu Hui utilized the hypothetical reasoning with a
sufficient condition. For example, Liu Hui’s commentary to the tomb tunnel [羨除
yanchu] procedure in the Work Discussing Chapter [6, p. 184] and [3, pp. 432–437]:

No [perpendicular] cross-sections of [two solids of the same height] are not equal squares,
[yet] a pyramid with a square base and a yang-ma [陽馬 yangma] [of the same height and
base] are equal in volume.

See Figure 3.

Fig. 3

The statement was written too simplistically to comprehend literally. It can be
expanded to be:

If, for each level, the cross-sections of the two 3-dimensional solids of the same
height are equal squares (P), then the volumes of the two solids should be equal as
well (Q).

For the pyramid with a square base and yang-ma in question, the cross-sections
of them for each level are the same squares (P); therefore the volumes of the pyramid
with a square base and yang-ma in question should have the same volume (Q).

The reasoning format is, if P then Q; now P, therefore Q. In a true hypothetical
reasoning, if the condition P is true, so is the condition Q; if the P is false, then
the truth value of Q is uncertain. Liu Hui fully understood this. When we divide
a rectangular parallelepiped from one edge towards its opposite, we get two moat-
ends [塹堵 qiandu] (right triangular prisms).
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Fig. 4 moat-end [qiandu] (left); yang-ma [yang-ma] and turtle-forelimb [bienao] (right)

When we further divide a moat-end from one vertex towards one of its opposite
edges, we get a yang-ma [陽馬] (a pyramid with a square base and four right triangu-
lar sides) and a turtle-forelimb [鼈臑 bienao] (a tetrahedron with all four sides being
right triangles). See the right of Figure 4. Nine Chapters provided the procedure of
finding the volume of a moat-end:

Procedure says: The width and the length [should be] multiplied together; use the height to
multiply [the product], then divide [the result] by 2. That is,

Vq =
1
2

abh. (2)

And it also provided the volume of a yang-ma:

Procedure says: The width and the length [should be] multiplied together; use the height to
multiply [the product], then divide [the result] by 3. That is,

Vy =
1
3

abh. (3)

It provided that of a turtle-forelimb as well:

Procedure says: The width and the length [should be] multiplied together; use the height to
multiply [the product], then divide [the result] by 6. That is,

Vb =
1
6

abh. (4)

Vq,Vy,Vb,a,b and h are the respective volume of moat-end, yang-ma, turtle-forelimb,
their width, length, and height.15 Because a cube can be divided into 3 congruent
yang-mas or 6 congruent turtle-forelimbs which form three pairs of symmetric ones
(See Figure 5), Liu Hui described it as, “Observe how the cube is divided and the
shape [of resulting solids] are congruent, then it is easy to verify [these formulas].”

15 For the procedures of finding the volumes of a moat-end, yang-ma, and turtle-forelimb, see [6,
pp. 182–183] and [3, pp. 428–433].
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Fig. 5 A cube is divided into three yang-mas, as well as six turtle-forelimbs

That is to say, when the length, width, and height are equal, it is easy to use
the geometric models to test and verify that formulas (3) and (4) are correct, as
depicted in Figure 5. However, when the length, width, and height are not the same,
a rectangular parallelepiped can not be divided into three congruent yang-mas or
six turtle-forelimbs. It is impossible to use the testing method to verify formulae (3)
and (4), just as Liu Hui commented [6, pp. 182–183] and [3, pp. 430–431]:

The turtle-forelimbs are of the different shapes, so are the yang-mas. When yang-mas are
of the different shapes, then they will not match perfectly. If they do not match perfectly,
then it is difficult.

His reasoning style goes as follows:

If the polyhedrons are congruent (P), then their volumes are equal (Q). Now that the
polyhedrons are not congruent (P), then it is difficult to tell. (the truth value of Q is
uncertain).

That is, to prove formulas (3) and (4) for general cases, one has to find some other
ways.

(4) Disjunctive reasoning
Liu Hui used the disjunctive reasoning in many places. In the basic arithmetical

calculations, the order of multiplication and division can be switched, “different
orders of carrying out multiplications and divisions have their meaning, but give the
same result” [6, p. 187] and [3, pp. 442–443]. In the commentary to the ‘suppose’
procedure in the Millet and Rice Chapter, Liu Hui supported the order of operation
to be multiplication first then division because “if [we] divide first and then multiply,
there might create fractions [in the process]; that is why the procedure uses the other
order.” [6, p. 70] and [3, pp. 224–225] This is disjunctive reasoning:

Either we carry out multiplication first and then division, or division first and then mul-
tiplication. Now it is not division first and then multiplication, therefore the order of the
operation should be multiplication first and then division.
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(5) Dilemma Reasoning
Dilemma Reasoning is a combination of hypothetical and disjunctive reasoning.

The major presupposition consists of two hypothetical statements and the minor
presupposition is a disjunctive judgment. For example, the style Liu Hui employed

in disapproving the incorrect formula for the area of a circle, S =
1
12

L2 is no other
than reasoning by contradiction.

Liu stated [6, p. 23] and [3, pp. 186–187]:

The ratio of the perimeter of a [regular inscribed] hexagon [inside a circle] to the diameter of
the circle is three to one. Therefore, multiplying the perimeter of the hexagon by itself is like
nine times the square of the diameter. Nine squares make 12 [inscribed regular] dodecagons.
So divide the area of the nine squares to get the area of a dodecagon. Now if [we] make the
circumference [of the circle] multiply itself, this is not like nine times the square of the
diameter. Then dividing the result by 12 does not yield the area of a dodecagon. If we want
to use it as the area of the circle, the discrepancy is too much.

This has two hypothetical presuppositions. One, a one-twelfth of the square of
the perimeter of an inscribed regular hexagon (as the circumference of the circle)
is the area of an inscribed regular dodecagon inside the circle, which is less than
the area of the circle; the other, a one-twelfth of the square of the circumference is
greater than the area of the circle. Moreover, there is a disjunctive presupposition:
a one-twelfth of the square of the perimeter of an inscribed regular hexagon or a
one-twelfth of the square of the circumference. The conclusion is, one quantity is
less than and the other is greater than the area of a circle. Both proved that the above
formula was incorrect.

Further more, Liu Hui utilized infinite inferences many times, which can be con-
strued as the prototype of a mathematical induction principle.

These analyses present a very small number of many instances of deductive rea-
soning by Liu Hui; yet it is sufficient to demonstrate that Liu Hui in effect employed
several major reasoning formats described in the textbooks of modern formal logic.

3 Liu Hui’s Mathematical Proofs

The reasoning statements discussed above, due to the truthfulness of their presup-
positions, form de facto proofs or part of their argument. The most beautiful proofs
provided by Liu Hui are (1) a proof for the procedure of finding the area of a cir-
cle in Nine Chapters and (2) his proof for the Liu Hui Principle proposed by Liu
himself.

These two proofs represent two major styles among Liu’s proofs: synthesis [綜
合 zonghe] method and a combination of synthesis and analysis [分析 fenxi] meth-
ods.16

16 The synthesis [zonghe] method refers to the reasoning in which one starts with the given condi-
tions and derive the conclusion while in the analysis [fenxi] method, one starts with the conclusion
and figure out the condition, say A, needed to obtain the conclusion, and then continues with condi-
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1. A proof for procedure of the area of a circle.
Liu believed that the traditional reasoning behind the area of a circle was based

on the assumption that the ratio of the circumference of a circle to its diameter is
3 to one, which did not prove the formula properly. Therefore, he proposed a proof
based on a limiting process and infinitesimally small sectors produced in the process
of circle division. He stated [6, pp. 18–19] and [3, pp. 178–181]:

Another view, draw the figure: Use one side of an [inscribed regular] hexagon to multiply
the radius of the circle. Three times [the product] is the area of an [inscribed regular] do-
decagon. If [we] divide the circle further [following the same principle] and use one side of
the dodecagon to multiply the radius of the circle. Six times [the product] is the area of an
[inscribed regular] 24-gon. The finer we divide the circle to be, the smaller the discrepancy
[between the area of the inscribed regular polygon and that of the circle]. Divide the circle
until it cannot be divided any more; then [the polygon obtained] will match [perfectly] with
the circle and there is no discrepancy. [The line segment from the] outside of [the middle
of] one side of the inscribed polygons [to the circumference of the circle] is called excess
radius [余径 yüjing]. Use perimeter of a regular polygon to multiply its excess radius. Then
[the sum of] this area [and that of the regular polygon] exceed [that of] the circle. If the di-
vision [of the circle] is so that [the polygon] match perfectly with the circle, then there is no
excess radius. If there is no excess radius outside the polygon, then [the sum] of the areas
will not surpass that of the circle. Use one side of this [infinite-sided] polygon to multiply
the radius, [the area of which is] twice of the sector subtended by one side of the polygon.
Hence use one half of the circumference of the circle to multiply the radius to produce the
area of the circle.

Liu Hui first took several steps in the limiting process, starting with an inscribed
regular hexagon inside a circle. Let us use Sn to denote the area of the inscribed reg-
ular 6×2n-sided polygon obtained after the n-th step of the circle division process
and S the area of the circle. Liu Hui demonstrated that

Sn+1 < S < Sn +2(Sn+1 −Sn)

and
lim
n→∞

Sn = S,

and
lim
n→∞

[Sn +2(Sn+1 −Sn)] = S.

tion A and figures out the condition B needed to obtain the condition A, and etc. This reserve-styled
argument aims to find the conditions in the reversed order so as to find the condition to match the
ones given in the statement of the question.
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(1) (2)

(3) (4)
Fig. 6

And Liu Hui considered the inscribed regular infinitely many-sided polygon that
matched the circle perfectly and divided it as infinitely many congruent isosceles
triangles, each of which has the center of the circle as one vertex, the infinitesimally
small “side” as its base, and the radius of the circle as its height. Assume the length
of the base is li and area of the isosceles is Ai. Then, it is obvious that

lir = 2Ai.

The sum of the length for the base of the infinitely many isosceles triangles is
equal to the circumference of the circle; the sum of their areas, the area of the circle:
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∞

∑
i=1

Ai = S. Therefore,

∞

∑
i=1

lir = Lr = 2
∞

∑
i=1

Ai = 2S.

Then we can get S, which is Formula (1) in Section 1 (see Guo [7], [9] and K.
Chemla et Guo Shuchun [3]).

This is a complete proof for the procedure of finding the area of a circle in Nine
Chapters; moreover, this is a typical synthesis method: From several known condi-
tions, Liu Hui arrived at the conclusion through reasoning.17 This style was utilized
most frequently among the proofs in Liu Hui’s commentary.

2. The Proof of the Liu Hui Principle
Even more astonishing than the proof discussed above is how Liu Hui employed

the concept of taking the limit and the method of dividing polyhedrons into in-
finitesimally small pieces to prove the Liu Hui Principle. In order to prove Formulas
(3) and (4) of the volumes of a yangma [yang-ma] and a bienao [turtle-forelimb]
rigorously, Liu proposed an important principle, i.e., the Liu Hui Principle:

Divide a qiandu [moat-end] in a slanted manner to obtain a yangma and a bienao. The
yangma occupies two [thirds of the volume of the qiandu] and the bienao one [-third]. This
ratio will not change.

That is, in a qiandu, the relation

Vy : Vb = 2 : 1 (5)

remains constant. Obviously, as long as the Liu Hui Principle is proved, formulas
(3) and (4) can be obtained by formula (2) for the volume of a qiandu. To prove
formula (5), Liu Hui stated [6, pp. 182–183] and [3, pp. 430–431]:

Let yangma be the inside of the divided solid and bienao the outside. Although a geomet-
ric model (rectangular parallelepiped) can have a different length and width, this ratio [of
the volumes to be 2:1] remains constant. Even if the body of a parallelepiped is different,
the ratio stays the same. That is always the way. Suppose a bienao has its width, length,
and height all equal to 2 chi, divide it into two qiandu and bienao and use red models [to
represent these solids]. Moreover, take a yangma so that its width, length, and height also
equal to 2 chi. Divide it into one cube, two qiandu, and two yangma. Use black models

17 Liu Hui’s commentary to the circular field method constitutes two distinct discussions on the
circle division. One was to prove the formula for the area of a circle in Nine Chapters; the other,
to find the circumference-diameter ratio. Before 1970, almost all studies on Liu Hui’s commentary
to the circular field method never discussed the phrases in Liu’s commentary, “Use one side of this
[infinite-sided] polygon to multiply the radius, [the area of which is] twice the sector subtended
by one side of the polygon. Hence use one-half of the circumference of the circle to multiple
the radius to produce the area of the circle. [觚而裁之, 毎輒自倍, 故以半周乘半径而為圓冪]”
This sentence inadvertently links together the process of taking the limit and that of finding the
circumference-diameter ratio. Many scholars described that Liu’s process of taking the limit was
to find the circumference-diameter ratio. In fact, to find the circumference-diameter ratio did not
require the process of taking limits because Liu’s circumference-diameter ratio was only an ap-
proximate value. That is, his process stops after a finite number of steps.
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[to represent these solids]. Combine the red and black models to make a qiandu, the width,
length, and height of which are all equal to 2 chi. Bisect its width and length, and then bisect
its height. Combine one red and one black qiandu models to make a cube with its height
equal to one and the base a square of one. Every two bienao models together make one
yangma model. Take the models on the two sides together to make a cube. The portion that
can be made into different kinds of parallelepiped occupied 3 while the portion that can be
made into a similar parallelepiped occupied 1. Although the body of a parallelepiped might
change according to the models, the ratio remains the same. If the portion that is unknown
follows the ratio of 2:1 (for the volumes of divided yangma and bienao), then the ratio for
the whole solid is determined. How can this as a principle be void? Take this argument of
numbers to the extreme. Take the remaining portion, the width, length, and the height of
which is halved. In this remaining solid, three-fourth of it can be found [by repeating the
above argument]. The more halves, the tinier the remaining part becomes. When the process
is pushed to the step when the remaining part becomes so fine that is called trifle [微 wei],
which has no shape, why should we consider the remaining part?

Limited by the geometric models at hand, Liu Hui used a model with a = b = h =
1. However, Liu Hui explicitly stated that “Even when the measures of the width,
length, and height of the parallelepiped might change, the process of division can
be carried out according to the procedure”. Therefore, his argument fits the general
scenario in which a, b, and h are not equal. We describe the general scenario here.
See Figure 4, a qiandu can be divided into a yangma and a bienao. Then the yangma
can be divided further into one rectangular parallelepiped I, two smaller qiandu II,
and III, two smaller yangma IV and V as in Figure 7 (1); the bienao in Figure 4
can be divided further into two smaller qiandu, II′ and III′, and two smaller bienao,
IV′ and V′, as in Figure 7 (2). Obviously the small qiandu II and II′, III and III′

can be combined as rectangular parallelepipeds congruent to I, as in Figure 8 (2)
and (3). The small yangma IV and the small bienao IV′ as well as V and V′ can
be combined to form two qiandu congruent to the small qiandu II, III, II′ and III′,
which in turn can be combined to form a 4th rectangular parallelepiped congruent to
I, as in Figure 8 (4). Obviously, in the first three parallelepipeds, I, II-II′ and III-III′,
the ratios of volumes for yangma and bienao are all equal to 2 : 1.

In fact, as early as 1930’s, Japanese scholar Mikami had solved this problem.
As for the ways of combining the small qiendu’s, he proposed two possibilities,
in addition to the aforementioned combining II with II′ and III with III′, it could
also be done with II with III and II′ with III′. Mikami was leaning toward the latter
[10]. His work did not catch the attentions of Li Yan or Qian Baocong. Therefore,
this problem was left by Qian as an open problem to be solved in [11]. In 1980,
Hideki Kawahara in his Japanese edition of The Nine Chapters on the Mathemat-
ical Procedures commented by Liu Hui provided much more detailed discussions
on Mikami’s conclusions of this problem [12]. Moreover, this question was also
discussed independently by Danish scholar D. B. Wagner in 1979 [13] and Guo
Shuchun in 1980 [8]. Wagner took the approach of combining II with III and II′

with III′ while Chemla and Guo in [3] II with II′ and III with III′.
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(1) (2) (3)

Fig. 7 Decompositions of a yangma and a bienao which compose a qiandu

IV’  V’

III’

II’

I II III
IV  V

Fig. 8 The proof of the Liu Hui Principle
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That is, relation (5) holds in three fourths of the original qiandu. Liu Hui con-
tended that if relation (5) can be proved in the 4th rectangular parallelepiped, then
(5) is proved for the entire qiandu. On the other hand, the two qiandu in the 4th
rectangular parallelepiped are mathematically similar to the original qiandu. Con-
sequently, the process of dividing a qiandu discussed above can be applied step-
by-step to these two small qiandu in the 4th rectangular parallelepiped. Then in 3

4
of these two qiandu, relation (5) holds while it remains to be proved in 1

4 of them,
i.e., 1

4 ×
1
4 of the original qiandu. This process can be repeated indefinitely. After n

divisions, Formula (5) remains to be proved in 1
4n of the original qiandu. As well-

known, lim
n→∞

1
4n = 0. As a result, the Liu Hui Principle is proved for the entire qiandu

[8, pp. 47–62], [9] and [3]. This process can be summarized as

　　
1
4

3
4

lim
n→∞

1
4n

= 0

From this diagram, we can see this proof was mainly analysis [fenxi], interspersed
with synthesis [zonghe].

3. Liu Hui’s system of mathematical theory
Liu Hui’s discussions on fractions, quantities, areas, volumes, and right triangles

all constitute a part of his own system of theory. And this system is different from
that of Nine Chapters. Take the discussion of the volumes as an example. When
discussing his own approach to finding the volume of polyhedrons, Liu Hui stated
[6, p. 179] and [3, pp. 422–423]:

This Chapter deals with qiandu and yangma, several of which can combine to form a cube.
That is why the mathematician sets up three types of geometric models in order to measure
the volumes with the height or depth.

At the time of Nine Chapters, the method employed to find the volumes of poly-
hedrons was the testing method by geometric models. Therefore, the cube, qiandu
and yangma, (see Figure 9) the width, length, and the height of which are all 1 chi,
held a central position in this approach. The approach to find the volumes of cylin-
der or circular cone, polyhedrons related to circles, depended on the area of its base.
The system of deriving volumes in Nine Chapters can be described in Figure 10.

・・・・・・
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Fig. 9

Fig. 10
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On the other hand, the basis of Liu Hui’s theory on the volumes of polyhedrons
is the Liu Hui Principle. After completing the proof of this principle, Liu Hui stated
[6, p. 183] and [3, pp. 432–433]:

Without bienao, [we] cannot verify the volume of yangma; without yangma, [we] cannot
verify the solids similar to cones and frustums. Therefore, bienao is the main reason for
finding the volumes of many polyhedrons.

Liu Hui contended that bienao played a key role in solving problems of volumes
of polyhedrons. For many polyhedrons, their volumes can be obtained, through
finitely many steps, by dividing them into a collection of rectangular parallelepipeds,
qiandu, yangma, and bienao; since the formulas for whose volumes were established
and proved, by adding these volumes together, one can find the volume of the solid
in question.

Fig. 11 Liu Hui’s relation among geometric solids18

As for the volumes of solids related to circles (i.e. circular cylinder or sphere),
their volumes can be obtained by comparing the area of cross-sections. The sys-
tem of Liu Hui’s theory for volumes can be described in Figure 11. Liu Hui viewed

18 The downward lines in Fig.11 reflect the fact that the solids below were derived from the ones
above.
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bienao as the smallest unit in dividing polyhedrons. Both this concept of dividing
volumes into smaller pieces and the procedure of finding the volume of a bienao
have to depend on the realization of the infinitesimal division. That is, Liu’s theory
of the volumes for the polyhedrons in effect established on the concept of infinites-
imal division, which is surprisingly in line with the modern theory of volumes. The
great mathematician Gauss (1777–1855) conjectured that the solutions to finding
the volumes of polyhedrons cannot be achieved without carrying out divisions of
the solids into infinitesimal small pieces. Based on this conjecture, Hilbert (1862–
1943) proposed the third problem in his address of 1900 to the international congress
of mathematicians [2, pp. 60–84]. His follower Dehn (1878–1952) soon afterwards
provided a positive answer. Liu Hui in the third century started to consider problems
considered by mathematicians in the 19th and 20th centuries.

Since some years ago, the different branches in mathematics have been depicted
as a tree. Located at the roots are algebra, plane geometry, trigonometry, analytic
geometry, and irrational numbers. From these roots grow the strong trunk, differen-
tial and integral calculus. On the top of the trunk sprout many branches including
the branches of higher mathematics [1, p. 491]. In fact, 1700 years ago, Liu Hui had
the concept of the mathematical tree. He stated:

Things of various kinds can be used to find each other, each of which can be found its loca-
tion in the complex relations. The reason that the branches are apart but share the same trunk
is that they came from the same root. Analyze the principles by virtue of verbal formula-
tion; explain the substance of things using figures in the hope of achieving simplicity while
remaining complete and general but not obscure, so that the reader [of the commentary] will
be able to grasp more than half [6, p. 1] and [3, pp. 126–127].19

Liu Hui’s mathematical tree starts from a point. What is this starting point? Liu
Hui stated [6, pp. 1–2] and [3, pp. 126–129]:

Although they were described as Nine Branches in Mathematics [九数 Jiushu], they can
exhaust the fine details, get into extremely small matters, and explore and measure without
any bound. As for disseminating the methods, it is just like try square and compass [規矩
guiju] and measurements [度量 duliang] can be used to find the commonality; therefore,
they are not extremely difficult.

The term try square and compass represents the figures and diagrams in the
space while the term measurements the relations among measured quantities. That
is to say, mathematical methodology from generation to generation is the unification
of geometric problems and relations among the measured quantities in the objective
world. The guiju and duliang can be seen as the root of Liu Hui’s tree of mathe-
matics. Methods in mathematics are born out of the guiju and duliang. This also
reflects the characteristic of ancient Chinese mathematics―the union of shapes and
numbers as well as that of geometric problems and arithmetical algebraic methods.

19 The translation of last sentence was taken from Martzloff [4, pp. 69–70].
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Fig. 12 Liu Hui’s mathematical tree
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Liu Hui’s tree came out of the two roots, measuring tools and measurements.
They are unified under numbers, upon which grows the trunk of computations of
quantities. Based on the unproved yet agreed-upon formulas of the rectangular area
and volume of a rectangular parallelepiped and the definition of ratio [率 lü], there
grows the branches of the four arithmetic operations for integers and fractions,
the ‘suppose’ procedure, proportional distribution procedure, fair labor procedure,
excess-deficiency procedure, root-extracting procedure, rectangular array proce-
dure, solutions to area and volumes, and at least the solution to right triangles and
survey, from which grows more refined branches of all kinds of mathematical meth-
ods. Eventually, all these contribute to form a leafy tree full of fruits, as depicted in
Figure 12.

Liu Hui’s system of mathematics is “achieving simplicity while remaining com-
plete and general but not obscure [約而能周, 通而不黷].” That is, it is simple but
complete, far-reaching without obstacles. Even though in the form of a commen-
tary, Liu Hui cannot but separate his mathematical knowledge into the algorithms
and questions in Nine Chapters. It is worth mentioning that his commentary did
not contain any self-conflict paradox logically. This shows the level of his logical
reasoning. Liu Hui’s mathematical system was developed upon the frame of the
mathematics in Nine Chapters. It inherited the correct content in Nine Chapters;
moreover, it molded and complemented it. In short, Liu Hui’s commentary, com-
pared with the texts in Nine Chapters, transformed the quality of the mathematical
content in it.
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On the Alternative Algorithm of the 7th Problem
in the Sea Island Mathematical Canon

Hideki Kawahara

Abstract The alternative algorithm of the 7th problem in Liu Hui’s Sea Island Math-
ematical Canon is mathematically incorrect. In this short note we try to restore it,
based on a characteristic of mathematical formulas by Liu Hui.

1 Introduction

Liu Hui [劉徽], who lived from the end of Wei [魏] till the beginning of Jin [晋], not
only annotated the Nine Chapters on the Mathematical Arts [九章算術 Jiuzhang
Suanshu] in 9 volumes, but also evolved the similarity of right triangles, which
appears in the 9th Chapter Right-angled Triangles [句股 Gougu], so as to attach ex-
amples and annotations about Double Differences [重差 Chongcha] at the end of the
9th chapter. You see it as the Jiuzhang Suanshu in 10 volumes selected by Liu Hui
in History of the Sui Dynasty, Record of Books [隋書経籍志 Sui Shu, Jingji Zhi].
Although annotations and diagrams had disappeared, examples of the 10th Chap-
ter Double Differences survived as the Sea Island Mathematical Canon [海島算経
Haidao Suanjing].

The present Sea Island Mathematical Canon consists of 9 problems, a collection
of examples about survey. The form as a book is the same as the Nine Chapters on
the Mathematical Arts, so that every example consists of a question [問 wen], an
answer [答 da] and an algorithm [術 shu].

There are excellent studies on the Sea Island Mathematical Canon, such as new
annotations by Li Yan [1] and castigations by Qian Baocong [2], which have elu-
cidated most of mathematical matters. Therefore, we basically depend on the cas-
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tigations by Qian Baocong and the diagram and mathematical signs by Li Yan, to
explain the algorithm of Liu Hui.

We cite here our publications [3] and [4], and two recent works Feng [5] and
Guo-Liu [6] by Chinese scholars on the Nine Chapters on the Mathematical Art and
related topics. The reader may find useful two commentaries Shen-Crossley-Lun [7]
and Chemla-Guo [8] in European languages.

Yet scholars who specialize in the history of Chinese mathematics have never
tried to evolve detailed analysis about alternative algorithm [又術 you shu] of the
7th problem. The reason is that the algorithm is mathematically wrong. We think
that the wrong points of the alternative algorithm of the 7th problem are caused
by manipulation of later generations, and in this short essay we try to restore the
alternative algorithm based on characteristics of mathematical formulas by Liu Hui.

2 Original Text

The 7th problem of the Sea Island
Mathematical Canon surveys the
depth z1 of the clear water from
two survey points p and n′ which
are four = d feet away up and
down, by taking water shore A′

and white stone A under the depth
as targets since we can’t make ac-
cess to the clear water.

The original text reads as follows:

今有望清淵,淵下有白石 (A).偃矩岸上,令句高三尺 (b).斜望水岸 (A′),入下
股四尺五寸 (c).望白石 (A),入下股二尺四寸 (c1).又設重矩於上,其間相去
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四尺 (d).更從句端斜望水岸 (A′),入上股四尺 (c3).以望白石 (A),入上股二
尺二寸 (c5).問水深幾何 (z1).

Please make reference to Diagram by Li Yan [1] about shanggu (上股 c3,c5) and
xiagu (下股 c,c1) and so on.

Liu Hui writes the first algorithm to the 7th problem as follows:

術曰,置望水上下股,相減 (c− c3).餘以乘望石上股 (c5),為上率.又以望石
上下股相減 (c1 − c5), 餘以乘望水上股 (c3) 為下率. 兩率相減, 餘以乘矩間
(d)為實.以二差相乘為法.實如法而一,得水深 (z1).

If we would write this in present mathematical formula,

z1 =
d[c5(c− c3)− c3(c1 − c5)]

(c− c3)(c1 − c5)
. (1)

But the alternative algorithm reads as follows:

又術,列望水上下股及望石上下股,相減.餘并為法.以望石下股減望水下股,
餘以乘矩間,為實.實如法而一,得水深.

That is,

z1 =
d(c− c1)

(c− c3)+(c1 − c5)
,

which doesn’t make sense.

3 Restoration of the Alternative Algorithm

The presentation of algorithm by Liu Hui has a characteristic, that is to say, he often
proposes more than one algorithms to the same problem. For example, he writes two
ways of arithmetical progression’ formula at the 19th problem in the 7th Chapter
Excess and Deficit [盈不足 Ying Buzu] of the Nine Chapters on the Mathematical
Art.

S =
(

a+
n−1

2
d
)

n and S = an+
n(n−1)

2
d.

Two formulas have the same meaning as mathematical formulas, but not identical
as an algorithm.

You may already know what we think from the above. We would regard expres-
sion

z1 =
dc5

c1 − c5
− dc3

c− c3
, (2)

derived from (1) as the mathematical expression of the alternative algorithm. Thus
the algorithm should be corrected as follows: (12 characters are corrected.)
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又術,列望水上下股及望石上下股,相減 (c− c3,c1 − c5),餘 [各]為法.以望
[水上]股 (c3) [及]望 [石上]股 (c5) [乘]矩間, [各]為實 (dc3,dc5).實如法而
一, [所得相減],得水深 (z1).

Though we should be careful about castigation of old books, sometimes logical cas-
tigation could be allowed especially when it comes to analyze mathematical thesis,
since it has universal characteristics.
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A Comparative Study

on Traditional Mathematics of Korea and Japan

Kim Yong-Woon

Abstract Mathematics and astronomical system of ancient Japan had been influ-
enced by those of ancient Korea since the early 5th century, Ōjin period of Japan.
It was also clear that the fundamental languages, especially the numeral and arith-
metic terms of both Korea and Japan were based on the common linguistic ancestors.
These strongly indicate that both nations possessed the very close way of thinking
and the value in mathematics. However, after the 17th century, there was a major
difference in their way of thinking of mathematics.

1 Ancient Mathematics of Korea and Japan

Budo [夫道], who was very good at mechanics, writings and mathematics, was ap-
pointed as public officer of Silla [新羅] dynasty according to the record [2] below
in 251 AD. It was institutionalized in 260 AD to appoint a mathematical officer in
Baekjea [百済]. Moreover, mathematical officers were regularly appointed in Baek-
jea and Koguryo [高句麗] before Silla.

There was a report that people who were good at writings and mathematics took
charge of accounting and financial affairs in Japan, the second year of Kyōtoku [孝
徳], 646 AD.

The 1st period of Japanese mathematics started from Baekjea according to the
official History of Nihon [日本書紀 Nihon Shoki].

1. Agicki [阿直岐] from Baekjea became a tutor of the crown prince in 400 AD.
2. Wang-In [王仁] from Baekjea instructed the Analects [論語] of Confucius and

the Thousand-Character Text [千字文], then he became a tutor of the crown
prince in 402 AD.
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3. Baekjea accredited Dan Yangi [段楊爾] a doctor of five Chinese classics [五経
博士] of Confucianism to Japan in 513 AD, and replaced in 516 AD.

4. Japan required the regular replacement of a medicine doctor, a divination doc-
tor and an almanac doctor, and also required astrological books, almanacs and
many medical aids in 553 from Baekjea. Therefore, Si-Duk [施徳] and Wang-
Doryang [王道良], who were divination doctors, and Go-Duk [固徳] and Wang-
Boson [王保孫], the almanac doctors, were replaced.

5. Gwon-Rok [勸勒], the monk from Baekjea, taught almanac, astronomy, and
divination to Japanese students in 602 AD.

6. Metrological system had been arranged in the period of King Jomei [舒明天皇]
(629–641). It was obvious that almanacs, astrology and metrology above were
related to mathematics.

2 Mathematical System in the Legal System

After the unification (669) of three kingdoms in Korea, Silla absorbed the mathe-
matical systems of Baekjea and Koguryo, and rearranged them referring to those of
Dang [唐] dynasty.

History of three Kingdoms [三国史記] showed the educational period, qualifi-
cation, the course of study, etc. of mathematical doctors and their assistants. These
mathematical doctors with an assistant taught Cholsul [綴術], Samgae [三開], Ku-
jang [九章], Yukjang [六章].

Curriculum of mathematics of Silla has been revised to some degree in Koryo
Dynasty [高麗王朝], such as Cholsul, Samgae, Kujang and Saga [謝家] instead of
Yukjang. Cholsul which was originally from the mathematical system of Dang, had
been repealed because it’s all about the calculation of the circular constant π . No
one wants to learn about this since it’s too hard to understand, according to Suso
[隋書], the history of Su [隋] dynasty.

3 Japan

Japanese mathematical system, which was included in Yōrō Ritsurei [養老律令]
(718), consisted of Confucianism, writings, mathematics and phonology. It had 2
mathematical doctors and 30 students. Children of the officials higher than 5th de-
gree, and children of the 7,8th degree officials were qualified to apply for this sys-
tem.

Chinese mathematical subjects were adopted in the legal system. Japanese math-
ematical subjects consisted of Sonsi [孫子], Kujang [九章Kushō in Japanese], Kaitō
[海島], Cholsul [綴術 Tetsujitsu in Japanese], Samgae [三開 Sankai in Japanese],
Shuhi [周髀], Kusi [九司 Kyūshi in Japanese], Goso [五曹]. Among these, Yukjang
[六章 Rokushō in Japanese], Sankai, Kusi were not found in the mathematical sys-
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tem of Dang dynasty. Meanwhile, Rokushō, Sankai were included in the system of
Silla as well. However, these subjects must have been influenced by not Silla but
Baekjea because the relationship between Silla and Japan were established abruptly
at the time.

4 Mathematics of Chosǒn Dynasty

In the 10th century, the reign of the central government was collapsed in Japan.
Instead, it shifted to the shogunate government, which resulted in uselessness of
mathematical system that was made under the central government. Meanwhile, Ko-
ryo dynasty of Korea enforced Kwagǒ [科挙], the civil examination system, which
helped their mathematical system to be firm. At that time, the study of mathematics
was not organized systematically because the shoguns in Japan divided the country
into the local autonomy.

After the mathematical system of Silla was succeeded to Koryo, it made an
epochal improvement in Chosǒn [朝鮮] dynasty, especially in the period of King
Seajong [世宗].

King Seajong’s policy was based on building an independent Confucian ideal
country. Astronomical observations and making calendars had been originated from
China. However, he revised Chiljongsan [七政算], the standard astronomical book,
to make Chosǒn’s geography the center of the world by means of mathematics. He
also needed a great amount of mathematical knowledge to consolidate tax system
and estate system as well. According to Seajong Chronicles [世宗実録], King Sea-
jong organized a mathematical bureau [算学校正所] and a math school [習算局] to
reinforce his policy of the advancement of mathematical knowledge in 1423, 1430,
1431 and 1433 and he put his effort on studying mathematics by himself. In 1438,
the mathematical curriculum comprised 5 subjects such as Sangmyon-Sanbop [詳
明算法], Yanghee-Sanbop [楊輝算法], Kyemong-Sanbop [算学啓蒙], Ojosan [五
曹算], and Jisan [地算], which were completely different from those of Koryo influ-
enced by Silla. Those were not only the subject also the name of the textbooks. At
that time, they also revised the astronomy and astronomical system as well, which
was deeply related to King Seajong’s policy of the advancement of mathematics.

They specified the official status of mathematicians such as the professors of
mathematics, math officers, mathematicians, accountants, and math teachers. These
institutionalized mathematics affected Chosǒn’s fundamental mathematical system
thereafter.

Though mathematics had been succeeded as one of the fields of government con-
trolled science since Silla dynasty, Chosǒn dynasty renovated its own mathematics
in an independent way. It formed a striking contrast to Chinese or Japanese mathe-
matical system that was cut off from time to time in their history. Chosǒn was the
only country to adhere their mathematical system in the world.
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5 Paradigm of Chosǒn Dynasty

The mathematicians of Chosǒn dynasty consisted of noble scholars, enlightenment
scholars (practical scholars), and the intermediary mathematicians. Each has their
own point of view in mathematics as below.

5.1 Mathematics of Nobles

They were based on traditional Chinese six subjects such as manners, music,
archery, horse-riding, writings, and mathematics. King Seajong [世宗] (1419–1450)
described the reason he studied mathematics as below;

“The mathematical knowledge does not necessarily have to be studied by Kings.
However, mathematics is the study to approach to what a saint taught us.”

‘What a saint taught us’ implied the traditional concept of Chinese philosophy.
King Seajong had focused on the traditional mathematics. Nobles, based on the
belief of Sung Confucianism [宋儒], concentrated on this traditional mathematics
as well, which results in mixing of practical mathematics and metaphysical idea
from traditional mathematical principles.

Soon after Seajong’s era, Korea suffered from severe damage by two foreign in-
vasions. The first invasion was by Japanese (1592–1598) and the second one was by
Manchurians (1636–1637). Korea spent more than 60 years to restore mathematical
system after these wars. Then, in the end of 17th century, the examinations for math-
ematical officials took place every 1 or 2 years and 1672 mathematicians were listed
in the roll of successful candidates. The social status of mathematical officials was
strictly restricted, and hereditary family groups in mathematics were even formed.

Choi Sukjung [崔錫鼎] (1645–1715), one of the noble scholars, had worked as
the prime minister in Chosǒn dynasty. He wrote Kusuryak [九数略] on mathemat-
ics, and that book came next to Boethius (480–524), one of Roman mathemati-
cians. Boethius was famous for monastery mathematics focused on mythical and
metaphysical numeral theory regardless of the realistic problems. He also dealt with
the numeral classification based on the Trinity that was very much mythical. Choi
Sukjung wasn’t influenced by Pythagoras or Christian numeral ideas, of course, but
it was very interesting that he stated the numeral theory just like Boethius, based on
the Book of Yi [易] (Changes) and the classical philosophy. Both were very aristo-
cratic and tended to be metaphysical. In the preface of Kusuryak, it shows ‘numbers
are the best ...’ as below:

“Numbers are originated from the morality. ... Tae-il [太一], the first being, is
the beginning of numbers, Tae-geuk [太極], the Great Absolute, is the end of the
morality... .”

He discussed about the origin of numbers, the ontological basis of numbers and
metaphysical dogmatism by explaining names, figures, techniques and rules of num-
bers in this book. Besides, he classified each section of the book through connecting
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with the idea of the sun and the moon (Yin [陰] and Yang [陽]) into the exaggerated
name like ‘nine chapters in Yin-Yang theory’.

The idea of the Book of Yi and Chinese mathematics were both considered to
be successful in studying of a magic square. A magic square of Chinese mathemat-
ics came from the idea of the Book of Yi such as Hado [河圖] and Rakusho [洛
書]. Therefore, the study of a magic square was very natural in a traditional math-
ematical point of view. For instance, Mikami [7] refers to water according to the
traditional 5 principal theory. It results in a very creative magic square that was
able to express more complicated formed hexagon, which seemed to be affected by
Yanghee-Sanbop [楊輝算法].

Choi Sukjung’s academic character had been succeeded among the nobles and
Choi Hanki [崔漢綺] (1803–1879) was one of them. Also, he worked as a main
politician just like Choi Sukjung. He wrote a number of books on mathematics and
was one of the most remarkable empiricist of Korean history. As a mathematician,
he wrote Supsan Jinbol [習算津筏], but it was all the more traditional.

King Seajong, Choi Sukjung and Choi Hanki lived in a different period respec-
tively, but they all had the common metaphysical theory of mathematics, and that
was the limit of nobles who had been absorbed in Confucian culture.

5.2 Mathematics of Practical Scholars

Practical scholars from the nobles were those who developed the enlightenment
movement, and acted academically and encyclopedically. They started to recognize
the importance of mathematics, which had much in common with the French schol-
ars of enlightenment movement.

Hwang Yoonsuk [黄胤錫] (1719–1791) was one of the representative practical
scholars. He had written an encyclopedic book Isu-Sinpyon [理数新編], which in-
cluded from Sung Confucianism, the doctrine of the five natural elements of Yin-
Yang theory, astronomy, music, language, moral training and even how to get on in
life. Among these books, Sanhak Ipumun [算学入門] and Sanhak Bonwon [算学本
原] were related to mathematics. Sanhak Ipumun contained the contents of Chinese
mathematical books such as Sanhak-Kemon [算学啓蒙], Sangmyon-Sanbop and
other books from Chung [清] dynasty. In Sanhak Bonwon, he stated about the rela-
tionship between Chosǒn and European equation theory in the name of Chonon-sul
[天元術], and Chakun-sul [開方術]. His mathematical books, however, considered
too extensive topics.

Hong Daeyong [洪大容] (1731–1783) was also one of the practical scholars. He
was strongly interested in science, which made him build a private astronomical ob-
servatory. He had also written the encyclopedic books including Juhae-suyong [籌
解需用] on mathematics. In this book, he not only introduced traditional Chinese
mathematics, but also discussed about the role of mathematics in the relationship
with music, astronomy and almanacs. This showed that both French enlightenment
movement and Chosǒn’s practical scholars had in common with the awareness of
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the rationality, tendency of practicalism and the importance of mathematics. How-
ever, the former started to move toward the modern industrialization and was sup-
ported by at least their development of military science. On the other hand, there was
nothing industrial or technical development in Chosǒn at that time. Even though ‘the
truth from the fact that practical things are the best [實事求是]’ was the motto of
practical scholars, they only dealt with the field of astronomy and concerned about
practicality of mathematics.

5.3 Intermediary Class

Government controlled mathematics of Silla was succeeded to Koryo and Chosǒn
as it was because the administrative system of each dynasty had not been changed.
Kwagǒ [科挙], the civil examination system for mathematician as an technical offi-
cial had been enforced since Koryo dynasty, and it was improved in Chosǒn period.
Intermediary mathematicians mainly studied the techniques of administration and
survey and their social position belonged to the class between the nobles and the
common people. This only existed in Chosǒn dynasty of all Oriental countries.

Kyungguk-Daejon [経国大典], the constitution of Chosǒn, mentioned that only
the students of observatory who dealt with astronomy and almanac could apply to
astrology and astronomy.

Therefore, the intermediary class of technical officials had formed an exclusive
group in the society. In other words, intermediary class was made up of noble il-
legitimates and there were many abuses by fixing this class into the society. Math-
ematics, occupied by this specific class, faded away without the self-criticism or
improvement. Moreover, it had not been influenced by the change of regime, so
their techniques were handed down through heredity. The existing Juhak-Iphyukan
[籌学入格案], the roll of successful candidates for Chwijae [中人], the qualifying
examination of mathematical officials, and their personnel record, informed that the
consanguinity and the hereditary family group of 1627 candidates who passed the
exam during around 400 years from the end of 15th century to the end of 19th cen-
tury. According to this record, only 205 out of 1627 did not come from the family
related to mathematics. The system of mathematics, especially, became more exten-
sive as time went by and so did the mathematician’s field.

The firm existence of intermediary class played an important role in maintain-
ing of dynasty in spite of the foreign invasion such as Japanese and Manchurian
invasions.

5.4 Mathematicians from Intermediary Class (Technical Officials)

Hong Jungha [洪正夏] (1684–?), whose father, grandfathers and father-in-law
were all mathematicians, was a typical mathematician from intermediary class. He
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had written Kuilchip [九一集], which has the transformational questionaries from
Kujang-Sansul, Sangmyon-Sanbop based on Sanhak-Kemon. It also has the record
of the mathematical competition with Ha Gukju [何国柱], mathematician of Chung
[清] dynasty, which shows the atmosphere between Korea and China at those times
while most of books on mathematics in Chosǒn period were all written in Chinese
characters, and they were all textbookish.

Hong Jungha met Ha Gukju, who had visited Korea as a member of a diplomatic
mission, with his friend Yu Soosuk [劉寿錫] on 29th of May, 1713. It was customary
to accompany the best scholars on a diplomatic mission for the purpose of showing
off their cultural pride.

We could know the following from Hong’s records.

1. Mathematicians from Chosǒn’s intermediary class had bare minimal informa-
tion of Chinese mathematics, while Chosǒn’s high ranking officials, especially
diplomats gathered the new information. Did the society of mathematicians in
Chosǒn tend to be exclusive?

2. Chosǒn’s intermediary mathematician succeeded Chonon-sul [天元術], which
was almost forgotten in China. In addition, a calculation by counting rods was
not used anymore in China, either. Kinnosuke Ogura [小倉金之助] indicated
that Chonon-sul “had not been remembered anymore because people did not use
the method by counting rods [6] while abacuses had come into use to people.”

3. Ha Gukju probably went back to China with the recognition that Chosǒn still
had Sanhak-Kemon [算学啓蒙], which was already gone in China, and that
might have been an opportunity to be able to restore Chonon-sul later. To the
casual view, Chosǒn’s mathematicians preserved Cholsul, which had been al-
ready faded in China, until Koryo dynasty, Chonon-sul and Sanhak-Kemon as
well. That seemed to cling to legitimacy.

5.5 Collaboration with Intermediary Class
and Noble Mathematicians

As described above, mathematicians consisted of nobles, practical scholars and in-
termediary class, and they had their own academic characters respectively. However,
both mathematicians from nobles and intermediary class shared the common point
of view, because the practicality between the enlightenment movement of nobles
and the intermediary class became delicately overlapped at the end of Chosǒn era.

There was a movement to drive mathematics out of its traditional character. This
made both classes collaborate because it focused only on mathematics regardless of
the class. Nam Byungchul [南秉哲] and Nam Byunggil [南秉吉], who were brothers
and both noble high officials and scientists as well, were interested in infinite series
including the calculation of the circular constant π and the trigonometric series.
Nam Byunggil (1820–1869) and Lee Sanghyuk [李尚爀] (1810–?) studied together.
Lee Sanghyuk, who started as a lower official of astronomy, had written the books
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on almanac and astronomy. In his other books such as Sansul Gwangyun [算学
正義], Iksan [翼算] and Muihae [無異解], he developed mathematical theory that
had not been found in the former practicality-oriented mathematical books. From
this point, new mathematics started to study European geometry and trigonometry,
which showed the potential of Chosǒn mathematics getting out of the traditional
mathematics.

6 The Comparison with Japanese Mathematics

6.1 Abacus

It was told that Toyotomi Hideyoshi [豊臣秀吉], the shogun of Japan, sent Mōri
Shigeyoshi [毛利重能] to China or Chosǒn to study mathematics. There was the
oldest abacus in Maeda Han(clan) [前田藩] in Nagoya Castle [名護屋城], where
was the outpost when Toyotomi Hideyoshi invaded Chosǒn. The abacus must have
been made by Chosǒn in regard of the technique of its manufacture.

It was also told that Mōri Shigeyoshi came back to Japan with Sanbup-Tongjong
[算法統宗], which had the directions of abacus and explanation of dividing in de-
tail. He wrote the Book of Division [割算書 Warizansho], considering himself as
‘the world best abacus operator.’ Yoshida Mitsuyoshi [吉田光由], one of his disci-
ples, wrote Jinkōki [塵劫記] based on Sanbup-Tongjong. Sanbup-Tongjong was not
included in Chosǒn’s mathematical system while it was the most widely read in
Chosǒn period.

Japanese abacus, originally from China, were different from Korea’s. There were
2 beads in the upper deck, according to the picture in Sanbup-Tongjong, which was
the same as Korean abacus used by the end of Chosǒn period. However, abacus
in Korea was not widely used because the nobles in Chosǒn including scholars
and high officials considered it humble. Choi Sukjung [崔錫鼎], one of the noble
mathematicians, even excluded abacus.

On the other hand, abacus was so well-developed in Japan that Japanese abacus
had one bead on each rod in upper deck, 4 beads each in the bottom deck. That was
caused by the fact that ‘reading, writing and abacus’ became 3 major educational
subjects for common people as merchandising had been progressed in Dokukawa
[徳川] period. It was an immense difference from confucian-oriented education of
Chosǒn.

6.2 Chonon-Sul

Toyotomi invaders had taken most of Chosǒn’s mathematical books to Japan. Above
all, Sanhak-Kemon written by Ju Segul from Won [元] dynasty of China, influenced
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Japanese mathematics. This book had been published many times because it was
used as a regular system of mathematics in Chosǒn, while it was not seen anymore
in China. It dealt with Chonon-sul, called mechanical algebra, solving high degree
integer coefficient equation by the counting rods. Chonon-sul was structurally the
same as Horner’s approximation theory although it was invented in China at least
500 years earlier than the West. Counting rods used in calculation to solve a high
degree equation, but it was also complicated to operate. Some mathematicians in
the early Chosǒn were proud of being able to use Chonon-sul, which former math-
ematicians could not approach.

In China, no one was interested in Chonon-sul any more, then it had disappeared.
As stated above, it was obviously recorded in the mathematical debate between
Chosǒn’s mathematician and Ha gukju, who had visited Korea as a member of a
diplomatic mission from Chung dynasty.

Seki Takakazu [關孝和], the founder of Wasan [和算], started his study by copy-
ing the mathematical text books printed in Korean. Counting rods from Chonon-sul
had been changed to calculation with writing down on paper, then this helped to
invent Bōshojutsu [傍書術], a kind of side writing method. | 甲 [kō], | 乙 [otsu]
and | 丙 [hei] . . . started to be used instead of the numeral coefficient as symbolic
algebra. That is to say that Japanese mathematics had improved in the middle of
symbolization of letters far from the counting rods.

Mathematicians could solve very complicated calculation such as symbolic al-
gebra repeatedly with the help of Bōshojutsu instead of the counting rods. Finally,
they were able to calculate the infinite series with this method. It was also true that
differential and integral calculus was just around the corner of Japanese mathemati-
cians.

7 Paradigm of Japanese Mathematics

“The best abacus operator in the world” was the motto of Mōri Shigeyoshi. The
policy of Oda Nobunaga [織田信長] and the idea of work division in the Age of
Wars encouraged ‘the best in the world’ to be popular in every field of Japan. ‘The
world best kiln maker,’ ‘the best tea-making artist in the world,’ ‘the best mannered
man in the world,’ ‘the world best seal maker’ etc. showed how deep Japan had
been affected by this atmosphere. Moreover, Japan had 3 kinds of phonetics such as
Katakana [片仮名], Hiragana [平仮名] and Hentai Kana [変体仮名].

In addition, many schools such as Seki [關], Mogami [最上], Takuma [宅間],
and Miike [三池] were derived from Japanese mathematics, which foreign mathe-
maticians can not distinguish from each other. These schools competed with one
another, which reinforced Japanese mathematics by questioning with Open Prob-
lems [遺題 Idai in Japanese], and followed by other questions. Then, with these
competitions, they became to ignore the practicality. For example, they calculated
the circular constant π down to 50 decimals and hundreds of answers resulted from
the high degree equation, or even studied infinite circular row inscribed in triangles
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etc. These resulted in the factional competition, which originated the philosophy of
the usefulness of uselessness [無用之用]. Aida Yasuaki [会田安明] emphasized
on focusing on uselessness. He implies that traditional mathematics started from
practicality, but real mathematics must be free from practicality. While the practical
scholars of Chosǒn paid attention to the truth from the fact [實事求是], Japanese
mathematicians ignored the practicality and started to pursue the beauty of tech-
niques instead.

Aida Yasuaki himself was proud of being interested in ignoring the practical-
ity. Seki Takakazu, the best Japanese mathematician, regarded ‘the usefulness of
uselessness’ as the most important thing in mathematics. Aida Yasuaki pursued the
beauty of mathematics and it was all about unrestricted idea in Japanese art and
techniques including tea, drawings and judo, and so on. Therefore, Japanese mathe-
matics was more like hobbies as if poets and Japanese mathematicians had a spiritual
similarity.

Yoshio Mikami [三上義夫], one of Japanese mathematical historians, writes
“Most of mathematicians were interested in Waka [和歌] or Haiku [俳句], ‘Japanese
poem’ [7].”

Kazuo Shimodaira [下平和夫] [5] mentioned “The whole Japanese seemed to
be crazy about mathematics. Some people not only teach but also take care of other
poor mathematicians. What was worse, their lives lie in ruins with those hobbies.”

8 The Idea of Simplification and Generalization

While mathematicians of Chosǒn were faithful to tradition and Confucian belief,
Japanese mathematicians showed the opposite attitude. They never cared about the
original principle. They replaced the counting rods by drawings first and then writ-
ing down on paper without hesitating just as they improved their abacus straight
regardless of the existing style. It was also just the opposite to Chosǒn’s mathe-
maticians who continued using the counting rods. It could be called the symbolic
algebra that Japanese replaced the counting rods by drawings and then writing down
on paper as if western algebra replaced numbers by letters.

Yoshio Mikami considered Japanese mathematics as ‘the spirit that respects sim-
plification.’ Also, Hajime Nakamura [中村元], one of the well-known Japanese
philosophers, regarded Japanese Buddhism as simplification [7]. Those had some-
thing to do with the creativity of Kana, the improvement of abacus, and the current
improvement in technology.

Meanwhile, mathematician of Chosǒn persisted in traditional confucianism and
Yin-Yang theory, Chinese dualism. One of the reasons they continued using Chonon-
sul was Confucianism that all of Chosǒn’s mathematicians including intermediary
class had concentrated in detailed. Especially, the philosophy of Yi began with the
Great Absolute [太極] then reached to the sun, the moon and 4 items [四象]. From
here, one of the origin of universe Chonwon [天元] was called the Great Absolute
[太極 Taeguk]. Chosǒn’s mathematicians probably seemed to feel that they put the
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philosophy of Yi into practice while solving Chonon-sul. However, they also had a
creativity to invent Hangul, Korean phonetics and the double entry book-keeping
system, and so on. Hangul, Korean phonetics, which seemed to be somewhat Carte-
sian scientific thinking, analyzed the phones into vowels (the sun) and consonants
(the moon) first, and then integrated them again. Korean double entry system, which
was well known as Sagae songdo chibubub, also divided incoming and outgoing
of money by the sun and the moon, and those of goods by 4 items. (Yun Kun ho [尹
根鎬], A study of Sagae songdo chibubub [四介松都治簿法研究]) .

Songdo was the capital of Koryo dynasty, and now it indicates Gaesung in Korea.
Merchants of Gaesung were the most prosperous group at that time just as Oomi’s
[近江], the merchant of Japan, and they had traded Ginseng [朝鮮人参] from 　
Koryo period. Sagae songdo chibubub, which had been used from the end of Koryo
or the early Chosǒn, was exactly the same as the present double entry system, and
the one used at the end of Chosǒn still exists. Why did not Japanese invent a book-
keeping system while they improved an abacus? Why, on the other hand, did not
Korean improve an abacus though they invented the double entry book-keeping sys-
tem? The answers lied in the differences of their paradigm, such as Oomi’s abacus
against Gaesung’s book-keeping [開城簿記] system and ‘Kana against Hangul.’

Korean’s creativity, unlikely to Japanese simplification, was more generalized
and had made something useful to real life. Moreover, they dropped straight when
it was against the traditional legitimacy. Japanese, however, simplified the foreign
culture with their creativity regardless of tradition or ideology.

9 Conclusion

The comparison of traditional mathematics between Korea and Japan has been de-
scribed as follows.

1. Korean mathematics had been maintained under the government control from
Silla, Koryo through Chosǒn dynasty.

2. While most of ancient Japanese mathematics was borrowed from Baekjea, their
modern mathematics improved independently by substituting calculation with
writing down on paper for the counting rods.

3. Although both Korea and Japan were mostly influenced by Chinese mathemati-
cal books such as Sanhak-Kemon, Yanghee-Sanbop, Sanbup-Tongjong, and so
on, their paradigm formed the contrast as below.

4. The extinction of mathematics of both Korea and Japan followed after the
introduction of western mathematics. Ancient mathematical system and their
thought of both countries had been very similar. However, the differences above
were caused by their own paradigm derived from different social systems such
as Japanese shogunate feudalism and Chosǒn dynasty’s centralism.

5. Mathematics should not be restricted by philosophy. Japanese mathematics,
originally derived from Korean mathematics, had been able to be improved with
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unrestricted idea, the usefulness of uselessness and being free from western
mathematics.

Japan Korea
Social position no relation nobles intermediary class

Object of hobby, the use of metaphysical practicality
mathematics uselessness

Successor master and disciple, heredity,
schools of study examination

How to improve competition traditional traditional
the output,

Important Problems (Idai)
realization of

Ideal simplification traditional technical training
philosophy

Government shogunate dynasty
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The Axes of Mathematical Methodology

in the Song and Yuan Dynasties:

The Construction of Mathematical Models

Guo Shirong∗

Abstract Comparative researches between eastern and western mathematics of an-
cient and mediaeval times revealed that there are two major activities of mathemat-
ics, that is, theorem-proving and equation-solving. Theorem-proving mainly origi-
nated from Greek mathematics, meanwhile, equation-solving was an important con-
tent of Chinese mathematics. The fact seems to lead to the conclusion that Chinese
mathematics was basically based on the practical problems, and in the mean time
European one on geometrical problems. Based on analyses of Chinese mathemati-
cal works, the author of the present paper argues that Chinese mathematicians paid
more attentions to the design and the construction of their geometrical models differ-
ent from those introduced in living practices, in particular, in the 13–14th centuries.
Using their geometrical models, they constructed their mathematical contexts and
problems to meet their needs in displaying their mathematical ideas and in breaking
through the limitation of practical problems. The research style of Chinese mathe-
matics, therefore, changed in some way and strengthened its theoretical aspect.

1 Introduction

When traced back the original roots of the mathematics mechanism, Wu Wenjun (or
Wu Wen-Tsün) [呉文俊], a top Chinese mathematician and historian of mathematics
in China, held the point of view that:

There are two major activities of mathematics, that is, theorem-proving and
equation-solving. Theorem-proving mainly originated from Greek mathematics, es-
pecially so-called Euclidean geometry. Meanwhile, equation-solving was an impor-
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tant content of Chinese mathematics. Not like ancient Greek mathematics that de-
voted to theorem-proving, ancient Chinese mathematics paid more attention to solv-
ing equations, and equation-solving was the main thread of mathematics in ancient
China (Wu [10, p. 3]).

This generalization of the characteristics of the traditional Chinese mathematics
has been generally accepted by historians of Chinese mathematics.

Talking about equation-solving, it is natural to recall René Descartes’ (1596–
1650) Algebraization Rules for solving any problem, which were formulated in his
famous treatise La Géométrie (1637) and Rules for the Direction of Mind. As is well
known, Descartes’ rules can briefly be summarized as follows (see Polya [7] or Li
[5]):

Firstly, translate any practical problem into a mathematical one;
Secondly, reduce the mathematical problem to an algebraic one;
Lastly, reduce the algebraic problem to system of algebraic equations, then to
one equation with only one variable, and then get the solution by extracting
its roots.

Wu Wenjun compared Descartes’ program with traditional Chinese mathematics,
and concluded: According to his Geometrie, Descartes obviously emphasized the
method using equation-solving in solving geometric problems instead of the method
using theorem-proving. This is identical with the spirit of Chinese mathematics.
In other words, we can say that the ancient Chinese mathematics as a whole was
developed along the way of Descartes’ Program; in reverse, Descartes’ Program
can be regarded as a summary of the way of the development of ancient Chinese
mathematics.

Hikosaburo Komatsu [小松彦三郎], a Japanese mathematician and historian of
mathematics, hold the same point of views in his report at the XXII International
Congress of History of Science in 2005:

It is generally believed that the Modern Mathematics was started with Descartes’ Alge-
braization. He reduces geometric problems to systems of algebraic equations for dimen-
sionless numbers and then solves them by reducing the systems to algebraic equations of
only one variable. This is, however, exactly the same method as Chinese mathematicians
had adopted since long time before [2].

Basically, I myself agree with the above analyses and points of view, especially
the point that Chinese mathematical thoughts were consistent with the spirit of
Descartes. At the same time, we should notice that there appear some new char-
acteristics in the algebraization method of the Song [宋] (960–1279) and Yuan [元]
(1279–1368) dynasties. One of them is that the equations of higher degree are de-
rived. A glance at the history of traditional mathematics in China, it can be found
that the degree of equation that appeared in Chinese mathematics before the Song
and Yuan dynasties is not higher than cubic and all equations are derived from prac-
tical problems, as we see in the Ten Classics of Mathematics [算経十書 Suan-jing
Shi-shu]. The situation had changed since about 11th century. Higher degree equa-
tions were engaged very frequently in the works by Li Ye [李冶] (1192–1280), Qin
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Jiushao [秦九韶] (1208–?) and Zhu Shijie [朱世傑], respectively. Even a 14th degree
equation was derived1 in Zhu’s Jade Mirror of Four Elements [四元玉鑑 Si-yuan Yu-
jian] published in 1303.

The fact suggests some historical questions. Were those equations indeed based
on practical problems? What were their ‘practical’ foundations? Were practical
problems the only source of mathematics in the period of Song and Yuan dynas-
ties? Or, in what sense do we say Chinese mathematics is based on the practical
lives?

To answer these questions, it is necessary to study the new characters of mathe-
matical methodology in the period of the Song and Yuan dynasties, for new mathe-
matical results are, generally speaking, always connected with new methods closely.
Historians have noticed that there are some changes in methods and construction of
mathematics in that period (Li Di [3, pp. 219–233]). In other words, the mathemati-
cal methodology had some new development based on both its former tradition and
new creation.

In this paper, we will illustrate following point of view: During the Song and
Yuan dynasties, especially after appearance of the algebraic heavenly element
method algebra [天元術 tian-yuan shu], the traditional fields of practical problems,
such as computations in area and volume, metrology, commerce, transportation, ar-
chitecture, and so on, had not met the demands of mathematics development. Mathe-
maticians urgently wanted new sources of problems to develop their new mathemati-
cal thought. They created some new mathematical models to generate new resources
of mathematical problems. Based on an analysis on the mathematical treatises Sea-
Mirror of Circle Measurement [測圓海鏡 Ce-Yuan Hai-Jing] written by Li Ye in
1248 and Jade Mirror of Four Elements by Zhu Shi Jie in 1303, it can be found that
the core problems in both mathematical works were not related to practical applica-
tions, but to geometrical and mathematical models. Those models played important
roles both in their mathematical researches and in constructions of mathematical
problems. The Illustration of A Circle Town [圓城圖式 Yuan-Cheng Tu-Shi] in Li
Ye’s treatise and the Five Sums and Five Differences [五和五較 Wu-He Wu-Jiao]
in Zhu’s treatise are examples of such models. The models can be regarded as orig-
inating from practical problems, but essentially had lost their original meaning of
practices.

2 Li Ye’s Algebra and his Illustration of A Circle Town

2.1 The Academic Demand for Construction of Mathematical
Models

Li Ye was a mathematician who was living in the time between the Jin [金] (1115–
1234) and the Mongol-Yuan [蒙古-元] (1206–1368) dynasties. He wrote many

1 See §3.2 of this paper.
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books. Among his other treatises are Sea-Mirror of Circle Measurements (1248)
and Geometrical and Algebraic Interpretation to the Treatise Yi-Gu [益古演段 Yi-
Gu Yan-Duan] (1259). The former was an academic monograph, meanwhile, and
the latter was designed for students. The common topic of both treatises is the heav-
enly element method algebra that was created in the northern China in the 12th
century or the early 13th century. His predecessor mathematicians had developed
the heavenly element method deeply. They could express equations with degree be-
tween 9th and −9th. Li Ye contributed to the development of the method a lot by
summarizing and formularizing the method.

The so-called heavenly element method algebra is an algebraic program that
consists of several steps. Firstly, setup an unknown called a heavenly element [天
元 tian yuan]. Secondly, combine the unknown with the known elements to estab-
lish an equation of numerical coefficients. Thirdly, extract a root of the established
equation and obtain the solution of the problem. The third step had in general been
familiarized in his time so that he did not need to discuss it.

All ancient equations in China before Li Ye were related to practical problems.
For instance, the equations that appeared in the Nine Chapters of the Mathematical
Arts [九章算術 Jiu-zhang Suan-shu] or Collected Ancient Arithmetic Classics [緝古
算経 Ji Gu Suan-Jin] (7th century) were all derived from problems of calculations
of areas or volumes.

Till the 11th century, as the literally so-called unlock by establishing table [立成
釋鎖 li-cheng shi-suo], a method of extracting roots of equation with higher degree,
was developed from the traditional method of finding roots of quadratic and cubic
equations, and a new method of extraction of roots by addition and multiplication
[増乗開方法 zeng-ceng kai-fang fa] was formalized, equations with higher degrees
became wanted academically, for equations of quadratic and cubic degrees did not
meet the expressions and applications of the new methods. As we know, equations
derived from most practical problems are not beyond cubic degree, or we can say
from traditional applied problems it is difficult to derive an equation of higher de-
gree. Jia Xian [覃貝憲] and Liu Yi [劉益], both mathematicians in the 11th century,
developed new methods of extraction of roots, but they did not derive equations
of higher than the third degree from practical problem except one quartic equation
in Liu’s treatise. To construct an equation of higher degree, Qin Jiushao intended
to derive a 10th degree equation from a surveying problem in 1247. Because the
equation could be expressed by a cubic equation, Qin was criticized by historians of
mathematics [8, p. 103] as flubdub and too ambitious to reach for a target beyond
his grasp.

Li Ye faced the same situation as Qin did. He eagerly wanted to construct higher
degree equations to explain his algebraic method. It was of great importance for
him to design new mathematical models which could help him get more equations
of higher degree. The Illustration of a Circle Town, therefore, was designed.
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2.2 Illustration of a Circle Town―a Useful Mathematical Model

Scholars in the field of history of Chinese mathematics are familiar with the Illus-
tration of a Circle Town [圓城圖式 Yuan-cheng Tu-shi] and study it a lot. we will
explain its meaning in a new sense. Its structure is as follows (see Fig.1):

1. A right-angled triangle �ABC with its inscribed circle with center O.
2. DE and FG are two perpendicular diameters parallel to the two legs of the

�ABC. The circle is also inscribed in the square JKLB.
3. From intersection points I, N, M and H draws lines IP, NS, MQ, HR parallel to

the legs of the triangle �ABC respectively.

Fig. 1 Illustration of a Circle Town (Yuan-cheng Tu-shi)

In this way, Li Ye obtained the Illustration of a Circle Town which consists of
a circle and 15 right-angled triangles. Although Li Ye said he was suggested by
the nine formulae which he learned from Master Dong Yuan [洞淵], the geometric
figure is actually derived from some figures that appeared in the Nine Chapters
of Mathematical Arts, such as figures about the problems of the so-called a right-
angled triangle containing a circle [勾股容圓 gou-gu rong-yuan], a right-angled
triangle containing a square [勾股容方 gou-gu rong-fang], and a square town [邑
方 yi-fang]. The circle in the diagram is regarded as a town with gates D,E,F and G.
Hence its name comes.
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2.3 The Meaning of the Illustration of a Circle Town

Li Ye made use of the figure with two purposes in his mind. One is geometrical and
the other algebraic.

Geometrically, 15 similar triangles can be named in the diagram, among which
two pairs are congruent. Thus, 13 triangles are the remainder. Each of them has three
lines, or two legs [勾 gou] and [股 gu] and a hypotenuse [弦 xian]. Starting from
the relations among the lines and the diameter of the circle, Li Ye got 692 identities
about the lines. He engaged many kinds of reasoning methods such as geometrical
proofs, analogy, parallel, number theory, and so on to derive the identities [1, pp.
122–140]. All of his results belong to geometry. The diagram, therefore, can be
regarded as a geometrical model.

Algebraically, Li Ye made use of the diagram as a model to construct all kinds of
problems and then to establish his equations with higher degree. Here is an example:

Ask: People C goes out of the southern gate of the town and goes forward by
135 steps, and stops. People A goes out of the eastern gate. After going forward
by 16 steps, he can see C. What is the diameter of the town? [或問:丙出南門直行
一百三十五歩而立,甲出東門東行一十六歩見之,問城径幾里?].

Li Ye designed five different approaches to the problem. In the fifth one he finally
reduced to the sixth degree equation:

−2x6 −714x5 −62156x4 −2220302x3 +82926x2

+1725602816x+51336683776 = 0.

In the same way, Li Ye constructed 160 problems which consisted of the main
contents of the Sea-Mirror of Circle Measurement. Basically speaking, the figure
was used rather as a model for constructing and designing mathematical problems
than as a practical model. If we would like to identify any relations between this
figure and practice, there are only some apparent terms such as town, gates, and the
name of the diagram.

We would like to point out two facts:

1. By means of the model, Li Ye constructed his mathematical background, his
mathematical contexts and mathematical problems which were necessary for
his study and his construction of mathematical theory.

2. The figure was not very practical although it was connected with some practical
terms. In practice, those kinds of calculations are unnecessary. It was, therefore,
rather a mathematical model than a practical model.

He designed such a model not for the need of solving problems from living but for
the need of construction of mathematical theory.



Mathematical Methodology in the Song and Yuan Dynasties 111

3 Zhu Shijie’s Algebra and the Five Sums and Five Differences
of Right-angled Triangle

3.1 From the Heavenly Element to the Four Elements

Since the time when Li Ye formulized the theory of heavenly Element method alge-
bra , and especially after Sea-Mirror of Circle Measurement was published in 1282,
the idea of this theory was developed rapidly. There used to be only one unknown in
the algebra of heavenly element. Then the number of unknowns was added one by
one, from one to two, then to three. Finally, Zhu Shijie added the fourth unknown to
the algebraic systems. We know little about the course of the development between
Li Ye and Zhu Shijie. The only material we can refer to is the preface by Mo Ruo
[莫若] to the Jade Mirror of Four Elements in 1303.

The expressions of unknowns and equations in the four elements algebra were
similar to the former. An equation with only one unknown was expressed by putting
its coefficients vertically from the lowest term to higher term one by one. With the
increase of the numbers of unknowns, the four directions of a plane were engaged
in the expression of the equation with more unknowns. It is obvious that the spirit
of the expressions for different unknowns is consistent. Because there are only four
directions in a plane, it is obvious that only four unknowns could be expressed in a
plane in the above method. When more than four unknowns were needed, Zhu Shijie
had to set new unknowns for the second time [9]. The details of the four elements
method are narrated in almost all treatises on the history of mathematics in China.
We will not talk about it any more.

Before saying too much, we would like to remark that Zhu Shijie was at the
same situation as Li Ye. He wanted a context under which he could construct more
mathematical problems to explain his algebraic method. He also found resource in
the traditional mathematical works. The resource is the operations of the three lines
of a right-angled triangle which is traditionally called arithmetic for right-angled
triangles [勾股算術 gou-gu suan-shu] [6, pp. 391–396].

3.2 The Model of the five Sums and five Differences of a
Right-angled Triangle

Chinese mathematicians had studied the right-angled triangle long before Zhu Shi-
jie. It was one of the objects of the Mathematics of Gnomon in Zhou [周髀算経 Zhou
Bi Suan-jing] which was an astronomical work written about 2nd century B.C. and
Nine Chapters of the Mathematical Arts. The right-angled triangle theorem [勾股之
法 gou-gu zhi fa], or Pythagorean theorem, was proved and applied in Mathematics
of Gnomon in Zhou. According to the record of Gnomon in Zhou, Shang Gao [商高]
taught the theorem to Zhou-Gong [周公], the brother of the first king of the Western
Zhou Dynasty in the ninth century B.C.
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In the third century, mathematician Zhao Shuang [趙爽] studied Mathematics
of Gnomon in Zhou and added his comments to the book. He wrote a paragraph
titled Comments to the Diagram of Right-angled Triangle with its Inscribed Cir-
cle and Square [勾股方圓圖注 Gou-gu fang-yuan tu-zhu] and drew a diagram of
hypotenuse [弦圖 xian-tu] to discuss the calculations and operations of the two
legs and hypotenuse. There are also similar discussions in the Nine Chapters of the
Mathematical Arts. Li Ye also engaged the Five Sums and Five Differences in his
Sea-Mirror of Circle Measurement.

Fig. 2 Diagram of Hypotenuse

Based on the above studies, Zhu Shijie formularized his model:
Let the two legs be a and b, and the hypotenuse be c. The Five Sums are

a+b, a+ c, b+ c, a+b+ c and c+(b−a)

and the Five Differences

b−a, c−a, c−b, (b+a)− c and c− (b−a).

Zhu Shijie constructed his mathematical problems by combining the Five Sums and
Five Differences with their operations, addition, subtraction and multiplication, and
then established higher degree equations which he needed. It is obvious that the
problems constructed in this way are of no practical meanings. The Five Sums and
Five Differences are totally a mathematical model rather than a practical model. Be-
cause of their importance in the Jade Mirror of Four Elements, Zhu put the “diagram
of self-multiplying of the five sums” [五和自乘演段之圖 wu-he zi-cheng yan-duan
zhi-tu] (see Fig.3) and the “diagram of self-multiplying of the five differences” [五
較自乘演段之圖 wu-jiao zi-cheng yan-duan zhi-tu] (see Fig.4) at the beginning of
the treatise. In another important “diagram of self-multiplying of the four elements”
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[四元自乘演段之圖 si-yuan zi-cheng yan-duan zhi-tu] (see Fig.5) the four elements
are also represented by the three sides of right-angled triangle a, b, c and the yellow
square side [黄方] (a+b− c), that is, the diameter of the inscribed circle.

Fig. 3 Diagrams of Self-Multiplying of the Five Sums

Fig. 4 Diagrams of Self-Multiplying of the Five Differences

Making use the sums and differences, Zhu could construct many problems which
lead to higher degree equations. Here is the last problem among 288 problems in his
book:
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Fig. 5 Diagrams of Self-Multiplying of the Four Elements

There is an unknown number. We know that it is a root of the equation of the
fourth degree in which the coefficient of the constant term is equal to the sum of
the squares of the five differences, that of the first degree −3, that of the second
degree 1, that of the third degree 1, and that of the fourth degree −2. Also know
that subtracting twice the product of the leg gou and the leg gu from the square of
the sum of gou and gu and then adding the sum of the three sides of the triangle,
we get a number equal to the square of the self-multiplying of the unknown number
adding to the square of hypotenuse and subtracting the leg gu. Again, adding half
of the sum of the three sides of the triangle to the diameter of the inscribed circle
in the triangle we have the cubic of the number. Ask: what is the number? [今有一
数,不知多少,但言五較各自乘并之,為正實,以三為益方,一為縦上廉,一為縦下
廉,二為益隅,三乘方開之,与其数相等.只云:勾股和冪減二直積,加三相和;与其
数冪自乘并弦冪減股相同. 又云: 半之三相和加黄方, 与其数再自乘亦等. 問元数
幾何?]

The solution: let x be gou (shorter leg, a), y be gu (longer leg, b), z be xian
(hypotenuse, c), w be the wanted number, the known conditions are:

−2w4 +w3 +w2 −3w+(y− x)2 +(z− x)2 +(z− y)2

+(y+ x− z)2 +(z− y+ x)2 = 0,
(1)

(x+ y)2 −2xy+(x+ y+ z) = w4 + z2 − y, (2)
1
2
(x+ y+ z)+(x+ y− z) = w3, (3)

x2 + y2 − z2 = 0. (4)

Reducing the system of simultaneous equations, Zhu obtained:

2006w14 −11112w13 +22292w12 −19168w11 +2030w10 +12637w9 −8795w8

−8799w7 +19112w6 −9008w5 −384w4 +1792w3 −640w2 −768w+1152 = 0.
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Extracting its root, he gets the answer: w = 2.
This is one example of many problems in the Jade Mirror of Four Elements. From

the example it can be understood how Zhu Shijie made use of the five sums and dif-
ferences in construction of mathematical problems. Again, the model is not related
to the application in practices. Therefore, Zhu created his mathematical contexts
and problems by means of his model rather than practices. In this way he designed
problems in his book which derived 124 equations of fourth or higher than fourth
degree [4, p. 307]. It should be pointed out that Zhu also engaged other models in
his book.

4 Re-evaluation of Qin Jiushao’s Algebra

Qin Jiushao was a mathematician in the thirteenth century. We have remarked that
Qin also wanted equations of higher degree, like Li Ye and Zhu Shijie, to demon-
strate his method of solving numerical equations, and it was also difficult for him to
construct appropriate mathematical problems, although there appeared several equa-
tions of higher degree in his treatise. Because of the lack of suitable mathematical
models, he had to increase the degree of his equation by squaring two sides of an
equation or other operations. For example, from a problem named Circle-town mea-
surement from remoteness [遥度圓城 yao-du yuan-cheng] he managed to establish
an equation of the 10th degree in his book, meanwhile Li Ye derived an equation of
only third degree. Most historians didn’t understand Qin Jiushao and criticized him
seriously.

The above analysis of Li Ye’s and Zhu Shijie’s models help us very much for
understanding Qin Jiushao. In fact, in my opinion, Qin had to do that, otherwise,
he could not derive appropriate method to get equations of higher degree, for all
problems which appeared in his book were based on living practices. This is why
he complicated his operations in establishment of equations.

5 Concluding Remarks

Both models discussed above originated from the traditional studies on right-angled
triangles and belonged to the field of traditional arithmetic for right-angled trian-
gles. What both Li Ye and Zhu Shijie were concerned with were not the models
themselves but their functions of generating mathematical problems. The mathe-
maticians afterward accepted the two mathematical models and studied them very
much. Many mathematicians were influenced. They studied both models very much,
especially during the 18th and 19th centuries. Mathematicians of Qing [清] dynasty
(1644–1911) added two lines to the Illustration of a Circle Town, one is the perpen-
dicular to the hypotenuse starting from the center of the circle, the other the parallel
line to the hypotenuse and passing through the center of the circle (see Fig.6), which
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enlarge the function of the model. Korean mathematicians also did the same. The
model of Five Sums and Five Differences was also engaged by mathematicians such
as Gu Yingxiang [顧應祥] (1483–1565), Mei Wending [梅文鼎] (1633–1721) and
others.

From above discussion we come to conclusion as follows:

Fig. 6 Revised illustration of a circle town

Firstly, it is one of the characteristics of traditional mathematics to pay more
attention to practice and abstract mathematical problems from practices, but this
is not the whole of the traditional Chinese mathematics. The establishment of the
models of Li Ye and Zhu Shijie makes it out that the theoretical aspect has not been
studied sufficiently and should be paid more attention by historians of mathematics.
Chinese mathematics had changed its style in some way during the Song and Yuan
dynasties and strengthened its theoretical aspect.

Secondly, during the 13th and 14th centuries, Chinese mathematicians paid great
attentions to practical problems, but practical problems did not satisfy the needs of
their research works and their thinking. They turned their attentions to construct new
mathematical models different from living practices. Discovery of new models pro-
vided mathematicians with new problems and new thought and, therefore, promoted
the development of mathematics.

Lastly, Li Ye’s and Zhu Shijie’s models are based on geometry. The program of
problem-solving in the mathematics during the 13th and 14th centuries coincides
with the spirit of Descartes’ program.
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The Suanxue Qimeng and Its Influence on
Japanese Mathematics

Mitsuo Morimoto

Abstract The Suanxue Qimeng (the Introduction of Mathematics) was written by
Zhu Shijie in 1299 during the Yuan dynasty. The book had been lost in the Ming
dynasty but was conserved in Korea and reprinted several times as mathematical
textbook for the education of mathematical experts of the Korean dynasty. In the
last decade of the 16th century a copy of the book was transferred to Japan. In
the Edo period in Japan, the book was reprinted several times with annotation. The
last chapter of the book explained the procedure of celestial element (tianyuanshu or
tengen jutsu), a method for representing a polynomial of one variable with numerical
coefficients by a column vector of its coefficients. Having mastered this procedure,
Seki Takakazu generalized it in such a way that polynomials of several variables
could be handled with.

1 Chinese sources of Japanese mathematics

The wasan, or Japanese traditional mathematics, was flourishing in Japan during
the Edo period (1603–1867), on the basis of the Chinese traditional mathematics
stemmed from the Nine Chapters on the Mathematical Art [九章算術 Kyūshō San-
jutsu] [11], which dated back at least to the first century, the Han Dynasty.

The three Chinese monographs helped Japanese mathematicians to develop their
own mathematics: the Systematic Treatise on Arithmetic [算法統宗 Sanpō Tōsō],
the Yang Hui’s Methods of Mathematics [楊輝算法 Yōki Sanpō], and the Intro-
duction to Mathematics [算学啓蒙 Suanxue Qimeng, Sangaku Keimō]. Among
these books the most influential on Japanese mathematicians was the Introduction
to Mathematics, from which they learned the procedure of celestial element [天元
術 tianyuanshu, tengen jutsu].
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1.1 Early years of the wasan

In the Edo period, Japan was secluded from the world by her own foreign policy. The
wasan was investigated in the island almost independently of foreign influences. Of
course, the main source of the Japanese mathematics was Chinese, but there is some
speculation that there might be a Western influence through Christian missionaries.

The Portuguese drifted to Tanegashima island in 1543. This incident was the first
contact of Japan with European powers. Then F. Xavier, a Jesuit missionary, arrived
in Kagoshima in 1549. In 1580’s Jesuits were authorized to organize a “collegio”
in Azuchi, capital of Japan of the time, for a few years, where mathematics was
one of courses. Mōri Shigeyoshi [毛利重能] published the Book on Division [割算
書Warizan-sho] (1622), the preface of which contained a distorted story of biblical
subjects, although the book treated the traditional mathematics of every day life.
Yoshida Mitsuyoshi [吉田光由], a disciple of Mōri, published the Book on Things
Small and Large [塵劫記 Jinkōki] (1627), more than 300 versions of which were
repeatedly reproduced during the Edo period. The main source of this Japanese
best-seller on merchant mathematics was the Systematic Treatise on Arithmetic,
which was written by Cheng Dawei [程大位] (1533–1606) in 1592 during the Ming
dynasty. The Systematic Treatise on Arithmetic explained the calculation on abacus,
which was invented for commercial use at the time and spread quickly in East Asia.

1.2 Zhu Shijie and his two books

Zhu Shijie [朱世傑] was a Chinese mathematician of the Yuan dynasty (1206–1368).
He published two books, the Introduction to Mathematics in 1299, and the Jade
Mirror of the Four Elements [四元玉鑑 Shigen Gyokukan] in 1303.

The Introduction to Mathematics consists of three parts divided into twenty chap-
ters forwarded by Preface and Introduction. In China, this book is not appreciated
so much as the Jade Mirror of the Four Elements; the former is introductory and
elementary while the latter is considered as the culmination of the development of
Chinese mathematics during the Song and the Yuan dynasties.

The last chapter of the Introduction to Mathematics is devoted to the procedure
of celestial element, on which we shall discuss later in this paper. This is a way
to handle polynomials and algebraic equations of one variable with integer coeffi-
cients, while the Jade Mirror of the Four Elements developed a method to handle
certain kinds of algebraic equations of four variables. Therefore, the latter book is
usually evaluated higher than the former in the history of Chinese Mathematics.
Both books disappeared in China during the Ming dynasty (1368–1644) and were
re-found around 1800 in the Qing dynasty.

Because the Introduction to Mathematics was a systematic treatise of mathemat-
ics starting with the four rules of arithmetic, it was chosen as an important textbook
for mathematics students in the Korean Yi dynasty (1392–1910). King Seajong the
Great [世宗] (1418–1450) himself learned the book. The first Korean print of the
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book was published around 1450 with the copper font of the Geng-wu [庚午] year.
One copy of this edition survived until now and was discovered recently. Then the
second print was published during the reign of King Seongjong [成宗] (1470–1494)
and the third print during the reign of King Jungjong [中宗] (1506–1544), both with
the copper font of the Yi-hai [乙亥] year. Only the middle volume of these editions
survived in Korea, while one reprint of the third edition was transferred to Japan
in the late 16th century, possibly during the Japanese expeditions to Korea, 1592–
1598. This reprint has been conserved in Tsukuba University, Japan. Later around
1660 the Introduction to Mathematics was reprinted in Korea with Preface by Jin
Shizhen [金始振]. This edition was later revised in the Yi-wei [乙未] year and pub-
lished in the Geng-wu [庚午] year, that is, 1810. This last edition was the basis of the
Chinese edition of 1839 by Luo Shilin [羅士琳] and all other later Chinese editions.
For the details, we refer the reader to [8].

1.3 Acceptance of the Introduction to Mathematics in Japan

In the Edo period, Haji Dōun [土師道雲] and Hisada Gentetsu [久田玄哲] reprinted
the original book with Japanese reading signs in 1658. At first, Japanese mathemati-
cians could not understand the procedure of celestial element. For example, Satō
Masaoki [佐藤正興], the author of the Origin of Mathematical Methods [算法根源
記 Sanpō Kongen-ki] (1669) and Sugiyama Sadaharu [杉山貞治], the author of the
Elementary Introduction to Mathematical Methods [算法発蒙集 Sanpō Hatsumō-
shū] (1670) took the procedure of celestial element as one of the most advanced
method imported from China and used the terminology to give their books some
authority without knowing its real meaning. Later, Hoshino Sanenobu [星野実宣]
published the New Commentary on the Introduction to Mathematics [新編算学啓
蒙註解 Shinpen Sangaku Keimō Chūkai] (1672). In this commentary, Hoshino’s
annotations were obscure and it seems to me that he could not understand the real
meaning of the procedure of celestial element.

The first Japanese mathematician who could understand the procedure of celes-
tial element was Hashimoto Masakazu [橋本正数] of Osaka. His disciple Sawaguchi
Kazuyuki [沢口一之] published a book called the Mathematical Methods Old and
New [古今算法記 Kokon Sanpō-ki] (1671). In this book, Sawaguchi applied the
procedure of celestial element correctly to many problems and successfully solved
them. At the end of the book, he gave fifteen challenge problems [遺題 idai] which
could not be solved by the procedure of celestial element.

Having read the Introduction to Mathematics, Seki Takakazu [関孝和] (ca. 1642–
1708) also mastered the procedure of celestial element, generalized it, applied his
generalized method to Sawaguchi’s fifteen problems, and published his solutions in
the Mathematical Methods of Exploring Subtle Points [発微算法 Hatsubi Sanpō]
(1674). As this book gave only the final solution of the fifteen problems, there arose
some doubt about the correctness of the solutions. Then Takebe Katahiro [建部賢弘]
(1664–1739), a disciple of Seki Takakazu, published the Colloquial Commentary on
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Operations (in the Mathematical Methods for Exploring Subtle Points) [発微算法演
段諺解 Hatsubi Sanpō Endan Genkai] (1685) (See [12] for an English translation.)
in four parts and revealed all the secrets of Seki’s new algebraic method.

Takebe Katahiro was one of the greatest Japanese mathematicians of this epoch.
He published the Complete Colloquial Commentary (on the Introduction to Mathe-
matics) [算学啓蒙諺解大成 Sangaku Keimō Genkai Taisei] (1690) in seven parts,
which was almost two times larger than the original book and contained detailed ex-
planation on the procedure of celestial element. With Takebe’s Complete Colloquial
Commentary Japanese mathematicians could understand Zhu Shijie’s Introduction
to Mathematics fully and obtained the algebraic foundation for the wasan.

For lives of Seki and Takebe and their mathematics, see Horiuchi [3]. We also
refer the reader to [12], which contains English translation of Takebe’s three math-
ematical monographs and his short biography in English.

1.4 The Complete Colloquial Commentary on the Introduction to
Mathematics

While the Introduction to Mathematics consists of four parts, Summary, Upper vol-
ume, Middle volume, and Lower volume with total 137 sheets, Takebe’s Complete
Colloquial Commentary consists of seven parts; Summary, Upper first, Upper sec-
ond, Middle first, Middle second, Lower first, and Lower second volumes with total
219 sheets. In the Complete Colloquial Commentary, Takebe’s annotation is printed
with half-sized characters, Takebe’s Complete Colloquial Commentary is more than
two times of the original book. (Note that one sheet consists of two pages.)

Introduction to Math. C. C. Commentary
Preface 2 sheets 2 sheets
Table of Contents 1 sheets 1 sheets
Summary 7 sheets 13 sheets
Upper Volume 35 sheets 54 sheets
Middle Volume 44 sheets 62 sheets
Lower Volume 48 sheets 87 sheets
Total 137 sheets 219 sheets

The Japanese name of the Complete Colloquial Commentary is the Genkai Taisei,
where genkai means the colloquial explanation and taisei the great accomplishment.
In Japan, the Chinese classics used to be read literally word by word, but Takebe
tried to annotate the original text in colloquial Japanese. Note that the Japanese in
Takebe’s commentary was written using kata-kana and Chinese characters. This
means Takebe’s readers were supposed to belong to the “warrior” (samurai) class,
while the Book on Things Small and Large was written using hira-kana and Chinese
characters and widely used in private primary schools (terakoya) for the merchant
class.
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The last chapter of the Introduction to Mathematics named Chapter for Extracting
the Root [開方釈鎖門 Kaihō Sekisamon] is composed of 34 problems. The first
seven problems deal with the procedure for extracting the root [開方術 kaihō-jutsu]
and the other 27 problems concern with the procedure of celestial element.

In order to explain the Takebe’s understanding of the procedure of celestial ele-
ment, first we have to explain the counting tools of the wasan, i.e., the counting-rods
and the counting board.

2 Counting board algebra

2.1 Counting-rods

The wasan is in the stream of Chinese traditional mathematics, where the numbers
are, basically, natural numbers represented decimally by counting-rods. There are
two ways to represent numbers; in the orders of 1, 100, 104, etc. the counting-rods
are placed vertically on the counting board, while in the order of 10, 103, 105, etc.,
they are placed horizontally.

1 2 3 4 5 6 7 8 9

Order of 1, 100, 104, · · ·
Order of 10, 103, 105, · · ·

There are two kinds of counting-rods, red and black. The red rods represent pos-
itive numbers and the black rods negative numbers. If one has to write numbers on
paper with black ink, negative numbers are written with oblique line.

1 2 3 4 5 6 7 8 9

Negative numbers � � � � � � � � �

If there is no counting-rods on the counting board, it means the digit is 0. On the

paper, the empty digit is represented by the sign �．For example， �

represents 310268．
The notion of positive and negative numbers had been clearly established. But

their operation was complicated and required some techniques because the num-
bers were closely related with counting tools like counting board, counting-rods, or
abacus.

For example, the addition of integers was called if same, add; if different, subtract
[同加異減 dōka-igen]. This means that if two numbers are represented by the rods
of the same color, we add and that if two numbers are of different color, we subtract.
As in the case of abacus, the addition and the subtraction of natural numbers were
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fundamental operation; the notion of addition of integers were secondary operation
and thus required some explanation.

Similarly, the subtraction of integers was called if same, subtract; if different, add
[同減異加 dōgen-ika].

This rule had been known, since the Nine Chapters on the Mathematical Art, as
the sign rule [正負術 seifu-jutsu] (p.404, [11]) and was repeated by Zhu Shijie in the
Introduction to Mathematics. Takebe recognized its importance and, in Summary of
the Complete Colloquial Commentary, he stated the rule of addition and subtraction
of positive and negative numbers and zero with great care.

2.2 Counting Board

The counting board looks like the following: The rows of the counting board are
named, from top to bottom, Quotient [商 shō], Reality [実 jitsu], Square [方 hō],
Side [廉 ren], and Corner [隅 gū].

103 102 10 1 10−1 10−2 10−3

　　 　　 　　 　　 　　 　　 　　 Quotient
Reality
Square
Side

Corner

The counting board was used in many kinds of calculation, the most important
of which was the extraction of root. For example, an algebraic equation of order 3
with numerical coefficients

a0 +a1x+a2x2 +a3x3 = 0 (1)

was represented on the counting board in the wasan. The constant term a0 was
placed in the Reality row, a1 in the Square row, a2 in the Side row, and a3 in the
Corner row; that is, algebraic equation (1) was represented by the configuration of
counting-rods on the counting board: ⎡

⎢⎢⎣
a0
a1
a2
a3

⎤
⎥⎥⎦ (2)

Problem No. 1 in Chapter for Extracting the Root of the Introduction to Mathe-
matics reads as follows:

There is a square shaped area of 4096 bu [squared]. (bu is a unit for length.) Question: how
much is one side? Answer: 64 bu.
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The equation to be extracted [開方式 kaihō-shiki]

4096− x2 = 0 (3)

was represented on the counting board with counting-rods as follows:

103 102 10 1 10−1 10−2 10−3

　　 　　 　　 　　 　　 　　 　　 　　 Quotient

Red rods Reality
Square

Black rods Side
Corner

An equation of any order could be solved numerically by the procedure for ex-
tracting the root. In the sequel, we treat only a cubic equation for simplicity.

We regard the Reality row A0, the Square row A1, the Side row A2, and the Corner
row A3 as memories in a computer and the coefficients of (1) a0, a1, a2, and a3 as
values of A0, A1, A2, and A3. If we place a value q in the Quotient row Q, then the
calculation is done on the counting board as follows: (we use here the BASIC-like
language)

A2 = A2 +A3 ×Q, A1 = A1 +A2 ×Q, A0 = A0 +A1 ×Q,

A2 = A2 +A3 ×Q, A1 = A1 +A2 ×Q,

A2 = A2 +A3 ×Q.

Let us denote by a′0, a′1, a′2, and a′3 the values of A0, A1, A2 and A3 after these
operations. Then we have

a0 +a1x+a2x2 +a3x3 = a′0 +a′1(x−q)+a′2(x−q)2 +a′3(x−q)3.

Further, if we add q′ to q in Q, then the values a′′0, a′′1, a′′2, and a′′3 in

a0 +a1x+a2x2 +a3x3 = a′′0 +a′′1(x−q−q′)+a′′2(x−q−q′)2 +a′′3(x−q−q′)3.

can be calculated from a′0, a′1, a′2, and a′3 by the same program. If we can make
the value in the Reality row empty, i.e., zero, after several operations, the value
q + q′ + · · · in the Quotient row becomes a root of the equation. Usually, the root
is sought in this way, digit by digit from the top digit. This is the principle of the
procedure for extracting the root. This principle was well known in Chinese tradi-
tional mathematics since the age of the Nine Chapters on the Mathematical Art. In
Summary of the Introduction to Mathematics Zhu Shijie described succinctly the
procedure for extracting the root saying

“Place the product in the Reality row and operate in Square, Side, Corner rows adding if
same and subtracting if different.”
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Zhu Shijie explained also this procedure in Chapter for Extracting the Root and
Takebe, in the Complete Colloquial Commentary, commented further how to ma-
nipulate counting-rods in the procedure for extracting the root.

2.3 Counting Board Algebra

The procedure of celestial element can be said, in today’s terminology, a method to
represent a polynomial

a0 +a1x+a2x2 +a3x3 (4)

by a configuration of the counting board

⎡
⎢⎢⎣

a0
a1
a2
a3

⎤
⎥⎥⎦. Because, in the procedure for ex-

tracting the root, the same configuration represents algebraic equation (1), it was
difficult, psychologically, to admit this ambiguity of the meaning of a configuration.
For example, making the Reality row empty and placing one rod in the Square row,
we form the following configuration: [

�
]

. (5)

In the procedure for extracting the root, configuration (5) represents the equation
x = 0 but in the procedure of celestial element same configuration (5) represent a
virtual number x. To make configuration (5) on the counting board was called “to
place the celestial element unit” in the wasan.

Let us examine how the argument goes in the procedure of celestial element.
Problem No. 8 in Chapter for Extracting the Root of the Introduction to Mathematics
reads as follows:

There is a rectangular rice field of area 8 mu 5 fen 5 li [squared]. Given: the sum of the length
and width is 92 bu. Question: how much is the length and width respectively? Answer: width
38 bu, length 54 bu.

Because 1 mu is equal to 240 bu [squared], 8 mu 5 fen 5 li = 8.55×240 = 2052
bu [squared].

Zhu wrote as follows:

Method of Solving: Place the celestial element unit

⎡
⎣ �

⎤
⎦ as the width. Take this and sub-

tract from the given sum, and let this be the length. Multiply this with the width, and we get

the area:

⎡
⎢⎢⎢⎣

�

�

⎤
⎥⎥⎥⎦. Move this aside to the left. Take the area and convert the unit from mu
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to bu. We subtract this from the area and we obtain the algebraic equation

⎡
⎢⎢⎢⎣

� �

�

⎤
⎥⎥⎥⎦.

Extracting the root from this, we obtain the width. Taking the given sum and subtracting the
width, we obtain the length. End of Problem.

Zhu’s method can be translated into today’s terminology almost literally as fol-
lows: Let x be the width. Then 92− x is the length and

x(92− x) = 92x− x2

is the area. As the area is equal to the given 2052, we obtain the equation

x(92− x)−2052 = 0.

Solving this equation, we find the width.
Takebe interpreted Zhu’s method as follows: Place the celestial element unit and

consider the configuration

[
�
]

as the virtual width. Subtracting this configuration

from the sum 92, we obtain the configuration

[
�

]
, which is considered as the

virtual length.
Here Takebe inserted a long explanation on addition of configurations on the

counting board. In today’s terminology this amounts to the addition of column vec-
tors.

Now multiplying the two configurations, the virtual width and the virtual length,

we obtain the configuration

⎡
⎢⎢⎣

�

�

⎤
⎥⎥⎦ , which is considered as the virtual area. Can-

celing the virtual area with the true area 2052, we find the equation to be extracted⎡
⎢⎢⎣

� �

�

⎤
⎥⎥⎦. Extracting the root from this equation by the procedure for extract-

ing the root, we find the width.
Takebe recognized the configuration of counting-rods on the counting board as

the virtual number [仮の数, kari no kazu] and formulated the three rules of arith-
metic, i.e., addition, self-multiplication, and mutual multiplication. As we men-
tioned earlier, the addition was defined as vector addition. The rule of powers was
formulated as follows:

Method of self-multiplication and mutual multiplication
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If the configuration with 2 rows

⎡
⎣ Reality

Square

⎤
⎦ is to be multiplied by itself, the Reality

multiplied by itself is placed in the Reality, the doubled product of the Reality and the
Square is placed in the Square, and the Square multiplied by itself is placed in the row

below, thus we obtain the configuration with 3 rows. For example, if we multiply

⎡
⎣

⎤
⎦

by itself, we obtain

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ .

If the configuration with 3 rows

⎡
⎢⎢⎢⎣

Reality

Square

Side

⎤
⎥⎥⎥⎦ is to be multiplied by itself, the Reality

multiplied by itself is placed in the Reality, the doubled product of the Reality and the
Square is placed in the next row, the doubled product of the Reality and the Side, added by
the squared Square, is placed in the third row, the doubled product of the Square and the
Side is placed in the fourth row, and the squared Side is placed in the fifth row. For example,

if we multiply

⎡
⎢⎢⎢⎣

�
⎤
⎥⎥⎥⎦ by itself, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In today’s terminology, the method of self-multiplication described above can be
stated as follows:

(7+2x)2 = 49+28x+4x2,

(−2+3x+ x2)2 = 4−12x+5x2 +6x3 + x4,

or more generally

(a+bx+ cx2)2 = a2 +2abx+(2ac+b2)x2 +2bcx3 + c2x4.

Takebe also stated the rule of mutual multiplication of configurations and gave the
following examples (in today’s terminology)

(−7+2x)(3+ x) = −21− x+2x2,

(1−6x+2x2)(2−3x+ x2) = 2−15x+23x2 −12x3 +2x4.

Thus, Takebe knew that the configurations on the counting board could be re-
garded as virtual numbers and could be operated addition, self-multiplication and
mutual multiplication in the same way as the true numbers [真の数 makoto no
kazu]. In today’s terminology, Takebe recognized that the procedure of celestial el-
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ement was a way of manipulating polynomials. In this sense, I would like to say that
the configurations on the counting board form the “counting board algebra”, which
is canonically isomorphic to the ring of polynomials of one variable with numerical
coefficients.

Seki wrote the Methods of Solving Implicit Problems [解隠題之法 Kai indai no
hō] around 1683 and developed the “counting board algebra” in a systematic way.
A traditional Chinese book on mathematics followed the style of the Nine Chapters
on the Mathematical Art and looked like a problem book. But in the Methods of
Solving Implicit Problems Seki stated the rule of operations on configurations with-
out introducing any problem. Horiuchi [2] argues that this book was a separating
point of the wasan from the tradition of Chinese mathematics.

3 Method of side writing

3.1 Seki Takakazu and Takebe Katahiro

Seki Takakazu is considered to be one of founders of the wasan. He studied Chinese
mathematics reading the Yang Hui’s Methods of Mathematics of Yang Hui [楊輝], a
Chinese mathematician of Southern Song in the late 13th century, and the Introduc-
tion to Mathematics. In 1974, Seki’s existent 27 mathematical works were compiled
in [1] with explanations in Japanese as well as in English. During his life time Seki
had only one publication, the Mathematical Methods for Exploring Subtle Points,
which we cited earlier.

Seki’s another book, the Concise Collection of Mathematical Methods [括要算
法 Katsuyō Sanpō] was published posthumously in 1712. (See [1].) In this book we
find, among others, Seki’s calculation of the circular constant π = 3.141592... with
twelve digits accuracy. This is one of his remarkable results on the circular principle
[円理 enri], i.e., the study on the circle.

Seki also discovered the theory of resultants and determinants. (See the Methods
of Solving Concealed Problems [解伏題之法 Kai fukudai no hō] [1].)

Takebe Katahiro entered Seki’s school in 1676 when he was 13 years old. His
first monograph, the Mathematical Methods for Clarifying Slight Signs [研幾算法
Kenki Sanpō] (See [12] for an English translation.) was published in 1683. Then
he published in 1685 the Colloquial Commentary on Operations, and in 1690 the
Complete Colloquial Commentary. Takebe completed all these three monographs in
his twenties.

In Takebe’s Mathematical Methods for Clarifying Slight Signs, as well as in Seki’s
Mathematical Methods for Exploring Subtle Points, a final solution to each prob-
lem was given in a form of algebraic equation of one variable, which was written
in Chinese, without any explanation how to derive the equation. However, in the
Colloquial Commentary on Operations, Takebe explained how the equations were
derived employing the method of side writing [傍書法 bōsho hō], which generalizes
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the procedure of celestial element, and in the Complete Colloquial Commentary,
Takebe explained the procedure of celestial element as the “counting board algebra”
in the same way as Seki Takakazu did in the Methods of Solving Implicit Problems.
Through these monographs, Takebe showed the method of side writing is a method
to handle polynomials with several unknowns and applied them to various kinds of
problems.

He collaborated with his master in many mathematical researches and in editing
the Complete Book of Mathematics [大成算経 Taisei Sankei]. In his thirties and
forties, Takebe was busy as a government officer but he resumed his mathematics
in his fifties and wrote, in 1722, the Mathematical Treatise on the Technique of
Linkage [綴術算経 Tetsujutsu Sankei] and the Fukyū’s Technique of Linkage [不休
綴術 Fukyū Tetsujutsu] (See [12] for an English translation.) on the technique of
linkage [綴術 zhuishu, tetsu jutsu]. In these books, Takebe described, among others,
his calculation of the circular constant π with more than forty digits accuracy and
three formulas to represent the length of the arc when the sagitta (the length of the
arrow) is given. One of the formulas coincides with the Taylor expansion of the
square of the inverse trigonometric function (arcsinx)2. We can say that with these
results he could compete with his European contemporaries (For the details, see
Morimoto [6]).

3.2 Method of side writing

Seki introduced the method of side writing in the Methods of Solving Explicit Prob-
lems [解見題之法 Kai kendai no hō] and then combined it with the procedure of
celestial element in the Methods of Solving Concealed Problems (see [1]). The
method of side writing can be considered as a generalization of the procedure of ce-
lestial element and allowed Seki and Takebe to obtain the equation to be extracted
even if the data were not given numerically. Note that Seki’s Trilogy [三部抄 Sanbu-
shō], i.e., the Methods of Solving Explicit Problems, the Methods of Solving Implicit
Problems, and the Methods of Solving Concealed Problems, was completed around
1685 as manuscripts but was being kept secretly in Seki’s school. It was Takebe who
first published results relying on the method of side writing.

If we state Problem No. 8 above in a manner of Takebe’s Mathematical Methods
for Clarifying Slight Signs, it reads as follows:

There is a rectangular rice field of given area A. The sum of the length and width is given to
be B. Question: how much is the length and width respectively?

In the method of side writing, we place the celestial element unit

[
�
]

and

consider it as the virtual width, and let the configuration

[
B

�

]
be the virtual
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length, and the configuration

⎡
⎢⎢⎣

�

B
�

⎤
⎥⎥⎦ the virtual area. Then the equation to be

extracted can be represented as

⎡
⎢⎢⎣

�A

B
�

⎤
⎥⎥⎦ .

In Takebe’s Mathematical Methods for Clarifying Slight Signs many problems
were given in this form and the final equations were described in Chinese. But in
the Colloquial Commentary on Operations, Takebe showed how the equations were
derived with the method of side writing. In this way, in the wasan polynomials
with polynomial coefficients could be manipulated easily although the notation was
cumbersome. Because of this, in the Meiji period Japanese abandoned the wasan
and could switch to the western mathematics with almost no difficulties.

K. Sato concluded his article [10] stating “While tengen jutsu experienced a rig-
orous change in Japan, we have another question whether this technique became the
counter part of “algebra” or not. Straightforwardly, the answer is negative”. But as
we explained above, Seki and Takebe recognized the configurations on the count-
ing board can be calculated in the same manner as true numbers, and thus form an
algebra. As the “counting board algebra” is canonically isomorphic to the algebra
of polynomials of one unknown with numerical coefficients, they can be identified
naturally.

Note

We cite mostly articles and monographs in western languages. The Bibliography of
Ogawa [9] contains almost all treatises on Japanese mathematics written in Euro-
pean languages. As general references for the history of Chinese mathematics, we
refer the reader to Martzloff [5] and Li-Du [4].

Some part of this article was read at an international conference in Chiang Mai,
Thailand ([7]).
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Power Series Expansions in India Around A. D.

1400

Setsuro Ikeyama

Abstract Mādhava of Saṅgamagrāma was a mathematical astronomer who flour-
ished around 1400 A.D. in South India. Not a few mathematical formulas attributed
to him have been transmitted by scholars of his school to these days. The most im-
portant among them are power series expansions of trigonometrical functions sine,
cosine, arctangent, and so on. Because these series are not found in his extant astro-
nomical treatises it is not always clear what parts of them were found by Mādhava
himself, though some, the expansion of the circumference of a circle for example,
can be attributed to him with a certainty.

After taking a glance at Mādhava himself and his school, I will explain in this
paper how Mādhava derived the power series of the circumference C of a circle with
diameter d together with the last corrective term:

C =
4d
1

− 4d
3

+
4d
5

− 4d
7

+ · · ·+(−1)n−1 4d
2n−1

+(−1)n ·4d · n
(2n)2 +1

,

according to the commentary Kriyākramakarı̄ (ca. AD 1550), composed by Śaṅkara,
who was a scholar situated near the end of the Mādhava school.

1 Introduction

The purpose of this paper is to explain the fruit of a school of mathematicians that
flourished in the 14th to 17th century in South India. Almost all the materials are
from Chapter 1 of Studies in Indian Mathematics [インド数学研究, Indo Sūgaku
Kenkyū] , by Takao Hayashi, Takanori Kusuba, and Michio Yano [1]. It is a pity
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that this is written in Japanese. So I am very glad to introduce the achievements of
this book in English.

2 Mādhava and his school

A school of mathematicians, which we call Mādhava school, was active in Kerala,
a state located in the southernmost part of the Indian subcontinent.

Generally speaking, there remains little information about individuals in India,
and mathematicians are no exceptions. Mādhava, the founder of the school, flour-
ished between 1380 and 1420. He belonged to a Brāhman. a, Hindu priest family,
and lived in Saṅgamagrāma, the modern Irinjalakuda, a village about 50km north of
Cochin.

As for his writings, some astronomical treatises exist now but mathematical
works are not available. Fortunately parts of them are cited or summarized in his
successors’ treatises and we can reconstruct his theories from them.

After Mādhava his school continued for about five generations. Śaṅkara, a
scholar situated near the end of the school tree and a pupil of Dāmodara and also of
Nı̄lakhan. t.ha, composed a commentary which we deal with here.

Fig. 1 Tree of the Mādhava School
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3 Mādhava’s series for calculating circumferences

3.1 Source of the Text

Śaṅkara wrote a commentary titled Kiryākramakarı̄ on a mathematical textbook
named Lı̄lāvatı̄ composed by Bhāskara in the 12th century. Lı̄lāvatı̄ is one of the
most famous books on mathematics which is written in plain but beautiful verse and
was widely used as a textbook of mathematics. The Kiryākramakarı̄ is one of many
commentaries on it.

Generally in India when one learns something, first he memorizes basic trea-
tises. Because the treatises were versified it must be easy, at least for Indian people,
to memorize them but was very hard to understand what the verse meant before
teachers explained them. And this explanation was compiled as a commentary by
successors.

The stanza 199 of the Lı̄lāvatı̄ is placed at the top of verse about geometrical
problems concerning circles and gives two approximate values of π:

22
7

,
3927
1250

.

Śaṅkara begins his commentary on this stanza with word by word explanation of
the the verbal expression, then summarizes variety of πs known in India by his time,
and finally explains the theories for calculation of more accurate circumferences
which were figured out by Mādhava.

First, he demonstrates a method for calculation of circumferences using circum-
scribed regular polygons beginning with a square. This procedure attracts our inter-
est but is not a current topic. Then Śaṅkara starts to demonstrate the second method
for calculation of circumferences using a power series, the so called ”Mādhava se-
ries”.

3.2 Original Expression of the Series

Śaṅkara quotes four stanzas which, he affirms, were composed by ”him”, that is,
Mādhava.

An easier way to get the circumference is mentioned by him (Mādhava). That is to say:

1. Subtract or add alternately the diameter multiplied by four and divided in order by
the odd numbers like three, five, etc., to or from the diameter multiplied by four and
divided by one.

2. Assuming that division is completed by dividing by an odd number, whatever is the
even number above (next to) that (odd number) , half of that is the multiplier of the last
[term].
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3. The square of that (even number) increased by 1 is the divisor of the diameter multi-
plied by 4 as before. The result from these two (the multiplier and the divisor) is added
when [the previous term is] negative, when positive subtracted.

4. The result is an accurate circumference. If division is repeated many times it will be-
come very accurate.

The first stanza gives the Mādhava series and the other three stanzas express a
corrective term.

Let C be circumference of a circle whose diameter is d and C(n) be a corre-
sponding circumference calculated using the Mādhava series and the corrective term
added after the nth term of the series.

C(n) =
4d
1

− 4d
3

+
4d
5

−·· ·+(−1)n−1 4d
2n−1

+(−1)n ·4d · n
(2n)2 +1

.

3.3 Derivation of the Series

Now, let us trace how Mādhava derived his series expressed in the first stanza.

Step 1

Śaṅkara begins by drawing a figure for it. Figure 2 is a fourth part of the drawing
instructed by Śaṅkara but is the only part which is used in the following demonstra-
tion.

Let O be the center of a circle. Sides OE and EA are equal to the radius of the
circle r, which is equal to a half of d.

Having placed as many dots as you wish with equal intervals on line EA, draw
lines from the center of the circle O to the dots.

In figure 2, we place m dots on EA and name them A0 (A sub 0), which is
identical to E, A1, A2, up to Am which is equal to A. Thus EA is divided into m
parts. Each part has the same length of a. Only two lines from O to dots An and
An+1, the nth and n + 1th dots, are shown and the length of these two lines are
denoted by kn and kn+1 respectively. The intersections of the lines and the circle are
denoted by Bn and Bn+1 and the arc between them is cn. Finally Gn+1 denotes the
foot of the perpendicular from An to OAn+1.

Here let us draw one more line from O to A or Am. This is a diagonal line of the
square. The intersection of this line OAm and the arc of the circle is denoted by Bm.

Mādhava’s idea is that because the arc B0Bm, that is, an eighth of circumference
C, is divided into small arcs c0,c1, · · ·cn, · · ·cm−1 by lines OA1,OA2, · · ·OAn,OAn+1,
· · · ,OAm, cn should be calculated from the given length.
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Fig. 2 Derivation of the Series

C
8

=
m−1

∑
n=0

cn .

(An eighth of C equals the summation from 0 to m−1 of c sub n.)

Because EAn = na,
k2

n = r2 +(na)2 .

(k sub n squared equals to r squared plus na squared.)
Because �AnAn+1Gn+1 is similar to �OAn+1E, an, the length of side AnGn+1,

can be calculated as:

an = AnGn+1 =
AnAn+1 ·OE

OAn+1
=

ar
kn+1

.

Here let bn be the r sin of the arc cn. When the interval of the dots placed on EA is
very small, that is, when a ≈ 0, bn is approximately equal to cn. Therefore Mādhava
derives bn from an.

Because �BnHn+1O is similar to �AnGn+1O,
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bn = BnHn+1 =
OBn ·AnGn+1

OAn
=

r ·an

kn
=

ar2

knkn+1
.

Also because when a is approximately 0:

kn ≈< kn+1,

(k sub n is approximately equal to but less than k sub n plus 1,)

ar2

k2
n+1

≈< bn ≈<
ar2

k2
n

.

(ar squared over kn+1 squared is approximately equal to but less than bn and bn is
approximately equal to but less than ar squared over kn squared.)

Therefore the summation of bn when n is from 0 to m minus 1 is:

m−1

∑
n=0

ar2

k2
n+1

=
m

∑
n=1

ar2

k2
n

≈<
m−1

∑
n=0

bn ≈<
m−1

∑
n=0

ar2

k2
n

.

From this, Mādhava or Śaṅkara seems to have thought:

m−1

∑
n=0

bn ≈
m

∑
n=1

ar2

k2
n

+
∑m−1

n=0
ar2

k2
n
−∑m

n=1
ar2

k2
n

2

=
m

∑
n=1

ar2

k2
n

+

ar2

k2
0
− ar2

k2
m

2

=
m

∑
n=1

ar2

k2
n

+
ar2

r2 − ar2

2r2

2
=

m

∑
n=1

ar2

k2
n

+
a
4

,

and because one fourth of a approximately equals to 0 when a is approximately 0,
he finally gets the relation:

C
8

=
m−1

∑
n=0

cn ≈
m−1

∑
n=0

bn ≈
m

∑
n=1

ar2

k2
n

(
=

ar2

k2
1

+
ar2

k2
2

+
ar2

k2
3

+ · · ·+ ar2

k2
m−1

+
ar2

k2
m

)
.

Step 2

Here the denominator of this formula, kn, varies from term to term. For avoiding
the variation, Mādhava-Śaṅkara says “a method should be sought for in order to
derive divisors of one kind” (hārān. ām ekavidhatvam. netum upāyo ’trānves.yah. ) and
transform the denominators.

Here they introduce a general relation:
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when 0 < y < x, (x is greater than y and y is greater than 0,)

ay
x

= a− a(x− y)
y

+
a(x− y)2

y2 − a(x− y)3

y3 + · · ·

(the product of a and y over x is a minus the product of a and the sum of x and
y over y plus the product of a and the sum of x and y squared over y squared minus
the product of a and the sum of x and y cubed over y cubed · · · )

without any proof or demonstration here.
Then they convert the divisors using it. (They demonstrate it after getting the

series for calculation of circumferences.)
That is, Applying this expansion for ar2/k2

n, that is, thinking k2
n as x and r2 as y,

and replacing numerators by

k2
n − r2 = (na)2 ,

they get:

ar2

k2
n

= a− a(k2
n − r2)
r2 +

a(k2
n − r2)2

r4 −·· ·+(−1)p a(k2
n − r2)p

r2p + · · ·

= a− a(na)2

r2 +
a(na)4

r4 −·· ·+(−1)p a(na)2p

r2p + · · ·

= a+
∞

∑
p=1

(−1)p a(na)2p

r2p .

Therefore an eighth part of C is:

C
8
≈

m

∑
n=1

ar2

k2
n

=
m

∑
n=1

{
a+

∞

∑
p=1

(−1)p a(na)2p

r2p

}

= ma+
∞

∑
p=1

{
(−1)p

m

∑
n=1

a(na)2p

r2p

}

= r +
∞

∑
p=1

(−1)p a ·∑m
n=1(na)2p

r2p . (1)

Step 3

Next, Mādhava-Śaṅkara transforms the numerator of formula (1) above into

a ·
m

∑
n=1

(na)2p = a ·a2p +a · (2a)2p +a · (3a)2p + · · ·+a · {(m−1)a}2p +a · (ma)2p .

First of all, they deal with the simplest form;
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m

∑
n=1

na ,

which is the sum of the partial sides (EAn;n = 1,2, · · · ,m) and we denote it by
A(m).

The method of the calculation of A(m) adopted by Mādhava-Śaṅkara is as fol-
lows.

They break every term of the right side into “r”, which is equal to ma, and “de-
creased amount”:

m

∑
n=1

na = A(m) = a+2a+3a+ · · ·+(m−1)a+ma

= {r− (m−1)a}+{r− (m−2)a}+ · · ·+(r−a)+ r .

From this it is easily obtained that:

A(m) = mr−{A(m)− r} .

Therefore,
2A(m)− r = mr ,

that is,

A(m) =
(m+1)r

2
.

And when a ≈ 0,

a ·A(m) =
a(m+1)r

2
=

(ma+a)r
2

=
(r +a)r

2
≈ r2

2
, (2)

where ma = r. And generally when a ≈ 0,

a ·A(n) =
a(n+1)na

2
=

(na+a)na
2

≈ (na)2

2
. (3)

Then using these two relations, Mādhava-Śaṅkara examines

m

∑
n=1

(na)2 ,

that is,
A(2)(m).

They break the right side in the same way as in the case of A(m). That is,

A(2)(m) = a2 +(2a)2 + · · ·+{(m−1)a}2 +(ma)2

= a{r− (m−1)a}+(2a){r− (m−2)a}+ · · ·+{(m−1)a}(r−a)+ma · r
= rA(m)−{a · (m−1)a+(2a) · (m−2)a+ · · ·+(m−1)a ·a} .
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Furthermore, because

A(m−1) = a+2a+3a+ · · ·+(m−2)a+(m−1)a,

A(m−2) = a+2a+3a+ · · ·+(m−2)a,

· · · · · · ,
A(3) = a+2a+3a,

A(2) = a+2a,

A(1) = a ,

Mādhava-Śaṅkara transforms the second term:

{(m−1)a} · (1a)+{(m−2)a} · (2a)+ · · ·
+(2a) · {(m−2)a}+(1a) · {(m−1)a} = a ·∑m−1

n=1 A(n) .

Thus, they get:

A(2)(m) = rA(m)−a ·
m−1

∑
n=1

A(n) . (4)

Applying relation (3), they get:

a ·
m−1

∑
n=1

A(n) =
m−1

∑
n=1

a ·A(n) ≈
m−1

∑
n=1

(na)2

2
=

1
2

A(2)(m−1) ,

and hence,

A(2)(m) ≈ rA(m)− 1
2

A(2)(m−1)

≈ rA(m)− 1
2

A(2)(m) ,

A(2)(m) ≈ 2
3

rA(m) .

Therefore, using relation (2),

a ·A(2)(m) ≈ 2
3

arA(m) ≈ 2
3

r · r2

2
=

r3

3
, (5)

and generally

a ·A(2)(n) ≈ 2
3

a · (na)A(n) ≈ 2
3
(na) · (na)2

2
=

(na)3

3
, (6)

when a ≈ 0.

In the same way, using relations (5) and (6), they demonstrate the case of A(3)(m):
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A(3)(m) = a3 +(2a)3 + · · ·+{(m−1)a}3 +(ma)3

= a2{r− (m−1)a}+(2a)2{r− (m−2)a}+ · · ·
+{(m−1)a}2(r−a)+(ma)2r

= rA(2)(m)−a ·
m−1

∑
n=1

A(2)(n) .

Therefore,

A(3)(m) ≈ rA(2)(m)−
m−1

∑
n=1

(na)3

3
,

≈ rA(2)(m)− 1
3

A(3)(m) ,

A(3)(m) ≈ 3
4
· rA(2)(m) .

Hence,

a ·A(3)(m) ≈ 3
4
·arA(2)(m) =

3
4
· r · r3

3
=

r4

4
,

and generally

a ·A(3)(n) ≈ 3
4
· (na) · (na)3

3
=

(na)4

4
.

Having demonstrated up to A(3)(m), Śaṅkara gives a general relation, saying
“each sum should be multiplied by the half-diameter and diminished by its own
part divided by the number [of the power] increased by 1”, that is,

A(p)(m) ≈ r ·A(p−1)(m)− r ·A(p−1)(m)
p+1

=
p

p+1
rA(p−1)(m) .

Then starting from

a ·A(m) ≈ r2

2
,

using this recursive calculation, he finally get

a ·A(p)(m) ≈ rp+1

p+1
. (7)

Step 4

Applying this relation (7) to formula (1) in Step 2, Mādhava-Śaṅkara get

a ·A(2p)(m) = a ·
m

∑
n=1

(na)2p ≈ r2p+1

2p+1
,
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and then

C
8
≈ r +

∞

∑
p=1

(−1)p a ·∑m
n=1(na)2p

r2p ,

= r +
∞

∑
p=1

(−1)p aA(2p)(m)
r2p ≈ r +

∞

∑
p=1

(−1)p r2p+1

(2p+1)r2p ,

= r +
∞

∑
p=1

(−1)p r
2p+1

.

Here applying d = 2r, we finally get the Mādhava’s series:

C ≈ 8r +
∞

∑
p=1

(−1)p 8r
2p+1

,

= 4d +
∞

∑
p=1

(−1)p 4d
2p+1

,

=
4d
1

− 4d
3

+
4d
5

−·· ·+(−1)n−1 4d
2n−1

+ · · · .

3.4 Other Formulas Based on the Same Principle

Then Mādhava-Śaṅkara gives two formulas for calculating arcs or circumferences.

Fig. 3 Arc (Arctangent)
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Arc (Arctangent)

The first formula is for “calculating an arc from a given sine” (is.t.ajyāyāh. cāpānaya-
nam).

Please refer the reader to Figure 3. The formula gives the arc s corresponding to
a central angle θ of a circle using y (rsine corresponding to theta), x (its rcosine),
and radius r of the circle.

s
[
= r · arctan

y
x

]
=

ry
1x

− ry3

3x3 +
ry5

5x5 −·· ·+(−1)n−1 ry2n−1

(2n−1)x2n−1 + · · · . (8)

This is a general form of Mādhava series. Śaṅkara gives no explanation about
how to derive it. We infer the way as follows. In figure 3, concerning an arc s, that is
B0B j, we can use the same way as in the case of calculation of the circumferences,
dividing EA j into j parts which have the equal length a:

s =
j−1

∑
n=0

cn ≈
j−1

∑
n=0

bn =
j−1

∑
n=0

ar2

knkn+1
≈

j−1

∑
n=0

ar2

k2
n+1

=
j

∑
n=1

ar2

k2
n

,

=
j

∑
n=1

∞

∑
p=0

(−1)p a(na)2p

r2p =
∞

∑
p=0

(−1)p
j

∑
n=0

a(na)2p

r2p ,

=
∞

∑
p=0

(−1)p aA(2p)( j)
r2p .

And the relation

aA(p)( j) ≈ ( ja)p+1

p+1

is also concluded.
Then using the simple proportional relation:

ja =
ry
x

,

we get:

s ≈
∞

∑
p=0

(−1)p ( ja)2p+1

(2p+1)r2p =
∞

∑
p=0

(−1)p ( ry
x )2p+1

(2p+1)r2p ,

=
∞

∑
p=0

(−1)p ry2p+1

(2p+1)x2p+1 ,

=
ry
1x

− ry3

3x3 +
ry5

5x5 −·· ·+(−1)n−1 ry2n−1

(2n−1)x2n−1 + · · · .

It is clear that s = C/8 when x = y.
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Circumference

Now let us think of the second formula:

C =

√
12d2

1
−

√
12d2

3 ·3
+

√
12d2

5 ·32 −·· ·+(−1)n−1

√
12d2

(2n−1)3n−1 + · · · .

If formula (8) is applied in the case of θ = π
6 (= 30◦), because

y
x

=
1√
3

,

s
(π

6

)
=

r√
3
− r

3

(
1√
3

)3

+ · · ·+(−1)n−1 r
2n−1

·
(

1√
3

)2n−1

+ · · · ,

=
r√
3
− r

3 ·3
√

3
+ · · ·+(−1)n−1 r

(2n−1)3n−1
√

3
+ · · · .

Because the obtained arc s
(π

6

)
is one twelfth of the circumference C,

C = 12 · s
(π

6

)
.

Furthermore because 2r = d,
12r√

3
=
√

12d2

. Thus the formula

C =

√
12d2

1
−

√
12d2

3 ·3
+

√
12d2

5 ·32 −·· ·+(−1)n−1

√
12d2

(2n−1)3n−1 + · · ·

seems to be obtained.

3.5 Corrective Term

Then Śaṅkara demonstrates in detail the corrective term added to Mādhava series:

(−1)n ·4d · n
(2n)2 +1

. (9)

Concerning this correction, the authors of Studies in Indian Mathematics [1] pub-
lished an article [2] in Centaurus. Please refer the reader to it for detailed explana-
tions and discussions. Now I just show the outline of Śaṅkara’s demonstration.

He mentions his plan for correction as follows:
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When division for that purpose was made by a certain odd number, one should make a cor-
rection separately. Then one should make [another] correction separately immediately after
dividing by the next odd number. When it has been done in this way, if the two circumfer-
ences obtained are equal, then the correction is ascertained to be accurate.

Let C be the true circumference, C(n) be a partial sum of n terms of the Mādhava
series increased by the corrective term.

Śaṅkara’s plan is that if
C(N) = C(N +1) ,

where N is a natural number, then

C(n) = C

where n is a natural number greater than N.
Let C(n) be:

C(n) =
4d
1

− 4d
3

+
4d
5

+ · · ·+(−1)n−1 4d
2n−1

+(−1)n ·4d ·F(n) .

When
C(n) = C(n+1) ,

F(n) =
1

2n+1
−F(n+1) ,

that is,

F(n)+F(n+1) =
1

2n+1
. (10)

Therefore he seeks a function F(n) which satisfies this condition.

If
F(n) = F(n+1) =

1
2(2n+1)

,

the condition mentioned above would be satisfied. But such a function F(n) never
exists. When

F(n) =
1

2(2n+1)
, (11)

then F(n+1) must be:

F(n+1) =
1

2{2(n+1)+1}
=

1
2(2n+1)+4

. (12)

The difference between denominators of formula (11) and formula (12) is just４.
Observing this difference Śaṅkara first of all think a function, F1(n):

F1(n) =
1

2(2n+1)−2
=

1
4n

. (13)
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Here,

F1(n+1) =
1

2{2(n+1)+1}−2
=

1
2(2n+1)+2

=
1

4n+4
(14)

where the difference of denominators remains 4. However,

F(n)+F(n+1) =
2n+1

2n(2n+2)

which does not satisfy condition (10).
Mādhava-Śaṅkara, who are not satisfied with F1(n), start to seek better function

by trial and error and find another function F2(n):

F2(n) =
1

4n+
4
4n

=
n

(2n)2 +1
,

which is the formula included as the corrective term (9).
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An Early Japanese Work on Chinese

Mathematics in Vietnam:

Yoshio Mikami’s Study of the Vietnamese

Mathematical Treatise Chi Minh Toan Phap

Alexei Volkov

Abstract In 1934 Yoshio Mikami (1875–1950) published a paper devoted to the
Vietnamese mathematical treatise Guide [towards] Understanding of Calculational
Methods Chi Minh Toan Phap. His analysis of several topics discussed in the trea-
tise (representation of numbers with counting rods, format of multiplication table,
generic problems of various categories, etc.) allowed him to advance hypotheses
concerning the origin and the time of compilation of the treatise. The book stud-
ied by Mikami nowadays is not available. In the present paper the author examines
Mikami’s work and provides a description of the Vietnamese mathematical treatise
Chi Minh Lap Thanh Toan Phap by Phan Huy Khuong (preface 1820) textually
close to that investigated by Mikami.

1 Introduction

The earliest attempt to investigate the extant materials on Vietnamese mathemat-
ics was made by the outstanding Japanese historian of mathematics Yoshio Mikami
[三上義夫] (1875–1950) who provided an analysis [12] of the Vietnamese mathe-
matical treatise Chi Minh Toan Phap1 [指明算法], yet did not have access to other
extant Vietnamese mathematical books.2 Unfortunately, the current whereabouts of
the book explored by Mikami are unknown. On the basis of Mikami’s description
the author of the present paper was able to identify a treatise with a slightly dif-

Alexei Volkov
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Hsinchu 30013, Taiwan
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1 Due to technical reasons, in this paper I omit the diacritics adopted in the transliteration system
Quoc Ngu; the interested reader will find the correct transliteration of all the used Vietnamese
terms in the Glossary at the end of the paper.
2 I am grateful to Professor Yukio Ōhashi [大橋由紀夫] who drew my attention to the work of
Mikami and kindly sent me a copy of his 1934 paper [12].
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ferent title which seems matching, at least partly, with Mikami’s description; two
manuscript copies of it are currently preserved in Vietnam and a microfilm copy of
one of them, in Paris.

The motivation for writing this paper is threefold: firstly, to describe in greater
detail an extant mathematical treatise arguably close to that studied by Mikami;
secondly, on the basis of the information concerning Vietnamese mathematics ac-
cumulated during the 75 years that passed since the publication of Mikami’s semi-
nal article, to answer, at least partly, the questions he posed; thirdly, to discuss the
methodology Mikami used to study the isolated document he had at his disposal.

2 The book Mikami studied

Mikami’s paper appeared in the journal School Mathematics [學校數學 Gakkō
Sūgaku] in 1934; he begins his relatively short (nine pages) article with a men-
tion of the ethnologist Nobuhiro Matsumoto [松本信廣] (1897–1981),3 who, after
a field trip to Vietnam conducted in 1933, brought to Japan a mathematical book ti-
tled Guide [towards] Understanding of Computational Methods [指明算法Chi Minh
Toan Phap]. It is not known whether the book still exists physically, and if it does,
where it is to be found.4 Mikami did not specify whether the book was handwrit-
ten or block-printed. The name of the author and the date of compilation were not
mentioned either, and this might mean that the book he obtained from Matsumoto
lacked one or several opening pages.

An inspection of the titles of the extant mathematical treatises does not reveal any
treatise bearing the title 指明算法.5 According to the catalogue Noi Cac Thu Muc
[内閣書目] of the department Noi Cac [内閣] of the Imperial Library in Hue com-
piled in 1908 and preserved in Han-Nom Institute (call number A113/1–2), a book
with this title was once stored in the Imperial Library, yet it is impossible to know
whether it was the book explored by Mikami or another (presumably, Chinese) trea-
tise.6 However, Mikami’s cursory description of the treatise he investigated allows
to identify a Vietnamese book which is the closest to it among the extant treatises:
this is the Chi Minh Lap Thanh Toan Phap [指明立成筭法] authored by Phan Huy
Khuong [潘輝框] (preface 1820). Even though there are reasons to believe that the
latter book is not textually identical with the book found by Matsumoto Nobuhiro

3 On the life and activities of Matsumoto see, for example, Ito [6].
4 The collection of the late Prof. Matsumoto is currently preserved in the library of Keiō Uni-
versity, Mita Campus, Tokyo, yet the book is not found there, and Professor Ōhashi was unable to
locate the book in other Japanese libraries either (Professor Yukio Ōhashi’s private communication,
September 2009).
5 The number of the mathematical treatises so far located by the author of this paper equals to 22;
for a list of the 19 treatises see Volkov [18] (three more books were located only recently).
6 In the aforementioned catalogue the Chi Minh Toan Phap [指明算法 Zhi Ming Suan Fa] is listed
together with Chinese mathematical treatises such as the周髀算經,海島算經,孫子算經,綺古算
經, 詳解九章算法, and 算法統尊 (=算法統宗). There existed several Chinese books bearing the
title Zhi Ming Suan Fa [指明算法] compiled during the Ming [明] (1368–1644) and Qing [清]
(1644–1911) dynasties, see Li Di [9, pp. 366–367].
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(see below), it has the same structure (four chapters) and contains, as far as Mikami’s
description allows to judge, numerous elements common with the former.

There exist two manuscript copies of the Chi Minh Lap Thanh Toan Phap
preserved in the Han-Nom Institute in Hanoi; their call numbers are A.1240 and
VHv.1185. The catalogue of Tran and Gros [14] (entry 433) also mentions a micro-
film (call number MF. 2391) of the edition with the call number A.1290. However,
the book with the call number A.1290 is not the mathematical treatise under consid-
eration but a chronology of the kings of Cambodia entitled Cao Mien The Thu [高綿
世次]. The call number of the microfilm of the latter book (MF.476) differs from that
of the microfilm of the mathematical treatise mentioned above, and thus the entry in
[14] apparently contains a misprint.7 In the present study I used a microfilm copy of
the manuscript A.1240 preserved in the library of EFEO in Paris and a partial copy
of the manuscript VHv.1185.8

In his paper Mikami made several quotations from the Vietnamese books he
studied; these quotations allow one to claim that his book was close enough to the
manuscript A.1240. More specifically, Mikami mentions 11 subtitles and names of
methods he found in the four chapters of his book; as Table 1 shows, the same (or
almost the same, in the cases of items 3 and 6) items are found in the corresponding
chapters of the Chi Minh Lap Thanh Toan Phap:

Item Items in the Chi Minh Toan The corresponding items in the Chi Minh Lap
no. Phap [指明算法] inspected Thanh Toan Phap [指明立成筭法] by Phan

by Mikami Huy Khuong [潘輝框] (1820), MS A.1240
1 1算法綱領詩 in chap. 1 chap. 1; first item in the table of contents
2 九章算數法式 in chap. 1 chap. 1; third item in the table of contents
3 開平方法 in chap. 2 Table of contents (chap. 2) contains several

items whose names include the term開平方法
4 量倉窖歌 in chap. 3 chap. 3: first item.
5 平分法詩 in chap. 4 chap. 4: first item
6 異乘同除 in chap. 4 chap. 4:異乘同除法 is item 12 in the table

of contents
7 盈不足詩法 in chap. 4 chap. 4: item 17
8 兩盈兩不足詩法 in chap. 4 chap. 4: item 18
9 盈適足不足適足詩法 chap. 4: item 19

in chap. 4
10 望木高求路遠法 in chap. 4 chap. 4: item 20
11 算題試文格式 in chap. 4 chap. 4: item 21

Table 1

7 It is possible that the microfilm MF.2391 is that of the manuscript A.1240 (the digit “4” may have
been misprinted as “9” in [14] ; however, I was unable to check this hypothesis, since the micro-
film MF.2391 currently remains unavailable, according to a private communication of Nguyen Thi
Duong (September 2009).
8 I would like to express my gratitude to Nguyen Thi Duong who kindly sent me copies of a number
of pages of the manuscript VHv.1185.
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As the reader can see, the book inspected by Mikami contained the titles of sub-
sections almost completely identical with those found in one of the extant copies
of the Chi Minh Lap Thanh Toan Phap. Certainly, one cannot exclude the possi-
bility that the contents of these subsections may have been different. Indeed, there
are strong reasons to believe that the two books were not entirely identical. For in-
stance, Mikami speaks about the table of contents as if the treatise was opening with
it (p. 3), while both the manuscripts A.1240 and VHv.1185 contain a preface and
a section preceding the table of contents. The latter section is similar to that found
in the Chinese treatise Summarized Fundamentals of Computational Methods [算
法統宗 Suan Fa Tong Zong] [2] by Cheng Dawei [程大位] (1533–1606) completed
in 1592 and contains a diagram of the Chinese abacus [算盤 suan pan]; Mikami,
in turn, states that the treatise he investigated does not contain any mentions of the
abacus (p. 4). Moreover, a comparison of five excerpts quoted by Mikami and their
counterparts found in Chi Minh Lap Thanh Toan Phap presented below shows a
number of discrepancies:

(1) Mikami quotes “一例算學直看、先認詩歌、次 。。。” (p. 4). In A.1240 the
opening phrase of a paragraph following the table of contents (p. 6a) reads 一
例學直看、先認詩歌、次。。。; the character算 is missing.

(2) Mikami mentions the subtitle “學習算例詩歌” (p. 4), while in A.1240 the sub-
title reads 學習算例詩 (with the missing character 歌) is item 5 in table of
contents (chapter 1); in the text, the section titled學習算例詩歌 is found on p.
10b.

(3) Mikami mentions the expression “得算子” in the multiplication table 九九 (p.
4). In A.1240 the section九章算數法式 of chapter 1 contains systematic com-
putations of the number of算子 expressed as得算 N 子 with various numerals
N (pp. 8b–9b).

(4) Mikami quotes “六不聚兮五不員” (p. 4), while in A.1240 the section 學習
算例詩歌 (p. 10b) contains the phrase 六不聚兮五不單, the last character in
Mikami’s copy is apparently a mistake of the copyist (or the carver, if the book
inspected by Mikami was block-printed).

(5) Mikami provides a long quotation from the model examination paper which
reads as follows: 對士謂筭法。中來因除。不越衰分。上看 多少有差。此
執事算9 問。而士所以復之也。茲見題中所問。惟照奉恨惠及本屬略説。
平分而主用差分之法。諒知算無究之妙用矣。士請算而。。(p. 7; I keep
the punctuation of Mikami). The parallel excerpt found in the fourth chapter of
A.1240 and VHv.1185 reads (the punctuation is mine):10對。愚謂筭法中來因
除不越衰分。上有多少。有差。此執事筭 〈河 〉 [問]而愚所以復之也。茲

9 The characters筭 and算, historically, had different meanings: according to the dictionary [説文
解字 Shuo wen jie zi] by Xu Shen [許慎] (AD 55?–149?), the character suan筭 meant the count-
ing rods while the suan算 meant the operations performed with the instrument. Interestingly, the
manuscript copy of the text preserves the form 筭, while Mikami systematically uses 算; how-
ever, it remains unknown whether the copy he inspected indeed contained the form 算, or it also
contained筭 which was later changed to算 by the publishers of the journal.
10 I underline the diverging or missing characters in both excerpts, use angular brackets to mark
the characters to be removed, and put in square brackets the characters to be inserted.
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見題中所 〈河 〉 [問] 惟照奉銀惠及本屬。略説平分而主用差分之法。諒知
筭法無窮之妙用矣。愚請筭而排陳之。(Chapter 4, p. 30b)11

Even though the manuscript A.1240 has a “running header” (placed at the
unattached edge of each double leaf) that reads 指明算法,12 on the basis of the
above-mentioned comparison one can conclude that the book inspected by Mikami
and the manuscript copy titled Chi Minh Lap Thanh Toan Phap are not textually
identical. Moreover, Mikami’s copy contained two elements lacking in the extant
copy of Chi Minh Lap Thanh Toan Phap: (1) the pictures of the numerals repre-
sented with the counting rods and (2) an appendix. Below I will discuss the elements
missing in Mikami’s copy, in particular, a preface authored by the compiler of the
treatise, but it seems appropriate to begin with a description of the received copies
of Chi Minh Lap Thanh Toan Phap.

3 The Chi Minh Lap Thanh Toan Phap

The manuscripts A.1240 and VHv.1185 preserved in the library of the Institute for
Han-Nom Studies (Hanoi) are listed in the catalogue of Han-Nom books by Tran and
Gros [14, vol. 1, p. 258], yet the catalogue does not provide much information about
the treatise and its author; in particular, it does not mention that the book contains
an appendix (or rather an independent treatise bound together with Chi Minh Lap
Thanh Toan Phap) entitled Cuu Chuong Lap Thanh Toan Phap [九章立成算法] that
can be provisionally rendered in English as Ready-Made Computational Methods
of Nine Categories. Both manuscripts A.1240 and VHv.1185 contain four chapters
[卷] and a short introductory section.

The introductory section contains:
– a front page featuring the title of the treatise (the author’s name is not mentioned)
(p. 1a);13

– a Preface signed by the presumed compiler of the treatise, Phan Huy Khuong [潘
輝框] containing the date of its compilation (pp. 1b-2b);
– a diagram explaining the construction of, and the operations with, the abacus (p.
3a) which is an exact reproduction of the picture found in the Chinese mathematical
treatise Summarized Fundamentals of Computational Methods [2, p. 113];
– a table of correspondences between powers of 10, monetary units, units of length,
weight, and volume (p. 3b);

11 For a translation and discussion of this excerpt see Volkov [20] .
12 I did not see this header in the partial copy of VHv.1185 I had at disposal.
13 I refer to the double leaves of the manuscript A.1240 using letters a and b, for recto and verso,
respectively. Chapters 1, 2, and 4 have individual pagination beginning with page 1, while the
pagination of chapter 3 continues the pagination of Chapter 2 (thus the first page of Chapter 3 has
number 44a, and the last one, 54a).
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– diagrams of 32 plane figures (referred to as shapes of fields [田勢] (pp. 4a-b) the
areas of which are calculated in Chapter 2 of the treatise (some of the figures are
identical with those discussed in [2, p. 113]);
– the table of contents of the treatise (pp. 5a–6a) (the Appendix is not mentioned);
– the rules for studies of computations [筭學條例] (pp. 6a–6b).

Chapter 1 contains eleven subsections devoted to arithmetical operations; it in-
cludes, in particular, the multiplication table 9× 9 entitled Table for the Method of
Computing with Numbers [classified according to] Nine Categories [九章筭數法
式] (pp. 8a–9b) discussed by Mikami. It also contains descriptions of the methods
of multiplication and division accompanied by eleven arithmetical problems appar-
ently designed to illustrate the introduced operations. A large section of Chapter
2 (pp. 1a–42a) is devoted to the calculation of areas of plane figures (a square, a
rectangle, a right-angle triangle, a trapezium, a circle, etc.). This section does not
include mathematical problems written down in the traditional format “condition
– answer – algorithm”; instead, this section features computational procedures de-
scribed with the numerical values written in smaller characters. A short concluding
section of the Chapter (pp. 42b–43b) is devoted to the computation of square roots
and contains two problems provided with detailed numerical solutions.

Chapter 3 contains algorithms of calculation of volumes accompanied by 14
problems illustrating the application of these algorithms; some algorithms are pre-
sented in a rhymed form and placed before the corresponding problems.

Chapter 4 of Manuscript A.1240 contains 38 problems devoted to flat-rate and
weighted distribution (problems 1–20),14 the Rule of Three and its modifications
(problems 21–28), the method of Double False Position (problems 29–34), and to
the proportionality of sides of triangles (problems 35–37).15 The last problem is a
model examination problem on weighted distribution.16

4 The Preface by Phan Huy Khuong

Some information concerning the history of the treatise can be found in the Pref-
ace authored by Phan Huy Khuong found in both manuscript copies A.1240 and
VHv.1185; it reads as follows:17

14 The original number of the problems in this chapter is unknown, since the manuscript copy
A.1240 was made from a damaged original, or the copyist eye-skipped one or several pages: page
16a begins with the solution of an unstated problem, while page 15b does not contain the condition
of the problem solved on page 16a. The numeration of the problems in this chapter is therefore
conventional: I assign number 14 to the problem solution of which begins on page 16a.
15 I avoid using the term “similar triangles” which might impose a modernizing interpretation.
16 This problem, its solution, and the context are discussed in Volkov [20] .
17 The original text found in the manuscript copy A.1240 is not punctuated, while the copy
VHv.1185 contains punctuation. The punctuation I use in this paper is that found in the latter
copy. I am thankful to Lin Hung-Chun [林虹君] for discussions of the preface.
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潘家筭法指明序。
夫筭者併別也。多少併其數。平差別其分。莫非筭法。推之爲修齊之道 ◦

18 措之為平治
之規。包數元義。固如是哉。予姓潘字框。學習古人。探求遺法。參今酌古。曾已有年。
念全書繁衍。初學難通。 一毫之差。[有] 千里之謬 ◦

19 如予力學筭辨。粗得統宗。可
不立成法訓。以示後人。使易精識。爲自淺入深之學者乎。遂於庚辰清明節始生明良辰。
自樂園中。日記故事。激發乎九經之奧旨。盤査乎六藝之淵微。惟知筭者所存。足爲近
用。豈可以小技觀。而輕廢乎大典。以是神會尖微。乎提綱領。集成筭書。永垂家訓。
庶使學者易通。方合正宗之妙術。觀此指明筭法。吾非敢作古以術籠人。蓋吾思先聖之
功無窮。他日所用不外今日所存。後來學者。當以類推。遂書為序。
時。
明命元年庚辰清明節始生明。
山西鎮國威府慈廉縣東鄂社老圃潘輝框撰。
樂天窩藏書。

Preface of the Toan Phap Chi Minh [transmitted in] the Phan family.20

As far as the computations (筭) are concerned, [there are the procedures of] joining to-
gether and separating apart. [When performing the procedure of] the “excessive [amount]
and deficient [amount],” [one] joins their quantities together; [when doing] the “equal [dis-
tribution] and proportional [distribution]” [of an amount], [one] separates it apart. There is
nothing [here] that would not amount to the counting methods. “Pushing them [the meth-
ods?] forward” [= developing them by analogy] is the universal way of “perfection” and
“equalizing” [them]; grouping them [together in an appropriate way] is the standard tool
for “pacification” and “ordering”.21 The original meaning of the “embracing numbers” is
certainly like that!

My name is Phan, style Khuong. I studied and exercised [the knowledge] of the people
of the past, explored and looked for the methods [they] left behind, was involved in the
[activities] of the present while taking the ancient [things into consideration]. For quite
some years I have already studied the complexity and vastness of the entire [collection
of mathematical?] books.22 [They] are difficult to comprehend for the beginners. If [the

18 The manuscript VHv. 1185 is damaged and the four characters推之為修 are missing.
19 The manuscript A.1240 does not contain the character有.
20 Technically, the title of the treatise mentioned here is different from the one on the front page.
21 The four terms mentioned here 修, 齊, 治, 平 are quoted from Chapter 2 of the classic Great
Learning [大學 Da Xue] : 古之欲明明徳於天下者, 先治其國 ; 欲治其國者, 先齊其家 ; 欲齊
其家者，先修其身 ; 欲修其身者, 先正其心；欲正其心者, 先誠其意 ; 欲誠其意者, 先致其知 ;
致知在格物 ; 物格而後知至, 知至而後意誠, 意誠而後心正, 心正而後身修, 身修而後家齊, 家
齊而後國治, 國治而後天下平. The four clauses 修身, 齊家, 治國, 平天下 were rendered by J.
Legge [8, p. 357] as “to cultivate their persons,” “to regulate their families,” “to order well their
states,” “and the whole kingdom was made tranquil and happy,” respectively. I am thankful to Hsu
Yu-Fang [許瑜芳] who drew my attention to this quotation from the Great Learning. Phan Huy
Khuong’s remark can be understood in the sense that the four Confucian terms can be interpreted
mathematically in the context of two algorithms he mentioned. For a discussion of the possible
mathematical interpretation of this excerpt, see below.
22 Even though the expression Quan Shu [全書] may have referred to the Chinese Compendium
Complete Library in Four Branches of Literature [四庫全書 Si Ku Quan Shu] completed in 1782, it
looks rather unlikely that the Vietnamese author was ever able to consult this collection. However,
the possibility that he had access to certain editions of mathematical books based upon the Chinese
Compendium cannot be ruled out, especially given that editions of the year 41 of Qian Long [乾
隆] era (1775) of several Chinese mathematical treatises are mentioned in the catalogue of another
section of the Imperial library in Hue, Co hoc vien thu tich thu sach [古學院書籍守冊] (Han-Nom
Institute, call number A2601/6).



156 Alexei Volkov

student] diverts [in understanding?] for [only] one hao [毫]23, [it will result] in an error
of [one] thousand li [里]24. As I was studying vigorously the [correct] understanding of
computations, I comprehended [only] roughly the major principles of the system [or: the
Summarized Fundamentals of Computational Methods [算法統宗 Suan Fa Tong Zong]].
How could it be possible not to establish [these] ready-made [computational] methods [to
provide] instructions?! [I did it] in order to expose [the methods] to the people of the future
generations [of my family] and to make it easy [to acquire] refined knowledge for those
of them who begin their study from the “shallow waters” [in aspiring] to “enter into the
depth”! Thus, on the Thanh Minh Festival [清明節] of the [year] Canh-thin [庚辰], early
at the dawn in auspicious hour, in [my] “Garden of Bliss” I am writing [this] story today.
Being inspired by the hidden indices of the Nine Canons,25 I examined the origins and
the subtleties of the Six Arts [of Antiquity, of which the sixth one was mathematics]. [If
one relies upon] only that what is held by those who comprehend computations, [it] would
suffice [only] for a short-range application; [yet] could it be possible to use [only] minor
skills and thus to consider the Great Models [of Antiquity?] unimportant and useless?! [In
applying] the sharpness and subtlety of their divine knowledge to [my] “grasping the main
rope and collar” [= the central point], [I] assembled and completed a book on counting
[which] will be forever transmitted [in our] family to instruct multitudes of learners [making
them] comprehend [the subject] easily and then to gather [all] the subtle techniques of the
truthful origin. When contemplating this Chi Minh Toan Phap [指明算法], [one can see
that] I did not dare to “manufacture the antiquity” in order to “put others in a basket” [=
to restrain them] with the algorithms [or: technicalities]. [This is because] I think that the
merits of the sages of the past were endless, [but] the [things they] used in their days do
not go beyond those existing nowadays. The future students should take [these methods] to
develop [them by analogy]. This is the preface for the book that follows.

On the Thanh Minh Festival of the [year] Canh-thin, the first year of the [era] Minh
mang, early at the dawn in auspicious hour,

Compiled by “Old Peasant” Phan Huy Khuong from the Commune Dong Ngac in Dis-
trict Tu Liem of the Administrative Region Quoc Oai [under jurisdiction] of the Adminis-
trative Center Son Tay.

[Done] in the Library “Retreat of Blissful Heaven”.

The text of this Preface contains a number of elements relevant to the present study.
To begin with, it provides the family name of the author, Phan, and his style (literary
name), Khuong. According to the front page of the manuscript A.1240, the name
of the author is Phan Huy Khuong [潘輝框]; this name is also mentioned in the
beginning of chapters 3 and 4. The identity of the author, elements of his biography
and even his lifetime remain unknown.26 The year Canh-thin coinciding with the

23 Hao is a Chinese unit of length equal to 10−4 of the unit chi; during the Qing dynasty (1644–
1911) 1 chi was approximately equal to 32 cm.
24 Li is the largest unit in the traditional Chinese system of linear measures; during the Qing dynasty
it was approximately equal to 576 m.
25 This may be a reference to the “Nine Categories”, i.e., the Computational Algorithms of Nine
Categories [九章算術 Jiuzhang Suanshu], the Chinese mathematical classic of the Han dynasty;
see [1].
26 According to an anonymous author, Khuong was one of the names of Phan Huy On (1754–1786)
see http://www.vietgle.vn/trithucviet/detail.aspx?key=Phan+Huy+%C3%94n&type=A0 (retrieved
on August 31, 2009); yet this identification cannot match well with the Preface: its author sug-
gests that the Preface was compiled on the Thanh Minh festival of the year Canh-thin (Chinese
gengchen), but in the year Canh-thin 1760 Phan Huy On was only 6 years old, and by the next

http://www.vietgle.vn/trithucviet/detail.aspx?key=Phan+Huy+%C3%94n&type=A0
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first year of the era Minh mang [明命元年庚辰] mentioned as the date of compilation
of the Preface in both extant manuscripts provides the date of the publication of the
treatise (1820) found in the catalogue of [14].

An interesting aspect of the Preface is that the author quotes and mentions a
number of treatises while incorporating their titles in his text as parts of sentences,
for example, the obscure phrase “The original meaning of the ‘embracing numbers’
is certainly like that!” in the opening part of the Preface contains an almost ex-
plicit reference to the Yuan Bao Shu Yi [元包數義] chapter of the numerological
treatise Yuan Bao Shu Zong Yi [元包數總義] by Zhang Xingcheng [張行成] (進
士 jinshi 1132). Another example is offered by the phrase粗得統宗。可不立成法
which can be understood as “· · · I comprehended [only] roughly the major princi-
ples of the system. How could it be possible not to establish [these] ready-made
[computational] methods [to provide] instructions?!” as well as a reference to two
mathematical books: “I comprehended [only] roughly the Summarized Fundamen-
tals [統宗 Tong Zong] [of Computational Methods [算法 Suan Fa]]. How could it
be possible not to establish [these] Ready-made methods of [computations] [立成
筭法] [to provide] instructions?!” The former title could be referring to the afore-
mentioned Summarized Fundamentals of Computational Methods [算法統宗 Suan
Fa Tong Zong] (1592) by Cheng Dawei [程大位], as well as to an abridgment of
it available in Vietnam, for example, to the Systematic Treatise on Computational
Methods [統宗算法 Thong Tong Toan Phap], a treatise of unknown date authored
by one Ta Huu Thuong [謝有常].27 The title of this treatise makes an obvious allu-
sion to the Summarized Fundamentals of Computational Methods. Indeed, certain
parts of the Chinese treatise are quoted verbatim, as, for example, the versified rules
of calculation of areas of plane figures,28 the problem of two walkers,29 and so on.
Nevertheless, the compiler of the Thong Tong Toan Phap considerably modified
sections of the Chinese book in inserting a number of problems not found in the
original Chinese treatise, adapting the Chinese original to the Vietnamese measure
units, and providing his explanations in Nom (the writing system used to transcribe
Vietnamese language with Chinese characters and newly created characters based
on Chinese ones). The reader will find below an example of a mathematical prob-
lem in Phan Huy Khuong’s treatise quoted practically verbatim from the treatise of
Cheng Dawei.

The other title “hidden” in the preface by Phan Huy Khuong, the Ready-made
methods of [computations] [立成筭法], may have referred to the Chi Minh Lap
Thanh Toan Phap itself as well as to the mathematical treatise Cuu Chuong Lap
Thanh Toan Phap [九章立成算法] probably edited by Phan and appended to the
former one (see below). But the most intriguing among these hidden references
is the obscure mention of the Great Model(s) [大典 Da Dian]; this term, on the

Canh-thin year, 1820, he had been long dead. According to Gaspardone 1934, Phan Huy On’s
original style was Trong-Duong [仲洋], which he changed to Hoa-Phu [和甫] in 1780 (p. 83, n.1).
27 One manuscript copy of the latter treatise is preserved in the National Library of Vietnam
(Hanoi). Call number R.1194; this treatise is not listed in Tran and Gros [14].
28 Thong Tong Toan Phap, pp. 27–29, Cheng [2, pp. 226–227].
29 Thong Tong Toan Phap, pp. 207–208, Cheng [2, pp. 895–896].
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one hand, may have been referring to the great mathematical books of antiquity in
general, while, on the other hand, suggesting that the author was familiar with the
mathematical sections of the collection Great Canon of the Yongle Era [永樂大
典 Yong Le Da Dian] compiled in China 1404–1408, or with some mathematical
treatises based upon them.30

In the opening part of the Preface the author mentions four actions coming from
the Great Learning: self-improvement, family regulation, ordering of a state, and
pacification of the civilized world [修, 齊, 治, 平]; he states that these terms can
be given mathematical interpretations. The exact meaning of this claim remains
unknown, yet one can suggest a tentative explanation of the rather obscure opening
paragraph. Phan mentions the procedures of “excessive and deficient [amounts]”
and “equal and proportional [distribution],” that is, the Rule of Double False position
and the method of weighted distribution. The first problem on the Rule of Double
False position in his treatise (Problem 29 of Chapter 4) reads as follows: a certain
number of people buy a thing or things; if each of them pays 5 van [文 wen], then
the total amount will exceed the price by 6 van; if each of them pays 3 van, the total
amount will be less than the price by 4 van. The number of people and the price
of the things are to be found. The answer is found according to the algorithm for
the first time recorded in the Book on Computations with Counting Rods [算数書
Suan Shu Shu][3, pp. 81-88] and Computational Algorithms of Nine Categories [九
章算術 Jiu Zhang Suan Shu] [1, p. 558 ff.]: 5 van is to be multiplied by 4 van, 3
van by 6 van, the products added to obtain the “dividend of things” [物寔], 38 ; one
should also sum up the excess and deficit to obtain the “dividend of people” [人
寔], 10; the difference of the amounts paid by each individual (5−3 = 2) is simply
called “Divisor” [法]. To calculate the amounts of the people, 5, and the price of the
“thing(s)”, 19, one has to divide each respective “dividend” by the “Divisor.”

In modern notation, the problem and the method can be rendered as follows:
if Nm1 = X + E,Nm2 = X − D, then X = (m1D + m2E)/(m1 − m2),N = (E +
D)/(m1 − m2); here m1 and m2 are amounts of money paid by each individual
(m1 > m2), E and D are excess and deficit, respectively, and X is the price of the pur-
chased object.31 An interesting detail is that the choice of the numerical values in the
Vietnamese treatise is rather particular: the author uses the consecutive natural num-
bers 3,4,5,6: m2 = 3,D = 4,m1 = 5,E = 6. However, the numerical parameters of
this problem were not invented by the Vietnamese author himself; they are the same
as those of Problem 1 of Chapter 10 of the Summarized Fundamentals of Compu-
tational Methods [2, p. 675]. The texts of the two problems differ only slightly: in
the condition of his problem Cheng Dawei uses different monetary units, and the
technical terms employed in the algorithms are not the same.

30 A large part of the mathematical section of the Great Canon of the Yongle Era is now lost; in
particular, lost are the volumes of the collection containing fragments of the ancient mathematical
treatise Computational Algorithms of Nine Categories [九章算術 Jiu Zhang Suan Shu], except for
small portions of the text, see Chemla and Guo [1, pp.72–73].
31 The formulas were discussed by numerous historians; for one of the most recent works present-
ing the origins of the method in ancient China the reader is referred to Chemla and Guo [1, pp.
549–555 and 849–860].
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Among the operations performed to obtain the result one can see the multipli-
cation of the values D and E by m1 and m2, respectively. Among the four terms
mentioned by the author, 修, 齊, 治 and 平, the term 齊 was used by the Chinese
commentator Liu Hui [劉徽] (fl. AD 263) in the context of reduction of fractions
p1/q1 and p2/q2 to common denominator as referring to the multiplication of the
numerators p1 and p2 by denominators q2 and q1, respectively. One can notice a
certain parallelism between the mathematical meaning of the term 齊 used by Liu
Hui and by Phan Huy Khuong, while the mathematical interpretation of the three
other terms,修,治 and平, meant by Phan remains to be investigated.

One more obscure statement of Phan found in the very beginning of his preface,
that the method of false position is related to “joining together” while the method
of weighted distribution, to “separating apart”, may have a rather straightforward
interpretation: the final result of the operations performed to find the weighted dis-
tribution of a given amount corresponding to given weighting coefficients k1,k2, · · ·
consists of calculating two or more magnitudes proportional to the coefficients; the
given amount is thus “separated apart”. On the contrary, the algorithm of solution
of problems on “double false position”, in very general terms, consists of construct-
ing the sole amount (m1D + m2E)/(m1 −m2) on the basis of the given “elements”
E,D,m1, and m2.

One more difficult question to answer is: what was the book Phan wrote his
Preface for? The Preface itself refers to a Toan Phap Chi Minh [筭法指明], this
title, formally speaking, differs from both Chi Minh Toan Phap and Chi Minh Lap
Thanh Toan Phap. It is possible that Toan Phap Chi Minh and Chi Minh Toan Phap
may have been perceived by Vietnamese literati as one and the same title written
down according to the norms of literary Chinese and of Nom (in which the order of
the adjectives and nouns is reversed comparing to Chinese). However, the contents
of the Preface does not contain any specific reference to the Chi Minh Lap Thanh
Toan Phap and to its contents; the author mentions, although not explicitly, only two
topics, the Rule of the False Position and the method of weighted distribution. Both
topics are treated in Chapter 4 of the Chi Minh Lap Thanh Toan Phap, and if the
Preface originally accompanied the extant version of the book, it remains unclear
why other topics discussed in the treatise remained unmentioned by the author.32

5 The Appendix of Mikami’s book

In his paper Mikami mentions that the book he investigated contained an (appar-
ently, untitled) Appendix in one chapter devoted, as he reports, to the “extraction of
roots and other [topics]” [12, p. 8]; he provides a cursory analysis of this chapter

32 Since Mikami does not mention that the treatise he investigated had a preface, one cannot com-
pletely rule out the possibility that the Preface was originally written by Phan Huy Khuong for
another mathematical treatise and was combined together with the rest of the treatise by later edi-
tors.
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and quotes three excerpts from it (pp. 8–9).33 One contains a problem of division of
a truncated cone, the other is a problem on production of gunpowder, and the third
one is a problem of conversion of monetary units.

The first problem, to my knowledge, is not found in the extant Vietnamese trea-
tises and deserves to be reproduced here. It reads as follows:

今有木一段。長十尺。上徑七寸九分。下徑一尺一寸九分。秤量一百斤。茲鋸為二段。
每重五十斤。問。每段長並徑各若干。
答曰。上段長五尺五寸。原上徑七寸九分。今下徑一尺一分。下段長四尺五寸。原下徑
一尺一寸九分。今上徑一尺一分。
法曰。置上、下徑為一。折半。以長因之。得木九百九十寸。[· · · · · · ]

Now [let us assume that] there is a piece of wood, [its] length is 10 xich [尺],34 the upper
diameter is 7 thon [寸] 9 phan [分], lower diameter is 1 xich 1 thon 9 phan. The weight
is 100 can [斤]. And now [one] cuts it into two pieces. Each piece weighs 50 can. The
question is: what is the length and also the diameter of each piece?

The answer is: the length of the upper piece is 5 xich 5 thon, the original upper diameter
is 7 thon 9 phan, the lower diameter newly [obtained] is 1 xich 1 phan. The length of the
lower piece is 4 xich 5 thon, the original lower diameter is 1 xich 1 thon 9 phan, the upper
diameter newly [obtained] is 1 xich 1 phan.

The method: set [on the counting device] upper and lower diameters and make them one.
Divide [the obtained value] in halves. Multiply it by the length. Obtain that the wood is 990
xich. [· · · · · · ]

Unfortunately, Mikami stops quoting here the solution of the problem while re-
porting that the entire algorithm occupies about ten lines. The wording of the prob-
lem makes the reader think that the piece of tree having the shape of a truncated
cone is supposed to be visualized in horizontal position (hence the “length” instead
of “height”). One has to find a position for a cross-section going parallel to the two
bases of the truncated cone such that the upper and the lower sections would have
equal volumes. Since the area of the cross-section is a quadratic function of the dis-
tance from the upper (or lower) base, the correct solution of the problem would have
involved dealing with a cubic equation. However, as the numerical answer shows,
the solution was mathematically incorrect and instead of the division of a truncated
cone the anonymous author solved a plane problem of division of a trapezium with
the upper and lower bases a = 0.79 and c = 1.19 and the height H = 10 into two
sections with equal areas (see Fig. 1).

33 Technically, Mikami explicitly states that only the first excerpt (the problem on the dissection of
a truncated cone) is found in the Appendix, yet the layout of his paper makes the reader understand
that the two other excerpts quoted in sections 11 and 12 of his paper (pp. 8–9) were also found in
the Appendix. Moreover, the two latter excerpts quoted by Mikami are not found in the manuscript
A.1240.
34 In this translation one encounters the units of measure phan, thon and xich (1 xich = 10 thon =
100 phan) and the unit of weight can; since the date of compilation of the text quoted by Mikami
is unknown, their actual values cannot be specified.
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Fig. 1. Subdivision of a trapezium into two equiareal parts

According to the solution, h1 = 5.5,h2 = 4.5, and b = 1.01; for these values
the area of the upper part of the trapezium is indeed equal to the area of the lower
part. Conversely, as one might expect, the values h1 and h2 do not yield the correct
solution of the original problem, since the ratio of the volumes of the upper and
the lower parts for these values of h1 and h2 approximately equals to 1 : 1.22. The
beginning of the solution quoted by Mikami contains the calculation of the area
of the trapezium; this operation may be necessary for solving the planar problem.
However, Mikami does not quote the entire algorithm and thus does not leave any
clue as to what was the method used to solve the planar problem (which would have
involved solution of a quadratic equation). It remains entirely unknown whether
the original cubic problem was supposed to be solved with an algebraic method
originating from China, Europe or elsewhere.35

The second excerpt from the Appendix quoted by Mikami is directly related to
his attempt to find the date of compilation of the Appendix. The problems he quotes
from the Appendix mentions the composition of gunpowder. Mikami does not pro-
vide any definitive dates for the introduction of firearms and gunpowder in Vietnam
(which in itself is an interesting and difficult question which certainly could not be
answered satisfactorily in 1930s), yet cautiously suggests that a problem focusing
on such topic most likely was not composed earlier than the late Song – early Yuan
dynasty (p. 9). According to modern scholarship, the use of artillery in Vietnam is
documented from as early as the late 14th century. Since then, there are various ac-
counts concerning the use of cannons by the Vietnamese: by 1631 a state foundry
was established in the area of Hue (Central Vietnam), and since the late 1650s the
cannons were produced massively under the direction of an obscure half-Portuguese
military expert João da Cruz (ca. 1610–1682); in 1740s a Western visitor reported
that he saw some 1200 cannons in Central Vietnam.36 The production of good qual-
ity gunpowder was one of essential activities of the trade, and it would be quite
natural that mathematical problems of this type may have become rather popular
by the late 17th – early 18th century, or even earlier. The mention of gunpowder

35 A legend about Seki Takakazu [關孝和] preserved in the Burin Inkenroku [武林隱見録] mentions
a problem of division of a trunk of a tree (most likely, a cone or a truncated cone) into parts
according to a given ratio of volumes, Horiuchi [5, p. 130] ; if this interpretation of the legend is
correct, the problem found in the Appendix is a special case of Seki’s problem for the ratio 1:1.
36 On the history of firearms in Vietnam see, for example, Li Tana [10, pp. 43-46], Sun [13] and
Volkov [21] .
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thus could provide but a very approximate date for the time of compilation of the
Appendix while suggesting that in Vietnam the weaponry production might have
required particular mathematical training. To my knowledge, a problem on com-
position of gunpowder (with different numerical values) can be also found in the
Great Compendium of Mathematical Methods [算法大成 Toan Phap Dai Thanh],37

another book of unknown origin and date, conventionally credited to the authorship
of Luong The Vinh [梁世榮] (1441–1496?) and preserved in two manuscript copies
in Han-Nom Institute in Hanoi.38

On p. 10 Mikami concludes that the Appendix is compiled later than the treatise,
basing this conclusion on the mention of gunpowder. Even though Mikami avoids
suggesting any decisive dates for the Chi Minh Toan Phap, his detailed discussion
of the multiplication table gives the impression that Mikami was inclined to think
of the treatise he had at disposal as of a rather early work, probably of the late
Yuan or early Ming time. His detailed discussion of the multiplication table found
in the treatise (pp. 5–7), if read in the context of Mikami [11], is directly related
to the search for the date of the treatise. In his 1921 paper [11] he showed that the
order of products in the multiplication tables found in Chinese treatises was reversed
by the late Song – early Yuan period: in the earliest extant books the tables always
began with 9×9, while in the later treatises they began with 1×1. The table in the
Vietnamese treatise under investigation begins with the product 9×9 and thus could
have been considered by Mikami a piece of evidence supporting a hypothesis of the
early origin of the Vietnamese text (or at least of the multiplication table found in
it). Together with certain archaic mathematical terms and the counting instruments
(counting rods) presumed to be used to solve the problems, the particular order of
the multiplication table convinced him that the treatise he explored was anterior to
the late Ming while the mention of gunpowder in the Appendix made him believe
that the Appendix was written later than the treatise. I will return to his conclusion
in the last part of this article.

6 The Appendix of A.1240

Interestingly enough, the manuscript copy of the Chi Minh Lap Thanh Toan Phap
with the call number A.1240 also contains an Appendix in one chapter. However, un-
like the text seen by Mikami, this Appendix has an individual title Cuu Chuong Lap
Thanh Toan Phap [九章立成算法], a short preface, and a table of contents. The table
of contents contains editorial remarks indicating which subjects have already been
discussed in the Chi Minh Lap Thanh Toan Phap and therefore were intentionally
removed from this text. Moreover, the title Chi Minh Toan Phap is systematically
featured on pages of the Appendix as a running head in the manuscript A.1240.
This suggests that this treatise was reworked before being appended to the previ-

37 Problem 68, MS A.2931, pp. 62a–b.
38 For a preliminary analysis of this treatise see Volkov [15]; on Luong and his treatise, see below.
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ous one, yet the extent of the editorial work is difficult to evaluate. The Preface to
the Cuu Chuong Lap Thanh Toan Phap contains two parts. The first part is a rather
long excerpt extracted, as a commentary suggest, from the biography of Luong The
Vinh39 [梁世榮] (1441–1496?), a famous literatus and a high-rank official of the
Le [黎] dynasty (1428–1789) conventionally considered to be good at mathematics.
His biography is indeed found in the collection of biographies Records of Success-
ful Examinees [登科録 Dang Khoa Luc] by Nguyen Hoan [阮 ] (1712–1791);40

the microfilm copy preserved in EFEO (Paris) does contain the biography on p. 10b
of chapter 1. It is mentioned that Luong compiled (established [立]) the Dai Thanh
Toan Phap [大成算法]. The title of the book differs from the title of the extant
book Toan Phap Dai Thanh [算法大成] credited to his authorship and preserved, in
two manuscript copies, in the Han-Nom Institute in Hanoi.41 The name of the pre-
sumed author (“Doctor Luong The Vinh”) is written only on the first page of each
manuscript next to its title; however, a close inspection of the original manuscript
A.2931 shows this page was added later, and, since the manuscript VHv.1152 is a
copy of A.2931, the authorship of Luong The Vinh cannot be considered proven.

The second part of the preface is a brief note stating that one Pham Huu Chung
[范有鍾] “gathered the most important elements [of the book of Luong?] and com-
piled [the Cuu Chuong Lap Thanh Toan Phap] in the ‘phonetic [script] of the coun-
try’ (that is, in Nom, the phonetic script using Chinese characters or their deriva-
tives) in order to make it easier for the beginners (後學范有鍾。。。撮要撰為國音。
以便初學。” and then block-printed his work in the second year of the Bao Thai [保
泰] era (1720–1729), that is, 1721. The treatise is, indeed, written in Nom. We shall
meet Pham Huu Chung later when discussing the use of the counting rods in the
treatise investigated by Mikami. To conclude this brief investigation of the Preface,
one can argue that its author(s) suggested a new hypothesis as to what the original
title of the book authored by Luong The Vinh was: according to the preface, its orig-
inal title was Dai Thanh Toan Phap, and it was reworked by Pham Huu Chung in
1721 to produce a book in Nom (the original book of Luong thus must have been
written in classical Chinese) titled differently, namely, Cuu Chuong Lap Thanh Toan
Phap or possibly simply Cuu Chuong Toan Phap [九章算法]. It is interesting that
a book with the latter title was indeed also credited to the authorship of Luong The
Vinh.42

The Cuu Chuong Lap Thanh Toan Phap contains a number of rhymed sections
devoted to general matters related to mathematics as well as to some particular
methods such as the calculation of the areas of plane figures and the problems
on weighted distribution. However, I was unable to locate in the Cuu Chuong Lap

39 For biographies of Luong The Vinh see Volkov [17].
40 See [4, p. 68, n. 1], for a biography of Nguyen Hoan.
41 The call numbers are VHv.1152 and A.2931. It is unknown when manuscript A.2931 was pro-
duced (it certainly happened prior to 1934), while manuscript VHv.1152 is a copy of the manuscript
A.2931 made in 1944.
42 The book with this title as authored by Luong The Vinh is mentioned in the Nam Su Tap Bien
[南史輯編] (1896), while an inscription in his temple located in his native village mentions a book
titled Cuu Chuong Toan Hoc [九章算學], Volkov [16].
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Thanh Toan Phap the three excerpts quoted by Mikami from the Appendix of the
book he explored. One can therefore conclude that the Appendices attached to the
Mikami version and to the manuscript A.1240 were different.

7 The counting rods in Vietnam: Mikami’s evidence

Mikami reports that the Chi Minh Toan Phap contains pictures of configurations
of counting rods representing numbers in the multiplication table 9× 9 (p. 4). It
remains unknown whether the counting rods represented all the numbers in the table
or only the products, and whether they represented all products, from 9×9 to 1×1,
or only some of them. Mikami provides the configurations of counting rods used in
China and stresses that the way of representing numbers in the Vietnamese treatise
differed from the Chinese method (pp. 4–5); the Vietnamese configurations of rods
representing the numbers from 1 to 9 looked as follows (Fig. 2):

Fig. 2. The counting rods numerals as found in the Chi Minh Toan Phap

It is known that the mathematicians (and, in particular, astronomers) of Tonkin
(Northern Vietnam) still used counting rods in the mid-17th century [19]. Moreover,
the solution of the model examination problem found in the Chi Minh Lap Thanh
Toan Phap (Problem 38 of Chapter 4) contains a reference to the instrument toan
[筭 suan in Chinese] which well may have been the counting rods.43 However, the
received manuscript copies A.1240 and VHv.1185 of the Chi Minh Lap Thanh Toan
Phap do not contain any pictures of configurations of counting rods. My cursory
inspection of the available Vietnamese mathematical texts revealed only one mathe-
matical treatise containing the images of counting rods, the Cuu Chuong Lap Thanh
Tinh Phap [九章立成併法] Ready-made Methods of Addition of Nine Categories.

The catalogue [14] lists this book under the title Cuu Chuong Lap Thanh Toan
Phap, even though the actual titles of the two listed block-printed editions read
Cuu Chuong Lap Thanh Tinh Phap, that is, Ready-made Methods of Addition of
Nine Categories.44 One more copy of it is preserved in the Bibliothèque Nationale
(Paris, France). This relatively short (the block-printed book with the call number
AB.53 contains only 22 double pages) treatise featuring problems and algorithms in
classical Chinese with long explanations in Nom is authored by the aforementioned

43 As states the commentary on the Cuu Chuong Lap Thanh Toan Phap appended to the manuscript
A.1240 and probably also written by Phan Huy Khuong, the “round counters” [圓算子] referred to
the abacus [算盤], while the “square counters” [方算子], to the counting rods.
44 The catalogue mentions two editions with the call numbers AB.53, AB.173; for the descriptions
in [14], see items 638 and 3503. There exists one more block-printed copy (dated 1721) of the text
preserved in the Library of the Han-Nom Institute entitled 九章立成 and 九章立成併法; it has
the call number VHb.374 and is slightly different from the editions AB.53 and AB.173; it is not
mentioned in [14].
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Pham Huu Chung [范有鍾]. One of the three block-printed editions found in the
Institute of Han-Nom Studies (AB.173) was printed in 1713, while the dates of
printing of the other editions remain unknown. The treatise bearing the same title
Cuu Chuong Lap Thanh Tinh Phap preserved in the National Library of Vietnam
(Hanoi) bearing the call number R.1649, is identical with the block-print AB.53
from the Han-Nom Institute.

The treatise is not subdivided into chapters and consists of short sections devoted
to discussions (often in versified form) of various topics such as multiplication ta-
ble, calculation of areas of plane figures, weighted distribution, and operations with
common fractions. The treatise also contains a number of mathematical problems
presented in the traditional format “question – numerical answer – algorithm”. A
cursory analysis shows that the block-printed book differs considerably from the
Cuu Chuong Lap Thanh Toan Phap appended to the Chi Minh Lap Thanh Toan
Phap, as far as its composition and the contents are concerned.

The counting rods numerals printed in the Cuu Chuong Lap Thanh Tinh Phap
(call number A.53), however, are quite particular. To begin with, the counting rods
numerals are provided only for the products of 9 (that is, for the numbers 81, 72,
63,· · · , 9) and for the table of division by 9 which, textually, does not differ from the
multiplication table (pp. 3a–4a and 4a–5a, respectively).45 Some of the configura-
tions are easily recognizable, while others appear rather unconventional:

Table 2. Configurations of counting rods used to represent the numbers
n×9,n = 9,8, · · · ,1 in the edition AB.53 of the Cuu Chuong Lap Thanh Tinh Phap

45 The block print AB.173 provides the counting rods configurations for other parts of the multi-
plication table.
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As the reader can see, some configurations are identical with their traditional
Chinese counterparts (such as the one representing the number 81), while some oth-
ers look rather different. They remain difficult to interpret even if one adopts the
modified method of representation of digits described by Mikami. It is not impos-
sible that the carvers distorted considerably the original configurations and even
placed them in wrong positions,46 yet the available data does not allow to a sensible
reconstruction of the “counting rods numerals” found in this Vietnamese treatise.47

The information provided by Mikami can be corroborated, yet only partly, by
a commentary on the Cuu Chuong Lap Thanh Toan Phap bound together with the
manuscript A.1240: a commentator (most probably, Pham Huu Chung himself) de-
scribes the representation of numbers with both instruments, the counting rods and
the abacus. In particular, he states that the numbers 6 and 9 are to be represented
with the counting rods as shown in Table 3. The representation of 6 differs from the
Chinese but is identical with that described by Mikami, while the representation of 9
differs from both the traditional Chinese one and from the one provided by Mikami
(p. 4).

Table 3. Representations of numbers 6 and 9.

The discrepancies between the Vietnamese configurations of counting rods de-
scribed by Mikami and those found in the extant materials, on the one hand, and
the differences between the representations of numbers with counting rods in China
and in Vietnam, on the other, deserve a special attention and will be discussed in a
further publication.

46 The configurations for 72 and 36 are symmetrical and, therefore, at least one of them is placed
in a wrong position since the symmetrical configurations must represent the numbers ab and ba
composed of the same digits.
47 The configurations from the Vietnamese treatise resemble the pictures used to represent the
outcomes of mantic procedures in traditional China, see Kalinowski [7, pp. 43–44, 59].
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8 Discussion and Conclusions

The nowadays lost Vietnamese mathematical treatise briefly presented by Yoshio
Mikami in 1934 and the extant manuscripts A.1240 and VHv.1185 were apparently
related to each other, even though the exact nature of this relationship remains to
be investigated. However, on the basis of the known elements one can advance a
number of hypotheses concerning the prototype of the treatise and its later versions,
and pose several questions related to Mikami’s findings and methodology.

1. It appears plausible to ask whether the hypothetical original version of the
treatise titled Chi Minh Toan Phap (which I shall refer to as “prototype” below)
contained the diagrams representing configurations of counting rods in the multi-
plication table mentioned by Mikami. Technically, there are two possibilities: (a)
the prototype did not contain these images, and they were added later (in this case
Mikami’s copy featured these later additions, unlike the two manuscripts stored in
Han-Nom Institute); (b) the prototype originally contained the configurations pre-
served in Mikami’s copy but later editors (or copyists) removed them from the trea-
tise, and this is the reason why they were no longer found in A.1240 and VHv.1185.

The second option looks to me more probable for the following reasons:
(1) The above-mentioned use of the counting rods reported in the mid-17th cen-

tury and the (distorted?) images of the counting rods found in the extant printed
copies of the early 18th century mathematical text Cuu Chuong Lap Thanh Tinh
Phap suggest that the counting rods were used continuously until the early 18th
century or even later.

(2) The text of the model examination paper in Chapter 4 of the Chi Minh Lap
Thanh Toan Phap mentions a counting instrument toan [筭] which most likely was
meant by the author to be the counting rods and not the abacus, given that the algo-
rithms described in all the four chapters of the treatise do not mention the operations
with latter, at least explicitly. This piece of evidence thus suggests that the counting
rods may have been used even as late as the early 19th century.

(3) The manuscripts A.1240 and VHv.1185 do not contain images of the count-
ing rods yet do contain a picture of the abacus apparently copied from the [算法
統宗 Suan Fa Tong Zong] (or its Chinese or Vietnamese derivatives). However,
this picture of the abacus is found on a page placed in the very beginning of
the manuscripts between the title page and the table of contents. The manuscripts
A.1240 and VHv.1185 do not contain other references to the abacus or pictures of
it. Mikami reports that no mentions of the abacus were found in his copy. It is there-
fore possible that the picture of the abacus was added to the original text at some
point; if it is true, it still remains unknown whether the pictures of the counting rods
originally found in the multiplication table were removed at the same time. At any
rate, this assumption implies that the copy of Mikami was of an earlier date than the
two manuscript copies stored in Han-Nom Institute.

2. The preface of the treatise found in the manuscript copies is dated of the year
1820, while the version studied by Mikami did not contain a preface; this fact could
be explained in two ways:
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(1) Mikami obtained a damaged copy of the treatise without several front pages
but otherwise textually almost completely identical (except for the pictures of the
counting rods and abacus) with the A.1240 and VHv.1185, or

(2) the copy of Mikami was complete and originally did not contain a preface.
The first option seems to be less probable since the two extant copies contain the
name of the presumed compiler in the beginning of the chapters 3 and 4, while
Mikami’s copy did not contain any mention of the author. The second option, how-
ever, still does not rule out the possibility that the book was indeed compiled by
Phan Huy Khuong and completed in 1820.

3. If the mathematical problems found in Mikami’s version were identical with
those of the manuscripts A.1240 and VHv.1185, the mathematical book he inves-
tigated could not be compiled earlier than the late 16th century; this conclusion
follows from the fact that the first problem on the Rule of Double False Position
discussed above is identical with a problem from the Summarized Fundamentals of
Computational Methods [算法統宗 Suan Fa Tong Zong] printed in 1592.

4. The observations listed above suggest various scenarios of the production and
textual evolution of the treatise in which Phan Huy Khuong would have played dif-
ferent roles, from the author of the entire treatise to the editor and/or the author of
detailed computational procedures he added to an anonymous treatise; yet at any
rate the time when the treatise was compiled cannot be anterior to the late 16th cen-
tury for the reasons mentioned above. The question which naturally emerges under
these circumstances is: how the latter fact can be reconciled with the observations of
Mikami related to the archaic structure of the multiplication table?48 Theoretically,
if the multiplication table was copied from an early Chinese or Vietnamese treatise,
while the rest of the treatises was partly written anew and partly borrowed from the
Summarized Fundamentals of Computational Methods [算法統宗 Suan Fa Tong
Zong], it may explain the discrepancy, yet this reconstruction remains disturbingly
conjectural.

5. The above-mentioned problem related to the multiplication table challenges
the very methodology of the search of datable elements in the mathematical treatises
under investigation suggested by Mikami. If various elements of a treatise can be
dated of different time periods, what could be the sensible hypotheses concerning
the time of its compilation? More broadly, what precisely the “time of compilation”
would mean in the context of production of mathematical textbooks in which a
number of elements might have been intentionally preserved in their archaic forms?

48 The idea of Mikami (later used by Li Yan) related to the structure of the multiplication table was
applied to the investigation of another Vietnamese mathematical treatise in [15, pp. 383–384].
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Glossary of Vietnamese terms

This Glossary contains the Vietnamese terms used in the article. The list is organized
alphabetically, it provides

(1) the term as found in the article (without diacritics),
(2) the same term written in Hán-Nôm [漢喃] script (Vietnamese written lan-

guage), and
(3) the term written in the Quoc Ngu transliteration system used in Vietnam

nowadays.

B

Bao Thai 保泰 Ba?. o Thái

C

can 斤 cân
Canh-thin 庚辰 Canh-thı̀n
Cao Mien The Thu 高綿世次 Cao Miên Th ´̂e Thu.’
Chi minh lap thanh toan phap 指明立成筭法 Chı? minh lâ. p thành toán pháp
Chi minh toan phap 指明算法 Chı? minh toán pháp
Cuu chuong lap thanh tinh phap 九章立成併法 Cu’?. u chu’o’ng lâ. p thành tı́nh pháp
Cuu chuong lap thanh toan phap 九章立成算法 Cu’?. u chu’o’ng lâ. p thành toán pháp
Cuu chuong toan hoc 九章算學 Cu’?. u chu’o’ng toán ho. c
Cuu chuong toan phap 九章算法 Cu’?. u chu’o’ng toán pháp

D

Dai thanh toan phap 大成算法 D- a. i thành toán pháp
Dang khoa luc 登科錄 D- ăng khoa lu. c
Dong Ngac 東鄂 D- ông Nga.c

H

Hoa-Phu 和甫 Hoà-Phu?.

L

Le 黎 Lê
Luong The Vinh 梁世榮 Lu’o’ng Th´̂e Vinh
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N

Nam su tap bien 南史輯編 Nam su?.’ ttâ. p biên
Nguyen Hoan 阮 Nguy˜̂en Hoa?. n
Nguyen Thi Duong 阮氏楊 Nguy˜̂en Thi. Du’o’ng
Noi cac 內閣 Nô. i các
Noi cac thu muc 內閣書目 Nô. i các thu’ mu. c
Nom 喃 Nôm

P

Pham Huu Chung 范有鍾 Pha.m Hũ’u Chung
phan 分 phân
Phan Huy Khuong 潘輝框 Phan Huy Khuông
Phan Huy On 潘輝溫 Phan Huy Ôn

Q

Quoc Ngu 國語 Qu´̂oc Ngũ’
Quoc Oai 國威 Qu´̂oc Oai

S

Son Tay 山西 So’n Tây

T

Ta Huu Thuong 謝有常 Ta. Hũ’u Thu’ò’ng
thon 寸 thõn
Thong tong toan phap 統宗算法 Th ´̂ong tông toán pháp
Toan 筭/算 Toán
Toan phap chi minh 筭法指明 Toán pháp chı? minh
Toan phap dai thanh 算法大成 Toán pháp d̄a. i thành
Trong-Duong 仲洋 Tro.ng-Du’o’ng
Tu Liem 慈廉 Tù’ Liêm

V

van 文 văn

X

xich 尺 xı́ch



An Early Japanese Work on Chinese Mathematics in Vietnam 171

Acknowledgements This work was partly supported by the research grant allocated to the Project
近代東西文明的遭遇與衝撞 (Modern Civilizations of West and East: Encounter and Mutual Im-
pact) in the framework of the Project of Promoting Academic Excellence & Developing World
Class Research Centers of the National Tsing Hua University, Hsinchu, Taiwan.

References

1. Karine Chemla et Guo Shuchun [郭書春] : Les Neuf chapitres. Le classique mathématique de
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The Jinkōki of Yoshida Mitsuyoshi

Ken’ichi Sato

Abstract Yoshida Mitsuyoshi (1598–1672) published the Jinkōki first in 1627. This
was a problem book of elementary mathematics for everyday use but it also con-
tained many interesting problems which attracted readers. This book became so
popular that there have been more than 300 versions published during the Edo era
(1603–1868) in Japan. In these notes, we shall survey the first edition of the Jinkōki,
and the problems which were added in later editions.

1 Introduction

Japanese mathematics has been developed on the basis of the mathematics that came
over from China and Korea, first in the 6th century. In the Asuka Era (593–710) and
the Nara Era (710–794), Japan gradually established systems as a nation. In order
to bring up government officials they started the University [大学寮 daigakuryō]. As
for the Mathematics education Yōrō Legal Codes [養老律令 Yōrō Ritsuryō] (718)
regulates that the University have 2 doctors in mathematics who taught mathemat-
ical arts [算術 sanjutsu] to 30 students. The textbooks used in this school were not
written in Japan, but instead, these were from China and Korea. The 30 students
were divided into two groups of 15 members and they were educated separately.
Each group used different textbooks.

One group learned mainly the actual practical use of mathematics, while the
other group specialized in theoretical mathematics. When the students had com-
pleted their lessons, they had to take an examination; the contents of the examina-
tion depended on groups. In the first group, the knowledge of Nine Chapters on
Arithmetic Arts [九章算術 Kyūshō Sanjutsu], a mathematics textbook from China,
was regarded as the most important. The examinations of the other group were
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mainly based on the Technique of Linkage [綴術 tetsu jutsu] and Six Chapters [六
章 rokushō]. The contents of the Technique of Linkage are not known.

The abacus was brought to Japan in the Muromachi Era (1333–1568). The
tally trade [勘合貿易 kangō bōeki] with the Ming dynasty China started from the
shōgunate of the Ashikaga Yoshimitsu [足利義満] regime and the abacuses used
by Chinese were brought into Japan. The exact date of transfer is unknown, but it
is believed to be sometime around the middle of the Muromachi Era. In the course
of time, the Japanese started to make abacuses of their own; and it started to get
widely used by merchants and samurais. The oldest abacus remaining in Japan is
the one that is believed to have been used by Maeda Toshiie [前田利家] at Nagoya
castle in Kyūshu at the time when he was dispatched for the action in Korea. It is a
known fact that in the Age of Civil Wars (1467–1568) the samurais used the abacus.
There were also a large number of samurais who were familiar with mathematics.
It is written in many samurai family’s house laws [家訓 kakun] that mathematics
is important. In the Muromachi Era, the government was unstable and it became
a period where the person’s abilities were more important than their family lines,
so that everyone was required to work using all his potentials at all times. Because
there were many people like these, they were able to construct castles and other civil
construction works.

After the battle of Sekigahara in 1600, there were no more people who battled
with swords and guns and the world became a peaceful place. The number of samu-
rais, that is, soldiers was widely reduced and those people lost their jobs. Still, there
were people who tried to work for their clans, while others changed their jobs want-
ing to make a better use of their talents.

Around this time, abacus was becoming popular in the Kansai area like Kyoto;
but most people did not know well how to use it. Naturally, there were people who
opened schools that taught the use of abacuses. The number of students increased
and a book called the Notes on Arithmetic [算用記 Sanyōki] was written to be used
as a textbook. There was a teacher named Mōri Shigeyoshi [毛利重能] in one of
these abacus schools. Mōri used to be a samurai who served Ikeda Terumasa. After
the battle of Sekigahara, he resigned his position as a samurai. Then, he moved to
the area near Kyōgoku in Kyoto and opened an abacus school. Mōri also used the
Notes on Arithmetic which was popular at that moment in his school. The author of
this book was unknown but it was published. The book was well organized and the
edition was one that was published after many revisions of the original manuscripts.
Mōri’s school became popular and it had many students. His name was not only
known in Kyoto, but also in nearby villages and towns, all the way to the area
currently known as Hyōgo Prefecture. He became so popular that there was even
rumors saying that he had learned the mathematics of Ming dynasty China. Even
after his death, he is described as the person who created the Japanese mathematics
in numerous mathematics books.

Mōri had been thinking about remaking the Notes on Arithmetic. He finally fin-
ished revising the book and published it in the year 1622. An introduction was added
to the book, and the publication year was written on it. Mōri’s book that still remains
today, has a book cover but the title of the book is missing. In the book, after the in-
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troduction, there is an index. The words Index for Division [割算目録之次第Warisan
Mokuroku no Shidai] is written on the index. That is the reason why the book was
named Notes on Division [割算書 Warisansho]. Since then, it has been called the
Notes on Division up to the present date.

In the same year 1622 as the Notes on Division was published, Momokawa Jihē
[百川治兵衛] from Sado wrote a book called the Notes of Various Calculations
[諸勘分物 Shokanbumono]. This was also a mathematics book and its quality was
equal to that of Mōri, but the words used in it were unique.

A little before entering the Edo Era (1603–1868), Imamura Tomoaki [今村知商]
was born in Kawachi, near Osaka. There was no one who could teach him around
the area of Kawachi; but he heard that a teacher familiar even with the mathematics
of the Ming dynasty named Mōri Shigeyoshi had a school in Kyōgoku, Kyoto. He
decided to become his disciple and traveled to Kyoto right away. Imamura learned
everything Mōri knew in a short period of time. Afterwards, he kept studying on his
own and opened a school in Edo. Right after this, his ability was recognized and he
was admitted into the Iwaki clan where he achieved great success.

Quite obviously Mōri’s fame was also well known in his home city of Kyoto.
Later, Yoshida Mitsuyoshi [吉田光由], a boy about 10 years old, entered Mōri’s
school. Yoshida Mitsuyoshi was born as the second son of Yoshida Shūan [吉田周
庵] in Saga, Kyoto in the year 1598, the same year Toyotomi Hideyoshi [豊臣秀吉]
died. He knew that Mōri’s mathematics school was a very prestigious mathemat-
ics school located in Nishi-Kyōgoku, Kyoto; so he entered the school without any
doubt. The Yoshida is a famous family in Kyoto also known as the Suminokura [角
倉]. The Suminokura was a family dedicated to the medical business and their real
family name was Yoshida. Since Mitsuyoshi was the second son, he did not have to
take over the family business, so he was able to devote himself to the mathematics
he loved. Since he studied eagerly at Mōri’s school, he was able to learn everything
Mōri knew in a short period of time. Mōri must have been an excellent mathematics
teacher with an exceptional ability to teach, since in both Imamura’s and Yoshida’s
cases, he was able to teach them all he knew in a short period of time.

After Yoshida left Mōri’s school, he went to the house of his main family, Sum-
inokura Ryōi [角倉了以]. Ryōi was known as a lord of rivers [河川大名 kasen
daimyōu] and he could conduct difficult river works, at the same time had a great
knowledge of mathematics. In addition, his son, Soan [素庵], was involved in the
foreign trades with Annam [安南] (the present North and Middle Vietnam), who
was also known as an intellectual, a calligrapher, and a master of tea ceremonies.
He had also started a publisher known for its luxurious printed books Saga editions
[嵯峨本 sagabon] in collaboration with Hon-ami Kō’etsu [本阿弥光悦]. Yoshida
learned from this Suminokura father and son the mathematics from the Systematic
Treatise on Arithmetic [算法統宗 Sanpō Tōsō] (1593), a problem book by Cheng
Dawei [程大位 Tē Taii] brought from China. By learning the mathematics of the
Systematic Treatise on Arithmetic, Yoshida gained great knowledge. It is said that
even after Yoshida left Mōri’s school, they met each other in various occasions. In
these occasions, Yoshida would teach mathematics to Mōri instead, and the master
and disciple relation was reversed.
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Yoshida was writing a mathematics book that would fit to the Japanese society
of that era based on the information in the Systematic Treatise on Arithmetic. In
the Kan’ē period (1624–1644), Yoshida finally finished his book and went to the fa-
mous temple of Tenryūji in Saga to visit Reverend Priest Genkō [玄光] to ask him to
name the book and write the introduction for it. Genkō named the book the Jinkōki
[塵劫記]. The first edition of the Jinkōki was published in 1627. After its publica-
tion, there were people who would publish it without Yoshida’s permission. As a
countermeasure, Yoshida changed the book’s contents and published new editions.
The editions of the Jinkōki published by Yoshida were only the ones published in
the years 1627, 1629, 1631, 1634, and 1641.

There are many research papers and monographs on the Jinkōki in Japanese but
few in European languages. The English translation published by the Wasan Institute
[2] is one of the rare examples.

2 Contents of the Jinkōki

The first edition of the book published in 1627 consisted of 26 chapters as explained
below.

Chapter 1. The Naming of Large Numbers
First, Yoshida Mitsuyoshi listed the names of the basic numbers. This was be-

cause at the beginning of the Edo Era, the decimal notation system [十進名数法
jusshin mēsūhō] was utilized but the names of large numbers were changing. In the
first edition of Jinkōki the units of large numbers changed at each time they were
multiplied by ten:

One [一 ichi], two [二 ni], three [三 san], four [四 shi], five [五 go], six [六 roku],
seven [七 shichi], eight [八 hachi], nine [九 ku], ten [十 jū],

100 [百 hyaku], 1000 = 103 [千 sen], 10000 = 104 [万 man], 105 [億 oku], 106

[兆 choō], which is called the method of small multiplication [小乗法 shōjōhō].

In the later editions, however, he switched to the method of large multiplication
[大乗法 daijōhō]. in which

104 [万 man], 105 [十万 jūman], 106 [百万 hyakuman], 107 [千万 senman],
108 [億 oku], 109 [十億 jūoku], 1010 [百億 hyakuoku], 1011 [千億 senoku],
1012 [兆 chō], 1013 [十兆 jutchō], 1014 [百兆 hyakuchō], 1015 [千兆 senchō],
1016 [京 kei], . . .

Soon the method of large multiplication became the standard in Japan which lasts
until today, including his wrong choice of the character利予 for柹 meaning 1024.

Chapter 2. The Naming of Numbers Smaller than 1
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The naming system for these numbers are the same as the system used today and
the name changes every one tenth of a number.

Chapter 3. Units of Capacity
The most representative example of the name of units of capacity is the units

used for counting the capacity of rice.
1 koku [石] = 10 to [斗]
1 to = 10 shō [升]
1 shō = 10 gō [合]. 70000 grains of rice
1 gō = 10 shaku [勺]. 7000 grains of rice
1 shaku = 10 sai [抄]. 700 grains of rice
1 sai = 10 satsu [撮]. 70 grains of rice
1 satsu = 10 kē [圭]. 7 grains of rice
1 kē = 10 zoku [粟].

Chapter 4. Units of Area
Ho [歩] is the standard unit of an area, also known as tsubo [坪]. It is the area of

1 ken [間] square (2 jō [畳]). 30 ho is equal to 1 se [畝], and 300 ho is equal to 1 tan
[反].

Chapter 5. Multiplication Table

The multiplication table is lined up starting from the row of 1 just like it is taught
at current elementary schools. In the ancient times, the multiplication table started
from the row of 9 both in China and in Japan, so it was hard to memorize it. In the
Jinkōki, however, the numbers were lined up in an easier to memorize way.
In ichi ga ichi (1×1=1), in ni ga ni (1×2=2), in san ga san (1×3=3),
in shi ga shi (1×4=4), in go ga go (1×5=5), in roku ga roku (1×6=6)
in nana ga nana (1×7=7), in hachi ga hachi (1×8=8), in ku ga ku (1×9=9)
ni nin ga shi (2×2=4), ni san ga roku (2×3=6), ni shi ga hachi (2×4=8),
ni go jū (2×5=10), ni roku jūni (2×6=12), ni shichi jūshi (2×7=14),
ni hachi jūroku (2×8=16), ni ku jūhachi (2×9=18),
sa zan ga ku (3×3=9), san shi jūni (3×4=12), san go jūgo (3×5=15),
sabu roku jūhachi (3×6=18), san shichi nijūichi (3×7=21),
san pa nijushi (3×8=24), san ku nijūshichi (3×9=27),
shi shi jūroku (4×4=16), shi go nijū (4×5=20), shi roku nijūsi (4×6=24),
shi shichi nijūhachi (4×7=28), si ha sanjūni (4×8=32), si ku sajūroku (4×9=36),
go go nijūgo (5×5=25), go roku sanjū(5×6=30), go shichi sanjūgo (5×7=35),
go ha yonjū (5×8=40), gokku shijūgo (5×9=45),
roku roku sajūroku (6×6=36), roku shichi shijūni (6×7=42),
roku ha shijūhachi (6×8=48), roku ku gojūshi (6×9=54),
shichi shichi shijūku (7×7=49), shichi ha gojūroku (7×8=56),
shichi ku rokujūsan (7×9=63),
hachi ha rokujūshi (8×8=64), hachi ku shichijūni (8×9=72),
ku ku hachijūichi (9×9=81).
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Chapter 6. Names of the Division Table (1)

The division system written on the Jinkōki was called eight calculations [八算
hassan]. This division table omits the divisions by 1 and starts from the divisions by
2. When 10 is divided by 2, it is called “ni ichi ten saku no go.” The numbers are
lined up in the order of divisor, dividend, quotient, and remainder; however, it does
not simply line up the numbers, but it places a letter between the numbers to make it
easier to memorize. In this way, this chapter shows examples of how to divide even
up to numbers that can be divided by 9.

Chapter 7. Names of the Division Table (2)

This division table is called ken-ichizan [見一算]. The division table when di-
viding with one digit numbers is called eight calculations, while the division table
when dividing with two-digit numbers is called ken-ichizan.

Chapter 8. Division and Multiplication
It explains how to calculate by multiplication instead of division.

Multiplying by 0.2 is equivalent to dividing by 5.
Multiplying by 0.04 is equivalent to dividing by 25.
Multiplying by 0.5 is equivalent to dividing by 2.
Multiplying by 0.008 is equivalent to dividing by 125.

Chapter 9. Problem on Rice Trading
(Unit price)× (Amount)＝ (Price)
Rice trade was used as an example to represent a simple problem that uses the

formula shown above. From this Chapter on, the format of how the problems on the
book are written becomes apparent. First, the problem is written and then the answer
is written on the next line, after indenting 2 characters. The calculation procedure is
written at the beginning of the next line as the process. This format became the basic
format for mathematical problems of the Edo Era. The numbers in the problems
comes with units, so the units written on Chapters 1 through 4 becomes necessary.

Here is an example problem.
The price of 1 koku of rice is 26 monme [匁] 5 bu [分]. How much would be the
price of 123 koku of rice?

Answer: 3 kan [貫] 259 monme 5 bu.

Chapter 10. Calculation for Exchanging Gold and Silver
Three types of currencies, gold, silver and zeni [銭] (copper coins) were used in

the Edo Era. Silver was a currency by weight so its value depended on its purity and
weight. The types of gold were 1 Ōban [大判] = 10 ryō [両], 1 Koban [小判] =
1 ryō, 1 bu = one fourth of a ryō, and 1 shu [朱] = one fourth of a bu. In Japan’s
Edo Era there was a manufacturing technique to make pure silver [灰吹銀 haifuki
gin]. The silvers used as currency were the chō gin [丁銀] and mameita gin [豆板
銀] which had silver contents of 80%. But the zeni was the most commonly used for
shopping in everyday life, so exchanging currencies was constantly necessary.
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Example:
A man has an ingot of silver weighting 976 monme. He wants to change this with
an ingot of refined pure silver. When refining silver, 20% is lost during the process.

How much silver can he get after the refinement?

Chapter 11. Buying and Selling the zeni
It was common to exchange gold coins and silver into zeni, but it was called

“buying zeni with silver” and it was not considered as an exchange.

Chapter 12. Calculation of Interest
This chapter explains how to calculate the interest of borrowing silver or rice.

The interest rates at that time period were between 20 to 26% and very different
from the present rate.

Chapter 13. Buying and Selling Silk
In the Japanese society of the past, the measuring scale differed by the product it

was measuring. The basic measuring scale was called the carpenter’s square [曲尺
kanejaku] because it was mainly used by carpenters. The measuring scale used to
measure textile fabrics was called tailor’s scale [呉服尺 gofuku shaku]. The relation
between these two scales is : 1 shaku [尺] in the tailor’s scale = 1 shaku 2 sun [寸]
in the carpenter’s square.
For example:
The price of cotton was in silver 30 monme per tan. The length of 1 tan was 2 jō 5
shaku. How much will 1 shaku of cotton cost?

All fabric made in Japan have the same width. The amount of fabric needed for
one man is considered as one tan. The size of fabric imported from China was not
uniform.

Chapter 14. Purchasing Foreign Products
Japan imported silk and thread from foreign countries. Kin [斤] was used as the

unit for measuring weight. The weight of one kin was considered as 250 monme for
Japanese products, but it was considered as 160 monme for foreign products. For this
reason, it was necessary to make problems for these kinds of calculations. When the
Jinkōki was first published in 1627, foreign ships were coming in and out not only in
Nagasaki but also in Hirado. For this reason, the title of this problem was originally
“Trading with the Black Ships.” However later on, since Hirado was closed, the title
was changed to “Trading in Nagasaki.” Only one problem was written in this chapter
and it was on proportional distribution.
Example:
Three merchants were purchasing imported goods. The first merchant brought 64
kan 800 monme of silver. The second merchant brought 52 kan 300 monme. The
third merchant brought 42 kan 900 monme. So the total amount of silver of the three
merchants was 160 kan. The total products bought between the three of them were
250 kin of ginsengs, 70 kin of agallochs, 280 scrolls, and 8400 kin of thread. If the
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total cost of the products were divided proportionately according to the amount of
silver brought by each merchant, how much would each merchant have to pay?

Chapter 15. Expenses to Transport by Ship
Because Kyoto is in a basin, there are many rivers running through it. Sumi-

nokura Ryōi was also famous as an engineer for civil construction works. He modi-
fied these rivers so that ships could travel through them to transport goods. The Ooi
River flows from the neighboring country of Tamba into Saga, Kyoto. This river was
modified and lumber cut upstream was bound together into “rafts” and sent adrift
downstream to Kyoto. These lumber were collected and traded in Saga. In addi-
tion, rice was also transported by ships through the river. The freight was paid with
the transported rice, so problems using these scenarios could be created such as the
following one.
Example:
When transporting 250 koku of rice on a ship, the charge for transporting every 100
koku is 7 koku. If the charge is paid from the 250 koku of rice transported, how much
would the freight charge be?

Chapter 16. The Size of a Masu (measurement device)

The measure [升 masu] was established by the government as a device to mea-
sure the volume of objects. At the beginning of the Edo Era, the volume of an 1 shō
measure (1.804 liter) was 62.5 cubic sun. However, the Edo shōgunate [江戸幕府]
changed it to 64.827 cubic sun in the year 1627. Because the amount of rice was
commonly measured using this masu, people were very confused. For this reason,
in the Jinkōki, the usual measure is still used by changing its name to old measure.
Example:
There is a cylindrical shaped container. Both its diameter and height are 9 sun 3 bu.
What is the volume of this container?
Calculation method
9.37 × 9.37× 9.37× 0.79÷ 64.827 = 10.025128

Chapter 17. Land Surveying
Land surveying is to measure the area of a land. Practically most agricultural

fields are rectangular. The shapes mentioned in this chapter are a triangle, an equi-
lateral triangle, a rectangle, a trapezoid, a rhombus, a sector, and a circle. 3.16 is
used as the value equivalent to the circumference ratio or pi. In addition, this chap-
ter also mentions complicated shapes made by the combination of these previously
mentioned shapes; however there are no problems with complex calculations.

Chapter 18. Amount of Yield and Tax

The amount of yield of rice was proportional to the area of the rice field. How-
ever, the amount of the sun light and the temperature of the water also influence the
yield, hence the amount of expected yield was ranked into 4 levels from A to D.
The tax also varied depending on the level. Most of the tax rates that come up in
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the problems in the Jinkōki is set as about 65%. The tax on crop yield was called
mononari [物成]. When the mononari was decided, taxes called kuchimai [口米]
and bumai [夫米] were added to this. These were similar to the present regional tax.

Chapter 19. Trading of Gold and Silver Foils
It was common to coat folding screens and the family altars with gold and silver

foils. These objects were coated with small squared foils, so the cost was propor-
tional to the surface area of the object.

Chapter 20. Problem on the Volume of Lumber
The prices of the log-shaped lumber cut from the mountains were decided by

their volume. In actuality, it cannot be used as a log so the actual volume was mea-
sured after its shape was changed.

Chapter 21. River Construction
The problems in this chapter are about the volume of stone baskets called snake

basket [蛇籠 ja kago] and cubic frame [角枠 kaku waku]. These baskets are used in
constructions as container of stones.

Chapter 22. Various Constructions
This chapter deals with problems for calculating the number of workers and

amount of money needed for the construction of objects like tile roofed mud-wall
[築地 tsuiji], fences, and moats, etc.

Chapter 23. Measuring the Height of a Tree

This chapter has a problem about measuring the height of a tree by using square
paper.

Chapter 24. Calculating the Distance

This chapter has an example for measuring the distance to a destination by using
a simple method.

Chapter 25. Obtaining the Square Root
This chapter explains how to obtain the length of a side of a square-shaped land

with an area of 15129 tsubo square by using an abacus.

Chapter 26. Obtaining the Cube Root
This chapter explains how to obtain a cube root by using an abacus.

The contents stated so far are from the first edition published in 1627. The book
was revised many times after this, and there were some changes made on each edi-
tion. The most significant changes are stated below.
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3 Revised Edition of the Jinkōki

2 years after the first edition, Yoshida Mitsuyoshi republished the Jinkōki with some
additional contents. The additional contents are stated below.

One of the additional contents was the calculation of nesting boxes [入れ子算 ireko-
san]. This was a problem about placing different sized measure or pots sequentially
inside each other. The sizes of the objects, etc. were in arithmetic or geometric
progression.

Another additional content was the Joseph’s problem [継子立 mamako date]. This
new content has a big illustration, which is followed by an explanation.
Problem:
A man has 30 children. 15 of them are the children he had with his first wife and the
other 15 are the children he had with his current wife. He decides to choose one child
from all of them to leave all his belongings. His current wife, lines up all 30 children
around a pond in the same way as it is shown in the illustration. This man decides
to count the children clockwise starting from a random child and remove every 10th
child. The one child who remains in the end would receive his belongings. The wife
pointed out one child and started to count. When 14 children were removed, all 14 of
them were the child of the former wife. The only remaining child of the former wife
complained that it was unfair that only the children of the former wife have been
removed and that he wished that this time the counting started from him. The man
accepted this opinion and every 10th child from this child started to be removed.
In the end, the remaining child were former wife’s children. In the illustration, the
former wife’s children are dressed in a white kimono and the current wife’s children
in a black kimono.

Fig. 1 In the illustration, the
former wife’s children are
dressed in a white kimono and
the current wife’s children in
a black kimono.
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This problem also appears in a book written in the Kamakura Era (1185–1333). A
very similar problem also exists in Europe.

Another additional problem was called the calculation of rats [鼠算 nezumi-san]
(geometrical growth). Rats have a high reproductive power and they are known to
give birth several times a year. Since rats eat rice, which is the Japanese principal
food, this problem represents how much damage rats can cause.
Problem:
There is a couple of rats at the beginning of January. This couple gives birth to
12 rats by the end of January. At the beginning of February, these 14 rats make 7
couples, and by the end of the month, each couple gives birth to 12 rats. If these
rats keep giving birth at the same pace, how many rats will there be by the end of
December?

The answer for this problem is 27682574402 rats.

The next problem is, if one rat eats 0.5 gō of rice a day, how much rice would
27682574402 rats eat a day?

- Another content is the calculation of crows [烏算 karasu-san].
Problem:
If there are 999 crows on 999 beaches and if each crow caws 999 times, how many
caws would there be in total?
The source of this problem is an old Chinese mathematics book called the Sunzi
Mathematical Canon [孫子算経 Sonshi Sankē].

-The next problem is about “finding out how many people stole silk.” This problem
was also taken from the Sunzi Mathematical Canon.
Problem:
Silk was stolen from a person’s house. The voices of the thieves splitting the silk
under a bridge near the house can be heard.
If the thieves split the silk into 8 tan each, there would be 7 tan lacking. If they split
it by 7 tan each, there would be 8 tan left. How many thieves are there and how
much tan of silk was stolen?

-Another content is the calculation of sharing oil [油はかり分け算 abura hakari
wake san].
Problem:
A 1 to (10 shō) barrel is filled with 10 shō of oil. By using a 3 shō measure and a 7
shō measure, divide the oil so that there is 5 shō of oil in the 1 to barrel and 5 shō
of oil in the 7 shō measure.
This is possible by following the next procedure.
Use the 3 shō measure to take out 3 shō of oil from the 1 to barrel and pour it in
the 7 shō measure. Take out 3 shō of oil again from the 1 to barrel and fill it in the
7 shō measure. Take out 3 shō of oil from the 1 to barrel again and fill the 7 shō
measure. There is 2 shō of oil remaining in the 3 shō measure. Drain all the oil in
the 7 shō measure back into the 1 to barrel, and pour the 7 shō measure with the
2 shō of oil in the 3 shō measure. Then take out another 3 shō of oil from the 1 to
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barrel and pour it inside the 7 shō measure.
The source of this problem is unknown. Very similar problems exist also in Europe.

The Jinkōki was later revised and republished many times. The last edition
Yoshida Mitsuyoshi published was in 1641. This edition contains an illustration
of what is now called the Pascal’s triangle. This illustration was taken from the Chi-
nese Systematic Treatise of Arithmetic, but since it was not in the former editions
of the Jinkōki. In the end page of book, there are 12 problems without their answers
written on the book.

Challenge problems [遺題 idai]
Yoshida Mitsuyoshi included 12 challenge problems without answers at the end of
the book. These types of challenge problems without answers became very popular
in the Edo era.

4 The Influence of the Jinkōki on Japanese Mathematicians

The first 3 challenge problems are written below.
Challenge Problem 1. Right-angled Triangle
The sum of the length of the east side and the northwest side is 81 ken. The sum
of the length of the east side and the southwest side is 72 ken. How long is the east
side? How long is the northwest side? How long is the southwest side?

Fig. 2 Right-angled Triangle

Challenge Problem 2. Cutting Fragrant Wood
There is a piece of Fragrant Wood imported from China. The length is 3 ken, the
circumference of the bottom part is 5 shaku, and the circumference of the top part
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is 2 shaku 5 sun. Its cost is 10 silver coins. Three people buy this piece jointly. They
want to cut it so that each part would have the same price. Where is the piece cut
from the bottom and from the top?

Fig. 3 Cutting Fragrant Wood

Challenge Problem 3. Different Pairs of Four Objects

{
Pine trees 80hon

Japanese cypresses 50hon The total price is 2 kan 790 monme of silver.{
Pine trees 120hon The pine tree has the same price as above.
Cedars 40hon The total price is 2 kan 322 monme of silver.{
Cedars 90hon The cedar has the same price as above.
Chestnut trees 150hon The total price is 1 kan 932 monme of silver.{
Chestnut trees 120hon The chestnut tree has the same price as above.
Pine tree 7hon The total price is 419 monme of silver.

What is the price of each pine tree, Japanese cypress, cedar, and chestnut tree?

Challenge Problems 4 through 12 are left out from this report. See [1].

Conclusion
After the Jinkōki was published, since it was revised several times and published

on several occasions, it had a great influence on later Japanese mathematics. The
mathematics that is useful in everyday life included in the Jinkōki was praised even
in the Meiji Era (1868–1912). By the time period of Seki Takakazu [関孝和], the
mathematical games were explained mathematically by many mathematicians in-
cluding himself. The theoretical mathematics of the Edo Era developed triggered by
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the Idai in the Jinkōki; and its development lead to the completion of the solution
methods of equations and to the discovery of determinants.
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Résumé of Works on Mathematics of Seki
Takakazu

Osamu Takenouchi

Abstract We shall describe briefly the contents of the Résumé of Works on Mathe-
matics (Katsuyō Sanpō) of Seki Takakazu (ca.1640 - 1708). This monograph is the
posthumous publication of the great mathematician of the Edo period and contains
most of his representative works on mathematics.

Introduction

In his lifetime Seki Takakazu [関孝和] (ca.1640–1708) had only one publication,
the Mathematical Method for Clarifying Subtle Points [発微算法, Hatsubi Sanpō],
but his manuscripts were kept in the hands of his disciples. After his death, they
gathered together to make a publication to celebrate their master’s achievements. It
was completed after 3 years and the Résumé of Works on Mathematics [括要算
法, Katsuyō Sanpō] was published in 1712. (See [1].) Though there are yet many
important results which are not taken in this monograph, the works contained in
it are representative ones. The monograph consists of four books, which we will
describe briefly in this paper. For the details, we refer the reader to the author’s
recent book [2].

Book 1

Book 1 contains the research on the sum of powers of natural numbers, among
others, the formula to calculate the sum of powers of natural numbers

Osamu Takenouchi
Professor Emeritus of Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
e-mail: osamu-ta@mxs.mesh.ne.jp

187.E  Knobloch et al. (eds.), Seki, Founder of Modern Mathematics in Japa
pringer Proceedings in Mathematics & Statistics 39,

pringer Japan 2013 S

n: A Commemoration
o  His Tercentenary, S
DOI 10.1007/978-4-431-54273-5_13, ©
n

mailto:osamu-ta@mxs.mesh.ne.jp


188 Osamu Takenouchi

1p +2p + · · ·+np.

He presented the result in a table:

This table is based on the table of binomial coefficients. This is used as follows.
As an example, we take up the case when p = 6. Look at the column from the
bottom. The numbers are 1, 7, 21, 35, 35, 21, 7. These numbers are to be multiplied
with n7, n6, ,n5, · · · and processed according to the instruction given on the left
part. After all, divide the result by the number 7 written underneath. The final result
is

1
7

(
n7 +

1
2
×7n6 +

1
6
×21n5 +0− 1

30
×35n3 +0+

1
42

×7n
)

.

This just corresponds to the expression which comes from the Bernoulli polynomial:

1
p+1

np+1 +
1
2

np +
p
2

B1np−1 − p(p−1)(p−2)
2 ·3 ·4

B2np−3

+
p(p−1)(p−2)(p−3)(p−4)

2 ·3 ·4 ·5 ·6
B3np−5 −·· · .

Bernoulli was able to use the writing method of binomial coefficients due to Pascal,
while Seki could not. So Seki gave these numbers as explicit numerals.

The numbers which appear on the left part, i.e.,
1
6
,

1
30

,
1
42

,
1
30

,
5
66

, · · · , are the
so-called Bernoulli numbers. Seki Takakazu also mentioned the way to get these
numbers which is quite the same as Bernoulli gave.
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Book 2

Book 2 is devoted to the research of the solution of the indeterminate equation of
natural numbers.

The original problem is what is usually known as “Chinese remainder theorem.”
It appears in the Sunzi Mathematical Canon [孫子算経 Sunzi Suanjing] of the 4th
century. It is a problem to obtain the number of objects. It reads as follows.

There are a number of objects. The number of objects is not known. We want to know how
many they are.

Counting 3 by 3, 2 leave. Counting 5 by 5, 1 leaves. Counting 7 by 7, 5 leave. Then we
know the total number can be calculated as follows.

Remainder by 3× 70 + remainder by 5× 21 + remainder by 7× 15. If the number
thus obtained exceeds 105, then subtract 105 and 105, till it becomes less than 105.
That is the total number.

This is, one sees, a problem to obtain the solution of residual systems:

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ an (mod mn).

He made an extensive study of this problem. He generalized the problem to more
number of moduli and to the cases where the moduli are not relatively prime.

Book 3

Book 3 studies systematically the regular polygons from the triangle up to the poly-
gon with 20 sides.

Fix one of the vertices as A0, and name successively the adjacent vertex as A1,
the second vertex as A2, the third adjacent vertex as A3, and so on.

The length of the side is denoted by a, the length of the radius of the inscribed
circle by r, and the length of the radius of the circumscribed circle are denoted by
R.

Starting with one of the vertices, the line segment connecting it to the adjacent
vertex and its length is denoted by a1 (= a), the one to the second adjacent vertex
by a2, the one to the third adjacent vertex by a3, and so on. Namely, A0A1 = a,
A0A2 = a2, A0A3 = a3, etc.

The distance from the center to the mid-point of the chord joining a vertex with
its second next vertex, e.g. A0A2, is denoted by r2, the distance from the center to
the mid-point of the chord joining a vertex with its third next vertex, e.g. A0A3, is
denoted by r3, and so on.

Moreover, he uses b3 b4, b5, b6, etc. as the lengths of the segments connecting
the center O with the following points:

b3: the intersection point of OA1 and A0A3,

b4: the intersection point of the segment joining O with the mid-point of A0A3 and A0A4,
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b5: the intersection point of OA2 and A0A5,

b6: the intersection point of the segment joining O with the mid point of A0A5 and A0A6.

It seems to us that he prepared several lemmas, though not explicitly given, to
make up general settings.

We show how he made use of these lemmas to establish his result in the case of
the regular polygon with 11 sides. By above formulas, we get the followings:



Résumé of Works on Mathematics of Seki Takakazu 191

R2 −a2 = Rb3 by [Formula 3];

2R2 +Rb3 = 2Rt by [Formula 5];

4r2a2 = R2a2
2 by [Formula 1];

2R4 −R2a2
2 = 2R3r4 by [Formula 2];

2R3r4 −R2 ·Rb3 = R3b5 by [Formula 4].

Therefore, the basic relation R5 = 32rr2r3r4r5, which is obtained by [Formula 1],
implies

R3b5 ·Rb3 ·2Rt ·4r2 = R10 = 32R5rr2r3r4r5.

And we get the following equation.(
2R4 − (4R2 −a2)a2 −R2(R2 −a2)

)
(R2 −a2)

(
2R2 +(R2 −a2)

)
(4R2 −a2) = R10.

Seki’s intention was to establish numerical relations among the length of the side,
radius of the circumcircle, and radius of the inscribed circle.

Book 4

In Book 4 is devoted to the rigorous and accelerated determination of the circle
number π , the formula for the length of the circular arc, and the volume of the
sphere.

The classical method to obtain the length of the circumference of a circle was to
approximate it by the length of the perimeter of the inscribed regular polygon. Seki
calculated the length of the perimeter, beginning from the square, and making the
double of the number of sides up to 131,072. After having made these calculations,
he proceeded as follows.

Let a, b, c be the following values, the length of the diameter being put equal to
1.

a = the perimeter of the regular polygon with 32,768 sides,
b = the perimeter of the regular polygon with 65,636 sides,
c = the perimeter of the regular polygon with 131,072 sides.

He calculated b +
(b−a)(c−b)

(b−a)− (c−b)
and got 3.14159265359. He declared then that

this is the exact number of the ratio of the length of the circumference of a circle
against its diameter. The method used here is the first acceleration method we ever
had.
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The next problem he concerned with was to get the fractional approximation

of π . It was known that the fraction
355
113

was a good approximation of π . But it

was not clear how to obtain this fraction. Starting with
3
1

, he successively made

fractions
7
2
,

10
3

,
13
4

,
16
5

,
19
6

,
22
7

, · · · . At each stage, he examined how close it

was to the value 3.14159265359 obtained in the above. Arriving at the fraction
355
113

,
he recognized that the degree of approximation was extremely good. From this point
after, he always used this fraction when the value of π was needed.

In the last place, he determined the volume of a sphere. He took a sphere of di-
ameter 10 and sliced it to 50, 100, 200 thin disks. Then he added the square of the
diameters of these disks. Let them be a, b, c. To these, he applied the same acceler-

ating process b +
(b−a)(c−b)

(b−a)− (c−b)
as in the above. He got thus 666

2
3

. Multiply to

this the circle number π and divide by 4. As already noted, as the value of π , he used

the fractional approximation
355
113

. So the result he got was 523
203
339

. Divide this by

1000. Then he got
355
678

and he called this value as the volume rate of the sphere.
When one wants to have the volume of a sphere of diameter r, one will make the
product of this rate with r3.
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Seki Takakazu’s Measuring Process of

the Volume of Solids Derived from Spheres

Toshio Sugimoto

Abstract In this paper, I shall explain a crucial point of Seki Takakazu’s argument
which claims that there is a close relationship between the solid of revolution of
an arc-figure (called here a finger ring) and an obliquely cut segment of a cylinder
(called an onglet). I think his argument is the most brilliant; no one has ever attained
his level. But his explanation is too concise; no one has ever found its proper in-
terpretation. Several years ago I succeeded in deciphering his arguments in seeking
the volume of solids of revolution for the first time and published it in a series of
papers in Japanese. Here I shall show some of my interpretations with many figures
for illustration.

1 Volume of a sphere

Problems. Seki Takakazu wrote an important book called Measurements [求積
Kyūseki] [4], in which he considered many problems of measuring the area and
the volume of figures. There are 15 problems of area and 34 problems of volume.
Each problem consists of four parts: a question, an answer with numerical values, a
method for calculations, and the solution by formulas. In Measurements the circular
constant π is assumed to be 355/113. For example, the area of a disc with diameter
1 is written to be 355/452, i.e., π/4 times that of the circumscribing square (Fig.1).

Pyramid. The volume of a pyramid with square base 1× 1 and height 1/2 is
one third of that of a half cube of the same dimensions. Although Seki gave general
explanation, which seems to me complicated, I prefer a solid model (Fig.2), which
shows three pyramids coming out of the half cube.
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Fig. 1

Fig. 2

Half sphere. In place of Seki’s difficult explanations, it is convenient to use
Liu Hui’s [劉徽] solid, or the half matching cover [合蓋 hegai]1 (square cover of
dishes) (Fig.3), which looks like a square from the upper side and a half circle from
the lateral side. We obtain the volume of the half matching cover as 2/3 of the half
cube. By the same reasoning, a half sphere has also 2/3 volume of the cylinder with
the same height, so we multiply the half matching cover with 355/452, i.e., π/4, to
obtain the half sphere. According to Seki’s explanation in [4, p.237], a half sphere
is composed of a main cone [円錐 ensui] and a subsidiary cone [旁錐 bōsui], but
the latter is not discernable in his explanatory figure.

Fig. 3 Fig. 4

1 [牟合方蓋 mohe fangai] employed in Chapter 3 of Nine Chapters of Mathematics [九章算術
Kyūshōsanjutu]. See these proceedings, p. 71.
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In another article Method of seeking the volume of a sphere [求立円積術 Kyū
Ritsuenseki Jutsu] in the Concise Collection of Mathematical Science [括要算法
Katsuyō Sanpō] [3, pp.361–366] Seki claimed that the volume of a sphere is com-
posed of many thin discs. The thinner discs become, the closer to the sphere the total
volume becomes.

After this consideration of regarding as discs, he attained the above synthetic
explanation. There are two standpoints, the analytic one (gathering small parts) and
the synthetic one (modifying into a combination of well-known solids).

Volume of sphere. We conclude that the volume V of a sphere of diameter d
is given by

V = (2/3)(355/452)d3 = (355/678)d3 = (π/6)d3.

For example,

if d = 1, then V = 0.52359882;
if d = 0.8, then V= 0.26808260;
if d = 0.6, then V= 0.11309734.

2 Area of spheric surfaces

There is a close relationship between the surface area S and the volume V of a
sphere, — the V can be obtained from the S, and vice versa. The relations can be
explained in two ways:

(1) The volume V can be regarded as a collection of triangular cones, and V is
obtained from S;

(2) The volume V can be regarded as a collection of thin spheric surfaces S,
which are differences of two close spheres of different sizes, and S is obtained from
V .

See [2, pp. 73–74 of the August 1982 issue] for details.

The area S of the spheric surface with diameter d is given by

S = (355/113)d2 = πd2.

These ideas are well known in a simple figure. The area of a disc can be obtained
from a collection of triangles, which shows that the area is the product of the radius
and a half of the circumstance (Fig.4).
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3 Solids made by revolution

Fig.5 Fig.6

If we revolve a plane figure Q (for example a dolphin) around a straight line
called the center axis, we shall get a dolphin-shaped ring (Fig.5). The volume is the
product of the area of Q and the circumference C of locus of the center of gravity
of Q. Seki called the center of gravity simply the “center,” as he had no concept of
dynamics and regarded it as a purely geometrical notion of a figure. A diameter of
the circumference C is the line segment which binds two centers × on the opposite
sides of the figure Q in Fig.5.

In this paper, we shall use the word “barycenter” for mathematical clarity. In the
Western tradition, this fact is called the Pappos-Guldin formula. It is very easy to
calculate the volume of a torus, because the barycenter coincides with the center of
the circle. But in a general case of different figure, it is not always easy to find the
barycenter.

In the square segment case, I noted already that a square-shaped ring can be found
as the difference of two discs with different sizes d + e and d − e (Fig.6, left-hand
side).

V = (355/452)[(d + e)2 − (d − e)2]e = (355/113)de2.

In this case, the section is the square e×e. The ring of a circular section is obtained
by analogy to Fig.1, as shown in Fig.6, right-hand side. If we investigate the general
case, we are confronted with a calculus of definite integrals, as Western mathemati-
cians have done.

4 Sphere segments and finger rings

We now enter into the main theme of this paper – figures derived from a sphere. A
sphere segment E is a solid in appearance of a flat cap, which is obtained by cutting
a sphere of diameter 1 with a flat plane (Fig.7). After cutting two segments Es from
the sphere (one in the upper side and the other in the lower), we take off a cylinder F
as shown in Fig.7. Then we get a ring G (G′ being the other section), which is a ring
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having an arc shaped segment. Seki called it a “regular arc ring,” but I shall call it a
finger ring based on my intuition. After these operations the sphere is divided into 4
parts: 2E + F + G. The diameter a of the small circle, the height f of the cylinder,
and the diameter d of the sphere satisfy the well-known relation (Fig.8):

a2 + f 2 = d2, (1)

which is Pythagorean theorem, and was called in the Japanese traditional mathe-
matics [和算 Wasan] the law of right triangles [勾股弦の法 kōkogen no hō]. Seki
called f a “sub-diameter,” which played an important role in his theory.

The diameter d is assumed to be 1 in the calculation. The volume F of the cylin-
der is given by

F = (355/452)a2 f = (π/4)a2 f .

The height c of a sphere segment E is given by

c = (1− f )/2,

and the diameter is a. Then the volume E of the sphere segment is given by

E = (355/2712)(3a2 +4c2)c = (π/24)(3a2 +4c2)c.

This is the formula of the sphere segment in Measurements. (See [1, p.238], and
also Sugimoto [6, p.467].)

F
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Fig.7 Fig.8

Finally the volume of the finger ring G is given by

G = V −2E −F = (355/678)13 −2E −F,

where V is the volume of the sphere and is equal to (4π/3)(1/2)3.
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5 Thinking patterns hereditary in Wasan

Fig.9

Ellipse. In the Western tradition, an ellipse means a curve obtained as a section
of a cone, or a conic section. Seki also obtained this figure by the same operation,
but an ellipse meant for him a full figure with its interior included. He was much
concerned with its area and was indifferent to the nature of quadratic curves (Fig.9).
I once remarked that an ellipse looks like waraji (sandals made of rice-stalks in old
days in Japan). It looks like an ellipse with thick lateral lines. In fact, Saki calculated
the area by adding all the length of lateral lines.

(Recently I published a book [6] in which all of my papers on Seki Takakazu and
his mathematics are collected. For details of ellipses for Seki, we refer the reader to
[6, p.550].)

Arc-figures. Similarly, a circle in Wasan is a disc, and an arc is the plane figure
surrounded by the arc and the cord connecting two end points of the arc.

Let us consider a bow, an arrow, a chord and a figure surrounded by the bow and
the chord. We shall call the bow as an arc, the arrow as a sagitta, and the figure as
an arc shaped figure, or simply an arc-figure. As I noted earlier, Seki considered
figures filled with interior and he was very much concerned with the area. Bows and
arrows used to be weapons for warriors. Although Seki worked at the accountant
department of the shōgun government, he was a samurai and should have been
familiar with these figures.

The plane section of the area E with arc b, chord a, sagitta c, and diameter d, in
Fig.8 is calculated as follows :

E = (1/4)(bd −a f ),

where the sub-diameter f can be calculated from a and d by (1).

Arcsine formula. To calculate the area of an arc-figure, we need to express the
arc b by the other variables. Nowadays we calculate b by the arcsine formula, but in
his times Seki calculated it in a fractional expression, which was very inconvenient
for him to use. (See [5].) It is one of the reasons why Seki used only two numerical
examples:
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(Case 1) a = 0.6, c= 0.1, b = 0.6435011; (E in Fig.7&8),
(Case 2) f = 0.8, h= 0.2, g = 0.92729522, (G in Fig.7&8),

with d = 1. See Fig.8.
The area of an arc-figure (in this context, E and G mean plane figures) is calcu-

lated by the formula:

E = (1/4)(bd −a f ) = 0.040875275, (Case 1),
G = (1/4)(gd − f a) = 0.111823805, (Case 2).

Using these results, we can get the volume of the finger ring in Fig.7 as follows :
using a = 0.6 and c = 0.1 in Fig.8, we find that the volume of the sphere segment E
in Fig.7 is given by

E = (355/2712)(3×0.62 +4×0.12)×0.1 = 0.014660767

and the volume of the sphere (d = 1) is a double of the semi-sphere

2× [12 ×0.5× (2/3)× (355/452)] = 2× (355/1356) = 355/678 = 0.52359882.

The volume F of the cylinder is given by

F = 0.62 × (355/452)×0.8 = 0.22619469,

and finally the volume G of the finger ring is given by

G = 355/678−2E −F = 0.26808260.

We notice an interesting fact that this value is equal to the volume of a sphere with
diameter 0.8. See Section 1.

6 Barycenters of arc-figures

In the case of a straight cylinder, we get the height by dividing the volume by the area
of the circle. If we divide the volume of a finger ring by the area of its section (i.e.,
an arc-figure), we get a track of the barycenter of the arc-figure. You may consult the
Pappos-Guldin formula. Dividing 0.26808260 by 0.111823805, you get 2.3973661.
This value means a track of the barycenter of the arc-figure, or circumference of
revolution. If we divide this by 355/113, i.e. π , then we get j = 0.76310527. This
distance means the interval between two centers of the arc-figure Gs. It can be cal-
culated as follows :

i = ( j−a)/2 = (0.76310527−0.6)/2 = 0.081552635.

The value i is the distance of the barycenter of the arc-figure from the chord (Fig.10).
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Although the concept of barycenter or center of balance is relatively natural, it
is difficult to determine the barycenter of a plane figure of various shape and in a
general position.

Fig.10

The second example. We assume the G and G′ of Fig.7 as sphere segments.
Then the upper E and the lower E would be sections of the identical finger ring.
After calculation, we get 0.113097345 as the volume of the new finger ring, and
0.040875275 as the section of the new finger ring. We must notice that the value
0.113097345 is coincident with the volume of a ball of diameter 0.6. See Section 1.
By dividing the former by the latter, we get 2.766889 (as a track of barycenter of
the arc-figure), and further dividing by 355/113, we get 0.88072802 (as the interval
between two barycenters). By a similar calculation (in this case, using 0.8), we get

(0.88072802−0.8)/2 = 0.04036401.

This is nothing but the position of the barycenter in the second example.

A miracle Theorem. Suppose that you take off a cylinder from a sphere and
that the height of the intersection of the cylinder and the sphere is equal to k. (We
have already two examples, k = 0.8 and k = 0.6.) If the diameter of the sphere
changes, the remaining finger ring has holes with changing diameter but the height
of the hole remains the same k. The larger the sphere becomes, the thinner the sec-
tion of the finger ring becomes. The smaller the sphere becomes, the thicker the
section of the finger ring becomes (Fig.11).

Fig.11
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Now you may discover a miracle having noted that the remaining finger rings
have always the same volume! Once you admit this miracle, you can find the volume
as the limiting case; i.e. if the height k coincides with the diameter of the sphere,
then the remainder is nothing but the sphere itself and the volume is (355/678)k3.
You may ascertain this miracle by several calculations, then by demonstration. I
suppose that our Seki should have also noticed this theorem numerically, although
in his manuscript, there is no mention about it. I believe that he must have noticed
this fact.

7 Onglets and the barycenters of arc-figures

Seki called the solid of Fig.12 a “cylinder cut by an oblique plane.” Pascal called this
solid an onglet, which means a hollow into which we can put a nail to look a word
up in a thick dictionary (in French, ongle means nail, onglet nail-putting hollow).
We shall use Pascal’s terminology in this paper. Fig.13 shows a half onglet. How can
we calculate the volume of this solid ? CGBA means a half arc-figure, triangle HAB
is equal to an isosceles right triangle, and also CIHA is similar to CGBA, with the
relation of EI : EG = AH : AB =

√
2 : 1. To calculate the half onglet solid CHAB,

we collect all triangles IEG (isosceles right triangles) from point C to point A. To
calculate it as a definite integral, we have to know (1/2)ΣEG2δ , where δ means the
thickness of a triangular board.

Fig.12 Fig.13

Seki did not write anything about its value. How could he then obtain the volume
of this solid ? I suppose that he obtained it by a thinking similar to Pascal’s. We slice
off an onglet from a chord of arc-figure (with sagitta c on the top of a cylinder with
diameter d) obliquely downward toward a point beneath l from the top. Seki gave
the volume P of this solid by

P = (l/12c)(a3 −6lE),

where E is the area of the arc-figure. When the sagitta c is equal to d/2, then
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P = (1/6)d2l.

Barycenters of arc-figures, again. As I said above, the barycenter of the arc-
figure is a point which situates inner with distance i from the chord a. Seki claimed
that if the area of the arc-figure is E and the volume of the onglet is P, then there is
the relation :

P/E = (l/c)i.

The left-hand side means a kind of “average”, dividing P by E. When we cut the
cylinder obliquely (half right angle) by a plane, then the coefficient (l/c) will be 1
and the right-hand side will become i.

8 A wonderful relation

(1) If we regard the finger ring as a body of revolution, then we can get the diame-
ter between barycenters of each section (arc-figure), and we can obtain the barycen-
ter naturally.

(2) If we calculate the i in the above discussion about onglet, we can smoothly
get the exactly same barycenter.

This is a wonderful relation between far distant things; one is the finger ring and
the other is the onglet. In the Western culture, a dynamics has been developed for
seeking the barycenter of a plane-figure and of a solid, or looking for the center of
rotation of a wheel. But Seki sought the barycenter, which he called the center, by
purely geometrical relations. I admire his keen intuition about geometrical figures.
In the end of this paper, I shall give an imagination about his root of intuition.

Decipherment of a sentence of Seki. We have arrived at the most important
point of this paper. Seki solved a riddle which binds the finger ring with the on-
glet. Japanese mathematicians in the Edo period wrote scientific works mostly in
Chinese, not in formal Chinese, but with somewhat Japanese flavor. I shall trans-
late his sentence是伸弧環,而去中之弧壔,則兩旁適作此形. into English with my
comments. (See [6, p.515–519].)

Fig.14
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Two onglet solids are made from the following processes (Fig.14).

(1) There is a finger ring with arc-section.
(2) If we stretch the finger ring from both sides,
(3) it will be flat.
(4) We reconnect two solids after cutting in several parts.
(6) We get a straight open rainwater pipe.
(7) We remove from this solid the straight open rainwater pipe,

then we have two onglets on both sides (Fig.15).

I input one sentence (5) between (4) and (6) for better understanding.
(5) We divide this solid by 355/113, i.e., π .

Fig.15

By this transformation, from a finger ring we get two onglet solids. As a result,
the finger ring and the onglet both have the same arc-section, and the same barycen-
ter. Seki showed this fact by a splendid magic.

We have obtain the theorem: “the volume of a finger ring is the product of (a) the
area of an arc-figure section and (b) the circumference drawn by a diameter between
two barycenters”.

You may compare this with the straight cylinder case, where the volume is the
product of (a) the area of an arc-figure section and (b) the height of the cylinder.

We obtained this theorem when the finger ring is an actual part of a sphere. But
this theorem is still valid for more general cases where a diameter is longer or shorter
than the original case. The so-called Pappos-Guldin formula is usually stated in this
general form. Of course Seki should also have noticed this general form.

(a) (b) (c)

Fig.16
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Fig.16 shows various cases:
(a) far separated,
(b) two chords coincide,
(c) two circles cut off by the other-side of the center, and two chords coincide.

Kepler [7, pp.192–197] once studied various kinds of wine barrel and gave vari-
ous names to various rotating figures. He named (b) as “lemon” and (c) as “apple”.
If we put together two segments in Fig.14, (4), which are obtained by cutting off the
intervening center open rainwater pipe, then we get a solid “lemon”.

9 An umbrella-shaped solid

We can see one of the exhaustive characters of Seki’s study in the case where two
arc-figures are placed in oblique situation. Fig.17 shows a special case in which the
tops of the two arc-figures coincide with one another. Based on my intuition, I called
it “umbrella-shaped”, [6, p.530]. In Fig.17, there are two arc-shaped segments Es.
You may read each size in the figure.

Fig.17 Fig.18

As you see, rotating this figure around the center axis, we get an umbrella-shaped
solid. The volume U of the umbrella-shaped solid was measured, in the same pro-
cedure as in the finger ring case, by subtraction of a cone C from a sphere section A:

A = (355/2712)(3×0.962 +4×0.362)×0.36 = 0.15471717,

C = (1/3)(355/452)×0.962 ×0.36 = (355/1356)×0.962 ×0.36 = 0.08685876,

U = A−C = 0.06785841.

Seki solved the problem of measuring the volume as shown in Fig.18. We draw
the same figure in the lower side, then we connect four barycenters with dotted
lines each other in rectangle. Then we bind two centers of upper right-hand figure
and lower left-hand figure by an oblique line as shown in the figure. The diameter
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binding two arc-figures obliquely is nothing but that of the preceding case in Fig.7,
which bind two centers of Es.

Even though the arc-figure is placed vertically, horizontally or obliquely, the
barycenter always represents all the weights of figure, no matter what shape of the
figure is. This is a very nature of the barycenter. Whether Seki thought of this nature
seriously or not, I can not say, because he wrote nothing about it. Probably he should
have recognized it by intuition.

In Fig.8 and in Section 6, especially in the second example, we calculated the
diameter between two centers, which was 0.88072802 in the second example. This is
the very distance between two barycenters obliquely in Fig.18. We can see the figure
of a Kōkogen in Fig.18, similar to the right triangle 0.36, 0.48 and 0.6 in Fig.17.
Therefore, we can calculate other two line segments in Fig.18 proportionally:

horizontal line = (0.36/0.6)×0.88072802 = 0.528436812,

vertical line = (0.48/0.6)×0.88072802 = 0.704582416.

In the case of an umbrella-shaped solid U in Fig.17, the distance between two
barycenters is nothing but 0.528436812. As a result of this, and with the area
0.040875275 (in the case 1) of the arc-figure, the volume of this solid was shown to
be

U = 0.040875275× (355/113)×0.528436812 = 0.06785841,

where (355/113)×0.528436812 is the circumference of the circle as a track of the
center of arc-figure. This result coincides with U calculated through another root
A−C, as we did before. This is the case where the arc of two arc-figures is placed
along a same circle. We can generalize this result further for the case where the
distance between centers is either longer or shorter. This is what Seki did in various
examples in Measurements [4].

The marvelous intuition of Seki. Everywhere in Measurements, we can find
Seki’s intuitive grasp of geometrical objects. I suppose that his idea came from con-
crete models made with something available for him like pasta-material. Seki also
named many solids in his book after commodities, which have been used by peo-
ple in the Edo period. I suppose that he recognized mathematical figures in familiar
things in everyday life and that he contemplated in those things the inner structure
composed of basic geometrical figures.
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Seki Takakazu’s Method on the Remainder
Problem

Sumie Tanabe

Abstract It is known that a system of simultaneous congruences of first degree
which will be henceforth called a remainder problem, first appeared in the Sunzi’s
Arithmetical Canon (c.AD400). Later in China, remainder problems were discussed
in many books, and some of these Chinese books were introduced into Japan by the
seventeenth century. The eminent Japanese mathematician Seki Takakazu (c.1642-
1708) investigated remainder problems adopting the term the art of cutting bamboo
[jianguan shu] which is found in the Chinese book, Yang Hui’s Arts on Arithmetic
[Yanghui Suanfa] (1275) by Yang Hui. Seki is supposed to have consulted the Chi-
nese book, but Seki’s method is much more advanced than Yang Hui’s. Seki general-
ized the theory on the remainder problem and showed the procedure for the solution
systematically. The aim of this paper is to analyze Seki’s method on the remain-
der problem in comparison with Chinese books, especially with the Mathematical
Treatise in Nine Chapters [Shushu Jiuzhang] (1247) by Qin Jiushao.

1 The Remainder Problem

Let us consider a system of simultaneous congruences of first degree

aix ≡ ri (mod mi) for i = 1,2, · · · ,n, (1)

which will be called a remainder problem in this paper. It is known that a remainder
problem first appeared in the Sunzi’s Arithmetical Canon [孫子算経 Sunzi Suanjing]
(C. AD 400, Fig.1). The problem in the book is as follows:

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7). (2)
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The answer given in it was only “x = 23”, and was not the general solution “x =
23+105k (k ∈ Z)”.

It is supposed that remainder problems were investigated in ancient China in
connection with the calendrical astronomy and the divination lore. After the Sunzi’s
Arithmetical Canon, remainder problems were discussed in many books such as the
Mathematical Treatise in Nine Chapters [数書九章 Shushu Jiuzhang] (1247) by
Qin Jiushao [秦九韶], the Yang Hui’s Arts on Arithmetic [楊輝算法 Yanghui Suanfa]
(1275, Fig.2) by Yang Hui [楊輝], and the Systematic Treatise on Arithmetic [算
法統宗 Suanfa Tongzong] (1592, Fig.3) by Cheng Dawei [程大位]. The remain-
der problem and its solution are identified by many terms such as the unknown
total [物不知其総数 wu bu zhi qi zong shu] in the Sunzi’s Arithmetical Canon, the
great art to seek the total from remainders [大衍総数術 dayan zongshu shu] in the
Mathematical Treatise in Nine Chapters, the method of calling the roll by General
Hanxin [韓信點兵 hang xin dian bing] in the Systematic Treatise on Arithmetic, the
art of cutting bamboo [翦管術 jianguan shu] in the Yang Hui’s Arts on Arithmetic
and so forth. Nowadays, the solution of the remainder problem is commonly called
“Sunzi’s theorem” or “the Chinese remainder theorem”.

The eminent Japanese mathematician Seki Takakazu [関孝和] (c.1642-1708) in-
vestigated remainder problems adopting Yang Hui’s use of the art of cutting bam-
boo in his posthumous work with the title Compendium of Mathematics [括要算
法 Katsuyō Sanpō] (1712, Fig.4) and others. Seki is supposed to have consulted
the Chinese book, Yang Hui’s Arts on Arithmetic. But Seki’s method is much more
advanced than Yang Hui’s.

2 Traditional Chinese remainder problem and its solution

In almost all Chinese books except for the Mathematical Treatise in Nine Chapters,
remainder problems (1) are given under the condition that positive integers m1, m2,
· · · , mn are pairwise co-prime, and also coefficients ai are equal to one, that is “ai = 1
for all i”.

Let us examine the traditional solution in such a situation.

1. First solve each indeterminate equation for i = 1, · · · , n

M
mi

x−miy = 1 where M = m1 ·m2 · · · · ·mn. (3)

And set the solution
M
mi

x = xi.

2. Then each xi fulfills the conditions

xi ≡ 1 (mod mi), xi ≡ 0 (mod m j) for all i, j where i 	= j. (4)

3. Therefore, we can see that the solution of a remainder problem (1) is a remain-
der class
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x ≡
n

∑
i=1

rixi (mod M).

4. The last stage of the solution of a traditional Chinese remainder problem is to
subtract L.C.M. of mi for i = 1, · · · , n several times as the need arises for the pur-
pose of getting the minimum positive answer. We should mention that in ancient
China and also in Japan before the mid-nineteenth century, mathematicians did
not seek the general solution, but only sought for the minimum positive answer.
This shows us the difference of concept on a system of number between that era
and nowadays.

Now let us see the solution of the problem (2) in the Sunzi’s Arithmetical Canon.
The book says that the answer is obtained by the following calculation:

70×2+21×3+15×2−105×2 = 23.

23 is truly the minimum positive answer of this problem. The next part of the book
explains briefly to obtain the answer in the general case of arbitrary remainder r1,
r2, r3 but under the particular condition with moduli 3,5,7. The calculation indicated
is as follows :

x = 70r1 +21r2 +15r3 −105n.

But there is no mention of procedures to get key numbers 70, 21, 15. How to seek
the key numbers is the core of the solution, and that is to solve equations (3), the
first part of the solution above-mentioned. All the more, we should pay attention that

the necessary and sufficient condition to solve indeterminate equation (3) is that
M
mi

and mi are pairwise co-prime, that is to say moduli mi are pairwise co-prime for
all i. Almost all remainder problems in Chinese books except for the Mathematical
Treatise in Nine Chapters are under the condition that all moduli are pairwise co-
prime.

3 The spread of remainder problems in Japan

In the beginning of the seventh century, at first through Korea, Chinese civilization
of Sui and Tang dynasties arrived in Japan along with the Ten Classics of Mathe-
matics [算経十書 Suanjing shishu], a part of which was Sunzi’s Arithmetical Canon.
Therefore, the remainder problem and its simple solution might be known to some
people of specially educated officers in the Nara period (710-784) in Japan.

In the Edo period (1603-1867), the remainder problem had become well-known
by the publication of Inalterable Treatise [塵劫記 Jinkōki] in 1627 by Yoshida Mit-
suyoshi [吉田光由] (1598-1672). The book was revised several times by Yoshida
Mitsuyoshi himself and furthermore, there were hundreds of pirated editions of the
book. It was a best and long seller over a period of two hundred years. The author
Yoshida Mitsuyoshi consulted the Chinese book Systematic Treatise on Arithmetic,
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and introduced a remainder problem with the same condition on moduli as in the
Sunzi’s Arithmetical Canon and the Systematic Treatise on Arithmetic. He named
the remainder problem the subtraction by one hundred and five [百五減算 hyakugo
genzan], because at the last stage for seeking the minimum positive answer one
should subtract by 105.

After several decades, Seki Takakazu investigated remainder problems in a more
general framework than Yang Hui. Seki’s results can be found in the Compendium
of Mathematics and also in the Complete Book of Mathematics [大成算経 Taisei
Sankei]. After that, Seki’s method to solve remainder problems used in general by
Japanese mathematicians in the Edo period. For example the Clever Man’s Booklet
on Mathematics [勘者御伽雙紙 Kanja Otogi Zōsi] (1743) written by Nakane Gen-
jun [中根彦循] (1701-1761) discussed not only a problem called the subtraction
by one hundred and five but also a problem called the subtraction by three hun-
dred and fifteen [三百十五減 sanbyakujūgo gen] of which moduli are five, seven
and furthermore a problem the subtraction by sixty three [六十三減 rokujūsan gen]
of which moduli are seven and nine. The details of indeterminate equations in the
Clever Man’s Booklet on Mathematics are discussed in [17].

4 The Compendium of Mathematics

The Compendium of Mathematics was compiled by Seki’s disciples and published
for memorial to the anniversary of Seki’s death. It consists of Seki Takakazu’s works
from 1680 to 1683 and is divided into four volumes named as gen [元], kō [亨], ri
[利], and tei [貞]. The second volume kō treats the elementary number theory and is
divided into two parts. The first part deals with basic problems on number theory, for
example the greatest common divisor, the least common multiple and indeterminate
equation like:

Ax−By = 1, where positive integers A,B are given and (A,B) = 1. (5)

Seki called the procedure to solve these indeterminate equations (5) the art to leave
remainder one [剰一術 jōichi jutsu]. Seki’s method on indeterminate equations,
the art to leave remainder one, is mutual division. It is the same as Euclid’s algo-
rithm. Almost all Chinese books do not mention the procedure to solve indetermi-
nate equations (5). Among all the Chinese books, only the Mathematical Treatise in
Nine Chapters states the procedure with the term the great art to seek remainder
one [大衍求一術 dayan quyi shu/daien kyūichi jutsu].

The second part of the volume kō deals systematically with the art of cutting
bamboo, a general procedure to solve remainder problems, by means of the results
in the first part of the volume kō.

The following are 9 problems treated in the second part:
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No. 1.

{
x ≡ 1 (mod 5)
x ≡ 2 (mod 7)

Ans. x = 16

No. 2.

{
x ≡ 2 (mod 36)
x ≡ 14 (mod 48)

Ans. x = 110

No. 3.

⎧⎨
⎩

x ≡ 2 (mod 3)
x ≡ 1 (mod 5)
x ≡ 5 (mod 7)

Ans. x = 26

No. 4.

⎧⎨
⎩

x ≡ 3 (mod 6)
x ≡ 3 (mod 8)
x ≡ 5 (mod 10)

Ans. x = 75

No. 5.

⎧⎪⎪⎨
⎪⎪⎩

x ≡ 3 (mod 5)
x ≡ 2 (mod 7)
x ≡ 2 (mod 9)
x ≡ 7 (mod 11)

Ans. x = 128

No. 6.

⎧⎨
⎩

35x ≡ 35 (mod 42)
44x ≡ 28 (mod 32)
45x ≡ 35 (mod 50)

Ans. x = 13

No. 7.

⎧⎨
⎩

8x ≡ 2 (mod 3)
7x ≡ 3 (mod 4)
6x ≡ 3 (mod 5)

Ans. x = 13

No. 8.

⎧⎨
⎩

34x ≡ 6 (mod 8)
34x ≡ 14 (mod 20)
34x ≡ 23 (mod 27)

Ans. x = 11

No. 9.

{
13x ≡ 3 (mod 7)
13x ≡ 8 (mod 9)

Ans. x = 11
As we can see, the nine distinctive problems are given with simple numbers.

Problems No.1 to No.5 are with condition “ai = 1” and problems No.6 to No.9 are
with condition “ai 	= 1”. Furthermore, problems of odd number are under the condi-
tion that moduli are pairwise co-prime, and problems of even number are under the
condition that moduli are not pairwise co-prime. Because the term, the art of cutting
bamboo, was used in the Yang Hui’s Arts on Arithmetic, Seki certainly consulted the
Chinese book. But Seki’s method to solve remainder problems is more general than
Yang Hui’s. Seki generalized the theory of the Chinese remainder problem to the
cases in which moduli are not pairwise co-prime and coefficients are not necessarily
equal to one, and presented systematically the procedure for the solution.

As an example, let us examine the problem No. 6.

35x ≡ 35 (mod 42), 44x ≡ 28 (mod 32), 45x ≡ 35 (mod 50).

In this problem, a1 = 35, a2 = 44, a3 = 45, that is “ai 	= 1 for i = 1,2,3” and
moduli m1 = 42,m2 = 32,m3 = 50, that is, m1,m2,m3 are not pairwise co-prime.

Let us see Seki’s method for solving it. First, by reducing each equation he got
the following expression:
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5x ≡ 5 (mod 6), 11x ≡ 7 (mod 8), 9x ≡ 7 (mod 10).

But moduli 6, 8 and 10 are still not pairwise co-prime. So, he changed moduli 6,
8 and 10 by new moduli 3, 8 and 5 by paying attention to L.C.M. of 3, 8 and 5 is
equal to those of 6, 8 and 10, where L.C.M. denotes the least common multiple. Seki
called this procedure on reduction respective reduction [逐約 chikuyaku]. Thus he
arrived at the following congruences:

5x ≡ 5 (mod 3), 11x ≡ 7 (mod 8), 9x ≡ 7 (mod 5).

Let us compare the two expressions (6) and (7) under the following conditions:

• m′
i is a divisor of mi for i =1,2,3;

• m1,m2 and m3 are not pairwise co-prime;
• m′

1,m
′
2 and m′

3 are pairwise co-prime;
• L.C.M. of m1,m2 and m3 is equivalent to that of m′

1,m
′
2 and m′

3.

a1x ≡ r1 (mod m1), a2x ≡ r2 (mod m2), a3x ≡ r3 (mod m3). (6)

a1x ≡ r1 (mod m′
1), a2x ≡ r2 (mod m′

2), a3x ≡ r3 (mod m′
3). (7)

Generally speaking, simultaneous congruences expressions (6) and (7) are not al-
ways equivalent. The necessary and sufficient condition for the equivalence between
expressions (6) and (7) is as follows:

a1r2 ≡ a2r1 (mod (m1,m2)),
a2r3 ≡ a3r2 (mod (m2,m3)),
a3r1 ≡ a1r3 (mod (m3,m1)).

(8)

Suppose that the condition (8) is satisfied, then the remainder problem (6) is
solvable and also has a solution uniquely to modulus L.C.M. of m1, m2 and m3.
Proofs of these theories are described in many books on the elementary number
theory, for example, [14], [19]. The details of procedure for solving problem No. 6
and others were stated in [15] and [16].

All remainder problems Seki presented in his works satisfied the condition (8),
but there is no mention of this fact. Why and how did Seki only take up problems
which satisfy the condition (8) in his work? Moreover, did he ever recognize the
condition (8) by calculating so many equations? Those are the questions that should
be considered carefully.

5 The Complete Book of Mathematics

The Complete Book of Mathematics is a treatise which Seki wrote in collabora-
tion with Takebe brothers, Kataakira [建部賢明] and Katahiro [建部賢弘]. It took
twenty-eight years from 1683 to 1711 for them to complete the treatise in twenty
volumes. Because Seki passed away before the completion and Katahiro was very
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busy with his official business at that time, Kataakira, elder brother of Katahiro,
completed it alone applying the finishing touches.

The Complete Book of Mathematics is a manuscript and it hadn’t been published
after all. So it had never been adopted as a textbook of Seki’s school. Seki’s theory
had been taught after his death by using some treatise which Seki wrote and one of
the core was the Compendium of Mathematics published in 1712.

The sixth volume of the Complete Book of Mathematics deals with remainder
problems; the sixth chapter of the sixth volume is named Cutting Bamboo [翦管
Jianguan/Senkan]. Furthermore, the sixth chapter is divided into two parts. The first
part titled Seeking the Total [求総数 kyūsōsū] discusses eight remainder problems
and the second part takes up further technical nine problems.

The following are the eight problems in the first part, Seeking the Total :

No. 1

{
x ≡ 1 (mod 5)
x ≡ 2 (mod 7)

Ans. x = 16

No. 2

⎧⎨
⎩

x ≡ 3 (mod 6)
x ≡ 3 (mod 8)
x ≡ 5 (mod 10)

Ans. x = 75

No. 3

{
x+6 ≡ 3 (mod 3)
x−9 ≡ 6 (mod 7)

Ans. x = 22

No. 4

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
2
≡ 3 (mod 5)

x
3
≡ 4 (mod 7)

x
4
≡ 6 (mod 19)

Ans. x = 96

No. 5

{
35x ≡ 35 (mod 42)
44x ≡ 28 (mod 32)

Ans. x = 13

No. 6

⎧⎨
⎩

24x ≡ 12 (mod 30)
35x ≡ 7 (mod 42)
44x ≡ 28 (mod 32)

Ans. x = 53

No. 7

⎧⎪⎪⎨
⎪⎪⎩

2
3

x ≡ 4 (mod 7)

3
4

x ≡ 4 (mod 8)

Ans. x = 48

No. 8

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x+5
2

≡ 3 (mod 6)

3(x−4) ≡ 4 (mod 7)
3
5
(x+2) ≡ 5 (mod 8)

Ans. x = 73
We can see that problems No.1, No2, No.5 and No.6 are the same kind as those

of the Compendium of Mathematics. Especially as far as problems No.1 and No.2,
even coefficients are exactly the same as those of problems in the Compendium of
Mathematics, while problems like No.3, No.4, No.7 and No.8, which need process
of calculation such as addition, subtraction or division of the total x, were not found
in the Compendium of Mathematics.
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So, the remainder problems in the Complete Book of Mathematics surpassed
those of the Compendium of Mathematics, both in variation and in quantity. But the
most important part of the art of cutting bamboo is just Seeking the total which had
been expounded in detail in the Compendium of Mathematics. We can say that the
Compendium of Mathematics is a book which states Seki’s theory on the remainder
problem narrowing it down to its essential.

6 The Mathematical Treatise in Nine Chapters

The Mathematical Treatise in Nine Chapters by Chinese mathematician Qin Jiushao
was published in 1247. All other Chinese books before and after this book only
dealt with remainder problems of which moduli were pairwise co-prime and did not
mention the details of solution of the indeterminate equation (5). Even under such
circumstances, Qin Jiushao discussed in this book remainder problems in the case
of moduli which were not pairwise co-prime and furthermore, expounded on the
solution of these remainder problems, including details of the procedure for solving
the indeterminate equation (5). In this book, he named the procedure for solving the
indeterminate equation (5) the great art to seek remainder one [大衍求一術 dayan
quyi shu/daien kyūichi jutsu].

As the title indicates, this book consists of nine chapters and is divided into eigh-
teen volumes. The first two volumes are for the first chapter Problems on Remainder
[大衍類 dayan lei/daien rui] and present nine remainder problems, eight problems
out of which are concerned with moduli not being pairwise co-prime.

The following are some typical problems from the first and second volumes:

No.2.

⎧⎪⎨
⎪⎩

x ≡ 4 (mod 365 1
4 )

x ≡ 8 (mod 29 499
940 )

x ≡ 0 (mod 60)

No.8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ≡ 60 (mod 130)
x ≡ 30 (mod 120)
x ≡ 20 (mod 110)
x ≡ 30 (mod 100)
x ≡ 30 (mod 60)
x ≡ 30 (mod 50)
x ≡ 5 (mod 25)
x ≡ 10 (mod 20)

No.5.

⎧⎪⎨
⎪⎩

x ≡ 0.32 (mod 0.83)
x ≡ 0.70 (mod 1.10)
x ≡ 0.30 (mod 1.35)

All the remainder problems of the Mathematical Treatise in Nine Chapters are
given in practical situations such as the calendrical astronomy, trade of rice, tac-
tics, divination lore and so forth. Consequently those are intricate with complicated
moduli such as fractions, decimals and big figures. This point is a remarkable con-
trast with the simplicity of problems Seki presented. The details of problems of the
Mathematical Treatise in Nine Chapters are stated in [4], [7], [8], [10] and [12].
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7 Seki’s method on the remainder problem

It is well-known that some Chinese books on mathematics, for example the Sunzi’s
Arithmetical Canon, the Yang Hui’s Arts on Arithmetic and the Systematic Treatise
on Arithmetic, were imported into Japan and Seki Takakazu or other Japanese math-
ematicians studied and consulted these Chinese books. But these Chinese books did
not deal with problems in the case of moduli not being co-prime.

In Japan, before Seki, Hoshino Sanenobu [星野実宣] (1638–1699) described
a remainder problem of which moduli were not co-prime in the Works on Right
Triangles [股勾弦鈔 Kōkogen Shō] which was published in 1672. The problem is
as follows:

x ≡ 5 (mod 6), x ≡ 7 (mod 8), x ≡ 5 (mod 10).

There is only the answer “95” on the heels of the problem, but no mention of its
solution in the book.

In such a context in the Edo period, Seki discussed remainder problems in the
case of moduli were not co-prime and furthermore showed the details of the solu-
tion clearly and systematically. On the other hand, more than three hundred years
previously in an adjacent country China, Qin Jiushao dealt with remainder problems
in the case of moduli being not co-prime. Between Qin Jiushao’s method on remain-
der problems and those of Seki, there are some points of similarity. But there is no
evidence that the Mathematical Treatise in Nine Chapters was imported into Japan.
Had Seki a chance to know Qin Jiushao’s work by oral instruction or any other way?
Or else, was the similarity between method of Qin Jiushao and those of Seki caused
by the mathematical inevitability?

Even if Seki knew Qin Jiushao’s work in a rare possibility, it is obvious that
there are clear differences between Qin jiushao’s work and those of Seki. First, Qin
Jiushao considered problems in which coefficients ai are all equal to one, while Seki
considered the more general case where coefficients ai are not necessarily equal
to one. Second, moduli in problems of Qin Jiushao are complicated, on the other
hand those of Seki are quite simple. Finally, Qin Jiushao’s problems are practical, in
contrast, Seki’s problems are completely abstract. Consequently, in Seki’s work, the
core of the theory on remainder problems was singled out in strong relief. This is just
the point which shows Seki’s advantage. Seki had certain sensitivity on abstraction
and generalization which is the most important and indispensable for mathematical
investigation. We may say that Seki’s penetration is far ahead of his times, the Edo
period.
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Fig. 1 The Sunzi’s Arithmetical Canon
[孫子算経 Sunzi Suanjing] (AD400?)

Fig. 2 The Yang Hui’s Arts on Arithmetic
[楊輝算法 Yanghui Suanfa] (1275) by Yang Hui [楊輝]
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Fig. 3 The Systematic Treatise on Arithmetic
[算法統宗 Suanfa Tongzong] (1592) by Cheng Dawei [程大位]

Fig. 4 The Compendium of Mathematics
[括要算法 Katsuyō Sanpō ] (1712) by Seki Takakazu [関孝和]
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Seki Takakazu’s Method of Calculating the

Volume of Solids of Revolution and His
Mathematical Object

Fumiaki Ozaki

Abstract It is usually said that Seki Takakazu (ca. 1642 – 1708) calculated the
volume of a solid of revolution using the Pappus-Guldinus theorem. However, it is
difficult to say that Seki was influenced by Mechanics. In fact, Seki calculated the
volumes of all parts which constitute a figure and added them. We may claim that
Seki found the Pappus-Guldinus theorem from these calculations and will explain
Seki’s method of construction for mathematical objects.

1 Introduction

The manuscript book Draft for Deformations of Sphere Segments [毬闕変形草解
Kyūketsu Henkei Sōkai] [1] is contained in Seven Documents [七部書 Shichibu
sho] which are the Seki’s typical works. This manuscript treats only the volume of
solids of revolution and has fewer problems and pages than other books in Seven
Documents. For instance, Measurements [求積 Kyūseki] [2], which is one of the
Seven Documents, has 59 problems on areas and volumes in 39 pages, whereas
Draft for Deformations of Sphere Segments has 9 problems in 7 pages. Moreover,
the same four problems are dealt with in both manuscripts. Hence, the Collected
Works [3] writes:

This Draft for Deformations of Sphere Segments was one of Seki’s incomplete manuscripts.

But it is not discussed why this manuscript is incomplete. We explain Seki’s method
of measuring the volume of solids of revolution and show that how this manuscript
was written along with his modification theory of the figure.
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2 Method of calculating the volume of solids of revolution

2.1 Torus

The discussion on solids of revolution in Measurements begins with a torus .
<Problem 47 of Measurements>

Now given a torus, whose inner and outer circumferences are 6 shaku 1 sun and
8 shaku 1 sun respectively.1 What is the volume?
Answer: 565 sun.

Fig. 1

Let l2, l1 denote the circumferences of outer and
inner circles respectively (Figure 1). Seki calcu-
lated the volume of torus as follows:

V =
1

32π
(l2 − l1)2(l2 + l1). (1)

Earlier Seki calculated the width between outer
and inner circumferences of a ring in Problem 16
of Measurements.

Width =
l2 − l1

2π
.

This is the diameter of a section of the torus.
Seki stated as follows at the end of explanation for this problems.

We calculated in the volume of torus as the area of the section of torus times center circum-
ference.

Volume of torus = area of section× center circumference. (2)

This is almost the same as the Pappus-Guldinus theorem. In the sequel, we will call
this Theorem (2).

Hence, we predict that the ring volume is given by

V = π
(

l2 − l1
4π

)2

· 1
2
(l2 + l1). (3)

How he found Theorem (2)? He drew a development of ring which has a trape-
zoidal shape in Problem 16 of Measurements. Therefore, he knew that a develop-
ment of the torus was a hose which pointed at both ends.

In the Seki’s period, a pail was made for sets of wood blocks in the shape of
flat-headed stack. They took the pail apart and put together the pieces of these wood
blocks. They could create a wide flat-headed stack.

1 shaku [尺] is a unit of length, which is about 1/3 m. sun [寸] is a unit of length, 1 shaku = 10 sun.
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It was popular to calculate the volume of a flat-headed stack. Therefore, we as-
sume that Seki applied these things to the torus and perceived Theorem (2).

In this problem two circumferences were given as condition. This was the in-
fluence of Nine Chapters on the Mathematical Art [九章算術 Kyūshō Sanjutsu].
Furthermore, Sugimoto [6] analyzed two numerical values 81, 61 of this problem
and gave consideration: In formula (1), (81 + 61)/2 = 71, and 71× 1/π = 113/5
(π : 355/113). It becomes easy to calculate by this reduction. Therefore, Seki
adopted these values.

2.2 Arc Ring

On the other hand, in Draft for Deformations of Sphere Segments the discussion
begins with an outer arc ring [外弧環 gaikokan].
<Problem 1 of Draft for Deformations of Sphere Segments>

Now given an outer arc ring, whose height [高 kō] is 8 sun, sagitta [矢 shi] is 2
sun, and imaginary diameter [虚徑 kyokei] is 6 sun. What is the volume?
Answer: 268 sun 0832.

Fig. 2

d = imaginary diameter,
s = sagitta,
h = height.

Seki did not use Theorem (2) to solve this problem. Instead he calculated the
volumes of all parts which constitute the figure and then added them.

The sphere was divided into three parts: outer arc ring, cylinder, and sphere seg-
ment. Earlier the volumes of these parts had already been calculated. Therefore, he
wrote down only a result for this problem:

V I =
π
6

(
√

d2 +h2)3[sphere]− π
4

d2h[cylinder]

− 2× π
24

(3d2 +4s′2)s′[sphere segment] =
π
6

h3. (4)

(2s′ =
√

d2 +h2 −h).

Seki Takakazu’s Method of Calculating the lume of Solids of � volutionVo Re
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where the volume of a sphere segment is calculated in other manuscript Methods of
Solving Explicit Problems [解見題之法 Kaikendai no Hō], which are reproduced in
this proceedings.

Then problems of outer arc ring continue.

< Problem 2 of Draft for Deformations of Sphere Segment>
Now given an outer arc ring, whose height is 8 sun, sagitta is 2 sun, imaginary

diameter is 1 shaku 1 sun, what is the volume?
Answer: 443 sun 73791

Fig. 3

This problem is same as Problem 48 of Measurements. Seki explained the cal-
culation by drawing a figure (Figure 3) in Measurements.

He assumed that length of arc is a = 9.273 in this problem, and area of arc is as
A = 11.1825. From these values, we can verify what calculation Seki did. See below
for further details.

His method of calculation for the volume is as follows:

V II =
π
6
(
h3 +(d′ −d)×A×6

)
. (5)

Making use of two relations (2) and (4) we can prove Formula (5).

V II = π × c′ ×A, (6)

V I = π × c×A =
πh3

6
, (7)

and c′ = d′ −d + c, c =
h3

6A
. Then we obtain formula (5).
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In Draft for Deformations of Sphere Seg-
ments, Seki drew a figure (Figure 4) in-
stead of Figure 3. In Figure 4, this figure
shows that problem 1 compare with prob-
lem 2. and we also see that he used two
relations (2) and (4).

Fig. 4

Seki solved the following problems based on this procedure.

Fig. 5

Solutions are respectively as follows:
<Problem 3>

V III =
π
6
(
h3 +(d′′ −d)×A×6

)
, (8)

<Problem 4>

V IV =
π
6
×d′ ×2A×6, (9)

<Problem 5>

V V =
π
6
(
(d′ +d)×A×6−h3). (10)

Seki got this formula (10) by subtracting (5) from (9).
Problem 6

Fig. 6

<Problem 6>

V VI =
π
6

(
4×
(1

2
h
)3 −d × 1

2
A×6

)
. (11)

Only the formula (11) was written in the book. We can
get this formula as follows:

V VI =
1
2

(
π
6
(
h3 −d ×A×6

))
.

At first, Seki improved Problem 1 varying the length d = 6. Then he operated on
the parameter s = 2, then on h = 8. We focused on the final statement of explanation
for Problem 2.

Seki Takakazu’s Method of Calculating the lume of Solids of � volutionVo Re
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h and s form a pair [相対 aitai]. So that if h equals 2s, the sphere segment becomes the
half-circle, and d and h form a pair. So that if d = 0, the cylinder is disappeared.

He tried to vary the values of the parameters h, s and d respectively. Seki’s notion of
the pair was to indicate the pair in which two parameters were correlated in magni-
tude. In this case, he remarked that, when h equaled 2s, an arc became a half-circle.
He also noted that a half-circle was against the definition of the arc ring. Therefore,
he dealt with the problems which brought forth figures in this process.

The quoted phrase showed us Seki’s thought on the figure. He transformed the
basic figure to compose different figures. Whenever he found a new figure, he con-
sidered the procedure of composition for new one. In these problems, Problem 1 has
two ways to calculate the volume. One is to divide the sphere. The other is to use
the Pappus-Guldinus theorem. In his manuscript Seki did not write down the latter
calculation for Problem 1. But we claim that he recognized the possible application
of the Pappus-Guldinus theorem on this problem and that he based his recognition
on these things. He began to apply the new procedure on new figures. Moreover he
constructed new mathematical objects using this operation on the ‘pair’, which is
explained in detail in Volume 4 of the Complete Book of Mathematics [大成算経
Taisei sankei].

3 Volume 4 of the Complete Book of Mathematics

The Complete Book of Mathematics was written by Seki and Takebe brothers
(Katahiro and Kataakira) from 1683 to 1711. They spent 28 years to compile all
the 20 volumes. Each volume has the title which indicates its contents. Volume 4 is
named Three Essentials [三要 Sanyō] and consists of three sections: Phenomenon
and Figure [象形 shōkei], Flow and Ebb [滿干 mankan], and Number [數 sū].

This volume is very abstruse. Fujiwara Matsusaburo, the editor of [4, volume2,
p.385], writes as follows:

Volume 4 is very strange and meaningless as mathematical theory. But as it contains the
notion which is the basis of the organization of the Complete Book of Mathematics, we
deal with this briefly.

Xu Zelin [7] explains that Volume 4 is related to the art of divination of ancient
China.

We comment on Volume 4. The three essentials are as follows:

• ‘Phenomenon and Figure’: Classification of mathematical problems; a mathe-
matical object in geometrical problems is called a figure [形 kei] , while that of
numerical problems (e.g., trade, tax, modular equality, measure, specific gravity,
magic squares, magic circles, etc.) a phenomenon [象 shō].

• ‘Flow and Ebb’: Phases of varying parameters of mathematical objects.
• ‘Number’: Classification of numbers in a problem. A source number is called

static [静 sei] and a number derived from static [静 sei] numbers is called dy-
namic [動 dō]. For instance, the base and the height of a triangle are static; the
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area and the length of the oblique side are dynamic. In construction of a problem,
it is important to know how to select these two kinds of numbers.
In the last part of the Number section, numbers are classified into four classes;
integer [全 zen], rational number [繁 han], algebraic number [畸 ki], and non-
algebraic number [零 rei].

The concept of the ‘pair’ was explained in ‘Flow and Ebb’ section. The authors
stated as follows:

Flow and Ebb are fundamentally associated with Phenomenon and Figure and have the
three phases; zen [全], kyoku [極] and hai [背]. In short, Flow is to increase. It reaches
no limit as it increases. Ebb is to decrease. It reaches an end as it decreases. The phase
zen indicates the general or ordinary position, the phase kyoku the extreme position, and
the phase hai is opposite to the phase zen. The phenomenon and figure have the paired
properties like long and short, large and small, high and low, heavy and light. If there is no
paired properties, there exits only one total number.

Nevertheless, the paired properties can be distinguished between new [新 sin] and old [旧
kyū]. In a word, if the parameter is given originally, it is called old. On the other hand, if the
parameter is not given originally but is a result of subtraction, it is recognized to be new.

The authors recognized the paired properties, that is, the paired parameters with
magnitude relationship. They fixed one of the pair and varied the other. They made
parameter to increase or to decrease. The recognized three phases in the variation of
a parameter. the phase zen is ordinary, the phase kyoku is extreme, and the phase hai
is excessive.

In the sequel we call zen ordinary, kyoku extreme, and hai excessive.
For instance, in Problem 22 of Three Essentials, when we exchange gold for

silver, the unit price of gold must be higher than the unit price of silver. I mean,
gold and silver are in the pair. Because relation of gold and silver had been decided
originally, this relation is old.

Let x denote the gold, a the unit price of gold, and b the unit price of silver. The
obtained silver is denoted by S. We note that x, a and b are known parameters and
we have

S = x× b
a
. (12)

x is no paired properties. Consider first x > 0. x varies according to ’flow and
ebb’, that is, x increases and decreases.

ordinary ebb: x ↘ 0 extreme ebb: x = 0 excessive ebb: x < 0
ordinary flow: x ↗ ∞ extreme flow: none excessive flow: none

Parameters a and b are also in pair.
Consider a < b, b being fixed. a increases and decreases.
ordinary ebb: a ↘ b extreme ebb: a = b excessive ebb: a > b
ordinary flow: b ↗ ∞ extreme flow: none excessive flow: none

Problem 35 in Three Essentials is a problem of geometry. A square hut has a top
square and a bottom. We know top square’s edge y is less than bottom one x. These
parameters are in ‘pair’ and this relation of these parameters is old. The authors

Seki Takakazu’s Method of Calculating the lume of Solids of � volutionVo Re
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varied the parameter y as in Figure 7.

Fig. 7

We omit the detail here. The authors gave a relation between bottom square’s edge
and height and varied the parameters. This relation of these values is new. Thus,
they observed other parameters of the square hut.

They applied this operation to various figures and extended his mathematical
objects. They wanted to formulate their objects of study something like “schemes”
in the recent mathematics.

But figures related with the sphere (sphere, a circular corn, a solids of revolution,
etc.) were not included in Volume 4.

4 length of arc

Seki calculated a square of arc in the prob-
lem 22 of Measurements.

Fig. 8

square of arc =
1
4
(
ag− (g−2s)h

)
= 11.18238. (13)
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This a is given as 9.272952 kyō [強], where kyō means that it was rounded off to
the seventh decimal place.

In the Concise Collection of Mathematical Methods [括要算法 Katsuyō Sanpō],
Seki got a = 9.272953 solving the equation.

−41841459200a2 +3597849073280 = 0. (14)

In [8], Seki and his pupil Takebe Katahiro calculated the length of arc as follows:

a2 =
Asg4 +Bs2g3 +Cs3g2 +Ds4g+Es5

αg3 +β sg2 + γs2g+δ s3 . (15)

α = 975503374, A = 39020125496,
β = −18610356125, B = −61434714678,
γ = 10948798854, C = 25918266069,
δ = −1913138432. D = −1828448393,

E = −102756994.

Hence, when s = 2, g = 10, we have

a = 9.27295218.

The value 9.27295218 is 9.272952 kyō. Seki may have used this value.

5 Summary

Why Seki performed operation of parameters in Volume 4 of the Complete Book
of Mathematics? Earlier in [9], we pointed out that Seki constructed various figures
from basic ones in Volume 4 and concluded that this volume was written for finding
clue to the measuring areas and volumes. Observing that he always divided a figure
into some basic parts to find the area or the volume of a figure in his manuscripts,

we may think that Volume 4 was written in order not to raise a wrong problem.
But we think that the authors’ real intention was to discover new mathematical

objects. These new objects must be accompanied by a new procedure. Actually Seki
varied various parameters of a mathematical object into extreme positions and suc-
ceeded to find a new object in the problem of solids of revolution. We believe that
this was the aim of his writing down the incomplete manuscript Draft for Deforma-
tions of Sphere Segments for the posterior generations.

Seki Takakazu’s Method of Calculating the lume of Solids of � volutionVo Re
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University [九州大学図書館] and University of Tokyo [東京大学付属図書館] Libraries,
available at digital collection of Tohoku University [東北大学デジタルコレクション] 　
(http://dbr.library.tohoku.ac.jp/infolib/meta_pub/G9200001CROSS).

3. A. Hirayama, K. Shimodaira and H. Hirose [平山諦, 下平和夫, 広瀬秀雄]: Takakazu Seki’s
Collected Works edited with Explanations [関孝和全集], Ōsaka Kyōiku Tosho [大阪教育図
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Leibniz’s Theory of Elimination and
Determinants

Eberhard Knobloch

Abstract As late as 1938, people doubted whether Gottfried Wilhelm Leibniz ever
dealt with determinants. Thus, Gerhard Kowalewski wrote in 1938: “Strangely,
nothing relating to determinants and their application has been found in his (viz.
Leibniz’s) manuscripts until now” [19, p. 125]. Later on, Morris Kline, hinting at
Leibniz’s often cited letter dating from 1693 to L’Hospital, erroneously wrote in
1972: “The solutions of simultaneous linear equations in two, three, and four un-
knowns by the method of determinants was created by Maclaurin, probably in 1729,
and published in his posthumous Treatise of Algebra (1748)” [8, p. 606].

In 1972, the most important Leibnizian treatise on systems of linear equations ap-
peared as Knobloch [9]. A long sequence of papers [10, 11, 12, 13, 14, 15, 16, 18]
by Knobloch followed dealing with Leibniz’s theory of elimination and determi-
nants. Yet, all those papers remained partly unknown. In 2000 a historical survey
of the evolution of algebra [1] appeared that again knew only Leibniz’s letter to
L’Hospital that was published in 1850 for the first time and added on 149f further
false information about Leibniz’s index notation. The booklet represented the state
of the art of 1850.

In the following paper I would like to summarize Leibniz’s main ideas and results
regarding determinants and elimination theory in order to demonstrate that Leibniz
laid the foundation of the theory of determinants in Europe between 1678 and 1713,
in other words, at the same time as his famous Japanese contemporary Seki.
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1 The Fundamental Ideas

Leibniz’s great interest in determinants was directly connected with his paramount
interest in three disciplines which he spent his entire life trying to perfect and orga-
nize: the ars characteristica, that is the art of inventing suitable characters, signs;
the ars combinatoria, that is the art of combination; the ars inveniendi, that is the
art of inventing new theorems, new results, new methods.

These arts are strongly correlated with each other. The art of combination, being
by far more than combinatorics in the strict mathematical sense of the word, teaches
how to combine signs or characters. The art of inventing suitable signs supports
the art of inventing that was the main aim of all Leibnizian scientific, especially
mathematical, activities.

There are two important, famous examples for the usefulness and success of
Leibniz’s invention of suitable signs in order to foster the mathematical develop-
ment:

1) the differential and integral calculus;
2) determinant theory.

The second example is the subject that will be dealt with in the following sections.
What did the three arts contribute to the determinant theory? The art of inventing
suitable characters led to numerical double indices. The art of combination helped
to represent a determinant as a sum.

In order to avoid any misunderstanding it might be useful to remember the mod-
ern definition of a determinant: Let A be a square matrix of order n, d(A) its deter-
minant:

d(A) := ∑
s∈Sn

sign(s)a1s(1) · · ·ans(n).

Thanks to the art of inventing Leibniz became the founder of determinant theory.
In fact, the literature on the history of science mentions a variety of different authors
as being the founders of that theory, depending on what criteria were employed
to justify the choice: Gauss (who coined the name determinans (viz. numerus)),
Cauchy (who derived a system of theorems to form a new mathematical discipline),
Cayley (who introduced symbols, the vertical determinant lines or rules), Weier-
strass (who established the axiomatic approach: the determinant is a linear, alternat-
ing, normal mapping), and so on.

Apart from those of Weierstrass, Leibniz had already met all these criteria in full
[15, p. 58]:

1. he talked about resultans (viz. aequatio),
2. he formulated a series of general theorems concerning the combinatorial aggre-

gates, which he called “resultants”, without however proving these.
3. he invented symbols for the resultants and used a very clever subscript notation

that was capable of being generalized.
4. he discovered important results in the theory of systems of linear equations and

elimination theory which he expressed in the language of determinants.
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In a deliberate departure from the tradition of Viète, Leibniz used fictitious num-
bers as simple, double, and multiple subscripts, since numbers have a threefold ad-
vantage:

1. they can be checked at any stage of the calculation.
2. they can express the various arrangements, orders, positions and relationships

between the quantities and characters.
3. they serve mathematical progress since they allow us to recognize laws of for-

mation and harmonics.

In January 1675, he explicitly emphasized the greatest advantage of his method
that is, to use numbers without using a numerical calculation [24, VII, 1, p.530]. He
invented well over fifty different notations for algebraic and differential equations.
A larger selection of these notations is explained in [13]. Only three particularly
important descriptions can be included here.

From June 1678 at the latest he used double indices for systems of linear equa-
tions:

10+11x+12y = 0,

20+21x+22y = 0,

where today we write

a10 +a11x+a12y = 0,

a20 +a21x+a22y = 0.

The numbers on the left indicate that they relate to the equation, those on the right
to the variables. This index notation was used by him in his letter to the Marquis de
l’Hospital dating from April 28, 1693 (old style1) that was published in 1850 for the
first time [22, II, pp. 236–241]. Leibniz himself never published this index notation
during his lifetime. This is not true of the way of writing several polynomials with
a common unknown:

10x2 +11x+12

20x2 +21x+22
or

10+11y+12y2

20+21y+22y2,

where today we write

a10x2 +a11x+a12

a20x2 +a21x+a22
or

a10 +a11y+a12y2

a20 +a21y+a22y2.

The numbers on the left again refer to the equation, while those on the right
either, together with the exponents of the related variable power, give the degree of
the polynomial or agree with the exponent of the variable power. The first possibility

1 i.e. in Julian calendar
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was published by him in 1700 and in 1710 [20, 21]. Apart from Charles Reyneau in
1708 and by Karl Friedrich Hindenburg from 1779 onward [15, p. 57] nobody paid
attention to Leibniz’s explanations in this respect.

In the most important study on systems of linear equations of January 12 (222),
1684, Leibniz developed a shorthand on the basis of the solutions or results he had
obtained [9]. His procedure might be described as follows:

10+11a = 0,

20+21a = 0.

In order to eliminate a, the first equation is multiplied by 21, the second equation by
−11. The sum of the two multiplied equations is

1)
10 ·21+11 ·21a

−11 ·20−11 ·21a = 0
or

2)
10 ·21

−11 ·20 = 0.

The rising (equation) numbers on the left do not change their order. They can be
written smaller:

3)
10 · 21

−11 · 20 = 0
or they can be even left out since they can be added again at any time:

4)
+0 ·1
−1 ·0 = 0

and eventually

5) 0 ·1 = 0.

Leibniz’s notation 0 ·1 is equivalent to the modern term
∣∣∣∣10 20
11 21

∣∣∣∣. In other words,

Leibniz represents a determinant by the product of the elements of its main diag-
onal and that for up to five-row determinants. In principle 1 ·2 ·3 · · ·n denotes the

same system of coefficients as

∣∣∣∣∣∣∣
a11 · · · a1n

...
...

an1 · · · ann

∣∣∣∣∣∣∣.
When Leibniz calculated the resultant of n+1 equations with n unknowns, his hor-
izontal lines had to be modified accordingly. His equation

0 ·1 ·22−0 ·2 ·21+1 ·2 ·20 = 0

2 In parentheses is the date in Gregorian calendar.



Leibniz’s Theory of Elimination and Determinants 233

results from a development of a three-row determinant 0 ·1 ·2 after the second row.
In the two-row determinants 0 ·1,0 ·2 and 1 ·2 those numbers on the left which do
not appear in the right-hand factor 22, 21 and 20 need to be added in their natural
order in the solution. Now 0 ·1 , for example, stands for 10 ·31−30 ·11.

Leibniz talked about an “aequatio resultativa,” “aequatio resultans” or simply
“resultans,” just as Etienne Bézout in 1764 spoke of “équations résultantes,” termi-
nology which Laplace, Binet, Cauchy followed later on.

2 Inhomogeneous Systems of Linear Equations: motivation,

rules of signs, general theorems

2.1 Motivation

Why was Leibniz so interested in determinants? The reason can be found in his
many manuscripts dealing with the algorithmic solution of the quintic equation.
In order to solve this problem Leibniz generalized Cardano’s approach by using a
substitution of the form

x = a1 +a2 +a3 +a4 .

His calculations resulted in essential results in the theory of symmetric functions and
additive number theory and led him to believe that the problem could be reduced to
the solution of systems of linear equations. In May 1678 he wrote [17, p. 115]:

Yet I shall demonstrate that the labor of calculating is not difficult, because what is important
is the fact that the quantities looked for are not multiplied by each other or by themselves.
Hence every calculation arising from the equations used for elimination (destructitiae) is
done exclusively by addition and subtraction of arbitrary quantities leaving only signs and
known (sufficiently simple) numerical coefficients. This is neither laborious, nor difficult,
nor prolix.

Indeed, these tiny equations used for elimination cannot lead to confusion because they
do not ascend either to rectangles or to powers, even if their number is large. For example,
in the case of the [equation of the] fifth degree there are at most 284 equations serving
for elimination or—if one uses an abbreviation—about 160 such equations. Yet, they are
written down without any calculation and afterward the calculation derived from them is
carried out by addition and subtraction alone.

Hence to carry out the elimination calculation is no more difficult than to diligently write
down 160 small lines, that is, the values of the unknowns. The value of every unknown can
be written down at once without any calculation by the estimation of a glance.

The writing down of the equations used for elimination does not require a great deal
of attention. If somebody should follow the method prescribed by me, a mere description
would do. In order to write down the values deduced from the equations no calculation is
necessary. One who is not distracted could carry out the whole calculation for an equation
of the fifth degree, within, I think, the space of one day, provided that everything has been
rightly prepared [23, p. 113].

One month later Leibniz erroneously believed to have found the correct law of
formation of such determinants and that in the case of three linear equations with
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three unknowns [12, pp. 9–11].

12,2+13,3+14,4−119 aequ. 0,

22,2+23,3+24,4−209 aequ. 0,

32,2+33,3+34,4−299 aequ. 0.

4 aequ.

−12,23,299+12,33,209−22,33,119
+13,22,299−12,32,209+23,32,119

−12,23,34+12,33,24−22,33,14
+13,22,34−13,32,24+23,32,14

.

2.2 Rules of sign

At present we know six sign rules formulated by Leibniz for the terms of determi-
nants. In June 1678 he formulated his first sign rule:

(1) The terms have to be arranged according to the largeness of the factors. The
signs plus or minus are alternatively assigned to them.

This rule cannot be generalized. What is to be done in the case of four equations?
Neither the left nor right figures of the double indices keep their order.

A second trial dates from 1683 or a bit later [12, p. 80]:

The resultant of the linear equation system

10a+11x+12y = 0,

20a+21x+22y = 0,

30a+31x+32y = 0

reads:

+10.21.32−10.22.31−11.20.32+11.22.30+12.20.31−12.21.30 = 0.

Leibniz formulated his second rule as follows:

(2) Let an arbitrary term be positive or negative. Those terms that differ from this
term by an even number of coefficients obtain the opposite sign.

Again this rule cannot be generalized. It is only valid in the case of two or three
different coefficients. While the second rule is based on the number of different co-
efficients, the third rule, written down at more or less the same time as the foregoing
is based on the number of common coefficients [12, p. 89]. It refers to the same
equation as before:

(3) Terms have opposite signs if they have a single common coefficient or an odd
number of such coefficients. Terms have two or an even number of common
coefficients have the same sign.
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The rule is only valid in the case of three factors that have one common factor.
Moreover it contradicts to the second rule.

Leibniz took the crucial step once he had recognized that the coefficients them-
selves have to be replaced by the right or left figures of the double indices.

Shortly before he discovered the correct general sign rule on January 12 (22),
1684, he relied on cyclic permutations of the right figures of the double indices [12,
p. 44]. Considering the same equation system as before he observed that:

(4) Permutations of the right figures have the same sign if they result from each
other by a cyclic permutation. The (three) other permutations have the opposite
sign.

Indeed (leaving aside the left figures that retain their order) the products 0.1.2, 1.2.0,
2.0.1 are positive, the other three products are negative.

Yet, this rule cannot be generalized because in general two cyclic permutations
do not differ by an even number of transpositions:

+0.1.2.3 implies −1.2.3.0 because three transpositions are needed to carry out
this permutation.

A bit later Leibniz solved the sign problem in the study “De sublatione liter-
arum ex aequationibus seu de reductione plurimum aequationum ad unam,” “On the
elimination of letters from equations or on the reduction of several equations to one
equation” [9]. On the margin of the manuscript he added the remark:

In this attempt I solved the problem, whereas earlier I always got stuck at some point. What
is done here is an eminent example of the combinatorial art.

First of all he formulated a recursion rule [9, p. 176]:

(5) Two terms that differ from each other only by two corresponding coefficients (so
that nm kl is replaced by nl km) of the same two equations have opposite signs.

It is worth mentioning that in 1729 MacLaurin gave exactly the same rule [25,
pp. 81–85]:

Opposite signs are assigned to combinations which contain the products of two opposite
coefficients.

Moreover Leibniz himself communicated a complicated version of this recursion
rule to L’Hospital on April 28 (May 8), 1693 [22, II, p. 240]:

Eae combinationes opposita habent signa, si in eodem aequationis prodeuntis latere po-
nantur, quae habent tot coefficientes communes, quot sunt unitates in numero quantitatum
tollendarum unitate minuto; caetera habent eadem signa.

Those combinations have opposite signs provided that they are set on the same side
of the resulting equation, which have as many common coefficients as there are
units in the number of quantities that have to be eliminated, whereby this number
was diminished by one. The others have the same signs.

If there are (n +1) equations, n unknowns, it is a matter of (n−1) common co-
efficients or of two different factors. In other words, Leibniz consciously concealed
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his knowledge by communicating an unnecessarily complicated version of the re-
cursion rule. Nearly immediately after the recursion rule Leibniz writes down the
general, correct sign rule [9, pp. 176f.].

(6) Two terms that differ from each other only by an odd number of transpositions
of left or right figures have opposite signs. Those that differ from each other by
an even number have the same sign.

This sign rule is indeed equivalent with the rule given by Gabriel Cramer in 1750
[4, p. 658]:

Qu’on compte, pour chaque terme, le nombre des dérangements: s’il est pair ou nul, le
terme aura le même signe +; s’il est impair, le terme aura le signe −.

While Leibniz used the notion of transposition, Cramer used the notion of inver-
sion. A permutation is called even or odd if it contains an even or odd number of
inversions, respectively. Now, a permutation is even or odd if and only if it can be
generated by an even or odd number of transpositions that in general is smaller than
that of its inversions. In other words, Leibniz’s sixth sign rule and Cramer’s rule are
equivalent.

2.3 General theorems

Without demonstrating them, Leibniz added three general theorems in this decisive
paper dating from the end of May 1684.

(1) Diagonalising around the main diagonal:
The same laws of arrangement and signs result if one uses the left-hand numbers
1, 2, 3 etc. instead of the right-hand numbers, and instead of 0, 1, 2, 3 the
numbers 1, 2, 3, 4. In modern terms: For the formation of the determinant the
rows and columns of the matrix A are interchangeable.

(2) Interchanging rows or columns:
If we interchange two rows (columns), then the value of the determinant
changes its sign. If we bring the rows 1,2, . . . ,n (columns) of A into a sequence
k1,k2, . . . ,kn, then the determinant is multiplied by the sign of this permutation:

2 ·1 ·3 = −1 ·2 ·3, 3 ·1 ·2 = 1 ·2 ·3.

(3) Expanding determinants according to Laplace:
The equation 0 ·1 ·2 ·3 = 0 can be written in the following for ways:

0 ·1 ·2 ·4 3−0 ·1 ·3 ·4 2+0 ·2 ·3 ·4 1−1 ·2 ·3 ·4 0 = 0,

0 ·1 ·2 ·3 3−0 ·1 ·3 ·3 2+0 ·2 ·3 ·3 1−1 ·2 ·3 ·3 0 = 0,

0 ·1 ·2 ·2 3−0 ·1 ·3 ·2 2+0 ·2 ·3 ·2 1−1 ·2 ·3 ·2 0 = 0,

0 ·1 ·2 ·1 3−0 ·1 ·3 ·1 2+0 ·2 ·3 ·1 1−1 ·2 ·3 ·1 0 = 0.
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Leibniz started with the system of four (n) linear equations:

10+11a+12b+13c = 0,

20+21a+22b+23c = 0,

30+31a+32b+33c = 0,

40+41a+42b+43c = 0.

He expanded the resultant according to the coefficients of the fourth, third, second,
first row. His determinants 0 ·1 ·2, 0 ·1 ·3, etc. are minors dik(A) of (n−1)th order,
but no adjoints. In modern terms we get:

det(A) = di3(A)ai3 −di2(A)ai2 +di1(A)ai1 −di0(A)ai0, i = 1,2,3,4.

The minors dik(A) are not multiplied by (−1)i+k−1, that is, Leibniz did not introduce
adjoints. The exponent reads (i + k−1) instead of i + k because Leibniz began the
indexation with 0. Provided that Leibniz expanded the determinant according to the
(4− i)-th row, i = 0,1,2,3, the value of the determinant is multiplied by (−1)i. This
difference between his own expansion and that according to Laplace’s expansion
does not matter in the case of resultants because the resultant must be equal to zero.

3 Elimination of a Common Variable

Another important application of Leibniz’s determinant theory concerned the re-
sultant of two polynomials from the ring R[x] [of polynomials with coefficients in
an integral domain R] and the elimination of a common unknown from algebraic
equations with two and more variables. He thus anticipated methods and results that
were attributed to James Joseph Sylvester, Etienne Bézout and Leonhard Euler later
on.

3.1 Sylvester’s dialytic method

In the year 1679–1681 Leibniz explained in the essay “De tollendis incognitis” (On
the elimination of unknowns) [12, n. 36, p. 159] how the two initial equations

a+bx+ cx2 +dx3 + ex4 etc. = 0,

l +mx+nx2 + px3 +qx4 etc. = 0

can be multiplied by gradually increasing powers of x. If we set the coefficient
determinant
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to zero, then we obtain the so-called Sylvester determinant and thus the resultant of
the two polynomials. The English mathematician Sylvester published this solution
in 1840 [26]. Later on, it became known under the name of the “dialytic method.”

3.2 Bézout’s method and Euler’s second method

Around 1683/84, Leibniz in several studies developed a method of reducing the
problem of calculating resultants to the solution of a system of algebraic equations
which he was already able to determine in an elegant fashion at that time [12, ns.
16, 50, 54]:

Let two polynomials of e-th and f -th degree be given, then these are multiplied together
with auxiliary polynomials of the ( f −1)-th and (e−1)-th degree, respectively. The product
polynomials are added and the coefficients of each power of the unknowns are set equal
to zero. One gets a system of linear equations that is a sufficient number of equations to
determine the auxiliary variables.

This rule was formulated by Leibniz in its complete general form. The procedure
appears in Euler [7] in 1766 and Bézout [2] in 1767.3

3.3 Euler’s resultants

Except for Newton [and Leibniz], Euler [5, 6] was the first in Europe to develop the
general theory of elimination. He was interested in the number of intersection points
of two algebraic curves on a plane and wanted to prove that it is less than or equal
to nm if one is of order n and the other of order m,

This is known today as Bézout’s theorem because Bézout [2] proved it in the
general case. Bézout’s paper was submitted to the Academy in Paris in 1764. In the
same year Euler submitted his third article [7] to the Academy in Berlin and claimed
that he also proved it. Both made use of resultants and Euler had already computed
resultants when m ≤ n ≤ 3 in [5, 6]. However, Euler didn’t know determinants so

3 These two methods of Euler and Bézout always give the same result but their theoretical back-
grounds are different. The following subsection is added by the editor to ease the reader’s under-
standing.
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that he had no means to express the resultants in the general case. Much later in
1840 Cauchy [3] showed that Euler’s resultants were the same as Sylvester’s in the
following way.

Suppose that

f (x) = a0 +a1x+ · · ·+anxn = 0, (1)
g(x) = b0 +b1x+ · · ·+bmxm = 0, (2)

are two equations with coefficients in an integral domain R. We assume that n ≥ m,
an 	= 0 and bm 	= 0.

Sylvester’s resultant, which is equal to Bézout’s [and Seki’s, may also be written

RSylvester( f ,g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (x) a1 · · · · · · · · · an 0 · · · 0
x f (x) a0 a1 · · · · · · · · · an 0 0

. . . . . .
xm−1 f (x) · · · 0 a0 a1 · · · · · · · · · an

g(x) b1 · · · · · · bm 0 · · · 0
xg(x) b0 b1 · · · · · · bm 0 · · · 0

. . . . . .
0

xn−1g(x) · · · · · · 0 b0 b1 · · · · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3)

= p(x) f (x)+q(x)g(x) (4)

with polynomials p(x) and q(x) of degree ≤ m−1 and n−1, respectively.
On the other hand, Euler [7] starts with the assumption that (1) and (2) have a

common root ω in an extended field K of R, which was the complex number field C
for Euler. Then, we have the factorizations

f (x) = (x−ω)δ (x) = (x−ω)(d0 +d1x+ · · ·+dn−1xn−1), (5)

g(x) = (x−ω)γ(x) = (x−ω)(c0 + c1x+ · · ·+ cm−1xm−1), (6)

as polynomials with coefficients in K. Hence we have

f (x)γ(x)−g(x)δ (x) = 0, (7)

that is,
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0 · · · 0 b0 0 · · · 0
a1 a0 0 0 b1 b0 0 0 0
...

. . . 0
...

. . .

am−1 · · · a1 a0 bm−1
. . . . . . . . . 0

am · · · a1 bm bm−1 0
... am

... 0 bm
. . . b0

an
...

... 0 0
. . .

...

0
. . .

... 0
. . .

...
an bm−1

0 · · · 0 an 0 0 · · · · · · bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
...
...

cm−1
−d0

...

...

...

−dn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (8)

Thus it follows from Bézout’s Lemme 1 [2] that the determinant of the matrix,
which is the transpose of Sylvester’s, should vanish.

3.4 Rules of formation and sign rule of the resultant

Around 1692/93 Leibniz had found the most important dimensional and homogene-
ity properties of the resultant. Two essays are especially interesting in this respect:
“De tollendis literis” (On the elimination of unknowns) and “De tollenda litera ex
duabus aequationibus” (On the elimination of an unknown from two equations) [12,
ns. 54, 56].

Let two polynomials of e-th and f -th degree be given. The resultant will have the following
properties:

(1) It is homogeneous of degree f in the coefficients of the first polynomial and of degree
e in the coefficients of the second polynomial (law of homogeneity).

(2) Each of its terms consists of e+ f factors.
(3) The sum of the right-hand subscripts is e f .

3.5 Leibniz’s explication theory—Euler’s first method

Around 1693/94, Leibniz developed a type of “explication theory” on resultant cal-
culation [10], that was explained and used by Euler in three publications [5, vol. 2,
p. 269] in 1748, [6] in 1750 and [7] in 1766.

Let two polynomial equations be given:
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10x3 +11x2 +12x+13 = 0,

20x3 +21x2 +22x+23 = 0.

Using twice a cross wise multiplication and subtraction procedure, Leibniz produced two
equations of second degree:

10 ·23
−13 ·20

x2 +11 ·23
−13 ·21

x
+12 ·23
−13 ·22

= 0 ,

10 ·21
−11 ·20

x2 +10 ·22
−12 ·20

x
+10 ·23
−13 ·20

= 0 ,

or

(10)x2 +(11)x+(12) = 0,

(20)x2 +(21)x+(22) = 0.

The coefficients within brackets are “explicated” by the differences between the products,
for example

20 is explicated by 10 ·21−11 ·20,
21 is explicated by 10 ·22−12 ·20 etc.

This procedure has to be repeated until the elimination of x from two linear equa-
tions yields the resultant. The degree of the resultant is of course too high this way.
Yet, Leibniz became interested in the law of formation of the terms produced by
repeated explications. By concentrating his efforts on the explication of the coeffi-
cients of the second equation he elaborated a “dichotomic tree,” as he called it:

20︷ ︸︸ ︷
10 ·21 − 11 ·20︷ ︸︸ ︷

10 ·22−12 ·20
︷ ︸︸ ︷
10 ·21−11 ·20︷ ︸︸ ︷

10 ·23−13 ·20
︷ ︸︸ ︷
10 ·21−11 ·20

︷ ︸︸ ︷
10 ·22−12 ·20

︷ ︸︸ ︷
10 ·21−11 ·20

etc.
If these substitutions (explications) are really carried out, one gets:

20,

10 ·21−11 ·20,

102 ·22−10 ·12 ·20−10 ·11 ·21+112 ·20,

103 ·23−102 ·13 ·20−102 ·12 ·21+10 ·11 ·12 ·20

−102 ·11 ·22+10 ·11 ·12 ·20+10 ·112 ·21−113 ·20.

In order to inquire into the structure of these rows Leibniz denoted certain do-
mains, that is the second half of all terms of a row by A, the second quarter of all
terms of a row by B, the second eighth of all terms of a row by C etc.
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The capitals within brackets like (A), (B), (C) denote the sequence of first terms
of a sequence of further bisections:

(A) means: we have to consider the second half (the domain). Then we have to
take the first term of the second half, the first term of the second quarter, the first
term of the eighth etc.

(B) AB means: we have to consider the second quarter of the second half of the
second quarter (the domain). Then we have to take the first term of the second half,
the first term of the second quarter etc.

Let us consider the above mentioned fourth row as an example. We are looking
for the sequence (A):

A denotes the second half of the row that is

−102 ·11 ·22+10 ·11 ·12 ·20+10 ·112 ·21−113 ·20.

The first term of the second half of this partial row is

10 ·112 ·21.

The first term of the second quarter of this partial row is 10 · 11 · 12 · 20. There is
only one term. There are no further possible bisections. Hence we get:

(A) = 10 ·112 ·21+10 ·11 ·12 ·20.

Leibniz did not mention a non-trivial theorem that is obviously true though I was
not able to demonstrate it up to now:

Theorem. Any permutation of the letters of such a combination of letters leads to
the same sum.

For example: (A)BB = (B)AB = (B)BA etc. The brackets do not matter.
It is worth mentioning, however, that Leibniz added 34 corollaries regarding the

formation of the terms of a row and their relations with each other.

Epilogue

None of all these fascinating results were published by Leibniz during his lifetime.
They are documents of a restless scholar. In October 1674 he himself said [24, VII,
3, p. 539].

“Malo enim idem facere, quam semel nihil.” “For I prefer to do the same twice instead of
doing nothing once.”
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16. Eberhard Knobloch: Déterminants et élimination chez Leibniz, Revue d’histoire des sciences,
vol. 54, pp. 143–164 (2001).

17. Eberhard Knobloch: Beyond Cartesian limits: Leibniz’s passage from algebraic to “transcen-
dental” mathematics, Historia Mathematica vol. 33, pp. 113–131 (2006).

18. Eberhard Knobloch: Mettre au jour de nouveaux corpus: Les œuvres inconnues de Leibniz,
Archives Internationales d’Histoire des Sciences, vol. 57, pp. 89–104 (2007).

19. Gerhard Kowalewski: Große Mathematiker. München-Berlin (1938).
20. Gottfried Wilhelm Leibniz: Responsio ad Dn. Nic. Fatii Duillerii imputationes. Accessit nova

artis analyticae promotio specimine indicata, dum designatione per numeros assumtitios loco
literarum, algebra ex combinatoria arte lucem capit, Acta Eruditorum, pp. 198–208 (May
1700); (= Leibniz 1849–1863, V, pp. 340–349).



244 Eberhard Knobloch

21. Gottfried Wilhelm Leibniz: Monitum de characteribus algebraicis, Miscellanea Berolinensia,
1, pp. 155–160 (1710); (= Leibniz 1849–1863, VII, pp. 218–223).

22. Gottfried Wilhelm Leibniz: Mathematische Schriften, published by Carl Immanuel Gerhardt,
Berlin–Halle (1849–1863).

23. Gottfried Wilhelm Leibniz: Die mathematischen Studien zur Kombinatorik, Textband, pub-
lished by Eberhard Knobloch, Wiesbaden (1976).
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Algebra, Elimination and the Complete Book

of Mathematics

Hikosaburo Komatsu∗

Abstract Seki Takakazu (1642?–1708) is a mathematician in the Edo Period (1603–
1868) of Japan. He was distinguished far from the other mathematicians in Japan at
that time. We have so far failed to find any name of person who taught him mathe-
matics in spite of all our efforts of investigations at this occasion of 300 years after
his death. His disciples are few and his monumental treatise Complete Book of Math-
ematics (1683–1711) of approximately 1800 pages has practically been ignored by
mathematicians who claimed themselves to be in Seki’s school of mathematicians
and also by later historians of mathematics until these days. Yet he was not isolated
not only in Japan but also in the world. We will show the evidence in what follows.

1 Historical Background

1.1 Chinese mathematics

There used to be two types of mathematics. One was mathematics for government
officials of centralized and powerful countries, and the other for common people
participating in market economy under less centralized administrations. Japan (and
the united Korea) imported the first type of mathematics in the seventh century from
China of the Tang dynasty [唐朝] (618–904). Nine Chapters of Mathematics [九
章算術] [1] was the main textbook in schools for government officials majoring in
mathematics. There remain records that Zhuı̀ Shù [綴術] by Zǔ Chōng-Zhı̄ [祖沖
之] (ca. 500) was also one of the textbooks. But it disappeared quite soon from three
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countries including the Tang China probably because eight digits of the ratio π of
circumferences were of no use for administrative works.

Japan also imported in the seventh century calendar systems from China often
through Korea. The last imported calendar Xuān Mı́ng Lı̀ [宣明暦 Senmyō reki]
was adopted in 862 and was used in Japan until 1685 when it was replaced by Jōkyō
Calendar [貞享暦 Jōkyō reki] by Shibukawa Harumi [澁川春海] (1639–1715). This
means that the minimal knowledge was maintained to compile a new calendar ev-
ery year but no more for approximately a thousand years. The same was true with
mathematics.

On the other hand, Chinese mathematics and calendrical science made a remark-
able progress in the Sòng [宋] (960–1279) and Yuán [元] (1279–1368) dynasties.
As the famous picture Riverside Scene at Qingming Festival [清明上河圖] shows
the urban life in China at that time was much modernized. By the middle of the
eleventh century mathematicians established the root-extraction method [開方術
kāifāng shù] of any algebraic equation of any degree in a single unknown with nu-
merical coefficients, and Qı́n Jiǔ-Sháo [秦九韶 Shin Kyū Shō] refined it in the Book
of Mathematics in Nine Chapters [数書九章 Shùshū Jiǔzhāng] (1247) [2] to the
same algorithm as the so-called Horner’s Method in the nineteenth century.

The way to construct an algebraic equation for the root-extraction method is
called the heavenly element method [天元術 Tiānyuán shù], because it starts with
fixing an unknown called the heavenly element [天元]. The Song-Yuan mathemat-
ics needed to solve higher degree equations because, as their problems became com-
plicated, they had to eliminate auxiliary unknowns, and during these processes the
degrees of resulting equations got high.

Zhū Shı̀-Jié [朱世傑 Shu Seiketsu] invented algebraic expressions with up to four
variables and gave many methods to eliminate a common variable from two such
equations in the Jade Mirror of Four Elements [四元玉鑑 Siyuán Yùjiàn] (1303).

In China many books written in the Song–Yuan period were lost during the Ming
[明] dynasty (1368–1644). However, some of them were reprinted in Korea of the Li
[李] dynasty (1392–1910) with copper types. Among these, Introduction to Mathe-
matics [算学啓蒙 Suàn-Xué Qı̌-Méng] (1299) [4] by Zhū Shı̀-Jié [朱世傑] and Yang
Hui’s Methods of Mathematics [楊輝算法 Yáng Huı̄ Suàn-Fǎ] (1275) [3] by Yáng
Huı̄ [楊輝] were brought in Japan at the end of the sixteenth century and became
very important source books for Japanese mathematicians in the Edo period.

Traditional computing tools in China and its vicinities were counting rods [算木
suàn mù] on counting boards [算盤 suàn pán]. In the Ming period abacuses [珠算]
took their places in China and Japan. Summary of Mathematical Methods [算法統
宗 Suànfǎ Tǒngzōng] (1592) [6] by Chéng Dà-Wèi [程大位] was widely used as the
standard textbook of mathematics using abacuses. It modeled after Nine Chapters
of Mathematics and in a sense took over the position.
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1.2 Mathematicians in Kyoto and Osaka

At the beginning of the Edo period Edo (present Tokyo) was a new city under con-
struction and the old capital Kyoto and the trade center Osaka still kept the position
of the center of culture in Japan. Most of famous mathematicians lived there.

The first successful mathematician was Yoshida Mitsuyoshi [吉田光由] (1598–
1672) from a very rich family in Kyoto. His book From Trifling Dust to Eternal
Time [塵劫記 Jingōki] (1627) [7] is the first million seller in Japan. The new edi-
tion (1641) contained 12 open problems, one of which asked a circular land cut
by parallel lines with given areas as the three parts. This gave birth to the theory
of circles [圓理 enri]. Those open problems are called bequeathed problems [遺
題 idai]. When one solved all bequeathed problems in a book, he usually published
a book of solutions and left his own open problems in his book. This is called a
succession of bequeathed problems [遺題継承 idai keishō]. This habit certainly
stimulated mathematicians in the Edo period.

Muramatsu Shigekiyo [村松茂清] (1608–1695) was born in Ibaragi [茨城] and
moved to Akō [赤穂] following his Load Asano. His adopted son and grandson
were among 47 Samurais of the famous revenge in 1702. His book Mathematical
Cooking Boards [算俎 Sanso] (1663) [9] contains many original results. He com-
puted the circumference of the regular 2n-gon inscribed in a circle of diameter 1 for
n = 3,4, · · · ,15 and obtained the approximate value of π as accurate as Zu Chong-
Zhi though he did not claim so. He also computed four digits of the volume of a
sphere with diameter 1 by slicing it into 100 equally thin plates. Seki refined these
works and got much more accurate values as shown in his posthumous book Con-
cise Collection of Mathematical Methods [括要算法][23].

Shimada Sadatsugu [島田貞継] and Andō Yūeki [安藤有益] were mathemati-
cians invited by the Load of Aizu [会津] Hoshina Masayuki [保科正之] who in-
tended to make Calendar Reform under the authority of Shōgunate. Shibukawa
Harumi, who was born in Kyoto, joined them later and succeeded in it. Seki was
also interested in the calendar reform but the chance was not left.

Introduction to Mathematics [算学啓蒙] was published in Japan with some com-
mentaries by Hisada Gentetsu [久田玄哲] in 1658 and by Hoshino Sanenobu [星
野實宣] in 1672. There remains, however, a doubt whether or not they really un-
derstood the heavenly element method [天元術]. Except for Seki Takakazu and his
disciples, the first mathematicians in Japan who digested Introduction to Mathemat-
ics were Hashimoto Masakazu [橋本正数] and his group, in particular, Sawaguchi
Kazuyuki [澤口一之] and Tanaka Yoshizane [田中由真] (1661–1729), and a little
independently by Miyagi Kiyotsura [宮城清行] and their disciples.

1.3 Methods of Mathematics, Old and New by Sawaguchi

The Methods of Mathematics, Old and New [古今算法記 Kokon Sanpōki] [10] is a
book of 7 volumes written by Sawaguchi in 1670. The first three volumes are written
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in Japanese. This part is a little advanced but standard textbook of elementary math-
ematics. Calculating tools are abacuses in Japanese style, i.e. with 4 beads under the
beam and 1 above. The following four volumes are written in classical Chinese. The
first three of them are allocated to the answers to the 150 bequeathed problems in
Fundamental Mathematics [算法根源記 Sanpō Kongenki] (1669) by Satō Masaoki
[佐藤正興]. He answered all but 16 problems, which he says are concerning circles
and no known formulas in the theory of circles [圓理] are exact. Then, he closes his
book by the seventh volume consisting only of his 15 bequeathed problems.

We consider here only the 85th problem of Fundamental Mathematics:

Suppose that there is a right-angled tri-
angle containing a rectangle as in figure.
The length of the rectangle is 3shaku 2sun1

and the width 6sun. Moreover, the sum
of the hook, the leg and the chord of the
right-angled triangle is 1jō 2shaku. Find
the hook, the leg and the chord of the right-
angled triangle.
[今有鈎股弦内如圖縦横平。只云.縦三尺
二寸。横六寸。別. 鈎股弦寸各三和一丈
二尺。問鈎股弦幾何]

Fig. 1 Problem 85

Answer says: The hook is 3shaku, the leg 4shaku and the chord 5shaku.
[○答曰○鈎三尺○股四尺○弦五尺].

Explicit assumptions are the following three equations:

Assume Length = 32, Width = 6, (1)
Also Hook+Leg+Chord = 120, (2)

but we have implicitly

Hook2 +Leg2 = Chord2, (3)
(Hook−Width)×Leg = Length×Hook, (4)

by the Pythagorean theorem and the proportionality.
If we admit (1), the problem is reduced to that of finding three unknowns from

the remaining three equations. The procedure given by Sawaguchi is the following
and does not depend on the data on the right-hand sides of (1).

術曰.立天元一.為鈎。内減横.余為短鈎。寄甲位○列別云数.内減鈎.余為股弦
和。自之.得内減鈎冪.余為因股弦和二段股。以甲位乘之.為因股弦和因鈎二段
縦。寄左○列縦.以股弦和与鈎相乘之.得数倍之.与寄左相消.得開方式。平方翻
方開之.得鈎。依前術得股弦。各合問。

As far as procedures are concerned, this is all what Sawaguchi wrote for this
problem. It looks very different from the procedures [術 shù] stated in Introduction

1 sun[寸] is a unit of length of about 3cm, 10sun is 1shaku [尺], and 10shaku is 1 jō [丈].
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to Mathematics by Zhū Shı̀-Jié. The heavenly element method [天元術] is a way
to derive an equation from which we compute the answer by the root-extraction
method [開方術]. Therefore, Zhū Shı̀-Jié always wrote down a polynomial or an
equation with numerical coefficients he obtained after each procedure he explained.
But here we cannot find any of them.

In the following translation we supplement them but we allow polynomials as
coefficients if necessary.

Set the heavenly element, and let it be Hook ; 0 1 .
Subtract Width, to get Short Hook ; - Width 1 . Transfer it to Place A.
Set AlsoNo. ; AlsoNo. .
Subtract Hook, to get Leg + Chord ; AlsoNo. -1 .

Square it; AlsoNo.2 -2AlsoNo. 1 .

Subtract Hook squared ; AlsoNo.2 -2AlsoNo. , to get twice the sum of Leg
and Chord multiplied by Leg.

Multiply A; −AlsoNo.2 ×Width AlsoNo.2 +2AlsoNo.×Width −2AlsoNo.
to get (Leg+Chord)×2Hook×Length. And transfer it to the left-hand side.

Set Length ; Length .
Multiply it by the sum of Leg and Chord, and by Hook, and then double the result

; 0 2Length×AlsoNo. −2Length .

Cancel with the left-hand side, and get the equation;

−AlsoNo.2 ×Width 2Length×AlsoNo.−AlsoNo.2 −2AlsoNo.×Width

−2Length+2AlsoNo. .

Extract the roots of the quadratic equation and obtain the Hook. By the former
equations we obtain Leg and Chord.

Sawaguchi showed in this way that the expressions in classical Chinese can be as
concise as or even more than modern notations invented by Descartes [8]. The same
was claimed by Jock Hoe [33, 5] concerning Jade Mirror of Four Elements by Zhu
Shi-Jie. More interesting is Sawaguchi’s usage of the word 因 in 因股弦和二段股
and因股弦和因鈎二段縦. It is here employed to mean the operator Product of · and
· with two arguments in the Polish notation of logic as introduced by Łukasiewicz
[30]. Thus we have

因股弦和因鈎二段縦 =股弦和 ×因鈎二段縦
=股弦和 × (鈎二段 ×縦) = (股 +弦) × { (2鈎) ×縦 }.

The advantage of this notation is that one can express any complicated combina-
tions of operators uniquely without parentheses, which are necessary in Cartesian
notations and difficult to translate into classical Chinese having few relative words.
Seki Takakazu might have tried to introduce the operator併 for addition. In oldest
extant copies of his Method of Solving concealed Problems we find the passage子
三箇内減併丑二箇寅一箇.2

2 See these proceedings p. 478.
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2 Mathematical Methods without Secrets by Seki Takakazu

Mathematical Methods without Secrets [發微算法 Hatsubi Sanpō] (1674) [12] is
the only printed book Seki Takakazu [関孝和] published in his lifetime. There he
solved all the 15 open problems Sawaguchi left in his book Mathematical Methods,
Old and New (1670). We consider here only the 14th problem.

The question says: Suppose that there are two flat cones. Set x,y,z,u,v and w sun,
and cube them individually. The differences [of the cubes] are as follows. Compared
with x number, y number is smaller by 271 cubic sun. Compared with the y number,
the z number is smaller by 217 cubic sun. Compared with the z number, the u number
is smaller by 60.08 cubic sun. Compared with the u number, the v number is smaller
by 326.2 cubic sun. And compared with the v number, the w number is smaller by
61 cubic sun. Find x,y,z,u,v and w.
[今有両平錐只云列甲乙丙丁戊己寸各別別再自乘之各其差云則者從甲数而乙数
者少寸立積二百七十一坪從乙数而丙数者少寸立積二百十七坪從丙数而丁数者少
寸立積六十坪令八分從丁数而戊数者少寸立積三百二十六坪二分從戊数而己数者
少寸立積六十一坪問甲乙丙丁戊己幾何]

The solution Seki gave in the book is the following curt one:

x

w

u

v

zy

Fig. 2 Problem 14 of Sawaguchi

Answer says: The procedure of obtaining x is an equation of degree 1457. The pro-
cess of elimination is complicated and needs a long writing. Therefore we omit
it, whereas the outline of its starting procedure and its [elimination] process is the
following. Let the heavenly element be x. Then, the cubes of y,z,u,v and w are rep-
resented thereby. Hence the process of eliminating w cubed leads to [an equation of]
degree 17. The process of eliminating v cubed leads to [an equation of] degree 53.
The process of eliminating u cubed leads to [an equation of] degree 161. And the
process of eliminating z cubed leads to [an equation of] degree 485. Then, we start



Algebra, Elimination and the Complete Book of Mathematics 253

the process of eliminating y cubed to obtain two places which are identically equal.
By canceling them, we obtain an equation of degree 1457. Solving it, we obtain x.
This is a recursive method, which is a profound secret for solving difficult problems
and is an essence that the students should endeavor to try.
[答曰得甲術千四百五十七乘方飜法也演脱多端而文繁故略之乃其起術演段大概
曰立天元一為甲依之得乙丙丁戊己各再自乘数從是脱己再自乘数演段至一十七乘
方次脱戊再自乘数演段至五十三乘方次脱丁再自乘数演段至一百六十一乘方次脱
丙再自乘数演段至四百八十五乘方於是起術而脱乙再自乘数求両位適等相消得開
方式一千四百五十七乘方飜法開之得甲也是則循々誘入之意蓋解難問之奥妙也尤
為学者当務之要也]

The degree of a power in Wasan is smaller than ours by one because they counted
the number of multiplications.

This may look too concise an explanation to understand Seki’s method. But we
can guess it from what he wrote for the preceding problems. Denote by a,b,c,d and
e the known numbers obtained as the sums of differences of cubes. Then we have to
solve the system of equations:

y3 = x3 +a, (5)

z3 = x3 +b, (6)

u3 = x3 + c, (7)

v3 = x3 +d, (8)

w3 = x3 + e, (9)

x2u2(−x2 + y2 + z2 −u2 + v2 +w2)

+y2v2(x2 − y2 + z2 +u2 − v2 +w2)

+z2w2(x2 + y2 − z2 +u2 + v2 −w2)

−x2y2w2 − y2z2u2−z2x2v2 −u2v2w2 = 0.

(10)

The last one is the condition under which 6 segments in the figure are on a plane and
called the quadrilateral method [四斜法 shishahō] or the six obliques procedure [六
斜術 rokusha jutsu], which was given as Problem 58 in Muramatsu [9, p. 137 in the
Sato edition].

We rearrange it in the order of ascending powers in w and substitute (9) for w3 in
w4. Then, we have

A+Bw+Cw2 = 0, (11)

where

A = x2u2(−x2 + y2 + z2 −u2 + v2)

+y2v2(x2 − y2 + z2 +u2 − v2)− y2z2u2 − z2x2v2,
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B = −z2(x3 + e),

C = x2u2 + y2v2 + z2(x2 + y2 − z2 +u2 + v2)− x2y2 −u2v2.

Now, employing

P+Q+R = 0 =⇒ P3 +Q3 +R3 −3PQR = 03 (12)

for P = A,Q = Bw, and R = Cw2. we have

A3 +(B3 −3ABC)w3 +C3w6 = 0 (13)

as a consequence of (6) and (5). Since A,B and C have no w,

A3 +(B3 −3ABC)(x3 + e)+C3(x3 + e)2 = 0 (14)

is an equation obtained from (10) and (9) by eliminating w. Since A,B and C are of
degree 6, 5, and 4, respectively, this is an equation of degree 18.

Then, we rearrange it in the order of ascending powers in v, substitute (8) when-
ever we have the factor v3 in the terms and repeat it until we have an equation of the
form (11) with w replaced by v. Thus, we obtain an equation of the form (13) with
w replaced by u which does not contain neither w nor v. Since the coefficients A,B
and C are cubed in the process of converting (11) into (13), this is an equation in
x,y,z and u of degree 18×3 = 54.

Similarly we eliminate u,z and y in turn and obtain an equation only in x of
degree 54×33 = 1458.

Presumably the principle is understood but it is beyond human ability to carry it
out. Neither Seki nor any other Wasan mathematicians did. Until recently nobody
could. Only the recent development of symbolic calculus made it possible by the
use of computers. Dr. Kinji Kimura’s calculation [37] shows that the equation of
degree 1458 is of the lowest degree, and that

x = 10.0000056403 y = 9.0000069815
z = 8.0000083910 u = 7.6699093899
v = 5.0000228360 w = 4.0000357240

(15)

is its only one solution with positive entries, and moreover, there are seven sets of
real solutions and 1450 sets of complex solutions.4

Eleven years later, in 1685, Seki’s pupil Takebe Katahiro [建部賢弘] published
a book titled Commentaries in Japanese of Procedures in Mathematical Methods
without Secrets [發微算法演段諺解] [16] and gave detailed commentaries on Seki’s
solutions written in the style of Sawaguchi. Takebe introduced here the byscript
method [傍書法 bōsho hō] to express polynomials in several variables which is

3 = (P+Q+R)(P2 +Q2 +R2 −PQ−QR−RP)
4 Kimura solved the problem assuming that z3 − u3 = 60.8 but not 60.08 according to Hirayama
[32, p. 76]. Moreover the author erroneously gave 4.0000359240 as w in his talk.
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suitable, in particular, for denoting the intermediate and final results in the heav-
enly element method, which Sawaguchi had to abandon. Therefore, it is generally
believed that Algebra was established in Japan by this book.

3 Quadrilateral Method or Six Obliques Procedure

The quadrilateral relation which holds for the sides b,c,q,r and the diagonals a and
p of a quadrilateral on a plane is a consequence of

a2 +b2 − r2 = 2as, (16)

a2 + c2 −q2 = 2at, (17)

b2 = s2 +u2, (18)

c2 = t2 + v2, (19)

p2 = (s− t)2 +(u+ v)2. (20)

a

p

b

u

r

q

v

c

s

t

Fig. 3 Quadrilateral Method

The first two are the cosine law and the rest are the Pythagorean theorem. The result

a2 p2(−a2 +b2 + c2 − p2 +q2 + r2)

+b2q2(a2 −b2 + c2 + p2 −q2 + r2)

+c2r2(a2 +b2 − c2 + p2 +q2 − r2)

−a2b2r2 −b2c2 p2−c2a2q2 − p2q2r2 = 0.

(21)

became famous among Japanese mathematicians after Seki Takakazu employed it
in the solutions of Problems 12 as well as 14 of Sawaguchi under a little different
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configurations. Here we reproduce the proof of Seki and Takebe according to the
sketch in Volume 10 of the Complete Books of Mathematics [大成算経]5.

Let S+ = av/2 and S− = au/2 be the areas of the upper and lower triangles,
respectively. Then, it follows from (19) and (17) that

16S2
+ = 4a2c2 −4a2t2

= 4a2c2 − (a2 + c2 −q2)2

= 2a2c2 +2c2q2 +2a2q2 −a4 − c4 −q4. (22)

Similarly (18) and (16) imply

16S2
− = 2a2b2 +2b2r2 +2a2r2 −a4 −b4 − r4. (23)

They are Heron’s formula of the area of a triangle.
On the other hand, the square of the difference of (16) and (17)

b2 − c2 +q2 − r2 = 2a(s− t)

gives
(b2 − c2 +q2 − r2)2 = 4a2(s− t)2. (24)

Hence we have by (20)

16(S+ +S−)2 = 4a2(u+ v)2 = 4a2 p2 −4a2(s− t)2

= 4a2 p2 − (b2 − c2 +q2 − r2)2.

Subtracting (22) and (23) from both sides, we obtain

32S+S− = 2a2(a2 −b2 − c2 +2p2 −q2 − r2)+2(b2 − r2)(c2 −q2).

Dividing both sides by 2 and then squaring them, we have

16S2
+ ·16S2

− = {(a2(a2 −b2 − c2 +2p2 −q2 − r2)+(b2 − r2)(c2 −q2)}2

= a8 +a6{−2b2 −2c2 +4p2 −2q2 − r2}
+a4{(b4 +4b2c2 −4b2 p2 +2b2r2)+(c4 −4c2 p2 +2c2q2)

+(4p4 −4p2q2 −4p2r2)+(q4 +4q2r2)+ r4}
+a2{−2b4c2 +2b4q2 −2b2c4 +4b2c2 p2 −4b2 p2q2 +2b2q4

+2c4r2 +4p2q2r2 −2q4r2 −2q2r4 −4c2 p2r2 +2c2r4}
+{b4c4 −2b4c2q2 +b4q4 −2b2c4r4 +4b2q2r2 −2b2q4r2

+ c4r4 −2c2q2r4 +q4r4}. (25)

The same quantity is computed as the product of (22) and (23). Thus we have

5 See these Proceedings pp. 527–529.



Algebra, Elimination and the Complete Book of Mathematics 257

16S2
+ ·16S2

− = {2a2c2 +2c2q2 +2a2q2 −a4 − c4 −q4}
×{2a2b2 +2b2r2 +2a2r2 −a4 −b4 − r4}
= a8 +a6{−2b2 −2c2 −2q2 −2r2}
+a4{(b4 +4b2c2 +4b2q2 −2b2r2)+(c4 −2c2q2 +4c2r2)

+(q4 +4q2r2 + r4)}
+a2{−2b4c2 −2b4q2 −2b2c4 +4b2c2q2 +4b2c2r2 −2b2q4

+4b2q2r2 −2c4r2 +4c2q2r2 −2c2r4 −2q4r2 −2q2r4}
+{b4c4 −2b4c2q2 +b4q4 −2b2c4r2 +4b2c2q2r2 −2b2q4r2

+ c4r4 −2c2q2r4 +q4r4}. (26)

The right hand side of (25) has 22 positive terms and 18 negative terms and that
of (26) 18 and 18. We transfer (25) to the left place [寄左] and equate it with (26) [相
消]. Then, we obtain the eliminated equation (21) times the non-zero factor −4a2.

When a,b,c, p,q and r are the lengths of edges of a tetrahedron, the left hand side
of (21) represents 144V 2, where V is its volume. Seki and Takebe brothers used the
negative of (21). Probably this means that they didn’t notice the volume formula.

The first paper of Arthur Cayley (1821–1895) [27] was a proof of the quadri-
lateral method and its generalizations, which is reproduced in these proceedings on
p.569.

4 Power Procedures or Diminishing and Stretching Method

In the above solution of Probelem 14 the most essential was the implication

A+Bw+Cw2 = 0 =⇒ A3 +(B3 −3ABC)w3 +C3w6 = 0. (27)

Most of the other problems of Sawaguchi can also be solved in a similar way.
Sawaguchi and other mathematicians in Kyoto and Osaka area were develop-
ing the power procedures [冪乘演式 bekijō enshiki], that is, for a given number
n = 2,3,4, · · · , they knew how to compute a new polynomial F(Xn) in Xn of the
lowest degree from a given equation

f (X) = a0X0 +a1X1 + · · ·+amXm = 0 (28)

such that all roots of the above are also roots of

F(Xn) = A0X0 +A1Xn + · · ·+AMXMn = 0. (29)

Miyagi Kiyotsura [宮城清行] published his result for n = 4,5 and 6 in Lucid Meth-
ods of Mathematics [明元算法Meigen Sanpō] (1689) [17], Andō Yoshiharu [安藤
吉治] for n = 7 in Monopolized Mathematical Method [一極算法 Ikkyoku Sanpō]
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(1689) [18], and Nakane Genkei [中根元圭] for n = 8 in Procedure of the Seventh
Powers [七乘冪演式 Shichijōbeki enshiki] (1691) [21] without any errors. In the
last book 810 terms were published in two volumes.

Since these works are almost forgotten, we reproduce here their results. We may
assume that m < n. The coefficients a0,a1,a2, · · · are written a,b,c, · · · , and = 0 at
the end are omotted.

n = 2
a2X0 −b2X2. (30)

n = 3

a3X0 +(b3 −3abc)X3 + c3X6. (31)

n = 4

a4X0 +(−b4 +4ab2c−2a2c2 −4a2bd)X4

+(c4 −4bc2d +2b2d2 +4acd2)X8 −d4X12. (32)

n = 5

a5X0 +(b5 −5ab3c+5a2bc2 +5a2b2d −5a3cd −5a3be)X5

+(c5 −5bc3d +5b2cd2 +5ac2d2 −5abd3 +5b2c2e

−5ac3e−5b3de−5abcde+5a2d2e+5ab2e2 +5a2ce2)X10

+(d5 −5cd3e+5c2de2 +5bd2e2 −5bce3 −5ade3)X15 + e5X20. (33)

n = 6

a6X0 +(−b6 +6ab4c−9a2b2c2 +2a3c3 −6a2b3d

+12a3bcd −3a4d2 +6a3b2e−6a4ce−6a4b f )X6

+(c6 −6bc4d +9b2c2d2 +6ac3d2 −2b3d3 −12abcd3 +3a2d4 +6b2c3e−6ac4e

−12b3cde+18ab2d2 +3b4e2 +9a2c2e2 −18a2bde2 +2a3e3 −6b3c2 f +12abc3 f

+6b4d f −18a2c2d f −12ab3e f +12a3de f +9a2b2 f 2 +6a3c f 2)X12

+(−d6 +6cd4e−9c2d2e−6bd3e2 +2c3e3 +12bcde3 +6ad2e3 −3b2e4 −6ace4

−6c2d3 f +6bd4 f +12c3de f −12ad3e f −18bc2e2 f +12abe3 f −3c4 f 2

−9b2d2 f 2 +18acd2 f 2 +18b2ce f 2 −9a2e2 f 2 −2b3 f 3 −12abc f 3 −6a2d f 3)X18

+(e6 −6de4 f +9d2e2 f 2 +6ce3 f 2 −2d3 f 3 −12cde f 3

−6be2 f 3 +3c2 f 4 +6bd f 4 +6ae f 4)X24 − f 6X30. (34)
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n = 7

a7X0 +(b7 −7ab5c+14a2b3c2 −7a3bc3 +7a2b4d −21a3b2cd +7a4c2d

+7a4bd2 −7a3b3e+14a4bce−7a5de+7a4b2 f −7a5c f −7a5bg)X7

+(c7 −7bc5d +14b2c3d2 +7ac4d2 −7b3cd3 −21abc2d3 +7ab2d4 +7a2cd4

+7b2c4e−7ac5e−21b3c2de+7abc3de+7b4d2e+35ab2cd2e−7a2c2d2

−21a2bd3e+7b4ce2 −7ab2c2e2 +14a2c3e2 −21ab3de2 −14a2bcde2

+14a3d2e2 +14a2b2e3 −7a3ce3 −7b3c3 f +14abc4 f +14b4cd f −14ab2c2d f

−21a2c3d f −21ab3d2 f +35a2bcd2 f −7a3d3 f −7b5e f +7ab3ce f −14a2bc2e f

+35a2b2de f +7a3cde f −21a3be2 f +7ab4 f 2 −7a2b2c f 2 +14a3c2 f 2

−21a3bd f 2 +7a4e f 2 +7b4c2g−21ab2c3g+7a2c4g−7b5dg+7ab3cdg

+35a2bc2dg−7a2b2d2g−21a3cd2g+14ab4eg−14a2b2ceg−21a3c2eg

+7a3bdeg+7a4e2g−21a2b3 f g+7a3bc f g+14a4d f g+14a3b2g2 +7a4cg2)X14

+(d7 −7cd5e+14c2d3e2 +7bd4e2 −7c3de3 −21bcd2e3 −7ad3e3 +7bc2e4

+7b2de4 +14acde4 −7abe5 +7c2d4 f −7bd5 f −21c3d2e f +7bcd3e f +14ad4e f

+7c4e2 f +35bc2de2 f −7b2d2e2 f −14acd2e2 f −21b2ce3 f −21ac2e3 f +7abde3 f

+7a2e4 f +7c4d f 2 −7bc2d2 f 2 +14b2d3 f 2 −21acd3 f 2 −21bc3e f 2 −14b2cde f 2

+35ac2de f 2 −14abd2e f 2 +14b3e2 f 2 +35abce2 f 2 −7a2de2 f 2 +14b2c2 f 3

−7ac3 f 3 −7b3d f 3 +7abcd f 3 +14a2d2 f 3 −21ab2e f 3 −21a2ce f 3 +7a2b f 4

−7c3d3g+14bcd4g−7ad5g+14c4deg−14bc2d2eg−21b2d3eg+7acd3eg

−21bc3e2g+35b2cd2g−14ac2de2g+35abd2e2g−7b3e3g+7abce3g−21a2de3g

−7c5 f g+7bc3d f g−14b2cd2 f g+35ac2d2 f g+7abd3 f g+35b2c2e f g

+7ac3e f g+7b3de f g−105abcde f g−14a2d2e f g−14ab2e2 f g+35a2ce2 f g

−21b3c f 2g−14abc2 f 2g+35ab2d f 2g−14a2cd f 2g+35a2be f 2g−7a3 f 3g

+7bc4g2 −7b2c2dg2 −21ac3dg2 +14b3d2g2 −14abc2g2 +14a2d3g2 −21b3ceg2

+35abc2eg2 −14ab2deg2 +35a2cdeg2 −7a2be2g2 +7b4 f g2 +35ab2c f g2

−7a2c2 f g2 −14a2bd f g2 −21a3e f g2 −7ab3g3 −21a2bcg3 −7a3dg3)X21

+(e7 −7de5 f +14d2e3 f 2 +7ce4 f 2 −7d3e f 3 −21cde2 f 3 −7be3 f 3 +7cd2 f 4

+7c2e f 4 +14bde f 4 +7ae2 f 4 −7bc f 5 −7ad f 5 +7d2e4g−7ce5g−21d3e2 f g

+7cde3 f g+14be4 f g+7d4 f 2g+35cd2e f 2g−7c2e2 f 2g−14bde2 f 2g−21ae3 f 2g

−21c2d f 3g−21bd2 f 3g+7bce f 3g+7ade f 3g+7b2 f 4g+14ac f 4g



260 Hikosaburo Komatsu

+7d4eg2 −7cd2e2g2 +14c2e3g2 −21bde3g2 +7ae4g2 −21cd3 f g2 −14c2de f g2

+35bd2e f g2 −14bce2 f g2 +35ade2 f g2 +14c3 f 2g2 +35bcd f 2g2 −7ad2 f 2g2

−7b2e f 2g2 −14ace f 2g2 −21ab f 3g2 +14c2d2g3 −7bd3g3 −7c3eg3 +7bcdeg3

−21ad2eg3 +14b2e2g3 −21ace2g3 −21bc2 f g3 −21b2d f g3 +7acd f g3

+7abe f g3 +14a2 f 2g3 +7b2cg4 +7ac2g4 +14abdg4 +7a2eg4)X28

+( f 7 −7e f 5g+14e2 f 3g2 +7d f 4g2 −7e3 f g3 −21de f 2g3 −7c f 3g3 +7de2g4

+7d2 f g4 +14ce f g4 +7b f 2g4 −7cdg5 −7beg5 −7a f g5)X35 +g7X42. (35)

n = 8

a8X0 +(−b8 +8ab6c−20a2b4c2 +16a3b2c3 −2a4c4 −8a2b5d +32a3b3cd

−24a4bc2d −12a4b2d2 +8a5cd2 +8a3b4e−24a4b2ce+8a5c2e+16a5bde

−4a6e2 −8a4b3 f +16a5bc f −8a6d f +8a5b2g−8a6cg−8a6bh)X8

+(c8 −8bc6d +20b2c4d2 +8ac5d2 −16b3c2d3 −32abc3d3 +2b4d4 +24ab2cd4

+12a2c2d4 −8a2bd5 +8b2c5e−8ac6e−32b3c3de+16abc4de+24b4cd2e

+48ab2c2d2e−16a2c3d2e−32ab3d3e−32a2bcd3e+8a3d4e+12b4c2e2

−16ab2c3e2 +20a2c4e2 −8b5de2 −32ab3cde2 −16a2bc2de2 +56a2b2d2e2

+16a3cd2e2 +8ab4e3 +16a2b2ce3 −16a3c2e3 −32a3bde3 +6a4e4 −8b3c4 f

+16abc5 f +24b4c2d f −32ab2c3d f −24a2c4d f −8b5d2 f −32ab3cd2 f

+80a2bc2d2 f +16a2b2d3 f −32a3cd3 f −16b5ce f +32ab3c2e f −32a2bc3e f

+48ab4de f −32a2b2cde f +32a3c2de f −32a3bd2e f −48a2b3e2 f +32a3bce2 f

+8a4de2 f +4b6 f 2 −8ab4c f 2 +8a2b2c2 f 2 +16a3c3 f 2 −16a2b3d f 2 −32a3bcd f 2

+20a4d2 f 2 +48a3b2e f 2 −24a4ce f 2 −8a4b f 3 +8b4c3g−24ab2c4g+8a2c5g

−16b5cdg+32ab3c2dg+32a2bc3dg+24ab4d2g−80a2b2cd2g−16a3c2d2g

+32a3bd3g+8b6eg−16ab4ceg+16a2b2c2eg−32a3c3eg−32a2b3deg

+64a3bcdeg−24a4d2eg+16a3b2e2g+8a4ce2g−16ab5 f g+32a2b3c f g

−32a3bc2 f g+32a3b2d f g+16a4cd f g−48a4be f g+8a5 f 2g+12a2b4g2

+16a4bcgh+16a5dgh+20a4b2h2 +8a5ch2)X16

+(−d8 +8cd6e−20c2d4e2 −8bd5e2 +16c3d2e3 +32bcd3e3 +8ad4e3 −2c4e4

−24bc2de4 −12b2d2e4 −24acd2e4 +8b2ce5 +8ac2e5 +16abde5 −4a2e6 −8c2d5 f

+8bd6 f +32c3d3e f −16bcd4e f −16ad5e f −24c4de2 f −48bc2d2e2 f +16b2d3e2 f

+32acd3e2 f +32bc3e3 f +32b2cde3 f +32ac2de3 f −32abd2e3 f −8b3e4 f

−48abce4 f +8a2de4 f −12c4d2 f 2 +16bc2d3 f 2 −20b2d4 f 2 +24acd4 f 2 +8c5e f 2

+32bc3de f 2 +16b2cd2e f 2 −80ac2d2e f 2 +32abd3e f 2 −56b2c2e2 f 2 −16ac3e2 f 2
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−16b3de2 f 2 +32abcde2 f 2 −8a2d2e2 f 2 +48ab2e3 f 2 +16a2ce3 f 2 −8bc4 f 3

−16b2c2d f 3 +32ac3d f 3 +16b3d2 f 3 −32abcd2 f 3 −16a2d3 f 3 +32b3ce f 3

+32abc2e f 3 −32ab2de f 3 +32a2cde f 3 −48a2be2 f 3 −6b4 f 4 −8ab2c f 4

−20a2c2 f 4 +24a2bd f 4 +8a3e f 4 +8c3d4g−16bcd5g+8ad6g−24c4d2eg

+32bc2d3eg+24b2d4eg−16acd4eg+8c5e2g+32bc3de2g−80b2cd2e2g

+16ac2d2e2g−32abd3e2g−16b2c2e3g−32ac3e3g+32b3de3g+64abcde3g

+16a2d2e3g−24ab2e4g+8a2ce4g+16c5d f g−32bc3d2 f g+32b2cd3 f g

−32ac2d3 f g−16abd4 f g−48bc4e f g+32b2c2de f g+64ac3de f g−32b3d2e f g

+64abcd2e f g+32a2d3e f g+32b3ce2 f g+32abc2e2 f g−32ab2de2 f g

−160a2cde2 f g+32a2be3 f g+48b2c3 f 2g−24ac4 f 2g−32b3cd f 2g−32abc2d f 2g

+16ab2d2 f 2g+48a2cd2 f 2g−8b4e f 2g−96ab2ce f 2g+16a2c2e f 2g+32a2bde f 2g

+16a3e2 f 2g+32ab3 f 3g+32a2bc f 3g−32a3d f 3g−4c6g2 +8bc4dg2 −8b2c2d2g2

+16ac3d2g2 −16b3d3g+32abcd3g2 −20a2d4g2 +16b2c3eg2 +8ac4eg2

+32b3cdeg2 −160abc2deg2 +48ab2d2eg2 +16a2cd2eg2 −20b4e2g2 +16ab2ce2g2

+56a2c2e2g2 −16a2bde2g2 −16a3e3g2 −48b3c2 f g2 +32abc3 f g2 +24b4d f g2

+32ab2cd f g2 −16a2c2d f g2 −48a2bd2 f g2 +32ab3e f g2 +32a2bce f g2

+32a3de f g2 −56a2b2 f 2g2 −16a3c f 2g2 +8b4cg3 +16ab2c2g3 −16a2c3g3

−32ab3dg3 +32a2bcdg3 +16a3d2g3 −16a2b2eg3 −32a3ceg3 +32a3b f g3

−2a4g4 −8c4d3h+24bc2d4h−8b2d5h−16acd5h+16c5deh−32bc3d2eh

−32b2cd3eh+32ac2d3eh+48abd4eh−24bc4e2h+80b2c2de2h−32ac3de2h

+16b3d2e2h−32abcd2e2h−48a2d3e2h−32b3ce3h+32abc2e3h−32ab2de3h

+32a2cde3h+8a2be4h−8c6 f h+16bc4d f h−16b2c2d2 f h+32ac3d2 f h

+32b3d3 f h−64abcd3 f h+24a2d4 f h+32b2c3e f h+16ac4e f h−64b3cde f h

−64abc2de f h−32ab2d2e f h+32a2cd2e f h+24b4e2 f h+32ab2ce2 f h

−16a2c2e2 f h+96a2bde2 f h−32a3e3 f h−16b3c2 f 2h−32abc3 f 2h−8b4d f 2h

+160ab2cd f 2h−48a2c2d f 2h−16a2bd2 f 2h−32ab3e f 2h−32a2bce f 2h

−32a3de f 2h−16a2b2 f 3h+32a3c f 3h+16bc5gh−32b2c3dgh−48ac4dgh

+32b3cd2gh+32abc2d2gh−32ab2d3gh+32a2cd3gh−32b3c2egh+64abc3egh

−16b4degh+64ab2cdegh+32a2c2degh−32a2bd2egh+32ab3e2gh−160a2bce2gh

+32a3de2gh+48b4c f gh−32ab2c2 f gh+32a2c3 f gh−64ab3d f gh−64a2bcd f gh

−32a3d2 f gh+32a2b2e f gh+64a3ce f gh+32a3b f 2gh−8b5g2h−32ab3cg2h

−16a2bc2g2h+80a2b2dg2h−32a3cdg2h+32a3beg2h−24a4 f g2h−12b2c4h2

+8ac5h2 +16b3c2dh2 +32abc3dh2 −20b4d2h2 +16ab2cd2h2 −56a2c2d2h2

−16a2bd3h2 +24b4ceh2 −80ab2c2eh2 −16a2c3eh2 +32ab3deh2 +32a2bcdeh2

+48a3d2eh2 −8a2b2e2h2 +16a3ce2h2 −8b5 f h2 −32ab3c f h2 +80a2bc2 f h2

−16a2b2d f h2 +32a3cd f h2 −32a3be f h2 −12a4 f 2h2 +24ab4gh2 +48a2b2cgh2
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−16a3c2gh2 −32a3bdgh2 −24a4egh2 −16a2b3h3 −32a3bch3 −8a4dh3)X24

+(e8 −8de6 f +20d2e4 f 2 +8ce5 f 2 −16d3e2 f 3 −32cde3 f 3 −8be4 f 3 +2d4 f 4

+24cd2e f 4 +12c2e2 f 4 +24bde2 f 4 +8ae3 f 4 −8c2d f 5 −8bd2 f 5 −16bce f 5

−16ade f 5 +4b2 f 6 +8ac f 6 +8d2e5g−8ce6g−32d3e3 f g+16cde4 f g+16be5 f g

+24d4e f 2g+48cd2e2 f 2g−16c2e3 f 2g−32bde3 f 2g−24ae4 f 2g−32cd3 f 3g

−32c2de f 3g−32bd2e f 3g+32bce2 f 3g+32ade2 f 3g+8c3 f 4g+48bcd f 4g

+24ad2 f 4g−8b2e f 4g−16ace f 4g−16ab f 5g+12d4e2g2 −16cd2e3g2 +20c2e4g2

−24bde4g2 +8ae5g2 −8d5 f g2 −32cd3e f g2 −16c2de2 f g2 +80bd2e2 f g2

−32bce3 f g2 +32ade3 f g2 +56c2d2 f 2g2 +16bd3 f 2g2 +16c3e f 2g2 −32bcde f 2g2

−80ad2e f 2g2 +8b2e2 f 2g2 +16ace2 f 2g2 −48bc2 f 3g2 −16b2d f 3g2 −32acd f 3g2

+32abe f 3g2 +12a2 f 4g2 +8cd4g3 +16c2d2eg3 −32bd3eg3 −16c3e2g3 +32bcde2g3

−16ad2e2g3 +16b2e3g3 −32ace3g3 −32c3d f g3 −32bcd2 f g3 +32ad3 f g3

+32bc2e f g3 −32b2de f g3 +64acde f g3 −32abe2 f g3 +48b2c f 2g3 +16ac2 f 2g3

+32abd f 2g3 −16a2e f 2g3 +6c4g4 +8bc2dg4 +20b2d2g4 −24acd2g4 −24b2ceg4

+8ac2eg4 +16abdeg4 +20a2e2g4 −8b3 f g4 −48abc f g4 −24a2d f g4 +8ab2g5

+8a2cg5 −8d3e4h+16cde5h−8be6h+24d4e2 f h−32cd2e3 f h−24c2e4 f h

+16bde4 f h+16ae5 f h−8d5 f 2h−32cd3e f 2h+80c2de2 f 2h−16bd2e2 f 2h

+32bce3 f 2h−32ade3 f 2h+16c2d2 f 3h+32bd3 f 3h−32c3e f 3h−64bcde f 3h

+32ad2e f 3h−16b2e2 f 3h−32ace2 f 3h+24bc2 f 4h−8b2d f 4h−16acd f 4h

+48abe f 4h−8a2 f 5h−16d5egh+32cd3e2gh−32c2de3gh+32bd2e3gh

+16bce4gh−48ade4gh+48cd4 f gh−32c2d2e f gh−64bd3e f gh+32c3e2 f gh

−64bcde2 f gh+32ad2e2 f gh−32b2e3 f gh+64ace3 f gh−32c3d f 2gh

−32bcd2 f 2gh−32ad3 f 2gh+32bc2e f 2gh+160b2de f 2gh+64acde f 2gh

−32abe2 f 2gh−32b2c f 3gh+32ac2 f 3gh−64abd f 3gh−32a2e f 3gh−48c2d3g2h

+24bd4g2h+32c3deg2h+32bcd2eg2h+32ad3eg2h−16bc2e2g2h

−48b2de2g2h+32acde2g2h+32abe3g2h+8c4 f g2h+96bc2d f g2h−16b2d2 f g2h

−32acd2 f g2h−32b2ce f g2h−160ac2e f g2h−64abde f g2h−16a2e2 f g2h

−16b3 f 2g2h+32abc f 2g2h+80a2d f 2g2h−32bc3g3h−32b2cdg3h+32ac2dg3h

−32abd2g3h+32b3eg3h+64abceg3h−32a2deg3h+32ab2 f g3h+32a2c f g3h

−24a2bg4h+4d6h2 −8cd4eh2 +8c2d2e2h2 −16bd3e2h2 +16c3e3h2

−32bcde3h2 +48ad2e3h2 +20b2e4h2 −24ace4h2 −16c2d3 f h2 −8bd4 f h2

−32c3de f h2 +160bcd2e f h2 −32ad3e f h2 −48bc2e2 f h2 −16b2de2 f h2

−32acde2 f h2 −32abe3 f h2 +20c4 f 2h2 −16bc2d f 2h2 −56b2d2 f 2h2

+16acd2 f 2h2 +16b2ce f 2h2 +48ac2e f 2h2 −32abde f 2h2 +56a2e2 f 2h2

+16b3 f 3h2 −32abc f 3h2 +16a2d f 3h2 +48c3d2gh2 −32bcd3gh2
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−8ad4gh2 −24c4egh2 −32bc2degh2 +16b2d2egh2 −96acd2egh2

+48b2ce2gh2 ++16ac2e2gh2 +32abde2gh2 +16a2e3gh2 −32bc3 f gh2

−32b2cd f gh2 +32ac2d f gh2 +160abd2 f gh2 −32b3e f gh2 +64abcegh2

−32a2de f gh2 +16ab2 f 2gh2 −80a2c f 2gh2 +56b2c2g2h2 +16ac3g2h2

+16b3dg2h2 −32abcdg2h2 +8a2d2g2h2 −80ab2eg2h2 +16a2ceg2h2

−48a2b f g2h2 +16a3g3h2 −8c4dh3 −16bc2d2h3 +16b2d3h3 +32acd3h3

+32bc3eh3 −32b2cdeh3 +32ac2deh3 −32abd2eh3 −16b3e2h3

+32abce2h3 −48a2de2h3 +16b2c2 f h3 −32ac3 f h3 +32b3d f h3

−64abcd f h3 −16a2d2 f h3 +32ab2e f h3 −32a2ce f h3 +16a2b f 2h3

−32b3cgh3 −32abc2gh3 −32ab2dgh3 +32a2cdgh3 +32a2begh3

+32a3 f gh3 +2b4h4 +24ab2ch4 +12a2c2h4 +24a2bdh4 +8a3eh4)X32

+(− f 8 +8e f 6g−20e2 f 4g2 −8d f 5g2 +16e3 f 2g3 +32de f 3g3 +8c f 4g3

−2e4g4 −24de2 f g4 −12d2 f 2g4 −24ce f 2g4 −8b f 3g4 +8d2eg5 +8ce2g5

+16cd f g5 +16be f g5 +8a f 2g5 −4c2g6 −8bdg6 −8aeg6 −8e2 f 5h

+8d f 6h+32e3 f 3gh−16de f 4gh−16c f 5gh−24e4 f g2h−48de2 f 2g2h

+16d2 f 3g2h+32ce f 3g2h+24b f 4g2h+32de3g3h+32d2e f g3h

+32ce2 f g3h−32cd f 2g3h−32be f 2g3h−32a f 3g3h−8d3g4h−48cdeg4h

−24be2g4h+8c2 f g4h+16bd f g4h+16ae f g4h+16bcg5h+16adg5h

−12e4 f 2h2 +16de2 f 3h2 −20d2 f 4h2 +24ce f 4h2 −8b f 5h2 +8e5gh2

+32de3 f gh2 +16d2e f 2gh2 −80ce2 f 2gh2 +32cd f 3gh2 −32be f 3gh2

+24a f 4gh2 −56d2e2g2h2 −16ce3g2h2 −16d3 f g2h2 +32cde f g2h2

+80be2 f g2h2 −8c2 f 2g2h2 −16bd f 2g2h2 +48ae f 2g2h2 +48cd2g3h2

+16c2eg3h2 +32bdeg3h2 −16ae2g3h2 −32bc f g3h2 −32ad f g3h2

−12b2g4h2 −24acg4h2 −8de4h3 −16d2e2 f h3 +32ce3 f h3 +16d3 f 2h3

−32cde f 2h3 +16be2 f 2h3 −16c2 f 3h3 +32bd f 3h3 −32ae f 3h3

+32d3egh3 +32cde2gh3 −32be3gh3 −32cd2 f gh3 +32c2e f gh3

−64bde f gh3 −32ae2 f gh3 +32bc f 2gh3 −32ad f 2gh3 −48c2dg2h3

−16bd2g2h3 −32bceg2h3 +32adeg2h3 +16b2 f g2h3 +32ac f g2h3

+32abg3h3 −6d4h4 −8cd2eh4 −20c2e2h4 +24bde2h4 +8ae3h4

+24c2d f h4 −8bd2 f h4 −16bce f h4 +48ade f h4 −20b2 f 2h4 +24ac f 2h4

+8c3gh4 +48bcdgh4 −8ad2gh4 +24b2egh4 −16acegh4 −16ab f gh4

−20a2g2h4 −8bc2h5 −8b2dh5 −16acdh5 −16abeh5 −8a2 f h5)X40

+(g8 −8 f g6h+20 f 2g4h2 +8eg5h2 −16 f 3g2h3 −32e f g3h3 −8dg4h3 +2 f 4h4

+24e f 2gh4 +12e2g2h4 +24d f g2h4 +8cg3h4 −8e2 f h5 −8d f 2h5 −16degh5

−16c f gh5 −8bg2h5 +4d2h6 +8ceh6 +8b f h6 +8agh6)X48 −h8X56. (36)
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Seki and Takebe called the same procedure the Diminishing and Stretching
Method [消長法 shōchō hō]. This word appears in Takebe’s Commentaries in
Japanese [16] as a powerful means of elimination but with no explanations. In
Complete Book of Mathematics [22] it appears in Volume 3 Modification Tech-
niques [変技] [of algebraic equations] and Volume 17 Solutions of Well-posed
Problems [全題解]. In Subsection Powered Roots [冪商] of Volume 3, Section 2,
it is used to construct a new equation F(Y ) = 0 from a given equation f (X) = 0
such that the power ξ n of any root ξ of f (X) = 0 is a root of F(Y ) = 0. Sec-
tion 5 Alternating Multiplication [交乘] of Volume 17 deals with determinants. Here
they computed the above equations for n = 2,3,4 and 5. Thus they understood
that Equation (29) was the resultant of the system of original Equation (28) and
Y −Xn = 0, then with Y replaced by Xn, but what they wrote was more primitive. In
order to prove (31), they cubed the both sides of −a = bx+cx2, and then employed
3b2cX4 +3bc2X5 =−3abcX3. They made a miscalculation for n = 4 and their result
for n = 5 contained 3 errors in numerical coefficients and 1 sign.

Compared with these, the above error-free computations by Miyagi [17], Ando
[18] and Nakane [21] are miraculous. However, they left no descriptions how they
computed these resuts in their books except that Andō writes “There are two pro-
cedures, one is direct and the other reduced. If I had taken the direct procedure,
I would have had two equations each of which had 5538 terms, which would be
too long, so that I took the reduced one to get this result.” Nakane writes that his
computation took 30 days.

5 Resolution of Entanglements in Mathematics by Tanaka

Their master Tanaka Yoshizane [田中由眞] (1651–1719) is a mathematician who
lived in Kyoto. He was a strong opponent of Seki Takakazu. In 1679 he published
Clearly Explained Methods of Mathematics [算法明解 Sanpō Meikai] [13] in two
volumes and solved all problems of Sawaguchi by different methods from Seki’s
Mathematical Methods without Secrets [12].

It seems, however, that neither Seki nor Tanaka was satisfied with their methods.
They started to seek for more general procedures to eliminate auxiliary variables
from arbitrary systems of algebraic equations. By 1683 Seki finished his Methods
of Solving Concealed Problems [解伏題之法 Kaihukudai no Hō] [14] in which he
introduced resultants with the use of determinants. (See Goto-Komatsu [35] repro-
duced in these Proceedings with a supplement of mathematical notes.) He should
have thought that mathematics was completed and in the same year started to write
a treatise of all mathematics of his realm with the cooperation of Takebe Katahiro
[建部賢弘] and Kataakira [賢明] brothers. Twenty eight years later they wrote up the
twenty volumes of Complete Book of Mathematics [大成算經 Taisei Sankei][22].

Tanaka’s book Resolution of Entanglements in Mathematics [算学紛解 Sangaku
Funkai] [19] is his counterpart. The first four volumes out of eight are devoted to
the elimination theory. Except for the date 1683 in the last Volume 8 no dates are
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written. Volume 2 mentions the above books by Miyagi [17], Andō [18] and Nakane
[21]. Thus this part was certainly written later than 1691. On the other hand, the
disciples Ando and Nakane of Tanaka might have written their books by Tanaka’s
theory described here.

Tanaka could have reached the concept of the resultant of two polynomial equa-
tions, earlier than Seki, independent of the determinant theory. On the other hand, his
theory of determinants looks like a modification of what he learned from someone
else. Following Fujiwara [29] we will explain his main results on elimination. The
general theories are developed in the first volume and various methods for power
procedures in Volumes 2–4.

At the beginning of Voume 2 Tanaka describes a very primitive method to obtain
F(Xn) in (29) as a polynomial of f (X). This part should have been written before
1689. He still uses Seki’s byscript method, but in the rest he switches to his own
method.

The first section of Volume 1 is titled Unilateral Procedure for two equations [双
式一貫之術 Sōshiki Ikkan no jutu]. Here he assures that the elimination is always
possible. In fact, given two equations

f (x) = a0 +a1X + · · ·+amXm = 0, (37)
g(x) = b0 +b1X + · · ·+bnXn = 0, (38)

in a common unknown X with m ≤ n, multiply (37) and (38) by bnXn−m and by am
respectively. Then, the difference is an equation of degree < n. Replacing (38) by
the difference, we continue the same procedure until we get an equation with the
constant term only

h(x) = c0 = 0, (39)

which is an eliminated equation. Equation (39) is certainly a necessary condition
in order that equations (37) and (38) have a common root but it is not sufficient in
general, however.

In the next section Standard Procedure for two equations [双式定格術] Tanaka
gives a distorted version of Seki’s Methods of Solving Concealed Problems [14]
restricting himself to the case m = n for two equations (37) and (38).

We concider here only a system of two cubic equations

f (X) = a+bX + cX2 +dX3 = 0, (40)

g(X) = p+qX + rX2 + sX3 = 0. (41)

Similarly to Seki [14] Tanaka constructs the following three equations :⎧⎪⎨
⎪⎩

hT
1 (X) =(ag(X)− f (X)p)/X = 0,

hT
2 (X) =(bg(X)− f (X)q+hT

1 (X))/X = 0,

hT
3 (X) = f (X)s−dg(X) = 0,

(42)

or
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⎪⎩

hT
1 (X) =(aq−bp)+(ar− cp)X +(as−d p)X2 = 0,

hT
2 (X) =(ar− cp)+{(br− cq)+(as−d p)}X +(bs−dq)X2 = 0,

hT
3 (X) =(as−d p)+(bs−dq)X +(cs−dr)X2 = 0,

(43)

and claims that the determinant of the coefficients of those equations is the resultant
of the given equations.

In Seki [14, Sheets 9–11] the first transformed equation [換式] h1(X) = dg(X)−
f (X)s was the result of eliminating the terms of the highest degree, whereas
Tanaka’s hT

1 (X) is the result of eliminating the constant terms, which he never tried
elsewhere. The definition of determinants is also different. Seki defines them by the
cofactor expansions with respect to the constant terms of the transformed equations,
which naturally gives the equation that a constant, independent of X , = 0 as a con-
sequence of the original equations. On the other hand, Tanaka defines here the same
by the cofactor expansion with respect to the coefficients of the first equation hT

1 (X)
for which we don’t think it easy to give a meaning that the determinant = 0 is a
condition for the existence of a common root of f (X) = g(X) = 0.

However, determinants are invariant under the transposition of the rows and the
columns, though never stated explicitly so in Japan at that time, and moreover, Seki’s
system of transformed equations {h j(X) = 0} and Tanaka’s {hT

j (X) = 0} are the
same up to the ordering of equations and signs. Hence, two theories are equivalent
in practice.

An Exhibition of Mathematical Methods [算法発揮 Sanpō Hakki] (1690) [20]
by Iseki Tomotoki [井関知辰] is the first printed book in the world on the elimi-
nation theory. Iseki adopted there the same procedures as Tanaka. Moreover, even
in Complete Book of Mathematics Takebe brothers abandoned Seki’s definition of
determinants and adopted the cofactor expansion with respect to the coefficients of
the first equation. We do not know who invented these methods. The way Tanaka
writes this part looks different from his other writings. For example, his alphabetical
naming of coefficients are usually starts from the coefficient of the highest degree
but here it starts from the constant term, etc.

In the rest of Volume 1 Tanaka [19] gives the resultants of two general equations
of degree ≤ 3 and his original method to compute them under the title Fundamental
Method to find resultants of two equations of different degrees [双式異乘之陰陽率
并求根源術].

Let (37) and (38) be two equations. Then, the resultant R( f ,g) of Bézout–
Sylvester6 is expressed as

R( f ,g) = am
nbn

m
m

∏
i=1

n

∏
j=1

(ξi −η j), (44)

where ξi and η j are the roots of f (X) = 0 and g(X) = 0, respectively, in an alge-
braically closed field containing all coefficients of the equations. Hence it follows
that when developed as a polynomial of the coefficients ai and b j, each monomial

6 Seki’s resultant R( f ,g) is its multiple by (−1)mn. See these Proceedings p. 557 in [35].
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in the development is homogeneous of degree n in ai, homogeneous of degree m in
b j and isobaric of weight mn in ai and b j (See Takagi[28, §28] or van der Waerden
[31, §5.9].). Tanaka and probably Seki knew the following practical method to find
all such monomials by experience.

For example, concider the system of a quadratic and a cubic equations

f (X) = c+bX +aX2 = 0, (45)

g(X) = s+ rX +qX2 + pX3 = 0. (46)

We raise the former equation to the power equal to the degree of the latter without
regarding the numerical coefficients and signs. Thus we have

c3X0 +bc2X1 +(ac2 +b2c)X2 +(abc+b3)X3 +(a2c+ab2)X4 +a2bX5 +a3X6.

Then, we raise the latter equation to the power equal to the degree of the former
without regarding the numerical coefficients and signs, and arrange it in the reversed
order:

p2X6 + pqX5 +(pr +q2)X4 +(ps+qr)X3 +(qs+ r2)X2 + rsX1 + s2X0. (47)

The monomials constituting the resultant are obtained as the products of the co-
efficients of the upper and the lower formulas of total degree equal to mn. Thus we
have

R( f ,g) =C1c3 p2 +C2bc2 pq+C3ac2 pr +C4ac2q2 +C5b2cpr

+C6b2cq2 +C7abcps+C8abcqr +C9b3 ps+C10b3qr

+C11a2cqs+C12a2r2 +C13ab2qs+C14ab2r2 +C15a2brs+C16a3s2

(48)

with numerical coefficients Ck, which are determined by equating the right-hand
side identically to 0 after we substitute c = −bX −aX2 and s = −rX −qX2 − pX3.

This is a feasible but clumsy way. The resultant of two general cubic equations
given in [19] contains many numerical errors, which may be caused by this method.

Volumes 2–4 of [19] are mainly devoted to various methods of computing power
procedures, that is, the resultants of the system

f (X) = a0X0 +a1X1 + · · ·+an−1Xn−1 = 0, (49)
Y −Xn = 0, (50)

In this case the counterpart of (47) and hence that of (48) are very sparse polyno-
mials. He should have found this method here and later extended it to the case of
general resultants.

In Methods of Solving Concealed Problems [14] Seki gives an estimate of the
degree of the eliminated equation, that is, the resultant = 0 by this principle. (See
these Proceedings pp. 475–476.)
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At the end of Volume 2 Tanaka gives the following expression of the power
procedure by the determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · · · · an−2 an−1

an−1Xn a0 a1 a2 · · · an−3 an−2

an−2Xn an−1Xn a0 a1 · · · · · · an−3

...
. . . . . .

aiXn · · · an−1Xn a0 · · · · · · ai−1

. . . . . . . . . . . . . . .

a2Xn an−1Xn a0 a1

a1Xn a2Xn · · · · · · · · · an−1Xn a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (51)

To be exact, this is different from Seki’s resultant defined in [14] for the system
(49) and (50), but coincides with Bézout’s. This may mean that Tanaka understood
Bézout’s Lemme 1 saying that a determinant vanishes if and only if its columns are
linearly dependent, which is given just after the definition of determinants in Bézout
[25].

Tanaka was very much proud of this expression. In case n is prime, this may
serve as the quickest way to compute the power procedure.

In Volume 4 Tanaka treats the case in which the exponent n is a compound num-
ber pq and shows that the n-th power procedure is computed by the repetition of the
p-th power procedure and the q-th power procedure.

For example, if n = 4, we start with

f (X) = a+bX + cX2 +dX3 = (a+ cX2)+(b+dX2)X = 0. (52)

Applying the square procedure, we have

(a+ cX2)2 − (b+dX2)2X2 = a2 −b2X2 +2acX2 + c2X4 −2bdX4 −d2X6 = 0.

Hence we obtain the fourth power procedure (32) by multiplying the last equation
by

a2 +b2X2 −2acX2 + c2X4 −2bdX4 +d2X6.

We are easily marveled at Nakane’s computation of the 8-th power procedure
with 810 terms (36), but what he actually did may be only the computation of two
squares of polynomials each of which has 43 terms and of their difference.
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6 Descartes’ too Optimistic View

Abstract The following is an English translation of the first five pages of the famous
“La Géométrie” [8] by Lené Descartes published in 1637. He gives a very optimistic
view of how to reduce any problem in Geometry to systems of algebraic equations
in the lengths of line segments in the problem and how to solve it by reducing the
system to algebraic equations in one unknown by elimination.

6.1 Problems that can be constructed only by means of circles and
straight lines

All problems of Geometry can easily be reduced to such expressions that after these
[reformulations] we need only to know the length of some straight lines [= seg-
ments] in order to construct the solutions.

How the calculi of Arithmetic are related to the operations in Geometry. As the
whole Arithmetic[= algebra] is composed of only four or five operations, that is,
addition, subtraction, multiplication, division and the extraction of roots [of single
algebraic equations], which can be considered a kind of division, so we do, in Ge-
ometry in the process of preparing the segments in question to be known, nothing
other than to add them with others, or to remove them from others, or, having a
segment fixed which we will name the unit in order to relate it as much as possible
with numbers, and which we can choose at our disposal in the ordinary case, and
then given two other segments, to find a fourth segment which is to one of these
two as the other is to the unit, that is the same as multiplication; or to find a fourth
segment which is to one of these two as the unit is to the other, that is the same as
division; or finally to find one or two or several proportional means between the unit
and some other segment; that is the same as to take the square, or cube roots, etc.
So I will not hesitate to introduce these expressions of Arithmetic into Geometry, to
make me more intelligible.
The Multiplication.

Let, for example, AB be the
unit. In order to multiply BD
by BC, I have only to join
points A and C, and draw DE
parallel to CA. Then BE is the
result of this multiplication.

The Division.

Or else, if I have to divide BE by BD, after joining points E and D, I draw AC
parallel to DE. Then BC is the result of this division.
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The Extraction of the square root.
Or, if it is necessary to draw the
square root of GH, I add to it a
segment FG which is the unit,
and dividing FH into two equal
parts at the point K, I draw the
circle FIH with the center at K,
and then raise from the point G a
straight line up to I with the right
angle over FH.

This GI is the required root. I do not say.here nothing of the cube roots, nor of the
other roots because I will tell of them more conveniently later.

How we can use letters in Geometry. However, it is often not necessary to trace
these segments on paper, but sufficient to indicate by some letters each by a different
one. As I add the segment BD to the segment GH, I name one by a and the other
by b and write a + b; And a− b to subtract b from a; and ab to multiply one by
the other; And a

b to divide a by b; And aa, or a2 to multiply a by itself; And a3 to
multiply one more time, and so on to infinity; And

√
a2 +b2 to draw the square root

of a2 + b2; And
√

C.a3 −b3 +abb to draw the cube root of a3 − b3 + abb, and so
on. Here it should be remarked that by a2 or b3 or the like I usually conceive only
the simple segments, although I name them squares or cubes etc. as employed in
Algebra.

It is also remarked that all parts of the same segment should usually be expressed
by one and the same dimension as far as the unit is not determined in the question,
as a3 has the same dimension as abb or b3 which compose the segment I named√

C. a3 −b3 +abb ; this is not, however, the case when the unit is determined since
the unit can always be understood tacitly whenever there is a too many or too few
dimensions: as in the case where we take the cube root of aabb−b, we must consider
that the quantity aabb is divided once by the unit, and that the other quantity b is
multiplied twice by the same [unit].

Finally in order not to fail to remember the names of those segments, it is always
necessary to make a separate list according as we set them or as we change, and we
write, for example,

AB ∝1, that is, AB is equal to 1.
GH ∝a
BD ∝b, etc.

How to arrive at Equations which serve to solve the problems. If we wish to
solve some problem in this way, we have first to consider it as already done, and
give names to all segments which seem necessary to construct the solution as well
to those which are unknown as to the knowns. Then without considering any dis-
tinction between those segments which are known and unknown, we must survey
the discrepancy, according to the order which exhibits the most naturally of all in



Algebra, Elimination and the Complete Book of Mathematics 271

which manner the segments depend mutually one on the others, until we find means
to express one and the same quantity in two ways: That is called an Equation; be-
cause the expression of one of these two ways is equal to that of the other. And we
have to find as many of such Equations as [the number] we suppose of the segments
which should be unknown. Or else, if we cannot find so many [equations] notwith-
standing we omit nothing which are required in the question, then it testifies that the
question is not entirely determined. Then, we can take those segments as known by
our choice, for all the unknowns to which no equation corresponds.

If there remain several [equations] after that, it is necessary to employ by order
each of the remaining Equations either by considering it alone or else by comparing
it with the others so as to explain each of those unknown segments; And make, by
disentangling them, so that it stays to the only one, equal to some which is known,
or else its square, or the cube, or the square of square, or the sursolid, or the square
of cube etc. is equal to what is produced by the addition, or the subtraction of two
or several other quantities, one of which is known, and the others are composed by
some proportional means between the unit, and this square, or cube, or, square of
square, etc. multiplied by other knowns. I write this in the manner.

z ∝b, or
z2 ∝−az+bb, or
z3 ∝az2 +bbz− c3, or
z4 ∝az3 − c3z+d4, etc.

Namely, z, which I take for the unknown quantity, is equal to b, or the square of z
is equal to the square of b minus a multiplied by z. Or the cube of z is equal to a
multiplied by the square of z plus the square of b multiplied by z minus the cube of
c . And similar for the other.

And we can always reduce the unknown quantities in this way to only one, when
the problem can be constructed by circles and straight lines, or also by conic sec-
tions, or even by other lines which is by one or two degrees more complicated. But I
do not stop here to explain this in more detail, because [then] I would deprive you of
the pleasure of learning by yourself, and of the usefulness of cultivating your spirit
while you are exercising there, which is, in my opinion, the principal utility that we
can draw from this science. Moreover, I notice here nothing so difficult that anyone
who is a little versed in the common Geometry and Algebra, and who takes care of
all that is in this treatise, can not discover.

7 Applications to Geometry

At the beginning quarter of the seventeenth century Japan was an open country. The
family of Yosida Mitsuyoshi had a license to engage in foreign trade with Annam
(the present Vietnam) and the Jesuit Missionaries had a Collegio or a Seminaryo



272 Hikosaburo Komatsu

in Kyoto, Nagasaki and Bungo in Kyūshū, where they taught Mathematics, Astron-
omy. Music and Latin as an introduction to Christianity to the common people.

The year 1637 was the worst time, however. In the same year a large revolt took
place in the Shimabara peninsula in Kyūshū and the government force of 100,000
had to spend three months to defeat the siege of 37,000 peasants led by a young
Christian. The seclusion policy, which started a few years before, was strengthened
and all books from Europe were strictly banned to import.

In spite of this unhappy incident Descartes’ Program was first realized in Japan.
In Volume 10, Geometry, of Complete Book of Mathematics. Seki and Takebe broth-
ers applied the elimination theory to Geometry to obtain the algebraic relation of 5
sides and three diagonals of a general pentagon.

Pentagonal Method

A
C

B

F E

D

J H
G

K

Problem at the end of Sheet 29 in Vol-
ume 10 (See these Proc. pp. 529–534) :
Suppose in a pentagon that A is 21sun,
B is 20sun, C is 18sun, D is 17sun. E is
14sun, F is 13sun and G is 10sun.
Find H.
Answer says : H is 28sun.281434 plus a
remainder.

They apply the quadrilateral method (21) to the quadrilaterals CDJE and BDGF
in the orders HECBDJ and ABDJGF , respectively, and eliminate the common
variable J in the reduced form, that is, taking the square of each variable as an
independent variable. Then, the quadrilateral method is a quadratic equation in
each variable, so that the eliminated equation is represented by a 2× 2 symmetric
determinant= 0, which may be called the pentagonal method [五斜術]. The struc-
ture of the quadrilateral method is simple but it is an equation with 22 terms. There-
fore, the calculation which ended up as an equation with 843 terms was painstaking.
In his book [24] Takebe Katahiro recalled “Kataakira once tried to deparenthesize
on the pentagon problem and met great complexity. He said that even if ten thou-
sand terms were necessary, it would not take more than one hundred days if he
computed one hundred terms a day, and really completed the work in a little more
than a month.” [曽テ五斜ノ括術ヲ爲ント欲シテ甚繁雑セリ假ニ萬位ニ及フトモ
一日ニ百位ヲ造サハ徐ク百日ニシテ畢テント言テ果シテ月餘ニシテ悉ク成セリ]

They also considered similar problems for hexagons and showed that the elim-
inated equation was written as a 4× 4 symmetric determinant = 0. Kimura [38]
shows that it has in the reduced form 273,123 terms. Elimination is a very powerful
method but its practice easily goes beyond human capabilities.

Only the recent progress of computers and mathematical techniques to use them
is making it possible. The attempt Professor Wu Wen-tsun and his group started
during the Cultural Revolution has now grown up to the first stage so that Descartes’
dream of mechanical acquisition of new knowledge is coming true (see Wu [34]).
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(1247); YiJiaTang [宜稼堂] (1616).
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本写] C. 06, Tōhoku University.

14. Seki Takakazu [関孝和]: Methods of Solving Concealed Problems [解伏題之法 Kaihukudai
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Some Questions and Observations Around
the Mathematics of Seki Takakazu

Silke Wimmer-Zagier and Don Zagier

Abstract This informal paper, an expanded version of the short talk given by
the second author at the conference on the occasion of the 300th anniversary of
Seki’s death, is slightly non-standard in nature and perhaps requires a short ex-
planatory preamble. The authors are not professional historians of mathematics,
and no attempt has been made to interpret the material discussed from a his-
torical viewpoint. Instead, the first section contains several specific mathematical
comments, from the point of view of a contemporary professional mathematician
(D.Z.), on a few of the problems and solutions of Seki and of his predecessors
in China and Japan, pointing out places where the mathematical content is un-
expectedly naive or unexpectedly sophisticated, or where particular mathematical
features of the problems permit deductions about their authors’ methods or views.

The second section concerns the thorny question of possible contacts that Seki or
his disciple Takebe Katahiro may have had with European mathematics as a result
of the Dutch presence in Dejima and their yearly visit to the Edo court. In partic-
ular, we describe the results of a search (by S.W.-Z.) through the archives of the
Dutch East India Company for the years in question that yielded details of a meet-
ing between Takebe and the Dutch but show clearly that there was, at least on this
occasion, no serious discussion of any scientific or mathematical questions. We also
mention a few other arguments militating against the thesis that there was any direct
impact of European mathematics (prior to the partial lifting of the ban on Western
books in 1720) on the work of these two scientists.
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1 The mathematics of Seki and his predecessors
seen from a modern standpoint

In this section we discuss some of the aspects of the Japanese mathematics of the
17th century, and of the Chinese mathematics on which it is based, which are sur-
prising from a contemporary point of view.

It is of course a commonplace that the nature of scientific progress, like that of
any other human activity, is heavily dependent on the culture and social context in
which it takes place, and it is in no way surprising that the Japanese mathematics
of the Edo period, or the earlier Japanese and Chinese mathematics on which it is
based, should often be very different from ours. But there are specific aspects which
are startling to a contemporary mathematical eye, either because seemingly simple
points are often overlooked or ignored, or, conversely, because the level of sophis-
tication sometimes appears unexpectedly high. Of course any such reaction from a
modern mathematician is anachronistic and based entirely on hindsight. Yet mathe-
matics has an intrinsic rhythm and internal “necessariness” which all its practition-
ers feel, and particular interest therefore attaches to instances where the background
or traditions of earlier mathematicians led them to see things in a way strange to us.
We will list a number of such cases occurring in the works used or written by Seki,
and will formulate a number of specific questions whose answers will doubtless be
known to specialists in some cases and unknowable in others, but some of which
may perhaps suggest interesting topics for further investigation.

Essentially all of our examples are taken from the book [7] by Annick Horiuchi,
where they are discussed in their historical context. The English translations of the
problems and of passages from this book are taken from [8].

1.1 A problem on volumes

Our first example comes from the Introduction to Mathematics [算学啓蒙 Suanxue
Qimeng] by Zhu Shijie [朱世傑], published in 1299, which was one of the most in-
fluential Chinese mathematical texts in the early Edo period and of which a Japanese
version with detailed commentary would be published by Takebe in 1690.

Problem 34 of the last chapter Unlocking of Roots [開方釋鎖 kaifang shisuo],
discussed in [8, pp. 74–75], reads as follows in the original Chinese and in English
translation:

今有立方.立圓.平方.古圓田.徽圓田.各一。共積三万三千六百二十二尺二百分尺之三
十七。只云立方面不及立圓径四尺.多如徽圓径三尺。立圓径如平方面三分之一。古圓
周与立方面適等。問五事各幾何。
答曰立方面二十四尺。立圓径二十八尺。平方面八十四尺。古圓周二十四尺。徽圓径二
十一尺。
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One now has a cube, a sphere, a square, an old circular field and a Hui circular field. The
total accumulation is 33622 chi1 and 37 200ths of a chi. It is said only that the side of the
cube is 4 chi less than the diameter of the sphere and 3 chi more than the diameter of the
Hui circle, that the diameter of the sphere is equal to a third of the side of the square, and
that the circumference of the old circle and the side of the cube are equal. One asks for the
values of the five quantities.
Answer : Side of cube is 24 chi, diameter of sphere 28 chi, side of square 84 chi, circumfer-
ence of old circle 24 chi, diameter of Hui circle 21 chi.

Here the word “accumulation” means the sum of all the areas and volumes con-
cerned. The phrase “old circular field” means a field in the shape of a circle with
the lü [率] (fixed ratio, the Chinese word for π) being taken to be the ancient value
of 3, while the “Hui circular field” is one where π is taken to be the value 3.14 as-
cribed to the third century mathematician Liu Hui [劉徽]. In modern terminology,
the problem can therefore be stated as A+B+C +D+E = 33622 37

200 with

A = a3 , B = t b3, C = c2 , D =
1

4 ·πold
d2 , E =

πHui

4
e2

together with the supplementary conditions a = b−4 = e+3, b = c/3, d = a, where
πold = 3 and πHui = 3.14 are the “old lü” and the “lü of Liu Hui” and t is the fixed
ratio (=ratio of the volume to the cube of the diameter) for the sphere.

Seen from a modern perspective, the problem and its solution have a number of
peculiarities. The most striking, of course, is the use of two different values for π
in the same problem, which is quite incomprehensible for us. It is already strange
to find Zhu using the “ancient” value of 3 when far more accurate values were al-
ready given in the Nine Chapters [九章算術 Jiuzhang Suanshu] and commentaries
to them (e.g., Liu Hui himself gave the value 3.1416 and not just 3.14 as Zhu as-
sumes; cf. [5, pp. 145–148]. But the simultaneous occurrence of two circles with
differing values of π indicates a rather nebulous understanding of the relationship
between the circumference and area of circles. Of course, this may have been merely
an homage to the Ancients, or simply a more poetic way of writing the algebraic
problem “a3 + tb3 +c2 + 1

12 d2 + 3.14
4 e2 = 33622 37

200 ” in words, in which case it is an
entirely legitimate procedure. In any case, this passage suggests our first question:

Q1. How did the idea of π (or of other fixed geometric ratios [定法 teihō in
Japanese]) evolve in China and Japan? At what stage was it clearly realized that π
is a single well-defined number which in principle can be calculated to any desired
accuracy?

The next point is the addition of areas and volumes, something that is not only
not correct, but also rather unnatural, since figures of different dimensions cannot be
juxtaposed, and was, for instance, not a possible operation in classical Greek math-
ematics, where figures were considered geometrically rather than being expressed
in terms of units like the Chinese chi. (One can even speculate that this difference
of approaches may have actually impeded the development of algebraic notions or
notations in Greece, since it was not until Diophantus that polynomials were consid-

1 chi [尺 shaku in Japanese] is a unit of length, which is an equivalent of a foot. (editor)
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ered, and may perhaps have correspondingly abetted the rather early development
of algebraic ideas in China.) Our second question is therefore:

Q2. At what point was it clearly realized that lengths, areas and volumes are
incommensurable and must be given in different units (here, chi, chi2 and chi3),
and that expressions involving mixed exponents must be expressed in terms of pure
numbers rather than lengths?

The third point is the startling disparity between the very approximate values
of π used (even the “lü of Liu Hui” is only a 3-digit approximation) and the very
precise value 33622 37

200 given for the total volume. It is clear to us, but evidently
not to the Chinese mathematicians of the 13th century, that it makes little sense to
give the latter to 8 significant digits when the former is given to only 3- or even
1-digit accuracy, and we will see the same lack of understanding of the meaning of
significant figures recurring in some of the other problems we consider below, even
by much later mathematicians. This suggests our third question:

Q3. At what point were the rules for calculating with approximate values first un-
derstood, viz., that numbers that are being multiplied or divided ought to be specified
to the same relative precision (number of significant digits), and numbers that are
being added or subtracted to the same absolute precision (position of the first uncer-
tain digit)? In any case, the author (ostensibly Seki, but probably Takebe Katahiro:
cf. [8, p. 183]) of the Configurations for the Extraction of Roots [開方算式 Kaihō
Sanshiki] [1, pp. 257–268] understood these rules well and used them absolutely cor-
rectly when describing the numerical determination of the root of 11 + 8x + x2 = 0
to high precision [8, p. 184].

The next point again concerns “fixed ratios,” but this time for the sphere. Like
other Chinese mathematicians of the period, Zhu gives values for the numbers solv-
ing his problem, but no indication of how one obtains them, nor any verification that
they actually satisfy the terms of the problem. Doing the calculation, we find that
they do so only if the ratio t is taken to be 9/16. If we assume the formula t = π/6
for the ratio of the volume of the sphere to the cube of its diameter, this would cor-
respond to a value of π = (3/2)3 = 3.375, a lü which has certainly never occurred
in the literature and which is clearly much too big. From this we can see that the
relation of the ratios associated to the circle and the sphere was not known at this
time, and can deduce that the value for the sphere which is being used is 9/16 (as
opposed to 1/2 or 0.523, which is what one would get with t = π/6 if one used
the “old” or the “Hui” value for π , respectively). And indeed, this deduction can be
confirmed: Problem 53-1 of the famous Jinkōki [塵劫記]2 by Yoshida Mitsuyoshi
[吉田光由] gives 48 chi as the diameter of a sphere of volume 62208 chi3, again cor-
responding to a value of 9/16 of the ratio t =V/d3 (and again illustrating the invalid
mixing of approximate and precise numbers). In the commentary to this problem in
the modern Japanese edition of the Jinkōki [3, p. 149] it is stated that this value is
taken from the Unified Foundations of Mathematics [算法統宗 Suanfa Tongzong]
of Cheng Dawei [程大位], which was published in 1592, 35 years before the Jinkōki
but almost 300 years after the Introduction to Mathematics, while according to the

2 Jinkō [塵劫] is a Buddhist term meaning an eternal time or an extremely large number. (editor)
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English edition [4, p. 178] it can be found already in the Nine Chapters. Tables of
the successive (Occidental or Oriental) values of π can, of course, be found in many
places in the literature, but they are always based on the “π” of the circle (defined
either as the circumference divided by the diameter or as the area divided by the
square of the radius, the equality of these two definitions having been known for a
very long time), not for the sphere. This suggests the following questions:

Q4. When was the value 9/16 for t first used, and where did it come from? (It is
not a particularly good value, being considerably further from the correct value π/6
than the simpler fraction 1/2.) When was it first improved?

Q5. When was the relation C = 4π/3 between the constants for the sphere and for
the circle first found (the relationship V = A/3 between the volume and the surface
area of a sphere of radius 1, which follows by considering an inscribed polyhedron
with small triangular faces, is much easier and was presumably known earlier), and
was it discovered independently in both the East and the West? In any case the
correct formulas were known to Takebe [8, p. 266].

The final—and perhaps most interesting—aspect of Zhu’s problem which we
wish to discuss is that a very complicated input, with values of 3 and 3.14 for π
and a total “accumulation” of 33622 37

200 , leads in the end to a very simple answer in
which a, . . . ,e are all two-digit whole numbers. This, too, is typical of the ancient
Chinese and Japanese mathematical texts: the problems are almost always “fixed”
so that, even when the statements are very complicated, the numerical solutions
are simple. This is on the one hand nice for the solver, who knows when he has
found the right answer, but on the other hand unfair since the author, who usually
gives no method of derivation for the solution, starts out knowing the answer and
therefore does not actually need to possess any method that would work in general.
Moreover, problems “fixed” in this way can also be solved in an easy way, surely not
intended: if one knows that the answer is going to come out in small integers, one
can find it without really “solving” the problem at all by trial and error, e.g. here by
taking one of the unknowns (say a, the side of the cube) as celestial element [天元
tianyuan] or chosen independent variable, expressing the other unknowns in terms
of this one (here b,c,d,e = a + 4,3a + 12,a,a− 3), and then trying each integer
value a = 4, 5, . . . in turn until finding the one for which the total accumulation
a3 +tb3 + . . . takes on the specified value. From our point of view the whole process
seems questionable—the author has “cheated” by working from the answer to the
problem rather than inversely, and has given his readers or students the possibility of
“cheating” by guessing rather than calculating the answer required—but presumably
it did not seem so at the time. In any case, we can ask:

Q6. At what point or by what stages did the shift between problems constructed
from known solutions and problems solvable by generally applicable methods oc-
cur? Was this distinction ever recognized explicitly by mathematicians of the pe-
riod?
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1.2 The formula for arc length in the Jugairoku

In the Jugairoku [竪亥録]3 by Imamura Tomoaki [今村知商], published in 1639,
formulas are given relating the diameter, chord, sagitta (“arrow”), and arc of a cir-
cle segment. These formulas, discussed in detail by Horiuchi [8, pp. 34–38] are as
follows:

d = diameter [径 kei]

c = chord [弦 gen]

s = sagitta [矢 shi]

a = arc [弧 ko]

d = s + c2/4s ,

c =
√

4s(d − s) ,

s =
(
d −
√

d2 − c2
)
/2 ,

a2 = 4s
(
d + s/2

)
.

The first three of these are equivalent to the formula (c/2)2 +(d/2− s)2 = (d/2)2,
which follows from Pythagoras’s theorem, and are exact, whereas the last is an
approximation. (The exact formula is of course transcendental and requires infinite
series, as Takebe discovered in 1722.) No derivation for this formula is given. In [7],
a partial explanation is suggested, namely, that this formula yields the values a = 0
for s = 0, which is obviously correct, and a2 = 5d2/2 if s = d/2, which is correct if
one uses π =

√
10, as Imamura did. But this explanation is not sufficient: there are

even simpler formulas which would give these two special cases (e.g. a2 = 10s2),
but they would give very poor approximations for other values of s, whereas Ima-
mura’s formula is uniformly very good, with an error never exceeding one part in
75. Horiuchi also goes on to say that the Chinese tradition was to use quadratic in-
terpolations, but even then one has a choice of formulas, since any formula of the
form a2 = ksd + (10− 2k)s2 would give the “right” special values for s = 0 and
s = d/2. One can then ask on what mathematical basis, short of carrying out the
much more complicated analysis later given by Takebe and others, one might obtain
this simple and very good formula. Here we can offer two explanations, with the
hope that experts will be able to say whether one of them might correspond to the
procedure Imamura actually used. The first is to consider the asymptotic behavior
when s tends to 0, rather than merely the value at s = 0.

It is obvious from a picture that, when s is very small, a is approximately equal to c,
so Imamura’s second formula gives a2 ≈ c2 ≈ 4sd and hence k = 4.

3 Jugai [竪亥] is the name of a legendary person in China. (editor)

d c a
s

a
d

c
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This explanation seems simple and palatable to us, but it is not at all clear that
such an argument would have been natural to a Japanese mathematician of the pe-
riod, and indeed from the talk given by Prof. Morimoto at the Seki memorial con-
ference it seems that even the far more sophisticated Takebe did not employ such
asymptotic arguments, but used only precise values based on polygons [12, p. 355].
In the case at hand, one can imagine that one simply looks at the pictures for a
square and a hexagon, respectively, embedded in a circle. In both cases all the di-
mensions involved are obvious either a priori or from Pythagoras’s theorem, and
(using Imamura’s value π =

√
10) one obtains the two further known values

d
c

=
√

2 ⇒ a
c

=
π
√

2
4

= 1.118,
d
c

= 2 ⇒ a
c

=
2π
6

= 1.054.

Imamura’s formula gives 1.122 and 1.052, respectively, for these two special cases,
in excellent agreement with these “exact” values.

1

2

d =
√

2 ,

c = 1 ,

s =
√

2 − 1
2

,

a =
π
√

2
4

,

1

1
d = 2 ,

c = 1 ,

s = 1 −
√

3
2

,

a =
2π
6

.

Of course, it may be that neither of these explanations is correct. Horiuchi men-
tions that the formula a2 = c2 + 6s2, equivalent to Imamura’s, is given by Isomura
Yoshinori [礒村吉徳] in the Mathematical Methods without Doubts [算法闕疑抄
Sanpō Ketsugishō] of 1659 as being based on an unspecified “rule of augmentation”
[増術 zōjutsu], and also suggests an earlier interpolation method of the Chinese cal-
endarists as a possible, but non-verifiable, source for Imamura’s formula. In any
case, we can formulate:

Q7. Is there any evidence that could help one decide where the formula for the
arc length in the Jugairoku came from, and in particular whether it was based on the
considerations of the special cases c/d = 1/

√
2 and c/d = 1/2 or on the limiting

behavior as c/d tends to 0?

1.3 The value of πππ in the Sanso

In the Sanso [算俎] (or Mathematical Chopping-Board), published in 1663, Mu-
ramatsu Shigekiyo [村松茂清] computes π by using polygons of 8, 16, 32, . . . ,
215 = 32768 sides to obtain the series of approximations:



282 Silke Wimmer-Zagier and Don Zagier

p3 = 3.061467
p4 = 3.121445
p5 = 3.136548

...
p13 = 3.1415925765
p14 = 3.14159263433
p15 = 3.1415926487

The method is fine, although not original (it goes back to the Nine Chapters, and
of course in the West to Archimedes), but there are several odd things about Mura-
matsu’s use of it that seem worth commenting on:

(a) Muramatsu calculates to a very high precision, ending up with 8 correct digits
of π , but, at least according to the discussion in [7], only seems to care about the
first three digits, writing that we can neglect the digits 1 and 6 (of 3.1416) but that
we do not find any deviation from 3.14 (the value that he ascribes to “Master Meng
[孟] from Jin [晋] and Liu Hui from Wei [魏],” although, as already mentioned, Liu
Hui actually also gave 3.1416 and Zu Chongzhi [祖沖之] had given the much more
accurate approximation 355/113 in the 5th century). To a modern mind it seems
incredible that one would go to such lengths just to decide between two much older
and primitive values, and discard most of what one had calculated with such efforts,
bringing us back to the question Q1 formulated in connection with Zhu Shijie’s use
of π .

(b) The calculations are carried out to unnecessarily high precision: Muramatsu
calculates the sides of each of the successive polygons to 20 decimal digits, even
though he could surely have seen after the first few steps that he was gaining only
about half a digit of precision with each iteration and therefore, if he was planning
to stop with the 215-gon, was not going to get more than about 8 digits anyway. This
is a further instance of the same lack of understanding of the meaning of precision
that we already saw in the problem by Zhu Shijie (question Q3).

(c) On top of this he was very lucky, because he made three numerical mistakes
in his calculation (each of which, of course, persists through all further iterations
of the doubling procedure), but each of them occurred only after the 10th digit and
therefore did not affect the correctness of the 8 digits which his calculation was in
principle capable of producing.

(d) Most importantly, he failed to give any discussion or do any analysis, even a
crude one, of the numbers he obtained, not even saying explicitly that they seemed
to be converging to a well defined limit or that the persistence of certain digits (those
shown underlined in the display above) suggested the correctness of the first 8 digits
he had obtained. Had he been the genius that Takebe was, he would have thought
of looking at the successive differences (and then perhaps even at the differences
of these differences, and then again at the differences of these) and recognized the
rules governing these differences, thus obtaining, as Takebe did, many more digits
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of π without needing to calculate polygons of any larger size than he already had
calculated.

1.4 Seki’s solution of a problem of the Kokon Sanpōki

In the Hatsubi Sanpō [發微算法] (translatable as something like “Mathematics with
Humble Determination”), the only work which Seki Takakazu [関孝和] published
during his lifetime, he gave solutions for all of the fifteen bequeathed problems [遺
題 idai] that had been posed by Sawaguchi Kazuyuki [澤口一之] in the Treatise of
Ancient and Modern Mathematics [古今算法記 Kokon Sanpōki] of 1671 as a chal-
lenge to future mathematicians. We make a few observations here on his solution to
the 4th problem, and then in Subsection 1.5 discuss some peculiar features of the
problem itself as well as of Problem No. 14, the most complicated of the fifteen.

Problem 4 is stated in the Treatise of Ancient and Modern Mathematics in the
following terms:

今有甲乙丙立方各一。只云甲積与乙積相併共寸立積十三万七千三百四十坪。又乙積
与丙積相併共寸立積十二万千七百五十坪。別甲方面寸為實開平方之見商寸与乙方面寸
為實開立方之見商寸及丙方面寸為實開三乗方之見商寸各三和一尺二寸。問甲乙丙方面
各幾何。

We have now A,B and C which are each a cube. It is told only that the volume of A and the
volume of B together are 137 340 tsubo4, and also that the volume of B and the volume of
C together are 121 750 tsubo. Furthermore it is told that the quotient in sun5 obtained by
placing the side of A as the dividend and opening the square, the quotient in sun obtained by
placing the side of B as the dividend and opening the cube, and the quotient in sun obtained
by placing the side of C as the dividend and opening the square multiplied three times, make
together 1 shaku and 2 sun. One asks for the values of the sides of A, B and C.

Stated in modern notation, the problem asks us to find (numerically) the values of
three numbers a, b and c satisfying the simultaneous equations

a3 + b3 = 137340 , b3 + c3 = 121750 , 2
√

a+ 3√b+ 4
√

c = 12 . (1)

Seki’s solution, discussed in detail in [7, Chapter 6] (whose notations we follow), is
truly amazing. He first replaces the three concrete numbers 137340, 121750 and 12
by letters, say N, N′ and N′′. He then chooses as tianyuan [天元] or basic indepen-
dent variable the quantity x = 4

√
c and defines

m = N′′ − x , n = N′ − x12 , o = N − n

so that m = 2
√

a+ 3√b, n = b3, o = a3 and the problem has been reduced to finding x
such that m = 6

√
o+ 9

√
n. So far, nothing very surprising. But now he introduces the

six new quantities

4 tsubo [坪] is a unit of area and volume. A tsubo means normally about 4m2 but it is used here to
mean 1 sun3. (editor)
5 sun [寸 cun in Chinese] is a unit of length equal to 0.1 shaku� 3cm. (editor)
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p = 36m14 + 9m2o2 ,

q = 252m5n + 126m8o ,

r = 126m10o ,

s = 9m16 + 72m7n+18mno + 36m4o2 ,

t = m18 + 84m6o2 + n2 ,

u = 2m9n + 168m3no + 84m12o +o 3

and then gives the answer to the problem in the form of the remarkable formula

o2 p3 + 3o2 pq2 + 3opru+3opst +3oqrt +3oqsu+3ors2 +or3 + t3 +3tu2

= 3o2 p2q+o2q3 +3oprt +3opsu+3oqru+3oqst +3or2s+os3 +3t2u+u3

(here some misprints in [7] have been corrected), which when multiplied out gives
an equation of degree 108 for x. Of course he gives no justification for the correct-
ness of this solution, let alone any indication of how one should go about finding
it—this was done later by Takebe Katahiro [建部賢弘] in the Hatsubi Sanpō Endan
Genkai [發微算法演段諺解] or “Commentaries in the Vernacular on the Hatsubi
Sanpō,” published in 1685—but it is indeed correct. The following aspects strike us
particularly:

(a) The solution is incredibly complicated. Even verifying its correctness is te-
dious and would be seen by most mathematicians today as something that cannot
reasonably be done without using an electronic computer, while to find this solution
from scratch would appear to a modern mathematician to require modern algebraic
tools like Gröbner bases.

(b) Seki doesn’t actually write out the full equation of degree 108 for x, but
merely says that one can do so if so desired and then solve it by the standard Chinese
method. One can wonder—and the question is posed explicitly in [7]—whether he
himself wrote out or solved this equation. The answer is surely negative, for at least
three reasons: First of all, the calculation is so complicated that it would surely have
defied even his extraordinary computational abilities, since the polynomial equation
in question has the form

x108 − 9x102 + 648x101 − 19440x100 + 312030x99 − 2835000x98 + · · ·
· · · + 81269204840575541641931959162093580030265561696577407234048x

−17950384405105760735882746260880728828976788057421374643904 = 0 .

Secondly, no matter how modest he was, he would surely have given some indica-
tion of having done such a mammoth calculation if he had actually performed it.
Thirdly, the solution as he wrote it out contains one or two minor inaccuracies (one
coefficient and one exponent are written incorrectly), so that if he had actually mul-
tiplied everything out and found the value of x numerically “by the Chinese method”
he would have discovered that it failed to satisfy the conditions of the original prob-
lem.
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(c) Less trivial is the remark that it would in any case have been superfluous
to do this numerical computation, and that for the same reason Seki’s entire solu-
tion, brilliant though it is, is totally unnecessary if one merely wants to solve the
given problem numerically, which is ostensibly his goal (and anyway is the best one
can hope for, since, as we know today, polynomial equations of high degree can-
not in general be solved exactly in closed form). Indeed, suppose that one were to
make the effort and write out the polynomial P(x) of degree 108 completely. The
“Chinese method” consists of either binary interpolation or some form of Newton’s
method, so in its crudest (but numerically quite sufficient) form would consist in
finding two values of x for which P(x) takes on opposite signs and then repeatedly
bisecting the interval they define and retaining only the half which includes a sign
change. But this method works perfectly well for the original problem, without the
necessity of any elimination theory at all! Indeed, taking the “tianyuan” to be (say)
x = 2

√
a (here Seki’s choice x = 4

√
c would serve equally well), we can rewrite the

original problem as f (x) = 12, where f (x) := x + 9√137340− x6 + 12√x6 −15590.
The algebraic function f (x) could be calculated numerically just as easily as the
polynomial function P(x), since the four arithmetic operations and the numerical
extraction of square and cube roots with the use of counting rods [算木 sangi] were
familiar procedures at Seki’s time, and by calculating successively the values

f (5) ≈ 10.02 f (6.0) ≈ 11.9228 f (6.06) ≈ 11.9877
f (6) ≈ 11.92 f (6.1) ≈ 12.0300 f (6.07) ≈ 11.9983
f (7) ≈ 12.61 f (6.2) ≈ 12.1327 f (6.08) ≈ 12.0089

...
...

...

one would obtain after just a few steps an accurate numerical value for x and hence
also for a, b and c :

x = 6.07158517504163027357 · · ·
a = 36.86414653778530412872 · · ·
b = 44.35167618766745730349 · · ·
c = 32.55638211638110312958 · · ·

In other words, it is just as easy to solve the original problem as it is to solve the
“simpler” one to which Seki reduces it, and by exactly the same method. Whether
Seki was aware of this, of course, must remain moot. We can nevertheless ask:

Q8. Were interpolation methods or “Newton’s method” ever used by wasan
mathematicians for the numerical solution of (non-polynomial) algebraic equations?

(d) Finally, we pose a question concerning an algebraic aspect of Seki’s solution.
To perform his elimination, he needs to repeatedly transform algebraic equations of
the form Q(x,

√
y) = 0 or Q(x, 3

√
y) = 0, where y is a polynomial in x, into purely

polynomial equations for x. The method to do this (stated by Takebe in the Endan
to the Hatsubi Sanpō and mentioned by Prof. Komatsu in his talk at this confer-
ence [11]) is based on the two algebraic identities
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A + B = 0 ⇒ A2 − B2 = 0 , (2)
A + B + C = 0 ⇒ A3 + B3 + C3 − 3ABC = 0 . (3)

Then in the first case we can split up the polynomial Q(x,η) into even and odd
powers of η =

√
y to rewrite the given equation as Q0(x,η2)+ηQ1(x,η2) = 0 and

use (2) to replace this by the purely polynomial equation Q0(x,y)2−yQ1(x,y)2 = 0,
and similarly in the second case split up Q(x,η) according to the values modulo 3
of the exponents of η = 3

√
y to rewrite the equation as Q0(x,η3) + ηQ1(x,η3) +

η2Q2(x,η3) = 0 and use (3) to replace this by the polynomial equation Q0(x,y)3 +
yQ1(x,y)3 +y2Q2(x,y)3 −3yQ0(x,y)Q1(x,y)Q2(x,y) = 0. The identities (2) and (3)
can be verified easily by using the factorizations A2 − B2 = (A + B)(A − B) and
A3 +B3 +C3−3ABC = (A+B+C)(A2 +B2 +C2−AB−AC−BC), but the second
of these is not obvious and in any case does not explain on what basis the expression
A3 +B3 +C3−3ABC was found originally. More synthetic proofs of (2) and (3), not
requiring one to know the answers in advance, can be given using substitution rather
than factorization:

B = −A ⇒ B2 = (−A)2 = A2 ,

C = −A−B ⇒ C3 = (−A−B)3 = −A3 −3A2B−3AB2 −B3

= −A3 −B3 +3ABC .

Q9. Can one determine whether the equations (2) and (3) for elimination of
square and cube roots were first obtained by wasan mathematicians by factorization,
by substitution, or by some other method? Cf. [8, p. 150].

1.5 On Problems 4 and 14 of the Kokon Sanpōki

In the last subsection we discussed Seki’s solution of Problem 4 of the Kokon Sanpō
ki, but not where the problem itself comes from. We observed above that the Chi-
nese and Japanese tradition usually involved “fixing” problems in advance so that,
even if the data in the problem was complicated (like the number 33622 37

200 in Zhu’s
problem), the answer came out in simple integers (like 24, 28, . . . in that problem).
But here the situation is different: the two numbers 137340 and 121750 in equa-
tion (1) are just as complicated as the number occurring in Zhu’s problem, but the
solution, as we saw above, is very far from being integral. Why, then, did Sawaguchi
choose the specific numbers 137340 and 121750? The following simple numerical
experiment suggests that they were not random choices. We look at the decompo-
sitions of 12 as a sum of three positive integers (there are only 55 of them, so this
is easily done), and in each case define a, b and c as the square, cube, and fourth
power, respectively, of the three summands. Then in one case, viz., a = 49, b = 27,
c = 16, we find that two of the sums of their cubes differ by only a few units from
the numbers in Sawaguchi’s problem. True, the sums of cubes in question are the
wrong ones, since for these values of a, b and c one has
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a3 + b3 = 137332 , a3 + c3 = 121745 , 2
√

a+ 3√b+ 4
√

c = 12 (4)

instead of (1), with a rather than b in the second equation. But the probability of this
near-coincidence being accidental is astronomically small, so we can ask:

Q10. Was Problem 4 in the Kokon Sanpōki in some way based on equation (4)?
Obviously, there is no way to decide this for sure (Sawaguchi, like everybody else

in this business, kept his secrets well), but if we take as a working hypothesis that
the two equations are in fact connected and try to imagine how the connection might
look, we may be led to relationships that can be tested in others of Sawaguchi’s prob-
lems. We first observe that, if Sawaguchi had simply started out (à la Zhu) with the
integral values 2

√
a = 7, 3√b = 3, 4

√
c = 2 to obtain the three relations (4), the prob-

lem obtained would have been much too simple for him to include in his collection
of 15 idai: a potential solver would only need to calculate 3√121745 = 49.5 · · · and
then try subtracting 493 from 137332 and 121745 to discover that the differences
were a 9th and a 12th power, respectively, making the solution immediate. So we
can imagine that Sawaguchi might have changed the problem a little to make it non-
trivial, in one of two ways:

(a) replace the numbers “137332” and “121745” in (4) by very similar numbers,
say 137340 and 121750;

(b) and/or replace the left-hand side of the second equation in (4) by b3 + c3.
If he had done merely (a), this would have had the advantage that he could be fairly
sure that the new problem, even if he did not know how to solve it analytically,
was non-defective (i.e., had a unique real solution). Doing (b) as well, to give the
problem as actually stated in the Kokon Sanpōki, would not have this property, and
it is quite possible that Sawaguchi simply made a mistake in transcription. In that
case, the problem he meant to give (namely, (1) with a3 +c3 in the middle equation)
would have had a solution in numbers very close to integers:

2
√

a = 7.00007044 · · · ,
3√b = 3.00001517 · · · , 4

√
c = 1.99991437 · · · .

If this hypothesis is true, then we would expect some others of his problems to have
the same property, and indeed, we will now see that this is the case.

Problem 14, discussed in detail at the lecture by Professor Komatsu [11] at this
conference, is the most complicated of the 15 idai in the Sanpōki, since it leads
(as Seki showed) to a polynomial equation of degree 2× 36 = 1458. The problem
requires finding four points in the plane such that the differences of the cubes of the
six distances x, y, z, u, v, w between them have given values:
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x3 − y3 = 271 ,

y3 − z3 = 217 ,

z3 − u3 = 60.8 ,

u3 − v3 = 326.2 ,

v3 − w3 = 61 .

(5)

These five equations alone would lead to an indeterminate problem in the six un-
knowns and must be supplemented by a sixth equation

P(x, . . . ,w) := (u2 + v2 −w2)(x2y2 +w2z2) + (v2 +w2 −u2)(y2z2 +u2x2)
+(w2 +u2 − v2)(z2x2 + v2y2) −u2x4 − v2y4 −w2z4 −u2v2w2 = 0

expressing the fact that the four vertices are coplanar. (The polynomial P, divided
by 144, gives the square of the volume of a tetrahedron with edges of length x, . . . ,w
and hence vanishes if the vertices lie in a plane.) This last equation, as discussed in
[11], is contained in the Sanso and hence was known to both Sawaguchi and Seki.

In his talk, Professor Komatsu cited the numerical solution

x = 10.0000056403 , y = 9.0000069815 , z = 8.0000083910 ,

u = 7.6699093899 , v = 5.0000228360 , w = 4.0000359240 .

calculated by Dr. Kinji Kimura (cf. [9]) using Gröbner bases and a numerical com-
putation library. These approximate values certainly fit in with the prediction of
being, in five cases out of six, very close to integers. Let us suppose that Sawaguchi
started with the arbitrarily chosen simple integral values

x = 10, y = 9, z = 8, v = 5, w = 4 (6)

for five of the unknowns. Then substituting them into the equation P(x, . . . ,w) = 0
he would have ended up with the quadratic equation

100u4 − 6065u2 + 10726 = P(10, 9, 8,u, 5, 4) = 0

for u2, giving the numerical value

u =

√
1213+69

√
273

40
= 7.6698551213 · · · (7)

for the sixth unknown u. These numbers would have led in turn to the values

x3 − y3 = 271 , y3 − z3 = 217 , z3 − u3 = 60.80790567 · · · ,
u3 − v3 = 326.19209432 · · · , v3 − w3 = 61

x
y z

u v
w
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for the data of the problem. These are strikingly similar to the numbers in (5), the
only difference, apart from the degree of precision chosen for the non-integral num-
bers, being that one has 60.8 instead of 60.08. This suggests:

Q11. Was the number 60.08 in Sawaguchi’s problem originally 60.8 ? Was the
intended solution the one given by (6) and (7)?

Here we have a definite prediction that can be checked against the documentary
evidence. In the facsimile copy of the Hatsubi Sanpō [2], the number in question is
given as 60.08, but of course Seki might easily have made an error of transcription
in copying from the Kokon Sanpōki. To check this, Prof. Komatsu kindly asked the
director of a wasan exhibition at Tokyo University of Science that was being held
concurrently with the conference to show us an original edition of the Sanpōki that
was on display there. Rather disappointingly, the number there also had a clear “0”
[零 rei] before the “8”. However, later we noticed that the problem as cited in 1914
by Smith and Mikami [15, p. 101] indeed gave the relevant number as “60.8,” which
suggests that there must be different original editions of the Sanpōki and that there
was a copying error at some stage. Furthermore, the numerical solution of the prob-
lem as given in (5) is

x = 9.9977624076 , y = 8.9972373104 , z = 7.9965030158 ,

u = 7.6660952225 , v = 4.9910355706 , w = 3.9859690172 ,

while the solution for the problem with 60.08 replaced by 60.8 is

x = 10.0000057162 , y = 9.0000070570 , z = 8.0000089315 ,

u = 7.6699096344 , v = 5.0000228647 , w = 4.0000357259 .

The latter numbers are very much closer to the ones given by Kimura, suggesting
that he, too, must have used a source in which the third number in Sawaguchi’s
problem appeared as 60.8 rather than 60.08.

We have given this numerical analysis at some length because the details of the
various numerical coincidences give concrete and rather convincing support to hy-
potheses which would otherwise by their nature be somewhat speculative. To go
further, of course, one should search for more cases of the same phenomenon. Our
next question is therefore:

Q12. Are there other problems, by Sawaguchi or other authors of the time, whose
solutions involve numbers very close to integers and which thus may have been
constructed starting from integral solutions?

We mention one final point. If the above reconstruction is correct and Sawaguchi
really intended his problem to have the solution given by equations (5) and (6),
then one can wonder whether he might not have attempted to give a version having
a solution consisting entirely of integers. To do this, he would have had to find a
solution in integers of the indeterminate problem P(x, . . . ,w) = 0, and could then
simply have given the values of the differences x3 − y3, . . . ,v3 −w3 as the data in
the other five equations of his problem. In fact the equation P(x, . . . ,w) = 0 does
have various integral solutions, examples being (x,y,z,u,v,w) = (17,13,8,9,11,5),
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(22,17,19,4,8,6), or, with x > y > z > u > v > w, (27,24,17,13,11,9). Of course,
these are not particularly easy to find without a computer, although they are easy
enough to verify numerically, but there are many other problems (in particular, those
concerning Pythagorean triples, i.e., right triangles with sides of integral length)
whose formulations in terms of geometry that was familiar at this epoch would have
been quite natural and which can be solved by hand, either by systematic analysis
or by trial and error. This suggests our final question:

Q13. Were any problems of what we now call Diophantine analysis ever consid-
ered by Japanese mathematicians during the Edo period?

2 Did Seki or Takebe learn any mathematics from the Dutch?

The mathematics of Seki and Takebe, seen from the point of view of the twenty-first
century, is a “quantum jump” beyond of that of their Chinese or Japanese prede-
cessors, and it is of course a very natural question whether this progress was due
entirely to the natural genius of these two mathematicians or whether they were di-
rectly or indirectly inspired by the mathematics done in Europe during the preceding
decades. Western authors in the early twentieth century tended to say that there of
course must have been such an inspiration. But they give little evidence, and a mod-
ern reader cannot help feeling that this is often simply a reflection of their a priori
belief that the miracles of Western science could not have been discovered by the
members of such a different culture.

For instance, George Sansom, in his well-known book Japan, A Short Cultural
History [13], quotes Engelbert Kaempfer, who came to Nagasaki in 1690 as a physi-
cian for the Dutch, as having said that the Japanese “had little taste for speculative
philosophy, which . . . they thought an amusement proper for lazy monks” and then
goes on to say

The crowning triumph of the Western intellect, the great gift which at that time Europe
might have made to them, they were either unprepared or unwilling to receive, for, to quote
the same authority, they knew “nothing of mathematics, more especially of its deeper and
speculative parts” [13, p. 421].

In a footnote [13, p. 428], he adds that—whereas the Chinese seemed to have made
few advances after their discoveries of the 12th and 13th centuries—

The Japanese worked out an original method of the differential calculus from hints coming
through the Dutch, and in general they appear to have displayed remarkable ingenuity in
application of a limited knowledge; but Kaempfer’s judgement as to their backwardness in
theory seems to have been correct.

But he gives no evidence at all for his assertion that the progress made by the
Japanese was based on “hints coming from the Dutch.”

Similarly, in the well-known history of Japanese mathematics by Smith and
Mikami, we find a somewhat vague reference to “others whose names are not now
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remembered” who “might have formed a possible medium of communication with
the West in the time of Seki,” followed by the more specific passage

. . . we have the record of two men who were in touch with Western mathematics. These men
were Hayashi Kichizaemon and his disciple Kobayashi Yoshinobu, both of them interpreters
in the open port of Nagasaki. Each of these men knew the Dutch language, and each was
interested in the sciences, the latter being well versed in the astronomy of the West. . . .
While it is probable that these men did not know much of the European mathematics of the
time, it is inconceivable that they were unaware of the general trend of the science, and that
they should fail to give to inquirers some hint as to the nature of this work. [15, pp. 140–141]

and then, in summary, the following:

The conclusion appears from present evidence to be that some knowledge of European
mathematics began to find its way into Japan in the seventeenth century; that we have no
definite information as to the nature of this work beyond the fact that mathematical astron-
omy was part of it; that there is no evidence that Seki or his school borrowed their methods
from the West; but that Japanese mathematicians of that time might very well have known
the general trend of the science and the general nature of the results attained in European
countries [15, pp. 141–142].

But the authors give little evidence, either here or later, to substantiate the last of
these assertions, and in general it has to be said that this book, despite the eminence
of the first author as a historian of Western mathematics and the preeminence of the
second author as a historian of Japanese mathematics, is marred in many places by
the Western prejudices of its first author (cf. [8, p. XXVI, footnote 3]).

The question about Western influence obviously cannot be resolved easily, at
least without further evidence coming to light, and certainly not by the present au-
thors. But we would like to add a few intrinsic arguments concerning the various
“hints from the Dutch” theses, and then give some concrete documentary evidence
supporting the opposing viewpoint, that Seki and Takebe had not had any direct
contact with the mathematics which had been done in Europe between the closing
of Japan in 1639 and the lifting of the partial ban on foreign books in 1720.

The first and most obvious argument is that at least some of the discoveries of
Seki and Takebe cannot have come from Western sources simply because they pre-
dated them. The most notable of these is of course Seki’s independent discovery of
determinants, which were found also by Leibniz in 1693 but published only after his
(and a fortiori after Seki’s) death, and which were treated in much greater generality
by Seki; here even Smith and Mikami speak of a “marked proof of Seki’s genius”
and concede that “Seki was not only the discoverer but that he had a much broader
idea than that of his great German contemporary” [15, pp. 124–125]. A further ex-
ample are the Bernoulli numbers, which Seki discovered independently of Jacob
Bernoulli and actually published earlier (the publications by Seki and Bernoulli,
both posthumous, are from 1712 and 1713, respectively). This example is in some
ways even more striking than the first, since determinants are an essential mathe-
matical tool which must inevitably be discovered when one studies systems of lin-
ear equations (as had been done in the East for centuries), while Bernoulli numbers
constitute a far more specific discovery that is not an inevitable consequence of any
particular “general trend in the science.” Seki’s theory of elimination, too, although
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undoubtedly based in part on Chinese precedents, goes much further than anything
that European mathematicians could have done at the time, or indeed for the next
hundred years. Knowing that in these cases the discoveries were his, why should we
doubt that other discoveries that Seki made, even when these occurred later than in
the West, were wholly his own?

Secondly, and no less importantly, the level of the mathematical advances we are
speaking of is so high that it is hard to imagine how they could have been transmit-
ted by general osmosis or “hints.” Before the lifting of the ban, these hints would
have had to come via the Dutch. But, as Goodman, who studied the Dutch-Japanese
interaction more intensively than any other historian, says,

Further, the Dutch who came to Japan were hardly trained scientists and were no more able
to respond to scientific inquiries abroad than they would have been at home . . . the over-
whelming proportion of Japanese contact with Hollanders was with the average employees
of the Dutch East India Company . . . [6, pp. 64–65].

And even if one imagines, despite the inherent unlikeliness and the lack of any evi-
dence to this effect, that at some point there was a member of the Dutch contingent
who was versed in the state-of-the-art mathematics of the day and had Japanese
interlocutors capable of and interested in learning this material, it would still have
been impossible for the former to transmit his knowledge to the latter because of
the linguistic barriers involved. One must remember that, while in the 16th century
there were a number of Europeans (principally Jesuit missionaries) who had spent
years in Japan and had mastered the language, and of Japanese who had become
fluent in various European languages, the situation was completely different during
the first half of the Edo period, when the bakufu followed a deliberate policy of pre-
venting linguistic competence on either side, demanding that members of the Dutch
contingent (in particular, the opperhoofd or ship’s captain) be replaced every year so
that they could not learn too much about Japan and themselves providing Japanese
interpreters with a very inadequate knowledge of the Dutch language. There was no
serious training of interpreters before the lifting of the ban, and no Dutch-Japanese
dictionary until 1745. That sophisticated abstract mathematical ideas like interpo-
lation or the series development of functions could have been discussed in such a
context seems very unlikely.

In a related vein, one must remember that not only the language, but also the
backgrounds, the styles of presentation and above all the aims of the research itself
were so different in the two cultures that it is by no means clear that a Japanese
mathematician, exposed in an unsystematic way to a piece of Western mathematics,
would have been able to appreciate it (just as, of course, a Western mathematician
would not have been able to appreciate Japanese mathematics without long expo-
sure to it). And indeed, even as late as 1811 a Japanese mathematician who had seen
Western mathematics was able to write with obvious conviction that “foreign math-
ematics is not on so high a plane as the mathematics of our own country,” (quoted
in [14, p. 172]).

Of course, European mathematical knowledge transmitted in written form might
have been understood by a qualified mathematician working imaginatively against
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the language barrier. But despite the vague comments of Sansom or of Smith–
Mikami, there seems to be no evidence that such texts were available before 1726,
the date of the importation of the Encyclopedia of Calendrical Mathematics [暦算
全書 Lisuan Quanshu] by Mei Wending [梅文鼎], into which Takebe had the marks
necessary for Japanese to read the Chinese text inserted. Thus, when Smith (we as-
sume that it was he) challenges the credit given to Takebe for his infinite series for
the square of the arc, writing

The series seems, however, to have been given by Pierre Jartoux, a Jesuit missionary, res-
ident in Peking . . . There is a tradition that Jartoux gave nine series, of which three were
transmitted to Japan, and it seems a reasonable conjecture that Western learning was respon-
sible for his work, that he was responsible for Takebe’s series, and that Takebe explained
the series as best he could [15, pp. 154–155],

he gives a few internal arguments for this thesis, such as the somewhat awkward and
unconvincing presentation of the series in Takebe’s text, but again no documentation
that Takebe had seen the series that were transmitted to Japan. (In fact, a footnote
to the passage says that the three series in question appeared in a book by Mei Ku-
cheng [梅殻成] with unknown date and without evidence that they reached Japan in
this period, i.e., before Takebe’s Fukyū Tetsujutsu [不休綴術] containing his infinite
series was published.) In the book by Horiuchi, as well as a much more careful
analysis of the Jartoux issue [8, pp. 296–298], we find a different possibility for the
path that might have led Takebe to infinite series:

. . . Seki’s treatise on faulty problems bristles with ideas, more or less well-mastered, on the
relations between the coefficients and the roots. It is also the place where Seki proceeds for
the first time to the extraction of a literal magnitude in an equation with literal coefficients.
So we are in the presence here of a new extension of the use of literal notation, an extension
that will later inspire Takebe to express the square root of a quadratic equation in the form
of an infinite series [8, p. 182].

Later, there is a careful analysis of Seki’s procedure of the arc, giving a coherent
background on which Takebe’s series could have arisen without any Western input,
and ending with the remarks

Here again, the methods brought into play by Seki to treat the problem are incomparable
with those of his predecessors . . . We thus see that Seki extended the use of this algebraic
tool to contexts where it was assumed a priori that there existed a functional relation be-
tween two geometric quantities even though the expression for this relation was not yet
known. Here we touch an essential feature of Seki’s works, that of having considerably en-
larged the domain of use of algebraic techniques. Mikami very early stressed the historical
importance of the solution proposed by Seki, which he considered more important than the
exact solution later obtained by Takebe . . . Mikami here forcefully asserts that, if Seki had
not introduced algebraic techniques into this domain, Takebe’s solution would never have
seen the light of day [8, p. 251].

One final argument—admittedly of a more subjective nature—is on the level of
mathematical style and of the personalities of the protagonists. Written mathemat-
ics is characterized not only by its contents, but by the way in which the author
sees and presents the discoveries that he is expounding. Seki’s approach to alge-
braic problems, as indicated in the passage just quoted, was extraordinarily original
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and innovative, but Seki himself, who was steeped in and deeply respectful of the
Chinese tradition, typically couched his exposition in the context of this tradition,
and indeed may well have believed that he was working within it even when in
fact he was doing something very new. We saw one example of this in the first part
of this paper, where he formulated his solution of a problem of Sawaguchi as if
he were presenting an algorithm for the numerical determination of the sought-for
root, but in fact showed no interest in actually finding this root but instead describes
a purely algebraic procedure for expressing the solution of the problem as the root
of a polynomial—a modern mathematician malgré lui. He presents the elimination
theory in the traditional language of sangi [算木] but uses these in a new way, very
different from his predecessors in Japan or China, and of course even more different
from the way in which any European mathematician, had he achieved the same re-
sults, would have formulated them. If Seki had been exposed, even tangentially, to
Western mathematical thinking, then surely one can speculate that this might have
affected the presentation, as well as the contents, of what he wrote. As to Takebe,
it can be mentioned that he was particularly noted for his honesty, that he was far
more inclined to speak of his own weaknesses in mathematics than to take unearned
credit for things he had not done, and that he explicitly expressed his enthusiasm
about ideas in astronomy coming from Europe when he learned about them after
the lifting of the ban [8, pp. 225–226]. There seems to be no reason to think that he
would have kept silent about recent beautiful mathematics done by Europeans if he
had known about or made use of it.

We now turn to the documentary evidence. We have already mentioned that
the bakufu [幕府], fearful of the Hollanders’ acquiring too much knowledge about
Japan, required that the ship’s captain be replaced every year. The East India Com-
pany, which was just as interested in ensuring that precisely this knowledge should
be available, therefore had each opperhoofd keep a very detailed diary and made
sure that several transcriptions of it should be made, so that at least one copy would
survive the perilous return trip to Holland. These diaries, preserved in their entirety
in the Dutch National Archives in The Hague, constitute a miraculous record, of
a dimension perhaps unparalleled by any other historical document, of the rela-
tions between the Dutch contingent and the Japanese during the entire Edo period.
A search through the diaries of the relevant years failed to turn up any evidence
of an actual exchange of information on any kind of mathematical question what-
soever. There was one fully documented personal encounter between Takebe and
the Hollanders in 1727 in which Takebe put detailed questions to the Dutch. These
questions concerned such issues as the way the Dutch put out fires, how they named
their sons, whether they used matches, fans, or ear-picks, and whether they were ac-
quainted with black magic (the complete list of questions is given in the Appendix),
but absolutely nothing specifically scientific, let alone mathematical. Indeed, there
is no indication anywhere in the diaries that the Dutch were even aware that Takebe
(whom they knew only as an ambassador of the Shogun and consistently referred to
as “the Imperial Minion”) was a mathematician at all. The only thing indicating that
they had recognized Takebe’s ability is a diary entry a few pages later in which the
captain tells how a defective Dutch watch was said to have been repaired by Takebe
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and that he “gladly believed this” because, on the occasion when Takebe had asked
him the thirty questions, he had observed “that nature had not spared in dispensing
knowledge to him, but that he is versed in different sciences and is a fine erudite
man” (“in verschejde wetenschappen ervaaren en een fijn doorsleepen man is”). But
this is still very far from a technical discussion of mathematics! And indeed, in the
entry for the very day on which Takebe put his thirty questions, the captain describes
how at the end of their meeting the Japanese continued with various “mathematical,
astronomical and geometric propositions, . . . to which 〈I〉 responded never to have
learned the said Sciences, with which the interrogation came to an end.” This agrees
well with the comment of Goodman cited above.

In summary, the documentary evidence, though admittedly inconclusive, seems
to us to give more support to the view that the Japanese did not learn any mathemat-
ically interesting facts from the Dutch than to the view that they did do so.

Appendix: Takebe’s questions to the Dutch in Dejima

We give here a translation of the part of the diary entry for March 25, 1727, that
enumerates the questions put by Takebe. The rest of the text, describing the sea-
bass that the Japanese presented to the Dutch and wished to watch them to eat,
a meeting with the Imperial watchmaker, and the captain’s inability to respond to
the “mathematical, astronomical and geometric propositions” put forward by the
Japanese delegation, is omitted.

Tuesday 25th
In the morning around ten o’clock came the Senior Interpreter Kizits with Lord

Takebe Fiko Sira Sama accompanied by three of the First Servants of his Imperial
Majesty named [Master] Faomi Foukan, Maayeda Kioriso-o and Ito ga au, arrived,
mutually having exchanged some compliments, 〈they〉 sat down, 〈and〉 the follow-
ing questions were asked, such as

Firstly — the four elements, whether they are known to us, and how they were named;
Secondly — the Elements, whether we don’t apply them to the human body;
Thirdly — the twelve Zodiac signs, whether we know them, how they are named, and
whether these are applied to anything;
Fourthly — compasses, what about the compass which points wrongly, whether this by
some means can be discovered and demonstrated;
Fifthly — whether without compass, East can be shown and by what means;
Sixthly — whether East and West are known;
Seventhly — whether we have lanterns in use like the Japanese: if so, how and from which
kind of material they are made;
Eighthly — whether witchcraft, or black magic, is known to us and is in use;
Ninthly — on which day we rest, and on which ones we work, 〈and〉how these are called;
Tenthly — Sunday, how long it has been in use, and why so named;
Eleventhly — the measure of an ikken [1.92 m.], and whether others are in use and how
they are named;
Twelfthly — 〈whether〉 the gantang [measure used for rice and pepper, ca. 8 1/2 liters] is
used by us, or whether 〈there are〉 others and how these are then named;
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Thirteenthly — the dai ching [steelyard balance], whether it is used for the money that is
paid out daily, or for what;
Fourteenthly — Dutch houses, whether they are like the Japanese, then how they are built;
Fifteenthly — warehouses, how they are built by the Hollanders;
Sixteenthly — the Lords’ or big manor houses, whether they aren’t distinguishable from
ordinary men’s houses;
Seventeenthly — whether when there is a fire in Holland, whole streets burn down at once
like in Japan;
Eighteenthly — how and by what a fire is extinguished;
Nineteenthly — rice, wheat, barley, buckwheat and other grains, how they are presented;
Twentiethly — rice as well as other grains, whether they can be stored in Holland and on
Jakarta longer than a year;
Twenty-firstly — the names which are born by somebody for a thousand years or less,
whether the descendants may continue to bear them;
Twenty-secondly — whether the Daimyo or other great 〈persons〉 don’t change their
names when they get another function;
Twenty-thirdly — whether the Hollanders like the Japanese have two names in use, i.e.
how one names each other daily and the other in writing, that is when one signs one’s name;
Twenty-fourthly — when to the father or to the master of a house a son is born, whether
he himself gives the name or whether the name is given by Dutch priests, and whether like
with the Japanese the name then is used for a signature seal;
Twenty-fifthly — the sulfur-match, whether it is used by us Hollanders, and from what it
is made;
Twenty-sixthly — fire, when one wants to keep it, how this is done;
Twenty-seventhly — ink, from what substance it is made;
Twenty-eighthly — quills, from what they are made;
Twenty-ninthly — ear-picks, whether they are used by us;
Thirtiethly — fans, whether they are in use by the Hollanders.
Which above-mentioned questions 〈I〉 answered according to my knowledge of science
shortly and concisely, . . .
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Ming Antu and His Power Series Expansions

Luo Jianjin

Abstract Ming Antu (1692?–1763?), of Mongolian nationality, is a famous Chinese
astronomer, mathematician and topographist. He began to work in the Imperial Ob-
servatory in 1713. He participated in the work of compiling and editing three very
important books in astronomy and joined the team of China’s area measurement.

Ming wrote his book Quick Methods for Accurate Values of Circle Segments in
1730–1763, but it was published only in 1839. He was the first person in China who
calculated infinite series and obtained more than 10 formulae. He built a system of
conceptions and symbols for infinite series, and created a new algorithm for infi-
nite series, including addition, subtraction, multiplication and inversion. He created
a method of powers of an infinite series. Famous Japanese scholar Yoshio Mikami
wrote in 1910: Ming Antu was the first Chinese who had ever entered into the ana-
lytical study of circle measurement.

In 1730’s, he first introduced and used Catalan numbers Cn: Computer Scientist
Prof. D. E. Knuth of Stanford University holds in his famous book that Ming is the
first inventor of Catalan numbers in the world. Mathematician Dr. P. J. Larcombe of
Derby University published 7 papers on Ming and Cn. We hold that infinite series
with Catalan numbers should arouse more attention.

Ming’s achievements in astronomy were accepted and appreciated in the interna-
tional academic circles of astronomy. On May 26, 2002, the Nomination Committee
of Minor Planet Center under the International Astronomical Union announced that
Minor planet No.28242 was named “Ming Antu Star.”

Li Yan [李儼] and Qian Baocong [銭宝琮] had done some foundational research
work on Ming. J. Needham, Li Di [李迪] and C. Jami gave very high comments to
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Ming’s works.
The year 2002 was the 310th anniversary of Ming’s birth. Ming Antu Star’s Nom-

ination Ceremony and traditional meeting were held in Ming’s hometown in August
2002. More than 500 delegates and 20,000 local residents gathered together to cele-
brate, and a conference on “the Science Contribution of Ming Antu” was held. The
government named Ming’s hometown as “Ming Antu Town.”

1 Ming Antu’s Life and Works

Ming Antu [明安圖] (1692?–1763?) is of Mongolian nationality. “He was born in
Zheng Bai Qi [正白旗] of Mongolia (in today’s Inner Mongolia)” [23]. Ming Antu
was a famous Chinese astronomer, mathematician, and topographer.

According to the decree of Emperor Kangxi [康熙] in 1670, a royal academic
college was founded; Before 1710 Ming was selected to enter it and began to study
science.

Emperor Kangxi loved natural science and mathematics. He often taught students
by himself. He was Ming Antu’s mathematics teacher. Ming worked hard and won
Emperor’s favor.

Fig. 1 The Statue of Ming Antu
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1.1 Ming Antu was a top astronomer in China

Ming finished his schooling in 1713 and worked in the Imperial Observatory. He
later became a top astronomer in China. He participated in the work of compiling
and editing three very important books in astronomy:

1. The Source of Tuning and Calendars [律暦淵源, Lu Li Yuan Yuan] 100 Vols.
(1713–1723)

2. The Calendars and Astronomical Phenomena [暦象考成后編, Li Xiang Kao
Cheng Hou Bian] 10 Vols. (1737–1742)

3. The Astronomical Instruments and Star Maps [儀象考成, Yi Xiang Kao Cheng]
32 Vols. (1744–1752)

Ming Antu became the top astronomer in China in the middle of the 18th century
and was promoted to the Leader of the Imperial Observatory [欽天監監正] His
academic idea was influenced by Tycho Brahe [第谷] (1546–1601). The Mongolian
Planisphere (sky map) carved on a stone in the Five Pagodas Temple in Huhhot City
might have been drawn by Ming Antu.

1.2 Ming’s work on the area measurement in China

The government of the Qing [清] Dynasty tried to make a survey and calculate
China’s area in 1708–1716, but the work was only half done at that time. Ming
Antu joined the team of area measurement and went to Xinjiang [新彊] Province to
measure the longitude and latitude in 1755–1756. In 1759, he visited Xinjiang and
Tashkent again as the team leader. Based on the results of several measurements, a
map of the whole China was drawn, and it was a foundation of later maps of China.

1.3 Ming Antu’s main contributions to mathematics

Traditional mathematics in China had been declining since Ming [明] Dynasty
(1368–1644). Many mathematics books from ancient times were lost. In the West,
the Renaissance occurred, and many famous mathematicians were active. The dif-
ference between China and the West was obvious. At that time, Ming Antu could
not receive any information from the West. Under such circumstance, Ming made
great efforts to push forward traditional mathematics in China.

Ming Antu wrote his book Quick Methods for Accurate Values of Circle Seg-
ments [割圜密率捷法, Ge Yuan Mi Lu Jie Fa] [21] in 1730–1763, but he did not
finish this book in his life. Before his death in 1763, he requested his son and stu-
dents to complete the book, which was done in 1774. Its hand-copies were spreading
but the book was published much later in 1839.
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Fig. 2 Quick Methods for Accurate Values
of Circle Segments

Fig. 3 Quick Methods Vol. 3, p. 3

Ming Antu’s influence on mathematics in Qing Dynasty lasted more than one
hundred years and “Ming’s School” was formed under this influence.
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Ming Antu’s main mathematics works include:

1. He was the first person in China who calculated infinite series and obtained
several formulae independently;

2. He was the first person who established and used Catalan numbers in the history
of world mathematics;

3. He founded the theory and algorithms of inverse functions and got 4 groups of
inversion formulae;

4. Ming pushed forward the theory that geometric figures and numbers can be
transformed into each other1. Li Yan [李儼] gives the comment that he rivals
Descartes in starting analytic geometry;

5. Ming pushed forward the limit theory that curves and lines can finally reach the
same in case of infinite division;

6. Ming was the first person who applied the infinite series of trigonometric func-
tions to astronomical calculations in China.

In this paper we can only discuss his first and second achievements listed above.

2 The Power Series Expansions by Ming Antu

In the early stage of the 18th century, a French Jesuit missionary P. Jartoux (1668–
1720) introduced the following three formulae of infinite series to China [22, p.
301]:

r sin
a
r

= a− a3

3!r2 +
a5

5!r4 − a7

7!r6 + · · · , J. Gregory (1667) , (1)

rVers
a
r

=
a2

2!r
− a4

4!r3 +
a6

6!r5 −·· · . J. Gregory (1667) , (2)

Newton’s expansion in 1676:

π = 3
(

1+
12

4 ·3!
+

12 ·32

42 ·5!
+

12 ·32 ·52

43 ·7!
+ · · ·

)
, I. Newton (1676) . (3)

Using these three formulae, Chinese astronomers got accurate results. In tradi-
tional mathematics in China, there were no such formulae. However, P. Jartoux did
not bring their proofs into China, and this aroused Ming’s interest. He worked to
prove three formulae and obtained other infinite series formulae of trigonometric
functions.

1 See Fig. 3, Mikami [20, p. 145ff.] or Jami [6], [7].
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2.1 Ming Antu obtained six formulae of infinite series

Let the radius be r and the arc be a with the central angle α = a/r; let the chord of
2a be c and the arrow of 2a and c be b. Ming Antu had got (in modern form) the
following [15]:

c = 2r sinα = 2a− (2a)3

4 ·3!r2 +
(2a)5

42 ·5!r4 − (2a)7

43 ·7!r6 + · · · , (4)
or

c = 2r sinα =
∞

∑
n=0

(−1)n(2a)2n+1

4n(2n+1)!r2n .

b = rVersα =
(2a)2

4 ·2!r
− (2a)4

42 ·4!r3 +
(2a)6

43 ·6!r5 − (2a)8

44 ·8!r7 + · · · , (5)
or

b = rVersα =
∞

∑
n=1

(−1)n+1(2a)2n

4n(2n)!r2n−1 .

2a = c+
12 · c3

4 ·3!r2 +
12 ·32 · c5

42 ·5!r4 +
12 ·32 ·52 · c7

43 ·7!r6 + · · · , (6)
or

2a =
∞

∑
n=0

[(2n−1)!!]2c2n+1

4n(2n+1)!r2n .

a = sinα =
12(r sinα)3

3!r2 +
12 ·32(r sinα)5

5!r4 + · · · , (7)
or

a =
∞

∑
n=1

[(2n−1)!!]2(r sinα)2n+1

(2n+1)!r2n .

a2 = r2Versα +
12(2rVersα)2

4!
+

12 ·22(2rVersα)3

6!r
+ · · · , (8)

or

a2 =
∞

∑
n=0

(n!)2(2rVersα)n+1

(2n+2)!rn−1 =
∞

∑
n=0

(n!)2(2b)n+1

(2n+2)!rn−1 .

(2a)2 = (8b)r +
12(8b)2

4 ·4!
+

12 ·22(8b)3

42 ·6!r
+ · · · , (9)

or

(2a)2 =
∞

∑
n=0

(n!)2(8rVersα)n+1

4n(2n+2)!rn−1 =
∞

∑
n=0

(n!)2(8b)n+1

4n(2n+2)!rn−1 .

These formulae are very famous in the history of mathematics in China. For
quite a long time, these nine formulae above mentioned were named as “P. Jartoux’s
formulae,” which is a historical mistake.
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2.2 Catalan numbers in the infinite power series expansions

Ming Antu had got other important power series expansions as follows [16]:

(
sin

α
2
)2 =

∞

∑
n=1

Cn
( sinα

2
)2n

. (10)

sin2α = 2sinα −
∞

∑
n=1

Cn(sinα)2n+1

4n−1 . (11)

sin4α = 4sinα −10(sinα)3 +
∞

∑
n=1

(16Cn −2Cn+1)(sinα)2n+3

4n . (12)

He also had obtained infinite series of sin10α,sin100α ,sin1000α and sin10000α.
British mathematician P. J. Larcombe [9] extended it to the case of sin2kα in the
year 2000.

In these formulae Cn are the Catalan numbers 1, 1, 2, 5, 14, 42, 132, 429,…. Cata-
lan numbers are famous counting function in today’s discrete mathematics (combi-
natorics and graph theory).

E. Catalan (1814–1894, Belgian) published a paper [4] involving such numbers
in 1838. Catalan numbers then were named after him. Now we know that L. Euler
(1707–1783) studied such numbers in 1758 [5].

The formulae of Catalan numbers are:

C0 = 1, C1 = 1, Cn =
1

n+1

(
2n
n

)
(n ≥ 0) .

The convolutive recurrence formula of Catalan numbers is:

C1 = 1, C2 = 1, Cn =
n−1

∑
k=1

Cn−kCk (n ≥ 2) .

I. Newton’s binomial theorem gives, when the exponent is equal to 1/2,

(1+ z)
1
2 = 1+

∞

∑
n=1

(−1)n−1 Cnzn

22n−1 (|z| < 1).

J. Binet [2] gave in 1839 the generating function of Catalan number:

1
2
− 1

2

√
1−4z =

∞

∑
n=1

Cnzn (|z| < 1/4).

Brown [3] introduced the history of Catalan numbers and Alter [1] its develop-
ments. However, until recently the western researchers did not know that Ming’s
work held a safe lead in the world.
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Now we know that there are 6∼7 definition formulae of Catalan numbers, and
more than 50 combinatorial background meanings. Up to now, more than 600 papers
have been published about them.

In 1730’s, Ming Antu already encountered and used such numbers. In his book
Quick Methods for Accurate Values of Circle Segments, Vol. 3, Ming used three
methods and obtained the same Catalan numbers as well as two new formulae.

Formula A The recurrence formula of Catalan numbers:

C1 = 1, C2 = 1, Cn+1 = ∑
k≥0

(−1)k
(

n− k
k +1

)
Cn−k . (13)

This was a new formula, and nobody had ever known it before 1988 in the West
[17].

Formula B The finite polynomial generating function of Catalan numbers:

M1 = (1), M2 = (0,1),
M3 = (2M1 +M2)M2 = [2(1)+(0,1)](0,1)

= [(2)+(0,1)](0,1) = (2,1)(0,1) = (0,0,2,1) ,

· · · · · · · · · · · · · · ·

Mn+1 =
(
2

n−1

∑
k=1

Mk +Mn
)
Mn,

MCn =
n

∑
k=1

Mk = (1,1,2,5,14,42,132,429, · · · ,Cn) . (14)

This is a new formula. P. J. Larcombe gave a proof [10] in the year 1999.

In Ming Antu’s infinite series expansions, the coefficients were expressed as
Catalan numbers Cn. This is very important. In the past researches, this point has
been neglected. This paper intends to stress that the infinite series with Catalan
numbers should arouse more attention.

2.3 Ming Antu’s method of calculating infinite series

In traditional mathematics in China, there were no infinite series. Ming Antu had to
create a new method to calculate infinite series. His work is listed as follows [18]:

1. He built a system of conceptions and symbols for infinite series;
2. He created a new algorithm for infinite series, including addition, subtraction

and multiplication;
3. He made calculation by himself and obtained right results of some infinite se-

ries.
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Taking infinite series y10 as an example, this paper introduces his method of
squaring an infinite series. For this purpose, we translates Ming’s algorithm into
current mathematical language based on the content of pp. 34–35 in Vol.3 of his
book Quick Methods for Accurate Values of Circle Segments. Let

x = 2sinα (0 < α < π/4), yn
m = (2sinmα)n (m ≥ 1) .

Ming had got (processes are omitted):

y10 = 5y2 −5y3
2 + y5

2

= 10x−165x3/4−3003x5/43 −21450x7/45 −60775x9/47

−
∞

∑
n=1

(164Cn −8 ·163Cn+1 +21 ·162Cn+2 −20 ·16Cn+3 +5Cn+4)x2n+9/42n+7.

Here Cn are Catalan numbers. When n = 1,2,3, the coefficients in the parentheses
are 41990, 22610, 29716.

Now we rewrite this infinite series as follows:

y10 = a0x+
∞

∑
n=1

anx2n+1

42n−1 . (15)

When n = 0,1,2, · · · ,7, an = 10, −165, −3003, −21450, −60775, −41990,
−22610, −29716, respectively.

Ming Antu had to calculate the self multiplication of y10, namely y10 × y10. His
method is as follows:

y2
10 =

(
a0x+

∞

∑
n=1

anx2n+1/42n−1
)2

= (a0x)2 +2
∞

∑
n−1

a0anx2n+2/42n−1 +
( ∞

∑
n=1

anx2n+1/42n−1
)2

. (16)

The key of this operation is the last term in Formula (16). He created a method
as follows: ( ∞

∑
n=1

anx2n+1/42n−1
)2

=
∞

∑
n=2

(n−1

∑
k=1

4an−kak

)
x2n+2/42n−1. (17)

And he got

y2
10 = b0x2 +

∞

∑
n=1

bnx2n+2/42n−1, (18)

where

b0 = a2
0, b1 = 2a0a1; when n ≥ 2: bn = 2a0an +

n−1

∑
k=1

4an−kak .
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In this way, Ming Antu resolved this difficult problem of self multiplication of
infinite series.

3 Our Commemoration

3.1 The researches on Ming Antu by historians and
mathematicians

Famous Japanese scholar Yoshio Mikami [三上義夫] (1863–1950) wrote in 1910
[20, p. 149]: Antu Ming was the first Chinese who had ever entered into the analyt-
ical study [of the circle measurement].

Li Yan [李儼] (1892–1963) and Qian Baocong [銭宝琮] (1892–1974) had done
some foundational research work on Ming Antu’s achievements. Dr. J. Needham
(1900–1995) gave very high comments to Ming Antu’s work.

Li Di [李迪] (1927–2006) published Ming’s biography [14] and more than 10
papers on him. He Shaogeng [何紹庚], Luo Jianjin [羅見今] and Tegus [特古斯]
had done other works further in depth. In China, more than 80 papers or books were
published on Ming Antu.

French scholar Catherine Jami writes: the virtue of Ming Antu’s work is that he
integrated two traditions of mathematics, Chinese and Western into one frame [6].

In his famous book The Art of Computer Programming [8, p. 407], the leading
figure of Algorithms and Programming, Prof. D. E. Knuth of Stanford University
introduces the history of Catalan numbers. He said: “A Mongolian Chinese math-
ematician, An-Tu Ming, had encountered the Catalan numbers before 1750 in his
study of infinite series, . . .” [17, 19].

P. J. Larcombe of Derby University published 7 papers on Ming and Catalan
numbers, such as: “On the history of the Catalan numbers: a first record in China”
[11]; “The 18th century Chinese discovery of the Catalan numbers” [12] and “On
expanding the sine function with Catalan numbers: A note on a role for hypergeo-
metric functions” [13]; etc.

3.2 The nomination of Ming Antu Star

In 1992, on the occasion of the 300th anniversary of the birth of Ming Antu, an
academic conference was held in Huhhot, Inner Mongolia. Wang Shouwan, the
academician of National Astronomical Observatory and more than 30 international
scholars took part in this conference. Wang wrote a poem:

科学巨星明安圖冉冉昇起乾康初精修暦象制皇輿割圓密率冠前駆
碧野連空故上都循公往迹纂公書欲上青天攬公裾今朝興国并興区
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Ming Antu’s achievements in astronomy were accepted and appreciated in the
international academic field of astronomy. In 1999, Chinese astronomers discovered
a new minor planet No. 28242. On May 26, 2002, the Nomination Committee of
Minor Planet Center under the International Astronomical Union announced that
minor planet No. 28242 was named “Ming Antu Star.”2

The year 2002 was the 310th anniversary of Ming Antu’s birth. Ming Antu Star’s
Nomination Ceremony and traditional Nadamu3 were held in Ming’s hometown in
August, 2002. The academician Wang of National Astronomical Observatory and
academician Teng Jiwen of Geography and Geologic Research Institute of China
Academy of Sciences took part in this celebration. More than 500 delegates and
20,000 local residents gathered together to celebrate and a conference on “the Sci-
ence Contribution of Ming Antu” was held. The government named Ming’s home-
town “Ming Antu Town,” and also announced the decision to build “Ming Antu
Museum of Science and technology.”
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Standing on the Shoulders of the Giant
Influence of Seki Takakazu on Takebe

Katahiro’s Mathematical Achievements

Xu Zelin and Zhou Chang

Abstract Seki Takakazu (ca. 1642–1708) and his pupils develop the Wasan [Japanese
mathematics] into the most advanced mathematics in the world outside Europe in
the Edo period (1603–1867), and mathematical achievements of Seki Takakazu and
Takebe Katahiro (1664–1739) laid foundation for the Wasan. In order to commem-
orate this outstanding mathematician, this paper surveys Seki’s influence on Takebe
Katahiro, who was his excellent pupil.

1 Academic experiences of Takebe Katahiro as pupil and
cooperator of Seki Takakazu

Takebe Katahiro [建部賢弘] was born in an intellectual family of a retainer of Toku-
gawa shōgunate [幕府 bakufu]. His great-grandfather Takebe Shōkō [建部昌興] was
a clerk of the first Shōgun Tokugawa Ieyasu [徳川家康] (1543–1616), grandfather
Takebe Naomasa [建部直昌] was a secretary of the third Shōgun Tokugawa Iemitsu
[徳川家光] (1604–1651), and father Takebe Naotsune [建部直恒] was also a clerk
of Tokugawa Iemitsu. Takebe Naotsune had four sons; the eldest son was Takebe
Katao [建部賢雄] (1654–1723), the second son was Takebe Kataakira [建部賢明]
(1661–1716), the third son was Takebe Katahiro, and the youngest son was Takebe
Katamitsu [建部賢充]. Katahiro’s elder brothers Katao and Kataakira held office in
the shōgunate due to the Japanese feudal hereditary system, Katao as heir of his fa-
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ther and Kataakira as adopted heir of his uncle, who was the head of a branch family
of Takebe.

Tsukane Ogawa divided Takebe Katahiro’s academic career into three stages
[3]. Earlier stage (13-year-old—40-year-old): he learned and studied mathematics
with Seki Takakazu [関孝和]; Middle stage (41-year-old—53-year-old): served as
shōgunate retainer [幕臣 bakushin] of Tokugawa Ienobu [徳川家宣] (1662–1712)
and Tokugawa Ietsugu [徳川家継] (1709–1716) and suspended mathematical study;
Late stage (54-year-old—70-year-old): served for Tokugawa Yoshimune [徳川吉宗]
(1684–1751) and engaged in mathematical and calendrical studies.

We propose to divide Takebe Katahiro’s academic career into five stages in more
detail:

Stage One: from 1664 (one-year-old) to 1675 (12-year-old). This is his child-
hood, when he lived with his father in Edo.

Stage Two: from 1676 (13-year-old) to 1695 (32-year-old). He learned and stud-
ied mathematics with Seki.

Stage Three: from 1696 (33-year-old) to 1715 (52-year-old). He worked for
Ienobu and Ietsugu, and he seldom studies mathematics due to busy official busi-
ness.

Stage Four: from 1716 (53-year-old) to 1733 (70-year-old). He worked for
Yoshimune, engaged in astronomical-calendrical studies as calendrical consultant
in the shōgunate, and sorted his own previous results of mathematical research.

Stage Five: from 1733 (70-year-old) to 1739 (76-year-old). He almost stopped
the mathematical research during this retirement period.

His academic life was divided in this way because Katahiro seldom cooperated
with Seki in mathematical research after the first twelve volumes of the Complete
Book of Mathematics [大成算経 Taisei Sankei] were completed in 1695.

In 1676, as the hereditary bushi, Seki served for Tokugawa Tsunashige [徳川
綱重] (1644–1678) of the Kōfu clan [甲府藩 Kōfu han]. In 1678, he served for
Tokugawa Tsunatoyo [徳川綱豊], who was the heir of Tsunashige, as examiner of
the division of accounts [堪定吟味 kanjō ginmi] engaging in work relating to land
survey. Tsunashige and Tsunatoyo did not live in Kōfu at that time, but in Sakurada
of Edo. Meanwhile, Naotsune, Katahiro’s father, was serving for the third Shōgun
Tokugawa Iemitsu; therefore, Katahiro also lived in Edo. In 1674 Seki Takakazu
published his book Mathematical Methods for Exploring Subtle Points [発微算法
Hatsubi Sanpō], which made Seki famous, and Seki’s prominence in mathematics
became well-known [7].

In 1676, 13-year-old Katahiro and his elder brothers Katao and Kataakira for-
mally became pupils of Seki, and studied mathematics until December 1704, when
Tokugawa Tsunatoyo became the successor of the fifth Shōgun Tokugawa Tsunayoshi
[徳川綱吉] (1646–1709) and moved to West Castle [西の丸 Nishinomaru] which
is the residence of the Shōgun’s successor. When both Seki and Takebe Katahiro
became retainers of the shōgunate, they have studied mathematics together for 28
years. From then on and until November 1706 (Seki’s resignation), they had chances
to study together.
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During Genroku [元禄] (1688–1704) and Hōei [宝永] (1704–1711) periods, ce-
lestial element method [天元術 tianyuan shu] became popular in Japan and many
people started to study it eagerly. Seki transformed the celestial element method
and thus created the byscript notation [傍書法 bōshohō] and method of calculating
equations [演段術 endan-jutsu]. During Jōkyō [貞享] period (1684–1687), the Seki
showed greatest mathematics creativity. Takebe brothers not only learned Seki’s
mathematics achievements directly, but also became his valuable assistants in math-
ematical study. In 1681, Matsuda Masanori [松田正則], a pupil of Saji Kazuhira [佐
治一平], wrote the book Introduction to Mathematical Methods [算法入門 Sanpō
Nyūmon] to answer 49 unsolved problems in Mathematical Textbook on Multiplica-
tion and Division [数学乗除往来 Sūgaku Jōjo Ōrai] (1674). Because of not under-
standing Seki’s method of calculating equations, so they censured the Mathematical
Methods for Exploring Subtle Points. Therefore, 20-year-old Takebe Katahiro wrote
the Mathematical Methods for Clarifying Slight Signs [研幾算法 Kenki Sanpō] in
1683 to defend the mathematical methods of Seki. In order to explain the main idea
of Seki’s method of calculating equations further, Takebe Katahiro wrote Colloquial
Commentary on the Operations in the Mathematical Methods for Exploring Subtle
Points [発微算法演段諺解 Hatsubi Sanpō Endan Genkai] (1685) to explain opera-
tions in Seki’s solution process in the Mathematical Methods for Exploring Subtle
Points in detail.

In 1683, Seki, Takebe Kataakira and Katahiro planned to compile jointly the
Complete Book of Mathematics. In first 12 years from 1683 to 1695 Takebe
Katahiro devoted to the writing of mathematics; during this period, he took the main
compilation work for the first 12 volumes of the Complete Book of Mathematics,
and at the time in 1690 he published the Complete Colloquial Commentary on the
Introduction to Mathematics [算学啓蒙諺解大成 Sangaku Keimō Genkai Taisei]
which explained the Introduction to Mathematics [算学啓蒙 Suanxue Qimeng] of
Zhu Shijie [朱世傑].

In the winter of this same year 1690, Katahiro was adopted by Hōjō Gengoemon
[北条源五衛門] as heir and summoned to work for Tokugawa Tsunatoyo. In the
autumn of 1703, Katahiro divorced himself from the Hōjō, returned to his original
family. But he was summoned to the shōgunate to take a post of ceremonies in the
household [納戸役 nando-yaku]; then he moved to West Castle in 1704 together
with Seki and Tokugawa Tsunatoyo.

At that time, Seki had not much energy for the research of mathematics for he was
weak because of age and illness, then he resigned in November, 1706, and died of
disease 2 years later, that is 1708. Katahiro engaged in official duties as the retainer
of Tsunatoyo in 1692, then he served Ienobu and Ietsugu, and promoted frequently,
as a result, he had to stop the compilation of the Complete Book of Mathemat-
ics in 1695, his elder brother Kataakira continued the compilation independently,
20 volumes of the Complete Book of Mathematics was completed finally in 1711.
Therefore, Katahiro and Seki had little time together for the research during the time
of 13 years from 1695 to 1708.

In 1716, Ietsugu died and Yoshimune became the 8th Shōgun. Since then, Takebe
Katahiro dedicated himself again to the mathematics and calendrical study as the
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astronomical-calendrical consultant of Yoshimune. Katahiro was instructed to make
the map of Japan in 1719, and then received orders to engage in the geodetical mea-
surement out of the need of drawing maps in 1720. The Mathematical Treatise on
the Technique of Linkage [綴術算経 Tetsujutsu Sankei] (1722), which he compiled
in 1722 and presented to Yoshimune, was the peak of his mathematical research.

In 1726, Mei Wending’s [梅文鼎] (1633– 1721) Complete Treatise on Calendar
and Computation [暦算全書 Lisuan Quanshu] (1723) was imported to Nagasaki,
Yoshimune ordered Katahiro to translate and describe it, Katahiro entrusted his dis-
ciple Nakane Genkei [中根元圭] (1662–1733) who has a profound accomplishment
in Sinology for the translation, after the translation was completed in 1728, it was
named New Version of Complete Treatise on Calendar and Computation [新写訳本
暦算全書 Shinsha Yakuhon Rekisan Zensho], 46 volumes in total; Katahiro wrote a
preface for it, and presented it to Yoshimune in 1733. He lived in solitude after re-
signed in 1733, and almost stopped his activities in mathematical research; he died
of disease in July 20, 1739.

A comprehensive survey of Katahiro’s plain career as samurai and academic
experience shows that his 20 years’ academic association with Seki was of great
importance, which laid a foundation for him to become one of the most outstanding
mathematicians in the history of Wasan.

2 Takebe Katahiro’s mathematical achievement and Seki’s
mathematical heritage

The age of Seki and Takebe Katahiro is the formation stage of Wasan research pat-
tern, and they are the most important founders of this research pattern. Seki is the
pioneer of Wasan algorithms, while Takebe Katahiro is the most important promoter
based on Seki’s work, his mathematics achievements are closely related with Seki’s
work.

2.1 Study and popularization of celestial element method, byscript
notation and method of calculating equations

The most important mathematical method in Wasan is the procedure in operations
of celestial element [天元演段術 tengen endan jutsu], which is a character alge-
braic method that is formed by reforming algebraic method in Song-Yuan dynasties
of China; the mathematical research of Wasan mathematicians led to the road of
algebra analysis by broadly applying this Algebraic method, and Seki is the most
important founder of this method. The established time of Seki’s byscript notation
and method of calculating equations should be before or after the work Mathemat-
ical Methods for Exploring Subtle Points of 1674, and 2 years after, that book was
published, Takebe Katahiro started to study with him. when Takebe wrote the Math-
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ematical Methods for Clarifying Slight Signs and the Colloquial Commentary on
the Operations in the Mathematical Methods for Exploring Subtle Points, he had
acquired completely Seki’s method of calculating equations, which laid a solid of
mathematical foundation for his research in the future, and these two books played
a very important role in the popularization of Seki’s Algebraic method.

2.2 Improvement of infinitesimal analysis

2.2.1 Romberg algorithm for evaluating π: from Seki’s method of one-time

accelerated approximation to Takebe’s method of successive accelerated
approximation

The method of evaluating π of Liu Hui [劉徽] and Zu Chongzhi [祖沖之] (429–500)
of China has long been lost in Japan, the records of Zu Chongzhi’s achievements in
Book of Music and Calendar [律暦志 Lulizhi] and History of the Sui Dynasty [隋書
Suishu] stimulated mathematicians to seek for the method of evaluating π . In Plat-
ter of Mathematics [算俎 Sanso] (1663), Muramatsu Shigekiyo [村松茂清] (1608–
1695) started from square he took the circumference of 215 polygon to approach the
circumference of circle, and π = 3 was obtained. It seems that Seki wanted to restore
Zu Chongzhi’s method, he adopted Muramatsu’s method, and started cutting the cir-
cle from inscribed square quadrilateral of circle, and evaluated circumference Cn of
2n+1 regular polygon inscribed in a circle successively, when evaluating circumfer-
ence C14, C15, C16 of 215, 216, 217 regular polygons, conduct accelerated processing
with (incremental) method of accelerated approximation [増約術 zōyakujutsu] (i.e.,
the Aitken method), so the formula of circle ratio [定周 teishū] presented was ob-
tained.

C = C15 +
(C15 −C14)(C16 −C15)

(C15 −C14)− (C16 −C15)
.

Thus π = 3.1415926535897932386 [4, p. 2] was obtained, which is accurate
to the 18th place of decimals; however, Seki was not sure of its accuracy, he just
confirmed the first 11 digits as correct.

Takebe Katahiro made creative reformation for Seki’s method, and established
the method of successive accelerated approximation [累遍増約術 ruihen zōyaku
jutsu] on the basis of method of one-time accelerated approximation [一遍増約術
ippen zōyaku jutsu]. He took the circumference power of inscribed regular poly-
gon of circle to approach circumference power of circle, set circle diameter d = 1,
denoted the side length of n regular polygon inscribed in a circle by an, the circum-
ference is pn, and its circumference power is p2

n, for unity, denoted by T (0)
n , so as to

represent initial approximate value series of π2, the circumference is denoted by p,
obviously, T (0)

n = p2
n → p2 = π2.

He evaluated {T (0)
i } (i = 1,2,3, · · · ,n) sequence with cyclotomic method, and

observed its first difference, the composed common ratio is the geometric progres-
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sion of 1/4, and as the first method of accelerated approximation, that is:

Δ (1)
i = T (0)

i+1 −T (0)
i , ri =

Δ (1)
i+1

Δ (1)
i

≈ 1
4
,

T (1)
i = T (0)

i +(1+ r1 + r2
1 + r3

1 + · · ·)Δ (1)
i = T (0)

i +
4Δ (1)

i
4−1

.

As for {T (1)
i } (i = 1,2,3, · · · ,n− 1), he observed its difference, the composed

common ratio is the geometric progression of 1/42, and as the the second method
of accelerated approximation:

Δ (2)
i = T (1)

i+1 −T (1)
i , r2 =

Δ (2)
i+1

Δ (2)
i

≈ 1
42 ,

T (2)
i = T (1)

i +(1+ r2 + r2
2 + r3

2 + · · ·)Δ (2)
i = T (1)

i +
4Δ (2)

i
42 −1

.

As for {T (2)
i } (i = 1,2,3, · · · ,n− 2), he observed its difference, the composed

common ratio is the geometric progression of 1/43, and as the third method of
accelerated approximation. Evaluate continuously in this way

Δ (m)
i = T (m−1)

i+1 −T (m−1)
i , (1)

rm =
Δ (m)

i+1

Δ (m)
i

≈ 1
4m , (2)

T (m)
i = T (m−1)

i +(1+ rm + r2
m + r3

m + · · ·)Δ (m)
i = T (m−1)

i +
4mΔ (m)

i
4m −1

. (3)

Takebe evaluated T (8)
i (m = 8, i = 1,2,3, · · · ,9）as approximate value of π2, and

obtained

π = 3.1415 9265 3589 7932 3846 2643 3832 7950 2884 1971 2

is accurate to the 41st place of decimals.
In fact,

T (m)
i = T (m−1)

i +
4mΔ (m)

i
4m −1

= T (m−1)
i +

4m(T (m−1)
i+1 −T (m−1)

i )
4m −1

=
4mT (m−1)

i+1 −T (m−1)
i

4m −1
.
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Obviously, Takebe’s method of successive accelerated approximation and the
Romberg method in numerical integration are completely consistent [9].

Romberg algorithm, which adopted Richardson Extrapolation Method, was pro-
posed by Romberg, an American calculation mathematician in 1955 [6], while
Richardson Extrapolation Method was proposed by Lewis Fry Richardson in 1910
[5]. Although Takebe’s method of successive accelerated approximation was re-
corded on Mathematical Treatise on the Technique of Linkage of 1722, it was ap-
peared in Volume 12 of the Complete Book of Mathematics written by him during
the period of Genroku. The advantage of this algorithm is: reduce the cyclotomic
frequency can increase the convergence speed instead, and high-precision value can
be obtained very quickly. The process from Seki’s method of one-time acceler-
ated approximation to Takebe’s method of successive accelerated approximation
is a qualitative leap in mathematical method, and a glorious model of the spirit of
Wasan algorithm.

2.2.2 Exploitation study of expansion of infinite series: from Seki’s Konton
Method to Takebe’s Tan-kojutsu.

One direct cause for the generation of calculus algorithm is the problem of evaluat-
ing the length of curve, and the original integral form was used to represent curve
with expansion of infinite series. The breakthrough of wasan circle theory [円理
enri] algorithm also displayed in the calculation of arc length, Seki, the first one
who made creative contributions on this aspect, applied rule of finding differences
[招差法 zhaochafa or shōsahō] creatively on the calculation of arc length, and com-
posed the following interpolation polynomials with Newtonian form:

p2 =
{

λh2 +4h(d −h)
}
− h2(d −2h)

(d −h)5

{
k1(d −h)4 − k2(d −h)3(h−h1)

+ k3(d −h)2(h−h1)(h−h2)− k4(d −h)(h−h1)(h−h2)(h−h3)
+ k5(h−h1)(h−h2)(h−h3)(h−h3)} .

Among them, λ = (3552 −4×1132)/1132, p is arc length, h is vector length, d is
diameter of circular arc, and hi is interpolation nodes.

The error of taking interpolation polynomials with more than 3 times to approach
trigonometric function is huge, so Seki’s formula is just accurate to the 6th place of
decimals. Seki’s method provides enlightenment to Takebe Katahiro, and he realized
that:

In the search of the form and attribute of the back arc, the true number is hidden if it is close
to the half circle and the true number appears if it is close to the side. If it is close to the half
circle, it belongs to the latitude and its curve is rapid; if it is close to the side, it belongs to
the longitude and its curve is slow. Therefore, taking the sagitta to be extremely small, we
should search for the number and seek the procedure. [8].

He pointed that Seki’s failure lies in that the essential characteristics of arc were
not found: when evaluate arc with vector, the closer the arc approaches the semicir-
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cle, the larger the error of arc length formula is; the thinner the arc, the smaller the
error of the arc length formula is. Thus, Takebe started from the situation that h/d as
the minimum to explore the formula of arc length. His method made breakthroughs
from two aspects, one is the application of method of successive accelerated ap-
proximation to evaluate the approximate value of arch length with high precision,
another is the application of method of approximate fractions [零約術 reiyaku jutsu]
to calculate coefficients of infinite series, and represent arc length as power series of
vector. The deduction processes are as follows:

If the diameter of a circle d = 1 feet, vector h = 10−6 feet, inscribe two chords a2
in the arc, each arc is corresponding to half of the original arc, then inscribe another
two chords a4, inscribe two chords in the arc of chord many correspondence a8, till it
was inscribed to 2n chord a2n , evaluate a2n with pythagorean theorem, thus, calculate
the circumference power inscribed polygon with arch, that is, the approximate value
of arc length power s2

k . If the corresponding chord of 2k arc was recorded as ak, then
evaluate: ( sk

2

)2
=
(

2kak

2

)2

= {pk}, (k = 1,2,3, · · · ,n).

Take this as initial approximate value, then evaluate with method of successive
accelerated approximation:( s

2

)2
= 1.0000003333335111112253969066667282347769479595875 · · ·×10−6.

Then apply the method of approximate fractions to construct power series, and
obtained expansion of power series of (s/2)2 concerned with h/d:

( s
2

)2
= dh+

1
3

h2 +
8
45

(
h3

d

)
+

4
35

(
h4

d2

)
+

128
1575

(
h5

d3

)
+

128
2079

(
h6

d4

)
+ · · · .

It equals expansion of power series of inverse sine function. Takebe Katahiro’s
work, which is the starting point for Wasan circle theory research to the analysis
method, paved a new road for infinitesimal algorithm of Wasan, and it is comparable
with western modern mathematics.

2.2.3 Evaluation of Surface Area and Volume of Sphere: Calculus Thought

Evaluation of the surface area and the volume of a sphere belongs to circle theory,
which was first seen in Record of Jugai [竪亥録 Jugairoku] (1639) of Imamura
Tomoaki [今村知商]. The book offers the approximate formula Sm ≈ π2d2/4 of
surface area of sphere. Elucidation of Mathematics with Author’s Comment [増補算
法闕疑抄 Zōho Sanpō Ketsugishō] (1684) of Isomura Yoshinori [礒村吉徳] (?―
1710) offers accurate formula Sm = πd2. The Platter of Mathematics of Muramatsu
Shigekiyo begins to apply segmentation method to compute the volume of a sphere
[1, p. 7]. Seki cuts 50, 100 and 200 thin sections by using parallel sections, by which
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the first approximate value V1, second approximate value V2 and third approximate
value V3 have been evaluated successively, and speeds up the approximation by
method of accelerated approximation, then there is:

V =
(V3 −V2)(V2 −V1)

(V2 −V1)− (V3 −V2)
+V2 = 666

2
3
.

And thus the approximate formula of the volume of a sphere is obtained as:

V = V · π
4

= 666
2
3
· π

4
.

In the Mathematical Treatise on the Technique of Linkage, Takebe applies Seki’s
method to derive the formula of sphere surface area. He first evaluates the volume of
the sphere Vi (the diameter is di = 1+εi (i = 1,2,3)) and the volume of the sphere V0
(the diameter is d0 = 1), and then obtains the corresponding difference of volumes
Wi = Vi −V0 (i = 1,2,3) that is then divided by thickness difference (di −d0)/2 of
the two homocentric spheres, and the volume of thin sections is given by

mi =
Wi

h
=

Vi −V0

(di −d0)/2
.

That is, regard surface area of sphere as differential of sphere volume to radius.
And then apply Seki’s decremental method of accelerated approximation [損約術
sonyaku jutsu] to evaluate surface area of sphere, that is:

Sm = m2 −
(m1 −m2)(m2 −m3)

(m1 −m2)− (m2 −m3)
= 3.14159265359 ≈ π.

Then the surface area of sphere Sm = πd2 is obtained. Takebe’s such method can
be called the peeling method [薄皮饅頭法 usukawa manjū hō] which is expressed
in differential form as

Sm = lim
d外−d内

V外−V内
(d外−d内)/2

= lim
r1→r2

4
3

π(r2
2 + r2r1 + r2

1) =
4
3

π(3r2
1) = 4πr2

1 = πd2
1 = πd2

2 .

In addition, Takebe also put forward another method, that is, regarding that the
sphere is constructed by infinite number of small cones, of which the apex is the
center of the sphere, the undersurface of cones constitutes surface Sm of the sphere,
the height is radius of the sphere r, so the volume of the sphere V = Smr/3 = πd3/6
is the sum of volumes of small cones. Therefore, there is Sm/3 · d/2 = πd3/6 and
then Sm = πd2. Such thought is completely consistent with that of John Kepler
(1571-1630) in the 17th century, which indicates that the West and East have com-
mon knowledge on mathematics. However, Takebe Katahiro’s differential thought
has not been further developed in Wasan.
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2.3 Establishment of Extremum Algorithm

The Chapter Six of Mathematical Treatise on the Technique of Linkage offers the
maximum problem regarding evaluation of polynomial function f (x) = abx +(b−
a)x2 − x3. Takebe first applied Seki’ exactly vanishing condition of modulus class
[適尽方級法 tekijin hokyū hō] to evaluate the stable point of the function, that is, in
case of a = 7 and b = 8, evaluate the function’s derived function V ′(x) and its zero
point x = 14/3, and then determine the maximum f (14/3) of the function. The so-
called exactly vanishing condition of modulus class equals the methods of deriving
f ′(x) = 0 from f (x) = 0. Seki and Takebe didn’t involve the concept of derivatives;
however, it was consistent with the Fermat method for evaluating function extremum
in differential calculus [11, p. 64]. Takebe’s such efforts opened up a new field of
Wasan regarding research of theory of function extremum.

2.4 Diophantine approximation：From Seki’s Jōichi jutsu to
Takebe’s Method of Residues

Before the Works and Days Calendar [授時暦 Shoushili], in the light of no adopting
decimal fractions in Chinese ancient calendar, astronomical constants are usually
expressed only by fractions. Generally speaking, astronomical constants x and y are
both real numbers, so astronauts need to choose the natural number a and b which
satisfy the inequality |a/b−y/x| < ε (ε is an arbitrarily small and positive number)
according to x and y. Then rational approximation becomes a fundamental issue of
Chinese ancient astronomical calculation. In Han dynasty this kind of calculation
had emerged so as to obtain the meeting periodic of many planets. He Chengtian
[何承天] of Southern-Northern dynasties constructed a method of day adjustment
[調日法 tiaorifa] for getting the value of lunar month as expected, the approximate
rate [約率 yakuritsu, 22/7] value of π and the close rate [密率mitsuritsu, 355/113]
value of π which were given by Zu Chongzhi in the same dynasty maybe drive from
the method of day adjustment.

To find out the source of a calendar, Chinese astronaut founded a method to arrive
at the solution of sets of congruence expressions, Qin Jiushao [秦九韶] (1202-1261)
of Song dynasty viewed it as the generalized algorithm program and called it great
art of general remainders [大衍總数術 dayan zongshushu]. This method was called
art of cutting bamboo [剪管術 jianguan shu] appeared in Yang Hui’s [楊輝] works
and its core is great art on the remainder one [大衍求一術 dayan qiuyishu], that is to
realize the algorithm of ax = 1 (mod b), which is equivalent to solve ax−by = 1.
Seki called it the art to leave remainder one [剩一術 jōichi jutsu]. Without the
background of real number theory, East Asian mathematicians deem the algorithm
of |a/b− y/x| < ε and ax−by = 1 as the same thing.

Seki generalized Yang Hui’s art of cutting bamboo, obtained an algorithm sim-
ilar to Qin Jiushao’s great art of general remainders and found the method of ap-



Standing on the Shoulders of a Giant 321

proximate fractions which is similar to the method of day adjustmentin order to
deal with rational approximation of real numbers. In Method of Residues [累約術
Ruiyaku-jutsu] which is revised by Nakane Genkei, Katahiro gave a generalization
of Seki’s method of approximate fractions to create Method of Residues, that is to
get the algorithm of continued fraction expressions of integer x and y which satisfy
ax−by = c. If we generalize the coefficients of an indeterminate equation of the first
degree to irrational numbers, the rational approximation problem naturally appears
which satisfy |a/b− y/x| < ε . He unified the method of approximate fractions and
the art to leave remainder one. In west, this kind of issue firstly appeared in the
posthumous manuscripts of Jacobi [Crelle Jouanal 69, 1869] while Takebe Katahiro
discussed it 140 years before Jacobi.

Furthermore, Takebe Katahiro generalized the method of approximate fractions
to get the method of repeated fractions [重約術 Jūyaku jutsu]. As a matter of fact,
he gave out the simultaneous rational approximation problem [12].

2.5 The improvement of Shōsahō: From Seki’s Ruisai-Shōsahō to
Takebe’s Hōtei-Shōsahō

Without knowing the equation of planet movement, for the sake of its position, Chi-
nese ancient calendar commonly used the method of interpolation whose polyno-
mial had reached 3 degrees in Works and Days Calendar from the start of Sui-Tang
dynasties. It was called the rule of finding differences by Chinese mathematicians.
After that, Seki gave a generalization of rule of finding differences and successfully
applied it in the calculation of arc length. Then he constructed two types of algo-
rithms: repeated rule of finding differences [累裁招差法 ruisai shōsa hō] and mixed
rule of finding differences [混沌招差法 konton shōsa hō]. The repeated rule of find-
ing differences is a kind of finite difference algorithm which has a significance of
the general algebraic and programmed property. The mixed rule of finding differ-
ences, which is the Newton interpolation formula, is widely used in the calculation
of arc length. It paved a new road for research of Wasan circle theory to the analysis
method. Takebe Katahiro constructed the equation rule for finding differences [方程
招差法 hōtei shōsa hō] in Volume 5 of the Complete Book of Mathematics.

As to the interpolation polynomial f (x) = a1x+a2x2 +a3x3 + · · ·+anxn, Takebe
substitutes the values of the interpolation nodes (xi, f (xi)) into it in turn. So we could
get a group of linear equations regarding its coefficient ai, that is to say construct an
augmented matrix of its coefficients.
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By the traditional procedure of equations [方程術 hōtei jutsu], we could obtain
the solution after changing the matrix into triangular one through elementary trans-
formation.

There are two sources of algorithms in Chinese rule of finding differences: one is
the issue of summation of high-order arithmetic sequence in the theory of integers.
The other is numerical approximation problem of continuous function. East Asian
mathematicians make no distinction between them all the time for lack of theory
basis of real numbers. The generalization of Seki’s method towards Guo Shoujing’s
[郭守敬] (1231–1316) resulted in the connection between rule of finding differences
and ancient procedure of equations made by Takebe and strengthened the signifi-
cance of rule for finding differences as a method of undetermined coefficients. From
this sense, the contrast among repeated rule for finding differences, mixed rule for
finding differences, equation rule of finding differences, only exists in the different
elementary transformation of the coefficient matrix above.

3 The contributions of Seki, Takebe Katahiro, Takebe Kataakira
in the Complete Book of Mathematics

The Complete Book of Mathematics was compiled by Seki, Takebe Katahiro and
Takebe Kataakira, who collaborated to finish this huge encyclopedic mathematical
works for 28 years, but never published it. Until now there are about 20 editions [2].
These are the Description of Kataakira in the Biography of The Takebe [建部氏伝
記]:

>From the third year of the Tenna period [天和] (1683), three gentlemen projected, as
Katahiro as leader, to write all the new ideas which each one can produce and all the old
rules of mathematics and compile them till the middle of the Genroku period [around 1696].
Total 12 volumes were named the Complete Book of Mathematical Methods [算法大成
Sanpō Taisei], for which a rough draft was prepared. As he [Katahiro] became a busy ad-
ministrative officer and could not examine the details, while Takakazu reached an advanced
age and, because of chronic illness, could not concentrate himself on careful consideration.
Therefore, from winter of the 14th year of the same period [1701], Kataakira himself began
to investigate for eleven years, to think extensively, to annotate minutely and to expand the
book into twenty volumes, which was renamed the Complete Book of Mathematics [大成
算経 Taisei Sankei]. He himself transcribe it by hand and completed it. (The compilation of
the book started in the Tenna period and finished in the last year of the Hōei period [1711].
Each volume was revised more than ten times. Because of this hard work, the compilation
required 28 whole years. [1683-1711]) [7].
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It describes the course of compilation of the Complete Book of Mathematics.
The three men commenced to plan and compile it in 1683. At first the task was
carried out only by Takebe Katahiro himself. Around 1695, 12 volumes had been
completed. At this time, Takebe Katahiro was busy with public affairs and Seki got
older. Then only Takebe Kataakira could undertake the task. After all, it had been
accomplished until 1710.

But what kinds of achievements in mathematics are involved in this book which
belongs to the three parts respectively? In order to clear up this issue, we have to find
out the relations between the Complete Book of Mathematics and the other works
of Seki and Takebe Katahiro.

The book is composed of 3 Parts: first Part consists of the first 3 volumes, which
describe the basic knowledge of arithmetic. The materials are mainly chosen from
Systematic Treatise on Arithmetic [算法統宗 Suanfa Tongzong] (1592), Introduction
to Mathematics and Jinkōki [塵劫記, 1627] as the representative of Wasan books.
Volume 3 is named Various Techniques [変技Hengi] and contains the method of ex-
tracting roots [開方 kaihō], which is almost the arrangement of Seki’s books Meth-
ods of Equation Modifications [開方翻変之法 Kaihō honhen no Hō] and Extraction
of Roots from Equations [開方算式 Kaihō Sanshiki]. It contains five paragraphs (
general method of extraction [開出總法 kaishutsu sōhō], three formulas [三式 san-
shiki], ten quotients [十商 jūshō], exactly vanishing condition of modulus class, and
replacement of numbers [替数 taisū]), amends some errors of the Seki’s books, and
presents detailed explanations about some brief issues. Seki Takakazu classified the
extraction formulas [開方式 kaihō shiki] into 4 types: full quotient formula [全商
式 zenshō shiki], alternative quotient formula [交商式 kōshō shiki], variable quo-
tient formula [変商式 henshō shiki] and null quotient formula [無商式 mushō shiki].
Meanwhile, Takebe concludes only in 3 types considering the alternative quotient
formula as a kind of the variable quotient formula.

The second Part is from Volume 4 to Volume 15. Volume 4 is named Three Es-
sentials [三要 Sanyō], which is the core of authors’ mathematical ideas and the
center of this book. Their ideas are made up of symbol and figure [象形 shō–kei],
flow and ebb [満干 man–kan] and number [数 sū], under the background thought
of mathematics of symbols [象数学 shō sūgaku]. Then mathematical problems are
divided into two types, symbol [象 shō] and figure [形 kei]. The variation of symbol
and figure are classified into three conditions: ordinary [全 zen], excessive [背 hai],
and extreme [極 kyoku]. They are applied to numbers. The number comprises inte-
ger [全 zen], rational [繁 han], algebraic [畸 ki], and irrational [零 rei]. First two are
finite numbers, the other are infinite numbers, while the other volumes are written
around these contents [10, p. 233].

The contents discussed in Volumes 5–7 belong to Method of Symbols [象法 Shō
hō]. It contains mutual multiplication [互乗 gojō], polynomial fitting [畳乗 Jōjō], and
pile sum [朶積 daseki]. Its last two chapters share similar contents with the Pile
Sum and Rule of Finding Differences [朶積招差 Daseki Shōsa], which is the first
volume of the Concise Collection of Mathematical Methods [括要算法 Katsuyō
Sanpō], Seki Takakazu’s posthumous publication in 1712. Volume 6 consists of
three chapters: fractions [之分 shibun], various divisions [諸約 shoyaku], and art
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of cutting bamboo [剪管 senkan]. The same situation also happens between the
last two chapters and various divisions and art of cutting bamboo, which are in
the second volume of the Concise Collection of Mathematical Methods. Volume 7
consists of three chapters: magic numbers [聚数 shusū], Josephus problems [計子
keishi], and check of sign [験符 kenpu]. The content of this volume is also found in
Seki’s books, Method of Magic Squares, Method of Magic Circles [方陣之法・円攅
之法Hōjin no Hō, Ensan no Hō] (1683) and Method of Solving Josephus Problem,
Method of the Check of Sign [算脱之法・験符之法 Sandatsu no Hō, Kenpu no Hō]
(1683).

Volumes 8 and 9 discuss algorithms in daily use. Its contents derive from the
daily mathematical issues appearing in diverse arithmetic books of Japan and China.
It contains the issues of grain, gold, silver, money, apparel, consumption, taxation,
quantity, movement, profit, transportation, conversion, difference, equilibrium, mul-
tiple, surplus, equation, and accumulation.

The contents of Volumes 10–15 belong to Geometry [形法 Kei hō]. Angles [角
Kaku] and Method of Regular Polygons [角術 Kaku jutsu] in Volume 11 coincide
with the contents of Volume 3 of the Concise Collection of Mathematical Methods.
Geometrical constants [形率 keiritsu] in Volume 12 mainly concern with the cal-
culation of π , arc length, volumes of sphere and spherical crown, which are similar
treated in circle theory, i.e., Volume 4 of the Concise Collection of Mathematical
Methods. Its operational methods are mainly the method of successive acceler-
ated approximation and the method of approximate fractions which is mentioned in
Takebe’s Mathematical Treatise on the Technique of Linkage.

Measurements [求積 Kyūseki] in Volume 13 is divided into two types of plane
and solid. Applied Measurements [形巧 Keikō] in Volume 14 is classified into “sec-
tion, tangency and consistency.” Two kinds of load and coiling exist in Applied Mea-
surements in Volume 15. It is mainly about the calculation problems of various geo-
metric figures. A part of these problems scatter in Seki’s Answers to the Elucidation
of Mathematics [闕疑抄答術 Ketsugishō Tōjutsu], Answers to the Clarification of
Mathematics [勿憚改答術 Futsudankai Tōjutsu], Measurements, Methods of Solv-
ing Explicit Problems [解見題之法 Kaikendai no Hō], and Mathematical Methods
for Exploring Subtle Points.

The last Part is from Volume 16 to Volume 20. two meanings [両義 ryōgi] in
volume 16 origin from Seki’s Critical Studies of Problems [題術辯議之法 Daijutsu
Bengi no Hō] (1685). It discusses whether a mathematical problem has a solution or
not and its condition respectively. Solution of Whole Problems [全題解 Zendaikai]
in Volume 17 divides the regular issues with right question set into four types of ex-
plicit problem [見題 kendai], implicit problem [隱題 indai], concealed problem [伏
題 fukudai], covered problem [潜題 sendai] whose contents are from Seki’s Meth-
ods for Solving Explicit Problems, Methods of Solving Implicit Problems [解隱題
之法 Kaiindai no Hō] (1685), Methods of Solving Concealed Problems [解伏題之
法 Kaifukudai no Hō] (1683). On Defective Problems [病題議 Byōdaigi] in Vol-
ume 18 discusses the remodification of defective problems whose contents are from
Seki’s Method for Restoring Defective Problems [病題明致之法 Byōdai Meichi no
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Hō] (1685). Volumes 19–20 are examples of explicit problems, implicit problems,
concealed problems, and covered problems.

3.1 Source of knowledge of the Complete Book of Mathematics

Vol. 1–3, is basic knowledge of mathematics from Introduction to Mathematics, Sys-
tematic Treatise on Arithmetic, Yang Hui’s Methods of Mathematics [楊輝算法Yang
Hui Suanfa], Jinkōki etc. , and part from Seki’s Methods of Equation Modifications
and Extraction of Roots from Equations.

Vol. 4, its main content is Three Essentials, which is referred in Takebe’s Math-
ematical Treatise on the Technique of Linkage.

Vol. 5, it contains the pile sum and the rule for finding differences which is also
recorded in Volume 1 of the Concise Collection of Mathematical Methods of Seki
Takakazu.

Vol. 6, it contains procedure of various divisions and art of cutting bamboo,
which is also recorded in Volume 2 of the Seki’s Concise Collection of Mathematical
Methods.

Vol. 7, its Main content is analysis of combination, which is recorded in Seki’s
book Method of Magic Squares, Method of Magic Circles and Method of Solving
Josephus Problem, Method of the Check of Sign

Vol. 8–9, is common algorithm which is selected from Introduction to Mathemat-
ics, Systematic Treatise on Arithmetic, Yang Hui’s Methods of Mathematics, Jinkōki,
etc.

Vol. 10, is Pythagorean problem which is selected from Systematic Treatise on
Arithmetic, Yang Hui’s Methods of Mathematics, Jinkōki, etc.

Vol. 11, its content is Method of Regular Polygons which is consistent with the
content in Volume 3 of the Concise Collection of Mathematical Methods.

Vol. 12, its content is circle theory which is also recorded in Volume 4 of the
Concise Collection of Mathematical Methods. and Takebe’s Mathematical Treatise
on the Technique of Linkage.

Vol. 13, it contains Integral formula of geometry which is also recorded in Seki’s
Measurements.

Vol. 14–15 is deal with computation of graph which is also recorded in Seki’s
books Answers to the Elucidation of Mathematics, Answers to the Clarification of
Mathematics, Methods for Solving Explicit Problems, and Mathematical Methods
for Exploring Subtle Points.

Vol. 16, Math problems and mathematical methods are discussed in this part,
which is identical with Seki’s Critical Studies of Problems Exactly.

Vol. 17, its main content is elimination method, Determinant and equations which
are identical with Seki’s Trilogy [三部抄 Sanbushō] in principle.

Vol. 18, its content is Restoration of Defective Problems which is identical with
Seki’s Method for Restoring Defective Problems
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In a contrast, The first 12 volumes of Takebe Katahiro and the late 8 volumes
of Kataakira are considered separately, we could easily reach at the conclusion that
the Complete Book of Mathematics is mainly the adaptation of Seki’s works. In
the first 12 volumes, not only mathematical ideas but also its methods both have
breakthrough on the basis of Seki’s work. At first, three essentials never appeared
in Seki’s book. Second, circle theory in Volume 12 is the same as Searching Cir-
cle Number [探円数 tan-ensu], Searching Arc Length [探弧術 tan-ko jutsu] in the
Mathematical Treatise on the Technique of Linkage. In addition, the equation rule
for finding differences of Volume 5 were not appeared in Seki’s book. But the last 8
volumes generally inherited Seki’s traditions. Volumes 13–15 contains new classi-
fication of the geometric problems of Seki. No innovation appeared in the method.
The only thing that merits to mention is the improvement on the dealing of Seki’s
expansion of determinant. The type of problem [題 dai] and algorithm [術 jutsu] of
Critical Studies of Problems was distinguished again in Volume 16 and 18, and the
Transforming way of Defective Problems in Restoration of Defective Problems was
revised.

Above all, the new thoughts and innovative methods in the Complete Book of
Mathematics contribute to Takebe which are all reflected in the first 12 volumes. It
shows that some of Takebe’s work had exceeded Seki’s before 1695. But Kataakira
said like this in Biography of The Takebe:

However, I am originally of hermitic character and do not want to become famous in the
world. As I intend to keep myself incognito and hide all of my good act, I transfer my
achievement to Katahiro and consider myself as a foolish person. [7].

He means he had contributed more than his younger brother Takebe on the com-
pletion of this book. The book has been never published yet, so profit never arrives at
Katahiro. But why did Kataakira once said “I have given all my accomplishments to
Katahiro. I declared myself completely an idiot.” From this point of view, Kataakira
seemed not so indifferent to fame and wealth as he claimed himself. And he perhaps
had some ambition to surpass his younger brother.

4 Takebe Katahiro’s respect for Seki Takakazu

As the most complacent student and intimate collaborator of Seki, Takebe went
through an extraordinary relations with his master. He showed great homage and
respect to Seki. And we could find such emotions for Seki in his works.

When most of Wasan mathematicians blamed on the new discovery of Seki,
Takebe Katahiro wrote Mathematical Methods for Clarifying Slight Signs to explain
his teacher’s new method and defended Seki’s academic reputation.

Even when Takebe became aged and distinguished, he showed a deep reverence
for his teacher Seki. His admiration is beyond description. Seki was referred for 14
times by Takebe in his Mathematical Treatise on the Technique of Linkage. Though
Takebe had made a very outstanding achievement in mathematics, even surpassing
his teacher, he still held Seki in high esteem.
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In Takebe’s view, the gift of a man could be divided into wholly pure and partially
pure. At the same time, mathematics owns this kind of essence. After all, we could
make it if we follow this trend. The wholly pure kind would much more easily stand
out without any doubt. He was complaining all the time that his gift was less than
his teacher’s. Once he said:

Because originally I am of foolish attribute, if I want to understand, by principles, the true
rule only by observation, although it may be very easy if we encounter a procedure like this,
which is simple in principle, I cannot always attain a solution when a given procedure is not
based on a simple principle. In such a case, we investigate repeatedly, relying exclusively on
numbers, to understand there is some basis, on which we can establish the true rule. For this
reason, I do not dare to consider the former procedure second rate. Probably, is it because
of my distorted attribute that it is difficult for me to understand without any investigation?
If I were straight, without distinguishing the bases of numbers and principles, I would be
able to understand everything immediately without any investigation. But because I am
of distorted attribute, even though I study deeply, I will not be able to attain such a state.
Generally speaking, in numbers, in procedures, and in rules, everything is originally natural.
He who understands this does not trod on a new path; his path merges with the natural path
to attain understanding. If this is the case, it is also appropriate to attain understanding after
investigation. I strongly recognize that Master Seki’s natural intelligence is without parallel
in the world. He always said that problems on the circular “measure” were very difficult to
solve. Alas, this is because he [chose to] operate in a relaxed manner, but I dare say that even
problems on the circular “measure” can certainly be solved by tenacity. This is only because
I work in a painstaking manner. The reason why Master Seki said that he could not solve this
type of problem was that he operated in a relaxed manner to find a quick and easy solution,
endeavoring to solve problems immediately without any investigation. It was not because
he could not solve them. Perhaps, he did not like to go into the matters thoroughly. Because
natively I am of foolish attribute, I cannot reach a quick and easy solution operating in a
relaxed manner. I have found a way to be peaceful even operating always in a painstaking
manner. Therefore, if I investigate [in this way], I know I will certainly obtain the solution.
Reflecting on this, I know that my native attribute is one [part] out of ten less than that of
Takakazu. [8].

As a matter of fact, his gift on maths compares favorably with Seki’s. High ap-
praisal has been given out in Biography of The Takebe:

He [Katahiro] started to work on mathematics at 13 years. In the same way as his elder
brother Kataakira, he studied all day long. As he was very intelligent, he understood the
whole theory of mathematics and mastered also the art of calendar and astronomy. His
mathematical talent was not less than [Seki] Takakazu; in particular, he was better than his
master in calculating numerical values and in processing various operations. [7].

Takebe also gives high appreciation on Seki’s method and makes a comparison
between his new ways and Seki’s. For example:

Master Seki said that, in order to understand thousands of rules, it is most essential to
observe the form and to establish the path [of reasoning]. His hidden purpose was to under-
stand the true procedure from the beginning without any investigation. Thus, in the latter
procedure, he observed the form of a sphere and considered it as a cone and its center as
the apex. In this way, observing the form and establishing the path [of reasoning], he under-
stood the true procedure immediately without any investigation. Therefore, he considered
the former procedure second rate. [8].
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He thinks it is Seki who constructs operations of celestial element [天元演段 ten-
gen endan]. He views it as an unparalleled method in solving maths problems. Full
of praise is also provided on Seki’s circle theory. Although Seki and Zu Chongzhi
are aliens, their comprehension accords.

It is rare and commendable that Takebe “learns from conventions but not re-
strained by them.” He didn’t follow Seki blindly nor drag his feet, and many mathe-
matics methods he used were improved on the basis of those of Seki. The solutions
to each problem are provided with reasons for tenability and evaluated by comparing
with former methods with their innovations being figured out. Only by his rational
analysis, he can point out his superiority over his own teacher. In deed, Takebe never
has a complex of self-inferiority. Although he claims himself stupid, the words in
Mathematical Treatise on the Technique of Linkage also shows his confidence of
the new methods that he ever found.

5 Seki and Takebe in the history of mathematics in “culture

circle of Chinese characters”

In the middle of the sixteenth century most countries in East Asia began to keep in
touch with western Christian culture. After that, East Asian countries’ policy turned
rapidly from prohibition to seclusion. Under this historical milieu, the development
of East Asian traditional science diverged. Qing’s mathematics integrated the fea-
tures of the Occident and China guided ideally by traditional Chinese values aided
with modern Western science and technology. On the other hand, Wasan was basi-
cally not influenced by Western mathematics while it developed only by itself in-
heriting Chinese mathematical traditions. Seki and Takebe have laid the foundation
of Wasan.

Chinese traditional mathematics takes practical problem solution as its objective
and algorithm construction as its kernel. Mathematics in Han-Tang dynasties are pri-
marily concerned with arithmetic knowledge while in Song-Yuan dynasties it turned
to algebraic knowledge as its main part which are most in lost during Ming dynasty.
Wasan is an arithmetic knowledge system full of Edo cultural features which is built
on the basis of Song-Yuan’s algebraic traditions. It enlarged the content of alge-
bra and geometry of Song-Yuan and developed the infinitesimal algorithm. Wasan
mathematicians furthered the cause of traditional mathematics in “culture circle of
Chinese characters” into the level of modern maths just before Newton. Takebe
has left an outstanding achievements in algebra, infinitesimal analysis, Diophantine
approximation, especially in infinitesimal analysis. It reveals that East Asian mathe-
maticians’ achievements on calculus in the seventeenth century compares favorably
with those of Europe at the same time. The soul of algorithm is the key feature of
Takebe’s maths. His construction of method of successive accelerated approxima-
tion and method of residues is a paradigm of procedural algorithm.

East Asian mathematics usually pays much attention on creating procedure [術
shu] so as to solve practical problems. Meanwhile, it neglects the theory underlying
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in “procedure.” But it doesn’t mean procedure is only accumulation of experience
or lack of theoretical recognition. For example, in Commentary on the Nine Chap-
ters on the Mathematical Art [九章算術注 Jiuzhang Suanshu Zhu, 263], Liu Hui
elucidated each theory of procedure respectively. Takebe carried forward the tra-
dition of Liu Hui and emphasized the important significance of induction full of
oriental characteristics in the field of mathematical innovation and algorithm con-
struction. He rebuilt the knowledge system of East Asian mathematics through the
basic framework of five techniques [五技 gogi], three essentials. two meanings.
He uncovered the essence of East Asian mathematics from four stages: mathemati-
cal method, mathematical objects, mathematical precision, mathematical truth. This
deed bears a special significance in the world’s mathematical history.
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(1999).

5. L. F. Richardson: The approximate arithmetical solution by finite differences of physical prob-
lems including differential equations, with an application to the stresses in a masonry dam,
Philosophical Transactions of the Royal Society of London, Series A 210, pp. 307–357 (1910).

6. W. Romberg: Vereinfachte numerische Integration, Det Kongelige Norske Videnskabers Sel-
skab Forhandlinger, 28:7, Trondheim (1955).

7. Takebe Kataakira [建部賢明]: Biography of the Takebe [建部氏伝記抄録], Tohoku University
Library [東北大学附属図書館], Code [登録番号] ws000106.

8. Takebe Katahiro: Mathematical Treatise on the Technique of Linkage [綴術算経 Tetsujutsu
Sankei], hand-copied book collected in Cabinet Library, No. 23581.

9. Xu Zelin: Takebe Katahiro and Romberg Algorithm, Historia Scientiarum, vol. 9, no. 2
(1999).

10. Xu Zelin: Takebe Katahiro’s Epistemology of Mathematics, Studies in the History of Natural
Sciences, vol. 21, no. 3, p. 233 (2001),

11. Xu Zelin: Kyokusujutsu of Wasan and Bud of Extremum Concept in Traditional Mathematics
of China, Journal of Dialectics of Nature, vol. 24, p. 37 (2002).

12. Xu Zelin: Shoyakujutsu of Wasan and Diophantine Approximation and their headwaters in
Chinese traditional mathematics, Journal of History of Mathematics, Japan, vol. 180, pp. 1-15
(2004).



Takebe Katahiro’s Algorithms for Finding the

Circular Arc Length

Mitsuo Morimoto

Abstract In the 17th century, Japanese mathematicians could calculate the arc
length numerically at any accuracy once the diameter and the sagitta were given
numerically. But they could not find any formulas to express the arc length in terms
of the diameter and the sagitta; only polynomials or fractions of polynomials were
considered as formulas. Finally in 1722, Takebe Katahiro (1664–1739) succeeded
in expressing the arc length in terms of the diameter and the sagitta in the form of
an infinite series expression.

Introduction

Let an arc with sagitta c be given on a circle of diameter d. In modern mathematics,
the arc length s is given by one of the inverse trigonometric functions:

s = d arcsin

(
2

√
cd − c2

d

)
= d arccos

(
1− 2c

d

)
= 2d arcsin

(√
c
d

)
. (1)

In the 17th century, Japanese mathematicians could calculate the arc length s
numerically at any accuracy once the diameter d and the sagitta c were given nu-
merically. But they could not find any formulas to express the arc length s in terms of
d and c; only polynomials or fractions of polynomials were considered as formulas.
Finally, Takebe Katahiro [建部賢弘] (1664–1739) published in the Mathematical
Treatise of the Technique of Linkage [綴術算経 Tetsujutsu Sankei] (1722) [10] the
following infinite series expression of s in d and c:
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(2)

Takebe rejoiced at this discovery considering himself to have surpassed his master
Seki Takakazu [関孝和] (ca. 1642–1708) : indeed (2) was the first infinite series ever
found in the history of Japanese mathematics. (See [2], [4] and [6].) But he was not
quite well satisfied with his discovery; once truncated the Taylor series expansion
(2) gave him very accurate approximation of the arc length s if the sagitta c is small
but did not give him good approximation as expected if c approaches to d/2, i.e.,
if the arc is close to the half circle. He strove for rational approximation formulas
which ensure good uniform approximation of the arc length.

Following [10], we shall review approximation formulas of the arc known to Seki
Takakazu and Takebe Katahiro. (An outline of this paper was published in [3].)

1 Numerical value of arc lengths

At early stage of the Edo period (1603–1868), Japanese mathematicians were inter-
ested in the calculation of the length of the regular 2n-gons inscribed to a circle of
diameter d = 10 for n = 2,3,4, · · · and obtained the approximate numerical value
of the circular length 10π . For example, in Platter of Mathematics [算俎 Sanso]
(1663), Muramatsu Shigekiyo [村松茂清] (1608–1695) presented the calculation of
the length of 2n-gons for n = 2, 3, · · · , up to 15. Seki Takakazu invented an acceler-
ation method, equivalent to the Aitken method, to find the limit of a sequence and
obtained 12 digits: π = 3.14159265359 · · · . He also calculated the length of the arc
with sagitta c = 1, 2, 3, 4, and 4.5. Seki’s results were published posthumously in
the Concise Collection of Mathematical Methods [括要算法Katsuyō Sanpō] (1712)
[7] as follows:

s(10,1) = 6.4350116, s(10,2) = 9.272953,

s(10,3) = 11.5927958, s(10,4) = 13.6943852,

s(10,4.5) = 14.70629030,

(3)

where s(d,c) denotes the length of the arc with diameter d and sagitta c. Note that
s(10,5) = 5π . Takebe Katahiro found that the repeated applications of Seki’s ac-
celeration method could increase the degree of approximation and obtained the 43
digits of π . (See sheet 37 verso of [10].)1 Takebe thought that he had exceeded his
master Seki in the numerical calculation of π . As quoted below, Takebe also cal-
culated s(10,1), s(10,2), s(10,3), s(10,4), s(10,4.5), and s(10,4.9) with his newly
ameliorated method and examined the values.

1 Pages of [10] are counted according to the sheet. The sheet is folded; the front part is called recto
and the back part is called verso.



Takebe and his contemporaries could calculate the value of arc length as accurate
as they wished once a value was given to the sagitta c . But they were not satisfied
with the numerical calculation and tried to find a polynomial or a rational formula
(fraction of polynomials) of diameter d and sagitta c to represent s or s2. But they
could not find any satisfactory answer. As the inverse trigonometric functions (1) are
not rational, we know that any such attempts should fail. There were, nevertheless,
several attempts to find the formula, as Takebe states at sheet 41 recto in [10]:

At the beginning, assuming the diameter to be 1 shaku [i.e., 10 sun] and the sagitta to
be 1 sun, 2 sun, 3 sun, or 4 sun, we searched for the definite back arc [弧背 kohai]2 by
procedures of decomposition and of incremental divisor. Further, we continued to determine
the definite back arc for the sagitta of 4 sun 5 fun [i.e., 4.5 sun], 4 sun 9 fun [i.e., 4.9 sun],
etc. We examined these numbers but could not understand the underlying rule when the
back arc was close to the half circle. Therefore, although Master Seki formed and revised
the coefficient formula of the back arc twice and I myself also formed and revised once, we
abandoned these procedures because all the formulas were not accurate.3

In [10] Takebe formulated three formulas for the squared arc length s2. In his first
formula (2) the coefficients followed a simple rule and he almost thought he had
solved the problem. He rejoiced at this discovery considering himself to have ex-
ceeded his master Seki for the second time.4 Then he realized that the first formula
(2) gave him very precise approximation of the squared arc length while the sagitta
c was small but did not give him the precision when c became larger, i.e., good
approximation uniformly for all the value c with 0 ≤ c ≤ d/2. He continued his
search for the rational formula which would give him better uniform approxima-
tion. He elaborated the second and the third formulas for the squared arc length in
the rational formula.

Including these three formulas, Takebe cited eight algorithms (procedures, or
formulas) to express the back arc in [10]:

1. (sheet 42 verso in [10]) “the old method” (See (4) and (5) below.),
2. (sheet 45 recto in [10]) “This original procedure”: Takebe’s first formula (2),

which coincides with the truncated Taylor expansion,
3. (sheet 46 recto in [10]) “Master Seki’s 4-multiplication procedure for finding

the back arc”5 (See (7) and (9) below.),
4. (sheet 49 recto in [10]) “To search the differences by the devision of the dif-

ference of the diameter and the sagitta”: Takebe’s second formula (12),
5. (sheet 49 verso in [10]) “the 6-multiplication original procedure for finding the

back arc, which we [Takebe] established earlier” (See (8) below.),

2 This means an arc in the sense of a segment of a circle. On the other hand, an arc [弧 ko] in the
Edo period meant a disk segment (editor).
3 shaku, sun, fun are units of length. 1 sun is about 3 cm. 1 shaku = 10 sun, 1 sun = 10 fun.
4 In the spring of 2005 Mr. Yokotsuka found a manuscript titled the Circular Arc and its multi-
sections [弧背截約集 Kohai Setsuyaku Shū], in which it was stated that Takebe Katahiro found
the formula unexpectedly on January 13, 1722. See [12].
5 Let n be a natural number. A “n-multiplication procedure” means a procedure which contains
polynomials of degree less than or equal to n+1.
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6. (sheet 49 verso in [10]) “This old procedure”: the revised old method (See (6)
below.),

7. (sheet 53 verso in [10]) “This main procedure”: Takebe’s third formula (13),
8. (sheet 54 verso in [10]) “the general procedure. All details are recorded in the

Arc Rates [弧率 Koritsu]”.

Although Takebe’s three formulas were formulated explicitly, other algorithms
were not clearly mentioned in [10]. We shall examine mathematics books in the
early Edo period to find what were indeed these algorithms.

2 The Register of Jugai

In the Register of Jugai [竪亥録 Jugai roku] (1639), Imamura Tomoaki [今村知商]
gave the following formula in a chant form (See [5], vol.1, page 221.):

s2 = 4cd +2c2. (4)

As we have s2 = (5/2)d2 for c = d/2 (half circle), we know that π was assumed to
be

√
10 in this book. Takebe stated at sheet 42 verso in [10]:

It corresponds with the old method where the squared sagitta multiplied by the coefficient
5.8696 (strong) is added to the square of the chord to find the squared back arc.

As the square of the chord is equal to 4(cd−c2), the old method referred here is the
following approximation formula:

s2 = 4(cd − c2)+5.8696c2 = 4cd +1.8696c2. (5)

As Takebe assumed π to be 355/113, which he called the precise value [密率 mit-
suritsu], the formula (4) was revised as (5), which was quoted as the “old method”
at sheet 42 verso in [10]. In fact, when d = 10 and c = 5, the formula (5) gives

s(10,5)2 =
(

4× 1
2

+1.8696× 1
4

)
×100 = 246.74

and
(

5× 355
113

)2

= 246.740 · · · , whence the coefficient 5.8696 appeared.

There is another mention of the “old method” at sheet 49 verso in [10]:

In an old method, multiplying the sagitta by itself, multiply by the coefficient of the squared
sagitta [i.e., 5.8696], add it to the square of the chord. The sum is called the square of the
approximate back arc. Subtract the double of the sagitta from the diameter. Multiply the
remainder by the squared sagitta, divide it by the difference of the sagitta and the diameter
and halve it. Subtract the obtained number from the squared approximate back arc and call it
the square of the definite back arc. This old procedure corresponds naturally to the previous
main procedure with two differences.



Here, the square of the approximate back arc means the right-hand side of (5) given
by the “old method” and s2 is claimed to be better approximated by the square of
the definite back arc as given in the following:

s2 = 4(cd − c2)+5.8696c2 − (d −2c)c2

2(d − c)
. (6)

This is the “revised old method” given at sheet 49 verso in [10]. Note that the cor-
rection term in (6) becomes 0 when the sagitta is null or d/2.

3 The Mathematical Methods for Clarifying Slight Signs

Takebe Katahiro published the Mathematical Methods for Clarifying Slight Signs
[研幾算法 Kenki Sanpō] [9] when he was 19 years old. (For the life of Takebe, we
refer the reader to [11], which contains English translation of Takebe’s three math-
ematical monographs and his short biography in English.) In this book, he gave
solutions to the 49 problems proposed by Ikeda Masaoki [池田正意] in the Mathe-
matical Textbook on Multiplication and Division [数学乗除往来 Sūgaku Jōjo Ōrai]
(1674). The first problem is to ask the area of the part of the plane surrounded by
the arc and the chord. But the area can be expressed by means of the arc length s,
the solution contained the following approximation formula of the squared arc s2:

K(d,c) =
−A0d5 +A1cd4 +A2c2d3 +A3c3d2 −A4c4d +A5c5

A6d2 (7)

where the coefficients are given

A0 = 81, A1 = 18393267, A2 = 6021104, A3 = 4081524,

A4 = 715920, A5 = 5500232, A6 = 4596840.

This formula is a polynomial of degree 5, hence, is a 4-multiplication procedure.
In [9] π being assumed to be 355/113, the formula (7) gives good approximation
for d = 10, c = 1, c = 2, c = 3, c = 4, and c = 4.5 but gives negative values if the
sagitta c becomes small : K(10,0) = −45/25538. This shows that Takebe and his
master Seki had no idea, at least when they were writing this book, to consider cases
with very small sagittas.

According to the Supplementary Guide [凡例 hanrei] in [9] Takebe admitted that
the problems related with the arc length (Problems 1 and 48) were instructed by the
master. If we respect this passage, we may ascribe (7) to Seki Takakazu and consider
it as the “Master Seki’s 4-multiplication procedure” in [10].
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4 The Concise Collection of Mathematical Methods

The Concise Collection of Mathematical Methods [7] contains a formula in d and c
to approximate the squared arc length s2. Although the book was published in 1712
posthumously, we can guess the result had been obtained around 1685, Seki’s most
productive years, and that it would be little later than [9].

In volume 4 of [7] we find the following approximation formula Y (d,c) for s2:

Y (d,c) =
B1cd6 −B2c2d5 +B3c3d4 −B4c4d3 +B5c5d2 −B6c6d −B7c7

B8(d − c)5 . (8)

where the coefficients are given by

B1 = 5107600, B2 = 23835413, B3 = 43470240, B4 = 37997429,

B5 = 15047062, B6 = 1501025, B7 = 281290, B8 = 1276900.

Because B1 = 4B8, Y (d,c) = 4cd + · · · when c is very small. Because Y (d,0) = 0,
(8) is better than (7) when the sagitta is very small.

As the numerator of (8) is a polynomial of degree 7, this is a 6-multiplication
procedure. But it is not certain that it corresponds to the “original 6-multiplication
procedure” cited in [10] which was ascribed to Takebe himself. Only the 4-multipli-
cation procedure was ascribed to master Seki in [10].

Assuming that the circular coefficient π = 355/113, the formula (8) is con-
structed by an interpolation of the values (3) at c = 1, c = 2, c = 3, c = 4, c = 4.5,
c = 5 with d = 10. This method is equivalent to Newton’s interpolation formula.
(See [1], English part, page 63.)

5 The Complete Book of Mathematics

Seki Takakazu, Takebe Katahiro, and Takebe Kataakira (Katahiro’s elder brother)
started editing the Complete Book of Mathematics [大成算経 Taisei Sankei] [8] in
1683 and compiled a version in 12 volumes around 1695. The whole 20 volumes
were completed in 1711 by the effort of Kataakira. It took 28 years to accomplish the
editing of the encyclopedic collection of mathematics of Seki and Takebe brothers.

The circular coefficient π , the arc length and related topics are treated in volume
12 of [8]. The formula for the arc length in [8] improves that of [7] it can be con-
cluded the former is later than the latter. The formula in [8] is reproduced in [5] (vol.
2, page 428):

T (d,c) =
H1cd4 −H2c2d3 +H3c3d2 −H4c4d −H5c5

K0d3 −K1cd2 +K2c2d −K3c3 (9)



where the coefficients are given by the following:

H1 = 39020125496, H2 = 61434714678, H3 = 25918266069,

H4 = 1828448393, H5 = 102756994, K0 = 9755031374,

K1 = 18610356125, K2 = 10948798854, K3 = 1913138432.

In [8], the circular coefficient π is more precise than 355/113. The formula (9)
is also a 4-multiplication procedure and earlier than [8]. It is another candidate for
the “Seki’s 4-multiplication procedure” referred in [10].

6 Takebe’s First formula

We already discussed in details the Takebe’s three formulas in [4]. They are usually
called “formulas” but in the context of the Seki and Takebe mathematics it is better
to consider them as algorithms or procedures. This is the reason why the author
chose the term “algorithm” in the title of this paper.

In wasan, Japanese traditional mathematics, a polynomial of numerical coeffi-
cients was represented by a configuration (column vector of polynomial’s coeffi-
cients) on the counting board. This is the procedure of celestial element [天元術
tengen jutsu]. If a value is given to the invisible unknown x, the value of the poly-
nomial was calculated on the counting board. There was no polynomial notation of
modern mathematics but only operations on configurations on the counting board. In
this regard, it is hard to reproduce Seki and Takebe’s mathematics in modern mathe-
matical notation. Having said so, we try to reproduce their mathematical ideas using
modern terminology.

Takebe’s first formula is usually written as (2) and considered as an infinite series
which coincides with the Taylor series expansion. But the following form resembles
more the standard notation of the wasan:

s2 = 4cd
(

1+
1
3

c
d

(
1+

8
15

c
d

(
1+

9
14

c
d

(1+

+
32
45

c
d

(
1+

25
33

c
d

(
1+

72
91

c
d

(1+ · · ·)
)))))) (10)

The more faithful reproduction of the wasan notation looks as follows:

D1(d,c) = 4× c2

3
, S1(d,c) = 4cd +D1(d,c),

D2(d,c) = D1(d,c)× c
d
× 8

15
, S2(d,c) = S1(d,c)+D2(d,c),

D3(d,c) = D2(d,c)× c
d
× 9

14
, S3(d,c) = S2(d,c)+D3(d,c),
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D4(d,c) = D3(d,c)× c
d
× 32

45
, S4(d,c) = S3(d,c)+D4(d,c),

D5(d,c) = D4(d,c)× c
d
× 25

33
, S5(d,c) = S4(d,c)+D5(d,c),

D6(d,c) = D5(d,c)× c
d
× 72

91
, S6(d,c) = S5(d,c)+D6(d,c),

Starting from 4cd, adding the differences Dn, we approximate the arc length s2

by Sn, n = 1,2,3, · · · .
Takebe observed carefully the denominators and the numerators separately and

deduced recursively that the fraction which should be multiplied to the (i− 1)-th

term to obtain the i-th term (i ≥ 2) was given by
2i2

(2i+1)(i+1)
when i is even and

by
i2

(2i+1)(i+1)/2
when i is odd.6

Takebe recognized that the calculation could be continued for as many steps as
wished using the following algorithm:

D := 4c2/3;
S := 4cd +D;
for i := 2 to N do begin

if i mod 2 = 0 then
begin P := (2i+1)(i+1);Q := 2i2 end

else

begin P := (2i+1)(i+1)/2;Q := i2 end;

D := D · Q
P
· c

d
;

S := S +D;
end;

The formula (2) was later reformulated as

( s
2

)2
= cd

{
1+

22

3 ·4

( c
d

)
+

22 ·42

3 ·4 ·5 ·6

( c
d

)2
+

22 ·42 ·62

3 ·4 ·5 ·6 ·7 ·8

( c
d

)3
+ ·
}

(11)

in the Circle Theory and the Circular Arc Length [円理弧背術 Enri Kohai Jutsu],
where (11) was derived by an algebraic method. (See [6].)

Note that Takebe could not recognize the identity of the two forms of fraction
in the coefficients of (11) and wrote the rule of coefficients for odd and even terms
separately in (2).

At sheet 48 recto in [10], Takebe commented his first formula as follows:

The original procedure is a natural method which follows the attribute of the arc. If we seek
the squared half back arc for an extremely small sagitta, the successive differences decrease

6 This fact was shown by numerical data in the table at sheet 47 recto in [10]. Seki and Takebe
could not represent general i.



more rapidly and the truer number can be achieved quickly. But if the sagitta is getting
larger in the case of a half circle, the successive differences decrease slowly and more and
more differences must be calculated. It cannot be considered as the definite coefficient.

He was not satisfied with this procedure (2) because the approximation is not uni-
form for c, 0 ≤ c ≤ d/2. He then started another quest using the form of fraction.

7 Takebe’s Second formula

Takebe’s second formula was the following:
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14
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c6

(d − c)4 + · · · ,
(12)

where the last denominator was erroneously stated as 398 in [10]. This formula is
the transcription of the following procedure:

D1(d,c) = 4c2/3, S1(d,c) = 4cd +D1(d,c),

D2(d,c) = D1(d,c)× c
d − c

× 8
15

, S2(d,c) = S1(d,c)+D2(d,c),

D3(d,c) = D2(d,c)× c
d − c

× 5
14

, S3(d,c) = S2(d,c)−D3(d,c),

D4(d,c) = D3(d,c)× c
d − c

× 12
25

, S4(d,c) = S3(d,c)+D4(d,c),

D5(d,c) = D4(d,c)× c
d − c

× 223
396

, S5(d,c) = S4(d,c)−D5(d,c).

Same as before, first we approximate s2 by 4cd, and we arrange (add or sub-
tract) the differences with fraction whose denominator is d − c. The sums Sn will
approximate the arc length s2 successively.

Takebe also abandoned the second formula, saying its precision did not increase
very much even with the increased number of multiplications. See the following
passage at sheet 49 recto and verso in [8]:

Applying this procedure to the half circle, the sagitta being large, we find 3 orders by using
two differences, 4 orders using three differences, and 5 orders by using four differences.
We find one order more if we use one more difference. That is, this coincides with the
6-multiplication original procedure for finding the back arc, which we established earlier.
Originally, expecting to find 7 orders using 6-multiplication we established the method,
which turned out not to be accurate even using multi-multiplication. Therefore, we did not
employ that procedure and abandoned it.
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8 Takebe’s Third formula

Takebe’s third formula have more complicated form with polynomials of higher
degree in the denominator:

( s
2

)2
= cd +

1
3

c2 +
1
3
× c3

d − 9
14

c
× 8

15

+
1
3
× c5

d − 9
14

c
× 1

d2 − 1696
1419

cd +
6743008
26176293

c2
× 8

15
× 43

980
.

(13)

The formula (13) is also a transcription of the following procedure:

D1(d,c) =
4c2

3
, S1(d,c) = 4cd +D1(d,c),

D2(d,c) = D1(d,c)× c

d − 9c
14

× 8
15

, S2(d,c) = S1(d,c)+D2(d,c),

D3(d,c) = D2(d,c)× c2

d2 − 1696cd
1419

+
6743008c2

26176293

× 43
980

,

S3(d,c) = S2(d,c)+D3(d,c).

After explaining how to proceed, Takebe stops calculating the fourth difference
D4 saying it would be very complicated.

The closing remark of Chapter 12 of [10] reads as follows:

In the above investigation of numbers of the arc, the determination of the coefficients of
multipliers and divisors at each difference is the investigation of numbers by numbers. The
procedure to determine the back arc is the investigation of rules by numbers. Truly, in the
investigation of the circular circumference and the back arc, neither numbers nor procedures
can be obtained by investigation by principles. We can obtain them through investigation
by numbers. This is because of the attribute of the arc and the circle.

Takebe stresses that the numerical research is more important than the theoretical
research in the study of circle and arc. He claims that it is due to the nature of the
circle and the arc.

9 The Arc Rates

I have a copy of the manuscript (No. 1427) named the Arc Rates [弧率 Koritsu] of
the Japan Academy. Although there are many discussion, on the manuscript Takebe
Katahiro is referred to as the author. In this manuscript we find the following for-



mula:

T2(d,c) =
L1cd4 −L2c2d3 +L3c3d2 −L4c4d −L5c5

M0d3 −M1cd2 +M2c2d −M3c3 (14)

L1 = 17243148700, L2 = 27148244837, L3 = 11453384892,

L4 = 807998619, L5 = 45408726, M0 = 4310787175,

M1 = 8223990414, M2 = 4838317774, M3 = 845423484.

This is a 4-multiplication procedure. It has a form similar to that of [8] with different
coefficients. This is one of the trials to simplify the coefficients of (9). There are
many manuscripts named the Arc Rates and this book does not seem to be the Arc
Rates mentioned at sheet 54 verso.

10 Summary

We list the maximum error of the formulas which appeared in this note:

1. The algorithm (4) consists of a polynomial of degree 2. The maximum error is
1.7×10−2. Note π =

√
10.

2. The algorithm (7) consists of a polynomial of degree 5. The maximum error is
4×10−5. Note π = 355/113 and s(d,0) < 0.

3. The algorithm (8) consists of a fraction of which numerator and denominator
are degree 7 and 5, respectively. The maximum error is 1.5× 10−7. Note π =
355/113.

4. The algorithm (9) consists of a fraction whose numerator and denominator are
polynomials of degree 5 and 3, respectively. The maximum error is 1.5×10−10.

5. Takebe’s first formula (2) is a polynomial of degree 7. (Truncated Taylor series
expansion.) The maximum error is 4×10−4.

6. Takebe’s second formula (12) is a fraction of polynomials whose numerator
and denominator are of degree 6 and 4 respectively. The maximum error is
2.5×10−3.

7. Takebe’s third formula (13) is a fraction of polynomials whose numerator and
denominator are of degree 5 and 3 respectively. The maximum error is 5×10−4.

8. The procedure (14) consists of a fraction of polynomials whose numerator and
denominator are of degree 5 and 3 respectively. The maximum error is 5 ×
10−10.

These maximum errors are calculated by the computer algebra system Mathe-
matica. We used Takebe’s three formulas as given in [10] for the evaluation of error.
As explained in [6], we can easily increase the degree of Takebe’s three formulas
higher and increase their accuracy. Although Takebe did not appreciate his first for-
mula (truncated Taylor series expansion), this is an efficient method to calculate the
arc length numerically.

Takebe Katahiro’s Algorithms 341



342 Mitsuo Morimoto

References

1. Akira Hirayama [平山諦], Kazuo Shimodaira [下平和夫] and Hideo Hirose [広瀬秀雄] ed.:
Takakazu Seki’s Collected Works Edited with Explanations [関孝和全集], Osaka Kyōiku Tosho
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The Method of Successive Divisions by Takebe

Katahiro and Nakane Genkei∗

Tamotsu Tsuchikura

Abstract The method of successive divisions developed by Wasan mathematicians
was considered as a kind of Diophantine approximations. Nevertheless their main
aim is not to find the close approximating fractions of irrational numbers but to
obtain the simple fractions which enter the assigned range. We shall here reproduce
their crucial algorithm. About fifty years later another Wasan mathematician made
an alternate treatment for the same problem which is rather troublesome but gives
systematical and complete solutions.

1 The Problem

In the research book the method of successive divisions [累約術 Rui-yaku-jutsu]
published in 1728, Takebe Katahiro [建部賢弘][3, 4, 5], (1664–1739) and his col-
league Nakane Genkei [中根元圭] (1662–1733) treated the following indefinite
inequality problems, which are originated in the calendrical determination of the
changing dates of the seasons.

After some normalizations, the problem is written in the modern form:

Let a > 0,b > 0,c, and γ > 0 be given real numbers. Find the pairs of integers x
and y such that

|ax−by+ c| ≤ γ .
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In the book mentioned above, they obtained the solution pairs x,y by constructing
a skillful algorithm. Prof. Matsusaburo Fujiwara [藤原松三郎][1] (1881–1946) first
explained this theory in the modern style, and pointed out that this is of the Dio-
phantine approximation. Indeed, we get the difference b/a− x/y from the above
inequality, and if b/a is an irrational, the inequality is of the Diophantine type, but
the examples they adopted are not in the case. The main aim of Takebe and Nakane
is not to determine the degree of approximation, but to find the smallest x;y and the
following simple pairs.

They made a crucial use of the theory of continued fractions more than one hun-
dred years before the famous Jacobi treatment of the Diophantine approximation.

2 Takebe-Nakane’s Algorithm

In the problem we can suppose b ≥ c without loss of generality. First, we make
a calculation of the continued fractions, and get the sequences of natural numbers
a1,a2, · · · , and of the rests r1,r2, · · · :

b
a

= a1 +
r1

a
,

a
r1

= a2 +
r2

r1
,

r1

r2
= a3 +

r3

r2
, · · · .

　 Let
pn

qn
be the n-th partial fraction of this continued fraction, then we have the

well known relations:{
pn = an pn−1 + pn−2

qn = anqn−1 +qn−2
(n = 1,2, · · ·) ,

where p1 = a1, p0 = 1,p−1 = 0,q1 = 1,q0 = 0,q−1 = 1.

rn = (−1)n(apn −bqn) (n = 1,2, · · · ;r0 = a) .

　 Next, we shall make an expansion of the fraction
b− c

a
into a version of decimal

or binary systems, namely, its own different system. The sequence of non-negative
integers b1,b2, · · · and of the rests s1,s2, · · · will be obtained:

b− c
a

= b1 +
s1

a
= b′1 −

s′1
a

(b′1 = b1 +1, s1 + s′1 = a) ,

s′1
r1

= b2 +
s2

r1
= b′2 −

s′2
r1

(b′2 = b2 +1, s2 + s′2 = r1) ,

· · ·
s′n−1

rn−1
= bn +

sn

rn−1
= b′n −

s′n
rn−1

(b′n = bn +1,sn + s′n = rn−1)

(n = 1,2, · · · ; where s′0 = b− c,r0 = a) .
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We can see easily the following formulas by the mathematical induction.

sn = (−1)n(aun −bvn + c) ,{
un = u′n−1 +bn pn−1

vn = v′n−1 +bnqn−1 ,

s′n = (−1)n+1(au′n −bv′n + c) ,{
u′n = u′n−1 +b′n pn−1 = un + pn−1

v′n = v′n−1 +b′nqn−1 = vn +qn−1 ,

for n = 2,3, · · · and
u1 = b1,v1 = 1,u′1 = b′1,v

′
1 = 1 .

If we find an index n such as |sn| < γ , then the integral pair x = un, y = vn satisfies
the required inequality.

We shall treat an example of Takebe and Nakane, [3, 4, 5], for the sake of conve-
nience we adopt＄ as the money unit.

Having in hand the principal $240.02, we add $75.36 everyday, and just when
the total is over ＄501.63, we save this amount in the saving box. How many days
the money in hand will be less than or equal to $1?　

This problem is to find the pair of integers x,y such that

0 � 240.02+75.36x−501.63y < 1 ,

x being the number of days and y the saving times.
Multiply both sides by 100, and divide by the common divider 3 of the coeffi-

cients of x and y. Then, we get

−24002
3

≤ 2512x−16721y < −23902
3

. (1)

The extreme sides will be replaced by −8000 and −7968 respectively, and we get

|2512x−16721y+7984| ≤ 16 .

Hereafter we put
a = 2512, b = 16721, c = 7984 .

　 Following the above mentioned process, we get:
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b
a

=
16721
2512

= 6 (a1)+
1649
2512

(r1) (a1 = 6,r1 = 1649 and so on)

a
r1

=
2512
1649

= 1 (a2)+
863
1649

(r2)

r1

r2
=

1649
863

= 1 (a3)+
786
863

(r3)

r2

r3
=

863
786

= 1 (a4)+
77
786

(r4)

r3

r4
=

786
77

= 10 (a5)+
16
77

(r5)

r4

r5
=

77
16

= 4 (a6)+
13
16

(r6)

r5

r6
=

16
13

= 1 (a7)+
3
13

(r7)

r6

r7
=

13
3

= 4 (a8)+
1
3

(r8)

r7

r8
=

3
1

= 3 (a9)+
0
1

(r9)
,

b− c
a

=
8737
2512

= 3 (b1)+
1201
2512

(s1) = 4 (b′1)−
1311
2512

(s′1)

s′1
r1

=
1311
1649

= 0 (b2)+
1311
1649

(s2) = 1 (b′2)−
338

1649
(s′2)

s′2
r2

=
338
863

= 0 (b3)+
338
863

(s3) = 1 (b′3)−
525
863

(s′3)

s′3
r3

=
525
786

= 0 (b4)+
525
786

(s4) = 1 (b′4)−
261
786

(s′4)

s′4
r4

=
261
77

= 3 (b5)+
30
77

(s5) = 4 (b′5)−
47
77

(s′5)

s′5
r5

=
47
16

= 2 (b6)+
15
16

(s6) = 3 (b′6)−
1
16

(s′6)

s′6
r6

=
1
13

= 0 (b7)+
1
13

(s7) = 1 (b′7)−
12
13

(s′7)

s′7
r7

=
12
3

= 4 (b8)+
0
3

(s8) = 5 (b′8)−
3
3

(s′8) ,
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p1

q1
= a1 =

6
1

(p1 = 6,q1 = 1 and so on)

p2

q2
= a1 +

1
a2

=
a2 p1 +1

a2
=

1×6+1
1

=
7
1

p3

q3
=

a3 p2 + p1

a3q2 +q1
=

1×7+6
1×1+1

=
13
2

p4

q4
=

a4 p3 + p2

a4q3 +q2
=

1×13+7
1×2+1

=
20
3

p5

q5
=

a5 p4 + p3

a5q4 +q3
=

10×20+13
10×3+2

=
213
32

p6

q6
=

a6 p5 + p4

a6q5 +q4
=

4×213+20
4×32+3

=
872
131

p7

q7
=

a7 p6 + p5

a7q6 +q5
=

1×872+213
1×131+32

=
1085
163

p8

q8
=

a8 p7 + p6

a8q7 +q6
=

4×1085+872
4×163+131

=
5212
783

,

u1 = b1 = 3
u2 = u′1 +b2 p1 = 4+0×6 = 4
u3 = u′2 +b3 p2 = 10+0×7 = 10
u4 = u′3 +b4 p3 = 17+0×13 = 17
u5 = u′4 +b5 p4 = 30+3×20 = 90
u6 = u′5 +b6 p5 = 110+2×213 = 536
u7 = u′6 +b7 p6 = 749+0×872 = 749
u8 = u′7 +b8 p7 = 1621+4×1085 = 5961

u′1 = b1 +1 = 4
u′2 = u2 + p1 = 4+6 = 10
u′3 = u3 + p2 = 10+7 = 17
u′4 = u4 + p3 = 17+13 = 30
u′5 = u5 + p4 = 90+20 = 110
u′6 = u6 + p5 = 536+213 = 749
u′7 = u7 + p6 = 749+872 = 1621
u′8 = u8 + p7 = 5961+1085 = 7046 ,

v1 = 1
v2 = v′1 +b2q1 = 1+0×1 = 1
v3 = v′2 +b3q2 = 2+0×1 = 2
v4 = v′3 +b4q3 = 3+0×2 = 3
v5 = v′4 +b5q4 = 5+3×3 = 14
v6 = v′5 +b6q5 = 17+2×32 = 81
v7 = v′6 +b7q6 = 113+0×131 = 113
v8 = v′7 +b8q7 = 244+4×163 = 896

v′1 = 1
v′2 = v2 +q1 = 1+1 = 2
v′3 = v3 +q2 = 2+1 = 3
v′4 = v4 +q3 = 3+2 = 5
v′5 = v5 +q4 = 14+3 = 17
v′6 = v6 +q5 = 81+32 = 113
v′7 = v7 +q6 = 113+131 = 244
v′8 = v8 +q7 = 896+163 = 1059 .

　Among this table we pick up sn and s′n whose values are less than γ = 16. We get

s6 = 15,s′6 = 1,s7 = 1,s′7 = 12,s8 = 0,s′8 = 3 .
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From s6 = au6 − bv6 + c = 15, we have x = u6 = 536, y = v6 = 81, the smallest
solution. From s′6,(x,y) = (u′6,v

′
6) = (749,113), from s7,(u7,v7) = (749,113) the

same with the above; from s′7,(u
′
7,v

′
7) = (1621,244); from s8,(u8,v8) = (5961,896),

and from s′8,(u
′
8,v

′
8) = (7046,1059).

We shall remark that, by some combinations of sn or rn, we may obtain another
solutions. Using the formulas

(−1)nsn = una− vnb+ c , (−1)mrm = pma−qmb ,

we get, h being a non-zero integer,

(−1)nsn +h(−1)mrm = (un +hpm)a− (vn +hqm)b+ c .

If the absolute value of the second-hand side is not over the bound γ , then (un +
hpm,vn + hqm) is a pair of solution. In the Takebe-Nakane book[3, 4, 5], only the
case m = n− 1 is treated. We may use s′n instead of sn, or further additional r� . If
(x0,y0) is a pair of solution, then, as we see easily, the pair (x0 + kb,y0 + ka) is also
a solution for any integer k.

For the purpose to get the smaller solution, as we see in the formula for un, vn it
is favorable to use smaller bn. Hence, in the case when sn < γ , if we have an integer
N such that bn ≥ N,sn + Nrn−1 < γ , then we put b̄n = bn −N, s̄n = sn + Nrn−1. we
have

bn +
sn

rn−1
= b̄n +

s̄n

rn−1
(b̄n ≥ 0, s̄n < γ) ,

s̄n = (−1)n(aūn −bv̄n + c) ,

ūn = u′n−1 + b̄n pn−1 , v̄n = v′n−1 + b̄nqn−1 ,

the pair (ūn, v̄n) is smaller than (un,vn). We must say this discussion a very careful
step. In our example we consider s8. For this case b8 = 4, s8 = 0, r7 = 3, we put
N = 4, then

b̄8 = b8 −4 = 0, s̄8 = s8 +4r7 = 12 < γ (= 16) ,

and ū8 = u′7 + b̄8 p7 = u′7, v̄8 = v′7 + b̄8q7 = v′7, the same as s′7.
We shall make some examples, put a = 2512, b = 16721, c = 7984.

Example 1.

s6(= 15) = au6 −bv6 + c = 536a−81b+ c,

r8(= 1) = ap8 −bq8 = 5212a−783b .

By adding 16 = 5748a−864b+ c, hence (x,y) = (5748,864) is a solution.

Example 2.
s8 + r6 −2r7 = 0+13−2×3 = 7 < 16,

hence
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(au8 −bv8 + c)+(ap6 −bq6)+2(ap7 −bq7)
= (5961+872+2×1085)a− (896+131+2×163)b+ c = 9003a−1353b+ c .

and (x,y) = (9003,1353) is also another solution.

Example 3.

By− s′8 − r7 , −6 = 8131a−1222b+ c ,

By− s′8 −2r7 , −9 = 9216a−1385b+ c ,

By− s′8 −3r7 , −12 = 10301a−1548b+ c ,

By− s′8 −4r7 , −15 = 11386a−1711b+ c ,

hence (8131,1222),(9216,1385),(10301,1548),(11386,1711) are solutions.

Example 4.

s′5 −3r6 = 47−3×13 = 8
= (u′5a− v′5b+ c)−3(p6a−q6b)
= (110a−17b+ c)−3(872a−131b)
= −2506a+376b+ c .

　We add 0 = 16721a−2512b, then the last side is equal to 14215a−2136b + c,
hence (14215,2136) is a positive solution.

3 Approach To The Problem

　 About fifty years later, Aida Yasuaki [會田安明][6] (1747–1817) introduced this
theory in his text book adopting the original examples, Several methods on math-
ematics, 3 vols. [算法諸約術, 上中下], and for the last example, which is the one
we concerned here itself, he gave the complete solutions, that is, determined all the
pairs x, y satisfying the required inequality, using the elementary theory of numbers.
We shall repeat his process. The coefficients a = 2512 and b = 16721 are prime with
each other, we can find a pair of integers x, y, such that

2512x−16721y = −1 .

The method to find such pair is called ken-ichi-jutsu or jiku-ichi-jutsu in the old
Japanese mathematics, and it depends on the continued fraction theory. In our case
x = 11509, y = 1729 is a pair of solution, i.e.,

2512×11509−16721×1729 = −1 . (2)
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　 As we remarked on the inequality (1), the pair x, y satisfies the following thirty
three equations:

2512x−16721y = A , (3)

where A = −8000, −7999, −7998, · · · , −7968. Make (2)×A+3, we get easily

2512(11509A+ x) = 16721(1729A+ y) , (4)

so we can write 1729A + y = 2512k (k, integer), as 2512 and 16721 are prime with
each other. Substitute this into (4), and we get easily,{

x = 16721k−11509A
y = 2512k−1729A .

For example, put A = −8000, we get{
x = 16721k +11509×8000
y = 2512k +1729×8000 .

To find the smallest x,y > 0, we put k = −5506, and get x = 6174, y = 928.
　After finding such positive pairs for all the values A, we can get the smallest pair.
(Cf. Following table)
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Table of the smallest pairs (x,y) for each F or G.

F = 240.02+75.36x−501.63y, G = 2512x−16721y+7984, F =
1

100
(3G+50) .

　 F　 　 G　 　　 x　　 　　 y　　 　 Examples required　　
0.98 16 5748 864 s6 + r8 = s8 +16r8
0.95 15 536 81 s6 = s8 +15r8
0.92 14 12045 1810 s′7 +2r8

0.89 13 6833 1027 s′7 + r8
0.86 12 1621 244 s′7
0.83 11 13130 1973 s8 + r6 − r7 + r8

0.80 10 7918 1190 s′7 − r7 + r8 = −s′8 + r6
0.77 9 2706 407 s′7 − r7
0.74 8 14215 2136 s8 +2r7 +2r8

0.71 7 9003 1353 s8 − r6 −2r7
0.68 6 3791 570 s′7 −2r7
0.65 5 15300 2299 s′7 −3r7 +2r8

0.62 4 10088 1516 s′7 −3r7 + r8
0.59 3 4876 733 s′7 −3r7
0.56 2 16385 2462 s8 +2r8

0.53 1 11173 1679 s8 + r8
0.50 0 5961 896 s8
0.47 −1 749 113 −s′6 = −s7 = s′7 − r6

0.44 −2 12258 1842 −s′8 + r8
0.41 −3 7046 1059 −s′8
0.38 −4 1834 276 −s′8 − r7 − r8

0.35 −5 13343 2005 −s′8 − r7 + r8
0.32 −6 8131 1222 −s′8 − r7
0.29 −7 2919 439 −s′8 − r7 − r8

0.26 −8 14428 2168 −s′8 −2r7 + r8
0.23 −9 9216 1385 −s′8 −2r7
0.20 −10 4004 602 −s′8 −2r7 − r8

0.17 −11 15513 2331 −s′8 −3r7 + r8
0.14 −12 10301 1548 −s′8 −3r7
0.11 −13 5089 765 −s′8 −3r7 − r8

0.08 −14 16598 2494 −s′8 −4r7 + r8
0.05 −15 11386 1711 −s′8 −4r7
0.02 −16 6174 928 −s′8 −4r7 − r8

N.B. The pairs x+16721k, y+2512k are also solutions, k = 1,2, · · · .



352 Tamotsu Tsuchikura

References

1. Matsusaburo Fujiwara [藤原松三郎]: Miscellaneous notes on the history of Wazan, II [和算
史の研究 II], Diophantine approximation [建部賢弘の累約術], Tohoku Math. J. [東北数学雑
誌], vol. 46, pp. 135–144 (1940); Invitation to history of mathematics in east Asia [東洋数学
史への招待], Tohoku University Press [東北大学出版会], Sendai (2007).

2. Japan Academy ed.: History of pre-Meiji Japanese mathematics [明治前日本数学史], vol. 5,
Japan Academy [日本学士院日本科学史刊行会] (1979).

3. Takebe Katahiro [建部賢弘] writes [著] & extracted by [刪定] Nakane Genkei [中根元圭] :
the method of successive divisions [累約術 Rui-yaku-jutsu], MS., Okamoto Collection 304,
Tohoku University Library [写本,東北大学図書館岡本文庫写 304].

4. Takebe Katahiro [建部賢弘]: new methods of successive multiplications and divisions [累乗
累約新術], MS., Hayashi Collection 740, Tohoku University Library [写本,東北大学図書館
林集書 740].

5. Takebe Katahiro [建部賢弘]: new methods of successive multiplications and divisions [累乗
累約新術], MS., Sekisan zenden 119, Miyagi Prefectural Library [写本,宮城県図書館関算
前傳 119].

6. Aida Yasuaki ed. [會田安明編]: Several methods on mathematics, 3 vols. [算法諸約術上中
下], MS., Hayashi Collection 1191, Tohoku University Library (写本,東北大学図書館林集
書 1191).



Manuscripts in the Edo Period: Preliminary

Study on Manuscripts Written by Seki Takakazu

Tomomi Nishida

Abstract Hatsubi-Sanpō written by Seki Takakazu (ca.1642–1708) was published
in 1674 in the form of woodblock printing. The rest of his works are known only in
the form of hand-copied books. His case was not exceptional, however. A famous
Confucianist Arai Hakuseki (1657–1725) was Seki’s colleague as a government of-
ficial. Arai also wrote a lot of works as manuscripts but did not publish them in
woodblock printings; his works spread widely as hand-copied books. Why they did
not publish printed books? We can see some suggestion through recent studies on
publications in the Edo period.

1 Studies on Manuscripts

According to former studies on the history of books during the Edo period (1603–
1867), the woodblock printing was regarded as the most popular style of publica-
tions, while manuscripts and hand-copied printings were less popular and recog-
nized as private publications.

On the contrary, recent research has proven the expansion of the hand-copied
book market and advantages of manuscripts. In 2007, an epoch-making book Sequel
to Wahon for Beginners [2] was published by Kōnosuke Hashiguchi [橋口侯之
介], where Wahon [和本] means books in Japanese style. A lot of manuscripts and
hand-copied printings were shown in it and we can see various ways of publication
business in the Edo period. (For general information about books in the Edo period,
see [1] and [3].)

In some cases, manuscripts and hand-copied books were more convenient for
bookstores and at the same time for readers. It was easier to make hand-copied books
than we think of, and less expensive for readers in those days. Those advantages had
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encouraged the wide spread of manuscripts and hand-copied books. That was one
of the characteristics of culture in the Edo period.

Hand-copied books were handled just in the same way as printed books at any
bookstores, and were one of the principal commodities in those days. They were also
handled just in the same way as printed books at rental bookstores. Furthermore,
there were many book copiers [書本屋 kakihon-ya] that received requests from
customers and copied books with their hands.

Most of book copiers were young samurai who could not afford to buy enough
commodities including books and stationaries. Manuscript business kept alive until
the beginning of the Meiji period (1868–1911). Details are written in the autobiog-
raphy of Fukuzawa Yukichi [福沢諭吉], the founder of Keio University.

Most of experts in Wasan (Japanese traditional mathematics) could not afford to
make woodblock printings because of lack of money. Some experts, however, might
have had enough money to publish printed books, but they did not always sell well
in those days.

On the other hand, hand-copied books were helpful for experts and readers. Ex-
perts could make them less expensively than woodblock printings. Because it did
not cost much, some could make many hand-copied books in his or her life.

Another crucial advantage was the speed of publication, which was important
to claim priorities. In general, it took a considerable time to publish a woodblock
printing book. In a case, it took several years to publish a book because of prudent
preparation. In another case, some mistakes found in manuscript delayed the pub-
lication. A lot of new mathematical ideas might be published during the period of
preparation. A delay of publication sometimes caused a serious trouble.

Isomura Yoshinori [礒村吉徳] (?–1710), a famous expert of Wasan in the middle
of the 17th century, published a book on Wasan entitled Mathematical Methods
without Doubts [算法闕疑抄 Sanpō Ketsugishō] in 1659. In the preface, he blamed
some pupils on the ground that they had published books on Wasan that included
new mathematical ideas given by Isomura, and moreover, the presentation of the
mathematical ideas written in those books were not satisfactory for Isomura. So he
pointed out some mistakes in those books of pupils. Though he did not write their
names clearly, researches on the books have revealed the names of two authors.

From the historical point of view, this trouble was caused in part by the delay of
publication of Mathematical Methods without Doubts. In the end, some pupils could
not wait for years; they might have wanted to be far ahead of the time in Wasan.
However, hand-copied books were not yet popular in 1650’s, and hence they could
not make use of advantages of non-printing books developed later.

2 Hand-copied Books

In the 18th century, hand-copied book made an astonishing progress. A famous
Wasan expert Aida Yasuaki [会田安明] (1747–1817) made thousands of manu-
scripts and some of them were spread as hand-copied books. Some were entitled
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Commentary [評林 Hyōrin]. Aida wrote a lot of commentaries of books by other
Wasan experts and compared with his own. In this way, he could publish up-to-date
researches. It is quite similar to research articles in modern time.

Seki Takakazu [關孝和] also made a lot of manuscripts in the latter half of the
17th century. We can read them as hand-copied books, which may tell us how he
always created new ideas in mathematics. Hand-copied books might be a suitable
way for showing his new ideas.

Although hand-copied book business was not very popular until the beginning
of the 18th century, some hand-copied books became famous and were widely cir-
culated. For example, books written by Arai Hakuseki [新井白石] were among the
most influential works throughout the Edo period. People in Edo period did not dis-
tinguish the difference between the two types of publications. We should reconsider
books published in Edo period.

Former studies on the history of Wasan have conjectured that there were only
closed or even exclusive groups of experts. One of the reasons was the existence of
manuscripts and hand-copied books, which were considered as circulated in each
small group. Taking into account the circulation of hand-copied books in the Edo
period, we should also reconsider this conjecture.
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Influence of European Mathematics
on Pre-Meiji Japan

Tatsuhiko Kobayashi∗

Abstract The mathematics developed properly in Japan during the Edo period
(1603–1867) is called Wasan (Japanese Mathematics). Its roots are in the ancient
Chinese mathematics which flourished in the Song and Yuan dynasties (962–1368),
in particular, but the later developments in Japan have been thought to be indepen-
dent of China or Europe. The author claims, however, that Wasan was influenced
by Europe first through Chinese translations of European books starting with the
Fundamentals for Astronomy (1629), which was purchased by a son of Tokugawa
Ieyasu as early as 1632, and from the end of the eighteenth century on directly
through books in Dutch.

1 Introduction

Wasan (Japanese Mathematics) is the mathematics independently developed in
Japan during the Edo period (1603–1867) while it was originated in ancient Chi-
nese mathematics.

In the Edo period, the Tokugawa shogunate government adopted the seclusion
policy and strictly controlled foreign trade. In particular, there was Dutch monopoly
of European trade, which was allowed only in Dejima [出島], a small island in Na-
gasaki. The shogunate government had also kept trade relation with China only in
Dejima. From these facts, it is naturally believed that Western mathematics did not
make any impact on the development of Wasan. Although the influence in math-
ematics of its own may have been small, we cannot deny the fact that Wasan’ka
(Japanese native mathematician) got a significant impression on their thought for-
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mation. In fact, they knew several aspects of Western academic circles by reading
mathematics and astronomy books imported from the both countries.

In the beginning of the eighteenth century, Western mathematics and astronomy
were transmitted to Tokugawa Japan by way of Qing China. While foreign books
had been strictly prohibited since 1630, the policy was relaxed in 1720 by the Toku-
gawa shogunate government. This started an influx of Western scientific books writ-
ten in Chinese by Jesuits missionaries. This liberalization policy was adopted so that
the Shogunate could reform calendar system, and it also allowed eventually the in-
troduction of Western astronomy and mathematics, in particular, trigonometry and
logarithm. Wasan’ka made use of them for the study of surveying, navigation, etc.

In the latter half of the nineteenth century, Western higher mathematics was trans-
mitted into Japan through Chinese books on Western mathematics. Around 1860
Introduction to Algebra and Calculus [代微積拾級 Dai wei ji shi ji] was brought in
Japan. Wasan’ka came to understand Western differential and integral calculus by
this book. Uchida Gokan [内田五観] (1805–1882) may have been the first math-
ematician who read Introduction to Algebra and Calculus and used terminology
algebra [代数 daisū], differential [微分 bibun] and integral [積分 sekibun].

In this paper, the author discusses, first, the influence of Western mathematics
through Chinese books on Western calendrical calculations and Dutch scientific
books, and then will introduce how Western higher mathematics was accepted in
the end of Edo period.

2 Introductory Astronomy and the Book Prohibition Policy

At the beginning of Edo period, the Tokugawa shogunate government gave per-
mission to Japanese merchants to trade with European countries. Accordingly not
only merchants but also Christianity missionaries came to Japan from Europe. The
Jesuit missionaries, who established places of activity in Japan, built many elemen-
tary schools for propagandism and education. They taught reading, writing, religion,
songs and manners there. Moreover there were schools where the Latin, arithmetic,
natural sciences and geography were taught. The educational system and the cur-
riculum are, however, not well known in detail [10, pp. 61–62 and p. 228].

Before leaving Europe for mission, the Jesuit missionaries took courses in natu-
ral sciences at Christian colleges in Europe. The training was also performed at the
Jesuit colleges of Goa in India and of Macao in China [1, pp. 33–79]. For example,
Matteo Ricci (1552–1610), who was the most important Jesuit priest from our point
of view, came to Ming China in 1582. He took courses in mathematics, astronomy,
geography and so on at Collegio Romano. His teacher was the most famous math-
ematician Christoph Clavius (1538–1612) in those days. The main purpose of the
education was to get many believers in Christianity in east Asia by making use of
the knowledge of natural sciences in their propagation activities. But it is not known
how much mathematics and natural sciences influenced Japanese intelligencers in
those days.



Influence of European Mathematics on Pre-Meiji Japan 359

In 1630, as a part of suppression of Christianity, the Tokugawa shogunate gov-
ernment banned the influx of all books related to Christianity, including Chinese
scientific books translated by the Jesuit missionaries in China. This policy was in-
troduced on the watch for Christianity. In fact, the number of catholic converts was
increasing, which was perceived as posing a threat to Tokugawa Japan. This book
prohibition policy is called Ban of books in Kan’ei [寛永の禁書令 Kan’ei no kinsho
rei]. While it was proclaimed in Japan, one great book was published in China in
1629, which can be called an encyclopedia on the Western mathematics, astronomy,
calendar, surveying, technology, geography, literature and Christianity doctrine. The
title of the book is Fundamentals for Astronomy [天学初函 Tianxue Chuhan]. It was
clearly an object of the ban. Fundamentals for Astronomy, however, was purchased
in 1632 by Owari feudal lord Tokugawa Yoshinao [徳川義直] (1600–1650) who
was the ninth son of the first Shogun Tokugawa Ieyasu [徳川家康] (1542–1616) [9,
p. 58].

This incident has prompted many questions, such as how Fundamentals for As-
tronomy was brought in Japan, how it evaded the mesh of a net of the ban, why
Tokugawa Yoshinao was able to purchase it and so on. These remain, however, a
mystery in history of cultural exchange between Japan and China.

Fig. 1

Title page of Fundamentals for Astronomy (Nagoya-shi Hōsa Bunko Library)

Fundamentals for Astronomy was compiled by Chinese scholar Li Zhizao [李之
藻] (1565–1630) with the support of a Jesuit missionary Sabbathin de Ursis (Italy,
1575–1620) and is composed of twenty four books and in sixtieth volumes. It in-
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cluded Elements of Geometry [幾何原本 Jihe Yuanben] and Elements of Surveying
[測量法義 Celiang Fayi] that Matteo Ricci translated. These complete works were
divided into two chapters of natural sciences and technology [器編 Qibian], and lit-
erature and theology [理編 Libian]. Since the chapter of natural sciences and tech-
nology had nothing to do with Christianity doctrine, it seems that Japanese scholar
could read it without caring about the Shogunate’s eye. In fact, a member of the
Shogun’s Council of Elders Itakura Shigenori [板倉重矩] (1617–1673) obtained
a copy of Book of Western Watersupply [泰西水法 Taixi Shuifa] in Fundamentals
for Astronomy, and a historian Matsushita Kenrin [松下見林] (1637–1704) attached,
in 1665, grammatical marks for rendering Chinese into Japanese on the copy that
Itakura had [2, pp. 366–367].

Fig. 2

Preface by Hosoi Kōtaku in Dividing Method by Compasses in 1722

Hosoi Kōtaku [細井広澤], who was known as calligrapher or surveyor, talked
about his joy of reading Elements of Geometry, Elements of Right-angled Triangles
[勾股法義 Cougu Fayi], Elements of Surveying in the preface of Dividing Method by
Compasses [規矩分等集 Kiku buntō shū] which was published by Mao Tokiharu
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[万尾時春] (1683–1755) in 1722. Hosoi’s impression on these books was as follows
(see ibid., p. 1):

In those days, I obtained by chance Elements of Geometry, Elements of Right-angled Tri-
angles and Elements of Surveying, and was able to read them. When I knew an abstruse
principle of the surveying, my joy doubled.

The book prohibition policy was relaxed in 1720 by the eighth Shōgun Tokugawa
Yoshimune [徳川吉宗] (1684–1751). He was interested in reforming the out-dated
Japanese calendar system, which urged him strongly to get up-to-date astronomi-
cal knowledge from Chinese books. Thereby his interest induced the liberalization
policy. Although it is unknown where Hosoi Kōtaku read these Chinese books on
Western mathematics and surveying, we must stress that his remark was only two
years after the relaxation by Tokugawa Yoshimune.

3 Transmission and Influence of the Complete Treatise

on Calendar and Computation

In 1726, the second edition of Mei Wending’s work Complete Treatise on Calen-
dar and Computation [暦算全書 Li Suan Quan Shu] was imported into Japan from
China. Mei Wending [梅文鼎] (1663–1721) is recognized as one of the most in-
fluential mathematicians and astronomers in China in the eighteenth century. He
devoted his scholarly life to the integration and assimilation of Western sciences
into traditional Chinese mathematics and scientific know-how. The study of West-
ern mathematics and astronomy is considered to have started from the introduction
of Complete Treatise on Calendar and Computation into Japan by overcoming the
obstacles imposed by the Tokugawa Shogunate government.

Soon after the transmission of Complete Treatise on Calendar and Computation,
Takebe Katahiro [建部賢弘] (1664–1739) and Nakane Genkei [中根元圭] (1662–
1733) began to translate it into Japanese and completed it in 1728 and in 1733,
respectively. Takebe Katahiro presented the Japanese version to the Shōgun Toku-
gawa Yoshimune under the title New Japanese version of Complete Treatise on
Calendar and Computation [新写訳本暦算全書 Shinsha Yakuhon Rekisan Zensho],
which contained a preface by Takebe. In this preface Takebe stressed the importance
of a careful study of Mei Wending’s works (see ibid., pp. 1–2):

Mei Wending’s compendium is composed of thirty volumes. The editor named his work
Complete Treatise on Calendar and Computation. This compendium mainly explains West-
ern calendar; there are included other subjects such as Manual of Calculation, Napier’s
Rods, Geometry and Trigonometry. Trigonometry is the newest one and particularly is so
much useful for astronomy and in their astronomical calculation.

In the year when Complete Treatise on Calendar and Computation was im-
ported, the Tokugawa government ordered Chinese traders to bring tables of trigono-
metric functions. It is because the editor of Complete Treatise on Calendar and
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Fig. 3

First page of the trigonometric function table in Table for the eight lines cutting a circle

Computation did not print the trigonometric function tables in this compendium, al-
though they actually compiled two chapters for it: Elements of Plane Trigonometry
[平三角挙要 Ping Sanjiao Juyao] and Elements of Spherical Trigonometry [弧三角
挙要 Hu Sanjiao Juyao]. One year later, the following five books on trigonometric
function tables and their applications arrived:

(1) Table for the eight lines cutting a circle [八線表 Ba xian biao],
(2) Method of computation for the eight lines cutting a circle and its application [八
線互求法 Ba xian hu qiu fa],

(3) Table for the eight lines cutting a circle [割圓八線之表 Ge yuan ba xian zhi
biao],

(4) Method of computation for the eight lines cutting a circle and its application [割
圓八線互求法 Ge yuan ba xian hu qui fa],

(5) Table for the eight lines cutting a circle [割圓勾股八線之表 Ge yuan gou go ba
xian zhi biao].

While (2) and (4) contained similar content concerning plane trigonometry and
its applications to land surveying, (1), (3) and (5) were related to trigonometric
function tables, which were introduced for the first time from China to Japan. Soon
after these books were brought to Japan, one of them, Table for the eight lines cutting
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a circle was passed on to Takebe Katahiro. He and his disciple, Nakane Genkei, were
just translating Mei Wending’s Complete Treatise on Calendar and Computation.
Based on our research, we can confirm that Table for the eight lines cutting a circle
is reproduced from Book of Chongzhen Calendar [祟禎暦書 Chongzhen Li Shu]
and is actually identical to the Japanese version included in New Japanese version
of Complete Treatise on Calendar and Computation. Book of Chongzhen Calendar
thirty volumes, were compiled by the Jesuit missionaries Jacques Rho (Italy, 1593–
1638) and Johann Adam Shall von Bell (Germany, 1591–1666) with support of a
Chinese bureaucrat of high rank, Xu Guangqi [徐光啓] (1562–1633).

After this, the trigonometry and trigonometric function tables began to prevail
among Japanese mathematicians and astronomers. The first Japanese mathemati-
cians who made use of the trigonometry were Nakane Genkei and his pupils. Nakane
has left two manuscripts: Measuring of height of the sun and the moon [日月高測
Nichigetsu kōsoku] written in 1732 and Calculation for using trigonometric function
table [八線表算法解義 Hassenhyō Sanpō Kaigi]. These are the earliest examples of
the use of the trigonometry by Japanese mathematicians [3, pp. 5–7].

From the middle of the eighteenth century, Wasan’ka were devoted to calculating
accurately the volume of regular and semi-regular polyhedra and finding correct for-
mulas for them. In these processes, they discovered a unique solid: a kind of Stella
polyhedron, Sixtieth semi-regular polyhedra [六十等面 Rokujū tōmen] constructed
of as regular dodecahedron and twelve regular pyramids with a regular pentagonal
base. The first mathematician who calculated the volume of Sixtieth semi-regular
polyhedra was Matsunaga Yoshisuke [松永良弼] (?–1744). Matsunaga’s linking of
Sixtieth semi-regular polyhedra to the family of regular polyhedra was to be criti-
cized later by a Wasan’ka Fujita Teishi [藤田貞資] (1734–1807). In the manuscript
titled by Mensuration of regular polyhedra [等面求積 Tōmen kyūseki], Fujita se-
riously criticized Matsunaga’s idea using the description of regular polyhedra in
Complete Treatise on Calendar and Computation. He pointed out as follows (see
ibid., pp. 13–14):

It is possible to make arbitrarily various type of Stella polyhedra, if we employ same manner
such as making Sixtieth semi-regular polyhedra. Even the author Mei Wending of Complete
Treatise on Calendar and Computation did not count Stella types as regular polyhedra. Now
due to his definition the number of regular polyhedra should be limited only five kinds.
Hence we have to omit Sixtieth semi-regular polyhedra from regular polyhedra.

Fujita’s opinion quoted above might be a typical case based on Mei Wending’s
thought. It is, however, true that Fujita defined the number of regular polyhedra
based on the description in Complete Treatise on Calendar and Computation. This
case entails a further evidence that Mei Wending’s thought strongly influenced on
Japanese mathematicians. At the same time, we may consider Fujita’s opinion as one
explicit example that Western way of thinking gave an impact on Japanese mathe-
matics.
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4 The Compendium of Calendrical Science and Astronomy,

The Sequel of Compendium of Calendrical Science

and Astronomy and Trigonometry

The transmission of Compendium of Calendrical Science and Astronomy [暦象考成
Li xiang Kao cheng], published in 1723, and Sequel of Compendium of Calendrical
Science and Astronomy [暦象考成後編 Li xiang Kao cheng hou bian], published in
1742 are of significant importance in the history of Japanese mathematics, because
Wasan’ka carefully studied these Chinese books on Western astronomy and quoted
astronomical examples from them.

In 1761, about thirty-five years after the import of Complete Treatise on Calen-
dar and Computation, Chinese traders brought in Japan Compendium of Calendrical
Science and Astronomy [暦象考成 Li xiang Kao cheng] which contained a French
astronomical new observation result. This astronomy book was divided into two
volumes: First volume [上編 Shang bian] and Second volume [下編 Xia bian]. First
volume is composed of sixteen chapters and Second volume of ten chapters. The
two volumes mainly explained the motion of the planets based on the system of
Tycho Brahe (1544–1601).

The second and third chapters of First volume of Compendium of Calendrical
Science and Astronomy was, in particular, devoted to the explanation of the spheri-
cal trigonometry. Because of the importance of astronomical calculation, the meth-
ods of the spherical astronomy were presented in a distinct way. The compilers of
this volume not only presented the basic formulas of the spherical trigonometry, but
also gave many applied examples of astronomical computation, corresponding to
the various phenomena in the celestial sphere. Thereby Compendium of Calendrical
Science and Astronomy became a suitable text to learn the spherical trigonometry
for Japanese mathematicians like Complete Treatise on Calendar and Computation.
Even if the Meiji period had begun at this time, Compendium of Calendrical Science
and Astronomy would have been still studied among local Japanese mathematicians
[3, pp. 10–12].

About twenty years later, a new astronomical theorem was complemented as the
sequel of Compendium of Calendrical Science and Astronomy. Then this reedited
book was published with the title of Sequel of Compendium of Calendrical Science
and Astronomy in 1742. The editor of the book was a German Jesuit missionary
Ignatjus Köngker (1680–1746). The contents of Sequel of Compendium of Cal-
endrical Science and Astronomy, which focused on the elliptical orbits theorem of
Johannes Kepler (1571–1630), were very difficult to understand for conservative as-
tronomers1. Aoki Konyō [青木昆陽] (1698–1769) may have been the first Japanese
who read Sequel of Compendium of Calendrical Science and Astronomy in a rela-
tively early time after this astronomical book arrived. We can find it from his writing

1 The method of elliptic drawing is given in the illustration of Explanation on Construction of
Astronomical Observatory and Instrument for Astronomical Observation [霊臺儀象志 Ling tai Yi
xiang zhi] which was compiled by Ferdinand Verbiest (Belgium, 1623–1688) in 1673.
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Fig. 4

Explanation of drawing method of ellipse in the first volume of Sequel of Compendium of Calen-
drical Science and Astronomy

with the title of Sequel of desultory essay by Konyō [続昆陽漫録補 Zoku konyō
manroku ho] in 1761 [2, p. 369].

After the transmission of Sequel of Compendium of Calendrical Science and
Astronomy to Japan, the studies of drawing method or on the focus of ellipse started
among Wasan’ka. In the latter half of the eighteenth century, Aida Yasuaki [会田
安明] (1747–1817), Ishiguro Nobuyoshi [石黒信由] (1760–1836) and Ono Eijū [小
野栄重] (1763–1831) were Wasan’ka devoted to the study of ellipse. Aida Yasuaki
wrote a manuscript of six volumes with the title of Complete book of ellipse prob-
lems [算法側円集 Sanpo sokuen shū] in 1799. In this manuscript, he referred to
himself as the first Japanese mathematician in his method of elliptic drawing.

It was the most basic one using a string with the both ends fixed at two needles.
One needle could move freely so that one could adjust the scale of ellipse. Aida Ya-
suaki called this wooden compasses compasses for drawing ellipse [側円規 Sokuen
ki], which was invented probably by himself. Ishiguro Nobuyoshi wrote Drawing
method of ellipse [側円周規法 Sokuen shūki hō] in 1815, and Ono Eijū wrote Com-
mentary book of ellipse [側円規矩例弁解 Sokuen kikurei benkai] in 1828.

There is an interesting episode related to the method of elliptic drawing. In 1823,
four Japanese astronomers, including Shibukawa Kagesuke [渋川景佑] (1787–
1856) and Yamaji Yukitaka [山路諧孝] (1777–1861), visited the Dutchmen who
came over to Edo to have an audience with the Tokugawa Shōgun. They met three
Dutchmen, Jan Cock Blomhoff (Kapitein, 42 years old), Jan Vreserik over meer
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Vijfer (Secretie, 22 years old) and Nicollaf Tulling (Surgeon, 38 years old) in a
Japanese hotel in Edo and asked about the trend of the latest Western astronomical
studies, among which the method of elliptic drawing was included. A Japanese as-
tronomer asked to the Dutchmen about the accurate drawing of ellipse and about
tools for it. The Dutchmen, however, taught an approximate drawing method as
none of them could answer the question. The Dutchman’s idea was a combination
of the two circles with the sectors.2

Fig. 5

Two approximate of drawing methods of ellipse that Dutchmen taught (picture was taken from
Record of calendar experience)

Hazama Shigetoshi [間重新] (1786–1838), a son of Hazama Shigetomi [間重富]
(1756–1816), was a civilian astronomer and a merchant in Ōsaka prefecture, wrote
a commentary book on mechanical instrument for elliptic drawing in 1828 with the
title of Origin of ellipse [楕円起源 Daen kigen]. In this commentary, he mentioned
a unique curve that a mechanical instrument draws. From today’s viewpoint, the

2 See Record of calender experience [暦学見聞録 Rekigaku kenbunrokou], vol. 4. This note was
preserved in the Library of National Astronomical Observatory of Japan.
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curve that Hazama Shigetoshi discovered was equivalent to a nephroid, a kind of
epicycloids. He, however, believed that it would be an elliptic curve (see ibid., pp.
13–15).

5 Acceptances of Dutch Scientific Books

Toward the end of the eighteenth century, Shiduki Tadao [志筑忠雄] (1760–1806)
started a great work. He was a Dutch interpreter in Nagasaki in his early years, re-
signed it later, and then devoted himself to a study of Dutch scientific books. Shiduki
wrote Guide book of new natural science and astronomy [暦象新書 Rekishō shin-
sho], composed of three volumes in 1798–1802, which was not published. He tried
to comprehend Western natural sciences systematically by studying Dutch scien-
tific books. Thereby he studied Inleidinge tot de ware Natuur-en Sterrekunde of de
Natuur-en Sterrekundige Lessen, Leiden, in 1741, which was written by a Dutch
mathematician Johan Lulofs (1711–1768) and introduced physics and astronomy of
Newton. A cycloid problem was taken up in this book. Shiduki called it Locus of

Fig. 6

Title page of Inleidinge tot de ware Natuur-en Sterrekunde of de Natuur-en Sterrekundige Lessen,
Leiden, in 1741. This book is preserved in the Library of Dōhō University, Nagoya, Japan. This
picture was taken from it.
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the dust on wheel [塵跡線 Jinseki sen].
While Shiduki Tadao was translating J. Lulofs’ book into Japanese, he made

several partial manuscripts. The following three manuscripts from (1) to (3) and a
draft paper (4) are about the study of trigonometry.

(1) New chapters for plane trigonometry [勾股新編 Kōko shinpen],
(2) Origin of Dutch trigonometry [法蘭三角形起元 Hōran sankakukei kigen],
(3) Secret treatise on trigonometric calculation [三角提要秘算 Sankaku teiyō

hisan],
(4) Secret treatise on trigonometry [三角算秘伝 Sankakusan hiden].

The first manuscript New chapters for plane trigonometry was a translation of the
chapter of Platte Driehoeks Rekeninge (The plane trigonometry) in J. Lulofs’ book.
Origin of Dutch trigonometry and Secret treatise on trigonometric calculation fo-
cused, in particular, on translation of In Schuynhoekige Driehoeken (The spherical
trigonometry).

The proofreader of Secret treatise on trigonometric calculation is Ōtsuki Seijun
[大槻清凖] (1773–1850), a clansman of the Sendai feudal clan [仙台藩]. He studied
Dutch arts and sciences at Shiduki’s school in 1803, and then revision work was
performed by him only in a month. From his Japanese translation, we find that
Shiduki comprehended the principles of plane and spherical trigonometry, including
Napier’s rule for the right-angled spherical triangle.

Fig. 7

Title page of Secret treatise on trigonometric calculation (Library of Japan Academy). Compiler
of this manuscript is Nakano (or Shiduki) Tadao and proofreader is Ōtsuki Seijun
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Ordinary Napier’s rules are explained by the following expression:

Rule 1. The cosine of any middle part is equal to the product of the cotangents of
adjacent parts.

Rule 2. The cosine of any middle part is equal to the product of the sines of opposite
parts.

These rules can be easily memorized by the expressions of otan. ad. and sin. op. He
completely understood these rules from J. Lulofs’ book. It can be said that this was
the first transmission of Napier’s rules into Japan through a Dutch book. Secret trea-
tise on trigonometry was only a draft paper which was made of six sheets, in which
he explained spherical trigonometry, Napier’s rules and logarithms. In calculating
by logarithms, he used the following formulas [4]:

loga(M×N) = loga M + loga N,

loga(M÷N) = loga M− loga N,

loga
r√N = (loga N)/r.

Shiduki also obtained these formulas from J. Lulofs’ book.
On the other hand, Wasan’ka Honda Toshiaki [本多利明] (1743–1820) and Sak-

abe Kōhan [坂部廣胖] (1759–1824) have emphasized the utility of the calculation
by logarithms. Sakabe, a disciple of Honda, published fifteen-volume mathematical
textbook series titled by Record to guidebook in computational procedures [算法點
竄指南録 Sanpo tenzan shinanroku] in 1815, in which he gave, by using trigonom-
etry and logarithms, some extraordinary solutions to problems. For example, with
the aid of trigonometry, he solved a problem to find angel of revolution of the sun on
elliptic orbit, and by using logarithms, gave numerals one to 300 to seven decimal
places for it (see ibid., vol.4, pp. 11–14). Both Honda and Sakabe knew that these
problems came from Dutch mathematics.

In the beginning of the nineteenth century, there appeared Japanese mathemati-
cians who tried to read Dutch scientific books. Ichino Shigetaka [市野茂喬] is one
of such mathematicians. Although his career is unidentified, Ichino is known as a
mathematician who belonged to the Saijō-ryū faction while working as an official of
the astronomical position of the Edo Shogunate government. In this circumstance,
he was strongly attracted by Western astronomy and mathematics. We can find it
from Dutch equivalent notes of all five volumes by Ichino Shigetaka, which are
conserved in Kobe Municipal Institution Museum [6, p. 2]. Since he did not give,
however, any title to Dutch equivalent notes3, it is not yet identified what Dutch
book he read. But judging from the places and their latitudes of all over the world
written down in four volumes of all five volumes, it seems that he read Dutch ge-
ography books. Here we will discuss only the contents of Vol. 5, because it attracts
our interest best among all equivalents in his work.

3 In the first volume of this note Ichino wrote down the title of the each chapters in original book
by Dutch as follows: “Geographische Tafel van de graaden Der Breedte of Poolshoogte en lengte
of Middagcirkel, van de meet bekende Steeden; Rivieren, caapen, Baayen, en Inzonderheid Der
voornaamste Zee-haavens Des Aardryks.”
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In fact, Ichino Shigetaka wrote down, in this volume, so many Dutch terms with
Japanese equivalents for astronomy, mathematics, calendar, etc.4 As for mathemat-
ical terminology, he translated about 160 terms into Japanese, from which we show
only some typical terms in the following table.

Dutch Japanese English
算詞 Mathematical term

Bytellen, Bygeteld, meer +加 plus
aftrekken, min, minder −減 minus
addeerf, som 相加,相併 add
Substraheern 相減 subtract
redden 比例 ratio
eenhaid 天元之一 unknown
Cercle, rond, kring, ring 圓 circle
maal, omtrek 圓周 circumference
Diameter 圓径 diameter
hoekmaat, Sin·Sinuffen 正弦 sine
Schilboogs-hoekmaat, cos·cosinuffen 余弦 cosine
angle, hoek 角,三角ノ角也 angle
Cube 四角六面 cube

cilindre cylinder

Fig. 8

Comparison list for Dutch terms and its Japanese equivalents. The author gave the English equiv-
alents for the sake of convenience

Let us explain a particularly interesting word, eenhaid which we showed in the
table of Fig. 8. The term eenhaid generally means a unit in Dutch. But Ichino Shige-
taka could not find a correct equivalent for it. It may have been the case that he
did not know the true meaning for eenhaid. He employed Tengen no ichi [天元
之一] for it. This phrase had been usually used for a mathematical term express-
ing an unknown in the East Asia since the thirteenth century. Needless to say, the
word eenhaid does not mean unknown in Dutch. Japanese equivalents for term of
the trigonometry and of the geometry were given correctly. On the other hand, he
gave Japanese equivalents for polyhedra in some explicit figures as we indicate two
examples in the table of Fig. 8. For example, the term “cylinder” was the one for
which Japanese mathematicians already had had the exact corresponding Entō [円
壔] in those days. He would think that visual description was simple to understand
complicated polyhedron.

4 Ichino has been assigned to duty of Nagasaki in 1810; it seems that at this time he made these
notes.
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The Translation works by Ichino Shigetaka can be considered as a case of math-
ematicians of the eighteenth century who were accepting Western mathematics pos-
itively. Moreover many Japanese mathematicians at that time had or at least began
to have the interest as Ichino had.

6 Transmission of Western Higher Mathematics from China

Around 1860, a Chinese book on Western mathematics was brought in Japan, which
was Introduction to Algebra and Calculus [代微積拾級 Dai wei ji Shi ji] published
in 1859 in Shanghai [上海]. This book was a joint translation by British propagator
Alexander Wylie [偉烈亞力] (1815–1887) and Chinese mathematician Li Shanlan
[李善蘭] (1811–1882), and the original was Elements of Analytical Geometry and
of the Differential and Integral Calculus (1851, New York) by Elias Loomis (1811–
1889). The transmission of Introduction to Algebra and Calculus had brought, for
the first time, an impact of Western higher mathematics to the traditional Japanese
mathematics, though in an indirect way. It is not known how Introduction to Algebra
and Calculus was brought to Japan around 1860. Uchida Gokan [内田五観] (1805–
1882) may be, however, the first mathematician who read it and used terminology
[代数 daisū], [微分 bibun] and [積分 sekibun] for algebra, differential and integral.
Uchida Gokan was a samurai of lower rank in the Edo Shogunate while he was
well-known as a leading mathematician at that time. What is more, he had deep
interchanges with Japanese scholars in Dutch. Thus it is naturally considered that
Uchida got a chance to come across Introduction to Algebra and Calculus.

Ara Shijū [荒至重] (1826–1909), who was a clansman of Nakamura feudal clan
[中村藩], published, in 1865, a book about directions to use the surveying tools and
their applications. The book is titled by Three methods for land surveying [量地
三略 Ryōchi sanryaku] and composed of two volumes. Ara Shijū was a pupil of
Uchida Gokan, who wrote preface for Ara’s book. In this preface Uchida pointed
out that 自少好数学, 而代数諸術, 微分積分諸法, 皆修其奥 (see ibid., vol. 1, p.
2), which means that Ara has enjoyed mathematics since he was young and masters
an abstruse principle of mathematics such as algebra, differential and integral now.
Here Uchida used Chinese characters代数,微分, and積分 for algebra, differential
and integral. Wasan’ka of the Edo period had never used these mathematical ter-
minologies before. The concept of differential, in particular, had not grown up in
their studies. Since Uchida Gokan, who read Introduction to Algebra and Calculus,
pointed out the importance of this book, he may have understood that the substantial
part of Western mathematics lied in algebra, differential and integral.

Kanda Takahira [神田孝平] (1830–1898) was a mathematics professor at Kaisei-
sho Institute [開成所], which was established in 1862 by the Tokugawa shogunate
government [7, pp. 252–253]. Kaisei-sho Institute was installed to study the Western
arts and sciences and to educate young people. Kanda also realized the importance
of Introduction to Algebra and Calculus and tried to translate it into Japanese. He
finished writing a manuscript entitled 代微積拾級 from 1864 to 1865, which fi-
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Fig. 9

Preface of Three methods for land surveying which was written by Uchida Gokan. He used Chi-
nese characters代数,微分 and積分 for algebra, differential and integral here.

nally remained unfinished. He stopped translating the book though it seems that
Kanda Katahira could understand calculus. We would not assume unclear reason
why Kanda gave up the work, but rather pay our attention to the fact that he wrote
down some remarkable descriptions and corrected a few mistakes of Introduction
to Algebra and Calculus. We emphasize, first of all, that he comprehended mean-
ing of calculus, and that he could make calculations by using Chinese notation in
Introduction to Algebra and Calculus. While understanding calculus, he depended
on Dutch mathematical books [8, pp.15–21]. It is remarkable that they still needed
Dutch books even at that time to understand the Western arts and sciences.

7 Conclusion

In order to study how European mathematics left its mark on Japanese mathematics
before modern times, it is necessary to trace it in two directions the indirect influence
from China and the direct influence from the Netherlands. In this paper the author
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has mainly discussed the indirect influence from China. In fact, many Chinese books
on Western Calendrical Calculations were imported in the Edo period, and mathe-
maticians and astronomers tried to accept European arts and sciences by reading
them. After these books became, in 1720, not conflicting with the foreign book pro-
hibition policy of the Edo Shogunate, they could devote themselves to those studies
without any fear of being arrested. Among these books, Complete Treatise on Cal-
endar and Computation, Compendium of Calendrical Science and Astronomy and
Sequel of Compendium of Calendrical Science and Astronomy should be worthy
of special attention as the Chinese book which had a far-reaching ramification to the
Japanese in the Edo period.

The impact by Chinese books did not remain to mathematicians, Wasan’ka, and
scholars of ancient Japanese thought and culture at that time could not be unaf-
fected. A recent research tells us that Motoori Norinaga [本居宣長] (1730–1801)
made copies of trigonometric function table in 1799, and that Hirata Atsutane [平
田篤胤] (1776–1843) possessed copies of Book of Chongzhen Calender, 96 vol-
umes5 and read them. In addition to these facts, a person of Confucianism Yama-
gata Bantō [山片蟠桃] (1748–1821) studied Chinese books on Western calendrical
calculations.6Moreover, according to Takeo Suzuki’s recent research, the Shogun’s
Council of Primary Elder Matsudaira Sadanobu [松平定信] (1759–1829) had many
Chinese books on Western calendrical calculations including Complete Treatise on
Calendar and Computation, Compendium of Calendrical Science and Astronomy,
Sequel of Compendium of Calendrical Science and Astronomy, Elements of Ge-
ometry, etc. [11]. Matsudaira probably read these books, but he may not have under-
stood its contents. From these facts, we may say that the Chinese book had a deep
influence to the Japanese of every hierarchy in the latter period of the Edo period.

On the other hand, we must promote a more study on the direct influence from
Dutch scientific books. For example, it is believed that the first Japanese scholar
in Dutch who employed the term Western arithmetic [洋算 Yōsan] as a word for
Western mathematics is Yanagawa Shunsan [柳川春三] (1832–1870), which may go
against the fact. He published a book which introduced Western mathematics with
the title of Arithmetic by Western numeral and notation [洋算用法 Yōsan yōhō] in
1857, in which he certainly used a term Western arithmetic to bring in Dutch arith-
metic. We should, however, not give him honor to be the first person who used it.
Another Japanese scholar in Dutch Satō Masayasu [佐藤政養] (1821–1877) should
be the first person, who employed the term Western arithmetic in contrast with a
term Wasan [和算] that expressed Japanese mathematics in the Edo period. In 1856,
he wrote a manuscript with the title of Land surveying by trigonometry [三角惑問
Sankaku wakumon],7 and the term Western arithmetic appeared in the explanatory
notes of this manuscript [5]. Satō Masayasu was a disciple of Katsu Kaishū [勝海舟]
(1823–1899), one of the most influential politicians in the end of Edo period, and

5 These copies are conserved at Akita Prefecture Library.
6 See his book, Dream world [夢ノ代 Yume no shiro] in 1820.
7 This manuscript was conserved at Library of Kyōto University.
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Satō learned Dutch arts and sciences in Katsu’s school. In other words, the Japanese
scholars in Dutch at that time came to understand European mathematics.

It is expected that we can develop a new standpoint in the field of the history of
Japanese mathematics by investigating the intellectual activities of Japanese schol-
ars in Dutch.

References

1. Ugo Baldini: The Jesuit College in Macao as a Meeting Point of the European, Chinese and
Japanese Mathematical Traditions. Some Remarks on the Present State of Research, Mainly
Concerning Sources (16th–17th centuries), The Jesuits, The Padroado and East Asian Science
(1552-1773) (Luis Saraiva and Catherine Jami edited), pp. 33–79 (2008).

2. Tatsuhiko Kobayashi [小林龍彦]: Chinese Books on Western Calendrical Calculation and
Japanese Calendrical Calculators in Edo Era [漢訳西洋暦算書と近世日本の暦算家], The
Astronomical Herald [天文月報], vol. 98, no. 6, pp. 366–372 (2005).

3. Tatsuhiko Kobayashi: What Kind of Mathematics and Terminology was Transmitted into 18th-
Century Japan form China?, Historia Scientiarum, vol. 12, no. 1, pp. 1–17 (2002).

4. Tatsuhiko kobayashi: On Secret treatise on trigonometry by Tadao Nakano [中野忠雄輯「三
角算秘傅」について], Bulletin of Narutaki [鳴滝紀要], vol. 10, pp. 1–13 (2000).

5. Tatsuhiko Kobayashi: Measurements by trigonometry, questions and answers by Masayasu
Satō [佐藤政養著「測量三角惑問」] and Dutch mathematics [蘭算], Journal of History of
Mathematics [数学史研究], Japan, vol. 189, pp. 1–17 (2006).
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の日本への伝播と影響について], Journal of History of Mathematics, Japan, vol. 162, pp.
15–28 (1999).

9. The Nagoya-city Board of Education [名古屋市教育委員会] ed.: The Classified List of Chinese
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On Contemporary Mathematics in Vietnam

Ha Huy Khoai

Abstract We give a brief survey of the development of mathematics in Vietnam
since 1947, when the first mathematical research paper written by a Vietnamese
mathematician was published in an international journal. We describe how math-
ematics in Vietnam developed under very special conditions: the anti-French re-
sistance, the struggle for the reunification of the country, the American war, the
economic crisis, and the change toward a market economy.

Introduction

In this talk I like to give a brief survey on the development of contemporary math-
ematics in Vietnam. Here by contemporary I mean the period since 1947, when the
first mathematical research paper by a Vietnamese mathematician was published in
an international journal. Moreover, Vietnam declared its independence from French
colonialism in September 1945, so the contemporary history of mathematics in Viet-
nam is the history after the colonial period. I should say that until now there is no
research paper on this subject. My talk could be considered as a story told by a Viet-
namese mathematician, who was born in November 1946 and who was a student
at Hanoi University during the time of the American war, when the University was
evacuated to the jungle, rather than a research paper on the history of mathematics.

1 Le Van Thiem—the founder of contemporary mathematics in
Vietnam

The contemporary history of mathematics in Vietnam dates from 60 years ago, when
a Vietnamese mathematician, Le Van Thiem, published a paper [3] in an interna-

Ha Huy Khoai
Institute of Mathematics, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
e-mail: hhkhoai@math.ac.vn

375.E  Knobloch et al. (eds.), Seki, Founder of Modern Mathematics in Japa
pringer Proceedings in Mathematics & Statistics 39,

pringer Japan 2013 S

n: A Commemoration
o  His Tercentenary, S
DOI 10.1007/978-4-431-54273-5_26, ©
n

mailto:hhkhoai@math.ac.vn


376 Ha Huy Khoai

tional journal.Le Van Thiem was born in 1918 in Ha Tinh, Vietnam, into an intel-
lectual family. He was the youngest of 13 brothers and sisters. Le Van Thiem’s oldest
brother earned his “doctoral” degree (Tien si) after having passed the last Confucian
traditional examination (1919, Nguyen Dynasty), whereas Le Van Thiem was the
first Vietnamese to earn a “modern” doctoral degree. In 1939, after passing the final
term examination with excellent marks, Le Van Thiem was offered a scholarship to
study at the École Normale Supérieure in Paris. His education was interrupted by
the outbreak of the Second World War and did not resume until 1941. He graduated
with a Bachelor’s Degree in Mathematics within a year rather than the conventional
3-year time. In 1942, under the supervision of George Valiron, he began his research
on the value distribution theory of meromorphic functions (Nevanlinna Theory). It
was in this period that he made important contributions to the solution of the inverse
problem of the Nevanlinna theory that constituted the core of his doctoral disserta-
tion (1945, Göttingen) and Docteur d’État (1949, Paris) and placed him among the
best young researchers in the field at that time (See Drasin [1]).1

Meanwhile, in Vietnam, the resistance war against French colonialists was at
its height. Despite his great passion for mathematics and the bright prospect of his
scientific career, Le Van Thiem made in 1949 a dramatic decision which would not
only drastically change his life but which would exert a profound influence on many
generations of students in Vietnam to come—abandoning his academic position at
the prestigious Zurich University, he returned to Vietnam to actively take part in
Vietnam’s struggle for independence.

To return to Vietnam, Le Van Thiem first flew to Bangkok and then headed for
the liberated region in the far south of Vietnam. A few months later, following a nar-
row footpath through the mountains, which later during the American war became
the famous Ho Chi Minh trail, he made the long trek to Viet Bac, in the far north
of Vietnam and which used to be the headquarters of the Resistance. It was in Viet
Bac that Le Van Thiem met other intellectuals, most of them educated in France—
Ta Quang Buu (a mathematician, former Minister of Defense (1947), Minister of
Higher Education, and President of the National Committee of Science and Tech-
nology), Tran Dai Nghia (a former polytechnicien and President of the Vietnamese
Academy of Science). Convinced of the importance of education and science in this
fight, Le Van Thiem founded, in the liberated zone, a teacher training college and a
college of fundamental sciences with the aim of providing the country with qualified
teachers and technicians, of which the resistance was in dire need. These colleges
functioned until the end of the French war in 1954. The later development of science
and research in Vietnam highlighted the essential contribution of these colleges to
upgrading and sustaining the education system at a satisfactory level, even in com-
plete isolation from the outside world during the French and then the American
wars. Furthermore, these colleges formed the foundation for the immediate reopen-
ing in 1955 of Hanoi University with a strictly Vietnamese teaching staff, which at
that time was a remarkable accomplishment in this region of Asia. Le Van Thiem,

1 In this paper Drasin commented on Le Van Thiem’s paper: Using an important principle of
Teichmuller, Le Van Thiem first applied this principle to the inverse problem, and the method was
further exploited by Goldberg.
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together with other mathematicians (Hoang Tuy, Ta Quang Buu) founded two Viet-
namese research mathematical journals in foreign languages (English, French, and
Russian): Acta Mathematica Vietnamica and the Vietnam Journal of Mathematics.
He also was a founder of the journal Mathematics and Youth, a friend of many gen-
erations of secondary school students. The appearance of these three journals during
the American war in Vietnam was an important and hardly believable event.

Le Van Thiem passed away on June 3rd, 1991 in Ho Chi Minh city. He was
the first modern Vietnamese mathematician to be commemorated by having a street
(located in Hanoi) named after him.

2 Mathematics in Vietnam during the resistance war against
French colonialists (1946–1954)

On 19 December 1946, a little more than one year after its declaration of inde-
pendence, Vietnam began the resistance war against French colonialists. On that
morning, all the government organizations received the order to evacuate Hanoi and
move to the liberated zones, mostly again to Viet Bac. However, some high ranking
officers only learned of the order later, among them mathematics Professor Nguyen
Thuc Hao, who, like Le Van Thiem, was educated in France and returned to Viet-
nam in 1935. In December, Nguyen Thuc Hao left Hanoi for his native land in Nghe
An, a province in the IV liberated zone. Some months later Nguyen Thuc Hao was
appointed by the Ministry of Education to organize a mathematical school, more
precisely, a class on mathematics at the university level. The unique professor at this
“university” was Nguyen Thuc Hao himself. Although Hao’s university was small
in size, it was not small in importance. The first students from this mathematics
class later became leading scientists of Vietnam. Nguyen Thuc Hao’s mathematics
class marked the beginning of the history of higher education in Vietnam after the
colonial period.

A great landmark in the development of mathematics and mathematical educa-
tion in Vietnam was the return of Le Van Thiem from France. At that time he was
an idol for young Vietnamese. The return of Le Van Thiem attracted many talented
young people to Viet Bac. The first students of the University of Sciences, founded
in Viet Bac by Le Van Thiem, later became leading scientists of Vietnam. In the first
peaceful years after the resistance war, some students of the University of Sciences
founded by Le Van Thiem were sent to Russia to follow a postgraduate program. Al-
most all of them received the candidate of sciences (Ph. D.) degree after just 2 or 3
years of study. In particular, after only one year, Hoang Tuy had written a candidate
dissertation in real analysis under the supervision of Menshov, and he had published
5 papers in leading Russian journals during the 20 months of his stay in Moscow for
the Ph. D. program. Some years later, Hoang Tuy became the “founding father” of
global optimization, with the famous Tuy’s cut in non-convex programming theory.
Another student, Nguyen Canh Toan, successfully defended his Dr. Sci. thesis in
Russia with important results in projective geometry, which he had obtained during
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his years at the University of Sciences. We can say that the University of Sciences
had an important role not only in training students at the university level, but also in
building the first mathematical research group in Vietnam after the colonial years.

3 The years after the resistance war and during the American
war (1954–1975)

The resistance war was finished in 1954, and the university reopened in Hanoi in
1955. Le Van Thiem was the rector of the university. The students who graduated
from the university in Viet Bac now had an opportunity to do research in mathemat-
ics. Many of them were sent abroad, mostly to the USSR, to Eastern Europe, or to
China.

During this period, many mathematicians, after receiving their Ph. D. degrees
abroad, changed their interests to applied mathematics, following the scientific pol-
icy of the government. Note that this tendency appeared also in China at this time—
for example, Hua Lo-Keng was actively promoting operations research at this time.
In Vietnam one can see this tendency in the following examples:

—Hoang Tuy, who successfully defended his thesis on real analysis, became
the first one to introduce operations research and optimization in Vietnam in 1961.
From the very beginning, Vietnamese mathematicians have made many efforts to
use mathematics to solve practical problems. In 1961–1962, Hoang Tuy and his
group worked on a problem in transportation—reorganizing the logistics of trucking
so as to reduce the distance that trucks have to travel with an empty load. I would like
to mention that the Soviet mathematicians ventured into this applied problem later,
in about 1963. Of course, they were able to carry it through much better than their
Vietnamese colleagues could. Hoang Tuy said that after his visit with Kantorovich (a
Soviet mathematician and Nobel laureate in economics) in Novosibirsk in 1962, he
fully changed from real analysis to operations research. In 1964 Hoang Tuy obtained
an outstanding result on concave minimization, which brought him international
recognition. Hoang Tuy proposed a new kind of cutting plane, a notion introduced
in integer programming by Gomory in the 1950’s for use in convex programming.
Hoang Tuy suggested a new type of cut, which would enable one to carry out a
concave minimization algorithm. His cutting plane now is known as the Tuy’s cut,
and Hoang Tuy is sometimes called the father of global optimization.

—Phan Dinh Dieu, who obtained the Doctor of Sciences degree in Moscow with
a thesis on constructive mathematics, redirected his interests to computer science.
Later he became the first director of the Institute of Information Technology at the
Vietnamese Academy of Science and Technology.

—Le Van Thiem, a famous expert in function theory with pioneering results in
Nevanlinna theory, began to study the theory of groundwater movement and its ap-
plications in Vietnam. In this new area for him, Le Van Thiem obtained a remark-
able result—he was the first who solved explicitly the problem of filtration via two
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ground layers [4]. Le Van Thiem and his students also applied the methods of com-
plex analysis in orienting explosives during the time of the American war.

In 1964, the U. S. army began to bombard the North of Vietnam, including Hanoi
and other cities. All universities were evacuated to the jungle. Many of them were
again moved to Viet Bac, the former headquarters of the anti-French resistance.
However, even during the war, the Vietnamese mathematical community continued
its activities.

The mathematical society, which was founded in 1965 by Le Van Thiem, orga-
nized joint seminars in optimization, probability, functional analysis, complex anal-
ysis, algebra, and numerical analysis. People from Hanoi University, the Pedagog-
ical Institute, and the Polytechnic Institute participated. Since the three Institutions
had been evacuated in different directions from Hanoi, the seminars were held in
Hanoi. They met twice a month, and one should say that people were very diligent
about attending.

During the war, some mathematicians from abroad visited Vietnam and gave lec-
tures for students and researchers. Among the visitors were Alexandre Grothendieck,
Chandler Davis, Laurent Schwartz, André Martineau, Bernard Malgrange, and
Alain Chenciner. To better understand the experiences of Vietnamese mathemati-
cians, the experiences of the foreign mathematicians who visited Vietnam, and the
mathematical life in Vietnam at the time, I would like to recall some parts from
Alexandre Grothendieck’s report of his visit to Vietnam in November of 1967, a
report widely distributed among universities in the world in 1968. The first few days
of Grothendieck’s lectures took place in Hanoi. But one day a missile exploded only
100–200 meters away from the lecture hall. As a result, the Higher Education Min-
ister, Ta Quang Buu, ordered us to be evacuated. Grothendieck was delighted with
the news that we were being evacuated and approached the unusual situation with a
spirit of adventure.

Grothendieck lectured on abstract algebraic geometry for four hours a day and
met with students and colleagues during the afternoons. After the visit, Grothendieck
wrote a very interesting and famous report, which gives the reader an overview about
the mathematical life in Vietnam during the war. Here is his description of lecturing
in Hanoi during the bombing:

Like most more or less public activities, the lectures were scheduled between
about 6 and 10 a.m. During most of my stay the sky was cloud-covered and con-
sequently there were few bombing raids. The first serious bombardments had been
anticipated—they took place on Friday 17 November, two days before we left for
the countryside. Three times my talk was interrupted by alarms, during which we
took refuge in shelters. Something which is at first very striking to the newcomers is
the great calm, almost indifference, with which the population reacts to the alarms,
which have become a daily routine. . . .

During one of the air raids in that Friday morning, a delayed-action cluster bomb
fell right in the courtyard of the Hanoi Polytechnic Institute, and (after the alarm
was over) killed two mathematics instructors at the Institute. Ta Quang Buu, who
is a mathematician as well as the Minister of Higher Education (and who attended
the lectures that I gave while in Hanoi), was discreetly informed of this during the
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lecture. He left at once—the rest of the audience continued to follow the lecture
while waiting for the next alert. The next day’s lecture had to be rescheduled for
the following week in the university in evacuation, so as not to have large group of
cadres in the city during the period of bombardment.

Grothendieck made some comments about the scientific as well as practical diffi-
culties that an aspiring Vietnamese mathematician had to endure in such an isolated
part of the world:

Life is very primitive. Everyone—university administrators, teaching staff, and
students—live in the same type of straw huts made of bamboo with mud walls, win-
dow open to the wind, and the sun baking the earth. Since there is no electric light-
ing, they use kerosene lamps. . . . Very often when the weather is clear enemy planes
fly over the university, occasionally dropping their bombs—haphazardly, so as to get
rid of them before returning to base—sometimes wounding or killing some civilians.

In a country which, by force of circumstance, has few relations with the outside
(unless one counts the cluster bombs as a form of relation), it is particularly diffi-
cult for an inexperienced mathematician to orient himself among the multitude of
possible directions, to distinguish what is interesting from what is not.

He explained that he was astonished to find an active community of research
mathematicians in Hanoi:

The first statement to make—a rather extraordinary statement in view of the
circumstances—is that there is in fact a mathematical life worthy of the name in
North Vietnam. To properly appreciate this ‘existence theorem,’ first of all one must
keep in mind that in 1954, after the eight-year war of liberation against French colo-
nial occupation (i.e. thirteen years ago), higher education was practically nonexis-
tent in North Vietnam. During the extremely brutal war of 1946–1954, the main
effort in education was directed toward achieving literacy for the large masses of
peasants, an effort which was carried through to its final goal in subsequent years,
until about 1958, at which time illiteracy was practically eradicated in the lowlands.

. . . The method followed (undoubtedly the only one possible) was to send young
people to universities in the socialist countries, especially in the USSR. Among the
hundred or so mathematics instructors at Hanoi University and the Pedagogical
Institute, about thirty have gone abroad for four or six years of training. They have
generally reached the level of a soviet ‘candidate’ thesis.

Finally, Grothendieck concluded on an optimistic note:
I can attest that both the political leaders and the senior academic people are

convinced that scientific research—including theoretical research having no imme-
diate practical applications—is not a luxury, and that it is necessary to promote
theoretical scientific research (as well as the development of instruction and the
applied sciences) starting now, without waiting for a better future.

. . . And through an effort undoubtedly without precedent in history, in spite of
everything, they are succeeding in increasing the cultural and professional level
of their citizens, even as their country is to a great extent being devastated by the
largest industrial power in the world. They know that once the war ends, there will
be people with the professional and moral qualities needed to reconstruct the coun-
try.
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The university was in evacuation for four years. It reopened in Hanoi in Septem-
ber 1969. Then again from 1972–73, there was another evacuation, when the U.S
Army used B-52 bombers to carpet-bomb Hanoi and some other cities of Vietnam.

During the American war, every year Vietnam sent about 100–150 students to the
mathematics departments of universities in the USSR and in Eastern European coun-
tries. Also, every year about 20 mathematics instructors from Vietnamese universi-
ties were sent to follow Ph. D. programs in these countries. Returning to Vietnam,
these scholars became the leaders of research groups in Vietnam’s universities. The
main difficulty at the time was our relative isolation from the mathematical com-
munity in the world. Even communication between new Ph. D.’s, who just returned
from abroad, and their former supervisors was not easy. Fortunately, at the time,
Vietnam was able to receive from China almost all the main international mathe-
matical periodicals (and in fact usually within 1–2 years of their publication). At
this time China had not yet signed the Berne Convention on copyright, and they
regularly made copies of journals and gave some copies to Vietnam for the National
Library. Other materials, like journals and books in Russian, could be found in book
stores at very low prices (for example, a Russian translation of S. Lang’s Algebra
sold for about 20 cents.).

In the period from 1955 to 1975, mathematics in North Vietnam made significant
progress. Some strong research groups were established—optimization (headed by
Hoang Tuy), singularity theory (with the guidance of Vietnamese overseas math-
ematicians Frédéric Pham and Le Dung Trang), complex analysis (Le Van Thiem
and his students), P.D.E, etc. The creation in 1966 of the Mathematics Section in
the National Committee for Science and Technology (later, in 1970 it became the
Institute of Mathematics, directed by Le Van Thiem) further stimulated mathemati-
cal research in Vietnam. Even during the most difficult years of the American war,
the Mathematics Section (and then the Institute of Mathematics) organized annual
scientific conferences and printed the proceedings under the name Toan hoc – Ket
qua nghien cuu (Mathematics – research results). Many people published their re-
sults in leading Soviet journals, like Doklady of the Academy of Science of the USSR,
Mathematics Sbornik, Functional analysis and its applications, etc. The mathemati-
cians established in this period are still the leading mathematicians in Vietnam at the
present time.

Before the reunification of the country (in 1975), in South Vietnam, there was al-
most only one research group, namely the group researching P.D.E lead by Professor
Dang Dinh Ang, a mathematician educated at the California Institute of Technology
(U.S.A.). Other mathematicians, such as Nguyen Dinh Ngoc (a topologist who re-
turned from France), were teaching at Saigon university, but not doing research. I
would like to mention that the group of Dang Dinh Ang and his students up to the
present day is still the strongest group researching analysis and P.D.E in Vietnam.
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4 Mathematics in Vietnam after the reunification of the country

After the reunification of the country in 1975, mathematics in Vietnam finally ex-
perienced favorable conditions for development. In particular, cooperation with the
mathematical community in the world became much easier. Many young people
obtained fellowships to go study abroad, and not only to the socialist countries,
but also to other countries: France, West Germany, Italy, Japan, etc. For example,
from our Institute of Mathematics, 16 members received Alexander-von-Humboldt
fellowships—about 20 people were named associate members of the Mathematics
Section of the International Centre for Theoretical Physics (ICTP) in Italy, etc.

Only a few years after the reunification of the country, the number of mathemati-
cians who held the Ph. D. degree grew quickly to the point where in 1980, Vietnam
had about 300 mathematicians with Ph. D. degrees. The establishment of several
new universities, almost all of which included mathematics in their program, pro-
moted the development of mathematicians, and especially, mathematicians with a
Ph. D. degree.

However, during the period from 1980 to 1995, mathematics in Vietnam faced a
serious difficulty. Vietnam experienced an economic crisis during the 1980’s, and in
the beginning of the 1990’s, Vietnam began its transition toward a market economy,
the so called Doi moi. Many mathematicians had to leave mathematics because the
salary of a mathematics lecturer was very low, only about 3–4 USD per month.
Almost all had to do a “second job”, which usually required much more time and
effort than the first one – doing mathematics! If, for many years, mathematics was
the first choice for the best high school students, then in the early 90’s, an opposite
tendency appeared. It even happened one year that there was not a single student
who entered the mathematics department of Hanoi University. At that time, some
mathematicians predicted that mathematics in Vietnam was at risk to become extinct
in only 15 years! [5]

Fortunately, mathematics in Vietnam survived this difficult period. The first and
the most important reason was that during this period many Vietnamese mathe-
maticians continued their mathematical research despite the extremely hard condi-
tions. On the other hand, it is worth mentioning valuable help from the mathematical
community around the world, especially from France, Italy, Germany, and Japan. I
would like to mention here the role of the program ‘ForMathVietnam’ from France
and the importance of fellowships like Alexander-von-Humboldt (Germany), JSPS
(Japan), and ICTP (Italy and UNESCO). Vietnamese mathematicians also appreci-
ate the assistance offered to them from mathematicians abroad during this difficult
time for them. Here are two examples. There was a time when almost all the new
books coming to the library of the Institute of Mathematics were donated by foreign
and overseas-Vietnamese colleagues. The guest house of the Institute of Mathemat-
ics was built with money donated by mathematicians from Japan, the U.S., and other
countries.

Beginning in the mid-1990’s, Vietnam step–by–step got out of the economic cri-
sis, and Vietnamese mathematics returned again to a normal development. Young
Vietnamese now can go to study abroad not only with fellowships from foreign in-
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stitutions, but also with financial support from the Vietnamese government (Project
‘322’). Good students with a passion for mathematical research now do not hesitate
to choose mathematics as their future career. Some of the best students continue
their study in famous universities throughout the world, such as Harvard Univer-
sity, Princeton University, École Normale supérieure, École Polytechnique, Trinity
College. . . .

On top of the fast growth in the number of mathematicians with a Ph. D. degree
(at the present time, it is around 700), Vietnamese mathematicians have contributed
outstanding results and solved fundamental problems in mathematics. I would like
to highlight here Ngo Bao Chau’s proof of the Fundamental Lemma, a famous prob-
lem in modern mathematics that is a cornerstone in the Langlands program, one of
the most important and active areas of the 21st century mathematical research. No-
tices that, for the proof of this lemma in a partial case [2], he was awarded (jointly
with Gérard Laumon) the prestigious Clay Research Award in 2004 from the Clay
Mathematics Institute.2

5 Some remarks

During the 60 years since Vietnam’s colonial period, a period not so long, mathe-
matics in Vietnam developed under very special and difficult conditions—the anti-
French resistance, the struggle for the reunification of the country, the American
war, the economic crisis, and the transition toward a market economy. I would like
to conclude by suggesting the following topics for more detailed study:

—The higher mathematical education and research during the wars.
—The impact of the assistance and cooperation received from abroad on con-

temporary mathematics in Vietnam.
—The influence of the change toward a market economy on the development of

mathematics in Vietnam, and other former socialist countries.
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Notes on Complete Book of Mathematics Vol. 4:

Three Essentials

Mitsuo Morimoto

Abstract The Complete Book of Mathematics is the most comprehensive treatise
of mathematics in the Edo Period of Japan. The 20 volume book is about 900 sheets
or 1800 pages long. Seki Takakazu (1642?–1708), Takebe Kataakira (1661–1721)
and Takebe Katahiro (1664–1739) spent 28 years (1683–1711) in writing it. Unfor-
tunately, the Book has never been published as a whole. We reproduce here Volume
4 Three Essentials, which is a rare exposition of mathematical philosophy during
the Edo period.

1 The Complete Book of Mathematics

The Complete Book of Mathematics [大成算経] was complied by Seki Takakazu [関
孝和] and the Takebe [建部] brothers (Kataakira [賢明] and Katahiro [賢弘]) dur-
ing the period of 1683–1711 (28 years) according to the Biography of the Takebe .
(See [2, p. 270].) Along with the tradition of Chinese mathematics, Takebe Katahiro
recognized mathematics as a bunch of mathematical problems. He tried to classify
mathematics (i.e., mathematical problems) and to organize the Book as an encyclo-
pedia of mathematics at the beginning of the 18th century in Japan.

The Book is preceded by Introduction [首篇], which includes Origin of Arithmetic
[算数論], Basic Numbers [基数], Large Numbers [大数], Decimal Fractions [小数],
Counting Numbers [度数], Quantity [量数], Weight [衡数], Money Counting [鈔
数], Counting Boards [縦横], Positive and Negative Numbers [正負], Operations
on Counting Boards [上退], and Technical Terms [用字例].

The 20 volumes are divided into four parts. Part 1 is composed of the first 3 vol-
umes and treats elementary arithmetic ending with an introduction to discriminants.
Volume 1 is entitled Five Techniques [五技] and treats Addition [加], Subtraction
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[減], Multiplication [因乗], Division [帰徐], and Extraction of Roots [開方]; Volume
2 is entitled Miscellaneous Techniques [雑技] and surveys Addition and Subtrac-
tion [加減], Multiplication and Division [乗除], and Extraction of Roots [開方] in
classical textbooks; and Volume 3 is entitled Various Techniques [変技] and treats
advanced aspects of the contents of the previous volumes.

Part 2 is composed of 6 volumes and treats traditional mathematics and games.
Volumes 4 is named Three Essentials [三要] and includes Symbols and Figures [象
形], Flow and Ebb [満干], and Numbers [数]; Symbols and Figures are the clas-
sification of mathematical objects and hence, problems. Volumes 5 to 9 are named
Methods of Symbols Methods [象法] and discuss problems on “symbols”. Volume
5 treats Mutual Multiplication [互乗], Polynomial Fitting [畳乗], and Pile Sums [垜
積]; Volume 6 treats Fractions [之分], Several Methods of Fractions [諸約], and
Arts of Cutting Bamboos [翦管]; Volume 7 treats Magic Squares, Magic Circles [聚
数], Joseph’s Problems [計子,算脱], Coding Problems [験符]; and Volumes 8 and
9 treat Daily Mathematics [日用術].

Part 3 is composed of 6 volumes and named Methods of Figures [形法]. It treats
various problems in geometry and measurements. Volume 10 treats Squares [方],
Rectangles [直], and Rectangular Triangles [勾股], Polygons [斜 (三斜、四斜、五
斜)]; Volume 11 discusses Regular Polygons [角法]; Volume 12 is concerned with
Ratios of Figures [形率], i.e., Circle Theory [円理], and treats Length of the Circular
Circumference [円率], Length of Arcs [弧率], Volume of a Ball [立円率], and Vol-
ume of Spherical Segments [球闕率]. Volume 13 is the same as Seki Takakazu’s
monograph Measurements [求積]. Volumes 14 and 15 are concerned with Compli-
cated Configuration of Figures [形巧].

Part 4 is composed of 5 volumes and treats the theory of equations. Volume 16
is named Discussion on Problems [題術辨] and similar to Seki’s Critical Studies of
Problems [題術辨議之法]. Volume 17 is named Solutions of Whole Problems [全題
解], contains Seki’s Trilogy [三部抄], and composed of Explicit Problems (i.e., direct
calculation) [見題], Implicit Problems (i.e., equations of one variable) [隠題], Con-
cealed Problems (i.e., equations of several variables) [伏題], and Submerged Prob-
lems (i.e., non algebraic equations) [潜題]. Volume 18 is similar to Seki’s Restoring
Defective Problems [病題擬]; and Volumes 19 and 20 are named Examples of Oper-
ations [演段例] and contain 23 examples of algebraic and non algebraic equations.

In [2, p.385] Matsusaburo Fujiwara wrote that Volume Four was “very strange
and meaningless as mathematical theory.” Because of this negative comments al-
most no researches on Volume 4 had been done until Xu Zelin published [8]. In this
important article he examined the Three Essentials and understood it in the context
of traditional Chinese culture. Recently, appeared a few papers like Fumiaki Ozaki
[5] and Hikosaburo Komatsu [1].
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2 English translation in part

Here we translate general statements into English. 67 problems are not translated.
Three Essentials [三要, san’yō] starts with the following statements:

Symbols and figures are the most fundamental of all, and appear at the begin-
ning of every problem. Usually there are determined formulas but there are also
exceptional cases. Under a name of Symbols or Figures there are the variations rep-
resented by flow and ebb in which numbers play very useful roles. These three form
a focus which the theories should exactly investigate to their extreme ends. In fact,
from the techniques of solving [mathematical] problems to the movements of the
heaven and the earth, and also the substance, its movement and transformations of
everything, everything is equipped with its theory involving its numbers. Therefore,
the student should observe throughly all the changes of matters to investigate their
theories to their extremes.

1. Section 1 is named Symbols and Figures [象形, shō-kei] and starts with the
following statements:

A symbol is something not yet embodied, while a figure is what is embodied.
Each is composed of two kinds, respectively. That which gives rise to the reason
why Spring and Autumn come and the moon waxes and wanes, and why the heaven
appears as a circle and the earth as a square, and so on, is originally equipped by the
nature. That which makes the market price function in daily life, and the decision
of the shape of containers and other articles for daily life are all done by the human
beings.

The theories distinguish each symbol or each figure from tens of thousands of
matters first by its name and then by its numbers; by measuring its length with
a rule, its weight with a scale, its volume with a container or by its number by
counting; all measuring [主, hakaru, see Ozaki [5]] its numbers naturally according
to the matter.

There are two kinds of symbols. Those which have originally no shape or those
which have a shape but it is of no use to express it by a geometrical figure are called
[abstract] symbols; those which can be compared with a figure in length or those
which are represented by a picture of procession are called [concrete] symbols.

There are two kinds of figures. Those with length and breadth are called planar
figures and those with length, breadth and height are called solid figures.1

As symbols with a given name have only the total numbers as their numbers,
they are of no use for the identification. Therefore, they are used along with other

1 Geometrical figures are easy to understand but there are other mathematical objects, which he
called symbols. Symbols [象, shō] were classified into two subcategories: ○ symbols [○象, [
]shō] and □ symbols [□象, [ ]shō], while Figures [形, kei] were classified into two subcate-
gories: planar figures [平形, heikei] and solid figures [立形, ritsukei]. In the original text ○ and
□ are hiatuses as the authors could not find suitable characters to express their idea. Following
Hikosaburo Komatsu, we propose to read these hiatuses as (abstract) symbols [(抽) 象, (chū)shō]
and (concrete) symbols [(表)象, (hyō)shō], respectively.
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things or by being applied to other things. Therefore, there are the total sums, the
numbers in a unit and the numbers in a cluster. (The numbers in a cluster and the global
numbers are defined in a similar way but they may be different according to the time of evalua-
tions.) The definitions are provided naturally but the different results may occur by
artful schemes.

Figures have shapes for each name but there are differences according to their
width, length and so on. Therefore, they are equipped with the names of lengths,
widths, diagonals and circumferences etc. and their measured numbers. Moreover,
if we cut one, or connect one to another, or inscribe one into another, or put one on
another, or let one wind another, then we have complicated configurations according
to our skill. That is the reason why we start with symbols and figures as the heading
of a problem; there is a multitude of variations.

2. Section 2 is named Flow and Ebb [満干, man-kan] and starts with the following
statements:

The flow and ebb [満干, man-kan] are originally associated with the symbols
and figures [象形, shōkei] and are classified into three phases: ordinary [全, zen],
extreme [極, kyoku] and excessive [背, hai].

The flow is to increase and continues infinitely. The ebb is to decrease and goes
to an end. The ordinary phase, which is realized in the real world, exhausts in the ex-
treme phase; the excessive phase is contrary to the real world. Symbols and Figures
always assert paired notions to a matter like long and short, many and few, expen-
sive or cheap, heavy and light, etc.. Only the total number has no pairing, but there
can be the difference of old or new ones. If a parameter is given in the problem, it is
called old; if the parameter has no theoretical definition but is allowed between two
limits, it is called new. (A symbol is associated with a thing. If there are two symbols, the main
symbol is always compared with its pair. A length is compared with another length, a capacity
with another capacity, and a weight with another weight. These are two numbers associated with
the thing and its class and name are the same. Therefore, they are paired and complete. If a length
is compared with a capacity or with a weight, two parameters are of different classes, the theory
cannot be completed; we consider a new limit for the parameter. In this way, the parameters can
be paired.) Therefore, according to the origin of symbol and figure and conditions in
the problem, (If in the problem like in the case of symbol, local parameters are the diagonal of a
square, the circumference of a circle, diameters of angular figure, and the height of a triangle, they
are assigned numerically but determined late by a procedure. Therefore, we do not take them as the
basis of increase and decrease.) we observe all the parameters can be compared. (Some
parameters may be given by the problem; some parameters may be calculated by multiplication or
by division. After that they are paired.)

If it is paired with the large, the parameter increases and determines the flow. If
it is paired with the small, the parameter decreases and determines the ebb. If it is
paired with none, the parameter increases or increases and determines both phases.
(But it happens that, according to the condition in the problem, it increases but determines the
ebb or it decreases but determines the flow.) If parameters are repeatedly paired with the
large, they determine the flow. Therefore, we use the fewest of them. If parameters
are repeatedly paired with the small, they determine the ebb. Therefore, we use all



Notes on Complete Book of Mathematics Vol. 4: Three Essentials 391

of them. We examine all parameters to find where are limits of their increase or
decrease. One by one, we study three statuses (ordinary, extreme and excessive ) of
all parameters.

Certainly, limits of each flow and ebb and conditions in a problem will corre-
spond with each other. Therefore, limits appear according to the species of a symbol
and the picture of figure. (If the equality of numbers or the correspondence are mentioned in
a problem, there will be confusion in the theory and some will not correspond with a limit.) Its
variable itself rotates and has a constant number. (Although a symbol is a mathematical
object, it can be useful accompanied with parameters. Therefore, we cannot decide its character. A
figure has, from the beginning, its shape, which is large or small, slant or straight. Therefore, even
if a figure is named, its shape cannot be determined. Taking symbols and figures, we consider them
together as a limit. It is the limit of the problem. Considering its flow and ebb, we make a variable.
Considering further three statuses, ordinary, extreme and excessive, we have a general view of the
variable.) According to symbols and figures or according to the condition in a prob-
lem, there are pairs of properties. Although there are many ways of consideration,
if we investigate the theory, all are attributed to one determined limit.

Notes: There are several parameters in a mathematical problem. Parameters
wax and wane. It is very important to understand the range of a parameter and limits
of the range. In some cases, it is interesting to consider the case where the parameter
goes beyond the limit.

In sum, the authors claimes there are the following six statuses: Ordinary Flow [満
全], Ordinary Ebb [干全]; Extreme Flow [満極], Extreme Ebb [干極]; and Excessive
Flow [満背], Excessive Ebb [干背].

3. Section 3 is named Numbers [数, sū] and starts with the following statements:

Numbers which are employed for symbols and figures have two categories; pro-
visional [動] and stationary [静]. As each symbol is identified from tens of thousands
symbols with the same name by its total number or its number in a unit, each figure
with the same name has its length, width, length of the diagonal or the circumfer-
ence as its character which is determined naturally and measurable as a number,
which is called stationary. The number obtained by addition is called a sum; the
number obtained by subtraction is called a difference; the number obtained by mul-
tiplication is called a product; the number sought for and obtained by division or
by root extraction is called a quotient. They are all obtained by procedures applied
[to known numbers]. Therefore, each of these numbers is provisional. If a number
is obtained by formulas or by the root extraction to retrieve it form the known, then
such a number looks like provisional but we have to understand the situation and
the reason to distinguish it [from the provisional].

If numbers are confined, they are well-posed [整]; if not confined, inexhaustible
[不尽]. There are two kinds of well-posed number: if it has no (non-decimal) de-
nominator, it is called whole [全] and used in many usual cases. If it has (non-
decimal) denominator, it is called complicated [繁] and used in several special cases.
There are two kinds of inexhaustible number: if it becomes well-posed [整] after op-
erations of multiplication and division, it is called residual [畸]; if it never becomes
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well-posed, it is called degraded [零]. The [degraded] number loses its true value
after painful operations of multiplication and division. But consulting symbol and
figure and considering the procedure, we can use it by taking the original number,
reducing fractions to a common denominator, selecting or making coefficients. Tak-
ing into account the real meaning, we should select the numbers.

Notes: First, the authors classified numbers into two categories: provisional
numbers [動, dō] and stationary numbers [静, sei]. The numbers originated from
a problem of symbol and figure are called stationary, while those obtained by addi-
tion/subtraction, multiplication, division or root extraction are called provisional.

Second, the authors proposed another type of classification of numbers. There
are well-posed numbers [整] (i.e., rational numbers) and inexhaustible numbers [不
尽] (i.e., irrational numbers). Well-posed numbers are classified into whole num-
bers [全] (i.e., finite decimal fractions, not necessarily integers) and complicated
numbers [繁] (i.e., general fractions), while inexhaustible numbers are classified
into residual number [畸] (i.e., algebraic numbers) and degraded numbers [零]
(i.e., numbers with errors). A whole number can be placed on one row of a count-
ing board [算盤]; a complicated number can be expressed using two rows; and a
residual number can be expressed using a finite number of rows.

Although the integers, the rational numbers and the algebraic numbers were rec-
ognized by Takebe Katahiro, he did not recognize that the algebraic numbers are
closed under arithmetic operations. As we see this classification, we are tempted to
consider the “degraded” numbers as transcendental numbers; looking at five exam-
ples of “degraded” numbers given as problems, we know he was regarding them as
inexact numbers with error term.
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sentials (in Japanese), RIMS Kôkyûroku, 1392, Kyoto Univ., 186–196 (2004).

6. Takebe Katahiro: Mathematical Treatise on the Technique of Linkage; translated by Mitsuo
Morimoto and Tsukane Ogawa with commentary (in English), to be published with a copy of
the manuscript conserved at the National Archives (Naikaku Bunko), in preparation.

7. Osamu Takenouchi and Mitsuo Morimoto (translated and Commented): Selected Mathemati-
cal Works of Takebe Katahiro (1664–1739), Wasan Institute (July 2004, a tentative edition).

8. Xu Zelin: Takebe Katahiro’s Epistemology of Mathematics (in Chinese), Research of History
of Natural Science, vol. 21, no. 3, 232–243 (2002); Japanese translation was prepared by
Mitsuo Morimoto: Journal of History of Mathematics, Japan, vol. 206, 30–47 (2010).



393.E  Knobloch et al. (eds.), Seki, Founder of Modern Mathematics in Japa
pringer Proceedings in Mathematics & Statistics 39,

pringer Japan 2013 S

n: A Commemoration
o  His Tercentenary, S
DOI 10.1007/978-4-431-54273-5_28, ©
n

Complete Book of Mathematics Vol. 4: Three
Essentials, by Seki Takakazu, Takebe Kataakira
and Takebe Katahiro, collated by Fumiaki Ozaki
and Hikosaburo Komatsu

Seki Takakazu, Takebe Kataakira and Takebe Katahiro

Abstract Volume 4 is named Three Essentials [三要, san’yō] and composed of
three sections. Each section starts with a general statement followed by problems,
which serve as examples for the general statements. Section 1 is named Symbols
and Figures [象形, shō-kei] and divided into (abstract) symbols [(抽)象, (chū)shō]
(Problems 1 – 6), (concrete) symbols [(表)象, (hyō)shō] (Problems 7 – 11), planar
figures [平形, heikei] (Problems 12 – 16), and solid figures [立形, ryūkei] (Prob-
lems 17 – 21). Section 2 is named Flow and Ebb [満干, man-kan] (Problems 22
– 37). Section 3 is named Numbers [数, sū] and divided into two subsections: the
first subsection is named Provisional and Stationary [動静] numbers (Problems 38
– 47). The second subsection deals with two kinds of finitely presented numbers
[整数], i.e., Whole [全] numbers (� finite decimal fractions) (Problems 48 – 52)
and Complicated [繁] numbers (� fractions) (Problems 53 – 57), and two kinds of
Inexhaustible numbers [不尽], i.e., Residual [畸] numbers (� algebraic numbers)
(Problems 58 – 62) and Degraded [零] numbers (� transcendentals and observed
constants) (Problems 63 – 67).



394 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 395



396 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 397



398 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 399



400 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 401



402 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 403



404 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 405



406 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 407



408 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 409



410 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 411



412 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 413



414 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 415



416 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 417



418 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 419



420 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 421



422 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 423



424 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 425



426 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 427



428 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 429



430 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 431



432 Seki Takakazu, Takebe Kataakira and Takebe Katahiro



Complete Book of Mathematics Vol. 4: Three Essentials 433



434 Seki Takakazu, Takebe Kataakira and Takebe Katahiro

Notes on Collation of Complete Book of Mathematics Vol. 4:

Three Essentials

The following are the call numbers of manuscripts made use of in these notes:
DT: Date Library [伊達文庫] 1682 KD090-セ 5 / The Later Bestowals of Seki’s

School [關算後伝] no. 45 in Miyagi Prefectural Library [宮城県図書館].
NK: T20 / 70 in the Main Library of University of Tokyo. It used to be in the

Nan-Ki Library [南葵文庫] of Kii Tokugawa family [紀伊徳川家].
NS: 618 / 64 in the Nakanoshima Library of Osaka Prefecture [大阪府立中之島

図書館].

1r. l. 9 :象形第一 is written象形 in NK.
1v. l. 4 :抽 is missing in DT, NK and NS.
1v. l. 4 :表 is missing in DT, NK and NS.
2r. l. 2 :抽象 is written象 in DT, NK and NS.
2v. l. 7 : Lower若干銭 is written若干尺 in NK.
3. all :經 is written徑 in DT, NK and NS.
3v. l. 5 :表象 is written象 in DT, NK and NS.
5v. ll.10–12 figure :截闊 is written残闊 in NS.
6r. ll. 8–10 figure :接長 is written長 in DT and NS.
7v. ll. 3–5 :下長 in figure is written下闊 in DT.
8v. l. 1 :満干第二 is written満干 in NK.
8v. l. 2 :科 is written斜 in NK.
8v. l. 3 and many other places in NK :已 is written己.
9r. l. 7 :等 is written著 in DT.
9v. l. 6 :少 is written多 in NS.
10v. l. 3 :有金 is written金有 in NS.
13v. l. 4 :綾絹尺價相等 is missing in NS.
13v. l. 5 :綾羅尺價相等 is missing in NS.
14v. l. 6 :負 is written空 in DT and NK.
15v. l. 1 :米相等 is written相等 in DT, NK and NS.
17r. ll. 1–3 :干背 is written干極 in NK.
18v. ll. 1–3 figure 2 : 小斜 and 中斜 are missing in NK, and 中斜 is missing in

DT and NS.
18v. ll. 1–3 figure 3 :中斜 is missing in DT.
18v. l. 11 :於 is missing in DT, NK and NS.
20v. ll. 7–9 figure 1 :乙 is missing in NS.
21r. ll. 9–11 figure 2 :丁與甲丙差相等 is missing in NK.
21v. ll. 4–6 : figure 3 :丙多乙少 is missing in NS.
21v. ll. 9–11 :干極 is written満極 in NK.
22r. ll. 4–6 figure 3 :満背 is written干背 in DT.
23v. ll. 1–3 figure 3 : dotted lines are written straight lines in DT.
23v. ll. 8–10 figure 2 :高與方 is written方與高 in NK.
24r. l. 4 :隨 is missing in DT, NK and NS.
24r. ll. 10–12 figure 3 : dotted lines are written straight lines in DT.
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24v. ll. 1–3 figure 2 :闊 is missing in NS.
24v. ll. 5–7 figure 3 :長少闊多 is written長多闊少 in NK and長少闊少 in DT.
25v. l. 3 :互 is written反 in DT.
26r. l. 9 :以 is missing in NK.
27r. ll. 10–12 figure 3 : dotted lines are written straight lines in DT.
28r. l. 5 :物 is written而 in NS.
29r. l. 4 :横満 is written満満 in NK.
29r. l. 9 :四 is missing in DT, NK and NS.
29v. l. 5 :各 is written無 in NS.
29v. l. 8 :少 is written分 in NS.
30r. ll. 7–9 figure 2 :干極 is written干全 in DT.
31r. ll. 10–12 figure 1 :高與上 is written高與下 in NK.
32r. l. 1 :數第三 is written數 in NK.
32v. l. 10 :本 is written各 in NS.
33r. l. 9 :果 is written異 in NS.
33v. ll. 7–9 figure :斜 is missing in DT .
34r. l. 6 :本 is written太 in NS.
36r. l. 5 :冗 is written宛 in NS.
36v. l. 6 :簫 is written蕭 in DT, NK and NS.
38r. l. 2 :斛 is written斗 in DT, NK and NS.
38r. ll. 5–7 figure :上方,高,下方 are missing in NS.
38r. l. 9 :数 is written故 in NS.
38v. l. 8 figure :周 is missing in NS.
38v. l. 10 :約 is written終 in NS.
39v. l. 1 :整 is missing in DT, NK and NS.
39v. l. 8 :且 is written旦 in NS.
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Abstract Seki Takakazu (1642?–1708) classified mathematical problems into three
categories: explicit problems, which can be solved by arithmetic, implicit problems,
which can be solved by an algebraic equation of one unknown, and concealed prob-
lems, which needs simultaneous algebraic equations with more than one unknowns.
He is believed to have written for each category of problems a book of their solu-
tions. The three books: Methods of Solving Explicit Problems, Methods of Solving
Implicit Problems and Methods of Solving Concealed Problems are called Seki’s
Trilogy and used as the standard textbooks in the later Seki School of Mathematics.
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gree of understanding in mathematics.
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the books as they are now are the same as what Seki wrote. The Methods of Solving
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1 Introduction

Seki Takakazu [関孝和] classified problems in mathematics into the explicit prob-
lems [見題 kendai], which can be solved by arithmetic1, the implicit problems [隠
題 indai], which can be solved by an algebraic equation of one unknown, and the
concealed problems [伏題 fukudai], which needs simultaneous algebraic equations
with more than one unknowns2.

Seki’s Trilogy [三部抄 Sanbu Shō], that is, Methods of Solving Explicit Prob-
lems [解見題之法 Kaikendai no Hō], Methods of Solving Implicit Problems [解
隠題之法 Kaiindai no Hō] and Methods of Solving Concealed Problems [解伏題
之法 Kaihukudai no Hō] played a very important role in the later Seki School of
Mathematics. If a student masters Method of Solving Explicit Problems, he is al-
lowed to obtain the License of Explicit Problems [見題免許 kendai menkyo]. Then,
if he masters Methods of Solving Implicit Problems, he gets the License of Implicit
Problems [隠題免許 indai menkyo]. Finally, he is given the License of Concealed
Problems [伏題免許 fukudai menkyo] after he masters Methods of Solving Con-
cealed Problems, and he is allowed to teach his own students. In this way Seki’s
School of Mathematics was inherited from teachers to students. This system of edu-
cation, which is similar to the other learnings and arts in Japan, seems to have been
founded by Yamaji Nushizumi [山路主住]. In fact, looking at the family tree of
the apprenticeship of Seki’s school of mathematicians3, we find an outburst of the
number of students at Yamaji which lasts until the end of the Edo period.

Moreover, we cannot find any copies of any of these books which are surely
copied before the time of Yamaji. On the other hand, the name of Yamaji appears in
many copies as the person who copied them before.

Since each student copied his teacher’s book, there remain many copies of each
book. When we investigated for the copies of Seki’s Trilogy at the Main Library of
Tohoku University in February, 2004, there were 15 copies of Methods of Solving
Explicit Problems, 11 of Methods of Solving Implicit Problems and 16 of Methods of
Solving Concealed Problems. These numbers are exact because our visit was after
Professor Tadao Oda [小田忠雄] compiled the Database of the Books of Wasan in
the Library on February 23, 2001.

In this investigation we discovered that the copies by Matsunaga Sadatoki [松永
貞辰] (1751–1795) were the oldest among the copies in which the dates of copies
were recorded.

1 Methods of Solving Explicit Problems contains a few problems which are solved by extraction
of roots of algebraic equations. This happened when the arithmetic expression of the solution
contained numerical coefficients with radicals. (See the note at the end of the book.) They didn’t
have notations to express such numbers on the counting board, so that they had to construct an
algebraic equation of high degree with integral coefficients and then to solve it to get a solution.
2 Later Seki and his pupils Takebe Katahiro [建部賢弘] and Kataakira [賢明] brothers added one
more category the submerged problems [潜題 sendai] which cannot be formulated by algebraic
equations in their treatise Complete Book of Mathematics [大成算経 Taisei Sankei] (1683–1711).
3 See page 248 of these Proceedings.
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At the end of his copy of Methods of Solving Explicit Problems it is written that
“Finished to copy on the 22 in the 4th lunar month of Meiwa 6 (1769) [明和六年丑
之四月廾二日写之畢] Matsunaga Sadatoki [松永氏貞辰]” with his Cipher [花押]
following. Then the place of copying is written as “Copied this at the Mansion [of
his Shinjō Fief [新庄藩]] in Edo [江戸於御屋敷写之ナリ]”.

Similarly, at the end of Matsunaga’s copy of Methods of Solving Implicit Prob-
lems, we find the script “Completed to copy on the 26 in the 4th lunar month of
Meiwa 6 (1769) [明和六己丑年四月廾六日写之畢] Matsunaga Sadatoki [松永氏貞
辰]” with his Cipher and the note “Copied the book borrowed from Master Ajima
[安嶋先生より借用写之]”. Master Ajima is his former teacher Ajima Naonobu [安
島直圓] (1732–1798) who was from the same Shinjō Fief in Yamagata [山形] pre-
fecture as Matsunaga. By his recommendation Matsunaga was able to study with
Yamaji in Edo.

His copy of Methods of Solving Concealed Problems has no date of copy but it
must have been earlier than the 8th in the 12th lunar month of Meiwa 7 [明和七]
(1770) on which he was given the Licenses of Explicit Problems, Implicit Problems
and Concealed Problems at the same time by Yamaji [1, p. 213].

With these copies by Matsunaga as the main source books, we have published
the revised text [6] of Methods of Solving Concealed Problems and those [7] of
Methods of Solving Explicit Problems and Methods of Solving Implicit Problems.

Seki’s Trilogy is of course included in his Collected Works [2] but we were
forced to publish more reliable texts in order to defend our papers [3] and [4]. Their
Japanese version [5] had been rejected by the History of Science Society of Japan
with the editor’s comments saying ”It has been pointed out that many of the edited
contents of the Collected Works [2] are not academically reliable. When one writes
an article on the history of mathematics about Seki Takakazu, it is very dangerous
to make discussions depending only on [2]. No reliable arguments hold without
taking extant manuscripts or prints at hand and referring to them specifying what
manuscripts or prints are used and scrutinizing up to each letter and each phrase of
them. This is the minimum rule to keep when one writes a historical article.”

In our earlier publications [3] and [4], we referred to four to five manuscripts and
Collected Works and tried to edit mathematically correct texts. The experience since
then tells, however, that the errors made by the author or editors could also be impor-
tant sources of investigations. Therefore, we have made use of several manuscripts
in order to compile restored texts also at this time, we recorded only the compari-
son of them with two or three manuscripts only. As far as mathematical errors are
concerned, we have revised only technical terms according to their usage in Com-
plete Book of Mathematics [大成算經 Taisei Sankei] written in 1683–1711 by Seki,
Takebe Kataakira [建部賢明] (1661–1721) and Takebe Katahiro [建部賢弘] (1664–
1739).

The current texts of Seki’s Trilogy are supposed to be Seki’s own writings but
we are dubious about this view. Probably they are the results of Yamaji Nushizumi’s
editing of several sketches of Seki which he prepared for the treatise Complete Book
of Mathematics,
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The year Kyōho 11th [享保丙午歳], which is written as the date of completion
of Methods of Solving Explicit Problems, is 1726, 18 years later than the year 1708
in which Seki died. On the other hand, Methods of Solving Implicit Problems and
Methods of Solving Concealed Problems are dated in 1685 and 1683, respectively.
However, in Methods of Solving Concealed Problems there is a serious disorder of
a table [4], which should have been caused by a careless revision. We supplemented
the correction in two sheets at the end of the restored text of Methods of Solving
Concealed Problems.
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1. Matsusaburō Fujiwara [藤原松三郎], Japan Academy ed.: History of Mathematics in Japan
before Meiji [明治前日本数学史], vol. 2, Iwanami [岩波書店], Tokyo (1957).

2. A. Hirayama [平山諦], K. Shimodaira [下平和夫] and H. Hirose [広瀬秀雄]: Takazu Seki’s
Collected Works Edited with Explanations [關孝和全集], Osaka Kyōiku Tosho [大阪教育図
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7. Hikosaburō Komatsu [小松彦三郎]: The restoration of the Yamaji Nushizumi edition of Seki
Takakazu’s “Trilogy” [關孝和著『三部抄』山路主住本の復元], Researches on History of
Mathematics [数学史の研究], Colloquium of Research Institute for Mathematical Sciences [数
理解析研究所講究録], vol. 1444, pp. 169–202 (2005).



441.E  Knobloch et al. (eds.), Seki, Founder of Modern Mathematics in Japa
pringer Proceedings in Mathematics & Statistics 39,

pringer Japan 2013 S

n: A Commemoration
o  His Tercentenary, S
DOI 10.1007/978-4-431-54273-5_30, ©
n

Methods of Solving Explicit Problems, by Seki
Takakazu, collated by Hikosaburo Komatsu

Seki Takakazu

Abstract This is a collated text of the first of Seki’s Trilogy. The book is composed of
four chapters: Chapter 1 Addition and Subtraction [加減 kagen], Chapter 2 Partition
and Joining [分合 bungō], Chapter 3 Whole Products [全乘 zenjō] and Chapter 4
Partial Products [折乘 setsujō]. In Chapter 1 easiest examples are given to show
how a mathematical problem is interpreted as an algorithm on a counting board. In
Chapter 2 the byscript method [傍書法 bōsho hō] of Seki is introduced by which
we can express a polynomial as a sum of monomials represented by a numerical
coefficient of counting rods and literal factors written on its right side. The heading
means the distributive law of sums and products. Chapters 3 and 4 deal with the
area and the volume of geometric figures. Formulas are not given by the algebraic
byscript method but as algorithms on a counting board. The Pythagorean theorem
and the Eudoxos formula of the volume of a pyramid are proved by figures. The
volume formula of sphere segments is correct but its proof by an illustration is hard
to understand.
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Notes on Collation of Methods of Solving Explicit Problems

The following are the call numbers of manuscripts employed in the collation:

ME: Hayashi Collection [林集書] 649 / Matsunaga Library [松永文庫] 2491 in
the Main Library of Tōhoku university = Matsunaga Book [松永本] in [1, pp. 173–
174].

OE: Okamoto Library [岡本文庫] Manuscript写 21/16944 in the Main Library
of Tōhoku university = Okamoto Book [岡本本] in [1, p. 174].

SE: Kuwaki Library, Mathematics (2) [桑木文庫算学 (二)] Manuscript [写本]
679 Trilogy [三題集 Sandai Shū] in the Main Library of Kyūshū University = Gekka
Book [月華本] in [1, p. 174].

1v. l. 8:宜 is written宣 in all of ME and OE.
2r. l. 6 & 2v. l. 1:股 is written段 in SE.
2v. l. 9: OE lacks the heading削.
3r. l. 8:段 is mistaken to be的 in all copies including on three.
4r. right lower figure: Caption解圖 is missing in SE.
4r. upper figure:自方 is missing in OE.
4r. l. 10: The top character其 is missing in ME.
4v. ll. 2&3: OE writes面 for而.
4v. lower figure:勾 and殳 are missing in OE.
5r. l. 1:梯 is written in SE.
6r. l. 2:抹 is written株 in ME, and秣 in OE.
6r. l. 2:傚 is written倣 in OE and SE.
6r. l. 8: In all of three箇 is written個.
6r. lower figure: 半高 is missing and the left edge of the prism is erroneous in

ME; 半高為高 is written 半方為高 in OE and SE and 半方為横 is missing in OE.
OE has the caption解圖.

6v. l. 3: SE writes二十二分之一 by mistake.
6v. l. 9:開平方 is written開方 without平 in OE.
7r. l. 1:半方 is半分 in SE.
7r. l. 2: The top段 is written假 in SE.
7r. lower figure:方 and半方 are written over方堡壔 and直錐, resp. in ME.
7v. l. 9:三 is mistaken to be六 in OE and SE.
7v. l. 10: In SE傚 is confused with倣.
8r. l. 1: In SE圓 is mistaken as圖.
8v. l. 9: OE and SE don’t have于 in于別記.
9r. & 9v. upper figures: Two diameters are dotted lines in OE.
9r. l. 3:壔 is missing in SE.
9r. l. 6:壔 is missing in all three manuscripts. OE lacks the following而短, too.
9r. lower figure:得殳為高 is missing in ME, and得中殳為假高 is written得中

殳假為高 in ME and SE.
9v. l. 1:面 in面積 is而 in SE.
10r. l. 2:倍 is written信 in SE.
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10r. lower figure: Two短径 are missing in OE.
10r. l. 5:冪 is missing in OE.
11r. l. 3:立圓 is written平圓 in ME.
11v. lower figure:通高 is通玄 in SE.
11v. upper figure: No shadow in OE.
11v. l. 5:立圓 is written玉圓 in ME.
11v. lower figure:尖 is written矢 in all of the three manuscripts.
12r. l. 2:頂覓 is written項覓 in all.
12v. l. 1:寄位 is written奇位 in OE.
12v. l. 4:帶堡圓壔 [,]圓臺斜截 is written帶堡圓圖壔臺斜截 in all.帶堡圓 is an

ellipse-like plane figure obtained by adding a rectangle between two half discs.帶
堡圓壔 is a cylinder with帶堡圓 as its base.圓臺斜截 is a conic section.

12v. ll. 6&7:隱題 is written隨題 in OE.
12v. l. 8:枚擧 is written牧擧 in OE and SE.
12v. l. 10:享保丙午歳四月望前五日 is missing in ME and deleted by a double line

in OE. This phrase denotes the date “Five days before the Full-moon of the Fourth
lunar month of Kyōhō 11,” which is 1726, 18 years later than the death of Seki
Takakazu. Since the date at the end of a book usually meant the date of completion
of the book, this shows that some one else must have completed or edited the book.
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1. Hikosaburō Komatsu [小松彦三郎]: The restoration of the Yamaji Nushizumi edition of Seki
Takakazu’s “Trilogy” [關孝和著『三部抄』山路主住本の復元], RIMS kôkyûroku [数理解析
研究所講究録], vol. 1444, pp. 169–202 (2005).
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Methods of Solving Implicit Problems, by Seki
Takakazu, collated by Hikosaburo Komatsu

Seki Takakazu

Abstract This is a collated text of the second of Seki’s Trilogy. This is a very concise
monograph of Celestial Element Method [天元術 tengen jutsu] and Root Extraction
Method [開方術 kaihō jutsu]. In Chapter 1: Setting Element [立元], Celestial Ele-
ment [天元 tengen], that is, the unknown is represented by a counting rod of 1 in
the modulus [方 hō] class of a counting board. Polynomials [式 shiki] in Celestial
Element with numerical coefficients and their operations [演段 endan] are discussed
in Chapter 2: Addition and Subtraction [加減 kagen], and Chapter 3: Mutual Multi-
plications [相乗 sōjō] as manipulations of counting rods on a counting board. Two
polynomials representing the same quantity define an Equation [開方式 kaihōsiki]
by subtracting one from the other as shown in Chapter 4: Mutual Cancellation [相
消]. The last Chapter 5: Root Extraction [開方] is devoted to the Numerical Extrac-
tion of Roots [開方術], that is the same as the so called Horner method which is
erroneously attributed to W. G. Horner (1819). Japanese learnt these methods from
Zhu Shijie [朱世傑] by his Introduction to Mathematics [算学啓蒙] (1299) but the
methods described here are more refined. At the end of the book, Newton’s method
of approximation is explained very succinctly.
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Notes on Collation of Methods of Solving Implicit Problems

The following are the call numbers of manuscripts employed in the collation:

MI: Hayashi Collection [林集書] 647 / Matsunaga Library [松永文庫] 2489 in
the Main Library of Tōhoku university = Matsunaga Book [松永本] in [1, p. 189].

NI: Hayashi Library [林文庫] 2306 in the Main Library of Tōhoku university =
Nakamura Book [中村本] in [1, p. 189]

OI: Okamoto Library [岡本文庫] 写 22/16945 in the Main Library of Tōhoku
University.

1r. l. 5:太 is written大 in MI and OI.
1v. l. 2:數 is written衆 in OI.
1v. l. 8: In MI the lowest frame is not dotted and noframe in OI.
1v. l. 10:假 is missing in NI.
2v. l. 6&10:正一 is written正之一 in OI, and左 is written方 in MI.
3v. l. 3:二 is taken to be一 in MI, NI and OI.
4r. l. 6: The number −2 in the medium class [廉級] is written 2 in OI.
4v. l. 2:得 is repeated in MI, NI and OI.
5r. l. 4: The number −1 in the medium class is written 1 in OI.
6r. l. 3: The number −4 in the second medium class [次廉級] is mistaken to be 4

in almost all manuscripts including our MI, NI and OI.
6v. l. 5: The number 1 in the ultima class [隅級] is −1 in OI.
7r. l. 1&2:到 is taken to be列 in MI, NI, and OI, and咸 is mistaken for減 in OI.
7r. l. 10: The punctuation mark○ on the right is missing in MI and NI.
7v. l. 1:加 on the left is mistaken to be如 in NI.
8r. l. 9: The number −18 in the res class [實級] is 18 in MI.
8v. l. 1: The number 8 in the modulus class [方級] is 3 in NI.
8v. l. 5: If we compute the modulus class as indicated in the text, we get 4.5. MI

and NI write it by the arrangement of counting rods meaning 45 and set −2 and 2
in the lower classes on the left. OI tries to express this by using 4 vertical rods but
there are only 3 horizontal rods for 0.5.

8v. l. 8&9:所 and于 are writtenテ in MI .
9r. l. 2: The number −9 in the res class [實級] is 9 in MI.
9r. l. 3:一 is taken to be二 in NI.
9v. l. 8:申 is taken to be中 in MI and NI.
9v. l. 9: At the end of OI there is the date 寛保癸亥四月丙午日再写之蓮貝軒,

which means that Yamaji Nushizumi copied on the 丙午 day in the Fourth lunar
month of Kanpō 2 (1742) for the second time, in addition to the date 貞享乙丑
(1685)八月戊申日 on which Seki completed the manuscript.
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1. Hikosaburō Komatsu [小松彦三郎]: The restoration of the Yamaji Nushizumi edition of Seki
Takakazu’s “Trilogy” [關孝和著『三部抄』山路主住本の復元], RIMS kôkyûroku [数理解析
研究所講究録], vol. 1444, pp. 169–202 (2005).



469.E  Knobloch et al. (eds.), Seki, Founder of Modern Mathematics in Japa
pringer Proceedings in Mathematics & Statistics 39,

pringer Japan 2013 S

n: A Commemoration
o  His Tercentenary, S
DOI 10.1007/978-4-431-54273-5_32, ©
n

Methods of Solving Concealed Problems, by Seki
Takakazu, collated by Hikosaburo Komatsu

Seki Takakazu

Abstract This is the last of Seki’s Trilogy. Here he gives a general procedure to
eliminate a common unknown from two polynomial equations, which is the same
as the elimination theory of Étienne Bézout. The book has five chapters. In Chapter
1: Real and Fictitious [真虚 shinkyo] and Chapter 2: Two Equations [兩式 ryōshiki]
we learn how to formulate a system of algebraic equations as a succession of two
equations in an unknown to be eliminated with polynomials of the other unknowns
as coefficients. Chapter 3: Estimates of Degrees [定乘 teijō] gives an estimate of the
degree of eliminated equations. The elimination is carried out in two steps. Chapter
4: Transformed Equations [換式 kanshiki] shows how to construct n equations of
degree less than n out of a system of two equations of degree ≤ n. Then the elim-
inated equation is obtained as the determinant of their coefficients equated to 0 as
shown in Chapter 5: Creative and Annihative Terms [生剋 seikoku], where Seki
gives the expansion of determinants of order up to 4. The disorder of table happens
in the case of order 4, for which we append an amendment for disorder and alter-
ations of sheets 14 and 151. If Seki had stopped here, he would have been praised
for having written the most concise and complete book on ellimination. His errors
occurred in the expansion of determinant of order 5, for which we refer the reader
to Goto–Komatsu [1].

1 See pp. 490–491 and pp. 492–493, respectively.
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Notes on Collation of Methods of Solving Concealed Problems

The following are the call numbers of manuscripts employed in the collation:

MC: Hayashi Collection [林集書] 648 / Matsunaga Library [松永文庫] 2490 in
the Main Library of Tōhoku University = Matsunaga Book [松永本] in [2, p. 225];

NC: Hayashi Collection [林集書] 2314 in the Main Library of Tōhoku University,
having the seal Nakamura [中村氏] = Nakamura Book [中村本] in [2, p. 225].

SC: Kuwaki Library, Mathematics (2) [桑木文庫算学（二）] Manuscript [写本]
679 Trilogy [三題集 Sandai Shū] in the Main Library of Kyūshū University.

2v. l. 10: A majority of the manuscripts writes上下方 but MC and NC adopt上
下差.

3v. l. 6:位 is後 in MC.
6r. l. 7:六 and七 are written七 and八, respectively, in MC, and then corrected

into六 and七.
6r. l. 8:九 and十二 are written十 and十三, respectively and then corrected into

九 and十二 in MC.
10v. l. 10: The punctuation mark○ is missing in MC.
11r. l. 6:加=式 is加-式 in NC.
12r. l. 5: The sign of the term子3庚 is minus in SC.
17r. l. 2:生 is mistaken to be正 in KC, and NC.
19r. l. 2:直 is written而 in NC.
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Sciences [数理解析研究所講究録], vol. 1392, pp. 225–245 (2004).



Notes on Complete Book of Mathematics Vol.

10: Geometry

Hikosaburo Komatsu∗

Abstract The Complete Book of Mathematics is the most comprehensive treatise
of mathematics in the Edo Period of Japan. The 20 volume book is about 900 sheets
or 1800 pages long. Seki Takakazu (1642?–1708), Takebe Kataakira (1661–1721)
and Takebe Katahiro (1664–1739) spent 28 years (1683–1711) in writing it. Un-
fortunately, the Book has never been published as a whole. Except for Volume 4
we reproduce here only one volume, Volume 10 Geometry, which is the first vol-
ume on geometry in the treatise. They develop here the basics of the plain geometry
as algebraic relations among line segments which specify the geometric objects in
question. This is exactly the same standpoint as René Descartes’ (1596–1650) in his
Géométrie (1637). At the end of the volume they discuss algebraic relations among
the sides and diagonals in a general pentagon and hexagon by making use of Seki’s
theory of resultants.

1 Introduction

The Complete Book of Mathematics [大成算経 Taisei Sankei] is the most com-
prehensive treatise of mathematics in the Edo Period (1603–1868). Seki Takakazu
[關孝和] (1642?–1708) and his pupils Takebe Kataakira [建部賢明] (1661–1721)
and Takebe Katahiro [建部賢弘] (1664–1739) spent 28 years from Tenna 3 [天和３]
(1683) to Hōei 8 [宝永８] (1711) until they completed it. The most important results
Seki expounded in his Trilogy [三部抄] and Septenary [七部書] are all included in

Hikosaburo Komatsu
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the Book. The known dates of volumes in Trilogy and Septenary are concentrated
at the period when Seki and his pupils started to write the Book. That will probably
mean that those which are in Trilogy or Septenary are the notes Seki prepared as
sketches for the Book. It consists of 20 volumes and each volume about 45 sheets
or 90 pages. Unfortunately the Book has never been published as a whole. The only
one exception is Volume 13 Measurements [求積], which is included in Collected
Works [2] as a volume in Septenary. There remain more than twenty copies as
manuscripts (see Komatsu [9]), but most of them are not of good quality.

2 Outlines of Volume 10

In Volume 4 Three Essentials [三要 san’yō] the authors classified the objects in
mathematics into abstract Images [象 shō] and visible Appearances [形 kei]. This
Volume 10 is named Algorithms for Appearances [形法 keihō] as the first of five
volumes on geometry. It consists of four chapters. Chapter 1 Algorithms for Squares
[方法 houhou] deals with squares. The main result is the fact that the diagonal [斜
sha] of a square [方 hō] is

√
2 times a side [方面 hōmen].

Chapter 2 is entitled Algorithms for Rectangles [直法 chokuhō]. The longer side
of a rectangle [直 choku] is called [縦 tate] or length [長 chō] and the shorter side
[横 yoko] or [平 hei] or width [闊 katsu]. Their product is the area [積 seki]. Given
the product ab and the sum a + b or the difference a− b, the difference a− b or
the sum a + b is obtained as the square root of (a± b)2 −±4ab. In the following
Chapter 3 Algorithms for Right Triangles [勾股法 kōko hō] this is used to prove
the Pythagorean theorem as in the Chinese classic Mathematics of Zhou Gnomons
[周髀算經 Zhoubi Suanjing]. The shorter leg hook [勾 kō] and the longer leg leg
[股 ko] of a right triangle stand for the right triangle itself. The hypothenuse is
called chord [弦 gen]. Seki had given another proof of the Pythagorean theorem in
Methods of Solving Explicit Problems [解見題之法 Kai Kendai no Hō], which is
also reproduced. Then, many problems are solved by quadratic equations.

There are no formal treatments of proportions as in Euclid’s Elements but it is
remarked that rectangles or right triangles with a fixed ratio of heights to widths
make a straight line. They say that this fact is very useful and also that a commentary
writes that this is the most valuable in arithmetic [伝曰算術之極致也].

There are two appendices to Chapter 3. The first one deals with Pythagorean
triplets, i.e. the integral solutions of

x2 + y2 = z2.

However, their definition of integral numbers [整数 seisū] is different from ours. In
Volume 4, they classified numbers into four categories: A number is said to be entire
[全 zen] or integral [整 sei] if it is represented by a finite number of counting rods,
i.e. if it is a finite decimal fraction; duplex [繁 han] if it is the quotient of two entire
numbers or if it is rational; multiplex [畸 ki] if it is a root of an algebraic equation
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represented by a finite number of counting rods or if it is algebraic; and rudimentary
[零 rei] otherwise or if it is transcendental (Xu [4], Komatsu [10]).

Firstly it is shown that Pythagorean triplets with the chord z = 1 are obtained by
a computation equivalent to the powers of complex numbers

±x+±iy or ± y+±ix = (0.6+0.8i)n, n = 1,2,3, . . . .

There are no others, as is easily proved by the unique factorization theorem of the
Gauss integers Z+ iZ.

Another way is to find a rational solution x of x2 + n2 = (x + m)2 for each
pair (m,n) of integers with 0 < m < n. Clearly any integral triple in our sense can
be found in this way. Moreover, the famous formula (n2 − m2,2nm,n2 + m2) of
Pythagorean triplets is obtained by multiplying the above solution by 2m.

The second appendix is a brief introduction to the methods of survey described in
Sea Islands Mathematics [海島算經Haidao Suanjing] by Liu Hui. The last problem
is taken from Nine Chapters of Mathematics [九章算術 Shizhang Suanshu].

In the last Chapter 4 Algorithms for Polygons [斜法] the authors develop a general
theory of triangles [三斜 sansha], quadrilaterals [四斜 shisha], pentagons [五斜
gosha] and hexagons [六斜]. After the preparations of the cosine law and the Heron
formula for triangles, they proceed to establish Algorithm for Quadrilaterals [四斜法
shishahō] which is the algebraic relation among the four sides and two diagonals of
a general quadrilateral. The equation with 22 terms of total degree 8 and of degree
4 in each variable is derived from Pythagorean theorem. This became famous after
Seki used it in his book Mathematical Methods that Clarify Subtleties [発微算法
Hatsubi Sanpō] (1674) in his solutions of Problems posed by Sawaguchi Kazuyuki
[沢口一之] in 1670 (see Komatsu [12]).

To obtain similar results for a pentagon and a hexagon they employ Seki’s theory
of elimination [5]. In the case of a pentagon, it is decomposed into the sum of two
quadrilaterals with a common side or diagonal. Then, they eliminate the common
variable from two equations corresponding to the decomposed quadrilaterals. Since
each term of the Algorithm for Quadrilaterals depends only on the squares of sides
and diagonals, the elimination is actually done for two quadratic equations in the
variable to be eliminated. This is the case already discussed by Zhu Shijie [朱世傑]
in his Jadelike Examples of Four Unknowns [四元玉鑑 Siyuan Yujian] (1303) (see
Hoe [3, pp. 133–134] and [11, p. 104]).

The principle is simple but the actual calculation of the resultant was hard. In
his book Weaving Methods in Mathematics [綴術算經 Tetsujutu Sankei] Takebe
Katahiro recalled of his brother Kataakira and wrote “He once tried to deparenthe-
size the algorithm for pentagon, which was complicated, and said that even if the
number of terms was ten thousand, one could calculate it in one hundred days by
calculating one hundred terms every day. He really did it in a month and a few days.”
A rough estimate of the number of terms of an intermediate expansion is about 4000,
and we obtain an equation of degree 8 with 843 monomial terms as its complete ex-
pansion, which is not given in the text but a few main terms are calculated in order
to get a formula of the algorithm for a general hexagon.
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Similarly a hexagon is decomposed as the sum of a quadrilateral and a pentagon
with a common segment. Thus, the algorithm for a hexagon is obtained as the resul-
tant of a quadrilateral algorithm and a pentagonal algorithm, which is represented as
a 4×4 determinant with complicated entries, is equal to 0. Its complete expansion
has 273,123 terms by Kinji Kimura’s calculation by a computer.
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Complete Book of Mathematics Vol. 10:
Geometry, by Seki Takakazu, Takebe Kataakira
and Takebe Katahiro, collated by Hikosaburo
Komatsu∗

Seki Takakazu, Takebe Kataakira and Takebe Katahiro

Abstract Volume 10 is named Algorithms for Appearances [形法 keihō] as the first
of five volumes on geometry. It consists of four chapters. Chapter 1 Algorithms
for Squares [方法 hōhō] deals with squares. Chapter 2 is entitled Algorithms for
Rectangles [直法 chokuhō]. The longer side of a rectangle [直 choku] is called
[縦 tate] or length [長 chō] and the shorter side [横 yoko] or [平 hei] or width [闊
katsu]. Their product is the area [積 seki]. In the following Chapter 3 Algorithms for
Right Triangles [勾股法 kōko hō] this is used to prove the Pythagorean theorem. The
shorter leg hook [勾 kō] and the longer leg leg [股 ko] of a right triangle stand for the
right triangle itself. The hypothenuse is called chord [弦 gen]. There are no formal
treatments of proportions as in Euclid’s Elements but it is remarked that rectangles
or right triangle with a fixed ratio of heights to widths make a straight line. There
are two appendices to Chapter 3. The first one deals with Pythagorean triplets, i. e.
the integral solutions of x2 + y2 = z2. The second appendix is a brief introduction
to the methods of survey described in Sea Islands Mathematics [海島算經 Haidao
Suanjing] by Liu Hui. In the last Chapter 4 Algorothms for Polygons [斜法 shahō]
the authors develop a general theory of triangles [三斜 sansha], quadrilaterals [四
斜 shisha], pentagons [五斜] and hexagons [六斜] with the use of their elimination
theory.

∗ Supported by JSPS Grant-in-Aid Scientific Research (C) 16540119 (2004–2006), MEXT
Grant-in-Aid on Priority Areas 17083006 (2005–2010) and JSPS Grant-in-Aid Scientific Research
(C) 20540107 (2008–2011).
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Notes on Collation of Complete Book of Mathematics Vol. 10:

Geometry

The following are the call numbers of manuscripts made use of in these notes:
NK: T20 / 70 in the Main Library of University of Tokyo. It used to be in the

Nan-Ki Library [南葵文庫] of Kii Tokugawa family [紀伊徳川家].
DT: Date Library [伊達文庫] 1682 KD090-セ 5 / The Later Bestowals of Seki’s

School [關算後伝] no. 45 in Miyagi Prefectural Library [宮城県図書館].

1v. l. 8 :反 is written及 in DT.
1v. l. 9 :下 is missing in DT.
1v. l. 9 : byscript方巾 is missing in DT.
1v. l. 10 :如前以一半積湊下 is missing in DT.
1v. lower figure :下 is missing in NK.
2v. l. 1 :于 is千 in DT.
3r. l. 9 :有 before直 is missing in both NK and DT.
3v. l. 4 :横 is written縦 in both NK and DT.
3v. l. 4 :七寸 is written一尺二寸 in both NK and DT.
3v. l. 5 :縦 is written横 in both NK and DT.
5r. 6r. and 7r upper figures :股 is missing in both NK and DT.
5r. l. 11 :加 is written如 in DT.
8r. left figure and 8v. both figures:弦 is missing in both NK and DT.
8v. l. 12 :曰 is inserted between者 and置 in DT.
9r. l. 4 :問 is written開 in DT.
9v. l. 4 :四百三 is written四百二 in DT.
10r. l. 8 :三寸 is written三十 in DT.
10v. l. 4 :箇 is of normal size in DT.
11r. l. 6 :十五 is written千五 in DT.
11v. upper figure :勾,方,股 are written in DT.
13r. left figure :勾 is missing in DT.
13v. l. 3 :遞 is replaced by a space in DT.
15r. l. 12 :八寸 is written八十 in NK.
16r :差一寸 is missing in DT.
16r.差三寸, l. 2 :勾三寸 is written勾五寸 in DT.
16r.差四寸, l. 2 :勾二寸 is written三寸 in DT.
16v.差五寸, l. 5 :三分 is written二分 in DT.
16v.差六寸, l. 2 :之二 is written之 in DT.
16v.差六寸, l. 10 :寸 is written七 in DT.
16v.差七寸, l. 13 :寸之九 is written之九 in DT.
17r. l. 10 :一十四 is written一寸四 in DT.
17v. figure :後 is missing at the right end in DT.
17v. ll. 8, 9 & 12 :右 looks like石 in NK.
17v. l. 9 :斉直問 is replaced by 3 spaces in DT.
18r. figure : A pine tree is missing in DT.
18v. ll. 1 & 7 :閒 is written問 in DT.
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19r. figure :退行三丈 is written退行二丈.
20v. figure :引去五尺 and出水一尺 are missing in DT.
20v. l. 11 :已 is written己 in NK, and巳 inDT.
21r. l. 4 :至 is written互 in DT.
21v. l. 3 : Two于 are written千 in DT.
21v. l. 6 :末 is written未 in DT.
21v. l. 9 :偶 is written隅 in NK.
21v. l. 12 :起其術 is missing in NK.
22r. l. 1 :自 is written留 in DT.
22r. l. 1 & 22v. ll. 1 & 4 :已 is written己 in both NK and DT.
22r. l. 5 :乃分 is inserted before作四斜 in NK and 2 spaces remain in DT.
23r. l. 9 :短 is written矩 in NK.
23r. l. 9 :于 is written干 in both NK and DT.
24r. l. 9 :千九百 is written十九百 in DT.
24r. l. 10 :十三寸 is written寸三寸 in DT.
24v. l. 2 :伸 is written仲 in DT.
25r. l. 12 :容 is written客 in DT.
25r. figure :大斜 is missing in NK.
26r. figure :右闊 is written右交闊 in both NK and DT.
26r. l. 11 :同 is written曰 in DT.
26r. l. 12 :内 is overlapping in DT.
26v. figure :小斜 is written斜 in DT.
27r. l. 2 :己 is written巳 in DT.
27r. l. 7 :丁 is written下 in DT.
27r. l. 9 : The counting rod 0 of the second medium class is missing in DT.
27v. ll. 1–2 : The counting rods representing 118629 is missing in DT.
27v. ll. 1–4 : The counting rods representing 60800X2 is missing in DT.
27v. l. 9 :末 is written未 in DT.
27v. l. 11 :己 is written巳 in DT.
28r. l. 11 :以減 is erroneously written内減 in both NK and DT.
28v. l. 3 :丙冪己 is missing in DT.
28v. l. 7 :一十八位 is erroneously written一十七位 in both NK and DT.
29r. l. 11 : is written第 in DT.
30r. figure :壬 is missing in NK.
30r. ll. 6 & 8 :己 is written巳 in DT.
30r. l. 6 : There is a space after己冪 in DT.
30v. l. 3 :以 is written與 in DT.
30v. ll. 5 & 7 :己 is written巳 in DT.
30v. ll. 10 & 11:巳 is written己 in NK.
31r. ll. 3×2, 4, 6 & 8 :己 is written巳 in DT.
31v. ll. 4, 5 & 11:己 is written巳 in DT.
32r. l. 7 :丁 is written下 in DT.
32r. l. 8 :反 is written及 in DT.
32r. l. 12 :甲 and己 in甲冪己冪 are actually the pseudonym假甲 of辛 and假

己 of乙. Similarly,乙冪戊冪 means戊冪丁冪, etc.
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32v. l. 1 :丁 is written下 in DT.
32v. l. 1 : The counting rod 0 is missing in DT.
32v. ll. 6, 9 & 11 :己 is written巳 in DT.
33r. ll. 1, 3 & 4 :己 is written巳 in DT.
33r. l. 1 : byscript乙巾 is written巳巾 in DT.
34r. l. 2 :位 is written住 in DT.
34r. l. 4 :某 is written其 in DT.
34v. ll. 9, 10, 11 & 12 :巳 is written己 in NK.
34v. ll. 10, 11 & 12 :巳 is written己 in DT.
35r. figure :辰 is missing in DT.
35r. 1. 2 :己 is written巳 in DT.
35r. l. 7 :減 is written戊 in DT.
35v. ll. 6 & 7 :己 is written巳 in DT.
36r. l. 2 :三 is written二 in DT.
36v. l. 6 :列 乙冪與丁冪 is written乙冪内減與丁冪餘 in NK.
38r. l. 8 :己 is written巳 in DT.
39v. l. 1:己 is written巳 in DT.
41v. l. 2 :名己 is written名乙 in both NK and DT.
41v. ll. 2 & 6 :四 is written五 in both NK and DT.
41v. l. 4 :五 is written四 in in both NK and DT.
41v. l. 8 :己 is written巳 in DT.
42r. l. 7 :乙 in乙冪 is actually the pseudonym假乙 of丑. Similarly,甲冪己冪

on line 10 means子冪丁冪, etc.
42r. l. 9 : The byscript壬巾 is written子巾 in DT.
42r. l. 10 :己 is written巳 in DT.
42v. ll. 7, 9 & 10 :己 is written巳 in DT.
42v. Former Equation, l. 8 : byscript子巾 is written壬巾.
42v. l. 9 :丙巾 is written戊巾 in DT.
44r. l. 5 : byscript甲巾 is written丁巾 in DT.
44r. l. 12 : The counting rod 1 besides byscript尾 is missing in DT.
44v. l. 7 :如 is written加 in DT.
44v. ll. 8 & 10×2 :己 is written巳 in DT.
44v. l. 11: The uppermost冪 is written并 in DT.
45r. ll. 3 & 11:巳 is written己 in NK.
45r. l. 9 :己 is written巳 in DT.
45v. ll. 1 & 2 : The color of the counting rod 1 in the first medium class is turned

into black in DT.
45v. ll. 5 & 6 : byscript 斗 in the third class is turned into a counting rod −1 in

DT.
46r. l. 8 :貳 is of normal size in DT.
46v. l. 1 :加 is written如 in DT.
46v. l. 3 :箕巾 is missing in DT.
48r. l. 10 :已 is written己 in both NK and DT.
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is Section 3, where proofs are given of the main properties of determinants and
resultants as originally introduced by Seki Takakazu (1642?–1708), Étienne Bézout
(1739–83), James J. Sylvester (1814–97) and Arthur Cayley (1821–95).

1 Determinants, Resultants and Discriminants in Japan in
the Seventeenth Century and in Europe in the Eighteenth
and Nineteenth Centuries

Abstract It is by now well known that Japanese mathematicians introduced deter-
minants in the seventeenth century but it is not necessarily understood well why
and how they made use of determinants. We follow their calculations and show that
what they did is essentially the same as the elimination method of auxiliary variables
from systems of algebraic equations with more than one unknowns as developed in
Europe in the eighteenth and nineteenth centuries.1
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1.1 Chinese mathematics as the background

Japan imported mathematics from China twice in her history. In the ancient time it
was the practical mathematics represented by the textbook Nine Chapters of Mathe-
matics [九章算術 Jiǔ-Zhāng Suàn-Shù] [1] for schools of government officials since
the Han [漢] dynasty.

The second importation took place around the year 1600 and Japanese learned
algebraic equations from books Yang Hui’s Methods of Mathematics [楊輝算法
Yáng Huı̄ Suàn-Fǎ] [2] and Introduction to Mathematics [算学啓蒙 Suán-Xué Qı̌-
Méng] [3] by Zhū Shı̀-Jié [朱世傑]. In these books an algebraic equation

f (x) = a0 +a1x+ · · ·+anxn = 0 (1)

is denoted by a column ⎛
⎜⎜⎜⎝

a0
a1
...

an

⎞
⎟⎟⎟⎠ (2)

of calculating rods representing the numerical coefficients ai . Since this arrange-
ment comes from the Chinese way of writing, we will here denote the same by a
row (

a0 a1 · · · an
)

(3)

of coefficients. The first place for the constant is called res [実 shı́], the second for
the linear term modulus [方 fāng], the third for the quadratic term medium [廉 lián],
· · · , and the last for the term of the highest degree ultima [隅 yú].

In this terminology a polynomial f (x) could not be distinguished from the equa-
tion f (x) = 0. It seems that this caused sometimes carelessness of Japanese mathe-
maticians in the signs of polynomials.

Given a number ξ , they could calculate the coefficients a′i of the shifted equation

f (ξ + x) = a′0 +a′1x+ · · ·+a′nxn = 0 (4)

very quickly by manipulating rods. Thus they were able to compute an approximate
solution ξ digit by digit as accurate as they wished by making the res a′0 smaller
and smaller. We note that they knew that

a′1 = f ′(ξ ) = a1 +2a2ξ + · · ·+nanξ n−1. (5)

The seventeenth century was the time when the mass education started in Japan.
There was, therefore, a large demand for textbooks of mathematics and accordingly
more advanced books were also published. Some of them contained a list of un-
solved problems. Successors published their solutions and left their own problems.
Soon the problems became very complicated. A problem Seki solved needed an
equation of degree 1458 !
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The books [2] and [3] deal with only algebraic equations of one unknown with
numerical coefficients. No symbols were used except for verbal analysis of prob-
lems. The expression (2) didn’t mention the indeterminate x at all. Seki Takakazu
[関孝和] (1642?–1708) was the first in Japan to consider systems of algebraic equa-
tions with more than one unknowns. He invented expressions of polynomials of any
number of letters and admitted them as coefficients ai in (2). Later Seki, Tanaka
Yoshizane [田中由真] (1651–1719) and other Japanese mathematicians developed
a systematic theory of elimination with use of determinants. Izeki Tomotoki [井関
知辰] published the first book [6] on elimination in 1690.

1.2 Determinants and resultants

Seki classified mathematical problems into the following three classes : the explicit
problems [見題 kendai] which can be solved with arithmetic, the implicit problems
[隠題 indai] which needs an algebraic equation of one unknown, and the concealed
problems [伏題 fukudai] which needs algebraic equations with more than one un-
knowns, and wrote for each class a book of solution. Determinants and resultants
appeared for the first time in Methods of Solving Concealed Problems [解伏題之
法 Kaihukudai no Hō][4] of these trilogy dated 1683 and were discussed in detail in
Volume 17 of Complete Book of Mathematics [大成算経 Taisei Sankei] [8] written
in 1683 through 1711 by Seki and his pupils Takebe Kataakira [建部賢明] (1661–
1716) and Takebe Katahiro [建部賢弘] (1664–1739). Unfortunately neither of these
books was published but copies were inherited in Seki’s school of mathematicians.

Without giving a precise terminology Seki [4] defines the determinant of n equa-
tions of degree n−1

⎛
⎜⎜⎜⎝

c10 c11 · · · c1,n−1
c20 c21 · · · c2,n−1

...
cn0 cn1 · · · cn,n−1

⎞
⎟⎟⎟⎠ , that is,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c10 + c11x+ · · ·+c1,n−1xn−1 = 0,

c20 + c21x+ · · ·+c2,n−1xn−1 = 0,

· · · · · ·
cn0 + cn1x+ · · ·+cn,n−1xn−1 = 0,

(6)

to be the constant term of the single equation, or the equation itself, obtained by
multiplying the first equation by the cofactor of c10, the second equation by the
cofactor of c20, · · · , the last equation by the cofactor of cn0, and then adding all
equations (see Corrections at the end of §13 in Mikami [24])2. The constant term
of the equation is equal to the determinant and the other terms vanish. Therefore,
his determinant is the same as in Europe. It is clear from this definition that the
determinant vanishes whenever system (6) has a common root.

Seki’s book [4] makes an error in the expansion of determinants of order ≥ 5
as pointed out by Mikami [23, pp.13–24], Horiuchi [28, pp.192–194] and many
others since the year 1715. We remark, however, that the error had already been

2 See §§2.1, 2.2, 3.1 and 3.2 for the definition of determinants and their main properties.
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corrected in Izeki [6] and Complete Book [8]. We will further discuss on this issue
in a forthcoming paper3 with a new proposal of corrections.

To eliminate a variable x, we usually start with two equations:

f (x) = a0 +a1x+ · · ·+anxn = 0, (7)
g(x) = b0 +b1x+ · · ·+bmxm = 0, (8)

where we may assume that n ≥ m, an 	= 0 and bm 	= 0.
Seki [4, 8] transforms these equations into n equations (6) of degree less than n

and then applies the determinant.
As exhibited in Mikami [23, p.10] and Horiuchi [28, p.190] the first transformed

equation [換式 kansiki]

h1(x) = d10 +d11x+ · · ·+d1,n−1xn−1 = 0 (91)

is obtained by eliminating the top terms of f (x) and xn−mg(x), that is,

h1(x) = bm f (x)−anxn−mg(x). (101)

Then, the i-th transformed equation

hi(x) = di,0 +di,1x+ · · ·+di,n−1xn−1 = 0 (9i)

for 1 < i ≤ m is defined by

hi(x) = xhi−1(x)+bm−i+1 f (x)−an−i+1xn−mg(x), (10i)

in which the coefficient of xn vanishes. The remaining n−m transformed equations
are the shifts4

hi(x) = xi−m−1g(x) = 0, m+1 ≤ i ≤ n. (11)

The resulting determinant

R( f ,g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d10 d11 · · · · · · d1,n−1
d20 d21 · · · · · · d2,n−1

· · · · · · · · ·
dm,0 dm,1 · · · · · · dm,n−1
b0 b1 · · · bm 0 · · · 0
0 b0 b1 · · · bm 0 0

0
. . . . . . 0

0 · · · 0 b0 b1 · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(12)

3 That is, §2 of this paper.
4 To be exact, this is the definition of transformed equations by Bézout [13] and, in case n > m, is
different from that of Seki [4]. See §3.4 of this paper.
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is easily shown5 to be equal to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · · · · · · · an 0 · · · 0
0 a0 a1 · · · · · · · · · an 0 0

. . . . . .
0 · · · 0 a0 a1 · · · · · · · · · an

b0 b1 · · · · · · bm 0 · · · 0
0 b0 b1 · · · · · · bm 0 · · · 0

. . . . . .
0

0 · · · · · · 0 b0 b1 · · · · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (13)

which is formally the same as the standard definition of the resultant in Europe, but
is actually multiplied by (−1)nm because the terms of a polynomial are written in
the descending order in Europe.

Let ξi and η j be the roots of (7) and (8), respectively. Then we have

R( f ,g) = an
mbm

n
n

∏
i=1

m

∏
j=1

(η j −ξi)

= bm
n

m

∏
j=1

f (η j) = (−1)mnan
m

n

∏
i=1

g(ξi)
(14)

as shown by Cauchy [16] and many others. Therefore, the eliminated equation

R( f ,g) = 0 (15)

gives a necessary and sufficient condition in order that the system of two equations
(7) and (8) has a solution in an algebraically closed field containing all coefficients
of the equations in the system.6

Formula (13) of resultants is attributed to Sylvester [15] published in 1840 but
an essentially same formula of elimination had already been given by Euler [12]
in 17647. Seki’s formula (12) was also discovered in the same year by É. Bézout
(1739–1783) in [13, pp. 319–323]. This should have been the quickest way of elim-
inating an unknown from two general algebraic equations. Earlier in 1748 Euler [10]
employed a more primitive method, due to Newton, and also the resultant defined
by (14), to estimate the number of the intersection points of two algebraic curves on
a plane, which is known today as Bézout’s theorem.

5 See §3.3.
6 under the generic condition that anbm 	= 0.
7 See the editor’s note to Knobloch’s article in these Proceedings on p. 238 f.



558 Takefumi Goto and Hikosaburo Komatsu

In Japan, Izeki [6] contains a list of entries of formula (12) for n = m ≤ 6 and
the complete expansion of determinants of order ≤ 5. Therefore, at the end of the
17th century, Japanese mathematicians were able to compute the resultant of at least
quintic equations.

On the other hand, Cayley [20] calculated by a different method of Hirsch [14]
the resultant of two general algebraic equations of degrees m ≤ n ≤ 4. In case n =
m = 4, it has 219 terms.

1.3 Discriminants

Seki introduced the discriminant of an algebraic equation (7) in his book Meth-
ods of Equation Modifications [開方翻変之法 Kaihō Honpen no Hō] [5]. It is also
discussed in Volume 3 of Complete Book of Mathematics [8]. Seki’s terminology
exactly vanishing condition of the modulus class [適尽方級法 tekijin hōkyū hō]
means the “vanishing condition of modulus (5) exactly at a root” ξ . Since this is
equivalent to saying that the original equation f (x) = 0 and the equation f ′(x) = 0
for modulus have a common root, we have for this condition

R( f , f ′) = 0. (16)

It follows from (14) that if

f (x) = an

n

∏
i=1

(x−ξi), then f ′(x) = an

n

∑
i=1

∏
j 	=i

(x−ξ j),

so that we have
R( f , f ′) = (−1)

n(n−1)
2 a2n−1

n ∏
i< j

(ξi −ξ j)2. (17)

This is divisible by an as seen from (13). In Europe the discriminant of f (x) is

D( f ) = (−1)
n(n−1)

2 a−1
n R( f , f ′) = a2n−2

n ∏
i< j

(ξi −ξ j)2 (18)

but Seki and his pupils paid little attention to the sign and called

D( f ) = a−1
n R( f , f ′) = n2−nR(n f − x f ′, f ′)[= 0] (19)

the exactly vanishing condition of the modulus class.

Seki computed in [5] the discriminants D( f ) for equations f (x) = 0 up to degree
4, and in Volume 3 of [8] there is an almost correct list of 59 terms of the discrimi-
nant D( f ) of a quintic equation.

The subjects of Methods of Equation Modifications [5] are first to count the num-
ber of positive or real roots, and secondly when there are no real roots, to modify a
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coefficient so that the modified equation have real roots. The discriminant was em-
ployed to know the extreme values of the coefficient of an equation with real roots.
Yet, Seki does not seem to have noticed the fact that the sign of the discriminant de-
cides the number of real roots of a real quadratic equation, which everybody knows
today.

2 A Correction of Seki’s Error in the Expansion of Determinants

Abstract Seki Takakazu (1642?–1708) is a Japanese mathematician who introduced
determinants and resultants as a means of eliminating an auxiliary unknown from
systems of algebraic equations with more than one unknowns. Unfortunately his
theory has not received due respects because of his error in the expansion of de-
terminants of order 5. Since none of the so-called corrections are persuasive, the
authors propose a new one.8

2.1 Seki’s determinants

As shown in our previous paper9 Seki [4] denotes by an n×n matrix⎛
⎜⎜⎜⎜⎝

c10 c11 · · · c1,n−1
c20 c21 · · · c2,n−1

· · · · · ·
· · · · · ·

cn0 cn1 · · · cn,n−1

⎞
⎟⎟⎟⎟⎠ (1)

the system of n equations of degree less than n:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c10 + c11x+ · · ·+c1,n−1xn−1 = 0,

c20 + c21x+ · · ·+c2,n−1xn−1 = 0,

· · · · · ·
cn0 + cn1x+ · · ·+cn,n−1xn−1 = 0,

(2)

where coefficients ci j are polynomials in unknowns y,z, · · · other than x.
His theory of elimination in Methods of Solving Concealed Problems [4] starts

with the observation that the determinant10

8 This section was published in Journal of Northwest University (Natural Science Edition), 33
No.4, pp. 376–380 (2003). Footnotes are added on this occasion.
9 That is, §1 of this paper.
10 See §3.1.
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c10 c11 · · · c1,n−1
c20 c21 · · · c2,n−1

...
cn0 cn1 · · · cn,n−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
c10 + c11x+ · · ·+ c1,n−1xn−1 c11 · · · c1,n−1
c20 + c21x+ · · ·+ c2,n−1xn−1 c21 · · · c2,n−1

...
...

cn0 + cn1x+ · · ·+ cn,n−1xn−1 cn1 · · · cn,n−1

∣∣∣∣∣∣∣∣∣
(3)

vanishes whenever system (2) has a common root. He shows this by induction on n.
In case n = 2, we have(

B A
D C

)
or

{
B+Ax = 0,

D+Cx = 0.
(4)

He multiplies the first equation by C, the second by A and subtracts the products to
get the equation ∣∣∣∣B A

D C

∣∣∣∣= BC−DA = 0. (5)

This procedure is known already in Nine Chapters of Mathematics [1] and is called
a cross multiplication [維乘 wéi chéng].

If n = 3, the determinant of the system⎛
⎝C B A

F E D
I H G

⎞
⎠ or

⎧⎨
⎩

C +Bx+Ax2 = 0,

F +Ex+Dx2 = 0,

I +Hx+Gx2 = 0,

(6)

is defined to be the equation obtained as the sum of the first equation multiplied by

the cofactor
∣∣∣∣E D
H G

∣∣∣∣ of C, the second by −
∣∣∣∣B A
H G

∣∣∣∣ of F , and the third by
∣∣∣∣B A
E D

∣∣∣∣ of I.

Seki [4] did not introduce a symbol for a determinant nor for a cofactor. What he
actually showed is the fact that with a suitable choice of the signs ± of six equations

(C +Bx+Ax2)EG = 0, ±(C +Bx+Ax2)HD = 0,

±(F +Ex+Dx2)BG = 0, ±(F +Ex+Dx2)HA = 0,

±(I +Hx+Gx2)BD = 0, ±(I +Hx+Gx2)EA = 0,

(7)

the total sum has only the constant term which is equal to the determinant of today.

2.2 Seki’s error and our proposal of correction

He continues a similar construction up to order n = 4. Then, to evade the increased
complexity according to the order, he states another method, called formula ex-
changes [交式 kōshiki] and oblique multiplications [斜乘 shajō], which general-
ize Sarrus’ expansion in the case of order 3. However, if we calculate by the latter
method as he wrote, we always have 0 as its value in case n = 5, which is obviously
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an error. Many corrections have been proposed, by Matsunaga Yoshisuke [松永良
弼] in 1715, and by Sugano Mototake [菅野元健] and by Ishikuro Nobuyoshi [石
黒信由] both in 1798. The modern historians follow these old interpretations (cf.
Hayashi [21], Mikami [23] et al.). Since they seem to be far from Seki’s original
intention, we will give here another correction. To do so, we first reproduce Seki’s
calculation of the determinant when n = 4:

Consider ⎛
⎜⎜⎝

D C B A
H G F E
L K J I
P O N M

⎞
⎟⎟⎠ or

⎧⎪⎪⎨
⎪⎪⎩

D+ Cx+ Bx2+ Ax3 = 0,

H+ Gx+ Fx2+ Ex3 = 0,

L+ Kx+ Jx2+ Ix3 = 0,

P+ Ox+ Nx2+ Mx3 = 0,

(8)

where the coefficients are replaced from Seki’s original letters, which represent 28
lunar mansions, into Roman capitals in the same order. Then, he writes 24 equations,
successively, starting with (DGJM creative | 0 |CGJM | BGJM | AGJM) which
is obtained by multiplying the first equation by the term GJM of the cofactor of D,
where creative [生 sei] means a term to be added, while annihilative [剋 koku] to be
subtracted. The next 0 means that the following coefficients of x,x2 and x3 cancel
out with two terms of the same factors and with the opposite signs. The original list
has a numbering of the canceling terms, which is omitted here. Then, we arrange all
equations in the following way with the omission of the linear terms on, where the
order of the equations is a little different from that in the text of Collected Works [4]
but is restored to what we believe is in his original calculation11:

DGJM crea
HKNA anni
LOBE crea
PCF I anni

DOJ E anni
H CN I crea
LGBM anni
PKF A crea

[1 2 3 4]

DOF I crea
HCJM anni
LGNA crea
PKBE anni

DGNI anni
HKBM crea
LOFA anni
PCJ E crea

[1 3 4 2] (9)

DKNE crea
H OBI anni
LCFM crea
PGJ A anni

DKFM anni
H OJ A crea
LCNE anni
PGBI crea

[1 4 2 3].

11 See these Proceedings “Methods of Solving Concealed Problems” Sheets 14–15 (pp. 484–485)
for the original text and the Amended Sheets 1–2 (pp. 490–491 ) to our restoration.
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In almost all texts of [4] including the one in Collected Works the arrangement in
each block is the same as above but the places of blocks are interchanged between
the upper right and the middle left and between the middle right and the lower left.
In spite of this difference we believe that ours is the original arrangement because
we obtain a Sarrus like figure when we illustrate the products in the upper blocks
on the matrix (8), where the left block are composed of the principal diagonal and
its parallels and the left of the anti-principal diagonal and its parallels. Similarly, the
middle and the lower blocks represent the same kind of products for the matrices

⎛
⎜⎜⎝

D B A C
H F E G
L J I K
P N M O

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

D A C B
H E G F
L I K J
P M O N

⎞
⎟⎟⎠ , (10)

which are composed of the 1st, 3rd, 4th and 2nd columns, and the 1st, 4th, 2nd and
3rd columns of matrix (8), respectively. In order to remark this fact we added the
sequences on the right of (9), which are not given in the original text. The current
text says that it was revised for the second time in 1683. In the unrevised original
the six blocks might have been set linearly. Then, the disorder could have happened
on a revision.

After Table (9) the text says: “In each of the above, we make alternating multi-
plications of enumerated equations [逐式交乘 chikushikikôjô] to obtain the creative
and the annihilative terms12. When the number of terms to be multiplied becomes
large, it is not easy to see, and therefore, we employ formula exchanges [交式
kōsiki] and oblique multiplications [斜乘 shajō], instead [右各逐式交乘而得生剋
也雖然相乘之数位繁多而不易見故以交式斜乘代之].”

The following section Formula Exchanges starts with the paragraph “The trans-
formed three equations give rise to the transformed four equations. The transformed
four equations give rise to the transformed five equations, and so on. The transformed
two equations and the transformed three equations need no formula exchanges. The ordinary
and the opposite [parities of the principal diagonal and its parallels] are both ob-
tained recursively by adding 1. That is, if the number of equations is odd, all are
ordinary; if it is even, the ordinary and the opposite [parities] alternate [從換三式起
換四式從換四式起換五式逐如此換二式換三式者不及交式也順逆共遞添一得次乃式
数奇者皆順偶者順逆相交也].”

Then, the following table is given:

12 This sentence should have been translated as “In the above, we have successively multiplied
each equation alternatingly to obtain the creative and the annihilative terms. For this purpose our
alteration on pp. 492–493 in these Proceedings would be more appropriate than the original table
on Sheets 14–15.
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Transformed 3 eqs. Transformed 4 eqs. Transformed 5 equations

ord ord ord
1 2 3

ord opp ord opp
1 2 3 4
1 3 4 2
1 4 2 3

[ord] [ord] [ord] [ord] [ord]
1 2 3 4 5
1 3 2 5 4
1 4 5 2 3
1 5 4 3 2
1 2 4 5 3
1 4 2 3 5
1 5 3 2 4
1 3 5 4 2
1 2 5 3 4
1 5 2 4 3
1 3 4 2 5
1 4 3 5 2

(11)

This is the most enigmatic part of [4]. Our understanding is that “the transformed
n equations” means the determinant of order n and the following part defines the
signs of cofactors. The traditional interpretation due to Matsunaga (1715) regards
this as a description of the rule for calculating the sequences in table (11) and even
corrects the list. The editors of Collected Works [4] adopt this interpretation. But it
is absurd. The sequences in table (11) represent the even permutations with 1 fixed.
The middle sentence may mean the rule. In that case, we obtain (a generic part of)
the next list by adding 1 to each number in the permutations corresponding to the
creative products in the development of the previous determinant.

The following section Oblique Multiplications says “Applying each formula ex-
change [to the original matrix], we make oblique multiplications from left and from
right, and then, obtain the creative and the annihilative terms. If a product hits an empty
number, then delete it. If the number of transformed equations is odd, then the left
oblique products [parallel to the principal diagonal in our notation] are creative, and
the right oblique products annihilative, and if the number is even, then in both left
and right oblique products the creative and the annihilative alternate [交式各布之從
左右斜乘而得生剋也 若當空級者除之換式数奇者以左斜乘為生以右斜乘為剋偶者
左斜乘右斜乘共生剋相交也]”.

Then, Seki illustrates the oblique products of the transformed two to five equa-
tions with an indication of the creative and the annihilative terms. See [4, pp. 156–
157], [23, pp.12–13] or [28, pp.192–193] If, in particular, n = 5, i.e., for the general
equations ⎛

⎜⎜⎜⎜⎝
E D C B A
J I H G F
O N M L K
T S R Q P
Y X W V U

⎞
⎟⎟⎟⎟⎠ or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E+ Dx+ Cx2+ Bx3+ Ax4 = 0,

J+ Ix+ Hx2+ Gx3+ Fx4 = 0,

O+ Nx+ Mx2+ Lx3+ Kx4 = 0,

T+ Sx+ Rx2+ Qx3+ Px4 = 0,

Y+ Xx+ Wx2+ V x3+ Ux4 = 0,

(12)
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he explains that the counterparts of the upper blocks of (9) are

E IMQU crea
J NRVA crea
OSWBF crea
T XCGK crea
Y DHLP crea

EXRLF anni
JDWQK anni
OICV P anni
T NHBU anni
Y SMGA anni

1 2 3 4 5, (13)

but this is not true, because all products in the right block are also creative. Checking
only the cases n = 2,3, and 4, Seki thought that there were always a creative and
an annihilative oblique products starting at each place of the leftmost column in the
uppermost blocks. This is no more the case when n = 5 or 6 or more generally if
n≡ 1 or 2 mod 4 as pointed out by Sugano and Ishikuro in 1798. Descartes’ warning
of precipitation applies to Seki.

In order to correct this error, it is enough to replace each product in the right
block by a product from the annihilative terms with the first factor from E,J,O,T,Y
fixed. To save the labor of computation, we can leave the first three factors as in the
left block and choose the following13 :

E IMQU crea
J NRVA crea
OSWBF crea
T XCGK crea
Y DHLP crea

E I MV P anni
J NRBU anni
OSWGA anni
T XC LF anni
Y DHQK anni

1 2 3 4 5. (14)

Other choices are also possible. Then, we make the same computations for all ma-
trices obtained by the exchanges of columns from the original (12) according to the
permutations in list (11). By adding all, we get the determinant of order 5.

In our interpretation formula exchanges meant the exchanges of columns, or the
coefficients of the same degrees. We are led to this interpretation by Seki’s way of
computations. Moreover, there are two other reasons. In the preceding section in [4]
Seki allows to factor out a common factor in the coefficients of the same degree.
This is easily explained by our construction. Secondly, he had, at least, to convince
himself of the fact that the coefficients of x,x2, · · · ,xn−1 cancel out when he added
the equations to get the determinant. To establish a theorem, a formal proof was
not demanded at that time, but Japanese mathematicians had to show sufficient evi-
dence, e.g. general examples, to convince people. The vanishing of the coefficients
of the linear term on is equivalent to the vanishing of the determinant with two iden-
tical columns, which is recursively proved by showing that the determinant changes
its sign if we transpose the first and the second columns. Seki did not prove it but he
could easily check it whenever he calculated determinants.14

13 See these Proceedings “Methods of Solving Concealed Problems” Amended Sheet 2 on p. 491 .
14 We give a proof in §3.1.
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The Chinese character 式 [shiki] Seki used for formula in formula exchanges
usually meant equation. Actually there were Japanese mathematicians who under-
stood Seki’s formula exchanges as we do, but for most of them it meant equation ex-
changes or permutation of rows. Fortunately or unfortunately, determinants change
the sign by a transposition of two rows as well as of two columns. Therefore, they
were able to compute correct values of determinants by the expansion with respect
to the first row, without understanding Seki’s idea. The first volume of Izeki’s book
[6] is a manual for computing the resultants by the latter method. There are no ex-
planations why we are able to eliminate an indeterminate in this way15. Volume 17
of Complete Books [8] is essentially the same.

3 Mathematical Notes

Abstract Determinants and resultants were introduced by many mathematicians in
many ways independently under quite different cultural backgrounds. Therefore, it
is not necessarily easy to understand what determinants meant in a historical setting
in question. To ease these difficulties, the authors develop here rudiments of the
theory of determinants based only on the definition of Seki [4] (1683) and Cayley
[17] (1841) who were the inventors of the present notation of determinants and both
intended to apply them to solve problems in geometry.

In the first section of this paper the authors claimed that Seki’s resultants were
the same as Bézout’s. But this is not true when the degrees of two equations are
different. A comparison of these two is given in the last subsection.

3.1 Determinants

When Seki [4] and Bézout [13] introduced determinants they did so as a means to
represent resultants. They didn’t even name determinants and were interested only
in the equation that a determinant was equal to 0. For example, the first statement
Lemme 1 of Bézout [13] says that the system of linear equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
c10x0 + c11x1 + · · ·+c1,n−1xn−1 = 0,

c20x0 + c21x1 + · · ·+c2,n−1xn−1 = 0,

· · · · · ·
cn0x0 + cn1x1 + · · ·+cn,n−1xn−1 = 0,

(1)

15 Actually Izeki [6] has a proof that the determinant = 0 is a consequence of the three quadratic
equations under the condition that the constant term of the first equation is not 0, which is not a
generic condition. We do not know how to generalize this proof to the higher order case. In doing
so, we should take it into account that no documents have ever been found in Wasan which claim
that the determinants keep the same values under the transposition of raws and columns.
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has a nontrivial solution (x0,x1, · · · ,xn−1) 	= 0 if and only if the determinant∣∣∣∣∣∣∣∣∣∣

c10 c11 · · · c1,n−1
c20 c21 · · · c2,n−1

· · ·
· · ·

cn0 cn1 · · · cn,n−1

∣∣∣∣∣∣∣∣∣∣
= 0. (2)

Seki (see Mikami [24, Corrections at the end of §13]), Bézout and many others,
including Cayley [17] as late as 1841, defined determinants inductively by

|d| = d, (3)

and ∣∣∣∣∣∣∣∣∣∣

d1 c11 · · · c1,n−1
d2 c21 · · · c2,n−1

· · ·
· · ·

dn cn1 · · · cn,n−1

∣∣∣∣∣∣∣∣∣∣
= d1

∣∣∣∣∣∣∣∣
c21 · · · c2,n−1
c31 · · · c3,n−1

· · ·
cn1 · · · cn,n−1

∣∣∣∣∣∣∣∣−d2

∣∣∣∣∣∣∣∣
c11 · · · c1,n−1
c31 · · · c3,n−1

· · ·
cn1 · · · cn,n−1

∣∣∣∣∣∣∣∣

+ · · · ·+(−1)n−1dn

∣∣∣∣∣∣∣∣
c11 · · · c1,n−1
c21 · · · c2,n−1

· · ·
cn−1,1 · · · cn−1,n−1

∣∣∣∣∣∣∣∣ , n > 1. (4)

First of all, it is then evident that the determinant is linear in each column.
Secondly, the determinant changes its sign under a transposition of two different

columns. In fact, in the case of the transposition of the first and the second columns,
we get a proof by applying the same development as above to the (n−1) minors of
the right hand side of (4). Then we obtain the Laplace (or Vandermonde) develop-
ment (1772):

∣∣∣∣∣∣∣∣∣∣

c10 c11 · · · c1,n−1
c20 c21 · · · c2,n−1

· · ·
· · ·

cn0 cn1 · · · cn,n−1

∣∣∣∣∣∣∣∣∣∣
= ∑

1≤p<q≤n
(−1)p+q−1

∣∣∣∣cp0 cp1
cq0 cq1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c12 c13 · · · c1,n−1
· · ·

ĉp2 ĉp3 · · · ĉp,n−1
· · ·

ĉq2 ĉq3 · · · ĉq,n−1
· · ·

cn2 cn3 · · · cn,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5)

where the p-th and q-th rows of the right hand side are deleted. In Wasan this
was shown by Kurushima Yoshihiro [久留島義太] (? –1757) in his bequeathed
manuscript [9]. The factor ∣∣∣∣cp0 cp1

cq0 cq1

∣∣∣∣= cp0cq1 − cq0cp1
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clearly changes its sign by the transposition.
Since any two neighboring columns are the first and the second columns during

the process of the recursive definition (4) of determinants, it follows that the deter-
minant changes its sign by the the transposition of neighboring columns. And any
transposition of two different columns is realized by an odd number of transposi-
tions of neighboring columns.

Thirdly, it is immediately shown by our definition that∣∣∣∣∣∣∣∣∣
1 0 · · · 0
0 1 · · · 0

. . .
0 · · · 0 1

∣∣∣∣∣∣∣∣∣
= 1; (6)

and these three properties characterize the determinant.
Namely, if a polynomial D(a1, · · · ,an) in the entries ai j of n columns a j = (ai j) of

n variables is (i) linear in each column a j, (ii) skew symmetric in any transposition
of different columns a j and ak, and (iii) satisfying (6), then we have

D(a1, · · · ,an) = ∑
σ∈S

sign σ a1σ1a2σ2 · · ·anσn = ∑
σ∈S

sign σ aσ−111 · · ·aσ−1nn, (7)

where S denotes the group of all permutations of n letters and sign σ is + if σ is an
even permutation and − if σ is an odd permutation. That is the modern definition of
the determinant. For a proof see any textbook of linear algebra, e.g. Takagi [27].

Since sign σ = sign σ−1, the latter part of (7) says that the determinant remains
the same under the transposition of columns and rows.

If equation (1) has a non-trivial solution (x j), then the column a j with a non-zero
x j is a linear combination of the other columns and hence the determinant vanishes.
For the proof of its converse the reader is referred to any textbook of linear algebra.

If, in particular, a system of n algebraic equations of degree less than n has a
common solution ξ , then the system (1) has the non-trivial solution x j = ξ j and
hence the determinant (2) should vanish.

We also note that if A and C are square matrices, and 0 is a rectangular matrix
composed only of 0, then we have∣∣∣∣A B

0 C

∣∣∣∣= |A||C| (8)

as is easily proved from the above definition.

3.2 Cayley’s multiplication theorem and his proof of
the quadrilateral method

The product
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⎜⎜⎜⎜⎝

c11 c12 · · · c1,n

c21 c22 · · · c2,n

· · ·
· · ·

cn1 cn21 · · · cn,n

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

a11 a12 · · · a1,n

a21 a22 · · · a2,n

· · ·
· · ·

an1 an2 · · · an,n

⎞
⎟⎟⎟⎟⎠×

⎛
⎜⎜⎜⎜⎝

b11 b12 · · · b1,n

b21 b22 · · · b2,n

· · ·
· · ·

bn1 bn2 · · · bn,n

⎞
⎟⎟⎟⎟⎠ (9)

of two n×n matrices is defined by cik =
n

∑
j=1

ai jb jk .

Cayley [17] was one of the first to state the multiplication theorem∣∣∣∣∣∣∣∣∣∣

c11 c12 · · · c1,n

c21 c22 · · · c2,n

· · ·
· · ·

cn1 cn21 · · · cn,n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1,n

a21 a22 · · · a2,n

· · ·
· · ·

an1 an2 · · · an,n

∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣

b11 b12 · · · b1,n

b21 b22 · · · b2,n

· · ·
· · ·

bn1 bn2 · · · bn,n

∣∣∣∣∣∣∣∣∣∣
, (10)

though his definition of the product of matrices is with the second factor transposed.
This is proved from the facts that the left hand side of (10) satisfies properties

(i) and (ii) of determinants as a function of the columns b j and that its value at the
identity matrix is the determinant of (ai j).

He applied it to get the relation that exists between the distances of five points in
space, etc. Here we limit ourselves to the proof of the algebraic relation of distances
between four points on a plane, which was used by Seki Takakazu in his solutions
of Sawaguchi’s problems Nos. 12 and 14 under the name of quadrilateral method.
Let P1(x1,y1,z1),P2(x2,y2,z2),P3(x3,y3,z3) and P4(x4,y4,z4) be four points in space
with coordinates (xi,yi,zi). By the multiplication theorem we have∣∣∣∣∣∣∣∣∣∣

x1
2 + y1

2 + z1
2, −2x1, −2y1, −2z1, 1

x2
2 + y2

2 + z2
2, −2x2, −2y2, −2z2, 1

x3
2 + y3

2 + z3
2, −2x3, −2y3, −2z3, 1

x4
2 + y4

2 + z4
2, −2x4, −2y4, −2z4, 1

1, 0, 0, 0, 0

∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣

1, 1, 1, 1, 0
x1, x2, x3, x4, 0
y1, y2, y3, y4, 0
z1, z2, z3, z4, 0

x1
2 + y1

2 + z1
2, x2

2 + y2
2 + z2

2, x3
2 + y3

2 + z3
2, x4

2 + y4
2 + z4

2, 1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

0, P1P2
2
, P1P3

2
, P1P4

2
, 1

P2P1
2
, 0, P2P3

2
, P2P4

2
, 1

P3P1
2
, P3P2

2
, 0 P3P4

2
, 1

P4P1
2
, P4P2

2
, P4P3

2
, 0, 1

1, 1, 1, 1, 0

∣∣∣∣∣∣∣∣∣∣∣
. (11)
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If the four points Pj are on the same plane, we can choose a coordinate system
such that the plane is {z = 0}, so that the right hand side has to vanish. Writing

a = P1P2 = P2P1, b = P1P3 = P3P1, c = P1P4 = P4P1,

p = P3P4 = P4P3, q = P2P4 = P4P2, r = P2P3 = P3P2,

we have twice
a2 p2(−a2 +b2 + c2 − p2 +q2 + r2)

+b2q2(a2 −b2 + c2 + p2 −q2 + r2)

+c2r2(a2 +b2 − c2 + p2 +q2 − r2)

−a2b2r2 −b2c2 p2−c2a2q2 − p2q2r2 = 0.

(12)

This may look tricky but is the shortest proof of the quadrilateral method (12). He
gave proofs of many other geometric theorems in the same way. Similarly Takagi
[27] gives a proof of the fact that the left-hand side of (12) represents 144 times
the square of volume of the tetrahedron with a,b,c, p,q and r as the lengths of the
edges, which is attributed to Euler (1758) and Arima Yoriyuki [有馬頼徸] (1766).

3.3 Bezout’s and Sylvester’s Resultants

Let {
f (x) = a0 +a1x+ · · ·+anxn = 0,

g(x) = b0 +b1x+ · · ·+bmxm = 0,
(13)

be a system of two algebraic equations with n ≥ m, an 	= 0 and bm 	= 0. Then its

common root is also a common root of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0+ a1x+ · · · · · · · · · +anxn = 0,

a0x+ a1x2+ · · · · · · · · · +anxn+1 = 0,
. . . . . .

a0xm−1 +a1xm+ · · · · · · +anxn+m−1 = 0,

b0+ b1x+ · · · · · · +bmxm = 0,

b0x+ b1x2+ · · · · · ·+ bmxm+1 = 0,
. . . . . .

b0xn−1+ b1xn+ · · · · · ·+bmxn+m−1 = 0.

(14)

The determinant of order n+m
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RSylvester( f ,g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · · · · · · · an 0 · · · 0
0 a0 a1 · · · · · · · · · an 0 0

. . . . . .
0 · · · 0 a0 a1 · · · · · · · · · an

b0 b1 · · · · · · bm 0 · · · 0
0 b0 b1 · · · · · · bm 0 · · · 0

. . . . . .
0

0 · · · · · · 0 b0 b1 · · · · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(15)

of the coefficients of the latter equations is the resultant Sylvester [15] introduced in
1840 up to the sign (−1)mn.

As we claimed in Section 1 this coincides with Bézout’s resultant

RBézout( f ,g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d10 d11 · · · · · · d1,n−1
d20 d21 · · · · · · d2,n−1

· · · · · · · · ·
dm,0 dm,1 · · · · · · dm,n−1
b0 b1 · · · bm 0 · · · 0
0 b0 b1 · · · bm 0 0

0
. . . . . . 0

0 · · · 0 b0 b1 · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (16)

where di j are the coefficients of the transformed equations

hi(x) = di,0 +di,1x+ · · ·+di,n−1xn−1 = 0, 1 ≤ i ≤ m, (17i)

defined by
h1(x) = bm f (x)−anxn−mg(x) (181)

for i = 1 and

hi(x) = xhi−1(x)+bm−i+1 f (x)−an−i+1xn−mg(x), (18i)

for 1 < i ≤ m.
In order to prove the coincidence we multiply the following determinant on the

left of (15):
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bm 0 · · · · · · 0 · · · 0 −an 0 · · · 0
bm−1 bm 0 · · · 0 · · · 0 −an−1 −an 0 0

...
. . . . . .

...
. . . . . .

...
b1 · · · bm−1 bm 0 · · · 0 −an−m+1 · · · −an−1 −an

0 0 · · · · · · 1 0 · · · 0 · · · 0
0 0 0 · · · · · · 1 0 0 · · · 0

1

0
. . .

1 0

0 · · · · · · 0 0 0 · · · · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (19)

whose value is equal to bm
m 	= 0. If we carry out the multiplication as matrices, then

we obtain as the the first m rows the coefficients of transformed equations hi(x),
1 ≤ i ≤ m and as the following n rows those of xi−m−1g(x) = 0, m+1 ≤ i ≤ m+n.

We have the commutator of⎛
⎜⎜⎜⎝

bm 0 · · · 0
bm−1 bm 0 0

...
. . . . . .

...
b1 · · · bm−1 bm

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

an 0 · · · 0
an−1 an 0 0

...
. . . . . .

...
an−m+1 · · · an−1 an

⎞
⎟⎟⎟⎠ (20)

as the m×m-minor of the product at the upper right corner.
Since these two matrices are polynomials in the nilpotent matrix N with 1 under

the diagonal, they commute each other, so that the commutator is 0. That is the
reason why the transformed equations are all of degree less than n,

The right hand side of (16) is therefore the principal minor of order n, on the right
of which all entries are zero in the product determinant. The remaining principal
minor is the determinant of the left member of (20). Hence we have the required
identity

RSylvester( f ,g) = RBézout( f ,g) (21)

by canceling the non-zero factor bm
m.

3.4 Seki’s and Bézout’s resultants

In Section 1 we wrote that Seki’s resultants and Bézout’s were the same but, when
the degree m of g(x) is less than the degree n of f (x), this is no more true. In that
case, Seki set

bm+1 = bm+2 = · · · = bn = 0 (22)
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and defined his transformed equations hi(x), 1 ≤ i ≤ n, as if g(x) were of degree n.
Thus, his resultant is

RSeki( f ,g) =

∣∣∣∣∣∣∣∣
d10 d11 · · · · · · d1,n−1
d20 d21 · · · · · · d2,n−1

· · · · · · · · ·
dn,0 dn,1 · · · · · · dn,n−1

∣∣∣∣∣∣∣∣ , (23)

where di j are the coefficients of Seki’s transformed equations

hi(x) = di,0 +di,1x+ · · ·+di,n−1xn−1 = 0, 1 ≤ i ≤ n, (24i)

defined by
h1(x) = bn f (x)−ang(x) (251)

for i = 1 and
hi(x) = xhi−1(x)+bn−i+1 f (x)−an−i+1g(x), (25i)

for 1 < i ≤ n.
If m = n, Seki’s resultant is obviously equal to Bézout’s. If m < n, we have

RSeki( f ,g) = ±an
n−mRBézout( f ,g). (26)

For the proof we need only the identity

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0 0 0
0 1 0 · · · · · · · · · 0 0

. . .
0 · · · 0 1 0 · · · · · · 0
bn 0 · · · 0 −an 0 · · · 0

bn−1 bn 0 · · · −an−1 −an 0 0
...

. . . . . . 0
...

. . . 0
b1 · · · bn−1 bn −a1 · · · −an−1 −an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an−1 an 0 · · · 0
0 a0 a1 · · · · · · an 0

. . . . . . . . . 0
0 · · · 0 a0 a1 · · · · · · an

b0 b1 · · · bn−1 bn 0 · · · 0
0 b0 b1 · · · bn−1 bn 0 · · ·

. . . . . .
0 · · · · · · b0 b1 · · · · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an−1 an 0 · · · 0
0 a0 a1 · · · · · · an 0

. . . . . . . . . 0
0 · · · 0 a0 a1 · · · · · · an

0 0 0 0
0 · · · · · · 0

RSeki( f ,g) 0 0
0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−an)nRSeki( f ,g). (27)

Hence we have
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RSeki( f ,g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an−1 an 0 · · · 0
0 a0 a1 · · · · · · an 0

. . . . . . . . . 0
0 · · · 0 a0 a1 · · · · · · an

b0 b1 · · · bn−1 bn 0 · · · 0
0 b0 b1 · · · bn−1 bn 0 · · ·

. . . . . .
0 · · · · · · b0 b1 · · · · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (28)

by canceling the non-zero factor (−an)n from both sides.
If m = n, then the right hand side is by definition equal to RSylvester( f ,g) =

RBézout( f ,g). If m < n, then because of (22), we can factor out an one by one by
expanding the determinant on the right hand side of (28) with respect to the last
column (n−m) times and obtain (26).

In spite of these extra factors, Seki’s resultant has the advantage that the en-
tries di j of (23) are symmetric with respect to the anti-principal diagonal, i.e.
d10 = dn.n−1,d11 = dn−1,n−1,dn−1,0 = dn,1, etc. Complete Book of Mathematics [8]
Vol. 17 has a list of expansions of determinants of order ≤ 5 with such symmetry
under the title queer multiplication procedure [変乗法 henjōhō].
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Publ. [陝西科学技術出版社], Xi’an (1998).
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Book on Things Small and Large, → Jinkōki
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Cheng Dawei [程大位], 14, 120, 152, 157,

158, 175, 208, 217, 246, 278

Chi Minh Lap Thanh Toan Phap [指明立成筭
法], 150–153, 157, 159, 162, 164, 165,
167

Chiljongsan [七政算], 95
Chinese abacus, → counting boards
Choi Hanki [崔漢綺], 97
Choi Sukjung [崔錫鼎], 96, 97, 100
Cholsul, → Zhuı̀ Shù
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circular field method [圓田術 yuantian shu],

65, 66, 78
circular principle [円理 enri], 129
Classic of Mo [墨経Mojing], 69
Clavius, C., 358
Clearly Explained Methods of Mathematics
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Excess-Deficiency [盈不足 Yingbuzu] Chapter,

66–68
excess-deficiency procedure [盈不足術

yingbuzu shu], 66, 67, 70, 87
excessive [背 hai], 323, 390, 391
Exhibition of Mathematical Methods [算法発
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558

Methods of Mathematics, Old and New, →
Mathematical Methods Old and New

Methods of Solving Concealed Problems [解
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編 Kōko shinpen], 368
New Commentary on Introduction to Math-

ematics [新編算学啓蒙註解 Shimpen
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Ōhashi, Yukio [大橋由紀夫], 149, 150
Ojosan [五曹算], 95
Okumura, Sakuzaemon [奥村作左衛門], 12



584 Index

On Defective Problems [病題議 Byōdaigi],
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Ono, Eijū [小野栄重], 365
open problems, → bequeathed problems
operation of sphere volume [開立圓 kai

liyuan], 71
operations of celestial element [天元演段

tengen endan], 328
ordinary [全 zen], 323, 390, 391
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Origin of Mathematical Methods [算法根源記
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Pham Huu Chung [范有鍾], 163, 165, 166
Pham, F., 381
Phan Dinh Dieu, 378
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proportional distribution [衰分 Cuifen], 67
provisional [動 dō], 224, 391–393
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22, 24, 97, 246, 251
Ruan Yuan [阮元], 50
rule of augmentation [増術 zōjutsu], 281
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Tō-Teishi-Sanka-Dan], 6
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388–391, 393
synthesis [綜合 Zonghe], 75
Systematic Treatise of Arithmetic [算法統宗
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Takebe, Kataakira [建部賢明], 5, 15, 17, 212,

213, 224, 264, 272, 311–313, 322, 323,
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325, 326, 329, 388, 389, 393, 496
three formulas [三式 sanshiki], 130, 323, 333,

334, 337, 341
Three methods for land surveying [量地三略
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Zhang Xingcheng [張行成], 157
Zhao Shuang [趙爽], 112
Zhou Gong [周公], 111
Zhu Shijie [朱世傑], 14, 24, 26, 100, 107,

111–116, 120, 122, 124–127, 246, 251,
276–278, 282, 313, 457, 497, 554
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