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Abstract Variational principles for magnetohydrodynamics were introduced by
previous authors both in Lagrangian and Eulerian form. Yahalom (A four function
variational principle for Barotropic magnetohydrodynamics, EPL 89, 34005 (2010)
has shown that barotropic magnetohydrodynamics is mathematically equivalent to
a four function field theory defined a by a Lagrangian for some topologies. The
four functions include two surfaces whose intersections consist the magnetic field
lines, the part of the velocity field not defined by the comoving magnetic field and
the density. This Lagrangian admits a newly discovered group of Diffeomorphism
Symmetry. I discuss the symmetry group and derive the related Noether current.

1 Introduction

Variational principles for magnetohydrodynamics were introduced by previous
authors both in Lagrangian and Eulerian form. Eulerian variational principles for
non-magnetic fluid dynamics were first introduced by Davydov [2]. Following
the work of Davydov, Zakharov and Kuznetsov [10] suggested an Eulerian vari-
ational principle for magnetohydrodynamics. However, the variational principle
suggested by Zakharov and Kuznetsov contained two more functions than the
standard formulation of magnetohydrodynamics with a total sum of nine variational
variables. Another Eulerian variational principle for magnetohydrodynamics was
introduced independently by Calkin [1] in a work that preceded Zakharov and
Kuznetsov paper by seven years. However, Calkin’s variational principle also
depends on as much as eleven variational variables. The situation was somewhat
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improved when Vladimirov and Moffatt [6] in a series of papers have discussed
an Eulerian variational principle for incompressible magnetohydrodynamics. Their
variational principle contained only three more functions in addition to the seven
variables which appear in the standard equations of magnetohydrodynamics which
are the magnetic field B the velocity field v and the density ρ . Kats [3] has
generalized Moffatt’s work for compressible non barotropic flows but without
reducing the number of functions and the computational load. The current paper
will discuss only continuous flows due to space limitations, possible extensions of
the current formalism to discontinuous flows will be discussed in a future paper.
Sakurai [4] has introduced a two function Eulerian variational principle for force-
free magnetohydrodynamics and used it as a basis of a numerical scheme, his
method is discussed in a book by Sturrock [5]. In a work Yahalom and Lynden-
Bell [7, 9] have combined the Lagrangian of Sturrock [5] with the Lagrangian
of Sakurai [4] to obtain an Eulerian variational principle depending on only six
functions. The vanishing of the variational derivatives of this Lagrangian entail all
the equations needed to describe barotropic magnetohydrodynamics without any
additional constraints.

The non-singlevaluedness of the functions appearing in the reduced
representation of barotropic magnetohydrodynamics was discussed in particular
with connection to the topological invariants of magnetic and cross helicities. It was
shown that flows with non trivial topologies which have non zero magnetic or cross
helicities can be adequately described by the functions of the reduced representation
provided that some of them are non-single valued [7, 9]. The cross helicity per unit
flux was shown to be equal to the discontinuity of the function ν , this discontinuity
was shown to be a conserved quantity along the flow. The magnetic helicity per unit
flux was shown to be equal to the discontinuity of another function ζ .

In a more recent work [8] the number of needed functions was further reduced
and it was shown that magnetohydrodynamics is mathematically equivalent to a four
function field theory defined a by a Lagrangian.

In the current paper I show that the four function Lagrangian [8] admits a newly
discovered group of diffeomorphism symmetry. The relevant Noether current and
conservation laws of the newly discovered group of diffeomorphism symmetry are
discussed.

The plan of this paper is as follows. First I introduce the standard notations
and equations of barotropic magnetohydrodynamics. Next I introduce the potential
representation of the magnetic field B and the velocity field v. This is followed by
a review of the Eulerian variational principle developed by Yahalom and Lynden-
Bell [7,9]. After those introductory sections I will present the four function Eulerian
variational principles for non-stationary magnetohydrodynamics [8]. Finally I will
discuss the newly discovered group of diffeomorphism symmetry and the relevant
Noether current and conservation laws associated with the group of diffeomorphism
symmetry.
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2 The Standard Formulation of Barotropic
Magnetohydrodynamics

The standard set of equations solved for barotropic magnetohydrodynamics are
given below:

∂B
∂ t

= ∇× (v×B), (1)

∇ ·B = 0, (2)

∂ρ
∂ t

+∇ · (ρv) = 0, (3)

ρ
dv
dt

= ρ(
∂v
∂ t

+(v ·∇)v) =−∇p(ρ)+
(∇×B)×B

4π
. (4)

The following notations are utilized: ∂
∂ t is the temporal derivative, d

dt is the temporal
material derivative and ∇ has its standard meaning in vector calculus. B is the
magnetic field vector, v is the velocity field vector and ρ is the fluid density. Finally
p(ρ) is the pressure which we assume depends on the density alone (barotropic
case). The justification for those equations and the conditions under which they
apply can be found in standard books on magnetohydrodynamics (see for example
[5]). Equation (1) describes the fact that the magnetic field lines are moving with
the fluid elements (“frozen” magnetic field lines), (2) describes the fact that the
magnetic field is solenoidal, (3) describes the conservation of mass and equation (4)
is the vector Euler equation for a fluid in which both pressure and Lorentz magnetic
forces apply. The term:

J =
∇×B

4π
, (5)

is the electric current density which is not connected to any mass flow. The number
of independent variables for which one needs to solve is seven (v,B,ρ) and the
number of equations (1), (3), (4) is also seven. Notice that (2) is a condition on the
initial B field and is satisfied automatically for any other time due to (1). Also notice
that p(ρ) is not a variable rather it is a given function of ρ .

3 Potential Representation of Vector Quantities
of Magnetohydrodynamics

It was shown in [9] that B and v can be represented in terms of five scalar functions
α,β ,χ ,η ,ν . Following Sakurai [4] the magnetic field takes the form:

B = ∇χ ×∇η . (6)



464 A. Yahalom

Hence B satisfies automatically (2) for co-moving χ and η surfaces and is
orthogonal to both ∇χ and ∇η . The above expression can also describe a magnetic
field with non-zero magnetic helicity as was demonstrated in [9]. Moreover, the
velocity v can be represented in the following form:

v = ∇ν +α∇χ +β ∇η . (7)

this is a generalization of the Clebsch representation for magnetohydrodynamics.

4 The Action of Barotropic Magnetohydrodynamics

It was shown in [9] (Eq. (4.15) of [9], notice also the change in notation L here
instead of L̂ used previously) that the action of barotropic magnetohydrodynamics
takes the form:

A ≡
∫

Ld3xdt,

L ≡ −ρ
[

∂ν
∂ t

+α
∂ χ
∂ t

+β
∂η
∂ t

+ ε(ρ)+
1
2
(∇ν +α∇χ +β ∇η)2

]

− 1
8π

(∇χ ×∇η)2, (8)

in which ε(ρ) is the specific internal energy. Taking the variational derivatives to
zero for arbitrary variations leads to the following set of six equations:

∂ρ
∂ t

+∇ · (ρv) = 0, (9)

dχ
dt

= 0, (10)

dη
dt

= 0, (11)

dν
dt

=
1
2

v2 −w, (12)

in which w is the specific enthalpy.

dα
dt

=
∇η ·J

ρ
, (13)

dβ
dt

= −∇χ ·J
ρ

. (14)
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In all the above equations B is given by (6) and v is given by (7). The mass
conservation equation (3) is readily obtained. Now one needs to show that also (1)
and (4) are satisfied.

It can be easily shown that provided that B is in the form given in (6), and
(10), (11) are satisfied, then (1) are satisfied.

It was shown in [9] that a velocity field given by (7), such that the equations
for α,β ,χ ,η ,ν satisfy the corresponding equations (9), (10), (11), (12), (13), (14)
must satisfy Euler’s equations. This proves that the barotropic Euler equations can
be derived from the action given in (8) and hence all the equations of barotropic
magnetohydrodynamics can be derived from the above action without restricting
the variations in any way except on the relevant boundaries and cuts.

5 A Simpler Action for Barotropic Magnetohydrodynamics

Can we obtain a further reduction of barotropic magnetohydrodynamics? Can we
formulate magnetohydrodynamics with less than the six functions α,β ,χ ,η ,ν,ρ?
The answer is yes, in fact four functions χ ,η ,ν,ρ will suffice. To see this we may
write the two equations (10), (11) as equations for α,β that is:

dχ
dt

=
∂ χ
∂ t

+ v ·∇χ =
∂ χ
∂ t

+(∇ν +α∇χ +β ∇η) ·∇χ = 0,

dη
dt

=
∂η
∂ t

+ v ·∇η =
∂η
∂ t

+(∇ν +α∇χ +β ∇η) ·∇η = 0, (15)

in which we have used (7). Solving for α,β we obtain:

α[χ ,η ,ν] =
(∇η)2( ∂ χ

∂ t +∇ν ·∇χ)− (∇η ·∇χ)( ∂η
∂ t +∇ν ·∇η)

(∇η ·∇χ)2 − (∇η)2(∇χ)2

β [χ ,η ,ν] =
(∇χ)2( ∂η

∂ t +∇ν ·∇η)− (∇η ·∇χ)( ∂ χ
∂ t +∇ν ·∇χ)

(∇η ·∇χ)2 − (∇η)2(∇χ)2 . (16)

Hence α and β are not free variables any more, but depend on χ ,η ,ν . Moreover,
the velocity v now depends on the same three variables χ ,η ,ν:

v = ∇ν +α[χ ,η ,ν]∇χ +β [χ ,η ,ν]∇η . (17)

Since v is given now by (17) it follows that the two equations (10), (11) are satisfied
identically and need not be derived from a variational principle. The above equation
can be somewhat simplified resulting in:

v = ∇ν +
1

B2

[
∂η
∂ t

∇χ − ∂ χ
∂ t

∇η +∇ν ×B
]
×B

=
1

B2

[(
∂η
∂ t

∇χ − ∂ χ
∂ t

∇η
)
×B+B(∇ν ·B)

]
≡ v⊥+ v‖ (18)
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Hence the velocity v is partitioned naturally into two components one which is
parallel to the magnetic field and another one which is perpendicular to it. Inserting
the velocity representation (18) into (16) will lead to the result:

α =
∇η · (B× (v−∇ν))

B2

β = −∇χ · (B× (v−∇ν))
B2 . (19)

The reader should notice that the above quantities become singular for B = 0, hence
the formalism is only adequate for describing flows for which B �= 0. If the magnetic
field vanishes at infinity this is not an obstacle from the present formalism point
of view since the velocity field need not be defined at infinity where there is no
flow. For flow without magnetic fields the present formalism is not appropriate and
other variational economic formalisms may be suggested. Finally (16) should be
substituted into (8) to obtain a Lagrangian density L in terms of χ ,η ,ν,ρ :

L [χ ,η ,ν,ρ ] = ρ
[

1
2

v2 − dν
dt

− ε(ρ)
]
− B2

8π
(20)

where v is given by (18) and B by (6). Or more explicitly as:

L [χ ,η ,ν,ρ ] =
1
2

ρ
(∇χ ×∇η)2

[
∇η

∂ χ
∂ t

−∇χ
∂η
∂ t

+(∇χ ×∇η)×∇ν
]2

− ρ
[

∂ν
∂ t

+
1
2
(∇ν)2 + ε(ρ)

]
− (∇χ ×∇η)2

8π
. (21)

It is shown in [8] by variational analysis that indeed all the needed equations can be
derived from the above Lagrangian.

6 Diffeomorphism Symmetry and Noether Currents

This Lagrangian density admits an infinite symmetry group of transformations of
the form:

η̂ = η̂(χ ,η), χ̂ = χ̂(χ ,η), (22)

provided that the absolute value of the Jacobian of these transformation is unity:
∣∣∣∣∂ (η̂ , χ̂)
∂ (η ,χ)

∣∣∣∣= 1. (23)

In particular the Lagrangian density admits an exchange symmetry:

η̂ = χ , χ̂ = η . (24)
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Consider the following transformations:

η̂ = η + δη(χ ,η), χ̂ = χ + δ χ(χ ,η), (25)

in which δη ,δ χ are considered small in some sense. Inserting the above quantities
into (23) and keeping only first order terms we arrive at:

∂η δη + ∂χδ χ = 0. (26)

This equation can be solved as follows:

δη = ∂χ δ f , δ χ =−∂ηδ f , (27)

in which δ f = δ f (χ ,η) is an arbitrary small function.
The variational derivative of the Lagrangian L =

∫
d3xL in which L is given

in (21) with respect to χ and η was calculated in [8] (31) and (32) (in action
form). Assuming that the relevant equations of motion and boundary conditions
hold, we have:

δχ L =−d
∫

d3xραδ χ
dt

, δη L =−d
∫

d3xρβ δη
dt

(28)

The sum of the above two expressions is:

δχ L+ δηL =− d
dt

∫
d3xρ(αδ χ +β δη), (29)

If we choose variations δ χ ,δη such that (27) hold, then the variations are symmetry
variations and the total variation δχ L+ δηL vanishes. For this case we have:

d
dt

∫
d3xρ(α∂η δ f −β ∂χδ f ) = 0. (30)

Hence the quantity δG =
∫

d3xρ(α∂ηδ f −β ∂χδ f ) is conserved. Using the comov-
ing magnetic metage μ defined in [9] (4.23), (6.25), this can be written as:

δG =
∫

dχdηdμ(α∂ηδ f −β ∂χδ f ) =
∫

dχdμαδ f

∣∣∣∣
η2

η1
−

∫
dηdμβ δ f

∣∣∣∣
χ2

χ1

+
∫

dχdηdμδ f (∂χβ − ∂ηα). (31)

Since δ f is arbitrary, we arrive at the following conserved current.

J =

∫
dμ(∂χβ − ∂ηα). (32)
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7 Conclusion

We have discussed the significance of the magnetohydrodynamics diffeomorphism
symmetry group and in particular have shown the existence of the related conserved
Noether current. Future research will be oriented towards understanding the physical
consequences of this new conservation law.
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