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Abstract The exhaustive group classification of the class of KdV-like equations
with time-dependent coefficients ut +uux+g(t)uxxx+h(t)u = 0 is carried out using
equivalence based approach. A simple way for the construction of exact solutions
of KdV-like equations using equivalence transformations is described.

1 Introduction

A number of physical processes are modeled by generalizations of the well-known
equations of mathematical physics such as, e.g., the KdV and mKdV equations,
the Kadomtsev–Petviashvili equation, which contain time-dependent coefficients.
That is why last decade these equations do attract attention of researchers. A
number of the papers devoted to the study of variable coefficient KdV or mKdV
equations with time-dependent coefficients were commented in [10]. In the majority
of papers the results were obtained mainly for the equations which are reducible
to the standard KdV or mKdV equations by point transformations. Unfortunately
equivalence properties are neglected usually and finding of exact solutions is
reduced to complicated calculations of systems involving a number of unknown
functions using computer algebra packages. It is shown in [10, 12] that the usage of
equivalence transformations allows one to obtain the results in a much simpler way.

In this paper this fact is reaffirmed via presentation the correct group classifi-
cation of a class of variable coefficient KdV equations using equivalence based
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approach. Namely, we investigate Lie symmetry properties and exact solutions of
variable coefficient KdV equations of the form

ut + uux+ g(t)uxxx + h(t)u = 0, (1)

where g and h are arbitrary smooth functions of the variable t, g �= 0. It is shown
in Sect. 2 that using equivalence transformations the function h can be always
set to the zero value and therefore the form of h does not affect results of group
classification. The group classification of class (1) with h = 0 is carried out in [10].
So, using the known classification list and equivalence transformations we present
group classification of the initial class (1) without direct calculations.

An interesting property of class (1) is that it is normalized, i.e., all admissible
point transformations within this class are generated by transformations from the
corresponding equivalence groups. Therefore, there are no additional equivalence
transformations between cases of the classification list, which is constructed using
the equivalence relations associated with the corresponding equivalence group. In
other words, the same list represents the group classification result for the corre-
sponding class up to the general equivalence with respect to point transformations.

Recently the authors of [3] obtained a partial group classification of class (1)
(the notation a and b was used there instead of h and g, respectively). The reason
of failure was neglecting an opportunity to use equivalence transformations. This
is why only some cases of Lie symmetry extensions were found, namely the cases
with h = const, h = 1/t and h = 2/t.

In fact the group classification problem for class (1) up to its equivalence
group is already solved since this class is reducible to class (1) with h = 0 whose
group classification is carried out in [10]. Using the known classification list and
equivalence transformations we present group classifications of class (1) without
the simplification of both equations admitting extensions of Lie symmetry algebras
and these algebras themselves by equivalence transformations. The extended clas-
sification list can be useful for applications and convenient to be compared with the
results of [3].

Note that in [1, 4] group classifications for more general classes that include
class (1) were carried out. Nevertheless those results obtained up to very wide
equivalence group seem to be inconvenient to derive group classification for
class (1).

2 Equivalence Transformations

An important step under solving a group classification problem is the construction
of the equivalence group of the class of differential equations under consideration.
The usage of transformations from the related equivalence group often gives an
opportunity to essentially simplify a group classification problem and to present the
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final results in a closed and concise form. Moreover, sometimes this appears to be a
crucial point in the exhaustive solution of such problems [2, 12–14].

There exist several kinds of equivalence groups. The usual equivalence group of
a class of differential equations consists of the nondegenerate point transformations
in the space of independent and dependent variables and arbitrary elements of the
class such that the transformation components for the variables do not depend
on arbitrary elements and each equation from the class is mapped by these
transformations to equations from the same class. If any point transformation
between two fixed equations from the class belongs to its (usual) equivalence group
then this class is called normalized. See theoretical background on normalized
classes in [8, 9].

We find the equivalence group G∼
1 of class (1) using the results obtained in [10]

for more general class of variable coefficient KdV-like equations. Namely, in [10]
a hierarchy of normalized subclasses of the general third-order evolution equations
was constructed. The equivalence group for normalized class of variable coefficient
KdV equations

ut + f (t)uux + g(t)uxxx + h(t)u+(p(t)+ q(t)x)ux+ k(t)x+ l(t) = 0, (2)

as well as criterion of reducibility of equations from the this class to the standard
KdV equation were found therein.

The equivalence group G∼ of class (2) consists of the transformations

t̃ = α(t), x̃ = β (t)x+ γ(t), ũ = θ (t)u+ϕ(t)x+ψ(t), (3)

where α , β , γ , θ , ϕ and ψ run through the set of smooth functions of t, αtβ θ �= 0.
The arbitrary elements of (2) are transformed as follows

f̃ =
β

αtθ
f , g̃ =

β 3

αt
g, h̃ =

1
αt

(
h− ϕ

θ
f − θt

θ

)
, (4)

q̃ =
1
αt

(
q− ϕ

θ
f +

βt

β

)
, p̃ =

1
αt

(
β p− γq+

γϕ −β ψ
θ

f + γt − γ
βt

β

)
, (5)

k̃ =
1

αt β
(
θk−ϕαt h̃−ϕt

)
, l̃ =

1
αt

(
θ l − γαt k̃−ψαt h̃−ϕ p−ψt

)
. (6)

We also adduce the criterion of reducibility of (2) to the standard KdV equation.

Proposition 1 ([10]). An equation of form (2) is similar to the standard (constant
coefficient) KdV equation if and only if its coefficients satisfy the condition

st = 2gs2 − 3qs+
f
g

k, where s :=
2q− h

g
+

ftg− f gt

f g2 . (7)
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Class (1) is a subclass of class (2) singled out by the conditions f = 1 and p =
q = k = l = 0. Substituting these values of the functions f , p,q,k and l to (7) we
obtain the following assertion.

Corollary 1. An equation from class (1) is reduced to the standard KdV equation
by a point transformation if and only if there exist a constant c0 and ε ∈ {0,1} such
that

h =
ε
2

g∫
gdt + c0

− gt

g
. (8)

As class (2) is normalized [10], its equivalence group G∼ generates the entire
set of admissible (form-preserving) transformations for this class. Therefore, to
describe the set of admissible transformations for class (1) we should set f̃ = f = 1,
p̃ = p = q̃ = q = k̃ = k = l̃ = l = 0 in (4)–(6) and solve the resulting equations with
respect to transformation parameters. It appears that class (1) admits generalized
extended equivalence group and it is normalized in generalized sense only.

Summing up the above consideration, we formulate the following theorem.

Theorem 1. The generalized extended equivalence group Ĝ∼
1 of class (1) consists

of the transformations

t̃ = α, x̃ = β x+ γ, ũ = λ (β u+βtx+ γt), h̃ = λ h− 2λ
βt

β
−λt , g̃ = β 3λ g.

Here α is an arbitrary smooth function of t with αt �= 0, β = (δ1
∫

e−
∫

hdtdt+δ2)
−1,

γ = δ3
∫

β 2e−
∫

hdtdt + δ4; δ1, . . . ,δ4 are arbitrary constants, (δ1,δ2) �= (0,0) and
λ = 1/αt .

The usual equivalence group G∼
1 of class (1) is the subgroup of the generalized

extended equivalence group Ĝ∼
1 , which is singled out with the condition δ1 = δ3 = 0.

The parameterization of transformations from Ĝ∼
1 by the arbitrary function α(t)

allows us to simplify the group classification problem for class (1) via reducing the
number of arbitrary elements. For example, we can gauge arbitrary elements via
setting either h = 0 or g = 1. Thus, the gauge h = 0 can be made by the equivalence
transformation

t̂ =
∫

e−
∫

h(t)dtdt, x̂ = x, û = e
∫

h(t)dtu, (9)

that connects (1) with the equation ût̂ + ûûx̂ + ĝ(t̂)ûx̂x̂x̂ = 0. The new arbitrary
element ĝ is expressed via g and h in the following way:

ĝ(t̂) = e
∫

h(t)dtg(t).

This is why without loss of generality we can restrict the study to the class

ut + uux+ g(t)uxxx = 0, (10)
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since all results on symmetries and exact solutions for this class can be extended to
class (1) with transformations of the form (9).

The equivalence group for class (10) can be obtained from Theorem 1 by setting
h̃ = h = 0. Note that class (10) is normalized in the usual sense.

Theorem 2 ([10]). The equivalence group G∼
0 of class (10) is formed by the

transformations

t̃ =
at + b
ct + d

, t̃ =
e2x+ e1t + e0

ct + d
,

ũ =
e2(ct + d)u− e2cx− e0c+ e1d

ε
, g̃ =

e2
3

ct + d
g
ε
,

where a, b, c, d, e0, e1 and e2 are arbitrary constants with ε = ad − bc �= 0 and
e2 �= 0, the tuple (a,b,c,d,e0,e1,e2) is defined up to nonzero multiplier and hence
without loss of generality we can assume that ε =±1.

3 Lie Symmetries

The group classification of class (10) up to G∼
0 -equivalence is carried out in [10] in

the framework of classical approach [5, 6]. The result reads as follows.
The kernel of the maximal Lie invariance algebras of equations from class (10)

coincides with the one-dimensional algebra 〈∂x〉. All possible G∼
0 -inequivalent cases

of extension of the maximal Lie invariance algebras are exhausted by the cases 1–4
of Table 1.

For any equation from class (1) there exists an imaged equation in class (10)
with respect to transformation (9). The equivalence group G∼

0 of class (10) is
induced by the equivalence group Ĝ∼

1 of class (1) which, in turn, is induced by the
equivalence group G∼ of class (2). These guarantee that Table 1 presents also the
group classification list for class (1) up to Ĝ∼

1 -equivalence (resp. for the class (2) up
to G∼-equivalence). As all of the above classes are normalized, we can state that we

Table 1 The group classification of the class ut +uux +guxxx = 0, g �= 0

N g(t) Basis of Amax

0 ∀ ∂x

1 tn ∂x, t∂x +∂u, 3t∂t +(n+1)x∂x +(n−2)u∂u

2 et ∂x, t∂x +∂u, 3∂t + x∂x +u∂u

3 eδ arctan t
√

t2 +1 ∂x, t∂x +∂u, 3(t2 +1)∂t +(3t +δ )x∂x +((−3t +δ )u+3x)∂u

4 1 ∂x, t∂x +∂u, 3t∂t + x∂x −2u∂u, ∂t

Here n,δ are arbitrary constants, n ≥ 1/2, n �= 1, δ ≥ 0 mod G∼
0 .
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obtain Lie symmetry classifications of these classes up to general point equivalence.
This leads to the following assertion.

Corollary 2. An equation from class (1) (resp. (2)) admits a four-dimensional Lie
invariance algebra if and only if it is reduced by a point transformation to constant
coefficient KdV equation, i.e., if and only if condition (8) (resp. (7)) holds.

To derive the group classification of class (1) which is not simplified by
equivalence transformations, we first apply transformations from the group G∼

0 to
the classification list presented in Table 1 and obtain the following extended list:

0. arbitrary ĝ : 〈∂x̂〉;
1. ĝ = c0(at̂ + b)n(ct̂ + d)1−n, n �= 0,1: 〈∂x̂, t̂∂x̂ + ∂û, X3〉, where

X3 = 3(at̂ + b)(ct̂ + d)∂t̂ +(3act̂ + ad(n+ 1)+ bc(2−n))x̂∂x̂

+[3acx̂− (3act̂+ ad(2− n)+ bc(n+1))û]∂û;

2. ĝ = c0(ct̂ + d)exp

(
at̂ + b
ct̂ + d

)
: 〈∂x̂, t̂∂x̂ + ∂û, X3〉, where

X3 = 3(ct̂ + d)2∂t̂ +(3c(ct̂ + d)+ ε) x̂∂x̂ +
[
3c2x̂+(ε − 3c(ct̂ + d))û

]
∂û;

3. ĝ = c0e
δ arctan

(
a t̂+b
c t̂+d

)√
(at̂ + b)2 +(ct̂ + d)2: 〈∂x̂, t̂∂x̂ + ∂û, X3〉, where

X3 = 3
(
(at̂ + b)2 +(ct̂ + d)2)∂t̂ +(3a(at̂ + b)+ 3c(ct̂+ d)+ εδ ) x̂∂x̂

+
(
3(a2 + c2)x̂− (3a(at̂ + b)+ 3c(ct̂+ d)− εδ )û

)
∂û;

4a. ĝ = c0: 〈∂x̂, t̂∂x̂ + ∂û, ∂t̂ , 3t̂∂t̂ + x̂∂x̂ − 2û∂û〉;
4b. ĝ = ct̂ + d, c �= 0: 〈∂x̂, t̂∂x̂ + ∂û, 3(ct̂ + d)∂t̂ + 2cx̂∂x̂ − cû∂û, X4〉, where

X4 = (ct̂ + d)2∂t̂ + c(ct̂ + d)x̂∂x̂ + c(cx̂− (ct̂ + d)û)∂û.

Here c0, a, b, c, d and δ are arbitrary constants, (a2+b2)(c2+d2) �= 0, ε = ad−bc,
c0 �= 0.

Then we find preimages of equations from the class ût̂ + ûûx̂ + ĝ(t̂)ûx̂x̂x̂ = 0 with
arbitrary elements collected in the above list with respect to transformation (9). The
last step is to transform basis operators of the corresponding Lie symmetry algebras.
The results are presented in Table 2.

It is easy to see that Table 2 includes all cases presented in [3] as particular cases.
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Table 2 The group classification of the class ut +uux +guxxx +hu = 0, g �= 0

N h(t) g(t) Basis of Amax

0 ∀ ∀ ∂x

1 ∀ c0Tt(aT +b)n(cT +d)1−n ∂x, T ∂x +Tt∂u, 3T−1
t (aT +b)(cT +d)∂t +

[
3acT

+ad(n+1)+bc(2−n)
]
x∂x +

(
3acxTt −

[
3acT

+3hT−1
t (aT +b)(cT +d)+ad(n+1)+bc(2−n)

]
u
)

∂u

2 ∀ c0Tt(cT +d)exp
(

aT+b
cT+d

)
∂x, T ∂x +Tt∂u, 3T−1

t (cT +d)2∂t +(3c(cT +d)+ ε)x∂x

+
[
3c2xTt +

(
ε −3(c(cT +d)+hT−1

t (cT +d)2
)

u
]

∂u

3 ∀ c0Tte
δ arctan( aT+b

cT+d )G(t) ∂x, T ∂x +Tt∂u, 3T−1
t G2∂t+[

3a(aT +b)+3c(cT +d)+ εδ
]
x∂x +

[
3(a2 + c2)xTt

−(
3a(aT +b)+3c(cT +d)− εδ +3hT−1

t G2
)
u
]
∂u

4a ∀ c0Tt ∂x, T ∂x +Tt∂u, T−1
t (∂t −hu∂u),

3TT−1
t ∂t + x∂x − (2+3TT−1

t h)u∂u

4b ∀ (cT +d)Tt ∂x, T ∂x +Tt∂u, T−1
t (cT +d)2∂t + c(cT +d)x∂x

+[c2xTt − (cT +d)(c+T−1
t (cT +d)h)u]∂u,

3T−1
t (cT +d)∂t +2cx∂x − (c+3T−1

t (cT +d)h)u∂u

Here T =
∫

e−
∫

h(t)dtdt , Tt = e−
∫

h(t)dt , G =
√
(aT +b)2 +(cT +d)2; n c0, a, b, c, d and δ are

arbitrary constants, (a2 +b2)(c2 +d2) �= 0, ε = ad −bc, c0 �= 0, n �= 0,1. In the case (4b) c �= 0.

4 Generation of Exact Solutions

A number of recent papers concern the construction of exact solutions to different
classes of KdV- or mKdV-like equations using, e.g., such methods as “generalized
(G′/G)-expansion method”, “Exp-function method”, “Jacobi elliptic function ex-
pansion method”, etc. A number of references are presented in [10]. Almost in all
cases exact solutions were constructed only for equations which are reducible to
the standard KdV or mKdV equations by point transformations and usually these
were only solutions similar to the well-known one-soliton solution. In this section
we show that the usage of equivalence transformations allows one to obtain more
results in a simpler way. This approach is used also in [11].

The N-soliton solution of the KdV equation in the canonical form

Ut − 6UUx+Uxxx = 0 (11)

was constructed as early as in the seventies by Hirota [7]. The two-soliton solution
of (11) has the form

U =−2
∂ 2

∂x2 ln
(

1+ b1eθ1 + b2eθ2 +Ab1b2eθ1+θ2

)
, (12)
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where ai,bi are arbitrary constants, θi = aix− a3
i t, i = 1,2; A =

(
a1−a2
a1+a2

)2
.

Combining the simple transformation û =−6U that connects (11) with the KdV
equation of the form

ût̂ + ûûx̂ + ûx̂x̂x̂ = 0 (13)

and transformation (9), we obtain the formula

u =−6e−
∫

h(t)dt U
(∫

e−
∫

h(t)dtdt, x
)

for generation of exact solutions for the equations of the general form

ut + uux + e−
∫

h(t)dtuxxx + h(t)u = 0. (14)

These equations are preimages of (13) with respect to transformation (9). Here h is
an arbitrary nonvanishing smooth function of the variable t.

The two-soliton solution (12) leads to the following solution of (14)

u = 12e−
∫

h(t)dt ∂ 2

∂x2 ln
(

1+ b1eθ1 + b2eθ2 +Ab1b2eθ1+θ2

)
, (15)

where ai,bi are arbitrary constants, θi = aix − a3
i

∫
e−

∫
h(t)dtdt, i = 1,2; A =(

a1−a2
a1+a2

)2
. In a similar way one can construct N-soliton, rational and other types

of solutions for equations from class (14) using known solutions of classical KdV
equation.

5 Conclusion

In this paper group classification problem for class (1) is carried out with respect
to the corresponding equivalence group using equivalence based approach. Using
the normalization property it is proved that this classification coincides with the
one carried out up to general point equivalence. The classification list extended by
equivalence transformations is also presented. Such list is convenient for further
applications.

It is shown that the usage of equivalence groups is a crucial point for exhaustive
solution of the problem. Moreover, equivalence transformations allow one to
construct exact solutions of different types in a much easier way than by direct
solving. These transformations can also be utilized to obtain conservation laws, Lax
pairs and other related objects for equations reducible to well-known equations of
mathematical physics by point transformations without direct calculations.
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1. Güngör, F., Lahno, V.I., Zhdanov, R.Z.: J. Math. Phys. 45, 2280–2313 (2004)
2. Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Lobachevskii J. Math. 31, 100–122 (2010)
3. Johnpillai, A.G., Khalique, C.M.: Appl. Math. Comput. 216, 3761–3771 (2010)
4. Magadeev, B.A.: Algebra i Analiz 5, 141–156 (1993) (in Russian); translation in St. Petersburg

Math. J. 5, 345–359 (1994)
5. Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)
6. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York

(1982)
7. Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman

& Hall/CRC Press, Boca Raton (2004)
8. Popovych, R.O.: Collection of Works of Institute of Mathematics, vol. 3(2), pp. 239–254.

Institute of Mathematics, Kyiv, Ukraine (2006)
9. Popovych, R.O., Kunzinger, M., Eshraghi, H.: Acta Appl. Math. 109, 315–359 (2010)

10. Popovych, R.O., Vaneeva, O.O.: Commun. Nonlinear Sci. Numer. Simulat. 15, 3887–3899
(2010)

11. Tang, X.Y., Zhao, J., Huang, F., Lou, S.Y.: Stud. Appl. Math. 122, 295–304 (2009)
12. Vaneeva, O.O.: Commun. Nonlinear Sci. Numer. Simulat. 17, 611–618 (2012)
13. Vaneeva, O.O., Johnpillai, A.G., Popovych, R.O., Sophocleous, C.: J. Math. Anal. Appl. 330,

1363–1386 (2007)
14. Vaneeva, O.O., Popovych, R.O., Sophocleous, C.: Acta Appl. Math. 106, 1–46 (2009)


	Group Classification of Variable Coefficient KdV-like Equations
	1 Introduction
	2 Equivalence Transformations
	3 Lie Symmetries
	4 Generation of Exact Solutions
	5 Conclusion
	References


