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Preface

The workshop series “Lie Theory and Its Applications in Physics” is designed
to serve the community of theoretical physicists, mathematical physicists, and
mathematicians working on mathematical models for physical systems based on
geometrical methods and in the field of Lie theory.

The series reflects the trend towards a geometrization of the mathematical
description of physical systems and objects. A geometric approach to a system
yields in general some notion of symmetry which is very helpful in understanding
its structure. Geometrization and symmetries are meant in their widest sense, i.e.,
classical geometry, differential geometry, groups and quantum groups, infinite-
dimensional (super-)algebras, and their representations. Furthermore, we include
the necessary tools from functional analysis and number theory. This is a big
interdisciplinary and interrelated field.

The first three workshops were organized in Clausthal (1995, 1997, 1999), the
4th was part of the 2nd Symposium “Quantum Theory and Symmetries” in Cracow
(2001), the 5th, 7th, and 8th were organized in Varna (2003, 2007, 2009), and the
6th was part of the 4th Symposium “Quantum Theory and Symmetries” in Varna
(2005) but has its own volume of proceedings.

The 9th workshop of the series (LT-9) was organized by the Institute of Nuclear
Research and Nuclear Energy of the Bulgarian Academy of Sciences (BAS) in June
2011 (20–26), at the guest house of BAS near Varna on the Bulgarian Black Sea
Coast.

The overall number of participants was 76 and they came from 21 countries.
The scientific level was very high as can be judged by the speakers. The

plenary speakers were Anton Alekseev (Geneva), Loriano Bonora (Trieste), Branko
Dragovich (Belgrade), Anthony Joseph (Rehovot), Toshiyuki Kobayashi (Tokyo),
Jean-Louis Loday (Strasbourg), Ivan Penkov (Bremen), Karl-Henning Rehren
(Gttingen), and Ivan Todorov (Sofia). A special plenary session, with the speakers
Joris Van der Jeugt (Ghent), Ronald King (Southampton), and David Finkelstein
(Atlanta), was devoted to the 75th-year Jubilee of Tchavdar Palev, Professor
Emeritus at our Institute.
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vi Preface

The topics covered the most modern trends in the field of the workshop:
representation theory, quantum field theory, string theory, (super-)gravity theories,
conformal field theory, supersymmetry, quantum groups, vertex algebras, and
integrability.

The members of the International Organizing Committee were V.K. Dobrev
(Sofia) and H.-D. Doebner (Clausthal), in collaboration with G. Rudolph (Leipzig).

The members of the Local Organizing Committee were V.K. Dobrev (Chairman),
V.I. Doseva, A. Ganchev, S.G. Mihov, D. Nedanovski, T.V. Popov, T. Stefanova,
M.N. Stoilov, and S.T. Stoimenov.
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A Lump Solution in SFT

Loriano Bonora

Abstract A concrete example of lump solution in bosonic open string field theory
is presented and discussed. It is shown that the solution satisfies the equation of
motion and is not a pure gauge. The expression of its energy is written down
explicitly. The value of the energy, calculated both numerically and analytically
turns out to be in agreement with that of a D24 brane tension.

1 Introduction

The framework of this talk is tachyon condensation in bosonic open string field
theory. Purely bosonic string theory is, of course, by itself theoretically incomplete,
if anything because its spectrum does not contain fermions. However open string
field theory is a simplified playground with respect to the corresponding superstring
field theory versions. Exploiting the relative simplicity of the bosonic theory it has
been possible in the last 10 years to make significant progress and, then, export some
of the results to the superstring relatives. More precisely the framework of my talk is
Witten’s Open String Field Theory (OSFT) [16], and the guidelines for all its recent
developments are represented by Sen’s conjectures [12, 13].

The latter can be summarized as follows. Bosonic open string theory in D=26
dimensions is quantized on an unstable vacuum, an instability which manifests itself
through the appearance of the open string tachyon. The effective tachyonic potential
has, beside the local maximum where the theory is quantized, a local minimum.
Sen’s conjectures concern the nature of the theory around this local minimum.
First of all, the energy density difference between the maximum and the minimum

L. Bonora (�)
SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy

INFN, Sezione di Trieste, Trieste, Italy
e-mail: bonora@sissa.it

V. Dobrev (ed.), Lie Theory and Its Applications in Physics: IX International Workshop,
Springer Proceedings in Mathematics & Statistics 36,
DOI 10.1007/978-4-431-54270-4 1, © Springer Japan 2013
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4 L. Bonora

should exactly compensate for the D25-brane tension characterizing the unstable
vacuum (first conjecture): this is a condition for the (relative) stability of the theory
at the minimum. Therefore the theory around the minimum should not contain any
quantum fluctuation pertaining to the original (unstable) open string theory (second
conjecture). The minimum should therefore correspond to an entirely new theory,
which can only be the bosonic closed string theory. If so, in the new theory one
should be able to find in particular all the classical solutions characteristic of closed
string theory, the D25-brane as well as all the solitonic solutions representing lower
dimensional D-branes (third conjecture).

The evidence in favor of these conjectures has been accumulating over the years
although not with a uniform degree of accuracy and reliability, until the first two
conjectures were rigorously proved [6, 11]: an explicit analytic (non-perturbative)
SFT solution was shown to exist, which links the initial vacuum to the final one and
it was shown that this vacuum does not contain perturbative open string modes. As
for the third conjecture a recent proposal has been put forward recently [1–3], see
also [4, 7], as to how to construct analytic lump solutions. It is the purpose of this
talk to illustrate this construction with an explicit example and compute (at least
numerically) its energy.

Before plunging into the details of the construction, I would like to make a
comment on the motivations for studying tachyon condensation is OSFT. The task
of proving the three conjectures is not a merely academical (as ambitious as it
may be) one, and the motivation is not exhausted once they are proved. In fact
a very far-reaching consequence of Sen’s conjectures has so far remained rather
implicit in the literature: if the three conjectures are true and the new vacuum is the
closed string vacuum, it is implicit that the closed string degrees of freedom can be
represented (non-perturbatively) in terms of the open string ones [14,15]. This is an
exciting possibility which has not been methodically explored so far, and it is the
real motivation behind this research.

2 The Analytic Tachyon Vacuum Solution

The open string field theory action proposed by Witten years ago [16], is

S (Ψ) =− 1
g2

o

∫
(

1
2
Ψ ∗QΨ +

1
3
Ψ ∗Ψ ∗Ψ

)

. (1)

with equation of motion

QΨ +Ψ ∗Ψ = 0 (2)

The dimension of space-time is supposed to be the critical one, D = 26. The first
analytic solution, representing the tachyon vacuum, was found by Martin Schnabl
[11]. It allowed to prove first and second Sen’s conjectures [6].

An interesting variant of the Schnabl solution has been proposed recently by Erler
and Schnabl [8]. This solution lends itself to a generalization to lump solutions.
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It has also the virtue of exploiting the simplification in the language of OSFT that
has intervened in the last few years. To better describe it, it is in fact convenient
to shift from the language of string fields and operators K1

L,B
1
L,c(z) used in the first

Schnabl’s solution [10,11] to an ‘algebra with operator’ language defined as follows.
Let us first recall the definitions

L0 = L0 +
∞

∑
k=1

2(−1)k+1

4k2− 1
L2k, K1 = L1 +K−1

B0 = b0 +
∞

∑
k=1

2(−1)k+1

4k2− 1
b2k, B1 = b1 + b−1

and

BL
1 =

1
2

B1 +
1
π

(

B0 +B†
0

)

KL
1 =

1
2

K1 +
1
π

(

L0 +L †
0

)

where c(z), b(z) are the ghost fields. We set

K =
π
2

KL
1 |I〉, B =

π
2

BL
1 |I〉, c = c

(

1
2

)

|I〉, (3)

in the so-called sliver frame (obtained by mapping the UHP to an infinite cylinder
C2 of circumference 2, by the sliver map f (z) = 2

π arctanz). Then, with respect to the
star product (which we will understand from now on), these states form the algebra

{B,c}= 1, KB = BK, [K,c] = ∂c, {B,∂c}= 0, (4)

where Q operates as follows

QB = K, Qc = c∂c (5)

In terms of this algebra with operator, the new solution [8], is given by

ψ0 =
1

1+K
c(1+K)Bc = c− 1

1+K
Bc∂c, (6)

and can be formally obtained via a ‘gauge transformation’ of the perturbative
vacuum

ψ0 = U0QU−1
0 (7)

U0 = 1− 1
1+K

Bc (8)

U−1
0 = 1+

1
K

Bc. (9)
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This gauge transformation is in fact singular and this is the reason why the solution is
nontrivial. The energy of this solution turns out to be the correct one (1st conjecture)

E =− S
V

=
1

g2
oV

(

1
2
〈Ψ ,QΨ 〉+ 1

3
〈Ψ ,Ψ �Ψ〉

)

=− 1

2π2g2
0

(10)

It is also possible to define a homotopy operator A = B
K+1 , which satisfies the

property QA = 1, where

Qψ ≡ Qψ+Ψ0 �ψ− (−1)|ψ|ψ �Ψ0 (11)

is the BRST operator at the tachyon vacuum. This implies that the cohomology
around the tachyon vacuum is trivial (2nd conjecture).

As we will see below, the Erler–Schnabl solution lends itself to a rather simple
matter deformation, which turns out to be the searched for lump solution.

3 The Third Conjecture

The third conjecture predicts the existence of lower dimensional solitonic solutions
or lumps, interpreted as Dp-branes, with p < 25. These solutions bring along the
breaking of translational symmetry and background independence. The evidence
for the existence of such solutions collected in the past years is overwhelming. It
has been possible to find them with approximate methods or with exact methods in
related theories. In the sequel I will present an explicit example of analytic lump
solution in OSFT.

3.1 Analytic Lump Solutions

In a recent paper [1], a general method has been proposed to obtain new exact
analytic solutions in open string field theory, and in particular solutions that describe
inhomogeneous tachyon condensation. The method consists in translating an exact
renormalization group (RG) flow generated in a two-dimensional world-sheet theory
by a relevant operator, into the language of OSFT. The so-constructed solution is a
deformation of the Erler–Schnabl solution described above. It has been shown in
[1] that, if the operator has suitable properties, the solution will describe tachyon
condensation in specific space directions, thus representing the condensation of a
lower dimensional brane. In the following, after describing the general method, we
will focus on a particular solution, generated by an exact RG flow analyzed first by
Witten [17]. On the basis of the analysis carried out in the framework of 2D CFT in
[9], we expect it to describe a D24 brane, with the correct ratio of tension with the
starting D25 brane.
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Let us see how to construct such kind of lump solutions. To start with we enlarge
the K,B,c algebra by adding a (relevant) matter operator

φ = φ
(

1
2

)

|I〉. (12)

with the properties

[c,φ ] = 0, [B,φ ] = 0, [K,φ ] = ∂φ ,

such that Q has the following action:

Qφ = c∂φ + ∂cδφ . (13)

It can be easily proven that

ψφ = cφ − 1
K +φ

(φ − δφ)Bc∂c (14)

does indeed satisfy (formally, see below) the OSFT equation of motion

Qψφ +ψφψφ = 0 (15)

It is clear that (14) is a deformation of the Erler–Schnabl solution, which can be
recovered for φ = 1.

Much like in the Erler–Schnabl case, we can view this solution as a singular
gauge transformation

ψφ =UφQU−1
φ (16)

where

Uφ = 1− 1
K +φ

φBc, U−1
φ = 1+

1
K
φBc, (17)

In order to prove that (14) is a solution, one demands that (cφ)2 = 0, which requires
the OPE of φ at nearby points to be not too singular.

It is instructive to write down the kinetic operator around this solution. With some
manipulation, using the K,B,c,φ algebra it is possible to show that

Qψφ
B

K +φ
= Q

B
K +φ

+

{

ψφ ,
B

K +φ

}

= 1.

So, unless the string field B
K+φ is singular (as is the case for B

K and the original Q),
it defines a homotopy operator and the solution has trivial cohomology, which is
the defining property of the tachyon vacuum [6]. On the other hand, in order for
the solution to be well defined, the quantity 1

K+φ (φ − δφ) should be well defined.
Moreover, in order to be able to show that (14) satisfies the equation of motion, one
needs K +φ to be invertible.
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In full generality we thus have a new nontrivial solution if

1. 1
K+φ is singular, but

2. 1
K+φ (φ − δφ) is regular and

3. 1
K+φ (K +φ) = 1

These conditions are in general impossible to satisfy: for instance, K+φ (like K)
is not invertible. What is needed is a regularization. This problem was discussed in
[2] (App.D), where an analytic regularization was used to satisfy the last condition
above. In the following, as far as these conditions are concerned, we will limit
ourselves to some heuristics. A detailed treatment can be found in the literature.

For concreteness we parametrize the worldsheet RG flow, referred to above, by
a parameter u, where u = 0 represents the UV and u = ∞ the IR, and label φ by φu,
with φu=0 = 0. Then we require for φu the following properties under the coordinate
rescaling ft (z) = z

t

ft ◦φu(z) =
1
t
φtu

(z
t

)

. (18)

and, most important, that the partition function

g(u)≡ Tr[e−(K+φu)] =
〈

e−
∫ 1

0 dsφu(s)
〉

C1
, (19)

satisfies the asymptotic finiteness condition

lim
u→∞

〈

e−
∫ 1

0 dsφu(s)
〉

C1
= finite. (20)

Barring subtleties, this should satisfy the first two conditions above (the third can be
satisfied only with a regulator, as pointed out above), i.e. guarantee not only the reg-
ularity of the solution but also its ‘non-triviality’, in the sense that if this condition
is satisfied, it cannot fall in the same class as the ES tachyon vacuum solution.

We will consider in the sequel a specific relevant operator φu and the correspond-
ing SFT solution. This operator generates an exact RG flow studied by Witten in
[17], see also [9], and is based on the operator (defined in the cylinder CT of width
T in the arctan frame)

φu(s) = u(X2(s)+ 2 lnu+ 2A) (21)

where A is a constant first introduced in [5]. In C1 we have

φu(s) = u(X2(s)+ 2 lnTu+ 2A) (22)

and on the unit disk D,

φu(θ ) = u(X2(θ )+ 2 ln
Tu
2π

+ 2A) (23)
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If we set

gA(u) = 〈e−
∫ 1

0 dsφu(s)〉C1 (24)

we have

gA(u) = 〈e
− 1

2π
∫ 4π

0 dθ u

(

X2(θ)+2 ln u
2π+2A

)

〉D
We have

gA(u) = Z(2u)e−2u(ln u
2π +A) (25)

where Z(u) is the partition function of the system on the unit disk computed by [17].
Requiring finiteness for u→ ∞ we get A = γ− 1+ ln4π , which implies

gA(u)≡ g(u) =
1

2
√
π
√

2uΓ (2u)e2u(1−ln(2u)) (26)

and

lim
u→∞g(u) = 1 (27)

Moreover, as it turns out, δφu =−2u, and so:

φu− δφu = u∂uφu(s) (28)

Therefore the φu just introduced satisfies all the requested properties. According
to [9], the corresponding RG flow in BCFT reproduces the correct ratio of tension
between D25 and D24 branes. Consequently ψu ≡ ψφu is expected to represent a
D24 brane solution.

In SFT the most important gauge invariant quantity is of course the energy.
Therefore in order to make sure that ψu ≡ ψφu is the expected solution we must
prove that its energy equals a D24 brane energy.

The energy expression for the lump solution was determined in [1] by evaluating
a three-point function on the cylinder CT of circumference T in the arctan frame. It
equals − 1

6 times the following expression

〈ψuψuψu〉 = −
∫ ∞

0
dt1dt2dt3E0(t1, t2, t3)u

3g(uT )

{

(

−∂2uT g(uT )
g(uT )

)3

+
1
2

(

−∂2uT g(uT )
g(uT )

)(

G2
2uT

(

2πt1
T

)

+G2
2uT

(

2π(t1+t2)
T

)

+G2
2uT

(

2πt2
T

))

+G2uT

(

2πt1
T

)

G2uT

(

2π(t1+t2)
T

)

G2uT

(

2πt2
T

)

}

(29)

Here T = t1 + t2 + t3 and g(u) is as above, and represents the partition function
of the underlying matter CFT t the boundary of the unit disk with definite
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boundary conditions at infinity. Gu(θ ) represents the correlator on the boundary,
first determined by Witten [17]:

Gu(θ ) =
1
u
+ 2

∞

∑
k=1

cos(kθ )
k+ u

(30)

Finally E0(t1, t2, t3) represents the ghost three-point function in CT .

e0(t1, t2, t3) = 〈Bc∂c(t1 + t2)∂c(t1)∂c(0)〉CT

= − 4
π

sin
πt1
T

sin
π(t1 + t2)

T
sin
πt2
T

(31)

An absolutely remarkable property of (29) is that it does not depend on u. In fact
u can be absorbed in a redefinition of variables ti → uti, i = 1,2,3, and disappears
from the expression.

Taking into account that (29) contains up to three power of G2uT , in order to
evaluate it one must compute three infinite summations and three integrals. One
can easily integrate over the angular variables x = t1/T,y = t2/T , after which the
discrete summations are reduced to two. One can also carry out analytically one of
the remaining summations. But this seems to be as far as one can get analytically.
The rest of the computation has to rely on a numerical approximation. This has
been done in [2]. An important remark is that this expression has an UV (s ≈ 0,
setting s = 2uT ) singularity, which must be subtracted away. Once this done, the
expression (29) has been analytically computed up to the point permitted by our
present mathematical tools and continued with numerical means. The final result
one gets is ≈ 0.0693926. This is 30% off the expected result (see below, (36)).
However this failure is no surprise, for the result depends on the UV subtraction we
have made. Therefore we cannot assign to it any physical significance.

At this point it seems that our calculation has been carried out for nothing,
but this is not the case. In order to understand where we are we must return to
the very meaning of third Sen’s conjecture, which says that the lump solution
is a solution of the theory on the tachyon condensation vacuum. Therefore we
must measure the energy of our solution with respect to the tachyon condensation
vacuum. Simultaneously the resulting energy must be a subtraction-independent
quantity because only to a subtraction-independent quantity can a physical meaning
be assigned. Both requirements have been satisfied in [2] in the following way.

First a new solution to the EOM, depending on a parameter ε , has been
introduced

ψε
u = c(φu + ε)− 1

K +φu + ε
(φu + ε− δφu)Bc∂c. (32)

and it has been shown that it is gauge equivalent to the tachyon vacuum solution, its
energy (after the same UV subtraction as in the previous case) being (numerically) 0.
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Then, using it, a solution to the EOM at the tachyon condensation vacuum has been
obtained. The equation of motion at the tachyon vacuum is

QΦ+ΦΦ = 0, where QΦ = QΦ+ψε
uΦ+Φψε

u . (33)

One can easily show that

Φ0 = ψu−ψε
u (34)

is a solution to (33). The action at the tachyon vacuum is− 1
2 〈QΦ,Φ〉− 1

3〈Φ,ΦΦ〉.
Thus the energy of Φ0 is

E[Φ0] = −1
6
〈Φ0,Φ0Φ0〉

= −1
6

[〈ψu,ψuψu〉− 〈ψε
u ,ψ

ε
uψ

ε
u 〉− 3〈ψε

u ,ψuψu〉+ 3〈ψu,ψε
uψ

ε
u 〉
]

. (35)

The UV subtractions necessary for each correlator at the RHS of this equation
are always the same, therefore they cancel out and the final result is subtraction-
independent. A final bonus of this procedure is that the final result can be derived
purely analytically and E[Φ0] turns out to be precisely the D24-brane energy. With
the conventions of [2], this is

TD24 =
1

2π2 (36)

In [3] the same result was extended to Dp-brane lump solutions for any p.
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Towards p-Adic Matter in the Universe

Branko Dragovich

Abstract Starting from p-adic string theory with tachyons, we introduce a new
kind of non-tachyonic matter which may play an important role in evolution of
the Universe. This matter retains nonlocal and nonlinear p-adic string dynamics,
but does not suffer of negative square mass. In space-time dimensions D = 2+ 4k,
what includes D= 6, 10, . . . , 26, the kinetic energy term also maintains correct sign.
In these spaces this p-adic matter provides negative cosmological constant and time-
dependent scalar field solution with negative potential. Their possible cosmological
role is discussed. We have also connected non-locality with string world-sheet in
effective Lagrangian for p-adic string.

1 Introduction

Observational modern cosmology has achieved significant progress by high preci-
sion experiments in the last decades. One of the greatest cosmological achievements
was discovery of accelerated expansion of the Universe in 1998. If General
Relativity is theory of gravity for the Universe as a whole then about 96% of its
energy content is of unknown nature. This dark side of the Universe consists of
about 23% of dark matter and 73% of dark energy. Dark matter is supposed to
be responsible for anomaly large rotational velocities in the spiral galaxies. Dark
energy has negative pressure and should govern the Universe accelerated expansion
(as a recent review see [1]). Thus, according to this point of view, there is now
only about 4% of visible matter which is described by the Standard Model of
particle physics. Although dark matter and dark energy are well adopted among
majority of scientists, they are not directly verified in the laboratory and still
remain hypothetical forms of matter. Also General Relativity has not been so far
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confirmed at the cosmic scale. For these reasons, there is not yet commonly accepted
theoretical explanation of the Universe acceleration. This situation has influenced
also alternative approaches, mostly related to modification of General Relativity
(a recent review in [2]).

While observational cosmology is in an arising state, theoretical cosmology
is facing a big challenge. An exotic matter and modification of gravity are two
alternative theoretical approaches. Since string theory is the best candidate for
unification of matter elementary constituents and fundamental interactions, some
theoretical ideas come from string theory and we consider the following one.
According to the adelic product formula for scalar string amplitudes it follows
that p-adic strings are at equal footing with ordinary strings (reviews on p-adic
strings and adelic product formula can be found in [3, 4]). Hence, if visible matter
is composed of ordinary strings then there should be some matter made of p-adic
strings. It is natural to assume that dark side of the Universe contains some
kinds of p-adic matter. In p-adic string theory world-sheet has non-Archimedean
(ultrametric) geometry and it should also somehow modify gravity. It is feasible
that future theoretical cosmology will be a result of both modification of General
Relativity and inclusion of new kinds of matter.

Inspired by p-adic string theory it has been already investigated some nonlocal
modifications of General Relativity (see, e.g. [5] and references therein) and
cosmology, see, e.g. [6, 7] and references therein. In this article we consider some
modification of open scalar p-adic strings as candidates for a new kind of matter in
the Universe. In Sect. 2 we present various aspects of p-adic string theory necessary
for comprehensive exposition. It also contains introduction of non-tachyonic p-adic
matter. Section 3 is related to some adelic approaches to cosmology.

2 p-Adic Strings

p-Adic strings are introduced in 1987 by Volovich in his paper [8]. p-Adic string
theory is mainly related to strings which have only world-sheet p-adic and all
other their properties are the same with theory of ordinary strings [9]. Having
exact Lagrangian at the tree level, p-adic scalar strings have attracted significant
attention in string theory and nonlocal cosmology. To be more comprehensive
and self consistent we shall first give a brief review of p-adic numbers and their
applicability in modern mathematical physics.

2.1 p-Adic Numbers and Their Applicability

p-Adic numbers are discovered by Kurt Hansel in 1897 as a new tool in number
theory. In modern approach to introduce p-adic numbers one usually starts with the
field Q of rational numbers. Recall that according to the Ostrowski theorem any
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non-trivial norm on Q is equivalent either to the usual absolute value | · |∞ or to a p-
adic norm (p-adic absolute value) | · |p. A rational number x = pν a

b , where integers
a and b 
= 0 are not divisible by prime number p, by definition has p-adic norm
|x|p = p−ν and |0|p = 0. Since |x+ y|p ≤ max{|x|p , |y|p}, p-adic norm is a non-
Archimedean (ultrametric) one. As completion of Q with respect to the absolute
value | · |∞ gives the field Q∞ ≡ R of real numbers, by the same procedure using
p-adic norm | · |p one gets the field Qp of p-adic numbers (for any prime number
p = 2, 3 ,5 · · · ). Any number 0 
= x ∈Qp has its unique canonical representation

x = pν
+∞

∑
n=0

xn pn , ν ∈ Z , xn ∈ {0, 1, · · · , p− 1}, x0 
= 0. (1)

Qp is locally compact, complete and totally disconnected topological space. There
is a rich structure of algebraic extensions of Qp.

There are many possibilities for mappings with Qp. The most elaborated is
analysis related to mappings Qp → Qp and Qp → C. Usual complex valued
functions of p-adic argument are additive χp(x) = e2π i{x}p and multiplicative |x|s
characters, where {x}p is fractional part of x and s ∈ C (for many aspects of p-adic
numbers and their analysis, we refer to [3, 4, 10, 11]).

The field Q of rational numbers, which is dense in Qp and R, is also important
in physics. All values of measurements are rational numbers. Any measurement is
comparison of two quantities of the same kind and it is in close connection with the
Archimedean axiom. Set of rational numbers obtained in the process of repetition
of measurement of the same quantity is naturally provided by usual absolute value.
Hence, results of measurements are not rational numbers with p-adic norm but with
real norm. It means that measurements give us real and not p-adic rational numbers.
Then the following question arises: Being not results of measurements, what role p-
adic numbers can play in description of something related to physical reality? Recall
that we already have similar situation with complex numbers, which are not result of
direct measurements but they are very useful. For example, in quantum mechanics
wave function is basic theoretical tool which contains all information about quantum
system but cannot be directly measured in experiments. p-Adic numbers should
play unavoidable role where application of real numbers is inadequate. In physical
systems such situation is at the Planck scale, because it is not possible to measure
distances smaller than the Planck length. It should be also the case with very
complex phenomena of living and cognitive systems. Thus, we expect inevitability
of p-adic numbers at some deeper level in understanding of the content, structure
and evolution of the Universe in its parts as well as a whole. The first steps towards
probe of p-adic levels of knowledge is invention of relevant mathematical methods
and construction of the corresponding physical models. A brief overview of p-adic
mathematical physics is presented in [12]. It includes both p-adic valued and real
(complex) valued functions of p-adic argument. In the sequel we shall consider
p-adic strings, non-tachyonic p-adic matter and its some possible role in modern
cosmology.
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2.2 Scattering Amplitudes and Lagrangian for Open Scalar
p-Adic Strings

Like ordinary strings, p-adic strings are introduced by construction of their scatter-
ing amplitudes. The simplest amplitude is for scattering of two open scalar strings.
Recall the crossing symmetric Veneziano amplitude for ordinary strings

A∞(a,b) = g2
∞

∫

R

|x|a−1
∞ |1− x|b−1

∞ d∞x = g2
∞
ζ (1− a)
ζ (a)

ζ (1− b)
ζ (b)

ζ (1− c)
ζ (c)

, (2)

where a+b+ c = 1. The crossing symmetric Veneziano amplitude for scattering of
two open scalar p-adic strings is direct analog of (2) [9], i.e.

Ap(a,b) = g2
p

∫

Qp

|x|a−1
p |1− x|b−1

p dpx = g2
p

1− pa−1

1− p−a

1− pb−1

1− p−b

1− pc−1

1− p−c . (3)

Integral expressions in (2) and (3) are the Gel’fand-Graev-Tate beta functions on R
and Qp, respectively [10]. Note that here, by definition, ordinary and p-adic strings
differ only in description of their world-sheets—world-sheet of p-adic strings is
presented by p-adic numbers. Kinematical variables contained in a,b,c are the same
real numbers in both cases. It is worth noting that the final form of Veneziano
amplitude for p-adic strings (3) is rather simple and presented by an elementary
function.

It is remarkable that there is an effective field description of the above open
p-adic strings. The corresponding Lagrangian is very simple and at the tree level
describes not only four-point scattering amplitude but also all higher (Koba-Nielsen)
ones. The exact form of this Lagrangian for effective scalar field ϕ , which describes
open p-adic string tachyon, is

Lp =
mD

g2

p2

p− 1

[

− 1
2
ϕ p−

�
2m2 ϕ+

1
p+ 1

ϕ p+1
]

, (4)

where p is any prime number, D—spacetime dimensionality, � = −∂ 2
t +∇2 is the

D-dimensional d’Alembertian and metric has signature (− + . . .+) [13, 14]. This
is nonlocal and nonlinear Lagrangian. Nonlocality is in the form of infinite number
of spacetime derivatives

p−
�

2m2 = exp
(

− ln p
2m2 �
)

= ∑
k≥0

(

− ln p
2m2

)k 1
k!

�k (5)

and it is a consequence of the fact that strings are extended objects.
The corresponding potential V (ϕ) for Lagrangian (4) is Vp(ϕ) =−Lp(�= 0),

which the explicit form is

Vp(ϕ) =
mD

g2

[1
2

p2

p− 1
ϕ2 − p2

p2− 1
ϕ p+1
]

. (6)
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It has local minimum Vp(0) = 0. If p 
= 2 there are two local maxima at ϕ =±1 and
there is one local maximum ϕ =+1 when p = 2.

The equation of motion for the field ϕ is

p−
�

2m2 ϕ = ϕ p (7)

and it has trivial solutions ϕ = 0 and ϕ = 1, and another ϕ = −1 for p 
= 2. There
are also inhomogeneous solutions in any direction xi resembling solitons

ϕ(xi) = p
1

2(p−1) exp
(

− p− 1
2 p ln p

m2 (xi)2
)

. (8)

There is also homogeneous and isotropic time-dependent solution

ϕ(t) = p
1

2(p−1) exp
( p− 1

2 p ln p
m2 t2
)

. (9)

Solution (9) (and analogously (8)) can be obtained using identity

eA∂ 2
t eBt2

=
1√

1− 4AB
e

Bt2
1−4AB , 1− 4AB > 0. (10)

Note that the sign of the above field solutions ϕ(xi) and ϕ(t) can be also minus (−)
when p 
= 2. Various aspects of p-adic string theory with the above effective field
have been pushed forward by papers [15, 16].

It is worth noting that Lagrangian (4) is written completely in terms of real
numbers and there is no explicit dependence on the world sheet. However, (9) can
be rewritten in the following form:

Lp =
mD

g2

p2

p− 1

[1
2
ϕ
∫

R

(
∫

Qp\Zp

χp(u)|u|
k2

2m2
p du
)

ϕ̃(k)χ∞(kx)d4k

+
1

p+ 1
ϕ p+1
]

, (11)

where χ∞(kx) = e−2π ikx is the real additive character. Since
∫

Qp
χp(u)|u|s−1du =

1−ps−1

1−p−s = Γp(s) and it is present in the scattering amplitude (3), one can say that

expression
∫

Qp\Zp
χp(u)|u|

k2

2m2
p du in (11) is related to the p-adic string world-sheet.

2.3 New Kind of Matter, Which Has Origin in p-Adic Strings

Since there are infinitely many primes p, in principle it can be infinitely many kinds
of p-adic strings. We suppose that for all but a finite set P of primes p these p-adic
strings are in their local potential minimum, i.e. ϕp = 0, and consequently Lp = 0,
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for all p /∈P . This can be a result of tachyon condensation. Further we suppose that
in the remaining finite set of strings there was a transition m2 → −m2 (transition
from tachyon to no-tachyon state), what could be a result of some quantum effect
which was happened before process of tachyon condensation was finished. For
simplicity, we shall assume two kinds of such strings and denote their set by
P = {q, �}. In the sequel for these strings in the above expressions (4)–(11) one

has to replace m2 by−m2 and mD → (−1)
D
2 mD, where spacetime dimensionality D

is even. Note that there is transition mD →−mD for critical dimensions D = 26 and
D = 10, but for D = 4 there is no change of sign. The corresponding potentials for
p = 2 and p = 3, and D = 2+ 4k, are presented at Fig. 2. To make distinction with
tachyons we denote these new scalar strings by φp, p ∈P .

The related new Lagrangian is

Lp = (−1)
D
2

mD

g2

p2

p− 1

[

− 1
2
φ p

�
2m2 φ +

1
p+ 1

φ p+1
]

(12)

with the corresponding potential

Vp(φ) = (−1)
D
2 Vp(φ) = (−1)

D
2

mD

g2

[1
2

p2

p− 1
φ2 − p2

p2− 1
φ p+1
]

. (13)

The equation of motion for scalar strings φp is

p
�

2m2 φp = φ p
p (14)

and it has trivial solutions φp = 0 and φp = 1, and another φp =−1 for p 
= 2. What
is local maximum and minimum depends on dimensionality D. When D = 2+ 4k,
solution φp = 0 is a local maximum, and φ2 = +1 and φp = ±1, p 
= 2 are local
minima. For any dimensionality, nontrivial solutions become now

φp(x
i) = p

1
2(p−1) exp

( p− 1
2 p ln p

m2 (xi)2
)

, (15)

φp(t) = p
1

2(p−1) exp
(

− p− 1
2 p ln p

m2 t2
)

. (16)

D-dimensional solution of (14) is product of solutions (15) and (16) (see also
[17]), i.e.

φp(x) = p
D

2(p−1) exp
( p− 1

2 p ln p
m2 x2
)

, x2 =−t2 +
D−1

∑
i=1

x2
i . (17)

Lagrangian for this collection of two distinct strings {φq, φ�} is of the form

LP = ∑
p∈P

Lp = ∑
p∈P

(−1)
D
2

mD

g2

p2

p− 1

[

− 1
2
φp p

�
2m2 φp +

1
p+ 1

φ p+1
p

]

. (18)
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Fig. 1 The 2-adic string potential V2(ϕ) (on the left) and 3-adic potential V3(ϕ) (on the right) of

standard Lagrangian (4), where potential is presented by expression (6) with mD

g2 = 1

String field φ� in (18) we shall consider in its vacuum state φ� = +1 or −1 with
Lagrangian

L� =−V�(±1) = (−1)
D
2 +1 mD

g2

�2

2(�+ 1)
∼−Λ (19)

related to the cosmological constant Λ (prime index � may remind Λ ). Note that
vacuum state φ� =±1 is stable only in spaces with dimension D = 2+ 4k.

Field φq corresponds to time-dependent solution (16) in dimensions which satisfy

(−1)
D
2 = −1, and the form of the corresponding potential is presented at Fig. 2.

As a simple example, one can take D = 6 as respective solution of condition
(−1)

D
2 =−1. For the case D = 6, or any other D = 2+ 4k, we have (q may remind

quintessence)

φq(t) = q
1

2(q−1) exp
(

− q− 1
2q lnq

m2 t2
)

(20)

which corresponds to potential of the form at Fig. 2. At the moment t = 0 (the big

bang) the field φq has its maximum which is φq(0) = q
1

2(q−1) and it is a bit larger
than 1. Then by increasing of time φq(t) is decreasing and φq(t)→ 0 as t → +∞.
The situation is symmetric with respect to transformation t →−t.

If we consider φq(t) in spaces of dimension D = 4k, and in particular D = 4,
then we face by two problems. First, the kinetic energy term has not correct sign.

Second, the position of field at moment t = 0 is φq(0) = q
1

2(q−1) > 1 and it should
have rolling to −∞, instead of to 0, what contradicts to the time dependence (20) of
the field (see also Fig. 1).

3 Adelic Cosmological Modelling

In the preceding section we have seen that the fields of p-adic and real numbers can
be obtained by completion of the field of rational numbers, and thatQ is dense inQp

as well as in R. This gives rise to think that it should exist some way for unification
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Fig. 2 New potentials V2(φ ) and V3(φ ), which are related to Lagrangian (12) with dimensionality

D satisfying condition (−1)
D
2 =−1, i.e. D = 2+4k, and mD

g2 = 1

of p-adic and real numbers. A unified and simultaneous treatment of p-adic and real
numbers is through concept of adeles. Adelic formalism is a mathematical method
how to connect p-adic with ordinary real models.

3.1 Adeles and Their Applicability

An adele α is an infinite sequence made od real and p-adic numbers in the form

α = (α∞, α2, α3, · · · , αp , · · ·) , α∞ ∈ R , αp ∈Qp , (21)

where for all but a finite set P of primes p it has to be αp ∈ Zp = {x ∈ Qp :
|x|p ≤ 1}. Zp is ring of p-adic integers and they have ν ≥ 0 in (1). The set AQ of all
completions of Q in the form of the above adeles can be presented as

AQ =
⋃

P

A(P) , A(P) = R× ∏
p∈P

Qp× ∏
p 
∈P

Zp . (22)

Elements of AQ satisfy componentwise addition and multiplication and form the
adele ring.

The multiplicative group of ideles A×
Q

is a subset of AQ with elements η =

(η∞ ,η2 ,η3 , · · · ,ηp , · · · ) , where η∞ ∈R× =R\{0} and ηp ∈Q×p =Qp \{0} with
the restriction that for all but a finite set P one has that ηp ∈Up = {x∈Qp : |x|p =
1}, i.e. Up is multiplicative group of p-adic units. The entire set of ideles, related to
Q
× =Q \ {0}, is

A
×
Q
=
⋃

P

A×(P), A×(P) = R×× ∏
p∈P

Q
×
p × ∏

p 
∈P

Up . (23)

A principal adele (idele) is a sequence (x,x, · · · ,x, · · · ) ∈AQ, where x ∈Q (x ∈
Q
×).Q andQ× are naturally embedded inAQ andA×

Q
, respectively. This concept of
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principal adeles gives way to present rational numbers together with their nontrivial
norms. Adeles are a generalization of principal adeles so that it takes into account
all completions of Q and has well-defined mathematical structure.

Space of adeles (ideles) has its adelic (idelic) topology. With respect to their
topology AQ and A×

Q
are locally compact topological spaces. There are adelic-

valued and complex-valued functions of adelic arguments. For various mathematical
aspects of adeles and their functions we refer to books [10, 18] and for their
applications in mathematical physics to [3, 4, 19].

Ideles and adeles are introduced in the 1930s by Claude Chevalley and André
Weil, respectively. p-Adic numbers and adeles have many applications in mathe-
matics. Since 1987, they have employed in p-adic mathematical physics.

Adelic connection of p-adic and real properties of the same rational quantity can
be well illustrated by the following two simple examples:

|x|∞×∏
p∈P
|x|p = 1 , if x ∈Q× (24)

χ∞(x)×∏
p∈P

χp(x) = 1 , if x ∈Q, (25)

where P is set of all primes and

χ∞(x) = exp(−2π ix), χp(x) = exp(2π i{x}p) (26)

with {x}p as fractional part of x in expansion with respect to base p.
More complex connection, but also very significant, is the Freund-Witten product

formula for string amplitudes [20]:

A(a,b) = A∞(a,b)∏
p

Ap(a,b) = g2
∞ ∏

p
g2

p = const. (27)

which connects p-adic Veneziano amplitudes (3) with their real analog (2). Formula
(27) follows as a consequence of the Euler product formula for the Riemann zeta
function applied to p-adic string amplitudes (3). Main significance of (27) is in the
fact that scattering amplitude for real string A∞(a,b), which is a special function,
can be presented as product of inverse p-adic amplitudes, which are elementary
functions. Also, this product formula treats p-adic and ordinary strings at the equal
footing. It gives rise to suppose that if there exists an ordinary scalar string then it
should exist also its p-adic analog. Moreover, p-adic strings seem to be simpler for
theoretical investigation and useful for cosmological investigations.

3.2 Some Adelic Cosmological Investigations

The first consideration of p-adic gravity and adelic quantum cosmology was in [21].
It was introduced an idea of the fluctuating number fields at the Planck scale giving
rise to p-adic valued as well as real valued gravity. Using Hartle-Hawking approach,
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it was shown that the wave function for the de Sitter minisuperspace model can be
presented as an infinite product of its p-adic counterparts.

Since adelic generalization of the Hartle-Hawking proposal was serious problems
in minisuperspace models with matter, further developments of adelic quantum
cosmology were done (see [22] and references therein) using formalism of adelic
quantum mechanics [23]. It was shown that p-adic effects in adelic approach yield
some discreteness of the minisuperspace and cosmological constant.

Possibility that the universe is composed of real and some p-adic worlds was
considered in [24]. In the present paper we adopted approach that p-adic worlds are
made of non-tachyonic p-adic matter.

Let us also mention research on p-adic inflation [25], and investigation of
nonlocal cosmology with tachyon condensation by rolling tachyon from a false local
vacuum to a stable one (see, e.g., [26–29] and references therein).

4 Concluding Remarks

In the present article we have introduced a non-tachyonic p-adic matter which
has origin in open scalar p-adic strings. Formally the corresponding Lagrangian
was obtained replacing m2 by −m2 in Lagrangian for p-adic string. In space-time
dimensions D = 2+ 4k the kinetic energy term has correct sign and stable negative
local vacua. For this case there is decreasing time dependent field solution of the
equation of motion and negative cosmological constant.

This p-adic matter interacts with ordinary matter by gravity and should play
some role in the dark side of the universe. In particular, the negative cosmological
constant can change expansion to contraction and provide bouncing in cyclic
universe evolution. These cosmological aspects are under consideration. If p-adic
matter would be produced at the LHC experiment in CERN, then its first signature
should be in the form of missing mass (energy) in the final state, because it interacts
with ordinary matter only through gravitational interaction.

In the case of gravity with Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
metric the d’Alembertian is � = −∂ 2

t − 3H∂t , where H is the Hubble parameter
H(t) = ȧ

a . Then equation of motion contains this operator � and time dependent
solution (20) for a constant H is

φq(t) = q
1

2(q−1) exp
(

− 3lnq
2

H
m2 ∂t

)

exp
(

− q− 1
2q lnq

m2 t2
)

= q
1

2(q−1) exp
(

− q− 1
2q lnq

m2 (t− 3lnq
2

H
m2

)2
)

. (28)

Note that equation of motion (14) can be formally obtained from (7) by partial
replacement p→ 1

p in the following two ways. (i) In the LHS of (7) replace p by 1
p

and ϕ by φ . (ii) In the RHS of (7) replace p by 1
p and ϕ by φ p. In [30], the equation
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e−β�Φ(x) =
√

kΦk, 0 < k < 1, (β > 0)

was considered and it corresponds to the case (ii) when k = 1
p .

We have also emphasized that results of measurements are rational numbers
with norm in the form of the familiar absolute value, i.e. they are real rational
numbers and not p-adic ones. In Lagrangian we have made some connection
between nonlocality and p-adic valued world-sheet.
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Palev Statistics and the Chronon

David Ritz Finkelstein

Abstract A finite relativistic quantum space-time is constructed. Its unit element is
a spin pair with Palev statistics associated with an orthogonal group.

1 Modular Architecture

The goal is still a finite physical theory that fits our finite physical experiments.
The classical space-time continuum led to singular (divergent) quantum field
theories: Infinity in, infinity out. In ancient times, a continuum was the only way to
understand the translational and rotational invariance of Euclid’s geometry. Today
there are quantum spaces with a finite number of quantum points that still have
the continuous symmetries of gravity and the Standard Model, at least within
experimental error. The strategy now is build up a cosmos from such elements,
aiming at classical gravity and the Standard Model as singular limits.

Quantum spaces are statistically represented by vector spaces that define the
lowest-order logic of their points. Modular architecture requires the higher-order
logic classically dealt with in set theory. Classical space-time and field theory are
formulated within classical set theory; perhaps quantum space-time and field theory
call for a quantum set theory.

Classical set theory was invented by Cantor to represent the mind of the Eternal.
Quantum set theory, more pragmatic [11], is intended to represent the system under
study as a quantum computer. Like any quantum theory it statistically represents
input/outtake (IO) beams of systems by what Heisenberg called probability vectors.
Since it is standard to name vectors after their components, the full name is
transition-probability-amplitude vectors. “IO vectors” is shorter, not actually wrong,
and captures better the essential duality between bras and kets.
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Quantum logic is a square root of classical logic: Transition probabilities in the
classical sense are squares of components of IO vectors, the transition probability
amplitudes. Call a quadratic space of IO vectors the IO space P . In general P , like
the quantum space of Saller [9], includes both input (ket) and outtake (bra) vectors.
Distinguish these by the signs of their norms. P is not a Hilbert space.

A quantum theory should describe populations as well as individuals. Enrich the
quadratic IO space P to a probability or IO algebra P whose product ab represents
successive application of IO operations. One-system IO vectors form a generating
subspace P1 ⊂P . P consists of polynomials over P1, subject to constraints and
identifications said to define the statistics.

A regular quantum theory is one with a finite-dimensional IO algebra [1].
The probability algebra P− for fermions is a Clifford algebra, defined by anti-

commutation relations among the one-fermion vectors:

∀x ∈P−
1 : x2 = ‖x‖= x · x. (1)

Its dimension is DimP− = 2DimP1 , so Fermi statistics is regular if the one-fermion
IO space is.

The IO algebra P+ for even quanta is commonly assumed to be a Bose
(Heisenberg, canonical) algebra whose generators obey

∀x ∈P1 : xy− yx = ε(x,y) (2)

with a given skew-symmetric bilinear form ε on P1 ⊗P1. This is not exactly
right: Bose statistics is always singular. Pairs of fermions, however, obey a regular
statistics whose probability algebra envelops a Lie algebra, with Bose statistics and
the Heisenberg algebra as a singular limit. This is a special case of Palev statistics
[6, 7], which is reviewed next.

2 Palev Statistics

For any semisimple Lie algebra p, a Palev statistics of the p class is one whose
probability algebra P is a finite-dimensional enveloping algebra of p (has p as
commutator Lie algebra).

Fermi and Bose statistics have graded Lie algebras f,b that specify their commu-
tation relations. f and b as vector spaces are also one-quantum IO spaces. They have
essentially unique irreducible unitary representations; these serve as many-quantum
IO spaces. There are, however, an infinity of irreducible representations of a Palev
algebra p that might serve as many-quantum IO space. Empirical choices must be
made for Palev statistics that are already decided for Fermi and Bose statistics.
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Palev gives a representation of sl(n+1) on a Fock space Wp of symmetric tensors
of degree p. Wp is a Hilbert space, appropriate for his applications and not for these.

The IO space of a hypothetical quantum event must have enough dimensions
to allow for the observed quantum systems. It is not clear that events in space-
time can be experimentally located relative to a macroscopic experimenter to within
much less than a fermi, corresponding to a localization in time of about 10−25 s.
The Planck time 10−43 s was initially a conjecture for the minimum time based
on pure quantum gravity. Crystals have many length scales besides cell size, such
as Debye shielding length, skin depth, coherence length, and mean free paths.
The Planck time might correspond more closely to one of these than to a natural unit
of time. To avoid a premature commitment, call the natural time unit the chrone X.

How many dimensions must the event IO space have? Suppose the lifetime of
the four-dimensional universe is 1021 s; an error by a factor of 100 will not matter
much. If X ∼ TP ≈ 10−43 s then the dimensionality of the history IO space of the
cosmos—which we cannot observe maximally—is about 101024. The largest system
that can be maximally observed by a co-system within such a cosmos—here we
renounce the perspective of the Eternal—is much smaller. Its IO space might have
no more than log2 10256 ∼ 3,000 dimensions.

Here are two examples of Palev statistics:

2.1 Spins

The so(3) Lie algebra with commutation relations relation L×L = L defines an
aggregate of palevons of the so(3) kind, whose quanta may be called spins. Relative
to an arbitrary component L3 as generator of a Cartan subalgebra, the root vectors
L± = L1 ± iL2 represent the input and outtake of spin-1 spins. An irreducible
representation with extreme eigenvalues±il for L3 represents a Palev statistics with
no more than 2l+ 1 spins present in a single aggregation.

2.2 Di-Fermions

Di-fermions are palevons. If the fermion IO space is 2NR then the di-fermion is a
palevon of type so(N,N).

This refers to the elementary fact that the Fermi commutation relations for
a fermion with N independent probability vectors define a Clifford algebra
Cliff(N,N), and the second grade of Cliff(N,N) is both the IO space for a fermion
pair, and the Lie algebra spin(N,N) defining a Palev statistics of class DN .
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2.3 Regular Space-Times

Call a spacetime regular if its coordinate algebra is regular. All its coordinates then
have finite spectra. There are not many regular spacetimes in the literature.

Singular (non-semisimple) Lie algebras can be regularized by slightly changing
some vanishing commutators, undoing the flattening contraction that led, presum-
ably, from the regular to the singular.

The prototype of such regularization by decontraction is (special) relativization
[5,11]. This regularizes the Galilean Lie algebra g= g(L,K) of Euclidean rotations
L and Galilean boosts K, to the Lorentz Lie algebra so(3,1). Write such relations as

so(3,1) ◦→ g or g←◦ so(3,1), (3)

directed from the regular algebra to the singular.
The sole remaining culprit today is the Lie algebra h of canonical quantization

and Bose statistics. Its regularization requires adding new variables. This is the
general case; special relativity and quantum theory were exceptional in this respect.

Some physical self-organization must then freeze these extra variables out near
the singular limit. This can be tested experimentally in principle by disrupting this
organization. Hopefully, a suitable regularization of the remaining singular theories
will once again improve the fit with experiment.

The Killing form of classical observables is as singular as can be: identically 0.
It is nearly regularized by canonical quantization:

acomm(x,p, i) ←◦ h(N), (4)

where the canonical (Heisenberg) Lie algebra is

h(N) : [xν , pν ′ ] = ih̄δν
′

ν , ν,ν ′ = 1, . . . ,N, (5)

other commutators vanishing. The solvable radical C generated by i survives
canonical quantization. Recall that h does not fit into any sl(NR). (The left-hand
sides of the canonical commutation relations would have well-defined trace 0,
and the right-hand side i would have non-zero trace.) Canonical quantization is a
quantization interrupted by premature canonization.

2.4 Feynman Space-Time

Feynman (personal communication ca. 1961) did this in about 1941, before his work
on the Lamb shift, and probably published this formula in a footnote, but we did not
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find the reference) seems to have constructed the first regular relativistic quantum
space-time F . Its positional coordinates are finite spin sums:

xμ ←◦ x̂μ = X [γμ(1)+ · · ·+ γμ(N)] , μ = 1,2,3,4. (6)

The γμ have unit magnitudes, and X is the chrone. If the commutators
[γμ ′(n′),γμ(n)] vanish for n 
= n′ then the probability vector space for F is a
16N-dimensional Clifford algebra. Quantification theory abbreviates (6) to

x̂μ = Xψγμψ . (7)

Each term in the sum represents a hypothetical quantum element of the
space-time event; call it a chronon. The Feynman chronon has spin 0 or 1, because
γμ has both a vector part (γ1,γ2,γ3) and a scalar part γ4 with respect to spatial
rotations.

Nature seems to have a unit of space-time size like X at every event, fixing the
gauge in the original sense of Weyl. If each event has a space-time measure X4, then
the dimension of the one-event IO space is proportional to the space-time volume;
as if the event statistics is extensive in the sense of Haldane [4, 7].

2.5 Yang Space-Time-Momentum-Energy

Let hp(N) ⊃ h(N) be the Heisenberg-Poincaré Lie algebra, made by adjoining to
h(N) the generators Lμ ′μ of the Lorentz-like group SO(N − 1,1), with the usual
commutation relations between them and the variables xμ , pμ and i. Yang [13]
proposed the first regularization of hp(N), leaving the signature somewhat open:

y(5,1) = so(5,1) ◦→ hp(4) ←◦ so(3,3) = y(3,3). (8)

y could represent a spinless colorless chargeless relativistic quantum, with only
orbital variables. Yang did not require full regularity but used a Hilbert space
representation of y.

2.6 Regular Space-Time-Momentum-Energy

A regular version of the Yang theory uses a finite-dimensional representation of
the Yang Lie algebra so(3,3), whose IO space must then have an indefinite norm
(Sect. 2.7). One example is the representation of the Yang Lie algebra by spin
matrices in the Feynman manner, now using the six 8× 8 spin matrices γy of
spin(3,3), with vector index y = 1, . . . ,6:

Ly′y = ψ γy′yψ , (9)
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a 6× 6 matrix of 8× 8 matrices. A regular theory might associate an elementary
particle with an irreducible finite-dimensional isometric representation of y instead
of its singular limit, the Poincaré Lie algebra. Then all one-particle observables have
finite spectra.

This is not a conformal theory, and the Yang Lie algebra y ∼= so(3,3) is not the
conformal Lie algebra so(3,3). The two algebras are isomorphic but act on different
physical variables and have different physical effects. Yang’s theory mixes space-
time and momentum-energy space; the conformal group does not. We deal with
groups of physical operations, not abstract groups.

2.7 Interpretation of the Indefinite Norm

In special relativity the sign of the Minkowski metric form gμ ′μ distinguishes
allowed (timelike) directions from forbidden (space-like) ones.

In a relativistic quantum theory of the Dirac kind, the probability-amplitude form
β is neutral (of signature 0).

ΨγyΨ =ΨβγyΨ (10)

gives the flux of systems, positive or negative. The sign distinguishes input
probability vectors from outtake probability vectors [2]. To fix the sign, let input
vectors (kets) have positive norm and outtake vectors (bras) negative. This changes
no physics in the usual quantum theory, which does not add bras and kets. Here it
enlarges the group and must be tested by experiment.

The constant ih̄ of the usual quantum physics is then another non-zero vacuum
expectation value, a frozen variable like the Minkowski metric gμ ′μ and the Higgs
field. Centralizing a hypercomplex number by a condensation gives mass to any
gauge boson that transports that number; this was shown for the quaternion case,
for example. Such a frozen i must be assumed in the Yang and Segal space-time
quantizations [11, 13] based on the Lie algebra

y= so(3,3)∼= spin(3,3)∼= sl(4R). (11)

Infinitesimal generators of y make up a tensor [Ly′y] (y,y′ = 1, . . . ,6) with 15
independent components, representing orbital variables of the Yang scalar quantum.
The Feynman quantum space-time and the Penrose quantum space [8] can be
regarded as spin representations of parts of the Yang Lie algebra.

ı̂, the quantized i, is a normalized 2× 2 sector [Lz′z] (z,z′ = 5,6) of [Ly′y] in an
adapted frame. The tensor [Ly′y] then breaks up according to

[Ly′y] =

⎡

⎣

Lμ ′μ ixμ ′ ipμ ′
ixμ 0 L56

ipμ L65 0

⎤

⎦∼
[

4× 4 4× 2
2× 4 2× 2

]

, y,y′ = 1, . . . ,6, (12)
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which includes the Lorentz generator Lμ ′μ as a 4 × 4 block, position xμ and
momentum pμ (μ ,μ ′ = 1,2,3,4) as 4× 1 blocks, and Lz′z (z,z′ = 1,2) as a 2× 2
block.

Posit a self-organization, akin to ferromagnetism, that causes the extra
component L65 to assume its maximum magnitude in the vacuum. Small first-order
departures from perfect organization of i make second-order errors in |i|.

2.8 Locality

One more limit stands between the regular Yang Lie algebra y and singular
canonical field theories. The special-relativistic kinematics and y have a canonical
symmetry between the xμ and pμ . Yet there are great physical differences between
these variables. Under the composition of systems, pμ is extensive and xμ is
intensive. The fundamental gauge interactions of the Standard Model and gravity
are local in xμ and not in pμ ; unless asymptotic freedom can be regarded as a weak
form of locality in pμ .

This suggests that there is a richer class of regular quantum structures that have
classical differential geometry and gauge field theories as organized singular limits,
with at least three quantification levels: the chronon, the event, and the field.

Wigner proposed that an elementary particle corresponds to an irreducible
unitary representation of the Poincaré group. Up-dates in this concept are called for
by his later work. The Wigner concept of elementary particle gives no information
about interactions between particles. Gauge theory requires an elementary particle
to have a location in space-time where it interacts with a gaugeon. It would then
seem useful to associate an elementary particle with an irreducible representation
of the Heisenberg-Poincaré Lie algebra hp(3,1) instead. In a regular theory hp(3,1)
must be regularized.

2.9 Quantification and Quantization

Quantification and quantization are related like architecture and archeology. They
concern similar algebraic structures, but quantification synthesizes them from the
bottom up, the order of formation, while quantization analyzes them from the top
down, the order of discovery.

Quantization uncovers a quantum constant that the quantum individual carries
and that the classical limit buries.

In particular, space-time quantization introduces a new quantum entity, the
chronon, carrying a time unit, the chrone X, and an energy unit, the erge E.
The chronon is no particle in the usual sense but a least part of the history of a
particle.
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Canonical quantization can also be interpreted as a quantification with a singular
statistics. What is sometimes called “second quantization” is then more accurately
a second quantification.

2.10 Gauge

A gauge is an arbitrarily fixed movable standard used in measurements. It is part
of the co-system, the complement of the system in the cosmos. As part of the co-
system, a gauge is normally studied under low resolution and treated classically.
A field theory may postulate a replica of the gauge at every event in space-
time, forming an infinite field of infinitesimal gauges. Weyl’s original gauge was
an infinitesimal analogue of a carpenter’s gauge or a machinist’s gauge block, a
movable standard of length; hence the name.

A gauge transformation changes the gauges but fix the system. They form a
Lie group, the gauge group, which indicates the arbitrariness of the gauges. It is
customary to assume that the relevant dimensions of the gauge field are fixed during
an experimental run, so that the experimental results can be compared meaningfully
with each other. This means that the gauge must be stiff. For example, machinist’s
gauge blocks are often made of tungsten carbide. Idealized, such rigid constraints
become a source of infinities.

In a simple quantum theory, however, all variables have discrete spectra.
All eigenvalues can be defined by counting instead of by measuring. There is no
need for arbitrary units, external gauges, or gauge group; Nature provides the gauge
within the system. Thus a gauge group is another sign of interrupted quantization.

One well-known way to break a gauge group is by self-organization. It is often
supposed that the Higgs field, which breaks an isospin group, is such a condensate.

A gauge group is also broken, however, when further quantization discovers a
natural quantum unit, fixing a gauge. The quantized i that breaks su(2) and imparts
mass in quaternion quantum gauge theory is of that kind. So is the quantized
imaginary ı̂ that breaks Yang so(3,3). The Higgs η̂ that breaks isospin so(3), and the
gravitational ĝμ ′μ that breaks sl(4R) ∼= so(3,3) may also be such natural quantum
gauges, to be recovered by regularizing the kinematical Lie algebra of the Standard
Model through further quantization.

Notation: The one-quantum total momentum-energy vector is, up to a constant,
the differentiator [∂μ ], canonically conjugate to the space-time position vector [xμ ].
[∂μ ] reduces to a gauge-invariant differentiator [Dμ ], also canonically conjugate to
xμ , related to kinetic energy, and a vectorΓμ(x) that commutes with position, related
to potential energy:

∂μ = Dμ +Γμ .

Total = Kinetic +Potential (13)
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The gauge commutator algebra a(xμ ,Dμ(x),Fμ ′μ , . . . ) is generated by the space-
time coordinates xμ and the kinetic differentiator Dμ(x), and includes the field
variables Fμ ′μ = [Dμ ′ ,Dμ ] and their higher covariant derivatives. Its radical includes
all functions of the xμ . This makes it singular too.

Gauging semi-quantizes. It converts the commutative operators ∂μ into the
non-commutative ones Dμ , and for individual quanta these are observables. Its
contraction parameter is the coupling constant. Landau quantization in a magnetic
field is of that kind.

Gauging also quantifies: It converts one finite-dimensional global gauge group G
into many isomorphs of G, one at each space-time point.

Gauging introduces infinities because the number of gauges is assumed to be
infinite. Thus quantum gauge physics can be regularized by regularizing its Lie
algebras. This eliminates gauge groups as well as theory singularities. This will
be taken up elsewhere.

3 Higher-Order Quantum Set Theory

Classical set theory iterates the power-set functor to form the space of all “regular”
(ancestrally finite, hereditarily finite) sets. A regular set theory might therefore
iterate the Fermi quantification functor [3], as follows.

The Peano ι , with

{a,b,c, . . .} := {a}{b}{c}· · ·= ιa ιb ιc . . . , (14)

defines membership a ∈ b:

a ∈ b :≡ ιa⊂ b (15)

Let S designate the classical algebra of finite sets finitely generated from the
empty set 1 by bracing ιx = {x} and the disjoint union x∨ y (a group product with
identity 1, the empty set). Sets of S are here called perfinite (elsewhere, ancestrally
or hereditarily finite). They are finite, and so are their elements, and their elements,
and so forth, all the way down to the empty set. Let

∨

s be the set of finite subsets
of s. Then

∨

: S→ S=
∨

S. (16)

An element of S is a set or simplex whose vertices may be sets or simplices. S is
supposedly complex enough to represent any finite classical structure.

A quantum analogue ̂S is a kind of linearization of S:
For any quadratic space S, let

⊔

S designate the Clifford algebra of finite-degree
polynomials over S, modulo the exclusion principle

∀s ∈ S : s� s = 0. (17)
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⊔

S and � correspond to the classical power set and the symmetric union (XOR).
If P1 is a one-fermion IO space then P = CliffP1 is the many-fermion probability
algebra.

Each quantum subclass of a system is associated with a subspace C ⊂P in the
IO space of the system, and so with a Clifford probability vector eC , a top vector of
the Clifford algebra CliffC ⊂ CliffP .

Then define ι : P → CliffP as a Cantor brace, modulo linearity:

∀p ∈P : ι p := {p}, mod ι(ax+ by)≡ a ιx+ b ιy. (18)

Take ̂S (as a first trial) to be the least Clifford algebra that is its own Clifford
algebra:

⊔

: ̂S→
⊔

̂S= ̂S. (19)

Call the quantum structures with probability vectors in ̂S quantum sets. The quantum
set is supposedly complex enough to represent any finite quantum structure.

Table 1 arranges basic probability vectors 1n of ̂S by rank r and serial number n.

3.1 Spin Structure of ̂S

For each rank r, ̂S[r] is naturally a spinor space:

• D[r] = hexpr is its dimension.
• ̂S[r− 1] is its Cartan semivector space.
• W [r− 1] := ̂S[r− 1]⊕Dual ̂S[r− 1] is its underlying quadratic space.
• SO(D[r− 1],D[r− 1]) is its orthogonal group.
• There is a neutral symmetric Pauli form β [r] : ̂S[r]→Dual̂S[r] for which the first

grade γw ∈ Cliff[r] are hermitian symmetric.
• The Pauli form can be chosen to be a Berezin integral with respect to the top

Grassmann element (or volume element) γ� ∈W [r]:

β [r− 1] : W [r− 1]⊗W [r− 1] → R,

∀ψ = w⊕w′ ∈W [r] : ‖ψ‖r−1 = β [r]ψψ :=
∫

dγ�ψ2 = ∂(γ�)ψ
2. (20)

• Cliff(W [r− 1]) ∼= EndoVec ̂S[r]: The algebra of linear operators on the spinor
space is isomorphic as algebra to the associated Clifford algebra Cliff[r].

This β is just the β of Pauli and Chevalley expressed in the more powerful notation
used by physicists. Since L2(M ) designates a quadratic space defined by a quadratic
Lebesgue integral over M , write the quantum space defined by a quadratic Berezin
integral over W as B2(W ).
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Table 1 Quantum and classical sets 1n by rank r and serial number n

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

hexp6 ... ... ...

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

hexp5 ... ... ...

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

16 17 18 19 20 21 22 23 24 25 26 27 . . .

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 5 6 7 8 9 10 11 12 13 14 15

2 1 1 1

2 3

1
1

1

0 1

0

r 1n

n

Every real Grassmann algebra G = GrassNR is a spinor space for the orthogonal
group whose quadratic space W is the direct sum of the polar and axial vectors of
G , grades 1 and N− 1 of G :

W = Grade1 G ⊕GradeN−1 G . (21)

The norm on W is the quadratic Berezin form

β : W ⊗W → R,

∀ψ = w⊕w′ ∈W : ‖ψ‖= βψψ :=
∫

dγ�ψ2 = ∂(γ�)ψ
2. (22)

This imbedding of the quadratic space W in its spinor space is isometric but not
invariant under spin(W ), which mixes Grade1 G and GradeN−1 G.
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3.2 Schur Spinors

Naturally Cartan and Dirac based their spinor theories on classical space-times.
There is none in nature, so the generators of the spin group should be interpreted
in the earlier manner of Schur [10], not as rotations but as pair exchanges, now of
quantum elements. The Clifford algebra Cliff(n) now represents a finite quantum
group corresponding to the classical finite group 2n.

4 Revised Quantum Set Theory

Here are some adaptations of ̂S to current physics.

4.1 Bosons

The number of times one set belongs to another (a∈ b) is either 0 or 1. In this respect
classical sets have Fermi (odd) statistics. Classical thought did not allow for Bose
(even) statistics, which grossly violates the Leibniz doctrine that indistinguishable
objects are one. Nor does ̂S describe elementary bosons. The Standard Model,
however, requires them. Moreover, if a and b are monads (first-grade elements) of
the space ̂S, hence fermionic, then {a,b} is a fermionic monad too, although a∨ b
is an approximate boson and an exact palevon. Two odds make an odd in set theory,
and an even in nature. ̂S violates conservation of statistics.

This can be resolved within quantum set theory only by modeling the even quanta
as pairs of odd quanta. These pairs can then be associated by dynamical binding.
The spin-statistics relation refers to the particle rank. It is broken at the subparticle
rank both in the Cartan theory of spin and the GUT theory of flavor. We should
accept such violations in general.

4.2 Constituents of the Photon

The Standard Model uses the unreduced classical brace {. . .}, iterated as necessary,
to assemble (say) a fermion probability vector from orbital, isospin, spin, and other
probability vectors. The regular theory ̂S does much the same.

Therefore the even quanta cannot be unit sets ̂S. They must be represented by
tensors of even degree. This implies that the bosons of the regularized Standard
Model are actually fermion pairs held together by binding rather than by unition.

Such a possibility was already raised by the de Broglie two-neutrino photon, and
the four-neutrino graviton considered and rejected by Feynman. The main obstacle
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to such constituent theories of even vector quanta is that according to the Heisenberg
indeterminacy principle, fermions near each other in position must be far apart in
momentum. Then they require a correspondingly high interaction-energy for their
binding. But experiment finds no such intense short-range interaction but only the
asymptotic freedom implied by the Standard Model.

In a Feynman or Yang quantum space-time, however, the operator ı̂h̄ that
replaces ih̄ has a finite spectrum of magnitudes with extreme values±h̄. Presumably
a self-organization akin to ferromagnetization freezes ı̂h̄ to its maximum value
ih̄. The Heisenberg uncertainty principle is then weakened wherever a local
disorganization reduces the magnitude of ı̂h̄. Such a weakening might allow two
leptons to bind into a photon, say. This re-opens the question of a di-fermion theory
of the gauge bosons.
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Some Remarks on Weierstrass Sections,
Adapted Pairs and Polynomiality

Anthony Joseph

Abstract Let A be a polynomial subalgebra of the algebra of regular functions on
affine n-space kn. A Weierstrass section for A is a translate x+Y of a linear subspace
of kn such that the restriction of A to x+Y induces an isomorphism of A onto the
algebra R[x+Y ] of regular functions on x +Y . They arise notably in describing
algebras of invariants both for reductive and non-reductive actions as well as in
describing maximal Poisson commutative subalgebras of R[kn] in the case that the
latter has a Poisson bracket structure. A Weierstrass section need not always exist
and in any case can be very difficult to construct. A review of some known results
and open problems is presented in an entirely elementary fashion.

Keywords Invariants • Weierstrass sections

AMS Classification: 17B35

1 Introduction

The base field k is assumed algebraically closed of characteristic zero throughout.

1.1. Let V be a finite dimensional vector space and S(V ) the symmetric algebra of
V . Under the assumptions on the base field k we may identify S(V) with the algebra
of regular functions R[V ∗] on the dual V ∗ of V .
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Of course S(V) and hence R[V ∗] is a polynomial algebra. In algebraic geometry
one associates to an ideal I of this polynomial algebra a (closed) subvariety V of V ∗
defined as the zero locus of I, that is to say the set {v ∈V ∗|a(v) = 0,∀a ∈ I }. Then
the algebra of (regular) functions R[V ] on V is defined to be the quotient algebra
S(V)/I.

On the other hand we may start from a subalgebra A of S(V) and ask if it can be
presented as R[V ] for some closed subvariety V of V ∗. It is immediate that this can
only be true if A is finitely generated. A more delicate question which makes sense
if A has no zero divisors is to ask if there exists a closed irreducible subvariety V of
V ∗ such the restriction of A to V is injective and the embedding A ↪→ R[V ] lifts to
equality of fields of fractions. In this case one calls V a rational section for A.

A particularly interesting case of a rational section occurs when V is an affine
translate of a vector subspace of V ∗, that is a set of the form x+Y with x ∈V ∗ and
Y a vector subspace of V ∗. Then the field Q(A) of fractions of A must be a pure
transcendental extension of k. In this case one calls x+Y a linear section for A.

One calls a linear section x+Y for A, a Weierstrass section if the injection A ↪→
R[x+Y ] is an isomorphism. This is of course very special and can only arise if A is
a polynomial algebra.

1.2. Particularly interesting examples of subalgebras of R[V ∗] arise as invariant
subalgebras for group actions. Thus let G be an algebraic group acting linearly
on V ∗. Then by transport of structure G acts on R[V ∗], that is to say by the rule
(g. f )(ξ ) := f (g−1ξ ) : g∈G, f ∈ R[V ∗]. We set R[V ∗]G := { f ∈ R[V ∗]|g. f = f ,∀g∈
G}. We may similarly define R(V ∗)G, where R(V ∗) denotes the field of rational
functions on V ∗.

There is a quite extensive theory of sections for invariant algebras. This has been
reviewed in [29] and [31]. Notably if G is connected, it is not known [29, 1.5], if
R(V ∗)G is necessarily pure over k. Again a rather precise criterion has been given
[29, Thm. 1.4.3] for R[V ∗]G to admit a rational section. In particular if G is connected
and solvable, then a theorem of Rosenlicht [32] asserts that this is always the case.
It is not known if a linear section exists in this case. However recently Popov [30,
Cor. 8] has shown this to hold if G is a unipotent subgroup of GL(V ∗).

One may hope to do a little better in the case that V = Lie G, that is to say when
V ∗ is the co-adjoint module. More generally let g be a finite dimensional Lie algebra
and let K(g) be the fraction field of S(g). The commutative version of a problem of
Dixmier [6, Prob. 4] is that K(g)g is pure over k. Here it is not suggested that g is
algebraic, that is of the form Lie G, with G an algebraic group. However in the latter
case one can further ask [15, 7.11] if the co-adjoint action admits a linear section.
Recall here that if g is algebraic, then it can be written as a semi-direct product r+n,
with r reductive and n a nilpotent ideal. When the action of r on n is trivial, then the
existence of a linear section follows from Popov’s result mentioned above and the
result of Kostant in 1.3—see [30, Cor. 9].

1.3. For a linear group action, the first example of a Weierstrass section (see Sect. 2)
occurs in the work of Weierstrass in his description of canonical form for elliptic
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curves. In the case of a semisimple Lie group G acting on the dual g∗ of its Lie
algebra g, a Weierstrass section for S(g)G was constructed by Kostant [22]. To do
this Kostant used the principal s-triple (x,h,y) which forms an sl(2) subalgebra of
g all of whose elements (except 0) are regular. It turns out that one can make do
will rather less. Indeed suppose G is a connected algebraic group acting linearly on
a vector space X and let g denote the Lie algebra of G. Call h ∈ g,x ∈ X an adapted
pair if hx =−x and x is regular. This last condition means that the stabilizer of x ∈ X
in g has minimal possible dimension, denoted by ιX ,G. Although “most” elements
of X have this property, such elements would not be expected to be eigenvectors. In
particular the existence of an adapted pair is by no means assured.

When an adapted pair exists one can assume h to be diagonalizable without loss
of generality. Then the supposed injectivity implies that Y is a complement to g.x.
Here we can assume Y to be h stable without loss of generality. The regularity
hypothesis on x implies that Y has dimension ιX ,G. Then surjectivity further implies
a tight relation between the eigenvalues {mi }ιX ,G

i=1 , called the exponents, and the

degrees {di}ιX ,G
i=1 of homogeneous generators of R[X ]G, namely di = mi + 1,∀i, up

to ordering. In the case of a semisimple Lie algebra one may identify g with g∗
through the Killing form and take x,h to be the first two members of a principal
s-triple (x,h,y). Moreover Y can be taken to gy, that is to say the centralizer of
y in g.

1.4. The existence of an adapted pair, though hard to find is insufficient to produce
a Weierstrass section for the invariant algebra S(g)G. Notably one must impose the
additional condition that S(g)G be polynomial. To some extent this is self-defeating
and so one should look for a less hard to verify criterion. One useful criterion is to
find sufficiently many algebraically independent elements of suitably small degree.

Conversely if the exponents are not all non-negative or if two different adapted
pairs can be constructed with differing sets of exponents then under mild restrictions
(see [21, 8.2]) the invariant algebra R[X ]G cannot be polynomial, at least in the case
of co-adjoint action and quite possibly in general.

Popov showed essentially by a case by case analysis, that for G simple and V
a simple G module an adapted pair exists whenever S(V)G is polynomial. Popov
thereby obtained a Weierstrass section in all such cases. However Popov also noted
[29, 2.2.16.3] that a Weierstrass section may exist if G is simple but V is not a
simple G module, without there being an adapted pair. We have described many
other examples arising when G is not reductive [19].

1.5. Adapted pairs have also been constructed when G is not semisimple (nor
reductive); with V = g∗, that is to say for the coadjoint module. Notable examples
occur for truncated (see 3.2) biparabolic subalgebras [18] as well as centralizer
subalgebras [17] in sl(n). These two classes of examples often lead to Weierstrass
sections. In the latter case one may avoid knowing that the invariant algebra is
polynomial [17]. A third class to which Panyushev and Yakimova [28] have brought
attention are contractions of semisimple Lie algebras.
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1.6. Weierstrass sections may be constructed for certain algebras [19, 20] which
are related to invariant algebras but which are not themselves invariant algebras.
One quite general family of algebras obtains from an invariant algebra by shift of
argument. Outside the reductive case, this does not necessarily lead to a Weierstrass
section and for this additional conditions must be imposed (4.6).

1.7. In this paper we review some of the constructions of Weierstrass sections and
of adapted pairs. We start with the example coming from the work of Weierstrass
noted above. That this fits into the general theory of adapted pairs was noted by
Popov [29, 2.2.2.1]. Nevertheless we go over the details as we believe this example
is the best way of giving the reader an impression of what is involved in general.
Here it is very easy to write down the adapted pair. On the other hand especially for
truncated biparabolics in sl(n) it is both difficult to guess such pairs and of particular
difficulty to verify regularity.

1.8. In the case of co-adjoint action a more systematic approach to the construction
of adapted pairs was suggested in [15]. This is discussed briefly in 3.8.

2 Weierstrass Canonical Form for Elliptic Curves

2.1. By definition a plane elliptic curve is given as the zero locus of an irreducible
polynomial of degree 3 in two variables (a,b). However it is better to add the “points
at infinity” by viewing the curve as a subset of the projective plane. To this effect
the variables a,b are replaced by a/c,b/c in which case the polynomial becomes
homogeneous of degree three in the three variables a,b,c.

Since the number of linearly independent homogeneous polynomials of degree 3
in 3 variables is 10, an elliptic curve is described by ten parameters. However not all
of these will be distinct curves. Indeed a given curve will be unchanged if we make
a linear change of variables. Discounting multiplying each variable by the same
scalar, which would result in the same polynomial, this means that we may permit
an action of the special linear group SL(3), which has dimension 8. This gives us
the possibility of cutting down the number of parameters which describe the elliptic
curve to just 10− 8 = 2. However it is not at all obvious how to describe these two
parameters, nor in this if certain curves will be omitted by such a reduction.

2.2. Set s = sl(3) which is the Lie algebra of S := SL(3). The elements of s are
3×3 trace zero matrices. Thus dims= 8. Let h denote its two dimensional subspace
of diagonal trace zero matrices. It is a Cartan subalgebra for s. The set of column
matrices becomes a three dimensional module for s. Identifying a,b,c as a basis for
this module, the space of homogeneous cubic polynomials in these three variables
forms a ten dimensional module V for s, which is in fact a simple module. Set
Vreg = {v ∈ V |dims.v = 8}. It is a quite easy fact that Vreg is non-empty (see 2.3)
and as a consequence (Zariski) dense in V . It is then immediate that Vreg is a union
of S orbits and by definition all of these have the maximum dimension, namely 8.



Adapted Pairs and Polynomiality 43

Below we shall construct an adapted pair, namely a pair (x ∈ Vreg,h ∈ h)
satisfying hx = −x. It turns out that s.x admits a unique h stable complement Y .
This is spanned by two eigenvectors with eigenvalues 3,5. It will be enough to
admit1 that there are invariant homogeneous polynomials q4,q6 of degrees 4,6 to
show that R[V ]S is the polynomial algebra generated by q4,q6 and then to deduce
that every S orbit meeting x +Y meets this set at exactly one point. Then we
show that Vreg = S(x+Y ), equivalently that Vreg is an irreducible variety, which
in general does not follow merely from adapted pairs and polynomiality, nor indeed
is it a consequence of the existence of a Weierstrass section. Finally we relate the
description of x+Y to Weierstrass canonical form.

The above is mainly detailing the example given in [29, 2.2.2.1]. The only
novelty (Lemma 2.5) is showing that Vreg is irreducible. Although this holds for
the adjoint case studied by Kostant and in the case when the invariant algebra has
a single generator, it is otherwise a very rare phenomenon. Our analysis is intended
to give some insight into the reasoning for more general situations.

2.3. Let {α,β } denote a choice of simple roots for the pair s,h. We can then take
V to have highest weight 2β +α . All weight spaces are one-dimensional and can
be arranged on the plane to what may be recognized as an arrangement familiar in
ten-pin bowling. This is illustrated in Fig. 1 in which the weights form the vertices
and are joined by unbroken lines which correspond to the action of the root vectors.
The small triangle in the centre with vertices joined by broken lines gives a similar
presentation of the three dimensional representation spanned by (a,b,c).

For every weight ϖ of V let xϖ denote the corresponding weight vector
(determined up to a non-zero scalar). Consider the vector x := xβ + x−β+α . The
arrows in Fig. 1 indicate the action of the 6 root vectors of s on xβ and on x−β+α .
Each root vector is non-zero on just one of them and each of the resulting vectors are
distinct. Set Y = kx−α−β + kx−2α−β . Taking account of the action of h one obtains,
practically by inspection of Fig. 1, the following direct sum decomposition

s.x⊕Y =V. (1)

Since dimY = 2, this means in particular that x∈Vreg, which is hence non-empty.
In order to obtain hx =−x, we require that h(β ) =−1,h(−β +α) =−1. There

is exactly one h in the two dimensional space h with this property. This unique h has
eigenvalues 3,5 on Y .

The reader should appreciate that this result was obtained in such an easy
fashion only by good fortune and of course the rather small dimensions involved.
Constructing an adapted pair for truncated biparabolics in sl(n) which in number
grow rather rapidly to infinity as n goes to infinity, is much harder [18]. However

1For nineteenth century mathematicians constucting invariants was a popular exercise. The modern
mathematician would no doubt prefer to use the Weyl character formula which can be adjusted to
compute the character of a given symmetric power of V and then to show it has a non-zero scalar
product with the trivial character. Despite good intentions the author was too lazy to illustrate the
recovery of the required invariants by these means.



44 A. Joseph

�

�

�

�

�

�

�

�

b

c a

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

� �

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�

�

�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
��

−4

−1 −3

2
0

−2

5
3 1

−1

Fig. 1 The ten vertices joined by the unbroken lines describe the weight diagram of one of the
simple ten dimensional modules for sl(3). The numerical data over a given vertex gives the
eigenvalue of h for the corresponding weight vector. Then x is the sum of the eigenvectors of
eigenvalue −1. The action of the root vectors on x is described by the arrows. The numerical data
over the two vertices not reached by the arrows give the exponents. The three vertices joined by
the broken lines describe the weight diagram of one of the simple three dimensional modules for
sl(3), labelled by the root vectors a,b,c

there is one common feature, namely x was expressed as a linear combination of
weight vectors whose weights are linearly independent elements of the dual of the
Cartan subalgebra of the Levi factor of the truncated biparabolic and likewise this
makes the choice of the second element h of the adapted pair unique [18]. Again
proving the polynomiality of the invariant algebras also requires some major efforts
[7, 15].

2.4. One may show that as a consequence of (1), the subvariety S(x+Y) is dense in
V . Consequently a non-zero invariant function f ∈ R[V ]S cannot vanish on x+V and
so restriction defines an injection ϕ of R[V ]S into R[x+Y ]. A fortiori the restriction
map ϕ̂ of R[V ]S to the subspace kx +Y of V is also injective. Since this latter
subspace is spanned by h eigenvectors having eigenvalues−1,3,5, we may choose
a basis ξ1,ξ−3,ξ−5 of its dual partly spanned by h eigenvectors having eigenvalues
1,−3,−5. Complete to a basis of V ∗ formed from eigenvectors of h.

Now admit that we can find invariant polynomials q4,q6 of degrees 4,6 respec-
tively. Of course these must be eigenvectors of h having zero eigenvalue. Comparing
eigenvalues and degrees, we conclude that ϕ̂(q4) = ξ 3

1 ξ−3, ϕ̂(q6) = ξ 5
1 ξ−5 up
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to non-zero multiples. Consequently ϕ(q4) = ξ−3,ϕ(q6) = ξ−5, up to non-zero
multiples. Yet the latter are generators of R[v] and so ϕ is surjective. (In particular
R[V ]S is polynomial on generators q4,q6.) Geometrically this has the consequence
that the invariant functions separate the points of x+Y and so every S orbit which
meets x+Y meets it at exactly one point.

For the above argument to work in general it is not enough to find invariants
whose degrees equal the exponents plus 1, one has to also know that they are
algebraically independent. This can be rather difficult. In the above case we were
rather lucky.

2.5. Since S acts linearly on V , the natural gradation on R[V ] passes to R[V ]S.
Let R[V ]S+ denote the subspace of R[V ]S of elements of positive degree and J denote
the ideal of R[V ] it generates. A very hard question is to show that J is a prime ideal.
Remarkably there is an argument due to Kostant [22] which proves, in the presence
of a Weierstrass section, that it is enough to show that the zero locus N of J is
irreducible. An exposition of this argument is given in [6, 8.1.3]. A key point is the
use of a theorem of Macaulay.

In the case when g is semisimple and V = g∗ (the coadjoint module), the proof
of N being irreducible is deceptively simple. Indeed fix a Borel subalgebra b of g
and let n be its nilradical. We claim that N = Gn. Since G is connected and n is a
subspace and so both are irreducible as varieties, it follows that Gn being an image
of G×n is irreducible.

The above claim follows by identifying g∗ with g through the Killing form, which
identifies N with the cone of ad-nilpotent elements and applying the Jacobson-
Morosov theorem. However let us give a second more involved proof which adapts
better to the present situation.

Consider b∗. It is b stable (for co-adjoint action) and hence stable for the
corresponding Borel subgroup B. Since G/B is a complete variety it follows that
Gb∗ is closed in g∗. On the other hand a dimensionality argument shows that Gb∗
is dense in g∗ and consequently Gb∗ = g∗ ⊃ N . Take z ∈ R[g∗]G and λ ∈ h∗.
Then z(λ + n) = z(λ ) = ϕ(z)(λ ), where ϕ is the Chevalley restriction map. After
Chevalley the image of ϕ is just the Weyl group invariants in R[h∗]. Thus there is
some z ∈ R[g∗]G+ which is non-zero on λ + n, unless λ = 0. This gives the desired
conclusion.

Let us try to see what part of this argument goes over when we just have
an adapted pair. Consider the gradation on V and on s defined by eigenspace
decomposition with respect to h. Precisely set

Vi := {v ∈V |h.v = iv}, si := {x ∈ s|[h,x] = ix},
and define

V< :=∑
i<0

Vi, V≤ :=∑
i≤0

Vi, s< :=∑
i<0

si, s≤ :=∑
i≤0

si. (2)

As a consequence of a general fact, p := s≤ is a parabolic subalgebra of s with
nilradical n := s<. Let P (resp. N) be the connected algebraic subgroup of S with Lie
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algebra p (resp. n). (These exist because the Lie algebras in question are algebraic.)
It is clear that both V< and V≤ are P stable. Since S/P is a complete variety, it follows
that SV< (resp. SV≤) is a closed subvariety of V . Moreover it is irreducible and (as
a variety) has dimension ≤ dimS/P+ dimV< (resp. ≤ dimS/P+ dimV≤), where
equality holds if P = StabGV< (resp. P = StabGV≤).

In our special case, using Fig. 1 we may easily compute the objects defined in (2)
and thereby show that these sums have values 3+ 5 = 8 and 3+ 6 = 9 respectively.

On the other hand x ∈ V<, so Sx ⊂ SV<. Yet the regularity of x implies that
dimSx = 8.

We conclude from the above that SV< has dimension 8 and is hence the closure
of Sy.

So much for general arguments. Now let us prove a lemma which requires the
details of our very special situation.

Lemma. SV< = N .

Proof. Via eigenvector decomposition it follows easily that V< ⊂ N and so
SV< ⊂N .

On the other hand SV≤ is also irreducible, contains SV< strictly and has
dimension ≤ 9. Consequently dimSV≤ = 9, that is to say it has codimension 1 in
V . Thus by Krull’s theorem it is the zero locus of a polynomial p ∈ R[V ]. On the
other hand dimSV≤ is irreducible, conical and S stable. Thus p must be irreducible,
homogeneous (of say degree d > 0) and semi-invariant. Since S is simple and non-
commutative R[V ] admits no proper semi-invariants and so p ∈ R[V ]S.

We can write V0 = kv0. Define a dual basis of V ∗ as in 2.4 using the same
conventions. In particular ξ0 is the dual basis vector corresponding to v0.

Recall that by 2.4, the invariant algebra R[V ]S is generated by q4,q6. By
eigenspace decomposition it follows that the restriction of q4 (resp. q6) to V≤
takes the form c1ξ 4

0 (resp. c2ξ 6
0 ) :c1,c2 ∈ k. These scalars cannot both be zero for

otherwise both q4 and q6 would vanish on SV≤ forcing both to lie in pR[V ], hence to
be divisible by p in R[V ]S. Yet since they are generators of this polynomial algebra,
hence irreducible in R[V ]S, this would force both to be proportional to p, which is
clearly impossible.

Since p is an invariant polynomial homogeneous of positive degree it follows that
SV≤ ⊃N . Consider an arbitrary element z := cx0 + y : c ∈ k,y ∈ V< in N . Since
both q4 and q6 vanish on N , hence on z, the form of their restrictions given in the
paragraph above implies that c = 0. Thus z ∈ V<. This proves the assertion of the
lemma. ��
2.6. As noted in 2.5 it follows from Lemma 2.5, that J = R[V ]R[V ]S+ is a prime
ideal. Again by general arguments [16, 8.7] this has the following consequence

Proposition. Vreg = S(x+Y ). Thus every regular S orbit in V meets x+Y at exactly
one point.
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Remark 1. Although the arguments in [16, Sect. 8] are fairly standard we should
like to take this opportunity of noting that the proof of [16, Thm. 8.2 (iii)] is better
presented in [19, 7.8].

Remark 2. Just given an adapted pair (x,h), we could only have obtained the
inclusion Vreg ⊃ S(x+Y) with both closures equal to V . If x+Y is just a Weierstrass
section for the invariant ring R[V ]S (with respect to linear action of algebra group
S on a vector space V and R[V ]S having no proper semi-invariants) then still both
closures lie equal V ; but S(x+Y) may not lie entirely in Vreg. In neither [29], nor in
[31] do the authors appear to address themselves to equality in the conclusion of the
proposition. In particular we do not know if equality holds in all the remaining
cases when S is simple, V and a simple S module and R[V ]S is polynomial for
which Popov [29] verified that R[V ]S admits a Weierstrass section x+Y . However
for the coadjoint action of a truncated biparabolic in type A (which always admits
an adapted pair) equality very seldom holds [18]. This is related to the fact that
they may be non-equivalent adapted pairs. Indeed suppose (x,h) is an adapted pair.
Let N be the subvariety of all zeros of the homogeneous invariant polynomials
of positive degree. Then x ∈ Vreg, by definition of an adapted pair and x ∈N , via
the action of h. By [16, Lemma 8.8] (which extends easily to present situation) one
has S(x+Y )∩N = Sx. Then if given a second adapted pair (x′,h′), the equality
S(x +V ) = Vreg forces x′ ∈ Sx. In the (rather common) situation when the first
member of the pair determines the second, this further implies (x′,h′) ∈ S(x,h).
When this holds we shall say that the adapted pairs in question are equivalent.

We may summarize the above by saying that the existence of inequivalent
adapted pairs forces the inclusion S(x+Y)⊂Vreg to be strict.

The simplest example of inequivalent adapted pairs occurs for the truncated Borel
in sl(3). Despite earlier optimism [16, 8.12, Remark] we found [18] embarrassingly
many inequivalent adapted pairs for truncated biparabolics in type A. Their classifi-
cation is a wide open problem.

2.7. Retain the notation of 2.3. One may note that the highest weight 2β +α of V is
just 3ϖβ , where ϖβ is the fundamental weight corresponding to β . The latter is the
highest weight of the fundamental module spanned by {a,b,c}, which we shall take
to have weights ϖβ −β ,ϖβ ,ϖβ − (α+β ) respectively. Then in the presentation of
V as the span of the homogeneous polynomials of degree 3 in a,b,c we have in
particular that x = a3− b2c,V = kac2 + kc3.

A non-zero homogeneous polynomial p of degree three in three variables viewed
as an element of V necessarily belongs to Vreg. Indeed for every trace zero matrix
with entries ai, j : i, j = 1,2,3, we obtain an element of s acting on a space
of homogeneous polynomials in three variables through the differential operator
∑3

i, j=1 ai, jxi∂/∂x j. Then if p /∈ Vreg, it must be annihilated by a subspace of such
differential operators of dimension > 2 forcing p = 0. Then Proposition 2.5 exactly
states that up to a linear transformation every elliptic curve can be defined in just one
fashion by the equation a3 = b2c+ sac2 + tc3 for some s, t ∈ k. This is Weierstrass
canonical form.
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A well-known application of Weierstrass canonical form is to determine which
elliptic curves are singular. We describe this below.

Let V (p) be the variety (in projective space P2) of zeros of a homoge-
neous polynomial p. Then the tangent space TV (p),a to V (p) at a ∈ V (p) is
defined to be the points (in P2) defined by the non-zero solutions to the equation
∑3

i=1 zi(∂ p/∂xi)(a) = 0. For most (called generic) points a this space is one
dimensional (in P2). A point a ∈ V (p) is said to be singular if dimTV (p),a is
strictly greater than its value at a generic point. In this case this just means that
(∂ p/∂xi)(a) = 0 : i = 1,2,3. If V (p) admits such a point it is said to be singular.
Taking p = x3

1− x2
2x3− sx1x2

3− tx3
3, one checks that the corresponding elliptic curve

V (p) is singular exactly when 4s3 = 27t2.
Weierstrass canonical form plays a small role in the proof of Fermat’s “last”

theorem. Returning to affine coordinates (that is putting x3 = 1) Weierstrass
canonical form describes an elliptic curve through the equation x2

2 = x3
1− sx1− t,

or y2 = x(x− d)(x+ e), making a slight change of variables. Hellegouarch came
up with the radical idea of associating an elliptic curve to a (non-trivial) solution
to Fermat’s equation an + bn = cn by taking d = an,e = bn. Work of Frey, Serre
and Ribet showed that such a curve would not be modular violating the Shimura-
Taniyama-Weil conjecture. Yet mainly through the work of Wiles this conjecture
has now been shown to be true, the contradiction proving Fermat’s theorem.

2.8. Return to the framework of 1.2 that is of an algebraic group G acting linearly
on a finite dimensional vector space V . In this context one may ask what aspects of
preceding example remain true in general?

A necessary condition for the existence of a Weierstrass section x+Y ⊂ V (for
the subalgebra R[V ]G of invariants) is of course that R[V ]G be polynomial on dimY
variables. However this is far from sufficient. In [29, 2,2.4], Popov gives an example
where even a rational section need not exist. In this case V is not the co-adjoint
module, though this may not be significant. In any event in [19, 11.4.2] an example
is given (the coadjoint module for the nilradical of a Borel in sp(4)) when a rational
section exists but a Weierstrass section does not.

Although this is not strictly speaking necessary one tends to assume in the
above situation, that the size of the invariant algebra R[V ]G is comparable to the
minimal orbit codimension, more precisely that the Gelfand Kirillov dimensional
(equivalently the transcendence degree of its fraction field Q(R[V ]G) equals ιV,G. By
a general result of Chevalley-Rosenlicht, the transcendence degree of the possibly
larger field R(X)G of G invariants in the fraction field R(V ) of R[V ] always equals
ιV,G. By a further remark of Chevalley-Dixmier one has Q(R[V ]G) = R(V )G, if
R[V ]G admits no proper semi-invariants, for example if G admits no non-trivial
one dimensional modules. Again one can always eliminate proper semi-invariants
by replacing G by a slightly smaller group G′. However this can also increase the
size of invariant field, that is one may have R(V )G

� R(V )G′ , so it is not always
appropriate to replace G by G′. This is particularly true if G is the centralizer of a
nilpotent element in a semisimple Lie group with V = (Lie G)∗. In this case R[V ]G

already has the required size, namely ιV,G even though R[V ] can admit proper semi-
invariants [21, 4.6(ii)].
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One can ask if a Weierstrass section x+Y exists without there being an adapted
pair. A condition which pops up in this circumstance (and in several others) is
the following. Set Vsing = V \Vreg. Since Vreg is Zariski dense in V , it follows that
codimV Vsing ≥ 1. We call the pair (G,V ) singular if equality holds and non-singular
otherwise.

If (G,V ) is singular, then as in 2.5 there exists a unique up to scalars
homogeneous semi-invariant polynomial on V of minimal degree whose zero
set is Vsing. It is called the fundamental semi-invariant pV,G. It can be a challenging
problem to compute this polynomial.

Suppose (G,V ) is non-singular, with G connected and semisimple. then after
Popov [29, Thm. 2.2.15] every element of a Weierstrass section x +Y must be
regular. By contrast, in [29, 2.2.16.3], Popov notes that if G = SL(n) and V is n× n
matrices under left multiplication, then (G,V ) is singular and a Weierstrass section
exists admitting non-regular elements. In this case the fundamental semi-invariant
is just the determinant of the matrix algebra.

There are also (rather more complicated) examples of the above phenomenon
when G is not semisimple, more precisely when G is a truncated Borel B (of a
simple Lie algebra g) acting on the dual of its Lie algebra b∗. We showed in [19]
that (B,b∗) is singular outside types A, C and that with the further exception outside
types B2n,F4, that the invariant algebra admits a Weierstrass section and this contains
non-regular elements. This result is also true (rather trivially) of the Heisenberg Lie
algebra (defined by the only non-zero relation [x,y] = z).

An interesting situation occurs in the “Feigin” contraction a of a semisimple Lie
algebra. In this a is a semi-direct product of a Borel subalgebra b of a semisimple
Lie algebra g with g/b, the latter viewed as a commutative ideal. One has index a=
index g=: � and clearly a is unimodular. Panyushev and Yakimova [28] have shown
that the invariant algebra Y (a) is polynomial on � generators.

By Panyushev–Yakimova [28] a is a singular Lie algebra (cf 3.6) if g has factors
not of type A. Yet it may still admit an adapted pair because S(a) admits proper semi-
invariants. Indeed let y ∈ (g/b)∗ be the sum of the simple root vectors and extend y
to an element of a∗ by setting y(b) = 0. Let h be the element of the Cartan subalgebra
of b whose value on every simple root equals −1. Then (h,y) is an adapted pair for
a. Let X be an h stable complement for (ada)y in a∗. Then y+X is a Weierstrass
section for Y (a).

3 A Joke and a Misunderstanding

3.1. Let g be a simple Lie algebra with g= n++h+n−, a triangular decomposition.
(Here h is a Cartan subalgebra and n± the span of positive (negative) root vectors.)
Then b := h+ n+ is a Borel subalgebra. Set Y (g) = S(g)g. It identifies with
the algebra of invariant functions on g∗ under co-adjoint action. Let P+ denote the
dominant weights of g relative to this triangular decomposition and w0 the unique
longest element of the Weyl group.
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It turns out (rather remarkably) that S(b)n
+

is a polynomial algebra [12] on
rank g generators. On the other hand it consists of highest weight vectors for the
adjoint action of g on S(g), whilst S(n−)n− consists of lowest weight vectors.
A piece of good fortune is that, in the latter, weights have multiplicity ≤ 1 and
those of multiplicity one are exactly the negatives of the weights of S(b)n

+
. This

circumstance gives a natural way [8, 4.17] to construct a linear map ψ from S(b)n
+

to Y (g). In [8, 4.19] we suggested that ψ is surjective.
The surjectivity of ψ means that the invariant functions on g∗ are spanned by

elements constructed as follows. Tensor the highest weight g module generated by
a weight vector of S(b)n

+
with the unique lowest weight g module generated by a

weight vector of opposite weight from S(n−)n− and take the image (possibly zero)
in S(g) of the unique up to scalars g invariant in their tensor product.

This was to have been explained in [7]; but the referee felt that it seemed too
much of a joke to relate these invariant algebras. Nevertheless in [8] we showed
that ψ is bijective if g is of type A or C. The proof derived partly from a general
injectivity property of the enveloping algebra analogue ofψ restricted to a subspace
of U(b)n

+
generated by weight vectors whose weights are rather special, precisely

lie in the set D := ϖ −w0ϖ : ϖ ∈ P+. Exactly in types A and C all the weights are
of this form. Otherwise additional weights are arise. These are generated over D
by including some of the ϖ−w0ϖ

2 , with ϖ a fundamental weight. Moreover ψ is not
injective in general [8, 4.13].

3.2. Given M a g module and μ ∈ h∗, set Mμ := {m ∈ M|hm = μ(h)m,∀h ∈ h}.
Define

A(g) =
⊕

μ∈h∗
S(b)n

+

μ S(n−)n
−
−μ .

By what is stated in 3.1, A(g) is a polynomial subalgebra on rank g generators.
The conjectured surjectivity of ψ can be rephrased as follows.

Conjecture 1. (adU(g)A(g))g = Y (g).

3.3. An obvious question that arises from the above is whether this holds before
taking g invariants, that is does one have

(adU(g)A(g)) = S(g) ?

This is false even for sl(2), however it is not excluded that it may hold when
the symmetric algebra is replaced throughout by the enveloping algebra. Again
Conjecture 1 would be implied by the truth of

Conjecture 2.
adU(g)(

⊕

μ,ν∈h∗
S(b)n

+

μ S(n−)n
−
−ν) = S(g).

3.4. In analyzing these questions it seemed appropriate to give A(g) some geomet-
ric interpretation. In this we were motivated by the following observation.
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Recall that the “algebraic” fact that adU(g)S(h) = S(g). Now S(h) (resp. S(g))
is the algebra of regular functions on h∗ (resp. g∗) and it is a “geometric” fact that
Gh∗ = g∗.

This suggested the following programme. Construct a Weierstrass section y+
V ⊂ g∗ for A(g) and show that G(y+V) = g∗. Unfortunately here there was a
misunderstanding. It is not that Gh∗ = g∗ implies that adU(g)S(h) = S(g); but that
the proof of the two statements rely on the same fact namely that h+(adg)h= g.

3.5. In spite of this joke and misunderstanding we did in fact manage to prove [19]
that A(g) admits a Weierstrass section y+V , which is moreover a close cousin of
the Weierstrass section y+gx for Y (g) obtained by Kostant [22] using a principal s-
triple (x,h,y). Nevertheless there are some important differences which in particular
make our construction much more difficult and technically complicated. First of
all choosing a triangular decomposition of g selects both a Cartan subalgebra
and a choice of positive roots. Thus we cannot expect y in the description of the
Weierstrass section for A(g) to be any principal nilpotent element. Indeed it must
be very carefully chosen [19, Sect. 3]. Secondly in the situation treated by Kostant
one may replace gx by any complement V to g.y in g, the essential point being to
ensure that G(y+V ) is dense in g∗. By contrast this consideration does not govern
the choice of V for A(g) though ultimately we found a “canonical” procedure. A
further distinction is that we found that G(y+V) was dense in g∗ exactly when g is
of type A or type C, that is to say exactly when the weights of S(b)n

+
lie in D. Yet

so far we do not know if this affects the status of Conjecture 1.
One of the most satisfying aspects of the construction of a Weierstrass section for

A(g) is that it depended on the set of weights of S(b)n
+

being larger than D. Thus it
“explained” the appearance of the additional weights without which the restriction
map A(g)→ R[y+V ] would not be surjective.

3.6. Let a be a finite dimensional Lie algebra. In general S(a) may admit semi-
invariants, that is to say vectors spanning non-trivial one dimensional representa-
tions of a under adjoint action. This occurs for example if a is a Borel subalgebra
of a simple Lie algebra, indeed in this case S(a) admits no non-trivial invariants.
However if a is algebraic, that is to say the Lie algebra of a connected algebraic
group A, then there is a canonical construction of an ideal aE of a such that the
algebra generated by the semi-invariants of S(a) is just the invariant algebra Y (aE).
(This is also true in general; except that the construction is not canonical [25]). We
call aE the (canonical) truncation of a.

Specializing the terminology of 2.8 to the coadjoint case, an element ξ ∈ a∗ is
called regular if codima.ξ takes its minimal value, denoted ιa. The set a∗sing :=
a∗ \ a∗reg has codimension ≥ 1. We say that a is singular if this codimension is
exactly one. In the adjoint case there is an explicit way to compute (see [21, 4.1],
for example) a polynomial pa whose zero set is a∗sing. However it may not be the
minimal polynomial with this property (for example if one takes a Heisenberg
algebra of dimension 2n + 1 with n > 1). Nevertheless we shall still call it the
fundamental semi-invariant of a.
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In [19, 13.3] we calculated pbE for every truncated Borel subalgebra bE of a
simple Lie algebra g. It turns out that bE is singular exactly when g is of types
B,D,E,F,G. It would be interesting to calculate ppE for every truncated biparabolic
subalgebra pE of g, though outside the Borel case we know of no examples for
which pE is non-singular.

Incidentally I believe that Yakimova has recently determined pa and paE for a
Feigin contraction a of a semisimple Lie algebra (cf 2.8).

3.7. Recall the notation of 3.5. There are some choices in the Weierstrass section
y +V for A(g). We found [19] that in all cases outside types B2n,Cn,F4 that it
is possible to choose y+V to be a Weierstrass section for the invariant algebra
S(b)n

+
= Y (bE). Moreover if we further exclude type A then the restriction of y to

bE is not a regular element of b∗E . Conversely since bE is singular (3.6) and S(bE)
admits no proper semi-invariants, it follows (cf [21, 1.7]) that bE cannot admit an
adapted pair. This extends considerably the example of Popov discussed in 2.8.

3.8. Since the extraction of an adapted pair (y,h) for a Lie algebra a (with respect to
co-adjoint action) is very difficult particularly in the truncated biparabolic case, one
should attempt to find some rationale behind their construction. In the successful
attempts in the centralizer and truncated Borel case, a central theme is that a occurs
naturally as a subalgebra of a semisimple Lie algebra g, that y is the restriction of
a regular nilpotent element y0 of g with h uniquely determined by y. Moreover in
the truncated Borel case we found in nearly all cases that the invariant algebra of a
for coadjoint action admits a Weierstrass section of the form y+V with again y the
restriction of y0, even when a admits no adapted pair. This is made possible by the
fact that y need not be regular in a∗.

Another feature is that in all cases we have examined one may identify a∗ with
κ(g) for some Chevalley antiautomorphism of g. However so far this observation
has played no significant role.

This has led us to re-examine the construction of adapted pairs of truncated
biparabolics in type A described in [18]. In [9] we examined the “simplest” case,
namely when the truncated biparabolic has index one. This can only arise in type
A and when the biparabolic is a parabolic defined by two blocks of sizes p,q with
p,q coprime. In this case there is just one generator of Y (a) which nevertheless has

a rather large degree, namely p2+q2+pq−1
2 . It is already rather difficult to construct

an adapted pair (y,h) in this case. Indeed at first it seemed that we would need an
explicit solution to the Euler (alias, the Bezout) equation! Ultimately we found a
way to construct an adapted pair [14] which avoiding needing an explicit solution
to the Euler equation at the same time found an algorithm (unfortunately hopelessly
slow) describing its solution. In this we can view y as a nilpotent element of g by
identifying a∗ with κ(a). However then y is never regular in g.

Of course this last described construction is not the only way we can lift y∈ a∗ to
an element of g∗. If we let m denote the kernel of the map g∗ → a∗ identified through
the Killing form with a subspace of g, then our question becomes if y+m contains
a regular nilpotent element of g. There seems absolutely no reason why this should
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be so. Thus its proof must require a large amount of blind faith which will need to
be even more fervent in the general case.

In fact we did manage [9] to establish the existence of such a regular nilpotent
element in the “easy” index one case, with the proof a long drawn out analysis of
meanders. It now seems that this has the potential to handle the general case. One
interesting feature of our proof is that it gave an invariant on the set of all coprime
pairs computed using meanders.

Although we showed [7,15] that the invariant algebra Y (a) is always polynomial
for “most” truncated parabolics (all in type A) the description of their generators
seems a quite impossible task. Even describing their number and their degrees can
only be carried out algorithmically. Again for the derived algebra of a parabolic of
sl(n) defined by two blocks of sizes (p,q), the number of generators is the largest
common divisor of (p,q). Yet even when this equals one, there is no known formula
for the generator, except when p = 1. This last case is what is now being called
the mirabolic subalgebra of sl(n). In this case the invariant (or semi-invariant in the
parabolic) has a reasonably simple description [5, 13, 7.4].

4 The Hessenberg and Its Generalizations

4.1. Let a be a finite dimensional Lie algebra and fix f ∈ a. The bilinear form on a
defined by B f := f ([x,y]) : x,y∈ a is alternating. It induces a non-degenerate bilinear
form on a/kerB f , which is hence, even dimensional. Assume to keep things purely
algebraic, that a is the Lie algebra of a connected algebraic group A. Then kerB f

is just the Lie algebra of the stabilizer A f of f in A. Consequently any co-adjoint
orbit is even dimensional. This observation with its remarkably simple proof is due
to Kirillov (as late as 1962!). It quickly implies that the algebra of regular functions
R[A f ] on the orbit closure A f , the structure of Poisson algebra. Indeed let JA f denote

the ideal of definition of A f . It is stable under the Poisson bracket on S(a) obtained
from the Lie bracket on a. Hence the Poisson algebra structure of S(a) induces a
Poisson algebra structure on S(a)/JA f = R[A f ]. In addition it was later noted by
Kirillov (and independently by Kostant) that the resulting two-form is closed and
A invariant. Thus a co-adjoint orbit admits an invariant symplectic structure. It is
practically impossible to overemphasize the impact these simple observations made.

4.2. Retain the above notation. One may view the enveloping algebra U(a) of a
as a deformation of S(a) which lifts the Poisson bracket to commutators in U(a).
More precisely there is a filtration F on U(a) (the canonical filtration [6, 2.3]) such
that grF U(a)

∼→ S(a) from which the Poisson bracket on S(a) can be recovered as
follows. Let a,b ∈ S(a) be homogeneous of degree r,s respectively. Let a,b be their
inverse images in U(a). Since S(a) is commutative, the image of [a,b] in S(a) has
degree at most r+ s− 1.The term of degree exactly r+ s− 1 (which can be zero) is
exactly the Poisson bracket {a,b} of the pair (a,b).

Just describing how to find a corresponding algebra U which similarly deforms
the algebra of functions on an orbit closure, has occupied much of the theory of
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primitive ideals of U(a). This question is still of great interest especially for the
case when a is semisimple.

4.3. Retain the above notation. The invariant subalgebra Y (a) := S(a)a of S(a)
identifies with the centre of S(a) as a Poisson algebra. It is polynomial (rather
infrequently) and admits a Weierstrass section (even less frequently). Nevertheless
both hold if a is semisimple and for certain truncated biparabolics [7, 15], certain
centralizer subalgebras of semisimple Lie algebras [3, 17, 26] and even Feigin
contractions of semisimple Lie algebras [28] and 2.8.

An almost immediate step (which nevertheless took about 40 years to make!)
is to consider the corresponding questions for a maximal Poisson commutative
subalgebra of S(a). Of course such algebras are less canonical, but nevertheless
of some importance.

4.4. It is easy to show that the Gelfand-Kirillov dimension (that is growth rate [23])
of Y (a) is at most ιa. It is similarly easy to show that the Gelfand-Kirillov dimension
of a Poisson commutative subalgebra of S(a) is at most c(a) := 1

2 (dima+ ιa).
By results of Borho-Chevalley-Rosenlicht equality holds in the former case if a
is algebraic and S(a) has no proper semi-invariants. (The first condition may be
dropped if the second is retained [25].) Rather surprisingly Sadetov [33] has shown
equality can always be assured in the second case for some Poisson commutative
subalgebra, though the Sadetov construction has not drawn much attention.

Another construction of a large Poisson commutative subalgebra of S(a) can
be obtained from Y (a) by “shift of argument”. This goes back to Mishchenko and
Fomenko [24]. Indeed fix η ∈ a∗. Given f ∈Y (a) one obtains a subspace fη of S(a)
by taking the linear span of the coefficients in powers of λ of the function ξ �→
f (ξ +λη). The space Yη(a) spanned by the fη : f ∈Y (a) is a Poisson commutative
subalgebra of S(a). If η belongs to a suitable dense open subset a∗wreg (cf [21, 7.2
(∗)]) of a∗ then the Gelfand-Kirillov dimension of Yη(a) is exactly c(a) as long as
a is non-singular. This remarkably general result is due to Bolsinov [2]. When a
is singular, a similar result holds [21, Sect. 7], but with c(a) replaced c(a)− d(a),
where d(a) denotes the degree of the fundamental invariant pa of a. Thus in the
singular case shift of argument does not give a large enough algebra.

One can ask when is Yη(a) : η ∈ a∗wreg polynomial? One answer is that it suffices
for Y (a) to be polynomial on ιa homogeneous polynomials whose degrees sum to
c(a)− d(a). For a semisimple such properties hold when a is semisimple after the
celebrated work of Chevalley. Outside the semisimple case truncated biparabolics
or centralizer subalgebras gave the first few general examples for which Y (a) was
known to be polynomial and in most of these cases the above sum rule could be
simply checked [8,17,26]. Shortly afterwards Ooms and Van den Bergh [25] obtain
this sum rule by a general argument in [25]. A slight generalization of their result,
following partly a very simple argument due to Panyushev, can be found in [21,
Thm. 2.2].

In general Yη(a) need not be maximal Poisson commutative even when
its Gelfand-Kirillov dimension equals c(a). However recently Panyushev and



Adapted Pairs and Polynomiality 55

Yakimova [27] have shown that this does hold if a∗sing has at least codimension 3.
Conversely Ooms and Van den Bergh [25] showed that if S(a) has no proper
semi-invariants and Y (a) is polynomial (hence on ιa generators) then a∗sing has at
most codimension 3. In the semisimple case a∗sing has at least codimension 3 by the
existence of a principal s-triple and has at most codimension 3 by the “subregular
sheet” S having codimension 3.

4.5. Retain the above notation. One can ask when does Yη(a) admit a Weier-
strass section? In proving that Yη (a) is maximal commutative in the semisimple
case Tarasov [34] effectively constructed a Weierstrass section for Yη(a) (with a
semisimple). Indeed a simple argument (cf [20, Prop. 16]) shows that when Yη (a)
has Gelfand-Kirillov dimension c(a) and admits a Weierstrass section, then Yη (a) is
a maximal Poisson commutative subalgebra of S(a).

4.6. Tarasov’s construction of a Weierstrass section in the semisimple case uses the
principal s-triple in a seemingly essential way. However it turns out we can do with
much less and thereby obtain many other examples when Yη(a) admits a Weierstrass
section. Let us review briefly what is needed and what is still unknown. Here
our presentation follows [20] with some improvements (imposing less restrictive
conditions) following [21, Sects. 2, 3].

Let a be a finite dimensional Lie algebra (algebraic is not imposed though this
will be true in all examples). Let ∂ be a semisimple derivation of a. For all i ∈ k set
ai := {a ∈ a|∂x = ix}.
A1. Assume that Y (a) is polynomial on ιa generators.

We need not assume that S(a) admits no proper semi-invariants, but only
the weaker condition (cf [21, 1.3]) that a is unimodular. This weakening is
particularly relevant to centralizer subalgebras of a semisimple Lie algebra [21,
4.3].

A2. Assume that a admits a pair (h,y) ∈ (a × a∗reg) with adh a semisimple
endomorphism of a∗ and (adh)y =−y.

A3. Assume that there exists h∗ ∈ a∗ such that its stabilizer ah∗ in a equals ah.

By a standard deformation argument (cf [19, 7.8]) A2,A3 imply that a is non-
singular. Combined with A1 this implies [21, 2.2], that the sums of the degrees of
the homogeneous generators equals c(a). Combined with A2 again, this implies [20,
Lemma 11], [21, Lemma 3.4], that the eigenvalues of adh on a are integer, that
dimai = dima−i,∀i ∈ Z (here we say that a is balanced) and that h∗ is regular.

We call (h,y,h∗) an adapted triple.
Assume that A1 − A3 hold. It follows from the above that the (much larger

set) of hypotheses H1−H5 of [20] are satisfied. By [20, Lemma], it follows that
a∗≥ := ∑i∈N ai has dimension c(a) which of course is just the Gelfand-Kirillov of
the translated algebra Yh∗(a). However the most interesting point is the truth of [20,
Thm. 25] holds. This can be expressed as follows.

Theorem. y+ a∗≥ is a Weierstrass section for Yh∗(a).
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4.7. Retain the above notation and assume that a satisfies A1− A3 above. Since
a is balanced, it is natural to guess that a∗1 admits a regular element of a∗ (under
the embedding defined by h eigenvalue decomposition). In this case the standard
deformation argument (cf [19, 7.8]) applied to the triple of regular elements (x,h∗,y)
having eigenvalues 1,0,−1 respectively implies that a∗sing has codimension at least
three. This is the condition of Panyushev and Yakimova [27] which implies that
Yη(a) is maximal Poisson commutative. Of course we already know this to be
true since it admits a Weierstrass section. Nevertheless we were unable to prove
this needed property of a∗1. Conversely it is not obvious (perhaps improbable) that
the hypotheses of Panyushev and Yakimova [27] are sufficient to imply that Yη (a)
admits a Weierstrass section.

We saw in 2.8, that a Feigin contraction a of a semisimple Lie algebra g does
admit an adapted pair (h,y) with y ∈ a∗−1 regular. However it does not admit an
adapted triple. Moreover although a is balanced, a∗1 does not in general admit
a regular element. Indeed the co-adjoint orbit generated by an element of a∗1
has dimension at most 2rankg, whilst a regular co-adjoint orbit has dimension
dimg− rankg. Yet dimg− rankg> 2rankg, except if g has only sl(2) factors.

4.8. A1−A3 hold if a is reductive and then the above theorem recovers Tarasov’s
result. In [20] and [17] several families of examples are given for a non-reductive
when A1−A3 hold. Our favourite example is when g is simple of type Bn and a is the
derived algebra of a parabolic subalgebra whose Levi factor is simple of type Bn−1.
For n = 3 the details of this example are worked out in [16, 8.16]. When a= sl(n),
the above Weierstrass section is known as the Hessenberg of the matrix algebra.

4.9. Let a be a finite dimensional Lie algebra. One can ask if there exists a
“quantization” of the translated algebra Yh∗(a). Precisely find a commutative sub-
algebra of the enveloping algebra U(a) whose associated graded algebra is Yh∗(a).
Such algebras are particularly interesting from the point of view of representation
theory especially in the semisimple case. Here the eigenvectors (under reasonable
conditions) have multiplicity one and therefore define a distinguished basis of
the module. In theoretical physics the joint eigenvalues of the generators of the
maximal commutating subalgebras are thereby interpreted as giving a “complete set
of variables”.

Recently the above problem was resolved for g semisimple through the work of
many authors (see [4, Sect. 2] for example and references therein). The construction
can be briefly described as follows.

Define the current algebra g− := g⊗ t−1k[t−1]. (This is not quite standard
terminology.) It is an g module by action on the first factor. Consider the g module
map x �→ x⊗ t−1 of g into g⊗ t−1. Extend this to an g algebra map ϕ of S(g) into
S(g−), that is to say an g module map in which the g action is by derivations with
respect to the algebra structure. The derivation ∂ := ∂/∂ t of S(g−) commutes with
this action. Thus ϕ(Y (g)) and its translates under ∂ generate a subalgebra C (g−) of
S(g−) in which g acts by zero. (However this does not mean that C (g−) lies in the
Poisson centre of S(g−).)
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A remarkable fact is that C (g−) is Poisson commutative [11]. This result is
referred to as the Hitchin integrable system [1, Thm. 2.2.4 (i)]. A second even more
remarkable fact is that there exists a commutative subalgebra Z (g−) of U(g−)
whose associated graded algebra is C (g−). In other words the Hitchin integrable
system can be quantized [1]. This can be achieved through the centre of the affine
Lie algebra at the critical level [10]. Let z1,z2 ∈ k be distinct and non-zero. Let
Z(z1,z2)(g) denote the image of Z (g−) in U(g)⊗U(g) under the coproduct and
evaluation of t is the first (resp. second) factor at z1 (resp. z2). It is an g invariant
commutative subalgebra of U(g)⊗U(g). Finally the required quantization of Yh∗(g)
is achieved by taking the associated graded algebra of U(g)⊗U(g) corresponding
to the canonical filtration on just the second factor and evaluation at h∗.

The n-fold analogue of Z(z1,z2)(g) has been of much recent interest (see
[4, Sect. 2] for example and references therein). For physicists this is because
they contain the Gaudin Hamiltonians. For mathematicians this is because it is
conjecturally capable of separating the components of the tensor product of simple
finite dimensional U(g) modules.

The Gaudin Hamiltonians are constructed using an orthonormal basis of g and
then their commutativity obtains using the fact that the structure constants are totally
antisymmetric with respect to this basis. It does not seem that this construction can
be extended to the case when g is any finite dimensional Lie algebra. However
it is not excluded the Hitchin integrable system could be defined for certain non-
reductive Lie algebras.

4.10. In view of the above one can ask if it is possible to carry out an analogous
quantization of Yh∗(a) when a is not reductive.

It is appropriate to choose a (non-reductive) Lie algebra a for which Yh∗(a) admits
a Weierstrass section. In 4.8 we saw that examples exist in which a is not reductive
with nevertheless admits a large Levi factor. Presumably their theory will be no less
difficult than the semisimple case which is already formidable. However here we
just stick to a simple example to see if any of the semisimple theory can go through.

In this let us consider the first step, namely to show that C (a−) is Poisson
commutative in a given example.

For this we first note the following simple (and of course well-known) formula
valid for any vector space V and v1,v2, . . . ,vm ∈V not necessarily distinct.

(−1)s

s!
∂ s

m

∏
j=1

(v j⊗ t−1) =∑
m

∏
j=1

(v j⊗ t−(1+s j)),

where the sum is over non-negative integer values of s j : j = 1,2. . . . ,m satisfying
∑m

j=1 s j = s.
Again a general fact is that since ∂ is a derivation of the Poisson structure we

need only show that {a,∂ rb}= 0, for all a,b ∈ ϕ(Y (a)),r ∈ N.
As an example suppose that a is the truncated Borel for sl(3). This algebra has

four basis elements x,y,z,h with the only non-zero commutation relations being
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[x,y] = z, [h,x] = x, [h,y] = −y. Its centre is the polynomial algebra generated by
z,xy+ hz. Taking h∗ to be the linear functional on a which is zero on x,y,h and 1
on z, we obtain Yh∗(a) to be the polynomial algebra generated by z,h,xy. Of course
this can already be interpreted as a maximal commutative subalgebra of U(a) so
in that sense there is nothing more to do. Nevertheless we present the following
result which is analogous to and having the same level of non-triviality as the
commutativity of that part of C (a−), for a semisimple, coming from the Casimir
invariant.

Lemma. Suppose a is the truncated Borel in sl(3). Then C (a−) is Poisson
commutative.

Proof. Set a := ϕ(xy+hz),b = ∂ ra. Use { , } to denote Poisson bracket. We obtain

{a,b}=
r

∑
s=0

(As +Bs+Cs),

where

As = {(x⊗ t−1)(y⊗ t−1),(x⊗ t−(s+1))(y⊗ t−(r−s+1))}
= (z⊗ t−(r−s+2))[(y⊗ t−1)(x⊗ t−(s+1))− (x⊗ t−1)(y⊗ t−(s+1))],

Bs = {(x⊗ t−1)(y⊗ t−1),(h⊗ t−(s+1))(z⊗ t−(r−s+1))}
= (z⊗ t−(r−s+1))[−(y⊗ t−1)(x⊗ t−(s+2))+ (x⊗ t−1)(y⊗ t−(s+2))],

= −As+1,∀s|r > s≥ 0,

Cs = {(h⊗ t−1)(z⊗ t−1),(x⊗ t−(s+1))(y⊗ t−(r−s+1))}
= (z⊗ t−1)[(x⊗ t−(s+2))(y⊗ t−(r−s+1))− (x⊗ t−(s+1))(y⊗ t−(r−s+2))].

It follows that

r

∑
s=0

(As +Bs) = A0 +Br = Br =−
r

∑
s=0

Cs.

The cases when a = ϕ(z) or b = ∂ rϕ(z), are trivial. Hence the assertion of the
lemma. ��
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From Palev’s Study of Wigner Quantum
Systems to New Results on Sums of Schur
Functions

Ronald C. King

Dedicated to Tchavdar Palev on the occasion of his 75th
birthday.

Abstract Palev’s study of Wigner quantum oscillators led directly to the
construction of unitary irreducible Fock space representations V (p) of the Lie
superalgebras osp(1|2n). In the hands of Van der Jeugt, Lievens and Stoilova this
yielded for all positive integers n and p an explicit formula for the corresponding
character chV (p). It was expressed as a sum of Schur functions specified by
partitions of length no greater than p. They conjectured that this infinite sum could
in turn be expressed as a quotient of certain signed sums of Schur functions.
The validity of this conjecture is first established by relating it to a known result of
Macdonald for the sum of Schur functions specified by partitions whose parts are
no greater than p. It is then shown that the origin of these distinct restrictions on the
size and number of parts of partitions can be traced back to the existence of certain
Howe dual pairs of groups associated with the spin representation of O(2n+1) and
the metaplectic representation of Sp(2n), respectively.

1 Introduction

My interactions with Tchavdar Palev started when I met him for the first time at the
“Symmetries in Science III” conference in Bregenz, Austria, 1988. We met again
at successive “International Colloquia on Group Theoretical Methods in Physics”
in Moscow, 1990, Salamanca, 1993 and Goslar 1996. Then thanks to meeting Neli
Stoilova in Brisbane in 2000, the three of us jointly submitted an application to the

R.C. King (�)
School of Mathematics, University of Southampton, Southampton SO17 1BJ, England
e-mail: r.c.king@soton.ac.uk

V. Dobrev (ed.), Lie Theory and Its Applications in Physics: IX International Workshop,
Springer Proceedings in Mathematics & Statistics 36,
DOI 10.1007/978-4-431-54270-4 5, © Springer Japan 2013

61



62 R.C. King

Royal Society for a UK/Bulgaria Joint Project Grant. This allowed two exchange
visits in each direction during the period 2001–2003: Tchavdar Palev and Neli
Stoilova to Southampton in the UK and myself to Sofia in Bulgaria.

To date I have had only two further meetings with Tchavdar Palev, both in Varna,
Bulgaria, at the International Symposium “Quantum Theory and Symmetries IV”
and the concurrent International Workshop “Lie Theory and its Applications in
Physics VI” in 2005, together with the present meeting now in 2011. He introduced
me to Wigner Quantum Systems, in particular to n-particle 3D Wigner quantum
oscillators. In doing so he taught me about paraboson operators, non-commutative
geometry, and Fock space unirreps of Lie superalgebras. Together with Neli
Stoilova, he helped renew my interaction with Joris Van der Jeugt, with a concrete
outcome by way of joint papers [9, 10] and a number of conference publications.
My impressions of Tchavdar Palev were that he was immensely stimulating, with
a great breadth of knowledge and expertise in group theoretical methods and their
application to physics, characterised by great attention to detail. But perhaps above
all he was great fun to work with, and it is both a delight and a privilege to contribute
here to the celebration of his 75th birthday.

One totally unexpected outcome of this interaction with Tchavdar Palev was
to receive a query from Joris Van der Jeugt, working with Stijn Lievens and Neli
Stoilova in Gent. They had been studying unirreps of the Lie superalgebra osp(1|2n)
built using Ganchev and Palev’s parabosons [4]. They had identified Fock space
modules V (p) for any p ∈ N, and found that V (p) is irreducible for p ≥ n, but
reducible for p < n. They went further, and constructed quite explicitly for all p∈N
the unitary irreducible infinite-dimensional representations V (p) = V (p)/M(p),
where M(p) is the maximal submodule of V (p). They also calculated the characters
of both V (p) and V (p). In particular they established [12]:

Proposition 1. Let x = (x1,x2, . . . ,xn). Then for all positive integers p

chV (p) = (x1x2 · · ·xn)
p/2 ∑

λ :�(λ )≤p

sλ (x), (1)

where the sum is over all partitions λ and sλ (x) is the corresponding Schur function,
with �(λ ) denoting the length of λ .

In addition they made the following [12]:

Conjecture 1.

∑
λ :�(λ )≤p

sλ (x) =
∑η (−1)cη sη(x)

∏1≤i≤n(1− xi) ∏1≤ j<k≤n (1− xix j)
, (2)

with the sum taken over all those partitions η which in Frobenius notation take
the form
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η =

(

a1

a1 + p
a2

a2 + p
· · ·
· · ·

ar

ar + p

)

(3)

with cη = (|η |− rp+ r)/2, where |η | denotes the weight of η .

It is this conjecture that Joris Van der Jeugt sent me along with a query as to
whether or not it was a known result, and if not could I supply a proof. At that time
I was visiting Angèle Hamel in Waterloo, Canada, and she immediately reminded
me of the following result due to Macdonald [14]:

Theorem 1. Let x = (x1,x2, . . . ,xn). Then for all p ∈ N

∑
λ :�(λ ′)≤p

sλ (x) =

∣

∣

∣xp+2n− j
i − x j−1

i

∣

∣

∣

∣

∣

∣x2n− j
i − x j−1

i

∣

∣

∣

(4)

where λ ′ is the partition conjugate to λ , and the determinants are both n× n, with
their (i, j)th elements displayed.

The strategy was then to try to recast Macdonald’s formula (4) in terms of Schur
functions and to use conjugacy to recover the Lievens, Stoilova and Van der Jeugt
conjecture (2). In addition it would be of interest to identify the origin of both the
row length restriction �(λ ′) ≤ p in (4) and the column length restriction �(λ ) ≤ p
in (2).

In the next section we present some preliminaries on partitions, Young diagrams,
Frobenius notation, Schur functions and Schur function series, along with some
determinantal formulae for these series due to Littlewood [13]. These allow us in
Sect. 3 to reformulate Macdonald’s result (4) in a manner that in Sect. 4 leads, by
means of a lemma generalising Littlewood’s determinantal formulae and a simple
conjugacy argument, to a proof of the validity of the Lievens, Stoilova and Van der
Jeugt conjecture(2).

2 Preliminaries

A partition λ = (λ1,λ2, . . . ,λn) of weight |λ | and length �(λ )≤ n is a sequence of
non-negative integers satisfying the condition λ1≥ λ2≥ ·· · ≥ λn≥ 0, such that their
sum is |λ |, and λi > 0 if and only if i≤ �(λ ).

Each such partition specifies a corresponding Young or Ferrers diagram, Fλ ,
that consists of |λ | boxes arranged in �(λ ) left-adjusted rows of lengths λi for i =
1,2, . . . �(λ ). If the lengths of the columns of Fλ are λ ′j for j = 1,2, . . .λ1, then these
lengths define the partition λ ′ that is conjugate to λ .
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If Fλ has r boxes on the main diagonal, with arm and leg lengths ak and bk for
k = 1,2, . . . ,r, then λ is said to have rank r(λ ) = r and in Frobenius notation we
write

λ =

(

a1

b1

a2

b2

· · ·
· · ·

ar

br

)

with conjugate λ ′ =
(

b1

a1

b2

a2

· · ·
· · ·

br

ar

)

, (5)

where a1 > a2 > · · ·> ar ≥ 0 and b1 > b2 > · · ·> br ≥ 0.
By way of illustration, we have

=

λ1

λ2

λ3

λ4

=

λ ′1 λ ′2 λ ′3 λ ′4 λ ′5

=

a1

b1 a2

b2 a3

b3

It is convenient to make use of the notation λ ⊆ μ if Fλ is contained wholly
within Fμ , that is to say λi ≤ μi for all i, or equivalently λ ′j ≤ μ ′j for all j, and to
define μ±λ = (μ1±λ1,μ2±λ2, . . . ,μn±λn).

There are a number of special families of partitions. First let P denote the set of
all partitions. This includes the zero partition λ = 0= (0,0, . . . ,0) which has weight,
length and rank zero, i.e. |0|= �(0) = r(0) = 0. Then for any integer t let

Pt =

{

λ =

(

a1

b1

a2

b2

· · ·
· · ·

ar

br

)

∈P

∣

∣

∣

∣

ak− bk = t
for k = 1,2, . . . ,r
and r = 0,1, . . .

}

, (6)

It is to be noted that the zero partition belongs to Pt for all integers t. The case t = 0
yields

P0 =

{

λ =

(

a1

a1

a2

a2

· · ·
· · ·

ar

ar

)

∈P

∣

∣

∣

∣

r = 0,1, . . .

}

, (7)

that is the set of all self-conjugate partitions
{

λ ∈P
∣

∣λ = λ ′
}

. More generally
P−t is the set of partitions conjugate to those in Pt for all integers t.

Partitions are required for the introduction of Schur functions, and the above sets
of partitions arise naturally in what follows in dealing with certain infinite series of
Schur functions.

Definition 1. Let x = (x1,x2, . . . ,xn) be a sequence of n indeterminates, and let λ
be a partition of length �(λ )≤ n. Then the Schur function sλ (x) is defined by:

sλ (x) =
∣

∣

∣x
λ j+n− j
i

∣

∣

∣

/

∣

∣

∣xn− j
i

∣

∣

∣ , (8)

where the determinants are n × n and only the (i, j)th elements have been
displayed. The denominator is just the Vandermonde determinant for which
∣

∣

∣x
n− j
i

∣

∣

∣=∏1≤i< j≤n (xi− x j).
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These Schur functions form a Z-basis of Λn, the ring of polynomial symmetric
functions of x1, . . . ,xn. It is important to note that the definition (8) is still meaningful
if the partition λ is replaced by any sequence κ = (κ1,κ2, . . . ,κn) of n integers κi for
i= 1,2, . . . ,n. However, certain modification rules [13] may then be invoked to show
that either sκ(x) = 0 or sκ(x) =±(x1x2 · · ·xn)

k sλ (x) for some partition λ and some
integer k. The first case arises if κi− i= κ j− j for any i 
= j as can be seen by noting
that two columns of the determinant in the numerator of (8) will coincide if λ is
replaced by any such κ . Quite generally, by permuting columns of this determinant
sκ(x) = −sμ(x) with μ = (κ1, . . . ,κ j+1− 1,κ j + 1, . . . ,κn) for any j, and iterating
this gives sκ(x) = (−1) j−1sν (x) with ν = (κ j+1− j,κ1+1, . . . ,κ j +1,κ j+2 . . . ,κn).

An example relevant to what follows is provided by the case n = 4 and κ =
(0,4,0,9), for which sκ(x) = +sλ (x) with λ = (6,4,2,1). This can be seen from
the identity

s(0409(x) =

∣

∣ x3
i x6

i xi x9
i

∣

∣

∣

∣ x3
i x2

i xi 1
∣

∣

=

∣

∣ x9
i x6

i x3
i xi

∣

∣

∣

∣ x3
i x2

i xi 1
∣

∣

= s(6421)(x) (9)

where just the ith row of each determinant has been displayed. Alternatively,
one can proceed iteratively using the previous identities which give s(0409)(x) =
−s(6151)(x) = +s(6421)(x). Diagrammatically, these modifications are illustrated by

= − = +

These modifications can also be illustrated in the following manner

= − = +

which corresponds to

4

9

= +

5

3 2

1

Hence we have sκ(x) = s(0409)(x) = s(6421)(x) = sλ (x) with λ = (6,4,2,1) =
(

5
3

2
1

)

in Frobenius notation.
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Finally, by way of preliminaries it should be noted that Littlewood [13] obtained
the following generating functions for two important Schur function series:

∏
1≤i≤n

(1− xi)
−1 ∏

1≤ j<k≤n

(1− x jxk)
−1 = ∑

λ∈P

sλ (x) ; (10)

∏
1≤i≤n

(1− xi) ∏
1≤ j<k≤n

(1− x jxk) = ∑
λ∈P0

(−1)(|λ |+r(λ ))/2 sλ (x), (11)

with sλ (x) = 0 if �(λ )> n. As can be seen from the expressions on the left, these two
series are mutually inverse to one another. The first is infinite. However the second is
finite since there are only a finite number of partitions λ for which �(λ ) = �(λ ′)≤ n,
and it forms the denominator of the formula (2).

Furthermore Littlewood derived the following determinantal expansions in terms
of Schur function series [13]:

∣

∣

∣x
n− j
i − xn+ j−1

i

∣

∣

∣

/

∣

∣

∣x
n− j
i

∣

∣

∣ = ∑
λ∈P0

(−1)(|λ |+r(λ ))/2 sλ (x) ; (12)

∣

∣

∣x
n− j
i − xn+ j

i

∣

∣

∣

/

∣

∣

∣x
n− j
i

∣

∣

∣ = ∑
λ∈P1

(−1)|λ |/2 sλ (x) ; (13)

∣

∣

∣xn− j
i + χ j>1 xn+ j−2

i

∣

∣

∣

/

∣

∣

∣xn− j
i

∣

∣

∣ = ∑
λ∈P−1

(−1)|λ |/2 sλ (x), (14)

where as usual the determinants are all n× n with i, j = 1,2, . . . ,n and, for any
proposition P, the truth symbol χP is such that χP = 1 if P is true, and 0 if P is false.

3 Macdonald’s Formula

We are now in a position to reformulate Macdonald’s formula (4). First we reorder
columns by mapping j → n− j+ 1, then change signs of all elements, and finally
divide numerator and denominator by the Vandermonde determinant to give

∑
λ∈P:λ⊆(pn)

sλ (x) =

∣

∣

∣x
p+2n− j
i − x j−1

i

∣

∣

∣

∣

∣

∣x2n− j
i − x j−1

i

∣

∣

∣

=

∣

∣

∣x
n− j
i − xn+p+ j−1

i

∣

∣

∣

/

∣

∣

∣x
n− j
i

∣

∣

∣

∣

∣

∣xn− j
i − xn+ j−1

i

∣

∣

∣

/

∣

∣

∣xn− j
i

∣

∣

∣

, (15)

where without loss of generality we may replace λ ⊇ (pn) by �(λ ′) = λ1 ≤ p since
sλ (x) = 0 if �(λ ) = λ ′1 > n.

To deal with both the numerator and the denominator of this expression it is
helpful to exploit the following identity:
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Lemma 1. For all n≥ 1 and x = (x1,x2, . . . ,xn)

∣

∣

∣x
n− j
i + qχ j>−t xn+t+ j−1

i

∣

∣

∣

∣

∣

∣x
n− j
i

∣

∣

∣

= ∑
λ∈Pt

(−1)(|λ |−r(λ )(t+1))/2 qr(λ ) sλ (x), (16)

where t is any integer, q is arbitrary, and the determinants are all n× n, so that
i, j = 1,2, . . . ,n. The special cases q =−1, t = 0, q =−1, t = 1 and q = 1, t =−1
correspond to Littlewood’s previous formulae (12), (13) and (14), respectively.

Proof. First the left hand side of (16) can be rewritten and expanded in terms of
Schur functions as follows:

∣

∣

∣xn− j
i + q χ j>−t x(2 j−1+t)+n− j

i

∣

∣

∣

∣

∣

∣x
n− j
i

∣

∣

∣

=
n

∑
r=0
∑
κ

qr sκ(x) (17)

where κ is summed over all sequences of the form

(0, . . . ,0,2 jr− 1+ t,0, . . . ,0,2 j2− 1+ t,0, . . . ,0,2 j1− 1+ t,0, . . .,0), (18)

where n ≥ j1 > j2 > · · · > jr ≥ 1− χt<0t and the non-zero elements appear in
positions jr, . . . , j2, j1. Then, by rearranging the columns of the determinant in the
numerator of

sκ(x) =
∣

∣

∣x
κ j+n− j
i

∣

∣

∣

/

∣

∣

∣x
n− j
i

∣

∣

∣ , (19)

one obtains, precisely, as in the illustrative example of the previous section,

sκ (x) = (−1)( jr−1)+···+( j2−1)+( j1−1) sλ (x), (20)

where

λ =

(

j1− 1+ t j2− 1+ t · · · jr− 1+ t
j1− 1 j2− 1 · · · jr− 1

)

∈ Pt , (21)

and r = r(λ ).
If we now set bk = jk− 1 for k = 1,2, . . . ,r, then

λ =

(

b1 + t b2 + t · · · br + t
b1 b2 · · · br

)

∈ Pt , (22)

where now n− 1 ≥ b1 > b2 · · · > br ≥ −χt<0t, This is precisely the condition
required to give all λ ∈ Pt of length �(λ ) ≤ n for any integer t: positive, zero
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or negative. Finally, |λ | = 2(( j1− 1)+ ( j2− 1)+ · · ·+( jr − 1))+ r(t + 1) so that
(−1)( jr−1)+···+( j2−1)+( j1−1) = (−1)(|λ |−r(t+1))/2, as required to complete the proof
of the Lemma. ��

If we apply this Lemma to the numerator of (15) in the case q =−1, t = p and to
the denominator in the case q =−1, t = 0, we find

∑
λ∈P:�(λ ′)≤p

sλ (x) =

∑
μ∈Pp

(−1)[|μ|−r(μ)(p−1)]/2 sμ(x)

∑
ε∈P0

(−1)[|ε|+r(ε)]/2 sε(x)
. (23)

This reformulation of Macdonald’s formula for the generating function of the
sum of Schur functions specified by row length restricted partitions, is just what is
required to derive, by means of conjugacy, the conjecture formulated by Lievens,
Stoilova and Van der Jeugt.

4 Derivation of the LSV Result

There exists an automorphismω on the ring of symmetric functions which acts as a
conjugacy involution. On Schur functions ω : sλ (x) �→ sλ ′(x) for all λ ∈P . Since
|λ ′|= |λ |, r(λ ′) = r(λ ) and λ ∈Pt implies that λ ′ ∈P−t , it follows that

ω : ∑
λ∈Pt

(−1)(|λ |−r(λ )(t+1))/2 qr(λ ) sλ (x)

�→ ∑
λ ′∈P−t

(−1)(|λ
′|−r(λ ′)(t+1))/2 qr(λ ′) sλ ′(x)

= ∑
λ∈P−t

(−1)(|λ |−r(λ )(t+1))/2 qr(λ ) sλ (x), (24)

where, in the last step the summation partition label has without loss of generality
been changed from λ ′ back to λ .

Since

ω : ∑
λ∈P:�(λ ′)≤p

sλ (x) = ∑
λ∈P:�(λ ′)≤p

sλ ′(x) = ∑
λ∈P:�(λ )≤p

sλ (x), (25)

it follows, by exploiting (24) in the cases q = −1, t = p and q = −1, t = 0, that the
application of ω to (23) gives

∑
λ∈P:�(λ )≤p

sλ (x) =

∑
μ∈P−p

(−1)[|μ|−r(μ)(p−1)]/2 sμ(x)

∑
ε∈P0

(−1)[|ε|+r(ε)]/2 sε(x)
. (26)
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Thanks to (11) this yields

∑
λ :�(λ )≤p

sλ (x) =

∑
μ∈P−p

(−1)[|μ|−r(μ)(p−1)]/2 sμ(x)

∏
1≤i≤n

(1− xi) ∏
1≤ j<k≤n

(1− x jxk)
, (27)

which is precisely the conjectured result (2) of Lievens, Stoilova and Van der Jeugt.
It should be pointed out that the formulae (23) and (26) apply equally well to all

x = (x1,x2, . . . ,xn) without restriction on the integer n. They thus apply in the ring
Λ of symmetric functions of infinitely many indeterminates x = (x1,x2, . . .). Taking
advantage of the fact that the right hand sides of (10) and (11) remain mutually
inverse for all x = (x1,x2, . . . ,xn), again without restriction on n, it follows that (23)
and (26) can be rewritten in the form:

∑
λ∈P:�(λ ′)≤p

sλ (x) = ∑
λ∈P

sλ (x) ∑
μ∈Pp

(−1)[|μ|−r(μ)(p−1)]/2 sμ(x) ; (28)

∑
λ∈P:�(λ )≤p

sλ (x) = ∑
λ∈P

sλ (x) ∑
μ∈P−p

(−1)[|μ|−r(μ)(p−1)]/2 sμ(x). (29)

Since �(λ ′) = λ1 and �(λ ) = λ ′1, these are essentially inclusion-exclusion
formulae for the sums of row-length restricted and column length restricted
Schur functions, each expressed as a multiplicative amendment to the sum of all
unrestricted Schur functions.

5 Classical Group Characters

We have recast the determinants in Macdonald’s formula as signed sums of certain
Schur functions, and then used conjugacy to prove the Lievens, Stoilova and Van der
Jeugt conjecture. We have not explained why the various determinantal expressions
lead to row or column length restrictions. To do this we may exploit the fact that they
define characters of particular representations of classical groups, and then look for
an alternative way of evaluating these characters through the use of Howe dual pairs
of groups.

First it should be noted that for any m and any partition λ of length �(λ )≤ n the
character of the irreducible representation, V mn+λ

GL(n) , of highest weight (m+λ1,m+

λ2. . . . ,m+λn) is given by

chV mn+λ
GL(n) (x) =

∣

∣

∣x
m+λ j+n− j
i

∣

∣

∣

∣

∣

∣x
n− j
i

∣

∣

∣

= (x1x2 · · ·xn)
m sλ (x), (30)

where the components of x = (x1,x2, . . . ,xn) are the eigenvalues of any group
element of GL(n).
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Similarly, the character of the irreducible representation, V μ
SO(2n+1), of highest

weight μ , with either μ = λ or μ = Δ ; λ = ( 1
2

n
+λ ) for some partition λ of length

�(λ )≤ n, is given by

chV μ
SO(2n+1)(x,x,1) =

∣

∣

∣

∣

x
μ j+n− j+ 1

2
i − x

μ j+n− j+ 1
2

i

∣

∣

∣

∣

∣

∣

∣

∣

x
n− j+ 1

2
i − x

n− j+ 1
2

i

∣

∣

∣

∣

, (31)

where the components of x = (x1,x2, . . . ,xn) and x = (x1,x2, . . . ,xn), with xi = x−1
i

for i = 1,2, . . . ,n, together with 1 are the (2n+1) eigenvalues of any group element
of SO(2n+ 1).

It was in terms of these characters that Bracken and Green [2] first wrote down
the following formula for the row length restricted sum of Schur functions:

Theorem 2. Let x = (x1,x2, . . . ,xn) and x = (x1,x2, . . . ,xn) with xk = x−1
k for k =

1,2, . . . ,n, and let p be any positive integer. Then

∑
λ∈P:�(λ ′)≤p

sλ (x) = (x1x2 · · ·xn)
p/2 chV (p/2)n

SO(2n+1)(x,x,1). (32)

This same result was derived more recently by Stoilova and Van der Jeugt [18]
through their explicit construction of unitary irreducible parafermion Fock space
representations W (p), for which they obtained the following character formula:

Theorem 3. Let p be a positive integer. Then the character of the parafermion Fock
space module W (p) is given by

chW (p) = (x1x2 · · ·xn)
−p/2 ∑

λ∈P:�(λ ′)≤p

sλ (x). (33)

They pointed out that this coincided with the Bracken and Green formula (32),
since it was well known that n pairs of parafermion operators generate the Lie
algebra of SO(2n+ 1), and with their construction they were able to identify W (p)

with V (p/2)n

SO(2n+1).
Both results, Theorems 2 and 3, are then corollaries to Macdonald’s Theorem 1,

and vice versa, since we may rewrite and manipulate the determinants in (4) as
follows:

∑
λ∈P:�(λ ′)≤p

sλ (x) =

∣

∣

∣x
p+2n− j
i − x j−1

i

∣

∣

∣

∣

∣

∣x2n− j
i − x j−1

i

∣

∣

∣



WQS and Schur Functions 71

=
∏n

i=1 xp/2+n−1/2
i

∣

∣

∣x
p/2+n− j+1/2
i − xp/2+n− j+1/2

i

∣

∣

∣

∏n
i=1 xn−1/2

i

∣

∣

∣x
n− j+1/2
i − xn− j+1/2

i

∣

∣

∣

=
n

∏
i=

xp/2
i chV (p/2)n

SO(2n+1)(x,x,1).

by virtue of the character formula (31).

6 Howe Dual Pairs

To proceed to an independent derivation of the Bracken and Green formula (32) we
want to exploit the notion of Howe dual pairs of groups [5–7, 17]:

Definition 2. Let groups G and H act on a linear vector space V in such a way that
their actions mutually commute and centralize one another. As a representation of
G×H, let

V =
⊕

k∈K
V λ (k)

G ⊗V μ(k)
H (34)

as k varies over some index set K, where V λ (k)
G and V μ(k)

H are irreducible representa-

tions of G and H, respectively, with V λ (k)
G and V μ(k)

H each varying without repetition.
In such a case we say that G and H form a Howe dual pair with respect to V .

If V carries a representation of a group F ⊇ G×H, then on restriction to the
subgroup G×H (34) implies

chV↓F
G×H = ∑

k∈K

chV λ (k)
G chV μ(k)

H . (35)

The great merit of this formula is that the character chV λ (k)
G is just the coefficient of

chV μ(k)
H in any formula we can devise for chV F

G×H .
In particular this is the case if V =VΔ

O(2np+p), the spin representation of the group
O(2np+ p) for some positive integers n and p, and this group is restricted to its
subgroup SO(2n+ 1)×O(p). In this case [5, 15, 16]

chVΔ
O(2np+p) = ∑

λ∈P:λ⊆(p/2)n

chV (p/2)n−λrev
SO(2n+1) chVΔ ;λ ′

O(p) (36)

where if λ = (λ1,λ2, . . . ,λn) then λrev = (λn, . . . ,λ2,λ1). Our required character,

chV (p/2)n

SO(2n+1) is therefore the coefficient of chVΔ
O(p) in the expansion of chVΔ

O(2np+p).
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To effect this expansion one evaluates step by step the restriction of chVΔ
O(2np+p)

with respect to the group-subgroup chain

O(2np+ p) ⊃ O(2np)×O(p) ⊃ GL(np)×O(p)

⊃ GL(n)×GL(p)×O(p) ⊃ GL(n)×O(p)×O(p)

⊃ GL(n)×O(p). (37)

Proceeding in this way one finds

chVΔ
O(2np+p)→ ∑

ζ ,η∈P:ζ ·η⊆(pn)

chV−(p/2)n+ζ ·η
GL(n) chVΔ ;η ′

O(p) , (38)

where our notation is such that

chV−(p/2)n+ζ ·η
GL(n) = chV−(p/2)n

GL(n) chV ζ
GL(n) Vη

GL(n) (39)

and ζ ·η ⊆ (pn) signifies that in the product of the last two factors one only retains
those terms chV ν

GL(n) such that ν ⊆ (pn).
Comparison of (36) and (38) yields

chV (p/2)n−λrev
SO(2n+1) = ∑

ζ ,η∈P:ζ ·η⊆(pn)

±η ′ ,λ ′O(p) chV−(p/2)n+ζ ·η
GL(n) (40)

for any λ ⊆ (p/2)n, where the sum over η is restricted to those partitions η ⊆ (pn)
such that under the modification rules for O(p) [1]:

chVΔ ;η ′
O(p) =±η

′,λ ′
O(p) chVΔ ;λ ′

O(p) , (41)

with ±η ′,λ ′O(p) = ±. Fortunately in the special case of interest here, λ = 0, the O(p)
modification rules are such that only one solution exists, namely η = 0. Hence we
have our required result

chV (p/2)n

SO(2n+1) = ∑
ζ⊆(pn)

chV −(p/2)n+ζ
GL(n)

= (x1x2 . . .xn)
−p/2 ∑

ζ :�(ζ ′)≤p

sζ (x), (42)

which is precisely the result (32) of Bracken and Green [2], that we have shown is
equivalent to Macdonald’s identity (4).
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It can thus be seen that the origin of the row length restriction �(ζ ′) ≤ p can be
traced directly back to the restriction ζ ⊆ (pn) in the Howe dual pair identity (36)
originally due to Morris [15, 16].

7 Metaplectic Representations

We would like to identify some other Howe dual pair that might lead to characters
expressible as a simple multiple of the sum of column length restricted Schur
functions that appears in the LSV identity (2). Such characters are necessarily
infinite dimensional. We therefore need an infinite-dimensional analogue of the
spin representation of the orthogonal group. This is provided by the metaplectic
representation of the symplectic group.

Let V = V Δ̃
Sp(2np), the metaplectic representation of the symplectic Sp(2np) with

character chV Δ̃ of lowest weight ( 1
2 ,

1
2 , . . . ,

1
2 ). Then a Howe dual pair is provided

by restriction to the subgroup Sp(2n)×O(p). This pair was first identified much
earlier by Moshinsky and Quesne [17] as what they called a complementary pair of
subgroups of Sp(2np). The restriction to this subgroup is such that [7, 8, 11]

chV Δ̃
Sp(2np)→ ∑

λ∈P:λ ′1+λ
′
2≤p,λ ′1≤n

chV (p/2)n+λrev
Sp(2n) chV λ

O(p). (43)

This expansion may be determined by evaluating the restriction of the character
chV Δ̃

Sp(2np) with respect to the group-subgroup chain

Sp(2np)⊃ GL(np)⊇ GL(n)×GL(p)⊇ GL(n)×O(p), (44)

This yields [11]

chV Δ̃
Sp(2np)→ ∑

δ∈2P,η∈P:�(δ ·η)≤min(p,n)

chV (p/2)n+δ ·η
GL(n) chVη

O(p) (45)

where δ ∈ 2P signifies that all the parts of the partition δ are even, and

chV (p/2)n+δ ·η
GL(n) = chV (p/2)n

GL(n) chV δ
GL(n)chVη

GL(n) (46)

while �(δ ·η) ≤ min(p,n) signifies that in the product of the last two factors one
only retains those terms chV ν

GL(n) such that �(ν)≤min(p,n).

Comparing the coefficients of chV λ
O(p) in (43) and (45) one finds

chV (p/2)n+λrev
Sp(2n) = ∑

δ∈2P,η∈P:�(δ ·η)≤min(p,n)

(±)η,λO(p) chV (p/2)n+δ ·η
GL(n) , (47)
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where the sum over η is restricted to those η such that

chVη
O(p) = (±)η,λO(p) chV λ

O(p). (48)

In each of the special cases λ = (1k) with 0≤ k≤ n the only contribution is that
from η = (1k). Hence

chV (p/2)n+(1k)rev
Sp(2n) = ∑

δ∈2P:�(δ )≤min(p,n)

chV (p/2)n+δ ·1k

GL(n)

= (x1x2 . . .xn)
p/2 ∑
δ∈2P:�(δ ·1k)≤min(p,n)

sδ (x) s(1k)(x). (49)

It should now be recalled that the origin of the Lievens, Stoilova and Van der
Jeugt conjecture was a character formula for the irreducible representations V (p)
of the orthosymplectic group osp(1|2n). The connection with infinite dimensional
lowest weight irreducible representations of Sp(2n) comes about through the
restriction from osp(1|2n) to the subalgebra sp(2n). Lievens, Stoilova and Van der
Jeugt showed explicitly that [12]

chVosp(1|2n)(p) =
p

∑
k=0

chV (p/2)n+(1k)rev
sp(2n) . (50)

It then follows from (49) that

chVosp(1|2n)(p) = (x1x2 . . .xn)
p/2

p

∑
k=0

∑
δ∈2P:�(δ ·1k)≤p

sδ (x) s(1k)(x)

= (x1x2 . . .xn)
p/2 ∑

ζ∈P:�(ζ )≤p

sζ (x), (51)

thereby giving an alternative proof of the Proposition 1 originally derived by Lievens
et al. [12].

8 Conclusions

The finite sum of Schur functions restricted with respect to row length has been
shown to be a consequence of a character formula for SO(2n+ 1). This character
formula and the row length restriction are a direct consequence of the existence of
the Howe dual pair SO(2n+ 1)×O(p) with respect to a finite-dimensional spin
representation of O(2np+ p).

Similarly, the infinite sum of Schur functions restricted with respect to column
lengths is a consequence of a character formula for osp(1|2n). This character
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formula and the column length restriction are a direct consequence of the existence
of the Howe dual pair Sp(2n)× O(p) with respect to an infinite-dimensional
metaplectic representation of Sp(2np).

More recently Cheng et al. [3] have exploited superalgebra-algebra Howe dual
pairs such as osp(2m+ 1|2n)×O(p) to obtain osp(2m+ 1|2n) character formulae.
These allow one to rederive and generalise some of the above results.
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Varna Lecture on L2-Analysis of Minimal
Representations

Toshiyuki Kobayashi

Abstract Minimal representations of a real reductive group G are the ‘smallest’
irreducible unitary representations of G. The author suggests a program of global
analysis built on minimal representations from the philosophy:

small representation of a group = large symmetries in a representation space.

This viewpoint serves as a driving force to interact algebraic representation theory
with geometric analysis of minimal representations, yielding a rapid progress on
the program. We give a brief guidance to recent works with emphasis on the
Schrödinger model.

1 What are Minimal Representations?

Minimal representations of reductive groups G are the ‘smallest’ infinite dimen-
sional irreducible unitary representations.

The Weil (metaplectic, oscillator, the Segal–Shale–Weil, harmonic) represen-
tation, known by a prominent role in number theory, consists of two minimal
representations of the metaplectic group Mp(n,R). The minimal representation
of a conformal group SO(4,2) arises on the Hilbert space of bound states of the
Hydrogen atom.

Minimal representations are distinguished among other (continuously many)
irreducible unitary representations of G by the following properties that I state
loosely.

• ‘Smallest’ infinite dimensional representations of G.
• One of the ‘building blocks’ of unitary representations of Lie groups.
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• ‘Closest’ to the trivial one dimensional representation of G.
• ‘Quantization’ of minimal nilpotent coadjoint orbits of G.
• Matrix coefficients have a ‘slow decay’ at infinity.

In algebraic representation theory, there is a distinguished ideal J introduced
by Joseph [14] in the enveloping algebra of a complex simple Lie algebra other
than type A (see also [8]). An irreducible representation of a real reductive Lie
group G is called minimal if its infinitesimal representation is annihilated by J.
Thus the terminology ‘minimal representations’ is defined inside representation
theory. We remark that not all reductive groups admit minimal representations.
Further, minimal representations are not always highest weight modules. Beyond
the case of highest weight modules, there has been an active study on minimal
representations of reductive groups, in particular, by algebraic approaches, see e.g.,
[8, 14, 15, 30, 37, 39, 42, 43].

In contrast, my program focuses on global analysis inspired by minimal repre-
sentations. For this, we switch the viewpoint, led by

Guiding principle 1.1 ([23]).

small representations of a group

= large symmetries in a representation space.

An extremal case of ‘large symmetries’ might be stated as

dimension of Ξ < dimension of any non-trivial G-space (1)

when the representation of G is realized on the space of functions on the
geometry Ξ . An obvious implication of (1) is that G cannot act on Ξ .

The latter point of view, served as a driving force, has brought us to a new line
of investigation of geometric analysis modeled on minimal representations. In this
program we are trying to dig out new interactions with other areas of mathematics
even outside representation theory:

• Conformal geometry for general pseudo-Riemannian manifolds [21, 31],
• Dolbeault cohomologies on open complex manifolds [25, 30].
• Conservative quantities for PDEs [21, 33],
• Breaking symmetries and discrete branching laws [32, 35, 36, 38, 39],
• Schrödinger model and the unitary inversion operator [11, 27, 28],
• Deformation of the Fourier transform [3],
• Geometric quantization of nilpotent orbits [11, 28],
• Holomorphic semigroup with a generalized Mehler kernel [3, 26, 27],
• New orthogonal polynomials for fourth order differential operators [9, 10, 29],
• A generalization of the Fock model and Bargmann transforms [12].

The aim of this article is to provide a brief guidance to the rapid progress on
our program, [1, 3, 9–12, 23, 25, 28, 29, 36, 38]. We should mention that in order
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to avoid an overlap with a recent publication [24], we do not include here some
other constructions such as a conformal model of minimal representations (e.g. the
construction of the intrinsic conservative quantities for the conformally invariant
differential equations). Instead, we highlight an L2-model (Schrödinger model) of
the minimal representations and its variant. We apologize for not being able to
mention some other important works on minimal representations, e.g., see [8] and
references therein. For a comparison of the L2-model with the conformal model, we
refer to [28, Introduction].

2 More Symmetric Than Symmetric Spaces

The traditional geometric construction of representations of Lie groups G is given
in the following two steps:

Step 1. The group G acts on a geometry X .
Step 2. By the translation, G acts linearly on the space Γ (X) of functions (sections

of equivariant bundles, or cohomologies, . . .).

Naı̈vely, the Gelfand–Kirillov dimension of the representation on Γ (X) is
supposed to be the dimension of X . Thus we may expect that the representation
on the function space Γ (X) is ‘small’ if the geometry X itself is small.

First of all, we ask when the geometry X is ‘small’.
For this we may begin with the case when G acts transitively on X , or equiva-

lently, X is a homogeneous space G/H. Further, if we compare two homogeneous
spaces X1 = G/H1 and X2 = G/H2 with H1 ⊂ H2, we may think that X2 is smaller
than X1. Hence ‘smaller’ representations on Γ (X) should be attained if X = G/H
where H is a maximal subgroup of G.

Here are two typical settings for real reductive Lie groups G:

• (G,H) is a symmetric pair.
In this case, the Lie algebra h of H is maximal reductive in g. Analysis on

reductive symmetric spaces G/H has been largely developed in particular, since
1950s by the Gelfand school, Harish-Chandra, Shintani, Helgason, Takahashi,
Molchanov, Faraut, Flensted-Jensen, Matsuki–Oshima–Sekiguchi, Delorme, van
den Ban, Schlichtkrull, among others.

• H is a Levi subgroup of G.
In this case, there exists a G-invariant polarization on G/H, and its geometric

quantization obtained by the combination of the Mackey induction (real polariza-
tion) and the Dolbeault cohomologies (complex polarization) produces a ‘generic
part’ of irreducible unitary representations of G. The resulting representations are
the ‘smallest’ if H is a maximal Levi subgroup.

These two typical examples are related: Tempered representations for reduc-
tive symmetric spaces (i.e. irreducible unitary representations that contribute to
L2(G/H)) are given by the combination of the ordinary and cohomological
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parabolic inductions. A missing picture in the above two settings is so called
‘unipotent representations’ including minimal representations.

On the other hand, it is rare but still happens that the representation of G on the
function space Γ (X) extends to a representation of a group ˜G which contains G,
even when the G-action on the geometry X does not extend to ˜G (in particular,
Step 1 does not work for the whole group ˜G). We discuss this phenomenon in
the Schrödinger model of minimal representations when G is a maximal parabolic
subgroup (the notation (G, ˜G) here will be replaced by (P,G) in Sect. 3). Such
a phenomenon also occurs when G is reductive. Thus the analysis of minimal
representations may be thought of as ‘analysis with more symmetries’ than the
traditional analysis on homogeneous spaces. Here is a typical example:

Example 2.1 ([21, Theorem 5.3]). The minimal representation of the indefinite
orthogonal group ˜G = O(p,q) (p + q:even) is realized in function spaces on
symmetric spaces of the subgroups G = O(p− 1,q) or O(p,q− 1) on which the
whole group ˜G cannot act geometrically.

Example 2.2 ([36]). The restriction of the most degenerate principal series repre-
sentations of ˜G = GL(n,R) to the subgroup G = O(p,q) (p+ q = n) reduces to
the analysis of the symmetric space of G on which the whole group ˜G cannot act
transitively.

Further examples and explicit branching rules can be found in [21,32,36] where
the restriction of minimal representations to subgroups (broken symmetries) reduce
to analysis on certain semisimple symmetric spaces.

3 Schrödinger Model of Minimal Representations

Any coadjoint orbit of a Lie group is naturally a symplectic manifold endowed
with the Kirillov–Kostant–Souriau symplectic form. For a reductive Lie group G,
‘geometric quantization’ of semisimple coadjoint orbits has been considerably well-
understood—this corresponds to the ordinary or cohomological parabolic induction
in representation theory, whereas ‘geometric quantization’ of nilpotent coadjoint
orbits is more mysterious (see [4, 12, 25]).

In this section we explain a recent work [11] with Hilgert and Möllers on the
L2-construction of minimal representations built on a Lagrangian subvariety of a
real minimal nilpotent orbit, which continues a part of the earlier works [33] with
Ørsted, and [28] with Mano.

Suppose that V is a simple Jordan algebra over R. We assume that its maximal
Euclidean Jordan subalgebra is also simple. Let G and L be the identity components
of the conformal group and the structure group of the Jordan algebra V , respectively.
Then the Lie algebra g is a real simple Lie algebra and has a Gelfand–Naimark
decomposition g = n+ l+ n, where n  V is regarded as an Abelian Lie algebra,
l str(V ) the structure algebra, and n acts on V by quadratic vector fields.
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Let OGR
min be a (real) minimal nilpotent coadjoint orbit. By identifying g with the

dual g∗, we consider the intersection V ∩OGR
min, which may be disconnected (this

happens in the case (3) below). Let Ξ be any connected component of V ∩OGR
min.

We note that the group L acts on Ξ but G does not. There is a natural L-invariant
Radon measure on Ξ , and we write L2(Ξ) for the Hilbert space consisting of square
integrable functions on Ξ . Then we can define a unitary representation on L2(Ξ)
(Schrödinger model) built on a Lagrangian submanifold Ξ in this generality [11],
see also [5, 33].

Theorem 3.1 (Schrödinger model). Suppose V 
 Rp,q with p+ q odd.

1) Ξ is a Lagrangian submanifold of OGR
min.

2) There is a finite covering group G̃ of G such that G̃ acts on L2(Ξ) as an
irreducible unitary representation.

3) The Gelfand–Kirillov dimension of π attains its minimum among all infinite
dimensional representations of G̃ , i.e. DIM(π) = 1

2 dimOGR
min.

4) The annihilator of the differential representation dπ is the Joseph ideal in the
enveloping algebra U(g) if V is split and g is not of type A.

The simple Lie algebras arisen in Theorem 3.1 are listed as follows:

sl(2k,R),so(2k,2k),so(p+ 1,q+ 1),e7(7), (2)

sp(k,R),su(k,k),so∗(4k),so(2,k),e7(−25), (3)

sp(k,C),sl(2k,C),so(4k,C),so(k+ 2,C),e7(C), (4)

sp(k,k),su∗(4k),so(k,1). (5)

Remark 1. In the case where V is an Euclidean Jordan algebra, G is the automor-
phism group of a Hermitian symmetric space of tube type (see (3)) and there are two
real minimal nilpotent orbits. The resulting representations π are highest (or lowest)
weight modules.

Remark 2. If the complex minimal nilpotent orbitOGC
min intersects with g, thenOGR

min

is equal to OGC
min ∩ g or its connected component. We notice that OGC

min ∩ g may be
an empty set depending on the real form g. In the setting of Theorem 3.1, this
occurs for (5). In this case, the representation π in Theorem 3.1 is not a minimal
representation as the annihilator of dπ is not the Joseph ideal, but π is still one of
the ‘smallest’ infinite dimensional representations in the sense that the Gelfand–
Kirillov dimension attains its minimum.

Remark 3. There is no minimal representation for any group with Lie algebra o(p+
1,q+ 1) with p+ q odd, p, q ≥ 3 (see [43, Theorem 2.13]).

Example 3.2. Let V = Sym(m,R). Then G = Sp(m,R) and

V ∩OGR
min = {X ∈M(m,R) : X = tX , rankX = 1}. (6)
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Let Ξ := {X ∈ V ∩OGR
min : TraceX > 0}. Then the double covering map (folding

map)
R

m \ {0}→ Ξ , v �→ vtv

induces an isomorphism between L2(Ξ) and the Hilbert space L2(Rm)even of even
square integrable functions on Rm. Thus our representation π on L2(Ξ) is nothing
but the Schrödinger model of the even part of the Segal–Shale–Weil representation
of the metaplectic group Mp(m,R) [7, 13].

Example 3.3. Let V = Rp,q with p+ q even. Then g= o(p+ 1,q+ 1), and

V ∩OGR
min =
{

ξ ∈ Rp+q : ξ 2
1 + · · ·+ ξ 2

p − ξ 2
p+1−·· ·− ξ 2

p+q = 0
}\ {0}. (7)

If p = 1, V ∩OGR
min consists of two connected components according to the signature

of ξ1, i.e. the past and future cones. They yield highest/lowest weight modules.
For p,q ≥ 2, V ∩OGR

min is connected, and our representation π on L2(Ξ) is the
Schrödinger model of the minimal representation of O(p + 1,q+ 1) constructed
in [33], which is a neither highest nor lowest weight module.

As we discussed in Sect. 2 in contrast to traditional analysis on homogeneous
spaces, the group G in our setting is too large to act geometrically on Ξ . This very
feature in the Schrödinger model is illustrated by the fact that the Lie algebra n acts
as differential operators on Ξ of second order. They are fundamental differential
operators [28] in the setting of Example 3.3 (see also Bargmann–Todorov [2]). In
[11], these differential operators are said to be Bessel operators, and serve as a basic
tool to study the Schrödinger model π in the setting of Theorem 3.1.

4 Special Functions to 4th Order Differential Operators

Guiding Principle 1.1 suggests that there should exist plentiful functional equations
in the representation spaces for minimal representations. Classically, it is well-
known that Hermite polynomials form an orthogonal basis for the radial part of the
Schrödinger model of the Weil representation [7], whereas Laguerre polynomials
arise in the minimal representation of the conformal group SO(n,2) ([41]).

These classical minimal representations are highest weight modules. However,
for more general reductive groups, minimal representations do not always have
highest weight vectors, and the corresponding ‘special functions’ do not necessarily
satisfy second order differential equations. We found in [28] that Meijer’s G-
functions G20

04(x|b1,b2,b3,b4) play an analogous role in the minimal representation
of O(p,q). Here Meijer’s G-functions G20

04(x|b1,b2,b3,b4) satisfy a fourth order
ordinary differential equation

4

∏
j=1

(x
d
dx
− b j)u(x) = xu(x).
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More generally, the following fourth order differential operators

Dμ,ν :=
1
x2 ((θ +ν)(θ + μ+ν)− x2)(θ (θ + μ)− x2)− (μ−ν)(μ+ν+ 2)

2

appear naturally in the Schrödinger model of minimal representations in the setting
of Theorem 3.1. Here θ = x d

dx .
The subject of [9, 10, 29] is the study of eigenfunctions of Dμ,ν including

• Generating functions for eigenfunctions of Dμ,ν ,
• Asymptotic behavior near the singularities,
• L2-eigenfunctions and concrete formulas of L2-norms,
• Integral representations of eigenfunctions,
• Recurrence relations among eigenfunctions,
• (Local) monodromy.

The L2-eigenfunctions ofDμ,ν arise as K-finite vectors in the Schrödinger model of
the minimal representations constructed in Theorem 3.1 in a uniform fashion. These
‘special functions’ with certain integral parameters yield orthogonal polynomials
(the Mano polynomials Mμ,l

j (x)) satisfying again fourth order differential equations
[9], which include Hermite polynomials and Laguerre polynomials as special cases.
We note that the fourth order differential equation Dλ ,μ f = ν f reduces to a
differential equation of second order when G/K is a tube domain (see (3)). See also
Kowata–Moriwaki [38] for further analysis of the fundamental differential operators
on Ξ .

5 Broken Symmetries and Branching Laws

As indicated in Guiding Principle 1.1, the ‘large symmetries’ in representation
spaces of minimal representations produce also fruitful examples of branching laws
which we can expect a simple and detailed study.

Suppose π is a unitary representation of a real reductive Lie group G. We consider
π as a representation of a subgroup G′ of G, referring it as the restriction π |G′ .
In general, the restriction π |G′ decomposes into a direct integral of irreducible
representations of G′ (branching law). It often happens that the branching law
contains continuous spectrum if G′ is non-compact. Even worse, each irreducible
representation of G′ may occur in the branching law with infinite multiplicities. See
[20] for such wild examples even when (G,G′) is a symmetric pair. In [16, 17], we
raised the following:

Program 5.1. 1) Determine the triple (G,G′,π) for which the restriction π |G′
decompose discretely with finite multiplicities.

2) Find branching laws for (1).
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Program 5.1 intends to single out a nice framework of branching problems for
which we can expect a detailed and explicit study of the restriction. Concerning
Program 5.1 (1) for Zuckerman’s derived functor modules π , a necessary and
sufficient condition for discrete decomposition with finite multiplicities was proved
in [17, 19], and a complete classification was given with Oshima [34] when (G,G′)
is a reductive symmetric pair.

As such, the local theta correspondence with respect to compact dual pairs is a
classic example for minimal representations π :

Example 5.2. Suppose that π is the Weil representation, and that G′ = G′1 ·G′2 is a
dual pair in G = Mp(n,R) with G′2 compact. Then the restriction π |G′ decomposes
discretely and multiplicity-freely. The resulting branching laws yield a large part of
unitarizable highest weight modules of G′1 (Enright–Howe–Wallach [6]).

In order to discuss Program 5.1 for minimal representations, we recall from [17–
19] the general theory. Let K be a maximal compact subgroup of G, T a maximal
torus of K, and t, k the Lie algebras of T , K, respectively. We choose the set Δ+(k, t)
of positive roots, and denote by t+ the dominant Weyl chamber in

√−1t∗. We also
fix a K-invariant inner product on k, and regard

√−1t∗ as a subspace of
√−1k∗.

First, suppose that K′ is a closed subgroup of K. The group K acts on the
cotangent bundle T ∗(K/K′) of the homogeneous space K/K′ in a Hamiltonian
fashion. We write

μ : T ∗(K/K′)→√−1k∗

for the momentum map, and define the following closed cone by

CK(K
′) := Imageμ ∩ t+.

Second, let SuppK(π) be the set of highest weights of finite dimensional
irreducible representations of K occurring in a K-module π . The asymptotic K-
support ASK(π) is defined to be the asymptotic cone of SuppK(π). It is a closed
cone in t+. There are only finitely many possibilities of ASK(π) for the restriction
π |K of irreducible representations π of G.

The asymptotic cone ASK(π) tends to be a ‘small’ subset in t+ if π is a ‘small’
representation. For example,

ASK(π) ={0} if dimπ < ∞,

ASK(π) =R+β if π is a minimal representation, (8)

where β is the highest root of the K-module pC := gC/kC. The formula (8) holds
in a slightly more general setting where the associated variety of π is the closure
of a single minimal nilpotent KC-orbit on pC [35]. Concerning Program 5.1, we
established an easy-to-check criterion in [18]:
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Theorem 5.3. Suppose G′ is a reductive subgroup of G such that K′ := G′ ∩K is a
maximal compact subgroup of G′. If

CK(K
′)∩ASK(π) = {0}, (9)

then the restriction π |G′ decomposes discretely into a direct sum of irreducible
unitary representations of G′ with finite multiplicities.

As was observed in [22], we can expect from the formula (8) and from the
criterion (9) that there is plenty of subgroups G′ for which the restriction of the
minimal representation of G decomposes discretely and with finite multiplicities.
Reductive symmetric pairs (G,G′) for which the restriction π |G′ is (infinitesimally)
discretely decomposable for a minimal representation π of G has been recently
classified in [35].

6 Generalized Fourier Transform as a Unitary Inversion

In the L2-model of the minimal representation π of G on L2(Ξ), the action of the
maximal parabolic subgroup P with Lie algebra l+ n is simple, namely, it is given
just by translations and multiplications. Let w be the conformal inversion of the
Jordan algebra. In light of the Bruhat decomposition

G = P

Π

PwP,

it is enough to find π(w) in order to give a global formula of the G-action on L2(Ξ).
We highlight this specific unitary operator, and set

FΞ := cπ(w), (10)

where c is a complex number of modulus one (the phase factor). We call FΞ the
unitary inversion operator. We studied in a series of papers [26–28] with Mano the
following:

Problem 6.1. Find an explicit formula of the integral kernel of FΞ .

The kernel of the Euclidean Fourier transform is given by e−i〈x,ξ 〉, which is
locally integrable. It is plausible that this analytic feature happens if and only if
the corresponding minimal representation is of highest weight. Thus we raise the
following:

Question 6.2. Let (π ,L2(Ξ)) be the L2-model of a minimal representation π of
a simple Lie group G̃ constructed on a Lagrangian submanifold Ξ of OG

min as in
Theorem 3.1 [11]. Are the following two conditions equivalent?
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(i) The kernel of the unitary inversion operator FΞ is locally integrable.
(ii) π is a highest/lowest weight module.

Here we have excluded the case where the simple Lie algebra g is of type An (the
Joseph ideal is not defined for gC = sln(C)). In the case G = O(p+ 1,q+ 1) with
p+q even > 2, it was proved in [28] that (i) holds if and only if either min(p,q) = 1
(equivalently, (ii) holds) or (p,q) = (3,3) (equivalently, g = o(3,3)  sl(4,R) is
of type A3). The implication (ii) ⇒ (i) was proved in [12] for tube type, see (17).
The implication (i) ⇒ (ii) is an open problem except for the above mentioned case
g= o(p+ 1,q+ 1).

When G = O(p+ 1,q+ 1) (see Example 3.3), FΞ intertwines the multiplication
of coordinate functions ξ j (1 ≤ j ≤ p+ q) with the operators R j (1 ≤ j ≤ p+ q)
which are mutually commuting differential operators of second order on Ξ (see
Bargmann–Todorov [2], [28, Chap. 1]).

This algebraic feature is similar to the classical fact that the Euclidean Fourier
transform FRm intertwines the multiplication operators ξ j and the differential
operators

√−1∂ j (1 ≤ j ≤ m) (see Example 3.2). In the setting of Theorem 3.1,
FΞ intertwines the multiplication of coordinate functions with Bessel operators.
Actually, this algebraic feature determines uniquely FΞ up to a scalar [11, 28].

Concerning Problem 6.1, the first case is well-known (see [7] for example):

1) g= sp(m,R).
FΞ = the Euclidean Fourier transform on Rm.
Here are some recent results on a closed formula of the integral kernel:

2) g= o(p+ 1,q+ 1) (with Mano [27]).
3) The associated Riemannian symmetric space G/K is of tube type (see (17)).

We note that minimal representations in the cases (1) and (3) are highest (or
lowest) weight modules, whereas minimal representations in the case (2) do not
have highest weights when p,q≥ 2 and p+ q is odd.

Problem 6.1 is open for other cases, in particular, for minimal representations
without highest weights except for the case G = O(p+ 1,q+ 1).

7 SL2-Triple in the Schrödinger Model

OnRm, we set |x| :=(∑m
j=1 x2

j)
1
2 , E :=∑m

j=1 x j
∂
∂x j

(Euler operator) and Δ =∑m
j=1

∂ 2

∂x2
j

(Laplacian). Then it is classically known (e.g., [7, 13]) that the operators

˜h′ := E +
m
2
, ẽ′ :=

√−1
2
|x|2, ˜f ′ :=

√−1
2

Δ (11)

form an sl2-triple, namely, the following commutation relation holds:

[˜h′, ẽ′] = 2ẽ′, [˜h′, ˜f ′] =−2˜f ′, [ẽ′, ˜f ′] = ˜h′.
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On the other hand, we showed in [27] that the following operators

˜h := 2E +m− 1, ẽ := 2
√−1|x|, ˜f :=

√−1
2
|x|Δ (12)

also forms an sl2-triple, i.e., [˜h, ẽ] = 2ẽ, [˜h, ˜f ] =−2˜f , [ẽ, ˜f ] = ˜h.
Further the differential operator

D :=
1

2
√−1

(−ẽ+ ˜f ) = |x|
(

Δ
4
− 1

)

extends to a self-adjoint operator and has only discrete spectra on L2(Rm, dx
|x| ) which

are given by {−( j+ m−1
2 ) : j = 0,1,2, · · ·} (see [27]), whereas the Hermite operator

D :=
1

2
√−1

(−ẽ′+ ˜f ′) =
1
4
(Δ −|x|2)

extends to a self-adjoint operator and has only discrete spectra on L2(Rm,dx) which
are given by {− 1

2( j + m
2 ) : j = 0,1,2, · · ·} (see [7, 13]). Hence, one can define for

Re t ≥ 0:

etD :=
∞

∑
k=0

tk

k!
Dk on L2

(

R
m,

dx
|x|
)

,

etD :=
∞

∑
k=0

tk

k!
Dk on L2(Rm,dx).

They are holomorphic one-parameter semigroups consisting of Hilbert–Schmidt
operators for Re t > 0, and are unitary operators for Re t = 0.

A closed formula for both etD and etD is known. That is, the holomorphic
semigroup etD has the classical Mehler kernel given by the Gaussian kernel e−|x|2

and reduces to the Euclidean Fourier transform when t =
√−1π ([13, §5] ), whereas

the integral kernel of the holomorphic semigroup etD is given by the I-Bessel
function and the special value at t =

√−1π is by the J-Bessel function (see [27,
Theorem A and Corollary B] for concrete formulas).

We can study these holomorphic semigroups by using the theory of discretely
decomposable unitary representations (e. g. [16–18]). Actually, the aforementioned
sl2-triple arises as the differential action of the Schrödinger model of the minimal
representations of Mp(m,R) on L2(Rm,dx) and SO0(m + 1,2) on L2(Rm, dx

|x| ),
respectively via

sl(2,R) sp(1,R)⊂ sp(m,R),

sl(2,R) so(1,2) ⊂ so(m+ 1,2),

for which we write as dι : sl(2,R) ↪→ g.



88 T. Kobayashi

In both cases, the Lie algebra g contains a subalgebra commuting with
ι(sl(2,R)), which is isomorphic to o(m). Then the minimal representations
decompose as the representation of the direct product group SL(2,R)× O(m)
(up to coverings and connected groups) as follows:

L2(Rm,
dx
|x| ) 

∞

∑⊕

j=0
πSL(2,R)

2 j+m−1 �H j(Rm).

L2(Rm,dx) 
∞

∑⊕

j=0

πSL(2,R)
j+m

2
�H j(Rm),

where H j(Rm) denotes the natural representation of O(m) (or SO(m)) on the

space of harmonic polynomials on Rm of degree j and πSL(2,R)
b stands for the

irreducible unitary lowest weight representation of SL(2,R) (or its covering group)
with minimal K-type b.

These considerations bring us to interpolate operators occurring two minimal
representations of SO0(m + 1,2)̃ and Sp(m,R). For this, we take a > 0 to be a
deformation parameter, and define

˜ha :=
2
a

E +
m+ a− 2

a
, ẽa :=

√−1
a
|x|a, ˜fa :=

√−1
a
|x|2−aΔ .

The operators (11) in the Weil representation corresponds to the case a = 2, and
the operators (12) for SO0(m+ 1,2)̃ corresponds to the case a = 1. They extend to
self-adjoint operators on the Hilbert space L2(Rm, |a|a−2dx), form an sl2-triple, and
lift to a unitary representation of the universal covering group SL(2,R)̃ of SL(2,R)
for every a > 0. The Hilbert space decomposes into a multiplicity-free discrete sum
of irreducible unitary representations of SL(2,R)̃ ×O(m) as follows:

L2(Rm, |x|a−2dx) 
∞

∑⊕

j=0

πSL(2,R)
2 j+m−2

a +1
�H j(Rm).

The discrete decomposition of sl2-modules becomes a tool to generalize the
study of the unitary inversion operator FΞ and the holomorphic semigroup in
[26, 27] to the following settings:

• Dunkl operators (with Ben Saı̈d and Ørsted [3]),
• Conformal group of Euclidean Jordan algebras (with Hilgert and Möllers [12]).
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8 Quantization of Kostant–Sekiguchi Correspondence

In this section we discuss Theorem 3.1 in a special case where V is Euclidean,
equivalently, G/K is a tube domain, and explain a recent work [12] with Hilgert,
Möllers, and Ørsted on the construction of a new model (a Fock-type model) of
minimal representations with highest weights and a generalization of the classical
Segal–Bargmann transform, which we called a ‘geometric quantization’ of the
Kostant–Sekiguchi correspondence. In the underlying idea, the discretely decom-
posable restriction of sl(2,R), which appeared in [26], plays again an important role.

We recall (e.g., [7, 13]) that the classical Fock space F(Cm) is a Hilbert space in
the space O(Cm) of holomorphic functions defined by

F(Cm) :=

{

f ∈ O(Cm) :
∫

Cm
| f (z)|2e−|z|

2
dz < ∞
}

,

and that the Segal–Bargmann transform is a unitary operator

B : L2(Rm)
∼→F(Cm), u �→ (Bu)(z) :=

∫

Rm
KB(x,z) f (x)dx,

with the kernel

KB(x,z) := exp

(

−1
2
〈z,z〉+ 2〈z,x〉− 〈x,x〉

)

.

From a representation theoretic viewpoint, the classical Segal–Bargmann trans-
form intertwines the two models of the Weil representation of the metaplec-
tic group Mp(m,R), namely, the Schrödinger model on L2(Rm) and the Fock
model on F(Cm).

In order to find a natural generalization of this classical theory, we begin by
examining how one may rediscover the classical Fock model. Our idea is to use
the action of sl2, more precisely, a ‘holomorphically extended representation’ of an
open semigroup of SL(2,C) rather than a unitary representation of SL(2,R) itself.
For this, we take a standard basis of sl(2,R) as

h :=

(

1 0
0 −1

)

, e :=

(

0 1
0 0

)

, f :=

(

0 0
1 0

)

. (13)

They satisfy the following Lie bracket relations: [h,e] = 2e, [h, f ] =−2 f ,
[e, f ] = h. We set

k : = i(−e+ f ) =

(

0 −i
i 0

)

,

c1 : =

(

1 −i
− i

2
1
2

)

=

(

2i 0
0 1

2i

)(

1 − i
2

0 1

)(

0 −1
1 0

)(

1 i
0 1

)

. (14)
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By a simple matrix computation we have:

exp
(

− t
2

k
)

|t=iπ =

(

0 −1
1 0

)

∈ SL(2,R). (15)

The formula Ad(c1)k = h shows that c1 ∈ SL(2,C) gives a Cayley transform.
Correspondingly, the Bargmann transform may be interpreted as

B= ‘π ◦ ι(c1)’.

The right-hand side is not well-defined. We need an analytic continuation in the
Schrödinger model and a lift in the diagram below:

SL(2,R)̃
ι→ G

π→ GL(L2(Ξ))

↓
c1 ∈ SL(2,C)⊃SL(2,R)

To be more precise, we write w∈G for the lift of (15) via dι : sl(2,R) ↪→ g. Since
the action of the maximal parabolic subgroup P on L2(Ξ) is given by the translation
and the multiplication of functions, it is easy to see what ‘π(p)’ should look like for
p∈PC. Therefore, we could give an explicit formula for the (generalized) Bargmann
transform B= ‘π ◦ ι(c1)’ if we know the closed formula of the unitary inversion:

FΞ = F(w)≡F◦ ι
(

0 −1
1 0

)

.

Of course, this is not a rigorous argument, and π(p) does not leave L2(Ξ) invariant.
However, the formula (14) suggests what the function space π ◦ ι(c1)(L2(Ξ)) ought
to be, and led us to an appropriate generalization of the classical Fock space as
follows:

F(OKC
min) :=

{

F ∈ O(OKC
min) :
∫

O
KC
min

|F(z)|2 ˜Kλ−1(|z|)dν(z) < ∞
}

. (16)

Here OKC
min is the minimal nilpotent KC-orbit in pC which is the counterpart of the

minimal (real) nilpotent coadjoint orbitOGR
min in g∗  g under the Kostant–Sekiguchi

correspondence [40], see Fig. 1. Thus the generalized Fock space F(OKC
min) is a

Hilbert space consisting of L2-holomorphic functions on the complex manifoldOKC
min

against the measure given by a renormalized K-Bessel function ˜Kλ−1(|z|)dν(z) (see
the comments after (17)).

We recall that Ξ is a Lagrangian submanifold of OGR
min, and KC acts holomorphi-

cally on OKC
min. Then as a ‘quantization’ of the Kostant–Sekiguchi correspondence,
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Fig. 1 Minimal nilpotent orbits in g and pC

we define the generalized Bargmann transform B : L2(Ξ)→F(OKC
min) by

f �→ Γ (λ )e−
1
2 tr(z)
∫

Ξ
˜Iλ−1(2
√

(z|x))e− tr(x) f (x)dμ(x),

whereas the unitary inversion operator FΞ is given by

(FΞ f )(y) = 2−rλΓ (λ )
∫

Ξ
˜Jλ−1(2
√

(x|y)) f (x)dμ(x). (17)

Here r = rankG/K, ( | ) denotes the trace form of the Jordan algebra V , and λ =
1
2 dimRF if V = Herm(k,F) with F = R,C, quaternion H, or the octonion O (and
k = 3) or λ = 1

2(k−2) if V =R1,k−1. ˜J(t), ˜I(t), and ˜K(t) are the renormalization of
the J-, I-, and K-Bessel function, respectively, following the convention of [28].
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12. Hilgert, J., Kobayashi, T., Möllers, J., Ørsted, B.: Segal–Bargmann transform and Fock space
realization for minimal holomorphic representations. J. Funct. Anal. 263, 3492–3563 (2012)
(cf. http://dx.doi.org/10.1016/j.jfa.2012.08.026arXiv:1203.5462) (to appear)

13. Howe, R.: The oscillator semigroup. Proc. Sympos. Pure Math., vol. 48, pp. 61–132. Amer.
Math. Soc., Providence (1988)

14. Joseph, A.: The minimal orbit in a simple lie algebra and its associated maximal ideal. Ann.
Scient. Ec. Norm. Sup. 9, 1–30 (1976)

15. Kazhdan, D.: The minimal representation of D4. In: Operator Algebras, Unitary Repre-
sentations, Enveloping Algebras, and Invariant Theory, Paris, 1989. Progr. Math., vol. 92,
pp. 125–158. Birkhäuser, Boston (1990)
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Exponential Series Without Denominators

Jean-Louis Loday†

Abstract For a commutative algebra which comes from a Zinbiel algebra the
exponential series can be written without denominators. When lifted to dendriform
algebras this new series satisfies a functional equation analogous to the Baker-
Campbell-Hausdorff formula. We make it explicit by showing that the obstruction
series is the sum of the brace products. In the multilinear case we show that the role
the Eulerian idempotent is played by the iterated pre-Lie product.

1 Introduction

The classical exponential series

exp(x) = 1+ x+
x2

2!
+ · · ·+ xn

n!
+ · · ·

can be written without denominators provided one assumes some properties on the
commutative algebra. For instance in a Zinbiel algebra the term xn

n! can be replaced
by the iterated product x≺n := x ≺ (x≺n−1), with x≺1 = x. Recall that a Zinbiel
algebra is a commutative algebra in which the product splits as xy = x≺ y+ y≺ x.
Matrices with coefficients in a commutative algebra (resp. Zinbiel algebra) are
endowed with a structure of associative algebra (resp. dendriform algebra). Recall
that a dendriform algebra is an associative algebra whose product is the sum of two
binary operations: xy = x ≺ y+ x # y, supposed to satisfy some relations. There
is a unique way to extend the exponential series from commutative algebras to
associative algebras. However there are several ways to extend the exponential series
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from Zinbiel algebras to dendriform algebras: either take xn

n! or x≺n or x#n. These
choices are equal in a Zinbiel algebra, but different in a dendriform algebra. We
adopt the notation

e(x) := 1+ x+ x≺2+ · · ·+ x≺n + · · · , e′(x) := 1+ x+ x#2+ · · ·+ x#n + · · ·
for the exponential series without denominators. The classical functional equation

exp(x)exp(y) = exp(x+ y)

holds only when we are in the commutative or in the Zinbiel setting. In this last case
it can be written:

e(x)e(y) = e(x+ y).

In the associative setting there is an error term for exp which is called the
Baker-Campbell-Hausdorff formula. We prove that, in the dendriform context, the
functional equation for the exponential without denominators is:

e(x)e(y) = e
(

x+ e(x)# y≺ e′(−x)
)

,

which can be written

e(x)e(y) = e(x+ y+∑
n≥1

{x, . . . ,x
︸ ︷︷ ︸

n

;y}),

where {−, · · · ,−;−} is the brace product.
In the associative framework the BCH-formula is best understood by looking

at the multilinearized case. Then, the multilinear polynomial involved in the
functional equation of the exponential turns out to be the Eulerian idempotent. In
the dendriform case, we show that the analogue of the Eulerian idempotent for the
exponential without denominators is played by the iterated pre-Lie product

h(x1, . . . ,xn) = {x1,{x2,{· · ·{xn−1,xn}·}}},

where the pre-Lie product is {x,y} := x# y− y≺ x.
Here is the content of this paper. In the first section we recall the notions of

Zinbiel algebras, dendriform algebras and some of their properties. In the second
section we introduce and study the exponential without denominators. In particular
we compute its inverse, the logarithm without denominators, which is closely related
to the 1 1

2 -logarithm of Kontsevich. In Sect. 4 we prove the BCH-type formula
for the exponential series without denominators. As a corollary we show that the
multilinear obstruction to the additivity of the exponential is the iterated pre-Lie
product.

In this paper K denotes a unital commutative ring (for instance Z) which is the
ground ring. We sometimes need to suppose that K contains Q. The tensor product
overK is simply denoted by ⊗.
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2 Zinbiel and Dendriform Algebras

We introduce the notion of Zinbiel algebra (called dual Leibniz algebra in [7])
and its relationship with commutative algebras. We also introduce the notion of
dendriform algebras because matrices over a Zinbiel algebra bear the structure of a
dendriform algebra.

2.1 Definition

A Zinbiel algebra is a module A over K equipped with a binary operation x ≺ y
such that

(x≺ y)≺ z = x≺ (y≺ z+ z≺ y).

Symmetrizing the Zinbiel operation, that is defining xy := x ≺ y+ y ≺ x, we get a
product on A which is commutative and associative. Indeed, one gets

(xy)z = (x≺ y+ y≺ x)≺ z+ z≺ (xy) = x≺ (yz)+ y≺ (xz)+ z≺ (xy)

= x≺ (yz)+y≺ (zx)+z≺ (yx)=x≺ (yz)+(y≺ z)≺ x+(z≺ y)≺ x=x(yz).

Hence there is a forgetful functor between categories of algebras:

Zinb-alg→Com-alg.

2.2 Free Zinbiel Algebra

It is shown in [8] that the free Zinbiel algebra over the vector space V is the reduced
tensor module

T̄ (V ) :=V ⊕·· ·⊕V⊗n⊕·· ·
where the generic element v1 · · ·vn ∈ V⊗n corresponds to the product v1 ≺ (v2 ≺
(· · · ≺ vn)). As a consequence the space of n-ary operations of the operad Zinb is
the Sn-module Zinb(n) =K[Sn]. More precisely we have:

Theorem 2.3. Let V be a vector space and let T̄ (V ) be the reduced tensor module
over V . The half-shuffle:

v1 · · ·vp ≺ vp+1 · · ·vp+q :=∑
σ

v1vσ−1(2) · · ·vσ−1(p+q)



98 J.-L. Loday

where σ is a (p− 1,q)-shuffle acting on {2, . . . , p+ q}, makes T̄ (V ) into the free
Zinbiel algebra on V , also denoted by Zinb(V ). The associated commutative algebra
is the (nonunital) shuffle algebra, denoted by T̄ sh(V ).

Proof. See [8]. �

2.4 Example

If V is one-dimensional spanned by x, then Zinb(Kx) is spanned by x≺n for n ≥ 1.
The operations are given by

x≺p ≺ x≺q =

(

p+ q− 1
q− 1

)

x≺p+q and x≺px≺q =

(

p+ q
q

)

x≺p+q .

Therefore it follows that xn = n!x≺n.

2.5 Dendriform Algebra

A dendriform algebra is a K-module A equipped with two linear maps (binary
operations)

≺: A⊗A→ A and #: A⊗A→ A

called the left operation and the right operation respectively, satisfying the following
three relations

⎧

⎨

⎩

(x≺ y)≺ z = x≺ (y≺ z)+ x≺ (y# z),
(x# y)≺ z = x# (y≺ z),

(x≺ y)# z+(x# y)# z = x# (y# z).

From these axioms it follows readily that the binary operation

xy := x≺ y+ x# y.

is associative. Under this notation the first relation becomes

(x≺ y)≺ z = x≺ (yz).

In the proof of the main Theorem we allow ourselves to write x ≺ yz in place of
x≺ (yz).

Let us mention that numerous combinatorial Hopf algebras come with a dendri-
form structure, cf. for instance [1, 2, 6, 9, 10].
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2.6 Commutative Dendriform Algebra

By definition a commutative dendriform algebra is a dendriform algebra whose left
and right operations are related by the following symmetry relation

x≺ y = y# x, for any x and y.

By direct inspection we see that a Zinbiel algebra is a commutative dendriform
algebra and vice-versa (cf. [8]).

Proposition 2.7. The module of n× n-matrices Mn(A) with coefficients in the
Zinbiel algebra A is a dendriform algebra.

Proof. It is straightforward to check that the matrices over a dendriform algebra is
still a dendriform algebra. The formulas are like in the classical case. Since a Zinbiel
algebra is a particular case of a dendriform algebra, we are done. �

2.8 Dendriform Calculus

We recall some results from [8] about computation in unital dendriform algebras. By
definition a unital dendriform algebra A is a module of the form A =K1⊕ I where
I is a dendriform algebra. The left and right operations of I are partially extended to
A by the formulas:

x≺ 1 = x, 1≺ x = 0,

x# 1 = 0, 1# x = x,

for any element x ∈ I.
The element 1 is a unit for the associative product xy = x ≺ y+ x # y. However

the products 1 ≺ 1 and 1 # 1 are not defined, so, in order for an expression like
(1+ u)(1+ v) to make sense, we have to write it as

(1+ u)(1+ v) = 1+ u+ v+ uv= 1+ u+ v+ u≺ v+ u# v.

The free unital dendriform algebra on one generator is spanned by the planar
rooted binary trees. We denote by PBTn the set of planar rooted binary trees t with
n leaves. In low dimension we have:

PBT1 = { | }, PBT2 =
{ ��

�� }

, PBT3 =
{

��������

������ ,

�� ������

������
}

,
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PBT4 =
{

�� ������

���������

���������
,

��������

���������

���������
,

��
�����������

���������
,

��
������

���������

���������
,

��������
���������

���������
}

.

When t has n + 1 leaves (i.e. t ∈ PBTn+1), it determines an n-ary operation.
Applied to the generic n-tuple x1 · · ·xn we denote the result by t(x1 · · ·xn). For
instance:

|() = 1,
��

��
(x) = x,

�� ������

������ (xy) = x# y,

��������

������ (xy) = x≺ y.

More generally, if the tree t is the grafting of tl and tr, denoted by t = tl ∨ tr, then

t(x1 · · ·xn) = tl(x1 · · ·xi−1)# xi ≺ tr(xi+1 · · ·xn).

The free dendriform algebra over the vector space V is Dend(V) =
⊕

n Dendn⊗
V⊗n where Dendn = K[PBTn+1]. In order to check an equality of multilinear
elements in the free dendriform algebra over the set {x1, . . . ,xn} it is equivalent
to check the equality for each permutation of the variables individually (in other
terms the operad Dend is a nonsymmetric operad).

It is sometimes helpful to adopt the notation xt := t(x · · ·x) or simply t when there
is only one variable into play. For instance we have: xt = x≺n = x≺ (x≺ (· · · ≺ x))
for t the right comb with n+ 1 leaves. It can be shown that

xn = ∑
t∈PBTn+1

xt

in any dendriform algebra.
We already introduced the notation x≺n. Similarly we define x#n := (x#n−1)# x,

with x#1 := x.
If we now work in a Zinbiel algebra, then it can be shown that xt = #ϕ−1(t)x≺n

where ϕ : Sn → PBTn+1 is the surjective map constructed in loc.cit. As a conse-
quence we have

xn = ∑
t∈PBTn+1

xt = ∑
t∈PBTn+1

#ϕ−1(t)x≺n = ∑
σ∈Sn

x≺n = n!x≺n,

as we already know.
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2.9 Pre-Lie Product and Brace Products

Recall that a binary operation is said to be left pre-Lie if its associator is symmetric
in the first two variables. In a dendriform algebra the binary operation

{x,y} := x# y− y≺ x

is a left pre-Lie product. It is a direct consequence of the dendriform axioms. More
generally, one can form the following (n+ 1)-ary operation:

{x1, . . . ,xn;y} :=
n

∑
i=0

(−1)n−i(x1 ≺ (x2 ≺ (· · · ≺ xi)))# y≺ (((xi+1 # ·· ·)# xn−1)# xn).

In [11] Ronco showed that these operations are primitive for the Hopf structure of
the free dendriform algebra and that they satisfy the axioms of a brace algebra. They
are called brace products. Observe that {x;y}= {x,y} is the left pre-Lie product.

2.10 A Commutative Diagram of Algebras

The relationship between all these types of algebras can be summarized by the
existence of a commutative diagram of categories of algebras [8, 11]:

Zinb-alg ��

��

Dend-alg

��

�� Brace-alg

��
Com-alg �� Ass-alg �� Lie-alg

Considering free algebras on one generator x we get the polynomials K[x] for
Zinb,Com and Ass, and we get

⊕

nK[PBTn+1] for Dend:

K[x]
⊕

nK[PBTn+1]���� n!x≺n ∑t xt���

K[x]
��

��

K[x]
∼=

��
��

��

xn
�

��

xn
�

��

���

Observe that there are various possibilities to lift the element xn

n! to the free

dendrifrom algebra, for instance xt

#ϕ−1(t)
for any t ∈ PBTn+1.
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3 Exponential Series

We introduce the exponential series without denominators and we compute
their inverse for the associative product and for composition (logarithm without
denominators).

3.1 Exponential Series Without Denominators

Let V be a module overK and let Dend(V )∧ be the infinite product

Dend(V)∧ :=∏
n

Dendn⊗V⊗n.

For any x ∈ V a series in x is an element of Dend(V)∧ made out of products of the
only variable x ∈V .

Since in a Zinbiel algebra xn = n!x≺n, there are several different ways to extend
the exponential series exp(x) = e(x) = e′(x) from Zinbiel algebras to dendriform
algebras. For instance we have

1. exp(x) = 1+x+ x2

2! + · · ·+ xn

n! + · · · , the classical exponential series whenQ⊂K,
2. e(x) := 1 + ∑n≥1 x≺n, e′(x) := 1 + ∑n≥1 x#n, the exponential series without

denominators,
3. ee(x) := 1+∑n≥1

1
2 (x

≺n + x#n), when 2 is invertible in K.

Observe that we have e(x) = 1+ x≺ e(x).

Lemma 3.2. In the dendriform context we have:

e′(−x)e(x) = 1 = e(x)e′(−x).

Proof. Let us first prove that x#i # x≺ j = x#i+1 ≺ x≺ j−1. We have

x#i # x≺ j = x#i # (x≺ x≺ j−1)

= (x#i # x)≺ x≺ j−1

= x#i+1 ≺ x≺ j−1 .

Expanding the product e′(−x)e(x) we get

x≺n + · · ·+(−1) j(x#i # x≺ j + x#i ≺ x≺ j)+ · · ·+(−1)nx≺n

in degree n > 0. This element is 0 as a consequence of the preceding formula. The
second formula is an immediate consequence of the first one. �
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Proposition 3.3. In the dendriform context, the inverse of the exponential series
E(x) := e(x)− 1 for composition is the series

L(x) := x≺ (1− x+ x2− x3 + · · ·+(−1)nxn + · · ·),
called the logarithm without denominators.

Proof. Let us write L(x) = x+ ϕ2(x) + · · ·+ ϕn(x) + · · · for the inverse of E(x).
Since E(x) = x≺ (1+E(x)), by replacing x by L(x) in this equality we get

x = L(x) ≺ (1+ x).

Hence we have ϕ2(x) = −x ≺ x and ϕn+1(x) + ϕn(x) ≺ x = 0. By induction we
suppose that ϕn(x) = (−1)n−1x≺ xn−1. We compute:

ϕn+1(x) =−ϕn(x)≺ x,

=−(−1)n−1(x≺ xn−1)≺ x,

= (−1)nx≺ (xn−1 ≺ x+ x# xn−1),

= (−1)nx≺ (xn).

�
This proposition gives a quick proof of the fact that exp and log are inverse to

each other. This proof is similar to the proof which uses the integral definition of the
logarithm: log(1+ x) =

∫ dx
1+x .

3.4 Zinbiel Algebras in Characteristic p

Let us suppose that K is a characteristic p field and let us work in the Zinbiel
framework. Since xn = n!x≺n the logarithm becomes a polynomial which can be
written

log(1+ x) = L(x) :=
p−1

∑
i=1

(−1)i−1 xi

i
+(−1)p−1(p− 1)!x≺p.

First, the element x≺p is a divided power, that is (A,γ(x) := x≺p) is a divided power
algebra, cf. for instance [3]. Second, the first part of the logarithm is the so-called
“one and a half logarithm” introduced by Maxim Kontsevich in [4]. In other words
we have the following result.

Proposition 3.5. In a characteristic p divided power algebra (resp. Zinbiel alge-
bra) the one and a half logarithm plus (−1)p−1(p− 1)!γ(x) is an invertible series
whose inverse is the exponential series. �
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4 BCH-Type Formula for the Exponential Series
Without Denominators

In a Zinbiel algebra we have the functional equation e(x)e(y) = e(x+ y). But, in
a dendriform algebra, x # y 
= y ≺ x (even for x = y), hence there are nontrivial
dendriform polynomials Hn(x,y) in x and y such that

e(x)e(y) = e(x+ y+ · · ·+Hn(x,y)+ · · ·).

For instance we obviously have H2(x,y) = x# y− y≺ x, which is the (left) pre-Lie
product {x,y}. Our aim is to compute Hn(x,y), in fact to show that it is a brace
product.

Theorem 4.1. In a dendriform algebra the following equalities hold:

e(x)e(y) = e
(

x+ e(x)# y≺ e′(−x)
)

,

e′(x)e′(y) = e′
(

e(−y)# x≺ e′(y)+ y
)

,

for e(x) := 1+∑n≥1 x≺n and e′(x) := 1+∑n≥1 x#n.

Corollary 4.2. The dendriform polynomial Hn is the brace product:

Hn(x,y) = ∑
i+ j=n−1

(−1) j(x≺i)# y≺ (x# j) = {x, . . . ,x
︸ ︷︷ ︸

n−1

;y} .

Proof (of Theorem 4.1). We prove the first relation. Let us define

R(x,y) := e(x)e(y)− e
(

x+ e(x)# y≺ e′(−x)
)

.

The aim is to prove that R(x,y) = 0.
We use the following two relations: e(z) = 1 + z ≺ e(z) and e′(−x)e(x) = 1

(Lemma 3.2). On one hand we have

e
(

x+ e(x)# y≺ e′(−x)
)

= 1+
(

x+ e(x)# y≺ e′(−x)
)≺ (e(x)e(y)−R(x,y))

= 1+ x≺ (e(x)e(y))+ (e(x)# y)≺ (e′(−x)e(x)e(y))

−Φ(x,y),

where Φ(x,y) := (x+ e(x)# y≺ e′(−x))≺ R(x,y). Then we have

e
(

x+ e(x)# y≺ e′(−x)
)

= 1+ x≺ (e(x)e(y))+ e(x)# y≺ e(y)−Φ(x,y)

= 1+ x≺ (e(x)e(y))+ e(x)# E(y)−Φ(x,y),
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by Lemma 3.2. On the other hand we have:

e(x)e(y) = e(x)(1+E(y))

= e(x)+ e(x)≺ E(y)+ e(x)# E(y).

Hence we compute

R(x,y) = e(x)+ e(x)≺ E(y))− 1− x≺ (e(x)e(y))+Φ(x,y)

= e(x)+ e(x)≺ E(y)− 1− x≺ (e(x)(1+E(y))+Φ(x,y)

= e(x)+ e(x)≺ E(y)− 1− x≺ e(x)− x≺ (e(x)E(y))+Φ(x,y)

= e(x)≺ E(y)− x≺ (e(x)E(y))+Φ(x,y)

= e(x)≺ E(y)− (x≺ e(x))≺ E(y)+Φ(x,y)

= 1≺ E(y)+Φ(x,y)

= Φ(x,y).

So we have proved that R(x,y) satisfies the functional equation:

R(x,y) = (x+ e(x)# y≺ e′(−x))≺ R(x,y) .

Since R(0,0) = 0 we see from this equation that the degree 1 part of R(x,y) is also
0, and, by induction, the degree n part of R(x,y) is 0 for any n. So R(x,y) = 0 and
we are done.

The second formula follows from the fact that the involution τ : Dend(V )→
Dend(V) which sends ≺ to #, # to ≺ and v1 · · ·vn to vn · · ·v1 is an isomorphism of
dendriform algebras.

The Corollary is an immediate consequence. �

4.3 Functional Equation in One Variable

In the associative case, if x = y, then the functional equation of the classical expo-
nential series is the same as in the commutative case. However in the dendriform
case, if x = y, then the functional equation is different from the Zinbiel case because
x≺ x 
= x# x. As an immediate corollary of the main result the term Hn(x,x) in the
formula

e(x)e(x) = e
(

2x+∑
n≥2

Hn(x,x)
)

is as follows. Let us denote by lci (resp. rci) the left comb (resp. right comb) with i
leaves and let us identify K[PBTn+1] with the degree n part of the free dendriform
algebra Dend(Kx).
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Corollary 4.4. In the dendriform context we have:

Hn(x,x) = ∑
i+ j=n+1
i≥1, j≥1

(−1) jrci∨ lc j ∈K[PBTn+1] f or n≥ 2.

Proof. It follows from Corollary 4.2 and from the following equalities in the free
dendriform algebra on one generator:

rci(x, . . . ,x) = x≺i−1, lc j(x, . . . ,x) = x# j−1.

�

4.5 The Multilinear Case

For the classical exponential series in the associative case, the Baker-Campbell-
Hausdorff formula takes the form

exp(x)exp(y) = exp(x+ y+ · · ·+BCHm(x,y)+ · · ·).

One of the way to compute the Lie polynomial BCHm(x,y) is to consider the
multilinear version

exp(x1) · · ·exp(xn) = exp(x1 + · · ·+ xn + · · ·+BCHm(x1, . . . ,xn)+ · · ·).

It is a result of Dynkin that BCHm(x,y) can be computed out of the multilinear part
of BCHn(x1, . . . ,xn) denoted eul(x1, . . . ,xn)∈Q[Sn]. It is known, cf. for instance [5],
that eul(x1, . . . ,xn) is the Eulerian idempotent.

Let us multilinearize similarly the functional equation of the series e(x) in the
dendriform case:

e(x1) · · ·e(xn) = e(x1 + · · ·+ xn + · · ·+Hm(x1, . . . ,xn)+ · · ·).

and denote by h(x1, . . . ,xn) the multilinear part of Hn(x1, . . . ,xn).

Proposition 4.6. The dendriform polynomial h(x1, . . . ,xn) is the iterated pre-Lie
product:

h(x1, . . . ,xn) = {x1,{x2,{· · ·{xn−1,xn}·}}},
where {x,y} := x# y− y≺ x.

Proof. In order to compute e(x1) · · ·e(xn) we can apply the functional equation of
Theorem 4.1 iteratively. It comes immediately that the polynomial h(x1, . . . ,xn) is
the multilinear part of
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e(x1)#
(

e(x2)#
( · · · (e(xn−1)# xn ≺ e′(−xn−1)) · · ·

)≺ e′(−x2)
)

≺ e′(−x1).

It comes

h(x1, . . . ,xn) =∑(−1)�xi1 #
(

xi2 #
( · · ·(xik # xn ≺ x j�)≺ ·· ·

)≺ x j2

)

≺ x j1 ,

where {i1 · · · ik | j1 · · · j�} is a (k, l)-shuffle of {1, . . . ,n− 1}.
It is clear that for n = 2 we get h(x1,x2) = x1 # x2−x2 ≺ x1 = {x1,x2}. Then, by

induction we get the expected result. �
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New Methods in Conformal Partial
Wave Analysis

Christoph Neumann, Karl-Henning Rehren, and Lena Wallenhorst

Abstract We report on progress towards the partial wave analysis of higher
correlation functions in conformal quantum field theory.

1 Introduction

Partial wave analysis (PWA) is a powerful tool in conformal quantum field theory.
It gives not only information about the field content and the operator product
expansion (OPE) of a model [7, 8], but can also be used for the analysis whether
the inner product induced by the correlation functions is positive (Wightman
positivity) [11].

Positivity is difficult to establish because it is a nonlinear property. It also
necessarily involves correlation functions of any number of fields [16]. The most
prominent example is the classification of central charges below 1 of the Virasoro
algebra. An example in four spacetime dimensions (4D) is the result that conformal
scalar fields with global conformal invariance (GCI, [10]) are necessarily Wick
squares of free fields [13], and cannot couple in a nontrivial manner to other
fields [2].
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While conformal PWA for 4-point functions is well understood [6], we intend to
develop methods for higher correlation functions. The basic task is to decompose a
correlation function of conformally covariant fields into a sum over partial waves

(Ω ,φ1(x1) . . .φn(xn)Ω) =∑
λ
(Ω ,φ1(x1) . . .φk−1(xk−1)Πλφk(xk) · · ·φn(xn)Ω), (1)

where Πλ is the projection to the subspace of the Hilbert space which carries the
irreducible representation λ of the conformal group. A projection can be inserted in
any position within the correlation, so that the n-point partial waves depend on n−1
representations, where the first and last projections are redundant because they are
fixed by the first and the last field.

In principle, the non-vanishing partial waves give information about the
contributions to the OPE of two or more fields [8]. Since a projection is a positive
operator, each partial wave contribution of the form

(Ω ,φ ′(x1) . . .φ(xn)Πλφ(xn+1) . . .φ ′(x2n)Ω)

must separately satisfy Wightman positivity (i.e., after smearing with test functions
f (xn, . . . ,x1) f (xn+1, . . . ,x2n) it must yield a non-negative number which is the norm
square of the vector Π(φ ⊗ ·· · ⊗ φ ′)( f )Ω , assuming the fields to be hermitean).
More generally, partial waves are subject to Cauchy-Schwartz type inequalities.

Now, partial waves are to a large extent determined by conformal symmetry,
being solutions to eigenvalue equations for the Casimir operators of the conformal
group. Therefore, the positivity requirement reduces to the positivity of a numerical
coefficient, the partial wave amplitude, which multiplies a model-independent
partial wave function [11].

Conformal PWA is by now mostly limited to 4-point functions, because the
higher partial waves are not sufficiently well known. Even for 4 points, the
determination of partial waves in 4D required a considerable effort [6]. Moreover,
the decomposition of a given correlation function into a known system of partial
waves may not be a straight-forward task without a suitable notion of orthogonality
between the partial waves. Some progress was made in [11] giving a systematic
expansion formula for scalar 4-point partial waves, and in [14] for a suitable notion
of orthogonality.

In this note, we report some further intermediate progress. In Sect. 2, we present
a power series representation (5) for general n-point partial waves in two spacetime
dimensions (2D) for all n, extending known formulae for n ≤ 4. In 4D, however,
finding such an expansion seems unrealistic because of the complicated structure of
the higher-order Casimir operators which the partial waves must diagonalize, and
because the partial waves are no longer unique.

In Sect. 3 we therefore present an alternative to the actual decomposition (1),
which is applicable also in 4D. The idea is a successive reduction of n-point
functions to n−1-functions, in terms of local linear maps φ1(x1)φ2(x2)Ω→ φλ (x)Ω
selecting each contribution to the OPE of the last two (or the first two) fields in the
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correlation. Our main result is the characterization of these linear maps as partial
differential operators that intertwine the respective representations of the conformal
group. This property is encoded in (10), which is subsequently solved. Acting on the
correlation functions, the intertwiners effectuate the desired reduction. As we shall
see, this method is applicable only for representations of integer scaling dimension
(otherwise, the differential operators would have to be replaced by integral kernels
[5], and locality would become a nontrivial issue).

This method is therefore well-suited for QFT with global conformal invariance,
where all correlation functions are rational functions [10]. We shall apply it in Sect. 4
to address the problem of positivity of a class of “exotic” higher (n≥ 6) correlation
structures of twist 2. The motivation is the following.

Twist-2 contributions in free field theories above the unitarity bound arise from
quadratic Wick products such as : ϕ∗(x1)ϕ(x2) : or x12μ : ψ(x1)γμψ(x2) : , in which
each factor can be contracted “only once”, so that both variables can only have
poles w.r.t. one other variable. In contrast, the exotic structures contain so-called
double poles, thus indicating a nontrivial theory. These are strongly constrained
by the conservation laws for twist-2 fields [13], allowing for a classification [4].
In particular, they cannot arise in correlations of less than six fields. While the exotic
structures satisfy all linear properties, it remains an open problem whether they are
compatible with positivity.

First steps of the positivity analysis of the simplest exotic structure will be
reported in Sect. 4.

2 Higher Chiral Partial Waves

Irreducible representations λ of the conformal group are eigenspaces of the
Casimir operators. Thus, correlation functions with projections onto irreducible
subrepresentations inserted:

〈Ω ,φ1(x1)Πλ1
φ2(x2) · · ·Πλi−1

φi(xi)Πλi
· · ·φn−1(xn−1)Πλn−1

φn(xn)Ω〉 (2)

are eigenvectors of the corresponding differential operators arising by commuting
the conformal generators with the fields. Partial waves are, by definition, solutions
to the same eigenvalue differential equations, with some standard normalization.
These are “universal” in the sense that they are completely determined by conformal
symmetry. They depend on the sequence of representations (μi)i=1...n of the fields φi

in (2), and on the sequence of representations (λi)i=1...n−1 of the projections, where
λ1 = μ1 and λn−1 = μn are redundant.

The projected correlations (2) are multiples of the partial waves. The coefficients
contain model-specific information, and Wightman positivity can be formulated as
a system of numerical inequalities on the partial wave coefficients [11].
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The conformal Lie algebra in 4D, so(4,2), has three Casimir operators
(quadratic, cubic and quartic in the generators). In contrast, the conformal Lie
algebra in 2D factorizes: so(2,2) ∼ sl(2,R)⊕ sl(2,R), and each sl(2,R) has one
quadratic Casimir operator. For this reason, the Casimir eigenvalue differential
equations are much simpler (both, to write down and to solve) in 2D.

The relevant positive-energy representations of sl(2,R)⊕ sl(2,R) are parame-
terized by the chiral scaling dimensions d±, such that d+ + d− is the total scaling
dimension, and d+− d− the helicity.

Because of the chiral factorization of the conformal group, also the partial waves
factorize. In the sequel, we display only chiral partial waves as functions of either
x+ = t + x or x− = t − x, and suppress the subscript. Thus, a general projected
correlation function in 2D has the form of a product of two chiral functions

〈Ω ,φ1(x1)Πa1φ2(x2) · · ·Πai−1φi(xi)Πai · · ·φn−1(xn−1)Πan−1φn(xn)Ω〉 (3)

where the xi are chiral variables, the chiral fields φi have chiral dimensions di, and
Πa are the projections onto the chiral representations with chiral scaling dimension
a. In particular, a1 = d1 and an−1 = dn are fixed.

The Casimir eigenvalue equation for the projector insertion Πai reads

(

∑
i< j<k

x2
jk∂ j∂k + 2 ∑

i< j,k

d j(x jk∂k)+∑
i<k

dk−
(

∑
i<k

dk

)2)〈. . .Πaiφi+1(xi+1) . . . 〉

= (ai− a2
i )〈. . .Πaiφi+1(xi+1) . . . 〉,

which is equivalent by conformal invariance to

(

∑
j<k≤i

x2
jk∂ j∂k + 2 ∑

j,k≤i

d j(x jk∂k)+∑
k≤i

dk−
(

∑
k≤i

dk

)2)〈. . .φi(xi)Πai . . .〉

= (ai− a2
i )〈. . .φi(xi)Πai . . .〉.

In principle, these equations can be reformulated in terms of n− 3 independent
conformal cross ratios. It turns out convenient to choose

uk =
xkk+1xk+2k+3

xkk+2xk+1k+3
.

We have worked out the invariant differential equations for n≤ 6 points: Let

(3) =
f (u1,u2,u3)

xd1+d2−d3
12 xd1+d3−d2

13 xd2+d3−d1
23 · xd4+d5−d6

45 xd4+d6−d5
46 xd5+d6−d4

56

.
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Then (with the Euler operators Ei = ui∂ui)

(E1 + d3− a2)(E1 + d3 + a2− 1) f = u1(E1 +E2)(E1 + d1− d2+ d3) f ,

(E2− a3)(E2 + a3− 1) f = u2(E2 +E1)(E2 +E3) f ,

(E3 + d4− a4)(E3 + d4 + a4− 1) f = u3(E3 +E2)(E3 + d6− d5+ d4) f . (4)

(The cases n < 6 are covered by admitting the trivial field 1 of dimension 0.) This
system is obviously symmetric under hermitian conjugation 1,2, . . . ,6→ 6,5, . . . ,1.
It can be recursively solved as a power series with leading powers ua2−d3

1 ua3
2 ua4−d4

3 .
From the solution with n ≤ 6, we have extrapolated the general power series

expansion for all n, as follows. By default, we put a0 = an := 0, and �0 = �n−2 := 0.

Proposition 1. The general chiral n-point partial wave is

∑
�1,...,�n−3≥0

∏n−2
j=1 x

d j+1−a j−a j+1
j j+2 (a j + a j+1− d j+1)� j−1+� j

∏n−1
i=1 xdi+di+1−ai−1−ai+1

ii+1

·
n−3

∏
k=1

u�k
k

�k!(2ak+1)�k

. (5)

This formula has a remarkable “short-range” feature: It involves only coordinate
distances xi j with j = i+1 or i+2. The powers of xii+1 and xii+2 depend only on the
dimensions of the fields φi, φi+1, respectively φi+1, and their adjacent projections,
apart from the summation indices �. The same is true for the numerical coefficients.

For n = 3 points, this is just the 3-point function. For n = 4,5,6 points, we
have derived this formula by solving the differential equations (4) for the Casimir
eigenvalues. For n = 4, the sum is a hypergeometric series, and (5) coincides with
well-known formulas.

One way to prove (5) for all n is an application of the method discussed in the
next section. There, we introduce “intertwining” differential operators ι ◦ ̂Eh with the
distinguishing property that they annihilate all partial waves carrying the “wrong”
representation a 
= h, and reduce the n-point partial wave carrying the representation
a = h to an (n− 1)-point partial wave with the first pair of fields replaced by φ0 of
dimension h.

Therefore, it is sufficient to show that this is true for our “candidate” partial waves
(5). With (24), we have to apply the differential operator

̂Eh ≡ Eh ◦ xd1+d2
12 =

(

∑
p+q=h

(q− b)p

p!
(p+ b)q

q!
∂ p

1 (−∂2)
q
)

◦ xd1+d2
12 ,

where b = d1−d2, to (5), and then equate x1 = x2. The result must be δha2 times the
reduced partial wave.
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To do this, we have to exhibit all terms that involve x1 or x2. Equation (5) can be
arranged as x−d1−d2

12 times the sum ∑�2,...,�n−3
over

(

x12

x13x24

)a(x23

x13

)b(x23

x24

)c

∑
�≥0

(a+ b)�(a+ c)�u�

�!(2a)�
× remaining factors, (6)

where a≡ a1, b≡ d1−d2, c≡ a3−d3+�2. Notice that for each �2, the sum over � is
a 4-point partial wave where the 4th field has dimension a3+ �3. Thus, knowing that
(5) correctly reproduces the 4-point partial waves, and that ι ◦ ̂Eh reduces 4-point
partial waves to 3-point partial waves, the same must be true for the higher partial
waves.

However, we have not been able to evaluate the result of Ed1,d2
h on the power

series (6), and to verify this conclusion by a direct computation. Only for n = 3 this
can be done by the following argument. For n = 3, one has c = 0 in (6), only �= 0
contributes, and there are no “remaining factors”. Then

(i) Because Ed1,d2
h is a differential operator of order h, it annihilates the 3-point

function whenever h < a, due to the surviving factors of x12.
(ii) Writing x12

x13x23
= 1

x23
− 1

x13
and performing the binomial expansion of its powers,

Ed1,d2
h can easily be applied. It is then seen by inspection that the resulting

series is symmetric under the exchange a ↔ h. Therefore, it also vanishes
whenever h > a.

(iii) When h = a, all derivatives must hit the factor xa
12. That the result is the 2-point

function, is then obvious.

For n> 3, the Leibniz rule produces multiples sums which are not easy to handle.
But a trick helps: The sum in (6) equals 2F1(a+ b,a+ c;2a;u). We then use the
identity

x2a−1
34

(x13x24)a

(

x23

x13

)b(x23

x24

)c

· 2F1(a+ b,a+ c;2a;u)

=
Γ (2a)

Γ (a+ c)Γ (a− c)

∫ x4

x3

dx(x1− x)−a−b(x2− x)−a+b(x3− x)a+c−1(x− x4)
a−c−1,

which can be established by direct computation: namely, the change of variables t =
x24(x3−x)
x34(x2−x) yields precisely the standard integral representation of the hypergeometric
function.

Therefore, each term (6) is, as far as its dependence on x1 and x2 is concerned,
an integral over a 3-point function. Thus, we only have to evaluate Ed1,d2

h on a
3-point function, which can be done as before. The remaining integral is again of
the hypergeometric type (after the change of variables t =− (x3−x)

x34
), and reproduces

precisely the necessary “leading” factors for the (n− 1)-point partial wave (5).
From this, we conclude that (5) indeed is the correct power series expansion of

general n-point chiral partial waves.
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3 Intertwining Differential Operators

We return to 4D. Let φ1 and φ2 be two conformal fields transforming in representa-
tions μ1 and μ2. We shall determine differential operators ̂Eλ w.r.t. x1 and x2 such
that

φλ (x) := ιx ◦ ̂Eλ φ1(x1)φ2(x2) (7)

transforms like a conformal field in the representation λ . Here, ιx is the evaluation
map ιx( f ) = f (x1,x2)|x1=x2=x = f (x,x).

It will become clear below that such operators exist only when the scaling
dimensions satisfy dλ−d1−d2 ∈Z. They can therefore be expected to be exhaustive
(w.r.t. λ ) only in a globally conformal invariant (GCI) theory.

Such operators have been presented previously [9, Sect. VI.B] for the special case
of φ1 and φ2 being two (complex conjugate) canonical scalar massless Klein-Gordon
fields of dimension 1, in order to extract the current, the stress-energy tensor and
higher conserved symmetric traceless tensor fields from : φ∗φ : . The same operators
actually can be used also for scalar biharmonic bifields V (x1,x2) which collect the
twist-2 contribution in any product of two scalar fields of equal dimension [13],
where biharmonicity, i.e., the wave equation w.r.t. both arguments is exploited in
an essential way. We shall reproduce these operators, but there will be additional
terms including the wave operators, so that (7) is true without using the equation of
motion, or biharmonicity.

By conformal covariance, the assumed transformation behaviour of (7) implies

ιx ◦ ̂Eλ (φμ(y)Ω ,φ1(x1)φ2(x2)Ω) = δλμ(φμ(y)Ω ,φλ (x)Ω),

i.e., the operator annihilates all 3-point functions with fields in the “wrong”
representation. In particular, if applied to the vacuum operator product expansion [8]

φ1(x1)φ2(x2)Ω =∑
μ

∫

dxKμ1μ2
μ (x1,x2;x)φμ(x)Ω ,

it will annihilate all contributions μ 
= λ , and if applied to a correlation function,
it will annihilate all partial waves with μ 
= λ in the 1-2-channel, and reduce the
contribution with μ = λ to an n− 1-point partial wave. Thanks to the latter feature,
one can perform a partial wave analysis without actually knowing the partial waves,
cf. Sect. 4.

Let us now proceed to determine the differential operators.
For definiteness, we specialize to μ1 = μ2 being scalar representations of

dimension d1 = d2 = d. In this case, only symmetric traceless tensor representations
λ can occur [8]. It is convenient to write λ = (κ ,L) where L is the tensor rank, and
2κ the “twist”, such that the scaling dimension is d = 2κ +L. The unitarity bound
requires κ ≥ 0 for L = 0, and κ ≥ 1 for L > 0. We write a symmetric traceless
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tensor as T (v) = T μ1...μL vμ1 . . .vμ1 which is a homogeneous polynomial of degree
L in the polarization vector v. Tracelessness is equivalent to the harmonic equation
�vT (v) = 0. Equation (7) implies that ̂EκL is a harmonic homogeneous polynomial
of degree L in the polarization vector v. The harmonic part of any polynomial in v
is uniquely determined [3], so it is sufficient to know ̂EκL up to terms involving v2.

Let T = Pμ ,D, Mμν ,Kμ be the generators of translations, dilations, Lorentz and
special conformal transformations, respectively, and

i[T,φ(x)] = tλx φ(x)

the commutation relations with covariant (“quasiprimary”) fields, where tκL = ∂
for the translations, = (x∂ + dλ ) for the scale transformations, = x∧ ∂ + v∧ ∂v for
the Lorentz transformations, and = 2x(x∂ )− x2∂ + 2(v(x∂v)− (xv)∂v) + 2dλ x for
the special conformal transformations. For the tensor representations, dλ = 2κ+L,
while for the scalar representations μ1 = μ2 the v-terms are absent and dμ = d.

Commuting the generators with (7), the assumption that φλ transforms in the
representation λ is equivalent to the intertwining relations

ιx ◦ ̂Eλ ◦
(

tμ1
x1

+ tμ2
x2

)

= tλx ◦ ιx ◦ ̂Eλ . (8)

In the case at hand, we make an Ansatz

̂Eλ = EκL(xi,∂i,v)◦ (x2
12)

d . (9)

Notice that by virtue of the pole bounds [10], any correlation function of
φ1(x1)φ2(x2) is not more singular than (x2

12)
−d , so that the differential operators

EκL act on a regular function, and the subsequent evaluation ιx is possible (provided
EκL is regular).

Next, we evaluate the intertwining relations (8). They tell us in turn:
Translations: (∂1 + ∂2)EκL = 0. Thus the differential operators do not involve

the coordinate x1 + x2. Since EκL is followed by the evaluation map ιx, we may also
assume that it does not involve the difference coordinate x1−x2, hence EκL involves
only derivatives and the polarization vector v. Let us denote by ∇i the derivatives
with respect to the “variables” ∂i of EκL(∂1,∂2,v).

Scale transformations: (∂1∇1 +∂2∇2)EκL = (2κ+L)EκL. Thus, EκL is homoge-
neous of degree 2κ+L in the derivatives ∂i.

Lorentz transformations: (∂1 ∧∇1 + ∂2 ∧∇2 + v∧ ∂v)EκL = 0. Thus, EκL is a
Lorentz scalar. It is therefore a function of (∂i∂ j), (v∂i) and v2. Together with the
known homogeneities in v and in ∂i, it can be a polynomial in the derivatives only if
κ is an integer. This is in perfect agreement with GCI because tensor-scalar-scalar
3-point functions are rational only if the twist 2κ is even.

Special conformal transformations: While the previous intertwining conditions
gave information about the gross structure of EκL, the special conformal transfor-
mations yield a differential equation that specifies the operators completely.
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Proposition 2. Given the previous specifications of EκL(∂1,∂2,v) in (9) as
homogeneous polynomials (of degrees depending on the parameters κ and L),
the intertwining condition (8) is equivalent to

(

2(∂1∇1)∇1− ∂1∇2
1 + 2(∂2∇2)∇2− ∂2∇2

2

)

EκL(∂1,∂2,v) = 0. (10)

One may directly solve these equations with a polynomial Ansatz for EκL with
the specified homogeneities. A more systematic way is to write

EκL(∂1,∂2,v) = (∂1∂2)
κ · [((v∂1)+ (v∂2)

)L · eκL(p,q,r)
]

0 (11)

where p =
∂ 2

1
(∂1∂2)

, q =
∂ 2

2
(∂1∂2)

, and r = (v∂1)−(v∂2)
(v∂1)+(v∂2)

. Clearly, eκL must be a polynomial

of degree at most L in r, and degree of at most κ in p and q. The notation [P(v)]0
stands for the harmonic part of the polynomial P(v). The variable v2 does not appear
explicitly, because the harmonic part [v2Q(v)]0 = 0 for any polynomial Q [3].

With this Ansatz, the differential equation (10) turns into the system of three PDE
for eκL(p,q,r):

(

L(L− 1)+ (1− r2)∂ 2
r + 2κ(L− r∂r)+ 2(p∂p− q∂q)∂r

)

eκL = 0, (12)
[

4
(

p∂p− 1
)

∂p− q(κ− p∂p− q∂q)(κ− 1− p∂p− q∂q)

+2(κ− p∂p− q∂q)
(

κ− 1− p∂p+ q∂q +(r− 1)∂r
)]

eκL = 0, (13)
[

4
(

q∂q− 1
)

∂q− p(κ− p∂p− q∂q)(κ− 1− p∂p− q∂q)

+2(κ− p∂p− q∂q)
(

κ− 1+ p∂p− q∂q +(r+ 1)∂r
)]

eκL = 0. (14)

One may repeat the same strategy in 2D. In this case, the intertwining operators
factorize into two chiral operators, labelled by the chiral dimensions h±. These are
polynomial functions in the chiral (one-dimensional) partial derivatives ∂1 and ∂2.
Following the same line of arguments as in 4D, one finds the chiral intertwining
condition

(

∂1∇2
1 + ∂2∇2

2

)

Eh(∂1,∂2) = 0,

where Eh(∂1,∂2) is a homogeneous polynomial of degree h. Writing Eh = (∂1 +

∂2)
h · eh
( ∂1−∂2
∂1+∂2

)

, this reduces to the differential equation for eh(r)

(

h(h− 1)+ (1− r2)∂ 2
r

)

eh(r) = 0,

which is exactly the same as the case κ = 0, L = h of (12).
Notice that in 4D, representations (0,L) with L 
= 0 are below the unitarity

bound. Such representations must not contribute to a correlation function. Thus,
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any admissible correlation function must be annihilated by the operators ι ◦ ̂E0L.
The solution for κ = 0 is

e0L(r) = (1− r2)∂rPL−1(r),

where Pn are the Legendre polynomials. Using (11), this gives

E0L(∂1,∂2,v) = ∑
p+q=L

(q)p

p!
(p)q

q!

[

(v∂1)
p(−v∂2)

q
]

0
, (15)

or (in the chiral case)

Eh(∂1,∂2) = ∑
p+q=h

(q)p

p!
(p)q

q!
∂ p

1 (−∂2)
q . (16)

For κ > 0, we may expand

eκL(p,q,r) = ∑
m,n≥0,m+n≤κ

pmqneκL;mn(r).

Then (12) must hold for each term pmqneκL;mn(r) separately, giving

(

(1− r2)∂ 2
r − 2κr∂r + 2(m− n)∂r+L(L+ 2κ− 1)

)

eκL;mn(r) = 0. (17)

This equation involves only the difference m− n =: δ . It is solved by polynomials
of degree L with the symmetry fκL;δ (r) = (−1)L fκL;−δ (−r):

fκL;δ (r) = (κ − δ )L · 2F1

(

−L,L+ 2κ− 1;κ− δ ;
1− r

2

)

. (18)

Thus, to solve (17) it remains to determine only the coefficients in

eκL;mn(r) = cκL;mn · fκL;m−n(r). (19)

Indeed, the remaining (13) and (14) turn into the recursive system

4(m2− 1)cκL;m+1,n + 2(κ−m− n)(L+κ− 1−m+ n)cκL;m,n

−(κ−m− n)(κ−m− n+ 1)cκL;m,n−1 = 0, (20)

4(n2− 1)cκL;m,n+1 + 2(κ−m− n)(L+κ− 1+m− n)cκL;m,n

−(κ−m− n)(κ−m− n+ 1)cκL;m−1,n = 0. (21)

Here, we have used the fact [1, Eqs. (15.2.14) and (15.2.16)] that the differential
operators
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A±κL,δ :=
(r∓ 1)∂r +κ− 1∓ δ

L+κ− 1∓ δ
act as raising and lowering operators for the parameter δ :

A±κL,δ fκL;δ = fκL;δ±1. (22)

We conclude:

Proposition 3. The intertwining differential operators in (7) are given by

̂EκL = ∑
m+n≤κ

cκL,mn(∂1∂2)
κ−m−n�m

1 �n
2

[

(v∂1 + v∂2)
L fκL;m−n

(v∂1− v∂2

v∂1 + v∂2

)

]

0
◦ (x2

12)
d

where [. . . ]0 stands for the harmonic part with respect to v ∈ R1,3, the polynomials
fκL;m−n are given by (18), and the coefficients cκL;mn solve the recursion (20), (21).

It may be interesting to note that fκL;0 are multiples of derivatives of Legendre
polynomials (cf. [1, Eqs. (15.2.2), (15.4.4)]):

fκL;0(r) =
2κ−1L!

(L+κ)κ−1
·∂κ−1

r PL+κ−1(r). (23)

so that, by (22), all functions fκL;mn(r) are derivatives of the Legendre polynomials
PL+κ−1(r). E.g., for twist 2 (κ = 1), we have

e1L(p,q,r) =
(

1+
p
2
(r− 1)∂r +

q
2
(1+ r)∂r

)

PL(r).

The next task is to relax the assumption μ1 = μ2 = scalar, and to find and solve
the analogue of (10) in the general case. This will be necessary in order to compute
the contributions from all insertions of projectors as in (1) by successive reduction
according to (7).

For two scalar fields of different dimensions, d1 
= d2, the Ansatz ̂Eλ = EκL ◦
(x2

12)
(d1+d2)/2 is solved by a scalar polynomial EκL(∂1,∂2,v), homogeneous of

degree 2κ + L in ∂i, homogeneous of degree L and harmonic in v, as before, but
now satisfying the differential equation
(

2(∂1∇1)∇1− ∂1∇2
1 + 2(∂2∇2)∇2− ∂2∇2

2 +(d1− d2)(∇1−∇2)
)

EκL(∂1,∂2,v) = 0.

Note that the homogeneity conditions require that κ is an integer, and that in a GCI
theory, fields with even twist 2κ can arise in the OPE only if d1− d2 is even. One
would therefore have to modify the Ansatz when d1− d2 is odd.

Similarly, in the chiral case, the Ansatz ̂Ed1,d2
h = Ed1,d2

h ◦ (x12)
d1+d2 implies that

Ed1,d2
h is homogeneous of degree h in ∂i and satisfies the differential equation

(

∂1∇2
1 + ∂2∇2

2 +(d1− d2)(∇1−∇2)
)

Eh(∂1,∂2) = 0.
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This is solved by

Ed1,d2
h (∂1,∂2) = ∑

p+q=h

(q− d1+ d2)p

p!
(p+ d1− d2)q

q!
∂ p

1 (−∂2)
q. (24)

4 Application: Test of Positivity of a 6-Point Structure

Recall the positivity problem for the exotic scalar 6-point structures addressed in
the introduction. We consider here only the simplest example of such a structure,
which has double poles and is consistent with the nontrivial constraints due to the
requirement that the OPE in both the first and last pair of fields starts with twist 2
[13]. More general double pole structures have been classified in [4].

In [13], the leading part of this structure was displayed. In [12], its “tetraharmonic
completion” (i.e., the biharmonic completion in both pairs of variables x1,x2 and
x5,x6) was presented in terms of a transcendental function g(s, t). The tetraharmonic
completion is precisely the twist-2 part in both channels. Unfortunately, however,
due to a wrong resummation factor, this function g(s, t) was incorrectly computed
in [12]. We shall display the correct function below.

The leading part of the exotic structure for four scalar fields φ1,φ2,φ5,φ6 of
dimension d and two scalar fields φ3,φ4 of dimension d′ is given by

E(x1, · · · ,x6) =

(

x2
15x2

26x2
34− 2x2

15x2
23x2

46− 2x2
15x2

24x2
36

)

[1,2][5,6]

(x2
12)

d−1 · x2
13x2

14x2
23x2

24 · (x2
34)

d′−3 · x2
35x2

45x2
36x2

46 · (x2
56)

d−1
, (25)

where (·)[k,l] stands for antisymmetrization. Without loss of generality, we choose
d = d′ = 3. For comparison, we also introduce the following 6-point structure with
the same symmetries as E , but which has no double poles and appears as part of the
6-point function of six cubic Wick products of a complex massless scalar free field:

B(x1, · · · ,x6) =
1

(x2
12)

2
·
(

1

x2
14x2

23

)

[1,2]

· 1

x2
34

·
(

1

x2
36x2

45

)

[5,6]

· 1

(x2
56)

2
.

The structure B is separately biharmonic in both the 1-2 and 5-6 channels. It turns
out that the tetraharmonic completion H of B− 1

2 E can be written more compactly
than that of E given in [12], namely

H(x1, · · · ,x6) =
(

B− E
2

) ·g(s, t)g(s′, t ′), (26)

where s =
x2

12x2
34

x2
13x2

24
, t =

x2
14x2

23
x2

13x2
24

, and s′ = x2
34x2

56
x2

35x2
46

, t ′ = x2
36x2

45
x2

35x2
46

. The condition of biharmonic-

ity amounts to the differential equation [12]
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[

(1− t∂t)(1+ t∂t + s∂s)−
(

(1− t∂t)+ t(2+ t∂t + s∂s)
)

∂s
]

g = 0

for the function g(s, t). The expansion in a power series in s, g(s, t) = ∑n
sn

n! gn(t),
gives the recursion (1 + (n + 1)t − t(1− t)∂t)gn = (1 − t∂t)(n + t∂t)gn−1 with
g0(t) = 1. This can be solved in terms of hypergeometric functions, giving

g(s, t) =∑
n

sn n!(n+ 1)!
(2n+ 1)!

· 2F1(n,n+ 1;2n+ 2;1− t). (27)

The sum can be performed when the integral representation of the hypergeometric
functions [1, Eq. (15.3.1)] is inserted, and s, t are expressed in terms of the “chiral
variables” u± such that s = u+u− and t = (1− u+)(1− u−). Then

g(s, t) =∑
n
(n+ 1)sn

∫ 1

0
dxxn(1− x)n(1− (1− t)x)−n

=

∫ 1

0
dx
[1− (u++ u−− u+u−)x

(1− u+x)(1− u−x)

]2

= 1+ 2u+u− ·
(1− u+)(1− u−) · log 1−u+

1−u− + u+− u−− 1
2 u2

++ 1
2 u2−

(u+− u−)3

= 1+ ∑
a,b≥1

2ab
(a+ b)((a+ b)2− 1)

ua
+ub
−

=
(1− u+)(1− u−)

u+− u−
· ∑
a,b≥0,a+b>0

a− b
a+ b

ua
+ub
− . (28)

(In the first line, we corrected a wrong factor of n!, whose presence in [12] spoiled
the subsequent expressions.)

Because the twist-2 part is obtained by inserting projections, it must separately
satisfy Wightman positivity. Of course, we would like to apply the twist-2 inter-
twiners E1L of Sect. 3 in both channels, so that the issue reduces to the positivity of
tensor-scalar-scalar-tensor 4-point functions. Applying successively the unknown
intertwiners for the resulting tensor-scalar channels, the problem would be reduced
to the positivity of the resulting 2-point function, i.e., to the positivity of the
numerical amplitude.

Since we know the intertwiners E1L, the first step can in principle be done. Notice
that it is sufficient to act on the leading part, because it differs from the twist-2 part
by contributions of higher twist, that are annihilated by E1L. Notice also that B has
the form of a product of two 4-point functions in the variables x1,x2,x3,x4 and in
the variables x3,x4,x5,x6. Therefore, the application of the intertwining differential
operators in the 1-2 channel and in the 5-6 channel also factorizes. The same,
however, is not true for E .
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Thus, even the first step at present seems to be too involved to be carried out
in practice. The second step is at present not possible because we have not yet
determined the tensor-scalar intertwiners.

For this reason, we decided to perform only a weaker test of positivity. Namely,
we restrict the twist-2 structure to 2D, by setting two spatial coordinates to 0. Since
this essentially amounts to a smaller class of test functions, Wightman positivity
must still be preserved; but notice that 2D positivity after the restriction is necessary
but not sufficient to ensure positivity in 4D.

The intertwining operators in 2D are at our disposal (16), and we have computed
all coefficients (see below). It turns out that the partial wave amplitudes of the
restricted exotic twist-2 structure B − 1

2 E differ from those of the non-exotic
structure B only by certain signs. This means that E has the same partial wave
amplitudes as 4B, except that some of them are absent.

The non-exotic structure B may itself be indefinite, but we know that it occurs
in a free-field model, and therefore can be dominated by other positive free-field
structures, because free fields are manifestly positive. This seems to indicate that the
restricted exotic structure as well can be dominated by positive free-field structures.
Thus positivity at the 6-point level alone would not forbid the appearance of this
structure as part of a 6-point correlation function.

Let us indicate some details of the actual computations.
Upon restriction to 2D, u+ and u− turn into the chiral cross ratios u = x12x34

x13x24
.

Moreover, the function B− 1
2 E drastically simplifies:

B− 1
2

E
2D
=

1

(x2
12)

2x2
13x2

24 · x2
34 · x2

35x2
46(x

2
56)

2
· (u+− u−)
(1− u+)(1− u−)

· (u′+− u′−)
(1− u′+)(1− u′−)

.

After multiplication with g(s, t)g(s′, t ′), using (28), we have

H
2D
=

1

(x2
12)

2x2
13x2

24·x2
34 · x2

35x2
46(x

2
56)

2
· ∑

a,b≥0,a+b>0

a−b
a+b

ua
+ub
− · ∑

a,b≥0,a+b>0

a−b
a+b

u′a+u′b− .

For the non-exotic structure B, one has instead

B
2D
=

1

(x2
12)

2x2
13x2

24 · x2
34 · x2

35x2
46(x

2
56)

2
· ∑

a,b≥0,a+b>0

ua
+ub
− · ∑

a,b≥0,a+b>0

u′a+u′b− .

Because the sums factorize, the evaluations of the chiral intertwining differential
operators ι ◦ Eh±(∂k,∂l) ◦ (xkl,±)d in the 1-2 channel (k, l = 1,2) and in the
5-6 channel, with Eh given by (16), completely decouple. Actually, because all
structures of interest are of order x≥1−d

kl , and therefore only chiral dimensions
h ≥ 1 will occur, we found it more efficient to work with chiral intertwining
operators ι ◦Dh± ◦ (xkl,±)d−1 where Dh(∂k,∂l) = (∇k −∇l)Eh(∂k,∂l), and adopt a
normalization different from (16):
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Dh(∂1,∂2) =
1

(h− 1)! ∑
p+q=h−1

∂ p
1 (−∂2)

q

p!2q!2 .

Thus, we apply ι ◦Dh+,h− ◦ (x2
12)

2 = ι ◦ [Dh+ ◦ (x12,+)
2⊗Dh− ◦ (x12,−)2

]

. We find

ι ◦Dh

[ 1
x13x24

ua
]

= xa
34 · ι ◦Dh

[ xa
12

(x13x24)a+1

]

= (−1)h−1ca,h ·
xh−1

34

(x− x3)h(x− x4)h

where ca,h =
(h)a(1−h)a

a!2 . Multiplying the two chiral factors and performing the sum
over a and b gives for the structure B

ι ◦Dh+,h−

[ 1

x2
13x2

24
∑

a,b≥0,a+b>0

ua
+ub
−
]

=CB(h+,h−) ·
xh+−1

34,+

(x− x3)
h+
+ (x− x4)

h+
+

[

+→−
]

where, by virtue of F(z) := ∑a ca,hza = Ph−1(1− 2z) and PL(−1) = (−1)L,

CB(h+,h−) = 2χodd(h), (29)

where χodd(h) = 1 if the helicity h= h+−h− is odd, and zero otherwise. To perform
the corresponding computation for the sum weighted with a−b

a+b , as in the structure H,

one may for b> 0 put Gb(z) =∑a
a−b
a+b ca,hza, solve the equation zG′+bG= zF ′−bF

by G(z) = F(z)− 2bz−b ∫ z
0 tb−1F(t)dt, and use the orthogonality of the Legendre

polynomials to conclude G(1) = F(1) = (−1)h−1 if h+ > h−. One finds

CH(h+,h−) = sign(h) ·2χodd(h). (30)

The same factors arise in the 5-6 channels. Thus, when the 6-point structures B and
H are reduced in both channels by means of (ιx ◦Dh+,h− ◦ (x2

12)
2)⊗ (ιx′ ◦Dh′+,h′− ◦

(x2
56)

2), the result is always a multiple of the same 4-point function

Wh+,h−;h′+,h′−(x,x3,x4,x
′) =

x
h++h′+−3
34,+

(x− x3)
h+
+ (x− x4)

h+
+ (x3− x′)h′+

+ (x4− x′)h′+
+

×
[

+→−
]

.

The respective coefficients for the structures B and H are

CB(h+,h−)CB(h
′
+,h

′
−) = 4χodd(h)χodd(h

′) ,

CH(h+,h−)CH(h
′
+,h

′
−) = sign(h)sign(h′) ·4χodd(h)χodd(h

′) , (31)

where h = h+− h−, h′ = h′+− h′− are the helicities.
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Because H is the twist-2 part of B− 1
2 E , we conclude that (after 2D restriction) all

partial waves with helicities of equal sign in the 1-2-channel and in the 5-6-channel,
that are present in B, are absent in the twist-2 part of E , while those with helicities
of opposite sign arise in the twist-2 part of E with 4 times the coefficient in B.

It remains to perform the partial wave expansion of the 4-point functions
Wh+,h−;h′+,h′− . Here one may use standard methods, e.g., [6, 11, 15]. Namely,

Wh+,h−;h′+,h′−(x,x3,x4,x
′) = ∑

k+ ,k−
Bk+,k−

h+,h−;h′+,h′−
·W k+,k−

h+,h−;h′+,h′−
(x,x3,x4,x

′),

where W k+,k− is the partial wave for the insertion of a projection on the
representation with scaling dimensions (k+,k−). It turns out that only k± ∈ 3

2 +N0

contribute. Because of chiral factorization of Wh+,h−;h′+,h′− , one has Bk+,k−
h+,h−;h′+,h′−

=

Bk+
h+,;h′+

Bk−
h−,;h′−

, where the chiral coefficients are determined by the expansion

1 = ∑
k= 3

2+n

Bk
h,h′ ·un

2F1(n+ h,n+ h′;2n+ 3;u).

The problem of Wightman positivity of the (2D-restricted) structures B and H has
now been reduced to the positivity of linear combinations of matrices of the form

P±Podd
[

Bk+ ⊗Bk−]PoddP±,

where Podd and P± are the projections on the odd resp. positive or negative helicities.
To be admissible in a QFT, the exotic structure does not need to be separately

positive, but must only be dominated by other, non-exotic structures that contribute
to a full 6-point function. Thus, if positivity should fail for H (it certainly does
for the twist-2 part of E because in this case all diagonal matrix elements vanish),
one would have to establish a bound for the negative part of the above matrices by
positive matrices of partial wave amplitudes arising from other structures.

We have not completed this analysis yet.
To conclude: the tools are available to test Wightman positivity of 6-point

correlation functions. If a 6-point function involving the exotic structure (25) passes
the test, then it could be a candidate for a nontrivial 4D conformal QFT.
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Abstract Configuration (x-)space renormalization of Euclidean Feynman
amplitudes in a massless quantum field theory is reduced to the study of local
extensions of associate homogeneous distributions. Primitively divergent graphs are
renormalized, in particular, by subtracting the residue of an analytically regularized
expression. Examples are given of computing residues that involve zeta values.
The renormalized Green functions are again associate homogeneous distributions
of the same degree that transform under indecomposable representations of the
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1 Introduction

Fourier transform is a prime example of the now fashionable notion of duality.
It maps a problem of integrating large momenta into one of studying the short
distance behaviour of correlation functions. Divergences were first discovered and
renormalization theory was developed for momentum space integration. Stueck-
elberg and Petermann [61], followed by Bogolubov, a mathematician who set
himself to master quantum field theory (QFT), realized that (perturbative) renor-
malization can be formulated as a problem of extending products of distributions,
originally defined for non-coinciding arguments1 and that such extensions are
naturally restricted by locality or micro-causality (a concept introduced in QFT
by Stueckelberg [44] and further developed by Bogolubov and collaborators—
for a review and references see [6]). The idea was taken up and implemented
systematically by Epstein and Glaser [8,18,19] (see also parallel work by Steinmann
[57]; for later contributions and surveys see [52, 59, 60]). It is conceptually clear
and represents a crucial step in turning QFT renormalization into a mathematically
respectable theory. By the late 1990s when the problem of developing perturbative
QFT and operator product expansions on a curved background became the order of
the day, it was realized that it is just the x-space approach that offers a way to its
solution [10, 11, 16, 35–38]. It is therefore not surprising that this approach attracts
more attention now than half a century ago when it was originally conceived—
see e.g. [1, 17, 22, 24, 29, 30, 40, 41, 49]. Papers like [2] reflect, surely, later
developments in both renormalization theory (Kreimer’s Hopf algebra structure—
see e.g. [42]—and Connes-Kreimer’s reduction to the Riemann-Hilbert’s problem
[14]) and the mathematical study of singularities in configuration space [15, 26].
Recent work on Feynman graphs and motives [3, 4] also generated a configuration
space development [12, 48, 49].

A starting point in our work was the observation (cf. [10, 16, 29, 37]) that
Hörmander’s treatment of the extension of homogeneous distributions (Sect. 3.2 of
[39]) is tailor-made for treating the ultraviolet (UV) renormalization problem, that
is particularly transparent in a massless QFT. In order to explain the main ideas
stripped of technicalities, we begin with the study of dilation invariant Euclidean
Green’s functions (the only case considered in [2]). Furthermore, we concentrate
on the UV problem excluding integration in configuration space by considering all
vertices as external.The validity of the results in the physically better motivated
Minkowski space framework is established in [50]. It is, on the other hand, known
that the leading UV singularities in a massive QFT are given by the corresponding
massless limit. The full study of the renormalization problem in the massive case
requires, however, additional steps and is relegated to future work.

1Whereas x-space renormalization was straightened out in all generality [5, 33, 34, 51, 58], it took
some more time to settle the p-space problem [45, 46, 63, 64], resulting in what is now termed the
BPHZ theory.
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We begin with a framework that differs from standard QFT (cf. [48]). We separate
the renormalization program from concrete (massless) QFT models and state it
as a mathematical problem of extension of a class of homogeneous distributions.
In Sect. 2 we formulate general axiomatic conditions for our construction, such
that when combined with a given Lagrangian model it reproduces the result of
Epstein-Glaser for the renormalized time ordered products (see [49]). To this end
we introduce a universal algebra of rational translation invariant functions in RDn,
where n runs in N while D, the space-time dimension, is fixed (D = 4 being the case
of chief interest). We assume that this algebra is generated by 2-point functions of
the type

Gi j(xi j) =
Pi j(xi j)

ρμi j
i j

, xi j = xi− x j , μi j ∈ N ,

ρi j = |xi j|= (x2
i j)

1/2, x2 =
D

∑
α=1

(xα )2 (1)

(for a Minkowski space signature ρ2 = x2− (x0 − i0)2), x2 = ∑D−1
i=1 (xi)2); here

Pi j are homogeneous polynomials in the components of the D-vector xi j. (For
free massless fields in an odd dimensional spacetime the exponents μi j are odd.2

For an even D one can assume that all μi j are even integers so that Gi j are rational
functions.) We note that the renormalization of any massless QFT can be reduced
to the extension of (a subspace of) rational functions G = ∏

i< j
Gi j(xi j) of this algebra

to distributions on RD(n−1). The correspondence between the rational functions and
such distributions is called a renormalization map. Each expression

GΓ = ∏
(i j)∈Γ

Gi j(xi j) , (2)

can be represented by a decorated graph Γ of n vertices and of lines connecting
pairs of different vertices (i, j) whenever there is a (non-constant) factor Gi j in the
product (2). Each Gi j = Gi j(xi j) appears at most once in this expression, so that
there are no multiple lines in the graph Γ . The presence of different powers μ and
different polynomials P indicates the fact that we give room for composite fields
in our theory such as normal products of derivatives of the basic fields. (Matrix
valued vertices that enter the Feynman rules can be accounted for by admitting linear
combinations of expressions of type (2).) A disconnected graph Γ corresponds to
the (tensor) product of the distributions associated to its connected components.
We shall restrict our attention to connected graphs.

We remark that a quantum field theorist may wish to replace the polynomial
in x in (1) by a polynomial of derivatives acting on the scalar field propagator.

2In view of recent interest in 3D CFT [28, 47] we explicitly include here odd D.
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The difference is not accidental: we shall impose the requirement, convenient for the
subsequent analysis, that the renormalization map commutes with multiplication by
polynomials in xi j. On the other hand, derivatives typically yield anomalies indepen-
dently of the above requirement (see [49], Sect. 8). Using the renormalization map
we achieve the basic property of the time–ordered product: causality. Other con-
straints compatible with causality and power counting may be imposed—including
a description of possible associated anomalies—by adjustment of additional finite
renormalizations. An example of such a phenomenon, concerned with the behaviour
of renormalized Feynman amplitudes under dilations, is considered in Sect. 4.

Thus, to any graph Γ in a given massless QFT there corresponds a bare Feynman
amplitude GΓ . It is a homogeneous rational function of degree−dΓ which depends
on n-1 D-vector differences. We shall denote the arguments of GΓ by x, for short,
and will introduce a uniform ordering x1, . . . ,xN of their components, where N =
D(n− 1) (for a connected graph). Then, the homogeneity of GΓ is expressed as

GΓ (λ x) = λ−dΓ GΓ (x) . (3)

We shall call the difference κ := dΓ −N the index of divergence. It coincides with
(minus) the degree of homogeneity of the density form

GΓ (x)dx1∧dx2∧ . . .∧dxN ≡ GΓ (x)Vol. . (4)

(Whenever the orientation is not relevant we shall skip the wedge product sign.
The use of densities rather than functions streamlines changes of variables and
partial integration.) We say that GΓ is superficially divergent if κ ≥ 0;GΓ is called
divergent if it is not locally integrable. The following easy to prove statement
justifies the above terminology.

Proposition 1.1. If the indices of divergence of a connected graph Γ and of all its
connected subgraphs are negative then GΓ is locally integrable and admits, as a
consequence, a unique continuation as a distribution on RD(n−1).

The power counting index of divergence of standard renormalization theory is
thus replaced by the degree of homogeneity of bare Green functions for a (classically
dilation invariant) massless QFT.

Abusing the terminology we shall also speak of (superficially) divergent graphs.
Each function GΓ defines a tempered distribution (in the sense of Schwartz [55]) on
test functions f with support

supp f ⊂ RD(n−1)\Δ2 , Δ2 = {x ; ∃(i, j) i < j, s.t. xi j = 0} . (5)

One can, similarly, introduce the partial diagonals Δk involving k-tuples of coincid-
ing points; we have Δn := {x;x1 = . . .= xn} ⊂ Δn−1 ⊂ . . .⊂ Δ2. We shall be mostly
using the small or full diagonal Δn in what follows. The problem of renormalization
consists in extending all distributions GΓ to S (RD(n−1)) in such a way that a certain
recursion relation, which reflects the causality condition, is satisfied. This condition
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is known as causal factorization. We give the precise formulation of its Euclidean
version in Sect. 2 that follows from the more involved but physically motivated
Minkowski space requirement (see [50]). We use an x-space counterpart of Speer’s
analytic renormalization in [56] to define the notion of residue3 of GΓ adapted,
in particular, to primitively divergent graphs. It is based on the observation that
if r = r(xi j) is a norm in the (Euclidean) space of coordinate differences and
G(x) is primitively divergent of index κ then the analytically regularized Feynman
amplitude

rκ+εG(x) (ε > 0) (6)

is locally integrable. It will be proven in Sect. 2 and Appendix A that (6) defines a
distribution valued meromorphic function in ε which only has simple poles for non-
positive integer values of ε . This will allow us to define the renormalized Feynman
distribution GR of a primitively divergent graph by just subtracting the pole term for
ε = 0. The result will be enforced by one of our main requirements (see (MC2) of
Sect. 2, below), namely that GR is associate homogeneous of the same degree as G
(its behaviour for small r only differing from G by log terms). More precisely, we
say that G is an associate homogeneous distribution of degree d and order k if it
obeys the (infinitesimal) indecomposable dilation law

(E + d)k+1G(x) = 0 where E =
n

∑
i=1

xi
∂
∂xi

(

x
∂
∂x

=
D

∑
α=1

xα
∂
∂xα

)

, (7)

—i.e., if it is an associate eigenvector of the Euler operator E—see [27].
The study of divergent graphs with subdivergences is outlined in Sect. 4, where

a global characterization of associate homogeneous distributions is also given. It is
remarkable that in all cases renormalization is reduced to a 1-dimensional extension
problem for associate homogeneous distributions. A construction that provides the
solution to this problem is outlined in Appendix A.

One objective of our work is to demonstrate in a systematic fashion that x-space
calculations are not only more transparent conceptually but also practical (especially
in the Euclidean massless case—something noticed long ago by Chetyrkin et al.
[13] (see also [43]) but only rarely appreciated afterwards—cf. [29]). To this end
we consider (in Sects. 3 and 4) a number of examples (of 1-, 2- and 3-loop graphs)
displaying the basic simplicity of the argument. A primitively divergent n-loop
graph whose residue involves ζ (2n− 3) is displayed as Example 3.2.

3A notion of residue of a Feynman graph has been introduced in the momentum space approach
in terms of the graph polynomial [3,4]. It would be interesting to establish the precise relationship
between that notion and ours. The notion of Poincaré residue considered in [12], on the other
hand, works in a straightforward manner for simple poles in x-space, a rather unnatural restriction
for ultraviolet divergences.
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2 General Requirements. Reduction to a One-Dimensional
Problem

We shall define ultraviolet (i.e. short distance) renormalization by induction with
respect to the number of vertices. Assume that all contributions of diagrams with
less than n points are renormalized. If thenΓ is an arbitrary connected n-point graph
its renormalized contribution should satisfy the following inductive factorization
requirement.

Let the index set I(n) = {1, . . . ,n} of Γ be split into any two non-empty non-
intersecting subsets

I(n) = I1∪̇ I2 (I1 
= /0 , I2 
= /0 , I1∩ I2 = /0) .

Let UI1,I2 be the open subset of RDn ≡ (RD)×n such that (x1, . . . ,xn) /∈ UI1,I2
whenever there is a pair (i, j) such that i ∈ I1, j ∈ I2. Let further GR

1 and GR
2 be

the contributions of the subgraphs of Γ with vertices in I1 and I2, respectively. For
each such splitting our distribution GR

Γ , defined on all partial diagonals, exhibits the
Euclidean factorization property (see [48]):

GR
Γ = GR

1

⎛

⎜

⎝∏
i∈I1
j∈I2

Gi j

⎞

⎟

⎠GR
2 on UI1,I2 , (8)

where Gi j are factors (of type (1)) in the rational function GΓ and are understood
as multipliers on UI1 ,I2 . This property is inspired by the Minkowski space causal
factorization of Epstein-Glaser [18] considered in [50].

We shall add to this basic physical requirement a few more mathematical
conventions (MC) which will substantially restrict the notion of renormalization
used in this paper.

(MC1) The renormalization commutes with permutation of indices (which may
stand for both position variables and discrete quantum numbers).

(MC2) Renormalization maps rational homogeneous functions onto associate
homogeneous distributions of the same degree of homogeneity; it extends
associate homogeneous distributions defined off the small diagonal to associate
homogeneous distributions of the same degree (but possibly of higher order)
defined everywhere on RN.

(MC3) The renormalization map commutes with multiplication by (homoge-
neous) polynomials. If we extend the class of our distributions allowing multipli-
cation with smooth functions of no more than polynomial growth (in the domain
of definition of the corresponding functionals), then this requirement will imply
commutativity of the renormalization map with such multipliers.

(MC4) In a Euclidean invariant theory the renormalization map commutes with
Euclidean transformation in RD.

The induction is based on the following Euclidean diagonal lemma.
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Proposition 2.1. The complement C(Δn) of the small diagonal is the union of all
UI1,I2 for all pairs of disjoint I1, I2 with I1∪̇ I2 = {1, . . . ,n}, i.e.,

C(Δn) =
⋃

I1∪̇I2 ={1,...,n}
UI1,I2 .

Proof. Let (x1, . . . ,xn)∈C(Δn). Then there are at least two different points xi1 
= x j1 .
We define I1 as the set of all indices i of I = I(n) for which xi 
= x j1 and I2 := I\I1.
Hence, C(Δn) is included in the union of all such pairs. Each UI1,I2 , on the other
hand, is defined to belong to C(Δn). This completes the proof of our statement.

In order to apply and implement the inductive factorization property (8) one
needs two steps:

(i) To renormalize all primitively divergent graphs, i.e. all divergent diagrams with
no proper subdivergences, in particular, to extend all (superficially) divergent
2-point functions Gi j to distributions on S (RD);

(ii) To extend the resulting associate homogeneous distributions defined on the
complement of the full diagonal x1 = x2 = . . . = xn to distributions on
S (RD(n−1)).

We shall only elaborate on the first step in this exposé. Concerning step (ii),
briefly reviewed in Sect. 4, we refer to our paper [50].

A primitively divergent graph gives rise to a homogeneous distribution G0(x)
defined on RN\{0} (i.e. off the small diagonal, as x is expressed in terms of the
coordinate differences). The following statement concerns more generally associate
homogeneous distributions and thus applies to any graph with renormalized subdi-
vergences.

Theorem 2.2. Let Σ be any cone section—i.e., a smooth (compact) hypersurface
in RN\{0} that intersects transversally every ray {λ x}λ>0 (x 
= 0) and let ρΣ (x)
be a positive smooth function such that u := ρ(x)−1 x ∈ Σ . Then every associate
homogeneous distribution of degree −d and order n has an expansion of the form4

G0(ru) =
n

∑
m=0

GΣ
m(u)L−dm(r) , r = ρΣ (x) , (9)

Lam(r) = θ (r)ra (�nr)m

m!

(

= ra (�nr)m

m!
for r > 0

)

. (10)

The proof uses induction in n, based on the formula

(E + d)L−dn = L−dn−1 for E = x
∂
∂x

, n = 1,2, . . . , (11)

4A similar decomposition in an overall scale and angle variables is derived and used very recently
in momentum space in [9].
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along with the observation that for n = 0

∂
∂ r

(

rd G0(ru)
)

= 0 .

Thus the renormalization problem is reduced to the extension of 1-dimensio-
nal distributions of type (10). The latter is achieved by exploiting the simple pole
structure of analytic regularization [56] and the resulting generating formula (see
Appendix):

θ (r)rε−κ−1− (−1)κ

κ!ε
δ (κ)(r) =

∞

∑
κ=0

L−κ−1n(r)εn . (12)

The distributions L−dn can be then defined on the real line using (MC3) and (11);
they depend on a single scale parameter hidden in the argument of the logarithm
(see Appendix).

The following proposition may serve as a definition of both the notion of a
residue Res and of a primary renormalization map PΣ

N : S ′(RN\{0})→S ′(RN).

Theorem 2.3. If G0(x) is a homogeneous distribution of degree −d on RN\{0}
(d = N +κ ≥ N), then

ρΣ (x)ε G0(x)− 1
ε
(ResG)(x) = GΣ (x)+ 0(ε) (GΣ = PΣ

N G0) ; (13)

here ResG is a distribution with support at the origin whose calculation is reduced
to the case d = N of a logarithmically divergent graph by using the identity

ResG =
(−1)κ

κ!
∂i1 . . .∂iκ (Res(xi1 . . .xiκ G))(x) (14)

where summation is understood over all repeated indices i1, . . . , iκ from 1 to N. If
G0(x) is homogeneous of degree −N then

ResG(x) = (resG0)δ (x) (for (E +N)G0(x) = 0) (15)

where

resG0 =
∫

Σ
G0(x)

N

∑
j=1

(−1) j−1 x j dx1∧ . . .dx̂ j . . .∧dxN (16)

is independent of Σ since the form under the integral sign is closed. (A hat, ,̂ over
an argument means, as usual, that this argument is omitted.)

Proof. The fact that the distribution valued function of ε ρεΣ G0 is meromorphic
and only has a simple pole at ε = 0 follows from Theorem 2.2 and (12). Equation
(14) follows from the assumed homogeneity property ∂i xi G0 = −κG0 of G0. The
integrand in (16) is a contraction of G0 Vol with the Euler vector field:

iE G0 Vol =
N

∑
j=1

G0(−1) j x j dx1∧ . . .dx̂ j . . .∧dxN (17)
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and it is a (homogeneous) form of maximal degree in the (N − 1)-dimensional
projective space for λN G0(λ x) = G0(x).

The residue (16) is a special case of the so called Wodzicki residue (see [29, 31]
and references therein).

3 Residues and Renormalization of Primitively
Divergent Graphs

For the (Euclidean covariant) 2-point function in a D-dimensional space-time N =D
(x = x = x1− x2) it is natural to choose for Σ the unit hypersphere SD−1, so that
ρΣ (x) =

√
x2 =: r. For a scalar 2-point function of a composite field of dimension

D
2 (D-even), we would have

G0(x) =
C

(x2)D/2
, ResG =C |SD−1|δ (x) (18)

where |S2m−1|= 2πm

(m−1)! .

The renormalization map RΣ
D : G0→GΣ (13) can be computed explicitly in terms

of the radial coordinate r of (12) (see Appendix).
Here we shall compute it instead in Cartesian coordinates in two examples of

4-dimensional (4D) scalar field theory.

Example 3.1. The logarithmically divergent 2-point graph shown on Fig. 1a
is ubiquitous as a (sub)divergence in any scalar field theory in 4D: it appears as a
self-energy graph in a ϕ3 model and as a contribution to the 4-particle scattering
amplitude in the ϕ4 theory. The limit ε→ 0 in (13) for this 1-loop graph reads

G1(x, �) = lim
ε→0

[

1
(x2)2

(

x2

�2

)ε

− 2π2

2ε
δ (x)

]

=
1
2

∂
∂xα

[

xα

(x2)2 �n

(

x2

�2

)](

=
1
r2

∂
∂ r2

(

�n
r2

�2

)

+

,

(�nρ)+ =

{

�nρ for ρ > 0
0 for ρ < 0

)

. (19)

a bFig. 1 Logarithmically and
quadratically divergent
2-point graphs
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This is another instance of differential renormalization (cf. (A.4) and see [25,32,

53]). Renormalized expressions of the type ∂
∂xα

[

xα

(x2)2 �n
x2

�2

]

(sum over α) are used

systematically in [29].

Remark 3.1. Note that the double and the triple lines in Fig. 1 should both be viewed
as a single line with a different decoration (corresponding to different powers,
μ = 2 and μ = 3, in (1)). Thus, the self-energy graph on Fig. 1b, which displays
overlapping divergences in momentum space, is primitively divergent in x-space
according to our definition. Its renormalized expression is additionally restricted by
the requirement of full Euclidean invariance. (In general, we require the presence
of as much of the symmetry of the rational function in the renormalized expression
as allowed by the existing anomalies.) Applying further requirement (MC3) which
yields the identity G1(x, �) = x2 G2(x, �), valid for the original rational functions
away from the origin, we find

G2(x, �) = lim
ε→0

{

1
(x2)3

(

x2

�2

)ε

− π2

8ε
Δδ (x)

}

=
3π2

16
Δδ (x)+

Δ
8

G1(x, �) . (20)

In deriving (20) we have used the identities

Δ f = 4
∂ 2

∂ρ2 (ρ f )+
1
ρ
Δω f for ρ = x2(= r2) , x = rω ;

1
ρn+1

( ρ
�2

)ε
=

1
(n− ε)(n− 1− ε)2 . . . (1− ε)2(−ε)

(

∂ 2

∂ρ2 ρ
)n

1
ρ

( ρ
�2

)ε

=
1

n!(n− 1)!

(

Δ
4

)n−1(π2

ε
δ (x)+π2 sn δ (x)+G1(x, �)

)

+O(ε) ,

where sn is a sum of partial harmonic series (cf. (A.5)):

sn =
n−1

∑
j=1

1
j
+

n

∑
j=2

1
j

(

s1 = 0 , s2 =
3
2
, s3 =

7
3
, . . .

)

.

One can use a more general (homogeneous, O(D)-invariant) norm on the
distances x2

i j instead of the (O(N)-invariant) radial coordinate for N = D(n− 1) in
order to compute both the residue and the renormalized expression of a primitively
divergent graph as illustrated on the following n-loop example.

Example 3.2. We consider the 4D n-loop (n + 1-point) primitively divergent
Feynman amplitude

Gn = (
n

∏
i=1

x2
0ix

2
ii+1)

−1, xn+1 ≡ x1, (21)
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G3 =
1

x01
2 x02

2 x03
2 x12

2 x23
2 x13

2
0

1

2 3

Fig. 2 The tetrahedron graph
in the (ϕ4)4-theory

which we shall parametrize by the spherical coordinates of the n independent
4-vectors x0i:

x0i = riωi , ri ≥ 0 , ω2
i = 1 , i = 1,2, . . . ,n. (22)

An important special case is given by the complete 4-point graph on Fig. 2
Setting5

Gε
n =

(

R2

�2

)ε

Gn, R = max(r1, . . . ,rn), (23)

we shall compute its residue by first integrating the corresponding analytically reg-
ularized density Gε

nVol over the angles ωi using the identification of the propagators
1

x2
i j

with the generating functions for the Gegenbauer polynomials. Having in mind

applications to a scalar field theory in D dimensions (see Example 4.2 below) we
shall write down the corresponding more general formulas. The propagator (x2

12)
−λ

of a free massless scalar field in D = 2λ +2 dimensional space-time is expanded as
follows in (hyperspherical) Gegenbauer polynomials:

(x2
i j)
−λ = (r2

i + r2
j − 2rir jωiω j)

−λ =
1

R2λ
i j

∞

∑
n=0

(

ri j

Ri j

)n

Cλ
n (ωiω j) ,

Ri j = max(ri,r j) , ri j = min(ri,r j) , i 
= j , i, j = 1,2,3. (24)

We shall also use the integral formula

∫

S2λ+1
dωCλ

m(ω1ω)Cλ
n (ω2ω) =

λ |S2λ+1|
n+λ

δmn Cλ
n (ω1ω2) , (25)

where |S2λ+1| = 2πλ+1

Γ (λ+1) is the volume of the unit hypersphere in D = 2λ + 2
dimensions.

Clearly, the expansion (24) requires an ordering of the lengths ri. In general, one
should consider separately n! sectors, obtained from one of them, say

r1 ≥ r2 ≥ . . .≥ rn (≥ 0) (26)

5The fact that the maximum function R, which replaces ρΣ (x) of Theorem 2.2, does not depend
smoothly on the coordinates, requires, in general, a special treatment of the lower dimensional
manifolds of discontinuities of its derivatives. (See Example 4.1 below.)
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by permutations of the indices. It is, in fact, sufficient to consider just the sector (26)
(and multiply the result for the residue by n!). (Because of the symmetry of the
tetrahedron graph (Fig. 2) this is obvious for n = 3 but it is actually true for any
n(≥ 3).) The result involves a polylogarithmic function:

˜Gε
n :=
∫

S3
. . .
∫

S3
Gε

n(r1ω1, . . . ,rnωn)Vol

= (2π2)n
( r1

�

)2ε dr1∧ . . .∧drn

r1 . . .rn
Lin−2(

r2
n

r2
1

),

Lin−2(ξ ) =
∞

∑
m=1

1
mn−2 ξ

m (ξ =
r2

n

r2
1

) (27)

(rn = min(r1, . . . ,rn),r1 = max(r1, . . . ,rn)(= R) ). To derive the last equation we
have applied once more (25) and used

(

C1
m(ω

2
1 ) =
)

C1
m(1) = m+ 1.

The residue distribution corresponding to the (integrated over the angles) den-
sity (27) is given by

Res ˜Gε
n = resG0

n δ (r1) . . .δ (rn)dr1∧ . . .∧drn. (28)

In order to compute the numerical residue resG0
n in (28) we have to take the sum of

(n−1)-dimensional radial integrals over the surface R = 1 for different orderings of
ri. The result is a multiple (with a binomial coefficient) of the integral corresponding
to the sector (26):

resG0
n =

(

2n− 2
n− 1

)

(2π2)n
∫ 1

0

dr2

r2
. . .
∫ rn−1

0

drn

rn
Lin−2(r

2
n)

= 2

(

2n− 2
n− 1

)

π2nζ (2n− 3) . (29)

In particular, for the tetrahedron graph, n = 3, we reproduce the known result,
resG0

3 = 12π6ζ (3)—see, for instance, [29].
The integration technique based on the properties of Gegenbauer polynomials has

been introduced in the study of x-space Feynman integrals in [13]. The appearance
of ζ -values in similar computations has been detected in early work of Rosner [54]
and Usyukina [62]. It was related to the non-trivial topology of graphs by Broadhurst
and Kreimer [7, 42].
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4 Dilation Anomaly. Examples of Graphs
with Subdivergences

We now turn to the behaviour under dilations of a renormalized primitively divergent
density G(x)Vol of index κ (≥ 0). By the definition of GVol the dilation anomaly

A(x,λ ) := λκ G(λ x)Vol−G(x)Vol (30)

is a distribution valued density with support at the small diagonal, x1 = x2 = . . .= xn.
Invoking the requirement (MC2), we can restrict it, following [39], by demanding
that it is again homogeneous in x of degree−κ :

A(x,λ ) = ∑
˛,|˛|=κ

a˛(λ )D˛ δ (x)
n−1

∏
i=1

dD xin (31)

where δ (x) is the D(n− 1)-dimensional δ -function,

D˛ =
n−1

∏
i=1

D

∏
ν=1

(∂νi )αiν , |˛|=∑
i,ν
αiν .

Repeated application of the dilation law (30) yields the cocycle condition6

a˛(λμ) = a˛(λ )+ a˛(μ) . (32)

The general form of a˛ satisfying (32) is

a˛(λ ) = a˛(G)�nλ (33)

where a˛(G) is a linear functional of the Green function G (or the corresponding
density GVol). It is important to note that the coefficient a˛(G) in (33) is
independent of the ambiguity in the definition of the renormalized Green function.
Once the problem of renormalizing a primitively divergent graph is reduced to a
1-dimensional one (as in Sect. 2) this follows from the simple observation that the
coefficient of �nr in (A.5) is independent of the ambiguity reflected in the scale
parameter � (and of the transverse hypersurface Σ that enters (16)).

In fact, each renormalization of a subdivergence in a given graph increases by one
the order—i.e. the maximal power of �nλ in the associate homogeneity law. Since
r ∂
∂ r (�nr) j = j(�nr) j−1, a general associate homogeneous renormalized Feynman

amplitude G will satisfy (7), (E + d)k+1 G(x) = 0. We can then characterize G

6Usually, in perturbation theory one is dealing with Lie algebra cohomology. Group cohomology
has occurred in various contexts in the early 1980s [20, 21, 52, 59].
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GΔ = 1
x01

2 x12
2 [x02

2 ]2
.

1

0 2

Fig. 3 Logarithmically
divergent 3-point graph with
a 2-point subdivergence

by a (column) vector G = (G0 = G,G1 = (E + d)G0, . . . ,Gk = (E + d)Gk−1) of
distributions. It carries an indecomposable representation of the dilation group7 of
degree−d and order k such that

G(x)→ λ d G(λ x) = eΔ�nλ G(x) =
k

∑
j=0

(�nλ ) j

j!
G j(x) (34)

where Δ is a nilpotent Jordan cell with k units above the diagonal. The nilpotency
conditionΔ k+1 = 0 remains invariant under an arbitrary non-singular transformation
G → SG,Δ → S−1ΔS. One usually only uses this freedom to change the relative
normalization of G j.

It follows from the factorization property (8) that the dimension of the support of
G j is decreasing with j and

Gk(x) = (x∂ + d)G0(x) =∑
α

aα(G)Dα δ (x) . (35)

Following the terminology of Gelfand-Shilov [27] we call both G and its compo-
nents associate homogeneous distributions (cf. (7)).

The following simple example of a graph with a subdivergence illustrate the
complication (mentioned in connection with (23)) coming from the use of a non-
smooth radial coordinate.

Example 4.1. Renormalization the 3-point two loop diagram displayed on Fig. 3.
We introduce as independent variables the spherical coordinates of the vectors

x0i, i = 1,2

x01 = rω1 , x02 = ρ ω2 , r,ρ ≥ 0 , ω2
i = 1 (i.e. ωi ∈ S3) i = 1,2 (36)

and set
ω1 ·ω2 = cosϑ , x2

12 = r2 +ρ2− 2rρ cosϑ . (37)

The renormalized 2-point Green function (19), corresponding to the subgraph of
vertices (0,2) is

G1(x02, �) =
1
2

∂
∂ xα02

[

xα02

(x2
02)

2
�n

x2
02

�2

]

+

=
1
ρ3

∂
∂ρ

(

�n
ρ
�

)

+
. (38)

7Representations of this type have been considered back in the 1970’s [23] within a study of a
spontaneous breaking of dilation symmetry.
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(The last expression only makes sense as a density after multiplying with the volume
element d4x = ρ3 dρ d3ω that cancels the 1

ρ3 factor and permits to transfer the
derivative to the test function.)

Next we shall write down the density GΔVol with renormalized subdivergence
integrated over the six angular variables ω1 and ω2

GΔ Vol :=

[
∫

d3ω1

∫

d3ω2 GΔ (rω1,ρ ω2;�)

]

r3 drρ3dρ

= 8π3
∫ π

0

sin2ϑ dϑ
r2 +ρ2− 2rρ cosϑ

∂
∂ρ

(

�n
ρ
�

)

+
r dr dρ

= 4π4 r dr dρ
r2∨

∂
∂ρ

(

�n
ρ
�

)

+
, r∨ = max(r,ρ) =

r+ρ+ |r−ρ |
2

. (39)

Smearing GΔVol with a test function f (r,ρ) we find that the leading term,
LT GΔVol, for r∨ → 0 (the only one that requires overall renormalization) corre-
sponds to r = ρ

(LT GR
Δ Vol, f ) =−4π4

∫ ∞

0
dr

�n2
(

r
�

)

2
d
dr

f (r,r) . (40)

Here we have made use of the renormalized associate homogeneous distribution
L−11(r) thus illustrating Theorem 2.2.

Somewhat symbolically we can write

GR
Δ (r,ρ ;�)Vol = 4π4 L−11

( r
�

)

δ (ρ − r)
dr
�

dρ+G0(r,ρ)VolL01

(ρ
�

)

dρ (41)

where G0Vol is the regular part of the homogeneous 1-form 4π4 r dr
r2∨

(for ρ 
= r).

Displaying the associate homogeneity law for the renormalized density (41) we
observe a manifestation of the general rule: only the coefficient of the highest log
term (�nλ for L01 dρ and (�nλ )2 for L−11 dr) is independent of the ambiguity
parametrized here by the scale � in the renormalized subdivergence.

Remark 4.1. One could be tempted to replace the renormalization parameter � in
the expression (39) by the (external to the divergent 2-point subgraph) variable r
for r > ρ . This would amount to subtracting a local in ρ term, 4π4 dr

r �n r
� δ (ρ)dρ .

It is straightforward to observe, however, that neglecting such a term in (39) would
violate the causal factorization requirement (8).

The techniques developed in Example 4.1 also apply to more complicated graphs
(cf. Example3.2 in [50]).

Example 4.2. As a last example we consider the graph displayed on Fig. 4
which exhibits overlapping divergences in 6-dimensional space-time.
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x0j = r jω j , r j ≥ 0 , ω j ∈S
5

G
O = (r12

2

0

31

r2
2 r3

2 x12
2 x23

2 )−2

Fig. 4 Quadratically
divergent diagram in
6-dimensions

Applying the relations (24), (25) for λ = 2, we find the following expression
for the analytically regularized integrated with respect to the angles Green function
density

˜Gε1 ε2
O

= π9 r1 r2 r3

(R12 R23)4

(

R2
12

�2
1

)ε1(R2
23

�2
2

)ε2

dr1 dr2 dr3 , (42)

where Ri j = max(ri,r j) (cf. (24)). The renormalized expression for GO again
depends, as in the preceding examples (see, in particular, Example 3.2) on the
inequalities satisfied by the radial variables. For

r1 < r2 < r3 (43)

(and, similarly, for r3 < r2 < r1) we have a case of nested singularities. One first
renormalizes the logarithmicly divergent triangular subgraph with vertices (0,1,2).
Integrating first with respect to r1 in the domain (43) we find

lim
ε1→0

(

∫ r2

0
˜Gε1 ε2
O

− π9

4ε1
δ (r2)

(

r3

�2

)2ε2 dr2 dr3

r3
3

)

=
π9

2
d

(

�n
r2

�1

)(

r3

�2

)2ε2 dr3

r3
3

. (44)

The renormalization of the resulting quadratically divergent in r3 associate homoge-
neous distribution follows the lines of Example 4.1. The case r1 < r2 > r3, in which
R12 = R23 = r2 and “the divergences overlap”, is actually simpler; it is reduced to a
single radial renormalization. Setting ε1 + ε2 =

ε
2 and �1 �2 = �2 and integrating in

r1 and r3, we find

lim
ε→0

(
∫ r2

r1=0

∫ r2

r3=0
Gε
O
− π9

8
δ ′′(r2)

2ε
dr2

)

=
π9

8

(

d3

dr3 �n
r
�
+

3
2
δ ′′(r)
)

. (45)

5 Concluding Remarks

The work [50], surveyed here, is concerned with a mathematical reformulation of the
problem of ultraviolet renormalization of massless QFT. The extension of rational
homogeneous functions to associate homogeneous distributions of the same degree
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obeying (Euclidean) factorization, considered here, only partly resolves the physical
problem (see [49]). It does not consider integration over internal vertices in concrete
Lagrangian theories (like ϕ4) and so does not control the corresponding adiabatic
limit (which is separated in standard approaches from the study of on shell infrared
singularities8).

The present survey is only confined to the part of [50] dealing with the
Euclidean picture. The reader willing to understand the physical origin of the causal
factorization and the way one goes around the light cone singularities should consult
the original paper.
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Appendix A. Radial Associate Homogeneous Distributions

The study of radial homogeneous distributions is based on the observation ([39,
Sect. 3.2]) that the family of distributions (“divided powers”)

χa(r) :=
(ra)+

Γ (a+ 1)
, a 
=−1,−2, . . . ((ra)+ ≡ θ (r)ra) (A.1)

is uniquely extendable to a distribution valued entire analytic function in a. The
property Γ (a+ 1) = aΓ (a) gives

d
dr
χa(r) = χa−1(r) (rχa(r) = (a+ 1)χa+1(r)) . (A.2)

Combined with χ0(r) = θ (r) the (Heaviside) characteristic function of the positive
semiaxis—we find

χ−κ−1(r) = δ (κ)(r) , κ = 0,1, . . .

(
∫

δ (κ)(r) f (r)dr = (−1)κ f (κ)(0)

)

. (A.3)

From the known pole structure of Γ (a) we deduce the formula (12) for the
generating function of L−κ−1n. The distributions L−κ−1n can be defined in terms
of differential renormalization [25]:

8We thank Detlev Buchholz for stressing this point to us.
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L−κ−1n(r) = lim
ε→0

1
n!

∂ n

∂εn

(

θ (r)rε−κ−1− δ (κ)(−r)
εκ!

)

=
(−1)κ

κ!

(

d
dr

)κ+1 n+1

∑
m=0

σκm L0n+1−m , (A.4)

where L0ν(r) = θ (r) (�nr)ν

ν! are (integrable) powers of logarithms and the constants
σκm are given by

σκ0 = 1 , σ0m = 0 for m = 1, . . . ,n+ 1 ,

σκm = σκ−1m +
σκm−1

κ
= ∑

1≤ j1≤...≤ jm≤κ

1
j1 . . . jm

. (A.5)

The freedom in the extension of the rational homogeneous function r−k from the
positive semiaxis to an associate homogeneous distribution on R is hidden in the
scale of logr. In fact, the general associate homogeneous distribution that coincides
with r−κ−1 for r > 0 involves a single scale parameter �:

�−κ−1L−κ−1,0

( r
�

)

=
(−1)κ

κ!

{

dκ+1

drκ+1

(

θ (r)�n
r
�

)

+
κ

∑
j=1

1
j
δ (κ) (r)

}

= L−κ−1,0(r)− �n�
δ (κ)(−r)

κ!
. (A.6)

Once � is fixed, say � = 1, all distributions Lkn(r) (k ∈ Z, n = 0,1, . . .) are uniquely
determined.

Proposition A.1. The distributions Lkn(r), given for negative integer k by (A.4),
satisfy

(i) Lkn(r) = θ (r)rk (�nr)n

n! for r 
= 0;
(ii) (E− k)Lkn(r) = Lkn−1(r) for n = 1,2, . . ., (E− k)Lk0(r) = 0;

(iii) r Lkn(r) = Lk+1n(r).

Conversely, the properties (i) and (ii) determine uniquely the system of distributions
Lkn.

Proof. Properties (i)–(iii) follow from the corresponding properties of θ (r)rε+k

(and from (12)). To prove the uniqueness, assume that there are two sets of associate
homogeneous distributions Lkn and L′kn satisfying (i) and (ii). Then their differences
Dkn := Lkn−L′kn would satisfy Dkn = 0 for k ≥ 0 and D−κ−1n(r) =Cκn δ (κ)(r) for
κ ,n = 0,1, . . .. It then follows from (ii) that

0 = (E +κ+ 1)Cκn+1δ (κ)(r) =Cκn δ (κ)(r) ,

hence Cκn = 0 for all n≥ 0.
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39. Hörmander, L.: The Analysis of Linear Partial Differential Operators, I. Distribution Theory
and Fourier Analysis, 2nd edn. Springer, Berlin (1990) (see, in particular, Sect. 3.2 and
Chap. VIII)

40. Keller, K.J.: Euclidean Epstein-Glaser renormalization. J. Math. Phys. 50 103503 (2009).
arXiv:0902.4789 [math-ph]

41. Keller, K.J.: Dimensional regularization in position space and a forest formula for regularized
Epstein-Glaser renormalization. arXiv:1006.2148 [math-ph]

42. Kreimer, D.: Knots and Feynman Diagrams. Cambridge Lecture Notes in Physics, vol. 13.
Cambridge University Press, Cambridge (2000)

43. Kuznetsov, A.N., Tkachov, F.V., Vlasov, V.V.: Techniques of distributions in perturbative
quantum field theory I. hep-th/9612037

44. Lacki, J., Wanders, G., Ruegg, H. (eds.): Stueckelberg, an Unconventional Figure in Twentieth
Century Physics. Birkhäuser Verlag AG (2009)
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Wigner Quantization and Lie Superalgebra
Representations

Joris Van der Jeugt

Dedicated to T.D. Palev on the occasion of his 75th birthday

Abstract T.D. Palev laid the foundations of the investigation of Wigner quantum
systems through representation theory of Lie superalgebras. His work has been
very influential, in particular on my own research. It is quite remarkable that the
study of Wigner quantum systems has had some impact on the development of
Lie superalgebra representations. In this review paper, I will present the method
of Wigner quantization and give a short overview of systems (Hamiltonians) that
have recently been treated in the context of Wigner quantization. Most attention
will go to a system for which the quantization conditions naturally lead to
representations of the Lie superalgebra osp(1|2n). I shall also present some recent
work in collaboration with G. Regniers, where generating functions techniques
have been used in order to describe the energy and angular momentum contents
of 3-dimensional Wigner quantum oscillators.

1 Introduction and Some History

The main ideas of Wigner quantization go back to a short paper that Wigner
published in 1950 [36]. Due to the fact that his method leads to algebraic relations
for operators which are in general very difficult to solve, it took many years before
his work was continued. About 30 years later, when Lie superalgebra theory was
developed, it was T.D. Palev who realized that particular Lie superalgebra generators
satisfy the algebraic relations appearing in the Wigner quantization of certain
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systems. This was the real start of Wigner quantization, a program to which Palev
contributed much of his scientific career. He also inspired many other scientists to
work on the program, including myself. It has been a pleasure for me to collaborate
with Tchavdar Palev and his former student Neli Stoilova, and to contribute to
the theory.

In this review paper, I will give an introduction to the topic, first by presenting
Wigner’s original example in a contemporary context. In Sect. 2, Palev’s general
method of Wigner quantization is briefly presented, and then we give a short
overview of his contributions to the field, and of some other papers on Wigner
quantization. Our purpose is to include also some recent work, and therefore
the Wigner quantization of the n-dimensional non-isotropic oscillator is discussed
in Sect. 3. This problem stimulated the search for infinite-dimensional unitary
representations of the Lie superalgebra osp(1|2n); a class of these representations
was constructed only a few years ago. Using these representations, we present
some interesting aspects of this Wigner quantum system in Sect. 3, and its angular
momentum contents in Sect. 4. There is no new material in this paper: we only
present and summarize some of the main ideas of Wigner quantization and some
recent contributions.

In his seminal paper [36], Wigner asked the question: “Do the equations of
motion determine the quantum mechanical commutation relations?” It was known
at that time that, for a class of Hamiltonians written as analytic functions of
the generalized position and momentum operators q̂i and p̂i (i = 1, . . . ,n), the
Heisenberg equations of motion together with the canonical commutation relations
(CCRs) imply formally Hamilton’s equations. Vice versa, starting from the operator
form of Hamilton’s equations and using the CCRs, one can derive the Heisenberg
equations. Since Wigner believed that the Heisenberg equations of motion and
the operator form of Hamilton’s classical equations of motion have a deeper
physical meaning than the mathematically imposed CCRs, he wondered whether
requiring the compatibility of the Heisenberg equations with Hamilton’s equations
would automatically lead to the CCRs. Wigner investigated this question for the
Hamiltonian of the one-dimensional harmonic oscillator, given by

Ĥ =
1
2
(p̂2 + q̂2) (1)

under the convention m = ω = h̄ = 1. The Heisenberg equations are:

˙̂q = i[Ĥ, q̂], ˙̂p = i[Ĥ, p̂], (2)

and the operator form of Hamilton’s equations read:

˙̂q = op

(

∂H
∂ p

)

= p̂, ˙̂p =−op

(

∂H
∂q

)

=−q̂. (3)
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So for this example the compatibility conditions become:

p̂ = i

[

1
2
(p̂2 + q̂2), q̂

]

, −q̂ = i

[

1
2
(p̂2 + q̂2), p̂

]

. (4)

The goal is to find (self-adjoint) operators p̂, q̂ satisfying these equations, without
making any assumptions about the commutation relation between p̂ and q̂. Other-
wise said, are there other operator solutions to (4) besides the canonical solution
where [q̂, p̂] = i? Wigner found that indeed there are other solutions. In order to
describe these, let us use the language of Lie superalgebras (of course, Wigner used
a different method, as Lie superalgebras were not known at that time).

Rewriting the operators q̂ and p̂ by the linear combinations

b+ =
q̂− ip̂√

2
, b− =

q̂+ ip̂√
2

, (5)

the conditions (4) are equivalent to the two relations

[{b+,b−},b±] =±2b±. (6)

Note that these relations involve both commutators and anti-commutators. This
is why it will be helpful to use Lie superalgebras. In fact, it is known that (6),
the compatibility conditions to solve, are exactly the defining relations of the Lie
superalgebra osp(1|2) in terms of two odd generators b+, b− [5]. Moreover, it
should hold that p̂† = p̂ and q̂† = q̂, or rewritten in terms of the new operators:
(b±)† = b∓. Thus, we are led to the unitary (or unitarizable) representations of
osp(1|2) i.e. Hilbert space representations in which (b±)† = b∓ holds.

The unitary irreducible representations of osp(1|2) were classified by
Hughes [8]; see also [31] for a more comprehensive method. The unitary irreducible
representations are labelled by a positive real number p (p/2 is the lowest weight);
the orthonormal basis vectors are |n〉, with n ≥ 0. The action of b+ and b− is
given by:

b+|n〉=√νn+1 |n+1〉, b−|n〉=√νn |n−1〉; νn = n+(p− 1)(1−(−1)n)/2.

(7)

Using (5) and (7), one can deduce:

Ĥ|n〉= 1
2{b+,b−}|n〉= (n+ p

2 )|n〉, (8)

[q̂, p̂]|2n〉= ip|2n〉, [q̂, p̂]|2n+ 1〉= i(2− p)|2n+ 1〉. (9)

From this it is clear that only the case p = 1 corresponds to the CCRs. All other
solutions (i.e. all other positive values of p) are non-canonical. Wigner concluded
that requiring the equivalence of Hamilton’s and Heisenberg’s equations is a very
natural approach that may lead to other quantizations besides the canonical one; and
the canonical quantization solution appears as one of the more general solutions.
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In the example of Wigner, the apparent difference with the canonical case is
the shift in energy, as is clear from (8). It is interesting to have also a look at the
wave functions for these non-canonical solutions. This was in fact not performed by
Wigner, but only much later, when the above operators b+ and b− were studied as
“parabosons” [22]. An alternative way of finding these wave functions is described
in the Appendix of [9]. This is obtained by computing the (formal) eigenvectors of
q̂ = (b+ + b−)/

√
2 in the above Hilbert space. Writing these formal eigenvectors

of q̂ as

v(q) =
∞

∑
n=0

Ψ (p)
n (q) |n〉, (10)

and expressing q̂ v(q) = qv(q) by means of the action (7) yields a set of recurrence

relation for the coefficients Ψ (p)
n (q). The solution leads to the conclusion that the

spectrum of q̂ is R, and that

Ψ (p)
2n (x) = (−1)n

√

n!
Γ (n+ p/2)

|x|(p−1)/2 e−x2/2L(p/2−1)
n (x2),

Ψ (p)
2n+1(x) = (−1)n

√

n!
Γ (n+ p/2+ 1)

|x|(p−1)/2 e−x2/2xL(p/2)
n (x2), (11)

in terms of generalized Laguerre polynomials. These coefficientsΨ (p)
n (q) have an

interpretation as the position wave functions of the Wigner oscillator. Alternatively,
one can work in the position representation, where the operator q̂ is still represented
by “multiplication by x”, and the operator p̂ has a realization as −i d

dx + i p−1
2x R,

where R f (x) = f (−x) is a reflection operator [23, Chap. 23]. Using this realization
the time-independent Schrödinger equation can be solved, also yielding the expres-
sions (11) [22]. For p= 1, the Laguerre polynomials reduce to Hermite polynomials,
and one gets the commonly known wave functions. It is interesting to compare
the plots of the wave functions for p 
= 1 with those of the canonical case p = 1,
see Fig. 1.

2 Wigner Quantum Systems and Palev’s Contributions

Wigner’s work on this alternative quantization method for the one-dimensional
oscillator did not receive much attention originally. This was mainly because of
the mathematical difficulties when trying to apply it to a Hamiltonian different
from (1). In fact, trying to solve Wigner’s compatibility conditions for other
systems leads to complicated operator relations, for which often no general solutions
are known. By 1980 however, Lie superalgebra theory and their representations
became well understood [10, 11]. T.D. Palev had worked with Lie superalgebras,
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Fig. 1 Plots of the wave functions Ψ (p)
n (x). The three figures on the left are for p = 1 and

correspond to the canonical case; the figures in the middle are for p = 0.6, and three figures on
the right are for p = 4. In each case, we plot the wave functions for n = 0,1,2

mainly in the context of parabosons and parafermions [24]. He was the first to
realize the importance of Lie superalgebra representations in the context of Wigner
quantization. It is also to him that we owe the term “Wigner quantum system” or
“Wigner quantization”. In one of his first papers on the topic [25], however, he used
the term “Dynamical quantization”, referring to the fact that quantization follows
from compatibility conditions related to the equations of motion.

Let us briefly summarize the main principles of Wigner quantization, as
developed by Palev. Consider a quantum system with n degrees of freedom and
a Hamiltonian of the form

Ĥ =
n

∑
j=1

p̂2
j

2m j
+V (q̂1, . . . , q̂n). (12)

In Wigner quantization, one keeps all axioms of quantum mechanics, only the axiom
on the CCRs is replaced. The canonical commutation relations

[q̂k, q̂l ] = [p̂k, p̂l ] = 0, [q̂k, p̂l ] = ih̄δkl (13)

are replaced by a different set of operator relations between position and momentum
operators. This set consists of the (operator) Compatibility Conditions (CC) between
the Heisenberg equations and the operator form of Hamilton’s equations.

So, in short, Wigner quantization for a system described by (12) consists of the
following three steps:

1. Rewrite the Hamiltonian Ĥ appropriately in terms of operators p̂k and q̂k (in some
symmetric form, not assuming any commutativity between the operators).
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2. Determine the Compatibility Conditions (CC). This gives rise to a (non-linear)
set of operator relations for the p̂k and q̂k. The �-algebra A is then defined as
an algebra with generators p̂k and q̂k and defining relations (CC), subject to the
�-conditions p̂�k = p̂k and q̂�k = q̂k.

3. Find �-representations (unitary representations) of A .

Very often, it is difficult to identify A as a known algebra, and hence it is too
difficult to find all �-representations. So instead of trying to work with A , one
looks for a known algebra B whose generators also satisfy (CC). Then it remains to
construct the �-representations of B and to determine physical properties (energy,
spectrum of observables, . . .) in these representations. This gives rise to a subset of
solutions.

Note that this approach leads quite naturally to non-commutative coordinate
operators, without any forced or external input as is sometimes done in other
approaches of “non-commutative quantum mechanics”.

In the first main paper on Wigner quantization [25], Palev investigated two
particles interacting via a harmonic potential. After removal of the center of
mass, the remaining Hamiltonian is essentially that of the 3-dimensional isotropic
harmonic oscillator (HO). Palev investigated the CCs, and found that these were
satisfied by certain generators of the Lie superalgebra gl(1|3). In other words, he
chose B = gl(1|3). Then, he went on to study properties in a particular class of
�-representations, namely the so-called Fock space representations. A remarkable
feature here is the finite-dimensionality of these �-representations, implying that all
physical operators have a discrete spectrum. In the same year, Palev showed [26] that
the CCs for the n-dimensional HO are satisfied by generators of the orthosymplectic
Lie superalgebra osp(1|2n); however, no representations were considered. Later,
Kamupingene et al. [12] considered in more detail the 2-dimensional HO with
B = sl(1|2). Interesting physical properties were obtained by Palev and Stoilova
for the osp(3|2) solutions of the 3-dimensional HO. Here, one could make use of a
classification of the �-representations of osp(3|2) [35]. Palev and Stoilova [27, 28]
later compared the solutions of the 3-dimensional isotropic Wigner HO provided
by sl(1|3), osp(1|6) and osp(3|2). The postulates of Wigner quantum systems
were more carefully described in [29]. In this paper, the n-dimensional isotropic
HO is revisited, and for the first time angular momentum operators are discussed
(for n = 3N). In a review paper, Palev and Stoilova [30] describe the algebraic
solutions for the n-particle 3-dimensional isotropic HO in terms of the Lie super-
algebras sl(1|3n), osp(1|6n) and sl(3|n). Further physical properties for the sl(1|3)
or sl(1|3n) solutions, in particular related to the discrete spacial structure, were
investigated in [14, 15]. Then, a few years ago, Stoilova and Van der Jeugt [34]
made a quite general classification of Lie superalgebra solutions of the CCs for the
n-dimensional isotropic HO.

Lievens et al. [17, 18] applied Wigner quantization to more complicated Hamil-
tonians, such as a linear chain of coupled particles. They show how this reduces to
the Hamiltonian for an n-dimensional non-isotropic HO, and obtain new solutions
in terms of gl(1|n).
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There appeared also a number of papers related to the fundamentals of Wigner
quantization, or related algebraic quantizations. We mention here in particular the
work of Man’ko et al. [21], Blasiak, Horzela, Kapuscik [4, 7, 13], and that of
Atakishiyev, Wolf and collaborators [1–3] in the context of finite oscillator models.

More recently, Regniers and Van der Jeugt [32] investigated one-dimensional
Hamiltonians with continuous energy spectra as Wigner quantum systems.

All these papers make it clear that Wigner quantization has given rise to
challenging mathematical problems, and to interesting physical properties. Wigner
quantization has also raised questions in Lie superalgebra representation theory, and
stimulated further research into specific classes of Lie superalgebra representations.

In the following section we shall review the treatment of the n-dimensional non-
isotropic harmonic oscillator in Wigner quantization as our main example. This has
given rise to the study of a new class of representations of the Lie superalgebra
osp(1|2n).

3 Main Example: The n-Dimensional Non-isotropic
Harmonic Oscillator

For this example, we drop the previous convention with m=ω = h̄= 1, and consider
the n-dimensional non-isotropic harmonic oscillator with Hamiltonian:

Ĥ =
1

2m

n

∑
j=1

p̂2
j +

m
2

n

∑
j=1
ω2

j q̂2
j , (14)

where m stands for the mass of the oscillator and ω j for the frequency in direction j.
Let us construct the compatibility conditions CC. Clearly, the operator form of
Hamilton’s equations reads:

˙̂q j = op

(

∂H
∂ p j

)

=
1
m

p̂ j, ˙̂p j =−op

(

∂H
∂q j

)

=−mω2
j q̂ j, j = 1, . . . ,n. (15)

The Heisenberg equations are:

˙̂q j =
i
h̄
[Ĥ, q̂ j], ˙̂p j =

i
h̄
[Ĥ, p̂ j], j = 1, . . . ,n. (16)

So the compatibility conditions become:

[Ĥ, q̂ j] =−i
h̄
m

p̂ j, [Ĥ, p̂ j] = ih̄mω2
j q̂ j, j = 1, . . . ,n, (17)

where Ĥ is given by (14).
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It is useful to write these compatibility conditions in a different form. For this
purpose, introduce the following linear combinations of the operators q̂ j and p̂ j:

a∓j =

√

mω j

2h̄
q̂ j± i
√

2mh̄ω j
p̂ j, j = 1, . . . ,n. (18)

Now the expression of the Hamiltonian becomes

Ĥ =
h̄
2

n

∑
j=1
ω j(a

+
j a−j + a−j a+j ) =

h̄
2

n

∑
j=1
ω j{a+j ,a−j }. (19)

The new form of the compatibility conditions can be written as:
[

n

∑
j=1

ω j{a+j ,a−j },a±k
]

=±2ωka±k , k = 1, . . . ,n. (20)

In terms of the notation of the previous section, A is the �-algebra generated
by 2n generators a±j ( j = 1, . . . ,n) with �-relations (a±j )

� = a∓j and with defining
relations (20).

Quite surprisingly, the structure of A and its unitary Hilbert space representa-
tions is known completely only for n = 1 (in which case it is just Wigner’s example
of Sect. 1). For n > 1, only some classes of unitary Hilbert space representations are
known.

We shall now describe an algebraic solution for the conditions (20), in other
words we shall determine an algebra B whose generators also satisfy (20) (but for
which (20) are not the defining relations). This is provided by the orthosym-
plectic Lie superalgebra osp(1|2n). In fact, it were Ganchev and Palev [5] who
discovered—in the context of parabosons—that osp(1|2n) can be defined as an
algebra with 2n generators b±j subject to the following triple relations:

[{bξj ,bηk },bεl ] = (ε− ξ )δ jlb
η
k +(ε−η)δklb

ξ
j , (21)

where j,k, l ∈ {1, . . . ,n}, and η ,ε,ξ ∈ {+,−} (to be interpreted as +1 or −1
in algebraic expressions such as ε − ξ ). It is indeed very easy to verify that the
operators

a−j = b−j , a+j = b+j (22)

satisfy the compatibility conditions (20). Otherwise said, the triple relations (21)
imply the relations (20). Furthermore, the �-relations for the generators of A imply
the following �-relations for the osp(1|2n) generators:

(b±j )
† = b∓j . (23)

So we are led to investigating unitary representation of osp(1|2n) for these �-
conditions.
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In order to study the osp(1|2n) solutions, it will be useful to identify some
subalgebras of osp(1|2n). First of all, note that due to the triple relations (21), a basis
of osp(1|2n) is given by the 2n odd elements b±j and by the 2n2 + n even elements

{bξj ,bηk } ( j,k ∈ {1, . . . ,n}; η ,ξ ∈ {+,−}). The even subalgebra of osp(1|2n) is the
symplectic Lie algebra sp(2n), so a basis of sp(2n) consists of all even elements

{bξj ,bηk } ( j,k ∈ {1, . . . ,n}; η ,ξ ∈ {+,−}). A subalgebra of sp(2n) is the general

linear Lie algebra gl(n), whose standard basis is given by the n2 even elements
1
2{b+j ,b−k } ( j,k ∈ {1, . . . ,n}). Finally, the Cartan subalgebra h of osp(1|2n) is that

of its even subalgebra sp(2n). A basis of h is given by the n elements h j =
1
2{b−j ,b+j }

( j = 1, . . . ,n). So we have, in this realization of osp(1|2n), a natural chain of
subalgebras:

osp(1|2n)⊃ sp(2n)⊃ gl(n)⊃ h. (24)

Note that for this algebraic solution the Hamiltonian is written as

Ĥ =
h̄
2

n

∑
j=1

ω j{a−j ,a+j }=
h̄
2

n

∑
j=1

ω j{b−j ,b+j }= h̄
n

∑
j=1

ω jh j, (25)

so it is an element of the Cartan subalgebra. This will facilitate the problem of
determining the spectrum of Ĥ.

It should be mentioned that a second algebraic solution of the conditions (20) can
be given by means of generators of the Lie superalgebra gl(1|n) [16]. This class of
solutions also gives rise to many interesting properties, but these cannot be presented
in this short review.

The algebraic osp(1|2n) solution to (20) is easy to describe. In fact, it was already
known since 1982 for the simpler isotropic case with ω1 = · · · = ωn = ω [26].
The reason why it was not studied further was because no class of unitary represen-
tations was known (for the �-condition (23)). This changed in 2008, when Lievens
et al [19] managed to construct a class of unitary representations. These are the
infinite-dimensional lowest weight representations V (p) of osp(1|2n) with lowest
weight ( p

2 , . . . ,
p
2 ). For these representations, the authors obtained an appropriate

Gelfand-Zetlin basis, explicit actions of the generators on the basis vectors, and
a character formula [19]. For these results, the subalgebra chain (24) plays an
important role, in particular the decomposition with respect to the gl(n) subalgebra.
Irreducible characters of gl(n) are given as a Schur function sλ (x1, . . . ,xn), where
λ is a partition of length �(λ ) at most n (see the standard book [20] for notations
of partitions, Schur functions, etc.). In such character formulas, the exponents of
(x1, . . . ,xn) carry the components of the corresponding weight of the representation
according to the basis (h1, . . . ,hn) of the Cartan subalgebra h. In other words, a term
xν1

1 · · ·xνn
n corresponds to the weight (ν1, . . . ,νn).

The character determined in [19] can be described as follows:
The osp(1|2n) representation V (p) with lowest weight ( p

2 , . . . ,
p
2 ) is a unitary

irreducible representation if and only if p ∈ {1,2, . . . ,n− 1} or p > n− 1.
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• For p > n− 1, one has

charV (p) =
(x1 · · ·xn)

p/2

∏i(1− xi)∏ j<k(1− x jxk)

= (x1 · · ·xn)
p/2∑

λ
sλ (x1, . . . ,xn). (26)

• For p ∈ {1,2, . . . ,n− 1}, the character of V (p) is given by

charV (p) = (x1 · · ·xn)
p/2 ∑

λ , �(λ )≤p

sλ (x1, . . . ,xn) (27)

where �(λ ) is the length of the partition λ .
Such characters can be used to determine the spectrum of Ĥ in the osp(1|2n)

representation V (p). Indeed, as noted earlier, the character is a weight generating
function:

charV (p) = ∑
ν1,...,νn

dν1,...,νn xν1
1 · · ·xνn

n , (28)

where (ν1, . . . ,νn) is a weight from the representation and dν1,...,νn stands for the
multiplicity of this weight. Recall that in the current solution

Ĥ =
n

∑
j=1

h̄ω j h j, (29)

i.e. Ĥ is an element from the Cartan subalgebra h. Hence, to get a spectrum
generating function one must make the substitution x j → t h̄ω j in the character (27).
Expressions like sλ (t

h̄ω1 , t h̄ω2 , . . . , t h̄ωn) simplify a lot in the isotropic case ω1 =
· · ·= ωn = ω , when x j → t h̄ω ≡ z, since

sλ (z, . . . ,z) = z|λ |sλ (1, . . . ,1). (30)

Formulas for sλ (1, . . . ,1) are well known [20]; after all, sλ (1, . . . ,1) stands for the
dimension of the gl(n) representation characterized by the partition λ . So from (27)
one obtains a “spectrum generating function” in the representation V (p):

spec Ĥ = znp/2 ∑
λ , �(λ )≤p

sλ (z, . . . ,z)

= ∑
k≥0

∑
λ , |λ |=k, �(λ )≤p

sλ (1, . . . ,1)t
h̄ω(np/2+k). (31)

In this series expansion, the power of t gives the energy level E , and the coefficient
in front of tE gives the multiplicity μ(E) of the energy level E . Clearly, we have
equidistant energy levels
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E(p)
k = h̄ω(np/2+ k), k = 0,1,2,3, · · · (32)

with spacing h̄ω and with multiplicities (degeneracies)

μ(E(p)
k ) = ∑

λ , |λ |=k, �(λ )≤p

sλ (1, . . . ,1). (33)

In the representation V (1) of osp(1|2n), the CCRs are satisfied, so this is the
representation corresponding to the canonical solution. One finds indeed that:

μ(E(p=1)
k ) =

(

n+ k− 1
k

)

, (34)

and (with z = t h̄ω )

spec Ĥ =
zn/2

(1− z)n = ∑
k≥0

(

n+ k− 1
k

)

t h̄ω(n/2+k), (35)

which is a classical result.
For a more detailed analysis of spectrum generating functions for the other

representations V (p), we refer to [16]. Let us just give the results for the 3-
dimensional oscillator, i.e. the case n = 3. Then there are essentially three distinct
cases to be considered for the osp(1|6) representations V (p), namely p = 1, p = 2
and p > 2. The spectrum generating functions, the energy levels, and the energy
multiplicities are given in the following table [16]:

GF Levels Multiplicity

p = 1
z1/2

(1− z)3 h̄ω( 3
2 + k) μ(E(1)

k ) =
(k+2

2

)

p = 2
z3(1+ z+ z2)

(1− z2)3(1− z)2 h̄ω(3+ k) μ(E(2)
2k ) =
(k+2

2

)2

μ(E(2)
2k+1) =

(k+2
2

)(k+3
2

)

p > 2
z3p/2

(1− z2)3(1− z)3 h̄ω( 3p
2 + k) μ(E(p)

2k ) = 4k+5
5

(k+4
4

)

μ(E(p)
2k+1) =

4k+15
5

(k+4
4

)

Expanding the above generating functions, or alternatively working out the above
multiplicities, one finds for the first few energy levels the following results:

μ(E(p)
0 ) μ(E(p)

1 ) μ(E(p)
2 ) μ(E(p)

3 ) μ(E(p)
4 )

p = 1 1 3 6 10 15
p = 2 1 3 9 18 36
p > 2 1 3 9 19 39
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So, just as for the one-dimensional Wigner oscillator, this osp(1|6) approach
to the 3-dimensional Wigner oscillator leads to a shift in energy compared to the
canonical case (p = 1). Moreover, the degeneracies increase from the 3rd energy
level onwards.

4 Recent Advances: Angular Momentum Operators
and Their Spectrum

Now that the structure of the representations V (p) of osp(1|2n) is well known,
we can also consider the angular momentum contents in the case that n is a multiple
of 3 (i.e. if we work in 3-dimensional space). Let us first concentrate on the simple
case that n = 3, i.e. a 3-dimensional harmonic oscillator.

In the canonical case, the components of the angular momentum operator M
are determined by M = q× p, in other words, Mj = ∑k,l ε jkl q̂k p̂l ( j = 1,2,3),
where ε jkl is the Levi-Civita symbol. Since the position and momentum operators
cannot be assumed to commute in Wigner quantization, and since we want Wigner
quantization to coincide with canonical quantization when the CCRs do hold, it is
logical to define the angular momentum operators in Wigner quantization by

Mj =
1
2∑k,l

ε jkl{q̂k, p̂l}= −ih̄
2 ∑

k,l

ε jkl{a+k ,a−l } ( j = 1,2,3). (36)

The last expression follows from (18). Now one can investigate whether these
operators satisfy any particular commutation relations. It turns out that using the
CCs (20) do not lead to closed commutation relations between the operators M1,M2

and M3. In other words, in the algebra A , the commutation relations between the
Mj do not close. Next, consider the osp(1|6) solution with a±j = b±j satisfying (21).
Once again, the commutation relations between the Mj do not close, except when
all ω j are equal, i.e. except one works in the isotropic case. In that case, one finds:

[M1,M2] = ih̄M3 (+ cyclic), (37)

just as in the canonical case. For this reason, we shall now continue with the
isotropic case. The above relations imply that we have identified an so(3) subalgebra
in our chain of subalgebras:

osp(1|6)⊃ sp(6)⊃ gl(3)⊃ so(3)⊕u(1). (38)

Herein so(3) is generated by M1, M2 and M3, and u(1) by the Hamiltonian Ĥ =
h̄ω(h1+h2+h3). In other words, the so(3)⊕u(1) decomposition of a representation
gives us the angular momentum and energy contents of the Wigner quantum system
in that representation.
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In the current situation, the question is: how does the representation V (p) of
osp(1|6) decompose with respect to these subalgebras? As before, the answer
follows from the expression of the character of V (p),

charV (p) = (x1x2x3)
p/2 ∑

λ ,�(λ )≤)p*
sλ (x1,x2,x3) (39)

where there are three distinct cases to be considered: p = 1, p = 2 or p > 2. Since
this character already gives in a straightforward way the decomposition of V (p) with
respect to gl(3), it remains to determine the next step in the “branching”, from gl(3)
to so(3)⊕ u(1). This step has a well known solution and is known as the U(3) to
SO(3) branching [6]. In our notation, where the gl(3) representation is characterized
by a partition λ = (λ1,λ2,λ3), this gl(3) to so(3)⊕u(1) branching rule generating
function reads

G =
1+A2

1A2z3J

(1−A1A2A3z3)(1−A1zJ)(1−A1A2z2J)(1−A2
1z2)(1−A2

1A2
2z4)

. (40)

In the expansion of G as a power series, the coefficient of Aλ1
1 Aλ2

2 Aλ3
3 is a polynomial

pλ (J,z) = ∑μλj,EJ jzE in J and z. The coefficient μλj,E is the multiplicity of the
so(3)⊕ u(1) representation ( j,E) = ( j)⊕ (E) in the decomposition of the gl(3)
representation (characterized by) λ .

Using (39) and (40), it now follows that we have generating functions for the
angular momentum and energy contents for the representations V (p) of osp(1|6).
For V (1):

G1 =
z3/2

(1− zJ)(1− z2)
.

For V (2):

G2 =
z3(1+ z3J)

(1− zJ)(1− z2J)(1− z2)(1− z4)
.

For V (p), p > 2:

Gp =
z3p/2(1+ z3J)

(1− zJ)(1− z2J)(1− z2)(1− z3)(1− z4)
.

Clearly, one can use these generating functions to derive the so(3) representations

that emerge at energy level E(p)
k . This information can be made accessible by means

of a table in which the element in row k+ 1 and column j + 1 (counted from the
bottom) marks the number of representations ( j) at energy level E(p)

k in the angular
momentum decomposition of osp(1|6). We call this the ( j,E)-diagram of osp(1|6)
for V (p). For G1, the expansion gives

G1 = z3/2 + J z5/2 +(1+ J2)z7/2 +(J+ J3)z9/2 +(1+ J2+ J4)z11/2 + · · · ,
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yielding the following ( j,E)-diagram:

... . .
.

11/2 1 1 1
9/2 1 1
7/2 1 1
5/2 1
3/2 1

Ek

j 0 1 2 3 4 · · ·

Of course, this result is already known because p = 1 represents the canonical case.
This ( j,E)-diagram for instance appears in [37].

For p = 2, the expansion of G2 gives rise to the following diagram:

... . .
.

7 2 1 3 1 1
6 2 1 1
5 1 1 1
4 1
3 1

Ek

j 0 1 2 3 4 · · ·

and for p > 2 the expansion of Gp gives:

... . .
.

3p/2+4 2 2 3 1 1
3p/2+3 1 2 1 1
3p/2+2 1 1 1
3p/2+1 1

3p/2 1

Ek

j 0 1 2 3 4 · · ·

Note that for the lower energy levels, the cases p = 2 and p > 2 do not differ very
much from the canonical case. The larger discrepancies are found in higher energy
regions.

So far, we have considered only the 3-dimensional Wigner harmonic oscillator
and its angular momentum contents in the osp(1|6) representations V (p). In the
more general case of osp(1|2n) with n = 3N, the Hamiltonian Ĥ can be interpreted
as an N-particle 3-dimensional oscillator. It is common to write the position
operators and momentum operators by a multi-index: e.g. the position operators are
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q̂ j,α , with j = 1,2,3 (referring to the 3 dimensions) and α = 1,2, . . . ,N (referring to
the N particles). The angular momentum operators of particle α are given by

Mj,α =
1
2∑k,l

ε jkl{q̂k,α , p̂l,α}= −ih̄
2 ∑

k,l

ε jkl{a+k,α ,a−l,α}

and then the components of the total angular momentum operator are

Mj =
N

∑
α=1

Mj,α ( j = 1,2,3).

If we want these operators to satisfy the commutation relations (37), we need again
to work in the osp(1|6N) picture where a±k,α = b±k,α and moreover in the case that all
ω j’s are equal to ω (i.e. N identical isotropic oscillators). In osp(1|6N)⊃ sp(6N)⊃
gl(3N), the gl(3N) basis elements are {b+j,α ,b−k,β}. The relevant subalgebras of
gl(3N) are gl(3) and gl(N), with basis elements:

gl(3) : E jk =
1
2∑α

{b+j,α ,b−k,α} ( j,k = 1,2,3),

gl(N) : Eα ,β =
1
2∑j

{b+j,α ,b−j,β} (α,β = 1,2, . . . ,N).

So the total angular momentum operators M1,M2,M3 are the basis elements of an
so(3) subalgebra of gl(3), and one needs to decompose the representations V (p) of
osp(1|6N) according to

osp(1|6N)⊃ sp(6N)⊃ gl(3N)⊃ gl(3)⊕gl(N) ⊃ so(3)⊕u(1)

Although the decomposition of gl(3N) representations according to gl(3N) ⊃
gl(3) ⊕ gl(N) is in principle known, it turns out to be computationally quite
involved when N ≥ 2. For details, and results with angular momentum and energy
decompositions, see [33].
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Part II
Quantum Field Theory



Spontaneous Breaking of Supersymmetry,
Localization and Nicolai Mapping in Matrix
Models

Fumihiko Sugino

Abstract We consider supersymmetric matrix models of the type of the
Wess-Zumino model, whose supersymmetry (SUSY) may be spontaneously broken.
When SUSY is broken, the partition function vanishes since it is equivalent to the
Witten index. We need some regularization to give a small value to the partition
function in computing expectation values of observables in a well-defined way.
Here, we employ twisted boundary condition to fermionic variables with a small
angle α , and use this as the above regularization. Interestingly, the twist can
be interpreted as an external field to detect spontaneous SUSY breaking, which is
analogous to the magnetic field in Ising model whose Z2 symmetry is spontaneously
broken. Also, we discuss the SUSY breaking from the viewpoints of localization
and Nicolai mapping, and find interesting localization phenomena specific to matrix
models.

1 Introduction and Discussion

Spontaneous breaking of supersymmetry (SUSY) is one of the most interesting
phenomena in quantum field theory. Since in general SUSY cannot be broken by
radiative corrections at the perturbative level, its spontaneous breaking requires
understanding of nonperturbative aspects of quantum field theory [12]. In particular,
recent developments in nonperturbative aspects of string theory heavily rely on the
presence of SUSY. Thus, in order to deduce predictions to the real world from string
theory, it is important to investigate a mechanism of spontaneous SUSY breaking in
a nonperturbative framework of strings. Since one of the most promising approaches
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of nonperturbative formulations of string theory is provided by large-N matrix
models [1, 3, 5], it will be desirable to understand how SUSY can be spontaneously
broken in the large-N limit of simple matrix models as a first step.

In the next section, we discuss a simple SUSY quantum mechanics of the
type of the Wess-Zumino model, which include cases that SUSY is spontaneously
broken. Analogously to the situation of ordinary spontaneous symmetry breaking,
we introduce an external field to choose one of degenerate broken vacua to detect
spontaneous SUSY breaking. The external field plays the same role as a magnetic
field in the Ising model introduced to detect the spontaneous magnetization. For
the supersymmetric system, we deform the boundary condition for fermions from
the periodic boundary condition (PBC) to a twisted boundary condition (TBC) with
twist α , which can be regarded as such an external field. If a supersymmetric system
undergoes spontaneous SUSY breaking, the partition function with the PBC for
all the fields, ZPBC, which usually corresponds to the Witten index, is expected
to vanish [13]. Then, the expectation values of observables, which are normalized
by ZPBC, would be ill-defined or indefinite. By introducing the twist, the partition
function is regularized and the expectation values become well-defined.

In Sects. 3 and 4, we analyze a SUSY matrix model, which is a matrix-model
analog of the model in the previous section, by the two methods of localization
and Nicolai mapping. As for localization, we make change of integration variables
in the path integral, which is always possible whether or not the SUSY is explicitly
broken (the external field is on or off). In terms of eigenvalues of matrix variables, an
interesting phenomenon for localization arises. Localization attracts the eigenvalues
to the critical points of superpotential, while the square of the Vandermonde deter-
minant arising from the measure factor prevents the eigenvalues from collapsing.
The dynamics of the eigenvalues is governed by balance of attractive force from the
localization and repulsive force from the Vandermonde determinant. In the case that
the external field is turned on, computation based on the localization is still possible,
but we find that a method by the Nicolai mapping is more effective. Interestingly,
the Nicolai mapping works for SUSY matrix models even in the presence of the
external field which explicitly breaks SUSY. It enables us to calculate the partition
function at least in the leading nontrivial order of an expansion with respect to the
small external field for finite N.

In Sect. 5, we can take the large-N limit of our result before turning off the
external field and detect whether SUSY is spontaneously broken or not in the large-
N limit. For illustration, we obtain large-N solutions for a SUSY matrix model with
double-well potential. It is found that there is a phase transition of the third order
between a SUSY phase and a SUSY broken phase.

For future directions, this kind of argument can be expected to be useful to
investigate localization in various lattice models for supersymmetric field theories
which realize some SUSYs on the lattice. Also, it will be interesting to investigate
localization in models constructed in [8], which couple a supersymmetric quantum
field theory to a certain large-N matrix model and cause spontaneous SUSY
breaking at large N.

This article is mainly based on the collaboration with Tsunehide Kuroki [9, 10].
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2 SUSY Quantum Mechanics: SUSY Breaking
and External Field

Let us start with a system defined by the Euclidean (Wick-rotated) action:

SQM =

∫ β

0
dt

[

1
2

B2 + iB
(

φ̇ +W ′(φ)
)

+ ψ̄
(

ψ̇+W ′′(φ)ψ
)

]

, (1)

where φ is a real scalar field, ψ , ψ̄ are fermions, and B is an auxiliary field. The dot
means the derivative with respect to the Euclidean time t ∈ [0,β ]. For a while,
all the fields are supposed to obey the PBC. W (φ) is a real function of φ called
superpotential, and the prime (′) represents the φ -derivative.

SQM is invariant under one-dimensional N = 2 SUSY transformations generated
by Q and Q̄. They act on the fields as

Qφ = ψ , Qψ = 0, Qψ̄ =−iB, QB = 0, (2)

Q̄φ =−ψ̄, Q̄ψ̄ = 0, Q̄ψ =−iB+ 2φ̇, Q̄B = 2i ˙̄ψ , (3)

with satisfying the algebra Q2 = Q̄2 = 0,{Q, Q̄}= 2∂t .
Next, let us consider quantum aspects of SUSY breaking in this model. We take

〈B〉 (or 〈Bn〉 (n = 1,2, · · · )) as an order parameter for SUSY breaking. Suppose
the SUSY of the model is spontaneously broken, so the ground state energy E0 is
positive. Then, for each of the energy levels En (0< E0 < E1 < E2 < · · · ), the SUSY
algebra {Q, Q̄}= 2En, Q2 = Q̄2 = 0 leads to the SUSY multiplet formed by bosonic
and fermionic states |bn〉= 1√

2En
Q̄| fn〉, | fn〉= 1√

2En
Q|bn〉.

As a convention, we assume that |bn〉 and | fn〉 have the fermion number charges
F = 0 and 1, respectively. Since the Q-transformation for B in (2) is expressed
as [Q,B] = 0 in the operator formalism, we can see that 〈bn|B|bn〉 = 〈 fn|B| fn〉
holds for each n. Then, it turns out that the unnormalized expectation values of Bm

(m = 1,2, · · · ) vanish: 〈Bm〉′ ≡ ∫PBC d(fields)Bm e−SQM
= tr
[

Bm(−1)Fe−βH
]

= 0.
This observation shows that, in order to judge SUSY breaking from the expectation
value of B, we should choose either of the SUSY broken ground states (|b0〉 or | f0〉)
and see the expectation value with respect to the chosen ground state. The situation
is somewhat analogous to the case of spontaneous breaking of ordinary (bosonic)
symmetry.

However, differently from the ordinary case, when SUSY is broken, the super-
symmetric partition function vanishes:

ZQM
PBC =

∫

PBC
d(fields)e−SQM

= tr
[

(−1)Fe−βH
]

= 0. (4)

So, the expectation values normalized by ZQM
PBC could be ill-defined [6, 7].
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2.1 Twisted Boundary Condition

To detect spontaneous breaking of ordinary symmetry, some external field is
introduced so that the ground state degeneracy is resolved to specify a single broken
ground state. The external field is turned off after taking the thermodynamic limit,
then we can judge whether spontaneous symmetry breaking takes place or not,
seeing the value of the corresponding order parameter.

We will do a similar thing also for the case of spontaneous SUSY breaking.
For this purpose, let us change the boundary condition for the fermions to the TBC:
ψ(t +β ) = eiαψ(t), ψ̄(t +β ) = e−iαψ̄(t), then the twist α can be regarded as an
external field. Other fields remain intact. It turns out that the partition function with
the TBC corresponds to the expression (4) with (−1)F replaced by (−e−iα)F :

ZQM
α ≡ −e−iα

∫

TBC
d(fields)e−SQM

= tr
[

(−e−iα)F e−βH
]

=
∞

∑
n=0

(〈bn|bn〉− e−iα〈 fn| fn〉
)

e−βEn =
(

1− e−iα)
∞

∑
n=0

e−βEn. (5)

Then, the normalized expectation value of B under the TBC becomes

〈B〉α ≡
1

ZQM
α

tr
[

B(−e−iα)F e−βH
]

=
1

ZQM
α

∞

∑
n=0

(〈bn|B|bn〉− e−iα〈 fn|B| fn〉
)

e−βEn

=
∑∞n=0〈bn|B|bn〉e−βEn

∑∞n=0 e−βEn
=
∑∞n=0〈 fn|B| fn〉e−βEn

∑∞n=0 e−βEn
. (6)

Note that the factors
(

1− e−iα) in the numerator and the denominator cancel each
other, and thus 〈B〉α does not depend on α even for finite β . As a result, 〈B〉α
is equivalent to the expectation value taken over one of the ground states and its
excitations {|bn〉} (or {| fn〉}). The normalized expectation value of B under the
PBC was of the indefinite form 0/0, which is now regularized by introducing the
parameter α . The expression (6) is well-defined.

3 Localization in SUSY Matrix Models

In the following, we consider a matrix-model analog in the previous section, whose
action is
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SM
α = N tr

[

1
2

B2 + iBW ′(φ)+ ψ̄
(

eiα − 1
)

ψ+ ψ̄QW ′(φ)
]

, (7)

where all variables are N × N Hermitian matrices, and the partition function is
defined by

ZM
α ≡
∫

dN2
BdN2

φ
(

dN2
ψ dN2

ψ̄
)

e−SM
α (8)

with the measure normalized as
∫

dN2
φ e−Ntr ( 1

2φ
2) =

∫

dN2
Be−Ntr ( 1

2 B2) = 1,
∫
(

dN2
ψ dN2

ψ̄
)

e−Ntr (ψ̄ψ) = 1.

(9)
When α = 0, SM

α=0 is invariant under Q and Q̄ transformations:

Qφ = ψ , Qψ = 0, Qψ̄ =−iB, QB = 0, (10)

Q̄φ =−ψ̄, Q̄ψ̄ = 0, Q̄ψ =−iB, Q̄B = 0, (11)

both of which become broken explicitly in SM
α by introducing the external field α .

We make a change of variables

φ = φ̃ + ε̄ψ , ψ̄ = ˜̄ψ− iε̄B, (12)

where in the second equation, ˜̄ψ satisfies

N tr(B ˜̄ψ) = 0, (13)

namely, ˜̄ψ is orthogonal to B with respect to the inner product (A1,A2)≡N tr(A†
1A2).

If we write (8) as

ZM
α =

∫

dN2
BΞα(B), Ξα(B)≡

∫

dN2
φ
(

dN2
ψ dN2

ψ̄
)

e−SM
α , (14)

and consider the change of the variables in Ξα(B), B may be regarded as an external
variable. The measure dN2 ψ̄ can be expressed by the measures associated with ˜̄ψ
and ε̄ as

dN2
ψ̄ =

i
NB

dε̄ dN2−1 ˜̄ψ , (15)

where NB ≡ ||B||=
√

N tr(B2) is the norm of the matrix B, and dN2−1 ˜̄ψ is explicitly
given by introducing the constraint (13) as a delta-function:

dN2−1 ˜̄ψ ≡ (−1)N2−1dN2 ˜̄ψ δ
(

1
NB

N tr(B ˜̄ψ)
)

. (16)
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Notice that the measure on the RHS of (15) depends on B. When B 
= 0, we can
safely change the variables as in (12) and in terms of them the action becomes

SM
α = N tr

[

1
2

B2 + iBW ′(φ̃ )+ ˜̄ψ
(

(eiα − 1)ψ+QW ′(φ̃)
)− (eiα − 1)iε̄Bψ

]

(17)

with Qφ̃ = ψ .

3.1 α = 0 Case

Let us first consider the case of the PBC (α = 0). SM
0 does not depend on ε̄ as a

consequence of its SUSY invariance, because (12) reads φ = φ̃ + εQφ̃ , ψ̄ = ˜̄ψ +
ε̄Q ˜̄ψ . Therefore, the contribution to the partition function from B 
= 0 vanishes due
to the integration over ε̄ according to (15). Namely, when α = 0, the path integral
of the partition function (8) is localized to B = 0. Notice that the measure (15) is
singular at B = 0.

However, for the unnormalized expectation values of∏k
i=1

1
N trBni (n1, · · · ,nk≥1,

k ≥ 1):
〈

k

∏
i=1

1
N

trBni

〉′
≡
∫

dN2
B

(

k

∏
i=1

1
N

trBni

)

Ξ0(B), (18)

the singular behavior of the measure is cancelled by the integrand. Thus the
argument of the change of variables is always applicable giving the result

〈

k

∏
i=1

1
N

trBni

〉′
= 0. (19)

3.1.1 Localization to W’(φ) = 0, and Localization Versus Vandermonde

Since (19) means

〈

e−N tr( u−1
2 B2)
〉′

=
∞

∑
n=0

1
n!

(

−N2 u− 1
2

)n〈( 1
N

trB2
)n〉′

= 〈1〉′ = ZM
0 (20)

for an arbitrary parameter u, we may compute
〈

e−N tr( u−1
2 B2)
〉′

to evaluate the

partition function ZM
0 . Taking u > 0 and integrating B first, we obtain

ZM
0 =

∫

dN2
φ
(

1
u

)N2
2

e−N tr[ 1
2u W ′(φ)2]

∫
(

dN2
ψ dN2

ψ̄
)

e−N tr[ψ̄QW ′(φ)]. (21)

Then, in the u→ 0 limit, localization to W ′(φ) = 0 takes place.
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In terms of eigenvalues of φ , the partition function (21) becomes

ZM
0 = C̃N

∫
( N

∏
i=1

dλi

)

(

N

∏
i=1

W ′′(λi)

){

∏
i> j

1
u

(

W ′(λi)−W ′(λ j)
)2

}

×
(

1
u

)N
2

e−N∑N
i=1

1
2u W ′(λi)

2
(22)

with C̃−1
N =
∫

(

∏N
i=1 dλi

)

+(λ )2 e−N∑N
i=1

1
2λ

2
i . +(λ ) = ∏i> j(λi − λ j) is the Van-

dermonde determinant. In this expression, the factor in the second line forces
eigenvalues to be localized at the critical points of the superpotential as u → 0,
while the last factor in the first line, which is proportional to the square of the
Vandermonde determinant of W ′(λi), gives repulsive force among eigenvalues
which prevents them from collapsing to the critical points. The dynamics of
eigenvalues is thus determined by balance of the attractive force to the critical points
originating from the localization and the repulsive force from the Vandermonde
determinant.

To proceed with the analysis, let us consider the situation of each eigenvalue λi

fluctuating around the critical point φc,i: λi = φc,i +
√

u λ̃i (i = 1, · · · ,N), where λ̃i

is a fluctuation, and φc,1, · · · ,φc,N are allowed to coincide with each other. Then, the
partition function (22) is computed to be

ZM
0 =∑

φc,i

N

∏
i=1

sgn
(

W ′′(φc,i)
)

=

[

∑
φc:W ′(φc)=0

sgn
(

W ′′(φc)
)

]N

(23)

in the limit u→ 0. The RHS of (23) tells that the total partition function is given by
the N-th power of the degree of the map φ →W ′(φ).

Furthermore, we consider a case that the superpotential W (φ) has K nonde-
generate critical points a1, · · · ,aK . Namely, W ′(aI) = 0 and W ′′(aI) 
= 0 for each
I = 1, · · · ,K. The scalar potential 1

2W ′(φ)2 has K minima at φ = a1, · · · ,aK . When
N eigenvalues are fluctuating around the minima, we focus on the situation that

the first ν1N eigenvalues λi (i = 1, · · · ,ν1N) are around φ = a1,
the next ν2N eigenvalues λν1N+i ( i = 1, · · · ,ν2N) are around φ = a2,
· · · ,

and the last νKN eigenvalues λν1N+···+νK−1N+i (i = 1, · · · ,νKN) are around φ = aK ,
where ν1, · · · ,νK are filling fractions satisfying ∑K

I=1 νI = 1. Let Z(ν1,··· ,νK) be a
contribution to the total partition function ZM

α=0 from the above configuration. Then,

ZM
0 =

N

∑
ν1N,··· ,νKN=0

N!
(ν1N)! · · · (νKN)!

Z(ν1,··· ,νK), (24)
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(The sum is taken under the constraint ∑K
I=1 νI = 1.) and Z(ν1,··· ,νK) = ∏K

I=1 ZG,νI ,

ZG,νI = (sgn(W ′′(aI)))
νIN . ZG,νI can be interpreted as the partition function of

the Gaussian SUSY matrix model with the matrix size νIN × νIN describing
contributions from Gaussian fluctuations around φ = aI .

3.2 α 
= 0 Case

In the presence of the external field α , let us consider Ξα(B) in (14) with the
action (17) obtained after the change of variables (12). Using the explicit form of
the measure (15) and (16), we obtain

Ξα(B) = (eiα − 1)
−1

N 2
B

∫

dN2
φ̃
(

dN2
ψ dN2 ˜̄ψ

)

e−N tr[ 1
2 B2+iBW ′(φ̃)+ ˜̄ψQW ′(φ̃)]

× N tr(B ˜̄ψ)N tr(Bψ)e−(e
iα−1)N tr( ˜̄ψψ), (25)

which is valid for B 
= 0. It does not vanish in general by the effect of the twist
eiα − 1. This suggests that the localization is incomplete by the twist. Although we
can proceed the computation further, it is more convenient to invoke another method
based on the Nicolai mapping we will present in the next section.

4 (eiα−1)-Expansion and Nicolai Mapping

In this section, we instead compute ZM
α in an expansion with respect to (eiα − 1).

For the purpose of examining the spontaneous SUSY breaking, we are interested in
behavior of ZM

α in the α→ 0 limit. Thus it is expected that it will be often sufficient
to compute ZM

α in the leading order of the (eiα − 1)-expansion for our purpose.
Let us expand this with respect to (eiα − 1) as

ZM
α =

N2

∑
k=0

(eiα − 1)k Zα ,k, (26)

and derive a formula in the leading order of this expansion. In terms of the
eigenvalues, the Nicolai mapping [11] for each i can be applied even in the presence
of the external field:

Λi = (eiα − 1)λi+W ′(λi), (27)

giving

ZM
α = C̃N

∫
( N

∏
i=1

dΛi

)

∏
i> j

(Λi−Λ j)
2e−N∑i

1
2Λ

2
i e−N∑i(−AΛiλi+

1
2 A2λ 2

i ), (28)
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where A = eiα − 1. Note that λi has several branches as a function of Λi and it has
a different expression according to each of the branches. In the last factor of (28)
contains λi(Λi), we have to take account of the branches and divide the integration
region of Λi accordingly. Nevertheless, we can derive a rather simple formula at
least in the leading order of the expansion in terms of A owing to the Nicolai
mapping (27). In the following, let us concentrate on the cases where Λi → ∞ as
λi → ±∞, or Λi → −∞ as λi → ±∞. In such cases, we can expect spontaneous
SUSY breaking, in which the leading nontrivial expansion coefficient is relevant
since ZM

α=0 = Zα ,0 = 0. By considering the expansion of the last factor in (28),
we see that in the expansion (26), Zα ,k = 0 for k = 0, . · · · ,N− 1 and that the first
possibly nonvanishing contribution starts from O(AN). Although the integration
overΛi should be divided into the branches, after changing the integration variables
by Λi =W ′(xi), we end up with

Zα ,N = C̃N NN
∫ ∞

−∞

( N

∏
i=1

dxi

) N

∏
i=1

(

W ′′(xi)W
′(xi)xi
)

∏
i> j

(W ′(xi)−W ′(x j))
2

× e−N∑N
i=1

1
2 W ′(xi)

2
, (29)

which does not vanish in general. The nontrivial O(AN) contribution can be regarded
as a specific feature of SUSY matrix models.

5 Large-N Solutions of a Double-Well SUSY Matrix Model

As an application of (29), let us discuss SUSY breaking/restoration in the large-N
limit of our SUSY matrix models. From (29), introducing the eigenvalue density
ρ(x) = 1

N ∑
N
i=1 δ (x−xi) rewrites the leading O(AN) part of ZM

α . In the large-N limit,
ρ(x) is given as a solution to the saddle point equation:

∫

dyρ(y)P
1

x− y
+

∫

dyρ(y)P
1

x+ y
= x3− μ2x (30)

for the case W ′(x) = x2−μ2. Let us first consider the case μ2 > 0, where the shape

of the scalar potential is a double-well 1
2

(

x2− μ2
)2

.

5.1 General Two-Cut Solutions

Let us consider configurations that ν+N eigenvalues are located around one
minimum x = +

√

μ2 of the double-well, and the remaining ν−N(= N − ν+N)

eigenvalues are around the other minimum x =−
√

μ2.
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We can apply the method in [2, 4] to cases (ν+,ν−) = (1,0),(0,1),(1/2,1/2).
Then, it is found that the eigenvalue distribution ρ0(x) for general (ν+,ν−) having
the support Ω = [−b,−a]∪ [a,b] given by

ρ0(x) =

{ ν+
π x
√

(x2− a2)(b2− x2) (a < x < b)

ν−
π |x|
√

(x2− a2)(b2− x2) (−b < x <−a)
(31)

with a2 = −2+ μ2, b2 = 2+ μ2 satisfies (30). The large-N free energy and all the
expectation values of 1

N trBn (n= 1,2, · · ·) are proved to vanish for the solution (31).
Thus, we can conclude that the SUSY matrix model with the double-well potential
restores SUSY at large N, and has an infinitely many degenerate supersymmetric
saddle points parametrized by (ν+,ν−) at large N for the case μ2 > 2.

It is somewhat surprising that the end points of the cut a, b and the large-N
free energy are the same for all (ν+,ν−), which is recognized as a new interesting
feature of the supersymmetric models and can be never seen in the case of bosonic
double-well matrix models.

5.2 Symmetric One-Cut Solution

Here we obtain a one-cut solution with a symmetric support [−c,c]. The same
method as before leads to the solution

ρ0(x) =
1

2π

(

x2− μ2 +
c2

2

)

√

c2− x2, x ∈ [−c,c] (32)

with c =
[

2
3

(

μ2 +
√

μ4 + 12
)]1/2

. The condition ρ0(x) ≥ 0 implies that this

solution is valid for μ2 ≤ 2, which is indeed the complement of the region of μ2

where the general two-cut solutions exist. (32) is valid also for μ2 < 0. Given ρ0(x),
the large-N free energy is positive for μ2 < 2, and the expectation value of 1

N trB is
nonzero, which are strong evidence suggesting the spontaneous SUSY breaking.

The μ2-derivatives of the free energy show that the transition between the SUSY
phase (μ2 ≥ 2) and the SUSY broken phase (μ2 < 2) is of the third order.
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Mirror Map as Generating Function
of Intersection Numbers

Masao Jinzenji

Abstract In this article, we review our recent results on geometrical reconstruction
of the B-model data used in the mirror computation of projective hypersurfaces,
which was presented in Jinzenji (Lett. Math. Phys. 86(2–3):99–114, 2008; Mirror
map as generating function of intersection numbers: Toric manifolds with two
Kähler forms. Preprint, arXiv:1006.0607).

1 Introduction

Gromov-Witten invariants are mathematical objects that correspond to correlation
functions of topological (non-linear) sigma model. In [1, 2], we showed that the
Gromov-Witten invariants of the degree k hypersurface in CPN−1 (we denote this
hypersurface by Mk

N) are computed by using mirror symmetry . Especially, we can
compute the following Gromov-Witten invariant:

〈OhaOhb〉0,d =

∫

M0,2(CPN−1,d)
ev∗1(h

a)∧ ev∗2(h
b)∧ ctop(R

0π∗ev∗3OCPN−1(k)). (1)

In (1), M0,n(CPN−1,d) is the moduli space of stable maps of degree d from genus 0
semi-stable curves with n marked points to CPN−1. evi : M0,n(CPN−1,d)→CPN−1 is
the evaluation map at the i-th marked point. π : M0,3(CPN−1,d)→M0,2(CPN−1,d)
is the forgetful map that forgets the third marked point. In [1, 2], we start from the
Picard-Fuchs equation:
(

(∂x)
N−1− k · ex · (k∂x + k− 1)(k∂x+ k− 2) · · ·(k∂x + 1)

)

w(x) = 0. (2)
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Then we construct the virtual Gauss-Manin system associated with (2) and obtain
the virtual structure constants L̃N,k,d

n as the matrix elements of the connection matrix
of the virtual Gauss-Manin system. From the virtual structure constants given by
L̃N,k,d

1+(k−N)d , we can construct the mirror map. Finally, we can obtain the Gromov-
Witten invariant (1) by operating the generalized mirror transformation, which is
induced by the mirror map, on the virtual structure constants L̃N,k,d

n .
Let us illustrate the process of the mirror computation more explicitly when N=k,

i.e., Mk
N is a Calabi-Yau manifold. In this case the virtual structure constants L̃k,k,d

n

are obtained from the following equality:

(

(
d
dx

)k−1− k · ex ·
(

k
d
dx

+ k− 1

)

· · ·
(

k
d
dx

+ 2

)

·
(

k
d
dx

+ 1

))

w(x)

=
1

L̃k,k
k−1(e

x)

(

d
dx

1

L̃k,k
k−2(e

x)

(

d
dx
· · · 1

L̃k,k
1 (ex)

(

d
dx

w(x)

L̃k,k
0 (ex)

)

· · ·
))

, (3)

where L̃k,k
n (ex) is the generating function of L̃k,k,d

n :

L̃k,k
n (ex) := 1+

∞

∑
d=1

L̃k,k,d
n edx. (4)

In (3), w(x) is an arbitrary function with adequate differentiable property. We can
construct L̃k,k

n (ex) that satisfies (3) from the solutions of the differential equation:

((

d
dx

)k−1

− k · ex ·
(

k
d
dx

+ k− 1

)

· · ·
(

k
d
dx

+ 2

)

·
(

k
d
dx

+ 1

))

w(x) = 0. (5)

Linearly independent solutions of (5) around x = −∞ are explicitly given by wj(x)
( j = 0, 1, 2, · · · , k− 2):

w(x,y) :=
∞

∑
d=0

∏kd
j=1( j+ ky)

∏d
j=1( j+ y)k

e(d+y)x, wj(x) :=
1
j!
∂ jw
∂y j (x,0). (6)

Then L̃k,k
n (ex) is inductively determined by the following relation1:

L̃k,k
0 (x) = w0(x),

L̃k,k
j (ex) =

d
dx

(

1

L̃k,k
j−1(e

x)

d
dx

(

1

L̃k,k
j−2(e

x)

d
dx

(

1

L̃k,k
j−3(e

x)
· · · d

dx

(

1

L̃k,k
1 (ex)

d
dx

w j(x)

L̃k,k
0 (ex)

)

· · ·
)))

.

(7)

1 In (7), we need to use formally wk−1(x) to determine L̃k,k
k−1(e

x) though it is not a solution of (5).
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The most important relation derived from the above equation is the following
equality:

x+
∞

∑
d=1

L̃k,k,d
1

d
edx =

w1(x)
w0(x)

, (8)

where the r.h.s. gives us the celebrated mirror map: t(x) = w1(x)
w0(x)

used in the mirror

computation. With this mirror map, We can compute
〈Ohk−2−nOhn−1〉0,d

k
from the

equality:

t +
∞

∑
d=1

〈Ohk−2−nOhn−1〉0,d
k

edt = x(t)+
∞

∑
d=1

L̃k,k,d
n

d
edx(t). (9)

This is the mirror transformation induced by the mirror map in (8).
In this article, we review geometrical characterization of the virtual structure

constant L̃N,k,d
n as the intersection number of the moduli space of polynomial maps

with two marked points. This moduli space is obtained from compactifying the
moduli space of holomorphic maps from CP1 to CPN−1 by using rational maps.
Note that this compactification is different from the stable map compactification that
is used to define M0,2(CPN−1,d) in (1). We denote by˜Mp0,2(N,d) the compactified
moduli space of polynomial maps from CP1 to CPN−1 of degree d with two marked
points, which was introduced in [3] and was explicitly defined in [4]. We then
introduce an intersection number:

w(OhαOhβ )0,d :=
∫

˜Mp0,2(N,d)
ev∗1(h

α)∧ ev∗2(h
β )∧ ctop(E

k
d ), (10)

where E k
d is a rank kd + 1 orbi-bundle on ˜Mp0,2(N,d) that corresponds to

R0π∗ev∗3OCPN−1(k) on M0,2(CPN−1,d). In Sect. 2, we roughly illustrate construction
process of˜Mp0,2(N,d) and the procedure to compute w(OhαOhβ )0,d by localization
techniques. Our main result presented in [4] is,

Theorem 1. The equality:

k · L̃N,k,d
n

d
= w(OhN−2−nOhn−1+(N−k)d )0,d . (11)

holds true for arbitrary Mk
N if 0≤ N−2−n≤ N−2 and if 0≤ n−1+(N− k)d ≤

N− 2.
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2 CPN-1 Case

Let a j, ( j = 0,1, · · · ,d) be vectors in CN and let πN : CN \ {0} → CPN−1 be the
projection map. We define a degree d polynomial map p from C2 to CN as a map that
consists of CNvector-valued degree d homogeneous polynomials in two coordinates
s, t of C2:

p : C2 → CN

p(s, t) = a0sd + a1sd−1t + a2sd−2t2 + · · ·+ adtd . (12)

The parameter space of polynomial maps is given by CN(d+1) = {(a0,a1, · · · ,ad)}.
We denote by Mp0,2(N,d) the space defined as follows:

Mp0,2(N,d) = {(a0,a1, · · · ,ad) ∈CN(d+1) | a0,ad 
= 0}/(C×)2, (13)

where the two C× actions are given by,

(a0,a1, · · · ,ad)→ (μa0,μa1, · · · ,μad−1,μad),

(a0,a1, · · · ,ad)→ (a0,νa1, · · · ,νd−1ad−1,νdad). (14)

This space can be regarded as the parameter space of degree d rational maps from
CP1 to CPN−1 with two marked points in CP1: 0(= (1 : 0)) and ∞(= (0 : 1)). The
condition a0,ad 
= 0 assures that the images of 0 and ∞ are well-defined in CPN−1.
The two C× actions are induced from the following two C× actions on C2.

(s, t)→ (μs,μt), (s, t)→ (s,νt). (15)

At this stage, we have to note the difference between the moduli space of
holomorphic maps from CP1 to CPN−1 and the moduli space of polynomial maps
from CP1 to CPN−1. In short, the latter includes the points that are not the actual
maps from CP1 to CPN−1 but the rational maps from CP1 to CPN−1. These points
are called freckled instantons by physicists. More explicitly, a freckled instanton is
a polynomial map ∑d

j=0 a js jtd− j which can be factorized as

d

∑
j=0

a js
jtd− j = pd−d1(s, t) · (

d1

∑
j=0

b js
jtd1− j), (16)

where pd−d1(s, t) is a homogeneous polynomial of degree d − d1(> 0). If we
consider ∑d

j=0 a js jtd− j as a map from CP1 to CPN−1, it should be regarded as a
rational map whose images of the zero points of pd−d1 is undefined. Moreover,
the closure of the image of this map is a rational curve of degree d1(< d) in
CPN−1. The reason why we include point instantons is that we can obtain simpler
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compactification of the moduli space than the moduli space of the stable maps
M0,2(CPN−1,d), the standard moduli space used to define the two-point Gromov-
Witten invariants.

Now, let us turn into the problem of compactification of Mp0,2(N,d). If d = 1,
Mp0,2(N,1) is identified with CPN−1×CPN−1 and is already compact. If d ≥ 2, we
have to use the two C× actions in (14) to turn a0 and ad into the points in CPN−1,
[a0] and [ad]. Therefore, we can easily see,

Mp0,2(N,d) = {([a0],a1, · · · ,ad−1, [ad ]) ∈CPN−1×CN(d−1)×CPN−1 |}/Zd.

In this way, we can see that Mp0,2(N,d) is not compact if d ≥ 2. In order to
compactify Mp0,2(N,d), we imitate the stable map compactification and add the
following chains of polynomial maps

∪l
j=1

(

d j−d j−1

∑
mj=0

ad j−1+mj (s j)
mj (t j)

d j−d j−1−mj
)

,
(

ad j 
= 0, j = 0,1, · · · , l), (17)

to the infinity locus of Mp0,2(N,d). In (17), d j’s are integers that satisfy,

0 = d0 < d1 < d2 < · · ·< dl−1 < dl = d. (18)

We denote by˜Mp0,2(N,d) the space obtained after this compactification. It is ex-
plicitly constructed as a toric orbifold by introducing boundary divisor coordinates
u1,u2, · · ·ud−1 as follows.

˜Mp0,2(N,d) =

{(a0,a1, · · · ,ad ,u1,u2, · · · ,ud−1)| a0,(a1,u1), · · · ,(ad−1,ud−1),ad 
= 0}/(C×)d+1,

where the (d + 1) C×actions are given by the following (d + 1)× 2d weight
matrix Wd :

Wd :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a0 a1 a2 · · · · · · ad−1 ad u1 u2 u3 · · · ud−1

h0 1 0 0 · · · · · · 0 0 −1 0 0 · · · 0
h1 0 1 0 · · · · · · 0 0 2 −1 0 · · · 0

h2 0 0 1
. . . · · · ... 0 −1 2 −1

. . . 0
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . . 0 0 0 0

. . .
. . . −1

...
...

...
...

. . .
. . . 1 0 0 0

. . . −1 2
hd 0 0 0 · · · · · · 0 1 0 0 · · · 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The chain of polynomial maps presented in (17) is contained in the locus:

ud j = 0 ( j = 1,2, · · · , l− 1), ui 
= 0 (i 
= d j). (19)
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With this set-up, we define the following intersection number on˜Mp0,2(N,d),
which is an analogue of a two point Gromov-Witten invariant of the degree k
hypersurface in CPN−1:

w(OhaOhb)0,d :=
∫

˜Mp0,2(N,d)
ev∗1(h

a)∧ ev∗2(h
b)∧ ctop(E

k
d ). (20)

In (20), h is the hyperplane class of CPN−1, and ev1 :˜Mp0,2(N,d)→CPN−1 (resp.

ev2 :˜Mp0,2(N,d)→CPN−1) is the evaluation map at the first (resp. second) marked
point. These maps are easily constructed as follows:

ev1([(a0, · · · ,ad ,u1, · · · ,ud−1)]) := [a0] ∈CPN−1,

ev2([(a0, · · · ,ad ,u1, · · · ,ud−1)]) := [ad] ∈CPN−1. (21)

E k
d is the orbi-bundle that guarantees the image of the (chain of) polynomial maps

lie inside the degree k hypersurface.
We can compute the intersection number w(OhaOhb)0,d by using the localization

theorem. First, we introduce the following C× action on˜Mp0,2(N,d).

[(eλ0ta0,e
λ1ta1, · · · ,eλd−1tad−1,e

λdtad,u1,u2, · · · ,ud−1)]. (22)

The fixed point sets of˜Mp0,2(N,d) consist of connected components F(d0,d1,··· ,dl)
’s

labeled by the sequence of integers given in (18). Explicitly, a point in F(d0,d1,··· ,dl )

is represented by the following chain of polynomial maps.

l∪
j=1

(ad j−1(s j)
d j−d j−1 + ad j(t j)

d j−d j−1). (23)

Note here that (ad j−1(s j)
d j−d j−1 + ad j(t j)

d j−d j−1) is the Zd j−d j−1 singularity in
Mp0,2(N,d j−d j−1). We can easily see from (23) that F(d0,d1,··· ,dl) is set-theoretically

isomorphic to ∏l
j=0(CPN−1)d j where (CPN−1)d j is the CPN−1 whose point is given

by [ad j ]. After applying the standard procedure of the localization computation, we
obtain the following closed formula for w(OhaOhb)0,d :

w(OhaOhb)0,d =

∑
0=d0<d1<···<dl−1<dl=d

1

∏l
j=1(d j− d j−1)

1

(2π
√−1)l+1

∮

C(0)

dzd0

(zd0)
N · · ·
∮

C(0)

dzdl

(zdl )
N ×

(zd0 +λd0)
a

∏l
j=1∏

k(d j−d j−1)

m=0

( (k(d j−d j−1)−m)(zd j−1
+λd j−1

)+m(zd j
+λd j

)

d j−d j−1

)

∏l
j=1∏

d j−d j−1−1
i=1

( (d j−d j−1−i)(zd j−1
+λd j−1

)+i(zd j
+λd j

)

d j−d j−1
−λd j−1+i

)N
×
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1

∏l−1
j=1

( zd j
+λd j

−zd j−1
−λd j−1

d j−d j−1
+

zd j
+λd j

−zd j+1
−λd j+1

d j+1−d j

)(

k(zd j +λd j)
)

(zdl +λdl)
b, (24)

where 1
(2π
√−1)

∮

C(0)
dz means the operation of taking a residue at z = 0. Here, we

used the equality: 1
(2π
√−1)

∮

C(0)

dz
zN z j =

∫

CPN−1 h j. In the above formula, we can

integrate the variable zd j in arbitrary order. The formula (24) has the form of residue
integral and we can take non-equivariant limit λ j → 0. For simplicity, we introduce
the following notations. We define the following two polynomials in z and w:

e(k,d;z,w) :=
kd

∏
j=0

( jz+(kd− j)w
d

)

, t(N,d;z,w) :=
d−1

∏
j=1

( jz+(d− j)w
d

)N
. (25)

We also introduce the ordered partition of a positive integer d:

Definition 1. Let OPd be the set of ordered partitions of a positive integer d:

OPd = {σd = (d1,d2, · · · ,dl(σd)) |
l(σd)

∑
j=1

d j = d, d j ∈ N}. (26)

In (26), we denoted the length of the ordered partition σd by l(σd).

The increasing sequence of integers (d0,d1, · · · ,dl) (0 = d0 < d1 < · · · < dl−1 <
dl=d) used in (24) can be replaced by the ordered partition σd = (d̃1, d̃2, · · · , d̃l) ∈
OPd if we use the following correspondence:

d̃ j = d j− d j−1, ( j = 1,2, · · · , l). (27)

With this setup, we can simplify the formula for w(OhaOhb)0,d after taking the non-
equivariant limit, by relabeling the subscript of z∗’s as follows.

w(OhaOhb)0,d = ∑
σd∈OPd

1

(2π
√−1)l(σd)+1∏l(σd)

j=0 d j

∮

C0

dz0

(z0)N · · ·
∮

C0

dzl(σd)

(zl(σd)
)N (z0)

a

×
l(σd)−1

∏
j=1

1
(

z j−z j−1
d j

+
z j−z j+1

d j+1

)

kz j

l(σd)

∏
j=1

e(k,d j;z j−1,z j)

t(N,d j;z j−1,z j)
(zl(σd)

)b.

(28)

After taking non-equivariant limit, we have to take care of the order of integration
of z j’s. In (28), we have to integrate z j’s in all the summands of the formula in
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descending (or ascending) order of the subscript j. We can further simplify (28)
into the following form:

w(OhaOhb)0,d =
1

(2π
√−1)d+1

∮

C0

dz0

(z0)N

∮

E1

dz1

(z1)N · · ·
∮

Ed−1

dzd−1

(zd−1)N

∮

C0

dzd

(zd)N

× (z0)
N−2−n(zd)

n−1+(N−k)d

∏d−1
i=1 ((2zi− zi−1− zi+1)

∏d
j=1 e(k,1;z j−1,z j)

∏d−1
i=1 (kzi)

, (29)

where 1
2π
√−1

∮

E j
dz j , (i = 1, · · · ,d− 1) represents the operation of taking residues

at z j = 0,
z j−1+z j+1

2 .
In [4], we also extended the construction so far to some toric manifolds with

two dimensional Kähler cones. In these examples, we also reconstructed B-model
data of mirror computation as the intersection number of the (compactified) moduli
space of polynomial maps.

We end this article by presenting the numerical data for the quintic threefold
(N = k = 5). In this case, we have the following data of 2-point Gromov-Witten
invariants.

〈Oh0Oh2〉0,1 = 0, 〈Oh0Oh2〉0,2 = 0, 〈Oh0Oh2〉0,3 = 0, · · · ,

〈Oh1Oh1〉0,1 = 2875, 〈Oh1Oh1〉0,2 = 4876875
2

, 〈Oh1Oh1〉0,3 = 8564575000
3

, · · · .

The fact that 〈Oh0Oh2〉0,d = 0 follows from the puncture axiom of Gromov-Witten
invariants. On the other hand, the corresponding w(OhaOhb)0,d’s are given as
follows.

w(Oh0Oh2)0,1 = 3850, w(Oh0Oh2)0,2 = 3589125, w(Oh0Oh2 )0,3

=
16126540000

3
, · · · ,

w(Oh1Oh1)0,1 = 6725, w(Oh1Oh1)0,2 =
16482625

2
, w(Oh1Oh1)0,3

=
44704818125

3
, · · · .

In this case, w(OhaOhb)0,d and 〈OhaOhb〉0,d differ from each other. Let us consider
here the generating function:

t(x) := x+
∞

∑
d=1

w(Oh0Oh2)0,d

5
edx = x+770ex+717825e2x+

3225308000
3

e3x + · · · .
(30)
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This is nothing but the mirror map used in the mirror computation of the quintic
threefold! If we introduce another generating function:

F(x) := 5x+
∞

∑
d=1

w(Oh1Oh1)0,dedx = 5x+ 6725ex+
16482625

2
e2x

+
44704818125

3
e3x + · · · ,

(31)

F(x(t)) gives us the generating function of 〈Oh1Oh1〉0,d .

F(x(t)) = 5t + 2875et +
4876875

2
e2t +

8564575000
3

e3t + · · · . (32)
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Operadic Construction of the Renormalization
Group

Jean-Louis Loday† and Nikolay M. Nikolov

Abstract First, we give a functorial construction of a group associated to a
symmetric operad. Applied to the endomorphism operad it gives the group of
formal diffeomorphisms. Second, we associate a symmetric operad to any family of
decorated graphs stable by contraction. In the case of Quantum Field Theory models
it gives the renormalization group. As an example we get an operadic interpretation
of the group of “diffeographisms” attached to the Connes–Kreimer Hopf algebra.

1 Introduction

The combinatorics underlying the renormalization of Quantum Field Theory (QFT)
is encoded into the Feynman diagrams. The diagram technique is a powerful tool in
perturbative QFT. It was discovered by Connes and Kreimer that the combinatorics
in renormalization can be described by a Hopf algebra structure on the space of
Feynman diagrams since the attached group is the renormalization group. In this
paper our aim is to systematize this procedure by means of symmetric operads. First
we show that a family of decorated graphs which is stable for the contraction of
the internal edges determines a symmetric operad. Second, we show that to any
symmetric operad is attached a (formal) group which takes care of the symmetric
group action. Combining the two constructions we get the construction of a group
attached to families of diagrams. In the case of QFT we get the renormalization
group.
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Forthe notation and terminology on operads we follow [6] for which we refer
for details.

2 Operadic Construction of the Group of Formal
Diffeomorphisms

Let V ≡ RN be a vector space and
→
x = (x1, . . . ,xN),

→
y ,

→
z ∈ V . Consider the formal

power series1

→
y =

→
f
(→
x
)

=
∞

∑
n=1

1
n!

N

∑
μ1,...,μn =1

→
f μ1,...,μn xμ1 · · ·xμn , (1)

→
z =

→
g
(→
y
)

=
∞

∑
n=1

1
n!

N

∑
μ1,...,μn =1

→
g μ1,...,μn xμ1 · · ·xμn ,

where
→
f μ1,...,μn = ( fν;μ1,...,μn)

N
ν=1 and

→
g μ1,...,μn = (gν;μ1,...,μn)

N
ν=1 are the series

coefficients. Since these series do not have constant terms (i.e., terms with n = 0) it
is well known that their composition

→
z =

→
g ◦ →f (→x) =

∞

∑
n=1

1
n!

N

∑
μ1,...,μn =1

→
h μ1,...,μn xμ1 · · ·xμn , (2)

can be determined completely algebraically. A less popular fact is the formula for

the coefficients
→
h μ1,...,μn = (hν;μ1,...,μn)

N
ν=1 of the composition series2:

1 According to the meaning of a formal power series (cf. [5, Chap. 2]) the notation
→
y =

→
f
(→
x
)

is just
an abbreviation of the formal sum in the right hand side of (1), which in turn, is nothing but just the

list of coefficients ( fν;μ1,...,μn)
N
ν,μ1 ,...,μn =1. One defines the formal derivative series ∂m

→
f

∂xν1 ···∂xνm

(→
x
)

:=
∞
∑

n=1

1
n!

N
∑

μ1,...,μn =1

→
f ν1 ,...,νm ,μ1,...,μn xμ1 · · ·xμn and then the coefficient

→
f ν1 ,...,νm coincides with the

leading term of the derivative series ∂m
→
f

∂xν1 ···∂xνm

(→
x
)

. In particular, the coefficients
→
f ν1,...,νm must be

symmetric in the indices, which is equivalent to the symmetry of the derivatives.
2Equation (3) follows from the formula for the nth formal derivative of the composition series
→
g ◦→f (→x ):

∂ nhμ
∂xμ1 · · ·∂xμn

(→
x
)

= ∑
P∈Part{1,...,n}

N

∑
ρ1,...,ρk =1

( ∂ kgν
∂xρ1 · · ·∂xρk

◦→f
)

(→
x
)

× ∂ j1 fρ1

∂μi1,1 · · ·∂μi1, j1

(→
x
) · · · ∂ jk fρk

∂μik,1 · · ·∂μik, jk

(→
x
)

,
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hν;μ1,...,μn = ∑
P∈Part{1,...,n}

N

∑
ρ1,...,ρk =1

gν;ρ1,...,ρk fρ1;μi1,1
,...,μi1, j1

· · · fρk;μik,1
,...,μik, jk

, (3)

which, in the case N = 1, is known as the Faà di Bruno formula. Here are the
notations used in (3):

• The sum is over the set Part{1, . . . ,n} of all unordered partitions (cf. below)

P =
{

{

i1,1, . . . , i1, j1
}

, . . . ,
{

ik,1, . . . , ik, jk
}

}

(4)

of the set {1, . . . ,n}.
• In particular, k is the cardinality |P| of the partition P and j1, . . . , jk are the

cardinalities of its pieces.
• The partitions P are unordered, but we shall introduce a “canonical order” such

that inside each group the elements are in increasing order and the groups are
ordered according to the order of their minimal elements

i�,1 < · · ·< i�, j� , i1,1 < i2,2 < · · ·< ik, jk . (5)

Note that all the coefficients
→
f μ1,...,μn ,

→
g μ1,...,μn and

→
h μ1,...,μn are symmetric in their

indices μ1, . . . ,μn (cf. footnote 1) and hence, our convention in (3) about the order
on P is not essential. However, we shall see that dropping the symmetry condition
on the coefficients still defines an associative product.

Let us try to simplify a little bit (3) by absorbing some summations: the

coefficients
→
f μ1,...,μn define a multi-linear map3

fn =
(→

f μ1,...,μn

)

: V⊗n →V (6)

and vice versa, every multi-linear map fn : V×n →V defines a system of coefficients
→
f μ1,...,μn by its matrix elements. Furthermore, the coefficients

→
f μ1,...,μn are symmet-

ric in μ1, . . . ,μn iff the map fn is symmetric. Similarly, we set

gn =
(→
gμ1,...,μn

)

: V⊗n →V , hn =
(→
hμ1,...,μn

)

: V⊗n →V

(n = 1,2, . . . ). Then (3) reads

hn = ∑
P∈Part{1,...,n}

gk ◦
(

f j1⊗·· ·⊗ f jk

)◦σP , (7)

which in turn is derived by induction in n.
3Thus, fn(x1;1, . . . ,x1;N ; . . . ;xn;1, . . .,xn;N)ν :=

N
∑

μ1,...,μn =1
fν;μ1,...,μn x1;μ1 · · ·xn;μn .
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where the numbers k, j1, . . . , jk are defined by conventions (4) and (5) together with
the permutation σP ∈ Sn, which is

σP :=
(

i1,1, . . . , i1, j1 , . . . , ik,1, . . . , ik, jk
)

.

Thus, the formal power series
→
y =

→
f
(→
x
)

of formula (1) is encoded by a sequence

f =
(

f1, f2, . . . , fn, . . .
) ∈

∞

∏
n=1

Hom
(

V⊗n,V
)Sn

(Hom
(

V⊗n,V
)Sn being the subspace of Sn-invariant maps in Hom

(

V⊗n,V
)

). The

multiplication in
∞
∏

n=1
Hom
(

V⊗n,V
)Sn ,

h = g • f :=
(

hn
)∞

n=1 ,

that is defined by (7) is associative. It has a unit, the composition unit:

1 = (idV ,0, . . .)

Furthermore, if we assume that f1 = idV (the identity map of V ), then f has a
composition inverse f−1 =

(

1,( f−1)2, . . .
)

since for n > 1 we have

0 =
(

1
)

n =
(

f−1 • f
)

n = ( f−1)n + fn + low order terms ,

which inductively fixes ( f−1)n.
The so described group of formal diffeomorphisms is denoted by

FDiff(V ) ∼= {idV}×
∞

∏
n=2

Hom
(

V⊗n,V
)Sn . (8)

Note that the vector space V can be even arbitrary linear vector space: N then will
be the cardinality (possibly, infinite) of the linear basis of V and the series (1) would
be neither more nor less formal. We note also that fν;μ1,...,μn for fixed μ1, . . . ,μn are
nonzero only for no more than a finite number of indices ν since they are coordinates
of the vector

→
f μ1,...,μn . Hence, the correspondence

→
f
(→
x
)↔ f defined by (6) remains

valid and the composition (2) is again well defined algebraically.

3 Group Associated to a Symmetric Operad

We now observe that the group multiplication (7) has a straightforward general-
ization in a symmetric operad (see (9) below). Indeed, it uses two basic structures
which are axiomatized in the operad theory (cf. [6, Sect. 5.3]). These structures
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are first, the composition gk ◦
(

f j1⊗ ·· · ⊗ f jk

)

that in the general case becomes an
operadic composition γ

(

gk; f j1 , . . . , f jk

)

, and the second structure is the right action
of the permutation group, fn �→ ( fn)

σP := fn ◦σP.

Theorem 3.4 ([7]). There is a functor together with a subfunctor:
{

Category of
Symmetric operads

}

→
{

Category of
Groups

}

P = {P(n)}∞n=1 �→ G(P) = {id}×
∞
∏

n=2
P(n)

⋃‖

P = {P(n)}∞n=1 �→ G(P)S = {id}×
∞
∏

n=2
P(n)Sn ,

where P(n)Sn stands for the subspace of Sn-invariant elements. The multiplication
law is given by

(β • α)n = ∑
P∈Part{1,...,n}

γ
(

βk;α j1 , . . . ,α jk

)σP (9)

for α = (αn)
∞
n=1 and β = (βn)

∞
n=1 and the notations of (7). On operadic morphisms

ϑ : P →P ′ (= {ϑn : P(n)→P ′(n)}∞n=1) the functor gives

G(ϑ) :=
∞

∏
n=1

ϑn .

In the case of EndV we have a natural isomorphism

G(EndV )
S ∼= FDiff(V ) . (10)

The most nontrivial part of the above statement is the associativity of the
operation • (9). It can be proven by straightforward inspection. The existence of a
unit and inverse elements follows exactly by the same arguments as for the group of
formal diffeomorphisms.

Remark 3.1. There is a natural group associated with a nonsymmetric operad
Q =
{

Qn
}

n≥1 (cf. [6, Sect. 5.8.15]). The underlying set of this group is GQ :=

{id}×
∞
∏

n=2
Qn. Since any symmetric operad P can be considered as a nonsymmet-

ric operad ˜P by forgetting the action of the symmetric group, ˜Pn = P(n), then
we have a second way of associating a group to a symmetric operad. Though in
both ways the underlying sets are the same, G

˜P
=G(P), the group structures are

completely different. It is shown in [2, Sect. 1] that the group G
˜P

admits a quotient

by taking co-invariants, i.e., the set {id}×
∞
∏

n=2
P(n)Sn has a group structure coming

from the group structure of G
˜P

.
On the other hand, if we start with a nonsymmetric operad Q one can associate

a symmetric operad Q⊗As called a regular operad. The functor Q �→G(Q⊗As)S

associates a group to any nonsymmetric operad. The underlying set of this group is

{id}×
∞
∏

n=2
Qn.
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We will give below some facts about the structure of the groups related to
symmetric operads.

Proposition 1 ([7]). Let us set for m > 0

G(P)m =
{

α = (αn)
∞
n=1 ∈G(P)

∣

∣

∣α2 = · · ·= αm = 0
}

(for m = 1, G(P)1 :=G(P)). Then G(P)m is a normal subgroup of G(P).

Note that
G(P) = lim←− G(P)

/

G(P)m

and in the case when the operadic spaces P(n) are finite dimensional the quotient
groups are (finite dimensional) Lie groups. Hence, in the latter case the groupG(P)
is a pro-Lie group. We use this fact to derive the Lie algebra corresponding to the
group G(P) together with the exponential map.

Theorem 3.5 ([7]). The Lie algebra corresponding to the group G(P) is

g(P) = {0} ×
∞

∏
n=2

P(n)

The Lie bracket on g(P) is built from a pre-Lie bracket

[μ ,ν] = μ ∗ ν−ν ∗ μ

(μ ,ν ∈ g(P)), where4

(μ ∗ ν)n = ∑
/0 
=J⊆{1,...,n}

(

νk ◦min J μ j
)σPJ

≡ ∑
/0 
=J⊆{1,...,n}

γ
(

νk; id, . . . , id, μ j
↑

min J

, id, . . . , id
)σPJ (11)

where j = |J| and the partition PJ is the partition
{{i}∣∣i ∈ {1, . . . ,n}\J}∪ {J}.

(Note that the sum in (11) is the subsum in (9) corresponding to partitions P of a
form PJ.)

The Lie algebra g(P) is again an inverse limit of finite dimensional Lie algebras

g(P) = lim←− g(P)
/

g(P)m

where g(P)m is the ideal

g(P)m =
{

μ = (μn)
∞
n=1 ∈ g(P)

∣

∣

∣μ2 = · · ·= μm = 0
}

.

4◦i is the ith operadic partial composition.
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Note that the quotient group G(P)
/

G(P)m and Lie algebra g(P)
/

g(P)m are

isomorphic as sets to the set
m
∏

n=2
P(n) and the group and pre-Lie products on this

set are just • (9) and ∗ (11) truncated up to order m.

4 Feynman Diagrams and Their Combinatorics

Feynman diagrams are a powerful tool in perturbation theory. They indicate the
terms of perturbative expansions. Furthermore, many manipulation on the corre-
sponding formal perturbation series have a combinatorial description by operations
on diagrams.

(a) Basic definitions
A Feynman diagram is a finite graph with various decorations.

A graph Γ is a set of points, called vertices, with attached flags (or half-
edges) to them. Some pairs of these flags are further joined to become edges
connecting the corresponding vertices. All these structures are contained in the
following data: two finite sets, the set of vertices vert(Γ ) and the set of flags
flag(Γ ), and two maps

s : flag(Γ )→ vert(Γ ) , σ : flag(Γ )→ flag(Γ ) (12)

such that σ2 = id. Thus, the map s represents the process of attaching flags to
vertices, i.e., the flag f is attached to the vertex s( f ). The map σ represents the
process of joining flags, i.e., the flag f is joined with the flag σ( f ). If f = σ( f )
then we call the flag f an external line; such a line is attached to only one vertex.
If f 
= σ( f ) then the unordered pair { f ,σ( f )} form an edge, or an internal
line of the graph, which is attached to the vertices s( f ) and s(σ( f )). When
s( f ) = s(σ( f )) but f 
= σ( f ) we have an internal line attached to a unique
vertex. Such an internal line is called a tadpole and we will not deal with graphs
containing tadpoles.

To every graph we assign a topological space: its geometric realization. To
this end we assign to each edge a copy of the closed interval [0,1] (without
the orientation) and to each vertex a point. Then we glue all of these spaces
according to the incidence between the edges and the vertices.

A decorated graph is a graph with some extra data. Forgetting these extra
structure we obtain just a graph that is called the body of the decorated graph.
We shall consider graphs with the following decorations:

(a) Colors for the vertices and for the flags. They form two sets

– A set of colors for the vertices: Colv
– A set of colors for the flags: Colf

Then we have maps assigning colors:

cv : vert(Γ )→ Colv , cf : flag(Γ )→ Colf . (13)
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At the beginning we do not impose any conditions on the above maps
cv and cf. However, in Sect. 6 we shall explain how one can consider the
restrictions on the decorations, which arise in the physical models.

(b) The second type of decoration we shall consider is an enumeration

ν : vert(Γ )∼= {1, . . . ,n} (14)

of the set of vertices.

(b) Examples
These are the notion of graph and decorated graph, or also diagram. Here are
some examples to illustrate them.

Example 1. An example of a graph is: vert(Γ ) = {0,1}, flag(Γ ) =
{a,b,c,d,e, f}, s(a) = s(b) = s(c) = 0, s(d) = s(e) = s( f ) = 1, σ(a) = a,
σ(b) = e, σ(c) = d, σ( f ) = f . The geometric realization is:

Example 2. A decoration for the graph in Example 1 is provided by Colv =

{•}, Colf =
{

, ,
}

, and coloring maps: cv(0) = cv(1) = •, cf(a) = , cf(b) = ,

cf(e) = , cf( f ) = , cf(c) = = cf(d). The result can be drawn as

So, we indicated the colors in this example by shapes, which is common in
physics. Also if the colors of two joined flags coincide we indicate this as a
color of the corresponding edge. In the above example we also meet situation
of edges of the form and in this case it is also convenient to think of
such an edge as an oriented edge . Then we can draw the diagram of this
example as

(c) Types of graphs and diagrams
A graph is called connected if its geometric realization is a connected space.

Another important type of graphs are the so-called one particle irreducible
(1PI) graphs. A graph Γ is called one particle irreducible if it is connected
and after cutting any of its inner edges it remains connected. Here cutting of
an inner edge determined by a pair of flags f 
= σ( f ) means to change the
second structure map σ to a new map σ ′ such that σ ′( f ′) := σ( f ) if f ′ 
= f and
f ′ 
= σ( f ), and σ ′( f ′) := f ′ if f ′ = f or f ′ = σ( f ). We shall impose in addition
the requirement that 1PI graphs have no tadpoles and have at least two vertices
(or equivalently, at least one inner edge).
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If the body of a decorated graph is connected, then the graph is also called
connected. Similarly a decorated graph is called 1PI if its body is 1PI.

(e) Operations on graphs and diagrams
A subgraph of a graph Γ is a subset J ⊆ vert(Γ ). It determines a graph ΓJ as
follows: the set of vertices of ΓJ is vert(ΓJ) := J ⊆ vert(Γ ). The set of flags
of ΓJ is flag(ΓJ) := s−1(J) ≡ s−1

(

vert(ΓJ)
)

and we set the map sJ : flag(ΓJ)→
vert(ΓJ) to be the restriction of the map s. The map σJ : flag(ΓJ)→ flag(ΓJ)
coincides with σ whenever f and σ( f ) belong to flag(ΓJ): such pairs { f ,σ( f )}
of different flags are the inner edges of the subgraph. For the remaining f ∈
flag(ΓJ) we set σJ( f ) = f and they are the outer edges of the subgraph. Note
that the outer edges of the graph ΓJ are either outer edges of Γ attached to a
vertex in J or they are inner edges of Γ with only one end belonging to J.

If the graph Γ is colored then the graph ΓJ determined by a subgraph J has
an induced coloring defined just by the restrictions of the coloring maps cv and
cf to vert(ΓJ) and flag(ΓJ), respectively.

If the graph Γ is enumerated, then the graph ΓJ has an induced enumer-
ation provided by the unique monotonically increasing isomorphism ν(J) ∼=
{1, . . . , |J|}.

Another important operation on graphs is the contraction of a subgraph.
For every graph Γ and its subgraph J ⊆ vert(Γ ) we define the contracted

graph Γ /J as follows. We introduce a new vertex vJ , which can be identified
with the set J in order to be accurate. Then we set

vert(Γ /J) :=
(

vert(Γ )\J)∪{vJ} ,
flag(Γ /J) :=

{

f ∈ flag(Γ )
∣

∣ if s( f ) and s(σ( f )) ∈ J then f = σ( f )
}

≡ flag(Γ )
∖{

f ∈ flag(Γ )
∣

∣s( f ),s(σ( f )) ∈ J and f 
= σ( f )
}

,

in other words, flag(Γ /J) contains all the flags of flag(Γ ) except those ones
that form the inner edges of the graph ΓJ . The structure maps sΓ /J and σΓ /J are
defined as follows:

sΓ /J( f ) := s( f ) if s( f ) /∈ J and sΓ /J( f ) := vJ if s( f ) ∈ J ,

σΓ /J := σ
∣

∣

vert(Γ /J) ,

where the second identity is provided by the fact that flag(Γ /J) is defined as a
σ -invariant subset. To summarize, the graph Γ /J is obtained by shrinking all
the vertices in J to a single vertex vJ and removing all the internal lines of ΓJ .
Note that if the graph Γ is connected or 1PI, respectively, then so is Γ /J.

If the graph Γ is colored, then for every pair (J,L) consisting of a subset
J ⊆ vert(Γ ) and an element L ∈ Colv we can define a colored contracted graph
Γ /(J,L) constructed as the graph Γ /J endowed with the following coloring
maps c′v and c′f:
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c′v
∣

∣

vert(Γ )\J := cv
∣

∣

vert(Γ )\J , c′v(vJ) := L ,

c′f := cf
∣

∣

flag(Γ /J) .

Finally, if we have an enumerated graph Γ , then the contracted graph Γ /J
will be endowed with the enumeration provided by the unique monotonically
increasing isomorphism

ν(vert(Γ )\J)∪{minν(J)} ∼= {1, . . . ,n−|J|+ 1} .
Note that if the graph Γ has no tadpoles, then the graphsΓJ and Γ /J have no

tadpoles for every subgraph J of Γ .
(f) Isomorphic diagrams

Let us introduce the notion of an isomorphism of two enumerated diagrams
Γ and Γ ′. An isomorphism of graphs Γ ∼= Γ ′ consists of a pair of bijections
jv : vert(Γ ) ∼= vert(Γ ′) and j f : flag(Γ ) ∼= flag(Γ ′), which commute with the
structure maps s,s′ and σ ,σ ′, respectively. In other words, jv ◦ s = s′ ◦ j f and
j f ◦σ =σ ′ ◦ jv. An isomorphism of colored graphs is an isomorphism of graphs,
which in addition satisfies cv = c′v ◦ jv and cf = c′f ◦ j f (compatibility with the
coloring maps). Finally, an isomorphism of enumerated colored graphs is an
isomorphism of colored graphs which preserves the enumeration.

We shall consider two isomorphic diagrams as identical. More precisely, we
shall work with the set:

Dgm(n) := set of all equivalence classes of isomorphic
enumerated colored graphs with n vertices. (15)

(g) Combinatorial Feynman rules, or, representation of diagrams in a monoid
There is a convenient one-to-one correspondence between Dgm(n) and a free
commutative monoid. This construction follows on an abstract algebraic (or
combinatorial) level the so called “Feynman rules” that assign in QFT to every
Feynman diagram an analytic expression. Let

M(n) := the free commutative monoid with a set of generators
({1, . . . ,n}×Colv

)∪ ({1, . . . ,n}×Colf
)∪ ({1, . . . ,n}×Colf

)×2
. (16)

Let us introduce “physical” names and notation for the elements in the above
three disjoint sets. We call the elements of Colf the basic “fields” and denote
them by φ , ψ , etc. The element (i,φ) ∈ {1, . . . ,n} ×Colf will be denoted
by φ(i) and called a “field at the point i”. Next, the elements (i,φ ; j,ψ)
∈ ({1, . . . ,n} × Colf

)×2
will be denoted by Cφ ,ψ(i, j) and will be called

“propagators”. Finally, the elements L∈Colv will be called “interactions” and a
pair (i,L) ∈ {1, . . . ,n}×Colv will be called an interaction at the point i and will
be denoted by L(i).
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Thus, in the above notations the set of generators (16) for the monoid M(n)
reads:

{

L(i)
∣

∣L ∈ Colv, i = 1, . . . ,n
}∪{φ(i) ∣∣φ ∈ Colf, i = 1, . . . ,n

}

∪{Cφ ,ψ (i, j)
∣

∣φ ,ψ ∈ Colf, i, j = 1 . . . ,n
}

. (17)

Now, to each enumerated colored graph Γ we assign a monomial in M(n)
in the following way. To the vertex ν−1(i) (i.e., to the vertex with number i) we
assign L(i) if its color is L ∈ Colv. To each outer edge attached to the vertex
ν−1(i) we assign φ(i) if the color of the corresponding flag is φ ∈ Colf. To each
inner edge connecting the vertices ν−1(i) and ν−1( j) we assign Cφ ,ψ (i, j) if
the colors of the flags attached to ν−1(i) and ν−1( j) are φ and ψ , respectively.
Finally, we multiply all the above obtained generators in M(n). The resulting
monomial in M(n) is denoted by MΓ .

Example 3. In the case of Example 2 with vertex enumeration ν(0) = 1, ν(1) = 2
we have

MΓ = ψ(1)ψ(2)L(1)L(2)CA,A(1,2)Cψ,ψ (1,2) ,

where we denoted now the colors by letters: L : = • ∈Colv and A := , ψ := ,

ψ := .

Proposition 2. The correspondence Γ �→ MΓ is a bijection Dgm(n) ∼=M(n), i.e.,
it is a one-to-one correspondence between the equivalence classes of isomorphic
enumerated colored graphs with n vertices and the elements of the monoid M(n).

Proof. It is clear that Γ �→MΓ maps injectively the equivalence classes of diagrams
to elements of M(n). To see that this map is surjective one constructs for every
element of M(n) a diagram that reproduces this monomial. ��

5 The Universal Contraction Operad

Recall that Dgm(n) is the set of all equivalence classes of isomorphic enumerated
colored graphs with n vertices. Let us define

R(n) := HomK
(

K
(Dgm(n)),K(Colv)

) ∼= K
Dgm(n)×Colv , (18)

where K(I) stands for the vector space over the ground field (ring) K spanned by a
basis indexed by I and the existence of the second canonical isomorphism follows
in the case when Colv is a finite set, which we shall assume further. This canonical
isomorphism is provided by the decomposition
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Q(Γ ) = ∑
L∈Colv

q(Γ ,L)L , (19)

where Q ∈ R(n). We shall treat the isomorphism at the second equality in (18) as
an identification, R(n) =KDgm(n)×Colv.

We call the elements of R(n) contraction maps. This is motivated by the fact
that they can be thought of as prescriptions for contracting subgraphs as we shall
describe below.

Note that the action of the permutation group Sn on Dgm(n) induces an action
on R(n). We shall endow now the so-defined S-module R = {R(n)}n≥1 with a
structure of a symmetric operad.

To this end we shall define the partial composition maps:

◦i : R(n)⊗R( j)→R(n− 1+ j) , (20)

i = 1, . . . ,n, j = 1,2, . . . . Let us introduce for every enumerated diagram Γ the
subsets of vertices J := J(i, j) ⊆ vert(Γ ):

J (≡ J(i, j)) :=
{

ν−1(�)
∣

∣�= i+ 1, . . . , i+ j
}

. (21)

We define for Q′′ ∈ R(n), Q′ ∈ R( j) and Γ that is a representative of an
isomorphism class in Dgm(n− 1+ j):

(Q′′ ◦i Q′)(Γ ) = ∑
L∈Colv

q′(ΓJ,L)Q′′
(

Γ /(J,L)
)

, (22)

where
Q′(ΓJ) =: ∑

L∈Colv

q′(ΓJ,L)L . (23)

Note that if we set

Q′′(Γ ′′) = ∑
L∈Colv

q′′(Γ ′′,L)L ,

Q(Γ ) = (Q′′ ◦i Q′)(Γ ) = ∑
L∈Colv

q(Γ ,L)L, (24)

then (22) reads

q(Γ ,K) = ∑
L∈Colv

q′(ΓJ,L)q′′
(

Γ /(J,L),K
)

. (25)

Proposition 3 ([7]). R = {R(n)}n≥1 is a symmetric operad.

The proof is straightforward checking and we omit it.
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6 Suboperads in R and Concrete Combinatorial Models
of Quantum Field Theory

In the previous section we have defined a universal operad R on decorated graphs,
which can include, at the combinatorial level, any concrete model of Quantum Field
Theory (QFT) provided that we have sufficiently many colors in Colv and Colf.
So, the QFT models can be considered as particular suboperads of R. Describing
these suboperads can be quite cumbersome in general and we shall do this in several
steps. At each step we shall impose certain restrictions on the contraction maps Q ∈
R(n). These restrictions include, in particular, requirements that Q should vanish on
certain classes of diagrams that are “not admissible for contraction”.

For instance, excluding tadpoles was a first example of such a restriction on
diagrams. It was “stable with respect to contractions and subdiagrams” and hence,
it defined a suboperad in R. More precisely, the statement is that the subspaces in
R(n) for every n = 1,2, . . . , which consist of those contraction maps that vanish on
diagrams with tadpoles, form a suboperad.

Let us formulate the argument in a more general principle:

Proposition 4 ([7]). Let Φ = {Φ(n)}n≥1 be a system of subsetsΦ(n)⊆Dgm(n)×
Colv for n = 1,2, . . . and let us define

RΦ(n) = K
Φ(n) ⊆ KDgm(n)×Colv ≡ R(n) ,

RΦ(n) ≡
{

Q =∑qL ∈R(n)
∣

∣

∣q
∣

∣

(Dgm(n)×Colv)\Φ(n)= 0
}

, (26)

where we use the expansion (19) and embeddings of type KA ↪→ K
B for A ⊆ B,

which are defined by (xa)a∈A �→ (yb)b∈B such that ya = xa for a ∈ A and yb = 0 for
b ∈ B\A.

Then the following conditions are equivalent:

(i) The system RΦ = {RΦ(n)}n≥1 is a suboperad of R.
(ii) Each subset Φ(n) is Sn-invariant and the system {Φ(n)}n≥1 has the property

(ΓJ ,L) ∈Φ(|J|) and (Γ /(J,L),K) ∈Φ(n−|J|+ 1)

⇒ (Γ ,K) ∈Φ(n) (27)

for every Γ ∈Dgm(n), J ⊆ vert(Γ ) and K,L ∈ Colv.

Corollary 1. The following systems form a suboperad in R:

R1PI(n) :=
{

Q ∈R(n)
∣

∣Q(Γ ) = 0 if Γ is not 1PI
}

.

Let us give another example for a restriction on diagrams that induces a
suboperad. Let us consider a nonempty subset

E ⊂ Colf×2
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and call it a set of admissible connections. A colored graphΓ is called E -admissible
if for all flags f ∈ flag(Γ ) such that f 
= σ( f ) we have (cf( f ),cf(σ( f ))) ∈ E . Or in
other words, if the pairs of colors of the flags corresponding to the inner edges are
contained in E . As an application of Proposition 4 we get:

Corollary 2. Let E be any symmetric subset in Colf×2 and let RE (n) be the space
that consists of all contraction maps Q ∈ R(n), which vanish on all diagrams that
either are not E -admissible, or have tadpoles. Then

{

RE (n)
}

n≥1 is a suboperad
of R.

Note that in Corollaries 1 and 2 the sets Φ(n) are of the form

Φ(n) = Dgm′(n)×Colv

for some subsets Dgm′(n)⊆ Dgm(n). In this case condition (27) reads

ΓJ ∈ Dgm′(|J|) and Γ /J ∈ Dgm′(n−|J|+ 1) ⇒ Γ ∈ Dgm′(n) .

and RΦ is

RΦ(n) =
{

Q ∈R(n)
∣

∣Q
∣

∣

Dgm(n)\Dgm′(n)= 0
}≡ HomK

(

K
(Dgm′(n)),KColv

)

= K
Dgm′(n)×Colv .

Example 4. Let us introduce an example of the set E for the case of Quantum

Electrodynamics (QED). In this case we use three colors for flags Colf =
{

, ,
}

The set of admissible connections is:

E =
{

(

,
)

,
(

,
)(

,
)

}

.

The diagram of Example 2 was thus E -admissible for QED and as there we can
use for edges single colors, one with no orientation and one with orientation. The
nonoriented lines are called “photon lines” and the oriented lines are called “electron
lines”.

Our next “selection rule” for contraction maps is by the type of vertices. A vertex
is a colored graph with one vertex and no tadpoles. So, it contains only outer edges
which are called corolla of the vertex. The number of the external edges of the vertex
is called its valency.

Let V ⊆ Dgm(1) be a set of vertices. We call the set V types of vertices in the
theory. Let us define then the system ΦV = {ΦV (n)}n≥1

ΦV (n) =
{

(Γ ,L) ∈ Dgm(n)×Colv
∣

∣

∣∀J ⊆ Γ (if |J|= 1 then ΓJ ∈ V
)

and

Γ /(vert(Γ ),L) ∈ V
}

.
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It follows that ΦV satisfies condition (ii) of Proposition 4 and hence,

RV := RΦV
,

is a suboperad of R.
Thus, a physical theory can be defined as intersection of the operads

RE ,V := R1PI∩RE ∩RV . (28)

In the next section we shall consider the main examples of physical theories.

Remark 1. If {Φi}i∈I is a collection of systems Φi = {Φi(n)}n≥1 each satisfying
condition (ii) of Proposition 4 then

⋂

i∈I

RΦi = RΦ where Φ = {Φ(n)}n≥1 with Φ(n) =
⋂

i∈I

Φi(n) ,

and Φ also satisfies condition (ii) of Proposition 4.

7 The Group Related to the Contraction Operad
and Its Representation in the Group of Formal
Diffeomorphisms on the Space of Interactions

Having defined a symmetric operad R for each particular QFT model we have
automatically a group G(R)S associated to it. This group is precisely the operadic
construction of the renormalization group.

7.1 Notions of Renormalization Group

There are several widespread notions of renormalization group in physics and they
do not lead to equal objects although they are closely related to each other. We shall
review below some of them. For recent related works we refer the reader to [1, 9].

In renormalization theory a physical quantity U (an observable for instance, or
a correlation function in QFT) is derived as a function U = U(κ1, . . . ,κN ;ε) (≡
U(

→κ ;ε)) of various parameters including:

• Physical constants κ1, . . . ,κN . In QFT these are called coupling constants.
• An additional subsidiary parameter ε > 0 called a regularization parameter. It

makes meaningful the value of U(κ1, . . . ,κN ;ε) that is usually ill-defined for
ε → 0. The latter limit corresponds exactly to the actual physical value of U and
the purpose of the renormalization is to understand how to do it.
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• There might be further variables but we consider them as a “part” of U (so that
U is then valued in some vector or function space).

Furthermore, in perturbation theory, one has defined U only as a formal power
series in the coupling constants

U(
→κ ;ε) =

∞

∑
n=0

1
n!

N

∑
i1,...,in =1

Ui1,...,in(ε)κi1 · · ·κin , (29)

with coefficients Ui1,...,in(ε) that are functions in ε > 0. The renormalization issue
now is to find such a change of the physical parameters:

→κ ′ =
→
K (

→κ ;ε) , κ ′i =
∞

∑
n=1

1
n!

N

∑
i1,...,in =1

Ki;i1,...,in(ε)κi1 · · ·κin , (30)

again as a formal power series, so that after the substitution5

U ren(
→κ ;ε) := U

(→
K (

→κ ;ε);ε
)

=
∞

∑
n=0

1
n!

N

∑
i1,...,in =1

U ren
i1,...,in(ε)κi1 · · ·κin , (31)

the resulting coefficients U ren
i1,...,in

(ε) would have a finite limit for ε → 0. We set the
final renormalized physical quantity U ren to be

U ren(
→κ ) := lim

ε→0
U ren(

→κ ;ε) . (32)

The existence of such a formal diffeomorphism
→κ ′ =

→
K(

→κ ;ε) (30) for a given

in advance series U(
→κ ;ε) (29) so that the limit (32) exists is far from being a

trivial statement. This phenomena is called renormalizability of U . The physical
interpretation of this procedure is that we pass by the change (30) to a new set
of coupling constants called “renormalized couplings” so that the initial “bare
couplings” become infinite (meaningless) for ε → 0.

Still, the above renormalization procedure has a built in ambiguity. Namely, if
we have one solution

→
K(

→κ ;ε) (30) of this problem then any composition

→
K 1(

→κ ;ε) =
→
K
(→
X(

→κ );ε
)

with a formal diffeomorphism
→
X (

→κ ) will also be a solution. Thus, the group of

formal diffeomorphisms of the couplings
→κ appears naturally as acting on the

5In terms of formal power series; note that the series
→
K(

→κ ;ε) starts from n = 1 but for U(
→κ ;ε) we

do not have such a restriction.
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renormalization schemes. This is the first notion of a renormalization group. It is
simply the group of formal diffeomorphism.

We see that the above concept of renormalization is rather general. It leads also
to the most primary concept of a renormalization group and so, it should be related
to any other such notion. More precisely, any other notion of a renormalization
group should have a representation (a homomorphism) in the group of formal
diffeomorphisms of the coupling constants. In this case we speak about “renor-
malization group action”, i.e., it is an action of the corresponding group by formal
diffeomorphisms of the couplings.

We pass now to a second notion of the renormalization group that is specific
for QFT and it is finer than the above one. In QFT there are additional technical
features of the renormalization procedure. Namely, each of the terms Ui1,...,in(ε) in
series (29) is additionally expanded in a finite sum labeled by a Feynman graph with
n vertices. The renormalization adds to every diagram contribution a counter-term
together with recursively determined counter-terms for subdiagrams. Without going
more into the details we will only mention that the ambiguity in the renormalization
in QFT is described exactly by contraction maps introduced in Sect. 5. So, we
obtain now a finer notion of renormalization group that is formed by sequences
of contraction maps. One further shows that the composition in this group is exactly
given by the rule following from the operadic structure on contraction maps. The
latter is shown in [8, Sect. 2.6] in a more general context of renormalization than the
graph-combinatorial one.

Thus, from this second perspective the renormalization group appears exactly
as a group related to the contraction operad on Feynman diagrams. Then, as
explained above, there should be related a “renormalization group action”, i.e., a
homomorphism from this group to the group of formal diffeomorphisms of the
couplings. The existence and the derivation of this homomorphism follow also from
the general renormalization theory and are not a part of the present work. However,
our result is that the resulting homomorphism corresponds to an operadic morphism
via the functor established in Theorem 3.4. Let us summarize all this:

There is an operadic morphism, Ξ : RE ,V → End
RV , from the contraction

operad to the operad End
RV over the vector space spanned by the set of type of

vertices V . The latter set indexes the set of coupling constants in the QFT model
that is determined by the combinatorial data (E ,V ). The induced map between the
related groups

G(Ξ)S : G(RE ,V )S →G(End
RV )S ∼= FDiff

(

R
V
)

(33)

coincides with the renormalization group action determined from the renormaliza-
tion theory.

In the subsequent subsections we will construct the morphism Ξ : RE ,V →
End

RV . We shall continue our considerations on a general ground field (ring) K
but the above application uses the case K= R.



208 J.-L. Loday and N.M. Nikolov

7.2 Bosons and Fermions

We introduce a subdivision of the set of fields, i.e. the set Colf of flags’ colors,
into two disjoint subsets called bosons and fermions. According to this we assign
(Z/2Z)-parities to the set of generators (17) of the monoid M(n). For a bosonic
φ the element φ(i) is even and for fermionic φ , φ(i) is odd. The parity of the
propagator Cφ ,ψ (i, j) is the sum of the parities of the coupled fields φ and ψ .
Usually bosons are coupled only to bosons and fermions—to fermions, so that the
propagators are then always even. Finally, the interactions L(i) are even as well.

Recall that we introduced in Sect. 4 g a canonical isomorphism Dgm(n)∼=M(n)
between the set Dgm(n) of all classes of isomorphic enumerated colored diagrams
with n vertices and the elements in the free monoid M(n) generated by the set (17).
Let us introduce the linear envelope of the monoid M(n):

M (n) := K
(M(n)) ∼= K

(Dgm(n)) , (34)

which is thus an algebra.6 In the more general case of presence of fermions we
redefine the algebra structure on M (n) (34) and set

M (n) := the graded commutative algebra generated by the set (17). (35)

Note that in all the constructions up to now the division of the fields (i.e., the set
Colf) into bosons and fermions is inessential.

7.3 The Wick Generating Operator of Diagrams

Let us assume first that we have a theory only with bosons so that the algebras M (n)
are commutative.

Let us have n vertices I1, . . . , In ∈V and consider them as one enumerated colored
graph that is completely disconnected (i.e., it has no inner lines). The monomial in
M(n) corresponding to this diagram is thus I1(1) · · · In(n)≡ I1⊗·· ·⊗ In, where the
number in bracket “( j)” indicates the number assigned to the corresponding vertex.
Denote

WickE
n (I1, . . . , In) := ∑all possible ways of connecting the vertices

I1(1), . . . , In(n) into E -admissible enumerated colored

graphs with no tadpoles

= I1(1) · · · In(n)+ · · · , (36)

6However, we remark that the algebra structure induced by the monoid structure of M(n) is
quite different from the algebra structure on the space of diagrams that is usually used in the
Connes–Kreimer approach.
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where E ⊆ Colf×2 is a set of admissible connections as defined in Sect. 6. This
defines us a multilinear map

WickE
n :
(

K
V
)×n →M (n) .

Proposition 5 ([7]). Under the isomorphism Dgm(n) ∼=M(n) (Proposition 2) the
following equation holds

WickE
n (I1, . . . , In)

=

[

∏
1� i< j�n

exp

(

∑
(φ ,ψ)∈E

Cφ ,ψ(i, j)
∂ 2

∂φ(i)∂ψ( j)

)]

I1(1) · · · In(n) . (37)

In the presence of fermions (37) continues to generate the terms in the right
hand side of (36) but with some signs that depend on the order of writing of
the remaining generators of M (n). The derivatives ∂

∂φ(i) are understood as left

Grassmann derivatives for odd φ(i).

7.4 Construction of Operadic Morphism Ξ : RE ,V → End
KV

The operadic morphism Ξ : RE ,V → End
KV consists of a sequence of linear maps

Ξn : RE ,V (n)→ End
KV (n) ≡ Hom

((

K
V
)⊗n

,KV
)

. (38)

The Ansatz for Ξn is

Ξn(Q)(I1⊗·· ·⊗ In) = ̂Q
(

WickE
n (I1, . . . , In)

)

∈ KV , (39)

where Q ∈RE ,V (n)⊆R(n) is generally given by (19) and ̂Q is then set to be

̂Q(Γ ) = ∑
L∈Colv

q(Γ ,L)
[

Γ
/

(vert(Γ ),L)
]

, ̂Q :K(Dgm(n))→K
Dgm(1) , (40)

i.e., ̂Q(Γ ) contracts the diagram Γ to a sum of single vertices according to the color
prescription of Q :K(Dgm(n))→K

(Colv).
Let us explain by words the meaning of (38). The value of Ξn(Q)(I1⊗ ·· ·⊗ In)

is a sum of single vertices obtained by making first a sum over all possible ways of
connecting the vertices I1(1), . . . , In(n) into enumerated diagrams; then we contract
each of the terms in the latter sum to a sum of single vertices via Q. Shortly speaking,
Ξn(Q)(I1⊗·· ·⊗ In) is the Q-contraction of all possible connections of I1, . . . , In into
diagrams.

Proposition 6 ([7]). Equation (40) determines an operadic morphism.
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8 Outlook

We make here a connection with the Connes–Kreimer Hopf algebra of “formal
diffeographisms” [3], which in details will appear in a forthcoming work.

The first step towards the comparison with the Connes–Kreimer approach is
to study the dual (commutative) Hopf algebra to the Lie algebra associated with
a symmetric operad. In fact, it can be associated directly to a symmetric co-
operad. When this construction is applied to the contraction operads on diagrams
we obtain a Hopf algebra that is very close to the Connes–Kreimer Hopf algebra.
However, there is an important difference. On a technical level, in our approach a
subdiagram is always contracted to a vertex, while in the Connes–Kreimer theory
some subdiagrams that have two external lines can be contracted also to an edge
with no intermediate vertex.

The origin for this difference comes from physics. The Connes–Kreimer Hopf
algebra incorporates an additional step in the renormalization called a “field
renormalization”. Let us briefly explain this. Our set of vertices V corresponds to
all the monomials in the Lagrangian of a given QFT model. Some of these vertices
of valence two correspond to quadratic terms in the Lagrangian, which are called
“kinetic terms” since they basically determine the propagators. For this reason in
physics there are no physical parameters related to these terms: we always normalize
them with some standard normalization coefficients like

1
2
(∂φ) · (∂φ) , ψ(γ ·∂ )ψ ,

for a scalar and a spinor field, respectively (γ · ∂ being the Dirac operator). On the
other hand, as a result of the renormalization the coefficients in front of these kinetic
terms are changed (renormalized). Then we absorb this change by a redefinition
of the field strengths. For instance, in the above examples we pass to new fields
φ ′ = Zφ φ , ψ ′ = Zψψ and ψ ′ = Zψψ so that the kinetic terms are changed by Z2

φ and

ZψZψ , respectively, in such a way that compensate the renormalization change.
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Part III
String and Gravity Theories



Lightlike Braneworlds in Anti-de Sitter Bulk
Space-Times

Eduardo Guendelman, Alexander Kaganovich, Emil Nissimov,
and Svetlana Pacheva

Abstract We consider five-dimensional Einstein–Maxwell–Kalb–Ramond system
self-consistently coupled to a lightlike 3-brane, where the latter acts as material,
charge and variable cosmological constant source. We find wormhole-like solutions
whose total space-time manifold consists of either (a) two “universes”, which are
identical copies of the exterior space-time region (beyond the horizon) of five-
dimensional Schwarzschild–anti-de Sitter black hole, or (b) a “right” “universe”
comprising the exterior space-time region of Reissner–Nordström–anti-de Sitter
black hole and a “left” “universe” being the Rindler “wedge” of five-dimensional
flat Minkowski space. The wormhole “throat” connecting these “universes”, which
is located on their common horizons, is self-consistently occupied by the lightlike
3-brane as a direct result of its dynamics given by an explicit reparametrization-
invariant world-volume Lagrangian action. The intrinsic world-volume metric on
the 3-brane turns out to be flat, which allows its interpretation as a lightlike
braneworld.

1 Introduction

Lightlike branes (“LL-branes” for short) play an important role in modern general
relativity. LL-branes are singular null (lightlike) hypersurfaces in Riemannian
space-time which provide dynamical description of various physically important
phenomena in cosmology and astrophysics such as: (a) impulsive lightlike signals
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arising in cataclysmic astrophysical events (supernovae, neutron star collisions)
[1]; (b) dynamics of horizons in black hole physics—the so called “membrane
paradigm” [2]; (c) the thin-wall approach to domain walls coupled to gravity [3–6].
More recently, LL-branes became significant also in the context of modern non-
perturbative string theory [7–10].

In our previous papers [11–20] we have provided an explicit reparametrization
invariant world-volume Lagrangian formulation of lightlike p-branes (a brief
review is given in Sect. 2) and we have used them to construct various types
of wormhole, regular black hole and lightlike braneworld solutions in D = 4 or
higher-dimensional asymptotically flat or asymptotically anti-de Sitter bulk space-
times (for a detailed account of the general theory of wormholes see the book
[21] and also [22–28]). In particular, in [18–20] we have shown that lightlike
branes can trigger a series of spontaneous compactification–decompactification
transitions of space-time regions, e.g., from ordinary compactified (“tube-like”)
Levi–Civita–Bertotti–Robinson [29–31] space to non-compact Reissner–Nordström
or Reissner–Nordström–de-Sitter region or vice versa. Let us note that wormholes
with “tube-like” structure (and regular black holes with “tube-like” core) have been
previously obtained within different contexts in [32–40].

Let us emphasize the following characteristic features of LL-branes which
drastically distinguish them from ordinary Nambu–Goto branes:

(a) They describe intrinsically lightlike modes, whereas Nambu–Goto branes
describe massive ones.

(b) The tension of the LL-brane arises as an additional dynamical degree of
freedom, whereas Nambu–Goto brane tension is a given ad hoc constant. The
latter characteristic feature significantly distinguishes our LL-brane models
from the previously proposed tensionless p-branes (for a review of the latter,
see [41]) which rather resemble a p-dimensional continuous distribution of
massless point-particles.

(c) Consistency of LL-brane dynamics in a spherically or axially symmetric
gravitational background of codimension one requires the presence of a horizon
which is automatically occupied by the LL-brane (“horizon straddling” accord-
ing to the terminology of [4]).

(d) When the LL-brane moves as a test brane in spherically or axially symmetric
gravitational backgrounds its dynamical tension exhibits exponential “infla-
tion/deflation” time behavior [42]—an effect similar to the “mass inflation”
effect around black hole horizons [43, 44].

Here we will focus on studying four-dimensional lightlike braneworlds in
5-dimensional bulk anti-de Sitter spaces—an alternative to the standard Randall–
Sundrum scenario [45, 46] (for a systematic overview to braneworld theory, see
[47–49]). Namely, we will present explicit solutions of five-dimensional Einstein–
Maxwell–Kalb–Ramond system self-consistently interacting with codimension-one
LL-branes, which are special kinds of “wormhole”-like space-times of either one of
the following structures:
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(A) Two “universes” which are identical copies of the exterior space-time region
(beyond the horizon) of five-dimensional Schwarzschild–anti-de Sitter black
hole.

(B) “Right” “universe” comprising the exterior space-time region of Reissner–
Nordström–anti-de Sitter black hole and “left” “universe” being the Rindler
“wedge” of five-dimensional flat Minkowski space.

Both “right” and “left” “universes” in (A)–(B) are glued together along their
common horizons occupied by the LL-brane with flat four-dimensional intrinsic
world-volume metric, in other words, a flat lightlike braneworld (LL-braneworld)
at the wormhole “throat”. In case (A) the LL-brane is electrically neutral whereas
in case (B) it is both electrically charged as well as it couples also to a bulk Kalb–
Ramond tensor gauge field.

2 Lagrangian Formulation of Lightlike Brane Dynamics

In what follows we will consider gravity/gauge-field system self-consistently
interacting with a lightlike p-brane of codimension one (D= (p+1)+1). In a series
of previous papers [11–20] we have proposed manifestly reparametrization invariant
world-volume Lagrangian formulation in several dynamically equivalent forms of
LL-branes coupled to bulk gravity Gμν and bulk gauge fields, in particular, Maxwell
Aμ and Kalb–Ramond Aμ1...μD−1 . Here we will use our Polyakov-type formulation
given by the world-volume action:

SLL[q,β ] =−1
2

∫

d p+1σ T b
p−1

2
0

√−γ
[

γabḡab− b0(p− 1)
]

, (1)

− β
(p+ 1)!

∫

d p+1σ εa1...ap+1∂a1Xμ1 . . .∂ap+1Xμp+1Aμ1...μp+1 (2)

where:

ḡab ≡ ∂aXμGμν∂bXν − 1
T 2 (∂au+ qAa)(∂bu+ qAb), Aa ≡ ∂aXμAμ . (3)

Here and below the following notations are used:

• Xμ(σ) are the p-brane embedding coordinates in the bulk D-dimensional space-
time with Riemannian metric Gμν (x) (μ ,ν = 0,1, . . . ,D−1); (σ)≡ (σ0 ≡ τ,σ i

)

with i = 1, . . . , p; ∂a ≡ ∂
∂σa .

• γab is the intrinsic Riemannian metric on the world-volume with γ = det‖γab‖;
gab is the induced metric on the world-volume:

gab ≡ ∂aXμGμν (X)∂bXν , (4)
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which becomes singular on-shell (manifestation of the lightlike nature), cf. (9)
below; b0 is a positive constant measuring the world-volume “cosmological
constant”.

• u is auxiliary world-volume scalar field defining the lightlike direction of the
induced metric (see (9) below) and it is a non-propagating degree of freedom (cf.
[20]).

• T is dynamical (variable) brane tension (also a non-propagating degree of
freedom).

• The coupling parameters q and β are the electric surface charge density and the
Kalb–Rammond charge of the LL-brane, respectively.

The corresponding equations of motion w.r.t. Xμ , u, γab and T read accordingly
(using short-hand notation (3)):

∂a

(

T
√

|ḡ|ḡab∂bXμ
)

+T
√

|ḡ|ḡab∂aXλ ∂bXνΓ μ
λν

+
q
T

√

|ḡ|ḡab∂aXν(∂bu+ qAb)FλνGμλ

− β
(p+ 1)!

εa1...ap+1∂a1Xμ1 . . .∂ap+1Xμp+1Fλμ1...μp+1
Gλμ = 0, (5)

∂a

(

1
T

√

|ḡ|ḡab(∂bu+ qAb)

)

= 0, γab =
1
b0

ḡab, (6)

T 2 + ḡab(∂au+ qAa)(∂bu+ qAb) = 0. (7)

Here ḡ = det‖ḡab‖, Γ μ
λν denotes the Christoffel connection for the bulk metric Gμν

and:

Fμν = ∂μAν − ∂νAμ , Fμ1...μD = D∂[μ1
Aμ2...μD] = F

√−Gεμ1...μD (8)

are the corresponding gauge field strengths.
The on-shell singularity of the induced metric gab (4), i.e., the lightlike property,

directly follows from (7) and the definition of ḡab (3):

gab

(

ḡbc(∂cu+ qAc)
)

= 0. (9)

Explicit world-volume reparametrization invariance of the LL-brane action (1)
allows to introduce the standard synchronous gauge-fixing conditions for the
intrinsic world-volume metric

γ00 =−1, γ0i = 0 (i = 1, . . . , p). (10)

which reduces (6)–(7) to the following relations:
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(∂0u+ qA0)
2

T 2 = b0 + g00, ∂iu+ qAi = (∂0u+ qA0)g0i (b0 + g00)
−1 ,

g00 = gi jg0ig0 j, ∂0

(
√

g(p)

)

− ∂i

(
√

g(p)gi jg0 j

)

= 0 , g(p) ≡ det‖gi j‖ , (11)

(recall that g00,g0i,gi j are the components of the induced metric (4); gi j is the
inverse matrix of gi j). Then, as shown in [11–20], consistency of LL-brane dynamics
in static “spherically-symmetric”-type backgrounds (in what follows we will use
Eddington–Finkelstein coordinates, dt = dv− dη

A(η) ):

ds2 =−A(η)dv2 + 2dvdη+C(η)hi j(θ )dθ idθ j ,

Fvη = Fvη(η), rest = 0, F = F (η), (12)

with the standard embedding Ansatz:

X0 ≡ v = τ, X1 ≡ η = η(τ), Xi ≡ θ i = σ i (i = 1, . . . , p). (13)

requires the corresponding background (12) to possess a horizon at some η =η0,
which is automatically occupied by the LL-brane.

Indeed, in the case of (12)–(13) (11) reduce to:

g00 = 0, ∂0C
(

η(τ)
) ≡ .

η ∂ηC
∣

∣

η=η(τ)= 0,
(∂0u+ qA0)

2

T 2 = b0, ∂iu = 0 (14)

(
.
η≡ ∂0η ≡ ∂τη(τ)). Thus, in the generic case of non-trivial dependence of C(η) on

the “radial-like” coordinate η , the first two relations in (14) yield:

.
η=

1
2

A
(

η(τ)
)

,
.
η= 0 → η(τ) = η0 = const, A(η0) = 0 . (15)

The latter property is called “horizon straddling” according to the terminology
of [4]. Similar “horizon straddling” has been found also for LL-branes moving
in rotating axially symmetric (Kerr or Kerr-Newman) and rotating cylindrically
symmetric black hole backgrounds [16, 17].

3 Gravity/Gauge-Field System Interacting
with Lightlike Brane

The generally covariant and manifestly world-volume reparametrization-invariant
Lagrangian action describing a bulk Einstein–Maxwell–Kalb–Ramond system (with
bulk cosmological constantΛ ) self-consistently interacting with a codimension-one
LL-brane is given by:
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S =

∫

dDx
√−G

[

R(G)− 2Λ
16π

− 1
4

FμνFμν − 1
D!2

Fμ1...μD Fμ1...μD

]

+ SLL[q,β ] ,

(16)

where again Fμν and Fμ1...μD are the Maxwell and Kalb–Ramond field-strengths (8)
and SLL[q,β ] indicates the world-volume action of the LL-brane of the form (1).
It is now the LL-brane which will be the material and charge source for gravity
and electromagnetism, as well as it will generate dynamically an additional space-
varying bulk cosmological constant (see (20) and second relation (28) below).

The equations of motion resulting from (16) read:

(a) Einstein equations:

Rμν − 1
2

GμνR+ΛGμν = 8π
(

T (EM)
μν +T (KR)

μν +T (brane)
μν

)

. (17)

(b) Maxwell equations:

∂ν
[√−GFκλGμκGνλ

]

+ jμ
(brane) = 0 . (18)

(c) Kalb–Ramond equations (recall definition of F in (8)):

ενμ1...μp+1∂νF − J
μ1...μp+1
(brane) = 0 . (19)

(d) The LL-brane equations of motion have already been written down in (5)–(7)
above.

The energy-momentum tensors of bulk gauge fields are given by:

T (EM)
μν = FμκFμν −Gμν

1
4

FκλFκλ , T (KR)
μν =−1

2
F 2Gμν , (20)

where the last relation indicates that Λ ≡ 4πF 2 can be interpreted as dynami-
cally generated cosmological “constant”.

The energy-momentum (stress-energy) tensor T (brane)
μν and the electromagnetic

jμ(brane) and Kalb–Ramond J
μ1...μp+1
(brane) charge current densities of the LL-brane are

straightforwardly derived from the pertinent LL-brane action (1):

T μν
(brane) =−

∫

d p+1σ
δ (D)
(

x−X(σ)
)

√−G
T
√

|ḡ|ḡab∂aXμ∂bXν , (21)

jμ(brane) =−q
∫

d p+1σ δ (D)
(

x−X(σ)
)
√

|ḡ|ḡab∂aXμ (∂bu+ qAb)T−1 , (22)

J
μ1...μp+1
(brane) = β

∫

d p+1σ δ (D)
(

x−X(σ)
)

εa1...ap+1∂a1Xμ1 . . .∂ap+1Xμp+1 . (23)
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Construction of “wormhole”-like solutions of static “spherically-symmetric”-type
(12) for the coupled gravity-gauge-field-LL-brane system (16) proceeds along the
following simple steps:

(a) Choose “vacuum” static “spherically-symmetric”-type solutions (12) of (17)–
(19) (i.e., without the delta-function terms due to the LL-branes) in each region
−∞< η < η0 and η0 < η < ∞ with a common horizon at η = η0.

(b) The LL-brane automatically locates itself on the horizon according to “horizon
straddling” property (15).

(c) Match the discontinuities of the derivatives of the metric and the gauge field
strength (12) across the horizon at η = η0 using the explicit expressions for
the LL-brane stress-energy tensor, electromagnetic and Kalb–Ramond charge
current densities (21)–(23).

Using (11)–(13) we find:

T μν
(brane) = Sμν δ (η −η0), jμ

(brane) = δ μ0 q
√

det‖Gi j‖δ (η−η0),

1
(p+ 1)!

εμν1...νp+1J
ν1...νp+1

(brane) = β δημ δ (η−η0) (24)

where Gi j =C(η)hi j(θ ) (cf. (12)) and the surface energy-momentum tensor reads:

Sμν ≡ T

b1/2
0

(

∂τXμ∂τXν − b0Gi j∂iX
μ∂ jX

ν)
v=τ,η=η0,θ i=σ i . (25)

The non-zero components of Sμν (with lower indices) and its trace are:

Sηη =
T

b1/2
0

, Si j =−Tb1/2
0 Gi j, Sλλ =−pTb1/2

0 . (26)

Taking into account (24)–(26) together with (12)–(15), the matching relations at the
horizon η = η0 become [18–20] (for a systematic introduction to the formalism of
matching different bulk space-time geometries on codimension-one hypersurfaces
(“thin shells”) see the textbook [50]):

(a) Matching relations from Einstein equations (17):

[∂ηA]η0
=−16πT

√

b0, [∂η lnC]η0
=− 16π

p
√

b0
T (27)

with notation
[

Y
]

η0
≡ Y
∣

∣

η→η0+0 −Y
∣

∣

η→η0−0 for any quantity Y .
(b) Matching relation from gauge field equations (18)–(19):

[Fvη ]η0
= q, [F ]η0

=−β . (28)
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(c) X0-equation of motion of the LL-brane (the only non-trivial contribution of
second-order LL-brane (5) in the case of embedding (13)):

T
2

(

〈

∂ηA
〉

η0
+ pb0
〈

∂η lnC
〉

η0

)

−
√

b0

(

q
〈

Fvη
〉

η0
−β 〈F 〉η=η0

)

= 0 (29)

with notation 〈Y 〉η0
≡ 1

2

(

Y
∣

∣

η→η0+0 +Y
∣

∣

η→η0−0

)

.

4 Explicit Solutions: Braneworlds via Lightlike Brane

Consider five-dimensional AdS–Schwarzschild black hole in Eddington–
Finkelstein coordinates (v,r,x) (with x≡ (x1,x2,x3)):

ds2 =−A(r)dv2 + 2dvdr+Kr2dx2, A(r) = Kr2−m/r2 , (30)

where Λ =−6K is the bare negative five-dimensional cosmological constant and m
is the mass parameter of the black hole. The pertinent horizon is located at:

A(r0) = 0→ r0 = (m/K)1/4 , where ∂rA(r0)> 0 . (31)

First, let us consider self-consistent Einstein-LL-brane system (16) with a neutral
LL-brane source (i.e. no LL-brane couplings to bulk Maxwell and Kalb–Ramond
gauge fields: q,β = 0 in SLL[q,β ]). A simple trick to obtain “wormhole”-like
solution to this coupled system is to change variables in (30):

r→ r(η) = r0 + |η | (32)

with r0 being the AdS–Schwarzschild horizon (31), where now η ∈ (−∞,+∞), i.e.,
consider:

ds2 =−A(η)dv2 + 2dvdη+C(η)dx2, (33)

A(η) = K(r0 + |η |)2− m
(r0 + |η |)2 , C(η) = K(r0 + |η |)2, (34)

A(0) = 0, A(η)> 0 for η 
= 0 .

Obviously, (32) is not a smooth local coordinate transformation due to |η |. The
coefficients of the new metric (33)–(34) are continuous at the horizon η0 = 0
with discontinuous first derivatives across the horizon. The LL-brane automatically
locates itself on the horizon according to the “horizon-straddling” property of its
world-volume dynamics (15).
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Substituting (33)–(34) into the matching relations (27)–(29) we find the
following relation between bulk space-time parameters (K = |Λ |/6,m) and the
LL-brane parameters (T,b0) :

T 2 =
3

8π2 K, T < 0, b0 =
2
3

√
Km. (35)

Taking into account second equation (6) and (10) the intrinsic metric γab on the
LL-braneworld becomes flat:

γ00 =−1, γ0i = 0, γi j =
3
2
δi j . (36)

The solution (34)–(36) describes a “wormhole”-like D = 5 bulk space-time
consisting of two “universes” being identical copies of the exterior region beyond
the horizon (r > r0) of the five-dimensional AdS–Schwarzschild black hole glued
together along their common horizon (at r = r0) by the LL-brane, i.e., the latter
serving as a wormhole “throat”, which in turn can be viewed as a LL-braneworld
with flat intrinsic geometry (36).

Let us now consider the five-dimensional AdS–Reissner–Nordström black hole
(in Eddington–Finkelstein coordinates (v,r,x)):

ds2 = −A(r)dv2 + 2dvdr+Kr2dx2, Λ =−6K ,

A(r) = Kr2− m
r2 +

Q
r4 , Fvr =

√

3
4π

Q
r3 . (37)

We can construct, following the same procedure, another non-symmetric
“wormhole”-like solution with a flat LL-braneworld occupying its “throat” provided
the LL-brane is electrically charged and couples to bulk Kalb–Ramond gauge field,
i.e., q,β 
= 0 in (16), (1). This solution describes:

(a) “Left” universe being a five-dimensional flat Rindler space-time—the Rindler
“wedge” of D = 5 Minkowski space [51, 52] (here |η | = X2, where X is the
standard Rindler coordinate):

ds2 = ηdv2 + 2dvdη+ dx2, for η < 0. (38)

(b) “Right” universe comprising the exterior D = 5 space-time region of the AdS–
Reissner–Nordström black hole beyond the outer AdS–Reissner–Nordström
horizon r0 (A(r0) = 0 with A(r) as in (37) and where again we apply the non-
smooth coordinate change (32)):

ds2 = −A(η)dv2 + 2dvdη+K(r0 +η)2dx2 (39)

A(η) = K(r0 +η)2− m
(r0 +η)2 +

Q2

(r0 +η)4 (40)

Fvη =

√

3
4π

Q
(r0 +η)3 , A(0) = 0, ∂ηA(0)> 0, for η > 0. (41)
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All physical parameters of the “wormhole”-like solution (38)–(41) are
determined in terms of (q,β )—the electric and Kalb–Ramond LL-braneworld
charges:

m =
3

2πβ 2

(

1+
2q2

β 2

)

, Q2 =
9q2

2πβ 6 , |Λ | ≡ 6K = 4πβ 2 (42)

|T |= 1
8π

√

3
2

√
K + 4π(β 2− q2), b0 =

1

6
√

K

[

1+
8π
3

√
K(β 2− q2)

]

(43)

Here again T < 0. Let is stress the importance of the third relation in (42).
Namely, the dynamically generated space-varying effective cosmological constant
(cf. second (20)) through the Kalb–Ramond coupling of the LL-brane (cf. second
matching relation in (28)) has zero value in the “right” AdS–Reissner–Nordström
“universe” and has positive value 4πβ 2 in the “left” flat Rindler “universe” (38)
compensating the negative bare cosmological constant Λ .

The intrinsic metric γab on the LL-braneworld is again flat:

γ00 =−1, γ0i = 0, γi j =
1
b0
δi j (44)

5 Traversability and Trapping Near the Lightlike
Braneworld

The “wormhole”-like solutions presented in the previous section share the following
important properties:

(a) The LL-braneworlds at the wormhole “throats” represent “exotic” matter with
T < 0, i.e., negative brane tension implying violation of the null-energy
conditions as predicted by general wormhole arguments [21] (although the latter
could be remedied via quantum fluctuations).

(b) The wormhole space-times constructed via LL-branes at their “throats” are
not traversable w.r.t. the “laboratory” time of a static observer in either of the
different “universes” comprising the pertinent wormhole space-time manifold
since the LL-branes sitting at the “throats” look as black hole horizons to the
static observer. On the other hand, these wormholes are traversable w.r.t. the
proper time of a traveling observer.

Indeed, proper-time traversability can be easily seen by considering dynam-
ics of test particle of mass m0 (“traveling observer”) in a wormhole background,
which is described by the reparametrization-invariant world-line action:

Sparticle =
1
2

∫

dλ
[

1
e

.
xμ

.
xν Gμν − em2

0

]

. (45)
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five-dimensional AdS
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direction the
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Using energy E and orbital momentum J conservation and introducing the proper
world-line time s ( ds

dλ = em0), the “mass-shell” constraint equation (the equation
w.r.t. the “einbein” e) produced by the action (45) yields:

(

dη
ds

)2

+Veff(η) =
E 2

m2
0

, Veff(η)≡ A(η)
(

1+
J 2

m2
0C(η)

)

(46)

where the metric coefficients A(η),C(η) are those in (12).
Since the “effective potential” Veff(η) in (46) is everywhere non-negative and

vanishes only at the wormhole throat(s) (η = η0, where A(η0) = 0), “radially”
moving test matter (e.g. a traveling observer) with zero “impact” parameter J = 0
and with sufficiently large energy E ) will always cross from one “universe” to
another within finite amount of its proper-time (see Fig. 1). Moreover, this test matter
(travelling observer) will “shuttle” between the turning points η±:

Veff(η±) =
E 2

m2
0

, η+ > 0, η− < 0, (47)

so that in fact it will be trapped in the vicinity of the LL-braneworld. This effect is
analogous to the gravitational trapping of matter near domain wall of a stable false
vacuum bubble in cosmology [53].

6 Discussion

Let us recapitulate the crucial properties of the dynamics of LL-branes interacting
with gravity and bulk space-time gauge fields which enabled us to construct the
LL-braneworld solutions presented above:
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1. “Horizon straddling”—automatic positioning of LL-branes on (one of) the
horizon(s) of the bulk space-time geometry.

2. Intrinsic nature of the LL-brane tension as an additional degree of freedom
unlike the case of standard Nambu–Goto p-branes; (where it is a given ad
hoc constant), and which might in particular acquire negative values. More-
over, the variable tension feature significantly distinguishes LL-brane models
from the previously proposed tensionless p-branes—the latter rather resemble
p-dimensional continuous distributions of independent massless point-particles
without cohesion among them.

3. The stress-energy tensors of the LL-branes are systematically derived from the
underlying LL-brane Lagrangian actions and provide the appropriate source
terms on the r.h.s. of Einstein equations to enable the existence of consistent
non-trivial wormhole-like solutions.

4. Electrically charged LL-branes naturally produce asymmetric wormholes with
the LL-branes themselves materializing the wormhole “throats” and uniquely
determining the pertinent wormhole parameters.

5. LL-branes naturally couple to Kalb–Ramond bulk space-time gauge fields which
results in dynamical generation of space-time varying cosmological constant.

6. LL-branes naturally produce lightlike braneworlds (extra dimensions are unde-
tectable for observers confined on the LL-brane universe).

In our previous works we have also shown that:

7. LL-branes trigger sequences of spontaneous compactification/decompactification
transitions of space-time [18–20].

8. LL-branes remove physical singularities of black holes [15].

The crucial importance of LL-branes in wormhole physics is underscored by the
role they are playing in the self-consistent construction of the famous Einstein–
Rosen “bridge” wormhole in its original formulation [54]—historically the first
explicit wormhole solution. To this end let us make the following important
remark. In several standard textbooks, e.g. [52,55], the formulation of the Einstein–
Rosen “bridge” uses the Kruskal–Szekeres manifold, where the Einstein–Rosen
“bridge” geometry becomes dynamical (see [52], p. 839, Fig. 31.6, and [55], p. 228,
Fig. 5.15). The latter notion of the Einstein–Rosen “bridge” is not equivalent to the
original Einstein–Rosen’s formulation in the classic paper [54], where the space-
time manifold is static spherically symmetric consisting of two identical copies of
the outer Schwarzschild space-time region (r > 2m) glued together along the horizon
at r = 2m. Namely, the two regions in Kruskal–Szekeres space-time corresponding
to the outer Schwarzschild space-time region (r > 2m) and labeled (I) and (III)
in [52] are generally disconnected and share only a two-sphere (the angular part)
as a common border (U = 0,V = 0 in Kruskal–Szekeres coordinates), whereas in
the original Einstein–Rosen “bridge” construction [54] the boundary between the
two identical copies of the outer Schwarzschild space-time region (r > 2m) is their
common horizon (r = 2m)—a three-dimensional lightlike hypersurface. In [14, 17]
it has been shown that the Einstein–Rosen “bridge” in its original formulation [54]
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naturally arises as the simplest particular case of static spherically symmetric
wormhole solutions produced by LL-branes as gravitational sources, where the two
identical “universes” with Schwarzschild outer-region geometry are glued together
by a LL-brane occupying their common horizon—the wormhole “throat”. An
understanding of this picture within the framework of Kruskal–Szekeres manifold
was subsequently given in [56], which uses Rindler’s identification of antipodal
future event horizons.

One of the most interesting physical phenomena in wormhole physics is the well-
known Misner–Wheeler “charge without charge” effect [57]. Namely, Misner and
Wheeler have shown that wormholes connecting two asymptotically flat space-times
provide the possibility of existence of electromagnetically non-trivial solutions,
where without being produced by any charge source the flux of the electric field
flows from one universe to the other, thus giving the impression of being positively
charged in one universe and negatively charged in the other universe.

In our recent paper [58] we found an opposite “charge-hiding” effect in
wormhole physics, namely, that a genuinely charged matter source of gravity and
electromagnetism may appear electrically neutral to an external observer. This
phenomenon takes place when coupling self-consistently an electrically charged
LL-brane to gravity and a non-standard form of nonlinear electrodynamics, whose
Lagrangian contains a square-root of the ordinary Maxwell term:

L(F2) =−1
4

F2− f
2

√

−F2, F2 ≡ FμνFμν , (48)

f being a positive coupling constant. In flat space-time the theory (48) is known
to produce a QCD-like effective potential between charged fermions [59–64].
When coupled to gravity it generates an effective global cosmological constant
Λeff = 2π f 2 as well a nontrivial constant radial vacuum electric field f/

√
2 [65].

When in addition gravity and nonlinear electrodynamics (48) also interact self-
consistently with a charged LL-brane we found in [58] a new type of wormhole
solution which connects a non-compact “universe”, comprising the exterior region
of Schwarzschild-de Sitter black hole beyond the internal (Schwarzschild-type
horizon), to a Levi–Civita–Bertotti–Robinson-type “tube-like” “universe” with
two compactified dimensions (cf. [29–31]) via a wormhole “throat” occupied by
the charged LL-brane. In this solution the whole electric flux produced by the
charged LL-brane is pushed into the “tube-like” Levi–Civita–Bertotti–Robinson-
type “universe” and thus the brane is detected as neutral by an observer in the
Schwarzschild–de-Sitter “universe”.

In the subsequent recent paper [66] we succeeded to find a truly “charge-
confining” wormhole solution when the coupled system of gravity and non-standard
nonlinear electrodynamics (48) are self-consistently interacting with two separate
oppositely charged LL-branes. Namely, we found a self-consistent “two-throat”
wormhole solution where the “left-most” and the “right-most” “universes” are two
identical copies of the exterior region of the electrically neutral Schwarzschild–
de-Sitter black hole beyond the Schwarzschild horizon, whereas the “middle”
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“universe” is of generalized Levi–Civita–Bertotti–Robinson “tube-like” form with
geometry dS2× S2 (dS2 is the two-dimensional de Sitter space). It comprises the
finite-size intermediate region of dS2 between its two horizons. Both “throats”
are occupied by the two oppositely charged LL-branes and the whole electric flux
produced by the latter is confined entirely within the middle finite-size “tube-like”
“universe”.

One of the most important issues to be studied is the problem of stability of the
wormhole(-like) solutions with LL-branes at their “throats”, in particular, the above
presented LL-braneworld solutions in anti-de Sitter bulk space-times. The “horizon-
straddling” property (15) of LL-brane dynamics will impose severe restrictions on
the impact of the perturbations of the bulk space-time geometry.
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Generalized Bernoulli Polynomials and the
Casimir Effect in the Einstein Universe

Patrick Moylan

Abstract We consider various regularization schemes for calculating the
renormalized vacuum energy of a massless scalar field in the n-dimensional
Einstein universe. We also study a related problem, namely, the Casimir energy for
a massless scalar field in the n-dimensional Einstein universe subject to Dirichlet
boundary conditions on a sphere of maximal radius. In a recent work the author
used the representation theory of SO(2,n) to obtain exact results but not in closed
form for the second problem with n arbitrary. Here we make use of generating
functions for generalized Bernoulli polynomials and an extension of a result of
Srivastava and Todorov about generalized Bernoulli numbers (Srivastava, Todorov,
J. Math. Anal. Appl. 130:509–513, 1988) to obtain new results involving exact
expressions in closed form for both problems. We also consider expansions of
the generalized Bernoulli polynomials into Hurwitz zeta functions which enables
us to explicitly demonstrate the equivalence of the cutoff function technique with
the zeta regularization technique. Our method of approach confirms the results
of Herdeiro et al. (Class. Quant. Gravit. 25:165010, 2008) and Özcan (Class.
Quant. Gravit. 23:5531–5546, 2006). We conclude the paper by showing that useful
information about the analogous problem in n-dimensional Minkowski space can
also be obtained out of our analysis.
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1 Preliminaries on the Einstein Universe and Minkowski
Space in n Dimensions

Let Q(x) be the quadratic form associated with the line element ds2 = dx2
1 + dx2

0−
dx2

1− . . . − dx2
n. Consider G = SO0(2,n), the connected component of the group

of linear transformations of IRn+2 preserving the symmetric bilinear form which is
associated to Q(x) by polarization. We call G the n-dimensional conformal group
and we denote by G∼ = SO0(2,n)∼ the universal cover of G. Let G be the Lie
algebra of G. Consider the n+ 1 dimensional isotropic cone in IRn+2 defined by

C = {x ∈ IRn+2|Q(x) = 0}. (1)

Let IRn+2∗ and C∗ be the sets of nonzero elements in IRn+2 and C, respectively. Let
P ⊂ G be the stabilizer subgroup of e = e−1 + en. (e−1 = (1,0, . . . ,0) ∈ IRn+2

and en = (0,0, . . . ,1) ∈ IRn+2.) P is the n dimensional Poincaré group [1]. The orbit
of e under G is C∗ [1]. Hence C∗ ∼

= G/P.
Let Sn−1 denote the (n− 1)-sphere:

Sn−1 =
{

u = (u1,u2, . . ., un) ∈ IRn|u2
1 + . . . u2

n = 1
}

(2)

Define the upper and lower hemispheres of Sn−1 and the equator Σn−1 as

Sn−1
± = {s ∈ Sn−1 | un

>
< 0}, Σn−1 = ∂ Sn−1

+ = ∂ Sn−1
− , (3)

respectively. Spherical coordinates on Sn−1 are as follows:

u = (sin(ρ) ω ,cos(ρ)) ∈ Sn−1 with ω ∈ Sn−2. (4)

Let Pro j(IRn+2) be the real projective variety of all one dimensional subspaces in
IRn+2. We have the map π : X∗ −→Pro j(IRn+2), π(x) = x where x is the equivalence
class of x with the equivalence relation x ∼ λx (λ ∈ IR). Let M ⊂ Pro j(IRn+2) be
the image of C∗ under π . The above defined action of SO0(2,n)∼ on IRn+2 induces
an action of SO0(2,n)∼ on Pro j(IRn+2). Since C is stable under the SO0(2,n)∼
action, M is stable under the action of SO0(2,n)∼ on Pro j(IRn+2). SO0(2,n) and
therefore SO0(2,n)∼ are transitive on C∗, and hence SO0(2,n) and SO0(2,n)∼ are
transitive on M. M is naturally diffeomorphic to (S1×Sn−1)/ZZ2 where the ZZ2 action
is the product of antipodal maps on S1 and Sn−1. Denote S1× Sn−1 by M̄. K =
SO(2)×SO(n) acts transitively on M̄, and M̄ is the homogeneous space M̄

∼
= K/K0

where K0 = SO(1)×SO(n−1). The universal cover M̄∼ of M̄ is the (n dimensional)
Einstein universe. (See [2] for the definition in four dimensions.) Since M is the
conformal compactification of M0 [1], the Einstein universe is the universal cover
of the conformal compactification of Minkowski space.



Generalized Bernoulli Polynomials and the Casimir Effect in the Einstein Universe 233

2 Quantization of a Real Massless Scalar Field on M̃

The line bundle Ls(M) over M associated with the character λ → |λ |−s of IR∗ is the
bundle whose fibre over x is the set of all pairs (λx, |λ |s) ∈ C × CI, (s ∈ CI). Denote
by Γ s(M) the space of smooth sections of Ls(M). There is a unique isomorphism
between Γ s(M) and the space of smooth functions f : C∗ −→ CI which satisfy the
homogeneity condition f (λx) = |λ |−s f (x). Γ s(M) is an SO0(2,n)∼ module with
respect to the representation πs defined by (πs(g) f )(x) = f (g−1x) ( f ∈ Γ s(M),
g ∈ SO0(2,n), x ∈C∗, and g−1 x denotes the action of g−1 on x ∈ C∗). We denote
the associated representation of the Lie algebra so(2,n) by dπs.

Let Cs
K(M̄) be the space of all K finite elements of C∞(M̄) for which φ(w) =

(−1)sφ(−w) (w ∈ M̄). For s = −2 + n+2
2 the representation πs is reducible and

the space of φ ∈Cs
K(M̄) for which

{ ∂ 2

∂τ2 −ΔSn−1 +
(n− 2

2

)2}

φ = 0. (5)

defines a subrepresentation [3]. This subrepresentation splits into two irreducible
components, which are spaces of positive and negative energy massless, spin zero
fields on M̄ [4].

Let
H σ =

{

f ∈C∞(Sn−1)|ΔSn−1 f =−σ(σ + n− 2) f
}

. (6)

The spherical harmonics are

Yσ�{m}(u) = N(k, �,{m})sin �ρC
�+ n−2

2
σ−� (cosρ)Y {m}� (θ1,θ2, . ,θn−2) (7)

where θ1,θ2, . . . ,θn−2,ρ are spherical coordinates of the point u ∈ Sn−1, {m}
is used for the other labels and N(k, �,{m}) is the normalization factor for the
spherical harmonics. For φ a K-finite function of the form

φνσ�{m}(τ,u) = eiντYσ � {m}(u) (8)

which are in the massless subspace (i.e. the space of K-finite solutions of (5) we
have the spectral equation

ν2−σ(σ + n− 2)−
(n− 2

2

)2
= 0. (9)

We denote by Δ j the covariant derivative determined by the semi-Riemannian
metric g on M̃, then the energy operator for a massless, scalar field on M̃ is [5]:

H =

∫

Sn−1

1
2

{

n

∑
j=1

(Δ jφ)∗(Δ jφ)+
(n− 2

2R

)2|φ |2
}

du (10)
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where du = Rn−1 sinn−2(ρ)dρ ∧dω is the volume form on Sn−1, with dω denoting
the volume form on Sn−2 and φ in the massless subspace. R is the radius of the
Einstein universe which in the above was set equal to one. The standard quantization
of a real, massless scalar field on M̃ is carried out in a similar way to the quantization
of a real, massless scalar field on M0 [5]. Let c be the speed of light, h̄ Planck’s

constant and cσ =
(

h̄
Eσ

)1/2
then, for a point x ∈ M̃ with coordinates (t = R

c τ,ω ,ρ),
the quantum field φ(x) is given by:

φ(t,ω ,ρ) = ∑
σ ,�,{m}

cσ
{

aσ�{m}e−iEσ tYσ�{m}(ρ ,ω)+ a†
σ�{m}e

iEσ tY ∗σ�{m}(ρ ,ω)
}

(11)

where Eσ = cν
R is specified by (9), and the aσ�{m} and a†

σ�{m} satisfy the following
relations on the Fock space:

[

aσ�{m} , a†
σ ′�′{m′}
]

= δσ ,σ ′

δ�,�′δ{m},{m′},
[

aσ�{m} , aσ ′�′{m′}
]

=
[

a†
σ�{m},a

†
σ ′�′{m′}
]

= 0. (12)

By a calculation, which uses (5), we may rewrite the Hamiltonian as

H =
∫

Sn−1

1
2

{

(∂tφ)∗(∂tφ) − φ∗∂ 2
t φ
}

du. (13)

3 The Renormalized Vacuum Energy of a Massless Scalar
Field on M̃ and the Casimir Energy of a Massless Scalar
Field on M̃ with Dirichlet Boundary Conditions on Σn-1

We have
Sn−1
± =
{

v ∈ Sn−1 | ρ >
<
π
2

}

(14)

and

Σn−1 =
{

v ∈ Sn−1|ρ =
π
2

}

. (15)

We now determine the Casimir energy of a quantized massless, scalar field on M̃
subject to vanishing of the field on the equator Σn−1. Using (11)–(13) and some
results on spherical harmonics, we find for the vacuum expectation value of the
energy operator H given in (13) the following [6]:
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E =
h̄c
R

∞

∑
σ = 0

σ − � odd
�,{m}

√

σ(σ + n− 2)+
(n− 2

2

)2
, (16)

where the sum includes all multiplicities. Using SO(n− 1) representation theory to
account for multiplicity we may perform the finite sums over � to get for n > 3 (cf.
[6]):

E =
h̄c
4R

∞

∑
σ=0

(2σ + n− 2)
Γ(σ + n− 2)
Γ(σ)Γ(n− 1)

. (17)

For the much simpler n = 3 case the analysis is slightly different due to the
difference in multiplicities in this case and we leave it as an exercise to the reader
to work out the details in this case (cf. [6]). For the even simpler n = 2 case there

are no multiplicities and it is easy to see that (17) is replaced by E = h̄c
4R

∞
∑
σ=0

σ . For

computing the vacuum energy of a massless scalar field on M̃ the only difference
from the above analysis is that in (16) the restriction that σ − � is odd is removed,
and we leave it to the reader to work out the details for this very similar problem.

Equation (17) is infinite for all n and we need to regularize it. Standard
regularization techniques to extract the finite part of the energy, which is the Casimir
energy, are the point splitting method (coincidence limit) [7], cutoff function
method [8], zeta function regularization [9] and dimensional regularization [10].
Additionally, we have considered in [11,12] a q-regularization using representations
at roots of unity of a q deformation of the symmetry algebra of the problem. For the
cutoff function method we introduce an exponential damping function inside the
summation in (17) to get:

Ereg
1/2(α,n) =

h̄c
4R

∞

∑
σ=0

(2σ + n− 2)
Γ(σ + n− 2)
Γ(σ)Γ(n− 1)

e−
α
2R (2σ+n−2) =

=
h̄c
2n

d
dα

(

e−
α
2R

{

csch
α
2R

}(n−1)
)

. (18)

For the vacuum energy of a massless scalar field on M̃ a similar analysis yields:

Ereg(α,n) =
R

(n− 2)
h̄c

2n−2

d2

dα2

{

csch
α
2R

}(n−2)
. (19)
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4 Generalized Bernoulli Polynomials and the Casimir
Energy

It is clear from (18) that the Casimir interaction energy Ec
1/2(R,n) is the α

independent part of Ereg
1/2(α,n) and similarly the renormalized vacuum energy

Ec(R,n) of the Einstein universe is the α independent part of Ereg(α,n) (cf. [13]).
We obtain as an immediate consequence of (19) that Ec(R,n) vanishes for n odd
due to the fact that csch(x) is an odd function of x, which confirms a result in [14]
obtained in a much more complicated way. To extract the α independent part for
the other cases we relate the expressions in (18) and (19) to generating functions for
generalized Bernoulli polynomials. Generalized Bernoulli polynomials are defined
as

exz
(

z
ez− 1

)σ
=

∞

∑
n=0

B{σ}n (x)
zn

n!
(|z|< 2π ;1σ = 1) (20)

We have the following explicit formula for the generalized Bernoulli polynomials
[15]:

B{σ}n (x) =
n

∑
k=0

(

n
k

)(

σ + k− 1
k

)

k!
(2k)!

k

∑
j=0

(−1) j
(

k
j

)

j2k(x+ j)n−k

× 2F1[k− n,k−σ ;2k+ 1; j/(x+ j)] (21)

where 2F1[k− n,k−σ ;2k+ 1; j/(x+ j)] is the Gaussian hypergeometric function
(cf. [16]). Using some trigonometry and (20) we can rewrite (18) as

Ereg
1/2(α,n) =

h̄c
2

d
dα

(

∞

∑
m=0

B{n−1}
m

(

n− 2
2

)

αm−n+1

Rm−n+1m!

)

. (22)

and, in a similar way, we may rewrite (19) as follows:

Ereg(α,n) =
h̄c

n− 2
d2

dα2

(

∞

∑
m=0

B{n−2}
m

(

n− 2
2

)

αm−n+2

Rm−n+1m!

)

. (23)

Using these equations we can easily extract the α independent parts of Ereg
1/2(α,n)

and Ereg(α,n) to get:

Ec
1/2(R,n) =−

h̄c
2n!R

B{n−1}
n

(

n− 2
2

)

(24)

and

Ec(R,n) =
2h̄c

(n− 2)n!R
B{n−2}

n

(

n− 2
2

)

. (25)
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By using (21) we can express (24) and (25) as finite sums of terms involving
hypergeometric functions. It is straightforward to show that (24) and (25) agree with
the results in [14] and [17], which are only obtained for specific n values ranging
from n = 2 to n = 11. With a little more work we may even compare our (25) with
the nonzero cases of (44) in [18], which again is only given for specific n values,
namely for n = 2p+ 3, p = 0, 1, 2, 3, . . . .

For the zeta function regularization consider [16]

ζ (s,q) =
∞

∑
σ=0

1
(σ + q)s , Re s > 1, q 
= 0, −1, −2, . . . (26)

By analytic continuation we can extend ζ (s,q) to all s and desired q except for
s = 1. In [14], (17), for special values ranging from n = 2 to 12, is rewritten as
finite linear combinations of series of powers of σ or σ + 1

2 for n even or n odd,
respectively. This, according to [14], is the zeta regularization technique. In [19] it
is shown how to write a generalized Bernoulli polynomial as a finite sum of Hurwitz
zeta functions, which result enables us to explicitly demonstrate the equivalence of
the exponential cutoff method and the zeta regularization method. For the n= 4 case
we follow [19] to obtain

B{2}4 (c) =
4!
2!
{ζ (−3,c)+ (1− c)ζ (−2,c)}. (27)

Using this equation with c = n−2
2 together with the value of Ec(R,n) for n = 4 in 25

we find

Ec(R,n = 4) =
2h̄c

2 ·4!R
B{2}4 (1) =

h̄c
2R
ζ (−3,1). (28)

We leave it to the reader to follow Example 2.10 and Theorem 2.13 in [19] in order

to write B{n−δ}n (x) (δ = 1,2) as finite linear combinations of Hurwitz zeta functions
and establish the equivalence for the other cases.

We conclude with showing how our results on the Casimir energy for Dirichlet
boundary conditions on Σn−1 give useful information about the Casimir energy for
a massless, scalar field in n-dimensional Minkowski space with Dirichlet boundary
conditions on a sphere of radius R. Using (24) together with the requirement that
the Casimir energy be continuous as a function of the sphere’s radius, we conclude
that the Casimir energy with Dirichlet boundary conditions on spheres of slightly
smaller radii must also be positive. Apart from certain global differences, which, in
our case, do not matter, fields in M̄ approximate fields in M0 as R→ ∞. Since the
Einstein energy differs from the Minkowski energy by an amount that goes as 1

R , it
clear that the Casimir energy for a sphere of radius of cosmic extent in IRn−1 with
the field vanishing on the boundary of the sphere is approximately given by (24)
for its Casimir energy. Thus our method can be used to settle the important question
about the sign of the Casimir energy for massless fields in n dimensional Minkowski
space with Dirichet boundary conditions on spheres. In particular, for the physically
important case of n = 4, the Casimir energy is positive.
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From Singularities to Algebras to Pure
Yang–Mills with Matter

Tamar Friedmann

Abstract Since the advent of dualities in string theory, it has been well-known
that codimension 4 orbifold singularities that appear in extra-dimensional spaces,
such as Calabi–Yau or G2 spaces, may be interpreted as ADE gauge theories. As
to orbifold singularities of higher codimension, there has not been an analog of this
interpretation. Here we show how the search for such an analog led us from the
singularities to the creation of Lie Algebras of the Third Kind (“LATKes”). We
introduce an example of a LATKe that arises from the singularity C3/Z3, and prove
it to be simple and unique. We explain that the uniqueness of the LATKe serves as
a vacuum selection mechanism. We also show how the LATKe leads to a new kind
of gauge theory in which the matter field arises naturally and which is tantalizingly
close to the Standard Model of particle physics.

1 Introduction and Motivation

One of the outcomes of the “string revolution” of the mid-1990s was an inter-
pretation of ADE singularities in Calabi–Yau spaces as gauge theories with ADE
gauge groups [1, 2]. This interpretation arose via string dualities, and later on was
applied to the same singularities within manifolds of G2 holonomy in the context
of M-theory compactifications [3–5]. The usefulness of this interpretation lies in
the fact that it enhances our understanding of the four-dimensional theory that
is obtained when string/M theory is compactified on Calabi–Yau or G2 spaces
which have those ADE singularities. A particularly encouraging result of this
interpretation was the first manifestation from M-theory [6–8] of Georgi–Glashow
grand unification [9], where the SU(5) grand unified group is obtained from an A4
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singularity in a G2 manifold, and is then naturally broken by Wilson lines precisely
to SU(3)×SU(2)×U(1), the gauge group of the standard model of particle physics.

Singularities other than ADE have arisen in the same context [6], but an
analogous interpretation of those other singularities in terms of gauge groups
and gauge theories was not available. For example, take orbifold singularities of
codimension 6, of the form C3/Γ , where Γ is a discrete finite subgroup of SU(3);
these are direct generalizations of ADE singularities which are codimension 4
orbifold singularities of the form C2/Γ , where Γ is a discrete finite subgroup of
SU(2). For the codimension 6 singularities we ask: what is the four-dimensional
physical theory that arises from string/M theory compactifications on CY or G2

manifolds that have these codimension 6 singularities?
As it turns out, string dualities do not provide for a generalization of the interpre-

tation of codimension 4 orbifold singularities to one for codimension 6 orbifold
singularities. Instead, we address this question by turning to the mathematical
roots of these dualities. Our approach is to analyze the mathematical aspects of
codimension 4 singularities in a way that will allow us to generalize to codimension
6, and then obtain an interpretation of the results for the physical theory.

On the mathematical side, we introduce a new set of relations, which we call
the Commutator-Intersection Relations, that illuminate the connection between
codimension 4 singularities and Lie algebras. These relations pave the way to
construct Lie Algebras of the Third Kind, or LATKes, a kind of algebras that arise
from codimension 6 orbifold singularities. We also learn and prove the existence
and uniqueness of a simple LATKe.

On the physics side, we discover a new kind of Yang–Mills theory, called
“LATKe Yang–Mills,” which arises from the LATKe. Unlike any known Yang–
Mills theory, the LATKe Yang–Mills theory in its purest form automatically contains
matter. We also propose that the uniqueness of the simple LATKe is a vacuum
selection mechanism. The selected vacuum theory is an SU(2)× SU(2) gauge
theory with matter in the (2,2) representation, and the corresponding singularity
is C3/Z3. The algebra su(2)× su(2) is protected by the LATKe from being broken.
The selected singularity C3/Z3 is one of those which arose in the G2 spaces of
[6], and which at the time we put on hold in anticipation of the outcome of this
investigation.

This paper is based on [10]; due to space constraints, we leave out many details
and references which may be found there.

2 The Commutator-Intersection Relations (CIRs)

Let C2/Γ be an orbifold singularity of codimension 4, with Γ a discrete, finite
subgroup of SU(2); the groups Γ were studied by Klein [11], who found them to
have an ADE classification. Work of DuVal and of Artin [12–14] then provided
a correspondence between these singularities and Lie algebras. We now present the
correspondence in a way that will lead us to a new relation between intersection



From Singularities to Algebras to Pure Yang–Mills with Matter 241

numbers of the blow-ups of the singularities and commutators of the Lie algebras.
These relations, which we name the Commutator-Intersection Relations, will then
be generalized to the C3/Γ case.

We proceed via an example. Let Γ = Zn ⊂ SU(2), which corresponds to An−1 in
the ADE classification, be generated by the SU(2) matrix

(

e2π i/n 0
0 e−2π i/n

)

. (1)

Its action on (x,y) ∈ C2 is given by (x,y) �−→ (e2π i/nx,e−2π i/ny). This action is free
except at the origin where C2/Zn has a singularity. The blow-up of this singularity
has an exceptional divisor made up of n− 1 spheres S2 that intersect as follows:

��� � � � ��
︸ ︷︷ ︸

n−1

When the spheres are replaced by nodes and their intersections are replaced by
edges, we obtain the Dynkin diagram of the Lie algebra sln−1:

•−•−• · · · •−• (2)

Furthermore, the intersection numbers between pairs of spheres of the exceptional
divisor are exactly minus of the entries of the Cartan matrix of the Lie algebra:

Ii j =−Ci j i, j = 1, . . . ,n− 1. (3)

As shown in the work of Duval and of Artin, this relation between the Zn singularity
and the sln−1 Lie algebra generalizes to a correspondence between all the ADE
singularities and ADE Lie algebras: in all cases, the blow-up of the ADE singularity
corresponds to the Dynkin diagram of the ADE Lie algebra, and (3) holds.

Using the above correspondence, we now show how to obtain a direct relation
between the intersection numbers of the blow-up of the ADE singularity and the
commutators of the ADE Lie algebras.

Recall that a complex simple Lie algebra is generated by k triples {Xi,Yi,Hi}k
i=1

with their commutators determined by the following relations:

[Hi,Hj] = 0 ; [Xi,Yj] = δi jHj;

[Hi,Xj] =Ci jXj ; [Hi,Yj] =−Ci jYj;

ad(Xi)
1−Ci j (Xj) = 0 ; ad(Yi)

1−Ci j(Yj) = 0. (4)

Here, the Hi form the Cartan subalgebra, the Xi are simple positive roots, the Yi are
simple negative roots, k is the rank of the Lie algebra, Ci j is the Cartan matrix, and
ad(Xi)(A) = [Xi,A]. These equations are the familiar Chevalley–Serre relations.
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Using (3), we can replace Ci j in (4) by −Ii j, giving a new set of relations:

[Hi,Hj] = 0 ; [Xi,Yj] = δi jHj;

[Hi,Xj] =−Ii jXj ; [Hi,Yj] = Ii jYj;

ad(Xi)
1+Ii j (Xj) = 0 ; ad(Yi)

1+Ii j (Yj) = 0. (5)

These are the CIRs relations, which are central in what follows. They demon-
strate that the intersection numbers of the exceptional divisor completely determine
the commutators of the corresponding Lie algebra.

3 Lie Algebras of the Third Kind

Here we generalize the CIRs relations to the case of codimension 6 orbifold
singularities.

For codimension 2n singularities, n ≥ 2, the components of the exceptional
divisor are (2n− 2)-cycles, and the intersection of a pair of those has dimension

dim(C1∩C2) = dimC1 + dimC2− 2n = 2n− 4. (6)

Therefore, when n = 2 (the codimension 4 case), dimC1 = dimC2 = 2 and a
pair of cycles intersect in a zero-dimensional space, yielding a number. But for
codimension 6 orbifolds, the components Ci of the exceptional divisor are 4-cycles,
and the intersection of any pair C1,C2 of 4-cycles does not yield a number but a
two-dimensional space:

dim(C1∩C2) = 4+ 4− 6= 2. (7)

To obtain intersection numbers, we consider instead intersections of triples of 4-
cycles. By iterating (6), we see that such intersections are zero-dimensional. They
yield intersection numbers Ii jk with three indices.

The triple intersection numbers enable us to generalize the CIRs to the codimen-
sion 6 case. Take the second line of (5)

[Hi,Xj] =−Ii jXj ; [Hi,Yj] = Ii jYj . (8)

Using Ii jk, we may generalize this to

[Ai,B j,Xk] =−Ii jkXk ; [Ai,B j,Yk] = Ii jkYk . (9)

The Ai, B j, and Xk are as yet not defined. However, it is now clear how to generalize
the original correspondence of Duval and of Artin to the codimension 6 case: there
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is a new algebraic object that takes the place of Lie algebras, and it involves a
commutator of three objects.

Definition 1. A Lie Algebra of the Third Kind (a “LATKe”) L is a vector
space equipped with a commutator of the third kind, which is a trilinear
anti-symmetric map

[ · , · , · ] :Λ3L→ L (10)

that satisfies the Jacobi identity of the third kind (or the LATKe Jacobi identity):

[X ,Y, [Z1,Z2,Z3]] = [[X ,Y,Z1],Z2,Z3]+ [Z1, [X ,Y,Z2],Z3]+ [Z1,Z2, [X ,Y,Z3]] (11)

for X ,Y,Zi ∈ L.

We can now easily generalize this definition to an algebra that would correspond to
codimension 2n orbifold singularities for any n≥ 2:

Definition 2. A Lie Algebra of the n-th Kind (a “LAnKe”) L is a vector space
equipped with a commutator of the n-th kind, which is an n-linear, totally antisym-
metric map

[·, ·, , ·] : ∧nL→ L , (12)

that satisfies the Jacobi identity of the n-th kind:

[X1, . . .Xn−1, [Z1, . . .Zn]] =
n

∑
i=1

[Z1, . . . , [X1, . . .Xn−1,Zi], . . .Zn] , (13)

for Xi,Zj ∈ L.

Since our original physical motivation involved singularities in the extra-dimensional
manifolds of string and M-theory, and those are at most seven-dimensional, we will
concentrate on codimension 6 orbifolds rather than higher dimensional ones.

4 Example of a LATKe

Before we go any further, we construct an explicit example of a LATKe arising
from a singularity. We construct it directly from the singularity C3/Z3, where the
Z3 action on C3 is given by

ε : (x,y,z) �−→ (εx,εy,εz) , where ε3 = 1,(x,y,z) ∈ C3. (14)

The blow-up at the origin of this singularity is the 4-cycle P2. Recall that in the
codimension-4 case, each component of the exceptional divisor corresponds to a
node in the Dynkin diagram of the corresponding Lie algebra, and therefore to a
simple root. Here too, the P2 corresponds to a “root” of the LATKe, which we now
define.
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Recall that for a Lie algebra g, a root is an element of the dual space of the Cartan
subalgebra h, where H ∈ h acts as an operator on g via

H : Xα �−→ [H,Xα ] = α(H)Xα , (15)

where Xα ∈ g is a root vector. For a LATKe, there is no natural action of a
subalgebra. However, given a subalgebra hL ⊂ L, there is a natural action on L
of a pair H1,H2 ∈ hL given by

H1∧H2 : X �−→ [H1,H2,X ] , (16)

where X ∈ L. Therefore, if we define a Cartan subalgebra hL to be a maximal
commuting subalgebra of L such thatΛ2hL acts diagonally on L, then we can define
a root as follows:

Definition 3. Let L be a LATKe and let hL be a Cartan subalgebra of L. A root α
of L is a map in the dual space of Λ2hL:

α :Λ2hL −→C . (17)

Since we have a single cycle in our exceptional divisor (i.e. the P2), our root space
is one-dimensional. From the definition of a root, we see this means that the Cartan
subalgebra is two-dimensional. So we have, so far, four elements in the LATKe: H1

and H2 (making up the Cartan subalgebra), a positive root X , and a negative root Y .
We also have

[H1,H2,X ] = α(H1∧H2)X , (18)

[H1,H2,Y ] = −α(H1∧H2)Y , (19)

where α is a simple root. Note that α(H1 ∧H2) = −I111, the triple intersection of
the exceptional divisor of our singularity, but we can normalize H1 and H2 so that

[H1,H2,X ] = X ;

[H1,H2,Y ] = −Y . (20)

We have but two commutators left to determine: [Hi,X ,Y ], i = 1,2. To do so, we use
the LATKe Jacobi identity, which can be shown to require, among other things, that
[Hi,X ,Y ] ∈ hL. We also restrict our attention to “simple” LATKes, which we now
define.

Definition 4. An ideal of L is a subalgebra I that satisfies

[L,L,I ]⊂I . (21)
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Definition 5. A LATKe is simple if it is non-Abelian and has no non-trivial ideals.

Now our example of a simple LATKe, which we name L3, is fully determined as
follows:

Example 1. The simple LATKe L3 corresponding to the singularity C3/Z3, with
Z3 action given by (14), is four dimensional, with commutators

[H1,H2,X ] = X , [H1,H2,Y ] =−Y,

[H1,X ,Y ] = H2, [H2,X ,Y ] = H1,

where H1,H2 form the Cartan subalgebra hL3 and X ,Y are positive and negative
root vectors, respectively.

One may easily check that the LATKe Jacobi identity is satisfied. Note that with an
appropriate change of basis [10], one can see that this algebra is given by the cross
product in four dimensions, or equivalently by the algebra of differential forms in
four dimensions with the triple commutator given by the Hodge dual of the exterior
product of three 1-forms.

5 Classification of Simple LATKes

Having constructed a LATKe from a codimension 6 orbifold singularity, we turn to
the task of classifying all simple finite dimensional LATKes. We present here only
a brief sketch of the proof of the classification; the complete proof and any omitted
details can be found in [10].

Let Der(L) = gL be the Lie algebra of derivations of L, consisting of operators
D satisfying

D[X ,Y,Z] = [DX ,Y,Z]+ [X ,DY,Z]+ [X ,Y,DZ] , (22)

with the Lie bracket
[D1,D2] = D1D2−D2D1 . (23)

Then L itself is a representation space for gL. In fact, it can be shown that if L is
simple, it is irreducible and faithful as a representation of gL, so gL is reductive.
Further, it can be shown that the center of gL is trivial, leading to:

Lemma 1. If L is simple then gL is semi-simple.

The surjective morphism of representations of gL

ad :Λ2L−→ gL (24)

indicates a close relation between weights of Λ2L and roots of gL. By studying this
morphism and its kernel we obtain an equation relating highest roots of gL to the
highest weight of L:
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Lemma 2. Let θ be a highest root of gL, and let Λ be the highest weight of L as a
representation of gL. Then

θ = 2Λ −α (25)

for some simple positive root α of gL.

The two lemmas put together mean that for a Lie algebra g to serve as gL for
some LATKe L, it must be semisimple and it must admit a faithful, irreducible
representation whose highest weight Λ satisfies (25). Interestingly, the condition in
(25) was studied in an entirely different context by Kac [15].

For our purposes, the condition in (25) is necessary but not sufficient; an
additional requirement is that the map ω : Λ2V → g of representations of g must
yield a LATKe commutator via

[v1,v2,v3] = (ω(v1∧ v2)) · v3 , vi ∈V, (26)

where the expression on the right hand side must be antisymmetric in all three
variables.

As it happens, rather surprisingly, there is only one Lie algebra that satisfies all
these conditions. It is sl2× sl2, the Lie algebra of derivations of our example L3. So
we have

Theorem 1. There is precisely one simple LATKe, namely L3 of Example 1.

6 The Physics of LATKes

Having constructed a LATKe directly from a codimension 6 singularity, and having
discovered its uniqueness, we now turn to two physical applications: first, we
describe LATKe gauge theory, which is a new kind of gauge theory that arises from
codimension 6 orbifold singularities; and second, we interpret the very uniqueness
of the LATKe as a new kind of vacuum selection mechanism for the string
landscape.

6.1 LATKe Gauge Theory

In analogy with the traditional treatment of Lie algebras and their applications in
particle physics, we define a representation for LATKes. We begin with an example:
the adjoint representation. This is a map that utilizes the commutator in a natural
way:

ad : L∧L−→ End(L) (27)

ad(X ∧Y ) : Z �−→ [X ,Y,Z] . (28)
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The map ad satisfies the condition

[ad(X1∧X2),ad(X3∧X4)] = ad([X1,X2,X3]∧X4)+ ad(X3∧ [X1,X2,X4]), (29)

which is equivalent to the LATKe Jacobi identity. If we generalize (27) and (29), we
have

Definition 6. A representation of a LATKe L is a map

ρ :Λ2L−→ End(V ) (30)

for some vector space V , subject to the condition

[ρ(X1∧X2),ρ(X3∧X4)] = ρ([X1,X2,X3]∧X4)+ρ(X3∧ [X1,X2,X4]). (31)

In traditional Yang–Mills theory, one studies matter fields ψ in certain representa-
tions ρ of the gauge group or Lie algebra, and the Yang–Mills Lagrangian contains
terms in which the fields are transformed according to those representations. For the
LATKe, we are able [10] to construct an analogous system, using the definition of
representations of a LATKe rather than representations of an ordinary Lie algebra.

We end up with more than we could have hoped for: in conventional Yang Mills
theory, we have what is known as “pure Yang–Mills theory,” where the gauge fields,
which live in the adjoint representation of the gauge group, are the only fields. There
are no matter fields—that is, no field ψ appears—and the Lagrangian consists only
of the kinetic term of the gauge field. In general, for physical theories to include
matter fields they typically have to be put in by hand.

But in the LATKe Yang–Mills theory, this is not the case. Built into the theory is
not just the adjoint representation Λ2L of gL, but also the adjoint representation of
the LATKe itself, i.e. L. This representation is in fact a matter representation of gL
and an inseparable part of pure LATKe Yang–Mills theory.

Therefore, unlike pure Yang–Mills theory, pure LATKe Yang–Mills theory
automatically includes matter, without the need to put it in by hand. The fact that
matter, which must of course be included in any physical theory, is intrinsic to
LATKe gauge theory makes it all the more compelling.

6.2 Uniqueness of the LATKe as a Vacuum Selection
Mechanism

One of the central outcomes of the “string revolution” of the mid-1980s [16–18]
was that string theory came along with gauge theories. At the time, the gauge
theories that arose were far larger than the Standard Model gauge group: anomaly
cancellation dictated they may be only E8×E8 or SO(32). However, the fact that
gauge theories appeared at all was a triumph for string theory, as it gave hope
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for applications of string theory to the real world. It led physicists to believe for
many years that upon searching further, the Calabi–Yau or G2 manifold that results
precisely in the Standard Model of Particle Physics would be found.

After a while it became apparent [19] that there is a staggering number of
possible CY or G2 manifolds, forming what is now known as the “string landscape.”
Therefore, the idea of a “vacuum selection mechanism,” which is some principle that
would single out one vacuum or at least narrow down the choices considerably, has
been sought after.

The uniqueness of the LATKe is a vacuum selection mechanism. The selected
compactification space is a Calabi–Yau or G2 space with a C3/Z3 singularity, and
the selected vacuum theory is a supersymmetric su(2)× su(2) gauge theory with
matter in the (2,2) representation.

While it has been accepted that no vacuum selection mechanisms have as yet
been proposed [19], in retrospect we claim that before the present work, there
did exist a vacuum selection mechanism: anomaly cancellation. It selected a string
theory with gauge group either E8×E8 or SO(32).

While neither the uniqueness of the LATKe nor anomaly cancellation actually
selects the standard model itself, our unique, simple LATKe Yang–Mills is tantaliz-
ingly close to the standard model.
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On Modified Gravity

Ivan Dimitrijevic, Branko Dragovich, Jelena Grujic, and Zoran Rakic

Abstract We consider some aspects of nonlocal modified gravity, where nonlocal-
ity is of the type RF (�)R. In particular, using Ansatz of the form �R = cRγ , we
find a few special cosmological solutions for the spatially flat FLRW metric. There
are singular and nonsingular bounce solutions. For late cosmic time, scalar curvature
R(t) is in low regime and scale factor a(t) is decelerated.

1 Introduction

General theory of relativity was founded by Einstein at the end of 1915 and has
been successfully verified as modern theory of gravity for the Solar System. It is
done by the Einstein equations of motion for gravitational field: Rμν − 1

2 Rgμν =

κTμν ,which can be derived from the Einstein–Hilbert action S= 1
16πG

∫ √−gRd4x+
∫ √−gLmatd4x.

Attempts to modify general relativity started already at its early times and it was
mainly motivated by research of possible mathematical generalizations. Recently
there has been an intensive activity in gravity modification, motivated by discovery
of accelerating expansion of the Universe, which has not yet generally accepted
theoretical explanation. If general relativity is theory of gravity for the Universe as
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a whole then it has to be some new kind of matter with negative pressure, dubbed
dark energy, which is responsible for acceleration. However, general relativity has
not been verified at the cosmic scale (low curvature regime) and dark energy has not
been directly detected. This situation has motivated a new interest in modification
of general relativity, which should be some kind of its generalization (for a recent
review of various approaches, see [1], and for renormalizability [2]). However there
is not a unique way how to modify general relativity. Among many approaches there
are two of them, which have been much investigated: (1) f (R) theories of gravity
(for a review, see [3]) and (2) nonlocal gravities (see, e.g. [4, 5] and references
therein).

In the case of f (R) gravity, the Ricci scalar R in the action is replaced by a
function f (R). This is extensively investigated for the various forms of function
f (R). We have had some investigation when f (R) = Rcosh αR+β

γR+δ and, after
completion of research, the results will be presented elsewhere.

In the sequel we shall consider some aspects of nonlocal gravity. Nonlocality
means that Lagrangian contains an infinite number of space-time derivatives, i.e.
derivatives up to an infinitive order in the form of d’Alembert operator �. In string
theory nonlocality emerges as a consequence of extendedness of strings. Since string
theory contains gravity as well as other kinds of interaction and matter, it is natural
to expect nonlocality not only in the matter sector but also in geometrical sector of
gravity. On some developments in cosmology with nonlocality in the matter sector
one can see, e.g., [6–9] and references therein. In the next section we shall discuss
a nonlocal modification of only geometry sector of gravity and its corresponding
cosmological solutions (on nonlocality in both sectors, see [10]).

2 On a Nonlocal Modification of Gravity

Under nonlocal modification of gravity we understand replacement of the Ricci cur-
vature R in the action by a suitable function F(R,�), where �= 1√−g∂μ

√−ggμν∂ν .
Inspired by [5] (for recent developments, see [11, 12]), we consider nonlocal

Lagrangian without matter in the form

S =

∫

d4x
√−g
( R

16πG
+

c
2

RF (�)R
)

, (1)

which was proposed in [13], where F (�) =
∞

∑
n=0

fn�n and c is a constant. By

variation of the Lagrangian (1) with respect to metric gμν one obtains the equation
of motion for gμν
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(1+ 16πGcF (�)R)Gμν = 4πGc
+∞

∑
n=1

fn

n−1

∑
l=0

(∂μ�lR∂ν�n−1−lR

+ ∂ν�lR∂μ�n−1−lR− gμν(g
ρσ∂ρ�lR∂σ�n−1−lR+�lR�n−lR))

− 4πGgμνcRF (�)R+ 16πGc(Dμ∂ν − gμν�)F (�)R. (2)

The trace of (2) is also a useful formula and it is

+∞

∑
n=1

fn

n−1

∑
l=0

(∂μ�lR∂ μ�n−1−lR+ 2�lR�n−lR)+ 6�F (�)R =
R

8πGc
. (3)

We mainly use the spatially flat (homogeneous and isotropic) Friedmann–
Lemaı̂tre–Robertson–Walker (FLRW) metric ds2 =−dt2+a2(t)

(

dx2 +dy2+dz2
)

.
Investigation of (2) and finding its general solution is a very difficult task. Hence it
is important to find some special solutions. To this end some Ansätze of the form
�R = cRγ seem to be useful. In the sequel we construct a few such Ansätze.

2.1 Case � R = r R

At the beginning, to illustrate method, we investigate Ansatz of the simplest form:
�R = rR. For this Ansatz, where r is a constant, we have

�nR = rnR, F (�)R = F (r)R. (4)

In the FLRW metric �=−∂ 2
t − 3H∂t and Ansatz �R = rR becomes

R̈+ 3HṘ+ rR = 0, (5)

where H = ȧ
a is the Hubble parameter. Replacing

R = 6(Ḣ + 2H2) (6)

in (5) we get ...
H + 4Ḣ2+ 7HḦ + 12H2Ḣ + r(Ḣ + 2H2) = 0. (7)

A solution of this equation is

H(t) =
1

2t +C1
. (8)
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This implies scale factor a(t)=C2
√|2t +C1| and acceleration ä=− C2

|2t+C1|
√
|2t+C1|

,

where C2 > 0,C1 ∈ R. Calculation of R by expression (6) gives R = 0 and it is
consistent with other formula containing R, including (3).

It is natural to take constant C1 = 0, because it yields symmetrical solutions with
respect to t = 0. Result a(t) = C2

√|2t| is an example of the symmetric singular
bounce solution.

Note that the above solutions hold also when r = 0 in the Ansatz, i.e. �R = 0.
More general Ansatz �R = rR+ s was considered in [5].

2.2 Case � R = q R2

The corresponding differential equation for the Hubble parameter is

...
H + 4Ḣ2+ 7HḦ + 12H2Ḣ + 6q(Ḣ2+ 4H2Ḣ + 4H4) = 0 (9)

with solution

Hη(t) =
2η+ 1

3
1

t +C1
, qη =

6(η− 1)
(2η+ 1)(4η− 1)

, η ∈R. (10)

Another solution is H = 1
2

1
t+C1

with arbitrary coefficient q, what is equivalent to the
Ansatz �R = rR with R = 0.

The corresponding scalar curvature is given by

Rη =
2
3
(2η+ 1)(4η− 1)

(t +C1)2 , η ∈ R. (11)

It is interesting that �nRn = 0 when n ∈ N. This can be shown by mathematical
induction by the following way. It is evident that �R1 = 0. Suppose that �nRn = 0,
then �n+1Rn+1 =��nRn +

16n+10
9 �n�R1 = 0.

This �nRn = 0 property simplifies the equations considerably. For this special
case of solutions trace equation (3) effectively becomes

n+1

∑
k=1

fk

k−1

∑
l=0

(∂μ�lR∂ μ�k−1−lR+ 2�lR�k−lR)+ 6�F (�)R =
R

8πGc
, (12)

where

F (�)R =
n−1

∑
k=0

fk�kR. (13)

In particular case n = 2 the trace formula becomes
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36
35

f0R2 + f1(−Ṙ2 +
12
35

R3)+ f2(−24
35

RṘ2 +
72

1225
R4)+ f3(− 144

1225
R2Ṙ2)

=
R

8πGc
. (14)

2.3 Case �nR = cnRαn+β

We consider1 another Ansatz of the form �nR = cnRαn+β , where α and β are
constants, and n ∈ N. From the equalities

�n+1R =�cnRαn+β

= cn((αn+β )Rαn+β−1�R− (αn+β )(αn+β− 1)Rαn+β−2Ṙ2)

= cn(αn+β )(c1Rαn+α+2β−1− (αn+β − 1)Rαn+β−2Ṙ2) = cn+1Rαn+α+β

(15)

we get the following conditions:

αn+α+ 2β − 1 = αn+α+β , (16)

Ṙ2 = Rα+β+1, (17)

cn+1 = cn(αn+β )(c1−αn−β + 1). (18)

Equation (16) implies that β is equal to 1. Sequence cn is defined by (18) and can
be explicitly written (β = 1) as

cn = c1

n−1

∏
k=1

(αk+ 1)(c1−αk), (19)

where c1 is an arbitrary constant. General solution of (17) is of the form

R(t) = 22/α (α (±t− d1))
−2/α , d1 ∈ R (20)

with arbitrary constant d1.

Case α = 1. In the case α = 1 the coefficients cn are given by cn = (n!)2
(c1

n

)

, where
c1 is the first element. Putting α = 1 into (20) one obtains

R(t) =
4

(t− d1)2 . (21)

The corresponding expressions for H(t) and a(t) are:

1We thank A.S. Koshelev for suggestion of Ansatz �nR∼ Rn+1.
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2 2 4
t

4

6

8

10

12

14

a t

Fig. 1 Scale factor a(t) given by (23) for d1 =−2.5, d2 = 2 and d3 = 1

H(t) =

(

3+
√

57
)

d2 (t− d1)

√

19
3 −√57+ 3

12(t− d1)

(

d2 (t− d1)

√

19
3 + 1

) , (22)

a(t) = d3 (t− d1)
3−√57

12

√

d2 (t− d1)

√

19
3 + 1, (23)

where d1, d2, d3 are arbitrary real constants (Fig. 1).
The function a(t) has a vertical asymptote at the point t = d1. If d1 < 0 then

a(t) > 0 for all t > 0. For large values of t, a(t) is asymptotically equivalent to

t
1
2

√

19
3 + 1

12 (3−√57) ≈ t0.879.

ä(T ) =−
d3T

1
12(−21−√57)

(

(√
57− 5
)

d2
2T 2
√

19
3 − 48d2T

√

19
3 −√57− 5

)

24

(

d2T

√

19
3 + 1

)3/2
, (24)

where T = t−d1. The expansion is accelerated for d2(t−d1)

√

19
3 < 24√

57−5
+ 4

√
38√

57−5
and it is decelerated otherwise.

Note that this Ansatz �nR = cnRn+1 for n = 1 coincides with Ansatz �R =

qηR2, when η = −1±√57
8 , because then one can take c1 = qη = −9±√57

8 . In this
particular case they have the same scalar curvature R and the same Hubble

parameter for d2 = 0. However, apart from this special case η = −1±√57
8 , constant

qη is different of c1 =
−9±√57

8 .

Case α= 1
2 . Putting α = 1

2 into (20) we obtain
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5 10 15 20
t

2.5

3.0

3.5

4.0

4.5

5.0

5.5

a(t)

.

Fig. 2 Scale factor a(t) given by (27) for d1 =
8√
3

, d2 = 2 and d3 =
1
10

R(t) =
256

(t + d1)4 . (25)

From (6) we obtain

H(t) =
−512

√
3d2e

32√
3(d1+t) + 3(t + d1)

(

32d2e
32√

3(d1+t) +
√

3

)

+ 48

6(d1 + t)2

(

32d2e
32√

3(d1+t) +
√

3

) (26)

and then

a(t) = d3e
− 8√

3(d1+t)
√

d1 + t

√

32d2e
32√

3(d1+t) +
√

3, (27)

where d1, d2, d3 are some real constants (Fig. 2).
The corresponding acceleration is

ä(t) =
d3e

− 8√
3(d1+t)

12(d1 + t)7/2

(

32d2e
32√

3(d1+t) +
√

3

)

3/2

(

1024d2
2 e

64√
3(d1+t)

×
(

−6d1t− 3d2
1 + 32

√
3d1− 3t2+ 32

√
3t + 256

)

− 3
(

6d1t + 3d2
1 + 32

√
3d1 + 3t2 + 32

√
3t− 256

)

− 192
√

3d2e
32√

3(d1+t) (d1 + t− 16)(d1 + t + 16)
)

. (28)
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The acceleration is positive for t < t0 and negative for t > t0, where t0 is the zero of
ä(t). For large values of t, ä(t) converges to 0.

Case α=2 . In the case α = 2 only one integration can be performed and it gives

H(t) =
−√3d2I1

(

2
√

t−d1√
3

)

− d2
√

t− d1I0

(

2
√

t−d1√
3

)

− d2
√

t− d1I2

(

2
√

t−d1√
3

)

4
√

3(t− d1)
(

K1

(

2
√

t−d1√
3

)

− d2I1

(

2
√

t−d1√
3

))

+
−√t− d1K0

(

2
√

t−d1√
3

)

+
√

3K1

(

2
√

t−d1√
3

)

−√t− d1K2

(

2
√

t−d1√
3

)

4
√

3(t− d1)
(

K1

(

2
√

t−d1√
3

)

− d2I1

(

2
√

t−d1√
3

)) . (29)

Ii and Ki are modified Bessel functions of the first and the second kind, respectively,
and d1, d2 are real constants.

Case α =−2. For α =−2 we obtain expression for H(t) involving Airy functions

H(t) =

3
√

− 1
3

(

d2Ai′
(

3
√

− 1
3 (t− d1)

)

+Bi′
(

3
√

− 1
3 (t− d1)

))

2

(

d2Ai

(

3
√

− 1
3 (t− d1)

)

+Bi

(

3
√

− 1
3 (t− d1)

)) . (30)

3 Concluding Remarks

In this article we presented three Ansätze, two of them are quite new and can be
adjusted so that �nR = 0. These two Ansätze have solutions for scalar curvature
of the form R = C2

(t+C1)2 , which satisfy all but extended Einstein equations (2)

and related trace formula (3). It is a consequence of the quadratic form in R of
the Lagrangian (1). However these Ansätze are promising for some new nonlocal
Lagrangians, which investigation is in progress.

It is worth mentioning that all the above Ansätze contain solution R = 0, which
satisfies all (including (2) and (3)) equations with curvature constant k = −1.
Namely, for R = 0, (2) reduces to Gμν = 0 and it gives

ä
a
= 0,

( ȧ
a

)2
+

k
a2 = 0. (31)

If k = 0 one has only static solution a = constant. However, when k = −1 then
a(t) = |t| and it contains a crunch preceding to a big bang.

Above considered Ansätze may be also useful in analysis of some other nonlocal
gravity and cosmology models. Further investigation of nonlocality governed by the
Riemann zeta function in p-adic strings dynamics [14] extends interesting cases and
can give new insights.
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Part IV
Quantum Groups and Related Objects



The q-Wakimoto Realization
of the Superalgebras Uq(̂sl(N|1))
and Uq,p(̂sl(N|1))

Takeo Kojima

Abstract We give bosonizations of the superalgebras Uq(̂sl(N|1)) and Uq,p

(̂sl(N|1)) for an arbitrary level k ∈ C. We introduce the submodule by the ξ -η
system, that we call the q-Wakimoto realization.

1 Introduction

Bosonizations are known to be a powerful method to construct correlation functions
in not only conformal field theory [1], but also exactly solvable lattice models
[2]. The quantum algebra Uq(g) and the elliptic algebra Uq,p(g) play an important
role in exactly solvable lattice models. The level parameter k plays an important
role in representation theory for Uq(g) and Uq,p(g). Bosonizations for an arbitrary
level k are completely different from those of level k = 1. In the case for level
k = 1, bosonizations have been constructed for quantum algebra Uq(g) in many

cases g = (ADE)(r), (BC)(1), G(1)
2 , ̂sl(M|N), osp(2|2)(2) [3–10]. Using the dressing

method developed in non-twisted algebra [11] and twisted algebra A(2)
2 [12], we

have bosonizations of the elliptic algebra Uq,p(g) for g = (ADE)(1),(BC)(1),G(1)
2

and A(2)
2 . In the case of an arbitrary level k, bosonizations have been constructed

only for Uq(̂sl(N)) [13–15], Uq(̂sl(2|1)) [16], Uq,p(̂sl(N)) [11], and Uq,p(̂sl(2|1))
[17]. In this paper we give a bosonization of the quantum superalgebra Uq(̂sl(N|1))
for an arbitrary level k [18]. Using the dressing method developed in [17], we
give a bosonization of the quantum superalgebra Uq,p(̂sl(N|1)) for an arbitrary
level k. The level k bosonizations on the boson Fock space of Uq(̂sl(N)) and

T. Kojima (�)
Graduate School of Science and Engineering, Yamagata University,
Jonan 4-3-16, Yonezawa 992-8510, Japan
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Uq(̂sl(N|1)) [15, 16, 18] are not irreducible realizations. The construction of the
irreducible highest weight module V (λ ) is nontrivial problem. We recall the non-
quantum algebra ̂sl(2) case [19]. The irreducible highest weight module V (λ ) for
the affine algebra ̂sl(2) was constructed from the Wakimoto realization on the boson
Fock space [20] by the Felder complex. We recall the quantum algebra Uq(̂sl(2))
case [13, 14, 21]. The irreducible highest weight module V (λ ) for Uq(̂sl(2)) was
constructed from the level k bosonizations on the boson Fock space [13, 14] by
two steps; the first step is the resolution by the ξ -η system, and the second
step is the resolution by the Felder complex [19, 21]. The submodule of the
quantum algebra Uq(̂sl(2)), induced by the ξ -η system, plays the same role as
the Wakimoto realization of the non-quantum algebra ̂sl(2). We would like to
call this submodule induced by the ξ -η system “the q-Wakimoto realization”.
Constructions of the irreducible highest weight module V (λ ) for Uq(̂sl(N)) (N ≥ 3)
and Uq(̂sl(N|1)) (N ≥ 2) are still an open problem. In this paper we study the ξ -η
system and introduce the q-Wakimoto realization for the superalgebra Uq(̂sl(N|1))
and Uq,p(̂sl(N|1)).

This paper is organized as follows. In Sect. 2, after preparing notations, we give
the definition of the quantum superalgebra Uq(̂sl(N|1)) and the elliptic superalgebra
Uq,p(̂sl(N|1)). In Sect. 3 we give bosonizations of the superalgebras Uq(̂sl(N|1))
and Uq,p(̂sl(N|1)) for an arbitrary level k. In Sect. 4 we introduce the q-Wakimoto
realization of by the ξ -η system.

2 Superalgebra Uq(̂sl(N|1)) and Uq,p(̂sl(N|1))

In this section we recall the definitions of the quantum superalgebra Uq(̂sl(N|1))
[22] and the elliptic deformed superalgebra Uq,p(̂sl(N|1)) [17] for N ≥ 2. We fix a
complex number q 
= 0, |q|< 1. We set

[x,y] = xy− yx, {x,y}= xy+ yx, [a]q =
qa− q−a

q− q−1 . (1)

Let us fix complex numbers r,k ∈ C, Re(r) > 0,Re(r − k) > 0. We use the
abbreviation r∗ = r− k. We set p = q2r. We set the Jacobi theta functions

[u] = q
u2
r −u

Θq2r(q2u)

(q2r;q2r)3
∞
, [u]∗ = q

u2
r∗ −u

Θq2r∗ (q2u)

(q2r∗ ;q2r∗)3
∞
, (2)

where we have used

Θp(z) = (z; p)∞(pz−1; p)∞(p; p)∞, (z; p)∞ =
∞

∏
m=0

(1− pmz). (3)
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The Cartan matrix (Ai, j)0≤i, j≤N of the affine Lie algebra ̂sl(N|1) is given by

Ai, j = (νi +νi+1)δi, j−νiδi, j+1−νi+1δi+1, j. (4)

Here we set ν1 = · · ·= νN =+,νN+1 = ν0−.

2.1 Quantum Superalgebra Uq(̂sl(N|1))

In this section we recall the definition of the quantum affine superalgebra
Uq(̂sl(N|1)).
Definition 1 ([22]). The Drinfeld generators of the quantum superalgebra
Uq(̂sl(N|1)) are

x±i,m, hi,m, c (1≤ i≤ N,m ∈ Z). (5)

Defining relations are

c : central, [hi,h j,m] = 0, (6)

[ai,m,h j,n] =
[Ai, jm]q[cm]q

m
q−c|m|δm+n,0 (m,n 
= 0), (7)

[hi,x
±
j (z)] =±Ai, jx

±
j (z), (8)

[hi,m,x
+
j (z)] =

[Ai, jm]q
m

q−c|m|zmx+j (z) (m 
= 0), (9)

[hi,m,x
−
j (z)] =−

[Ai, jm]q
m

zmx−j (z) (m 
= 0), (10)

(z1− q±Ai, j z2)x
±
i (z1)x

±
j (z2) = (q±A j,i z1− z2)x

±
j (z2)x

±
i (z1) for |Ai, j| 
= 0, (11)

x±i (z1)x
±
j (z2) = x±j (z2)x

±
i (z1) for |Ai, j|= 0,(i, j) 
= (N,N), (12)

{x±N (z1),x
±
N (z2)} = 0, (13)

[x+i (z1),x
−
j (z2)] =

δi, j

(q− q−1)z1z2

(

δ (q−cz1/z2)ψ+
i (q

c
2 z2)

−δ (qcz1/z2)ψ−i (q−
c
2 z2)
)

, for (i, j) 
= (N,N), (14)

{x+N (z1),x
−
N (z2)}= 1

(q− q−1)z1z2

(

δ (q−cz1/z2)ψ+
N (q

c
2 z2)

−δ (qcz1/z2)ψ−N (q−
c
2 z2)
)

, (15)
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(

x±i (z1)x
±
i (z2)x

±
j (z)− (q+ q−1)x±i (z1)x

±
j (z)x

±
i (z2)+ x±j (z)x

±
i (z1)x

±
i (z2)
)

+(z1 ↔ z2) = 0 for |Ai, j|= 1, i 
= N, (16)

where we have used δ (z) = ∑m∈Z zm. Here we have used the abbreviation hi = hi,0.
We have set the generating function

x±j (z) = ∑
m∈Z

x±j,mz−m−1, (17)

ψ+
i (q

c
2 z) = qhi exp

(

(q− q−1) ∑
m>0

hi,mz−m

)

, (18)

ψ−i (q−
c
2 z) = q−hi exp

(

−(q− q−1) ∑
m>0

hi,−mzm

)

. (19)

2.2 Elliptic Superalgebra Uq,p(̂sl(N|1))

In this section we recall the definition of the elliptic superalgebra Uq,p(̂sl(N|1)).
Definition 2 ([17]). The elliptic superalgebra Uq,p(̂sl(N|1)) is the associative alge-
bra generated by the currents E j(z),Fj(z),H±

j (z) (1 ≤ j ≤ N) and B j,m(1 ≤ j ≤
N,m ∈ Z
=0), h j (1 ≤ j ≤ N) that satisfy the following relations.

[hi,B j,m] = 0, [Bi,m,B j,n] =
[Ai, jm]q[km]q

m
[r∗m]q
[rm]q

δm+n,0, (20)

[hi,E j(z)] = Ai, jE j(z), [hi,Fj(z)] =−Ai, jFj(z), (21)

[Bi,m,E j(z)] =
[Ai, jm]q

m
zmE j(z), (22)

[Bi,m,Fj(z)] = − [Ai, jm]q
m

[r∗m]q
[rm]q

zmFj(z). (23)

For 1≤ i, j ≤ N such that (i, j) 
= (N,N) they satisfy

[

u1− u2− Ai, j

2

]∗
Ei(z1)E j(z2) =

[

u1− u2 +
Ai, j

2

]∗
E j(z2)Ei(z1), (24)

[

u1− u2 +
Ai, j

2

]

Fi(z1)Fj(z2) =

[

u1− u2− Ai, j

2

]

Fj(z2)Fi(z1), (25)
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[Ei(z1),Fj(z2)] =
δi, j

(q− q−1)z1z2

(

δ (q−kz1/z2)Hi(q
rz2)

−δ (qkz1/z2)Hi(q
−rz2)
)

, (26)

{EN(z1),EN(z2)}= 0, {FN(z1),FN(z2)}= 0, (27)

{EN(z1),FN(z2)}= 1
(q− q−1)z1z2

(

δ (q−kz1/z2)HN(q
rz2)

−δ (qkz1/z2)HN(q
−rz2)
)

. (28)

For 1≤ i, j ≤ N they satisfy

Hi(z1)Hj(z2) =
[u2− u1− Ai, j

2 ]∗[u2− u1+
Ai, j

2 ]

[u2− u1 +
Ai, j

2 ]∗[u2− u1− Ai, j
2 ]

Hj(z2)Hi(z1), (29)

Hi(z1)E j(z2) =
[u1− u2 +

r∗
2 +

Ai, j
2 ]∗

[u1− u2 +
r∗
2 −

Ai, j
2 ]∗

E j(z2)Hi(z1), (30)

Hi(z1)Fj(z2) =
[u1− u2+

r
2 +

Ai, j
2 ]

[u1− u2+
r
2 −

Ai, j
2 ]

Fj(z2)Hi(z1). (31)

For 1≤ i, j ≤ N,(i 
= N) such that |Ai, j|= 1, they satisfy the Serre relations.

⎧

⎨

⎩

Ei(z1)Ei(z2)E j(z)

(

q2r∗+Ai, j z
z1

;q2r∗
)

∞

(

q2r∗+Ai, j z
z2

;q2r∗
)

∞
(

q2r∗−Ai, j z
z1

;q2r∗
)

∞

(

q2r∗−Ai, j z
z2

;q2r∗
)

∞

(

z
z2

) 1
r∗ Ai, j

−(q+ q−1)Ei(z1)E j(z)Ei(z2)

(

q2r∗+Ai, j z
z1

;q2r∗
)

∞

(

q2r∗+Ai, j z2
z ;q2r∗)

∞
(

q2r∗−Ai, j z
z1

;q2r∗
)

∞

(

q2r∗−Ai, j z2
z ;q2r∗
)

∞

+E j(z)Ei(z1)Ei(z2)

(

q2r∗+Ai, j z1
z ;q2r∗)

∞

(

q2r∗+Ai, j z2
z ;q2r∗)

∞
(

q2r∗−Ai, j z1
z ;q2r∗
)

∞

(

q2r∗−Ai, j z2
z ;q2r∗
)

∞

(

z1

z

) 1
r∗ Ai, j
}

×

(

q2r∗+Ai,i z2
z1

;q2r∗
)

∞
(

q2r∗−Ai,i z2
z1

;q2r∗
)

∞

z
− 1

r∗ (Ai,i+Ai, j)

1 +(z1 ↔ z2) = 0, (32)
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⎧

⎨

⎩

Fi(z1)Fi(z2)Fj(z)

(

q2r−Ai, j z
z1

;q2r
)

∞

(

q2r−Ai, j z
z2

;q2r
)

∞
(

q2r+Ai, j z
z1

;q2r
)

∞

(

q2r+Ai, j z
z2

;q2r
)

∞

(

z2

z

) 1
r Ai, j

−(q+ q−1)Fi(z1)Fj(z)Fi(z2)

(

q2r−Ai, j z
z1

;q2r
)

∞

(

q2r−Ai, j z2
z ;q2r
)

∞
(

q2r+Ai, j z
z1

;q2r
)

∞

(

q2r+Ai, j z2
z ;q2r
)

∞

+Fj(z)Fi(z1)Fi(z2)

(

q2r−Ai, j z1
z ;q2r
)

∞

(

q2r−Ai, j z2
z ;q2r
)

∞
(

q2r+Ai, j z1
z ;q2r
)

∞

(

q2r+Ai, j z2
z ;q2r
)

∞

(

z
z1

) 1
r Ai, j
}

×

(

q2r−Ai,i z2
z1

;q2r
)

∞
(

q2r+Ai,i z2
z1

;q2r
)

∞

z
1
r (Ai,i+Ai, j)
1 +(z1 ↔ z2) = 0. (33)

Here we have used z j = q2u j .

3 Bosonization

In this section we give bosonizations of the superalgebras Uq(̂sl(N|1)) and
Uq,p(̂sl(N|1)) for an arbitrary level k [16–18].

3.1 Boson

We fix the level c = k ∈ C. We introduce the bosons and the zero-mode operators
a j

m,Q
j
a (m∈Z,1≤ j≤N), bi, j

m ,Qi, j
b (m∈Z,1≤ i < j≤N+1), ci, j

m ,Qi, j
c (m∈Z,1≤

i < j ≤ N). The bosons ai
m,b

i, j
m ,ci, j

m , (m ∈ Z
=0) and the zero-mode operators ai
0,Q

i
a,

bi, j
0 ,Qi, j

b , ci, j
0 ,Qi, j

c satisfy

[ai
m,a

j
n] =

[(k+N− 1)m]q[Ai, jm]q
m

δm+n,0, [a
i
0,Q

j
a] = (k+N− 1)Ai, j, (34)

[bi, j
m ,bi′, j′

n ] = −νiν j
[m]2q
m

δi,i′δ j, j′δm+n,0, [b
i, j
0 ,Qi′, j′

b ] =−νiν jδi,i′δ j, j′ , (35)

[ci, j
m ,ci′, j′

n ] =
[m]2q
m

δi,i′δ j, j′δm+n,0, [c
i, j
0 ,Qi′, j′

c ] = δi,i′δ j, j′ . (36)

We impose the cocycle condition on the zero-mode operator Qi, j
b , (1 ≤ i < j ≤

N + 1) by

[Qi, j
b ,Qi′, j′

b ] = δ j,N+1δ j′,N+1π
√−1 for (i, j) 
= (i′, j′). (37)
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We have the following (anti) commutation relations

[

eQi, j
b ,eQi′ , j′

b

]

= 0 (1≤ i < j ≤ N,1 ≤ i′ < j′ ≤ N), (38)

{

eQi,N+1
b ,eQj,N+1

b

}

= 0 (1≤ i 
= j ≤ N). (39)

We use the standard symbol of the normal orderings ::. In what follows we use the
abbreviations bi, j(z),ci, j(z),bi, j

± (z),a j
±(z) given by

bi, j(z) = − ∑
m
=0

bi, j
m

[m]q
z−m +Qi, j

b + bi, j
0 logz, ci, j(z)

= − ∑
m
=0

ci, j
m

[m]q
z−m +Qi, j

c + ci, j
0 logz, (40)

bi, j
± (z) = ±(q− q−1) ∑

±m>0

bi, j
m z−m± bi, j

0 logq, a j
±(z)

= ±(q− q−1) ∑
±m>0

a j
mz−m± a j

0logq. (41)

3.2 Quantum Superalgebra Uq(̂sl(N|1))

In this section we give a bosonization of the quantum superalgebra Uq(̂sl(N|1)) for
an arbitrary level k.

Theorem 1 ([18]). The Drinfeld currents x±i (z), ψ
±
i (z), (1≤ i≤N) of Uq(̂sl(N|1))

for an arbitrary level k are realized by the bosonic operators as follows.

x+i (z) =
1

(q− q−1)z

i

∑
j=1

: exp

(

(b+ c) j,i(q j−1z)+
j−1

∑
l=1

(bl,i+1
+ (ql−1z)− bl,i

+(q
lz))

)

×
{

exp
(

b j,i+1
+ (q j−1z)− (b+ c) j,i+1(q jz)

)

−

− exp
(

b j,i+1
− (q j−1z)− (b+ c) j,i+1(q j−2z)

)}

:, (42)

x+N (z) =
N

∑
j=1

: exp
(

(b+ c) j,N(q j−1z)+ b j,N+1(q j−1z)

−
j−1

∑
l=1

(bl,N+1
+ (qlz)+ bl,N

+ (qlz))

)

:, (43)
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x−i (z) = qk+N−1 : exp
(

ai
+(q

k+N−1
2 z)− bi,N+1(qk+N−1z)

− bi+1,N+1
+ (qk+N−1z)+ bi+1,N+1(qk+Nz)

)

:

+
1

(q− q−1)z

i−1

∑
j=1

: exp
(

ai
−(q

− k+N−1
2 z)
)

×

× exp
(

(b+ c) j,i+1(q−k− jz)+ bi,n+1
− (q−k−nz)− bi+1,n+1

− (q−k−n+1z)
)

×exp

(

i

∑
l= j+1

(bl,i+1
− (q−k−l+1z)− bl,i

−(q
−k−lz)) +

+
N

∑
l=i+1

(bi,l
− (q

−k−lz)− bi+1,l
− (q−k−l+1z))

)

×
{

exp
(

−b j,i
− (q−k− jz)− (b+ c) j,i(q−k− j+1z)

)

− exp
(

−b j,i
+ (q−k− jz)− (b+ c) j,i(q−k− j−1z)

)}

:

+
1

(q− q−1)z
:
{

exp
(

ai
−(q

− k+N−1
2 z)+ (b+ c)i,i+1(q−k−iz)

+
N

∑
l=i+1

(bi,l
− (q

−k−lz)− bi+1,l
− (q−k−l+1z))

+ bi,N+1
− (q−k−Nz)− bi+1,N+1

− (q−k−N+1z)
)

−exp
(

ai
+(q

k+N−1
2 z)+ (b+ c)i,i+1(qk+iz)

+
N

∑
l=i+1

(bi,l
+(q

k+lz)− bi+1,l
+ (qk+l−1z))

+ bi,N+1
+ (qk+Nz)− bi+1,N+1

+ (qk+N−1z)
)}

:

− 1
(q− q−1)z

N−1

∑
j=i+1

: exp
(

ai
+(q

k+N−1
2 z)
)

×exp
(

(b+ c)i, j+1(qk+ jz)+ bi,N+1
+ (qk+Nz)− bi+1,N+1

+ (qk+N−1z)
)

×exp

(

N

∑
l= j+1

(bi,l
+(q

k+lz)− bi+1,l
+ (qk+l−1z))

)

×
{

exp
(

bi+1, j+1
+ (qk+ jz)− (b+ c)i+1, j+1(qk+ j+1z)

)

− exp
(

bi+1, j+1
− (qk+ jz)− (b+ c)i+1, j+1(qk+ j−1z)

)}

: . (44)
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x−N (z) =
1

(q− q−1)z

{

N−1

∑
j=1

q j−1 : exp
(

aN
−(q

− k+N−1
2 z)
)

×exp
(

−b j,N+1
+ (q−k− jz)− b j,N+1(q−k− j−1z)

−
N−1

∑
l= j+1

(bl,N
− (q−k−lz)+ bl,N+1

− (q−k−lz))

)

×
{

exp
(

−b j,N
+ (q−k− jz)− (b+ c) j,N(q−k− j−1z)

)

− exp
(

−b j,N
− (q−k− jz)− (b+ c) j,N(q−k− j+1z)

)}

:

+ qN−1 :
{

exp
(

aN
+(q

k+N−1
2 z)− bN,N+1(qk+N−1z)

)

− exp
(

aN
−(q

− k+N−1
2 z)− bN,N+1(q−k−N+1z)

)}

:
}

. (45)

ψ±i (q±
k
2 z) = exp

(

ai
±(q

± k+N−1
2 z)+

i

∑
l=1

(bl,i+1
± (q±(l+k−1)z)− bl,i

±(q
±(l+k)z)

)

×exp

(

N

∑
l=i+1

(bi,l
± (q

±(k+l)z)− bi−1,l
± (q±(k+l−1)z) (46)

+ bi,N+1
± (q±(k+N)z)− bi+1,N+1

± (q±(k+N−1)z)
)

,

ψ±N (q±
k
2 z) = exp

(

aN
±(q

± k+N−1
2 z)−

N−1

∑
l=1

(bl,N
± (q±(k+l)z)+ bl,N+1

± (q±(k+l)z))

)

(47)

3.3 Elliptic Superalgebra Uq,p(̂sl(N|1))

In this section we give a bosonization of the elliptic superalgebra Uq,p(̂sl(N|1)) for
an arbitrary level k, using the dressing deformation [17]. Let us introduce the zero-
mode operators Pi,Qi, (1≤ i≤ N) by

[Pi,Q j] =−Ai, j

2
(1≤ i, j ≤ N), (48)
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where (Ai, j)1≤i, j≤N is the Cartan matrix of the classical sl(N|1). In [18] the
bosonization of the Drinfeld generator hi,m (1≤ i≤ N,m ∈ Z) is given by

hi,m = q−
k+N−1

2 |m|ai
m +

i

∑
l=1

(q−(k+l−1)|m|bl,i+1
m − q−(k+l)|m|bl,i

m )

+
N

∑
l=i+1

(q−(k+l)|m|bi,l
m − q−(k+l−1)|m|bi+1,l

m )

+ q−(k+N)|m|bi,N+1
m − q−(k+N−1)|m|bi+1,N+1

m , (49)

hN,m = q−
k+N−1

2 |m|aN
m−

N−1

∑
l=1

(q−(k+l)|m|bl,N
m + q−(k+l)|m|bl,N+1

m ). (50)

Let us set the boson B j,m (1≤ j ≤ N,m ∈ Z
=0) by

B j,m =

{

[r∗m]q
[rm]q

h j,m (m > 0),

qk|m|h j,m (m < 0).
(51)

Theorem 2 ([17, 18]). The currents E j(z),Fj(z),H
±
j (z) (1 ≤ j ≤ N) of the elliptic

superalgebra Uq,p(̂sl(N|1)) for an arbitrary level k are realized by the bosonic
operators as follows.

E j(z) = U+
j (z)x

+
j (z)e

2Qj z−
1
r∗ Pj , (52)

Fj(z) = x−j (z)U
−
j (z)z

1
r (Pj+h j), (53)

H±
j (z) = Hj(q

±(r− k
2 )z), (54)

Hj(z) = : exp

(

− ∑
m
=0

B j,m

[r∗m]q
z−m

)

: e2Qj z−
k

rr∗ Pj+
1
r h j . (55)

Here we have used the dressing operators U+
j (z),U

−
j (z) (1≤ j ≤ N) given by

U+
j (z) = exp

(

∑
m>0

qrm

[rm]q
B j,−mzm

)

, U−
j (z) = exp

(

− ∑
m>0

qr∗m

[rm]q
B j,mz−m

)

. (56)

4 q-Wakimoto Realization

In this section we introduce the q-Wakimoto realization by the ξ -η system,
following Uq(̂sl(2|1)) case [23]. We introduce the vacuum state |0〉 of the boson
Fock space by
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ai
m|0〉= bi, j

m |0〉= ci, j
m |0〉= 0 (m≥ 0). (57)

For complex numbers pi
a ∈ C (1 ≤ i ≤ N), pi, j

b ∈ C (1 ≤ i < j ≤ N + 1), pi, j
c ∈

C (1≤ i < j ≤ N), we set

|pa, pb, pc〉 =

= exp

(

N

∑
i, j=1

Min(i, j)(N− 1−Max(i, j))
(N− 1)(k+N− 1)

pi
aQ j

a

− ∑
1≤i< j≤N+1

pi, j
b Qi, j

b + ∑
1≤i< j≤N

pi, j
c Qi, j

c

)

|0〉. (58)

It satisfies

ai
0|pa, pb, pc〉= pi

a|pa, pb, pc〉, bi, j
0 |pa, pb, pc〉= pi, j

b |pa, pb, pc〉,
ci, j

0 |pa, pb, pc〉= pi, j
c |pa, pb, pc〉. (59)

The boson Fock space F(pa, pb, pc) is generated by the bosons ai
m,b

i, j
m ,ci, j

m on the
vector |pa, pb, pc〉. We set Uq(̂sl(N|1))-module F(pa) by

F(pa) =
⊕

p
i, j
b =−p

i, j
c ∈Z (1≤i< j≤N)

pi,N+1
b ∈Z (1≤i≤N)

F(pa, pb, pc). (60)

We have imposed the restriction pi, j
b =−pi, j

c ∈ Z (1 ≤ i < j ≤ N), because the x±i,m
change Qi, j

b +Qi, j
c . The module F(pa) is not irreducible representation. For instance,

the irreducible highest weight module V (λ ) for Uq(̂sl(2)) was constructed from
the similar space as F(pa) by two steps; the first step is the construction of the q-
Wakimoto realization by the ξ -η system, and the second step is the resolution by
the Felder complex [21]. In this paper we study the ξ -η system and introduce the
q-Wakimoto realization for Uq(̂sl(N|1)). For 1≤ i < j ≤ N we introduce

η i, j(z) = ∑
m∈Z

η i, j
m z−m−1 =: eci, j(z) :, ξ i, j(z) = ∑

m∈Z
ξ i, j

m z−m =: e−ci, j(z) : . (61)

The Fourier components η i, j
m =
∮ dz

2π
√−1

zmη i, j(z), ξ i, j
m =
∮ dz

2π
√−1

zm−1ξ i, j(z) (m ∈
Z) are well defined on the space F(pa). They satisfy

{η i, j
m ,ξ i, j

n }= δm+n,0, {η i, j
m ,η i, j

n }= {ξ i, j
m ,ξ i, j

n }= 0 (1 ≤ i < j ≤ N), (62)

[η i, j
m ,ξ i′, j′

n ] = [η i, j
m ,η i′ , j′

n ] = [ξ i, j
m ,ξ i′, j′

n ] = 0 (i, j) 
= (i′, j′). (63)
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We focus our attention on the operators η i, j
0 ,ξ i, j

0 satisfying (η i, j
0 )2 = 0, (ξ i, j

0 )2 = 0

and Im(η i, j
0 ) = Ker(η i, j

0 ), Im(ξ i, j
0 ) = Ker(ξ i, j

0 ). The products η i, j
0 ξ i, j

0 and ξ i, j
0 η i, j

0
are the projection operators

η i, j
0 ξ i, j

0 + ξ i, j
0 η i, j

0 = 1. (64)

We have a direct sum decomposition.

F(pa) = η i, j
0 ξ i, j

0 F(pa)⊕ ξ i, j
0 η i, j

0 F(pa), (65)

Ker(η i, j
0 ) = η i, j

0 ξ i, j
0 F(pa), Coker(η i, j

0 ) = ξ i, j
0 η i, j

0 F(pa). (66)

Definition 3. We introduce the subspace F (pa) that we call the q-Wakimoto
realization.

F (pa) =

(

∏
1≤i< j≤N

η i, j
0 ξ i, j

0

)

F(pa) =
⋂

1≤i< j≤N

Ker(η i, j
0 ), (67)

The dressing operators U±
i (z) and the zero-mode operators Pi,Qi commute with

η i′, j′
0 . The bosonizations commute with the operators η i′ , j′

0 , ξ i′, j′
0 up to sign ±.

Proposition 1. The subspace F (pa) is both Uq(̂sl(N|1)) and Uq,p(̂sl(N|1))
module.

Let ᾱi, Λ̄i, (1 ≤ i ≤ N) and (·|·) be the simple roots, the fundamental weights, and
the symmetric bilinear norm ; (ᾱi, ᾱ j) = Ai, j, (ᾱi,Λ̄ j) = δi, j. It is expected that we
have the irreducible highest weight module V (λ ) with the highest weight λ , whose
classical part λ̄ =∑N

j=1 pi
aΛ̄i, by the Felder complex of the q-Wakimoto realization.

We would like to report this problem for Uq(̂sl(N)) and Uq(̂sl(N|1)) in the future
publication.
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Quantum Phases in Noncommutative Space

Ö.F. Dayi and B. Yapışkan

Abstract Instead of the common procedure of using star product we present
an alternative method of constructing quantum mechanics in noncommutative
coordinates. Within this approach we study quantum phases in noncommutative
coordinates.

1 Introduction

The star product

�θ ≡ exp

[

i
2
θIJ

←−
∂
∂QI

−→
∂
∂QJ

]

, (1)

where θIJ is an antisymmetric, constant deformation parameter is commonly used to
imply noncommutativity of coordinates. This is equivalent to the shift of coordinates
in terms of Pop

I =−ih̄ ∂
∂QI as

QI → QI− 1
2h̄
θIJPop

J . (2)

In this talk we would like to present an alternative approach and study its
applications to diverse quantum systems as reported in [1]. The alternative method is

Ö.F. Dayi (�)
Faculty of Science and Letters, Physics Department, Istanbul Technical University,
34469, Maslak–Istanbul, Turkey
e-mail: dayi@itu.edu.tr

B. Yapışkan
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first introduced in [2]. It can be employed as far as in the starting Hamiltonian there
exist terms which can be interpreted as minimally coupled gauge fields. We apply
the new deformation procedure to obtain velocity independent formulations of
Aharonov–Bohm (AB) [3], Aharonov–Casher (AC) [4], He–McKellar–Wilkens
(HMW) [5, 6] and Anandan [7, 8] phases in noncommutative coordinates. Most of
the earlier formulations yielded velocity dependent quantum phases in noncommu-
tative spaces, in spite of the fact that the distinguished property of the original phases
is their independence from the velocity of scattered particles. We discuss how to
select the suitable realization.

2 The Alternative θ -Deformation of Quantum Mechanics

If the non-deformed system possess the gauge field Aα which may be matrix valued
we introduced the field strength:

Fαβ =
∂Aβ
∂ rα

− ∂Aα
∂ rβ

− iρ
h̄
[Aα ,Aβ ]. (3)

It worths noting that commutators appearing in this semiclassical formulation are
the ordinary matrix commutators. The stating point of the alternative method can
be taken as the θ -deformed quantum commutators denoted by the subscript q to
distinguish them from matrix commutators:

[r̂α , r̂β ]q = iθαβ , (4)

[p̂α , p̂β ]q = ih̄ρFαβ − iρ2(FθF)αβ , (5)

[r̂α , p̂β ]q = ih̄δαβ − iρ(θF)αβ , (6)

[p̂α , r̂β ]q = −ih̄δαβ + iρ(Fθ )αβ . (7)

Because of being first order in θ , the right hand sides of (4)–(7) may only possess
r̂α |θ=0 = rα dependence. Hence Fαβ is still as in (3).

The covariant derivative defined as

Dα =−ih̄
∂
∂ rα

−ρAα

can be employed to write the operators

p̂α = Dα − ρ
2h̄

FαβθβγDγ , (8)

r̂α = rα − 1
2h̄
θαβDβ , (9)
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which leads to a realization of the generalized algebra (4)–(7) satisfying the Jacobi
identities, as far as the conditions

− ih̄∇αFβγ −ρ [Aα ,Fβγ ] = 0, [Fαβ ,Fγδ ] = 0 (10)

are fulfilled. To illustrate the method let the initial Hamiltonian be H0(p) =
p2/2m. Substituting p with the quantum operator (8) one obtains the θ -deformed
Hamiltonian

H0(p̂)≡ Ĥnc =
1

2m

(

Dα − ρ
2h̄

FαβθβγDγ

)2
. (11)

Setting θ = 0 yields the Hamiltonian operator

Ĥ =
1

2m

(

−ih̄
∂
∂ rα

−ρAα

)2

. (12)

Therefore, (11) gives the noncommutative dynamics corresponding to the
Hamiltonian (12).

When (10) are valid, another representation of the algebra (4)–(7) is given by

p̂α = −ih̄∇α +
ρ
2

Fαβ (r
β + 2iθβγ∇γ ), (13)

r̂α = rα − 1
2h̄
θαβ (−ih̄∇β − ρ

2
Fβγrγ ) (14)

In this representation only the gauge invariant field strength Fαβ appears, in contrast
to (8)–(9) where the gauge field Aα explicitly appears.

3 Quantum Phases in Noncommutative Space

Let us first present a unified formulation of the different phases which were
considered in [9–13]. We start with the Hamiltonian operator

H =
1

2m
(pα −ρAα(r))

2 , (15)

where ρ is a constant. One implements noncommutativity by the shift

rα → rα − 1
2h̄
θαβ pβ = rα − 1

2h̄
θαβ
(

h̄kβ +ρAβ(r)
)

, (16)

where kα is the eigenvalue of the kinetic momentum operator:

(pα −ρAα(r))ψ(r) = h̄kαψ(r). (17)
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Hence, at the first order in θ the Hamiltonian (15) becomes

H =
1

2m

[

pα −ρAα(r)+
ρ
2h̄
θβσ (h̄kσ +ρAσ(r))∂βAα(r)

]2
. (18)

Identifying,

Ãα(r,θ ) = Aα(r)− 1
2h̄
θβσ (h̄kσ +ρAσ(r))∂βAα(r) (19)

as the gauge field in noncommutative space, one defines the θ -deformed quantum
phase by

Φ(θ ) =
iρ
h̄

∮

Ãα(r,θ )drα . (20)

Different phases can be considered by choosing the original field Aα appropriately.
To study the AB phase on the noncommutative plane let the nonvanishing compo-
nents of the deformation parameter be

θi j = θεi j,

where i, j = 1,2. Moreover, choose ρ = −e/c and an appropriate three-vector
potential A, whose third component vanishes A3 = 0. Hence, (20) leads to

Φ I
AB(θ ) =−

ie
h̄c

∮

A(r) ·dr− imeθ
2h̄c

∮
[

(v×5Ai)3−
e

h̄mc
(A×5Ai)3

]

dri,

where k = mv. This is the deformed phase obtained in [9, 10].
To formulate the AC, HMW and Anandan phases in noncommutative coordinates

we set

cρA = �×E− d×B (21)

where � and d are the magnetic and the electric dipole moments which are
proportional to the Pauli spin matrices � . We deal with the standard configuration
where dipole moments are in z-direction and the external electric and magnetic fields
are in the polar radial direction, so that � ·B = 0, d ·E = 0. Moreover, let there be
no change in the dipoles along the external fields: E ·5μ = 0,B ·5d = 0. After
implying these conditions, insert (19) into (20) to obtain

ΦA(θ ) =
i

h̄c

∮

(�×E− d×B) ·dr

+
i

2h̄2c2
θab

∮

(k+�×E− d×B)a∂b(�×E− d×B) ·dr, (22)

where a,b = 1,2,3. For d = 0 the θ -deformation of the AC phase obtained in [11]
follows



Quantum Phases in Noncommutative Space 281

ΦAC(θ ) =
i

h̄c

∮

(�×E) ·dr+
i

2h̄2c2
θab

∮

(k+�×E)a∂b(�×E) ·dr. (23)

For � = 0, the HMW phase in noncommuting coordinates is obtained in accord
with [12] as

ΦHMW (θ ) =− i
h̄c

∮

(d×B) ·dr− i

2h̄2c2
θab

∮

(k− d×B)a∂b(d×B) ·dr. (24)

By putting (23) and (24) together

ΦA1(θ ) =ΦAC(θ )+ΦHMW (θ ),

which means ignoring the terms behaving as μd in (22), the deformation of [13]
follows. Although we used 3-dimensional vectors the formalism is effectively 2-
dimensional because of the selected configurations leading to the AC and HMW
phases.

The approach of [14] differs from the above formulation. In [14] one considers
the θ -deformed Hamiltonian defined as the generalization of the one obtained in
the uniform transverse magnetic field B. In terms of the related path integral one
identifies

Ãi(θ ,r) =
(

1− eθB
4h̄c

)−1

Ai(r).

Then, one employs it in (20) with ρ =−e/c to get the AB phase in noncommutative
coordinates as

Φ II
AB(θ ) =−

ie
h̄c

(

1+
eθB
4h̄c

)
∮

Ai(r)dri.

Now, let us present our approach following in part the receipt given in [14]. We
deal with the configurations leading to vanishing scalar potentials, so that in general
the Hamiltonian in noncommutative coordinates is written in terms of p̂ which is a
realization of the algebra (4)–(7) as

Hnc =
p̂2

2m
. (25)

Obviously, different realizations will lead to different Hamiltonians. Let (rα , pα)
define the classical phase space variables corresponding to the operators (rop

α , pop
α =

−ih̄∂α). The classical Hamiltonian Heff(r, p) will be obtained from the related
Hamiltonian operator in noncommutative space by substituting pop

α ,rop
α with the

c-number variables p,r. To keep the discussion general let us define the classical
θ -deformed Hamiltonian corresponding to (25) as

Hnc
eff = aαβ (r,θ )pα pβ + bα(r,θ )pα + c(r,θ ), (26)
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without specifying the coefficients aαβ (r,θ ), bα(r,θ ) and c(r,θ ). Plugging (26)
into the path integral

Z = N
∫

dd p ddr exp

{

i
h̄

∫

dt[pα ṙα −Heff(p,r)]

}

, (27)

where N is the normalization factor, yields the partition function in the
d-dimensional phase space:

Z = N
∫

dd p ddr exp

{

i
h̄

∫

dt
[

pα (ṙα − bα(r,α))− aαβ (r,θ )pα pβ − c(r,θ )
]

}

.

Integration over the momenta gives the partition function in configuration space
with the normalization factor N′ as

Z =N′
∫

ddr exp

{

i
h̄

∫

dt

[

1
4

a−1
αβ (r,θ )(ṙα − bα(r,θ ))

(

ṙβ − bβ (r,θ )
)− c(r,θ )

]}

.

This can be written as

Z = N′
∫

ddr exp

{

i
h̄

S+
i
h̄

∫

drαA α(r,θ )
}

,

in terms of

S =

∫

dt [
1
4

a−1
αβ (r,θ )(ṙ

α ṙβ + bα(r,θ )bβ (r,θ ))− c(r,θ )]

and the θ -deformed gauge field defined as

Aα(r,θ )≡−1
2

a−1
αβ (r,θ )b

β (r,θ ). (28)

Hence, in general we can introduce the quantum phase as follows

Φ =
i
h̄

∮

A α(r,θ )drα =− i
2h̄

∮

a−1
αβ (r,θ )b

β (r,θ )drα . (29)

As the first specific example we would like to discuss the AB phase in
noncommutative space adopting some different realizations. Hence, let the particles
be confined to move on the ri = (x,y) plane, in the presence of an infinitely long,
tiny solenoid placed along the z-axis. Obviously we set ρ = −e/c, moreover the
nonvanishing components of θ and F are

θi j = εi jθ , Fi j = εi jF12 =

{

εi jB in,
0 out.

}



Quantum Phases in Noncommutative Space 283

Except on the solenoid, the conditions (10) are fulfilled, due to the fact that F12

is constant inside the solenoid and vanishes outside the solenoid. Thus, we are
equipped with the realizations (8)–(9) and (13)–(14) in a consistent manner. We
first deal with the realization given in (8) but ignore the e2/c2 terms, so that the
related coefficients are

a(1)i j (r,θ ) =
1

2m

(

1− eF12θ
2h̄c

)2

δi j, b(1)i (r,θ ) =
e

mc

(

1− eF12θ
2h̄c

)

Ai. (30)

The trajectory in (29) is chosen to enclose the origin, thus it yields

Φnc(1)
AB =− ie

h̄c

∮
(

1+
eF12θ
2h̄c

)

Aidri =− ie
h̄c

(

1+
eθB
2h̄c

)
∫

εi j∇iA jds =

(

1+
eθB
2h̄c

)

ΦAB,

(31)

where the AB phase is given in terms of Φ0 = hc/e and the cross-sectional area of
the solenoid S as

ΦAB =−2π i
BS
Φ0

.

When we consider (8) keeping the e2/c2 terms the coefficients become

a(2)i j (r,θ ) =
1

2m

(

1− eF12θ
2h̄c

)2

δi j, b(2)i (r,θ ) =
e

mc

(

1− eF12θ
2h̄c

)2

Ai. (32)

Observe that (28) does not acquire any θ -deformation. As a result of this the phase
is not deformed:

Φnc(2)
AB =ΦAB. (33)

For the realization (13) one can read the coefficients as follows

a(3)i j (r,θ ) =
1

2m

(

1− eF12θ
h̄c

)2

δi j, b(3)i (r,θ ) =− eB
2mc

(

1− eF12θ
h̄c

)

εi jr j. (34)

Hence, the θ -deformed AB phase is deduced as

Φnc(3)
AB =

ie
2h̄c

∮
(

1+
eF12θ

h̄c

)

F12εi jr jdri =

(

1+
eθB
h̄c

)

ΦAB, (35)

where we used S =
∮

εi jridr j/2.
When the terms at the order of e2/c2 are kept, i.e. (32), does not procure any

θ -deformation of the AB phase (33). However, the other realizations (30) and (34)
led to (31) and (35) with different θ -dependent factors. An approach to determine
which formulation should be preferred is presented in the last section.
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To discuss the AC, HMW and Anandan phases in noncommutative coordinates
we will consider the realization (13) in three dimensions: a,b = 1,2,3. In general it
leads to the θ -deformed gauge field (21), where

ab
a =

1
2m

(

δ b
a −

2ρ
h̄

Facθ cb
)

and

ba =
ρ

2m

(

Fab− ρ
h̄
θacFcdFdb

)

rb.

As far as the conditions (10) are satisfied this construction is valid also for non-
Abelian gauge fields. The θ -deformed phase factor is

Φnc =− iρ
2h̄

∮
(

Fab +
ρ
h̄

FacFcdθ db
)

radrb (36)

Now we specify the gauge field as in (21) which is appropriate to discuss the AC,
HMW and Anandan phases and consider the configuration: � = μ ẑ,d = dẑ; � ·
B = 0, d ·E = 0 and E ·5μ = 0,B ·5d = 0. Hence the problem is effectively 2-
dimensional. The gauge field (21) is now Abelian and the nonvanishing components
of the field strength are

Fi j = εi j(−μ5 ·E+ d5 ·B). (37)

Moreover, we consider the noncommutative plane by setting θi j = εi jθ . As usual the
electromagnetic fields are taken in the radial direction and their divergence vanish
except in the infinitesimal regions around the origin where they satisfy [15]

5 ·E =
λe

s′
, 5 ·B =

λm

s′′
.

We introduced s′ and s′′ which are, respectively, the areas of the infinitesimal regions
where 5 ·E and 5 ·B are nonvanishing. Obviously, s′ and s′′ do not play any role
in the original definition of the Anandan phase:

ΦA =
ρ
2

∮

Fi jr
idr j =− 1

h̄c
(μλe− dλm). (38)

The field strength (37) satisfies the conditions (10) so that we can use the realization
leading to the phase (36). The Anandan phase in noncommutative space can be
calculated as

Φnc
A =ΦA

[

1+θ
(

μλe

h̄cs′
− dλm

h̄cs′′

)]

, (39)

where (38) is employed.
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Imposing, respectively, λe = 0 and λm = 0 in (39), the noncommutative AC and
HMW phases can be deduced as

Φnc
AC =

dλm

h̄c

(

1−θ dλm

h̄cs′′

)

,

Φnc
HMW = −μλe

h̄c

(

1+θ
μλe

h̄cs′
)

.

Hence, the deformed phases which we obtained are independent of the velocity
of the scattered particles which is one of the main features of the original
quantum phases.

4 Discussions

The alternative procedure itself leads to different deformed dynamical systems
which is equivalent to identify the θ -deformed quantum phase space variables.
Depending on to the realization adopted the resulting AB phase acquire diverse
deformation factors in noncommutative coordinates. Although at first sight this
may seem to be a pathological fact, as we will explain it is an embarrassment of
riches permitting us to choose the realization adequate to the problem considered.
One of the interpretations of the noncommutativity of coordinates is to consider
it as an effective method of introducing interactions whose dynamical origins can
be complicated [14, 16]. Once we determine which realization leads to the desired
effective theory we can select to work within that representation.

References
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On Quantum WZNW Monodromy Matrix:
Factorization, Diagonalization, and Determinant

Ludmil Hadjiivanov and Paolo Furlan

Abstract We review the basic algebraic properties of the quantum monodromy
matrix M in the canonically quantized chiral SU(n)k Wess–Zumino–Novikov–
Witten model with a quantum group symmetry.

1 Introduction

The Wess–Zumino–Novikov–Witten (WZNW) model [17] on a 2D cylindric
space-time (with periodic space coordinate) describes the conformal invariant free
motion of a closed string on a Lie group manifold [13]. We will only consider here
the case of a compact semisimple Lie group G and positive integer level k, and
the explicit calculations will apply exclusively to G = SU(n). Canonical quantiza-
tion prescribes replacing the classical Poisson brackets (PB) by commutators or, in
the case of quadratic PB, by exchange relations such that the classical symmetries
are recovered in the quasiclassical limit. Here is a short list of references on the
subject covered below: [1, 2, 5, 7, 9, 10, 12, 15].
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The 2D WZNW field admits a chiral splitting in a product of left and right
movers. The chiral field g(z) (where z = eix and x is a light cone variable) is only
twisted-periodic,

g(e2π iz) = g(z)M , (1)

where M is the monodromy matrix.1 The corresponding exchange relations with a
constant statistics matrix R̂ read

gA
α(z1)gB

β (z2) =
�

gB
ρ(z2)gA

σ (z1) R̂ρσαβ ( |z1|> |z2| , π>arg(z1)>arg(z2)> −π )
(2)

where z12
�→ z21 = e−iπz12 [10]. It is assumed that R̂12 = P12R12 (we are using

the common tensor product notation) where P12 is the permutation matrix, Pαβρσ =

δασ δ
β
ρ , and R12 is a solution of the quantum Yang–Baxter equation

R12R13R23 = R23R13R12 ⇔ R̂1R̂2R̂1 = R̂2R̂1R̂2 , R̂i := R̂ii+1

and, trivially, R̂i R̂ j = R̂ j R̂i for |i− j|> 1 . (3)

The virtue of the exchange relations (2) is that they reveal, along with the left
G-symmetry (acting on the capital Latin indices of gA

α(z)), also right quantum group
[4] invariance with respect to transformations satisfying the RTT relations

R12T1T2 = T2T1R12 ⇔ R̂12T1T2 = T1T2R̂12 (4)

which is the quantum counterpart of the Lie–Poisson symmetry of the corresponding
classical Poisson brackets. The relations (3) identify R̂i as generators of the
(non-Abelian) braid group statistics of the model.

The first sign that the WZNW model is somehow related to quantum groups
appeared in [16]. Although it became soon clear that the quantum group symmetry
does not hold in the unitary version of the model (in particular, the quantum group
representation ring does not close on the “physical” representations), it seems to
be the appropriate internal (“gauge”) symmetry for a logarithmic extension of it
(see e.g. [8, 11, 14]).

The monodromy matrix M obeys the reflection equation

M1 R12 M2 R21 = R12 M2 R21 M1 ⇔ R̂12 M2 R̂12 M2 = M2 R̂12 M2 R̂12 , (5)

while its exchange relations with g(z) read

1We start with a general monodromy matrix (classically, M ∈G). The case when M belongs to the
maximal torus will be considered later as a diagonalization problem. The possibility of analytic
continuation in z (in correlation functions) due to energy positivity is implicitly assumed.
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g1(z)R−12M2 = M2 g1(z)R+
12 (R−12 := R12 , R+

12 := R−1
21 )⇔

M1 g2(z) = g2(z) R̂12 M2 R̂12 . (6)

The quantum group properties of the chiral field g(z) become transparent by
taking as R12 the Uq(GC) Drinfeld–Jimbo quantum R-matrix (where GC is the
complexification of the Lie algebra G of G ) and performing the factorization of
M into a product M+M−1

− of two upper, resp. lower triangular matrices such that

diagM+ = diagM−1
− , R12M±2M±1 = M±1M±2R12, R12M+2M−1 = M−1M+2R12.

(7)

According to a deep result of Faddeev et al. [6], a quotient of the Hopf algebra
generated by the entries of M± and endowed with a coalgebra structure in which the
coproduct, counit and antipode are defined as

Δ((M±)αβ ) = (M±)ασ ⊗ (M±)σβ , ε((M±)αβ ) = δαβ , S((M±)αβ ) = (M−1
± )αβ,

(8)

respectively, is equivalent to a certain cover Uq of Uq(GC) . The exchange relation

M±2 g1(z)M−1
±2 (= M±2 g1(z)S(M±)2 = AdM±2g1(z)) = g1(z)R∓12 (9)

(leading to (6)) implies that each row of g(z) = (gA
α(z)) is a Uq vector operator. The

factorization of M actually involves a “quantum prefactor” [10]; in particular, for
G = SU(n) when the deformation parameter is q = e−i πh , h = k+ n ,

M = q
1
n−n M+M−1

− (GC= s�(n)) . (10)

The quantum SU(n) WZNW monodromy matrix M and its components M± , as
matrices with non-commutative entries, are the main objects of interest for us in
this paper. In Sect. 2 we remind the FRT construction and provide some important
technical details of it. Section 3 is devoted to the diagonalization of M . In the last
Sect. 4 we introduce the quantum determinant detq(M) [9] and discuss some of its
properties. The results are illustrated by explicit formulae for small n .

2 Uq in Disguise: The FRT Construction

One of the amazing results in [6] is that a quotient of the RTT algebra (4), regarded
as a deformation of the algebra of functions on a matrix Lie group G , is Hopf dual
to a certain cover of the QUEA Uq(G ) . The “classical” (q = 1) counterpart of this
fact is the realization, due to L. Schwartz, of the universal enveloping algebra U(G )
as the non-commutative algebra of distributions on G supported by its unit element,
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U(G )  C−∞e (G) (see Theorem 3.7.1 in [3]). The details below concern the case
G = s�(n) . As shown in [6], the Hopf algebra (7), (8) is dual to Fun(SLq(n)) ,
the detq(T ) = 1 quotient of the RTT algebra (4) (for an appropriate definition of the
quantum determinant) with coalgebra relations written in matrix form as

Δ(1) = 1⊗ 1 , Δ(T ) = T ⊗T , ε(T ) = 1I , S(T ) = T−1 . (11)

The Chevalley generators of Uq(s�(n)) obey the commutation relations

KiKj = KjKi , Ki E j K−1
i = qci j E j , Ki Fj K−1

i = q−ci j Fj ,

[Ei,Fj] = δi j
Ki−K−1

i

q− q−1 , i, j = 1, . . . ,n− 1 (12)

and, for n > 2 , also the q-Serre relations

E2
i E j +E j E2

i = [2]Ei E j Ei , F2
i Fj +Fj F2

i = [2]Fi Fj Fi

for |i− j|= 1 , [Ei,E j] = 0 = [Fi,Fj] for |i− j|> 1 . (13)

Here (ci j) is the s�(n) Cartan matrix, cii = 2 , ci i±1 = −1 , ci j = 0 for |i− j| > 1 .
The coalgebra structure is defined on the generators as follows:

Δ(Ki) = Ki⊗Ki , Δ(Ei) = Ei⊗Ki + 1I⊗Ei , Δ(Fi) = Fi⊗ 1I+K−1
i ⊗Fi ,

ε(Ki) = 1 , ε(Ei) = ε(Fi) = 0 , S(Ki) = K−1
i , S(Ei) =−EiK

−1
i , S(Fi) =−KiFi .

(14)

On the other hand, using the explicit form of the Drinfeld–Jimbo Uq(s�(n)) R-
matrix,

R12 = (Rαβρσ ) , Rαβρσ = q
1
n

(

δαρ δ
β
σ +(q−1−qεαβ )δασ δ

β
ρ

)

, εαβ =

⎧

⎨

⎩

1 , α > β
0 , α = β
−1 , α < β

,

(15)

Equation (7) give rise to the following relations for the components of M±:

[(M±)αρ ,(M±)
β
σ ] = (qεσρ − qεαβ )(M±)ασ (M±)

β
ρ ,

[(M−)αρ ,(M+)
β
σ ] = (q−1− qεαβ )(M+)

α
σ (M−)

β
ρ − (q−1− qεσρ )(M−)ασ (M+)

β
ρ .

(16)

We will denote

diagM+ = diagM−1
− =: D = (dα δαβ ) , detD :=

n

∏
α=1

dα = 1, (17)
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thus introducing a quotient of the algebra (7). From (16) we obtain, in particular,

dα dβ = dβ dα ,

dα (M+)
β
α = q−1 (M+)

β
α dα , dβ (M+)

β
α = q(M+)

β
α dβ , α > β ,

dα (M−)αβ = q(M−)αβ dα , dβ (M−)αβ = q−1 (M−)αβ dβ , α > β ,

[(M−)αβ ,(M+)
β
α ] = λ (d−1

α dβ − dαd−1
β ) , α > β (λ = q− q−1 ) . (18)

As dα commute, their order in the product defining detD in (17) is not important.
Using the triangularity of M+ and M− in deriving (18) is crucial. Moreover, due to it,
the coproduct (8) of a matrix element of M+ or M− belonging to the corresponding
“m-th diagonal” (for m= 1, . . . ,n) contains exactly m summands. Thus, the diagonal
elements dα , α = 1,2, . . . ,n (m = 1) are group-like (Δ(dα) = dα⊗dα , ε(dα ) = 1 ,
S(dα) = d−1

α ), while

Δ((M+)
i
i+1) = di⊗ (M+)

i
i+1 +(M+)

i
i+1⊗ di+1 ,

Δ((M−)i+1
i ) = (M−)i+1

i ⊗ d−1
i + d−1

i+1⊗ (M−)i+1
i (19)

for 1≤ i≤ n− 1 (here m = 2). The comparison with (14) suggests that

(M+)
i
i+1 = xi Fi di+1 , (M−)i+1

i = yi d−1
i+1 Ei , d−1

i di+1 = Ki (20)

where xi and yi are some yet unknown q-dependent coefficients. Forα = i+ 1,β = i,
the second and third relation in (18) as well as the condition (17) are satisfied if

dα = kα−1k−1
α (k0 = kn = 1), (21)

the new set of independent Cartan generators k1, . . . ,kn−1 obeying

ki =
i

∏
�=1

d−1
� , Ki = k−1

i−1k2
i k−1

i+1 , i = 1,2, . . . ,n− 1 ,

kik j = k jki , ki E j = qδi j E j ki , ki Fj = q−δi j Fj ki ,

Δ(ki) = ki⊗ ki , ε(ki) = 1 , S(ki) = k−1
i . (22)

Inserting (20) into the last (18) and using the second and third relation (18) from
which it follows that [di+1,(M−)i+1

i (M+)
i
i+1] = 0, we obtain

xi yi =−λ 2 , i = 1, . . . ,n− 1 . (23)

The commutation relation (16) of (M+)
i
i+2 with dα (21) suggests that (M+)

i
i+2

contains the step operators Fi and Fi+1 only. Assuming that it is proportional to
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(Fi+1Fi − zFi Fi+1)Di+2 where Di+2 is some group-like element and z is another
unknown q-dependent coefficient, taking the corresponding coproduct (8) and
using (20), (14), we obtain

(M+)
i
i+2 =−

xixi+1

λ
[Fi+1,Fi]q di+2 , ( [A,B]q := AB− qBA) . (24)

A similar calculation shows that (M−)i+2
i =

yiyi+1
λ d−1

i+2 [Ei,Ei+1]q−1 . We will fix the
coefficients xi and yi satisfying (23) in a symmetric way: xi = −λ , yi = λ . The
commutators

[(M+)
i
i+1,(M+)

i
i+2]q = 0 , [(M+)

i
i+2,(M+)

i+1
i+2]q = 0 ,

[(M−)i+1
i ,(M−)i+2

i ]q = 0 , [(M−)i+2
i ,(M−)i+2

i+1]q = 0 (25)

are in fact the non-trivial q-Serre relations (13) written as

[Fi, [Fi,Fi+1]q−1 ]q = 0 = [Fi+1, [Fi+1,Fi]q ]q−1 ,

[Ei, [Ei,Ei+1]q−1 ]q = 0 = [Ei+1, [Ei+1,Ei]q ]q−1 . (26)

One can obtain in a similar way the higher off-diagonal terms of the matrices M±
(for example, (M+)

1
4 =−λ [F3, [F2,F1]q]q d4). The result can be summarized in

M+ = (1I−λ N+)D , M− = D−1 (1I+λ N−) (27)

where the nilpotent matrices N+ and N− are upper and lower triangular, respectively,
with matrix elements given by the corresponding (lowering and raising) Cartan–
Weyl generators, while the non-trivial entries dα , α = 1, . . . ,n of the diagonal
matrix D are expressed in terms of ki (21). Writing Ki = qHi , i = 1, . . . ,n− 1 and
using (22) allows to present ki as ki = qhi

where hi are dual to the fundamental
weights,

Hi =
n−1

∑
j=1

ci j h j = 2hi− hi−1− hi+1 . (28)

As det c(n) = n for c(n) := (ci j)
s�(n) , (28) infers that an inverse formula expressing

ki in terms of Ki would involve “n-th roots” of the latter2; indeed,

hi =
n−1

∑
j=1

(c−1)i jHj =
i

∑
j=1

j (1− i
n
)Hj +

n−1

∑
j=i+1

i(1− j
n
)Hj . (29)

2The determinant of the s�(n) Cartan matrix obeys

det c(n) = 2 det c(n−1)−det c(n−2) , det c(2) = 2 , det c(3) = 3 ⇒ det c(n) = n .
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Thus the Hopf algebra Uq generated by Ei,Fi,ki is an n-fold cover of Uq(s�(n)).
Note that the Uq invariance of the vacuum vector can be written as

X | 0〉= ε(X) | 0〉 ∀X ∈Uq , (30)

where ε(X) is the counit (see (8) or, equivalently, (27), (14), (22)).
We display below the matrices D and N± (27) in the cases n = 2 and n = 3 .
n = 2:

D =

(

k−1 0
0 k

)

(K = k2 ) , N+ =

(

0 F
0 0

)

, N− =

(

0 0
E 0

)

, (31)

n = 3:

D =

⎛

⎝

k−1
1 0 0
0 k1k−1

2 0
0 0 k2

⎞

⎠ (K1 = k2
1k−1

2 , K2 = k−1
1 k2

2 ) ,

N+ =

⎛

⎝

0 F1 [F2,F1]q
0 0 F2

0 0 0

⎞

⎠ , N− =

⎛

⎝

0 0 0
E1 0 0

[E1,E2]q−1 E2 0

⎞

⎠ , (32)

(1I+λN−)−1 = 1I−λ
⎛

⎝

0 0 0
E1 0 0

[E1,E2]q E2 0

⎞

⎠ . (33)

3 The Diagonal Monodromy Matrix Mp

The natural solution of the diagonalization problem for the chiral SU(n) WZNW
monodromy matrix M appears to be the diagonal matrix Mp defined as

Mp a = aM , Mp = q1− 1
n diag(q−2p1 , . . . ,q−2pn) (34)

(see e.g. [10]). Here qpi form a commutative set of operators (qpiqp j = qp j qpi)
satisfying ∏n

i=1 qpi = 1 , the zero modes’ matrix (with non-commutative entries) a
obeys the relations

qp j ai
α = ai

α qp j+δ i
j− 1

n , R̂12(p)a1 a2 = a1 a2 R̂12 (35)

as well as an appropriate (n-linear) determinant condition, and R̂12(p) in (35) is a
solution of the quantum dynamical Yang–Baxter equation [15].

The q1− 1
n prefactor of Mp (34) has a quantum origin [9,10]. Applying both sides

of the first relation (34) to the vacuum and using (10), (30) and the first equation (35),
we deduce that the equality

ai
α q−2pi | 0〉= q1−n ai

α | 0〉 (36)
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should hold for any i (and α). The natural way to satisfy (36) is to set

qpi | 0〉= q
n+1

2 −i | 0〉 , i = 1, . . . ,n , ai
α | 0〉= 0 for i≥ 2 . (37)

Here p(0)i = n+1
2 − i are the “barycentric coordinates” (∑n

i=1 p(0)i = 0) of the Weyl
vector ρ in the orthogonal basis of the s�(n) weights.

These two relations give rise to a Fock representation of the zero modes’
matrix algebra generated by polynomials P(a) applied to the vacuum vector. For
homogeneous polynomials, the action of ai

α on the vector P(a) | 0〉 can be depicted
as adding a box to the i-th row of a Young-type diagram. In the case of admissible
s�(n) diagrams (associated to irreducible representations (IR) with highest weight
Λ ) the eigenvalues of qpi on PΛ (a) | 0〉 are expressed in terms of the barycentric
coordinates of the shifted weight Λ +ρ . For q generic, the Fock space is in fact a
model space (a direct sum of all IR with multiplicity one) of Uq [10]. In the case
at hand q is an (even) root of unity, and a more complicated structure including
indecomposable Uq representations occurs (see [11] where the simplest, n = 2 case
has been studied).

The first equation (35) implies the following exchange relation of Mp and a:

Mp1a2 = q−2σ12a2Mp1 ⇔ a1Mp2 a−1
1 = q2σ12Mp2 , (q2σ12)i j

�m = q2(δi j− 1
n ) δ i

� δ
j

m .

(38)

On the other hand, the exchange relation between M and a is similar to (6):

a1 R−12 M2 = M2 a1 R+
12 ⇔ M1 a2 = a2 R̂12 M2 R̂12 . (39)

The compatibility of (38) and (39) requires the relation

R̂−1
12 (p) = q2σ12 Mp2 R̂12(p)M−1

p1 (40)

to hold (it takes place indeed, being equivalent to (6.17) of [15] with R̂12(p)↔
R̂−1

12 (p)). To prove this, we start with (39) and then use M = a−1Mp a (34), the
second equation (35) rewritten as a2 R̂12 a−1

2 = a−1
1 R̂12(p)a1 , and (38):

M1 a2 = a2 R̂12 M2 R̂12 ⇒ (a−1
1 Mp1 a1)a2 = a2 R̂12 (a

−1
2 Mp2 a2) R̂12 ⇒

a−1
1 Mp1 a1 = (a2 R̂12 a−1

2 )Mp2 (a2 R̂12 a−1
2 ) ⇒

a−1
1 Mp1 a1 = (a−1

1 (R̂12(p)a1)Mp2 (a
−1
1 R̂12(p))a1) ⇒

Mp1 = R̂12(p)(a1 Mp2 a−1
1 ) R̂12(p) ⇒ R̂−1

12 (p) = q2σ12Mp2 R̂12(p)M−1
p1 .

(41)
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It is easy to verify (40) for n = 2 when

R̂±1
12 (p) = q±

1
2

⎛

⎜

⎜

⎜

⎝

q∓1 0 0 0

0 q∓p

[p] q−α [p−1]
[p] 0

0 qα [p+1]
[p] − q±p

[p] 0

0 0 0 q∓1

⎞

⎟

⎟

⎟

⎠

, Mp = q
1
2

(

q−p 0
0 qp

)

(42)

(here p := p12 and α = α(p)), so that

q−
1
2 Mp2 = diag(q−p , qp , q−p , qp) , q

1
2 M−1

p1 = diag(qp , qp , q−p , q−p) ,

q2σ12 = diag(q , q−1 , q−1 , q). (43)

4 The Quantum Determinant detq(M)

As shown in [9], the appropriate definition of the quantum determinant of M is

detq(M) :=
1
[n]!

εα1...αn

[

(R̂12R̂23 . . . R̂n−1nMn)
n]α1...αn

β1...βn
εβ1...βn . (44)

Here [n]!= [n][n−1] . . . [1] and the quantum antisymmetric tensors vanish whenever
some of their indices coincide, while their non-zero components are given by

εα1...αn = εα1...αn = q−
n(n−1)

4 (−q)�(α) ⇒ εα1...αnε
α1...αn = [n]! (45)

for (α1, . . . ,αn) a permutation of (n, . . . ,1) of length �(α) .
The corresponding independent definition of detq(M±) does not involve the R-

matrix and is thus simpler; due to the triangularity of the matrices, only the n!
products of (commuting) diagonal entries survive in the sum so that, by (45), the
end result complies with (17):

detq(M±) :=
1
[n]!

εα1...αn (M±)αn
βn
. . . (M±)α1

β1
εβ1...βn =

n

∏
α=1

(M±)αα =
n

∏
α=1

d±1
α = 1

(46)

One can prove that the formula (44) possesses the following factorization
property. Substituting M by (10) (including the prefactor!), one obtains just the
product of the quantum determinants of M+ and M−1

− (both equal to 1), and hence

detq(M) = detq(M+) .detq(M−1
− ) = 1 . (47)

Of course, this is a highly desirable result, as it appears as a quantum counterpart of
the similar classical property.
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We will end up by calculating detq(M) for n = 2 directly from (44). In this case

ε12 = ε12 =−q
1
2 , ε21 = ε21 = q−

1
2 , and with

R̂12 = q
1
2

⎛

⎜

⎜

⎝

q−1 0 0 0
0 −λ 1 0
0 1 0 0
0 0 0 q−1

⎞

⎟

⎟

⎠

, M :=

(

m1
1 m1

2
m2

1 m2
2

)

(48)

we obtain the expression

detq(M) =
1
[2]
εαβ
(

R̂12M2R̂12M2
)αβ
ρσ ε

ρσ =

=
q2

[2]
(m1

1m2
2 + m2

2m1
1 + qλ (m2

2)
2− q−2m1

2m2
1−m2

1m1
2) (49)

which reproduces the classical one, m1
1m2

2−m1
2m2

1 , for q = 1 and commuting

mα
β . Through (27) and (31), the entries of M = q−

3
2 M+ M−1

− are expressed in terms
of the Uq generators:

m1
1 = q−

1
2 (λ 2FE +q−1K−1) , m1

2 =−q−
3
2 λFK , m2

1 =−q−
1
2 λE , m2

2 = q−
3
2 K.

(50)

(Note that only k2 = K ∈Uq(s�(2)) appears in (50) and not k ∈Uq alone [8, 11].)

Now using KE = q2EK , [E,F ] = K−K−1

λ , [2] = q+ q−1 we obtain

detq(M) =
1
[2]

(2q−1−λ 2 [E,F ]K +λ K2) = 1 , (51)

as prescribed by (47).
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Some Properties of Planar Galilean
Conformal Algebras

Naruhiko Aizawa

Abstract An infinite dimensional extension of the spin 1 Galilean conformal
algebra in the plane is investigated. We present the coadjoint representation and
a classification of all possible central extensions. Furthermore, we study repre-
sentations of the algebra with central extensions. Kac determinant for the highest
weight Verma modules is given explicitly which shows that the Verma modules are
irreducible for nonvanishing highest weights. A boson realization corresponding to
unit central charge is also presented.

1 Introduction

Importance of infinite dimensional Lie algebras in physics and mathematics has
been recognized for a long time. Many of them are related to semisimple Lie algebra
of finite dimension. The celebrated Virasoro algebra contains infinitely many sl(2)
as its subalgebras and each classical Lie algebra is associated with Kac–Moody
algebra. Recent studies of nonrelativistic AdS/CFT correspondence have introduced
variety of infinite dimensional Lie algebras [1–9]. Some of them were introduced as
a formal extension of finite dimensional Lie algebras and some others are derived by
contraction form some copies of Virasoro algebra. Physical implication of some of
such infinite dimensional algebras is not clear at this moment. However, they have
two interesting features: They have Virasoro algebra as a subalgebra, and they are
associated with non-semisimple Lie algebras which are regarded as a nonrelativistic
analogue of conformal algebras. This would suggest that such infinite dimensional
algebras are of physical importance and their representation theory is different from
semisimple counterparts.
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In the present work, we pick up one of such infinite dimensional algebras
and study its central extensions and representations. The algebra we pick up was
introduced by Martelli and Tachikawa [4] which is an infinite dimensional extension
of the so-called spin 1 Galilean conformal algebra (GCA) [10–12]. We focus on
the algebra defined in (2 + 1) dimensional spacetime because the GCA of finite
dimension has an exotic central extension which is allowed only in this dimension
of spacetime [4, 13–15].

To make clear the difference between finite and infinite dimensional GCA, we
start with a brief review of GCA in arbitrary dimensional spacetime. It is followed
by a study of central extensions of infinite dimensional GCA of spin 1 in the plane
where it is shown that the algebra does not have the exotic central extension. We
then consider the Verma modules over the algebra with the central extensions.
The explicit formula of the Kac determinant is given which shows that the Verma
modules are irreducible for nonvanishing highest weights. It is also shown that the
algebra has a boson realization similar to that of Virasoro algebra. In Sect. 4 we
return to the centerless algebra and derive the coadjoint representation. Section 5 is
devoted to concluding remarks.

2 Review of Galilean Conformal Algebras in (d+1)D
Spacetime

We present the GCA of finite dimension in d spatial dimension according to [11,12]
(see also [4]). By a given d, GCA is labelled by a half-integer � (sometimes called
spin). Let us consider the following generators of spacetime transformations:

H = ∂t , Pn
i = (−t)n∂i, Ji j =−xi∂ j + x j∂i,

D =−t∂t − �xi∂i, C = t2∂t + 2�txi∂i,
(1)

where i, j = 1,2, · · · ,d and n = 0,1, · · · ,2�. Commutation relations are easily
deduced from (1) and one see that 〈 D,H,C 〉 span the subalgebra sl(2,R) and the
rotation 〈 Ji j 〉 dose so(n). The subalgebra 〈 Pn

i 〉 forms an Abelian ideal so that the
structure of the algebra is summarised as

( sl(2,R) ⊕ so(n) ) ⊃+ 〈 Pn
i 〉.

It is known that GCA has two types of central extensions. One exists for any d
and half-integer � :

[Pm
i ,Pn

j ] = Imnδi jM, (2)

and another exists only for d = 2 and integer � which is called exotic extension:

[Pm
i ,Pn

j ] = Imnεi jΘ , ε12 =−ε21 = 1, (3)
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where Imn is a symmetric tensor. The simplest case � = 1/2 corresponds to the
Schrödinger algebra with mass central extension. The � = 1 algebra with the
exotic central extension is of some physical interest (see for example, [4, 13–16]).
The representation theory of the algebra for d = 2, � = 1 has been investigated
in [17].

The vector field realization (1) is formally extended to infinite dimension [4]:

Lm =−tm+1∂t − �(m+ 1)tmxi∂i,

Jm
i j =−tm(xi∂ j− x j∂i), Pn

i =−tn+�∂i, (4)

where m ∈ Z, n ∈ Z+ �. The subalgebra sl(2,R) is recast into single expression
Lm with m = 0,±1. J0

i j and Pn
i with −� ≤ n ≤ � are corresponds to those of finite

dimensional GCA. One may verify that (4) defines an Lie algebra with the structure

( 〈Lm 〉 ⊃+ 〈 Jm
i j 〉 ) ⊃+ 〈 Pn

i 〉,

where 〈 Lm 〉, 〈 Jm
i j 〉 span the Virasoro and ŝo(n) subalgebras, respectively.

The subalgebra 〈 Pm
i 〉 remains Abelian ideal.

In this work we focus on d = 2, �= 1 algebra and denote it by g. We present the
defining relation of g with a slight change of notations.

[Lm,Ln] = (m− n)Lm+n, [Jm,Jn] = [Pi
m,P

j
n ] = 0,

[Lm,Jn] =−nJm+n, [Lm,P
i
n] = (m− n)Pi

m+n,

[Jm,P
i
n] = εi jP

j
m+n, (5)

where i, j = 1,2 and m,n ∈ Z.

3 Centrally Extended Algebra and Its Verma Modules

Probably, the first question one may be interested in is the central extension of the
algebra g. Does g have the central extension of exotic type? One has the negative
answer to this question from the following theorem proved in [18]:

Theorem 1. The algebra g has the following central extensions:

[Lm,Ln] = (m− n)Lm+n +
α
12

m(m2− 1)δm+n,0,

[Jm,Jn] = βmδm+n,0,

where α and β are independent central charges. However, the exotic type extension
is impossible.

We denote the algebra with the central extensions by g̃.



304 N. Aizawa

Let us turn to representations of g̃. We study the Verma modules of highest weight
type. Define the degree of Xn ∈ g̃ by deg(Xn) = −n where X = L,J,Pi. This allows
us to define the triangular decomposition of g̃ :

g̃ = g̃−⊕ g̃0⊕ g̃+

= 〈 L−n,J−n,P
i
−n 〉 ⊕ 〈 L0,J0,P

i
0 〉 ⊕ 〈 Ln,Jn,P

i
n 〉, n ∈ Z+

Let |0〉 be the highest weight vector:

Ln |0〉= Jn |0〉= Pi
n |0〉= 0, n ∈ Z+

L0 |0〉= h |0〉 , J0 |0〉= μ |0〉 , Pi
0 |0〉= ρi |0〉 .

Following the usual definition of Verma modules, we define the Verma modules
for g̃ :

VI =U(g̃−) |0〉 ,
where I = { h,μ ,ρi }. The Verma module VI is a graded-modules through a
natural extension of the degree from g̃ to U(g̃) by deg(XY ) = deg(X) + deg(Y ),
X ,Y ∈U(g̃),

V I =
⊕

n∈Z≥0

VI
n , VI

n = {X |0〉 | X ∈U(g̃−), deg(X) = n }.

There exists an algebraic anti-automorphism ω : g̃→ g̃ defined by

ω(Lm) = L−m, ω(Jm) = J−m, ω(Pi
m) = Pi

−m. (6)

One can introduce an inner product in VI by extending the anti-automorphism ω
to U(g̃). We define the inner product of X |0〉 ,Y |0〉 ∈VI by

〈0|ω(X)Y |0〉 , 〈0|0〉= 1.

The reducibility of VI may be investigated by the Kac determinant. The Kac
determinant is defined as usual [19]. Let |i〉 (i = 1, · · ·dimV I

n ) be a basis of VI
n ,

then the Kac determinant at level (degree) n is given by

Δn = det( 〈i| j〉 ).

We want to calculate Δn. The main obstacles of this calculation are rapid increase
of dim VI

n as a function of n and Δn is never reduced to the determinant of diagonal
matrix. For illustration we list dimVI

n for some small n:
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n 0 1 2 3 4 5
dimV I

n 1 4 14 40 105 252

However, one can carry out the computation by the method similar to that for
Schrödinger–Virasoro algebra used in [20]. We here merely mention the result and
do not go into the detail. The computational details are found in [18]. To mention
the result we need some preparation.

A partition A = (a1a2 · · ·a�) of a positive integer a is the sequence of positive
integers such that

a = a1 + a2 + · · ·+ a�,

a1 ≥ a2 ≥ ·· · ≥ a� > 0.

The integers � is called length of the partition A and denoted by �(A). For a given
partition A of a, we decompose a set of integers a1,a2, · · · ,a� to two subsets by
selecting s integers from them (0≤ s≤ �):

A1 = { aσ1 ≥ aσ2 ≥ ·· · ≥ aσs }, A2 = { aρ1 ≥ aρ2 ≥ ·· · ≥ aρ�−s }. (7)

A1 consists of the selected s integers and the members of A2 are the rest integers
so that the partition A is decomposed into a pair of partitions (A1A2). We denote
the number of all possible pairs (A1A2) by s(A). For instance, let A = (21)
then the possible pairs are (A1A2) = ((21)φ), ((2)(1)), ((1)(2)), (φ(21)) so that
s((21))=4.Now we mention our result of Δn :

Theorem 2. Level n Kac determinant is given by

Δn = cn∏
a,b
∏
A,B

(ρ2
1 +ρ

2
2 )

1
2 s(A)s(B)(�(A)+�(B))

where the pair (a,b) runs all possible non-negative integers satisfying n = a+b and
the pair (A,B) runs all possible partitions of fixed a and b. The coefficient cn is a
numerical constant.

Explicit values of cn (up to sign) and the power of ρ2
1 + ρ2

2 for n = 1,2,3 are
listed below:

n 1 2 3
(cn,power) (2,2) (218,12) (27236,48)

Remark 1. Δn is independent of the central charges α,β . Thus the formula of Δn is
common for the algebras g and g̃.

Remark 2. For ρ2
1 +ρ2

2 
= 0 the Kac determinant Δn never vanish so that there exist
no singular vectors in VI

n for any n. Thus the Verma modules VI are irreducible.
This is a sharp contrast to spin 1 GCA of finite dimension with the exotic central
extension where some Verma modules for certain nonvanishing highest weights are
reducible [17].
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Remark 3. The facts mentioned in the above remarks are also observed for the
Schrödinger–Virasoro algebra in (1+ 1) dimensional space-time [20].

We close this section with the boson realization of g̃. We introduce the set of
bosons used to realize the Virasoro algebra [19]:

[am,an] = mδm+n,0, m,n ∈ Z. (8)

Observe that the commutation relation is identical to that of Jm if β = 1. Let us
introduce three more bosons:

[bi, b̄ j] = δi, j, [bi,b j] = [b̄i, b̄ j] = 0, [c, c̄] = 1,

where i, j = 1,2. We suppose that these three types of bosons (a,b,c) commute one
another. Then the algebra g̃ with α = β = 1 is realized as follows:

Lm =
1
2 ∑k∈Z

: akam−k :−c̄m+1c− (m+ 1)cm∑
i

b̄ibi,

Jm = am− c̄m∑
i j
εi j b̄ib j, Pi

m =−c̄m+1bi, (9)

where the normal ordering is defined as usual:

: amak : =

{

amak m≤ k

akam m > k

One may prove (9) by direct computation.

4 Coadjoint Representation of g

In this section, we return to the algebra g without the central extensions and study its
coadjoint representation by employing the procedure of [20]. We first determine the
algebra g∗ dual to g. This is done by regarding g as a sum of modules of centerless
Virasoro algebra. The centerless Virasoro algebra has a one-parameter family of
representation Fλ , λ ∈ R on C[z,z−1] which is defined by

Lnzm = (λn−m)zn+m, n,m ∈ Z. (10)

By introducing the current Lf =∑
n

fnLn, an element of Fλ is understood as (−λ )-
density φ(z)dz−λ acted by Lf :

f (z)∂zφ(z)dz−λ = ( fφ ′ −λ f ′φ)dz−λ . (11)
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If Ln = ieinθ ∂θ , φm = ieimθ in terms of an angular variable 0 ≤ θ ≤ 2π , one gets
Lnφm = (λn−m)φn+m. The dual module F ∗

λ may be identified with F−1−λ through
the paring:

〈 u(z)dz1+λ , f (z)zdz−λ 〉=
∫

S1
u(z) f (z)dz. (12)

The current algebra on g may reads as follows:

Lf = f (θ )∂θ + f ′(θ )xi∂i, Pi
g = g(θ )∂i, Jh = h(θ )(x1∂2− x2∂1). (13)

It follows that

[Lf ,Lg] = L{ f ,g}, [Lf ,P
i
g] = Pi

{ f ,g}, [Lf ,Jh] = Jf h′ ,

with { f ,g} = f g′ − f ′g. Thus, by the adjoint action of Lf , Lg and Pi
g behave like

F1, Jh like F0, so that g is regarded as a sum of Lf modules:

g= F1⊕F1⊕F1⊕F0.

The dual algebra is given by

g∗ = F−2⊕F−2⊕F−2⊕F−1.

We shall denote the element γ0dz2 + γ1dz2 + γ2dz2 + γ3dz ∈ g∗ by the vector form−→γ = t(γ0,γ1,γ2,γ3), that is,

〈 −→γ , Lf0 +P1
f1 +P2

f2 + Jf3 〉=
3

∑
i=0

∫

S1
γi fidz. (14)

The coadjoint action ad∗ of g on g∗ is defined by

〈 ad∗(X)γ, Y 〉= 〈 γ, [Y,X ] 〉, X ,Y ∈ g, γ ∈ g∗ (15)

Theorem 3. The coadjoint action of g on g∗ is given as follows:

ad∗(Lf0)
−→γ =

⎛

⎜

⎜

⎝

2γ0 f ′0 + γ ′0 f0

2γ1 f ′0 + γ
′
1 f0

2γ2 f ′0 + γ
′
2 f0

γ3 f ′0 + γ ′3 f0

⎞

⎟

⎟

⎠

, ad∗(Jf3)
−→γ =

⎛

⎜

⎜

⎝

γ3 f ′3
γ2 f3

−γ1 f3

0

⎞

⎟

⎟

⎠

,

ad∗(P1
f1)
−→γ =

⎛

⎜

⎜

⎝

2γ1 f ′1 + γ
′
1 f1

0
0

−γ2 f1

⎞

⎟

⎟

⎠

, ad∗(P2
f2)
−→γ =

⎛

⎜

⎜

⎝

2γ2 f ′2 + γ
′
2 f2

0
0
γ1 f2

⎞

⎟

⎟

⎠

. (16)
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Proof. We show ad∗(P1
f1
)−→γ for illustration. Others are obtained in a similar way.

By definitions (14) and (15) we obtain

〈 ad∗(P1
f1)
−→γ , Lh0 〉 = 〈 −→γ , [Lh0 ,P

1
f1 ] 〉= 〈

−→γ , P1
{h0, f1} 〉

=

∫

S1
γ1(h0 f ′1− h′0 f1)dz =

∫

S1
h0(2γ1 f ′1 + γ

′
1 f1)dz,

〈 ad∗(P1
f1)
−→γ , P j

h j
〉 = 〈 −→γ , [P j

h j
,P1

f1 ] 〉= 0, ( j = 1,2),

〈 ad∗(P1
f1)
−→γ , Jh3 〉 = 〈 −→γ , [Jh3 ,P

1
f1 ] 〉= 〈

−→γ , −P2
h3 f1 〉=−

∫

S1
h3γ2 f1dz.

It follows the result for ad∗(P1
f1
)−→γ . ��

5 Concluding Remarks

We have investigated the infinite dimensional extension of the spin 1 Galilean
conformal algebra in the plane. It was shown that the algebra g does not have the
central extension of exotic type. This is a sharp contrast to the algebra of finite
dimension. We then studied the representations of both g and its central extension
g̃. The coadjoint representation of g was derived using the regular dual of g. This
will be followed by the study of coadjoint representation and coadjoint orbit for
the infinite dimensional group which is an integration of g. In such studies it might
be useful to have a more general vector field realization of g. Here we give a two
parameter (λ ,μ) realization which is reduced to (4) for λ = μ = 0:

Lm =−tm+1(∂t +λ )− (m+ 1)tm(xi∂i + μ),

Pi
m =−tm+1∂i, Jm =−tm(x1∂2− x2∂1).

Turn to the algebra g̃ with the central extension, we have studied reducibility of
the Verma modules by computing the Kac determinant. It was shown that if ρ2

1 +
ρ2

2 
= 0 then the Verma modules are irreducible and this is independent of the central
charges. On the other hand, if ρ2

1 +ρ2
2 = 0 then the Verma modules will be reducible.

This may be verified by seeking singular vectors. It will be a future work.
In the present work, only mathematical aspects of g and g̃ have been investigated.

It has its own interest, however, it would be more exciting if one elucidate physical
implication of the algebras. Unfortunately, this is an open question at this stage.
We know that physical application of algebraic structure usually appear through
representations. In this sense it may be worth to carry out further studies of
representations of g and g̃.

Acknowledgements The author is supported by a grants-in-aid from JSPS (Contract
No.23540154).
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Invariant Differential Operators
for Non-compact Lie Groups: The Sp(n, IR) Case

V.K. Dobrev

Abstract In the present paper we continue the project of systematic construction
of invariant differential operators on the example of the non-compact algebras
sp(n, IR), in detail for n = 6. Our choice of these algebras is motivated by the
fact that they belong to a narrow class of algebras, which we call “conformal
Lie algebras”, which have very similar properties to the conformal algebras of
Minkowski space-time. We give the main multiplets and the main reduced multiplets
of indecomposable elementary representations for n = 6, including the necessary
data for all relevant invariant differential operators. In fact, this gives by reduction
also the cases for n < 6, since the main multiplet for fixed n coincides with one
reduced case for n+ 1.

1 Introduction

Consider a Lie group G, e.g., the Lorentz, Poincaré, conformal groups, and
differential equations

I f = j

which are G-invariant. These play a very important role in the description
of physical symmetries—recall, e.g., the early examples of Dirac, Maxwell,
d’Allembert, equations and nowadays the latest applications of (super-)differential
operators in conformal field theory, supergravity, string theory, (for a recent review,
cf. e.g., [1]). Naturally, it is important to construct systematically such invariant
equations and operators.
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In a recent paper [2] we started the systematic explicit construction of invariant
differential operators. We gave an explicit description of the building blocks,
namely, the parabolic subgroups and subalgebras from which the necessary rep-
resentations are induced. Thus we have set the stage for study of different
non-compact groups.

In the present paper we focus on the groups Sp(n, IR), which are very interesting
for several reasons. First of all, they belong to the class of Hermitian symmetric
spaces, i.e., the pair (G,K) is a Hermitian symmetric pair (K is the maximal compact
subgroup of the noncompact semisimple group G). Further, Sp(n, IR) belong to a
narrower class of groups/algebras, which we call ‘conformal Lie groups or algebras’
since they have very similar properties to the canonical conformal algebras so(n,2)
of n-dimensional Minkowski space-time. This class was identified from our point of
view in [3]. Besides so(n,2) it includes the algebras su(n,n), sp(n, IR), so∗(4n),
E7(−25), (omitting to mention coincidences between the low-dimensional cases,
cf. [3]). The corresponding groups are also called Hermitian symmetric spaces
of tube type [4]. The same class was identified from different considerations in
[5], where these groups/algebras were called ‘conformal groups of simple Jordan
algebras’. It was identified from still different considerations also in [6], where
the objects of the class were called simple space-time symmetries generalizing
conformal symmetry.

In our further plans it shall be very useful that (as in [2]) we follow a procedure in
representation theory in which intertwining differential operators appear canonically
[7] and which procedure has been generalized to the supersymmetry setting and to
quantum groups.

The present paper is organized a follows. In Sect. 2 we give the preliminaries,
actually recalling and adapting facts from [2]. In Sect. 3 we specialize to the
sp(n, IR) case. In Sect. 4 we present some results on the multiplet classification of
the representations and intertwining differential operators between them. Sect. 5 is
an outlook. There are eight figures that are referred to throughout the text and for
typographical reasons (due to their size) are collected in Sect. 6.

2 Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup
of G. Then we have an Iwasawa decomposition G = KA0N0, where A0 is abelian
simply connected vector subgroup of G, N0 is a nilpotent simply connected
subgroup of G preserved by the action of A0. Further, let M0 be the centralizer of
A0 in K. Then the subgroup P0 = M0A0N0 is a minimal parabolic subgroup of G.
A parabolic subgroup P = M′A′N′ is any subgroup of G (including G itself) which
contains a minimal parabolic subgroup.

The importance of the parabolic subgroups comes from the fact that the
representations induced from them generate all (admissible) irreducible represen-
tations of G [8]. For the classification of all irreducible representations it is enough
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to use only the so-called cuspidal parabolic subgroups P = M′A′N′, singled out
by the condition that rankM′ = rankM′ ∩K [9, 10], so that M′ has discrete series
representations [11]. However, often induction from non-cuspidal parabolics is also
convenient, cf. [2, 12–14].

Let ν be a (non-unitary) character of A′, ν ∈ A ′∗, let μ fix an irreducible
representation Dμ of M′ on a vector space Vμ .

We call the induced representation χ = IndG
P (μ⊗ν⊗1) an elementary represen-

tation of G [15–17]. (These are called generalized principal series representations
(or limits thereof ) in [18].) Their spaces of functions are:

Cχ = {F ∈C∞(G,Vμ) |F (gman) = e−ν(H)·Dμ(m−1)F (g)} (1)

where a = exp(H) ∈ A′, H ∈ A ′ , m ∈M′, n ∈ N′. The representation action is the
le f t regular action:

(T χ(g)F )(g′) = F (g−1g′) , g,g′ ∈ G. (2)

For our purposes we need to restrict to maximal parabolic subgroups P, (so that
rankA′ = 1), that may not be cuspidal. For the representations that we consider the
character ν is parameterized by a real number d, called the conformal weight or
energy.

Further, let μ fix a discrete series representation Dμ of M′ on the Hilbert space
Vμ , or the so-called limit of a discrete series representation (cf. [18]). Actually,
instead of the discrete series we can use the finite-dimensional (non-unitary)
representation of M′ with the same Casimirs.

An important ingredient in our considerations are the highest/lowest weight
representations of G . These can be realized as (factor-modules of) Verma modules
VΛ over G CI , whereΛ ∈ (H CI)∗, H CI is a Cartan subalgebra of G CI , weightΛ =Λ(χ)
is determined uniquely from χ [7]. In this setting we can consider also unitarity,
which here means positivity w.r.t. the Shapovalov form in which the conjugation is
the one singling out G from G CI .

Actually, since our ERs may be induced from finite-dimensional representations
of M ′ (or their limits) the Verma modules are always reducible. Thus, it is
more convenient to use generalized Verma modules ṼΛ such that the role of the
highest/lowest weight vector v0 is taken by the (finite-dimensional) space Vμ v0 .
For the generalized Verma modules (GVMs) the reducibility is controlled only by
the value of the conformal weight d. Relatedly, for the intertwining differential
operators only the reducibility w.r.t. non-compact roots is essential.

One main ingredient of our approach is as follows. We group the (reducible) ERs
with the same Casimirs in sets called multiplets [7,19]. The multiplet corresponding
to fixed values of the Casimirs may be depicted as a connected graph, the vertices of
which correspond to the reducible ERs and the lines between the vertices correspond
to intertwining operators. The explicit parametrization of the multiplets and of their
ERs is important for understanding of the situation.
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In fact, the multiplets contain explicitly all the data necessary to construct
the intertwining differential operators. Actually, the data for each intertwining
differential operator consists of the pair (β ,m), where β is a (non-compact) positive
root of G CI , m∈ IN, such that the BGG [20] Verma module reducibility condition (for
highest weight modules) is fulfilled:

(Λ +ρ ,β∨) = m , β∨ ≡ 2β/(β ,β ). (3)

When (3) holds then the Verma module with shifted weight VΛ−mβ (or ṼΛ−mβ for
GVM and β non-compact) is embedded in the Verma module VΛ (or ṼΛ ).
This embedding is realized by a singular vector vs determined by a polynomial
Pm,β (G

−) in the universal enveloping algebra (U(G−)) v0 , G − is the subalgebra
of GCI generated by the negative root generators [21]. More explicitly, [7], vs

m,β =

Pm,β v0 (or vs
m,β = Pm,β Vμ v0 for GVMs).1 Then there exists [7] an intertwining

differential operator

Dm,β : Cχ(Λ) −→ Cχ(Λ−mβ ) (4)

given explicitly by:

Dm,β = Pm,β (
̂G −) (5)

where ̂G − denotes the right action on the functions F , cf. (1).

3 The Non-compact Lie Algebras sp(n, IR)

Let n ≥ 2. Let G = sp(n, IR), the split real form of sp(n,CI ) = G CI . The maximal
compact subgroup of G is K ∼= u(1)⊕ su(n), dimIR P = n(n+1), dimIR N = n2.
This algebra has discrete series representations and highest/lowest weight represen-
tations.

The split rank is equal to n, while M = 0.
The Satake diagram [24] of sp(n, IR) is the same as the Dynkin diagram of

sp(n,CI ):

◦
α1
−−− ◦

α2
−−−·· ·−−− ◦

αn−1
⇐= ◦

αn

Also the root systems coincide.
We choose a maximal parabolic P = M ′A ′N ′ such that A ′ ∼= so(1,1), while

the factor M ′ has the same finite-dimensional (nonunitary) representations as the
finite-dimensional (unitary) representations of the semi-simple subalgebra of K ,
i.e., M ′ = sl(n, IR), cf. [2]. Thus, these induced representations are representations
of finite K -type [25]. Relatedly, the number of ERs in the corresponding multiplets

1For explicit expressions for singular vectors we refer to [22, 23].
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is equal to |W (G CI ,H CI)|/ |W (K CI ,H CI)| = 2n, cf. [26], where H is a Cartan
subalgebra of both G and K . Note also that K CI ∼= u(1)CI ⊕ sl(n,CI ) ∼= M ′CI ⊕A ′CI .
Finally, note that dimIR N ′ = n(n+ 1)/2.

We label the signature of the ERs of G as follows:

χ = {n1 , . . . , nn−1 ; c} , n j ∈ IN , c = d− (n+ 1)/2 (6)

where the last entry of χ labels the characters of A ′ , and the first n− 1 entries
are labels of the finite-dimensional nonunitary irreps of M ′ , (or of the finite-
dimensional unitary irreps of su(n)).

The reason to use the parameter c instead of d is that the parametrization of the
ERs in the multiplets is given in a simpler way, as we shall see.

Below we shall use the following conjugation on the finite-dimensional entries
of the signature:

(n1, . . . ,nn−1)
∗ .
= (nn−1, . . . ,n1) (7)

The ERs in the multiplet are related also by intertwining integral operators.
The integral operators were introduced by Knapp and Stein [27]. In fact, these

operators are defined for any ER, not only for the reducible ones, the general action
being:

GKS : Cχ −→ Cχ ′ ,
χ = {n1, . . . ,nn−1 ; c} ,

χ ′ = {(n1, . . . ,nn−1)
∗ ;−c} (8)

The above action on the signatures is also called restricted Weyl reflection, since it
represents the nontrivial element of the two-element restricted Weyl group which
arises canonically with every maximal parabolic subalgebra.2

Further, we need more explicitly the root system of the algebra sp(n,F).
In terms of the orthonormal basis εi , i = 1, . . . ,n, the positive roots are given by

Δ+ = {εi± ε j, 1≤ i < j ≤ n; 2εi,1≤ i≤ n}, (9)

while the simple roots are:

π = {αi = εi− εi+1, 1≤ i≤ n− 1; αn = 2εn} (10)

With our choice of normalization of the long roots 2εk have length 4, while the short
roots εi± ε j have length 2.

From these the compact roots are those that form (by restriction) the root system
of the semisimple part of K CI , the rest are noncompact, i.e.,

compact : αi j ≡ εi− ε j, 1≤ i < j ≤ n,
noncompact : βi j ≡ εi + ε j, 1≤ i≤ j ≤ n (11)

Thus, the only non-compact simple root is αn = βnn .

2Generically, the Knapp–Stein operators can be normalized so that indeed GKS ◦GKS = IdCχ .
However, this usually fails exactly for the reducible ERs that form the multiplets, cf., e.g., [15–17].
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We adopt the following ordering of the roots:

β11

∨
β12 > β22

∨ ∨
. . . . . . . . . . . . . . .

∨ ∨ . . . ∨
β1n > β2n > .. . > βn−1,n > βnn = αn

∨ ∨ . . . ∨
α1n > α2n > .. . > αn−1,n = αn−1

∨ ∨ . . .

. . . . . . . . . . . . . . .

∨ ∨
α13 > α23 = α2

∨
α12 = α1

(12)

This ordering is lexicographical adopting the ordering of the ε:

ε1 > · · ·> εn (13)

Further, we shall use the so-called Dynkin labels:

mi ≡ (Λ +ρ ,α∨i ) , i = 1, . . . ,n, (14)

where Λ =Λ(χ), ρ is half the sum of the positive roots of G CI .
We shall use also the so-called Harish-Chandra parameters:

mβ ≡ (Λ +ρ ,β ) , (15)

where β is any positive root of G CI . These parameters are redundant, since they
are expressed in terms of the Dynkin labels, however, some statements are best
formulated in their terms. In particular, in the case of the noncompact roots we have:

mβi j
=
( n

∑
s=i

+
n

∑
s= j

)

ms , i < j ; mβii
=

n

∑
s=i

ms (16)

Now we can give the correspondence between the signatures χ and the highest
weight Λ . The explicit connection is:

ni = mi , c = − 1
2(mα̃ +mn) = − 1

2(m1 + · · ·+mn−1 + 2mn) (17)

where α̃ = β11 is the highest root.
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There are several types of multiplets: the main type, (which contains maximal
number of ERs/GVMs, the finite-dimensional and the discrete series representa-
tions), and some reduced types of multiplets.

In the next section we give the main type of multiplets and the main reduced
types for sp(n, IR) for n≤ 6.

4 Multiplets

The multiplets of the main type are in 1-to-1 correspondence with the finite-
dimensional irreps of sp(n, IR), i.e., they will be labelled by the n positive Dynkin
labels mi ∈ IN. As we mentioned, each such multiplet contains 2n ERs/GVMs. It is
difficult to give explicitly the multiplets for general n. Thus, we shall give explicitly
the case n= 6 which can still be represented and comprehended, and then show how
to obtain the cases n < 6.

4.1 sp(6,IR)

4.1.1 Main Multiplets

The main multiplets R6 contain 64(= 26) ERs/GVMs whose signatures can be given
in the following pair-wise manner:

χ±0 = {(m1,m2,m3,m4,m5)
± ;± 1

2(mα̃ +m6)} (18)
χ±a = {(m1,m2,m3,m4,m5 + 2m6)

± ;± 1
2 m15}

χ±b = {(m1,m2,m3,m45,m5 + 2m6)
± ;± 1

2 m14 }
χ±c = {(m1,m2,m34,m5,m45 + 2m6)

± ;± 1
2 m13 }

χ±c′ = {(m1,m2,m3,m45 + 2m6,m5)
± ;± 1

2 m14 }
χ±d = {(m1,m23,m4,m5,m35 + 2m6)

± ;± 1
2 m12 }

χ±d′ = {(m1,m2,m34,m5 + 2m6,m45)
± ;± 1

2 m13 }
χ±e = {(m12,m3,m4,m5,m25 + 2m6)

± ;± 1
2 m1 }

χ±e′ = {(m1,m23,m4,m5 + 2m6,m35)
± ;± 1

2 m12 }
χ±e′′ = {(m1,m2,m35,m5 + 2m6,m4)

± ;± 1
2 m13 }

χ±f = {(m2,m3,m4,m5,m15 + 2m6)
± ;∓ 1

2 m1 }
χ±f ′ = {(m12,m3,m4,m5 + 2m6,m25)

± ;± 1
2 m1 }

χ±f ′′ = {(m1,m23,m45,m5 + 2m6,m34)
± ;± 1

2 m12 }
χ±f ′′′ = {(m1,m2,m35 + 2m6,m5,m4)

± ;± 1
2 m13 }

χ±g = {(m2,m3,m4,m5 + 2m6,m15)
± ;∓ 1

2 m1 }
χ±g′ = {(m12,m3,m45,m5 + 2m6,m24)

± ;± 1
2 m1 }
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χ±g′′ = {(m1,m23,m45 + 2m6,m5,m34)
± ;± 1

2 m12 }
χ±h = {(m2,m3,m45,m5 + 2m6,m14)

± ;∓ 1
2 m1 }

χ±h′ = {(m12,m3,m45 + 2m6,m5,m24)
± ;± 1

2 m1 }
χ±h′′ = {(m2,m3,m45 + 2m6,m5,m14)

± ;∓ 1
2 m1 }

χ±j = {(m2,m34,m5,m45 + 2m6,m13)
± ;∓ 1

2 m1 }
χ±j′ = {(m12,m34,m5,m45 + 2m6,m23)

± ;± 1
2 m1 }

χ±j′′ = {(m1,m24,m5,m45 + 2m6,m3)
± ;± 1

2 m12 }
χ±k = {(m2,m34,m5 + 2m6,m45,m13)

± ;∓ 1
2 m1 }

χ±k′ = {(m12,m34,m5 + 2m6,m45,m23)
± ;± 1

2 m1 }
χ±k′′ = {(m1,m24,m5 + 2m6,m45,m3)

± ;± 1
2 m12 }

χ±� = {(m2,m35,m5 + 2m6,m4,m13)
± ;∓ 1

2 m1 }
χ±�′ = {(m12,m35,m5 + 2m6,m4,m23)

± ;± 1
2 m1 }

χ±�′′ = {(m1,m25,m5 + 2m6,m4,m3)
± ;± 1

2 m12 }
χ±m = {(m2,m35 + 2m6,m5,m4,m13)

± ;∓ 1
2 m1 }

χ±m′ = {(m12,m35 + 2m6,m5,m4,m23)
± ;± 1

2 m1 }
χ±m′′ = {(m1,m25 + 2m6,m5,m4,m3)

± ;± 1
2 m12 }

where the notation (. . .)± employs the conjugation (7) :

(n1, . . . ,n5)
− = (n1, . . . ,n5) , (n1, . . . ,n5)

+ = (n1, . . . ,n5)
∗ = (n5, . . . ,n1)

(19)

Obviously, the pairs in (18) are related by Knapp–Stein integral operators, i.e.,

GKS : Cχ∓ ←→ Cχ± (20)

Matters are arranged so that in every multiplet only the ER with signature χ−0
contains a finite-dimensional nonunitary subrepresentation in a finite-dimensional
subspace E . The latter corresponds to the finite-dimensional irrep of sp(6) with
signature {m1 , . . . ,m6}. The subspace E is annihilated by the operator G+, and is
the image of the operator G− . The subspace E is annihilated also by the intertwining
differential operator acting from χ− to χ ′− (more about this operator below). When
all mi = 1 then dim E = 1, and in that case E is also the trivial one-dimensional
UIR of the whole algebra G . Furthermore in that case the conformal weight is zero:
d = 7

2 + c = 7
2 − 1

2(m1 + · · ·+m5 + 2m6)|mi=1
= 0.

Analogously, in every multiplet only the ER with signature χ+
0 contains

holomorphic discrete series representation. This is guaranteed by the criterion
[11] that for such an ER all Harish-Chandra parameters for non-compact roots must
be negative, i.e., in our situation, mα < 0, for α from the second row of (11). [That
this holds for our χ+ can be easily checked using the signatures (18).]
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In fact, the Harish-Chandra parameters are reflected in the division of the ERs
into χ− and χ+: for the χ− less than half of the 21 non-compact Harish-Chandra
parameters are negative, (none for χ−0 ), while for the χ+ more than half of the 21
non-compact Harish-Chandra parameters are negative, (all for χ+

0 ),
Note that the ER χ+

0 contains also the conjugate anti-holomorphic discrete series.
The direct sum of the holomorphic and the antiholomorphic representations are
realized in an invariant subspace D of the ER χ+

0 . That subspace is annihilated
by the operator G− , and is the image of the operator G+ .

Note that the corresponding lowest weight GVM is infinitesimally equivalent
only to the holomorphic discrete series, while the conjugate highest weight GVM is
infinitesimally equivalent to the anti-holomorphic discrete series.
The conformal weight of the ER χ+

0 has the restriction d = 7
2 +c= 7

2 +
1
2 (m1+ · · ·+

m5 + 2m6)≥ 7.
The multiplets are given explicitly in Fig. 1, where we use the notation: Λ± =

Λ(χ±). Each intertwining differential operator is represented by an arrow accom-
panied by a symbol i j...k encoding the root β j...k and the number mβ j...k

which
is involved in the BGG criterion. This notation is used to save space, but it can
be used due to the fact that only intertwining differential operators which are
non-composite are displayed, and that the data β ,mβ , which is involved in the

embedding VΛ ←→ VΛ−mβ ,β turns out to involve only the mi corresponding to
simple roots, i.e., for each β ,mβ there exists i = i(β ,mβ ,Λ) ∈ {1, . . . ,2n−1}, such
that mβ = mi . Hence the data β j...k ,mβ j...k

is represented by i j...k on the arrows.
The pairs Λ± are symmetric w.r.t. to the bullet in the middle of the figure—this

represents the Weyl symmetry realized by the Knapp–Stein operators.

4.1.2 Reduced Multiplets R6
1

The reduced multiplets of type R6
1 contain 48 ERs/GVMs whose signatures can be

given in the following pair-wise manner:

χ±0 = {(0,m2,m3,m4,m5)
± ;± 1

2(m25 + 2m6)} (21)
χ±a = {(0,m2,m3,m4,m5 + 2m6)

± ;± 1
2 m25 }

χ±b = {(0,m2,m3,m45,m5 + 2m6)
± ;± 1

2 m24}
χ±c = {(0,m2,m34,m5,m45 + 2m6)

± ;± 1
2 m23 }

χ±c′ = {(0,m2,m3,m45 + 2m6,m5)
± ;± 1

2 m24}
χ±d = {(0,m23,m4,m5,m35 + 2m6)

± ;± 1
2 m2 }

χ±d′ = {(0,m2,m34,m5 + 2m6,m45)
± ;± 1

2 m23 }
χ±e = {(m2,m3,m4,m5,m25 + 2m6)

± ; 0}
χ±e′ = {(0,m23,m4,m5 + 2m6,m35)

± ;± 1
2 m2 }

χ±e′′ = {(0,m2,m35,m5 + 2m6,m4)
± ;± 1

2 m23}
χ±f ′ = {(m2,m3,m4,m5 + 2m6,m25)

± ; 0}
χ±f ′′ = {(0,m23,m45,m5 + 2m6,m34)

± ;± 1
2 m2 }
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χ±f ′′′ = {(0,m2,m35 + 2m6,m5,m4)
± ;± 1

2 m23}
χ±g′ = {(m2,m3,m45,m5 + 2m6,m24)

± ; 0}
χ±g′′ = {(0,m23,m45 + 2m6,m5,m34)

± ;± 1
2 m2 }

χ±h′ = {(m2,m3,m45 + 2m6,m5,m24)
± ; 0}

χ±j′ = {(m2,m34,m5,m45 + 2m6,m23)
± ; 0}

χ±j′′ = {(0,m24,m5,m45 + 2m6,m3)
± ;± 1

2 m2 }
χ±k′ = {(m2,m34,m5 + 2m6,m45,m23)

± ; 0}
χ±k′′ = {(0,m24,m5 + 2m6,m45,m3)

± ;± 1
2 m2 }

χ±�′ = {(m2,m35,m5 + 2m6,m4,m23)
± ; 0}

χ±�′′ = {(0,m25,m5 + 2m6,m4,m3)
± ;± 1

2 m2 }
χ±m′ = {(m2,m35 + 2m6,m5,m4,m23)

± ; 0}
χ±m′′ = {(0,m25 + 2m6,m5,m4,m3)

± ;± 1
2 m2 }

The multiplets are given explicitly in Fig. 2.

4.1.3 Reduced Multiplets R6
2

The reduced multiplets of type R6
2 contain 48 ERs/GVMs whose signatures can be

given in the following pair-wise manner:

χ±0 = {(m1,0,m3,m4,m5)
± ;± 1

2(m1,35 + 2m6)} (22)
χ±a = {(m1,0,m3,m4,m5 + 2m6)

± ;± 1
2 m1,35 }

χ±b = {(m1,0,m3,m45,m5 + 2m6)
± ;± 1

2 m1,34}
χ±c = {(m1,0,m34,m5,m45 + 2m6)

± ;± 1
2 m1,3 }

χ±c′ = {(m1,0,m3,m45 + 2m6,m5)
± ;± 1

2 m1,34}
χ±d = {(m1,m3,m4,m5,m35 + 2m6)

± ;± 1
2 m1 }

χ±d′ = {(m1,0,m34,m5 + 2m6,m45)
± ;± 1

2 m1,3 }
χ±e′ = {(m1,m3,m4,m5 + 2m6,m35)

± ;± 1
2 m1 }

χ±e′′ = {(m1,0,m35,m5 + 2m6,m4)
± ;± 1

2 m1,3 }
χ±f = {(0,m3,m4,m5,m1,35 + 2m6)

± ;∓ 1
2 m1 }

χ±f ′′ = {(m1,m3,m45,m5 + 2m6,m34)
± ;± 1

2 m1 }
χ±f ′′′ = {(m1,0,m35 + 2m6,m5,m4)

± ;± 1
2 m1,3 }

χ±g = {(0,m3,m4,m5 + 2m6,m1,35)
± ;∓ 1

2 m1 }
χ±g′′ = {(m1,m3,m45 + 2m6,m5,m34)

± ;± 1
2 m1 }

χ±h = {(0,m3,m45,m5 + 2m6,m1,34)
± ;∓ 1

2 m1 }
χ±h′′ = {(0,m3,m45 + 2m6,m5,m1,34)

± ;∓ 1
2 m1 }

χ±j = {(0,m34,m5,m45 + 2m6,m1,3)
± ;∓ 1

2 m1 }
χ±j′′ = {(m1,m34,m5,m45 + 2m6,m3)

± ;± 1
2 m1 }

χ±k = {(0,m34,m5 + 2m6,m45,m1,3)
± ;∓ 1

2 m1 }
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χ±k′′ = {(m1,m34,m5 + 2m6,m45,m3)
± ;± 1

2 m1 }
χ±� = {(0,m35,m5 + 2m6,m4,m1,3)

± ;∓ 1
2 m1 }

χ±�′′ = {(m1,m35,m5 + 2m6,m4,m3)
± ;± 1

2 m1 }
χ±m = {(0,m35 + 2m6,m5,m4,m1,3)

± ;∓ 1
2 m1 }

χ±m′′ = {(m1,m35 + 2m6,m5,m4,m3)
± ;± 1

2 m1 }

The multiplets are given explicitly in Fig. 3.

4.1.4 Reduced Multiplets R6
3

The reduced multiplets of type R6
3 contain 48 ERs/GVMs whose signatures can be

given in the following pair-wise manner:

χ±0 = {(m1,m2,0,m4,m5)
± ;± 1

2(m12,45 + 2m6)} (23)
χ±a = {(m1,m2,0,m4,m5 + 2m6)

± ;± 1
2 m12,45 }

χ±b = {(m1,m2,0,m45,m5 + 2m6)
± ;± 1

2 m12,4 }
χ±c′ = {(m1,m2,0,m45 + 2m6,m5)

± ;± 1
2 m12,4 }

χ±d = {(m1,m2,m4,m5,m45 + 2m6)
± ;± 1

2 m12 }
χ±e = {(m12,0,m4,m5,m2,45 + 2m6)

± ;± 1
2 m1 }

χ±e′ = {(m1,m2,m4,m5 + 2m6,m45)
± ;± 1

2 m12 }
χ±f = {(m2,0,m4,m5,m12,45 + 2m6)

± ;∓ 1
2 m1 }

χ±f ′ = {(m12,0,m4,m5 + 2m6,m2,45)
± ;± 1

2 m1 }
χ±f ′′ = {(m1,m2,m45,m5 + 2m6,m4)

± ;± 1
2 m12 }

χ±g = {(m2,0,m4,m5 + 2m6,m12,45)
± ;∓ 1

2 m1 }
χ±g′ = {(m12,0,m45,m5 + 2m6,m2,4)

± ;± 1
2 m1 }

χ±g′′ = {(m1,m2,m45 + 2m6,m5,m4)
± ;± 1

2 m12 }
χ±h = {(m2,0,m45,m5 + 2m6,m12,4)

± ;∓ 1
2 m1 }

χ±h′ = {(m12,0,m45 + 2m6,m5,m2,4)
± ;± 1

2 m1 }
χ±h′′ = {(m2,0,m45 + 2m6,m5,m12,4)

± ;∓ 1
2 m1 }

χ±j = {(m2,m4,m5,m45 + 2m6,m12)
± ;∓ 1

2 m1 }
χ±j′ = {(m12,m4,m5,m45 + 2m6,m2)

± ;± 1
2 m1 }

χ±j′′ = {(m1,m2,4,m5,m45 + 2m6,0)
± ;± 1

2 m12 }
χ±k = {(m2,m4,m5 + 2m6,m45,m12)

± ;∓ 1
2 m1 }

χ±k′ = {(m12,m4,m5 + 2m6,m45,m2)
± ;± 1

2 m1 }
χ±k′′ = {(m1,m2,4,m5 + 2m6,m45,0)

± ;± 1
2 m12 }

χ±� = {(m2,m45,m5 + 2m6,m4,m12)
± ;∓ 1

2 m1 }
χ±�′ = {(m12,m45,m5 + 2m6,m4,m2)

± ;± 1
2 m1 }

χ±�′′ = {(m1,m2,45,m5 + 2m6,m4,0)
± ;± 1

2 m12 }
χ±m = {(m2,m45 + 2m6,m5,m4,m12)

± ;∓ 1
2 m1 }
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χ±m′ = {(m12,m45 + 2m6,m5,m4,m2)
± ;± 1

2 m1 }
χ±m′′ = {(m1,m2,45 + 2m6,m5,m4,0)

± ;± 1
2 m12 }

The multiplets are given explicitly in Fig. 4.

4.1.5 Reduced Multiplets R6
4

The reduced multiplets of type R6
4 contain 48 ERs/GVMs whose signatures can be

given in the following pair-wise manner:

χ±0 = {(m1,m2,m3,0,m5)
± ;± 1

2(m13,5 + 2m6)} (24)
χ±a = {(m1,m2,m3,0,m5 + 2m6)

± ;± 1
2 m13,5}

χ±c = {(m1,m2,m3,m5,m5 + 2m6)
± ;± 1

2 m13 }
χ±d = {(m1,m23,0,m5,m3,5 + 2m6)

± ;± 1
2 m12 }

χ±d′ = {(m1,m2,m3,m5 + 2m6,m5)
± ;± 1

2 m13 }
χ±e = {(m12,m3,0,m5,m23,5 + 2m6)

± ;± 1
2 m1 }

χ±e′ = {(m1,m23,0,m5 + 2m6,m3,5)
± ;± 1

2 m12 }
χ±e′′ = {(m1,m2,m3,5,m5 + 2m6,0)

± ;± 1
2 m13 }

χ±f = {(m2,m3,0,m5,m13,5 + 2m6)
± ;∓ 1

2 m1 }
χ±f ′ = {(m12,m3,0,m5 + 2m6,m23,5)

± ;± 1
2 m1 }

χ±f ′′′ = {(m1,m2,m3,5 + 2m6,m5,0)
± ;± 1

2 m13 }
χ±g = {(m2,m3,0,m5 + 2m6,m13,5)

± ;∓ 1
2 m1 }

χ±j = {(m2,m3,m5,m5 + 2m6,m13)
± ;∓ 1

2 m1 }
χ±j′ = {(m12,m3,m5,m5 + 2m6,m23)

± ;± 1
2 m1 }

χ±j′′ = {(m1,m23,m5,m5 + 2m6,m3)
± ;± 1

2 m12 }
χ±k = {(m2,m3,m5 + 2m6,m5,m13)

± ;∓ 1
2 m1 }

χ±k′ = {(m12,m3,m5 + 2m6,m5,m23)
± ;± 1

2 m1 }
χ±k′′ = {(m1,m23,m5 + 2m6,m5,m3)

± ;± 1
2 m12 }

χ±� = {(m2,m3,5,m5 + 2m6,0,m13)
± ;∓ 1

2 m1 }
χ±�′ = {(m12,m3,5,m5 + 2m6,0,m23)

± ;± 1
2 m1 }

χ±�′′ = {(m1,m23,5,m5 + 2m6,0,m3)
± ;± 1

2 m12 }
χ±m = {(m2,m3,5 + 2m6,m5,0,m13)

± ;∓ 1
2 m1 }

χ±m′ = {(m12,m3,5 + 2m6,m5,0,m23)
± ;± 1

2 m1 }
χ±m′′ = {(m1,m23,5 + 2m6,m5,0,m3)

± ;± 1
2 m12 }

The multiplets are given explicitly in Fig. 5.
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4.1.6 Reduced Multiplets R6
5

The reduced multiplets of type R6
5 contain 48 ERs/GVMs whose signatures can be

given in the following pair-wise manner:

χ±0 = {(m1,m2,m3,m4,0)
± ;± 1

2(m14 + 2m6)} (25)
χ±a = {(m1,m2,m3,m4,2m6)

± ;± 1
2 m14 }

χ±b = {(m1,m2,m3,m4,2m6)
± ;± 1

2 m14 }
χ±c = {(m1,m2,m34,0,m4 + 2m6)

± ;± 1
2 m13}

χ±c′ = {(m1,m2,m3,m4 + 2m6,0)
± ;± 1

2 m14 }
χ±d = {(m1,m23,m4,0,m34 + 2m6)

± ;± 1
2 m12 }

χ±d′ = {(m1,m2,m34,2m6,m4)
± ;± 1

2 m13}
χ±e = {(m12,m3,m4,0,m24 + 2m6)

± ;± 1
2 m1 }

χ±e′ = {(m1,m23,m4,2m6,m34)
± ;± 1

2 m12 }
χ±e′′ = {(m1,m2,m34,2m6,m4)

± ;± 1
2 m13}

χ±f = {(m2,m3,m4,0,m14 + 2m6)
± ;∓ 1

2 m1 }
χ±f ′ = {(m12,m3,m4,2m6,m24)

± ;± 1
2 m1 }

χ±f ′′ = {(m1,m23,m4,2m6,m34)
± ;± 1

2 m12 }
χ±f ′′′ = {(m1,m2,m34 + 2m6,0,m4)

± ;± 1
2 m13}

χ±g = {(m2,m3,m4,2m6,m14)
± ;∓ 1

2 m1 }
χ±g′ = {(m12,m3,m4,2m6,m24)

± ;± 1
2 m1 }

χ±g′′ = {(m1,m23,m4 + 2m6,0,m34)
± ;± 1

2 m12 }
χ±h = {(m2,m3,m4,2m6,m14)

± ;∓ 1
2 m1 }

χ±h′ = {(m12,m3,m4 + 2m6,0,m24)
± ;± 1

2 m1 }
χ±h′′ = {(m2,m3,m4 + 2m6,0,m14)

± ;∓ 1
2 m1 }

χ±j = {(m2,m34,0,m4 + 2m6,m13)
± ;∓ 1

2 m1 }
χ±j′ = {(m12,m34,0,m4 + 2m6,m23)

± ;± 1
2 m1 }

χ±j′′ = {(m1,m24,0,m4 + 2m6,m3)
± ;± 1

2 m12}
χ±k = {(m2,m34,2m6,m4,m13)

± ;∓ 1
2 m1 }

χ±k′ = {(m12,m34,2m6,m4,m23)
± ;± 1

2 m1 }
χ±k′′ = {(m1,m24,2m6,m4,m3)

± ;± 1
2 m12}

χ±m = {(m2,m34 + 2m6,0,m4,m13)
± ;∓ 1

2 m1 }
χ±m′ = {(m12,m34 + 2m6,0,m4,m23)

± ;± 1
2 m1 }

χ±m′′ = {(m1,m24 + 2m6,0,m4,m3)
± ;± 1

2 m12}

The multiplets are given explicitly in Fig. 6.
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4.1.7 Reduced Multiplets R6
6

The reduced multiplets of type R6
6 contain 32 ERs/GVMs whose signatures can be

given in the following pair-wise manner:

χ±0 = {(m1,m2,m3,m4,m5)
± ;± 1

2 m15} (26)
χ±c′ = {(m1,m2,m3,m45,m5)

± ;± 1
2 m14 }

χ±d′ = {(m1,m2,m34,m5,m45)
± ;± 1

2 m13 }
χ±e′ = {(m1,m23,m4,m5,m35)

± ;± 1
2 m12 }

χ±f ′ = {(m12,m3,m4,m5,m25)
± ;± 1

2 m1 }
χ±f ′′′ = {(m1,m2,m35,m5,m4)

± ;± 1
2 m13 }

χ±g = {(m2,m3,m4,m5,m15)
± ;∓ 1

2 m1 }
χ±g′′ = {(m1,m23,m45,m5,m34)

± ;± 1
2 m12 }

χ±h′ = {(m12,m3,m45,m5,m24)
± ;± 1

2 m1 }
χ±h′′ = {(m2,m3,m45,m5,m14)

± ;∓ 1
2 m1 }

χ±k = {(m2,m34,m5,m45,m13)
± ;∓ 1

2 m1 }
χ±k′ = {(m12,m34,m5,m45,m23)

± ;± 1
2 m1 }

χ±k′′ = {(m1,m24,m5,m45,m3)
± ;± 1

2 m12 }
χ±� = {(m2,m35,m5,m4,m13)

± ;∓ 1
2 m1 }

χ±�′ = {(m12,m35,m5,m4,m23)
± ;± 1

2 m1 }
χ±�′′ = {(m1,m25,m5,m4,m3)

± ;± 1
2 m12 }

The multiplets are given explicitly in Fig. 7.
Here the ER χ+

0 contains the limits of the (anti)holomorphic discrete series
representations. This is guaranteed by the fact that for this ER all Harish-Chandra
parameters for non-compact roots are non-positive, i.e., mα ≤ 0, for α from
(16). (Actually, we have: m11 = 0, mα < 0 for the rest of the non-compact α .) Its
conformal weight has the restriction d = 7

2 +
1
2 (m1 + · · ·+m5)≥ 6.

4.2 The Cases sp(n,IR) for n≤ 5

We start with sp(5, IR). The main multiplets R5 contain 32(= 25) ERs/GVMs whose
signatures can be given in the following pair-wise manner:

χ±0 = {(m1,m2,m3,m4)
± ;± 1

2(m14 + 2m5)} (27)
χ±a = {(m1,m2,m3,m4 + 2m5)

± ;± 1
2 m14 }

χ±b = {(m1,m2,m34,m4 + 2m5)
± ;± 1

2 m13 }
χ±c = {(m1,m23,m4,m34 + 2m5)

± ;± 1
2 m12}

χ±c′ = {(m1,m2,m34 + 2m5,m4)
± ;± 1

2 m13 }
χ±d = {(m12,m3,m4,m24 + 2m5)

± ;± 1
2 m1 }
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χ±d′ = {(m1,m23,m4 + 2m5,m34)
± ;± 1

2 m12}
χ±e = {(m2,m3,m4,m14 + 2m5)

± ;∓ 1
2 m1 }

χ±e′ = {(m12,m3,m4 + 2m5,m24)
± ;± 1

2 m1 }
χ±e′′ = {(m1,m24,m4 + 2m5,m3)

± ;± 1
2 m12 }

χ±f = {(m2,m3,m4 + 2m5,m14)
± ;∓ 1

2 m1 }
χ±f ′ = {(m12,m34,m4 + 2m5,m23)

± ;± 1
2 m1 }

χ±f ′′ = {(m1,m24 + 2m5,m4,m3)
± ;± 1

2 m12 }
χ±g = {(m2,m34,m4 + 2m5,m13)

± ;∓ 1
2 m1 }

χ±g′ = {(m12,m34 + 2m5,m4,m23)
± ;± 1

2 m1 }
χ±h = {(m2,m34 + 2m5,m4,m13)

± ;∓ 1
2 m1 }

Recalling that the Sp(6, IR) reduced multiplets of type R6
6 also have 32 members

we check whether they may be coinciding. Indeed, that turns out to be the case and
this is obvious from the corresponding figures, Figs. 7 and 8 (though our graphical
representations are a little distorted!). To make it explicit via the signatures we do the
following manipulations of (26): in each signature we just drop the entry m5 (there
is exactly one such entry in each signature). Then we replace each entry of the kind:
mk5, (k= 1,2,3,4), by mk4+2m5 (identifying m44≡m4). Thus (26) becomes exactly
(27). (Of course, this does not mean that the contents is the same. For instance, the
ER χ+

0 from (27) contains the (anti)holomorphic discrete series representations of
sp(5, IR), while the ER χ+

0 from (26) contains the limits of the (anti)holomorphic
discrete series representations of sp(6, IR).)

Thus, it is clear how to obtain from the case sp(6, IR) all the cases sp(n, IR) for
n≤ 5. We shall not do it here due to the lack of space.

5 Outlook

In the present paper we continued the programme outlined in [2] on the example
of the non-compact group Sp(n, IR). Similar explicit descriptions are planned
for the other non-compact groups, in particular, those with highest/lowest weight
representations. From the latter we have considered so far the cases of E7(−25) [3],3

E6(−14) [29], SU(n,n) (n ≤ 4) [30]. We plan also to extend these considerations to
the supersymmetric cases and also to the quantum group setting. Such considera-
tions are expected to be very useful for applications to string theory and integrable
models, cf., e.g., [31]. In our further plans it shall be very useful that (as in [2])
we follow a procedure in representation theory in which intertwining differential
operators appear canonically [7] and which procedure has been generalized to the
supersymmetry setting [32–34] and to quantum groups [35, 36].

3For a different use of E7(−25), see, e.g., [28].
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Generalization of the Gell–Mann Decontraction
Formula for sl(n,R) and Its Applications
in Affine Gravity

Igor Salom and Djordje Šijački

Abstract The Gell–Mann Lie algebra decontraction formula was proposed as
an inverse to the Inonu–Wigner contraction formula. We considered recently this
formula in the content of the special linear algebras sl(n), of an arbitrary dimension.
In the case of these algebras, the Gell–Mann formula is not valid generally, and holds
only for some particular algebra representations. We constructed a generalization
of the formula that is valid for an arbitrary irreducible representation of the sl(n)
algebra. The generalization allows us to explicitly write down, in a closed form, all
matrix elements of the algebra operators for an arbitrary irreducible representation,
irrespectively whether it is tensorial or spinorial, finite or infinite dimensional, with
or without multiplicity, unitary or nonunitary. The matrix elements are given in
the basis of the Spin(n) subgroup of the corresponding SL(n,R) covering group,
thus covering the most often cases of physical interest. The generalized Gell–Mann
formula is presented, and as an illustration some details of its applications in the
Gauge Affine theory of gravity with spinorial and tensorial matter manifields are
given.

1 Introduction

The Inönü–Wigner contraction [7] is a well known transformation of algebras
(groups) with numerous applications in various fields of physics. Just to mention
a few: contractions from the Poincaré algebra to the Galilean one; from the
Heisenberg algebras to the Abelian ones of the same dimensions (a symmetry
background of a transition processes from relativistic and quantum mechanics to
classical mechanics); contractions in the Kaluza–Klein gauge theories framework;
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from (Anti-)de Sitter to the Poincaré algebra; various cases involving the Virasoro
and Kac–Moody algebras; relation of strong to weak coupling regimes of the
corresponding theories; relation of geometrically curved to “less curved” and/or flat
spaces. . ..

However, existence of a transformation (i.e. algebra deformation) inverse to the
Inönü–Wigner contraction, so called the “Gell–Mann formula” [1,3,5,6], is far less
known. The aim of the formula is to express the elements of the starting algebra
as explicitly given expressions containing elements of the contracted algebra.
In this way, a relation between certain representations of the two algebras is also
established. This, in turn, can be very useful since, by a rule, various properties of the
contracted algebras are much easier to explore (e.g. construction of representations
[8], decompositions of a direct product of representations [5], etc.).

Before we write down the Gell–Mann formula in the general case, some notation
is in order. Let A be a symmetric Lie algebra A = M + T with a subalgebra M
such that:

[M ,M ]⊂M , [M ,T ]⊂T , [T ,T ]⊂M . (1)

Further, let A ′ be its Inönü–Wigner contraction algebra w.r.t its subalgebra M , i.e.
A ′ = M +U , where

[M ,M ]⊂M , [M ,U ]⊂U , [U ,U ] = {0}. (2)

The Gell–Mann formula states that the elements T ∈ T can be in certain cases
expressed in terms of the contracted algebra elements M ∈M and U ∈ U by the
following rather simple expression:

T = i
α√

U ·U [C2(M ),U ]+σU. (3)

Here, C2(M ) and U ·U denote the second order Casimir operators of the M and
A ′ algebras respectively, while α is a normalization constant and σ is an arbitrary
parameter. For a mathematically more strict definition, cf. [3].

Probably the main reason why this formula is not widely known—in spite of its
potential versatility—is the lack of its general validity. Namely, there is a number of
references dealing with the question when this formula is applicable [1, 5, 6, 14].
Apart form the case of (pseudo) orthogonal algebras where, loosely speaking,
the Gell–Mann formula works very well [17], there are only some subclasses of
representations when the formula can be applied [5, 6]. To make the things worse,
the question of its applicability is not completely resolved.

Recently, we studied the SL(n,R) group cases, contracted w.r.t the maximal
compact Spin(n) subgroups. By SL(n,R) we denote the double cover of SL(n,R).
Note that there faithful spinorial representations are always infinite dimensional and
physically correspond to fermionic matter. In these cases the Gel–Mann formula
does not hold as a general operator expression and its validity depends heavily on the
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sl(n,R) algebra representation space. An exhaustive list of the cases for which the
Gell–Mann formula for sl(n,R) algebras hold was obtained [14]. In particular, we
have shown that the Gell–Mann formula is not valid for any spinorial representation,
nor for any representation with nontrivial Spin(n) multiplicity, rendering the Gell–
Mann formula here useless for most of physical applications.

There were some attempts to generalize the Gell–Mann formula for the
“decontracted” algebra operators of the complex simple Lie algebras g with respect
to decomposition g = k + ik = kc [9, 19], that resulted in a form of relatively
complicated polynomial expressions. Recently we have managed to obtain a
generalized form of this formula, first in the concrete case of sl(5,R) algebra,
and then also in the case of sl(n,R) algebra, for any n.

In this paper we shall consider the obtained generalized expressions and illustrate
applicability of the formula in the context of affine theory of gravity. In particular,
we analyze the five dimensional affine gravity models.

2 Generalized Formula

The sl(n,R) algebra operators, i.e. the SL(n,R), SL(n,R) group generators, can
be split into two subsets: Mab, a,b = 1,2, . . . ,n operators of the maximal compact
subalgebra so(n) (corresponding to the antisymmetric real n× n matrices, Mab =
−Mba), and the, so called, sheer operators Tab, a,b = 1,2, . . . ,n (corresponding to
the symmetric traceless real n× n matrices, Tab = Tba). The sl(n,R) commutation
relations, in this basis, read:

[Mab,Mcd ] = i(δacMbd + δadMcb− δbcMad− δbdMca), (4)

[Mab,Tcd ] = i(δacTbd + δadTcb− δbcTad− δbdTca), (5)

[Tab,Tcd ] = i(δacMdb + δadMcb + δbcMda + δbdMca). (6)

The Inönü–Wigner contraction of sl(n,R) with respect to its maximal compact
subalgebra so(n) is given by the limiting procedure:

Uab ≡ lim
ε→0

(εTab), (7)

which leads to the following commutation relations:

[Mab,Mcd ] = i(δacMbd + δadMcb− δbcMad− δbdMca) (8)

[Mab,Ucd ] = i(δacUbd + δadUcb− δbcUad− δbdUca) (9)

[Uab,Ucd ] = 0. (10)
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Therefore, the Inönü–Wigner contraction of sl(n,R) gives a semidirect sum
r n(n+1)

2 −1

⊎

so(n) algebra, where r n(n+1)
2 −1

is an Abelian subalgebra (ideal) of

“translations” in n(n+1)
2 − 1 dimensions.

The generalized Gell–Mann formula for sl(n,R), obtained in [15], reads:

Tσ2...σn
ab = i

n

∑
c=2

1
2
[C2(so(c)K),U

(cc)
ab ]+σcU

(cc)
ab . (11)

Operators Tab live in the space L 2(Spin(n)) of square integrable functions over
the Spin(n) manifold and it is known that this space is rich enough to contain all
representatives from equivalence classes of the SL(n,R) group, i.e. sl(n,R) algebra
representations [2]. A natural discrete orthonormal basis in this space is given by
properly normalized functions of the Spin(n) representation matrix elements:

{∣

∣

∣

∣

{J}
{k}{m}

〉

≡
∫ √

dim({J})D{J}{k}{m}(g
−1)dg |g〉

}

,

〈 {J′} {J}
{k′}{m′} {k}{m}

〉

= δ{J′}{J}δ{k′}{k}δ{m′}{m}, (12)

where dg is an (normalized) invariant Haar measure and D{J}{k}{m} are the Spin(n)
irreducible representation matrix elements:

D{J}{k}{m}(g)≡
〈 {J}
{k}
∣

∣

∣

∣

R(g)

∣

∣

∣

∣

{J}
{m}
〉

. (13)

Here, {J} stands for a set of the Spin(n) irreducible representation labels, while {k}
and {m} labels enumerate the dim(D{J}) representation basis vectors.

In the basis (12) sets of labels {J} and {m} determine transformation properties
of a basis vector under the Spin(n) subgroup: {J} label irreducible representation
of Spin(n), while numbers {m} label particular vector within that representation.
The set of parameters {k} serve to enumerate Spin(n) multiplicity of representation
{J} within the given representation of SL(n,R). These parameters {k} are math-
ematically related to the left action of Spin(n) subgroup in representation space
L 2(Spin(n)).

Operators U (cc)
ab appearing in (11) are concrete (normalized) representations

(in L 2(Spin(n)) space) of the Inönü–Wigner contractions of shear generators Tab.
In basis (12) these operators act in the following way:

〈 {J′}
{k′}{m′}

∣

∣

∣

∣

U (cd)
ab

∣

∣

∣

∣

{J}
{k}{m}

〉

=
√

dim({J})
dim({J′})C

{J} {J′}
{k}(cd){k′}C{J} {J′}

{m}(ab){m′} , (14)

where denotes Spin(n) representation that corresponds to second order symmet-
ric tensors (shear generators, as well as their Inönü–Wigner contractions, transform
in this way w.r.t. Spin(n) subgroup) and C stands for Clebsch–Gordan coefficients
of Spin(n).
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In (11) we also used notation C2(so(c)K) ≡ 1
2 ∑

c
a,b=1(Kab)

2, where Kab are
generators of Spin(n) group left action in basis (12). These operators behave exactly
as the rotation generators Mab, but, instead of acting on right-hand {m} indices, they
act on the lower left-hand side indices {k} that label multiplicity:

〈

{J′}
{k′}{m′}

∣

∣

∣

∣

Kab

∣

∣

∣

∣

{J}
{k}{m}

〉

= δ{J′}{J}δ{m′}{m}
√

C2({J}) C{J} {J′}
{k}(ab){k′}

. (15)

Finally, the set of n − 1 indices σ2,σ3, . . .σn in (11) label the particular
representation of the SL(n,R). The formula (11) covers all cases: infinite and finite
dimensional representations, spinorial and tensorial, with and without multiplicity,
unitary and non unitary.

We note that the term c = n in (11) is, essentially, the original Gell–Mann
formula, since C2(so(n)K) = C2(so(n)M). The rest of the terms can be seen as
necessary corrections securing the formula validity in the entire representation
space. The additional terms vanish for some particular representations thus yielding
the original formula.

An immediate mathematical benefit of the generalized formula is the expression
for matrix elements of shear generators in basis (12) [15]:

〈 {J′}
{k′}{m′}

∣

∣

∣

∣

Tab

∣

∣

∣

∣

{J}
{k}{m}

〉

= i
2

√

dim({J})
dim({J′}) C {J} {J′}

{m} ab {m′}

×∑n
c=2

√

c−1
c

(

C2(so(c){k′})−C2(so(c){k})+ σ̃c

)

C {J}( )n−c+1{J′}
{k} (0)c−2 {k′} .

(16)

In order to demonstrate application of this result in the context of five dimen-
sional affine gravity models, we introduce a concrete n = 5 adapted notation (for
all n = 5 notation we adhere to that of our paper [13]). As a basis for Spin(5)
representations we pick vectors:

⎧

⎨

⎩

∣

∣

∣

∣

∣

∣

J1 J2

J1 J2

m1 m2

〉

,Ji = 0,
1
2
, . . . ;J1 ≥ J2;mi =−Ji, . . .Ji

⎫

⎬

⎭

. (17)

with respect to decomposition so(5) ⊃ so(4) = so(3)⊕ so(3). Basis of SL(5,R)
representation space, corresponding to (12) is then given by vectors:

⎧

⎨

⎩

∣

∣

∣

∣

∣

∣

J1 J2

K1 K2 J1 J2

k1 k2 m1 m2

〉

⎫

⎬

⎭

. (18)

The reduced matrix elements of the sl(5,R) shear (noncompact) operators, derived
from an alternative form of Gell–Mann formula that we have given in the paper [13],
read:
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〈

J
′
1 J
′
2

K ′1K ′2
k′1 k′2

∣

∣

∣

∣

∣

∣

∣

∣

T

∣

∣

∣

∣

∣

∣

∣

∣

J1 J2
K1K2
k1 k2

〉

=
√

dim(J1,J2)

dim(J′1,J′2)

×
(

(

σ1+i
√

4
5 (J

′
1(J

′
1+2)+J′2(J

′
2+1)−J1(J1+2)−J2(J2+1))

)

C
J1 J2 11 J′1 J′2
K1K2 00 K′1K′2
k1 k2 00 k′1 k′2

+ i(σ2+K′1(K′1+1)+K′2(K′2+1)−K1(K1+1)−K2(K2+1))C
J1 J2 11 J′1 J′2
K1K2 11 K′1K′2
k1 k2 00 k′1 k′2

− i(δ1+k1−k2)C
J1 J2 11 J′1 J′2
K1K2 11 K′1K′2
k1 k2 1−1 k′1 k′2

− i(δ1−k1+k2)C
J1 J2 1 1 J′1 J′2
K1K2 1 1 K′1K′2
k1 k2 −11 k′1 k′2

+ i(δ2+k1+k2)C
J1 J2 11 J′1 J′2
K1K2 11 K′1K′2
k1 k2 11 k′1 k′2

+ i(δ2−k1−k2)C
J1 J2 1 1 J′1 J′2
K1K2 1 1 K′1K′2
k1 k2 −1−1 k′1 k′2

)

,

(19)

where dim(J1,J2) = (2J1 − 2J2 + 1)(2J1 + 2J2 + 3)(2J1 + 2)(2J2 + 1)/6 is the
dimension of the so(5) irreducible representation characterized by (J1,J2). In this
notation, SL(5,R) irreducible representations are labelled by parameters σ1,σ2,δ1

and δ2, that appear in the formula (19).

3 Gauge Affine Action

The space-time symmetry of the affine models of gravity (prior to any symme-
try breaking) is given by the General Affine Group GA(n,R) = T n ∧GL(n,R)
(or, sometimes, by the Special Affine Group SA(n,R) = T n ∧ SL(n,R)). In the
quantum case, the General Affine Group is replaced by its double cover counterpart
GA(n,R) = T n∧GL(n,R), which contains double cover of GL(n,R) as a subgroup.
This subgroup here plays the role that Lorentz group has in the Poincaré symmetry
case. Thus it is clear that knowledge of GL(n,R) representations is a must-know
for any serious analysis of affine gravity models. On the other hand, the essential
nontrivial representation determining part of the GL(n,R) = R+⊗ SL(n,R) group
is its SL(n,R) subgroup (R+ is subgroup of dilatations). We will make use of the
SL(n,R) matrix elements expression in order to obtain coefficients for some of the
gauge field–matter interaction vertices.

A standard way to introduce interactions into affine gravity models is by
localization of the global affine symmetry GA(n,R) = T n ∧GL(n,R). Thus, quite
generally, affine Lagrangian consists of a gravitational part (i.e. kinetic terms for
gauge potentials) and Lagrangian of the matter fields: L = Lg + Lm. Gravitational
part Lg is a function of gravitational gauge potentials and their derivatives, and
also of the dilaton field ϕ (that ensures action invariance under local dilatations).
In the case of the standard Metric Affine [4], i.e. Gauge Affine Gravity [10], the
gravitational potentials are tetrads ea

μ , metrics gab and affine connection Γ a
bμ , so

that we can write: Lg = Lg(e,∂e,g,∂g,Γ ,∂Γ ,ϕ). More precisely, due to action
invariance under local affine transformations, gravitational part of Lagrangian must
be a function of the form Lg = Lg(e,g,T,R,N,ϕ), where T a

μν = ∂μea
ν +Γ a

bμeb
ν −

(μ ↔ ν), Ra
bμν = ∂μΓ a

bν +Γ c
bμΓ

a
cν − (μ ↔ ν), Nμab = Dμgab are, respectively,
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torsion, curvature and nonmetricity. Assuming, as usual, that equations of motion
are linear in second derivatives of gauge fields, we are confined to no higher than
quadratic powers of the torsion, curvature and nonmetricity. Covariant derivative is
of the form Dμ = ∂μ − iΓ b

a μQ a
b , where Q a

b denote generators of GL(n,R) group.
The matter Lagrangian (assuming minimal coupling for all fields except the dilaton
one) is a function of some number of affine fields φ I and their covariant derivatives,
together with metrics and tetrads (affine connection enters only through covariant
derivative): Lm = Lm(φ I ,Dφ I ,e,g).

With all these general remarks, we will consider a class of affine Lagrangians, in
arbitrary number of dimensions n, of the form:

L(e a
μ ,∂νe a

μ ,Γ
a

bμ ,∂νΓ a
bμ ,gab,ΨA,∂νΨA,ΦA,∂νΦA,ϕ ,∂νϕ) =

e
[

ϕ2R−ϕ2T 2−ϕ2N2 +

Ψ̄ igabγae μ
b DμΨ + 1

2 gabe μ
a e ν

b (DμΦ)+(DνΦ)+ 1
2 gabe μ

a e ν
b DμϕDνϕ

]

. (20)

The terms in the first row represent general gravitational part of the Lagrangian,
that is invariant w.r.t. affine transformations (dilatational invariance is obtained with
the aid of field ϕ , of mass dimension n/2− 1). Here T 2 and N2 stand for linear
combination of terms quadratic in torsion and nonmetricity, respectively, formed
by irreducible components of these fields. For the scope of this paper, we need not
fix these terms any further. This is a general form of gravitational kinetic terms,
invariant for an arbitrary space-time dimension n≥ 3.

The Lagrangian matter terms, invariant w.r.t. the local GA(n,R), n≥3,
transformations, are written in the second row. The field Ψ denotes a spinorial
GL(n,R) field—components of that field transform under some appropriate spino-
rial GL(n,R) irreducible representations. All spinorial GL(n,R) representations
are necessarily infinite dimensional [11], and thus the field Ψ will have infinite
number of components. The concrete spinorial irreducible representation of fieldΨ
is given by a set of n− 1 SL(n,R) labels {σΨc } together with the dilatation charge
dΨ . The field Φ is a representative of a tensorial GL(n,R) field, transforming
under a tensorial GL(n,R) representation (i.e. one transforming w.r.t. single-valued
representation of the SO(n) subgroup) labelled by parameters {σΦc } and dΦ . Since,
as it is briefly argued later, the noncompact SL(n− 1,R) affine subgroup is to be
represented unitarily, the tensorial field Φ is also to transform under an infinite-
dimensional representation and to have an infinite number of components. The
remaining dilaton field ϕ is scalar with respect to SL(n,R) subgroup, and thus has
only one component.

Interaction of affine connection with matter fields is determined by terms
containing covariant derivatives. We write these terms in a component notation,
where the component labelling is done with respect to the physically important
Lorenz Spin(1,n−1) subgroup of GL(n,R). Such a labelling allows, in principle, to
identify affine field components with Lorentz fields of models based on the Poincaré



344 I. Salom and D. Šijački

symmetry. Namely, the affine models of gravity necessarily imply existence of
some symmetry breaking mechanism that reduces the global symmetry to the
Poincaré one, reflecting the subgroup structure T n∧SO(1,n− 1)⊂ T n∧GL(n,R).
Therefore, we consider the fieldΨ (and similarly forΦ field) as a sum of its Lorentz
components:

∑
{J}

{k}{m}

Ψ {J}
{k}{m}
∣

∣

{J}
{k}{m}
〉

.

The interaction term connecting fields gcd , e μ
d , Γ ab

μ , Ψ̄{J}
{k}{m},Ψ

{J′}
{k′}{m′} is now:

gcde μ
d Γ

ab
μ Ψ̄{J}

{k}{m}Ψ
{J′}
{k′}{m′} ∑

{J′′}
{k′′}{m′′}

〈{J}
{k}{m}
∣

∣γc
∣

∣

{J′′}
{k′′}{m′′}

〉〈{J′′}
{k′′}{m′′}

∣

∣Qab

∣

∣

{J′}
{k′}{m′}
〉

, (21)

while the interaction of tensorial field with connection is given by:

− i
2 gcde μ

c e ν
d Γ

ab
ν ∂μΦ

†{J}
{k}{m}Φ

{J′}
{k′}{m′}
〈{J}
{k}{m}
∣

∣Qab
∣

∣

{J′}
{k′}{m′}
〉

+ (22)

i
2 gcde μ

c e ν
d Γ

ab
ν Φ†{J}

{k}{m}∂μΦ
{J′}
{k′}{m′}
〈{J′}
{k′}{m′}
∣

∣Qab
∣

∣

{J}
{k}{m}
〉∗
+ (23)

1
2 gcde μ

c e ν
d Γ

ab
μ Γ a′b′

ν Φ†{J}
{k}{m}∂μΦ

{J′}
{k′}{m′}·

∑ {J′′}
{k′′}{m′′}

〈{J}
{k}{m}
∣

∣Qab

∣

∣

{J′′}
{k′′}{m′′}

〉〈{J′′}
{k′′}{m′′}

∣

∣Qa′b′
∣

∣

{J′}
{k′}{m′}
〉

. (24)

The scalar dilaton field interact only with the trace of affine connection:

1
2 gabe μ

a e ν
b (∂μ − iΓ a

a μdϕ)ϕ(∂ν − iΓ a
a νdϕ)ϕ , (25)

where dϕ denotes dilatation charge of ϕ field.
In the above interaction terms we note an appearance of matrix elements of

GL(n,R) generators, written in a basis of the Lorenz subgroup Spin(1,n− 1).
The dilatation generator (that is, the trace Qa

a) acts merely as multiplication by
dilatation charge, so it is really the SL(n,R) matrix elements that should be
calculated. (An infinite dimensional generalization of Dirac’s gamma matrices also
appear in the term (21); more on these matrices can be found in papers of Šijački
[18].) However, before presenting examples of the matrix elements evaluations, and
thus calculations of the vertex coefficients, it is due to note that the correct physical
interpretation of the SL(n,R) representations requires these representations to be
unitary w.r.t. its SL(n− 1,R) subgroup and to be nonunitary w.r.t. its lorentz-like
Spin(1,n−1) subgroup. It turns out that these requirements can be properly satisfied
by making use of the so called deunitarizing automorphism [11].
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4 Gauge Affine Symmetry Vertex Coefficients Evaluation

Now we return to evaluation of vertex coefficients for interaction between various
Lorentz components of the GL(n,R) fields. The nontrivial part is to find matrix
elements of SL(n,R) shear generators in expressions (21)–(24), and, to do that in
n = 5 case we will use expression (19). However, this formula is given in the basis
of the compact Spin(n) subgroup, and not in the basis of the physically important
Lorentz group Spin(1,n−1). On the other hand, it turns out that taking into account
deunitarizing automorphism exactly amounts to keeping reduced matrix element
from (16) and replacing the remaining Clebsch–Gordan coefficient of the Spin(n)
group by the corresponding coefficient of the Lorenz group Spin(1,n− 1) [12].

As the first example, let the field Φ correspond to an unitary multiplicity free
SL(5,R) representation, defined by labels σ2 = −4,δ1 = δ2 = 0, with σ1 arbitrary
real. The representation space is spanned by vectors (18) satisfying J1 = J2 = J ∈
N0 +

1
2 ;K1 = K2 = 0;J1 = J2 = J ≤ J. This is a simplest class of multiplicity free

representations that is unitary assuming usual scalar product. If we denote Φa,a =
1 . . .5 the five Φ components with J1 = J2 = 1

2 (in this sense Φa corresponds to a
Lorenz 5-vector) then the interaction vertex (22) connecting fields Φa†, ∂μΦd and
affine shear connection Γ bc

ν is:

i
2

ge f e μ
e e ν

f Φ
a†Γ bc

ν ∂μΦd

√
5

14
σ1(ηabηdc +ηacηdb− 2

n
ηadηbc). (26)

To obtain this result we used an easily derivable formula for Clebsch–Gordan
coefficient connecting Lorentz vector and symmetric second order Lorenz tensor
representations:

CL
a (bc) d =

√

n
2(n+2)(n−1)(ηabηdc +ηacηdb− 2

n
ηadηbc), (27)

where we labelled Spin(1,n−1) irreducible representations by Young diagrams, as
in [15]. More importantly, we also used value of the reduced matrix element:

〈

1
2

1
2

0 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

Q

∣

∣

∣

∣

∣

∣

∣

∣

1
2

1
2

0 0
0 0

〉

=

√

2
7
σ1, (28)

that we obtained by using formula (19) (based on this formula, a Mathematica
program was generated that directly calculates sl(5,R) matrix elements [12], taking
into account Spin(5) Clebsch–Gordan coefficients found in [16]).

It is no more difficult to obtain coefficients of the vertices of the form (24).
Lagrangian term (24) connecting Lorenz 5-vectorΦ componentsΦ5, Φ†

5 and affine
connection component Γ(55)μ is:

1
15

(

σ2
1 − 25
)

gcde μ
c e ν

d Γ
55
μ Γ 55

ν Φ†
5∂μΦ5. (29)
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Next we will consider an example where Φ field corresponds to a representation
with multiplicity. Let us, again, consider 5-vector component J1 = J2 = 1

2 of Φ ,
only this time without any restriction to the values of σ1,σ2,δ1,δ2. In general, this
will correspond to a representation with non trivial multiplicity. Quantum numbers
{k} = (K1,K2,k1,k2), that label multiplicity, now can take values: ( 1

2 ,
1
2 ,

1
2 ,

1
2 ),

( 1
2 ,

1
2 ,

1
2 ,− 1

2 ), (
1
2 ,

1
2 ,− 1

2 ,
1
2 ), (

1
2 ,

1
2 ,− 1

2 ,− 1
2) and (0,0,0,0). Therefore, this a priori

corresponds to 5 observable 5-vector fields, differentiated by the {k} values, and
these five vector fields mutually interact by gravitational interaction. Part of the
Lagrangian term (22), responsible for this interaction, has the form:

i
2

ge f e μ
e e ν

f Φ
a†
{k′}Γ

bc
ν ∂μΦd

{k}

〈

1
2

1
2

K ′1K ′2
k′1 k′2

∣

∣

∣

∣

∣

∣

∣

∣

Q

∣

∣

∣

∣

∣

∣

∣

∣

1
2

1
2

K1K2

k1 k2

〉

√
5√
56
(ηabηdc +ηacηdb− 2

5
ηadηbc).

(30)
The reduced matrix element is obtained from the generalized Gell–Mann formula:

〈

1
2

1
2

1
2

1
2

k′1k′2

∣

∣

∣

∣

∣

∣

∣

∣

Q

∣

∣

∣

∣

∣

∣

∣

∣

1
2

1
2

1
2

1
2

k1k2

〉

=

1
4
√

14

(

− 2σ1C3

1
2 0 1

2
k1 0 k′1

C3

1
2 0 1

2
k2 0 k′2

+ 15σ2C3

1
2 1 1

2
k1 0 k′1

C3

1
2 1 1

2
k2 0 k′2

−

−15C3

1
2 1 1

2
k1−1 k′1

(

(k1 + k2− δ2)C3

1
2 1 1

2
k2−1 k′2

+(−k1 + k2 + δ1)C3

1
2 1 1

2
k2 1 k′2

)

−15C3

1
2 1 1

2
k1 1 k′1

(

(k1− k2 + δ1)C3

1
2 1 1

2
k2−1 k′2

− (k1 + k2 + δ2)C3

1
2 1 1

2
k2 1 k′2

)

)

,

〈

1
2

1
2

0 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

Q

∣

∣

∣

∣

∣

∣

∣

∣

1
2

1
2

K1K2

k1 k2

〉

= 0,

〈

1
2

1
2

0 0
0 0

∣

∣

∣

∣

∣

∣

∣

∣

Q

∣

∣

∣

∣

∣

∣

∣

∣

1
2

1
2

0 0
0 0

〉

=
√

2
7 σ1, (31)

where C3 denotes an usual Spin(3) Clebsch–Gordan coefficient.
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W-Algebras Extending ̂gl (1|1)

Thomas Creutzig and David Ridout

Abstract We have recently shown that ̂gl(1|1) admits an infinite family of simple
current extensions. Here, we review these findings and add explicit free field
realizations of the extended algebras. We use them for the computation of leading
contributions of the operator product algebra. Amongst others, we find extensions

that contain the Feigin–Semikhatov W (2)
N algebra at levels k = N(3−N)/(N − 2)

and k =−N + 1+N−1 as subalgebras.

1 Introduction

The affine Kac–Moody superalgebra ̂gl(1|1) is an attractive candidate for study.
On the one hand, its highest weight theory is particularly easy to analyse. On the
other, one is naturally led to study indecomposable modules of the type that arise
in logarithmic conformal field theory. In [1], we reviewed and consolidated what
was known about this superalgebra, drawing in particular upon the previous works
[2–8].

One motivation for undertaking this work was to understand how one could
reconcile the observation that conformal field theories with ̂gl (1|1) symmetry
appeared to admit only continuous spectra, whereas one might expect that the
Wess–Zumino–Witten model on the real form U(1|1) would have the same sym-
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metry, but a discrete spectrum. Another was to understand whether ̂gl (1|1) could be
related to other infinite-dimensional algebras, thus providing relationships between
certain (logarithmic) conformal field theories. For the first question, we were able
to show that certain discrete spectra seem to be consistent provided one extends the
chiral algebra appropriately. For the second, we identified a certain û(1)-coset of
̂gl(1|1) as the chiral algebra of the well-known βγ ghost system. Previous work [9]
then links ̂gl(1|1) to the affine Kac–Moody algebra ̂sl(2)−1/2 [10, 11], the triplet
algebra W(1,2) of Gaberdiel and Kausch [12] and the symplectic fermions algebra
[13] (̂psl(1|1)).

This article describes a certain family of extended algebras of ̂gl (1|1). In [1],
we noted that the fusion rules give rise to an infinite family of simple currents
labelled by n ∈ R and � ∈ Z. It follows that these algebra extensions may be
computed algorithmically [14, 15]. Here, we perform the computations up to a
certain order, using a well-known free field realisation [16]. More precisely, we
study the resulting W-algebras and show that for certain infinite families of n and �,

there is a bosonic subalgebra which we conjecture to be the W (2)
N algebra of Feigin

and Semikhatov [17].

2 gl (1|1) and Its Representations

2.1 Algebraic Structure

In this section, we review our notation [1] for gl(1|1). The Lie superalgebra gl(1|1)
consists of the endomorphisms of the super vector space C1|1 equipped with the
standard graded commutator. It is convenient to choose the following basis

N =
1
2

(

1 0
0 −1

)

, E =

(

1 0
0 1

)

, ψ+ =

(

0 1
0 0

)

, ψ− =

(

0 0
1 0

)

, (1)

in which N and E are parity-preserving (bosonic) whereas ψ+ and ψ− are parity-
reversing (fermionic). The non-vanishing brackets are then

[

N,ψ±
]

=±ψ±, {

ψ+,ψ−
}

= E. (2)

We note that E is central, so this superalgebra is not simple. In fact, gl (1|1) does
not decompose as a direct sum of ideals. Equivalently, the adjoint representation of
gl(1|1) is reducible, but indecomposable.

The standard non-degenerate bilinear form κ
(·, ·) on gl (1|1) is given by the

supertrace of the product in the defining representation (1). With respect to the basis
elements (1), this form is

κ
(

N,E
)

= κ
(

E,N
)

= 1, κ
(

ψ+,ψ−
)

=−κ(ψ−,ψ+
)

= 1, (3)
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with all other combinations vanishing. From this, we compute the quadratic Casimir
Q ∈ U
(

gl (1|1)) (up to an arbitrary polynomial in the central element E). We find it
convenient to take

Q = NE +ψ−ψ+. (4)

2.2 Representation Theory

The obvious triangular decomposition of gl(1|1) regards ψ+ as a raising (anni-
hilation) operator, ψ− as a lowering (creation) operator, and N and E as Cartan
elements. A highest weight state of a gl(1|1)-representation is then defined to
be an eigenstate of N and E which is annihilated by ψ+. Such states generate
Verma modules in the usual way and as ψ− squares to zero in any representation,
every Verma module has dimension 2. If (n,e) denotes the weight (the N- and E-
eigenvalues) of a highest weight state generating a Verma module, then its unique
descendant will have weight (n− 1,e). We will denote this Verma module by
Vn−1/2,e, remarking that the convention of characterising a highest weight module
by the average N-eigenvalue of its states, rather than that of the highest weight state
itself, turns out to symmetrise many of the formulae to follow.

Suppose now that
∣

∣v
〉

is a (generating) highest weight state of Vn,e. It satisfies

ψ+ψ−
∣

∣v
〉

=
{

ψ+,ψ−
}∣

∣v
〉

= E
∣

∣v
〉

= e
∣

∣v
〉

, (5)

so the descendant ψ−
∣

∣v
〉 
= 0 is a singular vector if and only if e = 0. Verma

modules are therefore irreducible for e 
= 0, and have irreducible quotients of
dimension 1 when e = 0. Modules with e 
= 0 are called typical while those with
e = 0 are atypical. We will denote a typical irreducible by Tn,e

∼= Vn,e and an
atypical irreducible by An. Our convention of labelling modules by their average
N-eigenvalue leads us to define the latter to be the irreducible quotient of Vn−1/2,0.
This is summarised in the short exact sequence

0−→An−1/2 −→ Vn,0 −→An+1/2 −→ 0 (6)

and structure diagram

Such diagrams illustrate the irreducible composition factors of an indecomposable
module, with arrows indicating (schematically) the action of the algebra. In
the above diagram, the composition factor An−1/2 is seen to be a submodule as
the arrow points towards it. The factor An+1/2 is not a submodule, but rather is the
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quotient Vn,0/An−1/2: Its preimage in Vn,0 is sent to the submodule An−1/2 by the
action of ψ−.

Atypical modules also appear as submodules of larger indecomposable modules.
Of particular importance are the four-dimensional projectives1 Pn whose structure
diagrams take the form

We remark that these modules may be viewed as particularly simple examples of
staggered modules [18]. Indeed, they may be regarded as extensions of highest
weight modules via the exact sequence

0−→ Vn+1/2,0 −→ Pn −→ Vn−1/2,0 −→ 0, (7)

and one can verify that the Casimir Q acts non-diagonalisably on Pn, taking the
generator associated with the top An factor to the generator of the bottom An factor,
while annihilating the other states.

2.3 The Representation Ring

The relevance of the projectives Pn is that they appear in the representation ring
generated by the irreducibles.2 The tensor product rules governing this ring are [2]

An⊗An′ =An+n′ , An⊗Tn′,e′ = Tn+n′,e′ , An⊗Pn′ = Pn+n′ ,

Tn,e⊗Tn′,e′ =

{

Pn+n′ if e+ e′ = 0,

Tn+n′+1/2,e+e′ ⊕Tn+n′−1/2,e+e′ otherwise,

Tn,e⊗Pn′ = Tn+n′+1,e⊕ 2Tn+n′,e⊕Tn+n′−1,e,

Pn⊗Pn′ = Pn+n′+1⊕ 2Pn+n′ ⊕Pn+n′−1.

(8)

1We mention that the typical irreducibles are also projective in the category of finite-dimensional
gl(1|1)-modules.
2It is perhaps also worth pointing out that the adjoint representation of gl(1|1) is isomorphic to P0.
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There are other indecomposables which may be constructed from submodules and
quotients of the Pn by taking tensor products. We will not need them and refer to
[19] for further discussion.

3 ̂gl (1|1) and Its Representations

3.1 Algebraic Structure

Here, we summarise the important results of [1] that we need for what follows.
Our conventions for gl(1|1) carry over to its affinisation ̂gl(1|1) in the usual way.
Explicitly, the non-vanishing brackets are
[

Nr,Es
]

= rkδr+s,0,
[

Nr,ψ±s
]

=±ψ±r+s,
{

ψ+
r ,ψ−s
}

= Er+s + rkδr+s,0, (9)

where k ∈ R is called the level and r,s ∈ Z. We emphasise that when k 
= 0, the
generators can be rescaled so as to normalise k to 1:

Nr −→ Nr, Er −→ Er

k
, ψ±r −→

ψ±r√
k
. (10)

As in the more familiar case of û(1), we see that the actual value of k 
= 0 is not
physical.

The Virasoro generators are constructed using (a modification of) the Sugawara
construction. Because the quadratic Casimir of gl(1|1) is only defined modulo
polynomials in E , one tries the Ansatz [2]

T (z) = μ : NE +EN−ψ+ψ−+ψ−ψ+ : (z)+ν : EE : (z) , (11)

finding that this defines an energy-momentum tensor if and only if μ = 1/2k and
ν = 1/2k2. Moreover, the ̂gl(1|1) currents N (z), E (z) and ψ± (z) are found to be
Virasoro primaries of conformal dimension 1 and the central charge is zero.

The structure theory of highest weight modules for ̂gl(1|1) turns out to be
particularly accessible because of certain automorphisms. These consist of the
automorphism w which defines the notion of conjugation and the family [4] of
spectral flow automorphisms σ �, � ∈ Z. Explicitly,

w (Nr) =−Nr,

σ � (Nr) = Nr,

w (Er) =−Er,

σ � (Er) = Er− �kδr,0,

w
(

ψ±r
)

=±ψ∓r ,

σ �
(

ψ±r
)

= ψ±r∓�,

w (L0) = L0.

σ � (L0) = L0− �N0.
(12)

These automorphisms may be used to construct new modules w∗ (M) and σ∗ (M)
by twisting the action of the algebra on a module M:

J ·w∗(∣∣v〉)= w∗
(

w−1(J
)∣

∣v
〉)

, J ·σ∗(∣∣v〉)= σ∗
(

σ−1(J
)∣

∣v
〉)

(J ∈ ̂gl (1|1)).
(13)

Note that w∗ (M) is precisely the module conjugate to M.
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3.2 Representation Theory

We can now define affine highest weight states, affine Verma modules ̂Vn,�, and
their irreducible quotients as before. We remark only that (10) suggests that
we characterise modules by the invariant ratio � = e/k rather than by the E0-
eigenvalue e. The affine highest weight state

∣

∣vn,�
〉

of ̂Vn,�, whose weight (its N0-
and E0/k-eigenvalues) is

(

n+ 1
2 , �
)

, has conformal dimension

Δn,� = n�+
1
2
�2. (14)

Of course, this formula also applies to singular vectors. Again, the label n refers
to the average N0-eigenvalue of the zero-grade subspace of ̂Vn,�, generalising the
labelling convention of Sect. 2.2.

Verma modules for ̂gl (1|1) are infinite-dimensional and their characters have the
form

χ
̂Vn,�

(

z;q
)

= tr
̂Vn,�

zN0 qL0 = zn+1/2qΔn,�
∞

∏
i=1

(

1+ zqi
)(

1+ z−1qi−1
)

(1− qi)2 . (15)

For the irreducible quotients, the case with �= 0 is particularly easy. As in Sect. 2.2,
we regard (n, �) (and modules so-labelled) as being typical if ̂Vn,� is irreducible and
atypical otherwise.

Proposition 1. The affine Verma module ̂Vn,0 has an exact sequence

0−→ ̂An−1/2,0 −→ ̂Vn,0 −→ ̂An+1/2,0 −→ 0 (16)

in which the ̂An,0 are (atypical) irreducibles whose characters are given by

χ
̂An,0

(

z;q
)

= zn
∞

∏
i=1

(

1+ zqi
)(

1+ z−1qi
)

(1− qi)2 . (17)

Proof. Since �= 0, every singular vector of ̂Vn,0 has dimension 0 by (14). The space
of singular vectors is thus spanned by

∣

∣vn,0
〉

and ψ−0
∣

∣vn,0
〉

. Taking the quotient by
the module generated by ψ−0

∣

∣vn,0
〉

gives a module with a one-dimensional zero-
grade subspace. The only singular vector is then the highest weight state, so this
quotient is irreducible. We denote it by ̂An+1/2,0 as its zero-grade subspace has N0-

eigenvalue n+ 1
2 . Its character follows trivially. The submodule of ̂Vn,0 generated

by ψ−0
∣

∣vn,0
〉

is not a Verma module because
(

ψ−0
)2∣
∣vn,0
〉

= 0. It must therefore be a

proper quotient of ̂Vn−1,0 and, by the above argument, the only such quotient is the

irreducible ̂An−1/2,0. The exact sequence follows. ��
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For � 
= 0, one proves by direct calculation [1] that for 0 < |�| < 1, ̂Vn,� is
irreducible. In other words, the corresponding irreducibles are typical, hence we
denote them by ̂Tn,�. For |�| ≥ 1, the structure of the Verma modules now follows
from considering the induced action of the spectral flow automorphisms. More
precisely, one proves [1] that any Verma module is isomorphic to a twisted version
of a Verma module with −1 < |�| < 1 (or the conjugate of such a Verma module).
We summarise the result as follows.

Proposition 2. When � /∈Z, the affine Verma module ̂Vn,� is irreducible, ̂Vn,�
∼= ̂Tn,�,

so its character is given by (15). When � ∈ Z, the affine Verma module ̂Vn,� has an
exact sequence

0−→ ̂An+1,� −→ ̂Vn,� −→ ̂An,� −→ 0 (�=+1,+2,+3, . . .),

0−→ ̂An−1,� −→ ̂Vn,� −→ ̂An,� −→ 0 (�=−1,−2,−3, . . .),
(18)

in which the ̂An,� are (atypical) irreducibles whose characters are given by

χ
̂An,�

(

z;q
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

zn+1/2qΔn,�

1+ zq�

∞

∏
i=1

(

1+ zqi
)(

1+ z−1qi−1
)

(1− qi)2 (�=+1,+2,+3, . . .),

zn+1/2qΔn,�

1+ z−1q−�
∞

∏
i=1

(

1+ zqi
)(

1+ z−1qi−1
)

(1− qi)2 (�=−1,−2,−3, . . .).

(19)

(The exact sequence and character for �= 0 was given in Proposition 1.)

Note that the ̂Vn,� with � ∈ Z have a non-trivial singular vector at grade |�|. We

emphasise that the ̂An,� with � 
= 0 therefore possess a two-dimensional zero-grade
subspace.

This description of the Verma modules, their irreducible quotients and characters
relies upon being able to identify the result of applying the spectral flow automor-
phisms to modules. For irreducibles, we have

(

σ �′)∗(
̂Tn,�
)

= ̂Tn−�′,�+�′ ,
(

σ �′)∗(
̂An,�
)

= ̂An−�′+ε(�+�′)−ε(�),�+�′ , (20)

where we introduce a convenient variant ε of the sign function on Z, defined by
taking ε (�) to be 1

2 , 0 or − 1
2 according as to whether � ∈ Z is positive, zero or

negative, respectively.

3.3 Fusion

The fusion rules of the irreducible ̂gl (1|1)-modules (among others) were first
deduced in [5] using three-point functions computed in a free field realisation and a
conjectured completeness of the spectrum. These rules and the spectrum conjecture
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were confirmed in [1] through a direct argument involving the Nahm–Gaberdiel–
Kausch fusion algorithm [20, 21] and spectral flow. The fusion ring generated by
the irreducibles may be understood [22] as a “constrained lift” of the representation
ring (8) of gl (1|1) where the constraints are effectively implemented by spectral
flow. Explicitly, the rules are

̂An,�× ̂An′,�′ = ̂An+n′−ε(�,�′),�+�′, ̂An,�×̂Tn′,�′ = ̂Tn+n′−ε(�),�+�′ ,

̂An,�× ̂Pn′,�′ = ̂Pn+n′−ε(�,�′),�+�′ ,

̂Tn,�×̂Tn′,�′ =

{

̂Pn+n′+ε(�+�′),�+�′ if �+ �′ = 0,
̂Tn+n′+1/2,�+�′ ⊕̂Tn+n′−1/2,�+�′ otherwise,

̂Tn,�× ̂Pn′,�′ = ̂Tn+n′+1−ε(�′),�+�′ ⊕ 2̂Tn+n′−ε(�′),�+�′ ⊕̂Tn+n′−1−ε(�′),�+�′ ,

̂Pn,�× ̂Pn′,�′ = ̂Pn+n′+1−ε(�,�′),�+�′ ⊕ 2 ̂Pn+n′−ε(�,�′),�+�′ ⊕ ̂Pn+n′−1−ε(�,�′),�+�′ .

(21)

Here, we have defined ε (�,�′) = ε (�)+ ε (�′)− ε (�+ �′) for convenience.
These fusion rules also introduce the indecomposable modules ̂Pn,� which are

the counterparts of the projective gl(1|1)-modules Pn discussed in Sect. 2.2.3 The
̂Pn,� are staggered with structure diagram

and a non-diagonalisable action of the Virasoro mode L0. It follows that conformal
field theories whose spectra contain typical modules will also contain such ̂Pn,� (by
fusion), and so will be logarithmic.

3More precisely, ̂Pn,0 is the affine counterpart to Pn and the remaining ̂Pn,� are obtained by spectral
flow.
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4 W-Algebras Extending ̂gl (1|1)

4.1 Chiral Algebra Extensions

Our search for extended algebras is guided by the following considerations: First,
note that if we choose to extend by a zero-grade field associated to any irreducible
̂gl(1|1)-module, then we must include the rest of its zero-grade fields in the exten-
sion. Second, the fields we extend by should be closed under conjugation. Third,
extending by fields from typical irreducibles will lead to logarithmic behaviour in
the extended chiral algebra because fusing typicals with their conjugates yields the
staggered indecomposable ̂P0,0.

It seems then that the most tractable extensions will involve zero-grade fields
from atypical modules ̂An,� and their conjugates ̂A−n,−�. The simplest extension
we could hope for would involve a single atypical and its conjugate and have the
further property that these extension fields generate no new fields at the level of the
commutation relations. This may be achieved for extension fields of integer or half-
integer conformal dimension by requiring that the operator product expansions of
the zero-grade fields of ̂An,� are regular. From the fusion rules (21), we obtain

̂An,�× ̂An,� = ̂A2n−ε(�),2�, (22)

from which it follows that the zero-grade fields of ̂An,� will have regular operator
product expansions with one another if 2Δn,� ≤ Δ2n−ε(�),2�, that is, if

|�| ≤ 2Δn,�. (23)

We may take � positive without loss of generality. Further, we require that the
conformal dimension of the extension fields be a positive half-integer (so 2n� ∈ Z).
Equation (23) then implies that there are m distinct possibilities to extend by fields
of dimension m/2. We denote by Wn,� the algebra obtained upon extending ̂gl(1|1)
by the atypical module ̂An,� and its conjugate ̂A−n,−�.

4.2 Characters of Extended Algebras

The complete extended algebra also contains normally-ordered products of the
extension fields and their descendants. Indeed, the extended algebra Wn,� may be

identified, at least at the level of graded vector spaces, with the orbit of the ̂gl(1|1)
vacuum module under fusion by the simple current modules ̂An,� and ̂A−n,−�.
In other words,

Wn+1/2,� = ̂A0,0⊕
∞
⊕

m=1

(

̂Amn+1/2,m�⊕ ̂A−mn−1/2,−m�

)

. (24)
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The character of the extended vacuum module is therefore

χ
Wn+1/2,�

(

y;z;q
)

= χ
̂A0,0

(

y,z;q
)

+
∞

∑
m=1

[

χ
̂Amn+1/2,m�

(

y;z;q
)

+ χ
̂A−mn−1/2,−m�

(

y;z;q
)

]

= z ∑
m∈Z

ym�zmnq(mn+1/2)m�+m2�2/2

1+ zqm�
·
∞

∏
i=1

(

1+ zqi
)(

1+ z−1qi−1
)

(1− qi)2 .

(25)

Here, we have introduced an additional formal variable y in order to keep track
of the eigenvalues of E0/k. One can likewise identify the irreducible modules of
the extended algebra with the other orbits of the extension modules. We will not
consider these modules, their characters, nor their interesting modular properties
here, but will return to this in a future publication.

4.3 Free Field Realisations

The affine Kac–Moody superalgebra ̂gl(1|1) has two well-known free field real-
izations, the standard Wakimoto realization [4] and one constructed from a pair of
symplectic fermions, a Euclidean boson, and a Lorentzian boson [16]. An explicit
equivalence between the two realisations was established in [23]. Here, we review
the latter one.

We take the symplectic fermions χ± and bosons Y , Z to have the following
operator product expansions:

χ+ (z)χ− (w)=
1

(z−w)2 +regular terms, ∂Y (z)∂Z (w) =
1

(z−w)2 + regular terms

(26)

(the others are regular). The ̂gl (1|1) current fields are then given by

E (z) = k∂Y (z) , N (z) = ∂Z (z) , ψ± (z) =
√

k : e±Y (z) : χ± (z) , (27)

and a moderately tedious computation shows that the ̂gl (1|1) energy momentum
tensor (11) indeed corresponds to the sum of those of the bosonic and symplectic
fermion systems.

It remains to construct the ̂gl(1|1) primaries that generate our extended algebras.
As these correspond to atypical modules, this is relatively straight-forward. First, we
introduce some convenient notation: Let Xn,� be the bosonic linear combination nY +
�Z and define composite fields F±r , with r∈N, by F±0 = 1 and F±r = : F±r−1∂

r−1χ± :
for r ≥ 1. The conformal dimension of F±r is then 1

2 r (r+ 1). The zero-grade fields

of the atypicals ̂An,� for � > 0 have conformal dimension Δn,� = �(n+ �/2) and are
realised by

V+
n,� = : eXn+1/2,� : F−�−1, V−n,� = : eXn−1/2,� : F−� . (28)
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This follows from their operator product expansions with the ̂gl(1|1) currents:

N (z)V±n,� (w) =
(n±1/2) V±n,� (w)

z−w
+ . . . ,

E (z)V±n,� (w) =
�kV±n,� (w)

z−w
+ . . . ,

ψ+ (z)V−n,� (w) = (−1)�−1 �!

√
kV+

n,� (w)

z−w
+ . . . ,

ψ− (z)V+
n,� (w) =

(−1)�−1

(�−1)!

√
kV−n,� (w)
z−w

+ . . . ,

(29)
the others being regular. The zero-grade fields of the conjugate module ̂A−n,−� are
realised as

V+
−n,−� = : eX−n+1/2,−� : F+

� , V−−n,−� = : eX−n−1/2,−� : F+
�−1. (30)

Their operator product expansions with the current fields are similar.

4.4 The Extended Operator Product Algebra

In order to compute the leading contributions to the extended algebra operator
product expansions, we need the expansion of the bosonic vertex operators. To
second order, this is

: eXn,�(z) : : eXn′ ,�′ (w) : =(z−w)n�′+n′�
[

: eXn+n′ ,�+�′ (w) : + : ∂Xn,� (w)e
Xn+n′ ,�+�′ (w) : (z−w)

+
1
2

:
(

∂Xn,� (w)∂Xn,� (w)+∂ 2Xn,� (w)
)

eXn+n′ ,�+�′ (w) :(z−w)2+. . .

]

.

(31)

Note that it follows that : eXn,�(w) : and : eXn′ ,�′ (w) : will be mutually bosonic when
n�′ + n′� is an even integer and mutually fermionic when n�′ + n′� is odd. The
implication of this for the statistics of the extended algebra generators V±n,� and

V±−n,−� is a little subtle. It turns out that when 2n� is even, these generators may
be consistently assigned a bosonic or fermionic parity—Wn,� is a superalgebra. In
fact, V+

n,� and V−−n,−� will be fermions and V−n,� and V+
−n,−� will be bosons in this

case. However, when 2n� is odd, such an assignment is impossible—Wn,� is not a
superalgebra. In this case, separately taking V+

n,� and V−−n,−� to be bosons and V−n,�
and V+

−n,−� to be fermions is consistent, but the mutual locality of a boson and a
fermion will now be −1 instead of +1. We will remark further on this subtlety in
Sect. 4.5.

We moreover need the leading terms of certain operator product expansions of
the F±r . In particular,
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F+
r (z)F−r (w) = (z−w)−r(r+1)

[

μ(0)
r +μ(2)

r−1 : χ+ (w)χ− (w) : (z−w)2 + . . .

]

,

F−r−1 (z)F+
r (w) = (z−w)−(r−1)(r+1)

[

μ(1)
r−1 χ

+ (w)+ . . .

]

,

F−r (z)F+
r−1 (w) = (z−w)−(r−1)(r+1)

[

μ(1)
r−1 χ

− (w)+ . . .

]

, (32)

where the coefficients μ (a)
r , for a = 0, 1, 2, are given by

μ (a)
r = ∑

σ∈Sr

(−1)|σ |
r

∏
i=1

(i+σ (i)+ a− 1)! =
r

∏
i=1

(i− 1)!(i+ a)! (33)

This last equality follows from recognising the μ (a)
r as determinants of Hankel

matrices for which LU-decompositions are easily found. In detail, consider the r× r
matrix Ar (a), for a non-negative integer a, with entries (Ar (a))i j = (i+ j+ a− 1)!
Defining r× r matrices Lr (a) and Ur (a) by

(Lr (a))i j =
(i+ a)!
( j+ a)!

(

i− 1
j− 1

)

, (Ur (a))i j = (i− 1)!( j+ a)!

(

j− 1
i− 1

)

, (34)

and noting that Lr (a) is lower-triangular with diagonal entries equal to 1 and Ur (a)
is upper-triangular, we see that Lr (a)Ur (a) is an LU-decomposition of Ar (a):

(Lr (a)Ur (a))i j =
r

∑
k=1

(i+ a)!(i− 1)!( j+ a)!( j− 1)!
(k+ a)!(k− 1)!(i− k)!( j− k)!

= ( j+ a)!(i− 1)!
r

∑
k=1

(

i+ a
k+ a

)(

j− 1
k− 1

)

= ( j+ a)!(i− 1)!

(

i+ j+ a− 1
i− 1

)

= (Ar (a))i j . (35)

Since det Lr (a) = 1, we obtain det Ar (a) = det Ur (a) = ∏r
i=1 (i− 1)!(i+ a)! and

hence (33).
We are now in a position to obtain the leading contributions to the operator

product expansions of the extension fields V±n,� and their conjugates V∓−n,−�. Since
we assume (23), there are only four non-regular expansions and these take the form

V+
n,� (z)V+

−n,−� (w) =
μ(1)
�−1ψ

+ (w)/
√

k

(z−w)2Δn,�−1 + . . . ,

V−−n,−� (z)V+
n,� (w) = μ(0)

�−1

[

1

(z−w)2Δn,�
− ∂Xn+1/2,� (w)

(z−w)2Δn,�−1 +
�(�−1)

2
: χ+ (w)χ− (w) :

(z−w)2Δn,�−2

+
1
2

: ∂Xn+1/2,� (w)∂Xn+1/2,� (w) : −∂ 2Xn+1/2,� (w)

(z−w)2Δn,�−2 + . . .

]

,
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V+
−n,−� (z)V−n,� (w) = μ(0)

�

[

1

(z−w)2Δn,�
− ∂Xn−1/2,� (w)

(z−w)2Δn,�−1 +
�(�+1)

2
: χ+ (w)χ− (w) :

(z−w)2Δn,�−2

+
1
2

: ∂Xn−1/2,� (w)∂Xn−1/2,� (w) : −∂ 2Xn−1/2,� (w)

(z−w)2Δn,�−2 + . . .

]

,

V−n,� (z)V−−n,−� (w) =
μ(1)
�−1ψ

− (w)/
√

k

(z−w)2Δn,�−1 + . . . (36)

Here, we have used (33) to evaluate the ratios μ (2)
r−1/μ

(0)
r = 1

2 r (r+ 1) appearing in
these expansions.

4.5 Examples

Let us now illustrate the results of the above calculations with a few simple
examples. First, (23) tells us that the extended algebra Wn,� will be unique if we
insist that the extension fields have conformal dimension 1

2 . Indeed, this requires

� = 1 and n = 0. We are therefore extending ̂gl (1|1) by the fields associated with
the atypical modules ̂A0,1 and ̂A0,−1. Since 2n� = 0 is even, the generators of the
resulting extended algebra, W0,1, may be assigned a definite parity: κ = V+

0,1 and

κ̄ =V−0,−1 are odd, β =V−0,1 and γ =−V+
0,−1 are even. The expansions (36) become

κ (z) κ̄ (w) =
1

z−w
+N (w)+

1
2k

E (w)+ . . . ,

β (z)γ (w) =
1

z−w
+N (w)− 1

2k
E (w)+ . . . ,

β (z)κ (w) = +
ψ+ (w)√

k
+ . . . ,

γ (z) κ̄ (w) =−ψ
− (w)√

k
+ . . . ,

(37)

which we recognise as a free complex fermion (κ, κ̄) and a βγ ghost system.
Because the mixed operator product expansions are regular, W0,1 decomposes into
the direct sum of the chiral algebras of these theories.

If we choose to extend by dimension 1 fields, then there are two distinct choices:
n = 1

2 and � = 1 or n = 1
2 and � = −2. We expect a current algebra symmetry

in both cases. Indeed, if we set H = N + E/�k and Z = N − E/�k, then we
discover that the (H,Z)-weights of the ̂gl(1|1) currents and the extension fields V±n,�,
V±−n,−� precisely match the (H,Z)-weights of the adjoint representation of sl (2|1).4
Moreover, we have

4Here, H and Z should be associated with the matrices diag{1,−1,0} and diag{1,1,2} in the
defining representation of sl(2|1).
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H(z)H(w) =
2/�

(z−w)2 + . . . , Z(z)Z(w) =
−2/�

(z−w)2 + . . . , (38)

and H(z)Z(w) regular, which suggests that the extended algebra will be ̂sl(2|1) at
level 1/�.

Checking this for the choice �=−2 is easy. As 2n�=−2 is even,W1/2,−2 admits
a superalgebra structure. Moreover, the fusion rules

̂A0,1× ̂A0,1 = ̂A−1/2,2, ̂A0,−1× ̂A0,−1 = ̂A1/2,−2 (39)

imply that W1/2,−2 is a subalgebra of the extended algebra W0,1 considered above.
One readily checks that by taking normally-ordered products, the βγ ghost fields of
W0,1 generate the bosonic subalgebra ̂sl(2)−1/2⊂ ̂sl(2|1)−1/2, the complex fermion
gives the û(1)-subalgebra, and the mixed products yield the remaining fermionic
currents. This establishes the superalgebra isomorphism W1/2,−2

∼= ̂sl(2|1)−1/2.
The computation when �= 1 is, however, more subtle because 2n�= 1 is odd, so

W1/2,1 does not admit the structure of a superalgebra. To impose the correct parities
on the extended algebra currents, we must adjoin an operator-valued function μ
which is required to satisfy

μa,bμc,d = (−1)adμa+b,c+d, (a,b,c,d ∈ Z). (40)

Note that the algebra generated by these operators has unit μ0,0. The currents are
then given by

E =+μ1,1V+
1/2,1,

F =−μ−1,−1V−−1/2,−1,

H = N +E/k,

Z = N−E/k,

e+ =−μ1,0ψ+/
√

k,

f− =+μ−1,0ψ−/
√

k,

f+ = μ0,−1V+
−1/2,−1,

e− = μ0,1V−1/2,1,

(41)

and routine computation now verifies that these currents indeed generate ̂sl(2|1)1.
As our final example, we briefly consider the case of extensions of conformal

dimension 3
2 . There are now three distinct choices, corresponding to n = 1, � = 1,

or n = − 1
4 , � = 2, or n = −1, � = 3. The latter choice again results in an extended

algebra which is a subalgebra of W0,1 because

̂A0,1× ̂A0,1× ̂A0,1 = ̂A−1,3. (42)

Both W1,1 and W−1,3 are superalgebras, while W−1/4,2 is not. We expect, however,
that a modification similar to (40) will restore the superalgebra parity requirements.
We will not analyse this in any detail as our interest in Δn,� =

3
2 lies not with the full

extended algebra, but rather with one of its subalgebras.
We start with the superalgebras W1,1 and W−1,3. Both V+

−n,−� and V−n,� are
bosonic and upon defining
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g+ =

√

3α (3α−1)

2μ(0)
�

V+
−n,−�, g− =

√

3α (3α−1)

2μ(0)
�

V−n,�,

j= −α∂Xn−1/2,�, t=
α
2

: ∂Xn−1/2,�∂Xn−1/2,� : − � (�+1)
2

α (3α−1)
α+1

: ψ+ψ− :
k

(43)

where

α =
1

(2n− 1)�
, (44)

we obtain the defining relations of the Bershadsky–Polyakov algebra W (2)
3 [24, 25]:

g+ (z)g− (w) =
(K +1) (2K +3)

(z−w)3 +
3(K +1) j(w)

(z−w)2

+
3 : jj : (w)+ 3

2 (K +1)∂ j(w)− (K +3) t (w)

z−w
+ . . . ,

j(z)g± (w) =
±g± (w)

z−w
+ . . . , j(z) j(w) =

(2K +3)/3

(z−w)2 + . . . ,

t (z)g± (w) =
3
2

g± (w)
(z−w)2 +

∂g± (w)
z−w

+ . . . , t (z) j(w) =
j(w)

(z−w)2 +
∂ j(w)
z−w

+ . . . ,

t (z) t (w) =
−(2K +3) (3K +1)/2(K +3)

(z−w)4 +
2t (w)

(z−w)2 +
∂ t (w)
z−w

+ . . . (45)

Here, the ̂sl(3)-level K = 3
2 (α− 1) is 0 for W1,1 and − 5

3 for W−1,3. The central

charge of the W (2)
3 -subalgebra is in both cases −1.

For W−1/4,2, this procedure does not yield a Bershadsky–Polyakov algebra
because V+

−n,−� and V−n,� are, in this case, mutually fermionic. Rather, these fields
generate a copy of the N= 2 superconformal algebra of central charge−1. Instead,
we must consider the mutually bosonic fields V+

n,� and V−−n,−�. Taking

g+ =
√

3V−1/4,−2, g− =
√

3V+
−1/4,2, j=−∂X1/4,2,

t=
1
2

: ∂X1/4,2∂X1/4,2 : − 1
k

: ψ+ψ− : (46)

in particular, now leads to the Bershadsky–Polyakov algebra of level 0 and central
charge −1. (In contrast, V+

n,� and V−−n,−� are fermionic in both W1,1 and W−1,3,
generating copies of the N = 2 superconformal algebra with central charges 1 and
−1, respectively.)
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4.6 W (2)
N -Subalgebras

In the previous section, we found the Bershadsky–Polyakov algebra W (2)
3 , at certain

levels, appearing as a subalgebra of the extended algebras W1,1, W−1/4,2 and

W−1,3. We now generalise this observation. The algebra W (2)
3 is defined [24, 25]

as the Drinfel’d–Sokolov reduction of ̂sl(3) corresponding to the non-principal
embedding of sl (2) in sl(3). Feigin and Semikhatov [17] found that it could also
be realised as a subalgebra of ̂sl(3|1)⊕ û(1) commuting with an ̂sl (3)-subalgebra.

They then studied a generalisation W (2)
N ⊂ ̂sl(N|1)⊕ û(1) which commutes with the

obvious ̂sl(N)-subalgebra.
When N = 1, these generalisations reduce to the chiral algebra of the βγ ghost

system. For N = 2, one gets ̂sl(2), and as mentioned above, N = 3 recovers the
Bershadsky–Polyakov algebra. The examples studied in Sect. 4.5 therefore lead us

to the plausible conjecture that the W (2)
N algebras of Feigin and Semikhatov may

be realised, at least for certain levels, as subalgebras of certain of our extended

algebras Wn,�. We mention that there is a second construction of these W (2)
N

algebras, but restricted to the critical level K = −N (see (48)), starting from the
affine superalgebra ̂psl(N|N) at (critical) level 0 [26].

Feigin and Semikhatov only computed the first few terms of the defining operator

product expansions of W (2)
N . We will compare these terms with those obtained from

our extended algebras, finding decidedly non-trivial agreement. Our findings will,
however, be stated as conjectures because the full operator product expansion of

W (2)
N is not currently known. W (2)

N is generated by two fields E±N of dimension 1
2 N, a

û(1)-currentHN and an energy-momentum tensor TN . The defining expansions are:

HN (z)HN (w) =
(N−1)K/N+N− 2

(z−w)2 + . . . , HN (z)E±N (w)=± E±N (w)
z−w

+ . . . ,

E+
N (z)E−N (w) =

λN−1

(z−w)N +
NλN−2HN (w)

(z−w)N−1 − (K+N)λN−3TN (w)

(z−w)N−2

+
λN−3

(z−w)N−2

[

N (N−1)
2

: HNHN : (w)

+
N
(

(N−2)(K+N−1)−1
)

2
∂HN (w)

]

+ . . . (47)

Here, λm = ∏m
i=1

(

i(K +N− 1)− 1
)

, K is the level of the W (2)
N algebra, and the

central charge is given by

C =−
(

(K +N)(N− 1)−N
)(

(K +N)(N− 2)N−N2 + 1
)

K +N
. (48)
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Suppose first that 2n� is even, so we can consider the bosonic subalgebra
generated by the fields

E+
N =

√

λN−1

μ (0)
�

V+
−n,−�, E−N =

√

λN−1

μ (0)
�

V−n,�. (49)

Evaluating the operator product expansion of these fields using (36) and comparing
with (47), we find that the first two singular terms agree provided that N = 2Δn,�

and HN = −∂Xn−1/2,�/(2n− 1)�. This also fixes the W (2)
N level K. Comparing the

third terms fixes the form of the W (2)
N energy-momentum tensor TN and HN is then

verified to have dimension 1. However, the E±N only have the required dimension
1
2 N = Δn,� if n = 1 or 2n+ �= 1.5 These constraints also let us check that TN is an
energy-momentum tensor and the central charge turns out to be C =−1. When 2n�
is odd, we instead consider the bosonic subalgebra generated by

E+
N =

√

λN−1

μ (0)
�−1

V−−n,−�, E−N =

√

λN−1

μ (0)
�−1

V+
n,�. (50)

A similar analysis reveals that this subalgebra agrees with W (2)
N up to the first three

terms in the operator product expansions provided that N = 2Δn,� and either � = 1
or �= 2.6 In the first case, C = 1; in the second, C =−1.

We summarise our findings as follows:

Conjecture 1. The extended algebra Wn,� has a subalgebra isomorphic to W (2)
N of

level K when:

• �= 1 and n= 0,1,2, . . . Then, N = 2n+1 and K =−2(n− 1)(2n+ 1)/(2n− 1).
• �= 1 and n = 1

2 ,
3
2 ,

5
2 , . . . Then, N = 2n+ 1 and K =−(2n2− 1

)

/n.
• � = 2 and n = − 3

4 ,− 1
4 ,

1
4 , . . . Then, N = 4(n+ 1) and K = −2(n+ 1)

(4n+ 1)/(2n+ 1).
• n =− 1

2 (�− 1) and �= 1,2,3, . . . Then, N = � and K =−(�2− �− 1
)

/�.

Note that the examples considered in Sect. 4.5 exhaust the W (2)
N -subalgebras with

N ≤ 3 except for � = 2 and n = − 3
4 . This latter case is excluded if one insists, as

we did with (23), that the operator product expansion of E± with itself is regular.
We mention that Feigin and Semikhatov actually computed the first four terms of

the W (2)
N operator product expansions, finding in the fourth term a Virasoro primary

field WN of dimension 3 and HN-weight 0. We have extended (31), (32) and (36)

5There is a third solution, Δn,�+ �+1 = 0, but this is invalid as we require �,Δn,� > 0.
6Taking n = − 1

2 (�+1) also satisfies these requirements, but then 2n� is necessarily even.
Moreover, there is again a solution of the form Δn,�− �+ 1 = 0, but it is easy to check that it
leads to the wrong operator product expansion of TN with itself.
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to compute WN in our extended algebras and have checked that for each � and n
appearing in our conjecture, this field indeed has the required properties. It follows
that our conjecture has been verified for all N ≤ 4.
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Non-Local Space-Time Transformations
Generated from the Ageing Algebra

Stoimen Stoimenov and Malte Henkel

Abstract The ageing algebra is a local dynamical symmetry of many ageing
systems, far from equilibrium, and with a dynamical exponent z = 2. Here, new
representations for an integer dynamical exponent z = n are constructed, which
act non-locally on the physical scaling operators. The new mathematical mech-
anism which makes the infinitesimal generators of the ageing algebra dynamical
symmetries, is explicitly discussed for a n-dependent family of linear equations
of motion for the order-parameter. Finite transformations are derived through the
exponentiation of the infinitesimal generators and it is proposed to interpret them
in terms of the transformation of distributions of spatio-temporal coordinates. The
two-point functions which transform co-variantly under the new representations are
computed, which quite distinct forms for n even and n odd. Depending on the sign
of the dimensionful mass parameter, the two-point scaling functions either decay
monotonously or in an oscillatory way towards zero.

1 Introduction

Non-relativistic space-time transformations have recently met with a lot of interest.
In addition to fields such as hydrodynamics [27, 33], they have been playing an
increasing rôle in the analysis of the long-time behaviour of strongly interacting
many-body systems far from equilibrium [9, 21] and even more recently have

S. Stoimenov (�)
Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
72 Tsarigradsko Chaussee, BG–1784 Sofia, Bulgaria
e-mail: spetrov@inrne.bas.bg

M. Henkel
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discussed in non-relativistic limits of the AdS/CFT correspondence [1, 2, 23, 25].
Physically interesting sets of space-time transformations are these which define
some kind of conformal invariance and recently, a classification of non-relativistic
conformal space-time transformations was presented [11]. Indeed, the list of sets
of admissible generators (with 0 < z < ∞), which close into a Lie algebra is a
rather short one: the conformal algebra itself, in d + 1 dimensions, with z = 1; the
conformal galilean algebra CGA(d), first identified in [14], poses representations
with z = 1 and z = 2 [20]; the Schrödinger algebra with dynamical exponent
z = 2 [13, 22, 24, 26] and its subalgebra (with time-translation left out) known as
ageing algebra [7, 9, 15, 21] (for the full list see [11, 30]). This short list illustrates
the difficulty of constructing sets of “conformal” space-time transformations for
a generic dynamical exponent z 
= 1,2. It is at present not fully understood how
to construct a dynamical symmetry (beyond the obvious translation, dilatation and
rotation symmetries) even for a simple linear equation of the form (where z 
= 1,2)

Sψ(t,r) :=
(

zμ∂t − ∂ z
r

)

ψ(t,r) = 0 (1)

which arises as one of the most simple equations of motion of the order-parameter
in studies of ageing far from equilibrium [6, 8]. Indeed, current attempts to find
further dynamical symmetries of (1) beyond the obvious translation, dilatation and
rotations (if d > 1) only succeed at the price that the further generators (build by
a fractional derivatives) must be required to vanish on certain states [16, 17, 21].
In the context of statistical physics, the order-parameter does not really satisfy a
deterministic equation, but rather the r.h.s of (1) is replaced by a random noise term,
which leads to a Langevin equation. However, since the non-relativistic algebras
mentioned above are all non-semi-simple and their representations are projective, it
is possible to study first the symmetries of the deterministic equation (1) and then
use the resulting Bargman super-selection rules [3] in order to reduce the calculation
of any average to the calculation of averages within the deterministic part of the
theory as defined by (1) [28]. This procedure works not only for thermal noises and
a simple diffusion equation with z = 2, but can be generalised to generic values
of z and fairly general noises, such as they may arise in reaction-diffusion systems
[4–6, 10, 29], see [21] for a systematic presentation.

In this paper,1 we shall explore properties of a new kind of representations
of the common sub-algebra age(d) of the Schrödinger algebra. The standard
representation in d = 1 space dimensions, on sufficiently differentiable space-time
functions f (t,r), of the Lie algebra age(1) :=

〈

X0,1,Y± 1
2
,M0
〉

is given by

X0 = −t∂t− 1
2

r∂r− x
2
, X1 =−t2∂t − tr∂r−M

2
r2− (x+ ξ )t

Y− 1
2
= −∂r, Y1

2
=−t∂r−M r, M0 =−M (2)

1This paper contains the main results from the original one [30] which the first author presented
on LT-9 conference
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with the non-vanishing commutators given by

[

X0,Y± 1
2

]

= ∓1
2

Y± 1
2
,
[

X0,X1
]

= −X1 ,
[

Y1
2
,Y− 1

2

]

= M0. (3)

This representation is characterised by the “mass” M and the pair of scaling
dimensions (x,ξ ) whose values depend on the scaling operator on which these
generators act. If one defines the Schrödinger operator

S := 2M ∂t − ∂ 2
r + 2M

(

x+ ξ − 1
2

)

1
t

(4)

then the equation Sψ(t,r) = 0 has age(1) as dynamical symmetry (see [30]). A
physical example for (4) is given by the relaxation kinetics of the spherical model,
or equivalently the N → ∞ limit of the O(N) model, after a quench to a temperature
T ≤ Tc at or below its critical temperature Tc > 0 [12]. The representation (2) has
a dynamical exponent z = 2 and acts locally on the space-time coordinates. While
the time-translations are not included, a system with an age-symmetry is not at a
stationary state. The scaling dimension ξ arises as a further universal characteristics
of the relaxation process [19]. When trying to extend (2) to a representation of
CGA(1) ⊃ age(1), the extra generators are not necessarily first-order differential
operators [18]. For this reason, and in order to find further representations of age(1)
with different values of z, we shall give in Sect. 2 non-local representations of
age(1), which admit any integer value z = n∈ N. In Sect. 3, we address the question
how to interpret geometrically such infinitesimal generators. Next, in Sect. 4, we
derive the co-variant two-point functions which depend strongly on the parity of n.

2 Non-Local Representation of the Ageing Algebra age(1)

Consider a dynamical exponent with integer values 2 ≤ z = n ∈ N. The generators
of age(1) we are interested in take the form

X0 = −n
2

t∂t − 1
2

r∂r− x
2
, X1 =−n

2
t2∂t∂ n−2

r − tr∂ n−1
r − 1

2
μr2− (x+ ξ )t∂ n−2

r

Y− 1
2
= −∂r, Y1

2
=−t∂ n−1

r − μr, M0 =−μ (5)

and satisfy the commutators of age(1). However, there is a notable exception,
namely

[

X1,Y1
2

]

= n−2
2 t2∂ n−3

r S with the Schrödinger operator

S := nμ
∂
∂ t
− ∂ n

∂ rn + 2μ
(

x+ ξ − n− 1
2

)

1
t
. (6)
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The generators (5) form a dynamical symmetry of the Schrödinger equation
Sψ(t,r) = 0, as can be seen from the commutators

[

S,Y± 1
2

]

=
[

S,M0
]

= 0 ,
[

S,X0
]

= −n
2

S ,
[

S,X1
]

=−nt∂ n−2
r S. (7)

In order to close the representation (5), we must restrict the function space
modulo solutions of Sψ = 0. Then a natural function space for our purposes is
F := C1

(

R+,Cn(R)
)/ ∼= C1

(

R+,Hn(R)
)/ ∼ [30]. Restricted to the space F ,

the generators (5) give for each integer n > 2 a non-local representation of age(1)
which is a dynamical symmetry of the Schrödinger equation Sψ = 0.

3 Finite Transformations

Besides the usual local generators of dilatations X0, of spatial translations Y− 1
2

and of

phase shifts M0, the representation (5) also contains the non-local generators Y1
2
,X1

whose effect cannot be interpreted as a simple space-time coordinate transformation
t �→ t ′(t,r), r �→ r′(t,r). On the other hand, we can still write the formal Lie series
F(ε, t,r) = e−εY1/2F(0, t,r) and F(ε, t,r) = e−εX1F(0, t,r). They are given as the
solutions of the two initial-value problems

(

∂ε − t∂ n−1
r − μr

)

0ε, t,r) = 0, F(0, t,r) = φ(t,r) (8)

(

∂ε − n
2

t2∂t∂ n−2
r − tr∂ n−1

r − xt∂ n−2
r − 1

2
μr2
)

F(ε, t,r) = 0, F(0, t,r) = φ(t,r)

(9)

such that the initial function φ ∈F .
In Tables 1 and 2, we illustrate these Lie series for the choices φ(t,r) = tm and

φ(t,r) = rk with m ∈ N and 1 ≤ k ≤ n− 1, which for μ = 0 solve the Schrödinger
equation Sφ(t,r) = 0. Comparison with the local Galilei- and special Schrödinger
transformation shows important differences. For example, although the spatial
coordinate r is left invariant by both generators when n > 2, this does not imply that

Table 1 Comparison of the finite transformations e−εY1/2φ (t, r) for
the generalised, non-local Galilei-transformation when z = n > 2 with
the standard local Galilei-transformation for z = n = 2. The initial
distribution φ ∈F and μ = 0

φ (t, r) Non-local, n > 2 Local, n = 2

tm tm tm m ∈ N
rk rk (r+ tε)k 1≤ k ≤ n−2

rn−1 rn−1 +(n−1)!tε
(

r+ tε
)n−1
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Table 2 Comparison of the finite transformations e−εX1φ (t, r) for the generalised, non-local
special Schrödinger-transformation when z = n = 3 or 4 with the standard local special
Schrödinger-transformation for z = n = 2. The initial distribution φ ∈F and μ = 0

Non-local Local

φ (t, r) n = 3 n = 4 n = 2

tm tm tm tm/(1− tε)m+x+ξ m ∈ N
r r+(x+ξ )tε r r/(1− tε)1+x+ξ

r2 r2 +2(x+ξ +1)trε r2 +2(x+ξ )tε r/(1− tε)2+x+ξ

+ 1
2 (x+ξ +1)(2x+2ξ +3)t2ε2

r3 —— r3 +6(x+ξ +1)trε r/(1− tε)3+x+ξ

these generators would not generate any spatial transformation, as we see from the
transformation behaviour of the higher powers of r. While in the local case n= 2, the
transformation of the powers rk is simply given by taking the corresponding power
of the transformation law of r itself, this is no longer true in the non-local cases
n > 2. The action of the generators Y1

2
and X1, in our example, look reminiscent

to a transformation of a statistical distribution, where the first moment happens to
be invariant, but the higher ones change. Therefore, these examples suggest that a
better interpretation might be to consider a transformation of an initial distribution
of spatial (or temporal) coordinates, where φ(t,r) would then take the rôle of a
distribution function. Next we give further results on the transformation of φ(t,r)
and discuss possible consequences for an interpretation on two cases z = 3 and
z = 4. These are the values of z in the Bray–Rutenberg theory of the growth of the
relevant time-dependent length scale L(t) ∼ t1/z in O(n)-symmetric systems with a
conserved order parameter and quenched to T < Tc [7].

(i). z = n = 3

We now give the full transformation laws of the distribution φ(t,r). We begin with
the generalised Galilei transformation (8):

F(ε, t,r) =
1√

4πtε

∫

R
dr′ φ(t,r′)e

− 1
4tε

(

(

r−r′−tμε2
)2−4μtr′ε2− 4

3 μ
2t2ε4
)

. (10)

Setting μ = 0, we obtain the entries in Table 1. Up to the μ-dependent terms, (10)
is a convolution of the initial distribution with a gaussian. It can be checked that the
group property holds true.

In particular, if one tentatively interprets φ(r) as a probability distribution such
that
∫

Rdrφ(t,r) = 1, this normalisation condition remains unchanged for μ = 0, viz.
∫

Rdr F(ε, t,r)|μ=0 = 1. Furthermore, one may consider

̂φ(t,k) =
〈

e−ikr
〉

=
1√
2π

∫

R
dr e−ikrφ(t,r) (11)



374 S. Stoimenov and M. Henkel

as the associated characteristic function. For example, if we consider a shifted
gaussian with characteristic function ̂φ(t,k) = exp

(−λk2+ iγk
)

, this transforms into

̂φ (t,k) �→ ̂F(ε, t,k) = e−(λ+tε)k2+iγk e−ik(2μλε+μtε2) eμ
2(λ+tε/3)ε2−μγε (12)

For μ = 0 the center stays unchanged at γ , while the width becomes λ �→ λ +
tε . Gaussian distributions are therefore co-variant under the generalised Galilei
generator Y1

2
with μ = 0. However, since the gaussian distribution is not a solution

of the Schrödinger equation with n 
= 2, one can realise a gaussian distribution at
best as an initial condition which has to be evolved in time.

The integration of the generalised special transformation (9) gives the result (first
we set μ = 0):

F(ε, t,r) =
1

2π

∫

R2
dkdr′ eik(r−r′)

(

1+
tkε
2i

)2(1−x−ξ )
×

× φ

[

t

(

1+
tkε
2i

)−3

,r′
(

1+
tkε
2i

)−2
]

(13)

In particular, the entries in Table 2 are recovered.
When we consider a gaussian distribution, we find the formal transformation

̂φ (t,k) =
√

λ
π

e−λ k2 �→ ̂F(ε, t,k) =
(

1+
tkε
2i

)2(1−x−ξ )√λeff(tk)
π

e−λeff(tk)k
2

(14)

but now with a k-dependent effective width λeff(tk) = λ
(

1+ tkε/(2i)
)4

. Again, a
gaussian distribution can at best be realised as an initial distribution.

Alternatively, one may implement the constraint of resting in the reduced
function space of solutions of the Schrödinger equation directly, in order to treat
the case μ 
= 0 (see [30] for details).

(ii). z = n = 4

The finite form of the generalised Galilei transformation is found by solving (8).
We find

F(ε, t,r)=
exp(tμ3ε4/4)

2π

∫

R
dr′ φ(t,r′)eμεr′

∫

R
dk eik(r−r′+tμ2ε3)+ 3

2 tμε2k2−itεk3
. (15)

Setting μ = 0, the results in Table 1 can be recovered and we also have the same
conservation of the normalisation, when μ = 0. Next, we integrate the special
generator X1 by solving (9). The result is:

F(ε, t,r) =
1

2π

∫

R2
dkdr′ eik(r−r′)−(x+ξ−2)εtk2

φ
(

e−2εtk2
t,e−εtk2

r′
)

(16)
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from which the corresponding entries in Table 2 follow.2 The main difference with
respect to (13) is the exponential rescaling of time and space.

4 Covariant Two-Point Functions

We derive the form of the co-variant two-point function F = F(t1, t2;r1,r2) =
〈φ1(t1,r1)φ2(t2,r2)〉 ((xi,ξi) and μi are the scaling dimensions and the “mass” of
the scaling operators φi) from the co-variance conditions X (2)F = 0, where X (2) is
the two-body extension of the generators X ∈ age(1) constructed in Sect. 2. It is
turned out (here we give the final results [30]) that one must distinguish between the
cases (i) n even and (ii) n odd.

(i). n even. We rewrite the two-point function as

F = F(u,v,r) , u := t1− t2 , v := t1/t2 , r := r1− r2

F(u,v,r) = t−(x1+x2)/n
2 (v− 1)−

2
n [(x1+x2)/2+ξ1+ξ2−n+2] v−

1
n [x2−x1+2ξ2−n+2]

f
(

ru−1/n
)

(17)

where the form of the last scaling function f = f (y) satisfy the equation

dn−1 f (y)
dyn−1 + μ1y f (y) = 0. (18)

(ii). n odd. In this case the two-point function is

F = F(u,v,r) , u := t1 + t2 , v := t1/t2 , r := r1− r2

F(u,v,r) = t−(x1+x2)/n
2 (v+ 1)−

2
n [(x1+x2)/2+ξ1+ξ2−n+2] v−

2
n [x2−x1+ξ1−ξ2]

f
(

ru−1/n
)

(19)

and where the scaling function f (y) is again given by (18).

It remains to discuss the remaining scaling function f (y). The general solution
of (18) is

f (y) =
n−2

∑
�=0

f� y� 1Fn−1

(

1;
2+ �

n
,

3+ �

n
, . . . ,

n+ �

n
;−μ1yn

nn−1

)

(20)

2All entries in Tables 1 and 2 can be checked by direct substitution.
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Fig. 1 Scaling function f (y) in the case z = n = 3 (on the left hand side), normalised to
f (0) = 1. The solid line gives the behaviour if μ1 = 1 > 0, while the broken lines indicate the
behaviour, for μ1 = −8 < 0 and several values of k, of the function f (y) = (Ai(|μ1|1/3y) +
kBi(|μ1|1/3y))/((Ai(0))+ kBi(0)). On the right hand side is the scaling function f (y) in the case
z = n = 4, normalised to f (0) = 1. The thick solid line gives the behaviour if μ1 = 1 > 0. The
broken lines and the grey line indicate the behaviour, for μ1 = −8 < 0 and several values of k, of
the function f (y) = (F1(y)+ kF2(y))/(F1(0)+ kF2(0)), with the Fi(y) defined in (24)

where 1Fn−1 are generalised hypergeometric functions and the f� are normalisation
constants. On this, physically reasonable boundary conditions must be imposed,
especially limy→∞ f (y) = 0. It may be more instructive, however, to look at explicit
examples.

1. n = 3. In this case, (18) reduces essentially to Airy’s equation and the solutions
can be compactly expressed in terms of Airy’s functions and the normalisation
constants f1,2

f (y) = f1Ai
(

−μ1/3
1 y
)

; μ1 > 0

f (y) = f1Ai
(

|μ1|1/3y
)

+ f2Bi
(

|μ1|1/3y
)

; μ1 < 0 (21)

For μ1 > 0, the second independent solution of (18) was suppressed, since it
diverges for y → ∞. Figure 1(left hand side) illustrates the behaviour of the
scaling function, for positive and negative values of μ1.

2. n = 4. The solution of (18) now takes the more simple form

f (y) = f0 0F2

(

1
2
,

3
4

;−μ1y4

64

)

+ f1 y 0F2

(

3
4
,

5
4

;−μ1y4

64

)

+ f2 y2
0F2

(

5
4
,

3
2

;−μ1y4

64

)

(22)
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This may be analysed using the leading asymptotic behaviour of the hypergeo-
metric function 0F2, which may be read off from Wright’s formulæ [31]. Its turns
out that for both μ1 > 0 and μ1 < 0, this implies that the function f (y) diverges
exponentially fast as y→ ∞. We absorb this divergence by choosing the constants
f0,1,2 accordingly and then find

f (y) = f0

[

0F2

(

1
2
,

3
4

;−μ1y4

64

)

−
√

2 Γ (3/4)
Γ (1/2)

μ1/4
1 y 0F2

(

3
4
,

5
4

;−μ1y4

64

)

+
Γ (3/4)
Γ (1/4)

μ1/2
1 y2

0F2

(

5
4
,

3
2

;−μ1y4

64

)]

; μ1 > 0 (23)

f (y) = f(0)
[

F1(y)+ kF2(y)
]

μ1 < 0

where f0 and f(0) are normalisation constants, k is a free parameter and

F1(y) := |μ1|1/4y 0F2

(

3
4
,

5
4

;
|μ1|y4

64

)

− Γ (1/2)
Γ (3/4) 0F2

(

1
2
,

3
4

;
|μ1|y4

64

)

F2(y) := |μ1|1/2y2
0F2

(

5
4
,

3
2

;
|μ1|y4

64

)

− Γ (1/4)
Γ (3/4) 0F2

(

1
2
,

3
4

;
|μ1|y4

64

)

(24)

The behaviour of these scaling functions is illustrated in Fig. 1(right hand side).
We notice that although the scaling function satisfies for both n odd and n even the
same differential equation (18), the interpretation of the scaling variable |μ1|1/4y is
different. Furthermore, we see that for μ1 > 0, only a single independent solution
remains, which decreases from f (0) = 1 monotonously and very rapidly towards
zero when y is increased. On the other hand, for μ1 < 0, we find two independent
admissible solutions whose decay towards zero is an oscillatory function of y.
This feature may allow to distinguish at least qualitatively between two physically
distinct situations with z > 2:

• Non-equilibrium relaxation kinetics with a conserved order-parameter (model
B dynamics). Below the critical point, viz. T < Tc, in systems with a global
O(n)-symmetry it is known that z = 3 for a scalar order-parameter (n = 1),
and z = 4 for vector order-parameters (n ≥ 2) [7]. At criticality z = 4− η =
4− 1

2
n+2

(n+8)2 ε2 + O(ε3) in d = 4− ε dimensions [32]. In these cases, scaling

functions are generically seen to be oscillating.3

• In critical dynamics, viz. T = Tc, and without any conservation law on the order-
parameter (model A dynamics), the dynamical exponent is z≥ 2 [32]. Here, the
decay of the scaling functions is in general monotonous.

Our results suggest that these physically distinct cases, even with the same value of
z,might be distinguished through the sign of the dimensionful parameter μ1.

3For example, the scaling function F2(y) in (24) reproduces the exactly known two-time response
in the 3D Mullins–Herring model of surface growth with a conserved order-parameter [29].



378 S. Stoimenov and M. Henkel

5 Conclusions

We have constructed new representations of the ageing algebra age(1), correspond-
ing to an integer dynamical exponent z= n≥ 2 to explore the mathematical structure
of dynamical symmetries whose infinitesimal generators are no longer described by
the usual vector fields, provided that we restrict the admissible function space to
the solution space of the Schrödinger equation Sψ = 0. We have given an explicit
n-dependent family of linear partial differential equations which are indeed age(1)-
invariant in the sense introduced here. The non-local infinitesimal generators of
age(1) contain higher-order differential operators. Their exponentiation does not
lead to local spatio-temporal coordinate transformations and we have considered the
possibility that a better interpretation might be formulated in terms of transformation
rules for distributions of spatio-temporal coordinates. Several examples of such
transformation rules have been derived.

Finally, we also studied the scaling form of co-variant two-point functions.
Surprisingly, for z = n even the scaling forms are compatible with the expectations
of a two-time response function (as it is usually the case in present theories of
local scale-invariance in ageing systems) since they depend on the time difference
t1− t2. On the other hand, this is not so for z = n odd, where the arguments of the
scaling functions are much more reminiscent of co-variant two-time correlators,
since they contain the sum t1 + t2. We have also seen that the shape of the
space-dependent part of the scaling functions can at least qualitatively account
for the different forms found for non-conserved (model A) dynamics, where one
expects a monotonous decay, and for conserved (model B) dynamics, where scaling
functions are oscillatory. This is achieved through a simple change in the sign of
the dimensionful “mass parameter” μ . Although we think it unlikely that our non-
local representations of age(1) should be directly applicable to physical models, we
consider this qualitative feature encouraging.

Acknowledgements Most of the work on this paper was done during the visits of S.S. at
the Université Henri Poincaré Nancy I. S.S. is supported in part by the Bulgarian NSF grant
DO 02-257.
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Construction of the Noncommutative Rank I
Bergman Domain

Zhituo Wang

Abstract In this paper we present a harmonic oscillator realization of the most
degenerate discrete series representations of the SU(2,1) group and the deformation
quantization of the coset space D = SU(2,1)/U(2) with the method of coherent
state quantization. This short article is based on a talk given at the 9-th International
Workshop, Varna “Lie Theory and Its Applications in Physics” (LT-9).

1 Introduction

It is believed that ordinary differential geometry should be replaced by noncommu-
tative geometry [3] when we are approaching the Planck scale and quantum field
theories defined on noncommutative space time (NCQFT) [4,13,15] are considered
as the right way to explore the effects of quantum gravity.

The simplest noncommutative space is the Moyal space, which is a symplectic
manifold generated by the noncommutative coordinates xμ , such that [xμ ,xμ ] =
iθμν , where θμν is a constant. The first well defined quantum field theory on
4 dimensional Moyal space is the Grosse–Wulkenhaar model [6]. It is not only
perturbative renormalisable to all orders but also asymptotically safe, namely
the beta function for the coupling constant is zero at the fixed point of this model.
Hence this model is a candidate to be constructed nonperturbatively, namely it’s
possible to obtain the exact Green’s function which is unique and analytic in the
coupling constant, by resumming the perturbation series [12]. Recently the two
dimensional Grosse–Wulkenhaar model has been constructed in [16].
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Since the noncommutative quantum fields theories are better behaved than their
commutative counterparts, it is very natural to construct other noncommutative
manifolds and physics models over them.

In this paper we construct the noncommutative coset space D= SU(2,1)/S(U(2)
×U(1)), with the method of coherent state quantization. For doing this we also
introduce a harmonic oscillator realization of the most degenerate discrete series
representation of the group SU(2,1) which is a generalization for the SU(1,1) case
introduced by Grosse and Presnajder [5]. The interested reader could look at [5,11]
for more details about the coherent state quantization and [9,10,14] for more details
about the representation theory of noncompact Lie group. In [7] and [17] we have
studied the harmonic oscillator realization of the maximal degenerate discrete series
representations for an arbitrary SU(m,n) group.

The construction of the noncommutative coset space SU(2,1)/U(2) has been
also studied by [2, 8] with the method of Berezin–Toeplitz quantization and by
[1] with the method of “WKB quantization”. The interested reader could go to the
references for details.

2 The SU(m,1) Group and Its Lie Algebra

The group G = SU(m,1) is defined as a subgroup of the matrix group SL(m+n,C):

g =

(

am×m bm×1

c1×m d

)

∈ G (1)

satisfies the constraint

g†Γ g = gΓ g† = Γ , Γ =

(

Im×m 0
0 −1

)

. (2)

Here I’s represents unit matrices and 0’s the blocks of zeros.
The maximal compact subgroup is defined by matrices

K = S(U(m)×U(1)) =

{(

K1 0
0 K2

)

, det(K1K2) = 1

}

. (3)

The Bergman domain is defined as the coset space D = G/K:

D = {Z |1−|Z|2 > 0} = {z |1−|z1|2−|z2|− · · ·− |zm|2 > 0}, (4)

where Z = (z1, · · · ,zm) are the coordinates of the coset space D. It is a pseudo-
convex domain over which we could define a holomorphic Hilbert spaces [2] with
the reproducing Bergman kernel:

K(W †,Z) = (1−W†Z)−N , (5)
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where Z and W are complex m-columns, and N = m+ 1,m + 2, · · · is a natural
number characterizing the representation.

D is also a Kähler manifold with the Kähler metric defined by the derivations of
the Bergman kernel:

gi j̄ =
1
N
∂z̄i∂z j logK(Z†,Z). (6)

More explicitly we have:

gi j̄ = [
δi j

1−|Z|2 +
ziz̄ j

(1−|Z|2)2 ], gi j̄ = (1−|Z|2)(δi j− z̄iz j). (7)

We could easily calculate that the Ricci tensor: Ri j̄ = −(m + 1)gi j̄ and the
curvature R =−(m+ 1) and verify that the metric gi j̄ is a solution to the Einstein’s
equation in the vacuum:

Ri j̄−
1
2

gi j̄R+Λgi j̄ = 0 (8)

with the cosmological constantΛ = m+1
2 .

The Lie algebra g = Lie(G) = su(m,1) is defined by M =

{(

A B
B† D

)}

∈ g,

M†Γ =−ΓM. where A† = −A,D† = −D, tr(A+D) = 0.
Consider the Cartan decomposition of the Lie algebra g = l+ p and let a ∈ p

be a maximal Abelian subalgebra. We could choose for a the set of all matrices of
the form

Ht =

⎛

⎜

⎝

O(m−1)×(m−1) O(m−1)×1 O(m−1)×1

O1×(m−1) 0 t
O1×(m−1) t 0

⎞

⎟

⎠ (9)

where t is a real number.
Define the linear functional over Ht by α(Ht) = t, the roots of (g,a) are given by

±α, ±2α, (10)

with multiplicities mα = 2 and m2α = 1.
Define

δ := {at | at = expHt , Ht ∈ a}. (11)

so we have

at =

⎛

⎝

I O 0
O cosht sinht
0 sinht cosht

⎞

⎠ , (12)

where the symbol I stands for the identity matrix and O is the matrix with entries 0.
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3 The Holomorphic Discrete Series of Representations
of the SU(m,1) Group

The unitary irreducible representations for G = SU(m,1) are the principal series,
the discrete series and the supplementary series. We consider only the discrete series
of representations, which are realized in the Hilbert space L 2

N(D) of holomorphic
functions with the inner product defined by:

( f ,g)N =

∫

dμN(Z, Z̄) f̄ (Z̄)g(Z), (13)

where dμN(Z, Z̄) = cN [det(E − Z†Z)]N−(m+1)|dZ| is the normalised measure and
cN = π−2(N− 2)(N− 1).

The discrete series of representations TN is defined by

TN f (Z) = [det(CZ + d)]−N f (Z′), N = m+ 1,m+ 2, · · · (14)

where

Z′ = (AZ +B)(CZ+ d)−1 (15)

In the following we consider only the m = 2 case and construct the harmonic
oscillator realization of the most degenerate discrete series representation (14). We
introduce a 3× 1 matrix Ẑ = (ẑa), a = 1,2,3, of bosonic oscillators acting in Fock
space and satisfying commutation relations

[ẑa, ẑ
†
b] = Γab, a,b = 1,2,3 (16)

[ẑa, ẑb] = [ẑ†
a, ẑ

†
b] = 0, (17)

whereΓ is a 3×3 matrix defined in (2). It can be easily seen that for all g ∈ SU(2,1)
these commutation relations are invariant under transformations:

Ẑ �→ gẐ, Ẑ† �→ Ẑ† g†. (18)

We could define the creation and anhilation operators âα and b̂ as:

Ẑ =

(

â
b̂†

)

: [âα , â
†
β ] = δαβ ,α,β = 1,2. [b̂, b̂†] = 1, (19)

and all other commutation relations among oscillator operators vanish.
The Fock space F in question is generated from a normalized vacuum state |0〉,

satisfying âα |0〉 = b̂ |0〉 = 0, by repeated actions of creation operators:

|mα , n〉 = ∏
α

(â†
α)

mα (b̂†)n
√

mα !n!
|0〉 . (20)
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We shall use the terminology that the state |mα , n〉 contains m = ∑mα particles
a and n particles b.

Consider a basis of su(2,1) Lie algebra X = XA
ab A = 1, · · ·8, a,b = 1,2,3, we

assign the operator

X̂ = −Ẑ†ΓXẐ = −ẑ†
aΓ

A
ab XA

ab ẑb . (21)

Their anti-hermiticity follows directly:

X̂† = −tr(Ẑ†X†Γ Ẑ) = + tr(Ẑ†ΓXẐ) = − X̂ .

Using commutation relations for annihilation and creation operators we have:

[X̂ ,Ŷ ] = [Ẑ†ΓXẐ, Ẑ†ΓY Ẑ] = −Ẑ†Γ [X , Y ] Ẑ . (22)

So that the operators X̂a satisfy in Fock space the su(2,1) commutation relations.
The assignment

g = eξ
AXA ∈ SU(2,1)⇒ T̂ (g) = eξ

AX̂A (23)

then defines a unitary SU(2,1) representation in Fock space.

4 The Coherent States Quantization of D = SU(2,1)/U(2)
and the Star Product

We briefly describe the construction of coherent states on coset space of a Lie group
following [11]. Let Tg be an unitary irreducible representation of an arbitrary Lie
group G in a Hilbert space H , |z0〉 ∈H is a normalized state in the Garding space
of Tg. Let K be the stability group of the |z0〉, for which Tk|z0〉= eiα(k)|z0〉, for k∈K.
Then for each z = gzz0 ∈ D = G/K we could assign a coherent states : |z〉 = ψz =
T (gz)|z0〉. Define the functions ω0(g) =< z0|T (g)|z0 > and ω(g,z) =< z|Tg|z >=
ω0(g−1

z ggz). As |z0〉 is in the Garding space, ω(g) is a smooth function in g.
For G = SU(2,1), the state |z0〉 is defined in the Fock space as:

|z0〉= (b̂†)N
√

(N)!
|0 >=

1√
N
|0,0;N〉 . (24)

Here N is a natural number that specifies the representation: N̂ |z0〉 = N |z0〉.
All other states in the representation space are obtained by the action of rising
operators given in (20). The stability group for |z0〉 is K = S(U(2)×U(1)).

Using the KδK decomposition of g = k† δ q [10], for which k,q ∈ K, we obtain:

ω0(g) = 〈z0| T̂ (g) |z0〉= 1
cosh t

[

(1+ lncosht)ei(α(q)−α(k))
]N

(25)
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Consider an operator acting on H :

F̂ =

∫

dgF̃(g)T (g) =
∫

dgF̃(g)ω(g,z) (26)

where F̃(g) ia a distribution on a group G with compact support. We also define for
each F̂ a biholomorphic function:

F(z, z̄) = 〈Ψz|F̂|Ψz〉. (27)

The star product of two such bi-holomorphic functions F and G is then defined
by [5]:

(F �G)(z, z̄) = 〈Ψz|F̂Ĝ|Ψz〉= (F �G)(z, z̄)

=
∫

dg1dg2F̃(g1)F̃(g2)ω(g1g2,z). (28)

Obviously the star product defined above is noncommutative, associative and is
invariant under the action of the group G. The noncommutative algebra of functions
{F(z)} induces a noncommutative structure on the coset space D. That’s how we
construct the noncommutative version of the Bergman domain, which is noted as D̂.

Now we shall study the explicit form of the star product for G = SU(2,1). Using
the explicit form of the group element g = eξ

AXA and integration by parts we have:

FA1...An(z) = (−1)n(∂ξA1
. . . ∂ξAn

ω)(eξ
AX̂A z)|ξ=0 = (−1)n 〈z| X̂A1 . . . X̂An |z〉. (29)

Here X̂A, (A = 1 · · · ,8) are the left-invariant vector field on group G correspond-
ing to the Lie algebra basis XA whose explicit form is given in [17].

From the definition of the star product (28) it follows that:

(FA1...An �FB1...Bm)(z) = (−1)n+m(X̂An . . . X̂A1 X̂Bm . . . X̂B1ω)(g,z)|g=e. (30)

We define the function ξA as the expectation value of the operator X̂A between
the coherent states as:

ξA(z) =
1
N
〈z|X̂A|z〉= 1

N
〈z0|T̂ †(gz) X̂AT̂ (gz)|z0〉. (31)

The star product between these coordinates functions reads:

(ξA � ξB)(z) =
1

N2 〈z|X̂AX̂B|z〉= (1+AN)ξA(z)ξB(z) +
1

2N
fC
A,B ξC(z) + BN δA,B,

(32)
where AN and BN depend on the Bernoulli numbers coming from the Baker–
Campbell–Hausdorff formula and are of order 1/N. We see that the parameter of the
non-commutativity is λN = 1/N. For N → ∞ we recover the commutative product.
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According to the Harish–Chandra imbedding theorem, we could always imbed
the commutative maximal Hermitian symmetric space into the noncompact part of
the Cartan subalgebra. So the coordinates of the noncommutative Bergman domain
D̂ can be identified as the coordinate functions corresponding to the noncompact
Cartan subalgebra.

5 Conclusions and Prospectives

In this paper we have constructed the noncommutative Bergman domain D̂ whose
commutative counterpart is the coset space D = G/K, where G = SU(2,1) and K =
S(U(2)×U(1)). This result could be generalized to an arbitrary type one rank one
Cartan domain D = G = SU(m,1)/S(U(m)×U(1)) straightforwardly.

In [17] we have build a model of quantum theory of real scalar fields on the
noncommutative manifold D̂ and find that the one loop quantum correction to the
2 point function is finite. This is a hint of the finiteness of quantum field theory on
D̂ and this deserves further studies.

Acknowledgements The author is very grateful to Harald Grosse and Peter Presnajder for useful
discussions.
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Singular Vectors and Zhu’s Poisson Algebra
of Parafermion Vertex Operator Algebras

Tomoyuki Arakawa, Ching Hung Lam, and Hiromichi Yamada

Abstract We study Zhu’s Poisson algebra of parafermion vertex operator algebras
associated with integrable highest weight modules for the affine Kac-Moody Lie
algebra ̂sl2. Using singular vectors, we show that the parafermion vertex operator
algebras are C2-cofinite and rational.

1 Introduction

Fix a positive integer k. Let ĝ be the affine Kac-Moody Lie algebra associated with
a finite dimensional simple Lie algebra g and Vĝ(k,0) a Weyl module for ĝ with
level k. Let Lĝ(k,0) be its simple quotient. Then Lĝ(k,0) is a simple vertex operator
algebra and it contains a Heisenberg vertex operator algebra generated by a Cartan
subalgebra h of g. The commutant K(g,k) of the Heisenberg vertex operator algebra
in Lĝ(k,0) is called a parafermion vertex operator algebra. The most basic case,
namely, the case g = sl2 was studied in [1, 2] and the structure of the parafermion
vertex operator algebra for a general g was discussed in [3, 4]. In [3, 4], C. Dong
and Q. Wang emphasize the importance of the sl2 case, since K(g,k) for a general
g is generated by subalgebras isomorphic to K(sl2,kα) which correspond to positive
roots α . In this article we continue the study of the parafermion vertex operator
algebra for the case g= sl2.
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For a vertex operator algebra V , Y. Zhu [5] introduced two intrinsic associative
algebras, one is Zhu’s algebra A(V ) and the other is Zhu’s Poisson algebra V/C2(V ),
where C2(V ) is the subspace spanned by the vectors a−2b for a,b ∈ V . The vertex
operator algebra V is said to be C2-cofinite if V/C2(V ) is finite dimensional. Also, V
is said to be rational if every V -module is semisimple. Our purpose of this article is
to establish the C2-cofiniteness and the rationality of K(sl2,k). Combining the results
with a theorem of [4], we obtain the C2-cofiniteness of K(g,k) for a general g also.
Since the results are known for k ≤ 4, we will discuss the case k ≥ 5.

Our main tool is a detailed analysis of two kinds of singular vectors. Actually, we
use the null field v0 of weight 8 and its image under the operator W 3

1 to establish an
embedding of N0/C2(N0) into V (k,0)/C2(V (k,0)). The singular vector u0 of weight
k+1 and its image under the operator W 3

1 are necessary to show that the dimension
of K0/C2(K0) is at most k(k + 1)/2. This upper bound is sufficient to obtain the
C2-cofiniteness and the rationality of K0.

We will follow the notations and use the results in [1, 2]. Thus, K0 = K(sl2,k)
and N0 is the commutant of the Heisenberg vertex operator algebra in the Weyl
module V (k,0) =V

̂sl2
(k,0). Also, we denote by W 2 the Virasoro element ω of [1,2].

Then {W 2,W 3,W 4,W 5} is a set of strong generators for N0 [2, Lemma 2.4]. Our
arguments depend on the operator product expansions among those generators [2,
Appendix B]. The unique maximal ideal I of N0 is generated by the singular vector
u0 = f (0)k+1e(−1)k+11 [1, Theorem 4.2] and K0 = N0/I .

In this article we present an outline of the proof. Details will appear elsewhere.

2 N0 Modulo C2(N0)

Since K0 = N0/I , we have C2(K0) = (C2(N0) + I )/I and K0/C2(K0) ∼=
N0/(C2(N0) + I ). First, we study ˜N0 = N0/C2(N0). It is infinite dimensional.
Since N0 is strongly generated by W s, s = 2,3,4,5, ˜N0 is a commutative associative
algebra generated by ˜W s = W s +C2(N0), s = 2,3,4,5. That is, ˜N0 is the image of a
homomorphism

ϕ : C[x2,x3,x4,x5]→ ˜N0; xs �→ ˜W s

of a polynomial algebra with four variables x2,x3,x4,x5. (ϕ is denoted by ρ̃ in [2].)
We consider the action of the weight 1 operator W 3

1 = (W 3)1, which is a
component operator of the vertex operator associated with the vector W 3. Note
that W 3

0 W s ∈ C2(N0), s = 2,3,4,5 [2, Appendix B]. Then the formula [W 3
1 ,a−2]b =

(W 3
0 a)−1b+(W3

1 a)−2b implies that C2(N0) is invariant under W 3
1 .

Lemma 1. W 3
1 C2(N0)⊂C2(N0).

Thus we can define an action of W 3
1 on ˜N0 by W 3

1 · ũ =W 3
1 u+C2(N0) for u ∈ N0.

In fact, W 3
1 acts as a derivation on the commutative associative algebra ˜N0 generated

by ˜W s, s = 2,3,4,5. The next lemma follows from Appendix B of [2].
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Lemma 2. The action of W 3
1 on ˜W s, s = 2,3,4,5 is as follows.

W 3
1 · ˜W 2 = 3 ˜W 3,

W 3
1 · ˜W 3 =

1
16k+ 17

(

288k3(k− 2)(k+ 2)2(3k+ 4)(˜W2)2 + 36k(2k+ 3)˜W4),

W 3
1 · ˜W 4 =

1
64k+ 107

(

1248k2(k− 3)(k+ 2)(2k+ 1)(2k+ 3)˜W2
˜W 3

−12k(3k+ 4)(16k+ 17)˜W5),

W 3
1 · ˜W 5 =

240k4(k+ 2)3(2k+ 3)(3k+ 4)(202k− 169)
16k+ 17

( ˜W 2)3

−15k(2k+ 3)(41k+ 61)(˜W3)2

+
60k2(k+ 2)(404k2+ 1170k+ 835)

16k+ 17
˜W 2
˜W 4.

3 N0 Modulo C2((V(k,0))

In this section we study N0 modulo C2((V (k,0)). Let V (k,0) = V (k,0)/C2(V (k,0)),
which is isomorphic to a polynomial algebra C[y0,y1,y2] with three variables y0 =
h(−1)1, y1 = e(−1)1, y2 = f (−1)1. Since C2(N0) ⊂ N0 ∩C2(V (k,0)), there is a
natural homomorphism ψ from ˜N0 onto the image N0 of N0 in V (k,0). Let y = y0,
z = y1y2. Then N0 ⊂C[y,z]. In fact, W s =W s+C2(V (k,0))∈V (k,0), s = 2,3,4,5 are
as follows.

W 2 = − 1
2k(k+ 2)

(y2− 2kz),

W 3 = 2(y3− 3kyz),

W 4 = −(11k+ 6)y4+ 4k(11k+ 6)y2z− 2k2(6k− 5)z2,

W 5 = −2(19k+ 12)y5+ 10k(19k+ 12)y3z− 10k2(10k− 7)yz2,

and N0 is generated by W s, s = 2,3,4,5 as a commutative associative algebra.
We assign the weight to each term of C[y,z] by wty = 1 and wtz = 2. Since the

weight of the elements h(−1)1 and e(−1) f (−1)1 of V (k,0) is 1 and 2, respectively,
the weight on C[y,z] is compatible with that on V (k,0).

Now, consider the compositionψ ◦ϕ of the homomorphism ϕ :C[x2,x3,x4,x5]→
˜N0 and the natural homomorphism ψ : ˜N0 → N0.

ψ ◦ϕ :C[x2,x3,x4,x5]→ ˜N0 → N0; xs �→ ˜W s �→W s.
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The kernel Ker ψ ◦ϕ of the composition ψ ◦ϕ is the algebraic relations among
W s, s = 2,3,4,5 in the polynomial algebra C[y,z].

In [2], three polynomials B0,B1,B2 ∈ C[x2,x3,x4,x5] corresponding to null fields
v0,v1,v2 are introduced. In fact, ϕ(Bi) = ṽi = 0, i = 0,1,2, since vi = 0 in N0.

At this stage, using a computer algebra system Risa/Asir, we can verify that the
kernel Kerψ ◦ ϕ coincides with the ideal 〈B0,B1,B2〉 of C[x2,x3,x4,x5] generated
by B0,B1,B2. This implies that the kernel of ϕ is also 〈B0,B1,B2〉 and ψ is an
isomorphism.

Theorem 1. (1) ˜N0
∼= C[x2,x3,x4,x5]/〈B0,B1,B2〉.

(2) C2(N0) = N0∩C2(V (k,0)) and ˜N0
∼= N0.

We replace W s with simpler polynomials in C[y,z], s = 2,3,4,5, that is, we set

g2 = y2− 2kz, g3 = y3− 3kyz, g4 = z2, g5 = yz2.

Indeed, we can express W s as follows.

W 2 = − 1
2k(k+ 2)

g2,

W 3 = 2g3,

W 4 = −(11k+ 6)g2
2+ 2k2(16k+ 17)g4,

W 5 = −2(19k+ 12)g2g3 + 2k2(64k+ 107)g5.

Conversely,

g2 = −2k(k+ 2)W2,

g3 =
1
2

W 3,

g4 =
2(k+ 2)2(11k+ 6)

16k+ 17
(W 2)2 +

1
2k2(16k+ 17)

W 4,

g5 = − (k+ 2)(19k+ 12)
k(64k+ 107)

W 2 ·W 3 +
1

2k2(64k+ 107)
W 5.

Therefore, N0 is generated by gs, s = 2,3,4,5 as a commutative associative
algebra. We note that

g4
2− g2g2

3− 5k2g2
2g4 + 4k4g2

4 + 2k2g3g5 = 0,

g3
2g3− g3

3− 5k2g2g3g4 + 2k2g2
2g5− 2k4g4g5 = 0,

g3
2g4− g2

3g4− 4k2g2g2
4 + k2g2

5 = 0
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are the algebraic relations among g2,g3,g4,g5 in C[y,z]. The terms in g2, g3, g4 and
g5 of weight at most 7 are linearly independent in C[y,z]. We also have

z2 = g4,

yz2 = g5,

z3 =
3
2k

g2g4− 1
2k3 (g

3
2− g2

3),

yz3 =
1
k
(g2g5− g3g4).

From now on, we set A = N0 for simplicity of notation. Denote by C[y,z](n) and
A(n) the weight n subspaces of C[y,z] and A with respect to the weight defined by
wty = 1 and wtz = 2. The terms yn−2 jz j, 0≤ j ≤ [n/2] form a basis of C[y,z](n) for
n ≥ 0, where [n/2] is the largest integer which does not exceed n/2. In particular,
dimC[y,z](n) = [n/2]+1. As to A(n), we have dimA(0) = 1, A(1) = 0 and the terms
yn−nkyn−2z, yn−2 jz j, 2≤ j≤ [n/2] form a basis of A(n) for n≥ 2. Thus, dimA(n) =
[n/2] if n≥ 1.

Next, we study the action W 3
1 · f (y,z) of W 3

1 on f (y,z) ∈A . Note that C2(V (k,0))
is not invariant under the operator W 3

1 . For instance, W 3
1 e(−2)1 is not contained in

C2(V (k,0)). Thus, we first consider the action of W 3
1 on ˜N0 as in Sect. 2 and then

transform it to A =N0 by the isomorphismψ . In fact, we have the following lemma
by Lemma 2 and the relations between W 2, W 3, W 4, W 5 and g2, g3, g4, g5.

Lemma 3. W 3
1 acts on gs, s = 2,3,4,5 as follows.

W 3
1 ·g2 = −12k(k+ 2)g3,

W 3
1 ·g3 = −18k(k+ 2)g2

2+ 36k3(2k+ 3)g4,

W 3
1 ·g4 = −12k(3k+ 4)g5,

W 3
1 ·g5 =

6(7k+ 9)
k

(g3
2− g2

3)− 6k(28k+ 37)g2g4.

We also note that W 3
1 acts on a polynomial in gs, s = 2,3,4,5 as a derivation, since

it acts on a polynomial in ˜W s, s = 2,3,4,5 similarly.
Now, we define a differential operator D on C[y,z] by

D =
(

(k+ 2)y2− 2kz
) ∂
∂y

+(3k+ 4)yz
∂
∂ z

.

Theorem 2. The restriction of the action of −6kD to A coincides with the action
of W 3

1 on A .
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4 Singular Vectors and Ideals of AA

In this section we study the image u0 of the singular vector u0 = f (0)k+1e(−1)k+11
of the parafermion vertex operator algebra in V (k,0) =V (k,0)/C2(V (k,0)).

Let f0(y,z) = ((−1)k+1/(k+1)!)u0 ∈C[y,z]. We can calculate f0(y,z) explicitly.

Lemma 4. We have

f0(y,z) =
[(k+1)/2]

∑
j=0

c jy
k+1−2 jz j

with

c j = (−1) j (k+ 1)!
(k+ 1− 2 j)!( j!)2 .

Here, [(k+ 1)/2] denotes the largest integer which does not exceed (k+ 1)/2.
We consider the action of the differential operator D. For a homogeneous

polynomial

f (y,z) =
[n/2]

∑
j=0

a jy
n−2 jz j

of weight n, we have

D · f (y,z) =
[(n+1)/2]

∑
j=0

(− 2k(n+ 2− 2 j)a j−1+(n(k+ 2)+ jk)a j
)

yn+1−2 jz j,

where a−1 and a[n/2]+1 are understood to be 0.
Let fr(y,z) = Dr · f0(y,z) be the image of f0(y,z) under the operator Dr, r =

1,2, . . .. Then fr(y,z) is a homogeneous polynomial of weight k + r + 1. We can
verify that

∣

∣

∣

∣

∂ f0/∂y ∂ f0/∂ z
∂ f1/∂y ∂ f1/∂ z

∣

∣

∣

∣


= 0.

Thus f0(y,z) and f1(y,z) are algebraically independent.
Let p(y,z) =−(k+1)(k+2)2((k+1)y2+kz) and q(y) = (k+2)(2k+3)y. Then,

we have

f2(y,z) = p(y,z) f0(y,z)+ q(y) f1(y,z).

Let J = C[y,z] f0(y,z)+C[y,z] f1(y,z) be the ideal of C[y,z] generated by f0(y,z)
and f1(y,z). The above equation implies that fr(y,z) ∈ J for r ≥ 0.

The weight 0 operator Laff(0) = (ωaff)1 associated with the Virasoro elementωaff

of V (k,0) can be written in the form

Laff(0) = y
∂
∂y

+ 2z
∂
∂ z

as an operator on C[y,z].
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The determinant of the 2× 2 matrix consisting of the coefficients of ∂/∂y and
∂/∂ z in the differential operator D and the Virasoro operator Laff(0) is

∣

∣

∣

∣

(k+ 2)y2− 2kz (3k+ 4)yz
y 2z

∣

∣

∣

∣

=−k(y2 + 4z)z.

On the other hand, it is easy to see that f0(y,− y2/4) 
= 0. Thus the above deter-
minant and f0(y,z) can not be 0 simultaneously. This implies that the codimension
of J in C[y,z] is finite.

Lemma 5. dimC[y,z]/J < ∞.

Now, the weight n subspace of J is

J(n) = C[y,z](n−k−1) f0(y,z)+C[y,z](n−k−2) f1(y,z).

and dimC[y,z](n) = [n/2]+ 1. Using the equation

[n/2] = [(n− k− 1)/2]+ [(n− k−2)/2]− [(n−2k−3)/2]

for n≥ 2k+ 3, we obtain the following lemma.

Lemma 6. Let F be a free C[y,z]-module with basis {P0,P1}, where P0 and P1 are
elements with weight k+ 1 and k+ 2, respectively. Then the kernel of the C[y,z]-
module homomorphism from F onto J which maps Pr to fr(y,z), r = 0,1 is generated
by a single element

f1(y,z)P0− f0(y,z)P1

of weight 2k+ 3.

Clearly, J(n) = 0 if n≤ k. The weight n subspace J(n) for n≥ k+ 1 is as follows.

Lemma 7. (1) dimJ(k+1) = 1.
(2) dimJ(n) = [(n− k− 1)/2]+ [(n− k−2)/2]+2 if k+ 2≤ n≤ 2k.
(3) J(n) = C[y,z](n) if n≥ 2k+ 1.

We also have dim(J(k+1)∩A ) = 1, dim(J(n)∩A ) = dimJ(n)−1 for k+2≤ n≤
2k and J(n)∩A = A(n) for n≥ 2k+ 1.

Next, we consider some ideals of A . Let Is be the ideal of A generated by fr(y,z),
0 ≤ r ≤ s− 1 and I the ideal of A generated by fr(y,z), r ≥ 0. The dimension of
weight n subspaces Is(n) and I(n) of these ideals is as follows.

Lemma 8. (1) dim I2(n) = 1 if n = k+ 1,k+ 2.
(2) dim I2(n) = [(n− k− 1)/2]+ [(n− k−2)/2] if k+ 3≤ n≤ 2k+ 2.
(3) dim I2(2k+3) = k.
(4) I2(n) = A(n) if n≥ 2k+ 4.

Lemma 9. (1) dim I3(n) = dim I2(n) + 1 if n = k+ 3 or k+ 5≤ n≤ 2k+ 3.
(2) I3(n) = I2(n) if n≤ k+ 2, n = k+ 4, or n≥ 2k+ 4.
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Lemma 10. (1) dim I4(k+4) = dim I3(k+4) + 1.
(2) I4(n) = I3(n) if n 
= k+ 4.

These calculations are sufficient to obtain the following theorem.

Theorem 3. (1) dimA /I = k(k+ 1)/2.
(2) J∩A = I.
(3) I = I4.

Recall that I is the unique maximal ideal of N0 generated by the singular vector
u0 and K0 = N0/I . Hence, dimK0/C2(K0) ≤ dimA /I. On the other hand, it is
shown in [2] that there are at least k(k+ 1)/2 inequivalent irreducible modules for
the parafermion vertex operator algebra K0. Also, Zhu’s algebra A(K0) of K0 is
known to be commutative. In particular, dimA(K0)≥ k(k+1)/2. Now, dimA(V )≤
dimV/C2(V ) for any vertex operator algebra V . Therefore, the following theorem
holds.

Theorem 4. (1) dimK0/C2(K0) = dimA(K0) = k(k + 1)/2 and K0/C2(K0) ∼=
A /I.

(2) K0 is C2-cofinite and rational.

Remark 1. Combining the above theorem with C. Dong and Q. Wang [3, Theorem
4.1], we obtain the C2-cofiniteness of the parafermion vertex operator algebra K(g,k)
for an arbitrary finite dimensional simple Lie algebra g.
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Boson-Fermion Correspondence of Type B
and Twisted Vertex Algebras

Iana I. Anguelova

Abstract The boson-fermion correspondence of type A is an isomorphism between
two super vertex algebras (and so has singularities in the operator product expan-
sions only at z = w). The boson-fermion correspondence of type B plays similarly
important role in many areas, including representation theory, integrable systems,
random matrix theory and random processes. But the vertex operators describing it
have singularities in their operator product expansions at both z = w and z = −w,
and thus need a more general notion than that of a super vertex algebra. In this
paper we present such a notion: the concept of a twisted vertex algebra, which
generalizes the concept of super vertex algebra. The two sides of the correspondence
of type B constitute two examples of twisted vertex algebras. The boson-fermion
correspondence of type B is thus an isomorphism between two twisted vertex
algebras.

1 Introduction

In 1+1 dimensions (1 time and 1 space dimension) the bosons and fermions are re-
lated by the boson-fermion correspondences. The simplest, and best known, case of
a boson-fermion correspondence is that of type A, but there are other examples
of boson-fermion correspondences, for instance the boson-fermion correspondence
of type B, the super boson-fermion correspondences of type A and B, and others.
They are extensively studied in many physics and mathematics papers, some of
the first and most influential being the papers by Date-Jimbo-Kashiwara-Miwa,
Igor Frenkel, Sato and Segal-Wilson, which make the connection between the
representation theory of Lie algebras and soliton theory. (Exposition of some of

I.I. Anguelova (�)
College of Charleston, Math Department, 66 George Street,
Charleston SC 29414, USA
e-mail: anguelovai@cofc.edu

V. Dobrev (ed.), Lie Theory and Its Applications in Physics: IX International Workshop,
Springer Proceedings in Mathematics & Statistics 36,
DOI 10.1007/978-4-431-54270-4 28, © Springer Japan 2013

399



400 I.I. Anguelova

the mathematical results concerning the boson-fermion correspondence of type A
are given in [12, 16].) As with any mathematical concept, there are at least two
distinct directions of inquiry. One is: what types of applications and structures
we can get as a result of such a boson-fermion correspondence. And the second
direction addresses the fundamental questions: What is a boson-fermion corre-
spondence? A correspondence of what mathematical structures? For the simplest
boson-fermion correspondence, that of type A (often called the charged free boson-
fermion correspondence), both these directions of inquiry have been addressed, and
applications thereof continue to be found. The first of these directions was also
studied first, and the structures, properties, and applications of this boson-fermion
correspondence turned out to be very rich and many varied. As was mentioned
above, Date-Jimbo-Kashiwara-Miwa and Igor Frenkel discovered its connection to
the theory of integrable systems, namely to the KP and KdV hierarchies, to the
theory of symmetric polynomials and representation theory of infinite-dimensional
Lie algebras, namely the a∞ algebra, (whence the name “type A” derives), as well
as to the ŝln and other affine Lie algebras. Their work sparked further interest in
it, and there are now connections to many other areas, including number theory and
geometry, as well as random matrix theory and random processes (see for example
papers by Harnad, Orlov and van de Leur). As this boson-fermion correspondence
turned out to have so many applications and connections to various mathematical
areas, the natural question needed to be addressed: what is a boson-fermion
correspondence—a correspondence of what mathematical structures? A partial
answer early on was given by Igor Frenkel in [8], but the full answer had to
wait for the development of the theory of vertex algebras. Vertex operators were
introduced in the earliest days of string theory and now play an important role
in many areas such as quantum field theory, integrable models, representation
theory, random matrix theory, and many others. The theory of super vertex algebras
axiomatizes the properties of some, simplest, “algebras” of vertex operators (see for
instance [4,9–11,14]). Thus, the answer to the question “what is the boson-fermion
correspondence of type A” is: the boson-fermion correspondence of type A is an
isomorphism between two super vertex algebras [11].

For other well-known boson-fermion correspondences, e.g. the type B, the super
correspondence of type B, and others, the question of applications and connections
to other mathematical structures already has many answers. For example, Date,
Jimbo, Kashiwara and Miwa, who introduced the correspondence of type B,
discovered its connection to the theory of integrable systems, namely to the BKP
hierarchy [5], to the representation theory of the b∞ algebra (whence the name
“type B” derives), to symmetric polynomials and the symmetric group (some further
developments were provided by You in [18]). There are currently studies of its
connection to random matrices and random processes by J. Harnad, Van de Leur,
Orlov, and others (see for example [17]).

On the other hand the question of “what is the boson-fermion correspondence
of type B” has not been answered. We know it is not an isomorphism between two
super vertex algebras anymore, as the correspondence of type A was. In this paper
we answer this question. To do that we need to introduce the concept of a twisted
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vertex algebra, which generalizes the concept of super vertex algebra. The boson-
fermion correspondence of type B is then an isomorphism between two twisted
vertex algebras.

The overview of the paper: first we briefly describe the examples of the two super
vertex algebras that constitute the boson-fermion correspondence of type A. We list
only one property which is the “imprint” of the boson-fermion correspondence of
type A: namely the Cauchy determinant identity that follows from the equality
between the vacuum expectation values of the two sides of the correspondence.
(As discussed above, there are many, many properties and applications of any boson-
fermion correspondence, which can, and do, occupy many papers).

Next we proceed with the definition of a twisted vertex algebra and the examples
of the two twisted vertex algebras that constitute the boson-fermion correspondence
of type B. Then again we list only one property which is the “imprint” of the boson-
fermion correspondence of type B: namely the Schur Pfaffian identity that follows
from the equality between the vacuum expectation values of the two sides of the
correspondence.

2 Super Vertex Algebras and Boson-Fermion
Correspondence of Type A

The following definition is well known, it can be found for instance in [9–11,14] and
others. We recall it for completeness, as “algebras” of fields are the subject of this
paper. (Roughly speaking, all vertex algebras, be they super or twisted, are “singular
algebras” of fields).

Definition 2.1 (Field). A field a(z) on a vector space V is a series of the form

a(z) = ∑
n∈Z

a(n)z
−n−1, a(n) ∈ End(V ), such that a(n)v = 0 for any v ∈V, n/ 0.

We also recall the following notation: For a rational function f (z,w) we denote by
iz,w f (z,w) the expansion of f (z,w) in the region |z| / |w|, and correspondingly
for iw,z f (z,w). Similarly, we will denote by iz1,z2,...,zn the expansion in the region
|z1| / ·· · / |zn|. And lastly, we work with the category of super vector spaces, i.e.,
Z2 graded vector spaces. The flip map τ is defined by

τ(a⊗ b) = (−1)ã·b̃(b⊗ a) (1)

for any homogeneous elements a,b in the super vector space, where ã, b̃ denote
correspondingly the parity of a, b.

The definition of a super vertex algebra is well known, we refer the reader for ex-
ample to [9–11,14], as well as for notations, details and theorems. We only remark
that (classical) vertex algebras have two important properties which we would like to
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carry over to the case of twisted vertex algebras. These are the analytic continuation
and completeness with respect to Operator Product Expansions (OPEs). In fact our
definition of a twisted vertex algebra is based on enforcing these two properties.
Recall we have for the OPE of two fields

a(z)b(w) =
N−1

∑
j=0

iz,w
c j(w)

(z−w) j+1+ : a(z)b(w) :, (2)

where : a(z)b(w) : denotes the nonsingular part of the expansion of a(z)b(w) as
a Laurent series in (z−w). We call : a(z)b(z) : a normal ordered product of the
fields a(z) and b(z). Moreover, Resz=wa(z)b(w)(z−w) j = c j(w) = (a( j)b)(w), i.e.,
the coefficients of the OPEs are fields in the same super vertex algebra. Since for
the commutation relations only the singular part of the OPEs matters, we abbreviate
the OPE above as:

a(z)b(w)∼
N−1

∑
j=0

c j(w)
(z−w) j+1 . (3)

For many examples, super vertex algebras are generated by a much smaller
number of generating fields, with imposing the condition that the resulting space of
fields of the vertex algebra has to be closed under certain operations: For any field
a(z) the field Da(z) = ∂za(z) has to be a field in the vertex algebra. Also, the OPEs
coefficients (c j(w) from (3)) and normal ordered products : a(z)b(z) : of any two
fields a(z) and b(w) have to be fields in the vertex algebra. Note that the identity
operator on V is always a trivial field in the vertex algebra, corresponding to the
vacuum vector |0〉 ∈V . The OPEs are a good indicator of the restrictions placed by
the definition of the super vertex algebra: for example, the only functions allowed
in the OPEs when the identity field is the coefficient are the 1

(z−w) j with j ∈ N
(this is clearly seen in (3)). We will use this information later as a way to compare
the different generalizations of vertex algebras existing in the math literature, see
Remark 3.4 later.

Let us thus turn our attention to the boson-fermion correspondence of type A.
The fermion side of the boson-fermion correspondence of type A is a super vertex
algebra generated by two nontrivial odd fields—two charged fermions: the fields
φ(z) and ψ(z) with only nontrivial operator product expansion (OPE) (see e.g. [12,
16] and [11]):

φ(z)ψ(w) ∼ 1
z−w

∼ ψ(z)φ(w), (4)

where the 1 above denotes the identity map Id. The modes φn and ψn, n ∈ Z of the
fields φ(z) and ψ(z), which we index as follows:

φ(z) = ∑
n∈Z

φnzn, ψ(z) = ∑
n∈Z

ψnzn, (5)

form a Clifford algebra ClA with relations
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[φm,ψn]† = δm+n,−11, [φm,φn]† = [ψm,ψn]† = 0. (6)

The indexing of the generating fields vary depending on the point of view; our
indexing here corresponds to φn = v̂n+1, ψn = v̌∗−n in [12]. This indexing and
the properties of the vertex algebra dictate that the underlying space of states
of this super vertex algebra—the fermionic Fock space—is the highest weight
representation of ClA generated by the vacuum vector |0〉, so that φn|0〉 = ψn|0〉 =
0 for n < 0.

We denote both the space of states and the resulting vertex algebra generated by
the fields φ(z) and ψ(z) by FA. It is often called the charged free fermion vertex
algebra.

We can calculate vacuum expectation values if we have a symmetric bilinear
form 〈 | 〉 : V ⊗V → C on the space of states of the vertex algebra V . Recall1 it is
required that the bilinear form is normalized on the vacuum vector |0〉: by abuse of
notation we just write 〈0 | 0〉 = 1 instead of 〈〈0| | |0〉〉 = 1. Also, the vacuum has
to be orthogonal to the generating states (the states φ = φ0|0〉, ψ = ψ0|0〉) and their
descendants (the states φn|0〉= Dn

n! φ(z)|0〉|z=0 and ψn|0〉= Dn

n! ψ(z)|0〉|z=0, n > 0).

Lemma 2.2. The following determinant formula for the vacuum expectation values
on the fermionic side FA holds [16]:

〈0|φ(z1)φ(z2) . . .φ(zn)ψ(w1)ψ(w2) . . .ψ(wn)|0〉= (−1)n(n−1)/2iz;wdet
( 1

zi−w j

)n

i, j=1
.

Here iz;w stands for the expansion iz1,z2,...,zn,w1,...,wn .

The proof is usually given using Wick’s formula, see [16], although in [1] we give
a proof depending entirely on the underlying Hopf algebra structure.

The boson-fermion correspondence of type A is determined once we write the
images of generating fields φ(z) and ψ(z) under the correspondence. In order to do
that, an essential ingredient is the so-called Heisenberg field h(z) given by

h(z) =: φ(z)ψ(z) : (7)

It follows that the Heisenberg field h(z) = ∑n∈Z hnz−n−1 has OPEs with itself
given by:

h(z)h(w)∼ 1
(z−w)2 , in modes: [hm,hn] = mδm+n,01. (8)

i.e., its modes hn, n ∈ Z, generate a Heisenberg algebra HZ. It is well known that
any irreducible highest weight module of this Heisenberg algebra is isomorphic
to the polynomial algebra with infinitely many variables Bm

∼= C[x1,x2, . . . ,xn, . . . ].

1There is a very important concept of an invariant bilinear form on a vertex algebra, for details see
for example [10, 13].
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The fermionic Fock space decomposes (via the charge decomposition, for details
see for example [12]) as FA =⊕i∈ZBi, which we can write as

FA =⊕i∈ZBi
∼= C[eα ,e−α ]⊗C[x1,x2, . . . ,xn, . . . ], (9)

where by C[eα ,e−α ] we mean the Laurent polynomials with one variable eα .2

The isomorphism is as Heisenberg modules, where enα is identified as the highest
weight vector for the irreducible Heisenberg module Bn. We denote the vector
space on the right-hand-side of this HZ-module isomorphism by BA. BA is then the
underlying vector space of the bosonic side of the boson-fermion correspondence of
type A.

Now we can write the images of generating fields φ(z) and ψ(z) under the
correspondence:

φ(z) �→ eα(z), ψ(z) �→ e−α(z), (10)

where the generating fields eα(z), e−α(z) for the bosonic part of the correspondence
are given by

eα(z) = exp(∑
n≥1

h−n

n
zn)exp(−∑

n≥1

hn

n
z−n)eαz∂α ,

e−α(z) = exp(−∑
n≥1

h−n

n
zn)exp(∑

n≥1

hn

n
z−n)e−αz−∂α ,

the operators eα , e−α , z∂α and z−∂α act in an obvious way on the space BA.
The resulting super vertex algebra generated by the fields eα(z) and e−α(z) with

underlying vector space BA we denote also by BA.

Lemma 2.3. The following product formula for the vacuum expectation values on
the bosonic side BA holds:

〈0|eα (z1)e
α (z2) . . .e

α (zn)e
−α (w1)e

−α (w2) . . .e
−α (wn)|0〉= iz;w

∏n
i< j((zi− z j)(wi−w j))

∏n
i, j=1(zi−w j)

Here iz;w stands for the expansion iz1,z2,...,zn,w1,...,wn .

Theorem 2.4 ([11]). The boson-fermion correspondence of type A is the isomor-
phism between the charged free fermion super vertex algebra FA and the bosonic
super vertex algebra BA.

Lemma 2.5. The Cauchy’s determinant identity follows from the equality of the
vacuum expectation values:

(−1)n(n−1)/2det
( 1

zi−wj

)n

i, j=1
= AC〈0|φ(z1) . . .φ(zn)ψ(w1) . . .ψ(wn)|0〉=

2The reason for this notation is that the resulting vertex algebra is a lattice vertex algebra.
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= AC〈0|eα(z1) . . .e
α(zn)e

−α(w1) . . .e
−α(wn)|0〉= ∏i< j(zi− z j)∏i< j(wi−wj)

∏n
i, j=1(zi−wj)

AC stands for Analytic Continuation.

The Cauchy determinant identity (the equality between the first and the fourth
expressions) is a historic identity and is well known, one of the oldest references
being [15]. The proof of it is usually given using factorization, remarkably even
in [16], see Remark 5.1 there. The point here is that the Cauchy identity follows
immediately from the equality of the vacuum expectation values of both sides
of the boson-fermion correspondence, and is a quintessential “imprint” of the
correspondence (although this identity is absent in some standard mathematical
references of the boson-fermion correspondence of type A like [12] and [11]).

3 Twisted Vertex Algebras and Boson-Fermion
Correspondence of Type B

Here we will only give the definition for a twisted vertex algebra of order 2, for
more general definition and details see [1]. We begin with some preliminaries.

Definition 3.1. The Hopf algebra HT−1 is the Hopf algebra with a primitive
generator D and a grouplike generator T−1 subject to the relations:

DT−1 =−T−1D, and (T−1)
2 = 1 (11)

Denote by F2±(z,w) the space of rational functions in the variables z,w ∈ C with
only poles at z = 0, z = ±w. Note that we do not allow poles at w = 0, i.e., if
f (z,w) ∈ F2±(z,w), then f (z,0) is well defined. Similarly, F2±(z1,z2, . . . ,zl) is the
space of rational functions in variables z1,z2, . . . ,zl with only poles at z1 = 0, or
z j =±zk. F2±(z,w) is a HT−1 ⊗HT−1 Hopf algebra module by

Dz f (z,w) = ∂z f (z,w), (T−1)z f (z,w) = f (−z,w) (12)

Dw f (z,w) = ∂w f (z,w), (T−1)w f (z,w) = f (z,−w) (13)

We will denote the action of elements h⊗ 1 ∈ HT−1 ⊗HT−1 on F±(z,w) by hz·, and
similarly hw· will denote the action of elements 1⊗ h∈ HT−1 ⊗HT−1 .

Definition 3.2 (Twisted vertex algebra of order 2). Twisted vertex algebra of
order 2 is a collection of the following data:

• the space of states: a vector space W ;
• the space of fields: a vector super space V—an HT−1 module, such that V ⊃W ;
• a projection: a linear map π f : V →W ;
• a field-state correspondence: a linear map from V to the space of fields on W ;
• a vacuum vector: a vector 1 = |0〉 ∈W ⊂V .
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This data should satisfy the following set of axioms:

• Vacuum axiom: Y (1,z) = IdW ;
• Modified creation axiom: Y (a,z)1|z=0 = π f (a), for any a ∈V ;
• Transfer of action: Y (ha,z) = hz ·Y (a,z) for any h ∈ HT−1 ;
• Analytic continuation: For any ai ∈V, i = 1, . . . ,k, the composition

Y (a1,z1)Y (a2,z2) . . .Y (ak,zk)1 converges in the domain |z1| / ·· ·/ |zk| and can
be continued to a rational vector valued function

Xz1,z2,...,zk (a1⊗ a2⊗·· ·⊗ ak) : V⊗k →W ⊗F2
±(z1,z2, . . . ,zk),

so that Y (a1,z1)Y (a2,z2) . . .Y (ak,zk)1 = iz1,z2,...,zk Xz1,z2,...,zk (a1⊗ a2⊗·· ·⊗ ak)
• Supercommutativity: Xz,w(a⊗ b) = Xw,z(τ(a⊗ b)), with τ defined in (1).
• Completeness with respect to OPEs (modified): For each n∈N there exists ln ∈Z

such that Resz=±wXz,w,0(a⊗b⊗v)(z∓w)n =Y (cn,w)π f (v)wln for some cn ∈V.

Remark 3.1. The axiom/property requiring completeness with respect to the OPEs
is a weaker one than in the classical vertex algebra case. We can express this
weaker axiom by saying that the modes of the OPE coefficients, the residues
Resz=±w(z∓w)nY (a,z)Y (b,w), are the modes of a field that belongs to the twisted
algebra, modulo a shift (a shift by wln is allowed, but no more). The stronger
property is violated in the interesting examples, see for instance Remark 3.4 below.

��
Remark 3.2. The axiom of analytic continuation expresses two requirements: one,
that the products of fields are expansions of rational operator valued functions
in appropriate regions; and two, that the only poles of these rational functions
are at z = ±w. Thus, if we think of the variable z as being a square root of
another variable z̃ (similarly w =

√
w̃), then the only allowed singularities are at

z2 = w2, i.e., at z̃ = w̃, which is a prerequisite for the usual locality axiom (in the
variable z̃). The usual locality axiom requires not only that the singularities are
located only at z̃ = w̃, but also that the supercommutativity axiom Xz,w(a⊗ b) =
Xw,z(τ(a⊗ b)) holds. These two axioms combined produce the commutation or
anticommutation relations obeyed by the bosons or fermions correspondingly. If we
remove the supercommutativity axiom, then we can have a more general braided
locality, instead of the usual locality, and there are examples (e.g., the quantum
affine Lie algebras at roots of unity) which do not obey the supercommutativity
axiom. But the examples of boson-fermion correspondences do indeed obey the
supercommutativity axiom, which is why we have required it as part of our
definition of a twisted vertex algebra. ��
Remark 3.3. There are other generalizations of the notion of super vertex algebra,
for instance there is the notion(s) of a twisted module for a vertex algebra (see [2,9]);
there are also the notions of a generalized vertex algebra (see e.g. [3,6]). The notion
of a twisted vertex algebra as outlined above is different from any of those notions
in two main respects: the first difference is in the functions allowed in the OPEs
(see Remark 3.4 below); the second is the fact that the space of fields is larger than
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the space of states (the space of states in the examples here is a proper projection
of the space of fields). In this, the notion of twisted vertex algebra resembles the
notion of a Deformed Chiral Algebra of [7], and although there are differences, one
can think of a twisted vertex algebra as being the root of unity symmetric version of
the Deformed Chiral Algebra concept. ��
Similarly to super vertex algebras, twisted vertex algebras are often generated by a
smaller number of fields (for a rigorous theorem regarding that see [1]). The space
of fields is then determined by requiring, as before, that it is closed under OPEs
(see modification above). Also, as before, for any field a(z) the field Da(z) = ∂za(z)
again has to be a field in the twisted vertex algebra. But now we also require that
the field T−1a(z) = a(−z) is a field in the twisted vertex algebra of order 2 as well.
Note that this immediately violates the stronger creation axiom for a classical vertex
algebra, hence any such field cannot belong to a classical vertex algebra. This is the
reason we require the modified field-state correspondence with the modified creation
axiom for a twisted vertex algebra.

We now proceed with the two examples of a twisted vertex algebra of order
2 which give the two sides of the boson-fermion correspondence of type B.
The fermionic side is generated by a single field φ(z) = ∑n∈Z φnzn, with OPEs with
itself given by ([5, 18]—modulo a factor of 2; [1]):

φ(z)φ(w) ∼ z−w
z+w

, in modes: [φm,φn]† = 2(−1)mδm,−n1. (14)

Thus the modes generate a Clifford algebra ClB, and the underlying space of states,
denoted by FB, of the twisted vertex algebra is a highest weight representation of
ClB with the vacuum vector |0〉, such that φn|0〉= 0 for n < 0. The space of fields,
which is larger than the space of states, is generated by the field φ(z) together with
its descendent T−1φ(z) = φ(−z). We call the resulting twisted vertex algebra the
free neutral fermion of type B3, and denote also by FB.

Remark 3.4. If we look at the defining OPE, (14), we can see that if we just write the
singular part, we have the residue Resz=−wφ(z)φ(w) = −2w · 1 = −2wIdW , which
can not be a field in any vertex algebra as it is. But a shift by w−1 will produce the
field −2IdW , which is the field corresponding to the −2|0〉. This exemplifies that in
the OPEs of twisted vertex algebras when the identity field is the coefficient we do

allow any function of the type wk

(z±w)l , where k ∈ Z≥0, l ∈ N. For instance, besides

the classical vertex algebra singularity 1
z−w , we allow additionally, and on its own,

1
z+w , which is not allowed in twisted modules for vertex algebras, nor in the notions
of generalized vertex algebras. In contrast, if the identity field is the coefficient,

3The reason for the name is that there is a free neutral fermion of type D, which is commonly
referred to as just “the free neutral fermion”. In fact, there is a boson-fermion correspondence of
type D-C, see [1].
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twisted modules for vertex algebras would only allow singularities in its OPEs of
the type

∂ l
w̃

√
z̃√
w̃

1
z̃− w̃

= ∂ l
w2

z
w(z2−w2)

, l ∈ Z≥0,

i.e., even though the singularities for twisted modules are indeed at z = ±w, only
particular combinations of 1

z−w , 1
z+w and derivatives are allowed (see e.g. [2]). In the

case of a generalized vertex algebra the singularities allowed in the OPEs when the
vacuum field is the coefficient are of the type 1

(z̃−w̃)1/N = 1
(z2−w2)1/N , N ∈ N. ��

The boson-fermion correspondence of type B is again determined once we write
the image of the generating fields φ(z) (and thus of T−1φ(z) = φ(−z)) under the
correspondence. In order to do that, an essential ingredient is once again the twisted
Heisenberg field h(z) given by4

h(z) =
1
4

: φ(z)T−1φ(z) :=
1
4

: φ(z)φ(−z) : (15)

It follows that the twisted Heisenberg field, which due to the symmetry above has
only odd-indexed modes, h(z) = ∑n∈Z h2n+1z−2n−1, has OPEs with itself given by:

h(z)h(w)∼ zw(z2 +w2)

2(z2−w2)2 , (16)

Its modes, hn, n ∈ 2Z+ 1, generate a twisted Heisenberg algebra HZ+1/2 with
relations [hm,hn] =

m
2 δm+n,01, m,n are now odd integers. It has (up-to isomorphism)

only one irreducible module B1/2
∼=C[x1,x3, . . . ,x2n+1, . . . ]. The fermionic space of

states FB decomposes as FB = B1/2⊕B1/2 (for details, see [1, 5, 18]). We can write
this as an isomorphism of twisted Heisenberg modules for HZ+1/2 in a similar way
to the type A correspondence:

FB = B1/2⊕B1/2
∼= C[eα ,e−α ]⊗C[x1,x3, . . . ,x2n+1, . . . ], (17)

but now we have the extra relation e2α ≡ 1, i.e., eα ≡ e−α . The right-hand-side,
which we denote by BB, is the underlying vector space of states of the bosonic side
of the boson-fermion correspondence of type B.

Now we can write the image of the generating field φ(z) �→ eα(z), which will
determine the correspondence of type B (for proof see [1]):

eα(z) = exp
(

∑
k≥0

h−2k−1

k+ 1/2
z2k+1)exp

(−∑
k≥0

h2k+1

k+ 1/2
z−2k−1)eα , (18)

4For details on normal ordered products in this more general case see [1], the construction uses an
additional Hopf algebra structure, similar to Laplace pairing.
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The fields eα(z) and eα(−z) = e−α(z) (observe the symmetry) generate the resulting
twisted vertex algebra, which we denote also by BB.

Note that one Heisenberg HZ+1/2-module B1/2 on its own can be realized as
a twisted module for an ordinary super vertex algebra (see [9] for details), but
the point is that we need two of them glued together for the bosonic side of the
correspondence. The two of them glued together as above no longer constitute a
twisted module for an ordinary super vertex algebra.

Theorem 3.3. The boson-fermion correspondence of type B is the isomorphism
between the fermionic twisted vertex algebra FB and the bosonic twisted vertex
algebra BB.

Lemma 3.4. The Schur Pfaffian identity follows from the equality between the
vacuum expectation values:

AC〈0|φ(z1) . . .φ(z2n)|0〉= P f
( zi− z j

zi + z j

)2n

i, j=1
=

2n

∏
i< j

zi− z j

zi + z j
= AC〈0|eα(z1) . . .e

α(z2n)|0〉

Here P f denotes the Pfaffian of an antisymmetric matrix, AC stands for Analytic
Continuation.

Remark. The general definition of a twisted vertex algebra of order N, details and
proofs can be found in [1].

In conclusion, we would like to thank the organizers of the International
Workshop “Lie Theory and its Applications in Physics” for a most enjoyable and
productive workshop, and may it continue for many years to come!
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On Twisted Modules for N=2 Supersymmetric
Vertex Operator Superalgebras

Katrina Barron

Abstract The classification of twisted modules for N=2 supersymmetric vertex
operator superalgebras with twisting given by vertex operator superalgebra auto-
morphisms which are lifts of a finite automorphism of the N=2 Neveu–Schwarz
Lie superalgebra representation is presented. These twisted modules include the
Ramond-twisted sectors and mirror-twisted sectors for N=2 vertex operator super
algebras, as well as twisted modules related to more general “spectral flow”
representations of the N=2 Neveu–Schwarz algebra.

1 Introduction

We give an expository presentation following [6] of the classification of twisted
modules for N=2 superconformal vertex operator superalgebras for the case of ver-
tex operator superalgebra automorphisms that arise from finite Virasoro-preserving
automorphisms of the underlying N=2 Neveu–Schwarz algebra.

For g an automorphism of a vertex operator superalgebra (VOSA), V , we have the
notion of “g-twisted V -module”. Twisted vertex operators were discovered and used
in [24], and twisted modules arose in [19] in the course of the construction of the
moonshine module vertex operator algebra. This structure came to be understood
as an “orbifold model” in the sense of conformal field theory and string theory.
Twisted modules are the mathematical counterpart of “twisted sectors”, which are
the basic building blocks of orbifold models in conformal field theory and string
theory. The notion of twisted module for VOSAs was developed in [25]. In general,
it is an open problem as to how to construct a g-twisted V -module.
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An automorphism g of a VOSA, in particular, fixes the Virasoro vector, and
thus also fixes the corresponding endomorphisms giving the representation of the
Virasoro algebra. A VOSA is said to be “N=2 supersymmetric”, if in addition to
being a positive energy representation for the Virasoro algebra, it is a representation
of the N=2 Neveu–Schwarz Lie superalgebra, an extension of the Virasoro algebra;
see, for instance, [5, 11]. The group of automorphisms of the N=2 Neveu–Schwarz
algebra over C, which preserve the Virasoro algebra, is isomorphic to C××Z2. It is
generated by a continuous family of automorphisms, denoted by σξ for ξ ∈C×, and
an order two automorphism κ called the “mirror map”. If ξ is a root of unity, then
σξ is of finite order.

Given an N=2 supersymmetric VOSA, V , some questions naturally arise: When
does κ or σξ lift to an automorphism of V , and when is this lift unique? When such
an automorphism of the N=2 Neveu–Schwarz algebra does lift to an automorphism
g of V , what is the structure of a g-twisted V module? In this paper, we present the
answer to the second question, and in [6] we provide the details of this study and
answer the first question for free and lattice N=2 VOSAs.

If the mirror automorphismκ of the N=2 Neveu–Schwarz algebra lifts to a VOSA
automorphism of an N=2 VOSA, V , then a “mirror-twisted V -module” is naturally
a representation of what we call the “mirror-twisted N=2 superconformal algebra”,
which is also referred to as the “twisted N=2 superconformal algebra” [16,26,29], or
the “topological N=2 superconformal algebra” [21]. If the automorphism σξ of the
N=2 Neveu–Schwarz algebra, for ξ a root of unity, lifts to a VOSA automorphism of
V , then we show that a “σξ -twisted V -module” is naturally a representation of one of
the algebras in the one-parameter family of Lie superalgebras we call “shifted N=2
superconformal algebras”. If ξ = −1, then σξ is the parity map, and such a shifted
N=2 superconformal algebra is the N=2 Ramond algebra. The N=2 Ramond algebra
and the other shifted N=2 algebras are isomorphic, as Lie superalgebras, to the N=2
Neveu–Schwarz algebra via the “spectral flow” operators, as was first realized in
[29]. The mirror-twisted N=2 algebra is not isomorphic to the N=2 Neveu–Schwarz
algebra.

The representation theory of the N=2 Neveu–Schwarz algebra has been studied
in, for instance, [9–11, 13–15, 17, 18, 23, 27, 28, 30, 31] and from a VOSA theoretic
point of view in [1]. The representation theory of the N=2 Ramond algebra has been
studied in, e.g, [13, 18, 20, 21, 30], and of the mirror-twisted N=2 superconformal
algebra in, e.g, [13, 16, 21, 22, 26].

The realization of the N=2 Ramond algebra (i.e. the 1
2 -shifted N=2

superconformal algebra) and the mirror-twisted N=2 superconformal algebra as
arising from twisting an N=2 VOSA (or comparable structure) has long been
known, e.g. [9, 11, 29]. However to our knowledge, the other algebras related
to the N=2 Neveu–Schwarz algebra—the shifted N=2 superconformal algebras
other than the N=2 Ramond algebra—have only been studied through the spectral
flow operators (which do not preserve the Virasoro algebra). We believe that the
realization of these algebras as arising naturally as twisted modules for an N=2
VOSA is new.
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Thus this complete classification of the twisted modules for an N=2 VOSA for
finite automorphisms arising from Virasoro-preserving automorphisms of the N=2
Neveu–Schwarz algebra provides a uniform way of understanding and studying
all of the N=2 superconformal algebras—the continuous one-parameter family of
shifted N=2 Neveu–Schwarz algebras and the mirror-twisted N=2 superconformal
algebra—in the context of the theory of VOSAs and their twisted modules.

2 The N=1 and N=2 Superconformal Algebras and Their
Virasoro-Preserving Automorphisms

The N=1 Neveu–Schwarz algebra or N=1 superconformal algebra is the Lie
superalgebra with basis consisting of the central element d, even elements Ln for
n ∈ Z, and odd elements Gr for r ∈ Z+ 1

2 , and supercommutation relations

[Lm,Ln] = (m− n)Lm+n +
1
12

(m3−m)δm+n,0 d, (1)

[Lm,Gr] =
(m

2
− r
)

Gm+r, [Gr,Gs] = 2Lr+s +
1
3

(

r2− 1
4

)

δr+s,0 d, (2)

for m,n∈Z, and r,s∈Z+ 1
2 . The N=1 Ramond algebra is the Lie superalgebra with

basis the central element d, even elements Ln for n ∈ Z, and odd elements Gr for
r ∈ Z, and supercommutation relations given by (1)–(2), where now r,s ∈ Z.

Note that the only nontrivial Lie superalgebra automorphism of the N=1 Neveu–
Schwarz algebra which preserves the Virasoro algebra is the parity automorphism
which is the identity on the even subspace (the Virasoro Lie algebra) and acts as −1
on the odd subspace (the subspace spanned by Gr for r ∈ Z+ 1

2 ).
The N=2 Neveu–Schwarz Lie superalgebra or N=2 superconformal algebra is

the Lie superalgebra with basis consisting of the central element d, even elements

Ln and Jn for n ∈ Z, and odd elements G( j)
r for j = 1,2 and r ∈ Z+ 1

2 , and such

that the supercommutation relations are given as follows: Ln, d and G( j)
r satisfy the

supercommutation relations for the N=1 Neveu–Schwarz algebra (1)–(2) for both

Gr = G(1)
r and for Gr = G(2)

r ; the remaining relations are given by

[Lm,Jn] = −nJm+n, [Jm,Jn] =
1
3

mδm+n,0d, (3)

[

Jm,G
(1)
r

]

= −iG(2)
m+r,
[

Jm,G
(2)
r

]

= iG(1)
m+r,
[

G(1)
r ,G(2)

s

]

= −i(r− s)Jr+s. (4)

The N=2 Ramond algebra is the Lie superalgebra with basis consisting of the

central element d, even elements Ln and Jn for n∈Z, and odd elements G( j)
r for r ∈Z

and j = 1,2, and supercommutation relations given by those of the N=2 Neveu–
Schwarz algebra but with r,s ∈ Z, instead of r,s ∈ Z+ 1

2 .
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More generally, there is an infinite family of algebras which includes the N=2
Neveu–Schwarz and Ramond algebras. However these are easier to express if
we make a change of basis which is ubiquitous in superconformal field theory.

So consider the substitutions G(1)
r = 1√

2
(G+

r +G−r ), and G(2)
r = i√

2
(G+

r −G−r ), or

equivalently G±r = 1√
2
(G(1)

r ∓ iG(2)
r ). This substitution is equivalent to the change of

variables ϕ± = 1√
2
(ϕ(1)± iϕ(2)) in the variables (x,ϕ(1),ϕ(2)) representing the one

even and two odd local coordinates on an N=2 superconformal worldsheet repre-
senting superstrings propagating in space-time in N=2 superconformal field theory,
cf. [4]. In terms of this basis (called the homogeneous basis), the N=2 Neveu–
Schwarz (or Ramond) algebra supercommutation relations are given by (1), (3) and

[

Lm,G
±
r

]

=
(m

2
− r
)

G±m+r,
[

Jm,G
±
r

]

= ±G±m+r,
[

G±r ,G
±
s

]

= 0, (5)

[

G+
r ,G

−
s

]

= 2Lr+s +(r− s)Jr+s +
1
3

(

r2− 1
4

)

δr+s,0 d, (6)

for m,n ∈ Z, and r,s ∈ Z+ 1
2 , or r,s ∈ Z, respectively.

Observe then that there is also the notion of a Lie superalgebra generated by even
elements Ln and Jn for n ∈ Z and by odd elements G±r±t , for r ∈ Z+ 1

2 and for t ∈C.
We shall call this algebra the t-shifted N=2 superconformal algebra or t-shifted N=2
Neveu–Schwarz algebra. Thus the t-shifted N=2 Neveu–Schwarz algebra is the N=2
Neveu–Schwarz algebra if t ∈Z, and is the N=2 Ramond algebra if t ∈Z+ 1

2 . As was
first shown in [29], the t-shifted N=2 Neveu–Schwarz algebras are all isomorphic
under the continuous family of spectral flow maps, denoted D(t), for t ∈ C, but
which fix the Virasoro algebra only for t = 0. These are given by

D(t) :
Ln �→ Ln + tJn +

t2

6
δn,od, d �→ d,

Jn �→ Jn +
t
3
δn,0d, G±r �→ G±r±t .

(7)

The group of automorphisms of the N=2 Neveu–Schwarz algebra (or more
generally the t-shifted N=2 superconformal algebras) which preserve the Lie
subalgebra generated by Ln and Jn for n ∈ Z are given by:

σξ : G±r �→ ξ±1G±r , Jn �→ Jn, Ln �→ Ln, d �→ d, (8)

for ξ ∈ C×. In addition, we have the mirror map, given by:

κ : G±r �→G∓r , Jn �→ −Jn, Ln �→ Ln, d �→ d. (9)

The family σξ along with κ generate the Virasoro-preserving automorphisms of the
N=2 Neveu–Schwarz algebra, and thus this group is isomorphic to Z2×C×, cf. [5].



On Twisted Modules for N=2 Supersymmetric Vertex Operator Superalgebras 415

The mirror-twisted N=2 Neveu–Schwarz algebra is defined to be the Lie
superalgebra with basis consisting of even elements Ln, and Jr and central element d,

odd elements G(1)
r and G(2)

n , for n∈Z and r∈Z+ 1
2 , and supercommutation relations

given as follows: The Ln and G(1)
r satisfy the supercommutation relations for the

N=1 Neveu–Schwarz algebra with central charge d; the Ln and G(2)
n satisfy the

supercommutation relations for the N=1 Ramond algebra with central charge d;
and the remaining supercommutation relations are

[Ln,Jr] = −rJn+r, [Jr,Js] =
1
3

rδr+s,0d (10)

[

Jr,G
(1)
s

]

= −iG(2)
r+s,
[

Jr,G
(2)
n

]

= iG(1)
r+n,
[

G(1)
r ,G(2)

n

]

= −i(r− n)Jr+n.

(11)

Note that this mirror-twisted N=2 Neveu–Schwarz algebra is not isomorphic to the
ordinary N=2 Neveu–Schwarz algebra [29].

3 The Notions of VOSA, Supersymmetric VOSA
and Twisted Module

In this section, we recall the notions of VOSA, and N=1 or N=2 Neveu–Schwarz
VOSA, following the notation and terminology of [2, 3] and [5]. We also recall the
notion of g-twisted V -module for a VOSA, V , and an automorphism g of V of finite
order following the notation of, e.g. [7, 8, 12, 25].

Let x,x0,x1,x2, denote commuting independent formal variables. Let δ (x) =
∑n∈Z xn. Expressions such as (x1− x2)

n for n ∈ C are to be understood as formal
power series expansions in nonnegative integral powers of the second variable.

Definition 3.1. A vertex operator superalgebra is a 1
2Z-graded vector space V =

⊕

n∈ 1
2Z

Vn, satisfying dimV < ∞ and Vn = 0 for n sufficiently negative, that is also

Z2-graded by sign, V =V (0)⊕V (1), and equipped with a linear map

V −→ (EndV )[[x,x−1]], v �→ Y (v,x) = ∑
n∈Z

vnx−n−1, (12)

and with two distinguished vectors 1 ∈ V0, (the vacuum vector) and ω ∈ V2

(the conformal element) satisfying the following conditions for u,v ∈ V : unv = 0
for n sufficiently large; Y (1,x)v = v; Y (v,x)1 ∈V [[x]], and limx→0 Y (v,x)1 = v;

x−1
0 δ
(

x1− x2

x0

)

Y (u,x1)Y (v,x2)− (−1)|u||v|x−1
0 δ
(

x2− x1

−x0

)

Y (v,x2)Y (u,x1)

= x−1
2 δ
(

x1− x0

x2

)

Y (Y (u,x0)v,x2) (13)
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(the Jacobi identity), where |v| = j if v ∈ V ( j) for j ∈ Z2; writing Y (ω ,x) =
∑n∈ZL(n)x−n−2, i.e. L(n) = ωn+1, for n ∈ Z, then the L(n) give a representation
of the Virasoro algebra with central charge c ∈ C (the central charge of V ); for
n ∈ 1

2Z and v ∈ Vn, L(0)v = nv = (wtv)v; and the L(−1)-derivative property holds:
d
dxY (v,x) = Y (L(−1)v,x).

If a VOSA, (V,Y,1,ω), contains an element τ ∈V3/2 such that writing Y (τ,z) =
∑n∈Z τnx−n−1 = ∑n∈ZG(n+ 1/2)x−n−2, the G(n+ 1/2) = τn+1 ∈ (EndV )(1) gen-
erate a representation of the N=1 Neveu–Schwarz Lie superalgebra, then we call
(V,Y,1,τ) an N=1 Neveu–Schwarz VOSA, or an N=1 supersymmetric VOSA, or just
an N=1 VOSA for short.

If a VOSA (V,Y,1,ω) has two vectors τ(1) and τ(2) such that (V,Y,1,τ( j))

is an N=1 VOSA for both j = 1 and j = 2, and the τ( j)
n+1 = G( j)(n + 1/2)

generate a representation of the N=2 Neveu–Schwarz Lie superalgebra, then we
call such a VOSA an N=2 Neveu–Schwarz VOSA or an N=2 supersymmetric
VOSA, or for short, an N=2 VOSA. If V is an N=2 VOSA, then there exists a
vector μ = i

2 G(1)(1/2)τ(2) = − i
2 G(2)(1/2)τ(1) ∈ V(1) such that writing Y (μ ,x) =

∑n∈Z μnx−n−1 = ∑n∈Z J(n)x−n−1, we have that the J(n) ∈ (EndV )0

along with the G( j)(n+1/2) and L(n) = ωn+1 for ω = 1
2 G( j)(−1/2)τ( j) satisfy the

supercommutation relations for the N=2 Neveu–Schwarz Lie superalgebra.
For an N=2 VOSA, it follows from the definition that ω = L(−2)1, τ( j) =

G( j)(−3/2)1, for j = 1,2, μ = J(−1)1, and

L(n)1 = G( j)(n+ 1/2)1= J(n+ 1)1 = 0, for n≥−1, j = 1,2. (14)

If V is an N=2 VOSA such that V is not only 1
2Z graded by L(0) but alsoZ-graded

by J(0) such that J(0)v = nv with n≡ j mod2, for v ∈V ( j) for j = 0,1, then we say
that V is J(0)-graded or graded by charge.

An automorphism of a VOSA, V , is a linear map g from V to itself, preserving
1 and ω such that the actions of g and Y (v,x) on V are compatible in the sense that
gY (v,x)g−1 = Y (gv,x), for v ∈V. Then gVn ⊂Vn for n ∈ 1

2Z.
If g has finite order, V is a direct sum of the eigenspaces V j of g, i.e., V =
⊕

j∈Z/kZV j, where k ∈ Z+ is a period of g (i.e., gk = 1 but k is not necessarily the
order of g) and V j = {v ∈V | gv = η jv}, for η a fixed primitive k-th root of unity.

Definition 3.2. Let (V,Y,1,ω) be a VOSA and g an automorphism of V of period
k ∈ Z+. A weak g-twisted V-module is a vector space M equipped with a linear map

V −→ (EndM)[[x1/k,x−1/k]], v �→ Y g(v,x) = ∑
n∈ 1

kZ

vg
nx−n−1, (15)

satisfying the following conditions for u,v∈V and w∈M: vg
nw = 0 for n sufficiently

large; Y g(1,x)w = w; Y g(v,x) = ∑n∈Z+ j
k

vg
nx−n−1 for j ∈ Z/kZ and v ∈V j;
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x−1
0 δ
(

x1− x2

x0

)

Y g(u,x1)Y
g(v,x2)− (−1)|u||v|x−1

0 δ
(

x2− x1

−x0

)

Y g(v,x2)Y
g(u,x1)

= x−1
2

1
k ∑

j∈Z/kZ

δ

(

η j (x1− x0)
1/k

x1/k
2

)

Y g(Y (g ju,x0)v,x2) (16)

(the twisted Jacobi identity) where η is a fixed primitive k-th root of unity.

If we take g = 1, then we obtain the notion of weak V -module. The term “weak”
means we are making no assumptions about a grading on M.

As a consequence of the definition, we have the following supercommutator
relation on M for u ∈V j:

[Y g(u,x1),Y
g(v,x2)]

= Resx0x−1
2 δ
(

x1− x0

x2

)(

x1− x0

x2

)− j/k

Y g(Y (u,x0)v,x2). (17)

It also follows that writing Y g(ω ,x) = ∑n∈ZLg(n)x−n−2, i.e., setting Lg(n) = ωg
n+1,

for n ∈ Z, then the Lg(n) satisfy the relations for the Virasoro algebra with central
charge c the central charge of V . And the L(−1)-derivative property for the twisted
vertex operators holds:

d
dx

Y g(u,x) = Y g(L(−1)u,x). (18)

4 Twisting by Automorphisms Arising from
Virasoro-Preserving Automorphisms of the N=2
Neveu–Schwarz Algebra

In this section, we give the structure of weak g-twisted V -modules for V an N=2
VOSA and g any automorphism of V which is a lift of a Virasoro-preserving
automorphism of the N=2 Neveu–Schwarz algebra of finite order.

We first consider the mirror map κ . If an N=2 VOSA, V , with central charge c,
has a VOSA automorphism κ such that κ(μ) = −μ , κ(τ(1)) = τ(1) and κ(τ(2)) =
−τ(2), then such a VOSA automorphism of V is called an N=2 VOSA mirror map.
If such a map exists for V , and M is a weak κ-twisted module for V , then write Y κ

for the κ-twisted operators, and

Y κ(ω ,x)= ∑
n∈Z

Lκ(n)x−n−2, Y κ(τ(1),x)= ∑
r∈Z+ 1

2

G(1),κ(r)x−r− 3
2

Y κ(μ ,x)= ∑
r∈Z+ 1

2

Jκ(r)x−r−1, Y κ(τ(2),x)= ∑
n∈Z

G(2),κ(n)x−n− 3
2 .

(19)
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That is, define Jκ(n) = μκn and G(2),κ(n−1/2) = τ(2),κn , for n ∈ Z+ 1
2 . Then, using

the supercommutator relation (17) for the κ-twisted vertex operators acting on M,
using the L(−1)-derivative property (18), using the N=2 Neveu–Schwarz super-
commutation relations on V , and using (14), we have that the supercommutation
relations for the κ-twisted modes of ω , μ , τ(1) and τ(2), given by Lκ(n),G(2),κ(n),
for n ∈ Z, and Jκ(r),G(1),κ(r), for r ∈ Z+ 1

2 , satisfy the relations of the mirror-
twisted N=2 Neveu–Schwarz algebra given by (10)–(11) with central charge c.

In particular, a weak κ-twisted module, M, for an N=2 VOSA reduces the
N=2 Neveu–Schwarz algebra representation to an N=1 Neveu–Schwarz algebra
representation coupled with an N=1 Ramond algebra representation.

Next we consider the automorphismsσξ which are of finite order. Let η = e2π i/k,
for k ∈ Z+, and let ξ = η j, for j = 1, . . . ,k− 1. Let σξ be a VOSA automorphism

of an N=2 VOSA, V , such that σξ (μ) = μ and σξ (τ(±)) = ξ±1τ(±), for τ(±) =
1√
2
(τ(1)∓ iτ(2)). Then ω ,μ ∈V 0 and τ(±) ∈V± j. If such a map exists for V , and M

is a weak σξ -twisted module for V , then write Yσξ for the σξ -twisted operators, and

Yσξ (ω ,x) = ∑
n∈Z

Lσξ (n)x−n−2, Yσξ (μ ,x) = ∑
n∈Z

Jσξ (n)x−n−1

Yσξ (τ(±),x) = ∑
r∈Z− 1

2± j
k

G±,σξ (r)x−r− 3
2 .

(20)

Then using the supercommutator relation (17) for the σξ -twisted vertex oper-
ators acting on M, using the L(−1)-derivative property (18), using the N=2
Neveu–Schwarz supercommutation relations on V , and using (14), we have that
the supercommutation relations for the σξ -twisted modes of ω , μ , and τ(±), that is

the Lσξ (n) and Jσξ (n) for n ∈ Z, and G±(r) for r ∈ Z+ 1
2 ± j

k , respectively, satisfy

the relations for the j
k -shifted N=2 Neveu–Schwarz algebra (1), (3), (5)–(6) with

central charge c.
That is the sectors for N=2 supersymmetric VOSAs that arise under spectral flow

D(t), for t = j/k, k ∈ Z+, j = 1, . . . ,k− 1 are twisted sectors under the Virasoro-
preserving automorphisms σξ of the N=2 Neveu–Schwarz algebra.

If ξ = −1, then the map σξ always extends to V , via the parity map σ−1(v) =

(−1)|v|v, for v∈V . In this case, a weak σ−1-twisted V -module is a representation of
the N=2 Ramond algebra. If V is an N=2 VOSA which is also J(0)-graded such that
the J(0) eigenvalues are integral with J(0)ω = J(0)μ = 0, and J(τ(±)) = ±τ(±),
then setting σξ (v) = ξ nv if J(0)v = nv gives a VOSA automorphism.

We summarize these results as follows:

Theorem 4.6. If the Virasoro-preserving automorphisms of the N=2 Neveu–
Schwarz algebra, κ , and σξ , for ξ a root of unity, extend to VOSA automorphisms
for an N=2 VOSA, V , then:

(i) A weak κ-twisted V-module is a representation of the mirror-twisted N=2
superconformal algebra.
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(ii) A weak σξ -twisted V-module, for ξ = e2 jπ i/k, is a representation of the j
k -shifted

N=2 superconformal algebra. If ξ = −1, such a VOSA automorphism always
exists (the parity map), and in this case, a weak σ−1-twisted V-module is a
representation of the N=2 Ramond algebra.

In [6], we also show, in particular, that if V is a free or lattice N=2 VOSA,
then each Virasoro-preserving automorphism of the N=2 Neveu–Schwarz algebra
extends to a VOSA automorphism of V , but not uniquely in the case of the mirror
map. In fact, we show that there are two distinct mirror maps for free and lattice N=2
VOSAs and these mirror maps give nonisomorphic mirror-twisted V -modules. We
also construct examples of g-twisted V -modules for g= κ and g= σξ of finite order.
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Integrability and Other Applications



The Ruijsenaars Self-Duality Map as a Mapping
Class Symplectomorphism

L. Fehér and C. Klimčı́k

Abstract This is a brief review of the main results of our paper [Nucl. Phys. B 860,
464–515 (2012)] that contains a complete global treatment of the compactified
trigonometric Ruijsenaars–Schneider system by quasi-Hamiltonian reduction.
Confirming previous conjectures of Gorsky and collaborators, we have rigorously
established the interpretation of the system in terms of flat SU(n) connections
on the one-holed torus and demonstrated that its self-duality symplectomorphism
represents the natural action of the standard mapping class generator S on the
phase space. The pertinent quasi-Hamiltonian reduced phase space turned out to
be symplectomorphic to the complex projective space equipped with a multiple of
the Fubini-Study symplectic form and two toric moment maps playing the roles of
particle-positions and action-variables that are exchanged by the duality map. Open
problems and possible directions for future work are also discussed.

1 Introduction

In his study of action-angle maps, Ruijsenaars [12] discovered an intriguing duality
relation for both non-relativistic and relativistic Calogero type classical many-body
systems associated to An root systems and rational, hyperbolic or trigonometric

L. Fehér (�)
Wigner Research Centre for Physics, H-1525 Budapest, P.O.B. 49, Hungary

Department of Theoretical Physics, University of Szeged,
Tisza Lajos krt 84–86, H-6720 Szeged, Hungary
e-mail: lfeher@rmki.kfki.hu

C. Klimčı́k
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interaction potentials. In this paper our concern is a particular system of that kind,
locally given by the trigonometric Hamiltonian (25) later on, which was invented
and proved to be self-dual in [13]. Our principal goal is to give a self-contained
but concise presentation of the main results of our detailed work [4], where we
showed that the global variant of this system (called compactified trigonometric
Ruijsenaars–Schneider IIIb system) and its self-duality can be naturally understood
by means of quasi-Hamiltonian reduction. This connects the system to the SU(n)
Chern–Simons theory on the one-holed torus, with a special boundary condition,
and traces back its self-duality symplectomorphism to the standard duality generator
S ∈ SL(2,Z) of the mapping class group of the one-holed torus. Our results thus
provide rigorous justification of conjectures put forward over a decade ago by
Gorsky and his collaborators [6, 8] about the IIIb system.

The plan of this contribution is as follows. In Sect. 2 we start with the
definition of the concept of “Ruijsenaars duality”. In particular, we shall discuss two
alternative, equivalent definitions of self-duality. Necessary background information
from quasi-Hamiltonian geometry is summarized next in Sect. 3.1, focusing on the
example of the internally fused double that will be used subsequently. Then in
Sect. 3.2 we explain how the mapping class group SL(2,Z) acts on every reduced
phase space arising from the double. Section 4 is devoted to expounding the
definition of the compactified IIIb system. The main results of [4] are presented
in Sect. 5. The content of Sect. 5 and related further results are discussed in Sect. 6
together with an exposition of open problems.

2 The Concept of Ruijsenaars Duality

This concept is relevant for classical integrable many-body systems of “particles”
moving in one-dimension. Due to their physical interpretation and Liouville inte-
grability, these systems possess “particle-positions” and “action-variables” that span
two Abelian subalgebras in the Poisson algebra of observables. By definition, two
such systems are in duality if there exists a symplectomorphism between their phase
spaces that converts the particle-positions of system (a) into the action-variables
of system (b) and converts the action-variables of system (a) into the particle-
positions of system (b). In particular, one speaks of self-duality if the leading
Hamiltonians of both systems (which underlie the many-body interpretation) have
the same form. An alternative second definition of self-duality is to consider a
single integrable many-body Hamiltonian system (M,Ω ,H), and call it self-dual
if there exists a symplectomorphism S of the phase space (M,Ω) that converts the
particle-positions into the action-variables and the action-variables into the particle-
positions. Notice that the second definition is the special case of the first definition
where the two systems in duality are two copies of the same system and their duality
relation is provided by S.



The Ruijsenaars Self-Duality Map as a Mapping Class Symplectomorphism 425

If not clear from the context, we propose the full name of the above duality be
“Ruijsenaars duality” or “duality in the sense of Ruijsenaars” (also known as action-
angle duality).

Let us further discuss the relation between the above two definitions of
(Ruijsenaars) self-duality. To do this, denote by Jk and Ik (k = 1, . . . ,N) the
particle-positions and action-variables for the system (M,Ω ,H). It is required that
there exists a dense open submanifold Mloc ⊆ M where the symplectic form Ω
is equal to Ω loc = ∑N

k=1 dθk ∧ dJk, with conjugates θk of the Jk. We can view
(J ,θ ) and I as maps from Mloc into R2N and RN , and then have

H loc = H ◦ (J ,θ ) = h ◦I (1)

with some functions H and h, where the form of H underlies the many-body
interpretation. Any global symplectomorphism S takes H into the integrable
Hamiltonian H̃ := H ◦S. One has the relations Ω loc = ∑N

k=1 dθ̃k ∧dJ̃k and

H̃ loc = H loc ◦S= H ◦ (J̃ , θ̃ ) = h ◦ Ĩ (2)

with (J̃ , θ̃ ) := (J ,θ )◦S and Ĩ :=I ◦S. Thus H̃ loc has the same form in terms
of the tilded-variables as H loc in terms of the tilde-free variables. Now observe that
the system (M,Ω ,H) is in duality with (M,Ω ,H̃) if J̃ is the same as I and Ĩ is
the same as J . Spelling this out in more detail: if (M,Ω ,H) is self-dual in the sense
of the second definition, then its dual pair (M,Ω ,H̃) is automatically manufactured
and these two systems are in duality with respect to the identity map1 on M. The full
equivalence of our alternative definitions of self-duality is also not difficult to prove.
In this paper we adopt the second definition.

To be precise, we note that in the statement “is the same as” above one must
admit some sign change or re-labeling of the indices of the variables. In fact, the
self-duality symplectomorphismS is usually not an involution but has order 4. As an
illustration, consider the free system with Hamiltonian H = p2 on the phase space
R

2 = {(q, p)}, whose particle-position and action-variable are q and p, respectively.
The free system is trivially self-dual with self-duality symplectomorphism S :
(q, p) �→ (p,−q) and dual Hamiltonian H̃ = q2.

Ruijsenaars [12, 13] actually found three distinct dual pairs of systems and three
self-dual systems. For example, the dual of the hyperbolic Sutherland system is
the rational Ruijsenaars–Schneider system, and the rational Calogero system is self-
dual. See the review [14] for the other cases. Incidentally, at the quantum mechanical
level, all these systems are known to enjoy the related bispectral property [2], too.

1In general, identifying the phase spaces of any dual pair by the symplectomorphism that
appears in the definition of the duality relation given at the beginning, one may always turn this
symplectomorphism into the identity map. Thus the phase spaces of the systems in duality become
models of a single phase space, (not accidentally) similar to two gauge slices serving as models of
the single space of gauge orbits in a gauge theory.
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As was already mentioned, in this paper our concern will be the self-dual IIIb

system. For a detailed geometric treatment of a very different, not self-dual, case
of the trigonometric Ruijsenaars duality, the reader may consult [3].

3 Generalities about the Internally Fused Double D

The basic reference for Sect. 3.1 is [1]. The mapping class group action presented
in Sect. 3.2 is also well-known to experts [1, 7, 9]; in its explicit description we
follow [4].

3.1 Quasi-Hamiltonian Systems on D and Their Reductions

Let G be a (connected and simply connected) compact Lie group and fix a positive
definite invariant scalar product 〈 , 〉 on its Lie algebra G . Equip the Cartesian
product

D := G×G = {(A,B) |A,B ∈ G} (3)

with the 2-form ω ,

2ω := 〈A−1dA ∧, dBB−1〉+ 〈dAA−1 ∧, B−1dB〉− 〈(AB)−1d(AB) ∧, (BA)−1d(BA)〉,
(4)

which is invariant under the G-actionΨ on D defined by

Ψg : (A,B) �→ (gAg−1,gBg−1), ∀g ∈ G. (5)

Introduce the G-equivariant map μ : D→G by the group commutator

μ(A,B) := ABA−1B−1. (6)

These data satisfy

dω =− 1
12
μ∗〈ϑ , [ϑ ,ϑ ]〉, ω(ζD, ·) = 1

2
μ∗〈ϑ + ϑ̄ ,ζ 〉, ∀ζ ∈ G , (7)

Ker(ωx) = {ζD(x) |ζ ∈ Ker(Adμ(x) + IdG )}, ∀x ∈D, (8)

where ϑ and ϑ̄ denote, respectively, the G -valued left- and right-invariant Maurer–
Cartan forms on G and ζD generates the infinitesimal action of ζ ∈ G on D. All this
means [1] that (D,ω ,μ) is a so-called quasi-Hamiltonian G-space with moment
map μ . This quasi-Hamiltonian G-space is nicknamed the internally fused double
of G.
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According to the general theory [1], every G-invariant function h ∈ C∞(D)G

induces a unique vector field vh on D by requiring that ω(vh, ·) = dh and Lvhμ = 0.
The vector field vh is G-invariant and its flow preserves ω . In this way, (D,ω ,μ ,h)
yields a quasi-Hamiltonian dynamical system. Although (D,ω) is not a symplectic
manifold, one can also introduce an honest Poisson bracket on C∞(D)G. Naturally,
for G-invariant functions f and h the Poisson bracket is furnished by

{ f ,h} := ω(v f ,vh). (9)

Generally speaking, quasi-Hamiltonian systems are of interest since they can be
reduced to true Hamiltonian systems by a generalization of the Marsden–Weinstein
symplectic reduction, and this can give convenient realizations of important Hamil-
tonian systems. To specialize to our case, let us choose a moment map value μ0 ∈G
and denote its stabilizer with respect to the adjoint action by G0. Then consider the
space of G0-orbits

P(μ0) := μ−1(μ0)/G0, (10)

where μ−1(μ0) := {x∈D |μ(x) = μ0}. Denote by ι : μ−1(μ0)→D the tautological
injection and p : μ−1(μ0)→ P(μ0) the obvious projection. Under favourable cir-
cumstances (where the meaning of “favourable” is the same as for usual symplectic
reduction), there exists a standard Hamiltonian system (P(μ0), ω̂ , ĥ) such that the
symplectic form ω̂ and the reduced Hamiltonian ĥ satisfy the relations

p∗ω̂ = ι∗ω , p∗ĥ = ι∗h. (11)

The Hamiltonian vector field and the flow defined by ĥ on P(μ0) can be obtained
by first restricting the quasi-Hamiltonian vector field vh and its flow to μ−1(μ0) and
then applying the projection p. The Poisson brackets on (P(μ0), ω̂) are inherited
from the Poisson brackets (9) of the G-invariant functions like in usual symplectic
reduction.

Of course, the space of orbits P(μ0) is not a smooth manifold in general.
However, it always turns out to be a stratified symplectic space [9], which means that
it is a disjoint union of symplectic manifolds of various dimensions glued together
(in a specific manner).

The symplectic spaces obtained from quasi-Hamiltonian reduction always arise
also from usual symplectic reduction of certain infinite-dimensional manifolds with
respect to infinite-dimensional symmetry groups [1]. In particular, let Σ denote the
torus with a hole (that is, with an open disc removed); often called the “one-holed
torus”. It is known that the moduli space (space of gauge equivalence classes) of flat
principal G-connections on Σ whose holonomy along the boundary of the hole is
constrained to the conjugacy class of μ0 is a stratified symplectic space, which can
be canonically identified with the quasi-Hamiltonian reduced phase space P(μ0)
in (10). It is also worth noting that this space supports two natural Abelian Poisson
algebras. Namely, for any H ∈ C∞(G)G let H1 and H2 denote the G-invariant
functions on D given by

H1(A,B) := H (A) and H2(A,B) := H (B). (12)
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The two Abelian Poisson algebras on P(μ0) are provided by

C a := {Ĥ1 |H ∈C∞(G)G}, C b := {Ĥ2 |H ∈C∞(G)G}. (13)

Note also that D itself can be identified as the space of flat connections on Σ
modulo the “based gauge transformations” defined by maps η ∈C∞(Σ ,G) for which
η(p0) = e for a fixed point p0 on the boundary of the removed disc. The matrices A
and B represent the holonomies of the flat connections along the standard generators
of the fundamental group π1(Σ , p0).

3.2 Symplectic Action of the Mapping Class Group on P(�0)

Let us consider the (orientation-preserving) mapping class group of the one-holed
torus,

MCG+(Σ)≡ π0(Diff+(Σ)), (14)

whose elements are equivalence classes of orientation-preserving diffeomorphisms
up to homotopy. It is known that the mapping class groups acts by structure
preserving smooth maps on every reduced phase space P(μ0) (10), where “structure
preserving” means symplectomorphism whenever P(μ0) is a smooth manifold.
The origin of the mapping class group action is especially clear in the setting of
flat connections, where it arises from the pull-back of the connection 1-forms by
diffeomorphisms. However, it is also possible to directly describe the mapping class
group action on P(μ0) by taking advantage of the quasi-Hamiltonian formalism.

For the one-holed torus there exists a (geometrically engendered) isomorphism

MCG+(Σ) SL(2,Z). (15)

The infinite discrete group SL(2,Z) is generated by two elements S and T subject to
the relations

S2 = (ST )3, S4 = 1. (16)

As concrete matrices, one may take

S =

[

0 1
−1 0

]

, T =

[

1 0
1 1

]

, (17)

which actually represent the action of corresponding mapping classes on the
standard basis of the homology group H1(Σ ;Z)  Z2. The mapping class of T is
known as a Dehn twist and that of S as the standard orientation-preserving duality
generator “exchanging” the standard homology cycles. By arguments detailed in
[4,7], it is natural to associate to S and T the following diffeomorphisms SD and TD

of the double:
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SD(A,B) := (B−1,BAB−1), TD(A,B) := (AB,B). (18)

It is not difficult to check that

S∗Dω = ω , SD ◦Ψg =Ψg ◦ SD, μ ◦ SD = μ , (19)

and similar relations hold for TD as well, i.e., both SD and TD are automorphisms of
the internally fused double. Moreover, one finds that SD and TD satisfy

S2
D = (SD ◦TD)

3, S4
D = Q, (20)

where Q is the central element of the group of automorphisms of the double given by

Q(A,B) =Ψμ(A,B)−1(A,B). (21)

It is an immediate consequence of the above relations that SD and TD descend to
maps SP and TP on any reduced phase space P(μ0) (10), and these maps generate
an SL(2,Z) action on P(μ0). Indeed, Q descends to the trivial identity map idP on
P(μ0), and thus (20) implies the identities

S2
P = (SP ◦TP)

3, S4
P = idP. (22)

The resulting SL(2,Z) action preserves the (stratified) symplectic structure
on P(μ0).

Finally, consider the action of SP on the two Abelian Poisson algebras C a and
C b displayed in (13). For any H ∈C∞(G)G, define H � ∈C∞(G)G by

H �(g) := H (g−1). (23)

Then the following identities hold:

Ĥ2 ◦ SP = Ĥ1 and Ĥ1 ◦ SP = Ĥ �
2 , ∀H ∈C∞(G)G. (24)

In this way, SP exchanges the elements Ĥ2 of C b with the elements Ĥ1 of C a.

4 Compactified Ruijsenaars–Schneider IIIb System

In [13] Ruijsenaars studied, among others, a particular real form of the complex
trigonometric Ruijsenaars–Schneider system whose Hamiltonian exhibits periodic
dependence both on the particle-positions and on the conjugate momenta. This
system is termed the IIIb system, where the label “b” indicates the bounded nature
of the underlying phase space. The IIIb Hamiltonian given by (25) below is formally
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integrable since it admits the sufficient number of constants of motion in involution.
However, true integrability holds only after compactifying the local phase space,
whereby the Hamiltonian flows become complete. Here, we first summarize the
definition of the local IIIb system and then present its compactification. Although
the content of this section can be found in [13], too, for the sake of readability we
display all definitions in a self-contained manner.

The many-body interpretation of the IIIb system is based on the Hamiltonian

H loc
y (δ ,Θ)≡

n

∑
j=1

cos p j

n

∏
k 
= j

[

1− sin2 y

sin2(x j− xk)

] 1
2

, (25)

where δ j = ei2x j ( j = 1, . . . ,n) are interpreted as the positions of n “particles”
moving on the circle and the canonically conjugate momenta p j encode the compact
variables Θ j = e−ip j ; the index k in the product runs over {1,2, . . . ,n} \ { j}.
To guarantee the reality of H loc

y on a non-trivial connected open domain, one may
require to have |y|< |x j− xk|< π−|y| for all j 
= k, and consistency then enforces
the real coupling constant y 
= 0 to satisfy

0 < |y|< π/n. (26)

We impose the center of mass condition ∏n
j=1δ j = ∏n

j=1Θ j = 1, and parametrize
the variables so that the local phase space of the system gets identified with

Mloc
y ≡P0

y ×Tn−1, (27)

where Tn−1 is the (n− 1)-torus and P0
y is the interior of the polytope

Py :=
{

(ξ1, . . . ,ξn−1) ∈ Rn−1
∣

∣

∣ξ j ≥ |y|, j = 1, . . . ,n−1,
n−1

∑
j=1

ξ j ≤ π−|y|
}

. (28)

Using the n× n matrix E j, j having 1 in the j j position and the identity matrix 1n,
we introduce

Hk := Ek,k−Ek+1,k+1, λk :=
k

∑
j=1

E j, j− k
n

1n, k = 1, . . . ,n− 1. (29)

Then, for ξ ∈P0
y and τ = (τ1, . . . ,τn−1) = (eiθ1 , . . . ,eiθn−1) ∈ Tn−1, we define the

diagonal SU(n) matrices

δ (ξ ) := exp
(−2i

n−1

∑
k=1

ξkλk
)

, Θ(τ) := exp
(−i

n−1

∑
k=1

θkHk
)

. (30)
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The choice of P0
y as the domain of the particle-positions ξ guarantees the positivity

of the expressions under the square root in (25). In terms of the variables (ξ ,τ) ∈
P0

y ×Tn−1, the symplectic form of the system reads

Ω loc :=
1
2

tr
(

δ−1dδ ∧Θ−1dΘ
)

= i
n−1

∑
k=1

dξk ∧ τ−1
k dτk =

n−1

∑
k=1

dθk ∧dξk. (31)

Note that for any diagonal matrix D (like δ ,Θ etc), we apply the notation D =
diag(D1, . . . ,Dn).

The Hamiltonian (25) admits (n− 1) Poisson commuting constants of motion
given by independent spectral invariants of the following SU(n)-valued local Lax
matrix:

Ly
loc(ξ ,τ) jl : =

eiy−e−iy

eiyδ j(ξ )δl(ξ )−1−e−iy Wj(ξ ,y)Wl(ξ ,−y)Θl(τ)Δl(τ)Δ j(τ)−1. (32)

Here we use the positive functions

Wj(ξ ,y) :=
n

∏
k 
= j

[

eiyδ j(ξ )− e−iyδk(ξ )
δ j(ξ )− δk(ξ )

]
1
2

, (33)

and Δ(τ) := diag(τ1, . . . ,τn−1,1). The Hamiltonian (25) is recovered from the local
Lax matrix as the real part of the trace

H loc
y (δ (ξ ),Θ(τ)) = Retr

(

Ly
loc(ξ ,τ)

)

. (34)

Ruijsenaars [13] realized that the flows of H loc
y and of its commuting family are not

complete on Mloc
y , and then completed the local phase space in the way described

below.
Let us consider the symplectic manifold (CP(n− 1),χ0ωFS), where

χ0 := π− n|y|, (35)

and ωFS is the standard Fubini-Study symplectic form. It is convenient to identify
the complex projective space CP(n− 1) as the factor space S2n−1

χ0
/U(1) with

S2n−1
χ0

=
{

(u1, . . . ,un) ∈ Cn |
n

∑
k=1

|uk|2 = χ0
}

. (36)

Let CP(n− 1)0 be the open dense submanifold of CP(n− 1) where none of the
homogeneous coordinates can vanish. By utilizing the canonical projection πχ0 :
S2n−1
χ0

→ CP(n− 1), we define a diffeomorphism E : Mloc
y → CP(n− 1)0 by the

formula

E (ξ ,τ) := πχ0(τ1

√

ξ1−|y|, . . . ,τn−1

√

ξn−1−|y|,
√

ξn−|y|) (37)
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with ξn := π−∑n−1
k=1 ξk. By using that π∗χ0

(χ0ωFS) = i∑n
k=1 dūk ∧duk, one sees that

E is a symplectomorphism

E ∗(χ0ωFS) =Ω loc. (38)

Thus we can identify (Mloc
y ,Ω loc) with the dense open submanifold CP(n− 1)0 of

the compact phase space (CP(n− 1),χ0ωFS). The crucial fact is that, by means
of this identification, the local Lax matrix Ly

loc extends to a smooth (even real-
analytic) matrix function on CP(n− 1). This fact is actually not difficult to verify
[4, 13]. From now on we denote the resulting “global Lax matrix” as Ly. Since
Ly ∈C∞(CP2(n− 1),SU(n)) satisfies

Ly ◦E = Ly
loc, (39)

it follows that all the smooth spectral invariants of Ly
loc (like the Hamiltonian (34))

extend to smooth functions on the compactified phase space CP(n− 1). The cor-
responding Hamiltonian flows are automatically complete on CP(n− 1), simply
since every smooth vector field has complete flows on a compact manifold. By
definition, the compactified IIIb system is the integrable system on the phase space
(CP(n− 1),χ0ωFS) whose commuting Hamiltonians are generated by the Lax
matrix Ly.

5 Self-Duality of the IIIb System from Reduction

The compactified IIIb system, encapsulated by the triple

(CP(n− 1),χ0ωFS,L
y), (40)

possesses two distinguished Abelian Poisson algebras of observables. The
first Abelian algebra is generated by the “global particle-position variables”
Jk defined by

Jk ◦πχ0(u) = |uk|2 + |y|, k = 1, . . . ,n− 1. (41)

The terminology is justified by the identity Jk(E (ξ ,τ)) = ξk. The Jk are the
components of the toric moment map

J := (J1, . . . ,Jn−1) :CP(n− 1)→ R
n−1 (42)

that generates the so-called rotational action of the torus Tn−1 on
(CP(n − 1),χ0ωFS). Its image is the closed polytope Py (28). The other
distinguished Abelian algebra is spanned by the action-variables furnished by
certain spectral functions of the global Lax matrix Ly.

In the rest of this section we take

G := SU(n), 〈X ,Y 〉 :=−1
2

tr(XY ), ∀X ,Y ∈ G . (43)
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Define the polytope P0 similarly to (28) and also define δ (ξ ) like in (30) for
any ξ ∈ P0. It is well-known that any g ∈ G is conjugate to a matrix δ (ξ ) for
a unique ξ ∈ P0, and g is regular (has n distinct eigenvalues) if and only if the
corresponding ξ belongs to the interior P0

0 of P0. Therefore we can uniquely
define a G-invariant (i.e. conjugation invariant) function Ξk on G by requiring that

Ξk(δ (ξ )) = ξk, ∀ξ ∈P0, k = 1, . . . ,n− 1. (44)

The “spectral function” Ξk is continuous on G and its restriction to the dense open
submanifold of regular elements, Greg, belongs to C∞(Greg)

G.
It was shown in [13], and follows readily from our Theorem 5.1 given below, that

the global Lax matrix Ly takes values in Greg and the functions

Ik := Ξk ◦Ly (45)

can serve as action-variables of the compactified IIIb system. In fact, these functions
Poisson commute and their Hamiltonian flows are 2π-periodic. The image of the
toric moment map

I := (I1, . . . ,In−1) : CP(n− 1)→ R
n−1 (46)

is the same polytope Py as the image of moment map J .
One can check that the spectral functions satisfy

Ξ �
k = Ξn−k, (47)

where we applied the definition (23). Thus, if we define the spectral Hamiltonians
αk and βk on D by

αk(A,B) := Ξk(A) and βk(A,B) := Ξk(B), (48)

then (18) implies the identities βk ◦ SD = αk and αk ◦ SD = βn−k. Although they are
not globally C∞, αk and βk descend to “reduced spectral Hamiltonians” α̂k and β̂k on
any reduced phase space P(μ0) obtained from the double. As special cases of (24),
with the SL(2,Z) generator SP they satisfy

β̂k ◦ SP = α̂k and α̂k ◦ SP = β̂n−k, ∀k = 1, . . . ,n− 1. (49)

Having the necessary preliminaries at hand, the principal result of our paper [4]
can be summarized as follows.

Theorem 5.1. For the particular moment map value

μ0 = diag(e2iy, . . . ,e2iy,e2(1−n)iy), 0 < |y|< π/n, (50)
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the “constraint surface” μ−1(μ0) lies in Greg×Greg and the reduced phase space
(P(μ0), ω̂) is a smooth manifold symplectomorphic to (CP(n− 1),χ0ωFS). The
maps

α̂ := (α̂1, . . . , α̂n−1) : P(μ0)→ R
n−1 and β̂ : (β̂1, . . . , β̂n−1) : P(μ0)→ R

n−1

(51)
are toric moment maps generating two effective Hamiltonian actions of Tn−1 on
(P(μ0), ω̂). The images of both α̂ and β̂ yield the polytope Py (28), and there exists
a symplectomorphism

fβ :CP(n− 1)→ P(μ0) (52)

that satisfies

β̂k ◦ fβ = Jk and α̂k ◦ fβ = Ik, ∀k = 1, . . . ,n− 1. (53)

Combining Theorem 5.1 with the generalities reviewed in Sect. 3.2, we obtain
the following important result.

Corollary 5.1. The symplectomorphisms f−1
β ◦ SP ◦ fβ and f−1

β ◦TP ◦ fβ generate

an SL(2,Z) action on the compactified IIIb phase space (CP(n− 1),χ0ωFS). The
mapping class duality symplectomorphism

S := f−1
β ◦ SP ◦ fβ (54)

acts by exchanging the particle-positions Jk with the action-variables Ik accord-
ing to

Jk ◦S= Ik, and Ik ◦S= Jn−k, ∀k = 1, . . . ,n− 1. (55)

For the sake of completeness, let us also present the explicit formula of our
map fβ . For this, we introduce a unitary matrix gy(ξ ) for each ξ ∈P0

y by

gy(ξ ) jn :=−gy(ξ )n j := v j(ξ ,y), ∀ j = 1, . . . ,n− 1, gy(ξ )nn := vn(ξ ,y),

gy(ξ ) jl := δ jl− v j(ξ ,y)vl(ξ ,y)
1+ vn(ξ ,y)

, ∀ j, l = 1, . . . ,n− 1, (56)

where v j(ξ ,y) :=
[

siny
sinny

] 1
2

Wj(ξ ,y) using (33).

Theorem 5.2. Applying the previous notations, the map f0 : CP(n− 1)0 → P(μ0)
defined by

( f0 ◦E )(ξ ,τ) := p
(

gy(ξ )−1Δ(τ)Ly
loc(ξ ,τ)Δ(τ)

−1gy(ξ ),gy(ξ )−1δ (ξ )gy(ξ )
)

(57)
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is a diffeomorphism from CP(n− 1)0 onto a dense open submanifold of P(μ0).
This map is symplectic, f ∗0 ω̂ = χ0ωFS, and it extends to a global diffeomorphism
fβ : CP(n− 1)→ P(μ0).

The map fβ that extends f0 automatically has the properties mentioned in
Theorem 5.1 above. The statement that f0 is symplectic and that it extends to a
global diffeomorphism were quite non-trivial to prove. In [4]2 the extended map fβ
was also given explicitly by making use of a covering of CP(n−1) by n coordinate
patches and giving fβ explicitly on each patch.

To conclude this section, we remind that an integrable many-body system is self-
dual in the sense of Ruijsenaars if there exists a symplectomorphism that exchanges
its particle-position variables with the action-variables. Hence the message of
equation (55) is that our mapping class symplectomorphism S (54) qualifies as
a self-duality symplectomorphism in the sense of Ruijsenaars. In fact, we have also
checked that S coincides precisely with the self-duality symplectomorphism of the
IIIb system constructed originally by a very different (non-geometric, direct) method
in [13].

6 Further Results and Open Problems

This section contains a collection of remarks concerning the results of [4] and open
problems.

First of all, let us recall that every quasi-Hamiltonian reduction of the internally
fused double represents the moduli space of flat connections on the one-holed torus
Σ with fixed conjugacy class of the holonomy around the hole. This is also the
classical phase space of the Chern–Simons field theory on the three-dimensional
manifold [0,1]×Σ with corresponding boundary condition. Therefore, our results
outlined in the previous section prove the Chern–Simons interpretation of the IIIb

system and that of its self-duality, confirming the conjectures of Gorsky and his
collaborators [6, 8].

In addition to the coupling constant, y, a second parameter,Λ , can be introduced
into the IIIb system by replacing the symplectic form (31) byΛΩ loc. This parameter,
which is important at the quantum mechanical level, can be incorporated into the
reduction approach by taking the invariant scalar product on su(n) to be −Λ

2 tr
instead of (43). The quantum mechanics of the IIIb system was studied by van Diejen
and Vinet [15], who diagonalized the relevant commuting difference operators
using Macdonald polynomials; see also our note [5] where we reproduced the joint
spectrum of the action-variables by a simple argument. The Hilbert space of the

2The correspondence Ly
loc(ξ ,τ) ≡ Δ(τ)−1Lloc

y (δ (ξ ),ρ(τ)−1)Δ(τ) between the respective nota-
tions should be noted for those wish to see the details in [4].
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Chern–Simons theory can be always equipped with a representation of the mapping
class group [16], and it could be interesting to elaborate this representation in the
specific case of the IIIb system by building on the work [15].

Ruijsenaars [13] also considered an anti-symplectic involution R on CP(n− 1)
that enjoys

Jk ◦R= Ik, Ik ◦R= Jk, k = 1, . . . ,n− 1, (58)

and is given by R= Ĉ ◦S where Ĉ is the complex conjugation involution. We have
shown [4] that R arises from the map RD of the double of SU(n) defined by

RD := ρD ◦ S2
D, ρD(A,B) := (B̄, Ā), ∀(A,B) ∈D. (59)

Although RD is not quite an automorphism of D, it descends to a map RP on any
reduced phase space P(μ0) with diagonal constant matrix μ0. (If μ0 and μ ′0 are
conjugate then P(μ0) and P(μ ′0) are naturally equivalent, and therefore one may
take μ0 diagonal without loss of generality.) The involution RP reverses the sign of
the induced Poisson structure on P(μ0), and together with SP and TP it generates a
GL(2,Z) action on P(μ0).

Let Z be the center of the group G. Notice that Z ×Z acts on the internally
fused double D = G×G by the automorphisms

(z1,z2) : (A,B) �→ (z1A,z2B), ∀(z1,z2) ∈Z ×Z . (60)

This action descends to the reduced phase space P(μ0), and in the special case
G = SU(n) and μ0 (50) it gives rise to the Zn×Zn action on CP(n− 1) used in
some considerations in [13].

The reader is invited to study [4] for further results, which include for example
the factorization of SD as a product of three Dehn twist automorphisms of the
double, where the Dehn twist automorphisms themselves are realized in terms of
certain quasi-Hamiltonian flows.

It could be worthwhile to explore the structure of the stratified symplectic spaces
P(μ0) in general, and to possibly uncover new integrable systems on them. Some
sort of trigonometric spin Ruijsenaars–Schneider systems are expected to arise in
this way, which might be integrable analogously to spin Sutherland systems [11].

Finally, the most intriguing open problem stems from the fact that a reduction
treatment of the self-dual hyperbolic Ruijsenaars–Schneider system (the one which
is related for example to sine-Gordon solitons) is still missing. Presently we do not
know what master phase space should give this system upon reduction. Is it possible
to construct such a master phase space? Of course, there exist other important
variants of the Ruijsenaars–Schneider system (BCn case [10], elliptic systems) that
should be further studied as well.
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Hilbert Space Decomposition for Coulomb
Blockade in Fabry–Pérot Interferometers

Lachezar S. Georgiev

Abstract We show how to construct the thermodynamic grand potential of a
droplet of incompressible fractional quantum Hall liquid, formed inside of an
electronic Fabry–Pérot interferometer, in terms of the conformal field theory disk
partition function for the edge states in presence of Aharonov–Bohm flux. To this
end we analyze in detail the algebraic structure of the edge states’ Hilbert space
and identify the effect of the variation of the flux. This allows us to compute, in the
linear response approximation, all thermodynamic properties of the conductance in
the regime when the Coulomb blockade is softly lifted by the change of the magnetic
flux due to the weak coupling between the droplet and the two quantum point
contacts.

1 The FQHE Fabry–Pérot Interferometer

The electronic version [1] of the famous optical Fabry–Pérot interferometer, which
we will analyze here, is constructed by two quantum point contacts (QPC) inside
of an incompressible fractional quantum Hall (FQH) bar [2–4]. In the weak-
backscattering regime, small gate voltages on the QPCs create constrictions inside
the incompressible FQH liquid and facilitate tunneling of non-Abelian quasi-
particles along the QPCs. However, this regime is unstable in the sense of the
renormalization group flow, i.e., even a small number of quasiparticles tunneling
along the QPCs at low T significantly renormalizes the tunneling amplitudes thus
intensifying tunneling and eventually the two QPCs pinch off, which corresponds
to the strong backscattering regime that is already a stable fixed point of the
renormalization group flow.
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Fig. 1 A FQH bar with two QPCs in the strong backscattering regime in which single electrons
could tunnel, if small bias is present, between the three disconnected liquids producing discrete
peaks in the conductance. The side gates’ voltage could change the area of the CB island varying
in this way the flux through the island

In the strong backscattering regime, when the QPCs gate voltages are big
enough that the two constrictions are completely pinched-off, the two-dimensional
electron gas is split into three disconnected FQH liquids forming a Coulomb
blockade (CB) island in the middle, see Fig. 1. Only electrons could tunnel between
the disconnected parts of the interferometer and the main mechanism at low
temperature and low bias is through single electron tunneling. The conductance in
the CB regime is determined in the following steps (sequential tunneling through
CB island): first one electron tunnels from the left FQH liquid through the left QPC
to the island, then the electron which is accommodated at the edge of the CB island
is transported along the edge and then it tunnels through the right QCP to the right
FQH liquid. Using the Landauer formula one can see [5] that the CB conductance is

GCB(T,φ) =
(

h
e2

)

GLGR

GL +GR
Gis(T,φ), (1)

where the CB island’s conductance Gis depends on the magnetic flux φ = B.A: for
most values of the flux we have Coulomb blockade (G = 0) and for special discrete
values of flux we have conductance peaks [6–10]. The tunneling conductances of the
two QPCs are independent of the flux and vanishing at low-temperature as GL,R ∝
T 4Δ−2 where Δ is the scaling dimension of the electron operator.
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2 Coulomb Blockade Island’S Conductance:
The CFT Point of View

An interesting observation in this setup is that the conductance of the CB island can
be explicitly computed at finite temperature within the framework of the conformal
field theory [5]. This is due to the Einstein’s relation [5, 11], which expresses the
conductance σ(0) in terms of the charge stiffness (or, thermodynamic density of
states)

σ(0) = e2D
∂n
∂μ

∣

∣

∣

∣

T
, (2)

where D is the diffusion coefficient, μ is the chemical potential, n is the electron
density and the thermodynamic derivative is at constant temperature.

The diffusion coefficient is usually related to the relaxation time [11], for normal
conductors, however, for a ballistic one-dimensional channel, such as the FQH
edge, the relaxation time must be replaced by the time-of-flight τ f and the diffusion
coefficient could be written as follows [11]

Dbal = v2
Fτ f , τ f = L/(2vF) ⇒ D = LvF/2,

where vF is the Fermi velocity at the edge and L is the circumference or length
of the edge. According to (2) the charge stiffness can be computed as a derivative
of the thermodynamic average of the particle number. To this end we shall use the
Grand canonical partition function for a disk-shaped CB island derived within the
CFT framework [5, 12]

Zdisk(τ,ζ ) = trHedge e−β (H−μN) = trHedge e2π iτ(L0−c/24)e2π iζQ, (3)

where the Hamiltonian of the disk H = h̄ 2πvF
L

(

L0− c
24

)

is related to the zero mode
of the Virasoro stress-tensor, c is the Virasoro central charge [12], vF is the Fermi
velocity of the edge states and L is the circumference of the disk; the particle number
Q≡ N =

√
νHJ0 is proportional to the zero mode of thêu(1) current and νH is the

FQH filling factor.
The Hilbert space Hedge for the edge-states depends on the number and type of

the residual quasiparticles which might be localized in the bulk when the magnetic
field varies slightly around the value corresponding to the plateau of the Hall
conductance. The thermodynamic parameters, such as the temperature and the
chemical potential are related to the modular parameters τ and ζ on the torus
introduced in a standard way for the rational CFTs [12]

τ = iπ
T0

T
, T0 =

h̄vF

πkBL
, ζ = i

1
2πkBT

μ . (4)
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2.1 CFT Disk Partition Function in Presence of AB Flux

When magnetic field threading the CB disk or the area of the disk are changed the
effect on the one-dimensional edge state’s system1 is through the variation of the
Aharonov–Bohm (AB) flux. As can be seen in [13] introducing AB flux changes
the boundary conditions of the electron field operator and naturally twists the ̂u(1)
current and the Virasoro stress tensor. The ultimate effect of this twisting on the
partition function is that it simply shifts the modular parameter as follows ζ →
ζ +φτ , i.e. the partition function in presence of AB flux φ is

Zφdisk(τ,ζ ) = Zdisk(τ,ζ +φτ). (5)

The Grand potential on the edge [14]

Ω(T,μ) =−kBT lnZdisk(τ,ζ ) (6)

can be used to compute the particle density in the usual way

〈n〉β ,μ =−kBT
L

∂
∂μ

lnZdisk(τ,ζ ) =
1
L
〈J0〉β ,μ (7)

where β = (kBT )−1 is the inverse temperature and the thermal average is as usual

〈A〉β ,μ = Z−1
disk(τ,ζ ) trHedge Ae2π iτ(L0−c/24)e2π iζJ0 . (8)

2.2 Coulomb Island’S Conductance

In order to obtain the charge stiffness of the CB island, we need to differentiate the
particle density which, according to (3) and (8), is related to the thermodynamic
averages of the zero mode of thêu(1) current

〈

∂n
∂μ

〉

β ,μ
=

1
LkBT

(〈J2
0 〉β ,μ − (〈J0〉β ,μ)2) . (9)

On the other hand, the Grand potential on the edgeΩ(T,μ) depends on the AB flux
φ threading the edge because of (4) and (5) and the second derivative with respect
to φ is

1due to the incompressibility of the FQH droplet, the states in the bulk are localized and the only
states capable of carrying electric current are living on the edge which is a one-dimensional channel
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∂ 2Ω
∂φ2 =− (hvF/L)2

kBT

(〈J2
0 〉β ,μ − (〈J0〉β ,μ)2) . (10)

Comparing (9) with (10) we conclude [5] that edge conductance is exactly propor-
tional to the magnetic susceptibility κ(T,φ) =−(e/h)2∂ 2Ω(T,φ)/∂φ2, i.e.

Gis(T,φ) =
σis(0)

L
=− L

2vF

( e
h

)2 ∂ 2Ω(T,φ)
∂φ2 (11)

This beautiful result, which relates a non-equilibrium quantity, such as the CB
islands’ conductance Gis, to an equilibrium one expressed as a derivative of the
Grand potential Ω , is valid within the Kubo linear response regime, characterized
by the conditions GL,R 0 e2/h, which is used in the derivation [11] of the Einstein’s
relation.

2.3 Disk Partition Functions for FQH Droplets

To compute the partition function for the edge of a disk FQH sample we need some
knowledge of the structure of the underlying CFT. The rational CFT for a FQH state
always contains âu(1) current algebra which is completely determined by the filling
factor νH = nH/dH . This current algebra always contributes a c = 1 stress-tensor to
the Virasoro algebra due to the Sugawara contribution [12]. There is in general,
a neutral Virasoro generator T (0)(z) as well, defined by T (z)− T (c)(z) = T (0)(z)
whose central charge must be positive.

The electron field operator naturally decomposes into a charged̂u(1) part and a
neutral component which must be a primary field of the neutral Virasoro algebra.
From the electron CFT dimension Δel =

dH
2nH

+Δ (0) we see that its statistical angle

θ/π = 2Δel = 2Δ (0)+ dH
nH

, which must be an odd integer, imposes certain conditions
on the structure of the CFT. In particular, the electron field operator must have a non-
trivial neutral component when nH > 1, hence the neutral Virasoro algebra must be
non-trivial, too. This also implies that the charged and neutral parts of the RCFT are
not completely independent and therefore the partition function will not be simply
a product of charged and neutral partition functions—instead there are pairing rules
for the admissible combinations of charged and neutral characters.

3 Decomposable Subalgebra and ZnH Grading

In this section we will consider in more detail the algebraic structure of the rational
CFT corresponding to a general FQH state on a disk.
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We start by noting that the ̂u(1) part2 of the electron field operator, constructed

as a ̂u(1) vertex exponent [15], with a charge parameter determined by the filling
factor,

:ψel(z)Ψ (0)(z) : : e
−i 1√νH

φ (c)(z)
:, (12)

of a chiral boson normalized by

〈φ (c)(z)φ (c)(w)〉=− ln(z−w), (13)

certainly commutes with all neutral field operators. However, the vertex expo-
nent (12) has in general a non-integer statistical angle θ/π = dH/nH and is not
local for nH > 1. Therefore it does not belong to the chiral (super)algebra A and
cannot be used to decompose the latter.

The way out of this locality problem is to consider the nH -th power of the vertex
exponent (12)

: exp

(

−i
nH√
νH
φ (c)(z)

)

: = : exp
(

−i
√

nHdHφ (c)(z)
)

: (14)

which still commutes with all neutral field operators but is local because its statistics
is θ/π = nHdH , so that it does belong to A . It is worth stressing that thêu(1) vertex
operator (14) together with all neutral generators of A generates a decomposable
chiral subalgebra AD of the original chiral superalgebra A

AD =̂u(1)m⊗A (0) ⊂A . (15)

We use the notation ̂u(1)m to denote the rational extension [12, 15] of the ̂u(1)
current algebra with the pair of vertex exponents : e±i

√
mφ(z) : with m = nHdH .

Because the decomposable subalgebra AD misses only the powers of the full
electron operator ψs

el with s = 0, . . . ,nH − 1, the original superalgebra A can be
naturally represented as the following direct sum decomposition

A =
nH−1⊕
s=0

ψs
elAD. (16)

Due to the orthogonality of the different powers of the electron field, following from
thêu(1) charge conservation,

〈

ψs
elAD,ψs′

el AD

〉

=
〈

ψs
el,ψ

s′
el

〉

〈AD,AD〉= 0 if s 
= s′,

where 〈. . . , . . .〉 denotes the scalar product, it appears that the decomposition in (16)
is in fact a ZnH -graded direct sum decomposition.

2this part can be considered as the result of the fusion of the full electron operator with its neutral
componentΨ (0)(z)
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The virtue of having a decomposable subalgebra is that it defines the following
dual algebra inclusion

AD ⊂A ⊂A ∗ ⊂A ∗
D , (17)

which simplifies the construction of the representation spaces. It follows from (17)
that all representations of A are also representations of AD and at the same time
that not all representations of AD are true representations of A .

Given that the decomposable algebra (15) is simply a tensor product, its
irreducible representations (IR) are labeled by pairs of quantum numbers (l,Λ),
where l is the electric charge of the bulk quasiparticles in such units that Qel(bulk) =
l/dH , andΛ is the (total) neutral topological charge of the bulk quasiparticles. Then,
it follows from (16) that all IRs of A are direct sums of IRs of AD, corresponding
to the orbit of the simple current’s action, hence we shall be labeling the irreducible
representations of A by the same pair (l,Λ), corresponding to the s = 0 component
in (16).

As follows from (17), not all representations of AD are true representations of the
original superalgebra A . In order to identify the physical excitations, corresponding
to the true representations of A we will require that they are local with respect to
the electron field. The locality principle implies that those IRs of AD which are
local with respect to the electron are also IRs of A . To formulate more precisely the
locality requirement let us consider the decomposition of the electron field and an
arbitrary excitation labeled by (l,Λ) intôu(1) and neutral parts

electron: ψel(z) = : e
−i

dH√
nH dH

φ (c)(z)
:Ψ (0)

ω (z)

excitation: ψl,Λ (z) = : e
i l√

nH dH
φ (c)(z)

:Ψ (0)
Λ (z),

where the ̂u(1) boson is normalized as in (13), the electric charge is related to the
̂u(1) label l by Qel(l) = l/dH , so that the electric charge label of the electron is
l =−dH , and ω denotes the (nontrivial) neutral topological charge of the electron.

Now, to identify the physical excitations within the extended dual algebra A ∗
D

we require local operator product expansion (OPE) of the excitation with respect
to the electron, i.e., we require the power of the coordinate distance (z−w) in the
short-distance OPE to be integer

ψel(z)ψl,Λ (w)  
z→w

(z−w)
− l

nH
+Qω (Λ) : e

i
l−dH√
nH dH

φ (c)(z)
: Ψ (0)

ω∗Λ (w),

where Qω(Λ) is the (neutral) monodromy charge defined by the following combi-
nation of conformal dimensions ΔΛ ′ of the neutral Virasoro IRs

Qω(Λ)≡ Δω∗Λ −ΔΛ −Δω mod Z,
(

Δω = Δ (0)
)

. (18)
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Thus, the locality condition implies that the physical excitations (respectively, the
true IRs of A ) must satisfy the following ZnH pairing rule which selects the
admissible pairs (l,Λ) of charged and neutral quantum numbers

nHQω (Λ)≡ l mod nH . (19)

The representation spaces of AD =̂u(1)m⊗A (0) labeled by the pairs (l,Λ) which
obey the PR (19) (that guarantees these pairs are true representations of the original

algebra A ) are naturally tensor products of the representation spaces H
(c)

l for the
̂u(1) current algebra and those, H

(0)
Λ , for the neutral Virasoro algebra, i.e.

H D
l,Λ = H

(c)
l ⊗H

(0)
Λ , (20)

which explains why we looked for a decomposable subalgebra.
The representation spaces H A

l,Λ for the original algebra A can be obtained by the
action of A over the lowest-weight state |l,Λ〉. Because of the decomposition (16)
this space has a natural direct sum decomposition into representation space H D

l,Λ for
the decomposable subalgebra

H A
l,Λ = A |l,Λ〉= nH−1⊕

s=0
ψs

elA
D|l,Λ〉 = nH−1⊕

s=0
J sH D

l,Λ ,

where J  ψ∗el(0) is the simple current [12] representing the action of the electron
field operator over the lowest-weight states, i.e.

J |l,Λ〉= |l + dH ,ω ∗Λ〉,

which means that the simple current J acts on lowest-weight states by fusion—the
̂u(1) charge is simply shifted by the electric charge of the electron, while the neutral
Virasoro topological charges are fused with that of the electron.

Taking into account (20) we finally obtain the representation space for A

H A
l,Λ =

nH−1⊕
s=0

J s
(

H
(c)

l ⊗H
(0)
Λ

)

=
nH−1⊕
s=0

H
(c)

l+sdH
⊗H

(0)
ωs∗Λ . (21)

The benefit of this representation of the Hilbert space for a general FQH disk is

that its ̂u(1) part H
(c)

l , which is the edge-states’ space of the Luttinger liquid,

is completely determined by the filling factor νH and the neutral part H
(0)
Λ is

what distinguishes between FQH states with the same filling factor but different
universality classes.
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4 The RCFT Partition Function for a General FQH Disk

Now that we know the general structure of the Hilbert space for an arbitrary FQH
disk state we can obtain the corresponding structure of the partition function by

plugging (21) into (3). Notice however, that the ̂u(1)m representation spaces H
(c)

l
entering (21) correspond to m = nHdH and therefore the electric charge operator Q

could be represented in terms of̂u(1)m number operator N = J0/
√

m, i.e.

Q =

√

nH

dH
J0 =

√

nH

dH

√

nHdHN = nHN. (22)

Therefore, using the properties of the trace as well as the structure of the Hilbert
space (21), we obtain the main result—the partition function for a general FQH disk
can be represented as a sum of nH products of̂u(1) and neutral partition functions

Zl,Λ (τ,ζ ) =
nH−1

∑
s=0

Kl+sdH (τ,nHζ ;nH dH)chωs∗Λ (τ), (23)

where thêu(1) partition functions Kl+sdH (τ,nHζ ;nHdH) are expressed as Luttinger
liquid partition functions for m = nHdH in the notation of [15]

Kl(τ,ζ ;m) =
CZ(τ,ζ )
η(τ)

∞

∑
n=−∞

q
m
2 (n+ l

m )
2

e2π iζ(n+ l
m ). (24)

The absolute temperature and the Bolzmann factor e−β are related to the modular
parameter τ

q = e−βΔε = e2π iτ , Δε = h̄
2πvF

L
, (25)

where Δε is the non-interacting energy spacing, vF is the Fermi velocity on the edge
and L is the circumference of the disk. The Dedekind function η and Cappelli–
Zemba factors [16] entering (24) are explicitly given by

η(τ) = q1/24
∞

∏
n=1

(1− qn), CZ(τ,ζ ) = e−πνH
(Imζ )2

Imτ .

It is worth stressing that the ̂u(1) partition functions (24) are completely explicit
and totally determined by the filling factor’s numerator nH and denominator dH . The
extra nH in front of ζ in the Luttinger-liquid partition function Kl+sdH (τ,nHζ ;nHdH)
appears due to the relation (22).

The neutral partition functions, which are known mathematically as the charac-

ters of the representations H
(0)
Λ of the neutral Virasoro algebra with central charge

c− 1, are defined as usual as the trace over the representation space [12]
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chΛ (τ) = tr
H

(0)
Λ

qL
(0)
0 − c−1

24 .

The neutral topological charge of the electron is denoted by ω and ω ∗Λ in
(23) denotes the fusion of the topological charges of the electron and the bulk
quasiparticles. Unlike the charged-part partition functions the neutral ones are not
completely determined by the filling factor, though their structure is almost fixed
by the neutral weights ω , Λ and their fusion rules, thus representing more subtle
topological properties of the FQH universality class. Fortunately, for most of the
FQH universality classes these functions are explicitly known.

5 Application: Coulomb Blockade in the Z3
Read–Rezayi State

The structure of the partition function (23), in which the ̂u(1) part is explicitly
separated, is very convenient for the computation of the CB peaks for a FQH island
at finite temperature since the variation of the AB flux φ changes only the ̂u(1)
partition functions (24) because of (5). Consider, for example a CB island in which
the FQH state is the Z3 Read–Rezayi (parafermion) state [17, 18], characterized by
nH = 3, dH = 5, i.e. νH = 3/5. The decomposable chiral subalgebra iŝu(1)15×W3,
where W3 is the Z3 parafermion algebra of Fateev–Zamolodchikov [19]. The neutral
part of the electron operator has a topological chargeω =ψ1, ω2 =ψ2 given by the
parafermion currents. As a simple illustration of the entire procedure let us consider
the case when there are no quasiholes in the bulk, which corresponds to l = 0,Λ = 0.
The partition function (23) takes the form

Z0,0(τ,ζ ) = K0(τ;3ζ ;15)ch00(τ)+K5(τ;3ζ ;15)ch01(τ)+K−5(τ;3ζ ;15)ch02(τ)

where the K functions are defined in (24), the Bolzmann factor q is defined in (25)
and the neutral partition functions are defined by

ch0,l(τ) = q−
1

30

(l)

∑
n1, n2≥0

q
2
3 (n2

1+n1n2+n2
2)

(q)n1(q)n2

, (q)n =
n

∏
j=1

(1− q j).

and the sum ∑(l) is restricted by the condition n1 + 2n2 = l mod 3. Introducing AB
flux as in (5) and plugging the partition function with flux into (11) we calculate
numerically the conductance of the CB island at temperature T = 0.5T0 as the flux
is varied, see Fig. 2.

Under the assumption that the neutral and charged modes propagate with the
same Fermi velocity we see that the CB peaks are clustered in bunches of three,
separated by flux period Δφ1 = 1 inside the bunch, and separated by a flux period
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Fig. 2 Coulomb blockade peaks of the conductance, appearing when AB flux is varied, for the Z3
parafermion FQH island without non-trivial quasiparticles in the bulk at temperature T/T0 = 0.5

Δφ2 = 3 between the bunches, which is in agreement with the previous results at
zero temperature [7, 9, 10].

Most of the characteristics of the CB peaks, such as the height, the width and the
periods, can be derived asymptotically at very low temperatures [5].
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Group Classification of Variable Coefficient
KdV-like Equations

Olena Vaneeva

Abstract The exhaustive group classification of the class of KdV-like equations
with time-dependent coefficients ut +uux+g(t)uxxx+h(t)u = 0 is carried out using
equivalence based approach. A simple way for the construction of exact solutions
of KdV-like equations using equivalence transformations is described.

1 Introduction

A number of physical processes are modeled by generalizations of the well-known
equations of mathematical physics such as, e.g., the KdV and mKdV equations,
the Kadomtsev–Petviashvili equation, which contain time-dependent coefficients.
That is why last decade these equations do attract attention of researchers. A
number of the papers devoted to the study of variable coefficient KdV or mKdV
equations with time-dependent coefficients were commented in [10]. In the majority
of papers the results were obtained mainly for the equations which are reducible
to the standard KdV or mKdV equations by point transformations. Unfortunately
equivalence properties are neglected usually and finding of exact solutions is
reduced to complicated calculations of systems involving a number of unknown
functions using computer algebra packages. It is shown in [10, 12] that the usage of
equivalence transformations allows one to obtain the results in a much simpler way.

In this paper this fact is reaffirmed via presentation the correct group classifi-
cation of a class of variable coefficient KdV equations using equivalence based
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approach. Namely, we investigate Lie symmetry properties and exact solutions of
variable coefficient KdV equations of the form

ut + uux+ g(t)uxxx + h(t)u = 0, (1)

where g and h are arbitrary smooth functions of the variable t, g 
= 0. It is shown
in Sect. 2 that using equivalence transformations the function h can be always
set to the zero value and therefore the form of h does not affect results of group
classification. The group classification of class (1) with h = 0 is carried out in [10].
So, using the known classification list and equivalence transformations we present
group classification of the initial class (1) without direct calculations.

An interesting property of class (1) is that it is normalized, i.e., all admissible
point transformations within this class are generated by transformations from the
corresponding equivalence groups. Therefore, there are no additional equivalence
transformations between cases of the classification list, which is constructed using
the equivalence relations associated with the corresponding equivalence group. In
other words, the same list represents the group classification result for the corre-
sponding class up to the general equivalence with respect to point transformations.

Recently the authors of [3] obtained a partial group classification of class (1)
(the notation a and b was used there instead of h and g, respectively). The reason
of failure was neglecting an opportunity to use equivalence transformations. This
is why only some cases of Lie symmetry extensions were found, namely the cases
with h = const, h = 1/t and h = 2/t.

In fact the group classification problem for class (1) up to its equivalence
group is already solved since this class is reducible to class (1) with h = 0 whose
group classification is carried out in [10]. Using the known classification list and
equivalence transformations we present group classifications of class (1) without
the simplification of both equations admitting extensions of Lie symmetry algebras
and these algebras themselves by equivalence transformations. The extended clas-
sification list can be useful for applications and convenient to be compared with the
results of [3].

Note that in [1, 4] group classifications for more general classes that include
class (1) were carried out. Nevertheless those results obtained up to very wide
equivalence group seem to be inconvenient to derive group classification for
class (1).

2 Equivalence Transformations

An important step under solving a group classification problem is the construction
of the equivalence group of the class of differential equations under consideration.
The usage of transformations from the related equivalence group often gives an
opportunity to essentially simplify a group classification problem and to present the
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final results in a closed and concise form. Moreover, sometimes this appears to be a
crucial point in the exhaustive solution of such problems [2, 12–14].

There exist several kinds of equivalence groups. The usual equivalence group of
a class of differential equations consists of the nondegenerate point transformations
in the space of independent and dependent variables and arbitrary elements of the
class such that the transformation components for the variables do not depend
on arbitrary elements and each equation from the class is mapped by these
transformations to equations from the same class. If any point transformation
between two fixed equations from the class belongs to its (usual) equivalence group
then this class is called normalized. See theoretical background on normalized
classes in [8, 9].

We find the equivalence group G∼1 of class (1) using the results obtained in [10]
for more general class of variable coefficient KdV-like equations. Namely, in [10]
a hierarchy of normalized subclasses of the general third-order evolution equations
was constructed. The equivalence group for normalized class of variable coefficient
KdV equations

ut + f (t)uux + g(t)uxxx + h(t)u+(p(t)+ q(t)x)ux+ k(t)x+ l(t) = 0, (2)

as well as criterion of reducibility of equations from the this class to the standard
KdV equation were found therein.

The equivalence group G∼ of class (2) consists of the transformations

t̃ = α(t), x̃ = β (t)x+ γ(t), ũ = θ (t)u+ϕ(t)x+ψ(t), (3)

where α , β , γ , θ , ϕ and ψ run through the set of smooth functions of t, αtβθ 
= 0.
The arbitrary elements of (2) are transformed as follows

f̃ =
β
αtθ

f , g̃ =
β 3

αt
g, h̃ =

1
αt

(

h− ϕ
θ

f − θt

θ

)

, (4)

q̃ =
1
αt

(

q− ϕ
θ

f +
βt

β

)

, p̃ =
1
αt

(

β p− γq+
γϕ−βψ

θ
f + γt− γ βt

β

)

, (5)

k̃ =
1
αtβ
(

θk−ϕαt h̃−ϕt
)

, l̃ =
1
αt

(

θ l− γαt k̃−ψαt h̃−ϕ p−ψt
)

. (6)

We also adduce the criterion of reducibility of (2) to the standard KdV equation.

Proposition 1 ([10]). An equation of form (2) is similar to the standard (constant
coefficient) KdV equation if and only if its coefficients satisfy the condition

st = 2gs2− 3qs+
f
g

k, where s :=
2q− h

g
+

ftg− f gt

f g2 . (7)
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Class (1) is a subclass of class (2) singled out by the conditions f = 1 and p =
q = k = l = 0. Substituting these values of the functions f , p,q,k and l to (7) we
obtain the following assertion.

Corollary 1. An equation from class (1) is reduced to the standard KdV equation
by a point transformation if and only if there exist a constant c0 and ε ∈ {0,1} such
that

h =
ε
2

g
∫

gdt + c0
− gt

g
. (8)

As class (2) is normalized [10], its equivalence group G∼ generates the entire
set of admissible (form-preserving) transformations for this class. Therefore, to
describe the set of admissible transformations for class (1) we should set f̃ = f = 1,
p̃ = p = q̃ = q = k̃ = k = l̃ = l = 0 in (4)–(6) and solve the resulting equations with
respect to transformation parameters. It appears that class (1) admits generalized
extended equivalence group and it is normalized in generalized sense only.

Summing up the above consideration, we formulate the following theorem.

Theorem 1. The generalized extended equivalence group Ĝ∼1 of class (1) consists
of the transformations

t̃ = α, x̃ = βx+ γ, ũ = λ (βu+βtx+ γt), h̃ = λ h− 2λ
βt

β
−λt , g̃ = β 3λ g.

Here α is an arbitrary smooth function of t with αt 
= 0, β = (δ1
∫

e−
∫

hdtdt+δ2)
−1,

γ = δ3
∫

β 2e−
∫

hdtdt + δ4; δ1, . . . ,δ4 are arbitrary constants, (δ1,δ2) 
= (0,0) and
λ = 1/αt .

The usual equivalence group G∼1 of class (1) is the subgroup of the generalized
extended equivalence group Ĝ∼1 , which is singled out with the condition δ1 = δ3 = 0.

The parameterization of transformations from Ĝ∼1 by the arbitrary function α(t)
allows us to simplify the group classification problem for class (1) via reducing the
number of arbitrary elements. For example, we can gauge arbitrary elements via
setting either h = 0 or g = 1. Thus, the gauge h = 0 can be made by the equivalence
transformation

t̂ =
∫

e−
∫

h(t)dtdt, x̂ = x, û = e
∫

h(t)dtu, (9)

that connects (1) with the equation ût̂ + ûûx̂ + ĝ(t̂)ûx̂x̂x̂ = 0. The new arbitrary
element ĝ is expressed via g and h in the following way:

ĝ(t̂) = e
∫

h(t)dtg(t).

This is why without loss of generality we can restrict the study to the class

ut + uux+ g(t)uxxx = 0, (10)
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since all results on symmetries and exact solutions for this class can be extended to
class (1) with transformations of the form (9).

The equivalence group for class (10) can be obtained from Theorem 1 by setting
h̃ = h = 0. Note that class (10) is normalized in the usual sense.

Theorem 2 ([10]). The equivalence group G∼0 of class (10) is formed by the
transformations

t̃ =
at + b
ct + d

, t̃ =
e2x+ e1t + e0

ct + d
,

ũ =
e2(ct + d)u− e2cx− e0c+ e1d

ε
, g̃ =

e2
3

ct + d
g
ε
,

where a, b, c, d, e0, e1 and e2 are arbitrary constants with ε = ad− bc 
= 0 and
e2 
= 0, the tuple (a,b,c,d,e0,e1,e2) is defined up to nonzero multiplier and hence
without loss of generality we can assume that ε =±1.

3 Lie Symmetries

The group classification of class (10) up to G∼0 -equivalence is carried out in [10] in
the framework of classical approach [5, 6]. The result reads as follows.

The kernel of the maximal Lie invariance algebras of equations from class (10)
coincides with the one-dimensional algebra 〈∂x〉. All possible G∼0 -inequivalent cases
of extension of the maximal Lie invariance algebras are exhausted by the cases 1–4
of Table 1.

For any equation from class (1) there exists an imaged equation in class (10)
with respect to transformation (9). The equivalence group G∼0 of class (10) is
induced by the equivalence group Ĝ∼1 of class (1) which, in turn, is induced by the
equivalence group G∼ of class (2). These guarantee that Table 1 presents also the
group classification list for class (1) up to Ĝ∼1 -equivalence (resp. for the class (2) up
to G∼-equivalence). As all of the above classes are normalized, we can state that we

Table 1 The group classification of the class ut +uux +guxxx = 0, g 
= 0

N g(t) Basis of Amax

0 ∀ ∂x

1 tn ∂x, t∂x +∂u, 3t∂t +(n+1)x∂x +(n−2)u∂u

2 et ∂x, t∂x +∂u, 3∂t + x∂x +u∂u

3 eδ arctan t
√

t2 +1 ∂x, t∂x +∂u, 3(t2 +1)∂t +(3t +δ )x∂x +((−3t +δ )u+3x)∂u

4 1 ∂x, t∂x +∂u, 3t∂t + x∂x−2u∂u, ∂t

Here n,δ are arbitrary constants, n≥ 1/2, n 
= 1, δ ≥ 0 mod G∼0 .
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obtain Lie symmetry classifications of these classes up to general point equivalence.
This leads to the following assertion.

Corollary 2. An equation from class (1) (resp. (2)) admits a four-dimensional Lie
invariance algebra if and only if it is reduced by a point transformation to constant
coefficient KdV equation, i.e., if and only if condition (8) (resp. (7)) holds.

To derive the group classification of class (1) which is not simplified by
equivalence transformations, we first apply transformations from the group G∼0 to
the classification list presented in Table 1 and obtain the following extended list:

0. arbitrary ĝ : 〈∂x̂〉;
1. ĝ = c0(at̂ + b)n(ct̂ + d)1−n, n 
= 0,1: 〈∂x̂, t̂∂x̂ + ∂û, X3〉, where

X3 = 3(at̂ + b)(ct̂ + d)∂t̂ +(3act̂ + ad(n+ 1)+ bc(2−n))x̂∂x̂

+[3acx̂− (3act̂+ ad(2− n)+ bc(n+1))û]∂û;

2. ĝ = c0(ct̂ + d)exp

(

at̂ + b
ct̂ + d

)

: 〈∂x̂, t̂∂x̂ + ∂û, X3〉, where

X3 = 3(ct̂ + d)2∂t̂ +(3c(ct̂ + d)+ ε) x̂∂x̂ +
[

3c2x̂+(ε− 3c(ct̂ + d))û
]

∂û;

3. ĝ = c0e
δ arctan

(

a t̂+b
c t̂+d

)

√

(at̂ + b)2 +(ct̂ + d)2: 〈∂x̂, t̂∂x̂ + ∂û, X3〉, where

X3 = 3
(

(at̂ + b)2 +(ct̂ + d)2)∂t̂ +(3a(at̂ + b)+ 3c(ct̂+ d)+ εδ ) x̂∂x̂

+
(

3(a2 + c2)x̂− (3a(at̂ + b)+ 3c(ct̂+ d)− εδ )û)∂û;

4a. ĝ = c0: 〈∂x̂, t̂∂x̂ + ∂û, ∂t̂ , 3t̂∂t̂ + x̂∂x̂− 2û∂û〉;
4b. ĝ = ct̂ + d, c 
= 0: 〈∂x̂, t̂∂x̂ + ∂û, 3(ct̂ + d)∂t̂ + 2cx̂∂x̂− cû∂û, X4〉, where

X4 = (ct̂ + d)2∂t̂ + c(ct̂ + d)x̂∂x̂ + c(cx̂− (ct̂ + d)û)∂û.

Here c0, a, b, c, d and δ are arbitrary constants, (a2+b2)(c2+d2) 
= 0, ε = ad−bc,
c0 
= 0.

Then we find preimages of equations from the class ût̂ + ûûx̂ + ĝ(t̂)ûx̂x̂x̂ = 0 with
arbitrary elements collected in the above list with respect to transformation (9). The
last step is to transform basis operators of the corresponding Lie symmetry algebras.
The results are presented in Table 2.

It is easy to see that Table 2 includes all cases presented in [3] as particular cases.



Group Classification of Variable Coefficient KdV-like Equations 457

Table 2 The group classification of the class ut +uux +guxxx +hu = 0, g 
= 0

N h(t) g(t) Basis of Amax

0 ∀ ∀ ∂x

1 ∀ c0Tt(aT +b)n(cT +d)1−n ∂x, T∂x +Tt∂u, 3T−1
t (aT +b)(cT +d)∂t +

[

3acT

+ad(n+1)+bc(2−n)
]

x∂x +
(

3acxTt −
[

3acT

+3hT−1
t (aT +b)(cT +d)+ad(n+1)+bc(2−n)

]

u
)

∂u

2 ∀ c0Tt(cT +d)exp
(

aT+b
cT+d

)

∂x, T∂x +Tt∂u, 3T−1
t (cT +d)2∂t +(3c(cT +d)+ ε)x∂x

+
[

3c2xTt +
(

ε−3(c(cT +d)+hT−1
t (cT +d)2

)

u
]

∂u

3 ∀ c0Tte
δ arctan( aT+b

cT+d )G(t) ∂x, T∂x +Tt∂u, 3T−1
t G2∂t+

[

3a(aT +b)+3c(cT +d)+ εδ
]

x∂x +
[

3(a2 + c2)xTt

−(3a(aT +b)+3c(cT +d)− εδ +3hT−1
t G2
)

u
]

∂u

4a ∀ c0Tt ∂x, T∂x +Tt∂u, T−1
t (∂t −hu∂u),

3TT−1
t ∂t + x∂x− (2+3TT−1

t h)u∂u

4b ∀ (cT +d)Tt ∂x, T∂x +Tt∂u, T−1
t (cT +d)2∂t + c(cT +d)x∂x

+[c2xTt − (cT +d)(c+T−1
t (cT +d)h)u]∂u,

3T−1
t (cT +d)∂t +2cx∂x− (c+3T−1

t (cT +d)h)u∂u

Here T =
∫

e−
∫

h(t)dtdt , Tt = e−
∫

h(t)dt , G =
√

(aT +b)2 +(cT +d)2; n c0, a, b, c, d and δ are
arbitrary constants, (a2 +b2)(c2 +d2) 
= 0, ε = ad−bc, c0 
= 0, n 
= 0,1. In the case (4b) c 
= 0.

4 Generation of Exact Solutions

A number of recent papers concern the construction of exact solutions to different
classes of KdV- or mKdV-like equations using, e.g., such methods as “generalized
(G′/G)-expansion method”, “Exp-function method”, “Jacobi elliptic function ex-
pansion method”, etc. A number of references are presented in [10]. Almost in all
cases exact solutions were constructed only for equations which are reducible to
the standard KdV or mKdV equations by point transformations and usually these
were only solutions similar to the well-known one-soliton solution. In this section
we show that the usage of equivalence transformations allows one to obtain more
results in a simpler way. This approach is used also in [11].

The N-soliton solution of the KdV equation in the canonical form

Ut − 6UUx+Uxxx = 0 (11)

was constructed as early as in the seventies by Hirota [7]. The two-soliton solution
of (11) has the form

U =−2
∂ 2

∂x2 ln
(

1+ b1eθ1 + b2eθ2 +Ab1b2eθ1+θ2

)

, (12)
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where ai,bi are arbitrary constants, θi = aix− a3
i t, i = 1,2; A =

(

a1−a2
a1+a2

)2
.

Combining the simple transformation û =−6U that connects (11) with the KdV
equation of the form

ût̂ + ûûx̂ + ûx̂x̂x̂ = 0 (13)

and transformation (9), we obtain the formula

u =−6e−
∫

h(t)dt U
(

∫

e−
∫

h(t)dtdt, x
)

for generation of exact solutions for the equations of the general form

ut + uux + e−
∫

h(t)dtuxxx + h(t)u = 0. (14)

These equations are preimages of (13) with respect to transformation (9). Here h is
an arbitrary nonvanishing smooth function of the variable t.

The two-soliton solution (12) leads to the following solution of (14)

u = 12e−
∫

h(t)dt ∂ 2

∂x2 ln
(

1+ b1eθ1 + b2eθ2 +Ab1b2eθ1+θ2

)

, (15)

where ai,bi are arbitrary constants, θi = aix − a3
i

∫

e−
∫

h(t)dtdt, i = 1,2; A =
(

a1−a2
a1+a2

)2
. In a similar way one can construct N-soliton, rational and other types

of solutions for equations from class (14) using known solutions of classical KdV
equation.

5 Conclusion

In this paper group classification problem for class (1) is carried out with respect
to the corresponding equivalence group using equivalence based approach. Using
the normalization property it is proved that this classification coincides with the
one carried out up to general point equivalence. The classification list extended by
equivalence transformations is also presented. Such list is convenient for further
applications.

It is shown that the usage of equivalence groups is a crucial point for exhaustive
solution of the problem. Moreover, equivalence transformations allow one to
construct exact solutions of different types in a much easier way than by direct
solving. These transformations can also be utilized to obtain conservation laws, Lax
pairs and other related objects for equations reducible to well-known equations of
mathematical physics by point transformations without direct calculations.
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A New Diffeomorphism Symmetry Group
of Magnetohydrodynamics

Asher Yahalom

Abstract Variational principles for magnetohydrodynamics were introduced by
previous authors both in Lagrangian and Eulerian form. Yahalom (A four function
variational principle for Barotropic magnetohydrodynamics, EPL 89, 34005 (2010)
has shown that barotropic magnetohydrodynamics is mathematically equivalent to
a four function field theory defined a by a Lagrangian for some topologies. The
four functions include two surfaces whose intersections consist the magnetic field
lines, the part of the velocity field not defined by the comoving magnetic field and
the density. This Lagrangian admits a newly discovered group of Diffeomorphism
Symmetry. I discuss the symmetry group and derive the related Noether current.

1 Introduction

Variational principles for magnetohydrodynamics were introduced by previous
authors both in Lagrangian and Eulerian form. Eulerian variational principles for
non-magnetic fluid dynamics were first introduced by Davydov [2]. Following
the work of Davydov, Zakharov and Kuznetsov [10] suggested an Eulerian vari-
ational principle for magnetohydrodynamics. However, the variational principle
suggested by Zakharov and Kuznetsov contained two more functions than the
standard formulation of magnetohydrodynamics with a total sum of nine variational
variables. Another Eulerian variational principle for magnetohydrodynamics was
introduced independently by Calkin [1] in a work that preceded Zakharov and
Kuznetsov paper by seven years. However, Calkin’s variational principle also
depends on as much as eleven variational variables. The situation was somewhat
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improved when Vladimirov and Moffatt [6] in a series of papers have discussed
an Eulerian variational principle for incompressible magnetohydrodynamics. Their
variational principle contained only three more functions in addition to the seven
variables which appear in the standard equations of magnetohydrodynamics which
are the magnetic field B the velocity field v and the density ρ . Kats [3] has
generalized Moffatt’s work for compressible non barotropic flows but without
reducing the number of functions and the computational load. The current paper
will discuss only continuous flows due to space limitations, possible extensions of
the current formalism to discontinuous flows will be discussed in a future paper.
Sakurai [4] has introduced a two function Eulerian variational principle for force-
free magnetohydrodynamics and used it as a basis of a numerical scheme, his
method is discussed in a book by Sturrock [5]. In a work Yahalom and Lynden-
Bell [7, 9] have combined the Lagrangian of Sturrock [5] with the Lagrangian
of Sakurai [4] to obtain an Eulerian variational principle depending on only six
functions. The vanishing of the variational derivatives of this Lagrangian entail all
the equations needed to describe barotropic magnetohydrodynamics without any
additional constraints.

The non-singlevaluedness of the functions appearing in the reduced
representation of barotropic magnetohydrodynamics was discussed in particular
with connection to the topological invariants of magnetic and cross helicities. It was
shown that flows with non trivial topologies which have non zero magnetic or cross
helicities can be adequately described by the functions of the reduced representation
provided that some of them are non-single valued [7, 9]. The cross helicity per unit
flux was shown to be equal to the discontinuity of the function ν , this discontinuity
was shown to be a conserved quantity along the flow. The magnetic helicity per unit
flux was shown to be equal to the discontinuity of another function ζ .

In a more recent work [8] the number of needed functions was further reduced
and it was shown that magnetohydrodynamics is mathematically equivalent to a four
function field theory defined a by a Lagrangian.

In the current paper I show that the four function Lagrangian [8] admits a newly
discovered group of diffeomorphism symmetry. The relevant Noether current and
conservation laws of the newly discovered group of diffeomorphism symmetry are
discussed.

The plan of this paper is as follows. First I introduce the standard notations
and equations of barotropic magnetohydrodynamics. Next I introduce the potential
representation of the magnetic field B and the velocity field v. This is followed by
a review of the Eulerian variational principle developed by Yahalom and Lynden-
Bell [7,9]. After those introductory sections I will present the four function Eulerian
variational principles for non-stationary magnetohydrodynamics [8]. Finally I will
discuss the newly discovered group of diffeomorphism symmetry and the relevant
Noether current and conservation laws associated with the group of diffeomorphism
symmetry.
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2 The Standard Formulation of Barotropic
Magnetohydrodynamics

The standard set of equations solved for barotropic magnetohydrodynamics are
given below:

∂B
∂ t

= ∇× (v×B), (1)

∇ ·B = 0, (2)

∂ρ
∂ t

+∇ · (ρv) = 0, (3)

ρ
dv
dt

= ρ(
∂v
∂ t

+(v ·∇)v) =−∇p(ρ)+
(∇×B)×B

4π
. (4)

The following notations are utilized: ∂
∂ t is the temporal derivative, d

dt is the temporal
material derivative and ∇ has its standard meaning in vector calculus. B is the
magnetic field vector, v is the velocity field vector and ρ is the fluid density. Finally
p(ρ) is the pressure which we assume depends on the density alone (barotropic
case). The justification for those equations and the conditions under which they
apply can be found in standard books on magnetohydrodynamics (see for example
[5]). Equation (1) describes the fact that the magnetic field lines are moving with
the fluid elements (“frozen” magnetic field lines), (2) describes the fact that the
magnetic field is solenoidal, (3) describes the conservation of mass and equation (4)
is the vector Euler equation for a fluid in which both pressure and Lorentz magnetic
forces apply. The term:

J =
∇×B

4π
, (5)

is the electric current density which is not connected to any mass flow. The number
of independent variables for which one needs to solve is seven (v,B,ρ) and the
number of equations (1), (3), (4) is also seven. Notice that (2) is a condition on the
initial B field and is satisfied automatically for any other time due to (1). Also notice
that p(ρ) is not a variable rather it is a given function of ρ .

3 Potential Representation of Vector Quantities
of Magnetohydrodynamics

It was shown in [9] that B and v can be represented in terms of five scalar functions
α,β ,χ ,η ,ν . Following Sakurai [4] the magnetic field takes the form:

B = ∇χ×∇η . (6)
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Hence B satisfies automatically (2) for co-moving χ and η surfaces and is
orthogonal to both ∇χ and ∇η . The above expression can also describe a magnetic
field with non-zero magnetic helicity as was demonstrated in [9]. Moreover, the
velocity v can be represented in the following form:

v = ∇ν+α∇χ+β∇η . (7)

this is a generalization of the Clebsch representation for magnetohydrodynamics.

4 The Action of Barotropic Magnetohydrodynamics

It was shown in [9] (Eq. (4.15) of [9], notice also the change in notation L here
instead of L̂ used previously) that the action of barotropic magnetohydrodynamics
takes the form:

A ≡
∫

Ld3xdt,

L ≡ −ρ
[

∂ν
∂ t

+α
∂χ
∂ t

+β
∂η
∂ t

+ ε(ρ)+
1
2
(∇ν+α∇χ +β∇η)2

]

− 1
8π

(∇χ×∇η)2, (8)

in which ε(ρ) is the specific internal energy. Taking the variational derivatives to
zero for arbitrary variations leads to the following set of six equations:

∂ρ
∂ t

+∇ · (ρv) = 0, (9)

dχ
dt

= 0, (10)

dη
dt

= 0, (11)

dν
dt

=
1
2

v2−w, (12)

in which w is the specific enthalpy.

dα
dt

=
∇η ·J
ρ

, (13)

dβ
dt

= −∇χ ·J
ρ

. (14)
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In all the above equations B is given by (6) and v is given by (7). The mass
conservation equation (3) is readily obtained. Now one needs to show that also (1)
and (4) are satisfied.

It can be easily shown that provided that B is in the form given in (6), and
(10), (11) are satisfied, then (1) are satisfied.

It was shown in [9] that a velocity field given by (7), such that the equations
for α,β ,χ ,η ,ν satisfy the corresponding equations (9), (10), (11), (12), (13), (14)
must satisfy Euler’s equations. This proves that the barotropic Euler equations can
be derived from the action given in (8) and hence all the equations of barotropic
magnetohydrodynamics can be derived from the above action without restricting
the variations in any way except on the relevant boundaries and cuts.

5 A Simpler Action for Barotropic Magnetohydrodynamics

Can we obtain a further reduction of barotropic magnetohydrodynamics? Can we
formulate magnetohydrodynamics with less than the six functions α,β ,χ ,η ,ν,ρ?
The answer is yes, in fact four functions χ ,η ,ν,ρ will suffice. To see this we may
write the two equations (10), (11) as equations for α,β that is:

dχ
dt

=
∂χ
∂ t

+ v ·∇χ =
∂χ
∂ t

+(∇ν+α∇χ+β∇η) ·∇χ = 0,

dη
dt

=
∂η
∂ t

+ v ·∇η =
∂η
∂ t

+(∇ν+α∇χ+β∇η) ·∇η = 0, (15)

in which we have used (7). Solving for α,β we obtain:

α[χ ,η ,ν] =
(∇η)2( ∂ χ∂ t +∇ν ·∇χ)− (∇η ·∇χ)( ∂η∂ t +∇ν ·∇η)

(∇η ·∇χ)2− (∇η)2(∇χ)2

β [χ ,η ,ν] =
(∇χ)2( ∂η∂ t +∇ν ·∇η)− (∇η ·∇χ)( ∂ χ∂ t +∇ν ·∇χ)

(∇η ·∇χ)2− (∇η)2(∇χ)2 . (16)

Hence α and β are not free variables any more, but depend on χ ,η ,ν . Moreover,
the velocity v now depends on the same three variables χ ,η ,ν:

v = ∇ν+α[χ ,η ,ν]∇χ+β [χ ,η ,ν]∇η . (17)

Since v is given now by (17) it follows that the two equations (10), (11) are satisfied
identically and need not be derived from a variational principle. The above equation
can be somewhat simplified resulting in:

v = ∇ν+
1

B2

[

∂η
∂ t
∇χ− ∂χ

∂ t
∇η+∇ν×B

]

×B

=
1

B2

[(

∂η
∂ t
∇χ− ∂χ

∂ t
∇η
)

×B+B(∇ν ·B)
]

≡ v⊥+ v‖ (18)
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Hence the velocity v is partitioned naturally into two components one which is
parallel to the magnetic field and another one which is perpendicular to it. Inserting
the velocity representation (18) into (16) will lead to the result:

α =
∇η · (B× (v−∇ν))

B2

β = −∇χ · (B× (v−∇ν))
B2 . (19)

The reader should notice that the above quantities become singular for B = 0, hence
the formalism is only adequate for describing flows for which B 
= 0. If the magnetic
field vanishes at infinity this is not an obstacle from the present formalism point
of view since the velocity field need not be defined at infinity where there is no
flow. For flow without magnetic fields the present formalism is not appropriate and
other variational economic formalisms may be suggested. Finally (16) should be
substituted into (8) to obtain a Lagrangian density L in terms of χ ,η ,ν,ρ :

L [χ ,η ,ν,ρ ] = ρ
[

1
2

v2− dν
dt
− ε(ρ)
]

− B2

8π
(20)

where v is given by (18) and B by (6). Or more explicitly as:

L [χ ,η ,ν,ρ ] = 1
2

ρ
(∇χ×∇η)2

[

∇η
∂χ
∂ t
−∇χ ∂η

∂ t
+(∇χ×∇η)×∇ν

]2

− ρ
[

∂ν
∂ t

+
1
2
(∇ν)2 + ε(ρ)

]

− (∇χ×∇η)2

8π
. (21)

It is shown in [8] by variational analysis that indeed all the needed equations can be
derived from the above Lagrangian.

6 Diffeomorphism Symmetry and Noether Currents

This Lagrangian density admits an infinite symmetry group of transformations of
the form:

η̂ = η̂(χ ,η), χ̂ = χ̂(χ ,η), (22)

provided that the absolute value of the Jacobian of these transformation is unity:
∣

∣

∣

∣

∂ (η̂ , χ̂)
∂ (η ,χ)

∣

∣

∣

∣

= 1. (23)

In particular the Lagrangian density admits an exchange symmetry:

η̂ = χ , χ̂ = η . (24)
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Consider the following transformations:

η̂ = η+ δη(χ ,η), χ̂ = χ+ δχ(χ ,η), (25)

in which δη ,δχ are considered small in some sense. Inserting the above quantities
into (23) and keeping only first order terms we arrive at:

∂ηδη+ ∂χδχ = 0. (26)

This equation can be solved as follows:

δη = ∂χδ f , δχ =−∂ηδ f , (27)

in which δ f = δ f (χ ,η) is an arbitrary small function.
The variational derivative of the Lagrangian L =

∫

d3xL in which L is given
in (21) with respect to χ and η was calculated in [8] (31) and (32) (in action
form). Assuming that the relevant equations of motion and boundary conditions
hold, we have:

δχL =−d
∫

d3xραδχ
dt

, δηL =−d
∫

d3xρβδη
dt

(28)

The sum of the above two expressions is:

δχL+ δηL =− d
dt

∫

d3xρ(αδχ+βδη), (29)

If we choose variations δχ ,δη such that (27) hold, then the variations are symmetry
variations and the total variation δχL+ δηL vanishes. For this case we have:

d
dt

∫

d3xρ(α∂ηδ f −β∂χδ f ) = 0. (30)

Hence the quantity δG =
∫

d3xρ(α∂ηδ f −β∂χδ f ) is conserved. Using the comov-
ing magnetic metage μ defined in [9] (4.23), (6.25), this can be written as:

δG =
∫

dχdηdμ(α∂ηδ f −β∂χδ f ) =
∫

dχdμαδ f

∣

∣

∣

∣

η2

η1
−
∫

dηdμβδ f

∣

∣

∣

∣

χ2

χ1

+
∫

dχdηdμδ f (∂χβ − ∂ηα). (31)

Since δ f is arbitrary, we arrive at the following conserved current.

J =

∫

dμ(∂χβ − ∂ηα). (32)
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7 Conclusion

We have discussed the significance of the magnetohydrodynamics diffeomorphism
symmetry group and in particular have shown the existence of the related conserved
Noether current. Future research will be oriented towards understanding the physical
consequences of this new conservation law.
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Invariance Properties of the Exceptional
Quantum Mechanics (F4) and Its Generalization
to Complex Jordan Algebras (E6)

Sultan Catto, Yoon S. Choun, and Levent Kurt

Abstract We consider a case in which the octonionic observables form a Jordan
Algebra. Then the automorphism group turns out to be an exceptional group F4 or
E6 and we are led to a gauge field theory of quarks and leptons based on exceptional
groups. Some relations of octonion and split octonion algebras and their relation to
algebra of quarks are explicitly shown.

1 Introduction

The symmetries of the hadronic spectrum and the hadronic decays have uncovered
a colored quark substructure. Weak and electromagnetic interactions showed us that
quarks behave like leptons and a local field theory of both leptons and quarks makes
sense. Strong interactions are well described by a local gauge theory based on the
exact color group while weak and electromagnetic interactions are unified within a
gauge field theory of the spontaneously broken local flavor group. The symmetries
between leptons and quarks led us to the notion that these fundamental fermions
belong to the same multiplet of a unifying group. The successful candidates
for such a unifying group have turned out to be subgroups of the exceptional
group E6. On the other hand, the only non-trivial generalizations of the Hilbert
space ofQuantum Mechanics and the algebra of observables involve algebraicand
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geometrical structures connected with the exceptional groups F4 and E6. These
unique and intrinsically finite structures exhibit an exact color symmetry originating
in octonions [1] that go far in the building of these exotic structures.

2 The Setting

In the case of the usual Quantum Mechanics transition amplitudes are invariant
under unitary transformations up to a phase, as

< α ′ | β ′ >=< α | β > (1)

when

| α ′ >=U | α >, | β ′ >=U | β >, UU† = 1 (2)

Then the projection operators transform as

P′α =UPαU†, P′β =UPβU†. (3)

The observables Ω that are linear combinations of projection operators also
transform in the same way

Ω ′ =UΩU† (4)

so that the Jordan product Ω of two observables Ω1 and Ω2 also transforms like a
projection operator, since

Ω ′ = Ω ′1 ·Ω ′2 = 1
2 (Ω

′
1Ω ′2 +Ω ′2Ω ′1)

= 1
2U(Ω1Ω2 +Ω2Ω1)U† =UΩU† (5)

It follows that, in a n-dimensional Hilbert space, with n× n hermitian matrices
associated with observables and projection operators for states, the automorphism
group of the Jordan algebra of observables is U(n) or SU(n). In order to find the
invariance group of octonionic Quantum Mechanics we must find the automorphism
group of the exceptional Jordan algebra. This was shown to be the group F4 by
Chevalley and Schafer [2] more than a decade after the discovery of exceptional
Jordan algebras.

3 Exceptional Quantum Mechanics (F4)

The infinitesimal action on F4 on an element J of the Jordan algebra can be written
simply.
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If H1 and H2 are traceless octonionic hermitian matrices we have [3]

δJ = [H1,J,H2] (6)

as the associator bracket.
The transformation property of the projection operators Pα for states α is

obtained by putting J = Pα . Let us show that this gives the unitary group in the
associative case. Let

iH =−1
4
[H1,H2], H = H† (7)

Then, using P2 = P we can write

δJ = i[H,J] (8)

Exponentiation gives

J′ = J+[iH,J]+ 1
2! [iH, [iH,J]]+ . . . .= eiH J e−iH (9)

which shows that J is transformed by a unitary matrix. In the octonionic case the
finite transformation of F4 is given by the series

J′ = J+[H1,J,H2]+
1
2!
[H1, [H1,J,H2],H2]+ . . . . (10)

which only involves the Jordan product and can no longer be written in the form
(9). When H1 involves only one octonion and H2 is a purely scalar matrix then (10)
can be integrated in the form (9) with iH replaced by an antihermitian octonionic
matrix involving one octonion only. It is seen that the full group is determined by the
traceless hermitian matrices H1 and H2 so that it has 52 parameters. The invariants
under the F4 transformation are

I1 = TrJ, (11)

I2 = TrJ2, (12)

I3 = DetJ =
1
3

Tr(J · J× J) (13)

An irreducible representation of F4 is obtained by taking I1=0. It corresponds
to traceless Jordan matrices. We have seen that octonionic Quantum Mechanics
based on real octonions provides us automatically with a finite Hilbert space with
F4 symmetry. Since F4 has SU(3)× SU(3)c as a maximal subgroup we have a
fundamental justification for the color degree of freedom and the SU(3) flavor [4].
Under this group we have the decomposition

26 = (8,1)+ (3,3)+ (3̄, 3̄) (14)
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The color singlet part which is a SU(3) flavor octet lies in an ordinary quantum
mechanical space with SU(3) symmetry involving one of the octonionic imaginary
units while the colored degrees of freedom involve the remaining six imaginary
units.

The behavior of various states under the color group is best seen if we use split
octonion units defined by

u0 =
1
2
(1+ ie7), u∗0 =

1
2
(1− ie7) (15)

u j =
1
2
(e j + ie j+3), u∗j =

1
2
(e j− ie j+3), ( j = 1,2,3) (16)

The automorphism group of the octonion algebra is the 14 parameter exceptional
group G2. The imaginary octonion units eα (α = 1, . . . ,7) fall into its seven-
dimensional representation.

Under the SU(3)c subgroup of G2 that leaves e7 invariant u0 and u∗0 are singlets
while u j and u∗j correspond respectively to the representations (3) and (3̄).

The multiplication table can now be written in a manifestly SU(3)c invariant
manner:

u2
0 = u0, u0u∗0 = 0 (17)

u0u j = u ju
∗
0 = u j, u∗0u j = u ju0 = 0 (18)

uiu j =−u jui = εi jku∗k (19)

uiu
∗
j =−u0δi j (20)

together with the complex conjugate equations. Here one sees the virtue of octonion
multiplication. If we consider the direct products

3× 3 = 3̄+ 6, (21)

3× 3̄ = 1+ 8 (22)

for SU(3)c , then these equations show that octonion multiplication gets rid of (6)
in 3× 3, while it gets rid of (8) in 3× 3̄. Combining (19) and (20) we find

(uiu j)uk =−εi jku∗0 (23)

Thus, the octonion product leaves only the color singlet part in 3× 3̄ and 3×3×3,
so that it is a natural algebra for colored quarks.
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4 Complex Jordan Algebras (E6)

We can now consider the general element F of the Jordan algebra with complex
components. It can be decomposed as follows

F = u0L+ u∗0LT + u∗jQ j + u jR
∗
j (24)

Here L, Q j, R j are 3× 3 complex matrices, T denotes transposition and Qi and Ri

are antisymmetric so that

Q j =−QT
j , R j =−RT

j (25)

If we associate L with the (3̄,3) representation of a group SU(3)×SU(3), Q j with
(3,1) and R∗j with (1,3̄), then, together with the color index j we find that F has the
SU(3)× SU(3)× SU(3)c decomposition

F = (3̄,3,1c)+ (3,1,3c)+ (1, 3̄, 3̄c) (26)

F is the 27-dimensional representation of the exceptional group E6. The color
singlet part L can be associated with the lepton matrix L, that is, in terms of the
SU(3)× SU(3) flavor group the leptons fall in a (3× 3) matrix that represents the
(3̄,3):

(3̄,3) : L(e) =

⎛

⎝

N̂R τ̂R êR

τ̂L ν̂L β e
L

eL νe
L αe

L

⎞

⎠ (27)

Meanwhile, Q j and R∗j respectively are associated with left-handed quarks and right-
handed antiquarks: the (3,1) quarks and the (1, 3̄) antiquarks are

(3,1) :

⎛

⎜

⎜

⎝

ui
L

di
L

bi
L

⎞

⎟

⎟

⎠

,(1, 3̄) :

⎛

⎜

⎜

⎝

ûi
R

d̂i
R

b̂i
R

⎞

⎟

⎟

⎠

(28)

It follows that lepton and colored quark fields can be combined in a complex Jordan
matrix of the form (24) which is hermitian with respect to octonionic conjugation
only, so that

F̄T = u∗0LT + u0L− u∗jQ
T
j − u jR

∗
j
T = F (29)

The 2̄7 representation of E6 corresponds to F∗.
The E6 transformation of F involves three traceless real octonionic Jordan

matrices H1, H2, H3 and we have [5]

δF = [H1,F,H2]+ iH3 ·F (30)



474 S. Catto et al.

This shows that F4 may be treated as a subgroup of E6 and that E6 has 3×
26 = 78 real parameters. The Freudenthal product of F1 and F2 projects out the 2̄7
representation out of the symmetric product of 27× 27, so that we can write

F1×F2 = F∗3 , F∗1 ×F∗2 = F3 (31)

Another E6 invariant operation is the triple product defined by

D = {ABC}= (A ·B) ·C+A · (B ·C)− (A ·C) ·B (32)

(see also Murat Günaydin [6], where the use of the quadratic Jordan approach and
the Jordan triple product in the formulation of quantum mechanics including the
octonionic case is also discussed) so that for ordinary matrices over reals or complex
numbers one finds

{ABC}= 1
2
(ABC+CBA) = D (33)

D is obviously hermitian if A,B and C are hermitian. Special case will be

{ABA}= ABA = 2(A ·B) ·A− (A ·A) ·B (34)

Hence
Det{ABA}= (DetA)2DetB (35)

which is true for all Jordan algebras including the exceptional cases. With this, we
now have

{F∗1 F2F∗3 }= F∗4 , {F1F∗2 F3}= F4 (36)

are also invariant if F1,F2,F3,F4 transform like (27). Finally we can construct the
invariant

(F1,F2) = Tr(F1 ·F∗2 ) (37)

It follows that, with three Jordan matrices F1, F2, F3 we can associate the invariant

(F3,F1×F2) = Tr(F3 ·F1×F2) (38)

Given one F , Tr F is not E6 invariant. But we can construct 4 invariant real
quantities I2, I3, I

′
3 and I4 defined by

I2 = (F,F∗), I3 + iI3 = (F,F×F) = 3DetF (39)

I4 = (F×F,F∗ ×F∗) (40)

A geometry which generalizes the projective geometry of the Moufang plane can
be based on the complex matrices F . It is called the geometry of complex octonionic
planes [7]. A generalized point (or state) is defined by S such that

S× S = 0 (41)
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The distance d12 between points S1 and S2 or the transition probability Π12 is
given by

Π12 = cos2d12 = (S1,S2) = Tr(S1 ·S∗2) (42)

and is E6 invariant.
It is possible to associate idempotent projection operators with such states and

generalize the quantum mechanical formalism. The geometry is more complicated
than the Moufang geometry and all its quantum mechanical implications have not
yet been worked out [8, 9]. However, the existence of this E6 invariant exotic
geometry and its close correspondence with the phenomenological symmetries
of quarks and leptons provides a strong motivation for the reformulation of the
properties of the complex octonionic planes in purely quantum mechanical terms.

5 Summary

If it turns out that F4 or E6 describe correctly the internal symmetries of fundamental
fields we may seek the origin of these symmetries in the properties of unique finite
Hilbert spaces associated with exotic geometries.
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Matrix Superpotentials

Yuri Karadzhov

Abstract We present a collection of matrix valued shape invariant potentials which
give rise to new exactly solvable problems of SUSY quantum mechanics. It includes
all irreducible matrix superpotentials of the generic form W = kQ+ 1

k R+P where k
is a variable parameter, Q is the unit matrix multiplied by a real valued function of
independent variable x, and P, R are hermitian matrices depending on x. In particular
we recover the Pron’ko-Stroganov “matrix Coulomb potential” and all known scalar
shape invariant potentials of SUSY quantum mechanics. In addition, five new shape
invariant potentials are presented.

1 Introduction

Invented by E. Witten [1] as a toy model supersymmetric quantum mechanics
(SSQM) became a fundamental field including many interesting external and
internal problems. In particular the SSQM presents powerful tools for explicit
solution of quantum mechanical problems using the shape invariance approach [2].
Unfortunately, the number of problems satisfying the shape invariance condition
is rather restricted. However, such problems include practically all cases when the
related Schrödinger equation is exactly solvable and has an explicitly presentable
potential. Well known exceptions are exactly solvable Schrödinger equations with
Natanzon potentials [3] which are formulated in terms of implicit functions. The list
of shape invariant potentials depending on one variable can be found in [4].

An interesting example of QM problem which admits a shape invariant super-
symmetric formulation was discovered by Pron’ko and Stroganov [5] who studied
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a motion of a neutral non-relativistic fermion which interacts anomalously with the
magnetic field generated by a thin current carrying wire.

The supersymmetric approach to the Pron’ko–Stroganov (PS) problem was first
applied in paper [6] with using the momentum representation. In paper [7] this
problem was solved using its shape invariance in the coordinate representation.
Recently a relativistic generalization of the PS problem was proposed [8] which
can also be integrated using its supersymmetry with shape invariance.

The specificity of the PS problem is that it is formulated using a matrix
superpotential while in the standard SSQM the superpotential is simply a scalar
function. Matrix superpotentials themselves were discussed in many papers, see,
e.g., [9–11, 13] but this discussion was actually reduced to analysis of particular
examples. In paper [11] a certain class of such superpotentials was described which
however was ad hoc restricted to 2× 2 matrices which depend linearly on the
variable parameter. Thus, in contrast to the case of scalar superpotentials, the class of
known matrix potentials includes only few examples which are important but rather
particular, while the remaining part of this class is still “terra incognita”. It seems
to be interesting to extend our knowledge of these potentials since this way it is
possible to find new systems of Schrödinger equations which are exactly integrable.

2 The Spectral Problem

Let’s start with a spectral problem

Hkψ = Ekψ , (1)

where Hk—Hamiltonian with a matrix potential, Ek and ψ—its eigenvalues and
eigenfunctions correspondingly. In the Schrödinger equation, Hamiltonian has
the form

Hk =− ∂ 2

∂x2 +Vk(x), (2)

where Vk(x)—matrix potential dependent on the parameter k and the variable x.
Let us assume that Hamiltonian can be factorized in the following way

Hk = a†
kak + ck, (3)

where ck—scalar function of k, that vanishes with a corresponding member in the
Hamiltonian. From here on, we will drop the sign of unit matrix I and write ck

instead of ckI. The operators ak and a†
k can be considered of the form

ak =
∂
∂x

+Wk(x),a
†
k =−

∂
∂x

+Wk(x), (4)

where Wk—hermitian matrix, that is called a superpotential.
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As Wk is hermitian, operators ak and a†
k are hermitian-conjugate. It allows to

find the ground state of the spectral problem (1), by simply solving the first order
differential equation. Indeed, multiplying the expression

a†
kakψ = 0 (5)

on the left by the hermitian-conjugate spinor ψ† and integrating it on the real line R
we get

||akψ ||2 = 0, (6)

where || · ||2 denotes the norm in L2(R). Hence,

akψ = 0. (7)

The square-integrable function ψ0
k (x), that is a normalized solution to the (7), is an

eigenfunction of the Hamiltonian, that corresponds to the eigenvalue E0
k = ck, and

is called a ground state of the system (1).
Suppose the system satisfies the shape-invariance condition:

H+
k = Hk+1, (8)

where H+
k is a Hamiltonian’s superpartner, that is defined by the following formula:

H+
k = aka†

k + ck. (9)

This condition allows to fully discover the spectrum by a series of algebraic
operations, knowing the eigenvalue of the system ψ0

k (x). Indeed, if we use the
condition (8), it is easy to show that the function

ψ1
k (x) =

a†
kψ

0
k+1(x)

||a†
kψ

0
k+1(x)||2

(10)

is a Hamiltonian’s eigenfunction with an eigenvalue E1
k = ck+1. It is called the first

exited state of the system (1). Analogously, by induction we prove that the function

ψn
k (x) =

a†
ka†

k+1 · · ·a†
k+n−1ψ

0
k+n(x)

||a†
ka†

k+1 · · ·a†
k+n−1ψ

0
k+n(x)||2

(11)

is a Hamiltonian’s eigenfunction with an eigenvalue En
k = ck+n. It is called the nth

exited state of the system (1).
It will be useful to denote

Ck = ck+1− ck, (12)
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then energy for nth exited states is expressed by formula

En
k = E0

k +
n−1

∑
i=0

Ck+i. (13)

Consequently, if the system of Schrödinger equations (1) satisfies the shape-
invariance condition, it can be integrated explicitly.

3 The Classification Problem

As it was mentioned shape invariant potentials lead to exactly integrable systems
of Schrödinger equations. Let us state the problem to find all Hamiltonians that
allow factorization (3) and satisfy shape-invariance condition (8). In terms of the
superpotential these conditions can be written through a single equation

W 2
k +W ′

k =W 2
k+1−W ′

k+1 +Ck, (14)

where Ck described by formula (12). Thus, to solve the given problem, it is enough
to find all the superpotentials, that satisfy the (14).

We will consider the superpotentials of the form

Wk = kQ+P+
1
k

R, (15)

where k is a variable parameter, Q is the unit matrix multiplied by a real valued
function of independent variable x, and P, R are hermitian matrices depending on x.

We are interested in the irreducible superpotentials, i.e. the ones that can not be
reduced to a block-diagonal form by means of an unitary transformation, that does
not depend on variable x. Because if the considered superpotential is reducible, the
problem is divided into a set of similar problems of a smaller dimension.

In the following section the equation describing unknown matrices P,Q and R is
obtained, given the corresponding superpotentials satisfy the (14).

4 The Determining Equations

A system of determining equations can be obtained by substituting the expression
(15), for the superpotential, into the (14) and separating the variables. Hence:

Q′ = Q2 +ν, (16)

P′ = QP+ μ , (17)
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R′ = 0, (18)

R2 = ω2, (19)

{P,R}+λ = 0, (20)

Ck = 2μ+(2k+ 1)ν− λ
k(k+ 1)

+
(2k+ 1)ω2

k2(k+ 1)2 , (21)

where ν,μ ,ω ,λ—arbitrary real constants.

5 Superpotentials

Solving the system of determining (16)–(21) we obtain that the only irreducible
superpotentials of the form (15) are of dimension 1× 1 or 2× 2.

While one-dimensional superpotentials are completely recover the well known
list from the paper [4] two-dimensional superpotentials are new. They are presented
in the list below:

Wk =
(

(1− 2μ)σ3− 2k− 1
) 1

2x
+

ω
2k+ 1

σ1, (22)

Wk = λ
(

−k− μ exp(−λx)σ1− ω
k
σ3
)

, (23)

Wk = λ
(

k tanλx− μ secλxσ3 +
ω
k
σ1
)

, (24)

Wk = λ
(

−k cothλx− μ cschλxσ3− ω
k
σ1
)

, μ > 0, ω > 0, (25)

Wk = λ
(

−k tanhλx− μ sechλxσ1− ω
k
σ3
)

, (26)

These superpotentials are defined up to translations x → x+ c, k → k + γ , and
up to unitary transformations Wk →UaWkU†

a where U1 = σ1,U2 =
1√
2
(1± iσ2) and

U3 = σ3. In particular these transformations change signs of parameters μ and ω ,
thus without loss of generality we can set

ω > 0, μ < 0 (27)

in all superpotentials (22)–(26). Zero values of these parameters are excluded if
superpotentials (22)–(25) are irreducible.

Conditions (27) can be imposed also for superpotential (25). To unify some
following calculations we prefer to fix the signs of μ and k in the way indicated
in (25).

If μ = 0 and ω = 1 then operator (22) coincides with the well known su-
perpotential for PS problem, but for μ 
= 0 superpotential (22) is not equivalent
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to it. The other found superpotentials are new also and make it possible to
formulate consistent, exactly solvable problems for Schrödinger equation with
matrix potential. The corresponding potentials Vk can be found starting with (22)–
(25) and using definition

Vk =W 2
k −W ′

k (28)

6 Conclusion

Generalizing the supersymmetric PS problem we find a family of matrix potentials
for Shrödinger equation satisfying the shape invariance condition. In this way we
find five exactly solvable problems for systems of coupled Shrödinger equations.
The related matrix superpotentials are given by (22)–(26).

Let us stress that we present the completed classification of shape invariant
superpotentials of the generic form (15) where P and R are hermitian matrices of
arbitrary finite dimension and Q is proportional to the unit matrix. Namely, we show
that such objects can be reduced to direct sums of known scalar superpotentials and
superpotentials presented in Sect. 5.

The found superpotentials include parameters λ ,k,μ and ω whose possible
values are restricted but quite arbitrary. Moreover, parameters ω in (22) and μ in
(23) can be reduced to unity by scaling and shifting the independent variable x
correspondingly.

Superpotential (22) is a slightly generalized effective superpotential for the PS
problem. Moreover, these superpotentials coincide for a particular value μ = 0 of
arbitrary parameter μ . However, if μ 
= 0 superpotential (22) is not equivalent to
the superpotential appearing in the PS problem and corresponds to a more general
interaction in the initial three-dimension problem.

At the best of our knowledge the remaining superpotentials (23)–(26) are new.
The related Schrödinger equations can be integrated using tools of the SUSY
quantum mechanics.

The problem of classification of matrix superpotentials (15) with generic hermi-
tian matrices Q,P and R is a subject of our contemporary research.
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On Finite W-Algebras for Lie Superalgebras
in the Regular Case

Elena Poletaeva and Vera Serganova

Abstract We study finite W -algebras corresponding to the regular nilpotent orbits
for classical Lie superalgebras of Type I. In the case when the Lie superalgebra has
defect 1 we give a complete description of the finite W -algebras. We also present
some partial results for the case gl(n|n) and formulate a general conjecture about
the structure of these algebras.

1 Introduction

Finite W -algebras for semi-simple Lie algebras were introduced by A. Premet [8]
(see also [6]). In the case of Lie superalgebras, finite W -algebras were studied by
mathematicians and physicists in the following works [1, 3, 10, 12].

In this paper we study the case when the corresponding nilpotent element is
regular. Recall that an old result of B. Kostant states that if g is a reductive Lie
algebra and e is a regular nilpotent element, then the finite W -algebra for g coincides
with the center Z(g) of the universal enveloping algebra U(g) [5]. It is clear that
this does not hold for Lie superalgebras, since the finite W -algebra must have a
non-trivial odd part, and Z(g) is even.

We consider the case when g = g0̄⊕ g1̄ is a classical simple Lie superalgebra,
i.e. g0̄ is a reductive Lie algebra and g has an invariant symmetric bilinear form ( , ).
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Let e ∈ g0̄ be an even nilpotent element, and we fix an sl2-triple f ,h,e. The linear
operator adh defines a Z-grading g=

⊕

gi. Let

m=⊕i≤−2gi⊕ l,

where l is a maximal isotropic subspace in g−1 with respect to the (super)skew-
symmetric bilinear form ω(x,y) = (e, [x,y]). Let χ ∈ g∗ be defined by the formula
χ(x) = (e,x), and Cχ denote the one-dimensional m-module with character χ . The
generalized Whittaker module Qχ is by definition the induced module U(g)⊗U(m)

Cχ and Hχ = EndU(g)(Qχ)
op is by definition the finite W -algebra associated to the

nilpotent element e.
Certain results of A. Premet can be easily generalized for classical Lie superal-

gebras. For example, Kazhdan filtration can be defined exactly as in the Lie algebra
case. Recall that if n⊂ g is an adh-invariant subspace such that g=m⊕n, then

Hχ = {X ∈U(g)/U(g)m∼= S(n) | gXv = χ(g)Xv for all g ∈m},
where v ∈ Cχ . For any y ∈ n let wt(y) be the weight of y with respect to adh and
Deg(y) = wt(y) + 2. The degree function Deg induces a Z-grading on S(n). The
following result is true and can be proved exactly as in [8].

Theorem 1. Deg defines a filtration on Hχ , and the associated graded superalge-
bra Gr(Hχ) is supercommutative.

One of the important results of A. Premet is that Gr(Hχ) is isomorphic to S(ge),
where ge = Ker(ade). In order to prove this he introduced the map P : Hχ → S(ge),
namely he proved that for X ∈ Hχ ⊂ S(n) the term P(X) of the highest degree and
of the highest weight belongs to S(ge). For Lie superalgebras one can construct
the similar map if dim(g−1)1̄ is even. We proved in certain cases that P is an
isomorphism of vector spaces if dim(g−1)1̄ is even. In an arbitrary case when
dim(g−1)1̄ is even we can prove that P is injective, but we did not complete the
proof that it is surjective. The original proof of A. Premet is based on the similar
result in characteristic p-case. Since recently Wang and Zhao proved Kac-Weisfeiler
conjecture for classical Lie superalgebras [11], we think that it is possible to use
their result for the proof of surjectivity of P.

In the case, when dim(g−1)1̄ is odd, there exists an odd element θ ∈Hχ such that
θ 2 = 1 and θ is induced by an element in l⊥ ∩g−1.

We hope that understanding of finite W -algebras for regular elements might help
in studying representations of g which is very difficult even in finite-dimensional
case. The difficulty is partially due to the fact that Z(g) is not Noetherian.

There is a natural stratification of the spectrum of maximal ideals in Z(g), called
the degree of atypicality. The number of strata minus 1 is the important invariant of
the superalgebra called the defect defg of g. For instance,

def(sl(m|n)) = min(m,n), def(psl(n|n)) = n,

def(osp(2m+ 1|2n)) = def(osp(2m|2n)) = min(m,n).
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The exceptional Lie superalgebras D(2,1;α), G(3) and F(4) all have defect one
(see the definitions of these superalgebras in [4]).

It is interesting that if e is regular, then dim(ge)1̄ = 2defg or 2defg+ 1. More
precisely, dim(ge)1̄ = 2defg if g is one of the following superalgebras:

sl(m|n),osp(2m+ 1|2n),m≥ n,osp(2m|2n),m≤ n,G(3),

and dim(ge)1̄ = 2defg+ 1 if g is one of the following superalgebras:

osp(2m+ 1|2n),m< n,osp(2m|2n),m > n,D(2,1;α),F(4).

It is interesting to find a conceptual explanation of this phenomenon.

2 The Case of Defect One

Recall that a classical simple Lie superalgebra g is of Type I if it admits a Z-grading
g = g−1⊕ g0⊕ g1, which is compatible with the Z2-grading. Note that there are
two Lie superalgebras of Type I and defect one: g= sl(1|n) and g= osp(2|2n). We
consider in detail the case when g= sl(1|n). The case of g= osp(2|2n) is similar.

Let g= sl(1|n). We use the following notations for some elementary matrices in
gl(1|n), which are clear from the picture below.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h0 μ1 μ2 μ3 · · · μn

ξ1 h1 e1 · · · · · · · · ·
ξ2 f1 h2 e2 · · · · · ·
ξ3 · · · f2 h3 · · · · · ·
· · · · · · · · · · · · · · · en−1

ξn · · · · · · · · · fn−1 hn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Let sl(2) =< e,h, f >, where e is a regular nilpotent element:

e =
n−1

∑
i=1

ei, h = diag(0|n− 1,n− 3, · · · ,3− n,1− n), f =
n−1

∑
i=1

i(n− i) fi.

h defines a Z-grading of gl(1|n) whose degrees on the elementary matrices are
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1− n 3− n · · · n− 3 n− 1
n− 1 0 2 4 · · · 2n− 2
n− 3 −2 0 2 · · · 2n− 4
· · · · · · · · · · · · · · · · · ·

3− n 4− 2n · · · · · · 0 2
1− n 2− 2n · · · · · · · · · −2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Let c = diag(n|1, · · · ,1) be a central element of g0̄. Note that dim(ge) =
(n|2), and

ge =< e,e2, · · · ,en−1,c | ξ1,μn >, m= (
⊕

j≤−2

g j)
⊕

l.

Note that l = 0 if n is odd, and dim l = 1 if n is even. The result does not depend
on a choice of l. Let l =< ξk+1 > if n = 2k, then m is generated by the following
elements:

f1, f2, · · · , fn−1;

μ1, · · · ,μk−1,ξk+1, · · · ,ξn, if n = 2k;

μ1, · · · ,μk,ξk+2, · · · ,ξn, if n = 2k+ 1.

Note that

χ( f1) = · · ·= χ( fn−1) = 1,

χ(μ1) = · · ·= χ(μk−1) = χ(ξk+1) = · · ·= χ(ξn) = 0 if n = 2k,

χ(μ1) = · · ·= χ(μk) = χ(ξk+2) = · · ·= χ(ξn) = 0 if n = 2k+ 1.

Hχ has two odd generators: X and Y . To describe them recall that g= sl(1|n) admits
a Z-grading

g−1⊕g0⊕g1.

Fix an adh-homogeneous bases:

B(m−1) of m∩g−1,B(m1) of m∩g1,B(n−1) of n∩g−1,B(n1) of n∩g1;

B(g±1) of g±1.

Let Cχ =< v >. Set

Y v =
(

∏
x∈B(m1)

x
)(

∏
y∈B(n−1)

y
)

v,

Xv =
(

∏
y∈B(m−1)

y
)(

∏
x∈B(n1)

x
)

v.

Then Xv and Y v are both Whittaker vectors, and hence X ,Y ∈ Hχ .
In order to describe even generators of Hχ , recall that the center Z(g) of the

universal enveloping algebra U(g) of a Lie (super)algebra g is generated by the
so-called Casimir elements. In the case when g= gl(m|n) the Casimir elements Ωk

for k ≥ 2 are defined as follows (see [9]). Let

p(Ei j) = p(i)+ p( j),
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where Ei j is an elementary matrix and

p(i) =

{

0̄ if 1≤ i≤ m
1̄ if m+ 1≤ i≤ m+ n.

(1)

Ωk := ∑
i1,i2,...,ik

(−1)p(i2)+···+p(ik)Ei1i2Ei2i3 . . .Eiki1 .

In the case when g = sl(1|n), Hχ has n even generators: Ωk, k = 2, . . .n and c.
There exists a bijective map

P : Hχ −→ S(ge)

given as follows:

P(X) = μn, P(Y ) = ξ1, P(c) = c,

(−1)k+1P

(

1
k
Ωk

)

= ek−1 for k = 2, . . . ,n.

Let

Ω̃ = ∏
y∈B(g−1)

ady( ∏
x∈B(g1)

x).

Then Ω̃ is an element of Z(g) and has degree n. Under Harish-Chandra homomor-
phism it goes to the polynomial (h0−h1) · · · (h0−hn) [9]. One can also characterize
Ω̃ by the following property: it is the element of Z(g) of minimal degree such that
it is zero on all atypical irreducible representations.

Theorem 2. Let g be a Lie superalgebra of Type I and defect 1 (i.e. g = sl(1|n)
or osp(2|2n− 2).) Let n be the rank of g0̄, c be a central element of g0̄ and
Ω2, . . . ,Ωn be the first n−1 Casimir elements in Z(g). Then Hχ is a finite extension
of C[c,Ω2, . . . ,Ωn] with odd generators X ,Y and defining relations

X2 = Y 2 = 0, [c,X ] = X , [c,Y ] =−Y,

[Ωi,X ] = [Ωi,Y ] = 0, i = 2, . . . ,n,XY +YX = Ω̃ .

Note that in this case Hχ ∼=U(ge).

3 The Case of gl(2|2)

Let g= gl(2|2). Consider the following elementary matrices in g:

⎛

⎜

⎜

⎝

h1 e1 y1 y3

f1 h2 μ1 y2

x1 x3 h3 e2

ξ1 x2 g1 h4

⎞

⎟

⎟

⎠

.
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Let sl(2) =< e,h, f >, where e is a regular nilpotent element:

e = e1 + e2, h = diag(1,−1|1,−1), f = f1 + f2.

h defines an evenZ-grading of gl(2|2) whose degrees on the elementary matrices are

⎛

⎜

⎜

⎝

0 2 0 2
−2 0 −2 0
0 2 0 2
−2 0 −2 0

⎞

⎟

⎟

⎠

Let z = diag(1,1|1,1), c = diag(1,1|− 1,−1). Note that dim(ge) = (4|4), and

ge =< e1,e2,z,c | x3,y3,x1 + x2,y1 + y2 >, m= g−2,

m is generated by ξ1,μ1, f1,g1. Note that

χ( f1) =−χ(g1) = 1, χ(μ1) = χ(ξ1) = 0.

Hχ has four even generators C1,C2,z,c and four odd generators X ,Y, X̃1,Ỹ1.
Set z = 0, i.e. consider g= pgl(2|2). Let

X = x1 + x2, Y = y1 + y2,

C1 = e1 +
1
4
(h1− h2)

2− x2y1,

C2 = −e2 +
1
4
(h3− h4)

2− y2x1.

We define X1 and Y1 from the following equations

[X ,C1] = [X ,C2] = X1 +
1
4 X ,

[Y,C1] = [Y,C2] =−Y1 +
1
4Y.

Explicitly,

X1 = x3 +
1
2 (h1− h2)x1 +

1
2(h1 + h2+ 2h3)x2,

Y1 = y3− 1
2 (h3− h4)y1− 1

2 (2h1 + h3 + h4)y2.

Next, we change X1 and Y1 to X̃1 and Ỹ1 as follows

X̃1 = X1 +
1
4

cX ,

Ỹ1 = Y1 +
1
4

cY.
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There is a bijective map

P : Hχ −→ S(ge)

given as follows:

P(X) = x1 + x2, P(Y ) = y1 + y2,

P(X̃1) = x3, P(Ỹ1) = y3,

P(C1) = e1, P(C2) =−e2, P(c) = c.

Note that the commutators of odd generators X ,Y, X̃1,Ỹ1 are in Z(g). The nonzero
commutation relations between the odd generators are

[X̃1,Y ] = [Ỹ1,X ] =
1
2
Ω2, [X̃1,Ỹ1] =

1
3
Ω3.

Let

E1 =C1−C2 +XY, Ẽ1 =C1 +C2 +
1
8 c2. (2)

Note that E1 =
1
2Ω2 ∈ Z(g).

Thus the nonzero commutation relations between even generators E1, Ẽ1,c and
odd generators X ,Y, X̃1,Ỹ1 are

[Ẽ1,X ] =−2X̃1−X , [Ẽ1,Y ] = 2Ỹ1−Y,

[Ẽ1, X̃1] =−Ẽ1X− (c+ 1)X̃1+
1
4 c2X , [Ẽ1,Ỹ1] = Ẽ1Y +(c− 1)Ỹ1− 1

4 c2Y,

[X ,c] = 2X , [Y,c] =−2Y, [X̃1,c] = 2X̃1, [Ỹ1,c] =−2Ỹ1.

4 The Case of gl(n|n)

Let g= gl(n|n). Consider the following elementary matrices in g:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 e1 · · · · · · · · · y1 yn+1 · · · · · · · · ·
f1 h2 e2 · · · · · · μ1 y2 yn+2 · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · fn−2 hn−1 en−1 · · · · · · μn−2 yn−1 y2n−1

· · · · · · · · · fn−1 hn · · · · · · · · · μn−1 yn

x1 xn+1 · · · · · · · · · hn+1 en · · · · · · · · ·
ξ1 x2 xn+2 · · · · · · g1 hn+2 en+1 · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · ξn−2 xn−1 x2n−1 · · · · · · gn−2 h2n−1 e2n−2

· · · · · · · · · ξn−1 xn · · · · · · · · · gn−1 h2n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Let sl(2) =< e,h, f >, where e is a regular nilpotent element:

e = e1 + e2 + · · ·+ e2n−2, f =
n−1

∑
i=1

i(n− i)( fi + gi),

h = diag(n− 1,n− 3, · · · ,3− n,1− n|n− 1,n−3, · · · ,3− n,1− n).

h defines an evenZ-grading of gl(n|n) whose degrees on the elementary matrices are

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 2 · · · 2n− 4 2n− 2 0 2 · · · 2n− 4 2n− 2
−2 0 2 · · · 2n− 4 −2 0 2 · · · 2n− 4
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

4− 2n · · · −2 0 2 4− 2n · · · −2 0 2
2− 2n 4− 2n · · · −2 0 2− 2n 4− 2n · · · −2 0

0 2 · · · 2n− 4 2n− 2 0 2 · · · 2n− 4 2n− 2
−2 0 2 · · · 2n− 4 −2 0 2 · · · 2n− 4
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

4− 2n · · · −2 0 2 4− 2n · · · −2 0 2
2− 2n 4− 2n · · · −2 0 2− 2n 4− 2n · · · −2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Let z = diag(1, · · · ,1|1, · · · ,1), c = diag(1, · · · ,1|−1, · · · ,−1). Note that dim(ge) =
(2n|2n), and

ge
0̄ =< (e1 + · · ·+ en−1)

i,(en + · · ·+ e2n−2)
i,z,c >,

ge
1̄ =< (x1 + · · ·+ xn),(y1 + · · ·+ yn),(xn+1 + · · ·+ x2n−1)

i,(yn+1 + · · ·+ y2n−1)
i >,

where i = 1, · · · ,n− 1, and the powers are considered for the corresponding n× n
matrices.

m=
n
⊕

i=2

g2−2i,

and it is generated by ξi,μi, fi,gi for i = 1, · · · ,n− 1.
Note that

χ( fi) = −χ(gi) = 1,

χ(μi) = χ(ξi) = 0, for i = 1, · · · ,n− 1.

It follows from the work of physicists [1] who use truncated super-Yangians to study
finite W -algebras for gl(m|n), that Hχ has 2n even generators: z,c and Ci

1,C
i
2, i =

1, · · · ,n− 1, which correspond to the first n− 1 Casimir elements for the upper and
lower sl(n), respectively, and 2n odd generators: X ,Y, X̃i,Ỹi, i = 1, · · · ,n− 1.
Set z = 0, i.e. consider g= pgl(n|n). Let

X = x1 + x2 + . . .+ xn, Y = y1 + y2 + . . .+ yn,



On Finite W-Algebras for Lie Superalgebras in the Regular Case 495

C1
1 = (e1 + e2 + . . .+ en−1)+

1
2n ∑

1≤i< j≤n

(hi−hj)
2− x2y1− x3(y1 + y2)− . . .− xn(y1 + y2 + . . .+ yn−1),

C1
2 =−(en + . . .+ e2n−2)+

1
2n ∑

n+1≤i< j≤2n

(hi−hj)
2− y2x1− y3(x1 + x2)− . . .− yn(x1 + x2 + . . .+ xn−1).

Let X0 = X ,Y0 = Y . We define Xi and Yi for i = 1, . . .n− 1 from the equations

[Xi,C
1
1 ] = Xi+1 +(

n− 1
2n

)Xi,

[Yi,C
1
1 ] =−Yi+1 +(

n− 1
2n

)Yi.

Next, we change Xi to X̃i and Yi to Ỹi for i = 1,2, . . . ,n− 1 as follows:

X̃i = ∑i
k=0

(i
k

)

1
(2n)k ckXi−k, Ỹi = ∑i

k=0

( i
k

)

1
(2n)k ckYi−k. (3)

Then the commutators for odd generators X ,Y, X̃i,Ỹi for i = 1,2, . . . ,n− 1 are in
Z(g).

Conjecture 1. There exists a bijective map

P : Hχ −→ S(ge)

given as follows:

P(X) = x1 + . . .+ xn, P(Y ) = y1 + . . .+ yn, P(c) = c,

P(X̃i) = (xn+1 + . . .+ x2n−1)
i, P(Ỹi) = (yn+1 + . . .+ y2n−1)

i,

P(Ci
1) = (e1 + . . .+ en−1)

i, P(Ci
2) = (−1)i(en + . . .+ e2n−2)

i,

where i = 1, . . . ,n− 1.

Remark. In the case when g = gl(n|n), one can define elements Ei, Ẽi for i =
1, . . . ,n− 1, analogously to (2), so that Ei ∈ Z(g). In particular,

E1 =C1
1−C1

2 +XY, Ẽ1 =C1
1 +C1

2 +
1

4n
c2.

Then E1 =
1
2Ω2 ∈ Z(g), and the following relations are satisfied

[Xi,C1
1 ] = [Xi,C1

2 ], [Yi,C1
1 ] = [Yi,C1

2 ],

[X ,c] = 2X , [Y,c] =−2Y, [X̃i,c] = 2X̃i, [Ỹi,c] =−2Ỹi,

[Ẽ1, X̃i] =−2X̃i+1− X̃i, [Ẽ1,Ỹi] = 2Ỹi+1− Ỹi, i = 0, . . . ,n− 2. (4)

Note that one can obtain the elements X̃i and Ỹi, where i = 1, . . . ,n− 1, defined in
(3) from relations (4) by induction.
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In the general case of gl(m|n), we have the following

Conjecture 2. Let g= gl(m|n), and d = min(m,n). Then

(1) there exist odd generators Xi,Yi, of Hχ for i = 1, . . . ,d such that

[Xi,Xj] = [Yi,Yj] = 0 for 1≤ i, j ≤ d, [Xi,Yj] ∈ Z(g),

(2) the center of Hχ is Z(g).

5 Truncated Super-Yangians

It was observed by physicists that the finite W -algebra based on gl(m|n) is a
truncation of the super-Yangian Y (gl(m|n)) [1]. Recall that for a finite-dimensional
semi-simple Lie algebra g, the Yangian of g is an infinite-dimensional Hopf algebra
Y (g). It is a deformation of the universal enveloping algebra of the Lie algebra of
polynomial currents of g [7].

We observed that in the case when g= gl(n|n), ge is isomorphic to the truncated
Lie superalgebra of polynomial currents in gl(1|1). Let

gl(1|1) =
{(

a11 a12

a21 a22

)

| ai j ∈ C
}

.

The isomorphism

ϕ : ge −→ gl(1|1)⊗C[t]/(tn)

is given as follows: for i = 1, . . . ,n− 1

ϕ((e1 + · · ·+ en−1)
i) = E11⊗ ti, ϕ((en + · · ·+ e2n−2)

i) = E22⊗ ti,

ϕ((xn+1 + · · ·+ x2n−1)
i) = E21⊗ ti, ϕ((yn+1 + · · ·+ y2n−1)

i) = E12⊗ ti,

ϕ
(

z+c
2

)

=E11, ϕ
(

z−c
2

)

=E22, ϕ (x1+ · · ·+xn)=E21, ϕ (y1+ · · ·+yn)=E12.

Recall that the super-Yangian Y (gl(m|n) of gl(m|n) is an associative unital superal-
gebra over C with a countable set of generators

t(1)i j , t(2)i j , . . . , where i, j = 1, . . . ,m+ n

and the following defining relations

[t(r+1)
i j , t(s)kl ]− [t(r)i j , t

(s+1)
kl ] = (−1)p(i)p(k)+p(i)p(l)+p(k)p(l)(t(r)k j t(s)il − t(s)k j t(r)il ),

where r,s = 0,1, . . . and t(0)i j = δi j, and p(i) is defined in (1), see [7].
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It follows from [1] that in the case when g = gl(n|n), the corresponding finite
W -algebra is isomorphic to the truncated super-Yangian Y (gl(1|1))/(n).

The finite W-algebras for g= gl(m|n) were described as certain truncations of a
shifted version of the Yangian Y (gl(1|1)) by J. Brown, J. Brundan and S. Goodwin
in [2].
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Young Tableaux and Homotopy Commutative
Algebras

Michel Dubois-Violette and Todor Popov

Abstract A homotopy commutative algebra, or C∞-algebra, is defined via
the Tornike Kadeishvili homotopy transfer theorem on the vector space generated
by the set of Young tableaux with self-conjugated Young diagrams {λ : λ = λ ′}.
We prove that this C∞-algebra is generated in degree 1 by the binary and the ternary
operations.

1 Introduction

We consider the 2-nilpotent graded Lie algebra g, with degree one generators in the
finite dimensional vector space V over a field K of characteristic 0,

g=V ⊕ [V,V ].

Its Universal Enveloping Algebra (UEA) Ug arises naturally in physics as the
subalgebra closed by the creation operators of the parastatistics algebra. The algebra
of creation and annihilation parastatistics operators was introduced by H.S. Green
[6], its defining relations generalize the canonical (anti)commutation relations.

As an UEA of a finite dimensional positively graded Lie algebra, Ug belongs to
the class of Artin–Schelter regular algebras (see e.g. [5]). As every finitely generated
graded connected algebra, Ug has a free minimal resolution which is canonically
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built from the data of its Yoneda algebra E := ExtUg(K,K). By construction the
Yoneda algebra E is isomorphic (as algebra) to the cohomology of the Lie algebra
(with coefficients in the trivial representation provided by the ground field K)

E = Ext•Ug(K,K)
∼= H•(g,K) (1)

the product on E being the super-commutative wedge product between cohomolog-
ical classes in H•(g,K).

An important result due to Józefiak and Weyman [7] implies that a basis of
the cohomology E = H•(g,K) is indexed by Young tableaux with self-conjugated
Young diagrams (i.e., symmetric with respect to the diagonal). On the other hand
according to the homotopy transfer theorem due to Tornike Kadeishvili [8] the
Yoneda algebra E is a C∞-algebra.

The aim of this note is to describe the cohomology H•(g,K) (i.e., the vector
space generated by the set of Young tableaux with self-conjugated Young diagrams
{λ : λ = λ ′}) with the C∞-structure induced by the isomorphism (1) through the
homotopy transfer.

Here we deal only with the parafermionic case corresponding to an (even) vector
space V . To include the parabosonic degrees of freedom, one have to consider V in
the category of vector superspaces. The supercase will be considered elsewhere.

2 Artin–Schelter Regularity

Let g be the 2-nilpotent graded Lie algebra g = V ⊕∧2 V generated by the finite
dimensional vector space V having Lie bracket

[x,y] :=

{

x∧ y x,y ∈V
0 otherwise

. (2)

We denote the Universal Enveloping Algebra Ug by PS and will refer to it as
parastatistics algebra (by some abuse1). The parastatistics algebra PS(V) generated
in V is graded

PS(V ) :=Ug=U(V ⊕
∧2

V ) = T (V )/([[V,V ],V ]).

We shall write simply PS when the space of generators V is clear from the context.
Artin and Schelter [1] introduced a class of regular algebras sharing some “good”

homological properties with the polynomial algebra K[V ]. These algebras were
dubbed Artin–Schelter regular algebras (AS-regular algebra for short).

1Strictly speaking PS(V ) is the creation parastatistics algebra, closed by creation operators alone.
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Definition 2.1 (AS-regular algebras). A connected graded algebra A =K⊕A1⊕
A2⊕ . . . is called Artin–Schelter regular of dimension d if

(i) A has finite global dimension d,
(ii) A has finite Gelfand–Kirillov dimension,

(iii) A is Gorenstein, i.e., ExtiA (K,A ) = δ i,d
K.

A general theorem claims that the UEA of a finite dimensional positively graded
Lie algebra is an AS-regular algebra of global dimension equal to the dimension
of the Lie algebra [5]. Hence the parastatistics algebra PS is AS-regular of global
dimension d = dimV (dimV+1)

2 . In particular the finite global dimension of PS implies
that the ground fieldK has a minimal resolution P• by projective left PS-modules Pn

P• : 0→ Pd → ··· → Pn → ··· → P2 → P1 → P0
ε→K→ 0. (3)

HereK is a trivial left PS-module, the action being defined by the projection ε onto
PS0 = K. Since PS is graded and, in the category of graded modules projective
module, is the same as free module [2], we have Pn

∼= PS⊗En where En are finite
dimensional vector spaces.

The minimal projective resolution is unique (up to an isomorphism). Minimality
implies that the complexK⊗PS P• has “zero differentials” hence

H•(K⊗PS P•) =K⊗PS P• = En.

One can calculate the derived functor TorPS
n (K,K) using the resolution P•, it yields

TorPS
n (K,K) = En. (4)

The data of a minimal resolution of K by free PS-modules provides an easy way
to find TorPS

n (K,K). Conversely if the spaces TorPS
n (K,K) are known, then one can

construct a minimal free resolution of K.
The Gorenstein property guarantees that when applying the functor

HomPS(−,PS) to the minimal free resolution P• we get another minimal free
resolution P• := HomPS(P•,PS) of K by right PS-modules

P• : 0←K← P
′

d ← ··· ← P
′

n ← ··· ← P
′

2 ← P
′

1 ← P
′

0 ← 0 (5)

with P
′

n
∼= E∗n⊗PS. Note that by construction E∗n =ExtnPS(K,K), thus one has vector

space isomorphisms [2]

En
∼= E∗n ∼= TorPS

n (K,K)∼= ExtnPS(K,K). (6)

The Gorenstein property is the analog of the Poincaré duality since it implies

E∗d−n
∼= En.
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The finite global dimension d of PS and the Gorenstein condition imply that its
Yoneda algebra

E • := Ext•PS(K,K)
∼=

d
⊕

n=0

E∗n

is Frobenius [12].

3 Homology and Cohomology of g

Let us first recall that the standard Chevalley-Eilenberg chain complex C•(g) =
(Ug⊗K∧pg,dp) where the differential reads

dp(u⊗ x1∧ . . .∧ xp) =∑
i
(−1)i+1uxi⊗ x1∧ . . .∧ x̂i∧ . . .∧ xp

+∑
i< j

(−1)i+ ju⊗ [xi,x j]∧ x1∧ . . .∧ x̂i∧ . . .∧ x̂ j ∧ . . .∧ xp

(7)

provides a non-minimal projective (in fact free) resolution of K, C(g)
ε→ K. With

the latter resolution C•(g) one calculates homologies of the derived complexK⊗PS

C•(g)

En = TorPS
n (K,K)∼= Hn(K⊗PS C•(g)) = Hn(g,K),

coinciding with the homologies Hn(g,K) of the Lie algebra g with trivial co-
efficients. The derived complex K⊗PS C•(g) is the chain complex with degrees
∧•g=K⊗PS PS⊗∧•g and differentials ∂p := id⊗PS dp :

∧pg→∧p−1g.
The differential ∂ is induced by the Lie bracket [ · , · ] :

∧2g→ g of the graded Lie
algebra g = g1⊕ g2. It identifies a pair of degree 1 generators ei,e j ∈ g1 with one
degree 2 generator ei j := (ei∧e j) = [ei,e j] ∈ g2. The differential ∂p is the extension
of the mapping ∂2 :=−[ · , · ] on the exterior powers

∧pg. In greater details the chain
degrees read

∧p
g=
∧p

(V ⊕
∧2

V ) =
⊕

s+r=p

∧s
(
∧2

V )⊗
∧r

(V ) (8)

and differentials ∂p=r+s :
∧s(
∧2V )⊗∧r(V )→ ∧s+1(

∧2V )⊗∧r−2(V ) are given by

∂p : ei1 j1 ∧ . . .∧ eis js ⊗ e1∧ . . .∧ er �→
∑
i< j

(−1)i+ jei j ∧ ei1 j1 ∧ . . .∧ eis js ⊗ e1∧ . . .∧ êi∧ . . .∧ ê j ∧ . . .∧ er.
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In duality, one has the cochain complex HomPS(C(g),K) = (
∧•g∗,δ ) calculating

the cohomology2

E∗n = ExtnPS(K,K)
∼= Hn(HomPS(C(g),K)) = Hn(g,K). (9)

The coboundary map δ p :
∧pg∗ →∧p+1g∗ is transposed to the differential ∂p+1

δ p : e∗i1 j1 ∧ . . .∧ e∗is js ⊗ e∗1∧ . . .∧ e∗r �→
s

∑
k=1
∑

ik< jk

(−1)i+ je∗i1 j1 ∧ . . .∧ ê∗ik jk ∧ . . .∧ e∗is js ⊗ e∗ik ∧ e∗jk ∧ e∗1∧ . . .∧ . . .∧ e∗r ,

(10)

it is (up to a conventional sign) the extension of the dualization of the Lie bracket
δ 1 := [ · , · ]∗ : g∗ → ∧2g∗ by the Leibniz rule (i.e., as derivation).

The algebra
∧•g∗ is super-commutative (or graded-commutative) so (

∧•g∗,δ ) is
a (super-)commutative DGA.

It is important that in the complexes (
∧pg,∂p) and (

∧pg∗,δ p) two different
degrees are involved; one is the homological degree p := r+ s counting the number
of g-generators, while the second is the tensor degree t := 2s+r (also called weight).
The differentials ∂ and δ preserve the tensor degree t but the spaces Hn(g,K) and
Hn(g,K) are not homogeneous in t.

4 Littlewood Formula and PS

In this section we review the beautiful result of Józefiak and Weyman [7] giving a
representation-theoretic interpretation of the Littlewood formula

∏
i
(1− xi)∏

i< j
(1− xix j) = ∑

λ :λ=λ ′
(−1)

1
2 (|λ |+r(λ ))sλ (x). (11)

Here the sum is over the self-dual Young diagrams λ , sλ (x) stands for the Schur
function and r(λ ) stands the rank of λ which is the number of diagonal boxes in λ .

An irreducible GL(V )-module Vλ is called Schur module, it has a basis labelled
by semistandard Young tableaux which are fillings of the Young diagram λ with
the numbers of the set {1, . . . ,dimV}. The action of the linear group GL(V ) on
the space V of the generators of the Lie algebra g induces a GL(V )-action on the
UEA PS =Ug ∼= S(V ⊕Λ2V ) and on the space

∧•g ∼= ∧•(V ⊕∧2V ). The algebra
PS(V) has remarkable property, it is a model of the linear group GL(V ), in the sense
that it contains every polynomial finite-dimensional irreducible representation Vλ of
GL(V ) once and only once

PS(V )∼=⊕λVλ .

2In the presence of metric one has δ := ∂ ∗ (see below)
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A nice combinatorial proof of this fact was given by Chaturvedi [3]. The
GL(V )-model PS(V) enjoys the universal property that every parastatistics Fock
representation specified by the parastatistics order p∈N0 is a factor of PS(V) [4,10].

The differential ∂ commutes with the GL(V ) action and the homology H•(g,K)
is also a GL(V )-module. The decomposition of the GL(V )-module Hn(g,K) into
irreducible polynomial representations Vλ is given by the following theorem;

Theorem 4.1 (Józefiak and Weyman [7], Sigg [13]). The homology H•(g,K) of
the 2-nilpotent Lie algebra g = V ⊕∧2V decomposes into irreducible GL(V )-
modules

Hn(g,K) = Hn(
∧•

g,∂ )∼= TorPS
n (K,K)(V )∼=

⊕

λ :λ=λ ′
Vλ (12)

where the sum is over self-conjugate Young diagrams λ such that n= 1
2 (|λ |+r(λ )).

The data Hn(g,K) = TorPS
n (K,K) encodes the minimal free resolution P• (cf. (3)).

The acyclicity of the complex P• implies an identity about the GL(V )-characters

chPS(V) .ch

(

⊕

λ :λ=λ ′
(−1)

1
2 (|λ |+r(λ ))Vλ

)

= 1.

The character of a Schur module Vλ is the Schur function, chVλ = sλ (x). Due to the
Poincaré–Birkhoff–Witt theorem chPS(V) = chS(V ⊕∧2V ) thus the identity reads

∏
i

1
(1− xi)

∏
i< j

1
(1− xix j)

∑
λ :λ=λ ′

(−1)
1
2 (|λ |+r(λ ))sλ (x) = 1. (13)

But the latter identity is nothing but rewriting of the Littlewood identity (11). The
moral is that the Littlewood identity reflects a homological property of the algebra
PS, namely the above particular structure of the minimal projective (free) resolution
of K by PS-modules.

5 Homotopy Algebras A∞ and C∞

Definition 5.2 (A∞-algebra). A homotopy associative algebra, or A∞-algebra, over
K is a Z-graded vector space A =

⊕

i∈ZAi endowed with a family of graded
mappings (operations)

mn : A⊗n → A, deg(mn) = 2− n n≥ 1

satisfying the Stasheff identities SI(n) for n≥ 1

∑
r+s+t=n

(−1)r+stmr+1+t(Id⊗r⊗ms⊗ Id⊗t) = 0 SI(n)

where the sum runs over all decompositions n = r+ s+ t.
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Here we assume the Koszul sign convention ( f ⊗ g)(x⊗ y) = (−1)|g||x| f (x)⊗ g(y).
We define the shuffle product Shp,q : A⊗p⊗A⊗q→ A⊗p+q throughout the expression

(a1⊗ . . .⊗ ap)� (ap+1⊗ . . .⊗ ap+q) = ∑
σ∈Shp,q

sgn(σ)aσ−1(1)⊗ . . .⊗ aσ−1(p+q)

where the sum runs over all (p,q)-shuffles Shp,q, i.e., over all permutationsσ ∈ Sp+q

such that σ(1)< σ(2)< .. . < σ(p) and σ(p+ 1)< σ(p+ 2)< .. . < σ(p+ q).

Definition 5.3 (C∞-algebra [8]). A homotopy commutative algebra, or C∞-algebra,
is an A∞-algebra {A,mn} such that each operation mn vanishes on non-trivial shuffles

mn ((a1⊗ . . .⊗ ap)� (ap+1⊗ . . .⊗ an)) = 0, 1≤ p≤ n− 1. (14)

In particular for m2 we have m2(a⊗b±b⊗a)= 0, so a C∞-algebra such that mn = 0
for n≥ 3 is a (super-)commutative DGA.

A morphism of two A∞-algebras A and B is a family of graded maps fn : A⊗n → B
for n≥ 1 with deg fn = 1− n such that the following conditions hold

∑
r+s+t=n

(−1)r+st fr+1+t(Id⊗r⊗ms⊗ Id⊗r) = ∑
1≤r≤n

(−1)Smr( fi1 ⊗ fi2 ⊗ . . .⊗ fir)

where the sum is on all decompositions i1 + . . .+ ir = n and the sign on RHS is
determined by S = ∑r−1

k=1(r− k)(ik − 1). The morphism f is a quasi-isomorphism
of A∞-algebras if f1 is a quasi-isomorphism. It is strict if fi = 0 for all i 
= 1. The
identity morphism of A is the strict morphism f such that f1 is the identity of A.

A morphism of C∞-algebras is a morphism of A∞-algebras vanishing on non-
trivial shuffles fn ((a1⊗ . . .⊗ ap)� (ap+1⊗ . . .⊗ an)) = 0, 1≤ p ≤ n− 1.

6 Homotopy Transfer Theorem

Lemma 6.1. Every cochain complex (A,d) of vector spaces over a field K has its
cohomology H•(A) as a deformation retract.

One can always choose a vector space decomposition of the cochain complex
(A,d) such that An ∼= Bn ⊕Hn ⊕ Bn+1 where Hn is the cohomology and Bn is
the space of coboundaries, Bn = dAn−1. We choose a homotopy h : An → An−1

which identifies Bn with its copy in An−1 and is 0 on Hn⊕Bn+1. The projection p

to the cohomology and the cocycle-choosing inclusion i given by An
p

�� Hn

i

��

are chain homomorphisms (satisfying the additional conditions hh = 0, hi = 0 and
ph = 0). With these choices done the complex (H•(A),0) is a deformation retract
of (A,d)
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h
��

(A,d)
p

�� (H•(A),0),
i

�� pi = IdH•(A), ip− IdA = dh+ hd.

Let now (A,d,μ) be a DGA, i.e., A is endowed with an associative product μ
compatible with d. The cochain complexes (A,d) and its contraction H•(A) are
homotopy equivalent, but the associative structure is not stable under homotopy
equivalence. However the associative structure on A can be transferred to an A∞-
structure on a homotopy equivalent complex, a particular interesting complex
being the deformation retract H•(A). For a friendly introduction to homotopy
transfer theorems in much boarder context we send the reader to the textbook [11],
see Chap. 9.

Theorem 6.2 (Kadeishvili [8]). Let (A,d,μ) be a (commutative) DGA over a field
K. There exists a A∞-algebra (C∞-algebra) structure on the cohomology H•(A)
and a A∞(C∞)-quasi-isomorphism fi : (⊗iH•(A),{mi})→ (A,{d,μ ,0,0, . . .}) such
that the inclusion f1 = i : H•(A) → A is a cocycle-choosing homomorphism of
cochain complexes. The differential m1 on H•(A) is zero (m1 = 0) and m2 is strictly
associative operation induced by the multiplication on A. The resulting structure is
unique up to quasi-isomorphism.

Kontsevich and Soibelman [9] gave an explicit expressions for the higher
operations of the induced A∞-structure as sums over decorated planar binary trees
with one root where all leaves are decorated by the inclusion i, the root by the
projection p the vertices by the product μ of the (commutative) DGA (A,d,μ)
and the internal edges by the homotopy h. The C∞-structure implies additional
symmetries on trees. We will make use of the graphic representation for the binary
operation on H•(A)

i i

μ

p

m2(x,y) := pµ(i(x),i(y)) or m2 =

and the ternary one m3(x,y,z) = pμ(i(x),hμ(i(y), i(z)))− pμ(hμ(i(x), i(y)), i(z))
being the sum of two planar binary trees with three leaves

i

i i
μ

h

m3 = μ
p

−

i i
iμ

h

μ
p
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Theorem 6.3. The cohomology H•(g,K)∼= Ext•PS(K,K) of the 2-nilpotent graded
Lie algebra g=V ⊗∧2V is a homotopy commutative algebra which is generated in
degree 1 (i.e., in H1(g,K)) by the operations m2 and m3.

Sketch of the proof. Let us choose a metric g( · , ·) = 〈 · , · 〉 on the vector space V

and an orthonormal basis 〈ei,e j〉= δi j. The choice induces a metric on
∧•g

g∼=∧•g∗.
Due to the isomorphisms TorPS

n (K,K) ∼= ExtnPS(K,K) (see (6)) and V ∼= V ∗
the Theorem 4.1 implies the decomposition of H•(g,K) into irreducible GL(V )-
modules

Hn(g,K)∼= Hn(
∧

g∗,δ )∼= ExtnPS(K,K)(V
∗)∼=
⊕

λ :λ=λ ′
Vλ

where the sum is over self-conjugate diagrams λ such that n = 1
2 (|λ |+ r(λ )).

In the presence of metric g the differential δ is identified with the adjoint of ∂ ,

δ
g

:= ∂ ∗ while ∂ plays the role of a homotopy. In view of Lemma 6.1 we have the
cohomology H•(

∧•g∗,δ •) as deformation retract of the complex (
∧•g∗,δ •),

pi = IdH•(∧•g∗), ip− Id∧•g∗ = δδ ∗+ δ ∗δ , δ ∗ g
= ∂ .

Here the projection p identifies the subspace kerδ ∩ kerδ ∗ with H•(
∧•g∗), which

is the orthogonal complement of the space of the coboundaries imδ . The cocycle-
choosing homomorphism i is Id on H•(

∧•g∗) and zero on coboundaries.
We apply the Kadeishvili homotopy transfer Theorem 6.2 for the commutative

DGA (
∧•g∗,μ ,δ •) and its deformation retract H•(

∧•g∗)∼= H•(g,K) and conclude
that the cohomology H•(g,K) is a C∞-algebra.

The Kontsevich and Soibelman tree representations of the operations mn provide
explicit expressions. Let us take μ to be the super-commutative product ∧ on the
DGA (

∧•g∗,δ •). The projection p maps onto the Schur modules Vλ with λ = λ ′.
The binary operation on the degree 1 generators ei ∈H1(g,K) is trivial, one gets

m2(ei,e j) = p(ei∧ e j) = 0 p(V(12)) = 0.

Hence H•(g,K) could not be generated in H1(g,K) as algebra with product m2.
The ternary operation m3 restricted to H1(g,K) is nontrivial, indeed one has

m3(ei,e j,ek) = p
{

ei∧∂ (e j ∧ ek)− ∂ (ei∧ e j)∧ ek
}

= p
{

ei j ∧ ek− ei∧ e jk
}

= p
{

(ei j ∧ ek + e jk∧ ei + eki∧ e j)− eki∧ e j
}

= eik ∧ e j ∈H2(g,K)

The completely antisymmetric combination in the brackets (. . .) spans the Schur
module V(13), p(ei j ∧ ek + e jk ∧ ei + eki ∧ e j) = 0 yields a Jacobi-type identity.

The monomials ei j ∧ ek modulo V(13) span a Schur module V(2,1) ∈ H2(g,K)

with basis in bijection with the semistandard Young tableaux eik ∧ e j ↔ i j
k

and

ei j ∧ ek ↔ i k
j

.
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We check the symmetry condition on ternary operation m3 in C∞-algebra; indeed
m3 vanishes on the (signed) shuffles Sh1,2 and Sh2,1

m3(ei�e j⊗ek)=m3(ei,e j,ek)−m3(e j,ei,ek)+m3(e j,ek,ei)= 0=m3(ei⊗e j�ek).

The operation mn is bigraded by homological and tensor gradings of bidegree
(p, t) = (2− n,0). The bi-grading impose the vanishing of many higher products.

On the level of Schur modules the ternary operation glues three fundamental
GL(V )-representations V� into a Schur module V(2,1). By iteration of the process of
gluing boxes we generate all elementary hooks Vk :=V(1k,k+1),

m3(V�,V�,V�) =V , m3

(

V ,V�,V�

)

=V , . . . ,m3(Vk,V0,V0) =Vk+1.

In our context the more convenient notation for Young diagrams is due to Frobenius:
λ := (a1, . . . ,ar|b1, . . .br) stands for a diagram λ with ai boxes in the i-th row on
the right of the diagonal, and with bi boxes in the i-th column below the diagonal
and the rank r = r(λ ) is the number of boxes on the diagonal.

For self-dual diagrams λ = λ ′, i.e., ai = bi we set Va1,...,ar := V(a1,...,ar|a1,...ar)

when a1 > a2 > .. . > ar ≥ 0 (and set the convention Va1,...,ar := 0 otherwise). Any
two elementary hooks Va1 and Va2 can be glued together by the binary operation m2,
the decomposition of m2(Va1 ,Va2)

∼= m2(Va2 ,Va1) is given by

m2(Va1 ,Va2) =Va1,a2 ⊕ (
a2
⊕

i=1

Va1+i,a2−i) a1 ≥ a2

where the “leading” term Va1,a2 has the diagram with minimal height. Hence any
m2-bracketing of the hooks Va1 ,Va2 . . . ,Var yields3 a sum of GL(V )-modules

m2(. . .m2(m2(Va1 ,Va2),Va3), . . . ,Var) =Va1,...,ar ⊕ . . .

whose module with minimal height is precisely Va1,...,ar . We conclude that all
elements in the C∞-algebra H•(g,K) can be generated in H1(g,K) by m2 and m3. �

Acknowledgements We are grateful to Jean-Louis Loday for many enlightening discussions and
his encouraging interest. The work was supported by the French–Bulgarian Project Rila under the
contract Egide-Rila N112.

3The operation m2 is associative thus the result does not depend on the choice of the bracketing.
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Fixed Point Factorization

Elaine Beltaos

Abstract Fixed point factorization is a significant simplification of the modular
data of an RCFT involving primaries fixed by simple-currents. The WZW models
possess this feature. In the case of the A-series, fixed point factorization has been
used to calculate NIM-rep coefficients, which has allowed for the computation of
D-brane charges and charge groups in string theory. In this paper, we discuss fixed
point factorization and its application to NIM-reps.

1 Introduction

The characters of an affine algebra obey a modularity property (see (1), (2)). This
modularity is governed by two matrices S and T (the so-called modular data)
corresponding to the transformations τ �→ −1/τ and τ �→ τ + 1 resp., where τ is
in the upper half plane. The S-matrix is the more important of the two.

In [16], Gannon–Walton found that the modular S-matrix entries Sλμ for A(1)
r

factored into S-matrix entries for a smaller-rank A-algebra, when at least one of
λ or μ is fixed by a simple-current. This fixed point factorization was used later
as a tool by Gaberdiel–Gannon to compute NIM-rep coefficients (a NIM-rep is a
nonnegative integer representation of the fusion ring), which in turn allowed for the
computation of D-brane charges and charge groups [10, 11]. Their result showed
that the NIM-rep for the non-simply connected Lie group SU(n)/Zd (where d 
= 1
is a divisor of n) coincides with the fusion ring of the simply connected SU(n/d).

The existence and utility of the A-series fixed point factorization leads to the
question of whether this feature is particular to the A-algebras or occurs in more

E. Beltaos (�)
Grant MacEwan University, 10700 - 104 Avenue Edmonton, Alberta, T5J 4S2, Canada
e-mail: beltaose@macewan.ca

V. Dobrev (ed.), Lie Theory and Its Applications in Physics: IX International Workshop,
Springer Proceedings in Mathematics & Statistics 36,
DOI 10.1007/978-4-431-54270-4 38, © Springer Japan 2013

511



512 E. Beltaos

(all?) RCFTs. Indeed, the WZW models do possess this feature [2].1 In this paper,
we present an example of fixed point factorization, and we apply our formula
towards calculating the corresponding NIM-rep coefficients.

1.1 Notation

By X (1)
r , where X ∈ {A,B,C,D}, we mean the nontwisted affine algebra with

underlying simple finite dimensional algebra Xr. We let P+(Xr) (resp. Pk
+(X

(1)
r ))

denote the set of highest weights (resp. level k highest weights) for Xr (resp. X (1)
r ).

We denote the nth fundamental weight byΛn, n= 0, . . . ,r. We useN to denote the set
of nonnegative integers, H to denote the upper half plane, and ∗ to denote complex
conjugation.

2 Modular Data

The characters chλ of an affine algebra X (1)
r

2 (specialized to τ in the upper half
plane) satisfy the modularity properties:

chλ (−1/τ) =∑
μ

Sλμchμ(τ) (1)

chλ (1+ τ) =∑
μ

Tλμchμ(τ), (2)

where the sum is over all μ ∈ Pk
+.

The coefficient matrices S and T defined by (1) and (2) generate a representation
of the modular group SL2(Z) of 2× 2 determinant 1 integer matrices, namely:

(

0 −1
1 0

)

�→ S ;

(

1 1
0 1

)

�→ T.

The matrices S and T are called modular data; their entries lie in some cyclotomic
field. Modular data satisfy several properties, including:

• T is diagonal and of finite order (T N = I for some positive integer N)
• S is unitary and symmetric (SS† = I, where † denotes complex conjugate

transpose)
• (ST )3 = S2 =: C, where C is an order-two permutation matrix called charge-

conjugation
• S0λ ≥ S00 > 0 for all λ ∈ Pk

+, where 0 = kΛ0 is the vacuum.

1The exceptional algebras E(1)
6 and E(1)

7 have nontrivial simple-currents. These are yet to be worked
out, although current work suggests that fixed point factorization formulas should be attainable.
2For reasons of brevity, we focus here on the nontwisted case, although fixed point factorizations
exist for the twisted algebras as well [2].
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Modular data occur in many different areas in mathematics (e.g. finite groups [7]).
For a more detailed introduction to modular data, see [12].

A key property of modular data is that the numbers defined by Verlinde’s formula:

Nν
λ μ := ∑

κ∈Pk
+

SλκSμκS∗νκ
S0κ

(3)

are nonnegative integers. The Nν
λ μ are called fusion coefficients; they are structure

constants for a commutative, associative ring called the fusion ring (i.e. the ring
multiplication is given by xλ ∗ xμ = ∑ν Nν

λ μxν ). Equation (3) says that the fusion
matrices Nλ defined by (Nλ )μ,ν := Nν

λ μ are simultaneously diagonalized by S, with
eigenvalues Sλκ/S0κ . A nonnegative integer representation of a fusion ring is called
NIM-rep. We will discuss NIM-reps in Sect. 4.

One of the simplest examples of modular data is for A(1)
1 . The S and T -matrices

are

Sλμ =

√

2
k+ 2

sin

[

π
(λ + 1)(μ+ 1)

k+ 2

]

Tλλ = exp

[

−π i
4

]

exp

[

π i
(λ + 1)2

2(k+ 2)

]

,

where 0≤ λ ,μ ≤ k, and the fusion coefficients are

Nν
λ μ =

{

1 if ν ≡2 λ + μ and |λ − μ | ≤ ν ≤ min{λ + μ ,2k−λ − μ}
0 else

.

More generally, a useful formula for the S-matrix is given by Kac–Peterson
in [18]:

Sλμ = κ−r/2s ∑
w∈W

(detw)exp

[

−2π i
w(λ +ρ) · (μ+ρ)

κ

]

, (4)

where W is the Xr Weyl group, ρ = (1, . . . ,1) is the Weyl vector, κ and s are
constants depending on r and k, and fusion coefficients can be calculated via the
Kac–Walton formula [17, 19].

Comparing (4) with the Weyl character formula yields

Sλμ
S0μ

= chλ

(

−2π i
μ+ρ
κ

)

=: χλ (μ), (5)

which relates ratios of the S-matrix to the finite dimensional simple characters at
elements of finite order. We proceed with finding a fixed point factorization for
χλ (μ) as this is equivalent to finding one for the S-matrix. Equation (5) is the key
to our fixed point factorization formulas, as well as the reason for the simplification
of our problem to the fundamental representations.

A simple-current of X (1)
r , level k, is a weight ν ∈ Pk

+ for which there exists
a permutation J of Pk

+ such that Nμ
ν,λ = δμ,Jλ with ν = J0. These are precisely

those ν such that S0ν = S00. For the WZW models, simple-currents correspond to
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extended Dynkin diagram symmetries J [8], with the exception of E(1)
8 , level 2.3 The

permutation on Pk
+ can be realized by labelling each node of the extended diagram

with a Dynkin label of a weight λ—the diagram symmetry permutes the labels
yielding Jλ . We will refer to this permutation also as a simple-current. The set of

simple-currents for X (1)
r forms an Abelian group J , isomorphic to the centre of the

(universal cover of) the Lie group (with exception E(1)
8 level 2). For A(1)

r , J ∼=Zr+1,

for B(1)
r and C(1)

r , J ∼= Z2 and for D(1)
r , J ∼= Z4 (resp. Z2×Z2) if r is odd (resp.

even). We define a fixed point of a simple-current as an element ϕ of Pk
+ such that

Jϕ = ϕ .
Closely related to modular data is the modular invariant partition function for

the torus

Z (τ) = ∑
λ ,μ∈Pk

+

Mλμχλ (τ)χ∗μ(τ), (6)

for τ ∈H, describing how state-space decomposes into a finite sum ⊕Mλμλ ⊗μ of
V ⊗V ′-modules, where V , V ′ are the vertex operator algebras of holomorphic
and anti-holomorphic fields resp. Uniqueness of the vacuum yields M00 = 1.
Equivalently, we can consider the matrix M of coefficients, called a modular
invariant. Thus a modular invariant is a matrix, indexed by Pk

+, satisfying the
following properties:

M00 = 1

Mλμ ∈ N for all λ ,μ ∈ Pk
+

SM = MS ; T M = MT,

where S and T are the matrices defined in (1) and (2). The third property is modular
invariance Z (−1/τ) = Z (1+ τ) = Z (τ).

It is not difficult to prove that for a given level k, there are finitely many
modular invariants. The first modular invariant classification was achieved by

Cappelli–Itzykson–Zuber, for A(1)
1 [6] (for the “modern” approach, see [13]); the

modular invariants display an A-D-E pattern. More modular invariant classifications
followed (e.g. [14,15]). Few complete modular invariant classifications exist, due to
the existence of exceptional (E -type) invariants occurring at low levels. However,
for sufficiently high level k, modular invariants are generic and fall into two classes:
the A -type invariants, comprising the identity and its conjugations, and the D-type
invariants, comprising the simple-current invariants (and their conjugations), which
are constructed in a natural way from the group of simple-currents. These have
the form

M[J]λμ =
n

∑
�=1

δJ�λμδ
Z (QJ(λ )+ �rJ) , (7)

3But not all diagram symmetries are simple-currents.
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where δZ(x) = 1 if x ∈ Z and 0 else, and QJ(λ ) and rJ are rational numbers
depending on the particular algebra. The matrix M[J] is a modular invariant exactly
when TJ0,J0T ∗00 is an nth root of unity (where J has order n).

3 Fixed Point Factorisation

In this section, we give examples of fixed point factorization formulas for the

algebras A(1)
r and C(1)

r (r odd).
A classical result (see e.g. [5]) is that the character ring of the finite dimensional

simple algebra Xr is generated by the fundamental characters, that is, for each λ ∈
P+(Xr), there is a polynomial Pλ such that

chλ (μ) = Pλ (chΛ 1
(μ), . . . ,chΛ r

(μ)). (8)

Recall (5) relating X (1)
r S-matrix ratios to simple finite dimensional characters of Xr.

Putting these characters into (8) yields

χλ (μ) = Pλ (χΛ1(μ), . . . ,χΛr (μ)), (9)

which means that to show that a fixed point factorization exists, it is enough to show
that it exists at the fundamental weights.

3.1 The A-Series

This was the first incidence of fixed point factorization. This case was worked out
by Gannon–Walton in [16], where they found a fixed point factorization for all
λ ∈ Pk

+. We include the case that λ is a fundamental weight, as that is our main

interest. Let n := r + 1, and let Λ� be the �th fundamental weight for A(1)
r . Let d

be a proper divisor of n, and let ϕ be fixed by Jd , where J is a rotation of 2π/n.
Then ϕ is of the form (ϕ0, . . . ,ϕd−1, . . . ,ϕ0, . . . ,ϕd−1), i.e., n

d copies of the truncated

weight (ϕ0; . . . ,ϕd−1) =: ϕ ′, where ϕ ′ is a level kd
n weight for A(1)

d−1. The fixed point
factorization is

χΛ�
(ϕ) =

{

χ ′Λ ′
�d/n

(ϕ ′) if n
d |�

0 if n
d � �

, (10)

where primes denote A(1)
d−1 level kd

n quantities.
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3.2 The C-Series, r Odd

Let Λ� be the �th fundamental weight for C(1)
r , where r is odd, and let ϕ be a fixed

point for the order-two simple-current (λ0; . . . ,λr) �→ (λr; . . . ,λ0). To each fixed
point of J, associate the truncated weight ϕ ′ = (ϕ r−1

2
; . . . ,ϕ0), which is a level k/2

weight for C(1)
r−1

2
. We have the formula

χΛ�
(ϕ) =

{

(−1)mχ ′Λ ′m(ϕ
′) if �= 2m

0 else
, (11)

where m ∈ {0, . . . , r−1
2 }, and Λ ′m is the mth C(1)

r−1
2

fundamental weight.

3.3 Further Fixed Point Factorizations

The formulas we presented above are among the cleanest of the fixed point
factorization formulas. However, all of the formulas are elegant, involving only
linear combinations of fundamental weight characters of the smaller-rank algebra,
with coefficients ±1. The table below lists the smaller-rank algebras involved in
each case. We refer to the smaller-rank algebra for g as its “fixed point factorization
(FPF) algebra”.

For the D-series, Jv is the order-two graph automorphism exchanging the 0 and
1, and the r− 1 and r nodes, and Js is the order-two (resp. four) automorphism
λ �→ (λr; . . . ,λ0) (resp. λ �→ (λr−1;λr,λr−2, . . . ,λ0)) if r is even (resp. odd). The B
and C simple-currents are the only nontrivial extended diagram automorphisms.

4 The NIM-rep

Recall that the fusion coefficients defined by Verlinde’s formula (3) are nonnegative
integers, and they are structure constants for the fusion ring. A NIM-rep [1] is a
nonnegative integer matrix representation of a fusion ring. That is: for each λ , assign
a matrix Nλ with nonnegative integer entries, satisfying

NλNμ =∑
ν

Nν
λ μNν . (12)

We also require N0 = I and NCλ = N t
λ , where t denotes transpose. Two NIM-

reps N and N ′ are equivalent if there is a permutation matrix P such that Nλ =
PN ′

λ P−1 for all λ ∈ Pk
+. See [12] for an introduction to NIM-reps.
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The X (1)
r fusion ring is a homomorphic image of the Xr character ring. Thus the

NIM-rep, as a representation of the fusion ring, is a structure-preserving map and
respects (9). To determine a NIM-rep, it is therefore enough to know the NΛi at the
fundamental weights.

Every RCFT has a modular invariant and a NIM-rep. For example, the identity
modular invariant has NIM-rep λ �→ Nλ (the fusion matrices). The matrices
Nλ commute and are normal, so there is a unitary matrix Ψ simultaneously
diagonalizing the NIM-rep (note the similarity with (3)):

N y
λ x =∑

μ
Ψxμ

Sλμ
S0μ

Ψ†
yμ , (13)

where λ ∈ Pk
+(X

(1)
r ), x and y are boundary states (physically these are the possible

states of the endpoints of open strings), and the sum is over all exponents μ .
Recall the simple-current invariant (7) of a simple-current J. Its NIM-rep can

be constructed as follows. For each λ ∈ Pk
+, define ord(λ ) be the order of the

stabilizer of λ in 〈J〉. The boundary states are then given by J-orbits of weights
[λ , i] = {Jiλ | i = 0, . . . ,n− 1}, 1 ≤ j ≤ ord(λ ), where n is the order of J. The
multiplicity of λ is M[J]λλ . We will identify the multiset of exponents with the set
{(λ , j) | λ ∈ Pk

+,1≤ j ≤Mλλ} (if M[J]λλ = 0, then λ does not appear in this set).

For example, consider the algebra C(1)
3 at level k = 4. The order-two

simple-current group is generated by the simple-current J : (λ0;λ1,λ2,λ3) �→
(λ3;λ2,λ1,λ0). The set P4

+ contains thirty five primaries, three of which are fixed
points: namely (omitting the zeroth label) (1,1,1), (2,2,0) and (0,0,2) (these
all have order two). The entries of M[J] lie in the set {0,1,2} with Mλμ = 2 iff
λ = μ = ϕ where ϕ is a fixed point. There are twenty two boundary states and
exponents.
The boundary states are: [(0,0,0)], [(1,0,0)], [(0,1,0)], [(0,0,1)], [(2,0,0)],
[(1,1,0)], [(1,0,1)], [(0,2,0)], [(0,1,1)], [(3,0,0)], [(2,1,0)], [(2,0,1)], [(1,2,0)],
[(0,3,0)], [(4,0,0)], [(3,1,0)], [(1,1,1),1], [(1,1,1),2], [(2,2,0),1], [(2,2,0),2],
[(0,0,2),1], [(0,0,2),2], and the exponents are: (0,0,0), (0,1,0), (2,0,0), (1,0,1),
(0,2,0), (2,1,0), (0,3,0), (4,0,0), (0,1,2), (3,0,1), (2,0,2), (1,2,1), (1,0,3),
(0,4,0), (0,2,2), (0,0,4), ((1,1,1),1), ((1,1,1),2), ((2,2,0),1), ((2,2,0),2),
((0,0,2),1), ((0,0,2),2).

The difficulty in computing NIM-rep coefficients N[ψ, j]
λ [ϕ,i] arises when both ϕ and

ψ are fixed points of J (otherwise, the NIM-reps reduce to fusions, which are easy
to calculate). However, fixed point factorization resolves this problem, reducing the
NIM-reps to surprisingly simple expressions involving fusions.

We present here the case of C(1)
r , where r is odd. Using fixed point factoriza-

tion (11), we find these NIM-rep coefficients reduce to

N
[ψ, j]
Λ2m[ϕ,i]

=
1
2

(

Nψ
Λ2mϕ +(−1)i+ j+mN′ψ

′
Λ ′mϕ ′
)

, (14)
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and N
[ψ, j]
Λ�[ϕ,i]

= 1/2Nψ
Λ�ϕ if � is odd. The Λ ′m refers to the mth fundamental weight

for C(1)
r−1

2
, level k/2, and ϕ ′ is the truncated fixed point. Formula (14) first appeared

in [3] (some further NIM-reps have also been worked out there). The NIM-reps and
applications in string theory for the remaining WZW models will follow in [4], from
the fixed point factorizations in [2].

5 Concluding Remarks

The motivation for finding fixed point factorization formulas for the WZW models
was the development of the tool towards calculating D-brane charges for non-simply
connected Lie groups. The existence of a fixed point factorization for the WZW
models leads to several questions. Foremost among them are which other RCFTS
possess this feature, and what is a conceptual explanation for this phenomenon?

We also remark that the fixed point factorization algebras of Table 1 are in
exact correspondence with the orbit Lie algebras described by Fuchs–Schellekens–
Schweigert in [9] (given a simple finite dimensional or affine algebra g, its orbit Lie
algebra ğ is obtained through a diagram-folding technique). They showed that the
“twining characters” of a symmetrizable Kac–Moody algebra could be expressed
in terms of ordinary characters of its orbit Lie algebra. It would be interesting to
determine whether there is a connection between fixed point factorization and their
work.

Acknowledgements We are grateful to the organizers of LT-9 for the opportunity to present our
work and for hospitality during the workshop.

Table 1 Fixed point
factorization algebras for the
classical affine algebras

X(1)
r , level k Simple-current FPF algebra Level

A(1)
r Jd A(1)

d−1
kd

r+1

B(1)
r J A(2)

2(r−1) k

C(1)
r , r even J A(2)

2( r
2 )

k

C(1)
r , r odd J C(1)

r−1
2

k
2

D(1)
r Jv C(1)

r−2
k
2

D(1)
r , r even Js B(1)

r
2

k
2

D(1)
r , r odd Js C(1)

r−3
2

k
4
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Differential Invariants of Second-Order
Ordinary Differential Equations

M. Eugenia Rosado Marı́a

Abstract The notion of a differential invariant for systems of second-order
differential equations σ on a manifold M with respect to the group of vertical
automorphisms of the projection p : R × M → R, is defined and the Chern
connection ∇σ attached to a SODE σ allows one to determine a basis for
second-order differential invariants of a SODE.

1 Introduction and Preliminaries

Geometry of second order ordinary differential equations (SODE for short) is a
classical subject with an extensive knowledge. In [2], Chern associated a linear
connection to each system of second-order ordinary differential equations, which
has been studied by several authors from different points of view since then; e.g.,
see [1, 3, 6] among others. Below is shown how Chern’s connection can be used in
order to obtain a geometric basis for the algebra of differential invariants attached
to a SODE in the sense of [5].

Let M be a connected manifold of class C∞ and dimension n. Let p : R×M→ R

be the projection p(t,x) = t. The bundle of r-jets of curves fromR into M is denoted
by pr : Jr(R,M)→ R, r ≥ 0, with projections pr

s : Jr(R,M)→ Js(R,M) for r > s,
and J0(R,M) = R×M. Let jrγ : R→ Jr(R,M) denote the r-jet prolongation of the
curve γ : R→M. Every coordinate system (xi), 1≤ i≤ n, on M induces a coordinate
system (t,xi; ẋi, ẍi) on J2(R,M) as follows:

ẋi ( j2
t γ
)

=
d
(

xi ◦ γ)

dt
(t), ẍi ( j2

t γ
)

=
d2
(

xi ◦ γ)

dt2 (t).
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A system of second-order ordinary differential equations,

ẍi = Fi (t,x j, ẋ j) , Fi ∈C∞ (J1(R,M)
)

, 1≤ i≤ n, (1)

can also be viewed as a section σ : J1(R,M)→ J2(R,M) of the projection p2
1 by

the formulas ẍi ◦σ = Fi, 1≤ i≤ n. The correspondence σ ↔ (Fi)n
i=1 is natural and

bijective. In Sect. 2 the notion of a differential invariant for SODEs with respect to
the group of p-vertical automorphisms of the submersion p, denoted by Autv(p) is
introduced.

The main result in this paper states that invariant functions factor though the
curvature mapping induced by the curvature Kσ of the splitting Hσ attached to a
SODE σ (see the formulas (5) and (6) below), which almost coincides with the
torsion tensor field of the Chern’s connection.

2 Differential Invariants

A diffeomorphism Φ of R×M is said to be a p-vertical automorphism of the
submersion p if it is of the form Φ(t,x) = (t,φ(t,x)), ∀(t,x) ∈ R×M, where
φ : R×M→M is a smooth mapping. The set of p-vertical automorphism is a group
with respect to composition of maps, which is denoted by Autv(p). For each r ≥ 0,
every Φ ∈Autv(p) induces a diffeomorphismΦ(r) on Jr(R,M) by setting

Φ(r) ( jr
t γ) = jr

t

(

φ ◦ j0γ
)

, ∀γ ∈C∞(R,M). (2)

Let (p2
1)

r : Jr(p2
1)→ J1(R,M) be the r-jet bundle of the submersion p2

1. According
to (2), every Φ ∈ Autv(p) induces diffeomorphisms Φ(1) of J1(R,M) and Φ(2) of
J2(R,M), such that p2

1 ◦Φ(2) =Φ(1) ◦ p2
1. Hence, for every r≥ 0, the pairΦ(2),Φ(1)

induces a transformation (Φ(2))(r) : Jr(p2
1)→ Jr(p2

1) given by

(Φ(2))(r)( jr
ξ σ) = jr

Φ(1)(ξ )(Φ
(2) ◦σ ◦ (Φ(1))−1).

If U ⊆ Jr(p2
1) is an open subset invariant under all these transformations, then a

smooth function I : U → R is said to be a differential invariant of order r with
respect to the group Autv(p) if for everyΦ ∈Autv(p) the following equation holds:
I ◦ (Φ(2))(r) = I . We set I(σ ,ξ ) = I ( jr

ξ σ), ξ ∈ J1(R,M), for a given SODE σ
on M, then the invariance condition above reads as:

I
(

Φ ·σ ,Φ(1)(ξ )
)

= I(σ ,ξ ), ∀ξ ∈ J1(R,M), ∀Φ ∈ Autv(p).

Proposition A.1. If Φt ∈ Autv(p) is the flow of a p-vertical vector field X in

X(R×M), thenΦ(2)
t is the flow of a p2-vertical vector field X (2) ∈X(J2(R,M)) and
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(Φ(2)
t )(r) is the flow of a vector field (X (2))(r) on Jr(p2

1). Every differential invariant
of order r is a first integral of the distribution D (r) on Jr(p2

1) spanned by all the r-jet
prolongations (X (2))(r) of p-vertical vector fields.

3 The Chern Connection Attached to a SODE

As is known, p1
0 : J1(R,M)→ R×M is an affine bundle modelled over p′∗TM,

p′ : R×M → M denoting the projection p′(t,x) = x. In fact, if v ∈ Tx0 M, j1
t0γ ∈

J1(R,M) with γ(t0) = x0, then v + j1
t0γ = j1

t0γ
′ is defined by the following two

formulas: γ ′(t0) = x0, γ ′∗(d/dt)t0 = v + γ∗(d/dt)t0 . Hence, the following exact
sequence holds:

0→ (p′ ◦ p1
0

)∗
T M

ε−→V
(

p1
0

)→ T (J1(R,M))
(p1

0)∗−−→ (p1
0)
∗T (R×M)→ 0, (3)

where V
(

p1
0

)

denotes the vector subbundle of p1
0-vertical vectors and ε is defined

by the directional derivative, i.e.,

ε
(

j1
t0γ,v
)

( f ) = ∂/∂ t|t=0 f
(

tv+ j1
t0γ
)

, v ∈ Tγ(t0)M, f ∈C∞(J1(R,M)).

Every SODE σ defines a vector field Xσ ∈X(J1(R,M))—called the dynamical flow
in [6]—by (Xσ )ξ =( j1γ)∗(d/dt)t0 , ∀ξ ∈ (p1)−1(t0), γ being the only solution to (1)
satisfying the initial conditions γ i(t0) = xi (ξ ), dγ i/dt(t0) = ẋi (ξ ), where γ i = xi ◦γ ,
1≤ i≤ n; its local expression is Xσ = ∂

∂ t + ẋi ∂
∂xi +Fi ∂

∂ ẋi .

The Lie derivative of the tensor field J = ω i⊗ ∂
∂ ẋi , ω i = dxi− ẋidt on J1(R,M)

(cf. [6, formula (1.13)]) along Xσ is

LXσ J =−ω i⊗Xσ
i +ϖ j⊗ ∂

∂ ẋ j ,

where Xσ
i = ∂

∂xi +
1
2
∂F j

∂ ẋi
∂
∂ ẋ j and ϖ j = dẋ j−F jdt− 1

2
∂F j

∂ ẋi ω i. Therefore, LXσ J is di-
agonalizable with eigenvalues 0, +1,−1, and multiplicities 1, n, n, respectively (cf.
[1, p. 6620]). If T 0(J1(R,M)), T+(J1(R,M)), T−(J1(R,M)) are the corresponding
vector subbundles of eigenvectors, then

T (J1(R,M)) = T 0(J1(R,M))⊕T−(J1(R,M))⊕T+(J1(R,M)),

T 0(J1(R,M)) = 〈Xσ 〉 ,
T−(J1(R,M)) = 〈Xσ

i 〉 ,

T+(J1(R,M)) = V
(

p1
0

)

=

〈

∂
∂ ẋi

〉

.
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The epimorphism (p1
0)∗ in (3) induces an isomorphism

(p1
0)∗
∣

∣

T 0⊕T− : T 0(J1(R,M))⊕T−(J1(R,M))
∼=−→ (p1

0)
∗T (R×M) , (4)

whose inverse mapping determines a section Hσ of (p1
0)∗ given by

Hσ = dt⊗Xσ +ω i⊗Xσ
i . (5)

Hence the exact sequence (3) splits and every X ∈ T
(

J1(R,M)
)

can uniquely be
written as X = Xv +Xh, where

Xh = Hσ ((p1
0)∗X
) ∈ T 0(J1(R,M))⊕T−(J1(R,M)), Xv = X−Xh ∈V (p1

0).

The curvature form of the splitting (5); i.e.,

Kσ ∈ ∧2T ∗
(

J1(R,M)
)⊗V(p1

0),

Kσ (X ,Y ) =
[

Xh,Y h
]v
, ∀X ,Y ∈ X(J1(R,M)), (6)

is locally given as follows:

Kσ =−
(

Pk
j dt ∧ω j +∑

i< j

T k
i jω

i∧ω j

)

⊗ ∂
∂ ẋk

, (7)

where

T k
i j =

1
2

(

∂ 2Fk

∂xi∂ ẋ j −
∂ 2Fk

∂x j∂ ẋi +
1
2

(

∂Fh

∂ ẋi

∂ 2Fk

∂ ẋh∂ ẋ j
− ∂Fh

∂ ẋ j

∂ 2Fk

∂ ẋh∂ ẋi

))

,

Pk
j =

1
2

Xσ
(

∂Fk

∂ ẋ j

)

− ∂Fk

∂x j −
1
4
∂Fh

∂ ẋ j

∂Fk

∂ ẋh .

Let ∇σ be the Chern connection attached to σ ; see [1–3, 6] for the definition
of the Chern connection attached to a SODE. The curvature Kσ of the splitting
Hσ attached to σ essentially coincides with the torsion tensor field of the Chern
connection. In fact, one has Tσ = Kσ + dt ∧ϖ i⊗Xσ

i . The Chern connection ∇σ is
functorial with respect to Autv(p); i.e.,Φ ·∇σ =∇Φ ·σ , ∀Φ ∈Autv(p), whereΦ ·∇σ
is the linear connection defined by,

(Φ ·∇σ )X Y =Φ(1) ·
(

(∇σ )(Φ(1))−1·X
(

(Φ(1))−1 ·Y
))

, ∀X ,Y ∈ X(J1(R,M)),

and Φ ·σ is the SODE given by, Φ ·σ =Φ(2) ◦σ ◦ (Φ(1))−1.
According to the formula (7) the tensor field Kσ defined in (6) takes values in the

vector bundle (p1
0)
∗ ∧2 T ∗ (R×M)⊗V(p1

0). The curvature mapping K : J2(p2
1)→

(p1
0)
∗ ∧2 T ∗ (R×M)⊗V(p1

0) is defined by setting K ( j2
ξ σ) = (Kσ )ξ .

Coordinates are introduced in (p1
0)
∗ ∧2 T ∗ (R×M)⊗V(p1

0) by the formula

η =

(

y j
i (η)
(

dt ∧ω i)

(t0,x0)
+∑h<i

y j
hi(η)
(

ωh∧ω i
)

(t0,x0)

)

⊗
(

∂
∂ ẋ j

)

ξ
,
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∀η ∈ ∧2T ∗(t0,x0)
(R×M)⊗Vξ (p1

0) and the equations of K are the following:

t ◦K = t, xi ◦K = xi, ẋi ◦K = ẋi,

yi
a ◦K = −1

2

(

ẍi
tȧ + ẋhẍi

hȧ + ẍhẍi
ḣȧ

)

+ ẍi
a +

1
4

ẍk
ȧẍi

k̇,

yk
ab ◦K = −1

2

(

ẍk
aḃ− ẍk

bȧ +
1
2

(

ẍh
ȧẍk

ḣḃ− ẍh
ḃẍk

ḣȧ

)

)

, a < b,

where (t, xi, ẋi, ẍi, ẍi
t , ẍi

a, ẍi
ȧ, ẍi

tt , ẍi
ta, ẍi

tȧ, ẍi
a≤b, ẍi

aḃ
, ẍi

ȧ≤ḃ
) is the induced coordinate

system on J2(p2
1).

The curvature mapping is Autv(p)-equivariant with respect to the natural actions,
i.e.,Φ ·K ( j2

ξ σ) =K (Φ · j2
ξ σ), where the action on the left-hand side is defined by

Φ ·η =
(

∧2((Φ(1))−1)∗ ⊗ (Φ(1))∗
)

(η), for every vertical automorphism Φ , every

η ∈ (p1
0)
∗ ∧2 T ∗ (R×M)⊗V (p1

0), and the action on the right-hand side is defined
as follows: Φ · j2

ξσ = j2
Φ(1)(ξ )(Φ ·σ).

4 Statement of the Main Result

The only first integrals of the distributions D (0) and D (1) are (p2)∗C∞(R) and
((p2

1)
1)∗(p1)∗C∞(R), respectively. In fact, from the general formulas of jet prolon-

gation of vector fields (e.g., see [5]), one obtains

X = ui ∂
∂xi , ui ∈C∞(R×M),

X (2) = ui ∂
∂xi + vi ∂

∂ ẋi +wi ∂
∂ ẍi ,

vi =
∂ui

∂ t
+
∂ui

∂xh ẋh,

wi =
∂ 2ui

∂ t2 + 2
∂ 2ui

∂ t∂xh
ẋh +

∂ 2ui

∂xh∂xk
ẋhẋk +

∂ui

∂xh
ẍh.

As the values of ui and its derivatives can arbitrarily be taken at a given point j2
t γ ∈

J2(R,M), one has

D (0) =

〈

∂
∂xi ,

∂
∂ ẋi , ẋ

h ∂
∂ ẋi + ẍh ∂

∂ ẍi ,
∂
∂ ẍi ,2ẋh ∂

∂ ẍi , ẋ
hẋk ∂

∂ ẍi

〉

=

〈

∂
∂xi ,

∂
∂ ẋi ,

∂
∂ ẍi

〉

.

Hence, the only differential invariants of order 0 are the functions in (p2)∗C∞(R).
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By computing the first jet prolongation of X (2), we obtain

(X (2))(1) = ui ∂
∂xi + vi ∂

∂ ẋi +wi ∂
∂ ẍi +wi

t
∂
∂ ẍi

t
+wi

a
∂
∂ ẍi

a
+wi

ȧ
∂
∂ ẍi

ȧ
,

wi
t =

∂ 3ui

∂ t3 + 2
∂ 3ui

∂ t2∂xh ẋh +
∂ 3ui

∂ t∂xh∂xk ẋhẋk +
∂ 2ui

∂ t∂xh ẍh

+
∂ui

∂xh ẍh
t −

∂ua

∂ t
ẍi

a−
∂ 2ua

∂ t2 ẍi
ȧ−

∂ 2ua

∂ t∂xh ẋhẍi
ȧ,

wi
a =

∂ 3ui

∂ t2∂xa + 2
∂ 3ui

∂ t∂xa∂xh ẋh +
∂ 3ui

∂xa∂xh∂xk ẋhẋk +
∂ 2ui

∂xa∂xh ẍh

+
∂ui

∂xh ẍh
a−

∂ub

∂xa ẍi
b−

∂ 2ub

∂ t∂xa ẍi
ḃ−

∂ 2ub

∂xa∂xh ẋhẍi
ḃ,

wi
ȧ = 2

∂ 2ui

∂ t∂xa + 2
∂ 2ui

∂xa∂xh ẋh +
∂ui

∂xh ẍh
ȧ−

∂ur

∂xa ẍi
ṙ.

By collecting the derivatives of the functions ui in this formula we obtain

(X (2))(1) = ur ∂
∂xr +

∂ur

∂ t
χ r

t +
∂ur

∂xa χ
r
a +

∂ 2ur

∂ t2 χ
r
tt +

∂ 2ur

∂ t∂xa χ
r
ta +∑

a≤b

∂ 2ur

∂xa∂xb χ
r
a≤b

+
∂ 3ur

∂ t3 χ
r
ttt +

∂ 3ur

∂ t2∂xa χ
r
tta +∑

a≤b

∂ 3ur

∂ t∂xa∂xb χ
r
t,a≤b

+ ∑
a≤b≤c

∂ 3ur

∂xa∂xb∂xc
χ r

a≤b≤c,

where

χ r
t =

∂
∂ ẋr − ẍi

r
∂
∂ ẍi

t
,

χ r
a = ẋa ∂

∂ ẋr + ẍa ∂
∂ ẍr + ẍa

t
∂
∂ ẍr

t
+ ẍa

h
∂
∂ ẍr

h
− ẍi

r
∂
∂ ẍi

a
− ẍi

ṙ
∂
∂ ẍi

ȧ
+ ẍa

ḃ

∂
∂ ẍr

ḃ

,

χ r
tt =

∂
∂ ẍr − ẍi

ṙ
∂
∂ ẍi

t
,

χ r
ta = ẋa

(

2
∂
∂ ẍr − ẍi

ṙ
∂
∂ ẍi

t

)

+ ẍa ∂
∂ ẍr

t
− ẍi

ṙ
∂
∂ ẍi

a
+ 2

∂
∂ ẍr

ȧ
,

χ r
a≤b =

1
1+ δab

{

2ẋaẋb ∂
∂ ẍr + ẍb ∂

∂ ẍr
a
+ ẍa ∂

∂ ẍr
b
− ẍi

ṙ

(

ẋb ∂
∂ ẍi

a
+ ẋa ∂

∂ ẍi
b

)

+ 2ẋb ∂
∂ ẍr

ȧ
+ 2ẋa ∂

∂ ẍr
ḃ

}

,



Differential Invariants of Second-Order Ordinary Differential Equations 527

χ r
ttt =

∂
∂ ẍr

t
,

χ r
tta = 2ẋa ∂

∂ ẍr
t
+

∂
∂ ẍr

a
,

χ r
t,a≤b =

2
1+ δab

{

ẋaẋb ∂
∂ ẍr

t
+ ẋb ∂

∂ ẍr
a
+ ẋa ∂

∂ ẍr
b

}

,

χ r
a≤b≤c =

2
(1+ δab + δbc)!

{

ẋbẋc ∂
∂ ẍr

a
+ ẋaẋc ∂

∂ ẍr
b
+ ẋaẋb ∂

∂ ẍr
c

}

.

Accordingly, ∂/∂xr, χ r
t , χ r

a, χ r
tt , χ r

ta, χ r
a≤b, χ r

ttt , χ r
tta, χ r

ta≤b, χ r
a≤b≤c constitute a

system of generators for the distribution D (1). From the expressions above one
obtains D (1) = 〈∂/∂xr,∂/∂ ẋr,∂/∂ ẍr,∂/∂ ẍr

t ,∂/∂ ẍr
a,∂/∂ ẍr

ȧ〉. Therefore, the first-
order differential invariants are the functions in ((p2

1)
1)∗(p1)∗C∞(R).

The formulas for (X (2))(2) are similar but rather longer. The following result is
obtained:

Theorem 4.1. The rank of D (2) is 11 if dimM = 1 and 1
2 n
(

3n2 + 11n+ 10
)

if
dimM = n > 1.

Theorem 4.2. Every second-order differential invariant I : J2(p2
1) → R with

respect to Autv(p) factors uniquely through the curvature mapping as follows:
I = Ī ◦K , where Ī : (p1

0)
∗ ∧2 T ∗ (R×M)⊗V(p1

0)→ R is an invariant smooth
function under the natural action of Autv(p).

Proof (Sketch of proof). The statement is a consequence of the following proper-
ties:

1) The curvature mapping is a surjective submersion.
2) For every η ∈ ∧2T ∗(t0,x0)

(R×M) ⊗ Vξ (p1
0) the fibre K −1(η) is an affine

subbundle over J1(p2
1); hence the fibres of K are connected.

3) If we define D̃
(2)
j2ξ σ

= {(X (2))
(2)
j2ξ σ
∈D

(2)
j2ξ σ

: j1
j0t0 γ

X = 0} for dimM ≥ 2, and D̃
(2)
j2ξ σ

=

{(X (2))
(2)
j2ξ σ
∈D

(2)
j2ξ σ

: X (1)
ξ = 0} for dimM = 1, then one has ker(K∗) j2ξ σ

= D̃
(2)
j2ξ σ

,

ξ = j1
t0γ .

4) The curvature mapping is Autv(p)-equivariant with respect to the natural actions.

The first and second properties directly follow from the equations of the curvature
mapping. Moreover, we have

(X (2))(2)
(

yi
j ◦K
)

=
∂ui

∂xr

(

yr
j ◦K
)− ∂ur

∂x j

(

yi
r ◦K
)

,

(X (2))(2)
(

yk
i j ◦K
)

=
∂ur

∂xi

(

yk
r j ◦K
)

+
∂uk

∂xr

(

yr
ji ◦K
)

+
∂ur

∂x j

(

yk
ir ◦K
)

.
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By evaluating these two formulas at j2
ξ σ , we conclude D̃

(2)
j2ξ σ
⊆ ker(K∗) j2ξ σ

and from

the Proposition A.1 and the first item above we have

dimker(K∗) j2ξ σ
= dimJ2(p2

1)− dim
(

(p1
0)
∗ ∧2 T ∗ (R×M)⊗V(p1

0)
)

=
3
2

n(n+ 2)(n+ 1)

= dimD̃
(2)
j2ξ σ

.

5 Concluding Remarks

As the distribution D (2) is involutive, the number of functionally independent
second-order differential invariants is

dimJ2(p2
1)− rankD (2) =

{ 1
2 n2 (n− 1)+ 1, n≥ 2
2, n = 1

Reducing modulo (p1
0)∗T

0(J1(R,M)), the isomorphism (4) induces another

isomorphism ι1 : T−(J1(R,M))
∼=−→ (p1

0)
∗T (R×M)

/

(p1
0)∗T

0(J1(R,M)). There is
a natural embedding (p′)∗TM ↪→ T (R×M) and pulling it back via p1

0 one obtains
another embedding (p′ ◦ p1

0)
∗T M ↪→ (p1

0)
∗T (R×M). By composing this latter

embedding and the quotient map

(p1
0)
∗T (R×M)→ (p1

0)
∗T (R×M)

/

(p1
0)∗T

0(J1(R,M)),

an isomorphism ι2 : (p′ ◦ p1
0)
∗T M

∼=−→ (p1
0)
∗T (R×M)

/

(p1
0)∗T

0(J1(R,M)) is
deduced. From (7) it follows iXσ Kσ = −Ph

j ω j ⊗ ∂/∂ ẋh, and an endomorphism

K̃σ of (p′ ◦ p1
0)
∗TM is defined: K̃σ = ε−1 ◦ iXσ Kσ |T−(M1) ◦ (ι1)−1 ◦ ι2. Hence

K̃σ (∂/∂x j
)

= −Ph
j ∂/∂xh. The coefficients of the characteristic polynomial of K̃σ

determine n second-order invariants. This fact was early remarked in [4]. If n = 1
or n = 2 such invariants together with the function t exhaust a basis of second-order
invariants, but this is no longer true for n≥ 3.
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Some Properties of Harmonic Quasi-Conformal
Mappings

Miljan Knežević

Abstract We are analyzing the properties of holomorphic functions and the
hyperbolic metric to obtain some geometrically motivated inequalities for quasi-
conformal and generalized harmonic mappings. Also, we are interested in which
properties of hyperbolic harmonic mappings and the hyperbolic metric are essential
for validity of some versions of the Ahlfors–Schwarz lemma.

1 Introduction

Euclidean harmonic mappings (shortly harmonic mappings), quasi-conformal map-
pings and generalized harmonic mappings occupy an important place in the
geometric theory of functions of one or more complex variables and, also, in
physics and in other areas. Motivated by the classical result in complex analysis,
Ahlfors–Schwarz’s lemma, using the method of comparison of some metrics, we
tried to determine the conditions under which this lemma holds in the case of
harmonic mappings in relation to the conformal metric given. In particular, we
proved that every harmonic and quasi-conformal diffeomorphism of the unit disc is
a quasi-isometry with respect to the hyperbolic distance (Wan, see [8]). Also, of the
interest was to see if the appropriate version of the lemma is true for the harmonic
mappings (Euclidean harmonic mappings). It was shown that every harmonic
and quasi-conformal mapping of the unit disk into itself, up to a multiplicative
positive constant that depends only on k, does not increase the corresponding
hyperbolic distance. In addition, it was shown that in the case of the presence of
conformal metric ds2 = ρ(w)|dw|2 in the image, whose Gaussian curvature K(ρ)
is bounded above by a negative constant −a, for some a > 0, any harmonic and k
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quasi-conformal mapping of the unit disk into itself, up to a multiplicative constant
that depends only on a and k, does not increase the distance induced by the metrics
ds2 = ρ(w)|dw|2, with respect to the hyperbolic distance.

2 Definitions of Harmonic and Quasi-Conformal Mappings

Let R be an arbitrary Riemann surface with the conformal structure {(Uν ,hν)}.
We denote by zν ∈ Vν = hν(Uν) ⊂ C local parameter on the surface R that
corresponds to the local chart (Uν ,hν). Suppose that on the surface R is defined
Riemann’s metric ds2 = ρν(zν )|dzν |2, where ρν ∈ C2(Vν) is positive function,
which is compatible with the conformal structure on R. Observe that in the
neighborhood of any point of R, the metric is represented as the positive multiple
of the Euclidean metric. Because of the conformal invariance of the corresponding
representatives when changing local parameters, the previous metric on R we will
call conformal metric, and, when it is possible, we will write ds2 = ρ(z)|dz|2 and
the function z �→ ρ(z) we call metric density function.

Definition 2.1. Let ds2 = ρ(z)|dz|2 be a conformal metric defined on a Riemann
surface R. Regardless of the choice of local parameter, the Gaussian curvature of
the metric ds2 = ρ(z)|dz|2 is given by the formula

K(ρ)(z) =−1
2
(+ logρ)(z)

ρ(z)
. (1)

Example 2.1. Let D denote the unit disk in the complex plane. We analyze a
conformal metric ds2 = λ (z)|dz|2 on D, where the metric density z �→ λ (z) is
defined as

λ (z) =
(

2
1−|z|2

)2

, z ∈D. (2)

Since (+ logλ )(z) = 2λ (z), z∈D, we get K(λ )(z) =−1, for all z∈D. Furthermore,
it is not difficult to show that for all 0 < r < 1 holds dλ (0,r) = log 1+r

1−r , where dλ is
corresponding distance that is induced by the metric ds2 = λ (z)|dz|2.

Conformal metric ds2 = λ (z)|dz|2 that is defined on the unit disk, with the density
function as in relation (2), is called hyperbolic metric on D. The appropriate metric
density function is called hyperbolic density and the distance dλ we will call the
hyperbolic distance on the disk D.

By using universal covering surface, every hyperbolic Riemann surface R could
be provided by a conformal metric with the Gaussian curvature of −1. We will call
that metric as hyperbolic metric on R.

Let R and S be Riemann surfaces.

Definition 2.2. We say that a C2 mapping f : R→ S is harmonic with respect to the
conformal metric ds2 = ρ(w)|dw|2 given on S, if for each pair of local parameters
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z ∈V = h(U)⊂ C, on the surface R, and w ∈V ′ = g(W )⊂ C, on the surface S, for
which f (U) ⊂W , the following assertion is valid

( fz)z̄(z)+ (logρ)w( f (z)) fz(z) fz̄(z) = 0, z ∈V, (3)

where ρ is the corresponding representation of the conformal metric given in terms
of the local parameter w.

In the case of mappings that act between domains in the complex plane and the
presence of the Euclidean metric, the relation (3) defines an Euclidean harmonic
mapping or, simply, a harmonic mapping. That is, if Ω is domain in C, the mapping
f : z �→ f (z) ∈ C, z ∈Ω , is harmonic if ( fz)z̄(z) = 0, for all z ∈Ω . Observe that the
previous fact about the harmonic mappings coincides with the well known Laplacian
definition, since+ f = 4( fz)z̄(z).

The theory of generalized harmonic mappings, i.e. mappings that are harmonic
with respect to the given conformal metric in the image, is closely related with the
theory of holomorphic quadratic differentials (see [1,4,7]). Specifically, if f : R→ S
is harmonic mapping, where R and S are arbitrary Riemann surfaces, with respect to
the conformal metric ds2 = ρ(w)|dw|2 on S, then f , on natural way, defines a family
of holomorphic functions, in terms of the local parameters on R, and therefore a
holomorphic quadratic differential.

Proposition A.1. Suppose that R and S are Riemann surfaces. If f : R → S is
harmonic mapping, with respect to the conformal metric ds2 = ρ(w)|dw|2 on S,
then ψ(z) = (ρ ◦ f )(z) fz(z) fz̄(z)dz2 is a holomorphic quadratic differential on the
surface R.

Definition 2.3. The holomorphic quadratic differential ψ(z) = (ρ ◦ f )(z) fz(z)
fz̄(z)dz2, that is defined on R, we called Hopf differential of f and we write
ψ = Hopf( f ).

Observe that one could globally speak about the zeros of the “functions” fz and fz̄ on
the surface R. It is easy to prove that in the case of a generalized harmonic mapping
the zeros of the functions fz and fz̄, if they are not identically equal to zero, are
isolated and of well defined order.

The following proposition is important in our approach and will be used as a
motivation for a method of metrics comparison. The formula below is known as
Bochner formula (see [7]).

Proposition A.2. Let R and S be a Riemann surfaces and let f : R → S be
orientation preserving harmonic mapping, with respect to the given conformal
metric ds2 = ρ(w)|dw|2 on S. Denote by ds2 = σ(z)|dz|2 a conformal metric on
R whose density, in terms of a local parameter z on R, is given by the formula
σ(z) = ρ( f (z))| fz(z)|2. Then, independently of the choice of the local parameter z,

K(σ)(z) = K(ρ)( f (z))(1−|μ(z)|2), (4)

where μ(z) = fz̄(z)
fz(z)

.
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It is easy to prove that, when fz(z) 
= 0, the function |μ(z)| = | fz̄(z)|
| fz(z)| is well defined

on the surface R and that |μ(z)| < 1. We called μ as a complex dilatation of the
mapping f . Also, note that one could exclude the orientation preserving property of
the mapping f in the Proposition A.2, so the Bochner formula (4) remains valid at
a point z, where fz(z) 
= 0.

Definition 2.4. Let R and S be a Riemann surfaces. Assume that the mapping
f : R → S of the class C2 is orientation preserving. If there is some k ∈ [0,1),
for which |μ(z)| ≤ k, independently of the choice of the local parameter z on R,
then we say that the mapping f is k quasi-regular. In addition, if the mapping f
is homeomorphism, then the mapping f is called k quasi-conformal. Obviously, 0
quasi-conformal mappings are conformal.

Since the mapping f is orientation preserving, the previous definition makes sense.
Usually, the constant k is usually taken as a smallest constant for which the above
inequality holds. Also, some authors use the constant K = 1+k

1−k ≥ 1 as a quasi-
conformal constant.

3 Ahlfors–Schwarz Lemma

Let D = {z ∈C : |z|< 1} be the unit disk in C. Using the conformal automorphisms
φa(z) = z−a

1−az , a ∈D, of the disk D, one can define pseudo-hyperbolic distance on D
by the formula

δ (z1,z2) = |φz1(z2)|,
where z1, z2 ∈ D. The hyperbolic distance between the points z1 and z2 on the unit
disk D is defined by

dh(z1,z2) = log
1+ δ (z1,z2)

1− δ (z1,z2)
.

It is easy to verify that the distance dλ on D, that is induced by the hyperbolic metric
ds2 = λ (z)|dz|2 (see formula (2)), is the same as the hyperbolic distance above.

Lemma 3.2 (Schwarz). Let f : D→D be an analytic function and f (0) = 0. Then
| f (z)| ≤ |z|, z ∈ D, and | f ′(0)| ≤ 1. If | f (z)| = |z|, for some z 
= 0, or | f ′(0)| = 1,
then f (z) = eiαz, for some α ∈ [0,2π).

First impression is that the Schwarz lemma has only analytic character, but Pick
gives to the Schwarz lemma a geometric interpretation.

Lemma 3.3 (Schwarz–Pick). Let f be an analytic function from the unit disk
D into itself. Then f does not increase the corresponding hyperbolic (pseudo-
hyperbolic) distances.

Let Ω ⊂ C be a domain in the complex plane. We define an ultra-hyperbolic metric
on Ω .
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Definition 3.5. A metric ds2 = ρ(z)|dz|2, ρ : Ω → R+ ∪ {0}, is called an ultra-
hyperbolic metric on Ω , if ρ is upper semi-continuous on Ω and if for all z0 ∈ Ω ,
for which ρ(z0)> 0, there exits a function ρ0, positive and of the class C2 in some
neighborhood V of z0, such that ρ(z) ≥ ρ0(z), K(ρ0)(z) ≤ −1, for all z ∈ V , and
ρ0(z0) = ρ(z0).

By a simple argument one could prove that if ρ is an ultra-hyperbolic metric
on Ω and f : D→ Ω is analytic function, then the metric ds2 = σ(z)|dz|2, where
σ(z) = ρ( f (z))| f ′(z)|2, z ∈ D, is ultra-hyperbolic on the unit disk D.

Lemma 3.4 (Ahlfors–Schwarz). Let ds2 = ρ(w)|dw|2 be an ultra-hyperbolic met-
ric defined on some domainΩ ⊂C and let f : D→Ω be an analytic function. Then
ρ( f (z))| f ′(z)|2 ≤ λ (z), for all z ∈D.

Thus, the hyperbolic metric is maximal ultra-hyperbolic metric on the unit disk D.
The following statement is essential for our approach.

Theorem 3.1. Assume that ds2 = σ(z)|dz|2 and ds2 = ρ(z)|dz|2 are two conformal
metrics on the unit disk D. If σ(z) → +∞, when |z| → 1−, and if K(ρ)(z) ≤
K(σ)(z)< 0, for all z ∈D, then ρ(z)≤ σ(z), z ∈D. In particular, if K(ρ)(z)≤−1,
then

ρ(z)≤ λ (z) =
(

2
1−|z|2

)2

, z ∈D. (5)

Proof. Let 0 < r < 1 and σr(z) = 1
r2 σ( z

r ), z ∈ Dr = {z ∈ C : |z| < r}. We define

fr(z) = log ρ(z)
σr(z)

, z ∈ Dr. Since σr(z)→ +∞, when |z| → r−, the function fr takes

its maximum on Dr at some point z0. Therefore, (+ fr)(z0)≤ 0, i.e. (+ logρ)(z0)−
(+ logσr)(z0)≤ 0, that is equivalent to the

σr(z0)K(σr)(z0)≤ ρ(z0)K(ρ)(z0). (6)

From (6), trivially, we get ρ(z0)
σr(z0)

≤ |K(σr)(z0)|
|K(ρ)(z0)| ≤ 1, which imply fr(z) ≤ fr(z0) =

log ρ(z0)
σr(z0)

≤ 0, z ∈ Dr, i.e. ρ(z)
σr(z)

≤ 1, z ∈ Dr. By taking the limit, when r → 1−, we
finish the proof.

Observe that the statement of the previous theorem remains valid if we assume that
the conformal metric ds2 = σ(z)|dz|2 satisfies σ(z)→ +∞, when |z| → 1−, and
−1 ≤ K(σ)(z) < 0, z ∈ D, and if the metric ds2 = ρ(z)|dz|2 is ultra-hyperbolic on
the unit disk.

As we announced (see [4, 8]), taking into account a property that σ(z) →
+∞, when |z| → 1−, of the conformal metric ds2 = σ(z)|dz|2, where σ(z) =
λ ( f (z))| fz(z)|2, z ∈ D, by using Bochner formula and Lemma 3.4, we can prove
Wan’s result appropriated in the form of the Theorem 3.2. To see that σ(z) →
+∞, when |z| → 1−, one could conclude from the fact that every harmonic
diffeomorphism of the unit disc D have continuous extension from D onto itself
(see [2], Theorem 2.1) and from the important property which states that there is a
positive constant c such that | fz(z)| ≥ c, for all z ∈ D (see [5], Theorem 2B). Thus,
we could prove the following:
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Theorem 3.2 (Wan). Every harmonic quasi-conformal diffeomorphism of the unit
disk D onto itself, is a quasi-isometry of the unit disk D, with respect to the
hyperbolic metric.

Proof. Consider a conformal metric ds2 =σ(z)|dz|2, where σ(z) = λ ( f (z))| fz(z)|2,
z∈D. By the Bochner formula, we get 1

2 (+ logσ)(z) =σ(z)(1−|μ(z)|2), z∈D, i.e.
K(σ)(z) = (|μ(z)|2− 1), z ∈ D. Since f is quasi-conformal, there exists 0≤ k < 1
such that |μ(z)| ≤ k, z ∈ D. Thus, 0 > K(σ)(z) = (|μ(z)|2− 1) ≥ −1, z ∈ D, and
since σ(z)→ +∞, when |z| → 1−, by applying Theorem 3.1, we obtain λ (z) ≤
λ ( f (z))| fz(z)|2, z ∈ D.

Let z1, z2 ∈ D, w1 = f (z1), w2 = f (z2) its images under f and Γ : [0,1]→ D be
the geodesic arc, with respect to the hyperbolic metric, joining the points w1 and w2

in D. If γ = f−1 ◦Γ , then

dh(z1,z2) ≤
∫

γ

√

λ (z)|dz| ≤
∫

γ

√

λ ( f (z))| fz(z)||dz|

=
∫

γ

√

λ ( f (z))| fz(z)|1−|μ(z)|1−|μ(z)| |dz|

≤ 1
1− k

∫

γ

√

λ ( f (z))| fz(z)|(1−|μ(z)|)|dz|

≤ 1
1− k

∫

Γ

√

λ (w)|dw|= 1
1− k

dh(w1,w2).

Thus,

(1− k)dh(z1,z2)≤ dh(w1,w2). (7)

On the other hand, let us consider the conformal metric ds2 = (1− k2)σ(z)|dz|2,

z ∈ D. Then we have, K((1− k2)σ(z))(z) = |μ(z)|1−1
1−k2 ≤ k2−1

1−k2 = −1, z ∈ D, and

(1− k2)σ(z) = (1− k2)λ ( f (z))| fz(z)|2 ≤ λ (z), z ∈ D. Thus, if γ : [0,1]→ D is the
geodesic arc, with respect to the hyperbolic metric, joining the points z1 and z2 in D
and Γ = f ◦ γ , then

dh(z1,z2) =

∫

γ

√

λ (z)|dz| ≥
√

1− k2
∫

γ

√

λ ( f (z))| fz(z)||dz|

=
√

1− k2
∫

γ

√

λ ( f (z))| fz(z)|1+ |μ(z)|1+ |μ(z)| |dz|

≥ 1− k2

1+ k

∫

γ

√

λ ( f (z))| fz(z)|(1+ |μ(z)|)|dz|

≥ (1− k)
∫

Γ

√

λ (w)|dw| ≥ (1− k)dh(w1,w2).

Therefore,

dh(w1,w2)≤ 1
1− k

dh(z1,z2). (8)

Now, the proof follows from (7) and (8).
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Note that, on the right hand side in inequality (8), one could obtain better constant
√

1+k
1−k , which is obviously not larger than 1

1−k . Also, it is easy to prove that the

metric ds2 =σ(z)|dz|2, whereσ(z) = λ ( f (z))| fz(z)|2, z∈D, is a complete metric on
the unit disc D, since−1≤ K(σ)(z) = (|μ(z)|2−1)≤−(1− k2) (see [3], Theorem
2.1).

4 Ahlfors–Schwarz Lemma for Harmonic Quasi-Conformal
Mappings

Let f be a k quasi-conformal harmonic mapping from the unit disc U into itself,
with complex dilatation μ , and let σ(z) = λ ( f (z))| fz(z)|2, z ∈ D. We show that
(see [4])

K(σ)(z) =−
(

1+ |μ(z)|2 + 2Re

(

( f (z))2 fz̄(z)
fz(z)

))

, (9)

and, therefore,

− (1+ |μ(z)|)2 ≤ K(σ)(z)≤−(1−|μ(z)|)2, (10)

for all z ∈ D. The inequality (10), obtained above, enables us to apply Lemma 3.4
and Theorem 3.1 to get the following proposition.

Proposition A.3. Let f be a k quasi-conformal harmonic mapping from the unit
disc D into itself. Then for all z ∈D we have

| fz(z)| ≤ 1
1− k

1−| f (z)|2
1−|z|2 .

Proof. Let us define σ(z) = (1− k)2λ ( f (z))| fz(z)|2, z ∈ D. Since f is harmonic in
D, i.e. ( fz)z̄(z) = 0, z ∈ D, then fz is holomorphic and, by Lewy’s theorem, does
not vanish in D, hence the mapping z �→ log | fz(z)| is harmonic in D. Therefore,
(+ logσ)(z) = (+ log(λ ◦ f ))(z), for all z ∈ D. We also have

(+ log(λ ◦ f ))(z) = 4(log(λ ◦ f ))zz̄(z)

=
8| fz(z)|2

(1−| f (z)|2)2

(

1+ |μ(z)|2 + 2Re

(

( f (z))2 fz(z) fz̄(z)
| fz(z)|2

))

=
2σ(z)
(1− k)2

(

1+ |μ(z)|2 + 2Re

(

( f (z))2 fz(z) fz̄(z)
| fz(z)|2

))

.



538 M. Knežević

Hence,

K(σ)(z) =− 1
(1− k)2

(

1+ |μ(z)|2 + 2Re

(

( f (z))2 fz(z) fz̄(z)
| fz(z)|2

))

,

for all z ∈ D. Since
∣

∣

∣Re
(

( f (z))2 fz(z) fz̄(z)
| fz(z)|2

)∣

∣

∣≤
∣

∣

∣

( f (z))2 fz(z) fz̄(z)
| fz(z)|2

∣

∣

∣≤ |μ(z)|, we get

Re

(

( f (z))2 fz(z) fz̄(z)
| fz(z)|2

)

≥−|μ(z)|,

and, therefore, K(σ)(z)≤− 1
(1−k)2

(

1+ |μ(z)|2− 2|μ(z)|)=− (1−|μ(z)|)2

(1−k)2 ≤−1. By
using Lemma 3.4, we obtain

(1− k)2λ ( f (z))| fz(z)|2 ≤ λ (z), (11)

for all z ∈ D. Now, the theorem follows easily from (11).

Following the same procedure as in the proof of Theorem 3.2, by considering the
geodesic arcs, we obtain next result (see [4]).

Theorem 4.3. Let f be a k quasi-conformal harmonic mapping from the unit disc
D into itself. Then for any two points z1 and z2 in D we have

dh( f (z1), f (z2))≤ 1+ k
1− k

dh(z1,z2).

In order to get the opposite inequality as in Proposition A.3, we have to suppose that
f is onto.

Theorem 4.4. Let f be a k quasi-conformal harmonic mapping from the unit disc
D onto itself. Then for all z ∈ D we have

| fz(z)| ≥ 1
1+ k

1−| f (z)|2
1−|z|2

and dh( f (z1), f (z2))≥ 1− k
1+ k

dh(z1,z2).

In [4] we gave the complete proof of the Theorem 4.4. Also, the interested reader
could see that, by using differen approach, we obtained the same versions of the
theorems, mentioned in this paper, for the upper half plane H (see [6]). In addition,
we gave the similar results for the metrics that satisfy some inequalities. We can
stress that is of interest to describe the properties of quasi-conformal harmonic
mappings between some other domains in C. Also, it would be important to analyze
a quasi-conformal harmonic mapping from the unit disk D into the unit ball in R3.
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A Note on the Categorification of Lie Algebras

Isar Goyvaerts and Joost Vercruysse

Abstract In this short note we study Lie algebras in the framework of symmetric
monoidal categories. After a brief review of the existing work in this field and
a presentation of earlier studied and new examples, we examine which functors
preserve the structure of a Lie algebra.

1 Introduction

Lie algebras have many generalizations such as Lie superalgebras, Lie color and
(G,χ)-Lie algebras, braided Lie algebras, Hom–Lie algebras, Lie algebroids, etc.

Motivated by the way that the field of Hopf algebras benefited from the
interaction with the field of monoidal categories (see e.g. [10]) on one hand, and
the strong relationship between Hopf algebras and Lie algebras on the other hand,
the natural question arose whether it is possible to study Lie algebras within the
framework of monoidal categories, and whether Lie theory could also benefit from
this viewpoint.

First of all, it became folklore knowledge that Lie algebras can be easily defined
in any symmetric monoidal k-linear category over a commutative ring k, or (almost
equivalently) in any symmetric monoidal additive category. Within this setting,
many (but not all) of the above cited examples can already be recovered. We
will treat slightly in more detail the examples of Lie superalgebras and Hom–Lie
algebras in the second section.
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As some examples, in particular Lie color algebras, do not fit into this theory,
several attempts were made to define Lie algebras in any braided, rather than
symmetric monoidal category. A reason to do this is that G-graded modules over
any group G give rise to a monoidal category, whose center is a braided monoidal
category that can be described as the category of Yetter–Drinfel’d modules over a
Hopf algebra. In this way, Lie color algebras and (G,χ)-Lie algebras are recovered
as a special case (see [9]). A slightly different point of view is advocated by
Majid, whose motivation is to describe deformations of Lie algebras, that he calls
braided Lie algebras, inside a braided monoidal category, such that the universal
enveloping of this deformed Lie algebra encodes the same information as the
deformed (quantum) enveloping algebra of the original Lie algebra (see [7]).

We will not discuss further these two last cited types of Lie algebras in this short
note. Rather, we will study Lie algebras in a (possibly non-symmetric, possibly
non-braided) monoidal category, such that the Lie algebra allows a local symmetry.
That is, the Lie algebra possesses a self-invertible Yang-Baxter operator and the
anti-symmetry and Jacobi identity are defined up to this Yang-Baxter operator.

2 Lie Algebras in Additive Monoidal Categories

Throughout, we will work in a symmetric monoidal and additive category. Without
any change in the arguments, one can work in any k-linear symmetric monoidal
category, where k is a commutative ring with characteristic different from 2.

Definition 2.1. Let C = (C,⊗, I,a, l,r,c) be a symmetric monoidal additive cate-
gory with associativity constraint a, left- and right unit constraints resp. l and r and
symmetry c. A Lie algebra in C is a pair (L, [−,−]), where L is an object of C and
[−,−] : L⊗L→ L is a morphism in C that satisfies the following two conditions

[−,−]◦ (idL⊗L + cL,L) = 0L⊗L,L, (1)

[−,−]◦ (idL⊗ [−,−])◦ (idL⊗(L⊗L) + t +w) = 0L⊗(L⊗L),L, (2)

where t = cL⊗L,L ◦ a−1
L,L,L and w = aL,L,L ◦ cL,L⊗L.

Example 2.1. Let MR = (Mod(R),⊗R,R,a, l,r,c) be the Abelian, symmetric
monoidal category of (right) R-modules over a commutative ring R (Char(R) 
= 2)
with trivial associativity and unit constraints and with symmetry c = τ (the flip).
Taking a Lie algebra in MR, one obtains the classical definition of a Lie algebra
over R.

Example 2.2. Let C = (VectZ2(k),⊗k,k,a, l,r,c) be the Abelian, symmetric
monoidal category of k-vector spaces (Char(k) 
= 2) graded by Z2. We take the
trivial associativity and unit constraints. The symmetry c is defined as follows: For
any pair of objects (V,W ) in C ; cV,W : V ⊗W →W ⊗V ;v⊗w �→ (−1)|v||w|w⊗ v.
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Taking a Lie algebra in C , one recovers the definition of a Lie superalgebra (see
also [9]).

Example 2.3. We now recall from [2], the construction of a non-trivial example of
an Abelian, non-strict symmetric monoidal category (called the Hom-construction).
Let C be a category. A new category H (C ) is introduced as follows: objects are
couples (M,μ), with M ∈ C and μ ∈ AutC (M). A morphism f : (M,μ)→ (N,ν)
is a morphism f : M → N in C such that ν ◦ f = f ◦ μ .

Now assume that C = (C ,⊗, I,a, l,r,c) is a braided monoidal category. Then one
easily verifies that H (C ) = (H (C ),⊗,(I, I),a, l,r,c) is again a braided monoidal
category, with the tensor product defined by the following formula

(M,μ)⊗ (N,ν) = (M⊗N,μ⊗ν),

for (M,μ) and (N,ν) in H (C ). On the level of morphisms, the tensor product is the
tensor products of morphisms in C . By deforming the category H (C ), we obtain
the category ˜H (C ) = (H (C ),⊗,(I, I), ã, l̃, r̃,c) which is still a braided monoidal
category (but no longer strict if C was strict). The associativity constraint ã is given
by the formula

ãM,N,P = aM,N,P ◦ ((μ⊗N)⊗π−1) = (μ⊗ (N⊗π−1))◦ aM,N,P,

for (M,μ),(N,ν),(P,π) ∈H (C ). The unit constraints l̃ and r̃ are given by

l̃M = μ ◦ lM = lM ◦ (I⊗ μ) ; r̃M = μ ◦ rM = rM ◦ (μ⊗ I).

Now, A Lie algebra in ˜H (MR) is a triple (L, [−,−],α) with (L,α) ∈ ˜H (MR),
[−,−] : L⊗ L → L a morphism in ˜H (MR) (that is, [α(x)⊗ α(y)] = α[x,y]),
satisfying anti-symmetry and the so-called Hom–Jacobi identity;

[α(x)⊗ [y⊗ z]]+ [α(y)⊗ [z⊗ x]]+ [α(z)⊗ [x⊗ y]]= 0,

We thus recover the definition of a Hom–Lie algebra (cf.[5]), where in this case α
is a classical Lie algebra isomorphism.

Example 2.4. A Lie coalgebra in C is a Lie algebra in C op, the opposite category of
C . This means that a Lie coalgebra is a pair (C,< −>), where <−> : C→C⊗C
is a map that satisfies the following two conditions

(idC⊗C + cC,C)◦<−> = 0;

(idC⊗(C⊗C) + t +w)◦ (idC⊗<−>)◦<−> = 0.

Lie coalgebras were introduced by Michaelis [8].
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Our next aim is to “free” the definition of Lie algebra of the global symmetry on
our additive monoidal category.

Definition 2.2. Let C = (C,⊗, I,a, l,r) be a (possibly non-symmetric) monoidal
category and L an object in C . A self-invertible Yang-Baxter operator on L is a
morphism c : L⊗L→ L⊗L that satisfies the following conditions:

c◦ c = L⊗L; (3)

aL,L,L ◦ (c⊗L)◦ a−1
L,L,L ◦ (L⊗ c)◦ aL,L,L ◦ (c⊗L)

= (L⊗ c)◦ aL,L,L ◦ (c⊗L)◦ a−1
L,L,L ◦ (L⊗ c)◦ aL,L,L (4)

Given an object L in C , together with a self-invertible Yang Baxter operator c as
above, we can construct the following morphisms in C :

t = tc := aL,L,L ◦ (c⊗L)◦ a−1
L,L,L ◦ (L⊗ c);

w = wc := (L⊗ c)◦ aL,L,L ◦ (c⊗L)◦ a−1
L,L,L.

One can easily verify that t ◦ t = w and t ◦w = id = w◦ t.

Example 2.5. If C is a symmetric monoidal category, with symmetry cX ,Y : X ⊗
Y → Y ⊗X , for all X ,Y ∈ C , then cL,L is a self-invertible Yang-Baxter operator for
L ∈ C . Obviously, cL,L satisfies conditions (3); to see that cL,L also satisfies (4), one
applies the hexagon condition in combination with the naturality of c. Moreover,
tcL,L = cL⊗L,L ◦ a−1

L,L,L and wcL,L = aL,L,L ◦ cL,L⊗L.

Definition 2.3. Let C be an additive, monoidal category, but not necessarily
symmetric. A YB-Lie algebra in C is a triple (L,λ , [−,−]), where L is an object
of C , λ is a self-invertible Yang-Baxter operator for L in C , and [−,−] : L⊗L→ L
is a morphism in C that satisfies

[−,−]◦ (idL⊗L +λ ) = 0L⊗L,L, (5)

[−,−]◦ (idL⊗ [−,−])◦ (idL⊗(L⊗L) + tλ +wλ ) = 0L⊗(L⊗L),L. (6)

(idL⊗ [−,−])◦ tλ ◦ aL,L,L = λ ◦ ([−,−]⊗ idL) (7)

We call (6) the (right) λ -Jacobi identity for L. Equation (7) expresses the compati-
bility between the Lie bracket [−,−] and the Yang-Baxter operator λ . Remark that
in the case were λ = cL,L (see Example 2.5), this condition is automatically satisfied
by the naturality of the symmetry c−,−.

As for usual Lie algebras, the definition of a YB-Lie algebra is left–right symmetric,
as follows from the following Lemma.
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Lemma 2.1. Let (L,λ , [−,−]) be a YB-Lie algebra in C . Then L also satisfies the
left λ -Jacobi identity, that is the following equation holds

[−,−]◦ ([−,−]⊗ idL)◦ a−1
L,L,L ◦ (idL⊗(L⊗L) + tλ +wλ ) = 0L⊗(L⊗L),L.

Proof. Using (5) in the first equality, (7) in the second equality, wλ = t2
λ = t−1

λ in
the third equality and (6) in the last equality we find

[−,−]◦ ([−,−]⊗ idL)◦ a−1
L,L,L ◦ (idL⊗(L⊗L) + tλ +wλ )

=−[−,−]◦λ ◦ ([−,−]⊗ idL)◦ a−1
L,L,L ◦ (idL⊗(L⊗L) + tλ +wλ )

=−[−,−]◦ (idL⊗ [−,−])◦ tλ ◦ aL,L,L ◦ a−1
L,L,L ◦ (idL⊗(L⊗L) + tλ +wλ )

=−[−,−]◦ (idL⊗ [−,−])◦ (idL⊗(L⊗L) + tλ +wλ ) = 0 ��

Example 2.6. Let C be any additive category, and consider the functor category
End(C ) of additive endofunctors on C and natural transformations between them.
Recall that this is a monoidal category with the composition of functors as tensor
product on objects and the Godement product as tensor product on morphisms.
Moreover, End(C ) inherits the additivity of C . We will call a YB-Lie algebra in
End(C ) a Lie monad on C .

Example 2.7. Let (B,μB) be an associative algebra in an additive, monoidal cate-
gory C and suppose there is a self-invertible Yang-Baxter operator λ : B⊗B→B⊗B
on B, such that the conditions hold:

(B⊗ μB)◦ a−1
B,B,B ◦wλ = λ ◦ (μB⊗B)

(μB⊗B)◦ tλ ◦ aB,B,B = λ ◦ (B⊗ μB) (8)

Then we can consider a YB-Lie algebra structure on B, induced by the commutator
bracket [−,−]B (defined by [−,−]B = μB ◦ (B⊗ B− λ )). For example, If B is a
braided Hopf algebra (or a braided bialgebra) in the sense of Takeuchi (see [10])
then B admits a Yang-Baxter operator λ that satisfies the diagrams (8). If λ is
self-invertible, the commutator algebra of B is a YB-Lie-algebra in our sense.
Moreover, the primitive elements of B can be defined as the equalizer (P(B),eq)
in the following diagram

P(B)
eq

�� B
Δ

��

η⊗B+B⊗η
�� B⊗B

where Δ : B→ B⊗B is the comultiplication on B and η : k → B is the unit of B.
One can show (see forthcoming [4]) that P(B) is again a YB-Lie algebra.
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3 Functorial Properties

In this section we study functors that send Lie algebras to Lie algebras.
Let C = (C,⊗, I,a, l,r) and D = (D,2,J,a′, l′,r′) be two additive, monoidal

categories. For simplicity, we will suppose that C and D are strict monoidal, that is
a, l,r and a′, l′,r′ are identity natural transformations and will be omitted. By Mac
Lane’s coherence theorem, this puts no restrictions on the subsequent results.

Definition 3.4. A functor F : C →D will be called a non-unital monoidal functor,
if there exists a natural transformationΨX ,Y : FX2FY → F(X⊗Y ) that satisfies the
following condition

ΨX⊗Y,Z ◦ (ΨX ,Y 2FZ) =ΨX ,Y⊗Z ◦ (FX2ΨY,Z). (9)

Lemma 3.2. Let (F,Ψ) : C →D be a non-unital monoidal functor and use notation
as above. Let λ : L⊗L→ L⊗L be a self-invertible Yang-Baxter operator on L ∈ C .
Suppose that there exists a morphism λ ′ : FL⊗FL→ FL⊗FL such thatΨL,L ◦λ ′ =
F(λ )◦ΨL,L. IfΨL⊗L,L,ΨL,L2FL andΨL,L are monomorphisms (e.g.Ψ is a natural
monomorphism and the endofunctor −2FL preserves monos), then λ ′ is a self
invertible Yang-Baxter operator on FL.

Proof. Using the compatibility between λ and λ ′ in the first equality, the naturality
of Ψ in the second equality, (9) in the third equality, a repetition of the above
arguments in the fourth equality, the Yang-Baxter identity for λ in the fifth equality,
and a reverse computation in the last equality, we find

ΨL⊗L,L ◦ (ΨL,L2FL)◦ (λ ′ 2FL)◦ (FL2λ ′)◦ (λ ′ 2FL)

=ΨL⊗L,L ◦ (F(λ )2FL)◦ (ΨL,L2FL)◦ (FL2λ ′)◦ (λ ′ 2FL)

= F(λ ⊗L)◦ΨL⊗L,L ◦ (ΨL,L2FL)◦ (FL2λ ′)◦ (λ ′ 2FL)

= F(λ ⊗L)◦ΨL,L⊗L ◦ (FL2ΨL,L)◦ (FL2λ ′)◦ (λ ′ 2FL)

= F(λ ⊗L)◦F(L⊗λ )◦F(λ ⊗L)◦ΨL,L⊗L ◦ (FL2ΨL,L)

= F(L⊗λ )◦F(λ ⊗L)◦F(L⊗λ )◦ΨL,L⊗L ◦ (FL2ΨL,L)

=ΨL⊗L,L ◦ (ΨL,L2FL)◦ (FL2λ ′)◦ (λ ′ 2FL)◦ (FL2λ ′)
AsΨL⊗L,L andΨL,L2FL are monomorphisms, we conclude from the computation
above that λ ′ satisfies the Yang-Baxter identity. In a similar way, one proofs that λ ′
is self-invertible. ��
Lemma 3.3. Let (F,Ψ) : C →D be a non-unital monoidal functor and use notation
as above. Let λ : L⊗ L → L⊗ L and λ ′ : FL⊗ FL → FL⊗ FL be C (resp. D)-
morphisms such thatΨL,L ◦λ ′ = F(λ )◦ΨL,L. Then the following identities hold

ΨL⊗L,L ◦ (ΨL,L2FL)◦ tλ ′ = F(tλ )◦ΨL,L⊗L ◦ (FL2ΨL,L) (10)

ΨL⊗L,L ◦ (ΨL,L2FL)◦wλ ′ = F(wλ )◦ΨL,L⊗L ◦ (FL2ΨL,L) (11)
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Proof. Let us proof (10), the proof of (11) is completely similar.

ΨL⊗L,L ◦ (ΨL,L2FL)◦ tλ ′ =ΨL⊗L,L ◦ (ΨL,L2FL)◦ (λ ′ 2FL)◦ (FL2λ ′)
=ΨL⊗L,L ◦ (F(λ )2FL)◦ (ΨL,L2FL)◦ (FL2λ ′)
= F(λ ⊗L)◦ΨL⊗L,L ◦ (ΨL,L2FL)◦ (FL2λ ′)
= F(λ ⊗L)◦ΨL,L⊗L ◦ (FL2ΨL,L)◦ (FL2λ ′)
= F(λ ⊗L)◦ΨL,L⊗L ◦ (FL2F(λ ))◦ (FL2ΨL,L)

= F(λ ⊗L)◦F(L⊗λ )◦ΨL,L⊗L ◦ (FL2ΨL,L)

= F(tλ )◦ΨL,L⊗L ◦ (FL2ΨL,L)

We used the compatibility between λ and λ ′ in the second and fifth equality, the
naturality ofΨ in the third and sixth equality and (9) in the fourth. ��

Remark that the existence of the morphism λ ′ as in the above lemmata is
guaranteed if F is a strong monoidal functor, as in this situation Ψ is invertible.
Furthermore, if C and D are symmetric monoidal and we take λ and λ ′ induced by
the symmetry of C and D respectively, then the compatibility condition between λ
and λ ′ is automatically satisfied.

Theorem 3.1. Let (F,Ψ) : C →D be an additive non-unital monoidal functor and
(L,λ , [−,−]) a YB-Lie algebra in C . Suppose that there exists a self-invertible Yang-
Baxter operator λ ′ : FL⊗FL→ FL⊗FL such thatΨL,L ◦λ ′ = F(λ ) ◦ΨL,L. Then
(FL,λ ′, [−,−]′) is a YB-Lie algebra in D with Lie-bracket given by

[−,−]′ : FL2FL
ΨL,L

�� F(L⊗L)
F([−,−])

�� FL .

Proof. Let us check that [−,−]′ is antisymmetric. Using the antisymmetry of
(L, [−,−]) and compatibility between λ and λ ′ we obtain

[−,−]′ ◦λ ′ = F([−,−])◦ΨL,L ◦λ ′ = F([−,−])◦F(λ )◦ΨL,L

= F([−,−]◦λ )◦ΨL,L =−F([−,−])◦ΨL,L =−[−,−]′.

Next, let us check the Jacobi identity

[−,−]′ ◦ (idFL2 [−,−]′)◦ (idFL2(FL2FL) + tλ ′+wλ ′)

= F([−,−])◦ΨL,L ◦ (idFL2F([−,−]))◦ (idFL2ΨL,L)◦ (id+ tλ ′+wλ ′)

= F([−,−])◦F(idL2 [−,−])◦ΨL,L⊗L ◦ (idFL2ΨL,L)◦ (id+ tλ ′+wλ ′)

= F([−,−])◦F(idL2 [−,−])◦F(idL⊗L⊗L + tλ +wλ )◦ΨL⊗L,L ◦ (ΨL,L2 idFL)

= 0
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We used the naturality of Ψ in the second equality and Lemma 3.3 in the third
equation and (6) in the last equality. ��

Combining Theorem 3.1 with Lemma 3.2, we immediately obtain the following
two satisfying corollaries, which allow to apply Theorem 3.1 in practical situations.

Corollary 3.1. Let (F,Ψ0,Ψ ) : C →D be an additive symmetric monoidal functor
between additive symmetric monoidal categories. If (L, [−,−]) is a Lie algebra in
C , then (FL,ΨL,L ◦ [−,−]) is a Lie algebra in D .

Corollary 3.2. Let (F,Ψ) : C → D be an additive (non-unital) strong monoidal
functor between additive monoidal categories. If (L,λ , [−,−]) is a YB-Lie algebra
in C , then (FL,Ψ−1

L,L ◦F(λ )◦ΨL,L,F([−,−])◦ΨL,L) is a YB-lie algebra in D .

Example 3.8. Let us return to the case of Lie superalgebras, which are exactly
Lie algebras in VectZ2(k) (cf. Example 2.2). It is well-known that this category
is equivalent (even isomorphic) to the category M k[Z2] of comodules over the
group algebra k[Z2], which is in fact a Hopf-algebra. Moreover, this equivalence of
categories is an additive, monoidal equivalence, and even a symmetric one, taking
into account the coquasitriangular structure on k[Z2]. By our Corollary 3.1, this
implies that Lie algebras can be computed equivalently in VectZ2(k) as well as in
M k[Z2]. In fact, Lie algebras in a general monoidal category M H of comodules over
a coquasitriangular bialgebra H have been studied in [3] and in [1], amongst others.
Such a Lie algebra is a triple (M,ρM, [−,−]) with M a k-vectorspace, a coaction ρ
on M and a k-linear map [−,−] : M⊗M → M such that ([−,−]⊗ idH) ◦ρM⊗M =
ρM ◦ [−,−], which satisfy the condition (5):

[x⊗ y] =−[(y[0]⊗ x[0])σ(x[1]⊗ y[1])]

and (6):

[x⊗ [y⊗ z]]+ [z[0][0]⊗ [x[0]⊗ y[0]]]σ(y[1]⊗ z[1])σ(x[1]⊗ z[0][1])

[y[0]⊗ [z[0]⊗ x[0][0]]]σ(x[1]⊗ y[1])σ(x[0][1]⊗ z[1]).

whenever x,y,z ∈M and where we used the Sweedler–Heynemann for comodules
and σ : H⊗H → k is the convolution invertible bilinear map from the coquasitrian-
gular structure on H.

Example 3.9. Let us consider again the Hom-construction. It is proven in [2, Propo-
sition 1.7] that the categories H (C ) = (H (C ),⊗,(I, I),a, l,r,c) and H̃ (C ) =
(H (C ),⊗,(I, I), ã, l̃, r̃,c) are isomorphic as monoidal categories. Let us briefly
recall this isomorphism.
Let F : H (C )→ ˜H (C ) be the identity functor, and Ψ0 : I → I the identity. We
define a natural transformation, by putting for all M,N ∈H (C ),

ΨM,N = μ⊗ν : F(M)⊗F(N) = M⊗N → F(M⊗N) = M⊗N.
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Then (F,Ψ0,Ψ ) is a strict monoidal functor and it is clearly an isomorphism of
categories. Moreover, if C is an additive category, then F is also an additive functor,
so F preserves Lie algebras by Corollary 3.1 and YB-Lie algebras by Corollary 3.2.
Let ((L,α), [−,−]) be a Lie algebra in H (C ) i.e. (L, [−,−]) is a Lie algebra in
C with a Lie algebra isomorphism α . Then (F(L,α), [−,−]′) is a Lie algebra in
˜H (C ). The inverse functor is also strict monoidal and additive, hence preserves Lie

algebras. Consequently, Hom–Lie algebras, where α is a Lie algebra isomorphism,
are nothing else than Lie algebras endowed with a Lie algebra isomorphism.

Example 3.10. Multiplier algebras serve as an important tool to study certain
types of non-compact quantum groups, within the framework of multiplier Hopf
algebras, see [11]. In [6] it was proven that the creation of the multiplier algebra
of a non-degenerated idempotent (non-unital) k-algebra leads to a (symmetric)
monoidal (additive) functor (M,Ψ0,Ψ) on the category of these algebras. Hence
the multiplier construction preserves Lie algebras by our Theorem 3.1. Moreover,
as the monoidal product on the category of non-degenerated idempotent (non-
unital) k-algebras is given by the monoidal product of underlying k-vectorspaces it
follows that the multiplier construction also preserves the commutator Lie algebras
associated to these algebras. Furthermore, the natural transformationΨ is a natural
monomorphism. Therefore, we can apply Lemma 3.2 and the functor M also
preserves YB-Lie algebras.

Example 3.11. Let C be an additive monoidal category, and consider the additive
monoidal category End(C ) from Example 2.6. Consider the functor E : C →
End(C ), that sends every object X ∈ C to the endofunctor −⊗X : C → C . Then
E is an additive strong monoidal functor. By Corollary 3.2, a YB-Lie algebra in C
leads to a YB-Lie algebra in End(C ), i.e. to a Lie monad on C .

Suppose now that C is a right closed monoidal category, i.e. every endofunctor
−⊗X has a right adjoint, that we denote by H(X ,−) : C → C . Then there exist
natural isomorphisms πY,Z : Hom(Y,H(X ,Z)) → Hom(Y ⊗ X ,Z). One can proof
(see e.g. [4]) that this isomorphism can be extended to an isomorphism

H(X ,H(Y,−))∼= H(X⊗Y,−)
in C . Hence the contravariant functor H : C → End(C ) that sends an object X ∈
C to the endofunctor H(X ,−) is a strong monoidal functor. As consequence, this
functor sends a YB-Lie coalgebra in C to a Lie monad on C . This idea is further
explored in [4] to study dualities between infinite dimensional Hopf algebras and
Lie algebras.
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A Continuous Bialgebra Structure
on a Loop Algebra

Rémi Léandre

Abstract We define on the set of Fourier series on a Lie algebra operations which
give on it the structure of a continuous bialgebra.

1 Introduction

There are basically two theories of deformation:

(−) Deformation quantization (See [4, 15, 17] for reviews). People deform a con-
venient algebra of functions related to a symplectic structure or more generally
to a Poisson structure on a manifold.

(−) Quantum groups (See [5]). People deform a coproduct instead of a product.

The tools of infinite dimensional analysis (Malliavin Calculus or white noise anal-
ysis) can be used for the theory of deformation quantization in infinite dimension
[3, 6–9, 14].

This leads Léandre to use these tools to construct consistently some linear
Poisson structures on some path spaces [10–12].

Moreover the Yang-Baxter equation in infinite dimension [1] was used to define
formal Sklyanin Poisson structures on various path spaces [2, 16]. Léandre gives an
analytic meaning to the simplest one of these Sklyanin Poisson structures [13].

Yang-Baxter equation plays a big role in the theory of Lie bialgebras. Let us
recall a result of Drinfeld [5, Theorem 3.1].

Let (g, [.]) be a finite dimensional Lie algebra. Let r ∈ Λ2g. If r satisfies the
Yang-Baxter equation, ∂ r(a) = [a⊗1+1⊗a,r] defines a Lie bialgebra structure on
it (This means that the coproduct satisfies the co-Jacobi relation).
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The simplest example in infinite dimension is given in [5, pp. 51–52]: in this case
people consider as Lie algebra the set of Fourier polynomials in g. The object of this
communication is to study it on Fourier series instead of Fourier polynomials!

2 The Formal Bialgebra Structure

We consider the complexified Lie algebra g of a compact Lie group endowed with
its biinvariant metric ‖.‖. We consider the set Hf of Fourier polynomials g(.)

g(s) = ∑
n≥0

an exp[2iπns] (1)

where only a finite number of an (an ∈ g!) are not equal to 0.
Hf ⊗Hf consists of two parameters Fourier polynomials g(., .) with values in

g⊗ g:
g(s, t) = ∑

n≥0,m≥0

an,m exp[2iπns]exp[2iπmt] (2)

where only a finite number of an,m belonging to g⊗ g are not equal to 0.
Let xi be an orthonormal basis of g. Classically Hf is a Lie bialgebra [5, p. 52]:

(-i) The Lie bracket is constructed as follows:

[g1,g2](s) =∑[a1
n1
,a2

n2
]exp[2iπn1s]exp[2iπn2s] (3)

(-ii) The Lie cobracket is given by the next formula:

δ (g)(s, t) = ∑
n,0≤r≤n−1,i

[xi,an]exp[2iπrs]⊗ xi exp[2iπ(n− 1− r)t] (4)

Clearly δ (g)(., .) belongs to Hf ⊗Hf .

3 The Continuous Bialgebra Structure

We consider the Sobolev space Hk k ∈ N of elements g(.)

g(s) = ∑
n≥0

an exp[2iπns] (5)

such that
‖g(.)‖2

k =∑‖an‖2(nk + 1)< ∞ (6)

We consider H∞− = ∩Hk.
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Hk⊗Hk is constituted of elements g(., .)

g(s, t) = ∑
n≥0,m≥0

an,m exp[2iπns]exp[2iπmt] (7)

such that

‖g(., .)‖2
k =∑‖an,m‖2(nk + 1)(mk + 1)< ∞ (8)

We consider

H∞−⊗H∞− = ∩Hk⊗Hk (9)

Theorem 3.1. The Lie bracket (3) can be defined as a continuous map from H∞−⊗
H∞− into H∞−.

Proof.
[g1,g2](s) = ∑

n≥0

bn exp[2iπns] (10)

where

bn = ∑
n1≥0,n2≥0,n1+n2=n

[a1
n1
,a2

n2
] (11)

‖[g1,g2](.)‖2
k =∑‖bn‖2(nk + 1) (12)

But

‖bn‖2 ≤
(

∑
n1≥0,n2≥0,n1+n2=n

‖a1
n1
‖‖a2

n2
‖ (n

l
1 + 1)(nl

2+ 1)

(nl
1 + 1)(nl

2+ 1)

)2

(13)

But in the last sum
(nl

1 + 1)(nl
2 + 1)≥C(nl + 1) (14)

because n1 ≥ 0,n2 ≥ 0 and n1 + n2 = n. The Cauchy–Schwartz inequality shows
that

‖bn‖2 ≤ C
n2l + 1

‖g1(.)‖2
2l‖g2(.)‖2

2l (15)

We deduce that if l is big enough

‖[g1,g2](.)‖2
k ≤C‖g1(.)‖2

2l‖g2(.)‖2
2l (16)

��
Theorem 3.2. The Lie cobracket (4) can be defined as a continuous map from H∞−
into H∞−⊗H∞−.

Proof.
δg(s, t) = ∑

n≥0
∑

n1≥0,n2≥0,n1+n2=n

bn exp[2iπn1s]exp[2iπn2t] (17)
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By (4), we have
‖bn‖2 ≤C‖an+1‖2 (18)

Therefore

‖δg(., .)‖2
k ≤C∑

n≥0
∑

n1≥0,n2≥0,n1+n2=n

‖an+1‖2(nk
1 + 1)(nk

2 + 1) (19)

Since n1 ≥ 0,n2 ≥ 0 and n1 + n2 = n,

(nk
1 + 1)(nk

2 + 1)≤C(n2k + 1) (20)

Moreover there n ways to write n1 + n2 = n with n1 ≥ 0,n2 ≥ 0. Therefore

‖δg(., .)‖2
k ≤C(∑‖an+1‖2(n2k+2 + 1))≤C‖g(.)‖2

2k+2 (21)

��
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6. Léandre, R.: In: Calogero, F., Françoise, J.P., Marrero, J.C., Manojlovic, N., Nunes da Costa,

J. (eds.) Geometric Aspects of Integrable Systems. S.I.G.M.A. 3, 027 (2007)
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