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Introduction

Forssman heterophilic glycolipid antigen (GalNAcal-3GalNAcbl-3Galal-4Galb1-
4G1c-Cer) is a member of the globo series glycosphingolipid family and is formed

by the addition of GalNAc in al,3-linkage to the terminal GalNAc residue of

globoside (globotetraosylceramide). This reaction is catalyzed by globoside

a-1,3-N-acetylgalactosaminyltransferase 1 (GBGT1). This enzyme is also called

Forssman glycolipid synthase (FS). The canine FS cDNA was cloned from an

MDCK-cell cDNA library using an expression cloning method (Haslam and

Baenziger 1996). The isolated FS shows 42 % identity in the amino acid sequence

to the histo-blood group A and B transferases (Yamamoto et al. 1990) and 35 %
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identity to the a1,3-galactosyltransferase (Joziasse et al. 1989). The A or B trans-

ferases transfer GalNAc or Gal in al,3-linkage to the histo-H acceptor, respectively,

and the a3 galactosyltransferase transfers Gal to the terminal Galb1-4GlcNAc
structure on glycoproteins as well as glycolipids. The close sequence identity and

the similar enzyme reaction suggested that these glycosyltransferase genes have the

same evolutionary origin (Haslam and Baenziger 1996). Furthermore, in humans,

all these related glycosyltransferase genes are located on chromosome 9q34,

supporting the hypothesis that they arose by gene duplication and subsequent

divergence (Joziasse et al. 1992; Yamamoto et al. 1995; Xu et al. 1999), although

the human FS gene encodes nonfunctional FS protein (Xu et al. 1999).

Databanks

IUBMB enzyme nomenclature: E.C.2.4.1.88

Globoside Alpha-1,3-N-acetylgalactosaminyltransferase 1 (GBGT1)

Species Gene symbol

GenBank accession

number UniProt ID

PDB accession

number

Homo sapiens GBGT1 NM_021996 Q8N5D6 N/A

Mus musculus Gbgt1 NM_139197 Q8VI38 N/A

Canis familiaris GBGT1 NM_001003193 Q95158 N/A

Gallus gallus GBGT1 NM_001030683 Q5ZLK4 N/A

Name and History

In 1911, Forssman discovered that rabbits injected with a suspension of kidney

tissue from guinea pig or horse, but not from cow or rat, produce antibodies that

hemolyze sheep erythrocytes (Forssman 1911). This heterophilic antigen is present

in a variety of species including mouse and dog (Forssman positive), but not in

others such as human and other primates (Forssman negative) (Buchbinder 1935).

The Forssman antigen is one of the most potent haptenic glycosphingolipids

(Papirmeister and Mallette 1955). Its structure was proven to be GalNAcal-
3GalNAcb1-3Galal-4Galb1-4Glcb1-Cer (Siddiqui and Hakomori 1971). Forssman

glycolipid synthase (FS), which is recommended to call Globoside a-1,3-N-
acetylgalactosaminyltransferase 1(EC 2.4.1.88), catalyzes the transfer of

N-acetylgalactosamine from UDP-GalNAc to the terminal GalNAc residue of

globoside in a1,3-linkage. FS activity has been demonstrated in various mamma-

lian tissues (Kijimoto et al. 1974; Taniguchi et al. 1981).

In 1996, the canine GBGT1 gene cDNA encoding FS was cloned through an

expression cloning method using a monoclonal antibody against Forssman

antigen (Haslam and Baenziger 1996). The isolated gene exhibited sequence

homology to the previously cloned GGTA1 gene for a1,3-galactosyltransferase
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(Joziasse et al. 1989) and the ABO genes encoding the histo-blood group A and B

transferases (Yamamoto et al. 1990). Later, other a1,3-galactosyltransferase family

members, the A3GALT2 gene encoding isoglobotriaosylceramide (iGb3) synthase

(Keusch et al. 2000) and the GT6m5, GT6m6, and GT6m7 genes encoding putative

proteins (Turcot-Dubois et al. 2007), were identified.

Structure

Canine, mouse, and human FS consist of 347 amino acids (Haslam and Baenziger

1996; Elliott et al. 2003; Xu et al. 1999). The amino acid sequences predict a type II

transmembrane topology as do all other Golgi-resident glycosyltransferases. FS,

histo-blood group A and B glycosyltransferases, a1,3-galactosyltransferase, and
iGb3 synthase are categorized in the GT6 family in the CAZy glycosyltransferase

database (http://www.cazy.org/GlycosylTransferases.html). These enzymes are

retaining glycosyltransferases that catalyze a reaction in which the anomeric con-

figuration of the monosaccharide in the donor substrate (ain UDP-sugars) is

retained in the product (Boix et al. 2002). The 3D structure of FS is predicted

based on that of a1,3-galactosyltransferase and histo-blood group A and B trans-

ferases (Boix et al. 2001; Boix et al. 2002; Heissigerova et al. 2003), although FS

has never been crystallized.

Enzyme Activity Assay and Substrate Specificity

A typical enzyme reaction is performed in a 100-ml reaction mixture containing

100 mMMES (pH 6.7), 10 mMMnCl2, 5 mMUDP-[3H]GalNAc, 20 mM globoside,

and membrane extract as an enzyme source (Haslam and Baenziger 1996). After

incubation at 37 �C for 2 h, the reaction is terminated by the addition of 1 ml ice-

cold water containing EDTA. Glycolipid products are separated from

unincorporated sugar nucleotide using a Sep-Pak C18 cartridge. The glycolipid

fraction is then applied onto a TLC plate and developed with authentic Forssman

glycolipid. The radioactivity corresponding to the standard glycolipid is determined

by fluorography or a liquid scintillation technique. A unique assay method using

anti-Forssman antibody is also employed (Taniguchi et al. 1982).

Canine spleen FS has a pH optimum at 6.7–6.9 and requires Mn2+ (Taniguchi

et al. 1982). Studies on substrate specificity for canine spleen FS indicate that the

enzyme recognizes GalNAcb1-3Gal-R structure (Taniguchi et al. 1982). The

recombinant canine FS did not act on the histo-H acceptor, N-acetyllactosamine,

LacCer, globotriaosylceramide, or GM3 (Haslam and Baenziger 1996). In addition,

it had no galactosyltransferase activity toward globoside, indicating that FS and

SSEA-3 (Galb1-3GalNAcb1-3Galal-4Galb1-4Glcb1-Cer) synthase are distinct

enzymes (Haslam and Baenziger 1996).
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Preparation

Forssman glycolipid synthase was purified over 3,500-fold in a 4 % yield from

a Triton X-100 extract of canine spleen microsomes by affinity chromatography on

globoside acid-agarose (Taniguchi et al. 1982). The purified enzyme preparation

showed two major bands with apparent molecular weights of 56,000 and 66,000 on

SDS-PAGE under reduced conditions. Since these proteins are too large for the 347

amino acid protein predicted from the cloned cDNA (Haslam and Baenziger 1996),

the genuine Forssman glycolipid synthase might have been hidden behind the

co-purified proteins.

Recombinant canine FS was obtained from COS-1 cells transfected with the

pFS-7 plasmid (Haslam and Baenziger 1996). The cDNA-introduced COS cells

are homogenized by sonication. After the removal of nuclear fractions, membrane

fractions are solubilized with 1 % Triton X-100 and used as an enzyme source.

Biological Aspects

Forssman glycolipid is expressed in a tissue-specific and developmentally regulated

fashion in many mammals (Willison and Stern 1978). However, a biological

function for Forssman glycolipid has not been identified. Unlike many other

mammalian species, humans do not normally produce Forssman glycolipid but

produce the precursor globoside, suggesting that human tissues lack Forssman

synthase activity. Although the human FS gene is indeed expressed ubiquitously

and generates a highly homologous protein with the canine enzyme, the gene

product shows no al,3-GalNAc transferase activity (Xu et al. 1999). Very recently,

molecular basis of the human Forssman glycolipid negativity was elucidated by

comparing the FS protein sequences between the Forssman-positive and Forssman-

negative species (Yamamoto et al. 2012). In the human GBGT1 gene, two common

missense mutations, G230S and Q296R, were identified. The reversion of these two

mutations restored the GalNAc transferase activity to synthesize Forssman antigen

in vitro. These findings confirmed the belief that human cells do not synthesize

Forssman antigen and indicates that Forssman glycolipid is dispensable in terms of

physiological functions. Since human FS retains 83 % amino acid sequence identity

with the canine orthologue and is expressed widely in human tissues, the human FS

may have another as yet unknown biochemical function, which is different from the

GalNAc transferase activity.

Knockout and Transgenic Mice

Neither knockout mice nor transgenic mice of FS have been reported.
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Human Disease

Glycosphingolipids serve as receptors for several pathogenic organisms (Karlsson

1989). Therefore, differences in glycolipid expression between species contribute

to the tropism of many infectious pathogens for their hosts. The globo series

glycosphingolipids have been reported to be an attachment site for bacteria, viruses,

and bacterial toxins (Strömberg et al. 1990; Brown et al. 1993; Lingwood 1993;

Jacewicz et al. 1994). For example, a canine Escherichia coli uropathogenic isolate
cannot cling to human urinary epithelial cells, but expression of canine FS therein

enables adherence by the same pathogen (Xu et al. 1999). Hence, the absence of

active FS is thought to be advantageous for humans to evade infection. However,

expression of canine and murine FS reduce the Shiga toxin (Stx) susceptibility in

Vero cells through the decrease of the Stx receptor, globotriaosylceramide content,

while human FS has no effect on it (Elliott et al. 2003). In this case, inactivation of

the FS gene is supposed to be disadvantageous for humans. Mutual evolutionary

pressure from host-microbial interactions may have contributed to diversity in

glycolipid expression among species (Xu et al. 1999).

Despite the absence of FS activity in normal human tissues, Forssman antigen is

detected in human tumors (Kawanami 1972; Hakomori et al. 1977; Yoda et al.

1980; Mori et al. 1982; Fredman 1993). Although the molecular mechanism of how

Forssman glycolipid emerges in human tumors is unknown, somatic changes may

enable human cells to produce Forssman glycolipid (Yamamoto et al. 2012). Some

factors may activate the dormant FS in cancer tissues. Alternatively, other GalNAc

transferases that are activated in tumors may synthesize Forssman glycolipid as

a result of the looseness of substrate specificity. Future studies will be directed to

this issue.

Future Perspectives

The CAZY GT6 gene family members are found in bird, fish, and amphibian

genomes as well as mammalian. The number and type of GT6 genes vary widely

from species to species, even within phylogenetically close groups (Turcot-Dubois

et al. 2007). Moreover, some of the GT6 gene family members are inactivated, as

seen in the case of human FS and a-1,3-galactosyltransferase. Thus, individual GT6
genes have expanded and contracted by recurrent duplications and deletions during

vertebrate evolution (Turcot-Dubois et al. 2007). This birth and death evolution

model seems to apply to gene families involved in interactions with the environ-

ment, including gene families of the immune system and the sensory system. The

biological roles of the GT6 family members in the interaction between organisms

and their environment are interesting open questions.
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Cross-References

▶Alpha 1,3-galactosyltransferase 2, pseudogene (A3GALT2P)

▶Glycoprotein Alpha 1,3-Galactosyltransferase 1, Pseudogene (GGTA1P)

▶Histo-Blood Group A and B Transferases, Their Gene Structures, and Common O

Group Gene Structures

Further Reading
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Xu et al. (1999)
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