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Abstract Cyclic monomers constitute a broad family of monomers which are able

to be polymerized by anionic ring-opening polymerization or related nucleophilic

ring-opening mechanism. This chapter presents successively the polymerization of

cyclic ethers, cyclic esters, cyclic amides, cyclosiloxanes and other cyclic silicon-

based compounds, cyclic carbonates, and other cyclic monomers, i.e., cycloalkanes,
cyclic sulfides, cyclic amines, cyclic ureas, depsipeptides, and cyclic phosphorus

monomers. The main synthetic strategies are reviewed in terms of monomer

reactivity, side reactions, and control of macromolecular architectures. Ring-

opening polymerization of cyclic monomers utilizing alkali metal derivatives or

other initiating systems in conjunction or not with activating systems is described.

Emphasis is also put on the use of organic initiators or catalysts to trigger the metal-

free ring-opening polymerization.

Keywords Anionic ring-opening polymerization • Epoxides • Lactones •

Lactams • Cyclosiloxanes

1 Introduction

For many years, efforts in polymer science were directed toward the control of

polymerization methods, a precise control of the structure, topology, and function-

ality of polymeric chains enabling the design of macromolecular scaffolds that may

find applications in high added value domains. For polymers bearing heteroatoms in

their backbone, two pathways are generally possible: step-growth polymerization

and ring-opening polymerization (ROP). The main advantage of step-growth poly-

merization is the easy accessibility of a wide range of monomers of various

structures. Nevertheless, it suffers from limitations. Indeed, high conversions are

needed to get high molar mass polymers, often not controlled, and high polymer-

ization temperatures are generally required. These drawbacks are overcome by the
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implementation of ROP, which has become a powerful tool for the synthesis of

various polymers, mainly polyethers, polyesters, polyamides, polysiloxanes, and

polycarbonates (Scheme 1).

The ring strain, coming from distortion of the ring angles and stretching bonds, is

generally responsible for conversion of monomer into polymer units. The ROP can

be performed according to several mechanisms, namely, anionic, cationic, and

coordination-insertion. In this chapter, we will focus on polymerization for which

the propagating species is an anion. Few exceptions, where the propagating species

are not fully charged, will also be presented. This chapter will be divided into

several sub-chapters, each one focusing on one type of cyclic monomer. It will be

presented successively the anionic ring-opening polymerization of cyclic ethers,

cyclic esters, cyclic amides, cyclic silicon-containing monomers, cyclic carbonates,

and other cyclic monomers, i.e., cycloalkanes, cyclic sulfides, cyclic amines, cyclic

ureas, depsipeptides and cyclic phosphorus monomers. When well established, the

elementary steps involved in the polymerization are given. Recent developments

concerning the synthesis of controlled macromolecular architectures are also

presented.

2 Cyclic Ethers

2.1 Introduction

The anionic ring-opening polymerization (AROP) of cyclic ethers enables the

synthesis of polyethers like poly(ethylene oxide) (PEO) and poly(propylene

oxide) (PPO), often referred to as poly(ethylene glycol) and poly(propylene glycol),

respectively. The worldwide production of these polymers attains several million

tons per year for commodity (precursors for polyurethanes, surfactants, and

lubricants) or high-performance (biomedical or cosmetic domains) applications.

Nucleophiles can initiate the polymerization leading to alkoxides able to attack a
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new monomer enabling the propagation step. Cyclic ethers reactivity and polymer-

ization kinetics are predominantly influenced by their polymerization enthalpy and

ring strain but also by electronic and steric factors associated with the nature of the

ring substituent as well as reaction conditions like temperature and solvent. An

anionic-related mechanism can be considered after preliminary complexation of the

monomer by specific additives (an electrophile), which strongly facilitate nucleo-

philic attack and ring-opening. Based on this chemistry, as well as organic synthetic

tools, many substituted epoxide monomers are able to be polymerized, opening

pathways for well-defined polyether structures and functionalities and allowing the

preparation of materials with various properties.

2.2 Conventional Anionic Polymerization of Epoxides

Propagation may proceed without side reaction in anionic polymerization of ethyl-

ene oxide [1]. Alkali metal derivatives like hydrides, alkyls, aryls, and amides and

mainly alkoxides of sodium, potassium, and cesium represent the most common

initiators used for the AROP of epoxides [2, 3]. Lithium alkoxides do not lead to the

polymerization of such monomers due to strong aggregation between lithium

species after insertion of the first epoxide unit. Polymerizations initiated by alkali

metal alkoxides are generally carried out in aprotic and apolar media or in coordi-

native solvents like dimethylsulfoxide (DMSO) or dimethylformamide (DMF) in

order to dissociate active species. The driving force for the ring-opening reaction is

the relief of the strain energy of the epoxide ring. High temperatures are usually

needed for the AROP of long-chain alkylene oxides.

The different steps of conventional AROP of epoxides are shown in Scheme 2.

The initiation step consists of a nucleophilic substitution – SN2 type – of the

alkoxide species leading to the formation of new alkoxide species able to further

attack monomer molecules resulting in polyether chains with an atactic structure.

The termination step is achieved by addition of an acidic compound with labile

hydrogen. Alcohols and water are the most commonly used termination agents in

order to obtain hydroxyl end groups. The transfer to monomer is observed with

most of the initiating systems when substituted epoxides are polymerized.

2.2.1 Ethylene Oxide

Alkali metal salts of carbanions [4–6] and nitranions [7] are efficient initiators for

the polymerization of ethylene oxide (EO). Alkali metal alkoxides were also

investigated in detail due to the fact that the structure of these derivatives is similar

to the one of propagating species. In aprotic solvents with low to medium polarity,

i.e., ethers, alkali metal alkoxides exhibit a strong tendency to aggregate leading to

complex reaction kinetics. This is particularly significant for small-sized metals

such as lithium or sodium. If the reaction follows a monomer order of 1, the order in
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alkoxide propagating species varies according to counterion and solvent. This can

be related to the presence of aggregates, ion pairs, and free ions of different intrinsic

reactivity (Scheme 3). EO polymerization with alkoxide aggregates is extremely

slow and does not even proceed in most cases.

The combination of alkoxide with its parent hydroxy compound was used to

limit aggregation and preserve solubility [8–10], allowing a better control of the

initiation and propagation, to the detriment of reaction kinetics [11, 12]. This would

be referred today as a “degenerative transfer,” already reported by Flory in the

1940s.

The use of potassium tert-butoxide as initiator was reported to yield living

PEO in DMSO with molar masses controlled by the ratio [monomer]/[initiator]

[13–15]. With K+ and Cs+ salts, EO polymerization in DMSO proceeds almost

exclusively by free ions in agreement with a higher dissociation constant in this

solvent in line with a high DMSO permittivity (ε¼ 48 at 20 �C). With Na+ as

counterion, both ion pairs in equilibrium with a small proportion of free ions

contribute to the propagation. In tetrahydrofuran (THF) (ε¼ 7.6 at 25 �C) and in

the presence of sodium, potassium, and cesium naphthalene as initiators, a living

polymerization takes place, the rate of propagation increasing with the size of the

counterion [16, 17]. However, kinetics are complicated due to the strong associa-

tion of alkoxide end groups.
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2.2.2 Monosubstituted Epoxides

Although alkali metal derivatives are efficient initiators for AROP of ethylene

oxide, they are much less efficient for monosubstituted epoxides, e.g., propylene

oxide (PO), glycidyl ethers, etc. Indeed, as alkoxide species are relatively strong

bases, the abstraction of monomer substituent proton can take place. This side

reaction leads to the formation of polyether chains, initiated by an allyloxy group,

limiting the molar masses of polyethers (Scheme 2) [14, 18].

Similarly to ethylene oxide, the size of the counterion and the temperature were

shown to influence the polymerization rate of monosubstituted epoxides. Increasing

the size of the counterion leads to more dissociated active species and thus to higher

polymerization rate, faster polymerizations being observed with cesium counterion.

Higher temperatures increase the polymerization rate [18, 19] with the time frame

being generally in the magnitude of several hours or days to reach high yields. In the

presence of potassium as counterion (t-BuOK as initiator), the reactivity of racemic

propylene oxide in hexamethylphosphoramide (HMPA) at 40 �C is about four times

lower than that of EO on the basis of overall polymerization rates [20]. The

reactivity of other monosubstituted epoxides depends on both electronic and steric

factors induced by the substituent attached to the epoxide ring [21]. For instance,

the reactivity of 2,2-dimethyloxirane (DMO) is ten times lower than that of PO,

whereas glycidyl ethers such as tert-butyl glycidyl ether (t-BuGE) are more readily

polymerized than PO [20].

Conventional anionic ring-opening polymerization suffers in general from slow

kinetics and, more particularly for substituted epoxides, of transfer reactions. Other

systems were therefore developed.

2.3 Systems for Activated Epoxide Polymerization

2.3.1 Alkali Metal Derivatives Associated to Crown Ether

Addition of complexing agents to alkali metal cations, such as crown ethers or

cryptands (Scheme 4), was shown to drastically increase ethylene oxide propaga-

tion rate in ethereal solvents [8, 22, 23], reducing the aggregation of alkoxide

polymer ends and increasing the proportion of free ions. For example, the dissoci-

ation constant of PEO� K+ at 20 �C in THF is 1,700 times higher when K+ is

n
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Scheme 3 Aggregates, ion pairs, and free ions in EO polymerization and their capacity to

contribute to propagation
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complexed by cryptand 222. In this system, the reactivity of free ions is about

60 times higher than that of cryptated ion pairs.

For monosubstituted epoxides, 18-crown-6 was also shown to increase the

reactivity, the propagation rate constant being up to 14 times at 25 �C [10, 24–

26]. In line with the acidic character of hydrogen on the α-carbon of the monomer,

the nature of epoxide substituent plays an important role in the chain transfer

process. For instance, the anionic polymerization of long-chain alkylene oxides

initiated by potassium and cesium alkoxides is much less subjected to chain transfer

processes than alkoxides deriving from PO. However, relatively high temperatures

were needed to reach reasonable polymerization times, which caused residual side

reactions limiting molar masses. The breakthrough of using the additive 18C6 was

associated with a decrease of polymerization temperatures, minimizing transfer

reaction to monomer. This is reflected by the production of poly(2-butyloxirane) of

higher molar masses at 20 �C (Table 1) [19]. The polymerization temperature of

2-butyloxirane and of higher 2-alkyloxiranes like 2-hexyloxirane and

2-octyloxirane could even be reduced below 0 �C, which almost eliminate

completely all side reactions. However, very long reaction times were required,

i.e., 4–8 days, and conversion did not go to completion [19]. Alkali metal hydrides

were also associated to 18C6 for the AROP of glycidyl butyl ether [21,

27]. Polyethers with molar masses lower than 5,000 g/mol and low dispersity

were obtained. For this range of molar masses, polymerization time was consider-

ably reduced, from several days to a few hours, as well as transfer reactions.

2.3.2 Aluminum Systems: From Bulky to Simpler Compounds

In the 1980s, Inoue and coll. used metalloporphyrin as catalyst, in particular aluminum-

based porphyrin, for the polymerization of methacrylates [28, 29], lactones [30], and

epoxides [31] and, in some extent, oxetane [32] which is usually polymerized by a

cationic route. The equimolar combination between diethylaluminum chloride and α,
β, γ, δ-tetraphenylporphyrin (TPPAlCl) led to a high catalytic activity in the polymer-

ization of propylene oxide. The covalent nature of the Al-Cl bond suggests a
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polymerization via a coordination mechanism. Synthesized polyethers, by the

so-called “immortal” polymerization, reached molar masses up to 70,000 g/mol

with a narrow distribution [33]. A monomer molecule is first inserted between the

Al-Cl bond of the initiator (Scheme 5). Aluminum porphyrin, due to its nucleophilic

character, was used as initiator enabling coordination with epoxide. Under such

conditions, transfer reactions were considerably decreased, allowing the synthesis

of a series of block copolymers, including poly(PO-b-EO), poly(1,2-butene oxide-
b-PO), poly(PO-b-epichlorohydrin), poly(lactones-b-PO), poly(lactones-b-EO),
etc. [34, 35]. Although EO polymerization could be achieved rapidly (half-time

reaction is about 30 min at room temperature for [EO]/[TPPAlCl]¼ 400 in

dichloromethane), other epoxides exhibited a lower reactivity. In similar

conditions, several hours were required for the polymerization of PO and

1,2-epoxybutane [31] in order to reach complete conversion, whereas for styrene

oxide or 1,2-epoxy-2-methylpropane conversions did not exceed 15 % after 8 days

of reaction [33].

In order to increase polymerization rate of propylene oxide, aluminum porphyrin

was used in association with a bulky Lewis acid [36–38]. For instance,

methylaluminum bis(2,4,6-tri-tert-butylphenolate) (MAlBP) was used to coordi-

nate the epoxide and to activate the monomer substrate toward a nucleophilic

attack. As compared to the previous system, the catalytic species and the initiator

are independent, i.e., employed as a bi-component initiating/activating system.

There is no interaction between these two aluminum derivatives due to their

bulkiness. Polymerization rates of propylene oxide and 1,2-butene oxide were

strongly enhanced due to the presence of the bulky Lewis acid [36]. Only 0.25 %

Table 1 Polymerization conditions and characteristics of poly(2-butyloxirane) synthesized

in presence of K or Cs tert-butoxide in toluene with or without crown ether 18C6 (molar ratio

18C6/metal¼ 3)

Counterion T (�C) Time (h) Conv. (%) Mn th. (g/mol) Mn exp. (g/mol) D

K 80 40 96 14,700 11,200 1.15

Cs 80 18 97 14,800 11,700 1.11

K/18C6 20 19 92 47,000 43,600 1.11

Cs/18C6 20 68 81 39,600 28,000 1.13
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of MAlBP, with respect to propylene oxide concentration, was added to increase the

polymerization rate by a factor of 460. With a [MAlBP]/[TPPAlCl] ratio equal to

0.5, 3 min was enough for propylene oxide to be polymerized with 86 % conver-

sion, leading to a PPO with a molar mass up to 12,000 g/mol. Without MAlBP, in

7 h, the conversion is around 20 % and molar mass reached 3,300 g/mol. The Lewis

acid alone did not initiate the polymerization under similar conditions. The “living”

nature of the polymerization could be demonstrated by the successful formation of

block copolymers based on propylene oxide and 1,2-butene oxide, though complete

conversions could not be obtained.

Using relatively similar systems based on quaternary ammonium and quaternary

phosphonium halides associated to sterically hindered methyl(diphenoxy)alumi-

num, poorly reactive four-membered ring oxetane, e.g., 1,3-propylene oxide, was

polymerized according to a coordinated-anionic mechanism, as a result of strong

monomer activation by complexation with the aluminum derivative [39].

Braune and Okuda used porphyrin-free aluminate complexes for the polymeri-

zation of propylene oxide activated by their neutral Lewis acid precursors [40]. The

nucleophilic species were easily obtained by reaction of a bulky Lewis acid based

on diphenoxyaluminum compounds, with a cesium alkoxide or an ammonium salt.

The ring-opening polymerization proceeds under the synergic interaction of a

phenolate-aluminum-oxirane complex forming an activated monomer with the

corresponding “ate” complex which initiates the reaction (Scheme 6). Ring-

opening takes place by transfer of an alkoxy group from the “ate” complex,

regenerating an aluminate able to activate a new monomer. The synthesis of poly

(propylene oxide)s with molar masses up to 4,000 g/mol was reported following an

anionic (or coordinative) mechanism because of exclusive head-to-tail linkages.

Tsvetanov reported in 1985 the polymerization of ethylene oxide initiated by

sodium tetrabutylaluminate [41]. PEO were prepared in toluene in the range 15–
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70 �C with a high kinetic order with respect to the initiator. The polymer chain

growth was explained by the presence of aggregates of NaAlBu4, predominantly

trimers of the “ate” complex. Interaction between the oxygen atom of EO and the

alkali metal, as well as EO and aluminum to a lesser degree, was shown, in line with

some activation of the epoxide.

Using epoxide monomers and combinations of a Lewis acid – typically a

trialkylaluminum – and alkali metal alkoxides or onium salts [42–47], Carlotti

and Deffieux developed efficient synthesis of various polyethers. An excess of

Lewis acid with respect to the initiator was required. The formation of an “ate”

complex, which was able to ring-open the activated epoxide by the excess of

activator, was observed (Scheme 7).

Propylene oxide polymerization, based on a monomer-activated anionic poly-

merization, occurs at room or lower temperature. Control over the polymerization

strongly depends on the nature of the counterion. Sodium and potassium enable the

polymerization, whereas lithium does not. In few hours, controlled poly(propylene

oxide) chains, up to 20,000 g/mol, were obtained with nevertheless the presence of

some residual transfer reactions, i.e., transfer to monomer leading to allyloxy

groups in the α-position and transfer to triisobutylaluminum (i-Bu3Al), which
generates initiation by a hydride coming from an isobutyl group. Ammonium

salts were more successful as much higher molar masses could be achieved in a

controlled manner, especially at�30 �C, yielding polyethers of low dispersity (e.g.,

Ð¼ 1.34 for Mn ¼ 170,000 g/mol) [45]. The strong decrease of transfer reactions

was explained by the decrease of basicity of the active bi-component complex. The

exclusive preparation of regioregular polymers (head-to-tail) was indicative of an

anionic/coordination type mechanism. Polymerization proceeds at [Al]/[Initiator]

ratio higher than unity, indicating that only complexed PO molecules are suscep-

tible to ring-open, thanks to significant electron-withdrawing effect that makes the

ring carbon atoms much more electrophilic. Increasing trialkylaluminum concen-

tration, at constant monomer and initiator concentrations, was shown to yield a

drastic increase in polymerization rate, whereas the number of PPO chains

remained unchanged.
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These initiating systems were also applied to the polymerization of a broad

variety of epoxides including several alkylene oxides and glycidyl ethers, epichlo-

rohydrin (ECH), etc. Compared to conventional alkali metal initiators, the

tetraoctylammonium bromide/i-Bu3Al-initiating system strongly enhanced the

rate of ethylene oxide polymerization while retaining the living character of the

reaction [48]. At a ratio [i-Bu3Al]/[NOct4Br]¼ 1.5, the synthesis of PEO of

20,000 g/mol was completed within 2 h at room temperature in dichloromethane.

By changing the ammonium salt by an alkyllithium, a PEO of 10,000 g/mol was

synthesized at low temperature and in nonpolar media, e.g., toluene [49]. The

presence of trialkylaluminum used in excess with respect to the lithium initiator

permits disaggregation of lithium alkoxide species by forming lithium/aluminate

complexes which are able to ring-open the AlR3-complexed EO molecules. How-

ever, ligand exchanges in the lithium/aluminate complex lead to slow deactivation

of the propagating species during the polymerization which limits the access to high

molar mass PEO.

Monomer-activated anionic polymerization of epichlorohydrin utilizing similar

conditions was also described. In contrast to conventional anionic polymerization,

aluminate species that ensures propagation in AlR3/onium systems selectively react

with activated ECH ring, keeping the chloromethyl function [50]. Syntheses of poly

(glycidyl methyl ether) (PGME) [51], linear poly(2-ethoxyethyl glycidyl ether)

(PEEGE), and poly(tert-butyl glycidyl ether) (PtBuGE) [52] with narrow chain

distribution and controlled molar masses were also reported. The amount of Lewis

acid required to trigger the reaction and achieve quantitative monomer conversions

was shown to increase with the number of oxygen atoms in the monomer.

This anionic living/controlled polymerization, employing onium salt/triisobuty-

laluminum systems and involving a monomer-activated mechanism, was applied to

the synthesis of a series of random and block copolymers. For instance, EO/PO

random copolymers with a gradient structure, molar masses up to 70,000 g/mol, and

narrow dispersity were prepared [48]. PPO-co-PECH [50] and amphiphilic poly

(alkylene oxide-co-glycidol) were also synthesized via the synthesis of PPOx-co-
PEEGE and PBO-co-PtBuGE copolymers [52], followed by the deprotection of

hydroxyl groups under acidic conditions. Despite the determining role of the

monomer complexation in this polymerization process, the copolymerization ratios

remain close to those reported for conventional anionic copolymerization. Different

diblock and triblock copolymers of various compositions and lengths were also

prepared by sequential monomer addition. Synthesis of PEO-b-PPO-b-PEO
triblock copolymers with NOct4Br/i-Bu3Al initiating system was first achieved

[48]. PPO-b-PECH block copolymers with molar masses ranging from 6,000 to

30,000 g/mol and with various PPO and PECH block lengths were also prepared by

sequential addition of the two monomers [50]. The re-initiation efficiency was

shown to be quantitative, no matter the order of addition of the two monomers.

Finally, block copolymerization of EO initiated with lithium derivatives was also

lately described [49]. Although it is known that EO polymerization could not

proceed properly when lithium alkoxide species are involved [53, 54], it was

shown that living polystyryllithium and polyisoprenyllithium chains can play the
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role of a macroinitiator for EO polymerization in presence of trialkylaluminum.

Block copolymers polystyrene(or polyisoprene)-b-poly(ethylene oxide)s were

obtained in hydrocarbon within a few hours with a PEO block molar mass up to

10,000 g/mol and a re-initiation efficiency of about 80 %.

2.3.3 Calcium-Based Systems

The association of two metals was also proposed in 1980 to polymerize ethylene

oxide [55]. A calcium amide/alkali metal alkoxide initiating system was used at

high temperature in order to produce poly(ethylene oxide)s with high molar masses.

EO polymerization involves monomer coordination at the catalyst active site via σ
bond formation between the monomer heteroatom and the catalyst metal atom. It is

followed by a nucleophilic attack of the alkoxide active group [56]. Tsvetanov and

coworkers investigated this combination for the synthesis of poly(propylene oxide)

and miscellaneous copolyethers [57–61]. The authors explained that calcium deriv-

atives are much weaker than other metals, like aluminum or zinc, in the formation

of oxiranes complexes. As a result, Ca-EO complexes are more readily formed in

comparison with substituted epoxides where low-rate polymerizations are

observed. In addition, the polymerization takes place under heterogeneous condi-

tion as the calcium-based initiator is not soluble in the solvents used. As an

example, the synthesis of an amphiphilic poly(ethylene oxide)-b-poly(alkylglycidyl
ether) copolymer with a molar mass up to 106 g/mol and a high dispersity (5–8) was

achieved in relatively short times (several hours, but not days) at 97 �C [59].

In summary, various systems such as metals associated to crown ethers or

metallic activators as well as combinations or organic initiators associated to

organometallic compounds were used to polymerize epoxides affording control

and fast kinetics. Nowadays, complementary challenges concerns metal-free sys-

tems which are able to fulfill all criteria so far discussed.

2.4 Toward Organic Initiating Systems

2.4.1 Tertiary Amines

Amineswere essentially used for the anionic polymerization of di- and polyepoxides,

mainly diglycidyl ether of bisphenol A and its derivatives as well as glycidyl phenyl

ether [62]. Reactionwith amines leads to slow polymerization rates, to long induction

periods, and to the formation of short chains due to transfer reactions. Benzyldi-

methylamine, pyridine, triethylamine, 4-dimethylaminopyridine (DMAP), and

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) are the most common amines used as

initiators. Ammonium salts and imidazoles are also employed to open epoxides by

anionic polymerization. The main drawback of all these compounds is the limitation

in terms of molar masses. Although the initiation mechanism is not well established,
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two pathways are generally considered (Scheme 8) [63, 64]. The addition of alcohol

decreases induction periods and increases polymerization rates but limits molar

masses [62]. The alkoxide formed by the second way (Scheme 8b) is more reactive

than species resulting from usual initiation step (Scheme 8a). Williams and

coll. succeeded to decrease the time of initiating step by using DMAP thanks to its

conjugated structure with a negative charge on the nitrogen atom of the cycle and a

positive charge on the tertiary amine [64]. The molar masses were about 1,000 g/mol

at 80 �C.

2.4.2 N-Heterocyclic Carbenes

N-Heterocylic carbenes (NHCs) can be used as ligands of transition metallic

complexes [65] but also as organic catalysts for various metal-free reactions [66,

67]. Ring-opening polymerization of some epoxides was triggered by NHCs [68–

70]. Taton and coll. showed that 1,3-bis-(diisopropyl)imidazole-2-ylidene is able to

initiate ethylene oxide polymerization according to a zwitterionic mechanism

(Scheme 9) [68]. NHC plays in this case the role of initiator controlling PEO

molar masses and forming zwitterionic imidazolium. It can be released by attack

of functionalizing terminators added to the medium. Polymerizations were

performed at 50 �C in DMSO and required long times, i.e., several days. Molar

masses up to 13,000 g/mol were obtained with narrow distribution and good

agreement between theoretical and experimental molar masses, in line with a

good control of the polymerization. This approach was less effective for the

polymerization of propylene oxide due probably to transfer reactions to monomer.

Poly(propylene oxide) oligomers with a relative low dispersity were nevertheless

prepared [70].
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Controlled EO polymerization was found to proceed also with a catalytic amount

of NHC, in DMSO at 50 �C, and in presence of a variety of chain regulators, e.g.,

benzyl alcohol, propargyl alcohol, or trimethylsilyl azide. They possess a nucleo-

philic part and an electrophilic one (Nu-E). In this case PEO molar masses match

the [EO]/[Nu-E] ratio, typically in molar proportions [NHC]/[Nu-E]/[EO]¼ 0.1/1/

100 [69]. Reversible exchanges with Nu-E molecules, involving the formation of

active and dormant chains, yield α-Nu-ω-E-poly(ethylene oxide) opening a way for
chain-end functionalization.

2.4.3 Ammonium, Phosphonium, and Phosphazene Bases

Ammonium salts were first used by Hemery, Ganachaud and coll. for the AROP of

glycidyl phenyl ether (GPE) in miniemulsion [71]. Didodecyldimethylammonium

hydroxide was used as an inisurf (initiator-surfactant) exhibiting both surface-

active properties and the ability to initiate polymerization. Average molar masses

increased with conversion and were dependent on the initiator concentration.

A critical polymerization degree of 8 was reached. Using a similar initiator, i.e.,

tetrabutylammonium fluoride, in solution polymerization, endo achieved the syn-

thesis of poly(glycidyl phenyl ether) oligomers with controlled molar masses up to

4,000 g/mol (Scheme 10) [72] and the synthesis of poly(ethylene oxide-b-glycidyl
phenyl ether) when the polymerization of glycidyl phenyl ether was performed in

the presence of poly(ethylene glycol) monomethyl ether [73].

As already mentioned, the size of the counterion plays a preponderant role in

epoxide polymerization, in particular on the kinetics. As a result of their bulky size,

some phosphonium and phosphazenium derivatives arising from strong Br€onsted
phosphazene bases, developed by Schwesinger, revealed potential interesting coun-

terions in order to limit aggregation phenomena [74, 75]. Several of these com-

mercially available bases were used as organic deprotonating agents of –OH (�CH,

�SH,�NH, or –COOH) containing initiators, to polymerize epoxides like ethylene

oxide [76–84], propylene oxide [85–87], butene oxide [82, 88, 89], styrene oxide

[90], as well as ethoxy ethyl glycidyl ether [88, 91, 92] and other protected form of

glycidol [93], affording homopolymers, copolymers [94–96], grafted or block

copolymers [81, 84, 93, 97–100], and star-shaped structures [89].

Phosphonium and phosphazene bases can be used with an alcohol to form a

protonated counterion. The use of t-BuP4H
+ enables an increase of the polymeri-

zation rate of propylene oxide, but transfer reactions still occur. Polymerization

O
OPh Bu4N+ -F

F
O-

+NBu4
+NBu4F
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OPh OPh

OPh
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Scheme 10 Polymerization of glycidyl phenyl ether initiated with tetrabutylammonium fluoride
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rates increase when the positive charge is delocalized into the molecule, which is

due to better ion separation [80, 81]. Phosphazene bases were also utilized in order

to complex lithium alkoxides allowing the (co)polymerization of ethylene oxide

and ethoxyethyl glycidyl ether with lithium derivatives (Scheme 11) [76, 79, 88, 91,

92, 101], which is generally not possible because of strong aggregation between

lithium alkoxides except when a trialkylaluminum is added [49]. The base behaves

as a cryptand for Li+ ions via polar amino and imino groups located inside the

globular molecule, and the outer shell is formed by alkyl substituents. The equilib-

rium between complexed lithium alkoxide ion pairs and reactive free anions is thus

shifted toward the latter species allowing polymerization. Copolymers based on

polystyrene and polyethers were prepared without the need of cation exchange.

However, the presence of residual transfer reactions and an induction period

resulting from the slow disaggregation of the lithium alkoxide ends still compli-

cated the epoxide polymerization [79].

A broad range of polyethers can be synthesized leading to an important class of

materials used in many applications. Controlled structures and dimensions as well

as easy, inexpensive, and rapid polymerizations remain the major challenges to be

addressed. Preparation of functional polyethers used as reactive precursors, by an

anionic route, is also of major interest.

2.5 Functionalization of Polyethers Prepared by Anionic
Ring-Opening Polymerization

Functionalization of polyether chains can occur either to chain ends or along the

polymer backbone. In the first case, a functional initiator and/or a termination agent is

employed. Further polymerization or other reactions can be conducted from the

as-introduced functional groups. The functionalization into the chains is carried out

by the use of functional monomers. Hydroxy, amine, epoxide, carbonate, thiol, azide,

as well as double and triple bonds are the most commonly used functions in order to

obtain a versatile range of functional polymers for many applications. Carlotti and

coll. [102], Frey and coll. [103, 104], and Riffle and coll. [105] have reviewed main

syntheses, properties, and applications of various functional polyethers. This part will

focus on the functions introduced into polyethers prepared by AROP.

RO-Li t-BuP4 RO- t-BuP4Li+
t-BuP4Li+n

O
RO

O
n-1

O-

Scheme 11 Ethylene oxide polymerization initiated by lithium alkoxide in the presence of

phosphazene base
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2.5.1 Polyethers with Hydroxyl Functions

Low molar masses polyether polyols are mainly used as precursors of polyure-

thanes [106]. The majority of hydroxy telechelic polyethers are synthesized by

AROP initiated by potassium or cesium hydroxide [18]. Initiation by a hydroxy

group followed by termination reaction using water or an alcohol yields α-,
ω-dihydroxy polyethers. As shown previously, this approach is efficient for ethyl-

ene oxide but much less with monosubstituted epoxides. Branched and star

polyethers were synthesized from tri-, tetra-, penta-, and octa-alkoxides of potas-

sium with molar masses close to 5,000 g/mol and a relatively broad dispersity [107–

114]. With a similar approach and using hyperbranched polyglycerol initiators,

Lutz, Frey and coll. prepared functional multiarm star PEO [9].

Bulkier counterion like phosphazene bases was used as deprotonating agents

with dipropylene glycol as initiator showing some decrease of usual transfer

reactions [86]. Using the monomer activation methodology [45], di-, tri-, and

penta-hydroxy telechelic poly(propylene oxide)s were obtained in very short

times (hours) at room temperature in hydrocarbon solvents with molar masses up

to 80,000 g/mol with a relatively low dispersity (Scheme 12) [115].

Using an organo-catalysis approach described previously (Scheme 9), Taton and

coll. reported that N-heterocyclic carbenes (NHC) could lead to α-,ω-dihydroxy
poly(ethylene oxide) using water as terminating agent. Hydroxide (OH�) was

shown to behave as a nucleophile that displaces the α-imidazolium moiety from

PEO chains, thus releasing the NHC, whereas the terminal alkoxide was

transformed into a ω-hydroxy function [69].

Hydroxyl functions can also be introduced after post-modification of other

reactive functions introduced via initiation. An amino function can lead to an OH

group after reaction with a molecule of ethylene oxide [116]. The use of tetrabuty-

lammonium acetate as initiator proved efficient to introduce acetate-end groups to

poly(glycidyl phenyl ether) [117]. Hydroxyl functions were obtained after hydro-

lysis with an acidic treatment. A narrow molar mass distribution and molar masses

up to 4,000 g/mol were thus obtained.
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The introduction of pendant hydroxyl functions is predominantly obtained from

anionic polymerization of glycidol and its derivatives. These polymers are very

attractive for biological and medical applications [118]. Direct reaction of glycidol

with bases such as triethylamine, pyridine, alkali metal hydroxide, and sodium

methoxide leads to two distinct initiation steps at room temperature (Scheme 13)

[119–123]. The first way corresponds to a basic attack toward the hydrogen atom of

the hydroxyl group, and thus an oxyanion bearing an epoxy group is formed. The

second way is the attack of the base over the methylene of the epoxide leading to

ring-opening. Hyperbranched polyethers with a high functionality in hydroxyl

groups were achieved [103, 124–126].

In order to access to well-defined linear polyols derived from glycidol, hydroxyl

functions of that monomer had to be protected. Dworak, Tsvetanov and coll. [114,

127–131], and M€oller and coll. [132–134] investigated the AROP of ethoxyethyl

glycidyl ether using metal alkali alkoxides such as KOH, CsOH, and t-BuOK.
These systems enabled the synthesis of linear polyols up to 30,000 g/mol. Quanti-

tative conversion was obtained between 17 and 48 h, depending on targeted molar

masses, and required high temperatures (up to 120 �C). Due to the initiating systems

used, residual transfer reactions were observed, limiting somehow the control over

the structures [91]. Linear polyglycidols with molar masses up to 85,000 g/mol,

starting from ethoxyethyl glycidyl ether (EEGE), were obtained using NOct4Br/

triisobutylaluminum as initiating system at room temperature in a few hours

[52]. The formation of an initiating and propagating “ate” complex of weak basicity

was proposed to explain the decrease of side reactions. Allyl glycidyl ether or

isopropylidene glyceryl glycidyl ether was also used as a protected form of glycidol

to obtain polyethers polyols [114, 133, 135, 136].

Taking advantages of the anionic route, various well-defined functional block

copolymers were prepared [128, 133, 137–141].

2.5.2 Polyethers with Amine Functions

Jeffamines® represent the most industrially produced polyetheramines. Such

polyamino telechelic polyethers cannot be directly obtained by initiation and

termination steps. They are synthesized from hydroxytelechelic random copoly-

mers of ethylene oxide and propylene oxide via reaction between hydroxyl

O
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Scheme 13 Initiation mechanisms of glycidol in presence of a base
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functions and ammoniac gas at 300 �C. Considering the nature of the polymeriza-

tion, only polyetheramines with low molar masses can be prepared. They are

thermoresponsive polymers possessing a lower critical solubility temperature

around 30 �C in water. Amino end groups are mainly used as curing agents in

epoxy resins [142, 143] and as chain extenders for polyurethane applications

[144, 145].

The introduction of amino groups at the head of polyether chains is generally

carried out using an initiator bearing a primary amine function and another more

reactive function, i.e., an alcohol, which enables the initiation. Aminoalcohols can

be thus used to polymerize ethylene oxide by an anionic mechanism [116]. In basic

media, both metal alkoxide and amide are formed, and the equilibrium is driven

toward the formation of alkoxide by increasing the size of the counterion. Molar

masses of α-amino-ω-hydroxy functional polyethers reached 1,000 g/mol. Transfer

and termination reactions occur due to the hydrogen of amino groups. Protection of

the primary amino group by a tertiary one was considered to overcome those

limitations [96, 100, 116, 135]. Molar masses increased up to 6,000 g/mol and

required long times, i.e., 150 h [146]. Schlaad used α-methylbenzyl cyanide as a

CH-acidic compound to obtain α-cyano, ω-hydroxy poly(ethylene oxide) with

controlled molar masses up to 2,500 g/mol with narrow distributions [78]. The

cyanide function was then reduced in –NH2 group by LiAlH4.

Polyethers bearing primary amino groups are also generated by using epoxide

monomers with protected amines such as N,N-dibenzyl amino glycidol or

N,N-diallylglycidylamine prepared from epichlorohydrin and N,N-dibenzylamine

or N,N-diallylamine, respectively [147, 148]. The synthesis of copolymers with EO

was next performed using cesium alkoxide as initiator giving controlled

copolyethers with molar masses up to 10,000 g/mol. Pendant amine functions can

also be introduced from chlorine atoms. Statistical or block copolyethers, made by

NOct4Br/i-Bu3Al systems and having both hydroxy and amine pendant groups,

were brought, respectively, by ethoxyethyl glycidyl ether (protected glycidol) and

epichlorohydrin monomers (Scheme 14) [149]. Chlorine atoms were subsequently

transformed into azido groups using sodium azide. Consequent reaction with
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triphenylphosphine enables quantitative formation of amino groups. Such type of

copolymers was proposed to enable selective electrophilic reactions due to the

difference of reactivity between –OH and –NH2 functions.

2.5.3 Polyethers with Alcene Functions

Double bonds are known to be stable toward anionic ring-opening polymerization

conditions but can be further easily modified into various functions which make

them attractive. They can be introduced via initiation with an alcohol bearing such a

function [96, 150–152]. Allyl alcohol and 10-undecen-1-ol can be deprotonated, for

instance, by naphthalene potassium or by sodium hydride, respectively. However,

during polymerization, double bonds can be isomerized into propenyl group to form

CH3CH¼CHO� as initiating species. To avoid this side reaction, polymerization

has to occur between 15 and 20 �C, rather than at high temperatures [151]. As one

example, thiol-ene reactions were applied to PEO oligomers initiated by

10-undecen-1-ol [152]. The synthesis of α,ω-diallyl PEO was achieved by reaction

between α,ω-dihydroxy PEO, deprotonated with diphenylmethyl potassium, and

allyl bromide. Hydrogels were obtained by their post-reaction with octafunctional

silsesquioxanes via hydrosilylation [153, 154].

Monomers bearing allyl functions, like allyl glycidyl ether (AGE), can be

directly used to synthesize polyethers with pendant double bonds through AROP

with alkali metal alkoxides as initiators [21, 133, 155]. Generally, molar masses

lower than 10,000 g/mol and long polymerization times are required. Ammonium

salts/trialkylaluminum systems [156] allowed controlled and high molar mass

structures in a few hours. With potassium alkoxide/naphthalenide initiators, Lynd

and Hawker could also obtain molar masses up to 100,000 g/mol with low

dispersity within 20–144 h [157]. Similarly, ethoxy vinyl glycidyl ether (EVGE)

was shown to be selectively polymerized and copolymerized with ethylene oxide to

give functional polyethers able to be post-modified [158].

2.5.4 Polyethers with Azide Functions

Most of the PEO azidation routes reported in the literature involve the chemical

modification of previously formed hydroxyl-terminated PEO [159–162]. Kataoka

achieved the synthesis of azido-terminated heterobifunctional poly(ethylene oxide)

s in a multistep process, involving ring-opening polymerization of ethylene oxide

initiated by allyl alcohol and subsequent transformation of R-allyloxy and

ω-hydroxy PEO end groups by a series of chemical reactions [163]. The azide

group was introduced by mesylation of the hydroxyl terminus, followed by its

subsequent substitution with sodium azide [164, 165].

The monomer-activated approach allowed the direct synthesis of a broad series

of heterofunctional polyethers bearing an azido head group, and a hydroxy-

terminated chain end, starting from tetrabutylammonium azide in the presence of
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triisobutylaluminum [166]. Poly(alkylene oxide)s, protected polyglycidol, and

polyepichlorohydrin were obtained in this way with a high functionalization effi-

ciency. Reduction reactions can lead to amine functionalization, or Huisgen’s
coupling reaction with alkyne moieties can be applied [167].

2.5.5 Polyethers with Other Functions

Carboxylic acid groups were, for instance, introduced from the initiation step. The

use of dipotassium-3-mercaptopropionate synthesized from 3-mercaptopropionic

acid and two equivalents of potassium naphthalide allowed the direct synthesis of

α-carboxy, ω-hydroxy poly(ethylene oxide) up to 25,000 g/mol with narrow distri-

bution [168]. Only the thiolate was shown to react; the carboxylate did not partic-

ipate in the polymerization (Scheme 15), but the usual way to introduce such a

function is post-modification of chain ends [152, 169–171].

Aldehyde functions in α-position can also be introduced by using an initiator

bearing a protecting group, i.e., 4-(diethoxymethyl)benzyl alcohol [172].

As a last example, polyethers with pendant methacrylate functions were

achieved by selective ring-opening polymerization of glycidyl methacrylate using

a monomer-activated anionic approach affording cross-linkable low Tg

polymers [173].

The method based on chemical modification of previously and anionically

formed polyethers is the most common way to get various functionalized and

reactive structures. In many cases a simple chemistry can be used which makes

this way very attractive. But, in the other cases, the interest is much more limited

particularly for an industrial application. The recent advances in the control of the

anionic polymerization of epoxide offer nowadays direct routes to prepare reactive

and new polymers. The research and development of novel technologies will

certainly contribute to an increasing use of such recent methods.

3 Cyclic Esters

3.1 Introduction

The biodegradability and biocompatibility of aliphatic polyesters render them very

attractive for a wide range of applications as environmental friendly thermoplastics

and biomaterials [174]. Moreover, many of them could be obtained from renewable

resources, which is one of the great challenges for polymer chemists. Three
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Scheme 15 Thiolate-initiated polymerization of ethylene oxide
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different polymerization mechanisms can be implemented to synthesize aliphatic

polyesters: the step-growth polymerization through esterification reaction of

hydroxyl acids or diacids/diols, the ring-opening polymerization (ROP) of cyclic

ketene acetals, and the ROP of cyclic esters. The step-growth polymerization is

highly used as its main advantage is the easy availability of a very wide range of

acid and alcohol precursors. Nevertheless, this polymerization suffers from severe

limitations: extremely high conversion has to be reached to get high molar masses,

high temperatures are generally needed, control of the molar masses is very

difficult, and dispersity is quite large. The ROP of cyclic ketene acetals could

proceed through cationic and radical processes [175]. Even if this polymerization

is known for long, its development remains limited due to many drawbacks: there is

competition between direct vinyl polymerization and indirect ring-opening of the

cycle depending on the ring size, substituents, and temperature; monomers are not

readily accessible; and branching reactions could occur. All these limitations can be

overcome by implementing the ROP of cyclic esters either by ionic (cationic or

anionic) or coordination-insertion mechanisms. Indeed, this technique allows living

and/or controlled polymerization with fast initiation and high molar masses with

low dispersity. Availability of the monomers occupies an intermediate position

between step-growth polymerization and ROP of ketene acetals. The question of

polymerizability of cyclic esters arises since the polymerization rate is highly

dependent on the ring size and the substituents. Moreover, in the case of anionic

mechanism, the active species varies with the ring size. Many recent reviews could

give other details than those presented in this subchapter [175–183].

3.2 Thermodynamics of Cyclic Esters Ring-Opening
Polymerization

The ability of a cyclic ester to be polymerized by the ring-opening mechanism has

to be allowed both thermodynamically and kinetically. Indeed, the monomer-

polymer equilibrium has to be shifted to the polymer formation, and the polymer-

ization time has to be reasonable. ROP of cyclic esters could be sometimes limited

by the presence of a relatively high concentration of the unreacted monomer when

at the equilibrium. This is typically the case for γ-butyrolactone which is hardly

polymerizable. The driving force for the polymerization of the majority of cyclic

esters is their ring strain. As a consequence, large-ring lactones are more difficult to

polymerize than small ones.

3.3 Lactide

The AROP of lactide was not as extensively studied as its coordination-insertion

polymerization, this latter being most investigating because it could enable
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stereoselective polymerization [179, 182, 184–186]. Nevertheless, several types of

initiators were able to perform polymerization of lactide.

3.3.1 Initiators with Alkali Metals

Studies concerning the AROP of lactide with alkali metals initiators were essen-

tially conducted in the 1990s [187–202]. It was shown that strong bases were

needed as carboxylates and phenolates were not able to initiate the polymerization

[192]. On the contrary, potassium tert-butoxide and butyllithium allowed the

polymerization of lactide with yields below 80 % and with the presence of race-

mization, transesterification reactions, and macrocyclics formation whatever the

polymerization conditions [192]. Moreover, it was demonstrated that the initiation

did not proceed through a nucleophilic attack of the strong base but through a

proton abstraction from lactide to give an enolate which was the actual initiator of

the polymerization (Scheme 16). After the nucleophilic attack of the enolate onto a

lactide molecule yielding acyl cleavage, the active species responsible of the

propagation was an alkoxide. Better results were obtained with primary and sec-

ondary lithium and potassium alkoxides as in this case the initiation proceeded

mainly through the nucleophilic attack, but still uncontrolled molar masses were

achieved (Scheme 16) [194, 201]. With potassium methoxide as the initiator,

polymerizations were completed in less than 2 h in THF at room temperature

allowing a good control of the molar masses with dispersities around 1.3 and low

extent of racemization [188–190].

The addition of a crown ether onto potassium tert-butoxide or naphthalenide

potassium revealed beneficial for the dispersity that dropped below 1.2 and for the

reduction of racemization reactions but detrimental for the polymerization rate that

slowed down dramatically [191, 196, 197]. Finally, it was demonstrated that the

AROP of rac-lactide initiated by lithium tert-butoxide could yield to the synthesis

of disyndiotactic polylactide (PLA), provided that yield remained quite low (below

35 %) [199, 200].
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In spite of some side reactions, many studies described the synthesis of block

copolymers with at least one PLA block via AROP of lactide. For example, poly

(ethylene oxide)-b-polylactide synthesis was highly investigated as these copoly-

mers could be used in the biomedical field. They were either synthesized through

the sequential AROP of ethylene oxide and lactide [203–212] or by the AROP of

lactide using commercial poly(ethylene oxide)s [213–217]. Starting from a difunc-

tional (macro)initiator, tri- [218, 219] and penta-blocks [220] copolymers were also

produced. The sequential polymerization allowed also the synthesis of poly(ethyl-

ene oxide)-b-polyglycidol-b-polylactide copolymer [221]. Finally, the synthesis of

polysaccharides-g-polylactide was described [222, 223].

3.3.2 Organocatalyzed Polymerization

Since 2001 and the description of the first nucleophilic organocatalyzed ROP of

lactide [224], this field was highly investigated [225–228], with the use of imidaz-

ole [229], amines [224, 230], amidines [231], phosphines [232], phosphazene [233,

234], or N-heterocyclic carbenes (NHC) [235–250].
Tertiary amines and phosphines are among the simplest metal-free catalysts. The

controlled ROP of lactide was thus performed in the presence of

4-dimethylaminopyridine (DMAP) or 4-pyrrolidinopyridine (PPY) in

dichloromethane at 35 �C or in the melt at 135 and 185 �C yielding PLA with

controlled molar masses and low dispersities [224]. The polymerization was pro-

posed to proceed through a monomer-activated mechanism with a nucleophilic

attack of the amine onto the lactide monomer resulting in a zwitterionic species that

was attacked by the initiating or propagating alcohol chain end (Path A, Scheme 17).

Nevertheless, computational calculation suggested that the propagation occurred

preferentially through an alcohol-activated mechanism (Path B, Scheme 17).

Phosphazenes were described to also induce such an alcohol-activated mecha-

nism to produce polylactides with predictable molar masses, low dispersities, and

high chain-end fidelity [233, 234]. By analogy with cyclic ethers, one can ask about

the mechanism implying the deprotonation of an alcohol by a phosphazene base and

propagation through a phosphazenium alkoxide. With phosphines, polymerizations
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had to be conducted in bulk at high temperature to proceed with at least one

equivalent of phosphine compared to initiator in order to control the polymerization

[232]. A monomer-activated ROP mechanism comparable to that of tertiary amine

was proposed for these catalysts. In the absence of any alcohol, it was shown that

imidazoles [229] and amidines [231] were able to polymerize lactide in bulk at high

temperature or in solution at room temperature, respectively. In both cases, it was

shown that the catalyst was capable of nucleophilic attack onto lactide and that

cyclic polylactides were almost exclusively obtained.

NHCs were also investigated as organocatalysts for lactide ROP. They proved to

be active, with complete monomer conversion in a few hours at room temperature

to afford PLAs with high and controlled molar masses and low dispersities [237,

242]. The mechanism is supposed to be an activated monomer mechanism

(Scheme 18). NHCs can be obtained from ionic liquids, with the advantage that

the use of a biphasic system (THF/ionic liquid) allowed an easy polymer and

catalyst recovery [240, 242]. NHCs can also be produced in situ from thermally

activated NHC adducts, but in this case, lactide racemization occurred [247]. Alco-

hol adducts of NHCs proved to act as single-component catalyst/initiators with

various alcohols as initiators. Some of them are stable solids and readily release the

alcohol and the carbene in solution at room temperature [248], whereas for some

others, polymerization could only take place at 90 �C [236, 238]. In the absence of

an alcohol, NHCs promoted the polymerization of lactide, and the propagating

species was demonstrated to be a zwitterion [241, 245]. Under these conditions,

exclusively cyclic PLAs with rather low dispersities and a good degree of control

were obtained at room temperature. The presence of both even and odd numbers of

lactate units deduced from Maldi-Tof analyses indicated the presence of transester-

ification reactions. Very recently, carbene carboxylates were able to perform the

polymerization of lactide [235]. Finally, the use of bulky NHCs allowed the

synthesis of highly isotactic and heterotactic polylactides from rac-lactide and

meso-lactide, respectively, at low temperatures [244]. In aprotic conditions

(absence of exogenous alcohol), it was shown that sparteine was able to perform

the zwitterionic ROP of L-lactide from both nitrogen atom to end up with macro-

cyclic polylactide [251].
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Finally, the ROP of O-carboxyanhydride catalyzed by NHCs yielded to the

formation of polylactide with controlled molar masses and chain ends when the

polymerization was performed at room temperature in THF [252]. Star-shaped

structures were also successfully obtained.

3.4 β-Lactones

As polymer chemists would like to be able to synthesize polyesters that would

resemble polyhydroxyalkanoates (PHA) that are natural polyesters produced by

many bacteria [253], AROP of β-lactones was by far the most studied ROP of cyclic

esters [188, 189, 193, 254–261]. Besides, β-lactones behave differently than other

larger lactones due to their high polarity and high internal strain. Their polymeri-

zation can occur through the nucleophilic attack onto the carbonyl carbon or onto

the carbon adjacent to the endocyclic oxygen atom (Scheme 19).

Another important difference from other lactones is the easy α-proton abstrac-

tion as a side reaction that would produce acrylate or crotonate ions that are also

able to initiate the polymerization (Scheme 20). As a consequence, the control over

the molar masses and chain-end fidelity could be problematic.

3.4.1 β-Propio- or β-Butyrolactone

Alkali Metal-Based Initiators

From the 1960s, the AROP of β-propiolactone (PL) was shown to be easily initiated
by weak bases like alkali metal carboxylates but also by stronger bases such as

alkali metal alkoxides. On the contrary, β-butyrolactone (BL) was shown to be
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polymerized by such bases only if they are activated by the addition of macrocyclic

ligands (crown ethers or cryptands) [262]. When carboxylates salts were employed

as initiating species, the polymerization of PL was not living as transfer reactions to

the monomer occurred leading to side initiation by acrylate ions (Scheme 20). It

was shown independently in 1976 by Penczek [263] and Boileau [264] that the

introduction of crown ethers or cryptand could enable the living polymerization of

PL (Scheme 21). Since then, many carboxylate salts were utilized as initiators [262,

265–275]. Polymerizations were generally performed in THF at room temperature

with long reaction times (generally more than 100 h for BL).

When the polymerization of β-lactones was initiated by strong bases such as

alkali metal alkoxides, active species involved in the propagation were highly

debated in the literature [259, 274, 276–283]. Penczek and coll. suggested that,

when polymerization of PL was initiated by potassium methoxide in DMF at room

temperature, both acyl-oxygen and alkyl-oxygen bond could occur yielding alkox-

ide or carboxylate propagating species, as indicated in Scheme 19 [274, 276]. Nev-

ertheless, as alkyl-oxygen bond cleavage is preferred, after few monomers addition,

the only propagating species are carboxylates. Later, as double bonds were

observed as chain ends, some other authors showed that initiation occurred through

a nucleophilic attack at the carbonyl carbon atom of a monomer by the alkoxide

anion of the initiator, cleaving the acyl-oxygen bond to yield the corresponding

potassium alkoxide of the β-hydroxycarboxylic acid esters, followed by the forma-

tion of an unsaturated ester due to KOH elimination (Scheme 22) [259, 278–

281]. Finally, KOH acts as the actual initiator of the polymerization, and block

copolymers were obtained with this type of initiator [284].
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In few examples, naphthalenide potassium was used as the initiator for the

polymerization of β-lactones (BL, PL) in THF at 20 �C [262, 285, 286]. The

initiation only occurred in the presence of a crown ether (18C6) or a cryptand

([222]), but even in this case, polymerization rate was very slow as more than 100 h

or 10 h were needed to rich a conversion higher than 90 % for BL and PL,

respectively, yielding polyesters with molar masses up to 10,000 g/mol with

dispersities around 1.3. Concerning the mechanism involved with this type of

initiator, as indicated on Scheme 23, it was demonstrated first the α-deprotonation
of β-lactones followed by the ring-opening of the monomer yielding potassium

crotonate for BL (or acrylate for PL) which is the actual initiator. Again, the active

species are carboxylates. It is thus possible to produce macromonomer of BL or PL

with a good control as the molar masses are in good agreement with the theoretical

ones, and each chain bears a double bond at one chain end coming from the

initiation step. In the same vein, very similar results were obtained with potassium

hydride as the initiator in the same conditions [287].

Finally, potassium solutions (obtained from 18C6 THF solution in the presence

of a potassium mirror) revealed also powerful initiators for the polymerization of β-
lactones [285, 288–293]. When polymerizations were performed in THF at 20 �C,
the polymerization rate was quite high (at least higher than with other anionic

initiators) as PPL with 12,000 g/mol was obtained in 3 h. Very high molar mass PPL

could also be obtained. For BL again, polymerization rate was much slower

yielding atactic PBL with molar masses up to 6,000 g/mol in more than 100 h. As

the polymerization is living, block copolymers of BL and PL were also achieved

[291]. Again, concerning the mechanism and more specifically the initiation step,

controversy can be found in the literature. The last suggested mechanism is

depicted in Scheme 24. The initiation proceeds through a 2e� transfer in two

steps. After the first e� transfer, an anion radical is formed, and after the second

e� transfer, the resulting dianion lactone is decomposed with the heterolytic

cleavage of the acyl-oxygen bond. This compound deprotonates the monomer

giving potassium enolate and potassium β-alkoxide aldehyde, this latter being

unstable, it decomposes into crotonaldehyde and potassium hydroxide. Both potas-

sium enolate and potassium hydroxide are able to generate initiators as indicated on

Scheme 24. As a side reaction, the β-lactone anion radical can undergo a homolytic

alkyl-oxygen bond cleavage yielding finally potassium butyrate that can also

initiate the polymerization.

Few studies investigated the tacticity of PBL through anionic polymerization.

Starting from racemic butyrolactone, mainly atactic PBL were obtained, whatever

the initiating system [262, 270, 281, 287, 293, 294]. Nevertheless, it was also
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demonstrated that reducing polymerization temperature or adding tartrate esters

could induce the synthesis of partially syndiotactic PBL (up to 60–65 %) starting

from racemic butyrolactone [295, 296]. Finally, isotactic PBL were also synthe-

sized efficiently using R-butyrolactone [295] (around 80–85 %) or S-butyrolactone

[270, 273] (up to 95 %).

Organic Initiators

Organic bases, like phosphines, pyridines, tertiary amines, and betains, were among

the first to be used for the initiation of β-lactones [259, 297–302]. It was first

suggested that the initiation step involved the formation of betain species that are

the actual initiator with active species being carboxylates. The propagation would

then proceed via alkyl-oxygen bond cleavage yielding macrozwitterions [297, 298,

300]. Nevertheless, this was inconsistent with the respective nucleophilicity/basic-

ity ratio of the engaged initiators, at least for amines. It was thus demonstrated that

after the betain formation, the protonated base was released yielding acrylate or

crotonate ions that were the actual initiators (Scheme 25) [299]. Eventually, PPL or

PBL can be produced with unsaturated chain ends. In the case of phosphine, both

phosphonium and unsaturated chain end were detected indicating the concomitance

of both types of initiation [299]. These side reactions proved to be a limiting factor

in the control over molar mass and molar mass distribution.
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More recently, other organic (co-)initiators, like carbenes [235, 236, 303],

guanidine [304], amidine [304], and phosphazenes [304, 305], revealed powerful

for the polymerization of β-lactones. Polymerizations initiated by a carboxylic acid/

phosphazene base led to atactic PBL with good control over the molar masses, the

polymerization rate being dependent on the basicity of the phosphazene used. With

triazole carbenes, it was demonstrated that the polymerization of BL in toluene at

80 �C with methanol as the initiator was controlled for DP up to 200 with good

chain-end fidelity (few crotonate chain end detected) in the presence of tert-butanol

as the co-solvent [236, 303]. Concerning the initiation mechanism, it was shown

that the initiator was deprotonated by the carbene, and it was thus an alkoxide that

was the actual initiator (Scheme 26). Moreover, the propagation proceeded both via

alkyl-oxygen or acyl-oxygen bond cleavage, yielding concomitantly alkoxides and

carboxylates as active species. Nevertheless, the acyl bond cleavage being less

favored, after a couple of monomer additions, carboxylates were the only active

species.

Besides, with some other carbenes, the polymerization mechanism revealed

different, yielding only cyclic polymers with a good control of the molar masses

[306]. As spirocycles were formed all along the polymerization, it was proposed

that 1,3-dimesitylimidazol-2-ylidene was able to perform a nucleophilic attack onto

the carbon of the carbonyl group of BL yielding a zwitterion that ring-closed after

each monomer addition (Scheme 27).
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3.4.2 Other β-Lactones

α,α-Disubstituted-β-Propiolactones

The AROP of α,α-disubstituted-β-propiolactones (Scheme 28) was highly investi-

gated, pivalolactone (α,α-dimethyl-β-propiolactone, PVL) being the most studied

monomer [307–316]. Due to the absence of proton in α position compared to other

β-lactones, the polymerization of α,α-disubstituted-β-propiolactones could be eas-

ily controlled, especially the chain ends, as the side reactions yielding crotonate or

acrylate groups (Scheme 20) could not occur with these monomers.

In most of the studies, potassium or ammonium carboxylates were used as the

initiating species, the propagating species being carboxylates in this case. When

tertiary amines were the initiating species, again carboxylates were the propagating

species [316]. On the contrary, when the initiator was a metal alkoxide, the

propagation proceeded through an alkoxide, and the formation of macrocyclic

structures was noticed [311, 312].

β-Substituted-β-Lactones

The AROP of β-substituted-β-lactones was also highly studied (Scheme 29) [317–

345]. More specifically, researchers were interested in the monomers that could be

precursors for the synthesis of poly(β-malic acid), which is a water-soluble, biode-

gradable, and biocompatible polymer that exhibits biological properties (proteinase

inhibitor, for instance). Whereas this polymer is available from natural and/or

bacterial resources, many studies deal with its chemical synthesis, especially

since the first description of the synthesis of β-malolactonate in 1979 [346]. The

racemic or the optically active versions of benzyl-β-malolactonate were the most

studied monomers. Optically active polymers could be obtained (no racemization)

with an inversion of the configuration [320].

Several types of initiators were able to polymerize β-substituted-β-lactones.
With triethylamine, only low molar masses were obtained with poor control

[337]. Great enhancement was achieved when tetraalkylammonium benzoate was

Scheme 28 Examples of α,α-disubstituted-β-propiolactones and propagating species depending

on the initiating system
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employed as the initiator. Polymerizations were generally performed in bulk at

temperature ranging from 30 to 70 �C, but like for BL and PL, transfer reactions

occurred through proton abstraction, preventing a good control over the molar

masses and the chain-end fidelity [317, 318, 330, 340]. Transfer reactions were

shown to be highly reduced when polymerizations were performed in THF at 0 �C,
at low reactant concentration [330], or when monomers were highly purified

[327]. Another possibility to suppress transfer reactions is to start from an

α,1;α-disubstituted-β-substituted-β-lactones instead of β-substituted-β-lactones; as
for pivalolactone, proton abstraction is no more possible in this case [319, 336,

343]. More recently, carbenes [236], phosphazenes [336, 344, 345], amidines [344,

345], and guanidine [344, 345] were described as efficient initiators for the poly-

merization of β-substituted-β-lactones. Nevertheless, the transfer reactions were

still present. Despite the presence of transfer reactions, the synthesis of macromo-

lecular architecture was possible since it was described the synthesis of block

copolymers with the first block constituted of β-substituted-β-lactones and the

second block constituted of another β-substituted-β-lactones [328], butyrolactone
[317], lactide [334, 335], or caprolactone (CL) [330, 331, 334], these two latter

being polymerized through organometallic catalyzed ROP. The synthesis of ran-

dom copolymers was also performed [317, 322, 323, 326, 329, 332, 343], as well as

the synthesis of graft copolymers [329, 332].

3.5 Larger-Ring Lactones

3.5.1 ε-Caprolactone and δ-Valerolactone

Polymerization Initiated with Alkali Metal Compounds

The AROP of other lactones was by far less investigated than that of β-lactones. The
polymerization of CL could be initiated by metal alkoxides [264, 274, 279, 347–

356], cyclopentadienyl sodium [357], phenyllithium [358], carbazole potassium

[359], lithium diisopropyl amide [360], or sodium hydride [361]. Depending on the

initiator, the initiation proceeded via monomer deprotonation (Path A, Scheme 30)

or via nucleophilic attack, the monomer being opened at the acyl-oxygen bond and

Scheme 29 Examples of β-substituted-β-lactones investigated in the literature
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the growing species being an alkoxide (Path B, Scheme 30). For example, using

cyclopentadienyl sodium as the initiator, no cyclopentadienyl groups were present

on the polymeric chain ends, and the polymerization is said to proceed through

deprotonation of the monomer [357].

The main drawback of this method is the occurrence of significant intramolec-

ular transesterification reactions, also called “back-biting,” which were very depen-

dent on the polymerization conditions and the initiator and resulted in the formation

of generally low molar mass polymers and in cyclic polymers. For instance, it was

demonstrated that with tert-butoxide potassium as the initiator, high dilution

favored the formation of cyclics (less than 6–7 CL units) to the detriment of

polymer formation [351, 352]. With cyclopentadienyl sodium as the initiator, in

bulk and in nonpolar solvents, molar masses up to 130,000 g/mol were obtained,

whereas in polar solvents, only oligomers were produced [357]. When the poly-

merization of CL was initiated with lithium diisopropylamide, medium molar mass

polymers were obtained [360]. The polymerization of CL initiated by phenyl

lithium in bulk at 170 �C led to high molar mass polymers (50–70,000 g/mol)

[358]. Polymerizations performed in supercritical carbon dioxide exhibited low

yields probably because of the occurrence of side reactions between the anionic

species and carbon dioxide [350]. It was also demonstrated that alkali graphitides

allowed the synthesis of very high molar mass polylactones with nevertheless the

presence of a low molar mass fraction [362–368].

In spite of many possible side reactions and like for the other cyclic esters, the

possible synthesis of poly(δ-valerolactone)-b-polylactide [188, 189, 369], poly

(ethylene oxide)-b-poly(ε-caprolactone) [370], and polyglycidol-b-poly(-
ε-caprolactone) [371] was described in the literature.

Organocatalyzed Polymerization

Few organocatalysts were shown to be able to perform the polymerization of

lactones compared to lactide. Indeed, most of the studies employed carbenes

[237, 242, 372–379], with few examples using phosphazenes [234, 380] or TBD

[381]. With tBuP1 or BEMP, in the presence of alcohols, only δ-valerolactone
(δ-VL) was polymerized with high conversion in 2–4 days, whereas for

ε-caprolactone only 15 % conversion was obtained after 10 days. On the contrary,

with tBuP2, CL was polymerized in few hours to yield PCL with controlled molar

masses. NHCs were shown to polymerize both δ-valerolactone and ε-caprolactone
giving access not only to linear but also to cyclic aliphatic polyesters. While the
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Scheme 30 Initiation step in the AROP of ε-caprolactone

Cyclic Monomers: Epoxides, Lactide, Lactones, Lactams, Cyclic Silicon. . . 221



NHCs were generally highly active in the polymerization of lactide, less efficiency

was observed toward the ROP of CL. The mechanism is supposed to be an activated

monomer mechanism, and several NHCs, either in their “bare” or masked form,

were shown to perform the polymerization of lactones (Scheme 31).

The ROP of CL was generally performed at room temperature in THF solution

(0.5–2.0 M), in the presence of monofunctional initiators or multihydroxylated

initiators such as ethylene glycol, 1,1,1-tris(hydroxymethyl)propane, pentaerythritol,

or a six-arm poly(propylene glycol) (Scheme 31), yielding well-defined linear or star

polycaprolactone (PCL). Catalytic activity was sensitive to steric and electronic

properties of the carbene, as more electron-rich and less bulky substituted carbenes

were more active for the synthesis of well-defined PCL [242, 374]. A so-called

“abnormal” NHC, in which the carbene center is no longer located between the two

nitrogen atoms but between a nitrogen and a carbon atom, was reported to exhibit a

high catalytic activity in the ROP of CL [376]. Again, like for lactide ROP, in the

absence of alcohol, the polymerization was shown to be zwitterionic, and it was thus

synthesized cyclic polycaprolactones at room temperature with relatively high

dispersity (between 1.4 and 2.1) for a wide range of molar masses (41,000–

114,000 g/mol) [372, 377, 378]. Copolymerization of CL and δ-VL led to the

formation of cyclic copolyesters with a gradient microstructure due to the difference

in the reactivity ratios between the twomonomers, which is usually not observedwith

metal-based alkoxides [375].

3.5.2 Other Lactones

Some other lactones were shown to be polymerizable through AROP. For instance,

bicyclic oxalactone (Scheme 32) could be polymerized with butyllithium to afford

polymers of moderate molar mass and high dispersity [382]. The polymerization of

Scheme 31 Examples of initiators and carbenes employed for lactone ROP
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large-ring lactones (undecanolide, λ-lauryllactone, and pentadecanolide) was also

performed in bulk at high temperature or in solution at moderate temperature in the

presence ofmetal alkoxides [383, 384]. The presence of back-biting reactions leading

to the formation of macrocycles was still detected. α-Methylenemacrolides

were successfully polymerized with butyllithium at low temperature [385].

PEG-containing macrolactones were also successfully polymerized using thiols and

tBuP4 [386]. More recently, 8-membered lactones obtained from 1,3-benzoxazine

were polymerized in bulk at high temperature in the presence of 1,8-diazabicyclo

[5.4.0]undec-7-ene (DBU) yielding low molar mass polymers with high dispersity

due to intensive back-biting reactions [387].

5-Membered γ-butyrolactones do not generally afford polymers because the rate

of ring closure is faster than that of ring-opening, and therefore only insufficient

formation of the corresponding polyesters was achieved. On the contrary, Endo et

coll. showed that copolymerizations of bis(γ-lactones) with epoxides led to the

synthesis of alternated copolymers (Scheme 33) [388–398]. This was possible due

to the presence of an isomerizable structure onto the monomer that prevents

backward ring closure. Concerning the mechanism, the bislactone reacts with

alkoxide-type propagating chain end exclusively, to undergo double ring-opening

reaction. The formed acyclic carboxylate is thermodynamically stable and thus

does not undergo backward ring closure. At the same time, the nucleophilicity of

Scheme 32 Other lactones polymerized by AROP
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the carboxylate is not high enough to react with the bislactone but is reactive with

epoxide to regenerate an alkoxide. Moreover, as the formation of the copolyester

synthesis was accompanied by low volume shrinkage during polymerization, such

polymers are useful for network formation when bisepoxides were used. It was also

shown that phosphines could replace alkali metal alkoxide to perform a zwitterionic

polymerization.

The AROP of 3,4-dihydrocoumarin (DHCM, an aromatic lactone, Scheme 34)

was also studied with an imidazole as the initiator in bulk at high temperatures

(100–120 �C) [399–405]. Whereas DHCM is a 6-membered ring like

δ-valerolactone, its homopolymerization was not possible. On the contrary, it was

shown that DHCM was easily copolymerized with an epoxide to yield alternated

copolymers. When the bislactone was copolymerized with epoxides, only one of

the two lactones participated in the copolymerization yielding only linear polymers.

Networks were only obtained by post-reaction of the remaining lactone with a

diamine, for example.

4 Cyclic Amides (Lactams)

4.1 Introduction

Polyamides are well-known polymers that are present in markets such as fibers,

engineering plastics, and specialties, due to specific and various properties

depending on their structures. Ring-opening polymerization of lactams (cyclic

amides) initiated by water, referred to hydrolytic polymerization (i.e., reactions

between the amine chain-end group and the lactam and/or carboxylic group of its

hydrolyzed derivative), is carried out for industrial polymerization of ε-caprolactam
(ε-CL) to form polyamide 6 (PA6, Nylon 6), though nylon 6–6, 4–6, and 6–10 are
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synthesized by stepwise reactions of a diacid monomer with a diamine monomer.

Cationic initiation is also possible, but not useful because of the low conversion

and molar mass of the resulting polyamides [406]. Anionic initiation following an

activated monomer mechanism is mainly used for polymerization in molds in

order to prepare polyamides (PA6, 10, 12) directly from the corresponding

lactams [407]. Polymerization mechanism of lactams, their polymerizability,

and the properties of the resulting polymers were largely investigated. Reviews

published by Reimschuessel [408, 409], Šebenda [410], Sekiguchi [406],

Hashimoto [411], Roda [412], and Russo and Casazza [413] can precise this

presented overview.

The anionic route is the fastest method for producing polyamides due to the low

activation energy needed. This fast kinetic makes nowadays this route of high

interest for industrial processes producing lightweight composite materials for

automotive and wind energy. The anionic polymerization of lactams may be

accomplished in solution or in the bulk either below or above the melting point

of the polymer for the latter.

4.2 Mechanism of the Anionic Polymerization of Lactams

The mechanism differs from the anionic polymerization of most of the unsaturated

and heterocyclic monomers because the growth center is not an anionically acti-

vated end group but is represented by an N-acyllated neutral chain. The anionic

polymerization of lactams is initiated, under anhydrous conditions, by formation of

the lactamate anion. Strong bases are able to deprotonate lactams and produce N

anion of lactam effective for initiating the polymerization.

4.2.1 Initiating and Activating Systems

The anionically activated species is the monomer in the form of lactamate anion

which is a very strong nucleophile (Scheme 35). The negative charge is delocalized

on the amide group due to resonance stabilization by conjugation with the carbonyl

group.

The lactamate anion is acylated by a lactam monomer, although the acylating

ability of the latter is poor, with the amide group being stabilized by resonance. The

lactamate anion reacts with the monomer by a ring-opening transamidation reaction

forming N-acyl lactam structures carrying primary amine anions. Assuming a free

ion mechanism [414], the imide anion is formed, in the first slow step, by nucleo-

philic attack of the lactamate on the carbonyl of the lactam molecule (Scheme 36).

As it is not stabilized by resonance, rapid proton exchange undergoes with lactam

monomer, yielding imide dimer (N-acyl lactam) and regenerating the lactamate.

Result of these two combined reactions is the disproportionation between two

amide groups (present in lactam monomer and in lactamate anion) to give amine

Cyclic Monomers: Epoxides, Lactide, Lactones, Lactams, Cyclic Silicon. . . 225



and acyl lactam moieties (in the N-acyl lactam species) and the reaction rate

dependent on factors like the nature of counterion and reaction medium, lactam

ring size, substituents, and structure of the resulting linear monomeric unit.

N-substituted lactams are observed to react with lactamate anion with a rate

significantly higher than that of the initial reaction, depending on the size and the

electrophilicity of the substituent, and are generally used as activators in the

activated anionic polymerization. The use of high reaction temperatures

(>250 �C) is required in the absence of activator, and only the more reactive

lactams, such as ε-caprolactam, undergo polymerization in the presence of a strong

base in a non-activated method.

The initiators, which are the monomers carrying the anionic charge able to attack

the chain end, are prepared by reaction of a lactam with strong bases such as mainly

metal alkoxide, metal halide, alkali metal, and Grignard reagent [406, 414, 415] but

also pentamethylene guanidine [406], quaternary ammonium salts [416],

phosphazene [417], bicyclic “superbase” protophosphatranes [418, 419], or

carbenes [420, 421]. The association of a strong base (NaH, LiH, BuLi) with a

reducing agent such metal dialkyl/dialkoxy aluminum hydrides [422–424] or metal

dialkyl boron hydride [423] can also be used as precursors of lactamates. In this

case, the nucleophilic species obtained, i.e., the activated monomer, is a metal salt

of 2-(dialkyoxyaluminoxy)-1-azacycloheptan.

As usual in anionic polymerization, the nature and concentration of the initiator

play a crucial role. The rate is directly related to the concentration of active species

and in particular to the dissociation constant yielding free ions. It is known that the

concentration of free lactam anion increases with temperature, starting to be

predominant above 150 �C, alkali metal lactamates being considered completely

dissociated at higher temperatures [425, 426]. The rate of polymerization becomes

here independent of the nature of the cation. In general, the activity of alkali metals

follows the order of electropositivity, except with Li and despite its highest ioni-

zation energy: Na+<Li+<K+<Cs+¼R4N
+. Lactamates of transition metals (e.g.,

Cr3+) and other metals (e.g., Al3+), exhibiting high electronegativity values and
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having very low dissociation constants, hardly dissociate even at high temperatures.

In the molten monomer medium, without solvating or complexing species, the

lactamate dissociation depends on both the lactam properties (i.e., acidity, dielectric

permittivity, donor-acceptor capability, substituents) and the electropositivity of the

metal. For example, higher lactam permittivity, such as in ω-laurolactam as com-

pared to ε-caprolactam, makes easier the salt dissociation [427].

An induction period and slow kinetics are observed with non-activated anionic

polymerization of lactams, whereas opposite behaviors are obtained when an

activator is added. The induction period is absent, and the AROP can be performed

at much lower temperatures (130–180 �C for ε-CL) [410]. Poorly reactive lactams,

such as 2-pyrrolidone and 2-piperidone, can be polymerized by initial reaction of

monomers with an acylating agent. In this activated mechanism, the slow self-

initiation step is strongly minimized to the detriment of a fast acylation reaction and

propagation step. The interest to work with milder conditions for shorter times

allows to strongly reducing side reactions, yielding more regular macromolecular

chains. These observations are nevertheless dependent on structure and concentra-

tion of the activators. Many substances can be used such as N-substituted lactams

(N-acyllactam (1) [428, 429] and carbamoyllactam (2) [430–434] with electroneg-

ative substituent (R) increasing the acylating ability of the cyclic acyl group),

compounds capable of producing N-substituted lactams, under the conditions of

the anionic polymerization (e.g., isocyanate (4), acid halides or esters (5), carbon

dioxide (6)) [428, 435–437] and derivatives from side reactions (C-, N-,

O-acylation) in low ring strain lactam monomers such as oxoamides type (8), N-
acylamidine (3), and others (7) (Scheme 37).

4.2.2 Propagation Reaction

The slow formation of an N-acyllactam by reaction between monomer and

lactamate ion (ki¼ 10�7 L·mol�1·s�1 for sodium ε-caprolactamate at 160–190�C)
[438] is followed by an extremely fast neutralization reaction, i.e., monomer

deprotonation. For pyrrolidone at 35 �C and laurolactam at 160 �C, the rate constant
of proton exchange (kH) is 105 L·mol�1.s�1 [439] and 102 L·mol�1·s�1 [440],

respectively, which prevent the process of ring-opening of lactam via an active

chain-end (ACE) mechanism (i.e., kp(ACE) ~ ki ~ 10
�7 L·mol�1·s�1) (Scheme 38).

The nucleophilic attack of the lactamate anion on the carbonyl group of the

monomer is much slower than that of the carbonyl group in an N-acyllactam-type

chain end (10�1< kp(AM)< 103 L·mol�1·s�1, kp(AM)¼ 68 L·mol�1·s�1 in the case of

ε-caprolactam) [441], which refers to the process of ring-opening polymerization of

lactam via activated monomer (AM) mechanism (Scheme 38).

The propagation step is therefore composed of a nucleophilic attack to the

acyllactam-type growing chain end (kp< 103 L·mol�1·s�1) and a subsequent very

fast proton transfer from the monomer to the amidate (kH ~ 10
2–105 L·mol�1·s�1)

(Scheme 39). The neutral N-acyl lactam acts as the growth center at the chain end as

the exocyclic carbonyl group in the N-acyl lactam increases the electron deficiency
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of the amide group and, thus, the acylating ability. The polymerization rate is first

order with respect to lactamate (L�) and N-acyllactam (Act) concentrations and

zero order with respect to lactam monomer (L) concentration [438] and can be

written as follows .

� d L½ �
dt

¼ k p Act½ � L�½ �
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In the activated polymerization, the number average molar mass is determined

by the concentration of the activator as compared to monomer concentration.

Experimental values are generally higher than the theoretical ones. This is mainly

due to the lowering of the number of growth centers due to the side reactions and to

the cross-linking between polymer chains, for example, by Claisen-type condensa-

tion reactions, which are more and more relevant as the medium basicity and the

polymerization temperature increase [442]. Such a polymerization is thus not living

because of these side reactions. When the polymerization is run at temperatures

below the melting point of the polyamide, side reactions are largely reduced, and,

even at equimolar concentrations of initiator and activator, the polymerization

proceeds essentially by the reaction of lactam anions with a constant number of

growth centers, resulting in a narrower molar mass distribution (D< 2) [443] and

the formation of high molar masses [434, 444]. In the non-activated polymerization

where the growth centers are both formed at the very beginning and in the final

stage, the molar mass distribution is expected to be broader than the ones observed

with the use of an activator.

The structure of the activators, in particular the nature of the exocyclic acyl

group in N-acyl lactam, was shown to play a crucial role on the polymerization rates

[445]. “Very fast” activators, like of N-carbamoyl lactams in appropriate concen-

tration, allowed to drastically reducing the polymerization time (less than a minute)

[434, 446] to get high polymer yield, with the advantage to enable a decrease of

polymerization temperature down to 140 �C, minimizing side reactions.

Concerning the mechanism, lactamolytic mechanism proposed by Sekiguchi

[447–449] (Scheme 40a) assumes transfer of the alkali metal cation from the

activated monomer species to the imide group at the end of the growing chain

and its coordination to the carbonyls of the imide. A conductivity increase was

attributed to a higher concentration of free ions. The reaction proceeds via forma-

tion of an alkoxide-type anion by nucleophilic attack of the lactam anion on the

endocyclic carbonyl, proton exchange with monomer, and rearrangement with ring-

opening. Alternatively, Frunze et al. [450, 451] proposed the participation of ion

pairs of lactam salts in the propagation step and suggested an ion-coordination

mechanism. According to this mechanism, complex between the lactamate and the

two carbonyl groups of the growing center is formed (Scheme 40b). As already

mentioned, side reactions are observed whatever the assumed mechanisms. In any

case, free ions play a decisive role at high temperatures and in media of high
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permittivity, while at low temperatures and in low polar media, the involvement of

ion pairs is more expected.

4.2.3 Side Reactions

Species involved in anionic polymerization are generally highly reactive, leading to

a series of side reactions, in particular at high temperatures for long polymerization

times. Reversible and irreversible side reactions can occur, consuming both the

growth centers and the monomer anions. The strongly basic conditions in AROP of

lactams promote mainly polymer branching and β-keto compounds, yielding to side

products and chain irregularities. UV spectrometry was shown to be a powerful tool

for monitoring the occurrence of such side reactions [414, 442, 452].

Formation of Acyllactams, Amines, and Imides

The polymer amide groups may be involved in disproportionation reactions,

forming acyl lactams and amine end groups (Scheme 41). The presence of amide

N anions along the polymeric chain, derived from equilibrium reactions with

lactam anions in strongly basic medium, may also produce imide groups and

polymer branching (Scheme 41). Transacylation reactions between polymer

amide anions and acyl lactams (N-acylations) (Scheme 42) may cause depolymer-

ization or incorporation of a lactam unit when the exocyclic (Scheme 42a) or the

endocyclic carbonyl groups (Scheme 42b) are involved. The nature of the counter-

ion affects not only the degree of dissociation of the corresponding lactamates but

also the whole polymerization rate [453].

Formation of β-Ketoimides and β-Ketoamides

The acidity of the hydrogen atoms in α position of the carbonyl of the imide group

in the N-acyl lactam chain end is comparable to that of hydrogen in an amide group.

As a consequence, in the presence of lactamate, deprotonation may occur, leading

to the formation of two distinct carbanions (Scheme 43). The Claisen-type conden-

sation reactions on exo- and endocarbonyls then happen, giving four different
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β-ketoimide structures. The concentration of these carbanions is generally low

meaning that C-acylations and, only in some specific cases, O-acylations are

competitive reactions with regard to the propagation step [454]. One can also

consider the formation of carbanion in the α-position of the carbonyl of a branched
structure. Reactivities are related to the lactam size and their substituents, the nature

of the activator, the initial ratio of initiator and activator concentrations, the

Scheme 41 Formation of acyllactam (1), amine (2), and imide (3) groups during AROP of

lactams
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permittivity of the reaction medium, and the reaction temperature as well as the

nature of the counterion [454–456].

Neutral β-ketoimides are strong acylating agents and may be involved in reac-

tions, acting as growth centers and leading to either linear or branched chains.

β-Ketoimides may be converted to β-ketoamides (2-oxoamides) by nucleophilic

attack of the N anion on the carbonyl of the imide group (Scheme 44). These keto

derivatives decrease the concentration of active species and thus influence kinetics.

They are also very reactive under basic conditions or at high temperatures and

responsible for complex secondary reactions, i.e., formation of water, carbon diox-

ide, amines, and heterocyclic structures which are able to act as branching and cross-

linking points [454]. The thermal or base-catalyzed decomposition of β-ketoamides

can afford ketones and isocyanates. The latter reactive functions can also reform

N-acyl lactams capable to react in the expected polymerization way. Formation of

water can contribute to the deactivation of lactamate and to the hydrolysis of N-acyl
lactams, β-keto compounds, and imide branching points leading to carboxylates,

amine groups, ketones, carbon dioxide, or carbonates [410].

Formation of Cyclic Oligomers

The formation of cyclic oligomers was particularly investigated by Russo and

coll. for ε-caprolactam [452, 457], their amount depending on the polymerization

temperature (e.g., 3.5 % at 280 �C). The main reaction leading to cyclic oligomers

is a back-biting reaction which is an intramolecular reaction of the neutral end

groups with amidic groups inside the chain (Scheme 45). The counterion involved

in the polymerization also directly influences the occurrence of such a side reaction

[458]. With magnesium salts of ε-CL, cyclization reactions are strongly reduced

both below and above the melting temperature of the polymer as compared to

sodium systems, due probably to coordination between magnesium-based com-

pounds and polyamides end groups. Cyclic structures can have a negative influence

on processing or applications as they are able to modify the crystalline structure in

the solid phase [459, 460].
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4.3 Anionic (Co)polymerization of ε-Caprolactam
and ω-Laurolactam

4.3.1 Homopolymerization of ε-Caprolactam and ω-Laurolactam

The polymerization of ε-caprolactam, a 7-membered ring, is usually conducted in

bulk conditions, above the melting temperature of the monomer (80 �C) in the

presence of initiator and activator. Initially liquid, the mixture turns turbid and then

solidifies in the course of the polymerization which can be as fast as few tens of

seconds for “very fast” systems. The beginning of solidification is considered as the

moment at which the growing chains attain a critical length that enables their

crystallization, forming spherulites insoluble in the monomer.

As discussed previously, playing with the structure and concentration of both

activator and initiator allows tuning the polymerization rate of ε-CL. The initial

polymerization temperature and isothermal, nonisothermal, or adiabatic conditions

are also considered as tools to modify the time of reaction. “Very fast”, “fast,” or

“slow” processes affect the structure and properties of the resultant anionic poly-

amide 6. For a very fast bulk polymerization of ε-CL at 155 �C, conditions close to
adiabatic ones are obtained due to high rate and poor heat exchange with the

surroundings. A temperature increase of 50 �C is observed with a resultant polymer

with high molar mass, low residual monomer content, and low cyclic oligomers

[408, 434]. To decrease even more side reactions, quasi-isothermal conditions near

150–160 �C were proposed [433].

Similar polymerization systems and conditions were employed for the synthesis

of polyamide 12 obtained by ring-opening of ω-laurolactam (ω-LL), a

13-membered ring. The polymer gained attention for its low level of absorbed

moisture, easily removable during heating and melting of the monomer at 150 �C.
Moreover, it possesses an excellent ductility, good electrical properties, and signif-

icant chemical resistance. However, due to the long methylene sequences between

the amide linkages, it has a lower melting point (172 �C) compared to PA6

(210 �C). To get a low content of residual monomer due to favorable monomer-

polymer equilibrium, temperatures above 150 �C are generally required [444,

461]. Some specific polymerization systems, based on alicyclic carbodiimide as

activator and sodium caprolactamate as initiator, were also developed to allow, for

instance, a long-term storage of the initiating species, an efficient control of the

polymerization rate, and an accurate tailoring of polyamide molar masses [462]. As

for ε-CL, initiation and activation influence also polymerization kinetics and

thermodynamics but also the degree of crystallinity [463].

As discussed in the previous paragraph, the AROP of lactams suffers from

numerous (ir)reversible side reactions, depending on the experimental conditions.

The usual kinetic law depending on activator and initiator concentration (Rp¼�d

[M]/dt¼ kp·f [Activator] [Initiator]0) appears not efficient to get right values but

might be sufficient to compare polymerization systems. The autocatalytic model of

Malkin, based on a phenomenological approach, seems the most successful to
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follow activated polymerization in bulk [464]. It describes the nonisothermal

kinetics of both ε-caprolactam and ω-laurolactam, monitoring the temperature

rise inside the reactor:

� d λ½ �
dt

¼ k
A½ �2
M½ �0

1� λð Þ 1þ bλ
A½ �

� �
exp � Ea

RT

� �

with λ the conversion, [A] the activator concentration, [M]0 the initial monomer

concentration, k the reaction rate constant, Ea the activation energy, and b the

autocatalytic term characterizing the intensity of the self-acceleration effect during

chain growth. Both k and b depend on the chosen activator. The rate constant can be
evaluated for low conversions where polymerization and crystallization are not

overlapped.

4.3.2 Copolymerization of ε-Caprolactam and ω-Laurolactam

Anionic polymerization is well known and used for the synthesis of copolymers, in

particular blocks, due to its living character. Despite the nonliving character of lactam

polymerization, copolymers based on polyamide can be synthesized and offer inter-

esting and specific properties. ω-Laurolactam is in general used as co-monomer of

ε-caprolactam in order to extend the range of PA6 properties [429], in particular by

increasing the notched Izod impact strength at low temperature, and the decrease of

water absorption [465]. Roda and coworkers showed the influence of the initiator

toward the copolymer structures and therefore properties [461, 466]. As compared to

ε-caprolactam magnesium bromide, sodium caprolactamate exhibits higher polymer-

ization activity especially in copolymerization with high content of ω-LL at high

polymerization temperatures. The copolymers have only one melting endotherm in

the whole range of monomer feed and one single crystalline form, when two melting

endotherms (140 �C and 210 �C) and two types (α and β) of crystalline forms are

observed from 30 to 70 mol% of ε-CL with the magnesium-based initiator. This is

explained by a copolymer microstructure composed of PA6 blocks linked to

sequences of ε-CL/ω-LL random copolymer. PA6 is preferentially formed at the

beginning of the polymerization, due to the much higher reactivity of ε-CL as

compared toω-laurolactam. Random copolymers are then formed from the remaining

ε-CL and slowly reacting with ω-LL. In the case of sodium caprolactamate which is a

strong base as compared to the magnesium derivative, transamidation reactions cause

full randomization of the sequences.

4.3.3 Copolymerization of Lactams and Lactones

Interesting degradable polyamides could be obtained through the synthesis of

polyesteramides by copolymerizing lactams and lactones even if different anionic

ring-opening mechanisms are involved in their homopolymers formation
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[412]. Some lactones were shown to act both as activator of lactam polymerization

and as co-monomer for the synthesis of a polyester block [436, 467–469]. The

initiation step corresponds to the acylation reaction between a lactamate and the

reactive lactone (Scheme 46). The oxyanion formed is then able to initiate the rapid

ring-opening polymerization of some cyclic esters such as ε-caprolactone or

δ-valerolactone by usual chain growth mechanism (active chain end).

Playing with ε-caprolactam and ε-caprolactone ratios as well as experimental

conditions, various random or multiblock copolymers were prepared. Fast

transacylation reactions between ester and amide groups in the copolymer chains

were proposed to be responsible for the observed copolymer randomness. Using

reactive processing like a twin-screw extruder, diblock or triblock copolymers were

prepared from various lactams and lactones using suitable sequential monomer

feeding and specific temperature profiles [470–472]. The block lengths can be

adjusted by controlling the feed rate. The use of poly(ε-caprolactone) (PCL) was
also proposed as additive to the polymerization of ε-CL with ε-caprolactam mag-

nesium bromide as initiator, with or without activator. PCL was shown to act as an

activator, and random copolymers were prepared [473].

4.3.4 Polyamide-Based Copolymers with Non-polyamide Blocks

The use of macroactivators obtained from appropriately terminated prepolymers is

the main route leading to lactam-based block copolymers. In general, hydroxy

telechelic polymers are reacted with diisocyanates and then blocked with

ε-CL. Combination of properties is the driving force of reacting various

non-polyamide blocks as activators of anionic lactam polymerization. The tough-

ness improvement of PA6 being a key issue, soft polymers such as polybutadiene

[474–477], polyethers [478–483], and polysiloxanes [480, 484, 485] were particu-

larly used. Following a similar approach, Styrene-Butadiene Rubber was also

introduced into PA6 with the aim to tune the mechanical properties [486]. Graft

copolymers were also designed for compatibilization purpose. Polypropylene or

polystyrene grafted with polyamide-6 chains was easily obtained [430, 487–490].
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Scheme 46 Parallel initiation of lactams and lactones in the presence of lactamate
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4.3.5 Industrial Processes Using AROP of ε-Caprolactam
and ω-Laurolactam

Ring-opening polymerization of ε-caprolactam initiated by water, i.e., the hydro-

lytic mechanism, is carried out for industrial cast nylon-6. Nowadays, due to fast

kinetics of the “activated” anionic ring-opening polymerizations, this approach is

more and more envisaged for the preparation of PA6 and PA6-co-PA12 in newly

developed industrial applications using mainly powdered materials and molding or

extrusion approaches.

Powdered Polyamides

As compared to techniques industrially utilized so far, i.e., low-temperature grind-

ing and polymer dissolution/precipitation, AROP yielding PA6 and PA6-co-PA12

offers some advantages such as a much higher particle porosity, a total absence of

irregular edges and sintered zones, and a controlled and narrow particle size.

Dispersion [491–496], suspension [497], and miniemulsion [498] polymerizations

are generally proposed. More recently, the use of phase inversion in PA6/PS blends

allowed the preparation of microspheres with controlled diameters [499]. Fast

polymerization systems have to be selected for such processes. The suspension

method has the advantage to be the faster but suffers from difficult and expensive

purification. Such materials are of great interest for cosmetic formulations, coating

and graphic art applications, protein or enzyme immobilization techniques, rota-

tional molding and sintering processes, chromatography applications, as well as

filtration devices in food and beverage industry.

Molding and Extrusion

Reaction injection molding (RIM), resin transfer molding (RTM), rotational mold-

ing, and reactive extrusion are the main processes used with an in situ activated

anionic polymerization of ε-CL [500, 501]. Due to its high crystallinity and high

molar mass, anionic PA6 exhibits, for instance, better thermomechanical properties

or lower water uptake as compared to the extruded or molded PA6. The short

polymerization times in the order of minutes, as compared to hours for hydrolytic

polymerization, the very low cyclic oligomer content, and the much lower initial

polymerization temperature (130–170 �C vs. 230–280 �C) are the main advantages

of this activated AROP.

Soft polymers bearing terminal N-acyl lactam groups are used in RIM processes

as activators of ε-CL polymerization yielding PA6 with good impact strength.

Usual initiators such as sodium ε-caprolactamate or magnesium bromide

ε-caprolactamate are efficient in that process [502]. RTM enables the injection of

the melted monomeric reactants of low viscosity into a mold filled with reinforcing
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materials like fibers. Reactive extrusion processes regain also attention for the easy

preparation of nanocomposites and nanoblends [501, 503–506]. Single- or

multiwalled carbon nanotubes and nanosilica are also shown to be dispersed in

PA6 modifying its initial properties [507, 508]. Nevertheless, it has to be mentioned

that anhydrous conditions are required and may sometimes be considered as a

limitation. Deactivation of the anionic groups is known to occur when some clays

are used as reinforcing agents.

4.4 Anionic Polymerization of Other Lactams

β-Lactams, 2-pyrrolidone, and 2-piperidone are the three main unsubstituted

lactams available and studied by AROP. They are, respectively, yielding

polyamide-3, polyamide-4, and polyamide-5. It has to be noticed that N-substituted
polyamide-1 as well as polyamide-2 (polypeptide) is not obtained from lactams but

from oxadiazolinones and N-carboxyanhydride, respectively.

4.4.1 β-Lactams

Living anionic polymerization can be reached as substituted β-lactams (or -

β-propiolactams) (Scheme 47) are highly reactive, due to high ring strain, enabling

thus the use of low polymerization temperatures and times. The review of Hashi-

moto published in 2000 describes in detail the specificities of the ring-opening

polymerization of such monomers [411].

Šebenda et al. showed first that the activated anionic polymerization of a bulky

β-lactam, i.e., 3-butyl-3-methyl-2-azetidinone, has a living character giving a

monodisperse polyamide of molar mass very close to the theoretical value [509,

510]. Other substituted monomers were also polymerized in a controlled manner in

homogeneous solution, using aprotic and apolar solvents like N,N-dimethyla-

cetamide, DMF, or DMSO in the presence of lithium salts [511–513]. Depolymer-

ization and transamidation both at the acyl lactam chain end and on the polyamide

chain are known to occur, therefore broadening the molar mass distribution

[411]. Stopping the reaction before complete conversion minimizes the

transamidation, enabling the preparation of block and graft copolymers or other

structures taking advantage of the living character of the polymerization. The

possibilities to play with substituents offer nowadays PA3 materials with amphi-

philic character and possibly bioactivity, for instance [514].
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4.4.2 2-Pyrrolidone

The particularity of the polymerization of 2-pyrrolidone (Scheme 48), leading to

polyamide-4, can be found in a rather low ceiling temperature (70 �C) limiting the

reaction temperature to 50 �C [515]. In bulk conditions, economically more inter-

esting than in solution, polymerization rate decreases with time, and partial con-

version is obtained due to a phase separation, nucleation, and crystallization with

occlusion of the growth centers in this solid phase [516–518]. Despite some

potential industrial interests in textile for its good mechanical properties and

hydrophilic behavior similar to cotton, synthesis difficulties are one main reason

for its non-development.

Similar to ε-caprolactam polymerization, CO2 was also proposed as activator to

successfully prepare PA4 with an improved thermal stability [435, 519]. But

depolymerization still remains a major drawback. Using quaternary ammonium

salts of 2-pyrrolidone as initiator, instead of sodium or potassium ones, and N-
acetyl-2-pyrrolidone as activator, yields up to 80 % could be obtained after 24 h at

30 �C [416]. It is assumed that bulky counterion allows the breaking of hydrogen

bonds between polymer chains and creates local irregularities of the crystalline

structure, enabling the contact between lactamates and reactive chain ends. Sus-

pension polymerization can also be used [520], and whatever the process used,

polyamide-4 was obtained free of structural irregularities thanks to the low poly-

merization temperature and limited conversions. Block copolymers containing PA4

segments could be obtained using the macroactivator approach [521]. The synthesis

of PA4 with a terminal azide function [522] or with ε-CL as co-monomer above the

ceiling temperature of 2-pyrrolidone was also performed [523, 524].

4.4.3 2-Piperidone

The ring-opening polymerization of 2-piperidone, also called 2-piperidinone or

δ-valerolactam, is kinetically slow due to its stable 6-membered ring [406]

(Scheme 49). Moreover, crystallization and side reactions contribute also to the

slowness of the reaction. The use of activators is mandatory, and relatively high

molar masses of PA5, with a melting temperature of 283 �C, were obtained with

quaternary ammonium salts of monomers used as initiators [516, 525].

The use of bicyclic lactams is proposed as an alternative, the ring strain being

favorable to a faster AROP.

H
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4.4.4 Bicyclic Lactams

The key point in the AROP of bicyclic lactams is indeed the ring strain, coming, for

instance, from the repulsion of hydrogen atoms, and its release. At first, Hall

reported in the 1960s the polymerization of a bicyclic lactam, i.e., the

6-azabicyclo[3.2.1]octan-7-one (Scheme 50a), in the presence of sodium hydride

[526, 527]. Hashimoto proposed a detailed review in 2000 relative to bicyclic and

heterobicyclic lactams [411]. High temperatures are generally required limiting the

livingness of such polymerizations. For the case of bicyclic oxalactams

(Scheme 50b), the polymerization could be run at 25 �C in DMSO due to a

high kinetic polymerizability related to the high strain of internal bond angles

[528, 529]. A living character was observed till 60 % of conversion.

5 Cyclosiloxanes and Other Cyclic Silicon-Based
Compounds

5.1 Introduction

Cyclic silicon-containing monomers associated, or not, with oxygen, nitrogen, and

carbon represent the main reactants toward the synthesis of silicon-based polymers

by anionic polymerization. Their ring-opening leads to polysiloxanes and

polycarbosiloxanes, polysilanes and polycarbosilanes, polysilazanes, and a few

other silicon-containing polymers. The possibility to vary the molecular structure,

of both the main chain and the side groups, enables the modulation of unique

physicochemical properties which make them attractive in academic field as well as

for industrial applications in some cases. Ring-opening polymerization (ROP) of

cyclic oligomers allows in general a better precision in terms of chain lengths and

molecular weight distributions than the polycondensation of functional precursors.

Both cationic and anionic mechanisms can undergo polymerization of certain

monomers, but a stringent control of the reaction conditions is required in order
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Scheme 50 Structures of a bicyclic lactam, i.e., 6-azabicyclo[3.2.1]octan-7-one (a) and of a

bicyclic oxalactam, i.e., 8-oxa-6-azabicyclo[3.2.1]octan-7-one (b)
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to avoid the formation of by-products, such as short oligomers and rings

[530]. Recent reviews [531–534] may add complementary information to this

chapter focusing on silicon-containing polymers obtained by anionic polymeriza-

tion. ROP of strained rings exploits the release of ring strain as the thermodynamic

driving force [535]. It proceeds either by kinetic or thermodynamic control, which

has noticeable consequences for the product distribution. Under kinetic control, the

selective cleavage of the precursors and chain propagation occur almost exclu-

sively, providing high molar mass polymers and barely any by-products. Under

thermodynamic reaction control, equilibrium mixtures are obtained which gener-

ally consist of low molar mass polymers and high amounts of smaller oligomers and

ring species.

5.2 Cyclosiloxanes

5.2.1 Polymerization Generalities

Anionic ring-opening polymerization (AROP) of cyclosiloxanes involves the

cleavage of the Si-O bond in the monomer ring and the subsequent regeneration

of this bond in a polymer chain. Among the various siloxane monomers, the two

most important are hexamethylcyclotrisiloxane (D3) and octamethylcyclotetra-

siloxane (D4) (Scheme 51).

Other cyclosiloxanes derived from these monomers are also available by sub-

stitution of methyl with various organic groups, such as vinyl, phenyl, fluoroalkyls,

etc. Three-dimensional structures, i.e., silsesquioxanes or multicyclic siloxanes, are

also available and attractive precursors. Cyclic organosiloxanes are usually pre-

pared by hydrolytic polycondensation of dichlorodialkylsilane (R2SiCl2) or a mix-

ture of α,ω-dichlorooligosiloxanes (Cl(R2SiO)n-1R2SiCl) [536, 537]. Other routes

are also proposed in the literature [538–540].

Initiation step requires strong bases (inorganic, organic, or organometallic), able

to ring-open cyclosiloxanes and form silanolate anion, the active propagating

species (Scheme 52). Alkali metals, ammonium, and phosphonium salts are the

most used derivatives [533, 541]. The propagation is reversible leading to a back-

biting reaction with the formation of cyclic structures of various ring sizes. Chain

redistribution also occurs due to the nucleophilic attack of a silanolate to another

growing polymer chain (Scheme 53). To get nonequilibrium AROP of
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hexamethylcyclotrisiloxane
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cyclosiloxanes in order to minimize those re-equilibration reactions occurring

during the final stage of the reaction, the polymerization must be quenched soon

after a high monomer conversion is obtained [542].

Polymerization kinetic is dependent on monomer and initiator concentrations as

well as experimental conditions. Ion pairs are the main active centers involved in

the determination of the polymerization rate [533]. Free silanolate anions are not

present in sufficient concentration to play a role, in contrary to aggregated species

which are in equilibrium with ion pairs [533, 543, 544]. Fractional order in

silanolate is introduced in the kinetic law of AROP of cyclosiloxanes due to the

existence of less reactive or inactive aggregates.

The aggregation phenomenon can be minimized when bulky cations or

additives are used. The polymerization of D3 initiated by trimethylammonium

salts shows a first-order kinetic [545]. The rate of polymerization is directly

related to the size of the counterion and increases in the series: Li+<Na+<K+<
Rb+<Cs+� +NR4� +PR4 [546]. Hexamethylphosphorous triamide, dimethyl-

sulfoxide, dimethylformamide, N-methylpyrrolidone or cryptands, and crown

ethers were shown to act as deaggregating agents [547–553]. Ring strain

affects also the polymerization rate constants with the following order:

D3>>D4>D5>D6. Cyclotrisiloxanes show a remarkable high reactivity thanks

to its ring strain and planar conformation [554]. Nevertheless, unexpected enhanced

reactivity was observed with unstrained cyclodimethylsiloxanes in the order

D4<D5<D6<D7<D8 when alkali metal were used in bulk or nonpolar solvents

[533, 555, 556]. Multidentate interactions of siloxane units of the monomer with the

counterion can explain this observation (Scheme 54). Lithium derivatives such as

silazane lithium salts ((RMe2Si)2NLi), in the presence of promoters such as DMSO,

were shown to initiate the AROP of D4 at elevated temperatures in high yields. The

resulting polymers exhibited relatively narrow distribution which broaden gradu-

ally with time [557]. Propagation in this system is faster than the redistribution

reactions, which lead to equilibration.

Organic initiators were more recently proposed for the AROP of cyclosiloxanes.

Phosphazene bases, i.e., t-BuP4, acts as a deprotonating agent of a proton donor

Si Si O
+X Si O Si+ Si Si O Si + OSi +X

Scheme 53 Chain redistribution in AROP of cyclosiloxanes
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Scheme 52 Initiation and propagation/back-biting of cyclosiloxanes by AROP
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molecule such as an alcohol, leading to the formation in that case of an alkoxide of

phosphazenium. Its bulkiness and stabilized positive charge, thanks to the reso-

nance effect, enable an instantaneous polymerization of D4 [101, 558]. Similarly to

the chemistry developed with cyclic ether monomers, the combination of lithium

and phosphazene bases is also very efficient for the polymerization of cyclic

siloxanes [559]. Within the same family, the direct use of amino-substituted

oligophosphazenium hydroxides (P5OH) enables to get polydimethylsiloxane in

toluene with a first order both in monomer and base, and a faster rate than lithium

cryptate systems [549, 560, 561]. Alcohols deprotonated by phosphorus ylides

[562] were also proposed as initiators of D4 with the particularity to be thermola-

bile, facilitating its removal from the final polymer (Scheme 55). N-heterocyclic

carbenes expressed also some interests thanks to the presence of alcohols as

co-initiator and regulator of chain length [563].

Although polysiloxanes are not ordinarily considered stereoregular, some poly-

mers enriched in stereoregularity are made from the cis-isomers of unsymmetrically

substituted strained cyclosiloxanes. The monomers insert randomly at the reactive

chain ends with equal probabilities of forming meso or racemic siloxane links while

preserving the stereoconfiguration of the original monomer [564]. An advantage of

stereoregularity was shown on the mechanical properties of a silicone

elastomer [565].

5.2.2 AROP in Solid State and Emulsion

These two processes can be used both in anionic and cationic ROP of

cyclosiloxanes. The discussion will focus on the parameters and consequences of

the anionic route.
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A simple approach based on crushed potassium hydroxide or potassium

silanolates added onto a cyclosiloxane gives high molar mass polymers with high

dispersity and high yields [566–569]. Polymerization proceeds inward from the

surface of the monomer crystals, producing a highly crystalline material. The

highly ordered crystalline state of hydroxycyclosiloxanes provides a possibility of

solid-state synthesis of stereoregular polysiloxanes.

Polymerization in emulsion is also proposed to conduct anionic polymerization

of cyclosiloxanes [532]. The synthesis of poly(dimethylsiloxane) from D4 in

aqueous emulsion using an emulsifying agent acting also as initiator (benzyldi-

methyldodecylammonium hydroxide) gives controlled molar mass, a low dispersity

and high yields [570, 571]. The amount of cyclics formed (essentially D4–D7) is

lower than that observed in bulk. Polymerization proceeds by a combination of the

addition and condensation mechanism involving redistribution reactions. The first

stage of the anionic polymerization process occurs at the siloxane-water interface or

in the siloxane phase close to the surface. Once the chains reach a critical degree of

polymerization corresponding to their loss of surface tension activity, they pene-

trate into the particles where side reactions such as redistribution and condensation

occur. The rate is strongly dependent on the size of the surface, which is function of

the concentration of emulsifier. Polycondensation is responsible for a rapid increase

in molar mass observed at high monomer conversions. Another α,ω-dihydroxy-
terminated polysiloxane of low molar mass, issued from the polymerization of

2,4,6-trimethyl-2,4,6-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with an anionic

miniemulsion process, was also obtained [572]. The kinetic study showed that

polymerization occurs in two stages. During the first stage, which corresponds to

the nonequilibrium AROP, the maximum yield is close to 100 %, and the dispersity

remains narrow (1.3). The second stage involves condensation and back-biting

reactions leading to an increase of both molar masses, up to 60,000/mol, and

dispersity (2.0). This approach was developed for other homopolymers [573] and

copolymers [574].

5.2.3 Copolymerization and Functionalization

Anionic ring-opening polymerization offers possibilities in the controlled synthesis

of functionalized polysiloxane polymers and copolymers. Functionalized initiators

and terminators are currently used in nonequilibrium polymerization to introduce

functional groups to one or both ends [548, 575–581]. The AROP allows the

synthesis of block copolymers [550, 582–588], graft copolymers [589, 590], star

polymers [544, 548, 591, 592], and polymeric networks [577, 581]. Alternating

copolysiloxanes were also prepared by a regioselective polymerization of

cyclosiloxanes containing different siloxane units. It depends strongly on the nature

of counterion [593, 594]. Simultaneous polymerization of a mixture of

cyclosiloxanes gives polymers with a composition depending on Mayo-Lewis

reactivity ratios only when the propagation reactions are irreversible. Gradient

copolysiloxanes can be obtained starting from cyclotrisiloxane monomers
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[595]. Equilibrium copolymerization of cyclotetrasiloxanes leads to random struc-

tures [596, 597]. As usual, copolymers aim at broadening the scope of properties

and applications. For instance, the introduction of methylphenyl or diphenyl-

siloxane units to PDMS helps to improve thermal, oxidation, or radiation stability,

whereas fluoroalkyl groups enhance their resistance to fuel and oils.

5.3 Other Cyclic Organosilicon Monomers

5.3.1 Silsesquioxanes, Cyclic Carbosiloxanes, and Cyclic Silaethers

These three monomers are very similar to the cyclosiloxanes family as they can be

polymerized anionically by breaking a siloxane bond.

Silsesquioxanes, of empirical formula RSiO3/2, represent a wide class of more or

less ordered three-dimensional structures (Scheme 56). They are intermediate

structures between siloxanes (O/Si¼ 1) and silica (O/Si¼ 2). They are usually

generated by hydrolytic condensation of trialkoxy- or trichlorosilanes. Numbers

of reviews may give additional and detailed information about this compound and

its properties and applications [598–601]. As an example, the anionic ring-opening

copolymerization of D4 with polyhedral oligomeric silsesquioxanes (POSS) deriv-

atives leads to cross-linked polysiloxanes exhibiting good thermal stability

[602, 603].

Poly(carbosiloxane)s are obtained from high ring strain cyclic monomers, i.e.,

1-oxa-2,5-disilacyclopentanes, having both carbosilane and silyloxy linkages

(Scheme 57). Lithium or sodium silanolates were shown to initiate the polymeri-

zation in the presence of a polar solvating agent such as THF or dioxane to avoid

aggregation of active centers [543, 604–606]. Strongly basic N-heterocyclic

carbenes and guanidine derivatives in the presence of alcohols or other hydrogen

bond donors were shown to allow the synthesis of poly(carbosiloxane)s with

controlled molar masses [607] and also to cyclic poly(carbosiloxane)s in the
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absence of alcohol [608]. Monomers bearing a chiral center could be synthesized

and led to optically active polymers by AROP [609, 610].

The anionic polymerization of cyclic silaethers, or oxysilylenes, enables the

cleavage of both the Si–Si and Si-O bonds, and lead to a polysilaether with an

irregular structure and, at equilibrium, a mixture of polysiloxanes and polysilanes

by rearrangement (Scheme 58) [611–613]. A silyl anion, as compared to a

silanolate one, is a nucleophile able to initiate the polymerization of an ethylenic

monomer. It was used for instance to change an alkoxide into a carbanion active

center [613].

5.3.2 Cyclosilanes

Strained cyclosilanes were shown to ring-open anionically yielding high molar

masses polysilanes (Scheme 59). Initiators such as butyllithium, silylpotassium, or

lithium silyl cuprates were used with cyclotetrasilane [614–617] bearing methyl

and/or phenyl groups. Diblock polystyrene-polysilane copolymers exhibiting a

phase separation could be prepared using polystyryllithium to initiate the ROP of

1,2,3,4-tetramethyl-1,2,3,4-tetraphenylcyclotetrasilane in the presence of 12-crown-

4 to enhance the polymerization [618]. Tetrabutylammonium fluoride and silyl

potassium appeared efficient initiators for nonamethyl(phenyl)cyclopentasilane

[619]. The strong affinity of fluoride anion to Si atom promoted the generation of

silyl anion without any additives. The potassium initiator required the use of

hexamethylphosphoramide or crown ethers promoters capable to solvate the potas-

sium cation in order to enhance the reactivity of the silyl anion. Low temperature was

needed (�78 �C) to reach high polymer yield (80%), as well as quenching to prevent

the back-biting reaction when temperature increases. Such a polymer is a kinetic

product and cyclic oligosilanes are thermodynamically more stable.

5.3.3 Cyclocarbosilanes

Polycarbosilanes are attractive materials as they contain only Si-C bonds in the

backbone making them of interest as silicon carbide precursors used for the
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preparation of ceramic fibers. The anionic route offers an attractive way to ring-

open strained silacyclobutane monomers using organolithium as initiators

(Scheme 60) [620–625]. The polymerization yields high molar mass poly

(silanediylmethylene)s with a strictly alternating SiR2/CH2 backbone structure.

Depending on substituents in the ring and on the initiator, polymerizations may

proceed in a controlled and living manner [626, 627]. Optically active polymers

[628] as well as block copolymers based on silacyclobutane [629, 630] were also

described. As cyclic silaethers, silacyclobutane may be used to transform a weak

nucleophilic center into a more nucleophilic one. This makes possible the copoly-

merization of heterocyclics with vinylic monomers [631].

5.3.4 Cyclosilazanes

Despite the high reactivity with water, oxygen, etc., of Si-N bonds present in

polysilazanes, obtained by ROP of cyclosilazanes (Scheme 61), these materials

gained interest as precursors of Si-N and Si-CN ceramics through pyrolysis.

Organolithium and organosodium are the typical initiators used in AROP leading

to high molar masses in a living manner [632, 633]. The polymerization is kinet-

ically controlled by the ring strain and by the steric hindrance around the nitrogen

atom and/or the electronic effects of the R substituent on the Si-N bond

[634, 635]. As a possible example, a pendant double bond could be introduced

into a polystyrene-polysilazane block copolymer using 1,1,3,N,N’-pentamethyl-3-

vinylcyclodisilazane as co-monomer added to living polystyryllithium [636]. Such

a copolymer enabled the formation of cross-linked micelles and ceramic

nanoparticles after pyrolysis.
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5.3.5 Ferrocenylsilanes

Polyferrocenylsilanes (PFS) and polyferrocenylsilane block copolymers, where

iron and silicon are present in the main chain, are obtained from AROP of strained

ferrocenylsilanes. The first report of living carbanionic ROP appeared in 1994, and

this process permitted the synthesis of PFS with predictable molar masses and

narrow dispersity [637]. The mechanism is based on a Cp-Si bond cleavage in the

presence of lithium-based initiators (Scheme 62). Reviews published by Rider and

Manners [638] and Bellas and Rehahn [639] propose details in their preparation as

well as other polymerization routes or self-assembly toward nanostructured

materials.

6 Cyclic Carbonates

6.1 Introduction

The polymerization of aliphatic or aromatic cyclic carbonates was highly investi-

gated and recently reviewed [640–644]. Indeed, due to transparency, good heat

resistance (up to 130 �C), high toughness, and excellent dimensional stability,

polycarbonates (PC) are used in a broad range of applications like elastomers,

sealants, foams, coatings, adhesives, etc. Aliphatic polycarbonates and

copolycarbonates are also valuable biomaterials thanks to their biocompatibility

and biodegradability.

6.2 5-Membered Cyclic Carbonates

The polymerization of 5-membered cyclic carbonates follows a peculiar behavior

as their ceiling temperatures are below 25 �C. As a consequence, no ROP should be

possible to yield poly(alkylene carbonate). Nevertheless, they can be polymerized

at high temperatures (above 150 �C) resulting in poly(ether-carbonate)s (path A,

Scheme 63), the repeating units being a mixture of alkylene carbonate (content

generally lower than 50 mol%) and the corresponding alkylene oxide units coming

from decarboxylation reactions during the polymerization with organometallics

[645, 646], metal alkoxide [647–651], or organic initiating systems [96,

652]. Rokicki developed also the synthesis of poly(ether-carbonate)s through the
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combination of AROP of 5-membered cyclic carbonates initiated by bisphenolates

leading to reactive difunctional species and their coupling reactions with dihalo

compounds (path B, Scheme 63) [653, 654].

Detailed mechanistic studies of the polymerization of ethylene carbonate

(EC) with KOH as the initiator performed at 150–200 �C in bulk suggested that,

in the early stage of the polymerization, a major polymer structure comprises one

EC unit per two ethylene oxide (EO) units (the content of EC units, even in the

earliest stage of the reaction, was not higher than 32 mol-%). For longer reaction

times, the content of EO units increases, through hydrolysis of the carbonate units

[650]. Polymerization proceeded thus in two stages: during the first stage, EC

conversion took place with an increase of molar masses, while in the second

stage, when EC was completely consumed, a decrease of both the number of EC

units and molar mass was noticed, indicating the occurrence of chain cleavage and

decarboxylation reactions. During propagation, the alkoxide propagating species

can attack the carbon atom of the carbonyl group. In this case, the reaction is

reversible, but the new alkoxide is not able to attack again on the carbon atom of the

carbonyl group of another EC monomer as it would yield an EC-EC sequence

which is thermodynamically not possible. An alkoxide species can also attack the

carbon atom of a methylene group, followed by decarboxylation and irreversible

formation of an ethylene oxide unit (Scheme 64). The most probable EC
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polymerization mechanism should thus be a combination of methylene and car-

bonyl carbon attack. Finally, after total monomer consumption, elimination reac-

tions were detected, yielding vinyl end groups. Similar results were observed with

other initiating systems for the AROP of EC. With butyllithium, the resulting

polymers contained only 10 mol-% of carbonated units [645], and with potassium

methoxide [647] and phosphazene [96], 28 and 20–25 mol-% of EC units were

conserved, respectively. The AROP of propylenecarbonate yielded also poly(pro-

pylene carbonate-co-propylene oxide) copolymers whatever the initiating system

[648, 649, 652].

Rokicki took advantage of these side decarboxylation reactions in order to

produce hyperbranched aliphatic polyether through the AROP of glycerol carbon-

ate (1, Scheme 65) conducted at 170 �C using trimethylolpropane/potassium

methanolate as the initiating system [651]. Attempts to polymerize aromatic five-

membered cyclic carbonate with sec-BuLi and potassium dihydronaphthalide

revealed unsuccessful [655]. In contrast to other five-membered cyclic carbonates,

five-membered cyclic carbonates obtained from methyl 4,6-O-benzylidene-
glucopyranoside (2, Scheme 65) can be polymerized at relatively low temperatures

(<60 �C) with alkali metal alkoxides or organic initiator, without elimination of

carbon dioxide, to produce polycarbonates consisting exclusively of carbonate

repeating units [656–658]. Such a behavior was suggested to be due to the ring

strain which may result from the connection of two hydroxyl groups in E (trans)

position by the carbonate linkage.

6.3 6-Membered Cyclic Carbonates

In contrast to thermodynamically unfavorable 5-membered cyclic carbonates,

6-membered cyclic carbonates easily polymerize with anionic initiators to afford

PCs without ether sequences and generally high molar masses [659–663]. The

AROP of trimethylene carbonate (TMC) was first reported in the 1930s using

K2CO3 [664, 665]. Since then, many other initiators were able to polymerize

O

O

O

OO

O

Ph

O

OO

O

OH
1

2

Scheme 65 Other 5-membered cyclic carbonates anionically polymerized

Cyclic Monomers: Epoxides, Lactide, Lactones, Lactams, Cyclic Silicon. . . 249



6-membered cyclic carbonates (Scheme 66), like butyllithium [666–672], alkali

metal alkoxides [667, 672–676], naphthalene potassium [667], sodium hydride

[673], and pure organic nucleophiles [379, 673, 677–688].

An important feature of AROP of 6-membered cyclic carbonates is its equilib-

rium character. Indeed, polymerization did not go to completion with the presence

of residual monomer. Nevertheless, this drawback could be taken as an advantage

as it allows polycarbonates recycling. It was shown that the monomer substitution

had a strong effect on the equilibrium monomer concentration. For example, the

AROP of TMC, 2,2-dimethyl trimethylene carbonate (DTC) and CC1–3

(Scheme 66) in THF solution using potassium tert-butoxide as the initiator

exhibited an increasing monomer concentration at equilibrium, with an increasing

bulkiness of the substituents, CC3 monomer being almost not polymerized [671,

675]. It was assessed that the decrease in polymerizability of the 6-membered cyclic

carbonates with increasing bulkiness of the substituents was due to the conforma-

tional distortion of the polymer backbone, rather than in the change of conformation

of the monomer caused by the substituents [641]. Several other parameters may

also influence the polymerization rate. For example, the polymerization of DTC in

toluene with lithium as a counterion was slower than that with potassium one due to

the covalent character of the lithium-oxygen bond compared with the potassium-

oxygen bond leading to a lower nucleophilicity of the lithium alkoxide. In the case

of monomer CC4, the back-biting reaction was restricted due to the stiffness of the

polymeric chain [670].

The AROP of 6-membered cyclic carbonates presents transesterification reac-

tions, besides initiation and propagation reactions (Scheme 67). The initiation

reaction comprises the nucleophilic attack of the initiator on the carbonyl carbon

atom, followed by an acyl-oxygen cleavage and formation of the active species, an

alkoxide. Peculiar initiation behaviors were also observed. When the ROP was

initiated by naphthalene potassium, this latter did not act as an electron-transfer

reagent (e.g., like for styrene polymerization) but as a nucleophile, naphthalene

being incorporated in the polymeric chain [667]. Intramolecular nucleophilic

attacks on carbonyl carbon atom (back-biting) lead to cyclic oligomers, while

O O

O

O O

O

trimethylene
carbonate

(TMC)
2,2-dimethyl
trimethylene

carbonate
(DTC)

O O

O

R R'

O O

O

CC1 R=R'=Et
CC2 R=Me, R'=Ph
CC3 R=R'=Ph

CC4

Scheme 66 Examples of 6-membered cyclic carbonates polymerized anionically

250 S. Carlotti and F. Peruch



intermolecular transesterification leads to a change of the macromolecule length.

As a consequence, the control of the polymerization was poor, and bimodal

distribution of molar masses was generally observed.

Instead of using metallic initiators, it is possible to use organic ones. Murayama

et al. were the first to show that tertiary amines such as 1,8-diazabicyclo[5.4.0]undec-7-

ene (DBU), 1,4-diazabicyclo[2.2.2]octane (DABCO), and 4-dimethylaminopyridine

(DMAP) (Scheme 68) were able to achieve the AROP of a 6-membered cyclic

carbonate (CC4, Scheme 66) in bulk at 120 �C, whereas no polymer was obtained

with triethylamine, aniline, N,N-dimethylaniline, or pyridine [679]. It was suggested a

zwitterionic polymerization mechanism, which was confirmed by mass spectrum

analysis of the products. Tapered copolymers were also obtained when monomer

CC4 was simultaneously polymerized with glycidyl naphthyl ether.

The ROP of TMC was also performed with N-heterocyclic carbenes, guanidine,
and amidine bases in bulk at 65 �C with a good control, yielding well-defined

polycarbonates with molar masses up to 50,000 g/mol, dispersity index below 1.08,

and high end-group fidelity [680]. Similarly, the tertiary amine 2-(dimethylamino)

ethanol (DMAE) was used as an efficient initiator/catalyst for the ROP of TMC in

bulk at 50 �C leading to α,ω-heterotelechelic PTMC [682]. In this case, the

mechanism could be either an activated monomer or an activated chain-end one.

Phosphazenes revealed also efficient deprotonating agents of alcohols for the
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polymerization of TMC [688, 689]. Recently, several carbenes were used for the

controlled polymerization of DTC [379, 685].

Some examples of initiator-free polymerization of cyclic carbonates were also

described in the literature, assuming an anionic mechanism [690–693]. TMC can

undergo spontaneous polymerization in bulk above 100 �C, with the formation of a

zwitterion intermediate with a well-stabilized trialkoxycarbenium ion and on alk-

oxide (Scheme 69), whereas DTC cannot [691]. Initiator-free polymerizations were

also observed for the thermal ROP of 5-benzyloxy-trimethylene carbonate (BTMC)

in bulk at 150 �C or the microwave-assisted ROP of TMC. Molar masses were

generally high.

In spite of some side reactions, the AROP of functional cyclic carbonates

remains the preferable way to prepare functional polycarbonates. Several pathways

permit functional monomer synthesis: from 2,2-bis(hydroxymethyl)propionic acid,

glycerol, or alkyl malonates [640, 641, 643]. A number of functionalized PCs and

copolycarbonates can be obtained by direct polymerization of cyclic monomers

bearing functional groups. Functional side-chain groups introduced into PCs are

carboxylic group and their derivatives, hydroxyl, allyl, acrylate, methacrylate,

styrene, and stilbene derivatives, and even five-membered cyclic carbonates

(Scheme 70).

Polycarbonates with carboxylic side groups could be synthesized through the

ROP of CC5-type monomers (Scheme 70) with DBU [684] or sec-butyllithium
[694] at room temperature in solution. With sec-butyllithium, bimodal distribution
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of the molar masses was observed, whereas the polymers exhibited low dispersity

with DBU. Aliphatic amines with different chain lengths were easily conjugated

onto the polymer backbone in order to form nanoparticles [684].

6-Membered cyclic carbonate bearing free hydroxyl group attached to the ring

via aliphatic spacer (CC6, Scheme 70) was polymerized with DBU in bulk or in

solution at temperatures ranging from 60 to 110 �C to yield hyperbranched

polycarbonates composed of carbonate and glycerol units [683]. The linear equiv-

alent of poly(CC6) was obtained through the polymerization of CC7 followed by

free radical addition of mercaptoethanol to the pendent allyl groups. Attempts to

polymerize CC8 with sec-butyllithium in solution resulted in a mixture of poly-

mers, cyclic oligomers, and unreacted monomer [668, 669]. The hydroxyl function

of monomer CC9 was first protected by reaction with trimethylsilyl chloride and

benzyl chloroformate of phenyl isocyanate and then polymerized with lithium

alkoxide in solution at low temperature to yield bimodal distributions or even

cross-linking [674]. After deprotection, polycarbonates with one hydroxyl group

per repeating units were obtained. Amino acid functionalized polycarbonates were

also synthesized through the ROP of CC10-type monomers with alkali metal

alkoxides or n-butyllithium in solution at low temperature followed by deprotection

[672]. Monomodal distributions were obtained, and the configuration of the mono-

mer was inverted during the polymerization.

Bifunctional cyclic carbonate consisting of both 5- and 6-membered rings

(CC11, Scheme 70) was polymerized with DBU at 60 �C in solution to afford a

polycarbonate with remaining 5-membered cyclic carbonate group in the side-

chain, as this latter did not polymerize in these conditions [677]. At such elevated

temperature, conversion stopped around 50 % due to the equilibrium nature of the

polymerization.

Styrene side groups were also introduced onto polycarbonates through the

polymerization of monomer CC12 (Scheme 70) with potassium tert-butoxide as

the initiator in THF at 0 �C [676]. Subsequent radical cross-linking of styrenic

groups and anionic de-cross-linking of the carbonate units was performed. Aro-

matic cyclic carbonate CC13 (Scheme 70) was polymerized by sec-butyllithium or

dihydronaphthalene potassium, but it was evidenced the presence of decarboxyl-

ation reactions to a great extent [655].

Macroinitiators such as polymeric Li, Na, and K alkoxides can also be used for

the initiation of the 6-membered cyclic carbonate polymerization. Thus, living

vinyl polymers [695], hydroxyl group-terminated polymers of poly(tetrahydrofu-

ran) (PTHF) [696, 697], poly(ethylene oxide) (PEO) [697–699] and poly(dimethyl-

siloxane) (PDMS) [697, 700] were transformed to alkoxides by treatment with sec-
BuLi or K-naphthalene and used as initiators for AROP of DTC allowing the

synthesis of di- and triblocks copolymers. The polymerization initiated by PTHF

alkoxides with different counterions was slower than that initiated by PEO alkox-

ides, because of the lower solvation ability of PTHF. It was also shown that the

polymerization rate was highly dependent on the counterion, potassium alkoxides

being more reactive than lithium alkoxides. Besides, higher molar mass PDMS

macroinitiators exhibited lower polymerization rate. In the same vein, living poly
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(methyl methacrylate) (PMMA) prepared by Group Transfer Polymerization (GTP)

was used as a macroinitiator for the ROP of DTC after transformation of the silyl

ketene acetal into an alkoxide [701]. PMMA-b-PDTC block copolymers were thus

obtained.

The simultaneous or sequential polymerization of DTC with several cyclic esters

or other cyclic carbonates (CC4, CC5, and CC8, Scheme 70), initiated with

butyllithium, potassium dihydronaphthalene, or organic initiators, was performed

in solution or in bulk [379, 668–670, 694, 702–704]. With ε-caprolactone (CL),

tapered copolymers were obtained as DTC was more reactive than CL. Triblock

copolymers with tapered DTC/CL outer blocks could also be obtained using

macroinitiators (PEO or PTHF based) [699]. With pivalolactone, only block copol-

ymers were synthesized; DTC was first reacted by alkoxide active species, followed

by the reaction of pivalolactone through carboxylate active species. With the other

cyclic carbonates, statistical or block copolymers were obtained from simultaneous

or sequential polymerization, respectively.

6-Membered cyclic carbonates were also copolymerized with oxiranes [678,

705] and anhydride [706]. DTC was copolymerized with glycidyl phenyl ether

(GPE) with DBU in bulk at 90 �C. An acceleration of GPE polymerization was

observed, and quantitative yields were obtained. PGPE-b-PTMC copolymers were

also successfully synthesized through the sequential polymerization of GPE and

TMC with tetrabutylammonium fluoride. Attempts to copolymerize TMC and

adipic anhydride with sec-butyllithium in several conditions revealed unfruitful

as mixture of homopolymers were detected [706].

It was demonstrated that cyclic monothiocarbonate [707] and thiocarbonate

[708, 709] (Scheme 71) could be polymerized by AROP. For the cyclic monothio-

carbonate, potassium tert-butoxide revealed a good initiator yielding a polymer that

precipitates during the course of the polymerization. It was shown that the propa-

gating species was not an alkoxide but a thiolate as the monomer ring-opens

exclusively through the carbonyl sulfur bond cleavage. Thiocarbonate was poly-

merized by n-butyllithium or potassium alkoxides in solution at room temperature

or by DBU in bulk or in solution at 120 �C. Polymerization was pretty slow and

proceeded with an isomerization of the thiocarbonate group.
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6.4 Larger-Ring Cyclic Carbonates

The ROP of 7-membered cyclic carbonate (tetramethylene carbonate, TeMC,

Scheme 72) is generally faster than that of the six-membered one due to relatively

high ring strain. However, the polymerization of 7-membered cyclic carbonates

was scarcely investigated because of the difficulty to synthesize the monomers.

Indeed, TeMC is thermally unstable and difficult to isolate and purify. The poly-

merization of TeMC initiated with sec-butyllithium was carried out in THF to yield

the corresponding polycarbonate in a relatively high yield in a short time

[710]. Like for 6-membered cyclic carbonates, an important residual monomer

concentration was observed with the formation of cyclic oligomers via back-biting

reaction, which is characteristic for equilibrium polymerizations. However, the

relative polymerization rate of TeMC is about 35 times faster than that of TMC.

Another 7-membered cyclic carbonate (β-Me7CC, Scheme 72) was polymerized

in bulk at elevated temperature only (100 �C) with organic compounds (DMAP,

phosphazene) with very good yields [711]. No regioselectivity was observed during

ring-opening of the monomer.

The ROP of large-ring aromatic cyclic carbonates was also studied. It was shown

that the polymerization of monomer CC14 with alkoxide or alkyllithium [712] or

CC15 with sec-butyllithium or dihydronaphthalene lithium [713] failed, but CC15

was easily polymerized by dihydronaphthalene potassium or potassium tert-
butoxide. Monomer CC16 was easily polymerized with potassium tert-butoxide
in THF at room temperature to afford the corresponding polycarbonate in high yield

[714]. Cyclic oligomeric carbonates of bisphenol A (CC17, Scheme 72) were

polymerized by potassium dihydronaphthalene in THF [713] or in bulk at 250 �C
[715]. The polymerization and copolymerization of cyclo bis(hexamethylene car-

bonate) and its fluorinated analog (CC18 and CC19, Scheme 72) were also suc-

cessfully performed using sec-butyllithium in toluene [716].
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7 Cycloalkanes, Cyclic Sulfides and Amines, Cyclic Ureas,
Depsipeptides, and Cyclic Phosphorous Monomers

7.1 Introduction

The successful synthesis of polymers and copolymers issued from cyclic ethers,

esters, lactams, carbonates, or siloxanes through anionic ring-opening polymeriza-

tion triggered researches in cyclic monomers containing, or not, other heteroatoms

or combination of several heteroatoms. New properties were expected for

novel uses.

7.2 Cycloalkanes

Cycloalkanes are expected to polymerize by breaking a carbon-carbon single bond

of a monomer ring. Such a bond does not generally react with free radicals and

rarely participate in reactions with electrophiles and nucleophiles [717]. In addition,

as the two atoms making the bond are identical, no polarization is introduced into

the monomer, making ionic reactions with nucleophiles or electrophiles difficult.

Reactivity can only be expected when monomer substituents are introduced on at

least one of the two carbons, thereby increasing the bond polarity and introducing

some zwitterionic nature into the bond, or when the overlap of atomic orbitals in the

carbon-carbon bond is disturbed by geometric parameters, particularly observed

with highly strained polycyclic systems [717, 718]. Cycloalkanes polymerized by

anionic ring-opening polymerization are composed of functionalized cyclopro-

panes, cyclobutanes, and polycyclic molecules with high intrinsic polymeriz-

abilities (e.g., bicycloalkanes and propellanes). Detailed reviews may give

additional information in anionic polymerization as well as other polymerization

methods used [719–723].

The AROP of cyclopropanes activated by various substituents (Scheme 73) was

effective using mainly alkali metal derivatives as initiators. Two electron-

withdrawing substituents on the same carbon are often needed for the polymeriza-

tion to be efficient but still drastically less reactive than the corresponding vinyl

monomers [724]. Sodium thiophenolate is shown to initiate the polymerization of

cyclopropane-1,1-dicarboxylates with a living character in some cases [725–

728]. Phosphazenium thiophenol or bisthiols were also proposed for the successful

AROP of di-n-propyl cyclopropane-1,1-dicarboxylate [729, 730]. Well-defined

monofunctional or difunctional polymers with a low dispersity were obtained

through a living process in THF between 30 and 60 �C or in toluene between

30 and 100 �C. A much higher reactivity is noticed as compared to the alkali metal

thiophenolate initiator used in DMSO at higher temperature. The polymerization of

cyclopropanes bearing cyano [724, 731] or fluorine [732] groups initiated with

sodium thiophenolate or fluorenyl lithium, respectively, was also observed. Sodium
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cyanide was particularly effective as anionic initiator of various trisubstituted

cyclopropanes in DMF [733–737].

Cyclobutanes exhibit a much lower tendency to anionically ring-open as com-

pared to cyclopropanes and as also observed for heterocyclic rings. Reasonable

evidences for an AROP were only reported in highly activated monomers. The

polymerizations of cyclobutanes substituted by nitrile groups on one or two car-

bons, and further substituted by an ether group on a neighboring carbon, are the

most efficient (Scheme 74) [738, 739].

Activated bicyclobutanes [740–745] or other bicycloalkanes [746] and [1.1.1]

propellanes [747–749] were observed to give oligomers or polymers using conven-

tional anionic initiators, i.e., alkyllithium (Scheme 75).

7.3 Cyclic Sulfides and Amines

The anionic route is proposed, in addition to cationic and coordinative ones [750],

as an efficient approach for the polymerization of cyclic sulfides (Scheme 76), in

particular for thiirane (ethylene sulfide) and various substituted thiiranes. Thiolates
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are commonly used to attack the monomer, proceeding exclusively at the methy-

lene carbon and leading to pure head-to-tail structures [751–753]. Naphthylsodium

was found to act as a bifunctional initiator and to give a living character to the

polymerization. The initiation reaction was proposed to consist of a desulfurization

process producing ion radicals that combine to form dithiolates [754]. In a similar

way to epoxide polymerization, Inoue experimented with success (N-methyl-

5,10,15,20-tetraphenylporphinato)zinc propanethiolate as initiator of propylene

sulfide (or methylthiirane MT) [755].

Organic initiators were also proposed. Tertiary amines such as 1,4-diazabicyclo

[2.2.2]octane (DABCO) enable the polymerization of ethylene sulfide to high molar

mass polymers through a zwitterionic mechanism [756]. In contrast, MT was only

slowly polymerized by polyamines to give low molar mass materials. Nicol

et al. described the living polymerization of MT initiated by various mono- and

dithiolates [757]. The deprotonation of the thiols was carried out by addition of a

strict stoichiometric amount of a bulky strong organic base such as 1,8-diazabicyclo

[5,4,0]undec7-ene (DBU) (Scheme 77).

Advantages of thiols are based on low pKa values ranging from 7 to 11 in water,

excluding substantially deactivation due to protonation in environments with pH

�10. That allows a living character of the polymerization at not excessively basic

pH and under non-anhydrous conditions, which is different from the structurally

similar epoxide polymerization. It is possible to polymerize hydroxyl-containing

monomers such as hydroxymethyl thiirane in a living manner [758] or to work in

emulsion in water with restrictions, such as limited conversions producing poly-

mers with molar masses lower than predicted ones due to physical reasons and not

chemical [759]. On the other hand, the use of thiols is often complicated by the

presence of disulfide impurities coming from oxidation of the initiating thiol, which

results in transfer reactions [760]. Protected thiols which are deprotected right

before polymerization may be proposed. Examples are the use of thioester, which

is transformed into thiolate by the addition of sodium methanolate [761, 762] and

the ring-opening of cyclic dithiocarbonates by an amine [763].

Thanks to the livingness of the polymerization of thiiranes, di- and triblock

copolymers were prepared, marrying mainly polythiirane or poly(methylthiirane)

(PMT) with polystyrene and derivatives, poly(methyl methacrylate), polyethers,

and polydienes [762, 764–770]. A macromonomer approach was also helpful to
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obtain comb-like polymers with polythiirane main chains and various side chains

[771–774]. The synthesis of star-shaped PMT by polymerization with tri- and

tetrathiol initiators was also investigated [761–763, 775, 776].

The AROP of the four-membered rings family of cyclic sulfides (Scheme 76) is

much more limited. Thiethane and 3,3-dimethylthietane were polymerized to high

molar mass polymers by initiation with naphthylsodium or butyllithium

[777–780]. The polymerizations were shown to occur with carbanions as active

species instead of thiolates. The sulfur atom is attacked due to severe bond angle

distortions forced upon the atom by the geometry of the molecule.

The conversion of cyclic amines into linear polyamines is much more limited by

AROP, despite potential utilities, e.g., ion exchange chromatography or biomedi-

cine [781, 782]. The polymerization of sulfonylaziridines was only effective in the

presence of amide initiator, generated by the deprotonation of a primary sulfon-

amide (N-benzyl methanesulfonamide) by potassium bis(trimethylsilyl)amide

(KHMDS), leading to polymers with a low dispersity (Scheme 78) [783].

7.4 Cyclic Ureas and Depsipeptides

The ROP of cyclic ureas has attracted only minor interest. Dimethylene urea and

trimethylene urea can be successfully ring-open using sodium hydride as initiator

leading to polyureas [784]. But the synthesis of polyurethanes, starting from

tetramethylene urea (TeU) and cyclic carbonates, was particularly investigated by

Keul and H€ocker [785–788]. It was shown that first the cyclic carbonate polymer-

izes, and then TeU is formally inserted into the polycarbonate chain after

deprotonation of the amine by dibutylmagnesium (Bu2Mg) (Scheme 79).

Using γ-butyrolactone (γ-BL) instead of cyclic carbonates in the presence of

Bu2Mg, alternating poly(amide urethane)s were achieved [789]. The homopoly-

merizations of TeU and γ-BL were not observed. TeU reacts initially with Bu2Mg

to form the salt in which the nucleophilicity of the nitrogen is enhanced and the

reaction between activated TeU and γ-BL is made possible. Ring-opening leads to

the AB monomer. It is followed by the nucleophilic attack of the alkoxide at the

endocyclic carbonyl carbon atom, resulting in polymer after ring-opening

(Scheme 80).

Polydepsipeptides, alternated copolymers of α-hydroxy acids and α-amino

acids, belong to the poly(ester-amide) family and are interesting for their degrad-

able character. Ring-opening polymerization of morpholine-2,5-dione (MD) and its
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derivatives (Scheme 81), in the presence of stannous catalyst, is the main way to

obtain such polymers [790]. Detailed information can be found in the review of

Dijkstra [791]. AROP using potassium alkoxides was also applied to provide

polymers with limited conversions and molar masses [792]. The lack of control

may be explained by the presence of a proton on the amine. Block copolymers such

as polymorpholine-2,5-dione-b-polylactide were nevertheless prepared by a

two-step procedure for surfactants applications [793, 794].

7.5 Cyclic Phosphorus Monomers

Cyclic phosphorus monomer family gives rise to polymers of interest in particular

in biomedical field, due to biocompatibility, biodegradability, and structural simi-

larities to naturally occurring nucleic acids, or in flame retardant applications.

Lapienis reviewed recently all ring-opening polymerizations leading to polymers

containing phosphorus atoms [795]. Only few monomers are polymerized by an
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Scheme 79 Polyurethane synthesis by insertion and ROP of deprotonated tetramethylene urea in

a polycarbonate
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anionic route. Poly(phosphate esters) can be prepared from cyclic phosphoesters

(Scheme 82) either with alkali metal initiators [796–800] or organic initiators

(tertiary amines, TBD, or DBU) [801–805]. 5-Membered phosphoesters were by

far the most studied monomers. The presence of a substituent on the ring decreases

the polymerizability of the monomer as high polymerization temperatures are

needed to get only oligomers. 6-Membered phosphoesters are also difficult to

polymerize [799]. Fluorosubstituted phosphoesters (Scheme 82) can undergo

AROP with KOH, butyllithium, or triethylamine, in bulk at 220–270 �C, giving
rubber-like polymers, the molar mass being highly dependent on the initiator

[800]. The presence of polar agents (e.g., THF, diethyl ether, and dimethyl-

formamide (DMF)) considerably lowers the required polymerization temperature

(100 �C). The polymerization presents a living character with organic initiators,

enabling the formation of random and block copolymers [802, 803].

5-, 6-, 7-, and 8-Membered cyclic phosphonates (Scheme 83) can also undergo

anionic polymerization at high temperatures [806]. Very recently, it was shown that

DBU can perform the synthesis of poly(ethylene methylphosphonate) with an

excellent control with molar masses up to 20,000 g/mol [807]. The polymerization

Scheme 82 Cyclic phosphoesters polymerized by AROP
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Scheme 83 Cyclic phosphonates polymerized by AROP
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of cyclic [808] or bicyclic [809] H-phosphonate was also performed with an

alkyllithium. As an example, the polymerization of 2-hydro-2-oxo-1,3,2-dioxapho-

sphorinane was achieved in bulk or in dichloromethane solution, initiated by

n-BuLi, but also EtONa and t-BuOK, at 25–45 �C, to give a high molar mass

polymer (route a, Scheme 84) [808]. Some trivalent phosphorus cyclic compounds

were also polymerized by AROP with potassium or cesium alkoxides

(no polymerization occurred with lithium or sodium) or potassium trimethylsi-

lanolate (route b, Scheme 84) [810–812]. After acetolysis, poly(2-diethylamino-

1,3,2-dioxaphosphorinane) gave the same polymer as the one obtained from

2-hydro-2-oxo-1,3,2-dioxaphosphorinane, which can be easily converted to

polyacid after oxidation.

8 Conclusion

A large variety of cyclic monomers can be polymerized by anionic ring-opening

polymerization. In spite of required rigorous experimental procedures as compared

to some other polymerization routes, some industries and academic researchers

used to play with such chemistry and already take advantages of some polymeric

structures prepared by AROP. Indeed, thanks to the recent progress in the control of

the polymerizations, functionalized polymers and copolymers (block in particular)

are now available, broadening the scope of properties and thus opening many

perspectives in various applications.

Abbreviations

18C6 1,4,7,10,13,16-Hexaoxacyclooctadecane (18-crown-6 ether)

ACE Active chain end

AGE Allyl glycidyl ether

AM Activated monomer

AROP Anionic ring-opening polymerization

BEMP 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-

1,3,2-diazaphosphorine
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Scheme 84 Examples of other cyclic phosphorus containing monomers polymerized by AROP
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BL β-butyrolactone
γ-BL γ-butyrolactone
BO Butylene oxide

BTMC 5-Benzyloxy-trimethylene carbonate

Bu2Mg Dibutylmagnesium

i-Bu3Al Triisobutylaluminum

BuLi Butyllithium

CC Cyclic carbonate

CL ε-Caprolactone
ε-CL ε-Caprolactam
Cp Cyclopentadienyl

D3 Hexamethylcyclotrisiloxane

D4 Octamethylcyclotetrasiloxane

D5 Decamethylcyclopentasiloxane

D6 Dodecamethylcyclohexasiloxane

DABCO 1,4-Diazabicyclo[2.2.2]octane

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

DHCM 3,4-Dihydrocoumarin

DMAE 2-(Dimethylamino)ethanol

DMAP N,N-Dimethylamino pyridine

DMF Dimethylformamide

DMO 2,2-Dimethyloxirane

DMSO Dimethylsulfoxide

DP Degree of polymerization

DTC 2,2-dimethyl trimethylene carbonate

EC Ethylene carbonate

ECH Epichlorohydrin

EEGE 2-Ethoxyethyl glycidyl ether

EO Ethylene oxide

EtONa Sodium ethoxide

EVGE Ethoxy vinyl glycidyl ether

GME Glycidyl methyl ether

GPE Glycidyl phenyl ether

GTP Group transfer polymerization

HMPA Hexamethylphosphoramide

KHMDS Potassium bis(trimethylsilyl)amide

LA Lactide

ω-LL ω-Lauryllactam
MAlBP Methylaluminum bis(2,4,6-tri-tert-butylphenolate)
MD Morpholine-2,5-dione

MLABz Benzyl-β-malolactonate

MT Methylthiirane

NHC N-heterocyclic carbene
NOct4Br Tetraoctylammonium chloride
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PA3 Polyamide 3

PA5 Polyamide 5

PA6 Polyamide 6

PA10 Polyamide 10

PA12 Polyamide 12

PBL Poly(β-butyrolactone)
PBO Poly(butylene oxide)

PC Polycarbonate

PCL Poly(ε-caprolactone)
PDMS Poly(dimethyl siloxane)

PEEGE Poly(2-ethoxyethyl glycidyl ether)

PEO Poly(ethylene oxide)

PGME Poly(glycidyl methyl ether)

PGPE Poly(glycidyl phenyl ether)

PHA Polyhydroxyalkanoate

PL β-Propiolactone
PLA Polylactide

PMMA Poly(methyl methacrylate)

PMT Polymethylthiirane

POSS Oligomeric silsesquioxane

PO Propylene oxide

PPL Poly(β-propiolactone)
PPO Poly(propylene oxide)

PPY 4-Pyrrolidinopyridine

PS Polystyrene

PTHF Polytetrahydrofuran

PTMC Poly(trimethylene carbonate)

PVL Pivalolactone (α,α-dimethyl-β-propiolactone)
PtBuGE Poly(tert-butyl glycidyl ether)
RIM Reaction injection molding

ROP Ring-opening polymerization

RTM Resin transfer molding

TBD 1,5,7-Triazabicyclo[4.4.0]dec-5-ene

t-BuGE tert-butyl glycidyl ether
t-BuOK Potassium tert-butoxide
tBuP1 N0-tert-butyl-N,N,N0,N0,N00,N00-hexamethylphosphorimidic triamide

tBuP2 1-tert-Butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi
(phosphazene)

tBuP4 1-tert-Butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)-

phosphoranylidenamino]-2-λ5,4-λ5-catenadi (phosphazene)
(phosphazene base)

TeMC Tetramethylene carbonate

TeU Tetramethylene urea

THF Tetrahydrofuran
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TMC Trimethylene carbonate

TPPAlCl α,β,γ,δ-Tetraphenylporphyrin aluminum chloride

δ-VL δ-Valerolactone
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166. Gervais M, Labbé A, Carlotti S, Deffieux A (2009) Direct synthesis of α-Azido,
ω-hydroxypolyethers by monomer-Activated anionic polymerization. Macromolecules

42:2395–2400

167. Huisgen R (1984) 1,3-Dipolar Cycloaddition Chemistry. In: Padwa A (ed) 1,3-Dipolar

cycloaddition chemistry. Wiley, New York, pp 1–176

168. Zeng F, Allen C (2006) Synthesis of carboxy-functionalized heterobifunctional poly(ethylene

glycol) by a thiol-anionic polymerization method. Macromolecules 39:6391–6398

169. Mizrahi DM, Omer-Mizrahi M, Goldshtein J, Askinadze N, Margel S (2010) Novel Poly

(ethylene glycol) Monomers Bearing Diverse Functional Groups. J Polym Sci A, Polym

Chem 48:5468–5478

170. Vadala ML, Thompson MS, Ashworth MA, Lin Y, Vadala TP, Ragheb R, Riffle JS (2008)

Heterobifunctional poly(ethylene oxide) oligomers containing carboxylic acids. Biomacro-

molecules 9:1035–1043

171. Zhang S, Du H, Sun R, Li XP, Yang DJ, Zhang SG, Xiong CD, Peng YX (2003) Synthesis of

heterobifunctional poly(ethylene glycol) with a primary amino group at one end and a

carboxylate group at the other end. React Funct Polym 56:17–25

172. Akiyama Y, Nagasaki Y, Kataoka K (2004) Synthesis of heterotelechelic poly(ethylene

glycol) derivatives having alpha-benzaldehyde and omega-pyridyl disulfide groups by ring

opening polymerization of ethylene oxide using 4-(diethoxymethyl)benzyl alkoxide as a

novel initiator. Bioconjugate Chem 15:424–427
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