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�Introduction

�Van der Waals Interactions in DFT

In line with increasing use of density functional theory (DFT) in quantum chemistry, 
it is presently employed in more than 80 % of van der Waals calculations. Since 
most van der Waals calculations target at large-scale systems such as biomolecules 
and nanomaterials, it is natural to use DFT having features of both high speed and 
high accuracy. Nevertheless, it has been reported that DFT provides poor van der 
Waals bonds for many years [1]. For example, until recently, no exchange-correlation 
functional gives meaningful potential energy curves for the van der Waals bonds of 
rare gas dimers in Kohn–Sham calculations [1]. The main cause for the poor DFT 
results of van der Waals bonds is the neglect of van der Waals interactions in con-
ventional exchange-correlation functionals [2].

By definition, van der Waals interaction is the collective term of dipole–dipole, 
dipole–induced dipole, and dispersion interactions [3]. The dipole–dipole interaction is 
the electrostatic interaction between permanent dipoles in polar systems. For the inter-
actions between systems A and B, the corresponding potential is given classically as 
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where μX is the permanent dipole of system X and RAB is the distance between sys-
tems A and B. Note that atomic units (ℏ = e = me = 1 ∕ (4π ε0) = 1, energies are in har-
tree, and distances are in bohr) are used in all equations of this review. In the 
Kohn–Sham equation [4], which is usually the main equation of DFT, this interac-
tion is contained as a part of Coulomb interactions. The dipole–induced dipole 
interaction is the interaction between polar and nonpolar systems. Assuming the 
permanent dipole moment of polar system A as μA and the polarizability, the linear 
response for electric field producing induced dipole moment, of nonpolar system B 
as αB, the classical potential of this interaction is given as [3] 
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Since this interaction is very weak, it causes the low solubility of polar molecules in 
nonpolar solvents. This interaction is also incorporated in Kohn–Sham SCF calcula-
tions. The dispersion interaction is a universal interaction, which acts even between 
the bodies of neither charge nor multipole moment. As a classical expression, the 
potential function between two heterogeneous bodies, which London developed 
using perturbation theory, is used [5], 
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where IX is the ionization potential of partial system X. This dispersion interaction 
is interpreted as the interaction between an instantaneous dipole moment by the 
fluctuation of electron distribution and an induced dipole moment by the electric 
field formed of the instantaneous dipole moment. That is, two spatially separated 
electron distributions fluctuate around these equilibrium distributions by electron 
correlation to produce interactions between two bodies. Therefore, dispersion inter-
action is a pure electron correlation between two bodies, which cannot be incorpo-
rated by one-body mean-field approximation, and it is long-range correlation 
explicitly acting between distant electrons. This dispersion interaction is the only 
van der Waals interaction that is not incorporated in Kohn–Sham calculations using 
conventional correlation functionals.

Although dispersion interaction should be included in correlation functionals, 
it  has usually been not taken into consideration in conventional correlation 
functionals. Conventional generalized-gradient-approximation (GGA) correlation 
functionals are classified into two types: density gradient expansion-type and Colle–
Salvetti-type correlation functionals. In density gradient expansion-type correlation 
functionals, local density approximation (LDA) correlation functionals are corrected 
using the functionals of density gradient. For example, Perdew–Wang 1991 (PW91) 
[6] and Perder–Burke–Ernzerhof (PBE) [7] correlation functionals are involved in 
these functionals. However, since electron density and its gradient are essentially 
one-electron functions, these functionals cannot give dispersion interactions, which 
are explicit long-range electron–electron interactions as shown in Eq. (3). 
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Colle–Salvetti-type correlation functionals [8] are derived from correlation wave-
functions, in which uncorrelated wavefunctions are multiplied by the factor of cor-
relation holes. Lee–Yang–Parr (LYP) [9] and one-parameter progressive (OP) 
correlation functionals [10] are included in these functionals. Since these function-
als contain only short-range correlation resulting from correlation holes, long-range 
correlations including dispersion interactions are neglected in these functionals. 
Naturally, Kohn–Sham calculations using these GGA correlation functionals have 
almost always failed with no dispersion interaction to give van der Waals bonds even 
qualitatively. It is, therefore, reasonable to consider that dispersion interaction 
should be explicitly supplemented in conventional correlation functionals.

�π-Stacking Interactions

π-Stacking interaction is one of the dispersion interactions and often significantly 
contributes to the structures of large-scale systems. The name “π-stacking” comes 
from the structures of π-stacked systems, in which π orbitals seem to overlap. 
However, it is theoretically revealed that π orbitals do not play a special role in 
π-stacking interactions [11], as implicated by experimental phase-change studies. 
That is, π-stacking interactions are nothing more than usual dispersion interactions. 
π-Stacking interactions have also been interpreted by various models: e.g. solvo-
phobic (entropic interaction), donor–acceptor (charge transfer interaction), and 
atomic charge (electrostatic interaction between uneven charge distributions) 
models [12]. However, these classical models have been disconfirmed both experi-
mentally and theoretically [12]. Hunter suggested a model, in which the repulsive 
electrostatic interactions of quadrupole moments are balanced with attractive dis-
persion interactions [13]. However, as clearly shown in section “Long-Range 
Exchange Interactions”, long-range exchange interactions are actual repulsions 
against the attractions of long-range dispersion correlations in π-stacking bonds 
[14]. In most cases, π-stacking interactions indicate the noncovalent interactions 
between aromatic rings. π-Stacking interactions have three types of conformations: 
parallel, T-shaped, and parallel-displaced configurations (Fig. 1). As anticipated 
from the above discussion, similar potential energy curves are given for the bond 
dissociations of parallel and T-shaped configurations, although parallel configura-
tions tend to give shorter bond distances with smaller binding energies than those of 
T-shaped configurations [14]. Therefore, most theoretical studies have assumed that 
π-stacking interactions are accurately reproduced by appropriate methods giving 
correct dispersion interactions.

So far, it has been experimentally reported that π-stacking interactions play impor-
tant roles in various large systems: e.g., carbon nanomaterials (stackings on fullerene, 
graphene, and nanotube available in hydrogen storage materials [15], drug-delivery 
vehicles [16] and biochemical sensors [17, 18]), biomolecules (DNA stackings [19, 
20] and protein foldings [21, 22]), and supramolecules (molecular recognitions [23, 
24], crystal packings [25, 26], and host–guest interactions [27, 28]). Therefore, past 
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theoretical investigations have also mainly approached the π-stacking natures of these 
large systems. Carbon nanomaterials having polycyclic structures use π-stackings to 
solvate in organic sovents. In DNA, π-stacking interactions form stacking bonds 
between the bases to build up the double-helical structure [29]. Protein foldings are 
also critically affected by the π-stacking of aromatic rings in proteins. For supramol-
ecules, π-stackings are usually used to self-assemble π-conjugated molecules [30]. 
On the other hand, π-stacking interactions hardly contribute to chemical reactions. 
For the substitution reaction of benzene dimer shown in Fig. 2, Wheeler and Houk 
suggested that even for the reaction of π-stacked benzene derivatives, the substituent 
group (X) directly interacts with the aromatic ring to proceed the reaction with no 
contribution of the π-stacking [31]. This is analogous to Diels–Alder reactions, in 
which dispersion interactions between π orbitals hardly affect the reaction enthalpies 
[32]. However, it is also found that dispersion interactions clearly decrease reaction 
barriers of these Diels–Alder reactions [32]. We, therefore, suppose that π-stackings 
may contribute to reactivities in reactions of π-stacked systems, although they may 
not directly affect reaction mechanisms.

As described above, π-stackings essentially consist of dispersion interactions. 
Dispersion effects should, therefore, be explicitly taken into consideration to calcu-
late π-stackings. However, many conventional DFT calculations have used 
exchange-correlation functionals containing no explicit dispersion interaction such 
as pure LDA and GGA functionals and consequently have provided poor results in 
π-stacking calculations. To open the door to quantitative discussions of van der 
Waals bonds including π-stackings, a wide variety of dispersion corrections have 
been developed in the field of DFT. In this review, we will briefly explain major 
dispersion corrections for DFT exchange-correlation functionals on their basic con-
cepts in section “Dispersion Corrections in DFT”. We will then list past DFT 

Fig. 1  Three conformation types of benzene dimer
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applications to π-stacking systems with mentioning their limitations in section 
“DFT Calculations of π-Stacking Systems”.

�Dispersion Corrections in DFT

So far, various types of dispersion corrections have been suggested. These disper-
sion corrections are generally classified to five types: classical dispersion correc-
tions, combinations with perturbation theories, linear-response theories, van der 
Waals (dispersion) functionals, and semiempirical dispersion-corrected functionals. 
Besides these dispersion corrections, long-range exchange interactions and correla-
tion functionals are also significant in calculating van der Waals bonds. In this sec-
tion, these dispersion corrections and the effects of long-range exchange interactions 
and correlation functionals are briefly reviewed.

�Classical Dispersion Corrections

The simplest dispersion correction may be the empirical correction for the Kohn–
Sham energy using the London’s classical interatomic dispersion energy, 
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where A and B are usually the labels of atoms and C6
AB is the interatomic dispersion 

coefficient parameterized, and fdamp is a damping function for cutting off unneces-
sary short-range interactions. The feature of this correction method is much less 
computational time required in dispersion calculations than those of other disper-
sion corrections. Since this classical correction also accurately reproduces experi-
mental results with well-calibrated dispersion coefficients, it is the most widely used 
dispersion correction in classical molecular dynamics (MD) simulations. It is, how-
ever, difficult to apply this correction to the calculations of new uninformed systems 
due to the empirically parameterized dispersion coefficient and it has been reported 

Fig. 2  The displacement 
reaction of benzene dimer
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that this correction gives much different results dependent on exchange-correlation 
functionals combined. Therefore, the right-hand side of Eq. (4) is usually multiplied 
by adjusted parameters dependent on exchange-correlation functional combined as 
seen in DFT-D (section “Semiempirical Dispersion-Corrected Functionals”). 
However, these methods are too empirical to be appropriate for a wide variety of 
systems. To solve this problem, Becke developed the exchange-hole dipole moment 
(XDM) method [33, 34], in which the C6

AB coefficient in Eq. (4) is calculated by 
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Although this method is also empirical, it has a physical meaning at least in the 
dispersion coefficient and gives more accurate dispersion interactions than those of 
the London’s classical dispersion energy.

�Combination with Perturbation Theories

Perturbation theories such as the second-order Møller–Plesset perturbation (MP2) 
method [35] have been appreciated as ab initio wavefunction theories reproducing 
dispersion interactions with relatively short computational time. Therefore, 
dispersion interactions can be incorporated in the Kohn–Sham method by combin-
ing with the perturbation theories in principle. One of the methods based on this 
concept is DFT symmetry-adapted perturbation theory (DFT-SAPT), which uses 
Kohn–Sham orbitals to calculate the perturbation energies [36]. In contrast to ab 
initio SAPT calculating both inter- and intra-molecular electron correlations, only 
intermolecular electron correlations are calculated as a dispersion correction for 
the Kohn–Sham method in DFT-SAPT. Consequently, this drastically reduces the 
computational cost to tenths or hundredths of an ab initio SAPT one with similar 
accuracies. Although DFT-SAPT is a promising dispersion calculation method for 
clearly separated systems, it cannot reproduce intramolecular dispersion interac-
tions. Moreover, despite the drastically reduced computational time, DFT-SAPT 
calculations need much more computational time than those of Kohn–Sham cal-
culations even for the lowest-order DFT-SAPT2. Therefore, these are conse-
quently applicable to systems containing only up to several dozens of atoms with 
current commercial computer performance. As another method combining DFT 
with perturbation theories, there are double-hybrid functionals, which mix 
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perturbation energies in correlation functionals at a constant rate [37]. That is, 
these functionals extend hybrid functionals by mixing correlation functionals with 
MP2 perturbation energies such as 

	 E a E a E a E a Exxc x x HF c c c MP2= − + + − +( ) ( )1 1 	 (8)

where EMP2 is MP2 electron correlation energy. B2PLYP functional [38] is one of 
the double-hybrid functionals. Although this method gives middle-range electron 
correlations, it is not appropriate for dispersion calculations because of the incom-
plete dispersion interactions incorporated.

�Linear-Response Theories

By using linear-response theories, dispersion interactions can be calculated directly 
in the framework of the Kohn–Sham method. Adiabatic connection/fluctuation-
dissipation theorem (AC/FDT) method is a linear-response theory for calculating 
dispersion interactions based on the Kohn–Sham method [39]. In this AC/FDT 
method, electron correlation is calculated as the energy response quantity for the 
spontaneous fluctuations of electronic motions coming from the perturbation of 
interelectronic interactions as 
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where r and r′ are the position vectors of electrons. In this equation, χλ and χ0 are 
density response functions for interacting and independent electrons, respectively, 
and these are obtained by solving the Dyson equation as 
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where fxc
λ is the exchange-correlation integral kernel for interacting systems. Since 

the electron correlation in Eq. (9) contains dispersion interactions as the long-range 
correlation, the long-range part of this correlation energy is often used as a disper-
sion correction, which is called “RPAx” [40]. Analogously to the time-dependent 
response Kohn–Sham (TDKS) method, the correlation energy is calculated by solv-
ing the TDKS matrix equation. Although this AC/FDT method is obviously the 
most superior dispersion correction from a physical point of view, this method 
requires an enormous amount of computational time, which is more than thousand 
times the time needed in Kohn–Sham calculations, unless drastic approximations 
would be adopted.
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�Van der Waals (Dispersion) Functionals

Van der Waals (dispersion) functionals have been developed to reduce the enormous 
computational time required in the AC/FDT method with keeping the accuracies 
and to be easy-to-use like the London’s classical potential. Lundqvist and cowork-
ers proposed a dispersion functional called Andersson–Langreth–Lundqvist (ALL) 
functional by using a local density approximation for the electron density response 
function of the AC/FDT method [41], 
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As almost the same functional, Dobson and coworkers independently suggested a 
dispersion functional based on local density approximation in the same year [42]. 
Note that explicit numerical two-electron integrals, which usually take long compu-
tational time to be calculated, are included in the formulations of these functionals. 
However, in actual calculations, the computational time is usually less than that of 
the Kohn–Sham calculation, because spatial regions of small momentum variations 
and core regions can be neglected in the integral calculations. On the other hand, 
these functionals are applicable only to two-body systems having well-separated 
electron distributions and need damping functions fdamp shown in Eq. (4) for short-
range electron–electron distances. To solve this problem, many researchers have 
attempted to develop dispersion functionals applicable to the regions of overlapped 
electron distributions. Lundqvist and coworkers also proposed a dispersion func-
tional available for such electronic regions [43]. This functional has a complicated 
form using ϕ(r1, r2) function containing the spatial coordinates of two electrons and 
the electron density and its gradient at these coordinates, 
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where 
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and 
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In Eq. (17), q0 is given using the Fermi momentum, kF = (3π2ρ)1 ∕ 3, as 
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This functional requires no damping function, because it naturally approaches zero 
for short electron–electron distance. Therefore, this functional can reproduce intra-
molecular dispersion interactions. This dispersion functional is used in, e.g., vdW-
DF dispersion correction [43] combining with revPBE or another GGA functional. 
As other interesting dispersion functionals, Vydrov–van Voorhis 2009 (VV09) 
functional [44], which uses the dielectric model smoothing the real-space cutoff, 
and local response dispersion (LRD) functional [45], which combines the local 
response approximation functional of Dobson and coworkers [42] with the real-
space cutoff [44], are also suggested. Combining with long-range corrected DFT, 
this LRD functional has succeeded to reproduce various kinds of reaction energy 
diagrams and photochemistries, which have been poorly given by conventional 
DFTs, as mentioned in section “Long-Range Exchange Interactions”.

�Semiempirical Dispersion-Corrected Functionals

Semiempirical dispersion-corrected functionals intend to reproduce accurate prop-
erties including van der Waals interaction energies by using dispersion terms with 
many adjusted semiempirical parameters like CHARMM [46] and Amber [47] 
molecular force fields in classical MDs of biological systems. DFT-D functionals 
such as BLYP-D, B3LYP-D, and B97-D functionals [48] and Mx-series functionals 
such as M05-2x and M06-2x functionals [49] are included in these semiempirical 
dispersion-corrected functionals. In DFT-D functionals, there are three versions, 
DFT-D1, -D2, and -D3, based on the level of dispersion corrections. For deep under-
standing of dispersion corrections, it is interesting to show the highest-level DFT-
D3 functional [50], 
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where A, B, and C are atomic labels, θa, θb, and θc are the internal angles of  
ABC triangle, and RABC  is geometrically averaged radii. The damping functions are 
given by 
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All the remaining parameters are semiempirical: R0
AB and R0

ABC are cutoff radii 
adjusted to each atomic pairwise and three-body. Coefficients sn (n = 8, 10, ⋯ ) are 
fitted in benchmark calculations depending on functionals combined, while s6 is one 
or an adjusted value less than 1. For dispersion coefficients, Cn

AB and C9
ABC, time-

dependent DFT (TDDFT) and recursion relations are used to determine the values 
for each atomic pairwise and three-body. The lowest-order C6

AB is expressed in the 
Casimer–Polder formula [51], 
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where αA(i ω) is the averaged dipole polarizability of atom A at imaginary frequency. 
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AB coefficients are derived by the recursion relations [52] as 
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where ZA is the nuclear charge of atom A and ⟨r4⟩A and ⟨r2⟩A are the expectation 
values derived from the electron density of atom A. The remaining triple–dipole 
C9

ABC coefficient is given by 
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These coefficients are determined by TDDFT calculation for each atomic pairwise 
and three-body. Since these values are fixed after one TDDFT calculation, these 
dispersion calculations are not the bottleneck of DFT-D3 calculations. For DFT-D3 
functionals, BLYP-D3 and B2PLYP-D3 functionals are suggested [50]. In Mx-series 
and other semiempirical dispersion-corrected functionals, dispersion interactions 
are incorporated in the similar manner, although only the C6

AB term is usually con-
tained. This type of dispersion corrections is obviously efficient, because dispersion 
interactions are easily incorporated with high accuracy only by using functionals. 
However, it has been reported that the calculated results depend on the parameters 
used and the R − 6 decay of dispersion interaction cannot be reproduced.

�Long-Range Exchange Interactions

Although only dispersion corrections have so far been presented in this section, we 
should notice that repulsions balanced with dispersion attractions are equivalently 
significant in dispersion calculations. As seen in the Lennard–Jones potential (sec-
tion “Biomolecules: DNA and Proteins”), the repulsions have been interpreted to 
come from long-range exchange interactions. Nevertheless, long-range exchange 
interactions have been neglected in conventional exchange functionals similarly to 
dispersion interactions in conventional correlation functionals. Figure 3a displays 
the dissociation potential energy curves of Ar dimer, which are calculated using 
various exchange functionals [1]. It is well known that the bond of Ar dimer consists 
only of dispersion interactions. This figure clearly indicates that the dissociation 
potentials of van der Waals bonds are significantly affected by exchange functionals 
used: LDA, Becke 1988 GGA (B88), and Perdew–Burke–Ernzerhof GGA (PBE) 
exchange functionals give qualitatively different potential energy curves, despite 
these functionals have been combined with dispersion corrections mentioned above. 
In contrast, the figure shows that long-range correction clearly makes these poten-
tial energy curves close to each other. Therefore, this figure reveals that the different 
potential energy curves of GGA functionals mainly come from the lack of long-
range exchange interactions.

Tsuneda and coworkers suggested the long-range correction, in which exchange 
interactions are divided into short- and long-range parts, and then the short-range 
part of a general exchange functional is combined with the long-range part of the 
Hartree–Fock (HF) exchange integral [53]. In this correction, the two-electron oper-
ator 1 ∕ r12 is divided by the error function as 
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Since usual exchange functionals, however, have no corresponding density matri-
ces, the short-range part of exchange functionals are derived assuming that all the 
difference in exchange functionals is reflected to the momentum kσ as 
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where aσ, bσ, and cσ are given as 
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A dimensionless coefficient Kσ is defined in usual GGA exchange functional form as 

	
E d Kx = − ∫∑1

2
3 4 3

s
s srr / .

	
(35)

Fig. 3  Dissociation potential energy curves of argon dimer calculated with (a) various pure and 
long-range corrected (LC) functionals and (b) LC functionals combined with ALL dispersion 
functional. The curves of CCSD(T) and other dispersion-corrected DFT are also shown for 
comparison
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The significant feature of this correction is to use the following momentum kσ, which 
becomes the Fermi momentum when combined with the LDA exchange functional, 
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This momentum makes long-range corrected (LC) LDA functional identical to the 
form that Savin previously proposed as a long-range correction for LDA exchange 
functional, which is called range-separation hybrid (RSH) functional [54]. For the 
long-range part of the HF exchange integral, the two-electron operator is simply 
replaced with the error function such as 
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(37)

The only parameter μ is determined for each exchange functional: e.g., for B88 [55] 
and PBE [7] exchange functionals, μ = 0. 33 in response property calculations [56] 
and 0.47 in ground-state property calculations [57] are adopted. The computational 
time needed in LC-DFT calculations is almost the same as that in B3LYP calcula-
tions. Nevertheless, it has been reported that long-range correction solves or 
improves various problems in conventional DFT calculations: e.g., charge transfers, 
Rydberg excitations, and oscillator strengths in TDDFT [56], optical response prop-
erties of long-chain molecules [58] and diradicals [59], and orbital energies of 
valence molecular orbitals [60]. Due to its high applicabilities, many types of LC 
functionals have been developed: e.g., CAM-B3LYP [61], LC-ωPBE [62], and 
ωB97X [63] functionals. By using this long-range correction, long-range exchange 
interactions are naturally incorporated in exchange functionals.

Figure 3b illustrates the potential energy curves of LC-DFT combining with a 
dispersion functional (ALL functional in section “Van der Waals (Dispersion) 
Functionals”). As shown in the figure, LC functionals give very accurate potential 
energy curves, which are close to ab initio coupled-cluster singles, doubles, and per-
turbative triples (CCSD(T)) one [64], in contrast to those of a dispersion-corrected 
semiempirical functional (mPW1PW91) and a classical dispersion-corrected one 
(B3LYP+vdW). In addition, it was suggested that long-range exchange interactions 
play a determinant role in van der Waals bond angles [65]. Besides ALL dispersion 
functional, LC functionals have been combined with various dispersion corrections: 
e.g., LRD dispersion functional (section “Van der Waals (Dispersion) Functionals”) 
[45], AC/FDT dispersion energy (section “Linear-Response Theories”) [40], semiem-
pirical functionals (section “Semiempirical Dispersion-Corrected Functionals”) such 
as ωB97X-D [66], and perturbation energies (section “Combination with Perturbation 
Theories”) such as ωB97X-2 [67]. Actually, LC functionals can be easily combined 
with any dispersion correction.
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�Effects of Correlation Functionals

In DFT calculations of dispersion interactions, the choice of correlation functionals 
is also important. Figure 3a also compares the dissociation potential energy curves 
of Ar dimer for using one-parameter progressive (OP) [10] and Lee–Yang–Parr 
(LYP) [9] correlation functionals, which are both Colle–Salvetti-type correlation 
functionals [8]. The Colle–Salvetti-type correlation functionals are derived from 
correlated wavefunctions, in which uncorrelated wavefunctions such as the HF 
wavefunction are multiplied by a correlation factor (Jastrow factor) satisfying the 
correlation cusp condition for short-range interelectrons. Therefore, these function-
als essentially contain only short-range electron correlations and neglect long-range 
electron correlations including dispersion interactions. Nevertheless, artificial van 
der Waals bonds are given using the LYP correlation functional with no dispersion 
interaction. This is attributed to the inappropriate behavior of this functional. To 
give appropriate weak bonds like van der Waals bonds, correlation functionals have 
to obey the high-density-gradient low-density (HDGLG) limit condition for correla-
tion energy [68, 69], 

	
lim ,
x

E
®¥

- =r 1 0c 	
(38)

where x =  | ∇ ρ | ∕ ρ4 ∕ 3. However, the LYP functional does not satisfy this condition 
differently from the OP functional [1]. The Kohn–Sham method using a correlation 
functional violating this condition usually overstabilizes van der Waals bonds. 
Therefore, we should carefully select a correlation functional satisfying the HDGLG 
limit condition in DFT calculations of dispersion interactions.

�DFT Calculations of π-Stacking Systems

In this section, past DFT studies on π-stacking interactions are briefly reviewed. 
Except for small benchmark molecules, the most frequently raised π-stacked sys-
tems are carbon nanomaterials including nanotube and graphene, biomolecules 
including DNA and proteins, and supramolecules. Summarizing previous dispersion-
corrected DFT calculations of these π-stacked systems, we will anticipate the future 
trend of DFT studies on π-stacking interactions.

�Small π-Stacked Systems

The applicabilities of dispersion corrections have so far been examined by calculat-
ing small weakly bonded systems including π-stacked systems. In particular, ben-
zene and naphthalene dimers have been used as test targets of dispersion corrections 
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for π-stacking interactions [14, 70, 71], because these dimers are the simplest sys-
tems for discussing three conformations shown in Fig. 1. For clarifying the repro-
ducibilities of π-stacking interactions, it is one of the best strategies to calculate the 
dissociation potential energy curves of these dimers. Figure 4 illustrates the disso-
ciation potential energy curves of benzene dimer for the parallel conformation cal-
culated with (a) pure LDA and GGA functionals and LC functionals and (b) LC 
functionals with ALL dispersion functional. As shown in Fig. 4a, traditional DFTs 
using pure LDA and GGA functionals give much different dissociation potential 
energy curves for benzene dimer [14] similarly to the curves of rare-gas dimers [1]. 
This difference is also attributed to the lack of long-range exchange interactions in 
exchange functionals (section “Long-Range Exchange Interactions”) and the poor 
HDGLG limit of some correlation functionals (section “Effects of Correlation 
Functionals”) [14]. Figure 4b indicates that all LC exchange functionals with OP 
correlation functional, which gives the correct HDGLG limit, produces very accu-
rate potential energy curves close to CCSD(T) one by combining with a dispersion 
functional. Since similar curves are obtained for naphthalene dimer [14], this indi-
cates that besides dispersion corrections, long-range exchange interactions should 
be included with an appropriate correlation functional satisfying the HDGLG limit 
condition in DFT calculations of dispersion interactions. Nonetheless, further 
quantitative validation is required, because some other dispersion-corrected DFTs 
also give correct potential energy curves for benzene dimer with no long-range 
correction [70, 72].

As a benchmark set for the quantitative validation of dispersion corrections, 
Hobza and coworkers suggested the S22 set [73], which contains 22 dimers includ-
ing benzene dimer and other π-stacked systems (Fig. 5). This S22 benchmark set 
provides interaction energies of hydrogen-bonded, dispersion-bonded, and mixed 

Fig. 4  Dissociation potential energy curves of benzene dimer for the parallel conformation calcu-
lated using (a) various pure and long-range corrected (LC) functionals and (b) LC functionals 
combined with ALL dispersion functional. The curves of CCSD(T) and other dispersion-corrected 
DFT are also shown for comparison
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Fig. 5  The S22 benchmark set of weakly bonded systems

complexes, which are the calculated results of the CCSD(T) method at the complete 
basis set (CBS) limit [74]. Due to its convenience, this benchmark set has been used 
not only in testing the accuracies of dispersion corrections but also in determining 
the adjustable parameters of semiempirical dispersion-corrected functionals. 
Table  1 displays the mean absolute deviations (MAD) of various dispersion-
corrected DFT calculations for the S22 benchmark set in the ascending order. This 
table clearly shows that independent of dispersion corrections combined, LC func-
tionals give better accuracies than those of semiempirical functionals and vdW 
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functionals. In contrast, relatively poor results are given by vdW-DF functionals, 
which combine pure functionals such as revPBE or the HF exchange integral with a 
vdW functional. Therefore, this table obviously supports the above suggestion that 
long-range exchange interactions should be included to reproduce van der Waals 
bonds. It is interesting to note that some dispersion-corrected DFTs give more accu-
rate results than those of the MP2 method at the CBS limit. In this connection, it is 
reported that DFT-SAPT (section “Combination with Perturbation Theories”) gives 
close accuracies at the CBS limit to those of M06-2x and BLYP-D for the S22 set, 
although it is not listed in this table due to the unrecording of MAD [74]. These 
accuracies may be taken as poorer-than-expected, because perturbation theories 
have been believed to give highly accurate dispersion interactions. However, these 
results are reasonable because the poor interaction energies in MP2 calculations 
have been found for several π-stacked dimers having near-degenerate orbitals that 
usually cause instability in perturbation calculations [65].

�Carbon Materials: Nanotube and Graphene

Besides benzene and naphthalene dimers, various carbon materials have also 
attracted attentions in the context of π-stacking interactions. The most frequently 
targeted systems are nanotube and graphene for their electronic, adsorptive, and 
reactive properties. So far, many DFT studies have been reported especially for 
single-walled carbon nanotube (SWCNT) and graphene in the fields of both quan-
tum chemistry and solid state physics.

For SWCNT, some studies focus on the π-stacking-mediated solubility in organic 
solvent (Fig. 6). SWCNT is a promising multifunctional material to be an efficient 
gas storage element, a sensor, and a drug-delivery agent. However, it is well known 
in the field of carbon materials that SWCNT is hardly dissolved in any solvent. This 
may impose restrictions on industrial or medical use. For solving this problem, 
many DFT calculations have been performed to suggest organic molecules solvat-
ing SWCNT by π-stacking interactions. The π-stacking on SWCNT has been exam-
ined with various model systems of SWCNT for the adsorptions of various organic 
molecules: e.g., planar organic molecules [77], liquid crystal molecules [78], and 
benzene derivatives [79]. SWCNT has also attracted attentions as gas storage mate-
rials [15]. Therefore, DFT studies have also focused on the adsorptions of various 
small molecules [80]: e.g., hydrogen [81] and methane [82] molecules, on SWCNT. 
These studies have reported that conventional DFTs provide reasonable interaction 
energies. However, further investigations are required for approaching to the adsorp-
tive properties of SWCNT, because most conventional calculations have used unre-
liable dispersion-uncorrected functionals such as pure LDA and GGA functionals 
for evaluating the dispersion interactions. The adsorptive property of SWCNT is, 
therefore, still a challenge in DFT calculations.

Graphene is also one of the most frequently studied π-stacking systems in carbon 
materials because of its high carrier mobility, high thermal and electronic conduc-
tivity, and strong material behavior. For graphene, the adsorptive property has been 
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Fig. 6  An example of the π-stacking of single-walled carbon nanotube

explored in the π-stacking calculations of its model systems such as coronene [83, 
84]. Dispersion-corrected DFTs have provided accurate π-stacking interaction ener-
gies between these graphene models, if appropriate dispersion corrections are incor-
porated. Therefore, graphene models are usually used as trial systems for examining 
dispersion corrections. These calculations have consequently revealed the adsorp-
tive properties of planar polyaromatic systems. For example, π-stacking interaction 
energies of these systems are found to increase as a function of the number of 
hydrogen atoms at the edge [84]. Graphene is also theoretically investigated for the 
adsorption of biomolecules such as DNA in the context of drug delivery, molecule 
immobilization, and biosensor [85, 86]. As a result, it is suggested that the nucleo-
bases of DNA form weak hydrogen-bond-like interactions with graphene between 
the pyramidal amino groups of the bases and the π-center of graphene [86]. Graphene 
is also well known as a semiconductor, which has zero band gap in the electronic 
state. In association with this unique electronic state, band gap calculations are also 
performed for the π-stacking of aromatic systems on graphene to develop high per-
formance nanodevices [87]. Since graphene is attractive for its unique electronic 
properties, we expect that the π-stacking of graphene would be much more investi-
gated from the viewpoint of electronic structure.
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�Biomolecules: DNA and Proteins

π-Stackings have also been attracted attentions in the field of biological science. 
Besides π-stacking effects on the structures of DNA and proteins, there are various 
DFT studies on π-stackings of biomolecules: e.g., DNA-nanotube [88] and DNA-
graphene [86] stackings. However, most DFT studies have drawn attentions to the 
base stackings of DNA and protein foldings in this field.

The base stackings in DNA have been studied using the hydrogen-terminated 
models of five nucleobases (Fig. 7), i.e. guanine, cytosine, adenine, thymine, and 
uracil, in DFT calculations. For the base stackings, there is even a benchmark set in 
JSCH-2005 database [73], which contains hydrogen-bonded DNA base pairs, 
stacked base pairs, and amino acid pairs besides S22 set mentioned above, for 
examining the applicabilities of dispersion corrections. However, this benchmark 
set has been calculated only with DFT-D (section “Semiempirical Dispersion-
Corrected Functionals”) [89] in dispersion-corrected DFTs, while this set is fre-
quently calculated using semiempirical molecular orbital theories combined with 
semiempirical dispersion corrections. This is due to the computational cost needed 
in the calculation of this set containing 143 complexes. Most dispersion-corrected 
DFT calculations of DNA focus only on the stackings of five nucleobases. So 
far, DFT-D [38], vdW-DF (section “Van der Waals (Dispersion) Functionals”) [90], 
and DFT-SAPT (section “Combination with Perturbation Theories”) [91] have been 
applied to the base-stacking calculations and consequently have provided accurate 
interaction energies. For the stacked bases, excited state calculations have also been 
performed by TDDFT using LC functionals (section “Long-Range Exchange 

Fig. 7  DNA nucleobases
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Interactions”) [92, 93]. We see that dispersion-corrected DFT studies of DNA would 
shift attentions from base-stacking structures to electronic properties.

In most dispersion calculations of proteins, folding structures have been dis-
cussed with no particular attention to π-stackings. These folding structure calcula-
tions are carried out by classical MDs using empirical potentials such as CHARMM 
[46] and Amber [47]. In these empirical potentials, dispersion interactions are 
incorporated by London’s classical dispersion energy in Eq. (4) multiplied by an 
empirical parameter in the Lennard–Jones potential (Fig. 8). Note that exchange 
interaction is also incorporated as the repulsion term in this potential as supported 
by the above discussion. Most dispersion-corrected DFT studies of proteins have 
used hydrogen-terminated small amino acid residues to discuss π-stackings in pro-
teins [49], because DFT calculations are too time consuming to determine the fold-
ing structures of proteins. In practice, since protein structures are essentially not so 
sensitive to the quality of calculation methods, classical potential calculations may 
be the best way to obtain the structures. However, proteins would be further inves-
tigated for the electronic structures in near future at the request of drug discovery 
field. We, therefore, suppose that dispersion-corrected DFT becomes more impor-
tant even in the research field of proteins.

Fig. 8  The Lennard–Jones potential and empirical potential of argon dimer
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�Supramolecules

Recently, supramolecules become one of the hottest π-stacked systems in DFT cal-
culations. In supramolecules, molecules self-assemble with weak bonds such as 
hydrogen and van der Waals bonds. We should notice that optimized structures do 
not always provide enough information to design new materials. Material design 
often requires the detailed information on electronic properties, which are not given 
in classical MD calculations. Dispersion-corrected DFTs are best suited to obtain-
ing this information. Fullerene is one of the most frequently used constituent mate-
rials in π-stacking supramolecules. In particular, C60 fullerene has been studied for 
its π-stacking with polycyclic organic molecules to produce supramolecules such as 
buckycatcher (Fig. 9) [94, 95]. Self-assembled nanowires are also frequently raised 
systems in DFT calculations. For example, the nanowires of azaadamantanetrione 
[96] and cyclic oligothiophene [97] have been calculated. Moreover, metal com-
plexes self-assembling to huge structures are noteworthy. That is, many metal 

Fig. 9  Buckycatcher
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complexes coordinating aromatic ring molecules are π-stacked to form huge systems. 
Dispersion-corrected DFTs are promising even in determining the structures of 
these metal complexes, because it is hard to optimize the geometries of metal-
contained systems in classical MD calculations. Actually, several calculations are 
recently performed [98]. DFT calculations have also been used for other 
self-assembled systems to analyze their electronic states. Since most of these calcu-
lations have been carried out in recent 5 years, the use of dispersion-corrected DFTs 
may keep increasing in the calculations of supramolecules.

�Conclusions

π-Stacking is a dispersion interaction between cyclic compounds such as aromatic 
rings. Since π-stacking often determines the structures of significant large systems 
such as carbon nanomaterials, biomolecules, and supramolecules, it currently draws 
attentions in a wide variety of scientific and industrial fields. Although the name 
“π-stacking” implies the contribution of π orbitals, it is confirmed that π orbitals 
play no particular role in π-stackings. Namely, π-stacking is nothing but usual dis-
persion interaction. Dispersion interaction is the only van der Waals interaction that 
the Kohn–Sham SCF calculation using conventional exchange-correlation function-
als cannot reproduce. Therefore, an explicit dispersion correction is required for 
functionals to investigate π-stackings on the Kohn–Sham SCF calculations.

Various dispersion corrections have, so far, been developed in the field of DFT. 
Fortunately, these corrections are generally classified into only five categories: clas-
sical dispersion corrections, combinations with perturbation theories, linear-
response theories, van der Waals (dispersion) functionals, and semiempirical 
dispersion-corrected functionals. Naturally, these corrections have both advantages 
and disadvantages as explained in the text. However, due to practical reasons such 
as computational time and user-friendliness, only van der Waals and semiempirical 
dispersion-corrected functionals seem to be frequently used in current DFT calcula-
tions. What should not be overlooked is the repulsion, which balances with the 
dispersion attraction in van der Waals bonds. In the Lennard–Jones potential, this 
repulsion appears as the R − 12 term, which is interpreted to come from long-range 
exchange interaction. Note that this long-range exchange interaction is also defi-
cient in conventional functionals.

The significance of the long-range exchange interaction is also numerically 
shown in the potential energy curves of small π-stacked benzene and naphthalene 
dimers and the dispersion interaction energies of the S22 benchmark set. As a result 
of these calculations, long-range corrected (LC) DFTs, in which long-range 
exchange interactions are complemented to exchange functionals, give the best per-
formance in all dispersion-corrected DFTs. Nevertheless, LC-DFTs have not been 
applied to significant π-stacked systems that various dispersion-corrected DFTs 
have been examined: nanotube, graphene, DNA, protein, and supramolecule. 
However, the use of other dispersion-corrected DFTs is also not so common in the 
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calculations of these systems. Since this is mainly due to the high computational 
cost required in the calculations, we expect that dispersion-corrected DFTs become 
one of the main tools for investigating these systems theoretically.
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