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     8.1   Introduction 

 Spatial simulation models are indispensable for modeling land use/cover changes 
(Wu and Webster  1998 ; Messina and Walsh  2001 ; Soares-Filho et al.  2002  ) , defores-
tation and land degradation (Lambin  1994 ; Lambin  1997 ; Etter et al.  2006 ; Moreno 
et al.  2007  ) , urban growth (Clarke et al.  1997 ; Couclelis  1989 ; Cheng and Masser 
 2004 ; Gar-On Yeh and Li  2009  ) , climate change (Dale  1997  )  and hydrology 
(Matheussen et al.  2000  ) . For land use/cover change studies, spatial simulation mod-
els are critical for understanding the driving forces of change, as well as to produce 
“what if” scenarios that can be used to gain insights into future land use/cover changes 
(   Pijanowski et al.  2002 ; Eastman et al.  2005 ; Torrens  2006  ) . Recently, the knowledge 
domain of spatial simulation modeling has advanced owing to the rapid develop-
ments in computer technology, coupled with the decrease in the cost of computer 
hardware. In addition, developments in geospatial, natural and social sciences con-
cerning bottom-up, dynamic and  fl exible self-organizing modeling systems, comple-
mented by theories that emphasize the way in which decisions made locally give rise 
to global patterns, have enriched spatial simulation models (Tobler  1979 ; Wolfram 
 1984 ; Couclelis  1985 ; Engelen  1988 ; Wu and Webster  1998 ; Batty  1998  ) . To date, 
numerous spatial simulation models have been developed and applied, particularly for 
land use/cover modeling (Clarke et al.  1997 ; Kaimowitz and Angelsen  1998 ; Messina 
and Walsh  2001 ; Soares-Filho et al.  2002 ; Walsh et al.  2006  ) . 
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 While a literature review reveals a plethora of spatial simulation models based on 
different modeling techniques and traditions (Parker et al.  2003 ;    Verburg et al. 
 2004  ) , in this chapter we focus on the Markov–cellular automata (MCA) model that 
integrates cellular automata (CA) procedures, Markov chains and geographical 
information science (GIS)-based techniques such as weight of evidence (WofE) and 
multi-criteria evaluation (MCE) (Fig.  8.1 ). The objective of this chapter is to review 
the methodological developments of the MCA model. The chapter is organised into 
 fi ve sections. Section  8.2  focuses brie fl y on the conceptual framework of the MCA 
model, paying special attention to the basics of Markov chains, GIS-based tech-
niques such as WofE and MCE, and CA models. The application of MCA models 
in previous studies is described in Sect.  8.3 , while Sect.  8.4  focuses on the current 
status and future prospects of the MCA modeling framework. Finally, Sect.  8.5  
gives a summary and conclusions.   

    8.2   Conceptual Framework of the MCA Model 

 A MCA model is a spatial model for simulating land use/cover changes in land-
scapes where land use/cover is viewed as a mosaic of discrete states, and changes 
are multi-directional (e.g. forest to non-forest or vice versa) (   Silverton et al.  1992 ; 
Li and Reynolds  1997  ) . In order to gain insights into land use/cover changes in a 

  Fig. 8.1    Conceptual framework of the Markov–cellular automata (MCA) model       

 



1098 Markov–Cellular Automata in Geospatial Analysis

given landscape, modeling approaches that can adequately represent state-and-
transition systems should be used. The MCA model that combines CA with Markov 
chain analysis and GIS-based techniques (Fig.  8.1 ) can be used for modeling land 
use/cover changes since it can effectively represent state-and-transition systems. 
The Markov chain process uses transition probabilities to control temporal dynam-
ics among the land use/cover classes. Spatial dynamics are controlled by local rules 
determined either by the CA mechanism (neighborhood con fi guration) or by its 
association with the transition potential maps computed from WofE and MCE tech-
niques. The MCA model allows the transition probabilities of one pixel to be a 
function of neighboring pixels because the CA model consists of a regular grid of 
cells, each of which can be in one of a  fi nite number of possible states which are 
updated synchronously in discrete time steps according to a local interaction rule 
(Messina and Walsh  2001  ) . The transition probabilities of the CA model depend on 
the state of a cell, the state of its surrounding cells, and the weights associated with 
the neighborhood context of the cell (White and Engelen  1997  ) . The MCA model 
(Li and Reynolds  1997  )  can be expressed as

     ( ) •= → > ,, , if / 4m k kC i j m k R P N    (8.1)  

     m k kR P N•≤ ,No change, if / 4
   

where  C  ( i, j ) is the use/cover class of cell ( i ,  j ),  R  is a random number with a uni-
form distribution,  P  

 m, k 
  is the transition probability from one land use/cover class  m  

to  k , and  N  
 k 
  is the number of neighboring cells of land use/cover  k , which includes 

the evaluation score of land use/cover transition potential at location  i ,  j . The weight 
of four is used in ( 8.1 ) because each cell is assumed to have four neighbors. 

 Land use/cover change modeling approaches such as MCA generally consist of 
three major components: (1) a change demand submodel, (2) a transition potential 
submodel, and (3) a change allocation submodel (Eastman et al.  2005  ) . The change 
demand submodel estimates the rate of change between two land use/cover maps 
from different periods. The results are summarised in a transition probability matrix 
that expresses the rate of conversion from one land use/cover class to another 
(Table  8.1 ). The transition potential submodel determines the likelihood (which can 
also be expressed as suitability or probability) that land would change from one land 
use/cover class to another based on biophysical and socio-economic factors 
(Fig.  8.2 ). Speci fi cally, it establishes the degree to which locations might potentially 
change in a future period of time (Eastman et al.  2005  ) . Finally, the change allocation 
submodel is concerned with the decisions by which speci fi c areas will change, given 

   Table 8.1    Example of land use/cover change transition probabilities (1993–2000)   

  2000     

 Current forest  Unstocked forest  Non-forest 

 Current forest      0.85   0.13  0.02 

  1993   Unstocked forest  0.01   0.94   0.05 

 Non-forest  0.05  0.65   0.30  
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the demand and potential surfaces. In the MCA modeling approach, the change 
demand model is represented by the Markov chains, while the transition potential 
and change allocation submodels are represented by GIS-based techniques such as 
the WofE and MCE models and the CA models, respectively.   

 In the following subsections, we focus brie fl y on (1) the computation of transition 
probabilities using Markov chains, (2) the computation of land use/cover transition 
potential maps based on WofE and MCE techniques, (3) the spatial allocation of 
simulated land use/cover probabilities based on a CA model, and (4) the mechanism 
of the MCA model. 

    8.2.1   Markov Chain Modeling of Land Use/Cover Changes 

 Markov chains have been widely used to model land use/cover changes (Drewett 
 1969 ;    Bell  1975 ;    Bell and Hinojosa  1977 ; Robinson  1978 ; Jahan  1986 ; Muller and 
Middleton  1994 ;    Wood et al.  2004  ) . A Markov chain is a stochastic model based 
on transition probabilities which describes a process that moves in a sequence of 
steps through a set of states (Wu et al.  2006  ) . In essence, the probability that the 
system will be in a given state at a given time ( t  

2
 ) is derived from the knowledge of 

  Fig. 8.2    Example of transition potential (TP) maps of Luangprabang province, Lao Peoples’ 
Democratic Republic: ( a ) current forest (CF) to unstocked forest (UF), and ( b ) unstocked forest 
(UF) to non-forest (NF)       
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its state at any earlier time ( t  
1
 ), and does not depend on the history of the system 

before time  t  
1
  (Petit et al.  2001  ) . This is known as a  fi rst-order Markov chain pro-

cess. The Markov chain can be characterized as stationary or homogeneous in time 
if the transition probabilities depend only on the time-interval  t  (i.e. Δt = t 

2
  − t 

1
 ), and 

if the time period at which the process is examined is of no relevance (Karlin and 
Taylor  1975  ) . To model land use/cover change using the stationary and  fi rst-order 
Markov chain, the land use/cover distribution at  t  

2
  is calculated from the initial land 

use/cover distribution at  t  
1
  based on the transition matrix (Lambin  1994 ; Petit et al. 

 2001  ) . The Markov chains can be expressed as

     =2 1*t tv M v    (8.2)  

where  v  
 t 2
  is the output land use/cover proportion column vector,  v  

 t 1
  is the input land 

use/cover class proportion column vector, and  M  is an  m*m  transition matrix for the 
time interval Δ t  =  t  

2
  −  t  

1
 . 

 In order to model land use/cover changes using Markov chains, it is essential to 
understand their basic assumptions and limitations. First, land use/cover changes 
are considered as a stochastic process where the transition probabilities are station-
ary (homogeneity) and land use/cover classes are in different states of the Markov 
chain (Wu et al.  2006  ) . However, it is dif fi cult to expect stationarity in transition 
probabilities because land use/cover changes are the result of the complex dynamics 
of socio-economic, political and biophysical factors that change over time (Lambin 
et al.  2000  ) . While the departure from the simple assumptions of stationary,  fi rst-
order Markov chains is conceptually possible, analytical and computational 
dif fi culties emerge. Nonetheless, it might be practical to assume transition probabil-
ities to be stationary if the time span is not too long (Weng  2002  ) . Second, the 
Markov chains that handle stationary processes are not appropriate for incorporat-
ing human activities (Boerner et al.  1996 ; Weng  2002  ) . Third, the available land 
use/cover data may be insuf fi cient to estimate reliable transition probabilities (Pastor 
et al.  1993  ) , particularly in landscapes experiencing rapid land use/cover changes 
(Wood et al.  2004  ) . Finally, a stochastic Markov chain model does not consider 
spatial knowledge within each land use/cover class (Boerner et al.  1996  ) . 

 While the Markov chains have some limitations, they are relatively easy to derive 
(or infer) from land use/cover data (Wood et al.  2004  ) . Despite the fact that the 
Markov chains do not reveal the underlying land use/cover change processes, they 
give the direction and magnitude of change, and that is potentially of use for simu-
lating land use/cover changes (Weng  2002  ) . In addition, the computational require-
ments of Markov chain models are quite modest. 

 Table  8.1  shows the forest cover transition probabilities between 1993 and 2000, 
calculated on the basis of the frequency distribution of the observations. The diago-
nal of the transition probability matrix represents the self-replacement probabilities, 
i.e. the probability of a forest cover class remaining the same (shown in bold in 
Table  8.1 ), whereas the off-diagonal values indicate the probability of a change 
occurring from one forest cover class to another.  
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    8.2.2   Computation of Transition Potential Maps Using 
GIS-Based Techniques 

 Transition potential (suitability) maps represent the likelihood or probability that 
the landscape will change from one land use/cover class to another (e.g. forest to 
non-forest). The basic prerequisite for computing transition potential maps is the 
derivation of weights representing the relative importance of each factor in relation-
ship to a given land use/cover change (Hosseinali and Alesheikh  2008  ) . Generally, 
weighting methods are classi fi ed into data-driven (e.g. WofE, logistic regression 
and arti fi cial neural networks) and knowledge-driven (analytical hierarchy pro-
cesses, ratio estimation etc.) groups (Hosseinali and Alesheikh  2008 ;    Liu and Mason 
 2009  ) . Although both data-driven and knowledge-driven methods have been used 
for computing transition potential maps (Eastman et al.  2005  ) , the former has the 
advantage of reducing the problems of biased or incorrect decisions that knowledge-
driven methods have (Hosseinali and Alesheikh  2008  ) . While there are many data- 
and knowledge-driven techniques (Liu and Mason  2009  ) , in this chapter we limit 
our discussion to the WofE and MCE techniques. 

 The WofE algorithm uses Bayes’ theorem of conditional probability to compute 
transition potential maps based on the statistical relationship between each land use/
cover change (e.g. forest to non-forest) and predictors (i.e. independent variables) 
such as distance to roads, soil and elevation. This method employs prior and poste-
rior probabilities. The prior probability is de fi ned as the probability of occurrence of 
a speci fi c land use/cover change, which is calculated by dividing the number of 
samples (of that land use/cover change) with the total land use/cover change in the 
study area. The posterior probability is the conditional probability of the existence 
of a speci fi c land use/cover change (e.g. forest to non-forest) when a predictor vari-
able exists. For example, the conditional probability of the change from forest to 
non-forest given the presence of predictor variables such as distance to roads, soil 
and elevation can be expressed as (Almeida et al.  2005 ; Levine and Block  2011  ). 

     ={ } { }* { } / { }P R S P S R P R P S    (8.3)  

where  P { R | S } is the conditional (posterior) probability of the change from forest to 
non-forest given the presence of the predictor variables,  P { S | R } is a likelihood func-
tion that gives the probability that the predictor variables (data) would be obtained 
given that  R  is true,  P { R } is the prior probability,  P { S } is the marginal probability 
of the predictor variables (that is the probability of obtaining the predictor variables 
under all possible scenarios),  R  is the change from forest to non-forest, and  S  is the 
predictor variables (e.g. distance to roads, soil and slope). 

 The advantage of WofE is its simplicity and straightforward interpretation of 
weights (Agterberg and Cheng  2002  ) . However, the basic assumption of the WofE 
is that predictor variables should be independent. Therefore, the predictor variables 
should be tested for independence using methods such as the Crammer coef fi cient 
(   Bonham-Carter et al.  1988 ; Bonham-Carter  1994 ; Agterberg and Cheng  2002  ) . 
Generally, a predictor variable with a Crammer coef fi cient of more than 0.5 should 
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be removed since it would be highly correlated with other variables (Bonham-Carter 
et al.  1988 ; Bonham-Carter  1994  ) . 

 MCE is a technique for combining data according to its importance in making a 
decision (Liu and Mason  2009  ) . Many researchers have integrated MCE and GIS 
(Carver  1991 ; Jankowski and Richard  1994 ; Jankowski  1995 ; Eastman et al.  1995 ; 
Wu and Webster  1998  ) . Conceptually, the MCE technique involves qualitative or 
quantitative weighting, scoring or ranking of criteria to re fl ect their importance to 
either single or multiple sets of objectives (Eastman et al.  1995  ) . In essence, the 
MCE technique uses numerical algorithms that de fi ne the “suitability” of a particu-
lar solution on the basis of the input criteria and weights, together with some math-
ematical and logical means of determining trade-offs when con fl icts arise (Heywood 
et al.  1998  ) . Two of the most common procedures for MCE are weighted linear 
combinations and concordance–discordance analysis (   Voogd  1993 ; Carver  1991  ) . 
In the former, each factor is multiplied by a weight and then summed to arrive at a 
 fi nal transition potential index. In the latter, each pair of alternatives is analyzed for 
the degree to which one out-ranks the other in the speci fi ed criteria (Eastman et al. 
 1995  ) . The concordance–discordance analysis is computationally impractical when 
a large number of alternatives is present (e.g. raster data where every pixel is an 
alternative), while the weighted linear combination is very straightforward in a 
raster GIS. 

 The weighted linear combination (Voogd  1993  )  combines factors by applying a 
weight to each factor, followed by a summation of the results to yield a transition 
potential (suitability) map, i.e.

     ( )= *i iS SUM w x    (8.4)  

where  S  is suitability (transition potential),  w  
 i 
  is the weight of factor  i , and  x  

 i 
  is the 

criterion score of factor  i . 
 In a case where constraints apply, the procedure can be modi fi ed by multiplying 

the suitability calculated from the factors by the product of the constraints, i.e.

     ( )= * *i i jS SUM w x IIc    (8.5)   

 Where  c  
 j 
  is the criterion score of constraint  j , and  II  is the product. 

 Most GIS software, such as IDRISI, provides a MCE module developed to com-
pute transition potential maps (Eastman et al.  1995  ) . The primary issues in the com-
putation of transition potential (suitability) maps are the standardization of criteria 
scores and the development of the factor weights using methods such as the analytic 
hierarchy process (Saaty  1977 ;    Saaty and Vargas  2001  ) .  

    8.2.3   Cellular Automata (CA) Models 

 Cellular automata (CA) are bottom-up, individual-based dynamic models that were 
originally conceptualized by Ulam and von Neumann in the 1940s in order to under-
stand the behavior of complex systems (Moreno et al.  2010  ) . The CA model consists 
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of an array of cells wherein each cell can assume one of  i  discrete states at any one 
time (Tobler  1979 ; Couclelis  1985 ; White and Engelen  1997  ) . Time progresses in 
discrete steps, and all cells change their state simultaneously as a function of their 
own state, together with the state of the cells in their neighborhood, in accordance 
with a speci fi ed set of transition rules (Engelen et al.  1995  ) . In essence, CA encom-
passes  fi ve major components (Wolfram  1984 ; White and Engelen  1997  ) :

    1.    A space composed of a regular grid in one or two dimensions  
    2.    A  fi nite set of possible states associated with every cell (e.g. forest or non-

forest)  
    3.    A neighborhood composed of adjacent cells whose states in fl uence the central 

cell  
    4.    Transition rules applied uniformly through time and space  
    5.    A discrete time at which the state of the system is updated     

 According to Moreno et al.  (  2010  ) , circular and extended neighborhoods are 
commonly used to reduce directional bias and capture the spatial in fl uence of sur-
rounding cells on the central one. Space is typically represented as a grid of regular 
cells, while the neighborhood is de fi ned as a collection of cells based on physical 
adjacency (White and Engelen  1997 ; Moreno et al.  2010  ) . Distance functions are 
applied within a neighborhood to take into account the spatial-dependent attrac-
tiveness or repulsiveness of one cell state over another (Soares-Filho et al.  2002 ; 
Moreno et al.  2010  ) . In addition to deterministic transition rules, stochastic rules are 
commonly applied to capture the intrinsic variability of natural and human systems 
(Moreno et al.  2010  ) . The CA model works by simulating the present based on an 
extrapolation of the past land use/cover maps. This allows the model to iterate to 
any other selected date (Messina and Walsh  2001  ) . 

 For land use/cover changes and urban growth studies, CA models have been 
found to be more effective than the conventional modeling approaches for a num-
ber of reasons. First, CA models allow the integration of macro-scale with micro-
scale temporal processes as well as the integration of macro-spatial and 
micro-spatial phenomena (   Wolfram  1984 ; Torrens  2000  ) . As a result, CA models 
can make the maximum possible use of available spatial and temporal detail, in 
contrast to conventional approaches, which operate either at the macro- or the 
micro-level (Briassoulis  2000  ) . Furthermore, CA models offer a  fl exible platform 
for the interaction of biophysical and socio-economic driving factors, as well as 
for the simulation of real-world complex systems based on simple rules (Wolfram 
 1984 ; Engelen  1988 ; White and Engelen  1997  ) . More importantly, theoretical 
assumptions may be tested and validated in a particular environmental and socio-
economic context (Briassoulis  2000 ; Torrens  2000  ) . While CA models have pro-
duced important contributions to modeling, recent studies have revealed that 
raster-based CA are sensitive to the modi fi able spatial units used in the model, and 
the modeling results vary according to the cell size and neighborhood con fi -
guration (Moreno et al.  2010  ) .  
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    8.2.4   How the MCA Model Works 

 The spatially explicit nature of the CA model and its compatibility with GIS and 
other modeling frameworks such as Markov chains have resulted in the develop-
ment of various hybrid CA models (Walsh et al.  2006  ) . This chapter focuses only on 
the mechanism of the MCA model based on the Dinamica EGO (environment for 
geo-processing objects) platform. Dinamica EGO was developed by the Center for 
Remote Sensing of the Federal University of Minas Gerais in Brazil (Maeda et al. 
 2011  ) . This MCA model employs an  expander  transition function to expand or con-
tract previous land use/cover class patches, while the  patcher  transition function is 
used to form new patches through a stochastic seeding mechanism (Soares-Filho 
et al.  2002  ) . Thus, on the one hand the  expander  transition function performs transi-
tions from state  i  to state  j  only in the neighboring cells of state  j . On the other hand 
the  patcher  transition function performs transitions from state  i  to state  j  only in the 
neighboring cells of states other than  j  (Almeida et al.  2003  ) . First, the algorithm 
scans the initial land use/cover map to sort out the cells with the highest probabili-
ties and then arrange them in a data array (Almeida et al.  2005  ) . Then the cells are 
selected randomly from top to bottom of the data array. Finally, the land use/cover 
map is again scanned to perform the selected transitions (Soares-Filho et al.  2002  ) . 
If the  expander  transition function does not perform the amount of desired transi-
tions after a  fi xed number of iterations, it then transfers to the  patcher  transition 
function a residual number of transitions, so that the total number of transitions 
always amounts to a desired value (Soares-Filho et al.  2002  ) . The desired transitions 
are obtained from Markov chain-computed transition probabilities. However, the 
 patcher  transition function will simulate land use/cover change patterns by generat-
ing diffused patches, while at the same time preventing the formation of single iso-
lated one-cell patches (Almeida et al.  2003  ) . This function searches for cells around 
a chosen location for a given transition through the selection of the core cell of the 
new patch based on a speci fi c number of cells around the core cell according to their 
transition probabilities (Soares-Filho et al.  2002  ) . 

 The  expander  and  patcher  transition functions are composed of an allocation 
mechanism responsible for identifying cells with the highest transition probabilities 
for each  ij  transition. As a result, cells are stored and organized for later selection. 
The two complementary functions (i.e. the  expander  and the  patcher ) consist of 
mean patch size, patch size variance and isometry parameters, which can be changed 
to produce various spatial patterns of land use/cover patches according to a log–
normal probability distribution function (Soares-Filho et al.  2002  ) . For example, an 
increase in mean patch size results in a less fragmented landscape, while an increase 
in the patch size variance results in a more diverse landscape (UFMG  2009  ) . 
Isometry is a number that varies from 0 to 2, and thus an isometry greater than one 
results in more isometric (equal) patches (UFMG  2009  ) . Finally, MCA model itera-
tions are speci fi ed according to time differences between two land use/cover maps 
(Δt = t 

2
  − t 

1
 ).   
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    8.3   Application of MCA Models in Previous Studies 

 Modeling approaches that integrate CA and Markov chains have been explored for 
some time (Zhou and Liebhold  1995 ; Li and Reynolds  1997 ; Parker et al.  2003 ; 
   Aspinall  1994  ) . A major advantage of the MCA approach is that GIS and remote 
sensing data can be incorporated effectively (Li and Reynolds  1997  ) . In particular, 
biophysical and socio-economic data can be used to de fi ne initial conditions, to 
parameterize the MCA model, to calculate transition probabilities and to determine 
the neighborhood rules with transition potential maps. 

 Although the potential of the MCA models has been recognized, few studies 
have used the MCA models for simulating land use/cover changes. Li and Reynolds 
 (  1997  )  developed a combined Markov and CA model to simulate the effects of spa-
tial pattern, drought and grazing on the rates of rangeland degradation. Although 
their model was conceptually appealing, it did not account for the variations of 
transition probabilities due to changes in environmental, socio-economic and politi-
cal factors. To overcome such limitations, Soares-Filho et al.  (  2002  )  incorporated a 
 saturation value  parameter that is designed to vary the transition rates through a 
dynamic feedback analysis of landscape changes. Their spatially explicit, multi-
scale and dynamic stochastic CA modeling framework successfully simulated land 
use/cover changes in the Amazonian colonization frontier (Soares-Filho et al.  2002 ; 
Soares-Filho et al.  2006  ) . Recently, the Dinamica EGO modeling framework has 
also introduced a scenario generator model that computes transition rates based on 
the integration of environmental and socio-economic factors (Almeida et al.  2005 ; 
   Teixerira et al.  2009  ) . 

 Pontius and Malanson  (  2005  )  applied the MCA to predict land use/cover changes 
in central Massachusetts. Their model used an MCE technique to compute transi-
tion potential maps, and a spatial contiguity rule to determine the location of pre-
dicted change. Contemporary legal constraint data were used as an additional driver 
to calibrate the transition potential (suitability) maps (Pontius and Malanson  2005  ) . 
Although the MCA model produced good results, it did not incorporate additional 
constraints and factors that represent socio-economic and urban planning issues. 
Furthermore, the authors concluded that their MCA model was poor at predicting 
the location of built to non-built conversions (Pontius and Malanson  2005  ) . Paegelow 
and Olmedo  (  2005  )  also used the MCA model for testing the possibilities and limits 
of a prospective land cover modeling in France and Spain. Their model used the 
Markov chain analysis to control temporal dynamics, while MCE, multi-objective 
evaluation and CA controlled spatial contiguity in order to determine the location of 
the predicted land cover change. Land cover maps and relevant environmental fac-
tors were used to calibrate the transition potential (suitability) maps. While the 
authors reported an overall accuracy of 75%, they noted the need to analyze predic-
tion residues in order to improve the model. 

 Myint and Wang  (  2006  )  also applied the MCA for projecting land use/cover 
changes in Norman, Oklahoma, USA. Their model also used an MCE technique to 
compute transition potential maps, and a spatial contiguity rule to determine the 
location of predicted change. Ancillary map layers such as roads and drainage were 
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used as driving factors in order to calibrate the transition potential (suitability) maps. 
The suitability ratings were based on the authors’ personal judgment in consultation 
with land use planners, which may possibly lead to bias (Hosseinali and Alesheikh 
 2008  ) . Although their model was effective at projecting future land use/cover 
changes, as indicated by an overall accuracy of 86.2%, their accuracy assessment 
procedure only considered accuracy in terms of quantity and not in terms of location 
(Pontius and Malanson  2005  ) . More recently, Kamusoko et al.  (  2009  )  applied a 
MCA model in rural areas in Zimbabwe. Their model’s overall simulation success 
was 69% for the 2000 simulated land use/cover map, and 83% for the 2005 simu-
lated land use/cover map. However, the authors reported that the model was poor at 
simulating the location of bare land areas owing to the lack of input spatial data.  

    8.4   Current Status and Future Prospects 

 The increasing awareness of the impact of land use/cover changes on global climate 
change has renewed interest in the application of spatial simulation models (Soares-
Filho et al.  2006 ; Brown et al.  2007  ) . For example, initiatives that are currently 
being negotiated under the United Nations Framework Convention on Climate 
Change (UNFCCC) to reduce emissions from deforestation and forest degradation 
in developing countries requires the development of robust baseline or reference 
scenarios under the business-as-usual (BAU) scenario (   Angelsen et al.  2009  ) . 
A baseline or reference scenario (under BAU) is the projected deforestation and 
associated emissions in the absence of a REDD (reducing emissions from deforesta-
tion and forest degradation) project (   Angelsen  2008  ) . Several approaches for setting 
baseline or reference scenarios have been suggested, which include among others 
spatial and non-spatial modeling approaches (   Brown et al.  2007 ;    Terrestrial Carbon 
Group  2008  ) . However, this new interest in spatial simulation models also presents 
new challenges to researchers and decision makers because the establishment of 
robust baseline or reference scenarios requires a better understanding of the under-
lying driving forces in order to capture intrinsic landscape processes at multiple 
spatial and temporal scales (GOFC-GOLD  2010  ) . In addition, attention should also 
be focused on new theoretical and methodological developments in the modeling 
framework. This section highlights the current status and future prospects of MCA 
models, paying special attention to issues pertaining to (1) theories underpinning 
model development, (2) data issues, and (3) calibration and validation. 

    8.4.1   Theories Underpinning Model Development 

 Current spatial simulation models of land use/cover changes can be broadly divided 
into those which are based on theory and those which are not (Verburg et al.  2004  ) . 
The former include mainly economic theory-based models as well as spatial inter-
action models (Lambin et al.  2000 ; Irwin and Geoghegan  2001 ; Verburg et al.  2004 ; 
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Soares-Filho et al.  2006  ) , while the latter comprise models that do not include the-
ory explicitly, or those that are based on speci fi c theoretical assumptions (Myint and 
Wang  2006 ; Kamusoko et al.  2009  ) . Although theory is critical during model 
speci fi cation and interpretation, the in fl uence of theory and assumptions on the 
modeling results is not always examined (Verburg et al.  2004  ) . This unfortunately 
limits the reliability and robustness of the model (Briassoulis  2000  ) . To overcome 
this limitation, future MCA models will need to incorporate a strong theoretical 
background which is relevant to the given underlying landscape processes. This 
requires more collective efforts that focus on developing an integrated and multi-
disciplinary research paradigm. The land use/cover change modeling community 
has been working on a number of multi-disciplinary research programs aimed at 
improving spatial models (Geoghegan et al.  1998 ; Irwin and Geoghegan  2001  ) .  

    8.4.2   Data and Scale Issues 

 Fundamental to the development of robust MCA models are issues such as the spa-
tial and temporal dimensions, reliability, availability and cost of data collection 
(Briassoulis  2000  ) . In most cases, the spatial units usually follow administrative 
boundaries, which, although appropriate for policy implementation, may not be 
meaningful for all types of data (Verburg et al.  2004  ) . With respect to the temporal 
dimension, the temporal systems of reference (e.g. time and number of observa-
tions) are not always compatible and consistent (Verburg et al.  2004  ) . In other 
words, different de fi nitions among time periods, especially at lower levels of aggre-
gation, give rise to problems of compatibility and consistency, particularly with 
historical data. For example, the dates of historical land use/cover maps may not be 
compatible with the available socio-economic data, which may have been acquired 
at a different time. Furthermore, MCA models are built on the assumptions of tem-
poral homogeneity and progressive linear trends, despite the fact that land use/cover 
changes have occurred in the context of long-term instability (e.g.  fl uctuations in 
climate, prices or state policies). These issues are important for land use/cover 
models where the exact time and length of the policy intervention is critical in the 
modeling framework. In addition, the availability and cost of obtaining proper 
longitudinal data (e.g. socio-economic data) limit the reliability of land use/cover 
change models that integrate biophysical and socio-economic data. 

 With reference to the spatial dimension, past studies have revealed that raster-
based CA models are sensitive to the modi fi able spatial units used in the model, and 
that results vary according to the cell size and neighborhood con fi guration 
(Veldkamp et al.  2001 ; Chen and Mynett  2003 ; Jantz and Goetz  2005  ) . To overcome 
the sensitivity of raster-based CA models to cell size and neighborhood 
con fi gurations, novel geographic objected-based CA models have been developed 
(Torrens and Benenson  2005 ; Moreno et al.  2010  ) . According to Moreno et al. 
 (  2010  ) , space is de fi ned as a collection of geographic objects of irregular shape and 
size corresponding to meaningful real-world features. Furthermore, the neighbor-
hood is dynamic (i.e. it includes the whole geographic space), and the model allows 



1198 Markov–Cellular Automata in Geospatial Analysis

the geometric transformation of each object according to a transition function that 
incorporates the in fl uence of its neighbors (Moreno et al.  2010  ) .  

    8.4.3   Calibration and Validation 

 Calibration and validation are important components in the development of MCA 
models. However, validation is the weakest part of land use/cover modeling, since 
there are no agreed criteria to assess the performance of one land use/cover model 
versus another, or to compare one run versus another run of the same model (Pontius 
et al.  2004  ) . In order to assess the model’s predictive power, a clear distinction 
between the procedures for calibration and validation must be made, the failure of 
which makes the interpretation of any results dif fi cult or misleading (Pontius et al. 
 2004  ) . In some cases, it is more common to force the prediction to simulate the cor-
rect quantity of each land use/cover class, than to assess whether the model predicts 
the correct location of land use/cover (Kok et al.  2001 ; Pontius et al.  2001  ) . Any 
lack of clarity in the methodology to distinguish the calibration information from 
the validation information causes confusion in land use/cover modeling, which can 
lead to a misunderstanding of the model’s certainty (Pontius et al.  2004  ) . 

 Calibration is “the estimation and adjustment of model parameters and con-
straints to improve the agreement between model output and a data set” (Rykiel 
 1996  ) . The information used for calibration should be at or before some speci fi c 
point in time (t1), which is the point in time at which the predictive extrapolation 
begins. In contrast, validation is the process of comparing the model’s prediction for 
t2 with a reference map of time t2, where the reference map is considered to be a 
much more accurate portrayal of the landscape at time t2 (Pontius and Malanson 
 2005  ) . One set of data should be used to calibrate the model, and a separate set 
should be used to validate the model (Pontius et al.  2004  ) . In order to enhance the 
validity of land use/cover modeling, Pontius et al.  (  2004  )  suggested that it is helpful 
to use a validation technique that, (a) takes into account the source of error, (b) 
compares the model to a null model (a model that predicts pure persistence, i.e. no 
change between t1 and t2), and (c) performs analysis at multiple scales.   

    8.5   Summary and Conclusions 

 This chapter has attempted to review the current state-of-the-art operational MCA 
land use/cover change models. Despite the existence of the many land use/cover 
change modeling challenges highlighted in this chapter, the land use/cover model-
ing research community has developed a variety of models, which have been applied 
with varying success in different regions of the world. Interesting data sets, as well 
as the functioning of interdisciplinary and multi-disciplinary research teams, have 
made efforts to improve and develop robust land use/cover change models that can 
be useful for understanding the functioning of land use/cover systems, and also 
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to support land use planning and policy (Lambin et al.  2000 ; Irwin and Geoghegan 
 2001 ; Rindfuss et al.  2003 ; Verburg et al.  2004  ) . However, the review has also 
exposed the limitations of the current MCA models and modeling practice. Many 
current MCA land use/cover models are still built on common assumptions of 
homogeneity and linear trends, which may fail to capture the underlying real-world 
landscape processes characterized by non-linear trends. While much effort has been 
spent on model calibration, little attention has been given to the development of 
robust validation methods (Pontius and Malanson  2005  ) . 

 Nonetheless, the limitations singled out present opportunities for research into 
MCA models. Future MCA land use/cover change models will need to be more inte-
grated and more responsive to different environmental, socio-economic and political 
conditions (Verburg et al.  2004  ) . Given the rapid developments in computer technol-
ogy (increases in memory and speed of computers), more integrated MCA models 
should be developed. For example, encouraging research is being done in the area of 
geographic object-based CA models (Torrens and Benenson  2005 ; Moreno et al. 
 2010  ) . These novel geographic object-based CA models should be incorporated in 
the MCA modeling framework. More research should also be done in developing 
non-linear Markov chains that can compute non-linear transition probabilities. In 
addition, research will also have to address the problems of the evaluation of policy 
impacts as well as issues of household decision-making. Predominantly, aggregate 
modeling techniques need to be complemented by agent-based methods capable of 
measuring the in fl uence of individuals and communities on land use/cover changes. 
The feasibility of such research would be greatly enhanced by the availability of the 
detailed land use/cover, biophysical and disaggregate socio-economic data required 
for integrated agent-based MCA models (Berger  2001  ) . 

 Finally, more efforts should be made to disseminate land use/cover models in 
general, and MCA models in particular, by including institutions and individuals, 
particularly in developing countries. This must be supported by the development of 
user-friendly modeling software such as Dinamica EGO (Soares-Filho et al.  2002  )  
and IDRISI Taiga (Eastman  2009  ) . Although, spatial simulation models have been 
criticized for failing to adapt to new challenges and problems, researchers and deci-
sion makers are collaborating in order to develop robust MCA land use/cover change 
models (Rindfuss et al.  2003  ) . These models would be useful for understanding the 
driving forces and underlying processes of land use/cover changes, as well as to 
simulate future land use/cover changes.      
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