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     7.1   Introduction 

 Weight of evidence (WofE) is a quantitative method for combining evidence in sup-
port of a hypothesis. An evidence-based approach involves an assessment of the 
relative values of different pieces of information that have been collected in previ-
ous steps. ECHA  (  2010  )  de fi nes WofE as “the process of considering the strengths 
and weaknesses of various pieces of information in reaching and supporting a con-
clusion.” A representative value needs to be assigned to each piece of information 
using a formalized weighting procedure. The evidence can be called as a factor, and 
can often in fl uence the weight given owing to the quality of the data, the consistency 
of results, the nature and severity of effects, and the relevance of the information. 

 WofE is entirely based on the Bayesian approach of conditional probability. This 
method combines spatial data from a variety of sources to describe and analyze 
interactions, provides evidence for decision making, and makes predictive models. 
Basically, the method concerns the probability of detecting a certain event, which 
could be a given category of land-use change, for example, possibly an event of 
land-use change from agricultural area to built-up surface in relation to potential 
evidence (proximity to urban centers, roads, water, etc.), often called the driving 
factors of change (Thapa and Murayama  2011  ) . 

 Historical evidence shows that Peirce  (  1878  )  was very close to the best de fi nition 
of WofE, namely the logarithm of a Bayes factor, which is the ratio of the posterior 
to the prior odds. A theoretical expression and discussion of WofE modeling at an 
earlier stage can be found in Good  (  1950,   1979  ) . This method was originally developed 
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for a non-spatial application, and therefore its applications dominated the literature 
in statistics and medical related  fi elds until the mid-1980s. Its application to medical 
 fi elds was promising, for instance, when the evidence consisted of a set of symp-
toms, and the hypothesis was “this patient has disease x.” For each symptom, a pair 
of weights was calculated, one for the presence of the symptom and one for the 
absence of the symptom. The magnitude of the weights depended on a measured 
association between the symptom and the occurrence of the disease in a large group 
of patients. The weights could then be used to estimate the probability that a new 
patient would get the disease, based on the presence or absence of symptoms 
(Spiegelhalter  1986 ; Raines et al.  2000  ) . In this chapter, I brie fl y review the progress 
in the methodology and applications of WofE in the  fi eld of geospatial analysis, 
discuss how the method works, and conclude with an outlook for the future.  

    7.2   Methodology and Applications in Geospatial Analysis 

 Since the late 1980s, the geoscience  fi eld has adopted WofE modeling for geospatial 
applications, the earliest of which were maps of mineral potential (Bonham-Carter 
et al.  1988  ) . A pattern of mineral deposits is related to several map layers represent-
ing geological data that may be indicative of the occurrence of mineral deposits 
(Bonham-Carter  1994  ) . The method has gradually been integrated with spatial data-
bases, and has been used for a variety of purposes in various geographic regions. 
Aspinall  (  1992  )  described an inductive modeling procedure integrated with geo-
graphical information science (GIS) and the Bayesian theorem for wildlife habitat 
mapping. The use of the modeling procedure is illustrated through an analysis of the 
winter habitat relationships of red deer in the Grampian Region, north–east Scotland. 
The habitat data sets used to construct the model were the accumulated frost and 
altitude records obtained from maps, and land cover derived from satellite imagery. 

 Bonham-Carter  (  1994  )  illustrated the modeling process in a probabilistic frame-
work, so that the weighting of individual map layers was based on a Bayesian prob-
ability model. In particular, the WofE model was presented in a map context, with 
examples showing applications to mineral-potential mapping in Meguma terrane, 
Nova Scotia, Canada. The relationships of WofE to the methods used in the expert 
system of the prospectors are explained with a very simple example of the system’s 
inference network. 

 Similarly, Cheng and Agterberg  (  1999  )  proposed a new approach to the WofE 
method based on fuzzy sets and fuzzy probabilities for mineral-potential mapping. 
This approach can be considered as a generalization of the ordinary weights of evi-
dence method, which is based on binary patterns of evidence and has been used in 
conjunction with GIS for mineral-potential mapping. In the newly proposed method, 
instead of separating the evidence into binary form, fuzzy sets containing more 
subjective genetic elements are created; fuzzy probabilities are de fi ned to construct 
a model for calculating the posterior probability of a unit area containing mineral 
deposits on the basis of the fuzzy evidence for the unit area. This method can be 
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treated as a hybrid method, which allows objective or subjective de fi nitions of a 
fuzzy membership function of evidence augmented by an objective de fi nition of 
fuzzy or conditional probabilities. The posterior probabilities calculated by this 
method would depend on existing data in a totally data-driven approach, but would 
also depend partly on expert knowledge when the hybrid method is used. 

 An ArcView GIS extension of WofE, i.e., Arc-WofE, is publicly available and 
has applications to mineral potential (Kemp et al.  1999  ) . This enhances further 
potential uses of WofE in the geospatial  fi eld. The system has four core steps: build-
ing a spatial digital database; extracting predictive evidence for a particular deposit 
type based on an exploration model; calculating weights for each predictive map or 
evidential theme; combining the evidential themes to make a prediction. This exten-
sion also provides an expert approach to weighting which can be used when no 
training points are available (Raines et al.  2000  ) . 

 The popularity of the WofE method with more geospatial applications was further 
expanded in other environmental study  fi elds in the  fi rst decade of the twenty- fi rst 
century. A structure for simulating land-use change using the elementary probabilis-
tic methods of the WofE approach was proposed by Almeida et al.  (  2003  ) . The model 
framework has been applied to Bauru town in Brazil. This showed how various 
socio-economic and infrastructural factors can be combined using the WofE approach, 
which then enables them to predict the probability of changes between land-use types 
in different cells of the system. Another study over a larger area, which was also 
conducted in Brazil by Soares-Filho et al.  (  2004  ) , shows an application of the WofE 
method to select the most important variables needed for land-cover change analysis 
and to quantify their in fl uences on each type of land-use transition, e.g., deforesta-
tion, land abandonment, and re-growth clearing. They developed a land-cover change 
simulation model that is responsive to road paving and policy intervention scenarios 
in central Amazonia. The model assesses the impacts of road paving within the popu-
lation, as well as policy intervention scenarios. 

 Romero-Calcerrada and Luque  (  2006  )  focused on boreal forest landscapes, and 
explored a multicriteria approach by using a predictive habitat suitability model for 
the three-toed woodpecker ( Picoides tridactylus ) based on WofE. Since the method 
depends on the indicator species which is used as a surrogate of biodiversity value, 
it can be applied to assess the biodiversity conditions of both managed and pro-
tected areas to help decision-making concerning the protection of valuable habitats. 
Thus, a map of habitat suitability representing a range of probabilities of occurrence 
offers an objective framework for evaluating the outcomes of different scenarios. 
Similarly, an objective assessment of habitat suitability provides a rational basis for 
management decisions incorporating the impact on species habitat. Romero-
Calcerrada and Millington  (  2007  )  used both WofE and logistic regression to analyze 
the natural and human factors that contribute to wild fi re on the Iberian Peninsula. 
Unlike expert knowledge approaches to modeling, the WofE approach derives the 
probabilities of  fi re occurrence based on the association between mapped occur-
rences and spatial evidence layers of biophysical data. 

 An application of the WofE method to perform a vulnerability assessment for 
the occurrence of elevated nitrate concentrations in the aquifer of Milan, Italy, is 
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given by Masetti et al.  (  2007  ) . A comparison between the spatial distribution of 
vulnerability classes and the frequency of occurrences of nitrate in wells shows a 
high degree of correlation for both low and high nitrate concentrations. Groundwater-
speci fi c vulnerability was classi fi ed in terms of vulnerability classes and, according 
to the outcomes of the model, the population density can be considered to be the 
source of the greatest impact of nitrate. Mean annual irrigation and groundwater 
depth can be identi fi ed as in fl uencing factors in the distribution of nitrate, while 
agricultural practice appears to be a negligible factor. 

 Dahal et al.  (  2008  )  and Pradhan et al.  (  2010  )  presented WofE modeling applications 
to landslide susceptibility mapping. The former applied the modeling to small catch-
ments of Shikoku, Japan, while the latter applied it to a tropical hilly area in Malaysia. 
The Japanese case showed the usefulness and capability of the modeling in a small 
catchment area with a high-resolution data set. The Malaysian case showed the method 
of calculating the rating factor, and reported that the landslide susceptibility map and 
the veri fi cation results achieved a high predictive accuracy for the model. 

 Dilts et al.  (  2009  )  used WofE techniques to model spatial patterns of wild fi re 
occurrence in relation to landscape-scale drivers of  fi re in Lincoln County, Nevada, 
USA. The spatial data sets which were used as potential predictors of  fi re occur-
rence included biophysical and socio-economic data. Models were developed and 
tested for lightning-caused  fi res over the entire county, and also in forested areas 
only. Higher  fi re density and higher lightning-strike density were observed in the 
eastern half of the county compared with the western half. Overall, the spatial dis-
tribution of wild fi re occurrence was controlled more by ignition mechanisms than 
by processes in fl uencing fuel moisture, accumulation, or both. 

 A recent application of WofE is found in urban growth modeling. Thapa and 
Murayama  (  2011  )  adopted the WofE method integrated in a cellular automata frame-
work for predicting the future spatial patterns of urban growth in the Kathmandu 
metropolitan region. The model was validated by achieving a highly accurate predic-
tion of urban development patterns for the future under the current scenario across 
the metropolitan region. Depending on local characteristics and land-use transition 
rates, the model produced a noticeable spatial pattern of changes in the region. The 
application of WofE to urban growth modeling can be found in Chap.   13    .  

    7.3   WofE Model: How Does It Work? 

 Let’s now consider a landscape (Fig.  7.1 ) which has three spatial patterns: forest, 
road buffer, and an area which is changing from forest to non-forest land. Landscape 
change is observed along the road network, so the road is considered to be the major 
driver of the change. If we considered this in binary terms, area change is repre-
sented as 1 and no change as 0. Similar assumptions can be made for the road layer, 
i.e., inside the road buffer as 1 and outside as 0. In this particular case, the WofE 
concerns the probability of detecting land change (deforestation) in fl uenced by the 
driver (road).  

http://dx.doi.org/10.1007/978-4-431-54000-7_13
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 To understand this deforestation process and detect the probability using the WofE 
technique, the WofE model is synthesized from Bonham-Carter  (  1994  ) . The areas of 
deforestation,  D  (landscape change from forest to non-forest), and the explanatory 
variable,  E  (road buffer), are known, and then the probability of locating the occur-
rence of deforestation given the presence of the explanatory variable can be expressed 
by the conditional probabilities given in ( 7.1 ).

     ( ) ∩= ( )
|

( )

P D E
P D E

P E    (7.1)   

 The symbol     ∩    is a logical intersection or Boolean AND operation. The condi-
tional probability of  D  occurring given the presence of  E  is written as     ( )|P D E   . 
Thus, the probability of a deforestation pattern ( D ) occurring given the presence of 
explanatory variable ( E ) can be expressed as a probability ratio, which follows from 
the basic de fi nition of conditional probability, followed by the substitution of area 
proportions as estimates of probabilities, and  fi nally as a ratio of areas. The probabil-
ity of land change in the WofE modeling framework is expressed as  odds .  Odds  ( O ) 
are de fi ned as  O = P/(1−P),  a ratio of the probability that an event will or will not 
occur (Bonham-Carter  1994  ) . Now, ( 7.1 ) can be converted into odds ( 7.2 ).

     ( ) ( )
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( )
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where     D    represents the absence of deforestation, i.e., no change occurred in the 
landscape.     ( )−1 |P D E    becomes     ( )|P D E    when we consider the probability of  D  
(deforestation) being absent given the presence of  E  (explanatory variable, road). 
 Odds  values of less than 1 correspond to probabilities less than 0.5, and very small 
probabilities are nearly the same as  odds . Accordingly, a similar argument is used to 
derive an expression for the conditional odds of  D  given the absence of  E :

     ( ) ( )
( )=

|
|

|

P D E
O D E

P D E    (7.3)   

Land change from
forest to non-forest,
D (Deforestation)

Explanatory variable,
E (Road 1km buffer): absent

Explanatory variable,
E (Road 1km buffer): present

Forest

  Fig. 7.1    Schematic drawing to illustrate the WofE method       
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 The WofE method can combine several explanatory variables to predict similar 
patterns of land change. A pair of weights     +W    (presence) and      −W   (absence) can 
be determined for each predictor pattern (road, and other predictor if any), depend-
ing on the measured spatial association with the pattern of land change. The weights 
may be combined from each pattern to make a predictive map for the change. 
Taking a single predictor pattern,  D , the positive weight     +W    and the negative 
weight     −W    can be expressed as the difference between the prior and posterior logit 
of  D , as follows:

     ( ) ( )+ ⎡ ⎤
= − = ⎢ ⎥

⎣ ⎦

|
ln | ln ( ) ln
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 The WofE method uses the natural logarithm of  odds , known as  log odds  or  logit . 
The logit scale is centered at 0, corresponding to a probability of 0.5, with negative 
values for  odds  less than 1 and positive values for  odds  greater than 1. After computing 
the weights, the posterior logit can be generated using the following equations:

     ( ) += +ln | ln ( )O D E O D W    (7.6)  

     ( ) −= +ln | ln ( )O D E O D W    (7.7)   

 More explanatory variables can be incorporated with an assumption that the 
variables are conditionally independent with respect to land change (i.e., deforesta-
tion). The following expression can be written for more explanatory variables:

     
=

∩ ∩… = + ∑1 2( )ln | ln ( )
j

n
k k k k

n E
j i

O D E E E O D W    (7.8)  

where the superscript  k  is positive (+) or negative (−) depending on whether the 
explanatory variable is present or absent, respectively. 

 The explanatory variables are usually either discrete (e.g., a land-use planning 
map or other socio-economic data) or continuous (e.g., a slope, proximity to road, 
river, etc.). Continuous variables need to be transformed into discrete variables. 
Thence, each explanatory theme has  k  = 1,2,…, m  discrete class values or states 
which can be associated with weights in respect to the occurrence of events. 

 The WofE application on landslide susceptibility mapping synthesized from 
Dahal et al.  (  2008  )  is presented as an example. The application test area, with less 
than 400 ha of the Moriyuki catchment, is located in the northeast of the Shikoku 
region, Japan. The catchment had as many as 76 landslides (Fig.  7.2 ) due to heavy 
rainfall which occurred in October 2004. Thematic maps, i.e., slope, aspect, relief, 
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 fl ow accumulation, soil depth, soil type, land use, and distance to road, were used as 
landslide predictive factors. The size of the landslide and the number of potential 
events varies in different landscapes depending on local geo-environmental charac-
teristics. Therefore, each thematic map was logically classi fi ed into various category 
ranges in order to estimate geographically varying weights. The maps of categorical 
factors were overlaid with the landslide event map, and this produced weights for 
each map using WofE techniques. The weighted factor maps were linearly com-
bined to create a landslide susceptibility index map. The index map was cross-vali-
dated with a landslide event map and showed a considerable success rate, i.e., 80.7% 
of the WofE-based predictive model. Based on the success rate ratio, a map with  fi ve 
landslide susceptibility zones, i.e., very low, low, moderate, high, and very high, 
was established and is shown in Fig.  7.3 .    

    7.4   Future Outlook 

 From the discussion and examples above, it is clear that the WofE method can com-
bine spatial data from diverse sources to describe and analyze interactions, provide 
support for decision makers, and make predictive models. The statistical association 
between an event and the associated factors determines the weights. The WofE 
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  Fig. 7.2    Landslide events in the Moriyuki catchment (reproduced from Dahal et al.  2008  )        
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method itself is combined with Bayes’ rule of probability, with an assumption of 
conditional independence. The model is given in log–linear form so that the weights 
from the evidential themes can be added. 

 In this method, weight values are easy to interpret. A positive weight for a par-
ticular evidential-theme indicates that a larger proportion matched the conditions of 
that theme than would occur due to chance, whereas the inverse is true for negative 
weights. A weight of zero indicates that the training points are spatially uncorre-
lated to the theme. The range in weight values for a particular evidential theme gives 
an overall measure of how important the theme is for modeling. Uncertainties due 
to variances of weights and missing data allow the relative uncertainty in posterior 
probability to be estimated and mapped. Because conditional independence is never 
completely satis fi ed, the posterior probabilities are usually overestimated in abso-
lute terms. However, the relative variations in posterior probability (as observed in 
spatial patterns on the response map) are usually not much affected by violations of 
this assumption, as stated by Raines et al.  (  2000  ) . 

 Being a Bayesian method, it has a number of advantages over other more tradi-
tional spatial modeling methods. Much appreciated are the ability to accommodate 
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  Fig. 7.3    Landslide susceptibility map of the Moriyuki catchment.  VHS  very high susceptibility, 
 HS  high susceptibility,  MS  moderate susceptibility,  LS  low susceptibility,  VLS  very low suscepti-
bility (reproduced from Dahal et al.  2008  )        
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both categorical and ordered data, the robustness to small sample sizes, and the ability 
to use data that are not normally distributed (   Bonham-Carter et al.  1988 ). As we have 
observed several applications in the geospatial  fi eld, i.e., mineral-potential mapping, 
landslide susceptibility, habitat suitability, wild fi re, land-use and land-cover change 
analysis, and urban growth modeling, the future of this method is emerging. It may 
be possible that the wider applications of WofE will soon be used to solve global 
environmental problems, such as in REDD+.      
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