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     4.1   Introduction 

 Geographical information systems (GIS) are designed to store, retrieve, manipulate, 
analyze, and map geographical data. Since the 1960s when R.F. Tomlinson  fi rst pre-
sented the GIS, this  fi eld has mainly focused on the construction of the systems, the 
improvement of system functions, and the extension of its application to other disci-
plines. The research contents have played an important role in providing spatial 
decision-making support for both governments and the public, and have also pro-
moted the formation and development of the discipline of Geographic Information 
Science (Goodchild  1992  ) . However, with the extension and deepening of applica-
tions, users began to doubt the results of spatial analysis using GIS (Doucette and 
Paresi  2000 ; Morrison  1995 ; Östman  1997 ; Stefanakis et al.  1999  ) . The raw material 
for GIS (i.e., the original data imported into GIS) inevitably always contains errors 
(Shi et al.  2002  ) . Data models used in GIS to describe the real world are just approxi-
mations to objective reality. In addition, all kinds of spatial operations and processing 
approaches may bring new errors and uncertainties into the production of spatial 
analysis. Most existing designs of GIS software are based on the hypothesis that no 
errors exist in geographic entities and their spatial relationships. Generally, GIS can 
only deal with determinate spatial entities and their relationships. However, using a 
GIS designed to deal with determinate data for uncertain data will bring about prob-
lems, and the results cannot satisfy the users’ needs (Shi et al.  2002  ) . As the outputs 
of GIS play an important role in spatial decision-making support, users began to be 
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concerned about the quality of spatial data in GIS. This undoubtedly made many 
scholars think about the  fi eld of GIS spatial data quality control (Mowrer and 
Congalton  2000 ; Östman  1997 ; Shi et al.  2002  ) . 

 The acquisition of spatial data in GIS primarily relies on surveying and geo-
graphical investigation. Matured surveying errors and data processing methods 
(namely surveying adjustments) which are based on probability and statistical theo-
ries have been introduced into the  fi eld of spatial data quality control. Thus, a set of 
theoretical systems on spatial data quality control methods gradually came into 
existence (Goodchild and Dubuc  1987 ; Goodchild and Gopal  1989 ; Heuvelink et al. 
 1989 ; Shi et al.  2002  ) . However, handling errors of spatial data are somewhat differ-
ent from the processing of conventional surveying data, as the sources of spatial 
data are diverse and complex. In addition, operations with spatial data are also com-
plex, and are different from surveying adjustment methods, among which there are 
strict geometric conditions. Therefore, as well as traditional probability and statis-
tics theory, other theoretical supports are required according to the intrinsic features 
of spatial data (Burrough and Frank  1996 ; Burrough et al.  1997 ; Fisher  1999 ; 
Goodchild and Jeansoulin  1998  ) . Fuzzy set theory provides an important approach 
to dealing with spatial data, and has sporadically been adopted in the  fi eld of GIS 
(Cheng et al.  2001 ; Fisher  2000  ) . 

 The connection between fuzzy set theory and spatial data quality control needs 
to explore the relationship between spatial data error and uncertainty theory. The 
uncertainty is the de fi ciency in the degree of knowledge about surveying data, and 
also the degree of unlikelihood and doubt about the validity of the survey results. 
Standard deviations, or multiples of these, are always used to express uncertainty. 
The surveying error is the difference between the measured value and the true value, 
and this is caused by imperfect processing of the survey data or unsatisfactory sur-
veying conditions. As the true value is generally unknown, the actual value of the 
error is dif fi cult to  fi nd. In theory, surveying adjustment methods allow surveying 
data to be closer to the true value. In the international “Guide to the Expression of 
Uncertainty in Measurement” (International Organization for Standardization 
 1995  ) , it was stressed that surveying error and uncertainty are deemed to be two 
different concepts which should not be confused. Surveying error is really different 
from uncertainty by de fi nition. However, both of them are used to express the rela-
tionship between the survey data and the true value. They play the same role in 
describing the con fi dence level of the survey data. In other words, surveying error is 
one of the descriptive methods of indicating surveying uncertainty. Goodchild 
 (  1999  )  argued that uncertainty is the difference between the true value and its 
expression in GIS. If the true value can be determined, error and precision are used 
to describe the uncertainty (Goodchild  1999  ) . However, the true value is generally 
unknown, especially when it is related to the cognition of humans. 

 Randomness and fuzziness are the two conditions that result in the uncertainty of 
spatial data (Burrough and Heuvelink  1992  ) . Randomness is the uncertainty of cog-
nition generated by the inadequacy of the observation conditions. Fuzziness 
refers to the uncertainty of differentiation caused by the intermediary transitivity of 
objective differences (Burrough and Frank  1996 ; Fisher  2000 ; Zadeh  1965  ) . 
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This type of intermediary transitivity may be due to the fuzziness of the ruler used to 
describe objective things, or the inevitability of unclear cognition about those things. 
GIS can model the real world. The model is based on the cognition and abstraction 
of the real world, and is the approximate re fl ection of the real world. The randomness 
and fuzziness of reality cognition bring uncertainty about the spatial data into GIS, 
and thus affect the spatial data quality and the results of spatial analysis. 

 The uncertainty of spatial data derived from the concept of fuzziness can be 
separated into several aspects, as follows.

    1.    Uncertainty comes from the vagueness of the distribution of geographical phe-
nomena or the concept of a geographical entity     

 Variation and fuzziness are two intrinsic attributes in nature which affect the 
accuracy of spatial data representation. For instance, the range of grassland is not 
always determinate; somewhere grassland always moves gradually toward forest 
or desert areas, or else there exists a transition area which re fl ects a smooth tran-
sition state from grassland to forest or desert. The boundary of soil units and the 
classi fi cation of vegetation type are usually fuzzy, and different operators often 
draw different classi fi cation maps, and so forth. If such fuzzy information does 
not undergo appropriate processing, the data imported into GIS will de fi nitely 
have fuzzy characteristics, and result in uncertainty. 

 This kind of fuzziness can be re fl ected in both graphics and the attribute of 
accuracy in the quality of the contents of spatial data. The intuitionistic re fl ection 
in the accuracy of graphics is an error. However, the real position of a boundary 
is dif fi cult to determine owing to the vagueness of the concept. Therefore, the 
fuzziness of a concept may be re fl ected in the accuracy of the attribute. For 
example, the vagueness of vegetation classi fi cations will result in mistakes when 
describing parcels of vegetation.

    2.    Uncertainty derived from spatial relationships     
 In a qualitative description of a spatial relationship, there ubiquitously exist 

inaccurate terms. For example: what is “ nearby ” the village; land to the “ south ” 
(or “ north ”) of the river is suitable for arable farming. In buffer analysis, the prox-
imity to a river is usually described in terms like “in the area “ about ” 5 km to the 
“ north ” (or “ south ”) of the river”; in visual interpretations of images, a ground 
feature may be described as residential houses, factory buildings, or other type of 
architecture. There are often inaccuracies when describing geographical proper-
ties. For instance, the descriptions of boundaries always are fuzzy, as multiple 
feature boundary lines often coincide with each other. The mixed pixels generated 
in the processing of remote sensing data and the overlapping in mode identi fi cation 
are also fuzzy. These emerge in the process of  fi nding speci fi ed descriptions of 
geographical phenomena. 

 This kind of vagueness in speci fi c descriptions of spatial relationships is mainly 
re fl ected in attribute accuracy, logistic consistency, and the integrity and temporal 
accuracy of the quality and contents of spatial data. If the description of geo-
graphic phenomena is not clear, the accuracy of the attribute will always be 
affected, as well as the logistic consistency and integrity of the data. During a set 



54 Y. Zhao

time interval, spatial data may fail to accurately re fl ect the situation at that time. 
Therefore, the temporal accuracy will also be in fl uenced.

    3.    Uncertainty derived from spatial analysis and spatial reasoning operations     
 Spatial analysis is a reasoning process about knowledge, the results of which 

can provide spatial decision-making support to users. The language of human 
beings is similar to fuzzy semantic expressions, for example, we want to  fi nd the 
“ largest ” area affected when a reservoir bursts, or to consider the villages which 
are at a distance of “ about ” 200 m from the reservoir, and so forth. Sometimes we 
need to consider whether an area is “ suitable ” for a certain kind of crop. Here, 
“ suitable ” can be divided into fuzzy terms like “ totally unsuitable ,” “ not very suit-
able ,” “ suitable ,” “ comparatively suitable ,” and “ totally suitable .” 

 Uncertainty generally exists in spatial data, and originates from the vagueness 
of the concept of spatial entities and spatial relationships. This uncertainty 
in fl uences the quality of spatial data, and thus affects the results of GIS applica-
tions. Traditional Boolean set theory can deal with spatial entities with determi-
nate boundaries and concepts in cognition. However, for those spatial entities 
with fuzzy boundaries and concepts, Boolean set theory fails to re fl ect the 
vagueness among them. In traditional approaches, such spatial entities would be 
modeled approximately, and accordingly, the approximate model would result in 
a loss of information. Such uncertainty needs fuzzy set theory.  

    4.2   Fuzzy Set Theory 

 Fuzzy set theory was  fi rst presented in 1965 by the famous cybernetics expert L.A. 
Zadeh in his ground-breaking paper  Fuzzy Sets  (Zadeh  1965  ) . In his research on 
human thinking and judgment of the modeling process, he built up a theoretical sys-
tem using rigorous mathematical methods to describe fuzzy phenomena. Fuzzy set 
theory is an extension of the traditional classic set theory. The aim of the extension is 
to overcome the accurate “either–or” bi-value logic of classic set theory. Thus, there 
is a smooth transition between elements and non-elements of a set, so that one ele-
ment can partially belong to a set, but not completely belong or completely not 
belong to the set. The difference between a fuzzy set and a classic set is that the fuzzy 
set has explicitly put forward the terms of a membership function through which the 
degree of each element belonging to a set can be calculated. Set operations like inter-
section and union in classic set theory are still applicable in fuzzy sets. 

    4.2.1   Fuzzy Set 

 When people consider a speci fi c problem, they always con fi ne the issue within a 
limited range, which is the so-called universe, and is usually represented by capital 
letter  U ,  V.  The components in the universe are elements which are usually embodied 
by lowercase  x ,  y . Given a universe  U , a group of different elements in the universe 
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is called a set, which is usually represented by  A ,  B  and so on. In classic set theory, 
the relationship of an element  x  with a set  A  has only two cases:     ∈x A   or     ∉x A  . 
However, the existence of vagueness in the objective world makes it impossible for 
the “either–or” thought in classical set theory to present all the relationships of each 
element within the set. 

 In classic set theory, an eigenfunction is used to depict the relationship between 
elements and a set. Each set  A  has an eigenfunction     ( )AC x   . If     ∈x A  , then     =( ) 1AC x   ; if 
    ∉x A  , then     =( ) 0AC x   .

     
∈⎧

= ⎨ ∉⎩

1
( )

0A

x A
C x

x A    (4.1)   

 Eigenfunction     ( )AC x    is a mapping from the universe  U  to a range [0, 1]. Usually 
it can separate elements in the set  A  from those outside of the set  A .     ( )AC x    is a binary 
value function which can only distinguish two situations, to be or not to be, and is 
applicable to objects with determinate de fi nition. As it cannot distinguish the degree 
of membership, it is not suitable for fuzzy phenomena. 

 The basic idea of a fuzzy set makes the absolute af fi liation relations in a classic 
set  fl exible. In the form of an eigenfunction, the grade of membership is not 
con fi ned to 0 or 1, but can be any value between 0 and 1. Given a universe  U  and 
a membership function, each element  x  in  U  can be connected with a value     ( )A xm    
in [0, 1].     ( )A xm    is used to express the grade of membership of element  x  belonging 
to the set  A . Here,  A  is a fuzzy set, and     ( )A xm    is equivalent to eigenfunction 
    ( )AC x   . Its value is no longer con fi ned to 0 and 1, and has expanded to any value 
between [0, 1]. 

  De fi nition 4.1  Given a universe  U  and its mapping     Am    in the closed interval 
[0, 1]

     → [0,1]A : Um    

     ( ),Ax x x Um→ ∈     

 A fuzzy subset  A  in the universe  U  can be determined, and generally be referred to as 
a fuzzy set.     ( )A xm    is called the grade of membership belonging to the fuzzy set  A .  

    4.2.2   Fuzzy Set Operations 

 Operations between two fuzzy sets actually operate on the grade of membership 
point by point.

    1.        ⊇   indicates inclusion 

 Given  A ,  B  as two fuzzy sets in the universe  U , if there are     ( ) ( )A Bx xm m≤    for 
any     ∈x U  , then  B  includes  A , denoted     ⊇B A  . 
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 If     ( ) ( )A Bx xm m=   , fuzzy set  A  equals  B , denoted  A = B . 
 A fuzzy set with all membership at 0 is called a null set or an empty set, 

denoted     Φ  .  
    2.        cA    indicates the complementary set of fuzzy set  A  

 Given that  A  is a fuzzy set in the universe  U , the complementary set     cA    can 
be de fi ned as follows:

      ( ) 1 ( )c AA
x xm m= −     

    3.        A B∪    indicates the union set of fuzzy sets  A  and  B  
 Given two fuzzy sets  A ,  B  in a universe  U , a new fuzzy set  C  is the union set 

of  A  and  B . For any     ∈x U  , the membership of  x  included by  C  can be determined 
by the larger of     ( )A xm    and     ( )B xm    

     = ⇔ ∀ ∈∪C A B x U    

     ( ) max( ( ), ( ))C A Bx x xm m m=     

    4.        A B∩    indicates the intersection of sets  A  and  B , and can be de fi ned as: 

     = ⇔ ∀ ∈∩D A B x U    

     ( ) min( ( ), ( ))D A Bx x xm m m=     
    5.    Cut the operation of fuzzy set  A  

 Given that  A  is a fuzzy set in a universe  U , for any real number     [0,1]l ∈   , the     l
  -level cut set of fuzzy set  A  is    

     = ≥ ∈{ ( ) , }AA x x x Uml l      

    Al   is a classic set. A fuzzy set is converted to a common set by the cut 
operation.  

    4.2.3   Fuzzy Relationships 

 There are various relationships in the world. The relationship between two objects 
is usually represented by a trenchant subset, such as terms like  x equals y  or  x is 
larger than y , and so on. 

  De fi nition 4.2  Element  x  in a set  A  and element  y  in a set  B  can form an ordered 
pair ( x ,  y ). All these pairs ( x ,  y ) constitute a set which is a direct product of  A  and  B , 
denoted A × B.

     = ∈ ∈A × B {( , ) | , }x y x A y B     

  De fi nition 4.3  As for sets  A  and  B , any subset  R  of their direct product  U  ×  V  is 
called a binary relation between  A  and  B , or simply referred to as a relation. 
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 Given that both  A  and  B  are  fi nite sets, the relation  R  can be signi fi ed as

     ×= { }ij m nR r
    

 Here,  m  stands for the number of elements in set  A ,  n  is the number of elements 
in set  B , and     ∈ = … = …[0,1], 1,2, , ; 1,2, ,ijr i m j n  . 

 If  R  is a fuzzy set, it depicts the fuzzy relation between  A  and  B . The value of 
elements of  R  can be de fi ned as

     
( , )ij R i jr a bm=

   

where     ( , )R i ja bm    stands for the grade of membership in the universe of     ×A B  .  

    4.2.4   De fi ning the Membership Functions 

 The membership function of a fuzzy set, usually expressed as     ( )Af x   , de fi nes how the 
grade of membership of  x  in  A  is determined. There are two possible ways of deriv-
ing these membership functions (Metternicht  1999  ) . The  fi rst approach, called the 
similarity relation model, resembles cluster analysis and numerical taxonomy in that 
the value of the membership function is a function of the classi fi er used (Robinson 
 1988  ) . A common version of this model is the fuzzy  k -means or  c -means method, 
which is used for soil grouping, remote sensing image classi fi cation of cloud cover, 
and vegetation analysis (McBratney and de Gruijter  1992 ; Wang  1990  ) . The second 
approach, known as the semantic import model, uses an a priori membership func-
tion with which individuals can be assigned a membership grade. This model is useful 
in situations where users have a good qualitative idea of how to group data, i.e., the 
exact associations of the standard Boolean model (Burrough  1989  ) .   

    4.3   Applications in Previous Studies 

 According to the analysis above, fuzziness in spatial data can be divided into three 
aspects: the distribution of geographical phenomena or the concept of geographical 
entity, spatial relationships, and spatial analysis and spatial reasoning operations. 
Since fuzzy set theory was introduced into GIS, many scholars have made efforts to 
clarify the problems in each of these three aspects. 

    4.3.1   Fuzzy Representation of Geographical Entities 
and Their Distribution 

 Generally speaking, there is an implicit assumption in geographical entity modeling 
that the scope or boundary of spatial phenomena or entities can be de fi ned accurately. 
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In a vector structure, the geometric shape of a geographical entity is represented by a 
point, line, or polygon which can be described accurately. The values of the attributes 
of such geographical entities are constant within the whole space range, such as land 
parcels, houses, roads, etc. However, the traditional modeling method is not appro-
priate when dealing with geographical entities with fuzziness in their de fi nition and 
geographical distribution (called fuzzy objects) (Du et al.  2007 ; Schneider  1999  ) . 
Fuzzy modeling can properly express fuzzy geographical objects caused by the 
vagueness of their geographical distribution or fuzzy de fi nition, including natural, 
social, and cultural phenomena with consecutive change attributes. Schneider  (  1999  )  
proposed accurate de fi nitions for a fuzzy point, fuzzy line, and fuzzy polygon based 
on vector structure.  

 A fuzzy object is closely related to a  fi eld-based model (Du et al.  2007 ; Zhao et al. 
 2005  ) . There are two types of  fi eld-based models: the numeric type and the category 
type. The numeric type of  fi eld-based model is suitable for modeling geographical 
phenomena whose attribute values change consecutively with location, such as 
topography  fl uctuations, gradual permeations from grassland to desert, etc. A func-
tion can be constructed to denote such an attribute value at any position. This model 
is a kind of numerical value of expression, and is accurate. In digital representations, 
 fi eld-based data models can be represented as the following continuous two-order 
relationship on a 2-D plane     2N   :

     
2

( , )

( , )
,

( , )
R

x y

x y
R x y N

x y

m
= ∈∫    (4.2)  

where fuzzy membership value     ( , )R x ym    represents the attribute density of a surface 
feature character at point ( x,y ). That is to say, it stands for the extent to which a point 
belongs to one class (object). If     ( , )R x ym    equals any one of both numbers {0, 1}, all 
the objects in real-life have crisp boundaries. If     ( , )R x ym    is a numerical value in the 
interval [0, 1],  R  becomes a fuzzy set and the model can represent fuzzy geographical 
phenomena. This relationship can be expressed with a 2D matrix in which the row 
and column numbers are the coordinates of the spatial surface feature. For example, 
an urban area can be represented as shown in    Fig.  4.1 . 

 The values of the cells stand for the extent to which the cell belongs to the urban 
area. 1.0 indicates that the cell belongs entirely to the classi fi cation of urban area; 
0 < the value <1.0 means that the cell partly belongs to the urban area; 0, the cell 
cannot be characterized as urban area at all. The two-order relationship re fl ects the 
 fi eld view of geographic phenomena. 

 In the category type of  fi eld-based model, each position belongs to different 
types of attribute. As the attribute types are often qualitative and discrete, the key 
to this model is the classi fi cation system. That is to say, each position is given an 
attribute type. Each pixel in this model belongs to just one category, and the degree 
of membership is 1. Therefore, it cannot describe partial membership of fuzzy 
phenomena. 

 The numeric type of  fi eld-based model is relatively more suitable for describing a 
fuzzy object. However, because of the de fi ciency of functions in existing GIS to 
process fuzzy data, its application is not possible. Clementini and Di Felice  (  1997  )  
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  Fig. 4.1    Fuzzy representation of a spatial object—an urban area. ( a ) In numerical form. ( b ) In  gray  
form. The hierarchy of  gray  values is shown on the  right  of ( b )       

put forward the concept of a broad boundary model. An object is formed by an interior, 
a broad boundary, and an exterior (Fig.  4.2a ) (Clementini and Di Felice  1997  ) . 
A broad boundary has a certain width and area, and is no longer a geometric line. 
The broad boundary model can usually be expressed as two areas: exterior and interior. 
The exterior area illustrates where the object may be located, and the interior area 
where the object must be located. The difference between the exterior area and the 
interior area is the broad boundary. This model uses a broad boundary to re fl ect the 
uncertainty of a fuzzy object. An object represented using the broad boundary model 
is called a broad boundary object. According to the complexity of the object, a broad 
boundary object can be de fi ned as simple or complex. A simple broad boundary 
object is composed of a continuous interior, a continuous boundary, and a continuous 
exterior (see Fig.  4.2a ), while a complex broad boundary object is a combination of 
several simple broad boundary objects. Cohn and Gotts  (  1996  )  advanced the “egg-
yolk” approach to represent the uncertain area (Fig.  4.2b ). The internal deep gray 
sub-region in the model is called the “egg-yolk”, and the light gray sub-region out-
side is called the “egg-white” (Cohn and Gotts  1996  ) . The “egg-white” stands for the 
uncertain part. The broad boundary model and the “egg-yolk” model can qualita-
tively describe the fuzzy extent, but cannot distinguish the membership of each pixel 
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belonging to the broad boundary or the “egg-white”. A broad boundary region or 
“egg-white” can be obtained by a  l -level cut set for the fuzzy object (Fig.  4.2 ).  

 Du et al.  (  2007  )  summarized the source of a fuzzy object. There are three sources 
of fuzzy objects: the inherent model characteristics of the geographical phenomena 
(i.e., geographic distributions or geographic concepts are vague), the de fi ciency of 
spatial resolution (the geographic phenomena are accurate, but the spatial resolution 
is insuf fi cient), and the derivation from existing fuzzy or non-fuzzy objects. The 
inherent fuzziness of geographical phenomena determines that a pixel does not 
completely belong to a certain category. There exists a certain transition or overlap 
area among categories. For the second source, as the spatial resolution in remote-
sensing images is not high enough, fuzziness and hybrid pixels are generated. What 
the pixel represents on the ground is a synthesis of different adjacent objects. The 
third source comes from fuzzy operations of fuzzy or non-fuzzy objects (Stefanakis 
et al.  1999  ) . The fuzzy operations include fuzzy overlay analysis, fuzzy buffer anal-
ysis, and fuzzy focus operations, etc. The result of these operations is also a kind of 
fuzzy object, just an outcome of the logical or arithmetic operations on the original 
objects. This derived object is similar to a fuzzy object in attributes and processing 
method except for the sources and meaning. Therefore, it can also be processed as 
a fuzzy object. 

 Cheng et al.  (  2001  )  classi fi ed fuzzy objects into three categories, fuzzy–fuzzy 
(FF), fuzzy–crisp (FC), and crisp–fuzzy (CF), and pixels can be classi fi ed into fuzzy 
objects according to different criteria (Fig.  4.3 ).  

 The FF model represents objects with uncertain thematic attributes and spatial 
scope. It allows different objects to overlap with each other. The FC model describes 
objects with a certain thematic content but uncertain spatial scope. The CF model 
describes objects with a certain spatial scope but uncertain thematic content. The 
FC and CF models are suitable for describing fuzzy objects which are separated 
spatially. An FC object’s boundary is fuzzy with a precise interior. FC objects can 
overlap with each other, but CF objects cannot. Therefore, the traditional accurate 
object (crisp–crisp) model just describes objects with a determinate spatial scope 
and attribute range. According to the fuzzy object classi fi cation, Cheng et al.  (  2001  )  

  Fig. 4.2    Broad boundary region ( a ) and “egg-yolk” model ( b ) (Cohn and Gotts  1996 )       
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de fi ned different criteria using fuzzy and probability methods to extract fuzzy 
objects from the uncertainty classi fi cation results of remote sensing images.  

    4.3.2   Fuzzy Spatial Relationships 

 Spatial relationships may be caused by the geometric characteristics of spatial 
phenomena (the geographical position and shape of spatial phenomena) such as 
distance, direction, and connectivity, etc., or by the geometric and non-geometric 
characteristics of spatial phenomena together (including measurement attributes 
such as elevation value, slope values, etc., and the name attribute such as place names, 
etc.). For instance, the statistical correlation of spatially distributed phenomena, 
spatial autocorrelation, spatial interaction, spatial dependence, etc., belong to this 
kind of spatial relationship (Du et al.  2007  ) . In qualitative spatial reasoning, it is 
common to consider the main spatial aspects of topology, direction, and distance, and 
to develop a system of qualitative relationships between spatial entities which cover 
this spatial aspect to some degree, and which appear to be useful from an application 
or cognitive perspective (Renz  2002  ) . Therefore, this chapter chie fl y focuses on the 
description of fuzzy spatial relationships such as topology, direction, and distance. 

    4.3.2.1   Fuzzy Description of Spatial Topology Relationships 

 A topological relationship refers to the property that remains the same in the process of 
topological transformation, such as translation, rotation, and scaling transformation, etc. 

  Fig. 4.3    Three fuzzy object models ( a ) FF-object model; ( b ) CF-object model; ( c ) FC-object 
model (Cheng et al.  2001  )        
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Topological relationships have always been the main content in spatial relationship 
research, and also an important component in spatial database queries and retrieval 
language. The 4-intersection model and the 9-intersection model are commonly 
used and accurate methods of describing topological relationships (Egenhofer and 
Franzosa  1991 ; Egenhofer and Herring  1991  ) , and have received wide use and rec-
ognition in theoretical research and applications of GIS. The 9-intersection model 
can distinguish between 8 types of meaningful polygon–polygon topological rela-
tionships, 19 types of line–polygon topological relationships, and 33 types of line–
line topological relationships. However, one shortcoming of the 4-intersection 
model and the 9-intersection model is that they can only describe topological rela-
tionships between determinate objects, while failing to describe the topological 
relationships of fuzzy objects. 

 Clementini and Di Felice  (  1997  )  replaced the mathematical boundary in the 
9-intersection model with a broad boundary. The 9-intersection model derived from 
a combination of the interior, broad boundary, and exterior of two broad boundary 
objects is extended to describe fuzzy topological relationships. This is called the 
extended 9-intersection model. It can describe 44 topological relationships between 
simple broad boundary objects, and 56 topological relationships between complex 
broad boundary objects (Clementini and Di Felice  1997  ) . Cohn and Gotts  (  1996  )  
also proposed 46 types of topological relationships among fuzzy polygons base on 
the “egg-yolk” method. 

 In fact, a topological relationship can be formally described with a quintuple S_
Topologic ( U ,  V ,  F ,  H ,  C ) (Du et al.  2007  ) .  U  is an object set,  V  is a conceptual set 
for the topological relationship,  F  is a function mapping set,  H  is a partition function 
set of object space, and  C  is the range of values of  F  and  H . For any topological 
relationship concept     ∈iv V   , a corresponding mapping     ∈if F   always exists with it. 
The function     × →:if U U C   represents the consistency between topological rela-
tionships and the conceptual meaning of a topological relationship for any object  A  
and  B  in the set  U . The description of a topological relationship is implemented by 
mapping the topological relationship of  A  and  B  through the function     if    to set  V . 
Thus, topological relationships of any two objects in  U  can be described by the 
concept in set  V . For instance, when a polygon–polygon topological relationship is 
described in the 9-intersection model,  V  = { disjoint ,  meet ,  overlap ,  cover ,  covered-
by ,  contain ,  inside ,  equal }, each concept in  V  corresponds to a matrix.  F  is a binary 
logic function set used to determine which concept matrix in set  V  is the same as the 
topological relationships of objects  A  and  B . The value range of C is {0, 1}. Set  H  
of a partition function set is the de fi nition of the interior point, exterior point, and 
boundary point in point set topology (Gaal  1964  ) . This de fi nition is determinate, 
and its range of values is {0, 1}. 

 For fuzzy topological relationships, set  V  is identical to the 9-intersection model. 
The difference between fuzzy topological relationships and classic ones exists in 
 F ,  H , and  C . Three functions     1( , )h x y   ,     2 ( , )h x y   ,     3 ( , )h x y    in  H  de fi ne the membership 
of point ( x ,  y ) belonging to the interior, exterior, and boundary respectively, and 
each range of values is extended to [0, 1]. The value range of  C  in the function  F  
    × →:if U U C    is [0, 1], and the function     × →:if U U C   is used to determine the 



634 Fuzzy Set Theory in Geospatial Analysis

topological relationships of objects  A  and  B  and the membership of each concept 
in set  V . 

 In the case of polygonal objects, the de fi nitions of interior point, exterior point, 
and boundary point in point set topology can be used to divide fuzzy space into three 
fuzzy sets as a boundary region, an interior region, and an exterior region (Du et al. 
 2007  )  (Fig.  4.4 ). As in fl uenced by the uncertainty of spatial data, the boundary of a 
polygonal object is not simply referred to as its boundary with coordinates arrayed in 
a vector structure or a sequence of grids after the rasterization of the boundary in the 
raster structure. The boundary is extended to become a region spreading inward and 
outward to the object. The farther away from the boundary of an object a pixel is, the 
smaller the degree of membership of belonging to the object boundary becomes. The 
maximum membership degree is 1.0 at the polygon boundary.   

    4.3.2.2   Fuzzy Representation of Spatial Direction 

 Directional—also called orientational—relationships of spatial entities with respect 
to other spatial entities is usually given in terms of a qualitative category such as “ to 
the north of ” rather than using a numerical expression such as “ 12 degrees ” (which 
is certainly more common in technical communications such as aviation). These are 
important and common-sense linguistic and qualitative properties used in everyday 
situations and qualitative spatial reasoning (Frank  1996  ) . The direction of spatial 
entities is a ternary relationship depending on the located object, the reference object, 
and the frame of reference, which can be speci fi ed either by a third object or by a 
given direction. In the literature, one distinguishes between three different kinds of 
frames of reference, extrinsic (“external factors impose a direction on the reference 
object”), intrinsic (“the direction is given by some inherent property of the reference 
object”), and deictic (“the direction is imposed by the point of view from which the 
reference object is seen”) (Hernàndez  1994  ) . Given the frame of reference, directions 
can be expressed in terms of binary relationships with respect to the frame. 

 Most approaches to dealing with direction qualitatively are based on points as 
the basic spatial entities and consider only two-dimensional space. Frank  (  1991  )  

  Fig. 4.4    Fuzzy partition of a polygonal object in a topological universe (Du et al.  2007  )        
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suggested different methods for describing the cardinal direction of a point with 
respect to a reference point in a geographic space, i.e., directions are in the form 
of [north, east, south, west] depending on the granularity (Frank  1991  ) . Zhao et al. 
 (  2005  )  proposed a spatial direction model based on trigonometric functions. 
In this model, all objects are considered as a point—even those with irregular 
shape and size—and follow Frank’s suggestion about directions (a centroid-based 
method, where the direction between two objects is determined by the angle 
between their centroids) (Fig.  4.5 ). The azimuth   q   from object  O  

1
  to object  O  

2
  is 

computed. This angle, denoted by   q  ( O  
1
  , O  

2
 ), takes values in [0, 2 p ], which consti-

tutes the universe on which primitive directional relations are de fi ned.  Sin   2  (  q  ) and 
 cos   2  (  q  ) are chosen as fuzzy membership functions to describe the direction [north, 
east, south, west] with reference to the relative position relation functions pro-
posed by Miyajima and Ralescu  (  1994  )  (Fig.  4.6 ). Miyajima and Ralescu  (  1994  )  
used the square trigonometric function to illustrate the relative position relations 
[above, right, below, left] of segmented images. Square trigonometric functions 
are also suitable for directions in the form of [north, east, south, west] (Miyajima 
and Ralescu  1994  ) . For instance, in Figure  4.5 , if   q   = 50°, then the direction rela-
tionship is [0.4132, 0.5868, 0, 0] in the form of [north, east, south, west] accord-
ing to Eqs. ( 4.3 )–( 4.6 ). This means that object  O  

2
  is located to the north of object 

 O  
1
  with 0.4132 of membership degree, and to the east with 0.5868 of membership 

degree. That is,   m   
north

 ( O  
1
 ,  O  

2
 ) = 0.4132,   m   
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 ,  O  
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 ) = 0.5868,   m   
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  m   
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 ) +   m   
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 ( O  

1
 ,  O  
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 ( O  

1
 ,  O  

2
 ) = 1. 

Therefore, fuzzy membership functions not only show the characteristics of tran-
sition of the directional relationship, but also ensure the integrity of the de fi nition 
of the direction for any target object.  
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    4.3.2.3   Fuzzy Description of Spatial Distance 

 In a spatial decision-making process, the distance relation between spatial entities 
always plays a key role. Dealing with distance is an important cognitive ability in 
our everyday life (Renz  2002  ) . When representing distance, we usually use qualita-
tive categories such as “ A is close to B ” (binary constraint) or qualitative distance 
comparatives such as “ A is closer to B than to C ” (ternary constraint), but some-
times also numerical values such as “ A is about 20 m away from B ”. One can distin-
guish between absolute distance relations (the distance between two spatial entities) 
and relative distance relations (the distance between two spatial entities as com-
pared with the distance to a third entity) (Guesgen and Albrecht  2000 ; Renz  2002  ) . 
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  Fig. 4.6    An example of the classic ( a ) and fuzzy ( b ) classi fi cation of direction.   q   stands for the 
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The choice of which relation should be used depends on the application universe 
and the requirements posed by decision-makes. For two individual locations  A  and 
 B , which in general are abstracted as points, the Euclidean distance is given by the 
formula

     
2 2( , ) ( ) ( )A B A Bd A B x x y y= − + −

   (4.7)  

where ( x  
 A 
  , y  

 A 
 ) and ( x  

 B 
  , y  

 B 
 ) denote the coordinates of two locations  A  and  B,  

respectively. 
 Qualitative absolute distance relations are obtained, for example, by dividing the 

real line of distance into several sectors such as “ very close ,” “ close ,” “ commensu-
rate ,” “ far ,” and “ very far ” depending on the chosen level of granularity (Hernàndez 
et al.  1995  ) . In practice, we usually use one of the sectors. For instance, Figure  4.7  
represents the “ close ” degree from a point on a map to a city. 
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 where  x  denotes the distance (in kilometers) from the location to the city. The 
division values such as 5 km and 20 km are designed arbitrarily by decision-makers 
according to the understanding of their de fi nition of a “ close ” degree.   

    4.3.3   Fuzzy Operations on Spatial Reasoning 

 Spatial reasoning is an approach for reasoning out unknown spatial relationships 
based on the determinate spatial relationships of objects. The reasoning is imple-
mented through a symbolic operation based on implicit knowledge and rules. Spatial 
reasoning is a hot topic in  fi elds such as GIS, arti fi cial intelligence, and computer 
vision, and many spatial reasoning methods have been put forward. Du et al.  (  2007  )  
systematically summarized the classi fi cation systems of spatial reasoning methods. 
Existing spatial reasoning methods are mainly concentrated in a single spatial rela-
tionship (Du et al.  2007  )  such as topological relationship reasoning by topological 
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relationships, direction relationship reasoning by direction relationships, and so on. 
Fewer combinatorial spatial reasoning methods were presented. In addition, most of 
these spatial reasoning methods were developed for determinate geographical 
objects or spatial relationships, and sometimes it is dif fi cult to adopt these methods 
for spatial relationships with uncertainty. Therefore, these methods need an exten-
sion and supplement for fuzzy geographic objects or fuzzy spatial relationships. 

 Hong et al.  (  1995  )  have researched combinatorial spatial reasoning methods for 
direction and distance relationships. The distance and direction between  A  and  C  
can be reasoned according to the distance and direction between  A  and  B  and those 
between  B  and  C  (Hong et al.  1995  ) . Sharma  (  1996  )  used a projection model to 
describe direction relationships, a 9-intersection model to describe topological rela-
tionships, and an interval model to describe qualitative distance relationships. Then 
single, combinatorial, and integrated spatial reasoning methods were proposed 
(Sharma  1996  ) . As he used a projection model to describe a direction relationship 
between polygonal objects, this method cannot exactly express the actual direc-
tional relationship of such polygonal objects. In particular, because he focused on 
spatial reasoning for two single direction relationships rather than for single to mul-
tinomial direction relationships, multinomial to single direction relationships, and 
multinomial to multinomial direction relationships, the ef fi ciency and accuracy of 
spatial reasoning results are limited. 

 A broad boundary model has been used to describe fuzzy objects (Clementini 
and Di Felice  1997 ; Worboys and Clementini  2001  ) .    Clementini and Di Felice 
 (  1997  )  proposed 44 types of topological relationships using the extended 9-intersec-
tion model based on the broad boundary model, and    Cohn and Gotts  (  1996  )  put 
forward 46 types of topological relationships using the “egg-yolk” theory. As the 
number of topological relationships based on the broad boundary model or the 
“egg-yolk” theory goes beyond the range of cognition of a human being, such meth-
ods are inconvenient for topological relationship reasoning. Some scholars have 
also put forward advanced models to extend the fuzzy spatial reasoning method. 
Du et al.  (  2007  )  proposed a quadruple model to describe the topological relationship 
of objects with broad boundaries, and topological relationship reasoning was imple-
mented based on the quadruple model. 

 Zhao et al.  (  2005  )  proposed a  fi eld-based integrated spatial reasoning model 
for the case of the constraint satisfaction problem (CSP). They argued that knowl-
edge about spatial entities or about the relationships between spatial entities are 
often given in the form of constraints. Ordinarily, binary constraints such as “ the 
primary school should be laid out in the north of the residential area ,” ternary 
constraints such as “ the primary school should be laid out between residential 
area A and residential area B ,” or in general,  n -ary constraints restrict the uni-
verse of 2, 3, or  n  variables. Problems like these are formalized as a constraint 
satisfaction problem: given a set of variables  R  over a universe  D  and a set  A  of 
constraints on the variables  R  (Renz  2002  ) . CSP is a powerful general framework 
in which a variety of combinatorial problems can be expressed (Creignou et al. 
 2001 ; Marriott and Stuckey  1998  ) . The aim of CSP is to assign values to the vari-
ables subject to speci fi ed constraints. In fact, it is the most popular reasoning 
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method used in qualitative spatial reasoning (Renz  2002  ) , and a common problem 
in spatial decision-making processes such as the examples described above. 

 Ladkin and Maddux  (  1994  )  formulated binary CSPs as relation algebras as 
developed by Tarski  (  1941  ) . This allows binary CSPs to be treated in a uniform way. 
In a fuzzy domain, the relation algebras constitute fuzzy logic reasoning. Fuzzy 
logic reasoning, one of the application domains of fuzzy relationship generalization, 
is the fundamental basis of fuzzy spatial reasoning. It implements tasks through 
logical operations based on normal relation algebra theory. The operations can be 
extended to  n  sets of fuzzy relationships, i.e., the operation is applicable to multiple 
fuzzy sets. Assuming that there are  n  sets of fuzzy relationships, operations can 
be expressed uniformly as

     1
( ) ( )

i

n

R A
i

z z z Cm m
=

= ⊗ ∈    (4.9)  

where     ⊗   denotes operators  union ,  intersection , and c omplement,  respectively, and 
 A  

 i 
  stands for multiple fuzzy relationships. 
 Zhao et al.  (  2005  )  used this model to implement a combinatorial fuzzy reasoning 

including direction and distance relationships. A task in combinatorial fuzzy reasoning 
is to  fi nd a suitable location for a special factory given certain constraining factors.

    (a)    The factory must be located to the east of the environmental monitoring station.  
    (b)    The factory must not be far from the environmental monitoring station.  
    (c)    The factory must not be situated on land suitable for agriculture.     

 They compared the results of the combinatorial fuzzy reasoning model (Fig.  4.8a ) 
with those of traditional spatial reasoning (Fig.  4.8b ). It is evident that the informa-
tion in the combinatorial fuzzy reasoning result is more abundant and more detailed 
than that in the result of the traditional approach. The combinatorial fuzzy reasoning 
model gives decision-makers more chances to choose a suitable result as it provides 
the degree of suitability to the proposition proposed by the users.    
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  Fig. 4.8    The result of combinatorial spatial reasoning ( a ) and of traditional spatial reasoning ( b )       
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    4.4   Conclusion and Future Prospects 

 Fuzziness is an inherent characteristic in nature and in the language of human 
beings. As GIS can model and digitize the real world, it needs to be able to deal with 
the fuzziness existing in the real world. In addition, the model of the real world in 
GIS is based on the cognition of humans, and the concept and methods of modeling 
and analysis embedded in GIS software are always in fl uenced by human cognition. 
Spatial decision-making support provided by GIS should relate to human cognition. 
Accordingly, the representation and analysis of the real world in GIS should be 
geared to human language, so that the representation, analysis process, and results 
can completely satisfy the natural mode of expression of humans. 

 Scholars began to pay attention to the quality of the spatial data in GIS soon after 
the emergence of GIS in the 1960s, and they adopted fuzzy set theory to deal with 
spatial geographical phenomena and spatial analysis methods. In the early years, the 
application of fuzzy set theory in GIS emphasized the analysis of the sources of 
fuzzy phenomena in spatial data and spatial analysis methods. These sources include 
the fuzziness in three aspects of geographical distributions, or the concept of spatial 
entity, spatial relationships, and spatial reasoning. The exploration of sources indi-
cated the research directions for the application of fuzzy set theory in GIS. After that, 
methods of representing fuzzy geographical objects in GIS were explored based on 
vector and raster structures. However, most of these representational methods can be 
deemed to be concept models, and do not deviate from traditional spatial data struc-
ture. In fact,  fi eld-based raster models or vector models of fuzzy geographical objects 
are always more complex than traditional data structure. Therefore, such models can-
not be widely used for storing fuzzy spatial data. As spatial relationships and spatial 
reasoning are based on determinate geographical objects, research into them was 
also in fl uenced by representational methods of spatial relationships and spatial rea-
soning. Researchers have not abandoned the struggle with fuzzy spatial data. The 
broad boundary model and the “egg-yolk” theory were proposed in order to extend 
traditional topological relationships, and the qualitative directional and distance rela-
tionships of fuzzy objects were also researched using fuzzy set theory and member-
ship functions. In particular, some fuzzy reasoning methods have been put forward to 
solve fuzzy geographical problems. 

 These, however, are only the beginning of longer term collaborative research 
efforts. The application of fuzzy set theory in GIS is still developing. Both fuzzy 
mathematics itself and the concept of fuzzy geographical objects and analysis need 
innovation.

    1.    Further work will have to emphasize research into the measurement of fuzzy 
uncertainty. Based on this idea, a membership function model should be con-
structed for the fuzzy uncertainty of spatial data derived from different sources.   

    2.    Based on geographical ontology, formalized methods of expression should be 
explored for fuzzy objects. In addition to traditional vector and raster structures, 
we may  fi nd a new integrative data structure in which fuzzy information can be 
stored and visualized conveniently in computer systems.   
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    3.    Further research should also focus on the formal de fi nitions of combinatorial 
fuzzy spatial reasoning operations and predicates, with the integration of fuzzy 
spatial data types into query languages, and with aspects of implementation lead-
ing to sophisticated data structures for ef fi cient algorithms for the operations.   

    4.    The promulgation of fuzzy information in the process of spatial reasoning is a 
key point for users who pay attention to the results of spatial analysis. We will 
have to explore the law of promulgation and to assess its effect on the results of 
spatial analysis. In that way we could provide users with a con fi dence range of 
fuzzy spatial reasoning results.          
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