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      10.1   Introduction 

 There is a wide array of simulation methods that mimic the mechanisms of human 
intelligence to achieve one or more objectives. Analytical simulation approaches 
basically use equations that explain data, while statistical ones work primarily with 
probabilities. An iterative combination of any or both of the above uses feedback 
options to answer problems which are too complex to be solved by one equation. 
Most of these equation-based mathematical models identify system variables, and 
evaluate or integrate sets of equations relating to these variables. A variant of such 
equation-based models are based on linear programming (Howitt  1995 ; Weinberg 
et al.  1993  ) , and are potentially linked to geographical information science (GIS) 
information (Chuvieco  1993 ; Cromley and Hanink  1999 ; Longley et al.  1994  ) . 
However, in practice there are limited levels of complexity that can be built into 
these models (Parker et al.  2003  ) . 

 To incorporate complexity, sets of differential equations linked through interme-
diary functions and data structures are sometimes used to represent stocks and  fl ows 
of information (Gilbert and Troitzsch  1999  ) . Although they include human and eco-
logical interactions, these systemic models tend to have dif fi culties in accommodat-
ing spatial relationships (Baker  1989 ; Sklar and Costanza  1991  ) . Given their power 
and ease of use, statistical simulation approaches have been widely accepted, largely 
because they include a variety of regression techniques applied to space and more 
tailored spatial statistical methods (Ludeke et al.  1990 ; Mertens and Lambin  1997  ) . 
However, according to Parker et al.  (  2003  ) , unless tied to theoretical frameworks, 
statistical models tend to down-play decision-making and social phenomena. Other 
simulation approaches express qualitative knowledge in a quantitative fashion by 
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combining expert judgement with probability techniques such as Bayesian or arti fi cial 
intelligence approaches (Parker et al.  2003  ) . 

 The gaps and inconsistencies left by these modeling approaches saw the prolif-
eration of cellular automata (CA) in combination with Markov models. In CA, each 
cell exists in one of a  fi nite set of states, and future states depend on transition rules 
based on a local spatio-temporal neighborhood (Kamusoko et al.  2009  ) , while in 
Markov models, cell states depend probabilistically on temporally lagged cell state 
values. These cellular models (CMs) underlie many land-use studies in which 
Markov–CA combinations are common (Balzter et al.  1998 ; Li and Reynolds  1997 ; 
Kamusoko et al.  2009  ) . While many CMs assume that the actions of human agents 
are important, and others assume a set of agents coincident with lattice cells and use 
transition rules as proxies to decision-making, they both fail to simulate decisions 
expressly and explicitly (Parker et al.  2003  ) . In the latter case, the actor is not tied 
to locations and, as Hogeweg  (  1988  )  observed, this introduces problems of spatial 
orientation to the extent that the intrinsic neighborliness of CA relationships do not 
re fl ect on the actual spatial relationships. This highlights the main challenge faced 
by CMs and most of the aforementioned modeling approaches when it comes to 
incorporating individualistic human decision-making (Parker et al.  2003  ) . When the 
focus is on human actions, agents become the crucial components in the model. 
While cellular models are focused on landscapes and transitions, agent-based mod-
els (ABMs) primarily focus on humans and their actions. Therefore, it is not surpris-
ing to realize that an ABM is more of a mindset that builds on describing a system 
from the perspective of its constituent units than a technology. 

 The bene fi ts of ABMs over other modeling techniques can be expressed in three 
statements: (1) they capture emergent phenomena; (2) they provide a natural descrip-
tion of a system; (3) they are  fl exible. It is clear, however, that the ability of ABMs 
to deal with emergent phenomena is what drives the other bene fi ts (Bonabeau  2002  ) . 
Emergent phenomena result from the interactions of individual entities which can-
not be reduced to the system’s parts: the whole is more than the sum of its parts 
because of the interactions between the parts (Bonabeau  2002  ) . In the geographical 
context of level and scale, Auyang  (  1998  )  understands “emergence” as emergent 
phenomena at one level that constitute the units of interaction, or drivers of change 
at a higher level. 

 There is a wide range of literature discussing the application of ABMs in a num-
ber of global environmental challenges where agents have been used to represent a 
number of entities, including atoms, biological cells, animals, people, and organiza-
tions (Conte et al.  1997 ; Epstein and Axtell  1996 ; Janssen and Jager  2000 ; Liebrand 
et al.  1988 ; Weiss  1999  ) . However, in this chapter we seek to add to the current 
discussion about ABMs in land-use modeling, some of which follow the concep-
tual framework shown in Fig.  10.1 . The rest of the chapter is as follows. We begin 
by presenting the history of ABMs, followed by the concepts of agent modeling 
and the tools available for simulations with a bias towards land-use modeling. 
We later outline the work carried out so far in agent-based land-use modeling, and 
discuss a selected set of applications. In conclusion, we discuss the advantages and 
limitations currently facing ABMs, and try to predict their future use.   
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    10.2   History of ABMs 

 Agent-based modeling can be traced back hundreds of years to discoveries that 
include Adam Smith’s invisible hand in economics, Donald Hebb’s cell assembly, 
and the blind watchmaker in Darwinian evolution (Axelrod and Cohen  2000  ) . In 
each of these early theories, simple individual entities interact with each other to 
produce new complex phenomena that seemingly emerge from nowhere (Heath 
 2010  ) . Because of Newton’s reductionist philosophy (Gleick  1987  )  and his lack of 
tools to adequately study and understand emergent phenomena, it was not until the 
theoretical and technological advances were made that led to the invention of the 
computer that scientists began building models of these complex systems and began 
to have a better understanding of their behavior (Heath  2010  ) . The pioneering 
work was carried out by Alan Turing with the invention of the Turing machine 
around 1937. By replicating any mathematical process, the Turing machine showed 
that machines were capable of representing real-world systems (Heath  2010  ) . The 
theoretical scienti fi c belief that machines could recreate the non-linear systems 
observed in nature got a further boost when Turing and Church later developed 
the Church–Turing hypothesis, which stated that a machine could duplicate not only 
the functions of mathematics, but also the functions of nature (Levy  1992  ) . Premised 
on von Neumann’s heuristic use (von Neumann  1966 ) these machines have since 
moved from theoretical ideas to the real computers that we are familiar with today 
(Heath  2010  ) . 

  Fig. 10.1    A conceptual framework for a farm-based decision-making ABM (adapted from 
Deadman et al.  2004  )        
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 Now that computers had come to stay, the scienti fi c focus shifted towards 
synthesizing the complexity of natural systems. In fl uenced by a reductionist philoso-
phy, most scientists took a top-down approach (Heath  2010  ) . Evidence of this is seen 
in early applications of arti fi cial intelligence, where the focus was more on de fi ning 
the rules of the appearance of intelligence and creating intelligent solutions than 
focusing on the structure that creates intelligence (Casti  1995  ) . This approach was 
skewed towards the idea that systems are linear, and thus it failed to enhance our 
understanding of the complex non-linear systems found in nature (Langton  1989  ) . 
A U-turn towards a bottom-up approach followed when Ulam suggested that von 
Neumann’s self-reproducing machine could be represented more easily by using cellular 
automata (CA) (Langton  1989  ) . CA are self-operating entities that exist in individual 
cells which are adjacent to one another in a 2D space like a checkerboard, and have the 
capability to interact with the cells around them. According to Heath  (  2010  ) , the 
impact of the CA approach was overwhelming for two reasons: (1) because the cells in 
CA act autonomously and simultaneously with other cells in the system, the simula-
tion process changed from serial to parallel representation, and (2) CA systems 
are composed of many locally controlled cells that together create global behavior. 
The former was important because many natural systems are widely accepted to be 
parallel systems (von Neumann  1966  ) , while the latter led to the bottom-up approach 
as the CA architecture requires engineering a cell’s logic at the local level in the hope 
that it will create the desired global behavior (Langton  1989  ) . 

 After learning how to synthesize complex systems and discovering some of their 
properties using CA, complex adaptive systems (CASs) began to emerge as the 
direct historical roots of ABMs (Heath  2010  ) . Drawing much of its inspiration from 
biological systems, CASs were mainly concerned with how complex adaptive 
behavior emerges in nature from interactions among autonomous agents (Dawid 
and Dermietzel  2006  ) . Much of the early work in de fi ning and designing CASs 
resulted from Holland’s work to identify properties and mechanisms that compose 
all ABMs as we know them today (Buchta et al.  2003  ) . Holland reported the three 
main properties of CASs to be aggregation, non-linearity, which is the idea that the 
whole system output is greater than the sum of the individual component outputs, 
and diversity, meaning that agents do not all act the same way when stimulated by a 
set of conditions. 

 It is evident that ABMs emerged from the scienti fi c search to try and understand 
non-linear systems, and this revelation suggests why ABMs are a useful research 
tool. In summary, many subject areas played an important role in developing the 
multidisciplinary  fi eld of ABMs.  

    10.3   Agent Modeling 

 Parker and Meretsky  (  2004  )  noted that ABMs often model complex dynamic sys-
tems and focus on the macro-scale, or “emergent,” phenomena that result from the 
decentralized decisions of, and interactions between, the agents. The concept behind 
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ABMs, which was borrowed from the computer sciences, is to mimic human- or 
animal-like agents interacting at the micro-scale in a computer simulation in order 
to study how their aggregation leads to complex macro-behavior and phenomena 
(Berger  2001  ) . 

 ABMs build on a successful speci fi cation of the agent itself, its behavior, the 
representation of the environment and the interactions. The term agent refers to any 
individual or group of individuals who exist in a given area and are capable of mak-
ing decisions for themselves or for the given area. Generally, an agent can represent 
any level of organization (a herd, a village, an institution, etc.) (Verburg  2006  ) . In 
land-use modeling, these agents couple a human system making land-use decisions 
with an environmental system represented by a raster grid (Deadman et al.  2004 , see 
Fig.  10.1 ). 

 The speci fi cation of the behavior of agents demands a proper description of the 
actual actions of the agents and the basic elements that cause modi fi cations in their 
environment and in other agents (Bandini et al.  2009  ) . It also demands the provision 
of mechanisms for the agents to effectively select the actions to be carried out. The 
mechanism of an agent refers to the internal structure which is responsible for the 
selection of actions (Russel and Norvig  1995  ) , while the actions of agents pertain to 
descriptions of the agents’ actions, for instance state transformation, environmental 
modi fi cations, an agent’s perception and responsiveness, and the spatial physical 
displacement of an agent in the environment. The description of the environment of 
an agent see Weyns et al ( 2007 ), for a detailed de fi nition should, among other fac-
tors, primarily de fi ne and enforce the rules of behavior of an agent, and maintain 
the internal dynamics of the system to avoid chaos. At the same time, it should also 
support an agent’s perception and localized actions by embedding and supporting 
access to objects and parts of the system that are not necessarily modeled as agents 
(Bandini et al.  2009  ) . Interaction is a key aspect in agent design, both with other 
agents and/or the environment. Several de fi nitions of interaction have been pro-
vided, and most of them focus on the ability of agents to engage with the environ-
ment and with other agents in a meaningful problem-solving or goal-oriented 
scheme to achieve particular objectives according to the coordination, cooperation 
and competition practices of natural phenomena. 

 These concepts have been the subject of experiments on many platforms, the 
choice of which tends to depend largely on the researcher’s preference, the computa-
tion requirements, and the overall objectives of the study. Most ABM platforms fol-
low the “framework and library” paradigm (Railsback et al.  2006  ) . A framework is a 
set of standard concepts for designing and describing ABMs, while a library is a set 
of software implementing the framework and providing simulation tools. Without 
trying to be exhaustive, we present some of the commonly available agent modeling 
platforms. The earliest of these platforms include the Swarm (Minar et al.  1996 , 
  www.swarm.org    ), whose libraries were written in Objective-C with later up-dates 
using Java Swarm in order to allow the use of Swarm’s Objective-C library in Java 
(Railsback et al.  2006  ) . The recursive porous agent simulation toolkit (RePast) 
(Collier  2000 ;   http://repast.sourceforge.net/    ) was  fi rst developed as a Java implemen-
tation of Swarm, but has since evolved into a fully  fl edged stand-alone Java platform. 

http://www.swarm.org
http://repast.sourceforge.net/
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MASON (Luke et al.  2005 ;   http://cs.gmu.edu/~eclab/projects/mason/    ) was devel-
oped later, also as a Java implemented tool. Despite these platforms providing stan-
dardized software designs and tools without limiting the type or complexity of the 
models they implement, they have well-known limitations (Railsback et al.  2006  ) . 
According to Tobias and Hofmann  (  2004  ) , their weaknesses include dif fi culty of use, 
insuf fi cient tools for building models, and especially tools for representing space, 
insuf fi cient tools for executing and observing simulation experiments, and a lack of 
tools for documenting and communicating software. The Logo family evolved from 
such limitations with the aim of providing a high-level platform that allows model 
building and learning from simple ABMs (Railsback et al.  2006  ) . Although built on 
elementary-level principles primarily to aid student learning, NetLogo (  http://ccl.
northwestern.edu/netlogo/    ) now contains complex capabilities and is arguably the 
most widely used platform (Railsback et al.  2006  ) . Figure  10.2  is a screenshot of a 
NetLogo platform that comes with its own programming language, which is claimed 
to be simpler to use than Java or Objective-C, an animation display automatically 
linked to the program, and optional graphical controls and charts.  

 A model agent is an abstract representation of the real world, the landscape, 
individuals or groups, and the processes that link these components. Model agents 
are developed at varying levels of complexity and scales of representation, but 
their development should offer a level of realism that will not inhibit any validation 
techniques which will be used later (Deadman et al.  2004  ) . An agent tends to act as 

  Fig. 10.2    A NetLogo ABM platform       

 

http://cs.gmu.edu/~eclab/projects/mason/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
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an interface in helping to assimilate the broader macro-information into the 
decision-making process at the grid level, thereby creating an action in response to 
the natural and economic stimuli (Rajan and Shibasaki  2000  ) . In land-use modeling, 
the macro-information comes in the form of the biophysical conditions in the area 
and the prevailing economic conditions at a given location and time. 

 Mismatches between the units of analysis and the units of actual decision-making 
have been widely accepted, and attention is slowly shifting from pixels to agents 
(Verburg et al.  2005  ) . In land use/cover change (LUCC) modeling, for instance, the 
overarching problem has been linking agents capable of decision-making to land 
areas: i.e. linking “people and pixels” (Geoghegan et al.  1998 ;    Rindfuss et al.  2003  ) . 
An expanding group of models has recently used individual agents as units of simu-
lation (see Berger  2001 ; Bousquet and Le Page  2004 ; O’Sullivan and Haklay  2000 ; 
Parker et al.  2003  ) . While agent-based approaches have speci fi c strengths in describ-
ing and exploring decision-making by agents in a variety of  fi elds (see Malleson 
 2010  ) , they face dif fi culties in adequately representing the spatial patterns in LUCC 
models owing to dif fi culties in representing the feedback between the behavior of 
the agents and land units (Verburg  2006  ) . In some ABMs, a cellular automata (CA) 
approach is used, in which the state of a pixel is determined by the state of the 
neighboring pixels (Ligtenberg et al.  2004 ; Manson  2005  ) . Although CA methods 
are often seen as a type of multiagent approach, because of the explicit treatment of 
interactions between (spatial) entities it is hard to imagine that the pixels are a rep-
resentation of the agents (Couclelis  2001  ) . 

 In current practice, a cellular component that represents the landscape is coupled 
with an agent-based component that represents the human decision making 
(Schreinemachers and Berger  2006 ; Parker et al.  2003  ) . As the debate progressively 
leans towards agents and away from pixels, challenges about how to represent real-
world decision making become more apparent. The decision-making structure of an 
agent falls into two broad categories, optimizing and heuristic. The key difference is 
that the latter have neither the information to compare all feasible alternatives nor the 
computational power to select the optimum (Schreinemachers and Berger  2006  ) . 
Heuristics are relatively simple rules that build on the concept of a search process 
guided by rational principles (Simon  1957  ) , while optimization needs the ability to 
process large amounts of information about all feasible alternatives and always select 
the best one (Schreinemachers and Berger  2006  ) . The intuitive nature of heuristics 
makes them more transparent and therefore easy to validate. However, constructing 
a decision tree which is representative of the thought processes of a human being is 
not easy. A variety of optimization approaches are available, but the most common 
include mathematical programming (see Balmann  1997 ; Berger  2001 ; Becu et al. 
 2003 ; Happe  2004  )  and genetic programming (see Manson  2005  ) . Mathematical 
programming (MP) is a computerized search for a combination of decisions that 
yields the highest objective function value (Schreinemachers and Berger  2006  ) . 
Unlike the heuristic approach, MP requires the explicit speci fi cation of an objective 
function. In LUCC modeling, the objectives of the agents, which include cash 
income, food, and leisure time, tend to be similar for both MP and heuristic 
approaches. Figure  10.3  gives an example of a heuristic decision-making tree.   
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    10.4   ABM Applications 

 Using a mountainous region in Laos, Wada et al.  (  2007  )  developed a micro-scale 
ABM to simulate the spatial and temporal patterns of shifting cultivation with the 
aim of understanding how this expands in space. While ABMs recognize and take 
advantage of the fact that human decision-making is heterogeneous, decentralized 
and autonomous (Parker et al.  2003  ) , this is a representative case in which individ-
ual behavior is conspicuously less heterogeneous and less decentralized. The base 
unit in the model was a cluster of villages as opposed to individual households (see 
Deadman et al.  2004 ; Evans and Kelley  2004  ) . The choice of a cluster of villages in 
the Laotian model was partly because of the limited availability of spatial data (vil-
lage boundary data), and also because of the revelation that decisions to expand and/
or relocate shifting cultivation are made at village level rather than in individual 
households (Wada et al.  2007  ) . 

 Underscoring the sporadic, incomplete and mostly non-existent market context 
in the subsistence agriculture set-up, Walker  (  1999  )  attempted to account for land 
allocation beyond the extensive margins of permanent agriculture. He builds on the 
notion of peasantry, where the subsistence farmers require a wide selection of natu-
ral commodities to survive and pursue their cultural activities. In the absence of 
markets, such commodities tend to be obtained from the forest environment or 
through agricultural activities of limited scope. In cases of a natural increase in 
population, the pressure brought to bear on the land resources results in technologi-
cal intensi fi cation which, in the initial phases, involves a reduction in the rotation 
times of the shifting cultivation. As a result, the nutritive requirements of a house-
hold combined with the accelerated rotations explained the diversity in crop selec-
tion for most households, while the reduced areas of cultivation accounted for the 
magnitude of production (Walker  1999  ) . 

Are subsistence requirements met?

No

No

No

No

Yes

YesYes

Yes

Enough labor and capital?

Leave fallow Plant Cash
crop

Capacity for sustainable
production?

Enough resources to farm?

Seek off-farm
activities

Plant staples Agro forest

  Fig. 10.3    A heuristic structure of subsistence farm-based decision-making (adapted from 
Deadman et al.  2004  )        
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 In the  fi eld of policy analysis and planning, much work has been done, for 
example, to evaluate the impact of a number of agricultural policies on regional struc-
tural changes (Happe  2004  ) , and the impacts of free trade policies on the diffusion of 
innovation in agricultural regions of Chile (Berger  2001  ) . The pioneering work by 
Balmann  (  1997  )  was a demonstration of the existence of a dependence on paths in the 
evolution of land use, which he later used to investigate the effect of reducing price 
support and introducing compensation payments (Balmann et al.  2002  ) . Several stud-
ies have attempted to use ABMs to explore the likely impacts of speci fi c real-world 
policies (see Weisbuch and Boudjema  1999 ; Deffuant et al.  2002 ; Sengupta et al. 
 2005 ; Janssen  2001  ) , while others have examined the in fl uence of generic and abstract 
policies on the behavior of an agent within a system (Janssen et al.  2000  ) . 

 Deadman et al.  (  2004  )  presented a simulation model that explored human under-
standing of the spatial, social and environmental concerns related to LUCC. Based on 
a heuristic decision-making strategy, they utilized household characteristics, among 
other factors, in which the interaction of agents was effected through a labor pool. 
While subsistence labor demands may not always be signi fi cant, it has been reported 
that signi fi cant gender differences occur with respect to farm labor within house-
holds (Siqueira et al.  2002  )  in much the same way as population age. Although it 
 fl exed randomly on gender, the LUCITA model (see Deadman et al.  2004  )  did not pay 
particular attention to overall population age. Evans and Kelley  (  2004  )  did an analysis 
of scale and how it impacts on the design and implementation of LUCC ABMs at the 
household micro-level. The analysis revealed differences in land-use preference 
weights that helped to identify scale considerations in the design, development, vali-
dation and application of ABMs in LUCC analysis. In their discussion, Evans and 
Kelley  (  2004  )  highlight the complexities of spatial scale and computational capacity 
limitations, and acknowledge the non-monetary in fl uences on decision-making. 

 Using ABMs to describe the decision making of land-use parcel managers and 
cellular automata to represent the landscape, the SLUDGE model explored the 
impact of distance-dependent spatial externalities and transportation costs on pat-
terns of urban development and land use (Parker and Meretsky  2004  ) . A similar test 
on the mechanisms behind the growth and spatial patterns of cities was conducted 
by Torrens and Alberti  (  2000  )  in order to address issues of local decision-making in 
determining urban sprawl. In this study, several metrics were developed to quantify 
the sprawl patterns. Brown et al.  (  2004  ) , Loibl and Toetzer  (  2003  ) , Rajan and 
Shibasaki  (  2000  ) , Sanders et al.  (  1997  ) , Dean et al.  (  2000  ) , Kohler et al.  (  2000  ) , 
Hoffmann et al.  (  2002  ) , Huigen  (  2004  ) , and Otter et al.  (  2001  )  have all contributed 
signi fi cantly to the use of ABMs by explicitly simulating human decision-making 
processes rather than using empirical approaches (Mathews et al.  2007  ) .  

    10.5   Conclusions 

 Agent-based modeling is an approach that continues to receive attention in studies 
of many geographical phenomena. As Mathews et al.  (  2007  )  note, this is because it 
offers a way of incorporating the in fl uence of human decision-making on land use 
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in a mechanistic, formal and spatially explicit way. ABM is therefore a handy tool 
in developing a greater understanding of the natural world. 

 Empirical illustrations of observed outcomes have been shown to be a suf fi cient 
end for ABM (Epstein  1999  ) . However, Parker et al.  (  2003  )  note that it is retrogres-
sive to limit the potential and appropriateness of ABM to such illustrations, espe-
cially in cases where the design and implementation prospects of ABMs are very 
promising, with reported success in many varying  fi elds of human signi fi cance. It 
has been argued that as simulation models, ABMs are limited. Firstly, they cannot 
be suf fi ciently deductive to give con fi dence in the outcomes from the model param-
eters. However, as Judd  (  1997  )  counter-argued, through sensitivity analysis, an almost 
complete understanding of the dynamic system under study is achievable. Secondly, 
ABMs are said to be sensitive to small perturbations in model parameter values at 
the micro-scale or a lower level, thereby providing a multitude of outcomes, but as 
Parker and Meretsky  (  2004  )  stated, the focus of ABMs is on the macro-scale or 
emergent patterns. Although there may be signi fi cant differences at the micro-level, 
the outcomes tend to be similar at the macro-level. While ABMs address individual-
ism in the mechanics of system behavior, validating ABMs has proved to be a 
dif fi cult task. However, Berger  (  2001  )  justi fi ed his choice by pointing out that 
ABMs do allow for a pragmatic treatment of data availability. He cited the exchange 
of information interactions between farming households, the cumulative effects 
of experience and the observation of neighbors’ experience, and technical and 
 fi nancial constraints as factors that affected the diffusion of innovations and which 
could be explicitly de fi ned and controlled within an ABM. 

 ABMs are implemented at varying levels of stakeholder involvement. Parker 
et al.  (  2003  )  highlighted three cases in which stakeholders were involved either 
right from the beginning of the modeling process, in the  fi nal stages of testing and 
running the model, or where models are presented as ready-made applications to 
policy makers. With the majority of ABMs falling into the former two categories, 
Mathews et al.  (  2007  )  ascribed the failure by end-users to use ABMs directly as 
decision support systems to a poor understanding by researchers of the actual pro-
cess of decision-making and the role that decision support tools may play in this 
process. Several other factors are attributed to the lack of success of decision sup-
port systems, since failures at the former two levels are equally common (Mathews 
et al.  2007  ) . Faced with such limitations, Stephens and Middleton  (  2002  )  stated that 
simulation models are probably more useful as research tools to provide insights 
into constraints that can later be transformed into rules-of-thumb, than as opera-
tional decision support tools. Lempert  (  2002  )  followed a similar line when he argued 
that much of the failure is to do with the predictive, as opposed to explanatory, 
approach that many modellers adopt. He suggested that model runs ought to com-
pare the robustness, resilience and stability of alternative policies. 

 Agents interact either indirectly through a shared environment and/or directly 
with each other through markets, social networks and/or institutions. Higher-order 
variables such as commodity prices and population dynamics are usually expressed 
as emergent outcomes (Mathews et al.  2007  ) . Moving from relatively abstract rep-
resentations, ABMs have gradually progressed into an exploration of the conceptual 
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aspects of spatially explicit systems of real-world situations (see Epstein and Axtell 
 1996  ) , and all the way through to more complex representations of socio-ecological 
systems (see Berger and Ringler  2002 ; Hoffmann et al.  2002  ) . With the addition of 
empirical data, recent versions of these models are now being applied to speci fi c 
real-world situations (see Deadman et al.  2004  ) . Complex environmental problems 
tend to be multidisciplinary, temporally dynamic, and spatially referenced. As a 
result, the nature of the interactions of these systems often makes it dif fi cult to pre-
dict the outcomes for particular management actions, socio-economic conditions, or 
environmental processes (Deadman et al.  2004  ) . However, recent advances in com-
puting technology have further enhanced the use of computer-based models and 
analyzes that have since expanded the interest in computational approaches to the 
study of human geographic systems with the aim of providing meaningful solutions. 
ABM has tapped into these advances, and there is still plenty of room for growth 
and improvement.      
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