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        Preface   

 This book discusses the current trends in methods and applications of geospatial 
analysis and highlights future development prospects. It aims to provide a compre-
hensive discussion on data processing techniques, current practices with theories 
and models of remote sensing (RS) and geographical information systems (GIS), 
and empirical studies of geospatial analysis. 

 Data acquisition and processing techniques such as remote sensing image selec-
tions, classi fi cations, accuracy assessments, models of GIS data, and the spatial 
modeling process are focused on in the  fi rst part of the book. In the second part, 
theories and methods, including fuzzy sets, spatial weights and prominence, geo-
graphically weighted regression, weight of evidence, Markov–cellular automata, 
arti fi cial neural networks, agent-based simulation, multi-criteria evaluation, analytic 
hierarchy process, and a GIS network model are included. Part III presents selected 
best practices on geospatial analysis, focusing on geographical phenomena. Most of 
the chapters are original and a few, especially for applications, are reprints from 
international journals and proceedings. 

 This book is written for academicians, researchers, practitioners, and advanced 
graduate students. It is designed to be read by those new or starting out in the  fi eld 
of geospatial analysis, as well as by those who are already familiar with the  fi eld. 
The chapters are selected from experienced authors in such a way that readers 
who are new to the  fi eld will gain an important overview and insight. At the same 
time, those readers who are already practitioners in the  fi eld will gain from the 
advanced and updated materials and state-of-the-art developments in geospatial 
analysis. 

 Most of the contributors to this book are current faculty members, staff members, 
graduates, and PhD candidates of the Division of Spatial Information Science, 
University of Tsukuba, Japan. The Division, which was established in 2000 for 
including Geographical Information Science within the Doctoral Program in 
Geoenvironmental Sciences, provides an enabling research environment where 
faculty members, staff, and students work together to advance knowledge in GIS 
and remote sensing techniques in different areas of interest. 
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 My sincere thanks go to the staff members of the Division of Spatial Information 
Science, University of Tsukuba, especially to Mr. Konstantin Greger, whose sharp 
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    1.1   What Is Geospatial Analysis?    

 Although the term “geospatial analysis” is widely used in the academic world, its 
de fi nition is not clear even in the  fi eld of geographical information science (GIS). 
In this book, we de fi ne geospatial analysis as a GIS-based approach to analyze 
geographically referenced information using methods such as statistics, information 
theories, computational geometry, and geovisualization techniques. Its goal is to 
 fi nd the driving forces of changes on the earth’s surface, and analyze the geographical 
phenomena in order to understand their processes and mechanisms. Finally, it allows 
to suggest appropriate policy planning and decision making for sustainable develop-
ment of a region to be suggested. 

 “Geospatial” information is considered a part of “spatial” information, which 
receives wide recognition in GIS communities. Here, geospatial data are limited to 
those on the earth’s surface which are geographically referenced by address, place 
name, latitude/longitude, and so on. Geological phenomena inside the earth, the free 
atmosphere far above the earth’s surface, and the topography on the Moon and 
Mars, for example, are not encompassed by the category of geospatial data in this 
book. Furthermore, architectural concepts like building structure and room arrange-
ment in houses are also outside our research territory, although they are embraced 
in spatial data. In this regard,  fi eld-based empirical studies using geospatial tech-
niques are conducted mainly within the geography-related disciplines.  

    Y.   Murayama   (*)
     Division of Spatial Information Science, Graduate School of Life and 
Environmental Sciences ,  University of Tsukuba      ,  Tsukuba, Ibaraki ,  Japan    
e-mail:  mura@geoenv.tsukuba.ac.jp   

    Chapter 1   
 Introduction: Geospatial Analysis       

       Yuji   Murayama                
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    1.2   Quantitative Revolution 

 The origin of geospatial analysis can be traced back to the 1950s, when in North 
America the contribution of academics to society in general was required by the 
penetration of practicalism (Murayama  2004a  ) . Geography was criticized because 
its methodological framework was old-fashioned and insuf fi cient to satisfy social 
needs. Against this backdrop, quantitative methods and theoretical models oriented 
to law-making were pursued, and these were applied in problem-solving studies 
(Murayama  2004b  ) . This academic movement was called the  Quantitative Revolution  
in geography (Burton  1963    ). New methodologies, including network approaches 
using graph theory, central place formulation, point pattern analysis, regionalization 
and classi fi cation techniques employing multivariate analysis, and location- 
allocation problems were developed (Berry and Marble  1968  ) . 

 In the 1970s, geospatial analysis with a time dimension, that is, spatiotemporal 
analysis, emerged and quickly became popular. It embraces time geography, behav-
ioral geography, studies of changes in land use/cover, spatial diffusion and interac-
tion modeling, and so on. A strong emphasis was placed on the conceptual switch 
from static to dynamic thinking, in other words, from the spatial structure to spatial 
process studies. In the late 1970s, computer mapping was developed as a type of 
analytical cartography, paving the way for geovisualization studies linked with GIS 
(Tobler  1976  ) .  

    1.3   GIS Revolution 

 In the 1980s and 1990s, new techniques in geospatial analysis were exploited and 
implemented in GIS software (Murayama  2001  ) . Advanced geospatial analysis 
became available without programming via open-source freeware such as GRASS, 
SPATSTAT, and R Package. Methodologically, great interest was focused on spatial 
homogeneity and heterogeneity (Anselin  1988  ) . This concept was developed by 
further studies on local spatial autocorrelation, geographically weighted regression 
(GWR), spatial weight metrics and prominence, Kernel density, modi fi able area 
unit problems, trend surface, and so on. 

 Geospatial analysis is interdisciplinary in nature. To enhance its operability, 
strong cooperation among adjacent disciplines is indispensable. In the 1990s, 
sophisticated GIS software was invented through teamwork which brought together 
regional science, information science, computation geometry, and statistics. The 
analytical functions became powerful due to the integration of raster-based GIS and 
vector-based GIS. Furthermore, the combination of GIS with remote sensing (RS) 
enhanced the usability of geospatial analysis, where useful techniques in RS such as 
spatial metrics, land use/cover classi fi cation, fuzzy sets, and so on, were effectively 
introduced within the GIS framework (Murayama and Thapa  2011a  ) . 

 Today, tremendous amounts of geospatial data are ceaselessly produced and have 
become immediately available in the GIS environment. This data-rich condition, 
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along with increasing computing power, is enabling the development of advanced 
geospatial data mining. In the 1990s, geocomputation was developed with the use 
of  fi ne image data from RS, and socioeconomic micro-data such as individual infor-
mation from censuses and volunteered information (Openshaw and Abrahart  2000 ; 
Murayama and Thapa  2011a  ) . The availability of high-resolution images from 
Quick Bird, IKONOS, and ALOS, for instance, is accelerating the micro-approach 
within cities, which is called urban remote sensing (Yang  2011  ) . Today, geocompu-
tational techniques are rapidly becoming strong tools for process-based studies 
where the future is predicted based upon the process from the past to the present. 
These techniques include neural networks, cellular automata, agent-based modeling, 
genetic algorithms, self-organizing mapping, and so forth. Since 1996, a geocompu-
tation conference is held every 2 years, where geographers, information scientists, 
computer programmers, and other experts gather from all over the world to re fl ect 
on work within the  fi eld of geocomputation from an interdisciplinary perspective 
(  http://www.geocomputation.org/    ). 

 The  GIS revolution  has brought methodological and conceptual shifts: from 
model-driven to data-driven, from deductive to inductive, from top down to bottom 
up, from aggregate to disaggregate, from discrete to continuous, from lagged time 
to real time, from static to dynamic, from quantitative to qualitative, and from linear 
to non-linear (Murayama and Thapa  2011b  ) . From this revolution, it could be argued 
that geospatial analysis with GIS is more a useful tool in formulating hypotheses 
than it is in verifying them. 

 The book consists of 17 chapters. Chapter   1    , the introduction, traces the evolu-
tion/origin of geospatial analysis using GIS-based techniques, and discusses the 
usefulness of theories, techniques, and methods for analyzing geographical pro-
cesses occurring on the earth’s surface. Then an overview of each chapter is given.   

       1.4   Geospatial Data Acquisition and Processing 

 In Part I, geospatial data acquisition and processing are discussed (Chaps.   2     and   3    ). 
 Chapter   2     focuses on the preprocessing of remotely sensed data and classi fi cation 

methods. Information extraction from satellite image data requires appropriate 
image-processing methods and techniques. The overall aim is to extract the infor-
mation and explore the spatial patterns of land-surface objects, that is, land cover 
patterns from the classi fi ed satellite imagery known as a thematic map. Furthermore, 
this chapter presents theoretical procedures and techniques to produce useful infor-
mation from such thematic maps. Signi fi cant technological advancements in data 
acquisition and analysis in recent years have made it easier to analyze the spatiotem-
poral dynamics of landscape changes using multispectral classi fi cation techniques 
with various statistical rules. Finally, this chapter discusses the various methods of 
assessing the classi fi ed image ranging from  fi eld-based validation to visual interpre-
tation with high-resolution satellite images. 

http://www.geocomputation.org/
http://dx.doi.org/10.1007/978-4-431-54000-7_1
http://dx.doi.org/10.1007/978-4-431-54000-7_2
http://dx.doi.org/10.1007/978-4-431-54000-7_3
http://dx.doi.org/10.1007/978-4-431-54000-7_2
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 Chapter   3     focuses on geospatial data collection methods, database design and 
construction, and modeling with GIS. Geospatial data collection, including remote 
sensing,  fi eld surveying, and other in-house GIS data conversion processes 
(i.e., scanning, georeferencing, digitizing, etc.), is an important task for many 
geospatial information users. Traditional  fi eld data collection (i.e., pen-and-paper-
based) is a bulky and time-consuming task. However, recent developments in mobile 
communication, global navigation systems, the Internet, and portable computational 
devices such as smartphone, netbooks or ultra-mobile personal computers 
(UMPCs) allow us to carry out  fi eld data collection in a timely manner. Moreover, 
under the client-server setting for  fi eld data collection, a  fi eld user may take advan-
tage of digital repositories prepared for data collection (i.e., base maps, satellite 
images, and other ancillary data) as well as information resources more generally 
available via the Web. Proper geospatial data collection and conversion are required 
to support spatial analysis with GIS, which is vital for accurate decision making. 
Geospatial data processing is at the heart of the task in many GIS analyzes.  

    1.5    Geospatial Theories and Methods 

 GIS is designed to store, retrieve, manipulate, analyze, and visualize geospatial 
data. On the other hand, the uncertainty which affects the accuracy of maps and 
geospatial analysis results always exists in the data because of the limitations of 
human cognition of geographical phenomena or the resolving power of surveying 
instruments. Part II is composed of nine chapters (Chaps.   4     through   12    ), and aims to 
review the existing theories and methods in geospatial analysis, particularly in land 
use/cover modeling and GIS network data models. 

 Chapter   4     analyzes the fuzziness of geographical phenomena and classi fi es them 
into three aspects: the fuzziness of the distribution of the geographical phenomena 
or concept of a geographical entity, the fuzziness derived from spatial relationships, 
and the fuzziness derived from geospatial analysis and spatial reasoning operations. 
Fundamental fuzzy set theory, including the de fi nition of a fuzzy set, fuzzy set oper-
ations, and fuzzy relationships and membership functions, is summarized in the 
representation of such fuzzy phenomena. Applications of fuzzy set theory in GIS 
are reviewed according to the sequence of fuzzy representations of geographical 
entities and their distribution, fuzzy spatial relationships, and fuzzy operations in 
spatial reasoning. Then, an example of a  fi eld-based integrated spatial reasoning 
model in the case of a constraint satisfaction problem (CSP) is given to synthetically 
illustrate the above-mentioned three fuzzy aspects. Finally, the author considers the 
future research directions of fuzzy set theory in applications using GIS. 

 Chapter   5     shows that in geospatial analysis of geographical phenomena, a region 
or a city under study might be divided into several small areal units such as a regular 
square tessellation or administrative units emerging in irregular shapes. The spatial 
interrelation between areal units can be expressed as different de fi nitions of the 

http://dx.doi.org/10.1007/978-4-431-54000-7_3
http://dx.doi.org/10.1007/978-4-431-54000-7_4
http://dx.doi.org/10.1007/978-4-431-54000-7_12
http://dx.doi.org/10.1007/978-4-431-54000-7_4
http://dx.doi.org/10.1007/978-4-431-54000-7_5
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weight coef fi cient. For example, the spatial structure of areal units might be de fi ned 
as the spatial contiguity, which is treated as a spatial weights matrix  W  with a binary 
variable. This chapter also explains how to de fi ne and create the spatial weight, 
which is an expression of the spatial dependence between areal units. Four types of 
weight functions are introduced here. An area which has special geometric attri-
butes and keeps signi fi cant spatial correlation close to adjacent areas is called a 
 prominent area . As an application of the spatial weights matrix, the prominence of 
irregular areas can be measured by the  prominence index , which is a stationary dis-
tribution of a Markov chain transition matrix that is identical to a spatial weight 
matrix. An empirical study in this chapter shows that generalized weight matrices 
are more appropriate for measuring the prominence rather than the distance decay 
and  k -order. 

 Chapter   6     explains GWR, which is a technique for spatial statistical modeling 
used to analyze spatially varying relationships between geographical variables. 
Unlike the traditional regression framework, GWR allows local rather than global 
parameters to be estimated. In this chapter, the authors discuss the theoretical basis 
of the GWR method and modeling. Some of the current best practices for under-
standing urban and regional problems, for instance, regional analysis of wealth and 
land use/cover, driving forces behind deforestation and afforestation, and so on, are 
highlighted. GWR is one of the recent developments of local spatial analytical 
techniques, and it has been part of the growing trend in GIS toward local analysis. 

 Chapter   7    , which deals with Bayesian theory, focuses on the weight of evidence 
(WofE) method and its applications in GIS. WofE, which is entirely based on the 
Bayesian approach of conditional probability, is traditionally used by geologists to 
point out areas which are favorable for geological phenomena such as seismicity 
and mineralization. Recently, the WofE method has been used to combine spatial 
data from a variety of sources to describe and analyze interactions, provide evidence 
for decision making, and construct predictive models. This chapter discusses the 
theoretical basis of WofE and presents best modeling practices. Basically, this 
method concerns the likelihood of detecting a certain event, which could be a given 
category of land use/cover change such as a change from an agricultural area to a 
built surface, in relation to potential evidence (proximity to urban centers, roads, 
water, etc.), often called the driving factors of change. 

 Spatial simulation models such as the Markov cellular automata (MCA) are criti-
cal for land use/cover change modeling because models are needed to gain insights 
into land use/cover change processes at many spatial and temporal scales. The MCA 
model combines cellular automata with Markov chains and GIS-based techniques 
such as multicriteria evaluation (MCE) and WofE in order to simulate land use/
cover changes. The Markov chain process controls temporal dynamics among the 
land use/cover classes, while spatial dynamics are controlled by local rules deter-
mined either by the cellular automata mechanism or by its association with transi-
tion potential maps computed by WofE and MCE techniques. Chapter   8     reviews the 
methodological developments of the MCA model, as well its current status and 
future prospects based on criteria such as modeling techniques, data requirements, 

http://dx.doi.org/10.1007/978-4-431-54000-7_6
http://dx.doi.org/10.1007/978-4-431-54000-7_7
http://dx.doi.org/10.1007/978-4-431-54000-7_8
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calibration, and validation. Thus, issues raised in this chapter could contribute to the 
improvement of future MCA land use/cover change models. 

 Chapter   9     outlines the progress of arti fi cial neural networks, architectures, algo-
rithms, and future developments in geospatial analysis with GIS. Their applications 
are reviewed with land use/cover change analysis and modeling. Many arti fi cial 
neural network architectures have been developed over the past years. One of the 
most popular is the multilayer perceptron (MLP) neural network. From a geospatial 
analysis point of view, MLPs have been shown to be a universal and highly  fl exible 
function approximation tool for any data. This chapter gives a comprehensive review 
of the history and basic architecture of MLPs. The use of MLPs for land use/cover 
classi fi cation is presented as a representative type of data-pattern recognition. 
Finally, future trends in the development of MLPs are brie fl y summarized. 

 Chapter   10     reviews multiagent simulation models to understand land-use change 
management and sustainability in the area of forest loss (deforestation). An attempt 
is made to assess the sustainability of deforestation management from the perspec-
tive of individual decisions made at the farm or household level. Agent-based models 
(ABMs) continue to receive wide attention as a method of modeling complex real-
world applications. Founded on the pretext of understanding the non-linearity of 
natural systems, the multidisciplinary ABM originates primarily from arti fi cial intel-
ligence. This chapter delves into the history of complex systems and connects it to 
present-day fundamental principles of de fi ning and designing agents. It then high-
lights the basic tenets of agent modeling implementation, which include a discussion 
on available ABM development platforms. This chapter also contextualizes the agent, 
its environment, and its interaction when applications of ABM in land use/cover 
modeling are presented and addressed. All this adds to the available literature on 
ABMs in the hope that by presenting both the past and present, modelers will be able 
to distinguish between and develop new ABM approaches for the future. 

 Chapter   11     discusses multicriteria decision analysis (MCDA). Since its develop-
ment in the 1970s, the analytic hierarchy process (AHP) has been an important tool 
for decision makers and researchers. It presents a  fl exible, step-by-step, and trans-
parent way of analyzing complex problems in a MCDA environment based on 
experts’ preferences, knowledge, and judgments. There has been a growing interest 
in using this method in the last two decades or so, and its scope of application has 
been expanding, especially in the  fi eld of geospatial analysis. This chapter also 
reviews the basic principles of AHP, its historical development, and its applications 
as a decision support tool for GIS-based MCDA. Major  fi ndings show that AHP has 
been implemented in various  fi elds of geospatial analysis in various countries 
around the world. This indicates how versatile and useful AHP is as a decision sup-
port tool. However, the review also shows that researchers have still not achieved 
consensus on certain issues concerning the implementation of AHP as a weighting 
method for GIS-based MCDA. Some of these issues include considerations about 
the method of capturing expert opinion using the pair-wise comparison method, the 
method of aggregation of individual expert’s ratings (in cases where consensus rat-
ings are not used), and the method of standardizing the individual factors involved 
in a GIS-based MCDA. These issues are crucial; thus, careful attention is needed 

http://dx.doi.org/10.1007/978-4-431-54000-7_9
http://dx.doi.org/10.1007/978-4-431-54000-7_10
http://dx.doi.org/10.1007/978-4-431-54000-7_11
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when using AHP as a decision support tool for GIS-based MCDA. Nevertheless, 
because of AHP’s effectiveness in evaluating problems involving multiple and 
diverse criteria and the measurement of trade-offs, its simplicity and robustness, and 
its precision and ease of use, its applications will undoubtedly continue to expand in 
 fi elds of both non-spatially and spatially based decision-making environments. 

 Chapter   12     discusses the GIS network model and its applications. A network is an 
interconnected set of points and lines that represent possible routes from one location 
to another. Road network models play a critical role in urban planning, emergency 
preparedness, retail market and market competition analysis, public facility manage-
ment, and other planning and decision-making processes. Understanding the road 
network patterns in urban areas is important for human mobility studies, because 
people live and move along the road networks. Network data models allow us to solve 
daily activities such as  fi nding the shortest path between two locations, looking for the 
closest facilities within a speci fi c distance, and estimating driving time. A network 
model can include a multilayer model representing, for example, a railway system, a 
subway system, and a bus system to solve problems using multiple modes of transpor-
tation in an urban area. Many commercial GIS data models composed of layers such 
as points (nodes) and lines (links) comprise separate layers. This is called a layer-
based approach. These nodes and links can also be represented as object classes; 
this type of model is known as an object-oriented network data model, and is still in 
the design phase. The development of 3D network models and concepts in GIS can 
solve these complex multilayer network solutions. Moreover, the combination of 
Internet technology and user-friendly Web-GIS provides an opportunity to perform 
interactive network analysis to make spatial decisions in a timely manner for local 
residents and city planners through Web-based GIS systems.  

    1.6   Applications in Geospatial Analysis 

 Part III provides  fi ve applications (Chaps.   13     through   17    ) in geospatial analysis 
employing GIS, remote sensing, and global positioning systems. 

 The complexity of urban systems requires integrated tools and techniques 
to understand the spatial process of urban development and project future scenarios. 
In this connection, Chap.   13     aims to simulate urban growth patterns using a Bayesian 
probability function in the Kathmandu metropolitan region in Nepal. Like many 
cities in the developing world, it has been facing rapid population growth and daunt-
ing environmental problems. Three time-series land-use maps at a  fi ne scale (30 m 
resolution) derived from satellite remote sensing covering the last three decades of 
the twentieth century were used to clarify the spatial process of urbanization. Based 
on historical experiences of land-use transitions, the authors adopted the WofE 
method integrated in a cellular automata framework to predict the future spatial pat-
terns of urban growth. The authors extrapolated urban development patterns to 2010 
and 2020 under the current scenario across the metropolitan region. Depending on 
local characteristics and land-use transition rates, this model produced a noticeable 
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spatial pattern of changes in the region. Based on the extrapolated spatial patterns, 
urban development in the Kathmandu valley is projected to continue through both 
in fi lling in existing urban areas and outward rapid expansion toward the east and 
south. Overall development will be greatly affected by the existing urban space, 
transportation networks, and topographic complexity. 

 Chapter   14     discusses land suitability assessment using a fuzzy MCE model, 
which is an important step for sustainable land-use planning in the rural landscapes 
of developing countries. Taking the Tam Dao National Park Region, Vietnam, as a 
case study, this chapter demonstrates how the results of the assessment are used for 
sustainable land-use planning decisions. Land degradation is recognized as one of the 
major threats to the buffer zones of protected areas (PAs) in Vietnam. In particular, 
the expansion of land degradation into the PAs is exerting pressure on biodiversity 
conservation efforts. This degradation is partially the result of mismanagement: the 
utilization of the land is often mismatched with the inherent nature of the land. 
Identi fi cation of the spatial distribution of suitable areas for cropland is essential to 
allow sustainable land-use recommendations to be made. The authors delineate the 
areas in the region which are suitable for cropland using a GIS-based MCE of 
biophysical factors and Landsat ETM+imagery. GIS is used to generate the factors, 
while MCE is used to aggregate them into a land suitability index. The results which 
indicate the location and extent of crop farming areas at different suitability levels 
can be used to identify priority areas for crop farming and sustainable land-use 
management. The GIS–MCE approach provides an effective assessment tool for 
land-use managers working in the PAs of Vietnam. 

 Chapter   15     presents the application of the neighborhood interaction method in 
land-use analysis. Local spatial interactions between neighborhood land-use catego-
ries (i.e., neighborhood interactions) are important factors which affect urban land-
use change patterns. Therefore, they are key components in cellular automata-based 
urban geosimulation models that aim at forecasting urban land-use changes. In this 
chapter, the authors interpret the similarities and differences of neighborhood inter-
actions in three metropolitan areas in Japan, namely Tokyo, Osaka, and Nagoya, to 
provide empirical material to understand the mechanism of urban land-use changes. 
Neighborhood interaction reveals the effect of spatial autocorrelation in the spatial 
process of urban land-use changes in the three metropolitan areas, which correspond 
with the agglomeration of urban land-use allocation in Japan. Neighborhood interac-
tions amidst urban land-use changes among the three metropolitan areas generally 
showed similar characteristics. The regressed neighborhood interaction coef fi cients 
in the models may represent the general characteristics of the neighborhood effect on 
urban land-use changes in cities. The results provide very signi fi cant material for 
exploring the mechanism of urban land-use changes, and the construction of universal 
urban geosimulation models which may be applied to any city. 

 Walkability is a well-known measure of how conducive an area is to walking to 
and from chosen destinations. The calculation of a walk score is widely used in 
accessibility studies to determine the ease or dif fi culty of travel by foot between one 
point and another. Based on this situation, Chap.   16     proposes an integrated method-
ology (remote sensing, GIS, and spatial Web technology) to model urban green 
space walkability which will enable local residents to make informed decisions 

http://dx.doi.org/10.1007/978-4-431-54000-7_14
http://dx.doi.org/10.1007/978-4-431-54000-7_15
http://dx.doi.org/10.1007/978-4-431-54000-7_16


91 Introduction: Geospatial Analysis

that will improve their living conditions and physical health in relation to the 
neighborhood environmental quality. The authors discuss the modeling of urban 
green space walkability by utilizing a Web-based GIS to calculate eco-friendly walk 
scores based on the presence of green spaces by integrating advanced land observing 
satellite data and other GIS datasets. We use this spatial Web technology to help 
local residents make decisions related to neighborhood environmental quality, such 
as how to choose an eco-friendly living space when buying a home, or how to  fi nd 
the shortest or greenest route to walk to improve their health. 

 Chapter   17     deals with watershed evaluation using geospatial techniques. Severe 
watershed degradation continues to occur in the tropical regions of southern Africa. 
This has raised interest in harnessing and manipulating the potential of watershed 
resources for human bene fi t as populations grow. The Songwe river is one such 
degrading watershed that causes biennial  fl ooding, among other problems. In this 
study, climatic, land use, topographic, and physiographic properties were assembled 
for this watershed, and were used in a process-based GIS with the aim of determining 
the hydrological sediment potential of the Songwe river watershed and quantifying the 
possibilities of reservoir sedimentation. The study further aimed at determining the 
critical sediment-generating areas for prioritized conservation management, and 
the relationship between the increasing  fl ood events in the  fl oodplains and the rainfall 
trends. Based on the evaluation of hydrological runoff processes using the Pan-
European Soil Erosion Risk Assessment (PESERA) model, the estimated amount of 
sediment transported downstream is potentially huge. It was established that most 
of the sediment generation was occurring in the upper sub-basin, and speci fi cally 
from built-up villages and degraded natural land. These trends have not only caused 
an increase in  fl ooding events in the lower sub-basin, but also pose a great sustain-
ability risk of sedimentation to the proposed reservoir.       
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     2.1   Introduction 

 Remote sensing data are one of the primary data sources for many geospatial analyzes. 
The nature of remote sensing data acquisition ranges from ground-based to airborne 
to space-borne. There are two types of remote sensing: active and passive. Passive 
remote sensing sensors detect the natural radiation that is emitted from, or re fl ected 
by, the object or surrounding area being observed. Re fl ected sunlight is the most 
common source of radiation measured by passive sensors. Some examples of pas-
sive remote sensing satellites are Landsat MSS/TM/ETM+, SPOT, IKONOS, 
QuickBird, etc. Active remote sensing emits energy in order to scan objects, and 
then detects and measures the radiation that is re fl ected or back-scattered from the 
target. Radio detection and ranging (RADAR), light detection and ranging (LiDAR) 
and sound navigation and ranging (SONAR) are examples of active remote sensing 
where the time delay between emission and return is measured, thus establishing the 
location, height, speed and direction of an object. 

 In the 1860s, the observation of the earth using a balloon became the starting point 
of what would later be called remote sensing (Lillesand et al.  2008  ) . Observation of the 
earth from airborne platforms has a history of 150 years, but most of the technical 
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innovation and development has taken place in the last three decades. The launch of the 
 fi rst remote sensing satellite by the United States in 1972 paved the way for applica-
tions of remote sensing in studies of the earth’s resource management, including the 
management of forests. Satellite imagery is increasingly used in various  fi elds such as 
agriculture, forestry, geology, hydrology, land use/cover change, oceans and coastal 
monitoring. Remote sensing images are processed and combined with other ancillary 
datasets in geographical information science (GIS) via spatial analysis techniques to 
provide signi fi cant information for environmental monitoring and management. 

 This chapter presents a multispectral classifi cation process for space-borne 
remote sensing data, which is the most important part of information extraction 
from satellite images. Here, we explain the complete procedures of multispectral 
classi fi cation with image preprocessing, image enhancement, supervised and unsu-
pervised classi fi cation, training-site selection, a setup classi fi cation algorithm and 
methods of accuracy assessment.  

    2.2   Multispectral Classi fi cation Procedures 

 Landsat satellite images contain information in digital numbers, and therefore a 
classi fi cation procedure is required to transform those digital numbers into under-
standable geographic features. This is known as information extraction. An image 
processing procedure can be de fi ned as a process of extracting distinct geographic 
features or categories from satellite images based on supervised or unsupervised 
classi fi cation methods. The unsupervised method is the division of the whole image 
into different categories based on the similarity of spectral signatures, where each 
category is labelled with a speci fi c name. In contrast, the supervised classi fi cation 
method uses prior knowledge (such as existing land-use maps, ground-based obser-
vations and aerial photographs) to classify the images into geographic feature patterns. 
This is called thematic mapping. 

    2.2.1   Preprocessing 

 Raw digital images usually contain geometric distortions so they cannot be used 
directly as a map base without subsequent processing. Preprocessing is an impor-
tant and diverse set of image preparation steps that act to offset problems with 
satellite image band raw data, and recalculate the values of digital numbers to mini-
mize problems with that data. It is dif fi cult to decide what should be mentioned 
under the topic of preprocessing, since the meaning of what is or is not a de fi ciency 
in the data depends on the extent or scope of the application. Generally, preprocessing 
comprises a series of sequential operations, including atmospheric correction, image 
registration, geometric correction and masking. 
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 The  fi rst category is the adjustment of radiance error represented by digital 
numbers (DN) and caused by factors such as noises (band stripping, scan line 
drop-out and salt-and-pepper error), and atmospheric and topographic effects. 
 Stripping  means errors that occur in the sensor response and/or data recording and 
transmission which result in a systematic error or shift of pixels between rows. 
This occurs when a sensor goes out of adjustment and produces readings that are 
higher or lower than other sensors at the same band. The procedure for correcting 
stripping is known as  de-stripping . This involves the calculation of the mean and 
standard deviation for the entire image. The output from each sensor is scaled to 
match the mean and standard deviation of the entire image, and therefore the 
value of each noise pixel in the image is corrected or adjusted.  Scan line drop-outs  
are errors that occur in the sensor response and/or data recording and transmission 
which mean the loss of a row of pixels in the image. This issue can be solved in 
several different ways. Reclassi fi cation of the affected bands and the use of  fi lter 
operations are good examples. In addition, a  salt-and-pepper error  is a random 
noise which causes the values to be high or low relative to surrounding pixel values. 
Median  fi lter running can be used to remove this error. 

 The atmosphere affects satellite imagery in different ways. Principally, solar 
radiance when traveling to the surface of the earth is scattered and absorbed by 
various gaseous substances such as carbon dioxide, oxygen, ozone and haze. Various 
procedures and models are available in commercial GIS/RS software systems, such 
as IDRISI Taiga, for removing these atmospheric effects. Topographic effects are 
also important. The interaction of the angle and the azimuth of the sun’s rays with 
slope and aspect produce such effects. For instance, if an image is recorded in the 
early morning, the effect of the sun’s angle on slope illumination is extreme. Or in 
mountain areas, re fl ectance from sloping areas facing the sun’s rays is often lower 
than the overall re fl ectance of the entire area. Several techniques can be employed 
for correcting topographic effects, such as band ratio, image partitioning and illumi-
nation modeling. These procedures are easily implemented in IDRISI software. 

 The second category relates to geometric restoration of the imagery according to 
a given reference map, such as a published topographic map or GPS-based ground 
control points.  Resampling  is commonly used to produce better estimates of the 
values of digital numbers for individual pixels adjusted to real spatial locations. 
The accurate registration of satellite imagery is essential for analyzing remote sensing 
data from a particular area. Each image should be georeferenced to the topographic 
map of the study area, and is resampled using the nearest-neighbor algorithm. 

 Image enhancement techniques can improve the quality of an image as perceived by 
a human. These techniques are very useful, because many satellite images when exam-
ined on a color display give inadequate information for image interpretation. There 
is no conscious effort to improve the  fi delity of the image with regard to some ideal 
form of that image. However, a wide variety of techniques exist for improving image 
quality. Contrast stretch, density slicing, edge enhancement and spatial  fi ltering are the 
most commonly used techniques. Image enhancement is attempted after the image has 
been corrected for geometric and radiometric distortions. Image enhancement methods 
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are applied separately to each band of a multispectral image. Digital techniques have 
been found to be more satisfactory than photographic techniques for image enhance-
ment because of the precision and wide variety of digital processes. 

 The visualization of spatial patterns of digital numbers in the images is very 
important for understanding major features or patterns dominant within the entire 
region. Individual bands are carefully visualized to improve the interpretability of 
the image. Band visualization provides an understanding of the spectral patterns of 
an image. Each of the Landsat imagery bands can provide unique information for 
the interpretation of surface features. For example, Band 1 provides information 
about the penetration of water bodies, and thus is able to differentiate soil and rock 
from vegetation and detect cultural features. Band 2 is sensitive to differences in 
water turbidity. This band can separate vegetation types, e.g. forest and cropland, 
from soil. In this band, settlements and infrastructures have a brighter tone, while 
vegetation has a darker tone. Band 3 is a spectral region of strong chlorophyll 
absorption, and therefore this band can distinguish between vegetation and soil. It is 
capable of separating primary forest, secondary forest and cropland areas. Band 4 
can distinguish vegetation and its conditions and is therefore able to separate pri-
mary from secondary forest (degraded forest). Water bodies are a strong absorber of 
near infrared energy, and therefore this band clearly delineates water bodies and 
separates dry and moist soils. Band 5 is capable of separating forest, cropland and 
water bodies, as forest has a darker tone than cropland, while water bodies have an 
even darker tone than forest or cropland. Band 7    has the capacity to separate second-
ary forest from primary forest areas. Aside from the visualization of individual 
bands, composite images are also employed to enhance the interpretability of fea-
tures of the images.  

    2.2.2   Unsupervised Classi fi cation 

 Sometimes, observations or secondary data of land-cover types are not available for 
a particular study area. Even the number of categories can be unknown. In such situ-
ations, it is impossible to estimate the spectral re fl ectance means of the categories. 
Therefore, unsupervised classi fi cation, known as automatic classi fi cation proce-
dure, should be used. 

 Unsupervised classi fi cation aims at separating the raw image data into a more 
human-readable form using as little operator input as possible. This automated 
classi fi cation method creates a thematic raster layer from a remotely sensed image 
by letting the software identify statistical patterns in the data without a priori knowl-
edge of the area (   Leica Geosystems Geospatial Imaging  2005 ; Lillesand et al.  2008  ) . 
It employs the iterative self-organizing data analysis technique algorithm (ISODATA) 
to arbitrarily cluster the means of an existing signature set, moving the means each 
time the algorithm iterates. The iterative procedure terminates when either the num-
ber of iterations set when running the algorithm has been reached, or a convergence 
threshold—the maximum percentage of pixels whose class allocations are allowed 
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to remain unchanged between iterations—is reached (Leica Geosystems Geospatial 
Imaging  2005  ) . Traditionally, the number of output clusters from an unsupervised 
classi fi cation is larger than the actual number of classes required for that applica-
tion. A posteriori knowledge is then used to merge spectrally similar classes, and 
label them accordingly, to generate a thematic land use/cover map.  

    2.2.3   Supervised Classi fi cation 

 Unlike unsupervised classi fi cation, supervised classi fi cation is based on prior 
knowledge of the area shown in the image. The process of supervised classi fi cation 
may follow several steps (Fig.  2.1 ), which are brie fl y summarized into two stages. 
The  fi rst stage is the identi fi cation of categories of real-world features, i.e. land use/
cover types, using the prior knowledge of features in a study area from both primary 
and secondary data. This step is known as the delineation or identi fi cation of train-
ing areas. The second stage is the labeling of classi fi ed categories using a selected 
classi fi cation rule.  

  Delineation of training areas : Training areas (TA) are known areas of a land use/
cover category determined by ground observations or by an inspection of aerial pho-
tographs and the reference land use/cover maps that are assumed to be true information. 
In the image, TAs are represented as a set of pixels for the known area of that land 

  Fig. 2.1    Example of signature development for multispectral supervised classifi cation of Landsat 
ETM, Yangon City (Myanmar) (Source: Lwin et al.  2012 )       
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use/cover class. The delineation of TA is most effective when the image interpreter 
has full knowledge of the study area and a good reference land use/cover map. 

  Signature evaluation : A spectral signature (signature) is a set of pixels (Fig.  2.1 ) 
that statistically de fi nes a training site set for a speci fi c land use/cover type. It is 
good practice to generate spectral signature  fi les from the largest possible number 
of bands. Each signature is de fi ned by statistical parameters, including the number 
of bands, the minimum, maximum, and mean values of the training areas, the cova-
riance matrix of the training areas and the number of pixels in the training areas. 

  Classi fi cation rules : The effective classi fi cation of remote sensing data depends on 
the separation of land use/cover types into a set of spectral classes (signatures) that 
represent the data in a form which is suitable for a particular classi fi er algorithm. 

 Several mathematical algorithms can be used as supervised classi fi cation proce-
dures or decision rules, and also to assign an unknown pixel to one of a number of 
classes. The choice of a particular classi fi er depends on the nature of the input data 
and the desired output. Parametric classi fi cation algorithms assume that observed 
measurement vectors for each class in each spectral band are normally distributed. 
Non-parametric classi fi cation algorithms, on the other hand, make no such assump-
tion. Several classi fi cation algorithms can be employed, such as parallelepiped, 
minimum distance and maximum likelihood. 

 The parallelepiped classi fi cation algorithm is a widely used decision rule based 
on simple Boolean “and/or” logic. Training data in spectral bands are used when 
performing the classi fi cation. The brightness values from each pixel of the multi-
spectral imagery are used to produce a multidimensional mean vector. The decision 
boundaries form a multidimensional parallelepiped in feature space. If the pixel 
value lies above the lower threshold and below the high threshold for all bands 
evaluated, it is assigned to an unclassi fi ed category. 

 In the second approach, the geographical principle that two nearby objects are 
likely to be similar is used in a nearest-neighbor simple classi fi er. Here, the 
classi fi er simply  fi nds the closest object from the training set to an object being 
classi fi ed in the  N -dimensional feature space (White  1996  ) . The strongest advantage 
of nearest-neighbor algorithms is that they are easy to implement, and do provide 
satisfactory results if the features are chosen and weighted carefully. However, they 
do not simplify the distribution of the objects in the parameter space suf fi ciently 
clearly when the training set is retained in its entirety as a description of the object 
distribution. It is also very sensitive to irrelevant parameters, thereby compromising 
its results signi fi cantly (White  1996  ) . 

 In the case of maximum likelihood, the classi fi er assumes a special probability 
distribution, for instance a Gaussian distribution, of the given data a priori, and then 
determines the appropriate parameters from the training data (Keuchel et al.  2003  ) . 
Each data pixel is then assigned to the class for which its values are most likely, i.e. 
the class with the highest a posteriori probability (Swain and Davis  1978  ) . The maxi-
mum likelihood algorithm is commonly employed in the separation of land use/
cover classes. This method is useful because it requires a minimum of training area 
data while achieving high accuracy. The image interpreter trains the software to 
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recognize spectral values associated with the training areas. After the signatures for 
each land use/cover have been de fi ned, the software uses those signatures to classify 
the remaining pixels. 

  Other classi fi cation methods:  In a case where the raw image data have a mixed 
pixel or heterogeneous feature representation so that an individual pixel cannot be 
de fi nitively assigned to one category, a membership function is used, where a pixel’s 
value is determined by whether it is closer to one class than another (Jensen  2005 ; 
Wang  1990  ) . This is called fuzzy classi fi cation (or fuzzy supervised classi fi cation). 
Each classi fi ed pixel is then assigned a membership grade with respect to its member-
ship in each information class. This generates two maps, a multilayer class and dis-
tance map. The fuzzy convolution utility then uses these two output maps to create a 
single classi fi cation layer by calculating the total weighted inverse distance of all the 
classes in an     ×n n    window of pixels by assigning the center pixel in the class with the 
largest total inverse distance summed over the entire set of fuzzy classi fi cation layers 
(Leica Geosystems Geospatial Imaging  2005  ) . 

 In the hierarchy of classi fi cation methods, neural networks are probably the most 
widely known. These are a family of arti fi cial intelligence techniques whose design 
and development was inspired by biological neural networks (Knight  1990 ; 
Lippmann  1987  ) . Both perceptron and back-propagation neural network algorithms 
start from random initial states, and use a training set containing a representative 
sample of patterns of each class to “teach” the network to perform the desired 
classi fi cation function (Odewahn et al.  1992  ) . The perceptron is a simpler classi fi er 
that forms a hyperplane parameter space to separate two classes by forcing the 
trained classi fi cation to converge to a vector solution if the classes are linearly sepa-
rable (Duda and Hart  1973  ) . The back-propagation network is the more complex of 
the two and is capable of learning much more complex functions without restrict-
ing itself to linear separability problems (Odewahn et al.  1992  ) . Rumelhart and 
McClelland  (  1988  )  present a detailed account of the latter. The downside of the use 
of neural networks, apart from being computationally slow, is that it is dif fi cult to 
determine how the network makes its decisions, and consequently it becomes 
dif fi cult to determine which parameters are important to the classi fi cation, apart 
from being computationally slow (White  1996  ) . 

 A hybrid classi fi cation method is a combination of any of these classi fi cation 
methods. It has been employed in cases where any one of the classi fi cation 
approaches alone would not produce good results. Figure  2.2  shows an example of 
a hybrid multispectral image classi fi cation.   

    2.2.4   Post-classi fi cation Processing 

 Post-classi fi cation processing is very important for removing any mismatched loca-
tions of classi fi ed land use/cover. The slope and elevation data, for instance, have 
been used to examine the correctness of all land use/cover classes in land use/cover 
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classi fi cation applications. For example, the pixels of paddy  fi elds with a very steep 
slope can be considered as mismatched locations. These locations can be re-assigned 
into the forest class. This also helps to keep in check confusing scene selection dur-
ing the classi fi cation where, for instance, crop land and bare land tend to have simi-
lar spectral re fl ectance during dry seasons, just as paddy  fi elds and grassland do 
during the growing or rainy season.  

    2.2.5   Accuracy Assessment 

 The next critical step in the process of evaluating the quality of land use/cover map pro-
duction is an assessment of accuracy. Accuracy assessment is a comparison between a 
classi fi ed map and a reference map that is assumed to be true (Lillesand et al .   2008  ) . 
The most common way to express classi fi cation accuracy is the preparation of a 
so-called error matrix, which is also known as a confusion matrix or a contingency 
matrix. Such matrices show a cross-tabulation of the classi fi ed land use/cover and the 

  Fig. 2.2    Multispectral hybrid 
classi fi cation work fl ow 
combining    supervised and 
unsupervised approaches       
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actual land use/cover according to the results of sample site observations. The matrix 
lists the values for known land use/cover types of the reference data in the columns and 
those for classi fi ed land use/cover data in the rows. The main diagonal of the matrix 
shows the correctly classi fi ed pixels. The producer’s accuracy, user’s accuracy, overall 
accuracy and  k -statistic are calculated in order to evaluate the land use/cover classi fi cation 
performance. 

 The overall accuracy represents the percentage of correctly classi fi ed samples. 
This is calculated by dividing the correctly classi fi ed pixels (the sum of the values 
in the main diagonal) by the total number of pixels checked by reference maps/
aerial photographs or observed in the  fi eld, and is given as follows:

     ×100%,
D

N    (2.1)  

where  D  is the total number of correct pixels summed along the major diagonal, and 
 N  is total number of pixels (site observations) in the error matrix. 

 Aside from the overall accuracy, the classi fi cation accuracy of individual classes 
can be calculated in a similar way. The producer’s accuracy and the user’s accuracy 
are possible. The producer’s accuracy is a measure of omission errors that correspond 
to those pixels belonging to the class of interest that the classi fi er has failed to recog-
nize. It is derived by dividing the number of correct pixels in one class by the total 
number of pixels derived from the corresponding reference data class (the column 
total):
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where  X  
 ii 
  is the total number of correct cells in a land use/cover class, and  X  

+ i 
  is the 

sum of cell values in the column. 
 In a similar way, the correctly classi fi ed pixels in a class are divided by the total 

number of pixels that are classi fi ed in that class to get a measure called the user’s 
accuracy. The user’s accuracy is a measure of the commission errors (Richards and 
Jia  1999  ) , or simply the measure of the reliability of the map. It informs users about 
how well the map represents what is really on the ground. This measure is calcu-
lated as follows:
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where  X  
 jj 
  is the total number of correct cells in a land use/cover class, and  X  

+ j 
  is the 

sum of the cell values in the row. 
 The  k -coef fi cient is a measure of the overall agreement of a matrix. In contrast to 

the overall accuracy, i.e. the ratio of the sum of the diagonal values to the total num-
ber of cell counts in the matrix, the  k -coef fi cient also takes into account non-diagonal 
values. The  k -coef fi cient has become a standard component of most accuracy assess-
ments (Congalton  1991 ; Hudson and Ramm  1987  ) . It is given as follows:
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where  r  = the number of rows and columns in the error matrix,  N  = the total number 
of observations (pixels),  X  

 ii 
  = the observation in row  i  column  i ,  X  

 i +
  = the marginal 

total of row  i , and  X  
+ i 
  = the marginal total of column  i . 

 The accuracy of the classi fi cations is assessed using the same reference sample. 
Using a strati fi ed sampling method, a set of reference pixels per class can be ran-
domly selected for the accuracy assessments. Randomly selected reference pixels 
lessen or eliminate the possibility of bias (Congalton  1991  ) . The sample size for 
each land use should be based on the spatial extent of each land use/cover type. 
A geographical position system (GPS) and a digital camera are often used to collect 
the site data and record views of the sites for analysis. Then an error matrix for the 
classi fi cation is generated by visually and carefully interpreting each sample pixel. 

 Other forms of accuracy assessment involve the use of high-resolution satellite 
images, for example by identifying the shapes of land use/cover categories such as 
grassland, roof patterns, vegetated areas, etc. in a classi fi ed image and visually com-
paring these side by side with the corresponding categories in a high-resolution 
image (Fig.  2.3 ). In this approach miss-classi fi ed pixels can be detected, for exam-
ple when the shadows of roofs and buildings have been classi fi ed as water (blue 
areas) in Fig.  2.3 .  

  Fig. 2.3    Use of a high-resolution satellite image (right) for accuracy assessment of a classifi ed 
image (left) (Source: Lwin and Murayama  2011 )       
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 For an analysis of changes in land use or land cover, aerial photographs using 
classi fi ed images from the previous year are important for accuracy assessments. 
This involves scanning, georeferencing and digitizing the photographs, as they are 
usually in the form of hard copies. Sometimes, asking the native people of the area 
helps to determine what land cover was there in the past.   

    2.3   Application in Geospatial Analysis 

 Multispectral classi fi cation of space-borne remote sensing data has a plethora of 
applications in geospatial analysis. Although classi fi cation is not usually an end in 
itself, it is evident that it is an important aspect, as has been shown in selected works 
relating to land use/cover changes, especially urbanization and deforestation. 

 In the hope of developing an understanding of urban growth in rapidly changing 
environments in sub-Saharan Africa, Mundia and Murayama  (  2011  )  embarked on a 
project to model urban growth in Kenya’s capital, Nairobi. Of particular interest to 
them was the estimation of future outcomes of current spatial plans and policies for 
land-use development, and the consideration of alternative planning and policy sce-
narios in order to minimize their impact. To achieve this they needed accurate pro-
jections of future urban growth, which in turn needed a solid foundation of quality 
analysis and a good understanding of the likely patterns and trends of urban change 
(Abiodun  1997 ; Rakodi  1997 ; Hope and Lekorwe  1999  ) . They used the Clarke cel-
lular automata (CA) urban growth model (Clarke and Gaydos  1998  ) , which they 
modi fi ed and calibrated accordingly, and also geographical information system 
(GIS) modules. The latter allowed GIS analyzes to be used to determine suitability 
factors, model constraints and land use/cover change, while the former was useful 
for model calibration and for applying transitional change rules (   Mundia and 
Murayama  2011 ). To map the land use/cover changes they used post-classi fi cation 
techniques on multispectral Landsat images for 1976, 1988 and 2000. The classi fi ed 
maps obtained for these years are as shown in Fig.  2.4 . Although the land use/cover 
maps were just part of a series of input data for the CA urban growth model, the 
importance of multispectral classi fi cation techniques cannot be overemphasized, 
especially in this case where problems with data availability and accuracy in Nairobi 
would have made the analysis dif fi cult. With satellite data widely available and 
routinely collected, the urban growth analysis using CA was satisfactorily achieved 
in such a data-sparse environment by employing classi fi cation techniques (Mundia 
and Murayama  2011  ) .  

 It has been reported that two-thirds of the population living in the rural areas of 
central and southern Africa depends on agriculture and other natural resources such 
as timber and  fi rewood for their economic and social needs (Campbell et al.  2000 ; 
Gambiza et al.  2000  ) . As a consequence, an understanding of land use/cover 
change dynamics is fundamental for rural land-use planning, especially if sustain-
able agriculture and forestry management are to be achieved. With this background 
Kamusoko et al.  (  2009  )  simulated future land use/cover changes (up to 2030) in the 
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Masembura and Musana communal areas of the Bindura district, Zimbabwe, based 
on the Markov–cellular automata model that combined Markov chain analysis and 
cellular automata models. Using the Markov chain analysis, they computed transi-
tion  probabilities from the Landsat classi fi cation-derived land use/cover maps 
(1973, 1989 and 2000). The land use/cover maps for 1973, 1989 and 2000 were 
extracted from the Bindura district land use/cover maps that were classi fi ed from 
Landsat data based on a hybrid supervised/unsupervised classi fi cation approach 
coupled with GIS (Kamusoko and Aniya  2007  ) . Together with other biophysical 
and socioeconomic data, the land use/cover maps derived were then used to 
(1) de fi ne initial conditions, (2) parameterize the Markov–cellular automata model, 
(3) calculate transition probabilities, and (4) determine the neighborhood rules with 
transition potential maps (Kamusoko et al.  2009  ) . The results showed that if the 
current land use/cover trends in the study area continue without holistic sustainable 
development measures, severe land degradation will ensue. 

 In the bowl-shaped valley of Kathmandu, Nepal, rapid demographic and envi-
ronmental changes and weak land-use planning practices in previous decades have 
resulted in environmental deterioration, haphazard landscape development, and 
stress on the ecosystem structure (HMGN/UNCTN  2005  ) . As a consequence, a lot 

  Fig. 2.4    Land use/cover maps of Nairobi for 1976, 1988 and 2000 (Source: Mundia and 
Murayama 2010)       
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of agricultural and forest land has been converted into urban areas and human 
 settlements (Thapa et al.  2008  ) . Therefore, with the aim of monitoring the urban-
ization and environmental consequences in the valley, Thapa and Murayama  (  2009a  )  
 examined the spatiotemporal pattern of urbanization in the valley using remote 
 sensing and spatial metrics techniques by quantifying land-use patterns and 
 analyzing the changes over time. Remote sensing not only provides spatially 
 consistent data sets that cover large areas with both high spatial details and high 
temporal frequency (Jensen  2007 ; Thapa and Murayama  2009b  ) , but it also pro-
vides consistent historical time series that date back to the 1960s. Although the 
satellite image data are detailed, many operational and applied remote-sensing 
analyzes still require the extraction of discrete thematic land-surface information 
from these satellite images using  classi fi cation-based techniques (Mesev  2003 ; 
Yuan et al.  2009  ) , as the satellite image data are not provided in an objective the-
matic format (Thapa and Murayama  2009a  ) . It is argued that the heterogeneity and 
complexity of the landscape in urban regions require land use/cover classi fi cation 
techniques that combine more than one  classi fi cation procedure in order to improve 
the accuracy of remote sensing-based mapping (Thapa and Murayama  2009b ; 
Prenzel and Treitz  2005  ) . Therefore Thapa and Murayama  (  2009a  )  followed a 
series of processing steps (Fig.  2.5 ) to transform the satellite data into meaningful 
thematic information. Their results showed that the urbanization process has 
resulted in fragmented and heterogeneous land-use combinations in the valley, 
with urban/built-up areas having grown slowly in the 1960s and 1970s, but having 
grown rapidly since the 1980s (see Thapa and Murayama  2009a  ) .  

  Fig. 2.5    Land-use mapping scenario for remote sensing images (Source: Thapa and Murayama  2009a  )        
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 In the protected area of the Tam Dao National Park in Vietnam, Khoi and 
Murayama  (  2010  )  demonstrated the application of remote-sensing data and a coupled 
neural network–Markov model for a predictive model of deforestation in the area. 
In this case study, remote-sensing data were used to interpret and understand spatial 
patterns of land use/cover changes, especially changes to forests in the area. Then 
the biophysical and socioeconomic drivers of forest change were investigated. 
Finally, a neural network–Markov model was employed to predict deforestation 
patterns in the area in the years 2007, 2014 and 2021. This approach provides an 
effective tool for monitoring deforestation at both small and large scales. In the 
context of protected areas in developing countries, prediction maps of changes in 
forest patterns can help the managers of protected areas to identify where conserva-
tion and forest management efforts should be focused.  

    2.4   Conclusions 

 While the monitoring of land use/cover changes is needed to understand and 
predict the dynamic process of land use/cover patterns at different times, the 
traditional labor-intensive survey/ fi eldwork approaches are limited in their 
effectiveness, as they are often unable to reveal the spatial patterns of landscape 
changes and the environmental consequences that occur in a given time period 
(Thapa and Murayama  2009a  ) . However, signi fi cant technological advances in 
data acquisition and analysis techniques in recent years have made it easier to 
analyze the spatiotemporal dynamics of landscape changes (Herold et al.  2003 ). 
With these developments in techniques, remotely sensed images from airborne 
and satellite sensors provide a large amount of cost-effective, multispectral and 
multitemporal data to monitor landscape processes and estimate the biophysical 
characteristics of land surfaces (Miller and Small  2003 ; Herold et al.  2003 ; 
Jensen  2007 ; Thapa and Murayama  2008  ) . The ability to handle and process 
remote-sensing data has resulted in the extraction of objective thematic mapping 
of the form, land uses and density of geographic features, each of which has an 
associated shape, con fi guration, structure, pattern and organization (Miller and 
Small  2003 ; Lillesand et al.  2008 ; Thapa and Murayama  2009b  ) . Satellite imag-
ery coupled with advanced handling and analysis techniques has the unique abil-
ity to provide synoptic views of large areas at a given time which are not possible 
using conventional survey methods (Thapa and Murayama  2009a  ) . It is therefore 
not surprising that a wide range of remote sensing applications from both active 
and passive sensors is currently available. These include quantifying urban 
growth and land-use dynamics (Weber and Puissant  2003 ; Herold et al.  2003  ) , 
landscape pattern analysis (Zhang 2005; Yu and Ng  2006 ; Li and Yeh  2004  ) , 
urbanization (Weng  2007 ; Thapa and Murayama  2009a ; Mundia and Murayama 
2010), socioeconomic applications (Seto and Kaufmann  2003 ; Kamusoko et al. 
 2009  ) , life quality improvement (Gatrell and Jensen  2008  ) , urban infrastructure 
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characterization (Mesev  2003  ) , microclimate and hydrology (Carlson and Arthur 
 2000  ) , and topographic mapping (Zandbergen  2008  ) .      
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      3.1   Introduction 

 Geospatial data collection is an important task for many spatial information users. 
Geospatial data collection may include  fi eld data collection, remote sensing data 
processing, and in-house geographical information science (GIS) data conversion. 
Nowadays, geospatial data are available from various sources. Among these, remote 
sensing data (i.e., optical, radio detection and ranging (RADAR), light detection 
and ranging (LIDAR), etc.) are among the primary data sources in many GIS analyzes. 
For example, high-resolution satellite images such as QuickBird, IKONOS, and 
aerial photographs are the basis for the generation of qualitative land-use maps 
(i.e., land-use zoning maps) and the delineation of transportation networks. Medium-
resolution satellite images such as ALOS, SPOT, and Landsat TM/ETM are used in 
the generation of quantitative land-use maps (i.e., land cover maps) for regional-
scale studies of changes in land use. The shuttle radar topography mission (SRTM) 
and LIDAR provide topographical characteristics for GIS analysis. Moreover, 
remote sensing data are important for environmental studies such as deforestation, 
global warming, and natural resource management. This technology captures the 
real-world information with various sophisticated sensors and platforms. However, 
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building a GIS database is required for further geospatial analysis and mapping 
purposes. GIS converts the real-world information into a geodatabase in order to retrieve, 
analyze, and allow further geocomputations. On the other hand,  fi eld data collection 
is important for spatial information users in order to collect spatially distributed 
objects with their associated attribute information. In this chapter, we discuss 
geospatial data collection methods and processing, and their applications in GIS.  

    3.2   Geospatial Data Collection 

 Two approaches are presented, namely  fi eld data collection and in-house GIS data 
conversion. Both are frequently used in geospatial analysis and modeling. 

    3.2.1   Field Data Collection 

 This is one spatial data collection method, and is a  fi rst-step requirement for many 
spatial information users such as human geographers, physical geographers, geolo-
gists, crop scientists, ecologists, etc. Human geographers may want to collect public 
opinions and other social activities in order to understand how social behavior 
changes over space and time. Geologists or physical geographers may want to collect 
in-situ data in order to understand overall regional geological formations and struc-
tures. Researchers or students may collect ground-truth data to validate their results. 

  Components of  fi eld data : Field data collection is the foundation of many spatial 
analysis processes. Like other spatial data,  fi eld data (Fig.  3.1 ) are composed of two 
elements, namely the coordinate information of the spatial objects and their associ-
ated attribute information. Coordinate information includes  X ,  Y , and  Z  for the posi-
tions of spatial objects, while attribute information includes properties of those 
spatial objects such as the soil nitrogen contents, the names of plant or animal spe-
cies, the angles of dips and strikes for each rock unit, and so on. Planning and 
designing attribute data are at the heart of any  fi eld data collection process, and thus 
it is very important that this is considered before going into the  fi eld.  

  Collection of coordinate information in the  fi eld : Coordinate information can be 
collected in several ways in the  fi eld, such as by using a global positioning system 
(GPS) device or GPS built-in devices, by using high-resolution satellite images, 
and by address matching/geocoding (conversion of addresses to  X ,  Y  coordinates) 
(   Table  3.1 ).  

  Field data collection methods : Along with recent advances in modern wireless 
 communication and Internet technologies, and mobile computational devices, now-
adays  fi eld data collection can be conducted in a handy and timely manner. Many 
methods have been developed for  fi eld data collection, ranging from personal  fi eld 
data collection to automatic real-time  fi eld data collection using GPS, personal digital 
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assistants (PDAs), and other mobile computational devices such as ultra-mobile 
personal computers (UMPC), smart phones, and Netbooks. In the following sub-
sections, two  fi eld data collection methods are discussed, namely personal  fi eld data 
collection using an ultra-mobile PC (UMPC) or a Netbook computer, and real-time 
 fi eld data collection using a mobile phone. The latter is used to collect  fi eld data 
through a Post Of fi ce Protocol 3 (POP3) mail server and a centralized geodatabase, 
either individually or group-based. It is ideal for individual  fi eld data collection. 

    3.2.1.1   Personal Field Data Collection 

 Recent innovations in computing, networking, and Internet technologies enable GIS 
 fi eld users to collect, store, and analyze in a handy and mobile manner. PDAs are 
hand-held computers that were originally designed as personal data organizers, but 
became more versatile over the years. A PDA can be used as a clock, as a calendar, for 
accessing the Internet, for sending and receiving e-mails, for working on  spreadsheets, 
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  Fig. 3.1    Importance of  fi eld data collection in geospatial analysis and elements of  fi eld data          
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and for using a word processor. However, PDAs lack the fully blown infrastructure 
of a wireless broadband network and have a limited screen resolution (typically 
240 × 320). UMPCs (typically with a screen resolution of 1024 × 600 wide screen) 
began as a joint development exercise by Microsoft, Intel, Samsung, and others. 
UMPCs are able to run any software that has been written for the Windows XP plat-
form. UMPCs can also feature GPS devices, Wi-Fi, and Ethernet. There has been a 
revolution in GPS over the last few years as the cost of receivers has decreased and 
accuracy has improved. GPS has become a critical tool for spatial information users 
in a wide range of application  fi elds. Owing to the characteristics listed above, the 
mobile GIS is rapidly gaining popularity and effectiveness among spatial infor-
mation users. A mobile GIS is also interdisciplinary. Nowadays, the focus of much 
leading-edge research in geography is interdisciplinary (integrating two or more aca-
demic disciplines), and hence is not limited to scienti fi c investigation only, but can 
also be extended to applied real-world problem solving (so-called normative uses) in 
a time- and cost-effective way. Google Maps provides high-resolution satellite 
images for almost all urban areas around the world. The spatial resolution is good 
enough to collect reference ground control points (GCPs) in urban areas owing to the 
nature of distinguishable landscapes and their associated features, such as road inter-
sections, building shapes, etc. Urban area  fi eld surveys such as household surveying, 
road condition inspection, hydrant inspection and mapping, damage investigation 
(in the case of a disaster), public health surveys, and the collection of public facili-
ties are important to local and city planners to help in effective urban planning. 

 Initially, UM-FieldGIS (Lwin and Murayama  2007  )  was intended for use in student 
 fi eld survey projects which did not require any server-side installation. UM-FieldGIS 
is a Windows-based GIS program which allows the user to collect, store, and integrate 
information into a current GIS system in a timely manner. UM-FieldGIS  fi eld survey 
 fi les are based on the Microsoft access database format (.mdb  fi le extension), a technol-
ogy that is also used in ESRI personal geodatabase (.mdb) (Fig.  3.2 ). However, ESRI 
personal geodatabases are more complex than MS access databases as they handle both 
the database management system (DBMS) and the geographical features, as well as 
their associated topographical relationships. Under the UM-FieldGIS, the  fi eld user 
can collect geographical positions from the embedded Google Maps API (online net-
work connection), or a pre-installed map (PIM) (map-based mobile GIS), or an attached 
universal serial bus (USB) GPS, or a built-in GPS. Field users are able to create their 
own survey items ( fi eld names) and choose a multimedia attachment capability. 
UM-FieldGIS supports general GIS functions such as map zooming, scrolling, query-
ing attributes, arranging map layers, searching by attribute name, and changing the 
properties of map views under the PIM mode. Finally, the surveyed data can be exported 
into the ESRI shape  fi le format, or directly imported by the ArcGIS software.  

 The UM-FieldGIS graphic user interface (Fig.  3.3 ) is especially designed for 
UMPC wide-screen resolution (1024 × 600) monitors and is featured on the tabbed 
dialog box class. Functionally, the UM-FieldGIS can be divided into two, the 
database module and the GIS module. All functions are grouped by tabs. The user 
can easily switch between functions by clicking the appropriate tab without neces-
sarily opening multiple windows. This is especially advantageous for a desktop 



  Fig. 3.2    Program Design of  UM-FieldGIS.PIM , Pre-installed Map (supported formats: GeoTIFF 
and ESRI Shape);  GMap API , Google Maps Application Program Interface; Download URL: 
  http://giswin.geo.tsukuba.ac.jp/sis/en/gis_software.html           

  Fig. 3.3    Graphical user interface of the UM-FieldGIS       

 

 

http://giswin.geo.tsukuba.ac.jp/sis/en/gis_software.html
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with a limited screen display. The database module enables the user to create a new 
 fi eld survey  fi le in Microsoft access database format (.mdb), or open an existing 
survey  fi le to analyze or to append new information during the surveying process.  

 The UM-FieldGIS allows users to create their own survey form (survey items) 
and add a media folder for image attachments in each record (Fig.  3.4 ). Records can 
be added, deleted, and edited using the add new/edit mode tab. Collected records 
can be viewed in a tabular, record, or media view (Fig.  3.5 ).   

 The UM-FieldGIS is suitable for  fi eld data collection in urban areas where wire-
less access services such as Wi-Fi is available. However, it can still be used in PIM 
mode by using maps or high-resolution satellite images without Internet access.  

  Fig. 3.4    Add new record       

  Fig. 3.5    Edit record       
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    3.2.1.2   Real-Time Field Data Collection (Centralized Geodatabase) 

 UMPC or Netbook computers and wireless Internet access services are sometimes 
costly and are not suitable for all users. We need to  fi nd other methods of collecting 
 fi eld data in a handy and timely manner at low cost, such as by using a personal 
mobile phone. Figure  3.6  shows an overview of the real-time  fi eld data collection 
system. Basically, this system consists of two sub-modules, namely the client mod-
ule and the automation module. The client module contains only a GPS-embedded 
mobile phone or a GPS-plus mobile phone. All the functions of the data injection 
and format conversion processes are performed automatically within the automa-
tion module. Finally, the real-time results can be viewed through a Web browser by 
providing Web-GIS.  

      How It Works 

 Real-time  fi eld data collection (a centralized geodatabase) utilizes GPS-embedded 
mobile phones, which typically support additional services such as the short mes-
saging service (SMS), the multimessaging service (MMS), e-mail and Internet 
access, and short-range wireless (infrared or Bluetooth) communications, as well as 
business and gaming applications, and photography. Users are required to type a 
prede fi ned text format for collecting the data. For example, the user needs to add a 
“/” character between  fi elds, and add a “,” between attribute values (Fig.  3.7 ). This 
text message is then sent using a prede fi ned mail address and subject. The user can 
also attach as many photographs as needed. This text message is read by the POP3 
mail server, converted into a GIS dataset, and then injected into a centralized geoda-
tabase at speci fi c time intervals within the automation process. The centralized geo-
database is composed of aerial images, other ancillary datasets, and the injected 
data (survey data). End users can download and visualize the survey data in 
ESRI-shape  fi le format through a Web browser for further analysis.  

  Fig. 3.6    A centralized geodatabase and mobile  fi eld data collection       
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  Fig. 3.7    Format conversion between a text message and an attribute table in the geodatabase 
(Lwin and Murayama  2011b  )        

  Fig. 3.8    Modes of survey: individual and group (Lwin and Murayama  2011b  )        

 This  fi led data collection method can be implemented through an individual or a 
group survey by changing the “type”  fi eld (Fig.  3.8 ). The individual survey mode is 
ideal for users who collect  fi eld data for their own speci fi c purpose, while the group 
survey mode is ideal for real-time collection of information such as surface 
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temperature, wind speed, wind direction, damage information, etc. For the individual 
survey mode, the “type”  fi eld may be the user’s initial name. Later, the users would 
be able to extract their own data by using this  fi eld. For the group survey mode, the 
“type”  fi eld may be a category which is being surveyed, such as temperature, 
land-use type, rock or soil properties, etc.  

 The overall system is built on Microsoft ASP.NET with an AJAX extension and 
VDS technologies (Web mapping components for ASP.NET). ASP.NET is a Web 
application framework marketed by Microsoft that programmers can use to build 
dynamic Websites, Web applications, and XML Web services. AJAX (shorthand for 
asynchronous JavaScript and XML) is a group of interrelated Web-development 
techniques used on the client side to create interactive Web applications. With 
AJAX, Web applications can retrieve data from the server asynchronously in the 
background without interfering with the display and behavior of the existing page. 
The use of AJAX techniques has led to an increase in interactive and dynamic inter-
faces on Web pages. The AspMap for .NET from VDS technologies is a set of high-
performance Web-mapping components and controls for embedding maps in ASP.
NET applications (Web forms). 

 This  fi eld data collection method has been introduced to the students of the 
University of Tsukuba, Japan, during their  fi eld survey course, which is part of the 
university campus GIS project. Under the campus GIS project, individual students 
are required to collect or report illegal bike or motorbike parking places, illegal 
waste disposal site locations, and man-made footprints which are caused by people 
who walk on the grasslands or who are passing between trees instead of using legal 
paths. Later, this information is used by the university administrators to maintain the 
campus landscape and manage student facilities. A group survey was also conducted 
to collect environmental data such as surface temperature, wind speed, wind direc-
tion, etc., on a real-time basis. In this case study, 4 faculty members and 16 students 
from the University of Tsukuba, Japan, and 2 faculty members and 9 students from 
the South China Normal University, China, participated. 

 Planning ahead is important for adequate and successful  fi eld data collection. 
Spatial planning and sampling design include setting where and what attribute 
information is to be collected. Sometimes, it is dif fi cult or impossible to collect 
again after the  fi eld work has been done once. In this project, we assigned the survey 
area to student groups based on administrative units. We also demonstrated the han-
dling of GPS and other  fi eld survey instruments. Students were required to send 
 fi eld survey data by using their GPS-embedded mobile phone or by reading the 
coordinates from a Garmin hand-held GPS. During the  fi eld work, we monitored 
their status on a Netbook computer with wireless Internet access (Figs.  3.9  and 
 3.10 ). We also advised the students through mobile phone communication.   

 After the  fi eld work, students were required to download the survey data through 
Web-GIS and open it in ESRI ArcMap in the laboratory. This process includes 
downloading the data, importing it in ArcGIS, formatting the data, and visualizing 
it in ArcMap. We used the following Visual Basic (VB) scripts to format the comma-
separated values into attribute  fi elds (Fig.  3.11 ). String substitution was also carried 
out by VB Script to replace the short text with full text, such as “urb” to “Urban.” 
This is because some students collected and recorded the data using short text 
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  Fig. 3.9    Acquired real-time information with media attachment (Lwin and Murayama  2011b  )        

  Fig. 3.10    Real-time data injection (Lwin and Murayama  2011b  )        

messages to reduce the typing time and errors. Furthermore, students were also able 
to specify their names in the “Type”  fi eld.  

 Every year, a  fi eld survey is conducted to collect information about public facilities 
such as bicycle stands and capacity, garbage boxes and types, car parking lots, side-
walk conditions, illegal garbage places, and other environmental data. Figure  3.12  
shows the visualization of student survey data in the ArcGIS software.     
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    3.2.2   In-House GIS Data Conversion 

 The two main GIS data sources include digital and non-digital sources. Digital 
sources include information captured through remote sensing and surveying 
( fi eld data), while non-digital sources include, but are not limited to, paper maps, 

  Fig. 3.11    Formatting the data in ArcGIS       

  Fig. 3.12    Mapping the surface temperature, wind speed, and wind direction in ArcMap based on 
a student group survey data       
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which are usually digitalized through scanning and digitization (Sheldon  2007  ) . 
This sub-section discusses the “in-house data collection” method. Generally, this 
method involves the digitalization of available paper maps. Map sheets comprise 
one of the most widely available and familiar sources of spatial data (Malczewski 
 2004  ) . The immediate outputs of this method are digitized GIS vector data, which 
include points, lines, and polygons. However, the production of these usually 
involves the processes of georeferencing and digitizing, which are also preceded by 
scanning when the digitizing process is to be done on-screen. 

  Scanning : Prior to on-screen digitizing, paper maps have to be integrated into the 
GIS database by converting them into digital format. The process of such conversion 
is known as scanning. Through scanning, map features, including texts and symbols, 
are automatically captured as individual cells or pixels and an automated image is 
produced. These features in raster format are then vectorized through tracing or on-
screen digitizing. Generally, in order to have a good source image in the digitizing 
process, a scanner needs to have a good resolution and, depending on the speci fi c 
purpose, has to be large enough to accommodate the map sheets being scanned. 

  Georeferencing : Basically, the process of projecting image data onto a plane and 
making it conform to a map projection system is called recti fi cation. However, since 
scanning produces images that are already planar, recti fi cation is no longer required 
unless there is distortion in the image (Leica Geosystems  2005  ) . In this instance, 
such scanned images only need to be georeferenced. Georeferencing refers to the 
process of assigning map coordinates to image data. As explained in the ERDAS 
imagine  fi eld guide (Leica Geosystems  2005  ) , “the image data may already be pro-
jected onto the desired plane, but not yet referenced to the proper coordinate system. 
Recti fi cation, by de fi nition, involves georeferencing, since all map projection sys-
tems are associated with map coordinates. Image-to-image registration involves 
georeferencing only if the reference image is already georeferenced. Georeferencing 
by itself involves changing only the map coordinate information in the image  fi le. 
The grid of the image does not change.” 

  Digitizing : Before the on-screen digitizing technique became available, table digi-
tizing was the acceptable method for creating GIS vector data. However, aside from 
being considered as a time-consuming process, several challenges have also been 
experienced with this method, such as dif fi culty in using the digitizing puck, tablet 
malfunctions, source materials changing size, registration problems, edge-matching 
complexity, and more (Sheldon  2007  ) . 

 Today, with the availability of more advanced digitizing methods like on-screen 
digitizing, it is possible to derive GIS vector data from a sheet map using a desktop 
computer (Fig.  3.13 ). On-screen digitizing only requires that the sheet map is 
scanned and properly georeferenced. With this method, which is sometimes referred 
to as “heads-up” digitizing, the scanned and georeferenced source map or photo-
graph is displayed on-screen, and features are digitized using a standard mouse 
(Eastman  2006  ) . This advancement in technology allows users to “zoom in” on 
images as much as is needed, digitize using a computer mouse, and edge-match 
more easily for faster map creation (Sheldon  2007  ) .    



42 K.K. Lwin et al.

    3.3   Geospatial Data Processing and Applications 

 Geospatial data processing is the heart of the task in many GIS analyzes. It is necessary 
to understand digital image processing, database design and construction, and GIS 
analytical functions. Geospatial data can be grouped into raster and vector formats. 
Raster data are mainly derived from remote-sensing data, and vector data are mainly 
constructed in GIS. 

    3.3.1   Raster Data Processing and Applications 
in Geospatial Analysis 

 Many remote-sensing data used in GIS are in raster format, such as land-use land 
cover (quantitative), the normalized difference vegetation index (NDVI), the satellite-
derived digital elevation model (DEM), and surface temperature, since the remote-
sensing technology captures the real-world information pixel by pixel, which is 
known as spatial resolution with sophisticated sensors. This section discusses some 
of the raster data commonly used in geospatial analysis, such as the quantitative 
land-use land cover and the NDVI. 

    3.3.1.1   Land-Use Land Cover 

 Quantitative land use/cover maps are commonly derived from medium-resolution 
satellite images using a method known as multispectral classi fi cation. In developing 
countries, land use/cover maps derived from satellite images are a cost- and labor-
effective measure for updating an existing land use/cover map database and for 

  Fig. 3.13    On-screen digitizing for GIS data conversion       
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managing the country’s natural resources (Lwin and Shibasaki  1997 ; Nunes and 
Auge  1999  ) . The applications of land use/cover maps in GIS are manifold, e.g., 
land-use change modeling, monitoring of deforestation, natural resource manage-
ment, and hydrological modeling. Figure  3.14 , for example, shows the combination 
of two different spatial and temporal resolution satellite images, Landsat ETM and 
NOAA AVHRR data, to monitor the annual deforestation rates and deforested areas 
in Myanmar (Lwin and Shibasaki  1998  ) .   

    3.3.1.2   Normalized Difference Vegetation Index (NDVI) 

 The normalized difference vegetation index (NDVI) can be derived from normal-
izing two spectral bands, the infrared and red bands (NDVI = RED − IR/RED + IR). 
Chapter   16     presents the use of advanced land observing satellite (ALOS) image-
derived NDVI data to model urban green walkability space. Furthermore, NDVI 
data can be used to monitor annual deforestation rates by using 10-day composite 
NOAA AVHRR 1-km data for regional scale studies (Fig.  3.15 ).  

 Figure  3.16  shows the surface temperature derived from Landsat TM band 6 
(thermal band). For example, Lwin and Murayama  (  2010b  )  detected the urban thermal 
fringes from Landsat ETM-derived surface temperatures using “focal statistic anal-
ysis” in GIS to identify surface temperature variations (i.e., the heat island effect) 
inside Tsukuba city, in order to take further action for eco-city planning.    

    3.3.2   Vector Data Processing and Applications 
in Geospatial Analysis 

 Vector data are composed of points, lines, and polygons. Vector data can be directly 
purchased from map vendors, or generated by in-house GIS data conversion methods 
such as scanning, georeferencing, and digitizing. 

  Fig. 3.14    Delineation of deforested areas using Landsat TM images       

 

http://dx.doi.org/10.1007/978-4-431-54000-7_16
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    3.3.2.1   LiDAR Point Data Processing and Applications 
in Geospatial Analysis 

 Point data are fundamental elements in vector data. Point data represent bus stops, 
facility locations,  fi eld survey data of soil and rock properties, surface temperature, 
etc. This sub-section considers the use of LIDAR point cloud data in generating 
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DEMs, digital surface models (DSM), digital terrain models (DTM), and digital 
height models (DHM). The terms DSM, DTM, and DHM are generally suitable for 
high-resolution digital elevation data, since such data can distinguish the heights 
between buildings, trees, and other built-up objects, while DEM is generally suit-
able for coarse spatial resolution elevation data (i.e., 30 m, 90 m, 1 km). 

 Traditionally, stereo-image matching is a standard photogrammetric technique to 
generate a DSM. However, this technique is good only for a smooth open terrain 
surface. The quality of a DSM in built-up areas is poor owing to occlusions and 
height discontinuities (Haala and Brenner  1999  ) . LiDAR techniques have been 
studied and utilized since the early 1960s, but appear to have become more promi-
nent in the past few years. LiDAR has found applications in a wide variety of  fi elds 
of study, including atmospheric science, bathymetric data collection, law enforce-
ment, telecommunications, and even steel production (Maune et al.  2000  ) . Because 
LiDAR operates at much shorter wavelengths, it has a higher accuracy and resolu-
tion than microwave radar (Jelalian  1992  ) . 

 Choosing the appropriate surface-generating method for DSM and DTM is 
important in LiDAR data processing, since surface height information is collected 
as points. Figure  3.17  shows the detailed procedure for generating a DHM and digi-
tal volume model (DVM). In this process, both DSM and DTM point features are 
converted into a triangulated irregular network (TIN) model (i.e., TIN–DSM and 
TIN–DTM). Using ArcGIS software, the TIN process allows users to convert mul-
tiple scenes at one time. This reduces the time for mosaicing. Moreover, the TIN 
process is faster than other interpolation processes such as IDW, SPLINE, and krig-
ing. Each TIN–DSM and TIN–DTM is converted into a raster format, setting the 
spatial resolution to 0.5 m. The DTM is subtracted from the DSM raster layers to 
achieve the DHM. For this DHM raster layer to be converted into a DVM, it is mul-
tiplied by the cell surface area (i.e., 0.25 m 2 ).  

 The possible uses of elevation data in GIS are numerous, e.g., the identi fi cation 
of river  fl ow directions and the delineation of catchment areas (river basin or water-
shed) in hydrology, soil erosion modeling, building height extraction for telecom-
munications, and other 3D applications. DVM is also used for building population 
estimates (Lwin and Murayama  2010a  )  for microscale population data analysis and 
3D visualizations of urban landscapes (Fig.  3.18 ).     

    3.4   Conclusion 

 Perhaps the most exciting area of computer system development continues to be in 
hand-held devices such as PDA, UMPC, Netbooks, and smart phones. A smart 
phone is a mobile phone that offers more advanced computing ability and connec-
tivity than a contemporary feature phone. They are noticeably more ef fi cient in form 
factor (size, shape, weight, etc.), chip type, internal storage capacity, battery life, 
and operating system compared with desktop computers. Along with hardware 
developments, the operating systems used in smart phones are becoming more and 
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more compact and functional, e.g., iPhone (Apple Inc.) and Android (Google). 
Computer scientists at the University of Washington have used Android, the open-
source mobile operating system championed by Google, to turn a cell phone into a 
versatile data-collection device. They collected data on deforested areas, and 
instantly submitted that information to the global environmental database (University 
of Washington  2009  ) . In the meantime, the number of cellular mobile phone sub-
scribers world-wide is increasing year by year. According to the International 
Telecommunication Union’s (ITU) 2010 report, by the end of 2009, there were an 
estimated 4.6 billion mobile cellular subscriptions, corresponding to 67 for every 
100 inhabitants globally. Recently, a couple of studies showed  fi eld data collection 
with mobile phones in both the educational and industrial sectors (Mourão and 
Okada  2010 ; Moe et al.  2004  ) . 

 On the other hand, the increasing popularity of the Internet and user-friendly 
Web-based GIS applications such as Google Maps/Earth and Microsoft Bing maps 
have made GIS an integral part of life today for  fi nding the nearest facilities, driving 
routes, and so on. For example, in Tsukuba City, Japan, local residents and “green” 

  Fig. 3.17    LiDAR data processing work  fl ow (modi fi ed from Lwin and Murayama  2010a  )        
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exercise takers can  fi nd the shortest or greenest route between stops by using their 
smart phone while walking along the street and accessing the eco-friendly walk 
score calculator Web-based GIS (Lwin and Murayama  2011a ). However, PDAs, 
Netbooks and smart phones are sometimes considered to be cost-intensive, includ-
ing both device and wireless access service charges, and hence not suitable for use 
in student  fi eld survey projects. Moreover, mobile  fi eld computing environments 
vary widely, but generally offer extremely limited computing resources, visual 
display, and bandwidth relative to the usual resources required for distributed 
 geospatial data (Nusser et al.  2003  ) . Nevertheless, geospatial data collection, 
 processing, and analysis tasks are important in GIS. Proper data collection 
and conversion are required to support the geospatial analysis that is vital for 
decision-making.      
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     4.1   Introduction 

 Geographical information systems (GIS) are designed to store, retrieve, manipulate, 
analyze, and map geographical data. Since the 1960s when R.F. Tomlinson  fi rst pre-
sented the GIS, this  fi eld has mainly focused on the construction of the systems, the 
improvement of system functions, and the extension of its application to other disci-
plines. The research contents have played an important role in providing spatial 
decision-making support for both governments and the public, and have also pro-
moted the formation and development of the discipline of Geographic Information 
Science (Goodchild  1992  ) . However, with the extension and deepening of applica-
tions, users began to doubt the results of spatial analysis using GIS (Doucette and 
Paresi  2000 ; Morrison  1995 ; Östman  1997 ; Stefanakis et al.  1999  ) . The raw material 
for GIS (i.e., the original data imported into GIS) inevitably always contains errors 
(Shi et al.  2002  ) . Data models used in GIS to describe the real world are just approxi-
mations to objective reality. In addition, all kinds of spatial operations and processing 
approaches may bring new errors and uncertainties into the production of spatial 
analysis. Most existing designs of GIS software are based on the hypothesis that no 
errors exist in geographic entities and their spatial relationships. Generally, GIS can 
only deal with determinate spatial entities and their relationships. However, using a 
GIS designed to deal with determinate data for uncertain data will bring about prob-
lems, and the results cannot satisfy the users’ needs (Shi et al.  2002  ) . As the outputs 
of GIS play an important role in spatial decision-making support, users began to be 
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concerned about the quality of spatial data in GIS. This undoubtedly made many 
scholars think about the  fi eld of GIS spatial data quality control (Mowrer and 
Congalton  2000 ; Östman  1997 ; Shi et al.  2002  ) . 

 The acquisition of spatial data in GIS primarily relies on surveying and geo-
graphical investigation. Matured surveying errors and data processing methods 
(namely surveying adjustments) which are based on probability and statistical theo-
ries have been introduced into the  fi eld of spatial data quality control. Thus, a set of 
theoretical systems on spatial data quality control methods gradually came into 
existence (Goodchild and Dubuc  1987 ; Goodchild and Gopal  1989 ; Heuvelink et al. 
 1989 ; Shi et al.  2002  ) . However, handling errors of spatial data are somewhat differ-
ent from the processing of conventional surveying data, as the sources of spatial 
data are diverse and complex. In addition, operations with spatial data are also com-
plex, and are different from surveying adjustment methods, among which there are 
strict geometric conditions. Therefore, as well as traditional probability and statis-
tics theory, other theoretical supports are required according to the intrinsic features 
of spatial data (Burrough and Frank  1996 ; Burrough et al.  1997 ; Fisher  1999 ; 
Goodchild and Jeansoulin  1998  ) . Fuzzy set theory provides an important approach 
to dealing with spatial data, and has sporadically been adopted in the  fi eld of GIS 
(Cheng et al.  2001 ; Fisher  2000  ) . 

 The connection between fuzzy set theory and spatial data quality control needs 
to explore the relationship between spatial data error and uncertainty theory. The 
uncertainty is the de fi ciency in the degree of knowledge about surveying data, and 
also the degree of unlikelihood and doubt about the validity of the survey results. 
Standard deviations, or multiples of these, are always used to express uncertainty. 
The surveying error is the difference between the measured value and the true value, 
and this is caused by imperfect processing of the survey data or unsatisfactory sur-
veying conditions. As the true value is generally unknown, the actual value of the 
error is dif fi cult to  fi nd. In theory, surveying adjustment methods allow surveying 
data to be closer to the true value. In the international “Guide to the Expression of 
Uncertainty in Measurement” (International Organization for Standardization 
 1995  ) , it was stressed that surveying error and uncertainty are deemed to be two 
different concepts which should not be confused. Surveying error is really different 
from uncertainty by de fi nition. However, both of them are used to express the rela-
tionship between the survey data and the true value. They play the same role in 
describing the con fi dence level of the survey data. In other words, surveying error is 
one of the descriptive methods of indicating surveying uncertainty. Goodchild 
 (  1999  )  argued that uncertainty is the difference between the true value and its 
expression in GIS. If the true value can be determined, error and precision are used 
to describe the uncertainty (Goodchild  1999  ) . However, the true value is generally 
unknown, especially when it is related to the cognition of humans. 

 Randomness and fuzziness are the two conditions that result in the uncertainty of 
spatial data (Burrough and Heuvelink  1992  ) . Randomness is the uncertainty of cog-
nition generated by the inadequacy of the observation conditions. Fuzziness 
refers to the uncertainty of differentiation caused by the intermediary transitivity of 
objective differences (Burrough and Frank  1996 ; Fisher  2000 ; Zadeh  1965  ) . 
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This type of intermediary transitivity may be due to the fuzziness of the ruler used to 
describe objective things, or the inevitability of unclear cognition about those things. 
GIS can model the real world. The model is based on the cognition and abstraction 
of the real world, and is the approximate re fl ection of the real world. The randomness 
and fuzziness of reality cognition bring uncertainty about the spatial data into GIS, 
and thus affect the spatial data quality and the results of spatial analysis. 

 The uncertainty of spatial data derived from the concept of fuzziness can be 
separated into several aspects, as follows.

    1.    Uncertainty comes from the vagueness of the distribution of geographical phe-
nomena or the concept of a geographical entity     

 Variation and fuzziness are two intrinsic attributes in nature which affect the 
accuracy of spatial data representation. For instance, the range of grassland is not 
always determinate; somewhere grassland always moves gradually toward forest 
or desert areas, or else there exists a transition area which re fl ects a smooth tran-
sition state from grassland to forest or desert. The boundary of soil units and the 
classi fi cation of vegetation type are usually fuzzy, and different operators often 
draw different classi fi cation maps, and so forth. If such fuzzy information does 
not undergo appropriate processing, the data imported into GIS will de fi nitely 
have fuzzy characteristics, and result in uncertainty. 

 This kind of fuzziness can be re fl ected in both graphics and the attribute of 
accuracy in the quality of the contents of spatial data. The intuitionistic re fl ection 
in the accuracy of graphics is an error. However, the real position of a boundary 
is dif fi cult to determine owing to the vagueness of the concept. Therefore, the 
fuzziness of a concept may be re fl ected in the accuracy of the attribute. For 
example, the vagueness of vegetation classi fi cations will result in mistakes when 
describing parcels of vegetation.

    2.    Uncertainty derived from spatial relationships     
 In a qualitative description of a spatial relationship, there ubiquitously exist 

inaccurate terms. For example: what is “ nearby ” the village; land to the “ south ” 
(or “ north ”) of the river is suitable for arable farming. In buffer analysis, the prox-
imity to a river is usually described in terms like “in the area “ about ” 5 km to the 
“ north ” (or “ south ”) of the river”; in visual interpretations of images, a ground 
feature may be described as residential houses, factory buildings, or other type of 
architecture. There are often inaccuracies when describing geographical proper-
ties. For instance, the descriptions of boundaries always are fuzzy, as multiple 
feature boundary lines often coincide with each other. The mixed pixels generated 
in the processing of remote sensing data and the overlapping in mode identi fi cation 
are also fuzzy. These emerge in the process of  fi nding speci fi ed descriptions of 
geographical phenomena. 

 This kind of vagueness in speci fi c descriptions of spatial relationships is mainly 
re fl ected in attribute accuracy, logistic consistency, and the integrity and temporal 
accuracy of the quality and contents of spatial data. If the description of geo-
graphic phenomena is not clear, the accuracy of the attribute will always be 
affected, as well as the logistic consistency and integrity of the data. During a set 
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time interval, spatial data may fail to accurately re fl ect the situation at that time. 
Therefore, the temporal accuracy will also be in fl uenced.

    3.    Uncertainty derived from spatial analysis and spatial reasoning operations     
 Spatial analysis is a reasoning process about knowledge, the results of which 

can provide spatial decision-making support to users. The language of human 
beings is similar to fuzzy semantic expressions, for example, we want to  fi nd the 
“ largest ” area affected when a reservoir bursts, or to consider the villages which 
are at a distance of “ about ” 200 m from the reservoir, and so forth. Sometimes we 
need to consider whether an area is “ suitable ” for a certain kind of crop. Here, 
“ suitable ” can be divided into fuzzy terms like “ totally unsuitable ,” “ not very suit-
able ,” “ suitable ,” “ comparatively suitable ,” and “ totally suitable .” 

 Uncertainty generally exists in spatial data, and originates from the vagueness 
of the concept of spatial entities and spatial relationships. This uncertainty 
in fl uences the quality of spatial data, and thus affects the results of GIS applica-
tions. Traditional Boolean set theory can deal with spatial entities with determi-
nate boundaries and concepts in cognition. However, for those spatial entities 
with fuzzy boundaries and concepts, Boolean set theory fails to re fl ect the 
vagueness among them. In traditional approaches, such spatial entities would be 
modeled approximately, and accordingly, the approximate model would result in 
a loss of information. Such uncertainty needs fuzzy set theory.  

    4.2   Fuzzy Set Theory 

 Fuzzy set theory was  fi rst presented in 1965 by the famous cybernetics expert L.A. 
Zadeh in his ground-breaking paper  Fuzzy Sets  (Zadeh  1965  ) . In his research on 
human thinking and judgment of the modeling process, he built up a theoretical sys-
tem using rigorous mathematical methods to describe fuzzy phenomena. Fuzzy set 
theory is an extension of the traditional classic set theory. The aim of the extension is 
to overcome the accurate “either–or” bi-value logic of classic set theory. Thus, there 
is a smooth transition between elements and non-elements of a set, so that one ele-
ment can partially belong to a set, but not completely belong or completely not 
belong to the set. The difference between a fuzzy set and a classic set is that the fuzzy 
set has explicitly put forward the terms of a membership function through which the 
degree of each element belonging to a set can be calculated. Set operations like inter-
section and union in classic set theory are still applicable in fuzzy sets. 

    4.2.1   Fuzzy Set 

 When people consider a speci fi c problem, they always con fi ne the issue within a 
limited range, which is the so-called universe, and is usually represented by capital 
letter  U ,  V.  The components in the universe are elements which are usually embodied 
by lowercase  x ,  y . Given a universe  U , a group of different elements in the universe 
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is called a set, which is usually represented by  A ,  B  and so on. In classic set theory, 
the relationship of an element  x  with a set  A  has only two cases:     ∈x A   or     ∉x A  . 
However, the existence of vagueness in the objective world makes it impossible for 
the “either–or” thought in classical set theory to present all the relationships of each 
element within the set. 

 In classic set theory, an eigenfunction is used to depict the relationship between 
elements and a set. Each set  A  has an eigenfunction     ( )AC x   . If     ∈x A  , then     =( ) 1AC x   ; if 
    ∉x A  , then     =( ) 0AC x   .

     
∈⎧

= ⎨ ∉⎩

1
( )

0A

x A
C x

x A    (4.1)   

 Eigenfunction     ( )AC x    is a mapping from the universe  U  to a range [0, 1]. Usually 
it can separate elements in the set  A  from those outside of the set  A .     ( )AC x    is a binary 
value function which can only distinguish two situations, to be or not to be, and is 
applicable to objects with determinate de fi nition. As it cannot distinguish the degree 
of membership, it is not suitable for fuzzy phenomena. 

 The basic idea of a fuzzy set makes the absolute af fi liation relations in a classic 
set  fl exible. In the form of an eigenfunction, the grade of membership is not 
con fi ned to 0 or 1, but can be any value between 0 and 1. Given a universe  U  and 
a membership function, each element  x  in  U  can be connected with a value     ( )A xm    
in [0, 1].     ( )A xm    is used to express the grade of membership of element  x  belonging 
to the set  A . Here,  A  is a fuzzy set, and     ( )A xm    is equivalent to eigenfunction 
    ( )AC x   . Its value is no longer con fi ned to 0 and 1, and has expanded to any value 
between [0, 1]. 

  De fi nition 4.1  Given a universe  U  and its mapping     Am    in the closed interval 
[0, 1]

     → [0,1]A : Um    

     ( ),Ax x x Um→ ∈     

 A fuzzy subset  A  in the universe  U  can be determined, and generally be referred to as 
a fuzzy set.     ( )A xm    is called the grade of membership belonging to the fuzzy set  A .  

    4.2.2   Fuzzy Set Operations 

 Operations between two fuzzy sets actually operate on the grade of membership 
point by point.

    1.        ⊇   indicates inclusion 

 Given  A ,  B  as two fuzzy sets in the universe  U , if there are     ( ) ( )A Bx xm m≤    for 
any     ∈x U  , then  B  includes  A , denoted     ⊇B A  . 
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 If     ( ) ( )A Bx xm m=   , fuzzy set  A  equals  B , denoted  A = B . 
 A fuzzy set with all membership at 0 is called a null set or an empty set, 

denoted     Φ  .  
    2.        cA    indicates the complementary set of fuzzy set  A  

 Given that  A  is a fuzzy set in the universe  U , the complementary set     cA    can 
be de fi ned as follows:

      ( ) 1 ( )c AA
x xm m= −     

    3.        A B∪    indicates the union set of fuzzy sets  A  and  B  
 Given two fuzzy sets  A ,  B  in a universe  U , a new fuzzy set  C  is the union set 

of  A  and  B . For any     ∈x U  , the membership of  x  included by  C  can be determined 
by the larger of     ( )A xm    and     ( )B xm    

     = ⇔ ∀ ∈∪C A B x U    

     ( ) max( ( ), ( ))C A Bx x xm m m=     

    4.        A B∩    indicates the intersection of sets  A  and  B , and can be de fi ned as: 

     = ⇔ ∀ ∈∩D A B x U    

     ( ) min( ( ), ( ))D A Bx x xm m m=     
    5.    Cut the operation of fuzzy set  A  

 Given that  A  is a fuzzy set in a universe  U , for any real number     [0,1]l ∈   , the     l
  -level cut set of fuzzy set  A  is    

     = ≥ ∈{ ( ) , }AA x x x Uml l      

    Al   is a classic set. A fuzzy set is converted to a common set by the cut 
operation.  

    4.2.3   Fuzzy Relationships 

 There are various relationships in the world. The relationship between two objects 
is usually represented by a trenchant subset, such as terms like  x equals y  or  x is 
larger than y , and so on. 

  De fi nition 4.2  Element  x  in a set  A  and element  y  in a set  B  can form an ordered 
pair ( x ,  y ). All these pairs ( x ,  y ) constitute a set which is a direct product of  A  and  B , 
denoted A × B.

     = ∈ ∈A × B {( , ) | , }x y x A y B     

  De fi nition 4.3  As for sets  A  and  B , any subset  R  of their direct product  U  ×  V  is 
called a binary relation between  A  and  B , or simply referred to as a relation. 
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 Given that both  A  and  B  are  fi nite sets, the relation  R  can be signi fi ed as

     ×= { }ij m nR r
    

 Here,  m  stands for the number of elements in set  A ,  n  is the number of elements 
in set  B , and     ∈ = … = …[0,1], 1,2, , ; 1,2, ,ijr i m j n  . 

 If  R  is a fuzzy set, it depicts the fuzzy relation between  A  and  B . The value of 
elements of  R  can be de fi ned as

     
( , )ij R i jr a bm=

   

where     ( , )R i ja bm    stands for the grade of membership in the universe of     ×A B  .  

    4.2.4   De fi ning the Membership Functions 

 The membership function of a fuzzy set, usually expressed as     ( )Af x   , de fi nes how the 
grade of membership of  x  in  A  is determined. There are two possible ways of deriv-
ing these membership functions (Metternicht  1999  ) . The  fi rst approach, called the 
similarity relation model, resembles cluster analysis and numerical taxonomy in that 
the value of the membership function is a function of the classi fi er used (Robinson 
 1988  ) . A common version of this model is the fuzzy  k -means or  c -means method, 
which is used for soil grouping, remote sensing image classi fi cation of cloud cover, 
and vegetation analysis (McBratney and de Gruijter  1992 ; Wang  1990  ) . The second 
approach, known as the semantic import model, uses an a priori membership func-
tion with which individuals can be assigned a membership grade. This model is useful 
in situations where users have a good qualitative idea of how to group data, i.e., the 
exact associations of the standard Boolean model (Burrough  1989  ) .   

    4.3   Applications in Previous Studies 

 According to the analysis above, fuzziness in spatial data can be divided into three 
aspects: the distribution of geographical phenomena or the concept of geographical 
entity, spatial relationships, and spatial analysis and spatial reasoning operations. 
Since fuzzy set theory was introduced into GIS, many scholars have made efforts to 
clarify the problems in each of these three aspects. 

    4.3.1   Fuzzy Representation of Geographical Entities 
and Their Distribution 

 Generally speaking, there is an implicit assumption in geographical entity modeling 
that the scope or boundary of spatial phenomena or entities can be de fi ned accurately. 
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In a vector structure, the geometric shape of a geographical entity is represented by a 
point, line, or polygon which can be described accurately. The values of the attributes 
of such geographical entities are constant within the whole space range, such as land 
parcels, houses, roads, etc. However, the traditional modeling method is not appro-
priate when dealing with geographical entities with fuzziness in their de fi nition and 
geographical distribution (called fuzzy objects) (Du et al.  2007 ; Schneider  1999  ) . 
Fuzzy modeling can properly express fuzzy geographical objects caused by the 
vagueness of their geographical distribution or fuzzy de fi nition, including natural, 
social, and cultural phenomena with consecutive change attributes. Schneider  (  1999  )  
proposed accurate de fi nitions for a fuzzy point, fuzzy line, and fuzzy polygon based 
on vector structure.  

 A fuzzy object is closely related to a  fi eld-based model (Du et al.  2007 ; Zhao et al. 
 2005  ) . There are two types of  fi eld-based models: the numeric type and the category 
type. The numeric type of  fi eld-based model is suitable for modeling geographical 
phenomena whose attribute values change consecutively with location, such as 
topography  fl uctuations, gradual permeations from grassland to desert, etc. A func-
tion can be constructed to denote such an attribute value at any position. This model 
is a kind of numerical value of expression, and is accurate. In digital representations, 
 fi eld-based data models can be represented as the following continuous two-order 
relationship on a 2-D plane     2N   :

     
2

( , )

( , )
,

( , )
R

x y

x y
R x y N

x y

m
= ∈∫    (4.2)  

where fuzzy membership value     ( , )R x ym    represents the attribute density of a surface 
feature character at point ( x,y ). That is to say, it stands for the extent to which a point 
belongs to one class (object). If     ( , )R x ym    equals any one of both numbers {0, 1}, all 
the objects in real-life have crisp boundaries. If     ( , )R x ym    is a numerical value in the 
interval [0, 1],  R  becomes a fuzzy set and the model can represent fuzzy geographical 
phenomena. This relationship can be expressed with a 2D matrix in which the row 
and column numbers are the coordinates of the spatial surface feature. For example, 
an urban area can be represented as shown in    Fig.  4.1 . 

 The values of the cells stand for the extent to which the cell belongs to the urban 
area. 1.0 indicates that the cell belongs entirely to the classi fi cation of urban area; 
0 < the value <1.0 means that the cell partly belongs to the urban area; 0, the cell 
cannot be characterized as urban area at all. The two-order relationship re fl ects the 
 fi eld view of geographic phenomena. 

 In the category type of  fi eld-based model, each position belongs to different 
types of attribute. As the attribute types are often qualitative and discrete, the key 
to this model is the classi fi cation system. That is to say, each position is given an 
attribute type. Each pixel in this model belongs to just one category, and the degree 
of membership is 1. Therefore, it cannot describe partial membership of fuzzy 
phenomena. 

 The numeric type of  fi eld-based model is relatively more suitable for describing a 
fuzzy object. However, because of the de fi ciency of functions in existing GIS to 
process fuzzy data, its application is not possible. Clementini and Di Felice  (  1997  )  
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  Fig. 4.1    Fuzzy representation of a spatial object—an urban area. ( a ) In numerical form. ( b ) In  gray  
form. The hierarchy of  gray  values is shown on the  right  of ( b )       

put forward the concept of a broad boundary model. An object is formed by an interior, 
a broad boundary, and an exterior (Fig.  4.2a ) (Clementini and Di Felice  1997  ) . 
A broad boundary has a certain width and area, and is no longer a geometric line. 
The broad boundary model can usually be expressed as two areas: exterior and interior. 
The exterior area illustrates where the object may be located, and the interior area 
where the object must be located. The difference between the exterior area and the 
interior area is the broad boundary. This model uses a broad boundary to re fl ect the 
uncertainty of a fuzzy object. An object represented using the broad boundary model 
is called a broad boundary object. According to the complexity of the object, a broad 
boundary object can be de fi ned as simple or complex. A simple broad boundary 
object is composed of a continuous interior, a continuous boundary, and a continuous 
exterior (see Fig.  4.2a ), while a complex broad boundary object is a combination of 
several simple broad boundary objects. Cohn and Gotts  (  1996  )  advanced the “egg-
yolk” approach to represent the uncertain area (Fig.  4.2b ). The internal deep gray 
sub-region in the model is called the “egg-yolk”, and the light gray sub-region out-
side is called the “egg-white” (Cohn and Gotts  1996  ) . The “egg-white” stands for the 
uncertain part. The broad boundary model and the “egg-yolk” model can qualita-
tively describe the fuzzy extent, but cannot distinguish the membership of each pixel 
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belonging to the broad boundary or the “egg-white”. A broad boundary region or 
“egg-white” can be obtained by a  l -level cut set for the fuzzy object (Fig.  4.2 ).  

 Du et al.  (  2007  )  summarized the source of a fuzzy object. There are three sources 
of fuzzy objects: the inherent model characteristics of the geographical phenomena 
(i.e., geographic distributions or geographic concepts are vague), the de fi ciency of 
spatial resolution (the geographic phenomena are accurate, but the spatial resolution 
is insuf fi cient), and the derivation from existing fuzzy or non-fuzzy objects. The 
inherent fuzziness of geographical phenomena determines that a pixel does not 
completely belong to a certain category. There exists a certain transition or overlap 
area among categories. For the second source, as the spatial resolution in remote-
sensing images is not high enough, fuzziness and hybrid pixels are generated. What 
the pixel represents on the ground is a synthesis of different adjacent objects. The 
third source comes from fuzzy operations of fuzzy or non-fuzzy objects (Stefanakis 
et al.  1999  ) . The fuzzy operations include fuzzy overlay analysis, fuzzy buffer anal-
ysis, and fuzzy focus operations, etc. The result of these operations is also a kind of 
fuzzy object, just an outcome of the logical or arithmetic operations on the original 
objects. This derived object is similar to a fuzzy object in attributes and processing 
method except for the sources and meaning. Therefore, it can also be processed as 
a fuzzy object. 

 Cheng et al.  (  2001  )  classi fi ed fuzzy objects into three categories, fuzzy–fuzzy 
(FF), fuzzy–crisp (FC), and crisp–fuzzy (CF), and pixels can be classi fi ed into fuzzy 
objects according to different criteria (Fig.  4.3 ).  

 The FF model represents objects with uncertain thematic attributes and spatial 
scope. It allows different objects to overlap with each other. The FC model describes 
objects with a certain thematic content but uncertain spatial scope. The CF model 
describes objects with a certain spatial scope but uncertain thematic content. The 
FC and CF models are suitable for describing fuzzy objects which are separated 
spatially. An FC object’s boundary is fuzzy with a precise interior. FC objects can 
overlap with each other, but CF objects cannot. Therefore, the traditional accurate 
object (crisp–crisp) model just describes objects with a determinate spatial scope 
and attribute range. According to the fuzzy object classi fi cation, Cheng et al.  (  2001  )  

  Fig. 4.2    Broad boundary region ( a ) and “egg-yolk” model ( b ) (Cohn and Gotts  1996 )       
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de fi ned different criteria using fuzzy and probability methods to extract fuzzy 
objects from the uncertainty classi fi cation results of remote sensing images.  

    4.3.2   Fuzzy Spatial Relationships 

 Spatial relationships may be caused by the geometric characteristics of spatial 
phenomena (the geographical position and shape of spatial phenomena) such as 
distance, direction, and connectivity, etc., or by the geometric and non-geometric 
characteristics of spatial phenomena together (including measurement attributes 
such as elevation value, slope values, etc., and the name attribute such as place names, 
etc.). For instance, the statistical correlation of spatially distributed phenomena, 
spatial autocorrelation, spatial interaction, spatial dependence, etc., belong to this 
kind of spatial relationship (Du et al.  2007  ) . In qualitative spatial reasoning, it is 
common to consider the main spatial aspects of topology, direction, and distance, and 
to develop a system of qualitative relationships between spatial entities which cover 
this spatial aspect to some degree, and which appear to be useful from an application 
or cognitive perspective (Renz  2002  ) . Therefore, this chapter chie fl y focuses on the 
description of fuzzy spatial relationships such as topology, direction, and distance. 

    4.3.2.1   Fuzzy Description of Spatial Topology Relationships 

 A topological relationship refers to the property that remains the same in the process of 
topological transformation, such as translation, rotation, and scaling transformation, etc. 

  Fig. 4.3    Three fuzzy object models ( a ) FF-object model; ( b ) CF-object model; ( c ) FC-object 
model (Cheng et al.  2001  )        
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Topological relationships have always been the main content in spatial relationship 
research, and also an important component in spatial database queries and retrieval 
language. The 4-intersection model and the 9-intersection model are commonly 
used and accurate methods of describing topological relationships (Egenhofer and 
Franzosa  1991 ; Egenhofer and Herring  1991  ) , and have received wide use and rec-
ognition in theoretical research and applications of GIS. The 9-intersection model 
can distinguish between 8 types of meaningful polygon–polygon topological rela-
tionships, 19 types of line–polygon topological relationships, and 33 types of line–
line topological relationships. However, one shortcoming of the 4-intersection 
model and the 9-intersection model is that they can only describe topological rela-
tionships between determinate objects, while failing to describe the topological 
relationships of fuzzy objects. 

 Clementini and Di Felice  (  1997  )  replaced the mathematical boundary in the 
9-intersection model with a broad boundary. The 9-intersection model derived from 
a combination of the interior, broad boundary, and exterior of two broad boundary 
objects is extended to describe fuzzy topological relationships. This is called the 
extended 9-intersection model. It can describe 44 topological relationships between 
simple broad boundary objects, and 56 topological relationships between complex 
broad boundary objects (Clementini and Di Felice  1997  ) . Cohn and Gotts  (  1996  )  
also proposed 46 types of topological relationships among fuzzy polygons base on 
the “egg-yolk” method. 

 In fact, a topological relationship can be formally described with a quintuple S_
Topologic ( U ,  V ,  F ,  H ,  C ) (Du et al.  2007  ) .  U  is an object set,  V  is a conceptual set 
for the topological relationship,  F  is a function mapping set,  H  is a partition function 
set of object space, and  C  is the range of values of  F  and  H . For any topological 
relationship concept     ∈iv V   , a corresponding mapping     ∈if F   always exists with it. 
The function     × →:if U U C   represents the consistency between topological rela-
tionships and the conceptual meaning of a topological relationship for any object  A  
and  B  in the set  U . The description of a topological relationship is implemented by 
mapping the topological relationship of  A  and  B  through the function     if    to set  V . 
Thus, topological relationships of any two objects in  U  can be described by the 
concept in set  V . For instance, when a polygon–polygon topological relationship is 
described in the 9-intersection model,  V  = { disjoint ,  meet ,  overlap ,  cover ,  covered-
by ,  contain ,  inside ,  equal }, each concept in  V  corresponds to a matrix.  F  is a binary 
logic function set used to determine which concept matrix in set  V  is the same as the 
topological relationships of objects  A  and  B . The value range of C is {0, 1}. Set  H  
of a partition function set is the de fi nition of the interior point, exterior point, and 
boundary point in point set topology (Gaal  1964  ) . This de fi nition is determinate, 
and its range of values is {0, 1}. 

 For fuzzy topological relationships, set  V  is identical to the 9-intersection model. 
The difference between fuzzy topological relationships and classic ones exists in 
 F ,  H , and  C . Three functions     1( , )h x y   ,     2 ( , )h x y   ,     3 ( , )h x y    in  H  de fi ne the membership 
of point ( x ,  y ) belonging to the interior, exterior, and boundary respectively, and 
each range of values is extended to [0, 1]. The value range of  C  in the function  F  
    × →:if U U C    is [0, 1], and the function     × →:if U U C   is used to determine the 
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topological relationships of objects  A  and  B  and the membership of each concept 
in set  V . 

 In the case of polygonal objects, the de fi nitions of interior point, exterior point, 
and boundary point in point set topology can be used to divide fuzzy space into three 
fuzzy sets as a boundary region, an interior region, and an exterior region (Du et al. 
 2007  )  (Fig.  4.4 ). As in fl uenced by the uncertainty of spatial data, the boundary of a 
polygonal object is not simply referred to as its boundary with coordinates arrayed in 
a vector structure or a sequence of grids after the rasterization of the boundary in the 
raster structure. The boundary is extended to become a region spreading inward and 
outward to the object. The farther away from the boundary of an object a pixel is, the 
smaller the degree of membership of belonging to the object boundary becomes. The 
maximum membership degree is 1.0 at the polygon boundary.   

    4.3.2.2   Fuzzy Representation of Spatial Direction 

 Directional—also called orientational—relationships of spatial entities with respect 
to other spatial entities is usually given in terms of a qualitative category such as “ to 
the north of ” rather than using a numerical expression such as “ 12 degrees ” (which 
is certainly more common in technical communications such as aviation). These are 
important and common-sense linguistic and qualitative properties used in everyday 
situations and qualitative spatial reasoning (Frank  1996  ) . The direction of spatial 
entities is a ternary relationship depending on the located object, the reference object, 
and the frame of reference, which can be speci fi ed either by a third object or by a 
given direction. In the literature, one distinguishes between three different kinds of 
frames of reference, extrinsic (“external factors impose a direction on the reference 
object”), intrinsic (“the direction is given by some inherent property of the reference 
object”), and deictic (“the direction is imposed by the point of view from which the 
reference object is seen”) (Hernàndez  1994  ) . Given the frame of reference, directions 
can be expressed in terms of binary relationships with respect to the frame. 

 Most approaches to dealing with direction qualitatively are based on points as 
the basic spatial entities and consider only two-dimensional space. Frank  (  1991  )  

  Fig. 4.4    Fuzzy partition of a polygonal object in a topological universe (Du et al.  2007  )        
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suggested different methods for describing the cardinal direction of a point with 
respect to a reference point in a geographic space, i.e., directions are in the form 
of [north, east, south, west] depending on the granularity (Frank  1991  ) . Zhao et al. 
 (  2005  )  proposed a spatial direction model based on trigonometric functions. 
In this model, all objects are considered as a point—even those with irregular 
shape and size—and follow Frank’s suggestion about directions (a centroid-based 
method, where the direction between two objects is determined by the angle 
between their centroids) (Fig.  4.5 ). The azimuth   q   from object  O  

1
  to object  O  

2
  is 

computed. This angle, denoted by   q  ( O  
1
  , O  

2
 ), takes values in [0, 2 p ], which consti-

tutes the universe on which primitive directional relations are de fi ned.  Sin   2  (  q  ) and 
 cos   2  (  q  ) are chosen as fuzzy membership functions to describe the direction [north, 
east, south, west] with reference to the relative position relation functions pro-
posed by Miyajima and Ralescu  (  1994  )  (Fig.  4.6 ). Miyajima and Ralescu  (  1994  )  
used the square trigonometric function to illustrate the relative position relations 
[above, right, below, left] of segmented images. Square trigonometric functions 
are also suitable for directions in the form of [north, east, south, west] (Miyajima 
and Ralescu  1994  ) . For instance, in Figure  4.5 , if   q   = 50°, then the direction rela-
tionship is [0.4132, 0.5868, 0, 0] in the form of [north, east, south, west] accord-
ing to Eqs. ( 4.3 )–( 4.6 ). This means that object  O  

2
  is located to the north of object 

 O  
1
  with 0.4132 of membership degree, and to the east with 0.5868 of membership 
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Therefore, fuzzy membership functions not only show the characteristics of tran-
sition of the directional relationship, but also ensure the integrity of the de fi nition 
of the direction for any target object.  
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    4.3.2.3   Fuzzy Description of Spatial Distance 

 In a spatial decision-making process, the distance relation between spatial entities 
always plays a key role. Dealing with distance is an important cognitive ability in 
our everyday life (Renz  2002  ) . When representing distance, we usually use qualita-
tive categories such as “ A is close to B ” (binary constraint) or qualitative distance 
comparatives such as “ A is closer to B than to C ” (ternary constraint), but some-
times also numerical values such as “ A is about 20 m away from B ”. One can distin-
guish between absolute distance relations (the distance between two spatial entities) 
and relative distance relations (the distance between two spatial entities as com-
pared with the distance to a third entity) (Guesgen and Albrecht  2000 ; Renz  2002  ) . 
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The choice of which relation should be used depends on the application universe 
and the requirements posed by decision-makes. For two individual locations  A  and 
 B , which in general are abstracted as points, the Euclidean distance is given by the 
formula

     
2 2( , ) ( ) ( )A B A Bd A B x x y y= − + −

   (4.7)  

where ( x  
 A 
  , y  

 A 
 ) and ( x  

 B 
  , y  

 B 
 ) denote the coordinates of two locations  A  and  B,  

respectively. 
 Qualitative absolute distance relations are obtained, for example, by dividing the 

real line of distance into several sectors such as “ very close ,” “ close ,” “ commensu-
rate ,” “ far ,” and “ very far ” depending on the chosen level of granularity (Hernàndez 
et al.  1995  ) . In practice, we usually use one of the sectors. For instance, Figure  4.7  
represents the “ close ” degree from a point on a map to a city. 
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 where  x  denotes the distance (in kilometers) from the location to the city. The 
division values such as 5 km and 20 km are designed arbitrarily by decision-makers 
according to the understanding of their de fi nition of a “ close ” degree.   

    4.3.3   Fuzzy Operations on Spatial Reasoning 

 Spatial reasoning is an approach for reasoning out unknown spatial relationships 
based on the determinate spatial relationships of objects. The reasoning is imple-
mented through a symbolic operation based on implicit knowledge and rules. Spatial 
reasoning is a hot topic in  fi elds such as GIS, arti fi cial intelligence, and computer 
vision, and many spatial reasoning methods have been put forward. Du et al.  (  2007  )  
systematically summarized the classi fi cation systems of spatial reasoning methods. 
Existing spatial reasoning methods are mainly concentrated in a single spatial rela-
tionship (Du et al.  2007  )  such as topological relationship reasoning by topological 
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relationships, direction relationship reasoning by direction relationships, and so on. 
Fewer combinatorial spatial reasoning methods were presented. In addition, most of 
these spatial reasoning methods were developed for determinate geographical 
objects or spatial relationships, and sometimes it is dif fi cult to adopt these methods 
for spatial relationships with uncertainty. Therefore, these methods need an exten-
sion and supplement for fuzzy geographic objects or fuzzy spatial relationships. 

 Hong et al.  (  1995  )  have researched combinatorial spatial reasoning methods for 
direction and distance relationships. The distance and direction between  A  and  C  
can be reasoned according to the distance and direction between  A  and  B  and those 
between  B  and  C  (Hong et al.  1995  ) . Sharma  (  1996  )  used a projection model to 
describe direction relationships, a 9-intersection model to describe topological rela-
tionships, and an interval model to describe qualitative distance relationships. Then 
single, combinatorial, and integrated spatial reasoning methods were proposed 
(Sharma  1996  ) . As he used a projection model to describe a direction relationship 
between polygonal objects, this method cannot exactly express the actual direc-
tional relationship of such polygonal objects. In particular, because he focused on 
spatial reasoning for two single direction relationships rather than for single to mul-
tinomial direction relationships, multinomial to single direction relationships, and 
multinomial to multinomial direction relationships, the ef fi ciency and accuracy of 
spatial reasoning results are limited. 

 A broad boundary model has been used to describe fuzzy objects (Clementini 
and Di Felice  1997 ; Worboys and Clementini  2001  ) .    Clementini and Di Felice 
 (  1997  )  proposed 44 types of topological relationships using the extended 9-intersec-
tion model based on the broad boundary model, and    Cohn and Gotts  (  1996  )  put 
forward 46 types of topological relationships using the “egg-yolk” theory. As the 
number of topological relationships based on the broad boundary model or the 
“egg-yolk” theory goes beyond the range of cognition of a human being, such meth-
ods are inconvenient for topological relationship reasoning. Some scholars have 
also put forward advanced models to extend the fuzzy spatial reasoning method. 
Du et al.  (  2007  )  proposed a quadruple model to describe the topological relationship 
of objects with broad boundaries, and topological relationship reasoning was imple-
mented based on the quadruple model. 

 Zhao et al.  (  2005  )  proposed a  fi eld-based integrated spatial reasoning model 
for the case of the constraint satisfaction problem (CSP). They argued that knowl-
edge about spatial entities or about the relationships between spatial entities are 
often given in the form of constraints. Ordinarily, binary constraints such as “ the 
primary school should be laid out in the north of the residential area ,” ternary 
constraints such as “ the primary school should be laid out between residential 
area A and residential area B ,” or in general,  n -ary constraints restrict the uni-
verse of 2, 3, or  n  variables. Problems like these are formalized as a constraint 
satisfaction problem: given a set of variables  R  over a universe  D  and a set  A  of 
constraints on the variables  R  (Renz  2002  ) . CSP is a powerful general framework 
in which a variety of combinatorial problems can be expressed (Creignou et al. 
 2001 ; Marriott and Stuckey  1998  ) . The aim of CSP is to assign values to the vari-
ables subject to speci fi ed constraints. In fact, it is the most popular reasoning 
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method used in qualitative spatial reasoning (Renz  2002  ) , and a common problem 
in spatial decision-making processes such as the examples described above. 

 Ladkin and Maddux  (  1994  )  formulated binary CSPs as relation algebras as 
developed by Tarski  (  1941  ) . This allows binary CSPs to be treated in a uniform way. 
In a fuzzy domain, the relation algebras constitute fuzzy logic reasoning. Fuzzy 
logic reasoning, one of the application domains of fuzzy relationship generalization, 
is the fundamental basis of fuzzy spatial reasoning. It implements tasks through 
logical operations based on normal relation algebra theory. The operations can be 
extended to  n  sets of fuzzy relationships, i.e., the operation is applicable to multiple 
fuzzy sets. Assuming that there are  n  sets of fuzzy relationships, operations can 
be expressed uniformly as

     1
( ) ( )

i

n

R A
i

z z z Cm m
=

= ⊗ ∈    (4.9)  

where     ⊗   denotes operators  union ,  intersection , and c omplement,  respectively, and 
 A  

 i 
  stands for multiple fuzzy relationships. 
 Zhao et al.  (  2005  )  used this model to implement a combinatorial fuzzy reasoning 

including direction and distance relationships. A task in combinatorial fuzzy reasoning 
is to  fi nd a suitable location for a special factory given certain constraining factors.

    (a)    The factory must be located to the east of the environmental monitoring station.  
    (b)    The factory must not be far from the environmental monitoring station.  
    (c)    The factory must not be situated on land suitable for agriculture.     

 They compared the results of the combinatorial fuzzy reasoning model (Fig.  4.8a ) 
with those of traditional spatial reasoning (Fig.  4.8b ). It is evident that the informa-
tion in the combinatorial fuzzy reasoning result is more abundant and more detailed 
than that in the result of the traditional approach. The combinatorial fuzzy reasoning 
model gives decision-makers more chances to choose a suitable result as it provides 
the degree of suitability to the proposition proposed by the users.    
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    4.4   Conclusion and Future Prospects 

 Fuzziness is an inherent characteristic in nature and in the language of human 
beings. As GIS can model and digitize the real world, it needs to be able to deal with 
the fuzziness existing in the real world. In addition, the model of the real world in 
GIS is based on the cognition of humans, and the concept and methods of modeling 
and analysis embedded in GIS software are always in fl uenced by human cognition. 
Spatial decision-making support provided by GIS should relate to human cognition. 
Accordingly, the representation and analysis of the real world in GIS should be 
geared to human language, so that the representation, analysis process, and results 
can completely satisfy the natural mode of expression of humans. 

 Scholars began to pay attention to the quality of the spatial data in GIS soon after 
the emergence of GIS in the 1960s, and they adopted fuzzy set theory to deal with 
spatial geographical phenomena and spatial analysis methods. In the early years, the 
application of fuzzy set theory in GIS emphasized the analysis of the sources of 
fuzzy phenomena in spatial data and spatial analysis methods. These sources include 
the fuzziness in three aspects of geographical distributions, or the concept of spatial 
entity, spatial relationships, and spatial reasoning. The exploration of sources indi-
cated the research directions for the application of fuzzy set theory in GIS. After that, 
methods of representing fuzzy geographical objects in GIS were explored based on 
vector and raster structures. However, most of these representational methods can be 
deemed to be concept models, and do not deviate from traditional spatial data struc-
ture. In fact,  fi eld-based raster models or vector models of fuzzy geographical objects 
are always more complex than traditional data structure. Therefore, such models can-
not be widely used for storing fuzzy spatial data. As spatial relationships and spatial 
reasoning are based on determinate geographical objects, research into them was 
also in fl uenced by representational methods of spatial relationships and spatial rea-
soning. Researchers have not abandoned the struggle with fuzzy spatial data. The 
broad boundary model and the “egg-yolk” theory were proposed in order to extend 
traditional topological relationships, and the qualitative directional and distance rela-
tionships of fuzzy objects were also researched using fuzzy set theory and member-
ship functions. In particular, some fuzzy reasoning methods have been put forward to 
solve fuzzy geographical problems. 

 These, however, are only the beginning of longer term collaborative research 
efforts. The application of fuzzy set theory in GIS is still developing. Both fuzzy 
mathematics itself and the concept of fuzzy geographical objects and analysis need 
innovation.

    1.    Further work will have to emphasize research into the measurement of fuzzy 
uncertainty. Based on this idea, a membership function model should be con-
structed for the fuzzy uncertainty of spatial data derived from different sources.   

    2.    Based on geographical ontology, formalized methods of expression should be 
explored for fuzzy objects. In addition to traditional vector and raster structures, 
we may  fi nd a new integrative data structure in which fuzzy information can be 
stored and visualized conveniently in computer systems.   
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    3.    Further research should also focus on the formal de fi nitions of combinatorial 
fuzzy spatial reasoning operations and predicates, with the integration of fuzzy 
spatial data types into query languages, and with aspects of implementation lead-
ing to sophisticated data structures for ef fi cient algorithms for the operations.   

    4.    The promulgation of fuzzy information in the process of spatial reasoning is a 
key point for users who pay attention to the results of spatial analysis. We will 
have to explore the law of promulgation and to assess its effect on the results of 
spatial analysis. In that way we could provide users with a con fi dence range of 
fuzzy spatial reasoning results.          
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 In spatial statistical analyzes of geographical phenomena, a region or city under 
study might be divided into some small areal units such as a regular square tessella-
tion, or into irregular shaped administrative units which have different spatial char-
acteristics. If we are using geographical information science (GIS) to support the 
analysis, irregular areal units such as  cho  in Japan are usually represented as one 
such polygon with geometric attributes. In spatial statistics, an areal unit that has 
special geometric attributes and maintains signi fi cant spatial correlation and spatial 
interaction close to adjacent units is called a prominent areal unit or an important 
areal unit. The prominence of areal units can be measured by a prominence or 
in fl uence-centrality index, which is obtained by using eigenfunctions or the Markov 
chains method from a spatial weights matrix (Tinkler  1972 ; Grif fi th and Jones  1980 ; 
Boots  1982 ; Bavaud  1998 ; Zhang and Murayama  2003  ) . 

 In this chapter, after a review of the method of creating a spatial weights matrix, 
we will consider some types of weight function de fi nitions in order to create different 
measures of prominent areal units, and use them to analyze the urban spatial pattern 
in Matsudo City, Chiba Prefecture. 

    5.1   A Review of Creating a Spatial Weights Matrix 

 The spatial weights matrix formed by weight coef fi cients is an integral part of 
spatial modeling. It is de fi ned as the formal expression of spatial dependence 
between observations (Anselin  1988  ) . In thinking about a type of spatial weights 

    C.   Zhang   (*)
     Faculty of Regional Development Studies ,  Toyo University ,   Tokyo ,  Japan   

   Formerly in Graduate School of Geoscience ,  University of Tsukuba ,   Tsukuba, Ibaraki ,  Japan    
e-mail:  cp-zhang@toyo.jp   

    Chapter 5   
 Spatial Prominence and Spatial Weights Matrix 
in Geospatial Analysis       

      Changping   Zhang                



74 C. Zhang

matrix  W , Getis  (  2009  )  indicated that at least three ways exist, i.e., theoretical, 
topological, and empirical points of view. According to a theoretical point of view, 
the  W  matrix is exogenous to any system, and should be based on a preconceived 
matrix structure. Usually this structure is based on a theory of distance decay, which 
may come from notions of spatial interaction and gravity models. The topological 
viewpoint arose from a need to depict the actual con fi guration of the areal units 
contained within a study region. For example, a long, narrow areal unit would be 
represented differently than a short, wide unit. In this case, the matrix  W  might be 
speci fi ed in different ways, e.g., number of neighbors, length of side, or proportion 
of perimeter in common. Cliff and Ord  (  1969  )  said, “With a  fl exible system of 
weights, the researcher can highlight those features of a study area which he believes 
to be important.” The empirical viewpoint approach implies that spatial dependence 
can be detected in the variables under study. A local autocorrelation point of view 
should be used to identify the exact level of spatial autocorrelation surrounding any 
given observation, and then a  W  matrix can be created. 

 Since the 1960s, many researchers have attempted to create a proper dependence 
representation in spatial weights matrix  W . With data in a raster model,  W  was con-
structed in the rook’s case or the queen’s case de fi nition of neighbors. Using vector 
data, two types of  W  could be used. The  fi rst is called a simple binary connectivity 
de fi nition, and uses a discrete function where spatial entities are assumed to be 
adjacent if and only if they share a common boundary. The nature of the interaction 
of the spatial phenomenon under study cannot always be captured by a simple 
binary proximity measurement. In this case, based on theoretical and conceptual 
considerations, a generalized weight function can be used, as advanced by Cliff and 
Ord  (  1981  ) , which offers  fl exibility in de fi ning spatial proximity. Typical functions 
incorporate the distance between the geographical centroids of areal units and/or the 
length of a common boundary between areal units (Can  1996  ) . 

 Getis and Aldstadt  (  2004  )  summarized previous attempts to create a spatial 
weights matrix and identi fi ed many different types of weighting schemes, such as:

    1.    Spatially contiguous neighbors  
    2.    Inverse distances raised to some power  
    3.    Length of shared borders divided by the perimeter  
    4.    Bandwidth as the  n th nearest neighbor distance  
    5.    Ranked distances  
    6.    Constrained weights for an observation equal to some constant  
    7.    All centroids within distance  d   
    8.     n  nearest neighbors, and so on     

 Some of the newer schemes include:

    1.    Bandwidth distance decay  
    2.    Gaussian distance decline  
    3.    “Tri-cube” distance decline function     

 Furthermore, Getis and Aldstadt  (  2004  )  also proposed a spatial weights matrix 
based on the  G  

 i 
  *  local statistic (Ord and Getis  1995  ) , which accounts for the spatial 
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association extant within any region that has been divided into its constituent parts. 
In a series of simulation experiments, the matrix was compared with well-known 
spatial weights matrix speci fi cations—two different contiguity con fi gurations, three 
different inverse distance formulations, and three semi-variance models—and 
performed best according to the AIC (Akaike information criterion) and the 
autocorrelation coef fi cient evaluation. 

 Zhang and Murayama  (  2000  )  suggested a concept and algorithm of  k -order 
neighbors based on Delaunay’s triangulated irregular networks (TIN), and rede fi ned 
Getis and Ord’s  (  1992  )  local spatial autocorrelation statistic as  G  

 i 
  ( k ) with weight 

coef fi cient  w  
 ij 
  ( k ) based on  k -order neighbors for the study of local patterns in spatial 

attributes. 
 Although the choice of a spatial weights matrix speci fi cation for spatial statistical 

analysis is not clear-cut and seems to be governed primarily by convenience or 
convention, Grif fi th  (  1996  )  proposed some explicit guidelines on speci fi cations 
of the spatial weights matrix, and concluded that relatively large numbers ( n  > 60) of 
areal units should be employed in a spatial statistical analysis, and low-order spatial 
models should be given preference over higher-order ones.  

    5.2   Spatial Weights Matrix Formed by Weight Coef fi cients 

 In this section, we de fi ne four types of weight coef fi cient and create the spatial 
weight matrices formed by these coef fi cients for a simple hypothetical region. 

    5.2.1   Binary Weight 

 If we try to study spatial interrelationships distributed over a set of areal units, the 
spatial structure of units might be de fi ned as the spatial contiguity, which is treated 
as an  n  ×  n  spatial weights matrix  W  with binary variables (Cliff and Ord  1981 ; 
Zhang and Murayama  2003  ) . The binary weight is represented as follows:

     {= if areas  and  are contiguous;
otherwise.

1
0

i jwij    (5.1)   

 The binary spatial weights matrix  W  has a symmetric form. If  W  is row-
standardized:

     
Î

=
å

* ij
ij

ij
j J

w
w

w    
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where  J  is the set which includes all areal units that are contiguous with  i,  and  w  
 ij 
  * 

satis fi es non-negative  w  
 ij 
  *  ³  0 and     

Î

=å * 1ij
j J

w    (for all  i  =1,…, n ). The binary weight is 

often used in spatial autocorrelation analysis with regular and irregular areal units. 
A hypothetical example will clarify the use of this index. Imagine a region that is 
divided into four units (Fig.  5.1 ), units 1 and 2, 1 and 3, 1 and 4, and 2 and 3 are 
contiguous.  

 The binary spatial weights matrix and its standardized form in Fig.  5.1  are shown 
as follows.

     

æ ö æ ö
ç ÷ ç ÷
ç ÷ ç ÷= =
ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

*

0 1 1 1 0 0.3333 0.3333 0.3333

1 0 1 0 0.5 0 0.5 0

1 1 0 0 0.5 0.5 0 0

1 0 0 0 1 0 0 0

b bW W      

    5.2.2   Distance Decay Weight 

 Tobler  (  1970  )  referred to the “ fi rst law of geography: everything is related to every-
thing else, but near things are more related than distant things.” In research into the 
interrelation and interaction, the phenomenon in which the contiguity or interaction 
decrease with increasing distance between two areal units is known as distance 
decay. The distance decay weight is usually expressed as a reciprocal of distance.

     
=

1
ij

ij

w
d    (5.2)  

where  d  
 ij 
  is the distance from the center of unit  i  to the center of neighboring unit  j . 

Generally, this distance can be a straight-line distance, a road distance, a time dis-
tance, a cost distance, a mental distance, or some other distance. The distance decay 
spatial weights matrix and its standardized form in Fig.  5.1  are shown below.
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  Fig. 5.1    A hypothetical region        
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    5.2.3   Generalized Weight 

 A generalized weight de fi nition is based on the distance and length of the boundary 
between areal units. In this case, the elements of spatial weights matrix  W  are

     ( )
Î

= = ¼
å

1, ,nij

ij

w i
d

ij

ij
j J

l

l    (5.3)  

where  J  is the set which includes all units which are contiguous with unit  I ,  l  
 ij 
  is the 

length of the join between units  i  and  j.      
Î
å ij
j J

l   is the length of all joins for unit  i , 

i.e., its perimeter, and  d  
 ij 
  is the distance from the center of unit  i  to the center of 

neighboring unit  j .      

Î
å

ij

ij
j J

l

l
  is simply the proportion of the perimeter of unit  i  which 

is contiguous with unit  j . This weighting function assumes that the interaction 
between two units will increase with an increase in the length of the common bound-
ary, and will decrease with an increase in the distance between their geographical 
centers. The generalized spatial weights matrix and its standardized form in Fig.  5.1  
are shown below.
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    5.2.4    k -Order Neighbors Weight 

 Zhang and Murayama  (  2000  )  proposed a concept of  k -order neighbors based 
on Delaunay’s triangulated irregular network (TIN), with centroids of areal 
units and a de fi nition of  k -order neighbors’ weight. For example, Fig.  5.2b  
shows the result of drawing a TIN based on the point distribution in Fig.  5.2a . 
The  k -order neighbors in the Delaunay triangulation network are de fi ned as 
follows. Those points directly connected to a point  v  by the edges of the TIN 
are called the “nearest neighbors,” or “ fi rst-order neighbors” in terms of this 
point. Then those points which are directly connected to the  fi rst-order neigh-
bors of that point are not  fi rst-order neighbors themselves, but are called “sec-
ond-order neighbors.   ” By continuing this process, we can de fi ne  k -order 
neighbors for any point,  v .  

 The weight coef fi cient  w  
 ij 
 ( k ), which measures the proximity of  k -order 

 neighbors in a point distribution, is determined as follows.  w  
 ij 
 ( k ) is a binary 

coef fi cient which is set to 1 if point  j  is a  k -order neighbor of point  i , otherwise 
it is 0.

     {= Point  is a  - order neighbor of point ;
otherwise.

1
0

j k iwij    (5.4)   

 The de fi ned spatial weight matrix { w  
 ij 
 ( k )} is a symmetrical binary matrix. 

 The  fi rst-order neighbor spatial weights matrix and its standardized form in 
Fig.  5.1  are shown below.

     

æ ö æ ö
ç ÷ ç ÷
ç ÷ ç ÷= =
ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

*

0 1 1 1 0 0.3333 0.3333 0.3333

1 0 1 0 0.5 0 0.5 0

1 1 0 1 0.3333 0.3333 0 0.3333

1 0 1 0 0.5 0 0.5 0

k kW W
      

    5.3   Prominence of Irregular Areal Units 

    5.3.1   Eigenfunctions Method 

 In some of the geographical literature, it is suggested that the principal eigenvector 
can be used to measure the prominence of irregular areal units (Tinkler 
 1972 ; Grif fi th and Jones  1980 ; Boots  1982  ) . The eigenfunction of a spatial weights 
matrix is

     ( )λ λ λ -

=

= - = =å
0

( ) det 0.
n

n i
i

i

I W af
   (5.5)   
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 The eigenvalues are the roots of  W . Since spatial weights matrix  W  is real, the  l  
 i 
  

is real and may be ordered as  l  
 1 
  ³ … ³  l  

 n 
 . Corresponding to each  l  

 i 
  is an eigenvector 

 v  
 i 
 , which satis fi es

     ( 1,2, , ).i i iv v i n= = ¼λW    
(5.6)

   

 The elements of  v  
 i 
  corresponding with the largest eigenvalue  l  

 i 
  provide a mea-

sure of the relative position of each areal unit since the magnitude of the element is 

  Fig. 5.2     k -order neighbors based on Delaunay triangulation. ( a ) Point distribution, ( b ) Delaunay 
triangulation, ( c ) nearest neighbors, ( d ) second-order neighbors (reproduced from Zhang and 
Murayama  2000 )       
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related to the centrality or prominence. Generally, a unit located in a central region 
of a city possesses a larger element of  v  

 i 
 , and a unit with a smaller element might be 

located near the city limits.  

    5.3.2   Markov Chain Method 

 The standardized spatial weights matrix  W   *   with elements of row-standardized 
variable  w  

 ij 
  *  is identical to the Markov chain transition matrix. Assuming the chain 

is ergodic (    >( ) 0n
ijw    for some  n  (>0) and all  i ,  j ), we can obtain a unique stationary 

distribution      > 0jp   ,     =å( 1.0)j jp    with the solution

     .TW p p=    (5.7)  

or 

    =å j j ij jp w p    

 The vector  p ,      = ¼1,( )T
np p p   , is an eigenvector of     TW   with a corresponding 

eigenvalue of 1, whereas  w  
 ij 
  is a measure of the relative in fl uence of unit  j  on unit  i , 

and  p  
 i 
  can be interpreted as the total in fl uence of unit  i  on the total region of a city. 

 p  
 i 
  will be further referred to as a prominence index (Bavaud  1998  ) . We also call 

this index spatial prominence  p  
 i 
  here because its spatial attributes are necessary to 

calculate it.  

    5.3.3   Examples 

 As mentioned above, different prominences can be obtained from different spatial 
weight matrices. We use the standardized spatial weight matrices to calculate the 
prominence of the units in Fig.  5.1 . The elements of eigenvector  p  of the binary 
spatial weights matrix  W  

 b 
  *  are

     = = = =1 2 3 40.375, 0.250, 0.250, 0.125.p p p p     

 Areal unit 1 has the largest value of prominence because it is contiguous to three 
other units. The prominence of unit 2 is the same value as that of unit 3 because they 
are all contiguous to two units. As unit 4 is only contiguous to unit 1, it has the least 
prominence. 

 The elements of eigenvector  p  of distance decay  W  
 d 
  *  are

     
= = = =1 2 3 40.273, 0.251, 0.270, 0.205.p p p p
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 The value of the prominence of unit 1 is similar to that of unit 3, because the 
distances which link them to other units are almost equivalent. The prominences of 
units 2 and 4 are both smaller than those of units 1 and 3 since they are far apart 
from each other. As unit 2 is nearer to unit 1 than to unit 4, its prominence is larger 
than that of unit 4. 

 The elements of eigenvector  p  of generated  W  
 g 
  *  are

     = = = =1 2 3 40.409, 0.335, 0.188, 0.068.p p p p     

 Areal unit 1 has the largest prominence value because it possesses the largest unit 
and the longest common boundary with other units. The prominence of unit 2 is 
larger than that of unit 3 since unit 2 has a longer boundary and a shorter distance 
joined to unit 1 than unit 3. The prominence of unit 4 is smallest of the four 4 units. 

 The elements of  p  of  fi rst-order neighbors  W  
 k 
  *  are

     = = = =1 2 3 40.3, 0.2, 0.3, 0.2.p p p p     

 As units 1 and 3 are both directly connected to three other units by the edges of 
the TIN, their prominences are all 0.3. Similarly, as units 2 and 4 are both connected 
to only two other units, their prominences are smaller than those of units 1 and 3, 
and are equal to 0.2. Therefore, the variation of prominence based on the weight of 
 fi rst-order neighbors is relatively smaller and its sensitivity is lower compared with 
other types of weight. 

 The variation in the prominence of areal units depends on the de fi nitions of the 
spatial weights matrix. The binary weight is affected by the topological attributes, 
and the generated weight is affected by the geometric attributes. The distance decay 
is completely determined by the distance between two units. However, the in fl uence 
of geometric attributes is not clearly re fl ected in the weight of  fi rst-order neighbors.   

    5.4   Application 

 Matsudo is a medium-size city located in the north-eastern part of the Tokyo metro-
politan area. Its administrative division was formed when the municipality was 
established in 1953. A  cho  is a fundamental administrative areal unit, and the varia-
tion in its geometric attributes is very large. For example, the area of the biggest  cho  
is 185 times larger than that of the smallest, and the longest distance from the center 
of one  cho  to the center of a neighboring  cho  is 22 times longer than the shortest. 

 The standardized binary-generated distance decay and the  fi rst-order neighbors’ 
spatial weight matrices  W  

 b 
   *  ,  W  

 d 
   *  ,  W  

 g 
   *  , and  W  

 k 
   *   can be derived from the topological 

attributes of the polygons of the  cho s and the TIN data, which are built by GIS, e.g., 
ArcGIS, and a Digital Map 2500 constructed by the Geospatial Authorities of Japan 
(Can  1996 ; Zhang  1999 ; Zhang and Murayama  2000  ) . Then the spatial prominences 
 p  

 i 
  can be calculated according to ( 5.7 ). Figure  5.3  shows four distribution maps of 

the classi fi ed prominences of  cho s in Matsudo city.  
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 Figure  5.3a  shows that the prominent  cho s with a  p  
 i 
  value larger than 0.006 are 

concentrated on the triangular region formed by the eastern side along the JR Jouban 
train line, the western side along the JR Musashino train line, and the northern and 
southern sides along the Keisei subway line. There are many large and non-compact 
 cho s in the region. In contrast, small and compact  cho s show lower prominence 
values and are located on the periphery of Matsudo city. 

 Figure  5.3b  shows a distribution map of the prominences based on distance decay 
weight. As shown in this  fi gure,  cho s with a  p  

 i 
  larger than 0.004 tend to be concen-

trated in the central and northern regions of the city. There are many small  cho s with 
relatively regular shapes. Conversely, many larger  cho s with a  p  

 i 
  of less than 0.004 are 

distributed in the southern and western parts of the periphery of the city. The distribu-
tion of prominences appears to be more clustered than the other three distributions. 

 The distribution of prominences based on the generated weight of the  cho s is 
represented in Fig.  5.3c , and it can be seen that  cho s with larger prominence values 
are distributed along the main train lines where many large and non-compact  cho s 

     Fig. 5.3    Prominence distributions       
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are located. Conversely, in the region with smaller prominence values, many small 
 cho s with relatively regular shapes are located. Another large region with a smaller 
prominence value is located at the southern borders along the Keisei subway line. 

 As can be seen from the distribution of prominences based on  fi rst-order neigh-
bors weight (Fig.  5.3d ), no clustered regions are formed, and  cho s with different 
prominence values are widely distributed all over Matsudo city.  

    5.5   Conclusion and Future Prospects 

 In geography and regional science, an areal unit which has special geometric 
attributes and maintains a signi fi cant spatial correlation and spatial interaction close 
to adjacent units is called a prominent zone. The prominence of irregular units can 
be measured by a prominence index, which is a stationary distribution of Markov 
chain transition matrices which is identical to a spatial weight matrix. 

 In this chapter, in order to identify the strength of the potential interaction and 
correlation between spatial units, we reviewed previous research in order to create a 
spatial weights matrix, and discussed some explicit guidelines on the speci fi cations of 
the spatial weights matrix and many different types of weighting schemes. Then four 
de fi nitions of spatial weights were shown, i.e., binary, distance decay, generalized, 
and  k -order neighbors weights, and prominences were obtained from these weights 
matrices. Finally, we used these to analyze the spatial pattern in Matsudo City. The 
result of this analysis is shown as though different prominences can be obtained from 
different weights matrices, but a generalized weight matrix is more appropriate for 
measuring the prominence of units than the distance decay or  k -order matrix. 

 As we know, the spatial structure of a city is determined not only by geometric 
attributes and topological attributes, but also by the social and economic thematic 
attributes of areal units in city. Therefore it is necessary to create some de fi nitions 
and measures for prominence units, and use them to analyze urban spatial struc-
tures. The de fi nitions proposed began with con fi rming the relationship between the 
prominence index and the geometric attributes of areas, and then expanding these to 
include all the spatial attributes of the areas, i.e., geometric attributes, topological 
attributes, and thematic attributes. In the future, an approach to implement the 
de fi nitions will be tested and evaluated to analyze the spatial structure of a city.      
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      6.1   Introduction 

 Geographically weighted regression (GWR) is a local spatial statistical technique for 
exploring spatial non-stationarity. The assumption in GWR is that observations nearby 
have a greater in fl uence on parameter estimates than observations at a greater distance. 
This is very close to Tobler’s  fi rst law of geography—everything is related to every-
thing else, but near things are more related than distant things (Tobler  1970  ) . GWR was 
developed on the basis of the traditional regression framework which incorporates local 
spatial relationships into the framework in an intuitive and explicit manner (Brunsdon 
et al.  1996 ; Fotheringham and Brunsdon  1999 ; Fotheringham et al.  2002  ) . 

 Basically, GWR is based on the non-parametric technique of locally weighted 
regression developed in statistics for curve- fi tting and smoothing applications, 
where local regression parameters are estimated using subsets of data proximate to 
a model estimation point in variable space (Wheeler and Paez  2010  ) . The innova-
tion with GWR is using a subset of data proximate to the model calibration location 
in geographical space instead of variable space. While the emphasis in traditional 
locally weighted regression in statistics has been on curve- fi tting, that is estimating 
or predicting the response variable, GWR has been presented as a method to 
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conduct inferences on spatially varying relationships in an attempt to extend the 
original emphasis on prediction to con fi rmatory analysis (Paez and Wheeler  2009  ) . 

 Historical evidence suggests that Cleveland and Devlin  (  1988  )  introduced locally 
weighted regression techniques known as locally weighted polynomial regression. 
At each point in the data set a low-degree polynomial is  fi tted to a subset of the data, 
with explanatory variable values near the point whose response is being estimated. 
The polynomial is  fi tted using weighted least squares, giving more weight to points 
near those whose response is being estimated and less weight to points further away. 
The value of the regression function for the point is then obtained by evaluating the 
local polynomial using the explanatory variable values for that data point. This is a 
way of estimating a regression surface through a multivariate smoothing procedure, 
i.e.,  fi tting a function of the independent variables locally and in a moving fashion 
which is analogous to how a moving average is computed for a time series. In this 
framework, with local  fi tting we can estimate a much wider class of regression sur-
face than with the usual classes of parametric functions, such as polynomials. 

 In the mid-1990s, the existence of spatial non-stationarity and the essence of its 
systematic analysis were recognized where a conventional regression model failed 
to explain the relationships between some sets of variables and observations in 
space. The nature of the model must alter over space in order to re fl ect the structure 
within the data. To address this problem, Brunsdon et al.  (  1996  )  developed GWR, 
which attempts to capture this variation by calibrating a multiple regression model 
allowing different relationships at different points in space.  

    6.2   GWR: How Does It Work? 

 Let’s consider a conventional regression model

     
β β ε= + +∑0i k ik i

k

y x
   (6.1)  

where     iy    is the estimated value of the dependent variable for observation  i ,     β0    is 
the intercept,     βk    is the parameter estimate for variable  k ,     

ikx    is the value for the  k -th 
variable for observation  i , and     ε i

   is the error term. In traditional regression, the 
parameter estimates     βk    are assumed to be spatially stationary, but in reality there 
will be intrinsic differences in relationships over space which may be of a non-sta-
tionary character. The non-stationary problem can be measured using GWR 
(Fotheringham et al.  2002 ; Platt  2004  ) . Conceptually, the GWR permits the param-
eter estimates of a multiple linear regression model to vary locally ( 6.2 ). GWR 
extends the conventional regression framework by allowing local rather than global 
parameters to be estimated. Instead of calibrating a single regression equation, it 
generates a separate regression equation for each observation. Each equation is 
calibrated using a different weighting of the observations contained in the data set. 
The GWR model is written as
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β β ε= + +∑0 ( , ) ( , )i i i k i i ik i

k

y u v u v x
   

(6.2)
  

where     β0 ( , )i iu v    denotes the coordinates of the  i -th point in space, and     β ( , )k i iu v    is a 
realization of the continuous function at point  i  (Fotheringham et al.  1998  ) . This 
allows for a continuous surface of parameter values, and measurements of this 
surface are taken at certain points to denote the spatial variability of the surface. 
In ( 6.2 ), the parameters are assumed to be spatially invariant. Thus the GWR recog-
nizes that spatial variations in relationships might exist, and provides a way in which 
they can be measured. The obvious difference between this model ( 6.2 ) and the 
traditional regression model ( 6.1 ) is that the regression coef fi cients are estimated at each 
data location, whereas in the traditional model they are  fi xed for the study area. 

 In GWR, an observation is weighted in accordance with its proximity to location 
 i , so that the weighting of an observation is no longer constant in the calibration, but 
varies with  i . Data from observations close to  i  are weighted more than data from 
observations farther away. That is,

     ( ) ( ) ( )β −= 1ˆ , ( , ) ,T T
i i i i i iu v X W u v X X W u v y

   (6.3)  

where     β̂    represents an estimate of     β  ,     = …1 2( , , , )T T T T
nX X X X    is the design matrix of 

explanatory variables, which includes a leading column of ones for the intercept, 
    ( , )i iu vW    is the n-by-n diagonal weights matrix calculated for each calibration 
location, and  y  is the n-by-n vector of dependent variables. The estimator in ( 6.3 ) is 
a weighted least-squares estimator, but rather than having a constant weight matrix, 
the weights in GWR vary according to the location of point  i . Hence, the weighting 
matrix has to be computed for each point  i , and the weights depict the proximity of 
each data point to the location of  i , with points in closer proximity carrying more 
weight in the estimation of the parameters for location  i . 

 In GWR, the weight assigned to each observation is based on a distance decay 
function centered on observation  i . The decay function is modi fi ed by a bandwidth 
setting at which distance the weight rapidly approaches zero (Mennis  2006  ) . The 
bandwidth may be manually chosen by the analyst or optimized using an algorithm 
that seeks to minimize a cross-validation score given as

     
≠= −∑ 2

=1

ˆ( ( ))
n

i i
i

CV y y b
   (6.4)  

where  n  is the number of observations, and     ≠ˆ ( )iy b    is the  fi tted value of     iy    with the 
observations for point  i  omitted from the calculation process so that in areas of 
sparse observations the model is not calibrated. Plotting the CV score against the 
required parameter of whatever weighting function is selected will therefore pro-
vide guidance on selecting an appropriate value for that parameter. Alternatively, 
the bandwidth may be chosen by minimizing the Akaike information criteria (AIC) 
score, which is given as
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2 tr(S)

n
n n n

n    (6.5)  

where tr(S) is the trace of the matrix. The AIC method has the advantage of taking 
into account the fact that the degrees of freedom may vary among models centered 
on different observations. The AIC have the advantage of being more general in 
application than the CV statistics because they can be used in Poisson and logistic 
GWR as well as in linear models. They can also be used to assess whether GWR 
provides a better  fi t than a global model, taking into account the different degrees of 
freedom in the two models (Fotheringham et al.  2002  ) . In addition, the user may 
choose a  fi xed bandwidth that is used for every observation, or a variable band-
width that expands in areas of sparse observations and shrinks in areas of dense 
observations. Because the regression equation is calibrated independently for each 
observation, a separate parameter estimate, t-value, and goodness-of- fi t is calculated 
for each observation. These values can thus be mapped, allowing the analyst to visually 
interpret the spatial distribution of the nature and strength of the relationships among 
explanatory and dependent variables. For more information on the theory and prac-
tical application of GWR, the reader is referred to Fotheringham et al.  (  2002  ) .  

    6.3   Empirical Applications 

 The main output from GWR is a set of location-speci fi c parameter estimates which 
can be mapped and analyzed to provide information on spatial non-stationarity in 
relationships. Furthermore, we can estimate local standard errors, derive local t sta-
tistics, calculate local goodness-of- fi t measures, perform tests to assess the 
signi fi cance of the spatial variation in the local parameter estimates, and run tests to 
determine if the local model performs better than the global one (Fotheringham 
et al.  2002  ) . The GWR technique is quite recent, and has only appeared in the 
scienti fi c literature in the last 15 years. Brunsdon et al.  (  1996  )  demonstrated its 
method and applications in the  fi rst case. They investigated the relationships between 
the rate of car ownership (as the dependent variable) and the proportion of male 
unemployment and the proportion of households in social class I (as independent 
variables) in the county of Tyne and Wear in the UK. With the GWR technique, they 
found that higher rates of car ownership are associated with more rural areas. The 
rate of car ownership is higher for wards toward the coast and near the southern 
edge of the region. The relationship is less negative within the highly urbanized core 
of the study area and southwest to northeast across the southern part of the region. 

 GWR is calibrated for various applications, and its limitations and opportunities 
have been discussed widely in the scienti fi c literature. Fotheringham et al.  (  2002  )  
published a book on GWR which included software. This book provides various 
fundamental subtopics from basic mechanics to applications of the GWR, with 
empirical examples and hands-on practice with GWR software. Since then, in the 
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past decade, a number of publications have demonstrated the analytical utility of 
GWR for investigating a variety of topical areas covering  fi elds from geophysical to 
socio-economic studies. The following few paragraphs introduce some successful 
applications of GWR modeling dealing with different problems in various regions 
world wide. 

 The relations between riverbank erosion and physiographical variables are 
assumed to control erosion, which is commonly modeled using regression. For a 
given river, imagine that a single regression model might be  fi tted to data on erosion 
and its geomorphological controls obtained along the length of the river. However, 
it is likely that the in fl uence of some variables may vary with different geographical 
locations. In such a case, the stationary regression model is unable to show varying 
spatial relationships, and therefore should be replaced with a non-stationary model. 
Atkinson et al.  (  2003  )  extended the GWR to predict the binary presence or absence 
of erosion via the logistic model. This extended model was applied in Afon Dyji in 
West Wales, UK. The model parameters and the residual deviance of the model varied 
greatly with distance upstream. The approach presented allowed the inference of 
spatially varying management practices as a consequence of spatially varying 
geomorphological processes. 

 The relationship between the fragmentation of urban development and the forms 
of administrative and land cover was assessed in order to inform land-use planning 
in the Roaring Fork/Colorado River corridor of Colorado, USA (Platt  2004  ) . Both 
conventional regression and GWR were used. While conventional regression 
provided a good averaged model of change for the entire study area, GWR demon-
strated how the process changed locally over space. The results of the global 
regression showed that the intercept was close to zero, and therefore the fragmenta-
tion of urban development was expected to be close to zero in the absence of other 
forms of fragmentation. The results of the GWR showed that the relationships 
between changes in the fragmentation of urban development and other fragmenta-
tion variables varied signi fi cantly within the study area. The analysis also clari fi ed 
the drivers of fragmentation. 

 Traditionally, the relationship between tree diameter and total height in a forest 
stand is investigated by using linear or non-linear regression models in which the 
spatial heterogeneity in the relationship is largely ignored. Zhang et al.  (  2004  )  
explored and modeled the spatial variations in the tree diameter–height relationship 
in a eucalypt stand using GWR. In their modeling, GWR captured spatial variations 
by calibrating a multiple regression model  fi tted at each tree, and weighting all 
neighboring trees by a function of distance from the subject tree. This produced a 
set of parameter estimates and model statistics (e.g., model R 2 ) for each tree in the 
stand. The results indicated that GWR signi fi cantly improved model  fi tting over 
ordinary least squares (OLS). The GWR model produces smaller model residuals 
across diameter classes than the traditional OLS model. 

 Conventional regression models postulating a geographically invariant spatial 
process have typically been used for relating local variations in disease incidence rates to 
global association rules. However, ecological associations vary geographically, because 
the meaning of covariates may change depending on different geographical contexts. 
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To deal with this problem, Nakaya et al.  (  2005  )  extended GWR applications to 
ecological analysis by introducing an extended statistical tool called GWPR 
(geographically weighted Poisson regression). This method is a type of conditional 
kernel regression which uses a spatial weighting function to estimate spatial varia-
tions in Poisson regression parameters. An application of the tool is demonstrated 
based on a regional working-age mortality dataset for the Tokyo metropolitan area, 
Japan. The results indicate that there are signi fi cant spatial variations in the relation-
ships between working-age mortality and occupational segregation, and between 
working-age mortality and unemployment, throughout the metropolitan area, where 
conventional models may yield misleading results. 

 Previous approaches to mapping the results of GWR have primarily employed an 
equal-step classi fi cation and sequential no-hue color scheme for choropleth map-
ping of parameter estimates. Mennis  (  2006  )  showed a cartographic approach which 
may hinder the exploration of spatial non-stationarity by inadequately illustrating 
the spatial distribution of the sign, magnitude, and signi fi cance of the in fl uence of 
each explanatory variable on the dependent variable. Approaches for improving the 
mapping of the results of GWR are illustrated using a case study analysis of popula-
tion density and median home value relationships in Philadelphia, Pennsylvania, 
USA. These approaches employ data classi fi cation schemes informed by (non-spatial) 
data distribution, diverging color schemes, and bivariate choropleth mapping. 

 Mei et al.  (  2006  )  demonstrated a mixed GWR model by considering that some 
coef fi cients of the explanatory variables are constant, while others vary spatially. 
Besides the F-approximation, which has frequently been used in the literature of the 
GWR technique, a statistical inference framework including a bootstrap procedure 
for deriving the p-value of the test is suggested. The performance of the test is inves-
tigated by simulations using hypothetical data. It is demonstrated that both the 
F-approximation and the bootstrap procedure work satisfactorily. 

 Tu and Xia  (  2008  )  used GWR to examine the relationships between land use and 
water quality in eastern Massachusetts, USA. The application of GWR models found 
that the relationships between land use and water quality were not constant over space, 
but showed great spatial non-stationarity. GWR models were able to reveal informa-
tion previously ignored by OLS models on the local causes of water pollution, and 
thereby improve the model’s ability to explain the local situation of water quality. 

 Several studies have indicated that there is a positive relationship between 
green vegetation land cover and wealthy socio-economic conditions in urban 
areas. Ogneva-Himmelberger et al.  (  2009  )  explored spatial variations in the rela-
tionship between socio-economic conditions and green vegetation land cover 
across urban, suburban, and rural areas in Massachusetts, USA, using GWR. The 
results showed that there is a considerable spatial variation in the character and 
strength of the relationship for each model. An impervious surface is generally a 
strong predictor of the level of wealth, as measured by the variables included in 
the analysis, at the scale of census block group. However, the strength of the rela-
tionship varies geographically. 

 Revealing spatially varying relationships between urban growth patterns and 
underlying determinants is important in order to gain a better understanding of the 
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local dimensions of urban development. In a case study of the city of Nanjing, 
China, Luo and Wei  (  2009  )  employed global (conventional regression) and local 
logistic GWR regressions to model the probability of urban land expansion against 
a set of spatial variables. The logistic GWR signi fi cantly improved the global logistic 
regression model in terms of a better model goodness-of- fi t and a lower level of 
spatial autocorrelation of residuals. The logistic GWR model allowed the model 
parameters to vary across space, which provided deep insights into the spatial varia-
tions of the urban growth pattern. It demonstrated that the spatial variability of each 
factor in fl uencing urban land expansion is signi fi cant and presents different patterns. 
Distinctive local patterns and effects of urban growth were found in Nanjing, and 
these were shaped by local urban spatial and institutional structures. A probability 
surface of urban growth, which is generated from raster calculations among the 
parameter and variable surfaces, provides a clear scenario of urban growth patterns, 
and can be useful for decision making. Although logistic GWR reveals the spatial 
variations of the in fl uences of spatial variables on urban land expansion more 
ef fi ciently, the interpretation of such variations should be done carefully and be 
related to the contextual information about the study area. 

 Clement et al.  (  2009  )  applied GWR to identify drivers of forest transition in 
Northern Vietnam. The GWR model highlighted the spatial variation of the rela-
tionship between the percentage of land afforested and its proximate causes. Factors 
identi fi ed as having a major impact on afforestation are the presence or proximity of 
a wood-processing industry, the distance to highways, and the land allocation to 
households. Whereas the former two factors are positively correlated with afforesta-
tion in most areas of the province, an unexpected negative correlation was observed 
for the latter factor. However, an analysis of these results concluded that during the 
time period considered, afforestation was largely driven by state organizations on 
protected state-owned land, and forestry was not a signi fi cant component of house-
hold economic activities. 

 Jaimes et al.  (  2010  )  explored the factors that have induced the loss of forest areas 
in the State of Mexico from 1993 to 2000 using GWR. The behavior of variables at 
a local level was analyzed, and some of these were found to present signi fi cant spa-
tial variability. This represents an improvement on the understanding offered by 
global analysis because, rather than producing an average coef fi cient for the entire 
territory, this technique yields an estimated coef fi cient for each location analyzed; 
in other words, the type of relationship that exists in each portion of the territory is 
ascertained, and not simply a general overview. This method reveals aspects of the 
relationships which do not emerge when using traditional global speci fi cations, 
such as a sign change in some of the parameter estimates. 

 Despite a growing appreciation of the variation in urban thermal environments 
and driving factors, relatively little attention has been paid to issues of spatial 
non-stationarity and scale-dependence, which are intrinsic properties of the urban 
ecosystem. Li et al.  (  2010  )  used GWR to explore the scale-dependent and spatial 
non-stationary relationships between urban land surface temperature and environ-
mental determinants in the city of Shenzhen, China. The GWR results were compared 
with those from the OLS (ordinary least squares) method, and it was found that the 
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GWR model provides a better  fi t than the traditional OLS model. It also provides 
detailed local information about the spatial variations of surface temperature which 
are affected by geographical and ecological factors. 

 Signi fi cant relationships between land use and water quality have been found in 
watersheds around the world. The relationships are commonly examined by con-
ventional statistical methods, such as OLS regression and Spearman’s rank correla-
tion analysis, which assume that the relationships are constant across space. 
However, the relationships often vary over space because the characteristics of 
watersheds and the sources of pollution are not the same in different places. Tu 
 (  2011  )  applied GWR to analyze the spatially varying relationships between land use 
and water quality indicators across watersheds with different levels of urbanization 
in eastern Massachusetts, USA. This study found that the relationships between 
water quality and land use, and the abilities of land use indicators to explain water 
quality, vary across the urbanization gradient in the watersheds. The percentages of 
commercial and industrial land have stronger positive relationships with the con-
centrations of water pollutants in less urbanized areas than in highly urbanized 
areas. The percentages of agricultural land, residential land, and recreational use 
show signi fi cant positive relationships with the concentrations of water pollutants at 
some sampling sites within less urbanized areas, whereas they have signi fi cant neg-
ative relationships at some sampling sites within highly urbanized areas. Thus, the 
adverse impact of land-use changes on water quality is more substantial in less 
urbanized suburban areas than in highly urbanized city centers. 

 Landscape fragmentation is usually caused by many different anthropogenic 
in fl uences and landscape elements. Scienti fi cally revealing the spatial relationships 
between landscape fragmentation and related factors is very important for land 
management and urban planning. Former studies on statistical relationships between 
landscape fragmentation and related factors were almost all global and single-
scaled. In fact, landscape fragmentation and its causal factors are usually location-
dependent and scale-dependent. Therefore, Gao and Li  (  2011  )  used GWR to 
examine spatially varying and scale-dependent relationships between effective 
mesh size, an indicator of landscape fragmentation, and related factors in the city of 
Shenzhen, China. The results show that relationships are spatially non-stationary 
and scale-dependent, as indicated by the clear spatial patterns of parameter esti-
mates obtained from GWR models. Moreover, GWR models show a better perfor-
mance than OLS models with the same independent variable. 

 Dengue fever is one of the most rapidly spreading mosquito-borne viral diseases 
in the world. In the last 50 years, the incidence of dengue has increased 30-fold, 
and has extended to new areas across both rural and urban environments (   World 
Health Organization  2009  ) . Unfortunately, the relationships between the incidence 
of dengue and mosquito abundance, and between the incidence of dengue and 
human density, are still not well understood (Lin and Wen  2011  ) . The only way for 
dengue to spread in the human population is through the human–mosquito–human 
cycle. However, most research in this  fi eld discusses dengue–mosquito or dengue–
human relationships over a particular study area, and only a few researchers have 
explored the local spatial variations of dengue–mosquito and dengue–human 
relationships within a study area. Lin and Wen  (  2011  )  used GWR to analyze spatial 
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relationships and identify geographical heterogeneities by using information about 
entomology and dengue cases in the cities of Kaohsiung and Fengshan, Taiwan. 
Their  fi ndings indicated that dengue–mosquito and dengue–human relationships 
were signi fi cantly spatially non-stationary. This means that in some areas a higher 
incidence of dengue was associated with higher vector/host densities, but in some 
areas a higher incidence was related to lower vector/host densities. The GWR 
model differentiated between the relationships of dengue incidence with immature 
mosquito and human densities. This study provides insights into the spatial targeting 
of intervention against dengue epidemics.  

    6.4   Future Outlook and Concluding Remarks 

 During the past few decades, there have been signi fi cant advances in the  fi eld of 
quantitative geography. The combined effects of the increasing availability of spatial 
data, advances in analytical methods, and the development of geographical informa-
tion science has made these possible. In fact, GIS has been instrumental in providing 
catalysts for the development of appropriate quantitative methods for spatial analysis, 
in addition to its traditional functions of storing and displaying spatial datasets. 
Certainly, the advances in GIS have made us more aware and appreciative of the 
importance of quantitative spatial analysis. Likewise, continuous developments 
in computer technology and computation have led quantitative spatial analysis to a 
more advanced level. All of these aspects, in full consideration of the distance–
decay effect popularized by Tobler with the  fi rst law of geography, have undoubt-
edly been signi fi cant in the evolution of more advanced techniques for quantitative 
spatial analysis which are similar to GWR (Fotheringham et al.  2002  ) . 

 Recognizing that global averages of spatial data are not always helpful, and the 
fact that spatial non-stationarity occurs when a relationship or pattern that applies 
in one region does not apply in another (Brunsdon  2011  ) , a local statistical tech-
nique to analyze spatial variations in relationships, such as GWR, is necessary. 
GWR is among recent new developments in local spatial analytical techniques, and 
has been part of the growing trend in GIS towards local analysis. As local statistics 
are spatial disaggregations of global ones, local analysis intends to understand the 
spatial data in more detail (Yu and Wei  2004  ) . Since it was  fi rst proposed in the 
late 1990s, GWR has made valuable contributions in quantitative spatial analysis 
across many areas of geography. As shown in the previous section, it has been 
implemented in some of the following  fi elds: socio-economic-related studies, 
e.g., analyzing the relationships between the rate of car ownership (as the depen-
dent variable) and the proportion of male unemployment and the proportion of 
households; erosion and water-related studies, e.g., the relationships between river-
bank erosion and physiographical variables, and the relationships between land use 
and water quality; urban-related studies, e.g., the relationships between the frag-
mentation of urban development and forms of administrative and land cover, the 
relationships between urban growth patterns and underlying determinants, and 
the relationships between urban land surface temperature and environmental 
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determinants; forestry-related studies, e.g., drivers of forest transition; environ-
mental and health-related problems, e.g., analyzing the relationships between 
working-age mortality and occupational segregation, and between working-age 
mortality and unemployment, and exploring the varying spatial relationships of 
immature mosquitoes and human densities in the incidence of dengue fever. 

 The idea of applying geographical weights has been extended to a variety of 
other techniques, in addition to the linear regression framework. This is to produce 
geographically weighted descriptive statistics, discriminant analysis, logistic regres-
sion, Poisson regression, and geographically weighted probit models (Paez and 
Wheeler  2009  ) . However, there are still issues and debates confronting GWR. Paez 
and Wheeler  (  2009  )  presented and discussed some of these concerns in their review. 
For example, some of the important issues include (1) the topic of inference regard-
ing the local regression coef fi cients, (2) the high level of spatial variability encoun-
tered by practitioners, a situation that raises concerns that the results may be 
misleading if not interpreted with caution, and (3) the computational run-time 
implementations of the techniques. Fortunately, several approaches and diagnostic 
tools have been developed to overcome the  fi rst two issues (see Paez and Wheeler 
 2009  ) . However, results must continue to be interpreted with caution. Furthermore, 
the fact that there have been multiple implementations of GWR may mean that the 
computational run-time may not be a big deal anymore. Currently, aside from the 
software available from Fotheringham and his co-investigators (  http://ncg.nuim.ie/
ncg/GWR/    ), GWR is now incorporated in ArcGIS software. Furthermore, a free and 
open source implementation of GWR, written by Bivand and Yu  (  2011  ) , is available 
as an R package. The basic elements of the GWR technique can also be programmed 
easily in other languages and software such as Matlab, or in the spatial econometric 
toolbox developed by LeSage  (  2010  ) . 

 However, while GWR has been proven useful in detecting non-stationarity 
coef fi cient patterns, the degree of accuracy may not be extremely high. Therefore, 
whenever possible any conclusions should be supported by other forms of analysis, 
such as the expansion method and/or multilevel or hierarchical Bayesian models (Paez 
and Wheeler  2009  ) . While this requires extra effort and time, it would help to increase 
the level of con fi dence with respect to any conclusions drawn from the analysis. 
Nevertheless, its strength in capturing the spatial relationships of given variables at the 
local level, based on the concept of non-stationarity, is indeed its most important 
 contribution to the quantitative revolution of spatial analysis. Its applications will 
 certainly continue to expand across the diverse  fi elds of quantitative geography.      
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     7.1   Introduction 

 Weight of evidence (WofE) is a quantitative method for combining evidence in sup-
port of a hypothesis. An evidence-based approach involves an assessment of the 
relative values of different pieces of information that have been collected in previ-
ous steps. ECHA  (  2010  )  de fi nes WofE as “the process of considering the strengths 
and weaknesses of various pieces of information in reaching and supporting a con-
clusion.” A representative value needs to be assigned to each piece of information 
using a formalized weighting procedure. The evidence can be called as a factor, and 
can often in fl uence the weight given owing to the quality of the data, the consistency 
of results, the nature and severity of effects, and the relevance of the information. 

 WofE is entirely based on the Bayesian approach of conditional probability. This 
method combines spatial data from a variety of sources to describe and analyze 
interactions, provides evidence for decision making, and makes predictive models. 
Basically, the method concerns the probability of detecting a certain event, which 
could be a given category of land-use change, for example, possibly an event of 
land-use change from agricultural area to built-up surface in relation to potential 
evidence (proximity to urban centers, roads, water, etc.), often called the driving 
factors of change (Thapa and Murayama  2011  ) . 

 Historical evidence shows that Peirce  (  1878  )  was very close to the best de fi nition 
of WofE, namely the logarithm of a Bayes factor, which is the ratio of the posterior 
to the prior odds. A theoretical expression and discussion of WofE modeling at an 
earlier stage can be found in Good  (  1950,   1979  ) . This method was originally developed 
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for a non-spatial application, and therefore its applications dominated the literature 
in statistics and medical related  fi elds until the mid-1980s. Its application to medical 
 fi elds was promising, for instance, when the evidence consisted of a set of symp-
toms, and the hypothesis was “this patient has disease x.” For each symptom, a pair 
of weights was calculated, one for the presence of the symptom and one for the 
absence of the symptom. The magnitude of the weights depended on a measured 
association between the symptom and the occurrence of the disease in a large group 
of patients. The weights could then be used to estimate the probability that a new 
patient would get the disease, based on the presence or absence of symptoms 
(Spiegelhalter  1986 ; Raines et al.  2000  ) . In this chapter, I brie fl y review the progress 
in the methodology and applications of WofE in the  fi eld of geospatial analysis, 
discuss how the method works, and conclude with an outlook for the future.  

    7.2   Methodology and Applications in Geospatial Analysis 

 Since the late 1980s, the geoscience  fi eld has adopted WofE modeling for geospatial 
applications, the earliest of which were maps of mineral potential (Bonham-Carter 
et al.  1988  ) . A pattern of mineral deposits is related to several map layers represent-
ing geological data that may be indicative of the occurrence of mineral deposits 
(Bonham-Carter  1994  ) . The method has gradually been integrated with spatial data-
bases, and has been used for a variety of purposes in various geographic regions. 
Aspinall  (  1992  )  described an inductive modeling procedure integrated with geo-
graphical information science (GIS) and the Bayesian theorem for wildlife habitat 
mapping. The use of the modeling procedure is illustrated through an analysis of the 
winter habitat relationships of red deer in the Grampian Region, north–east Scotland. 
The habitat data sets used to construct the model were the accumulated frost and 
altitude records obtained from maps, and land cover derived from satellite imagery. 

 Bonham-Carter  (  1994  )  illustrated the modeling process in a probabilistic frame-
work, so that the weighting of individual map layers was based on a Bayesian prob-
ability model. In particular, the WofE model was presented in a map context, with 
examples showing applications to mineral-potential mapping in Meguma terrane, 
Nova Scotia, Canada. The relationships of WofE to the methods used in the expert 
system of the prospectors are explained with a very simple example of the system’s 
inference network. 

 Similarly, Cheng and Agterberg  (  1999  )  proposed a new approach to the WofE 
method based on fuzzy sets and fuzzy probabilities for mineral-potential mapping. 
This approach can be considered as a generalization of the ordinary weights of evi-
dence method, which is based on binary patterns of evidence and has been used in 
conjunction with GIS for mineral-potential mapping. In the newly proposed method, 
instead of separating the evidence into binary form, fuzzy sets containing more 
subjective genetic elements are created; fuzzy probabilities are de fi ned to construct 
a model for calculating the posterior probability of a unit area containing mineral 
deposits on the basis of the fuzzy evidence for the unit area. This method can be 
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treated as a hybrid method, which allows objective or subjective de fi nitions of a 
fuzzy membership function of evidence augmented by an objective de fi nition of 
fuzzy or conditional probabilities. The posterior probabilities calculated by this 
method would depend on existing data in a totally data-driven approach, but would 
also depend partly on expert knowledge when the hybrid method is used. 

 An ArcView GIS extension of WofE, i.e., Arc-WofE, is publicly available and 
has applications to mineral potential (Kemp et al.  1999  ) . This enhances further 
potential uses of WofE in the geospatial  fi eld. The system has four core steps: build-
ing a spatial digital database; extracting predictive evidence for a particular deposit 
type based on an exploration model; calculating weights for each predictive map or 
evidential theme; combining the evidential themes to make a prediction. This exten-
sion also provides an expert approach to weighting which can be used when no 
training points are available (Raines et al.  2000  ) . 

 The popularity of the WofE method with more geospatial applications was further 
expanded in other environmental study  fi elds in the  fi rst decade of the twenty- fi rst 
century. A structure for simulating land-use change using the elementary probabilis-
tic methods of the WofE approach was proposed by Almeida et al.  (  2003  ) . The model 
framework has been applied to Bauru town in Brazil. This showed how various 
socio-economic and infrastructural factors can be combined using the WofE approach, 
which then enables them to predict the probability of changes between land-use types 
in different cells of the system. Another study over a larger area, which was also 
conducted in Brazil by Soares-Filho et al.  (  2004  ) , shows an application of the WofE 
method to select the most important variables needed for land-cover change analysis 
and to quantify their in fl uences on each type of land-use transition, e.g., deforesta-
tion, land abandonment, and re-growth clearing. They developed a land-cover change 
simulation model that is responsive to road paving and policy intervention scenarios 
in central Amazonia. The model assesses the impacts of road paving within the popu-
lation, as well as policy intervention scenarios. 

 Romero-Calcerrada and Luque  (  2006  )  focused on boreal forest landscapes, and 
explored a multicriteria approach by using a predictive habitat suitability model for 
the three-toed woodpecker ( Picoides tridactylus ) based on WofE. Since the method 
depends on the indicator species which is used as a surrogate of biodiversity value, 
it can be applied to assess the biodiversity conditions of both managed and pro-
tected areas to help decision-making concerning the protection of valuable habitats. 
Thus, a map of habitat suitability representing a range of probabilities of occurrence 
offers an objective framework for evaluating the outcomes of different scenarios. 
Similarly, an objective assessment of habitat suitability provides a rational basis for 
management decisions incorporating the impact on species habitat. Romero-
Calcerrada and Millington  (  2007  )  used both WofE and logistic regression to analyze 
the natural and human factors that contribute to wild fi re on the Iberian Peninsula. 
Unlike expert knowledge approaches to modeling, the WofE approach derives the 
probabilities of  fi re occurrence based on the association between mapped occur-
rences and spatial evidence layers of biophysical data. 

 An application of the WofE method to perform a vulnerability assessment for 
the occurrence of elevated nitrate concentrations in the aquifer of Milan, Italy, is 



100 R.B. Thapa

given by Masetti et al.  (  2007  ) . A comparison between the spatial distribution of 
vulnerability classes and the frequency of occurrences of nitrate in wells shows a 
high degree of correlation for both low and high nitrate concentrations. Groundwater-
speci fi c vulnerability was classi fi ed in terms of vulnerability classes and, according 
to the outcomes of the model, the population density can be considered to be the 
source of the greatest impact of nitrate. Mean annual irrigation and groundwater 
depth can be identi fi ed as in fl uencing factors in the distribution of nitrate, while 
agricultural practice appears to be a negligible factor. 

 Dahal et al.  (  2008  )  and Pradhan et al.  (  2010  )  presented WofE modeling applications 
to landslide susceptibility mapping. The former applied the modeling to small catch-
ments of Shikoku, Japan, while the latter applied it to a tropical hilly area in Malaysia. 
The Japanese case showed the usefulness and capability of the modeling in a small 
catchment area with a high-resolution data set. The Malaysian case showed the method 
of calculating the rating factor, and reported that the landslide susceptibility map and 
the veri fi cation results achieved a high predictive accuracy for the model. 

 Dilts et al.  (  2009  )  used WofE techniques to model spatial patterns of wild fi re 
occurrence in relation to landscape-scale drivers of  fi re in Lincoln County, Nevada, 
USA. The spatial data sets which were used as potential predictors of  fi re occur-
rence included biophysical and socio-economic data. Models were developed and 
tested for lightning-caused  fi res over the entire county, and also in forested areas 
only. Higher  fi re density and higher lightning-strike density were observed in the 
eastern half of the county compared with the western half. Overall, the spatial dis-
tribution of wild fi re occurrence was controlled more by ignition mechanisms than 
by processes in fl uencing fuel moisture, accumulation, or both. 

 A recent application of WofE is found in urban growth modeling. Thapa and 
Murayama  (  2011  )  adopted the WofE method integrated in a cellular automata frame-
work for predicting the future spatial patterns of urban growth in the Kathmandu 
metropolitan region. The model was validated by achieving a highly accurate predic-
tion of urban development patterns for the future under the current scenario across 
the metropolitan region. Depending on local characteristics and land-use transition 
rates, the model produced a noticeable spatial pattern of changes in the region. The 
application of WofE to urban growth modeling can be found in Chap.   13    .  

    7.3   WofE Model: How Does It Work? 

 Let’s now consider a landscape (Fig.  7.1 ) which has three spatial patterns: forest, 
road buffer, and an area which is changing from forest to non-forest land. Landscape 
change is observed along the road network, so the road is considered to be the major 
driver of the change. If we considered this in binary terms, area change is repre-
sented as 1 and no change as 0. Similar assumptions can be made for the road layer, 
i.e., inside the road buffer as 1 and outside as 0. In this particular case, the WofE 
concerns the probability of detecting land change (deforestation) in fl uenced by the 
driver (road).  

http://dx.doi.org/10.1007/978-4-431-54000-7_13
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 To understand this deforestation process and detect the probability using the WofE 
technique, the WofE model is synthesized from Bonham-Carter  (  1994  ) . The areas of 
deforestation,  D  (landscape change from forest to non-forest), and the explanatory 
variable,  E  (road buffer), are known, and then the probability of locating the occur-
rence of deforestation given the presence of the explanatory variable can be expressed 
by the conditional probabilities given in ( 7.1 ).

     ( ) ∩= ( )
|

( )

P D E
P D E

P E    (7.1)   

 The symbol     ∩    is a logical intersection or Boolean AND operation. The condi-
tional probability of  D  occurring given the presence of  E  is written as     ( )|P D E   . 
Thus, the probability of a deforestation pattern ( D ) occurring given the presence of 
explanatory variable ( E ) can be expressed as a probability ratio, which follows from 
the basic de fi nition of conditional probability, followed by the substitution of area 
proportions as estimates of probabilities, and  fi nally as a ratio of areas. The probabil-
ity of land change in the WofE modeling framework is expressed as  odds .  Odds  ( O ) 
are de fi ned as  O = P/(1−P),  a ratio of the probability that an event will or will not 
occur (Bonham-Carter  1994  ) . Now, ( 7.1 ) can be converted into odds ( 7.2 ).

     ( ) ( )
( )

( )
( )= =

−
| |

|
1 | |

P D E P D E
O D E

P D E P D E    (7.2)  

where     D    represents the absence of deforestation, i.e., no change occurred in the 
landscape.     ( )−1 |P D E    becomes     ( )|P D E    when we consider the probability of  D  
(deforestation) being absent given the presence of  E  (explanatory variable, road). 
 Odds  values of less than 1 correspond to probabilities less than 0.5, and very small 
probabilities are nearly the same as  odds . Accordingly, a similar argument is used to 
derive an expression for the conditional odds of  D  given the absence of  E :

     ( ) ( )
( )=

|
|

|

P D E
O D E

P D E    (7.3)   

Land change from
forest to non-forest,
D (Deforestation)

Explanatory variable,
E (Road 1km buffer): absent

Explanatory variable,
E (Road 1km buffer): present

Forest

  Fig. 7.1    Schematic drawing to illustrate the WofE method       
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 The WofE method can combine several explanatory variables to predict similar 
patterns of land change. A pair of weights     +W    (presence) and      −W   (absence) can 
be determined for each predictor pattern (road, and other predictor if any), depend-
ing on the measured spatial association with the pattern of land change. The weights 
may be combined from each pattern to make a predictive map for the change. 
Taking a single predictor pattern,  D , the positive weight     +W    and the negative 
weight     −W    can be expressed as the difference between the prior and posterior logit 
of  D , as follows:

     ( ) ( )+ ⎡ ⎤
= − = ⎢ ⎥

⎣ ⎦

|
ln | ln ( ) ln
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 The WofE method uses the natural logarithm of  odds , known as  log odds  or  logit . 
The logit scale is centered at 0, corresponding to a probability of 0.5, with negative 
values for  odds  less than 1 and positive values for  odds  greater than 1. After computing 
the weights, the posterior logit can be generated using the following equations:

     ( ) += +ln | ln ( )O D E O D W    (7.6)  

     ( ) −= +ln | ln ( )O D E O D W    (7.7)   

 More explanatory variables can be incorporated with an assumption that the 
variables are conditionally independent with respect to land change (i.e., deforesta-
tion). The following expression can be written for more explanatory variables:

     
=

∩ ∩… = + ∑1 2( )ln | ln ( )
j

n
k k k k

n E
j i

O D E E E O D W    (7.8)  

where the superscript  k  is positive (+) or negative (−) depending on whether the 
explanatory variable is present or absent, respectively. 

 The explanatory variables are usually either discrete (e.g., a land-use planning 
map or other socio-economic data) or continuous (e.g., a slope, proximity to road, 
river, etc.). Continuous variables need to be transformed into discrete variables. 
Thence, each explanatory theme has  k  = 1,2,…, m  discrete class values or states 
which can be associated with weights in respect to the occurrence of events. 

 The WofE application on landslide susceptibility mapping synthesized from 
Dahal et al.  (  2008  )  is presented as an example. The application test area, with less 
than 400 ha of the Moriyuki catchment, is located in the northeast of the Shikoku 
region, Japan. The catchment had as many as 76 landslides (Fig.  7.2 ) due to heavy 
rainfall which occurred in October 2004. Thematic maps, i.e., slope, aspect, relief, 
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 fl ow accumulation, soil depth, soil type, land use, and distance to road, were used as 
landslide predictive factors. The size of the landslide and the number of potential 
events varies in different landscapes depending on local geo-environmental charac-
teristics. Therefore, each thematic map was logically classi fi ed into various category 
ranges in order to estimate geographically varying weights. The maps of categorical 
factors were overlaid with the landslide event map, and this produced weights for 
each map using WofE techniques. The weighted factor maps were linearly com-
bined to create a landslide susceptibility index map. The index map was cross-vali-
dated with a landslide event map and showed a considerable success rate, i.e., 80.7% 
of the WofE-based predictive model. Based on the success rate ratio, a map with  fi ve 
landslide susceptibility zones, i.e., very low, low, moderate, high, and very high, 
was established and is shown in Fig.  7.3 .    

    7.4   Future Outlook 

 From the discussion and examples above, it is clear that the WofE method can com-
bine spatial data from diverse sources to describe and analyze interactions, provide 
support for decision makers, and make predictive models. The statistical association 
between an event and the associated factors determines the weights. The WofE 

Landslides

Catchment
0 500 m

N

  Fig. 7.2    Landslide events in the Moriyuki catchment (reproduced from Dahal et al.  2008  )        
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method itself is combined with Bayes’ rule of probability, with an assumption of 
conditional independence. The model is given in log–linear form so that the weights 
from the evidential themes can be added. 

 In this method, weight values are easy to interpret. A positive weight for a par-
ticular evidential-theme indicates that a larger proportion matched the conditions of 
that theme than would occur due to chance, whereas the inverse is true for negative 
weights. A weight of zero indicates that the training points are spatially uncorre-
lated to the theme. The range in weight values for a particular evidential theme gives 
an overall measure of how important the theme is for modeling. Uncertainties due 
to variances of weights and missing data allow the relative uncertainty in posterior 
probability to be estimated and mapped. Because conditional independence is never 
completely satis fi ed, the posterior probabilities are usually overestimated in abso-
lute terms. However, the relative variations in posterior probability (as observed in 
spatial patterns on the response map) are usually not much affected by violations of 
this assumption, as stated by Raines et al.  (  2000  ) . 

 Being a Bayesian method, it has a number of advantages over other more tradi-
tional spatial modeling methods. Much appreciated are the ability to accommodate 
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  Fig. 7.3    Landslide susceptibility map of the Moriyuki catchment.  VHS  very high susceptibility, 
 HS  high susceptibility,  MS  moderate susceptibility,  LS  low susceptibility,  VLS  very low suscepti-
bility (reproduced from Dahal et al.  2008  )        
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both categorical and ordered data, the robustness to small sample sizes, and the ability 
to use data that are not normally distributed (   Bonham-Carter et al.  1988 ). As we have 
observed several applications in the geospatial  fi eld, i.e., mineral-potential mapping, 
landslide susceptibility, habitat suitability, wild fi re, land-use and land-cover change 
analysis, and urban growth modeling, the future of this method is emerging. It may 
be possible that the wider applications of WofE will soon be used to solve global 
environmental problems, such as in REDD+.      
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     8.1   Introduction 

 Spatial simulation models are indispensable for modeling land use/cover changes 
(Wu and Webster  1998 ; Messina and Walsh  2001 ; Soares-Filho et al.  2002  ) , defores-
tation and land degradation (Lambin  1994 ; Lambin  1997 ; Etter et al.  2006 ; Moreno 
et al.  2007  ) , urban growth (Clarke et al.  1997 ; Couclelis  1989 ; Cheng and Masser 
 2004 ; Gar-On Yeh and Li  2009  ) , climate change (Dale  1997  )  and hydrology 
(Matheussen et al.  2000  ) . For land use/cover change studies, spatial simulation mod-
els are critical for understanding the driving forces of change, as well as to produce 
“what if” scenarios that can be used to gain insights into future land use/cover changes 
(   Pijanowski et al.  2002 ; Eastman et al.  2005 ; Torrens  2006  ) . Recently, the knowledge 
domain of spatial simulation modeling has advanced owing to the rapid develop-
ments in computer technology, coupled with the decrease in the cost of computer 
hardware. In addition, developments in geospatial, natural and social sciences con-
cerning bottom-up, dynamic and  fl exible self-organizing modeling systems, comple-
mented by theories that emphasize the way in which decisions made locally give rise 
to global patterns, have enriched spatial simulation models (Tobler  1979 ; Wolfram 
 1984 ; Couclelis  1985 ; Engelen  1988 ; Wu and Webster  1998 ; Batty  1998  ) . To date, 
numerous spatial simulation models have been developed and applied, particularly for 
land use/cover modeling (Clarke et al.  1997 ; Kaimowitz and Angelsen  1998 ; Messina 
and Walsh  2001 ; Soares-Filho et al.  2002 ; Walsh et al.  2006  ) . 
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 While a literature review reveals a plethora of spatial simulation models based on 
different modeling techniques and traditions (Parker et al.  2003 ;    Verburg et al. 
 2004  ) , in this chapter we focus on the Markov–cellular automata (MCA) model that 
integrates cellular automata (CA) procedures, Markov chains and geographical 
information science (GIS)-based techniques such as weight of evidence (WofE) and 
multi-criteria evaluation (MCE) (Fig.  8.1 ). The objective of this chapter is to review 
the methodological developments of the MCA model. The chapter is organised into 
 fi ve sections. Section  8.2  focuses brie fl y on the conceptual framework of the MCA 
model, paying special attention to the basics of Markov chains, GIS-based tech-
niques such as WofE and MCE, and CA models. The application of MCA models 
in previous studies is described in Sect.  8.3 , while Sect.  8.4  focuses on the current 
status and future prospects of the MCA modeling framework. Finally, Sect.  8.5  
gives a summary and conclusions.   

    8.2   Conceptual Framework of the MCA Model 

 A MCA model is a spatial model for simulating land use/cover changes in land-
scapes where land use/cover is viewed as a mosaic of discrete states, and changes 
are multi-directional (e.g. forest to non-forest or vice versa) (   Silverton et al.  1992 ; 
Li and Reynolds  1997  ) . In order to gain insights into land use/cover changes in a 

  Fig. 8.1    Conceptual framework of the Markov–cellular automata (MCA) model       
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given landscape, modeling approaches that can adequately represent state-and-
transition systems should be used. The MCA model that combines CA with Markov 
chain analysis and GIS-based techniques (Fig.  8.1 ) can be used for modeling land 
use/cover changes since it can effectively represent state-and-transition systems. 
The Markov chain process uses transition probabilities to control temporal dynam-
ics among the land use/cover classes. Spatial dynamics are controlled by local rules 
determined either by the CA mechanism (neighborhood con fi guration) or by its 
association with the transition potential maps computed from WofE and MCE tech-
niques. The MCA model allows the transition probabilities of one pixel to be a 
function of neighboring pixels because the CA model consists of a regular grid of 
cells, each of which can be in one of a  fi nite number of possible states which are 
updated synchronously in discrete time steps according to a local interaction rule 
(Messina and Walsh  2001  ) . The transition probabilities of the CA model depend on 
the state of a cell, the state of its surrounding cells, and the weights associated with 
the neighborhood context of the cell (White and Engelen  1997  ) . The MCA model 
(Li and Reynolds  1997  )  can be expressed as

     ( ) •= → > ,, , if / 4m k kC i j m k R P N    (8.1)  

     m k kR P N•≤ ,No change, if / 4
   

where  C  ( i, j ) is the use/cover class of cell ( i ,  j ),  R  is a random number with a uni-
form distribution,  P  

 m, k 
  is the transition probability from one land use/cover class  m  

to  k , and  N  
 k 
  is the number of neighboring cells of land use/cover  k , which includes 

the evaluation score of land use/cover transition potential at location  i ,  j . The weight 
of four is used in ( 8.1 ) because each cell is assumed to have four neighbors. 

 Land use/cover change modeling approaches such as MCA generally consist of 
three major components: (1) a change demand submodel, (2) a transition potential 
submodel, and (3) a change allocation submodel (Eastman et al.  2005  ) . The change 
demand submodel estimates the rate of change between two land use/cover maps 
from different periods. The results are summarised in a transition probability matrix 
that expresses the rate of conversion from one land use/cover class to another 
(Table  8.1 ). The transition potential submodel determines the likelihood (which can 
also be expressed as suitability or probability) that land would change from one land 
use/cover class to another based on biophysical and socio-economic factors 
(Fig.  8.2 ). Speci fi cally, it establishes the degree to which locations might potentially 
change in a future period of time (Eastman et al.  2005  ) . Finally, the change allocation 
submodel is concerned with the decisions by which speci fi c areas will change, given 

   Table 8.1    Example of land use/cover change transition probabilities (1993–2000)   

  2000     

 Current forest  Unstocked forest  Non-forest 

 Current forest      0.85   0.13  0.02 

  1993   Unstocked forest  0.01   0.94   0.05 

 Non-forest  0.05  0.65   0.30  
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the demand and potential surfaces. In the MCA modeling approach, the change 
demand model is represented by the Markov chains, while the transition potential 
and change allocation submodels are represented by GIS-based techniques such as 
the WofE and MCE models and the CA models, respectively.   

 In the following subsections, we focus brie fl y on (1) the computation of transition 
probabilities using Markov chains, (2) the computation of land use/cover transition 
potential maps based on WofE and MCE techniques, (3) the spatial allocation of 
simulated land use/cover probabilities based on a CA model, and (4) the mechanism 
of the MCA model. 

    8.2.1   Markov Chain Modeling of Land Use/Cover Changes 

 Markov chains have been widely used to model land use/cover changes (Drewett 
 1969 ;    Bell  1975 ;    Bell and Hinojosa  1977 ; Robinson  1978 ; Jahan  1986 ; Muller and 
Middleton  1994 ;    Wood et al.  2004  ) . A Markov chain is a stochastic model based 
on transition probabilities which describes a process that moves in a sequence of 
steps through a set of states (Wu et al.  2006  ) . In essence, the probability that the 
system will be in a given state at a given time ( t  

2
 ) is derived from the knowledge of 

  Fig. 8.2    Example of transition potential (TP) maps of Luangprabang province, Lao Peoples’ 
Democratic Republic: ( a ) current forest (CF) to unstocked forest (UF), and ( b ) unstocked forest 
(UF) to non-forest (NF)       
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its state at any earlier time ( t  
1
 ), and does not depend on the history of the system 

before time  t  
1
  (Petit et al.  2001  ) . This is known as a  fi rst-order Markov chain pro-

cess. The Markov chain can be characterized as stationary or homogeneous in time 
if the transition probabilities depend only on the time-interval  t  (i.e. Δt = t 

2
  − t 

1
 ), and 

if the time period at which the process is examined is of no relevance (Karlin and 
Taylor  1975  ) . To model land use/cover change using the stationary and  fi rst-order 
Markov chain, the land use/cover distribution at  t  

2
  is calculated from the initial land 

use/cover distribution at  t  
1
  based on the transition matrix (Lambin  1994 ; Petit et al. 

 2001  ) . The Markov chains can be expressed as

     =2 1*t tv M v    (8.2)  

where  v  
 t 2
  is the output land use/cover proportion column vector,  v  

 t 1
  is the input land 

use/cover class proportion column vector, and  M  is an  m*m  transition matrix for the 
time interval Δ t  =  t  

2
  −  t  

1
 . 

 In order to model land use/cover changes using Markov chains, it is essential to 
understand their basic assumptions and limitations. First, land use/cover changes 
are considered as a stochastic process where the transition probabilities are station-
ary (homogeneity) and land use/cover classes are in different states of the Markov 
chain (Wu et al.  2006  ) . However, it is dif fi cult to expect stationarity in transition 
probabilities because land use/cover changes are the result of the complex dynamics 
of socio-economic, political and biophysical factors that change over time (Lambin 
et al.  2000  ) . While the departure from the simple assumptions of stationary,  fi rst-
order Markov chains is conceptually possible, analytical and computational 
dif fi culties emerge. Nonetheless, it might be practical to assume transition probabil-
ities to be stationary if the time span is not too long (Weng  2002  ) . Second, the 
Markov chains that handle stationary processes are not appropriate for incorporat-
ing human activities (Boerner et al.  1996 ; Weng  2002  ) . Third, the available land 
use/cover data may be insuf fi cient to estimate reliable transition probabilities (Pastor 
et al.  1993  ) , particularly in landscapes experiencing rapid land use/cover changes 
(Wood et al.  2004  ) . Finally, a stochastic Markov chain model does not consider 
spatial knowledge within each land use/cover class (Boerner et al.  1996  ) . 

 While the Markov chains have some limitations, they are relatively easy to derive 
(or infer) from land use/cover data (Wood et al.  2004  ) . Despite the fact that the 
Markov chains do not reveal the underlying land use/cover change processes, they 
give the direction and magnitude of change, and that is potentially of use for simu-
lating land use/cover changes (Weng  2002  ) . In addition, the computational require-
ments of Markov chain models are quite modest. 

 Table  8.1  shows the forest cover transition probabilities between 1993 and 2000, 
calculated on the basis of the frequency distribution of the observations. The diago-
nal of the transition probability matrix represents the self-replacement probabilities, 
i.e. the probability of a forest cover class remaining the same (shown in bold in 
Table  8.1 ), whereas the off-diagonal values indicate the probability of a change 
occurring from one forest cover class to another.  
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    8.2.2   Computation of Transition Potential Maps Using 
GIS-Based Techniques 

 Transition potential (suitability) maps represent the likelihood or probability that 
the landscape will change from one land use/cover class to another (e.g. forest to 
non-forest). The basic prerequisite for computing transition potential maps is the 
derivation of weights representing the relative importance of each factor in relation-
ship to a given land use/cover change (Hosseinali and Alesheikh  2008  ) . Generally, 
weighting methods are classi fi ed into data-driven (e.g. WofE, logistic regression 
and arti fi cial neural networks) and knowledge-driven (analytical hierarchy pro-
cesses, ratio estimation etc.) groups (Hosseinali and Alesheikh  2008 ;    Liu and Mason 
 2009  ) . Although both data-driven and knowledge-driven methods have been used 
for computing transition potential maps (Eastman et al.  2005  ) , the former has the 
advantage of reducing the problems of biased or incorrect decisions that knowledge-
driven methods have (Hosseinali and Alesheikh  2008  ) . While there are many data- 
and knowledge-driven techniques (Liu and Mason  2009  ) , in this chapter we limit 
our discussion to the WofE and MCE techniques. 

 The WofE algorithm uses Bayes’ theorem of conditional probability to compute 
transition potential maps based on the statistical relationship between each land use/
cover change (e.g. forest to non-forest) and predictors (i.e. independent variables) 
such as distance to roads, soil and elevation. This method employs prior and poste-
rior probabilities. The prior probability is de fi ned as the probability of occurrence of 
a speci fi c land use/cover change, which is calculated by dividing the number of 
samples (of that land use/cover change) with the total land use/cover change in the 
study area. The posterior probability is the conditional probability of the existence 
of a speci fi c land use/cover change (e.g. forest to non-forest) when a predictor vari-
able exists. For example, the conditional probability of the change from forest to 
non-forest given the presence of predictor variables such as distance to roads, soil 
and elevation can be expressed as (Almeida et al.  2005 ; Levine and Block  2011  ). 

     ={ } { }* { } / { }P R S P S R P R P S    (8.3)  

where  P { R | S } is the conditional (posterior) probability of the change from forest to 
non-forest given the presence of the predictor variables,  P { S | R } is a likelihood func-
tion that gives the probability that the predictor variables (data) would be obtained 
given that  R  is true,  P { R } is the prior probability,  P { S } is the marginal probability 
of the predictor variables (that is the probability of obtaining the predictor variables 
under all possible scenarios),  R  is the change from forest to non-forest, and  S  is the 
predictor variables (e.g. distance to roads, soil and slope). 

 The advantage of WofE is its simplicity and straightforward interpretation of 
weights (Agterberg and Cheng  2002  ) . However, the basic assumption of the WofE 
is that predictor variables should be independent. Therefore, the predictor variables 
should be tested for independence using methods such as the Crammer coef fi cient 
(   Bonham-Carter et al.  1988 ; Bonham-Carter  1994 ; Agterberg and Cheng  2002  ) . 
Generally, a predictor variable with a Crammer coef fi cient of more than 0.5 should 



1138 Markov–Cellular Automata in Geospatial Analysis

be removed since it would be highly correlated with other variables (Bonham-Carter 
et al.  1988 ; Bonham-Carter  1994  ) . 

 MCE is a technique for combining data according to its importance in making a 
decision (Liu and Mason  2009  ) . Many researchers have integrated MCE and GIS 
(Carver  1991 ; Jankowski and Richard  1994 ; Jankowski  1995 ; Eastman et al.  1995 ; 
Wu and Webster  1998  ) . Conceptually, the MCE technique involves qualitative or 
quantitative weighting, scoring or ranking of criteria to re fl ect their importance to 
either single or multiple sets of objectives (Eastman et al.  1995  ) . In essence, the 
MCE technique uses numerical algorithms that de fi ne the “suitability” of a particu-
lar solution on the basis of the input criteria and weights, together with some math-
ematical and logical means of determining trade-offs when con fl icts arise (Heywood 
et al.  1998  ) . Two of the most common procedures for MCE are weighted linear 
combinations and concordance–discordance analysis (   Voogd  1993 ; Carver  1991  ) . 
In the former, each factor is multiplied by a weight and then summed to arrive at a 
 fi nal transition potential index. In the latter, each pair of alternatives is analyzed for 
the degree to which one out-ranks the other in the speci fi ed criteria (Eastman et al. 
 1995  ) . The concordance–discordance analysis is computationally impractical when 
a large number of alternatives is present (e.g. raster data where every pixel is an 
alternative), while the weighted linear combination is very straightforward in a 
raster GIS. 

 The weighted linear combination (Voogd  1993  )  combines factors by applying a 
weight to each factor, followed by a summation of the results to yield a transition 
potential (suitability) map, i.e.

     ( )= *i iS SUM w x    (8.4)  

where  S  is suitability (transition potential),  w  
 i 
  is the weight of factor  i , and  x  

 i 
  is the 

criterion score of factor  i . 
 In a case where constraints apply, the procedure can be modi fi ed by multiplying 

the suitability calculated from the factors by the product of the constraints, i.e.

     ( )= * *i i jS SUM w x IIc    (8.5)   

 Where  c  
 j 
  is the criterion score of constraint  j , and  II  is the product. 

 Most GIS software, such as IDRISI, provides a MCE module developed to com-
pute transition potential maps (Eastman et al.  1995  ) . The primary issues in the com-
putation of transition potential (suitability) maps are the standardization of criteria 
scores and the development of the factor weights using methods such as the analytic 
hierarchy process (Saaty  1977 ;    Saaty and Vargas  2001  ) .  

    8.2.3   Cellular Automata (CA) Models 

 Cellular automata (CA) are bottom-up, individual-based dynamic models that were 
originally conceptualized by Ulam and von Neumann in the 1940s in order to under-
stand the behavior of complex systems (Moreno et al.  2010  ) . The CA model consists 
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of an array of cells wherein each cell can assume one of  i  discrete states at any one 
time (Tobler  1979 ; Couclelis  1985 ; White and Engelen  1997  ) . Time progresses in 
discrete steps, and all cells change their state simultaneously as a function of their 
own state, together with the state of the cells in their neighborhood, in accordance 
with a speci fi ed set of transition rules (Engelen et al.  1995  ) . In essence, CA encom-
passes  fi ve major components (Wolfram  1984 ; White and Engelen  1997  ) :

    1.    A space composed of a regular grid in one or two dimensions  
    2.    A  fi nite set of possible states associated with every cell (e.g. forest or non-

forest)  
    3.    A neighborhood composed of adjacent cells whose states in fl uence the central 

cell  
    4.    Transition rules applied uniformly through time and space  
    5.    A discrete time at which the state of the system is updated     

 According to Moreno et al.  (  2010  ) , circular and extended neighborhoods are 
commonly used to reduce directional bias and capture the spatial in fl uence of sur-
rounding cells on the central one. Space is typically represented as a grid of regular 
cells, while the neighborhood is de fi ned as a collection of cells based on physical 
adjacency (White and Engelen  1997 ; Moreno et al.  2010  ) . Distance functions are 
applied within a neighborhood to take into account the spatial-dependent attrac-
tiveness or repulsiveness of one cell state over another (Soares-Filho et al.  2002 ; 
Moreno et al.  2010  ) . In addition to deterministic transition rules, stochastic rules are 
commonly applied to capture the intrinsic variability of natural and human systems 
(Moreno et al.  2010  ) . The CA model works by simulating the present based on an 
extrapolation of the past land use/cover maps. This allows the model to iterate to 
any other selected date (Messina and Walsh  2001  ) . 

 For land use/cover changes and urban growth studies, CA models have been 
found to be more effective than the conventional modeling approaches for a num-
ber of reasons. First, CA models allow the integration of macro-scale with micro-
scale temporal processes as well as the integration of macro-spatial and 
micro-spatial phenomena (   Wolfram  1984 ; Torrens  2000  ) . As a result, CA models 
can make the maximum possible use of available spatial and temporal detail, in 
contrast to conventional approaches, which operate either at the macro- or the 
micro-level (Briassoulis  2000  ) . Furthermore, CA models offer a  fl exible platform 
for the interaction of biophysical and socio-economic driving factors, as well as 
for the simulation of real-world complex systems based on simple rules (Wolfram 
 1984 ; Engelen  1988 ; White and Engelen  1997  ) . More importantly, theoretical 
assumptions may be tested and validated in a particular environmental and socio-
economic context (Briassoulis  2000 ; Torrens  2000  ) . While CA models have pro-
duced important contributions to modeling, recent studies have revealed that 
raster-based CA are sensitive to the modi fi able spatial units used in the model, and 
the modeling results vary according to the cell size and neighborhood con fi -
guration (Moreno et al.  2010  ) .  
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    8.2.4   How the MCA Model Works 

 The spatially explicit nature of the CA model and its compatibility with GIS and 
other modeling frameworks such as Markov chains have resulted in the develop-
ment of various hybrid CA models (Walsh et al.  2006  ) . This chapter focuses only on 
the mechanism of the MCA model based on the Dinamica EGO (environment for 
geo-processing objects) platform. Dinamica EGO was developed by the Center for 
Remote Sensing of the Federal University of Minas Gerais in Brazil (Maeda et al. 
 2011  ) . This MCA model employs an  expander  transition function to expand or con-
tract previous land use/cover class patches, while the  patcher  transition function is 
used to form new patches through a stochastic seeding mechanism (Soares-Filho 
et al.  2002  ) . Thus, on the one hand the  expander  transition function performs transi-
tions from state  i  to state  j  only in the neighboring cells of state  j . On the other hand 
the  patcher  transition function performs transitions from state  i  to state  j  only in the 
neighboring cells of states other than  j  (Almeida et al.  2003  ) . First, the algorithm 
scans the initial land use/cover map to sort out the cells with the highest probabili-
ties and then arrange them in a data array (Almeida et al.  2005  ) . Then the cells are 
selected randomly from top to bottom of the data array. Finally, the land use/cover 
map is again scanned to perform the selected transitions (Soares-Filho et al.  2002  ) . 
If the  expander  transition function does not perform the amount of desired transi-
tions after a  fi xed number of iterations, it then transfers to the  patcher  transition 
function a residual number of transitions, so that the total number of transitions 
always amounts to a desired value (Soares-Filho et al.  2002  ) . The desired transitions 
are obtained from Markov chain-computed transition probabilities. However, the 
 patcher  transition function will simulate land use/cover change patterns by generat-
ing diffused patches, while at the same time preventing the formation of single iso-
lated one-cell patches (Almeida et al.  2003  ) . This function searches for cells around 
a chosen location for a given transition through the selection of the core cell of the 
new patch based on a speci fi c number of cells around the core cell according to their 
transition probabilities (Soares-Filho et al.  2002  ) . 

 The  expander  and  patcher  transition functions are composed of an allocation 
mechanism responsible for identifying cells with the highest transition probabilities 
for each  ij  transition. As a result, cells are stored and organized for later selection. 
The two complementary functions (i.e. the  expander  and the  patcher ) consist of 
mean patch size, patch size variance and isometry parameters, which can be changed 
to produce various spatial patterns of land use/cover patches according to a log–
normal probability distribution function (Soares-Filho et al.  2002  ) . For example, an 
increase in mean patch size results in a less fragmented landscape, while an increase 
in the patch size variance results in a more diverse landscape (UFMG  2009  ) . 
Isometry is a number that varies from 0 to 2, and thus an isometry greater than one 
results in more isometric (equal) patches (UFMG  2009  ) . Finally, MCA model itera-
tions are speci fi ed according to time differences between two land use/cover maps 
(Δt = t 

2
  − t 

1
 ).   
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    8.3   Application of MCA Models in Previous Studies 

 Modeling approaches that integrate CA and Markov chains have been explored for 
some time (Zhou and Liebhold  1995 ; Li and Reynolds  1997 ; Parker et al.  2003 ; 
   Aspinall  1994  ) . A major advantage of the MCA approach is that GIS and remote 
sensing data can be incorporated effectively (Li and Reynolds  1997  ) . In particular, 
biophysical and socio-economic data can be used to de fi ne initial conditions, to 
parameterize the MCA model, to calculate transition probabilities and to determine 
the neighborhood rules with transition potential maps. 

 Although the potential of the MCA models has been recognized, few studies 
have used the MCA models for simulating land use/cover changes. Li and Reynolds 
 (  1997  )  developed a combined Markov and CA model to simulate the effects of spa-
tial pattern, drought and grazing on the rates of rangeland degradation. Although 
their model was conceptually appealing, it did not account for the variations of 
transition probabilities due to changes in environmental, socio-economic and politi-
cal factors. To overcome such limitations, Soares-Filho et al.  (  2002  )  incorporated a 
 saturation value  parameter that is designed to vary the transition rates through a 
dynamic feedback analysis of landscape changes. Their spatially explicit, multi-
scale and dynamic stochastic CA modeling framework successfully simulated land 
use/cover changes in the Amazonian colonization frontier (Soares-Filho et al.  2002 ; 
Soares-Filho et al.  2006  ) . Recently, the Dinamica EGO modeling framework has 
also introduced a scenario generator model that computes transition rates based on 
the integration of environmental and socio-economic factors (Almeida et al.  2005 ; 
   Teixerira et al.  2009  ) . 

 Pontius and Malanson  (  2005  )  applied the MCA to predict land use/cover changes 
in central Massachusetts. Their model used an MCE technique to compute transi-
tion potential maps, and a spatial contiguity rule to determine the location of pre-
dicted change. Contemporary legal constraint data were used as an additional driver 
to calibrate the transition potential (suitability) maps (Pontius and Malanson  2005  ) . 
Although the MCA model produced good results, it did not incorporate additional 
constraints and factors that represent socio-economic and urban planning issues. 
Furthermore, the authors concluded that their MCA model was poor at predicting 
the location of built to non-built conversions (Pontius and Malanson  2005  ) . Paegelow 
and Olmedo  (  2005  )  also used the MCA model for testing the possibilities and limits 
of a prospective land cover modeling in France and Spain. Their model used the 
Markov chain analysis to control temporal dynamics, while MCE, multi-objective 
evaluation and CA controlled spatial contiguity in order to determine the location of 
the predicted land cover change. Land cover maps and relevant environmental fac-
tors were used to calibrate the transition potential (suitability) maps. While the 
authors reported an overall accuracy of 75%, they noted the need to analyze predic-
tion residues in order to improve the model. 

 Myint and Wang  (  2006  )  also applied the MCA for projecting land use/cover 
changes in Norman, Oklahoma, USA. Their model also used an MCE technique to 
compute transition potential maps, and a spatial contiguity rule to determine the 
location of predicted change. Ancillary map layers such as roads and drainage were 
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used as driving factors in order to calibrate the transition potential (suitability) maps. 
The suitability ratings were based on the authors’ personal judgment in consultation 
with land use planners, which may possibly lead to bias (Hosseinali and Alesheikh 
 2008  ) . Although their model was effective at projecting future land use/cover 
changes, as indicated by an overall accuracy of 86.2%, their accuracy assessment 
procedure only considered accuracy in terms of quantity and not in terms of location 
(Pontius and Malanson  2005  ) . More recently, Kamusoko et al.  (  2009  )  applied a 
MCA model in rural areas in Zimbabwe. Their model’s overall simulation success 
was 69% for the 2000 simulated land use/cover map, and 83% for the 2005 simu-
lated land use/cover map. However, the authors reported that the model was poor at 
simulating the location of bare land areas owing to the lack of input spatial data.  

    8.4   Current Status and Future Prospects 

 The increasing awareness of the impact of land use/cover changes on global climate 
change has renewed interest in the application of spatial simulation models (Soares-
Filho et al.  2006 ; Brown et al.  2007  ) . For example, initiatives that are currently 
being negotiated under the United Nations Framework Convention on Climate 
Change (UNFCCC) to reduce emissions from deforestation and forest degradation 
in developing countries requires the development of robust baseline or reference 
scenarios under the business-as-usual (BAU) scenario (   Angelsen et al.  2009  ) . 
A baseline or reference scenario (under BAU) is the projected deforestation and 
associated emissions in the absence of a REDD (reducing emissions from deforesta-
tion and forest degradation) project (   Angelsen  2008  ) . Several approaches for setting 
baseline or reference scenarios have been suggested, which include among others 
spatial and non-spatial modeling approaches (   Brown et al.  2007 ;    Terrestrial Carbon 
Group  2008  ) . However, this new interest in spatial simulation models also presents 
new challenges to researchers and decision makers because the establishment of 
robust baseline or reference scenarios requires a better understanding of the under-
lying driving forces in order to capture intrinsic landscape processes at multiple 
spatial and temporal scales (GOFC-GOLD  2010  ) . In addition, attention should also 
be focused on new theoretical and methodological developments in the modeling 
framework. This section highlights the current status and future prospects of MCA 
models, paying special attention to issues pertaining to (1) theories underpinning 
model development, (2) data issues, and (3) calibration and validation. 

    8.4.1   Theories Underpinning Model Development 

 Current spatial simulation models of land use/cover changes can be broadly divided 
into those which are based on theory and those which are not (Verburg et al.  2004  ) . 
The former include mainly economic theory-based models as well as spatial inter-
action models (Lambin et al.  2000 ; Irwin and Geoghegan  2001 ; Verburg et al.  2004 ; 
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Soares-Filho et al.  2006  ) , while the latter comprise models that do not include the-
ory explicitly, or those that are based on speci fi c theoretical assumptions (Myint and 
Wang  2006 ; Kamusoko et al.  2009  ) . Although theory is critical during model 
speci fi cation and interpretation, the in fl uence of theory and assumptions on the 
modeling results is not always examined (Verburg et al.  2004  ) . This unfortunately 
limits the reliability and robustness of the model (Briassoulis  2000  ) . To overcome 
this limitation, future MCA models will need to incorporate a strong theoretical 
background which is relevant to the given underlying landscape processes. This 
requires more collective efforts that focus on developing an integrated and multi-
disciplinary research paradigm. The land use/cover change modeling community 
has been working on a number of multi-disciplinary research programs aimed at 
improving spatial models (Geoghegan et al.  1998 ; Irwin and Geoghegan  2001  ) .  

    8.4.2   Data and Scale Issues 

 Fundamental to the development of robust MCA models are issues such as the spa-
tial and temporal dimensions, reliability, availability and cost of data collection 
(Briassoulis  2000  ) . In most cases, the spatial units usually follow administrative 
boundaries, which, although appropriate for policy implementation, may not be 
meaningful for all types of data (Verburg et al.  2004  ) . With respect to the temporal 
dimension, the temporal systems of reference (e.g. time and number of observa-
tions) are not always compatible and consistent (Verburg et al.  2004  ) . In other 
words, different de fi nitions among time periods, especially at lower levels of aggre-
gation, give rise to problems of compatibility and consistency, particularly with 
historical data. For example, the dates of historical land use/cover maps may not be 
compatible with the available socio-economic data, which may have been acquired 
at a different time. Furthermore, MCA models are built on the assumptions of tem-
poral homogeneity and progressive linear trends, despite the fact that land use/cover 
changes have occurred in the context of long-term instability (e.g.  fl uctuations in 
climate, prices or state policies). These issues are important for land use/cover 
models where the exact time and length of the policy intervention is critical in the 
modeling framework. In addition, the availability and cost of obtaining proper 
longitudinal data (e.g. socio-economic data) limit the reliability of land use/cover 
change models that integrate biophysical and socio-economic data. 

 With reference to the spatial dimension, past studies have revealed that raster-
based CA models are sensitive to the modi fi able spatial units used in the model, and 
that results vary according to the cell size and neighborhood con fi guration 
(Veldkamp et al.  2001 ; Chen and Mynett  2003 ; Jantz and Goetz  2005  ) . To overcome 
the sensitivity of raster-based CA models to cell size and neighborhood 
con fi gurations, novel geographic objected-based CA models have been developed 
(Torrens and Benenson  2005 ; Moreno et al.  2010  ) . According to Moreno et al. 
 (  2010  ) , space is de fi ned as a collection of geographic objects of irregular shape and 
size corresponding to meaningful real-world features. Furthermore, the neighbor-
hood is dynamic (i.e. it includes the whole geographic space), and the model allows 
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the geometric transformation of each object according to a transition function that 
incorporates the in fl uence of its neighbors (Moreno et al.  2010  ) .  

    8.4.3   Calibration and Validation 

 Calibration and validation are important components in the development of MCA 
models. However, validation is the weakest part of land use/cover modeling, since 
there are no agreed criteria to assess the performance of one land use/cover model 
versus another, or to compare one run versus another run of the same model (Pontius 
et al.  2004  ) . In order to assess the model’s predictive power, a clear distinction 
between the procedures for calibration and validation must be made, the failure of 
which makes the interpretation of any results dif fi cult or misleading (Pontius et al. 
 2004  ) . In some cases, it is more common to force the prediction to simulate the cor-
rect quantity of each land use/cover class, than to assess whether the model predicts 
the correct location of land use/cover (Kok et al.  2001 ; Pontius et al.  2001  ) . Any 
lack of clarity in the methodology to distinguish the calibration information from 
the validation information causes confusion in land use/cover modeling, which can 
lead to a misunderstanding of the model’s certainty (Pontius et al.  2004  ) . 

 Calibration is “the estimation and adjustment of model parameters and con-
straints to improve the agreement between model output and a data set” (Rykiel 
 1996  ) . The information used for calibration should be at or before some speci fi c 
point in time (t1), which is the point in time at which the predictive extrapolation 
begins. In contrast, validation is the process of comparing the model’s prediction for 
t2 with a reference map of time t2, where the reference map is considered to be a 
much more accurate portrayal of the landscape at time t2 (Pontius and Malanson 
 2005  ) . One set of data should be used to calibrate the model, and a separate set 
should be used to validate the model (Pontius et al.  2004  ) . In order to enhance the 
validity of land use/cover modeling, Pontius et al.  (  2004  )  suggested that it is helpful 
to use a validation technique that, (a) takes into account the source of error, (b) 
compares the model to a null model (a model that predicts pure persistence, i.e. no 
change between t1 and t2), and (c) performs analysis at multiple scales.   

    8.5   Summary and Conclusions 

 This chapter has attempted to review the current state-of-the-art operational MCA 
land use/cover change models. Despite the existence of the many land use/cover 
change modeling challenges highlighted in this chapter, the land use/cover model-
ing research community has developed a variety of models, which have been applied 
with varying success in different regions of the world. Interesting data sets, as well 
as the functioning of interdisciplinary and multi-disciplinary research teams, have 
made efforts to improve and develop robust land use/cover change models that can 
be useful for understanding the functioning of land use/cover systems, and also 
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to support land use planning and policy (Lambin et al.  2000 ; Irwin and Geoghegan 
 2001 ; Rindfuss et al.  2003 ; Verburg et al.  2004  ) . However, the review has also 
exposed the limitations of the current MCA models and modeling practice. Many 
current MCA land use/cover models are still built on common assumptions of 
homogeneity and linear trends, which may fail to capture the underlying real-world 
landscape processes characterized by non-linear trends. While much effort has been 
spent on model calibration, little attention has been given to the development of 
robust validation methods (Pontius and Malanson  2005  ) . 

 Nonetheless, the limitations singled out present opportunities for research into 
MCA models. Future MCA land use/cover change models will need to be more inte-
grated and more responsive to different environmental, socio-economic and political 
conditions (Verburg et al.  2004  ) . Given the rapid developments in computer technol-
ogy (increases in memory and speed of computers), more integrated MCA models 
should be developed. For example, encouraging research is being done in the area of 
geographic object-based CA models (Torrens and Benenson  2005 ; Moreno et al. 
 2010  ) . These novel geographic object-based CA models should be incorporated in 
the MCA modeling framework. More research should also be done in developing 
non-linear Markov chains that can compute non-linear transition probabilities. In 
addition, research will also have to address the problems of the evaluation of policy 
impacts as well as issues of household decision-making. Predominantly, aggregate 
modeling techniques need to be complemented by agent-based methods capable of 
measuring the in fl uence of individuals and communities on land use/cover changes. 
The feasibility of such research would be greatly enhanced by the availability of the 
detailed land use/cover, biophysical and disaggregate socio-economic data required 
for integrated agent-based MCA models (Berger  2001  ) . 

 Finally, more efforts should be made to disseminate land use/cover models in 
general, and MCA models in particular, by including institutions and individuals, 
particularly in developing countries. This must be supported by the development of 
user-friendly modeling software such as Dinamica EGO (Soares-Filho et al.  2002  )  
and IDRISI Taiga (Eastman  2009  ) . Although, spatial simulation models have been 
criticized for failing to adapt to new challenges and problems, researchers and deci-
sion makers are collaborating in order to develop robust MCA land use/cover change 
models (Rindfuss et al.  2003  ) . These models would be useful for understanding the 
driving forces and underlying processes of land use/cover changes, as well as to 
simulate future land use/cover changes.      
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      9.1   Introduction 

 Geospatial analysis involves using a variety of approaches. Deciding on a suitable 
approach depends on the complexity of the problem being addressed and the degree 
to which the problem is understood. Several algebraic and numerical computing 
techniques can be used to describe the behavior and nature of real geographical 
processes and develop mathematical models to represent them. Such methods 
require accurate knowledge of the process dynamics to emulate the processes. 
However, in practice, the knowledge required to solve a problem may be incomplete 
because the source of the knowledge is unknown, or because the complexity of the 
problem may introduce uncertainties and inaccuracies that make modeling unreal-
istic. In this case, an approximate analysis approach can be used. Arti fi cial neural 
networks (ANNs) are an open concept that allows for the continuous re fi nement and 
acquisition of new knowledge and can provide solutions to such problems. It offers 
an alternative for dealing with solutions with a tolerance of imprecision, uncer-
tainty, and approximation. It is known as an information-processing paradigm 
inspired by the interconnected and parallel structure of the human brain. The initial 
concepts of ANNs were attempts to depict the characteristics of biological neural 
networks in order to address a series of information-processing issues. This research 
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domain has been extensively studied and applied during the last three decades. 
ANNs provide a  fl exible data analysis framework for appropriate nonlinear map-
pings from a variety of input variables. In particular, they are distribution-free and 
thus have an advantage over most statistical methods that require knowledge of the 
distribution function. In particular, they can learn complex functional relationships 
between input and output data that are not envisioned by researchers (   Kim and 
Nelson  1998  ) . ANNs are applied in a wide range of  fi elds, such as medicine, molec-
ular biology, ecology, environmental sciences, and image classi fi cation (Atkinson 
and Tatnall  1997  ) . 

 A variety of ANN types have been developed to capture particular features of the 
neurons and their interaction to solve different kinds of application problems. Each 
ANN model has a typical training algorithm. Some ANN models are suitable for theo-
retical investigations. Much of the modern effort in the modeling of nervous systems 
has been for pattern recognition tasks. The most commonly used networks are multi-
layer perceptron (MLP) networks, radial basis function (RBF) networks, recurrent 
neural networks (RNNs), and Kohonen self-organizing map (SOM) networks. 

 MLP networks are general,  fl exible, and nonlinear models with a number of units 
organized into multiple layers which map the inputs to the desired outputs by mini-
mizing the errors between the desired outputs and the calculated outputs. The com-
plexity of the network can be adjusted by varying the number of layers and the 
number of units in each layer. Given enough hidden units and enough data, it has 
been shown that MLPs can approximate any function to any desired accuracy. MLPs 
can be trained with several different algorithms, but most commonly with the back-
propagation training algorithm. 

 The RBF three-layer architecture is similar to that of MLPs, but the output is 
computed as a linear combination of basic functions. The hidden layer computes the 
distance from the input data to each of the centers. These networks have the advan-
tage of being much simpler than the perceptrons while keeping their key nature of a 
universal approximation of multi-variate functions (   Poggio and Girosi  1987  ) . Each 
node in the hidden layer of the network evaluates a RBF based on incoming inputs. 
In particular, these networks are introduced with the centers of data clusters; there-
fore, they have some advantages over the MLP, such as faster convergence, smaller 
extrapolation errors, and greater reliability (Girosi and Poggio  1990  ) . The linear 
solutions for the connection weights of the network directly yield a unique local 
minimum and global minimum. This kind of network signi fi cantly shortens the 
training of the network. The RBF can overcome the possibility of producing com-
plex error surfaces, which are produced by the back-propagation algorithm. RBF 
networks combine nonlinear RBF activation functions in a hidden layer and the 
linear combination of weights in the output layer. Different activation functions, 
e.g., k-means clustering (Hartigan and Wong  1979  )  or fuzzy c-means (Zhu and He 
 2006  ) , can be used. However, in most applications of RBF networks, the preferred 
choice is the Gaussian function. 

 RNNs are a type of ANN in which connections between nodes form a directed 
cycle. This creates an internal state of the network that allows the exhibition of 
dynamic behavior. RNNs are good at characterizing dynamic systems. In this type 
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of network, the hidden node activation values, or network output values, feed back 
into the network input layer nodes. Internally, a RNN is identical to a MLP. It has been 
extended from the MLP to include recurrent connections in order to perform temporal 
processing. An advantage of recurrent networks is that time is represented implic-
itly in the architecture by incorporating a form of short-term memory implemented 
through feedback connections. Back-propagation through time (BPTT), modi fi ed 
for multiple recurrent connections, is used as the training algorithm of the RNNs. 

 The MLP works well only when training data are available, so that the network 
is able to learn all the patterns that exist in the study area. However, in practice, 
training data are not always available. Given this weakness, it is critical to develop 
an appropriate network model to deal with the problem. SOM networks, a neural 
network type developed by Kohonen  (  1984,   1995  ) , can be an alternative to the MLP. 
In the SOM, neighboring pixels in a neural network compete in their activities by 
means of mutual lateral interaction, and then develop adaptively into different pat-
terns (   Kohonen  1990 ). SOMs are primarily used to visualize and interpret high-
dimensional data sets. SOMs can perform the modeling of data sources and provide 
preferable types of cell neighborhood arrangements, such as planar grid, cylinder, 
and toroidal. They can be used as a data mining tool, especially for multi-band 
image classi fi cation. SOMs are trained by an unsupervised algorithm by which 
input data are self-organized into clusters. 

 The entire spectrum of ANNs is very diverse. In this chapter, attention is limited 
to one class of ANNs, namely MLP neural networks or feed-forward neural net-
works. They are becoming an increasingly powerful technique for solving a wide 
range of problems. Although MLP networks are the most popular and widely used 
models in many practical applications, many issues and problems (such as network 
structure, slow convergence speed, and local minima sticking) in applying MLPs 
have motivated research into improving the standard methods. Much progress has 
been made in improving the performance of standard MLPs. In particular, addi-
tional improvements in training the networks are needed, as the training process is 
chaotic in nature. The purpose of this chapter is to review the state of the art of the 
MLP. Speci fi cally, we review the history of MLP development. Then the standard 
architecture and algorithm of the MLP are described. Finally, MLP applications in 
land-cover classi fi cation and future prospects are summarized.  

    9.2   History of Perceptron Neural Networks 

 ANNs are a popular data mining and image processing tool. They originated from 
attempts to model human thought as an algorithm that can run on a computer. ANNs 
offer a method of describing arti fi cial neurons to deal with complex problems in the 
same manner as the human brain. The origin of ANN research was an interest in the 
study of the mechanism and structure of the human brain. For many years, particularly 
since the middle of the last century, the mechanism and structure of the brain have been 
studied in increasing depth. This research has resulted in the development of ANNs. 
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 Animal nervous systems are composed of thousands or millions of interconnected 
cells. Each of them is a very complex arrangement which deals with incoming 
signals in many different ways. Our present knowledge of the structure and physiology 
of neurons is the result of 100 years of research in this  fi eld between 1850 and 1950. 
The transmission of sensory signals (information) is one of the important functions 
of the neurons. Neurons or nerve cells receive multiple input stimuli, combine and 
modify the inputs in some way, and then transmit the result to other neurons. 
Scienti fi c results indicate that neurons can transmit information using electrical 
signals. Around 1901, Santiago Ramon y Cajal postulated that the speci fi c network-
ing of the nervous cell determines a direction for the transmission of information. 
The chemical transmission of information at the synapses was studied from 1920 to 
1940. The Hodgkin–Huxley model was in some ways one of the  fi rst arti fi cial neural 
models (Cronin  1987  ) , because the postulated dynamics of the nerve impulses could 
be simulated with simple electrical networks (Mead  1989  ) . The mechanisms for the 
production and transport of signals from one neuron to another are well-understood 
physiological phenomena, but how these individual systems cooperate to form 
complex and massively parallel systems, capable of incredible feats of information 
processing, has not yet been completely elucidated. Mathematics, physics, and 
computer science can provide invaluable help in the study of these complex systems. 
The mathematical properties of ANNs were studied by nonbiological researchers 
such as Warren McCulloch, Walter Pitts, and John von Neumann. Research in the 
neurobiological  fi eld has progressed in close collaboration with mathematicians and 
computer scientists. 

 Neurons receive sensory signals and produce a response. The general structure of 
a biological neuron consists of dendrites, synapses, a cell body, and an axon. 
Dendrites are the transmission channels for incoming information. They receive the 
signals at the contact regions with other cells, called synapses. The body of the cell 
produces all the necessary chemicals for the continuous working of the neuron. The 
output signals are transmitted by the axon. Arti fi cial neurons for computing will 
have input channels, a cell body, and an output channel. Since the middle of the last 
century, increasing research in the  fi eld of arti fi cial intelligence has resulted in the 
development of computational models of ANNs based on a biological background 
for solving pattern recognition and data processing tasks. Biological neural networks 
are just one of many possible solutions to the problem of processing information. 
Biological neural networks are self-organizing systems, and each individual neuron 
is a delicate self-organizing structure capable of processing information in many 
different ways. 

 The explanation of many important aspects of the physiology of neurons set the 
stage for the formulation of ANN models. In particular, Hebb  (  1949  )  described the 
adoption laws about the organization of behaviors. These principles also played a 
signi fi cant part in the investigation of the neural foundations of behavior because 
they provide a general framework for relating behavior to synaptic organization 
through the dynamics of neural networks. Hebb was the  fi rst to examine the mech-
anisms by which environment and experience can in fl uence brain structure and 
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function, and his ideas formed the basis for work on enriched environments as 
stimulants for behavioral development. ANNs constitute an alternative computability 
paradigm. Biological neural networks give us a clue to the properties which would 
be interesting to include in our arti fi cial networks. ANNs have aroused intense inter-
est in recent years, not only because they exhibit interesting properties, but also 
because they try to mirror the kind of information processing capabilities of 
nervous systems. ANNs can be considered as just another approach to the problem 
of computation. 

 ANNs emerged after the introduction of a simpli fi ed neuron, a mathematical 
model of the neuron by McCulloch and Pitts  (  1943  ) . McCulloch and Pitts are 
generally recognized as the designers of the  fi rst neural network, and they 
attempted to translate the events in the nervous system into rules governing infor-
mation. This abstract neuron provided the foundations for a formal calculus of 
brain activity. Rosenblatt  (  1958  ) , an American psychologist, proposed the “per-
ceptron,” a more general computational model than McCulloch and Pitts’ units, 
and this idea subsequently received much attention. The critical innovation was 
the introduction of numerical weights and a special interconnection pattern. 
In the Rosenblatt model, computing units are threshold elements and the con-
nectivity is determined stochastically. Learning takes place by adapting the 
weights of the network with a numerical algorithm. Rosenblatt’s model was 
re fi ned and perfected in the 1960s, and its computational properties were care-
fully analyzed by Minsky and Papert  (  1969  ) . 

 The concept of the perceptron (Rosenblatt  1958  )  was the starting point for the 
development of many types of the ANNs. A  perceptron  is a device that computes a 
weighted sum of its inputs and puts this sum through a special function, known as 
the activation function, to produce the output. The activation function can be linear 
or nonlinear. The perceptron is able to classify linearly separable data, but it is 
unable to handle nonlinear data. The inputs are fed directly to the outputs via a 
series of weights. In this way it can be considered to be the simplest kind of feed-
forward network. The sum of the products of the weights and the inputs is calcu-
lated, and if the value is above a certain threshold, the neuron  fi res and takes the 
activated value; otherwise it takes the deactivated value. Neurons with this kind of 
activation function are also called arti fi cial neurons or linear threshold units. 
Although the perceptron initially seemed promising, it was proved that a single 
perceptron cannot be trained to recognize many classes of data patterns. This has led 
to the  fi eld of ANN research. It is recognized that a feed-forward neural network 
with two or more layers has greater processing ability than a single perceptron. 
An adaption of the perceptron is the one-layer delta rule introduced by Widrow and 
Hoff  (  1960  ) , in which supervised learning is achieved by means of a least mean 
square (LMS) algorithm. Minsky and Papert  (  1969  )  used a simpli fi ed perceptron 
model to investigate the computational capabilities of weighted networks. Early 
experiments with Rosenblatt’s model had aroused unrealistic expectations in some 
quarters, and there was no clear understanding of the class of pattern recognition 
problem which it could solve ef fi ciently. 
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 In particular, Minsky and Papert  (  1969  )  analyzed the features and limitations of 
the perceptron model rigorously. The question had arisen of whether a given set 
of nonlinearly separable patterns can be decomposed in such a way that the largest 
linearly separable subset can be detected. In particular, Minsky and Papert indicated 
that a perceptron could not learn functions that are not linearly separable. Neural 
network research declined throughout the 1970s until the mid-1980s because of an 
inability to  fi nd ef fi cient methods to solve such nonlinearly separable problems. 
In the 1980s, there was fresh motivation in neural networks research as a result of 
the increase in computing power and the development of several new algorithms. 
Hop fi eld  (  1982  )  applied a particular nonlinear dynamic structure to solve problems 
in optimization. The back-propagation algorithm developed by Rumelhart et al. 
 (  1986  )  gave a strong impulse to the subsequent research, and resulted in the largest 
body of research and applications in ANNs.  

    9.3   Basic Architecture of a Multi-layer Perceptron 

 MLPs, known as feed-forward neural networks, are the most popular and most 
widely used models in many practical applications. The feed-forward concept indi-
cates that an input pattern is presented to the network via the input layer, and the 
input signals are passed to the nodes in the next layer in a feed-forward manner. The 
network is divided into layers. The input layer consists of the inputs to the network, 
followed by a hidden layer consisting of neurons or hidden units, and then an output 
layer representing classes or patterns. Each neuron performs a weighted summation 
of the inputs, which then passes a nonlinear activation function. This summation of 
the output is called the output layer .  The network output is formed by another 
weighted summation of the outputs of the neurons in the hidden layer. Graphically, 
a neural network can be thought of as a diagram that illustrates how computations 
are implemented (Fig.  9.1 ). The diagram includes circles called neurons and lines 
called connections.  

 MLPs have the ability to learn through a training process that is described as 
“supervised,” i.e., they must be taught the characteristics of the data set of a particular 
study. Training requires a set of training data consisting of a series of input and 
output variables. The objective of training is to  fi nd the combination of appropriate 
connection weights that results in the smallest error of the MLP. During training, the 
MLP is repeatedly presented with the training data, and the weights in the network 
are adjusted until the desired input–output mapping occurs. Once trained with rep-
resentative training data, the MLP can generalize unseen input data. 

 Training is critical in order to learn the nature of the particular data set under 
study. The training algorithm is the most important component of an MLP applica-
tion. A number of algorithms were introduced to train MLP networks, such as the 
Levenberg–Marquardt technique (Seber and Wild  1989  )  and back- fi tting (Ghosh 
and Bose  2004  ) . The Levenberg–Marquardt method improves the rate of conver-
gence, but it requires a huge memory space. The back-propagation algorithm, which 
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is known as the generalized delta rule or gradient descent training rule, is the most 
popular. The working of the algorithm can be explained by forward and backward 
steps. In the forward step, data from the input layer are presented to the hidden layer 
and propagated forward to estimate the output value for each training pattern set. 
As the forward step is completed, the output is compared with the desired values, 
and the error is computed. The error is then propagated backward through the 
network, and the weights are corrected according to the generalized delta rule. 

 During the training process, the computations in the layers of the neural networks 
are implemented from the hidden to the output layers. They are not implemented in 
the input layer. The computation in a given hidden layer can be expressed as

     = ∑net j ij iw x    (9.1)  

where net 
 j 
  is the weighted sum of a hidden layer node,  w  

 ij 
  represents the connection 

weight from neuron  i  (input variable) to neuron  j  (hidden layer), and  x  
 i 
  is the input 

variable. This weighted sum is known as activation in the  fi eld of ANNs. It is then 
transformed using a differentiable continuous nonlinear activation function to give 
the output of the hidden nodes. Different activation functions can be chosen for dif-
ferent types of problems. The sigmoidal function, mostly used in nonlinear transfer 
functions, is used in the computation in hidden neurons before release to the output 
layer neuron. Other activation functions which can be employed are logistic func-
tions, threshold functions, a tanh function, and a simple linear activation (identity 
function). The calculation can be expressed as

     −=
+ net

1

1 i
jo

e    (9.2)   

 The same procedure is applied to the next layer, where the hidden layer output 
values are summed to produce the  fi nal results in the output layer. 

 The connection weights are updated during the training process according to the 
generalized delta rule (Rumelhart et al.  1986  ) . For example, ( 9.3 ) is the equation for 
updating connection weights from the input layer to the hidden layer.

     +Δ = + Δ( 1) ( )( )ji n j i ji nw o wh d a    (9.3)  

Input layer Hidden layer Output layer  Fig. 9.1    A simple three-layer 
MLP neural network       
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where Δ w  
 ji ( n+ 1)

  is the change of a weight from neuron  i  to neuron  j  at the ( n  + 1)-th 
iteration,   h   is the learning rate,   d   

 j 
  is an index of the rate of change of the error with 

respect to output from neuron  j , and   a   is a momentum term. In the same way, 
connection weights between the hidden and output layer are also updated to 
minimize the errors of the network outputs. 

 It should be noted that an MLP does not provide a direct means of solving a 
problem. An MLP needs to be trained with sample data sets before it can be usefully 
applied. The training of networks is the process of teaching the networks to distin-
guish input patterns and output responses. It can be described as supervised because 
this implies we have prior knowledge about the nature of the solution and are super-
vising the training. Calibration data may be divided into two types of training and 
testing samples. Training samples are employed to train the network. On the other 
hand, testing samples, which the network has not previously seen, are used to evalu-
ate the performance of the network. Several factors in fl uence the capacities of the 
network to generalize and interpolate data that the network has not previously seen. 
In particular, the key factors are the number of nodes and architecture, the size of 
training samples, and the learning rate. 

 A back-propagation algorithm is most commonly used to train MLPs, but it is 
often too slow for practical applications. The drawbacks of this algorithm have led 
to a large amount of research into  fi nding fast training algorithms, especially heuris-
tic methods via an adjustable learning rate and a momentum parameter (Yam et al. 
 1997  ) . An improvement in the convergence rate of the back-propagation algorithm 
has been sought by several researchers. The learning rate and momentum can be 
adjusted dynamically by a  fi xed step based on error observation (Jacobs  1988  ) . 
Ooyen and Neinhuis  (  1992  )  proposed a different error cost function and the use of 
a second-order Newton’s method to optimize these terms. A dynamic learning rate 
and momentum optimization of the back-propagation algorithm using derivatives 
with respect to the learning parameters have been considered (Yu and Chen  1997 ; 
Yu et al.  1995  ) . 

 Many approaches to investigating learning rate and momentum have been pre-
sented. A genetic algorithm for self-adaptation to speed up the steepest descent rate 
has been introduced. The key idea is to increase and decrease the learning rate 
slightly to evaluate the cost function for different values of the learning rate, and 
then choose the one that has the lowest value of the cost function (Salomon and 
Hemmen  1996  ) .    Karras and Perantonis ( 1995 ) presented a Lagrange multiplier 
approach to the minimization of the cost function in order to improve convergence. 
Yam and Chow  (  2000  )  proposed an approach to  fi nding the optimal weights of a 
feed-forward neural network. The rationale behind this approach was to reduce the 
initial network error whilst preventing the network from getting stuck with initial 
weights. Kamarthi and Pittner  (  1999  )  proposed an algorithm based on the extrapola-
tion of each individual interconnection weight to accelerate the back-propagation 
(BP) algorithm. This requires the error surface to have a smooth variation along the 
respective axes, so that extrapolation is possible. To perform extrapolation, the BP 
algorithm convergence behavior of each network weight is examined individually at 
the end of each iteration. Cho and Chow  (  1999  )  presented an approach based on the 
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least-squares method to determine the weights between the output layer and the 
hidden layer in order to maintain convergence. During problems of local minima, a 
penalty function optimization method was employed.  

    9.4   MLP Applications in Land Cover Classi fi cation 

 Parametric statistical methods, i.e., maximum likelihood and Mahalanobis distance, 
employed for supervised land cover classi fi cation depend on an assumption of the 
Gaussian distribution of the input data. Each class in the feature space is assumed to 
have an  n -dimensional multi-variate Gaussian distribution. In reality, input data 
may not follow the assumed model. Interest in the use of MLPs is a result of their 
freedom from assumptions about the form and distribution of the input data, their 
ability to generate nonlinear decision boundaries, and their ability to generalize 
inputs as well as to learn complex patterns. The statistical methods depend on the 
assumed model, but a neural network depends on data. In addition, neural networks 
are suitable for integrating data from different sources. 

 MLP networks, which are a supervised classi fi cation method, have been applied 
for a variety of applications in diverse  fi elds. All applications of MLPs can be cat-
egorized as pattern classi fi cation, prediction, and function approximation. One of 
the most important applications of an MLP is pattern classi fi cation. Pattern 
classi fi cation involves classifying data into discrete classes. This section focuses on 
the classi fi cation of land use/cover based on MLPs. The MLPs have a signi fi cant 
role for land use/cover classi fi cation because they can handle massive, complex, and 
incomplete data sets ef fi ciently and produce results showing the accuracy of the 
classi fi cation. MLPs have been applied to the classi fi cation of remotely sensed data 
to distinguish land cover types (Key et al.  1989 ; Kanellopoulos et al.  1990 ; 
   Benediktsson et al.  1990 ; Hepner et al.  1990 ; Civco  1993 ; Dreyer  1993 ; Paola and 
Schowengerdt  1995  ) . These applications have indicated that neural networks have 
the adaptability and capacity to produce classi fi cations with a higher level of accu-
racy than conventional statistical methods. 

 MLPs are a supervised classi fi cation method, and therefore the training algo-
rithm is the key to MLP application. The ultimate goal of training is to generalize 
outside the training set and predict outputs from unseen input pixels. From a survey 
of previous studies, it is apparent that a three-layer MLP can be suf fi cient for land 
cover classi fi cation (Kurkova  1992  ) . The  fi rst task when applying an MLP is the 
identi fi cation of the structure of a network, which refers to the topological arrange-
ment of the nodes. The structure of a neural network is determined by the number 
of input and output nodes. It is particularly important to generalize, interpolate, and 
extrapolate the data under study, as this affects the capacities of the neural network. 
Speci fi cally, the application of an MLP involves the setup of the network topology, 
including the sizes of the input layer, the hidden layer, and the output layer. The 
number of input layer nodes in an MLP represents input variables, i.e., spectral 
bands of satellite imagery and ancillary variables. The determination of the variables 
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presented to the input layer is critical. A large number of inputs may reduce the 
network’s generalization and cause redundant information, while a small number of 
input variables could be insuf fi cient for the network to learn the nature of the train-
ing data (   Kavzoglu and Mather  2002 ). The number of output layer nodes determines 
the complexity of the neural network model. In principle, the greater the number of 
output nodes to be delineated, the more dif fi cult the problem may be because of the 
separation of the input space into more speci fi c patterns. 

 The number of hidden layers and nodes in the hidden layer determines the com-
plexity and power of an ANN to delineate patterns inherent in a particular data set. 
Kurkova  (  1992  )  indicated that a single hidden layer is suf fi cient for most problems, 
including classi fi cation tasks. An MLP model with a single hidden layer having sig-
moidal transformation can approximate any continuous function to any given level of 
accuracy if a suf fi ciently large number of hidden nodes are used (Hornik et al.  1989  ) . 
However, some researchers have reported that the use of two hidden layers in the 
network for land cover classi fi cation can be bene fi cial (Berberoglu et al.  2007 ; 
Aitkenhead and Aalders  2008  ) . The number of hidden nodes affects both classi fi cation 
accuracy and the time of training. A small number of hidden nodes may not identify 
suf fi cient internal patterns in the data, and therefore may produce lower classi fi cation 
accuracy. On the other hand, too large a number may be over-speci fi c to the training 
data. This is known as over- fi tting. Identifying the optimum number of hidden layer 
nodes is not easy because it involves input and output units, the number of training 
samples, the complexity of the classi fi cation to be learned, the level of noise in the 
data, the network architecture, the nature of the hidden unit activation function, the 
training algorithm, and regularization (Sarle  2000  ) . 

 Different rules can be used to determine the optimum number of hidden layer 
nodes. Most rules are based on a function of the numbers of input and output layer 
nodes, but none of them has been universally accepted. Hecht-Nielsen  (  1987  )  states 
that any continuous function of  n  variables can be represented by the superposition 
of a set of 2 n  + 1 univariate functions, to suggest that any function can be imple-
mented in a single hidden layer neural network having 2 N  

i
  + 1 nodes in the single 

hidden layer, where  N  
i
  represents the number of input nodes. Paola  (  1994  )  derived 

a formula by making the number of parameters necessary for neural networks equal 
to the number of parameters required by the maximum likelihood classi fi er. The 
formula is given as
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where  N  
i
  is the number of input nodes, and  N  

o
  is the number of output nodes. Other 

authors proposed different heuristic formulas. For example, Hush  (  1989  )  proposed 
a heuristic rule of 3 N  

i
 , Ripley  (  1993  )  proposed the formula  N  
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layer nodes, where  N  
p
  is the number of training samples, and  r  is a constant relating 

to the noise level of the data, which ranges from 5 to 10. 
 The other important training parameters that need to be examined are initial 

weight values, learning rate and momentum, and the size of training samples. There 
is no genetic formula that can be used to choose such parameter values, so the 
parameters are usually determined by trials. These parameters are adjusted and 
modi fi ed during the training of the network. 

 The initial weights of the network play a signi fi cant role in the convergence of 
the training method. In addition, weight initialization has been known as one of the 
most effective approaches in accelerating the training of a neural network (Drago 
and Ridella  1992 ; Martens  1996  ) . Without a priori information about the  fi nal 
weights, it is common practice to initialize all weights randomly with a small abso-
lute value. If large initial values are assigned to the weights, the neurons in the net-
work are driven to saturation. In this case, local gradients on the error surface assume 
small values, causing the learning process to slow down. On the other hand, if small 
initial weight values are assigned, the algorithm of back-propagation may operate 
on a very  fl at area around the origin of the error surface. Hence, the use of both large 
and small initial weight values should be avoided. There is no universally accepted 
method for determining an optimum range for initial weight values. 

 The learning rate and the momentum factor control the size of the weight adjust-
ment in the descent direction and the dampening of the oscillations of the iterations. 
Jacobs  (  1988  )  presented a simple method for updating learning rate and momen-
tum. He suggested dynamically increasing or decreasing learning rate and momen-
tum by a  fi xed factor based on observations of the error signals. Variations of Jacob’s 
method were reported by Vogel et al.  (  1988  ) . Many heuristics of learning rate and 
momentum have been proposed in previous studies using different data sets (Paola 
and Schowengerdt  1997 ;    Gong  1996 ; Staufer and Fisher  1997  ) . In addition, more 
advanced and sophisticated methods have been developed to identify the optimum 
values for learning rate and momentum. These methods adapt the learning rate dur-
ing the training process in relation to the characteristics of the error surface and 
gradient. Such methods, as in    Heermann and Khazenie ( 1992 ), are known as adaptive 
learning strategies. 

 The size of the training sample plays a vital role in the performance of a super-
vised neural network. The extraction of land cover information from satellite images 
involves the selection of training data and classi fi cation techniques. The training 
stage of the classi fi cation process is particularly important because it has a signi fi cant 
impact on the performance of any classi fi cation technique. This is especially impor-
tant for MLP networks, as they learn the characteristics of the data from sample 
values, and identify the pixels in the image remainder. Both the quality and size of 
the training data are of critical importance for a successful classi fi cation (Kavzoglu 
 2008  ) . A small sample size is not enough for a neural network to recognize all 
classes and identify the class boundaries in the input space. On the other hand, a 
large number of training samples make the network over-speci fi c and require more 
time for training (Kavzoglu  2001  ) . The number of training samples should be 
de fi ned for each class according to the class complexity (Blamire  1996  ) . 
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 The impacts of training size on the performance of land cover classi fi cation have 
been reported by authors such as Foody et al.  (  2006  )  and Kavzoglu  (  2008  ) . Several 
attempts have been made to estimate the appropriate size of the training sample with 
respect to the network topology and the expected accuracy of the result. For a standard 
statistical classi fi er, such as a maximum livelihood classi fi er, 30p pixels for one class 
should be used, where p is the number of input variables (Mather  1999  ) . This heuristic 
rule may not be feasible for neural networks because more training samples are needed 
to learn the characteristics of a class. Therefore, different heuristic rules are proposed 
to estimate the number of training samples according to a given network topology 
(the number of input, hidden, and output nodes) and the connection weights of the 
network. Hush  (  1989  )  proposed that a minimum training size of 30 N  

i
 ( N  

i
  + 1) should 

be employed, where  N  
i
  is the number of input variables. Garson  (  1998  )  introduced three 

heuristic rules. The  fi rst is that the number of training samples should be at least ten 
times the number of input variables. The second stated that the number of training 
samples should be at least ten times the number of nodes in the input and hidden 
layers of the network. The third indicated that 30 times as many input patterns as 
network weights should be employed to avoid over- fi tting. However, Baum and 
Haussler  (  1989  )  proposed that 10 N  

w
  (where  N  

w
  is the totality of the number of weights 

in a given network) should be employed to estimate the number of training samples. 
Klimasauskas  (  1993  )  reported that a training size of 5 N  

w
  should be used.  

    9.5   Future Directions 

 MLP networks have been a useful approach because they have their own strengths 
compared with conventional methods such as statistical regression, pattern recogni-
tion, and time series analysis. Therefore, they can be employed as a powerful alter-
native to such methods. However, they also have disadvantages. MLPs are like a 
black box in nature. If the problem is to  fi nd output patterns to input, MLP models 
are an appropriate tool. In cases where a casual relationship between input and out-
put needs to be determined, statistical methods may be more suitable than MLPs. 
Another disadvantage of MLPs is that the training process consumes too much time 
because it requires determining the network structure and adjusting the connection 
weights. In particular, MLP training takes a lot of computer memory, and it may 
take several hours before the network converges to a minimum error point. Statistical 
regression methods may produce results in a shorter time. 

 Although drawbacks exist in the use of MLPs, this approach will play an impor-
tant role in various applications, including the geospatial analysis domain, because 
of the advancement of computer processing power. The theoretical developments 
and advances in MLPs are the result of research efforts in the development of new 
training algorithms and the combined use of the MLP with other computing 
methods such as fuzzy logic, genetic algorithms, and decision trees. The combination 
may allow an MLP system to take advantage of both of the paradigms and overcome 
the limitations of MLPs. 
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 MLPs have been widely used in many areas. The most commonly used method 
to train the MLP is based on the back-propagation algorithm. Many variations of 
this standard algorithm have been proposed and new ones continue to come out 
regularly. Some of the popular methods are the Delta-Bar-Bar, Vogl, Rprop, 
SuperSAB, Quickprop, and Levenberg–Marquardt algorithms (Hagan and Menhaj 
 1994 ; Bishop  1995  ) . New algorithms have been proposed to solve issues regarding 
the slow convergence of the back-propagation training algorithm and local minima 
entrapment. 

 Several methods have been proposed to speed up the back-propagation-based 
training algorithms by  fi xing an appropriate learning rate and momentum value for 
each layer at the time of training (Yam and Chow  1997  ) . Different initialization 
techniques (Yam and Chow  2000 ; Yam and Chow  2001  )  and cost optimization 
techniques (Kwok and Yeung  1997  )  have been proposed to increase the rate of 
convergence. Dynamic tunneling (Chowdhury et al.  1999  )  is a technique used to 
de-trap local minima. Abid et al.  (  2001  )  have described a modi fi ed standard back-
propagation algorithm using the sum of the squares of the linear and nonlinear 
errors for all output units and for the current pattern. Yam and Chow  (  1997  )  have 
proposed an extended least-squares-based algorithm for training feed-forward 
networks. In this, the weights connecting the last hidden and the output layers 
are  fi rst evaluated by a least-squares algorithm. The weights between the input and 
the hidden layers are then evaluated using a modi fi ed gradient descent algorithm. 
Kwok and Yeung  (  1997  )  have studied different objective functions for training new 
hidden units in constructive neural networks. They have followed a layer-by-layer 
optimization technique. 

 It is critical to decide a learning rate to speed up the convergence of the global 
minimum of the mean square of the network outputs. A small learning rate results 
in a slow training progress. On the other hand, a large learning rate accelerates the 
progress signi fi cantly. Several studies have proven that the use of a momentum term 
in the algorithm can be useful in accelerating the convergence and avoiding local 
minima. The momentum is de fi ned as a fraction of the previous weight change. The 
momentum is employed to stabilize weight change using a combination of a decreas-
ing gradient term with a fraction of the previous weight change. An improvement in 
the training algorithm by the use of the momentum is a further development. For 
example, Yu et al.  (  1993  )  developed an adaptive momentum algorithm that updates 
the momentum at each iteration. The results of simulations have indicated that this 
method can remove possible divergent oscillations during initial training, speed up 
the learning process, and produce a lower error at the  fi nal convergence stage. 
Jeenbekov and Sarybaeva  (  2000  )  characterized the properties of various parameters 
of the sigmoidal function, and they analyzed the effect on the speed of convergence 
in training an MLP with the back-propagation algorithm. Wang et al.  (  2004  )  pro-
posed an improved back-propagation algorithm to avoid local minima caused by 
neuron saturation in the hidden layer. If the network does not produce the desired 
results, an activation function is adapted to prevent saturation in the hidden layer. 
Bi et al.  (  2005  )  proposed a modi fi ed error function with two terms. By adding one 
term to the conventional error function, a modi fi ed error function can harmonize the 
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update of weights connected to the hidden layer as well as those connected to the 
output layer. Thus, it can avoid the local minima problem caused by update disharmony 
between weights connected to the hidden layer and the output layer. Simulations on 
some benchmark problems and a real classi fi cation task have been performed to test 
the validity of the modi fi ed error function. 

 Another aspect of the advances is the combination of fuzzy logic with the MLP 
networks. The power of neural networks is combined with fuzzy logic to enable 
fuzzy rules to be incorporated into the pattern classi fi cation. Fuzzy logic is capable 
of interpreting imprecise data by making decisions possible via linguistic rules. 
The MLP networks are able to learn with a suf fi cient number of observed samples. The 
capabilities and restrictions of each method led to the development of a hybrid 
fuzzy–neural method. A number of different schemes and architectures of the hybrid 
method have been proposed, such as fuzzy neurons (Gupta  1994  ) , neural networks 
with fuzzy weights (Buckley and Hayashi  1994  ) , neuro–fuzzy adaptive models 
(Brown and Harris  1994  ) , and fuzzy-logic-based neurons (Pedrycz  1995  ) . Takagi 
and Hayashi  (  1991  )  proposed a neural–fuzzy reasoning system that is capable of 
automatic determination of inference rules and adjustments according to the time-
variant reasoning environment with the use of a neural network in fuzzy reasoning. 
Horikawa et al.  (  1992  )  presented a fuzzy modeling method using fuzzy neural 
networks with the BP algorithm. This method can automatically identify the fuzzy 
model of a nonlinear system. Nie and Linkens  (  1992  )  approximated reasoning 
through a back-propagation neural network with the aid of fuzzy set theory.      
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      10.1   Introduction 

 There is a wide array of simulation methods that mimic the mechanisms of human 
intelligence to achieve one or more objectives. Analytical simulation approaches 
basically use equations that explain data, while statistical ones work primarily with 
probabilities. An iterative combination of any or both of the above uses feedback 
options to answer problems which are too complex to be solved by one equation. 
Most of these equation-based mathematical models identify system variables, and 
evaluate or integrate sets of equations relating to these variables. A variant of such 
equation-based models are based on linear programming (Howitt  1995 ; Weinberg 
et al.  1993  ) , and are potentially linked to geographical information science (GIS) 
information (Chuvieco  1993 ; Cromley and Hanink  1999 ; Longley et al.  1994  ) . 
However, in practice there are limited levels of complexity that can be built into 
these models (Parker et al.  2003  ) . 

 To incorporate complexity, sets of differential equations linked through interme-
diary functions and data structures are sometimes used to represent stocks and  fl ows 
of information (Gilbert and Troitzsch  1999  ) . Although they include human and eco-
logical interactions, these systemic models tend to have dif fi culties in accommodat-
ing spatial relationships (Baker  1989 ; Sklar and Costanza  1991  ) . Given their power 
and ease of use, statistical simulation approaches have been widely accepted, largely 
because they include a variety of regression techniques applied to space and more 
tailored spatial statistical methods (Ludeke et al.  1990 ; Mertens and Lambin  1997  ) . 
However, according to Parker et al.  (  2003  ) , unless tied to theoretical frameworks, 
statistical models tend to down-play decision-making and social phenomena. Other 
simulation approaches express qualitative knowledge in a quantitative fashion by 
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combining expert judgement with probability techniques such as Bayesian or arti fi cial 
intelligence approaches (Parker et al.  2003  ) . 

 The gaps and inconsistencies left by these modeling approaches saw the prolif-
eration of cellular automata (CA) in combination with Markov models. In CA, each 
cell exists in one of a  fi nite set of states, and future states depend on transition rules 
based on a local spatio-temporal neighborhood (Kamusoko et al.  2009  ) , while in 
Markov models, cell states depend probabilistically on temporally lagged cell state 
values. These cellular models (CMs) underlie many land-use studies in which 
Markov–CA combinations are common (Balzter et al.  1998 ; Li and Reynolds  1997 ; 
Kamusoko et al.  2009  ) . While many CMs assume that the actions of human agents 
are important, and others assume a set of agents coincident with lattice cells and use 
transition rules as proxies to decision-making, they both fail to simulate decisions 
expressly and explicitly (Parker et al.  2003  ) . In the latter case, the actor is not tied 
to locations and, as Hogeweg  (  1988  )  observed, this introduces problems of spatial 
orientation to the extent that the intrinsic neighborliness of CA relationships do not 
re fl ect on the actual spatial relationships. This highlights the main challenge faced 
by CMs and most of the aforementioned modeling approaches when it comes to 
incorporating individualistic human decision-making (Parker et al.  2003  ) . When the 
focus is on human actions, agents become the crucial components in the model. 
While cellular models are focused on landscapes and transitions, agent-based mod-
els (ABMs) primarily focus on humans and their actions. Therefore, it is not surpris-
ing to realize that an ABM is more of a mindset that builds on describing a system 
from the perspective of its constituent units than a technology. 

 The bene fi ts of ABMs over other modeling techniques can be expressed in three 
statements: (1) they capture emergent phenomena; (2) they provide a natural descrip-
tion of a system; (3) they are  fl exible. It is clear, however, that the ability of ABMs 
to deal with emergent phenomena is what drives the other bene fi ts (Bonabeau  2002  ) . 
Emergent phenomena result from the interactions of individual entities which can-
not be reduced to the system’s parts: the whole is more than the sum of its parts 
because of the interactions between the parts (Bonabeau  2002  ) . In the geographical 
context of level and scale, Auyang  (  1998  )  understands “emergence” as emergent 
phenomena at one level that constitute the units of interaction, or drivers of change 
at a higher level. 

 There is a wide range of literature discussing the application of ABMs in a num-
ber of global environmental challenges where agents have been used to represent a 
number of entities, including atoms, biological cells, animals, people, and organiza-
tions (Conte et al.  1997 ; Epstein and Axtell  1996 ; Janssen and Jager  2000 ; Liebrand 
et al.  1988 ; Weiss  1999  ) . However, in this chapter we seek to add to the current 
discussion about ABMs in land-use modeling, some of which follow the concep-
tual framework shown in Fig.  10.1 . The rest of the chapter is as follows. We begin 
by presenting the history of ABMs, followed by the concepts of agent modeling 
and the tools available for simulations with a bias towards land-use modeling. 
We later outline the work carried out so far in agent-based land-use modeling, and 
discuss a selected set of applications. In conclusion, we discuss the advantages and 
limitations currently facing ABMs, and try to predict their future use.   
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    10.2   History of ABMs 

 Agent-based modeling can be traced back hundreds of years to discoveries that 
include Adam Smith’s invisible hand in economics, Donald Hebb’s cell assembly, 
and the blind watchmaker in Darwinian evolution (Axelrod and Cohen  2000  ) . In 
each of these early theories, simple individual entities interact with each other to 
produce new complex phenomena that seemingly emerge from nowhere (Heath 
 2010  ) . Because of Newton’s reductionist philosophy (Gleick  1987  )  and his lack of 
tools to adequately study and understand emergent phenomena, it was not until the 
theoretical and technological advances were made that led to the invention of the 
computer that scientists began building models of these complex systems and began 
to have a better understanding of their behavior (Heath  2010  ) . The pioneering 
work was carried out by Alan Turing with the invention of the Turing machine 
around 1937. By replicating any mathematical process, the Turing machine showed 
that machines were capable of representing real-world systems (Heath  2010  ) . The 
theoretical scienti fi c belief that machines could recreate the non-linear systems 
observed in nature got a further boost when Turing and Church later developed 
the Church–Turing hypothesis, which stated that a machine could duplicate not only 
the functions of mathematics, but also the functions of nature (Levy  1992  ) . Premised 
on von Neumann’s heuristic use (von Neumann  1966 ) these machines have since 
moved from theoretical ideas to the real computers that we are familiar with today 
(Heath  2010  ) . 

  Fig. 10.1    A conceptual framework for a farm-based decision-making ABM (adapted from 
Deadman et al.  2004  )        
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 Now that computers had come to stay, the scienti fi c focus shifted towards 
synthesizing the complexity of natural systems. In fl uenced by a reductionist philoso-
phy, most scientists took a top-down approach (Heath  2010  ) . Evidence of this is seen 
in early applications of arti fi cial intelligence, where the focus was more on de fi ning 
the rules of the appearance of intelligence and creating intelligent solutions than 
focusing on the structure that creates intelligence (Casti  1995  ) . This approach was 
skewed towards the idea that systems are linear, and thus it failed to enhance our 
understanding of the complex non-linear systems found in nature (Langton  1989  ) . 
A U-turn towards a bottom-up approach followed when Ulam suggested that von 
Neumann’s self-reproducing machine could be represented more easily by using cellular 
automata (CA) (Langton  1989  ) . CA are self-operating entities that exist in individual 
cells which are adjacent to one another in a 2D space like a checkerboard, and have the 
capability to interact with the cells around them. According to Heath  (  2010  ) , the 
impact of the CA approach was overwhelming for two reasons: (1) because the cells in 
CA act autonomously and simultaneously with other cells in the system, the simula-
tion process changed from serial to parallel representation, and (2) CA systems 
are composed of many locally controlled cells that together create global behavior. 
The former was important because many natural systems are widely accepted to be 
parallel systems (von Neumann  1966  ) , while the latter led to the bottom-up approach 
as the CA architecture requires engineering a cell’s logic at the local level in the hope 
that it will create the desired global behavior (Langton  1989  ) . 

 After learning how to synthesize complex systems and discovering some of their 
properties using CA, complex adaptive systems (CASs) began to emerge as the 
direct historical roots of ABMs (Heath  2010  ) . Drawing much of its inspiration from 
biological systems, CASs were mainly concerned with how complex adaptive 
behavior emerges in nature from interactions among autonomous agents (Dawid 
and Dermietzel  2006  ) . Much of the early work in de fi ning and designing CASs 
resulted from Holland’s work to identify properties and mechanisms that compose 
all ABMs as we know them today (Buchta et al.  2003  ) . Holland reported the three 
main properties of CASs to be aggregation, non-linearity, which is the idea that the 
whole system output is greater than the sum of the individual component outputs, 
and diversity, meaning that agents do not all act the same way when stimulated by a 
set of conditions. 

 It is evident that ABMs emerged from the scienti fi c search to try and understand 
non-linear systems, and this revelation suggests why ABMs are a useful research 
tool. In summary, many subject areas played an important role in developing the 
multidisciplinary  fi eld of ABMs.  

    10.3   Agent Modeling 

 Parker and Meretsky  (  2004  )  noted that ABMs often model complex dynamic sys-
tems and focus on the macro-scale, or “emergent,” phenomena that result from the 
decentralized decisions of, and interactions between, the agents. The concept behind 
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ABMs, which was borrowed from the computer sciences, is to mimic human- or 
animal-like agents interacting at the micro-scale in a computer simulation in order 
to study how their aggregation leads to complex macro-behavior and phenomena 
(Berger  2001  ) . 

 ABMs build on a successful speci fi cation of the agent itself, its behavior, the 
representation of the environment and the interactions. The term agent refers to any 
individual or group of individuals who exist in a given area and are capable of mak-
ing decisions for themselves or for the given area. Generally, an agent can represent 
any level of organization (a herd, a village, an institution, etc.) (Verburg  2006  ) . In 
land-use modeling, these agents couple a human system making land-use decisions 
with an environmental system represented by a raster grid (Deadman et al.  2004 , see 
Fig.  10.1 ). 

 The speci fi cation of the behavior of agents demands a proper description of the 
actual actions of the agents and the basic elements that cause modi fi cations in their 
environment and in other agents (Bandini et al.  2009  ) . It also demands the provision 
of mechanisms for the agents to effectively select the actions to be carried out. The 
mechanism of an agent refers to the internal structure which is responsible for the 
selection of actions (Russel and Norvig  1995  ) , while the actions of agents pertain to 
descriptions of the agents’ actions, for instance state transformation, environmental 
modi fi cations, an agent’s perception and responsiveness, and the spatial physical 
displacement of an agent in the environment. The description of the environment of 
an agent see Weyns et al ( 2007 ), for a detailed de fi nition should, among other fac-
tors, primarily de fi ne and enforce the rules of behavior of an agent, and maintain 
the internal dynamics of the system to avoid chaos. At the same time, it should also 
support an agent’s perception and localized actions by embedding and supporting 
access to objects and parts of the system that are not necessarily modeled as agents 
(Bandini et al.  2009  ) . Interaction is a key aspect in agent design, both with other 
agents and/or the environment. Several de fi nitions of interaction have been pro-
vided, and most of them focus on the ability of agents to engage with the environ-
ment and with other agents in a meaningful problem-solving or goal-oriented 
scheme to achieve particular objectives according to the coordination, cooperation 
and competition practices of natural phenomena. 

 These concepts have been the subject of experiments on many platforms, the 
choice of which tends to depend largely on the researcher’s preference, the computa-
tion requirements, and the overall objectives of the study. Most ABM platforms fol-
low the “framework and library” paradigm (Railsback et al.  2006  ) . A framework is a 
set of standard concepts for designing and describing ABMs, while a library is a set 
of software implementing the framework and providing simulation tools. Without 
trying to be exhaustive, we present some of the commonly available agent modeling 
platforms. The earliest of these platforms include the Swarm (Minar et al.  1996 , 
  www.swarm.org    ), whose libraries were written in Objective-C with later up-dates 
using Java Swarm in order to allow the use of Swarm’s Objective-C library in Java 
(Railsback et al.  2006  ) . The recursive porous agent simulation toolkit (RePast) 
(Collier  2000 ;   http://repast.sourceforge.net/    ) was  fi rst developed as a Java implemen-
tation of Swarm, but has since evolved into a fully  fl edged stand-alone Java platform. 

http://www.swarm.org
http://repast.sourceforge.net/
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MASON (Luke et al.  2005 ;   http://cs.gmu.edu/~eclab/projects/mason/    ) was devel-
oped later, also as a Java implemented tool. Despite these platforms providing stan-
dardized software designs and tools without limiting the type or complexity of the 
models they implement, they have well-known limitations (Railsback et al.  2006  ) . 
According to Tobias and Hofmann  (  2004  ) , their weaknesses include dif fi culty of use, 
insuf fi cient tools for building models, and especially tools for representing space, 
insuf fi cient tools for executing and observing simulation experiments, and a lack of 
tools for documenting and communicating software. The Logo family evolved from 
such limitations with the aim of providing a high-level platform that allows model 
building and learning from simple ABMs (Railsback et al.  2006  ) . Although built on 
elementary-level principles primarily to aid student learning, NetLogo (  http://ccl.
northwestern.edu/netlogo/    ) now contains complex capabilities and is arguably the 
most widely used platform (Railsback et al.  2006  ) . Figure  10.2  is a screenshot of a 
NetLogo platform that comes with its own programming language, which is claimed 
to be simpler to use than Java or Objective-C, an animation display automatically 
linked to the program, and optional graphical controls and charts.  

 A model agent is an abstract representation of the real world, the landscape, 
individuals or groups, and the processes that link these components. Model agents 
are developed at varying levels of complexity and scales of representation, but 
their development should offer a level of realism that will not inhibit any validation 
techniques which will be used later (Deadman et al.  2004  ) . An agent tends to act as 

  Fig. 10.2    A NetLogo ABM platform       

 

http://cs.gmu.edu/~eclab/projects/mason/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
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an interface in helping to assimilate the broader macro-information into the 
decision-making process at the grid level, thereby creating an action in response to 
the natural and economic stimuli (Rajan and Shibasaki  2000  ) . In land-use modeling, 
the macro-information comes in the form of the biophysical conditions in the area 
and the prevailing economic conditions at a given location and time. 

 Mismatches between the units of analysis and the units of actual decision-making 
have been widely accepted, and attention is slowly shifting from pixels to agents 
(Verburg et al.  2005  ) . In land use/cover change (LUCC) modeling, for instance, the 
overarching problem has been linking agents capable of decision-making to land 
areas: i.e. linking “people and pixels” (Geoghegan et al.  1998 ;    Rindfuss et al.  2003  ) . 
An expanding group of models has recently used individual agents as units of simu-
lation (see Berger  2001 ; Bousquet and Le Page  2004 ; O’Sullivan and Haklay  2000 ; 
Parker et al.  2003  ) . While agent-based approaches have speci fi c strengths in describ-
ing and exploring decision-making by agents in a variety of  fi elds (see Malleson 
 2010  ) , they face dif fi culties in adequately representing the spatial patterns in LUCC 
models owing to dif fi culties in representing the feedback between the behavior of 
the agents and land units (Verburg  2006  ) . In some ABMs, a cellular automata (CA) 
approach is used, in which the state of a pixel is determined by the state of the 
neighboring pixels (Ligtenberg et al.  2004 ; Manson  2005  ) . Although CA methods 
are often seen as a type of multiagent approach, because of the explicit treatment of 
interactions between (spatial) entities it is hard to imagine that the pixels are a rep-
resentation of the agents (Couclelis  2001  ) . 

 In current practice, a cellular component that represents the landscape is coupled 
with an agent-based component that represents the human decision making 
(Schreinemachers and Berger  2006 ; Parker et al.  2003  ) . As the debate progressively 
leans towards agents and away from pixels, challenges about how to represent real-
world decision making become more apparent. The decision-making structure of an 
agent falls into two broad categories, optimizing and heuristic. The key difference is 
that the latter have neither the information to compare all feasible alternatives nor the 
computational power to select the optimum (Schreinemachers and Berger  2006  ) . 
Heuristics are relatively simple rules that build on the concept of a search process 
guided by rational principles (Simon  1957  ) , while optimization needs the ability to 
process large amounts of information about all feasible alternatives and always select 
the best one (Schreinemachers and Berger  2006  ) . The intuitive nature of heuristics 
makes them more transparent and therefore easy to validate. However, constructing 
a decision tree which is representative of the thought processes of a human being is 
not easy. A variety of optimization approaches are available, but the most common 
include mathematical programming (see Balmann  1997 ; Berger  2001 ; Becu et al. 
 2003 ; Happe  2004  )  and genetic programming (see Manson  2005  ) . Mathematical 
programming (MP) is a computerized search for a combination of decisions that 
yields the highest objective function value (Schreinemachers and Berger  2006  ) . 
Unlike the heuristic approach, MP requires the explicit speci fi cation of an objective 
function. In LUCC modeling, the objectives of the agents, which include cash 
income, food, and leisure time, tend to be similar for both MP and heuristic 
approaches. Figure  10.3  gives an example of a heuristic decision-making tree.   



150 K.G. Munthali

    10.4   ABM Applications 

 Using a mountainous region in Laos, Wada et al.  (  2007  )  developed a micro-scale 
ABM to simulate the spatial and temporal patterns of shifting cultivation with the 
aim of understanding how this expands in space. While ABMs recognize and take 
advantage of the fact that human decision-making is heterogeneous, decentralized 
and autonomous (Parker et al.  2003  ) , this is a representative case in which individ-
ual behavior is conspicuously less heterogeneous and less decentralized. The base 
unit in the model was a cluster of villages as opposed to individual households (see 
Deadman et al.  2004 ; Evans and Kelley  2004  ) . The choice of a cluster of villages in 
the Laotian model was partly because of the limited availability of spatial data (vil-
lage boundary data), and also because of the revelation that decisions to expand and/
or relocate shifting cultivation are made at village level rather than in individual 
households (Wada et al.  2007  ) . 

 Underscoring the sporadic, incomplete and mostly non-existent market context 
in the subsistence agriculture set-up, Walker  (  1999  )  attempted to account for land 
allocation beyond the extensive margins of permanent agriculture. He builds on the 
notion of peasantry, where the subsistence farmers require a wide selection of natu-
ral commodities to survive and pursue their cultural activities. In the absence of 
markets, such commodities tend to be obtained from the forest environment or 
through agricultural activities of limited scope. In cases of a natural increase in 
population, the pressure brought to bear on the land resources results in technologi-
cal intensi fi cation which, in the initial phases, involves a reduction in the rotation 
times of the shifting cultivation. As a result, the nutritive requirements of a house-
hold combined with the accelerated rotations explained the diversity in crop selec-
tion for most households, while the reduced areas of cultivation accounted for the 
magnitude of production (Walker  1999  ) . 

Are subsistence requirements met?

No

No

No

No

Yes

YesYes

Yes

Enough labor and capital?

Leave fallow Plant Cash
crop

Capacity for sustainable
production?

Enough resources to farm?

Seek off-farm
activities

Plant staples Agro forest

  Fig. 10.3    A heuristic structure of subsistence farm-based decision-making (adapted from 
Deadman et al.  2004  )        
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 In the  fi eld of policy analysis and planning, much work has been done, for 
example, to evaluate the impact of a number of agricultural policies on regional struc-
tural changes (Happe  2004  ) , and the impacts of free trade policies on the diffusion of 
innovation in agricultural regions of Chile (Berger  2001  ) . The pioneering work by 
Balmann  (  1997  )  was a demonstration of the existence of a dependence on paths in the 
evolution of land use, which he later used to investigate the effect of reducing price 
support and introducing compensation payments (Balmann et al.  2002  ) . Several stud-
ies have attempted to use ABMs to explore the likely impacts of speci fi c real-world 
policies (see Weisbuch and Boudjema  1999 ; Deffuant et al.  2002 ; Sengupta et al. 
 2005 ; Janssen  2001  ) , while others have examined the in fl uence of generic and abstract 
policies on the behavior of an agent within a system (Janssen et al.  2000  ) . 

 Deadman et al.  (  2004  )  presented a simulation model that explored human under-
standing of the spatial, social and environmental concerns related to LUCC. Based on 
a heuristic decision-making strategy, they utilized household characteristics, among 
other factors, in which the interaction of agents was effected through a labor pool. 
While subsistence labor demands may not always be signi fi cant, it has been reported 
that signi fi cant gender differences occur with respect to farm labor within house-
holds (Siqueira et al.  2002  )  in much the same way as population age. Although it 
 fl exed randomly on gender, the LUCITA model (see Deadman et al.  2004  )  did not pay 
particular attention to overall population age. Evans and Kelley  (  2004  )  did an analysis 
of scale and how it impacts on the design and implementation of LUCC ABMs at the 
household micro-level. The analysis revealed differences in land-use preference 
weights that helped to identify scale considerations in the design, development, vali-
dation and application of ABMs in LUCC analysis. In their discussion, Evans and 
Kelley  (  2004  )  highlight the complexities of spatial scale and computational capacity 
limitations, and acknowledge the non-monetary in fl uences on decision-making. 

 Using ABMs to describe the decision making of land-use parcel managers and 
cellular automata to represent the landscape, the SLUDGE model explored the 
impact of distance-dependent spatial externalities and transportation costs on pat-
terns of urban development and land use (Parker and Meretsky  2004  ) . A similar test 
on the mechanisms behind the growth and spatial patterns of cities was conducted 
by Torrens and Alberti  (  2000  )  in order to address issues of local decision-making in 
determining urban sprawl. In this study, several metrics were developed to quantify 
the sprawl patterns. Brown et al.  (  2004  ) , Loibl and Toetzer  (  2003  ) , Rajan and 
Shibasaki  (  2000  ) , Sanders et al.  (  1997  ) , Dean et al.  (  2000  ) , Kohler et al.  (  2000  ) , 
Hoffmann et al.  (  2002  ) , Huigen  (  2004  ) , and Otter et al.  (  2001  )  have all contributed 
signi fi cantly to the use of ABMs by explicitly simulating human decision-making 
processes rather than using empirical approaches (Mathews et al.  2007  ) .  

    10.5   Conclusions 

 Agent-based modeling is an approach that continues to receive attention in studies 
of many geographical phenomena. As Mathews et al.  (  2007  )  note, this is because it 
offers a way of incorporating the in fl uence of human decision-making on land use 
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in a mechanistic, formal and spatially explicit way. ABM is therefore a handy tool 
in developing a greater understanding of the natural world. 

 Empirical illustrations of observed outcomes have been shown to be a suf fi cient 
end for ABM (Epstein  1999  ) . However, Parker et al.  (  2003  )  note that it is retrogres-
sive to limit the potential and appropriateness of ABM to such illustrations, espe-
cially in cases where the design and implementation prospects of ABMs are very 
promising, with reported success in many varying  fi elds of human signi fi cance. It 
has been argued that as simulation models, ABMs are limited. Firstly, they cannot 
be suf fi ciently deductive to give con fi dence in the outcomes from the model param-
eters. However, as Judd  (  1997  )  counter-argued, through sensitivity analysis, an almost 
complete understanding of the dynamic system under study is achievable. Secondly, 
ABMs are said to be sensitive to small perturbations in model parameter values at 
the micro-scale or a lower level, thereby providing a multitude of outcomes, but as 
Parker and Meretsky  (  2004  )  stated, the focus of ABMs is on the macro-scale or 
emergent patterns. Although there may be signi fi cant differences at the micro-level, 
the outcomes tend to be similar at the macro-level. While ABMs address individual-
ism in the mechanics of system behavior, validating ABMs has proved to be a 
dif fi cult task. However, Berger  (  2001  )  justi fi ed his choice by pointing out that 
ABMs do allow for a pragmatic treatment of data availability. He cited the exchange 
of information interactions between farming households, the cumulative effects 
of experience and the observation of neighbors’ experience, and technical and 
 fi nancial constraints as factors that affected the diffusion of innovations and which 
could be explicitly de fi ned and controlled within an ABM. 

 ABMs are implemented at varying levels of stakeholder involvement. Parker 
et al.  (  2003  )  highlighted three cases in which stakeholders were involved either 
right from the beginning of the modeling process, in the  fi nal stages of testing and 
running the model, or where models are presented as ready-made applications to 
policy makers. With the majority of ABMs falling into the former two categories, 
Mathews et al.  (  2007  )  ascribed the failure by end-users to use ABMs directly as 
decision support systems to a poor understanding by researchers of the actual pro-
cess of decision-making and the role that decision support tools may play in this 
process. Several other factors are attributed to the lack of success of decision sup-
port systems, since failures at the former two levels are equally common (Mathews 
et al.  2007  ) . Faced with such limitations, Stephens and Middleton  (  2002  )  stated that 
simulation models are probably more useful as research tools to provide insights 
into constraints that can later be transformed into rules-of-thumb, than as opera-
tional decision support tools. Lempert  (  2002  )  followed a similar line when he argued 
that much of the failure is to do with the predictive, as opposed to explanatory, 
approach that many modellers adopt. He suggested that model runs ought to com-
pare the robustness, resilience and stability of alternative policies. 

 Agents interact either indirectly through a shared environment and/or directly 
with each other through markets, social networks and/or institutions. Higher-order 
variables such as commodity prices and population dynamics are usually expressed 
as emergent outcomes (Mathews et al.  2007  ) . Moving from relatively abstract rep-
resentations, ABMs have gradually progressed into an exploration of the conceptual 
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aspects of spatially explicit systems of real-world situations (see Epstein and Axtell 
 1996  ) , and all the way through to more complex representations of socio-ecological 
systems (see Berger and Ringler  2002 ; Hoffmann et al.  2002  ) . With the addition of 
empirical data, recent versions of these models are now being applied to speci fi c 
real-world situations (see Deadman et al.  2004  ) . Complex environmental problems 
tend to be multidisciplinary, temporally dynamic, and spatially referenced. As a 
result, the nature of the interactions of these systems often makes it dif fi cult to pre-
dict the outcomes for particular management actions, socio-economic conditions, or 
environmental processes (Deadman et al.  2004  ) . However, recent advances in com-
puting technology have further enhanced the use of computer-based models and 
analyzes that have since expanded the interest in computational approaches to the 
study of human geographic systems with the aim of providing meaningful solutions. 
ABM has tapped into these advances, and there is still plenty of room for growth 
and improvement.      
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                 11.1   Introduction 

 Owing to the increasing demand for land, forests, waterways, and other depleting 
resources brought about by increasing population growth, there is an urgent need for 
a scheme that can promote their sustainable utilization. The best use of these resources 
must be selected so that they remain available to the generations to come. Natural 
disasters like earthquakes, landslides, and  fl oods have been major concerns in many 
countries. This makes it necessary for planners to design sound risk-management 
contingencies to prepare for such disasters. Most of the time, however, decision mak-
ers have different and con fl icting priorities, concerns, knowledge, and expertise in 
dealing with these problems. This reality complicates the decision-making process 
on how a particular resource should be utilized, and on how an analysis of the sus-
ceptibility of a particular area to a certain disaster risk hazard should be carried out. 
In recognition of the complexity, magnitude, and importance of these problems, a 
decision-making technique that is responsive, transparent, and acceptable to the 
decision makers and other stakeholders is needed. Multi-criteria decision making 
(MCDM), or multi-criteria decision analysis (MCDA), is a decision-making tech-
nique that helps decision makers who are confronted with con fl icting priorities to 
come up with an acceptable decision using a transparent decision-making process. 
It has been one of the fastest growing problem-resolving approaches in the past 
decades (Triantaphyllou  2000  ) . 

 Many problems associated with geospatial considerations have been resolved 
using geographic information systems-based MCDA (GIS-based MCDA) 
(Malczewski  2006  ) . GIS is recognized as a decision support system that involves 
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the integration of spatially referenced data in a problem-solving environment 
(Cowen  1988  ) . It provides supporting techniques and procedures that are vital in 
analyzing decision problems (Malczewski  2006  ) . MCDA, on the other hand, pro-
vides the necessary techniques and procedures for structuring decision problems, 
and designing, evaluating, and prioritizing alternative decisions. Thus, GIS-based 
MCDA can be regarded as a process that combines geographical data (spatial data) 
and value judgments or the decision maker’s preferences (aspatial data) to obtain 
information for decision making (Malczewski  2004,   2006  ) . 

 Within the umbrella of GIS-based MCDA, three dichotomies exist (Malczewski 
 2006  ) , namely (a) multi-attribute decision analysis (MADA) versus multi-objec-
tive decision analysis (MODA), (b) individual versus group decision making, and 
(c) decisions under certainty versus decisions under uncertainty (i.e., probabilistic 
and fuzzy decision making). The MADA methods are “data-oriented,” and are 
also referred to as discrete methods because they assume that the number of 
alternatives (plans) is given explicitly, while MODA methods are “mathematical 
programming model-oriented” and the alternatives must be generated (they are 
identi fi ed by solving a multi-objective mathematical programming problem) 
(Malczewski  2004  ) . Some of the GIS-based MCDA procedures or decision rules, 
particularly for MODA, include multi-objective programming algorithms (linear-
integer programming), heuristic search/evolutionary/genetic algorithms, and goal 
programming/reference point algorithms. On the other hand, some of the MADA 
methods that have already been investigated and applied include the weighted 
linear combination (WLC) or simple additive weighting, Boolean overlay, ideal/
reference point methods [e.g., technique for order preference by similarity to ideal 
solution (TOPSIS) or multi-objective land allocation (MOLA)], concordance 
analysis, outranking methods [e.g., elimination and choice translating reality 
(ELECTRE) or preference ranking organization method for enrichment evalua-
tion (PROMETHEE), and the analytic hierarchy process (AHP)] (Malczewski 
 2004,   2006  ) . 

 While discussing the applications of all the above-mentioned methods is beyond 
the scope of this chapter, Triantaphyllou  (  2000  )  provides a comprehensive compara-
tive study of most of the MADA methods mentioned. There is also a well-established 
body of literature on the much wider perspective of GIS-based MCDA (Malczewski 
 2006  ) , including the works of Diamond and Wright  (  1988  ) , Janssen and Rietveld 
 (  1990  ) , Carver  (  1991  ) , Church et al.  (  1992  ) , Banai  (  1993  ) , Pereira and Duckstein 
 (  1993  ) , Eastman et al.  (  1995  ) , Heywood et al.  (  1995  ) , Jankowski  (  1995  ) , Laaribi et al. 
 (  1996  ) , Malczewski  (  1999  ) , Thill  (  1999  ) , Chakhar and Martel  (  2003  ) , and Feick and 
Hall  (  2004  ) . Malczewski  (  2004,   2006  )  wrote a critical overview on GIS-based land 
suitability analysis, and surveyed the literature on GIS-based MCDA. Mendoza and 
Martins  (  2006  )  also published a critical review on the methods and new modeling 
paradigms that incorporate MCDA in natural resource management. 

 This chapter focuses on a particular decision support tool, the AHP method. 
Interest in using this method has been growing continuously over the past two decades, 
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and its scope of application has been expanding, especially in the  fi eld of geospatial 
analysis. This chapter outlines the basic principles of AHP, and reviews its historical 
development and application as a support tool for GIS-based MCDA. The remain-
der of this chapter is organized as follows: (a) an overview on how AHP works, 
(b) AHP methodological development, including the historical development of its 
application as a weighting method for GIS-based MCDA, (c) a review of previous 
empirical studies, and (d) concluding remarks and future prospects.  

    11.2   An Overview on How AHP Works 

 The AHP (Saaty  1980  )  is a multiple criteria decision-making tool that has been used 
in many applications related to decision making. The effectiveness of AHP in evalu-
ating problems involving multiple and diverse criteria and the measurement of 
trade-offs—sometimes using limited available data (Banai  1989  ) —has led to its 
worldwide recognition across different  fi elds of application. It has been applied to a 
wide range of applications from selecting among competing alternatives in a multi-
objective environment, allocation of scarce resources, to forecasting (Forman and 
Gass   2001  ) . More particularly, AHP has been successfully applied to many com-
plex planning, resource allocation, and priority-setting problems in business, energy, 
health, marketing, transportation, natural resources, and environmental sciences 
(Schmoldt et al.     2001   ). Over the years, many researchers, scientists, and decision 
makers in various  fi elds have implemented AHP. In a recent review, Vaidya and 
Kumar  (  2006  )  presented ten different thematic areas where AHP has been applied. 
These are selection, evaluation, bene fi t–cost analysis, allocations, planning and devel-
opment, priority and ranking, decision making, forecasting, medicine and related 
 fi elds, and quality function deployment (QFD). 

 More speci fi cally, AHP is a decision-making approach based on the genuine 
ability of people to make critical decisions (Saaty  1994a  ) . It allows the active par-
ticipation of decision makers in exploring all possible options in order to fully 
understand the underlying problems before reaching an agreement or arriving at a 
decision (Estoque and Murayama  2010 ; Yalcin  2008  ) . Its fundamental purpose is to 
judge the given alternatives for a particular goal by developing priorities for these 
alternatives and for the selected criteria (Saaty  2001  ) . A pair-wise comparison tech-
nique is used to derive the priorities for the criteria in terms of their importance in 
achieving the goal. Similarly, the priorities for the alternatives (i.e., the competing 
choices under consideration) are derived in pair-wise comparisons in terms of their 
performance against each criterion. Generally, AHP is based on three principles: 
decomposition, comparative judgment, and synthesis of priorities (Malczewski 
 1999 ; Saaty  1980,   2008a  ) . Its whole process includes  fi ve fundamental steps, as 
presented below. Teknomo  (  2006  )  and Coyle  (  2004  )  provide open access compre-
hensive tutorials on the basic implementation of these steps in the AHP. 
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    11.2.1   Step 1: Modeling the Problem 

 The very  fi rst step includes stating the problem, broadening the objectives of the 
problem by considering all actors, objectives and corresponding outcomes, and the 
identi fi cation of decision elements such as alternatives and criteria or decision rules. 
The decision elements are set up into a hierarchy of interrelated decision elements 
constituting the goal, criteria, sub-criteria, and alternatives (Johnson  1980 ; Vaidya 
and Kumar  2006  ) . This step has been thought to be the most important aspect of 
AHP (Zahedi  1986  ) . At the topmost position of the hierarchy is the overall goal 
(i.e., level 1), such as the goal of selecting the best alternative. The next lower level 
(i.e., level 2) of the hierarchy includes the decision rules or criteria that contribute to the 
attainment of the overall goal. This level can be expanded depending on how much 
detail is considered for each decision rule or criterion. The lowest level (i.e., level 3) 
contains the alternative decisions from which the decision analyst/maker will select. 
A simpli fi ed general structure of the AHP is presented in Fig.  11.1 .   

    11.2.2   Step 2: Determining Priorities Among the Decision 
Elements of the Hierarchy 

 This step involves the gathering of ratings for each of the criteria and alternatives 
using a pair-wise comparison technique and the rating scale of relative importance. 

  Fig. 11.1    The general structure of AHP for multi-criteria decision making (after Zahedi  1986 , 
p. 97). The goal is to choose among the competing alternatives 1, 2, and 3 on the basis of a ranking 
score when judged individually against criteria 1, 2, 3, and 4       

 



16111 Analytic Hierarchy Process in Geospatial Analysis

This step invokes the participation of experts and/or stakeholders in determining the 
relative importance of one criterion or alternative over another through a pair-wise 
comparison method presented in a matrix (see Saaty  2008a ,  2008b ; Teknomo  2006 ; 
Coyle    2004    for examples). The number of comparisons for the decision elements in 
a particular level is derived using ( 11.1 ) (Teknomo  2006 ; Vaidya and Kumar  2006  ) . 
Each comparison (e.g., Criteria 1 vs. Criteria 2 or Alternative 1 vs. Alternative 2) is 
rated by a group of experts using the scale developed by Saaty  (  1980,   2008b  )  for a 
pair-wise comparison technique (Table  11.1 ). To incorporate a group consensus, the 
process generally includes a questionnaire for comparing all elements and a geo-
metric mean to arrive at a  fi nal solution (Vaidya and Kumar  2006  ) . 

     
-

=
( 1)

2

n n
Number of comparisons    (11.1)  

where  n  is the number of elements (i.e., criteria or alternatives).  

   Table 11.1    The fundamental scale of absolute numbers (Saaty  2008b , p. 86)   

 Intensity of 
importance  De fi nition  Explanation 

 1  Equal importance  Two activities (elements) contribute equally 
to the objective 

 2  Weak or slight 
 3  Moderate importance  Experience and judgment slightly favor one 

activity (element) over another 
 4  Moderate plus 
 5  Strong importance  Experience and judgment strongly favor one 

activity (element) over another 
 6  Strong plus 
 7  Very strong or demonstrated 

importance 
 An activity (element) is favored very 

strongly over another; its dominance is 
demonstrated in practice 

 8  Very, very strong 
 9  Extreme importance  The evidence favoring one activity (element) 

over another is of the highest possible 
order of af fi rmation 

 Reciprocals 
of above 

 If activity (element)  i  has one 
of the above non-zero numbers 
assigned to it when compared 
with activity (element)  j , then  j  
has the reciprocal value when 
compared with  i  

 A reasonable assumption 

 1.1–1.9  If the activities (elements) are 
very close 

 May be dif fi cult to assign the best value, but 
when compared with other contrasting 
activities (elements) the size of the small 
numbers would not be too noticeable, yet 
they can still indicate the relative 
importance of the activities (elements) 
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    11.2.3   Step 3: Deriving the Overall Relative Weights 
of the Decision Elements 

 In this step, the relative importance of the criteria, as far as the attainment of the goal 
is concerned, and the relative importance of the alternatives with respect to the cri-
teria are determined after a pair-wise comparison matrix for the criteria and for the 
alternatives have been prepared (Step 2). This is done by: (1) calculating the nor-
malized values for each criterion and alternative, and (2) determining the normal-
ized principal eigenvectors or priority vectors (herein also referred to as relative 
weights). In calculating the normalized values for each criterion and alternative in 
their respective matrices, the value for each cell is divided by its column total. This 
process produces a column total of 1 for each criterion and alternative. The relative 
weights are then calculated by averaging the rows of each matrix. The resulting 
values give the relative weights of the criteria with respect to the goal, and the rela-
tive weights of the alternatives with respect to the criteria. The overall relative 
weights of the alternatives are determined by calculating the linear combination of 
the product between the relative weight of each criterion and the relative weight of 
the alternative for that criterion (Coyle  2004 ; Forman and Gass  2001 ; Saaty  1980, 
  2008b ; Teknomo  2006 ; Zahedi  1986  ) . If the expert judgments are consistent (see 
Steps 4 and 5), the decision makers then select the best choice based on the overall 
relative weights of the alternatives.  

    11.2.4   Steps 4 and 5: Verifying the Consistency of Judgments 
and Making Conclusions Based on the Results 

 These steps are necessary to determine the consistency of the evaluation by calculat-
ing the consistency ratio (CR) before a decision is made. If the problem under con-
sideration was aimed at selecting the best alternative, the CRs for all the matrices 
(i.e., for the criteria and the alternatives) are calculated fi rst before the overall rela-
tive weights of the alternatives are computed. The CR for a particular matrix is 
determined using ( 11.2 ) and ( 11.3 ). Saaty  (  1980  )  suggests that if the ratio exceeds 
0.1, the set of judgments may be too inconsistent to be reliable. Thus, a CR below 
0.1 or 10% is acceptable. When the evaluation is inconsistent, the procedure is 
repeated until the CR is within the desired range. Decision makers then reach a 
conclusion based on the results.

     =
CI

CR
RI    (11.2)  

     
λ -

=
-

maxCI
1

n

n
   (11.3)  

where CR is the consistency ratio, CI is the consistency index, RI is the random 
consistency index,   l   

max
  is the principal eigenvalue or summation of the products 
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between each element of the relative weights and their corresponding column total 
in a particular matrix, and  n  is the number of elements (i.e., the number of criteria 
or alternatives). The RI developed by Saaty  (  1980  )  is presented in Table  11.2 .    

    11.3   Methodological Development 

    11.3.1   Historical Development of AHP 

 AHP was developed and introduced in the 1970s by Thomas L. Saaty, an American 
mathematician and professor of the University of Pittsburgh, Pennsylvania, USA 
(Schmoldt et al.  2001 ; Yang and Shi  2002  ) . In the late 1960s, Saaty, then an opera-
tions research pioneer, directed research projects for the Arms Control and 
Disarmament Agency at the US Department of State (Forman and Gass  2001  ) . The 
development of AHP was motivated by his disappointment with his team’s output in 
their quest for a practical systematic approach to priority setting and decision making 
to support arms-reduction negotiations in Geneva between the USA and the Soviet 
Union (Forman and Gass  2001 ;    Nekhay et al.  2009  ) . Saaty  (  2001  )  explained that 
through AHP, a decision maker would be able to construct hierarchies or feedback 
networks that describe the environment structure of the decision for a particular 
complex problem. Once done, the decision maker would then be able to make judg-
ments or perform measurements on pairs of decision elements with respect to a 
controlling element or the goal under consideration. This is in order to derive ratio 
scales or priority values that are then synthesized throughout the structure to select 
the best alternative. Saaty’s earlier case applications of AHP range from the choice 
of a school for his son, through to the planning of transportation systems for Sudan 
(Coyle  2004  ) . In accordance with Saaty  (  1980,   1988,   1994a,   1994b  ) , Zahedi  (  1986  )  
and Malczewski  (  1999  ) , Forman and Gass  (  2001  )  described AHP as a methodology 
for  structuring, measurement, and synthesis  towards solving any given complex problem. 

  Structuring in AHP  involves modeling a speci fi c complex problem in such a way 
that the interrelated decision elements (i.e., criteria and alternatives) are structured 
into a hierarchy, as discussed in the previous section.  An AHP measurement  includes 
comparisons of the decision elements in a pair-wise manner based on the preference 
of the decision makers and experts. AHP is fundamentally based on a clearly outlined 
mathematical structure of matrices coupled with their right-eigenvector’s ability to 
give true or approximate weights (Saaty  1980,   1994a  ) . In AHP, pair-wise comparison 
is a major step to determine the relative importance of the decision elements, to deter-
mine the weight of each criterion or factor, and to provide a rating for alternatives 
based on qualitative factors (Yang and Shi  2002  ) . This step particularly focuses on the 
evaluation of two elements at a time, and therefore the decision makers and experts are 

   Table 11.2    The random consistency index (RI) values (from Saaty  1980 , p. 21)   

  n   1  2  3  4  5  6  7  8  9  10  11  12 

 RI  0.00  0.00  0.58  0.90  1.12  1.24  1.32  1.41  1.45  1.49  1.51  1.48 
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under less pressure in giving their own relative preference information. The numerical 
scale developed by Saaty  (  1980,   2008b  )  (Table  11.1 ) is used to give numerical ratings 
that correspond to the experts’ judgments on the relative importance of the decision 
elements. The  synthesis  function is particularly concerned with putting the pieces 
together to get the  fi nal result of the analysis. AHP translates individual preferences or 
judgments into ratio-scale weights that are combined into linear additive weights for 
the associated alternatives (Forman and Gass  2001  ) . The derived weights are used to 
rank the given alternatives. In this way, AHP aids the decision makers in choosing the 
best alternative. In fact, the determination of the priority weights is a very important 
step after pair-wise comparisons have been done. In calculating these weights, three 
methods have been suggested in the research literature, these include calculating the 
normalized eigenvalues, logarithmic least squares, and least squares (Yang and Shi 
 2002  ) . Use of the normalized eigenvalues is recommended when the data are not 
entirely consistent, although it has been proven that these methods produce the same 
solutions in terms of the consistency of the result (Saaty  1988  ) . 

 Forman and Gass  (  2001  )  summarize the  measurement  and  synthesis  functions of 
AHP into what they called three commonly agreed decision-making steps: (1) given 
 i  = 1, …,  m  objectives/criteria, determine their respective weights  w  

 i 
 ; (2) for each 

objective/criterion  i , compare the  j  = 1, …,  n  alternatives and determine their weights 
 w  

 ij 
  with respect to each objective/criterion  i ; (3) determine the  fi nal (global) alterna-

tive weights (priorities)  W  
 j 
  with respect to all the objectives/criteria by  W  

 j 
  =  w  

1 j 
  w  

1
  + 

w  
2 j 
  w  

2
  + ⋅⋅⋅ +  w  

 mj 
  w  

 m 
 .  W  

 j 
  orders the alternatives, with the most preferred alternative 

having the largest  W  
 j 
 . As far as pair-wise comparisons are concerned, Saaty  (  1980  )  

suggests that the number of elements at each level be limited to a maximum of nine, 
since each level entails pair-wise comparisons of its elements. Zahedi  (  1986  )  notes 
that although this is a constraint, it is not a necessary condition of the method and it 
has not always been adhered to in all applications. 

 From the time it was developed and introduced, AHP has been gaining popular-
ity among decision makers, researchers, planners, and academicians. Its validity as 
a decision tool, including the con fi dence that the users are expressing in its ability 
to aid in MCDA situations, is supported by the many hundreds (now probably thou-
sands) of diverse applications in which AHP results have been accepted and used by 
the decision makers concerned (Saaty  1994b  ) . Quoted below is a brief description 
by Forman and Gass  (  2001 , p. 470) in their exposition on AHP:

  There is ample evidence that the power and simplicity of AHP has led to widespread acceptance 
and usage in the United States as well as throughout the world. In addition to Expert Choice, 
there have been several other successful commercial implementations of the AHP, one with 
fi nancial backing of the Canadian Government. Many of the world’s leading information 
technology companies now use AHP in the form of decision models provided by the Gartner 
Group’s [(  http://www.gartner.com    )] Decision Drivers [(  http://www.decisiondrivers.com    )]. 
The American Society for Testing and Materials (ASTM) has adopted AHP as standard 
practice for multi-attribute decision analysis of investments related to buildings and build-
ing systems [(ASTM Designation E: 1765-95 “Standard Practice for Applying Analytical 
Hierarchy Process (AHP) to Multiattribute Decision Analysis of Investments Related to 
Buildings and Building Systems”)]. The AHP process is taught in numerous Universities 
and used extensively in organizations such as the Central Intelligence Agency that have 
carefully investigated AHP’s theoretical underpinnings.   

http://www.gartner.com
http://www.decisiondrivers.com
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 These remarks relate mainly to the application of AHP to non-spatial problems, 
focusing on determining the best alternative in a complex decision-making environ-
ment. However, its function has now been extended to the vast area of spatial analysis. 
Geospatial analysis is one of the fast-growing research  fi elds where AHP has been 
integrated as part of the methodology and analysis.  

    11.3.2   Using AHP as a Weighting Method for GIS-Based MCDA 

 The basic rationale for introducing GIS into the broad perspective of MCDA is to 
add spatial dimensions to the problem-solving process (Malczewski  1999  ) . GIS, 
as a technology, has evolved through three broad application  fi elds: (1) its use as an 
information database to coordinate and access geographic data; (2) its use as an 
analytical tool to specify logical and mathematical relationships among map layers 
to yield new derivative maps; (3) its use as a decision support system to decide how 
to act upon analyzes produced (Eastman et al.  1995  ) . It is in the second and third 
broad areas of GIS applications where AHP has been largely integrated as a criteria/
alternatives weighting and prioritization method. 

 One of the earlier reports that dealt with the possible development of the integra-
tion of AHP with GIS to aid in the decision-making process for complex problems 
was the review of AHP as a new method for site suitability analysis by Banai 
 (  1989  ) . Rao et al.  (  1991  )  also published a paper entitled “Weighted index model for 
suitability assessment – a GIS approach.” According to Eastman et al.  (  1995  ) , 
although the procedure was developed outside GIS software using a variety of ana-
lytical resources, the work of Rao et al.  (  1991  )  was the fi rst attempt to integrate 
AHP with GIS. Subsequent work in line with the integration of AHP and GIS 
included: participatory procedures for multi-criteria evaluation in GIS (Eastman 
et al.  1992  ) ; a procedure for multi-objective decision making in GIS under condi-
tions of competing objectives (Eastman et al.  1993  ) ; the design of land-use plans 
considering multiple objectives and participatory approaches to planning and deci-
sion making (Hutchinson and Toledano  1993  ) ; a study of habitat suitability for the 
Mount Graham red squirrel (Pereira and Duckstein  1993  ) ; the integration of GIS-
based suitability analysis and multi-criteria evaluation in a spatial decision support 
system for route selection (Jankowski and Richard  1994  ) ; weighting land suitabil-
ity factors by the prioritization for land-use suitability method (Xiang and Whitley 
 1994  ) ; raster procedures for multi-criteria/multi-objective decisions (Eastman et al. 
 1995  ) ; integrating GIS and MCDM methods (Jankowski  1995  ) ; a demonstration of 
land fi ll site selection (Siddiqui et al.  1996  ) ; and the generation of  habitat suitability 
indices for the desert tortoise (Mendoza  1997  ) . 

 Focusing on the methodological development of a raster procedure for multi-
criteria/multi-objective decisions, Eastman et al.  (  1995  )  proposed a framework 
(Fig.  11.2 , left) in which AHP is used as a weighting method. The framework is 
basically divided into two main parts: multi-criteria evaluation (MCE) and multi-
objective allocation. With a single objective (e.g.,  fi nding the best site for a housing 
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project), the decision maker(s) can focus on relevant criteria (factors and constraints) 
with measurable attributes, and thus corresponding techniques are often called 
MCE, or multiple-attribute decision analysis/making (Fig.  11.2 , right) (Jankowski 
 1995 ; Malczewski  1999  ) . In MCE, standardization is necessary after the criteria have 
been identi fi ed because factors normally have different characteristics, e.g., units. 
This process allows the comparison of different factors, which is vital in the analysis. 
All factors need to be expressed in a common measurement scale before AHP 
weights are applied in the aggregation process (Eastman et al.  1995  ) . Voogd  (  1983  )  
reviewed a variety of procedures for standardization. Although, other scientists/
researchers prefer simple reclassi fi cation and normalization as their standardization 
methods, others use fuzzy membership functions in IDRISI (Eastman  1999,   2006, 
  2009  )  (see Table  11.3 ). In a suitability analysis, the fuzzy concept is used to give each 
location a value representing its degree of suitability (Eastman  2006  ) , especially if 
suitability values or classes do not have clearly de fi ned boundaries. Standardized 
scales can be 0–1, 0–99, 0–255, etc. (Eastman et al.  1995 ; Eastman  2006  ) .   

 WLC (weighted linear combination) (Voogd  1983  ) , also known as simple addi-
tive weighting, is an approach that multiplies standardized or normalized criteria 
scores by the relative criteria weights for a particular objective, or for each alterna-
tive, followed by a summation of the results as in ( 11.4 ) (Carver  1991 ; Eastman, 
et al.  1995 ; Geldermann and Rentz  2007 ; Nyerges and Jankowski  2010 ; Sugumaran 
and Bakker  2007  ) . Although different multi-criteria procedures can be implemented 
in the GIS platform, WLC in combination with AHP is the most straightforward and 

  Fig. 11.2    ( Left ) A  fl ow diagram of the multi-criteria/multi-objective decision-making process 
(redrawn from Eastman et al.  1995 , p. 544). ( Right ) A generalized multi-criteria evaluation struc-
ture based on Table  11.3 . Depending on the complexity of the problem under consideration, other 
elements such as sub-criteria are usually incorporated       
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most frequently used (Eastman, et al.  1993 ; Malczewski  2004  ) . For example, in a 
landslide susceptibility mapping, WLC combines thematic maps of factors or 
parameters controlling landslides after the standardized scores of the classes of all 
the parameters (primary-level weight) and the relative weights of the parameters 
(secondary-level weight) have been applied (Wu and Chen  2009 ; Yalcin  2008  ) . 
However, in cases where there are constraints, the product of the constraints is 
further multiplied with the calculated suitability (Eastman et al.  1995  )  ( 11.5 ).

     = åLSI i iw x    (11.4)  

     = PåLSI *i i jw x c    (11.5)  

where LSI is the landslide susceptibility index,  w  
 i 
  is the weight of factor  i ,  x  

 i 
  is the 

standardized value or score of factor  i ,  c  
 j 
  is the criterion score of constraint  j , and   P   

is a product symbol (of the constraints). 
 When the MCDA process involves multiple objectives, the procedures outlined in 

the lower part of Fig.  11.2 , left, are recommended. In multiple-objective problems, it 
is important to consider whether the objectives are complementary or in con fl ict (e.g., 
simultaneously allocating a piece of land for housing and a park), and to group the 
criteria by objectives (Eastman et al.  1995 ; Malczewski  2004  ) . A procedure called 
MOLA has been developed to undertake a compromise solution to a multi-objective 
problem (Eastman et al.  1995 ; Eastman  2006,   2009  ) . Procedurally, it  fi rst asks for 
the names of the objectives and their relative weights. It then asks for the names of the 
ranked suitability maps for each objective and the areas that should be allocated. It then 
iteratively reclassi fi es the ranked suitability maps to perform a  fi rst-stage allocation, 
checks for con fl icts, and then allocates con fl icts based on a minimum-distance-to-
ideal-point rule using the weighted ranks (Eastman et al.  1995  ) .   

    11.4   Review of Previous Empirical Studies 

    11.4.1   Previous Reviews 

 Among the prominent reviews on MCDA are a survey of literature on GIS-based 
MCDA by Malczewski  (  2006  ) , a critical review on MCDA in natural resource man-
agement by Mendoza and Martins  (  2006  ) , and a critical overview of GIS-based 
land-suitability analysis by Malczewski  (  2004  ) . More focused reviews on the appli-
cations of AHP as a  stand-alone method  can be traced back to its introduction in the 
late 1970s. In his paper “The AHP – a survey of the method and its applications,” 
Zahedi  (  1986  )  cited around 100 papers related to AHP. The topics range from meth-
odology development, con fl ict resolution, arms control and world in fl uence, health, 
marketing, and budget allocation, to interregional migration patterns and many 
more. In their paper “The AHP – an exposition,” Forman and Gass  (  2001  )  catego-
rize the diverse applications of AHP according to choice, prioritization/evaluation, 
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resource allocation, bench-marking, quality management, public policy, health care, 
and strategic planning. More recently, in their paper “Analytic hierarchy process: an 
overview of applications,” Vaidya and Kumar  (  2006  )  identify ten broad thematic 
areas where AHP has been applied as a decision support tool. However, despite 
these themes being broad, the review paper is partly dedicated to AHP applications 
in combination with  fi nance.  

    11.4.2   Recent AHP Applications in GIS-Based MCDA 

 This section adds to the existing reviews, focusing more on the recent applications 
of AHP as a decision support tool or weighting method for GIS-based MCDA. It 
highlights how AHP and GIS-based MCDA work as an integrated method in spatial-
based decision problems, with information including country of application, subject/
purpose of the study, number/name of criteria or factors, criteria standardization 
method, number/expertise or specialization of the decision makers or experts partici-
pated in the AHP process, and experts’ ratings aggregation method. 

 Table  11.3  summarizes the details of 18 recently published papers reporting 
studies conducted in 13 different countries. All the studies were implemented within 
the MCE platform (see Fig.  11.2 , right, for the generalized MCE structure). The 
number of criteria or factors involved in the analyzes ranges from 4 to 14. However, 
studies with a large number of criteria had these criteria grouped into more general 
categories (e.g., Moeinaddini et al.  2010 ; Ying et al.  2007  ) . Fuzzy membership 
functions, reclassi fi cation, normalization, and AHP methods have been used to 
standardize the diverse criteria. Except for the paper of Kamp et al. ( 2008 ), all the 
papers reviewed follow the WLC procedure in the overall aggregation process of 
the criteria or factors involved. 

 The number of experts involved in the AHP pair-wise comparison method varies 
from none to 75. There are papers that claim the participation of experts, but do not 
mention their number or their respective areas of expertise (e.g., Guiqin et al.  2009 ; 
Radiarta et al.  2008  ) . Moreover, there are also papers that do not mention any par-
ticipation of experts in the process (e.g., Fernandez and Lutz  2010 ; Sener et al. 
 2010 ; Yalcin  2008  ) . Kamp et al.  (  2008  )  and Suárez-Vega et al.  (  2011  )  did not seek 
the opinions of experts at all; the former used their experience during fi eldwork as 
their guide in the pair-wise comparison method, while one of the authors of the lat-
ter served as an expert. In the method of aggregating the experts’ ratings in the pair-
wise comparison method for the studies that consulted more than one expert, two 
papers use “consensus” (i.e., Estoque and Murayama  2010 ; Khoi and Murayama 
 2010  ) , three use arithmetic mean (i.e., Samani et al.  2010 ; Thapa and Murayama 
 2008 ; Wu and Chen  2009  ) , and two use geometric mean (i.e., Moeinaddini et al. 
 2010 ; Nekhay et al.  2009  ) , while most of the rest do not discuss how the evaluators’ 
ratings were aggregated. 

 Fernandez and Lutz  (  2010  )  observe that pair-wise judgments are made based on 
the best available information, and the decision-maker’s knowledge and experience. 
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Likewise, Yalcin  (  2008  )  mentions that AHP allows the active participation of decision 
makers in reaching an agreement, and gives them a rational basis for decision 
making. This paper also concludes that when  fi eld conditions and characteristics are 
correctly determined by good expertise, the AHP approach gives better results. 
However, despite these claims in both papers, there is no further elucidation on 
whether decision makers or experts were consulted and participated in the AHP 
process. On the other hand, Guiqin et al.  (  2009  ) , Radiarta et al.  (  2008  ) , Tudes and 
Yigiter  (  2010  ) , and Ying et al.  (  2007  )  state that decision makers/experts were con-
sulted and that their opinions were used for rating the criteria. However, their papers 
do not disclose whether the ratings were consensual or if they were individually 
expressed by the experts, as is the case in some other papers (see Estoque and 
Murayama  2010 ; Hossain et al.  2009 ; Khoi and Murayama  2010 ; Nekhay et al. 
 2009 ; Thapa and Murayama  2008  ) . Hossain et al.  (  2009  )  consulted three experts, 
but their views were later ignored in favor of the  fi rst author’s own evaluations, 
which were slightly more consistent. Such a move notwithstanding, the experts’ 
opinions should always be among the different viewpoints taken into consideration 
to obtain a balanced and informed basis for the  fi nal decision making. It is also useful 
to capture the different opinions of experts with diverse expertise and backgrounds. 
In contrast, Thapa and Murayama  (  2008  ) , Wu and Chen  (  2009  ) , and Samani et al. 
 (  2010  )  combine the individual expert’s evaluations by calculating the arithmetic 
means. Thapa and Murayama  (  2008  )  consulted 12 experts; of this number, nine were 
found to be consistent. In order to prepare the  fi nal matrix and calculate the  fi nal 
relative weights of the factors under consideration, the consistent evaluations were 
combined by calculating the (arithmetic) mean. In the case of Wu and Chen  (  2009  ) , 
the relative weights of the factors under consideration were derived from the (arith-
metic) means of the largest eigenvalues of the pair-wise comparison matrix, which 
was established from the results of 75 expert questionnaires with a CR of less than 
0.1. However, while it was mentioned that Samani et al.  (  2010  )  also used averaging 
(arithmetic mean) in combining the individual expert’s ratings, their paper does not 
specify how many experts were involved or whether they all had consistent evalu-
ations. On the other hand, Moeinaddini et al.  (  2010  )  and Nekhay et al.  (  2009  )  com-
bined the individual expert’s ratings by calculating the geometric mean. Although 
either the arithmetic or geometric mean can be used in aggregating individual 
expert’s ratings, Forman and Peniwati  (  1998  )  argue that the geometric mean is more 
consistent when averaging both judgments and priorities in AHP. In applying either 
the arithmetic or geometric mean as an aggregation method for individual prefer-
ences, the inherent assumption is that the individual evaluations of the experts would 
be treated equally in terms of weight or in fl uence, irrespective of their levels of 
consistency, as long as they are within the acceptable limit. 

 Other MCDA-related observations from recent papers are connected with the 
application of AHP weights, its hierarchical set-up, and the criteria standardization 
process vis-à-vis the overall implementation of the integrated AHP and GIS methods. 
For example, Sener et al.  (  2010  )  categorized the criteria in land fi ll site suitability 
analysis into main criteria (stage 1), criteria (stage 2), and sub-criteria (stage 3), 
which were subsequently given their respective AHP weights. However, some 
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inconsistencies have been observed, i.e., some criteria and sub-criteria have AHP 
weights that sum to 1, while others do not (three sets of sub-criteria at stage 3 and 
one set of criteria at stage 2). While two of the three sets of sub-criteria with AHP 
weights that do not sum to 1 may possibly be typographical errors, it is more dif fi cult 
to explain the case of the third set of sub-criteria at stage 3 and the set of criteria at 
stage 2 (see Sener et al.  2010 , p. 2041, Table 2). 

 Ying et al.  (  2007  )  stated that the matrices of layers B and C, and C and D were 
generated by the same method as for layers A and B, where the AHP weights of the 
factors at layer B had a total of 1. As a result, all the sub-factors at layers C and D, 
irrespective of the factors to which they belong in the higher hierarchy (i.e., layer B 
for layer C, and layer C for layer D), also had a total of 1. This method of AHP 
weights calculations is quite different from the method used by other researchers (e.g., 
Hossain et al.  2009 ; Khoi and Murayama  2010 ; Sener et al.  2010  ) , where the weights 
of the given sub-factors (with a total weight of 1) under a particular factor are calcu-
lated with respect to that factor. If the calculations had been done this way, the weights 
of the sub-factors at layer C should have been computed with respect to their corre-
sponding factors at layer B (and likewise for the sub-factors at layer D with respect to 
their corresponding factors at layer C). This method could have given the sub-factors 
at layer C that are under a certain factor at layer B a total weight of 1. However, this 
was not the case. On the other hand, in their landslide susceptibility analysis, Kamp 
et al.  (  2008  )  extensively discussed how much the area was affected by landslides dur-
ing the 2005 earthquake vis-à-vis each criterion under consideration. However, the 
criteria standardization method and the overall aggregation procedures, which are 
vital in this kind of research, were not fully explained or disclosed. 

 In summary, the  fi ndings of this review show that researchers have still not 
reached a consensus on some issues related to the implementation of AHP as a 
weighting method for GIS-based MCDA. The contentious areas include: (1) the 
method for capturing experts’ opinions using the pair-wise comparison method, (2) 
the method for aggregating individual expert ratings (in cases where consensus rat-
ings are not used), and (3) the method for standardizing the criteria or factors 
involved in the analysis. These issues are crucial to the use of AHP for  GIS-based 
MCDA, and are discussed further below. 

 Nevertheless, since it is both precise and easy to use, the AHP method has 
received considerable attention because it also places greater emphasis on the struc-
ture of the preferences of the decision makers (Kamp et al.  2008 ; Schmoldt et al. 
 2001  ) . Its strength lies in its ability to capture human preferences in a hierarchical 
framework that focuses on the selection, de fi nition, and measurement of criteria for 
a single goal or outcome (Itami et al.  2000  ) . However, the large number of pair-wise 
comparisons needed in the hierarchy has been a major drawback of the AHP 
(Carmone et al.     1997 ; Islam and Abdulla  2006  ) . As the size of the hierarchy 
increases, the number of pair-wise comparisons increases rapidly. Because of this, 
the respondents in the pair-wise comparison process are likely to suffer from 
 information overload, even under the best circumstances (Carmone et al.  1997  ) . 
This has been a major criticism of AHP. Furthermore, pair-wise comparisons are 
subjective, and the quality of the results is highly dependent on the expert’s  judgment 
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(Kamp et al.  2008  ) . Therefore, a method that improves on the process of capturing 
experts’ preferences is needed. 

 This review shows two major ways that are used to gather experts’ opinions: 
consensus and individual. According to Kim and Min  (  2004  ) , a consensus derived 
from a series of discussions is the best way. Islam and Abdulla  (  2006  )  also proposed 
the use of a nominal group to identify the insigni fi cant criteria that might have been 
included when solving large-scale enterprise multi-criteria decision-making prob-
lems that involve large numbers of criteria. Consequently, irrelevant criteria could 
be dropped from the subsequent analysis, and this exclusion would not signi fi cantly 
affect the  fi nal decision. Eastman et al.  (  1995  )  also suggest focus-group discussions 
as a way to derive consensus when evaluating different criteria/factors. Hossain 
et al.  (  2009  )  presented the use of two analytical procedures to help reduce some of 
the subjectivity, to verify the weights generated, and to reach a consensus on weights. 
These are the use of questionnaires, and a group discussion to derive the  fi nal weight 
consensus. According to Robbins  (  1994  ) , the size of a decision-making group can be 
from a minimum of 5 to a maximum of about 50. However, it must be remembered 
that when using consensus ratings, participants in the focus group may not necessar-
ily have the same level of expertise and in fl uence. Aside from the fact that this pro-
cedure is time-consuming, participants in positions of authority may also in fl uence 
the other participants, thus resulting in a biased outcome (Kim and Min  2004  ) . 

 In cases where consensus ratings are not met and individual expert’s ratings will 
be used in the analysis, a method to combine such ratings is needed. This is to 
ensure that the important input of the experts involved will not be lost. The case 
reported by Hossain et al.  (  2009  )  is a typical example of the experts’ opinions being 
substantially lost when they were discarded despite having CRs that were within the 
acceptable limit favoring the  fi rst author’s own evaluation. While lower inconsis-
tency is preferred, this does not mean that it is more accurate. Vaidya and Kumar 
 (  2006  )  considered the use of the geometric mean of the element scores from a ques-
tionnaire to arrive at the  fi nal solution. Forman and Peniwati  (  1998  )  introduced the 
weighted geometric mean and weighted arithmetic mean as possible methods of 
combining individual experts’ judgments and priorities in AHP. These are in addi-
tion to the simple arithmetic and geometric mean methods. Furthermore, Kim and 
Min  (  2004  )  argue that the CR can be used to assess the level of expertise of the 
respondents. Therefore it can also be used as a basis to combine individual expert’s 
ratings. As previously mentioned, however, lower inconsistency does not necessar-
ily imply high accuracy. In other words, although the criteria or factors in a given 
problem are ranked logically and consistently, this does not guarantee high accuracy 
in terms of how these ranked criteria or factors contribute to the attainment of the 
goal or speci fi c objective. This needs to be considered when using the CR as a basis 
for combining experts’ ratings. 

 Criteria standardization is equally important. Eastman et al.  (  1995  )  argue that 
another primary issue, aside from the weights development for the criteria, is how 
criterion scores are standardized. Every method can yield a different result; hence, 
the selection of the method to be used must be taken seriously. Local experts can 
give valuable support, and actual  fi eld observations may help improve existing 
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knowledge of the area being investigated. The method used in a particular analysis 
should not be kept hidden (e.g., Kamp et al.  2008  ) ; instead a reasonable amount of 
detail should be given to allow other researchers and analysts to evaluate or verify 
the analysis.   

    11.5   Concluding Remarks and Future Prospects 

 Since its introduction, AHP has been an important tool for decision makers and 
researchers. It offers a  fl exible, step-by-step and transparent way of analyzing com-
plex problems in a MCDA environment based on experts’ preferences, knowledge, 
and judgments. In fact, the resolution of complex problems in a multi-criteria envi-
ronment has been the primary use of AHP. In a real setting, slope, elevation, rainfall, 
accessibility, environmental impact, etc., have different dimensions, making a simple 
MCDA problem more complex. In a typical MCDA situation, where multiple criteria 
and different  fi elds are involved, there is a need to consider multiple stakeholders 
and wide-ranging expertise. Owing to its ability to readily incorporate multiple 
judgments, AHP and its combination with other tools such as GIS offer a solution 
to multi-dimensional complex problems. Indeed, its application as a decision sup-
port tool or weighting method for GIS-based MCDA marks its potential usefulness 
to wider applications in the vast  fi eld of geospatial analysis. 

 However, the problems mentioned in the previous section relating to the use of 
AHP for GIS-based MCDA need to be overcome when considering the further 
development and future prospects and implementations of this integrated method. 
The method of capturing and aggregating experts’ opinions is one that really needs 
careful attention. It is not enough to just report that “experts were consulted,” since 
in most cases different experts have different preferences, expertise, ideas, or opin-
ions. There is a need to give an overview of the method used in dealing with this 
aspect of AHP, i.e., whether dealt with through a consensus or by individual evalu-
ations. Moreover, since the strength of AHP lies in its ability to capture human 
preferences, its results vary depending on the subjective knowledge of the experts. 
Therefore it is important to take into consideration the quali fi cations of experts to be 
consulted and involved in the process. This is true whether AHP is used as a stand-
alone method or in combination with other techniques such as GIS-based MCDA. 
While there are several procedures that may be used to standardize the different factors 
in a typical GIS-based MCDA problem, the method employed should at least be 
reported. This is important, since it can give a clearer picture of how a certain objec-
tive can be attained by the factors (and constraints) involved, and how each factor is 
going to react once the AHP weight is applied. 

 Nevertheless, AHP applications will undoubtedly expand in both non-spatial and 
spatial-based decision-making environments. This is owing to the effectiveness of 
AHP in evaluating problems involving multiple and diverse criteria, the measure-
ment of trade-offs (Banai  1989 ), its simplicity and robustness (Vargas  1990  ) , its 
precision, ease of use, and availability as a built-in tool in IDRISI GIS software 
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(Eastman  2006,   2009  )  and as an extension tool in ArcGIS software (Marinoni  2004  ) , 
and in Expert Choice software (  http://www.ExpertChoice.com    ). To take advantage 
of the versatility of AHP, current research efforts are also focused on how AHP can 
be combined with other techniques. This review has shown some of the integrations 
of AHP with other tools/methods that have been implemented on a GIS-based 
MCDA platform, like its integration with GIS, WLC, and fuzzy logic. It is expected 
that in the vast  fi eld of geospatial analysis, more tools/methods, in combination with 
AHP, will be explored in the near future.      
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     12.1   Introduction 

 Geographic information systems (GIS) provide both theory and methods that have 
the potential to facilitate the development of spatial analytical functions and various 
GIS data models. There are several network models in GIS, such as river networks, 
utility networks and transportation or road networks. Among these, GIS road net-
work data models are important for solving problems in urban areas such as trans-
portation planning, retail market analysis, accessibility measurements, service 
allocation and more. Understanding the road network patterns in urban areas is 
important for human mobility studies, because people are living and moving along 
the road networks. A network data model allows us to solve daily problems such as 
 fi nding the shortest path between two locations, looking for the closest facilities 
within a speci fi c distance or estimating drive times. Although many network models 
are conceptually simple they are mathematically complex and require computa-
tional resources to model the problem.  

    12.2   A GIS Network Model 

 A network is referred to as a pure network if only its topology and connectivity are 
considered. If a network is characterized by its topology and  fl ow characteristics 
(such as capacity constraints, path choice and link cost functions), it is referred to as 
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a  fl ow network (Fischer  2004  ) . A transportation network is a  fl ow network repre-
senting the movement of people, vehicles or goods (Bell and Iida  1997  ) . Nevertheless, 
a common representation of a network is a set of nodes and a set of links. A network 
is an interconnected set of points and lines that represent possible routes from one 
location to another. For example, an interconnected set of lines representing city 
streets is a network. Therefore, the elements of a network are nodes and links. Nodes 
represent points of change and intersections within a network. Links are linear fea-
tures made up of two or more nodes (from and to) that represent features such as 
roads, rivers and railroads. The attributes of nodes and links are stored in tables and 
assigned unique identi fi cation numbers (key  fi elds) known as a relational database 
(Fig.  12.1 ).  

 When these two tables (i.e., nodes and links) are relationally linked, a basic 
topology can be constructed such as connectivity and a shimbel matrix. Moreover, 
additional attribute  fi elds can be inserted to restrict the model, such as imposing 
one-way or two-way traf fi c, speed limitations, greenness score, etc. Many efforts 
have been made to create comprehensive transportation network databases to 
address a wide variety of transportation problems, ranging from public transit to 
package distribution. Initially, these efforts were undertaken within transportation 
network optimization packages (e.g., EMME/2, TransCAD), which created topologically 
sound representations. However, many of these representations were geographically 

  Fig. 12.1    Conceptual design of a simple GIS network model       
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inaccurate and had limited visual and geocoding capabilities. Using a network data 
model for the purposes of cartography, geocoding and routing requires further 
developments (   Rodrigue et al.  2009  ) . 

 In fact, a GIS network data model is based on graph theory, which is a mathe-
matical expression used to represent aspects of the environment such as rivers, 
roads, subways, utilities and so on. However, a GIS network model is more than a 
graph; it not only represents an abstract idea of the environment, but also stores, 
retrieves, modi fi es, analyzes and displays the real-world structures in graphical 
form. A GIS network model includes topology, which is the arrangement of the 
nodes and links in the network, and the information about “which links are con-
nected to which nodes and to other links”. The ArcGIS Network Analyst software 
incorporates an advanced connectivity model which accurately represents real-
world multi-modal networks. The integration of information about other attributes 
of the GIS network model allows us to analyze more complex real-world solutions 
such as incorporating elevation information for each node, which allows us to 
retrieve information about  fl ow direction, bridges, tunnels, and overpasses and 
underpasses on highways. 

 A network can have a set of weights associated with it. A weight can be used to 
represent the cost of traversing an element in the logical network. For example, in a 
network of water pipes, a certain amount of pressure is lost when traveling the 
length of a transmission, mainly due to surface friction within the pipe. In transpor-
tation planning, the weighting factor could be speed limitations, traf fi c volumes, 
etc. Network weights apply to all elements in the network. The weighting values for 
each network element are derived from the attributes of the corresponding feature. 
In Chap.   16    , we discuss the modeling of urban green space walkability based on a 
greenness score, which was derived from the normalized different vegetation index 
(NDVI) within a 10 m buffer of the roads. In that study, the greenness score was 
used as a weighting factor to identify the shortest or greenest route (i.e., the most 
highly vegetated route). 

 Solving network data problems involves complex mathematical calculations and 
requires high-performance computational power. Such network problems are con-
ceptually simple, but are mathematically complex and challenging (Fischer  2004  ) . 
Perhaps the most complicated model is a transportation network model in terms of 
complications in the attributes themselves, such as driving/speed/turning restric-
tions, traf fi c volume, etc., and involving multi-layer networks such as a railway 
network, a subway, or a bus network, etc. The ArcGIS software constructs the net-
work data set by having points and lines in two separate layers (i.e., a layer-based 
approach) and creating additional layers for analysis such as a route analysis layer, 
a closest facility analysis layer, and a service analysis and OD cost matrix analysis 
layer (origins and destinations). Network analysis layers are composite layers in 
ArcMap that store the inputs, parameters and results of a network analysis. A net-
work analysis layer acts as an in-memory workspace for each type of input as well 
as the result, all of which are stored as in-memory feature classes. The analysis 
parameters are stored as properties of the analysis layer.  

http://dx.doi.org/10.1007/978-4-431-54000-7
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    12.3   Building a GIS Network Model 

 A GIS network can be constructed from various sources, such as a river network, 
which can be extracted from a contour map or digital elevation model (DEM), or a 
road network, which can be constructed from aerial photos or high-resolution satel-
lite images (Fig.  12.2 ). Road outline and center-line data can be purchased from 
GIS data vendors. It is possible to represent one-way streets in the line-theme fea-
ture based on the digitized directions in a road network. Alternatively,  fl ow direction 
can be de fi ned by the elevations of the nodes. Moreover, digitizing is based on the 
target application and analysis, for example, a walkability study with green space 
may require both sides of the main road to be digitized, since the green space may 
be present on each side of the road (Fig.  12.3 ). Multi-modal network data sets, while 
being more complex connectivity scenarios, are also possible, as in multi-modal 

  Fig. 12.2    Sources of data for the construction and building of a GIS network model       
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transportation networks. A network data set also possesses rich network attributes 
that helps model impedances, restrictions and hierarchy for the network.    

    12.4   GIS Network Model in Geospatial Analysis 

 GIS network models are widely used in transportation planning, market analysis and 
accessibility studies. Accessibility is a measure of the spatial distribution of activi-
ties around a point, adjusted for the ability and desire of people to overcome spatial 
separation (   Handy and Niermeier  1997  ) . Several studies describe accessibility, 
review various accessibility measures, provide case studies, and present novel meth-
ods (Levinson and Krizek  2005 ; Bhat et al.  2002 ; Handy and Niermeier  1997 ; Pirie 
 1979  ) . In short, accessibility describes travel between a source and a target in terms 
of factors of ease or dif fi culty. For example, having retail stores close to where 
people live, and providing connected streets, increases the likelihood that people 
will incorporate walking into their daily routines (Frank and Engelke  2005 ; Moudon 
et al.  2007  ) . Furthermore, spatial syntax has been proposed as a new computational 
language to describe the patterns of modern cities (Hillier and Hanson  1984 ; Hillier 
 1996  )  based on road networks. Typical applications of spatial syntax include pedes-
trian modeling, crime mapping, and route- fi nding processes in complex built envi-
ronments (Peponis et al.  1990 ; Hillier  1996 ; Jiang  1999  ) . An axial line-based 
representation of an urban structure is the earliest approach to spatial syntax (Hillier 
and Hanson  1984  ) . Recent developments in spatial information science have much 
to offer for the identi fi cation of land-use types, street connectivity, and access to 
services in order to determine the factors based on a GIS road network data model 
that might increase or decrease the probability of people being physically active 
according to selected spatial units of interest (Leslie et al.  2007  ) . The properties of a 
network can be measured by several indices and equations. Table  12.1  shows a sum-
mary of accessibility measures based on a network model in a real-world situation.   

  Fig. 12.3    Road digitizing for greenness score calculation within a 10 m buffered road       
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   Table 12.1    Accessibility measures based on a network data model   

 No.  Measurement  Description 

 1   Shortest path  (network distance) 
  

Start

End     
 Shortest-path analysis is a fundamental 
 application in network analysis, and is known as 
network distance. Dijkstra is the most common 
algorithm used in  fi nding the shortest path, which 
also has a lower computational complexity (Zhan 
and Noon  1998  ) . Dijkstra’s algorithm calculates 
the shortest path from a selected start node to any 
other node in a connected network (Dijkstra 
 1959  ) . Many GIS software tools use this 
algorithm for shortest-path analysis 

 2   Directness
          

 Directness is a measurement of network 
ef fi ciency and complexity by rationing Sd 
(straight line distance) and Nd (network distance). 
The value is between 1 and 0, where the most 
ef fi cient and simplest network has a value of 1, 
while a complex network has a value of 0 

 3   Alpha index
    

Nodes = 8
Links = 8

Nodes = 8
Links = 9

a b     

 Alpha index = (Links − Nodes + 1)/
(2 Nodes − 5) 

 Alpha index for network  A  = 0.09 
 Alpha index for network  B  = 0.18 

 The alpha index is a measurement of the 
connectivity level. The higher the alpha index, 
the more connected a network is. Trees and 
simple networks will have a value of 0. A value 
of 1 indicates a completely connected network. It 
is very rare that an actual network will have an 
alpha value of 1 

 4   Gamma index
    a b

Nodes = 8
Links = 8

Nodes = 8
Links = 9

    

 Gamma index = Links/3(Nodes − 2) 
 Gama index for network  A  = 0.44 
 Gama index for network  B  = 0.50 

 The gamma index is a ratio of the number of 
links in the network to the maximum possible 
number of links between nodes. The maximum 
possible number of links is expressed as 
3(Nodes − 2) because the network is abstracted as 
a planar graph. In a planar graph, no links 
intersect except at nodes (Taaffe and Gautheir 
 1973  ) . This feature represents a transportation 
network well enough. Values for the gamma 
index range from 0 to 1, and are often expressed 
as a percentage of connectivity, e.g., a gamma 
index of 0.44 means that 44% of the network is 
connected (Dill and Portland  2003  )  

(continued)
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 No.  Measurement  Description 

 5   Connectivity mean center  ( CMC )
      

      
;i i i i i i

i i i i

W X WY
X Y

W W

Σ Σ
= =

Σ Σ

   

  W  
 i 
  =  number of connected streets in 

node  i  
  X  

 i 
 ,  Y  

 i 
  = node  i  coordinates  

    , connectivity mean centerX Y =    

 The mean center averages the  x  and  y  coordinates 
of all the nodes in a speci fi c user-de fi ned area 
such as a planning zone or administrative unit. 
The connectivity mean center (Lwin and 
Murayama  2009  )   fi nds the most connected place 
within a speci fi c unit based on the number of 
connected streets in each node as a weighted 
factor. It is useful for  fi nding an optimal voting 
site, community center, bus stop, etc. Moreover, 
the degree of street connectivity can be mapped 
based on the values of these nodes (see Fig.  12.6 ) 

 6   Shortest vs. greenest  

      
 Sometimes road attribute values can be used as 
weighted factors to compare shortest vs. 
weighted distance. For example,  fi nding the 
greenest route can be accomplished based on the 
greenness score of each road segment (Lwin and 
Murayama  2011  ) . These attribute values could 
also be speed limitation, number of traf fi c 
accidents, traf fi c volume, etc. (see Chap.   16     for 
more details) 

 7   Average block size and block density 
       

 Average block size = Total areas of 
polygons/number of polygons 

 Average block size (Hess et al.  1999 ; Reilly 
 2002  )  can be measured by converting the road 
line features to polygon features and calculating 
the average block area. A few researchers have 
used block density as a proxy measure for 
connectivity (Dill and Portland  2003  ) . Frank 
et al.  (  2000  )  used the mean number of census 
blocks per square mile, since census blocks are 
typically de fi ned as the smallest fully enclosed 
polygon bound by features such as roads or 
streams on all sides. A rule of thumb is the 
smaller the size, the better the accessibility 

(continued)

Table 12.1 (continued)

http://dx.doi.org/10.1007/978-4-431-54000-7
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Table 12.1 (continued)

 No.  Measurement  Description 

 8   Cumulative opportunity measure 
            

( )i j j jA B a= Σ    

 where  
 A  

 i 
  = accessibility measured at 

point  i  to potential activities in  j   
 a  

 j 
  = opportunities in zone  j   

 B  
 j 
  = a binary or threshold value 

 Cumulative opportunity provides a measure of 
the number of available facilities within a certain 
distance or travel time. Examples of cumulative 
opportunity measures are found in various 
articles (O’Sullivan et al.  2000 ; Sherman et al. 
 1974 ; Wachs and Kumagi  1973  )  

 9   Gravity -based measure
 L  

ij 
 = K(P

i
P

j 
/d

ij
2)   

  L  
 ij 
  = interaction between nodes  i  and  j  

  P  
 i 
  = magnitude of node  i  

  P  
 j 
  = magnitude of node  j  

  d  
 ij 
  = distance between two nodes 

  K  = constant (population size, total 
shops, total phone calls, etc.) 

 The gravity measure is an interaction of nodes 
based on their distance and some functional 
(weighted factors) measure of their individual 
accessibility. For example, weighted factors will 
be number of shops per point, frequency of going 
to these shops, etc. The gravity model is 
sometimes considered as a potentials model. The 
higher the opportunity and the shorter the 
distance, the greater the interaction occurring 
between two points, like Newton’s gravity law. 
Down-town areas provide more opportunities for 
shopping and job demands, while satellite areas 
provide more opportunities for sight-seeing, 
recreation and sports activities. Hansen  (  1959  )  is 
generally credited with  fi rst applying the gravity 
approach to transportation and land-use planning 

    12.5   Common Network Analysis Functions in GIS 

 Common network analysis types include route analysis or optimal route analysis, 
route analysis with barriers, service area identi fi cation, and  fi nding the closest facil-
ity and route for goods delivery (vehicle routing plan). Route analysis with barriers 
(Fig.  12.4 ) is important in mid-disaster management. The optimal route analysis can 
be done by either shortest distance or minimal travel time. It  fi nds alternative routes 
to reach target locations by avoiding barrier points (e.g., broken roads). Many GIS 
packages are available for network analysis, such as the ArcGIS Network Analyst 
extension, SANET (  http://sanet.csis.u-tokyo.ac.jp/    ), TranCAD, eRouteLogistics 
and RouteSmart. Using route analysis, we can calculate the best route from a start-
ing point (e.g., home) to other desired points (e.g., school, hospital, etc.).  

http://sanet.csis.u-tokyo.ac.jp/
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 Service area identi fi cation is another common type of network analysis which 
identi fi es a region that encompasses all accessible streets within a user-de fi ned net-
work distance, for example  fi nding all available restaurants within 1 km from home 
(Fig.  12.5 ).  

  Fig. 12.4    Route analysis with a barrier in the case of a disaster scenario       

  Fig. 12.5    Service area analysis       
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 Another application of a GIS road network data model is mapping the degree of 
street connectivity inside the city. Figure  12.6  shows the degree of street connectiv-
ity by an interpolation of connected streets for each node value. A well-connected 
area can be found in the city center.  

 Another example of a GIS network model-based application is “multi-stop trip” 
planning. For example, in Tsukuba City, Japan, local residents and green exercise 
takers can  fi nd the shortest or greenest route during their multi-stop trips (e.g., home 
to park, park to shopping center, shopping center to library, etc.) based on a GIS 
network data model through a smart phone while they are walking through the street 
(Fig.  12.7 ). By arranging the trip locations, users can calculate various travel dis-
tances and greenness scores. The increasing popularity of the Internet and user-
friendly web-based GIS applications such as Google Maps/Earth and Microsoft 
Bing Maps platforms have made GIS an integral part of life today for  fi nding the 
closest facilities, driving routes, and so on.   

    12.6   Conclusion 

 A network is a system of interconnected linear features used to solve problems of 
transportation, public facility management, accessibility studies and other human 
mobility studies. Network data sets are made of network elements. The geometry of 

  Fig. 12.6    Degree of street connectivity inside the city       
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  Fig. 12.7    Multi-stop trip planning based on a GIS network data model for mobile GIS users 
(  http://land.geo.tsukuba.ac.jp/ecowalker/ecowalker_eng.aspx    )       

the source features is used to establish connectivity. In addition, network elements 
have attributes that control navigation within the network. Accurate GIS network 
analysis requires good preparation of the network data and suf fi cient attribute infor-
mation. A network model can include a multi-layer model such as a railway system, 
a subway system, and a bus system to solve problems using multiple modes of 
transportation in an urban environment. Many commercial GIS data models com-
posed with layers such as points (nodes) and lines (links) are using the layer-based 
approach. These nodes and links can also be represented as object classes in the 
object-oriented network data model, which is still in the design phase. The develop-
ment of 3D network models and concepts in GIS (Lee  2005 ; Zhu et al.  2006  )  can 
solve these complex multi-layer network problems. Moreover, the combination of 
Internet technology and GIS gives opportunities to perform interactive network 
analysis in order to make spatial decisions in a timely manner for local residents and 
city planners (see example in Chap.   16    ).      
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       13.1   Introduction 

 Urban growth is recognized as physical and functional changes due to the transition 
of rural landscapes to urban forms. The time–space relationship plays an important 
role in understanding the dynamic process of urban growth. This dynamic process 
consists of a complex nonlinear interaction between several components, i.e., 
topography, rivers, land use, transportation, culture, population, economy, and 
growth policies. Many efforts have been made to improve such dynamic process 
representations with the utility of cellular automata (CA) coupled with fuzzy logic 
(Liu  2009  ) , arti fi cial neural networks (Li and Yeh  2002 ; Almeida et al.  2008  ) , 
Markov chains with a modi fi ed genetic algorithm (Tang et al.  2007  ) , weight of 
evidence (Soares-Filho et al.  2004  ) , nonordinal and multi-nominal logit estimators 
(Landis  2001  ) , SLEUTH (Clarke et al.  1997 ; Jantz et al.  2010  ) , and others (White 
and Engelen  1997 ; Batty et al.  1997  ) . 
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 Models based on the principles of CA have been developing rapidly. The CA 
approach provides a dynamic modeling environment which is well suited to mod-
eling complex environments composed of a large number of individual elements. 
The land-use change and urban growth processes can be compared with many 
aspects of the behavior of a cellular automaton, for instance, the space of an urban 
area can be regarded as a combination of a number of cells, each cell taking a 
 fi nite set of possible states representing the extent of its urban development with 
the state of each cell, and evolving in discrete time steps according to local transi-
tion rules. Therefore, CA-based urban models usually pay more attention to simu-
lating the dynamic process of urban development and de fi ning the factors or rules 
driving the development (Batty et al.  1997  ) . Different CA models have been devel-
oped to simulate urban growth and urban land use/cover change over time. The 
differences among various models exist in modifying the  fi ve basic elements of 
CA, i.e., the spatial tessellation of cells, the states of cells, the neighborhood, the 
transition rules, and the time (Liu  2009  ) . CA models have been shown to be effec-
tive platforms for simulating dynamic spatial interactions among biophysical and 
socio-economic factors associated with land-use and land-cover change (Jantz 
et al.  2010  ) . 

 While new urban models have provided insights into urban dynamics, a deeper 
understanding of the physical and socio-economic patterns and processes associ-
ated with urbanization is still limited in developing countries in South Asia. 
Although emerging geospatial techniques have recently bridged the spatial data 
gap, there are still very few empirical case studies (Thapa and Murayama  2009  ) . 
This research aims to simulate urban growth in the Kathmandu metropolitan 
region in Nepal using the weight of evidence technique incorporating CA. As the 
result of population growth and migration from rural to urban areas, urbanization 
has been recognized as a critical process in metropolitan areas of Nepal (Portnov 
et al.  2007 ; Haack  2009 ; Bhattarai and Conway  2010  ) . The Kathmandu metro-
politan region, which is the capital and major tourist gateway, has been facing 
rapid urbanization over the last three decades. Recently, it has had an estimated 
population of 2.18 million with an annual growth rate of 5.2% (Thapa and 
Murayama  2010  ) . Such urbanization pressure results in rapid changes in the urban 
landscape pattern of the region, with more built-up areas and the loss of natural 
landscapes. 

 Kathmandu, the capital of Nepal, has a long history of development, and is typical 
of cities surrounded by complex mountain terrains in the Himalayan region. History 
has witnessed its development as a strategic center of power, politics, culture, and 
commerce (Thapa et al.  2008  ) . However, along with the establishment of modern 
transportation infrastructures bringing easy access to the city, the agglomeration of 
rural settlements in the Kathmandu valley encroaching into the city began in the 
early 1960s. The predominantly agricultural landscape gradually changed to an urban 
landscape, with increasing human settlement in the 1960s and 1970s. These changes 
have escalated since the 1980s. The spatial diffusion of urban/built-up areas has 
spread outward from the city core and along the major roadways. Agricultural 
encroachment in rural hills and the periphery of mountains, and  urbanization in the 
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valley  fl oor area, are identi fi ed as the most common phenomenon in the valley (Thapa 
and Murayama  2009 ; Haack  2009 ; Bhattarai and Conway  2010  ) . 

 Several urban land-use development planning and policy initiatives for the valley 
have been made by the government in the past decades (Thapa et al.  2008  ) . The lat-
est planning document, “Long-Term Development Concept for the Kathmandu 
Valley” (Kathmandu Uptyakako Dirghakalin Bikas Avadharana), was released in 
2002 (KVUDC  2002  ) . This document, as a planning reference, conceptualizes sce-
narios to develop the Kathmandu metropolitan region by 2020. This long-term plan 
recommends: the promotion of the tourism-led service sector, guided urban devel-
opment encouraging a compact urban form and the conservation of agricultural 
land, infrastructure development coordinated with land use, a new outer ring road to 
connect the traditional settlements in the metropolitan region, and rigorous regula-
tion of areas de fi ned as environmentally sensitive. All these policy recommenda-
tions will eventually affect the future spatial pattern of urbanization.  

    13.2   Methods 

    13.2.1   Study Site 

 The study area which has been selected to apply the urban growth model (Fig.  13.1 ) 
follows the watershed boundary, which was derived from 20 m digital elevation 
data. The topography rises to an elevation of 1,100–2,700 m above sea level and 
forms a bowl-shaped valley. As most of the areas outside the watershed boundary 
contain high mountains, forest, shrub land, and very little human settlement, urban 
expansion outside this boundary is largely restricted by these natural barriers. The 
valley is drained by the Bagmati river system, which is the main source of water for 
drinking and irrigation (Thapa and Murayama  2009  ) . The study area covers 685 km 2 , 
and 14% of the land is de fi ned as urban area that includes  fi ve urban centers, 
Kathmandu, Lalitpur, Bhaktapur, Kirtipur, and Madhyapur Thimi. In addition, the 
region consists of 97 suburban and rural villages.   

    13.2.2   Database Preparation 

 In this study, we used data from various sources for modeling, calibrating, and vali-
dating urban growth in the Kathmandu metropolitan region. Three land-use maps at 
30 m spatial resolution for the years 1978, 1991, and 2000 were processed. These 
maps were acquired from Thapa  (  2009  ) , and were created using remote sensing 
techniques. The heterogeneous and complex landscape of urban regions, for exam-
ple, suburban residential areas which form a complex mosaic of trees, lawns, roofs, 
 concrete, and asphalt roadways, requires land-use and land-cover classi fi cation 
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 techniques that combine more than one classi fi cation procedure in order to improve 
the accuracy of remote-sensing-based mapping. Therefore, a hybrid approach with a 
series of processing steps was developed to create multi-temporal thematic maps of 
the Kathmandu valley. A detailed discussion of the methods adopted to create these 
maps and the mapping accuracies can be found in Thapa and Murayama  (  2009  ) . In 
this chapter, it is assumed that these reference maps are the most accurate maps avail-
able at this particular time, so they serve as the basis for measuring the accuracy of 
the prediction. The maps were further generalized to reduce the complexity of urban 
growth modeling. The land-use types, i.e., built-up areas, industrial areas, roads, air-
port, institutional areas, government secretariat area, and royal palace, were aggre-
gated into a built-up category. The other land-use types, namely agricultural area, 
forest, shrubs, water, and open space, were kept in the same state. Protected areas 
were not separated from the land-cover maps, but were merged according to their 
nature, i.e., forest cover, open space, water, or built-up area. Two historical transition 
matrices were calculated from the land-use maps for the periods 1978–1991 and 
1991–2000. Based on a transition matrices analysis, the water and open space areas 
were excluded in dynamic modeling, as they represented small land areas and mostly 
remained static. Therefore, for the dynamic modeling of urban growth we restricted 
ourselves to four broad land-cover categories, i.e., built-up areas, agriculture, forest, 
and shrubs. Furthermore, the land-cover transition rates for each category were com-
puted by normalizing the row sum to be equal to 1. As the model was set to run 
in yearly time-steps, the transition rates were further  converted to annual rates by 

  Fig. 13.1    Study area—Kathmandu valley, Nepal.  Data source : ICIMOD/UNEP  (  2001  )        
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simply dividing by the number of years, i.e., 13 and 9 for the land-cover transition 
periods of 1978–1991 and 1991–2000, respectively. The transition rates per year 
were incorporated into the modeling as  fi xed parameters. 

 Other data, i.e., elevation, urban and village boundaries, and population census, 
were also prepared. After creating all the required input maps in ArcGIS software, 
a simulation model of urban growth was designed in DINAMICA, a spatially 
explicit CA-based modeling software (  http://www.csr.ufmg.br/dinamica/dinamica.
html    ). The transition matrices were passed on to the DINAMICA model, which 
allocates the changes across the landscape based on spatial data layers representing 
physical and socio-economic conditions which are stored in a geographical infor-
mation science (GIS) environment. As interactions between landscape elements 
occur in different ways, depending on local characteristics and transition rates, the 
DINAMICA model produces distinct spatial patterns of land-cover change.  

    13.2.3   Determining the Factors of Urban Growth 

 The selection of the best set of input variables and internal software parameters in 
order to produce the best  fi t between the empirical data and the observable reality 
are very important aspects of urban growth modeling. After calculating the existing 
land transitions, we identi fi ed a different set of factors governing each change in the 
four land-cover categories. In general, the urban growth that causes land-use changes 
is the result of a complex interaction between behavioral and structural factors asso-
ciated with demand, technological capacity, and the social relations which affect 
demand and capacity and ultimately strain the environment (Thapa and Murayama 
 2010  ) . The factors which are available for the modeling analysis do not always rep-
resent the set of variables which are necessary to produce ideal simulation results. 
However, there are no universal factors driving the change. Although similar driving 
factors have been found in several studies, the degree to which they contribute to 
landscape change differs (Batty et al.  1997 ; Almeida et al.  2008 ; Jantz et al.  2010  ) . 
People, government plans and programs, landforms, landscape change processes, 
and available resources often cause differences in the importance of various factors. 
In the Kathmandu Valley, similarities among these factors are apparent. In fact, the 
people’s behavior and daily interactions with the environment over time have caused 
observable changes in the valley’s landscape (Thapa and Murayama  2010  ) . Indeed, 
there is a set of factors for land-use transitions that substantially respond to land-
scape changes where these factors effectively guide the modeling experiment. 

 Several maps of biophysical features, infrastructure, and social factors have been 
generated on the basis of the information extracted from land-use maps and other 
data sources (Table  13.1 ). A digital elevation model (DEM) map was created based 
on elevation point data (ICIMOD/UNEP  2001  ) , a slope map was derived from the 
DEM map, and an annual population growth-rate map was prepared based on the 
census data (CBS  2001  ) . In all cases, distances were calculated using the Euclidean 
distance method. The distance to existing built-up areas was de fi ned as dynamic, 

http://www.csr.ufmg.br/dinamica/dinamica.html
http://www.csr.ufmg.br/dinamica/dinamica.html
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and was up-dated at each model iteration step because of the neighborhood 
characteristics of land-use change attraction. All the remaining factors were static. 
The spatial independence of the input factor maps was checked using a set of mea-
sures, i.e., the Cramer test and the joint uncertainty information (Bonham-Carter 
 1994  ) . Both tests presented a value between 0 and 1, showing the degree of associa-
tion as from independent to full, respectively, between the maps compared. As a 
principle, correlated variables must be removed or combined into a third that will be 
used in the model. Among the factors selected, no signi fi cant spatial dependency 
was revealed where Cramer’s test and the joint uncertainty information were found 
to be <0.5 and <0.6, respectively.   

    13.2.4   Transition Probability Map Calculation and Model 
Calibration 

 The development of abstraction methods capable of adequately representing com-
plex processes with respect to quantity and location is a great challenge (Godoy and 
Soares-Filho  2008  ) . The weight of evidence, entirely based on the Bayesian 
approach of conditional probability, is traditionally used by geologists to point out 
areas favorable for geological phenomena such as seismicity and mineralization 
(Goodacre et al.  1993 ; Bonham-Carter  1994  ) . This method can combine spatial data 
from a variety of sources to describe and analyze interactions, provide evidence for 
decision making, and make predictive models (Soares-Filho et al.  2004 ; Almeida 
et al.  2008  ) . In our spatial context, this approach detects the favorability of a certain 
event, for example, an event of land-cover change from agriculture to built-up sur-
face in relation to potential evidence (proximity to urban centers, roads, water, etc.), 
often called the driving factors of change. Weights are estimated from the measured 
association between the land cover change occurrences and the values on the driv-
ing factors maps which are to be used as predictors. In this research, we employed 

   Table 13.1    De fi nition of the land cover change driving factors   

 Land-change factors (biophysical, infrastructure, and social)  Year 

 Digital elevation model at 30 m spatial resolution  1995 
 Slope in degrees  1995 
 Distances to rivers  1978, 1991, 2000 
 Distances to industrial estates  1978, 1991, 2000 
 Distances to  fi ve urban centers (Kathmandu, Lalitpur, Kritipur, 

Bhaktapur, and Madhayapur Thimi) 
 1978, 1991, 2000 

 Distances to major roads and highways  1978, 1991, 2000 
 Distances to ring road  1978, 1991, 2000 
 Distances to feeder roads  1978, 1991, 2000 
 Distances to existing built-up surface  1978, 1991, 2000 
 Annual population growth rate  1991, 2000 
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the weight of evidence method to select the most important variables needed for the 
land cover change analysis and quanti fi ed their in fl uence on each type of land cover 
transition event. The weights of evidence represent each variable in fl uence on the 
spatial probability of a transition i ⇒ j, and can be calculated as follows:

     = { | }
{ | } { }

{ }

P B D
O D B O D

P BD    (13.1)  

where     { | }O D B    is the odds ratio of event  D  occurring given a spatial pattern 
 B ,  O { D } is the prior odds ratio of event  D , and     { | } / { }P B D P BD    is known as the 
suf fi ciency ratio. In the weight of evidence, the natural logarithm of both sides of 
 13.1  is taken as

     
+= +log{ | } log{ }D B D W    (13.2)  

where  W  +  is the weight of evidence of event  D  occurring, which is calculated from 
the data. The spatial probability of a transition  i  ⇒  j , given a set of spatial data, can 
be expressed as
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where  V  is a vector of  k  spatial driving factors, measured at location  x ,  y  and repre-
sented by its weights     + + +…1 2, , ,xy xy nxyW W W   , where n is the number of categories of 
each factor  k  (for a more detailed mathematical discussion, see Bonham-Carter 
 1994 ; Soares-Filho et al.  2004  ) . In this way, weights of evidence are assigned for 
categories of each factor represented by its spatial data layers. After creating local 
transition probabilities, the CA simulation model is calibrated by internal parame-
ters which concern the average size and variance of patches and patch isometry 
(Table  13.2 ). These functions enable the formation of a variety of sizes and shapes 
of patches of change. The patch isometry varies from 0 to 2. The patches assume a 
more isometric form as this number increases. The sizes of patches of change are set 
according to a log–normal probability distribution. Therefore it is necessary to spec-
ify the parameters of this distribution, which is represented by the mean and vari-
ances of the patch sizes to be formed (Soares-Filho et al.  2004  ) . The mean patch size 
and variances were determined from the source maps, while the isometry was deter-
mined empirically. The calibration parameters were computed for three temporal 
years, i.e., 1978 for calibrating the predictive model of 1991 (time 1), 1991 for the 
model of 2000 (time 2), and 2000 for projecting the future land-cover patterns. 
Furthermore, the reference map of time 2 was not used during the model calibration, 
i.e., the land-cover map of 2000 was not used as an input map while calibrating the 
model of 2000.   
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    13.2.5   Model Validation 

 The validation of a landscape dynamics model is usually carried out by comparing 
the predicted result with the empirical map to determine the predictive ability of the 
model. In this chapter, we used a three-map comparison approach for model valida-
tion, as is recommended by Pontius et al.  (  2008  ) . This validation technique consid-
ers the overlay of all three maps: the reference map of time 1, the reference map of 
time 2, and the prediction map of time 2. This three-map comparison approach 
allows one to distinguish the pixels that are correct due to persistence from the pix-
els that are correct due to change. In this chapter, two validation maps were created 
for the 1991 and 2000 models. For further quantitative clari fi cation of each model, 
the sources of percentage correct and percentage error were analyzed by computing 
observed change, predicted change,  fi gure of merit ( 13.4 ), producer’s accuracies 
( 13.5 ), user’s accuracies ( 13.6 ), and overall accuracies ( 13.7 ). 

 The  fi gure of merit (FoM) is the ratio of the intersection of the observed change 
and the predicted change to the union of the observed change and the predicted 
change. The FoM can range from 0%, meaning no overlap between observed and 
predicted change, to 100%, meaning a perfect overlap between observed and pre-
dicted change. Equation  13.4  shows the mathematical notation of the FoM.

     =
+ + +

FoM
B

A B C D    (13.4)  

where  A  is the area of error due to observed change predicted as persistence,  B  is the 
correct area due to observed change predicted as change,  C  is the area of error due 
to observed change predicted as the wrong gaining category, and  D  is the area of 
error due to observed persistence predicted as change. 

 The producer’s accuracy (PA) ( 13.5 ) shows the proportion of pixels that the 
model predicts accurately as change, given that the reference maps indicate the 
observed change. The user’s accuracy (UA) ( 13.6 ) shows the proportion of pixels 
that the model predicts accurately as change, given that the model predicts change. 
The overall accuracy (OA) ( 13.7 ) provides the overall agreement between the refer-
ence and predicted maps.

   Table 13.2    Simulation internal parameters   

 Land cover 

 1978  1991  2000 

 MPS  Var  Iso  MPS  Var  Iso  MPS  Var  Iso 

 Shrubs  81  21457  1  62  13849  1.1  69  15842  1.1 
 Forest  27  3433  1  41  8245  1.1  40  7510  1.1 
 Built-up  31  3755  1  7  114  1.1  6  222  1.1 
 Agriculture  49  5682  1  20  2573  1.1  9  438  1.1 

   Note :  MPS  mean patch size,  Var  variance,  Iso  isometry  
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where  E  in  13.7  is the correct area due to observed persistence predicted as 
persistence.   

    13.3   Results 

    13.3.1   Land Cover Transition Analysis 

 The land cover transition matrix provides an important basis for analyzing the tem-
poral and spatial changes of land cover, and examining the driving forces behind 
those changes in the Kathmandu metropolitan region. Figure  13.2  shows the land-
scape transition maps for the two time periods, i.e., 1978–1991 and 1991–2000. The 
maps demonstrate substantial landscape transitions during the study period. 
Agricultural areas gained a large amount of land at the expenses of shrubs and forest 
land during the period 1978–1991 (Table  13.3 ). Large proportions of shrub (36 km 2 ) 
and forest (26 km 2 ) land were transformed into agricultural land in the surrounding 
rural mountain areas in the region. This can be observed mostly in the northeastern 
and southern parts of the region.   

 The built area received 23 km 2  from agricultural land and 1.2 km 2  from forest. 
The development of a ring road around the existing urban core during the 1970s, 
and the extension of major and feeder roads into rural areas in the 1980s (Fig.  13.2a ), 
accelerated the expansion of built-up areas at the expense of agricultural areas. 
Shrub and forest land also contributed to built-up areas, albeit at a lower rate. 
Depending on the location, land cover transitions between forest and shrub land 
were also observed. 

 During the period 1991–2000, a large amount of agricultural land (27 km 2 ) was 
transformed into built-up area, which increased by 4 km 2  as compared with the pre-
vious 13-year period (Table  13.4 ). At the same time, the transformation of shrub and 
forest land cover into agricultural land decreased noticeably. Some of the forest 
(1 km 2 ) and shrub (1.5 km 2 ) land was also changed to built-up area owing to the 
expansion of rural roads in the 1990s. Overall, agricultural encroachment in the 
periphery of rural hills and mountains mainly occurred where shrub and forest 
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  Fig. 13.2    Land cover transitions (1978–1991 and 1991–2000)       

   Table 13.3    Land cover transition    area matrix (1978–1991)   

 1978 

 1991 

 Shrubs  Forest  Built-up  Agriculture 

 km 2   Rate  km 2   Rate  km 2   Rate  km 2   Rate 

 Shrubs   78.040    0.645   6.320  0.052  0.570  0.005  36.090  0.298 
 Forest  3.140  0.019   132.220    0.814   1.200  0.007  25.970  0.160 
 Built-up  0.000  0.000  0.000  0.000   32.100    1.000   0.000  0.000 
 Agriculture  0.000  0.000  0.420  0.001  22.920  0.065   328.520    0 . 934  
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landscape in rural areas of the valley changed to agricultural areas, while in the 
 valley  fl oor, the conversion of agricultural land into built-up surfaces was identi fi ed. 
A minor land-use transition between forest and shrub land cover was also noticed 
during this period.   

    13.3.2   Urban Growth Model Validation Results 

 By varying the parameters at each model iteration, various simulation results were 
produced. The best results generated by the model are illustrated in Fig.  13.3c, e , 
which are compared with the actual maps of land cover from 1978, 1991, and 2000 
(Fig.  13.3a, b, d ). The similarity in the spatial patterns between the simulated and 
reference maps are very important. A visual comparison of the model’s simulated 
results and the actual maps from 1978–2000 shows that the results produced by the 
model were a good match with the actual urban events. However, a systematic vali-
dation method requires us to quantify the degree of error in the simulation results. 
Figure  13.4  shows the validation results graphically, and allows the reader to access 
the nature of the prediction errors, which are shown in various colors. These are 
obtained by overlaying the reference map of time 1, the reference map of time 2, 
and the prediction map of time 2. The medium-pink pixels show where the model 
predicted change correctly. Purple pixels show where change was observed and the 
model predicted change, but the model predicted a transition to the wrong category, 
which is a type of error that can occur in multiple land-cover category models. 
Medium-blue pixels show where change was observed at locations where the model 
predicted persistence. Light-blue pixels show where persistence was observed at 
locations where the model predicted change. White pixels show locations where the 
model predicted persistence correctly.   

 Figure  13.5  presents a summary of the error analysis according to the logic of the 
legend for Fig.  13.4 . Each bar is a rectangular Venn diagram where the two central 
segments with a different gray scale represent the intersection of the observed 
change and the predicted change. The second segment from the left shows the 
change that the model predicted correctly. The union of the segments on the left and 

   Table 13.4    Land cover transition area matrix (1991–2000)   

 1991 

 2000 

 Shrubs  Forest  Built-up  Agriculture 

 km 2   Rate  km 2   Rate  km 2   Rate  km 2   Rate 

 Shrubs   71.070    0.876   0.920  0.011  0.950  0.012  8.210  0.101 
 Forest  0.540  0.004   132.630    0.957   1.490  0.011  3.860  0.028 
 Built-up  0.000  0.000  0.000  0.000   57.060    1.000   0.000  0.000 
 Agriculture  0.080  0.000  0.450  0.001  27.150  0.069   363.420    0.929  
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  Fig. 13.3    Actual vs. simulated land-use patterns. ( a ) Actual 1978; ( b ) actual 1991; ( c ) simulated 
1991; ( d ) actual 2000; ( e ) simulated 2000       

 



20913 Urban Growth Modeling Using the Bayesian Probability Function

  Fig. 13.4    Validation results (( a ) 1991 and ( b ) 2000) obtained by overlaying the reference map of 
time 1, the reference map of time 2, and the prediction map of time 2       

  Fig. 13.5    Sources of percentage correct and percentage error in the model validation       
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center portions of each bar represents the area of change according to the reference 
maps, and the union of the segments on the center and right portions of each bar 
represent the area of change according to the prediction map. As represented by the 
 fi gure of merit, 26% of overlap between the observed change and the predicted 
change was found in 1991, while this overlap had decreased by 7% in 2000. 
A decreasing pattern is also noticed in the PA and the UA. However, the overall 
agreement between the reference and predicted maps, as shown by the OA, was 
91% in 2000, which is an increase of 8% compared with 1991. Table  13.5  shows the 
results by land-cover type at the quantitative level, i.e., actual vs. simulated, with 
minor differences.    

    13.3.3   Forecasting Urban Dynamic Patterns for the Years 2010 
and 2020 

 Using the same con fi guration as the 1991–2000 simulation model, as well as the 
input map of 2000 (time 1) and the road network of 2000, we performed a simula-
tion aimed at predicting the spatial patterns of urban growth in the metropolitan 
region for the years 2010 and 2020. Figure  13.6  shows the urban growth consis-
tently expanding eastwards, and encompassing the suburban villages and two urban 
centers, namely Madhayapur Thimi and Bhaktapur. The built-up surfaces of the vil-
lages in the southeastern part were also starting to be overrun by 2010. The current 
agricultural area between the Madhayapur Thimi and Kathmandu–Lalitpur urban 
centers will be converted into a built-up area in the 2010s. By 2020, all the urban 
centers will be aggregated into a greater metropolitan region in the valley.  

 Figure  13.7  shows the quantitative results produced from the simulated maps by 
the selected land-cover categories. The built-up area will be increased from 87 km 2  
to 148.7 km 2  by 2020, which means a 59% increase, while other land-cover classes 
are diminishing at different levels. The most vulnerable areas seem to be shrub land 
changing to either agricultural areas or forest. Most of the agricultural areas will be 
converted to built-up areas. However, the urban growth rate will decrease in the next 
few decades (Table  13.6 ). The trend of negative growth of both forest and  agricultural 
areas is increasing, although at various rates. At the same time, the negative growth 
of shrub land will be at a lower rate by 2010.     

   Table 13.5    Actual vs. simulated land cover in percentages (1991–2000)   

 Land cover 

 1991  2000 

 Actual  Simulated  Actual  Simulated 

 Shrubs  12.14  12.01  10.71  10.72 
 Forest  20.78  20.82  20.04  20.10 
 Built-up  8.58  8.70  13.02  13.02 
 Agriculture  58.50  58.47  56.23  56.16 
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  Fig. 13.6    Simulated land-cover patterns (2010–2020)       

400

350

300

250

200

150

100

50

0
2000 2010 2020

Year

Agriculture

Built

Forest

Shrubs

K
m

2

  Fig. 13.7    Area of land cover in km 2  (2000–2020)       

   Table 13.6    Annual urban growth rate a  (2000–2020)   

 Land cover 

 Years 

 2000  2010  2020 

 Shrubs  −1.298  −1.318  −1.309 
 −0.374  −0.381 

 Built-up   5.755   3.020   2.213 
 Agriculture  −0.427  −0.473  −0.490 

   a     − ×Rate = (((present area past area)/(past area)) 100)/number of past years     
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    13.4   Discussion and Conclusion 

 Modeling urban growth has been the objective of urban research for many years. 
This chapter has analyzed the historical land-cover transition and simulated future 
urban dynamics in the Kathmandu metropolitan region using the Bayesian approach 
incorporated with CA and GIS approaches. The historical evidence of land-cover 
transition showed that the rate of encroachment of urban areas on other land-cover 
areas has been quite rapid, with scattered patches of urban development character-
izing the urban sprawl in the metropolitan region. On the one hand, it may have been 
the conversion of agricultural land to built-up areas in the urban fringes that forced 
the farmers in the vicinity to migrate. On the other hand, farmers were encouraged 
to develop agricultural activities in the rural hills owing to road expansion and mar-
ket accessibility to rural areas, which enhanced deforestation and the encroaching 
shrub land. After the establishment of democracy in 1990, Kathmandu became the 
center of political power and the hub of business activities (Thapa et al.  2008  ) . The 
business and economic opportunities led to a population in fl ux in the valley, creat-
ing a demand for housing that eventually increased the built-up surfaces. Landscape 
fragmentation and heterogeneous land-use development are recent phenomena in 
the area (Thapa and Murayama  2009 ; Bhattarai and Conway  2010  ) . This type of 
development around the city is often described as economically inef fi cient and aes-
thetically unattractive (Cadwallader  1996  ) . The form of urban sprawl in uneven 
spatial directions might have been further promoted by the weakness of the local 
government regulations, as reported by Thapa et al.  (  2008  ) . The land tenure system 
might also have contributed to this form of sprawl, since private land has been sub-
divided and used for the development of unplanned residential areas. 

 The modeling framework adopted in DINAMICA, which is used in this research, 
can be compared to the state change model concept which was  fi rst used to model 
urban development patterns in a CUF II model (Landis  2001  ) . The state change 
models project future land use and land cover using the information on land use at 
two moments in time to calibrate a statistical model which relates a set of indepen-
dent variables to the observed land-use changes at each location (Klosterman and 
Pettit  2005  ) . Current and projected values for the independent variables are then 
used to project future land-use changes. A similar concept is applied in DINAMICA 
differentiating with probability functions, i.e., DINAMICA uses the weight of evi-
dence, while CUF II uses nonordinal logit (Landis  2001  ) . Recently, other models, 
e.g., a new version of Clarke’s urban growth model, SLEUTH-3r (Jantz et al.  2010  ) , 
and the land change modeler of IDRISI (Eastman  2009  )  adapted similar state-
change concepts by differentiating with the probability function. In order to derive 
future spatial patterns of urban development in the valley, the calibration of the 
model was conducted systematically over time, with the similarity of the model’s 
outcomes being compared with the actual urban development of the metropolitan 
region between 1978 and 2000. The model was applied to generate perspective 
views of the city for the next 20 years. The results presented dynamic patterns 
and a composition of Kathmandu’s urban development up to the year 2020. 
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The perspective views of Kathmandu generated by the model highlighted the 
requirement of urban planning controls, leading to the conservation of more forest 
and agricultural land and the promotion of intensive development. 

 This analysis suggests that urban development in the Kathmandu valley will con-
tinue through both  fi lling-in existing urban areas and outward expansion toward the 
east, south, and west directions in the future. Development will be greatly affected 
by the existing urban space and the transportation network. Unsurprisingly, under 
extremely unfavorable topographic conditions, close proximity to the road network 
plays a crucial role in urban development, much more than in cities with gentler 
topographies and better infrastructure networks (Liu  2009  ) . However, this study 
assumed that transportation systems would not change during the future simulation 
period. There are substantial uncertainties in simulating future changes in road sys-
tems since they are subject to relatively frequent changes and are often affected by 
urban transportation policies and land-use planning. A map of the future transporta-
tion network in the valley is not available. The topographical constraints on this 
development will also be important, especially when the urban areas of Kathmandu 
extend further outward from existing urban areas. The topographical complexity 
and the unavailability of a future transportation network map could be the main 
causes of decreasing urban growth rate in the future. 

 Furthermore, a concrete future land-use plan for the Kathmandu valley is miss-
ing in this modeling. Spatial data related to future urban development planning, 
such as land-use plans, have still not been produced by the authorities. Therefore, 
the model used in this research to simulate the future growth scenario is missing any 
planning guidance. 

 The simulation estimate is based on extrapolation from historic processes which 
are not guaranteed to continue in the future, but it mirrors spatial patterns of land 
cover in the metropolitan region if the historic processes do not alter. In this situation, 
the model has generated maps to show where and how the urban development of 
Kathmandu is heading in the next two decades from 2000, which may be a critical 
reference point for decisions guiding the future urban development and land manage-
ment in the valley. This study has also demonstrated the usefulness of the data acquired 
from satellite remote sensing and CA-based urban growth modeling in providing 
land-use and land-cover maps and change information, which are very valuable for 
planning and research. The approach adopted in this study can be used for the analy-
sis of urban growth and land-cover changes in developing countries where the amount 
and quality of geographic information and other ancillary data are very limited.      

      References 

    Almeida CM, Gleriani JM, Castejon EF, Soares-Filho BS (2008) Using neural networks and cel-
lular automata for modeling intra-urban land-use dynamics. Int J Geogr Inf Sci 22:943–963  

    Batty M, Couclelis H, Eichen M (1997) Urban systems as cellular automata. Environ Plann B 
24:175–192  



214 R.B. Thapa and Y. Murayama

    Bhattarai K, Conway D (2010) Urban vulnerabilities in the Kathmandu valley, Nepal: visualiza-
tions of human/hazard interactions. J Geogr Inf Syst 2:63–84  

    Bonham-Carter G (1994) Geographic information systems for geoscientists: modeling with GIS. 
Pergamon, New York  

    Cadwallader MT (1996) Urban geography: an analytical approach. Prentice-Hall, New Jersey  
    CBS (2001) Population of Nepal (selected data–central development region). His Majesty’s 

Government of Nepal, Kathmandu  
    Clarke KC, Hoppen S, Gaydos LJ (1997) A self-modifying cellular automaton model of historical 

urbanization in the San Francisco bay area. Environ Plann B 24:247–261  
    Eastman JR (2009) IDRISI Taiga, Guide to GIS and remote processing. Clark University, Worcester  
    Godoy MMG, Soares-Filho BS (2008) Modelling intra-urban dynamics in the Savassi neighbour-

hood, Belo Horizonte city, Brazil. In: Paegelow M, Olmedo MTC (eds) Modelling environ-
mental dynamics. Springer, Berlin, pp 319–338  

    Goodacre CM, Bonham-Carter GF, Asterberg FP, Wright DF (1993) A statistical analysis of spa-
tial association of seismicity with drainage patterns and magnetic anomalies in western Quebec. 
Tectonophysics 217:285–305  

    Haack B (2009) A history and analysis of mapping urban expansion in the Kathmandu valley, 
Nepal. Cartogr J 46:233–241  

      ICIMOD/UNEP (2001) Kathmandu valley GIS database. Kathmandu: ICIMOD  
    Jantz CA, Goetz SJ, Donato D, Claggett P (2010) Designing and implementing a regional urban mod-

eling system using the SLEUTH cellular urban model. Comput Environ Urban Syst 34:1–16  
    Klosterman RE, Pettit CJ (2005) Guest editorial: an update on planning support systems. Environ 

Plann B 32:477–484  
    KVUDC (2002) Long term development concept of Kathmandu valley. Kathmandu Valley Urban 

Development Committee, Kathmandu  
    Landis J (2001) CUF, CUF II, and CURBA: a family of spatially explicit urban growth and land-use 

policy simulation models. In: Brail RK, Klosterman RE (eds) Planning support systems: integrating 
geographic information systems, models and visualization tools. ESRI, Redlands, pp 157–200  

    Li X, Yeh AG (2002) Neural-network-based cellular automata for simulating multiple land use 
changes using GIS. Int J Geogr Inf Sci 16:323–343  

    Liu Y (2009) Modelling urban development with geographical information system and cellular 
automata. Taylor and Francis, Boca Raton  

    Pontius RG, Boersma W, Castella J, Clarke KC, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein 
N, Kok K, Koomen E, Lippitt CD, McConnell W, Sood AM, Pijanowski B, Pithadia S, Sweeney 
S, Trung TN, Veldkamp AT, Verburg PH (2008) Comparing the input, output, and validation 
maps for several models of land change. Ann Reg Sci 42:11–47  

    Portnov BA, Adhikari M, Schwartz M (2007) Urban growth in Nepal: does location matter? Urban 
Stud 44:915–937  

    Soares-Filho BS, Alencar A, Nespad D, Cerqueira GC, Dial M, Del C, Solozarno L, Voll E (2004) 
Simulating the response of land-cover changes to road paving and governance along a major 
Amazon highway: the Santarem-Cuiaba corridor. Glob Chang Biol 10:745–764  

    Tang J, Wang L, Yao Z (2007) Spatio-temporal urban landscape change analysis using the Markov 
chain model and a modi fi ed genetic algorithm. Int J Remote Sens 28:3255–3271  

   Thapa RB (2009) Spatial process of urbanization in Kathmandu valley, Nepal. PhD Dissertation. 
Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki  

    Thapa RB, Murayama Y (2009) Examining spatiotemporal urbanization patterns in Kathmandu 
valley, Nepal: remote sensing and spatial metrics approaches. Remote Sens 1:534–556  

    Thapa RB, Murayama Y (2010) Drivers of urban growth in the Kathmandu valley, Nepal: examin-
ing the ef fi cacy of the analytic hierarchy process. Appl Geogr 30:70–83  

    Thapa RB, Murayama Y, Ale S (2008) Kathmandu. Cities 25:45–57  
    White R, Engelen G (1997) Cellular automata as the basis of integrated dynamic regional model-

ing. Environ Plann B 24:235–246    



215Y. Murayama (ed.), Progress in Geospatial Analysis, 
DOI 10.1007/978-4-431-54000-7_14, © Springer Japan 2012

       14.1   Introduction 

 Protected areas (PAs) have become a universally adopted way of conserving biodi-
versity for a wide range of human values. Globally, 11.2% of the total forest area 
has been designated for the conservation of biological diversity (FAO  2005  ) . A PA 
is de fi ned as “an area of land and/or sea especially dedicated to the protection of 
biological diversity, and of natural and associated cultural resources, and managed 
through legal or other effective means” (IUCN  1994  ) . Although PAs are designed 
for biodiversity conservation goals, they are also important to the livelihoods of 
local communities, particularly of indigenous people who depend on the resources 
available in the PAs for their survival (McNeely  1993 ; WCPA  2010  ) . In Vietnam, 
PAs are strongly affected by nearby rural communities because the people’s liveli-
hoods often depend heavily on land and forest resources from PAs (Phuong and 
Dembner  1994 ; ICEM  2003  ) . Driven by population pressure in the PA buffer zones, 
increasing demands for food, timber, and non-timber products have resulted in 
agricultural expansion into PAs (ICEM  2003  ) . To control agricultural expansion 
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into PAs and ensure sustainable uses of land in the buffer zones, there is a great need 
to locate agricultural production activities in suitable locations to avoid negative 
ecological consequences. PA managers are often requested to identify the spatial 
distribution of suitable areas for cropland in the buffer zone. One way to achieve this 
identi fi cation is to employ a land suitability assessment (LSA) tool. 

 An LSA is a prerequisite for determining and locating future land uses (van Ranst 
et al.  1996 ; Collins et al.  2001  ) . It is the process of determining the  fi tness of a given 
parcel of land for a de fi ned use (Stainer  1991  ) . An LSA involves the selection of the 
biophysical or socio-economic factors, or both, of an area; the combination of the 
selected factors with the decision-maker’s preferences allows one to create a compos-
ite suitability index (Sui  1993  ) . Therefore, it can be conceptualized as a multiple crite-
ria decision-making problem (Pereira and Duckstein  1993  ) . Boolean overlay and 
modeling approaches such as neural networks and evolutionary algorithms are recently 
developed methods for performing LSAs in a geographical information science (GIS) 
environment. However, these approaches lack a well-de fi ned mechanism for incorpo-
rating the decision-maker’s preferences into the GIS procedures (Malczewski  2006  ) . 
This disadvantage can be solved by integrating GIS and multi-criteria evaluation 
(MCE) methods, thus producing an effective tool for multiple criteria decision-making 
issues (Malczewski  2006  ) . The purpose of MCE is to investigate a number of choice 
possibilities in the light of multiple criteria and multiple objectives (Cover  1991  ) . An 
integration of GIS and MCE (GIS–MCE) can help land-use planners and managers to 
improve decision-making processes (Malczewski  1999  ) . GIS enables the computation 
of assessment factors, while MCE aggregates them into a land suitability index. 

 This study aims to delineate the areas suitable for cropland through a GIS-based 
MCE approach using biophysical factors and the 2007 Landsat ETM +  imagery for 
the Tam Dao National Park (TDNP) region, Vietnam. We believe that biodiversity 
conservation efforts can be improved if priority areas for crop farming and sustain-
able land uses in the buffer zone are modi fi ed based on a comprehensive land evalu-
ation. We selected the TDNP region as a case study because this region is the last 
remaining primary forest near Hanoi, the capital of Vietnam. It contains a rich bio-
diversity, but several species are known to be threatened by habitat destruction due 
to agricultural expansion (Khang et al.  2007  ) .  

    14.2   Methods 

    14.2.1   Study Area 

 The TDNP region is one of the most important protected areas in Vietnam. This region 
is situated in the northern part of Vietnam (Fig.  14.1 ), and is considered to be one of its 
best and largest examples of rainforest habitat. It is endowed with a diversity of insects, 
butter fl ies, birds, medical plants, and rare animals (Ghazoul  1994  ) . A recent biological 
survey identi fi ed 1,436 plant species and 1,141 animal species (Khang et al.  2007  ) .  

 The region is characterized by a tropical monsoon climate with a mean annual 
rainfall of around 2,600 mm; most of the rainfall occurs from April to October. The 
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terrain of the area is mostly undulating with steep pediments, and the elevation ranges 
from 100 to 1,580 m above mean sea level. The total study area is spread over 
141,328 ha, which includes the TDNP (35,000 ha) and the buffer zone. The current 
land uses over the entire study area are primary forest, secondary forest, rain-fed 
agriculture, paddy rice, settlement, and water. Deforestation from illegal logging and 
agricultural expansion has been causing serious land degradation (Fig.  14.2 ) because 
most of the 200,000 people living in the buffer zone of the TDNP generate their 
incomes from small-scale farming. Aside from agricultural production, few eco-
nomic activities exist in the area (TDMP  2005  ) . Currently, the main challenge for the 
buffer zone is to ensure food production for the growing population while supporting 
biodiversity conservation goals. The cropland was chosen for this investigation 
because the expansion of cropland in fl uences the sustainability of the TDNP.   

    14.2.2   Input Data and Landsat Image Processing 

 The input data used for this study were based on the selected evaluation factors 
discussed in the next section. They include a topographical map, soil map, water 
resource map, road network map, and park boundary map (Table  14.1 ). These data 

  Fig. 14.1    Location of the Tam Dao National Park region, Vietnam       

 



218 D.D. Khoi and Y. Murayama 

were used for delineating areas suitable for cropland. Landsat satellite images were 
used to derive the current land-use map to analyze spatial matching between the 
current land uses and suitability patterns.  

 Once the databases were collected, thematic maps were developed for each factor. 
A digital elevation model (DEM) was constructed using a contour map with a scale 
of 1:50,000 and an interval of 20 m. The slope factor was derived from this DEM. 
Soil texture, soil depth, soil organic matter, and soil pH factor maps were extracted 
from the digitized soil map with a scale of 1:100,000. The distances to water, roads, 
and the park boundary were generated from the water, road network, and park 
boundary maps, respectively. The resolution of all raster factor maps was set at 
30 m × 30 m. 

 The Landsat satellite images acquired in 2007 were used to derive the recent 
land-use map. Six bands (bands 1–5 and 7) were processed to derive the land-use map. 
The image was recti fi ed to a common UTM/WGS84 coordinate system that is based 

  Fig. 14.2    Forest logging for agricultural expansion in the buffer zone of the TDNP (photograph 
by the author, 2009)       

   Table 14.1    List of databases used in this research   

 Data types  Year  Scale/resolution  Sources 

 Topographical map  1972  1:50,000  TDNP Management Of fi ce 
 Soil map  2005  1:100,000  National Institute for Agricultural Planning, 

Ministry of Agriculture and Rural 
Development, and TDNP Management Of fi ce 

 Road network  2007  –  TDNP Management Of fi ce 
 Water bodies  2007  –  TDNP Management Of fi ce 
 Park boundary  2007  –  TDNP Management Of fi ce 
 Landsat images  2007  28.5 m  University of Maryland 
 Field survey     2009.3  –  TDNP region 
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on the topographic map. The clusters of pixels representing various land-use types 
were identi fi ed as training sites that are based on unsupervised classi fi cation, an 
existing land-use map, and the knowledge of the authors on the relative locations 
of land-use types. After all the training sites were identi fi ed and digitized by the 
on-screen method, the class signatures were generated. A maximum likelihood 
method was used to classify these images into the land-use map. The accuracy of the 
classi fi ed map was investigated. A strati fi ed random sampling design was employed 
to identify 270 locations (pixels) for  fi eld data collection. During the  fi eld trip, GPS 
equipment was used to trace geographical data, and a digital camera was used to 
record views of the locations for laboratory analysis.  

    14.2.3   Multi-Criteria Evaluation 

 The GIS–MCE procedure for the cropland suitability assessment in the TDNP 
region included several stages that are shown in Fig.  14.3 . A determination of the 

  Fig. 14.3    Flowchart of the land suitability assessment for cropland ( AHP  analytical hierarchy 
process,  WLC  weighted linear combination)       
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relevant factors was the  fi rst step in the assessment, and this was followed by 
 standardizing and weighting the factors, combining them with their weights, and 
 fi nally spatially matching the suitability map and the current land-use map. The 
procedures and algorithms available in IDRISI Taiga (Eastman  2009  )  were employed 
to implement the assessment.  

 Initially, the factors were selected based on their relevance to the suitability of 
cropland and the availability of databases. The selection of factors is a technical 
process that is based on expert knowledge or empirical research. We selected 12 
experts to be involved in the assessment, who were all between 30 and 50 years 
of age. They participated in selecting the factors, identifying the suitable ranges of 
the factors, and evaluating the weights of the factors. They included  fi ve agronomy 
experts,  fi ve soil experts, and two forestry experts. Eleven of the experts had bach-
elor’s degrees, and one had a master’s degree. These experts have all worked for at 
least 5 years at the of fi ce of the TDNP, and have also worked for the district depart-
ment of agriculture and rural development in the region. After discussion with the 
experts during the  fi eld survey period, nine factors (slope, elevation, distance to 
water, soil organic matter, soil depth, soil pH, soil texture, distance to roads, and 
distance to the TDNP boundary) were identi fi ed as being the most relevant for the 
suitability assessment of crop-growing areas in the region. The elevation, slope 
(terrain), and the distance to water are important determinants of cropland suitability 
because the terrain often has a relationship with soil fertility as well as with the 
vulnerability to soil degradation. The slope relates to the retention and movement of 
soil particles and the rates of runoff and soil erosion; therefore, it closely regulates 
the soil quality condition. The soil characteristics (soil organic matter, soil depth, 
soil pH, and soil texture) represent the soil nutrients and water availability for crop 
growth. The distance to roads is important for crop production because it relates to 
the transportation costs of input and output items. The distance to the park is de fi ned as 
the suitability, which is monotonically reduced in areas closer to the park boundary. 
This variable is included in the LSA because cultivation areas closer to the park may 
alter the environmental quality of the protected area more seriously. 

 As the factor maps were originally measured in different scales, they have to be 
standardized to a uniform suitability rating scale. The MCE method used requires 
that all factors must be standardized. The standardization transforms the disparate 
measurement units of the factor maps into comparable suitability values (Eastman 
 2009  ) . The fuzzy membership function (FMF) approach was applied to standardize 
the factors. This method provides a useful means of dealing with the uncertainty that 
results from imprecise boundaries between suitability classes (McBratney and Odeh 
 1997 ; Ahamed et al.  2000  ) . An FMF is characterized by a fuzzy membership grade 
that ranges from 0 (non-membership) to 1 (complete membership) (Eastman  2009  ) . 
For each factor, the least suitable level was de fi ned as 0, and the most suitable level 
was de fi ned as 1. Several FMFs can be used to standardize the factors. The sigmoidal 
FMF is one of the FMFs most widely used in land evaluation (Eastman  2009  ) . In this 
study, a sigmoidal monotonically decreasing FMF (SMDFM) and a sigmoidal mono-
tonically increasing FMF (SMIFM) were employed. Higher values of elevation, 
slope, distance to water, and distance to roads would indicate continuously decreasing 
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suitability, and therefore the SMDFM was used to standardize these factors. On the 
other hand, higher values in the factors of soil organic matter, soil depth, soil pH, and 
distance to the park boundary would show continuously increasing suitability, and 
thus the SMIFM was used to standardize these factors. Suitable values for soil texture 
were assigned according to each textural class. Detailed descriptions of sigmoidal 
FMFs can be found in Eastman  (  2009  ) . To apply the FMF, suitable ranges of the 
factors that de fi ne the least and greatest suitability levels were determined based on 
the experts’ knowledge, and somewhat similar studies have been successfully con-
ducted for cropland suitability assessment (Liu et al.  2006 ; Quan et al.  2007 ; Wang 
et al.  2007  )  (Table  14.2 ). Suitable ranges for the factors were identi fi ed according to 
the opinions of the experts, and they were also veri fi ed by our  fi eld visits. Figure  14.4  
shows the results of the standardized factor maps. A standardized factor map consists 
of pixels with continuous scores varying from 0 to 1. A higher pixel score indicates 
a higher suitability level for that pixel.   

 The evaluation of suitability involves many factors, and each should be weighed 
according to its relative importance for the growth conditions of crops. The weight 

   Table 14.2    Suitable ranges used for the fuzzy membership function   

 Factor 
 Non-membership 
(unsuitable) 

 Membership grade 
(suitable range)  References 

 Slope (°)  >15  1–15  TDNP agronomy experts 
 Slope from 1° to 25° (Liu et al. 

 2006  ) , 1° to 15° (Quan et al. 
 2007 ; Wang et al.  2007  )  

 Elevation (m)  >400  1–400  TDNP agronomy experts 
 Elevation from 1 to 500 m (Quan 

et al.  2007  )  
 Distance to water (m)  >2,000  100–2,000  TDNP agronomy experts 
 Soil organic matter 

(%) 
 <0.5  0.5–2.3  TDNP agronomy experts 

 Less than 1–3% (Quan et al.  2007  )  
 Soil depth (cm)  <20  20–150  TDNP agronomy experts 

 Soil depth range from 10 to 
60 cm (Quan et al.  2007  ) , 
15 cm to more than 30 cm 
(Wang et al.  2007  )  

 Soil pH  <4.5 and >7.5  4.5–6.9  TDNP agronomy experts 
 pH range from 5 to 8 (Quan et al. 

 2007  )  
 Soil texture (class)  –  Sandy clay loam, 

sandy loam, 
silt loam, loam 

 TDNP agronomy experts 
 Medium loam is most suitable, 

light and heavy loam is 
moderately suitable, sandy 
loam and medium clay is 
marginally suitable (Quan 
et al.  2007 ; Wang et al.  2007  )  

 Distance to roads (m)  >4,000  100–4,000  TDNP agronomy experts 
 Distance to the park 

boundary (m) 
 <500  500–11 277  TDNP agronomy experts 
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of each factor was estimated from a pair-wise comparison matrix (PWCM) 
constructed according to a pair-wise comparison method (PCM) (Table  14.3 ). The PCM 
developed by references (Saaty  1980 ;  1990  ) , in the context of a decision-making 
process known as the analytic hierarchy process, is the most commonly used method 
(Eastman et al.  1995  ) . In the PWCM, a pair-wise comparison is a rating of the rela-
tive importance of two factors regarding the suitability of the cropland. The PWCM 
method uses a scale with values from 9 to 1/9 to rate the relative importance of the 
two factors. A rating of 9 indicates that in relation to the column factor, the row factor 
is more important. On the other hand, a rating of 1/9 indicates that in relation to the 
column factor, the row factor is less important. In cases where the column and row 
factors are equally important, they have a rating value of 1.  

 In determining the ratings, the 12 experts previously mentioned worked as a 
group to determine the ratings of the factors. To reach agreement in rating the rela-
tive importance of the factors, a majority rule was applied. This means that each 
rating in the PWCM was compared and decided on based on the agreement of the 
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  Fig. 14.4    Standardized factor maps (the legend is the same as that for the elevation map for all 
factor maps)       
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majority of experts. In the context of the workshop for determining the relative 
importance of the factors, a description of the evaluation purpose, an identi fi cation 
of the set of relevant factors, and an explanation of a PWCM and completion proce-
dure were carried out. After careful examination and discussion of the set of factors, 
the group made all the pair-wise comparisons for the set of factors. The PWCMs 
developed are shown in Table  14.3 . The weights of the factors were then calculated 
from these PWCMs. The consistency ratios (CRs) of 0.000–0.087 in the table were 
within acceptable levels (Saaty  1980,   1990  ) . According to Saaty  (  1980,   1990  ) , the 
calculated CR must be less than 0.1, which is the acceptability cut-off point. This 
means that if the computed CR is less than 0.1, the calculated weights of the factors 
are consistent. If the calculated CR is more than 0.1, the PWCM needs to be re-
evaluated, and the weights of the factors also need to be re-calculated accordingly. 
An example of spreadsheet calculations for the CR of overall site suitability factors 
for cropland is shown in Table  14.4 . The points (a) and (b) show the calculation of 
the factor weights. Parts (c)–(e) show the calculations of the CR. 

   Table 14.3    The pair-wise comparison matrix for evaluating the relative importance of the factors 
for each land-use requirement (the number indicates the rating of the row factor relative to the 
column factor)   

  Terrain and water   Slope  Elevation  Distance to water  Weight 

 Slope  1  1  2/3  0.2856 
 Elevation  1  1  2/3  0.2856 
 Distance to water  3/2  3/2  1  0.4288 
  Consistency ratio  (CR) = 0.000 

  Soil quality    Soil organic matter    Soil depth    Soil pH  
  Soil 
texture    Weight  

 Soil organic matter  1  3  2  3/2  0.4073 
 Soil depth  1/3  1  3/2  2  0.2384 
 Soil pH  1/2  2/3  1  1/2  0.1444 
 Soil texture 
 CR = 0.087 

 2/3  1/2  2  1  0.2099 

  Access to roads 
and the park    Distance to road  

  Distance to the 
park    Weight  

 Distance to roads  1  3/2  0.6000 
 Distance to the park 
 CR = 0.000 

 2/3  1  0.4000 

  Land-use requirement 
for the assessment of 
site suitability for 
cropland    Terrain and water    Soil quality  

  Access to roads 
and the park    Weight  

 Terrain and water  1  1/2  3  0.3338 
 Soil quality  2  1  3  0.5247 
 Access to roads 
and the park 
 CR = 0.046 

 1/3  1/3  1  0.1415 
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    (a)    Sum the numbers in each column of the values matrix; divide each number in 
the decimal matrix by the column sum; the resulting matrix is the normalization 
matrix.  

    (b)    Take the average of the numbers in each row of the normalization matrix; the 
average value is the weight.  

    (c)    Compute  lambda  (  l  ) by the following steps (Malczewski  1999  ) :

   1.    Determine the weighted sum vector by multiplying the weight of the TW, the 
weight of the SQ, and the weight of the WP by the  fi rst column, the second 
column, and the third column of the values matrix, respectively, and  fi nally, 
sum these values over the rows;  

   2.    Determine the consistency vector by dividing the weighted sum vector by 
the factor weights as follows:      

 Step 1  Step 2 

 (1) (0.3338) + (0.5) (0.5247) + (3) (0.1415) = 1.0208  1.0208/0.3338 = 3.05837 
 (2) (0.3338) + (1) (0.5247) + (3) (0.1415) = 1.6169  1.6169/0.5247 = 3.08168 
 (0.3333) (0.3338) + (0.3333) (0.5247) + (1) (0.1415) = 0.4277  0.4277/0.1415 = 3.02140 

 Then,   l   = (3.05837 + 3.08168 + 3.02140)/3 = 3.0538  

   (d)    The consistency index (CI) is (  l   −  n )/( n  − 1), (3.0538 − 3)/2 = 0.0269.  
   (e)    The consistency ratio (CR) is CI/RI, where RI is the random consistency index. 

For  n  = 3, RI = 0.58 (Saaty  1980  ) . 
 CR = 0.0269/0.58 = 0.0464.     

 After the standardized factor maps and the weights of the factors had been con-
structed and generated, the weighted linear combination (WLC) was used to com-
bine the standardized factors and their corresponding weights to obtain an overall 
suitability map for the cropland (Eastman et al.  1995  ) . All of the factors were com-
bined as Grid 

result
  = ∑(Grid 

 i 
  × Weight 

 i 
 ), where Grid 

 i 
  is the factor  i , and Weight 

 i 
  is the 

relative weight of factor  i . Speci fi cally, the three factors of terrain and water, the 
four factors of soil quality, and the two factors of access to roads and the park were 
calculated by ( 14.1 )–( 14.3 ), and then they were all overlaid to produce the overall 
cropland suitability map according to ( 14.4 ). Finally, the recent land-use map and 
the suitability map were overlaid to analyze the spatial matching. A simple overlay 

   Table 14.4    Example of spreadsheet calculations for the consistency ratio of site suitability for 
cropland   

 Values  Decimal  Normalization 

 TW  SQ  RP  TW  SQ  RP  TW  SQ  RP  Weight    l    CI  RI  CR 

 TW  1  1/2  3  1.00  0.50  3.00  0.30  0.27  0.43  0.3338 
 SQ  2  1  3  2.00  1.00  3.00  0.60  0.55  0.43  0.5247  3.0538  0.0269  0.58  0.0464 
 RP  1/3  1/3  1  0.33  0.33  1.00  0.10  0.18  0.14  0.1415 
 Sum  3.33  1.83  7.00  1.0000 

   TW  terrain and water,  SQ  soil quality,  RP  access to roads and the park  
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technique was used between the land-use map and the suitability map, and then the 
statistics of the suitability classes for each land use were calculated.

     
= × + ×

+ ×
slope elevation

distance to water

Terrain and water grid Grid 0.2856 Grid 0.2856

Grid 0.4288    (14.1)  

     
= × + ×

+ × + ×
soil organic matter soil depth

soil pH soil texture

Soil quality grid Grid 0.4073 Grid 0.2384

Grid 0.1444 Grid 0.2099    (14.2)  

     
= ×

+ ×
distance to roads

distance to the park

Access to roads and the park grid Grid 0.6

Grid 0.4
   (14.3)  

     
= × + ×

+ ×
terrain and water soil quality

access to roads and the park

Overall suitability grid Grid 0.3338 Grid 0.5247

Grid 0.1415    (14.4)     

    14.3   Results 

 Figure  14.5  shows the suitability map for the cropland in the TDNP region. The map 
contains pixels with varying degrees of suitability from 0 to 1. A higher pixel score 
shows a higher suitability level. For easier representation, the map was re-classi fi ed 
into four classes based on the structure of the FAO suitability classi fi cation (FAO 
 1976  ) : most suitable (0.75–0.96), moderately suitable (0.5–0.75), marginally suitable 
(0.25–0.5), and least suitable (0–0.25). The most suitable is the land with minor limi-
tations that do not signi fi cantly affect crop farming. The moderately suitable is the 
land with limitations that, in aggregate, are moderately limiting to crop farming. The 
marginally suitable is the land that has limitations which, in aggregate, are severely 
damaging to crop farming. The least suitable is the land with limitations that, in aggre-
gate, are very severely damaging to crop farming. The extent of each class is summa-
rized in Table  14.5 . The result indicates that 28.10% of the total study area was found 
to belong to the most suitable class. These most suitable areas are mainly character-
ized by  fl atness, a nearness to water, and deep soil depth. The moderately suitable 
class was found to make up 23.96% of the territory. The most and moderately suitable 
classes together comprise 52.06% of the total area, whereas the existing cropland area 
was 46.5%. This result highlights that the most and the moderately suitable areas have 
been used for cropland in the region. The least suitable and marginally suitable classes 
make up 19.17% and 28.77%, respectively. These areas are often located in areas with 
steep terrain, low soil depth, and less water access. If farmers are forced to reclaim 
land for agriculture due to population pressures, the marginally suitable areas that are 
highly vulnerable to soil erosion may be the target areas of the future.   

 Different factors have different importance levels for the site suitability of crop-
land. The result of evaluating the relative importance of different factors shows that 
the soil quality (soil organic matter, soil depth, soil pH, and soil texture) is the most 
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important, followed by the terrain and water (slope, elevation, and distance to water), 
and access to roads and the park (distance to roads and distance to the park bound-
ary). Soil quality, with a weight of 0.5247, is determined to have a major impact on 
the overall suitability because it regulates the storage of soil nutrients and the water-
holding capacity, which are necessary biophysical conditions for crop growth. The 
topographical and water factor, with a weight of 0.3338, is the second contributor. 
The slope affects the retention and movement of water and soil particles, the runoff 
rate, and accelerated soil erosion. These effects are closely linked to the soil quality 
conditions. Elevation relates to increased water-pumping costs for agricultural pro-
duction. Water availability is very important for crop growing in the area. Natural 
lakes, ponds, streams, and rivers are major water providers for agricultural produc-
tion in the area. Water resources in the region mostly depend on sources from the 

  Fig. 14.5    Land suitability map for cropland in the TDNP region       

   Table 14.5    Area of cropland suitability classes   

 Suitability class  Area (ha)  Proportion (%) 

 Least suitable  27,069  19.17 
 Marginally suitable  40,639  28.77 
 Moderately suitable  33,846  23.96 
 Most suitable  39,683  28.10 
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TDNP forest ecosystems. Therefore, there is a strong link between the conservation 
of native forest ecosystems and agricultural development in the region. The access 
to roads and the park plays a weaker role compared to the others. Road networks are 
signi fi cant for local communities because they enhance commercial agricultural 
activities and transportation. The distance to the park boundary affects the biodiver-
sity conservation activity of the TDNP; therefore, it relates to the site suitability of 
cropland. 

 The spatial matching offered valuable information for identifying whether the 
land was optimally utilized in the region. The result of overlaying the suitability 
map (Fig.  14.6 ) with the land-use map of 2007 (Fig.  14.7 ) is given in Table  14.6 . 
The accuracy of the land-use map based on Kappa statistics was 90.1%. The land-
use map indicates that the major land uses are primary forest (25,459 ha), secondary 
forest (44,018 ha), rain-fed agriculture (41,117 ha), paddy rice (24,567 ha), settle-
ment (3,130 ha), and water (2,947 ha), which account for 18.03%, 31.17%, 29.11%, 
17.39%, 2.22%, and 2.09%, respectively, of the total study area. The primary forest, 
which is mainly dense native vegetation, is mainly located in the park. The second-
ary forest includes both forest plantations and shrubs. The rain-fed agriculture is 
characterized by a mixture of crops, mainly soybeans, peanuts, vegetables, and 

  Fig. 14.6    Map of the suitability zones       
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maize. Paddy  fi elds are used only for rice production. Settlements consist of small 
houses, front- and backyards, and home gardens. Water resources include a variety 
of natural lakes, ponds, streams, and rivers.    

 As expected, the most suitable and moderately suitable areas were found in the 
existing rain-fed agriculture and paddy  fi elds. The result indicates that 95.22% of 
the most suitable class was distributed over the rain-fed agriculture and the paddy 
rice, while only 3.37% of the class was located in the secondary forest. With respect 
to the moderately suitable class, 83.01% of the class was found in the rain-fed agri-
culture and the secondary forest, whereas only 15.94% of the class was located in 
the paddy rice. For the marginally suitable class, 71.37% of the class was found in 
the secondary forest. This class was also found in the primary forest (14.94%) and 
the rain-fed agriculture (12.55%). Finally, the least suitable class was mainly 
stretched over the primary forest. The most and moderately suitable areas have 
already been utilized for paddy rice and rain-fed agricultural crops. Although some 
of the rain-fed agricultural areas may cause land degradation due to soil erosion, 
these utilized lands may not be easy to change to more sustainable uses, such as 
agro-forest farming or fruit trees, in the future because of the growing population in 
the area. 

  Fig. 14.7    The land-use map derived from the Landsat images of 2007       
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 It is important to note that the farmers are not aware of formal LSA methods, but 
instead trust their own experience regarding land suitability. The farmers have a 
profound knowledge of their lands, and classify the suitability of the land according 
to crop yield. Crop yield often correlates with the biophysical factors of the soil, 
such as terrain, fertility, and water availability. In the study, the factors selected 
based on the opinions of the experts cover the farmers’ perceptions; therefore, the 
assessment spatially matches the majority of existing cropland.  

    14.4   Discussion and Conclusion 

 In general, developing countries have adopted the North American approach to 
the management of PAs. This approach only emphasizes nature conservation 
(Colchester  1997  ) , but the livelihoods of local populations in nearby PAs have often 
been ignored (Pimbert and Pretty  1997  ) . The recognition of PAs as part of a broader 
socio-economic system (McNeely  1993  )  led to the concept of protected area-buffer 
zone land-use management. The maintenance of the local communities’ livelihoods 
and conservation has been challenging the TDNP managers. It argues that sustain-
able land use may not be achieved in isolation because agricultural expansion and 
poverty are interrelated. Poverty is a primary cause of cultivation of large areas of 
sloping lands in the region, which is exacerbating land degradation. Therefore, 
land-use policy and other development policies should be combined to improve the 
living standards of the poor, and thereby possibly reduce the over-exploitation of land 
resources and land degradation in the area. 

 An LSA is a preliminary stage for assessing whether land is likely to be practical 
and successful for sustainable development of the intended goals. In many cases, 
cropland has been promoted in areas that are unsuitable in terms of soil conditions. 
Owing to increasing population pressures, agricultural expansion has been increas-
ing in the TDNP region without consideration of the suitability of the site. To ensure 
sustainable land uses, there is a great need to allocate farming activities to suitable 
locations in order to prevent undesirable effects on biodiversity conservation efforts 
as well as land degradation in the region. The TDNP and its buffer zone manage-
ment documents were reviewed. The TDNP-buffer zone management emphasizes 
the integrity of the buffer zone and the TDNP, particularly regarding sustainable 
land uses in the buffer zone (Khang et al.  2007 ; TDMP  2005  ) . Buffer zone land-use 
management affects the protected area because the environmental quality of the buf-
fer zone is critical to maintaining the ecological functions of the protected area 
(Bridle et al.  2004  ) . In the TDNP region, land is an important resource for the 
enhancement of the living standards of local people near the PA. Land-use manage-
ment of the buffer zone is facing the issue of balancing agricultural development 
and forest conservation. The approach and results presented in this study may sup-
port land-use management decisions towards a more sustainable PA system. It is 
assumed that different crop farming strategies should be practiced according to the 
varying degree of suitability. Therefore, we recommend farming strategies for four 
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zones according to the four levels of suitability shown in the land suitability map. 
Sustainable land-use projects supported by local and central governments should 
receive investment in accordance with each of the zones. We believe that if such 
farming strategies are introduced according to these zones, they can prevent further 
deforestation and improve the appropriate use of land in the buffer zone. 

 First, for the most suitable zone, most of the zone has been used for rain-fed 
agriculture and paddy rice. This zone is distributed over the lowlands around the 
region (Fig.  14.6 ). Every household can improve their income if the productivity of 
crops in this zone is improved. Therefore, a greater intensi fi cation of crops such as 
paddy rice and maize should be encouraged in order to enhance agricultural produc-
tivity in this zone, and thus the production pressure on the marginally suitable zone 
can be reduced. This strategy has been successfully implemented, and it can argu-
ably be explained as one of main causes for the increase in reforestation across 
Vietnam (Meyfroidt and Lambin  2008  ) . However, some of the secondary forest 
(1,339 ha) was evaluated as highly suitable for cropland. These areas may be con-
verted into cropland owing to population pressures. In such situations, agro-forestry 
systems (AFS) should be practiced. AFS, the combined use of crops and trees on the 
same area of land, plays ecological, social, and economic roles (Jianbo  2006  ) . For 
example, AFS can reduce soil erosion and the loss of soil nutrients, improve land-
scape diversity (Palma et al.  2007  ) , and generate income for farmers. If an AFS is 
practiced, a state subsidy for farmers may be needed in the long-term because this 
system often generates less income (Khang et al.  2007  ) . The subsidy can be under-
stood as a means of compensation for farmers because they contribute to conserva-
tion efforts through more sustainable land use. The state subsidy should become a 
common policy for all protected areas across the country. 

 Second, for the moderately suitable zone, the majority of the zone has also 
been used for rain-fed agriculture and paddy rice. The diversi fi cation of crops and 
AFS may be a strategic option for the moderately suitable zone. The current least-
productive rain-fed agriculture should be converted into perennial crops such as 
tea and fruit trees. These crops can increase land coverage and thus can be a more 
sustainable land-use type. However, a large portion of the secondary forest was 
assessed to be moderately suitable for cropland (Table  14.6 ). This portion can poten-
tially be converted into cropland. The conversion of this portion into cropland 
should be restricted because it is spread over steep land that is highly vulnerable to 
soil erosion. Third, the marginally suitable and unsuitable zones should not be used 
for agricultural activities because most of these zones are the primary and secondary 
forest. This restriction may be linked to the reduced welfare of the population. This 
requires state support for people who are heavily dependent on natural resources for 
their well-being. For example, non-farming jobs, such as handicrafts and ecotourism, 
can be alternative or additional livelihoods that should be considered. 

 Some concrete measures should be considered for the implementation of agricul-
tural intensi fi cation and AFSs which prevent further deforestation and land degrada-
tion in the region. It is argued that intensi fi cation and AFSs are the key activities that 
enhance sustainable land use. Crop intensi fi cation systems may minimize the expan-
sion of new cultivation areas into the forest because they are expected to increase 
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agricultural productivity in the region. Measures for the intensi fi cation systems 
should aim at enhancing the local farmer’s capacity via support projects. These 
projects should focus on the irrigation system, hybrid crop varieties, soil nutrient 
management, and integrated pest management. Improvements in the irrigation sys-
tem can trigger an increase in maize area in the winter season, and thus agricultural 
productivity would be substantially increased. The introduction of hybrid crop vari-
eties in combination with soil nutrient management and integrated pest manage-
ment can be implemented through technical training courses for the farmers. For the 
sloping lands, there is a de fi nite need to combine forestry, crop, and animal hus-
bandry on individual farms to replace mono-cropping. These combinations can have 
a synergistic effect on the productivity of the land and its resilience to degradation. 
The AFS should be demonstrated in the  fi rst introductory step because these sys-
tems are not commonly practiced by the farmers in the region. The purpose of the 
demonstration would be to help the local farmers to acquire knowledge of how to 
use their sloping land ef fi ciently. Both technical and  fi nancial support is very impor-
tant for the implementation of the systems. Agricultural extension workers should 
be employed for each commune or village, because timely technical support for the 
farmers is needed. 

 It should be noted that the land suitability map is intended to guide regional land-
use decisions. From the TDNP management perspective, the map can be used for a 
decision-making process that allocates land to the uses that provide the greatest 
bene fi ts to the conservation of biodiversity and other ecosystem services. However, 
on a local scale, the farmers may not adopt the land-use plan because their land-use 
decisions are affected by several other factors: mainly their economic conditions. 
Most farmers avoid bank loans if they have other investment choices. They com-
monly adopt low-investment alternatives because self-subsistence farmers tend to 
adopt short-term objectives in nature, and they are likely to give a low priority to 
long-term bene fi ts. This low investment involves an enlargement of the cultivation 
area, which goes against conservation or the maintenance of ecosystem services. 
The managers are confronted with the need to make dif fi cult decisions. This may 
require a negotiation process between the managers and the farmers. Once a con-
sensus has been gained through negotiation, the practicality of the plan’s implemen-
tation can be achieved. 

 Although the GIS–MCE approach provides an effective framework for land eval-
uation, the selection of assessment factors and the identi fi cation of a suitable range 
for each factor have a direct in fl uence on the results. In this study, the factors were 
selected based on the knowledge of local experts; therefore, they represent a consid-
erable share of the factors relevant to the suitability of growing areas in the region. 
In addition, the FMF approach was used to standardize the factors. The FMF 
approach is useful because it is good at dealing with land-use suitability classes that 
do not have clearly de fi ned boundaries (Groenemans et al.  1997  ) . Therefore, the 
suitability map represents a more accurate result. In particular, the integration of 
spatial databases and expert knowledge signi fi cantly enhances decision-making 
capacity when undertaking land suitability evaluations. Moreover, the approach 
highlights participatory decision-making processes (Eastman et al.  1992  ) . Therefore, 
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it can minimize and solve con fl icts among competing interests in the area of 
 protected area–buffer zone land-use management. 

 The GIS–MCE approach has been widely applied in land suitability analysis 
(Malczewski  2006  ) . However, the application of this method in protected area–
buffer zone management is relatively new in Vietnam. As a tool for decision support, 
GIS–MCE has shown a capacity for making choices among land-use alternatives. 
The MCE of soil, topography, and accessibility factors was exempli fi ed to be useful 
for delineating areas suitable for cropland in the TDNP region. In particular, the 
involvement of local experts was vital to obtaining consistent results. The experts 
played key roles in the selection of the evaluation factors and in the determination 
of the factor weights. The remote-sensing data offered land-use information that 
was crucial to examining the spatial matching between the potential suitability areas 
and the current land-use patterns. This information helped to identify whether the 
land has been used optimally, and whether future land uses can be modi fi ed for the 
region. The application presented in this paper can be useful for the managers and 
planners who manage protected area–buffer zone resources. 

 This investigation has offered valuable information for the TDNP managers. The 
results can be used to prioritize land-use management projects funded by local and 
central governments and other non-governmental organizations. The study shows 
that GIS databases of different formats and sources can be integrated ef fi ciently to 
establish a LSA for cropland. The methodology is useful for identifying priority 
areas for crop farming, and thus, it contributes to improving the ef fi ciency of con-
servation and of sustainable land management. The approach can also be handy for 
land-use managers working in other protected areas in Vietnam that have similar 
conditions to the TDNP region. The land suitability information produced in recent 
research is valuable. However, land-use decisions are not only based on such infor-
mation, but also on other assessments, such as an economic analysis of land uses 
and environmental impact assessments. Therefore, we recommend that future stud-
ies should consider these assessments in order to offer decision makers a compre-
hensive basis on which to orient a feasible strategy, and to make a sound decision 
towards a more sustainable TDNP.      
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       15.1   Introduction 

 Cities can be understood as complex systems with intrinsic characteristics of emer-
gence, self-organization, self-similarity, and non-linear behavior of land-use dynam-
ics (Barredo et al.  2003 ; Batty  2005  ) . Cities incessantly undergo a dynamic and 
complex process of urban land-use changes. This complex process has direct 
impacts on the urban environment (Jusuf et al.  2007 ; Pauleit et al.  2005  ) , and may 
even profoundly disrupt the structure and function of ecosystems on a global scale 
(Lambin et al.  2001 ;    Turner et al.  1990  ) . Therefore, the complex spatial processes 
of urban land-use changes must be thoroughly understood in order to provide 
municipal and urban planners with a basis for assessing the ecological impacts of 
urban land-use changes, and to support spatial decision-making. For this purpose, 
various spatial dynamic models of urban land-use change, in particular cellular 
automata (CA), multi-agent systems (MAS), and geographical information system 
(GIS)-based urban geo-simulation models, have been constructed and successfully 
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applied to many cities (Barredo and Demicheli  2003 ; Batty et al.  1999 ; Torrens 
 2006 ; White and Engelen  2000 ; Yeh and Li  2002  ) . In such geo-simulation models, 
neighborhood interaction is an important component (Batty  1991 ; Wu  1998 ; Zhao 
and Murayama  2007  ) . Neighborhood interaction means local spatial interactions 
between neighborhood land-use categories such as facilities, residential areas, and 
industries in urban areas. Here, “neighborhood” means “close to”, i.e., neighbor-
hood land-use parcels may or may not be contiguous (touching). Such interaction 
has a great impact on the spatial processes of urban land-use changes (Batty  2005 ; 
Couclelis  1989  ) . This type of factor is known as the neighborhood effect of urban 
land-use changes. The neighborhood effect plus exogenous factors (like spatial 
interactions between cities) and endogenous factors (like transportation networks in 
urban areas) determine the spatial process of urban land-use change (White and 
Engelen  2000  ) . Furthermore, it is often cited as the main factor which decides urban 
land-use change patterns, since other factors are comparatively stable in the spatial 
process of urban land-use change during a set period. 

 In fact, neighborhood interactions are always a focus in the  fi eld of CA research. 
This standpoint can be derived from the basic de fi nition of CA offered in von 
Neumann’s lecture of 1951 (von Neumann  1951  ) . There are four elements in a basic 
CA structure, namely, automata size, state, neighborhood, and the transition rule of 
automata state. Under a certain size and prescribed state, automata dynamics is 
controlled by the transition rule, which is established only by considering the inter-
action of automata in the neighborhood area. In the early phase of the application of 
CA to urban studies, urban geo-simulation models came from the basic de fi nition of 
CA (Batty  1991 ; Couclelis  1989 ; Phipps  1989  ) . At that time, urban geo-simulation 
models were mainly used to explore the intrinsic characteristics of urban systems 
such as self-organization and self-similarity (Batty and Longley  1994 ; Batty and 
Xie  1994 ; White and Engelen  1993,   1994  ) . Later, scholars moved to focus on the 
simulation of actual urban land-use dynamics using CA models, and therefore CA 
models were updated by adding components or adjusting neighborhood 
con fi gurations for this purpose (Batty et al.  1999 ; Clarke et al.  1997 ; White and 
Engelen  2000 ; Wu  1998  ) . Some scholars also proposed MAS for urban land-use 
geo- simulation to overcome the weakness of the CA approach (Le et al.  2008 ; 
Parker et al.  2001  ) . However, neighborhood interaction still is deemed an important 
component in urban geo-simulation models whether they are based on MAS or 
updated CA (Torrens and Benenson  2005  ) . 

 Although neighborhood interaction has been highlighted in studies of urban 
land-use changes (White and Engelen  2000 ; Yang and Billings  2000 ; Zhao and 
Murayama  2007  ) , there is still much that is unknown about its characteristics, 
although these provide the basic information which constitute the neighborhood 
effect rules for urban geo-simulation models. For example, neighborhoods in urban 
geo-simulation models generally adopt either the von Neumann 3 × 3 (or 5 × 5) or 
the Moore 3 × 3 con fi guration for simplicity (Batty  1998 ; Wu  1998 ; Yeh and Li 
 2001  ) . Some scholars have enlarged the size of the con fi guration in neighborhood 
interaction models to give suf fi cient consideration to the human characteristics of 
urban systems (White and Engelen  1993 ; Zhao and Murayama  2007  ) . However, few 
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studies have focused on the reason why such neighborhood con fi gurations are 
selected and modeled, and what the mechanism of the neighborhood effect is. In 
particular, there are very few discussions in the literature about whether the issues 
that are characteristic of neighborhood interactions are the same in different cities. 
The answer to this question is very important for an understanding of the mecha-
nism of the neighborhood effect on urban land-use changes, and for constructing a 
universal urban geo-simulation model which may be applied to any city in Japan. 
This research focuses on this issue, and tries to interpret the similarities and differ-
ences in the characteristics of neighborhood interactions in urban land-use changes 
by comparing three metropolitan areas in Japan, i.e., Tokyo, Nagoya, and Osaka, 
using such aids as the neighborhood interaction model and the similarity measure 
function. The results of this research will provide important information for con-
structing effective and operational neighborhood effect modules in urban geo- 
simulation systems.  

    15.2   Methodology 

    15.2.1   Study Areas 

 The three Japanese metropolitan areas of Tokyo, Nagoya, and Osaka were selected 
for a comparative study. Figure  15.1  shows the location and range of the study areas. 
These three metropolitan areas are the business, economic, political, and population 
centers of Japan. In the period after World War II, in particular, a large proportion 
of the Japanese population congregated in these areas (Murayama  2000  ) , so that by 
2005, these three areas accounted for more than 50% of Japan’s total population.  

  Fig. 15.1    Locations of the 
three Japanese metropolitan 
areas       
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 Figure  15.2  illustrates the population increase in the three metropolitan areas and 
their respective proportions of the population of the whole country from 1945 to 
2005. With the increases in population, the urbanized areas expanded into the 
 surrounding regions of the three metropolitan areas at an astounding pace. As well 
as urban growth, urban functions in the existing urban areas also experienced a 
process of self-adjustment (Takahashi and Taniuchi  1994  ) . Therefore, these three 
metropolitan areas are appropriate study areas for gaining an understanding of the 
spatial processes of urban land-use changes in Japan, as well as the characteristics 
of neighborhood interactions at that time.   

    15.2.2   Data Set 

  Detailed digital information of the metropolitan areas  (10 m grid land-use; 
DDIMA10 m) of Tokyo, Nagoya, and Osaka was produced by the Geographical 
Survey Institute of the Ministry of Construction of Japan. DDIMA10 m of Tokyo 
was investigated in 1974, 1979, 1984, 1989, and 1994; DDIMA10 m of Nagoya in 
1977, 1982, 1987, 1991, and 1997; and DDIMA10 m of Osaka was investigated in 
1974, 1979, 1985, 1991, and 1996. DDIMA10 m provides an abundant and detailed 
urban land-use classi fi cation system, which includes a range of socio-economic 
information over a period of time. There are 15 categories of land-use in these data 
sets, namely (A) forest and wasteland, (B) paddy  fi eld, (C) dry  fi eld and other farm-
land, (D) construction areas, (E) vacant land, (F) industrial land, (G) low-storey 
residential land, (H) densely developed low-storey residential land, (I) medium and 
high-storey residential land, (J) commercial land, (K) roads, (L) parks, (M) public 
facilities, (N) water, and (O) other. Here, in order to reach a clear understanding of 
the main characteristics of urban land-use changes, land-use is grouped into the 

  Fig. 15.2    Population increase in the three metropolitan areas and their proportions of Japan’s 
population from 1945 to 2005 ( Source : Statistics Bureau, Ministry of Internal Affairs and 
Communications of Japan)       
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 following ten categories: (1) vacant land, (2) industrial land, (3) residential land, 
(4) commercial land, (5) roads, (6) public land, (7) special land, (8) forest and 
wasteland, (9) cropland, and (10) water. Here, land-uses (D) and (E) in the original 
data set are combined into land-use (1); (G), (H), and (I) into (3); (L) and (M) into 
(6); and (B) and (C) into (9). The others remain in their original categories. 

 The grouped land-use classi fi cation system re fl ects the intrinsic characteristics of 
urban land-use changes. “Water” represents  fi xed features, i.e., it is assumed that it 
will not change, and therefore it is not involved in land-use dynamics in order to 
protect the living environment. Forest, wasteland and cropland are passive features 
that play a role in the process of land-use changes, but the changes are not driven by 
an exogenous demand for land. They appear or disappear in response to active func-
tions of land being used or abandoned. The active functions are four land-use cate-
gories which are forced into existence by demands for land generated exogenously 
in response to changes in the urbanized areas: vacant, industrial, residential, and 
commercial land. Roads, public, and special lands are active features which are the 
dynamics of the model, but they are mainly controlled by the municipal government 
through urban land-use planning.  

    15.2.3   Data Processing 

 Urban land-use changes are driven by multiple factors such as urban and region 
planning policy, environmental characteristics, local-scale neighborhood charac-
teristics, the spatial characteristics of cities, and so forth (Carver  1991 ; Voogd  1983  ) . 
These factors can be divided into two types: natural forces and human  activities. 
Over a short time-scale, the effects of both natural forces and human activities are 
comparatively stable for a certain area (Zhao et al.  2010  ) . Therefore, short time-
intervals, here about 5 years, are used to extract land-use change patterns in order 
to interpret the characteristics of neighborhood interactions. The latest time-intervals 
are selected from DDIMA10 m data sets as follows: Tokyo Metropolitan Area, 
1989–1994; Nagoya Metropolitan Area, 1991–1997; Osaka Metropolitan Area, 
1991–1996. Although there are slight differences in the study periods in these met-
ropolitan areas, land-use policies in the whole country during such short periods do 
not change very much. Therefore, it is assumed that the tiny differences will not 
in fl uence the understanding of the characteristics of neighborhood interactions. 

 Considering the huge data sets from the three metropolitan areas and the result-
ing time-consuming computations, the grid size of the land-use data set was set at 
100 m × 100 m by aggregating the original 10 m × 10 m cells by a majority rule (in 
the process of aggregation, the land-use category of a 100 m × 100 m grid area is 
determined by the maximum proportion of land-use categories of the 10 m × 10 m 
grids which are located in that 100 m × 100 m grid area). 

 Urban land-use changes in the three metropolitan areas were extracted from data 
sets from two adjacent time-sections. Land-use changes in the area at a distance of 
less than 600 m to the boundary of the study area were deleted in order to eliminate 
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the boundary effect. Appropriate sample numbers were selected randomly in order 
to create an approximately 1:1 ratio of transformed to non-transformed cells.  

    15.2.4   Neighborhood Interaction Model 

 “Neighborhood” has no determinate con fi guration in many correlative studies 
(Barredo et al.  2003 ; Batty  1998 ; Li and Yeh  2001 ; White and Engelen  1997  ) . 
According to Zhao and Murayama  (  2007  ) , an extended neighborhood con fi guration 
is de fi ned as an area within a radius of eight cells from the central developable cell 
in a model which contains 196 cells. The contribution of one cell in the neighbor-
hood is associated with its state and its distance to the central developable cell  i  
based on Tobler’s  fi rst law of geography (Tobler  1970  ) . The neighborhood effect on 
the probability  N  of the conversion of a cell to land-use  k  is described as a function 
of a set of aggregated effects of cells in the neighborhood:

     β β
⎛ ⎞

′ ′= +⎜ ⎟−⎝ ⎠
∑ ∑0 2
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1

ik m
i ihk mh

k mik mi
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where  m  is the number of cells in the neighborhood,  A  
 m 
  is the area of cell  m  (here in 

square meters),  d  
 mi 

  is the Euclidean distance between the central developable cell  i  
and cell  m  in the neighborhood area,     β ′

ihk    is the constant of the effect of land-use  h  
on the transition to land-use  k , + stands for positive, − stands for repulsive,  I

   mh  
 is the 

index of cells, and  I  
 mh 

  = 1 if the state of cell  m  is equal to  h ; otherwise  I  
 mh   

= 0.      β ′
0i    and 

    β ′
ihk    are the coef fi cients to be calibrated with a maximum likelihood estimation. The 

coef fi cients stand for the effects of different land-use categories in the neighbor-
hood on the change in transformation odds ( N  

 ik  
/(1 −  N  

 ik  
)) of central cell  i  to land-use 

category  k . If     β ′
ikh    is positive, the odds will add to the increase in the aggregated 

effect of land-use type  k , and vice versa. If one of the coef fi cients does not pass the 
hypothesis test at the 0.05 level,     β ′ = 0ikh   , indicating that the corresponding land-
use category does not affect the transformation of the central developable cell  i . The 
values of the coef fi cients represent the intensity of the effect on the transformation 
odds. The greater the value, the more intense the effect. Obviously, the coef fi cients 
are suitable indices which can be used to analyze the effect of land-use categories in 
neighborhoods on the transformation of cells. Herein, the coef fi cients are used to 
interpret the neighborhood interactions in urban land-use changes in the three met-
ropolitan areas.  

    15.2.5   Similarity Measure Function 

 As this research focuses on land-use changes in urbanized areas, all seven urban 
land-use categories, i.e., vacant, industrial, residential, commercial, road, public, 
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and special land, in neighborhood areas should affect the transformation of the four 
active land-use categories in metropolitan areas. In these seven urban land-use cat-
egories, special land comprises military, royal, and other special land which is 
always closed to the public. Therefore, it is assumed that the effect of special land 
on the transformation of active land-use categories is very limited and can be omit-
ted from an understanding of urban land-use changes. Accordingly, the values of the 
six remaining effect coef fi cients     β ′

ihk    can be obtained for one active land-use cate-
gory in any metropolitan area. 

 The values of the coef fi cients for different metropolitan areas are compared using 
the high-dimension similarity measure function Hsim( X ,  Y ) (Yang and Zhu  2004  ) :

     
= + −

=
∑

1

1
1

Hsim( , )

d

i i ix y
X Y

d    (15.2)  

where  X  and  Y  are two sets (objects) with dimension  d  which are compared for simi-
larity, and  x  

 i 
  and  y  

 i 
  stand for the data of  X  and  Y  in the  i th dimension. 

 This function represents the degree of similarity of two objects  X  and  Y . The 
higher the value of Hsim( X ,  Y ), the more similar the two objects are. If the minimum 
value of Hsim( X ,  Y ) is 0,  X  and  Y  are not similar at all. The maximum value of 
Hsim( X ,  Y ) is 1, meaning that  X  and  Y  are identical. In this research,  X  and  Y  stand 
for the same active land-use category in different metropolitan areas, and  x  

 i 
  or  y  

 i 
  

stand for the values of the coef fi cients of the neighborhood interaction in urban 
land-use changes. Higher values of Hsim( X ,  Y ) indicate a higher degree of similarity 
of neighborhood interactions in different metropolitan areas.   

    15.3   Results and Discussion 

    15.3.1   Urban Land-Use Structure and Changes 
in the Three Metropolitan Areas 

 Land-use patterns and structure in the three metropolitan areas showed a similar 
mode in the base years of 1989 in Tokyo, 1991 in Nagoya, and 1991 in Osaka 
(Fig.  15.3a, c, e ). Residential land is dominant in the urban land-use structure of 
these three metropolitan areas, accounting for more than 43% of urban land in the 
three areas. The area proportion of residential land in Tokyo even reached 48.7%. 
The high values of this proportion illustrate the residential function of the metro-
politan areas in Japan. The area of public land is the second highest proportion at 
more than 14%. Public land in urbanized areas mainly includes public service facili-
ties (such as educational facilities, city hall) and open spaces like parks. The higher 
proportion of public land in the metropolitan areas indicates the efforts of municipal 
governments to provide residents with more public service facilities and open 
spaces.  
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  Fig. 15.3    Land-use patterns in the three metropolitan areas in the base year land-use map of: 
( a ) Tokyo 1989; ( c ) Nagoya 1991; ( e ) Osaka 1991; and land-use changes ( changed areas ) in: 
( b ) Tokyo from 1989 to 1994; ( d ) Nagoya from 1991 to 1997; ( f ) Osaka from 1991 to 1996       
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 The third highest proportion is vacant land, which represents land being prepared 
for, or subjected to, construction. Its proportion in urbanized areas is generally more 
than 10%, indicating the potential dynamics of urban areas in the three metropolitan 
areas. Industrial land is always either located along the coast of the three metropoli-
tan areas or agglomerated in the suburbs. The proportion of industrial land to urban-
ized areas in Tokyo and Osaka is less than 10%, whereas that in Nagoya is at a 
higher level of 13.6%. Compared with other metropolitan areas, Nagoya is a city 
with an agglomeration of industries, especially automobile industries. The higher 
area proportion of industrial land indicates the degree of industrialization in 
Nagoya. 

 Commercial land is generally located in the center of metropolitan areas and near 
subway or railway stations. The proportion of commercial land to urbanized area in 
one metropolitan area is about 7%. The CBD (central business district) in the center 
of the metropolitan area and the sub-CBD near main subway stations are notable in 
land-use maps of the three metropolitan areas (Fig.  15.3a, c, e ). The proportion of 
road land in the three metropolitan areas is not low, re fl ecting the high density of 
roads in metropolitan areas in Japan. The proportion of special land is not signi fi cant 
except for Tokyo with 1.7%. 

 The spread of urbanized areas has different development potential in the three 
metropolitan areas in terms of the whole land-use patterns (Fig.  15.3a, c, e ). 
Agricultural land accounts for the main proportion of suburban areas in Tokyo and 
Nagoya. These areas are  fl at with smooth topography, which provides prime devel-
opment space. However, the suburban areas in Osaka are mainly mountainous areas 
where urban land-use patterns are limited by the rugged topography. Urban areas 
cannot easily spread to such places. 

 The changes in land-use structure and patterns mainly show the trend in urban 
growth during the study period in the three metropolitan areas (Figs.  15.3b, d, f,  and 
 15.4 ). Areas of cropland, vacant land, forest, and wasteland decreased to 173.75 km 2  
in Tokyo, to 69.22 km 2  in Nagoya, and to 74.93 km 2  in Osaka. Increases in residen-
tial, commercial, and public land are notable. Most of the land parcels of cropland, 
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forest, and wasteland which had decreased had become residential and public land. 
The residential and public-oriented strategy of urban development is well illustrated 
by this phenomenon. In addition, as the three metropolitan areas are coastal cities, 
the urbanized areas also spread out into the sea. During the relatively short study 
period, a considerable amount of the marine area was reclaimed and converted into 
urban area: 4.80 km 2  in Tokyo, 7.07 km 2  in Nagoya, and 6.30 km 2  in Osaka 
(Fig.  15.4 ). Except for industrial land in Osaka, all of the urbanized areas of indus-
trial, residential, commercial, roads, and public land in the three metropolitan areas 
increased, but at different rates. Land covered by roads only increased a little during 
the 5 years, and industrial land showed less change than residential or commercial 
land in the three metropolitan areas. Industrial land in Osaka decreased slightly dur-
ing the period. Patterns of land-use changes showed varying characteristics. The 
land-use parcels which changed were widely dispersed, and did not agglomerate in 
the study areas (Fig.  15.3b, d, f ).   

    15.3.2   Characteristics of Neighborhood Interaction 
in Urban Land-Use Changes 

 The coef fi cient     β ′
ikh    of different land-use categories in the neighborhoods was 

regressed at the 0.05 level of the hypothesis test for urban land-use changes in the 
four active categories in the three metropolitan areas. The coef fi cient     β ′

ikh    stands for 
the intensity of the neighborhood effect on the probability of an active land-use 
category, i.e., the neighborhood interaction in urban land-use changes. Considering 
its particular nature, special land is assumed not to be involved in the interaction. 
Figure  15.5  shows the results of regression. Here, the horizontal axis stands for the 
land-use categories which affect the transformation of the four active land-use cat-
egories in the neighborhood. The vertical axis represents the value of the regression 
coef fi cient     β ′

ikh   . Figure  15.5  shows that the value of the regressed coef fi cient of 
each active land-use category on its own transformation is always more than that of 
the other land-use categories, especially industrial and commercial land. For vacant 
land, the values of the coef fi cient itself in the three metropolitan areas are more than 
0.5, whereas those of other land-use categories are less than 0.4. This difference is 
similar for residential land, but is more notable for industrial land. For industrial 
land, the values of the coef fi cient itself are near to, or greater than, 1.0, while those 
of other categories are less than 0.5.  

 The values of the coef fi cient of commercial land also are greater than those of 
other land-use categories for commercial land. This phenomenon represents the 
effect of spatial autocorrelation in the spatial process of urban land-use changes in 
the three metropolitan areas (Zhao and Murayama  2006  ) , which cause the spatial 
aggregation of the same urban land-use category (Herold et al.  2005 ; Palivos and 
Wang  1996  ) . This result is in line with the characteristics of agglomeration of indus-
trial and commercial land allocation in Japan (Baba and Shibuya  2000 ; Ida  2006  ) , 
and also certi fi es the effectiveness of the neighborhood interaction model selected. 
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 The characteristics of the neighborhood effect on changes in urban land-use cat-
egories for different active land-use categories are quite different among the metro-
politan areas, meaning that the mechanism of urban land-use changes is different 
from that of land-use categories. For changes in vacant land, the intensity of the 
effect of land-use categories in the neighborhood is less strong. The effect of other 
land-use categories in the neighborhood is close to 0. This shows that in the change 
process, vacant land rarely interacts with other land-use categories in the same 
neighborhood area. Moreover, the values of the percentage correctly predicted 
(PCP) and the relative operating characteristic (ROC) of logistical regression tests 
for vacant land are smaller than those for other land-use categories. This may be 
because of the complex de fi nition of vacant land, and it also indicates that the loca-
tion of vacant land would mainly be determined by factors other than neighborhood 
effects. 

 Industrial land shows similar characteristics to vacant land. However, the inten-
sity of the effect of industrial land in the neighborhood on itself is stronger than the 
effect of vacant land on itself, indicating the strong degree of spatial aggregation of 
industrial land. The effects of other land-use categories in the neighborhood on resi-
dential land show approximately the same intensity, whereas the effect on commer-
cial land shows a different intensity. Roads and industrial and commercial land in 
the neighborhood obviously impact on the allocation of commercial land. 

 The differences in neighborhood interactions among urban land-use categories 
suggest that attention should be paid to the land-use classi fi cation system when 
constructing an urban geo-simulation model. An urban area is composed of many 
categories of land-use. Owing to the dif fi culty of obtaining land-use information in 
urbanized areas or other reasons (Batty  1971  ) , urbanized areas are classi fi ed as one 
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land-use category in much of the literature (Benenson  2007 ; Clarke et al.  1997  ) . 
Thus, the mechanism of interaction among different urban land-use categories may 
be concealed. This makes it more dif fi cult to understand the real processes and 
mechanisms of urban land-use changes, and may even lead to mistakes. Zhao and 
Murayama  (  2006  )  analyzed the characteristics of the effects of land-use classi fi cation 
systems on spatial patterns of land use. 

 Figure  15.5  illustrates that neighborhood interaction for one active land-use 
category in the spatial process of urban land-use changes generally shows similar 
characteristics in the three metropolitan areas, although neighborhood interac-
tion is different for every other active land-use category. The similarity of neigh-
borhood interaction in urban land-use changes between the three metropolitan 
areas during the study period was calculated using the similarity measure func-
tion Hsim( X ,  Y ) to quantitatively describe the degree of similarity (Table  15.1 ). 
In the similarity measure function Hsim( X ,  Y ), the values of coef fi cient     β ′

ikh    of 
land-use categories of vacant, industrial, residential, commercial, roads, and 
public land comprise a vector with six dimensions. All the values of similarity 
 measures between metropolitan areas were at least 0.823, with one even reaching 
0.965, indicating a high degree of similarity of neighborhood interaction in urban 
land-use changes between the three metropolitan areas, although their land-use 
change  patterns were not correlated.  

 The similarity measure of neighborhood interaction in urban land-use changes 
between the three metropolitan areas during the late 1980s (Tokyo, 1984–1989; 
Nagoya, 1987–1991; Osaka, 1985–1991) was calculated to avoid error and contin-
gency in the calculation of the similarity measure function above (Table  15.2 ). The 
similarity measure during the period also shows high values of at least 0.826, except 
for 0.785 for the industrial land between the Nagoya and Osaka metropolitan areas. 
This result validates the  fi nding that the characteristics of neighborhood interaction 
in urban land-use changes are similar in different urban areas. It may be concluded 
that the  fi nding is universal for all cities in Japan.  

   Table 15.1    Comparison of the similarity measure of neighborhood interaction in urban land-use 
changes between the three metropolitan areas during the study period   

 Type of land  Tokyo–Nagoya  Nagoya–Osaka  Tokyo–Osaka 

 Vacant  0.889  0.894  0.892 
 Industrial  0.965  0.857  0.852 
 Residential  0.926  0.958  0.906 
 Commercial  0.914  0.843  0.823 

   Table 15.2    Comparison of the similarity measure of neighborhood interaction in urban land-use 
changes between the three metropolitan areas during the late 1980s   

 Type of land  Tokyo–Nagoya  Nagoya–Osaka  Tokyo–Osaka 

 Vacant  0.904  0.886  0.924 
 Industrial  0.826  0.785  0.923 
 Residential  0.911  0.925  0.921 
 Commercial  0.950  0.897  0.882 
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 This  fi nding may have two meanings in the study of urban land-use changes in 
Japan. One is that the mechanism of urban land-use changes in neighborhood inter-
action at the local level would be similar for different cities. The other is that in the 
creation of urban geo-simulation systems, the values of the coef fi cients of neighbor-
hood effect in urban land-use changes may be applied to different cities in Japan.   

    15.4   Concluding Remarks 

 Tokyo, Nagoya, and Osaka are three main metropolitan areas in Japan. Land-use 
patterns and structure show similar characteristics in the three metropolitan areas. 
Residential and public land occupies about 60% of the acreage of each metropolitan 
area. Moreover, in the process of urban growth, most of the lost agriculture and for-
est land was also transformed into residential and public use. The function of human 
habitation and the principle of priority of public use in the cities of Japan are empiri-
cally demonstrated by the proportion and trend of land-use change. 

 A city is a huge, complex system. One of the complexities is that urban areas are 
composed of different kinds of urban land-use categories. The dynamics of these 
categories form the whole pattern of urban land-use changes. Therefore, an investi-
gation of the mechanism of urban land-use changes should start by exploring the 
dynamics of every urban land-use category. In this research, the characteristics of 
the neighborhood effect of urban land-use categories on the changes to four active 
land-use categories were quite different in each of the three metropolitan areas, 
illustrating the differences in the mechanisms of the changes in urban land-use cat-
egories in the cities. Consequently, the land-use classi fi cation system plays an 
important role in providing a clear understanding of the real mechanism of urban 
land-use changes. Suitable classi fi cation systems should be examined when consid-
ering urban land-use changes. 

 The spatial aggregation of urban land-use categories is illustrated by the spatial 
autocorrelation of the land-use category presented in the characteristics of neigh-
borhood interaction. Industrial and commercial land displays a particularly strong 
aggregation of land-use allocation compared with other urban land-use categories in 
all three metropolitan areas. This  fi nding agrees with the characteristics of agglom-
eration of industrial and commercial land allocation in Japan, and validates the 
effectiveness of the neighborhood interaction model. 

 In the three metropolitan areas, urban land-use changes have different spatial 
patterns, and urban land-use change patterns do not correlate with each other. 
However, neighborhood interaction in urban land-use changes generally shows sim-
ilar characteristics for the transformation of every active land-use category. This 
implies that neighborhood interaction in any of these three metropolitan areas may 
be used to understand the mechanism of urban land-use changes in other cities of 
Japan. These results provide very useful material for constructing universal urban 
geo-simulation models which may be applied to any city in Japan. Nevertheless, the 
reason(s) why neighborhood interaction in urban land-use changes in the three met-
ropolitan areas showed similar characteristics need(s) to be further investigated.      
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       16.1   Introduction 

 The concept of walkability conveys how conducive the built environment is to 
 walking. It has been adopted in many parts of the world to predict people’s physical 
activity and mode of transportation (Frank and Engelke  2005 ; Owen et al.  2004 ; 
Sallis et al.  2004  ) . Walkability captures the proximity between functionally comple-
mentary land uses (live, work, and play) and the directness of a route or the con-
nectivity between destinations (Forsyth and Southworth  2008 ; Moudon et al.  2006  ) . 
A walk score is an indicator of how “friendly” an area is for walking. This score is 
related to the bene fi ts to society in terms of energy savings and improvements in 
health that a particular environment offers to its residents. For example, a recently 
developed walk score web site uses Google Maps, speci fi cally Google’s local search 
application programming interface (API), to  fi nd stores, restaurants, bars, parks, 
and other amenities within walking distance of any address entered. The walk score 
currently includes addresses in the United States, Canada, and the United Kingdom. 
The algorithm behind this score indicates the walkability of a given route based on 
the  fi xed distance from one’s home to nearby amenities. The number of amenities 
found nearby is the leading predictor of whether people will walk rather than take 
another travel mode. However, evaluating walkability is challenging because it 
requires the consideration of many subjective factors (Reid  2008  ) . Moreover, all 
technical disciplines related to walkability have their own terminology and jargon 
(Abley  2005  ) . 
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 Neighborhood environmental quality is an important factor affecting human health. 
Fortunately, neighborhood environmental quality can be improved by proper urban 
management. Thus, epidemiological studies have explored the relationship between 
access to nature and health. For example, a study in Sweden by Grahn and Stigsdotter 
 (  2003  )  demonstrated that the more often one visits green areas, the less often one 
reports stress-related illness. An epidemiological study performed in The Netherlands 
(Maas et al.  2006  )  showed that residents of neighborhoods with abundant green spaces 
tended, on average, to enjoy better general health. Another possible mechanism relat-
ing nature to health occurs during social interactions and social cohesion. Several stud-
ies conducted in Chicago suggest that green spaces, especially trees, may facilitate 
positive social interactions between neighborhood residents (Kweon et al.  1998  ) . 

 Therefore, in many parts of the world, current urban planning activities are shift-
ing toward a focus on “green” living. Many cities around the world are now devel-
oping integrated solutions to major environmental challenges, and are transforming 
themselves into more sustainable and self-suf fi cient communities (Dizdaroglu et al. 
 2009  ) . Among the environmental bene fi ts achieved by such green interventions are 
the following: reduced cooling and heating demand, improved air quality, reduced 
storm-water runoff, the enrichment of urban biodiversity and urban agriculture, a 
reduced urban heat-island effect, a contribution to carbon-neutral architecture, an 
aesthetic improvement to the skylines of cities, and the economic impact of the 
green spaces (Roehr and Laurenz  2008  ) . 

 Given the great interest in walking activities and other urban sustainability mea-
sures, the purpose of this chapter is to develop an integrated methodology [using 
remote sensing, geographical information systems (GIS), and spatial web technol-
ogy] to model urban green space walkability, which enables local residents to make 
informed decisions that will improve their living conditions and physical health. 
The proposed methodology uses advanced land observing satellite (ALOS) data to 
identify the green spaces, which are then integrated with other GIS data sets, such 
as road networks, public facility locations, and building footprints, to calculate an 
eco-friendly walk score to enable residents to make decisions using an interactive 
web-based GIS. We use Tsukuba City, Japan, as a case study. 

 This chapter is organized into three sections. Following the introduction, the 
 conceptual framework is presented. This is followed by a discussion of the case study, 
including a list of data used, data processing steps, and a description of the implementa-
tion of the system. We proceed to explain the GIS analytical functions of our eco-friendly 
walk score calculator and its potential applications. The results of a qualitative usability 
study are presented in Sect.  16.5 , while our conclusions are discussed in Sect.  16.6 .  

    16.2   Conceptual Framework 

 Recently, GIS studies of urban green space areas have been increasing in number. 
For example, Mahon and Miller  (  2003  )  used GIS to identify green space areas with 
high ecological, recreational, and aesthetic values to protect certain green space 
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areas from development. Randall et al.  (  2003  )  presented a GIS-based decision 
 support tool to model planning scenarios related to the creation of new green space 
areas as part of neighborhood greening strategies. Zhang and Wang  (  2006  )  pre-
sented a study that used landscape metrics to quantify the spatial con fi gurations of 
green spaces, and performed GIS-based network analyzes to assess the accessibil-
ity of many proposed enhancements of green spaces. Ghaemi et al.  (  2009  )  imple-
mented a web-based platform “interactive park analysis tool,” which is part of the 
“Green Visions Plan for 21st Century Southern California” project (Wolch et al. 
 2005  ) . The quality of eco-friendly living places can be measured by an indicator of 
walkability index or score. Although most walk score calculations are based on 
distances between home and public facilities, an eco-friendly walk score calcula-
tion is based on green spaces (i.e., the location of home or a walking route with 
green spaces). The higher the score, the better the environmental quality (i.e., eco-
friendly) for living or taking green exercise. We propose to measure the greenness 
score of urban locations through the three modalities illustrated in Fig.  16.1 . In the 
 fi rst modality, greenness is measured for the spatial neighborhood around a certain 
address by user-de fi ned distance (get score by address); in the second modality, 
greenness is measured for each block of the urban region (get score by block), 
while the third modality computes the greenness score for walking routes (get 
score by walking route).  

 The following equations are used to calculate the greenness score for each of the 
three modalities (Fig.  16.1a–c ).

     
GA

(A) Get score by address 100
CA

⎛ ⎞= ×⎜ ⎟⎝ ⎠
   (16.1)  

     
GA

(B) Get score by block 100
BA

⎛ ⎞= ×⎜ ⎟⎝ ⎠
   (16.2)  

  Fig. 16.1    Conceptual view of different greenness score measurements       
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     GA
(C) Get score by walking route 100

RA
⎛ ⎞= ×⎜ ⎟⎝ ⎠

   (16.3)  

where GA = green area, BA = block area, CA = circle area, RA = 10 m buffered route 
area, and R = circle radius (user-de fi ned walking distance). 

 The calculation of a get-score-by-walking route is based on ( 16.3 ). This mea-
surement is ideal for informing people who want to make outdoor recreation or 
exercise activities part of their daily or weekend routines. Outdoor recreation or 
exercise has become an important element of healthy living, and a remedy against 
the de fi ciencies of a modern lifestyle that involves separation from nature. People 
with special needs, such as the elderly or those with disabilities, often gain thera-
peutic bene fi ts from activities conducted in a natural environment. Mental well-
being is also supported through playing, because play helps establish personal and 
community identity for children and young people (Bell et al.  2007  ) . A study by 
Sugiyama et al.  (  2008  )  shows that perceived neighborhood greenness was more 
strongly associated with mental health than with physical health. Moreover, Pretty 
et al.  (  2007  )  summarized the effects on 260 participants of 10 green-exercise case 
studies (including walking, cycling, horse-riding,  fi shing, canal boating, and con-
servation activities) in 4 regions of the United Kingdom. It was determined that 
green exercise (i.e., exercise in a green area) led to signi fi cant improvements in self-
esteem and in total mood. The effects were not found to be affected by the type, 
intensity, or duration of the green exercise. 

 Furthermore, we can also  fi nd the available facilities within a user-de fi ned dis-
tance or circle radius based on the accessibility concept. The circle is a spatial anal-
ysis boundary whose radius is de fi ned by the user. This radius indicates how far the 
user is willing to walk to reach the facilities. We also assume that the effectiveness 
of greenness has a circular pattern known as the distance decay effect. Accessibility 
is a measure of the spatial distribution of activities around a point location, adjusted 
for the ability and desire of people to overcome spatial separation (Handy and 
Niermeier  1997  ) . Several studies describe accessibility, review various accessibility 
measures, provide case studies, and present novel methods (Bhat et al.  2002 ; 
Levinson and Krizek  2005 ; Thill  2009 ; Thill and Kim  2005 ; Handy and Niermeier 
 1997 ; Pirie  1979  ) . In short, accessibility describes the ease of travel between a 
source and a target. For example, having retail stores close to where people live and 
providing connecting streets increases the likelihood that a person will incorporate 
walking into their daily routines (Frank and Engelke  2005 ; Moudon et al.  2007  ) . 
Furthermore, spatial syntax has been proposed as a new computational language to 
describe the patterns of modern cities (Hillier  1996 ; Hillier and Hanson  1984  ) . 
Typical applications of spatial syntax include pedestrian modeling, crime mapping, 
and way- fi nding processes in complex built environments (Hillier  1996 ; Jiang  1999 ; 
Peponis et al.  1990  ) . The axial line-based representation of an urban structure is the 
earliest approach to spatial syntax (Hillier and Hanson  1984  ) . Recent developments 
in spatial information science have much to offer for the identi fi cation of land-use 
types, street connectivity, and access to services, in order to determine the factors 
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that might increase or decrease the probability of people being physically active 
according to selected spatial units of interest (Leslie et al.  2007  ) . 

 In our urban green space walkability model, users are allowed to choose their 
desired travel distances and desired types of facility. The desired distance indicates 
how far people are willing to travel to reach their desired facilities. For example, 
some may want to reach their desired facilities by walking or cycling, which might 
mean that they are concerned about the environment, and want to reduce gasoline 
use and cut carbon dioxide emissions. In contrast, some people are willing to use a 
car to reach their desired destinations. Moreover, different people may require dif-
ferent facilities. We counted the available facilities based on user choices (i.e., their 
desired walking distance and desired facility types). The calculation was then based 
on the “cumulative opportunity,” which provides a measure of the number of avail-
able facilities within a certain distance or travel time (Fig.  16.2 ). Examples of cumu-
lative opportunity measures are found in various publications (O’Sullivan et al. 
 2000 ; Sherman et al.  1974 ; Wachs and Kumagi  1973  ) . Cumulative opportunity can 
be expressed by the following equation: 

     ( )i j jA j B a= ∑    (16.4)  

where     iA    is the accessibility measured at point  i  to potential activities in zone  j ,     ja    
is the opportunities in zone  j , and     jB    is a binary or threshold value (i.e., 1 if network 
distance  £  search radius, and 0 if network distance > search radius). 

 We identify all available facilities inside the circle (Fig.  16.2 ), and then separate 
them into two groups; one group is composed of a quali fi ed network of facilities 
for which the travel distance would be less than or equal to the search radius 
(marked as •), and the other group is the non-quali fi ed network of facilities for 

  Fig. 16.2    Conceptual view of cumulative opportunity measurements       
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which the travel distance would be greater than the search radius but would still fall 
within the area of the circle. Moreover, some points, such as shopping malls and 
supermarkets, include more than one shop. In this model, all measurements between 
the home and the available facilities are calculated as the actual shortest network 
distances. Okabe and Okunuki  (  2001  )  discussed the advantages of network dis-
tances over straight-line distances in the case of a retail market analysis in urban 
areas. The most traditional analytical tools are based on the assumption that market 
areas are homogeneous planes, and that the distances can be measured in terms of 
Euclidean distances. In a small area, however, irregular street layouts produce a 
heterogeneous plane, and consumers can access stores only through a network of 
streets. This suggests that there would be great potential demand for analytical 
tools for micro-spatial analysis of a network in which distance is measured in terms 
of the shortest route (   Fig.  16.3 ).   

    16.3   Case Study 

    16.3.1   Study Area and Data 

 Our study area was Tsukuba City, a city that was planned for academic and scienti fi c 
purposes and the home of the University of Tsukuba and the Japan Aerospace 
Exploration Agency (JAXA). As of 2008, the city had an estimated population of 
207,394, and a population density of 730 people per km 2 . Its total area is 284.07 km 2 . 
Located approximately 50 km northeast of Tokyo, Tsukuba is sometimes consid-
ered part of the Greater Tokyo metropolitan area. Table  16.1  lists the various data 
used in this study, and their respective uses and sources.   

  Fig. 16.3    Work fl ow for data processing and output of data to be used in the eco-friendly walk 
score calculator       
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    16.3.2   Data Processing 

    16.3.2.1   Data Processing Work fl ow  

    16.3.2.2   Creation of a Binary Green Image from ALOS Satellite Data 

 ALOS includes an optical sensor known as the advanced visible and near infrared 
radiometer type 2 (AVNIR-2) with high spatial resolution (10 m at nadir) composed 
of four multi-spectral bands (i.e., three bands in the visible range and one band in 
the near infrared region). The normalized difference vegetation index (NDVI; 
NDVI = (NIR − RED)/(NIR + RED)) is computed using a visible red band (RED, 
Band 3: 0.61–0.69  m m) and a near-infrared band (NIR, Band 4: 0.76–0.89  m m) 
acquired from vegetation growing seasons. This NDVI (Fig.  16.4 ) shows the degree 
of vegetation (intensity) represented as pixel values between 0 and 255, which are 
stretched from their original values of between −1 and 1.  

   Table 16.1    Data, descriptions, and applications of their use   
 Data and source  Description  Purpose 

 ALOS AVNIR-2 
(Japan Aerospace 
Exploration 
Agency, JAXA) 

 • Band 3 (red: 0.61–0.69  m m) 
 • Band 4 (infrared: 0.76–0.89  m m) 
 • 10 m spatial resolution at nadir 

raster in GeoTIFF format 

 • To delineate green spaces 
 • To convert binary green images 
 • To compute the greenness score 

 Building footprints 
(Zmap-TOWNII 
product from 
ZENRIN 
Company) 

 Building footprints including 
building name, parcel number, 
and number of  fl oors 

 Polygon in an ESRI Shape  fi le 

 • To integrate with administrative 
boundary data and construct a 
database of residential addresses 

 • To create masks on vegetated 
areas 

 Administrative 
boundary 
(Zmap-TOWNII 
product from 
ZENRIN 
Company) 

 • Administrative boundary 
including name 

 Polygon in an ESRI Shape  fi le 

 • To integrate with building 
footprints and create a database 
of residential addresses 

 • To calculate the greenness score 
by administration zone 

 Road center lines 
(Geospatial 
Information 
Authority of 
Japan, previously 
known as the 
Geographical 
Survey Institute) 

 • Road center lines with major 
road names 

 Line in an ESRI Shape  fi le 

 • To build a road network model 
 • To measure network distances 

between a user-de fi ned point 
and locations of facilities 

 • To compute a greenness score 
for each road segment 

 • To perform an analysis of the 
shortest or greenest route 

 Facility locations 
(iTownpage from 
NTT, Nippon 
Telegraph and 
Telephone Corp.) 

 • Business name, address, category, 
sub-category, business contents, 
phone number, URL, etc. 

 Comma-separated value (CSV) 
format 

 • To convert a point layer for 
facilities 

 • To  fi nd desirable and available 
facilities by a user-de fi ned 
search distance 



260 K.K. Lwin and Y. Murayama

 After stretching, this NDVI image was re-sampled to a 5 m spatial resolution 
with the Spline interpolation method using the ArcGIS Spatial Analyst extension 
(i.e., we converted the 10 m raster to a 10 m point, and the 10 m point to a 5 m 
raster again, by setting the output raster resolution at 5 m). The purpose of this re-
sampling was to reduce the errors between raster and vector analysis (Fig.  16.5 ) 
because the analysis is made between the 10 m road-buffer line and the center 
point of each raster. Another way to convert low resolution to high resolution is 
called “pan-sharpening.” However, this process requires an additional high- 
resolution panchromatic band. The use of pan-sharpened images in the analysis of 
vegetation is very rare because the original spectral values are transformed during 
the pan-sharpening process. Pan-sharpened images are commonly used for visual-
ization purposes. We use original spectral properties to calculate the NDVI and 
interpolate the middle one. Interpolation of the image is a technique in which the 
spatial resolution of an image is increased from its original size to a higher resolu-
tion to improve the image quality.  

 To separate vegetated and non-vegetated spaces, we set the threshold at 113 of 
the NDVI pixel values by comparing two images (i.e., one from the 67 cm RGB-
321 true color ortho-image and one from the 5 m re-sampled ALOS NDVI 
images) using the view > link/unlink viewers > geographical function in the 
commercial remote sensing software ERDAS Imagine (Fig.  16.6 ). After this 
step, the intensity image is converted into a binary green image (1 for vegetated 

  Fig. 16.4    NDVI image ( green intensity ) from an ALOS AVNIR-2 sensor masked with building 
footprint polygons       
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area, and 0 for non-vegetated area). The main purpose of this conversion is to 
identify the vegetated areas rather than the vegetation intensities, which vary 
from season to season. The binary green image also reduces the data size and the 
required computational time. This procedure is  especially suitable for web-based 
GIS in which the network and computational resources are limited. Vegetated 
areas included trees, bush land, grass land, and paddy  fi elds. Non-vegetated areas 
include buildings, parking lots, bare land, rivers, and lakes.   

  Fig. 16.5    Errors between 
raster cells and vector line 
analysis, depending on cell 
size       

  Fig. 16.6    Identi fi cation of the threshold value by linking the 67-cm ortho-image and the 5 m 
re-sampled ALOS NDVI image (viewing the actual landscape features from the high-resolution 
ortho-image  left view , and obtaining the NDVI pixel values from the  right view  while moving the 
cross-hairs by using ERDAS commercial remote-sensing software)       
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    16.3.2.3   Computation of the Greenness Score and the Road Network Model 

 Road center-line data were acquired from the Geospatial Information Authority of 
Japan. However, this data set does not cover all the small streets in the city. Therefore, 
small streets that were missing were digitized based on Zmap-TOWNII data. 
Following this, we added a 10 m buffer to both sides of the road, and computed the 
greenness score based on the binary green image (Fig.  16.7 ) for each road segment 
using ( 16.3 ). Next, we built a topological road network model using VDS road net-
work builder provided by VDS technologies. In this process, we set up the green-
ness score attribute  fi eld as a weight factor in order to compute the shortest or 
greenest route between two points. The shortest route was computed based on road 
distance, while the greenest route was computed based on road distance and the 
greenness score, whose value ranges from 0 to 100.   

    16.3.2.4   Construction of a Residential Address Database 

 For this case study, a database of residential addresses was created from a combina-
tion of administrative boundary and building footprint data sets. Building footprint 
data sets are useful for estimating building populations (Lwin and Murayama  2009  )  
because such data contain rich attributes including building number, number of 
 fl oors, and building name. Unlike other countries, most Japanese addresses are 
based on a block-by-block system. The address does not contain a street or road 
name; instead, it is expressed by a sequence of blocks (prefecture block, city block, 

  Fig. 16.7    Calculation of the greenness score for each road segment based on the binary green 
image, and an example of the shortest and greenest path calculations using greenness score as the 
weighted factor       
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ward block, ownership block, etc.). For this study, we constructed the address data-
base by performing an intersection function between these block layers. We sepa-
rated the addresses into two parts: the main block and the sub-block. The main 
block represented the smallest administrative unit, and the sub-block represented 
the smallest land unit. For example, in the case of Kasuga 3–15-23, Kasuga 3 was 
constructed from an administrative boundary block, and 15-23 was constructed 
from the smallest land unit. The purpose of the address database is to locate the 
place in a user-friendly way, and to avoid problems with mis-typing when perform-
ing an address search. Although this approach is not appropriate for large land 
blocks (e.g., factories, schools, and hotels), users can still locate their position and 
the distance of the desired destination by using the interactive map circle tool.  

    16.3.2.5   Conversion of Public Facility Data 

 Our model also uses the count of available facilities classi fi ed by a user-de fi ned 
search area and speci fi ed facility types. This is useful for potential home-buyers and 
current residents to calculate the distances between home and available facilities on 
the network. We use iTownpage data, which were downloaded from the Nippon 
Telegraph and Telephone Corp. (NTT) website. These data include the business 
name, type, category, content, address, telephone number, and other information in 
a comma-separated value (CSV) format. The iTownpage website supports the 
everyday life and business activities of visitors and expatriates in Japan, as well as 
people living overseas, by enabling users to search for information about stores and 
businesses via the Internet. These CSV data were converted into ESRI point fea-
tures (Fig.  16.8 ) using commercial geo-coding software with an accuracy at the 
building level. These NTT iTownpage data can be used to separate the residential 
and non-residential buildings, and to carry out other retail market analysis. For 
example, Lwin and Murayama  (  2010  )  used NTT iTownpage data to separate the 
building-use types and integrate those with a digital volume model (DVM) that was 
derived from light detection and ranging (LiDAR) data to produce a  fi ne-scale dasy-
metric map for Tsukuba City.    

    16.3.3   Implementation of the Eco-Friendly 
Walk Score Calculator 

 We have implemented a system called the “eco-friendly walk score calculator” 
based on our urban green space walkability model. The overall system is built on 
Microsoft ASP.NET with an AJAX extension and VDS technologies (web mapping 
components for ASP.NET). ASP.NET is a web application framework marketed by 
Microsoft that programmers can use to build dynamic websites, web applications, 
and XML web services. AJAX (shorthand for asynchronous JavaScript and XML) 
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is a group of interrelated web development techniques used on the client side to cre-
ate interactive web applications. With AJAX, web applications can retrieve data 
from the server asynchronously in the background without interfering with the dis-
play and behavior of the existing page. The use of AJAX techniques has led to an 
increase in interactive and dynamic interfaces on web pages. AspMap for .NET 
from VDS technologies is a set of high-performance web-mapping components and 
controls for embedding maps in ASP.NET applications (web forms). Figure  16.9  
shows the overall system design and potential users.    

    16.4   Model Outcomes 

 Figure  16.10  shows the graphical user interface (GUI) of the eco-friendly walk 
score calculator. We measured the greenness score via the three modalities called 
“get score by address,” “get score by block,” and “interactive score.” The  fi rst mea-
surement mode of our program is the “get score by address” function (Fig.  16.11 ). 
This is ideal for current residents to evaluate the environmental quality of their 
neighborhood by entering their home address and search radius (the default search 
radius is 250 m). This tool also  fi nds the available facilities within the user-de fi ned 
search radius based on the concept of accessibility. The second measurement mode 
of our program is the “get score by block” (Fig.  16.12 ) function, which is ideal for 

  Fig. 16.8    Conversion of an iTownpage comma-separated value (CSV)  fi le to ESRI point features 
(one point may contain many shops, such as a shopping mall and supermarkets)       
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urban planners to evaluate the greenness of spaces according to planning zone (i.e., 
administrative block). The third measurement mode of “interactive score” is ideal 
for potential home-buyers who are planning to live in Tsukuba City, or for local 
residents who want to walk along the greenest or shortest route between locations. 
As for potential home-buyers, users can locate their location and desired walking 
distance by drawing a circle on a map (Fig.  16.13 ).     

 The calculation of the greenness score is the same as for the get score by address 
mode. In interactive score mode, users can also  fi nd either the shortest or the green-
est walking route (Fig.  16.14 ) by specifying their start and end points. The shortest 
route is ideal for shopping activities, and the greenest route is ideal for recreational 

  Fig. 16.9    System design of the eco-friendly walk score calculator       
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walking activities. Finally, users can also compute the walking score for multi-stop 
trips. To this end, the user speci fi es multiple activity sites. For example, one could 
start from home, go to the library, continue on to a shopping center, and then return 
home (Fig.  16.15 ).    

    16.5   Qualitative Usability Study 

 In order to evaluate our web-based GIS eco-friendly walk score calculator in 
Tsukuba City, we conducted a number of face-to-face interviews and telephone 
conversations with university students, researchers, private companies, non-pro fi t 
organizations (NPOs), local residents, real-estate agencies, and city planners. Of the 
groups of users that were part of this study, real-estate agents found the ability to 

  Fig. 16.10    Graphical user interface of the eco-friendly walk score calculator (URL:   http://land.
geo.tsukuba.ac.jp/ecowalkscore    )       

 

http://land.geo.tsukuba.ac.jp/ecowalkscore
http://land.geo.tsukuba.ac.jp/ecowalkscore
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show the neighborhood environmental quality and surrounding public facilities to 
potential home buyers a highly valuable resource, while local residents tended to 
favor the get score by address function. Students, on the other hand expressed a 
preference towards the get score by route analysis capabilities. 

 In order to provide an avenue for system improvement, researchers proposed 
incorporating the ability to integrate additional scores or indices to the system, 
including accessibility and connectivity indicators such as the alpha or beta index, 
average block length, or average block size based on a GIS network data model 
(Thill  2000  ) . City planners in our usability study suggested that in addition to the 
get score by administrative block function, scores could also be calculated by irreg-
ular boundaries such as a user-de fi ned polygon, given that land-use planning is often 
performed according to land-use type or within speci fi c properties. For example, 
computing the greenness score for a university would help to improve campus envi-
ronmental quality. 

  Fig. 16.11    Get score by user-de fi ned address and default search radius of 250 m ( Note : one point 
may contain more than one shop)       
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 NPOs found the system to be moderately useful, since their primary purpose is 
to locate open spaces for humanitarian assistance and other social or cultural activi-
ties. Although we did not  fi nd any signi fi cant dif fi culties with the graphical user 
interface, a handful of students commented on the size of the GUI panel, suggesting 
that the eco-friendly walk score calculator would be handy to have as an application 
on their smart phones or Netbook computers in order to  fi nd the greenest route 
while they walk or exercise. They also suggested making separate route analysis 
web-GIS pages for mobile Internet users. Overall, the system was evaluated favor-
ably by real-estate agencies, researchers, and students.  

  Fig. 16.12    Getting a score by administrative block       
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    16.6   Conclusion 

 The increasing popularity of the Internet and user-friendly web-based GIS applica-
tions such as Google Maps/Earth and the Microsoft Bing Maps platform have made 
GIS an integral part of life today for  fi nding the nearest facilities, driving routes, and 
so on. However, choosing an eco-friendly place to live or a walking route is a big 
challenge for local residents because of the lack of GIS analytical functions and 
environmental data available online. Although the analysis of route paths has been 
widely used in GIS applications, the integration of green factors with the analysis of 
the route path is still lacking in the GIS arena. In this chapter, we have presented an 
integrated methodology for identifying an eco-friendly place to live or to walk by 
providing web-based GIS analytical functions using Tsukuba City in Japan as a case 

  Fig. 16.13    Interactive score using the circle tool for potential home-buyers       
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  Fig. 16.14    Finding walking routes by either the shortest route or the greenest route       

  Fig. 16.15    Finding multiple places (points) with a walking route through use of the greenness score       
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study. This web-based, eco-friendly walk score calculator enables users to evaluate 
the environmental quality of a neighborhood, to  fi nd the nearest facilities which are 
accessible on foot, to choose an eco-friendly place to live for potential home-buyers, 
and to choose a route for green exercise. Although this web-based GIS represents a 
fairly localized prototype, we hope it will help local city planners and policy- makers 
to build sustainable eco-cities to improve the mental and physical health of their 
residents in various parts of the world.      
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     17.1   Introduction 

 Soil erosion and the sedimentation of reservoirs are serious problems throughout 
the tropics, and result from severe and uncontrolled environmental degradation. As 
a result, declining watershed resources continue to put great pressure on the avail-
able agricultural land to support households as soil erosion increases, leading to 
considerable loss of soil fertility and in extreme cases to eventual deserti fi cation 
(Munthali et al.  2011  ) . In the developing regions, cut-and-burn agricultural prac-
tices have been identi fi ed as the main driver of erosion, and they pose a great risk to 
the ecosystems to which such watersheds belong (   Chimphamba et al.  2006  ) . 
Physiologically, many tropical river regimes are unstable and pose a great danger to 
life and infrastructure as they continuously meander and change course (Munthali 
et al.  2011  ) . Seasonally, it is estimated that tropical  fl oods inundate signi fi cant pro-
portions of fertile land (   Norplan A.S. in Association with COWI et al.  2003 ;    WWF 
(World Wide Fund for Nature)  2009  ) . 

 It has been established that of all the water-related problems in the tropics, the 
sedimentation of reservoirs is one of the most economically crippling because of 
the large investments in dams for hydroelectric power and irrigation (Nagle et al. 
 1999  ) . With the world’s dams costing billions, replacing lost reservoir storage is a 
costly endeavor even with reported rough estimates of lost capacity being as little 
as 1% annually (Mahmood  1987  ) . Despite a number of programs being proposed 
and implemented to control erosion and slow sedimentation, observers have argued 
that many of these efforts are doomed to failure (Magrath and Doolette  1990 ; 
Mahmood  1987  ) . Therefore, the important questions to ask are whether soil  erosion 
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reduction, and hence sediment reduction, can be planned and executed  effectively, 
and secondly when and where the watershed can actually be managed (Nagle et al. 
 1999  ) . This is not only because sediment movement in watersheds is a complex 
process that takes place over long periods of time, but also because of the under-
standing that while soil conservation programs that focus on agricultural lands are 
necessary and useful for many other reasons, these may not be the key problem 
areas as far as the control of sedimentation is concerned (Nagle et al.  1999  ) . This 
highlights the key weakness of most sediment management programs in the trop-
ics, i.e., their limited capacity to identify and focus efforts on key problem areas 
(Nagle et al.  1999  ) . This can be blamed in part on the lack of reliable data on soils 
and erosion rates on the one hand, and limited  fi nancial and/or human resources on 
the other (Munthali et al.  2011  ) . 

 However, with advances in remote sensing technology and the development of 
geographical information systems (GIS), watershed evaluation has been given a 
signi fi cant boost. Nagle and others (Nagle et al.  1999  )  contend that coupled with 
good  fi eld studies that identify sediment sources, the sophistication of geospatial 
techniques should provide signi fi cant improvements in watershed evaluation and 
management. This is even more important when pressing economic needs for irriga-
tion water and hydroelectric power in the developing tropical regions force many 
dam projects to be implemented with the scantiest consideration to the potential for 
rapid sedimentation (Dunne  1988  ) . Because watershed management involves  fl ood 
and sedimentation control as well as soil erosion management in tropical regions, 
the rest of this chapter begins by providing a background to watershed evaluation, 
focusing on methodological theories of geospatial watershed evaluation relating to 
soil erosion modeling. Without loss of generality, we then present a geospatial 
watershed evaluation case study of the Songwe River watershed in Northern Malawi, 
and  fi nally discuss the usefulness of the techniques considered.  

    17.2   Background to Watershed Evaluation 

    17.2.1   Flood Control and Sedimentation 

 There are signi fi cant differences in the precision of regulated and natural  fl ows between 
individual dams, as well as between their methods of operation (Munthali et al.  2011  ) . 
However, common to them all is the fact that the construction of a dam does affect the 
river’s distribution of discharge and its suspended material (Wellmeyer et al.  2005  ) . It 
is known that meandering river- fl ow regimes follow a common evolutionary pattern 
over time (Friedkin  1945  ) . Therefore, the key to regularizing the  fl ow is to alter the 
natural discharge regime that subsequently affects the behavior, or the rate of meander 
and erosion evolution, and hence sedimentation (Wellmeyer et al.  2005  ) . 

 Environmentally, sediment transportation re fl ects the distributed erosion processes 
acting in the basin, as well as being a measure of the slow process of degradation and 
sequential loss of one of agriculture’s critical natural resources, top soil (Pilotti and 
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Bacchi  1997  ) . Erosion processes are generally slow (Munthali et al.  2011  ) , but the 
annual volumes of the sediment load involved are huge (U.S. Department of 
Agriculture-Soil Conservation Service  1994  ) . Sediment load is de fi ned as debris 
eroded from an area drained by a stream, which is delivered to and transported by the 
stream itself (Schumm  2009  ) . The total amount of erosional debris exported from 
such a drainage basin is its sediment yield (Munthali et al.  2011  ) . 

 The sediment load is usually the rock underlying the drainage basin. Until this 
rock is weathered into transportable fragments the sediment yield is low, which 
prompted Schumm  (  2009  )  to point out that an evaluation of the erosion conditions 
provides a good estimate of the sediment yield. It has been further argued that a 
more reliable assessment of watershed sediment yield is obtained when a hydraulic 
approach is augmented by information about the mechanisms that feed sediments 
into the channeled  fl ow (Pilotti and Bacchi  1997  ) . 

 Disturbances in vegetative cover (land use/cover changes due to agriculture, tim-
ber, and charcoal harvests, construction, and others) leave soils vulnerable to ero-
sion (Munthali et al.  2011  ) . However, as Fried et al.  (  2000  )  observed, where this 
happens and how much is eroded and transported downstream largely depends on 
the topography and the hydrological properties of the soil. Once eroded, the sedi-
ment’s journey down the catchment area depends signi fi cantly on runoff, which 
reduces in speed over time and then results in deposition (Fried et al.  2000  ) . Because 
of the large amount of human activity impacting on river  fl ow, many dams have 
been constructed across river systems for various purposes, which include  fl ood 
control, recreation, and power generation, and these have played a major role in 
determining the sites of sediment deposition (Munthali et al.  2011  ) . Many of the 
reservoirs end up holding much of the sediment load themselves (Haregeweyn et al. 
 2006 ; Tamene et al.  2006 ; Schumm  2009  ) . 

 Bozali et al.  (  2008  )  and Pandey et al.  (  2008  )  highlight the fact that the success of 
reservoir construction works to engineer stable river courses and control  fl oods rests 
in the sustainability of the watershed itself. As noted, the key weakness of most 
sediment management programs in the tropics has been their limited capacity to 
identify and focus efforts on key problem areas (Nagle et al.  1999  ) . They (Nagle 
et al.  1999  )  continue to advise that if the control of reservoir sedimentation is the 
principal reason for such programs, more critical thought must be given to the 
description and quanti fi cation of major sediment sources. In other words, a geospa-
tial watershed evaluation should, among other issues, try (1) to quantify the hydro-
logical sediment potential, and (2) to determine critical areas requiring prioritized 
conservation management in that particular watershed (Munthali et al.  2011  ) .  

    17.2.2   Soil Erosion Management 

 Many of the answers to whether a watershed is sustainable or not depend on 
how much of the soil erosion has been contained. Erosion by running water 
resulting from precipitation is the most severe hazard threatening the protection 
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of watersheds from soil loss (Pandey et al.  2008 ; Commission of the European 
Communities  2006  ) . Over time, such erosion-induced changes to the drainage 
basin affect river discharges (Mulder and Syvitski  1996  ) . It is therefore widely 
understood and accepted that an evaluation of the state of erosion needs an 
objective methodology, operating on standard data sets, which allows the assess-
ment to be repeated as conditions, pressures, and drivers change, or the broad-
scale implications of prospective watershed changes to be explored (Kirkby 
et al.  2008  ) . In the early days of erosion modeling, the focus was on a broad-
scale approach that could readily be applied in a wide range of conditions to 
give advice on conservation practices (see USLE, Wischmeier and Smith  1958, 
  1978 ; and RUSLE, Renard et al.  1991  ) . However, much recent work (for exam-
ple, WEPP, Nearing et al.  1989 ; EUROSEM, Morgan et al.  1994 ; KINEROS, 
Smith et al.  1995 ; LISEM, de Roo  1996 ; PESERA, Kirkby et al.  2008  )  has con-
centrated on detailed process-based modeling (Kirkby et al.  2008  ) . 

 The USLE model developed from the desire to keep the erosion of cultivated  fi elds 
within acceptable limits given the climate, slope, and agricultural production factors of 
a particular region (Roose  1996  ) . It is a multiplier model in which if one factor tends 
toward zero the estimated erosion will also tend toward zero (Roose  1996  ) , with     A  , the 
potential long-term average annual soil loss in tons per acre per year, given as

     = × × × ×SLA R K C P    (17.1)  

where     R    is the rainfall erosivity index based on the rainfall and runoff factor of that 
particular region,     K    is the soil erodibility factor that depends on the organic matter 
and texture of the soil, its permeability, and pro fi le structure,     SL    is a topographic 
factor derived from the regional length and gradient of slopes,     C    is the plant cover, 
which is a simple relation between erosion on bare soil and erosion observed under 
a cropping system, and     P    is any speci fi c erosion control practices factor such as 
contour ridging (Roose  1996  ) . 

 USLE has been a practical model for  fi nding rational solutions to practical prob-
lems, especially in areas where data availability is a challenge. However, because of 
its intrinsic limitations (see Roose  1996  ) , variant forms of it have appeared, each 
trying to  fi x the limitations and adapt the model to particular geographic locations 
(see RUSLE, Renard et al.  1991 ; SLEMSA, Elwell  1981 ; and EPIC, Williams 
 1982  ) . In addition, uncertainty still hangs over the universal applicability of the 
USLE and its variant forms in many other areas, especially regions where landslides 
and linear erosion are predominant (Roose  1996  ) . In particular, Kirkby et al.  (  2008  )  
notes that the USLE-approach fails to distinguish properly between soil and 
climatic conditions in the in fi ltration process. 

 Process models, on the other hand, have been reported to have the potential to 
respond explicitly and in accordance with experience to changes in climate or land 
use, and so show great promise for developing scenarios of change and “what-if” 
analyzes of policy or economic watershed options (Kirkby et al.  2008  ) . It is argued 
that a process-based approach, as opposed to the USLE approach, does (1) apply the 
same objective criteria to all areas, and so can be applied throughout a region, 
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 subject to the availability of suitable generic data, (2) provide a quantitative estimate 
of erosion rate, which can be compared with long-term averages for tolerable ero-
sion, and (3) allow the methodology to be re-applied with equal consistency as 
available data sources are improved, and for past and present scenarios of changing 
climate and land use (Kirkby et al.  2008  ) . It should be mentioned, though, that there 
are a number of possible methodological approaches for creating erosion assess-
ment maps for watersheds (Gobin et al.  2004  ) , each of which has its own strengths 
and weakness, and therefore a choice of one over the other depends mainly on the 
objective and the prevailing conditions of the particular watershed.   

    17.3   Songwe River Watershed Geospatial Evaluation: 
A Case Study 

    17.3.1   Case Study Area 

 The case study area is a 4278 km 2  watershed, with the 200-km Songwe River form-
ing a physical boundary between the United Republic of Tanzania and the Republic 
of Malawi. It is part of the semi-arid eastern and southern African Great Rift Valley, 
and lies between latitudes 9°6 ¢ 23²–9°56 ¢ 17² south and longitudes 32°44 ¢ 34²–33°56 ¢ 31² 
east. Slightly over half of its total area falls in the districts of Ileje, Mbozi, Mbeya, 
and Kyela of the Mbeya region on the Tanzanian side, and the rest is in Karonga and 
Chitipa districts on the Malawi side (Munthali et al.  2011  ) .  

    17.3.2   Methods and Database 

 The pan-European soil erosion risk assessment (PESERA), a simpli fi ed hydrologi-
cal process-based approach, was used in this study to combine hydrological surface 
runoff factors in order to estimate sediment yield (Munthali et al.  2011  ) . By attempt-
ing to use advances in the understanding of runoff processes as opposed to sediment 
transport, it was only sensible for a forecast of runoff and soil erosion in PESERA 
to be built on a hydrological core (Kirkby et al.  2008  ) . While this study concentrated 
on calibration, validation, and its scenario application in the tropical region of the 
study area (Munthali et al.  2011  ) , a development account of the PESERA model is 
provided by Kirkby et al.  (  2008  ) . 

 With sedimentation being sensitive to both climate and land use, as well as to 
detailed conservation practices, temperature and precipitation proxies were used to 
estimate the climatic parameters (Munthali et al.  2011  ) . Evapo-transpiration can be 
obtained empirically, but in the case of PESERA, it is partitioned proportionally to 
vegetative crown cover (Kirkby et al.  2008  ) . Its potential was determined using the 
 Hargreaves model  (Munthali et al.  2011  ) . 
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 The monthly rainfall was derived by averaging the monthly daily rainfall data for 
the years 1998 through 2006, which was obtained from seven gauging stations from 
which monthly mean rain per rainy day and mean monthly rains were derived for 
each gauging station and interpolated to  fi t the entire watershed (Munthali et al. 
 2011  ) . The in fi ltration excess overland  fl ow runoff was estimated from storm rain-
fall and soil moisture. A Hortonian process of point hydrological balance was then 
used to estimate sediment transport from the excess overland  fl ow (Munthali et al. 
 2011  ) . This was coupled to a vegetation growth and soil model in order to (1) budget 
for the living biomass and organic matter subject to the constraints of land use and 
cultivation choices, and (2) estimate the required hydrological variables from mois-
ture, vegetation, and seasonal rainfall history, respectively (Kirkby et al.  2008  ) . 

 Runoff thresholds determine near-surface water storage, and soil properties con-
strain its upper limit (King et al.  1995  ) . The model parameters of available water 
storage capacity, crustability, and erodibility were therefore obtained from the avail-
able soil properties (Munthali et al.  2011  ) . For agricultural land, full water storage 
after ploughing decays exponentially with time, and reduces to a minimum in veg-
etated areas (Darboux et al.  2002 ; Le Bissonnais et al.  2005  ) . This allows for a 
seasonal response in runoff thresholds, and therefore in in fi ltration excess overland 
 fl ow (Kirkby et al.  2008  ) . 

 Vegetation cover reduces with real-time processes of  fi re, plant gathering, and 
grazing (Kirkby et al.  2008  ) . This relates empirically to the seasonal cover cycle and/
or above-ground biomass of the land-use classes (Haboudane et al.  2002  ) . Therefore, 
the PESERA model estimated sub-surface  fl ow, which in fl uences the in fi ltration 
excess overland  fl ow, using the  TopModel  (Beven and Kirkby  1979  ) . Topographic 
properties were estimated from local relief maps (Munthali et al.  2011  ) . 

 Sediment transport was then estimated by sediment yield,     Y    (kg m −2  year −1 ), 
de fi ned as the sediment transported to the slope base, averaged over the slope length 
(Kirkby et al.  2008  ) . That is

     
2

BY kL r= Λ ∑
   (17.2)  

where     k    is the empirical erodibility value,     L    is the total slope length (m),     ΛB   is the 
dimensionless local slope gradient indicated by an evaluation at the slope base, 
taken over the frequency distribution of daily rainfall storm events in an average 
year, and     r    is an estimate of the accumulated runoff. 

 A total of 93 climatic, land use/cover, topographic, and physiographic parame-
ters were assembled and used to simulate the 2002/2003 season cycle on a monthly 
time scale with all parameters prepared at, or re-sampled to, 90 m resolution (see 
Munthali et al.  2011  ) . 

 Basin storage of sediment is an important variable in sedimentation management 
practices, as not all the sediment eroded from uplands is immediately delivered 
downstream (Nagle et al.  1999  ) . Drainage density, which Bozali et al.  (  2008  )  de fi ne 
as the capability of a stream network to discharge total rainfall, and hence sediment, 
from its watershed, is one indicator of basin storage, and is quanti fi ed as
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= s

s

L
D

A    (17.3)  

where     sD    is the drainage density,     sL    is the total stream length of the system, and     A    
is the total area of the watershed. 

 A multi-criteria evaluation was then carried out to identify the critical areas 
requiring prioritized conservation management based on the following factors: 
(1) distance to the river channel; (2) slope; (3) the estimated PESERA outputs of 
runoff as a delivery medium (Schumm  2009  )  and sediment load (   Fig.  17.1 ).   

    17.3.3   Results and Discussion 

    17.3.3.1   Sediment Generation 

 The estimated mean annual sediment generation varied considerably in magnitude, 
but showed no signi fi cant spatial variability (Fig.  17.2 ). Worrying levels are con fi ned 
to the upper catchment, with most of the areas having an estimated sediment poten-
tial of over  25 tonnes per hectare per year  (t ha −1  year −1 ) (Munthali et al.  2011  ) . With 
high topographic percentage rises in the upper catchment and extreme magnitude 
variability of the rainfall both in space and time, infrequent but heavy rains tend to 
be responsible for moving much of the sediment generated in the tropical catchment 
(Munthali et al.  2011  ) .  

 The monthly distribution of sediment deliverable to the reservoir follows the 
rainy season (see Fig.  17.3 ). No vegetative cover loss (0%) would have been an 
ideal control, but that would not have been realistic, and the model opted for 5% 
cover. Although the model has under-estimated the sediment yield (see Fig.  17.3 ), 
the results compare very well considering that the observed sediment yield transla-
tion used the observed monthly maximum discharge values (Munthali et al.  2011  ) . 
The actual observed sediment is expected to be less than depicted, thereby coming 
closer to the model estimates. Despite the fact that some observed sediment concen-
tration data were missing for the dry months (June to November), the available data 
suf fi ced in this analysis as it was for the critical window period—the rainy season. 
The model estimated monthly series translate into an average annual estimated sedi-
ment input of 9,000,000 t year −1 , which is equivalent to 3.4 Mm 3  year −1 , and which 
raises concerns about sedimentation (Munthali et al.  2011  ) . These results point to a 
high sedimentation risk, and compare well with relative sedimentation estimates of 
similar tropical catchments in India and the Philippines (Nagle et al.  1999  ) .   

    17.3.3.2   Soil Erosion Management 

 Sustainable watershed rehabilitation and management do not only depend on the 
quanti fi ed magnitudes of sediment generated, but also on an awareness of the 
 sediment residence time in the catchment (Nagle et al.  1999  ) . The drainage density 
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  Fig. 17.1    Physiographic sub-basins showing elevation distribution above sea level and the 
 proposed reservoir site ( Source : Munthali et al.  2011  )        

  Fig. 17.2    Estimated average annual sediment generation (t ha −1  year −1 ) ( Source : Munthali et al.  2011  )        

was calculated to be very low at 0.1126, signifying that the available sediment in the 
watershed has a long residence time (Munthali et al.  2011  ) . This makes the sedi-
ment generated in the catchment available for transport even after further erosion 
has been prevented upstream. 
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 Furthermore, a determination of whether sediments are from human or geologi-
cal origin is of particular importance to reservoir capacity and storage sustainability 
(Nagle et al.  1999  ) . This determines the type of sediment expected, e.g., large from 
landslides and/or  fi ne from agricultural and built-up land, and permits a focused 
catchment conservation strategy. 

 Dams are built with the provision of a portion of the reservoir to hold the incom-
ing sediment loads which are projected to occur during the economic life of the 
dam; referred to as “dead storage” (Haregeweyn et al.  2006 ; Robert  1973  ) . This 
storage is in the deepest portion of the reservoir, usually close to the dam, between 
the level of the water intake and the bed of the stream. “Live storage,” on the other 
hand, refers to the stored water that will actually be used (Nagle et al.  1999  ) . 
While  fi ne sediment is carried as a suspended load further into the reservoir and 
settles into the planned dead storage area, coarse sediment is carried as bed load 
and is deposited at the reservoir inlet, thus taking up part of the live storage area 
(Dunne  1988  ) . 

 By overlaying the result in Fig.  17.2  with the land use/cover map for the study 
area, it was found that a large proportion of the sediment originates from built-up 
village land i.e., rural village settlements, footpaths, and all open and non-arable 
areas (see Fig.  17.4 ). Dunne  (  1979  )  observed that although there have been very 
few studies of paths and village settlements in estimates of the actual sources of 
sediments, these features generate a large proportion of the sediment yield of 
catchment areas. An increase in the population density in the study area 
(Chimphamba et al.  2006  )  has made the network of roads and paths denser and the 
area covered by the settlements larger. In the upper and middle sub-basins, the 

  Fig. 17.3    Estimated sediment yields delivered to the proposed reservoir site, and observed sedi-
ment concentration at the Mwandenga Gauging Station ( Source : Munthali et al.  2011  )        
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networks traverse steeper gradients of the terrain. Whether  fi ne and/or coarse sed-
iments are generated (which depends on the prevailing catchment conditions), the 
combined contribution from built-up village land was signi fi cantly over half of 
the total found in the study area. This is similar to the results from tropical water-
sheds elsewhere (Nagle et al.  1999  ) .  

 It has been reported that intensive cut-and-burn agriculture (Chimphamba 
et al.  2006  )  has left many natural environments degraded. The tropical storm 
rainfall  conditions subject the degraded natural land to mass wasting, which ends 
up constituting a large proportion of the bed load sediment of the stream channel 
(Munthali et al.  2011  ) .    

  Fig. 17.4    Acute sediment generation per land use. ( a ) Proportion of each land-use type ( Source : 
Munthali et al.  2011  ) . ( b ) Spatial distribution for the highest sediment generating types       

 



28317 Watershed Evaluation Using Geospatial Techniques

    17.4   Discussion and Conclusion 

 Watersheds are life lines to large populations, and are critically so to rural 
 communities in the developing world. However, most watershed catchments con-
tinue to degrade,with the majority of them producing large amounts of sediment 
resulting from uncontrolled soil erosion (Munthali et al.  2011 ; Nagle et al.  1999  ) . It 
has been established that unstable terrain and climatic features produce erosion 
rates that are so high that human activities are ineffective in controlling the resultant 
sediment yields (Mahmood  1987  ) . This begs the question of whether the sediments 
are of human or geological origin (Nagle et al.  1999  ) . It has been found that despite 
the fact that reducing soil erosion from agricultural land is important for many 
 reasons, focusing on this has been known to have a limited impact on reducing sedi-
mentation and improving overall watershed management (Munthali et al.  2011 ; 
Nagle et al.  1999  ) . This is a particular problem in cases where built-up village land 
and degraded natural land in tropical mountainous areas result in critically high soil 
erosion areas that pose a two-tier watershed sustainability problem: (1) there is a 
direct potential for the “dead” storage area to be quickly  fi lled from the huge amount 
of  fi ne sediment generated in the case of built-up village land; (2) there is a shift in 
sedimentation to “live” rather than “dead” storage due to the coarser sediment gen-
erated from the degraded natural land (Munthali et al.  2011  ) . The latter is a case of 
mass wasting, which Ahmad et al.  1993  estimated to be around 81% of the total 
estimated sediment transport in the forested basins of Puerto Rico. Similar huge 
sedimentation observations have been made in regions where little or no human 
habitation exists (Bruijneel  1990 ; Pearce  1986  ) . 

 Nevertheless a process model, and particularly a coarse-scale model such as 
PESERA, has a number of inherent disadvantages compared with simpler models 
(Kirkby et al.  2008  ) . The worst of these is their huge demand for input data (Munthali 
et al.  2011  ) . Technically, these process-based models face an inevitable concentra-
tion on the relevant dominant processes that are most widespread, in this case 
in fi ltration excess over-land  fl ow, so that erosion by saturation over-land  fl ow, for 
example, is less well estimated (Kirkby et al.  2008  ) . 

 However, although fraught with limitations even in the best of circumstances, the 
geospatial identi fi cation of sources of soil erosion and sediment serves to avoid 
guesswork in planning management programs for watersheds (Nagle et al.  1999  ) . It 
also develops an awareness of whether the sources are amenable, and whether the 
sedimentation control approaches can produce quantitatively veri fi able results when 
the critical sources identi fi ed are prioritized (Munthali et al.  2011  ) . This systematic 
geospatial development and analysis of sedimentation serves to improve both the 
planning of watershed development schemes and the allocation of resources towards 
reducing sedimentation. This is becoming important, especially in the developing 
world where  fi nances and technical resources are limited, while erosion control 
methods need to be directed to areas where they would be most effective (Nagle 
et al.  1999  ) . However, computer-based geospatial analysis must be coupled with 
accurate groundwork on the sources of sediment and erosion in order to guarantee 
the suitability and success of the evaluation (Munthali et al.  2011  ) .      
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