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Summary. In this paper, we consider a distributed robotic system that includes 
special agents that convey the information. We address the issue of selecting one 
course from two;a long one-way detour or a short two-way path on which traffic jams 
may occur. We consider a system in which the environment, instead of mobile agents, 
learns feasible parameters for task execution. To correct problems with this system 
and improve it we introduce media agents that carry data for the learning. They 
adjust information flow. We formulate the system and evaluate its performance. 

1 Introduction 

With the continuing development of robots, higher-level work by coopera­
tive robots is becoming possible in various situations;well-defined places like 
plants, uncertain and dangerous environments such as disaster areas, planets 
and so on. When cooperative robots work in the areas described above, there 
are many problems. Assembling in small areas, they must avoid collisions with 
each other. Scattered over an area, they have to have some method of t rans­
mitt ing information. One of these problems is a physical routing problem. If 
most robots tha t configure as a swarm concentrate on the same route, their 
efficiency in moving is decreased. So at least some of them should select an­
other route. To solve this problem various researchers have considered using 
learning techniques. Some researchers have viewed robots as learning actors. 
O ta proposed a learning method [1] to make one-way roads autonomously. 
Yoshimura proposed a method [2] to select a detour or a direct route depend­
ing on the crowds. The other researchers considered environment as teaching 
the actor a system similar to ants tha t exploit their pheromone to form a 
hue of ants [3] [4] [5]. But they have not sufficiently taken account of mutual 
interference, which Beckers indicated[6], and have not evaluated the perfor­
mance of those systems quantitatively. Kurabayashi compared two learning 
actors [7]—robots and environment— tha t learn the strategy about an issue 
of selecting paths . He quantitatively indicated the performance of the two as 
learning actors, and showed tha t environments are more suitable than robots. 

In this paper we analyze a distributed robotic system tha t gradually op­
timizes a strategy to select courses for various parameters of environment. 
We address the issue of whether to select a detour or a straight course. The 
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straight course is a two-way path which is the shortest distance between two 
points and on which traffic jams may occur, meanwhile the detour is a one-way 
path whose distance is longer than the straight course,but there is no problem 
of traffic jams. Because of the work of [7], we consider junctions in environ­
ment as learning actors, building up a system that maximizes the efficiency 
of movement in the environment by optimizing the choice of courses. By the 
way, it is said that a swarm of ants has "media ants" to convey information. 
So we introduce "media agents" analogous to media ants to convey data be­
tween junctions that have no tools to transmit information to each other. We 
formulate the system with media agents and estimate the advantage of them 
quantitatively. 

This paper consists of 6 sections as follows. Section 2 describes the envi­
ronment model. Section 3 formulates the optimal condition of the model to 
estimate the performance of other conditions, and shows the defects of re­
inforcement learning by environment. Section 4 introduces media agents to 
cover the defects of reinforcement learning. Section 5 gives the conclusion. 

2 Environment model 

We set a network-like environment that has several routes and junctions (for 
example Fig. 1). The black circles in Fig. 1 represent junctions and the line 
segments represent routes. Although routes physically link junctions, they 
can't transmit information to each other by themselves. Robots move on these 
routes. Each of the routes consists of "course A" which is a one-way detour 
and "course B" which is the shortest way between two junctions. But course B 
is two-way (Fig. 2). To move between *Gi and *G2 in Fig. 2, course A of route 
i costs "^a", and course B of route i costs "^6i(<* a)" and "72*62" when there 
are n robots on the same course. 62 represents the width of course B, which 
means 62 also represents the degree of traffic jams. Hereinafter "(*a, *&i, ^62)" 
represents an i-th route cost. 

junction 

Fig. 1. Environment Fig. 2. Courses in route i 

The efficiency of movement for robots in the environment changes with the 
choice of course A or B. In this paper we optimize the probability of choosing 
course A "̂ â" as a strategy for moving on the environment. 

We define the robot model as follows; 

• Robots start moving from a junction with probability "pc"- The route 
that robots move on is random. 

• The choice of course is determined according to Pa at junction *G. (Fig. 
2) 

• Robots move at 1 cost per 1 step. 
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• Robots are distributed autonomous systems. 
• Robots don't have the map of the environment. 

Under this model we consider the following situations. 

(i) Junctions keep and learn pa as part of the strategy. They learn pa by 
information from robots and point out to the robots which way to go 
according to Pa- We refer to these junctions as "Intelligent junctions". 

(ii) To improve the efficiency of (i) we introduce "media agents" that carry 
information about routes that they took. They compensate for the in­
adequacy of junction's communication ability. 

We ran computer simulations for a specific time and evaluated the accumu­
lated number of movements the robots execute as "the number of achieve­
ments" . 

3 Optimal condition and reinforcement learning 

The movement cost must be minimized to maximize the number of achieve­
ments. When Pa satisfies the condition that minimizes the movement cost, 
we refer to it as the optimum probability of course A "popt" • In this section 
we formulate the system with a probabilistic model and derive popt- And we 
compare Popt and Pa obtained by reinforcement learning to show the limit of 
its performance. In this section we point out some of its defects. 

3.1 Formulation of optimal condition 

When a junction retains Pa, then a route that has a junction at both ends has 
two values of Pa • So we assume that a route has the average value of the two 

Consider the following condition; the environment has "m" routes and 
"TV" robots. There are "^n^" robots on course B of route i. Route i has cost 
"(*a, ^6i, ^62)". And the probability of course A of route i is "*Pa"-

The expected movement cost of route i ''^/{^Pay is represented by 

7 ( > a ) ^SG+ % 'a + {l- 'paKh + p 'UB %) (1) 

where p — {N — 1)/N^ and SQ is the expected waiting time until a junction or­
ders a robot to start moving. This is derived from pc- ''fC'Pa,'^Pa,'' • ,^Va)"", 
which is the expected movement cost considering all routes becomes equa-
tion(2). 

^ U=i i=i J 

When we assume that the robots are evenly distributed on the routes, the 
number of robots on route i " *n" and the number of robots on course B on 
the same route " "^n^" have the relationship given bellow. 
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7(>a) {l->a){%+p'nB%) 

' n s 
(3) 

When we set the value of ^n, we can determine a unique optimal Va(= ^Popt) 
to minimize '^f{^Pa). Then V(Vopt) can be expressed as Y(*^)(the function 
of *n). Route i and j(G m) have the relationship of equation(4). The sum 
of the robots on all routes corresponds to N as equation(5).We can derive ^n 
and '^Popt with equations(2)-(5). 

7Cn) _ 7(^n) 
'n ^n 

{ij em) 

i = l 
n • AT 

(4) 

(5) 

We show the comparison of the derived Popt and the searched Popt in Fig. 3 
for the following parameters; m = 3,N = 20, (a,^61,^62) = (6,1,2), (^a,^6i,^62) 
(6, 2,4), (^a,^ 61,^ 62) = (12,1,4). The average error is 0.047, and the variance 
i s 2 . 6 x l 0 ~ ^ . We have successfully formulated the system. 

simulation i' 1 
derived by equation • • • 

routel route2 routeB 

Fig. 3. The comparison of popt 

3.2 Learning of Pa by Intelligent junction 

We try to optimize the strategy "pa" by reinforcement learning with intelligent 
junctions. We employ often-used reinforcement learning, the same as [7].Each 
of the junctions renews Pa to optimize it with the following algorithm. 

I Junction Gi which is at one end of route i points out course A or B 
according to '^Pa to a robot which comes into route i. We call this behavior 
"trial". 

II Junction G2 which is at another end of route i gets ^s and the course 
information(A or B) from a robot which comes from d . ^s is the number 
of steps from d to G2. Junction G2 estimates course X(X=A, B) with 
the function e~^-^ ^. 

III Junction G2 changes the expected gain ^Ex with the following equation. 
Kf (0 < Kf < 1) is the coefficient which influences the amount of change. 

'Ex = Kf 'Ex.oid + (1 - Kf)e -O.Vs 
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IV Junction G2 renews the strategy "pa" with the following equation. 
Kd {0 < Kd) is the changing coefficient and Pmin{0 < Pmin < ;^) is 
the minimum probability to guarantee a course selection. 

\ Pmin 
Px.tmp = max • 

\ PX^tmp Pminjy^ ^Pmin) 
PX 

'PA.tmp + ' PB.tmp " 2p 

Note that junction Gi does not obtain the result of the trials which junc­
tion Gi performed . Junction G2 obtains the results of the trials which junction 
Gi performed. 

Next we compare popt derived in section 3.1 and pa obtained by reinforce­
ment learning in Fig. 4(under the following condition; m = 2, (^a,^ 61 / 62) = 
(6,1, 2), (^a,^ 61,^ 62) = (6, 2, 4)). Both routes pa cannot reach each popt be­
cause Pa converges at the point that the movement cost of course A is equal 
to that of course B when we use the algorithm described above. 

To see how intelligent junctions adapt to changes in parameters, we show 
the results of simulations in Fig. 5. It shows the number of achievements per 
robot for a change in the number of robots. They get better strategies by 
reinforcement learning, keeping achievements at a higher level than for the 
case where junctions do not do reinforcement learning(p^ is fixed on 0.0 or 
1.0). But the difference between "optimal" and "learning" is large, because 
junctions cannot get the results of trials that were done by them. So, if the 
robots convey the results of trials to the correct junctions, the junctions can 
learn more effectively. In the next section we introduce "media agents" to 
solve this problem. 

Fig. 4. Learning of p , by Intelligent June- pjg_ ^ Comparison of achievements 
tion 

4 Learning with media agents 

We discussed the difficulties of learning by intelligent junction in the previous 
section. To improve the learning we introduce "media agents" as carriers of 
information. A media agent conveys the results of trials to the correct junction. 
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4.1 Introduction of media agents 

Junctions fixed on the environment can estimate the strategies statisticaUy 
by observing robots for a certain period of time. Therefore we can introduce 
the following algorithm to search for the optimal probability of Pa with the 
media agents. 

(i) A junction samples and accumulates evaluations of e~^'^ ^ for a certain 
number of times at the present probability ^Pa-

(ii) The junction does the same action as (i) at probability ^Pa ± Ap. 
(iii) The junction compares three values of evaluation(^pa5^Pa i ^p) and 

shifts the present probability ^pa to the best probability of the three. 

We refer to this algorithm as "p^ search'^. Media agents follow the steps 
given below(with reference to Fig. 6 and 7); 

1. Junction Gi appoints some robots to be media agents according to p^(the 
ratio of media agents to the number of robots which were ordered to start 
according to pc)-

2. A media agent moves to junction G2 as a normal robot. 
3. The media agent records the evaluated value and goes back to the start 

point Gi immediately, not obeying the order of junction G2. This move­
ment from G2 to Gi is not counted as an achievement. 

4. The media agent gives the information (the evaluated value) to Junction 
Gi. Junction Gi optimizes pa according to the algorithm described pre­
viously. 

Fig. 6. Action of normal robots Fig. 7. Action of media agents 

4.2 Task efficiency 

Media agents immediately go back to the start point junction after they have 
reached the opposite junction of the route. So media agents leave junctions 
without the orders of junctions when they go back to the start point junction. 
Therefore pc is changed to pc- PG per step is as follows under the condition 
that all robots act synchronously. 

PG{0) =PG 

P G ( 1 ) = P G ( 1 - PGPm) + PGPm = PG + (1 " PG)PGPm 

PGi'^) = PG + PGPm{l - PG) -PGPI,{1-PG) 

PG(n) =PG- {I- PG) ^{-PGPmY 
i=l 
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Therefore pc is expressed as equation(6) 

PG = lim pG{n) = -— (6) 

In a similar way So also changes to So = {^+PGPm)/{pG{'^-\-Pm)) because 
SG is derived from pG- The optimal probability of route i '''^Popt^ also changes 
to '''^Popt^ as SG changes to SG- But we treat it as ''popt — Popt\ because the 
difference between popt and Popt is small. 

Media agents do not work (their movements are not counted as an achieve­
ment) when they go back to the start point junction. The more media agents 
we use to acceralate the optimization, the lower the task efficiency becomes. 
The ratio "p^^" of working robots to robots which start from junctions becomes 
P G / ( 1 -^ PTUPG)' Therefore task efficiency "g'" is represented by 

= — = ^ (7) 
PG 1 + Pm 

4.3 Formulation of adaptation with media agents 

Media agents accelerate the optimization but cause a decrease in task effi­
ciency (equation (7)). We have to determine the optimal ratio of media agents 
to the number of robots which were ordered to start ''Pm.opt^ paying attention 
to both the speed of optimization and the task efficiency. We formulate the 
system with media agents and derive Pm.opt • 

The initial condition of pa is "po", the target Pa is "p^", and "p = \po—Pd\''^• 
We formulate the connection between "t" and pm- "t" is the time required for 
Pa to shift from po to pd by optimization. 

When Pm = 1.0, we define "si" as the minimal time to shift from po to 
Pd- A junction needs "M = p/{Ap) • SMP'' data to optimize Pa from po to 
p<i."SMP" is the number of samplings((ii) in algorithm). 

A junction receives an expected number of data "£^M" from media agents 
per step. 

p ^ i N-ng .„. 

where UG = N-SG/f{^Pa)'''i^G^ is the number of robots that stay injunctions. 
The latter part's numerator of equation(8) represents the number of media 
agents on the routes because all robots are media agents(p^ = 1.0).The latter 
part's denominator of equation(8) is the expected cost that a media agent 
requires when it goes and returns between junctions. 

A junction does not receive any data from media agents over a time interval 
at each trial until the first media agent comes back to the start point junction. 
We estimate its expected time with V((Po +l>(i)/2). We refer to this time as 
"T^o" • Tno is represented by 
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Therefore si is expressed in equation(lO). 

Sl=-^+ Tno (10) 

Next we define "d" as the average step time to shift from po to pd- The 
average step time is the amount of time for the average cost. That is to say, 
"d" is time when we consider the average cost as a time unit. (The relation 
of average step time, average cost and time integral value of movement cost 
corresponds to that of transit time, average velocity and moving distance. )To 
simplify analysis, we normalize d by p = 0.1. 

We define 52|p^o.i as the amount of time to change from po to Pd\p=o.i-
And the change of Pa in the same period is approximately linear(Va = Po — 
{po — Pd)V'^2|p=o.i)-Then the time integral value of the expected movement 
cost "/c" between t = 0 and t = S2|p=o.i is equation(ll). 

-l 
S2 |p = 0.1 

'fCPa)dt (11) 

The average cost of moving between two junctions ''Ca^ corresponds to the 
movement cost at halfway Pa between po and Pd\p=o.i in equation(12). 

Ca = 7 (P^±P^) (12) 

Therefore d is represented by d = Ic/Ca-
As we formulate the system by a probabilistic model, differences from the 

expected values emerge. So 5i may become bigger than the value calculated 
by equation(lO). We introduce coefficient "K" for Si to represent the inffuence 
of the probabilistic model. 

The evaluation is conducted based on the movement cost((i)(ii) in algo­
rithm), a and bi are constant values because they represent the distance of 
courses. But 715̂ 2 depends on the number of robots on course B "n^". If 
the actual TIB is very different from the expected n^, a junction may mistak­
enly evaluate at step(iii) in the algorithm. So we formulate the condition of 
variance of UB as a Gaussian distribution. 

We consider two conditions for route i; ^Pa — Pi and '^Pa = P2{= Pi ^ ^p)-
The variances of UB under each set of conditions are represented by Gaussian 
distribution ^i(ni) and 5^2(̂ 2) 

^ . ( n . ) ^ - l = e x p ( - ^ ^ % " 7 - ^ ' ) (x = l,2) (13) 

rrix is the expected value of n^, ax is the variance of TIB- We set an ap­
propriate value for cr .̂ When rii = ritmp and mi > m2, the area that is 
surrounded by 5^2(^2), '^B = f^tmp and horizontal axis represents the prob­
ability of the untruthful evaluation. In this case, the probability of failure 
becomes gi{ntmp) J ^2(^2)0^^2- Therefore, the probability of failure to es­
timate condition"V/^^ 2)" ^̂  represented as follows. 
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/

CX) pOO 

9i{ni) / g2{n2)dn2dni 
-oo J ni 

oo J ni 

' ^Pffe^'l (14) 2 , / l + ^ V 2 K + cr2) 
0-2 

In consideration of all conditions, "p/", which is the probability of failure for 
the environment, becomes as follows.("n" is the number of conditions and 
"m" is the number of routes.) 

m / n - l \ 

w — E L S > A „ ™ (15) 
1=1 \ j=0 I 

The relation of K and p / is represented as K = 1/(1 —p/).Because s\ increases 
with the increase in the probability of failure. As long as we can set the 
appropriate values of a, we can derive K. 

The connection between t and Pm is formulated as equation(16) with co­
efficients described above. Because "d" is normalized by p = 0.1, we multiply 
"rf' by "lOp" in the numerator of equation(16) to extrapolate the value of each 
case. Even if Pm = 1-0, the optimization oi'Pa needs minimum time"i^si".So 
the denominator of equation(16) is described below. 

Next we derive Pm-opt by using equation(16). We have to consider both 
the speed of optimization and the decrease of task efficiency due to the use of 
media agents. 

^fi^Pa) becomes '^f{t,Pm) by equation(16). The time integral value of 
^f{tiPm) ''F{t : 0 -^ T)" becomes a function of p^(T:simulation time). We 
define "F(equation(17),a function of p^n)" as the total cost, which includes 
the movement cost and the task efficiency. Pm.opt is Pm which minimizes Y. 
Finally we can derive Pm.opt • 

4.4 Evaluation of media agents 

We compare {(y)pm_opt derived from equation(17) and {P)pm.opt searched in 
the simulation under various conditions(a-i) in Tab. 1. The common condition 
is as follows; m = l,po = 1-0, T = 100, 000. 

The average error is 0.015, and the variance is 4.7 x 10~^. We succeeded 
in formulating the system with media agents. 

Next we show the result of pa search with media agents in Fig.8. We 
compare the number of achievements of 2 patterns;reinforcement learning by 
intelligent junctions(RL), pa search by media agents(MA)(p^ is fixed at the 
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value derived in section 4.3). Each value is normalized by the achievement of 
optimal condition. Conditions are the same as a-i described above. In all cases 
MA does not reach optimal condition but exceeds RL. The average of RL and 
MA are 0.612 and 0.881. MA improves the system by 44%. 

Table 1. Comparison of prn_opt R ' - •̂' ----"' 
MA • • • • 

0.8 

0.6 

0.4 

0.2 

a 
b 
c 
d 
e 
f 
g 
h 
1 

condition 
cost 

(9,1,2) 

(9,2,4) 
(12,1,2) 

(12,2,4) 
(15,1,2) 

(15,2,4) 

N 

10 
20 
10 
10 
20 
10 
10 
20 
10 

(a) 

0.070 
0.022 
0.012 
0.110 
0.037 
0.045 
0.143 
0.054 
0.066 

(0) 

0.05 
0.02 
0.03 
0.08 
0.02 
0.04 
0.11 
0.03 
0.04 

I I ' I I I 'I 'I I I I 

I I 11 ! I I I I I I 

I I I I I I II I I II Fig. 8. Comparison of achievements 

5 Conclusion 

In this paper we described our work addressing the issue of the optimal rout­
ing problem. We arranged the environment so tha t the efficiency of movement 
changed depending to the course selected. We formulated the optimal condi­
tion by a probabilistic model and confirmed the consistency of formulation 
by means of comparing the derived Popt with the searched popt in simulation. 
Next we estimated the performance of reinforcement learning by intelligent 
junctions, revealing its problem. Then we proposed media agents to solve this 
problem. We formulated the system with media agents and confirmed its con­
sistency. Finally we showed the availability of media agents quantitatively. The 
performance of this system significantly exceeds systems using reinforcement 
learning. 
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