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  Abstract   In MALDI-IMS of tissue samples, since the tissue contains an enormous 
variety of biomolecules, a complex mass spectrum with hundreds of to a thousand 
peaks can be obtained from a single data point. Furthermore, several thousands 
of spectra with spatial data are obtained at one IMS experiment. Because of the 
complexity and enormousness of the IMS dataset, manual processing of the dataset 
to obtain significant information (e.g., identification of disease-specific mass signa-
ture) is not a realistic procedure. In this regard, today, multivariate analysis becomes 
a powerful tool in IMS data analysis. In this chapter, we describe an unsupervised 
multivariate data analysis technique that enables us to sort the data sets without 
any reference information. Particularly, two major methods that are related to 
IMS, namely, hierarchical clustering and principal component analysis (PCA), are 
described in detail with examples. Finally a basic procedure for PCA with familiar 
software (such as Microsoft Excel) is introduced.    

  10.1 Introduction 

 A single mass spectrum contains a lot of useful information. In an imaging mass 
spectrometry (IMS), the spectra are further added to spatial information by scan-
ning the tissue sample two-dimensionally. Moreover, a typical IMS-mass spectrum 
contains hundreds to a thousand peaks because tissue sections contain an enormous 
number of biomolecules. Furthermore, the number of obtained spectra could be 
several thousands in one IMS measurement. The recent advances of IMS regarding 
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simultaneous detection of numerous molecules (i.e., large number of mass peaks) 
at high spatial resolution (i.e., large number of data points) further enlarge the vol-
ume of IMS datasets.   Because of such enormity of the IMS dataset, the develop-
ment of statistical analyses is essential, and several multivariate analyses have been 
developed as useful tools for extracting important information. In particular, to 
date, “unsupervised” multivariate data analysis techniques have been widely uti-
lized; they enable one to sort datasets without any reference information  [1–  4] . 

 As Yanagisawa et al. reported in an early study  [4] , unsupervised multivariate 
analysis – particularly hierarchical clustering – helps one extract clinically impor-
tant information for diagnosis/prognosis purposes, from a large-scale dataset. 
Also, principal component analysis (PCA)  [1–  3]  and independent component 
analysis (ICA)  [5]  have been used to reduce data, thus enabling the extraction of 
the specific mass peaks  [6,   7]  and tissue locations of interest (e.g., normal tissue 
region vs. cancerous region)  [7] . More recently, a more readily interpreted bio-
logical/clinical method using probabilistic latent semantic analysis (pLSA) has 
been developed  [8] . 

 In this chapter, we describe a quite basic protocol for an unsupervised multivari-
ate data analysis technique, particularly PCA, using only Microsoft Excel and free 
software. Although several useful software packages commercially available pro-
vide much fast and easier data analysis with automatic calculation (just click “Run” 
command; see Chap. 11), the aim of this chapter is introduction of statistical analy-
sis with minimal procedure for one who is not statistically expert. It is strongly 
recommended that each experimenter perform the analysis himself or herself using 
standard statistical tools such as Microsoft Excel; such experience should help the 
experimenters in later performing more complicated analyses governed by software 
packages that proceed automatically with calculation.  

  10.2 IMS Linked to Multivariate Analysis 

 Multivariate analysis is applied to a dataset that involves more than one statistical 
variable at a time. Because large numbers of variables are involved in matrix-
assisted laser desorption/ionization (MALDI)-IMS – as a result of the mass spec-
trum combined with spatial information, researchers find multivariate analysis 
effective in extracting biological/clinical information. Hierarchical clustering is 
used to sort datasets into several clusters, according to similarities among variables. 
The traditional representation of this hierarchy is a tree (called a dendrogram), with 
individual elements at one end and a single cluster containing every element at the 
other. Agglomerative algorithms begin at the leaves of the tree, whereas divisive 
algorithms begin at the root  [9] . 

 In IMS (or direct tissue profiling with MS), each of the MS profiles could be 
clustered, based on the  m / z  value and its intensity, i.e., peak expression pattern. 
Employing this technique, one can identify the mass peaks that are different 
between control and diseased samples (or regions), thus possibly identifying 
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biomarkers for specific patients by the molecular signature. Yanagisawa et al. 
performed direct MS analysis of lung tissue obtained from non-small cell lung 
cancer (NSCLC) or nontumor patients and processed the direct tissue profiling data via 
the clustering  [4] . As shown in Fig.  10.1  (top panel), the profiles of NSCLC and 
nontumor patients can be clearly distinguished. In addition, the primary alteration 
can be discriminated from others (bottom panel). Such an unsupervised clustering 
analysis enables not only sorting data into clusters but also extracting reliable mark-
ers according to the statistical criteria. In the technical aspect, in this example, by 
converting mass spectra into the data matrix of a peak intensity list, the authors 
reduced the volume of data, enabling an efficient analysis.  

 PCA, on the other hand, has been utilized to understand the overview of the 
spatial molecular distribution patterns  [1–  3] . We do not describe the detailed math-
ematical theory for reasons of space limitation, but in brief, it is a statistical method 
that merges the data containing multiple elements into low-dimensional data. 

  Fig. 10.1    An example of clustering according to peak intensity, calculated from mass spectra. 
Thirty-four non-small cell lung cancer ( NSCLC ) patients were clearly distinguished from eight 
controls. In addition, primary patients could be distinguished from nonprimary patients  [4] 
(Reprinted from Yanagisawa et al., Lancet 362:433–439.)        



Y. Sugiura and M. Setou130

It reduces a large set of variables to a small set of variables called “principal factors,” 
which are linear combinations of the original variables. 

 Figure  10.2  shows an example of PCA-coupled IMS data analysis. In the strategy 
reported by Plas et al., spectra obtained by IMS are processed to peak detection, 
and based on the generated peak list, two-dimensional (2D) ion images were recon-
structed and PCA decomposition was performed. PCA images (i.e., 2D ion inten-
sity map of principal component score on the tissue section) were utilized to find 
trends of proteomic distribution patterns. By utilizing IMS-PCA on spinal cord tissue 
section, Plas et al. demonstrated that proteomic composition in the “butterfly-
shaped” posterior column of the spinal cord differs considerably from that in other 
regions of the spinal cord, according to statistical criteria  [3] .  

 Figure  10.3  shows another example, in which the IMS-PCA of a breast cancer 
section was performed. In this case, PCA revealed that the largest spectral differ-
ences (i.e., the largest difference in proteomic composition) were observed between 
connective tissue and cancer area (in the principal component 1 image, panel e). 
Furthermore, the second largest differences in protein expression pattern were 
observed within two tumor cell populations, which are HER2-positive/negative 
cells (panel b), revealed by the principal component 2 image (panel f)  [10] .  

 PCA is also helpful in identifying the meaning variables, for example, identify-
ing which mass peaks are responsible for making difference between normal 
and drug-treated tissue regions. Such mass peaks can be candidates for the bio-

  Fig. 10.2    After performing standard IMS using spinal cord sections, each peak was detected to 
obtain two-dimensional (2D) images of ions. At the same time, PCA analyses were performed by 
using intensity values derived from all the mass peaks  [3] (Reprinted from Plas et al., 2007 IEEE/
NIH Life Science Systems and Applications Workshop, pp 209–212.)        



10 Statistical Procedure for IMS Data Analysis 131

marker  [11,   12] . Prideaux et al. showed the altered metabolic profiling of porcine 
skin after treatment with a commercial 0.1% hydrocortisone cream. By utilizing 
PCA, they successfully sorted the two groups of skin MS profiles with/without drug 
treatment and identified the altered peak expressions (Fig.  10.4 )  [6] . Such direct 
MS profile coupling PCA can be applied to analysis in micro-tissue domains as 
small as a laser spot (diameter >100 µm) that are difficult to separate and analyze 
by using conventional approaches  [6,   7] .   

  10.3 IMS-PCA on the Genetically Manipulated Mouse Brain 

 In the following sections, we introduce a simple protocol to identify mass peaks of 
which difference between samples by PCA. We used only Microsoft Excel and 
SpecAlign software, the latter of which is a graphic computational tool for 

  Fig. 10.3    IMS linked PCA with breast cancer section. Optical images of hematoxylin and eosin 
(H&E)-stained ( a ) and HER2-immunostained ( b ) breast cancer sections.  c  Ion image at several 
mass peaks were stained with  blue  and  red .  d  Graph in which principal component scores for PC1, 
PC2, and PC3 are plotted.  e  Principal component 1 image. According to the value of principal 
component score calculated for each spectrum at each tissue location, pixels were stained with 
pseudo-color.  f  Principal component 2 image (Kindly permitted by PD Dr. med. Axel Walch, 
Institute for Pathology, Helmholtz Center Munich, German Research Center for Environmental 
Health (GmbH) Ingolstadter Landstrasse 1, 85764 Oberschleissheim, Germany)       
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spectrum processing. (SpecAlign is free of charge and available for download from 
Wong et al., from   http://ptcl.chem.ox.ac.uk/jwong/specalign      [13] .) 

 Here, we analyzed animals with distinct genetic backgrounds; they were either 
wild type (WT) or SCRAPPER (Scr) knockout (KO) mice lacking a gene coding 
for a ubiquitin ligase  [14] . We applied IMS-linked PCA, to compare the proteomic 
composition of WT and Scr-KO mice brains and further searched for substances 
differentiating the two genotypes.  

  10.4 IMS of WT and Scr-KO Mouse Brain Sections 

 In Scr-KO mice, obvious pathological features were observed, particularly in their 
brain. For example (Fig.  10.5 ), hematoxylin and eosin (H&E) staining of Scr-KO 
brain tissue revealed the existence of sponge-like degeneration. It has been reported 
that the mutant mice of other ubiquitin E3 ligase exhibit an age-dependent neuro-
pathology, including spongiform degeneration  [15] . The release of neurotransmitter 
in Scr-KO mice is abnormal  [14] ; such neural dysfunction possibly induced the 
histological degeneration observed in Fig.  10.5 .  

 There are several ways to determine the molecules that are involved in such 
histological degeneration. For example, in immunohistochemistry and immunob-
lotting, specific alterations of proteins with high sensitivity and specificity can be 
revealed; however, analyses require specific antibodies to the candidate protein. 

  Fig. 10.4     a  Principal component analysis of 25 spectra taken from inside and 25 spectra from 
outside the area of porcine skin treated with a commercial 0.1% hydrocortisone cream. In the 
score plot, a clear grouping of treated ( red spots ) and untreated ( blue squares ) spectra is observed. 
 b  The factor loading plot indicates that  m / z  363.28, the [M + H] +  ion for hydrocortisone, is a major 
contributor to differentiation among the groups (Reprinted from Prideaux et al., Int J Mass 
Spectrom 260:243–251.)       

http://ptcl.chem.ox.ac.uk/jwong/specalign
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Because generation of the antibodies requires large cost and much time, one must 
determine the small number of candidate molecules that might be involved in the 
defect before the experiment. 

 In this regard, MS is able to detect molecular alterations without any tags or 
probes, even of unexpected molecules. In this context, MS-based imaging can iden-
tify such differences with spatial information, even within micro-tissue regions that 
are difficult to dissect out. 

  10.4.1 Materials Used and Measurement Conditions 

 The following are the details of an IMS experiment using sagittal brain sections 
obtained from WT and Scr-KO mice:

   Brain sections, sliced at 5- • m m thickness  [16] , mounted on ITO glass slide 
(Bruker Daltonics)  
  70% Ethanol for rinsing tissue sections, 30 s × two times  [17]   • 
  Matrix: Sinapic acid (Bruker Daltonics) [25 mg ml • −1  in 0.1% trifluoroacetic acid 
(TFA), 50% acetonitrile (v/v)], applied to section by spray-coating method  
  Mass spectrometer: MALDI-TOF/TOF-type instrument (Ultra Flex 2, Bruker • 
Daltonics)  
  Measurement modes: positive-ion detection mode, linear mode  • 
  Laser interval: 80  • m m  
  Software used for image reconstitution and spectrum-extraction from region of • 
interest: flexImaging 2.0 (Bruker Daltonics)    

 Acquired IMS data were sorted and preprocessed before PCA, as follows:

   Following IMS measurement, mass spectra were collected from each brain • 
region of WT and Scr-KO mice (using flexImaging 2.0 software); in this study, 

  Fig. 10.5    Optical image of hematoxylin and eosin (H&E)-stained corpus striatum region of 
wild-type ( WT ) and Scr-knockout ( SCR-KO ) mice  [7] (Reprinted from Yao et al., Proteomics 
8:3692–3701.)        
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those regions were composed of the cerebral cortex, pons, hypothalamus, and 
corpus striatum (see Fig.  10.13  later in this chapter).  
  The spectral data were then formatted into ASCII code, using flexAnalysis 3.0 • 
software, to allow processing by SpecAlign software.  
  Next, the converted spectra were normalized to equalize total ion current by • 
using SpecAlign software  [13] . This is an important process, as it rescales the 
sample-to-sample variability of the peak intensity values before proceeding to 
statistical analysis  [6,   18,   19] .    

 In data analysis procedures without statistical methods, we usually averaged the 
spectra of each region and visually compared the mass peaks between samples one 
by one. With such visual comparisons of spectra (Fig.  10.6 ), we were certainly able 
to find differences among the peak expressions, as indicated by the arrows; this, in 
turn, indicates the abnormal expression/suppression of proteins in KO mice. 
However, such methodology is inefficient, especially when one is analyzing a large 
number of regions and/or many tissue sections.   

  Fig. 10.6    Comparison of normalized spectra following extractions from  WT  and  SCR-KO  mice  [7] 
(Reprinted from Yao et al., Proteomics 8:3692–3701.)        
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  10.4.2 IMS-PCA of WT and Scr-KO Mouse Brains 

 Below, we describe IMS-linked PCA to compare the proteomic composition of the 
corpus striatum region, in which severe pathological alterations were found in 
Scr-KO mice (see Fig.  10.5 ). 

 For PCA, to reduce the amount of calculation required, we generated mass peak 
lists from the sets of extracted spectra rather than use of every continuous  m / z  
value; For this operation, peak detection function of SpecAlign software was used 
 [13] . Although such a scenario would be ideal, using every  m / z  value of every spec-
trum as a variable would claim too many calculations. Figure  10.7  shows the peak 
list file used for PCA, created by importing peak list files into Microsoft Excel 
[arranged as  x -axis =  m / z  ( validate ),  y -axis = spectrum ( case )].  

 Next, PCA was performed by Microsoft Excel add-in software. Several free or low-
cost software packages that can be used as add-in or macro tools for Microsoft Excel 
are available. Generally, we must define the “case” and “variable” for PCA calculation; 
in this case, we defined each mass spectrum with spatial information as the  case , and 
each includes approximately 80 distinct mass peak intensities ( variables ).  

  10.4.3 Data Interpretation of PCA 

  10.4.3.1 Interpretation of Component Scores 

 As a result of undertaking PCA, several parameters can be obtained. Among those, 
the  component score  and  factor loading  are important postanalysis steps. A com-
ponent score is calculated for each mass spectrum; all are defined for each principal 
component (e.g., for PC1, PC2.…) (Fig.  10.8 ).  

 Those component scores can be plotted two-dimensionally to facilitate inter-
pretation of the PCA results. In Figs.  10.9  and  10.10 , component scores for PC1 
and PC2 are plotted on the  x -axis and  y -axis, respectively. and each dot repre-
sents a spectrum from a distinct tissue sample or location. What is important to 
note is whether two populations of spectra (= dot) obtained from distinct sam-
ples (e.g., normal vs. diseased) are “spatially separated” on the graph. If they 
are separated (see Fig.  10.9a ), it means that the molecular expression pat-
terns of these two regions were statistically different from each other. If not, 
PCA failed to extract the statistical differences between the two populations 
(see Fig.  10.9b ).   

 In Fig.  10.10 , open and filled spots indicate spectra obtained from WT and 
Scr-KO mice, respectively. Notably, two populations of spots are spatially sepa-
rated on this graph (as represented by open and filled ellipses), indicating that those 
two sets of spectra from WT and Scr-KO mice tissue contain proteomic differences. 
We focused on the  y -axis (PC2) that separates nicely between the two populations: 
one could find that the spectra of WT mice had positive component scores against 
PC2 whereas Scr-KO mice had negative scores. 
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  Note:  We additionally noted that other artificial factors, such as variations in 
matrix application procedures, could be reflected as the main difference between 
the two groups in PC1. To avoid this, experiments should be performed in as identical 
conditions as possible (vis-à-vis matrix application, IMS measurement, etc.).  

  10.4.3.2 Interpretation of Factor Loading 

 An analysis of factor loading plot would identify peaks that were differentially 
expressed between two samples. A component score defined for each spectrum is a 
sum of the factor loading value, multiplied by each peak intensity. Therefore, when 

  Fig. 10.8    Example representation of a PCA result performed by Excel add-ins. Component 
scores are calculated for each mass spectrum, according to each principal component       

  Fig. 10.9    Example of data interpretation of IMS-linked PCA. In this study, dots seen in the 2D 
plot represent the  case , i.e., spectrum from distinct data points. If dots from distinct sample are 
separated ( a ), it means that the molecular expression patterns of these two regions were statisti-
cally distinct from each other. If not, PCA failed to extract the statistical differences between the 
two populations ( b )       
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numbers (=  m ) of mass peaks were used in the analysis, the component score will be 
as follows:

   
1

ScorePC1( , ) load( ) Int.( ),
m

n

x y n n
=

= ×∑    

where ScorePC1( x ,  y ) is the component score against PC1, obtained from ( x ,  y ); 
load( n ) is the factor loading value against a mass peak for  n ; Int.( n ) is the mass peak 
intensity for  n ; and  m  is the number of mass peaks used for calculation. 

 According to this equation, in the spectra from Scr-KO mice, the mass peak with 
large negative value regarding PC2 factor loading was supposed to be intense. On 
the other hand, in the WT sample, it was supposed that such peak intensities would 
be small. In other words, such mass peaks are suggested to differentiate samples 
derived from WT and Scr-KO tissue. 

 The factor loading value is calculated for each mass peak. In Fig.  10.11 , the factor 
loading values for PC1 and PC2 are plotted on the  x -axis and  y -axis, respectively. Each 
spot indicates a distinct mass peak. Such a graph makes it very easy to find the 

  Fig. 10.10    Component scores for PC1 and PC2 are plotted on the  x -axis and  y -axis, respectively. 
Each spot represents a mass spectrum.  Open  and  filled spots  indicate spectra obtained from  WT  
and  SCR-KO  mice, respectively       

  Fig. 10.11    Factor loading value is calculated for each mass peak       
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peaks with the intended factor loading value against each PC. Because peaks that 
have negative loading values regarding PC2 are supposed to show different distri-
butions between WT and Scr-KO, we picked up a mass peak at  m / z  7,420 and 
obtained a distribution image (Fig.  10.12 ).   

 As a result, we found that this ion was highly expressed in the striatum of WT mice 
whereas it was expressed at remarkably low levels in the Scr-KO striatum (Fig.  10.13 , 
arrowheads). Intriguingly, in olfactory bulb, there is no significant difference in the 
expression levels of  m / z  7,420, between the two samples (Fig.  10.13 , arrows). Furthermore, 

  Fig. 10.12    Factor loading values for PC1 and PC2 are plotted on  x -axis and  y -axis, respectively. 
Each spot indicates the distinct mass peak. The peak ( m / z  7,420) was chosen because it has large 
negative loading values regarding PC2       

  Fig. 10.13    H&E-stained brain sections prepared from WT and SCR-KO mice, with distribution of 
 m / z  7,420. It was highly expressed in the striatum of WT mice but was expressed at remarkably low 
levels in Scr-KO striatum tissue ( arrowheads ). On the other hand, there was no significant difference 
in the expression levels of  m / z  7,420 in the olfactory bulb, between the two samples ( arrows ) 
(Reprinted from Yao et al., Proteomics 8:3692–3701.)       
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  Fig. 10.14    PCA-linked IMS revealed abnormal expressions/suppressions of proteins in various 
regions of SCR-KO mouse brains.  a  H&E-stained images of WT and SCR-KO mouse brains. The 
regions focused upon during MS imaging analysis are indicated in  colors  as keyed below the 
pictures in ( a ).  b  Distributions of principal component scores of mass spectra, from various brain 
regions ( left spray graphs:  WT,  blue ; KO,  red ) and the factor loading plot ( right graphs ). The 
signal intensities of the mass spectra of the substances, with indicated  m / z , are shown in the recon-
structed images of the mouse brains analyzed with MS imaging  [7] (Reprinted from Yao et al., 
Proteomics 8:3692–3701.)        

through the same procedure, we were able to successfully identify the altered protein 
expression patterns in various selected brain regions (Fig.  10.14 ).   

  Note:  We finally note that it is important to pay attention to the contribution of each 
PC to determine how many PCs are to be used in analysis. Proportion values represent 
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the degree of a particular PC’s contribution to the entire dataset (the values were seen 
in the 10th column of Fig.  10-10 ). For example, the proportion value of PC1 in this 
analysis is 22%, indicating that PC1 reflects 22% of the entire dataset. Any PC with 
too low a proportion value should be excluded from the analysis because we know 
which PC reflects data significantly in this manner. It is also important to note that PC1 
often reflects variations in tissue sample preparation and matrix coating.    

  10.5 Conclusion 

 The volumes of IMS datasets continue to increase because of current improvements 
to IMS with regard to high resolution  [20] , three-dimensional (3D) imaging  [21] , 
and reconstruction from 3D mass spectra containing ion drift times in ion mobility 
MS  [22] . Data analysis of such large datasets will increasingly depend on statistical 
analysis and will presumably be done automatically by software programs. 

 In this chapter, we showed a simple protocol that is needed to identify the dif-
ferences between two samples. By using this minimal procedure, we were able to 
identify a molecule which differed between WT and Scr-KO tissue samples. Again, 
we would recommend that IMS experimenters perform statistical analysis by them-
selves, because undertaking such exercises will provide useful experience in under-
standing more complicated analyses, especially among biologists and clinicians.      
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