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1 Traditional Models for Hub & Spoke Network Design 

The hub & spoke network design problem is a strategic logistics plan
ning problem with applications for airlines, telecommunication companies, 
computer networks, postal services, and trucking companies, for exam
ple. Basically, the problem in all these applications is that for a given 
set V = { 1 , . . . ,n} of nodes (airports, computers, post offices, depots, ...) 
goods must be transported between possibly every pair of nodes. Direct 
connections between every pair of nodes would result in n{n — 1) linkages 
which is impractically high and economically non-profitable. Consider, for 
instance, an airline that serves several airports worldwide. Offering non
stop flights between every pair of airports would require a huge amount of 
planes and crews and many empty seats on board could be observed for 
many connections. In such settings, it turns out to be reasonable to install 
one or more so-called hub locations where direct links are then available 
to hub nodes as indicated in figure 1 where nodes 3, 6, and 9 are assumed 
to be hubs. Transporting goods from, say, node 1 to node 11, can then be 
done via hubs 3 and 6. 

Roughly speaking, the network design problem at hand can be couched 
as follows: Given a graph with node set V and edge set £̂  = V x V, select 
one or more nodes from V to become hub nodes and select some edges from 
E to become transportation links. For each pair of nodes (i, j ) G V x V we 
have a quantity Qij G J?>o that is to be transported from node i to node 
j . Established models assume that the unit cost of transportation using an 
edge e is Ce G JR>O and that, if e connects two hub nodes, a discount can be 
gained such that the unit cost of transportation using edge e is aCe G R>o 
with 0 < a < 1. We will question these cost assumptions in section 3 and 
discuss alternatives. Note that the costs may be asymmetric, i.e. Cij = Cji 
may not be true. 

For the hub & spoke network structure one can wish to have specific 
characteristics that define the design problem to be solved. Some usual and 



294 Alf Kimms 

4 

Figure 1: An Illustration of a Huh & Spoke System 

basic features are the following: 

• What determines the number of hubs? 

— Hub location problems with fixed hub costs: Installing a hub at 
node h incurs a fixed cost fh € il>o. The number of hubs is a 
result of the planning process. 

— p-Hub median problems: The number p of hubs is predefined. 
Fixed hub costs are usually assumed to be the same for all nodes 
so that they can be ignored for the purpose of optimization. 

• How are the non-hub nodes connected? 

— Single allocation: Each non-hub node is allocated to a unique 
hub. In a single allocation network, node 4 (figure 1) would not 
be allowed to have a direct Unk to two hubs. 

— Multiple allocation: Non-hub nodes (like node 4 in figure 1) may 
be connected to several hubs. 

— Direct services: Non-hub nodes may have a direct connection 
like nodes 10 and 11 in figure 1. 

Throughout this paper, we assume that the set of hubs is fully meshed, 
i.e. the subgraph induced by the hub nodes is complete, and that the ob
jective for designing the network is to minimize the sum of relevant costs. 
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Mathematically, typical hub & spoke network design problems can be stated 
as follows (see Campbell, 1994b, for several models in this area): 

For the single allocation case without direct services, define a binary 
decision variable yih which is equal to one, if and only if node h is the hub 
that node i is allocated to, and zero, otherwise. A value yhh = 1 indicates 
that node ft is a hub. Additionally, a real-valued variable Xijhk is used to 
model the fraction of flow that is routed from node i to node j via hubs h 
and k in that order. 

M i n F i ( x , y ) = Z fhVhh (1) 
h=i 

n n n n 
+ I ] S ]C Yli^^h-^ OiChk -^ Ckj)qijXijhk 

1=1 j = l h=l k=l 

S.t. 

Vih < Vhh 

/ i = l 
n n 

/ l = l fc=l 
n 

22, ^^3^^ - 2/*̂  

i,h = 1,... ,n 

i = 1,. . . ,n 

i,3 = l,...,n 

i,j,h = 1, . . . , n 

i,j,fc = l , . . . , n 

(2) 

(3) 

(4) 

(5) 

(6) 

fc=l 
n 

/ i = i 

Xijhk>0 i,j,/i,A; = l , . . . , n (7) 

2/i/iG{0,l} i,/i = l , . . . , n (8) 

The objective (1) minimizes the sum of fixed costs for installing the hubs 
plus transportation costs. Due to (2), a non-hub node i can only be linked 
to a hub ft, if node ft is indeed a hub. (3) makes sure that every node is 
linked to exactly one hub. Because of (4), all quantities are shipped. And 
because of (5) and (6) a path from node i to node j via nodes ft and fc, 
respectively, can only be used, if ft and k are hub nodes. It is noteworthy to 
say that it is a common (e.g., if it is assumed that costs fulfill Cij -\-Cjk > Cik) 
that while moving from a node i to a node j at most two other (hub) nodes 
are passed in-between. (7) and (8) define the decision variables. Note that 
there exists an optimal solution with x being integral. 
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By adding the constraint 
n 

and assuming the special case fh = 0 for all /i, we would get a model for 
the p-hub median problem. 

For representing the multiple allocation case, a one-index binary vari
able yh is sufficient. The variable yh is one, if node /i is a hub, and zero, 
otherwise. 

MinF2(x ,y )= E hVh (9) 
h=l 

n n n n 
+ E E E ^{Cih-\-OiChk-\-Ckj)qijXijhk 

i , j = l , . . . , n (10) 

i,j,ft = l , . . . , n (11) 

ij,h,k = l , . . . , n ( 1 2 ) 

^ = l , . . . , n (13) 

It should be sufficient to explain (11). It makes sure that a flow from node 
i to node j can pass a node h only if /i is a hub node. In this case either i 
or j (or both) would be linked to ft. 

By adding the constraint 
n 

^yh=p (14) 
h=i 

and assuming the special case fh = 0 for all ft, we would get a model for 
the p-hub median problem. 

If direct services are allowed, an additional real-valued variable a;Ĵ , for 
the fraction of flow from node i to node j leads to the following model: 

MinF3(x ' ,x ,y )= t hyh (15) 
n n n n 

+ Z) Z) Z) Z) (Ci/i + ^^hk + Ckj)qijXijhk 
i = l j = l / i = l f c = l 
n n 

"I" Z-̂  2-^ ^ijQijXij 

s.t. 
n n 

5ZX]̂ *j'̂ ^ 
/ i = l k=l 

n 

2 ^ *̂j/ifc + 
k=l h 

Xijhk > 0 

2/ / i€{0, l} 

= 1 

n 

E 
= 1,^^/1 

Xijkh <yh 
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S.t. 
n n 

^ij-^YlY1^^3hk = l i,j = l , . . . ,n (16) 
h=l k=l 

n n 

/ , Xjjhk + y] Xijkh<yh i, j , / i = l , . . . , n (17) 

fc=l fc=l,fc^/l 

x'ij>0 i , j = l , . . . , n (18) 

XijTiA: > 0 2, j , ft, A: = 1 , . . . , n (19) 

2/ / ie{0, l} ft = l , . . . , n (20) 

Here, the objective function (15) takes into account the costs for direct 
services as well. Due to (16), all quantities must be shipped where some of 
them may be shipped directly. 

And again, by adding the constraint (14) and assuming the special case 
fh = 0 for all ft, we would get a model for the ]?-hub median problem. 

The seminal work of O'Kelly (1986,1987) has launched a series of follow-
up publications. To get an overview of the work that has been done, we refer 
to Bryan and O'Kelly (1999), Campbell (1994a), Campbell et al. (2002), 
Canovas et al. (2004), Klincewicz (1998), Mayer (2001), O'Kelly and Miller 
(1994) and Wagner (2005). Note that the models presented here are not 
intended to define the most efficient model formulations for the problems 
described. The models should just describe the problems formally and 
should show what almost — see section 2 — all authors assume. Publi
cations where efiicient model formulations are discussed are, e.g., Canovas 
et al. (2005), Ernst et al. (2002), Ernst and Krishnamoorthy (1999), Kara 
and Tansel (2000), Skorin-Kapov et al. (1996), and Wagner (2003) just to 
mention a few. 

In what follows, we will concentrate on the modeling of the transporta
tion costs in the presence of economies of scale. In section 2 we will review 
the (surprisingly few) work that has been devoted to economies of scale 
in the context of hub & spoke network design. Eventually, in section 3 
we will present and discuss our point of view on this matter. Section 4 
will illustrate the new models from section 3 by means of a few numerical 
examples. A short conclusion will summarize the work in the final section. 

2 Existing Approaches to Represent Economies of Scale 

Surprisingly enough, although the economies of scale phenomenon is one 
of the main motivations for installing hub Sz spoke systems, the way costs 
are modeled has not really been questioned by many authors in this area. 
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At least some authors have noted that applying a discount factor a to 
the costs on arcs between hubs while disregarding the flow on these arcs 
contradicts the motivation of this discount factor. Consequently, Podnar 
et al. (2002) introduced flow tresholds that must be reached in order to 
gain the discount a. Campbell et al. (2004a, 2004b) state that "...the 
basic assumption in hub median models that flow costs are discounted on 
hub arcs to reflect high volumes leads to a possible mismatch between the 
abstracted model and the underlying motivations of the model". So, they 
consider models where so-called hub arcs, i.e. arcs that link two hubs and 
on which costs being discounted by a factor a, are to be selected explicitly 
which means that the cost for a flow between two hubs may or may not be 
discounted by a factor a depending on the selection. The total number of 
such hub arcs to be chosen is prespecifled in their models, because otherwise 
every arc that links two hubs would be selected as a hub arc. 

Three notable exceptions that address economies of scale are Bryan 
(1998), O'Kelly and Bryan (1998) and Klincewicz (2002). They argue — 
and we agree — that "By simplifying interhub travel costs and assuming 
that these costs are independent of flows, the current model not only mis
calculates the total network cost, but also erroneously selects optimal hub 
locations and allocations". 

As a consequence, O'Kelly and Bryan (1998) suggest to replace the 
interhub cost expression 

for hubs h and k in the objective function(s) by a concave function 

/ A A \ ^ \ 
J2 Z) Qi'j'^i'j'hk 

( 
n n \ 

i=l i=l I I E E Qi'3' I I 
(^hkQij^ijhk 

where the parameters 1 > ^ > 0 and /? > 0 are to be specified in advance. 
This function is monotonically increasing with the flow across the link be
tween node h and node k. It can reasonably be used to model economies 
of scale: the marginal cost per unit is decreasing and the average cost per 
unit is decreasing as well. The latter property is what is called economies 
of scale. 



Hub & Spoke Network Design 299 

Interhub Cost 

Interhub Flow 

Figure 2: Interhub Cost Structure due to O^Kelly and Bryan (1998) 

As illustrated in figure 2, the non-linear function 

' fL, 1^ Qi'j'Xi'j'hk \ \ 
1-0 

i ' = i j ' = i 

\ \ t ' = i j ' = i / / 

Qij^ijhk 

can be approximated by a piecewise linear function in such a way that the 
lower envelope of this piecewise linear function approximates the function 
from above. This is exactly what Bryan (1998), O'Kelly and Bryan (1998) 
and Klincewicz (2002) do. Each piece r of these o linear pieces can be 
specified by two parameters: the intercept t̂ ^ > 0 and the slope 5̂ *̂  > 0. 
This allows to provide a linear mixed-integer formulation where the real-
valued decision variable frhk is the total flow between hubs h and k to 
which the linear piece r is applied and the binary variable Zrhk indicates 
whether or not the piece r is applied at all. For the sake of brevity, we will 
provide here a model for the multiple allocation p-hub median problem 
without direct services. It should be easy for the reader to write down 
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other problem variants in a similar fashion. 

n n n n 

MinF4(f ,x ,y ,z) = E E E T,{^ih +Ckj)qijXijhk (21) 
t= l j = i h=l k=l 

+ 1 : 1 : 1 : Chk{t!;t^Zrhk + s!;!^frhk) 
r = l / i = l A:=l 

S.t. 
o n n 

X^/r/iA: = Xm^»:^'^*J^^ /i,fc = l , . . . , n (22) 

n n -

frhk < S 53 QiJ^rhk I T J 1 "' *" (23) 
^_j ^._j Ai, AC — i , . . . , n 

n n 

X)X1̂ *J''**̂  = ^ ^,j = l , . . . ,n (24) 
n n 

22 ^^ohk + 2Z *̂̂**̂^ - ^^ 2, J, /i = 1,..., n (25) 

n 

X!2"'=P (26) 

/r.fc>0 I T ^ ' V " (27) 

Xtj/iA; > 0 i, j , ft, fc = 1 , . . . , n (28) 

y / i e { 0 , l } /i = l , . . . , n (29) 

r = l , . . . , o ; 

ft, fe = 1, . . . ,71 
^rhfce{0,l} r 1, o; ^^^^ 

The objective function (21) measures interhub traffic by means of the cost 
approximation described above. The total flow between two hubs is rep
resented by / as well as by x. (22) links these two decision variables in 
the correct manner. (23) guarantees that the flag to indicate whether or 
not a certain piece of the piecewise linear approximation is used is properly 
set. Note that due to the minimization objective, the lower envelope of the 
piecewise linear approximation is indeed used. 

Bryan (1998) extends this model for economies of scale on all connec
tions, not only the interhub ones. The technique with which this is done is 
the same piecewise linear approximation that is described above. 
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3 Alternative Model Formulations 

Prom a cost accounting point of view, the model for economies of scale 
described in the previous section is hard to motivate. If economies of scale 
are due to quantity discounts, then we face a piecewise linear, monotone, 
quasiconcave cost function. We refer to Stadtler (2004) for a discussion 
of modeling quantity discounts. In a hub & spoke network design setting, 
however, economies of scale due to quantity discounts may appear only if 
the transportation is done by a third party. We will not discuss this case 
here. 

Consequently we will try to derive an alternative model and reveal other 
sources for economies of scale. For doing this, let us consider two nodes 
i and h. These nodes can be hubs or not. And indeed we will see that 
economies of scale occur not only on interhub links but on all links. In 
general, if we provide a service from node i to node h, i.e. we have a 
positive flow from i to h, we face a (flow independent) fixed cost q^ € i?>o 
and a unit (handling) cost cj'̂  € JR>O. If fih is the flow between i and h 
then 

c{h-^cVJih, if fih >0 

0, otherwise 

is the total cost for the service. Imagine, for example, the airline situation 
for passenger transport. If there is a flight from airport i to airport /i, a 
(large) fixed cost cf̂  for using the plane, employing the cabin crew etc. is 
inciurred. In addition to that, a (relatively small) unit handling cost c^f^ 
per passenger is inciurred (mainly for serving an additional meal and a few 
drinks on board). Note that this simple cost model describes economies of 
scale already: The unit total cost is 

f^ + c^H iifih>0 
Jih 

0, otherwise 

which means that the unit total cost decreases if the flow increases. Note 
that such a model, a model with fixed costs on active links, has already 
been provided by Campbell (1994b) who did not mention the economies 
of scale aspect. Another work with fixed costs on active arcs is the one 
by Garfinkel et al. (1996) which is confined to a very special situation (no 
handling costs, two hubs), but again, economies of scale have not been 
discussed. Gavish (1992) considers fixed costs on links for a computer 
network design problem. 
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It is important to note that flow from a node i to a node j may be routed 
through several — possibly more than two — other hub nodes to save fixed 
costs. We will just provide a model formulation for the multiple allocation 
p-hub median problem with direct services where the decision variable fij 
denotes the direct flow between nodes i and j and the binary decision 
variable Zij indicates whether or not there is a positive flow between nodes 
i and j . The variable Xijhk denotes the fraction of flow that originates from 
i and is sent to node j using the link between h and k: 

Min F5(f,X,y,z) = £ £ {c{^Zij + cV./,,) (31) 

s.t. 
n 

^Xijik = l z , j = l , . . . , n (32) 

A:=l 

fc=l,fc^/i fc=l,fc^/i 

22 ^''3^'' ^ ^ 
/ l=l 

n 

/ , Xijhk < Uh 
fc=l 

n 

22 ^^Okh < Uh 
k=l 

n 

^yh=p 
h=l 

fii = 

fij< 

n n 

'- 2Z 5w ^hk^hkij 
/ i = l A:=l 

n n 

; Yl H if^'^^a 
h=\ fc=i 

fij>0 
Xijhk 

Vh e 

Zij e 

>o 
{0,1} 
{0,1} 

ij,h= l , . . . , n 
yz ^ijkh = yz ^^jhk i\•' '' ' (̂ )̂ 

i,j = l , . . . , n 

ij,h = l , . . . , n 

ij,h = l , . . . , n 

(34) 

(35) 

(36) 

(37) 

i , j = l , . . . , n (38) 

i , j = l , . . . , n (39) 

z,j = l , . . . , n (40) 

i,j,/i,fc = l , . . . , n ( 4 1 ) 

/i = l , . . . , n (42) 

i , j = l , . . . , n (43) 

The objective function (31) is defined as described above. (32) and (33) are 
flow constraints. For each pair of nodes i and j the complete quantity must 
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leave node i and reach node j . Each flow that reaches a node in-between 
must leave that node completely. (34) prevents short cycles. (35) and (36) 
make sure that only hubs nodes can be used in-between to go from a node 
i to a node j , (38) calculates the total flow over a link from node i to 
node j . Of course, because of this equality constraint, the variable / could 
be completely eliminated from the model by substitution. (39) makes sure 
that a positive flow on a link between i and j is correctly indicated. It is 
noteworthy to mention that there always exists an optimum solution with 
all x-variables being integer valued. 

Note that if we replace ^h^kQhk by some number Lij in (39), we 
could easily model a constrained capacity on that link. Then, an optimum 
solution with integral x-values may not exist. 

Should direct services not be allowed, the constraint 

Xijij <yi-\-yj z, j = 1 , . . . , n 

would forbid such service. 
The fixed cost c{j is charged if the directed link between node i and 

node j is active. Using that link in opposite direction incurs an additional 
fixed cost Cj^, If we consider two nodes i and j where i < j and if we would 

like to model a situation where a fixed cost c{j is charged no matter in what 
direction the link between these two nodes is used, then we could simply 
add the constraint 

Zij — Zji 
i = 1,. . . , n — 1 

j = i + l , . . . , n 

and set cj^ = 0 for all i < j . Of course, we could eliminate almost half of 
the 2;-variables instead to keep only those variables Zij with i < j which 
requires a slight modification of the model formulation especially in (31) 
and (39). 

There may be situations where the just presented model is still too 
simple. Imagine, for instance, a trucking company. If they provide a trans
portation service from town i to town ft, they may have a fixed cost c{j, they 
may have a unit handling cost ĉ ,̂ but they may also figure out that the 
number of trucks to serve that link depends on the flow, because each truck 
has a limited capacity Q, where each truck incurs a fixed cost cjj G i?>o as 
well. If fih is the flow on that connection, the total cost adds to 

<4+4 fi ih 

Q 
+ c\hhh, if fih > 0 

0, otherwise 
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and figure 3 illustrates the situation. Similar situations have been men
tioned by Ebner (1997) and Wlcek (1998). 

Cost 

4 

q Cih 

c j 
oil 

Flow 

Figure 3: Cost Structure with Fixed Costs 

The corresponding model formulation with an integer-valued decision 
variable tih for the number of vehicles needed looks as follows: 

Min F6(f, t ,X,y, z) = E £ {c{^Zij + c\^Uj + c\^fij) (44) 
t = i j = i 

s.t. 
n 

y ^ Xijik = 1 
fc=i 

k=l,k^h k=l,k^h 

/ _, ^ijhi 
/ i = l 

n 

X ^ ^ijhk 
k=l 

n 

/^ ^ijkh 

= 0 

<yh 

<yh 

i , j = l , . . . , n (45) 

ij,h = l , . . . , n 

fc=i 

ij = l , . . . , n 

hj^h = l , . . . , n 

hjih = l , . . . , n 

(46) 

(47) 

(48) 

(49) 



Hub & Spoke Network Design 305 

J^yh = P (50) 

n n 

fij = Y1Y1 ^hkXhkij i, J = 1, . . . , n (51) 
/ i = l A;=l 

n n 

fij ^^Yl ^^^^^0 i, j = 1,..., n (52) 

fij<Q'tij i , j = l , . . . , n (53) 

/ i i > 0 i , j = l , . . . , n (54) 

UJENO i , j = l , . . . , n (55) 

Xij/iA: > 0 i, j , ft, A; = 1 , . . . , n (56) 

2 / / ie{0 , l } h = l , . . . , n (57) 

;2:ii€{0,l} z,i = l , . . . , n (58) 

The objective function (44) has already been defined above. The main point 
that is new here is restriction (53). Because of this constraint, the capacity 
offered on a certain Unk must be sufficient to transport the calculated flow 
on that link. Because of the minimization objective, the oflFered capacity 
will be as small as possible. It should be remarked that an optimum solution 
with all x-variables being integral may not exist. 

Additional constraints of the form 

Uj < Tij i , j = l , . . . , n 

could be used to model a restricted number of Tij vehicles on a particular 
link. In a similar fashion 

n n 

could constrain the total number of vehicles to a limit T in the whole 
network. 

This model can be adapted to even more general situations. Imagine 
situations where the type of transportation vehicle can also be decided. For 
instance, if one can use large trucks instead of small ones, trains instead 
of trucks, planes instead of trucks or trains and so on. Or imagine the 
telecommunication industry where the bandwidth of connected nodes can 
be decided upon. Let us assume that each link has a set of M so-called 
modes in which that link can be established. For a particular mode m, let 
Q^ be the capacity of a vehicle that corresponds to that mode and let q ^ , 
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c*^ and cj'^ be the cost coefficients for this mode for a given link (i^h). Note 
that several modes may cause economies of scale if cf;^/Q^ > 4]^ / Q ^ 
for modes m and m'. But this is not a sufficient criterion and depends 
especially on the values of c j ^ and cV^. The adapted decision variables 
zjjj, tj^ and /JJJ have a straightforward interpretation: 

MinF7(f , t ,x ,y ,z) = 
(59) 

t= l j=l \ \ m = l / / 

S.t 
n 

k=l 

/ ^ ^ijkh — / ^ ^ijhk 
k=\,k^h k=\,ki^h 

/ ^ ^ijhi 
/ i = l 

n 

/ , Xijhk 
k=l 

n 

22, ̂ ^i^^ 
fe=l 

n 

Y.y^ = 
h=\ 

M 

Y.W-
m = l 

M 

= 0 

<2/ / i 

< y / i 

p 

n n 

= 2J X / ̂ h,kXhkij 
/ i = l fc=l 

n n 

E/y^EE^/^^^y 
m = l 

n 

A i = l i k = l 

n 

/̂ ÊÊ ''*̂ ^ 
/ i = l f c = l 

/^>o 

^,j = l , . . 

M i 

hj,h= 1, 

^ j = l , . . 

^,j = l , . . 

m = 1 , . . . 

^,j = 1, . . 

m = 1 , . . . 

m = 1 , . . . 

. , n 

. . . , n 

. , n 

. . . , n 

. . . , n 

. , n 

. , n 

, M 

. , n 

. , n 

, M 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

m 

(69) 

(70) 
ij = l , . . . , n 



m = 1, . . 

hj,h,k= 

/i = l , . . . 

hj = h' 

m = 1, . . 

. , M 

. . , n 

= 1 , . . . 

, ,n 

. . , n 

. . , n 

(71) 

,n(72) 

(73) 

(74) 

(75) 
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Xijhk > 0 

y/. G {0,1} 
% e {0,1} 

z^e{o,i} 

Again, the objective function (59) has already been explained above. The 
interesting aspect here is (66). One should note that due to this formu
lation, the mode for a link between i and h need not be unique. Indeed, 
one could use a mix of different modes. If a certain mode m should be not 
available on a link from node i to node j , then one can simply set z^ = 0 
so that due to (68) this mode will not be active on that link. Eventu
ally, one should note that an optimum solution with all x-variables being 
integer-valued may not exist. 

An extended model where at most one mode per link can be chosen is 
easy to formulate by adding: 

M 

Y,z^<l i,j = l,...,n 
m = l 

4 Numerical Examples 

To illustrate the above models, we provide here the optimum results for 
three random examples computed with the commercial mathematical pro
gramming software package AMPL/CPLEX. Every example consists of 
n = 7 nodes. The number of hubs is always p = 3. The quantities Qij 
to be transported in all examples are given by table 1, and the fixed cost 
coefficients c{j are provided in table 2. 

Example 1 corresponds to the model formulation (31)-(43). In addition 
to the parameters already introduced, the variable cost coefficients c^j as 
defined in table 3 are used. 

Figure 4 shows an optimum solution for example 1 (what is shown are 
the positive flows fij). The optimum objective function value is 2403. It 
is remarkable to note that in this solution some quantities must indeed be 
transported via more than two hubs. The five units to be shipped from 
node i = 5 to node j = 2, for example, flow through hubs 1, 3, and 4 in 
that order. 
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Table 1: Transportation Quantities qij for the Examples 

la 
i 
2 

3 

4 

5 

6 

7 

1 

8 

4 

5 

8 

5 

8 

7 

2 

3 

1 

4 

8 

5 

2 

3 

3 

7 

5 

2 

1 

4 

8 

9 

4 

7 

5 

4 

8 

2 

1 

3 

5 

4 

6 

9 

8 

5 

6 

2 

6 

3 

5 

4 

7 

8 

1 

2 

7 

4 

7 

8 

5 

1 

2 

3 

Table 2: Fixed Cost Coefficients c{j for the Examples 

1 
2 

3 

4 

5 

6 

7 

1 

60 

80 

90 

200 

150 

140 

160 

2 

176 

184 

132 

154 

156 

189 

147 

3 

50 

40 

46 

47 

48 

168 

137 

4 

175 

120 

149 

138 

168 

147 

159 

5 

130 

190 

168 

147 

123 

150 

130 

6 

134 

60 

57 

180 

147 

153 

164 

7 

70 

64 

59 

80 

190 

130 

180 

Table 3: Variable Cost Coefficients c\j for the Examples 

1 
2 

3 

4 

5 

6 

7 

1 

7 

2 

7 

2 

2 

7 

3 

2 

2 

3 

4 

1 

5 

5 

3 

3 

3 

3 

5 

3 

9 

5 

1 

4 

8 

6 

1 

5 

5 

3 

5 

5 

1 

5 

3 

7 

8 

1 

9 

6 

2 

8 

9 

4 

4 

1 

8 

7 

4 

2 

9 

4 

2 

2 

7 
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Figure 4-' An Optimum Solution for Example 1 
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Example 2 corresponds to the model formulation (44)-(58). We use 
Q = 10. The cost coeflScients c(j and c^j axe the same as in example 1. The 
cost coefficients cj. can be found in table 4. 

Table 4- Cost Coefficients c\j for the Examples 

(}••• 

1 

2 

3 

4 

5 

6 

7 

1 

45 

42 

38 

10 

75 

50 

80 

2 

49 

62 

15 

20 

15 

60 

60 

3 

35 

58 

42 

30 

46 

10 

20 

4 

18 

46 

58 

57 

35 

80 

25 

5 

36 

35 

64 

18 

26 

66 

16 

6 

14 

58 

75 

45 

14 

55 

34 

7 

90 

75 

31 

46 

70 

40 

71 

Figure 5 shows an optimum solution for example 2 (again, the positive 
flows /ij are shown). The optimum objective function value is 4327. Note 
that just by introducing a fixed cost c*̂  per vehicle to be used on a link, 
the solution looks quite different than the one for example 1. 

Example 3 corresponds to the model formulation (59)-(75). M = 2 
modes are used with Q^ — 10 and Q^ = 20. The fixed cost coefficients c{^ 
are defined in table 2. The mode dependent fixed cost coefficients c{^^ are 
provided in table 5. For mode m = 1 we use the cost coefficients c^? and 
(^^^ like they were defined in tables 3 and 4, respectively. For mode m = 2 
the values of the parameters &^ and c*̂  are specified in tables 6 and 7, 
respectively. 

Figure 6 shows an optimum solution for example 3 (here, the fiows 
fijiffj ^̂ ® shown). The optimum objective function value is 3736. Note 
again that just by introducing new aspects (a second mode) and keeping 
all other parameters as they were before in example 2, the solution looks 
completely different. It should be noted in example 3 that one link indeed 
uses a mix of modes (see the link from node 2 to node 1). Some nodes (see, 
e.g., node 6) have different ingoing and outgoing modes. In practice this 
could mean, for instance, that small trucks are used to go to node 6 and 
large trucks are required to come from node 6. As a consequence one would 
face a number of empty moves of the vehicles. Additional constraints and 
terms in the objective function that take into account such empty moves 
may become relevant in some applications. This example also reveals the 
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Figure 5: An Optimum Solution for Example 2 

Table 5: Mode Dependent Fixed Cost Coefficients c{^ /c{^ for the Examples 

Hi IHj 
1 

2 

3 

4 

5 

6 

7 

1 

3/9 

6/6 

6/3 

3/3 

3/1 

4/5 

8/2 

2 

5/5 

4/2 

8/1 

5/2 

5/4 

8/7 

5/4 

3 

4/7 

7/3 

5/4 

7/4 

7/7 

9/8 

4/5 

4 

8/8 

8/3 

5/5 

9/7 

8/8 

3/4 

6/7 

5 

3/4 

9/4 

3/6 

3/9 

9/5 

4/2 

2/8 

6 

1/6 

6/8 

6/8 

5/9 

5/4 

4/1 

1/9 

7 

5/5 

4/7 

4/6 

4/5 

2/3 

7/3 

3/3 
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Table 6: Variable Cost Coefficients c^f for the Examples 

1 

2 

3 

4 

5 

6 

7 

1 

8 

2 

5 

2 

5 

5 

1 

2 

7 

3 

3 

6 

6 

6 

4 

3 

5 

2 

5 

3 

3 

3 

5 

4 

6 

2 

1 

1 

2 

2 

6 

5 

1 

7 

3 

5 

1 

4 

3 

6 

3 

9 

1 

6 

4 

5 

2 

7 

2 

6 

7 

4 

7 

7 

1 

To6/e 7; Cosi Coefficients c" /or i/ie Examples 

1 

2 

3 

4 

5 

6 

7 

1 

90 

50 

70 

18 

80 

99 

90 

2 

60 

70 

22 

33 

17 

69 

100 

3 

50 

75 

60 

53 

66 

15 

35 

4 

30 

60 

90 

67 

55 

140 

30 

5 

40 

55 

100 

19 

50 

77 

30 

6 

20 

69 

133 

80 

27 

99 

60 

7 

100 

140 

50 

70 

110 

50 

80 
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phenomenon of split quantities. It is a little hard to see in figure 6, but if 
we would examine in more detail which quantities qij go what what ways — 
which can easily be done by inspecting the values of the decision variables 
X — it would turn out in this example that the five units to be shipped 
from node i = 2 to node j = 3 are split: Four units go directly from node 2 
to node 3, but one unit goes from node 2 to node 1 and from there it goes 
to node 3. 

Figure 6: An Optimum Solution for Example 3 

5 Conclusion 

This paper is devoted to the modeling of economies of scale within hub 
& spoke network design problems. First we have shown how economies of 
scale are modeled in traditional hub & spoke network design models and it 
turned out that all flows have a constant unit cost. Interhub connections 
allow to reduce the unit cost of flow by a factor a. Hence, all traditional 
models do not represent flow dependent unit costs and therefore do not 
reflect the issue of economies of scale in a correct manner. This is rather 
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surprising, because economies of scale axe a key driving force for installing 
hub & spoke systems. Given that (almost) all researchers up to today 
have used this (incorrect) way of modeling economies of scale, it is time to 
question this, because obviously wrong models lead to wrong decisions no 
matter how good the procedures to solve these models are. 

It seems that only very few authors, namely O'Kelly and Bryan (1998) 
and Klincewicz (2002), have noticed this serious defect before. To be fair, 
Podnar et al. (2002) and Campbell et al. (2004a, 2004b) also question 
traditional models and discuss approaches where the discount factor a is 
applied only under certain, flow dependent circumstances, but they still rely 
on that factor a which is not a convincing approach for modeling economies 
of scale. O'Kelly and Bryan (1998) and Klincewicz (2002) have suggested 
a non-linear, concave cost function to model economies of scale between 
interhub connections in a much more appropriate way. Using a piecewise 
linear approximation, these authors provide a linear mixed-integer model 
formulation (and solution procedures not discussed here) where the unit 
cost is flow dependent. However, the motivation for using this non-linear, 
concave cost function for modeling economies of scale is somewhat weak 
in our opinion, because there is no cost accounting argument that justifies 
such a cost function. 

Given this, we contribute the following: First of all, we allow that 
economies of scale do not only occur on interhub connections only, but they 
can occur on all kinds of connections, a point that has been made by Bryan 
(1998) already before. So, we propose models to reflect this. Furthermore, 
we give an economic explanation for the occurrence of economies of scale 
which allows us to derive a cost function that is less artificial and can be 
explained better than the one proposed in the literature. The sources for 
economies of scale mentioned in this paper are (i) quantity discounts (if a 
third party is employed), (ii) fixed costs, and (iii) multiple modes. Models 
and examples are provided in this paper to illustrate the latter two aspects. 

Future work should be dedicated to develop and test exact and heuris
tic solution procedures for these models. Also, an emphasis should be on 
investigating real-world applications to explain by cost accounting argu
ments which costs really matter and how these costs are calculated to get 
much more reliable solutions. 
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