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Preface 

This collection of essays is dedicated to Professor Klaus Neumann, Head 
and Chair of the Institute for Economic Theory and Operations Research 
WiOR at the University of Karlsruhe. On the occasion of his emeritation, 
disciples, colleagues, scientific companions, and friends coming from dif­
ferent fields have contributed their perspectives on Operations Research 
to form a broad view on the discipline. The papers are organized in four 
parts on optimization, OR in production and service management, OR in 
logistics, and interdisciplinary approaches. We thank all the authors for 
their participation in publishing this volume. Mrs. Ute Wrasmann from 
Deutscher Universitats-Verlag deserves credit for her interest and assis­
tance on this project. Finally, we would like to express our gratitude to 
PTV Planung Transport Verkehr AG in Karlsruhe and to numerous former 
WiOR colleagues for their financial support. 

Klaus Neumann was born in Liegnitz (Silesia) in 1937. Prom 1955 to 
1961 he studied mathematics at the Technical Universities of Dresden and 
Munich. His first paper on analog computers and dynamic programming 
was published less than two years later. In 1964 he obtained a Ph.D. in 
mathematics under the supervision of Josef Heinhold in Munich. After a 
two-year stay in industry, he returned to his alma mater, working on the 
fields of dynamic optimization and control theory. In 1968 he was conferred 
the venia legendi for mathematics from the Technical University of Munich 
with a habilitation thesis on optimization subject to nonholonomous con­
straints. The same year he moved to the University of Karlsruhe, where he 
took up the head of the computer center. Since 1970 he is full professor of 
Operations Research at the School of Economics and Business Engineering 
in Karlsruhe. 

Klaus Neumann has strongly influenced the development of Operations 
Research in Germany over more than four decades. For generations of 
German-speaking students his seminal trilogy Operations-Research-Ver-
fahren has been the OR textbook of choice. His books on Operations 
Research and Production and Operations Management published in the 
1990s remain a major reference in the field. Scientific monographs on dy-
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namic programming (1969), control theory (1969), stochastic project net­
works (1979 and 1990), and project scheduUng (2003) are evidences of his 
fruitful research, which has repeatedly been supported by the German Re­
search Foundation DFG and by industry. The main achievements of this 
research are outlined in the first chapter of this book. From 1970 to date 
Klaus Neumann has supervised more than 30 doctoral and habilitation can­
didates. He held visiting professorships at the Universities of California at 
Berkeley and Riverside, Stanford, Florida, Waikato at Hamilton, Kunming, 
and Beijing Institute of Technology. Since 1972 he has been editor of sev­
eral scientific series and journals like Mathematical Systems in Economics^ 
Methods of Operations Research^ and Mathematical Methods of Operations 
Research. In addition, he has been chairman and (and still is) member of 
the program committee of numerous scientific conferences such as EURO 
WG PMS, lEPM, IKM, or MISTA. 

All over the years, students and colleagues at WiOR have not only 
benefited from Klaus Neumann's comprehensive scientific knowledge and 
expertise. We all have been influenced by his cultivated personality and 
generosity. Memorable excursions, wine tastings, and exquisite dinner re­
ceptions at his home in Conweiler have set very high cultural standards at 
our institute. We wish Klaus all the best for the future. 

Giefien, Clausthal-Zellerfeld, Bern Martin Morlock 
November 2005 Christoph Schwindt 

Norbert Trautmann 
Jiirgen Zimmermann 
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1 Introduction 

In this paper we give a short overview of the research conducted, initiated, 
and supervised by Klaus Neumann from the early sixties up to present. Of 
course, we do not claim exhaustiveness of our review. The major themes of 
research can be clustered into the three main areas sketched in Sections 2 
to 4: 

• Control Theory and Dynamic Programming (1960s and 1970s) 

• GERT Networks (1970s to 1990s) 

• Resource-Constrained Project Scheduling (since 1990s) 

In any of those fields, Klaus Neumann has significantly influenced the de­
velopment of OR in Germany and beyond. Prom the very beginning, his 
research has combined solid mathematical foundation and applicability of 
theoretical results. The relevance of his achievements to the treatment of 
real-world problems has been reflected in many applied research and devel­
opment projects. A selection of the projects that have been carried out in 
cooperation with different industrial partners is sketched in Section 5. 

2 Control Theory and Dynamic Programming 

Among the various approaches existing at the beginning of the 1970's in 
quantitative economic science, only linear programming has been successful 
on a broad front. For this simply structured class of static optimization 
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problems, a commonly accepted and transparent model as well as efficient 
solution algorithms could be developed and applied due to the enormous 
advances in computer technology. 

However, a multitude of practical problems in management and eco­
nomics is not static in nature, but concern the analysis and optimal solution 
of time-dependent (decision) processes. Such problems are well-known as 
control problems (particularly in technology). To find an optimal solution 
to such problems, mainly two different approaches have been investigated: 
control theory and dynamic programming. 

Control theory in continuous time is based substantially on an analytic 
approach referring to the Pontrjagin maximum principle and transversality 
conditions. Fundamental to dynamic programming is the so-called Bellman 
optimality principle^ which was developed in the 1950's by the American 
mathematician Richard Bellman (cf. Neumann 1969a). In particular Neu­
mann contributed several publications to the spreading of those two opti­
mization techniques and to their application. Together with Bauer (1969), 
he was one of the first who explained in a very lucid way these two fun­
damental approaches and their relationship. For the acceptance and suc­
cessful use of dynamic models, both their theoretical foundation and the 
development of numerical methods were essential. Major contributions to 
the latter topic, as well as descriptions of relevant applications, can be 
found for example in Neumann (1969a) and (1975a). 

Initial considerations were concerned with the question whether analog 
or digital computers should be used for the numerical solution of dynamic 
optimization problems, especially for dynamic optimization problems in 
continuous time (cf. Neumann and Neumann 1963). Rapid progress in the 
digital computer technology soon decided in favor of the digital comput­
ers. In the following, research in the areas of control theory and dynamic 
programming concentrated on the development of solution procedures for 
different problems with a great diversity of applications and on their the­
oretical foundations (cf. e.g., Neumann 1965a, 1965b, 1968, 1969b, 1969c, 
1970a, and 1971a). In addition, for applying the dynamic optimization 
principle, which represents a universally applicable instrument, large nu­
merical problems had to be tackled. Dynamic programming mainly suf­
fers from the curse of dimensionality. This means that the search process 
exploiting Bellman's optimality principle in higher-dimensional state and 
control spaces results in exponentially growing computational requirements. 
Some efficient procedures reducing the costs of computation by using ap­
proximating approaches and appropriately adapted gradient methods are, 
for example, presented in Neumann (1970b, 1975b). 

A substantial strength of the Bellman optimality principle and its sue-
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cessful use appears if the problem decomposes into many similar and inter­
dependent sub-problems. These sub-problems are exposed to coincidental 
influences and the solution of the total problem can be built up from opti­
mal solutions of the sub-problems. This is for instance the case for Markov 
decision problems. These problems belong to the field of stochastic dynamic 
programming and cover economic questions for which stochastic influences 
are relevant. The aspect of risk, connected with economic acting, plays 
a more and more important role in decision making (cf. Neumann and 
Morlock 2002). 

Finally, a class of problems which are relevant to practice and for which 
stochastic dynamic programming proved suitable are known as decision 
activity networks. This is a very clear planning instrument for the repre­
sentation and handling of stochastic network project control and scheduling 
problems, which, since the middle of the 1970's, are studied in numerous 
pubhcations (cf. Neumann 1977a). In the following section, those networks 
are treated in more detail. 

3 GERT Networks 

Project planning, scheduling, and control are widely used in practice to 
accomplish outcomes under critical time constraints and given limited re­
sources. Classical network techniques like CPM, MPM, or PERT are used 
for projects whose evolution in time can be uniquely specified in advance 
(cf. Neumann and Morlock 2002). Unfortunately, in practice this condition 
is frequently not fulfilled. Consider for instance an inspection that takes 
place during a production process and which reveals that a product does 
not conform to a set of given specifications. Thus it must be repaired or 
replaced, i.e., we have to return to a preceding stage of the production 
process. Since only a certain percentage of tested products does not com­
ply with the specifications, this feedback loop occurs with a probability of 
less than one. To deal with these more general projects, whose evolution 
in time cannot be anticipated precisely (stochastic evolution structure of 
the project) and where feedback is permitted, so-called GERT networks 
with an activity-on-arc representation have been introduced (cf. Neumann 
1971b, 1976, and 1977b). 

The essential features of GERT networks as compared to CPM or 
PERT networks are more general arc weights, cycles to represent feedback, 
and six different types of nodes. These node types arise from combin­
ing three different node entrances corresponding to the logical operations 
"and", "inclusive-or", and "exclusive-or" as well as two possible node exits^ 
which determine whether exactly one ("stochastic exit") or all ("determin-
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istic exit") emanating activities must be performed if the corresponding 
node is activated. For each arc (activity) there is a conditional execution 
probabiHty given that the corresponding initial event has occurred and a 
conditional distribution function for the duration of that activity given that 
the activity is carried out. For an in-depth treatment of the theory of GERT 
networks, we refer to Neumann and Steinhard (1979a) and Neumann (1989, 
1990). 

In CPM, MPM, or PERT network techniques, the temporal analysis 
of the project includes the determination of the earliest and latest start 
times of the project activities, the earliest and latest occurrence times of 
certain project events, as well as the computation of the project duration 
or its distribution. For GERT networks these concepts have been discussed 
by Neumann (1979a) and Neumann and Steinhard (1979a). However, in 
the case of GERT networks the meaning of those concepts is quite different 
because project events may occur several times and their computation is 
much more complicated. Therefore, the temporal analysis of GERT net­
works usually only considers quantities that are associated with the termi­
nal events of the project such as the probability that certain terminal events 
will occur (a GERT network generally has more than one sink) and the re­
spective (conditional) distribution function (cf. Neumann 1979b, 1990). For 
general GERT networks the temporal analysis is usually very time consum­
ing because it requires the evaluation of multiple integrals (cf. Neumann 
1984b). For special GERT networks such as so-called EOR networks^ or 
reducible GERT networks'^ results from Markov renewal processes can be 
exploited for the temporal evaluation of the network, which simplifies the 
determination of the activation distributions (cf. Fix and Neumann 1979, 
Neumann and Steinhard 1979b, and Neumann 1985). 

Besides the temporal analysis of stochastic projects, the cost mini­
mization of such projects is of great interest. In the case of GERT net­
works different types of costs are incurred by the execution of activities 
and the occurrence of events. For EOR networks the cost minimization 
problem again leads to a Markov renewal decision process and can thus be 
modeled and solved as stochastic dynamic programming problem (see Neu­
mann 1981, 1984a and Foulds and Neumann 1989). A different approach to 
solving the cost minimization problem, which leads to an optimal control 
problem, has been proposed by Delivorias et al. (1984). 

If scarce resources (e.g., machines) are required for performing the proj-

^EOR networks are GERT networks whose nodes have an "exclusive-or" entrance. 
•̂ A GERT network is called reducible, if all nodes with "and" or "inclusive-or" en­

trances are part of special subnetworks which can be reduced to structures containing 
only "exclusive-or" nodes with a stochastic exit. 
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ect activities, so-called GERT scheduling problems have to be solved, 
whose type depends on the structure of the underlying production processes 
(cf. Neumann 1999). In particular single machine, parallel machine, flow 
shop, and job shop scheduling problems with GERT network precedence 
constraints arise in practical applications involving product variants. For 
single machine scheduling problems with stochastic precedence constraints 
a dynamic programming approach can be found in Neumann (1990). Poly­
nomial algorithms for single machine scheduling problems with precedence 
constraints given by an EOR network are developed by Biicker et al. (1994). 
Heuristic procedures for parallel machine problems with GERT precedence 
constraints are discussed in Foulds et al. (1991) and Neumann and Zimmer-
mann (1998). Neumann and Schneider (1999) deal with minimizing the ex­
pected makespan of flow shop and job shop scheduling problems with EOR 
network precedence constraints. A comprehensive summary on scheduling 
problems with GERT precedence constraints is given by Neumann (1990, 
1999). 

4 Resource-Constrained Project Scheduling 

In this section we consider the planning of projects for which the evolu­
tion structure, activity durations, and resource data can be estimated in 
advance with sufficient accuracy. In this case we may consider the pre­
dictive data as being deterministic and take uncertainty into account by 
constructing robust plans or dynamically reacting on disruptions during 
the implementation. Project scheduling as part of project planning is con­
cerned with computing time intervals for the execution of project activities 
in such a way that the precedence relationships between activities are sat­
isfied and an objective function formulating the planning goal is minimized 
or maximized. In resource-constrained project scheduling, the latter prob­
lem amounts to allocating scarce resources over time to the execution of 
the activities. Different types of resources have been considered in the lit­
erature. The availability of renewable resources like personnel, machines, 
or equipment at a given time solely depends on the activities being in 
progress. Examples of cumulative resources, whose availability depends on 
the complete project history, are funds, materials, or storage space. 

For what follows, we suppose that the execution modes defining the 
resource requirements of each activity have been fixed and that the activ­
ities must not be interrupted during their execution. A solution to such a 
single-mode scheduling problem is usually represented as a vector of activ­
ity start times, which is called a schedule. Furthermore, we assume that 
the precedence relationships between activities are given as minimum and 
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maximum time lags between the start times of activities. The activities 
and time lags can be modeled as an MPM network, possibly containing 
cycles. Minimum and maximum time lags allow to formulate many con­
straints arising in practical applications of project scheduling hke release 
dates, deadlines, quarantine and shelf life times, or overlapping activities 
(see Pranck et al. 1997 and Neumann and Schwindt 1997, 1998 for applica­
tions of project scheduling models in production planning). Minimum and 
maximum time lags greatly add to the complexity of resource-constrained 
scheduling problems since in difference to the case of ordinary precedence 
constraints, the problem of finding a feasible schedule is already NP-hard 
even if the project only contains renewable resources. 

An overview of models and methods for project scheduling is given by 
Brucker et al. (1999), which also provides a three-field classification scheme 
for project scheduling problems. Many of the results on project scheduling 
in MPM networks mentioned in this section are presented in more detail 
in a review by Neumann et al. (2002b) and the monograph by Neumann et 
al. (2003a). 

Exact and heuristic algorithms for project scheduling are based on the 
exploration of finite sets containing eflJcient points of the feasible region. 
The type of schedules to be investigated depends on the objective function 
under consideration. Based on a structural analysis of the feasible region, 
Neumann et al. (2000) have proposed a classification of objective functions 
and corresponding efiicient points. The analysis shows that basically, ef­
ficient points can be enumerated in two alternative ways. If the temporal 
scheduling problem arising from deleting the resource constraints can be 
solved efficiently, the classical approach consists in using some relaxation-
based generation scheme branching over alternatives to resolve resource 
conflicts. Examples of objective functions for which temporal scheduling 
can be done efficiently are the makespan (project duration) and the sum 
of discounted cash flows associated with the project activities (net present 
value of the project). If already the temporal scheduling problem is NP-
hard, an optimal schedule can be computed with a constructive generation 
scheme, which iteratively establishes binding temporal or precedence con­
straints. Resource leveling problems, where the objective is to smooth the 
resource utilization over time, belong to this second class of problems. 

For solving the project duration problem with renewable resources, 
both the constructive and the relaxation-based approache have been used. 
Priority-rule based methods exploiting the cyclic structure of the MPM 
project network have first been presented by Neumann and Zhan (1995) 
and Brinkmann and Neumann (1996). In Pranck et al. (2001), the per­
formance of different priority-rule based methods, local search procedures, 
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and truncated branch-and-bound algorithms based on resource relaxation 
have been compared with respect to accuracy and computation time. A 
branch-and-bound algorithm for the project duration problem with cumu­
lative resources can be found in Neumann and Schwindt (2002). 

Schedule-construction algorithms for the net present value problem 
have been devised by Neumann and Zimmermann (2000). A relaxation-
based branch-and-bound algorithm for this problem has been developed 
by Neumann and Zimmermann (2002). In this algorithm, the temporal 
scheduling problems are solved by efficient primal and dual vertex-following 
algorithms. 

Brinkmann and Neumann (1996) and Neumann and Zimmermann (1999, 
2000) have treated several variants of the resource leveling problem. 
Depending on whether the maximum resource usage or the variability in 
resource utilization shall be minimized, different sets of tentative activity 
start times are investigated. According to the principle of the constructive 
schedule-generation scheme, the sets are chosen in way ensuring that in 
each iteration some temporal or precedence constraint becomes binding. 
Order-based neighborhoods for project scheduling problems with general 
nonregular objective functions like the net present value of resource level­
ing functions can be found in Neumann et al. (2003b). 

5 Selected Applications 

In what follows, we briefly discuss some selected applications of the research 
that has been described in the preceding sections. Together with further 
applications, they all are the result of applied research projects carried out 
in cooperation with partners from different industries. 

A six-year research and development project building on the achieve­
ments in the field of resource-constrained project scheduling was concerned 
with short-term production planning in the process industries. 
In those industries, final products arise from several successive chemical 
or physical transformations of bulk goods, Uquids, or gases processed on 
processing units such as reactors, heaters, or filters. Each transformation 
process may consume several input products and may produce several out­
put products, whose amounts may be chosen within prescribed bounds. 
Perishable products must be consumed within a given shelf life time, which 
may be equal to zero. In addition, the storable intermediate products must 
be stocked in dedicated storage facilities like tanks or silos. Further pecu-
Uarities encountered in the process industries are cyclic product structures 
and sequence-dependent cleaning times on processing units. 

For the case of batch production, Neumann et al. (2002a) present a new 
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solution approach, which can solve much larger practical problems than the 
methods known at this time. The new approach decomposes short-term 
planning for batch production into batching and batch scheduling. Batch­
ing converts the primary requirements for products into individual batches, 
where the objective is to minimize the resulting workload. The batching 
problem is formulated as a mixed-integer nonlinear program. The latter 
problem is transformed into a mixed-binary linear program of moderate 
size, which can be solved by standard MILP software. A solution to the 
batch scheduling problem allocates the batches to scarce resources such as 
processing units, workers, and intermediate storage facilities, where some 
regular objective function like the makespan is to be minimized. The batch 
scheduling problem is modeled as a resource-constrained project scheduling 
problem, which can be solved by new efficient truncated branch-and-bound 
or priority-rule based methods. The performance of the new solution proce­
dures for batching and batch scheduling is demonstrated by solving several 
instances of a case study from process industries. Recently, the truncated 
branch-and-bound algorithm for the batch scheduling problem has been 
generalized to the case of continuous material flows (cf. Neumann et al. 
2005). 

Schwindt und Trautmann (2003) study a real-world scheduling problem 
arising in aluminium industry. They consider the production of rolling in­
gots, i.e., ingots of a certain aluminium alloy in rectangular form. These 
ingots are the starting material for the rolling of sheet, strip, and foil. It 
is shown how to model this scheduling problem as a resource-constrained 
project scheduling problem using minimum and maximum time lags be­
tween operations, different kinds of resources, and sequence-dependent 
changeovers. A solution procedure of type branch-and-bound is presented. 

Now we turn to a project scheduling application from the area of ser­
vice operations management. Car manufacturers increasingly organize 
visit programs for the customers that pick up their new cars at the factory. 
Such a program consists of a broad range of event-marketing activities and 
is designed to estabUsh an emotional relationship between the customer 
and the brand. Mellentien et al. (2004) study the problem of scheduling all 
program activities of one day in such a way that the sum of the customers' 
waiting times during their visit is minimized. In service operations manage­
ment, short customer waiting times are considered to be a key performance 
indicator of customer satisfaction. 

Eventually, resource-constrained project scheduling has been applied 
to the problem of managing research and development projects in 
the pharmaceutical industries. Kolisch et al. (2003) study the problem of 
scheduling research activities in drug development. A particularity of this 
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problem is that the manpower requirements of the activities may vary over 
time, the requirement profiles being subject to decision. 

In a current research project, quantitative methods for decision sup­
port in the service industries are developed. Schon-Peterson (2003) has 
developed various models and solution methods for the pricing of telecom­
munication services. 
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1 Introduction 

In this paper shop scheduling problems are modeled by matrices. Initially 
we assume that each job is processed at most once on each machine. It is 
shown how the model can be extended to shop problems with more than 
one operation on each machine and to the case that preemption is allowed. 

Modelling shop problems by matrices is a very natural approach of 
modelling such scheduling problems. At first it was presented by BRASEL 

[1]. The model is easy comprehensible and can be applied to simplify the 
description of algorithms in this field, for instance the block-approach idea 
for job shop problems and algorithms in the case of unit processing times. 

Moreover, this model gives rise to new theoretical results. We give a 
brief review on such papers. The complexity question of some open shop 
problems with unit processing times was solved, see for instance BRASEL 

ET AL. [7], [8] and [9], TAUTENHAHN [16] and [17]. The insertion technique 
(cf. [1]) was developed for enumeration algorithms and beam search strate­
gies, see for instance BRASEL ET AL. [10], WERNER AND WINKLER [18] 
and SOTSKOW ET AL. [15]. Theoretical results were obtained for count­
ing problems, see BRASEL AND KLEINAU [5], HARBORTH [14] and BRASEL 

ET AL. [2] and [3]. Moreover, the model was applied for structural inves­
tigations of sequences and schedules: Shop scheduling spaces were char-
acterizised algebraically by DHAMALA [12]. The irreducibility theory was 
developed, introduced by BRASEL AND KLEINAU [6]. Here especially the 
papers of BRASEL ET AL. [2], [3] and WILLENIUS [19] has to be mentioned. 
Furthermore, the software package LiSA works with this model succesfully. 
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However, there is no article in English to explain the basic model in 
detail. This paper closes this gap. It is organized like an introductory 
lecture on shop problems. We start with basic notations, give an overview 
on the used graphs and their description by matrices and present simple 
algorithms concerning the defined matrices. The insertion technique for 
construction of sequences is introduced and some properties of sequences 
are charakterized. We next show how the model can be modified for other 
classes of shop problems. Finally, the software package LiSA - A Library of 
Scheduling Algorithms is presented which contains the introduced matrices 
and their visualization as graphs and Gantt charts. 

2 Basic No ta t ions 

In a shop scheduling problem a set of n jobs ^4 ,̂ i G / = { 1 , . . . , n} , has to 
be processed on a set of m machines Mj, j € J = { 1 , . . . , m}, in a certain 
machine environment a under certain additional constraints /? such that 
an objective function 7 is optimized. Such a problem is called determinis­
tic if all parameters are fixed and given in advance. Various optimization 
problems concerning allocation of restricted resources can be modeled as 
scheduling problems. We use the standard a | /? | 7 classification of deter­
ministic scheduling problems developed by GRAHAM ET AL. [13]. 

At first we consider so-called classical shop problems, i.e., each job is 
processed on each machine at most once. 

Processing of job Ai on machine Mj is called an operation {ij), PT 
denotes the matrix of processing times: PT = \p%j\. The set of all opera^ 
tions SIJ is given by SIJ = {{ij) \ Pij > 0}. We assume that each job is 
processed on at most one machine at a time and each machine processes at 
most one job at a time. For certain shop problems, a release time ri > 0, 
a due date d̂  > 0 or a weight Wi > 0 for job A^, z G / , are requested. 
Let Ui and Vj be the number of operations for job Ai and on machine Mj, 
respectively. Then we define: 

The machine order of the job Ai is the order of machines on which this 
job has to be processed: Mj^ —> Mj^ —•...—> Mj^.. 

The job order on machine Mj is the order of the jobs which this machine 
processes: Ai^ —^ Ai^ -^ ... ^ Ai^.. 

In a job shop problem (a = J) the machine order of each job is given in 
advance. In a flow shop problem (a = F) the machine orders of each job 
are the same , w.l.o.g. in the case of SIJ = I x J: Mi —̂  M2 ^ . . . -^ Mn-
In an open shop problem (a = O) both machine orders and job orders can 
be chosen arbitrarily. Other precedence constraints on the operations can 
be easily integrated into the model. 
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In a shop problem a combination of machine orders and job orders 
is to determine such that a time table of processing (schedule) can be 
constructed, which satisfies the additional constraints and minimizes the 
given objective function. 

Let Ci be the completion time of job -Af. An objective function 7 = 
F{C\^. .^<,Cn) is called regular if it has the following property: 
If for two schedules S and 5* the inequality C* > Ci holds for all i E / 
then F(Ci*, . . . , C*) > F ( C i , . . . , Cn) is satisfied. 

The makespan Cmax, the weighted sum of completion times "^WiCi, the 
maximum lateness Lmax^ the weighted tardiness Y!,'^i'^i ^^^ the weighted 
number of late jobs ^WiUi are regular, where: 
Cmax = max{Ci}, Lmax = m3x{di -Ci}, E ^ i ^ i = E ^ i max{0, di-d} 

tei tei i^i 

and Ui = I ' * * for alH G / . Often Wi = \ for alH E / holds. 
[̂  0, otherwise 

3 Graphs and Matrices for Shop Problems 

This chapter starts with a model of shop problems where preemption of 
the operations is not allowed. 

3.1 Partial Orders and Schedules 

We define the following digraphs where in each case the set of vertices is 
the set SIJ of operations: 

• The digraph of machine orders G{MO) = {SIJ, Amo) contains all arcs 
which describe the direct precedence constraints in all machine orders. 

i = k A after the processing of job Ai on 

(i ((^i)»(fcO) ^AMO • • , 
Mj job Ai is processed on machine Mi 

The digraph of job orders G{JO) = {SIJ, Ajo) contains all arcs which 
describe the direct precedence constraints in all job orders. 

( 

, , . .̂  ,. .,^ , t j = I A after the processing of job Ai on 
{{ij), {kl)) G AJO <=^ { & J I 

machine Mj machine Mj processes Ak-

• The digraph G{MO, JO) = {SIJ, A) contains all arcs of A = AMO U 
AJO-

A combination {MO, JO) of machine orders and job orders is called feasible, 
if the corresponding digraph G{MO, JO) does not contain a cycle. In this 
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case G{MO, JO) is called a sequence graph. The described acyclic graphs 
are partial orders on the set of all operations. 

Example 1 Assume that three jobs have to be processed on four machines. 
The matrix PT of processing times is given by 

PT 

2 1 0 1 

2 3 4 3 

1 5 1 2 

, therefore SIJ = I x J\{(13)} holds. 

We consider the following machine orders and job orders: 

Ai : Ml -^ M2 —> M4 Ml : Ai —^ A2 —^ As 

A2 : M2 -* M4 -̂  Ml —> M3 M2 : A2-^ A^-^ Ai 

A^: M4 —> Ml -̂  M2 —• M3 M3 : A^-^ A2 

M 4 : ^3 -^ i4i —• A2 

The corresponding digraph G{MO,JO), see Figure i , contains verti­
cal arcs, which represent job orders on the machines and horizontal arcs 
representing machine orders of the jobs. 

The combination of machine orders and job orders is not feasible because 
G{MO,JO) contains the cycle (12) -^ (14) -> (24) - • (21) -^ (31) -^ 
(32) —* (12). Since we have a cycle, there can not exist any schedule of 
processing. 

If we choose the natural order of the machines in each machine order 
and of the jobs in each job order, the digraph G{MO, JO) cannot contain 
any cycle, because all arcs are directed to the left or downwards. In this 
case a corresponding schedule can easily be constructed. 

Now we assign the weight pij to each vertex (ij) of the sequence graph 
G{MO,JO), Then a schedule can be constructed. Usually schedules are 
described by the start times or the completion times of all operations. 
There exist the following classes of schedules: 
A schedule is called a non-delay schedule, if no machine is kept idle when 
there exists a job available for processing. 
A schedule is called active, if no operation can be completed earlier by 
changing the job orders without delaying any other operation. 
A schedule is called semiactive, if no operation can be completed earlier 
without changing the job order on any of the machines. 

Note, that each non-delay schedule is also active and each active sched­
ule is also semiactive, but not vice versa. 
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G(MO) G(JO) 

G(MO,JO) 

Figure 1: G{MO), G{JO) und G{MO,JO) for Example 1 

In the case of regular objective functions there always exists an optimal 
semiactive schedule and the computing of a longest path in G{MO, JO) 
yields the makespan. We use the notation longest path with respect to the 
sum of the weights of the vertices contained in the path. Schedules are 
visualized by Gantt charts, which can be machine oriented or job oriented. 
In Figure 2 a job-oriented Gantt chart of a schedule with minimal makespan 
is given (see Example 1). There cannot be any better schedule because the 
longest job A2 has no idle time within its processing. 

In general, the set of schedules is infinite, but the set of sequences is 
finite. The binary relation R in the set of schedules: 
"schedule 1 R schedule 2 if and only if both schedules have the same ma­
chine orders and job orders" is an equivalence relation. We can choose 
all semiactive schedules with unit processing times as representativs of the 
equivalence classes, whose number is finite. 
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Figure 2: J oh-oriented Gantt chart 

3,2 Matrices in Shop Problems 

In the literature the most commonly used model for shop problems is the 
well-known disjunctive graph model, see for instance BRUCKER [11]. We 
obtain the model used here by the following modifications: 
- Cut the inserted source and sink and the corresponding incident arcs. 
- Determine an acyclic orientation of the disjunctive graph. 
We obtain the sequence graph (cf. Section 3.1) by deleting all transitive 
arcs which are not direct precedence constraints in the machine orders and 
in the job orders. 

Now we define a set of matrices, where in each matrix an information 
of the operation (ij) on position (ij) is contained, this is the real advan­
tage of the model. The digraphs G{MO), G{JO) and G{MO, JO) and in 
particular, the structure of the contained paths are visible by the matrices 
without drawing the digraphs. The number of vertices on a longest path 
with respect to unit weights of all vertices from a source to the vertex v is 
called rank of v\ rk{v). Now we define the following matrices: 

• the machine order matrix MO = [mof^]: moij is the rank of the 
operation (ij) € SIJ in the digraph G{MO), 

• the job order matrix JO = [joij]: joij is the rank of the operation 
{ij) e SIJ in the digraph G{MO). 

• the sequence (matrix) PO = \poij\: poij is the rank of the operation 
{ij) € SIJ in the sequence graph G{MOy JO), 

These matrices describe structural properties of a solution of a shop prob­
lem. 

We extend this set by matrices with properties of the weighted sequence 
graph, i.e. the corresponding schedule (see Figure 3): 
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PT=\pij] PO = \poij] 

processing sequence 

times 

if G{MO, JO) 

is acyclic 

C=[cii] 

schedule 

H, T and W 

heads, tails and weights 

[ MO — \rnOi^\ 

machine 

orders 

JO = \30ij\ 

job orders 

Figure 3: Matrices for shop problems 

the completion time matrix C 
the operation {ij) € SIJ\ 

[cij]: Cij is the completion time of 

• the head matrix H = [hij]: the head hij is the lenght of the shortest 
time period which all predecessors of operation (ij) need for their 
processing, i.e. the weight of a longest path from a source to a direct 
predecessor of (ij) in the sequence graph; 

• the tail matrix T = [Uj]: the tail Uj is the lenght of the shortest time 
period which all successors of (ij) need for their processing, i.e. the 
weight of a longest path from a direct successor of {ij) to a sink in 
the sequence graph; 

• the matrix W = H -{- PT + T: the weight Wij is the weight on a 
longest path across the operation {ij). 

Clearly, the weight of a longest path can be obtained as maximal value 
in the completion time matrix C By definition of W all operations with 
maximal value in W belong to at least one longest path. 

Note, that in the case of a job shop problem with given matrix MO all 
sequences PO that contain the machine orders of MO are feasible. 
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3.3 Sequences J Schedules and Latin Rectangles 

A Latin rectangle LR[n^m^r] is a matrix with n rows, m columns and 
entries from the set { 1 , . . . , r } , where each element from this set occurs at 
most once in each row and each column, respectively. If n = m = r the 
matrix is denoted as latin square LQ{n) of order n. 

By definition of the rank of an operation, any sequence PO = \pij] with 
1 < poij < r has the following properties: 
(a) Each entry fc, fc € { 1 , . . . , r } , is contained at most once in each row and 
in each column, respectively. 
(b) For each pOij = k > 1 the entry fc — 1 exists in row i or in column j . 

Therefore, a sequence PO is a Latin rectangles, which satisfies in ad­
dition the so-called sequence condition (b). Now a feasible combination of 
MO and JO for given n and m can be easily constructed, if both matrices 
can be chosen arbitrarily or with repect to a given MO. 

Example 2 Consider a job shop problem with n = 3, m = 4 and the 
machine order matrix MO. If MO is a Latin rectangle, then a sequence is 
given by PO = MO. In the other case we determine a column where an 
(minimal) entry occurs more than once and construct a linear order on this 
operations, i.e., the corresponding arcs are inserted into G{MO) and the 
rank matrix mil be updated. The operations with fixed rank will be marked. 
This procedure is repeated until a Latin rectangle is obtained. 

MO 

1 2 3 4 

1 3 2 4 

4 1 3 2 

1* 2* 3 4 

2* 4 3 5 

4 1* 3 2* 

P0 = 

1 2 3 4 

2 5 4 6 

6 1 5 2 

Note, that in the case pij = 1 for all operations the equality PO = C holds 
for all shop problems without additional restrictions . Here the computing 
of an optimal schedule is equivalent to the construction of a certain Latin 
rectangle. Let us consider the problem O \ pij = 1 \ Cmax- We have to 
compute a Latin rectangle PO = C = LR[n,m^r] where r is minimal. 
Therefore, all schedules C = LR[n, m, max{n, m}] are optimal. 

Such problems are related to edge coloring problems on graphs, which 
should be shortly described: 

Each operation set SIJ of a shop problem can be assigned to a bipartite 
graph G^{SIJ) = (7 U J,E) with e = {ij} e E iS {ij) G SIJ. Therefore 
some open shop problems are equivalent to certain edge coloring problems 
on G^SIJ): 
(a) O \pij = 1 \ Cmax' Determine the chromatic index of G^{SIJ). 
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(b) O I pmtn I Cmax'- Solve a weighted edge coloring problem on G^{SIJ), 
where the edges are weighted by the processing times. 
(c) O II Cmax- Solve an interval edge coloring problem on G^{SIJ)^ where 
the edges are weighted by the processing times. 

3,4 Basic Algorithms in the Model 

This section contains some basic algorithms for the modeling of shop prob­
lems by matrices. Note that the operations can be ordered in time 0 ( | 5 / J | ) 
by nondecreasing ranks: In a first loop we count the operations with rank 
k. Let rik be the number of operations with rank fe, fe = 1 , . . . , r, where r is 
the maximal rank contained in PO. Next let pointer{k) = YliZi n^ -f 1 be 
the pointer to the first operation with rank fc. Finally we sort in a second 
loop step by step the operations according to these pointers and update 
the applied pointer. 

Algorithm 1 compute the sequence PO from given matrices MO and 
JO, if the combination {MO, JO) is feasible. The set MQ contains all 
operations, which are sources in both G{MO) and G{JO), 

Algorithm 1: Computation of PO from MO and JO, 
if G(MO, JO) is acyclic 

Input: SIJ, MO and JO on the operation set 5/J; 
Output: PO on the operation set 5/J , if G{MO, JO) is acyclic; 
BEGIN k := 0; 

REPEAT 
fc:=fc + l; 
Calculate MQ = {{ij) G SIJ \ moij = joij = 1}; 
IF MQ = 0 T H E N {MO, JO) is infeasible and STOP; 
FORALL {ij) G MQ DO 

BEGIN 
poij := fc; Label row i in MO; Label column j in JO; 

END; 
SIJ := SIJ \ MQ; 
FORALL {ij) e SIJ in a labeled row in MO DO 

mOij : = mOij — 1; 

FORALL {ij) e SIJ in a labeled column in JO DO 
JOij : = jOij - 1; 

delete all labels; 
UNTIL SIJ = 0; 

END. 



26 Heidemarie Brasel 

Algorithm 2 computes MO and JO from PO, Here â  and 6j are the 
smallest integers, which are available for the rank of an operation of job Ai 
and of an operation on machine Mj, respectively. The maximal entry in 
sequence PO is denoted by r in the following algorithms. 

Algorithm 2: Computing of MO and JO from PO 

Input: r, / , J, 5/J, PO on the operation set SIJ] 
Output: MO und JO on the operation set 5/J; 
BEGIN 

FORALL ielBO a* := 1; FORALL j £ J BO bj := 1; 
FOR jfe := 1 TO r DO 

FORALL (ij) e SIJ with poij = k DO 
BEGIN 

moij := ai and â  := a* + 1; 
jOij := bj and 6j := 6j -f 1; 

END; 
E N D . 

Algorithm 3 generates the corresponding semiactive schedule, i.e. the 
matrix C of completion times of all operations, from a corresponding pair 
PT and PO, Here r* and fj denote the currently smallest possible start 
times of operation {ij), i.e. for job Af, and on machine Mj, respectively. 

Algorithm 3: Computing of C from PT and PO 

Input: r, 7, J, SIJ, PT and PO on the operation set SIJ] 
Output: C on the operation set SIJ. 
BEGIN 

FORALL z € / DO Vi := 0; FORALL j G J DO fj := 0; 
FOR ib := 1 TO r DO 

FORALL {ij) e SIJ with poij = k DO 
BEGIN 

dj := max{ri,fj}-^pij; 
Vi : = Cij] rj : = Cij\ 

END; 
END. 

Algorithm 4 determines the matrices H = [hij] and T = [Uj] from P T and 
PO. 
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Algorithm 4: Computing of H and T 

Input: r, / , J, SIJ, PT aad P O on the operation set SIJ; 
Output: H and T on the operation set SIJ. 
BEGIN 

FORALL i e / DO BEGIN n := 0; Si := 0; END; 
FORALL i € J DO BEGIN f, := 0; sj := 0; END; 
FOR jfe := 1 TO r DO 

BEGIN 
FORALL (ij) e SIJ with poij = k DO 

BEGIN 
/lij := max{ri,fj}; ri := /ly + P y ; fj := /ly + P y ; 

END; 
FORAll (ij) e 577 with pOij=r-k + lDO 

BEGIN 
tij := inax{5i,5j|; 5̂  := tij -\-Pij] Sj := tij -^-Ptj] 

END; 
END; 

END. 

We obtain the so-called reverse schedule S"^ to schedule 5 by reversing all 
arcs in the corresponding sequence graph. Clearly, Cmax{S) = Cmax{S~^) 
is satisfied and the head of an operation {ij) in 5 is the tail of this operation 
in S~^ and vice versa. In Algorithm 4 u^fj are again the earliest start times 
for job Ai and on machine Mj, respectively. Si,Sj denote the earliest start 
times of job Jt and on machine Mj in the backwards calculation. 

We close this section with an example illustrating the model. 

Example 3 Consider the matrix PT of processing times of Example Ij 
where due dates di = 6,^2 = 12,^3 = 8 are given. The following combina­
tion of machine orders and job orders is feasible because the corresponding 
graph G{MO, JO) is acyclic. 

Algorithm 1 computes the sequence PO and Algorithm 3 computes the 
schedule C. The matrices H and T are computed by Algorithm 4, there­
fore W = H -^ PT + T can be computed. The longest path is unique: 
(22) -* (21) -^ (24) -> (23). 
Schedule C yields Cmax = 12 and Ci = 7, C2 = 12, C3 = 9, therefore 
Y^Ci = 28, Lmax = 1, E ^ t = 2 and 5];i7i = 1 follow. Note, that this 
schedule is optimal in the open shop case with respect to the objective func­
tions Cmax fl^rf Lmax- Howcvcr, there exist better schedules with respect to 
ECuETiand^Ui. 
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Ai: 

A2: 

A3: 

Ml : 

M2: 

M 3 : 

M4: 

M4 —» M2 —» Af 1 

M2 —• M 1 —» M4 • 

M3 —• Ml —y Mi • 

Az^ A2^ Ai 

A2-^ Ai-^ Az 

A3 -^ A2 

Ai^ Az^ A2 

-*Mz 
->M2 

Figure 4: Machine orders, job orders and the sequence graph G(MO, JO) 

We get the following information on operation (31); the processing time 
is 1, it is the second operation for job A\ and it is the first operation on 
machine Mi, the completion time is 2, the head and the tail of (31) are 1 
and 9, respectively. The longest path on this operation has weight 11. 

PT= 

1 0 

3 4 

5 1 
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1 5 

4 1 
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7 9 - 10 

12 12 12 12 

11 9 11 11 

4 On Sequences in Shop Problems 

In this section we discuss properties of sequences. We start with construc­
tion of sequences by the insertion idea, which is used in exact and heuristic 
algorithms for shop problems. It is shown in an example that we can ex­
clude sequences because there is another sequence which has the same or 
a better objective function value for any choice of processing times . 
The section closes with a distribution of open shop sequences to job shop 
classes. 

4»1 Generating Sequences and Reducibility 

Consider a sequence on the operation set SIJ C I x J and an operation 
(ij) G / X J \ SIJ. Now this operation is inserted into the given sequence 
graph with the following properties: 
- a sequence on SIJ U {{ij)} is generated and 
- all precedence constraints of the old sequence graph are again contained 
in the new one. 
In general, there are Ut + 1 choices to insert {ij) in the machine order of job 
Ai and Vj -f-1 ways to insert {ij) in the job order on machine Mj, where 
Ui and Vj are the number of operations of job Ai and on machine Mj, 
respectively. In addition, there exists {ui + '^){vj + 1) possibilities of inser­
tion, in each case Algorithm 1 can decide wether the corresponding graph 
G{MO^ JO) is acyclic. But because of the sequence condition we know, 
that for open shop problems in the cases listed below a new sequence is 
generated: 

1. Set rk{ij) = 1, i.e., insert {ij) as source in the sequence graph, i.e. as 
direct predecessor of the first operation of job Ai and of the first 
operation on machine Mj, and update the ranks of all successors of 
(ij)-

2. Set rk{ij) = fc + 1, i.e., insert {ij) as direct successor of an operation 
of job Ai or of an operation on machine Mj with rank k and update 
the ranks of all successors of {ij). 
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3. If there are two operations {il) for job Ai and (kj) on machine Mj 
with rk{il) = rk{kj) then insert (ij) as direct successor of one of the 
two and as direct predecessor of the other one and update the corre­
sponding ranks. In both cases a cycle cannot be generated because 
there exist no path between both operations in the sequence graph. 

For a job shop problem we have in addition to take into account the 
given machine order of job Ai, i.e., some of the described cases are omitted. 
Other given precedence constraints requires a further modification. We 
illustrate the insertion idea by an example: 

Example 4 Consider the following sequence PO on SIJ. Here we write 
poij = . if (ij) ^ SIJ. Now we construct sequences by insertion of the 
operation (12) such that the properties above described are satisfied. There 
are at most 6 new sequences on SIJ U {(12)}. Case 1 yields POi, case 2 
yields PO2 and POz and by case 3 we obtain PO4 o.nd POs- The updated 
ranks are marked. Note, that the last option yields a new sequence (POQ) 
as well, because there is no path from (32) to (13) in the sequence graph of 
PO. 

' 1 . 2 

POi = 

P 0 4 = 

2 1 3 

4 . . 

3 2 . 

1 2 3 

5 . . 

4 3 . 

P 0 = 

, P 0 2 = 

, P 0 5 = 

3 . . 

2 1 . _ 

1 2 3 

3 . . 

2 1 . 

3 2 4 

5 . . 

4 1 . 

, P 0 3 = 

, P 0 6 = 

1 3 2 

3 . . 

2 1 . 

1 3 2 

6 . . 

5 4 . 

Note, that among the new sequences PO3 is the best one in the case of 
makespan minimization. For each choice of processing times Cmax{POz) < 
Cmax{POk) holds for all k = 1 , . . . , 6. The reason is the structure of all 
paths in the correponding sequence graphs. We call a path trivial, if it 
contains only operations of a single job or of a single machine, respectively. 
In the sequence graph of PO3 there exists only one nontrivial path: (32) -^ 
(31) -^ (21). But (32) -^ (31) -^ (21) is also a path or a part of a path in 
any other sequence graph because it is contained in the sequence graph of 
PO. A sequence PO is reducible to a sequence PO*, if for all matrices PT 
the inequality Cmax{PO*) < Cmax{PO) holds. Therefore all sequences are 
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of interest which are not reducible to another one, we call them irreducible 
sequences. Among all irreducible sequences there must be an optimal one. 
WILLENIUS presents in [19] results in the irreducibility theory with respect 
to other regular objective functions. 

4.2 Distribution of Sequences in Shop Problems 

Because of its relevance for practical applications the flow shop problem 
was investigated more in detail than other job shop cases. For flow shop 
problems, each combination of MO and JO is feasible, i.e., there exist 
(n!)"^ sequences. In BRASEL ET AL. [3] it is shown, that the matrix MO 
strong influences the properties of a job shop problem. We say that MOi 
is isomorph to MO2 if MO2 is obtained from MOi by permuting the job 
numbers and machine numbers. The number of sequences is the same in 
both cases. In the case of makespan minimization, the problem with given 
MO has the same properties as M0~^, i.e. the reverse machine order. 
Prom the mathematical point of view, each isomorphism class has its own 
properties. 

Example 5 A shop problem with 3 jobs and 3 machines is given. Then 
there are (m!)"(n!)^ = 46-656 combinations (MO,JO), 27.492 are infeasi-
ble and 19,164 are feasible. 

12 isomorphic MO 

36 isomorphic MO 

18 isomorphic MO 

36 isomorphic MO 

6 isomorphic MO 

18 isomorphic MO 

18 isomorphic MO 

Figure 5: Number of sequences in different job shop problems 
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There exists 10 isomorphism classes with respect to the contained MO. 
If we consider makespan minimization, three of them can he deleted because 
MO is isomorphic to M0~^. In [3] a formular for the number of isomor­
phism classes of the set of all machine order matrices is developed. Figure 
5 shows the distribution of all sequences in the open shop to the different 
job-shops. 

M02 = 

1 2 3 

1 2 3 

1 3 2 

1 2 3 " 

1 2 3 

3 2 1 

,MC>3 = 

,M06 = 

1 2 3 

1 2 3 

3 1 2 

" 1 2 3 " 

1 3 2 

3 1 2 

,M04 = 

,M07 = 

1 2 3 

1 3 2 

2 1 3 

' 1 2 3 

2 3 1 

3 1 2 

MOs = 

For this small parameter the number of sequences range between 63 and 
216. Note, that in the case (n^m) = (3,4), the smallest number is 473 and 
the greatest number is 13.824- It is interesting, that the class MOe has the 
minimum number of sequences, although it is not a Latin square. 

5 Generalization of the Model 

The model can be generalized for other shop scheduling problems. First 
we consider shop problems, where preemption is allowed, cf. BRASEL AND 

HENNES [4]. 

Let Zij — 1, Zij > 1, be the number of preemptions of operation (ij). 
Then each operation of SIJ is splitted in an ordered set of split operations 
{('^j)k\ k = 1^.. .<,Zij}, where the split operation {ij)k has to be processed 
before the split operation {ij)k-\.i can start, fc = 1 , . . . , ^̂ ^ — 1. We denote 
the operation set with all split operation pSIJ. Now we define analogously 
to shop problems without pmtn the digraphs G^{MO) = (PSIJ^AMO), 

GP{JO) = {pSIJ,Ajo) and GP{MO, JO) = (pSIJ.A) where A = AMO U 

Ajo holds. 

• The digraph G^{MO) = {SIJ, AMO) contains all axes which are given 
by the direct precedence constraints between two split operations for 
the same job Ai, i = 1 , . . . , n, i.e. in all machine orders. 

• The digraph G^{JO) = (SIJ^Ajo) contains all arcs which are given 
by the direct precedence constraints between two split operations on 
the same machine M^, j* = 1 , . . . , m, i.e. in all job orders. 
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• The digraph G^{MO,JO) = {pSIJ,A) contains all arcs of A = 
AMO U A J O -

We call G^{MO^ JO) a preemptive sequence graph, if it is acyclic. Now 
we define the following "preemptive" matrices whose elements are ordered 
sets: 

• the preemptive machine order matrix pMO = [{moj^,... ,mo^j^}], 
where mo^j is the rank of the split operation {ij)k in GP{MO); 

• the preemptive job order matrix pJO = [{jojj,..., jo^j^}], where jo^j 
is the rank of the split operation {ij)k in G^{JO)\ 

• the preemptive sequence (matrix) pPO = [{poj^,... ,po^j^}], where 
po^j is the rank of the vertex {ij)k in the sequence graph G^{MO^ JO). 

To obtain a preemptive schedule pC we have to split each processing 

time pij in Zij parts: pij = ^ pf.. Then we get: 
A ; = l 

• the preemptive processing time matrix p P T = [{pjj,... ,P^j^}], where 
Pij is the processing time of the split operation {ij)k' 

• the preemptive schedule pC = [{c}j,.. • ,c^j^}], where cf̂  is the com­
pletion time of the split operation {ij)k' 

The matrices iJ, T and W can also be modified to the preemptive case. 
Algorithm 1- 4 can be adopted easily, cf. BRASEL AND HENNES [4]. 
The model is also applicable for fiow shop problems, job shop problems and 
mixed shop problems with preemption, since further precedence constraints 
can be easily integrated. 

If we consider shop problems where a job has to be processed more than 
once on a machine, this model can also be applied. In this case the spUt 
matrix Z and the corresponding matrix pPT are given. 

For shop problems where preemption is allowed we have no fixed split­
ting of the operations. Thus additionally we have to find a splitting of the 
operations. The section closes with an example. 

Example 6 In Figure 6 a preemptive sequence graph with 3 jobs and 3 
machines is shown. We have Zij = 2 for {ij) G {(21), (31), (32)}. All other 
operations are not splitted. 
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Figure 6: Preemptive sequence graph 

The corresponding preemptive matrices are: 

pMO = 
{1} {2,4} {3,5} 

{1} {3} {2,4} 

{3} {1} {2} J 

,pJO 
{1} {2,3} {2,4} 

{2} {4} {3,5} 

L {3} {1} {1} 

pPO = 
{1} {2,4} {3,5} 

{2} {5} {4,6} 

L {3} {1} {2} 
Using the preemptive processing time matrix pPT the preemptive schedule 
pC can be computed: 

pPT = 
{3} {2,2} {4,3} 

{4} {3} {3,1} 

L {6} {2} {3} 
,pc 

{3} {5,11} {9,15} 
{7} {15} {12,16} 
{13} {2} {5} 

Again all objective functions / (Ci , . . . , Cn) can be easily computed from this 
schedule with Ci = 15, C2 = 16 and C3 = 13. 

The sequence pPO has the following properties, where r is the maximal 
rank in pPO: 
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(a) Each element of { 1 , . . . , r} occurs at most once in each row of PO and 
in each column of PO, respectively 
(b) To any element po^j = / > 1 there is an element I —I'm row i or column 
j oi pPO {sequence condition). 

6 LiSA: A Library of Scheduling Algorithms 

The described model is applied in the software package LiSA - A Library 
of Scheduling Algorithms, which is developed for solving deterministic 
scheduling problems, especially for shop problems. All notations used in 
this paper are used in LiSA, too. We refer the interested reader to the 
LiSA-homepage: http://lisa.math.uni-magdeburg.de. The following exam­
ple shows the using of LiSA. We consider an open shop problem with m = 4 

Figure 7: LiSA - A Library of Scheduling Algorithms 

machines, n = 4 jobs and makespan minimization without any additional 
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constraints. The processing times axe given by the following matrix PT: 

PT = 

12 6 15 7 

13 6 7 13 

3 14 8 7 

10 13 9 7 

What steps are necessary? Figure 8 shows a snapshot of the corresponding 
LiSA windows. After starting LiSA we choose the New button in the F i l e 
menue. The problem type window is opened and we enter our problem 
in the a | /? | 7 denotation, namely O \\ Cmax- Moreover, enter n = 4 
and m = 4. Now LiSA provides us with all modules for the considered 
problem. We start with the input of the processing times (buttons Edit, 
Parameter). We can do it by hand or by using the random generator. Note 
that all input data can also be read from a file. 

E^^^^^^^^^S^S^^SiSl 
C N ^ ^ N S l i ^ ' M ^ 

\: "'"- A^' 

^^^^ij^^w^wm^^pm'M: mm'K^:f-:}M 

'^ ; : \ '^^ ' ' ^^ '; . ; • ? ' . | 

Figure 8: Input of the example 

In the Algorithms menue exact and heuristic algorithms are available. 
Figure 9 shows some possibilities for the considered example. For instance. 
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the LPT-Rule (Longest Processing Time First) can be applied. After the 
construction of a first schedule we are able to use neighbourhood search al­
gorithms, here simulated annealing with the 3_CR neighbourhood is chosen. 
In LiSA simulated annealing, iterative improvement, threshold acceptance 
and tabu search are available. Finally, matching heuristics can be used for 
the problem, here with minimal bottleneck objective function. 

^ ^ ^ ^ ^ i ^ ^ i l ^ ^ ^ H 

^̂ arcti M0tlip<i'i V /:'; \ A- ' ' \ ' '"\: -- -

j Create mi^iiiifm.' / f ; ;̂ '--h " /, ̂ > \, ?;'-. -''^ 

IChBateii'SoiMtiditsO':'%;-: ^̂'> " ~:X-\ :^\: 

j stuck Sinca (/Vwrt OfteiKiii) 

1 (^ectlva at Moat ( /^r i CHIeilott 

j Start fdmms^ (Orty for SA / TA) 

j hiâ aase Alter (Oiily f̂ ^̂ ^ 

JTalby List Ij»i8th(0iily for TS) 

iHumlierafrie^^uni (Only for T3) r 

OK IjNp 

: ~ ' ' \ ' ^ ~ ' ' ' - - : ' ' ' - ' ^ : ' ^ •, 

'̂ / :' 3_CB ' -* 

;^liiMttf»i/^a^ ^ 

';/,/:; ^mx^ ' '̂ ''-' 1 

fm : "̂"̂  '/; ' Ij 
|iooDo'' :-;: ^ — ^ | j 

|0_/. ' ' . ' ' ll 
W~'r ^ l̂l 
m '.;v,„j/,., ' ~|j 
40, t r ' ̂ \: • I 

p " r,/ / . — i j 

' /.Cancel j ^ 

\ ' ^ ' ̂  1 

Figure 9: Heuristic algorithms for the considered problem 

Usually a call of an algorithm produces the Gantt chart of the generated 
schedule , cf. Figure 11, but there are also other output options, cf. Figure 
10. Here we can choose the sequence matrix or the sequence graph in the 
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View menue and the schedule described as the matrix of completion times 
or as a Gantt chart. Note, that under Options some options of the Gantt 
chart can be chosen: for instance, it can be machine oriented or job oriented 
or the critical path may be highlighted. If the number of jobs or machines 
is large, the Gantt chart is complex and the use of the zoom makes sense. 

1 0 I I OiMM 4 MacNrm 4 Jabs 

42 

26 

33 

7 

.CHMtC^x^ 

Figure 10: Output of LiSA: PO, C and G{MO,JO) 

LiSA has some special modules, the most important one is the complex­
ity module. Whenever LiSA has the a | ^ | 7 notation of a problem, it 
determines the complexity status and gives, in addition, a complete refer­
ence. This module uses the data base of the scheduling group in Osnabriick. 
The software LiSA has a modular structure. The main part of LiSA con-
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foj'icmax '^^'AMatMiinu% ••4 j * ' - "• ' " " 

10 1$ za 2$ do 3$ 40 

nii:it\in * o X 

Figure 11: Output of LiSA: Gantt chart 

tains all basic algorithms related to the model, the input and output proce­
dures and the modules of the graphical user interface (GUI). Additionally, 
the program data is managed here and the work with external algorithms 
is coordinated. 

In LiSA all algorithms used for solving scheduling problems are encap­
sulated in external modules. These modules are autonomous binaries with 
a common command line interface. They communicate with the main pro­
gram via files. So they can be used both from within the LiSA GUI and 
independently without any GUI in a batch mode. The inclusion of new 
algorithms in LiSA is done by an algorithm description file and a corre­
sponding help file in HTML format. 
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Saddle Points from the Geometric Point of View 
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Nearly everybody can tell us what a saddle really is. Most of those who 
teach or study (a) mathematics, (b) mathematical economics, (c) economet­
rics, or (d) operations research are able to define the term saddle point— 
verbally or by means of equations and/or inequalities. But only very few 
of them are able or willing to draw, on a piece of paper or in a paper to be 
published, a surface in R^ that contains a saddle point. 

Let us have a look into the literature on (a)-(d) dealing with saddles 
and saddle points. In many cases we do not find any figures showing saddle 
surfaces. Where there are such figures they sometimes look pretty from the 
geometric point of view, but very often have nothing or nearly nothing to 
do with the mathematical context or problem actually being treated. 

This critical statement can be enhanced when we look into the literature 
on constrained optimization problems. There the general problem is usually 
formulated as follows: 

Minimize F{x) under the constraints G{x) < 0, 

where F : R^ -^ R, G : R^ ^ R^ (the domains of 

definition of functions F and G may be only parts of R'^), 

X = (x i , . ,.,xn)e R^, G{x) = ( G i ( x ) . . . , Gm{x)) e 

(1) 

pm 

It is well known that we can formulate conditions, either necessary or 
necessary and sufficient, for a vector x to solve this problem. These condi­
tions can be stated with aid of Lagrange functions. As we know, these are 
functions L : R^ x R^ - • R defined by 

L{x,u) =F{x) + U'G{x) 

= F(x)- f u iGi(x)-h-- - + 

where x — (a:i,...,Xn) G R'^, u = (ui , . . . ,Um) € '. 

and u i , . . . , Um are the Lagrange multipliers. 

(2) 

Global saddle points of the Lagrange function can help us solve global 
minimum problems (1). Global saddle points are points (x^u) in the 
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(n + m)-dimensional space R^ x R"^ such that 

L(x, u) < L{x, u) < L(x, u) for all xeW, uE W^. (3) 

For n = m = 1, saddle surfaces {(x, w,£) | x E R, u G R,^ = L{x,u) G R} 
in many cases can easily be drawn. They contain the points {x^u,£) = 
(x, li, L(x, u)) as very important points of the saddles. 

Notice that, because of the special form (2) of the Lagrange functions, 
the functions 

u \-^ L{x, u) = F{x) + u • G{x) (4) 

are afftne for all x. Specially for x = x, by (3), it»—• L{x,u) has to ha,ve 
a global minimum at u, so, being affine, it has to be constant: 

L{x,u) = c (constant). 

People interested in problems on constrained optimization would highly 
appreciate papers, monographs or books on these problems and their so­
lutions that do not only introduce the term saddle point but also illus­
trate both saddles and saddle points from the geometric point of view. To 
state it in other words: Chapters on constrained optimization in papers, 
monographs, books or text books should in any case satisfy the following 
conditions C.1-C.4. 

C.l They contain one or more figure(s) showing saddle point(s) in a saddle 
surface. 

C.2 Each of the figures shows, within an (x, u, ^)-coordinate system, a 
saddle surface containing saddle point(s) such that the saddle point 
condition (3) in case n = m = 1 is precisely illustrated by the figure. 

C.3 Each figure shows a saddle surface that is, because of (4), built up by 
straight lines. 

C.4 At least one figure shows exactly one saddle point in a saddle surface 
that is built up by non-parallel straight lines. 

Up to now the author did not succeed in finding, in the relevant liter­
ature, any place satisfying conditions C.1-C.4. Dear Klaus, my congrat­
ulations and compliments include: Concerning conditions C.1-C.4 your 
relevant publications are closer to satisfaction than all the others I know. 

As an attempt at satisfying conditions C.1-C.4 see the figure. 



Saddle Points from the Geometric Point of View 45 

^= Uyi,o) 

Figure 1: Global saddle point {x^u) = (5,3) on R x R o/ the Lagrange function 
L : R X R —• R, L(rc, u) = x^ — 13x + 50 4- (x — 5)u, /or the problem: Minimize 
x^ — 13a; + 50 under the constraint a: < 5 
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1 Einleitung 

Das vorherrschende Paxadigma der Ablaufplanung ist nach wie vor gepragt 
durch den klassischen Optimierungsansatz. Es werden diskrete (kombina-
torische) Optimierungsprobleme betrachtet, die eine Zielfunktion unter Be-
achtung bestimmter Prazedenzbeziehungen und ggf. weiterer problemspe-
zifischer Restriktionen optimieren. Dabei sind in den letzten Jahren erheb-
liche Fortschritte in der Entwicklung leistungsfahiger Losungsalgorithmen 
erzielt worden (vgl. z. B. Brucker, 2001). 

Das Spektrum der Zielfunktionen, das hierbei betrachtet wird, reicht 
von Kostenzielen (Umriistkosten, Kapitalbindungskosten...) iiber Zeitzie-
le (durchschnittliche oder maximale Durchlaufzeiten...) bis zu Termin-
zielen (durchschnittliche oder maximale Terminuber-(unter-)schreitung, 
Zahl der Terminuber-(unter-)schreitungen...). Optimierungsansatze grei-
fen eine der Zielsetzungen heraus und bestimmen die zugehorige optimale 
Losung. 

Nun ist bei praktischen Ablaufplanungsproblemen keineswegs immer 
klar, welche dieser Zielsetzungen fiir das Problem bestimmend oder von 
solch herausragender Bedeutung ist, dass sich die Losung daran orientieren 
soUte. Vielmehr werden haufig mehrere Ziele gleichzeitig in Betracht zu 
Ziehen sein, ohne dass sich deren jeweilige Bedeutung exakt quantifizieren 
liefie. 

Fiir diesen Fall bietet die Mehrzieloptimierung Losungskonzepte an 
(einen Uberblick findet man z.B. in Habenicht et al., 2002). Diese un-
terscheiden sich von Optimierungsansatzen insbesondere dadurch, dass sie 
nicht darauf abzielen, eine Losung zu finden, sondern in einem interakti-
ven Prozess dem Entscheidungstrager mehrere Losungen prasentieren, aus 
denen er eine Auswahl treffen kann. 

Ziel dieses Beitrags ist es, zu zeigen, wie im Bereich der Ablaufplanung 
ein derartiges Losungskonzept gestaltet sein kann. Dabei konzentrieren wir 
uns auf den Bereich der (Permutations-) Flow Shop Probleme. Fiir Proble-
me dieses Typs haben sich Suchverfahren als Erfolg versprechend erwiesen. 
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Wir werden im Folgenden zeigen, wie hier das Konzept der Nachbarschafts-
suche in zweifacher Weise angewendet werden kann. Zum einen im Alterna-
tivenraum zur Identifizierung effizienter Ablaufplane und zum anderen im 
Ergebnisraum zur Auswahl eines „besten" Ablaufplans. Natiirlich werden 
in beiden Fallen unterschiedliche NachbarschaftsbegrifFe zur Anwendung 
kommen. 

LI Multikriterielle Flow Shop Probleme 

Flow Shop Probleme innerhalb der Ablaufplanung sind durch ein Vorliegen 
einer Menge an Maschinen M = { M i , . . . , Mm} gekennzeichnet, welche zur 
Bearbeitung einer Menge an Fertigungsauftragen JT = { J i , . . . , Jn} bereit 
stehen. Jeder Auftrag besteht hierbei aus einer Menge an Operationen (Ar-
beitsgange) {Oji,..., Ojoj}, wobei jede Operation Ojk auf einer Maschine 
Mi G M zu bearbeiten ist und eine nichtnegative Bearbeitungszeit pjk 
aufweist. Die Operationen der Auftrage sind durch Prazedenzbeziehungen 
Ojk -< Ojk+i geordnet, so dass der Beginn der Bearbeitung einer Operation 
Ojki-i erst nach Abschluss der Bearbeitung von Ojk moglich ist. Ferner sind 
die Maschinenfolgen der Arbeitsgange fiir alle Auftrage identisch (Reihen-
fertigung), wodurch sich eine Abgrenzung der Problemstellung zu anderen 
Bereichen der Ablaufplanung wie z. B. dem Job Shop Scheduling mit unter-
schiedlichen Maschinenfolgen (Werkstattfertigung) ergibt (vgl. Blaiewicz et 
al., 2001). Fiir den hier betrachteten Fall des Permutations Flow Shop Sche­
duling ist zudem davon auszugehen, dass auch die Auftragsfolgen auf den m 
Maschinen identisch sind, d. h. die Bearbeitung beziiglich der Warteschlan-
gen vor den Maschinen nach dem First In First Out Prinzip vonstatten 
geht. Die Losung einer derartigen Problemstellung ist somit eine fiir alle 
Maschinen identische Permutation TT = {TTI, . . . , TTn} aller Auftrage J, 

Eine zulassige Alternative x E X eines Flow Shop Scheduling Problems 
definiert unter Beriicksichtigung aller Nebenbedingungen fiir alle Operatio­
nen Ojk Startzeitpunkte tjk- Unter Einbezug der Bearbeitungszeiten pjk 
ergibt sich unter Annahme einer nicht unterbrechbaren Bearbeitung somit 
ein Endzeitpunkt der Operation Ojk von Cjk = tjk + Pjk sowie ein Fertig-
stellungszeitpunkt Cj des kompletten Fertigungsauftrags von Cj = Cjoj. 

Ausgehend von der Alternativenreprasentation in Form einer Auftrags-
permutation ir ist die Ermittlung der Starttermine aller Arbeitsgange 
gemafi den Gleichungen (1), (2), (3) und (4) moglich. 
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C'TTII = 

C'TTJI = 

Wife = 

CTTJA: = 

PTTII 

C^,_il+P7r,l V j G { 2 , . . . , n } 

+ P îfc V A ; € { 2 , . . . , m } 

V j € { 2 , . . . , n } , f c G { 2 , . . . , m } 

(1) 

(2) 

(3) 

(4) 

Die Planung der Bearbeitungszeiten der Operationen erfolgt in der iiber-
wiegenden Anzahl der verfugbaren wissenschaftlichen Publikationen un-
ter monokriterieller Minimierung des maximalen Fertigstellungszeitpunkts 
Cmax = m a x { d , ...^Cn}- Zwar wurde der multikriterielle Charakter prak-
tischer Probleme der Ablaufplanung bereits in friihen Arbeiten bemerkt 
(vgl. Conway et al., 1967, Rinnooy Kan, 1976), jedoch tragen erst in 
jiingster Zeit Forschungsaktivitaten der simultanen Existenz multiple! Ziel-
setzungen Rechnung (T'kindt und Billaut, 2002). Weitere Zielsetzungen 
von wesentlicher Bedeutung sind in diesem Kontext die Minimierung der 
Summe der Fertigstellungszeitpunkte Csum = J2 ^j sowie an Liefertermi-
nen dj der Auftrage Jj orientierte Ziele. Insbesondere Verspatungen Tj = 
max{Cj —dj, 0} werden hierbei betrachtet. Die Minimierung der maximalen 
Verspatung Tmax = maxTj und der Summe der Terminiiberschreitungen 
Tsum = Zl^j sind hier wichtige Zielkriterien. Fiir Problemstellungen, bei 
denen eine Verletzung vereinbarter Liefertermine zu fixen Konventional-
strafen fiihrt, kommt zudem die Betrachtung der Anzahl der verspateten 
Auftrage U = YlUj mit Uj = 1 fiir Tj > 0 und Uj = 0 fiir Tj = 0 in Frage. 

Bislang konnten nur wenige Losungsansatze entwickelt werden, welche 
fiir spezielle mehrkriterielle Flow Shop Probleme ein Auffinden aller opti-
maler Losungen garantieren. So beschreiben Daniels und Chambers (1990) 
einen Branch-and-Bound Algorithmus fiir Probleme mit zwei Maschinen 
und den Zielfunktionen Cmax und Tmaxj und Liao et al. (1997) ein Verfah-
ren fiir entsprechende Probleme mit den Optimalitatskriterien Cmax und 
U. Demgegeniiber kommen heuristische Methoden, deren Anwendung nicht 
auf Zweimaschinenprobleme beschrankt ist und die eine Approximation 
der optimalen Losungen innerhalb kurzer Zeit ermoglichen, vergleichswei-
se haufig zum Einsatz. In diesem Zusammenhang sind vor allem lokale 
Suchverfahren anzufiihren, auf welche noch in Abschnitt 2 detaillierter ein-
gegangen wird. 

1.2 Konzepte der diskreten Vektoroptimierung 

Ein allgemeines diskretes Vektoroptimierungsproblem kann wie folgt for-
muliert werden: 
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„Minimiere" y = f{x) (5) 

xeX (6) 

Hierin ist X die endliche Alternativenmenge und f : X —^ Y C W^ 
eine vektorwertige Zielfunktion. (5) und (6) bezeichnen das Vektoroptimie-
rungsproblem im Alternativenraum. Die folgende aquivalente Formulierung 
beschreibt das Problem im Ergebnisraum: 

„Minimiere" y eY (7) 

Die Minimierungsvorschrift ist hier in seiner vektoriellen Form zu inter-
pretieren als die Bestimmung von nicht-dominierten bzw. efEzienten Ele-
menten. Wir bezeichnen mit N{Y) := {y £Y \y' ^y A y' ^ y =^ y' ^Y} 
die Menge nicht-dominierter Ergebnisse und mit P := {x G X \ f{x) G 
N{Y)} die Menge eflSzienter Alternativen. 

Wir woUen im Folgenden unter der Losung eines Vektoroptimierungs-
problems die Bestimmung jener effizienten Alternative verstehen, die den 
Praferenzen des Entscheidungstragers „bestmoglich entspricht". Hierzu ver-
folgen wir ein interaktives Losungskonzept, in dem der Entscheidungstrager 
partielle Informationen iiber seine Praferenzen bereitstellt, die zur Ergeb-
nisauswahl herangezogen werden. 

Ein Losungskonzept muss zwei Aufgaben erfiillen. Es muss effiziente 
Alternativen identifizieren und es muss ein Auswahlverfahren unter den 
effizienten Alternativen bereitstellen. Je nachdem, ob es diese Aufgaben 
simultan oder sukzessiv ausfiihrt, sprechen wir von einem einstufigen oder 
einem zweistufigen Verfahren. 

Einstufige Verfahren sind so aufgebaut, dass sie zunachst bestimmte 
Praferenzinformationen (Zielgewichte, Anspruchsniveaus etc.) vom Ent­
scheidungstrager erfragen. Auf der Basis dieser Informationen wird ein 
Optimierungsproblem gebildet, dessen Losung eine effiziente Alternative 
generiert. Akzeptiert der Entscheidungstrager diese Alternative, gilt das 
Problem als gelost. Akzeptiert er sie nicht, dann wird er aufgefordert, seine 
Praferenzinformationen zu revidieren und es wird ein neues Optimierungs­
problem gelost. 

Bei dieser Vorgehensweise ist der Entscheidungstrager durchgangig in 
das Verfahren involviert. Handelt es sich bei dem zu losendes Problem um 
ein w/VP-schweres Optimierungsproblem, - und dies ist bei Ablaufplanungs-
problemen sehr haufig der Fall - dann sind bei realen Problemstellungen 
haufig nichtakzeptable Antwortzeiten zu erwarten. In diesem Fall bietet 
sich ein zweistufiges Losungskonzept an. 
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Q Start 3 

S2 

W I— 

Erfrage vom Entscheidungstrager 
Praferenzinformationen 

(Zielgewichtungen, 
Anspruchsniveaus, etc.) 

Suche in der Ergebnismenge 
(ein) entsprechende(s) Ergebnis[se] I 

C' Ende ) 

Abbildung 1: Zweistufiges Konzept 

In Abbildung 1 ist ein zweistufiges Losungskonzept skizziert. Hier wer-
den Identifizierungs- und Auswahlproblem nacheinander gelost. Die erste 
Stufe ist allein der Identifizierung aller effizienten Alternativen beziehungs-
weise deren nichtdominierten Ergebnissen gewidmet. Hierfiir ist die Mit-
wirkung des Entscheidungstragers nicht erforderlich. Bei schwer losbaren 
Problemen wird man sich auf eine Approximation der effizienten Menge 
beschranken. Nach Abschluss der ersten Stufe ist die Menge der effizienten 
Alternativen (bzw. deren Approximation) explizit bekannt. Damit ist auch 
die Menge nicht-dominierter Ergebnisse bekannt. Der Auswahlprozess wird 
dann als Suchprozess in dieser Menge realisiert. 

Wir werden im Folgenden zeigen, wie im Falle der Ablaufplanung von 
mehrkriteriellen Flow Shop Problemen in beiden Stufen das Konzept der 
Nachbarschaftssuche sinnvoU eingesetzt werden kann. 
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2 Nachbarschaftssuche im Alternativenraum 

2.1 Grundlagen lokaler Suche 

Verfahren der Nachbarschaftssuche im Alternativenraum konnen wie in Ab-
bildung 2 skizziert beschrieben werden. Ausgehend von der Generierung 
einer Ausgansglosung x werden durch Anwendung von so genannten Nach-
barschafsoperatoren neue Alternativen erzeugt. Diese werden im Folgen-
den auf Akzeptanz gepriift und entweder verworfen oder in den Suchpro-
zess integriert. Formal beschreibt ein Nachbarschaftoperator N hierbei eine 
Verfahrensvorschrift, die zu einer gegebenen Losung x durch Modifikation 
eine Menge anderer Losungen N(x) C X, eine so genannte Nachbarschaft 
erzeugt. AUe Losungen x' G N(x) heissen in der Nachbarschaft oder Nach-
bam von x. 

1: ErofFnungsverfahren: Generiere Ausgansglosung x 
2: Wiederhole 
3: Verbesserungsverfahren: Erzeuge neue Losung 
4: Bewerte neue Losung, priife auf Akzeptanz 
5: Bis Abbruchkriterium erfullt 

Abbildung 2: Pseudo-code eines lokalen Suchalgorithmus 

Die Festlegung einer Nachbarschaftsdefinition N induziert somit in der 
Alternativenmenge X einen gerichteten Graphen G^iy^A)^ bei dem jede 
Losung X G X durch einen Knoten Vx G V reprasentiert wird. Ein Pfeil 
a = {vxtVx') G A existiert, falls x' G N(x). Die Vorgehensweise des lokalen 
Suchalgorithmus kann somit als ein iteratives Wandern in G N von Knoten 
zu Knoten entlang der Richtung der definierten Pfeile interpretiert werden. 

Fiir die Analyse lokaler Suchverfahren ist insbesondere von Interesse, ob 
es unter Einsatz der Nachbarschaftsdefinition N moglich ist, von jeder Al­
ternative X G X die Optimallosung x* beziehungsweise bei multikriterieller 
Optimierung alle Elemente x* der Menge Pareto-optimaler Alternativen P 
zu erreichen. Da diese jedoch in aller Regel nicht bekannt sind, wird zum 
Nachweis einer moglichen Konvergenz des Algorithmus eine allgemeinere 
Betrachtung von N vorgenommen. Hierzu werden die Begriffe des Wegs 
und der Verbundenheit von X bezuglich N eingefiihrt. 

Definition 1 (Weg von G N ) Eine Folge von Pfeilen ai , . . . ,aA; heifit 
Weg ŴN von G N ; /CLIIS eine Folge i^ari,..., Vx^ von Knoten mit ah = (^ar^-i» 
Vxh)^h = 2, ...,fc existiert, Existieren in G N keine parallelen Pfeile, so 
kann ein Weg W^ durch die in ihm enthaltenen Knoten symbolisiert wer­
den, Z. B. Wjq = {Vxi, . . . , Vxfc)-



Nachbarschaftssuche bei mehrkriteriellen Flow Shop Problemen 53 

Definition 2 (Verbundenheit von X beziiglich N) Die Altemati-
venmenge X heiflt verbunden beziiglich der Nachbarschaft N , falls ein 
Weg von Vx nach Vx' in Gs\/vx,Vx' € A existiert. 

Definition 2 stellt somit eine wesentliche, notwendige Bedingung fiir die 
Konvergenz von auf Nachbarschaftssuche im Alternativenraum basierenden 
Verfahren dar. 

BeziigUch der konkreten Ausgestaltung des Suchverfahrens sind un-
ter dem Begriff der Metaheuristiken eine Reihe an Methoden entwickelt 
worden, welche in bezug auf ihre Steuerparameter und die eingesetzten 
Nachbarschaffcsdefinitionen unterschiedliche Strategien verfolgen. Zu den 
bekanntesten zahlen hierbei Simulated Annealing (vgl. Kirkpatrick et al., 
1983), Evolutionare Algorithmen (vgl. Holland, 1975) und Tabu Search 
(vgl. Glover, 1986). 

Entsprechende Anwendungen auf mehrkriterielle Flow Shop Probleme 
existieren (vgl. z. B. Murata et al., 1996, Basseur et al., 2002, Ishibuchi et 
al., 2003), wobei insbesondere den Evolutionaren Algorithmen ein beson-
derer Forschungsschwerpunkt zukommt, indem hier die Identifikation bzw. 
Approximation einer Menge efiizienter Alternativen durch eine Suchmenge 
in einem einzigen Optimierungslauf erfolgversprechend erscheint. 

2.2 Leistungsfdhigkeit von Nachbarschaften 

Ein wichtiger Aspekt bei der Ausgestaltung eines Losungskonzeptes ist die 
Wahl eines geeigneten Nachbarschaftsoperators N . Fiir permutationsba-
sierte Alternativenreprasentationen wie im vorliegenden Fall kommen ne-
ben verschiedener Rekombinationsoperatoren Evolutionarer Algorithmen 
drei grundlegende Nachbarschaften in Frage (vgl. Reeves, 1999). 

1. Die Exchange Nachbarschaft Nex, welche die Positionen zweier Ele-
mente TTJ und iVk miteinander vertauscht. 

2. Die Forward-Shift Nachbarschaft N/s/i, welche einen Auftrag an der 
Position TTj entnimmt und an die Position TT̂  mit k > j einfiigt, somit 
beziiglich des Zeithorizonts der Planung nach „vorne" schiebt. 

3. Die Backward-Shift Nachbarschaft N^s/i, die dem Forward-Shift Ope­
rator in umgekehrter Richtung der Positionsanderung von TTJ nach iTk 
mit k < j entspricht. 

Die Untersuchung der Leistungsfahigkeit verschiedener Nachbarschafts-
definitionen ist unter Einsatz eines lokalen Suchverfahrens wie in Abbildung 
3 beschrieben moglich. Hierzu wird im Verlauf der Suche eine Approxima­
tion p^PP'^^^ der Pareto Menge P erzeugt, welche alle Alternativen, fur 
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die keine sie dominierenden Losungen gefunden werden, speichert. Die Su-
che terminiert hierbei, wenn die Nachbarschaften aller Elemente in P^PP^^X 

untersucht wurden. 

1 

2 

3 

4; 

5; 

6; 

7; 

8; 

9: 

10: 

11 

Initialisiere Steuerparameter: Lege Nachbarschaft N fest 
Generiere eine Ausgangslosung x 
Setze P«PP^^^ = {x} 
Wiederhole 

Wahle X G po-pv^ox ^^^ noch nicht untersuchter Nachbarschaft 
Erzeuge N(x) 
Aktualisiere P«PP^«^ mit alien x' G N(x) 
Wenn x € P^PP^^^ dann 

Markiere Nachbarschaft von x als untersucht 
Ende Wenn 

Bis ^x G P^'PP'^^^ mit noch nicht untersuchter Nachbarschaft 

Abbildung 3: Mehrkriterielle lokale Nachbarschaftssuche 

Die Leistungsfahigkeit der erlauterten Nachbarschaften Nex, ^/sh und 
^bsh wurde innerhalb einer Implementierung des Pseudo-codes aus Ab­
bildung 3 untersucht. Hierzu wurden fiir unterschiedliche Kombinationen 
an Zielfunktionen jeweils 100 Probleminstanzen der Grofie n = m = 10 
generiert, fiir die die enumerative Bestimmung der effizienten Ergebnisse 
in akzeptabler Zeit moglich ist. Die betrachteten Zielfunktionen konnen 
hierbei Tabelle 1 entnommen werden. 

Tabelle 1: Ubersicht der getesteten Problemklassen. 

Bezeichung 

71 

72 

73 

7 4 

75 

76 

77 

78 

79 

710 

711 

Anzahl Ziele 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

4 

Zielfunktionen 

^maxj J-max 

^maxj ^3um 

^max^ J- sum 

J-maxj J-sum 

C'suTri) J-max 

C/stimj J- sum 

y^max j J- max j J- sum 

^max') (-^sum,i •i-m.ax 

^max J ^sum > J- sum 

^surm J-max J J-sum 

^maxi y^sumy -^mox> J-sum 
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Auf der Grundlage von jeweils 100 Testlaufen mit unterschiedlichen Aus-
gangslosungen konnten Durchschnittswerte der Approximationsqualitat fiir 
die von Czyzak und Jaszkiewicz (1998) vorgeschlagenen Metriken Di der 
durschnittlichen Abweichung von P^PP'^^X ^U p sowie der maximalen Ab-
weichung D2 ermittelt werden. Tabelle 2 gibt die Anzahl der Modellinstan-
zen an, fiir die unter Einsatz der jeweiligen Nachbarschaftsoperatoren die 
besten Ergebnisse erzielt wurden. 

Es erweist sich keine einzelne Nachbarschaft als den anderen in alien 
untersuchten Fallen iiberlegen. Auch ein Einfluss der gewahlten Optima-
litatskriterien auf die erzielten Resultate ist nicht offensichtlich. Vielmehr 
lassen sich Modellinstanzen identifizieren, fiir die eine bestimmte Nachbar­
schaft vorteilhaft ist, wahrend fiir andere gegenteilige Schlussfolgerungen 
zu Ziehen sind. 

Tabelle 2: Ergebnisse 

71 

72 

73 

74 

75 

76 

77 

78 

79 

710 

711 

Di 

Nex 

45 

37 

46 

34 

37 

40 

31 

32 

31 

39 

32 

^fsh 

55 

22 

24 

56 

58 

3 

62 

60 

31 

44 

55 

; der Testlaufe fiir D\ 

^bsh 

0 

39 

30 

10 

5 

57 

7 

8 

38 

16 

12 

D2 

Ncx N/5h 

31 68 

40 22 

46 27 

36 56 

35 57 

42 6 

30 61 

23 64 

37 33 

34 41 

26 55 

und D2 

^bsh 

0 

36 

25 

8 

7 

49 

6 

8 

29 

23 

13 

Im Ergebnis bedeutet dies, dass fiir die untersuchten Modellinstanzen 
keine dominierende Nachbarschaft existiert. Die erfolgreiche Losung mehr-
kriterieller Flow Shop Probleme durch den Einsatz einer einzelnen Nach­
barschaft erscheint vor diesem Hintergrund wenig aussichtsreich. 

2.3 Variable Nachbarschaftssuche 

Zur Uberwindung der in Abschnitt 2.2 identifizierten Problematik der op-
timalen Auswahl einer Nachbarschaft bietet sich die Kombination einzelner 
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Nachbarschaften an. Abbildung 4 beschreibt eine mogliche und hier exem-
plarisch untersuchte Vorgehensweise. 

1 
2; 
3; 
4; 
5 
6 

7; 
8; 
9; 

10: 
11 
12 

Lege Nachbarschaften N i , . . . , N^ fest 
Generiere eine Ausgangslosung x 
Setze P<'PP^ox ^ {^} 

Wiederhole 
Wahle X € P^PV^^^ mit noch nicht untersuchter Nachbarschaft 
Wahle eine Nachbarschaft Nf aus der Menge der in Schritt 1 festge-
legten Nachbarschaften 
Erzeuge Ni(x) 
AktuaUsiere P«PP^^^ mit alien x' G Ni(a:) 
Wenn x G P^PP^^^ dann 

Markiere Nachbarschaft von x als untersucht 
Ende Wenn 

Bis ^x G p^PP'^^^ mit noch nicht untersuchter Nachbarschaft 

Abbildung 4- Mehrhriterielle Variable Nachbarschaftssuche (MOVNS) 

Wesentliches Element dieses Vorschlags ist, dass die moglichen Nach­
barschaften nicht additiv sondern lediglich alternativ zur Anwendung kom-
men (vgl. Schritt 6), wodurch sich der erforderliche Rechenaufwand des 
Verfahrens nicht erhoht. MOVNS kombiniert somit die drei grundlegen-
den Nachbarschaften aus Abschnitt 2.2. Die Auswahl der anzuwendenden 
Nachbarschaft in Schritt 6 des Algorithmus erfolgt hierbei mit einer Wahr-
scheinlichkeit von jeweils ^ je Operator. 

Nach der Durchfiihrung von Testlaufen und Ermittlung durchschnittli-
cher Werte fiir D\ und D2 wird deutlich, dass der alternative, wechselnde 
Einsatz verschiedener Nachbarschaften einem einzelnen Operator in der 
iiberwiegenden Anzahl der untersuchten Modellinstanzen vorzuziehen ist. 
Tabelle 3 gibt hierzu die Ergebnisse wieder. 

Die Bedeutung der Ergebnisse wird um so deutlicher, zieht man 
in Betracht, dass die Verbesserung der Approximationsgiite, abgesehen 
von der vernachlassigbaren zufalligen Auswahl der Nachbarschaft, ohne 
zusatzlichen Rechenaufwand erzielt wurde. Variationen der Suchstrategie 
im Alternativenraum erweisen sich fiir den untersuchten Fall der mehrkrite-
riellen Flow Shop Probleme unabhangig von den relevanten Zielfunktionen 
als giinstig. 
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Tabelle 3: Ergehnisse der Testlaufe fiir D\ und D2 im Vergleich zu MOVNS 

1 71 
72 

73 

74 

75 

76 

77 

78 

79 

710 

711 

Di 

IN ex 

4 

0 

0 

1 

0 

5 

2 

0 

0 

1 

1 

^fsH 

17 

5 

4 

15 

19 

0 

19 

22 

10 

15 

23 

^hsh 

0 

12 

5 

1 

0 

27 

1 

0 

6 

3 

0 

MOVNS 

79 

83 

91 

83 

81 

68 

78 

78 

84 

81 

76 

D2 

N e x 

4 

0 

2 

5 

1 

6 

2 

0 

2 

3 

1 

"^fsh 

23 

6 

8 

22 

27 

1 

20 

23 

10 

17 

22 

^bsh 

0 

12 

7 

1 

1 

24 

1 

1 

6 

5 

1 

MOVNS 

73 

82 

82 

72 

70 

69 

75 

75 

79 

75 

75 1 

3 Nachbarschaffcssuche im Ergebnisraum 

Wahrend die Nachbaxschaftssuche im Alternativenraum naturgemafi pro-
blemspezifisch erfolgen muss, ist die Suche im Ergebnisraum proble-
munabhangig. Wir gehen davon aus, dass die Menge nichtdominier-
ter Ergebnisse gegeben ist und reaUsieren eine Nachbarschaftssuche in 
dem k-dimensionalen Ergebnisraum. Wir werden im Folgenden unsere 
Ausfuhrungen an einem zweikriteriellen Flow Shop Problem mit 10 Maschi-
nen und 10 Auftragen verdeutlichen. Als Ziele werden hier betrachtet die 
Zykluszeit (1. Ziel) und die Summe der Terminiiberschreitungen (2. Ziel). 
Das Problem besitzt die folgende Menge nichtdominierter Ergebnisse: 

N{Y) = I 
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In diesem Beispiel enthalt N{Y) nur wenige Elemente, so dass man 
bei der Durchfiihrung von Suchverfahren Nachbarschaften identifizieren 
konnte, indem man N{Y) jeweils sequenziell durchsucht. Es erscheint je-
doch sinnvoll, N{Y) so zu strukturieren, dass die verwendeten Suchverfah­
ren effizient reaUsiert werden konnen. 

3.1 Speicherformen der nichtdominierten Ergebnisse 

Wir werden dafiir zwei Datenstrukturen vorstellen, die dies leisten konnen. 
Das sind Quadbaume und kd-Baume. Diese werden daraufhin untersucht, 
wie sie die Identifizierung bestimmter Nachbarschaften unterstiitzen. 

3.1.1 Effiziente Quadbaume 

Quadbaume wurden von Finkel und Bentley (vgl. Finkel und Bentley, 1974) 
zur Suche in zweidimensionalen Suchraumen eingefiihrt. Habenicht hat die­
se Datenstruktur fiir hoherdimensionale Raume verallgemeinert und ihre 
besondere Eignung zur Unterstiitzung der Auswertung der Dominanzrela-
tion herausgearbeitet (vgl. Habenicht, 1984). 
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Abbildung 5: Quadhaum 
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Abbildung 5 zeigt einen Quadbaum fiir unser Beispielproblem und in 
Abbildung 6 ist dargestellt, wie dieser Quadbaum den Ergebnisraum struk-
turiert. Die Wurzel des Baums zerlegt den Raum in die vier Quadranten 
(im fc-dimensionalen Raum in die 2^ Orthanten), die die Wurzel als Spitze 
besitzen. Jeder weitere Knoten zerlegt den Bereich, in dem er sich befindet 
wiederum entsprechend in 4 (2̂ )̂ Bereiche usf. Enthalt ein Quadbaum nur 
effiziente Vektoren, dann sind zwei der Quadranten (Orthanten) leer, denn 
sie enthielten Vektoren, die den Knoten dominieren, bzw. von dem Knoten 
dominiert werden. In diesem Fall hat damit jeder Knoten eines Quadbaums 
im m-dimensionalen Raum maximal 2"̂ —2 Sohne. In unserem Beispiel wird 
daher der Quadbaum zu einem binaren Baum. 

3000 
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2000 
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1150 1201 1260 5 
13b0 C™ 

1100 1150 1200 1260 1300 C ^ 

Abbildung 6: Bereichssegmentierung durch den Quadbaum 

Der Vorteil dieser Datenstruktur liegt darin, dass sie die Auswertung der 
Dominanzrelation unterstiitzt. Das bedeutet, dass man sich bei der Auswer­
tung der Dominanzrelation auf die Uberpriifung einer geringen Teilmenge 
der Knoten beschranken kann. (Eine ausfiihrliche Darstellung des Einsatzes 
von Quadbaumen findet man in Habenicht, 1984, S. 38 ff.) 
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3.1.2 kd-Baume 

kd-Baume unterstiitzen ebenfalls Bereichssuchen in mehrdimensionalen 
Raumen. Hier findet aber eine andere Segmentierung des Suchraums statt. 
Ein Knoten zerlegt den Suchraum nicht in Quadranten bzw. Orthanten son-
dern in Halbraume. Die Dimensionen des Raums werden also nicht simultan 
sondern sequenziell zur Zerlegung des Raums herangezogen. Ein Vorteil der 
kd-Baume gegeniiber Quadbaumen liegt in ihrer besseren (statischen) Ba-
lancierbarkeit. Abbildung 7 zeigt einen kd-Baum fiir unser Beispiel. Die 
fettgedruckten Zahlen zeigen an, welche Komponente zur Zerlegung heran­
gezogen wurde. Abbildung 8 zeigt die durch diesen Baum induzierte Zerle­
gung des Ergebnisraums. 
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Abbildung 7: kd-Baum 

3.2 Nachbarschaften 

Die generelle Vorgehensweise der Nachbarschaftssuche im Ergebnisraum ist 
in Abbildung 9 daxgestellt. 

Beginnend mit einem Ergebnis y* soil iiber eine Abfolge von Nachbar­
schaften das beste Ergebnis ermittelt werden. Die dabei einzusetzenden 
Nachbarschaften sind unter folgenden Aspekten zu bewerten: 

• Aufwand 
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Abbildung 8: Bereichssegmentierung durch den kd-Baum 

• Erreichbaxkeit 

• Informationsbedarf 

• Steuerbarkeit 

Unter Aufwand verstehen wir einfach den Aufwand, der notig ist, um al-
le Nachbarschaftselemente eines Ergebnisses y* zu bestimmen. Dieser hangt 
insbesondere davon ab, welche Datenstrukturen ausgenutzt werden konnen. 
Erreichbarkeit ist eine sehr wichtige Eigenschaft. Sie bezeichnet die Tatsa-
che, ob jedes Element der Suchmenge von jedem anderen aus durch eine 
Abfolge von Nachbarschaften erreichbar ist. Unter dem Informationsbedarf 
verstehen wir, ob in die Nachbaxschaftsdefinition Praferenzinformationen 
des Entscheidungstragers eingehen. Unter Steuerbarkeit betrachten wir die 
Prage, inwieweit die Kardinalitat der Nachbarschaft a priori abgeschatzt 
werden kann. 
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Abbildung 9: Nachbarschaftssuche im Ergebnisraum 

3.2.1 Quadbaumnachbarschaft 

1st auf der Ergebnismenge die Datenstruktur Quadbaum implementiert, 
dann besteht eine nahe liegende Vorgehensweise darin, diese Baumstruktur 
unmittelbar zur Suche heranzuziehen. In diesem Fall waren die Nachbarn 
eines Knoten i. d. R. seine Sohne (eine genaue Definition der (Quad-) Baum-
suche findet man in Habenicht, 2000, S. 187 f.) 

Die Quadbaumnachbarschaft ist offenbar mit minimalem Identifizie-
rungsaufwand zu realisieren. Wie Abbildung 10 zeigt, fiihrt diese sehr starre 
Nachbarschaftssuche i. A. aber nur zur Auswahl suboptimaler Ergebnisse. 
Dies liegt insbesondere an der eingeschrankten Erreichbarkeit. Von einem 
Knoten aus sind nur die Knoten des Teilbaums erreichbar, dessen Wurzel 
er ist. 

Im linken Teil der Abbildung 10 haben wir Indifferenzkurven im Ergeb­
nisraum eingetragen. Verhalt sich der Entscheidungstrager entsprechend 
dieser Indifferenzkurven, so wiirde er als Suchweg die im Quadbaum fett 
gerahmten Knoten durchlaufen und den Knoten (1105; 3005) auswahlen. 
Das optimale Ergebnis ware dagegen (1312; 2071). 

3.2.2 Distanznachbarschaft 

Eine Nachbarschaft, die ebenfalls die Quadbaumstruktur sehr gut ausnut-
zen kann, ist die Distanznachbarschaft. Diese wird gebildet durch jene Er­
gebnisse, die von y* gemafi eines Abstandsmafies nicht weiter als a Einhei-
ten entfernt sind, Wahlt man als Abstandsmafi die Tschebytscheff-Norm, 
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Abbildung 10: Quadbaumnachbarschaft 

dann lasst sich das Problem der Identifizierung der Nachbarn formulieren 
als die Suche nach den Ergebnissen, die den Vektor (yl -foj, 2/2 +Q̂ » • • •»2/m + 
a)-^ dominieren und von dem Vektor (y* — a, yj ~<̂ > • • • > 2/m ~'^)^ dominiert 
werden. 

In Abbildung 11 ist die Ermittlung der Distanznachbarschaft von y* = 
(1288; 2127)^ fiir a = 50 im Quadbaum dargestellt. Wie man sieht, ist 
auch hier der Aufwand zur Ermittlung recht begrenzt. Die fett gerahmten 
Knoten sind jene, die zur Ermittlung der Nachbarschaft untersucht werden 
miissen; die grau hinterlegten gehoren zur Nachbarschaft. 

Unter dem Aspekt der Steuerbarkeit ist diese Nachbarschaft kritisch zu 
bewerten. Die Anzahl der Nachbarn ist a priori nicht abschatzbar. Wird 
a zu klein gewahlt, kann die Nachbarschaft leer sein. Wird es dagegen zu 
grofi gewahlt, enthalt die Nachbarschaft zu viele Elemente. Die Grofie der 
Nachbarschaft soUte die Informationsverarbeitungskapazitat des Entschei-
dungstragers beriicksichtigen. Sie sollte daher kaum mehr als etwa sieben 
Elemente enthalten. 

Aufierdem ist die Erreichbarkeit bei dieser Nachbarschaft nicht 
gewahrleistet. Man sieht an diesem Beispiel anhand der linken Darstel-
lung in Abbildung 11, dass bspw. die Knoten im linken oberen Bereich bei 
a = 50 von der Wurzel aus nicht erreichbar waren. 



64 Walter Habenicht und Martin Josef Geiger 

Abbildung 11: Distanznachbarschaft (a = 50) 

3.2.3 Kaxdinalitatsnachbaxschaft 

Die Steuerbarkeit der Distanznachbarschaft lasst sich verbessern, indem 
man die Nachbarschaft durch die p nachstgelegenen Ergebnisse bildet. Hier-
bei handelt es sich gewissermafien um eine dynamische Form der Distanz­
nachbarschaft, die wir Kardinalitdtsnachbarschaft nennen wollen. Die Er-
mittlung dieser Nachbarschaft ist etwas aufwandiger als bei der (statischen) 
Distanznachbarschaft. Man wahlt zunachst p (beUebige) Ergebnisse aus 
und ermittelt als a den maximalen Abstand zu y*. Mit diesem a beginnt 
man die Ermittlung der Distanznachbarschaft. Wird ein weiterer Nachbar 
mit geringerer Distanz als a gefunden, ersetzt dieser den bisherigen Nach-
barn mit Distanz a und a wird ggf. angepasst. 

Die Erreichbarkeit ist auch bei dieser Form der Distanznachbarschaft 
nicht gewahrleistet. 

3.3 Richtungsnachbarschaft 

Nachbarschaften, die die Erreichbarkeitsforderung erfiillen sind Richtungs-
nachbarschaften, von denen wir hier zwei Formen vorstellen wollen. Die 
Erfiillung der Erreichbarkeitsforderung wird bei diesen durch ein weiteres 
Ansteigen des Ermittlungsaufwands erkauft. Neben dem Quadbaum eignen 
sich zur Realisierung dieser Nachbarschaften auch kd-Baume. 

Die erste Form dieser Nachbarschaft, die wir hier vorstellen, konnen wir 
als Kegelnachbarschaft bezeichnen. Bei dieser Nachbarschaft betrachten wir 
die 2"̂  — 2 Orthanten, die von y* ausgehen und nicht dominierte Nachbarn 
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enthalten konnen. In diesen bestimmen wir jeweils das gemafi eines Ab-
standsmafies - wir werden auch hier die Tschebytscheff-Norm verwenden -
nachstgelegene Ergebnis. 

1236 
2229 

1150 1200 

Abbildung 12: Kegelnachbarschaft 

In Abbildung 12 ist die Ermittlung der Kegelnachbarschaft von y* — 
(1136; 2489)^ dargestellt. Die grau hinterlegten Knoten des Baums miissen 
dazu iiberpriift werden. Es sei darauf hingewiesen, dass bei einem m-
dimensionalen Problem die Nachbarschaft bis zu 2 ^ — 2 Ergebnisse ent­
halten kann. Fiir m > 3 miisste man hier ggf. ein mehrstufiges Auswahl-
verfahren vorsehen. 

Bei den bisher betrachteten Nachbarschaften wurden in der Nach-
barschaftsdefinition keine Praferenzinformationen benutzt. Abschliefiend 
fiihren wir mit der Richtungsnachbarschaft i. e. S. eine Nachbarschaft ein, 
die auf der Formulierung eines „Praferenzkegels" basiert. Der Entschei-
dungstrager wird gefragt, bzgl. welcher Ergebniskomponenten er eine Ver-
besserung gegeniiber y* wiinscht und bzgl. welcher Komponenten er eine 
Verschlechterung akzeptiert. Diese Angaben definieren einen Kegel, in dem 
die p nachsten Ergebnisse die Nachbarschaft bilden. 

4 Ausblick 

Wir haben in diesem Beitrag das Konzept der Nachbarschaftssuche am Bei-
spiel mehrkriterieller Ablaufplanungsprobleme dargestellt. Dabei haben wir 
gezeigt, dass im Falle von Permutations Flow Shop Problemen ein varia­
bles Nachbarschaftskonzept, bei dem die Exchange Nachbarschaft mit der 
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Forward- und Backward- Shift Nachbarschaft kombiniert wird, zu einer 
Verbesserung der Identifizierung der Menge effizienter Ablaufplane fiihrt. 

Zur Realisierung des Auswahlprozesses innerhalb der Menge effizienter 
Ablaufplane haben wir verschiedene Nachbarschaftsbegriffe eingefiihrt und 
unter verschiedenen Gesichtspunkten bewertend verglichen. Es zeigte sich, 
dass verschiedene Baumstrukturen diese Nachbarschaftskonzepte in unter-
schiedlicher Form unterstiitzen. 

Um aus den hier dargestellten Komponenten ein akzeptables Entschei-
dungsunterstiitzungssystem zu entwickeln fehlt als weitere Komponente ein 
benutzerfreundliches Visualisierungskonzept. 
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Abstract 

We consider a substantial generalization of a problem proposed 
by MacKinnon (2003). Within the setting of Bayesian Markovian de­
cision processes we derive for the maximal expected TV-stage reward 
(IN for a random initial state an integral recursion and an algorithmic 
recursion. FVom the former we obtain results about the dependence 
of djv on seversd parameters while the latter serves the same purpose, 
but also yields a numerical solution. An optimal policy is given in 
the form of an optimal stopping time. The model with a random 
initial state is dealt with by an appropriate choice of the state space. 

Keywords: Bayesian control models, Bayesian optimsd stopping 
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1 Introduction 

Nick MacKinnon (2003) proposed for the special case N = 3 the following 
problem MRP^y N > 2. In a game a number 9 is chosen randomly 
in the interval (0,1) according to the uniform distribution, and it is not 
disclosed until the game is over. Then N numbers zi, 2̂? • * • ^ZN are cho­
sen independently at random according to the uniform distribution on the 
interval (0, I/O), As each successive number is offered, the contestant must 
accept or reject it, accepting ZN if all previous numbers have been rejected. 
If zt is accepted at time 1 < t < iV, the number 0 is revealed, the contes­
tant receives 9zt dollars, and the game ends. According to which stopping 
time does one obtain the undiscounted maximal expected reward d^v? This 
means to find those values of zi which should be accepted, those values of 
Z2 which should be accepted in case zi has been rejected, • • •, those val­
ues of ZN-I which should be accepted in case zi^Z2, • • • , ZN-2 have been 
rejected. 
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We sketched a solution for iV = 3 in Hinderer/Stieglitz (2005). In the 
present paper we give a complete proof and many new results for problem 
GMKPiv, a generalization of the MKPiv in the following four respects: (i) 
The number N >2 of maximal offers is arbitrary; this turns out to require 
substantially more effort than the case N = 3. (ii) Instead of the uniform 
prior for 6 we admit more generally any power distribution Pow{a^b), 
defined in (2.6) below as a special Beta-distribution. This is a natural 
generalization since the posterior distributions for uniform prior Pow{l^ 1) 
axe special power distributions, (iii) We admit costs 7 G R-j- for each offer, 
(iv) We admit a discount factor P G (0,1]. 

The reader may speculate about the maximal expected reward d^ = 
djv(o;, 6). In MKPiv the very simple stopping time "accept always the 
first offer zi" yields the expected reward /Q (/Q 0'^zdz)d9 = 1/2, which 
is a lower bound of djv- On the other hand, since Zt < 1/9, we have 
6zt <l, hence d^ <l' Intuitively one also expects that dN is increasing in 
iV, which is indeed true, cf. 3.4(a). A substantiated speculation about an 
optimal stopping time seems to be difficult: since large values of Zt indicate 
a small value of 9, a reasonable judgement about 9zt seems to be difficult. 

Our problem resembles the well-known Bayesian version of the standard 
asset selling problem (one object for sale and no recall), but the probability 
distribution of the offers and the reward structure {9zt instead of simply Zt) 
differ considerably, and — as our study shows — also the tools needed differ 
largely. Both problems are special cases of the Bayesian stopping problem 
with i.i.d. offers of Example 1 below. In the literature such problems are 
mostly treated for the case of a known initial offer 5o; see e.g. DeGroot 
(1970). The more realistic case where 5o is random with the p.d. Q{9) is 
mostly only treated cursorily. Here we give a rigorous and simple approach, 
using a somewhat tricky choice of the state space (cf. Example 1 below) 
in a Bayesian control model {BCM for short) with known initial state. 
Martingale methods, often used for optimal stopping problems, are not 
considered here. 

In section 2 we carefully present our theoretical basis. Theorem 2.2 
gives the standard method of reducing the Bayesian problem with deter­
ministic initial state to a certain Markovian decision process MDP'; this 
part is largely based on Rieder (1988); see also Rieder (1975). The result 
is applied in 2.3 to a Bayesian stopping problem which includes both the 
asset selling problem and the GMKPjv. The latter is studied in section 
3, which is the core of the paper. Here methods taylored to the specific 
problem rather than standard methods are required. At first sight, the 
recursive algorithm for d^ seems to resist a numerical solution due to the 
uncountability of the state space. It is crucial for the overcoming of this 
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obstacle that dN{ct, b) turns out to be independent of 6. In 3.3 we give the 
two recursions for d^ (see (3.6) and (3.7)), stated in the abstract, and an 
optimal stopping time. As a consequence, djv = 1/2 — 7 if 7 > 1/2. Our 
next results 3.4 and 3.5, which concern the case 0 < 7 < 1/2, are instruc­
tive contributions to the topic "structure of solutions": the rather involved 
dependence of d^ on a, /3 and 7 is studied in 3.4 by considering properties 
such as bounds, monotonicity, convexity and (Lipschitz-) continuity. Sim­
ilar results hold for d := lim/y/̂ _̂ oo d^ (which in case 9̂ < 1 is the geometric 
limit of (dAr)i°); see 3.5. Computations reveal that in general dN is neither 
convex nor concave in a; see Figure 1. Finally an explicit solution for the 
case iV = 3 , y 9 = l , 7 = 0 and arbitrary power p.d. as prior is given in 3.6. In 
particular, for the original problem MKP3 we get ds = 553/864 « 0.6400, 
and the following optimal stopping time of control limit type: Accept zi iff 
zi > 11/12; otherwise accept Z2 iff Z2 > 2/3; otherwise accept Z3. 

Notations. IR"*" is the set of positive reals. The n-fold cartesian 
product of a set X is denoted by X^, and its elements are denoted by 
x^ := {xi)i := (a;i,X2, • • • ,Xn). A function is a mapping into R. For reals 
X, y we use x Ay := min (x, y). The Kronecker symbol is denoted by Sij, 
The indicator function 1^ : f2 -^ {0,1} of a subset 5 of Q is defined by 
1B{X) := 1 iff X € B . We use crn(x) := YI'^IQ X^, X G 1R+. The abbrevia­
tion p.d. is used for " probability distribution". Sometimes we write fi{dx) 
for a p.d. /i on the cr-algebra 3£, and / /i(dx) / (x ) instead of / / (x ) /x(dx); 
similarly for iterated integrals. A transition p.d. P from a measurable space 
(X,3C) into a measurable space (y,2)) is a function (x, B) H-> P{X^B) on 
X x 2 ) which is measurable in x and a p.d. in B. A transition density of P 
w.r. to a c7-finite measure p on 2) is a measurable function p>0 on X xY 
such that P(x, B) = / ^ p(x, y) p{dy), x G X, B G 2). Which cr-algebras are 
involved in statements of measurability of sets or mappings will be clear 
from the context. If (X,3t) and (1^,2)) are measurable spaces, we endow 
X xY with the product-cr-algebra X02) . Questions of measurability are 
only treated briefly. 

2 The Model for a Binary Bayesian Problem 

We consider the following Bayesian control problem BCMN{^IQ)J 

defined by a horizon N >1 and a data set (G, 5, Z, Q, T, r, VQ, /3) of the fol­
lowing meaning: The state St of a system evolves at times t = 0,1, • • • , N—1 
randomly in the state space S under the influence of actions at taken from 
the action space A := {0,1}. (A more general A could be admitted but is 
not required for our purpose.) Because of this form of A the BCMN{^Q) is 
called ''hinary^\ Put D = SxA. The sets 0 , S and Z are endowed with 
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cr-algebras X, & and 3? respectively. At the end of each period [t,t -h 1) 
(i.e. after action at has been taken) the decision maker observes a value 
zt+i from the observation space Z, which arises according to the transition 
p.d. Q{6^dz) from 0 into Z. Let z* := {zi)\^i be the sequence of observa^ 
tions up to time 1 <t < N, The parameter 6 in the parameter space 0 is 
unknown; according to the Bayes principle we assume that we have infor­
mation on it in form of a "prior" p.d. /XQ. The sequence of observations is 
stochastically independent, conditional on 6. The random transition from 
St to St-\-i under action at is determined by a measurable function T (called 
the transition function) from D x Z into S as St^i := T{st,at,Zt^i). At 
time ^ = 0 and at the times 1 < t < N — 1 the decision maker can base 
his action on the state 5o and on {z^,st), respectively. Thus the action at 
is selected according to an N-stage observation history-dependent policy 
TT = (TTt)̂ ""^ as ao := 7ro{so) and at := 7Ct{z^,St), 1 < t < N — 1. Here 
the decision rules TTQ and nt are measurable mappings from S and from 
Z^ X S := {x\Z) X S into {0,1}, respectively. The set of such policies is 
denoted by Ajv- At each time 0<t<N — la. reward r{6ySt,at) € H 
and at time N a terminal reward VO{0,SN) ^ R is obtained, which are 
discounted back to time t = 0 by the discount factor P G (0,1]. Both r 
and VQ are assumed to be lower bounded and measurable. The special case 
where the process stops after the first time 0 < t < N — I where action 
at := 1 is taken, models Bayesian stopping problems; see Example 1. 

Denote by P(T) the set of all priors^ i.e. of all p.d.'s on %, Our N-
stage problem defines on A^v our objective function TT I—• vjv7r(M»5o) := 
the expectation of the sum of discounted rewards, obtained under policy 
n e Aiv, prior /i € P(2^) and initial state 5o € 5; a definition in terms of 
the model is given in (2.2) below. 

For the formal definition of VNn we use the sample space 0 x Z^ 
with the product-cr-algebra T 0 3 ^ and the generic element {6,z^), The 
random state ĈTT = Ctn{so^z^) at time 1 < t < N under policy n € 
AN is determined recursively by (̂ î r := T{so,7ro{so)yZi) and Ct+i,7r •= 
^(Ct7r,7rt(z*,Ct7r),2:t-i-i), 1 < t < iV — 1. Then the iV-stage random reward 
function on 0 x Z^ under policy TT and initial state 5o € 5 is given by 

{e^z"") ^ GNn{0,so,z^):=r{e,so,Mso)) (2.1) 
N-l 

+ 5 ^ /3*. r(e,Ct.,7rt(zSCt.)) + /?"" • VoieXNn)^ 
t=i 

Put Q^{e,dz^) := x^^^Q{e,dzt), which is a p.d. on 3 ^ . Since the obser­
vations are i.i.d., conditional on 6, with p.d. Q{0^ dz), we use for /x E P (T) 
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on 3:(8)3^ the p.d. 

B ̂  Q^(S) := J^{dO) J Q'^ie, dz"") 1 (̂0, z^). 

Since r and VQ are lower bounded, there exists for TT € ^N and 5o G 5 

VN.i^i. so) := J Q{^(d(e, z"")) GNnie, 50, ̂ ^ ) € (-00, oo]. (2.2) 

It is called the iV-stage Bayes reward of policy n G AN w,r. to prior 
/i € P(T) and initial state SQ. A BCM, N > 1 and a prior fiQ G P(T) 
define the Bayesian problem BCMNifJ'o) as follows: 

(i) Find for each initial state SQ £ S the maximal N-stage Bayes 
reward within the set of observation history-dependent policies, i.e. 

VNifJ'O, So) := sup {vNirif^o, So) I TT £ Ajv}. 

(ii) Find a policy TT* G AN which is Bayes-optimal for BCMiv(/xo) in 
the sense that it maximizes TT I-> VNnil^o^ so) on AA^ for all 5o G 5 . 

Example 1: A BCMN for a Bayesian stopping problem 
with random initial offer. We now present a BCMiv as above 
(i.e. with deterministic initial state) which models a Bayesian stopping 
problem (comprising both the GMKPjv and the asset-selling problem) with 
a random initial offer. The BCM^r is defined as follows: Z := IR"'" is the set 
of offers; 5 = Z + {5,5}; 5o G Z denotes an initial oflFer, while St £ Z for 
some 1 < ^ < iV means that no offer has been accepted before time t and 
that the offer at time t equals St\ St = s for some 1 < t < N means that 
an offer has been accepted before time t; so := s occurs only for formal 
reasons and may be interpreted that no offers at all are received and no 
costs arise; the state 5 is crucial for our goal of computing by (2.3) below 
div(Mo)> the maximal expected discounted reward when N random offers 
arise and the prior is /XQ- The state 5 can occur only as initial state upon 
which a transition to some offer z e Z is enforced. Then the game evolves 
from z at time ^ = 1 on as it would do from time t = 0 on with an offer 
z e Z. We use at = 1 (= 0) if the offer at time 0 < t < A r — l i s accepted 
(rejected). An accepted offer of amount z G R"^ yields the reward ip{9) - z, 
where -0 > 0 is a measurable function on ©; in addition, each offer (not 
only the rejected ones, as sometimes assumed in the literature) costs 7 > 0; 
the state s yields neither a gain nor a cost; Q{6,dz) is the p.d. of each of 
the offers. The evolution of states is determined by a transition function 
T as follows: if 5̂  G Z, the next state is St+i := T{st,at^Zt^i); thus the 
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system moves from a state SQ £ Z to states 5i, 52, • • • ? ^t-i within Z until 
either it is "absorbed" in St •= <§ for some 1 < t < iV or until some SN ^ Z 
is reached (no absorption). 

Altogether we have to choose 

Z • Sa,0 -\-S*Sa,l , if 5 G Z, 

T{s, a,z) = ^ z , if 5 = 5, 

s , if 5 = 5; 

'(piO) • 5 • (Ja,i - 7 , if 5 € Z, 

, if 5 G {5 ,5} . 

ipie) . 5 - 7 , if 5 G Z, 

0 , if 5 G {5,5}. 

•(«,...) = { * 
Vo{e,s) = 

Special cases: For asset selling one uses arbitrary 0 and Q, while ip = 1. 
For GMKPN we use 0 := (0,1) and ^(0) := 9, 9 G 0 ; Q(e, dz) is the 

uniform p.d. on (0,1/5). D 

It is intuitively clear and follows formally from (2.2) that v^itJ'0,5) = 0 
and that VN{IJ'0,SQ) for 5o G Z is the maximal expected discounted reward 
when the decision process starts with a known offer SQ. Moreover, insert­
ing T and r into (2.1) and using (2.2), we see that we have to define 

d7v(/̂ o) := VN{^O,S)/P. (2.3) 

(Here the denominator /? takes care of the fact that the rewards, when 
starting in 5o = 5, are discounted to time t = 1.) The importance of (2.3) 
stems from the fact that we can use it for computing djv(/^o) within our 
BCMiv with deterministic initial state. For this purpose we have to find (i) 
VN{fJ'0,s) (for which we also need VnifJ'Oi z)^ 1 <n < iV — 1, z e Z, cf. (2.14) 
below) and (ii) a policy TT* which is Bayes-optimal for BCM7v(/io)» hence 
in particular maximizes n H-> VNIT(idol's) on AN-

A standard approach for solving problem BCMjv(/io) uses the follow­
ing device: the prior /XQ is embedded into a family /i(z), i G / , of p.d.'s 
on X. Then, if /XQ = A(^o) for some io G / , one constructs an MDP' with 
state space 7 x 5 and value functions Vj(̂ , iV > 1, such that Viv(/^0j5) = 
V^{io,s),s G 5, and such that a Bayes-optimal n* G AN can be con­
structed (cf. 2.2.(c) below) from a certain iV-stage optimal Markovian pol­
icy in MDP'. 

For a rigorous presentation of this approach we need some preparations. 
Put Q^ := Qi , which is the joint p.d. of the two coordinate variables 6 and 
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Zi on Q X Z, A mapping $ from P(X) x Z into P(T) which transforms 
each prior /i under the observation z into a version of its posterior 

= the conditional p.d. of 0, given Zi = z, 

is called a version of the Bayes operator (generated by Q). It is common 
to consider $(/x, 2;, d6) as an update of fi, given the observation z. 

The next result is well-known, see e.g. Rieder (1988). 

Lemma 2.1. (Computation of the Bayes operator) Assume that Q has a 
tmnsition density q : Q x Z -^ 1R+ w,r. to some a-finite measure on 3-
For fjL G P{%) andzeZ put q^{z) := / /i(d0O g(0', z). Then 

{li,z)^^{iJL,z,B) := 

f !B Q{^^^Mde)/q^{z), B € 3 , , i /0 < q^{z) < 00, 

I ^{B),B e 3» ; otherwise, 

is a version of the Bayes operator. 

Let (7,3) be a measurable space and ft a transition p.d. from / into 
9 . Prom now on we consider only the case where fi belongs to the family 
/i(z), i € / . For simplicity of notation we often write VNniii s) and VN{i, s) 
instead ofvN'jr{P'{i),s) andvN{p,{i),s)j respectively. Thus (2.2) shows that 
for TT € Aiv and all N^i^s there holds 

VNnii^s) = jq^^{d{e,z''))GNAO.s,z% (2.4) 

VN{i,s) = sup VNn{i,s). 
7r€Ajv 

We call i;7v : / X 5 —• [0,00] the N-stage Bayes value function. 
A measurable mapping <f> from I x Z into / is called a sufficient 

statistic (w.r. to Q) for the family /i if 

^(/i(z), 2:, d0) = /i(0(i, z), dO), (i, 2:) G / x Z. 

Then the posterior of each prior /i(i) belongs to /i, and we also call (BCM, 
/i, (j>) a Bayesian control model. If 0 is sufficient we define the t-fold 
iterated posterior index it{i^z^)^ t > l,(z,z*) G / x Z*, of the prior p,{i) 
recursively, using io{i^z^) := i,hy 

it+i(z,2;*+^) := (l>{it{i,z'),zt+i), t > 0. (2.5) 
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Example 2. The model {BCM,il,(t)) for the GMKP. Prom 
the BCM in Example 1, specialized to the GMKP, we obtain a model 
(BCM, fi, (j)) with fi and (f) as follows. Put I := IR"*" x (0,1] with elements 
i = (a, 6) and endowed with its Borel-a-algebra. Let /i(a, h) be the power 
p.d. Pow{a^b) on T, defined by the density 

e ^ KM '= ^ • ^ " " ' • 1(0.6) W / 6 " . (2.6) 

(It is easily seen that /i(a, 6, B) is measurable in (a, 6)). Note that C/(0,1) 
is embedded as /i(l, 1) into the family /i. 

A simple computation derives from 2.1 that $(/i(a, 6), z) has the density 
^a+i,6A(i/z)- This verifies sufiiciency of the measurable mapping 

(a, 6, z) ^ (t>{a, 6, z) := (a 4-1,6 A (I/2;)). (2.7) 

Note that </>(a, 6,2:) G / since 6 < 1. Put 

Mt{b,z'):= 

min (6, l / z j , 1/^2, • • • , 1 At) , 1 < * < iV, (6, ̂ *) € (0,1] x ZK 

Then induction on t > 1 shows that the posterior index it (a, 6, z*) is given 
by 

it{a, 6, z^) = (a + 1 , Mt(6, ;2*)), t > 1, (a, 6, z^) e I x ZK (2.8) 

By the way, this also shows that power p.d.'s are natural in GMKP: if 
one starts as in the MKP with a uniform prior, all posteriors are power 
distributions. D 

Let F ' be the set of measurable mappings / ' from IxS into {0,1}. Thus 
( F ' ) ^ is the set of iV-stage Markovian policies in MDP'. If (f) is sufiicient we 
say that TT* = (7rj)^o^ ^ ^N is generated by i and by TT' = (TT^)^""^ G ( F ' ) ^ 

if 7rj(5o) := 7r^(i,5o), 5o € 5, and 7r|(;z*,5t) := 7r{(zt(i,2;*),5t), 1 < t < 
i V ^ l , ( ^ * , 5 t ) € Z * x 5 . 

Let W be a mapping from I x D into [—00,00]. A mapping f € F ' is 
called a maximizer of W, if / ' ( i , 5) is a maximum point of a H-* W{i,s,a) 
for all (z,5). The next result can be derived from known results in the 
literature; closest to our setting are Satz 3.2 and Satz 3.4 in Rieder (1988). 
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Theorem 2.2. (The Basic Theorem for a binary Bayesian control model 
(BCM,/i, <̂ )) For (i, s,a) el x D put 

Q\i,B) := j fL{i,de)Q{e,B),Be'i, 

r\i,s,a) := / p.{i,d6)r{0,s,a), vo{i,s) := / p>{i,d6)Vo{0,s), 

Lv{iyS^a) := r'{i,s,a) -\- 0 - Q\i^dz)v{4>{i^z),T{s,a,z)), 

(These terms are measurable in i, in {i,s) and in (i,5,a), respectively.) 
Then there holds: 

(a) The Bayes value functions are measurable and lower bounded, and they 
can be found recursively by the value iteration 

Vn{i,s) = max[Lvn-i(i,5,0), Lt;n-i(i,5,l)], 

n > l , ( z , s ) G / x 5 . (2.9) 

(b) There exists for each n>\ a (pointwise) smallest moximizer ofLvn-i. 
(c) Fix N > 1. Let /^ be a maximizer of Lvn-i, 1 < n < N, Then for 

fixed i G I the observation history-dependent policy TT* = (TrJ)̂ "̂ ^ G 
AN which is generated by i and (TTJ)^"^ := (/jv>/jsr-iJ * * * J / I ) ^ 
Bayes-optimal for problem BCMN^p'ii), <t>)* • 

The core of each policy TT E A^^, when applied for initial state 5, may 
be described by its stopping time, i.e. the time at which TT prescribes to 
accept the momentary offer. It is defined by 

z^ ^ TNAZ^) := min{l < t < iV - 1 : TTt{z\zt) = 1}, (2.10) 

where min0 := N. (Note that TTVTT does not depend on TTQ.) It is intuitively 
clear that, using r^ := TNTriz^), there holds for all iV,TT G AN and {9, z^) 

GN.iOrs.z'') = p^- . i^{9) • ^.. - 7 • /3 • ^r.(/3). (2.11) 

Thus it suflSces to find an optimal stopping time rj^, defined as the stopping 
time TJVTT* of any Bayes optimal TT* G A^V- We sketch a proof of (2.11): Fix 
z^ and put m := TT^{Z^). Prom the definition of r^ we get 7r,/(z ,̂ Zu) = {) for 
1 < 1/ < m — 1, and 7rm(^^, Zm) = 1 if m < iV. Next, the form of T implies 
that Ci/7r(5, z^) = Zy^l < V <m^ and Cî 7r(s, z^) = 5 for m + 1 < î  < iV. 
Now the assertion follows from (2.1) and the form of r. D 

In the next result note that d\{i) equals the expected reward one gets 
under prior jl{i) when one obtains a single offer with cost 7 which is ac­
cepted. 
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Proposition 2.3. (The stopping problem of Example 1 with random initial 
oflFer) Consider the model {BCM, /i, (f)) for Example 1, Assume that G{i) := 
/ /i(i, dO) ip{6), i £ I, is finite. Fix some ZQ € / . 

(a) The maximal expected reward disr(io) for prior /i(io) can be obtained 
recursively, starting with di{i) := jQ\i,dz)z • G{(t>{i,z)) — y^ i € I, 
as follows: For n > 1, i € / , there holds 

dn^iii) = (2.12) 

j Q\i, dz) max [/? • dnm, z)), z • C?(0(2, z))] - 7. 

(b) For prior fi{io) the mapping 

z^'^rUio.z'')- (2.13) 

min {1 < * < iV - 1 : yS. dN-t{it{io, z^)) < zt • G(it(io, ^*))}, 

where min0 := N, is an optimal stopping time. 

Proof We apply 2.2 to the {BCM,il,(t>) from Example 1. 

(a) Firstly for i G / and 5 G Z we have r'(i,5,1) = VQ{i^s) = s • 
G{i) - 7 , r'(z,5,0) = - 7 , and r'(z,s,a) = r'{i,s,a) = t;o(«,5) = i;o(^j5) = 
0, a € {0,1}. Prom (2.9) we obtain for n > 1,2 € / that Vn{i',s) = 
(3 • /Q'(z,d2j)i;n-i(0(i,^),5), which implies by induction on n > 0 that 
Vn{i^ 5) = 0, n > 0. Now one obtains from (2.9) for i € / and n > 1 

dn{i) = Vn{i,s)/(3 = j Q\i,dz)vn^im.z),z)), (2.14) 

Vn-i(i,'^) = max[ /3 .dn- i (0»^-G(i ) ] -7 , z € Z. 

The combination of these two equations yields (2.12). 

(b) The proof of (2.14) also shows that for fixed N >1 the mapping /^, 
defined by fn{i,s) := fn{i,s) := 0 (= reject) and 

/ ; ( i , z ) : = l i S 0 ' dnii) < z - G{i), zeZ.iel, (2.15) 

is the smallest maximizer of Lvn-ij 1 < n < iV. Then the policy TT* = 
(TT*)^"^ € Ajv, generated by ZQ and by (/̂ )3v̂ , is Bayes-optimal by 2.2(b). 
For 1 < t < iV - 1 and z^ € Z* we have 7r'^{z^,Zt) = fN-tMio,z^),Zt). 
Now the assertion follows from (2.15) and the definition rjl̂  := TjVTr*- n 
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3 Solution of the Generalization of MacKinnon's Problem 

In this section we consider the GMKP. The maximal expected discounted 
n-stage reward dn clearly depends on the data parameter tripel x := 
(a, /?, 7) G R"'' X (0,1] X11+. In 3.1 through 3.3 we keep /? and 7 fixed, and 
write then dn{ci) instead of dn{x). 

One cannot expect that (2.12) leads to an explicit representation of 
dN{ct,b). Also a numerical solution seems to be impossible since dN{pt^h) 
requires due to (2.12) to find dn(iAr-n(Q:,6, z^"^)) for 1 < n < iV — 1 
and for the uncountable set of observation-histories ^^~^ € Z^"^. For­
tunately, it turns out (see 3.3(a) below) that dn(a;,6), n > l,(a,6) € / , 
does not depend on 6, hence, due to (2.5) and (2.7), dn{iN-n{{oi^b^z^~'^)) 
does not depend on (6, z^""). This is the reason why we can find in 
(3.7) a relatively simple recursion for dn{ot) and in 3.3(d) the optimal stop­
ping time. We need some preparations. Recall the definition Mt(6, z*) := 
min (6,1/2:1,1/^2, • • • , 1/^t) < 1, 1 < * < iV, (6, z*) G (0,1] x Z\ and put 
Q'(a, dz) := Q'(a, 1, dz), a € H" .̂ 

A simple integration, using from 2.3 the definition of G and from (2.6) 
the density fta.b of the power distribution Pow{a, 6), yields 

G(a,6) = ^(a).6, (3.1) 
where g{a) := a/(a -h 1), (a, 6) € R"*" x (0,1]. 

Lemma 3.1. (a) Q'(a,6,dz) has the distribution function 

z H-> Fa,b{z) := (3.2) 

{ b• ^(a) -2?+ , if -00 <z< 1/6, 

1 ~ (a + l ) - i . (6^)-" , ifz>l/b. 

Moreover, Q^{a,b,dz) is stochastically decreasing in a, 
(b) For each measurable v >0 on R"'' there holds 

I Q\a,b,dz)v{z) = 

g{a) • [ / v{z/b) dz + n v{zlb)/z'^^^ d J (3.3) 

/ Q\a, 6, dz) v{z) = f Q\a, dz) v{z/b). (3.4) 

Proof (a) Fix (a, b) and z € B. We have Q{e, (-00, z]) = (Oz-^) A 1 and 

Fa,b{z) = Q\oc, 6, (-00, z]) = / P(yw{a, 6, d9) Q{e, (-00, z]). 
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Thus Fa,b{z) = 0,z<0, and Fa,b{z) ^a-b'"^- J^0"-^ • (Oz) Alde,z>0. 

This easily yields Fa,b{z) for 0 < z < 1/6, and also, splitting J^ 6^~^ '{Oz)/\ 

1 <m into jl'\- • •) + /i%(- • •) . for 2 > 1/6. 
In addition, a H^ Fa,h{z) is increasing for all 2: € R, which proves that 

a H-4 Q'(a, 6, d ;̂) is stochastically decreasing. 
(b) Prom (a) we see that Q'{a,b,dz) has the density y i-> 6 • g{a)/{b • 

max(y, 1))"*+^ • l(o,oo)(y)- Therefore 

/ 
Q'{a,b,dz)v{z) 

i/b 

b • 9{a) 
fl/0 /•OO 

/ v{y)dy-^ / v{y)/{by)''-^Uy\ . 
[Jo Jl/b J 

Now the substitution z = by yields (3.3). Finally (3.4) follows from (3.3) 
by first setting 6 := 1 and then replacing v{z) by v{z/b), D 

The proof of the following auxiliary result is given in the appendix. 

Lemma 3.2. Let c{') >0 be a function on R"*" and put 

E{a) := fQ\a,dz) max[c(a),^(a-f-1) • (^ A 1)], a € 1R+. 

Then there holds: 

(a) 

E{a) = (3.5) 

r i . (1 - (a + l ) - 2 ) . c(a)2 + i , ifc{a) < g{a -f 1), 

\ c{a) , ifc{a) > g{a -h 1). 

(b) Ifc{') is increasing then E{') is increasing, 
(c) Ifc{') is continuous then £{-) is continuous. 

Theorem 3.3. (The solution of the generalized problem of MacKinnon) 
Assume iV > 2,/3 € (0,1],7 G H-i- and an arbitrary power distribution 
Pow{a,b), (a,6) G R"^ x (0,1] as prior, 

(a) There holds di(a,6) = 1/2 — 7 =: di{a). The maximal expected dis­
counted N-stage reward dNipt^b) =: dN{ot) does not depend on b, it is 
finite and {dn)^ satisfies the recursion 

dn+i(a) = (3.6) 

Q\a, dz). max [̂  . dn{ot + 1), g{a + 1) • (2; A 1)] - 7, 

n > l , a € ] R ' ^ . 
/ ' 
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(b) / / 7 > 1/2 then div(a) = 1 / 2 - 7 for all a. 
(c) If J < 1/2 then div(a) can be computed recursively for all a as follows: 

for n > 1 there holds: 

( l . ( i - ( a + l ) -2 ) . ( /3 .d„(a + l))2 + l - 7 , 

dn+i(Q!) = < fl , , , ,v (3-7) 
/3 • d„(a + 1) - 7, 

[ i /;9.dn(a + l ) > 5 ( a + l ) . 

(d) An optimal stopping time is given, using min 0 := iV, by 

z^ ^T''ff{a,b,z'^) = m i n { l < < < i V - l : (3.8) 

13-dN-tia + t) < Zfgia + t)-Mt{b,z*)}. 

In particular, ifj> 1/2 then Tjlf{a, b, z^) = 1 for all (a, b). 

Proof, (al) We prove that di{a,b) = 1/2 - 7 = di{a). From 2.3, (3.1), 
(2.7) and (3.3) we get for (a, b) e I 

di(a,6) + 7 = fQ'{a,b,dz)z-G{<f>{a,b,z)) 

= g{a + l)- f Q'{a, b, dz) {bz A 1) 

= p(a + 1) • p(a) • / zdz+ dz/z ^2"+^ = 1/2. 

(a2) We verify by induction on n > 1 the assertion {In) that dn is inde­
pendent of b and that dn-\-i{ot) equals the r.h.s. of (3.6). For the proof 
we note that by (2.12), (2.7), (3.1) and (3.4) there holds dn+i(a,6) = 
fQ\a,dz)vn{z/b) - 7 , where Vn{z) := max [y9-dn(a; + 1 , 6 A ( l /z)) ,^(a + 
1) • {bz A1)], n > 1. Now (/i) holds by (al), and {In) for some n > 1 easily 
implies (/n+i). 

(a3) Finiteness of dn holds since a simple proof, using (3.6), shows by 
induction on n > 1 that —7 <dn<l' 

(b) Using di{a) from (a), we prove by induction on n > 1 the assertion 
{In) that dn{ct) = 1/2 — 7. (/i) holds by definition of di{a). Assume {In) 
for some n > 1. Then p • dn{a + 1) = /? • (1/2 - 7) < 0 < p(a + 1) • z A 1. 
Now (3.6) yields dn-\-i{ot) = g{ot + 1) • f Q {a,dz) z A 1 — 7, which equals 
1/2 — 7 as shown in (al). 

(c) We obtain (3.7) from (3.6) by applying 3.2(a) with c{a) :=P'dn{a-^ 
1) ^ 0, since then dn+i = E{(^) — 7-



82 Karl Hinderer and Michael Stieglitz 

(d) Equation (3.8) follows, since di(a) := I / 2 - 7 by (a), from (b), 2.3(b), 
(2.8) and (3.1) with a replaced by a -i-1, and b replaced by Mt(6, z*). The 
assertion in case 7 > 1/2 holds since then dN-t{oL -h t) < 0. D 

R e m a r k 1. (a) Part (b) of 3.3 expresses the remarkable fact (quite 
different from the asset selling problem) that for "large" costs 7 (namely 
7 > 1/2) having several chances to stop is no advantage over the case where 
only a single offer arises. 

(b) In contrast to (IN the optimal stopping time r^f does depend on 6, 
and its computation requires {dn{pt-\-N — n))^~^^ which is known from (b) 
and (c). 

(c) Our numerical computation of dn in Table 1 below is based on the 
recursion (3.7), while both (3.6) and (3.7) are used for studying the depen­
dence of dn on n and on the parameters a, P and 7 in 3.4 and 3.5 below. 

(d) If 7 = 0 then there also holds 

div(a) = ^ ^ - * W « ) . d , . (^ , , ) (a 4- AT - n\N,a)\ (3.9) 

where n*(iV, a) is the smallest 1 < n < AT — 1 for which /3-dn{a-\-N— n) > 
{a + N — n ) / ( a + iV — n 4-1), if such an n exists, and n*{Ny a) := AT, else. 

F o r t h e p r o o / p u t f c : = a - h i V - n - l . If/3-dn(a+A/'-n) > (fc-f l)/(fc+2), 
then the second line of (3.7) implies /? • dn-\-i{a -i- N — n — 1) > k/{k + 1). 
Thus dn+i(a + i V - n - l ) = ^ - dn(a -\-N-n) for n*(iV, a)<n<N-l, 
This easily implies (3.9). D 

We now study the dependence of the maximal expected discounted n-
stage reward dn{x) on n and on x := (a, /3,7) G X := R"*" x (0,1] x [0,1/2]. 
Note the difference between the dependence on a on the one hand and the 
dependence on /3 and 7 on the other hand: While dn(x) is convex in (3 
and also in 7, Figure 1 shows that in general dn{x) is neither convex nor 
concave in a. 

As usual, for a function it on H the smallest number I G [0,00] such 
that \u{x) — u{y)\ <l'\x — y\ for all x,y € IR is called the Lipschitz module 
l{u) of u, and u is said to be Lipschitz continuous if l{u) is finite. 

Proposition 3.4. (The dependence of the functions dn(') on n > 1 and 
X = (a,/3,7) G B"^ X (0,1] x [0,1/2]) There holds: 

(a) dn{x) is increasing in n for x G X. 

Moreover, there holds for n > 1; 

(b) 0 < 1 /2-7 = di{x) < 1-7, andO < I / 2 - 7 < dn-\.i{x) < g{a-hn)-^ < 
1 - 7 . 
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(c) dn{x) is increasing and continuous in a, hence there exists Un{l3,j) := 
lima^oo dn{x) = suPc,eR+dn(^) (^rid en(/3,7) := \ima-^o dn{x) = 

(d) The numbers Un{0^j), can be found recursively, using 
ui(/3,7) = l / 2 - 7 , by 

un^i{/3n) = {(3 . tx„(^,7))V2 + 1/2 - 7. (3.10) 

Moreover, using inf 0 := cx), we get 2 < no := inf {fc G IN : ^ • dfc(l) > 
1/2} < 00, and /or n>l we have 

Sn+l = S 
1/2 - 7 , i / 1 < n < no, 

/ ? - d n ( l ) - 7 , ifn>no. 

In addition, Cn+i = 1/2 — 7 /or a/Z n > 1 if (3 - {5 — 87) < 4. 
(e) dn{x) is increasing and convex in (3. 
(f) dn{x) is Lipschitz continuous (hence uniformly continuous) in f3, and 

/ ( d „ ( a , - , 7 ) ) < ( n - l ) - ( l - 7 ) -
(g) dn{x) is decreasing and convex in 7. 
(h) dn{x) is Lipschitz continuous (hence uniformly continuous) in 7, and 

/(dn(a,/3, .))<^n(i3). 

n 

dn(l , l ,0) 

Table 1: Some values o/cin( 1,1,0) 

2 3 5 10 20 

0.5938 0.6400 0.7056 0.7966 0.8739 

30 

0.9083 

Remark 2. (a) It follows from 3.3(b) and 3.4(b) that for all iV > 2 and 
all X G X the iV-stage game is favorable, fair or unfavorable, respectively, 
for the contestant (i.e. d^ix) is positive, zero or negative) iff 0 < 7 < 
1/2,7 = 1/2 or 7 > 1/2. 

(b) dn{x) is for 7 < 1/2 and all n > 1 only "moderately" increasing in 
a in the sense that for all a the relative increase [dn{ot -\-5) — dn{ot)]/dn{(y) 
tends to zero for a —> 00, uniformly w.r. to (J G IR"*". In fact, we show that 

dr.{a + 5)-dn{a) n>l,a,SeM-^. (3.11) 
dn{a) 

Proof (i) Fix (/3,7). We prove by induction on n > 1 the assertion (In) 
that fn{c^) •= P ' dn{ct)/g{a) is decreasing in Of. Note that dn ^ di >• 0 
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Figure 1: a —^ dsioi,!, 0) 

since 0 < 7 < 1/2. (/i) holds since g{') is increasing. Assume (/„). Then, 
by a simple calculation one derives from (3.6) that 

/n+i(a) = /3 . y(a 4-1) • g{a)-'^ - J Q\a,dz) v{a, z) - 7, 

where v{a^z) := max [fn{ot + l ) , z A 1] > 0. Let a < a. Observing that 
v{a^z) < v{a^z)^ that t;(a, z) is increasing in z and that a \-^ Q\oi^ l ,dz) 
is stochastically decreasing by 3.1(a), we obtain 

I Q'{a,dz) v{a,z) < f Q\a,dz) v{a,z) < f Q\a,dz) v{a,z). 

Thus j Q'{a^dz) v(a, z) > 0 is decreasing in a. Then (/n+i) follows since 
also 0 < g{a + \)/g{a) = (1 + [a • (a + 2)]~^) is decreasing in a. 

(ii) Now (3.11) follows from antitonicity of a H-> fn{ot) by a simple 
calculation. D 

Proof oi 3.4. (a) Using 3.3(c) we prove by induction on n > 1 the assertion 
{In) that dn+i(-) > dn{')' Fix X e X. For the proof of (/i) recall that 
di(a) = l / 2 - 7 . 

Case 1: pdi{a -\-l) < g{a + 1). Then we get from (3.7) 

d2(a) = 1 . (1 - (a + l ) - 2 ) . (yS . di(a + 1))^ + di(a) > di (a). 
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Case 2: /3di(a + 1) > p(a + 1) = 1 - l / ( a + 2). Then d2(a) = /3 • di(a 4-
1) - 7 > 1 - 1/(0; + 2) - 7 > 1/2 - 7 = di(a). Thus (/i) is true. 

If (/n) holds for some n > 1 then also (/n+i) holds by (3.6). 
(b) The bounds for di hold since di{x) = 1/2 — 7 by 3.3(a). Now we 

turn to the bounds for dn-\-i,n > 1. The lower bound holds by (a), and 
^(a-hn)—7 < 1—7 is obvious. It remains to verify the assertion (/„), n > 1, 
that dn-\-i{ot) < 9{ot + n) — 7 for all a, which is done by induction on n. 
Firstly note that 1/2 < g{a + 1) < 1 for all a and that ^(•) is increasing. 
Next, due to g{a + 1) • (z A 1) < g{a + n), we see from (3.6) that 

dn-^i{ot) < max [/? • dn{oL + l),g{a + n)] - 7, n > 1, (3.12) 

which verifies (/i) since 

max[/3.di(a + l) ,p(a + l)] < max[/3. (1/2 - 7),p(a +1)] 

<max[ l /2 ,p (a + l)] = p(a + l ) . 

It also shows that (/„) implies (/n+i)? since {In) implies /? • [dn-\-i{oL + 1) — 
7] <9{oL-Vl-\-n). 

(c) The assertion (/„) is true for n = 1 since di is constant in a. Assume 
that {In) holds for some n > 1. Now the assertion follows from 3.2(b) and 
3.2(c) with c{a) := /3 • dn{oL + 1) since then dn+i(a) = £ (̂QJ) - 7 by (3.6). 
Note that c{a) > 0 by (b). 

(dl) We prove the assertion about tXn+i. Fix some n > 1. From (3.6) 
and (3.3) with 6 := 1 we get, using t;(a, z) := max [/? • dn(a + 1), g{a + 1) • 
(^Al)] , 

dn+i (a) + 7 = / Q'(QJ» dz) V{OL, z) 

= p(a) • / v(a, 2;) d̂ ; + / v{a, z)/z'^^^ dz 

We have 0 < v(a, ^) < 1 since dn < 1 by (b). Now 

/

OO /•OO 

v{a, z)/z^+^ dz < / 1/;̂ "+^ dz = 1/a -^ 0 for a -> 00. 
Moreover t;(a, z) converges for a —̂  00 increasingly towards v{z) := max [/3-
iXn,2r A 1]. By the theorem on the convergence of integrals /Q v{a,z)dz 
converges for a -^ 00 to 

/ v{z) dz= I I3undz+ I zdz = {0^ul + l ) /2 . 
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Here we used that 0 <Un <l since 0 < dn < 1. Now the proof is complete. 

(d2) We prove the assertion about en+i-

(d2i) We have /3 • di(l) = /? • (1/2 - 7) < 1/2, hence 2 < no < 00. 

(d2ii) Fix n > 1. We show that en+i = max [/? • dn(l), 1/2] - 7. In the 
proof we use without mention that dn{x) is increasing and continuous in 
a by (c). Let {c^k)T ^ ^ ^ ^^ ^ sequence converging for fc -^ 00 to zero. 
Then there holds at least one of the following cases: 

Case 1: The set B< := {ak : /? • dn{ak + 1) < 9{(^k + 1)} is infinite. 
Using (3.7) and letting J3< 3 a^ ^ 0 we obtain Cn-f 1 = 1/2 - 7. This 
equals max [/3 • dn(l), 1/2] — 7 since convergence of g{ak) to 1/2 for a^ ^ 0 
y i e lds /3 .dn( l )< l /2 . 

Case 2: The set S> := {ak : P • dn(afc + 1) > (̂QJA; + 1)} is infinite. 
Using (3.7) and letting -B> 9 a^ —̂  0 we obtain Cn+i = /? • dn(l) — 7. This 
equals max [/? • dn(l)» 1/2] — 7 since convergence of g{ak) to 1/2 for QA: -^ 0 
yields (3 . dn(l) > 1/2. 

(d2iii) Now (d2ii) and (a) verifies the value given for en+i-

(d2iv) The assertion that en+i = 1/2 — 7 if /? • (5 — 87) < 4 requires 
3.5(d) below and is therefore included in the proof of 3.5(d). 

(e) The assertion (/„) is trivially true for n = 1. Assume that it is true 
for some n > 1 and fix (a, 7). Then ^ H-̂  /3 • dn(Q; + 1 , Ŝ, 7) is increasing and 
convex since the product of the two non-negative, increasing and convex 
functions P ^-^ l3 and /3 »-• dn{oi, /?, 7) on (0,1] is increasing and convex; see 
e.g. Roberts/Varberg (1970), Theorem 13 C. Now (/n+i) follows from (3.6) 
since the maximum of the two increasing and convex functions P'dn{a, /?, 7) 
and /? I—• g{a -f 1) • (2; A 1) is increasing and convex and since this property 
is preserved under integration by Q'{a^dz). 

(f) Fix 7. We use induction on n > 1 for the assertion (/„) that 
l{dn{oL^ -,7)) < (^ — 1) • (1 — 7) for all a. Obviously (/i) is true. Assume 
{In) for some n > 1. Put tx(/3) := /3 and /i(/3) := dnipt + l,/3,7). Using 
|max(xi,X2)-max(yi,y2)| < max[|a;i-yi|, |x2-y2|] for xi,X2,yi,y2 ^ H 
we get from (3.6) for /?, (3' e (0,1] 

|dn+i(oj,/3,7)-dn+i(QJ,^',7)l 

< jQ\a,dz) \u{p). /i(/3) - u{P'). /i(^OI < K^ 'h)'\(3- (3% 

From (b) we know that 0 < /i(-) < 1 — 7, which implies sup^ h{P) < 1 — 7. 
Next, from a well-known and easy to prove upper bound for the Lipschitz 
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module of the product of two functions we get 

/(dn+i(a,-,7)) < / ( ^ • / i ) < s u p K / 3 ) | . / ( / i ) 

-\-sui>\h{/3)\'l(u) < /(d^(a + l , . ,7) + l - 7 
0 

< (n - 1) . (1 - 7) + 1 - 7 = n . (1 - 7). 

This proves (/n+i)-
(g) This follows easily by induction on n, using (3.6) and the fact that 

the maximum and also the sum of two decreasing and convex functions is 
decreasing and convex and that antitonicity and convexity in 7 of a function 
(7,2:) 1-̂  w{j,z), which is integrable w.r. to Q'(a,dz), is preserved under 
integration by Q'{a^dz), 

(h) We use induction on n > 1 for the assertion {In) that l{dn{oL^ /?, •)) ^ 
(TniP)- Obviously (/i) is true. Assume (/„) for some n > 1. Similar as in 
the proof of (f) we obtain (/n-i-i) since for 7 ,7 ' € IR-f. 

|dn+i(QJ,/?,7) -dn+i(a;,/3,70l < 

yQ'(a,d;^)/?. |dn(a + l , /3 ,7 ) -dn(a+ l,/3,70l + l 7 - 7 l 

< (/? • (TniP) +1) • i7 - yi=^n+i()S) • i7 - y i . • 

In the next result we use [/? < 1] := {(a,/?,7) G X : /? < 1}. 

Proposition 3.5. (Properties of the limit function d(-) on IR"'" x (0,1] x 
[0,1/2]) There holds: 

(a) There exists d{x) := limn-^oo dn{x),x € X, and 0 < 1/2 — 7 < d{x) < 
1 - 7 . 

(b) d{x) is increasing in a, hence there exists it(/?,7) := 
lima-.oo d{x) = supc,eR+ d{x). 

(c) sup(^^^)eR+x[0,1/2] \dn{x) - d{x)\ < /?^/2 for n > 1. Thus dn{x) con­
verges for n ^ 00 uniformly and geometrically to d{x) on [/3 < 1], and 
there d{x) is continuous in (a, 7). 

(d) ^(1,0) = 1 and tx(/3,7) = ( l - ^ 1 - /32 • (1 - 27)) /P^ < 1-j if 

( /? ,7 )^(1 ,0) . 
(e) d (a , l ,0 ) = l, a e R " ^ . 
(f) d{x) is increasing and convex in /?. 
(g) d{x) is decreasing and convex in 7. 

(h) d{x) is Lipschitz continuous in j on[P < 1] and there holds l{d{a, ^, •)) 

< 1/(1-/3)-



88 Karl Hinderer and Michael Stieglitz 

Proof, (a), (b), (f) and (g) follow from parts (a) A (b), (c), (e) and (g) of 3.4, 
respectively, using elementary facts about the preservation of properties of 
functions under the limit n ^ oo. 

(c) If n —• 00 then Vn(2̂ , a,7) := max[^'dn(QJ+l,7),^(Q;4-l)-(2^Al)] > 0 
converges by (a) and 3.4(a) increasingly towards v{z^ a, 7) := max [/3-d(a + 
1>7)»P(<^+1)'(^A1)]. Now (3.6) and the theorem on monotone convergence 
of integrals show that d(a,7) = J Q'{a^dz)v{z^a^^) — 7 for all (a, 7). 
Next, using |max (a:i,a:2) — max (2/1,2/2)! < max[|xi — 2/i|>k2 — 2/21] for 
xi,X2,yi,y2 ^ Hj and that both dn and d have the lower bound 1/2 — 7 
and the upper bound 1 — 7, we get from (3.6) 

|d (a ,7 ) -dn+i (a ,7 ) | = 

/ Q'{a,dz)[v{z,a,j) -Vn{z,a,^)]\ 

< /?. [d(a + 1 , 7 ) - d n ( a + 1,7)] 
< . . .</?'*• [d(a + n, 7) - di (a + n, 7)] < /3'*/2. 

This proves the first assertion, from which the second one follows since the 
uniform limit of a sequence of continuous functions on R"̂  is continuous. 

(dl) Fix (/S,7). Since dn is increasing in n by 3.4(a), the same holds 
for Ufi' Therefore u = sup^^sup^ dn(Q:) = sup„supQdn(a) = sup^Un = 
limnUn- Now (3.10) shows that u satisfies 2u = (/3ix)̂  + 1 — 27. This 
quadratic equation yields 

« = (1 - V l - / 3 2 ( l - 2 7 ) ) / / ? ' , (3.13) 

since the other solution rj := (1 + y/1 — p^{l — 2j))//3^ satisfies l3r} > 1 
which contradicts /3u < 1. Now (3.13) verifies the value of u{x) for all 
X e X. Finally tx < 1 — 7 in case (/3,7) 7̂  (1>0) and u = 1 else, are easily 
proven. 

(d2) We now add the proof for the assertion made in 3.4(d) that en+i = 

1/2 - 7 if ^ . (5 - 87) < 4. Firstly, u{f3,7) = ( l " ^ 1 -/^^ • (1 - 27)) //3^ 
obviously also holds for ^ = 1 and 7 = 0. Now no = 00 iff ^ • dn(l) < 
1/2, n > l,iflF/3.d(l) < l/2iiP'u{P,j) < 1/2, which holds iff ^.(6-87) < 4. 

(e) This follows from (d) for /? = 1 and 7 = 0 and from the fact that 
5{a) := d(a, 1,0) is a constant. In fact, from (3.6) and 3.4(c) we get 

dn+i(a) > JQ\a,dz)dn{a + 1) = dn{a + 1) > dn(a). 

Now (a) implies 5{a) = 5{a + 1) for all a, which together with isotonicity 
of (J(-), ensiured by (b), yields the assertion. 
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(h) It is easily seen that for each sequence of functions ipn on 1R_(., 
converging to some function -0, there holds /(V )̂ < liminfn-^oo '(V^n)- Now 
the assertion follows from (a) and from 3.4(h) with ipnil) '= dn{oi,P,^) 
and -0(7) := d(a, ^, 7). D 

Prom 3.3(c) and (d) we now get the solution to the original problem of 
MacKinnon, generalized by allowing any power p.d. Pow{a, b) as prior. 

Corollary 3.6. (Solution of MacKinnon's problem for the case N = 3,(3 = 
1,7 = 0 and arbitrary prior Pow{a, 6), (a, 6) € / ) There holds: 

(a) The maximal expected undiscounted S-stage reward has the following 
value: 

(al) If a >ao := ( v ^ - 2)/3 « 0.5352 then 

In particular, for the uniform prior Pow{l, 1) one gets ds{l) = 121/864 + 
1/2 « 0.6400.. 

(a2) Ifa<ao then 

d3(a) = ( 5 - ( a + 2 ) -2 ) /8 . (3.15) 

(6) The optimal stopping time is as follows: 
(61) Assume a > QQ. Then accept z\ iff zi > [5(a -f 2)^ - ll/[86 • (a -h 

1) • (a + 2)]; otherwise accept Z2 iff Z2 > {a-\- 3)(26(a -h 2))"" ;̂ otherwise 
accept Z3. 

In particular, for the uniform prior one gets: accept zi iff zi > 11/12; 
otherwise accept Z2 iff Z2 > 2/3; otherwise accept z^, 

(62) Assume a < QQ. Then never accept zi; accept Z2 iff Z2 > {ct -\-
3)(2(a -f 2))"-^ • max (1/6, zi) ; otherwise accept Z3. 

Proof Firstly note that 3.3(c) for n := 1 implies, observing that d i ( a + l ) = 
l / 2 < p ( a + l ) , 

(a) The assertion follows by simple computations from 3.3(c) with n := 
2, observing that 

d2{a + 1) < g{a + 1) iff a > ao. (3.16) 
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(b) Prom 3.3(d) with iV = 3 we know that there holds, using min 0 := 3, 

r;{a,b,zi,Z2)= (3.17) 
min {1 < t < 2 : ds-tia +1) < g{a -i-t)'Zt' Mt{b, z^)}, 

(bi) Fix a,zi € R"^. It follows from (3.17) and (3.16) that one should 
accept zi iff [zi > (a + 2)(6 • (a + 1))"^ • ^2(0; + 1)] A [a > ao]. This shows 
for both cases a> ao and a <ao when to accept zi. 

(bii) Fix a, ^1,^2 € H"*", and assume that zi has been rejected. It follows 
from (3.17) for t := 2 that one should accept Z2 iff min {bz2,Z2/zi) > 
H{a) := (a 4- 3 ) . (2 • (a + 2))'\ where H{a) < 1. 

Case 1: a > ao. Then bzi < (a + 2)(a + 1)"^ • d2{a + 1 ) , hence bzi < 1 
by (3.16), hence Z2/Z1 > 6z2- Thus one should accept 2:2 iff 2̂2 > H{a)/b, 

Case 2: a < QQ. Then one should accept Z2 iff min {bz2^ Z2/Z1) > H{a) 
iff Z2 > H{a) • max (1/6, zi). 

Now the proof of (b) is complete. D 

Appendix. Proof of Lemma S.2. (a) Fix a and put v{z) := max [c(a), 
^(a + 1) • (z A 1)]. Then we get from (3.3) with 6 := 1 

E{a)= fQ\a,dz)v{z) = 

g{a)' \ f v{z)dz-{' H v{z)/z'''^^ dz 

Case 1: c{a) < g{a + 1), which is the first case in (3.5). Then p := 
c{a)/g{a 4-1) < 1, and simple manipulations yield 

/ v{z) dz — I c{a) dz-\- j g{a -\-l) - zdz 
Jo Jo Jp 

= [c(a)V5(a + l ) + 5(a + l ) ] / 2 . 

Moreover, since g{a -i- 1) - z > g{a -f 1) > c{a) if 2; > 1, we have 
J^v{z)dz/z''^^ = g{a + 1) • f^dz/z''-^^ = g{a + l ) / a . Now (3.5) fol­
lows in case 1. 

Case 2: c{a) > g{a + 1), which is the second case in (3.5). Then 
c{a) > g{a + 1) > g{a + 1) • (2 A 1), hence 

/ v{z)dz 4 / v{z)/z''-^^dz= / c{a)dz 
Jo Ji Jo 

/

oo 
c{a)/z°'+^dz = c{a) • (a + l)/a. 
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Now (3.5) follows in case 2. 
(b) Fix 0 < a < a. Note that g{a) = 1 — l / ( a + 1 ) is increasing in a on 

IR"*". In order to show that E{a) < E{a) we apply (3.5) and consider four 
cases, as follows. 

Case 1: c{a) < g{a H-1) and c{a) < g{a -f 1). Then 

2-E{a) = ( i - ( a 4 - l ) - 2 ) - c ( a ) 2 + l 

< (1 - (a + l ) - 2 ) . cia)"^ + 1 = 2 . E{ay 

Case 2: c(a) < g{a + 1) and c{a) > g{a + 1). Then, using 0 < c(a) < 
g{a + 1) < g{a + 1) < c(a), we get c(a)^ < g{a -f 1)^, hence 

2-E{a) = {l-{a-\-iy'')'c{af + l 

< ( l - ( a + l ) - 2 ) . p ( a + l)2 + l = p ( a + l)2 

^ (a + 2)-2 + l = (p(a + l ) - l ) 2 + 2 . p ( a + l) 
~ (a + 2)^2 < [ ( - ^ ;^)(^ ̂  2)-^ - 1]2 + 2 . c(a) 

~ (a + 2)-2 = 2 .£ ; (a ) . 

Case 3: c(a) > ^(a + 1) and c(a) < ^(a + 1). Then, using 0 < c{a) < 
c{a) < g{a 4-1) < 1, we get c{a)^ < g{a + 1)^, hence 

2'Eia) = ( l ~ ( a + l ) -2 ) . c (a )2 + l 

> (1 - (a + l ) - 2 ) . c(a)2 + 1 - 2c(a) + 2c(a) 

= ( l - c ( a ) ) 2 ^ c ( a ) V ( a + l)^ + 2 .£ ; (a) 

> (1 ~ g{a + 1))2 - ^(a + 1)V(a + 1)^ + 2 • E{a) 

= 2 . £'(a). 

Case 4: c(a) > 5f(a + 1) and c{a) > g{a + 1). Then E{a) = c{a) < 
c{a) = E{a). 

(c) Put i?(a) := g{a + 1), a € H"*". Consider on R"^ the continuous 
functions e{a) := (1 - (a + l )"^) /2 • c(a)2 + 1/2 and c(-). Then E = e on 
[c < H] := {a € H"^ : c{a) < H{a)} and E = c on [c > if]. Prom (a) 
we know that e = c on [c = H]. Since c and if are continuous, the sets 
[c < H] and [c > H] are open. 

Select ao € IR" .̂ We show that E is continuous in QQ. This is obvious 
if ao belongs to either of the two open sets [c < H] or [c> H], Thus let 
ao e[c = H] and select a sequence (an) C K"^ = [c < if] U [c > if ] which 
converges to ao for n -^ oo. 

Case 1: an € [c < fT] for n large enough. Then -B(an) = e(an) —> 
e(ao) = c(ao) = £^(ao) by continuity of e. 
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Case 2: an £ [c > H] for n large enough. Then E{an) = c{an) -^ 
c(ao) = E{ao) by continuity of c. 

Case 3: Infinitely many an's, denoted by a~, belong to [c < H] and 
infinitely many Qn's, denoted by a^, belong to [c> H], Then limn E{an) = 
-B(ao) since 

lim£'(a;[') = lim c(a;J;) = c(ao) = £"(0:0) = e(ao) 

= lim e{a:^) = lim J5(a~). D 
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Abstract 

In this paper we present a general concept for the formulation of 
the duaJ prograun which is based on generalized convexity. This is 
done in a purely algebraic way where no topological assumptions are 
made. Moreover all proofe are presented in an extreme simple way. 
A complete presentation of this subject can be found in the book of 
D. Pallaschke and S. Rolewicz [14]. 
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1 Introduction 

In this paper, we will follow the presentation of S. Dolecki, S. Kurcyusz 
and S. Rolewicz (see [3],[4],[5],[6],[7],[10],[11]) on abstract convexity and 
will study a generalized duality theory for optimization problems. All ma­
terial of this paper is taken from the book of D. Pallaschke and S. Rolewicz 
[14] and the survey paper [15], in particular the sections 1 -4 overlap with 
the paper [15]. For further references we refer to the books of A. Rubinov 
[16] and I. Singer [17]. 

We begin with the formulation of an optimization problem in a general 
context. Therefore let X^Y be nonempty sets denoted as the space of 
domain and the space of parameters and let 

TiY —>2 X 
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be a set-valued mapping. Let r~^(x) = {y eY \ x E r(y)} be the inverse 
set-valued mapping. 

Using this notation, we shall write 

min f{x) 

(P) under 

xer{yo) , voeY. 

for a minimization problem. If the optimization problem is given as usually 
by 

min f{x) 

(PO under 
9i{x) < ai ie {!,...,*:}. 

where f,gi : R*̂  —> R are continuous functions, we take for X = 
W, Y = R^and 

r.Y — > 2 ^ with (ai,...,aA:)»-> {xeU \ gi{x) <au ie {!,...,*} }. 

Throughout this paper we will use the symbol X if we deal in the space of 
domain and the symbol Y if we consider the space of parameters. 

Denote by R = RU{—oo, -hoc} the extended reals. Then the value function 
of the above minimization problem is given by 

/ r : y —^ R with /r(yo) = inf{/(x) | x G r(yo) }• 

In order to study local properties of the value function, we will introduce 
now the notion of a reference system. 

Denote by T{Y) the linear space of all real-valued functions defined on 
y. 

Definition 1.1. 
A set^ C J^{Y) is called a reference system if the following two conditions 
are satisfied: 

(i) for all CGR and all (j) £ ^ holds </> + c € ^, 

(a) for all X>0 and all (j) £ ^ holds Xcj) G ̂ . 
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Natural examples for reference systems are affine functions, convex func­
tions or DC-functions, i.e. the differences of convex functions, defined on 
a linear space. 

2 Generalized Convexity 

An essential role in convex analysis is played by the Fenchel conjugation 
and the operation of convexification. It can be shown that both operations 
do not depend on the linearity of the domain of definition, so that they can 
be extended for arbitrary reference systems. 

Definition 2.1. 
Let $ C J^{Y) be a reference system. For a function f : Y —> R the 
function 

/ * : $ _ R yjith /*((/>) = sup((^(2/)~/(2/)) 

is said to be the ^-Fenchel conjugate of f. The second $-Fenchel conjugate 
is defined as 

/ - : y ^ R ^ith r * ( y ) = sup((^(2/)-/*((/>)). 

The following properties of the $-Fenchel conjugation can be shown. 

Proposition 2.2. 
Suppose^ that Y is a nonempty setj $ C T{Y) is a reference system, / , g : 
Y —> R, c € R and 0 € $ . Then the following holds: 

(i) g^ f implies /* > p*; 

(ii) {r^c) = f*{<f>-c) = f*-c; 

(Hi) f{y) + /*(0) > (t>{y) for allyeY and all (f) e ^ 
(Fenchel'Moreau Inequality). 

Proof, (i) From g > f it follows —f>—g* Thus for every <̂  € ^ we 
have (t> — f >(j> — g^ which implies /* >g*. 

(ii) Clearly, 

( / + c)*(</.) = sup(,^(y) - f{y) -c) = snv{{4>{y) - c) - f{y)) = /*(</. - c). 
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On the other hand, we have 

(/ + c)*(<̂ ) = sup(0(y) ^ f{y) -c) = sup((/)(y) - /(y)) - c = /*((^) - c. 

(iii) By definition of the $-Fenchel conjugate we have /*(0) = supj,^y(0(y) 
—/(y)). Hence for all y € y and all 0 G ̂  we have /*(0) > <̂ (y) — /(y), 
i.e. r W + /(y)>0(2/). D 

For a function / : Y —> R we denote by 

fo,Y-^R with r{y) = sup <j>{y) 
* € • 

the ^-convexification of f. 

Theorem 2.3. (Kutateladze and Rubinov (1971),(1972),(1976), Elster and 
Nehse (1974), Dolecki-Kurcyusz (1978)) 
Let Y be a nonempty set, and $ C TiX) a reference system. Then for 
every f :Y —^ R 

/ - = fo= sup 0(y). 
^€« 

/*(^)=0 

Proof. First we will show that the following formula holds: 

/""(y) = sup (/>(y). 
/•(0)=O 

Observe that from the definition of /^ and /* the following formula follows: 

/''(y) = sup <̂ (y) = sup (^(y). 
^ < / / * ( * ) < 0 

We will now show that for every a > 0 and every <̂  € $ with /*(</>) = —a 
there exists a <̂  € ^ with <t> < ^ and /*(<^) = 0. Namely, if /*(</>) = —a, 
then we put 0 = 0 + a and from Proposition 2.2 (ii) it follows the assertion. 

Next, we will show that 

/**(y)= sup 0(y). 
/*(0)=O 

Prom the definition of /** it follows that: 

r{y) = sM<t>{y)-r{<t>))> sup {4,{y)-r{4>))= sup ^(y). 
6£^ ^ € * ^ € * 

/ • (^)=0 /*(0)=O 
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Hence we have 
r*(2/)> sup (t>{y), 

/ * ( ^ ) = 0 

In order to prove the equality, we will show that 

sup(^(y)-r(0)) = sup {<i>{y) - r m . 
/*(0)=O 

Therefore let us assume that for some a € R and 0 G $ we have /*(</>) = 
a. Then put 4> = <̂ —̂  and from Proposition 2.2 (ii) it follows that f*{4>) = 0. 
Since for every y £Y 

m-n4>) = {4>{y)-a)-r{4>-a) = m-<^-{n4>)-o) = <t>{y)-n4>), 
the required equality is proved. D 

3 Augmented Lagrangians 

The usual theory of Lagrangian multipliers is a way to transform a con­
strained optimization problem into an unconstrained one in such a manner 
that a neglect of a constraint is imposed by a penalty. 

In this section we will present a general method of constructing augmented 
Lagrangian from a given reference system $. 

Definition 3.1. 
Let A he a nonempty subset of a set X. A set of functions 

VA = {P\P:X-^R} 

is called a penalty system for AC. X if the following conditions are satis­
fied: 

(i) for all X>0 and allp e VA "we have X-p G VA] 

(ii) for all X £ A and all p GVA y^^ have p{x) < 0; 

(Hi) for all X £ X\ A there exists ap £ VA unthp{x) > 0; 

(iv) for all X G A there exists ap G VA '^ithp{x) > — oo. 

For a penalty system the following two simple propositions hold. 
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Proposition 3.2. 
Let A C X be a nonempty setj let f : X —• R and let VA be a penalty 
system for A. Then 

inf f{x) = inf [ sup (/(x) +p(x))]. 

Proof. Let us evaluate the expression L{x) = sup (/(x) -\-p{x)) at a 
P^VA 

point xo € X. 

li XQ E X\A then, by condition (iii) of Definition 3.1, there exists a 
Po ^ VA with PQ{XO) > 0. Prom condition (i) of Definition 3.1 follows then, 
that L{XQ) = +00. 

li xo £ A then, by condition (ii) of Definition 3.1, we know that for 
every p G VA we have po(^o) ^ 0. Hence, by condition (i), we conclude 
that L(xo) = /(xo). D 

Proposition 3.3. 
Let A C X be a nonempty set, let f : X —> R and let VA be a penalty 
system for A, Then 

sup inf (/(x) +p(x)) < inf [ sup (/(x) +p(x))] . 

Proof. Write 

M = sup inf (/(x) H-p(x)) and M = inf ( sup (/(x) -f p(x))). 

In order to show that Af < M we show that for every e > 0 we have 
M - ^ < M. 

By definition of the supremum, for every e > Q there exists a po ^ VA 
with M — e < inf (/(x) -f Po(^))- Hence for all x € X we have 

M_-e< f{x) -hpo(a:) < sup (/(x) + p(x)). 
P € P A 

Thus 

K-e < inf sup (/(x)+p(x)) = M. D 
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Now we will come to the construction of a penalty system from a given 
reference system. Therefore we introduce the following 

Definition 3.4. 
Let Y he a nonempty set and let ^ C !F{Y) he a reference system. A suhset 
C <ZY is called ^-convex if there exists a nonempty suhset ^ C $ such 
that for every (/) G ^ there is a real numher a<̂  G M with the property 

C = f]{yeY\cl>{y)<a^}, 

For a given reference system we can construct a penalty system in the 
following way. 

Theorem 3.5. (Dolecki-Kurcyusz (1978)) 
Let X, Y he a nonempty sets and let $ C T{Y) he a reference system. 
Moreover, let 

TiY — > 2 ^ 

he a set-valued mapping such that for every x G X the set r~^{x) is $ -
convex. 
Then for every yo EY the set 

T^nvo) = {p : X ^ R I p{x) = - sup (t>{y) + </>(yo) , < / > € $ } 
2/Gr-i(x) 

is a penalty system for r{yo). 

Proof. We have to verify the conditions of Definition 3.1 for a penalty 
system. 

(i) A • p € Vr{yo) for all A > 0 and all p e Vriyo)- This follows directly 
from the definition of p as 

p{x) = - sup (t>{y) + 0(yo) , 0 € $ 
yGr-i(x) 

and from condition (ii) of Definition 1.1. 

(ii) p{x) < 0 for all x G T{yo) and all p G Vr{yo)' To prove this statement, 
suppose that x G r{yo) is given. Then yo G r~^{x). Hence for every 
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</> € $ we have (t>{yo) < sup (f>{y), which means that for every 
yGr-i (x) 

P ̂  ^r(i/o) we have 

p{x) = - sup (t){y) + 0(2/0) < 0. 
y € r - i ( x ) 

(iii) for all XQ G X\ r(yo) there exists a p € 7̂ r(yo) with p{xo) > 0. Since 
r~^(a;o) is ^-convex and yo ^ r'"^(xo), there exists a 0 G $ with 

sup 4>{y) < 4>{yo)' Hence 
i /€r- i (xo) 

p(a;) = - sup 4>{y) + <̂ (2/o) > 0. 
yGr-i (x) 

(iv) for all xo € r(2/o) there exists a po ^ ^r(yo) with po(^) > —00. 
This means that from XQ € r(yo) it follows that yo € r""^(xo). Since 
r~^(xo) is ^-convex, there exists a representation of r~^(a:o) as 

r-'(xo) = f]{yeY\ 4>{y) < a^ } 

for some ^ C $. Hence there exists a </>o ^ ^ with sup (f>o{y) < o<̂o • 
yGr-i(xo) 

This implies 

Po(a:o) = - sup (f>o{y) + 0o(yo) > -a< ô + <̂ o(yo) > - 00 
y€r- i (xo) 

D 

Definition 3.6. 
Lei Y be a nonempty set and let $ C !F{Y) be a reference system. Then 

L{x,(t>,yo) = f{x)- sup (t>{y) + <̂ (yo) 
y € r - i ( x ) 

Z5 called the augmented Lagrangian for the minimization problem 

mvn f{x) 
(Pi) under 

xeTiyo) , yoeV, 

with respect to the reference system $. 
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Although this definition of a Lagrangian looks quite unfamiUax, it is a nat­
ural generalization of the usual Lagrangian-function for the minimization 
problem 

min f{x) 

under 

9i{x) < ai i£ {l,...,fc} 

if we take for X = W^ and V = R*̂ . In this case a corresponding set-valued 
mapping is 

r:R*^—>2(^") with r{ai,,..,ak) = {x eW \ gi{x) < a^ i = l , . . , f c} . 

For the reference system of 'positive affine functions', i.e. for 

^ = {(t>:W^ —^ R I (t>{x) = -(A,x> + c with A G R .̂, c € R }, 

and </>€$, a = (ai,...,ak) ^ R*' and for a fixed a^ = (a?,...,a^) we have 

L{x,(t>,a^) = fix)- sup (t>{a) -\- (t>{a^) 
Q€r-i(a;) 

= fix)- sup (-(A,a> + c ) - ( A , a ° ) + c 
aGr-i(x) 

= fix)- sup ( - (A,a»- (A,aO> 
QGr-i(x) 

= f{x)+ mf ( ( A , a » - ( A , a ° ) 

i = l 1=1 
k 

= fix)^^Xiigiix)-a^,), 
i = l 

Since 
T-\x) = {aGR^ \ giix) <ai, i = l,..,fc } 

and 

infa€r-i(x)((A,a» = (A, (^i(x), ...,pfc(x)>. 
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4 Duality 

We consider the following situation: 

Let X, y be a nonempty sets and let $ C T{Y) be a reference system 
and 

TiY — > 2 ^ 

be a set-valued mapping. Moreover, let 

min f{x) 

(P) under 

xGr{yo) , yo£Y, 

be a minimization problem under consideration. 

Theorem 4.1. (Dolecki-Kurcyusz (1978)) 
Let X, Y be a nonempty sets and let $ C T{Y) be a reference system. 
Moreover, let 

r:Y — > 2 ^ 

be a set-valued mapping such that for every x £ X the set r~^(x) is $ -
convex. 

Then for the minimization problem 

min f{x) 

(P) under 

xer{yo) , yoeY, 

the following statements hold: 

(1) m^L{x,<t>,yo) = -(/r)*(<^) + <̂ (yo) 

(2) sup inf i(x,<^,j,o) - ifrriyo) 

(3) inf sup L(x, 0, ^o) = (/r)(yo) 

Proof. These formulas can be proved as follows: 
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(1) We have: 

m{L{x,(f>,yo) = inf (/(x) - sup (piy) + <f>{yo)) 

= iniifix)- sup - ( _ ( ^ ( y ) ) ) + ^ ( j / o ) ) 
==̂ -̂  i/er-i(x) 

= iniifix) + inf i-<f>iy)) + 4>iyo)) 
x£X yer-^{x) 

= inf inf ( / (x) - .^(y) + < (̂yo)) xGX yer-^{x) 

ix,y)e{yer-^ix) \ xex} 

ix,y)e{xer{y) I yeY) 

= inf mi ifix)-cl>iy) + <t,iyo)) 
yeY xer{y) 

= inii ini ifix)-<f>iy)) + <f>iyo) 
yeY x€r(j/) 

= inf(/r(y)-,^(y))+,^(yo) 
y€Y 

= - supi4>iy)) - fTiy)) + 4>iyo) 
y€Y 

= -ifrri<f>) + <i>iyo) 

(2) Since by formula (1) we have 

inf X(x,.^,yo) = - ( /r) ' ( .^) + < (̂yo), 

it follows from Theorem 2.3 that 

sup inf i(a;,(^,yo) = sup((^(yo) - (/r)*(.^)) = ( /r)"(yo) = (/r)°(yo). 

(3) Since by Theorem 3.5 

^r(2/o) = {p:X-^R\ p{x) = - sup 0(y) + (t>{yo) , ( / > € $ } , 
yer-Hx) 

is a penalty system for r(2/o), by Proposition 3.2 follows that 

inf L(x,0,2/o) = i n f s u p ( / ( x ) - sup 0(2/) + 0(yo)) 
x£X xex ^^^ yer-^{x) 

= inf sup (/(x)+p(x)) 

= inf / (x)=/r(yo) . 
x6r(yo) 

D 
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5 The Dual Program 

To 
sup inf L(x,0,yo) = if^TiVo) 

corresponds the following optimization problem: 

{fry{yo)= sup 0(2/0) = sup (t>{yo)= sup </>(yo), 

because 
jn^L(x ,0 ,yo) = - ( / r ) * ( 0 ) + (/>(yo) 

holds. Hence the dual program to 

min f{x) 
(P) under 

xeT{yo) , yo^Y, 

is 

max (/>(yo) 

{D) under 

^nf^L(x,0,yo) = 0(yo) 

Let us now consider the case of a linear program. 

Let X, c € R^ and b^u £ R^ be given vectors and let A be an (n, fc)-
matrix. We consider the linear programs in the form: 

max(c, x) 

(P) under 

Ax <b, x>0 

To apply our approach, we rewrite this problem as: 

min(c, x) 

(P) under 

Ax<b 
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with c = ~c, and ^ = I I' ^ ~ I I' where Idn is the n x n-unit 

V -̂ -̂ / V 0 y 
matrix and 0 € R"". 

For the reference system of 'positive aifine functions', i.e. for 

$ = {0 : R^+'' —> R I (f){x) = -{A,x) 4- a with A G RÎ "̂ "*, a G R }, 

we have the following Lagrangian-function: 

L(x, <f>, b) = (c, x) -f (A, Ax — 6), 

where A = (A, p) G R"" x R". 

Since for fixed A the function: 

X «-• L{x, (f), b) = (c, x) + (A, Ax — b) 

is linear, it achieves a finite minimum to satisfy the the condition: 
inf L{Xy (/>, b) = (f){b) if and only if gives: 

and substituting this condition in the above minimum condition gives 

(f>{b) = -(A,6) + a = {c,x) + {\,Ax-b) 

= {-^^, x) + (A, Ax-b) = -(A, b) 
C 

i.e. a = 0. 

Hence the dual problem is: 

max—(6, A) 

,--, under 

A < 0, a > 0 
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or in a different formulation 

— min{6, A) 

under 

{-A^\ldn)(^]=-C 

A > 0 , 

because /? > 0 and therefore —A" A + p = —c gives A^^X > c. This leads to 
the problem: 

(D) ,tr 

min{6, A) 

under 

A^^X > c 

A > 0 . 

which is the usual dual of a linear program. 

Next we consider the case of a convex quadratic program: 

Let x,c ElSL'^ and b^u £R^ be given vectors and let A be an (n, fc)-matrix 
and Q a symmetric positive semi-definite (n, n)-matrix. 

We consider the convex quadratic program in the form: 

min ^ {x, Qx) -f (c, x) 

(P) under 

Ax>h, 

To apply our approach, we rewrite this problem as: 

min \ (x, Qx) + (c, x) 

(P) under 

-Ax < -h. 

For the reference system of 'positive aifine functions', i.e. for 

^ = {0 : R^ —^ R I (t)(x) = -{\x) + a with A € Rlf", a € R }, 
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we have the following Lagrangian-function: 

L(x, </), —b) = min -{x , Qx) + (c,x) 4- (A, 6 — Ax), 

In order to determine 

inf L(x ,0 , -6 ) = (f){-b) 

let us observe that for fixed A the function: 

(*) 

X »-̂  L(x, 0, —b) = -{x, Qx) H- (c, x) + (A, 6 — Ax) 

achieves its minimum at those x G R^ which satisfy the the condition: 

Qx^-c- J^'^X = 0 and A > 0. 

Substituting this condition in the above minimum condition (*) gives 

—;^{x,Qx)^l,\b) = {\b)^OL, 

which implies that a = —^{x, Qx). 

Hence the dual problem is: 

(D) 
under 

max ({A, 6) - | ( x , Qx)) 

Qx^c- Â Â = 0 

A > 0 . 

or in a different formulation 

under 

min max ((A, 6) — ^(x,Qx)) 

Qx^c^ Â Â 

A > 0 , 

because (x, Qx) > 0, for all x G R'̂ . This is the usual dual program for 
a convex quadratic program (see [9], Section 3.3.2.3). It follows from [8], 
Theorem 5.3 that the duality gap is zero (see also [13], Theorem 4.5.5). 
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1 Introduction 

AirUnes typically divide a pool of identical seats into several booking classes 
that represent e.g. different discount levels with differentiated sale condi­
tions and restrictions. Assuming perfect market segmentation, mixing dis­
count and higher-fare passengers in the same aircraft compartment offers 
the airline the potential of gaining revenue from seats that would other­
wise fly empty. If too many seats are sold at a discount price, however, 
the airline company would loose full-fare passengers. If too many seats 
are protected for higher-fare demand, the flight would depart with vacant 
seats. Seat inventory control deals with the optimal allocation of capacity 
to these different classes of demand, forming a substantial part of a revenue 
management system. 

In the early literature on seat inventory control, many models assume 
that demand for each booking class arrives during a single contiguous time 
segment. In this case the booking period can be divided into time-periods 
for which all booking requests belong to the same fare class. Only total 
demands of the different booking classes are observed. The distributions of 
the coming booking classes' demands are known and independent of each 
other (for a exception with only two fare classes see Brumelle et al. (1990)). 
Many models additionally assume that customer requests for tickets arrive 
in increasing fare order, e.g. the class willing to pay the fare Vk before rk-i 
with rk < 'f^k-i < . . . < r i . Static models then answer the question of how 
many requests of a certain booking class should be accepted. 

The static revenue management model was first introduced by Little-
wood (1972) for two fare classes and extended heuristically by Belobaba 
(1987 and 1989). Curry (1990), Wollmer (1992), Brumelle and McGill 
(1993) and Robinson (1995) provided the exact solution to the case of k 
fare classes. Lautenbacher and Stidham (1999) stressed the structure of 
the underlying Markov decision process of that model and show structural 
similarities to the dynamic model. 
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Dynamic models answer the question whether or not to accept a partic­
ular reservation request at the time of arrival. They relax the assumption 
that the demand for different fare classes arrives in a certain predetermined 
order. Instead, they allow for the possibility of interspersed arrivals of sev­
eral classes. The demand for each fare class is modelled as a time-dependent 
(Markov) process, where the interarrival times lengthen or shorten as the 
scheduled departure time approaches. Lee and Hersh (1993) and Lauten-
bacher and Stidham (1999) provide a solution to the discrete time case us­
ing a Markov decision process formulation. Liang (1999) reformulates and 
solves this model in continuous time. Kleywegt and Papastavrou (1998) 
as well as van Slyke and Young (2000) demonstrate that the problem can 
also be formulated as a (stochastic) knapsack problem. Subramanian et 
al. (1999) extend the underlying Markov decision process to incorporate 
cancellations, no-shows, and overbooking. 

For these basic static or dynamic single leg seat inventory control prob­
lems without cancellations and no-shows (or under the assumptions of Sub­
ramanian et al. (1999)) it can be shown that the optimal policy can be 
stated in terms of booking limits. 

Booking limits are controls that limit the number of seats that can be 
reserved (i.e. accepted requests) for a particular class at a given point in 
time. Thus, a booking limit 6 for a particular class at a given point in time 
indicates that it is optimal to accept further requests up to a predetermined 
level only. 

In the dynamic case without cancellations it can be shown that the 
booking limits increase for higher revenue customers. Booking limits with 
this property are sometimes called nested booking limits in the revenue 
management literature. 

Lautenbacher and Stidham (1999) introduce a so-called omnibus model 
that encompasses both the basic static and dynamic models as special cases. 
In particular, they prove optimality of a booking-limit policy. 

Brumelle and Walczak (2003) allow for semi-Markovian multiple-request 
arrivals. They allow for no-shows and overbooking but do not consider can­
cellations. Further, they also allow for some correlations between classes. 
For the special case that group requests may be accepted partially, Brumelle 
and Walczak (2003) show optimality of a (generalized) booking-limit pol­
icy, where the booking limit may depend on the type of the fare class and 
the size of the demand. In his dissertation Walczak (2001) presents a more 
general model that may account for cancellations. 

In the present paper we introduce a general model similar to the one 
of Walczak (2001) that allows for cancellations, no-shows and overbooking 
and enables us to incorporate additional environmental factors (a concept 
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similar to the state of the market in the dynamic pricing context of Aviv 
and Pazgal (2005) and stimulated by the control of queuing systems in a 
random environment as studied in Helm and Waldmann (1984)). We allow 
for batch arrivals but since it is known that structural properties fail for 
total accept/deny decisions, we assume that these batches can be partially 
accepted. 

The paper is organized as follows. In section 2, the decision problem 
is presented rigorously and reduced to a Markov decision model with an 
absorbing set. Section 3 contains the (mild and natural) conditions our 
main result, the optimality of a booking-limit rule, i.e. a decision rule / * 
with actions /*(s , i ) = min{d, b{i) — s} for s < b{i) and 0, otherwise, is 
then obtained in section 4, where s denotes the reservations already made, 
d the actual request for seats, and i an environmental state collecting all 
information about the customers, the final time to departure, the reward 
associated with each of the requested seats, and, possibly, some additional 
factors resulting from an economic or statistical environment. Further, in 
section 4, some structural results of b are given. Finally, sections 5 and 6 
are devoted to various applications and examples demonstrating the efficacy 
and scope of our results. 

Notation, We use No (N) to denote the set of all nonnegative (positive) 
integers. Given an arbitrary set S endowed with some ordering < 5 , a 
function t;: Af —> R is said to be increasing (decreasing) if s <5 5' implies 
v{s) < v{s') {v{s) > v{s^)). Further the notation ||.|{ will be used to denote 
the supremum norm, i.e. ||v|| := sup3^5 \'^{s)\ for ^W v : S —^ R. Finally, 
for all v : No —• M, we use Av{s) := v{s -hi)— t;(s), s € No, to denote the 
increase of v. 

2 The Decision Model 

We consider a nonstop flight of an airplane with a capacity of C seats that is 
to depart after a certain time T. There are fe (fc € N) booking classes with 
associated fares of 0 < r^ < rk-i < . . . < r i . At random times customers 
request a certain number of reservations d € -D := { 0 , 1 , . . . , dmax} {dmax ^ 
N) for seats of a booking class with fare r € i? := {0, fjb,..., f i} . Thus, the 
(n + l)-th request gives information on the number dn ^ D of tickets (the 
costumer is interested in) and the reward r-n ^ R that is offered for each of 
the dn tickets. It is to decide how many of these requested tickets should 
be actually sold. 
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2.1 The Environmental Process and the Arrival of Requests 

Let the times of a request result from the realization of an environmental 
process {En) with finite state space E. Some examples will be given later. 
In particular, let the (n + l)-th request correspond to stage n of the en­
vironmental process (En). We suppose that dn and r^ are realizations of 
random variables Dn and Rn, respectively, with joint distribution 

VeA^n^rn) : = P{Dn = dn, Rn = Tn \ En = en), 

which may depend on the environmental state en- On the other hand, 
the environmental process is assumed to be correlated with the realized 
demand dn and the realized reward rn in such a way that the distribution 
oiEn-^i, 

'^Cn.dn.rnC^n+l) • = P{En-\-l = ^n+l | En = en, Dn =dn,Rn= rn), 

is allowed to depend on dn and rn (in addition to 6^). 
Note that the random variables Dn, Rn, and En do not depend on 

the control of the process. Therefore we may summarize all information 
about Dn, Rn, and En in an external process (In) with finite state space 
I = D X Rx E, which can be easily verified to be a Markov chain with 
transition matrix P = (pij), where, for each i G I and j = (d^r',e') G I 
we have pij = Ki{e')rie'{d\r^), 

To realize a finite number of requests (almost sure), we suppose that the 
environmental process runs into an absorbing state, indicating the end of 
the booking process. In the revenue management setting absorbing states 
indicate that the next observable event will be fiight departure: Having 
entered an absorbing state neither more requests, nor cancellations occur; 
no additional costs or rewards may be gained. Some conditions on the 
behavior of the Markov chain {In) will be given later. At the moment we 
only exploit that it has a (nonempty) absorbing set Jo, say, i.e. for all i £ Jo 
it holds that ^j^j^Pij = 1. Further, we introduce J := {i £ I \ i ^ Jo} to 
be the complement of Jo in I and refer to J as the essential state space of 
the external process. 

2.2 Accepting Requestsj Cancellations and No-Shows 

Fix n € No. Let Sn £ S := No denote the number of reservations at stage 
n. Then, given the (n + l)-th request with demand dn and reward rn, 
respectively, a decision has to be made about the number an E A{dn) •= 
{ 0 , . . . , dn} of seats to be accepted for reservation, leading to a reward rn-cin 
and an increase of the number of reservations from Sn to Sn-^dn-
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We also consider no-shows and cancellations of reservations. In par­
ticular, the number of reservations is assumed to reduce from Sn -h an to 
5n+i < Sn-h an between stages n and n-\-l with probability ^s^+an.sr^+i' 
say, which additionally may depend on the external state in- Note, that 
for the arrival process we allowed dn to be equal to 0, what represents a 
pure cancelling event without any requests. 

To make up for the loss of reservations due to cancellations and no-
shows, Sn-^an is not bounded by the capacity C of the airplane. Thus we al­
low overbooking, which, however, is qualified by a penalty cost rp(5n, in) ^ 
0 and a terminal cost FTC^, C) ^ 0, depending on the extended state 
(̂ , C) ^ 5 X Jo upon departure. By making some reasonable assumptions 
on these penalty and overbooking costs, booking limits are obtained in an 
implicit way. 

For incorporating these costs into our model we consider at each stage 
not only the above mentioned rewards for accepting requests reduced by 
the penalty costs for ignoring the capacity restrictions of the airplane, but 
also expected costs of overbooking weighted with the probability that there 
will be no more request-events until departure. 

As already mentioned, we assume that a customer who has not cancelled 
in advance still will not show up at departure with a probability of jp^*(C), 
depending on the actual external state C at the time of departure. These so 
called "no-shows", as modelled in Subramanian et al. (1999) and Brumelle 
and Walczak (2003), can be considered within the terminal costs FT by 
setting 

Tri^X) = E^,i_pn,(^)[p^(max{0, X - C})], 

where g^{x) > 0 are the costs that stem from denying x passengers with 
reservations to board the plane at external state (^ £ JQ. These costs 
are typically 0 for x = 0 and increasing and convex in x. The random 
variable X is assumed to have a binomial distribution with parameters ^ 
andl-p^^(C). 

This modelling approach implies the usual assumptions that cancel­
lation and no-show probabilities are the same for all customers and are 
independent of the time the reservations on hand were accepted. If these 
probabilities are mutually independent across customers, the equivalent 
charging scheme (as used in Subramanian et al. (1999)) can be applied for 
modelling class dependent cancellation and no-show refunds. For simplicity 
we will not consider any refunds in the following. 
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2.3 The Underlying Markov Decision Process 

Our decision problem can be treated as a Markov decision process {MDP) 
with countable state space S x I, countable action space A := No, finite 
subsets A{d) of admissible actions in (5,1) € 5 x / , i = (d,r,e), constraint 
set K := {((5,2), a) | (5, (d,r, e)) G S x I,a e A{d)}, transition law q 
from K into 5 x / , where g((s,z),a, (s',j)) := Ql-\.a,s'Piji reward function 
r : K -^Ry given by 

f((5, z), o) := r • a — Ci{s + a) for (5, z) G 5 x J, a G A{d) 

and f((5,i),a) := 0, otherwise, where, for s G 5, i G J, 

and, finally, discount factor /? = 1. 
Let ^ := {f : Sxl -^ A\ f{s, (d, r, e)) G ^(d)} be the set of all decision 

rules. Each / G S' is thought of as a stationary policy specifying action 
a = / ( s , i) to be taken in state (5, i). 

It will be shown in the proof of Theorem 1 that the assumptions (Al) 
and (A2) to be introduced below imply the general assumption (GA) and 
condition (C) in Schal (1975). Hence the following expressions will be 
well defined: V/(5,i), the expected total reward starting in state (5,1) and 
following decision rule / , i.e. 

Vfis,i) :=E/ , ( , , i ) lf^f{{Sn,In),nSn,In)) \ (Sojo) = {s,i)\ , 

and V(5,i), the maximal expected total reward starting in state (5,1), i.e. 

V{s,i) := maxVf{s,i), {s,i) £ S x L 

A decision rule /* G 5 is said to be optimal if V/*(5,i) = V(s,i) holds for 
all (s,i) €SxL Note that Vf = 0, / G ff, and V = 0 on 5 x JQ, 

For all / G Ŝ , (s,i) G 5 X J, i = (d,r,e), all a G A{d), and all v : 
5 X J -^ R such that the following expressions are well defined, we set 

3+a 

Lv{sJ,a) := a • r - 0̂ (5 + a) + ^ gj+̂ ^̂ , X^Pij^C^', j ) 

Ufv{s,i) := Lv(5, i , / (s , i )) 

Uv{s,i) := max{Lv(5,z,a) | a G A(d)} 
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Then, for example, if (GA) and (C) in Schal (1975) are fulfilled (cf. The­
orem 4.2 and 5.3 there), V is solution to a functional equation (optimality 
equation) 

V = UV (1) 

and may be obtained by successive approximations (value iteration) 

V = lim Uvn t;o = 0 Vn = Uvn-i, n G N. 
n—^oo 

Moreover, each decision rule /* € Ŝ  maximizing the right-hand side of (1), 
i.e. for which V = Uj* V holds, is optimal. 

Our objective will be to establish optimality of a decision rule of a 
(generalized) booking-limit type. A decision rule fb^d will be called a 
booking-limit rule, if there exists a function b : J —^ A such that for all 
s £ S and i = (d, r^e) e J 

f fo ^\ /min{d, b{i) - s} s< b{i) 

> 6(^), 

which implies that the requests are accepted up to some booking limit 6(i), 
which may depend on the actual state of the external process. 

3 Assumpt ions 

Denote by Pj the substochastic matrix resulting from P by dropping the 
rows and columns of all external states belonging to Jo- Then the n-th 
power of Pj multiplied by 1, i.e. P j 1, can be thought of as the probability 
that the external process has not yet entered the absorbing set Jo at time 
n starting in J . 

(Al) There is some n G N such that | |P71| | < 1. 

It is shown in Hinderer and Waldmann (2005) (within the more general 
setting of a nonlinear operator) that assumption (Al) is equivalent to a 
large number of other conditions. So, e.g., (Al) is equivalent to postulating 
that the external process enters the absorbing set Jo in finite time with 
probability one or that the entrance time has finite moments of any order. 

(A2) For all i = (d, r,e) e J 

(i) Ci(-) is increasing and convex, 

(ii) lim^^oo Aci(5) > r. 
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Remember that / is finite and that Ct(-) is a nonnegative function. Then, 
given (A2), it easily follows that r'a—Ci{S'\-a) = Xl^lJ(^—Aci(5+^'))—Ci(5) 
is bounded from above and that there exist critical numbers 

z{i) := min{5 G 5 | Aci(s) > r } , i = {d, r, e) G J, 

which will be seen to be upper bounds for a booking limit in state {s,i), 
i.e. f*{s,i) < z{i) — s for all optimal decision rules. 

Together with Lemma 1' in Stidham (1978) we also infer from assump­
tion (A2) that, for i = (d, r, e) G J , the function maxo<a<d{^a—Ci(5+a)} is 
decreasing and concave (in 5), which, together with the following assump­
tion (A3) forms the basis for obtaining the same result for V(-,i), i £ J, 
by induction. 

(A3) For a lH € J and all increasing and convex functions h : S -^ R it 
holds that 

a'=0 

is increasing and convex. 

Assumption (Al) does not seem to be a problem in the revenue man­
agement setting, since we have a planning horizon of finite length. Part (i) 
of (A2) is satisfied by the common assumption on the penalty costs and 
terminal costs for overbooking to be increasing and convex in s for every 
i £ J. In the case of no-shows as defined above, this is true if p^(-) is 
increasing and convex for each external state C at departure (see Subrama-
nian et al. (1999)). Part (ii) is satisfied by the assumption that the costs 
of overbooking by one additional seat are at least as high as the reward 
earned by accepting the highest-revenue customer - another very common 
assumption in the literature. 

(A3) holds if the transition matrices (^J^/), i € J , are stochastically 
increasing and convex in the sense of Shaked and Shanthikumar (1988). 
This needs to be checked in concrete applications. E.g. it is known to hold 
if the reduction of the number of customers can be modelled by a binomial 
distribution (see Example 4.1 in Shaked and Shanthikumar (1988)). 

4 Optimality of a Booking-Limit Rule 

We are now in a position to state and prove our main results. 

Theorem 1. Assume (Al) to (A3). Then there exists an optimal booking-
limit rule J i.e. an optimal decision rule f^ € 'S, with 

b{i) < z{i), i G J. 
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Proof. Since / is finite, we have 7(5) := max^ejCi(5) < 00, 5 G 5 , and 
Zmax '= maxi^j z{i) < 00. Now, by letting / = 0, it easily follows that 

V{s, i) > Vf{s, i) > -7(5) f ; P ; i ( z ) , (5, i)GSxJ, 
n=0 

On the other hand, since f((5, i), a) is bounded from above by /x < 00, say, 
we have 

0 0 

Vis,i)<fi^Pn(i), {s,i)eSxJ. 
n—0 

Finally, for n = km-\-£, using | |P71| | < (||P71||)*^ • | |PJ1| | , assumption 
(GA) and condition (C) in Schal (1975) are easily seen to hold. 

Now, by essentially making use of the same arguments as given in the 
proof of Theorem 4.1 in Helm and Waldmann (1984) for a controlled queue-
ing system, the optimality of a decision rule of a booking-limit type follows 
by induction. D 

Under the following assumption, it can be shown that the booking limits 
are independent of the observed demands and that they are increasing in 
the observed reward (for any environmental state). 

(A4) Ki{,) = Kei), Ci{.) = Ce(.), and qi^, = gj^,, 5,5' € 5 , depend on 
i = (d, r, e) only through e. 

Theorem 2. Assume (Al) to (A4)' Then b{i) = 6(r, e) depends on i = 
(d, r, e) only through r and e and for r < r ' , e = e' we have 6(r, e) < b{r\ e). 

Proof Fix i = (d, r, e) and i^ = (d', r', e') with r <r^ and e = e'. For 5 E 5 
set 

« ; e ( s ) : = C e ( 5 ) - ^ 9 , V E « e ( « " ) E '7e"(d",r")F(s",(d",r",e")) . 

Then V{s^ i) = maxo<a<d{7'a — We{s + a)}. Now, b{i) can be characterized 
as an action ao, say, such that both 

ra — We{s + a) < r{a + 1) — We{s + a -f 1), a < ao, 

and 
ra — We{s + a) > r(a + 1) — t/̂ e(5 -f a -f 1), a > ao, 

hold, from which we infer that b{i) is independent of d. 
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If 6(r,e) = 0, then 6(r',e) > 0 trivially holds. Thus let 6(r,e) > 0. 
Then, for 5 G 5, 

Awe{s -ha) <r, a < 6(r,e), 

and, since r < r ' by assumption, 

Awe{s -\-a) <r^, a < 6(r, e), 

too, which, finally, gives 6(r', e) > 6(r, e). D 

5 An Application to Standard Models 

Both the basic static and dynamic model of seat inventory control can be 
easily verified to be special cases of our general approach. 

5.1 The Static Model 

Recall that the decision process in the static model is as follows: At the 
time the total demand Dm for fare class m (with reward fm for each seat) 
is observed, the airline determines the number am of requests to accept for 
reservation in order to maximize the total expected reward. Overbooking 
is not allowed, cancellations as well as no-shows are not considered. 

Let l , . . . , fc be the fare classes under consideration. Then the static 
model results from our general model by choosing E = { 0 , 1 , . . . , fe} and 
letting «i(e') = Ke{e') = 1 for e' = max{0, e — 1} and 0, otherwise. The 
reward Rn is given (a.s.) by the reward fm of the actual fare class. Hence 
rjeid, r) = P{De = d), if r = re? and 0, otherwise. 

Note that Jo = {(d, r, e) G / | e = 0}. Since cancellations are not 
allowed, we have ql g, = I for s' = 5 and 0, otherwise {s £ S, i £ J). To 
avoid overbooking, let Tp{s,i) = p^ max{0, s — C} , (5,i) € 5 x Jo, where 
p > 0 is sufficiently large (e.g. p > fi - C) that it is suboptimal to make 
a decision leading to a total number s -{• a > C oi reservations. rT(CjC) 
equals 0 for all ^ € 5 and C ^ Jo-

It easily follows that HPjlH = 0. Thus assumption (Al) holds. Since 
Ci{s) := rp(5 , i ) = p • max{0, 5 — C} is increasing and convex and it 
holds that Aci{s) = p > r for 5 > C, also assumption (A2) is fulfilled. 
(A3) holds trivially, since g* ̂ , = 1 for 5 = 5' by assumption. A similar 
argument verifies (A4) to hold. 

Hence, by applying Theorems 1 and 2, there exists an optimal booking-
limit rule /^ , which can be rewritten as 

. / , X I min{dTn, bm - Sm} Sm, "̂  ^m 
Jm\Smj(^m) — \ ^k -^ L 

0 Sm>Om 
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for every class m = fe,..., 1. 
For a more intuitive interpretation: If, for class m(?n = fc,A: —1, . . . ,1 ) , 

there is a demand dm> the airline accepts am = min{dm, bm — Sm} requests 
for reservation (in addition to the Sm reservations already made). The 
result is well-known (see, e.g., WoUmer (1992) or chapter 2.2 in Talluri and 
van Ryzin (2004)). 

Most static revenue management models do not consider cancellations or 
no-shows. Talluri and van Ryzin (2004), chapter 4.4, introduce extensions 
for incorporating those effects under the assumptions that cancellation and 
no-show probabilities are the same for all customers, are mutually indepen­
dent across customers and are independent of the time the reservations on 
hand were accepted. They assume that there is a certain probability Pm 
with which each of the Sm + am reservations on hand is cancelled before 
the next class requests arrive. Then they can show again the optimality of 
a booking-limit rule with limits that depend only on the current booking 
class m. 

Note that still Jo = {(d,r, e) G / | e = 0}. But since cancellations are 
allowed, our probabilities QlZ-ham,Sm+i ^^^ ^ reduction from state Sm-^dm to 
state 5m+i result now from a binomial distribution with parameters Sm-^cbm 
and (l—pm)' Since no-shows and overbooking are allowed, we model F T , 
as mentioned above, by setting F T ( $ , C) = E^,i-p'**(c)bc('^^'^{0» ^ "" ^})-
^^(•) is assumed to be an increasing and convex function with ^^(0) = 0 and 
Ag^{x) > /9, a; = 1 ,2 , . . . , where p > 0 is sufficiently large (e.g. p > fi • C) 
that it is suboptimal to make decisions leading to a number x > C of 
reservations at time of departure for every external state C-

To reduce the computational burden and to simplify analysis, an over­
booking pad a is often assumed. This maximum overbooking level results 
in an additional state constraint 0 < s < C -\- a and can be enforced by 
setting Fp(5,z) = p - max{0, s — C — cr}, (s,i) ^ S x JQ, where p > 0 is 
chosen as above. 

The new cost function Ci{s) is increasing and convex and it holds that 
Aci(s) = p > r for s > C 4- cr. So assumption (A2) is fulfilled. Since 
binomial distributed random variables are stochastically increasing convex 
and thus (A3) is fulfilled, we again get the optimality of a booking-limit 
rule immediately from Theorem 1. Since (A4) remains to be fulfilled, we 
get from 2 that the booking limit only depends on the environment, the 
current booking class m. 

5,2 The Dynamic Model 

Dynamic models relax the assumption that the demand for different fare 
classes arrives in a certain predetermined order, but allow for interspersed 



124 Christiane Baxz and Karl-Heinz Waldmann 

arrivals of requests for several classes. This arrival process is assumed to be 
Markovian and is defined independently of any seat sale policy. The other 
assumptions of the static model are retained. We only consider the case 
without group bookings and state the discrete time case as introduced by 
Lee and Hersh (1993) and Lautenbacher and Stidham (1999). 

Thus within the setting of a dynamic model the decisions to be made 
can be described as follows: A request for (exactly) one seat is observed at 
times t = T,T — 1, . . . ,1 before departure. (The time periods are chosen 
so that the probability of more than one request per period is 0.) The 
airline has then to decide whether or not to accept this request knowing 
the class m € {1,...,A:} of the request and thus the associated reward 
frn- For modelling the event of no customer arrival the artificial class 0 is 
constructed with ro = 0 (so that X]m=o ^{^t = ^m) = 1 for all t). 

The dynamic model results from our general model by choosing E = 
{ 0 , 1 , . . . , T} and letting Ki(e') = «e(e') = 1 for e' = max{0, e — 1} and 0, 
otherwise. The demand Dn is equal to 1 (a.s.). Hence r]e{d^ r) = P{Re = r), 
if d = 1, and 0, otherwise. 

Note that Jo = {{d,r,e) e I \ e = 0}. Since cancellations are not 
allowed, we have gj ,̂ = 1 for s' = s and 0, otherwise (5 € 5, i € J). To 
avoid overbooking, let rp(5,i) = p- max{0, 5 — C}, (5,i) € 5 x Jo, where 
p > 0 is sufiiciently large (e.g. p > f\ - C) such that it is suboptimal to 
make a decision leading to a total number 5 4- a > C of reservations. There 
are no terminal costs. 

It easily follows that ||-Pjl|| = 0. Thus assumption (Al) holds. Since 
Ci{s) := Tp{s^i) = p • max{0, s — C} is increasing and convex and it 
holds that Aci(5) = p > r for 5 > C, also assumption (A2) is fulfilled. 
(A3) holds trivially, since q\ ^, = 1 for 5 = 5' by assumption. A similar 
argument verifies (A4) to hold. 

Hence, by applying Theorems 1 and 2, there exists an optimal booking-
limit rule /^, which can be rewritten as 

{: [0 St > btin) 

for every t = 1, . . . ,T . 
For a more intuitive interpretation: If, at time t ( t = T , T — 1 , . . . , 1 ) , 

there is a request with reward rt^ the airline accepts the request for reserva­
tion, if St < btin)^ and reject it, otherwise. (Thus the decision whether or 
not to accept the request depends on the number St of reservations already 
made, the associated reward rt^ and the final time t to departure.) 

Moreover, by again applying Theorem 2, it additionally follows that the 
booking limits are nested, i.e. bt{r) < bt{r') for all r <r' and all t. 
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In this (as well as in the corresponding continuous time) setting it is 
well-known (see, e.g., Lee and Hersh (1993), Talluri and van Ryzin (2004), 
chapter 2.5) that the optimal policy is of (time- and class-dependent) nested 
booking-limit type. 

Subramanian et. al. (1999) introduce cancellations, no-shows and over­
booking. Again, it is assumed that cancellation and no-show probabilities 
are the same for all customers, are mutually independent across customers 
and are independent of the time the reservations on hand were accepted. 
Further they assume that there is a certain probability pt with which each 
of the St H- at reservations on hand is cancelled before the next class request 
arrives in order to show that the optimal policy is of a booking-limit type. 

If we chose the terminal costs as in the static model with cancellations 
and no-shows, (A2) is fulfilled. Let the probabilities Ql\^at,st+i ^^ ^ ^^ 
duction from state St + at to state 5t+i form a binomial distribution with 
parameters St-{-at and {1—pt). Then (A3) is fulfilled and we again get the 
optimality of a booking-limit rule immediately from Theorem 1. Together 
with Theorem 2 the booking limits are (independent of the demand and) 
monotone in r, i.e. nested with bt{r) < bt{r') for all r <r' and all t. 

6 Examples of a Random Environment 

Still, we have not answered what the environment {En) could stand for (in 
addition to a pure time-parameter). Thus, in this section, our objective 
will be to demonstrate the great versatility of the environmental process. 
To avoid technical difficulties and cumbersome notation we should often 
restrict attention to simple situations dealing with one specific topic only. 
Clearly, most of these features can also be realized simultaneously. 

6.1 Exogenous Effects Based on the Evolution of Markov Chain 

Assume {En) to be an exogenous Markov chain with state space E and 
transition matrix P ^ , which is independent of the arrival process of the 
customers. 

This Markov chain might represent the overall economic cycle or the 
change in currency exchange rates. Such factors might influence the book­
ing behavior of customers with respect to all, the number of requests at 
a certain point in time, the booking classes requested, the cancellation 
probabilities, and, finally, the terminal costs. 

Other uncertain effects like the recovery in tourism in regions that suf­
fered from natural catastrophes or terrorist attacks might also be modelled 
by such an external Markov chain. 
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6.2 Seat Inventory Control Under Uncertainty 

For new routes or for time changes of flights there is often some uncertainty 
about the transition matrix (pij) of the external process (/n). For example, 
one of the following objects (or combinations of it) may be partially known 
only: 

(i) the transition matrix P^ of the exogenous Markov chain considered 
above, 

(ii) the distribution of the demands Dn, provided that they are i.i.d. 
random variables, 

(iii) the distribution of the fare classes Rn, provided that they are i.i.d. 
random variables. 

To illustrate the idea of an adaptive control of such a system under 
uncertainty, let the rewards RQ^RI,,,. be i.i.d. random variables with 
distribution P{Rn = r) = 'tp'^{r)y r G ii, which is known up to some 
unknown parameter t? € G. 

Handling the uncertainty about t? from the Bayesian point of view, some 
probability measure g on (the Borel (j-algebra of) G is supposed to be given. 
Based on the prior information g and the observed rewards ro , . . . ,rn- i , 
the update (posterior information) gn then gives the actual information 
about 1? at stage n. 

Finally, by considering the augmented environmental states (cn, gn) (in 
the reduced decision model under risk) there is a (Bayes-) optimal decision 
rule, which is of a booking-limit type with limits b{in,gn) additionally 
depending on gn-

6.3 General Demand Patterns 

The construction of the external process enables us to consider dependen­
cies between the actual demand and the demand observed at earlier stages. 

For example, let Cn = (ei,n,.. .,eA:,n) denote the vector of the total 
demands ei,n,. • •, ek,n of the tickets for the fare classes 1 , . . . , A: up to stage 
n — 1. Then, by updating Cn to 

Cn+l = (6l ,n + dn ' Sf^i.r^i - • • > ^k,n + ^n ' Srk^rn) 

(with Sij = 1 for i = j and 0, otherwise), general demand patterns can be 
modelled easily. 

Clearly, this environment has to be augmented by a pure time-parameter 
in order to fulfill (Al). 
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Immaterielle Input-Output-Systeme 

Werner Dinkelbach 

BWL, insbesondere Operations Research 
Universitat des Saarlandes 

1 Input-Output-Systeme 

„Der Sinn aller betrieblichen Betatigung besteht darin, Giiter materieller 
Art zu produzieren oder Giiter immaterieller Art bereitzustellen. Giiter 
materieller Art bezeichnen wir als Sachgiiter oder auch als Sachleistungen, 
Giiter immaterieller Art als Dienste oder Dienstleistungen" (Gutenberg 
1951, S. 1). 

Ein Vorgang, der zu Veranderungen von materiellen oder immateriellen 
Giitern fiihrt, wird Transformation (oder Transformator, Throughput, o.a.) 
genannt (vgl. Abbildung 1). Die eingesetzten wie auch die ausgebrachten 
Giiter lassen sich durch die Angabe der Merkmalsauspragungen, die im 
Hinblick auf das zu befriedigende Bediirfnis und die gewahlte Transforma­
tion wesentlich sind, charakterisieren. Diese Merkmale konnen qualitativ, 
quantitativ oder auch sowohl qualitativ als auch quantitativ sein. 

Input 

Transformation 
Transformator 

Throughput 
Output 

Abbildung 1: Input-Output-System 

Ein Input-Output-System kann in erster Annaherung als ein spezielles Sys­
tem aufgefasst werden, das Giiter als Input aufnimmt und diese Giiter in 
transformierter Form als Output wieder abgibt, wobei Input und Output 
durch Beziehungen in unterschiedlicher Weise verkniipft sind. Ein Input-
Output-System ist ein System aus den drei Komponenten Input, Trans­
formation und Output, bei dem zwischen den Komponenten Input und 
Transformation einerseits sowie zwischen Transformation und Output an-
dererseits ganz bestimmte Beziehungen bestehen (vgl. Abbildung 1). Statt 
von Input-Output-Systemen spricht man auch von Input-Output-Modellen 
als einer formalen Abbildung von realen Phanomenen mit einer analogen 
dreiteiligen Struktur. 
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Unter einem materiellen Gut wird hier ein physisches Gut verstanden, 
das einen messbaren okonomischen Wert hat. Materielle Giiter heifien auch 
Sachgiiter. Unter einem immateriellen Gut wird hier ein nichtphysi-
sches Gut verstanden, dem ein messbarer okonomischer Wert zugemessen 
wird. Immaterielle Giiter werden iibUcherweise auch als Dienstleistun-
gen bezeichnet. - Immaterielle Giiter sind in erster Linie Informationen 
und menschliche Arbeitsleistungen. Dadurch, dass Informationen, etwa ein 
Zeugnis, ein Flugticket oder eine Bilanz, auf Papier geschrieben werden, und 
dadurch, dass eine Krankenpflegerin einen Patienten im Rollstuhl transpor-
tiert oder ein Cellist eine Sonate spielt, wird die menschliche Arbeit nicht 
zu einem materiellen Gut (vgl. Dinkelbach/Rosenberg 2004, S. 4fF). - Im 
Abschnitt 2 werden ausschliefilich immaterielle Input-Output-Systeme vor-
gestellt, die dann im Abschnitt 3 als Dienstleistungen interpretiert werden. 

2 Immaterielle Input-Output-Systeme 

Zu den immateriellen Input-Output-Systemen gehoren solche Input-Out­
put-Systeme, mit denen vor allem immaterielle Inputgiiter in immaterielle 
Outputgiiter transformiert werden. Zwar umfassen hierbei der Input und 
der Output vielfach auch materielle Giiter, die aber fiir den Output des 
Systems nicht pragend sind. Alle vier immaterielle Input-Output-Systeme 
illustrierende Beispiele dieses Abschnitts basieren auf Veroffentlichungen 
von Klaus Neumann, Je zwei der Beispiele sind deterministisch bzw. sto-
chastisch. 

2.1 Deterministische immaterielle Input-Output-Systeme 

2.1.1 Prognoseverfahren 

„Bei den . . . Prognoseverfahren handelt es sich um Verfahren der Zeit-
reihenanalyse. Hierbei wird etwa aus der beobachteten Nachfrage in der 
gegenwartigen Planungsperiode t und den vorangehenden Perioden t—l^t— 
2 , . . . auf die Nachfrage in der folgenden (t + l)-ten Periode geschlossen . . . 

. . . Ein sehr einfaches, in der Praxis haufig angewandtes Prognosever­
fahren ist die Methode des gleitenden Durchschnitts,, (Neumann 1996, S. 
lOf). 

Die Anzahl der immateriellen Ergebnisse (Messungen der letzten Peri­
oden z.B. Verbrauche an materiellen WerkstofFen in einer Maschinenfabrik) 
konnen als Input eines Input-Output-Systems betrachtet werden. Dieser 
immaterieller Input wird durch ein numerischen Verfahren in den immate-
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riellen Output - hier prognostizierte Verbrauchsmengen eines Werkstoffes 
in der kommenden Periode - transformiert. 

Ergebnisse 
der letzten 
Perioden 

—> 
Methode 

des gleitenden 
Durchschnitts 

Input Transformation 

Ergebnis 
der kommenden 

Periode 

Output 

Abbildung 2: Prognoseverfahren 

Durch den Einsatz der Methode des gleitenden Durchschnitts als Transfor­
mat ion (-sfunkt ion) errechnet sich der einelementige deterministische Out­
put aus dem mehrelementigen deterministischen Input. Der Output ist in 
diesem Fall das Ergebnis einer elementaren Rechenaufgabe. Sie kann auch 
als degeneriertes Optimierungsproblem mit einelementiger Alternativen-
menge, das sich als deterministisches immaterielles Input-Output-System 
modellieren lasst, formuliert werden (vgl. Abbildung 2). 

2.1.2 Kapitalanlage 

„Ein Lager hat die Funktion eines Puffers innerhalb des Giiterstromes, 
der bei einem Produktionsprozefi (oder Distributionsprozefi) vom Ein-
kauf iiber gegebenenfalls verschiedene Produktionsstufen zum Verbraucher 
fliefit" (Neumann und Morlock 2002, S. 621). 

Geldvermogen 

Konto-Gebiihr 

—> Anlage —> 
Geldvermogen 

Zinszahlung 

Input Transformation Output 

Abbildung 3: Kapitalanlage 

Die Molekularbiologie-Studentin Jasmin verfiigt iiber ein Geldvermogen 
von 20.000 $. Sie beabsichtigt, dieses Vermogen flir ein Jahr als Festgeld zu 
3% p.a. gebiihrenfrei bei der A-Bank oder zu 4,5% p.a. und einer Konto-
gebiihr pro Jahr von 1%, die sofort zahlbar ist, bei der B-Bank anzulegen. 
Ihr Ziel ist es, ihr Vermogen zu maximieren. 



132 Werner Dinkelbach 

Dieses als Kapitalanlage zu bezeichnendes Input-Output-System hat als 
wesentlichen Input die Faktoren einzuzahlendes Geldvermogen und zu zah-
lende Kontogebiihren, wobei in der A-Bank die Gebiihr null $ betragt. Die 
Transformation lasst sich durch eine Wachstumsfunktion, die in Abhan-
gigkeit vom Input und der Zeit definiert ist, problemadaquat abbilden. Sie 
gibt an, auf welchen Betrag das angelegte (gelagerte) Geldvermogen in 
einem Jahr anwachst. Der immaterielle Output nach Ablauf eines Jahres 
besteht aus den zwei Komponenten, dem zu erhaltenden Geldvermogen und 
den zu beanspruchenden Habenzinsen (vgl. Abbildung 3). - Beriicksichtigt 
man noch die Zielsetzungen der Studentin, dann kann auf der Grundla-
ge des skizzierten, immateriellen Input-Output-Systems das Problem als 
deterministisches Optimierungsmodell formuliert werden. 

2.2 Stochastische immaterielle Input-Output-Systeme 

2.2.1 Abnahmepriifung 

„Bei der Abnahmepriifung ... steht die Uberpriifung der Qualitat einzelner 
Produkte im Vordergrund. Hierbei wird getestet, ob ein (Fertigungs-)Los 
eines (Vor-, Zwischen- oder End-)Produktes einem geforderten Standard 
entspricht oder nicht. Hierzu dienen so genannte Priifpldne, die angeben, 
wie grofi bei vorgegebenem Losumfang die Anzahl der dem Los zu entneh-
menden Stiicke, der Stichprobenumfang^ sein soil und unter welchen Bedin-
gungen das Los akzeptiert werden kann" (Neumann 1996, S. 280). 

Auf der einen Seite wird eine Abnahmepriifung bei einer Massenfertigung 
von weniger wertvollen materiellen Giitern selten die gesamte Produkti-
onsmenge umfassen. Auf der anderen Seite ist eine umfassende Abnahme­
priifung aller produzierten Einheiten bei gefahrlichen, insbesondere explo-
siven materiellen Giitern oft gesetzlich vorgeschrieben. 

Stichproben von 
PKWs durch die 
Verkehrspolizei 

Input 

—> 
Untersuchung 

durch 
TUV 

Transformation 

^ 

c 
\ 

PKWs 
ohne Mangel 

PKWs 1 
mit Mangel 

Output 

Abbildung 4- Abnahmepriifung 

Auf der vielbefahrenen Bundesstrai3e von Astadt nach Bedorf haben sich 
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in den letzten Monaten unerklarlich viele PKW-Unfalle ereignet. Die Ver-
kehrspolizei vermutet auf Grund gewisser Hinweise, dass PKWs in die-
ser Gegend vielfach nicht vorschriftsmassig gewartet zu sein scheinen. Sie 
erinnert sich an einen TUV (Technischen Uberwachungs-Verein), der nur 
unweit von der genannten Bundesstrasse in Caberg liegt. Polizei und TUV 
vereinbaren, fiir zwei Monate wochentlich an zwei jeweils verschiedenen Ta-
gen eine Stichprobe von 5 PKWs aus dem fliefienden Verkehr auszuwahlen 
und auf Sicherheitsmangel zu untersuchen (stochastischer Input). Der 
TUV priift ohne Verzogerung die sicherheitsrelevanten Merkmale dieser 
Fahrzeuge (Transformation). Soweit bei einer Uberpriifung keine Mangel 
erkennbar sind, kann ein PKW, so wie er gekommen ist, die Priifstation 
wieder verlassen, d.h., es liegt keine Veranderung des Informationsstandes 
vor (Input und Output sind identisch). Anderenfalls werden PKWs mit 
Mangel einer Werkstatt iibergeben, die eine Reparatur oder eine Entsor-
gung in die Wege leitet. Der immaterielle Zustand des Fahrzeugs hat sich 
verandert. In diesem Fall unterscheiden sich Input und Output. Der Out­
put des Systems ist stochastisch. 

2.2.2 Stochastische Lagerhaltung 

„Ein Lager kann als ein Puffer irgendwo innerhalb eines Giiterstromes auf-
gefafit werden, der vom Produzenten zum Verbraucher fliefit. Es dient bei-
spielsweise dazu, Produktions- und Nachfrageschwankungen auszugleichen, 
es kann einen gewissen Zeitausgleich zwischen dem Eintreffen und Verteilen 
von Gutern an einem bestimmten Ort schaffen" (Neumann 1977, S. 202). 

Eine bekannte Maschinenfabrik produziert u.a. hochwertige Rasenmaher 
fiir private Nutzung. Der Absatz fallt jedes Jahr im Wesentlichen in die 
Sommerzeit, wobei mit Absatzschwankungen zu rechnen ist. Auf der einen 
Seite kann die Nachfrage die Fertigung mengenmaBig libersteigen, so dass 
dem Hersteller einen Erlos entgeht, der im allgemeinen als Fehlkosten (Fehl-
mengenkosten, c/) bezeichnet wird. Auf der anderen Seite ist es nicht aus-
geschlossen, dass ein Teil der Produktion nicht im gleichen Jahr verkauft 
werden kann und bis zum Verkauf im nachsten Jahr gelagert werden muss, 
wofiir Lagerkosten (Lagerhaltungskosten, Q ) anfallen. 

Wenngleich die Anzahl der Rasenmaher eigentlich nur durch naturliche 
Zahlen gemessen werden kann, wird in der Literatur - und auch hier -
zur vereinfachten Problemlosung die Zahl der produzierten Rasenmaher 
mit X G R+ gemessen. Damit belaufen sich die zufallsabhangigen Lager­
haltungskosten fcf(x;7) mit der vom Zufall abhangigen Nachfragemenge 
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7 G r c R + (vgl. Abbildung 5): 

ki{x;y):=l Q ( ^ - 7 ) fur x - 7 > 0 
1 0 (x — 7) fiir a: — 7 < 0. 

Die Fehlmengenkosten kf{x;^) lassen sich analog durch 

kfixn):=i '̂  
c/(7 — x) fur 7 — X > 0 

(7 — x) fiir 7 — X < 0 

berechnen (vgl. Abbildung 5). Die erwarteten zu minimierenden Gesamt-
kosten lauten damit: 

Daten: 
ci := Lagerkosten 
Cf := Fehlkosten 

X := Herstellmengd 
7 := stoch.Nachfraga 

Stock. Zielfunktion 

ci{x-y) 
fiir X — 7 > 0 

c / ( 7 - x ) 
fiir 7 — X > 0 

Erwartungswert 
derjdhri Kosten: 

|£;[fci(x;7)+fe/(x;7) 

Input Transformation Output 

Abbildung 5: Stochastische Lagerhaltung 

In der Literatur ist es in diesem Zusammenhang vielfach iiblich, mit der 
Normalverteilung zu arbeiten. Geht man in diesem Beispiel von /x = 100 
und a^ = 625 sowie von ci = 345 € und c/ = 655 € aus, dann fuhrt die opti-
male Losung zu x w 110 Stuck mit einem minimalen Kostenerwartungswert 
in Hohe von w 9.211 € . 

Das dargestellte stochastische Lagerhaltungproblem ist nicht nur im Zu­
sammenhang mit erweiterten Lagerhaltungsmodellen verbreitet, sondern 
auch als stochastische Entscheidungsmodelle, aber auch als Demonstratio-
nen fiir Input-Output-Systeme von Interesse. Der Input umfafit als Daten 
die iiblichen Kosten (ci^Cf)^ die zu definierende Herstellungsmenge (x) als 
zugehorige Entscheidungsvariable sowie zur Definition der stochastischen 
Nachfrage (7). Die Transformation(sfunktion) betrifft die stochastische 
Zielfunktion, die zusammen mit dem Erwartungswert der jahrlichen Kosten 
den Output generiert. 
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3 Dienstleistungen versus immaterielle Input—Output—Systeme 

Was aber sind Dienstleistungen? Einerseits finden sich in der Literatur 
zahlreiche Versuche von Dienstleistungsdefinitionen. „In den Beispielen ... 
werden materielle Giiter hergestellt bzw. gelagert. ... In den Beispielen 
... sind der Input und der Output nicht materielle Giiter" (Dinkelbach 
1981, Sp. 750). „Um den derzeitigen Stand der produktionstheoretischen 
Durchdringung des Phanomens ,Dienstleistung' aufzuzeigen, wird im fol-
genden die produktionswirtschaftliche Beschreibung von Produktionen als 
Systeme mit den Elementen Input, Throughput und Output herangezogen" 
(Corsten/Gossinger 2005, S. 154). „Eine Dienstleistung stellt die Produk-
tion eines Biindels iiberwiegend immaterieller Giiter unter Einsatz inter-
ner und externer Faktoren dar" (Schweitzer 2003, S. 62). „Oft sind Sach-
und Dienstleistungsprozesse aus technischer Sicht sogar identisch" (Dyck-
hoff 2003, S. 721). Dem stehen allerdings andererseits einige allgemein dis-
kutierbare Formulierungen gegenuber. „Eine eingehende Analyse zentra-
ler Forschungsarbeiten zu Dienstleistungen zeigt, dafi eine allgemeingiiltige 
Definition des Begriffs Dienstleistung in der Literatur nicht existiert" (Wei-
ber/Billen 2005, S. 89). 

In Fortfiihrung des Beispiels 2.1.1 ist festzuhalten, dass die Verbrauche ei-
ner bestimmten Abteilung durch Mitarbeiter oder automatisch iiber einen 
gewiinschten Zeitraum additiv zu ermitteln sind, um eine fiir die Zukunft 
gewiinschte Kennzahl berechnen zu konnen. Es handelt sich um eine ein-
teilige, zweiteilige oder dreiteilige, interne oder externe, aber stets um eine 
immaterielle Dienstleistung zur Planungunterstiitzung. 

Um eine deterministische optimale Kapitalanlage ringt Jasmin im Input-
Throughput-Output-System des Beispiels 2.1.2. Sie berechnet die Endwerte 
nach einem Jahr und bestimmt den maximalen Endwert. Das konnte auch 
die Aufgabe eines Finanzberaters - eines Finanzdienstleisters - sein. 

Im Beispiel 2.2.1 stehen Tatigkeiten des TUV (Technischer Uberwachungs-
Verein) im Mittelpunkt. In der Inputphase geht es darum, systematisch 
Stichproben aus dem PKW-Verkehr zu gewinnen. Die ausgewahlten PKWs 
sind auf Sicherheitsmangel zu priifen. Durch die Priifung werden die im-
materiellen Merkmale der PKWs verandert und als Output erhalt man in 
Abhangigkeit vom Priifungsergebnis PKWs, die unterschiedlichen Katego-
rien zugeordnet sind. Die vom TUV durchgefiihrten Aktivitaten sind imma-
teriell, es sind Dienstleistungen, die zu immateriellen Ergebnissen fiihren. 
Der TUV produziert nichts materielles, er ist ein typisches Dienstleis-
tungsunternehmen. 
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Das stochastische Lagerhaltungsmodell des Beispiels 2.2.2 beriihrt auf der 
einen Seite den Hersteller: er muss per anno die erwarteten Gesamt-
kosten ermitteln und die zugehorige kostenminimale Herstellmenge be-
stimmen. Auf der anderen Seite melden Kaufer hin und wieder zufallig 
ihre Nachfragewiinsche an. Da die stochastische Nachfrage weder dem Her­
steller noch einem Dienstleistungsunternehmen bekannt sein diirfte, kann 
moglicherweise letzteres auf Grund langjahriger Erfahrung gewisse Andeu-
tungen geben. - Wenn der Sachbearbeiter fiir Lagerhaltungsprobleme das 
Unternehmen spontan aus familiaren Griinden verlassen miisste, bliebe 
dem Firmenchef lediglich als Ersatz, eine Dienstleistungsgesellschaft 
mit OR-Kompetenz anzuwerben. 
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1 Introduction 

When scheduling its audit-staflF, the management of an auditing firm en­
compasses a number of decisions. These may be grouped into several cat­
egories which differ markedly in terms of organizational echelon involved, 
length of the planning horizon and the planning periods, degree of aggre­
gation of the audit tasks, degree of detail of the required information, and 
decision objective. However, traditional audit-staff scheduling models (Bal-
achandran and Zoltners 1981, Chan and Dodin 1986, Gardner et al. 1990, 
Dodin and Chan 1991, Drexl 1991, Dodin and Elimam 1997, Dodin et al. 
1998, Brucker and Schumacher 1999, RoUand et al. 2005) are single-level 
models which try to construct a direct assignment of auditors to tasks and 
periods. To facilitate algorithmic treatment, all these models are more or 
less gross simplifications of practical planning situations. 

These observations led us to conduct a survey among the 200 biggest 
certified public accountant (CPA) firms in Germany. Based upon its results 
we formulated an hierarchical model (Salewski and Drexl 1993, Salewski 
1995) comprising three levels: The medium-term planning assigns teams of 
auditors to the engagements; it constructs a schedule by determining the 
workload per auditor and week over a planning horizon of between three 
and twelve months. The medium-to-short-term planning disaggregates the 
results of the first level for one week and all auditors; the outcome is a 
schedule for each auditor that covers - on the basis of periods of four hours 
- all engagements in which he is involved in the considered week. The 
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short-term planning is based upon the results of the second level for one 
week and one engagement; it assigns the auditors involved in the auditing 
of that engagement to the corresponding audit tasks and schedules these 
tasks to periods of one hour. Here, we will focus on the first, that is, the 
medium-term level. 

The paper is organized as follows: In Section 2 we define the problem 
formally and investigate where it is positioned in the context of audit-
staflF/project scheduling. In Section 3 the problem is reformulated as a set 
partitioning problem with an exponential number of columns. The LP-
relaxation of this model can be solved to optimality by column generation. 
Next we show in Section 4 that the columns of the LP-relaxation can be 
efficiently computed by means of a shortest path model. The description 
of the test bed is provided in Section 5. Section 6 presents the results of 
an in-depth computational study. Finally, Section 7 gives a brief summary, 
along with our conclusions. 

2 Problem Setting 

The Medium-Term Audit-Staff Scheduling Problem (MASSP) may be char­
acterized by the following assumptions (cp. Salewski et al. 1997 also): 

• A firm employs one or more auditors^ who have to audit one or more 
engagements within a given planning horizon of normally 13, 26, or 
52 weeks. A period has a duration of one week. 

• Each engagement is made up of one or more phases, e.g. preliminary, 
intermediate and final audit. The phases of one engagement must be 
processed in a strictly linear order. This implies that each phase of 
an engagement, except for the first one, has exactly one predecessor. 
Work on some phases may not commence before a specific release 
time, and may have to be completed before a specific deadline. 

• Each phase has a specific duration in terms of multiples of periods. 
In order to allow preemption of phase-processing at the end of some 
periods each phase is decomposed into as many subphases with one 
period duration as its processing takes in total. E.g. a phase with 
a processing time of two periods is splitted into two subphases each 
having a duration of one period (cp. Figure 1). 

Mode-dependent minimum and maximum time-lags are given be­
tween subsequent phases of one engagement and between subsequent 
subphases of one phase, respectively (for details see below). 
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Figure 1: Decomposition of Phases into Subphases 
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• The availability of some auditors may be restricted in certain periods, 
e.g. due to holidays or vacation. In addition, for some periods a 
client may want to limit the time during which the auditing takes 
place {maximum processing time), e.g. due to vacation periods or 
stock-taking activities. 

• Often an engagement could be audited by several alternative audit 
teams (modes). Different team compositions will result in different 
auditor processing times. Usually some modes will be preferable to 
others: Factors influencing the suitability of an auditor for a specific 
engagement are e.g. qualification level, industry experience, famil­
iarity with the clients business, and degree of difficulty of the audit 
tasks. The preferability of a mode as a whole may e.g. be linked to 
the total processing time needed. Hence, a preference value will be 
assigned to each mode. 

The objective then is to assign the overall best-suited teams to the 
engagements (mode assignment rvith maocimization of preferences), and to 
determine when the individual subphases are to be executed (subphase 
scheduling). A detailed example which illustrates why these assumptions 
are justified with respect to what can be observed in practice can be found 
in Salewski (1995). 

The problem parameters of the MASSP are summarized as follows: 

E 

Cat 

Det 

Sep 

^epsma 

^ep 

Me 

P. 

Qepsp'i 

number of auditors, indexed by a 

number of engagements, indexed by e 

preference value corresponding to the processing of 

engagement e in mode m 

capacity of auditor a in period t 

maximum processing time of engagement e in period t 

deadline of phase (e,p) 

time auditor a needs to process subphase (e,p, 5) in 
mode m (capacity usage) 

release time of phase (e,p) 

number of modes of engagement e, indexed by m 

number of phases of engagement e, indexed by p 

minimum (finish-to-start) time-lag between subsequent 

subphases (e,p,5) and {e,p\s') when processing e in 
mode m 
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Qep3p'3'm ' maximum (finish-to-staxt) time-lag between subsequent 

subphases (e,p,5) and {e^p\s') when processing e in 
mode m 

Sep ' number of subphases of phase (e,p), indexed by s; 
w.l.o.g. esLch subphase has a duration of one period 

T : number of periods, indexed by t 

Vepa : set of all immediate predecessors of subphase (e,p, 5) 

The mode concept is very fundamental in order to establish the relation­
ship between engagements and auditors. For the sake of clarity consider, 
e.g., engagement e = 2 of the example provided in Figure 1. Assume 
that this engagement can be processed alternatively by auditors 1 or 3 or 
jointly by auditors 2 and 3. In this situation we define three modes related 
to the three 'teams' consisting of auditor 1 (team 1), auditor 3 (team 2), 
and auditors 2 and 3 (team 3), respectively. Formally, the set of auditors 
A(e, m) belonging to mode m of engagement e is defined via positive ca­
pacity usages, that is A(e, m) = {a G { 1 , . . . , A} | 3 5 € { 1 , . . . , Sep}iP G 
{ ! , . . . , Pe} , with kepsma > 0 } . 

Note, precedence relations expressed via Vepa exist only between sub-
phases belonging to the same engagement. This characteristic is called 
isolating' in Salewski et al. (1997). 

The problem under consideration is formulated as a binary optimiza­
tion problem in Salewski et al. (1997). Furthermore, it is shown, that 
the MASSP is a special case of the more general project scheduling prob­
lem with resource and, additionally, mode identity constraints (cp. the 
comprehensive survey given in Brucker et al. 1999 also). In addition, it 
is proven that the (feasibility variant of the) MASSP is (strongly AfV-
complete) strongly AfV-haid. 

In order to keep this paper self-contained we reproduce the project 
scheduling-based binary optimization model in Appendix A. There, the 
indices e,p, 5 are replaced according to Equation (15) in order to simplify 
the mathematical formulation. Clearly, this transformation could be done 
already at the end of this section. Unfortunately, this is disadvantageous 
because then we would have to attach attributes to jobs in Section 4, es­
pecially in Equations (6)-(ll). (For example, the attribute e has to be at­
tached to the job number because of the mode identity constraints.) Hence, 
we stay with the notation introduced previously which explains things in 
terms of the area of application covered in this work. 
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Throughout this paper we make use of the illustrative example which is 
provided in Appendix B. 

3 Set Partitioning Model 

The basic idea is to iteratively compute sequences for each of the engage­
ments by means of a shortest (in fact a longest) path model. Prom the set 
of sequences on hand those are chosen via a set partitioning model which 
respect the capacity constraints of the auditors (in the LP-relaxation). A 
description of basic column generation techniques can be found in, e.g., 
Bradley et al. 1977. 

In order to describe the set partitioning model formally we use the 
following parameters and variables: 

S^ : set of columns representing sequences for engagement e, 
index i 

e{i) : engagement e column i is associated with 

m{i) : mode m column i is associated with (1 < m < Me(i)) 

biat ' capacity usage, if engagement e{i) is processed within se­
quence i by auditor a in period t 

Ci : objective function coefficient of sequence i related to en­
gagement e{i) and mode m(i), that is, Ci = i;̂ (*)'"̂ (*) 

yi : 1, if sequence i is part of the optimal solution (0, otherwise) 

In column i it is defined by means of the capacity usage biat that engage­
ment e is processed in period t. Note that both the engagement e{i) and 
the mode m{i) are well-known for sequence z. Hence, the cost ci = i;^(*)'̂ (*) 
are also well-known. 

In the following section it will be explained in detail how for each tupel 
of engagement and mode (e, m), sequences can be computed by solving 
shortest path problems. Apparently, this essentially renders each (e,m) 
subgraph, l < e < - E , l < m < Mg, to consist of nodes p, 5,t solely (cp. 
Figure 2 also). In order to simplify the presentation we relabel the nodes 
j <— (p, 5, t) similarly to what is done in Equation (15) in Appendix A. Then 
p{j) denotes phase p node j is associated with, s{j) is the subphase s node 
j is associated with, and t{j) denotes the period t node j is associated with, 
respectively. This relabeling facilitates to calculate the capacity usages biat 
as follows: 

Pe(o5e(o.Pf . iip = p{j),s = s{j)e.ndt = t{j) 
Oiat = 7 . 7 . S . ,̂ . W 

otherwise 
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Based on these definitions the (restricted) master problem can be stated 
by Equations (2)-(5) as a set partitioning type model. 

The objective (2) is to select a subset of columns at optimum costs. 
Equations (3) make exactly one sequence i per engagement e to be part of 
the solution and, hence, exactly one mode m(i), that is a team of auditors, 
is chosen also for each engagement. Inequalities (4) require to respect the 
capacity constraints of the auditors in each of the periods of the planning 
horizon. Finally, restrictions (5) define the decision variables to be binary-
valued. 

max ^Y^CiVi (2) 
e=l iG5« 

s.t. ^yi = l e = l , . . . , ^ (3) 

E 

J2 S »̂«* Vi^^at a = 1,..., A, t = 1,... ,T (4) 
e=l i€5« 

2/ i€{0 , l} e = l , . . . , £ ; , ieS^ (5) 

4 Shortest Path Model 

As already mentioned in the previous section for each tupel of engagement 
and mode (e,m), sequences are computed by solving shortest path prob­
lems. The relabeling of nodes h <— (p,5,t) and j <r- (jp'^s^t') has to be 
done for each (e, m) subgraph. Now, let denote M^"^ the set of nodes of 
the graph associated with engagement e and mode m and A^"^ the set of 
arcs of the graph associated with engagement e and mode m. 

Figure 2 illustrates the preliminary shortest path graph for engagement 
e = 2 and mode m = 2 of the instance provided in Appendix B. This 
shortest path graph shows that - for a given tupel (e,m) - two nodes 
(p(/i),s(/i),t(/i)) and (p(j),5(j),t(j)) are connected by an arc only if the 
conditions (7) to (11) are met. Note that nodes can be connected only if h 
and j belong to the same engagement e (isolating' precedence structure -
cp. (6)) and if they are processed in the same mode. 
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Figure 2: Preliminary Shortest Path Graph - e = 2 and m = 2 

(e,p(/i),s(/i))G V;,p(j),,0) 

t{j) - t(h) > qe,p(h),s(h),p(j)MJ),m + 1 hje A^"^, h € Ve,p(j)^sU) 

tU) - tW < Qe,p(h)Mh),pU)MJ),m + 1 hje X"^, h G Ve,p(j),3U) 
A 

o=l 

Kpih)<t{h) and K,pu)<t{3) Kj eN^"^ 
SeMh)>t(h) and (5e.p(i) > Ô') KjeM^"^ 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Let us give some comments on Figures 2 and 3: 

• The nodes (1,0,0) and (1,4,14), where we set 4 = 5e,Pe + 1 = ^21 + 1 
and 14 = T + 1, are dummy source and sink nodes, respectively. 

• The nodes (1,1,5), (1,2,5) and (1,3,5) are dotted, because 1)25 = 0 
does not allow to schedule these subphases in period t = 5, and, 
hence, they can be eliminated. Clearly, incident arcs have not to be 
considered also. 

• There must be no arc connecting nodes (1,1,3) and (1,2,7) because of 
the maximal time lag of 2 periods. 

• The dashed nodes (1,2,3), (1,3,3) and (1,3,4) cannot be reached be­
cause of minimal time-lags and, henceforth, are eliminated. 
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There is no outgoing arc from the dashed nodes (1,1,7) and (1,2,7) 
because of minimal time lags in connection with the deadline. Re­
moving node (1,2,7) in turn produces node (1,1,6) to have no succes­
sor node and, hence, it can be eliminated also. Similarly, for node 
(1,2,4). Likewise, the dashed node (1,3,6) has no ingoing arc and can 
be eliminated too. 

P{j)iS{j),t{j) 

<' l , l , 3 K ^ 

^ ^ 1 , 2 , 6 I Hl>3,7 | 

dZZr 
ft, 4,14 

Figure 3: Reduced Shortest Path Graph - e = 2 and m = 2 

Summarizing, Figure 3 provides the reduced shortest path graph where 
all the dotted and dashed nodes and the incident (dashed) arcs have been 
eliminated. 

Now we are going to explain how the arc weights are calculated. With­
out loss of generality, consider any engagement-mode-tupel (e, m), i.e. sub­
graph of the overall shortest graph. Furthermore, consider any pair of re­
lated nodes h € N^^ and j € M^"^ of the reduced shortest path (sub-) 
graph and, hence, the arc (ft, j) € A^'^ connecting both nodes. Now, let 
denote 

Jem 

9hj 

Me 

T^at 

hj 

original weight of arc (ft, j ) € A^^ 

updated weight of arc (ft, j) € A^"^ 

dual variable associated with the one sequence per engage­
ment constraint (3), //e G R 

dual variables associated with the capacity constraints (4), 

1, if arc (ft, j) G A^"^ is element of the shortest path (0, 
otherwise) 

Then Equation (12) formally defines the original weight d^ of the arcs. 
Obviously, all arcs have to be initialized to zero except the arcs emanating 
from the single source node g = (1,0,0). This way the constant preference 
êm JQJ. gĝ ĵj engagement-mode-tupel (e, m) is taken into account appro-
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priately. 

il,J)^A^- (12) 
otherwise 

Finally, Equation (13) explains how to calculate the weights gf^ of all arcs 
(ft, j) € A^'^ taking the dual variables nat into account. 

A 

Qhj' = dhj -Yl Kpih)Mh).m,a T^a,t(h) (13) 
a= l 

Then the objective function of the shortest path model for engagement e 
can be stated by Equation (14). 

max^ 2 ^ ^^7x^7- /xe I m = l , . . . , M e V (14) 

Note that the shortest path graph is acyclic with node weights g^ G 
R. Because of the topological structure, the shortest path problems are 
solvable in linear time. 

Apparently, pricing out occurs if max{Z^ | 1 < e < ^ } < 0. This is 
accomplished by computing the shortest path in the overall shortest path 
graph comprising all the engagements. In our implementation, we compute 
at most E columns per iteration, one for each engagement e with Z^ > 0 
(multiple pricing). 

A step-by-step description of the overall set partitioning/column gener­
ation algorithm shall now be given where we use the following notation: 

S : current set of columns, i.e. 5 = {5^ U . . . U 5^ U . . . U 5^} 

SPP{S) : (restricted) master problem/set partitioning model defined 
for set S 

CG{e) : column generation/shortest path model for engagement e 

^CGie) ' optimal objective function value of CG{e) defined for the 
current set of columns S 

Algorithm 

1. Initialize 5^, e = 1 , . . . , -E. 

2. Solve the LP-relaxation of the set partitioning model SPP{S)] e = 0. 

3. e = e + l. 
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4. Solve CG(e); if ^c1?(e) > ^ ^^^^ ^^d the column to 5^ and 5. 

5. l{e<E then go to Step 3. 

6. If at least one e G { ! , . . . ,£ '} with Z^^l. > 0 has been computed 
then go to Setp 2. 

7. Stop. 

In Step 1, the set of columns is initialized as follows: Define the *first' 
column of each engagement by setting capacity usages to zero (for all audi­
tors and periods). Likewise, objective function coefficients are set to zero. 
This means that we start with a (fictitious) 'feasible' solution with a bad 
objective function value. 

Apparently, our algorithm generates at most E columns per iteration 
(multiple pricing). In Section 6 we will show, that this variant produces 
slightly more columns than the single pricing (i.e. one column per iteration) 
counterpart but is faster on the average because less LPs have to be solved. 

5 Test Bed 

The set of instances which is used for experimental purposes is identical to 
the one defined in Salewski at al. (1997). In order to keep this paper self-
contained we outline in the following the procedure followed for generating 
a sample of test instances of practical relevance. We also describe the design 
of an extensive experimental study conducted, along with the definitions 
of the performance measures used to evaluate the results of the study. 

Even in current literature, the systematic generation of test instances 
does not receive much attention. For the well-researched field of project 
scheduling, Kolisch at al. (1995) report that "very little research concerned 
with the systematic generation of benchmark instances has been published. 
[...] most efforts are only briefly described." 

Generally, two possible approaches can be found adopted in literature 
when having to come up with test instances. First, practical cases. Their 
strength is their high practical relevance while the obvious drawback is the 
absence of any systematic structure allowing to infer any general properties. 
Thus, even if an algorithm performs good on some practice cases, it is 
not guaranteed that it will continue to do so on other instances as well. 
Second, artificial instances. Since they are generated randomly according 
to predefined specifications, their plus lies in the fact that fitting them 
to certain requirements such as given probability distributions poses no 
problems. A detailed such procedure for generating project scheduling 
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instances has been proposed by Kolisch at al. (1995). However, they may 
reflect situations with Uttle or no resemblance to any problem setting of 
practical interest. Hence, an algorithm performing well on several such 
artificial instances may or may not perform satisfactorily in practice. 

Therefore, we decided to devise a combination of both approaches, 
thereby attempting to keep the strengths of both approaches while avoid­
ing their drawbacks. Within the cited survey among the 200 biggest CPA 
firms in Germany, we asked the respective official in charge of staff plan­
ning (if existent) or one of the firm's partners to provide details about 
length of planning horizon, number of auditors, number and structure of 
audit engagements, auditor working capacities (working hours per day or 
week) and possible variations therein (e.g. due to vacation, training), etc. 
In addition, we carried out interviews with several experts in the field of 
auditing to clarify our understanding of the peculiarities of the auditing 
sector. Then, to ensure a systematic and consistent generation of the in­
stances, for each of the parameters of the MASSP a domain and a discrete 
distribution function on the domain were defined, based upon the survey 
and the interview results. Prom these definitions, a test bed of represen­
tative instances was generated randomly, using a classification scheme to 
build instances with specific properties. In this way we tried to construct 
instances reflecting the specifics of audit-staff scheduling in the industry as 
closely as possible, yet to employ a systematic design for the generation 
procedure. 

We assumed that only two instance-related factors do have a major 
influence on the performance of a solution method, viz. the size and the 
tractability of the instance attempted. Although the size of an instance is 
determined by the length of the planning horizon, the number of subphases, 
and the number of modes, statistical analyses of the survey results found 
all these to depend on the length of the planning horizon. In the sequel, 
three types of instances will be distinguished with respect to their size: the 
planning horizon equals 13 weeks for small instances (13 weeks with up 
to 30 auditors and 95 engagements), 26 weeks for medium-size instances 
(with up to 55 auditors and 280 engagements), and 52 weeks for large 
instances (with up to 125 auditors and 880 engagements). In addition, very 
small instances (13 weeks with up to 6 auditors and 10 engagements) were 
generated. While these instances are too small to bear practical relevance, 
they can be solved to optimality with standard MlP-solvers and thus can 
be used as benchmarks. 

The tractability of an instance intends to reflect how easy or difficult 
it is to solve. In our study, the auditor capacities are assumed to be the 
only factor influencing the tractability of an instance: the higher the au-
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ditor capacities are, the easier the corresponding instance is to solve since 
its solution space becomes larger. Accordingly, the auditor capacities are 
calculated from the average expected demand, adjusted by a multiplica­
tive factor RS (resource strength). Throughout this work, three types of 
instances will be distinguished with respect to their tractability: easy in­
stances where RS is taken equal to 3.5, medium instances where RS equals 
2.5, and hard instances where RS is 1.5. 

Clearly, the performance of an algorithm cannot be evaluated from run­
ning it on infeasible instances. It is therefore noteworthy that, in spite of 
the strong A/^P-completeness of the associated feasibility problem, it was 
possible to rig up the design of the (complicated) generation procedure in 
a way guaranteeing that for each constructed instance there exists at least 
one provably feasible solution. 

Due to the computational eflFort required to attempt a sample of all 
sizes, the scope of the experiment was limited to include only small and 
very small instances. Though no obstacle for using the developed methods 
on larger instances, this eflFort prevents the undertaking of a full factorial 
design experiment covering all instance classes. Additionally, the conjecture 
that methods performing well on smaller instances do so also on larger 
ones is widely accepted (cp. Badiru 1988, Alvarez-Valdes and Tamarit 
1989). Furthermore, for instances of these sizes lower and upper bounds 
are available from literature in order to benchmark the results obtained 
with the set partitioning/column generation approach. 

6 Computational Results 

The methods described earlier have been imlemented using AMPL (cp. 
Fourer at al. 1993) and the CPLEX callable library (cp. Bixby and Boyd 
1996) on an IBM RS 6000 F40 workstation with 192 MB RAM. 

The computational results of our experiments are summarized in Ta­
bles 1 and 2. The CPU-times required by our experiments are summarized 
in Table 3. The symbols have the following meaning: 
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no. : identification number of instances 

easy : instances whose tractability is easy (likewise medium 
and hard) 

LB : best feasible solution (lower bound) known so far (com­
puted with the tabu search procedure of Salewski 1996) 

CG : objective function value computed by column generation 

• : column generation solution integral 

UB : optimal objective function value of the LP-relaxation of 
the model (16) to (22) (upper bound) 

CPU{CG) : CPU-time in sec required by the CPLEX solver for the 
column generation process (without AMPL times) 

CPU {LP) : CPU-time in sec required by CPLEX for the solution of 
the LP-relaxation of the model (16) to (22) 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 1: Computational Results • 

LB 

43 

35 

44 

44 

45 

41 

47 

44 

40 

47 

easy 

CG 

43* 

35* 

44* 

44* 

45* 

41* 

47* 

44* 

40* 

47* 

UB 

43 

35 

44 

44 

45 

41 

47 

44 

40 

47 

LB 

43 

35 

44 

44 

45 

40 

47 

44 

40 

47 

- Very Small Instances 

medium 

CG 

43* 

35* 

44* 

44* 

45* 

40.9 

47* 

44* 

40* 

47* 

UB 

43 

35 

44 

44 

45 
41 

47 

44 

40 

47 

LB 

43 

35 

43 

44 

45 

39 

47 

44 

40 

47 

hard 

CG 

43* 

35* 

43.81 

44* 

45* 

39.74 

47 

44 

40* 

47* 

UB 

43 

35 

43.81 

44 

45 

40.82 

47 

44 

40 

47 
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no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

LB 

302 

299 

542 

180 

298 

434 

751 

317 

380 

414 

Table 2: Computational Results - Small Instances 

easy 

CG UB 

302 304.70 

299 304.71 

543 543 

180 184 

298 299.75 

434 434 

751 753 

317 319.97 

380 380 

414* 414 

LB 

297 

292 

510 

173 

295 

420 

750 

309 

380 

413 

medium 

CG 

300.20 

297.97 

541.62 

179.60 

298 

432.09 

751 

317 

380 

414 

UB 

303.60 

303.67 

541.95 

184 

299.75 

433.03 

753 

319.97 

380 

414 

LB 

264 

274 

433 

162 

267 

386 

666 

278 

357 

363 

hard 

CG 

291.36 

288.78 

511.64 

170.63 

293.59 

418.85 

742.87 

307.50 

378.05 

403.29 

UB 

296.94 

297.91 

524.85 

176.75 

296.15 

424.34 

747.16 

316.45 

378.93 

409.07 1 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Tal>le 3: 

easy 

CPU{CG) CPU{LP) 

3.42 2.92 

3.12 1.99 

9.69 6.85 

1.61 0.92 

2.72 2.22 

4.33 3.63 

6.22 10.56 

2.49 2.71 

4.24 2.81 

3.36 3.51 

CPU-Times - Small Instances 

medium 

CPU{CG) CPU{LP) 

5.30 4.51 

4.66 2.32 

15.88 15.24 

3.05 1.34 

5.54 3.54 

5.45 8.45 

10.81 17.01 

5.53 6.33 

3.26 3.78 

6.94 4.35 

hard 

CPU{CG) CPU{LP) 

10.81 

7.91 

33.81 

3.67 

10.88 

11.38 

62.92 

15.79 

10.75 

19.96 

11.35 

8.95 

80.85 

2.49 

9.56 

23.28 

146.95 

18.41 

9.25 

20.30 
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Table 4- Size of the Last Master - Small Instances 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

easy 

123 

121 

224 

80 

123 

168 

285 

120 

169 

165 

medium 

143 

130 

279 

100 

141 

195 

328 

138 

165 

202 

hard 

200 

198 

374 

115 

215 

261 

484 

217 

240 

274 1 

Table 5: Size of the Last Master - Small Instances - One Column Per Iteration 

no. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

easy 

126 

126 

214 

81 

127 

173 

296 

127 

169 

168 

medium 

142 

139 

252 

96 

141 

191 

320 

139 

175 

187 

hard 

186 

180 

333 

107 

202 

253 

428 

203 

217 \ 

262 
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The result tables can be interpreted as follows: 

• The set partitioning/column generation approach produces an inte­
gral solution for almost all of the 30 very small instances. These 
results verify the lower bounds produced with tabu search to be very 
good also. Moreover, the LP-relaxation of the model (16) to (22) is 
tight for the very small instances. 

• For the small instances only one data set can be solved to optimality 
by the column generation approach. Eight (one) of the easy (medium) 
instances are (is) solved to optimality also because the lower and the 
column generation-based upper bounds coincide. 

• In general the upper bounds produced by set partitioning/column 
generation are far better than the upper bounds of the model (16) 
to (22). This is due to the following fact: In the LP-relaxation of 
the model (16)-(22) implicitely the constraints (21) imposed by the 
maximum processing times Det per engagement e and per period t 
are relaxed also. On the other hand, these constraints are taken 
into account by conditions (9) when constructing the shortest path 
graph, and, hence, cannot be relaxed implicitely when solving the 
LP-relaxation of the set partitioning model. 

• While the LP-relaxation of the model (16) to (22) can be solved in 
zero sec for the very small instances, the small ones already require a 
considerable amount of CPU-time. Especially for the hard instances 
the CPU-times increase drastically while the quality of the upper 
bounds deteriorates. The CPU-time required by the column genera­
tion approach for the very small instances is about half a sec. 

If the LP-relaxation of the set partitioning model is not integral then 
the column generation approach has to be embedded into a branch-and-
price framework in order to come up with an optimal integral solution (cp. 
Barnhart et al. 1998 and Vanderbeck 2000). 

Table 4 shows the sizes of the last master problems in terms of the 
columns generated. Apparently, for the small instances the number of 
columns generated increases with increasing problem hardness. That is, 
easy instances need less columns than the medium ones which in turn need 
less than the hard ones. 

For getting the results presented so far, we generated at most E columns 
per iteration, one for each enagement e with Z® > 0 (multiple pricing). To 
reveal that this is indeed a good idea, we also show some results when we 
generated at most one column per iteration which is determined by the 
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overall shortest path (single pricing). Table 5 shows the figures for the size 
of the last master problem. Comparing this with Table 4 in general less 
columns have to be generated. Unfortunately, the run-time upon termi­
nation is much shorter when more than just one column is generated per 
iteration. This is due to the fact that far more LPs have to be solved in 
the case of single pricing. Hence, multiple pricing is advantageous. 

7 Summary and Conclusions 

When scheduling its audit-staff, the management of an auditing firm en­
compasses a number of decisions. These may be grouped into several cat­
egories which differ markedly in terms of organizational echelon involved, 
length of the planning horizon and the planning periods, degree of aggre­
gation of the audit tasks, degree of detail of the required information, and 
decision objective. However, traditional audit-staff scheduling models are 
single-level models which try to construct a direct assignment of auditors 
to tasks and periods. To facilitate algorithmic treatment, all these models 
are more or less gross simplifications of practical planning situations. 

In this paper, we introduce an audit-staff scheduling model which com­
prises many features being important with respect to audit management in 
practice. For dealing with this model, a set partitioning/column generation 
approach is developed. The LP-relaxation of the set partitioning problem 
is solved by column generation in order to compute tight upper bounds. 
Frequently, the solution of the continuous relaxation is integral and, hence, 
an optimal solution is obtained. 
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Appendix A: Project Scheduling-Based Mathematical Program 

To simplify the mathematical formulation of the problem, we perform some 
preliminary computations. First, the indices e, p, s are replaced by 

e - l Pe' P - l 

e '= lp '= l p'=l 
(15) 

Thus, the parameters Veps, qepsp'a'mi Qepsp's'm and kepsma become V ,̂ 
Qjj'm^ Qjj'm and kjma- Then, let denote fe = p(e, 1,1) the first and 
/g = g(e^Pe^SeP^) the last subphase of each engagement e. Further, the 
maximum lags can be transformed into minimum lags (with a correspond­
ing update of Vj) (cf. Bartusch et al. 1988), and from the time-lags, the 
release times, and the deadlines earliest and latest finish times EFj and 
LFj can be computed, respectively. 

e,p,5 

Figure 4- Chain Structure of Time Lags 

Note that our problem setting covers not only the standard type of 
time-lags, namely minimum time-lags, but also the less common maximum 
time-lags. These can easily be converted into minimum time-lags using 
the transformation introduced in Bartusch at al. (1988) and Neumann et 
al. (2003). The presence of minimum and maximum time-lags between 
subsequent subphases, along with their special sequence, which arises from 
the above mentioned decomposition process, imply for each engagement a 
chain structure of the time lags as illustrated in Figure 4, where each node 
has the format |e ,p , 5 1. Each structure may be seen as being composed of 
arc-disjoint cycles of length 2, one between first and second subphase, one 
between second and third one, and so forth up to the last cycle between last 
but one and last subphase. Finally, recall from Section 2 that precedence 
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relations exist only between subphases belonging to the same engagement, 
a characteristic denoted as 'isolating'. 

Now, the assignment of subphases to modes and periods can be repre­
sented by binary variables Xjmt = 1, if subphase j is performed in mode m 
and completed in period t {xjmt = 0, otherwise). This allows to formulate 
a binary program - using the general framework given in Pritsker et al. 
(1969) - by equations (16) to (22). 

E Me ^^/e 

max 5 ^ XI t;-- X ; Xf^mt (16) 
c=lm=l t=EFf^ 

Me LFf^ 

s.t. 5 ^ E ^/emt = l e = l , . . . , £ 7 (17) 
m=l t=EFf, 

(18) 

(19) 

(20) 

(21) 

(22) 

The objective function (16) maximizes the total team preference over all 
engagements. Due to (17) it suffices to include only one subphase of each 
engagement in (16). The choice of the first one is arbitrary. The subphase 
completion constraints (17) stipulate that the first subphase of each en­
gagement is completed exactly once in one of its modes. The mode identity 
constraints (18) guarantee for each engagement that if the first subphase 
is completed then the other subphases will be completed as well, and in 
the same mode as the first one. Thus, (17) and (18) combine to ensure 
that all subphases of each engagement will be processed in the same mode, 
and that all of them will be completed. The temporal constraints (19) 

LFf^ LFj 

XI Xf^mt - XI î*̂ * = ^ 
t—EFf^ t=EFj 

Me ^^j' Me ^Fj 

Z) Z) (* + ^J'jrn) Xfrnt - XI Z) (* " 
m=l t—EFjf Tn=l t=EFj 

E Me le 

/ ^ / ^ y , kjma Xjmt < Cat 

e=l m=l j=/e 
tG{EFj,...,LFj} 

Me U 
y] /] kjma Xjmt < Det 

m=l i=/e 
t€{£?Fj-,...,LF,} 

Xjmt G {0, 1} 

- 1 ) Xjm.t <o 

e = l , . . . , £ ; 

j = /e + l , . . . , / e 
m = 1 , . . . , Me 

e = l , . . . , £ ; 

j = / « , . . . , / e 

/ G Vj 

a = l , . . . , A 

t = 1 , . . . , T 

e = l , . . . , £ ; 

a = l , . . . , i 4 

t = l , . . . , T 

e = l , . . . ,J5; 

j = fey-yle 
m = 1 , . . . , Me 

t = EFj,...,LFj 
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represent the precedence order on the subphases and enforce respection of 
the time-lags between them. The auditor capacity constraints (20) assure 
that for no auditor his per-period workload exceeds his capacity. In this 
regard, each auditor is treated as a renewable resource. The engagement 
capacity constraints (21) guarantee that for no engagement and no auditor 
the maximum per-period processing time is exceeded. In this regard, each 
engagement is treated as a renewable resource. 

Table 6 summarizes the instances and, in addition, states the problem 
size in terms of the number of binary variables of the model formulation 
(16) to (22). 

size 

very small 

small 

medium-size 

large 

Table 6: Instance Characteristics 

# weeks # auditors # engagements 

13 6 10 

13 30 95 

26 55 280 

52 125 880 

#variables 

10,400 

98,800 

728,000 

5,948,800 

Appendix B: Illustrative Example 

Throughout this paper we make use of the instance provided in Tables 7, 
8, 9, 5, 10, and 11, respectively. Note, the index I serves to interrelate the 
precendence relations with respect to Tables 5 and 10. 

E = 

Ml 

Pi = 

Su 

Cat 

Det 

Table 7: Basic Parameters 

4,T = 

= 5, Ma 

= 2,P2 = 

= l,Sl2 

= 96, a 

= 40,e: 

13,A = 6 

= 3,M3 = 8,M4 = 

= Ps = P4 = 1 

= 5,521 = 3,531 

= l , . . . , 6 , t = l , . 

= l , . . . , 4 , t = l , . . 

= 2 

= 541 = 1 

. ,13 

.,13,Z?25=0 
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Table 8. 

e/m 

1 

2 

3 

4 

1 

4 

10 

7 

5 

Preference Values v""" 

2 3 4 5 6 7 

5 9 2 1 

4 2 

6 6 5 2 5 2 

7 

8 

1 

Ta6/e P: Release Times Xev o,nd Deadlines Se 

1 e/p 
1 

2 

3 

4 

1 

2 

3 

4 

1 2 

1 7 

3 

6 

5 

2 12 

7 

8 

6 

Aep 

(Jep 

Table 10: Minimal/Maximal Time Lags qepap's'm/Qe 

l/m 

1 

2 

3 

4 

5 

6 

7 

1 2 3 

5/13 0/13 0/13 

0/0 -1/13 -1/13 

-1/13 -1/13 -1/13 

-1/13 -1/13 -1/13 

-1/13 -1/13 -1/13 

4 5 

1/13 1/13 

0/0 0/0 

0/0 0/0 

0/0 0/0 

0/1 0/0 

0/1 0/2 0/0 

0/0 0/0 0/0 

e 

1 

2 
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Table 11: Capacity Usages kepsma (Missing Entries Are Zero) 

\ a 

kllUa 

A;i251a 
klll2a 
fcl212a 
A;i222a 

A;i252o 
A;iii3a 
kl213a 
kl223a 

A;i253a 
klllAa 
kl2l4a 
kl224a 
kl23Aa 
kl244a 
kl254a 
A;ill5a 
A;i215a 
kl225a 
A;i235a 
kl245a 
A;i255a 
felllo 

A;2131o 
k2112a 
k2122a 
A;2132a 
^21130 
k2123a 
A;2133a 
k3111a 
A;3ii2a 
A:3ii3a 
fc3114a 
A;3ii5a 
A;3116a 
^31170 
A;3118a 
A;4111a 
k4112a 

1 

9 

10 

4 
10 
10 
2 
4 
8 
6 
4 
4 

10 

6 

10 

10 

2 

4 
2 

8 
10 

10 
2 
6 

10 
10 

4 
10 

10 

3 

2 
10 

7 
2 

4 
2 

10 
10 
8 

6 

4 

4 

4 
10 

4 
4 

2 
10 
10 
2 
2 
4 

2 

2 

2 
10 

5 

2 
10 

10 
10 

10 
10 
8 

10 
8 
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1 Introduction 

Due to factors such as the high variability of raw materials, intermediate and 
final products, fluctuating prices, and variable processing times and yields, pro­
duction planning for sausages is generally a challenging task. One of the most 
distinctive factors to consider in fresh food production planning is shelf life. 
Shelf life restrictions directly influence wastage, out-of-stock rates and inventory 
levels. The shelf life of a product is defined as the time in which the food prod­
uct will remain safe, be certain to retain the desired sensory, chemical, physical, 
and microbiological characteristics as well as comply with any label declaration 
of nutritional data (Kilcast and Subramanian, 2000, according to the London 
Institute of Food Science and Technology Guidelines, 1993). The possibility to 
offer a higher shelf life than its competitors constitutes a pivotal competitive 
advantage for fresh food producers, making the provision of shelf life functions 
crucial for modem production planning systems. 

This research is based on the case study of scalded sausage production. This 
sub-segment of the processed meat industry has been chosen for two main rea­
sons. On the one hand, scalded sausages constitute the most important product 
group in terms of production value (€2.7 bn. in 1999 in Germany, according to 
Lebensmittel Zeitung, 2001). On the other hand, production planning is particu­
larly important for scalded sausages as they show the highest criticality with 
regard to shelf life. The results of the case study can easily be transferred to 
other product groups of the processed meat industry (fermented sausages, 
cooked sausages, ham etc.). 
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2 Case Study: Scalded Sausage Production 

2.1 Product Characteristics of Sausages 

Sausages are products in which "fresh comminuted meats are modified by vari­
ous processing methods to yield desired organoleptic and keeping properties" 
(Savic, 1985). The production process dates back thousands of years to ancient 
Greeks and Romans, and even earlier. The term "sausage" is derived from the 
Latin word "salsus" meaning salt or salted (USDA et al., 1999). According to 
Pearson and Gillett (1996), consumers eat sausages for four reasons. The devel­
opment of sausages was initially driven by economic factors such as utilizing 
lower-quality meats from cheaper cuts or edible by-products (Xiong and Mikel, 
2001). Convenience is the second reason for the success of sausages. Sausages 
take only little time in preparation. Thirdly, the great and still increasing variety 
of sausage products in terms of flavours, textures and shapes makes it possible to 
serve many different variants. Finally, sausages are also of good nutritional 
value since most of them are excellent sources for high quality protein, essential 
minerals, and all B vitamins (Kim, 2001). 

Sausages can be categorized into three major segments (Savic, 1985; Neu-
hauser, 1996; Pearson and Gillett, 1996): 
• Scalded Sausages comprise ready-to-eat products made from comminuted 

and well-homogenized cured meats, fatty tissue, water and seasonings usu­
ally smoked and scalded. Examples are Frankfurters, Bologna (Mortadella), 
Knackwurst, or Wieners. 

• Fermented Sausages are not heat processed and are made from cured or 
uncured, fermented and often smoked meats. This category can be divided 
into dry and semi-dry sausages and includes for instance Salami, Pepperoni, 
Summer Sausages (Cervelat Sausage), or Braunschweiger (Sielaff, 1996). 

• Cooked Sausages are ready-to-serve products usually made from previously 
cooked fresh or exceptionally cured raw materials, subjected to final cooking 
after stuffing. Oelker (1996) names the three sub segments Liver Sausages, 
Blood Sausages and Brawn Sausages. 
In 1999, over 56% of all processed meat in Germany were sausages (Le-

bensmittel Zeitung, 2001). Among the sausages, scalded sausages constitute the 
most important sub-segment (over 50% in 1999). Therefore, this research is 
particularly concerned with the segment of scalded sausages and specifically 
with the production of larger diameter, sliced scalded sausages which allows to 
integrate the capital-intensive slicing and packaging equipment in the case study. 
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2.2 Supply Chain of Scalded Sausages 

The scalded sausages supply chain usually consists of four stages. The grower 
produces the living animals which are slaughtered and dressed by slaughter­
houses. The raw meat is then transported to the sausage producers. After having 
transformed the raw meat into sausages, the sausage products are distributed and 
sold via retailers. 

The sausage supply chain has been subject to major changes throughout the 
recent years. With regard to economic developments, a clear trend towards a 
consolidation can be observed on all stages in the supply chain. At the manufac­
turer's level, the meat processing industry is still characterized by mid-sized 
companies (WUnsche, 2002). As economies of scale are substantial (Connor and 
Wills, 1988) concentration is likely to accelerate (KPMG Corporate Finance 
UK, 2000; Bourlakis and Weightman, 2004). In particular foreign meat proces­
sors are increasingly buying domestic producers. Major concerns for sausage 
producers are also the overcapacities in the market. Auer (2001) estimates the 
overcapacities in the German meat industry to be around 30-40% resulting in a 
tough competition. 

The continued consolidation of retailers is perceived as the biggest threat to 
the manufacturers (KPMG Corporate Finance UK, 2000). In 2000, the five lead­
ing retailers in Germany made 63% of the total retail turnover, 18%-points more 
than ten years ago (Michael et al., 2002). In the UK, the share of the top five 
retailers has already achieved more than 80% (van Wezel, 2001). The strong 
retail concentration leads to a significant shift of power in the fresh food supply 
chain. Retailers will increasingly command the retailer-manufacturer interface 
(McLaughlin, 2002) or even the whole upstream part of the chain with severe 
consequences to the manufacturers. Retailers put the manufacturer's prices under 
pressure; they are now in a position to even dictate the business terms. Another 
characteristic of the retail environment is the raise of the discount channel and 
private labels, leading to a further segmentation of the market. While manufac­
turers can still obtain relatively high margins in the premium segment, the manu­
facturer's margins for private labels are much lower. 

Therefore, differentiation gets increasingly important for manufacturers in 
order to avoid cost and margin pressure. On the product level, new product in­
troductions increased considerably. The number of product innovations intro­
duced for example in German retail has increased since 1997 by 11.1% annu­
ally; however, the failure rate reached almost 66% in 2000 (Michael et al., 
2002). Furthermore, this product proliferation leads to production complexity. In 
contrast to the US, promotional activities are another important differentiating 
factor in Europe. Particularly in Germany, significant revenue shares are gener­
ated by promotions (Treeck and Seishoff, 2002). Most promotions are price 
discounts; other types include e.g. loyalty rewards, special events, displays. 
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samples, or contests (Seifert, 2001). Several studies reveal that most promotions 
are not effective and successful. According to Fairfield (2002), manufacturers 
estimate that only 35% of all promotions are profitable. 

Product freshness is one of the few remaining differentiating factors for 
manufacturers and retailers. Freshness is one of the most important quality char­
acteristics of a fresh food product for consumers (N.N., 2003). Most food proc­
essors and retailers expect that the share of fresh and perishable products in 
retail will continue to grow (Grievink et al., 2002). 

2.3 Production Process of Scalded Sausages 

The production process of scalded sausages is characterized by eight major 
steps, ranging from the input of ingredients to the storage and delivery of the 
final products. 

1. Input of ingredients (raw meat, salt, water/extenders and seasonings). 
2. Grinding and mixing of the raw meat. 
3. Chopping and emulsifying of the meat particles. 
4. Stuffing and tying of the sausage dough into casings and loading onto 

trolleys for transfer to the smokehouse. 
5. Scalding of the intermediate sausages in special scalding chambers. 
6. Maturing and intermediate storage. 
7. Slicing and packaging. 
8. Storage on pallets and delivery to a retail distribution centre or directly 

to the retail outlets. 

3 Literature Review 

3. J Lot Sizing and Scheduling in Make-and-Pack Production 

In literature, a production environment which is characterized by a single pro­
duction stage and a subsequent packaging stage is named "make and pack pro­
duction" (GUnther and Neuhaus, 2004; M^ndez and Cerdd, 2002). Major issues 
of operational production planning in this environment are lot sizing and sched­
uling, which can be performed in one single or two separate planning steps. As 
lot sizing usually aims at balancing set-up costs on the one hand and inventory 
holding costs on the other hand, the set-up costs of each single set-up operation 
must be known in advance. However, as set-up times and costs in scalded sau­
sage production are sequence-dependent, lot sizing and sequencing must be 
integrated (Sikora et al., 1996). 

The available approaches can be classified according to their representation 
of time; a discrete and a continuous time representation can be distinguished. 
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For a discrete representation of time, the planning horizon is divided into a cer­
tain number of periods that have usually the same length. Examples of problems 
and related modelling approaches are the Capacitated Lot size Problem (Gtin-
ther, 1987), the Discrete Lot-sizing and Scheduling Problem (Fleischmann, 
1990), the Continuous Setup and Lot-sizing Problem (Karmakar and Schrage, 
1985), the Proportional Lot-sizing and Scheduling Problem (Haase, 1994), and 
the Capacitated Lot-sizing Problem with Sequence-dependent Setup Costs 
(Haase, 1996). Fleischmann and Meyr (1997) integrate all mentioned models 
within the General Lot-sizing and Scheduling Problem. All models have in 
common that set-up times can only be considered if they do not exceed the 
length of a period. However, Ko9lar and Siiral (2005) show that set-up times 
exceeding the length of a period can be incorporated. 

Nevertheless, choosing the length of a period becomes a crucial aspect of 
modelling. Especially because a high number of relatively small periods are 
required for an exact representation of the production activities (Meyr, 1999), 
the number of periods can considerably increase the size of the model (Gtinther 
and Neuhaus, 2004; M^ndez and Cerd^, 2002). Stadtler (2005) emphasizes that 
particularly sequence-dependent set-up times cannot be represented properly 
within a model using large time periods. In addition, the approximation or 
"rounding" of processing and set-up times to fit them into the fixed periods can 
lead to overproduction, idle times, or infeasibility (lerapetritou and Floudas, 
1998; GUnther and Neuhaus, 2004). Due to the high complexity of these models, 
they are less suitable to practical purposes (Meyr, 1999; Burkard et al., 2002). 
The application of time periods of different length can be useful to avoid the 
stated problems. Burkard et al. (2002) introduce the notion of the "Event-Driven 
Model", in which only such points in time are considered, at which a process is 
allowed to start. 

Alternatively, it is possible to use a continuous representation of time, which 
allows scheduling the start and end of an activity precisely on a continuous time 
scale. In particular, infeasibilities due to "fitting" set-up times into a discrete 
time grid can be avoided (lerapetritou and Floudas, 1998; GUnther and Neuhaus, 
2004). Sahinidis and Grossmann (1991) propose a model that uses a continuous 
representation of time and considers explicitly sequence-dependent set-up times. 
They apply a position-based model and assume constant demand patterns to 
generate a cyclic schedule. Among the latest publications, the approach of lera­
petritou and Floudas (1998) is to be mentioned that considers sequence-
dependent set-up times for both batch and continuous production. M^ndez and 
Cerdd (2002) suggest a similar model formulation that is characterized by a 
lower number of binary variables and hence is computationally more efficient. 
Nevertheless, none of the mentioned models supports lot sizing and it is not 
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possible to integrate demand data of a single final product for every single pro­
duction day, only for the aggregate demand of the entire planning horizon. 

GUnther and Neuhaus (2004) present an approach that is based on the princi­
ple of block planning and that simultaneously considers lot sizing and schedul­
ing. By integrating several variants of a product type or recipe into a "block", 
the complexity of the model is significantly reduced. For the determination of 
the sequence of batches within a block, a "natural" sequence of batches often 
exists, for example from the lower taste to the stronger or from the brighter col­
our to the darker. In the concept of flexible block planning presented by GUnther 
and Neuhaus (2004), the blocks are assigned to a macro-period. According to 
this concept, the completion of a block must take place before the end of a 
macro-period. However, as the start of a block can be in the same or a previous 
period, a production lot cannot be assigned to a specific day, which is critical in 
order to consider its shelf life. 

3.2 Production Planning for Perishable Products 

Most models assume an unlimited storage of intermediate and finished products. 
However, fi-esh products have a finite shelf life that has to be respected in pro­
duction planning. Many authors concede the necessity to integrate the shelf life 
of products in production planning and scheduling (e.g. Kallrath, 2002; GUnther 
and Neuhaus, 2004); nonetheless shelf life has only been considered explicitly in 
very few models, e.g. LUtke Entrup et al. (2005) for the case of yogurt produc­
tion. Within the available approaches, two main streams can be distinguished. 

On the one hand, a vast body of literature exists on inventory management 
for perishable products. Besides perishable food products, perishable inventory 
theory covers also the behaviour of radioactive materials, photographic film, 
prescription drugs, or blood conserves. Nahmias (1982) and Raafat (1991) give 
a comprehensive literature overview and an analysis of proposed inventory 
models for perishables. Raafat particularly clarifies the difference between con­
tinuously deteriorating goods and products that can be unrestrictedly used before 
the expiry date. However, sausage products show characteristics of both. On the 
one hand, the value of sausages decreases over time as customers give a higher 
value to a fresh product; on the other hand, sausages are almost worthless after 
the expiry date. Abad (2003) developed a non-linear single-product model for 
the maximization of the contribution margin while considering the decay of the 
products in order to determine the best-possible sales price. 

On the other hand, with regard to the integration of shelf life into production 
planning and scheduling, most approaches introduce a shelf life constraint into 
the Economic Lot Scheduling Problem (ELSP), which is concerned with gener­
ating a cyclic schedule for several products, based on a single resource and con-
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stant demand rate (Elmaghraby, 1978; Cooke et al., 2004). Soman et al. (2004) 
provide a review of the major contributions. 

Almost all mentioned ELSP models include assumptions that are seldom pre­
sent in an industrial environment. First of all, a constant demand rate is fre­
quently supposed, which is not very realistic for fresh food industries with sea­
sonalities and intense promotional activities. Manna and Chaudhuri (2001) 
underline, for example, that the demand for deteriorating products may be time-, 
stock-, or price-dependent (e.g. end-of-day pricing). Moreover, most models 
consider only one single facility and do not account for sequence-dependent set­
up times. Finally, the most important criticism is that ELSP models aim at gen­
erating a production cycle which is repeated in certain intervals and which must 
not exceed the shortest product shelf life. Hence, product freshness is not con­
sidered in the objective function, only as a constraint. 

4 Profile of Scalded Sausage Production Regarding APS Systems 

4.1 Problem Demarcation and Model Overview 

The modelling approach suggested relies on a MILP model formulation. It in­
cludes binary decision variables for the set up of production lots on a specific 
day. The model comprises the production steps from scalding to storage and 
delivery, with special attention being paid to the scalding and slicing and pack­
aging steps (see Figure 1). 

Model Scope 

Stuffing 
/Tying Scalding 

Maturing and 
Intermediate 

Storage 
Slicing and 
Packaging 

Storage and 
Delivery 

•III 
•III 

8 Chambers 
with different 

costs and 
capacities 

15 Inter­
mediate 
products 

with different 
losses per day 6 Lines 

# 

30 Products 
with 

different 
shelf life 

I 

Figure I: Scope of the production model 
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All prior production steps from ingredients input to stuffing and tying have been 
neglected for two reasons. First, the scalding step determines the shelf life of the 
final sausage product. In order to improve the freshness of the final product, it is 
sufficient to consider this step and the following processes. With respect to the 
meat raw materials, it must only be assured that they are processed within their 
shelf life period, which is different and much shorter than that of the final prod­
ucts. Secondly, scalding as well as slicing and packaging are typical bottlenecks 
of the entire production process. Therefore, the model will focus on ensuring a 
high utilization of these units. 

In the MILP model eight scalding chambers are considered with different 
costs per hour and different capacities. After having brought the filled casings 
into the scalding chamber, they are subject to several processes that include 
drying, smoking, scalding and cooling. All these activities are fiilly automated 
and take place inside the chamber. The time required for this program is fixed 
and differs by the type of sausage produced. However, if two intermediate sau­
sages are based on the same program, they can be put together into the chamber. 
Set-up and cleaning times are only of minor importance and are part of the 
scalding program. 

Mainly due to the evaporation of water, important time dependent losses oc­
cur in the intermediate storage. The losses must be considered in the model to 
obtain correct sausage volumes for the packaging step. Furthermore, as most 
products are sold on a weight-basis, reducing the storage times of the intermedi­
ate products helps to increase the volume available for sale. Although it is desir­
able to keep the stock levels in the intermediate storage as low as possible, a 
minimum time is imposed to avoid a later sticking of the slices at the packaging 
stage that would lead to a lower slicing quality. 

Considering the high number of products in the packaging step, a block 
planning approach is chosen in order to guarantee the compactness and comput-
ability of the model. For the sequence of the products within a block a "natural 
order" exists which is mainly based on microbiological concerns (weaker micro­
biological contamination before the stronger). When changing the production 
between two products that are not part of the same block, it is always necessary 
to perform a set-up operation. Only when changing the production between two 
product variants of the same recipe, the cleaning and sterilizing of the produc­
tion facilities can be neglected. Hence, not only the sequence of products within 
a block is fixed but also the sequence of blocks can be fixed within the day. In 
that case, the different blocks are enumerated according to their position within 
the day. Products that can be processed within the same block do not need to be 
based on the same intermediate product, since besides the raw material it is also 
the diameter of the intermediate product that determines the assignment of a 
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product to a block. Hence, an additional index is used in order to enumerate the 
different blocks. 

The developed models are based on a continuous representation of time. For 
the consideration of shelf life, it is necessary to employ a discrete, uniform time 
grid in addition (see Figure 2; Gunther and Neuhaus, 2004). A period refers to a 
day as shelf life is usually given in days. In most lot-sizing/scheduling models 
so-called balance constraints are used to link inventory at the end of each period 
to its starting inventory, the production and demand in that period. To properly 
handle shelf life considerations, production lots are assigned to specific demand 
dates. Hence, no inventory balance equations are needed. At the packaging 
stage, intense cleaning which takes several hours is required once a day. This 
cleaning, which usually takes place during the night, clearly separates two days 
so that a conservation of the set-up state over period boundaries is not necessary. 

day 1 

, set-up 

s 1 ::-:2i/ s 

day 2 

fixed production sequence 

day 3 

k+1 k+2 s 2k+l 2k^2 

demand: 

Figure 2: Block planning approach (based on Giinther and Neuhaus, 2004) 

The objective function aims at maximizing the contribution margin. Shelf life 
is taken into account by a shelf life dependent pricing component. The cost ele­
ments considered in the objective function include the variable cost of the prod­
uct, the variable costs of the packaging lines and the scalding chambers, and the 
variable cost of the intermediate products (particularly raw meat). 

The planning horizon covers one production week from Monday 00:00 to 
Friday 24:00 (days 7 to 11). In the packaging department, the Sunday before 
(day 6) and the Saturday after (day 12) the production week can be used as over­
time. The demand of final products is based on forecasts and on already arrived 
customer orders and comprises the actual production week (days 7-11) and 
Monday, Tuesday and Wednesday of the following week (days 14-16). Further­
more, two types of stock levels with their corresponding shelf life are taken into 
account. The stock level of intermediate products at the beginning of the plan­
ning period (day 6, Sunday 00:00) contains intermediate products that have been 
produced on Tuesday, Wednesday, Thursday and Friday of the previous week 
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(days 1 to 4). The stock level of finished products comprises only products that 
are based on intermediates of Tuesday, Wednesday and Thursday of the previ­
ous week (days 1-3). Due to the required minimum time in the intermediate 
storage, the intermediate products that have been produced on Friday of the 
previous week (day 4) cannot be packed on the same day. Hence, at the begin­
ning of the planning week there are no final products in the warehouse that are 
based on intermediate products that have been produced on Friday (day 4). 

In order to be able to start packaging on Monday of the following week (day 
14), the corresponding volume of intermediate products has to be produced 
within the planning horizon in addition. This stock level of intermediate prod­
ucts at the end of the production week is assumed to be the same as the stock 
level at the beginning of the production week in terms of both volume and age. 
The stock level of final products at the end of the production week does not need 
to be determined in advance as it can be derived from the model results. 

4.2 Model Formulation 

Indices 
i e I intermediate products 
j eJ final products 
0 EO chambers 
1 EL packaging lines 
s, so E S production days (= shelf life days) 
p E P packaging days 
d E D demand days 
k E K positions 
g E G scalding programs 
b EB blocks 
/ E 1(g) intermediate products based on scalding program g 
J E JB(b) final products based on block b 
j E JI(i) final products based on intermediate product / 
/ E LJ(j) packaging lines that can process final producty 
/ E LB(b) packaging lines that can process block b 

Parameters 
iCi cost of intermediate product / in € per kg 
oui factor indicating the chamber utilization of intermediate product / 
ocapo capacity of chamber o in kg 
oco cost of chamber o in € per day 
imb minimum batch size for a scalding program in kg 
scaltimeg processing time of scalding program g 
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weightlosSi 

estartk 
iSis 
idis 

iscap 
fp 
varcj 
rev, 
Slj 

lUj 
capi 
ci 
stb 
ct 
berij 

% 
mb 
dejd 
fixdem 

OSi 
plosSj 

Idp 
fdp 

loss of weight of intermediate product / per day in the intermediate 
warehouse in % of the initial weight 
earliest possible starting time of a block at position k 
inventory of intermediate product / produced on day s in kg 
demand of intermediate product / to be produced on day s (to start 
packaging at the beginning of the following week) 
capacity of inventory for intermediate products 
final position 
variable cost of final producty in € pro kg 
revenue for selling one kg of final producty in € 
maximum shelf life of final producty in days 
minimum shelf life of producty required by the customer (as a 
fi*action of maximum shelf life, applied to multiply the shelf life of 
product 7) 
factor indicating the packaging line utilization of final producty 
capacity of packaging line / in kg per day 
cost of packaging line / in € per day 
set-up time for block b in days 
daily cleaning time for packaging lines 
maximum additional benefit when meeting the maximum shelf life 
of final product/ in € per kg 
maturation time for final product^ in days 
minimum batch size of a block in kg 
demand of final producty of demand day d in kg 
demand day up to which the demand must be fully satisfied 
inventory of final product^ produced on day s in kg 
overtime supplement for weekend production on packaging line / 
slicing loss of final producty in % of sliced volume 
share of slicing losses of final product^ in % that can be reinte­
grated into the production process 
start of the last packaging day within the planning week (Saturday) 
start of the first packaging day within the planning week (Sunday) 

Decision Variables 

^gko 

^pbl 

Viko 
Wis 

START,o 

=1, if scalding program g is set up at position k in chamber o 
(0, otherwise) 
=1, if block Z? is set up on packaging day/? on packaging line / 
(0, otherwise) 
volume of intermediate product / at position k in chamber o in kg 
volume of intermediate product / produced on day s in kg 
start of production at position k in chamber o 
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Xjpsi volume of final producty produced on production day s and 
packed on packaging day/7 on packaging line / in kg 

^jpsd volume of final producty produced on production day s and 
packed on packaging day/? in kg that is used to meet the demand 
of demand day c/ 

Yjsd inventory of final producty produced on production day s in kg 
that is used to meet the demand of demand day d 

Lpbi duration of block b on packaging day/? on packaging line / 
ENDpbi end time of block b on packaging day/? on packaging line / 
ESTpi start time of packaging line / on packaging day/? 
LFTpi end time of packaging line / on packaging day/? 
SUOi overtime at the beginning of the planning week (Sunday) on pack­

aging line / 
SAOi overtime at the end of the planning week (Saturday) on packaging 

line/ 

Objective Function 

jeJseSdeD peP V ^^jJ'^^j 

•̂  Z Z Z Z Z ^JPsl' P^^^^J ' ̂ ^J ' ̂ ^i 
peP seSleL iel jeJI(i) 

" Z Z Yj^iko -iCi - Z Z H'^gko -oco -scaltimeg (1) 
ielkeKoeO geGkeKoeO 

- Z Z Z Z ^jpsl • (' - P^^^^j ) • ̂ "''^j 
jeJpePseSleL 

leLpeP leL 

The objective function aims at maximizing the contribution margin. Regard­
ing revenues, it considers the regular revenues of the sold products and a shelf 
life dependent pricing component. It is supposed that the manufacturer yields a 
financial benefit if the products have a longer residual shelf life when being 
delivered. The shelf life dependent benefit increases linearly between the mini­
mum customer requirement on shelf life (crf^slj) and the maximum possible shelf 
life {slj) since the benefits for the retailer increase with every additional day of 
residual shelf life (see Figure 3). 
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Shelf Life Dependent 
Pricing Component 

ben 
' (l-crj.5/, 

sl.-(d-s) 
^ Shelf Life 

Figure 3: Shelf life and shelf life dependent pricing component 

As an example, suppose that producty has a total shelf life of 30 days (slj = 
30) and that the customers require a minimum residual shelf life when being 
delivered of 66% of the total shelf life (crj = 66%). Suppose further that the shelf 
life of the product starts on day 7 (s = 7), the product is delivered to the retailer 
on day 11 (d= 11) and the maximum benefit for meeting the maximum shelf life 
of product y, berij is € 0.30 per kg. In this case, the manufacturer yields a finan­
cial benefit of € 0.18 per kg of producty (60% of the maximum benefit). 

Moreover, as slicing losses can partly be reintegrated into the process, they 
must be respected in addition (Xjp^i * plossj * rqj * /c/). The considered cost ele­
ments of the smoking and scalding step include the variable costs for the raw 
meat and for the ingredients of the intermediate products (/c/) as well as the 
processing costs of the scalding chambers (oCo). In packaging, the variable costs 
of packaging are taken into consideration. These costs do not occur for the slic­
ing losses (plosSj). Furthermore, the costs of utilizing the packaging lines in 
regular and overtime mode are considered. Fixed cost elements have been ne­
glected, as there are not relevant on a weekly planning level. Constraints to be 
respected are the following. 
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Set-up and capacity of chambers 

Y^^V^koloUi)<Tgko'ocap^ keK:geG; oeO (2) 

X^gito^l kGK;oeO (3) 

According to (2), intermediate product / can only be produced in chamber o 
if the chamber is set up {Tgko = 1) for the corresponding scalding program g. In 
addition, the volume of all intermediate products / that are based on the same 
scalding program g (i e 1(g)) and that are produced at the same position k in 
chamber o must not exceed the available capacity of the chamber (ocapo). Since 
smaller diameter sausages cannot fill the chamber to the same extent as large-
calibre sausages, the fill grade of the chamber by different types of intermediate 
products is taken into account by the factor ow,. Moreover, a position k of scald­
ing chamber o can only be used to start one scalding program (3). 

Sequencing scalding 

STARTko > STARTk_x,o + scaltimcg • Tg^^i^ keK: k>\; oeO; geG (4) 

This constraint ensures that scalding program g may not start at position k 
before the end of its predecessor k-X in order to avoid overlapping of scalding 
programs in a chamber. 

Day bounds scalding 

estartf^ < STARTj^^ < estartj^ +1 keK; oeO (5) 

STARTko + scaltimcg • Tg^o ^ estart^ +1 keK: k=fp; o eO (6) 

For the consideration of shelf life, each position k is assigned to a specific 
production day by the parameter estart^. Accordingly, the start of a scalding 
program at position k must take place on the production day the position is as­
signed to (5). Since intermediate products can only be produced from Monday to 
Friday, the last position of the planning horizon (k = fp) must be finished at 
Friday midnight (= estartfp + 1) at the latest (6). 

Production volume scalding 

Wis^Y. Y/iko s^S.iel (7) 
oeOkeK'.estartf^ =s 

The produced volume of intermediate product / on production day s (Wis) 
must not exceed the sum of all volumes of that intermediate product / that have 
been produced at any position that is assigned to this production day s {estartk = 
s) and in any scalding chamber o. 
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Warehouse capacity for intermediate products 

X, 
Z Z (Wis^iSisVou,^ Z Z Z Z Z i\i-^ei^hdX{p-s)\ou^) 

< iscap s eS (8) 
The warehouse capacity (iscap) for intermediate products must not be ex­

ceeded on any production day s (8). The inventory level on production day s is 
determined by first summing up the inventories of the previous week (iSis) and 
the produced volumes of intermediate products of the previous days of the cur­
rent planning week (so < s). Then, the volume of intermediate products that has 
already been used for packaging is deducted (Xjpsi, for all packaging days/7 < s). 
The capacity utilization of different intermediate products / is respected by the 
factor oui. The weight loss of intermediate products in the warehouse (weight-
loss^ is also taken into account. Although (8) is only valid at the end of each 
day, it can nevertheless adequately represent the course of a day as all inventory 
inputs and outputs are relatively equally distributed over the day. 

Minimum batch size scalding 

Z Vik^ > imb. T^k^ ksK: oeO (9) 
ielig) 

A minimum filling level of the chambers is ensured by (9). If a scalding pro­
gram g is set up at position k in chamber o (Tgko > 0), the volumes of the inter­
mediate products being part of the production batch must meet or exceed the 
minimum batch size (imb). 

Weight losses in intermediate storage and meeting packaging demand 

(Wi,+isi,)> X Z Z T -r;j^ vr—r seS.iel (10) 

This constraint constitutes the link between the scalding and the packaging 
part. For all intermediate products / of production day s, the produced quantities 
(Wis) and the inventory from the previous week (isis) must cover the demand of 
the packaging department (Xjpsi) and the demand of intermediate products for the 
start of packaging at the beginning of the following week (idis). The weight loss 
of the intermediate products in the warehouse must also be considered in order 
to provide the accurate quantities of intermediate products for the packaging 
department. The weight loss that is mainly due to water evaporation is given in 
% per day in the warehouse (weightlossi) and multiplied by the days passed 
between scalding and packaging (p-s). Although in reality, the weight loss fol­
lows a more exponential function, a linear modelling approach for the weight 
losses has been chosen for two reasons. On the one hand, the solvability of the 
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model is increased by choosing a linear approach. On the other hand, scalded 
sausages stay usually only a couple of days in the warehouse. The losses during 
these first days can relatively well be reflected by a linear function as the water 
loss rate remains relatively stable during these first days. However, in case of 
fermented sausages (e.g. salami) with longer maturing times (up to weeks and 
months), a more detailed modelling approach would be required. 

Set-up packaging 

Z H^Jpsl'l^J^Spi^j-capj peP;beB:leLB(b) (11) 
JeJB{b)s€S 

The final producty can only be packed on packaging dayp on packaging line 
/ if the corresponding block b of the final producty eJB(b) is set up on that line 
and on that day. 

Output quantities packaging 

Xjjjsi'(1 - p l o s S j ) 
Spbl'Stb^ X 1.-^^ ; -^hbi peP:beB;leLB(b) (12) 

JeJB{b)seS capi'lUj 

The duration of block b on packaging line / on packaging day p (Lpbi) in­
cludes the set-up time of the block b (sti,) and the actual production times of all 
final products y e JB(b) that are produced within the block b. As for intermedi­
ate products in the scalding chambers, the final products also differ with regard 
to their degree of utilization of the capacity of the packaging lines. This fact is 
considered by the factor luj. If packaging line / is not set up for the block b {Spbi 
= 0), the output quantities of all final products of this block become zero (Xjpsi = 
0) according to (11). Consequently, the duration of this block (Lpbi) becomes 
zero as well so that the start time and the end time of this block are the same. 
Since the capacities of the packaging lines (capi) are given in terms of output-kg, 
the slicing loss (plossj) must be subtracted from the quantities given into the 
process (Xjpsl). The slicing loss is partly re-integrated in the production process 
which is respected in the objective function (1). 

Sequencing packaging 

ENDpi,i>Lpti^ENDp^t,-U peP; beB: b>\; leLB(b) (13) 

This constraint guarantees that an overlapping of blocks on a packaging line / 
cannot take place since block b may not start before the end of its predecessor 
6-1. It is supposed that not only the sequence of final products within a block is 
fixed, but also the sequence of blocks within a day. 
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Day bounds packaging 

ENDpi,i < /? +1 bGB:p eP: leLB(b) (14) 

ENDpi^i - Lpijj >p + ct b eB; p eP; I eLB(b) (15) 

These constraints assign each block to a specific packaging day p. A block b 
on packaging line / on packaging day p must be finished before the end of pro­
duction day/7. Furthermore, the beginning of this block (ENDp^i - Lpbi) must take 
place after the beginning of the corresponding packaging day p. In addition, a 
general cleaning time (ct) must be respected for all lines, which takes place 
every day at midnight. Hence, the feasible interval for the float variables indicat­
ing the end of a block is set by the interval derived from the integer day num­
bers. For instance, according to (14) and (15), any block b packed on day/7=8, 
must be completed by 9 and started after 8. Thus, ENDpbi will assume a value 
between 8.00 + Lpbi + ct and 9.00. 

Stock balance final products 

Y,Xjp,i'(l-plossj)>Y,Zjpsd JeJ;seS;peP (16) 
leL deD 

Sjs^T^Yj,^ jeJ:seS (17) 
deD 

For the coverage of the demand (22), final products from stock {Sjs), pro­
duced in the previous week, or final products that have been produced within the 
actual planning week {Xjpsi) can be taken into account. Due to the fact that the 
slicing of the intermediate products takes place within the packaging step, the 
resulting slicing losses (ploss/) must be subtracted in order to provide accurate 
quantities. The slicing losses can partly be reintegrated into the production of 
intermediate products (1). 

Utilization of packaging lines 

LET pi > ENDpi^i b eB; p eP; I eLB(b) (18) 

ESTpi < ENDpi^i -Lpt,i beB.'peP; leLB(b) (19) 

SUOi > LFTpi - ESTpi leL; p=fdp (20) 

SAOi >LFTpi 'ESTpi leLip^ldp (21) 

The variables LFTpi (18) and ESTpi (19) determine the finishing time and the 
start time of packaging line / on packaging day/?. The difference {LFTpi - ESTpf) 
describes the actual run time of the packaging line / on that packaging day p 
which is used in the objective ftmction (1) in order to determine the cost of the 
line utilization. The variables SUOi and SAOi in (20) and (21) determine the 
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overtime required on packaging line / at the beginning (Sunday) and at the end 
(Saturday) of the planning period. 

Meeting demand 

^^Jd^Y. H^jpsd^ Y.^jsd J€J;deD:d<fixdem (22) 
peP seS: seS: 

id-s)^(\-crjyslj (d-s)<{\-crj)slj 

"^^jd ^ Z H^Jpsd + ll^jsd J^J'^ dED: d >fixdem (23) 
peP seS\ seS\ 

(d-s)^{\-crj)'slj (d-s)<{l-crj)'slj 

The demand of final product y of demand day d can be covered by volumes 
produced within planning week (Zjpsd) or from stock (Yjsd). The customer re­
quirements regarding the minimum residual shelf life {crj) have to be respected 
for both products from stock and products produced within the planning week. 
For all days up to day fixdem, full satisfaction of demand is required, reflecting 
the very competitive retail environment, fixdem is usually set to Saturday of the 
planning week. For the remaining days (especially the demand of the following 
week), the satisfaction of the demand is optional. In urgent cases, these products 
can be sliced and packed on Sunday of the following planning week. 

Minimum batch size packaging 

X Y.^jpsri^-plossj)>mb-Spj,i beB:p€P:leLB(b) (24) 
jeJB{b)seS 

Similar to the scalding chambers, a minimum batch size for block b for every 
packaging day/? and on every packaging line / is required in order to justify the 
set-up times. A block consists of all production volumes of all final products of 
XhishXozk(j €JB(b)), 

Maturation time for intermediate products 

Xjp,i < 0 J€j;psP; seS: s+qj>p: leUQ) (25) 

A maturation time for intermediate products in the warehouse (qj) is consid­
ered. Products cannot be packed if the maturation time has not passed. Although 
the maturation time concerns intermediate products, the time is modelled for 
each product J in order to allow prolonging or shortening the maturation times 
for specific customers. 

Variable domains 

Tgko e {0;l} keK; geG; o eO (26) 

Viko^^ keK;ieI;oeO (27) 

Wi,>0 ieI;seS (28) 
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fdp + l<START^o <ldp k eK; o eO (29) 

Spbi G {0;l} p eP; b eB; IeLB(b) (30) 

Xjpsi>0 J€J:p€P:s€S: s<p; leUQ) (31) 

Zjpsd ^0 7 ̂ ^'^ P ̂ P' s eS: s<p; d eD: s<d&p<d (32) 

Yjsd ̂ 0 j eJ; s eS; deD: s<d (33) 

Lpiyi > 0 p eP: b GB: I eLBfb) (34) 

p < ENDphi < p + 1 peP; beB; leLBfb) (35) 

p<ESTip<p + \ peP;leL (36) 

p<LFTip<p-\-\ peP:leL (37) 

SAOi,SUOi>0 leL (38) 
Two variables {Tgko and Stpl) are binary; all other variables are continuous. 

The variables ENDpbi, ESTip and LFTip can only take values of the corresponding 
packaging day p. As the intermediate products must be produced before being 
sliced and packed {s < p) and the final products must be sliced and packed be­
fore being delivered (p < d), this sequence is guaranteed by the definition of the 
corresponding variables. 

5 Numerical Results 

The purpose of the numerical investigation is to assess the suitability of the 
model for specific planning problems in industry. The performance of the model 
is assessed along the dimensions Objective Value (OV), MIP-Gap, and compu­
tation time. OV is the value of the objective function at the moment at which the 
optimization run is stopped. The MIP-Gap is the difference in percent between 
the actual OV and a theoretical upper bound for the optimal OV which is ob­
tained from a Linear Programming (LP) relaxation of the problem. 

In order to assess the applicability of the proposed model for a real-life plan­
ning problem, first the number of positions for the scalding chambers must be 
determined. A low number of positions will substantially reduce the size of the 
model, especially with regard to the number of binary variables of the type Tg^o. 
On the other side, a too low number of positions will also reduce the available 
capacity. Considering tiie duration of the scalding programs in the data set (4, 6 
and 8 hours), 6 positions per day can be considered as an upper bound, as the 
shortest scalding program (4 hours) can be run 6 times per day at maximum. If 
the number of available positions per day is reduced to four, the capacity can 
still be utilized by 100% by 6- and 8-hour scalding programs; however, if only 
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4-hour scalding programs are required, the capacity can only be utilized for 16 
hours per day, resulting in a capacity shortage of 33%. Some numerical analysis 
revealed that with 5 positions per day and chamber, high OVs and low MlP-gaps 
can be obtained within relatively short computational times which cannot be 
topped by a 6-positions-per-day model after one hour. Therefore, all following 
analysis has been performed using 5 positions per production day. For the nu­
merical validation of the model, a data set is applied, which represents a mid- to 
large-size production environment. The resulting model contains 698 binary and 
20,787 continuous decision variables. 

In spite of the high number of binary variables, the model shows a relatively 
good solvability. Since the performance of the model regarding solvability, 
computational times and MlP-gaps can vary depending on the problem instance, 
the demand has been varied in order to assess the stability of the model (see 
Table 1). In all cases, a resuh has been obtained after less than 5 minutes. None­
theless, in none of the three demand scenarios the first obtained solution cannot 
be improved even after several hours of CPU time. Yet, MlP-gaps from 2% to 
3% are still satisfactory considering the two-stage planning problem. 

Table 1: Model performance 

Demand [% of 
original demand] 

80% 

100% 

120% 

t[s] for first 
solution 

45 sec 

85 sec 

280 sec 

Objective 
value [T€] 

313.4 

390.8 

454.7 

MlP'gap 

2.8% 

3.0% 

2.0% 

Further analysis has been performed regarding the impact of the shelf life 
dependent pricing component on the freshness of the products and the produc­
tion costs per kg of the final product. In Figure 4, a factor of 1 represents shelf 
life dependent benefits as used in the data set (ca. 3.5% of the total revenues) - a 
factor of 0.1 means 10% of the initial value, a factor of 10 means 10 times the 
initial value. The freshness of the products - measured as the weighted average 
of the remaining shelf life on the total shelf life of the products - increases if the 
shelf life factor is increased, however, only to a limited extent (from 79% to ca. 
81.5%). This is mainly due to the fact that products with a low shelf life depend­
ent pricing component are now produced earlier and the products with a higher 
shelf life dependent pricing component are postponed, resulting in an only slight 
increase of the average shelf life. In addition, scalding and packaging must now 
be performed with lower batch sizes. Therefore, the higher shelf life benefits at a 
factor of 5 or 10 are levelled off against higher scalding and packaging costs. 
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which include not only a higher number of set-ups, but also the use of more 
expensive machines and of overtime capacity. Hence, the average production 
costs per kg of final product increased from € 1.27 at a shelf life factor of 0.1 to 
€ 1.35 at a shelf life factor of 10. 

83 .0% 

Factor for the shelf life dependent pricing component 

- Shelf life in % of maximum shelf life • - Production costs in € 

Figure 4: Variation of shelf life dependent pricing component (MIP gap: 2%) 

Conclusions 

In this paper, an MILP modelling approach has been presented that integrates 
shelf life into the weekly planning of the production of scalded sausages. The 
model covers the steps of scalding and packaging as well as the intermediate 
warehouse. To model certain features of fresh food business, a shelf life depend­
ent pricing component has been integrated. Hence, the freshness of the products 
can now be influenced explicitly in the weekly production planning. The model 
has shown to be able to deliver scheduling results with acceptable MlP-gaps in a 
relatively short time. However, as the run-time of the model and the MlP-gap 
depend on the specific data set, the number of positions to use and also the ap­
propriate run-times must first be evaluated if major parameters of the planning 
problem change (e.g. number and capacity of chambers and packaging lines or 
number and structure of intermediates, blocks and products). 
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If very large model instances (due to, for example, a high number of inter­
mediate or final products or a high number of different scalding programs) must 
be resolved, a decomposition approach can be promising. However, in that case 
the model has to be reformulated in order to obtain a two stage planning proce­
dure. At the beginning, the packaging lines that can process the same range of 
final products are optimized individually based on a first model formulation. The 
results of this first model represent the required volumes of intermediate prod­
ucts per day. A second model must then summarize all required quantities of 
intermediate products and must schedule the scalding chambers accordingly. 
The described procedure will help to reduce computational times. Nonetheless 
the overall solution quality will probably decrease since no overall optimization 
is carried out; local optima are obtained instead. Moreover, as the planner in 
industry will probably not be able to perform the decomposition on its own, the 
two new models must be developed by OR experts and delivered to the planner, 
along with clear guidelines on how to use the models. 

However, for the success of shelf-life integrated planning for real life appli­
cations, the value of the shelf-life dependent pricing component needs to be 
determined. The implementation into existing supply chain management con­
cepts may prove to be difficult. Developing suitable incentives based on cus­
tomer satisfaction is therefore necessary. Yet, even without taking an integrated 
perspective onto the supply chain, this concept offers a suitable tool for a sau­
sage manufacturer to consider freshness as a part of production planning. For 
markets characterized by intense competition, this provides an additional qual­
ity-oriented feature, which can constitute a pivotal competitive advantage. In 
addition to the processed meat industry, the applicability of these models for 
similar problems arising in the production of other fresh foods (e.g. fresh meat, 
dairy, fish, fruits, vegetables, or bakery goods) has to be examined. 
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1 Einleitung 

Im Gutenberg-Produktionsmodell werden drei Anpassungsformen an alternative 
Beschaftigungen (Produktquantitaten) unterschieden: die zeitliche, die intensi-
tatsmSBige und die quantitative Anpassung (vgl. Gutenberg, 1983). Zeitliche 
Anpassung bedeutet, dass bei konstanter Anzahl der eingesetzten Potenzialfakto-
ren eines Typs (Aggregate) und konstanter Intensitat (Produktionsgeschwindig-
keit) die Einsatzzeit der Aggregate an die zu erzeugende Produktquantitat ange-
passt wird. IntensitatsmSBige Anpassung liegt vor, wenn bei fester Anzahl der 
eingesetzten Aggregate gleichen Typs und gegebener Einsatzzeit die Intensitat 
der Potenzialfaktoren in Abhangigkeit der Produktquantitat variiert wird. Von 
quantitativer Anpassung wird schlieBlich gesprochen, wenn bei vorgegebener 
Intensitat und Einsatzzeit die Anzahl der eingesetzten Aggregate variiert wird 
(vgl. z. B. Fandel, 1996). Es handelt sich dabei um kurzfristige Anpassungsfor­
men, da die Anpassung an alternative Produktquantitaten auf der Basis der zur 
Verfiigung stehenden Potenzialfaktoren erfolgt, d. h. diese Anpassungsformen 
beziehen sich ausschliefilich auf im Betrieb vorhandene Aggregate und sind 
daher sofort realisierbar (vgl. Bloech et al, 2001). Die zeitliche, intensitatsma-
Bige und quantitative Anpassung bestimmen die Leistungsabgaben der vorhan-
denen Potenzialfaktoren und damit sowohl die resultierenden Faktorverbrauche 
als auch die damit verbunden Kosten. In der betrieblichen Praxis werden diese 
Anpassungsformen i. d. R. kombiniert. Es stellt sich somit das Problem, die drei 
Anpassungsformen derart zu gestalten, dass die gewtinschte (vorgegebene) Pro­
duktquantitat effizient erzeugt wird. 

Das betrachtete Auswahlproblem besteht in der Ermittlung der kostenmini-
malen Anpassungsform fUr alle realisierbaren Produktquantitaten. Stellvertre-
tend fur die Vielzahl der Beitrage, welche die jeweils optimale Anpassungsform 
ableiten, seien an dieser Stelle die grundlegenden Arbeiten von Albach (1962a), 
Jacob (1962), Pack (1963, 1966), Dellmann und Nastansky (1969), LUcke 
(1969), Karrenberg und Scheer (1970), Adam (1972), SchUler (1973), (1975) 
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und Botta (1974) genannt. Eine weiterfUhrende Analyse der kostenminimalen 
Kombination der Anpassungsformen unter besonderer Berilcksichtigung variab-
ler Faktorpreise findet sich z. B. bei Lambrecht (1978). Eine umweltorientierte 
Darstellung der Produktionsfunktion von Gutenberg unter Beachtung des Anfalls 
unerwUnschter Nebengilter (z. B. AbfSlle, Schadstoffe) entwickeln Dinkelbach 
und Rosenberg (2000). Empirische UberprUfungen der Produktionsfunktion von 
Gutenberg finden sich z. B. bei Hall (1959) und Pressmar (1971). Die Bestim-
mung der Produktions- und Kostenflinktion fiir ein konkretes Dieselaggregat zur 
Stromerzeugung prSsentieren Houtman und Sucky (2001). Einen Uberblick der 
empirischen Arbeiten zur Gutenberg-Produktionsfunktion gibt Fischer (1980). 

Im vorliegenden Beitrag wird das wohlbekannte betriebswirtschaftliche Pro­
blem der Bestimmung der optimalen Anpassungsform fiir alle mit einem Aggre-
gat altemativ realisierbaren ProduktquantitSten emeut aufgegriffen. Wird ein 
einzelnes Aggregat betrachtet, kann sowohl dessen Einsatzzeit (zeitliche Anpas-
sung) bei konstanter Intensitat, mit der das Aggregat betrieben wird, als auch die 
Intensitat (intensitatsmaBige Anpassung) bei gegebener Einsatzzeit, variiert 
werden. Die optimale Anpassungsform fUr alle mit einem Aggregat realisierba­
ren Produktquantitaten bildet dann die Basis zur Ermittlung der optimalen Kom­
bination aus zeitlicher, intensitatsmaBiger und quantitativer Anpassung im Fall 
mehrerer, funktionsgleicher Potenzialfaktoren (vgl. z. B. Jakob, 1962). 

Werden sowohl die Einsatzzeit eines Aggregats als auch die Intensitat, mit 
der das Aggregat betrieben wird, als Entscheidungsvariablen interpretiert (vgl 
Dinkelbach und Rosenberg, 2000), kann das Problem der Auswahl der kosten­
minimalen Anpassungsform fUr eine gegebene Produktquantitat als nichtlineares 
Optimierungsproblem formuliert werden. FUr nichtlineare Optimierungsproble-
me stellen die erstmals von Karush (1939) und spater von Kuhn und Tucker 
(1951) abgeleiteten Karush-Kuhn-Tucker-Bedingungen notwendige Optimali-
tatskriterien dar. Wahrend die Karush-Kuhn-Tucker-Bedingungen oftmals zur 
OptimalitatsprUfung einer gegebenen L5sung herangezogen werden, wird in 
diesem Beitrag ein anderer Weg beschritten. Im vorliegenden Beitrag wird ge-
zeigt, dass die Auswahl der kostenminimalen Anpassungsform unmittelbar unter 
Verwendung der Karush-Kuhn-Tucker-Bedingungen analytisch hergeleitet wer­
den kann, sodass auf die in der relevanten Literatur verwendeten Ersatzmodelle 
unter Heranziehung der Linearen Programmierung oder der Dynamischen Opti-
mierung verzichtet werden kann. 

Bei Einsatz eines Aggregats ist die kostenminimale Anpassungsform fur eine 
gegebene Produktquantitat durch eine bestimmte Kombination aus Einsatzzeit 
und Intensitat gekennzeichnet, die im Weiteren als Minimalkostenkombination 
bezeichnet wird. 

Der Begriff der Minimalkostenkombination ist eng verbunden mit so genann-
ten substitutionalen Produktionsfunktionen. Die Substitutionsmoglichkeiten der 
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Faktoreinsatze bilden hierbei die Grundlage fur den Begriff der substitutlonalen 
Produktionsfunktion. Die Entscheidungsvariablen im Rahmen der Minimalko-
stenkombination sind dann die zur Erzeugimg einer bestimmte Produktquantitat 
zu wahlenden FaktoreinsStze. 

Im Rahmen dieses Beitrags wird somit ein weiter gefasster Begriff der Mi-
nimalkostenkombination verwendet. Es wird verdeutlicht, dass bei konsequenter 
Interpretation der Einsatzzeit und der IntensitSt als Entscheidungsvariablen eine 
den substitutionalen Produktionsfunktionen analoge Ableitung der Minimalko-
stenkombination als kostenminimale Kombination aus Einsatzzeit und Intensitat 
zur Erzeugung einer bestimmten ProduktquantitSt, gelingt. Zur Verwendung des 
Begriffs der Minimalkostenkombination im Rahmen des Gutenberg-
Produktionsmodells vgl. Jakob (1962). Aus den ermittelten Minimalkostenkom-
binationen eines Aggregats fUr alle im Planungszeitraum realisierbaren Produkt-
quantitaten wird schlieBlich die Kostenfiinktion bestimmt. 

2 Das Produktionsmodell von Gutenberg 

2.1 Minimalkostenkombination und Kostenfiinktion 

Eine Kostenfiinktion stellt die fiinktionale Abhangigkeit zwischen den Kosten-
einflussgrOBen und den Produktionskosten im Planungszeitraum dar. Diese Ko-
steneinflussgr56en sind u.a. Faktorqualitat, Faktorpreise, Beschaftigung, Be-
triebsgr56e, Fertigungsprogramm und die Gestaltung des Fertigungsablaufs (vgl. 
Gutenberg, 1983). Insbesondere interessiert der „Einflu6 von Beschaftigungs-
schwankungen auf die Produktionskosten" (Gutenberg, 1983), d. h. die Angabe 
einer Kostenfiinktion K(x), welche die gesamten minimalen Kosten im Pla­
nungszeitraum in Abhangigkeit von der Beschaftigung x, gemessen in Produkt-
einheiten [PE] des zu erzeugenden Produkts, angibt. Das kostentheoretische 
Auswahlproblem besteht in der Ermittlung der Minimalkostenkombination: Sind 
bis auf die Quantitaten ri,r2,...,rn der einzusetzenden Faktoren, gemessen in Ein-
heiten des Faktors i [FEj], samtliche KosteneinflussgrCBen konstant und sind 
positive Faktorpreise qi,q2v5qnj gemessen in Geldeinheiten je Faktoreinheit 
[GE/FEj], gegeben, so sind fiir eine bestimmte Produktquantitat x [PE] die Fak-
toreinsatzquantitaten so zu wahlen, dass die Kosten minimal werden. Eine para-
metrische Variation der Produktquantitat x im Rahmen der Minimalkostenkom­
bination liefert die Kostenfiinktion K(x) (vgl. Dinkelbach und Rosenberg, 2000). 

2.2 Das Gutenberg-Produktionsmodell 

Im Folgenden wird ein Aggregat betrachtet, an dem durch den Einsatz von n 
Verbrauchsfaktoren die Quantitaten x [PE] eines Produkts erzeugt werden. Die 
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Ausbringungsquantitat x hSngt ab von der Intensitat X = — (Produktionsge-

schwindigkeit), gemessen in Produkteinheiten x je Zeiteinheit t [PE/ZE], mit der 
das Aggregat betrieben wird, der Einsatzzeit t [ZE] des Aggregate sowie den 
technischen Eigenschaften z(t), d. h. x = x(^, t, z(t)). Der Zustandsvektor z(t) 

(z-Situation) charakterisiert die technische LeistungsfShigkeit des Aggregate 
zum Zeitpunkt t und ist eine KosteneinflussgroBe. Im Rahmen dieses Beitrags 
wird von einer konstanten z-Situation ausgegangen. Eine Untersuchung der 
Auswirkungen von sich im Zeitverlauf verSndemden technischen Eigenschafen 
eines Aggregats, z.B. aufgrund technischen VerschleiB, auf Investitionsentschei-
dungen flihrt Albach (1962b) durch. Analysen der Auswirkungen der z-Situation 
auf kurz- und langfristige Produktions- und Investitionsentscheidungen haben 
Luhmer (1975), Stepan (1981) sowie Kistner und Luhmer (1988) durchgefiihrt. 

Wird die Intensitat X, mit der das Aggregat betrieben wird, in Arbeitseinhei-

ten b [AE] je Zeiteinheit t [ZE] gemessen, d. h. A. = — [AE/ZE], so ergibt sich 

die Leistungsabgabe b [AE] des Aggregats im Planungszeitraum mit b = A, • t. 
Zwischen der technischen Leistung b [AE] des Aggregates und der 5konomi-
schen Leistimg, gemessen in Produkteinheiten x [PE], wird von einem propor-
tionalen Zusammenhang c • x = b ausgegangen, wobei c [AE/PE] die notwendige 
Anzahl an Arbeitseinheiten je Produkteinheit angibt. Mit b = At und c-x = b 

ergibt sich die proportionale Beziehung x = - A , t (vgl. Fandel, 1996). In die-
c 

sem Beitrag wird von c=l ausgegangen, sodass die proportionale Beziehung 

x = ^-t gilt, mit A.e[r'",r^], (0<^'^<^'^) und t e [ 0 , t n , ( f > 0 ) . 
Das Gutenberg-Produktionsmodell gestattet die Darstellung der Faktorfunk-

tionen rj = aj • x = aj • A. • t (i=l,2,...,n) mit ai als Produktionskoeffizient des i-ten 
Faktors, gemessen in Einheiten des Faktors i je Produkteinheit [FEj/PE]. Die 
Auspragungen der ProduktionskoefFizienten hangen ab von der Intensitat A., mit 
der das Aggregat betrieben wird. Es ergeben sich die Funktionen ai(A,) 
(i=l,2,...,n), die als technische Verbrauchsfunktionen (vgl. Gutenberg, 1983) 
Oder Durchschnittsverbrauchsflinktionen bezeichnet werden. Mit den techni­
schen Verbrauchsfunktionen â  = ai(A.) (i=l,2,...n) und der Beziehung x = A- • t 
ergeben sich die Gesamtverbrauchsfunktionen der n Faktoren zu: 

T.(Kt) = ^.^(X)iX't) i=l,2,...,n (1) 
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Dieses System von Faktorfunktionen (1) wird Gutenberg-Produktionsmodell 
genannt. Eine allgemeine Darstellung des Gutenberg-Produktionsmodells als 
Technologie geben Dinkelbach und Rosenberg (2000). 

2.3 Das kostentheoretische Auswahlproblem im Gutenberg-
Produktionsmodell 

Die Faktoreinsatzquantitaten je Produkteinheit, dargestellt durch die Produkti-
onskoeffizienten 2i,(X) (i=l,2,...,n) sind nicht konstant, sondem hangen von der 

gewahlten Intensitat X ab (vgl. Dinkelbach und Rosenberg, 2000) Die variablen 
Gesamtkosten k5nnen daher nicht in direkter AbhSngigkeit von der Produkt-
quantitat x angegeben werden. Unter der Voraussetzung konstanter, positiver 
Faktorpreise qi,q2, -jqn lauten die Kosten des Faktorverbrauchs in Abhangigkeit 
von der gewahlten Intensitat k und der Einsatzzeit t des Aggregats: 

K(X,t)=Iqi.ri(X,t) = (^Iqi-ai(?.)j-(^-t) = k(x)-(X-t). (2) 

Werden Verbrauchsfunktionen wie in (2) mit konstanten Faktorpreisen be-
wertet, so ergibt sich lediglich eine Verschiebung der Lage der Verbrauchsfunk­
tionen. Der typische Verlauf der Verbrauchsfunktionen bleibt jedoch erhalten 

(vgl. LQcke, 1969). Die Funktion k{x)= tq^ 'di.{^) heifit Sttickkostenfimktion. 
i=l 

In diesem Beitrag werden streng konvexe Sttlckkostenfiinktion k{x) im Defmi-

tionsbereich [A!"'", A,*"*''] angenommen. Positive Faktorpreise vorausgesetzt erge-
ben sich streng konvexe Stiickkostenfunktionen aus konvexen Verbrauchsfunk­
tionen ai(^) mit mindestens einer streng konvexen Verbrauchsflmktion. 
Konkave Verbrauchsfunktionen stellen in praktischen Anwendungen die Aus-
nahme dar. 

Unter den hier getroffenen Annahmen existiert genau ein AT, fUr das die 
Stiickkostenfunktion k{x) ihr Minimum annimmt (vgl. Kistner, 1993). Das 

Minimum kann dabei in einem Randpunkt liegen, d. h. in X"^ bzw. X"^ . Ab-
bildung 1 zeigt beispielhaft den streng konvexen Verlauf der Stiickkostenfunkti­
on k{x)=y2QX^ -2-X+24 im Defmitionsbereich 10 < A. < 30, mit X* = 20. 

Die Aufgabenstellung der Minimalkostenkombination im Rahmen des Gu­
tenberg-Produktionsmodells besteht zum einen in der Ermittlung kostenminima-
ler Kombinationen aus Intensitat X und Einsatzzeit t (Minimalkostenkombina-
tionen) flir alternative Produktquantitaten x und zum anderen in der Angabe der 
Kostenfunktion. Es ist das folgende nichtlineare Optimierungsproblem zu l5sen: 
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minK(X,t) = k (x ) (Xt ) 

unter den Nebenbedingungen 

(>.,t)€B:=[X™A'™']x[0,t"^] 

mit den Entscheidungsvariablen X und t. 

(3) 

(4) 

(5) 

StuckkostenB 

20 
intensitat 

Abbildung 1: Verlauf der Stuckkostenfunktion 

Das nichtlineare Optimierungsproblem (3) - (5) kann in einem (X,t)-
Koordinatensystem illustriert werden (vgl. Abbildung 2). Mit den Grenzen fUr 
die Entscheidungsvariablen X und t ergibt sich der Bereich B der zulassigen 
(A.,t)-Kombinationen. Eine Darstellung der zulSssigen (A.,t)-Kombinationen in 
einem (A.,t)-Koordinatensystem findet sich bereits bei Pack (1963). Zur Darstel­
lung der zulSssigen (A-,t)-Kombinationen vgl. auch Dinkelbach und Rosenberg 
(2000) sowie Bloech et al. (2001). Die Produktisoquanten fUr gegebene Quanti-
taten x ergeben sich mit x = X, • t im Bereich der zulSssigen (X,t)-Kombinationen 
(vgl. Dinkelbach und Rosenberg, 2000). 

Das Entscheidungsproblem besteht in der Bestimmung der kostenminimalen 
(X,t)-Kombinationen aus den zulSssigen (X,t)-Kombinationen fur jede realisier-
bare Produktquantitat x und somit in der Ermittlung der Kostenfimktion K(x). 
Die folgende Abbildung 2 zeigt die konvexe Menge B der zulSssigen (A.,t)-
Kombinationen fUr 10<X<30 , 0 < t < 1 0 sowie die Produktisoquante zur 
Produktquantitat x=150. 
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10 20 

Intensitat 

Abbildung 2: Zuldssige (A,t)-Kombinationen undProduktisoquante 

3 Analytische Ermittlung der Kostenfunktion aus den Karush-Kuhn-
Tucker-Bedingungen 

Das nichtlineare Optimierungsproblem lautet: 

minK(>.,t)=k(A)-(Xt) (6) 
unter den Nebenbedingimgen 
x->.-t = 0 (7) 
t>0 (8) 
t " ^ - t > 0 (9) 
x-yryiO (10) 
X^-X>0. (11) 

Die analytische L5sung des nichtlinearen Optimierungsproblems (6) - (11) 
erfolgt mittels der Karush-Kuhn-Tucker-Bedingungen. Diese Bedingungen war­
den unabhangig voneinander durch Karush im Jahre 1939 sowie Kuhn und Tu­
cker im Jahre 1951 abgeleitet. Jedoch wurde die Arbeit von Karush nie ver5f-
fentlicht und dadurch lange Zeit ignoriert (vgl. Kuhn, 1991). Zur Herleitung der 
Karush-Kuhn-Tucker-Bedingungen vgl. Ellinger et al. (1998), Ohse (1998), 
Zimmermann (1999), Domschke und Drexl (1995) sowie Stepan und Fisher 
(1996). Zu den Unterschieden in den Ansatzen vgl. Kuhn (1991). 



196 Heinz Isermann et al. 

Das nicht-restringierte Ersatzproblem lautet: 

minL(X,t,^,,|a2,^3,^4,|i5) = k(x)(X-t)+|ij(x-A.-t)+^2t 

+^3-(t-r^'^)+^4.(x-r")+^5-(r''^-?i) 
Die Funktion L ist im Allgemeinen nicht konvex in X und linear in t (vgl. 

Abbildung 5). Die resultierenden Karush-Kuhn-Tucker-Bedingungen sind somit 
notwendige Bedingungen fUr ein Minimum: 

dL 
— = k'(k)X 
dX 

X- — = k'{X) 
dx 

— = k(X)-X-
at 

t.^ = k(X)-: 

x - X t = 0 

t > 0 

t™"-t>0 

X-X"^ >0 

X'^-X>0 

•t + k(X)-t--Hi-t + H. 

• ̂ ^•t+k(X)•x,•t-^, 

•\^^•X + ^^2 

\.-t-(X| -X-

(17) 

(20) 

(23) 

(26) 

(29) 

-H3>0 

t + ^ j - t -

n, >o 
H J > 0 

^3>o 

^4^0 

ii,>0 

1 

•X 

^3 

^5^o 

•t + |Ll4-X-

•t = 0 

(18) 

(21) 

(24) 

(27) 

(30) 

-H5-^ = 0 

^x^•(\-X•t) = 0 

^2•t = o 

H 3 ( t " - - t ) = 0 

,̂ •(X-x'^) = o 
H,-(X'^-X) = 0 

(13) 

(14) 

(15) 

(16) 

(19) 

(22) 

(25) 

(28) 

(31) 

Aus den Karush-Kuhn-Tucker-Bedingungen (13) bis (31) wird unter Beach-
tung der Zielfunktion (8) die Kostenfimktion K(x) abgeleitet. Diese Herleitung 
erfolgt zunSchst unter der Annahme, dass fiir die kostenminimale IntensitSt X* 

gih X*e]X"^,X"^[, mit k'(>.*)=0. Die ermittelten Ergebnisse lassen sich 

unmittelbar auf X* = X"*^ und X* = X"^ Ubertragen. FUr positive Produktquanti-
taten X > 0 muss die Einsatzzeit gemSB (17) t > 0 sein, sodass generell iij = ̂  

gilt. Mit ^ > "̂̂  > 0 folgt aus (14) unter Beachtung von fij = 0 : 

k\X)'X^ 't-^k(X)'X't-'\i^'X't-^[i^X-\i^-X = 0 (32) 

o >..(k'(>.)->.-t + k(>i)-t-^, •t + |Li4-H5) = 0 (33) 

<z> k\X)-X't-hk(X)'t-[i^'t+ [1^-11^ = 0 . (34) 

Mit t > 0 und |i2 = 0 folgt aus (16): 
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k(A.) -^-t - | i , -X,-1-^3-1 = 0 

O t ( k ( X ) - X - | i , • X - ^ 3 ) = 0 

o k(k)'X-\i^ •A,-|i3 = 0 . 

(35) 

(36) 

(37) 

Da die Zielfunktion (6) nicht streng konvex ist, kOnnen Kostenminima im In-

neren B von B oder am Rand Rd(B) von B (B := [k"^,X"^]x[0,t"^]) auftre-
ten. Hierbei ist x = X-t zu beachten: Die geforderte ProduktquantitSt x muss 
durch mindestens eine zulassige (X,t)-Kombinationen erfiillt sein. Es erfolgt eine 
disjunkte Zerlegung der Menge der realisierbaren Produktquantitaten (vgl. Ab-
bildung 3) in: 

[0 ,x'^]= {0} u ]0,x,[ u {X,} u ]x„x,[ u {x^} u ]x,,x"^[ u { x " - } , 

mit x,=X'^'t"^, X2=>.*-t"^ und x"^ =X"^-t"^ . (38) 

t 12-

10-

8: 

Einsatzzeite-

4: 

2-

X, 

X j 

•> min xtnax 

V \ 
\ \ 

= x*-t"^ 
max __ T̂ max ^max 

\ 

\ \ ^ 
\ \ 

X2 

X i 

10 20 
Intensitat 

30 40 X 

Abbildung 3: Produktisoquantenfur alternative Produktquantitdten 

3.1 Optimale (X, t)-Kombmationenfur Produktquantitdten x G]X i, X 2 [ 

Zu gegebenen x bestimmt sich t = —, mit (X<,t)G B. Sei x eJx^Xjf gegeben, 
X 

so ergeben sich die inneren L5sungen fur xe]x,,X2[ durch x = X t , mit 

(X,,t)€B = B\Rd(B) und die Randl5sungen fur xe]Xi,X2[ durch x = X,-t, 
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mit X = ) r \ t = • bzw. t = t"^, X = -
t" 

(vgl. Abbildung 3). Zur PrU-

fung der Karush-Kuhn-Tucker-Bedingungen werden drei FSlle unterschieden: 

x = ^-t 
a) X e Rd(B) 

b) X e Rd(B) 

c) x e B 

Intensitat X 

X"^ KXKX^KX"^ 

X = X"^'' 

X"^ KXKX"^ 

Einsatzzeit t 
f _ 4.max 

0 < t < t " ^ 

0 < t < t " ^ 

Daraus folgt fUr die La-
grange-Multiplikatoren 

(vgl. (19)-(33)) 

^4 = ^ 5 = 0 

^3 = ^ 4 = 0 

^3 = 1̂ 4 = Ms = 0 

Ada) 
Mit 1X4 = 1̂5 = 0 folgt aus (34): 

t'^-(k'(X)X + k(X)-n,) = 0 

=> k'(A.)-X, + k(X,) = n,. 

Einsetzen in (37) ergibt: 
k(X)X-X-(k'(X)A. + k(X))-H3 = 0 

=> -k'(X)X^=H3. 

(39) 

(40) 

(41) 

(42) 

Aufgrund 0 < X < X * ist X > 0 und k'(X) < 0, so dass sich Hj > 0 ergibt. FUr 

positive Produktquantitaten x e]x,,X2[ ist eine optimale LOsung mit X = 

und t = t"™" vorlaufig nicht auszuschlieBen. Wird diese (A,,t)-Kombination in 
die Zielfunktion (6) eingesetzt ergibt sich: 

K • , t " = k = k X . 

Adb) 
1X3 = H4 = 0 liefert mit (37): 

^X'o^).X'^-li^.X'^ =0 

=>k{X'^) = ii^. 
Einsetzen in (34) ergibt: 

k'(X"^)-X"^ •t + k(X"^)-t-k(X"^)-t-^5 =0 

^k'(X'^)-X'^-t = \x,. 

(43) 

(44) 

(45) 

(46) 
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Aufgnmd von 0<X*<X"^ ist k'(;̂ " )̂ > 0. Mit t > 0 folgt daher 5̂ > 0 . Fur 

positive Produktquantitaten x E]XI,X2[ ist eine optimale L5sung mit X = X"^"" 

und t = —^ vorlaufig nicht auszuschliefien. Wird diese (X,t)-Kombination in 

die Zielfunktion (6) eingesetzt ergibt sich: 
f 

K 

Adc) 
1X3 = |i4 = l̂ s = 0 und (37) ergeben: 

k(X)X-[i^'X^O (47) 

^k(X) = ^,. (48) 
Einsetzen in (34) ergibt: 

k'(^)-^t + k(>.).t-k(X)-t = 0 (49) 

=>k'(A,) = 0 (50) 

^X = X*. (51) 

Aufgrund von k'(A.*) = 0 ist fUr positive Produktquantitaten XG]XJ,X2[ eine 

optimale L5sung mit X = X* und t = —7 vorlSufig nicht auszuschlieBen. Wird 
X 

diese (A,,t)-Kombination in die Zielfunktion (6) eingesetzt ergibt sich: 

K [ x ' , ^ ] = k ( x - ) . [ x ' . ^ ] = k(x-).x. 

Aus k(X) > k(X*) fiir X^X* folgt, dass fiir positive Produktquantitaten 

X G]XJ,X2[ nur die Kombination (^*, t) mit t = — optimal ist. Die Kosten-
X* 

funktion im Bereich x e]x j , x 2 [ lautet daher: 

K(x) = k(X,*)-x fiir Xi<x<X2 (52) 

3.2 Optimale (A,t)'Kombmationenfur Produktquantitaten x e]0, Xj[ 

Den nachsten zu untersuchenden Bereich positiver Produktquantitaten stellt das 
Intervall ]0,x,[ dar. Es gilt weiterhin 1̂2 = 0 . Fiir positive Produktquantitaten 

0 < X < Xj = >."̂  • t"̂ " ist t < t"^ und damit auch 3̂ = 0 . Aus (37) folgt: 

k(X) = ii,. (53) 
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Einsetzen in (34) ergibt: 
(54) 

Analog zu dem ersten untersuchten Bereich positiver Produktquantitaten 
kSnnen auch hier zur Priifiing der Karush-Kuhn-Tucker-Bedingungen wiederum 
drei FSlle unterschieden werden. 

x = X-t 
a) X e Rd(B) 

b) X e Rd(B) 

c) x € B 

Intensitat X 

X"^ <X*<X = X'^ 

X'^ KXKX"^ 

Einsatzzeit t 

0 < t < t " ^ 

0<t<t'™" 

0<t<t"™" 

Daraus folgt ftlr die La-
grange-Multiplikatoren 

(vgl.(19)-(33)) 
H3 = 5̂ = 0 

H3 = H4=0 

H3 = l^4= 5̂ = 0 

Ada) 
Mit ILI3 = ILI5 = 0 und (54) ergibt sich: 

(55) 

Aufgnind von k'(>.'"'") < 0 , A-""*" > 0 sowie t > 0 ist ^ 4 > 0 . Eine optimale 

LOsung ist durch die Kombination ( X"^ , t), mit t = —^ vorlaufig nicht auszu-

schliefien. Wird diese (X,t)-Kombination in die Zielfiinktion (6) eingesetzt, er-

gibtsich:K(^X"^,t = ̂ j = k(x"^)-x. 

Adb) 
Mit fXj = 1̂ 4 = 0 und (54) ergibt sich: 

(56) 

Aufgrund von k'(X.""")>0, X.""" >0 sowie t > 0 ist Hj > 0 . Eine optimale 

X 
LOsung ist durch (X"™" , t), mit t = • vorlaufig nicht auszuschlieBen. Einset-

X 
zen in die Zielfunktion (6) ergibt: K| X," ,̂ t = - ^ ] = k(x"^ )• x . 

Adc) 
Mit Hj = H4 = 1X5 = 0 und (54) ergibt sich: 

k'(X)Xt = 0. (57) 
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Aufgrund von k'(^*) = 0 ist fUr positive Produktquantitaten 

eine optimale L5sung durch die Kombination (X*, t), mm 4 max 0 < x < x , =X"^ -t 

mit t = — vorlaufig nicht auszuschliefien. Einsetzen in die Zielfunktion (6) 

ergibt:Kf?i*,^l = k(?i*).x. 

Aus k(k) > k(k*) fiir X^X* folgt, dass fllr positive Produktquantitaten 

x€]0,x,[ nur die Kombination (X*, t), mit t = — optimal sein kann. Die 
X* 

Kostenfunktion in diesem Bereich lautet daher: 

K(x) = k(X*) • X fiir 0 < X < X, (58) 

3.3 Optimale (X,t)-Kombinationenfur Produktquantitaten x = x, und x = 0 

FUr die Produktquantitat x = x, =X'^ -t"^ gilt weiterhin ^2 =0- Es k5nnen 
wiederum drei FSlle unterschieden werden: 

x = ^ t Intensitat X Einsatzzeit t 

Daraus folgt fiir die La-
grange-Multiplikatoren 

(vgl.(19)-(33)) 
a) X e Rd(B) 

b) X e Rd(B) X"^ <X*<X = X"^ 

X"^ <X<X"^ 

t = t ' ^ 

0 < t < t " ^ 

0 < t < t ' ^ 

^ 3 = 0 

^3 = ^4 = 0 

c) X G B 

Eine Analyse dieser (A.,t)-Kombinationen fiir die Produktquantitat 

X = Xj = A,™" • t"^ ergibt analog zu den Intervallen x G]0,XI[ und x €]x,,X2[ 

eine optimale L5sung X = X*: 

K(x) = k(X*) • X fiir X = X,. (59) 

FUr x=0 muss t=0 sein. Das Aggregat kommt nicht zum Einsatz. GemaB (5) sind 
die Kosten gleich Null fiir beliebige Intensitaten. Insgesamt ergibt sich fiir den 
Bereich x e [0,X2[ mit (52), (58) und (59) die Kostenfimktion: 

K(x) = k(X*)• X fur 0 < X < A.*.t" (60) 
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3.4 Optimale (A, t)-Kombinationenfur Produktquantitdten x G [x 2, x "^ ] 

Den letzten zu untersuchenden Bereich m5glicher Produktquantitdten x stellt das 

Intervall XG[X2,X""'^] dar, mit Xj => .* . t '^ und x""'̂  =71""" - t " ^ . Werden 

zunSchst die Produktquantitdten x €]x2,x"^[ betrachtet, so ergibt sich fllr die 

Intensitat: >.*<>.< X"̂ ". Weiterhin gilt t > 0 und daher JLI2 = 1̂ 4 = 1̂ 5 = 0 . 

Aus (34) folgt: 
k'(^)->t + k(?.) = iLi,. (61) 

x = X'X Intensitat X Einsatzzeit t 
Daraus folgt fUr die Lagrange-

Multiplikatoren (vgl. (19) - (33)) 

a) X G B 

b) X e Rd(B) 

0 < t < t " 

t = t" 

^3 = ^ ^ = ^ 3 = 0 

|Li4 = ^5 = 0 

Es kOnnen die obigen zwei FSlle unterschieden werden (vgl. Abbi 
Ada) 
Mit 1̂3 = H4 = Hj = 0 und (37) ergibt sich: 

k(X)•A.-^,-^ = 0 

=> k(A,) = n,. 

Einsetzen in (61) liefert: 

k'(X)-X + k(A.) = k(X) 

=> k'(A,) = 0 

=> X = \*. 

Idung 3). 

(62) 

(63) 

(64) 

(65) 

(66) 

Zu einer gegebenen Quantitat x €]x2,x'™"[ (Xj = X*t" = A."™" • t"™" ) 

folgt mit X = X • t und X = X *, dass t > t"™" ist, d.h. ( \ , t ) ist nicht zulassig 

( (x , t )« B ) . Dann ist b) die einzige zulassige und damit kostenminimale LOsung 

fUr X = A. • t™^, die aber nicht die Karush-Kuhn-Tucker-Bedingungen erfUUt. 

Adb) 
Im Fall b) liefert Einsetzen von (61) in (37): 
k(X) • X - X • (k'(X) • X, + k(X)) - Hj = 0 

=>-k"(X)-X^=H3 

I I > ^ 3 < 0 . 

(67) 

(68) 

(69) 
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FUr t = t"^ , folgt aus (68): k'{x) = - i ^ > 0 = k'{X *) und damit >. > X *. Der 

Ausdruck k'{^)= --—- stellt die Grenzkosten der Erh5hung der Intensitat X bei 
A, 

maximaler Einsatzzeit t"^ dar. Der Lagrange-Multiplikator yiy in (61) ist Aus­

druck der Grenzkosten einer weiteren Einheit x bei t = t"^ . FUr x e]x2,x"^[ 

erfUllen nur die (X,t)-Kombination (X, t"^), mit A, = -
t" 

die Karush-Kuhn-

Tucker-Bedingungen und sind damit auch kostenminimal. Es ergibt sich die 
Kostenfunktion: 

K | ^ ^ , t ' ^ U k M ^ l - x fUr X2<x<x""^ 

Abschliefiend werden die Produktquantitaten X 2 = X * - t " ^ 

(70) 

und 
^̂ max .̂ max u^tersucht. FUr X, =A,*t"^ kdnnen zwei Falle unterschie-

den werden (vgl. Abbildung 3): 

x = X ' t Intensitat X Einsatzzeit t 
Daraus folgt filr die Lagrange-

Multiplikatoren (vgl. (19) - (33)) 
a) X G Rd(B) 

b) X G B 
x>x* 

t = t" 

t < t " 

^4 = ^ 5 = 0 

^3 = ^ 5 = 0 

Einsetzen von a) und b) in die Zielfiinktion (6) liefert filr X>X*, t < t"^ die 

Ungleichung: k(X) • Xj > k{X*) • Xj, d. h. filr x = Xj = >. * -t"^ ist nur die (X,t)-

Kombination (X*, t'"*'') kostenminimal. Daraus folgt: 

K(x) = k(>.*) • X fiir x = X2 (71) 

FUr die Produktquantitat x = x"^ schlieUlich, ist (>."^ , t"̂ '') die einzige zulas-
sige und damit kostenminimale (^,t)-Kombination. Insgesamt ergibt sich: 

K(x) = k X furx G [ X 2 , X " ^ ] , wobeix2 = A,*-t" (72) 

Die hier vorgenommene Zerlegung von [0,x"^] zeigt, dass sich aus den Ka-
rush-Kuhn-Tucker-Bedingungen die minimalen Kosten K(x) fiir alle 
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X G [ 0 , X ' ^ ] eindeutig bestimmen lassen. Anzumerken ist, dass im Falle 

X,* = X"^ bzw. X* = X"^ die oben durchgefUhrten Uberlegungen zu den glei-

chen Ergebnissen ftihren. Der Fall X*^[X"^ .X"^""] ist lediglich von theoreti-

schem Interesse, fiir praktische Anwendungen dagegen irrelevant. In diesem Fall 

sind die Karush-Kuhn-Tucker-Bedingungen fUr kein x e [0,x"*^ ] erfiillt, und es 

ist entweder X"^ (X* < X"^) oder X"^ (X* > X"^) kostenminimal aufgrund 

der vorausgesetzten strengen KonvexitSt von k(X). 

4 Bestimmung der Kostenfunktion 

Die folgende Abbildung 4 zeigt fur alle realisierbaren ProduktquantitSten x die 
im Rahmen der durchgefUhrten Analyse gewonnenen kostenminimalen (X,,t)-
Kombinationen sowie die sich daraus ergebende Kostenfunktion K(x). 

Kostenfunktion 

r 
x = 0 

K(x) = k(X.*)x 

T ] 
X , = A . ™ " . t " X2=X, * - t " x = >.™*.t" 

Produktquantitaten 

Optimale 
(>.,t)-Kombinationen 

k i 
T" Y 

X* 

T 

X,t = 0 X\t: X*,t = — 
X* 

x"^X 

Abbildung 4: Optimale (A,t)-KombinationenJur alternative Produktquantitaten 

FUr die Ausbringungsquantit^ten xe[0,X2[ gilt K(x) = k(A,*)• x mit 

x = X^'t und t < t"^ . Im Bereich X€[x2,x"^] gilt K{x) = k [ - ^ | - x mit 

t = t"^ und >. > ^*. Gleichwertig ist K(x) = k(>.*) • x mit x = >.*.t, t < t " ^ 
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und K(x) = k - ^ x fUr 1 = 1™" und X > A,*. Das gestattet die Darstellung 

der Kostenfunktion K(x) in der in der Literatur ilblichen Form, mit: 

' k(A,')-x fur O S x < X ' t " ^ 

•X fflr X ' t " 
K(x) = kl ^ ^ 

I max 

(73) 

Die Analyse der Karush-Kuhn-Tucker-Bedingungen zeigt, dass im Bereich 

X G [ 0 , X 2 ] die IntensitSt X* kostenminimal ist. Fiir Produktquantitaten 

X G [ 0 , X 2 ] kann eine kostenminimale Steigerung der Produktquantitat x nur 

durch eine Steigerung der Einsatzzeit t gemSB t = -—- erreicht werden. Das stellt 
X 

den bekannten Fall der zeitlichen Anpassung dar (vgl. Gutenberg, 1983). Im 

Bereich X6]x2,x"^] werden die Kosten minimal, wenn bei maximaler 

Einsatzzeit t'"*'̂  die Intensitat X gemaB X = —^ an alternative Produktquantita­

ten X angepasst wird (intensitatsmafiige Anpassung). 
Ftir samtliche Produktquantitaten, die im Planungszeitraum mit der kosten-

minimalen Intensitat erzeugt werden k5nnen, erfolgt eine zeitliche Anpassung 
derart, dass die kostenminimale Intensitat gewahlt wird und die Einsatzzeit des 
betrachteten Aggregats an die zu erzeugende Produktquantitat angepasst wird. 
Fiir Produktquantitaten, die auch bei maximaler Einsatzzeit des Aggregats nicht 
mit der kostenminimalen Intensitat erzeugt werden k5nnen, erfolgt eine intensi-
tatsmafiige Anpassung. Es wird die maximale Einsatzzeit des Aggregats gewahlt 
und die Intensitat des Aggregats an die zu erzeugende Produktquantitat ange­
passt (vgl. z. B. Adam (1993), Bloech et al. (2001), SchneeweiC (1999) sowie 
Fandel(1996). 

5 Ein Beispiel 

Die zuvor ermittelten Ergebnisse werden anhand eines Beispiels illustriert. Ge-

geben sei ein Aggregat mit der StUckkostenfunktion k(X,) = X̂  - 2 • X + 24 

(vgl. Abbildung 1). Die Intensitat X und die Einsatzzeit t des Aggregates k5nnen 
in den Intervallen X e [10,30] und t e [0,10] stetig variiert werden. Das nichtli-

neare Optimierungsproblem lautet: 
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minK(>.,t) = [ —-^.^ -2->. + 24]-(>.-t) 

iinter den Nebenbedingungen 

0 < t < 1 0 
10<X<30 . 

Die sttickkostenminimale Intensitat X* ergibt sich mit: 

k'(>.) = — . ^ - 2 = 0 => >-* = 20 => k(k*) = 4 

^ Mo 

(74) 

(75) 
(76) 
(77) 

(78) 

Fiir alternative Produktquantitaten x e [0,x"^ ] , mit x = ^ • t ergeben sich die 

optimalen (M)-Kombinationen fUr (^*,t), X* = 20, 0 < t < 1 0 , d. h. 

0 < x < 2 0 0 (zeitliche Anpassung) und (x,t"^), 20<>.<30, t"^ =10 , d.h. 

200 < X < 300 (intensitatsmafiige Anpassung). Die optimalen (^,t)-
Kombinationen (Minimalkostenkombinationen) bilden den Minimalkostenpfad, 
der in Abbildimg 5 fett unterlegt ist (Eine zweidimensionale Darstellimg dieses 
Minimalkostenpfades fmdet sich bereits bei Pack, 1963). 

Kosten 
K(x.t) 

Einsatzzeit2 15lntensitat 

Abbildung 5: Minimalkostenpfad 
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Die StUckkostenfimktion k(x) und die Kostenfunktion K(x) ergeben sich mit 
(73) zu: 

k(x) = 
k(20)= 4 

kl—l = - i - . x ' . i . x + 24 
10 J 2000 

fiir 0 < X < 200 

fur 200 < X < 300 (79) 

K(x) = 
k(20)-x = 4-x 

10 

fur 0 < X < 200 

k l — l . x = — ^ ^ — x ' - - . x 2 + 2 4 - x fur 200<x<300 
2000 

(80) 

Die Verlaufe der Sttickkostenfunktion (79) sowie der Kostenfunktion (80) 
sind in Abbildung 6 dargestellt. 

12 

10' 

8-

k(x)6 

4-

2-

0* 100 "isr 300 

Abbildung 6: Verldufe der Stuckkostenfunktion und Kostenfunktion 

6 Schlussbetrachtung 

Im vorliegenden Beitrag wurde das wohlbekannte Problem der Bestimmung der 
optimalen Kombination aus zeitlicher und intensitatsmSBiger Anpassung an 
einem Aggregat emeut aufgegriffen. Im Gutenberg-Produktionsmodell stellen 
die Intensitat X mit der ein Aggregat betrieben wird und die Einsatzzeit t des 
Aggregats die Entscheidungsvariablen dar. Mittels der proportionalen Bezie-
hung x = Xt besteht ein substitutionaler Zusammenhang der Entscheidungsva­
riablen X und t, wobei die H5he der Faktoreinsatze und die Produktausbringung 
durch die Wahl einer zulSssigen (A,,t)-Kombination determiniert werden. Zur 
Bestimmung der kostenminimalen (^,t)-Kombinationen fur alle realisierbaren 
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Produktquantitaten wurde ein nichtlineares Minimienmgsproblem mit den Ent-
scheidungsvariablen X und t formuliert. Auf Basis der Karush-Kuhn-Tucker-
Bedingungen konnte die Minimalkostenkombination im Gutenberg-Produktions-
modell an einem Aggregat mittels zeitlicher und intensitatsmSBiger Anpassung 
analytisch hergeleitet werden. Aus den Karush-Kuhn-Tucker-Bedingungen las-
sen sich ftir jede Produktquantitat x e [0,x"^] eindeutig die minimalen Kosten 
und somit die Kostenflinktion K(x) bestimmen. 
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1 Introduction 

Since the advent of just-in-time driven production planning and control at 
the Toyota manufacturing plants, the just-in-time paradigm has considered 
wide-spread consideration within production and operations management 
(cf., e.g., Schniederjans [22] and Cheng and Podolski [5]). While it was 
first employed for the high-volume-production of goods only, later there 
has been considerable research in the area of low-volume, make-to-order 
manufacturing (cf., e.g.. Baker and Scudder [2], Neumann et al. [18], and 
Rachamadugu [21]). Agrawal et al. [1] considered a practical scheduling 
problem at Westinghouse ESG, where a number of customer-specific prod­
ucts have to be assembled subject to technological precedence and capacity 
constraints. The authors developed a MlP-formulation and - in the face of 
the AT'P-hardness of the problem - a 'lead time evaluation and scheduling 
algorithm' with acronym LETSA. 

In what follows we will show that the problem as considered by Agrawal 
et al. [1] - in line with many other well known scheduling problems - can 
be modeled as classical resource-constrained project scheduling problem 
(RCPSP). The remainder of the paper is organized as follows: In Section 2 
we introduce the assembly scheduling problem and the heuristic proposed 
by Agrawal et al. [1]. Section 3 provides the resource-constrained project 
scheduling problem and outlines the serial scheduling algorithm. In Section 
4 we show how the assembly scheduling problem can be modeled and solved 
as RCPSP. Finally, Section 5 outlines the impact of this result. 

2 The Assembly Scheduling Problem 

The assembly scheduling problem (ASP) can be depicted as follows (we use, 
with some minor modifications, the original notation proposed by Agrawal 
et al. [1]): There are e = 1 , . . . , n / customer-specific products. Each prod­
uct e has to be assembled until its due date -De- The assembly-structure of 
each product e is depicted by its bill of material (BOM). Figure 1 shows the 
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BOM of two products. Product e = 1 with due date Di = 14 comprises 
operations O i , . . . , 0 6 , product e = 2 with due date Z>2 = 10 comprises 
operation O7. Each rectangle depicts a make part and each circle depicts 
an operation. A make part is manufactured by a sequence of operations. 
Overall, there are n operations. Each product e has one final-assembly 
operation / (e) which does not have any downstream operations. All other 
assembly operations Oi of product e have exactly one downstream operation 
d{i). This gives for each product an assembly structure of the operations. 
In the assembly shop there are m different work-centers. In each work-
center Wic, /C = 1 , . . . ,m, there are fjc functional identical machines. Ijc 
is the set of operations which have to be processed by one of the machines 
in work-center Wjc- The processing of operation Oi takes U periods time. 
Once started, an operation cannot be preempted. When processed, opera­
tion Oi occupies one of the functional identical machines of the work-center 
where it has to be manufactured. Table 1 and Figure 1 give a two-product 
example which has been derived by adding product e = 2 to the example 
originally given in Agrawal et al. [1]. 

Make Part 

( J Operation 

Product 1 I I Product 2 

Figure 1: BOM of two products 

In order to model the ASP, Agrawal et al. [1] introduce the following 
decision variables: 

' I 0, ot 
operation Oj precedes operation Oi 

otherwise 
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/ i = l 
/2 = 1 

1, if operation Oi is performed on the fc-th functional 
Ai,fc = ^ identical machine of 'its' work-center 

0, otherwise 

5f > 0 start time of operation Oj. 

Ci>0 completion time of operation Oi. 

Given a large number M, a MILP for the ASP develops as follows: 

Max Z = min{5i I i = 1,. . . , n } (1) 

s.t. 

Sd{i) > Ci (z = l , . . . , n ) (2) 

Ci = Si-^U (z = l , . . . , n ) (3) 

C/(e) < i^e (e = l , . . . , n / ) (4) 

^ij + ^j,i = 1 {ij eljc, i^j, fC = l,..,,m) (5) 

5 i - C , - > M . ((Jij + Ai,fc + A,-fc - 3) (6) 

( i , j G/A:, i^j, /C = l , . . . , m , fc = l , . . . , /A:) 
//c 

^ A , , , = 1 (/C = l , . . . , m , Z € / K : ) (7) 
s = l 

Si > 0 (z = l , . . . , n ) (8) 

Ci > 0 (i = l , . . . , n ) (9) 

5ij € {0,1} (2, iG/;c , ^T^i, /C = l , . . . , m ) (10) 

A,,fc € {0,1} (;C = l , . . . , m , 2G/;c, fc = l , . . . , / ; c ) (11) 

(1) maximizes the start time of the first-starting operation. Together 
with constraints (4), which secure that each product is delivered until its 
due date, this enforces schedules which start operations as late as possible 
with the aim to obtain production plans with low tied-up capital. This 
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is the classical pull-strategy of just-in-time manufacturing planning. The 
constraints (2) enforce the technological precedence relations. (3) links the 
start and finish time for each operation. Constraints as enforced by scarce 
capacities of the machines are given by (5) - (7). (5) selects for each pair 
of operations {Oi,Oj) which have to be processed at the same work-center 
the orientation Oi —̂  Oj or Oj -^ Oi. (7) assigns each operation to be 
processed at a work-center one of its machines. Finally, (6) enforces the 
orientation between the two operations Oi and Oj if they are processed on 
the same machine. 

Agrawal et al. [1] prove that the ASP is an A/'P-hard optimization 
problem. In order to solve large real-world instances, they propose a 'lead 
time evaluation and scheduling algorithm' (LETSA). Let F denote the set 
of precedence-feasible operations, i.e. operations that can be scheduled in 
the current iteration since all their downstream operations have already 
been scheduled. Then, LETSA can be outlined as follows. 

Initialization Set F = {0/(e) | e = 1 , . . . , n / } 

While F^^do 

1. Calculate for each path from an operation in F to an operation which 
is not downstream of any other operation the path-length, i.e. the 
sum of the durations of all operations on this path. 

2. Determine the path with the longest duration (critical path) and its 
associated operation Oc in F. 

3. Set the tentative completion time Cc of operation Oc equal the start 
time of the downstream operation, or, in case Oc is a final-assembly 
operation, equal the due date of the associated product. 

4. Calculate for each machine k = 1 , . . . , /K: of the work-center where 
operation Oc has to be processed the latest resource-feasible s tar t-
time Sc{k) such that Sc{k) <Cc — tc holds. 

5. Select the start time Sc = Taax{Sc{k) | fc = 1 , . . . , /jc}, set AC,A; = 1 
for the associated machine fe, set the final completion time Cc = Sc-\-
tc Update F by removing operation Oc and adding the operations 
which are upstream-operations of Oc 

The computational effort of LETSA is as follows. Obviously, steps (2), 
(3), and (5) are linear. In step (1), due to the fact that the underlying 
graph is a rooted tree, we have at most n paths which have to be considered. 
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Calculating the length of one path can be done in n which gives an effort of 
O(n^). Step (4) can be performed for each machine fc (fc = 1 , . . . , fjc) with 
linear eiBFort of n. Assuming that n > fjc holds, we have 0{n^) for step 
(4). Performing the while-loop n times results in an overall computational 
effort of 0{n^). Note that this eflFort can be reduced to O(n^) when the 
computation of the path lengths in step (1) is only performed once and 
afterwards the path lengths are only updated. 

Solving the example problem with LETSA we obtain the schedule given 
in Figure 2 with an objective function value of 14. 

Di 

W2 

Wi 

0, 

03 

07 

02 05 04 

Oe 

^ 
^ 

Figure 2: Schedule generated with LETSA 

3 The Resource—Constrained Project Scheduling Problem 

The resource-constrained project scheduling problem (RCPSP) can be 
given as follows. A single project consists oi j = 1 , . . . , J jobs which are 
interrelated by precedence and resource constraints. Acyclic precedence 
constraints impose precedence relations with minimal time lags between 
pairs of jobs such that job j has a set of immediate predecessors Vj. The 
minimal time lag between the completion time of each predecessor h G Vj 
and the start of job j is Ih.j- There are R different types of resources where 
resource type r = 1 , . . . , /J has a capacity of Kr units at any point in time. 
Job j uses kj^r units of resource type r while being processed. The duration 
of job j is dj. W.l.o.g. we assume that job j = 1 is the unique dummy 
start job and that job j = J is the unique dummy end job of the network, 
i.e. we have di = d j = 0 and k\^r = kj^r = 0 for all r = 1 , . . . , i?. The pa­
rameters dj, kj^rt Ihj^ and Kr are assumed to be continuous, non-negative, 
and deterministic. The objective of the RCPSP is to find precedence- and 
resource-feasible completion times for all activities such that the makespan 
of the project is minimized. 

Let Fj denote the finish time of job j . A vector of finish times 
( F i , . . . , Fj) is called a schedule 5. Let A{t) = { 1 , . . . , J | F^ -dj < t < Fj} 
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be the set of jobs which are processed at time instant t. We now can pro­
vide the following conceptual decision model (12) - (15) (cf. Christofides 
et al. [6]). 

Min Fj (12) 

s.t. 

Fh + lh^o < Fj-dj {j = 2,.,,,J, heVj) (13) 

Y, hr < Kr (r = l,...,i?, t>0) (14) 
jeA{t) 

Fj > dj (j = l , . . . , J ) (15) 

The objective function (12) minimizes the finish time of the project end 
activity and thus the makespan of the project. Constraints (13) enforce 
the precedence constraints between activities and constraints (14) assure 
for each resource type r and for each time instant t that the resource 
demand of the activities which are currently processed does not exceed 
the available capacity. Finally, (15) define the decision variables. (12) 
- (15) is a conceptual model since the sets A{t) are a function of the 
decision variables Fj. Hence, the model cannot be solved with mixed integer 
programming techniques. In order to solve the RCPSP with MlP-solvers, 
one has to employ the 0 — 1 formulation of Pritsker et al. [20]. Note that 
this formulation has two drawbacks. First, the number of binary variables 
is J • T where T denotes an upper bound of the projects maJcespan, e.g. 
T = J2j=i dj. Hence, with increasing problem size, the number of binary 
variables grows quadratically. Second, the model assumes a period, e.g. an 
hour, a shift, or a day, as minimum time bucket where all processing times 
are discrete multiples of this standard period. This is not the case for the 
model (12) - (15) where the durations of activities can be any continuous 
and non-negative value. 

It has been shown by Blazewicz et al. [3] that the RCPSP as a gener­
alization of the classical job shop scheduling problem belongs to the class 
of fsfV-haid optimization problems. Therefore, heuristic solution proce­
dures are indispensable when solving large problem instances as they usu­
ally appear in practical cases. A building block for most heuristics for 
solving the RCPSP is the serial scheduling scheme which has been orig­
inally proposed by Kelley [12]. The method consists of J — 2 stages, in 
each of which one non-dummy job is selected and scheduled at the earliest 
precedence- and resource-feasible completion time. Associated with stage 
g are two disjoint job sets. The schedules set Sg comprises the jobs which 
have already been scheduled, the eligible set Vg comprises all jobs which 
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are eligible for scheduling. Note that the conjunction of Sg and T>g does 
not give the set of all jobs because, generally, there are so-called ineligible 
jobs, i.e., jobs which have not been scheduled and can not be scheduled 
at stage g because not all of their predecessors have been scheduled. Let 
Kr{t) = Kr — Z)je^(t) kj^r be the remaining capacity of resource type r at 
time instant t and let Tg = {Fj \ j £ Sg} he the set of all finish times. Let 
further heVg = {j e {1,... ,J}\Sg \Vj C Sg} the set of eligible activities. 
We can now give the following description of the serial scheduling scheme 
(cf. Kolisch and Hartmann [15]): 

Serial Scheduling Scheme 

Initialization: Fi = 0,5i = {1} 
For ^ = 2 to J - 1 do 

1. Calculate Vg.J^g, Kr{t) (r = 1 , . . . , ii; t G ^p) 

2. Select one j from Vg 

3. EFj = maxhevj {Fh + Ihj) + dj 

4. Fj = min {t € [EFj - dj.LFj - dj] D Tg \ 

kj^r < A^r(r),r = l , . . . , i ? , r G [t,t-{'dj[nJ^g\-^ dj 

5. 5^ = 5^-1 U {j} 

Fj=maxheVj{Fh} 

The initialization assigns the dummy source job j = 0 a. completion 
time of 0 and puts it into the partial schedule. At the beginning of each 
step p, the decision set Vg^ the set of finish times Tg, and the remaining 
capacities Kr{t) at the finish times t e J^g are calculated. Afterwards, one 
job j is selected from the decision set. The finish time of j is calculated 
by first determining the earliest precedence-feasible finish time EFj and 
then calculating the earliest (precedence and-) resource-feasible finish time 
Fj within [EFj^LFj]. LFj denotes the latest finish time as calculated by 
backward recursion (cf. Elmaghraby [10]) from an upper bound of the 
projects makespan T. 

The time complexity of the serial scheduling scheme as given above is 
0(11? • R) where n denotes the number of non-dummy jobs, i.e., n = J — 2 
(cf. Pinson et al. [19]). This results from the fact that we have n stages and 
within each stage we have an effort of no more than n for steps (1) - (5). 
When solving a transformed ASP (cf. Section 4), at most one resource type 
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is used by each job, and hence the time complexity is reduced to 0{n^). The 
serial scheduling scheme is a well-known methodology with the following 
properties. It always generates feasible schedules which are optimal in the 
case of ample capacity. Also, it has been shown in Kolisch [13] that for 
scheduling problems with regular performance measure (for a definition of 
the latter cf. to Sprecher et al. [24]) such as makespan minimization, an 
optimal solution can always be constructed with this method. The latter is 
important for metaheuristic approaches which employ the serial scheduling 
scheme as building block (cf. Kolisch and Hartmann [15]). 

4 Modeling and Solving the ASP with the R C P S P 

Due to its general applicability the RCPSP has been a platform to model 
and solve a variety of special scheduling problems. Blazewicz et al. [3] show 
how the job shop problem can be modeled as RCPSP, Drexl [9] depicts the 
flow shop problem as RCPSP, Sprecher [23] models the open shop problem 
and the single product assembly line balancing problem as RCPSP, respec­
tively, whereas Neumann et al. [17] use a generalization of the RCPSP to 
model batch scheduling problems in the process industry. We will extend 
this line of research by employing RCPSP-models and methods to solve 
the assembly scheduling problem (ASP) presented in Section 2. 

We begin by showing that the ASP (1) - (11) can be transformed poly-
nomially into an RCSPS (12) - (15). The basic idea is to reverse the 
assembly structure of each final product and to combine all structures into 
a single super-project where due dates of final assemblies are modeled by 
minimal time lags between the dummy start job of the project and the job 
representing the final assembly operation of each final product, respectively. 
More formally, a polynomial transformation of the ASP to the RCPSP can 
be given as follows: 

Transformation ASP -^ RCPSP 

1. Initialization 
Set the number of jobs: J = n -h 2 
Set the number of resources: R = m 
Set the capacity of resource r: Kr — fK=r (^ = 1» • • •»J^) 
Set the dummy-source: di = 0, fci,r = 0 (r = 1 , . . . , i?), P i = 0 
Set the dummy sink: dj = 0, kj^r = 0 (r = 1 , . . . , i?), 

Vj = {h\hi^ d{i), z = 1 , . . . , n} , Ih^j = 0{heVj). 

2. Transformation of the operations 
For i = 1 , . . . , n do: j{i) = J-i, Vj^^i) = d{i), lhj(i:) = 0 {h e Vj(i)) 
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I 0, otherwise 

3. Set due date—based minimal t ime lags from the d u m m y -
source to the final assembly jobs 
For e = l , . . . , n / do: 
^j(fie)) = {1}, h^jifie)) = max {2?e I e = 1 , . . . , n / } - De^ 

If we apply the transformation steps (1) - (3) to the problem as depicted 
in Figure 1 and Table 1 we obtain the RCPSP as given in Figure 3 and 
Table 2 where only non-zero minimal time lags are given. Applying the 
serial scheduling scheme together with the LST priority rule we obtain the 
schedule provided in Figure 4 with an objective function value of 14. The 
schedule represents the same solution as generated with LETSA. 

Product 1 

&MD 
Product 2 

Figure 3: Precedence network of the example problem 
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Figure 4' Schedule generated by the serial scheduling algorithm 

Theorem. The serial scheduhng scheme appUed with the LST priority 
rule (henceforth coined 'serial scheduling algorithm') generates a schedule 
for the RCPSP which is equivalent to the schedule generated by LETSA 
for the ASP. 

Proof. The serial scheduling algorithm starts selected jobs as early as 
possible while LETSA starts selected operations as late as possible. Hence, 
it suffices to show that the sequence of jobs selected by the serial scheduling 
algorithm is the same as the associated operation-sequence selected by 
LETSA. This will be the case if the following holds: For iteration g = 2 oi 
the serial scheduling algorithm the set of jobs V equals the set of associate 
operations F within the first iteration of LETSA {Equivalence of selection 
sets). For each iteration 2 , . . . , J — 1 of the serial scheduling algorithm 
the selected job j equals the associate operation Oc selected by LETSA in 
iteration 1 , . . . , n {Equivalence of selected entity). 

Equivalence of selection sets. In iteration g = 2 oi the serial schedul­
ing algorithm the dummy-source has already been scheduled and we have 
^ = {j I P j = {!}}. The jobs in V represent exactly the final-assembly 
operations being in the set F at the first iteration of LETSA. This can be 
seen by looking at the transformation step (3). 

Equivalence of selected entity. W.l.o.g. we assume that the data is such 
that we do not need a tie-breaker for the two heuristics. First, we consider 
LETSA. Obviously, we can add the artificial operation OQ to LETSA. OQ 
has all the operations as downstream operations which originally do not 
have an upstream operation. This way we have to calculate for each op­
eration Oi £ F only the longest path Pf̂ o from Oi to OQ. The operation 
which will be selected is Oc with Pc,o = max{Pi,o \i £ F}. The serial 
scheduling algorithm selects the job j for which LSj = min{LSi \ i G V} 
holds. Denoting with Pi^j the longest path from job i to the sink J we can 
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write instead T — Pj^j = min{T — Pi^j \i eV}, Since T is constant for 
all i eV, we can further write —Pj,j = min{—Pi,j \i eV} which equals 
Pj^j = max{Pi,j\ieV}. 

Resource Assignment . A major diifference between the ASP and 
the RCPSP which has not been addressed so far is the fact that the ASP 
assigns operations explicitly to machines whereas the RCPSP does resource 
allocation in an aggregated way. I.e. for each resource type which comprises 
a number of functional identical machines it is assured that for each time 
instant the total capacity demand does not exceed the available capacity. In 
what follows we will outline how, based on a feasible schedule 5 , a detailed 
allocation of the capacity units, i.e. the machines, to jobs can be derived 
for each resource type (cf. Kolisch [14]). 

As input data we need the start times Fj — dj of the jobs in increasing 
order. Associated with each start time t we calculate the set of jobs which 
are processed in t, A{t). The assignment begins in t ( l ) , the first start 
period, and assigns the non-occupied capacity units l,...,A:i,r to job i 
which is the job in A{t{l)) with the smallest job label. Next, the non-
occupied capacity units ki^r + !»•••> h^r + fcj,r are assigned to the job j with 
the second smallest label etc. When capacity units have been assigned to 
all active jobs in the current period, we proceed to the next start period 
t(2) > t{l). Jobs which start in a period t < t{2) and are still active in 
t{2) are considered first. To each of them, the same capacity units as in 
the prior period are assigned. The remaining capacity units are assigned 
to the jobs which start in t{2) in the same way as outlined above. 

5 Impact and Conclusions 

We have shown that the problem of just-in-time scheduling of make-to-
order assemblies as treated by Agrawal et al. [1] can be modeled as clas­
sical RCPSP. Further, we have proven that solving the RCPSP with the 
serial scheduling scheme jointly with the LST priority rule generates for any 
transformed assembly instance the same schedule as LETSA with a compu­
tational effort not more than LETSA. This has the following impact. First, 
it allows an integrated view on just-in-time-steered, low-volume, make-
to-order assembly. The RCPSP is well established which facilitates the 
classification of the assembly scheduling problem w.r.t. to existing project 
scheduling problems. Second, a lot of research has been and is performed 
for the RCPSP. A recent overview is given in e.g. Brucker et al. [4], De-
meulemeester and Herroelen [8], and Neumann et al. [18]. Hence, there 
are both, optimal methods and heuristic algorithms (for an overview cf. 
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Kolisch and Haxtmann [16]) with theoretical or experimental performance 
guarantees available. E.g., due to experiments of Davis and Patterson [7] 
and Hartmann and Kolisch [11] it is known that on instances with 30 jobs 
the serial scheduling scheme when applied with the LST priority rule has 
an average deviation from the optimal solution of approximately 5 %. New 
meta-heuristics such as the genetic algorithm of Vails et al. [25] derive an 
average deviation of approximately 0,02 %. This clearly demonstrates the 
advantage of applying state-of-the-art RCPSP-models and -methods to 
solve just-in-time make-to-order assembly problems. 
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1 Introduction 

In the process industries, final products arise from chemical and physi­
cal transformations of materials on processing units. In batch production 
mode, the total requirements for intermediate and final products are di­
vided into individual batches. To produce a batch, at first the input ma­
terials are loaded into a processing unit. Then a transformation process, 
called a task^ is performed, and finally the output products are unloaded 
from the processing unit. Typically, a plant is operated in batch produc­
tion mode when a large number of different products are processed on 
multi-purpose equipment. That is why we consider multi-purpose process­
ing units, which can operate different tasks. Symmetrically, a task may be 
executed on different processing units, in which case the duration of the 
task may depend on the processing unit used. For a practical example of a 
multi-purpose batch production plant we refer to the case study presented 
by Kallrath (2002). 

The minimum and maximum filling levels of a processing unit give rise 
to lower and upper bounds on the batch size. The input and the output 
proportions of the products consumed or produced, respectively, by a task 
are either fixed or variable within prescribed bounds. In general, storage 
facilities of limited capacity are available for stocking raw materials, inter­
mediates, and final products. Some products are perishable and must be 
consumed immediately after production. 

Between consecutive executions of different tasks on a processing unit, 
a changeover with sequence-dependent duration is necessary. Since the 
changeover times may be considerably large, the plant is generally con­
figured according to a subset of the required final products. Before pro­
cessing the next set of final products, the plant has to be reconfigured. 
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which requires the completion of all operations. In this context, the ob­
jective of makespan minimization is particularly important for ensuring a 
high resource utilization and short customer lead times. Given the primary 
requirements for final products, the short-term planning problem studied 
in this paper consists in computing a feasible production schedule with 
minimum makespan. 

Various solution methods for this problem are known from literature. 
Most of them follow a monolithic approach, which addresses the problem 
as a whole, starting from a mixed-integer linear programming formulation 
of the problem. In those models, the time horizon is divided into a given 
number of time periods, the period length being either fixed (time-indexed 
formulations, cf. e.g., Kondili et al. 1993) or variable (continuous-time for­
mulations, see e.g., lerapetritou and Floudas 1998 or Castro et al. 2001). 
The main disadvantage of the monolithic approaches is that the CPU time 
requirements for solving real-world problems tend to be prohibitively high 
(cf. Maravelias and Grossmann 2004). To overcome this diflSculty, different 
heuristics reducing the number of variables have been developed (cf. e.g., 
Blomer and Giinther 1998). 

A promising alternative approach is based on the decomposition of the 
short-term planning problem into interdependent subproblems. Such de­
composition methods have, for example, been proposed by Brucker and 
Hurink (2000), Neumann et al. (2002), and MaraveUas and Grossmann 
(2004). The solution approach developed in what follows is based on the 
hierarchical decomposition into a batching and a batch-scheduling problem 
presented in Neumann et al. (2002). Batching provides a set of batches 
for the intermediate and final products needed to satisfy the primary re­
quirements. Batch scheduling allocates the processing units, intermediates, 
and storage facilities over time to the processing of the batches arising 
from the batching step. The batching problem can be formulated as a 
mixed-integer nonlinear program (MINLP) of moderate size, which can be 
solved using standard mathematical programming software. For solving the 
batch-scheduling problem, a truncated branch-and-bound method and a 
priority-rule-based method have been developed by Neumann et al. (2002) 
and Schwindt and Trautmann (2004), respectively. Within a reasonable 
amount of CPU time, good feasible solutions to problem instances with up 
to 100 batches can be computed with both methods. Recently, Centner et 
al. (2004) have proposed a decomposition of the batch-scheduling problem 
which partitions the set of all batches into a sequence of subsets. The as­
signment of the batches to the individual subsets is determined stepwise 
by solving a binary linear program in each iteration. This decomposition 
method is able to approximatively solve batch-scheduling instances with 
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up to about 3000 batches in the space of several hours of CPU time (cf. 
Centner et al. 2004 and Centner 2005). 

In this paper, we present a cycUc scheduHng approach to the short-term 
planning problem. A preliminary version of this method can be found in 
Trautmann (2005). The basic idea consists in reducing the size of the 
batch-scheduling problem by computing a cyclic subschedule, which is exe­
cuted several times. The set of batches belonging to one cycle is determined 
by solving an MINLP, which also provides the number of cycles needed to 
satisfy the primary requirements {cyclic batching problem). To guarantee 
that the resulting batch-scheduling problem remains tractable, we impose 
an upper bound on the number of batches per cycle. The subschedule 
is then obtained by scheduling the batches on the processing units sub­
ject to material-availability and storage-capacity constraints {cyclic batch-
scheduling problem). The latter problem is solved using the priority-rule 
based method proposed in Schwindt and Trautmann (2004). 

The remainder of this paper is organized as follows. In Section 2 we 
formulate the cyclic batching problem as an MINLP and briefly discuss 
structural issues. Section 3 is devoted to the cyclic batch-scheduling prob­
lem and the generation of a complete production schedule by efficiently 
concatenating copies of the subschedule. In Section 4 we report on results 
of an experimental performance analysis. 

2 Cyclic Batching 

Let T be the set of all tasks and let ^r and £r be the batch size and the 
number of batches for task r G T. By 11" and II:;!" we denote the sets of 
input and output products, respectively, of task r G T. Ilr := I I " U n:;t 
is the set of all input and output products of task r , and II := UreT^r is 
the set of all products considered. In addition to /3r and Er, the (negative) 
proportions am < 0 of all input products n € II^ and the (positive) 
proportions â Tr > 0 of all output products n £ Il:j: have to be determined 
for all tasks r G T such that 

Y, a., = - J2 " - = 1 (^eT) (1) 
neut Tren-

Proportions Q̂ TT and batch sizes Pr have to be chosen within prescribed 
intervals [a^^.am] and [^^,'^ri i-^-, 

a^^ < a < am (r G T, TT G Ur) (2) 

§_^<P<A {reT) (3) 
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Let T~ and T j be the sets of all tasks consuming and producing, respec­
tively, product TT G n and let 11^ C 11 be the set of perishable products. 
Then equations 

arnPr = -OCr'^Pr' (TT G H ^ (T, T') G T / X T " ) (4) 

ensure that the amount of product TT G H^ produced by one batch of 
some task r G T;t" can immediately be consumed by any task r' G T~ 
consuming TT. 

By n* C n we denote the set of intermediates. In order to obtain a cyclic 
solution, which allows us to execute the same subschedule an arbitrary 
number of times, the amount of an intermediate TT produced within one 
cycle must be equal to the amount of TT consumed, i.e., 

Y, C^rnPrSr = 0 (TT G W) (5) 
r € T , 

Proportions am, batch sizes /3r, and the numbers of batches £r define 
the set of batches belonging to one cycle. The number of cycles needed 
is a decision variable i/ G Z>o whose value depends on the given primary 
requirements for final products. Let n-^ C 11 be the set of all final products 
and let QT^ be the primary requirement less the initial stock of product 
TT G n-^. The final inventory of product n then equals i^XlreT^^TriSr^r-
This amount must be sufficiently large to match the requirements QT^ for TT, 
i.e., 

1/ ^ arnfirSr > Q^ {T^ ^ H^) (6) 

In addition, the number of batches within one cycle must not exceed the 
prescribed upper bound e, i.e., 

r€T^ 

Finally, let pr be the mean processing time of task r on the alter­
native processing units. To minimize the workload to be scheduled in the 
batch-scheduling step, the objective function is chosen to be the total mean 
processing time I^XITGT^^^^* -̂ ^ ' ^^^J ^^^ cycUc batching problem reads 

(C-BP) { 

Minimize u YlreT Pr^r 
subject to (1) to (7) 

Er G Z>o ( r G T) 

i / G 
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For a given value of i/, problem (C-BP) can be transformed into a 
mixed-binary linear program with binary decision variables Off: {r GT^ JJL = 
! , . . . , £ ) being equal to one exactly \i£r > ^ and continuous decision vari­
ables ^^^ (r G T, TT G Hr, /i = 1 , . . . ,£) with ^^^ = a^Tr/Jr if 6>(f = 1 and 
ĵjf̂  = 0, otherwise (see Neumann et al. 2002 for details). Now suppose 

without loss of generality that max^ren/ PTT > 0- Due to i/ > 0 for any 
feasible solution to (C-BP), inequality (6) can be rewritten as 

7" EE^-<o (TrenO (8) 

Let (C-BP) denote the continuous relaxation of the reformulated batching 
problem with decision variables Off: and £,!f^. Since for each TT G H-̂  the left-
hand side of (8) is a convex function and because all remaining constraints 
of (C-BP) are linear, the feasible region of (C-BP) is a convex set. Moreover, 
the objective function ^'^^-eT^^ 5^I=i ^r ^f (C-BP) is increasing on the 
feasible region. 

3 Cyclic Batch-Scheduling and Concatenation 

In this section we explain our method for solving the batch-scheduling prob­
lem. In Subsections 3.1 and 3.2, where we closely follow the presentation of 
Schwindt and Trautmann (2004), we are concerned with the scheduling of 
the batches belonging to one cycle. In Subsection 3.3 we show how a com­
plete production schedule for the execution of the v cycles can be efficiently 
constructed from the cyclic subschedule. 

3.1 Statement of the Cyclic Batch-Scheduling Problem 

Recall that solving the batching problem has provided us with the set of 
batches belonging to one cycle. For what follows, the processing of a batch 
on a processing unit is called an operation. Suppose that n = J^^^^^^ 
operations 1 , . . . ,n have to be scheduled. For notational convenience we 
introduce two fictitious operations 0 and n -h l̂ representing the production 
start and the production end, respectively. F := { 1 , . . . , n} is the set of all 
real operations, and V := F U {0,n -h 1} is the set of all operations. Let 
Si > 0 he the start time sought of operation i. Then Sn-\-i coincides with 
the production makespan, and vector S = {Si)i£v with 5o = 0 is called a 
schedule. 
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Each processing unit can be viewed as a unit-capacity renewable re­
source with changeovers (cf. Neumann et al. 2003, Sect. 2.14). Let TZ^ be 
the set of all renewable resources and TZ^ be the set of those alternative 
renewable resources on which operation i can be carried out. For i e V 
and fc E T f̂, the binary decision variable Xik indicates whether or not re­
source fc processes operation i {xik = 1 or Xik = 0, respectively). Each real 
operation i must be executed on exactly one processing unit, i.e., 

^ x,fc = 1 {ie V) (9) 

Vector X = {xik)-^Y keW ^'^ called an assignment of operations i to process­
ing units k. By Pi(x) and Cij (x) we denote the processing time of operation i 
and the changeover time from operation i to operation j given assignment 
x, where we suppose that po{x) = pn+\{x) = 0 and coi(x) = c^(^^_i)(x) = 0 
for all i e V. 

Given a resource k G 7^^, a schedule S and an assignment x, let Pk{S, x) 
designate the set of all pairs (i, j ) such that i ^ j , Xik = Xjk = 1, and 
Si < Sj, Schedule S is called process-feasible with respect to assignment x 
if no two operations i and j overlap on a processing unit, i.e., 

Sj > Si-\-pi{x)-\-Cij{x) {k e 7̂ ^ {ij) e Pk{s,x)) (lo) 

Now we turn to the storage facilities, which can be modeled as so-
called cumulative resources (cf. Neumann and Schwindt 2002). For each 
storage facility we introduce one cumulative resource keeping its inventory. 
Let TZ^ be the set of all cumulative resources. For each k G TZ^^ a minimum 
inventory Rj^ (safety stock) and a maximum inventory Rk (storage capacity) 
are given. Assuming that each product TT is stocked in a dedicated storage 
facility k and that no safety stocks are prescribed we obtain Ri^ = 0 and 
Rf^ = cr̂ r for all k G 7?.̂ , where CTTT is the storage capacity for product TT 
(with CTTT = 0 if TT G n^). Each operation i £ V has a demand r̂ fc for 
resource k G TZ'^. If rik > 0, the inventory of resource k is replenished by 
rik units at time Si •^pi{x). If rik < 0, the inventory is depleted by —rik 
units at time Si. rok represents the initial stock level of resource fc. Suppose 
that operation i corresponds to an execution of task r and that resource fc 
is dedicated to product TT. The demand of operation i for resource fc then 

i s rik = OCrnf^T-

Let V;̂ - := {i e V \ rik > 0} and F^" := {i e V \ rik < 0} be the 
sets of operations replenishing and depleting, respectively, the inventory of 
resource fc G ̂ '^. Schedule S is said to be storage-feasible with respect to 
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assignment x if 

Rk< Y. ^^fe+ $Z '^ik<^k {keTV,t>0) (11) 
ieVi'.Si-\-pi{x)<t ieV-:Si<t 

Usually, temporal constraints of the type Sj—Si > Sij{x) for {i,j)GE 
with E CVxV have to be taken into account as well. The right-hand side 
Sij(x) is a minimum time lag between the start of operations i and j . If 
Sij{x) < 0, then —Sij{x) can be interpreted as a maxim,um time lag between 
the start of operations j and i. In case of Sij{x) = Pi(x), the corresponding 
temporal constraint is referred to as a precedence constraint, and a time 
lag Soi{x) is called a release date for operation i. For each operation i GV 
we set Soi{x) := 0 and <Ji(n+i)(^) •= Pii^)- Further time lags may be 
generated by applying constraint propagation techniques detecting tempo­
ral constraints that are satisfied by at least one optimal solution to the 
batch-scheduling problem. For example, for two operations i,j with i < j 
belonging to the same task r we can introduce the time lag Sij{x) = 0, 
without loss of optimality. 

Based on time lags Sij{x) for (z, j ) e E we can compute distances dij{x) 
between any two operations z, j E V. Distances dij{x) coincide with the 
minimum time lags between operations i and j that are implied by the 
prescribed time lags (see e.g., Neumann et al. 2003, Sect. 1.3). Given an 
assignment x, a schedule S satisfying 

Sj>Si-hSij{x) {{iJ)eE) (12) 

is called time-feasible with respect to x. 
A schedule which is time-, process-, and storage-feasible with respect to 

a given assignment x is called feasible with respect to x. A pair (5, x) 
is a feasible solution to the cyclic batch-scheduling problem if x is an 
assignment and 5 is a feasible schedule with respect to x. The cyclic 
batch-scheduling problem consists in finding a feasible solution (5, x) with 
minimum makespan Sn+i, i.e.. 

(C-BSP) { 

Minimize 5^+1 

subject to (9) to (12) 

Xik € {0,1} {iGV, kG Tef) 

3.2 Priority-Rule Based Method 

The basic idea of the priority-rule based solution method is as follows. At 
first, we choose an assignment x of operations to processing units, where 
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we balance the workload to be processed on alternative processing units by 
using a simple greedy heuristic. The method then consists of two phases. 
During the first phase, we relax the storage-capacity constraints. Using a 
serial schedule-generation scheme, the operations are iteratively scheduled 
on the processing units in such a way that the inventory does not fall be­
low the safety stock at any point in time. Based on the resulting schedule, 
precedence constraints between replenishing and depleting operations are 
introduced according to a FIFO strategy. Those precedence constraints en­
sure that the material-availability constraints are always satisfied. In the 
second phase, which again applies the serial schedule-generation scheme, 
the operations are scheduled subject to the storage-capacity and the prece­
dence constraints introduced. 

In the remainder of this subsection we explain the schedule-generation 
scheme of the first phase in more detail. We then briefly sketch the modifi­
cations needed for using the scheme in the second phase. Since assignment x 
has been fixed, we omit x in the notation of the processing times and time 
lags. 

Let Pred{j) be the set of predecessors of node j with respect to the 
strict order {(ij) eVxV \dij >0 and dji < 0}. It holds that i € Pred{j) 
precisely if operation i must be started no later than operation j but con­
versely, operation j may be started after operation i. Moreover, let C be 
the completed set of operations i already scheduled in prior iterations and 
let S^ := {Si)i^c be the partial schedule constructed. We say that an oper­
ation j ^ C is eligible for being scheduled if (i) all of its predecessors have 
been scheduled, i.e., Pred{j) C C and (ii), there is no cumulative resource 
k whose inventory level falls below the safety stock after the completion of 
all operations from set C U {jf}, i.e., rjt(5^, oo) -h rjk > Rk for all k G TZ'^. 

The procedure is now as follows (see Algorithm 1). At first, we initial­
ize the earliest and latest start times £"5^ and LSi for all i £ V. In each 
iteration of the schedule-generation scheme we then determine the set £ 
of eligible operations j , select one operation j * G £ according to prior­
ity indices 7r(j), determine the earliest feasible start time t* > ESj* for 
operation j * , schedule j * at time t*, and update the earliest and latest 
start times of the operations i not yet scheduled. Starting with partial 
schedule S^ where C = {0} and 5o = 0 we perform those steps until all 
operations have been scheduled, i.e., until C = V. 

Sometimes it may happen that due to maximum time lags between 
scheduled operations i E C and the operation j * selected, the latest start 
time LSj-*' of jf* is strictly smaller than time t*. Then no feasible start time 
can be found for operation j * , and S^ cannot be extended to a feasible 
schedule. In this case, we perform the following unscheduling step. At 
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first, we determine the set W = {i G C | LSj = Si — dj*i} of all operations 
i that must be delayed for being able to schedule j * at time t*. Then, we 
increase the earliest start times of operations i from set U by adding the 
release dates Soi = Si -\-1* — LSj*, update the distances dij accordingly, 
and restart the scheduling procedure. In the implementation shown in 
Algorithm 1, the number u of unscheduling steps is limited by some upper 
bound u. 

Algorithm 1: Schedule-generation scheme of phase 1 

u := 0; 
2: So := 0, C := {0}; 

for all 2 G V do (* initialize ESi and LSi *) 
ESi := doi, LSi •= ~c^io; 

while C^V do 
£ := {j e V\C I Predij) C C, rfc(5^,oo) + r,fc > Rf, for all k e 7e^}; 
j * := min{j G S \ 7T{J) = exthes7r{h)}; 
t' := min{^ > ESj* \ rk{S^,T) -f Vj-^k > Rk for all keU^, r > t}; 
t* := min{5j-. > t' \ S^^^^*^ is process-feasible}; 
if t* > LSj* then (* unschedule and restart *) 

u := u+ 1; 
if u>u then terminate; 
U :={ieC\ LSj* =Si- dj*i}; 
for alH G W do doi := Si-\-t* - LSj*; 
update distances dij for alH, j ' G V and goto line 2; 

else (* schedule j * at time t* *) 
Sj*:=t\C:=Cu{r}; 
for all j G F \ C do (* update ESj and LSj *) 

ESj := max{ESj, Sj* + dj*j); 
LSj := Tmn{LSjjSj* — djj*)\ 

return 5; 

After having obtained a time- and process-feasible schedule satisfying 
the material-availability constraints, we link producing and consuming op­
erations according to a FIFO strategy. This means that for each k G IZ'^ 
we iterate the replenishing operations i G Vj^ according to nondecreasing 
completion times Si +p i and allot the corresponding Vik units to depleting 
operations j G Vĵ ~ in the order of nondecreasing start times Sj. For each 
pair (i, j ) G Vk ^Vk fo^ which j consumes units produced by z, we intro­
duce a precedence constraint between i and j by setting 5ij := m.Qx{5ij^pi). 
Subsequently, we update the distances dij and proceed with the second 
phase of our procedure. 
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When during the second phase we deal with storage-capacity instead 
of material-availabiUty constraints, we define the eUgible set to be £ := 
[j eV\C\ Pred{j) C C, rfc(5^, oo) -h Vjk < Rk for all k e 7^^}. In the 
definition of £, we use the predecessor sets Pred{j) from the first phase in 
order to allow the scheduling of depleting operations before the replenishing 
operations allotted to them have been added to the partial schedule. The 
earliest storage-feasible start time of operation j * is now given by f' := 
mm{t > ESj* I rk{S^,T) -h rjk < 'Rk for all keTV, r > t^-pj*}. In this 
way, we ensure that any partial schedule S^ is feasible. 

3.3 Concatenation 

For generating the complete production schedule we proceed as follows. 
The (sub-)schedule S computed by the priority-rule based method defines 
precedence relationships between the operations i , j of one cycle being 
executed on the same processing unit or producing and consuming the 
same product. Those precedence relationships are translated into time lags 
5ij^ which ensure that no resource conflict can occur when left- or right-
shifting the operations. More precisely, for each pair of operations (z, j ) 
with Sj > Si -{- Pi{x) -h Cij{x) and Xik = Xjk = 1 for some k G TZ^ we 
introduce the time lag Sij = Pi{x) -\- Cij{x) preventing the overlapping of i 
and j . For pairs (i, j ) with Sj > Si +Pi{x) and Vik > 0, rjk < 0 for some 
k ^TV^ the time lags 8ij = Pi{x) guarantee the availability of the interme­
diate stocked in resource k. Eventually, we add the time lag 5ij = —pj{x) 
for each pair (z,j) with Sj -hpj(x) > Si and Vik < 0, rjk > 0 for some 
k G T̂ '̂ ', to avoid an excess of the storage capacity of resource k. Moreover, 
the completion time of the last operation that is processed on a processing 
unit defines a release date 5oi for the changeover to the first operation i on 
that unit in the next execution of the subschedule. Analogously, the last 
change in the inventory level of an intermediate gives rise to a release date 
(Joi for the first operation i that subsequently produces or consumes that 
intermediate. 

The start and completion times of the operations in the first cycle equal 
those of subschedule 5. For computing the start and completion times of 
the operations in the next cycle, we solve a temporal scheduling problem 
which consists in computing an earliest schedule for those operations sub­
ject to the precedence relationships between and the release dates for the 
operations. As it is well-known, this temporal scheduling problem can be 
solved efficiently by longest path calculations. By iteratively concatenat­
ing the u subschedule copies in this way, we finally obtain the production 
schedule sought. 
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4 Experimental Performance Analysis 

We have compared the new heuristic to the decomposition approach by 
Centner et al. (2004). The performance analysis was based on a test set 
introduced in Centner (2005), which has been constructed by varying the 
primary requirements for final products in the case study of Kallrath (2002). 
For each instance, we have computed a solution to the cyclic batching 
problem using Frontline Systems' Solver package. The subschedules have 
been computed by a randomized multi-pass version of the priority-rule 
based method presented in Section 3. The tests have been performed on an 
800 MHz Pentium III personal computer. The results for the decomposition 
approach have been reported in Centner (2005) and refer to a 1400 MHz 
Pentium IV personal computer. 

The results obtained for the 13 problem instances are shown in Table 1. 
For each problem instance the new method is able to find a markedly better 
solution. Especially for larger problem instances, the required CPU time 
is significantly smaller than for the decomposition approach. Having pre­
scribed an upper bound of £ = 100 batches, about 75 seconds are required 
for solving the cyclic batching problem. The priority-rule based method 
has been stopped after 15 seconds of CPU time. The concatenation has 
always required less than one second of CPU time. 

Table 1: Computational results 

Instance 
Centner (2005) 

Makespan tcpu [s] 
This paper 

# batches Makespan tcpu [s] 

WeKaO.l 
WeKaO.2 
WeKaO.3 
WeKaO.4 
WeKaO.5 
WeKaO.6 
WeKaO.7 
WeKaO.8 
WeKaO.9 
WeKa0.10 
WeKaO-15 
WeKa0.20 
WeKa0.30 

352 
474 
612 
738 
906 

1046 
1199 
1334 
1548 
1740 
2123 
2899 
4416 

38 
53 

120 
209 
178 
215 
323 
281 
399 
431 
644 

1500 
5235 

176 
264 
352 
440 
528 
616 
704 
792 
880 
968 

1408 
1848 
2728 

264 
390 
516 
642 
768 
894 

1020 
1146 
1272 
1398 
2028 
2658 
3918 

89 
89 
89 
89 
89 
90 
91 
91 
91 
91 
91 
91 
92 
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5 Conclusions 

We have considered a short-term planning problem of batch production 
in the process industries. We have proposed a heuristic solution method 
for solving large-scale instances of this problem, consisting of the three 
steps cyclic batching, cyclic batch-scheduling, and concatenation. Because 
each of those steps has to be performed only once, the computational re­
quirements of the heuristic are moderate. In an experimental performance 
analysis, we have shown that the new method clearly outperforms the best 
solution approach known from literature. 

An important area of future research is, for example, the design of 
efficient solution methods for the case of continuous production, where the 
production and consumption rates of products are decision variables as 
well. Moreover, procedures for robust and reactive short-term planning 
should be developed, which are able to cope with uncertainty with respect 
to planning data like primary requirements, processing times, or yields. 
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1 Introduction 

Labor costs become more and more important for a company's success. 
This holds especially true for high-wage countries like Germany and for 
labor-intensive service industries like such as call centers or casinos. Effi­
cient planning and allocation of personnel resources is therefore essential 
and quite a lot of models and methods for this so-called "workforce schedul­
ing problem" have been developed thus far. Nevertheless, real problems are 
very different, complex, and specific. There exists no standard procedure 
to find optimal - or at least suboptimal - solutions (if the complexity of 
the problem is too great for exact algorithms). The formulation of the 
problem has to take into account the unique situation of a company and 
subsequently an appropriate solution method has to be adapted. 

A very specific situation appears in casinos. These often glamorous 
gambling places generate an atmosphere of luxury and luck, and in this 
context, service and organization have to be perfect. All tasks should 
be performed flawlessly, producing considerable stress for the employees. 
Difficult in this context is that very different tasks have to be scheduled, and 
for these tasks quite different qualifications axe necessary. The most popular 
betting games in a casino are roulette, black jack, poker, and baccarat, 
each of these games affording special instruction courses for the employees 
involved. Roulette for example requires a team of four or five employees in 
different positions with different qualifications. In addition to the staff for 
the betting games, highly qualified personnel for supervision is necessary. 

Besides the problem of coordinating tasks and employees with different 
qualifications and with respect to maximal working time, other character­
istics have to be considered. A lot of difficulties to construct an optimal 
or suitable workforce schedule stem from the fact that on the one hand 



240 Christoph Stark et al. 

casinos axe closed only a few days per year and normally opening hours are 
more than 12 hours every day. On the other hand the enormous concen­
tration required by the employees to do their job call for restricted working 
hours and regular idle times. These restrictions are not only due to regie-
mentations by law. Also, there should be a certain regularity and balance 
between early and late shifts. Otherwise, indisposition or illness may occur. 

The construction of good workforce schedules is of great interest. In 
Germany, we have 61 casinos with a cross gambling profit of round about 
one billion Euros. Up to now, workforce scheduling in casinos is mostly done 
without support of quantitative methods. This is very time consuming and 
not at all satisfactory. No doubt, simple schemes often used in combination 
with the planner's long experience and skill have the advantage of being 
understood and accepted. Computer programs sometimes have the lack 
of generating solutions which are optimal in the framework of the model 
but maladjusted to reality, because the model neglects some minor details. 
To overcome these difficulties, quantitative models and methods, which 
are lucid and flexible thus offering the possibility of generating alternative 
solutions, should be applied. The approach presented in the sequel, which 
is based on previous work displayed in [6] and [7], has a focus to both 
aspects. 

2 Problem Formulation 

In what follows, we first describe some typical restrictions of workforce 
scheduling problems in casinos (cf. Section 2.1). In Section 2.2 we present a 
network-based representation for the underlying workforce scheduling prob­
lem, which is vaguely similar to the formulation given in [4]. Finally, we 
propose two equivalent mathematical programming formulations in Sec­
tions 2.3 and 2.4. 

2.1 Problem Description 

In a casino, workforce scheduling is subject to manifold restrictions. We 
have to distinguish between hard restrictions that must be obeyed and 
soft restrictions which should be obeyed. Since there may be no feasible 
solution which satisfies all soft restrictions, violations of soft restrictions 
will be penalized. Moreover, we discern four different shift types: early 
shifts (E), mid-day shifts (M), late shifts (L), and long late shifts (LL). 
Each task that has to be assigned to an employee belongs to exactly one of 
these shift types. 
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Haxd restrictions: 

1. No employee may be assigned to a task he is not qualified for. 

2. In between two tasks that are assigned to an employee, there must 
be at least 11 hours of idle time. 

3. No employee may work longer than 10 days in a row. 

4. Each employee must receive at least two days off for every 5 days on 
duty. 

Soft restrictions: 

1. At least two days oflF should be scheduled in a row. 

2. A day off should be preceded by another day off or an early shift and 
should be succeeded by another day oflF or a (long) late shift. 

3. A vacation should be preceded by an early shift and succeeded by a 
(long) late shift. 

Notice that due to the above soft restrictions, a "good" work sequence 
should usually resemble a sequence of shifts of the form (LL, . . . , L , . . . , M, 
. . . , £ ? , . . . , DO, DO^..., -LL,...), where DO denotes a day off. 

2.2 Network Representation 

We consider a planning horizon of h = 1 , . . . , -ff days. Let Jh be the set 
of all tasks (jobs) that take place on day h. Additionally, let each set Jh 
contain exactly two fictitious tasks: 

• One dummy task, which is used to admit assignments of superfluous 
employees to tasks on day /i. In the environment of casinos, the as­
signment of an employee to a dummy task represents for instance the 
assignment to a reserve pool, which contains standby employees. Al­
ternatively, dummy tasks may represent demonstration services that 
serve to familiarize customers with some of the games offered by a 
casino. 

• One task (day off), which is interpreted as a day off assignment. 

We define J := U/i=i A ^̂  be the superset of all tasks. With each task 
ueJwe associate two events 5^ and e^ representing the start (initial event) 
and end (terminal event) of task u, respectively. Changeovers from a task 
on day h to another task on day ft + 1, /i = 1 , . . . , i? — 1, are modelled by 
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so-called transitions. A transition between two tasks u £ Jh and v € A+ i 
is associated with the terminal event of task u and the initial event of task v 
and can thus be uniquely identified by the pair {cu, Sy). Transition (cu, Sy) 
is considered requiresfeasible, if it respects hard restriction 2, i.e., if there 
are at least 11 hours of idle time in between the end of task u and the start 
of task V. 

Let K denote the set of all employees that are available for at least 
one day of the planning horizon. For each employee k e K we consider a 
network G^ = (N^^A^) (cf. Figure 1). The set of nodes N^ consists of 
the initial events Su and the terminal events e^ for each task u E J that 
employee k is suitably skilled for (cf. hard restriction 1) and of a source 
a and a sink u. It is assumed that all employees are skilled for dummy 
tasks and days off. In case an employee is not available for a specific 
day, for instance due to vacation plans, all associated tasks are omitted 
from N^ and instead a new fictitious task is introduced, which represents 
the employee's unavailability. The set of arcs A^ contains an arc (5^,6^) 
connecting the initial and terminal events of each task u e J : Su^Cu €: N^, 
Moreover, there is an arc {cu^Sy) for each feasible transition in between 
two tasks u e Jh '• eu ^ N^ and v € Jh-^i - Sy G N^, ft = 1 , . . . , J^ — 1. 
Finally, A^ contains the arcs {a,Su) for each u G Ji : Su G N^ and (cy^u) 
for each v e JH - ^y G N^. For each arc (ij) G A^ we introduce a 
cost c^j that serves to penalize violations of the soft restrictions described 
in Section 2.1 and takes into consideration employee fc's preference and 
qualification for the task at hand. For example, in order to observe soft 
restriction 2 (at least two days off in a row), it has to be ensured that 
transitions connecting two days off are at least as "cheap" (with respect 
to c^j) as any other transition on the day under consideration. Similarly, 
transitions connecting a day off and a task belonging to a late shift have 
to be "cheaper" than transitions connecting days off and early or mid-day 
shifts. Observe that a path from node a to node u in G^ corresponds to a 
feasible work sequence with respect to hard restrictions 1 and 2. 

The superimposition of networks G^ for all employees k G K can be 
interpreted as a multi-commodity flow network G = (N^A) with N := 
UfcGKT ^^ ^^^ ^ •" UfeGK -̂ ĵ where each employee k represents a unique 
commodity. For ease of illustration we stipulate that the set of arcs A is 
disaggregated into four mutually disjoint subsets Aj U AD U AQ U AT = A, 
where 

• Aj denotes the set of all arcs corresponding to a non-fictitious task, 

• AD denotes the set of all arcs corresponding to a dummy task, 

• Ao denotes the set of all arcs corresponding to a day off, and 
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Day 1 Day 2 Day 3 

\x>d^t>o\t>o •" 
tx)-' bo 

/ I 

Legend: r^^^ Transition 

Figure 1: Sketch of network G^ = {N^,A'') 

• AT denotes the set of all arcs corresponding to a feasible transitions 
between two tasks. 

Except for the representation of days off, the proposed multi-commodity 
flow network closely resembles the formulation given in [7]. 

2.3 Arc-Based Mathematical Formulation 

Let (t>ij be a binary flow variable for each arc (i, j) E A^^k G K, and dij be a 
nonnegative artiflcial variable for each (i, j ) G Aj , which may be interpreted 
as the assignment of a dummy employee to the task corresponding to arc 
(i, j ) . Moreover, S{i) denotes the set of all successors of node i in G^ 
and analogously V{j) denotes all predecessors of node j in G^. Given these 
prerequisites, we propose the following mathematical program to determine 
a feasible work sequence for each employee. 

Min. 53 53 4 4 + Yl ^d^J (1) 

s.t. Yl '̂ ai = l (k&K) (2) 
(a,j)€A'' 

E <^t = l (fee AT) (3) 

E 4 - E <^'.=0 {keK,iGN>'\{aM)i^) 
jeS(i) i€V(j) 
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5^4+di, = l {{i,3)eAj) (5) 
k&K 

dij>0 iii,J)&Aj) (6) 

4 €{0,1} ik&K,ii,J)&A'') (7) 

Restrictions (2) - (4) axe canonical flow balance constraints which -
together with constraints (7) - ensure that each employee k is assigned 
exactly one path from a to a; in G*̂ . Constraints (5) make sure that each 
non-fictitious task is assigned to exactly one (dummy) employee. Objective 
function (1) minimizes the total cost incurred and - given a large number 
M which is e.g. greater than the length of a longest path from a to a; -
ensures the utilization of a minimal number of dummy employees. Dummy 
employees are interpreted as temporary employees such as students, who 
work in a casino on an irregular basis. In a post processing phase, we 
therefore need to assign each task covered by a dummy employee to exactly 
one employee out of a set of available temporary employees. 

Note that a feasible solution to problem (1) - (7) respects only hard 
restrictions 1 and 2. In order to account for hard restrictions 3 and 4 we 
need to introduce the concept of resource constraints for a path from a 
to a; in G .̂ Let F be a set of resources 7. With each arc (i, j ) G -A we 
associate a resource consumption r^ for each resource 7 € F (cf. Figure 2). 
In principle, we accumulate the resource consumptions along a path from 
a to u and and we use R] to denote the total consumption of resource 
7 € F along a path from node a to some node i in G^, In case a path 
from a to i is extended by arc (i, j ) G A^ the total resource consumption 
at node j is given by KJ^ := max{0, R]^ + r^}. Without loss of generality 
we assume that R2/^ equals 0 for all 7 G F, fc G K, For all k £ K^ let RJ be 
an upper bound on the total resource consumption R] of each resource 7 
and for each node i G N^. A path between two nodes in G^ is considered 
admissible exactly if 0 < i?7 ^ ^7» 7 ^ ̂ ^ holds true for every node i that 
is part of the path under consideration. Notice that unlike r J and ^7 ̂ ê 
total resource consumption R] depends on employee k e K. 

o<Rf< Ry 0 < Rf < R-y 

Figure 2: Resource consumption and resource constraints 

To ensure that no employee works more than 10 days in a row (hard 
restriction 3) we introduce a resource 71 which serves to count the number 
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of consecutive work days. With each arc (i^j) G Aj U AD corresponding 
to a (dummy) task we associate a resource consumption r'Jj := 1, and for 
each arc (ij) G AQ that corresponds to a day off, we set r'Jj := —H, For 
all remaining arcs {i,j) G AT we set r'Jj := 0. Moreover, we introduce 
an upper bound RJ^ := 9 for each initial event 5u G iV belonging to a 
(dummy) task it, and we set R]^ := oo for all remaining nodes i G N, 

Hard restriction 4 implies that for every 10 days on duty an employee 
is entitled to at least 4 days off. Consequently, we introduce a resource 
72 which keeps track of the minimum number of days off an employee is 
entitled to and set r̂ ? := 4/10 for each arc {i,j) G AJUAD corresponding 
to a non-fictitious task or a dummy task. With each arc (i, j) G AQ repre­
senting a day off, we associate a resource consumption r̂ ? := — 1. r̂ ? := 0 
for all remaining arcs {i,j) GAT- For each initial event Su G N belonging 
to a (dummy) task u we set R^l := 4. With all remaining nodes i G iV we 
associate an upper bound R]^ := oo. 

Given the aforementioned resources and corresponding resource con­
sumptions as well as upper bounds on the total resource consumptions, we 
obtain the following constraints depending on decision variables (p^j and 

Hi 
nk 

<t>% [R]' + r7. - R]^) < 0 {keK, (i, j ) e A^ 7 e T) (8) 

o<Rf <R] {keK, ie iv^ 7 G r) (9) 

These constraints ensure that all paths from a to a; in G^, k E K, that 
are part of a solution to problem (1) - (7), are feasible with respect to 
resources 71 and 72. Hence, a solution to problem (1) - (9) respects all our 
hard restrictions. 

2.4 Path'Based Mathematical Formulation 

Recall from network theory that flows can be defined not only on arcs, but 
also an paths and cycles (cf. for instance [1, pp. 79]). Since G ,̂ A: G iiT, is 
acyclic, any feasible solution to problem (1) - (9) can be represented as the 
sum of flows on directed paths from a to UJ. In what follows, we present 
a path-based formulation for the workforce scheduling problem under con­
sideration, which is equivalent to problem (1) - (9). This formulation 
facilitates the derivation of the branch-and-price algorithm in Section 3.1. 

Let P^ be the set of all paths from a to a; in G^ and x^ be the flow on 
path p^ e P^, k G K, Moreover, let 

•̂  1 0 otherwise 
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An arc flow as introduced in Section 2.3 can be decomposed into path flows 
by 

<^ij = E ^ ^ ' ^ • (10) 

pk^pk 

Moreover, the cost per unit flow for a given path p^ £ P^, k € K, is 

cV):= E 4-

Using equation (10) we substitute the arc flow variables (f)!^j in prob-

lem (1) - (9) with path flow variables x^ and thus obtain the equivalent 
optimization problem 

Min. Yl Yl "^(P")"^"" + E ^^« (11) 

s.t. 53 a;P' = 1 (jk € K) (12) 
pk^pk 

E E ('Jf>')+ '̂̂ =^ iiiJ)^Aj) (13) 

53 (<5?^''*)(R7''+r7,-ilf)<0 (fc€iir,(i,j)€^*,7€r)(14) 
pfc^pfc 

0 < 7̂*= < ^7 (jkGii:,^€iV^7€^) (15) 
d i i > 0 ( ( i , j ) eAj ) (16) 
x^' €{0,1} {keK, p^eP^) (17) 

Restrictions (12) together with (17) ensure that each employee A; is assigned 
exactly one path from a to a; in G'̂ . Constraints (13) make sure that 
each non-fictitious task is covered by at most one employee k. Objective 
function (11) minimizes the total cost of all paths from a to a; as well as the 
utilization of dummy employees. Due to the structural properties of G^, 
k £ K, (cf. Section 2.2) and due to resource constraints (14) and (15), a 
feasible solution to problem ( l l ) - ( 1 7 ) i s also feasible with respect to hard 
restrictions 1 through 4. Observe that because of nonlinear constraints (14) 

If 

as well as the huge number of decision variables x^ problem (11) - (17) 
is diSicult to solve. Moreover, notice that (11) - (17) contains the well-
known set-partitioning problem, which is in itself known to be A/^P-hard. 
However, using the branch-and-price solution procedure given in Section 
3.1, the path-based formulation of the underlying problem can actually be 
solved more efiiciently than the aforementioned arc-based formulation. 
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3 Solution Procedures 

In the following Sections 3.1 and 3.2 we describe an exact solution procedure 
for problem (11) - (17) (cf. [7]) as well as a heuristic local search algorithm 
for the underlying workforce scheduling problem (see [6]). A heuristic so­
lution provides an upper bound for the objective function value of problem 
(11) - (17) and can therefore be used to improve the performance of the 
exact algorithm given in the following Section. 

3.1 An Exact Branch-and-Price Algorithm 

Branch-and-Price (cf. e.g. [2]) is a powerful method for solving integer pro­
grams with a large number of decision variables. The basic idea is to use 
column generation in order to solve the linear relaxation - the so called 
master problem 11 - of the underlying integer program. To this end, a 
restricted master problem 11' is solved to optimality, which contains only 
a small subset of all possible decision variables and corresponding columns 
of the coefficient matrix. Afterwards, a subproblem is formulated which 
serves to determine further columns and associated variables with nega­
tive reduced objective function values. These columns are appended to 
the restricted master problem which is then reoptimized. The process of 
solving n ' and determining and appending favorable columns to 11' is re­
peated until no further columns with negative reduced objective function 
values exist, which implies that the current optimal solution of n ' is also 
optimal with respect to 11. The described column generation procedure is 
embedded into a branch-and-bound algorithm in order to generate integral 
solutions. 

3.1.1 Restricted Master Problem 

For the underlying workforce scheduling problem ( l l ) - ( 1 7 ) , w e obtain the 
master problem 11 by replacing restrictions (17) with x^ > 0 for all fc G iiT, 
pk ^ pk r^Y^Q restricted master problem E ' is obtained by considering an 
appropriate subset P ' G P^ of variables x^ , each of which represents a 
feasible path from a to a; in G^ regarding the resource constraints (14) and 
(15). A proper subset P ' G P^ is given by any basic feasible solution to 11 
or can be generated by constructing a set of paths from a to u;, one path 
for each employee fc, such that the paths are arc-disjoint with respect to 
the arcs in Aj. This can be easily done by e.g. constructing paths that 
traverse only arcs that correspond to dummy tasks and days off as well as 
appropriate transitions. Since we require each path in P ' to be resource-
feasible, we are able to drop restrictions (14) and (15) from 11'. Thus, 11' 
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can be solved using regular linear programming algorithms. 

3.1.2 Subproblem 

Once an optimal solution of the restricted master problem 11' has been 
obtained, we need to solve a subproblem in order to determine additional 
decision variables x^ , p^ e P^, with negative reduced objective function 
coeflBcients c^{p^). Since an optimal solution to 11' provides shadow prices 
fi^ for each employee k e K (cf. restrictions (12)) and 7]ij for each arc 
(̂ , j ) € A J (cf. restrictions (13)), it follows that 

modined cost c* 

for each feasible path p^ G P^, where rjij := 0 for all (z, j) G A\Aj. Prom 
simplex theory we know that an optimal solution to 11 must satisfy the 
optimality conditions 

c^ip'') > 0 for all feasible / eP^.ke K, and 
c^(p^) = 0 for all p^ with x^'^ > 0 . 

These conditions imply that ^^ is the length of a shortest path from a to a; 
in G^ with respect to the modified cost cf̂ . Hence, a path p^ £ P^, k e K, 
with minimum c^{p^) can be determined by finding a shortest resource-
feasible path from a to a; in G^ with respect to the modified cost cf̂ . If 
for all k G K the length Yluj\^pk c^j of such a shortest path is greater 
than or equal to /i*̂ , i.e., c^{p^) > 0, then the optimal solution which has 
been previously determined for 11' is optimal for 11 as well. Otherwise, i.e., 
Ylrij\^pk c^j < fJi^ holds, we append the column associated with path p^ as 

well as variable x^ to 11' and reoptimize the restricted master problem. 
An algorithm which can be used to determine a shortest path under 

resource constraints is given in [3]. Its fundamental idea is to use multidi­
mensional labels with label components for the total resource consumption 
R]^^ 7 € r, at a given node i as well as the corresponding length of the 
path from node a to node i. Observe that different from regular shortest 
path algorithms, it is usually necessary to simultaneously retain several 
labels at each node in G^ in order to determine a shortest path under re­
source constraints. As described in [3], it is therefore beneficial to apply 
dominance criteria in order to reduce the number of labels to be considered 
at each node. 
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3.1.3 Br anch-and-Bound 

In order to determine an integral solution to the underlying workforce 
scheduling problem, it is possible to embed the discussed column gener­
ation approach into a branch-and-bound algorithm. An optimal solution 
to n will then serve as a lower bound on the objective function value of 
problem (11) - (17). In order to branch on problem (11) - (17) or any of 
its subproblems, we propose to use variable dichotomy, i.e., at each node 
in the enumeration tree we select exactly one variable x^ which is frac­
tional in an optimal solution of the corresponding linear relaxation. Two 
subproblems are then obtained as follows: 

• We set x^ -=1? i.e., employee k must work the schedule associated 
with path p^. Thus, we delete all variables (columns) x^ with p^ € 
P^, p^ :^ p^. Moreover, it is possible to delete all work sequences 
for employees k' ^ k which cover a task that has been assigned to 

employee k. This means we delete all variables x^ {p^ E P^ ,k^ G 
j^ 

K^k' i^ k) for which there is an arc (i ,j) G p^ r\ Aj with 5^ = 

5^^ . No further columns are generated for employee k in subsequent 
subproblems. 

• We set x^ := 0, i.e., employee k must not work the schedule asso­
ciated with path p^. Hence we delete variable (column) x^ and we 
need to make sure that path p^ is not generated for employee k in 
subsequent subproblems, i.e., nodes of the enumeration tree. To this 
end, we store a list of forbidden paths for each employee k and each 
node of the enumeration tree. In case a forbidden path is obtained 
using the aforementioned shortest path algorithm, we compute the 
next-shortest path. This can be done by means of a fc-shortest path 
algorithm, such as Yen's algorithm described in [8], which can be 
easily adapted towards the case with resource constraints. Its ba­
sic concept is to systematically and temporarily delete arcs from A 
which are part of a previously computed shortest path. After each 
such deletion, a new shortest path is determined that is a candidate 
for the next-shortest path. 

Using the proposed branching rule in combination with a FIFO search 
strategy permits us to quickly obtain good integral solutions, because sub-
problems towards the bottom of the enumeration tree are increasingly easy 
to solve. 
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3.2 A Heuristic Local Search Algorithm 

In Section 3.2.1, we describe a construction heuristic which is usually able to 
determine good solutions to the underlying workforce scheduling problem. 
We will then show how this initial solution can be improved by means of a 
Hill Climbing algorithm as described in Section 3.2.2. 

3.2.1 Construction Procedure 

An initial solution is obtained by determining an assignment of employees 
to tasks for each day of the planning horizon. To this end we formulate 
an assignment problem for each day which can be visualized as a bipartite 
graph (cf. Figure 3). Source nodes correspond to available employees and 
sink nodes correspond to daily tasks as well as days off, which are allocated 
as follows. The number of days off an employee is entitled to depends on 
the number of days he is available for work, which is presumed to be known 
in advance. The total number of days oflF is then allocated to individual 
days according to a predefined strategy. Sources and sinks are fully inter­
connected by directed arcs, which represent an assignment of employees to 
tasks or days oflF. To ensure that the number of sources equals the number 
of sinks, we insert either dummy employees or dummy tasks. 

employees 
tasks & 
days off employees 

tasks Sc 
days off 

Figure 3: An assignment problem for a single day 

The most important step during the initialization of a daily assignment 
problem is the determination of appropriate arc weights. Our goal is to 
determine arc weights which lead to work sequences in accordance with 
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the underlying restrictions. For this reason, we consider three factors when 
determining arc weights: 

• Qualification: Arc weights are used to penaUze assignments of em­
ployees to tasks for which they are not (suJBSciently) skilled. 

• Previous assignments: Considering the number of uninterrupted work 
days, the shift types of the last three assignments, and the shift type of 
the assignment under consideration, we penalize long periods of work 
as well as illegal or unfortunate work sequences w.r.t. soft restrictions 
1 - 3 . 

• Day off assignments: We consider the number of days off an employee 
has yet to receive, the remaining number of days until the end of the 
planning horizon, and the shift types of previous assignments. Then 
we penalize supernumerous and insufficient assignments of days off 
as well as assignments that are likely to violate the underlying soft 
restrictions. 

The assignment problem for each day can be polynomially solved by 
means of the well-known Glover-Klingman algorithm (cf. e.g. [5, pp. 294]). 
Note that the optimal solution of an assignment problem depends on solu­
tions that were obtained for assignment problems on previous days. 

3.2.2 Improvement Procedure 

The initial solution obtained in Section 3.2.1 is improved by two Hill Climb­
ing procedures that pursue two hierarchically ordered objectives: (a) im­
proving the quality of work sequences and (b) evenly distributing attractive 
tasks among employees. Neighboring solutions are obtained by swapping 
the assignments between two employees for one and the same day of the 
planning horizon. Swapping is permitted only if the resulting neighboring 
solution complies with hard restrictions 1 through 4. 

The first Hill Climbing procedure serves to improve the quality of in­
dividual work sequences regarding their violation of soft restrictions 1 -
3. Starting with h = H^ we swap two assignments on day ft — 1, if this 
improves the objective function value of the assignment problem for day h. 
This step is repeated for /i = jff — 1 , . . . , 2. 

The second Hill Climbing procedure pursues the objective of evenly dis­
tributing the assignments of attractive tasks, i.e., tasks for which employees 
express high preferences, among all employees throughout the entire year. 
To this end, we determine the ratio of unattractive versus attractive tasks 
an employee has been assigned to throughout the year. Our objective is 
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to minimize the absolute deviation of this ratio for a given employee from 
the mean ratio over all employees. For each day h = 1 , . . . , ff, we there­
fore swap two assignments on day h if this decreases the afore mentioned 
deviation. 

The proposed neighborhood operator ensures that, given an initial al­
location of days oflF to each day of the planning horizon, a globally optimal 
solution can be reached from any starting solution. 

4 Conclusions 

In this paper, we have presented a sophisticated network formulation for 
workforce scheduling problems which is rather lucid as well as easy to ex­
plain because of the close relationship between paths in the network and 
work sequences for individual employees. It should be noted that due to 
the concept of resource restrictions on paths the proposed multi-commodity 
network flow formulation is very flexible and allows for an easy incorpora­
tion of many additional practical restrictions. This permits its application 
to a lot of practical workforce scheduling problems outside of the casino 
industry. 

Since the proposed branch-and-price procedure is only able to solve 
small problem instances to optimality, we have moreover described a con­
structive heuristic based on the iterative solution of general assignment 
problems and a simple hill climbing procedure. For the future, however, 
it seems worthwhile to develop heuristic procedures that are based on the 
aforementioned multi-commodity network flow representation. This would 
provide a basis for a clean performance comparison as well as the possibility 
to implement hybrid approaches. 
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His working at the university of Karlsruhe is connected with a lot of activ­
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Conference about Application of Computer science and Mathematics in Ar­
chitecture and Civil Engineering), where he was one of the most engaged 
and reliable members of the program committee over many years. 

1 Introduction 

There are lots of situations in which some items stacked up to a pile are 
to transfer in another pile with another order of the items. The question 
in this situation is how to do it in the best way using only the available 
resources and devices. 
Such problems we call pile problems. 
We meet them for example in connection with container transport, where 
the containers in a harbor are to load into or to unload from the container-
ships, or in connection with the transport and the assembly of large concrete 
elements, or in connection with the shunt of trains in a marshalling yard, 
but also in connection with some patience plays (freecell. Bakers patience) 
or the well known "Tower of Hanoi". 
In the following we will investigate some types of pile problems and try to 
answer such questions like 

• Is the pile problem solvable by the available resources? 

• Which is the solution with the minimal number of steps? 
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• How to find this solution? 

To describe pile problems more precisely we use the terms of graph 
theory. For a given directed graph G = (V, A) and its vertices v e V we 
use the following well-known notations: NQ{V) is the set of all successors 
of v, NQ{V) is the set of all predecessors of v. dj(t;) and dQ{v) are the 
numbers of outgoing and incoming arcs of t;, respectively. For two given 
graphs Gi = {Vi,Ai) and G2 = (V2, A2) the union ofG\ and G2 is defined 
as: Gi U G2 '•= (Vi U V2, Ai U A2). A cycle in a directed graph G = {V, A) 
is a closed path in G. We call a directed graph G = (V, A) a pile, if and 
only if G is finite and does not contain a loop or a cycle. The vertices of 
G represent the items or elements of the pile, the arcs of G represent the 
order in which the elements are piled up. The moving of an element of 
a pile to another place is called a step. Another place can be a place in 
another pile or in an auxiliary place (cellar place) if it exists. 
Figures 1 and 2 show an example of a pile problem we will consider. The 

mm 
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m 
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Figure 1: Starting situation Figure 2: Required final situation 

graphs Gs and GF» representing the starting and the final pile, respectively, 
are shown in Figs. 3 and 4. Note that the axes in Gs are directed in the 
opposite way to those in Gp. 

Now the question is, how many elements must be put aside at least from 
the starting pile in order to pile up the required final structure. Erecting 
this final pile is done step by step by moving elements from top of the 
starting pile on top of the final pile we have yet. The above example can 
be solved by putting five elements aside: 1, 2, 3 ,4 and 5. 

Definition 1 ; We call Q = (GsjGpjfc) a pile problem if and only if 
Gs = (V, As) and Gp = (V^AF) are piles and k is a natural number. Gs 
is called starting pile, Gp is called final pile; k is the number of elements 
that are allowed to put aside. The vertices v from V are called elements of 
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7 ^ -^7 
Figure 3: Starting pile Gs Figure 4' Final pile GF 

the piles. 
G'g — ( V , A') is a subpile of the starting pile Gs if G' is an induced 
subgraph of Gs o.nd with vertex veV all successors of v in Gs belong also 
to v . 
G'p = ( V , A') is a subpile of the final pile GF ifG' is an induced subgraph 
of GF O'l^d with the vertex vtV all predecessors of v in GF belong also to 
V\ 
A vertex v is top of a starting pile or its subpile Gifv has no predecessors 
in G. 

A vertex v is top of a final pile or its subpile G if v has no successors in G. 

Definition 2 : 5 = (Gi,G2,i?, M) is called configuration of a pile prob­
lem Q = (Gs, G F , fc), if and only if 

1. G\ = (Vi, Ai) is a subpile of Gs that represents that part of the 
starting pile that still remains on the original place, G2 = (V^,>l2) is 
a subpile of GF that represents the part of the required final pile that 
is yet erected on the final place, 

2. M is the set of elements that have been put aside so far, H is the set 
of elements that are currently resting on auxiliary places, H C M. 

For two given configurations S = (Gi, G2, -ff, M) and 5 ' = (Gi, G2, i^', M') 
of Q 5 ' is called move from S if and only if either 

1. there is a top v ofG\ with Vj = Vi\{t;} and V2 = V2U{v} (a transfer 
from the top of G\ to the top of G2), or 

2. there is a top v of G\ with V{ — V\\{v} and M' = M U {v} and 
H' = H\J {v} (a transfer from the top of G\ to an auxiliary place), 
or 
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3, there is a v E H with 1̂ ' = F2 U {v} and H' = H\{v} ( a transfer 
from an auxiliary place to G2) 

Definition 3 ; Let Q = (Gs,GF,fc) be a pile problem, A sequence S = 
[5 i , . . . , Si] of moves Si = (C?i, ̂ 2? ̂ ^^ -^*) ^̂  called valid sequence of moves 
of Q if and only if 

L G\ = Gs, G\ = (0,0), Afi = 0 and 

2. for 2 € { 1 , . . . , Z — 1} Si^i is move from Si. 

Then we call the configuration Si a valid configuration of Q, 
We call Q solvable if and only if there is a valid sequence of moves 
S = [ 5 i , . . . , 5/] such that for Si = (C?i, G ,̂ H^M^) 

G2 = G F 

holds. We call S then a l-solving-sequence ofQ. 

2 The Special Case of Chain Pile Problems 

We now want to turn to a more simple pile structure: We call a pile 
G = (V, A) with V = { v i , . . . , t;n} a chain pile if and only if 
A = {{vi^Vi^i) : i G { l , . . . , n — 1}} holds, i.e. G is simply a directed 
path. The pile is a stack. Hence we investigate piles where the elements 
are ordered like permutations. Again we want to transform a starting pile 
into a final pile consisting of the same elements. This leads to the new term 
of chain pile problems: P = (Gs,GF,GR,fc) is called chain pile problem if 
and only if Gs = (V^,^s) and G F = ( V , A F ) are chain piles, G R = (V^AB,) 

is a directed graph - the graph of rules or rule system - and fe is a natural 
number - the number of auxiliary places that are available. 

The rules from G R describe, which elements can rest on other ones: For 
a given chain pile problem P a vertex u may rest on top of a vertex v if 
and only if there is the arc {u,v) in the graph of rules G R , {U^V) € AR. 
These rules hold on all places, on the auxiliary places also. 
Without loss of generality may be Gs allways the permutation (1,2,3,. . . , n) 
and GF the permutation n = (21,12,^3, •••j^n)-
The well known "Tower of Hanoi" is an example for such a chain pile 
problem. The starting and the final pile are stacks both given by the 
permutation (1,2,3,. . . , n) of the n elements. The graph of rules consists of 
the vertices 1,2,3, ...,n and of the arcs (z, j ) where i < j . The number of 
auxiliary places is fc = 1. 
"Tower of Hanoi" is a solvable pile problem and needs with 2" — 1 an 
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exponential number of steps. 
For chain pile problems some interesting questions are 

1. Is the pile problem solvable by the rule graph for given permutation 
TT and given number k of auxiliary places? 

2. Which is the minimal rule system for given k and given TT, i.e. the 
graph GR with a minimal number of arcs for wich the problem is 
solvable? 

3. Which is the minimal number of auxiliary places for which the pile 
problem is solvable for given TT and given GR? 

4. For which permutations TT is a pile problem solvable for given k and 
given GR? 

5. Which is the minimal number of steps to solve a pile problem for 
given TT, given GR and given fe, if the problem is solvable? 

6. Is there a polynomial bound for this number of steps for all solvable 
permutations TT? 

For some of these questions the answer is known, for example 

Theorem 1 ; The minimal rule system of the "Tower of Hanoi" problem 
is given by the graph GR^ = {VR^.ARJ with 

Vh„={ l , 2 , 3 , . . . , n } and 
^Rn = {{hi-^ 3), (i, i + 5),..., (i, n - P{i, n)):iG {1,2,.. . , n - 3}} 

U{(t , i + l ) : i G { l , 2 , . . . , n - l } } 
where 

Pii,j):={ 1 for i + j even 
1 0 for z -h j odd 

GR^ is a bipartite graph. 

The proof of the theorem you can find in [3]. 

For a general chain pile problem the rule graph must contain at least all 
arcs of Gs and all arcs of GF , otherwise the problem is not solvable. 
For such problems with GR = G5 U Gp obviously holds 

Theorem 2 ; Each chain pile problem P = {Gs^GpyGs U GF^n/2 + 1) 
is solvable. 

The investigation of question 4 is more difficult when k is smaller then n/2. 
In [3] are given some results to this question under further assumptions. 
These assumptions are 
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1. All elements of the starting pile must be moved to auxiliary places, 
no elements may be put to the final place while the starting place 
is non empty (it is not allowed to put an element directly from the 
starting pile to the final pile). 

2. It is not allowed to put elements back to the starting pile. 

3. It is not allowed to take elements away from the final pile. 

4. The number of auxiliary places is fc = 2. 

Then holds 

Theorem 3 : In a chain pile prohleia P = (G5, Gp-, Gs U G F , 2) with the 
additional assumptions 1. -4- ^^^ for n > 4 under the n\ permutations 
of the n, (n > 4) elements are exactly 8n — 16 for which the pile problem 
is solvable. Each of these valid final piles can be given in an explicit way 
(see [3]). Moreover each of the 8n — 16 solvable chain pile problems can be 
solved using only at most 5n — 5 steps. 

The proof of this theorem is possible by considering a lot of different cases 
and will be hold back here. It is to find in [3]. 

3 Solvability and Complexity of Pile Problems 

Now again we consider a pile problem in accordance with definition 1. 
We want to examine the structure of the problem and give some prop­

erties. 

Lemma 1 ; Let Q = {Gs, GF» k) be a solvable pile problem. Then for any 
cycle C m Gs UGp there is a vertex xc with {xc,yc) ^^ G and (xc , Vc) ^ 
A{Gs)' Xc must be put aside in order to pile up Gp. 

Proof: We consider a cycle G = [xi, X2,.. . ,x,^,xi] in Gs U Gp. Let Xi be 
the vertex in G, that is put first of all vertices x i , . . . , x̂ ^ to the final pile. 
The arc (xf-i, Xi) can't be in Gp, because Xi has to be put to the final pile 
before Xi_i. That's why (xi_i,Xi) G A{Gs) holds. That means: Xi_i must 
be taken away from the starting pile before Xi, but may be put to the final 
pile after x^. This can be realized only if Xi_i is put to an auxiliary place. 
The arc (xi_i,Xi) is the arc {xc,yc) mentioned in the lemma, o 
As a consequence we have 

Theorem 4 ([3]) : A pile problem Q = (Gs, Gp, 0) is solvable if and only 
if Gs U Gp does not contain any cycles. 
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Computing the minimal number of elements that must be put aside to 
erect the final pile turns out to be NP-hard: 

Theorem 5 ; The set 
SP := {Q = (Gs ,GF,k) : Q is a solvable pile problem } is NP-complete. 

To proof Theorem 5 SP is reduced to the problem FEEDBACK-VERTEX-
SET, which is NP-complete by [1]. A full-length proof is given in [3]. 

R e m a r k 1 ; By theorem 5 follows that the determination of the minimal 
k for which Q = {Gs,GF,k) is solvable also is NP-hard. 

By Theorem 4 we know that cycles are the reason for putting elements 
aside when piling up the required final structure. Taking a closer look 
to the structure of these cycles one realizes that they consist by turns of 
paths Pf from Gs and paths Pf from Gp. To reach the final situation by 
Lemma 1 every cycle in Gs U Gp must be destroyed. Break such a cycle C 
can only be done by moving elements from top of the starting pile or one 
of its subpiles to an auxiliary place. That means we have to choose a path 
Pf in C the first vertex v of which (d~s {v) = 0) will be put aside. 

For simple-structured cycles there is no choice: 

L e m m a 2 [3] : Let Q = (Gs, Gp, k) be a solvable pile problem and let C = 
[a i , . . . , ax, 6 i , . . . , 6j/, ai] be a cycle in GsUGp such that Pi = [a i , . . . , ax, 6i] 
is contained in Gs and P2 = [61 , . . . , 6j/, ai] is contained in Gp. Then the 
vertex ai has to be put aside in any case when piling up the required final 
structure Gp. 

Proof : By Lemma 1 we already know that there is a â  G { a i , . . . ,ax} 
which must be put aside in order to reach the final situation Gp. Due to 
Pi = [^1,..., ax] is contained in Gs this must be ai. o 

Definition 4 ; A directed subgraph G' — {V\A') of G = (V^A) is called 
a strongly connected component if for every pair {x,y) of vertices from V 
there is a directed path from x to y in G' and G' is maximal, i. e. all other 
subgraphs G" C G with G' C G" are not strongly connected. 

L e m m a 3 ; Let Gs and Gp be a starting and a final pile respectively. 
Furthermore Gs U Gp is strongly connected and n := |V(Gs)| and m := 
\A{Gs U Gp)|. Then there is a k with l < f c < m — n + 1, such that 
Q :=z (Gs, Gp, k) is a solvable pile problem. 
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Proof : Gs U GF is strongly connected, therefore it contains a cycle. By 
Lemma 2 at least one vertex must be put aside, hence \ <k holds. 

There is always an element v for which at least one arc in Gs U Gp is 
deleted when v putting aside. A spanning tree of Gs U Gp contains n — 1 
arcs, therefore at most m — (n — \) arcs must be deleted, in order to destroy 
all cycles in Gs U Gp. That means at most m — (n — 1) elements have to 
put aside, hence fc < m — n -h 1 holds, o 

The bounds given in Lemma 3 can not be tightened as the Figs. 5 and 
6 illustrate. 

Starting pile: Final pile: 

Figure 5: Starting and final pile of a pile problem that shows that the lower bound 
is tight 

Starting pile: 
1 _ 

Final pile: 

Figure 6: Starting and final pile of a pile problem demonstrating that the upper 
bound is also tight 

Theorem 6 ; Given a pile problem Q = (Gs, Gp, k) with k is the smallest 
number for which Q remains solvable, dc denotes the number of cycles in 
Gs U Gp that are disjoint in vertices and I is the number of non-trivial 
strongly connected components Q^,. . . , Q̂  o/ Gs U Gp. Furthermore every 
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component Qi contains n* vertices and rui arcs. Then it holds 

I 

I <dc< k < 22min{mt — rii + 1, n* — 1}. 
1 = 1 

Proof : There may be more than one disjoint cycles in a non-trivial strongly 
connected component - at least there is one - but no cycle contains vertices 
of several strongly connected components. Therefore dc > I holds. 

By Lemma 1 every cycle has to be cut open by putting an element 
aside. By putting k elements aside, only k disjoint cycles can be destroyed. 
It follows k > dc. 

For any strongly connected component with Ui vertices and nii arcs 
obviously there have to be put aside at most rij — 1 vertices. According 
to Lemma 3 at most mi — n* + 1 elements have to be moved to auxiliary 
places. Therefore we can choose the minimum of either of these values for 
every strongly connected component of Q: 
Zli=i niin{mi — n* + 1, Ui — 1} > k. o 

With the argumentation from the proof of Theorem 6 we can conclude 
that it is sufficient to consider the strongly connected components of a pile 
problem Q in order to decide whether Q is solvable or not. Hence for 
an algorithm it is useful to decompose Q into subproblems Q^,. . . , Q' by 
determining the strongly connected components of Q, 

Definition 5 ; Let Q = (Gs,GF,fc) be a pile problem. We call the set 
Q := {Q* = (G|, Gjr, fci) : i = 1 , . . . , / } o/pile problems sec-decomposition 
of Q, if o,nd only if all Gg U Gp are strongly connected components of 
Gs U G F , V{GS) = U^iF(G*s) and V{GF) = u\^iV{G'^) holds and all G | 
and Gp are (induced) subgraphs of Gs and Gp, respectively. 

Lemma 4 ; Let Q = (Gs, Gp, k) be a pile problem and 
Q := {Q* = (G^, Gp, fci) : i = 1 , . . . , /} such a sec-decomposition of Q that 
all g* = (G|, Gjr, ki) are solvable but Q'' = (G|, Gjr, ki - 1) are not That 
means ki is minimal for Q*. Then it follows 

I 

Q is solvable if and only if k> ^ ki holds. 
i = l 

Proof : ("=>") Gs U Gp consists of the strongly connected components 
Gg U G p , . . . , Gg U Gp. To solve Q exactly Ci vertices have to put aside 
from the component Gg U Ĝ r (i = 1 , . . . , /). Altogether k elements are put 

aside, i.e. ]Ci=i ^i — ^' 
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Assume that Q is solvable and k < Xlt=i ^i holds. Thus X^^^i Q < 
S i = i ^i holds. Therefore there is at least one component G^ U G^, where 
Cj vertices v i , . . . , Vc^ are put aside and Q^ = (Gg, G^,Cj) is solvable with 
Cj < kj, because the whole problem Q is solvable. This contradicts our 
assumption of kj being minimal. 

( " ^ " ) It holds k > J2i=i ^i' Then Q is solvable and there is no cycle 
leading through more than one strongly connected component. Hence only 
Zli=i f^i ^ k elements must be put aside in order to solve Q. o 

There are now two ways of treating the problem algorithmically: First a 
pile problem Q can be solved by complete enumeration, which will be very 
time-consuming, due to its NP-completeness. Secondly it can be examined 
by an heuristic procedure that will work much faster but will deliver only 
an approximate solution. We will now have a closer look on these methods. 

4 Solving Pile Problems 

4.1 Branching & Bounding 

To compute the minimal number of elements that have to put aside we use 
a simple technique: Step by step we simulate the moving of the elements 
from the starting pile to the final pile place. If there is no element on 
top of the starting pile that can be moved directly to the final pile we 
need to put an element aside. By Lemma 4 it is sufiicient to consider 
all pile problems Q* of the sec-decomposition of Q. The smallest number 
of elements that have to put aside to solve Q is the sum of all minimal 
numbers concerning the problems Q*. Therefore we split Q = (Gs,GF,fc) 
in subproblems Q* = (G^, G\^,ki) by decomposing Q in strongly connected 
components of Gs U Gp. 

After checking that the component Q* that currently is to investigate 
is non-trivial we check if there is a cycle in Q* containing a vertex v that 
rests on top of the starting pile and which satisfies Lemma 2. In this case 
we put V aside on an auxiliary place. After this we may have access to new 
vertices on top of the starting pile. Now we can search for vertices on top 
of starting pile which either can be moved directly to the final pile or which 
satisfy Lemma 2. We repeat these steps as long as there are such vertices. 

But once we reach a point where we don't find such vertices - we have to 
move an element from the starting pile to an auxiliary place. The problem 
is now that we do n't know the right vertex to choose, that's why we have 
to make the whole computation for every vertex on top of the starting 
pile: We move one vertex to an auxiliary place and solve the reduced 
problem recursively. This backtracking-procedure can be shortened to a 



Pile Problems 267 

simple branch-and-bound algorithm. As a result we obtain the smallest 
number of elements that must be moved to auxiliary place to pile up the 
required final situation of Q, 

4.2 Heuristics 

The heuristic procedure we consider works similar to the branch-and-bound 
algorithm. At the point where there is neither a vertex to move directly to 
the final pile nor a vertex satisfying Lemma 2, we have to choose only one 
element to move from the starting pile to an auxiliary place. This decision 
is not corrigible, that's why our decision should be depending on a well 
defined criterion. For that reason we assign a value to all possible elements 
(the elements on top of starting pile) by a function / and choose a vertex 
V for which the value f{v) becomes a maximum. 

Clearly, the quality of the solution as well as the efficiency of the al­
gorithm strongly depends on such a function / . Several functions were 
investigated: 

Definition 6 ; Let Q = (Gs»GF,fe) be a pile problem and vi,,,.,vi the 
elements on top ofGs or one of its subpiles, Ei denotes the set of successors 
of Vi in Gs which have no predecessors except Vi. We define the following 
functions for i = 1 , . . . , Z; 

• fi{vi) := dQ^{vi) -h d^j,(vt), the number of elements that are directly 
below Vi in the starting pile plus the number of elements that rest on 
top of Vi in the final pile, 

• f2{vi) •= |{^ G Ei : V can be put directly to the final pile. } | , 

• fsi'^i) •= |{^ e Ei : V satisfies Lemma 2.}|, 

• f4{Vi):=f2{Vi)-^f3{Vi), 

Hence f4{vi) is the number of vertices that either satisfy Lemma 2 or can 
directly be moved to the final pile right after Vi is taken away from the 
starting pile. The best results were obtained by using the function /4. 
The time complexity for the heuristic algorithm with the function / i is 
0{n'^-{'nm) [3]. 

4*3 Behavior of the Algorithms 

Before starting some experiments a number of example piles are to generate. 
The vertices of a directed acyclic graph can be ordered into certain levels. 
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two vertices axe in the same level if the longest paths leading from top of 
the pile to the vertices have equal lengths. 

The average width of such a graph G is the arithmetic mean of the 
number of vertices in the levels of G. The height of G is the number of the 
levels - the length of the longest path in G, 

When doing our experiments we varied the average width and the height 
of the piles to generate, as well as the density of arcs in the piles. 

When making the first experiments it happened that a lot of pile prob­
lems were solvable in reasonable time. This means: In the branch-and-
bound algorithm there is no branching necessity - in the heuristic algorithm 
none of the vertices must be chose by /4. Step by step we can find vertices 
until the whole problem is done. Of course, the results by the branch-and-
bound and the heuristic algorithm are the same. In Table 1 we show the 
percentage of all examples that can be solved without branching/using f^. 
The examples we considered here had at most 100 vertices, the density of 
arcs is 25 per cent. It means 25 per cent of all possible arcs are chosen 
randomly. We considered the dependency of the results on the structure 
of the graphs - the relation between height and width. The number of 
investigated examples is given in Table 3. 

Table 1: Percentage of pile problems solvable in reasonable time with respect to 
the given parameters. 

Density of arcs: 25 per cent, IV] < 100 

rs=height/width in the starting pile 

rF=height/width in the final pile 1 

rs = 10 

rs = 1 

rs = 0.1 

rp = 10 

97% 

96% 

90% 

rp = 1 

94% 

90% 

80% 

rp = 0.1 

91% 

83% 

63% 

All statements about the heuristic algorithm in the following are with 
regard to those examples that cannot be solved in reasonable time, i.e. 
branching is always necessary. 

Quality of the Approximate Solution We started a series of experi­
ments to measure the quality of the heuristic algorithm - for that reason 
we considered a density of arcs in the piles of 5, 10, 15, 20 and 25 per cent. 
In Table 2 we give the percentage of optimal solutions (O) - the number 
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of elements to put to auxiliary place is minimal - and the percentage of 
"good" (G) solutions - the number exceeds the minimum at most by one. 

Table 2: Percentage of optimal and good solutions promded by the heuristic algo­
rithm for different density of arcs 

Density of arcs: 25 per cent, | V| < 50 

rs=height/width in the starting pile 

1 rF=height/width in the final pile 

1 rs= 
10 

rs = 
1 

rs = 
1 0.1 

rp = 10 

0 : 9 3 % 

G: 99% 

0 : 91% 

G: 99% 

O: 84% 

G: 98% 

rp = 1 

O: 94% 

G: 99% 

O: 88% 

G: 99% 

O: 78% 

G:97% 

rp = 0.1 

O: 88% 

G: 98% 

0 : 82% 

G: 99% 

0 : 74% 

G: 97% 

Density of arcs: 10 per cent, |V| < 50 

rs=height/width in the starting pile 

rF=height/width in the finad pile 

10 

ŝ = 
1 

rs = 
0.1 

rp = 10 

O: 71% 

G: 94% 

O: 70% 

G: 91% 

O: 77% 

G: 96% 

rp = 1 

O: 71% 

G: 95% 

O: 76% 

G: 94% 

O: 79% 
G: 94% 

rp = 0.1 1 
O: 79% 

G: 96% 

O: 79% 

G: 96% 

O: 81% 
G: 97% 

Density of arcs: 15 per cent, | V| < 50 

rs=height/width in the starting pile 

1 rp=height/width in the final pile 

1 rs = 
10 

rs = 
1 

rs = 
0.1 

rp = 10 

O: 86% 

G: 99% 

O: 81% 

G: 97% 

O: 81% 

G: 96% 

rp = 1 

O: 81% 

G: 98% 

O: 77% 

G: 96% 

O: 76% 

G: 96% 

rp = 0.1 

O: 82% 

G: 98% 

O: 77% 

G: 98% 

O: 82% 

G: 95% 

Density of arcs: 5 per cent, |V| < 50 

rs=height/width in the starting pile 

1 rp=height/width in the final pile 

rs = 
10 

rs = 
1 

rs = 
0.1 

rp = 10 

O: 75% 

G: 94% 

O: 79% 

G: 99% 

O: 87% 

G: 98% 

rp = 1 

O: 75% 

G: 94% 

O: 86% 

G: 97% 

O: 88% 

G:99% 

rp = 0.1 1 
O: 84% 

G: 98% 

O: 91% 

G: 99% 

O: 95% 

G: 99% 1 

Computing Times: Branch-and-Bound vs. Heuristic The com­
puting times for the branch-and-bound and the heuristic algorithm are 
odd: The considered examples can be divided into two sets. The first and 
larger one contains piles for which the computing time is almost the same 
for both algorithms. The computing time TneuristicCQ) for the heuristic 
algorithm is less than one second for these examples. (All given computing 
times are with regard to a Intel Pentium 133 with 32 MByte main memory.) 
The computing time TBranch-and-BoundCQ) of the exact method is also less 
than one second. 

In the second set we find those piles for which the heuristic algorithm 
is much faster than the exact method, we find computing times from 30 
seconds up to several hours, but the heuristic algorithm takes only a few 
seconds for the same examples. For bigger sized problems (n > 200) it's 
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difficult to decide whether the above statement is true or not, the heuristic 
algorithm also works very fast, but it's almost impossible to prove the 
quality of the results because it's impossible to calculate the exact values. 

An overview about the necessary computing time of the branch-and-
bound-algorithm is given with Table 3. We considered the same examples 
as in Table 2. 

Table 3: Percentage of examples solvable with the branch-and-bound algorithm in 
different computing times depending on the density of arcs 

Computing time 

< l s 

l - 5 s 

6 - 120s 

121-7200s 

> 7200s 

Number of the 

considered examples 

Densii 

5% 

87 

9 

3 

0.8 

0.2 

1240 

by of ax 

10% 

74 

17 

5 

3 

1 

2785 

cs: 

15% 

91 

6.7 

1.7 

0.4 

0.2 

3043 

20% 

82 

15 

2.1 

0.7 

0.2 

2242 

25% 

~59 

36 

4 

0.6 

0.4 

1623 

Finally, the combination of both algorithms seems to be a good proce­
dure: First is to check if the branch-and-bound algorithm returns a result 
within a defined time interval and only if it doesn't, the heuristic algorithm 
should be used to solve the problem. 

5 Non-Unique Pile Problems 

An obviously generalization of the pile problems considered so far is a non 
unique assignment of the elements of the starting pile to the elements of 
the final pile. This leads to the term of non-unique pile problems. 

The practical background of such a model is the distinction between the 
elements of the starting pile and the available positions of these elements 
in the final pile. 

Definition 7 ; i? = (Gs = (T^s,^s), G F = ( ^ F , ^ F ) , / , k) is called 
non-unique pile problem, if and only if 

1. the directed graphs Gs and GF represent the starting pile and the final 
pile, respectively, 
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2. k>0 is a natural number, 

3. Vs and Vp are disjoint and it holds \Vs\ = |V^| and 

4' f is a mapping with f : Vs •—> 2^^. 

Such a mapping f also can be interpreted as a set of undirected edges in a 
bipartite graph consisting of the elements of the starting pile and elements 
from the final pile. We illustrate this fact in Fig. 7 with the following 
function / : {1,2,3,4,5,6,7} i—^ 2{"'̂ '̂ '̂ '̂ ''̂ '̂ > and the example from Figs. 
1 and 2. 

/ ( I ) 
m 
/(3) 

m 
m 
m 
m 

= 
= 

= 
= 
= 

= 
= 

{a, 6}, 
{b,c}, 

{c}, 
{c,d}, 

Ke,/}, 
{e, /} . 

{d,9h 

Figure 7: Example mapping for the pile problem given by the Figs. 1 and 2 and 
its representation as undirected arcs in the bipartite graph that corresponds to the 
given pile 

Definition 8 ; Let Gs = (V^s^-^s) cind Gp = (VF,-AF) be piles and f : 
Vs '—^ 2^^ o mapping. Furthermore Vs and Vp be disjoint. Then the 
mapping-graph G{f) := {V, E) with respect to f is defined as follows: 

1. V :=Vs^ VY and 

2. E := {{u,v} \U^VS,V£VY andve f{u)}. 

To transform the starting pile Gs of such a non-unique pile problem 
to the required final pile Gp it is obviously necessary to find a one-to-one 
correspondence between the elements of the starting pile and the positions 
in the final pile. 
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Definition 9 ; A non-unique pile problem 
R = (C?s = (Vs, -4s), GF = (VF, >1F), / , k) is called solvable, if and only if 

L there is a unique mapping g : Vs 
holds g{v) G f(v) and 

VF, such that for all v G Vs 

2. Q{g) := (Gs? G' := {Vs,A), k) is a solvable (unique) pile problem 
with A := {{u,v) : {g{u),g{v)) € Ap}. 

Such a correspondence is equivalent to a perfect matching E in G{f), 
Therefore we use also the notation Q{E) for Q(p). 

The existence of such a perfect matching hence is a necessary condition 
for solving a non unique pile problem R, For the example from Figs. 1 
and 2 there is the following function g : V{Gs) "—> V(GF)J such that for 
all V € V{Gs) g{v) G f{v) holds. 

P(l) = a, 

^(2) = 6, 

^(3) = c, 

P(4) = d, 

p(5) = e, 

P(6) = / , 

Figure 8: A unique mapping g of f and the corresponding perfect matching in 
G{f) for the pile problem defined by Figs. 1 and 2 

5,1 Choosing a Unique Mapping 

Before investigating a given pile problem we have to verify that the given 
mapping / allows us to find a unique mapping g G f. By [2] a maximum 
matching for bipartite graphs can steps. 
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Again we axe now interested in the smallest number k of elements that 
are to be moved to auxiliary places to transform the starting pile of a non-
unique pile problem into the final pile with regard to the assignments given 
b y / . 

With Theorem 5 it follows immediately that it is NP-complete to decide 
whether a given non-unique pile problem R = {Gs, Gp? /? k) is solvable or 
not. 

For that reason we like to know a perfect matching E in G{f) for which 
the resulting unique pile problem Q{E) is solvable with the minimal number 
of elements to be put aside. To compute this smallest number k we can 
reduce i? to a number of unique pile problems and solve all the concluding 
unique pile problems. But in general there are exponentially many different 
perfect matchings in G(/) . Therefore determining E in this way is a difficult 
task. Calculating E is intractable at all: 

Theorem 7 ; Given a non-unique pile problem R := ( G S , G F , / , fe). Cal­
culating a perfect matching E of G{f) for which the resulting unique pile 
problem Q{E) is solvable with a minimal number of elements that need to 
be moved to auxiliary places is NP-hard. 

5,2 Strategies of Solving 

With Theorem 7 it seems to be useful to determine the smallest number 
of necessary auxiliary places approximately. There are the following two 
ways: 

• determining a perfect matching E of G{f) and calculating the nec­
essary number of auxiliary piles of the resulting unique pile problem 
Q{E), 

• calculating a perfect matching and a corresponding sequence of moves 
of the elements simultaneously. 

In this paper we only want to investigate the first way. It's obviously a 
good idea to evaluate each of the assigning edges in G{f) and to calculate 
a minimum weighted perfect matching E for G{f) after that. 

There are several criteria to evaluate these edges, for instance: 

1. value with regard to the components, the edge is contained in, 

2. value with regard to the depth of the vertices the edge is incident 
with. 
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5.2.1 Components 

Now we introduce the term component, which is similar to the well known 
strongly connected component. We consider the graph G^, which yields 
by taking the union of the starting pile and final pile and additionally the 
edges of GM which now should be directed in either direction: Gj^ := 
(V'SUFF, ASUAYUM) w i t h M : = {{u,v),{v,u) for all {u,v} from G( / ) } . 

Definition 10 We call a subgraph G ofGj^ component ofGj^ if and only 
if every pair of vertices in G is contained in a cycle 
C = [i^i,..., t;fc, Vk+i = vi] of Gj such that for a/Zi G { 1 , . . . , fc — 1} from 
{vi^Vi^i) G M follows (ff+i, Vi+2) 0 Mj that means in C there are no two 
consecutive arcs from M, and G has to he maximal 

Now Gj^ can be divided in such components and we can evaluate the 
edges in G{f): 

Every edge in G{f) the corresponding arc in G^ lies inside a component 
will be valued with 1, for arcs that link two diflFerent components in G^ 
we value the corresponding edge in G(/) with 0. 
Note that a division in such components is a division of the set of arcs, 
there may be vertices that are contained in more than one component. 

5.2.2 Difference of Depths 

Gs and Gp represent starting pile and final pile, respectively, therefore they 
are cycle-free. Hence for every vertex v of those graphs we can assign a 
depth t{v) in either graph: 

Definition 11 ; Let G be a cycle-free, directed graph. For every vertex 
V € V{G) the depth t{v) is defined as follows: 

; if V has no predecessor, 
( v ) - ( " 

I m 
t{t, . 

max{t(7;'), v' predecessor ofv}-\-l ; else. 

Every edge {vi, ^2} in G(/) links vertices of Vs with vertices of VJp, therefore 
these edges can be valued with the difference of the depths of vi and V2: 
\t{vi)-tiv2)\. 

5.3 Results 

In our last section we want to report about results obtained by implement­
ing the methods discussed in Sect. (5.2). 

To compare both methods and to get a feeling of the quality of the 
results we proceeded like in Sect. (4.3): Starting pile and final pile as well 
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as a graph G{f) - hence a complete non unique pile problem R - were gen­
erated randomly. Afterwards we calculated all possible perfect matchings 
of G{f) and every resulting unique pile problem was solved exactly. At 
the same time R was solved by the algorithms described in Sects. (5.2.1) 
and (5.2.2). We investigated 1000 examples, each of which had 20 elements 
and a density of arcs of 25 per cent. In Table 4 we show the number of 
exact solutions, solutions that differ about one, two and more than four 
vertices. Due to the small size of the considered examples (20 elements), 
the computing times of the heuristic algorithm are not worth mentioning. 

Table 4' Quality of both heuristics in comparison for 1000 examples 

Value by components 
Value by depth 

number 
of exact 
solutions 

140 
190 

results 
differing 
about one 
vertex 
285 
351 

results 
differing 
about two 
vertices 
273 
248 

results 
differing about 
more than 
four vertices 
61 
24 

6 Concluding Remarks 

The literature about pile problems is quite rarely and many interesting 
questions in this connection are not investigated until now. 
Especially for chain pile problems the number of solvable permutations for 
more then two auxiliary places up to n /2 are unknown. For this, seems, it 
is necessary to find an other way of proof as the way of case distinction. 
This question is also of interest when the additional assumptions 1 . - 3 . 
are dropped. 
For general pile problems in our investigations was always considered the 
case that an auxiliary place can take up one element only, but the number of 
such auxiliary places was not limited. From the point of view of practical 
applications is also of interest when auxiliary place can take up several 
elements. This elements can piled up to a stack or to a pile. The number 
of elements or the height of such an auxiliary pile can be bounded. But 
also other restrictions can hold like a rule system or preference constraints 
for the places. 
Of large interest is also the case of a bounded number of auxiliary places. 
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Abstract 

Production planning and inventory control is facing challenging risk manage­
ment problems if it is confronted with uncertainties from both the demand and 
the process side. By analyzing the respective planning problems with methods of 
stochastic inventory control it is possible to gain remarkably deep insights into 
the way how optimal reorder and safety stock management responds to joint 
demand and yield risks. These insights can be exploited to assess and improve 
the simple type of risk management rules employed in MRP systems to cope 
with uncertainties in demand and production yield. 

1 Demand and Yield Risk in Production Planning and Control 

Risk protection in production planning and control is necessary if uncertainties 
in the planning environment are of such significance that they cannot be ne­
glected. In production planning major uncertainties refer either to the demand or 
to the production side. Demand uncertainties are found in all make-to-stock 
systems and can be regarded as a prevalent source of risk in many production 
systems. Process uncertainties are found in all cases where production processes 
lack complete reliability. Despite of all efforts in quality improvement programs, 
this is found in many industries and results in more or less considerable yield 
losses. In semiconductor manufacturing these losses can even exceed 80 % (see 
Nahmias 2005, p. 385). This problem is also significant in the fast-growing 
remanufacturing industry where limited knowledge of the quality of used prod­
ucts causes high yield uncertainty in the disassembly processes (see Guide 
2000). When yield randomness coincides with uncertainty from the demand side, 
we face quite complex production planning and inventory control problems 
which demand appropriate means of risk protection. 

The traditional measure to protect against uncertainties in production planning 
and control systems is to incorporate safety stocks and/or safety lead times as 
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buffering concepts (see Vollmann et al. 2005, p. 203). However, safety lead 
times are only advocated for timing uncertainties which are usually found in 
supply processes. Demand uncertainties regularly appear as quantity uncertain­
ties which are recommended to be coped with by safety stocks. If yield losses 
occur in production systems, a natural way to incorporate these losses in produc­
tion planning is the usage of scrap allowances when calculating requirements. 
These risk protection measures can also easily be applied in advanced MRP 
systems. 

Considering a standard MRP record like in Table 1, demand uncertainty is re­
flected by [1] deriving gross requirements from deterministic demand forecasts 
and by [2] incorporating a safety stock in the 'projected on hand' calculation to 
protect against forecasting errors. Yield uncertainty is dealt with by [3] calculat­
ing the scheduled receipts from mean production yield and by [4] inflating the 
net requirements in the MRP record by respective scrap allowances. Regarding 
the yield risk, there is no clear advise from literature or from practice how to 
incorporate it in the MRP concept. Recommendations are found to do it by ad­
justing the scrap allowance (see Nahmias 2005, p. 385) or the safety stock (see 
Silver et al. 1998, p. 613), respectively. 

Table 1: Standard MRP record 

Period 
[1] Gross requirements 
[3] Scheduled receipts 
[2] Projected on hand | 14 
[4] Net requirements 

Planned order receipts 
1 Planned order releases 

1 
20 
8 
2 
0 

8 

2 
10 

0 
8 
8 
5 

3 
5 

0 
5 
5 
15 

4 
15 

0 
15 
15 

An additional way to take uncertainty into account when using MRP is to apply 
it in a rolling horizon framework with regular update of all relevant forecasts. 
Under these conditions MRP order release decisions behave just like reorder 
decisions which follow a stochastic inventory control rule (see Axsater/Rosling 
1994, Inderfiirth/Jensen 1999). For the above situation this control rule can be 
described as 

p = P{x) = 
_\p{x) = YF{CS-x) 

0 
for x<CS 

x>CS 
(1) 

with p as order release quantity and x as inventory position (net inventory plus 
all scheduled receipts). YF is a yield correction factor for scrap allowances 
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which compensates for yield losses and CS is a critical stock level which com­
prises the expected requirements within the risk period (production lead time 
plus control period) and a safety stock. Thus, it turns out that the MRP rule is a 
critical stock policy (i.e., no order is released if the inventory position exceeds a 
critical level CS) with a linear reorder function p(;c). 

When using such a control rule the safety stock ss, defined as expected stock 
level at the end of a period, is given by 

ss = x + jLiz'P{x)-/^D (2) 

where //£> denotes the expected demand and //^ stands for the expected yield 
rate. For the linear MRP-rule in (1) the safety stock turns out to be a linear func­
tion of the inventory position (in the regular case of A: < Ĉ S*) 

ss = {\-HzYF)x + [fi2YFCS-fiD] . (3) 

From (3) it is obvious that only for a yield correction factor that exactly compen­

sates for the expected yield loss, i.e. YF = 1/ ju^ , the safety stock will be in­

dependent of the inventory level, amounting to 

ss = CS-^j) . (4) 

This reveals that, if yield risk is completely taken into consideration by adapting 
the critical stock level CS, the safety stock is a constant like in the case without 
yield risk and with uncertainty only from the demand side (see Silver et al. 1998, 
p. 279). 

Up to now there is only little knowledge if this type of linear MRP-based control 
rule is reasonable in case of random demand and yield and, if so, how the con­
trol parameters YF and CS should be determined in order to protect against the 
respective risks appropriately. Specifically, it is not clear if risk protection 
should be performed solely by a safety stock like in (4) or jointly by a safety 
stock and safety yield correction, relying on a risk adjustment concerning both 
parameters CS and YF. This is also due to the fact that there is no clear picture of 
how the yield risk will affect the safety stock in (2) when an optimal control is 
applied. 

This paper aims to give theory-based answers to these questions by exploiting 
knowledge from respective stochastic inventory control models. Since the focus 
of this analysis is on risk protection, we will not take into account lotsizing as-
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pects. Additionally, we assume that both demand and yield risk (described by 
the variances of respective probability distributions) do not depend on time and 
on demand/production volume. This allows to rely on stationary models of sto­
chastic inventory control. 

2 Insights from Stochastic Inventory Control 

The inventory control model related to the advanced MRP model described in 
Section 1 is the periodic review model with proportional costs under random 
yield and random demand which first was analyzed in detail in Gerchak et al. 
(1988) and in Henig/Gerchak (1990). They consider a pure cost model with 
constant per unit cost for production (c), inventory holding (h) and backlogging 
unmet demand (v). Demand follows a stationary demand distribution function 

Fj) (.) with expectation juj) and variance aj) . The lead time is fixed to zero. 

The yield is assumed to be proportional to the order quantity/? with a stochastic 
proportionality factor Z (with 0 < Z < 1) which is distributed according to a 

function /*7(.) with expectation //^ and variance a f (see Yano/Lee 1995 for 

justification of this type of yield model). So ju^ is the mean yield rate and cr^ 

is a measure of the yield risk. From the above literature it is known that for the 
general multi-period case the optimal control rule has the following structure 

[0 x^CS* 

(5) 

Like the MRP-rule in (1) the optimal policy is a critical stock rule, but the opti­
mal reorder function is in general non-linear with a first derivate for which 

dp [x)/dx<\ holds. In detail, the optimal control rule is implicitly given by 

1 

lz'Fj^{x^Z'pydFz{z) = Mz'f^D{CS) . (6) 
0 

The critical stock level CS and the reorder function p (;c) will depend on 

both the demand and yield risk in a multi-period situation, but can only be 
evaluated numerically. 

It should be noted that in the case of deterministic yield losses, i.e. for 0 -^=0 , 

the optimal control rule degenerates to the standard order-up-to rule which is 
well-known from inventory theory for stochastic demand. Under these circum-



Risk and Safety Stock Management and Inventory Control with Stochastic Demand and Yield 281 

Stances the reorder function, here denoted by PRf{x) to indicate the (yield) 

risk-free case, is a linear one 

PRF{X) = — {CS*-X) . (7) 

A special case which allows for analytical insights in the general control rule for 
stochastic yield in (5) is the single-period case. Here, it can be shown that the 
critical stock is an a -quantile of the demand distribution according to a news-
vendor solution 

CS*=FSUa) with ^ ^ ^ - ^ / / ^ Z ,g. 

As in the newsvendor situation, cost ratio a can be interpreted as a service 
measure. The larger a is given, the higher is the probability of not being out-of-
stock which under stochastic yield also depends on the yield rate distribution 
F^ (.). It turns out that the critical stock level in (8) is not affected by the yield 

risk (J2 . However, yield uncertainty will always have an impact on the p (;c) 

function. This function can only be evaluated analytically for specific demand 
and yield rate distribution functions like uniform or exponential ones (see Ger-
chak et al. 1988). If demand D and yield rate Z are both uniformly distributed 

with D€[0,D'^] and ZG[0,Z"'"] , the optimal reorder function turns out to be 

piece wise convex and linear as follows (see Inderfurth 2004): 

/w= 
("'-') 

3 

if 0<x<{3a-2)'D'' 
Z^ P\D^-CS*) " - - - v - - - -r- (9) 

^-'lcS*-x] if (3a-2)Z)"'<jc<C5'* 
2.Z 

with C5*=aZ)'^ . 

From these results we find an answer to the first research question referring to 
the structure of the optimal control rule. It turns out that a linear rule, as used in 
MRP-based approaches, is only optimal under very specific conditions with 
regard to the planning horizon (single period), demand and yield rate distribu­
tion (uniform) and the service value a. From (9) it can easily be seen that the 

optimal order release function p (jc) is only completely linear over the whole 
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range of 0<x<CS if a<2/3 holds. Since service values of less than 67 % 
are hardly desirable under general circumstances, it can be concluded that under 
practical conditions we have to be aware that the optimal control rule will almost 
never be a linear one. In order to learn more about the general relationship be­
tween optimal risk control and safety stock management, we will more deeply 
evaluate the analytical insights from the optimal control rule in (9). 

3 Yield Risk and Safety Stock Under Uniform Yield and Demand 

In exploiting the knowledge of the optimal reorder rule given in (9) we first 

consider the case of low service value (a < 2/3) where the order release func­

tion p (x) is completely linear. Thereafter the situation with a non-linear con­

trol rule (for a > 2/3) will be analyzed. 

Case I: a < 2 / 3 

From (9) we can derive an optimal reorder rule which because of its linearity 

will be denoted by pi (;c) 

p\{x)^YF* \CS* -x) (10) 

with K P * = - . — 
2 Z^ 

From the underlying uniform distributions we have Z"̂  = 2 • /̂ ^ ^ ^ ^^ = 2 • //£> 

so that we find the optimal yield correction factor YF to be smaller than in the 
case without yield risk described in (7) 

According to the safety stock definition in (2) this results in a safety stock which 
is not constant, but depends on the inventory level x 

ss^{x) = '^'X-^\-a-l\'^j) . (12) 

From (12) we learn that, depending on stock level x, the optimal safety stock 
might be negative even if service value a is larger than 50 % , a result which is 



Risk and Safety Stock Management and Inventory Control with Stochastic Demand and Yield 283 

not found in the yield risk-free case. In detail, there exists an a -dependent criti­
cal stock 3c with 

ssi{x)<^ for A:<A:(a) = 2-//£)(2-3cr) (13) 

The reason behind this effect is that according to (11) the yield risk reduces the 
yield correction factor compared to the risk-free situation, a counter-intuitive 
response which will be discussed later. A fiirther result in this context is that for 
small service values of cr < 2/3 , independent of stock level x, the optimal safety 
stock from (12) will never be larger than the safety stock ssj^ from the risk-
free rule in (7) 

ss\{x) < ss*j^ = {2a-'l)-MD 
(14) 

Case II: a > 2 / 3 

For sufficiently large service value a we face the situation of a non-linear reor­

der fimction p (A:) which, as described above, will be typical for practical 

situations. Figure 1 presents a picture of the optimal reorder fimction derived in 
(9) which is strictly convex for small and linear for large inventory levels x. 

0' (3-a-2).Z)-' CS X 

Figure 1: Optimal reorder function for a>2/3 

In this case, the respective safety stock according to (3) can be formulated as 

ss {x) = 
\XJMD-\^ 

\x + (^a-l\-MD 

2MD~X 
-1 if 0^x<{6a-4)-^p 

(15) 

if {6a-4)-jUj)<x<,CS* 
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From (15) it can easily be derived that the optimal safety stock always will be 

positive (ss (A:) > 0) irregardless of the size of inventory level x: 

ss*{x)>0 for 0<A:<C5'* . (16) 

Additionally, it can be shown from (15) that the safety stock is continuously 
decreasing with increasing inventory level, i.e. d ss(^x)/dx<0. That means 

that, different from the situation with small service values ( a < 2 /3 ) in (12), the 
risk is perceived to increase the smaller the starting inventory is. This seems 
intuitive since a smaller inventory level is associated with a higher production 
order which itself bears more yield risk than a smaller one. The highest risk in 
this sense is connected with zero inventory ( A: = 0 ) for which the safety stock in 

(15) reaches its maximum ^^^x ^^^ ^̂ "̂ ^ ^̂ ^ ^̂  ^^ 

3 ( l - a ) 
- 1 (17) 

From (17) we see that the (maximum) safety stock is increasing with increasing 

service value a (as expected), starting with ^̂ max = 0 at the lower bound for a 

in Case I I ( a = 2 / 3 ) and tending to infinity (̂ ^max ^^°o) as a is approaching 
its upper bound ( a -> 1). The latter effect is caused by the fact that due to the 
assumed yield rate minimum of zero the production order must tend to infinity in 
order to avoid any shortage as demanded by a 100 % service value. Thus, what 
we learn is that in case of a > 2 /3 the safety stock incorporates some yield risk 
adjustment which depends on service value a and inventory level x. The maxi­
mum adjustment is given for ;c = 0 and can be used for a comparison with the 

risk-free safety stock ssj^ to evaluate whether the risk adjustments tends to 

increase or decrease the safety stock. By comparing -̂̂ ^̂ x̂ ^^"^ (1^) ^̂ ĥ ssj^ 

from (14) it is easy to see that ^̂ max "^ ^^RF ^^^ a = 2 /3 and -̂̂ max ^ ̂ ^RF ^^^ 
a - > l . 

Thus, a critical service value a must exists which divides a region (a<d) 
where yield risk is responded by a decrease of the safety stock from a region 
(a>d) where the opposite holds. This critical value d is found from equating 

•̂ •̂ max and ssjif which leads to d = 0.9 . 
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In Figure 2 this situation is visualized by presenting two examples of the (bold-

line) reorder function p (x) which refer to the case a<d and a>d , respec­

tively. For comparison the (dashed-line) yield risk-free function PRF{X) is also 

included. 

(a) a < a = a9 (b) a > a = 0.9 

v \ PRF{X) 

0 CS X 0 X C S x 
Figure 2: Optimal and risk-free reorder functions under uniform distributions 

Apparently, for service values a<d ^ yield risk always diminishes the order 
release quantity compared to a risk-free situation. However, if service value a 
exceeds the critical a -level, the order release quantity can be larger than in the 
case without yield risk. This will always happen if the inventory level x is suffi­
ciently small so that a relatively large production quantity is released. The criti­
cal inventory level x which divides the two regions of opposite risk adjustment 

is found by equating p (jc) and pj^ (x) . Obviously, this inventory level de­

pends on the service value a so that x = x[a) holds. 

Summarizing, the results from analyzing the yield risk impact in the case of a 
single-period problem with uniformly distributed demand and yield rate are 
presented in the following Table 2. 
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Table 2: Yield risk effects under uniform distributions 

1 Service value 

a < 0.6 

0 .6<a<0 .9 

a > 0 . 9 

Safety stock 

SS {x)<SSj(p V X 

with SS ( A : ) < 0 \i x<li[(x) 

^<ss {x)<ssj^ V X 

ss {x)<ssj^ '\i x>x((x) 

ss {x)>ssj^ if A:<jc(a) 

Yield risk effect 

ss reduction 

ss reduction 

ss reduction 

ss increase 

The most remarkable result of this analysis is the fact we face ambiguity of yield 
risk impact. Depending on the desired level of service and on the initial inven­
tory level, yield risk can either increase or decrease the optimal safety stock and 
reorder quantity. 

4 General Insights into the Yield Risk Impact 

From the analysis in Section 3 two major questions arise. First, can the specific 
results summarized in Table 2 be generalized to other planning situations with 
stochastic yield and demand? Second, how can the ambiguity of yield risk ef­
fects be explained? 

Concerning the planning situation, one of the restrictive assumptions in the pre­
vious analysis is that of uniformly distributed yield rate and demand. This as­
sumption causes the specific type of optimal control rule given in (9). However, 
there is no obvious reason why differently shaped distribution functions (like 

e.g. in case of normal or beta distribution) should result in p (jc) functions 

which are not able to generate yield risk ambiguity effects as shown in Figure 2. 
Several numerical experiments (see Transchel 2004) support this supposition. 

A second restrictive assumption is that of a single-period planning situation. An 
extension to the multi-period case does not affect the policy structure, although it 
results in a shift of the critical stock level CS. Given that only demand risk exists 
it is well known from inventory theory (see Neumann 1993, p. 659) that in case 
of an infinite planning horizon and demand backlogging this shift represents a 
stock level increase from the a -quantile in (8) to a y5 -quantile given by 

CS'^FS\P) with /5 = - ^ 
V + AZ 

(18) 
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If also Stochastic yield has to be taken into account, the critical stock level in the 
multi-period case will additionally be influenced by the yield rate distribution 
(see Henig/Gerchak 1990). There is, however, no compelling argument why this 
influence should lead to disappearance of yield risk ambiguity. 

Thus, there must be some general reason behind the ambiguous yield risk impact 
which specifically can explain the counter-intuitive effect that order quantity and 
safety stock can decrease when yield risk increases. For investigating yield risk 
effects we must consider the economic rational behind building up a safety stock 

for risk protection. In a pure demand risk situation the critical stock level CS 

(and thereby the safety stock ss ) is determined in such a way that the expected 
overage and underage cost L(CS) after demand realization (depending on the 
ordering, holding and shortage cost parameters) is minimized (see Silver et al. 
1998, pp. 385-388). Under cost assumptions as made in Section 2 cost fimction 
L(CS) turns out to convex with a minimum for CS>0 as depicted in Figure 3. 

0' CS CS 

Figure 3: Function of expected overage and underage cost 

The optimal cost trade-off results in a quantile solution as described in (8) or 
(14), respectively. If additionally the yield turns out to be stochastic, the desired 

critical stock CS cannot be reached with certainty by an ordering decision. 

Thus, an undershoot or overshoot of CS can occur which will lead to an in­
crease in the expected costs L(CS). The higher the yield risk, the larger the ex­
pected deviation from CS will be. The appropriate protection against this addi­
tional risk of deviation from CS now depends on the whether an undershoot 
causes higher expected costs L{CS) than an equal-sized overshoot or if the oppo­
site holds. In the former case which is found for high v//z-cost ratios (and equiva-
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lently for high service values) the optimal reaction is to increase the order quan­
tity while in the latter case yield risk should be responded by decreasing in the 
order size. So it is the slope of the Z(C»S)-function, specifically in the neighbor­
hood of the critical level CS*, which determines the yield rate reaction. The 
overshoot/undershoot is also affected by the order size necessary to bring the 
initial inventory up to the critical stock level, because a stochastically propor­
tional yield model is assumed. So a smaller starting inventory causes a higher 
order level which in turn results in a higher yield risk. This effect contributes to 
the fact that an increase in safety stock is mainly observed in cases of high ser­
vice values and low inventory levels. 

Summarizing, we see that the optimal production policy in general systems with 
stochastic yield and demand is not only quite complex, but is also responding to 
yield risk in such a form that it is jointly covered with demand risk by both fix­
ing the critical stock level CS and determining the shape of the order control 
rule p [x). Additionally, there is no unique impact of yield risk on the safety 

stock which itself is variable because it depends an the starting inventory of each 
period. Obviously, these complications make it critical to implement a simple 
linear control rule as described in Section 1. On the other hand, for practical 
application (like in MRP systems) only such simple two-parameter rules seem to 
be employable. So it is important to know how the respective parameters YF and 
CS should be determined appropriately and what performance can be expected 
from such a linear reorder rule. 

5 Yield Risk Management by Linear Control Rules 

All theory-based approaches for developing linear approximations for the opti­

mal control rule p (x) in (5) (see Bollapragada/Morton 1999, Zipkin 2000, 

Henig/Gerchak 1990) refer to a stationary situation with infinite planning hori­
zon for which a myopic policy is employed. According to the standard model 
without yield uncertainty a newsvendor-type solution for the critical stock level 
CS is advocated resulting in a yff -fractile of the demand distribution as described 
in (18). 

The linear approximation approaches primarily differ in the way how yield un­
certainty is taken into consideration. Henig/Gerchak (1990) and Zipkin (2000) 
determine the critical stock CS without reflecting yield risk by just choosing it 
according to (18). Under normality assumption this results in a critical stock 
CSi and a safety stock ss^ given by 
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CSx=jUj^+ssx and SSX^N~^{P)'GJ) (19) 

where A (̂.) denotes the standard normal distribution function. 

The yield rate uncertainty then is completely taken into account by adjusting the 
yield correction factor for the yield variability using the following formula: 

YF^ — 2 — — • (20) 

The mean yield rate adjustment in (20) is derived from specific approximation 
procedures in Henig/Gerchak (1990) and Zipkin (2000), respectively. The corre­
sponding linear control rule in this case, denoted by pi^ (x) , is given by: 

PLx{^) = yFxiCSx-x). 

A limited number of numerical tests indicate that this linear approximation per­
forms quite unsatisfactorily and deteriorates with increasing yield risk (see Tran-
schel 2004). From the analytical investigation of the single-period model for 

uniform distributions this resuh is not surprising. The yield factor (2/3-Z"^)~^ 

in the linear part of the p (x) function in (9) just coincides with YF^ in (20) if 

the yield rate is uniformly distributed in [ 0,2"*" ]. This reorder rule systematically 
underestimates the impact of yield risk, especially for high service parameters 
and low inventory levels. Therefore, it also turns out (see Transchel 2004) that 
this kind of linear approximation often performs worse than a respective linear 
rule without risk adjustment as it is given by the risk-free reorder function in (7). 

An alternative approach for providing a linear approximation to p (jc) in (5) 

has been developed in Bollapragada/Morton (1999). Here, different from the 
former approach, the yield risk is not considered by adjusting the yield correc­
tion factor, which is chosen to be YF2 = l / / / 2 > but by modifying the critical 

stock level CS. 
Basically, Bollapragada/Morton (1999) develop an approximation to the 

non-linear p (jc) function and construct a linear function with slope - 1 / / / ^ 

such that it intersects the optimal reorder function at a stock level equal to the 
safety stock ss. Thus, the linear and the optimal reorder function result in the 
same planned-order decision when the inventory equals the expected stock level 
by the end of a period. From this analysis it can be derived that under normality 
assumption a critical stock CS2 is given as follows: 
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CS2 = /^£) + ^^2 and SS2 = N' (21) 

From (21) it can be seen that the yield risk always results in an increase of the 
safety stock as it seems reasonable for fairly high service parameters according 
to the single-period analysis. The respective linear control rule with this ap­
proach, denoted by /?̂ 2 (̂ )» ^̂  given by pi2 (x) = YF2 '{CS2 -x). 

Figure 4 displays the results of a numerical investigation (see Transchel 2004) 
and shows how the linear control rule pi2 {x) behaves compared to the optimal 

reorder function p [x) as well as to the linear rule pj^f (JC) with CS from (19) 

and without any yield risk adjustment (i.e. YF = \//i^)- The curves in Figure 2 

refer to a problem with service parameter yff = 0.8 and with normally distributed 

demand and yield rate whose coefficients of variation are equal to 0.2 . 

CS^ CS CS2 

Figure 4: Reorder rules in the multi-period infinite-horizon case 

From Figure 4 it can be seen that CS^ <CS < CS2 and that pj^p (x) <p (JC) . 

This finding turns out to be typical for many situations so that it can be expected 

that the linear rule pi2 (x) yields a better approximation than pj^ (x ) . This is 

confirmed by a numerical performance study in BoUapragada/Morton (1999). In 

this study, it additionally is revealed that the linear reorder rule pi2 (JC) is near-

optimal over a wide range of parameter values. Thus, the pi2 (x) rule can be 
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considered to be a recommendable theory-based approach for being integrated in 
a MRP concept. However, in several cases of high >5-values (J3> 0.95) cost 
deviations of more than 10 % above optimum have been observed. This effect 
very likely is caused by the fact that, as shown in the analysis of service level 
impact in Section 3, the optimal reorder rule turns out to have an increasingly 
non-linear shape as the service parameter increases. 

6 Conclusions 

Risk management in production planning and inventory control is a major chal­
lenge when demand and yield uncertainties have to be taken into consideration 
simultaneously. From theory of stochastic inventory control we get many useful 
insights into the complex interaction of stochastic impacts from the demand and 
process side and appropriate measures to respond to the respective risks. Spe­
cifically the yield risk impact sometimes leads to counter-intuitive advice for 
safety stock management. Upon deeper examination, however, these policies can 
be seen as reasonable. Furthermore, general insights from the stochastic analysis 
can be used to assess different approaches of simple risk protection by applying 
a yield factor and safety stock parameter in extended MRP systems. 

It can be shown that under these types of approaches linear reorder rules are 
generated. Within these policies reorder rule pi2 {x) turns out to be superior, 
but still retains some deficiencies concerning its performance under certain cir­
cumstances. The lack of performance of the linear control rule Pi2{^) ^̂  ^^ ê 
of very high service levels may be caused by the fact that yield uncertainty is 
only taken into account by adjusting the safety stock, but not by correcting the 
mean yield factor. It may be presumed that by incorporating the yield risk in 
both safety stock and yield factor determination a better performance can be 
achieved. There is, at present, no sound theory from stochastic inventory control 
on how this should be done, leaving it can open matter for further research. 
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1 Traditional Models for Hub & Spoke Network Design 

The hub & spoke network design problem is a strategic logistics plan­
ning problem with applications for airlines, telecommunication companies, 
computer networks, postal services, and trucking companies, for exam­
ple. Basically, the problem in all these applications is that for a given 
set V = { 1 , . . . ,n} of nodes (airports, computers, post offices, depots, ...) 
goods must be transported between possibly every pair of nodes. Direct 
connections between every pair of nodes would result in n{n — 1) linkages 
which is impractically high and economically non-profitable. Consider, for 
instance, an airline that serves several airports worldwide. Offering non­
stop flights between every pair of airports would require a huge amount of 
planes and crews and many empty seats on board could be observed for 
many connections. In such settings, it turns out to be reasonable to install 
one or more so-called hub locations where direct links are then available 
to hub nodes as indicated in figure 1 where nodes 3, 6, and 9 are assumed 
to be hubs. Transporting goods from, say, node 1 to node 11, can then be 
done via hubs 3 and 6. 

Roughly speaking, the network design problem at hand can be couched 
as follows: Given a graph with node set V and edge set £̂  = V x V, select 
one or more nodes from V to become hub nodes and select some edges from 
E to become transportation links. For each pair of nodes (i, j ) G V x V we 
have a quantity Qij G J?>o that is to be transported from node i to node 
j . Established models assume that the unit cost of transportation using an 
edge e is Ce G JR>O and that, if e connects two hub nodes, a discount can be 
gained such that the unit cost of transportation using edge e is aCe G R>o 
with 0 < a < 1. We will question these cost assumptions in section 3 and 
discuss alternatives. Note that the costs may be asymmetric, i.e. Cij = Cji 
may not be true. 

For the hub & spoke network structure one can wish to have specific 
characteristics that define the design problem to be solved. Some usual and 
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4 

Figure 1: An Illustration of a Huh & Spoke System 

basic features are the following: 

• What determines the number of hubs? 

— Hub location problems with fixed hub costs: Installing a hub at 
node h incurs a fixed cost fh € il>o. The number of hubs is a 
result of the planning process. 

— p-Hub median problems: The number p of hubs is predefined. 
Fixed hub costs are usually assumed to be the same for all nodes 
so that they can be ignored for the purpose of optimization. 

• How are the non-hub nodes connected? 

— Single allocation: Each non-hub node is allocated to a unique 
hub. In a single allocation network, node 4 (figure 1) would not 
be allowed to have a direct Unk to two hubs. 

— Multiple allocation: Non-hub nodes (like node 4 in figure 1) may 
be connected to several hubs. 

— Direct services: Non-hub nodes may have a direct connection 
like nodes 10 and 11 in figure 1. 

Throughout this paper, we assume that the set of hubs is fully meshed, 
i.e. the subgraph induced by the hub nodes is complete, and that the ob­
jective for designing the network is to minimize the sum of relevant costs. 
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Mathematically, typical hub & spoke network design problems can be stated 
as follows (see Campbell, 1994b, for several models in this area): 

For the single allocation case without direct services, define a binary 
decision variable yih which is equal to one, if and only if node h is the hub 
that node i is allocated to, and zero, otherwise. A value yhh = 1 indicates 
that node ft is a hub. Additionally, a real-valued variable Xijhk is used to 
model the fraction of flow that is routed from node i to node j via hubs h 
and k in that order. 

M i n F i ( x , y ) = Z fhVhh (1) 
h=i 

n n n n 
+ I ] S ]C Yli^^h-^ OiChk -^ Ckj)qijXijhk 

1=1 j = l h=l k=l 

S.t. 

Vih < Vhh 

/ i = l 
n n 

/ l = l fc=l 
n 

22, ^^3^^ - 2/*̂  

i,h = 1,... ,n 

i = 1,. . . ,n 

i,3 = l,...,n 

i,j,h = 1, . . . , n 

i,j,fc = l , . . . , n 

(2) 

(3) 

(4) 

(5) 

(6) 

fc=l 
n 

/ i = i 

Xijhk>0 i,j,/i,A; = l , . . . , n (7) 

2/i/iG{0,l} i,/i = l , . . . , n (8) 

The objective (1) minimizes the sum of fixed costs for installing the hubs 
plus transportation costs. Due to (2), a non-hub node i can only be linked 
to a hub ft, if node ft is indeed a hub. (3) makes sure that every node is 
linked to exactly one hub. Because of (4), all quantities are shipped. And 
because of (5) and (6) a path from node i to node j via nodes ft and fc, 
respectively, can only be used, if ft and k are hub nodes. It is noteworthy to 
say that it is a common (e.g., if it is assumed that costs fulfill Cij -\-Cjk > Cik) 
that while moving from a node i to a node j at most two other (hub) nodes 
are passed in-between. (7) and (8) define the decision variables. Note that 
there exists an optimal solution with x being integral. 
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By adding the constraint 
n 

and assuming the special case fh = 0 for all /i, we would get a model for 
the p-hub median problem. 

For representing the multiple allocation case, a one-index binary vari­
able yh is sufficient. The variable yh is one, if node /i is a hub, and zero, 
otherwise. 

MinF2(x ,y )= E hVh (9) 
h=l 

n n n n 
+ E E E ^{Cih-\-OiChk-\-Ckj)qijXijhk 

i , j = l , . . . , n (10) 

i,j,ft = l , . . . , n (11) 

ij,h,k = l , . . . , n ( 1 2 ) 

^ = l , . . . , n (13) 

It should be sufficient to explain (11). It makes sure that a flow from node 
i to node j can pass a node h only if /i is a hub node. In this case either i 
or j (or both) would be linked to ft. 

By adding the constraint 
n 

^yh=p (14) 
h=i 

and assuming the special case fh = 0 for all ft, we would get a model for 
the p-hub median problem. 

If direct services are allowed, an additional real-valued variable a;Ĵ , for 
the fraction of flow from node i to node j leads to the following model: 

MinF3(x ' ,x ,y )= t hyh (15) 
n n n n 

+ Z) Z) Z) Z) (Ci/i + ^^hk + Ckj)qijXijhk 
i = l j = l / i = l f c = l 
n n 

"I" Z-̂  2-^ ^ijQijXij 

s.t. 
n n 

5ZX]̂ *j'̂ ^ 
/ i = l k=l 

n 

2 ^ *̂j/ifc + 
k=l h 

Xijhk > 0 

2/ / i€{0, l} 

= 1 

n 

E 
= 1,^^/1 

Xijkh <yh 
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S.t. 
n n 

^ij-^YlY1^^3hk = l i,j = l , . . . ,n (16) 
h=l k=l 

n n 

/ , Xjjhk + y] Xijkh<yh i, j , / i = l , . . . , n (17) 

fc=l fc=l,fc^/l 

x'ij>0 i , j = l , . . . , n (18) 

XijTiA: > 0 2, j , ft, A: = 1 , . . . , n (19) 

2/ / ie{0, l} ft = l , . . . , n (20) 

Here, the objective function (15) takes into account the costs for direct 
services as well. Due to (16), all quantities must be shipped where some of 
them may be shipped directly. 

And again, by adding the constraint (14) and assuming the special case 
fh = 0 for all ft, we would get a model for the ]?-hub median problem. 

The seminal work of O'Kelly (1986,1987) has launched a series of follow-
up publications. To get an overview of the work that has been done, we refer 
to Bryan and O'Kelly (1999), Campbell (1994a), Campbell et al. (2002), 
Canovas et al. (2004), Klincewicz (1998), Mayer (2001), O'Kelly and Miller 
(1994) and Wagner (2005). Note that the models presented here are not 
intended to define the most efficient model formulations for the problems 
described. The models should just describe the problems formally and 
should show what almost — see section 2 — all authors assume. Publi­
cations where efiicient model formulations are discussed are, e.g., Canovas 
et al. (2005), Ernst et al. (2002), Ernst and Krishnamoorthy (1999), Kara 
and Tansel (2000), Skorin-Kapov et al. (1996), and Wagner (2003) just to 
mention a few. 

In what follows, we will concentrate on the modeling of the transporta­
tion costs in the presence of economies of scale. In section 2 we will review 
the (surprisingly few) work that has been devoted to economies of scale 
in the context of hub & spoke network design. Eventually, in section 3 
we will present and discuss our point of view on this matter. Section 4 
will illustrate the new models from section 3 by means of a few numerical 
examples. A short conclusion will summarize the work in the final section. 

2 Existing Approaches to Represent Economies of Scale 

Surprisingly enough, although the economies of scale phenomenon is one 
of the main motivations for installing hub Sz spoke systems, the way costs 
are modeled has not really been questioned by many authors in this area. 
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At least some authors have noted that applying a discount factor a to 
the costs on arcs between hubs while disregarding the flow on these arcs 
contradicts the motivation of this discount factor. Consequently, Podnar 
et al. (2002) introduced flow tresholds that must be reached in order to 
gain the discount a. Campbell et al. (2004a, 2004b) state that "...the 
basic assumption in hub median models that flow costs are discounted on 
hub arcs to reflect high volumes leads to a possible mismatch between the 
abstracted model and the underlying motivations of the model". So, they 
consider models where so-called hub arcs, i.e. arcs that link two hubs and 
on which costs being discounted by a factor a, are to be selected explicitly 
which means that the cost for a flow between two hubs may or may not be 
discounted by a factor a depending on the selection. The total number of 
such hub arcs to be chosen is prespecifled in their models, because otherwise 
every arc that links two hubs would be selected as a hub arc. 

Three notable exceptions that address economies of scale are Bryan 
(1998), O'Kelly and Bryan (1998) and Klincewicz (2002). They argue — 
and we agree — that "By simplifying interhub travel costs and assuming 
that these costs are independent of flows, the current model not only mis­
calculates the total network cost, but also erroneously selects optimal hub 
locations and allocations". 

As a consequence, O'Kelly and Bryan (1998) suggest to replace the 
interhub cost expression 

for hubs h and k in the objective function(s) by a concave function 

/ A A \ ^ \ 
J2 Z) Qi'j'^i'j'hk 

( 
n n \ 

i=l i=l I I E E Qi'3' I I 
(^hkQij^ijhk 

where the parameters 1 > ^ > 0 and /? > 0 are to be specified in advance. 
This function is monotonically increasing with the flow across the link be­
tween node h and node k. It can reasonably be used to model economies 
of scale: the marginal cost per unit is decreasing and the average cost per 
unit is decreasing as well. The latter property is what is called economies 
of scale. 
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Interhub Cost 

Interhub Flow 

Figure 2: Interhub Cost Structure due to O^Kelly and Bryan (1998) 

As illustrated in figure 2, the non-linear function 

' fL, 1^ Qi'j'Xi'j'hk \ \ 
1-0 

i ' = i j ' = i 

\ \ t ' = i j ' = i / / 

Qij^ijhk 

can be approximated by a piecewise linear function in such a way that the 
lower envelope of this piecewise linear function approximates the function 
from above. This is exactly what Bryan (1998), O'Kelly and Bryan (1998) 
and Klincewicz (2002) do. Each piece r of these o linear pieces can be 
specified by two parameters: the intercept t̂ ^ > 0 and the slope 5̂ *̂  > 0. 
This allows to provide a linear mixed-integer formulation where the real-
valued decision variable frhk is the total flow between hubs h and k to 
which the linear piece r is applied and the binary variable Zrhk indicates 
whether or not the piece r is applied at all. For the sake of brevity, we will 
provide here a model for the multiple allocation p-hub median problem 
without direct services. It should be easy for the reader to write down 
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other problem variants in a similar fashion. 

n n n n 

MinF4(f ,x ,y ,z) = E E E T,{^ih +Ckj)qijXijhk (21) 
t= l j = i h=l k=l 

+ 1 : 1 : 1 : Chk{t!;t^Zrhk + s!;!^frhk) 
r = l / i = l A:=l 

S.t. 
o n n 

X^/r/iA: = Xm^»:^'^*J^^ /i,fc = l , . . . , n (22) 

n n -

frhk < S 53 QiJ^rhk I T J 1 "' *" (23) 
^_j ^._j Ai, AC — i , . . . , n 

n n 

X)X1̂ *J''**̂  = ^ ^,j = l , . . . ,n (24) 
n n 

22 ^^ohk + 2Z *̂̂**̂^ - ^^ 2, J, /i = 1,..., n (25) 

n 

X!2"'=P (26) 

/r.fc>0 I T ^ ' V " (27) 

Xtj/iA; > 0 i, j , ft, fc = 1 , . . . , n (28) 

y / i e { 0 , l } /i = l , . . . , n (29) 

r = l , . . . , o ; 

ft, fe = 1, . . . ,71 
^rhfce{0,l} r 1, o; ^^^^ 

The objective function (21) measures interhub traffic by means of the cost 
approximation described above. The total flow between two hubs is rep­
resented by / as well as by x. (22) links these two decision variables in 
the correct manner. (23) guarantees that the flag to indicate whether or 
not a certain piece of the piecewise linear approximation is used is properly 
set. Note that due to the minimization objective, the lower envelope of the 
piecewise linear approximation is indeed used. 

Bryan (1998) extends this model for economies of scale on all connec­
tions, not only the interhub ones. The technique with which this is done is 
the same piecewise linear approximation that is described above. 
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3 Alternative Model Formulations 

Prom a cost accounting point of view, the model for economies of scale 
described in the previous section is hard to motivate. If economies of scale 
are due to quantity discounts, then we face a piecewise linear, monotone, 
quasiconcave cost function. We refer to Stadtler (2004) for a discussion 
of modeling quantity discounts. In a hub & spoke network design setting, 
however, economies of scale due to quantity discounts may appear only if 
the transportation is done by a third party. We will not discuss this case 
here. 

Consequently we will try to derive an alternative model and reveal other 
sources for economies of scale. For doing this, let us consider two nodes 
i and h. These nodes can be hubs or not. And indeed we will see that 
economies of scale occur not only on interhub links but on all links. In 
general, if we provide a service from node i to node h, i.e. we have a 
positive flow from i to h, we face a (flow independent) fixed cost q^ € i?>o 
and a unit (handling) cost cj'̂  € JR>O. If fih is the flow between i and h 
then 

c{h-^cVJih, if fih >0 

0, otherwise 

is the total cost for the service. Imagine, for example, the airline situation 
for passenger transport. If there is a flight from airport i to airport /i, a 
(large) fixed cost cf̂  for using the plane, employing the cabin crew etc. is 
inciurred. In addition to that, a (relatively small) unit handling cost c^f^ 
per passenger is inciurred (mainly for serving an additional meal and a few 
drinks on board). Note that this simple cost model describes economies of 
scale already: The unit total cost is 

f^ + c^H iifih>0 
Jih 

0, otherwise 

which means that the unit total cost decreases if the flow increases. Note 
that such a model, a model with fixed costs on active links, has already 
been provided by Campbell (1994b) who did not mention the economies 
of scale aspect. Another work with fixed costs on active arcs is the one 
by Garfinkel et al. (1996) which is confined to a very special situation (no 
handling costs, two hubs), but again, economies of scale have not been 
discussed. Gavish (1992) considers fixed costs on links for a computer 
network design problem. 
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It is important to note that flow from a node i to a node j may be routed 
through several — possibly more than two — other hub nodes to save fixed 
costs. We will just provide a model formulation for the multiple allocation 
p-hub median problem with direct services where the decision variable fij 
denotes the direct flow between nodes i and j and the binary decision 
variable Zij indicates whether or not there is a positive flow between nodes 
i and j . The variable Xijhk denotes the fraction of flow that originates from 
i and is sent to node j using the link between h and k: 

Min F5(f,X,y,z) = £ £ {c{^Zij + cV./,,) (31) 

s.t. 
n 

^Xijik = l z , j = l , . . . , n (32) 

A:=l 

fc=l,fc^/i fc=l,fc^/i 

22 ^''3^'' ^ ^ 
/ l=l 

n 

/ , Xijhk < Uh 
fc=l 

n 

22 ^^Okh < Uh 
k=l 

n 

^yh=p 
h=l 

fii = 

fij< 

n n 

'- 2Z 5w ^hk^hkij 
/ i = l A:=l 

n n 

; Yl H if^'^^a 
h=\ fc=i 

fij>0 
Xijhk 

Vh e 

Zij e 

>o 
{0,1} 
{0,1} 

ij,h= l , . . . , n 
yz ^ijkh = yz ^^jhk i\•' '' ' (̂ )̂ 

i,j = l , . . . , n 

ij,h = l , . . . , n 

ij,h = l , . . . , n 

(34) 

(35) 

(36) 

(37) 

i , j = l , . . . , n (38) 

i , j = l , . . . , n (39) 

z,j = l , . . . , n (40) 

i,j,/i,fc = l , . . . , n ( 4 1 ) 

/i = l , . . . , n (42) 

i , j = l , . . . , n (43) 

The objective function (31) is defined as described above. (32) and (33) are 
flow constraints. For each pair of nodes i and j the complete quantity must 



Hub & Spoke Network Design 303 

leave node i and reach node j . Each flow that reaches a node in-between 
must leave that node completely. (34) prevents short cycles. (35) and (36) 
make sure that only hubs nodes can be used in-between to go from a node 
i to a node j , (38) calculates the total flow over a link from node i to 
node j . Of course, because of this equality constraint, the variable / could 
be completely eliminated from the model by substitution. (39) makes sure 
that a positive flow on a link between i and j is correctly indicated. It is 
noteworthy to mention that there always exists an optimum solution with 
all x-variables being integer valued. 

Note that if we replace ^h^kQhk by some number Lij in (39), we 
could easily model a constrained capacity on that link. Then, an optimum 
solution with integral x-values may not exist. 

Should direct services not be allowed, the constraint 

Xijij <yi-\-yj z, j = 1 , . . . , n 

would forbid such service. 
The fixed cost c{j is charged if the directed link between node i and 

node j is active. Using that link in opposite direction incurs an additional 
fixed cost Cj^, If we consider two nodes i and j where i < j and if we would 

like to model a situation where a fixed cost c{j is charged no matter in what 
direction the link between these two nodes is used, then we could simply 
add the constraint 

Zij — Zji 
i = 1,. . . , n — 1 

j = i + l , . . . , n 

and set cj^ = 0 for all i < j . Of course, we could eliminate almost half of 
the 2;-variables instead to keep only those variables Zij with i < j which 
requires a slight modification of the model formulation especially in (31) 
and (39). 

There may be situations where the just presented model is still too 
simple. Imagine, for instance, a trucking company. If they provide a trans­
portation service from town i to town ft, they may have a fixed cost c{j, they 
may have a unit handling cost ĉ ,̂ but they may also figure out that the 
number of trucks to serve that link depends on the flow, because each truck 
has a limited capacity Q, where each truck incurs a fixed cost cjj G i?>o as 
well. If fih is the flow on that connection, the total cost adds to 

<4+4 fi ih 

Q 
+ c\hhh, if fih > 0 

0, otherwise 
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and figure 3 illustrates the situation. Similar situations have been men­
tioned by Ebner (1997) and Wlcek (1998). 

Cost 

4 

q Cih 

c j 
oil 

Flow 

Figure 3: Cost Structure with Fixed Costs 

The corresponding model formulation with an integer-valued decision 
variable tih for the number of vehicles needed looks as follows: 

Min F6(f, t ,X,y, z) = E £ {c{^Zij + c\^Uj + c\^fij) (44) 
t = i j = i 

s.t. 
n 

y ^ Xijik = 1 
fc=i 

k=l,k^h k=l,k^h 

/ _, ^ijhi 
/ i = l 

n 

X ^ ^ijhk 
k=l 

n 

/^ ^ijkh 

= 0 

<yh 

<yh 

i , j = l , . . . , n (45) 

ij,h = l , . . . , n 

fc=i 

ij = l , . . . , n 

hj^h = l , . . . , n 

hjih = l , . . . , n 

(46) 

(47) 

(48) 

(49) 
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J^yh = P (50) 

n n 

fij = Y1Y1 ^hkXhkij i, J = 1, . . . , n (51) 
/ i = l A;=l 

n n 

fij ^^Yl ^^^^^0 i, j = 1,..., n (52) 

fij<Q'tij i , j = l , . . . , n (53) 

/ i i > 0 i , j = l , . . . , n (54) 

UJENO i , j = l , . . . , n (55) 

Xij/iA: > 0 i, j , ft, A; = 1 , . . . , n (56) 

2 / / ie{0 , l } h = l , . . . , n (57) 

;2:ii€{0,l} z,i = l , . . . , n (58) 

The objective function (44) has already been defined above. The main point 
that is new here is restriction (53). Because of this constraint, the capacity 
offered on a certain Unk must be sufficient to transport the calculated flow 
on that link. Because of the minimization objective, the oflFered capacity 
will be as small as possible. It should be remarked that an optimum solution 
with all x-variables being integral may not exist. 

Additional constraints of the form 

Uj < Tij i , j = l , . . . , n 

could be used to model a restricted number of Tij vehicles on a particular 
link. In a similar fashion 

n n 

could constrain the total number of vehicles to a limit T in the whole 
network. 

This model can be adapted to even more general situations. Imagine 
situations where the type of transportation vehicle can also be decided. For 
instance, if one can use large trucks instead of small ones, trains instead 
of trucks, planes instead of trucks or trains and so on. Or imagine the 
telecommunication industry where the bandwidth of connected nodes can 
be decided upon. Let us assume that each link has a set of M so-called 
modes in which that link can be established. For a particular mode m, let 
Q^ be the capacity of a vehicle that corresponds to that mode and let q ^ , 
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c*^ and cj'^ be the cost coefficients for this mode for a given link (i^h). Note 
that several modes may cause economies of scale if cf;^/Q^ > 4]^ / Q ^ 
for modes m and m'. But this is not a sufficient criterion and depends 
especially on the values of c j ^ and cV^. The adapted decision variables 
zjjj, tj^ and /JJJ have a straightforward interpretation: 

MinF7(f , t ,x ,y ,z) = 
(59) 

t= l j=l \ \ m = l / / 

S.t 
n 

k=l 

/ ^ ^ijkh — / ^ ^ijhk 
k=\,k^h k=\,ki^h 

/ ^ ^ijhi 
/ i = l 

n 

/ , Xijhk 
k=l 

n 

22, ̂ ^i^^ 
fe=l 

n 

Y.y^ = 
h=\ 

M 

Y.W-
m = l 

M 

= 0 

<2/ / i 

< y / i 

p 

n n 

= 2J X / ̂ h,kXhkij 
/ i = l fc=l 

n n 

E/y^EE^/^^^y 
m = l 

n 

A i = l i k = l 

n 

/̂ ÊÊ ''*̂ ^ 
/ i = l f c = l 

/^>o 

^,j = l , . . 

M i 

hj,h= 1, 

^ j = l , . . 

^,j = l , . . 

m = 1 , . . . 

^,j = 1, . . 

m = 1 , . . . 

m = 1 , . . . 

. , n 

. . . , n 

. , n 

. . . , n 

. . . , n 

. , n 

. , n 

, M 

. , n 

. , n 

, M 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

m 

(69) 

(70) 
ij = l , . . . , n 



m = 1, . . 

hj,h,k= 

/i = l , . . . 

hj = h' 

m = 1, . . 

. , M 

. . , n 

= 1 , . . . 

, ,n 

. . , n 

. . , n 

(71) 

,n(72) 

(73) 

(74) 

(75) 
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Xijhk > 0 

y/. G {0,1} 
% e {0,1} 

z^e{o,i} 

Again, the objective function (59) has already been explained above. The 
interesting aspect here is (66). One should note that due to this formu­
lation, the mode for a link between i and h need not be unique. Indeed, 
one could use a mix of different modes. If a certain mode m should be not 
available on a link from node i to node j , then one can simply set z^ = 0 
so that due to (68) this mode will not be active on that link. Eventu­
ally, one should note that an optimum solution with all x-variables being 
integer-valued may not exist. 

An extended model where at most one mode per link can be chosen is 
easy to formulate by adding: 

M 

Y,z^<l i,j = l,...,n 
m = l 

4 Numerical Examples 

To illustrate the above models, we provide here the optimum results for 
three random examples computed with the commercial mathematical pro­
gramming software package AMPL/CPLEX. Every example consists of 
n = 7 nodes. The number of hubs is always p = 3. The quantities Qij 
to be transported in all examples are given by table 1, and the fixed cost 
coefficients c{j are provided in table 2. 

Example 1 corresponds to the model formulation (31)-(43). In addition 
to the parameters already introduced, the variable cost coefficients c^j as 
defined in table 3 are used. 

Figure 4 shows an optimum solution for example 1 (what is shown are 
the positive flows fij). The optimum objective function value is 2403. It 
is remarkable to note that in this solution some quantities must indeed be 
transported via more than two hubs. The five units to be shipped from 
node i = 5 to node j = 2, for example, flow through hubs 1, 3, and 4 in 
that order. 
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Table 1: Transportation Quantities qij for the Examples 

la 
i 
2 

3 

4 

5 

6 

7 

1 

8 

4 

5 

8 

5 

8 

7 

2 

3 

1 

4 

8 

5 

2 

3 

3 

7 

5 

2 

1 

4 

8 

9 

4 

7 

5 

4 

8 

2 

1 

3 

5 

4 

6 

9 

8 

5 

6 

2 

6 

3 

5 

4 

7 

8 

1 

2 

7 

4 

7 

8 

5 

1 

2 

3 

Table 2: Fixed Cost Coefficients c{j for the Examples 

1 
2 

3 

4 

5 

6 

7 

1 

60 

80 

90 

200 

150 

140 

160 

2 

176 

184 

132 

154 

156 

189 

147 

3 

50 

40 

46 

47 

48 

168 

137 

4 

175 

120 

149 

138 

168 

147 

159 

5 

130 

190 

168 

147 

123 

150 

130 

6 

134 

60 

57 

180 

147 

153 

164 

7 

70 

64 

59 

80 

190 

130 

180 

Table 3: Variable Cost Coefficients c\j for the Examples 

1 
2 

3 

4 

5 

6 

7 

1 

7 

2 

7 

2 

2 

7 

3 

2 

2 

3 

4 

1 

5 

5 

3 

3 

3 

3 

5 

3 

9 

5 

1 

4 

8 

6 

1 

5 

5 

3 

5 

5 

1 

5 

3 

7 

8 

1 

9 

6 

2 

8 

9 

4 

4 

1 

8 

7 

4 

2 

9 

4 

2 

2 

7 
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Figure 4-' An Optimum Solution for Example 1 
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Example 2 corresponds to the model formulation (44)-(58). We use 
Q = 10. The cost coeflScients c(j and c^j axe the same as in example 1. The 
cost coefficients cj. can be found in table 4. 

Table 4- Cost Coefficients c\j for the Examples 

(}••• 

1 

2 

3 

4 

5 

6 

7 

1 

45 

42 

38 

10 

75 

50 

80 

2 

49 

62 

15 

20 

15 

60 

60 

3 

35 

58 

42 

30 

46 

10 

20 

4 

18 

46 

58 

57 

35 

80 

25 

5 

36 

35 

64 

18 

26 

66 

16 

6 

14 

58 

75 

45 

14 

55 

34 

7 

90 

75 

31 

46 

70 

40 

71 

Figure 5 shows an optimum solution for example 2 (again, the positive 
flows /ij are shown). The optimum objective function value is 4327. Note 
that just by introducing a fixed cost c*̂  per vehicle to be used on a link, 
the solution looks quite different than the one for example 1. 

Example 3 corresponds to the model formulation (59)-(75). M = 2 
modes are used with Q^ — 10 and Q^ = 20. The fixed cost coefficients c{^ 
are defined in table 2. The mode dependent fixed cost coefficients c{^^ are 
provided in table 5. For mode m = 1 we use the cost coefficients c^? and 
(^^^ like they were defined in tables 3 and 4, respectively. For mode m = 2 
the values of the parameters &^ and c*̂  are specified in tables 6 and 7, 
respectively. 

Figure 6 shows an optimum solution for example 3 (here, the fiows 
fijiffj ^̂ ® shown). The optimum objective function value is 3736. Note 
again that just by introducing new aspects (a second mode) and keeping 
all other parameters as they were before in example 2, the solution looks 
completely different. It should be noted in example 3 that one link indeed 
uses a mix of modes (see the link from node 2 to node 1). Some nodes (see, 
e.g., node 6) have different ingoing and outgoing modes. In practice this 
could mean, for instance, that small trucks are used to go to node 6 and 
large trucks are required to come from node 6. As a consequence one would 
face a number of empty moves of the vehicles. Additional constraints and 
terms in the objective function that take into account such empty moves 
may become relevant in some applications. This example also reveals the 
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Figure 5: An Optimum Solution for Example 2 

Table 5: Mode Dependent Fixed Cost Coefficients c{^ /c{^ for the Examples 

Hi IHj 
1 

2 

3 

4 

5 

6 

7 

1 

3/9 

6/6 

6/3 

3/3 

3/1 

4/5 

8/2 

2 

5/5 

4/2 

8/1 

5/2 

5/4 

8/7 

5/4 

3 

4/7 

7/3 

5/4 

7/4 

7/7 

9/8 

4/5 

4 

8/8 

8/3 

5/5 

9/7 

8/8 

3/4 

6/7 

5 

3/4 

9/4 

3/6 

3/9 

9/5 

4/2 

2/8 

6 

1/6 

6/8 

6/8 

5/9 

5/4 

4/1 

1/9 

7 

5/5 

4/7 

4/6 

4/5 

2/3 

7/3 

3/3 
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Table 6: Variable Cost Coefficients c^f for the Examples 

1 

2 

3 

4 

5 

6 

7 

1 

8 

2 

5 

2 

5 

5 

1 

2 

7 

3 

3 

6 

6 

6 

4 

3 

5 

2 

5 

3 

3 

3 

5 

4 

6 

2 

1 

1 

2 

2 

6 

5 

1 

7 

3 

5 

1 

4 

3 

6 

3 

9 

1 

6 

4 

5 

2 

7 

2 

6 

7 

4 

7 

7 

1 

To6/e 7; Cosi Coefficients c" /or i/ie Examples 

1 

2 

3 

4 

5 

6 

7 

1 

90 

50 

70 

18 

80 

99 

90 

2 

60 

70 

22 

33 

17 

69 

100 

3 

50 

75 

60 

53 

66 

15 

35 

4 

30 

60 

90 

67 

55 

140 

30 

5 

40 

55 

100 

19 

50 

77 

30 

6 

20 

69 

133 

80 

27 

99 

60 

7 

100 

140 

50 

70 

110 

50 

80 
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phenomenon of split quantities. It is a little hard to see in figure 6, but if 
we would examine in more detail which quantities qij go what what ways — 
which can easily be done by inspecting the values of the decision variables 
X — it would turn out in this example that the five units to be shipped 
from node i = 2 to node j = 3 are split: Four units go directly from node 2 
to node 3, but one unit goes from node 2 to node 1 and from there it goes 
to node 3. 

Figure 6: An Optimum Solution for Example 3 

5 Conclusion 

This paper is devoted to the modeling of economies of scale within hub 
& spoke network design problems. First we have shown how economies of 
scale are modeled in traditional hub & spoke network design models and it 
turned out that all flows have a constant unit cost. Interhub connections 
allow to reduce the unit cost of flow by a factor a. Hence, all traditional 
models do not represent flow dependent unit costs and therefore do not 
reflect the issue of economies of scale in a correct manner. This is rather 
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surprising, because economies of scale axe a key driving force for installing 
hub & spoke systems. Given that (almost) all researchers up to today 
have used this (incorrect) way of modeling economies of scale, it is time to 
question this, because obviously wrong models lead to wrong decisions no 
matter how good the procedures to solve these models are. 

It seems that only very few authors, namely O'Kelly and Bryan (1998) 
and Klincewicz (2002), have noticed this serious defect before. To be fair, 
Podnar et al. (2002) and Campbell et al. (2004a, 2004b) also question 
traditional models and discuss approaches where the discount factor a is 
applied only under certain, flow dependent circumstances, but they still rely 
on that factor a which is not a convincing approach for modeling economies 
of scale. O'Kelly and Bryan (1998) and Klincewicz (2002) have suggested 
a non-linear, concave cost function to model economies of scale between 
interhub connections in a much more appropriate way. Using a piecewise 
linear approximation, these authors provide a linear mixed-integer model 
formulation (and solution procedures not discussed here) where the unit 
cost is flow dependent. However, the motivation for using this non-linear, 
concave cost function for modeling economies of scale is somewhat weak 
in our opinion, because there is no cost accounting argument that justifies 
such a cost function. 

Given this, we contribute the following: First of all, we allow that 
economies of scale do not only occur on interhub connections only, but they 
can occur on all kinds of connections, a point that has been made by Bryan 
(1998) already before. So, we propose models to reflect this. Furthermore, 
we give an economic explanation for the occurrence of economies of scale 
which allows us to derive a cost function that is less artificial and can be 
explained better than the one proposed in the literature. The sources for 
economies of scale mentioned in this paper are (i) quantity discounts (if a 
third party is employed), (ii) fixed costs, and (iii) multiple modes. Models 
and examples are provided in this paper to illustrate the latter two aspects. 

Future work should be dedicated to develop and test exact and heuris­
tic solution procedures for these models. Also, an emphasis should be on 
investigating real-world applications to explain by cost accounting argu­
ments which costs really matter and how these costs are calculated to get 
much more reliable solutions. 
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Abstract 
In this paper we consider one-buyer, one-seller, finite horizon, 

multi-period inventory models in which the economic order quan­
tity is integrated with the economic production quantity (EOQ-EPQ 
in short). We introduce the Stackelberg equilibrium framework in 
which the objective is to maximize the vendor's total benefit subject 
to the minimum total cost that the buyer is willing to incur. Some ex­
istence results, optimality conditions and the optimal replenishment 
policy under the Stackelberg equilibrium concept are obtained and a 
numerical algorithm is presented to find the optimal replenishment 
policy in practice. 

Keywords. Inventory models, Stackelberg equilibrium, economic or­
der quantity-economic production quantity. 

1 Introduction 

It is important to reduce the logistical cost including the transportation/ 
distribution cost and warehousing cost in a modern competitive enterprise 
given the cycle of market/product lifetime and the challenge of shortening 
lead-times. Supply chain management (SCM in short) is a key to solve 
the problems above. In the literature many scholars [6, 10-11] focus on 
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of Taiwan R.O.C. 
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the joint total costs of both parties, the buyer's and the seller's. But 
that cannot provide the main idea for a strategy in SCM. The concept 
of joint total costs only reduces the cost of a single party, the buyer's or 
the seller's, instead of integrating both parties. Therefore we propose an 
SCM inventory model with market mechanisms to fit the goal of SCM, 
"benefit-sharing with contracts". 

Stackelberg games play an important role in economics, design of me­
chanical structures, transportation, resource allocation, decomposition re­
formulations of large-scale mathematical programming, minimax mathe­
matical programming and decision science. This problem is a special type 
of bilevel programming problems (BP in short) that have been introduced 
in the optimization area in the seventies (see [2, 4-5, 8]). Nash equilibria for 
static games make consistent predictions of the behavior of all players; that 
is, no player has an incentive to play differently. However sometimes one of 
the players has the ability to enforce his strategy on the other players. In 
1934 von Stackelberg first proposed the solution concept of a Stackelberg 
equilibrium for dynamic games. In the framework of a Stackelberg game 
there is the leader-level and follower-level party. Each has his own decision 
rule. The leader declares his strategy first and enforces it on the follower. 
It is a hierarchical equilibrium solution concept. The framework can be 
described as follows 

(BP) ^^^ •''̂ '̂̂ ^ 
s.t. y e Sol{x),x € X 

where the decision variable on the leader-level is x € X. The decision 
variable on the lower-level is y E Y, f : X x Y -^ R is the leader-level 
objective function, Sol : X —̂  2^ is a set-valued mapping such that for 
each X e X, Sol{x) denotes the solution/reaction set in the lower-level 
problem for a given x. It is characterized by 

Sol{x) = {y : g{x, y) < g{x, z)W ze n{x)} 

where g : X xY -^Ris the lower-level objective function and VI: X -^ 2^ 
is a constraint mapping. That is, the lower-level problem for a given x can 
be formulated as 

min g{x, y) 

s.t. y G fi(x). 

We observe that if the lower-level objective function is differentiable, then 
the lower-level problem can be characterized by a variational inequality 
problem, i.e., 

Sol{x) = {2/* € n(x) : {Vyg{x, y*), y-y*)>0 for all y G fi(x)} . (1) 
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In [8] Liou and Yao establish some existence results for (BP) in a reflexive 
Banach space setting which are based on Sol{x) as given by (1) for each x. 

2 The Model and Preliminaries 

The notation and the assumptions used here to develop the mathematical 
model are as follows: 

Notation Definition 
V Ordering cost, $/per unit 

CHB Holding cost for the buyer, $/per unit/per order/per year 
CSB Shortage cost for the buyer, $/per unit/per order/per year 

H Finite horizon in planning cycle 
n The number of distributions, #/per order 
q The amount of distribution, #/per order 

D The total demand during the finite horizon in a planning cycle 
P The total production during the finite horizon in a planning cycle 
ta The stopping time of production per order 
C The contract transaction cost, $/per unit 

Chv Holding cost for the vendor, $/per unit/per order/per year 
Cmy Production cost for the vendor, $/per unit 

Ct Transportation cost of inventory, $/per distribution/per order 
Cp Processing cost of inventory, $/per order 

a The ratio of transportation fee shared by the buyer, 0 < a < 1 
Si The ith reorder point, 0 < i < n, with so = 0 
U The ith replenishment/backlogged point, 1 < i < n 

Un The replenishment policy, that is, Un = {(*i,5i)iLi >9} 

For simplicity, the assumptions used here to develop the mathematical 
model are as follows: 

(i) The assumptions of EOQ/EPQ with a single product, one-vendor, 
one-buyer, full backordering and P > D, will be satisfied and multi-
order multi-distribution in a finite horizon if. 

(ii) The amount of distribution per order, g is a constant per distribution 
and the number of distributions per order n is an integer constant 
with {D mod nq)= 0. The stopping time of production of the vendor 
is corresponding to some backlogging point of the buyer. 

(iii) The backlogging has a delay in time when an order is placed, that is, 
there exists lead-times in each ordering. 
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(iv) Six types of cost functions are considered, including the ordering cost, 
holding cost, shortage cost, processing cost, transportation cost and 
contract transaction cost. They are continuous in time. Moreover, the 
transportation cost will be shared via the ratio a and the motivation 
of contract is that the holding cost are less than the shortage cost. 

Figure 1 shows the behavior of the continuous-time inventory system Isit) 
without contracts at time t. 

(1) The buyer's model 

Let {sk}^^o be a strictly increasing sequence with limfc-̂ oo Sk = ^^ 
and 5o = 0. Let the sequence {tk}^^i be strictly increasing with I{tk-\-) — 
I{^k) = q > 0 for all fc. We make an assumption that the number of 
procurements 1 < ^ during the finite horizon [0, H] is an integer value. 
Then Un = {{sk^tk)^^i ,q) € U{n) is called an admissible strategy where 
U{n) = <0 < ti < si < " • < tn < Sn = ^^^Q > 0 > is the set of admissi­
ble strategies for a given n. The inventory trajectory with SQ = 0 based on 
Figure 1 is described by 

^ ^ ^ = - § with / (5i_i+) = I{Si-^) = 0, 5i-i < t < 5i (i = 1, . . . ,n) , 

where lB{si-\-) = limhiolB{t -f /i), that is IB{-) is right-continuous. Then 
we have the inventory level at time t 

D ^^'^ 
lQ{t) = -^t^Y^q where N{t) = s u p { k : t k < t } . 

A : = l 

Hence we can obtain the related costs with respect to the total cost as 
follows: 

(i) Holding cost Hi: the amount of inventory carried during the part of 
the zth cycle, U <t < Si, multiplied by the unit holding cost in each 
procurement, given by 

• r iB{t)dt= Hi - ChB I lB{t) At = ^ ^ { S i - U)\ 

(ii) Shortage cost Bi: the amount of lost sales during the part of the ith 
cycle, Si_i < t < ti, multiplied by the unit backorder cost in each 
procurement, given by 
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The total cost of the buyer with a continuous poUcy u„ is given by 

J{n, u„) = J ((sfc, tfc)fe=i, q) 

(2) The vendor's model 

According to Figure 1, the inventory level at time t in each procurement 
can be characterized by 

^ta —i(l J if U-\ <t <ti {i> s-\-l) 
M < ) = i p 

where Iv{') is right-continuous with Iv{^^) = 0. Hence we can obtain 
the related holding cost Hv with respect to the total cost, the amount of 
inventory carried during the procurement cycle 0, ^^ multiplied by the 
unit holding cost in each procurement, given by 

Hv = Chv 
p s-l n - 1 

The total profit of the seller with an integer n is given by 

7r(n, Un) = n ((sfc, tk)k=i, q) r^. 
= VD - CmvD -\- ^[Cp-\-nv -^ {I - ct)nCt]. ^ ^ 

2A Contracts of Supply Chains 

Considering the strategy of supply chains, the inventory path during period 
p , ^^ in each procurement can be described by the following. 

Contracts of supply chains serve the purpose of shortening the time 
span of backlogging so that the seller has a higher service level with extra 
payments and the buyer reduces lost sales and gains the competition in 
the market with a pooling risk. We make a contract of supply chains that 
the supplier and buyer share the transportation fee at the ratio a with 
0 < a < 1. Under the effect of supply chains, the buyer can acquire the 
vendor's assurance on no lost sales with extra transaction costs. With the 
assumption of deterministic demand Z>, the cycle of distribution becomes a 
constant, denoted by T as shown in Figure 2, and hence we have nT = —^, 
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that is, T = ^ . Therefore, the total cost (2) can be obtained in the same 
process. 

J'{n,Un) =J'{n,q) 

where C is the unit transaction cost and 7ii is the holding cost per distri­
bution under the contracts of supply chains, that is. 

Hence we can obtain the related holding cost Tiv with respect to the total 

cost, the amount of inventory carried during the procurement cycle 0, ^^ 

multiplied by the unit holding cost in each procurement, given by 

Hv = Chv [^tl - TZl iTq - Er=/ iTq] 

The total profit of the seller is given by 

= VD-^CD- CmvD + ^ [Cp + Wv + (1 - a ) nCt], 

3 Main Results 

(5) 

In this section we will state and prove some existence results for a Stack-
elberg problem. Making use of the results, we derive the optimal replen­
ishment policy and present a numerical procedure. Let M be a nonempty 
subset of R^ and /i : M —> [—oo, oo]. We say that h is proper if h is not 
identically equal to +oo, or h is not identically equal to —oo. A real-valued 
function h : M ^^Ris called upper semicontinuous on M if for each x e M 
and for each sequence {xn} of M converging to x, 

h{x) >limsup h{xn)' 
n—•oo 

The graph of a mapping S is denoted by 

Gi{S) = {{x,y) ^ X xY : y G Six)}, 
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Let Z-i- be the collection of positive integers. According to the concept 
of a Stackelberg equilibrium, problem (SP) can be formulated as follows 

(SP) ^ ^ ^ (^ '^n) 
s.t. Un G Sol{n)^ n G Z+ 

where the decision variable of the seller is n G Z^., the decision variables of 
the buyer are Un = {{ski *fc)/J=i ? Q} G t/(n), TT is the seller's profit function, 
Sol : Z-|_ —> 2̂ "̂̂ ^ is a set-valued mapping such that for each n G Z-|_, 
Sol{n) is the solution/reaction set of the buyer's problem with a given n. 
This is formulated as 

min J{n,Un) . . 

s.t. Un G U{n) 

where J is the buyer's cost function. According to [5, Chapter 8], the 
problem is called the (mixed-) integer bilevel optimization problem. Even 
in continuous bilevel optimization the numerical algorithm is complicated 
and expensive, and so it is for the (mixed-) integer case. 

To prove the existence of a Stackelberg equilibrium for the problem, 
we begin with several properties in discrete convex analysis (see [10]). A 
partially ordered set Y (poset in short) is a set on which there is defined 
a binary relation < which is reflexive, antisymmetric and transitive. For 
any a, 6 G y , a V 6 = sup {a, 6} and a A 6 = inf {a, 6} denote the least 
upper bound and the greatest lower bound in a component-wise sense, 
respectively. If the least upper bound and the greatest lower bound of each 
pair belongs to y , then y is a lattice, that is, a lattice is defined as a 
poset (y, <) whose least upper bound and greatest lower bound are given 
by a V6 and aAb are in y . li Z CY contains the least upper bound and the 
greatest lower bound of each pair in Z, then Z is a sublattice of y . Like with 
convexity, the closure of a sublattice of R"̂  is also a sublattice. A nonempty 
compact sublattice of R*̂  has a greatest element and a least element. Let 
6 : X -^Rhe real-valued on a nonempty lattice X, 6 is discretely concave 
in X if the first-order diflFerence at x, denoted by AxO (x) = 6{x -{-1) — 
0{x), is monotone decreasing in x. The function 6 is called supermodular 
(submodular) in a: if 0 has increasing (decreasing) differences on X, that 
is, 

e{x\/x')-^e{xAx') > ( < ) e{x)-{-e{x') for anya:,a:' G X. 

Furthermore, a twice differentiable function 6 is supermodular (submodu­
lar) if and only if for all x G X, 

d^e{x) 
dxjdxk 

> {<) 0 ioi all j ^ k and Xj G Xj^Xk G X^. 
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We summarize some results about supermodularity (submodularity) in the 
following Proposition 1 (see [10]). 

Proposition 1. Let 6 : X -^Rhe real-valued on a nonempty lattice X. 
Let X = Xi X X-i be a partitioning of X. Assume 9 is supermodular and 
proper on X. For any x = (xf, X-i) £ X/i{9 (xi, •) is upper semicontinuous 
on X-i and X-i is a compact sublattice for each Xi G Xi, then the solution 
set 

s{xi) = aigmax{6{xi,X-i) : X-i € X-i} 

is nonempty compact and is a sublattice of X for each Xi £ Xi, 

Theorem 1. Let U = Un£Z+U{n) and TT : Ẑ _ x W —• R. Assume 
nq < D < oo. 

(a) TT is supermodular on Gr(Sol); 

(b) J is submodular and proper on Z-|_ x W and J (n, •) is lower semi-
continuous on U{n) with U{n) being a compact sublattice for each 

Then problem (SP) has a sublattice solution. 
Proof. Prom n^ < -D < oo we see that Z+ x U{n) is finite for each 

n. By Proposition 1 and the fact that J is proper, we have the follower's 
solution set 

Sol{n) = argmin{ J(n,Un) : Un G U{n)} for each n € Z_(. 

which is nonempty compact and a sublattice of X . By Proposition 1 again, 
the leader's problem 

sup {7r(n,iin) : {n,Un) € Gr(5o/)}, 
nGZ+ 

has a sublattice solution since GT{SOI) is finite. Conse­
quently, there exist (n*,ii*) G Z+ x U{n*) such that 7r(n*,tz*) = 
suPnGZ+ inf̂ r.G5oZ(n) {7r(n,Un)}, and the proof is complete. D 

By the concept of a Stackelberg equilibrium, we first analyze the 
follower's problem (6) for a given n. We find the continuous policy 
{(̂ ]fe»*ik)}fc=i ^^^ ^̂ ® follower as a best response to any decision n € Z_|_ 
made by the leader via the following necessary conditions: 

^J(^=Oand^^^^=Oyk = l,.-,n. 
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Based on the assumptions (i) and (ii) of supply-demand balance, we 
understand the continuous policy (the amount of distribution q for each 
distribution in every procurement cycle) is to fit the requirements from its 
previous reorder point 5^-1 to its next reorder point Sk for each period A:. 
Thus we have 

Therefore we have 

Si=''^'~'*-'e.nds:^,-sU = ^ , i = l,...,n. (7) 

Thus we want to solve for the replenishment point t^^. By dynamic pro­
gramming concepts and (7), minimizing the total cost J{n, Un) is equivalent 
to solving n subproblems, and for each i = 1, • • • ,n, the zth subproblem 
(Pi) is given by 

(Pi) .̂ mf ^̂^̂  fiU) = I [chB {s: - Uf + CsB {ti - sU)^] . (8) 

Subproblem (Pi) is a convex programming problem, and by the first-order 
necessary optimality conditions we have 

^ = -ChsD {s: - U) + CSBD {U - sU) = 0 

with f^ {s*i - 5t^i) = ^ , we have 
t = i 

. , . CsB (Hq\ ChB (Hq\ 
''-'' = Chs + CsB VD-J ^""^ *̂  - '^-' = ChB + CsB VD-J 

Substituting (9) into (8), we have 

f,^,. ^ ChBCSB{ChB+CsB)HW 
^^'' 2D [ChB+ CSB? 

Now we reformulate (2) as a function of n and q as follows: 

J((4.*fc)fc=i ,q) = VD + — [CpB + nzq" + anCtg] 
Tuq 

where 
_ChBCsB{ChB + CsB)H^ 

2D{ChB + CsBf 

(9) 
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Next we can find the solution q*{n) for the buyer as a response to any given 
n € Z+ by the vendor, satisfying: 

that is, 

Therefore we have 

dq 

2nqz T; (Cp + anCt) = 0. 

» = ( ^ <o^^y\ ao) 
Based on Figure 1 we can see that the stopping-production point tg^ 

the jth replenishment point tj, can be found by the assumption of supply-
demand balance that the amount of production in [0, tg] is equal to the 
amount of requirement in the whole horizon [0, H] 

P, , Hnq 
Jjts=riq^ts = -p-. 

Due to t: - sU = c h f f e ( ^ ) a^d ts = t;, we have 

that is, the stopping time of production during a cycle of procurement is 

Hence we obtain the optimal replenishment policy tx* = ((sjj, t^)'^^^, q*{n)) 
£ Sol{n) for a given n for the buyer's problem. 

Remark 1. Note that {slytl)'^^^ = O ( ; ^ ) in view of (9), q*{n) = 
O {-Tjs) in view of (10) and j{n) = O (n) according to (11) where Wn = 
0{vn) implies that {wn/vn) is bounded. Hence we see that q*{n) and 
(̂ fe'̂ fc)fc=i ^® monotone decreasing functions of n. We note that the as­
sumption (ii) for the stopping time of production j (n) must be satisfied, 
which limits the scope of some parameters varying. This shows that the 
leader has priority over the follower in strategy, that is, the leader's strategy 
affects the variations in the follower's strategy. 
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Thus we go to the vendor's problem and find the solution n* for the 
vendor who is anticipating the response by the follower. The total profit 
of the vendor is seen as the implicit function of n, i.e., 

7r(n,<) =n{{sl,tl)U,,q'{n)) 
= VD-CmvD+:^[Cp + nvin) + il-a)nCt]. ^ ' 

Since n € Z+, we take the first-order difference of TT with respect to n, 
denoted by 

An7r(n ,0= 7r(n + l , < ^ . i ) - 7 r ( n , 0 

+ ( l - a ) C p . i ) ( 5 . ^ - 5 ^ ) 

where n'y{n) = Chv [^n^ - % ( ^ ^ ) ] {q*{n)f. 
Moreover, the Stackelberg equilibrium of the vendor and the follower in 

SP can be characterized by the next theorem. 

Theorem 2. Let the coefficients (P, D, V, a, if, Chs^CsB, Chy, Cmy, 
Cp^Ct) be the cost structure of problem (SP). Let n be an extension of 
TT such that AnTf (n,tz*) \n=r = 0 for some r € R with u* G U{n) where 
An7f(n,i6*) |n=T meaus substituting n = r into the function AnTf (n,tx*). 
Let U = Un€Z+l^(^)- Suppose the cost structure of problem (SP) sup­
ports that AnTf (n,i6*) is monotone decreasing in n and j{k) G Z^. for 
some m < k < 712 so that ni < r* < 712 — 1 V fc,ni,n2 G Z-). where 
Ant (n,tx*) |n=:r*=0. Then there exists (n*,tx**) G Z^. x W which is a 
solution in problem (SP) where 

n* G argmax{7r(n,ifc*) : j{n) G Z+, ni < n < 712} . (14) 

Proof. Based on (14) and the fact that AnTf (n,w*) is monotone de­
creasing in n with AnTf (n, u*) |n=r = 0, we can choose (ni, 722) G Z+ x Z+ 
with ni < T < 712 — 1 such that j{n) G Z+ for some integer n G [ni,n2]. 
Then we have 

7 r ( n i , < J < 7 f ( T , 0 and7r(n2,<J < 7 f ( r , 0 . 

Therefore, we have 

n* G argmax{7r(7a,tx*) : j(n) G Z+, ni < n < 712} 

is well-defined. Consequently, we obtain the solution of problem (SP), 
(71*, < 0 G Z+ X W such that 7r(n*,<0 = sup„^z+ inf̂ n€SoZ(n) {7r(n,i6n)}, 
and the proof is complete. D 
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3.1 Optimal Contracts of Supply Chains 

Based on the discussion above, problem (SP) under contracts of supply 
chains can be formulated as 

(SP') ^^ ^'(^'^n) 
s.t. Un^SoV{n),n£Z^ 

where SoV(ri) is the solution/reaction set of the buyer's problem under 
contracts for a given n. The buyer's problem for a given n, is formulated 
as 

min J'{n,Un) .^^. 

s.t. Un € U(n), 

We can find the solution ^**(n) of (15) for the buyer as a response to any 
decision n G Z_|- by the vendor under contracts of supply chains, satisfying: 

dJ'{n,q) 
dq - " ' 

that is, 

« ( " ) = V nH(Chs/2) ) • ('^) 

Prom Figure 2, we can see that in vendor's view the stopping-production 
point ts, that is the jth replenishment point tj^ can be determined by the 
assumption of supply-demand balance that the amount of production in 
[0, ts] is equal to the amount of requirement in the whole horizon [0, H] 

P, , Hnq 
—ts =nq=^ts = - ^ - . 

Due to ta = jT and H = nT, we see that the stopping time of production 
during a cycle of procurement is 

r=j{n) = '^ (17) 

and n^{n) = Chy [^ - ^^^^=^1 {q**{n)fT . By a similar way as in 
Theorem 2, we can find the Stackelberg equilibrium (n**,u*.,) e Z^ xU 
such that 

7r'(n**,ix***) = sup inf {7r'(n,iXn)} 
n£Z+Ur,eSol'in) 

where SoV{n) = argmin^^ec7(n) J'{n,Un). 
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Remark 2. Note that g**(n) = O ( ; ^ ) according to (16) and j * * = 
0{n) in view of (17). The stopping time of production j * * must be an 
integer. Moreover, for a given n G Z+, we can compare 9*(n) with q**{n) 
as follows: 

Since q*{n) > q**{n) is equivalent to 

' \ 1/3 
DjCp + anCt) \ (DjCp + anCtW''^ 

n^m (Chs/ [ D ( l + S ^ ) ] ) y ^ V nH{ChB/2) ) ' 

that is, 

„2/3^2/3 /'c^/i^/ r̂ , ^1 ^ § j ^ ) l ) ' ^ ' > n ' / ' ^ ' / ' (C/IB/2)'/ ' , 

that is, 

(18) 

since Cft^ < C S B by assumption (iv) in the first inequality of (18). 

3.2 Algorithm 

Since the optimal solution n of the vendor's problem has to be an integer, 
it is difficult to seek solutions satisfying the mild conditions of Theorem 2. 
We now propose an algorithm to find them. 

Algorithm. Suppose that Sol{n) ^ 0 for some n G Z+. 

Step 1. (Initialization) Select the cost structure satisfying the conditions: 
An7r(n,ix*) is monotone decreasing in n and j{k) £ Z^ for some 
integer fc. 

Step 2. Calculate AnTf (n, u*). If there exists r G M such that 

A n 7 f ( n , 0 | n = T = 0 , 

then we consider two cases: 
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(2.1) If r > fc, choose n* by taking n2 € Z+ and n2 > r + 1, 

n* G argmax{7r(n,i6*) : j{n) € Z+ V integers n E [fc,n2]} , 

we obtain the solution (n*,tx*,); STOP. 
(2.2) Else, if r < fc, choosing n* from rii to fc where ni > r and ni G Z^., 

n* G argmax{7r(n,u*) : j{n) G Z4. V integer n G [ni,fc]} 

and we obtain the solution (n*,i6**); STOP. 
Otherwise, for all a; G Z-j. we have 

An7r(n,0|n=u; < 0. 

Then GO TO Step 3. 

Step 3. Choose 

n* G max{n : j{n) G Z4. Vintegers n} , 

and we obtain the solution (n*,tx**); STOP. 

Remark 3. Note that the cases of a solution in Step 2 and Step 3 are 
well-defined in view of Theorem 2 and Step 1. 

S.S Numerical Example 

We follow Step 1 to set up the cost structure with different Cps for both 
buyer and vendor as follows: 

if = 1 year D = 100 units 
P = 250 units V = $30 

CpB = $5 CHB = $2 CSB = $3 Ct = $3, 
Cpv = $15 Chs = $1 C = $0.5F a = 0.8. 

Then we see that AnTf (n, u*) and AnTf' (n, tx*) are monotone decreasing in 
n according to Figures 3 and 4. We can calculate the Stackelberg equilib­
rium based on the algorithm via Mathematica 4.0 as follows: 
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Table 1: Summary of results 

Without the contract 
n* = 6 
q* = 16.498304 
t* = 0.395959 
j*=Z 

(<*_!,s*)"_j shown in Table 2 
Iy(t*) = 49.494914 

J ( n * , 0 = 3034.35 
7r(n*,0 = 2446.64 

With the contract 
n** = 5 
q** = 18.439008 
tl* = 0.368782 
j " = 2 
T = 0.184391 
Ivit**) = 55.317226 
J (n**,g**) =4541.45 
7r(n**,g**) = 3940.93 

Table 2: Summary of results for reorder and replenishment points 

Reorder points 
sj = 0.164983 
s5 = 0.329966 
s5 = 0.494949 
3*4 = 0.659932 
si = 0.824915 

4 = 1 

Replenishment points 
tl = 0.065993 
ti = 0.230976 
tl = 0.395959 
tl = 0.560942 
tl = 0.725925 
tl = 0.890908 

10 15 20 25 30 n 

Figure 3: The graph of An7r{n,Un) without contracts 



336 Yeong-Cheng Liou et al. 

id 

10 

5 

^-5^^^ 10 15 20 25 30 n 

Figure 4- The graph o/AUTT' {n,Un) with contracts 

4 Conclusions 

In this paper, we consider one-buyer, one-seller, finite horizon, multi-period 
EOQ/EPQ integrated inventory models. We establish some existence re­
sults under some mild assumptions on the cost structure and present a 
numerical procedure to determine the optimal replenishment equilibrium 
policy in practice. Based on our example, we find that contracts reduce 
the number of distributions and the amount of each distribution is higher 
than without contracts. 

References 

[1] Aubin JP (1979) Mathematical Methods of Game and Economic The­
ory, Revised Edition. North-Holland, Amsterdam 

[2] Basar T, Olsder GJ (1982) Dynamic Noncooperative Game Theory. 
Academic Press, New York 

[3] Bensoussan A, Crouhy M, Proth JM (1983) Mathematical Theory of 
Production Planning. North-Holland, Amsterdam 

[4] Cachon G, Netessine S (2004) Game theoretic applications in supply 
chain analysis. In: Simchi-Levi D, Wu SD, Shen Z-J (eds.) Handbook 
of Quantitative Supply Chain Analysis: Modeling in the E-Business 
Era, Chapter 2, Kluwer Academic Publishers, Boston, pp. 10-65 

[5] Dempe S (2002) Foundations of Bilevel Programming. Kluwer Academic 
Publishers, Boston 



A Stackelberg Equilibrium Model 337 

[6] Goyal SK (1976) An integrated inventory model for a single supplier-
single customer problem. International Journal of Production Research 
15:107-111 

[7] Li SX, Huang Z, Ashley A (1996) Improving buyer-seller system coop­
eration through inventory control. International Journal of Production 
Economics 43:37-46 

[8] Liou YC, Yao JC (2005) Bilevel decision via variational inequalities. 
Computers and Mathematics with Applications 49:1243-1253 

[9] Lu L (1995) A one-vendor multi-buyer inventory model. European Jour­
nal of Operational Research 81:312-323 

[10] Topkis DM (1998) Supermodularity and Complementarity. Princeton 
University Press, New Jersey 

[11] Yang PC, Wee HM (2001) A single-vendor multi-buyers integrated in­
ventory policy for a deteriorating item. Journal of the Chinese Institute 
of Industrial Engineers 18(5):23-30 

[12] Yang PC, Wee HM (2002) A single-vendor and multiple-buyers 
production- inventory policy for a deteriorating item. European Journal 
of Operational Research 143:570-581 



Das Potenzial von Operations Research in Transport und 
Verkehr 

Joachim Schmidt 
PTV Planung Transport Verkehr AG, Karlsruhe 
Vorstand 

1 Einfiihrung 

Die wenigsten Autofahrer werden einen Bezug zwischen Operations Research -
Oder kurz OR - und ihrem Navigationssystem herstellen. Genauso wenig denkt 
man beim Studium der Reiseroute, die man sich gerade im Internet errechnet hat, 
an Begriffe wie „MinimalgerUst" und „kUrzeste Wege". Und was hat die piinktH-
che Auslieferung der bestellten Mobel mit dem Knoten-orientierten Tourenpla-
nungsproblem zu tun? 

Wir, die wir uns mit OR beschaftigen, wissen das nattirlich. Viele Erleichte-
rungen des Alltags gabe es ohne OR gar nicht: Routenplaner auf CD oder im 
Internet, piinktliche Lieferungen auf Basis professioneller Tourenplanung oder 
auch immer neue Optimierungen in der Verkehrsplanung. Bei PTV arbeiten wir 
taglich damit und tragen mit unseren Produkten die positiven Resultate der OR 
in die ganze Weh. 

2 OR von Anfang an 

Im November 1979 wurde die PTV AG als Planungsbiiro Transport und Ver­
kehr aus der Universitat Karlsruhe heraus gegrundet. Von Anfang an waren bei 
der Projektarbeit die Vorlesungen von Professor Neumann, die die „Graphen-
theorie Transportproblem und Tourenplanungsprobleme" zum Gegenstand hat-
ten, allgegenwartig. Denn die Arbeitsschwerpunkte der neu gegrUndeten Firma 
lagen darauf, VerkehrsablSufe zu simulieren und OR in die Praxis umzusetzen. 

Die ersten Projekte waren die Entwicklung eines Dispositionsverfahren fur 
Rufbus am Bodensee, eines der ersten Projekte fiir nicht liniengebundenen Nah-
verkehr im iSndlichen Raum, dazu die Standort- und Distributionsplanung ftir 
die Raiffeisengesellschaft Schleswig-Holstein, eine Liniennetzplanung fur 
Mannheim und die Tourenplanung fur die Spaten-Brauerei in Miinchen. Diese 
Projekte stellten gleichzeitig die Grundlage fur die ersten Sofhvareprodukte der 
jungen PTV dar: INTERTOUR (interaktive Tourenplanung) und INTERNETZ 
(interaktive Liniennetzplanung). 
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Die Vision der PTV-GrUnder, OR-Kenntnisse in Transport und Verkehr 
technisch-wissenschaftlich umzusetzen, wurde wahr - getreu dem Motto „Wir 
machen alles, was man nicht mit Cobol machen kann." 

Der Bezug zu mathematischen Optimierungsverfahren ging auch in den fol-
genden Jahren nicht verloren: 1982 hot PTV die erste Koordinatendatenbank fur 
Transport- und Tourenplanung an. Dieses Produkt lebt immer noch! 1990 war 
PTV das erste Untemehmen, das Verkehrssimulation auf einem PC offerierte. 
Heute ist das Untemehmen auf diesem Gebiet weltweit Marktfiihrer. 1999 folgte 
das erste kommerzielle System fur eine Online-Verkehrsprognose. Seit 2000 
profitieren die PTV-Kunden von integrierten Soflwarelosungen und darauf auf-
bauenden Informationsdiensten aus einer Hand. Viele modeme Verkehrsmana-
gementzentralen nutzen PTV-Technologie. 

Heute bietet die PTV AG Software, Consulting und Forschung fiir die Rei-
se-, Verkehrs- und Transportplanung im B2B-Bereich. Europaweit marktfiihrend 
sind PTV-Produkte wie map&guide zur professionellen Routenplanung, VISUM 
fUr die Verkehrsplanung und PTV Intertour flir die Tourenplanung. Mittlerweile 
arbeiten weltweit rund 500 Mitarbeiterinnen und Mitarbeiter flir das Untemeh­
men. 

3 Enge Kontakte zu Hochschulen 

Die Produkte und Beratungsleistungen der PTV erfordem ein hohes MaB an 
Know-how, das immer an Personen, die Mitarbeiterinnen und Mitarbeiter der 
PTV, geknilpft ist. Dass sie aufierdem bereit sind, sich stSndig weiteres Wissen 
zu erarbeiten und dieses auch weiterzugeben, ist sicherlich ein wesentlicher 
Erfolgsfaktor. Durch die sehr engen Kontakte zu den Hochschulen lieCen sich 
viele neue Kollegen und Freunde direkt von dort fUr das Untemehmen gewin-
nen. Die PTV betreut einerseits viele Praktikanten und Diplomanden gerade aus 
den Karlsruher Hochschulen, andererseits kommen viele Absolventen nach ih-
rem Studium zur PTV. 

Die Ausbildung an den Karlsmher Hochschulen, die Anwendung mathemati-
scher Methoden, und damit letztlich das Lehrgebiet, welches auch Professor 
Neumann am Lehrstuhl flir Wirtschaftstheorie und Operations Research vertrat, 
hat die Entwicklung der PTV nachhaltig beeinflusst. 

4 Traffic, Mobility und Logistics: OR als starke Basis 

Gemeinsame Basis uber alle Geschaftsfelder ist die Anwendung mathematischer 
Methoden zur Losung geografischer Planungsaufgaben. Im Geschaflsfeld Traffic 
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wird simuliert, wie Staus entstehen, oder die optimale Auslastimg eines Ver-
kehrsnetzes optimiert. Durch PTV-Soflware wird ein maximaler Verkehrsfluss 
an einer Kreuzung durch eine optimale Ampelsteuerung gewShrleistet. Die An-
satze basieren auf der Verkehrsforschung an der Universitat Karlsruhe, wo in 
den 70er Jahren erstmals beschrieben wurde, wie die Bewegung von Fahrzeugen 
und das Verhalten der Fahrer in einem mathematischen Modell abgebildet wer-
den kOnnen. Parallel wurde von der PTV ein makroskopisches Modell entwik-
kelt, welches nicht das einzelne Fahrzeug in den Mittelpunkt stellt, sondem die 
Verkehrsstr5me. So lassen sich die groBrSumigen und langfristigen Anderungen 
von Verkehrsprojekten simulieren. 

Abbildung 1: SD-Simulation einer Kreuzung 

Die Softwareiosungen und Services im Geschaftsfeld Mobility decken das 
Gesamtspektrum des individuellen Mobilitatsmanagements ab. Die Berechnung 
der optimalen Route, aktuelle Verkehrsinformationen oder personalisierte In-
formationen bezogen auf den geografischen Standort des Nutzers bilden den 
Schwerpunkt der Arbeiten in diesem Geschaftsfeld. Eine besondere Herausfor-
derung stellt hier die Verarbeitung von zahlreichen dynamisch verSnderlichen 
Informationen bei der Online-Berechnung von optimalen Routen dar. 
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Das Geschaftsfeld Logistics entwickelt Software imd ASP-Dienste fiir die 
Tourenplanung und das Flottenmanagement. Professionelle Geomanagement-
LOsungen filr die Planung und Visualisierung von Liefer- und Vertriebsstruktu-
ren komplettieren das Angebot. 

Die Methoden, auf denen die Entwicklungen in den drei Geschaftsfeldem 
basieren, sind mathematische Optimierungsverfahren, angepasst und erweitert 
um das Fachwissen des jeweiligen Anwendungsgebiets. So kann z.B. eine aus 
der modellorientierten Sicht als optimal geltende Tour- oder Fahrtroute aus 
logistischer Sicht unbefriedigend sein, da sich wichtige Aspekte der „real life" 
Probleme nicht modellhaft abbilden lassen. Das Kemdilemma dabei ist, dass die 
Giite einer L5sung erst im Kontext beurteilt werden kann, modellorientierte OR-
Probleme hingegen kontextfrei das Optimum anstreben und ausweisen. Deshalb 
war filr die PTV die Kombination aus Problemvisualisierung, Anwendungswis-
sen und einer leistungsfUhigen Benutzerinteraktion immer eine entscheidende 
Produkteigenschaft. Neben der Methodenbereitstellung ist die Verfilgbarkeit 
digitaler Karten und Geodaten ein weiterer Baustein der PTV-Produkte. Das 
Kombinieren und Verdichten von digitalisierten Netzen und Daten mit Georefe-
renz erfordert ebenfalls einen methodischen Kern, der sich der OR-Verfahren 
bedient. 

Traffic Mobility \ Logistics 

iVIethoden 

I DTgitale Geografio J 

I Software Technologle | 

Produkte 

Marketingkonzepte 

und MarkteinfQhrung 

Abbildung 2: Gemeinsame Basis der drei Geschaftsfelder von PTV 

Optimierung im Verkehrs- und Transportwesen bedeutet, immer alle M5g-
lichkeiten der Technik auszuloten. Der erste Versuch einer Tourenplanung lief 
auf einem Taschenrechner TI 41, die primSre seri5se Implementierung auf einem 
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Hewlett-Packard Grafikterminal. Die erstmalige Implementienmg der Verkehrs-
simulation auf einem PC konnte stadtische Netze mit wenigen hundert Strecken 
berechnen. Heute errechnet VISUM landesweite Verkehrsnetze mit bis zu einer 
Million Strecken. Aber auch bei wachsender Rechnerleistung werden schnelle, 
hochperformante Verfahren benStigt, die selbst bei Praxisproblemgr56en von 
z.B. 5.000 Transportauftragen und mehreren hundert Fahrzeugen in Sekunden 
erste, fUr den Benutzer brauchbare Ergebnisse liefem. 

5 Neue Chancen gegen Staus 

Als typisches Beispiel fUr einen stark methodischen und modellorientierten An-
satz kann das Projekt PTV Validate gelten: Das gr56te Verkehrsmodell der Welt 
ermittelt Verkehrsbelastungen durch Simulationsrechnungen und setzt neue 
MaBstabe mit dem hochaufgelOsten digitalen StraBennetz fur ganz Deutschland. 
Um eine sinnvolle Abbildung der VerkehrsstrOme in Deutschland zu erreichen, 
ist das Untersuchungsgebiet in etwa 80.000 Marktzellen eingeteilt, die wiederum 
in circa 7.000 Verkehrszellen zusammengefasst sind. Eine Verkehrszelle repra-
sentiert ungefShr 12.000 Einwohner, eine Marktzelle etwa 1.000 Einwohner in 
Deutschland. 

Aufgrund dieser Daten berechnet das System, wie viel Verkehr sich zu wel-
cher Zeit auf den Strafien bewegt, und zeigt die AbhSngigkeit der Reisezeit von 
SuBeren Einfltlssen wie Strukturdaten und nationalen Verkehrsverhaltensmustem 
(Pendlerdaten, Fahrzwecke etc.). Die Daten zur Verkehrsbelastung erlauben 
stimmige RtlckschlUsse auf die benStigten Reisezeiten. 

Damit liegen nun fUr alle deutschen Hauptstral3en Verkehrsmengenangaben 
auf einem tiefendigitalisierten Netz mit etwa 1,3 Millionen nach Richtungen 
getrennten Strecken vor. 

Um eine Modellrechnung auf dem Netz durchfuhren zu k5nnen, werden die 
Strecken mit verkehrlichen Daten angereichert. Insbesondere mtissen fUr alle 
Strecken Kapazitat und Geschwindigkeit bei freier Fahrt bekannt sein. Diese 
Daten werden zu weiten Teilen direkt aus den Navigationsdaten hochgerechnet, 
nachrecherchiert und durch Net-Matching mit regionalen Verkehrsmodellen 
verfeinert. Das bedeutet, sie werden durch die Angaben aus regionalen Ver­
kehrsmodellen ergSnzt. 

Die Ergebnisse lassen sich wieder auf das StraBennetz zuruckfuhren und so-
mit fiir die Navigation nutzen. 
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Abbildung 3: PTV Validate, das weltgrofite Verkehrsmodell fur den Individualverkehr 

6 Integrierte Systeme halten uns mobil 

Die Daten aus dem oben beschriebenen Projekt PTV Validate sorgen auBerdem 
fur eine realistische Angabe von Reisezeiten bei der Routenplanung. Das ist vor 
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allem interessant fUr Navigationssysteme, filr die professionelle Tourenplanung 
Oder fur Routenplaner. Bei den bisher verfiigbaren Ansatzen entspricht die real 
zu erwartende Ankunftszeit oft nicht der Realitat. Grund dafiir ist, dass die vor-
gegebenen Geschwindigkeiten fiir verschiedene StraUenklassen, auf denen die 
ermittelten Reisezeiten basieren, unabhSngig von Tageszeit und Wochentag und 
deren typischen oder zu erwartenden Verkehrsbelastungen sind. 

Um verlassliche Reise- und Ankunftszeiten unter Berucksichtigung der Ver-
kehrsverhaltnisse zu ermitteln, werden die Daten aus PTV Validate ergSnzt um 
Mess- und historische Daten aus Detektoren sowie um die Auswertung von Ver-
kehrsmeldungen. Hinzu kommen Daten, welche die im Verkehr befmdlichen 
Fahrzeuge mittels Telematikeinrichtungen selbst generieren, sogenannte Floating 
Car Data (FCD). Das Ergebnis: Fahrzeiten abh&igig vom Wochentag, der Ta­
geszeit oder auch von Ferienzeiten oder dem Wetter. 

Vor allem professionelle Nutzer profitieren davon. Denn werden neuralgi-
sche Staupunkte gezieh umfahren, sorgt das beispielsweise in der Logistik fur 
eine effizientere Auftragsabwicklung. Etwa, indem die Auslieferstrecke entgegen 
der HauptverkehrsstrOme geplant wird, da die prognostizierte Verkehrsbelastung 
der Stecken dem Optimierungsmodell der Tourenplanung zur Verfiigung steht. 

0«t«t LMtn Andem Ptantn lottriMty tb*rm BnMkrnm ^mtw I 

P * 0 1 ^ L»n9« 207 Oauer 2 0 5 5 — K n s t u n L W 

Abbildung 4: Verldsslichere Tourenplanung fur die Stadtlogistik durch realistischere 
Fahrtzeiten 
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PTV Intertour „wei6" so bereits bei der Vorplanung, wo Staus sein werden. 
Das erm5glicht, StraBen, auf denen zu bestimmten Zeiten Staus imd Verkehrs-
behinderungen herrschen, einfach zu umfahren. Damit iSsst sich die fiir die Aus-
lieferung im City-Bereich benotigte Fahrzeit reduzieren und mehr AuftrSge 
konnen innerhalb einer Tour abgewickelt werden. 

Zudem bietet eine Routenempfehlung, die verkehrliche Engpasse ausweist, 
flexibleren Verkehrsteilnehmem die Chance, zu einer gUnstigeren Zeit zu reisen. 
Wer terminlich gebunden ist, kann immerhin Staus umfahren, wodurch sich die 
Verkehrslast gleichmSfiiger verteilt. 

7 Verkehrsmeldungen aus dem flieBenden Verkehr - damit der Verkehr 
im FIuss bleibt 

Ziel der weiteren Forschung und Entwicklung bei PTV ist es, automatisch Ver­
kehrsmeldungen zu erzeugen. Die Ausgangsbasis sind Verkehrsdaten bzw. 
-informationen, die aus unterschiedlichen Quellen stanmien kOnnen. Beispiels-
weise aus den Verkehrzentralen der Bundeslander, der Landesmeldestelle, vom 
ADAC Oder auch direkt aus dem flieBenden Verkehr, z.B. Uber Handys, die in 
Fahrzeugen mitgefilhrt werden und damit Floating Car Data generieren. 

Die Prozesskette von den Daten zu den Verkehrsinformationen geht Uber ih-
re Erhebung, Veredelung, PrUfung und ihren Versand. Die Quelldaten und 
-informationen werden bei PTV in einem speziell dafiir entwickelten Verfahren 
kontinuierlich Uberlagert und miteinander verschnitten. Unter anderem werden 
Daten aus in der Fahrbahn bereits vorhandenen Meldeschleifen verarbeitet. 
Ergebnis dieser „Meldungsfusion" der einzelnen Datenquellen sind hochwertige 
Verkehrsinformationen, die aktuell, zuverlassig und korrekt sind und das Stra-
fiennetz optimal abdecken. 

Die auf diese Art erzeugten PTV-Meldungen werden kontinuierlich an eine 
Verkehrsredaktion Ubermitteh, wodurch die MGglichkeit gegeben ist, jede ein-
zelne Meldung nochmals redaktionell zu bearbeiten. Danach werden die Mel-
dungen Uber encrypted Traffic Message Channel (eTMC) - einem verschlussel-
ten Datenkanal -- ausgestrahlt und den Verkehrsteilnehmem zu Verfiigung 
gestellt. Der Weg der Information bis zum Fahrer dauert dabei h5chstens zehn 
Minuten. 

Der verschlUsselte Datenkanal ist eine der Moglichkeiten, die Radios und 
modeme Navigationssysteme bieten, um Verkehrsmeldungen auf einem Daten­
kanal per RDS/TMC zu empfangen. Der Fahrer erhalt die Information entweder 
in Form einer Liste von Verkehrsmeldungen oder symbolisch dargestellt auf 
einer StraBenkarte. Die Daten k5nnen so auch fUr das dynamische Routing bei 
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der Offboard Navigation verwendet werden. So erhalt der Fahrer eine ZielfUh-
rung, die die aktuelle Verkehrslage berUcksichtigt. 

PTV fbrdert durch innovative Technik- und Softwareentwicklungen die Ver-
fUgbarkeit besserer Verkehrsmeldungen. Das schafft die Voraussetzung, den 
Kunden unterwegs mit alien gewUnschten Informationen Uber seine Route zu 
versorgen. 

Das Projekt DIANA (Dynamic Information And Navigation Assistance) be-
fmdet sich derzeit noch im Pilotbetrieb und durchlSuft gerade die Phase der 
Qualitatssicherung. Darin werden die von PTV generierten Verkehrsinformatio-
nen getestet und optimiert. DIANA ist Teil des Modellprojekts Staufreies Hes-
sen 2015. Die Verkehrsdatenplattform der PTV ist schon heute eine Quelle fUr 
hochwertige Verkehrsinformationen fiir das Bundesgebiet sowie fUr das benach-
barte Ausland. 

8 Neue Kartentechnologie teilt die Welt in Kacheln ein 

Um digitale StraCenkarten auf den neuesten Stand zu bringen, mussten frUher die 
kompletten Daten ausgetauscht und neu installiert werden. Das ist ab sofort 
liberflUssig dank einer neuen Kartentechnologie von PTV. Die Scalable Map 
Architecture ermOglicht, digitale Kartendaten dynamisch und selektiv zu aktuali-
sieren und zu erganzen - eine ausgezeichnete Grundlage, um alle Arten von 
maUgeschneiderten Mobilitatsdiensten einfach umzusetzen. 

Das neue Kartenformat teilt die ganze Welt in fest defmierte, weltweit ein-
heitliche, quadratische Kacheln ein. AUein Deutschland ist in 550.000 Kacheln 
gegliedert. Diese Kachelung erlaubt die zentrale, partielle Aktualisierung der 
Geodaten - genau und nur in den Kacheln, in denen sich etwas geandert hat. Die 
LOsung zeigt eine wesentlich h5here Performance, da die zu Ubermittelnden 
Daten beim Update deutlich kleiner sind. So werden aktualisierte Kartenaus-
schnitte ohne Zeitverluste angezeigt. 

Die Anforderungen an digitale Kartendaten hangen von der Art der Anwen-
dung ab: FUr eine grobe Orientierung kann eine Ortsangabe auf 10 km genau 
gentigen, doch zuktlnftige Fahrerassistenzsysteme mOchten auf 10 cm die Positi­
on der Leitlinie kennen. Manchen Anwendungen reichen Karten, die 10 km^ 
abdecken, andere brauchen weltweit detaillierte Informationen. Und wie hSufig 
sollen die Daten aktualisiert werden? Einmal im Jahr oder tSglich, um beispiels-
weise Verkehrsbehinderungen aktuell abzubilden? Nicht zuletzt ist die Kompa-
tibilitat wichtig, damit die Kartendaten auf alien EndgerSten verftigbar sind. 
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Abbildung 5: Berlin - kachelweise schnell aktuell dank Kartentechnologie von PTV 

Das neue Kartenformat ist eine der Grundlagen ftir die hybride Navigation 
und ist daher besonders filr Automobiluntemehmen und Telekommunikations-
anbieter interessant. Die Kartenansicht kann jeweils an die spezifischen BedUrf-
nisse in der Anwendung ausgerichtet werden. Mehrere Kacheln lassen sich bei-
spielsweise zu grOBeren Kacheln zusammenfassen: in verschiedenen 
AuflOsungen, von Im^ bis zur ganzen Welt. Zudem gibt es die Karten in imter-
schiedlichen Informationstiefen: vom Bundesautobahnnetz bis zu detaillierten 
Nebenstral3en-Informationen. 

OR - heute und in Zukunft 

OR gehort bei PTV immer zu den aktuellen Themen. Methodenorientierung ist 
weiterhin Markenzeichen des Untemehmens. Die verfahrensorientierte Ausbil-
dung an der Karlsruher Universitat bildet die Grundlage fur den international 
erfolgreichen Konzem. 
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Ein wichtiges Betatigungsfeld der PTV ist weiterhin der Brilckenschlag zwi-
schen transportlogistischen oder verkehrlichen Aufgabenstellungen und den 
Verfahren der Operations Research. 

In Zukunfl bleibt die Wahl des methodischen Ansatzes weiterhin wichtig, 
damit Verkehrsprognosen, integrierte Modelle und selbststeuemde Systeme im 
Verkehr helfen, auch bei steigendem Verkehr welter Mobilitat gewShrleisten zu 
konnen. 
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Evolution of Conventions in Populations with Local In­
teraction Structures 

Siegfried K. Berninghaus 

Institut fiir Wirtschaftstheorie und Operations Research 
Universitat Karlsruhe 

1 Introduction 

It is almost common knowledge in modern societies that conventions reg­
ulate many important economic and social processes. Nevertheless, this 
topic has not received adequate attention in the past neither from empir­
ically oriented nor from theoretical economists. It is the main purpose 
of this paper to analyze this problem using an analytical model of strat­
egy adaptation in populations with a given social structure (network). In 
most studies on evolutionary strategy adaptation it is assumed that mem­
bers of a population are randomly matched with each other member of 
the population. Seemingly, this does not give a realistic scenario of strat­
egy adaptation in most modern societies where members of a population 
are matched only with members of their reference groups like families, col­
leagues at work, etc. However, these groups are typically not isolated from 
each other. They are interrelated by individual connections, which makes 
the strategy adaptation problem of a single individual in the population a 
non-trivial strategic decision problem. 

Before we start our analysis we give some familiar examples of conven­
tions^ which indicate the relevance of this field for strategic interaction in 
large populations: 

• Suppose two people want to meet each other in a foreign city. What 
are the favorite meeting points for the people in this city? If the 
people we consider are artists, then they will probably try to find out 
which bars or restaurants belong to the artists' scene. 

• Suppose a telephone call between two people is unexpectedly cut off 
after one minute. If both people are interested in the connection 
being restored, who will be the first one to call back? 

••̂ All examples are taken from Lewis (1969), which is an inspiring source of examples 
of conventions in economics and in social life. 
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• Consider people driving in opposite directions on the same winding 
two-lane road. It is not important for any of them on which side 
of the lane they drive, however it is extremely dangerous if two of 
them drive on the same lane. In order to escape from such terrible 
accidents everybody should use the same convention, that is either 
driving on the left or on the right lane. 

• Consider an invitation to a party. In principle, it does not matter 
how everybody is dressed. But one would probably be embarrassed 
if one finds all guests almost dressed alike and is dressed differently 
oneself. Everybody must dress according to their expectations of how 
the others might be dressed. If everyone is dressed like a clown you 
should also be dressed like a clown, but it would be ridiculous to wear 
a clown suit on workdays in one's office. Again, how to be dressed 
for a particular party is a problem of dressing conventions. 

• Suppose two tradesmen want to exchange diflFerent goods. In most 
societies a particular commodity is taken in exchange for goods. It 
does not matter to most of us which particular commodity is taken in 
exchange for goods, it may be wampum, it may be goats. However, 
it is very important that each tradesman takes what the other one 
does not refuse. Otherwise, he has to return without his good being 
sold. We learn from this example that currencies help to solve seri­
ous commodity exchange problems which are essentially coordination 
problems. Later on, we will see how conventions and coordination 
problems are tied together. 

• Finally, we consider Rousseau's example (from Discours sur Vinega-
lite) of the stag hunt which recently stimulated many experimental 
investigations in the evolution of conventions. In this highly stylized 
example we consider a tribe of hunters and gatherers living in the 
wilderness without food. Each man can hunt rabbits separately and 
eat badly. Together, the hunters can catch stags and eat well. How­
ever, if at least one man deserts the stag hunt to catch a rabbit the 
hunt will not be successful. Moreover, there is a strong incentive for 
the remaining hunters to desert the stag hunt in order to at least eat 
a rabbit. Both types of behavior (stag hunt or rabbit hunt) can be 
regarded as conventions. A hunter will stay with the stag hunt if he 
believes that the others stay, too. And he believes that the others will 
stay when it has become a convention to hunt stags in this society. 

Extracting the common character of these examples, we see that con­
ventions are basically used to solve a coordination problem. Let us explain 
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this in more detail. We consider two ore more agents who have to choose 
one of several alternative actions in a strategic decision problem. In many 
situations, the set of alternative actions is the same for each decision maker 
involved. However, this is not necessary. If agents choose the same action 
every time they interact with other agents in the population a regularity 
of behavior will result. If everybody expects the other agents to conform 
to this regularity we call this a convention, provided no individual deci­
sion maker has an incentive to deviate from this regularity. We make this 
concept more precise by the following definition (see Lewis, 1969, p. 42). 

Definition 1 A regularity R in the behavior of the members of a population 
P when they are agents in a recurrent situation S is a convention if and 
only if in any instance of S among members of P, 

1. everyone conforms to R] 

2. everyone expects everyone else to conform to i?; 

3. everyone prefers to conform to R on the condition that the others 
dOjtoOj since S is a coordination problem and uniform conformity to 
R is a coordination equilibrium in S, 

It is essential for our introductory examples that there is no unique so­
lution for the underlying strategic decision problem. Quite on the contrary, 
in each of these recurrent situations different regularities in behavior could 
evolve. For example, in the money exchange problem different commodi­
ties could be used for exchange money which is accepted on a market place. 
Only some basic requirements for this commodity need to be satisfied. It 
has to be storable for a longer time period, and it should not have too much 
weight so that tradesmen can carry it easily from one marketplace to the 
other. Or let us consider the problem of driving on one particular lane of 
the road. It is completely unimportant which particular lane is used. Both 
conventions, either driving on the left side or on the right side of the road 
could evolve. Only coordination failure (both drivers use different lanes) 
would induce negative results for both drivers. 

As a further common characteristic of our examples the regularities in 
behavior, which are regarded as conventions, have an equilibrium property. 
That is, it is not profitable for an individual agent to deviate from the 
convention when the other agents still conform to it. For example, let us 
consider the stag hunt game. If the stag hunt evolved as a convention in 
a group of hunters a single agent would certainly not benefit at all from 
switching to rabbit hunting. He would have to eat rabbits instead of stag 
meat. On the other hand, if hunting rabbits became the hunting convention 
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in the group it would not make sense for a single agent to turn to stag 
hunting. Because then, he would neither eat rabbits nor stag meat. The 
same implication holds for the car driving example. If all agents conform 
to the rule to drive on the right lane of the road, obviously, it will not pay 
for a single agent to deviate from this convention. 

Prom a game-theoretical perspective one can say that conventions help 
to solve the problem of equilibrium selection in coordination games recur­
rent in a population of players. Coordination games typically have multi­
ple equilibria which sometimes may even be Pareto-ranked by their payoflFs 
(symmetric coordination games).^ If such games are played recurrently by 
players who are matched with members of their social reference groups to 
choose their strategy it will not be a trivial task for a single agent to forecast 
which equilibrium strategy his opponent will choose. In such situations, it 
may help the players to conform to a convention and choose a particular 
equilibrium strategy of the coordination game which is played by all agents 
in the population. 

There are many different ways in which conventions become established 
in a society. We mention the two most important ones: 

• Conventions may be imposed by a central authority. For example, 
during the French Revolution it was decreed that carriages in Paris 
should keep to the right lane (for details see Hopper, 1982), whereas 
the previous convention was for carriages to keep to the left lane and 
for pedestrians to use the right lane. Establishing this "opposite" 
convention at that time would have to be regarded as a symbol for the 
new order which had been established by the revolutionary regime. 
"Using the right lane" would then be the habit of the common man 
after the French Revolution. 

• Conventions in a society may evolve through an "evolutionary pro­
cess" . The idea behind that is that as an interaction between agents 
in a population is repeated over and over by many individuals a reg­
ularity in behavior may be established at least in some parts of the 
population. These regularities may "infect" other subgroups so that 
after some time it becomes a custom in the whole population to use 
a certain action for solving a particular coordination problem. For 
example, driving on the left lane in Britain started out being a local 
custom which then spread over the regions of the country. 

În asymmetric coordination games (for example, the battle-of-the-sexes game), play­
ers may value equilibrium payoffs differently. 



Evolution of Conventions 357 

Of course, both procedures are not incompatible. In many cases, con­
ventions which have already evolved through an evolutionary process in a 
society were later on codified into law. 

In this paper, we are exclusively interested in the evolution of conven­
tions as a result of individual choices of agents in a population playing a 
non-cooperative coordination game. In particular, we want to address two 
problems: 

a) How will conventions evolve? Which pieces of information do we need 
to predict which conventions will finally evolve in a society? 

b) From our examples we know that there may exist "good" or "bad" 
conventions, i.e. "good" or "bad" equilibria in the base coordination 
game. How can a society break out from an inferior convention? 

In contrast to stochastic models of strategy adaptation which have been 
developed during the past decade (see, for example, Kandori, Mailath, and 
Rob, 1993, Young, 1993) we use a purely deterministic strategic decision 
approach. Using a deterministic approach we believe to be able to explain 
more complex phenomena of convention formation. 

We will focus on the evolution of conventions in populations with fixed 
social networks. In Berninghaus and Schwalbe (1996a, 1996b) the evolution 
of conventions on two different fixed local interaction structures (circular 
structure and lattice) in a population with an odd number of individuals 
were studied. In this paper, we relax some of these restrictions and gain 
better insight into the process of strategy adaptation. 

In the second part of the paper, we link the theoretical results to exper­
iments on the evolution of conventions which have been conducted in our 
experimental lab at the University of Karlsruhe. Many experiments have 
been conducted on the evolution of conventions in an evolutionary frame­
work (for a survey of recent results see Berninghaus and Ehrhart, 2001), 
but we do not know of many in which the social network aspect has been 
considered as in Berninghaus et al. (2002). 

2 The Model 

2.1 Basic Aspects 

Almost all work on the evolution of conventions has been based on a highly 
stylized example of a 2-person coordination game the payoff table of which 
is given below. 
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X 
Y 

X 
(a, a) 
icb) 

Y 
(6,c) 
id,d) 

It is assumed that a,b^c,d G M and that X and Y are the only alterna­
tives the agents in the population can choose from when they are matched 
to play this symmetrical 2 x 2 game. Formally, this game is a normal 
form game G = {Ei,E2; -ffi(-),-ff2(-)} with identical strategy sets Si = 
E2 = {X,Y} and (symmetric) payoff functions Hi{'), that is, we have 
Hi{X, Y) = H2{Y, X), Because of symmetry this simple game can be com­
pletely characterized by its payoff matrix 

A = 

In order to characterize game G as a (symmetric) coordination game we 
have to assume 

a> c, d> b. 

This game has two pure strategy^ Nash-equilibria {X,X) and {Y,Y) 
which can be Pareto-ranked according to their payoff level. If a < d then the 
equilibrium (Y, Y) is called payoff-dominant. If the rationality of the play­
ers is common knowledge, each player would expect the opponent player 
to select the payoff superior equilibrium strategy, i.e. Y whenever they are 
matched and the convention "to choose F" would immediately be estab­
lished in the population. In this paper, we exclude common knowledge of 
rationality from our considerations. The populations we have in mind typ­
ically may be rather large and may be composed of people with different 
degree of rationality. In such a setting bounded rational behavior (charac­
terized by myopic optimization) is the appropriate behavioral assumption. 

Because of bounded rationality it is not quite clear which equilibrium 
strategy may be played if an agent is matched with a member in his refer­
ence group. If a player has absolutely no idea about his partner's strategy 
choice he might expect that X and Y axe played with a probability | each. 
Under this assumption it is more profitable to choose X when inequality 

1 1^ 1 1^ 
—a H—0 > —c H—a 
2 2 2 2 

holds which is equivalent to 

c> d-b. (1) 

În our paper we do not consider mixed strategy equilibria. 
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If inequality 1 holds, strategy combination (X, X) is called risk-dominant 
equilibrium (for more detailed information see Harsanyi and Selten, 1988). 

It is easy to see that there exist coordination games in which the risk-
dominant equilibrium is payoff inferior.^ Although risk-dominant equilibria 
may be payoff-inferior, a society in which perfect rationality is not common 
knowledge may get stuck with such unfavorable conventions. Even worse, in 
recent theoretical and experimental investigations (e.g., Kandori, Mailath, 
and Rob, 1993, Amir and Berninghaus, 1996, Berninghaus et al, 2002) it 
was shown that risk-dominant equilibria prove to be very attractive for 
strategy selection. In the following, we will further elaborate on this point. 

2,2 A Binary Formal Framework for the Evolution of Conventions 

We consider a finite population / = { 1 , . . . , n} of players. A local interac­
tion structure imposed on the population / is represented by the symmetric 
interaction matrix A = {ciij}ij with 

au = | j 
j is neighbor of i 

no connection between i and j 

for i ^ j and an = 0. Two different local interaction structures have been 
utilized in the literature up to now (see Ellison, 1993, Berninghaus and 
Schwalbe, 1996a): 

• The symmetric circular local interaction structure (with k right and 
left neighbors each). We illustrate this by a circle with population 
size n = 16 and neighborhood size N{i) = 4 

• the lattice local interaction structure (with 4 neighbors each, where 
one is situated to the right, one to the left, one on the top, and one 
on the bottom), see, for example, a lattice with n = 16 

^Consider, for example, a 2 x 2 game with a = 3,6 = 2, c = 0, and d = 4. This implies 
a-Od-bhut H{X,X) < H{Y,Y). 
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JUi € • 

We will generalize the results in Berninghaus and Schwalbe (1996a) 
by relaxing some restrictive assumptions and to get better insight into 
the dynamics of strategy choice. However, we will keep the behavioral 
assumption on myopic local best reply, i.e. we assume 

Assumption 1 Given a strategy configuration cr*""̂  G {X,Y}^ in period 
t — 1, then agent i will choose^ in period t 

where N{i) denotes the set of i ^s neighbors. 

Assumption 1 is commonly used in theoretical investigations on strategy 
choice of locally interacting agents. It simply says that agent i in period 
t will choose the strategy giving the larger expected payoff when played 
against his neighbor's strategies of the previous period. 

In order to simplify notation, in this section we use the convention to 
denote strategy X in the coordination base game by "1" and strategy Y 
by "0". Further, let us denote by N{i) the set of neighbors of agent i and 
let us denote by n̂  the number of players in N{i) choosing strategy 1 in a 
given period t — 1 then according to assumption 1 player i will choose 1 in 
period t if 

n, ̂ « + ( l 
Ui n, 6 > ^ ^ c + ( l ~ ni 

\N{i)\ ' \N{i)\ \N(i)\ 

holds which is equivalent to 

d-h 

\N{i)\' 

Ui > \N{i)\ 
a — c + d — b 

(2) 

(3) 

^Note, that we do not consider tie breaking rules. This can be justified by determining 
the payoffs values appropriately. 
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By defining bi := |iV(i)|^_^~^__^ and expressing the prevailing local 
interaction structure in the population by the matrix A the condition 3 
can be expressed as follows 

^ a y < T * - i > 6 , . (4) 

By defining the threshold function of player i by 

•^" 1 0 . . . EjCiij<T^-'<bi 

we can express the myopic behavior of an individual player by his threshold 
function 

fi-. a ^ {0,1} 

which associates with each strategy configuration a in the previous period 
a strategy ai G {0,1} in the coordination game that is played against all 
neighbors in the present period. 

We are interested in strategy configurations a which are stable with 
respect to myopic best reply. By adapting the Nash equilibrium concept 
to our particular situation we define a new equilibrium concept below. 

Definition 2 A strategy configuration a* is local Nash iff 

for any ai G {0,1}. 

Local Nash configurations are the natural candidates for conventions.^ 

Supposing that all players adapt their strategy choice in each period 
simultaneously'^, the global strategy adaptation can be formally described 
by the adaptation function 

F:=ift,...,fn): {0,1}" ^ { 0 , 1 } " . 

^Some authors use the concept of a convention in a more restrictive sense. They 
require the dynamic stability of local Nash configuration to be called convention. 

'̂ The term "simultaneous" should not be interpreted too literally. We only want to 
model a situation in which no player knows the strategy choice of his opponents in the 
same period. 
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We reduce the problem of simultaneous strategy adaptation to a well-
known problem in discrete dynamics: Given a starting strategy configura­
tion tj^, how will the iterates of the global strategy adaptation F^{a^) = 
F{F{.,,.{a^)) behave? Will the sequence of iterates converge to a fixed 
point or to a limit cycle? 

It can easily be seen that a fixed point of F(-) is a local Nash configu­
ration resp. a convention in the population. Some definitive answers to the 
questions can be found in the literature on threshold automata (e.g., Goles, 
1985, Fogelman, Goles and Weisbuch, 1983, Robert, 1986) and in the lit­
erature on Evolutionary Games (e.g., Berninghaus and Schwalbe, 1996a, 
1996b). Unfortunately, there is no general theory on the behavior of the 
iterates {F^} for arbitrary local interaction structures. However, for partic­
ular local interaction structures we completely know the behavior of global 
strategy adaptation which will be illustrated by the results below. We will 
consider three different types regular of local interaction structures A: 

a) The circular interaction structure with neighborhood size \N{i)\ = 2, 

/3) the circular interaction structure with neighborhood size |Ar(z)| = 4, 

7) the lattice interaction structure with von-Neumann neighborhoods, 
i.e. \N{i)\ = 4 (see the drawing above). 

For local interaction structures b) and c) the following assumption will turn 
out to be useful to determine strategy adaptation over time. 

Assumption 2 Given the 2'person coordination game (introduced in sub­
section 2.1) with payoffs a,b,c, and d. Then, the following inequality 

1 d-h 
- > 4 a — c-\-d — b 

holds. 

Essentially, assumption 2 sharpens the risk dominance of strategy 1. Ac­
cording to this assumption strategy 1 could be called strictly risk dominant 
The following result contains the main implications of this assumption. 

Result 1 Suppose assumption 2 holds, then player i will choose strategy 1 
if at least one player in his reference group (neighborhood) selects 1. 

Proof: a) According to inequality 3 the statement is true for local inter­
action structure a) irrespectively of assumption 2 since risk dominance of 
strategy 1 implies 

d-b 1 
1—r < T:-

a — c-\-d — b 2 
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b) For local interaction structures /3) and 7) the statement immediately 
follows from assumption 2 combined with inequality 3. 

q.e.d. 

Based on result 1 we conclude the following main result on dynamic 
strategy adaptation in our model. 

Result 2 a) Given any of the local interaction structures a) — 7). There 
exist only two fixed points cr* = ( 1 , 1 , . . . , 1) and cr** = (0 ,0 , . . . , 0). 

b) In local interaction structures a) and 7) with n odd and in local inter­
action structure (3) there do not exist limit cycles, 

c) For local interaction structures a) and 7) with n odd and for local inter­
action structure 0) the basins of attraction are 

B(<T*) = { 0 , i r - ( 0 , 0 , . . . , 0 ) , B ( a " ) = (0 ,0 , . . . , 0 ) . 

Proof: a) Suppose there exists a fixed point a of F{') that is different from 
(7* and cr**. Then, there exist at least two members i,j with j £ N{i) and 
^ ^ N{j) such that af = 1 and &j = 0. As myopic (local) best reply j will 
choose 1 in the following period which implies F{a) ^ a, i.e. a cannot be 
a fixed point of -F'(-). 

b) It is easy to see that the local interaction matrix A is primitive for the 
local interaction structures proposed in b), that is, there exists a. t < 00 
such that A* consists only of I's. Thus, we have A^a^ — ( 1 , 1 , . . . , ! ) for 
any a^ 7*̂  ( 0 ,0 , . . . , 0). There cannot exist a cycle. 

c) Follows directly from the primitivity of A and part b). 

q.e.d. 

Remarks: 1) In result 2 we omitted the case of local interaction structures 
a) and gamma) with n even because of space restriction. This case beside 
the fixed points a* and a** admits limit cycles with a particular basin of 
attraction. 

2) We should keep in mind that most results in our paper hold under 
assumption 2. Results may change drastically if this assumption is violated. 

Econoinic Interpretation: We conclude that risk-dominant conventions 
play a dominant role in strategy adaptation. This implies that there will 
be a strong tendency in a population to approach the inferior convention 
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even when risk dominant and payoff dominant conventions do not coincide. 
This may also explain why societies sometimes get stuck with an inferior 
solution of a coordination problem although it is completely clear that the 
situation might be improved by changing conventions.^ 

3 Experiments 

No experiments have been conducted on the evolution of conventions in the 
more Uteral sense of the word. However, among experimentally working so­
cial scientists the fact is agreed that conclusions about "evolution of conven­
tions" can be drawn from performing experiments with coordination games. 
Van Huyck, Battalio, and Beil (1990) initiated experiments with symmet­
ric n-person coordination games ("weakest-link games"). During the past 
decade their experiments have been repeated at various places with vary­
ing experimental design (see, for example, Berninghaus and Ehrhart, 1998, 
2001, Van Huyck, Battalio, and Beil, 1993). Another type of coordination 
experiments has been initiated by Cooper, De Jong, Forsythe, and Ross 
(1992a, 1992b). All these experiments were focused on populations with 
global interaction, i.e. each agent in the population either played against all 
other members of the population or at least had a chance to play against 
another population member who was selected randomly. It was a common 
feature of the results of all these experiments that risk dominance plays an 
important role in strategy selection. This was also supported by theoreti­
cal investigations on convention selection, in which it was shown that risk 
dominant equilibrium configurations have the largest basin of attraction 
(see for example, Berninghaus, 2003, Amir and Berninghaus, 1996). 

In this section, we will present experimental results on coordination 
games that are closely related to our theoretical considerations in the pre­
vious section. More precisely, we will present material on experiments on 
coordination games in populations with a given local interaction structure 
(see Berninghaus, Ehrhart, and Keser 2002). Again risk dominance turns 
out to be an important criterion for strategy selection. 

3.1 Experimental Results 

In this subsection we assume that each player is matched with the members 
of his reference group to play the bilateral 2 x 2 coordination game sequen­
tially. We here want to report on some experiments which were conducted 
at the University of Karlsruhe from 1996-1998. More detailed information 

®For an illustrative example consider a well known big software company producing 
operating systems. 
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on these experiments can be found in Berninghaus, Ehrhart, and Keser 
(1998, 2002). 

These experiments were organized as follows: The basic 2 x 2 coordina­
tion game was characterized by the following payoflF table. 

X 
Y 

X 
(80,80) 
(10,60) 

Y 
(60,10) 
(90,90) 

This game has two Nash-equilibria in pure strategies. Strategy combination 
(X, X) is the risk-dominant equilibrium and (y, Y) is the payoff-dominant 
equilibrium. 

We assume that a player who announces a particular strategy {X or Y) 
at the beginning of a period has to play this strategy sequentially against 
all members of his reference groups in the 2 x 2 one-shot coordination game. 
His per-period payoff is calculated as the average payoff gained by playing 
against each of his neighbors. In an experimental session, the respective 
game is played 20 times by the same population of players. After each 
repetition, each player is informed about the distribution of his neighbors' 
decisions in the previous round. A player's total payoff in a session is 
the sum of his period payoffs over all 20 rounds. Players know that their 
neighbors also interact with other neighbors and that the game ends af­
ter 20 rounds. However, they are not explicitly told the particular local 
interaction structure they live in. 

Interaction structures were supposed to be symmetric. More precisely, 
in the experiments three types of local interaction structures were studied. 

• Closed neighborhoods: In a closed neighborhood each player is sup­
posed to interact with each of the other players in the population. 
Thus, \N{i)\ = n — 1. For closed neighborhoods only populations of 
size n = 3 were considered. We introduced the closed neighborhood 
design to imitate global interaction in a small population. We chose 
the particular population size n = 3 to compare the results in pop­
ulations with global interaction with the results of so-called nearest 
neighbor interaction which in our design is characterized by a circular 
local interaction structure with neighborhood size |iV(i)| = 2. 

• Local interaction along a circle: n players were assigned around a cir­
cle. Each player only interacted with his |iV(i)| (local) neighbors on 
the circle, where ' ^^^ were located to the right and ' j ^̂  were lo­
cated to the left. In the experiments with circular local interaction 
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structure only neighborhood sizes of \N{i)\ = 2 and \N{i)\ = 4 were 
considered. 

Local interaction on a lattice: To play a four-neighbors-game (|iV(i)| 
= 4), sixteen players (n = 16) were distributed on a lattice. Each 
player interacted with his four (local) neighbors on the lattice, that 
is he interacted with his left, right, top and bottom neighbor. The 
players were assigned as illustrated below. Player 6, for example, had 
player 5 as his left neighbor, player 7 as his right neighbor, player 2 
as his top neighbor and player 10 as his bottom neighbor. Player 1, 
for example, had player 4 as his left neighbor, player 2 as his right 
neighbor, player 13 as his top neighbor and player 5 as his bottom 
neighbor. 

Experimental design: Lattice neighborhood structure 
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In this paper, we report on the experimental results of 4 different treat­
ments given in the table below (for more details see Berninghaus, Ehrhart 
and Keser, 2002). 

Four different neighborhood games (treatments) 

treatment 

AVG2GR0UP 

AVG2CIRCLE 

AVG4CIRCLE 

AVG4LATTICE 

mi)\ 

2 

2 

4 

4 

interaction structure 

closed 

circle 

circle 

lattice 

n 

3 

8 

16 

16 

# sessions 

(players/session) 

2(12) 

4(16) 

8(16) 

8(16) 

Treatments AVG2GR0UP and AVG2CIRCLE were designed in a way 
so that one could test whether subjects in populations with local inter­
action behave differently from subjects in global interaction populations. 
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Treatments AVG4CIRCLE and AVG4LATTICE were designed to investi­
gate differences in strategy selection which may be induced by different 
local interaction structures. By conducting our experiments we wanted to 
answer the following questions: 

1.) Does local interaction really matter? 

To answer this question we compare the results of treatments 
AVG2GR0UP and AVG2CIRCLE. We remind the reader that players in 
AVG2CIRCLE were distributed around a circle with a nearest-neighbor 
interaction structure. Locally, each player plays sequentially against 2 op­
ponents (members of his reference group). However, these opponents them­
selves play against other players in their reference groups. That is, globally 
each player plays against the whole population but only in an indirect way. 
In the AVG2GR0UP treatment each player interacts globally and locally 
as well as with 2 opponent players. In this treatment there is no indirect 
strategic information transmission. 

M 
M 

1" 
•.1 nni Innnpninnni 1 1 1 

^ 
iil 

Figure 1: Percentage of X-decisions in AVG2CIRCLE (n = 8, \N{i)\ = 2) 

Figure 2: Percentage of X-decisions in AVG2GR0UP (n = 3^ 

Comparing the percentage of X-decisions in closed neighborhoods with 
the percentage of X-decisions in circular neighborhood structures we see 
that the percentage of X-decisions in the circular neighborhood structure 
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is higher than in the closed neighborhoods.^ In treatment AVG2CIRCLE 
in each round we observe a higher percentage of X-decisions than in treat­
ment AVG2GR0UP, although this difference is not statistically significant 
(two-sided U-test, p-value of 0.194). We conclude that in the long run 
local interaction matters. Moreover, risk dominance seems to be a more 
important selection criterion in local interaction populations than in global 
interaction. ̂ ° 

In AVG2GR0UP all populations very quickly reached a Y-
equilibrium^^, 6 of them stayed there for the rest of the game. One pop­
ulation ended up in an X-equilibrium. In AVG2CIRCLE, 5 populations 
reached a y-equilibrium in early rounds, four of them stayed there for 
the rest of the game. Two of the 3 populations that did not reach a F-
equilibrium reached an X-equilibrium towards the end of the game. 

2.) Does local interaction structure matter? 

For reference groups with four members, we compare the circle (AVG4-
CIRCLE) and the lattice structure (AVG4LATTICE). In both games, sub­
jects were given exactly the same instructions which contained information 
about the number of neighbors, but not about the specific type of interac­
tion structure. 

Figure 3: Percentage of X-decisions in AVG4CIRCLE (n = 16, \N(i)\ = 4) 

Figures 3 and 4 show the percentage of X-decisions over all 20 rounds 

^The x^-test shows that in the first round the percentage of X-decisions in the open 
neighborhoods is not significantly different from the percentage of X-decisions in the 
closed neighborhoods (at a significance level of 5%). 

^^In Berninghaus, Ehrhart, and Keser (1998) similar experiments were conducted with 
different payoff functions. In these experiments, the per-period payoff of a player was 
defined as the minimum payoff a player could get from the opponents in his reference 
group. The experimental results under this particular design showed a significantly 
higher role of risk dominance in strategy selection than in AVG2CIRCLE. 

^^A Y- resp. X-equilibrium is a strategy configuration in which all players of the 
population choose Y resp. X. 
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Figure 4: Percentage of X-decisions in AVG4LATTICE (n = 16, \N{i)\ = A) 

in both treatments. In all rounds in game AVG4LATTICE, we observe a 
higher percentage of X-decisions than in game AVG4CIRCLE. In the first 
round, the difference is not statistically significant (x^-test). However, we 
observe a significant difference over all 20 rounds (two-sided U-test). We 
conclude that, everything else being equal, it matters whether players are 
distributed around a circle or on a lattice. 

In game AVG4CIRCLE, four populations reached a V-equilibrium, and 
1 population reached an X-equilibrium at the very end of the game. In 
game AVG4LATTICE, only one population reached a y-equilibrium, but 
5 populations reached an X-equiUbrium. Three of the 5 populations that 
reached an X-equilibrium stayed there until the end of the game. No 
population ever reached an equilibrium in which some players choose X 
and others choose Y. 

Why was there a significant difference between the results of treatment 
AVG4CIRCLE and treatment AVG4LATTICE although the subjects were 
confronted with exactly the same experimental instructions? Our theo­
retical results in the previous section which are based on local best-reply 
behavior do not give an explanation of this phenomenon either. Instead of 
trying to find a theoretical ad-hoc model which may imply a satisfactory 
explanation of our experimental findings we study three different logit mod­
els as a pre-study for a theoretical model of behavior. These models were 
examined for the first time in Berninghaus, Ehrhart, and Keser (2002). A 
brief summary of these results is given below. 

3.2 Logit Regressions 

The first model is based on the simple assumption of local best reply to the 
observed distribution of one's neighbors' choices in the previous round. The 
second model additionally takes into consideration the player's own previ­
ous choice. In the third model, the average number of observed changes 
in the distribution of the neighbors' choices is incorporated. Although we 
can observe that the subjects' average response behavior usually changes 
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during the duration of the decision process, for the sake of simpUcity, we 
consider only one decision rule for all periods. Let n denote the probability 
of choosing X, and (1 — TT) the probability of choosing Y. According to the 
logit hypothesis the probability of choosing X is given by 

TT = F(x'/3) 
l + e-^'/5' 

where x denotes the vector of explanatory variables and /3 the vector of 
coefficients. The maximum likelihood estimates of all coefficients are pre­
sented in Table 2 below. For each game and each model the overall-F-test 
and the t-test for each estimator is calculated. Each test shows a signifi­
cant result. Also, the calculated multiple correlation coefficients show high 
values, which increase from model 1 up to model 3. We infer from this that 
the data are well organized by the non-linear regression models and that 
the data are better described by a model with a higher number than by a 
model with a smaller number of parameters. 

Model 1: / n ( ^ i ^ ) =x ' /3 = /3o + i8iXi, 

where xi denotes the number of neighbors who selected X in the previous 
round. 

The estimators of /3i turned out to be significantly positive. That is, the 
probability for choosing X increases with the number of neighbors choosing 
X in the previous period. The estimated probabilities for choosing strategy 
X contingent on the distribution of the neighbors' choices are given later 
on. 

Model 2: In {xT^) = x'P = /3o + /3ixi + /32X2, 

where xi denotes the number of neighbors who selected X in the previous 
period, and X2 is a variable equal to 1 if the player's own choice was X in 
the previous round and equal to 0 if it was Y, 

The estimators of ySi and /32 were significantly positive. As in model 1, 
we conclude that the probability for choosing X increases with the number 
of neighbors choosing X in the previous period as well as if the player's 
choice was X in the previous period. 

Model 3: In ( r r ^ ) = ^'^ = ^0 + '^l^l + ^̂ 2X2 + /33^3, 
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where xi again denotes the number of neighbors who chose X in the pre­
vious round, X2 is a variable with value 1 if the player's own choice was 
X in the previous round and with value 0 if it was Y, and xs denotes the 
average frequency of observed changes in the distribution of the neighbors' 
choices over all previous rounds. 

Model 3 was estimated only for treatments AVG4CIRCLE and AVG4-
LATTICE. Subjects in these treatments switch strategies very often. The 
estimators of Pi, /32, and (3s turned out to be significantly positive. Prom 
the significant positive estimate of fSs in both games we conclude that 
subjects tend to choose the risk-dominant X rather than the more risky 
but payoff-superior alternative Y if they have observed a lot of changes in 
their neighbors' choices in the previous periods. 

By this observation we may explain the higher percentage of X-choices 
on the lattice than around the circle. In treatment AVG4LATTICE we ob­
serve more individual decision changes than in treatment AVG4CIRCLE. 
The frequencies of decision changes were 10.9 percent in AVG4CIRCLE 
and 14.1 percent in AVG4LATTICE.^^ Also, the frequencies of changes in 
the distribution of the neighbors' decisions that an individual player ob­
serves during the course of play differ significantly (difference test): 28.2 
percent in AVG4CIRCLE and 38.3 Percent in AVG4LATTICE. This dif­
ference together with the observation, that the subjects tend to react on 
changes in their neighbors' choices by choosing X (see model 3), may give 
us an interesting explanation for the higher frequency of X-choices on the 
lattice than around the circle. 

This result, however, raises another question: Although subjects had 
the same instruction sheets in the two treatments, and according to Table 
2 used (approximately) the same decision rule, why do they behave differ­
ently? Why do subjects change their decisions more often when they are 
arranged on a lattice rather than on a circle? Obviously, this difference in 
behavior has to be traced back to the difference in interaction structures. 

As a first approach, simulations were run (see Berninghaus, Ehrhart, 
and Keser, 2002) with the probabilistic history-dependent decision rules 
derived from model 3. For both games we use the same set of param­
eters derived from the estimated parameters of model 3 shown in Table 
2. The initial probability to choose X was supposed to be 50 percent, 
which was approximately equal to the observed frequency of X-choices in 
both treatments. With each interaction structure one million 20-period-
simulations were calculated. The results of the simulations are shown in 
Table 1. With the results of these simulations one can reproduce the ob-

^^The difference is significant (difference test). 
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served differences in experiments. In AVG4CIRCLE the average frequency 
of decision changes is 12.1 percent and in game AVG4LATTICE 18.0 per­
cent. Although these values are a little bit higher than the observed values 
10.9 and 14.1 percent, the simulations reproduced higher values for the 
game AVG4LATTICE than for the game AVG4CIRCLE. The same con­
clusion holds for the frequencies of the observed changes in the distribution 
of the neighbors' decisions. The simulations reproduced higher values for 
AVG4LATTICE than for AVG4CIRCLE: 38.3 and 28.2 percent in the ex­
periment and 41.1 and 25.1 percent in the simulations. Because we use 
the same individual decision rule, these diflFerences must be caused by the 
different local interaction structures. 

Table 1: Simulations: Conditions and results 
CONDITIONS 

TVeatments 
Decision rule 

Initial decision 
Number of simulations 

AVG4CIRCLE and AVG4LATTICE 
Model 3 with Po = -4.0, /3i = 1.5, /h = 2.0, /Bs = 0.7 
Prob. for X in the first round = 50% 
1 mill. 20-period simulations with each treatment 

RESULTS 
Treatments 

Frequency of decision changes 
FVequency of changes in the 

distribution of neighbors' decisions 
Percentage of X-decisions 

AVG4CIRCLE 
Simulation 

12.1 
25.1 

50.7 

Experiment 
10.9 
28.2 

34.1 

AVG4LATTICE 
Simulation 

18.0 
41.1 

64.8 

Experiment 
14.1 
38.3 

61.1 

The simulations exactly reproduced what we observed in the experi­
ments: The average number of X-decisions in a local interaction design on 
a lattice was higher than in circular interactions. Prom this we conclude, 
that the observed differences in strategy choice between AVG4CIRCLE 
and AVG4LATTICE are generated exclusively by the particular interac­
tion structure. 
R: Multiple correlation coefficient 
DF: Degrees of freedom 
F-Value: Value of the F-statistic of the overall-F-test^^ 
Pk ' Estimator of coefficient 0k 
t-value: Value of the t-statistic 

Summarizing, experimental evidence drastically demonstrates that local 

•"^^Goodness of fit test. 
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Treatment 

AVG4CIRCLE 

AVG4LATTICE 

Table 2: Logit 

R 

0.847 

0.796 

DF 
F-Vadue 

2428 
2053.2 
2428 

1397.7 

regressions for model 3 

Po 
(t-value) 

-4.42 
(-21.2) 
-3.43 

(-19.9) 

01 
(t-value) 

1.62 
(20.5) 
1.11 

(20.6) 

02 
(t-value) 

1.98 
(18.0) 
2.17 

(20.8) 

373 

(t-value) 
0.78 
(3.5) 
0.65 
(3.3) 

interaction structures imposed on a population have a strong influence on 
equilibrium selection in coordination games. Again risk-dominance is an 
important criterion for strategy selection in coordination games. Imposing 
different local interaction structures on a population may specify these 
results further. 

Although the experimental results of this section have shed some new 
light on the coordination problem in populations we are far from being able 
to give satisfactory explanations for these results. We explained the ten­
dency of players in AVG4LATTICE to prefer the risk-dominant equilibrium 
by the observed behavior that players in this treatment switched strategies 
more often in each period than in treatment AVG4CIRCLE. But why do 
players switch strategies more often in a circular interaction structure than 
in a lattice interaction structure? Much more theoretical and experimental 
research needs to be done before we can give a satisfactory answer to such 
questions. 

4 Conclusions 

We regard our paper as a first step in explaining the evolution of con­
ventions in a local interaction framework. Naturally, our model still has 
to be generalized into various directions. Concerning the theoretical part 
of our paper, one could first extend the model of matching players from 
simple 2-person to more general n-person basic games. Even asymmetric 
basic games could be considered. Second, we saw that a general model of 
dynamic strategy adaptation is still missing. Our results still depend on 
the assumption of an odd or even population size or on particular assump­
tions of the numerical proportions of the players' payoffs. Third, one could 
consider more general local interaction structures. Most researchers in this 
field used the circular or lattice interaction structures. The paper by Ost-
mann and Saboya (1999) indicates an interesting way of how to escape from 
these simplified models. Finally, the myopic (local) best-reply assumption 
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on individual behavior could be substituted by other behavioral rules, as 
for example, imitation or a more sophisticated type of behavior which has 
been empirically supported by our experiments.^^ 

Concerning the experimental part of our paper we think of the following 
generalizations. First, one should get rid of the simple 2 x 2 coordination 
games. Sometimes subjects in our experiments seemed to be bored play­
ing such simple games for many rounds. Basic coordination games with 
asymmetric Nash-equilibria may be a first step. Maybe one should even 
extend the concept of a convention to a more general framework. For ex­
ample, choosing a particular bidding rule in an auction may constitute a 
convention in a population. Experiments with such basic games may be 
difficult to design. Maybe one could take account of the experience that 
has already been gained in auction experiments. Second, the assumption 
of fixed interaction structures in experiments should be relaxed. Subjects 
in each period should have to choose not only a particular strategy in a 
basic coordination game but also a reference group in which they want 
to play for the next periods.^^ As a preliminary study to this topic one 
could consider experiments on pure "network formation". In this type of 
experiments subjects can open or sever connections with other members 
of the population. By opening connections, subjects collect profits which 
may be reduced by connection costs players have to pay for opening and/or 
maintaining a connection. In the experiments, one is interested which type 
of networks will result when subjects are allowed to choose their neighbors. 
Recent experimental results show (see for example, Plott and Callander, 
2005, Falk and Kosfeld, 2004, Berninghaus, Ehrhart, Ott and Vogt, 2004) 
that strict Nash-networks axe focal points for network formation. Based 
on the experimental design which has proven to be appropriate in pure 
network formation experiments we plan to extend these experiments to in­
corporate strategy selection in coordination games when matched pair-wise 
with their partners chosen in the network formation game. 

Finally, one should question whether the experimental design described 
in section 3 is appropriate to capture the idea of evolution. Either one 
should repeat the experiments for many more periods (than 20 rounds) or 
one should apply the method of "(almost) continuous time experimenta­
tion" which was developed in Berninghaus, Ehrhart and Keser (1999) or in 
Berninghaus and Ehrhart (2003). In an (almost) continuous time design 
subjects seem to experiment with strategies and switch strategies much 
more often than in discrete time experimentation. In some way this seems 

^^Some more detailed ideas on this type may be found in Berninghaus and Schwalbe 
(1996b). 

^^Experimental work on this topic has been done by Corbae and Duffie (2004). 
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to mimick the evolutionary adaptation of strategy choices in a population 
of players. Moreover, in the (almost) continuous time experiments subjects 
are allowed to take an action at any time during a given time interval, 
which essentially implies that subjects decide sequentially. When deciding 
about the neighbors and strategy choice in a 2-person coordination game 
it may be easier for a subject to solve this decision problem in an (almost) 
continuous time design. 
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1 Introduction 

Until very recently, it has been believed that banks are exposed to two main 
types of risks: credit risk (the counterparty failure risk) and market risk 
(the risk of loss due to changes in market indicators, such as interest rates 
and exchange rates), in the order of importance. The remaining financial 
risks have been put in the category of other risks, operational risk being 
one of them. Recent developments in the financial industry have shown 
that the importance of operational risk has been largely under-estimated. 
Newly defined capital requirements set by the Basel Committee for Banking 
Supervision in 2004, require financial institutions to estimate the capital 
charge to cover their operational losses [6]. 

This paper is organized as follows. In Section 2 we give the definition 
of operational risk and describe the eflFect of the recent developments in 
the global financial industry on banks' exposures to operational risk. The 
following section. Section 3, will briefly outline the recent requirements 
set by the Basel Committee regarding the capital charge for operational 
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risk. After that we proceed to Section 4 that presents several alternative 
models that can be used for operational risk modeling. In Section 5 the 
class of heavy-tailed aStable distributions and their extensions are defined 
and reviewed. Section 6 consists of the empirical analysis with real opera­
tional risk data. Finally, Section 7 summarizes the findings and discusses 
directions for future work. 

2 Definition of Operational Risk in Finance 

Operational risk has been recently defined as *the risk of loss resulting 
from inadequate or failed internal processes, people and systems or from 
external events' [4]. Examples include losses resulting from deliberate or 
accidental accounting errors, equipment failures, credit card fraud, tax non­
compliance, unauthorized trading activities, business disruptions due to 
natural disasters and vandalism. Operational risk affects the soundness 
and efiiciency of all banking activities. 

Until recently, the importance of operational risk has been highly under­
estimated by the banking industry. The losses due to operational risk has 
been largely viewed as unsubstantial in magnitude, with a minor impact 
on the banking decision-making and capital allocation. However, increased 
investors' appetites have led to significant changes in the global financial 
industry during the last couple of decades - globalization and deregula­
tion, accelerated technological innovation and revolutionary advances in 
the information network, and increase in the scope of financial services and 
products. These have caused significant changes in banks' risk profiles, 
making banks more vulnerable to various sources of risk. These changes 
have also brought the operational risk to the center of attention of financial 
regulators and practitioners. 

A number of large-scale (exceeding $1 billion in value) operational losses, 
involving high-profile financial institutions, have shaken the global financial 
industry in the past two decades: BCCI (1991), Orange Country (1994), 
Barings Bank (1995), Daiwa Bank (1995), NatWest (1997), Allied Irish 
Banks (2002), the Enron scandal (2004), among others. 

3 Capital Requirements for Operational Risk 

The Basel Committee for Banking Supervision (BCBS) has brought into 
focus the importance of operational risk in 1998 [2], and since 2001 bank 
regulators have been working on developing capital-based counter-measures 
to protect the global banking industry against the risk of operational losses 
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- that have demonstrated to possess a substantial, and at times vital, dan­
ger to banks. It has been agreed to include operational risk into the scope 
of financial risks for which the regulatory capital charge should be set [3]. 
Currently in progress is the process of developing models for the quanti­
tative assessment of operational risk, to be used for measuring the capital 
charge. 

The Basel Capital Accord (Basel II) has been finalized in June 2004 [6]. 
It explains the guidelines for financial institutions regarding the capital re­
quirements for credit, market and operational risks (Pillar I), the framework 
for the supervisory capital assessment scheme (Pillar II), and the market 
discipline principles (Pillar III). Under the first Pillar, several approaches 
have been proposed for the estimation of the regulatory capital charge. 
Bank is allowed to adopt one of the approaches, dependent upon fulfill­
ment of a number of quantitative and qualitative requirements. The Basic 
Indicator Approach (that takes the capital charge to be a fixed fraction 
of the bank's gross income) and the Standardized Approach (under which 
the capital charge is a sum of fixed proportions of the gross incomes across 
all business lines) are the 'top-down' approaches, since the capital charge 
is determined 'from above' by the regulators; the Advanced Measurement 
Approaches (that involve the exact form of the loss data distributions) are 
the 'bottom-up' approaches, since the capital charge is determined 'from 
below', being driven by individual bank's internal loss data history and 
practices. 

3.1 Loss Distribution Approach 

The Loss Distribution Approach (LDA) is one of the proposed Advanced 
Measurement Approaches. It makes use of the exact operational loss fre­
quency and severity distributions. A necessary requirement for banks to 
adopt this approach is an extensive internal database. 

In the LDA, all bank's activities are classified into a matrix of 'busi­
ness lines/event type' combinations. Then, for each combination, using 
the internal loss data the bank estimates two distributions: (1) the loss 
frequency and (2) severity. Based on these two estimated distributions, 
the bank computes the probability distribution function of the cumulative 
operational loss. The operational capital charge is computed as the simple 
sum of the one-year Value-at-Risk (VaR) measure (with confidence level 
such as 99.9%) for each 'business line/ event type' pair. The capital charge 
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for a general case (8 business lines and 7 event types) can be expressed as:^ 

KLDA = EEVaR,fc. (3.1) 
j=l k=l 

where K L Q ^ is the one-year capital charge under the LDA, and VaR is 
the Value-at-Risk risk measure,^ for a one-year holding period and high 
confidence level (such as 99.9%), based on the aggregated loss distribution, 
for each 'business line/event type' jk combination. 

4 Aggregated Stochastic Models for Operational Risk 

Following the guidelines of the Basel Committee, the aggregated opera­
tional loss process can be modeled by a random sum model, in which the 
summands are composed of random amounts, and the number of such sum-
mands is also a random process. The compound loss process is hence as­
sumed to follow a stochastic process {St}t>o expressed by the following 
equation: 

Nt 

St = Y,Xk, Xk'^F^, (4.1) 
A:=0 

in which the loss magnitudes (severities) are described by the random in­
dependently and identically distributed (iid) sequence {Xk} assumed to 
follow the distribution function (cdf) F^ that belong to a parametric fam­
ily of continuous probability distributions, and the density /y, and the 
counting process Nt is assumed to follow a discrete counting process. To 
avoid the possibility of negative losses, it is natural to restrict the support 
of the severity distribution to the positive half-line R>o. Representation 
(4.1) generally assumes (and we also use this assumption) independence be­
tween the frequency and severity distributions. The cdf of the compound 

^Such representation perfect correlation between different 'business lines/ event type' 
combinations. Ignoring possible dependence structures within the banking business lines' 
and event type profiles may result in overestimation of the capital charge under the 
LDA approach. The latest Basel II proposal suggested to take into account possible 
dependencies in the model [6]. Relevant models would involve using techniques such as 
copulas (see for example numerous works by McNeil and Embrechts on the discussion 
of copulas), but this is outside the scope of this paper. 

^VaR^t, i - a is the risk measure that determines the highest amount of loss that 
one can expect to lose over a pre-determined time interval (or holding period) At at a 
pre-specified confidence level 1 — a. Detailed analysis of VaR models can be found in 
[111-
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process is given by: 

P{St <s) = { (4.2) 
I P{Nt = 0) 5 = 0, 

where F^* denotes the n-fold convolution with itself. 
We summarize the basic properties of such compound process by the 

expressions for the mean and variance:^ 

Mean: ESt = ENt • EX, 
(4.3) 

Variance: YSt =ENt-YX-{-YNt - (EX)'^, 

The upper (right) tail behavior has a simple expression for the special 
case when X belongs to the class of sub-exponential distributions, X ^ 5 , 
such as Lognormal, Pareto or the heavy-tailed Weibull. Then the upper 
tail of the compound process can asymptotically be approximated by (see 
e.g. [10]): 

Right tail: P{St > s) (x ENt • P{X > s), s-^ oo. (4.4) 

4-1 Compound Homogeneous Poisson Process 

A stochastic process of the form (4.1) and Nt following a Poisson process 
with a fixed intensity lambda (A) is called a compound homogeneous Poisson 
process. It assumes a fixed intensity of the number of loss events in a unit of 
time. Incorporating the probability mass function of a Poisson distribution 
into the basic model of Equation (4.2), the cdf of the compound process 
becomes: 

P ( 5 . <s) = { ^ " = ^ "' • (4.5) 
V'e -̂ ^ 
n! 

o-At 

• i=T*(«) s > 0 

s = 0. 

The basic properties of a compound Poisson process can be summarized 
using Equations (4.3) and (4.4) as follows: 

Mean: ESt = At • EX, 

Variance: YSt = At • VX -f At • {EXf, (4.6) 

Right tail: P{St > s) (x Xt - P{X > 5), 5 -> 00, X ^ 5 . 

^Of course, this requires the existence of the first and second raw moments of the loss 
severity distribution. 
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The mean of the Poisson distribution is the parameter lambda, which is 
estimated via Maximum LikeUhood as the simple arithmetic mean number 
of events in a unit of time. A number of tests exist to test the Poisson 
assumption. A common formal test is the Chi-square test. If the model 
is rejected, then one should consider a more complex alternative model. 
Next, we briefly review some of them. 

4.2 Compound Cox Process 

The compound homogeneous Poisson process, discussed earlier, is based 
on the counting process that is characterized by a fixed intensity lambda. 
We now relax this assumption. In real life sometimes there are reasons to 
believe that flow of loss events is often chaotic in nature, and occurrence at 
each fixed time interval is inhomogeneous and not easily predictable. The 
compound Cox process, also known in literature as the doubly stochastic 
compound Poisson process, involves a non-constant (or non-homogeneous) 
form of the intensity factor of the Poisson component of the model. The 
associated Poisson process is said to be controlled by the random measure 
A{t) = /Q X{s)ds. A number of scenarios can be considered. 

Example 1. The intensity is a random variable, that follows a distribu­
tion function, discrete or continuous: X{t) ^ C. For example, A may take 
two values Ai and A2 with probabilities a and 1 — a, respectively. Another 
example is a Poisson process with intensity A that follows a two-parameter 
Gamma distribution. Such counting model is known as a Negative-
Binomial model. Such counting models are often called mixed Poisson 
models. The basic properties of compound mixed Poisson processes are 
dependent on the distribution of the underlying intensity process. Let fxx 
and al denote the expectation and variance of A. Then 

Mean: ESt = yL\t • EX, 

Variance: NSt = fixt • YX + {fixt + t^al) - (EX)^, (4.7) 

Right tail: P{St > s) oc fixt - P{X > s), 5 - * 00, X r^ S. 

Example 2. The intensity is of form X{t) and is dependent on time. The 
associated cumulative intensity is of form A(t), a positive non-decreasing 
process. Here, one example would be a deterministic process that fits the 
number of losses per unit of time, examined over a prolonged time interval. 
Another scenario would incorporate a random component into the model. 
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Here, Brownian Motion and other stochastic models can be of use. Given 
a particular value of the intensity, the conditional compound Cox process 
coincides with the compound homogeneous Poisson Process and preserves 
the properties. 

4.3 Renewal Process 

Another approach to aggregate losses occurring at random times would 
be to consider looking at the inter-arrival times, instead of the number 
of arrivals, in a fixed time interval. Such models are called the renewal 
models, A Poisson counting process implies that the inter-arrival times 
between the loss events are distributed as an Exponential random variable 
with mean 1/A. This assumption on the distribution of the inter-arrival 
times can be relaxed, and a wider class of distributions can be fitted to the 
loss inter-arrival times data. 

An excellent reference on random sum models and applications to fi­
nancial data is [1]. 

4.4 Aggregated Model for Left-Truncated Loss Data 

In the operational loss modeling, one should be careful to possible rules 
that banks follow in recording their internal loss data into the databases. 
For example, a reality that is often neglected in practical models, is that 
banks record the losses beginning from a minimum collection threshold of 
$5,000-$10,000. In the external databases the threshold is even higher -
$1,000,000. Hence, the recorded (and observed) loss data is left-truncated, 
and the associated frequency is below the complete-data frequency. This 
has direct implication on the model specification. Correctly specifying the 
model for the truncated data, we arrive at the following expressions of the 
loss severity and frequency probability density/mass functions (pdf/pmf) 
(gissuming, for simplicity, a simple homogeneous Poisson counting process): 

Severity pdf: f^{x \ x > u) = 
[ 0 if X <u, (4.8) 

Frequency pmf: P{Nt = n) = ^ ^ ^ 

where u is the threshold level, F^{u) = 1 — Ky(u), A is the complete-data 
frequency parameter, A = A • F^{u) is the truncated data frequency pa­
rameter, and Nt is the counting process for the number of losses exceeding 
u. 
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In application to operational risk, the truncated compound Poisson 
model has been introduced and studied in [8]. Further studies include 
[7], [12]. 

5 Pareto aStable Distributions 

A wide class of distributions that appear highly suitable for modeling op­
erational losses is the class of aStable (or Pareto Stable) distributions. 
Although no closed-form density form (in the general case) poses difficul­
ties in the estimations, aStable distributions possess a number of attractive 
features that make them relevant in applications to a variety of financial 
models. An excellent reference on aStable is [14]. A profound discussion 
of applications to the financial data can be found in [13]. We now review 
the definition and basic properties. 

5,1 Definition of an aStable Random Variable 

A random variable X is said to follow an aStable distribution - we use the 
notation X ~ S'a(cr, /3, /x) - if for any n > 2, there exist Cn> 0 and Dn ^^ 
such that 

= CnX + Dn, (5.1) 

where X^, k = l ,2, . . . ,n are iid copies of X. The stability property is 
governed by the constant Cn = n^/", 0 < a < 2. The stability property is 
a useful and convenient property, and dictates that the distributional form 
of the variable is preserved under affine transformations, a = 2 corresponds 
to the Gaussian case. 0 < a < 2 refers to the non-Gaussian case. When 
we refer to a Sa (^, Z?? M) distribution, we mean the latter case. References 
on the Sa{o;l3,iJ>) distributions and properties include [14], [13]. 

5.2 Key characteristics of an aStable Random Variable 

For the Sa{o'^/3^fJL) random variables, the closed form density exists only 
for Gaussian (a = 2), Cauchy (a = l,/3 = 0) and Levy (a = 1/2,(3 = 
±1) densities. For the general case, the distribution is expressed by its 
characteristic function that takes the form: 

exp (—|o-?x|̂ (l — ip{signu) tan ^ ) + ifjiu), a 7»̂  1 
Eê ^^ = { (5.2) 

exp (—cr|7x|(l + i/3^{signu) In \u\) + iiJiu) , a = 1 
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The four parameters'* defining the 5a(cr,^,/x) distribution are: 

a, the index of stabiHty: a € (0, 2); 

/3, the skewness parameter: /? € [—1, 1]; 

a, the scale parameter: a G R-i-; 

/i, the location parameter: ^£^. 

Because of the four parameters, the distribution is highly flexible and suit­
able for fitting to the data which is non-symmetric (skewed) and possesses 
a high peak (kurtosis) and heavy tails. The heaviness of tails is driven by 
the power tail decay property (see next). 

We briefly present the basic properties of the 5a(cr,^,/i) distribution. 
Let X r^ Saicr,/?, M) with a < 2, then 

_ f /x if a > 1 

1 CO otherwise, 
Mean: EX 

I CO otherwise, 
(5.3) 

Variance: YX = oo (no second moment). 

Tail: -P(l-X l̂ > a:) oc const • x~", x —> oo (power tail decay). 

5.3 Useful Transformations of Pareto Stable Random Variables 

For a > 1 01 \/3\ < 1, the support of 5a(cr,/3,/i) distribution equals the 
whole real line, and is useful for modeling data that can take negative and 
positive values. It would be unwise to directly apply this distribution to 
the operational loss data, because it takes only positive values. We suggest 
to use the following three transformations of the random variable to which 
the Stable law can be applied. 

5.3.1 Symmetric aStable Random Variable 

A random variable X is said to follow the symmetric aStable distribution, 
i.e. X ~ 5 a 5 , if the Saio'^P^/Ji) distribution is symmetric and centered 
around zero. Then there are only two parameters that need to be estimated, 
a and cr, and the remaining two are ^, /x = 0. 

^The parametrization of aStable laws is not unique. The presented one has been 
propagated by Samorodnitsky and Taqqu [14]. An overview of the different approaches 
can be found in [15]. 
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To apply SaS distribution to the operational loss severity data, one can 
do a simple transformation to the original data set: Y = [—-X"; X], The 
resulting random variable Y is then symmetric around zero: 

fYiy) = 9{y), 9^Sa{(T,o,o) 
(5.4) 

x = \yl a G ( 0 , 2 ) , a > 0. 

5.3.2 log-aStable Random Variable 

It is often convenient to work with the natural log transformation of the 
original data. A typical example is the Lognormal distribution: if X follows 
a Lognormal distribution, then logX follows a Normal distribution with 
the same location and scale parameters /x and a. The same procedure 
can be applied here. A random variable X is said to follow a log-aStable 
distribution, i.e. X ~ log5a(cr,/3,/x), if 

fx{x) = ^ ^ 9GSa{a,P,ii) 
(5.5) 

X > 0, a E (0,2), p G [-1,1], a, /x > 0. 

Fitting log Saicr, /?, /x) distribution to data is appropriate when there is rea­
son to believe that the data is very heavy-tailed, and the regular Sa{(^, /?, M) 
distribution may not capture the heaviness in the tails. 

5.3.3 Truncated aStable Random Variable 

Another scenario would involve a restriction on the density, rather than 
a transformation of the original data set. The support of the 5a(<T,/3,/x) 
distribution can be restricted to the positive half-line, and the estimation 
part would involve fitting a truncated Stable distribution of the form: 

(5.6) 
where Ia;>o 

_ r 1 if X > 0 

*~ \ 0 if x<0, 

where g{x) G 5a(cr,/3,/x), and G(0) denotes the cdf of the Sa{o',P,fJ') dis­
tribution at zero. Fitting the left-truncated Stable distribution to the data 
means fitting the right tail of the distribution. 
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6 Empirical Examination of Operational Loss Data 

In the previous sections we discussed the models that can be used to model 
operational losses. Choosing the right methodology is crucial for accurately 
estimating the operational risk regulatory capital charge. In addition, un­
derstanding the structure of the underlying model that drives the process 
of the occurrences and severity of the losses is vital for the sound risk man­
agement practices and control. In this section we examine the operational 
loss data and derive conclusions regarding the loss distributions that would 
be appropriate for modeling the data. We will in particular focus on the 
loss severity data. 

6.1 Results of Basel Committee Loss Data Collection Exercise 

In 2002 the Risk Management Group of the BCBS carried out an Op­
erational Loss Data Collection Excercise (OLDC) (also called the third 
Quantitative Impact Study (QIS3)) aimed at examining various aspects of 
banks' internal operational loss data [5]. Banks activities were broadly di­
vided into eight business lines and seven loss event types (see Figure 1 for 
the full list of business lines and event types). Figure 1 demonstrates the 
severity of losses (i.e. loss amount) and the frequency of losses (i.e. number 
of losses) by business lines and event types, as a percentage of total. The 
results axe based on the one year of loss data (collected in 2001) provided 
by 89 participant banks. 

The results of the data collection exercise demonstrate a rough pic­
ture for the non-uniform nature of the distribution of loss amounts and 
frequency across various business lines and event types. The results also 
suggested that the losses are highly right-skewed and have a heavy right 
tail (i.e. the total loss amounts are highly driven by the high-magnitude 
'tail events') [5]. For example, the Commercial Banking business line in­
cludes losses of a relatively low frequency (roughly 7% of total) but the 
second highest severity (roughly 35% of total). As for the losses classified 
by event type, the losses in the Damage to Physical Assets category (such 
as losses due to natural disasters) account for less than 1% of the total 
number of losses, but almost 30% of the aggregate amount. In particular, 
the 'retail banking/ external fraud' and 'commercial banking/ damage to 
physical assets' combinations account for over 10% of the total loss amount 
each, with the first pair accounting for 38% and the second for merely 0.1% 
of the total number of loss events [5]. 
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Figure 1: Percentage Frequency and Severity of Operational Losses across Busi­
ness Lines and Event Types 
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6.2 Analysis of 1980-2002 External Operational Loss Data 

In this section we fit various distributions to the operational risk data, ob­
tained from a major European operational loss data provider. The external 
database is comprised of operational loss events throughout the world. The 
original loss data cover losses in the period 1950-2002. As discussed earlier, 
the data in external databases are subject to minimum recording thresh­
olds of $1 million. A few recorded data points were below $1 million in 
nominal value, so we excluded them from the dataset. Furthermore, we 
excluded the observations before 1980 because of relatively few data points 
available (which is most likely due to poor data recording practices). The 
final dataset for the analysis covered losses in US dollars for the time period 
between 1980 and 2002. It consists of five types of losses: "Relationship" 
(such as events related to legal issues, negligence and sales-related fraud), 
"Human" (such as events related to employee errors, physical injury and 
internal fraud), "Processes" (such as events related to business errors, su­
pervision, security and transactions), "Technology" (such as events related 
to technology and computer failure and telecommunications) and "Exter­
nal" (such as events related to natural and man-made disasters and ex­
ternal fraud). The loss amounts have been adjusted for inflation using 
the Consumer Price Index from the U.S. Department of Labor. The num­
bers of data points of each of the "Relationship", "Human", "Processes", 
"Technology", and "External" types are n = 849, 813, 325, 67, and 233, re­
spectively. Figure 2 presents the histograms for the five loss types of data. 
The histograms (the horizontal axis covers the entire range of the data) 
indicate the leptokurtic nature of the data: a very high peak is observed 
close to zero, and an extended right tail indicates the right-skewness and 
high dispersion of the data values. 

6.2.1 Operational Loss Frequency Process 

Figure 3 portrays the annually aggregated number of losses for the "Ex­
ternal" type losses, shown by the dotted-line. It suggests that the accu­
mulation is somewhat similar to a continuous cdf-like process, supporting 
the use of a non-homogeneous Poisson process. We consider two following 
functions,^ each with four parameters: 

^Of course, asymptotically (as time increases) such functions would produce a con­
stant cumulative intensity. However, for this particular sample and this particular time 
frame, this form of the intensity function appears to provide a good fit. 
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(a) "Relationship" (b) "Human" 

•iiii •• 

(c) "Processes" (d) "Technology" 

(e) "External" 

Figure 2: Histograms for operational loss data from external sources. 



Operational Loss Distributions 393 

300 

250 

(0 

o200 

s 

§150 

^100 

50 

1. 1 1 

actual 
y — Cubic 1 

— Cubic II 
1 — - Poisson 

-

10 15 
Year 

20 

Figure 3: Annual accumulated number of "External" operational losses, with fitted 
non-homogeneous and simple Poisson models. 

• Type I: Lognormal cdf-like process of form: 

• Type II: LogweibuU cdf-like process of form 

A{t) = a - 6exp I-clog"^ t\ 

We obtain the four parameters a, 6, c, d by minimizing the Mean Square Er­
ror. Table 1 demonstrates the estimated parameters and the Mean Square 
Error (MSE) and the Mean Absolute Error (MAE) for the cumulative inten­
sities and a simple homogeneous Poisson process with a constant intensity 
factor. Figure 3 shows the three fits plotted together with the actual aggre­
gated number of events. The two non-linear fits appear to be superior to 
the standard Poisson, for all 5 loss datasets. We thus reject the conjecture 
that the counting process is simple Poisson. 
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Table 1: Fitted frequency functions to the ^^Extemal" type losses. 

process 

Type I 

Type II 

Poisson 

a 

2.02 

a 

237.88 

b 

305.91 

b 

236.30 

c 

0.53 

c 

0.00026 

d 

3.21 

d 

8.27 

A 

10.13 

MSE 

16.02 

14.56 

947.32 

MAE 

2.708 

2.713 

24.67 

6.2.2 Operational Loss Distributions 

The following loss distributions were considered for this study. 

• Exponential Sxp{0) fx{x) = Pe~^^ 

x > 0, /? > 0 

• Lognormal CAf{fjL, a) fx(x) = ^ ^ exp {-il2i^^} 

x>0, /i, cr > 0 

• Weibull Wez6(/?, r) fx{x) = rPx'"^ exp {-/5x^} 
x > 0 , / ? , T > 0 

• LogweibuU log Wei6(/?, r) /x(x) = ^r/5(logx)'^~^exp{—/3(logx)'^} 

• Log-aStable log 5a (a, /?, /x) fx {x) = ^ ^ , p € 5a (a, /?, /x) 
no closed-form density 
X > 0, a G (0,2), /? G [-1,1], a,/i > 0 

• Symmetric SaS{a) fviv) = 9{y),9 G 5a(a,0,0), 
aStable no closed-form density 

x= |y|, aG(0,2) , a > 0 

All except the SaS distributions are defined on R-|-, making them applica­
ble for the operational loss data. For the 5 a 5 distribution, we symmetrized 
the data by multiplying the losses by —1 and then adding them to the orig­
inal dataset. 
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We fitted conditional loss distribution to the data (see Equation (4.8)) 
with the minimum threshold oiu = 1,000,000, using the method of Maxi­
mum Likelihood. Parameter estimates are presented in Table 2. 

Table 2: Estimated parameters for 

7MLE "Rel.-ship" 

exp{f3) 

P 11.25-10-^ 

c^^{^l,cJ) 

fi 16.1911 

a 2.0654 

Weib{P,r) 

P 0.0032 

r 0.3538 

\ogWeih{l3,r) 

(3 0.27-10~® 

T 7.0197 

log 5a (<T,/?,//) 

a 1.9340 

0 -1 
(7 1.5198 

/x 15.9616 

SaS{G) 

a 0.6592 

(J l.O'W 

"Human" 

7.27-10-^ 

15.4627 

2.5642 

0.0240 

0.2526 

30.7310-® 

7.0197 

1.4042 

-1 

2.8957 

10.5108 

0.6061 

0.71-10"^ 

the loss data separated by 

"Proc." 

3.5110"^ 

17.1600 

2.3249 

0.0021 

0.3515 

0.11-10-® 

7.1614 

2.0000 

0.8195 

1.6476 

17.1535 

0.5748 

1.99-10'̂  

"Tech." 

13.08-10-^ 

15.1880 

2.7867 

0.0103 

0.2938 

11.06-10-® 

5.7555 

2.0000 

0.8040 

1.9894 

15.1351 

0.1827 

0.17-10'^ 

event type. 

"Ext." 

9.77-10-^ 

15.7125 

2.3639 

0.0108 

0.2933 

2.82-10-® 

6.2307 

1.3313 

-1 

2.7031 

10.1928 1 

0.5905 

0.71-10'̂  1 

6.2.3 Validation Tests for Loss Models 

A variety of tests can be considered to examine the goodness of fit of the 
distributions to the data. Typical tests include performing the Likelihood-
Ratio test, examination of Quantile-Quantile plots, forecasting, and various 
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tests based on the comparison of the fitted distribution and the empirical 
distribution (the so-called EDF-based tests). In this paper, we focus on 
the last testing procedure, because it allows us to compare separately the 
fits of the distributions around the center and around the tails of the data. 

First, we compare the magnitudes of several EDF test statistics between 
different models. A lower test statistic value indicates a better fit (in the 
sense that the value of the norm, which is based on the distance between 
the fitted and empirical cdf's, is smaller). Second, we compare the p-
values based on the EDF tests, p-values indicate the proportion of times in 
which the samples drawn from the same fitted distributions have a higher 
statistic value. In other words, a higher p-value suggests a better fit. The 
following test statistics are considered: Kolmogorov-Smirnov (D), Kuiper 
(V), quadratic Anderson-Darling (>1^), quadratic "upper tail" Anderson-
Darling (A^p) and Cramer-von Mises (VF^), computed as 

D = max{£)+ , J?"} , 

V = D^ + D-, 

, 2 _ . r {Fn{x)-F{x))\^, = „r(£-„(x)-F(x))'^(,), 

7-00 F{x){l-F{x)) 

J-oo (1 - F{x)y 

/

oo 
{Fn{x)-F{x)fdF{x\ 

-OO 

w 

where £)+ = y/ns\rg^^{Fn{x)-F{x)} and£)~ = ^Jns\ip^{F(x)-Fn{x)}, 
The A^p statistic was introduced and studied in [9], and designed to put 
most of the weight on the upper tail. Fn{x) is the empirical cdf, and F{x) 
is defined as 

F{x) = I 1 - ^ T W 

[ 0 x<u. 
Table 3^ demonstrates that on the basis of the statistic values we would 

tend to conclude that Logweibull, WeibuU or Lognormal densities describe 
best the dispersion of the operational loss data: the statistics are the lowest 
for these models in most cases. However, if we wish to test the null that 
a given dataset belongs to a family of distributions (such as Lognormal or 

^The fit of the exponential distribution is totally unsatisfactory and the results have 
been omitted for saving space. 
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CN 

Weib 

logWeib 

log 5a (a, 

SaS 

CM 
Weib 

logWeib 

log5a(cT, 

SaS 

CM 
Weib 

log Weib 

log5a(cr, 

SaS 

CM 

Weib 

log Weib 

log 5a (o-, 

SaS 

CM 
Weib 

logWez6 

log 5a (o-, 

SaS 

Table 3: Goodness-

0,f^) 

/5,M) 

/?,M) 

/?,M) 

A/x) 

"Rel.-ship" 

0.8056 

0.5553 

0.5284 

1.5929 

1.1634 

1.3341 

1.0821 

1.0061 

1.6930 

2.0695 

0.7554 

0.7073 

0.4682 

3.8067 

4.4723 

4.6122 

13.8191 

5.2316 

10.1990 

2.6-10^^ 

0.1012 

0.0716 

0.0479 

0.7076 

0.3630 

of'fit test statistics for 

"Human" 

D 

0.8758 

0.8065 

0.9030 

9.5186 

1.1628 

V 

1.5265 

1.5439 

1.5771 

9.5619 

2.1537 

0.7505 

0.7908 

0.7560 

304.61 

11.9320 

4.5160 

8.6610 

4.5125 

4198.9 

3.310^^ 

0.0804 

0.0823 

0.0915 

44.5156 

0.2535 

"Proc." 

0.6854 

0.6110 

0.5398 

0.6931 

1.3949 

1.1262 

1.0620 

0.9966 

1.1490 

1.9537 

0.4624 

0.2069 

0.1721 

0.4759 

6.5235 

4.0556 

2.2340 

1.4221 

4.0910 

6.8-10^^ 

0.0603 

0.0338 

0.0241 

0.0660 

0.3748 

the loss data. 

"Tech." 

1.1453 

1.0922 

1.1099 

1.1540 

2.0672 

1.7896 

1.9004 

1.9244 

1.7793 

2.8003 

1.3778 

1.4536 

1.5355 

1.3646 

19.6225 

6.4213 

4.8723 

5.2992 

6.4919 

7.2-10^° 

0.2087 

0.2281 

0.2379 

0.2072 

1.4411 

"Ext." 

0.6504 

0.4752 

0.6893 

7.3275 

0.7222 

1.2144 

0.9498 

1.1020 

7.4089 

1.4305 

0.5816 

0.3470 

0.4711 

194.74 

1.7804 

2.5993 

5.3662 

4.1429 

3132.6 

1.2-10 °̂ 1 

0.0745 

0.0337 

0.0563 

24.3662 

0.1348 1 
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Table 4- p-values associated with the goodness-of-fit test statistics for the loss 
data, p-values were obtained from 1,000 simulated samples. Figures in bold show 
p-values whenever their values were the first or second highest. 

CN 
Weib 

logWeift 

log5a(cr, 

SaS 

CN 
Weib 

logWei6 

log5a(cT, 

SaS 

CM 

Weib 

log Weib 

log 5a (cr, 

SaS 

CM 

Weib 

log Weib 

\ogSoc{(T, 

SaS 

CM 

Weib 

log Weib 

log Soc{cr, 

SaS 

0,f^) 

0.f^) 

/?,M) 

/?,M) 

f3,fi) 

"Rel.-ship" 

0.082 

0.625 

0.699 

0.295 

0.034 

0.138 

0.514 

0.628 

0.295 

<0.005 

0.043 

0.072 

0.289 

0.290 

0.992 

0.401 

0.081 

0.282 

0.288 

<0.005 

0.086 

0.249 

0.514 

0.292 

<0.005 

"Human" 

D 

0.032 

0.103 

0.074 

0.319 

0.352 

V 

0.039 

0.051 

0.050 

0.324 

0.026 

0.408 

0.112 

0.392 

0.215 

0.436 

0.408 

0.112 

0.392 

0.215 

0.436 

W^ 

0.166 

0.188 

0.217 

0.315 

0.027 

"Proc." 

0.297 

0.455 

0.656 

0.244 

0.085 

0.345 

0.532 

0.637 

0.342 

0.067 

0.223 

0.875 

0.945 

0.202 

0.964 

0.367 

0.758 

0.977 

0.361 

0.193 

0.294 

0.755 

0.918 

0.258 

0.102 

"Tech." 

<0.005 

<0.005 

<0.005 

<0.005 

0.085 

0.005 

<0.005 

<0.005 

0.007 

0.067 

<0.005 

<0.005 

<0.005 

<0.005 

>0.995 

0.067 

0.087 

0.114 

0.060 

>0.995 

<0.005 

<0.005 

<0.005 

<0.005 

0.964 

"Ext." 

0.326 

0.852 

0.296 

0.396 

0.586 

0.266 

0.726 

0.476 

0.458 

0.339 

0.120 

0.519 

0.338 

0.284 

0.841 1 

0.589 

0.164 

0.283 

0.128 

0.841 1 

0.210 

0.781 

0.458 

0.366 

0.265 1 
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Stable), then the test is not parameter-free, and we need to estimate the 
p-values for each hypothetical scenario. These results are demonstrated 
in Table 4. Now the situation is quite different from the one in Table 3. 
The numbers in bold indicate the cases in which log 5a (cr,/3,/x) or SaS fit 
resulted in first or second highest p-values across the same group (i.e. for 
the same type of EDF test for a range of distributions, with a particular 
dataset). As is clear from the table, in the majority of cases (17 out of 25) 
either log 5a (<7, /3, fj) or 5 a 5 , or even both, resulted in the highest p-values. 
This supports the conjecture that the overall distribution of operational 
losses^^ are heavy-tailed. Fitting log 5a (cr,/3,/x) or SaS distributions to the 
data appears a valid solution. 

7 S u m m a r y 

The objective of this paper was to examine the models underlying in the 
operational risk process. The conjecture that operational losses follow a 
compound Cox process was investigated for the external operational loss 
data of five loss types covering a 23 year period. The results of the empir­
ical analysis provide evidence of heavy tailedness of the data in the right 
tail. Moreover, fitting log 5a(^,/?,/i) distribution to the loss severity data 
or symmetric 5a(cr,/3,/x) distribution to the symmetrized data resulted in 
high p-values in a number of goodness of fit tests, suggesting a good fit. 
In particular, the two distributions are shown to fit the data very well 
in the upper tail, which remains the central concern in the framework of 
operational risk modeling and regulation. 

Furthermore, the paper suggested a number of models for the frequency 
of losses. A simple Poisson process with a fixed intensity factor appears 
too restrictive and unrealistic. A non-homogeneous Poisson process with 
a time-varying intensity function was fitted to the loss data and showed a 
superior fit to the homogeneous Poisson process. 

Directions for future research include developing robust models for the 
operational risk modeling. For example, with 5a(cr,/3,/i) distributions, for 
the case when the shape parameter a is below or equal to unity, the first 
moment (and hence the mean) and the second moment (hence the variance) 
do not exist, making such distribution difficult to use for practical purposes. 
Possible solutions would include working with trimmed data, truncated 
data, or *Winsorized' data, or splitting the dataset into two parts - the low-

^Another approach would be to split each data set into two parts: the main body of 
the data and the right tail. Some empirical evidence suggests that the two parts of the 
data follow different laws. Extreme Value Theory is an approach that can be used for 
such analysis. 
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and medium-size losses and the tail losses - and analyzing the properties of 
each separately. 
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Fuzzy-Nutzwertanalyse und Fuzzy-AHP 
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1 Einleitung 

Die Nutzwertanalyse und der Analytic Hierarchical Process (AHP) sind be-
kannte, auch in der Praxis verwendete Verfahren zur L5sung von Mehrzielent-
scheidungen. Beide benicksichtigen die beschr^nkte Informationsverarbeitungs-
kapazitat bzw. die eingeschrSnkte Rationalitat eines Entscheiders und entspre-
chen so dem Wunsch der Praktiker nach realistischeren und anwendbaren Ent-
scheidungsuntersttitzungsmethoden. Wie empirisch nachgewiesen wurde, haben 
Menschen groBe Schwierigkeiten, Altemativen widerspruchsfrei anzuordnen, 
wenn mehr als zwei Ziele beachtet werden milssen, vgl. May [6, S. 9-13]. Ent-
sprechend werden in der Nutzwertanalyse und dem AHP bei Vorliegen sehr 
vieler Ziele diese durch ein hierarchisch aufgebautes Zielsystem strukturiert, in 
dem schrittweise nur wenige, zumeist zwei oder drei Teilziele zu einem hOheren 
Ziel aggregiert werden, vgl. Abbildung 1. 

Abbildung 1: Hierarchisch aufgebautes Zielsystem 

Die Aggregation der Werte erfolgt in beiden Verfahren mittels gewichteter 
Addition der partiellen Nutzenwerte, was eine starke PraferenzunabhSngigkeit 
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der Ziele und vor allem kardinal skalierte Gr56en voraussetzt. Die Ermittlimg 
von kardinal skalierten Nutzenwerten ist jedoch generell schwierig. 

Die Bestimmimg von Nutzenwerten bereitet insbesondere dann groBe Pro-
bleme, wenn die Bewertung der Zielkriterien ordinal skaliert oder sogar nur in 
linguistischer Form gegeben ist. 

Zur Gewinnung der Nutzenwerte fur die einzelnen Ziele auf der Basisebene 
der Zielhierarchie wird von Zangemeister [17] vorgeschlagen, eine Bewertungs-
matrix aufzustellen, in der alle mSglichen Zielerreichungsgrade in das Intervall 
[0, 10] abgebildet werden. Eine derart prSzise Einstufung soil durch darUber 
gelegte Intervallklassen, die verbal durch Benotungen von „sehr schlecht" bis 
„sehr gut" erlautert sind, unterstiitzt werden. Fraglich bleibt, ob ein Entscheider 
tatsSchlich in der Lage ist, auf diese Weise jeder TeilzielausprSgung einen wahr-
heitsgetreuen eindeutigen Nutzenwert zuzuordnen. Realistischer erscheint die in 
Abschnitt 5 diskutierte Annahme, dass ein Mensch nur Fuzzy-Nutzenwerte iiber 
[0,10] angegeben kann, vgl. [8, S.QOff]. 

Nach Zangemeister [17] kann die Wahl der Zielgewichte vom Entschei-
dungstrSger frei vorgenommen werden. Oft wird aber empfohlen, zur Bestim-
mung der Gewichte paarweise die Austauschraten zwischen den Zielen zu er-
mitteln, d.h. man stellt fest, um wieviel sich der Nutzenwert beziiglich eines 
Ziels k erhehen muss, wenn der Nutzenwert des Ziels r um den absoluten Wert A 
reduziert wird. Die sich so ergebenden Austauschraten ajQ. =gj./gr sind ein-
deutig bestimmt, wenn die Summe der Gewichte auf 1 normiert wird. 

"Widerspruchsfreie Praferenzen" liegen bei einer linearen additiven Ent-
scheidungsregel dann vor, wenn die ermittelten Austauschraten der Konsistenz-
bedingung ^^^'^xs^^ks gentigen. Sind alle Austauschraten aj-g positiv, so 
folgt aus der Konsistenzbedingung und aj^ = 1 die Formel aj-ĵ  = l/ajQ.. 

Um diese reziproken Paarvergleichsmatrizen aufstellen zu konnen, miissen 
sich die Austauschraten auf einer Verhaltnisskala messen lassen, was in der 
Realitat kaum gegeben ist, da Einzelwertfunktionen bestenfalls auf Intervall-
Skalenniveau vorliegen. Bislang ist daher ungeklSrt, unter welchen Voraus-
setzungen die reziproken Matrizen und die daraus abgeleiteten Gewichtsvekto-
ren als sinnvoU konstruiert anzusehen sind. 

GemaB der Definition der Austauschraten weist eine konsistente Paarver-
gleichsmatrix A eine spezielle Form auf, bei der alle Spaltenvektoren Vielfache 
von einander sind und jede Spalte somit einen aquivalenten Gewichtsvektor 
darstellt. Durch Normierung der Summe der Gewichte auf 1 erhalt man dann den 
normierten Gewichtsvektor, vgl. Abbildung 2. 

Eine rechnerische Alternative zur Bestimmung desselben Gewichtsektors 
prSsentiert Thomas L. Saaty [12] in seinem Analytic Hierarchy Process. Saaty 
nutzt die Tatsache aus, dass beim Vorliegen einer konsistenten Paarvergleichs-
matrix A der Gewichtsvektor g dem Eigenvektor von A zum grOBten Eigenwert 
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von A entspricht. Dieser grOBte Eigenwert ist in diesem Fall gleich der Ordnung 
der konsistenten Paarvergleichsmatrix und alle ilbrigen Eigenwerte sind dann 
gleich 0. 

1 8 2 - ^ 

A = 
1 4 4 

i 4 
1 
2 

16> 
5 
2 
5 
8 
5 
1 

J 

g = 

ri6^ 
31 
2 
31 
8 
31 
5 

l3lj 

Abbildung 2: Paarvergleichsmatrix und normierter Gewichtsvektor 

Bei der realen Anwendung kommt es haufig vor, dass sich keine konsistente 
Paarvergleichsmatrix ergibt. Die Ursache fUr "widersprtichliche PrSferenzen" 
k5nnte darin liegen, dass die additive Entscheidungsregel inadSquat ist. Wahr-
scheinlicher ist aber, dass die lineare Entscheidungsregel brauchbar ist, die Wi-
dersprilche jedoch in der beschr^nkten Informationsverarbeitungskapazitat oder 
der anderweitig eingeschrankten Rationalitat des EntscheidungstrSgers begrlin-
det sind. Entsprechend letzterer Argumentation tritt Saaty [12] daftir ein, bei 
kleineren VerstOBen gegen die Konsistenzbedingung weiterhin die gewichtete 
Addition zu verwenden und, solange ein von ihm formulierter Konsistenz-Index 
von 0,1 nicht Uberschritten wird, als Gewichtsvektor weiterhin den Eigenvektor 
zum grOBten Eigenwert der Paarvergleichsmatrix A zu verwenden. 

Femer schlagt Saaty vor, Paarvergleichsmatrizen auch zur Bestimmung der 
Nutzenbewertungen zu verwenden. Die Zielhierarchie erhalt dadurch eine wei-
tere Ebene, da jedes Teilziel auf der bisherigen Basisebene in die Altemativen 
verzweigt wird, vgl. Abbildung 3. Diese Vorgehensweise ist allerdings nur dann 
sinnvoU, wenn wenige Altemativen vorliegen. 

/'Altdnative-'' 
[_ Ar :̂  ^ 

Aliematlve Alternative Alternative ; 
M ! 

Abbildung 3: Zusdtzliche Hierarchiestufe mit den Altemativen 

Zentrales Element derartiger Mehrzielentscheidungen stellt damit die rezi-
proke Paarvergleichsmatrix dar. In realen Entscheidungssituationen ist es jedoch 
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fUr Entscheider sehr schwierig, die Austauschraten bzw. fur Altemativen die 
partieilen Nutzenwerte festzulegen. Saaty schlagt daher vor, eine 9-Pimkte-Skala 
zu verwenden, die er wie folgt interpretiert, vgl. Saaty [11, S. 73, 74]: 

Tabelle 1: Punkteskala von Saaty fur die Paarvergleiche 

1 

3 

5 

7 

9 

2,4, 
1 6,8 

gleiche 
Bedeutung 

etwas groCere 
Bedeutung 

erheblich grOBere 
Bedeutung 

sehr viel groBere 
Bedeutung 

absolut 
dominierend 

Zwischenwerte 

Beide verglichenen Elemente haben die gleichel 
Bedeutung flir das nSchst h5here Element (Ziel). 
Erfahrung und Einschatzung sprechen fur einel 
etwas grOUere Bedeutung. 
Erfahrung und Einschatzung sprechen fUr emel 
erheblich grSBere Bedeutung eines Elements im 
Vergleich zu einem anderen. 
Die sehr viel groBere Bedeutung eines Elements! 
hat sich in der Vergangenheit klar gezeigt. 
Es handelt sich um den gr5Btm5glichen| 
Bedeutungsunterschied zwischen Elementen. 
Zwischen zwei benachbarten Urteilen muss einel 
Ubereinkunft, ein Kompromiss, getroffen werden. | 

Saatys 9-Punkte-Skala ist rational nicht gerechtfertigt und angreifbar. Zum 
einen konnen andere Skalen zu anderen Rangordnungen der Altemativen fllhren, 
was in vergleichenden Untersuchungen verschiedener MADM-Verfahren ge­
zeigt wurde. Z.B. wurden in [16] AHP-Ansatze mit zwei unterschiedlichen Ska­
len - Saaty's Originalskala und eine geometrische Skala - gegenUbergestellt mit 
dem Ergebnis, dass die Rangordnungen jeweils unterschiedlich stark in AbhSn-
gigkeit der Anzahl von Altemativen, Kriterien und Verteilungen differieren. Viel 
entscheidender ist jedoch, dass die von Saaty verwendete 9-Punkte-Skala keine 
kardinal skalierten GrSBen liefert, so dass aus messtheoretischer Sicht die Be-
stimmung der reziproken Werte oder eine additive Verkntipfung mit Gewichten 
nicht akzeptabel ist. In Tung/Tang [15] werden daher Verschiebungen der Ska-
lierung vorgeschlagen. Durch geeignete Transformationen kann - wie in [4] 
gezeigt - dem geforderten Skalenniveau zwar besser entsprochen werden, das 
erSrterte Dilemma, dass die Paarvergleiche ordinal skaliert vorliegen, flir die 
Bestimmung der reziproken Werte jedoch Verhaltnisskalenniveau bzw. fiir die 
Berechnung der Gewichtsverteilung kardinal skalierte Daten zwingend sind, 
wird allerdings nicht tiberzeugend behoben. 

Zum anderen ist die Definition der PrSferenz in den Paarvergleichen auBerst 
schwammig, und der von Saaty [10] hierzu benutzte Begriff „Fuzziness" hat 
wenig zu tun mit der Fuzzy Set-Theorie. Es wird z.B. nicht erklart, was er dar-
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unter versteht, dass eine Alternative "etwas groBere", "erheblich grSiJere", sehr 
viel groBere" Bedeutung" als die Vergleichsaltemative hat. 

Da auUerdem Erfahrungen zeigen, dass Anwender Austauschraten eher im 
dem Sinne verstehen, dass ein Ziel x-mal wichtiger als ein anderes ist, scheint es 
fUr die praktische Umsetzung sinnvoUer, dieser eingSngigen Auffassung zu fol-
gen und Saatys Interpretation zu verlassen. Dariiber hinaus soUten nur "weiche" 
Paarvergleiche, wie "das Ziel 1 ist mir ca. 3-mal so wichtig wie Ziel 2", nicht 
kiinstlich verscharft werden, sondem mit der gegebenen Unscharfe mathema-
tisch modelliert werden. Eine adSquate und realistischere Modellierung iSsst sich 
durch die Verwendung von Fuzzy-GrSBen erreichen, wie dies schon Buckley [1] 
vorschlagt, vgl. auch [2], [5] und [7]. Im nachfolgenden Abschnitt 2 wird eine 
Variante dieses Ansatzes vorgestellt, bei der es ausreicht, dass ein Entscheider 
die Austauschraten nur nSherungsweise in Form von Fuzzy-Intervallen des e-X-
Typs angibt. 

2 Bestimmung des Gewichtsvektors aus einer Paarvergleichsmatrix mit 
Fuzzy-Ausgleichsraten 

In realen Problemen ist ein Entscheider oft nicht in der Lage, beim Paarvergleich 
alle Ausgleichsraten exakt anzugeben und daraus eine konsistente Paarver­
gleichsmatrix aufzustellen. Zumindest bei einigen der Paarvergleiche besitzt er 
hSufig nur eine ungefUhre Vorstellung, um wieviel er das eine Ziel wichtiger 
erachtet als das andere. Solche nur grOBenordnungsmSBig bekannten Gr5Ben 
lassen sich durch Fuzzy-Mengen mathematisch beschreiben. Dabei reicht es 
zumeist aus, die bei praktischen Anwendungen bewShrte Form von Fuzzy-Inter­
vallen des 8-^-Typs zu verwenden, weiche zusStzlich den Vorteil besitzen, dass 
arithmetische Rechnungen leicht ausfuhrbar sind. Fuzzy-Intervalle ay = 

(^fi'^iV^ii'^ij'^ii'^fi)^ ^^^ 8-^-Typs haben stiickweise lineare ZugehOrig-

keitsfunktionen und lassen sich durch 6 Werte hinreichend genau beschreiben, 
vgl. Abbildung4 und Rommelfanger [9]. Als SpezialfUlle umfassen sie auch 
trapezfbrmige Fuzzy-Intervalle, Fuzzy-Zahlen und auch reelle Zahlen. Bei ge-
ringem Informationsstand kann man auf das X-Niveau verzichten. 

Betrachten wir zur Illustration die Auswahl einer Studentenwohnung, bei der 
die 3 Ziele "GrOBe der Wohnung (in qm)", "Entfemung zur Universitat (in 
Gehminuten)" und "LarmbelSstigung" beriicksichtigt werden. WShrend in [13, S. 
169ff| die in Tabelle 2 angegebene Paarvergleichsmatrix verwendet wird, woUen 
wir hier die in Tabelle 3 beschriebene Paarvergleichsmatrix mit Fuzzy-Interval­
len verwenden. Einige der Paarvergleiche sind dabei bewusst recht unscharf 
gewShlt. 
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Abbildung ^; Jy = (afj; a^; a ;̂ ay; a,̂ ; afj) '̂ ^ 

Tabelle 2: Paarvergleichsmatrix mit reellen Zahlen 

Gr5Be 
lEntfemung 

Larm 

Gr5Be 
1 
1 
9 
1 
3 

Entferautig 
9 
1 

4 

Lton 
3 
1 
4 
1 

Tabelle 3: Paarvergleichsmatrix mit Fuzzy-Intervallen 

Gr5Be 

Entftr-
niing 

Larm 

: X , 

Gr5fie 

(i;i;i;i;i;i) 

/ 1 . 1 . 2 . 2 . l . K 
MriO'19'17'8'7^ 

/ I . 3 . 1 . 1 . 2 . l x 
M ' 7 ' 3 ' 3 ' 5 ' 2 ^ 

/59.107.82.74.61.23x 
M4' 70 '57'51'40'14^ 

Bntfemung 
(7;8;8,5 

;9,5;10;11) 

(i;i;i 
;i;i;i) 

(2,5;3;3,5 
;4,5;5;6) 

(10,5;12;13 
;15;16;18) 

Larm 

(2;2,5;3;3;3,5;4) 

/1 .1 .2 .2 .1 .2> . 
^6 '5 '9 '7 '3 '5^ 

(i;i;i;i;i;i) 

/19.16. 38. 30. 29. 27J 
^6 ' 5 ' 9 ' 7 ' 6 ' 5 ^ 

WUrde man die Paarvergleichsmatrix mit Fuzzy-Intervallen interpretieren als 
eine Zusammenfassung von sechs Paarvergleichsmatrizen, bei denen jeweils nur 

die Werte von a?j, â -, a-jaij, aj| oder a?- benutzt werden, so lieBe sich fiir 
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jede einzelne dieser Paarvergleichsmatrizen der Eigenvektor zum grOBten Ei-
genwert berechnen. Es ist aber nicht zu erwarten, dass die so berechneten und 
dann normierten Eigenvektoren so geordnet sind, dass sie zu einem „Fuzzy-
Eigenvektor" zusammengefasst werden kOnnen. Vielmehr stellt sich die kaum 
beantwortbare Frage, welcher dieser Eigenvektoren als Gewichtsvektor genom-
men werden sollte. 

Wenig llberzeugend ist unserer Ansicht nach der Vorschlag von Cheng und 
Mon [3], die vorliegenden Fuzzy-Ausgleichsraten zunachst zu defuzzifizieren 
und dann als Gewichtsvektor den normierten Eigenvektor zum grSBten Eigen-
wert der sich so ergebenden "scharfen" Paarvergleichsmatrix zu verwenden. Zur 
Defuzzifizienmg der dort verwandten triangularen Fuzzy-Zahlen 
ay =(ajj;aij;aij) schlagen Cheng und Mon die Verwendung des Wertes 

ajj =(l~A,)a-^+A-a|j vor, wobei a-̂  und aĵ  die Endpunkte der a-Niveau-

menge [a-̂  ,a-j] sind und X ein Optimismusparamter ist, der neben dem Zuge-

hOrigkeitsniveau aG]0,l] vom Entscheider festzulegen ist. 

In dieser Arbeit soil daher ein anderer Weg zur Bestimmung eines Gewichts-
vektors vorgeschlagen werden, der dem Konzept der Fuzzy-Mengen- Theorie 
eher gerecht wird und als Komponenten Fuzzy-Intervalle des 8-A.-Typs aufweist. 
Die gewahlte Vorgehensweise basiert auf der Tatsache, dass in einer konsisten-
ten Paarvergleichsmatrix alle Spaltenvektoren Vielfache voneinander sind und 
normiert den Gewichtsvektor bzw. den Eigenvektor zum grOUten Eigenwert 
ergeben. Ist die Konsistenz-Bedingung nicht erftlllt, ist es daher folgerichtig, den 
Gewichtsvektor aus den normierten Spaltenvektoren zu mitteln. 

Als Operator bietet sich unserer Ansicht nach vor allem das Arithmetische 
Mittel an, da die so ermittelten Gewichte zur gewichteten Addition der Teil-
nutzen Verwendung fmden. Buckley [1] verwendet das Geometrische Mittel zur 
Berechnung der Gewichte ohne dies weiter zu diskutieren - „It is not our inten­
tion to get involved in the debate over which procedure is best". Buckley weist 
lediglich darauf hin, dass im Falle einer konsistenten Paarvergleichsmatrix (mit 
reellen Zahlen) das Geometrische Mittel zum gleichen Gewichtsvektor fUhrt wie 
Saatys Eigenvektor-Methode. Diese Aussage gilt aber auch fUr das Arithmeti­
sche Mittel. Ftir beide Mitteloperatoren ist es aber auf jeden Fall notwendig, 
zunSchst die Spaltenvektoren zu normieren und dann erst zu mitteln. Die umge-
kehrte Reihenfolge, wie sie z.B. Buckley verwendet, fUhrt zwar bei konsistenten 
Matrizen zum gleichen Gewichtsvektor, bei nicht-konsistenten Matrizen ist dies 
aber nicht mehr gegeben, wie Berechnungen zur Paarvergleichsmatrix aus Ta-
belle 4 zeigen. 
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Tabelle 4: Normierte Gewichtsvektoren zur Abbildung 4 

IVerfahren zur Berechnung des 
Gewichtevektors im Fall reeller Zahlen 
lEigenvektonnethode nach Saaty 

Arithmetisches Mittel nach Normierung 

Geometrisches Mittel nach Normierung 

Arithmetisches Mittel vor Normierung 
Geometrisches Mittel vor Normierung 
(Buckley) 

GrOBe 

0,681 

0,6804 

0,6798 

0,660 

0,6262 

Entfemung 

0,069 

0,0691 

0,0686 

0,069 

0,0807 

Larm 

0,250 

0,2505 

0,2516 

0,271 

0,2931 

Ubertragen wir nun diese Uberlegungen auf Fuzzy-Intervalle des e-^-Typs, 
so sind, um die Spaltenvektoren einer Paarvergleichsmatrix zu normieren, zu-
nachst die Spaltensummen aj, §2,. . . , 5^ zu berechnen: 

5 j= (g ] ;g } ' ;g j ;a j ;a^;a?)^'^ = ay 0 a2j e - . - e S n j 

n n ^ n n _ ^ _ T , n _ _ « 

i=l ^ i= l ^ 1=1 ^ i= l J i=l J i= l J 
(1) 

Durch die Normierung 

af: a?̂  a., a-, a?̂  af̂  

erf a | ^. a. a] a] IJ 

berechnet man die Gewichte 

(2) 

(3) g j ^ - - . ( a . j ©a.2 © - - © a . ^ ) , 

die den Gewichtsvektor g' = (gi, g2»• • • J gn) bilden. 
Normiert man nach obigem Verfahren die Spaltenvektoren der Paarver­

gleichsmatrix in Tabelle 3, so erhalt man: 
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Tabelle 5: Normierte Paarvergleichsmatrix mit Fuzzy-Intervallen 

Gr56e 

Entfemimg 

Lton 

Gr56e 
/14 .40 .51 . 
^23 '61 '74 ' 

57 . 70 . 44x 
82'107'59^ 

/ 14 . 4 . 51 . 
453 '61 '703 ' 

57 . 70 . 44 X 
697'856'413^ 

/ 7 .120. 51 . 
M6'427'222' 

19. 28 .22N 
82'107'59^ 

Entfemung 
/ 7 . 1.17. 
M 8 ' 2 ' 3 0 ' 

19.10.22>. 
2 6 ' 1 2 ' 2 r 

M8'16'15' 

13 '12 '2 r 
/ 5 . 3 . 7 . 
4 6 ' 1 6 ' 3 0 ' 

9 . 5 .12x 
2 6 ' 1 2 ' 2 r 

Larm ~ ^ 

/ lO .15 .21 . 
4 7 ' 2 9 ' 3 0 ' 

27 . 35 . 24x 
38'32'19^ 

/ 5 . 6 . 7 . 
M62'145'135' 

9 . 5 .12x 
133'48'95^ 

/ 5 . 6 . 7 . 
4 7 ' 2 9 ' 3 0 ' 

9 . 5 . 6>. 
38'16'19^ 1 

Daraus ergibt sich durch Bildung des arithmetischen Mittels der Fuzzy-Ge-
wichtsvektor: 

Tabelle 6: Fuzzy-Gewichtsvektor 

GrOBe 

Entfemung 

Lam 

(0,456;0,558;0,652;0,712;0,860;1,019)^>^ 

(0,047; 0,056; 0,064; 0,075; 0,090; 0,109)^'^ 

(0,159;0,225;0,232;0,272;0,330;0,420)^>^ 

Offensichtlich sind in der Paarvergleichsmatrix in Tabelle 3 einige Aus-
gleichsraten recht fuzzy vorgegeben, woraufhin die nomiierten Paarvergleiche in 
Tabelle 5 und die daraus berechneten Fuzzy-Gewichte in Tabelle 6 noch fuzzier 
geraten. Bedingt wird dies durch die verwendete Definition der erweiterten Di­
vision, die auf dem Zadehschen Erweiterungsprinzip basiert. Es kOnnen sich 
damit Gewichtskonstellationen ergeben mit einer Summe der Einzelgewichte 
grOBer 1, was wenig tiberzeugend erscheint. DarUber hinaus fUhrt diese "tradi-
tionelle" Art der Normierung dazu, dass der Charakter der Austauschraten ver-
andert wird: Sowohl aus scharfen GrOBen als auch aus Fuzzy-Zahlen resultieren 
Fuzzy-Intervalle des 8-^-Typs. In Abschnitt 4 werden wir einen neuen Vorschlag 
zur Normierung der Spaltenvektoren vorstellen, der unserer Ansicht sinnvoUer 
ist, da er die vorgegebene UnschMe beibehalt und die vorgegebenen Werte vom 
Typ her ubemimmt. 



412 Heinrich Rommelfanger 

3 Alternativenauswahl mit Fuzzy-Gewichten und scharfen 
Teilnutzenwerten 

In diesem Abschnitt wollen wir die Frage diskutieren, wie die optimale Alterna­
tive ausgewahlt werden soil, wenn der Entscheider nur in der Lage ist, die Ge-
wichte der einzelnen Ziele ungenau, hier in Gestalt von Fuzzy-Intervallen des 8-
^-Typs auszudrilcken. Dagegen sei es ihm mOglich, die Teilnutzenwerte exakt 
anzugeben, wie dies in der Nutzwertanalyse unterstellt wird. 

Illustriert werden soil die Vorgehensweise weiterhin an dem Beispiel „Aus-
wahl einer Studentenwohnung", das sich an SchneeweiB [13, S. 169ffl anlehnt. 

Dem Studenten werden die 4 Wohnungen A, B, C und D angeboten, die in 
Tabelle 7 durch die Attribute "Gr56e (qm)", "Entfemung zur Uni (in Gehminu-
ten)" und "LarmbelSstigung" beschrieben werden. 

Tabelle 7: Attribute der Wohnungen 

Wohnung 

GrOBe (qm) 

Entfemung (Min) 

LMrmbelSstigung 

A 

52 

30 

laut 

B 

23 

5 

sehr laut 

C 

15 

25 

leise 

D 

30 

15 

noch nicht zu laut 

Im betrachteten Fall sei der Entscheider in der Lage, diese Attribute durch 
Teilnutzenwerte auf einer Skala [0 , 10] exakt zu beschreiben: 

Tabelle 8: Teilnutzenwerte Ujî  fur die Attribute der Wohnungen 

Wohnung 

Gr56e(qm) 

Entfemung (Min) 

Uinnbel^tiguhg 

A 

10 

1 

2 

B 

2 

10 

1 

C 

1 

2 

9 

D 

4 

5 

5 

Die Gesamtnutzenbewertung filr jede Wohnung k errechnet sich dann gemafl 
der Fomiel 

Uk=grUlk®g2-U2k®---®gn-Unk 

FUr das Beispiel erhalt man dann: 

(4) 
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Tabelle 9: Gesamtnutzen der einzelnen Wohnungen 

1 Wohnung 

A 

B 

C 

D 

Gesamtnutzen 

(4,925;6,086;7,048;7,739;9,350;11,139)^'^ 

(1,541; 1,901; 2,176; 2,446; 2,950; 3,548)^ '^ 

(1,981;2,695;2,868;3,310;4,010;5,017)E'^ 

(2,854; 3,637; 4,088; 4,583; 5,540; 6,721)^ '^ 

1 2 3 4 5 6 7 8 
Abbildung 5: Gesamtnutzen der einzelnen Wohnungen 

Bin geeignetes Kriterium zur Auswahl der optimalen Alternative ist die 8-
Praferenz, die wie folgt definiert ist: 

Eine Fuzzy-Menge B wird einer Fuzzy-Menge C aufdem Niveau 8€ [0,1] 

vorgezogen und man schreibt B >-g C, wenn 8 die kleinste reelle Zahl ist, so 

dass 
Sup B^ > Sup C^ und Inf B^ > Inf Ĉ ^ fiir alle a e [8, l] (5) 

und fiir wenigstens ein a € [8, l] eine dieser Ungleichungen im strengen Sinne 
erfiillt ist. 

Dabei bezeichnen B(̂  = {xGX|iLiB(x)>a} und Ĉ ^ = {x GX| i ic (x)^a} 

die a-Niveaumengen von B bzw. C. 

Fiir Fuzzy-Intervalle Uĵ  = (Uj^ 5 Uk ' ~k' ^k' ^k' ^k ^ ' ^̂ ^ 8-A.-Typs 

vereinfachen sich die Bedingungsungleichungen der 8-Praferenz zu 
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^k ^8 3r <=> u^ >u^ und u^ >u? fur a = 8,^,1. (6) 

Ein weitaus strengeres und zur Aufstellung einer Praferenzordnung meist 
weniger geeignetes Kriterium ist die p-Praferenz: 

Eine Fuzzy-Menge B wird einer Fuzzy-Menge C aufdem Niveau pe [0,1] 

vorgezogen und man schreibt B >-p C, wenn p die kleinste reelle Zahl ist, so 

dass 
Inf Bet > Sup C(x filr alle a G [p, l]. (7) 

Die Konstruktion der hier verwendeten Fuzzy-Intervalle des e-^-Typs legt 
nahe, filr p nur die Abstuflmgen 8, X und 1 zu verwenden. 

Vergleichen wir die Gesamtnutzen filr die einzelnen Wohnungen, so ist nach 
dem 8-Praferenz-Kriterium die Wohnung A klar die beste; dann folgt D vor C. 
Die am schlechtesten bewertete Alternative ist die Wohnung B. 

Selbst bei Verwendung der p-Praferenz ist die Alternative A aufdem Niveau 
X besser als die anderen 3 Altemativen, verglichen mit der Alternative B sogar 
aufdem Niveau 8. 

4 Ein neues Verfahren zur Normierung der Spalten der 
Paarvergleichsmatrix 

Wie bereits aufgezeigt filhrt die Normierung der Spalten der Paarvergleichs­
matrix mit Hilfe der erweiterten Division zu Werten, die relativ gesehen, noch 
fiizzier sind als die ursprtlnglichen. Dartiber hinaus werden auch die vorliegen-
den scharfen Paarvergleiche bzw. die vorliegenden Fuzzy-Zahlen in Fuzzy-In­
tervalle Uberfiihrt, was wenig sinnvoll ist. Auch stellt sich die Frage nach der 
Bedeutung der Normierung, wenn die Summen Uber die Werte auf dem 8-Ni-
veau und aufdem .̂-Niveau bedeutend kleiner oder grOBer als 1 sind. 

Um dem Begriff "Normierung auf 1" genUge zu tun, tlberzeugt unserer An-
sicht nach viel eher, wenn alle Parameter eines Fuzzy-Intervalls vom 8-^-Typ 
durch die gleiche reelle Zahl dividiert werden. In Betracht kommt hier zur Nor-

mierung der j-ten Spalte vor allem das arithmetische Mittelaj =4'(gj + cTj). 

Aber auch das rechnerisch aufwendigere arithmetische Mittel 

-^(a^ +gi +5; +^i +^i +^?) ist eine denkbare Alternative. 
0 J J J J J J 
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Die Normienmg erfolgt nun nach der Formel 

af: 2ih a., a., ah af: 
^1] « V * J i | c > # > i | . > > l c J ) l c > ' (8) 

^j ^j '̂j ^j ^j ^j 
Mit den so normierten Ausgleichsraten berechnet man dann die Gewichte 

gj*=--(an®a*2( 
n ^in) > (9) 

, ^ # ^ * ^ . | i 

die denGewichtsvektor g'* = (gj,g2J---jgn) bilden. 

Nonniert man mit diesem Verfahren die Spaltenvektoren der Paarvergleichs-

matrix in Tab. 3 mit den Spaltensummen (ai ,C2,02) = (1,445, 14, 4,254), so 

erhalt man: 

Tabelle 10: Mit Oj normierte Paarvergleichsmatrix mit Fuzzy-Intervallen 

GrOBe 

Entfemung 

Larm 

Gr5fle 

(0,692;0,692;0,692; 
0,692; 0,692; 0,692) 

(0,063;0,069;0,073; 
0,081; 0,087; 0,099) 

(0,173;0,231;0,231; 
0,231; 0,277; 0,346) 

Entfemung 

/ I . 4 . 1 7 . 
4 ' 7 ' 2 8 ' 

19.5.IK 
28'7'14^ 

M4'14'14' 

14'14'14^ 
/ 5 . 3 . 7 . 
48 '14'28' 

9 . 5 .3>. 
28'14'7^ 

Larm 

(0,470;0,568;0,705; 
0,705; 0,823; 0,940) 

(0,039;0,047;0,052; 
0,067; 0,078; 0,094) 

(0,235;0,235;0,235; 
0,235;0,235;0,235) 

Daraus ergibt sich durch Bildung des arithmetischen Mittels der Fuzzy-Ge-
wichtsvektor: 

Tabelle 11: Fuzzy-Gewichtungsvektor g* 

GrOBe 

Entfemung 

Larm 

(0,554;0,610;0,668;0,692;0,743;0,806)^'^ 

(0,058;0,062;0,065;0,073;0,079;0,088)E''^ 

(0,196;0,227;0,238;0,262;0,290;0,337f'^ 



416 Heinrich Rommelfanger 

Ein Vergleich der Tabellen 5 und 9 bzw. 6 und 10 zeigt deutlich die Vorteile 
des neuen Normienmgsverfahrens auf. Die in den Ausgleichsraten vorgegebene 
Unscharfe bleibt bei der Normierung erhalten und wird nicht vergr5fiert; auBer-
dem wird die Gestalt der Fuzzy-Mengen bewahrt. 

Eine weitere Konsequenz dieser Normierung ist, dass die Gesamtnutzenbe-
wertungen, die nun nach der Formel 

3k=gi-uik®g2-U2k®-"®g*-Unk (10) 
berechnet werden, ebenfalls weniger fuzzy sind und damit die Pr^ferenzordnung 
deutlicher wird, vgl. Abbildung 6. FUr das Beispiel "Auswahl einer Studenten-
wohnung" erhalt man nun die Gesamtnutzenwerte: 

Tahelle 12: Gesamtnutzen u^ der einzelnen Wohnungen 

1 Wohnung 

A 

B 

C : 

D' 

Gesamtnutzen 

(5,990;6,616;7,2218;7,517;8,089;8,822)^'^ 

(1,884; 2,068; 2,224; 2,376; 2,566; 2,829)^ -̂  

(2,434;2,777;2,940;3,196;3,511;4,015f'^ 

(3,486;3,885;4,187;4,443;4,817;5,349)E'^ 

Nach dem e-PrSferenz-Kriterium bleibt nattirlich die Rangordnung der Woh­
nungen A >-£ D >-g C Xg B erhalten. Die Rangfolge wird aber gefestigter, wie 

die p-PrSferenz zeigt. Hiemach ist nun die Alternative A auf dem Niveau z bes-
ser als die anderen 3 Altemativen. Auch die Alternative D ist noch auf dem 
Niveau 8 besser als die Alternative B und auf dem Niveau \ besser als die Alter­
native C. 

• u 

Abbildung 6: Gesamtnutzen Uĵ  der einzelnen Wohnungen 
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5 Alternativenauswahl mit Fuzzy-Gewichten und Fuzzy-
Teilnutzenwerten 

Wie bei der Nutzwertanalyse iiblich wurde in Abschnitt 3 imterstellt, dass der 
Entscheider exakte Teilnutzenwerte ftlr alle Altemativen angeben kann. Es ist 
aber zu bezweifeln, ob er dies in realen Entscheidungssituationen immer leisten 
kann, oder ob er zumindest einige der Teilnutzenwerte nur grOfienordnungs-
maBig festzulegen vermag. Wir wollen zeigen, dass auch in diesen Fallen meist 
eine Rangordnung aufgestellt werden kann oder sich die Menge der in Betracht 
kommenden Altemativen zumindest erheblich reduzieren lasst. 

FUr den Fall, dass der Entscheider einige Teilnutzenwerte nur in Form von 

Fuzzy-Intervallen des e-X-Typs Uĵ  = (nf^ ;Ujĵ  '-ik'^ik'^lk'^fk^ ^'^ festlegen 

kann, berechnet sich der Gesamtnutzen einer Alternative k nach der Formel 

Uk=gr®uik®g2®52k®"-®gn<S)Unk. (11) 

= (g*' -ufk ;gi^ - 4 Jg*-iiik'a -^ikiii*^ - 4 ' g * ' -^fk)''^• 
FUr das Beispiel "Auswahl einer Studentenwohnung" wollen wir nun anneh-

men, dass der Entscheidungstrager die Attribute der einzelnen Wohnungen 
durch Fuzzy-Teilnutzenwerte auf einer Skala [0,10] wie folgt beschreiben kann: 

Tabelle 13: Fuzzy-Teilnutzenwerte Ujî  fur die Attribute der Wohnungen 

Wohnung 

A 

B 

c • ^ 

D •: 

GrOBe 

10 

(0;1;2;2;3;4) 

(0;0;0;1;2;3) 

(4;4,5;5;6;7;8) 

Entfemung 

(0;0;0;1;2;3) 

10 

(0;1;2;3;4;5) 

(3;4;5;5;6;7) 

Larmbel&stigung 

(0;1;2;3;4;5) 

(0;0;0;1;2;3) 

(7;8;9;9;9,5;10) 

(4;4,5;5;6;6,5;7) 

Die Gesamtnutzenbewertung filr jede Wohnung k errechnet sich dann gemafi 
der Formel 

Uk=grUlk®g2U2k®---®gn-Unk-

FUr das Beispiel erhalt man dann: 
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Tabelle 14: Gesamtnutzen Uĵ  der einzelnen Wohnungen 

1 Wohnung 

A 

B 

C 

D 

Gesamtnutzen 

(5,540; 6,327; 7,156; 7,779; 8,748; 10,009)^ -̂  

(0,580;1,230;1,986;2,376;3,599;5,115f-^ 

(1,372; 1,878; 2,337; 3,269; 4,557; 6,229)^ --̂  

(3,174;3,710;4,855;6,089;7,560;9,423f>^ 

Die Abbildung 7 offenbart, dass selbst bei der Verwendung von unscharfen 
Paarvergleichen und unscharfen Teilnutzenbewertungen eine Rangfolge der 
Altemativen noch feststellbar ist. Nach dem e-Praferenz-Kriterium gilt auch hier 
die Rangordnung A )̂ e D >-g C )̂ g B. Wie eine UberprUfung mit der p-Prafe-
renz zeigt, ist aber der erste Rangplatz von A gegentiber D nur noch auf dem 
Niveau p « 0,8 gesichert, gegeniiber C auf einem Niveau von p « 0,2 und nur 
gegentiber B auf dem e-Niveau. 

1 2 3 4 5 6 7 8 

Abbildung 7: Gesamtnutzen u^ der einzelnen Wohnungen 
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6 AHP-Ansatz zur Bewertung der Attribute 

Zur Vervollstandigung des Beispiels „Auswahl einer Studentenwohnung" soUen 
nun die Attribute Gr56e, Entfemung und Larm uber Paarvergleichsmatrizen 
bewertet werden. 

Tabelle 15: Paarvergleichsmatrix fur "Grofie der Wohnung" 

A 

B 

C 

D 

A 

(i;i;i;i;i;i) 

/ 2 . 1. 2 . 1. 2 .K 
M5'7 '13 '6 ' ir5^ 

/ I . 1 . 1 . 1 . 2 . K 
^6'6 '5 '5 '9 '4^ 

B 

(5;5,5;6; 
6,5 ;7; 7,5) 

(i;i;i; 
i;i;i) 

(\.2.1.1.2.K 
M'7 '3 '3 '5 '2 ' ' 

(3;3,5;4; 
4,5;5;5,5) 

C 

(9;9;9; 
9;9;9) 

(2;2,5;3; 
3;3,5;4) 

(i;i;i; 
i;i;i) 

(4;4,5;5; 
5,5;6;6,5) 

D 

(4;4,5;5;5;6;6) 

(2 . 1.2. 1 .2 . K 
MI'S'9'4'7*3'' 

/ 2 . 1 . 2 . 1 . 2 .K 
M 3 ' 6 ' l l ' 5 ' 9 ' 4 ^ 

(i;i;i;i;i;i) 

In der Tabelle 16 wird unterstellt, dass der Entscheider fiir den paarweisen 
Vergleich das X,-Niveau vemachlassigt und lediglich Fuzzy-Intervalle des Typs 

(a^:; a-j;aij; ij?-)^ festlegt. Nach der Berechnung des Gewichtsvektors werden 

dann zur weiteren Verarbeitung die Werte auf dem A,-Niveau durch lineare Ap­
proximation gewonnen. Dazu wird im Zahlenbeispiel X = 0,5 und 8 = 0,1 ge-
setzt. Die interpolierten Werte sind in der Tabelle 18 kursiv geschrieben. 

Tabelle 16: Paarvergleichs matrix fur "Entfemung" 

A 

B 

C 

D 

A 

(i;i;i;i) 

(9;9;9;9) 

(2;3;3;4) 

(4;5;6;7) 

B 

( 1 . 1 . 1 . 1 ) 9̂ ' 9 ' 9 ' 9̂  

(i;i;i;i) 

(1.1.1.1) 
Kg, 8 - 7 , ^) 
( 1 . 1 . 1 . 1 ) 
^6' 5 '5' 4' 

c 
( 1 . 1 . 1 . 1 ) 
M' 3 '3 ' 2' 
(6;7;8;9) 

(i;i;i;i) 

(3;4;4;5) 

D 

( 1 . 1 . 1 . 1 ) 
^T 6 '5 ' 4' 
(4;5;5;6) 

(1.1.1.1) 
^5' 4 ' 4 ' 3-* 

(i;i;i;i) 

Die Paarvergleichsmatrix fiir die LarmbelSstigung wird mit exakten Daten 
angesetzt, da Grundlagen fur eine genauere Festlegung fehlen. 
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Tabelle 17: Paarvergleichsmatrix fur "Ldrmbeldstigung" 

1 ^ 
B 

C 

D 

A 

1 

1 
3 
5 

3 

B 

3 

1 

9 

5 

C 
1 
5 
1 
9 
1 
1 
4 

D . 
1 
3 
1 
5 
4 

1 

Nach dem neuen Verfahren ergeben sich dann die relativen Bewertungen in 
Bezug auf die Attribute "Gr66e", "Entfemung" und "Larmbelastigung": 

Tabelle 18: Relative Bewertungen der Attribute der einzelnen Wohnungen 

pwhgT 
,A- '̂  

B 

C 

f: D " 

GrSfle 
(0,555; 0,585; 0,615; 

0,625; 0,675; 0,685) 
(0,078; 0,087; 0,098; 

0,100; 0,111; 0,1235) 
(0,044; 0,045; 0,0467; 

0,0474; 0,0497; 0,0528) 
(0,185; 0,203; 0,226; 

0,243; 0,265; 0,287) 

Entfemung 
(0,043; 0.045; 0,046; 

0,047; ft 0-/P; 0,052) 
(0,567; 0.599; 0,625; 

0,645; 0.671; 0,703) 
(0,074; 0,055; 0,091; 

0,094; 0,704; 0,115) 
(0,180; 0,207; 0,229; 

0,243; 0.257; 0,274) 

Larm 

0,1176 

0,0502 

0,5952 

0,2370 

Die relative Bewertung der Larmbelastigung hatte man natUrlich auch mittels 
Eigenvektorenberechnung ermitteln kOnnen, der normierte Eigenvektor ist 
(0,110; 0,048; 0,611; 0,231). 

Bei Vorgabe relat. Bewertungen Wĵ  =(wfj^ ;Wjĵ ; w-ĵ ; Wik;Wj^; w ĵ̂ )̂ '̂  

berechnet sich der relative Gesamtnutzen einer Alternative k nach der Formel 

Uk=gi®Wikeg2®W2k®-"®gn®Wnk (12) 

- /^„'e 1 1 / - , • n "• . « » " • = (gj •Wik;gi •Wik;giWik;gi •wik;gi^wjj^;gj«w?^) |8,X. 

Aus den Tabellen 11 und 18 errechnet man dann die relativen Gesamtnutzen: 
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Tabelle 19: Gesamtnutzen Wĵ  der einzelnen Wohnungen 

\ Wohnung 

1 ^ 
B 

C 

D 

Gesamtnutzen 

(0,333;0,386;0,442;0,467;0,540;0,596)^'^ 

(0,086;0,102;0,118;0,129;0,I50;0,178f'^ 

(0,145;0,158;0,179;0,196;0,218;0,2536)E'̂  

(0,159;0,190;0,222;0,248;0,286;0,335f>^ 

Die Abbildung 8 zeigt auch hier bei Verwendung des e-Praferenz-Kriterium 
die Rangordnung A >-£ D >-g C )̂ e B. DarUber hinaus bestatigt die p-Praferenz, 
dass A die weitaus beste Alternative ist, denn diese ist gegenUber den Altemati-
ven B und C auf dem Niveau p = 6 gesichert und im Vergleich zu Alternative D 
ist p nur geringftigig gr56er als e. 

^ • W 

0,1 0,2 0,3 0,4 0,5 

Abbildung 8: Gesamtnutzen u^ der einzelnen Wohnungen 

1 Schlussbemerkungen 

Die vorstehenden AusfUhrungen verdeutlichen tiberzeugend, dass keine Not-
wendigkeit besteht, nur grSfienordnungsmafiig bekannte Daten kUnstlich zu 
eindeutigen Zahlen zu verdichten. Durch die Verwendung von Fuzzy-Nutzwert-
konzept oder Fuzzy-AHP lasst sich die Gefahr stark verringem, mit einem Mo-
dell zu arbeiten, dessen L5sung nicht unbedingt auch eine gute L5sung des Re-
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alproblems darstellt. Da Fuzzy-Intervalle auch die SpezialfSlle Fuzzy-Zahlen 
und determinstische Zahlen umfassen, erOffhen die Fuzzy-AnsStze die Chance, 
den individuellen Kenntnisstand des Entscheiders adaquat einflieBen zu lassen 
und glaubwUrdige Losungen zu erarbeiten. 

Mit dem Nutzwertkonzept oder der AHP-Methode lassen sich aussagekraf-
tige Rangordnungen der Altemativen auch dann aufstellen, wenn Ausgleichsra-
ten und/oder Teilnutzenbewertungen nur in Form von Fuzzy-Intervallen be-
schrieben werden konnen. SelbstverstandHch mUssen die Fuzzy-Verfahren nicht 
immer so klare Ergebnisse wie im Beispiel Uefem, da eine kunstlich, auf dem 
Niveau reeller Zahlen erzeugte Trennscharfe nicht mehr gegeben ist. Die Anzahl 
der weiterhin in Betracht kommenden Altemativen lasst sich aber normalerweise 
deutlich reduzieren. 

Die Fuzzy-Verfahren bieten auf diese Weise auch erstmalig einen Ausweg 
aus dem traditionellen Informationsbeschaffungsdilemma, denn mit der Ermitt-
lung akzeptabler "mittlerer Werte", die fur die klassischen Verfahren unabding-
bar sind, ist ein sehr hoher Informationsaufwand verbunden, wenn die Gefahr 
der Fehlmodellierung moglichst gering gehalten werden soil. Wird dagegen das 
Realproblem durch ein Fuzzy-Modell beschrieben, gelingt es normalerweise mit 
dem vorliegenden Informationsstand im ersten Schritt zumindest einen groBen 
Teil der Altemativen auszuschliefien. Unter AbwSgung von Kosten und Nutzen 
kOnnen dann weitere Informationen zielgerichtet beschafft werden, um genauere 
Aussagen ilber die Rangordnungen der verbliebenen Altemativen zu ermOgli-
chen. Da im Gegensatz zu der umfangreichen ex ante-Informationsaufnahme bei 
klassischen Entscheidungsmodellen teure zusatzliche Informationen iterativ und 
zielgerichtet beschafft werden, fUhrt diese Vorgehensweise zu einer deutlichen 
Verringemng der Informationskosten. 

Selbstverstandlich sind Fuzzy-Erweiterungen auch fiir groBe hierarchische 
Zielsysteme mSglich. Man muss sogar erwarten, dass die Erspamis an Informa­
tionskosten umso grOBer ist, je komplexer das Entscheidungsproblem ist. 
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Abstract 

We describe a modell of price competition between firms 
with piecewise linear cost functions. Thus, we consider "Bertrand 
oUgopoly", an n-person noncooperative game in which players 
choose prices and the market, reflected by a decreasing demand 
function, reacts discontinuously as total demand concentrates 
on those firms that offer minimal prices. Firms do not have to 
be identical. But a notion of similarity between firms is nec­
essary in order to prove the existence of a Nash (-Bertrand) 
equilibrium. Here we are only interested in an equilibrium in­
volving all firms - the case of subgroups with "similar" members 
deserves an additional study. 

1 Bertrand Oligopoly 

Within this paper we discuss the existence of equiUbria within a certain 
type of Bertrand Oligolpoly. [1] The main feature is the structure of the 
cost functions of the firm, these are supposed to be piecewise linear and 
convex. Such cost functions appear naturally in the context of network flow 
structures, where flows passing through capacity limited nodes and edges 
generate costs depending on the choice of edges as well. We think of such 
kind of flow as electricity or data material on an electronic net. Routing the 
flow optimally (cost minimizing) results in a linear programming problem, 
the solution of which yields a piecewise linear cost function. See [6] for a 
detailed model of this type. 

The technique is not far away from standard procedures. However, apart 
from missing differentiability assumptions we also do not assume symmetric 
flrms. 

Most of the literature seems to rely on at least one of these assump­
tions. DASTIDAR [2] discusses the asymmetric case as well (assuming that 
costfunctions are twice differentiable), however the assumptions imposed 
on the model vary during the presentation. HOERNIG [4] constructs in ad­
dition to the continuum of pure equilibria existing a host of mixed ones. 
See also MASKIN [5] for mixed equiUbria. Symmetry is also assumed in 
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HEHENKAMP-LEININGER [3], who discuss evolutionary Bertrand equilib­
ria. 

It would seem that none of the properties derived in the context of 
this literature suffers when differentiability is sacrificed and firms are just 
"similar". 

As frequently, it is assumed that firms have a limited capacity of produc­
tion. Yet they are supposed to meet market demand at the level required. 
The game in which firms may plan to sell less than required has different 
strategies and payoffs. Yet it seems that the type of equilibrium exhibited 
would constitute an equilibrium in the extended game as well. Within our 
present framework, we will not attend to this question. 

The model is specified essentially by a set of piecewise linear costfunc-
tions for the firms and a demand function of the market. We specify this 
data as follows. 

For any nonnegative convex, monotone function D on the reals we de­
note by D' the derivative of a linear support function of D at t. This 
derivative is unique up to at most countably many points. 

A decreasing function is slowly decreasing if it does not decrease faster 
than 1/t, i.e., if ^^ > —D'{t) holds true for all t in the domain of defini­
tion. Economically this refiects nonneagtive marginal expenditure. 

Given positive real numbers do and poj we call a function 

D : [0,po]^[0,do] 

a demand function if it is continuous at 0, convex, and slowly decreas­
ing. A demand function is hence continuous and differentiable with the 
exception of at most countably many points. 

On the other hand, let for iiT G N 

C(o) .= ( A W , B ( ^ ) ) G R 2 ^ (1.1) 

be such that A^^^ = (A2^^)A:=O,...K and B^^^ = (B][^°^)A:=O,...K axe real num­
bers strictly increasing in k and satisfy AQ = 0, BQ =0. We put 

Ao . - 0 , A , . - ^^( , ) . - ^(o)_^(o)^- (1-2) 

We assume that Aj.' is as well strictly increasing in k and satisfies 

AK = do, AKAK -BK< PO- (1-3) 
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Given these conditions, we identify the data (l.l)with the strictly increasing 
piecewise Unear function C^^^ given by 

C7(°) : [0,do]-* [0,po], 

C^°\t) : max.{A'j°h-B^°^\k^O,...K} (tG[0,do]) 
(1.4) 

.(0) As a consequence, the numbers A^.' describe the arguments at which the 
function shows kinks: it is seen that 

C(°)(t) = A ^ - B f {t€[A<i^\A<^U) (1.5) 

holds true (cf. Figure 1). Thus E.g. (1.3) shows that 

C^''\do)<po 

is satisfied, thus the domain of definition is indeed [0, do] and the range is 
contained in [0,po]-

Po 

Graph (?(")(•) 

1 — t — — T ^ ' ^ ' — i 

Graph yl̂ °̂  •+Bfc / 

/ 4 ^ ^ \ 

/ ^\ ^ 1 
/ ** 1 

/ X 1 
V X 1 

^ ^ 1 
^ ^ > 1 

\—1 J 
A ( 0 ) 
^ 0 Ai' 

(0) Ai^) A (0) do 

Figure 1: A Cost Function 

Given po and do, we call C^^^ or C^^^ a cost function if, in addition, 
we have 

^(0) ^ c(^)'(do)>po, Podo<C(°^(do) = APdo-\-Bp, (1.6) 
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The first inequality shows that marginal cost at maximum production ex­
ceeds maximal prices. The latter reads also po^o — C^^\do) < C^° (̂0) = 0, 
meaning that, at maximal prices, a firm's profit at the maximal possible 
demand is less than at zero production. The advantage of dealing with this 
simple setup is provided by the topology available for cost functions; this 
is given by the Euclidean metric on R^^. 

Definition 1.1. A Piecewiae Linear Bertrand Oligopoly (PLBO) 
for a set of players I := {1, .,,ri} is a set of data 

0 := (po ,do ,A(C«) i e / ) (1-7) 

such that po, do are the domain of definitions, D is a demand function and 
Ĉ *̂  represents the cost function for player i £ I. 

Given some price p G [0,po], we first consider the function 

(1.8) 
G « = G W : [0,do]^IR 

G « ( 0 := Pt-C^^{t) (t€[0,do]). 

This function describes the profit of player i G I if the total demand of the 
market would accumulate at this player (the monopoUstic profit function 
at fixed price). 

However, the actual payoff within the iV-person game resulting from 
price competition is defined via the modified demand function customary 
in Bertrand oligopoly as follows: 

Definition 1.2. 1. For any (price) vector p € R'* let 

Mi{p) := arg mini P = {i ^ I - { ' Pi = mjnpfc> (1.9) 

denote the set of minimizing arguments or minimizers of p, 

2. Let D : [0,po] -^ R 6e a demand function. Then, for i £ I the 
function 

is the Bertrand demand function resulting from D. 
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5. Finally, letC* orC^*^ respectively be the costfunction of firm or player 
i. Then the (oligolpolistic Bertrand) profit function of player i is 
the function 

G* := [0,poY-^R , ^ 
/ .̂  • (1-11) 

G\p) := piD\p)^C^^HD\p)) 

We note that T = T® =: {[0,poY,{G*)i^i) is the n-person game 
based on the data of 0, the Nash equiUbria of which we are concerned 
with. These Nash equiUbria are referred to as Bertrand equilibria. 

For a beginning, we attempt to estabUsh a Bertrand equilibrium in 
which all players participate. Then we are dealing with a price vector 
(strategy n-tupel) p = (p,. . . ,p), in which case some definitions simplify 
e.g. to 

i > ' ( p ) . ^ . G < ( P ) = P ^ - C < ' > ( 5 M ) . 
n n \ n / 

Now we wish to discuss some necessary conditions for equilibria and, if 
possible, establish a situation in which these conditions turn out to be 
sufficient as well. 

Fix p = (p,. . . ,p) in order to tentatively denote an equilibrium. Let 
I := D(p) so that 

n n \ ^ / 

is player i's payoff in equilibrium. Here we refer to the function G^*^ = Gp 
defined via (1.8) for the fixed price p. 

First of all, suppose that player i wants to deviate in a way that all 
market demand is concentrated at his firm. That is, the player lowers his 
price top — e. The equilibrium condition can be formulated to be 

GW (^\ = G\p) > G\p - ee') 

= ( p - e ) D ( p - £ ) - C W ( D ( p - e ) ) ( e>0) 

which implies for e —• 0 

G^'^(^\>n-C^^il)- (1-12) 
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Thus, 

p | - C ( ^ n | ) > ? ? - C ^ ^ ^ ( ? ) . (1.13) 
n n 

is a necessery condition for a Bertrand equilibrium involving all players. 
The condition indicates that it should not be profitable for player i to draw 
all the market demand ^ at equilibrium on himself compared to share of ^^ 
he obtains when the equilibrium is sustained. 

Essentially we would like to estabish a situation in which (1.13) is part 
of a sufficient condition as well. To this end we prove a standart lemma 
which is based on concavity of the cost functions and on slowly decreasing 
demand. 

Lemma 1.3. Let 0 be a PLBO (Definition 1.1) and let G* be the resulting 
Bertrand profit function of player i (Definition 1.2), Then, for all p G 
[0,po]^ O'nd t > 0 such that p — te'^e [0,poY is true, we have 

G\p - te') < PiDiPi) - C<») (£»(pi)). (1.14) 

Proof: Assume first of all that D is differentiable. 
Note that —Ĉ *̂  o £) is a decreasing function. Also, D is convex and 

decreasing, hence we have for positive and suitable arguments ^ and 77 

Applying this we find 

G\p-te') = (Pi-t)D{Pi-t)-C^^{p(pi-t)) 

< {Pi - t) [D{Pi) - tD'iPi - t)] 

-t\D{pi)+PiD'(Pi-t)\ 

+ t'D'{Pi-t) 
' » ' 

<o 

< PiDiPi) - C(^) (piPi)) -11 D(pi) + PiD'iPi) 

< PiDiPi)-C('^(DiPi)); 
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the last inequality uses the requirement that D is slowly decreasing, 
q.e.d. 

We note that, in the particular case of p = (p , . . . ,p), equation (1.14) 
reads G\p - te') < piD{Pi) - C^^ {D{pi)) =: pi - C^^iJ) = G W ( 0 . 
Therefore the lemma shows that equation (1.13) indeed implies that player 
i cannot profitably deviate by decreasing his price arbitrarily, i.e., (1.13) is 
sufficient in order to establish (part of) the equilibrium condition. 

There is a second type of deviation of a player from equilibrium that we 
have to take into account. At this version, player i inserts a price exceeding 
the common equilibrium price p. Naturally, it is much easier to see that this 
is not profitable. For, if p = (p , . . . ,p + te%.. . ,p) for some ^ > 0 denotes 
the resulting strategy n-tuple, then the Bertrand demand accumulating at 
player i is D^{p) = 0, hence player i's payoff is 

G\p) = G^^iO) = -C^^{0){= 0), (1.15) 

(if we are assuming zero fixed costs). Combining these ideas we obtain 

Corollary 1.4. Let 0 be a PLBO. Also, let p e [0,po] and ^ := D{p), 
Suppose thaty for all i e I, the inequalities 

p^-c^'^d)>Pi-c^'^iO (1.16) 
n n 

and 
pi-C«(i)>-C(»)(0) (1.17) 

n n 
are satisfied. Then p := {p,...^p)isa Bertrand equilibrium in 0 involving 
all players. 

The problem is that the quantity ^ does not depend on i, it has to 
be chosen simultaneously for all players. The simple idea to generate this 
quantity is described as follows. 

If, for some i e I and p G [0,po] the inequality 

p > C^^' = 4'^ (1.18) 

is satisfied, then Ĝ *̂  has either a second zero in [0,po] or is nonnegative 
within all of the interval. Let 

^0 = max{x G [0,do] | ^ > 0,G^^{^) = o} (1.19) 

with the understanding that ^o = do whenever the max has to be extended 
over the empty set. Also, let 

i := min [x G [0,do] | 0 ^ ( 0 > G^'\r]) rj G [0,do]} (1.20) 
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denote the first maximizer of the function G^*^ . Then we have 

Corollary 1.5. Let p G [0,po] (^nd write ^ := D{p). Suppose the cor-
responding function Ĝ *̂  = G^ with respect to its zeros and maximizers 
satisfies 

?a<a (1.21) 

for alii G I, Then p = (p,...,p) »5 a Bertrand equilibrium. 

Proof: As ^ is located to the right of the maximizer of G^*\ we have 

(1.16). Furthermore, as ^ is located to the left of the zero of the same 
function, we have (1.17). 

q.e.d. 
An illustrating picture is obtained as follows (Figure 2). 

Po 

e i 
n 

a do 

Figure 2: The Location of EquiUbrium Demand 

The Unear function with slope p and a cost function Ĉ *̂  are depicted 
simultaneously. The maximizer ^ is obtained as the first point admit­
ting of a tangent p at the cost function. The zero ^J is the last point at 
which the graphs of both functions intersect. If we can find ^ such that 
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^ is simultaneously contained within the interval spanned by both points, 
then an equiUbrium prevails. Slightly more formal: the function Ĝ *̂  de­
pends on p and so do the maximizer and the zero. Define interval-valued 
correspondences on [0,po] by 

s'(p) := [C(p),a(p)] (pe[o,po] , ieJ) . (1.22) 

and 
E{p) = (^E\p) (p€[0,po]). (1.23) 

Then we have 

Theorem 1.6. Suppose p£ [0,po] satisfies 

i = : ^ G S ( p ) . (1.24) 
n n 

Then p = (p,. . . ,p) is o Bertrand equilibrium. 

Proof: Obviously this theorem is just a reformulation of the previous 
corollary. q.e.d. 

Now in order to supply an existence theorem, some preparations are 
necessary in order to understand the behavior of the interval-valued corre­
spondence S. This is the topic of the next section. 

2 The DMP Correspondence 

We start out discussing some properties of the correspondence S* that 
results from player z's monopolistic profit function G^*\ For this purpose, 
the generic index (*̂  is tentatively omitted for the sake of more translucence. 

So we consider a cost function C or C and the derived profit function 
G. 

Let p > AQ. For any k with Aj^ > p, the function A^ • — B̂ ^ intersects 
the function p« at ^ ^ ' therefore, if the graph of C intersects the graph of 
p9 (i.e., the straight line with slope p) beyond the origin, then this occcurs 
at the point r/o given by 

% rio{p) = min I — - ^ Ufc > P [ 

B ~ B (2-1) 
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If we agree on fco := K for the empty set in (2.1), then the index fco is 
uniquely defined. In particular, if it so happens that p = AQ is the case, 
then fco = 1 and 770 = Ai follow at once. Now, 770 defines the point at which 
profit is zero (apart from the origin), provided there is such point located 
within the admissible interval. Hence we put 

^0 = ^o(p) •= min ido , ^ f̂e' I {p>Ao), (2.2) 

This way we have defined the function 

^0 : [Ao,do]-^IR (2.3) 

which depends continuously on the data C and on p. The function ^0 is 
closely related to the average cost function which is given by 

Mk:= 
C{Ak) 

_ R. 
(2.4) 

Afc 
AkAk - Bk 

Afc 

= >lfc-|j {k = l,...,K). 

If p represents a slope between the average slope at A^ and Afc^-i, then 
the graph of p« intersects the one of C just within the interval [A^, Afc+i]. 
Hence we find that ^0 can be represented via 

UP) = x ^ {Mk<p<Mk^u fc = l , . . . , i f , P>Ao). (2.5) 
Ak-p 

Next, the (profit-) maximizer correspondence derived from C is de­
scribed by 

3(P) := I [ A * A , ' ' ' - ' / ' ' ^ • ' ' • ' iP>A.) (2.6) 
[Afc,AA:+i] P = Aj^ 

Obviously, this correpondence is interval-valued and upper hemi continuous 
(uhc) in p. The construction shows, however, that it is also uhc in C. 
Accordingly, the smallest profit maximizer is given by 

r Afc if Afc. 

• 1 0 if i 
m ••= { r :: ' - i<f^^'=' (2.7) 
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this quantity is either the singleton contained in H(p) or the minimum of 
the interval defining this correspondence. Therefore, we obtain the corre­
spondence S : [0,po] —* y(IR) which is given by 

E{p) := { 
[^(p),^ob)] pe[Ao,po] 

[Ao,Ai] = [0,Ai] p = Ao (2.8) 

0 pe[0,Ao) 

which we call the dmp-correspondence derived from C This is mo­
tivated as it describes the interval of non-positive or decreasing marginal 
profit for a player whose cost function is described by C From our con­
struction it follows easily that we have 

Lemma 2.1. Whenever p > AQ, then the dmp-correspondence E is non­
empty, interval-valued and uhc in p and C. 

Our next task is to estimate the length of the interval describing H. We 
claim that this is a positive constant depending in an uhc way on our data 
To make this more precise, we claim 

Lemma 2.2. Given po, do, let C be a cost function. Then there is a lower 
bound /3 > 0 such that, whenever p > A^, it follows that 

holds true. 

Proof: 
First of all assume that the graphs of C and p» intersect beyond the 

origin. Choose the index k such that 

^ = ^% 

holds true. As p > Ai, we have fc > 1 Also, let k^ be given as in (2.2). 
Then clearly fc < fc^ (both quantities depending on p). Note that fc° > 2 
follows from our assumption p > Ai, Now, if ('*in the worst case"), it so 
happens that we have fc^ = fc, then from (2.2) we deduce 

Up)-m 
^ifeo - p ^ ^ ^ 

(2.9) 

\ o - p 

f̂co 

^fco ~ ^feo 

Bk^-i 

AA,„' 

AB, 

- 1 

AB, 

AA, 
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PO 

^0 do 

Figure 3: The Worst Case 

(see Figure 3). If k^ > k, then the estimate is even stronger. Therefore, 
(2.9) provides the desired lower bound. 

If the graphs of C and p« do not intersect at some point apart from the 
origin, then 

^oip) - ^(P) = do- A K ~ I = A/^ - AK-1 (2.10) 

follows from the fact that we have p <po < AK (cf. equation (1.6)). 
q.e.d. 

Remark 2.3. In the above situation, ifp = Ao happens to be true, tlien we 
obtain 

eo(p)-f(p) = A i = A i - A o . (2.11) 

For Ao < p < Ai the estimate provided by (2.9) does not yield a lower bound. 
The width of H(p) is arbitrarily small when p approaches AQ. Yet, if we fix some 
£ > 0 and the argument p avoids the intervall [AQ^AQ + e], then again the width 
of the width ofE{p) is bounded away from 0 by some constant 0 = 0{e, C). Thus 
the statement of the above theorem can be sharpened accordingly. This version 
may be preferable if the interval [Ai, A2] is relatively large. 

On the other hand, as p increases, so does ^o(p) ^^^ hence k^. Imagine 
that the slopes Aj^ are about equally distributed so that the differences AAj^ 
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axe about equal. Then (2.9) suggests that, as Sfco_i increases, the interval 
S(p) also increases with p. A more refined analysis shows that this depends 
on a relation between marginal and mean cost. The graph of S(«) is an 
area bounded by the piecewise constant function ^(•) from below and by 
the minimum of certain hyperbola from above (in view of (2.2)). We claim 
that, depending on the curvature of C , this graph 'Svidens" with increasing 
p. Essentially, the idea is that marginal cost increases faster than mean 
cost. We clarify the precise meaning as follows. 

Definition 2.4. We shall say that a cost function C admits of proper 
MM increments if for any L G N there exists iiT E N such that for all 
k>l>K with Ak — Ai < L it follows that Ai-i > Mk-\.i is true. 

We have 

Theorem 2.5. IfC amits of proper MM increments, then |^o(p) — C(p)l 
is arbitrary large for increasing p. 

Proof: Note that the statement of Definition 2.4 can be equivalently 
given in the following version: 

For any L G N there exists iiT € N such that for all fc > / > if 
with Ai^i < Mfc+i it follows that Ak — Ai > L is true. 

Now let L € N be a ("large") integer and choose K accordingly. Pick 
I > K -i-1 and consider a price p E (-Ai_i,-Af]. Then in view of (2.7) we 
find 

l(p) = A, . (2.12) 

As ^0 increases in a strictly monotone way, we have 

eo(p) - f(p) > UAi-i) - Ai. (2.13) 

Now choose k such that for p = Ai-i one has 

Mk<p = Ai.i < Mfc+i (2.14) 

and hence 

« 0 ( P ) = & ( A , - 0 = 5 ^ > : 5 ^ = A , . (2.15) 

We know that Ak^i > M^^-i, hence fc + 1 > / — 1 is necessarily true. 
Therefore we have k> K. 

Combining (2.13) and (2.15) we obtain 

Up)-^{p)>Ak-Ai>L 

which exceeds L in view of the above version of Definition 2.4, 
q.e.d. 
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Example 2.6. Let c be a positive constant and let 

Ak = 2ck, Bk = ck{k-hl) {k = 0,,..,K) (2.16) 

such that 

Ao = 0, Ak = k ,Mk = c{k-l) {k = l,..,,K) (2.17) 

is computed at once. 
In view of (2.7) we find 

f(p) = k (2c(fc - 1) < p < 2ck) 

Similarly, formula (2.5) shows 

& ( P ) - | ^ ( c ( * - l ) < P < c f c ) 

c 

If we write t := ^ for the moment, then we obtain 

€o(t) = ^ 1 ^ {t<k<t + l) 

m= k (i<k<i + i). 
Prom this we derive an estimate 

t^-2t-4 
2t + 4: 

(2.18) 

(2.19) 

which increases like | for increasing t. 
Now, if we rewrite (2.18) as 

« ' ) - f ^ (k-l<t<k, k = l,...,K) ^^^^ 

iit) = A: (2Jfc - 2 < < < 2jfc), 

then we can provide a sketch of the correspondence S as in Figure 4. 
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Figure 4: A DMP Correspondence 

Note that this figure represents the correspondence with t = ^ as the 
independent variable. If we want to represent it as a correspondence in p, 
then the above sketch has to be rescaled by a factor c, it is shrinking for 
c > 1 and expanding for c < 1. 

Definition 2.7, Let 0 be a PLBO. Then, for every player i G I, the cor­
respondence Ŝ *̂  derived from Ĉ *̂  is the dmp-correpondence of player 
i. The correspondence 

2:[0,Po] 

2(P) 

?(1R) 

nHW(p) (2.21) 

iG/ 

is called the dmp-correapondence of 0. 

Corollary 2.8. Let C he a costfunction. Then there is a neighborhood of 
C such that for any PLBO 0 with costfunctions Ĉ *̂  located within this 
neighborhood and for any p > A^ {i e I), the dmp-correspondence is 
nonempty, interval-valued, and uhc in p as well as in the data of 0. 
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In other words, if the cost functions of the firms are similar, then the 
dmp-correspondence is nonempty provided the argument p is not too small. 
Similarly as in Remark 2.3, the dmp-correpondence "widens" in a sense with 
increasing p and this all the more with the curvature of the costfunction 
(which is similar for all of them) increases. Figure 4 provides the intuition: 
suppose that constants Ci {i £ I) describe the various cost functions of 
players given as in Example 2.6. This amounts to a variation of the rescaling 
factors to be applied to Figure 4. As there is a minimum width of the 
correpondence to the right of i4i = 1, a moderate rescaling will provide a 
nonempty intersection of all correpondences of the players. 

Definition 2.9. For any PLBO 0 the price Ai := max{^^'^ N ^ ^} is 
called the max-min marginal price ofO. We shall say that 0 is a PLBO 
with similar firms if there is a cost function C and a neighborhood of this 
function such that the conclusions of Corollary 2.8 are satisfied. That is, 
for p> A\ the DMP correspondence satisfies 

S(p) ^ 0. (2.22) 

The above theorem is a local one. It calls for cost functions in a joint 
neighborhood. A global theorem can be constructed in the spirit of Theo­
rem 2.5. We require that the relations between marginal costs and mean 
cost globally do not vary to much between the members of the oligopoly. 

Definition 2.10. We shall say that a PLBO 0 has uniform, MM incre­
ments, if there is K G Tt^ such that for kJ>K and any pair of players 
i^j G I the following two conditions are satisfied: 

l.Ai>Mi, 

2. If A{ < A{ holds true, then A\_-^ > M^+i follows. 

Theorem 2.11. Let 0 be an PLBO with uniform MM increments. Then 
there is K £lt^ such that for p > Aj^ {i G I) we obtain S(p) ^ 0. 

Proof: We prove that, for any pair i,jel and for sufficiently large p 
the relation ^J > k^ is satisfied. If so, then we see that 

^ := niine5>maxf^' (2.23) 

is satisfied. It follows at once that ^ G S(p) holds true. The proof follows 
exactly the path led in the proof ofTheorem 2.5. 

Now fix i and j . Let p > maxrei Aj^ and choose / such that p € 
{Aj_-^,Ai] holds true. Then necessarily we obtain I — 1 > K, Also, we 
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know that ^^(p) = A^ holds true (from (2.7), cf. the corresponding step in 
Theorem 2.5). Next, choose k such that 

Mi<Ai_,<Mi^, (2.24) 

is true. From condition 1. above (which in this context is an assumption 
and in Theorem 2.5 was a result) we know that / — 1 < fc + 1 , hence k> K. 
Similarly as in (2.15) we obtain 

aiAU) > Al. 
Finally, the (reverse formulation of) condition 2, implies 

ihiP) - i'ip) > ^o(^f-i) - Af > At - Af > 0, (2.25) 

q.e.d. 

3 An Existence Theorem 

We start out with some auxiliary theorems. 

Theorem 3.1. Let © : [0,po] -^ 3̂ ([0>c?o]) be an uhc and convex valued 
correpondence and let F : [0,po] -^ [0,do] be a continuous function. 
Assume that Q{p) ̂ ^ {v>o) holds true for some a G (0,po)- Now, if 

G(a)n[O,F(a)]7^0 (3.1) 

and 
e(po)n[F(po),do]7^0 (3.2) 

holds true, then there exists p € [0,po] ^ith F{p) E 6(p). 

Proof: This is an obvious generalization of the intermediate value the­
orem. It can be proved by the same procedure or by a suitable application 
of the Kakutani fixed point theorem. 

q.e.d. 

Definition 3.2. Let 0 be an^ PLOB. Let oc = A\ be the max-min 
marginal price and let S = [̂ , ̂ o] be the dmp correspondence. If 

r(a) < ^ (3.3) 
n 

and 
^o(Po) > ̂  (3.4) 

n 
holds true, then we shall say that demand and supply are intersecting. If 
a is some other quantitiy, then we will use the definition accordingly. 
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Corollary 3.3. Let 0 be an PLOB with similar costfunctions (of. Defi­
nition 2.9). Assume that demand and supply are intersecting (Definition 
3.2). Then there exists p G [Q:,PO] satisfying — ^ G S(p). 

Proof: Put e := S and F := f. Then apply Theorem 3.1. 
q.e.d. 

Thus, we require that at the max-min marginal price the total produc­
tion (averaged out in a sense) is not sufficient to satisfy the demand and 
that, on the other hand, at the maximal price the demand is below of the 
possibilities of total production. If so, then there is a price at which per 
capita demand is located within the interval of decreasing profits. 

Combining Corollary 3.3 and Theorem 1.6 we obtain 

Theorem 3.4. Let 0 he an PLOB with similar costfunctions (Definition 
2.9). Assume that demand and supply are intersecting (Definition 3.2). 
Then there exists a Bertrand equilibrium. Within a certain neighborhood, 
the Bertrand equilibrium correspondence is uhc in the data ofO. 

The global versions are obtain in a quite similar fashion. However, with 
respect to Definition 3.2, the role of a has to be changed. 

Corollary 3.5. Let 0 be an PLOB with uniform MM increments, (cf. 
Definition 2.10). Let K be defined accordingly and let a = maxi^/AJ^. 
Assume that demand and supply are intersecting. Then there exists p G 
[a,po] satisfying ^ G S(p). 

Proof: In view of Theorem 2.11 we know that the dmp correspondence 
is nonempty for p > a. Therefore we can again apply Theorem 3.1 and 
obtain the analogous result. 

q.e.d. 

Theorem 3.6. Let 0 be an PLOB with uniform MM increments (Defi­
nition 2.10). Let OL be as in Corollary 3.5 and assume that demand and 
supply are intersecting. Then there exists a Bertrand equilibrium. Within 
a certain neighborhood, the Bertrand equilibrium correspondence is uhc in 
the data of 0. 

Remark 3.7. The framework of the model can be relaxed with respect to the 
uniform domain ofde&iition required in DeGnition 1.1. It is su&cient to require 
that the costfunctions are mappings 

& : [0,(?]-^IR {iel). 

Thus, firms may have varying capacities. The role of po can be played by any 
real number satisfying po > max{C*((f )|i G / } . The property of similarity can 
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at once be formulated in this framework (and leads to capacity boundaries that 
are close to each other in a well deBned sense). The intersecting property has to 
be slightly reformulated^ e.g., w.r.t. do := min{(?|i G / } . 
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