
Chapter 3

Literature Review

This chapter includes a detailed literature review of publications on Dynamic Fleet Man-
agement. At the beginning, some general statistics on the surveyed literature are given
(Section 3.1). This is followed by some exemplary publications showing the variety of
dynamic applications in real-life (Section 3.2). Afterwards, algorithm orientated papers
are presented categorized into three groups depending on the knowledge of the future (Sec-
tion 3.3). The remaining sections review the most popular dynamic test instances in the
literature (Section 3.4) and outline the results of some papers that do not primarily focus
on the algorithmic performance, but on the acceptance of dynamic planning applications
in real-life (Section 3.5).

3.1 Statistical Analysis of the Surveyed Publications

Dynamic aspects in transportation have attracted increasing attention in the research
community and in practice over the last years. A dynamic transportation problem was
considered first by Wilson (Wilson et al., 1971; Wilson and Weissberg, 1976; Wilson
and Colvin, 1977) at the Massachusetts Institute of Technology (MIT) in Boston. For
a dynamic Dial-A-Ride Problem at the city of Rochester (USA), the authors develop an
insertion heuristic, which, after the occurrence of a new order, evaluates all possible in-
sertion positions in the existing tours. According to a special selection criterion, the new
order is inserted at the best position.

After this early work, it took several years for dynamic transportation to become a popular
field of research. Today, many publications are available, investigating dynamic real-life
applications and proposing new efficient solution methods. Figure 3.1 shows the number
of publications concerning “dynamics in transportation” over the course of time, based
on the 64 sources cited in this survey.4 In the mid-nineties, the number of publications
started to increase, reaching a peak of 12 publications in 2004.5 Afterwards, a medium
level was maintained but with a decreasing trend.

4 Other surveys with classification schemes and literature different from this survey have been published,
for example, by Psaraftis (1995), Ghiani et al. (2003), Cordeau et al. (2007), and Larsen et al. (2008).
5 This finding may be attributed to a special issue on “Real-Time Fleet Management” in Transportation
Science in 2004
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Figure 3.1: Publications on dynamic transportation over the course of time

local area 4

6

8

8

19

1 1 1

VRPTW
MLPDPTW
Dial-a-Ride
VRP
SLPDPTW
TSP
TSPTW
TRP

wide area 2

2

11

SLPDPTW
SLPDP
MLPDPTW

Figure 3.2: Standard problems considered in the selected dynamic publications
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It is also interesting to analyze which basic theoretical problems the surveyed publications
have dealt with (cp. Figure 3.2). In total, 48 papers considered local area applications,
15 considered a wide area environment, and one paper could not be attributed. Within
the local area group, 27 papers are depot bound (VRP, VRPTW, TSP, TSPTW) and
21 papers are depot free (TRP, SLPDPTW, MLPDPTW, Dial-A-Ride). All wide area
applications are depot free (SLPDPTW, SLPDP, MLPDPTW).

When evaluating sources of dynamism (cp. Figure 3.3), it can be observed that nearly all
publications (93.8%) consider the dynamic arrival of requests. Also quite popular are dy-
namic travel times (21.9%), while vehicle breakdown, service time (each 6.3%), dynamic
demand levels, and request cancelation (each 4.7%) are only considered by a few authors.

Before algorithmic solution procedures come to the fore in Section 3.3, several publications
that focus specifically on dynamic practical applications will be presented.

3.2 Practical Applications

The following publications primarily focus on dynamic applications in real-life. They give
a detailed description of the associated practical planning problems and present solution
approaches that have actually been implemented. However, additional real-life applica-
tions with distinctive focus on algorithmic solution concepts can also be found in Section
3.3. This section’s purpose is to outline the variety of dynamic real-life applications,
which, for example, can be seen at the different objects or services provided by vehicles.

The first five papers (see Table 3.1) consider various objects (from petroleum to human
patients) that have to be transported. A further paper deals with vehicles providing road-
side assistance service, while, in the last application, customer service is constituted by
the use of a specific recreational vehicle itself.

authors investigated real-life topic
Brown and Graves (1981) dispatching of petroleum tank trucks

Bell et al. (1983) distribution of industrial gases in a VMI
environment

Savelsbergh and Sol (1998) truck dispatching at shipping company
Magalhaes and Sousa (2006) distribution of pharmaceutical products

Beaudry et al. (2010) transportation of patients in a hospital
Krumke et al. (2002) dispatching of mobile roadside assistance

units (ADAC)
Ernst et al. (2007) dispatching of recreational vehicles

Table 3.1: Variety of dynamic real-life applications

Brown and Graves (1981) consider fleet dispatching of petroleum tank trucks at “Chev-
ron Corp.”. Starting from 80 US terminals, 2,600 loads per day have to be scheduled,
delivering motor gasoline, weed oils and jet fuels. Vehicles perform a series of successive
“single load” pendular tours between depot and customers. A vehicle consists of several
compartments that have to be filled with different types of gasoline. The order quan-
tity is assumed to be static, while new orders occur dynamically. The objective is the
minimization of transportation costs and an equitable workload distribution.
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The planning problem has to be solved for each depot in a rolling horizon framework.
At first, authors model an integer linear program, but find out that it cannot be solved
exactly within a reasonable time. This is because there is just a single central computer
that has to handle a subproblem query from one of the 80 terminals within a fraction of
a second.

Hence, a heuristic is proposed, which solves a sequence of embedded network flow prob-
lems and successively fixes order to truck assignments. Subsequently, the solution is
improved by load exchanges between two trucks and Best Re-Insertion. The new dispatch
module produces excellent solution quality and a reduction of transportation costs by
about three percent. Additionally, the new planning approach achieves extremely uni-
form distributions of workload among vehicles.

Bell et al. (1983) report on a dynamic distribution problem (capacitated VRPTW) at
“Airproducts and Chemicals Inc.”, which sells industrial gases (oxygen, nitrogen, argon
and carbon monoxide) from 23 depots to 3,500 customers in the US. Ten to thirty vehi-
cles are assigned to each depot. The inventory of storage tanks, located at the customer
locations, is monitored by the distributor (Vendor Managed Inventory) and must be main-
tained above a specified safety stock level.

The customer’s demand is dynamic. The only indication for future demand levels is an
estimation based on a historical 15-day horizon. Customers with high variability can ad-
ditionally be phoned to detect their exact inventory levels. On the basis of this demand
information, vehicle routes, schedules and quantities for Delivery are planned for each
depot. Nevertheless, demands may deviate from the estimated amounts. In addition, un-
accounted emergency orders, which have to be served immediately, may occur during the
day. The authors model the problem as a mixed integer problem and develop a Lagrange
relaxation based algorithm, which is solved in a rolling horizon manner (with a two to five
days horizon). As a result, the authors observe savings of up to $1.72 million annually
when replacing the current manual planning with the new planning system.

Beaudry et al. (2010) investigate dynamic transportation of patients between health
care units and service areas in a large hospital in Southern Germany (dynamic Dial-A-
Ride). The hospital complex consists of 100 buildings and a road network of 15 km. A
heterogeneous fleet of 11 ambulances, each carrying special equipment, is responsible for
picking up and delivering people in given time windows. Some people require individual
transportation, other people can be combined. A vehicle may carry different load combi-
nations: one bed, one wheelchair, one seated person at a time, or up to three wheelchairs.
Some transportation tasks require the vehicle to go back to the depot for disinfection
afterwards. Other transportation tasks require the Pickup of an accompanying person,
who needs to be picked up before the patient and perhaps needs to be brought back after
the completion of the transport.

Ninety-six percent of the requests are called in dynamically. Further possible dynamic
events are cancelations and updates of requests, as well as late arrivals and vehicle break-
down. The objective function prioritizes patient convenience over both travel time and
prevention of early arrival. The authors develop a rolling horizon Tabu Search metaheuris-
tic based on the neighborhoods best re-insertion and intraroute re-arrangement. Tests with
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a 20-day historical data horizon from the hospital reveal significant reductions in waiting
times for patients and a reduction of the number of vehicles.

Krumke et al. (2002) examine a dynamic service vehicle dispatching problem at the
German Automobile Association (ADAC), which provides roadside assistance to people
whose car has broken during their journey. Service vehicles possess individual capabili-
ties (spare parts, repair kit), cost parameters and home location. In addition to ADAC
owned vehicles, it is also possible to access subcontractor’s vehicles. The problem can
be considered as a multi depot Vehicle Routing Problem, with dynamic requests (100%)
and dynamic service times. If a “customer” calls in, the objective is to guarantee service
within a short period of waiting time (lateness cost), while keeping operational costs for
the service vehicles (driving cost, overtime cost) as low as possible.

The authors propose a Column Generation approach, which is applied in a heuristic way.
By solving linear subproblems, dual prices are obtained and are used to generate feasible
tours with reduced cost. For a test set with 770 events and 200 mobile units, solution
quality is within 5% from optimum within 15 seconds and within 2% from static optimum
after one minute.

Savelsbergh and Sol (1998) describe a dynamic planning problem at “Van Gend and
Loos BV”, the largest road transportation provider in Benelux. The paper is focused on
direct transportation (no consolidation of orders at a depot or hub), which is carried
out for order sizes ranging from four pallets to a full truckload. The problem can be
considered as an MLPDPTW, with the special characteristic that one request can have
several Delivery locations in a predetermined order. Van Gend and Loos BV exclusively
use rented vehicles (on average 100) for direct transportation: 50 are rented permanently
and the remaining vehicles are rented on a daily basis. The number of vehicles that are
rented on a daily basis has to be specified at the beginning of a working day.

The primary planning objective is to minimize the number of vehicles. The secondary ob-
jective is the minimization of total traveled distance. Especially the estimation of the right
number of vehicles is difficult, because just 40% of a day’s orders are known in advance,
while 60% arrive during the day of execution. The authors develop a Column Generation
based solution approach. Since fast reaction times (< 5min) have to be ensured, the un-
derlying pricing problem is solved by an approximization algorithm. Encouraging results
of the new solution approach are reported, leading to reductions in total costs ranging
from 3.7% to 4.7% a week. On the other hand, the number of vehicles used is slightly
higher than before.

Magalhaes and Sousa (2006) deal with a dynamic application at Cofanor, a distrib-
utor of pharmaceutical products, operating in Portugal. As pharmacies organize stock
with Just-In-Time policies, they tend to place several orders with rather small quantities
during a single day. These orders are digitally transferred to Cofanor, where a human
operator confirms them. Afterwards, a picking process in the distributor’s warehouse is
started, until the orders (on average 400 per day) can be distributed by vans. The ob-
jective is a quick response to customer demands (short lead-time) and keeping Delivery
costs (traveled distance) low.



36 Chapter 3. Literature Review

The authors propose a four-phase heuristic (for a capacitated VRP). First, the orders are
clustered by increasing angle. Then, a route of orders is generated in each cluster using
Best Insertion. Thirdly, the urgency of all routes is checked and only routes with an
“urgent” order are released to phase four (an order is “urgent” if the time between order
placement and expected Delivery is greater than a predefined threshold). In phase four,
the chosen routes are improved with 2-opt and finally released for execution. The post-
ponement of tours in phase three is used with the intention of receiving further compatible
orders. Results of the new heuristic are compared to the results of manual planning: av-
erage lead time to pharmacies is reduced by 8.1%, however, traveled distance is increased
by 1.9%.

Ernst et al. (2007) report on a dynamic planning problem at Tourism Holdings Lim-
ited, a New Zealand-based company that operates a fleet of more than 4000 recreational
vehicles (motor homes and camper vans) at 10 locations in Australia and 4 locations in
New Zealand. The vehicle fleet consists of 50 distinct vehicle types, e.g. varying in the
number of berths, number of doors and power engine. The dispatching of vehicles is per-
formed on a 200-day “active scheduling horizon” and can be described as an SLPDPTW.
When a customer calls in, an acceptance/rejection-decision is made within five seconds.
If the request cannot be accepted, alternatives have to be suggested, e.g. different dates
or similar products. A further planning task is the adjustment of the plan to dynamic
events, like late return, vehicle breakdown, etc.

The authors employ two planning levels : the objective of the first level is to maximize the
number of accepted bookings, while, in the second level, the cost for handling the accepted
bookings is minimized. Operation costs consist particularly of empty relocation, free up-
grade to a higher valued vehicle, accelerated cleaning to hold appointed allocation time,
etc. The dynamic first level problem is solved with a linear assignment algorithm. For the
second level, a relaxed linear programming formulation is solved with ILOG. Afterwards,
the relaxed conditions are heuristically re-incorporated. Idle time between dynamic events
is used to improve the current plan. The application of the new system resulted in 2%
savings in operating costs. Simultaneously, human planners won time to intensify their
efforts handling exceptions.

In most cases, practical applications do not perfectly coincide with one of the standard
problems. Because many additional requirements often have to be accounted for, this
section’s primary function has been to show the widespread appearance of dynamic prob-
lems in real-life. The following section will cover algorithmic procedures (usually related
to standard problems), which provide a pool of generic concepts that can be adapted to
more specific practical applications.

3.3 Algorithmic Solution Concepts

The reviewed publications within this section can be divided into three groups. The first
two groups do not have any knowledge of the future and therefore only perform “myopic”
planning. In contrast to the first group (Section 3.3.1), the second group (Section 3.3.2)
anyhow tries to anticipate the future. Stochastic information about the future is available
only to third group publications (Section 3.3.3), which make explicit use of it with different
concepts.
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3.3.1 Dynamic Approaches without Knowledge of the Future

There are generally many possible ways of grouping dynamic myopic publications: by
investigated standard problems, by sources of dynamism, by degree of dynamism, by geo-
graphical area, by associated groups of authors, etc. In the following, however, the main
algorithmic solution concepts have been chosen for classification:

• local search approaches (3.3.1.1),

• metaheuristics, guiding the local search out of local optima (3.3.1.2),

• heuristic applications of exact procedures (3.3.1.3),

• rule-based approaches (3.3.1.4), and

• multi-agent systems (3.3.1.5).

At the beginning of each of the following subsections, a short summary of the selected
publications’ properties is given in the form of a table (see Table 3.2 for an example).
This table includes the dynamic aspects considered in the associated publication.

An “X” in the first column indicates dynamically occurring requests. If available, the de-
gree of dynamism is given in subsequent brackets. The second column reports on further
sources of dynamism (e.g. travel time). Afterwards, the considered standard problem is
specified: capacitated/uncapacitated (column four), actual problem (column five), time
window characteristic hard/soft - if time windows are available at all (column six), and
geographical extension (column seven). An “X” in column eight indicates that en route
diversion is allowed, and column nine gives information about the employed dynamic test
data sets.

dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Shieh and May,
1998

X (50%) cap. VRPTW hard local Solomon, 1987

Du et al., 2005 X
(100%)

cap. VRPTW soft local self-generated

Tang and Hu, 2005 X (50%) uncap. VRPTW hard local Solomon, 1987
Potvin et al., 2006 X (50%) travel

time
uncap. VRPTW soft local Solomon, 1987

Chen et al., 2006 X (78%) travel
time

cap. VRPTW hard local Solomon, 1987
+ real-life

Branchini et al.,
2009

X (60%) cap. VRPTW soft local X self-generated

Table 3.2: Local search approaches

3.3.1.1 Local Search Approaches

The local search approaches that are subsequently presented consist mainly of two parts.
The first part is applied to construct a feasible solution (e.g. with Best Insertion). The
second part uses classical techniques (like Re-Insertion or 2-opt) to improve this initial
solution. Measures to escape from local optima are not applied.
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Table 3.2 summarizes the properties of five selected papers. All of them consider the local
area VRPTW with dynamically occuring requests. The degree of dynamism varies be-
tween 50% and 100%. In addition, dynamic travel times are included by two publications
as a second source of dynamism. The latest publication by Branchini et al. (2009) allows
for en route diversion.

Shieh and May (1998) consider a capacitated VRP with hard time windows, where up
to 50% of customers occur dynamically. The objective is the minimization of traveled dis-
tance. Orders may be rejected. The authors propose a heuristic that uses Best Insertion
for constructing a feasible solution, followed by intra- and interroute improvement with
OR-opt and 2-opt. The improvement part is run continuously between the occurrence of
two requests.

For testing purposes, the static VRPTW instances of Solomon (1987) are extended by a
new column with random Call-In times. Analyses are carried out, comparing the results
of the dynamic approach with the best known solutions of the static Solomon instances.
The authors run their simulations in real time and report an increase in the number of
used vehicles by factors of 1.12 to 2.14 and an increase in traveled distance ranging from
7% to 25%. It has to be mentioned that for some problem sets, not all requests could be
serviced due to possible late Call-In and hard time window constraints.

Du et al. (2005) regard a capacitated VRP with soft time windows, in which up to
100% of customers occur dynamically. The objective function consists of two levels.
The first level goal is to minimize the total distance traveled. When no feasible insertion
position can be found, the goal is to minimize delay. The authors propose a heuristic with
construction and improvement parts. In total, four construction methods are presented,
partially depending on geographical order clustering, similar to the “sweep algorithm”:

• find the cluster to which the request belongs to and append the new order at the
end of the associated vehicle’s queue;

• assign the order to the vehicle with the smallest distance between the last order in
the vehicle’s queue and the new order’s location;

• apply Best Insertion with regard to all vehicles;

• find the cluster the order belongs to and apply Best Insertion to the associated vehi-
cle queue. If necessary (due to capacity constraints), take a new vehicle from depot;
if necessary (due to absence of additional vehicles at the depot), check insertion cost
for vehicles in close regions.

The improvement component consists of interroute changes with Best Re-Insertion and
2-Exchange (each of two routes is cut into two segments, then the second segments are ex-
changed) and intraroute changes with Or-opt and 2-Swap (exchange of two nodes within
a vehicles route). Improvement is executed as pure local descent, i.e. changes are only
accepted when an improvement of the objective function is found. Tests are conducted
with self-generated data sets, showing best results for construction with Best Insertion
followed by improvement with Best Re-Insertion and OR-opt.

Tang and Hu (2005) deal with an uncapacitated VRP with hard time windows, in
which up to 50% of the customers occur dynamically. The main goal is to maximize
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the number of serviced customers. This is achieved by accepting as many customers as
feasible. Further goals are the minimization of customer waiting time (defined as the time
gap between Call-In and start of service) and the minimization of traveled distance, with
higher priority being attributed to the reduction of customer waiting time.

The authors propose a rolling horizon based approach, which is triggered by the occur-
rence of new orders. For the acceptance decision, not only Best Insertion is used: When
the first attempt does not result in a feasible plan, additional adjustments with Best Re-
Insertion and OR-opt are applied in order to create a feasible insertion position for the
new order. The order is only rejected if all these attempts fail. Subsequent improvement
is carried out with a version of OR-opt, examining the relocation of three, two, or one
consecutive nodes in the vehicle’s current tour. Occasionally, a number of requests is
extracted and re-inserted.

The Solomon (1987) instances are used as test data, with the extension of dynamic Call-
In times and modified time window characteristics. For test instances with wide as well
as narrow time windows, the authors report “dramatic benefits” with the new approach
when compared to a benchmark procedure, based on Best Insertion and OR-opt (objec-
tive: minimization of travel time). General results show high quality solutions within a
limited computing time.

Potvin et al. (2006) deal with an uncapacitated VRP with soft time windows, in which
50% of the customers occur dynamically. A special focus is placed on travel times which
are subject to several fluctuations :

• Depending on the time period of the day, the average travel time is multiplied by
prespecified coefficients (“long-term forecast”). This is an a-priori known informa-
tion.

• The moment a vehicle starts traveling on a link, a short-term bias to the travel time
coefficient is revealed (“short-term forecast”). This value is chosen according to a
uniform random distribution in the interval [−0.1,+0.1].

• The arrival time at a link’s destination is furthermore distorted by unforeseen events
that may occur along the travel leg. These are modeled as normally distributed
perturbations with a mean of 0 and standard deviations ranging from 1 to 32. Here,
only delays to the current schedule are considered, thus a negative value is simply
reset to 0. Information about the extent of such variations is first known to the
algorithm when the vehicle finally arrives at the destination.

The general objective is to minimize an equally weighted sum of travel time, lateness
and overtime. The authors propose a solution approach based on Best Insertion and
subsequent improvement with Cross-Exchange (“two segments of routes are exchanged
between two different routes by removing two arcs in each route and by appropriately
reconnecting the two segments.”) and Intraroute Exchange. The procedure is applied at
the beginning and at the occurrence of the following events:

• the arrival of a new order,

• when the short-term forecast on travel time is introduced at vehicle departure, and
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• when the arrival time at a location is delayed by a “tolerance time limit”.

In the last case, the order is reassigned to another vehicle. If the original vehicle arrives
before the new vehicle, the algorithm tries to cancel the re-assignment. If the new vehicle
has not yet started traveling to the observed location, the associated node is simply re-
moved from its schedule, otherwise the new vehicle reaches the location without serving
it (no en route diversion).

As test data, the authors use dynamic extensions to the Solomon (1987) data sets. They
observe that an increasing magnitude of dynamic leg travel time perturbations results in
harder to solve problems. After considering different levels for the “tolerance time limit”,
a short waiting time shows the best performance. Events of small magnitude are caught,
and reaction is only performed on events of larger magnitude.

Chen et al. (2006) investigate a capacitated VRP with hard time windows, in which up
to 77% of orders occur dynamically. Travel times are also subject to dynamic fluctuations,
modeled as distortions to (a-priori known) time-dependent travel times. The objective is
the minimization of a weighted cost function, containing travel and waiting time. New
orders may be rejected if a feasible insertion position into the current plan cannot be
found. Rejection is also possible if fluctuations in travel time make it impossible to serve
an order within its time windows.

The authors propose a heuristic approach which uses Best Insertion for route construc-
tion, followed by an improvement routine with OR-opt. Planning runs are triggered by the
occurrence of new dynamic information and by execution of irreversible planning events
(e.g. permanent order-to-vehicle assignment or when the vehicle starts traveling to a spe-
cific order).

Extended Solomon (1987) data and some real-life data from a logistics company located
in Taiwan are used for testing purposes. Dynamic travel time fluctuations are modeled
with two types of random variables. First, the interval lengths of time-dependent travel
times are distorted, then the corresponding travel times. For reasons of comparison, the
authors apply a solution approach that is not able to include dynamic updates in travel
times. As expected, the solution approach that considers those changes in travel time
significantly surpasses the benchmark procedure in performance. For the second data set,
the new algorithm is benchmarked with the manual planning of human dispatchers: The
results for a fleet of six vehicles show a reduction in total travel time from originally 875
minutes down to 832 minutes.

Branchini et al. (2009) consider a capacitated VRP with soft time windows, in which
up to 60% of customers occur dynamically. The objective is the minimization of traveled
distance. The authors propose a construction heuristic that uses the initial static requests
to distribute the available vehicles equally across the whole service region, in order to ac-
commodate future dynamic customers more easily.

After a request arrival has taken place, the new customers are included with Best In-
sertion. In addition, an improvement procedure is continuously run, investigating 2-opt,
OR-opt and Cross-Exchange neighborhoods. Depending on arrival intensity, these neigh-
borhoods are dynamically reduced (“adaptive”) in order to concentrate on high quality
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solutions. Hence, “long” arcs with small probabilities for improvement are neglected. The
authors call their approach granular search. The approach further includes a basic “wait
first” strategy, en route diversion, as well as vehicle re-positioning to strategic waiting
places.

For testing purposes, three instances are generated with a personal data generator. The
basic parameter settings are taken from real-life transportation companies. The authors
apply several nine-hour real time simulations and compare their new approach with Best
Insertion and Nearest Neighbor. As expected, significant profit gains were achieved when
employing the new sophisticated approach. In addition, a 4% better objective value is
reported when all information is made known to the algorithm a-priori.

3.3.1.2 Metaheuristics

The second group of dynamic approaches, the “Metaheuristics”, can be seen as a control
level above one (or several) basic local search procedures (improvement neighborhoods).
Metaheuristics usually allow for temporary deterioration of the objective function value
in order to escape from local optima. Five representatives are subsequently considered:
Tabu Search, Evolutionary Approaches, Variable Neighborhood Search, Ant Colony, and
the concept of a Second Objective Function. Table 3.3 summarizes the properties of the
associated publications.

Tabu Search

In a Tabu Search (cp. Glover, 1989), the algorithm moves towards the best available so-
lution, generated by its underlying neighborhood. This is possible as long as a solution
is not stored within the “tabu list”, which includes (usually for a given time horizon)
already visited solutions. Since the algorithm is not allowed to choose such a tabu list
solution, it is forced to explore regions of the search space that would otherwise be left
unexplored. Temporary worsening of the objective function value is explicitly allowed in
order to escape from local optima.

Five Tabu Search publications, all considering a local area geographical extension, are
presented: two focusing on the uncapacitated VRPTW, two focusing on the Dial-A-Ride
problem and one dealing with the uncapacitated MLPDPTW. An interesting aspect of
the second paper by Ichoua et al. (2000) is the detailed investigation of the impact of “en
route diversion”.

Gendreau et al. (1999) deal with an uncapacitated VRP with soft time windows for
a Courier service application, in which 50% of the customers occur dynamically. New
orders may be rejected if they cannot be handled within a feasible solution, e.g. because
of hard time window restrictions at the depot. The objective is to minimize a weighted
cost function, including total distance traveled and time window violations.

The authors introduce a parallel Tabu Search algorithm with Adaptive Memory, based
on Taillard et al. (1997). The Adaptive Memory, similar to the concept of Genetic Al-
gorithms, contains a set of feasible solutions. These are generated in the beginning by
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dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Tabu Search

Gendreau et al.,
1999

X (50%) uncap. VRPTW soft local Solomon, 1987

Ichoua et al., 2000 X (75%) uncap. VRPTW soft local X Solomon, 1987
Attanasio et al.,

2004
X (50%) cap. DARP hard local Cordeau and

Laporte, 2003
Fabri and Recht,

2006
X

(100%)
cap. DARP hard local Caramia et

al., 2002
Gendreau et al.,

2006
X

(100%)
uncap. PDPTW soft local self-generated

Evolutionary Approaches

Haghani and Jung,
2005

X (55%) travel
time

cap. VRPTW soft local self-generated

Pankratz, 2005 X
(100%)

cap. MLPDPTW hard local Solomon, 1987

Hanshar and
Ombuki-B., 2007

X cap. VRP local Kilby et al.,
1998

Cheung et al., 2008 X (16%) travel
time

cap. MLPDPTW hard local self-generated

Okhrin and
Richter, 2008

travel
time

cap. VRPTW hard local Solomon, 1987

Variable Neighborhood Search

Angellelli et al.,
2004

X uncap. VRPTW hard local X

Bock, 2010 X several cap. MLPDPTW soft wide X self-generated

Ant Colony

Montemanni et al.,
2005

X cap. VRP local Kilby et al.,
1998; real-life

Guntsch and
Middendorf, 2002

X TSP TSPLIB

Second Objective Function

Xiang et al., 2008 X several cap. DARP soft local self-generated

Table 3.3: Metaheuristics

a stochastic insertion heuristic and subsequent improvement with Tabu Search (neigh-
borhood: Cross Exchange). Based on the solutions found in the Adaptive Memory, new
solutions are repeatedly composed and improved with Tabu Search (cp. Figure 3.4).

Afterwards, the best new solutions are added to the Adaptive Memory. In a dynamic
environment, the improvement procedure is run until a new event occurs. If the new
event is the occurrence of a new request, the latter is inserted into each Adaptive Memory
solution. If the event represents the end of service at a customer location, the driver’s
next destination is identified using the best solution stored in the Adaptive Memory. In
order to keep solutions consistent, the other solutions are updated accordingly. Then, the
overall improvement process is restarted.

The Solomon (1987) data sets, extended to dynamic aspects, are used for testing purposes.
The new approach is benchmarked with several “easier” heuristics: simple successive in-
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Figure 3.4: Tabu Search algorithm with Adaptive Memory

sertion, successive insertion and improvement with cross exchange, complete solution
rebuild with insertion, rebuild and improvement with cross exchange, and parallel Tabu
Search with stop at the first local optimum. As expected, results show best performance
when the complete approach is run. In addition, the authors show that it is beneficial
to optimize the planned routes between the occurrence of two events. With increasing
computation time better average results are achieved. Finally, the parallelization of the
algorithm on up to 16 processors is investigated, resulting in more customers being ser-
viced and in a reduced sum of distance and lateness.

Ichoua et al. (2000) extend the scope of action for the problem and algorithm con-
sidered in Gendreau et al. (1999) by allowing “en route diversion”. A driving vehicle
may be directed away from its current destination in order to serve a request that has just
occurred in the vicinity of its current position.

The authors introduce a framework with variable anticipation horizon δt. Every time t
the solution approach is restarted, decisions in the horizon t + δt are “frozen”, so that
the current algorithm run may schedule planning updates soonest for time t+ δt. During
the frozen period, new requests may arrive, which have to be accepted or rejected (only
if no feasible insertion position is available). For this purpose, a copy of the current plan
is held ready, which is updated if a new best solution is found. In this situation, the
authors do not consider the case of two similar orders arriving in the same frozen inter-
val. Both could be accepted separately, but together they could render the plan infeasible.

In order to determine reasonable computation times, the authors suggest three variable
rules for calculating the value of δt:

• δt is chosen in such a way that the solution procedure ends before any vehicle arrives
at its current destination,

• δt is chosen to be proportional to a moving average of the last l inter-arrival times,

• δt is chosen to be the length of some time horizon X divided by the number of
requests on the planned routes found within that time horizon.
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In first tests, the third rule succeeded in reducing both the number of unserved customers,
as well as total objective value.

The same test data sets as in Gendreau et al. (1999) are used, providing insights into
potential gains by applying “en route diversion”. Compared to the original heuristic, the
number of unserved customers is indeed reduced by 16.8% up to 100%. In addition, the
objective function value is decreased by 2% up to 4.3%, indicating substantial benefits
through the exploitation of en route diversion.

Attanasio et al. (2004) deal with a capacitated Dial-A-Ride problem, where 50% of
the requests occur dynamically. Orders possess one hard time window, which is either
the Delivery time window (for outbound trips) or the Pickup time window (for inbound
trips). In addition, a maximum ride time of 90 minutes has to be considered. New orders
are accepted if they can be feasibly inserted into the current plan without violating any
hard constraints. The objective is the minimization of traveled distance.

The authors develop a Tabu Search approach, which is a dynamic and parallelized exten-
sion to Cordeau and Laporte (2003). An initial solution is generated by relaxing several
hard problem restrictions (capacity, maximal route duration, time windows, and user ride
time constraints). Then, the Tabu Search, based on a Best Re-Insertion neighborhood, ex-
plores the solution space including infeasible solutions. After each iteration, the objective
function cost parameters are adjusted, raising and decreasing the weight for restrictions
that have been violated and complied with, respectively. With the help of a tabu list,
solutions are penalized by a factor proportional to the frequency of the addition of its dis-
tinguishing attributes. If a new best solution is found, intraroute exchanges are performed.

As test data, the authors use 26 dynamic instances from real-life applications in Mon-
treal/Canada and from a Danish company. A parallelization strategy is applied with an
increasing number of processors ranging from one to eight. Results show the benefits of
enhanced computing power via parallel computing. A performance statement on how well
the proposed algorithm works in dynamic environments (e.g. by comparison with static
data or with other dynamic approaches) is not explicitly mentioned.

Fabri and Recht (2006)6 investigate a capacitated Dial-A-Ride problem with 100%
dynamically occurring customers. When a request arrives, it is accepted if a feasible in-
sertion position into the current plan (in compliance with hard time windows for Pickup
and Delivery) is available. The objectives are the minimization of rejected orders and the
minimization of traveled distance.

The authors employ a dynamic solution approach that extends the work of Caramia et al.
(2002) by introducing explicit Delivery time windows and by allowing waiting times.
When a new order occurs, all vehicles are successively inspected for a feasible insertion
position. If such a position exists, the order is assigned to the cheapest vehicle.

The single vehicle subproblem is solved as follows. A network of possible status vectors
is established, in which each order may have the status already delivered (“0”), already

6 Based on the author’s dissertation: Fabri (2008)
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picked up (“1”), or waiting for Pickup (“2”). Two vertices are connected by an edge
whenever the subsequent vector can be obtained from its predecessor by subtracting 1 to
exactly one vector element. The source vertex is the vector (2, 2, . . . , 2), i.e. all accepted
demands are waiting for Pickup, the sink vertex is the vector (0, 0, . . . , 0), i.e. all accepted
demands have been delivered. The problem is to find a shortest path from the source to
the sink, subject to time windows and capacity constraints. This task is performed with
an A* algorithm that reduces computation time by using a lower bound approximization
function to estimate the cost of the route from the current vertex to the sink. Between two
events, the solution is improved with a Tabu Search algorithm based on the neighborhoods
Best Re-Insertion and (1, 1)-Exchange.

As test data, the authors use adapted data from Caramia et al. (2002). The “stretch
factor”, which originally implies the maximum acceptable ratio between actual and min-
imum expected travel time, is converted into a Delivery time window. Tests with 20
vehicles show significant improvements, ranging from 3.83% up to 10.74% in compari-
son to results of the original algorithm. It is observed that the new approach produces
better solutions for problems with a small number of vehicles and a high number of orders.

In a further work, Gendreau et al. (2006) investigate an uncapacitated MLPDP with
soft time windows, in which up to 100% of the orders occur dynamically. The objective is
the minimization of an equally weighted cost function consisting of travel time, lateness
and overtime. The authors rely on the same optimization framework proposed in Gen-
dreau et al. (1999). The parallel Tabu Search with Adaptive Memory is primarily changed
in terms of the basic neighborhood. Instead of Cross Exchange, an Ejection Chain pro-
cedure is applied. A request (Pickup and Delivery) is taken from one route and moved to
another route, thus forcing a request from that route to move to yet another route, and so
on. The chain may be of any length and may be cyclic or not.

For testing purposes, three main scenarios, each including five instances with increasing
requirements to the solution procedure (“temporal utilization” of vehicles 28%, 57% and
78%, respectively) are generated. See Section 4.4.2 for a detailed presentation of these
dynamic test sets. A comparison of the new approach is carried out with the adapted
benchmark heuristics from Gendreau et al. (1999). It is worth mentioning that simula-
tion is run in real time, producing realistic time intervals between events for running the
improvement.

Best results are achieved with the application of the new approach. The results of
“complete solution rebuild” show worst performance because previously obtained solu-
tion structures get lost. With increasing stress, the solution quality of Tabu Search with
Adaptive Memory and benchmark heuristics gets progressively closer. The authors ex-
plain this finding by a lack of computation time between two consecutive events. When
parallelization with 16 processors is applied, additional improvement ranges from 2.2% to
5.7%.

Evolutionary Approaches

This group of metaheuristics is inspired by biological evolution. Candidate solutions to the
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optimization problem play the role of individuals in a population, and each individual’s
fitness is determined by its associated objective function value. The procedures initially
generate a diversified pool of solutions (parent generation), which is used as origin for
improvements (child generations). The improvements are achieved by using mechanisms
like “selection”, “recombination”, or “mutation”. The idea of “Genetic Algorithms” goes
back to Holland (1975).

Again, all five selected papers deal with a local geographical area. Interestingly, three
of five publications explicitly consider dynamic travel times: two in combination with
dynamic requests, and one focusing only on dynamic travel times.

Haghani and Jung (2005) consider a capacitated VRPTW with 55% dynamic requests
and dynamic travel times. The dynamism of travel time is modeled by varying link travel
speed, which is calculated as the link’s average speed multiplied by a dynamic factor,
depending on the time of day. Information about time-dependent variations in travel
time is not ex-ante known to the planning algorithm. The objective is the minimization
of a weighted cost function with costs for used vehicles, traveled distance and violation of
time windows.

The authors present a rolling horizon based Genetic Algorithm with the following encod-
ing. A feasible solution for the VRPTW consists of a sequence of four-digit numbers. Each
number belongs to a real order, in which the first digit indicates the assigned vehicle, and
the last three digits are used as sorting keys for each vehicle’s routing. At the beginning,
an initial parent population is randomly generated and evaluated for fitness. Afterwards,
new individuals (children) are generated by applying two-point crossover, mutation and
vehicle merging. Individuals of a new generation are selected from both the parent and
children generation. The best solution is always passed onto the next generation (elitist
strategy), while the remaining solutions are chosen with probabilities depending on their
fitness.

Solution quality is evaluated by a comparison with exact CPLEX solutions (for very small
problems with less than 10 demand nodes) and lower bounds (based on a relaxed MIP
formulation). Results show gaps of less than 5% for 5 to 25 demand node problems. For a
30 demand node problem with 30 time periods, the gaps increase up to 7.9%. Overall, the
authors report excellent results within very short computation times. In addition, the new
approach is applied to a larger case study’s data, which shows the benefits of reacting to
dynamic changes in travel time by comparing the performance of a plan revision strategy
with a non-revision strategy.

Pankratz (2005)7 investigates a capacitated PDP with hard time windows and up to
100% dynamically occurring customers. The objective is the minimization of total trav-
eled distance. All orders have to be served and, if necessary, an additional vehicle is
introduced. As solution approach, the author proposes a “Grouping” Genetic Algorithm.

Pankratz argues that in an MLPDPTW, the assignment problem of orders to vehicles has
more influence on solution quality than the routing problem. This is motivated by the fact

7 Based on the author’s dissertation: Pankratz (2002)
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that time windows and precedence constraints considerably restrict the number of routing
alternatives for a given allocation of requests. In the presented approach, an MLPDPTW
solution (“chromosome”) is therefore encoded by clusters of requests assigned to a single
vehicle (“genes”). Additionally, a chromosome contains routing information for each gene,
which is hidden from the Genetic Algorithm and cannot be directly manipulated by the
genetic operators. The encoding is visualized in Figure 3.5.
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Figure 3.5: Encoding of the “grouping” Genetic Algorithm (cp. Pankratz, 2005)

An initial population is generated by repeated Best Insertion of all requests in random
order until the desired population size is reached. The algorithm successively selects pairs
of individuals with regard to their fitness and generates two children by applying crossover
and mutation operators. For Crossover, two crossing sections are specified in each parent.
Then each parent’s section is inserted into the other parent. To yield feasible solutions,
some repair actions, e.g. elimination of vehicles or elimination of orders occurring twice,
are performed. A subsequent mutation randomly eliminates a gene and re-inserts the
associated requests.

If a new request occurs, all irreversible decisions of the “plan in execution” up to this point
in time are discovered, and a synchronization of all individuals of the population is car-
ried out. Then, the new request is inserted into all individuals. Subsequently, the Genetic
Algorithm is restarted, and, after termination, the best solution is picked as new “plan in
execution”. Dynamic test data sets are derived from the static PDPTW instances of Li
and Lim (2003) (cp. Section 3.4 for details). Two insertion heuristics without improve-
ment are used for comparison: (i) incremental insertion and (ii) total plan revision (“from
scratch”) every time a new request occurs. Both methods are significantly outperformed
by the GA, which produces up to 5% reductions in traveled distance. However, with an
increasing degree of dynamism, the gap between GA and insertion heuristics shrinks.

Hanshar and Ombuki-Berman (2007) report on a capacitated VRP with dynamically
occurring customer requests and the objective of minimizing traveled distance. A rolling
horizon based Genetic Algorithm is presented. Similar to Montemanni et al. (2005), dy-
namic information is batched up to the end of equal time slices and processed in the



48 Chapter 3. Literature Review

following time slice. During time slices, “optimization” is run based on known data. At
the end of each time slice, the best known solution is chosen for execution. Decisions that
have a processing time starting within the next time slot are permanently fixed.

The encoding of a VRP solution is performed by a series of positive and negative integer
numbers, describing the sequence of orders. While positive numbers indicate open (not
fixed) orders, negative numbers are used for identification of order bundles that have al-
ready been assigned to a specific vehicle. The series of numbers is traversed from the
left to the right, successively assigning orders to vehicles. When a vehicle’s capacity is
reached, or when a negative number occurs, a new vehicle is introduced.

An initial population of 400 individuals is randomly generated and evaluated. Afterwards,
individuals are chosen for Crossover according to their fitness. For crossover, a route from
each parent solution is randomly selected, and the customer orders present in each route
are removed from the other parent. Then, the customers are reinserted with Best Inser-
tion. This is repeated until a sufficient number of feasible solutions for the next generation
is available. Some of the new solutions are subject to the mutation operator that reverses
the sequence of orders between two randomly chosen cutting points. Finally, 1% of the
worst new solutions is replaced by the 1% best solutions from the parent generation.

Test data and benchmarking results are taken from Montemanni et al. (2005), who have
developed an Ant Colony based approach. In addition, the authors develop a Tabu Search
approach with the neighborhoods inversion and λ - interchanges (1,0) to (3,3). Neverthe-
less, best results are obtained with the new Genetic Algorithm, followed by Tabu Search
and Ant Colony. The GA outperforms Montemanni’s Ant Colony results by 5.26% on
average.

Cheung et al. (2008) deal with an MLPDP with hard time windows, in which travel
times and the occurrence of new requests (up to 16%) are subject to dynamism. Dynamic
orders may be rejected only if there is no feasible insertion position. The goal is the
minimization of total travel time.

The authors propose a genetic solution approach, which is triggered by the arrival of new
information (new orders, changes in travel time). The encoding of a solution is performed
as follows. For each order, a triple of numbers (“a gene”) is stored, where the third number
denotes the assigned vehicle, and where the first and second numbers denote the routing
positions of Pickup and Delivery in the vehicle’s tour. An initial population is generated
by first building pendular tours (depot - Pickup - Delivery - depot), with orders lying at a
prespecified distance from the depot (subject to variation), and by subsequently inserting
the remaining orders into the pendular tours.

When a sufficient population size is reached, solution pairs are selected for Crossover
(according to fitness). In the Crossover operation, a random number of genes from parents
A and B is exchanged. If the fitness value of one of the new emerging solutions outperforms
both parents, the parents are discarded and replaced by their offspring. Otherwise, both
parent solutions are kept in the population. Afterwards, each new generated solution is
subject to mutation. For a random number of requests, the assigned vehicle is changed.
The mutated solution is only accepted if it has a better fitness value than before.
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The authors use some self-generated test instances with customer locations evenly dis-
tributed in a unit square. While information about the number of dynamic customers
(four in all test instances) is available, frequency and magnitude of travel time variations
remain undefined. The impact of dynamic data on solution quality is investigated by
applying the new algorithm on the associated static case, with resulting gaps between 5%
and 10%. According to the authors, the effectiveness of the dynamic re-optimization is
quite high.

Okhrin and Richter (2008) consider a capacitated VRPTW with time-dependent and
dynamic travel times. For each pair of nodes, four travel time values are specified, asso-
ciated with different day time intervals. In addition to this a-priori known information,
travel time is subject to dynamic fluctuations, which are modeled as normally distributed
deviations N(0, 4) and N(0, 9). The objective is the minimization of total travel time.

As solution approach, the authors propose a Genetic Algorithm. The initial population is
created by first sorting customers according to the urgency of their time windows and the
subsequent application of Best Insertion. A new generation of the same size is generated
with a selection procedure, followed by crossover and mutation. For selection purposes, a
random number of individuals is repeatedly chosen from the whole population. In every
round, one individual from the chosen subset reaches the next generation (with a proba-
bility of 80% for the fittest one, otherwise a randomly selected individual of the remaining
subset).

Afterwards, 90% of the selected individuals are subject to the Crossover operator. Partial
routes are randomly chosen from two individuals. Then the associated orders are removed
from the other respective individual, followed by Best Re-Insertion. The mutation op-
erator is applied to 10% of the offspring. A random customer within each individual is
exchanged with the customer that has the most similar time window. Finally, the 1%
best solutions from the old population are transferred to the new one, replacing the worst
individuals (“elitist strategy”).

The authors test their approach with modified Solomon (1987) data and prove the effi-
ciency of the Genetic Algorithm for static planning situations. In addition, the benefits
of dynamic reactions to fluctuations in travel time are shown by comparison with a “no
reaction strategy”.

Variable Neighborhood Search

The concept of Variable Neighborhood Search was proposed by Mladenovic and Hansen
(1997). The basic idea of VNS is to search for improvements from the current best so-
lution, first using the smallest neighborhood in order to randomly (!) generate one new
solution. This solution serves as starting point for another local search procedure, which
is executed until a local optimum is found. If the local optimum is a new best solution, the
search is re-started from this new solution. Otherwise, the “radius” of the neighborhood
around the original best solution is successively increased.

Two publications using VNS in dynamic environments are selected. The first one focuses
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on generating a concept for how to realize VNS in a dynamic situation. The second pub-
lication also reports on computational tests. A main feature of the second approach is
the explicit consideration of “transshipment options”.

Angelelli et al. (2004) investigate an uncapacitated VRP with hard time windows, in
which new requests occur dynamically. Orders are classified into priority levels according
to their time window’s urgency. The objective is to maximize the total priority value of
the served requests. Generally, orders may not be rejected, but some orders with time
windows that are more distant may be postponed to the next shift.

The authors present a concept for a rolling horizon based solution procedure that is
applied in fixed specified time intervals. A plan is made feasible by inserting all unpost-
ponable orders with the help of Best Insertion, re-arrangement of orders, and extraction
of postponable orders. Subsequently, a Variable Neighborhood Search (VNS) improvement
procedure is applied. A neighborhood is defined by the number k of postponable requests,
which are extracted from the current solution. These orders are labeled “tabu” and stored
in a pool of not assigned postponable orders. As many “non tabu” postponable orders as
possible are then attempted to be inserted into the current plan. Computational results
are not reported.

An algorithm much like “Variable Neighborhood Search” is also applied by Bock (2010).
The author focuses on a dynamic MLPDPTW, including several sources of dynamism:
requests, vehicle breakdown, vehicle deceleration, route blockage, and traffic congestion.
The main contribution, however, is the integration of multi-modal transport chains
and multiple transshipments. The author models four shipment scenarios for trans-
porting a load from a Pickup to a Delivery location (an exemplary visualization can be
found in Figure 3.6):

• direct transportation,

• transportation making use of one transshipment point (depot or hub),

• transportation making use of two transshipment points (two depots, or one depot
plus one hub), and

• transportation using several transshipment points (several depots, plus one hub if
necessary).
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Figure 3.6: Exemplary illustration of available shipment scenarios (cp. Bock, 2010)
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The framework also allows for a kind of en route diversion. A directly scheduled trans-
portation task, which is already loaded onto a vehicle, can be dynamically exchanged
at the next transshipment point, thus enabling the assignment of another task to this
vehicle. Construction and improvement procedures are based on Best Insertion. In the
improvement part, a specific number of requests is extracted and re-inserted, investigat-
ing all possible transshipment scenarios. If no improvement can be found, the number of
extracted requests is successively increased (VNS). As soon as an improvement has been
found, it is accepted and the procedure starts with the first step (=just extracting one
request).

For testing purposes, the author generates data sets whose structure is “derived from
practical applications”. He compares a time-based (continuous improvement with fixed
anticipation horizon) and an event-based simulation technique. Better performance is
achieved with the time-based approach. In addition, a rule-based benchmark procedure
is applied to the test data. As expected, this procedure is clearly outperformed by the
VNS-like procedure. Finally, it is proven that the availability of complex transshipment
structures results in more transportation options and therefore yields better overall re-
sults.

Ant Colony

The concept of Ant Colony optimization was proposed by Dorigo (1992), who was inspired
by the behavior of ants seeking a path between their colony and a source of food. Each
ant lays down a pheromone trail on the paths it travels. If other ants find such a path,
they are likely to follow the existing trail, thus reinforcing it. The concept is transferred
to Vehicle Routing in order to find “optimal” paths.

For this metaheuristic, two dynamic publications have been chosen that consider dynam-
ically occurring customers for a VRP (Montemanni et al., 2005), and dynamic changes in
customers locations for a TSP (Guntsch and Middendorf, 2002).

Montemanni et al. (2005) propose an Ant Colony approach for solving a capacitated
VRP with dynamically occurring requests. The objective is the minimization of total
travel time. In order to handle the dynamic requests, the working day is divided into
time slices of equal length, wherein new orders are batched. These new orders are incor-
porated during the planning run of the subsequent time slice. Over the period of each
time slice, the ant colony heuristic is run and the best solution that is found is realized
at the beginning of the next time slice.

The ant colony heuristic works as follows. Every ant produces a feasible VRP solution
by choosing customers successively according to given arc probabilities. The probability
of visiting customer j after customer i depends on two factors: the general attractiveness
of the arc (depending on travel time) and the pheromone level (indicating how proficient
it has been in the past to visit j after i). When an arc has been chosen within one gener-
ation of ants, its pheromone level may be locally reduced to favor exploration. Once all
ants of the colony have completed their computation, the best known solution is used to
globally modify the pheromone trail. In this way, a “preferred route” is memorized in the
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pheromone trail matrix and future ants will use this information to generate new solutions
in a neighborhood of this preferred route. To reduce the impact of “older” solutions, some
pheromone information is evaporated at the beginning of each time slice.

On the basis of dynamic test data from Kilby et al. (1998), the authors compare their
approach with an easy heuristic (Nearest Neighbor construction and Best Re-Insertion
improvement). Better performance is achieved by the new Ant Colony approach with an
average decrease in total travel time of 3.2%, compared to the easy benchmark heuristic.

Guntsch and Middendorf (2002) deal with a TSP with dynamically changing cities.
While the total number of cities is kept constant, a fixed number of random cities is
exchanged with other cities (from a pool of cities) every t time units. The objective is
the minimization of total traveled distance. The authors propose a population based Ant
Colony approach, which connects Ant Colony with aspects of a Genetic Algorithm. In-
stead of transferring pheromone information, a set of solutions is transferred from one
iteration of the algorithm to the next. This set of solutions is then used to compute the
pheromone information for the ants of the next iteration. A specified number of ants
generates TSP solutions, in which each routing decision depends on the probability of the
optional links. With a probability of 0.9, the arc with the highest probability is chosen.
With a probability of 0.1, one of the other arcs is chosen according to their individual
probability.

In order to update the pheromones, the authors investigate several strategies for replacing
an old solution by the best new generated solution. It turns out that the best strategy is
either to simply replace the oldest solution or to randomly choose a solution for exchange
(with higher probability for an inferior one). As a consequence of dynamic changes in
cities, the solutions in the population are altered infeasible. To overcome this problem,
the authors discuss a Complete Restart or a Repair by Best Insertion. Repair performs
better when only minor changes in data have to be included, while Restart is preferable
in situations with higher dynamism.

Second Objective Function

Finally, a last metaheuristic concept is considered (cp. Helay and Moll, 1995), which dif-
fers slightly from the others. In order to escape from local optima, a Second Objective
Function is introduced with the goal of temporarily deteriorating the primary objective
function. This secondary objective function should be rather different from the main one
in order to drive search far enough, but should also be partially dependent on the primary
one, in order to avoid worsening its value too strongly.

Xiang et al. (2008) consider a dynamic Dial-A-Ride problem with soft time windows.
Nearly all possible sources of dynamism are regarded: arrival of new requests, fluctuations
in travel speed and service time, no-shows of customers and cancelation of requests, traffic
jams and vehicle breakdown. An algorithmic solution concept based on Best Insertion,
supplemented by improvement with basic versions of intra- and intertour exchanges, is
proposed.
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The primary objective function minimizes a weighted cost function, including vehicle fixed
costs, distance, travel time, waiting, service time, violation of maximum travel time, over-
time and delay. The secondary objective function is chosen in a similar way, focusing
specifically on the costs of empty distance, empty travel time and empty waiting time.
For testing purposes, a data set is self-generated. Interestingly, not all possible sources of
dynamism are tested at once. Instead, the impact of each source is investigated separately
with the following findings: while long term traffic jam and vehicle breakdown cause se-
vere modifications in the schedule, cancelation of customers, travel time fluctuations and
service time variances induce only minor changes.

After the treatment of different metaheuristics, we will continue with the next “main
algorithmic solution concept”, which is based on exact procedures.

3.3.1.3 Heuristic Application of Exact Procedures

The third group of dynamic myopic approaches is based on exact procedures, which are
applied to the static subproblems of a dynamic instance (including all available informa-
tion up to a specific point in time). Since the dimension of those static subproblems is
usually quite big and due to limited computation time to solve a static subproblem, the
regular application of exact solution procedures is less suitable. Instead, the exact pro-
cedures are applied only to a relaxed subproblem combined with some subsequent repair
mechanism. Another option actually applies the original exact procedure, but interrupts
it after some time, using the best solution found so far.

Those approaches are called heuristic application of exact procedures. Due to the char-
acter of dynamic problems, “not finding the exact solution” of a static subproblem is
not dramatic. As explained in Section 2.1, a “better” solution of a subproblem may not
necessarily result in a better overall solution of the dynamic problem.

In the following, a Column Generation based approach and a procedure using Lagrange
relaxation are reviewed. Afterwards, three publications that try to solve the static sub-
problems with CPLEX solver are presented. Finally, the idea of using a linear assignment
procedure is explained, which is actually solved exactly for each static subproblem (but
with the input information for the assignment matrix including some heuristical calcula-
tions). Table 3.4 summarizes the properties of the selected publications.

Column Generation

Chen and Xu (2006) consider a capacitated VRP with hard time windows, where up
to 75% of customer requests occur dynamically and have to be completely served (no
rejection). To fulfill this task, an infinite number of vehicles is available. The objective is
the minimization of total distance traveled.

The planning horizon is equally divided into decision epochs (with a length of one or two
minutes, according to the scenario). Solutions are successively fixed on a rolling hori-
zon basis up to a prespecified point in time (anticipation horizon). The authors apply a
heuristic solution approach, based on Column Generation, where a column corresponds
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dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Column Generation

Chen and Xu, 2006 X (75%) cap. VRPTW hard local X Solomon, 1987

Lagrange Relaxation

Li et al., 2009 vehicle
break-
down

cap. VRPTW hard local Solomon, 1987

Application of CPLEX solver

Yang et al., 1999 X cap. SLPDPTW hard wide X self-generated
Mahmassani et al.,

2000
X cap. SLPDPTW hard wide X self-generated

Kim et al., 2002 X
(100%)

cap. SLPDPTW soft wide X self-generated

Linear Assignment

Fleischmann et al.,
2004

X (49%) travel
time

cap. SLPDPTW soft local real-life

Powell et al., 2000a X (70%) travel
time

cap. SLPDPTW soft wide real-life

Powell et al., 2002 X cap. SLPDPTW soft wide real-life

Table 3.4: Heuristic application of exact procedures

to a single vehicle trip. The algorithm consists of two levels. At the first level, a heuristic
is used to generate new columns and to update old columns (e.g. insertion of new orders).
At the second level, a set-partitioning-type formulation is exactly solved with CPLEX. In-
formation about dual values of orders is exchanged between both levels in order to guide
the local search heuristics. En route diversion is explicitly permitted.

For testing purposes, dynamic extensions to the VRPTW instances of Solomon (1987)
are generated. The authors first compare their new approach with the best known solu-
tions for the static Solomon instances. Results are inferior, by on average 3.97% for data
sets R1, C1, RC1 and 0.54% for data sets R2, C2, RC2. Afterwards, the new dynamic
solution approach is benchmarked with a Local Search Approach (Best Insertion plus
improvement with 2-Exchange and OR-opt, with unlimited time) and an “unlimited time
version” of the new dynamic Column Generation approach. The results show a 5% better
performance of the new approach, when compared to Local Descent. Interestingly, when
the new approach, having unlimited time available is compared to its version with limited
time, it produces better results only for 70% of the instances.

Lagrange Relaxation

Li et al. (2009) consider a capacitated VRP with hard time windows and dynamism
induced by vehicle breakdowns. It is observed that a VRP with Pickup tasks has to
be treated different from a VRP with Delivery tasks in the case of vehicle breakdown. In
the Pickup case, other vehicles can just change their routes to collect the packages from
the broken down vehicle’s customers. In the Delivery case, however, other vehicles have
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to change their routes to first Pickup the packages loaded on the broken down vehicle and
then deliver them to the corresponding customers (transshipment is only allowed from the
broken down vehicle, not between the other vehicles). For both cases, Pickup or Delivery,
the authors additionally model the option of having a backup car ready at the depot.
If available, this vehicle may be used to fulfill parts of the broken down car’s Pickup or
Delivery tasks.

The authors develop a Lagrange relaxation based heuristic, which is supplemented by a
Best Insertion algorithm to ensure feasible results. The approach is compared to a “naive
manual strategy” and to a pure “Best Insertion” heuristic. The “naive manual strategy”
just cancels the services if no extra truck is available at the depot. If such a backup
car is available, it is simply sent to continue the tasks of the broken down car. In the
case of Delivery, it has to drive first to the breakdown point to collect the loaded packages.

For testing purposes, the static Solomon (1987) instances are taken. The best-known
solutions are used as initial routes of the vehicle re-routing problem. Then, one vehicle
breakdown is introduced early in the schedule. Some instances are equipped with a backup
vehicle at the depot. Solutions show best results for the Lagrangian heuristic: total costs
are reduced by 8.53% compared to the “naive manual strategy” and by 4.46% compared
to “Best Insertion”. In addition, the authors observe generally more service cancelations
for Delivery services than for Pickup services if the same algorithm and settings are used.

Application of CPLEX Solver

Yang et al. (1999) consider an SLPDP with hard time windows, where new requests
occur dynamically. The objective is the minimization of a weighted cost function con-
sisting of empty distance traveled, delay (deviation from preferred time within hard time
windows) and lost revenue (for rejected orders). A mathematical problem formulation,
explicitly allowing en route diversion, is given and several strategies to find good insertion
positions of new orders are distinguished:

• the load is simply placed at the end of each truck’s current job queue,

• the load is placed at the best position in the queue,

• the load is placed at the best insertion position, considering re-sequencing and re-
assignment.

The third strategy is implemented with the help of a branch-and-cut procedure in CPLEX
and produces optimal solutions for the static subproblems. However, the computational
burden is quite high, so that the number of demands which can be reoptimized at any
given time has to be limited. As test data, the authors use some self-generated instances
of relatively small size. The best results are achieved by applying the “optimal” strategy
on a limited number of ten variable requests.

Mahmassani et al. (2000) consider the same problem, primarily discussing strategies
for how to reduce the number of variables for the “optimal” insertion strategy. They sug-
gest disregarding the vehicle’s next order and the shift of a “cut-off time” from the present
to the future, successively removing requests from the pool of potential re-assignment
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orders as long as the number of remaining orders after the “cut-off time” equals the pre-
defined maximum number of orders. In addition, the merging of spatially close orders is
discussed.

Kim et al. (2002) publish a related paper, which is also based on the mixed integer
model of Yang et al. (1999), where time windows of the SLPDPTW are now treated as
soft constraints. The authors investigate the task of maximizing revenue in an oversatu-
rated system, where half of the dynamic demands have to be rejected.

Several concepts for the acceptance/rejection decision are discussed:

• In the first concept, simply all requests are accepted, until a maximal holding ca-
pacity of 360 orders is reached.

• A second concept limits the number of accepted demands that have not been picked
up yet to a prespecified threshold of 270 (75% of holding capacity), in order to leave
more room for improvement operations to the existing demands.

• In the third concept, the minimal additional empty mileage to reach a new order’s
Pickup location is calculated with Best Insertion over all vehicles. If the empty
mileage is below 18 miles, the new order is accepted.

Improvement is based on the “optimal” CPLEX approach, specified in Yang et al. (1999).
To comply with a maximum computation time of 10 seconds, the problem size is reduced.
Initially, the vehicle to which the new demand was assigned is chosen, then the spatial
proximity of other vehicles’ orders is calculated (including a check for time window fea-
sibility). Finally, a subset of promising vehicles plus some random vehicles is chosen for
improvement. Every time optimization is restarted, a snapshot anticipating the planning
situation after 10 seconds is generated, which serves as starting point for the improvement
procedure.

For tests with self-generated test data, the authors introduce the following cost param-
eters: revenue per loaded mile ($1.2), variable cost per mile, including both empty and
loaded movements ($0.57), and daily fixed costs for driver and trucks ($45 + $45). The
results show that the acceptance strategy based on additional empty mileage produces
the highest revenue. The other strategies are inferior by 4.5% (threshold of 270 orders)
and 10.6% (maximum holding limit 360 orders). It is indicated that keeping the number
of waiting jobs in the queue below the holding capacity (at about 75%) is more benefi-
cial than accepting and holding as many demands as possible. Response time may be
improved significantly when the length of job queues is limited.

Linear Assignment Problems

Fleischmann et al. (2004) consider an SLPDP with soft time windows, where up to
49% of the customers occur dynamically. In addition, travel times are subject to a-priori
known time-dependent fluctuations (in intervals of one hour) and dynamic disturbances
occurring in 5-minute intervals. The objective is the minimization of a weighted cost
function including travel time, delay and overtime.
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The authors propose a solution approach, which is based on the optimal solution of a
Linear Assignment Problem, where all vehicles and all open orders are considered simul-
taneously. The associated assignment matrix additionally includes some dummy vehicles
and some dummy orders, which are introduced to enable postponement of orders (when
an open order is assigned to a dummy vehicle) and waiting of idle vehicles (when a dummy
order is assigned to a real vehicle). Each time a new event (e.g. new order, completion
of an order) occurs, the matrix is updated and the assignment problem is re-solved. An
order-to-vehicle assignment first becomes effective when the vehicle’s preceding order is
completed.

For tests, the authors use real-life data from a local area express service and travel time
data from a traffic management system in the city of Berlin, Germany. For comparison
purposes, (i) simple assignment rules and (ii) a Best Insertion procedure with improvement
(OR-opt and vehicle-to-tour re-assignment) are used. Procedures are run on test data with
varying degrees of dynamism, ranging from 0% to 49%. For the completely static case, the
Best Insertion procedure shows best results, while for test instances with 49% dynamic
customers, the new assignment procedure outperforms all the other approaches. The au-
thors determine an increasing advantage of the new assignment procedure for increasing
levels of dynamism and attribute these findings to the preservation of high flexibility that
is achieved by fixing the order-to-vehicle assignments at the latest possible time.

Further publications considering the SLPDPTW with solution approaches based on the
linear assignment problem are published by Powell et al. (2000a) and Powell et al.
(2002).

3.3.1.4 Rule-Based Decision Making

The fourth group of dynamic myopic approaches can be classified as “Rule-Based” pub-
lications, since easy decision rules are applied as a reaction to dynamically occurring
information. Some of the following papers also include some more advanced procedures
(e.g. Local Search) for comparison purposes. The concept of “Fuzzy Logic” is included
here, because it basically reproduces human decision making, by transferring it into a
form of rule-based computer decision making.

All of the selected papers consider dynamically occurring customers; in addition, one pa-
per also includes dynamic service times. The SLPDP(TW) is regarded three times; the
other two papers deal with a TRP and an MLPDPTW, respectively. Table 3.5 summa-
rizes the properties.

Rule-Based Decision Making

Regan et al. (1995) investigate the potential benefits of en route diversion for an SLPDP
under idealized conditions. The respective publication is also the first explicitly consid-
ering en route diversion. The objective is the minimization of empty distance traveled.
The authors first consider the idealized one vehicle and two requests case. In a circular
area with the depot in the center, a vehicle starts traveling to the first order’s Pickup
location. While the vehicle is on its way, the second order arrives (with Call-In time uni-
formly and randomly distributed within the vehicle’s travel time to the Pickup location).
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dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Rule-Based Decision Making

Regan et al., 1995 X cap. SLPDP X self-generated
Regan et al., 1996 X cap. SLPDPTW hard wide X self-generated
Regan et al., 1998 X cap. SLPDPTW hard wide X self-generated
Larsen et al., 2002 X

(100%)
service
time

TRP local self-generated

Fuzzy Logic Approach

Teodorovic and
Radivoj., 2000

X
(100%)

cap. MLPDPTW hard local self-generated

Table 3.5: Rule-based decision making

A first rule-based diversion strategy, “divert if the new Pickup location is closer to the
vehicle’s current position”, yields savings in traveled distance of less than 1%. When, in
addition, the potential empty distance, according to the sequence of both orders, is taken
into account, the average reduction in traveled distance is more than 6%.

In a second scenario, several dynamic orders occur, with an arrival rate rapid enough so
that more than one demand may arrive while the vehicle is en route to the Pickup loca-
tion. The authors introduce a benchmark solution approach, where optimal re-sequencing
is performed at the completion of each loaded movement. If en route diversion is allowed
in this approach, the results are improved by about 1% to 2%. However, diversion creates
a sort of “zig-zag” effect, where a vehicle is en route and then diverts and then diverts
again. Thus, the authors recommend limiting the number of times that one diverts before
some demand is serviced and not allowing diversion whenever it is locally better.

The exploration of idealized scenarios suggests that a reduction of traveled distance of
between 5% and 10% by applying en route diversion is not unreasonable.

In Regan et al. (1996), the authors extend their problem for profitability-based accep-
tance/rejection decisions, where a new load is only accepted if the empty-to-loaded ratio is
smaller than a prespecified threshold value. The ratio is calculated by creating an optimal
tour, including the candidate load and the already accepted loads. The additional empty
distance is set in relation to the new order’s loaded distance. Again, the advantage of
diversion strategies is proved, which result in a 5% to 7% reduction in overall empty-to-
loaded ratio.

Regan et al. (1998) describe a simulation framework to dynamic fleet management
systems for the SLPDPTW. They discuss three load acceptance and eight load-to-vehicle
assignment strategies.

The following load acceptance strategies are proposed:

(i) a new order is accepted if the number of loads waiting in the system is smaller than
a prespecified number (“capacity-based strategy”),

(ii) a new load is accepted if it can be feasibly inserted into the current plan (“feasibility-
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based strategy”),

(iii) a load is accepted if the empty-to-loaded ratio is smaller than a specified threshold
value (“profit-based strategy”).

For the task of assigning orders to vehicles, the following strategies are compared:

(i) First Come First Served,

(ii) Nearest Origin,

(iii) Bipartite Assignment of open orders to available vehicles, triggered by time,

(iv) Bipartite Assignment, triggered by the number of open orders and idle vehicles,

(v) Best Insertion plus Intraroute Changes,

(vi) Best Insertion/Intraroute Changes allowing for en route diversion,

(vii) Best Insertion/Intraroute Changes plus re-assignment of loads between vehicles,

(viii) Best Insertion/Intraroute Changes, allowing for en route diversion and re-assignment
of loads between vehicles.

The strategies are evaluated with self-generated test data, based on a circular geographic
region with a radius of 417 km. A comparison is made on the basis of the performance
indicators average empty distance, waiting time and operating profit for high, medium and
low demand environments. Somewhat different assumptions are used: while assignment
strategies (i) to (iv) are combined with the simple capacity-based acceptance strategy,
strategies (v) to (viii) are combined with the profit-based load acceptance including a
time window feasibility check.

When comparing assignment strategies (i) to (iv), the authors find the best results with
Nearest Origin in high demand environments, while Bipartite Assignment performs best
in moderate demand environments. The more flexible strategies (v) to (viii) produce
much lower waiting times and therefore better customer service for all demand intensi-
ties. However, good profit values can only be achieved for moderate demand environments;
the profit values for high demand environments in particular are not competitive. The
authors explain this finding with the fact that a significant fraction of requests is turned
away in strategies (v) to (viii) because of the time window feasibility check. In a final
suggestion, a hybrid system that chooses an assignment strategy based on the current
congestion level of the system is recommended.

Larsen et al. (2002) investigate a Traveling Repairman Problem (TRP) with up to
100% dynamic customers and completely dynamic service times. The objective is the
minimization of total traveled distance.

The authors propose four Rule-Based solution approaches :

(i) First Come First Served (FCFS),

(ii) First Come First Served with relocation to the geographic median when the vehicle
is idle,
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(iii) Nearest Neighbor, and

(iv) First Come First Served within four regions of the geographic area.

For testing purposes, the authors use some self-generated data sets with 20, 30 and 40 cus-
tomers, occurring in a 10km×10km unit square. The data are constructed with degrees of
dynamism ranging from 0% to 100% and with effective degree of dynamism ranging from
0% to 60%. When comparing the rule-based strategies, best results are achieved with
Nearest Neighbor. Strategy (iv) produced slightly higher route lengths and FCFS, as well
as FCFS with relocation to the median the longest. For increasing degree of dynamism,
the authors report a linear increase in route length across all policies. Interestingly, for
increasing edod between 48% and 57%, the results show decreasing total travel times.
Generally, the results of different rule-based strategies converge with higher levels of dy-
namism.

Fuzzy Logic Approach

Teodorovic and Radivojevic (2000) investigate a capacitated MLPDP with soft time
windows, where all orders occur dynamically. The associated decision problem is split
into the subproblems “assignment” and “routing/scheduling” with two different objective
functions. For the assignment decision, the objective is to minimize the sum of total
distance traveled and waiting time; for the routing/scheduling decision, the goal is to
minimize distance and time of detours for new customers.

The authors propose a “Fuzzy Logic” method that tries to replicate a human dispatcher’s
decision-making process, based on previous decisions taken by a skilled dispatcher. For
the assignment decision, in a first step a membership function is derived. This function
transforms (the explicitly calculated) additional vehicle distance and additional waiting
time into the categories “big”, “medium” or “small”.

Afterwards, an approximate reasoning algorithm translates the findings into a dispatcher’s
preference strength. When, for example, both the additional distance and the additional
waiting time are “small”, the preference for assigning the new order to the associated
vehicle is “very strong”. Within the pool of vehicles, those currently traveling are fa-
vored over idle vehicles. A similar procedure is also applied for the routing/scheduling
decision. The authors test their approach with some self-generated instances and report
“very promising results”.

3.3.1.5 Multi-Agent Systems

Since Multi-Agent Systems differ substantially from the previous approaches, they are
treated separately. In contrast to other procedures, there is no global view. Instead,
multiple interacting agents with specific objectives decide about subproblems. Solving
dynamic myopic SLPDPTW’s with a Multi-Agent system was considered by a publica-
tion of Mes et al. (2007), whose specifications are given in Table 3.6.

Mes et al. (2007) consider an SLPDP with soft time windows, which is in particular
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dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Mes et al., 2007 X several cap. SLPDPTW soft local real-life and
self-generated

Table 3.6: Multi-agent systems

applicable for local area scheduling of Automated Guided Vehicles (AGV). Dynamism is
primarily induced by requests; in addition, a single random variable is modeled, spec-
ifying the total time from arrival at the Pickup location until completion of service at
the Delivery location. Since a vehicle moves empty immediately to the assigned Pickup
location and waits over there, the random time interval includes: waiting for Pickup,
loading at the Pickup location, driving from the Pickup to the Delivery location, waiting
for unloading and unloading at the Delivery location.

The major contribution of the paper is the development of a Multi-Agent Based Proce-
dure. Instead of a central planning instance, the authors model several agents (for every
vehicle and every request) that interact with the help of a market mechanism. The job
agent’s objective is to arrange transportation of the corresponding load before due time
at minimal costs, while vehicle agents try to maximize their profit by deploying capac-
ity. Both meet at the “marketplace”, where job agents request prices for their specific
transportation task. Each vehicle agent submits a quote, based on its current scheduling.
Afterwards, in a Vickrey auction manner, “the best (lowest) price vehicle agent” wins
the bid (getting a payment for transportation equal to the second lowest offer). If all
quotes are above a certain threshold (calculated with respect to the request urgency), the
assignment of the request may be postponed by the job agent.

Improvement is achieved by specific agents: A fleet agent is responsible for a subset of
vehicles and tries to re-assign jobs between these vehicles. A shipper agent is responsible
for a set of orders, he may re-allocate orders within the already acquired transportation
capacity of its job agents.

The procedure is tested with a data set derived from an AGV system at the Amsterdam
Airport, Schiphol. For benchmarking, the authors use hierarchical scheduling methods
(cp. Ebben et al., 2005), which distribute vehicles amongst nodes at the top level, while
actual load-to-vehicle assignment is performed at the node level. These simple approaches
are significantly outperformed by the proposed multi-agent procedure, especially in terms
of empty travel time and total costs.

The group of dynamic myopic approaches without knowledge of the future has now been
considered in detail. The approaches which are presented in the following section also
have not available any knowledge of the future. However, there is a decisive difference to
the previous ones: They try to identify and to apply ways of anticipating the future.

3.3.2 Strategies Anticipating the Future without Knowledge of
the Future

We now give attention to publications which propose strategies for how to construct my-
opic solutions in order to leave open space (route slack) for the viability of future yet
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unknown events. These strategies try to reduce the probability that an urgent request
(with tight time windows) arrives and the only vehicles that can serve it are already com-
mitted, so that servicing this new request may have to be delayed or the request may
even be rejected. These strategies also try to postpone final fixation of decisions for as
long as possible, in order to have more options to incorporate further new information.

Basically, three concepts have been proposed: vehicle waiting strategies, different objective
functions for short and long-term decisions and request postponement of non-urgent re-
quests. In addition, an extension to the Multi-Agent-based procedure by Mes et al. (2007)
is presented, which leaves open time slack by applying opportunity-based bid-pricing. In
a strict sense, the acceptance-rejection strategies by Regan et al. (1996, 1998) are also
directed to “leave open some slack” for profitable future requests.

The advantageousness of different waiting strategies, in order to efficiently dis-
tribute waiting time along a dynamically constructed route, was compared by Mitrovic-
Minic and Laporte (2004). The authors consider an MLPDP with hard time windows
for a local area courier service.

Waiting after service allows the accumulation of requests by the planner, which may
result in better routing and scheduling decisions. However, waiting may also result in
some wasted time that could have been used to serve additional requests. Four waiting
strategies are included in the comparison:

(i) “Drive First” - A vehicle leaves its current location at the earliest possible departure
time. This may result in waiting time at the next location if the vehicle arrives before
the time window opens.

(ii) “Wait First” - A vehicle leaves its current location at the latest possible departure
time, that means it arrives at the next location at the end of this location’s time
window. An advantage is that more requests are known at the time the vehicle
leaves, resulting in more potential for optimization. On the other hand, more ve-
hicles are required, because the strategy tends to concentrate long waiting time in
the first part of the route, leaving too little waiting time in the remainder.

(iii) “Dynamic Waiting” - The requests in a route are clustered to “service zones” (re-
lated to spatial and time distance). Within each service zone, vehicles drive accord-
ing to “Drive First”, between service zones according to the “Wait First” strategy.
The strategy is illustrated in Figure 3.7 (cp. Mitrovic-Minic and Laporte, 2004).

(iv) “Advanced Dynamic Waiting” - Identical to “Dynamic Waiting” with the extension
that total waiting time between service zones is spread proportionally.

The authors’ algorithmic approach uses Best Insertion to generate an initial solution,
supplemented by Tabu Search improvement, based on an ejection chain neighborhood.
Test data, with completely dynamic requests, were derived from two courier companies,
operating in Vancouver, Canada. Best results are achieved for the “Advanced Dynamic
Waiting” strategy, which produces solutions with up to 8% shorter route lengths compared
to “Drive First” and close to or shorter route lengths compared to “Wait First”. The
number of vehicles is either close to the number of vehicles used in “Drive First” or better.
“Advanced Dynamic Waiting” also outperforms “Dynamic Waiting” in all aspects.
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Figure 3.7: Waiting times generated by a Dynamic Waiting strategy

Another paper, considering the advantageousness of dynamic waiting strategies
was published by Branke et al. (2005). In contrast to Mitrovic-Minic and Laporte
(2004), the authors regard a VRP where only one dynamic customer occurs. The objec-
tive is to find a waiting strategy in order to maximize the probability that this customer
can be serviced within a feasible plan.

Several simple waiting strategies and an Evolutionary Algorithm are presented. The strat-
egy “variable” (“serve all known customers in a tour and finally wait at the last customer’s
location”) and the Evolutionary Algorithm perform best in simulations on a modified test
data set based on Beasly (1990). It is shown, compared to the reference strategy “not to
wait”, that the best waiting strategies are able to reduce the probability of not being able
to serve a customer by 10%, while the average length of the detour for a new customer
was reduced by approximately 35%.

In a second work, Mitrovic-Minic et al. (2004) consider the identical problem to
Mitrovic-Minic and Laporte (2004), but now investigate the application of a double hori-
zon based heuristic. By using different objective functions for short and long-term
decisions, the authors try to achieve better flexibility to incorporate future events. The
short-term goal is to reduce traveled distance, while the long-term goal in addition consid-
ers maintaining the routes in a state with plenty of options for future requests. Decisions
which restrict future planning options are penalized.

The authors compare the double horizon approach with a standard rolling horizon ap-
proach, applying the Tabu Search heuristic introduced in their preceding paper. Again,
two test data sets from Vancouver courier services are used, which both range over a
10-hour service period. The short-term horizon is empirically chosen as one hour and
two hours, respectively. The authors report superior behavior of the new double horizon
based approach, leading to improvements in total route length ranging from 3.6% up to
7.6%.
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Pureza and Laporte (2008) investigate a combined vehicle waiting and request
buffering strategy for a dynamic MLPDP with hard time windows, with the objec-
tive of minimizing a weighted cost function (including: number of lost requests, number
of used vehicles and total traveled distance). Customers occur dynamically, in addition
time-dependent travel times are considered. The authors first prove the advantageousness
of a basic waiting strategy (WE) compared to “Drive First”. A waiting time at the present
location is scheduled in order to avoid early arrival (and waiting) at the subsequent loca-
tion. The waiting time is determined to be just as long as to ensure punctual arrival at
the subsequent location’s EPT. This enables the consideration of new incoming events in
the short-term routing, which may change the decision of the next planned locations, or
leave it unchanged without delaying the beginning of service. This basic waiting strategy
was also successfully employed in Fleischmann et al. (2004).

Afterwards, WE is extended with a version making use of time-dependent travel times,
WE FP. It is evaluated whether indirect paths to reach a location yield shorter travel
times, thus allowing for a further increase in waiting time at the present location. For a
dynamized Li and Lim (2003) PDPTW data set, the authors report a reduction in lost
requests of 2% to 8.3% and a reduction of used vehicles by 1.9% to 4.3% when applying
WE FP (compared to the basic version of WE). In a further step, a request buffering
strategy (WE RB) is added, which postpones the assignment of some non-urgent new
requests to the next route planning cycle. This add-on achieves a further increase in
solution quality, especially the traveled distance can be systematically reduced.

Finally, the authors report best impacts of their combined waiting and buffering strategy
for a degree of dynamism between 0.4 and 0.6. If the dod is too low (<0.2), there is
actually no positive effect at all. Only minor positive effects are reported for high degrees
of dynamism. Due to dispersion of incoming requests over time, postponement activities
in the beginning do not result in a sufficient mass of decision options, thus diminishing
the strategy’s ability to produce improved results.

In a further Multi-Agent based publication, Mes et al. (2010) propose a concept of how
to improve the pricing technique of an individual vehicle agent. They introduce a time
slack measure, which indicates the maximum amount of time that a job can be postponed
by, without causing an increase in delay (for itself or one of the succeeding jobs). When
calculating a bid price for a possible new job, the decrease in time slack between already
accepted jobs is considered. With the help of historical demand data, the authors translate
the required time slack into an expected profit of future moves, which has to be at least
compensated by the reached bid-price of the possible new order. The authors test their
opportunity-based bid-pricing approach with a small self-generated data set with
up to nine nodes and ten vehicles and report a 10% reduction of system-wide logistical
costs if the new concept is used by all vehicle agents.

3.3.3 Dynamic Stochastic Approaches with Explicit Knowledge
of the Future

Information about the future is usually given in the form of probability distributions,
e.g. covering the spatial and temporal occurrence of new orders. A popular approach for
handling future information, which is applied in five of the subsequently twelve presented
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Table 3.7: Publications with dynamic stochastic solution approaches
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dynamic stochastic publications, is sampling : the algorithm generates a sufficient num-
ber of future scenarios (by drawing from the given probability distribution) and uses the
scenarios to approximate a decision’s impact on the future.

Another option is the direct usage of probability distributions, for example to decide
whether a vehicle should wait at its current location or whether it should be relocated to
another promising location. The given probabilities may also be used for calculation of
recourse functions, which include the costs that an assumed scenario does not occur.

Table 3.7 summarizes the main features of the selected dynamic stochastic publications.
As in the dynamic myopic case, the sources of dynamism are given in the first two columns.
Afterwards, the available stochastic information is specified (column 3). In columns 4-7,
the associated problem is defined, as well as the geographical extension. The subsequent
eighth column includes the solution approach, which is used to integrate the given stochas-
tic information. Finally, information about the used test data sets is provided (column 9).

Bent and van Hentenryck (2004) consider a VRP with hard time windows and with
up to 80% dynamic customers. As stochastic information, the algorithm knows the ex-
pected total number of customers, customer locations, and the probability distribution of
temporal request arrival per customer location. The objective is to maximize the number
of serviced customers.

As solution procedure, the authors propose a Multiple Scenario Approach: a pool of fea-
sible plans (sample scenarios) is maintained, each plan including known and unknown
future requests. Whenever a new plan needs to be generated, future requests are randomly
drawn out of the known probability distributions. So the resulting plan leaves room for
accommodating future requests if they materialize.

A dynamically occurring request is accepted if it can be feasibly inserted into at least one
plan in the pool. All plans are continuously kept up-to-date. A plan is deleted, if new
information makes it unrealizable. The plan for execution is chosen with the help of a
consensus function, which selects the plan most similar to the current pool of routings
(for every routing, it is calculated how often identical routing decisions, e.g. from location
A to B, can be found in other routings). So a preferably robust plan is selected, in order
to accommodate many dynamic customers in the future.

The authors use modified 100-customer Solomon (1987) test instances and compare the
cases of having information about the future available, or not. In the second case, the
average number of unserved customers for four different classes of test instances is 1.5,
3.5, 2.3, and 6 on average. In the first case, the average number of unserved customers de-
creases to 0.75, 1.2, 1, and 2. In general, dramatic improvements by exploiting stochastic
information are reported, observing more benefits in environments with a higher degree
of dynamism.

In a similar approach, van Hemert and La Poutre (2004) deal with a dynamic stochas-
tic VRP, where dynamic loads have to be picked up and transported to a depot within
hard time windows. As stochastic knowledge, probabilities are available about “fruitful
regions”, where dynamic loads are likely to occur. The objective is the maximization of
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transported loads.

The authors propose an Evolutionary Algorithm, with an initial population of 30 individ-
uals. In addition to known orders, probable orders, based on the probabilities for future
requests, are generated (sample scenarios). The fitness of the individuals is evaluated
by the number of real and probable orders which could be feasibly inserted, where the
weight of probable orders is decreased by a factor α.

When an event occurs, the best individual out of the population is chosen as plan in exe-
cution. This plan may include anticipated moves, that means vehicles may drive to nodes
that have not requested service. The performance of the approach is tested with some
self-generated test data. The authors report encouraging results and benefits by the use
of information about the future.

Ichoua et al. (2006) examine an uncapacitated VRP with soft time windows, represent-
ing an application of Express Mail Service, where parcels are picked up from customers
(75% of customer orders occur dynamically) and brought to a central office for further
processing. The operational area is partitioned into geographical zones. As information
about the future, it is known to the algorithm that orders occur according to a Poisson
process, with specified arrival rates depending on geographical region and on time period.

The authors expand the parallelized Tabu Search algorithm with Adaptive Memory, in-
troduced by Gendreau et al. (1999), for a waiting opportunity: (i) if the vehicle’s next
destination is far enough, (ii) if there are not too many other vehicles in the current zone,
and (iii) if a new customer is likely to unfold in the vehicle’s proximity within a specified
time period δk, a vehicle is required to wait at its current location for the specified time
period.

The approach is tested with self-generated customer data, with associated locations in a
5km×5km unit square. The advantageousness of the new waiting strategy is proved by
comparison with the original algorithm: total travel time and lateness can be reduced by
2.3% on average. It is also noted that the new strategy is more effective when it is applied
on harder problems (i.e., smaller fleet size or higher request arrival rates.).

Hvattum et al. (2006) observe a dynamic stochastic planning problem at “Linjegoods
AS”, a distribution company in Norway. The problem is traced back to a capacitated
VRP (Pickup), with 50% of the orders arriving dynamically. The geographical area is di-
vided into n×n sectors, where probabilities that a customer shows up in a specific sector
are described as a Poisson process. In contrast to Ichoua et al. (2006), the arrival rate
depends only on the geographic sector, not on the time of day.

To capture the stochastic elements, the authors first analyze the application of a two-
stage stochastic model with recourse function, where all unknown information is assumed
to be revealed at time t. However, computing the expected recourse cost for a particular
solution turns out, even for this simplified case, to be exceedingly difficult.

So the authors proceed with a rolling horizon based heuristic, which solves a set of sample
scenarios (Best Insertion is applied to known customers and to randomly drawn future
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requests) and then uses “common features” from the resulting solutions to build a prefer-
ably “good plan”. The decision to serve a customer in the interval under consideration
becomes more attractive if such a decision has also been taken in various sample scenario
solutions. The objective is to minimize the number of vehicles and total travel time, with
greater weight on the first factor.

For comparison purposes, the new approach is benchmarked with a myopic heuristic,
which ignores all probabilistic information. While routes produced by the new approach
are about 15% shorter, the average number of used vehicles increases slightly. Neverthe-
less, significant savings are yielded by the new heuristic using stochastic information.

In a subsequent publication, Hvattum et al. (2007) modify the selection process from
the pool with the sample scenario solutions. Instead of only counting the frequency
with which a decision can be found in the pool, the authors also include an evaluation
step, which tries to avoid overall poor effects. With respect to the objective function,
this step discloses the possibility to exclude a few customers with high (solution pool)
presence from service and to include a few customers with low (solution pool) presence
for service.

In addition, the authors extend their procedure for the case of customers with stochastic
demand which is revealed first at customer location arrival. If the vehicle discovers that
the demand of the customer is higher than the available vehicle capacity, it has to skip
the customer completely (split transportation of a load is not allowed) and follow the
remaining parts of its tour. The customer has to be serviced later by another vehicle.
Finally, the authors perform some tests for the new program version and report quite
good performance, even on problem instances that have radically different properties as
compared to the instances for which it was intended.

A similar procedure is proposed by Ghiani et al. (2009) for the dynamic stochastic
MLPDP with soft time windows. Stochastic information about customer arrivals is used
to generate a specified number of sample scenarios, which in contrast to Hvattum et al.
(2007), cover only a short-term horizon. After Best Insertion of randomly drawn requests,
the resulting sample scheduling is used for approximating the future impact of a new real
request’s insertion.

The authors benchmark their “anticipatory procedure” with a purely reactive algorithm
(not taking into account knowledge of the future) and achieve “dramatic benefits” with
the new procedure in objective function value. Since the objective function only covers
the minimization of user inconvenience (delay), it should also be mentioned that other
important aspects, such as average vehicle utilization, show significantly worse behavior
(a decrease of 19%).

Kim et al. (2004) investigate a truck dispatching problem (SLPDPTW) with two types
of orders: low price normal orders with wide time windows and high price priority orders
with narrow time windows. In an oversaturated system with more than enough requests
(100% dynamic), an acceptance/rejection decision has to be made in order to maximize
profit. Knowledge of the future is available in the form of spatial and temporal distribu-
tions for priority demands, as well as average haul length and required empty distance
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for this type of order.

Whenever a new request occurs, it is tested whether it can be feasibly inserted into the
current plan (allowing for en route diversion). If the test is positive, a priority order is
immediately accepted. For a normal order, a feasibility index is calculated, based on
the current state of the system and the potential inclusion of the normal order. The index
approximates the expected number of vehicles that would be able to serve future priority
demands. The normal order is only accepted if the feasibility index exceeds a prespecified
threshold.

Test data sets are self-generated, so that approx. 30% of the demands have to be rejected
with an efficient dispatching algorithm. The fraction of priority demands is between 6.25%
and 25%. The authors compare their new approach with the rule-based benchmark poli-
cies “accept if feasible” and “accept if current number of orders in the system is below a
threshold.” While the total number of accepted demands is quite similar with all three
policies, the number of accepted priority demands can actually be increased by the new
solution approach. This results in a significant improvement in total profit.

Yang et al. (2004) deal with an SLPDPTW, where all customer orders arrive dynam-
ically. As information about the future, customer locations are known to be uniformly
distributed in a unit square. The objective is the minimization of a weighted cost function
for empty movement, for delay, and for lost revenue from job rejections.

The authors propose five planning approaches to support the acceptance/rejection deci-
sion. All policies are used to calculate a new order’s marginal insertion cost. If marginal
insertion cost is smaller than prospective revenue, an order is accepted. In policy (i),
marginal cost of serving a new request is calculated over all vehicles by inserting the new
request at the end of each vehicle’s queue. In policy (ii), all possible insertion positions
in each vehicle’s queue are considered. Policy (iii) considers the possibility of re-ordering
waiting requests within each vehicle’s queue. Policy (iv) optimally solves the acceptance
and allocation decisions for all open orders with ILOG. Policy (v) in addition incorporates
knowledge of the future, by introducing the opportunity costs of serving new jobs. Based
on the uniform distribution, for a request with central Delivery location it is more likely
to find a subsequent order with little empty movement. Hence, central locations are
favoured and remote locations are penalized.

The paper reports on results obtained with self-generated test data. Optimization poli-
cies, simultaneously considering all open orders, appear to outperform the more limited
local policies by a significant margin. The worst performance is achieved by policy (i),
the best performance by taking into account the future job distribution in policy (v).
However, the size of instances which could be optimally solved with ILOG was limited to
twenty open orders.

Powell (1996) investigates a dynamic SLPDPTW, where information about the future
is available in the form of load distributions by origin, destination and Call-In time. In
addition to truck-to-load assignment, it has to be decided whether a driver should be held
in a region or whether he should be repositioned empty to a neighboring region (both, in
anticipation of future loads). The goal is the minimization of a weighted cost function,
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including cost for empty movement, cost for waiting, and cost for rejection of a load.

The author presents a solution approach, which is based on a stochastic network with
two components: an assignment network, including known loads, and a forecast network,
including forecasted loads as well as known loads lying in the future. Network arcs rep-
resent driver-to-task assignments (in the assignment network) and loaded moves, empty
moves or waiting times (in the forecast network). An approximate recourse function
is represented by a cluster of recourse links, which capture the expected marginal con-
tribution of each unit of flow into a region in a time period. An approximation of this
recourse function value is added to the arc cost and the resulting problem is then solved
with a network simplex algorithm on a rolling horizon basis.

The new approach is benchmarked with a completely myopic version of the algorithm,
using test data derived from a major truckload motor carrier. Results indicate that the
dynamic stochastic approach outperforms the dynamic myopic one by 15%. In addition
the author investigates the impact of the total number of trucks (density) on overall
profitability and reports substantial improvements ($0.05 per mile) when a larger fleet of
vehicles is used.

Spivey and Powell (2004) present a strategy to incorporate advance information into
a simple linear assignment model for the dynamic SLPDP. The assignment model ex-
plicitly allows “not assigning” a resource/order with the help of arcs connecting each
resource/order to a corresponding super-sink.

Information about the future is assumed to be completely available and is made known to
the solution approach in the form of different types of gradients. That means the assign-
ment problem’s arcs are manipulated in order to produce solutions anticipating future
information. To realize this task, three different types of gradients are defined: resource
gradients, task gradients, and arc gradients. A resource gradient, for example, can
be viewed as the contribution for not assigning the corresponding resource (vehicle). It
is added to the regular cost-value of each arc, which is connected to the specific resource,
thus decreasing the vehicle’s current attractiveness in anticipation of the future. Task
gradients work equally for open orders. An arc gradient is more specific and captures the
impact on the future for each specific arc.

For small problems the gradients are calculated by enumeration of future resources and
tasks, for bigger problems a hierarchical aggregation strategy is proposed. The authors
compare the solutions achieved with the application of gradients with simple myopic so-
lutions. As expected, all gradient solutions turn out superior to myopic solutions. The
best results are achieved with specific arc gradients, where solution quality reaches “near
optimal levels”. However, the computational burden for the arc gradients is the highest,
requiring a calculation for every arc, and not just for every node.

Based on a planning problem of a mail service provider in the US, Larsen et al. (2004)
investigate a dynamic TSPTW, where between 11% and 23% of customer requests and
all on-site service times are subject to dynamism. The geographical area is divided into
several sub-regions, in which orders occur according to a Poisson process with region
specific arrival rates. This information and the probability distribution of on-site service
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time is a-priori known to the planning approach. Decisions about routing and scheduling
for a single vehicle have to be made, with the objective of minimizing the weighted sum
of travel time and lateness.

A rolling horizon based solution approach is presented, which uses Best Insertion and
subsequent improvement with 3-opt. A-priori information is only utilized for potential
re-allocation of vehicles during idle time (in anticipation of a better location to serve
future loads). Three strategies are compared with a reference strategy of just waiting at
the current location:

(i) re-allocation to the nearest prespecified idle point,

(ii) re-allocation to the idle point with the highest arrival rate, and

(iii) re-allocation to the idle point with the highest expected number of immediate re-
quests, depending on vehicle idle time and chosen idle point.

The proposed re-allocation strategies are only executed if the probability of receiving
at least one new request within the vehicle’s idle time is sufficiently high in the chosen
idle point’s subregion.

The authors perform tests with two data sets, one self-generated, the other based on
real-world data. Interestingly, best results in terms of distance and lateness for the first
data set are achieved by the reference strategy of just waiting at the current location.
For real-world test data, however, strategy (ii) performs best, while the reference strategy
proves competitive as well. Results show that using information about the future in the
suggested way may not (!) lead to significant improvements.

Liao (2004) reports on a dynamic VRP in the Taichung network in Taiwan and focuses
on dynamic travel times. As information about the future, the planning system has avail-
able probable link travel times, depending on the time of the day. The objective is the
minimization of total travel time.

The author’s solution procedure consists of an initial route generation by a Nearest Neigh-
bor heuristic, which is followed by Tabu Search improvement with neighborhood 2-opt.
Each time, when changes in link travel times emerge, the travel time matrix is updated
with a shortest path algorithm. As result, a vehicle may be re-routed. Probabilistic in-
formation about the future is used to generate a temporal tabu list, in order to avoid
possibly congested links in the traffic network.

In tests based on real-life data, the impact of having available dynamic travel time infor-
mation is compared to just knowing static travel times. Results show that the objective
function value can be significantly improved by real time routing when considering infor-
mation about the future: decreases in travel time range from 19.74% up to 24.48%.

3.4 Dynamic Test Data

This section reviews the most frequently applied dynamic test instances. Interestingly
there are not so many publicly available dynamic data sets: many authors use “self-
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generated” or “real-life” data sets, but do not explicitly provide these data sets for other
authors. The same is true for the results: in many cases, only selected criteria of the
objective function are reported. In addition, the reported criteria are often highly ag-
gregated average values. Hence, these data are only partially applicable for comparison
purposes.

Figure 3.8 summarizes the selected dynamic test sets. The first column includes the basic
problems, the second column lists the associated sources, and the third column shows the
underlying static sources, if those have been used to derive the dynamic instances.

dynamic test instances

• Potvin et al., 2006

• Shieh and May, 1998

• Gendreau et al., 1999

• Tang and Hu, 2005

• Chen et al., 2006

• Bent and van Hentenryck, 2004

• Chen and Xu, 2006

cap. MLPDPTW
(hard TW)

• Pankratz, 2005

• Pureza and Laporte, 2008

• Fabri and Recht, 2006

• Mitrovic-Minic and Laporte, 2004
uncap. MLPDPTW
(hard TW)

• Gendreau et al., 2006(soft TW)

cap. VRPTW
(hard TW)

• Kilby et al., 1998cap. VRP

problem

Solomon, 1987

Li and Lim, 2003

Christophides and 
Beasley, 1984

Fisher et al., 1981

Taillard, 1994

static original

Figure 3.8: Dynamic test instances

Dynamic test data for the capacitated VRP were generated by Kilby et al. (1998): the
authors take the static instances, published by Christophides and Beasley (1984), Fisher
et al. (1981) and Taillard (1994) as a basis and extend them by Call-In times and ser-
vice times for each task. The Call-In times are chosen according to a uniform random
distribution throughout the whole planning horizon. The resulting dynamic data sets,
however, were used only by a few authors, e.g. by Montemanni et al. (2005).8

For testing the capacitated VRP with hard time windows, many authors propose
dynamic extensions to the test data published in Solomon (1987). Since the original data
set evokes so much interest, a detailed summary of the original static data set is given,
followed by seven approaches of bringing dynamism into the instances.

In the original 56 data sets, 100 customers are spread in a 100×100 unit square with vary-
ing geographical distributions: uniformly and randomly distributed (problem classes R1,
R2), clustered (C1, C2), and semi-clustered (RC1, RC2), the last representing a mixture
of uniformly and randomly distributed and clustered customers. The problem classes of

8 The Kilby et al. (1998) data sets are no longer available at the author’s homepage. Hence, we refer
to http://www.fernuni-hagen.de/WINF/menuefrm/publik.htm. Here the data sets can be found in the
folder “Montemanni et al. 2005”.
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type 1 possess narrow time windows at the depot, so that only a few customers can be
serviced in each route; in contrast, problem classes of type 2 possess wider time windows
at the depot. Travel times between the customers are taken to equal the correspond-
ing distances, which are calculated as Euclidean distances. Each customer requires an
individual service time (10 minutes for R1, R2, RC1, RC2 and 90 minutes for C1, C2).
For servicing the customers, an unlimited number of homogeneous capacity constrained
vehicles is available at a central depot. The vehicles have to return to the depot within
the specified opening time (hard constraint).

The Solomon instances have been employed for tests of many new static algorithms, which
have produced high quality and even optimal solutions. The availability of these solu-
tions is an advantage when solution quality of “dynamized” Solomon instances has to be
evaluated with optimal static solutions. For a discussion of advantages and disadvantages
of this kind of “performance analysis”, see Section 2.1.

Comparison of solution quality is also possible by relative comparison of two dynamic
approaches, applied to the same test data set. Unfortunately, this is complicated here
by the fact that every author generates his “own dynamic extension” to the Solomon
instances. Thus, the “same test data set” assumption is no longer fulfilled. Subsequently,
seven different ways of calculating the Call-In time for a specific request i are reported.
The “U” denotes a uniform random distribution within a given interval.

• Call-In(i) = EPT(i) · U(0,1). (Potvin et al., 2006)

• Call-In(i) = MAX(0, LPT(i) - constant - U(0, LPT(i))). (Shieh and May, 1998)

• Call-In(i) = U(0, MIN(EPT(i), ti−1)), where ti−1 is the departure time from i’s pre-
decessor in the best known solution for the static problem. (Gendreau et al., 1999)

• Call-In(i) = U(c1 · EPT(i), c2 · LPT(i)), where c1 and c2 (0 ≤ c1 ≤ c2 ≤ 1) are two
parameters. (Tang and Hu, 2005)

• Call-In(i) = MAX(0, EPT(i) - 1.5 · tOi - r), where tOi denotes the travel time be-
tween depot and node i, where r = U(0, EPT(i) - 1.5 · tOi). (Chen et al., 2006)

• Call-In(i) = U((k-1) · H/3, MIN(λi, k · (H/3) − 1), where k denotes an interval of
the planning horizon H, where λi denotes the latest time a vehicle can depart from
depot, service i and return to the depot. (Bent and van Hentenryck, 2004)

• Call-In(i) = U(0.5 · MIN(EPT(i), LPT - di−Δ−τ), MIN(EPT(i), LPT-di−Δ−τ)),
with di denoting the travel time from depot to customer i, with Δ denoting the time
between two consecutive decision epochs, with τ denoting the computational time.
(Chen and Xu, 2006)

Obviously, there are many different ways of calculating a Call-In time.

In a next step, test data for the dynamic capacitated MLPDPTW with hard time
windows are investigated. The available test sets are also based on the previous Solomon
instances. A transformation of the static VRPTW data into static MLPDPTW data is
accomplished by the following two authors: while Nanry and Barnes (2000) simply pair up
the customers appearing in the routes of the best known Solomon VRPTW solutions one
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by one (regarding the “optimal” order), Li and Lim (2003) randomly pair up customer
locations within routes of solutions obtained with their own heuristic solution approach.
Both approaches render 100 VRPTW requests into 50 MLPDPTW requests.

Dynamic components have been added to the Li and Lim (2003) instances in three different
ways:

• Pankratz (2005) first introduces the variable tlatest
r (i), which is calculated as follows:

tlatest
r (i) = MIN(LPT(i), LDT(i) - tPD − tService)− tDepot,P ,

where tPD denotes the direct travel time from Pickup to Delivery of request i, where
tService denotes the service time at the Pickup location, and where tDepot,P denotes
the direct travel time from depot to the Pickup location. Afterwards, based on
tlatest
r (i), dynamic instances are generated with the formula

Call-In(i) = a · tlatest
r (i),

with a varying from 0.1 to 1.0 in steps of 0.1.

• A second approach is proposed by Pureza and Laporte (2008). They calculate

Call-In(i) = MIN(EPT(i), MAX(U(1,5), LPT - tDepot,P − β)),

where U(1, 5) denotes an integer number uniformly randomly generated between
1 and 5, where tDepot,P denotes the direct travel time from depot to the Pickup
location of request i at time t=0 and where β is chosen to take one of the values
0, 100, 200, 300. According to the authors, the formula does not guarantee service
since the Delivery location restrictions are not taken into account and in the case
of time dependency, the travel time used in the computation belongs to the specific
first period.

• A third option was chosen by Fabri and Recht (2006). They generate dynamic ar-
rival times with the formula:

Call-In(i) = U(0, MIN(EPT(i), LPT(i) - tDepot,P )).

In contrast to the previous dynamic test data, the following two publications for unca-
pacitated MLPDP test data do not rely on any available static instances.

Dynamic test data for the uncapacitated MLPDP with hard time windows were
proposed by Mitrovic-Minic and Laporte (2004). The authors generate their own 40 test
instances, based on real-life data from two courier companies operating in Vancouver
(Canada). Up to 1000 requests (100% dynamic) occur in a 60km×60km geographical
area with Call-In time being calculated according to a uniform random distribution over
the whole planning horizon.

Finally, dynamic data sets for the uncapacitated MLPDP with soft time windows
published by Gendreau et al. (2006) have to be considered. The data generation process
as well as the achieved results stand out due to very detailed and convenient description.
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As this data set is used for benchmarking purposes of the later proposed algorithmic pro-
cedures, it is refered to Section 4.4.2 for further analysis.

At the end of this section, it can be noted that there are not many publicly available dy-
namic test instances. Most instances concentrate on local area VRP(TW) applications,
followed by some local area MLPDPTW instances. No dynamic instances at all are avail-
able in the category of wide area transportation problems, especially for the SLPDPTW.

3.5 Acceptance of Dynamic Planning Applications in

Real-Life

Most of the surveyed dynamic publications report “dramatic benefits” and “high cost
reductions”. However, most results are obtained in artificial test environments. In excep-
tional works, Powell et al. (2000b) and Powell et al. (2002) describe the challenging
experience of transferring a dynamic planning algorithm for a wide area SLPDPTW into
a running real-life application.

According to the authors, the real-life application of dynamic Decision Support Systems
often (and especially in their case) does NOT result in dramatic benefits. The relatively
small success of computer-based planning systems is particularly attributed to low “user
compliance” (the rate with which a human dispatcher accepts the recommendation of a
computer system), which is often below 60% in the truckload trucking area.

Reasons for this behavior can be discovered by comparing the different solution approaches
of human dispatchers and of mathematical optimization systems. A human’s decision is
state-action based, producing locally greedy optimizations mostly neglecting the effects
downstream in space and time. A mathematical model’s decision is cost minimization
based, producing a global solution.

Although producing a global solution (on a given data set), there are also some drawbacks
of the computer-based system. The accurateness of the model’s real world description may
be limited, in particular in dynamic situations, when subproblems are solved at a point
in time where availability of data is rather limited. In addition, the data in the computer
may be generally imperfect or incomplete. A human planner may possess information
(acquired by phone, conversation or visual inspection) that has not yet been entered into
the system. “Implicit information”, meaning general experience, for example based on
historical events, may also be hardly available to a computer system.

Many decisions are fairly obvious, meaning that human and computer will coincide in
these instances. Hence, a problem arises when the “higher reasoning” of the computer
produces decisions that differ from the pattern-based reasoning of the dispatcher. Then
the human has a dilemma: is the discrepancy a result of “higher reasoning” or a simple
data error? Especially in real time problems, where fast decisions are elementary, it is not
easy to find out if a computer’s decision is plausible. Often the dispatcher will go with
his own intuition.

The authors suggest a hybrid approach, generating a computer solution between “global”
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and “greedy”, in order to improve solution acceptance by human dispatchers. They intro-
duce a random variable, which decides if the computer-generated “truck-to-load assign-
ment” is accepted by the human dispatcher (this is more likely if the computer solution
exhibits more similarities to a greedy solution). Furthermore, a factor α is introduced,
which represents the degree of global optimization: for full global optimization its value
is 1, for full greedy optimization its value is 0, intermediate strategies are represented by
α-values in the interval (0,1).

In several simulations with dynamic orders and dynamic travel times, the authors evaluate
correlation of α and user compliance: when varying α for given compliance probabilities
(100%, 70%, 40%), best results are achieved for α-level 0.75, interestingly even in the
100% compliance case.

Figure 3.9: Impact of user-compliance and α on obj. function values (Powell et al., 2000b)

Figure 3.9 shows an original graph from Powell et al. (2000b), which includes the effects of
varying user-compliance probabilities (x-axis) for given α’s (1.0, 0.75, 0). The associated
objective values are plotted on the y-axis. The authors discover that as the level of user
compliance drops, the value of a globally optimal solution (α=1) over a greedy solution
drops dramatically. On the other hand, if user compliance is high (over 90%), the value
of global optimization (either α = 1.0 or α = 0.75) is quite high and demonstrates the
usefulness of optimization models.

In a comparison, Powell et al. (2002) contrast the hypothetical case of perfect user com-
pliance in global optimization (α-value = 1) with the case of perfect user compliance in
completely “manual” planning (α-value = 0). They achieve better results, in the range of
5% to 10%, when applying pure global optimization and assuming perfect user compliance.

The problem of user acceptance of computer-generated solutions is also reported in Bell
et al. (1983). The authors tackle the problem in a similar way as described in Powell et al.
(2000b): they replicate human decision patterns. Neighboring customers are aggregated
and treated as one single customer, which results in solutions similar to those the dis-
patcher is used to see. So the acceptance of computer solutions is increased. In addition,
it is reported that once dispatchers felt comfortable with the system, most schedulers
began to ask for size expansion of the neighborhoods to allow more options.
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