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Foreword

Vehicle routing has been the subject of intensive research for 50 years, both in Operations
Research (OR), where the development of many kinds of algorithms has been advanced,
and in Logistics, where various fields of application have been investigated. A quite new
direction of transport planning has occurred due to recent developments in information
and communication technology, “Telematics”, which enable a central planning depart-
ment to control a large vehicle fleet in real time. The necessary technical equipment is
standard in any truck nowadays. Thus, OR-oriented research has increasingly turned
towards dynamic vehicle routing since about 2000. Most studies in this field attempt to
“dynamize” known algorithmic concepts and to investigate their appropriateness for dy-
namic routing. The most frequently used test data for this purpose are dynamic versions
of the classical Solomon data (1987) for the vehicle routing problem, which unfortunately
has little importance as a dynamic problem, except maybe for collecting goods. Much
more important in this context is the Pickup and Delivery Problem (PDP) with depot
free routing. Most of the real applications so far concern a PDP in a local urban area.

The present thesis starts from earlier work in this field. The author extends the approach
of Fleischmann and Sandvoß (2004) for the Single Load PDP with time windows, based
on the optimal assignment of orders to vehicles, for the Multi Load case with capacity
constraints. Moreover, he develops a new Local Search algorithm, based on Multiple
Neighborhood Search (MNS), and compares various algorithms in a comprehensive com-
putational test.

However, the cooperation with a large German carrier led to an entirely new field of ap-
plication: the dynamic control of a huge fleet of more than 1000 trucks which perform
occasional transportation orders, mostly full truck loads, across the whole of Europe.
This network free transportation concept, also known as “Tramp Transportation”, is of
increasing importance. Particular requisites of this case are the consideration of the EC
regulations on driving and working hours, and different types of vehicles and orders with
restricted compatibility.

The author modifies the MNS algorithm for this problem and uses it in a large case
study with real data from a five-week period with 950 vehicles and 14,000 orders. He
simulates the use of the MNS algorithm and compares the results with the actual routes
as a benchmark. Objectives are the empty driven kilometers and the delays against the
time windows, which can be influenced by different settings of the penalty costs, resulting
in a trade-off curve. He shows that computation time for the local search is critical:
the best results are obtained if the simulation clock advances in real time. The author
succeeds in creating solutions with a trade-off curve significantly below the benchmark.
The results are validated in detail by the experts of the carrier.



vi

This work impresses with innovative algorithms, carefully designed computational tests
and a thorough analysis of the results. Its main achievement is the solution of a practical
case of dynamic routing with an extremely complex planning situation, which had not
been investigated prior to now. I hope that this outstanding contribution to the field of
transport planning attracts widespread attention.

Augsburg, January 2011 Bernhard Fleischmann
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Chapter 1

Introduction

This chapter starts with a motivation of the investigated topic “Dynamic Fleet Manage-
ment for International Truck Transportation with occasional transportation tasks”, con-
sidering practical relevance and previous attention in the existing literature (Section 1.1).
In Section 1.2 the goal of the study and the main research questions are outlined. In Sec-
tion 1.3 a review of developments towards the application of Dynamic Fleet Management
Systems is given, followed by an analysis of the freight forwarding market in Germany
and Europe (Section 1.4). Finally, this work’s course of action is explained (Section 1.5).

1.1 Motivation

Tour planning has been a popular field in Operations Research since the 1960s (Dantzig
and Ramser, 1959). A large number of researchers have dealt with all kinds of static prob-
lems, developing a huge variety of procedures. In recent years, the center of attention has
also moved to the field of dynamic tour planning problems, where new information evolves
concurrently to the plan execution and has to be handled efficiently by the dynamic plan-
ning approach (see Chapter 2 for a detailed definition of the term dynamic).

Many authors have developed dynamic procedures, basically extensions to already exist-
ing static ideas. In the majority of cases, the dynamic publications were focused on local
area problems with the goal of minimizing traveled distance (see Chapter 3 for a Litera-
ture Review). There are only a few works available so far that have dealt with dynamic
wide area planning problems.

This finding may be due the predominance of line transportation in wide area environ-
ments: A recurring medium-term plan – effective for several weeks or months – is gener-
ated and constitutes each vehicle’s circulation between the nodes of a fixed transportation
network (e.g., operation of a driving route from location A to B every Monday morning).
New requests are fed into the driving routes of the existing line operation schedule, which,
for example, induces advantages in consolidation of less-than-truckload requests. Short-
term dynamic planning is not necessarily required.

However, it can be observed that some internationally operating freight forwarding com-
panies – Willi Betz International, LKW Walter, Hindelang, etc. – have also successfully
specialized in another type of wide area freight transportation: in occasional transporta-
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tion, independent of predefined networks – also referred to as “ad hoc” or “tramp trans-
portation” (Falk, 1995). Since there is no line schedule on a fixed network, there is the
need for dynamic replanning to react in the short term on newly occurring requests and
other changing information. Primary objectives are the minimization of empty traveled
distance, the minimization of delay and high vehicle utilization.

Today, those companies do not apply any dynamic algorithms for their tour planning.
Planning tasks, like order-to-vehicle assignment, vehicle routing and scheduling are per-
formed completely manually by human dispatchers. This raises the question of whether
there has been sufficient consideration of the planning problem dynamic International1

Truck Transportation with occasional transportation tasks in the existing literature.

There is a small group of available publications that cover the specified planning problem:
e.g. Powell (1996), Powell et al. (2002) and Yang et al. (2004). However, one drawback is
that most of the specific European real-life requirements for long-haul transportation have
been neglected in these publications. Even in the available static literature, requirements
for International Truck Transportation are only partially considered, in some of the lat-
est publications (e.g. Kok et al., 2009). A complete consideration of such requirements,
however, is needed for a freight forwarding company’s2 planning system, since compliance
with requirements (like EC social regulations) is statutory.

In addition to the incomplete real-life requirements, the available (static) wide area pub-
lications have only been tested with self-generated artificial test data. The applied test
data sets all possess an unrealistically small quantity of vehicles and orders, and contain
an inadequate duration of maximum six days. This is not sufficient to test a wide area
planning procedure, since some restrictions take effect only over a horizon of several weeks.
Due to their static character, the available publications do not consider any implemen-
tation aspects, which, however, are a crucial component in getting a dynamic planning
system up and running at a freight forwarding company.

As far as we know, there is no work available that includes all the subsequent aspects
that are important in practice: (i) development of a Dynamic Fleet Management System
for International Truck Transportation focusing on occasional transportation tasks, (ii)
comprehensive consideration of all important real-life restrictions for Europe-wide Truck
Transportation, e.g. EC social regulations, working time restrictions, traffic bans, etc.,
(iii) test of the procedure with a sufficiently large real-life data set (in terms of duration,
number of orders and number of vehicles), and (iv) benchmark with actual planning per-
formed at a freight forwarding company.

Due to the obvious negligence of this field of dynamic tour planning, the untreated aspects
are selected for investigation in this work.

1 We use the term international with a focus on Europe; synonymously with wide area or long-haul.
2 The term freight forwarding company (German: Spedition) is primarily directed at the agency func-
tion of organizing shipments for individuals or other companies. A freight forwarding company is often
not active as a carrier and outsources the actual execution to road haulage companies (German: Trans-
portunternehmer/Frachtführer) (Bundesverband Güterkraftverkehr Logistik und Entsorgung (BGL) e.V.,
2010). In this work, however, we use the term freight forwarding company for both types of company.
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1.2 Goal of the Study and Problem Outline

The goal of the study is:

To design a Dynamic Fleet Management System for International Truck Trans-
portation focusing on occasional transportation tasks that is capable of improving
the planning process at a freight forwarding company in terms of empty traveled dis-
tance and service quality, hereby taking into account all important European real-life
requirements (EC social regulations, working time and traffic bans).

In the following, a number of research questions are posed. These questions outline the
research problem in more detail and shall guide us in reaching the goal of the study.

What are the specific characteristics of dynamic planning problems?

Dynamic planning problems differ in many aspects from static ones. Before a new dy-
namic planning procedure is developed, the specific characteristics of dynamic planning
problems have to be elaborated. They can be helpful for adjusting a new planning pro-
cedure in order to meet the specific needs of a dynamic planning problem.

Where do dynamic planning situations occur in real-life?

Before a new dynamic planning procedure is developed, it is also interesting to evalu-
ate where dynamic planning situations actually occur in real-life and to what theoretical
planning problems they can be connected. This analysis legitimates the treatment of
the dynamic planning problem that was chosen in this work. It also helps to assess the
real-life value of other dynamic publications from the literature.

What is the state of the art in the literature on Dynamic Fleet Management?

Before designing a solution method for the selected real-life planning problem, we need
to familiarize ourselves with the state of the art in the literature on this topic. Since
the literature on dynamic wide area applications is scarce, we discuss the literature on
dynamic routing problems in general. The investigation of algorithm orientated papers
gives us an idea, with what procedures best performance could be achieved.

What dynamic solution approaches are suitable for a Dynamic Fleet Manage-
ment System?

We develop a choice of two planning approaches with two completely different planning
ideas. First stage, the approaches are not designed for the final planning problem with all
its real-life restrictions, but instead, for a simplified local area problem. The available test
instances for this local area problem are used to perform extensive tests and to evaluate
the strengths and weaknesses of both procedures. One procedure is finally chosen for
adaptation to the real-life planning problem.

What general requirements come along with International Truck Transporta-
tion?

In order to achieve an operable Fleet Management System, we need to elaborate the
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real-life restrictions that have to be actually considered for Europe-wide Truck Trans-
portation. EC social regulations, working time restrictions and traffic bans are analyzed
in detail. The main restrictions are chosen for inclusion in the real-life planning procedure.

What specific requirements are necessary to cover the planning situation at
the cooperating freight forwarding company?

Incorporating the general planning requirements does not necessarily result in actual real-
life applicability. The specific planning situation at a freight forwarding company, which
comes along with additional restrictions, has to be considered as well. To this end, we
perform a detailed analysis of the planning process and of the planning data of our co-
operating freight forwarding company and adjust our planning procedure to the specific
situation.

What simulation speed should be used to evaluate the real-life planning pro-
cedure’s performance?

In the selection process of an appropriate procedure and at the final calculations with
the real-life test data set, we face the question of how to run simulations: with high or
slow speeds. A high simulation speed produces results faster and therefore allows for
more simulation runs. This can be an advantage, since it allows for a higher number of
different parameter variations to be tested. A slow simulation speed (e.g., real time sim-
ulation), however, allows for more improvement calculations to be executed during each
simulation run. Therefore, this type of simulation is supposed to produce a better overall
solution quality (at least, if the planning procedure is capable of using the available time).

How much potential savings can be generated with the application of a compu-
ter-based dynamic planning system for International Freight Transportation?
Is it reasonable to implement such a Decision Support System?

We compare the results that can be achieved with the newly developed planning procedure
(for a five-week real-life data set) with the manual planning performed at our cooperating
freight forwarding company (benchmark). From this, we derive the potential savings in
empty traveled distance and delay that can be generated with the application of our
computer-based planning system. This is followed by a discussion of the pros and cons of
an actual implementation of such a Decision Support System.

1.3 Developments towards Dynamic Tour Planning

There are several developments that promote the popularity of Dynamic Tour Planning.
Significant advances in information and communication technologies contribute the nec-
essary technical requirements. Increased competition and rising environmental awareness
call for efficient planning and the economical use of resources.

In addition, there is also a consolidation and growth effect (more vehicles and more orders
per company) that makes it more difficult to achieve good planning results by manual
planning, thus triggering the implementation of a computer-based Decision Support Sys-
tem for Dynamic Fleet Management.
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Subsequently, these aspects are explained in more detail.

• Advances in information and communication technologies: Today, the real
time determination of a vehicle’s position via GPS is state of the art. Mobile com-
munication can be used to exchange information between planning center and driver.

Figure 1.1 shows an exemplary information flow in a GPS-based dynamic Fleet
Management System (cp. Larsen, 2000; Goel, 2007). The vehicle in motion receives
at least three positioning signals from GPS satellites and calculates its current po-
sition. This position is transferred via GSM cellular phone network to the planning
center. The planning center knows all the vehicles’ status, all the open orders etc.
and produces a preferably good vehicle dispatching (order to vehicle assignment, ve-
hicle routing, vehicle scheduling). Afterwards, planning decisions and updates are
transferred via GSM back to the vehicle. Communication between planning center
and driver may be text message based as well as by phone.

planning
center

GSM

GPS satellite

position
signal

position,
status

plan:
routing, 

scheduling
position,
status

updates

calculation of
position

Figure 1.1: Information flow in a dynamic routing system (Larsen, 2000)

In addition, the use of the latest digital road maps and the inclusion of actual traffic
information to calculate shortest paths between Pickup and Delivery locations has
become standard. Route planners (e.g. PTV map&guide, Tele Atlas) are employed
at the planning center as well as directly at the vehicles.

A further aspect concerning information technology is the improved capacity of com-
puting systems. At the planning center today, a single personal computer is able to
quickly handle large amounts of data, e.g. processing the complete planning of a
truck fleet operating Europe-wide.

• Increased competition: The introduction of a single European transportation
market has reduced market barriers and allows freight forwarders from each Euro-
pean country to offer international transportation services over the entire European
territory.

Cabotage (the execution of a transportation service within a country by a foreign
freight forwarder), however, is still restricted: according to regulation EC 1072
of 21.10.2009 (European Union, 2009) cabotage is only allowed subsequent to an
incoming international transport. In such a case, a vehicle may only execute a
maximum of three cabotage transports, with the last Delivery having to be finished
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within seven days of completion of the incoming international transport (Freight
forwarders from Bulgaria and Romania are excluded from this partial authorization
of cabotage until 31.12.2011).

Since 01.01.1994, prices for freight transportation are no longer subject to regula-
tion and can be freely negotiated with regard to supply and demand (Staub et al.,
2004). Internet market places (freight exchanges) allow a shipper to find the cheap-
est freight forwarder, while freight forwarders may offer free transportation capacity
to the highest bidder. In addition to reduced geographical market barriers, such
freight exchanges provide order mediation as well as market transparency concern-
ing supply, demand and prices. This is of special interest for small and medium-sized
freight forwarding companies that do not have their own distribution channels.

Furthermore, a harmonization and simplification of the general conditions in the
European countries has been initiated. Since 2006, driver based social regulations
(see Section 5.1 for further details) are the same over the whole of Europe. However,
there are still major differences in taxation (e.g., company and fuel taxation) as well
as labor costs. While average yearly labor costs per employee in the transportation
sector in 2005 was at a level of e 45,000 in Belgium and e 32,700 in Germany, an
employee in Bulgaria only earned e 3,900 (Eurostat, 2009).

Profit margins in the freight forwarding sector are quite low. According to Com-
merzbank Research (2010), the average EBIT (Earnings Before Interest and Taxes)
in the German freight forwarding sector was 4.2% (reference year: 2006), with a
spread between -3.0% and 13.6%. An effective real time planning system may help
to gain competitive advantages and to ensure a company’s survival.

• Environmental awareness: In the recent years, environmental awareness has at-
tracted a great deal of attention in politics and the public. Freight forwarders are in
specific focus, since 26% of the EU-27’s total energy consumption can be attributed
to road transport (reference year: 2006; Eurostat, 2009). Efficient planning, e.g. by
minimizing empty traveled distance, therefore, is not only a necessity for direct cost
reduction, but also a socially desired objective.

• Growth: In a work by Powell (1996), it is reported that a higher number of available
vehicles spread over the area of execution produces a smaller percentage of empty
traveled distance (economies of density). This is an intuitive finding. The drawback,
however, is the increasing planning complexity. A human dispatcher who is simul-
taneously managing a large number of vehicles will be barely able to “optimally”
react to a large amount of very frequently changing data (realistic dimension for a
big freight forwarder: 1000 vehicles in motion, and 2000 open transportion orders).
In the case of several human dispatchers, who manage distinctive subproblems, the
generation of a “globally optimal solution” is becoming even more unlikely.

A computer based dynamic Fleet Management System, however, can create “good
solutions” in quick response to a large, varying information base, simply because
there is enough computation power to consider the planning problem as a whole and
to evaluate many more possible planning options in the short period of available
reaction time.
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1.4 Market Analysis

A look at the European, and specifically the German, freight forwarding market shows a
strong growth in truck transportation volumes over the recents years. In the following,
some statistics are presented which confirm this statement and which also try to explain
this development. In addition, trends in prices and in the number of freight forwarding
companies are considered.

The freight forwarding sector is an important economic factor, accounting for 7% of the
European Union’s value added and employing 8.7 million people (reference year: 2005). In
the years from 1995 until 2008, the European transportation market grew by 33.6%, from
3,060 billion tkm to 4,090 billion tkm. Figure 1.2 shows the transportation performance
of the modes road, sea, rail, inland waterway, pipeline, and air. Over the whole considered
horizon, it can be observed that road transportation accounts for the highest transport
performance with a successively increasing gap to the other modes. While in 1995 only
42.1 %tkm of the total goods transportation were executed by truck, in 2008 the share of
truck transportation increased to 45.9 %tkm (Eurostat, 2009).
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Figure 1.2: Modal split EU27: 1995 - 2008 in billion tkm

From many shippers’ perspectives freight transportation by truck seems to remain the
preferred choice. In a survey, Pfohl and Schäfer (1998) asked 134 companies that order
logistical services how they would rate the performance of different traffic carriers (truck,
airplane, rail, waterway sea, waterway inland, and intermodal transport) for seven key
indicators on a scale from 1 (worst qualification) to 5 (best qualification). The results are
presented in Figure 1.3.

In terms of transportation time, network connections, flexibility, and reliability, truck
transportation is rated best. Interestingly, the transportation costs per truck also outper-
form the other traffic carriers. Only in adherence to schedule and tracking and tracing
the airplane is rated slightly better.

In the following, the specific development of the German freight forwarding sector is
analyzed (Statistisches Bundesamt Deutschland, 2010; Commerzbank Research, 2010):
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Figure 1.3: Assessment of different transportation modes from a shipper’s perspective

In Figure 1.4 the sales volume is processed for the years 2001 until 2009. A substantial
growth in sales volume (+68%) can be observed between 2001 and 2008, reaching a
maximum sales volume of e 74.74 billion in 2008. Afterwards, the world financial crisis
caused a reduction in sales volume to e 62.63 billion in 2009.
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Figure 1.4: Sales volumes in the freight forwarding sector (Germany): 2001 - 2009

The previously mentioned growth of the European transportation performance (in tkm)
of +33.6% over a 13-year horizon, and the development of the sales volume in the Ger-
man freight forwarding sector (in e) of +68% over a 8-year horizon cannot be directly
compared. Nevertheless, these numbers suggest that an overproportionately high share
of the European growth was generated by German freight forwarders.

A look at the prices that had to be paid by the shippers is given in Figure 1.5. Especially
in 2005 and 2006, freight forwarders were able to achieve higher freight rates (+7.2%
and +8.1%, respectively). In 2009, however, the reduced transportation volume led to
overcapacities, resulting in decreasing market prices (-1.7%).
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Figure 1.5: Development of prices for freight forwarding services (Germany): 2001 - 2009

The last statistic deals with the development of the total number of freight forwarding
companies in Germany (Figure 1.6). Similar to the increases in sales volume, the number
of freight forwarders increased by 41% between 2001 and 2008. In 2009, however, a
substantial decrease in the number of freight forwarding companies is reported.3
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Figure 1.6: Number of freight forwarding companies (Germany): 2001 - 2009

1.5 Course of Action

This section describes the main contents of the following chapters. The sequence of inves-
tigated topics roughly complies with the sequence of research questions that have been
proposed in Section 1.2.

3 It should be mentioned that this statistic also includes very small freight forwarding companies. Here,
the minimum requirement to be counted as a freight forwarding company was a sales volume of at least
17,500 Euro
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Chapter 2 includes a general characterization of dynamic vehicle routing prob-
lems and proposes a configuration framework for such kind of problems (Section 2.1).
Furthermore, the most relevant dynamic real-life applications are elaborated and con-
nected with the associated theoretical problem definitions (Section 2.2). Finally, two
relevant dynamic problem specifications (a local and a wide area one) are selected and
characterized for further consideration (Section 2.3).

Chapter 3 includes a detailed literature review of publications on Dynamic Fleet Man-
agement. At the beginning, some general statistics on the surveyed literature are given
(Section 3.1), followed by some exemplary publications showing the variety of dynamic
applications in real-life (Section 3.2). Afterwards, algorithm orientated papers are classi-
fied into three groups, depending on the knowledge of the future (Section 3.3). The first
two groups do not have any knowledge of the future and therefore only perform myopic
planning. In contrast to the first group, the second group, however, tries to anticipate
the future. Stochastic information about the future is available only in the third group of
publications, where the algorithms make explicit use of such information.
The remaining sections review the most popular dynamic test instances in the literature
(Section 3.4) and present the results of some papers that do not primarily focus on the
algorithmic performance but on the acceptance of dynamic planning applications in real-
life (Section 3.5).

In Chapter 4, two dynamic planning procedures are developed and evaluated:
Multiple Neighborhood Search (Section 4.1) and an Assignment based procedure (Section
4.2). For reasons of simplicity, the procedures’ basic versions are directed to the local
area capacitated MLPDPTW (covering the dynamic real-life application of Dial-A-Ride
Services) and not to the final real-life planning application.
Both procedures’ specific characteristics are compared in Section 4.3, elaborating the
main differences. Afterwards, some test data sets - self-generated as well as taken from
the literature - are introduced (Section 4.4). These data sets are used for a comparison of
the procedures’ performance and also to gain some general insights in dynamic problems
(Section 4.5). Finally, one procedure is chosen for adaptation to the real-life scenario
(Section 4.6).

In Chapter 5 the selected basic solution approach is adapted to perform actual real-life
application at an Internationally Operating Freight Forwarding Company.
Firstly, the requirements that have to be considered for long-haul transportation in Eu-
rope are elaborated (Section 5.1). Afterwards, the actual planning process at the leading
European freight forwarding company is drafted (Section 5.2). Section 5.3 describes the
adaptation of the Multiple Neighborhood Search procedure to the real-life planning sit-
uation. In Section 5.4 the preprocessing of a five-week real-life test data set and the
derivation of benchmark objective function values are explained. Finally, the computa-
tional results that are achieved with the adapted Multiple Neighborhood Search for this
real-life data set are reported (Section 5.5).

In Chapter 6 methodology, achievements and main findings of the study are summarized
(Section 6.1). Afterwards, some recommendations for further research in the field of
Dynamic Fleet Management are proposed (Section 6.2).



Chapter 2

Dynamic Transportation Problems

This chapter begins with a general characterization of dynamic problems, specifically poin-
ting out the differences between dynamic and static problems and proposing a configuration
framework for dynamic algorithms (Section 2.1). Subsequently, the most relevant dynamic
real-life applications are elaborated and connected with the associated theoretical problem
definitions (Section 2.2). Finally, two dynamic problem definitions that have been chosen
for further investigation in Chapters 4 and 5 are introduced (Section 2.3).

2.1 Characteristics of Dynamic Problems

As a preliminary matter, the term “dynamic” (also referred to as “real time” or “on-
line”) needs to be defined. One of the earliest references related to Vehicle Routing is
Psaraftis (1988):

“In a dynamic vehicle routing problem, inputs may (and generally will) change (or
be updated) during the execution of the algorithm and the eventual execution of the
route. Algorithm execution and route execution are processes that evolve concur-
rently in a dynamic situation, in contrast to a static situation in which the former
process clearly precedes (and has no overlap with) the latter.”

In a definition by Pankratz (2005), the need for “irreversible” decisions under incomplete
information is emphasized:

“planning and execution are overlapping processes, and planning decisions, which
may be irreversible, have to be taken before all problem data become known.”

A dispatcher is therefore forced to plan in a sequential or rolling horizon manner. He
solves a part of the overall problem on the basis of the information available at the present
moment. This partial problem is denoted as static subproblem. When new information
arrives the static subproblem changes and the dispatcher has to resolve the problem.

The static subproblem is not only affected by newly occurring information, but also by
fixation. Fixation is defined as the successive alteration of provisional planning deci-
sions into permanent ones. It is basically triggered by proceeding time, i.e., if an event’s
scheduled execution time is reached, the event is permanently fixed. A fixation reduces

Steffen Schorpp, Dynamic Fleet Management for International Truck Transportation,
DOI 10.1007/978-3-8349-6675-9_2,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011



12 Chapter 2. Dynamic Transportation Problems

the available planning options and therefore is a second source of changes to the static
subproblem.

The static subproblem’s planning horizon depends on the applied solution approach:
it ranges from the present moment up to the last scheduled activity. All decisions are
of provisional type and can be changed by an improvement procedure, unless they are
finally fixed.

There are several sources inducing dynamism of a vehicle routing problem: New cus-
tomer orders, cancelation or modification of already known customer orders, revealment
or changes of actual demand level and customer service time, changes in vehicle travel
time (due to unforeseen events, such as traffic jams or unexpected delays), up to complete
vehicle breakdown.

Differences: Dynamic vs. Static

To identify the specific characteristics of a dynamic problem, a comparison with a classic
static problem is useful. A whole catalog of such differences was defined by Psaraftis
(1988) and is subsequently quoted in a shortened form:

• Time dimension is essential: In static vehicle routing, time dimension may or
may not be an important factor in the problem. If there is a scheduling component
alongside the routing component, time dimension is essential. Actually, most classic
generic routing problems, such as Traveling Salesman Problem (TSP) or Vehicle
Routing Problem (VRP), do not have a scheduling component. In contrast, time
dimension is essential in every dynamic vehicle routing situation, whether it is time
constrained or not. It is necessary to keep track of how vehicle schedules and
scheduling options evolve dynamically over time.

• Problem may be open-ended: In a static situation, the duration of the routing
process is more or less bounded or known in advance. The duration of such a process
in a dynamic situation may neither be bounded nor known.

• Future information may be imprecise or unknown: In a static context, infor-
mation about all problem inputs is assumed to be of the same quality, irrespective
of where within the schedule this input happens to be (beginning, middle, or end).
This is not the case in a dynamic problem, in which information on any input is
usually precise for events that happen in real time, but more tentative for events
that may occur in the future. Probabilistic information about the future may be
available.

• Near-term events are more important: Because of uniformity of information
quality and lack of input updates, all events (whether in the beginning, in the middle,
or at the end of a vehicle’s route) carry the same “weight” in a static context. In
dynamic routing, it would be unwise to immediately commit vehicle resources to
requirements that will have to be met in the distant future. This is because other
intermediate events may render such decisions suboptimal, and because such future
information may change anyway. Focusing on near term events is therefore an
essential aspect of dynamic vehicle routing.
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• Information update mechanisms are essential: Virtually all inputs into a
dynamic routing problem are subject to revision at any time during the execution
of the route. Therefore, update mechanisms are an integral part of the algorithmic
structure. Data structure and database management techniques that help revise
problem inputs efficiently, as well as adeptly figure out the consequences of such
revisions, are central to a dynamic routing scheme. In contrast, in a static scenario,
such mechanisms are not necessary.

• Resequencing and reassignment decisions may be warranted: In a dynamic
vehicle routing situation, the appearance of a new input may render decisions that
have already been made prior to that input’s appearance suboptimal. This fact
concerns both sequencing and assignment decisions. Thus, the appearance of new
input may necessitate either the resequencing of the stops of one (or more) vehicle(s),
or the reassignment of those vehicles to demands requesting service (or both).

• Fast computation times are necessary: The need to reoptimize routes and/or
vehicle assignments on a continual basis in real time necessitates computation times
faster than those necessary in a static situation. In a static situation, computation
runs may take several hours or overnight. In a dynamic routing situation, if new
information is available, the dispatcher wishes to know the solution to a particular
problem as soon as possible (within minutes or seconds).

• Indefinite postponement mechanisms are essential: Indefinite deferment
means that the service of a particular demand can be postponed indefinitely due to
that demand’s unfavourable geographical characteristics relative to other demands.
The problem can be handled by introducing time constraints.

• Time constraints may be different: Dynamic routing inputs, such as Earliest
Pickup Time (EPT) and Latest Pickup Time (LPT), tend to be softer than in a
static situation. If a “hard” deadline makes a routing problem infeasible, it is far
better to renegotiate that deadline so as to make it feasible than it is to declare
infeasibility and quit.

• Flexibility to vary vehicle fleet size is lower: In theory, another alternative
to denying service to a customer, if a time constraint cannot be met, is to add an
additional vehicle, at a cost, to serve that customer. However, this proposition may
not necessarily be viable in a dynamic vehicle routing because it may not be possible
to have access to backup vehicle resources in real time. In a static situation, the
time gap between execution of the algorithm and execution of the route is usually
long enough to allow for such a decision to be made.

These aspects are complemented by a comparison of the open order characteristic in a
static and in a dynamic environment (cp. Sandvoß, 2002). In the static context, all or-
ders are initially known, being successively completed as time proceeds. The number of
unfulfilled orders decreases monotonously. Figure 2.1 shows an exemplary curve.

In a dynamic problem, however, the initial order level is lower (or non-existent), since
dynamic orders are revealed later (up to time T). This may result in time intervals of an
increasing number of open orders when the number of new occurring orders exceeds the
number of completed orders. After the latest Call-In time T, the number of unfulfilled
orders monotonously decreases like in the static case (cp. Figure 2.1).
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orders all orders known in advance

time time

some orders known in advance,
new orders arrive dynamically up to time T

T

open
orders

Figure 2.1: Open order characteristics for static and dynamic problems

Degrees of Information Availability and Possible Reactivity

In the following, four problem categories are differentiated, based on initial information
availability and information certainty as well as possible reactivity :

• static,

• static stochastic,

• dynamic stochastic, and

• dynamic.

Initial information availability is related to the “quantity of information” that is known
to the decision maker before the planning horizon starts. We use the word “complete” to
denote the condition of having information about all relevant facts available (e.g. about
all customers and the associated locations, all specific demand levels, etc.). In contrast,
the word “incomplete” is used for the situation of initially not having all basic information
ready. Thus, some customers, demands, etc. may be revealed during the planning horizon.

However, the availability of the initial information predicates nothing about initially and
subsequently revealed information’s certainty : We call information “certain” if it is given
as an exact deterministic value. Otherwise, the information is subject to “uncertainty”,
e.g. when a probability distribution is given instead of an exact value, or if the exact
value may be subject to further changes.

Figure 2.2 shows the associated characteristics of initial information and information cer-
tainty for the regarded problem categories (column one). The second column describes the
possible availability of stochastic information about the future. To the right, some bars
are plotted in order to symbolize the relative “degree of availability and certainty of infor-
mation”. The size of the bars is related to column one and two, and drops from the first
to the fourth problem category, indicating lowest information availability in category four.

Afterwards a third column is given that states whether the associated problem category
allows for “replanning” during plan execution or not. The bars to the right visualize the
relative extent of possible reactivity and show increased reactivity for categories three and
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Figure 2.2: Information availability and replanning options for different planning categories

four, compared to categories one and two, which do not allow for replanning at all.

In the first category, static, all information is “completely” available before the planning
horizon starts and is not subject to any changes (“certainty”). Stochastic information of
the future and a re-planning option are neither available nor required. This case corre-
sponds to the classical static planning situation, hence several traditional procedures may
be applied in order to find the best solution.

In the second category, static stochastic, initial information is “complete” but subject
to “uncertainty”. Parts of information are given as discrete or continuous random vari-
ables, for example, approximated through the use of historical data. The static character
requires an initial planning run to construct an “a-priori” solution that optimizes the
expected value of a given objective function (first stage). All possible decisions are fixed,
including some strategies on “how to react to unexpected developments”. Later changes
of these recourse strategies are not possible (“no re-planning”).

When the routes are actually executed in the second stage, these initially specified strate-
gies (recourse actions) are applied to the first stage solution in order to address the current
realization (e.g., “skip a customer who does not show up”, or “send the vehicle back to
depot before it resumes its tour because of capacity shortage”). Typical representatives
are the “Probabilistic TSP”, “VRP with stochastic customers”, “VRP with stochastic
demands”, and “VRP with stochastic customers and demands”. (cp. Ichoua et al., 2006)

The third category is denoted as dynamic stochastic. Initial information is “no longer
complete”. Instead, some information is revealed during the planning horizon. In ad-
dition, there is “no certainty” about the given information, which may be subject to
repeated changes. As in the second category, some stochastic information on the future is
available, partially compensating for the lack of basic information quantity. There is no
longer the need to decide on reaction strategies “a-priori”, instead, an appropriate online
replanning may be performed in a rolling horizon manner.

In order to deal with the stochastic information, several approaches can be chosen. In
a sampling approach, for example, the algorithm generates a sufficient number of future
scenarios (by drawing from the given probability distributions) and uses the scenarios
to find a good and robust solution at each rolling horizon step. In contrast thereto, a
stochastic algorithm explicitly incorporates the current information and probabilities of
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future events into its objective function: The given probabilities are used for calculation
of “recourse functions”, which include the costs that the assumed solution scenario does
not occur. Other approaches directly derive some measures, like “vehicle re-allocation” or
“scheduling of extra waiting times in promising regions” when certain probabilities exceed
some threshold.

In the fourth category, dynamic, initial information (if available at all) is “incomplete”.
All initial and later revealed information is subject to changes (“uncertainty”). Informa-
tion about the future is not available. However, there is a replanning capability available
for appropriate reaction to dynamic information. In comparison to the previous cate-
gories, the degree of initial information availability and certainty is the lowest. However,
especially in comparison with the static stochastic situation, this lack of information may
be compensated by the dynamic replanning capability. A dynamic planning situation is
usually handled with a rolling horizon planning approach, which includes the new ob-
tained information step-by-step.

Measuring Dynamism

In the previous explanations, several sources that may cause dynamism were mentioned,
especially dynamic requests and dynamic travel times. According to Larsen (2000), a
measure for dynamism shall quantify the extent of new information emerging during the
operational phase of the system, thus being helpful for evaluating and comparing the
“difficulty” of various problem instances.

A first “request-related” measure was proposed by Lund et al. (1996) and Larsen (2000).
They define the basic degree of dynamism (dod) as the number of dynamic requests ndyn

relative to the total number of requests n.

dod =
ndyn

n

Larsen et al. (2002) distinguish three levels of dynamic systems, based on the degree of
dynamism. First, weakly dynamic systems, with up to 20% dynamic orders, where reac-
tion time is considerably longer compared to other dynamic problems (e.g. distribution
of heating oil to private households, residential cable and telephone repair services, or the
transportation of the elderly and physically disabled). The second group consists of mod-
erately dynamic systems, having a substantial part of dynamic requests (20% up to 80%).
As typical applications here, overnight mail services and appliance repair are mentioned,
where scheduled customers are interspersed with dynamic ones that need immediate at-
tention due to the gravity of their request. Finally, there are strongly dynamic systems
with more than 80% of dynamically occurring customers, where frequent changes in data
have to be handled within minimal response times (e.g. taxi and emergency services).

The same authors have also formulated extended versions of the “degree of dynamism”.
The first extension additionally incorporates the relative position of the Call-In time
ti ∈ (0 < ti ≤ T ) of the dynamic order i, in relation to the latest possible Call-In time T .
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The resulting measure is called effective degree of dynamism (edod):

edod =
1

n

ndyn∑
i=1

ti
T

Further refinement is achieved by considering the temporal gap between an order’s Call-In
time and its time window. The time window of request i is specified by earliest service
time ei and latest service time li. The time gap between ti and li is called reaction time
and is used to calculate the measure edod-tw :

edod− tw =
1

n

n∑
i=1

T − (li − ti)

T

Figure 2.3 visualizes the concept of edod-tw : t1 and t2 symbolize different Call-In times
with regard to the same time window. Since t2 > t1, there is a shorter reaction time in
the second case.

T0

time

1e
1l1t

T0

time

2e
2l2t

reaction time

Figure 2.3: Effective degree of dynamism - with time windows

The work of Tjokroamidjojo et al. (2006) investigates the impact of different reaction
times for a Single Load Pickup and Delivery Problem with Time Windows (SLPDPTW).
It is shown for a theoretical test environment that the use of advance load information
(with longer reaction time) produces significantly better results compared to a situation
with Call-In at the latest possible time. A mandatory assumption for such a statement
is an adequate replanning option in order to use the available “reaction time”. The au-
thors show that the absence of such an option may completely invalidate the advantage
of “early information”.

Due to the fact that dynamic requests can be characterized as the most important source
of dynamism, these specific measures have their warranty. On the other hand, further
possible sources of uncertainty are completely neglected. An approach which tries to cover
other sources of dynamism is proposed by Schumann et al. (2009). Unfortunately, it is
rather a theoretical type of consideration.

The authors extend Larsen’s edod-tw formula. Instead of all orders n, they just consider
dynamic orders ndyn and propose the inclusion of additional dynamic events. The authors
select solely dynamic events γ ∈ Γ that may invalidate the current plan or may decrease
solution quality. The set Γ includes (i) decrease of li, (ii) increase of ei, (iii) increase of
travel time between two nodes, (iv) increase of a customer’s demand and (v) occurrence
of new requests. The proposed dynamic measure φ is calculated with the formula:

φ =
1

|Γ|
Γ∑
γ

T − (hγ − tγ)

T
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The value of hγ depends on the specific event: (i) if li is decreased, hγ is chosen to be
the new value of li; (ii) if ei is increased, and (iii) if a link’s travel time increases, the
first customer in the tour, whose time window cannot be met any longer, is identified.
Then hγ is chosen to be this customer’s latest service time; (iv) if a customer’s demand
increases, the first subsequent customer in the tour is identified, who can no longer be
served because of limited capacity. Then hγ is chosen to be the departure time from this
node’s predecessor; (v) if a new order occurs, hγ is chosen to be the latest service time
associated with the new order.

If in cases (ii), (iii) and (iv), no customer satisfying the query can be found, the formula’s
numerator is set to zero for the considered γ-event.

A drawback of the proposed measure is its dependency on the current plan. An identical
dynamic data set may result in different levels of dynamism φ, depending on the perfor-
mance of the underlying planning approach. In addition, “positive events”, e.g. reduction
in travel times, are completely neglected, even though such “positive events” also have to
be handled, causing “dynamic stress” to the planning system.

In general, a meaningful measure for dynamism should incorporate three main aspects:

• the type of new information and the magnitude of changes,

• the available reaction time for the planning system between disclosure date and
possibly resulting negative impact, and

• the number of changes made known to the planning system per time unit (“stress”).

In addition, it should be certainly independent of the applied solution procedure.

Due to the complexity of this task, to our knowledge no such measure has been developed
to date.

Configuration Framework for Dynamic Algorithms

The most important and distinctive feature of a dynamic algorithm is the capability to
quickly produce a new good plan after new information has arrived. The way to per-
form this task can be described with the aspects of the following configuration framework
(cp. Bock, 2004).

1. Technique of Adjustment

This aspect answers the question of what kind of methodological approach to use to
incorporate new information. There are easy predefined decision rules like “Nearest
Neighbor”, or more advanced heuristic approaches, which construct a feasible plan and
try to improve it by applying exchange operators (possibly guided by a metaheuristic). In
addition, exact approaches (e.g. Column Generation based) may also be applied, either
in their original “exact” setting (for small instances) or in a heuristical way (for greater
instances).



2.1. Characteristics of Dynamic Problems 19

Intuitively (from a static perspective), the use of a more advanced approach applied to
the static subproblems should result in a better overall performance. Interestingly, this
point is subject to discussion. While Yang et al. (2004) report “that fully re-optimizing
each time (seeking the optimal solution) leads to overall better performance under various
testing situations”, Hvattum et al. (2006) experience that “a better solution to the static
subproblem does not necessarily lead to a better overall solution”.

In fact, in a few cases we had the same “non intuitive” experience in our tests (see Sec-
tion 4.5.1). This behavior can be explained as follows. As we saw in the definition of a
dynamic problem, it requires planning decisions under incomplete information, which are
to some extent irreversible. Even if a “more advanced” procedure A produces a better
solution than an inferior procedure B under information of time t, new information at
time t+1 can completely render the situation. Perhaps procedure A has fixed some deci-
sions (optimal at time t), which emerge sub-optimal under new information of time t+1.
So, in total, it is possible that procedure A, despite its structural dominance, is no more
capable of catching up with procedure B in the remaining time.

However, in the most cases we made the “intuitive” experience that more advanced pro-
cedures applied to the static subproblems also produced better overall results.

2. Reaction of Adjustment

If former planning runs have been performed, there will be an obsolete solution available
(not including the newly arrived information). This second categorization aspect decides
how to use such old planning solutions. One approach is to completely neglect for-
mer planning results and to build up a new feasible solution from scratch, incorporating
all new information, treating it as equal to old information. In contrast thereto, a con-
structive approach takes the planning results from the last planning run as given and just
updates it with all new information now available.

3. Frequency of Adjustment

This categorization answers the question of how often the plan in execution is up-
dated, for example because of new information or improvements. Four different options
can be distinguished. The first is that new information becoming available immediately
triggers a new planning run and an update of the plan in execution (event-based). In the
second option, new information is gathered over a specified period and if time is elapsed,
a new planning run is started (time driven).

In the third option, new information is gathered up to a point where a specified num-
ber of new events has occurred, then a new planning run is started (size driven). The
fourth option allows updates of the plan in execution, not only at every new event, but
also when an improvement procedure, running simultaneously to execution, finds a better
specification for the plan in execution (continuous).

4. Duration of Adjustment

Duration of Adjustment describes the time available to the algorithm for incorporat-
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ing new information and for performing improvement. In a time limit based environment,
a known finite anticipation horizon is available to incorporate new information. An im-
provement strategy can be developed so as to use the complete time available for a good
search strategy (diversification and intensification; see Rochat and Taillard, 1995). Find-
ing a value that achieves a good trade-off between execution time and solution quality
is a challenging task: If the anticipation horizon is too small, there is not enough time
available for the optimization procedure. Situations may be incorrectly assessed, resulting
in inferior decisions. Otherwise, if the anticipation horizon is too long, planning opportu-
nities may be lost due to the delayed possibility for reaction (see Ichoua et al., 2000).

In an event-based environment, duration is stochastic and not known to the algorithm.
A feasible solution needs to be produced very fast, so that it is ready in case of the oc-
currence of the next event. Here, intensification strategies are especially appropriate for
improvement. A further duration category is called zero-time. In this case, the algorithm
just gets a very small amount of time (near zero) to incorporate new information into the
plan in execution. Improvement is not performed.

5. Synchronization of Adjustment

In a real time planning environment, calculations of a control algorithm have to be done
parallel to the progress of time in the real world. Several options are available to achieve
synchronization between algorithmic calculations and plan in execution. The
first (prioritization of computation) implies a stop of the execution of the current plan
while calculations are performed. Afterwards, the plan in execution is updated with the
new results and execution is continued. For practical reasons, this option seems to be
hardly applicable.

In the second option (extensive simultaneity), execution and computation run simultane-
ously. The algorithm is allowed to change all decisions which are not due within a short
anticipation horizon. A third approach specifies a larger part of the “plan in execution”,
which is not allowed to be changed (prioritization of execution), avoiding stress of fre-
quent re-scheduling, but also reducing the potential solution space.

6. Scope of Adjustment

The scope describes how the algorithm is allowed to change decisions which become ef-
fective in the future. The scope is called restricted if some adjustments, which were
technically possible, are not allowed. Examples are the restriction of diversion (not to
allow a change of the destination when a vehicle is already traveling to a specified loca-
tion) or of transshipment (not to allow the exchange of an already picked up load from
one truck to another). The scope of adjustment is called complete if no future decision is
restricted. However, in the most cases, the scope will be somehow restricted.

Simulation Techniques for Dynamic Algorithms

For evaluation of a new dynamic procedure’s performance, simulation runs with various
test data sets are usually applied. The best simulation mode depends on the individ-
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ual algorithmic concept. For subsequent explanation, the simulation speed s is defined,
meaning that 1 hour of real-life operations is simulated in 1/s hours of computer time.

If the algorithm possesses an improvement component, it may be beneficial to run the
simulation in “real time” (s = 1), allowing for the same number of potential improvement
operations as in reality. Here, higher simulation speeds (s > 1, with shorter simulation
run time) result on average in an overall worse solution quality. Examples of real time
simulation can be found in Shieh and May (1998), Gendreau et al. (2006) and Chen and
Xu (2006). For a detailed investigation of simulation speed effects, see Section 5.5.

If there is no improvement component available, it is not necessary to choose the time
consuming “real time” simulation (the time between two subsequent events would be
wasted). Instead, it is sufficient to run an “event driven” simulation. In this case, it is
not possible to give an exact value of simulation speed. It is only possible to estimate
the number of events, multiply it with the average calculation time per event and set it
into relation to the total simulated real time. Examples of event driven simulation can be
found in Bent and van Hentenryck (2004), Fleischmann et al. (2004) and Tang and Hu
(2005).

Performance Analysis for dynamic algorithms

The performance of a dynamic heuristic on a given dynamic test instance can be evaluated
in five possible ways:

• by analytical derivation of the heuristic’s worst case performance, compared to the
optimal solution, obtained for the corresponding static instance,

• by comparison with the optimal solution obtained for the corresponding static in-
stance,

• by comparison with a heuristic solution obtained for the corresponding static in-
stance,

• by comparison with solutions achieved by other well-established dynamic heuristics
for the original dynamic instance, and

• by comparison with manually achieved solutions of human planners, in case of a
dynamic real-life instance.

The value of the first case is more of a theoretical nature; many researchers with a
mathematical orientation focus on it under the name “competitive analysis”. The nota-
tion “dynamic vs. static” is substituted here by “online vs. offline”.

Comparing an online algorithm to an optimal offline algorithm was first suggested by
Sleator et al. (1985) and the term “competive analysis” was coined by Karlin et al. (1988).
An online algorithm is called c-competitive if the objective function value of the solution
produced on any input sequence is at most c times that of an optimal offline algorithm
on the same input. With the optimal offline algorithm having complete knowledge of the
whole input sequence.
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“Competitive analysis of online algorithms can be imagined as a game between an online
player and a malicious offline adversary. The online player uses an online algorithm to
process an input which is generated by the adversary. If the adversary knows the strat-
egy of the online player, he can construct a request sequence which maximizes the ratio
between the player’s cost and the optimal off-line cost.” (cp. Krumke, 2001)

Under very specific assumptions, competitive ratios for the dynamic TSP and the dy-
namic Traveling Repairman Problem (TRP) are e.g. derived by Jaillet and Wagner (2006).
However, for many algorithms directed at solving practical applications such a worst case
estimation is neither realizable nor very useful. Due to the NP-hardness of all problems,
being extensions to the TSP, optimal solutions can usually not be calculated. In addition,
the “worst case” scenario may not happen in practice. Information about an algorithm’s
performance should rather include average performance plus variability measures.

The second option can be seen as a simplified modification of the first, without con-
ducting an analytical “worst case” analysis. The performance of some dynamic results is
assessed by direct comparison with the optimal static solution. Again, the calculation of
such a static optimal solution is usually not possible.

The third option for evaluating a dynamic algorithm, which is more practicable than
its predecessors, is explained by Mitrovic-Minic et al. (2004). The authors define a “value
of information V (H) under heuristic H”, which measures the possible gain in solving a
dynamic problem ex post heuristically, if all information is known:

V (H) =
ẋH − xH

ẋH

with ẋH being the best solution of the dynamic instance under heuristic H and xH being
the best solution of the static instance I under heuristic H.

Here, the same heuristic H is used explicitly for calculations on dynamic and static test
data, which is probably not the most reasonable decision. According to Psaraftis (1988)
and to former explanations, the configuration of dynamic and static algorithms necessi-
tates differences. Here, the calculated value of V (H) will always depend on “how well the
corresponding static instance can be solved with a dynamic algorithm which is not sup-
posed to solve such a problem.” Therefore, an additional option would be the use of two
heuristics: a dynamic one for the dynamic instance and a static one for the corresponding
static instance.

The fourth option is based on the comparison with another dynamic heuristic that has
been proved to produce competitive results for various dynamic data sets. Such an ap-
proach is realizable at justifiable expenses and is supposed to yield meaningful results.

The fifth option compares the results of a dynamic algorithm with the manually per-
formed planning by human dispatchers. Even if overall manual solution quality can hardly
be evaluated, it allows for assessment of a dynamic algorithm’s relative solution quality.
Therefore, practical usability of this performance measure is also quite high.
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2.2 Relevance and Classification of Dynamic Stan-

dard Problems

Dynamic transportation problems can be found in several real-life applications where
planning decisions have to be made subject to an environment of changing information.
This section characterizes the most important real-life planning scenarios and connects
these to the underlying theoretical problem definitions.

To classify real-life applications it is reasonable to differentiate between depot bound
and depot free dynamic transportation problems. In the depot bound case, some good
has to be transported to or away from a depot. In the depot free case, a depot is not
involved. As a second distinctive feature, the application’s geographical extension is used.
If transportation tasks primarily cover limited operational areas, e.g. “urban areas” with
an approximate maximum radius of 50km, we denote the application as local area; other
applications without geographical limitation are described as wide area.

Classification: Depot bound/Depot free and Local Area/Wide Area

A typical representative of the depot bound group is the VRP, where each vehicle starts
and finishes its tour at a prespecified depot, executing a Delivery tour (transportation of
goods from the depot to the customers) or a Pickup tour (transportation of goods from
the customers to the depot). Since maximum vehicle traveling distance per planning in-
terval is limited, these problems usually occur in local area environments. Especially
VRPs including Pickup tasks tend to have a dynamic component. This is due to the
fact that additional Pickup tasks can be added to a vehicle’s tour in the short term just
by checking some feasibility constraints, like vehicle capacity or maximum tour duration,
once the vehicle is already on its way.

VRP Delivery tours, however, require all Delivery objects to be loaded to the vehicle
before the tour starts. If it is decided to add additional Delivery objects to the tour
anyway, the vehicle would have to re-visit the depot in order to pick up the additionally
needed objects. In practice, Courier services (like UPS or DHL) use the first half of the
day to perform static Delivery tasks from the depot to the customers, afterwards (when
the vehicle is empty), new (to some extent dynamic) objects are picked up and brought
to the depot for further processing. The Vehicle Routing Problem for dynamic Delivery
tasks is only conceivable in some special cases, like homogeneous good distribution (e.g.
“oil and liquid gases”, “beverage cases”) and distribution of small products, where a large
amount/stock of distributable products can be anticipatorily carried on a vehicle.

The group of depot free transportation tasks contains the dynamic TRP, where a tech-
nician with re-usable repair equipment is sent to dynamically occurring customers. Since
just an immaterial “service” is provided to the customers (no transport to or from the
depot), new customers can be flexibly included in the repairman’s tour. The TRP can be
considered as a local area problem.

The depot free group also contains the Pickup and Delivery Problem (PDP), where objects
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or people have to be immediately transported from a Pickup to a Delivery location, with-
out visiting a depot. We speak of a Multi Load Pickup and Delivery Problem (MLPDP)
if consolidation of several objects is allowed. Otherwise, if objects have to be transported
separately, we denote the problem Single Load Pickup and Delivery Problem (SLPDP).
Representative “Pickup and Delivery” applications can be found in local and wide area
environments:

In the local area context, Taxi or Dial-A-Ride services deal with dynamic transporta-
tion requests of people who wish to be transported from location A to location B. The
fast transportation of small parcels, for example between two urban area companies, is
summarized in the concept of Express Mail Delivery Services. While transportation of
passengers is associated with strict capacity constraints, in Express Mail Delivery appli-
cations, vehicle capacity can be neglected due to the small size of the parcels. Requests in
both applications come along with tight time window constraints. In addition, peoples’
transportation usually requires compliance with a maximum ride time duration.

In wide area environments, especially occasional transportation (also referred to as
“tramp transportation”), possesses a dynamic component (cp. Section 1.1). Orders,
mostly of Single Load type, have to be dynamically assigned to a fleet of moving vehicles,
which is spread over the operational area (for example: Europe), producing a transporta-
tion schedule with minimal cost. In contrast to local area dynamic problems, the reaction
time between occurrence of the request and the Pickup time window is usually longer.
This is also true for the width of the time windows.

Table 2.1 summarizes the most important dynamic planning problems.

depot bound depot free

local area
VRP

(Pickup Tour for Courier
Services)

TRP, MLPDP
(Taxi/Dial-A-Ride, Express

Mail Delivery)

wide area —
SLPDP

(Occasional long-haul
transportation)

Table 2.1: Classification of dynamic real-life problems

Other classifications

Another classification option for dynamic real-life problems was proposed by Gendreau
and Potvin (1998). They distinguish between planning problems with “routing” (the need
to sequence requests within planned routes) and “no routing”. The second criterion is
again the problem’s geographical extension.

The first category “local area/routing” contains Courier and Dial-A-Ride services (see
Table 2.2). In addition to our original classification scheme, emergency services, like am-
bulance and police, are also now included (second category: “local area/no routing”).
These type of problems can be considered as dynamic transportation tasks, nevertheless
their objectives differ. The main challenge is the appropriate re-positioning of a vehicle,
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once service is completed, in order to reach future requests in a preferably short time.
Obviously, “routing” is not an important aspect for this type of problem.

routing no routing
local area Courier Services, Dial-A-Ride Emergency Services
wide area Less-than-truckload trucking Truckload trucking

Table 2.2: Classification by Gendreau and Potvin (1998)

More critically, the categorization of Full Truckload wide area transportation into the “no
routing” group needs to be questioned. In our real-life problem (cp. Section 5.2), which is
derived from a big German freight forwarding company, routing is a necessary task. A
vehicle’s tentative planning schedule usually includes more than one subsequent “routed”
request. This differing interpretation may be induced by differences of long-haul trans-
portation tasks in the US and Europe. Due to more agglomeration of economical centers
and due to generally smaller distances, the average long-haul travel time in Europe tends
to be shorter, allowing more than one transportation task to be scheduled.

Finally, the category “wide area/routing” is filled with the term Less-than-truckload truck-
ing, indicating load consolidation for wide area occasional transportation. This is a very
rare case to our knowledge. Even very large long-haul trucking companies who perform
occasional transportation do not (usually) find requests suitable for consolidation: either
the capacity does not allow for consolidation, the time windows are completely different,
or suitable requests simply do not occur within geographical proximity. Therefore, as
indicated in Section 1.1, less-than-truckload requests that have to be transported in wide
area environments are usually fed into the driving routes of an existing – medium term –
line operation schedule. This, however, veers away from dynamic short-term planning.

Since many real-life applications fall into the group “local area/routing”, the authors
perform a sub-classification of this category into the groups “capacitated” and “unca-
pacitated” as well as “many-to-many” and “one-to-many” (see Table 2.3). A vehicle is
“capacitated” if the number of goods that can be loaded onto the vehicle is subject to lim-
itations. From a physical standpoint, each vehicle is somehow “capacitated”. However, if
the goods are quite small and if there is not the chance of overloading the vehicle during
a tour, we denote the associated problem as “uncapacitated”. A request is of the type
“many-to-many” if two locations (Pickup and Delivery, both different from the depot) are
involved. Otherwise, if only a single location (Pickup or Delivery) is involved we speak of
“one-to-many”.

many-to-many one-to-many
capacitated Dial-A-Ride Feeder systems

uncapacitated Express Mail Delivery Courier and Repair Services

Table 2.3: Sub-classification of local-area/routing

For the “many-to-many” case, Gendreau and Potvin (1998) mention Dial-A-Ride Ser-
vices and Express-Mail-Delivery with the attributes “capacitated” and “uncapaciated”,
respectively. The category “one-to-many” includes so-called Feeder systems in the “ca-
pacitated” case and Courier and Repair services in the “uncapaciated” case. A Feeder
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system is a Dial-A-Ride system with a specific target location, for example an airport or
a train station, thus having just one Delivery location. Courier services correspond to
the previously mentioned VRP tours; however, in the classification on-hand, there is no
accentuation on Pickup tasks.

In the following section, two specific real-life planning scenarios are chosen for further
investigation.

2.3 Investigated Problem Settings

This section gives a detailed description of the problems that are investigated in this work:
the dynamic local area (capacitated) MLPDPTW in Chapter 4 and an extended
real-life version of the dynamic wide area SLPDPTW in Chapter 5. According to the
previous discussion of standard problems, both dynamic problem definitions cover rele-
vant practical applications: Dial-A-Ride services and International Truck Transportation
with occasional transportation tasks, respectively.

In the following, a catalog of selected attributes is presented for both problems, especially
concerning the underlying network structure, the planning horizon, attributes of orders,
vehicles and tours, as well as the objective function (cp. Stumpf, 1998). Tables 2.4 and
2.5 include the attributes of both problem settings.

Major differences occur in the length of the planning horizon. The local area planning
horizon only covers a 10-hour interval; the planning horizon for the wide area problem,
however, has been chosen as 5 weeks. While 10 hours are sufficient to consider a typical
working day in the Dial-A-Ride context, a longer horizon is needed in wide area appli-
cations, since typical requests come along with a transportation distance that cannot be
handled within a single day. In addition, the longer planning horizon allows for the in-
clusion of time restrictions, like EC social regulations.

Even though both problems cover a Pickup and Delivery problem, there are some dif-
ferences in the order characteristic. The first setting allows for load consolidation, due
to “less-than-truckload” order size. In the second scenario, all orders are of type “full
truckload”, hence there is no option of load consolidation. Nevertheless, some of the sec-
ond scenario orders may possess several Pickup and/or Delivery locations that have to be
processed in a fixed “inner order” sequence.

In the first case, a homogeneous vehicle fleet is considered, starting and finishing its tours
at a central depot. In the second case, the fleet consists of heterogeneous vehicles (“vehicle
types”), each with a specific starting position and a specific time of availability. Those
vehicles do not have to return to their initial starting position or to any depot at the end
of the planning horizon.

Arbitrary order-to-vehicle assignment is only allowed in the first scenario, while in the
second scenario, the assignment of an open order requires a vehicle of appropriate type
(restricted order-to-vehicle assignment).



2.3. Investigated Problem Settings 27

network
characteristic - coordinate network

- Euclidean distance
travel times - constant

planning horizon
- rolling horizon
- 10 hours + optional overtime

orders
characteristic - Pickup and Delivery (“depot free”)
location in network - node
transportation object - goods
divisibility - not divisible
time windows - two-sided time window for Pickup

- two-sided time window for Delivery
- lower limit (EPT, EDT) = hard constraint
- upper limit (LPT, LDT) = soft constraint

sequence of orders - arbitrary
availability of data - dynamic order arrival

- initial amount of static orders (subject to variation)
size of order - less than truckload
acceptance/rejection - no rejection, transportation of all orders
geographical extension - local area
transshipment - no transshipment
number of orders - 1000
frequency of orders - singular

vehicles
number - 50 (subject to variation)

- limited
structure of vehicle fleet - homogeneous
vehicle ownership - own vehicles
initial location - central depot
applicability - single day tours

- multiple usage
time restrictions - earliest availability time = hard constraint

- maximum duration = soft constraint
capacity restrictions - yes
crew - one driver mode
driver-to-vehicle assignment - fixed
order-to-vehicle compatibility - no restrictions

tours
standard tours - no
shape of tours - start at central depot

- closed, vehicles have to return to depot
constraints - no sequence constraints

objectives
minimize:
weighted sum of travel time, delay, waiting time, overtime

Table 2.4: Characteristics of the dyn. local area MLPDPTW investigated in Chapter 4
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network
characteristic - coordinate network

- Euclidean distance
travel times - constant

planning horizon
- rolling horizon
- 5 weeks

orders
characteristic - Pickup and Delivery (“depot free”), with various Pickup

and/or Delivery locations per order and fixed
inner order sequence

location in network - node
transportation object - goods, requiring specific vehicle type
divisibility - not divisible
time windows - two-sided time window for Pickup

- two-sided time window for Delivery
- lower limit (EPT, EDT) = hard constraint
- upper limit (LPT, LDT) = soft constraint

sequence of orders - arbitrary
availability of data - dynamic order arrival

- small initial amount of static orders (6.3%)
size of order - full truckload
acceptance/rejection - no rejection, transportation of all orders
geographical extension - wide area
transshipment - no transshipment
number of orders - 14025
frequency of orders - singular

vehicles
number - 953

- limited
structure of vehicle fleet - heterogeneous, 5 different vehicle types
vehicle ownership - own vehicles
initial location - depot free
applicability - multi-day tours

- multiple usage
time restrictions - EC social regulations = hard constraint

- working time regulations = hard constraint
- general driving bans = hard constraint
- earliest availability time = hard constraint

crew - mixed (one driver mode, team driver mode)
driver-to-vehicle assignment - fixed
order compatibility - restricted vehicle-to-order assignment

tours
standard tours - no
shape of tours - individual vehicle starting position

- open, no return to starting position
constraints - fixed sequence due to order specification

- vehicle based time restrictions

objectives
minimize:
weighted sum of empty travel time, delay, waiting time

Table 2.5: Characteristics of the dyn. wide area SLPDPTW investigated in Chapter 5
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The problems also differ in time restrictions. The first setting only covers a maximum
tour duration (soft constraint), while the second setting covers a set of more sophisticated
restrictions, like EC social regulations, working time regulations or general traffic bans
(all being treated as hard constraint).

In both cases, the objective is to minimize a weighted cost function. However, there are
minor differences in the chosen components: in the first case, the cost function includes
“total travel time”, while in the second case, only “empty travel time” is considered. Due
to the maximum tour duration soft constraint, an additional penalty term for “overtime”
costs is added in the first scenario.



Chapter 3

Literature Review

This chapter includes a detailed literature review of publications on Dynamic Fleet Man-
agement. At the beginning, some general statistics on the surveyed literature are given
(Section 3.1). This is followed by some exemplary publications showing the variety of
dynamic applications in real-life (Section 3.2). Afterwards, algorithm orientated papers
are presented categorized into three groups depending on the knowledge of the future (Sec-
tion 3.3). The remaining sections review the most popular dynamic test instances in the
literature (Section 3.4) and outline the results of some papers that do not primarily focus
on the algorithmic performance, but on the acceptance of dynamic planning applications
in real-life (Section 3.5).

3.1 Statistical Analysis of the Surveyed Publications

Dynamic aspects in transportation have attracted increasing attention in the research
community and in practice over the last years. A dynamic transportation problem was
considered first by Wilson (Wilson et al., 1971; Wilson and Weissberg, 1976; Wilson
and Colvin, 1977) at the Massachusetts Institute of Technology (MIT) in Boston. For
a dynamic Dial-A-Ride Problem at the city of Rochester (USA), the authors develop an
insertion heuristic, which, after the occurrence of a new order, evaluates all possible in-
sertion positions in the existing tours. According to a special selection criterion, the new
order is inserted at the best position.

After this early work, it took several years for dynamic transportation to become a popular
field of research. Today, many publications are available, investigating dynamic real-life
applications and proposing new efficient solution methods. Figure 3.1 shows the number
of publications concerning “dynamics in transportation” over the course of time, based
on the 64 sources cited in this survey.4 In the mid-nineties, the number of publications
started to increase, reaching a peak of 12 publications in 2004.5 Afterwards, a medium
level was maintained but with a decreasing trend.

4 Other surveys with classification schemes and literature different from this survey have been published,
for example, by Psaraftis (1995), Ghiani et al. (2003), Cordeau et al. (2007), and Larsen et al. (2008).
5 This finding may be attributed to a special issue on “Real-Time Fleet Management” in Transportation
Science in 2004

Steffen Schorpp, Dynamic Fleet Management for International Truck Transportation,
DOI 10.1007/978-3-8349-6675-9_3,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Figure 3.1: Publications on dynamic transportation over the course of time
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It is also interesting to analyze which basic theoretical problems the surveyed publications
have dealt with (cp. Figure 3.2). In total, 48 papers considered local area applications,
15 considered a wide area environment, and one paper could not be attributed. Within
the local area group, 27 papers are depot bound (VRP, VRPTW, TSP, TSPTW) and
21 papers are depot free (TRP, SLPDPTW, MLPDPTW, Dial-A-Ride). All wide area
applications are depot free (SLPDPTW, SLPDP, MLPDPTW).

When evaluating sources of dynamism (cp. Figure 3.3), it can be observed that nearly all
publications (93.8%) consider the dynamic arrival of requests. Also quite popular are dy-
namic travel times (21.9%), while vehicle breakdown, service time (each 6.3%), dynamic
demand levels, and request cancelation (each 4.7%) are only considered by a few authors.

Before algorithmic solution procedures come to the fore in Section 3.3, several publications
that focus specifically on dynamic practical applications will be presented.

3.2 Practical Applications

The following publications primarily focus on dynamic applications in real-life. They give
a detailed description of the associated practical planning problems and present solution
approaches that have actually been implemented. However, additional real-life applica-
tions with distinctive focus on algorithmic solution concepts can also be found in Section
3.3. This section’s purpose is to outline the variety of dynamic real-life applications,
which, for example, can be seen at the different objects or services provided by vehicles.

The first five papers (see Table 3.1) consider various objects (from petroleum to human
patients) that have to be transported. A further paper deals with vehicles providing road-
side assistance service, while, in the last application, customer service is constituted by
the use of a specific recreational vehicle itself.

authors investigated real-life topic
Brown and Graves (1981) dispatching of petroleum tank trucks

Bell et al. (1983) distribution of industrial gases in a VMI
environment

Savelsbergh and Sol (1998) truck dispatching at shipping company
Magalhaes and Sousa (2006) distribution of pharmaceutical products

Beaudry et al. (2010) transportation of patients in a hospital
Krumke et al. (2002) dispatching of mobile roadside assistance

units (ADAC)
Ernst et al. (2007) dispatching of recreational vehicles

Table 3.1: Variety of dynamic real-life applications

Brown and Graves (1981) consider fleet dispatching of petroleum tank trucks at “Chev-
ron Corp.”. Starting from 80 US terminals, 2,600 loads per day have to be scheduled,
delivering motor gasoline, weed oils and jet fuels. Vehicles perform a series of successive
“single load” pendular tours between depot and customers. A vehicle consists of several
compartments that have to be filled with different types of gasoline. The order quan-
tity is assumed to be static, while new orders occur dynamically. The objective is the
minimization of transportation costs and an equitable workload distribution.
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The planning problem has to be solved for each depot in a rolling horizon framework.
At first, authors model an integer linear program, but find out that it cannot be solved
exactly within a reasonable time. This is because there is just a single central computer
that has to handle a subproblem query from one of the 80 terminals within a fraction of
a second.

Hence, a heuristic is proposed, which solves a sequence of embedded network flow prob-
lems and successively fixes order to truck assignments. Subsequently, the solution is
improved by load exchanges between two trucks and Best Re-Insertion. The new dispatch
module produces excellent solution quality and a reduction of transportation costs by
about three percent. Additionally, the new planning approach achieves extremely uni-
form distributions of workload among vehicles.

Bell et al. (1983) report on a dynamic distribution problem (capacitated VRPTW) at
“Airproducts and Chemicals Inc.”, which sells industrial gases (oxygen, nitrogen, argon
and carbon monoxide) from 23 depots to 3,500 customers in the US. Ten to thirty vehi-
cles are assigned to each depot. The inventory of storage tanks, located at the customer
locations, is monitored by the distributor (Vendor Managed Inventory) and must be main-
tained above a specified safety stock level.

The customer’s demand is dynamic. The only indication for future demand levels is an
estimation based on a historical 15-day horizon. Customers with high variability can ad-
ditionally be phoned to detect their exact inventory levels. On the basis of this demand
information, vehicle routes, schedules and quantities for Delivery are planned for each
depot. Nevertheless, demands may deviate from the estimated amounts. In addition, un-
accounted emergency orders, which have to be served immediately, may occur during the
day. The authors model the problem as a mixed integer problem and develop a Lagrange
relaxation based algorithm, which is solved in a rolling horizon manner (with a two to five
days horizon). As a result, the authors observe savings of up to $1.72 million annually
when replacing the current manual planning with the new planning system.

Beaudry et al. (2010) investigate dynamic transportation of patients between health
care units and service areas in a large hospital in Southern Germany (dynamic Dial-A-
Ride). The hospital complex consists of 100 buildings and a road network of 15 km. A
heterogeneous fleet of 11 ambulances, each carrying special equipment, is responsible for
picking up and delivering people in given time windows. Some people require individual
transportation, other people can be combined. A vehicle may carry different load combi-
nations: one bed, one wheelchair, one seated person at a time, or up to three wheelchairs.
Some transportation tasks require the vehicle to go back to the depot for disinfection
afterwards. Other transportation tasks require the Pickup of an accompanying person,
who needs to be picked up before the patient and perhaps needs to be brought back after
the completion of the transport.

Ninety-six percent of the requests are called in dynamically. Further possible dynamic
events are cancelations and updates of requests, as well as late arrivals and vehicle break-
down. The objective function prioritizes patient convenience over both travel time and
prevention of early arrival. The authors develop a rolling horizon Tabu Search metaheuris-
tic based on the neighborhoods best re-insertion and intraroute re-arrangement. Tests with
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a 20-day historical data horizon from the hospital reveal significant reductions in waiting
times for patients and a reduction of the number of vehicles.

Krumke et al. (2002) examine a dynamic service vehicle dispatching problem at the
German Automobile Association (ADAC), which provides roadside assistance to people
whose car has broken during their journey. Service vehicles possess individual capabili-
ties (spare parts, repair kit), cost parameters and home location. In addition to ADAC
owned vehicles, it is also possible to access subcontractor’s vehicles. The problem can
be considered as a multi depot Vehicle Routing Problem, with dynamic requests (100%)
and dynamic service times. If a “customer” calls in, the objective is to guarantee service
within a short period of waiting time (lateness cost), while keeping operational costs for
the service vehicles (driving cost, overtime cost) as low as possible.

The authors propose a Column Generation approach, which is applied in a heuristic way.
By solving linear subproblems, dual prices are obtained and are used to generate feasible
tours with reduced cost. For a test set with 770 events and 200 mobile units, solution
quality is within 5% from optimum within 15 seconds and within 2% from static optimum
after one minute.

Savelsbergh and Sol (1998) describe a dynamic planning problem at “Van Gend and
Loos BV”, the largest road transportation provider in Benelux. The paper is focused on
direct transportation (no consolidation of orders at a depot or hub), which is carried
out for order sizes ranging from four pallets to a full truckload. The problem can be
considered as an MLPDPTW, with the special characteristic that one request can have
several Delivery locations in a predetermined order. Van Gend and Loos BV exclusively
use rented vehicles (on average 100) for direct transportation: 50 are rented permanently
and the remaining vehicles are rented on a daily basis. The number of vehicles that are
rented on a daily basis has to be specified at the beginning of a working day.

The primary planning objective is to minimize the number of vehicles. The secondary ob-
jective is the minimization of total traveled distance. Especially the estimation of the right
number of vehicles is difficult, because just 40% of a day’s orders are known in advance,
while 60% arrive during the day of execution. The authors develop a Column Generation
based solution approach. Since fast reaction times (< 5min) have to be ensured, the un-
derlying pricing problem is solved by an approximization algorithm. Encouraging results
of the new solution approach are reported, leading to reductions in total costs ranging
from 3.7% to 4.7% a week. On the other hand, the number of vehicles used is slightly
higher than before.

Magalhaes and Sousa (2006) deal with a dynamic application at Cofanor, a distrib-
utor of pharmaceutical products, operating in Portugal. As pharmacies organize stock
with Just-In-Time policies, they tend to place several orders with rather small quantities
during a single day. These orders are digitally transferred to Cofanor, where a human
operator confirms them. Afterwards, a picking process in the distributor’s warehouse is
started, until the orders (on average 400 per day) can be distributed by vans. The ob-
jective is a quick response to customer demands (short lead-time) and keeping Delivery
costs (traveled distance) low.
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The authors propose a four-phase heuristic (for a capacitated VRP). First, the orders are
clustered by increasing angle. Then, a route of orders is generated in each cluster using
Best Insertion. Thirdly, the urgency of all routes is checked and only routes with an
“urgent” order are released to phase four (an order is “urgent” if the time between order
placement and expected Delivery is greater than a predefined threshold). In phase four,
the chosen routes are improved with 2-opt and finally released for execution. The post-
ponement of tours in phase three is used with the intention of receiving further compatible
orders. Results of the new heuristic are compared to the results of manual planning: av-
erage lead time to pharmacies is reduced by 8.1%, however, traveled distance is increased
by 1.9%.

Ernst et al. (2007) report on a dynamic planning problem at Tourism Holdings Lim-
ited, a New Zealand-based company that operates a fleet of more than 4000 recreational
vehicles (motor homes and camper vans) at 10 locations in Australia and 4 locations in
New Zealand. The vehicle fleet consists of 50 distinct vehicle types, e.g. varying in the
number of berths, number of doors and power engine. The dispatching of vehicles is per-
formed on a 200-day “active scheduling horizon” and can be described as an SLPDPTW.
When a customer calls in, an acceptance/rejection-decision is made within five seconds.
If the request cannot be accepted, alternatives have to be suggested, e.g. different dates
or similar products. A further planning task is the adjustment of the plan to dynamic
events, like late return, vehicle breakdown, etc.

The authors employ two planning levels : the objective of the first level is to maximize the
number of accepted bookings, while, in the second level, the cost for handling the accepted
bookings is minimized. Operation costs consist particularly of empty relocation, free up-
grade to a higher valued vehicle, accelerated cleaning to hold appointed allocation time,
etc. The dynamic first level problem is solved with a linear assignment algorithm. For the
second level, a relaxed linear programming formulation is solved with ILOG. Afterwards,
the relaxed conditions are heuristically re-incorporated. Idle time between dynamic events
is used to improve the current plan. The application of the new system resulted in 2%
savings in operating costs. Simultaneously, human planners won time to intensify their
efforts handling exceptions.

In most cases, practical applications do not perfectly coincide with one of the standard
problems. Because many additional requirements often have to be accounted for, this
section’s primary function has been to show the widespread appearance of dynamic prob-
lems in real-life. The following section will cover algorithmic procedures (usually related
to standard problems), which provide a pool of generic concepts that can be adapted to
more specific practical applications.

3.3 Algorithmic Solution Concepts

The reviewed publications within this section can be divided into three groups. The first
two groups do not have any knowledge of the future and therefore only perform “myopic”
planning. In contrast to the first group (Section 3.3.1), the second group (Section 3.3.2)
anyhow tries to anticipate the future. Stochastic information about the future is available
only to third group publications (Section 3.3.3), which make explicit use of it with different
concepts.
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3.3.1 Dynamic Approaches without Knowledge of the Future

There are generally many possible ways of grouping dynamic myopic publications: by
investigated standard problems, by sources of dynamism, by degree of dynamism, by geo-
graphical area, by associated groups of authors, etc. In the following, however, the main
algorithmic solution concepts have been chosen for classification:

• local search approaches (3.3.1.1),

• metaheuristics, guiding the local search out of local optima (3.3.1.2),

• heuristic applications of exact procedures (3.3.1.3),

• rule-based approaches (3.3.1.4), and

• multi-agent systems (3.3.1.5).

At the beginning of each of the following subsections, a short summary of the selected
publications’ properties is given in the form of a table (see Table 3.2 for an example).
This table includes the dynamic aspects considered in the associated publication.

An “X” in the first column indicates dynamically occurring requests. If available, the de-
gree of dynamism is given in subsequent brackets. The second column reports on further
sources of dynamism (e.g. travel time). Afterwards, the considered standard problem is
specified: capacitated/uncapacitated (column four), actual problem (column five), time
window characteristic hard/soft - if time windows are available at all (column six), and
geographical extension (column seven). An “X” in column eight indicates that en route
diversion is allowed, and column nine gives information about the employed dynamic test
data sets.

dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Shieh and May,
1998

X (50%) cap. VRPTW hard local Solomon, 1987

Du et al., 2005 X
(100%)

cap. VRPTW soft local self-generated

Tang and Hu, 2005 X (50%) uncap. VRPTW hard local Solomon, 1987
Potvin et al., 2006 X (50%) travel

time
uncap. VRPTW soft local Solomon, 1987

Chen et al., 2006 X (78%) travel
time

cap. VRPTW hard local Solomon, 1987
+ real-life

Branchini et al.,
2009

X (60%) cap. VRPTW soft local X self-generated

Table 3.2: Local search approaches

3.3.1.1 Local Search Approaches

The local search approaches that are subsequently presented consist mainly of two parts.
The first part is applied to construct a feasible solution (e.g. with Best Insertion). The
second part uses classical techniques (like Re-Insertion or 2-opt) to improve this initial
solution. Measures to escape from local optima are not applied.



38 Chapter 3. Literature Review

Table 3.2 summarizes the properties of five selected papers. All of them consider the local
area VRPTW with dynamically occuring requests. The degree of dynamism varies be-
tween 50% and 100%. In addition, dynamic travel times are included by two publications
as a second source of dynamism. The latest publication by Branchini et al. (2009) allows
for en route diversion.

Shieh and May (1998) consider a capacitated VRP with hard time windows, where up
to 50% of customers occur dynamically. The objective is the minimization of traveled dis-
tance. Orders may be rejected. The authors propose a heuristic that uses Best Insertion
for constructing a feasible solution, followed by intra- and interroute improvement with
OR-opt and 2-opt. The improvement part is run continuously between the occurrence of
two requests.

For testing purposes, the static VRPTW instances of Solomon (1987) are extended by a
new column with random Call-In times. Analyses are carried out, comparing the results
of the dynamic approach with the best known solutions of the static Solomon instances.
The authors run their simulations in real time and report an increase in the number of
used vehicles by factors of 1.12 to 2.14 and an increase in traveled distance ranging from
7% to 25%. It has to be mentioned that for some problem sets, not all requests could be
serviced due to possible late Call-In and hard time window constraints.

Du et al. (2005) regard a capacitated VRP with soft time windows, in which up to
100% of customers occur dynamically. The objective function consists of two levels.
The first level goal is to minimize the total distance traveled. When no feasible insertion
position can be found, the goal is to minimize delay. The authors propose a heuristic with
construction and improvement parts. In total, four construction methods are presented,
partially depending on geographical order clustering, similar to the “sweep algorithm”:

• find the cluster to which the request belongs to and append the new order at the
end of the associated vehicle’s queue;

• assign the order to the vehicle with the smallest distance between the last order in
the vehicle’s queue and the new order’s location;

• apply Best Insertion with regard to all vehicles;

• find the cluster the order belongs to and apply Best Insertion to the associated vehi-
cle queue. If necessary (due to capacity constraints), take a new vehicle from depot;
if necessary (due to absence of additional vehicles at the depot), check insertion cost
for vehicles in close regions.

The improvement component consists of interroute changes with Best Re-Insertion and
2-Exchange (each of two routes is cut into two segments, then the second segments are ex-
changed) and intraroute changes with Or-opt and 2-Swap (exchange of two nodes within
a vehicles route). Improvement is executed as pure local descent, i.e. changes are only
accepted when an improvement of the objective function is found. Tests are conducted
with self-generated data sets, showing best results for construction with Best Insertion
followed by improvement with Best Re-Insertion and OR-opt.

Tang and Hu (2005) deal with an uncapacitated VRP with hard time windows, in
which up to 50% of the customers occur dynamically. The main goal is to maximize



3.3. Algorithmic Solution Concepts 39

the number of serviced customers. This is achieved by accepting as many customers as
feasible. Further goals are the minimization of customer waiting time (defined as the time
gap between Call-In and start of service) and the minimization of traveled distance, with
higher priority being attributed to the reduction of customer waiting time.

The authors propose a rolling horizon based approach, which is triggered by the occur-
rence of new orders. For the acceptance decision, not only Best Insertion is used: When
the first attempt does not result in a feasible plan, additional adjustments with Best Re-
Insertion and OR-opt are applied in order to create a feasible insertion position for the
new order. The order is only rejected if all these attempts fail. Subsequent improvement
is carried out with a version of OR-opt, examining the relocation of three, two, or one
consecutive nodes in the vehicle’s current tour. Occasionally, a number of requests is
extracted and re-inserted.

The Solomon (1987) instances are used as test data, with the extension of dynamic Call-
In times and modified time window characteristics. For test instances with wide as well
as narrow time windows, the authors report “dramatic benefits” with the new approach
when compared to a benchmark procedure, based on Best Insertion and OR-opt (objec-
tive: minimization of travel time). General results show high quality solutions within a
limited computing time.

Potvin et al. (2006) deal with an uncapacitated VRP with soft time windows, in which
50% of the customers occur dynamically. A special focus is placed on travel times which
are subject to several fluctuations :

• Depending on the time period of the day, the average travel time is multiplied by
prespecified coefficients (“long-term forecast”). This is an a-priori known informa-
tion.

• The moment a vehicle starts traveling on a link, a short-term bias to the travel time
coefficient is revealed (“short-term forecast”). This value is chosen according to a
uniform random distribution in the interval [−0.1,+0.1].

• The arrival time at a link’s destination is furthermore distorted by unforeseen events
that may occur along the travel leg. These are modeled as normally distributed
perturbations with a mean of 0 and standard deviations ranging from 1 to 32. Here,
only delays to the current schedule are considered, thus a negative value is simply
reset to 0. Information about the extent of such variations is first known to the
algorithm when the vehicle finally arrives at the destination.

The general objective is to minimize an equally weighted sum of travel time, lateness
and overtime. The authors propose a solution approach based on Best Insertion and
subsequent improvement with Cross-Exchange (“two segments of routes are exchanged
between two different routes by removing two arcs in each route and by appropriately
reconnecting the two segments.”) and Intraroute Exchange. The procedure is applied at
the beginning and at the occurrence of the following events:

• the arrival of a new order,

• when the short-term forecast on travel time is introduced at vehicle departure, and
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• when the arrival time at a location is delayed by a “tolerance time limit”.

In the last case, the order is reassigned to another vehicle. If the original vehicle arrives
before the new vehicle, the algorithm tries to cancel the re-assignment. If the new vehicle
has not yet started traveling to the observed location, the associated node is simply re-
moved from its schedule, otherwise the new vehicle reaches the location without serving
it (no en route diversion).

As test data, the authors use dynamic extensions to the Solomon (1987) data sets. They
observe that an increasing magnitude of dynamic leg travel time perturbations results in
harder to solve problems. After considering different levels for the “tolerance time limit”,
a short waiting time shows the best performance. Events of small magnitude are caught,
and reaction is only performed on events of larger magnitude.

Chen et al. (2006) investigate a capacitated VRP with hard time windows, in which up
to 77% of orders occur dynamically. Travel times are also subject to dynamic fluctuations,
modeled as distortions to (a-priori known) time-dependent travel times. The objective is
the minimization of a weighted cost function, containing travel and waiting time. New
orders may be rejected if a feasible insertion position into the current plan cannot be
found. Rejection is also possible if fluctuations in travel time make it impossible to serve
an order within its time windows.

The authors propose a heuristic approach which uses Best Insertion for route construc-
tion, followed by an improvement routine with OR-opt. Planning runs are triggered by the
occurrence of new dynamic information and by execution of irreversible planning events
(e.g. permanent order-to-vehicle assignment or when the vehicle starts traveling to a spe-
cific order).

Extended Solomon (1987) data and some real-life data from a logistics company located
in Taiwan are used for testing purposes. Dynamic travel time fluctuations are modeled
with two types of random variables. First, the interval lengths of time-dependent travel
times are distorted, then the corresponding travel times. For reasons of comparison, the
authors apply a solution approach that is not able to include dynamic updates in travel
times. As expected, the solution approach that considers those changes in travel time
significantly surpasses the benchmark procedure in performance. For the second data set,
the new algorithm is benchmarked with the manual planning of human dispatchers: The
results for a fleet of six vehicles show a reduction in total travel time from originally 875
minutes down to 832 minutes.

Branchini et al. (2009) consider a capacitated VRP with soft time windows, in which
up to 60% of customers occur dynamically. The objective is the minimization of traveled
distance. The authors propose a construction heuristic that uses the initial static requests
to distribute the available vehicles equally across the whole service region, in order to ac-
commodate future dynamic customers more easily.

After a request arrival has taken place, the new customers are included with Best In-
sertion. In addition, an improvement procedure is continuously run, investigating 2-opt,
OR-opt and Cross-Exchange neighborhoods. Depending on arrival intensity, these neigh-
borhoods are dynamically reduced (“adaptive”) in order to concentrate on high quality
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solutions. Hence, “long” arcs with small probabilities for improvement are neglected. The
authors call their approach granular search. The approach further includes a basic “wait
first” strategy, en route diversion, as well as vehicle re-positioning to strategic waiting
places.

For testing purposes, three instances are generated with a personal data generator. The
basic parameter settings are taken from real-life transportation companies. The authors
apply several nine-hour real time simulations and compare their new approach with Best
Insertion and Nearest Neighbor. As expected, significant profit gains were achieved when
employing the new sophisticated approach. In addition, a 4% better objective value is
reported when all information is made known to the algorithm a-priori.

3.3.1.2 Metaheuristics

The second group of dynamic approaches, the “Metaheuristics”, can be seen as a control
level above one (or several) basic local search procedures (improvement neighborhoods).
Metaheuristics usually allow for temporary deterioration of the objective function value
in order to escape from local optima. Five representatives are subsequently considered:
Tabu Search, Evolutionary Approaches, Variable Neighborhood Search, Ant Colony, and
the concept of a Second Objective Function. Table 3.3 summarizes the properties of the
associated publications.

Tabu Search

In a Tabu Search (cp. Glover, 1989), the algorithm moves towards the best available so-
lution, generated by its underlying neighborhood. This is possible as long as a solution
is not stored within the “tabu list”, which includes (usually for a given time horizon)
already visited solutions. Since the algorithm is not allowed to choose such a tabu list
solution, it is forced to explore regions of the search space that would otherwise be left
unexplored. Temporary worsening of the objective function value is explicitly allowed in
order to escape from local optima.

Five Tabu Search publications, all considering a local area geographical extension, are
presented: two focusing on the uncapacitated VRPTW, two focusing on the Dial-A-Ride
problem and one dealing with the uncapacitated MLPDPTW. An interesting aspect of
the second paper by Ichoua et al. (2000) is the detailed investigation of the impact of “en
route diversion”.

Gendreau et al. (1999) deal with an uncapacitated VRP with soft time windows for
a Courier service application, in which 50% of the customers occur dynamically. New
orders may be rejected if they cannot be handled within a feasible solution, e.g. because
of hard time window restrictions at the depot. The objective is to minimize a weighted
cost function, including total distance traveled and time window violations.

The authors introduce a parallel Tabu Search algorithm with Adaptive Memory, based
on Taillard et al. (1997). The Adaptive Memory, similar to the concept of Genetic Al-
gorithms, contains a set of feasible solutions. These are generated in the beginning by
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dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Tabu Search

Gendreau et al.,
1999

X (50%) uncap. VRPTW soft local Solomon, 1987

Ichoua et al., 2000 X (75%) uncap. VRPTW soft local X Solomon, 1987
Attanasio et al.,

2004
X (50%) cap. DARP hard local Cordeau and

Laporte, 2003
Fabri and Recht,

2006
X

(100%)
cap. DARP hard local Caramia et

al., 2002
Gendreau et al.,

2006
X

(100%)
uncap. PDPTW soft local self-generated

Evolutionary Approaches

Haghani and Jung,
2005

X (55%) travel
time

cap. VRPTW soft local self-generated

Pankratz, 2005 X
(100%)

cap. MLPDPTW hard local Solomon, 1987

Hanshar and
Ombuki-B., 2007

X cap. VRP local Kilby et al.,
1998

Cheung et al., 2008 X (16%) travel
time

cap. MLPDPTW hard local self-generated

Okhrin and
Richter, 2008

travel
time

cap. VRPTW hard local Solomon, 1987

Variable Neighborhood Search

Angellelli et al.,
2004

X uncap. VRPTW hard local X

Bock, 2010 X several cap. MLPDPTW soft wide X self-generated

Ant Colony

Montemanni et al.,
2005

X cap. VRP local Kilby et al.,
1998; real-life

Guntsch and
Middendorf, 2002

X TSP TSPLIB

Second Objective Function

Xiang et al., 2008 X several cap. DARP soft local self-generated

Table 3.3: Metaheuristics

a stochastic insertion heuristic and subsequent improvement with Tabu Search (neigh-
borhood: Cross Exchange). Based on the solutions found in the Adaptive Memory, new
solutions are repeatedly composed and improved with Tabu Search (cp. Figure 3.4).

Afterwards, the best new solutions are added to the Adaptive Memory. In a dynamic
environment, the improvement procedure is run until a new event occurs. If the new
event is the occurrence of a new request, the latter is inserted into each Adaptive Memory
solution. If the event represents the end of service at a customer location, the driver’s
next destination is identified using the best solution stored in the Adaptive Memory. In
order to keep solutions consistent, the other solutions are updated accordingly. Then, the
overall improvement process is restarted.

The Solomon (1987) data sets, extended to dynamic aspects, are used for testing purposes.
The new approach is benchmarked with several “easier” heuristics: simple successive in-



3.3. Algorithmic Solution Concepts 43

random selection
of known orders

+
Best Insertion

improvement
with Tabu-Search

Adaptive
Memory

extraction of tours
and construction of

initial solution

decomposition into
sub-problems and

application of
Tabu-Search

composition
of best 
solution

initial repetition
until Adaptive Memory

is complete (diversification)

incorporation of the best routes (intensification)

neighborhood for
Tabu Search:
Cross-Exchange

Figure 3.4: Tabu Search algorithm with Adaptive Memory

sertion, successive insertion and improvement with cross exchange, complete solution
rebuild with insertion, rebuild and improvement with cross exchange, and parallel Tabu
Search with stop at the first local optimum. As expected, results show best performance
when the complete approach is run. In addition, the authors show that it is beneficial
to optimize the planned routes between the occurrence of two events. With increasing
computation time better average results are achieved. Finally, the parallelization of the
algorithm on up to 16 processors is investigated, resulting in more customers being ser-
viced and in a reduced sum of distance and lateness.

Ichoua et al. (2000) extend the scope of action for the problem and algorithm con-
sidered in Gendreau et al. (1999) by allowing “en route diversion”. A driving vehicle
may be directed away from its current destination in order to serve a request that has just
occurred in the vicinity of its current position.

The authors introduce a framework with variable anticipation horizon δt. Every time t
the solution approach is restarted, decisions in the horizon t + δt are “frozen”, so that
the current algorithm run may schedule planning updates soonest for time t+ δt. During
the frozen period, new requests may arrive, which have to be accepted or rejected (only
if no feasible insertion position is available). For this purpose, a copy of the current plan
is held ready, which is updated if a new best solution is found. In this situation, the
authors do not consider the case of two similar orders arriving in the same frozen inter-
val. Both could be accepted separately, but together they could render the plan infeasible.

In order to determine reasonable computation times, the authors suggest three variable
rules for calculating the value of δt:

• δt is chosen in such a way that the solution procedure ends before any vehicle arrives
at its current destination,

• δt is chosen to be proportional to a moving average of the last l inter-arrival times,

• δt is chosen to be the length of some time horizon X divided by the number of
requests on the planned routes found within that time horizon.
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In first tests, the third rule succeeded in reducing both the number of unserved customers,
as well as total objective value.

The same test data sets as in Gendreau et al. (1999) are used, providing insights into
potential gains by applying “en route diversion”. Compared to the original heuristic, the
number of unserved customers is indeed reduced by 16.8% up to 100%. In addition, the
objective function value is decreased by 2% up to 4.3%, indicating substantial benefits
through the exploitation of en route diversion.

Attanasio et al. (2004) deal with a capacitated Dial-A-Ride problem, where 50% of
the requests occur dynamically. Orders possess one hard time window, which is either
the Delivery time window (for outbound trips) or the Pickup time window (for inbound
trips). In addition, a maximum ride time of 90 minutes has to be considered. New orders
are accepted if they can be feasibly inserted into the current plan without violating any
hard constraints. The objective is the minimization of traveled distance.

The authors develop a Tabu Search approach, which is a dynamic and parallelized exten-
sion to Cordeau and Laporte (2003). An initial solution is generated by relaxing several
hard problem restrictions (capacity, maximal route duration, time windows, and user ride
time constraints). Then, the Tabu Search, based on a Best Re-Insertion neighborhood, ex-
plores the solution space including infeasible solutions. After each iteration, the objective
function cost parameters are adjusted, raising and decreasing the weight for restrictions
that have been violated and complied with, respectively. With the help of a tabu list,
solutions are penalized by a factor proportional to the frequency of the addition of its dis-
tinguishing attributes. If a new best solution is found, intraroute exchanges are performed.

As test data, the authors use 26 dynamic instances from real-life applications in Mon-
treal/Canada and from a Danish company. A parallelization strategy is applied with an
increasing number of processors ranging from one to eight. Results show the benefits of
enhanced computing power via parallel computing. A performance statement on how well
the proposed algorithm works in dynamic environments (e.g. by comparison with static
data or with other dynamic approaches) is not explicitly mentioned.

Fabri and Recht (2006)6 investigate a capacitated Dial-A-Ride problem with 100%
dynamically occurring customers. When a request arrives, it is accepted if a feasible in-
sertion position into the current plan (in compliance with hard time windows for Pickup
and Delivery) is available. The objectives are the minimization of rejected orders and the
minimization of traveled distance.

The authors employ a dynamic solution approach that extends the work of Caramia et al.
(2002) by introducing explicit Delivery time windows and by allowing waiting times.
When a new order occurs, all vehicles are successively inspected for a feasible insertion
position. If such a position exists, the order is assigned to the cheapest vehicle.

The single vehicle subproblem is solved as follows. A network of possible status vectors
is established, in which each order may have the status already delivered (“0”), already

6 Based on the author’s dissertation: Fabri (2008)
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picked up (“1”), or waiting for Pickup (“2”). Two vertices are connected by an edge
whenever the subsequent vector can be obtained from its predecessor by subtracting 1 to
exactly one vector element. The source vertex is the vector (2, 2, . . . , 2), i.e. all accepted
demands are waiting for Pickup, the sink vertex is the vector (0, 0, . . . , 0), i.e. all accepted
demands have been delivered. The problem is to find a shortest path from the source to
the sink, subject to time windows and capacity constraints. This task is performed with
an A* algorithm that reduces computation time by using a lower bound approximization
function to estimate the cost of the route from the current vertex to the sink. Between two
events, the solution is improved with a Tabu Search algorithm based on the neighborhoods
Best Re-Insertion and (1, 1)-Exchange.

As test data, the authors use adapted data from Caramia et al. (2002). The “stretch
factor”, which originally implies the maximum acceptable ratio between actual and min-
imum expected travel time, is converted into a Delivery time window. Tests with 20
vehicles show significant improvements, ranging from 3.83% up to 10.74% in compari-
son to results of the original algorithm. It is observed that the new approach produces
better solutions for problems with a small number of vehicles and a high number of orders.

In a further work, Gendreau et al. (2006) investigate an uncapacitated MLPDP with
soft time windows, in which up to 100% of the orders occur dynamically. The objective is
the minimization of an equally weighted cost function consisting of travel time, lateness
and overtime. The authors rely on the same optimization framework proposed in Gen-
dreau et al. (1999). The parallel Tabu Search with Adaptive Memory is primarily changed
in terms of the basic neighborhood. Instead of Cross Exchange, an Ejection Chain pro-
cedure is applied. A request (Pickup and Delivery) is taken from one route and moved to
another route, thus forcing a request from that route to move to yet another route, and so
on. The chain may be of any length and may be cyclic or not.

For testing purposes, three main scenarios, each including five instances with increasing
requirements to the solution procedure (“temporal utilization” of vehicles 28%, 57% and
78%, respectively) are generated. See Section 4.4.2 for a detailed presentation of these
dynamic test sets. A comparison of the new approach is carried out with the adapted
benchmark heuristics from Gendreau et al. (1999). It is worth mentioning that simula-
tion is run in real time, producing realistic time intervals between events for running the
improvement.

Best results are achieved with the application of the new approach. The results of
“complete solution rebuild” show worst performance because previously obtained solu-
tion structures get lost. With increasing stress, the solution quality of Tabu Search with
Adaptive Memory and benchmark heuristics gets progressively closer. The authors ex-
plain this finding by a lack of computation time between two consecutive events. When
parallelization with 16 processors is applied, additional improvement ranges from 2.2% to
5.7%.

Evolutionary Approaches

This group of metaheuristics is inspired by biological evolution. Candidate solutions to the
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optimization problem play the role of individuals in a population, and each individual’s
fitness is determined by its associated objective function value. The procedures initially
generate a diversified pool of solutions (parent generation), which is used as origin for
improvements (child generations). The improvements are achieved by using mechanisms
like “selection”, “recombination”, or “mutation”. The idea of “Genetic Algorithms” goes
back to Holland (1975).

Again, all five selected papers deal with a local geographical area. Interestingly, three
of five publications explicitly consider dynamic travel times: two in combination with
dynamic requests, and one focusing only on dynamic travel times.

Haghani and Jung (2005) consider a capacitated VRPTW with 55% dynamic requests
and dynamic travel times. The dynamism of travel time is modeled by varying link travel
speed, which is calculated as the link’s average speed multiplied by a dynamic factor,
depending on the time of day. Information about time-dependent variations in travel
time is not ex-ante known to the planning algorithm. The objective is the minimization
of a weighted cost function with costs for used vehicles, traveled distance and violation of
time windows.

The authors present a rolling horizon based Genetic Algorithm with the following encod-
ing. A feasible solution for the VRPTW consists of a sequence of four-digit numbers. Each
number belongs to a real order, in which the first digit indicates the assigned vehicle, and
the last three digits are used as sorting keys for each vehicle’s routing. At the beginning,
an initial parent population is randomly generated and evaluated for fitness. Afterwards,
new individuals (children) are generated by applying two-point crossover, mutation and
vehicle merging. Individuals of a new generation are selected from both the parent and
children generation. The best solution is always passed onto the next generation (elitist
strategy), while the remaining solutions are chosen with probabilities depending on their
fitness.

Solution quality is evaluated by a comparison with exact CPLEX solutions (for very small
problems with less than 10 demand nodes) and lower bounds (based on a relaxed MIP
formulation). Results show gaps of less than 5% for 5 to 25 demand node problems. For a
30 demand node problem with 30 time periods, the gaps increase up to 7.9%. Overall, the
authors report excellent results within very short computation times. In addition, the new
approach is applied to a larger case study’s data, which shows the benefits of reacting to
dynamic changes in travel time by comparing the performance of a plan revision strategy
with a non-revision strategy.

Pankratz (2005)7 investigates a capacitated PDP with hard time windows and up to
100% dynamically occurring customers. The objective is the minimization of total trav-
eled distance. All orders have to be served and, if necessary, an additional vehicle is
introduced. As solution approach, the author proposes a “Grouping” Genetic Algorithm.

Pankratz argues that in an MLPDPTW, the assignment problem of orders to vehicles has
more influence on solution quality than the routing problem. This is motivated by the fact

7 Based on the author’s dissertation: Pankratz (2002)
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that time windows and precedence constraints considerably restrict the number of routing
alternatives for a given allocation of requests. In the presented approach, an MLPDPTW
solution (“chromosome”) is therefore encoded by clusters of requests assigned to a single
vehicle (“genes”). Additionally, a chromosome contains routing information for each gene,
which is hidden from the Genetic Algorithm and cannot be directly manipulated by the
genetic operators. The encoding is visualized in Figure 3.5.
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Figure 3.5: Encoding of the “grouping” Genetic Algorithm (cp. Pankratz, 2005)

An initial population is generated by repeated Best Insertion of all requests in random
order until the desired population size is reached. The algorithm successively selects pairs
of individuals with regard to their fitness and generates two children by applying crossover
and mutation operators. For Crossover, two crossing sections are specified in each parent.
Then each parent’s section is inserted into the other parent. To yield feasible solutions,
some repair actions, e.g. elimination of vehicles or elimination of orders occurring twice,
are performed. A subsequent mutation randomly eliminates a gene and re-inserts the
associated requests.

If a new request occurs, all irreversible decisions of the “plan in execution” up to this point
in time are discovered, and a synchronization of all individuals of the population is car-
ried out. Then, the new request is inserted into all individuals. Subsequently, the Genetic
Algorithm is restarted, and, after termination, the best solution is picked as new “plan in
execution”. Dynamic test data sets are derived from the static PDPTW instances of Li
and Lim (2003) (cp. Section 3.4 for details). Two insertion heuristics without improve-
ment are used for comparison: (i) incremental insertion and (ii) total plan revision (“from
scratch”) every time a new request occurs. Both methods are significantly outperformed
by the GA, which produces up to 5% reductions in traveled distance. However, with an
increasing degree of dynamism, the gap between GA and insertion heuristics shrinks.

Hanshar and Ombuki-Berman (2007) report on a capacitated VRP with dynamically
occurring customer requests and the objective of minimizing traveled distance. A rolling
horizon based Genetic Algorithm is presented. Similar to Montemanni et al. (2005), dy-
namic information is batched up to the end of equal time slices and processed in the
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following time slice. During time slices, “optimization” is run based on known data. At
the end of each time slice, the best known solution is chosen for execution. Decisions that
have a processing time starting within the next time slot are permanently fixed.

The encoding of a VRP solution is performed by a series of positive and negative integer
numbers, describing the sequence of orders. While positive numbers indicate open (not
fixed) orders, negative numbers are used for identification of order bundles that have al-
ready been assigned to a specific vehicle. The series of numbers is traversed from the
left to the right, successively assigning orders to vehicles. When a vehicle’s capacity is
reached, or when a negative number occurs, a new vehicle is introduced.

An initial population of 400 individuals is randomly generated and evaluated. Afterwards,
individuals are chosen for Crossover according to their fitness. For crossover, a route from
each parent solution is randomly selected, and the customer orders present in each route
are removed from the other parent. Then, the customers are reinserted with Best Inser-
tion. This is repeated until a sufficient number of feasible solutions for the next generation
is available. Some of the new solutions are subject to the mutation operator that reverses
the sequence of orders between two randomly chosen cutting points. Finally, 1% of the
worst new solutions is replaced by the 1% best solutions from the parent generation.

Test data and benchmarking results are taken from Montemanni et al. (2005), who have
developed an Ant Colony based approach. In addition, the authors develop a Tabu Search
approach with the neighborhoods inversion and λ - interchanges (1,0) to (3,3). Neverthe-
less, best results are obtained with the new Genetic Algorithm, followed by Tabu Search
and Ant Colony. The GA outperforms Montemanni’s Ant Colony results by 5.26% on
average.

Cheung et al. (2008) deal with an MLPDP with hard time windows, in which travel
times and the occurrence of new requests (up to 16%) are subject to dynamism. Dynamic
orders may be rejected only if there is no feasible insertion position. The goal is the
minimization of total travel time.

The authors propose a genetic solution approach, which is triggered by the arrival of new
information (new orders, changes in travel time). The encoding of a solution is performed
as follows. For each order, a triple of numbers (“a gene”) is stored, where the third number
denotes the assigned vehicle, and where the first and second numbers denote the routing
positions of Pickup and Delivery in the vehicle’s tour. An initial population is generated
by first building pendular tours (depot - Pickup - Delivery - depot), with orders lying at a
prespecified distance from the depot (subject to variation), and by subsequently inserting
the remaining orders into the pendular tours.

When a sufficient population size is reached, solution pairs are selected for Crossover
(according to fitness). In the Crossover operation, a random number of genes from parents
A and B is exchanged. If the fitness value of one of the new emerging solutions outperforms
both parents, the parents are discarded and replaced by their offspring. Otherwise, both
parent solutions are kept in the population. Afterwards, each new generated solution is
subject to mutation. For a random number of requests, the assigned vehicle is changed.
The mutated solution is only accepted if it has a better fitness value than before.
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The authors use some self-generated test instances with customer locations evenly dis-
tributed in a unit square. While information about the number of dynamic customers
(four in all test instances) is available, frequency and magnitude of travel time variations
remain undefined. The impact of dynamic data on solution quality is investigated by
applying the new algorithm on the associated static case, with resulting gaps between 5%
and 10%. According to the authors, the effectiveness of the dynamic re-optimization is
quite high.

Okhrin and Richter (2008) consider a capacitated VRPTW with time-dependent and
dynamic travel times. For each pair of nodes, four travel time values are specified, asso-
ciated with different day time intervals. In addition to this a-priori known information,
travel time is subject to dynamic fluctuations, which are modeled as normally distributed
deviations N(0, 4) and N(0, 9). The objective is the minimization of total travel time.

As solution approach, the authors propose a Genetic Algorithm. The initial population is
created by first sorting customers according to the urgency of their time windows and the
subsequent application of Best Insertion. A new generation of the same size is generated
with a selection procedure, followed by crossover and mutation. For selection purposes, a
random number of individuals is repeatedly chosen from the whole population. In every
round, one individual from the chosen subset reaches the next generation (with a proba-
bility of 80% for the fittest one, otherwise a randomly selected individual of the remaining
subset).

Afterwards, 90% of the selected individuals are subject to the Crossover operator. Partial
routes are randomly chosen from two individuals. Then the associated orders are removed
from the other respective individual, followed by Best Re-Insertion. The mutation op-
erator is applied to 10% of the offspring. A random customer within each individual is
exchanged with the customer that has the most similar time window. Finally, the 1%
best solutions from the old population are transferred to the new one, replacing the worst
individuals (“elitist strategy”).

The authors test their approach with modified Solomon (1987) data and prove the effi-
ciency of the Genetic Algorithm for static planning situations. In addition, the benefits
of dynamic reactions to fluctuations in travel time are shown by comparison with a “no
reaction strategy”.

Variable Neighborhood Search

The concept of Variable Neighborhood Search was proposed by Mladenovic and Hansen
(1997). The basic idea of VNS is to search for improvements from the current best so-
lution, first using the smallest neighborhood in order to randomly (!) generate one new
solution. This solution serves as starting point for another local search procedure, which
is executed until a local optimum is found. If the local optimum is a new best solution, the
search is re-started from this new solution. Otherwise, the “radius” of the neighborhood
around the original best solution is successively increased.

Two publications using VNS in dynamic environments are selected. The first one focuses
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on generating a concept for how to realize VNS in a dynamic situation. The second pub-
lication also reports on computational tests. A main feature of the second approach is
the explicit consideration of “transshipment options”.

Angelelli et al. (2004) investigate an uncapacitated VRP with hard time windows, in
which new requests occur dynamically. Orders are classified into priority levels according
to their time window’s urgency. The objective is to maximize the total priority value of
the served requests. Generally, orders may not be rejected, but some orders with time
windows that are more distant may be postponed to the next shift.

The authors present a concept for a rolling horizon based solution procedure that is
applied in fixed specified time intervals. A plan is made feasible by inserting all unpost-
ponable orders with the help of Best Insertion, re-arrangement of orders, and extraction
of postponable orders. Subsequently, a Variable Neighborhood Search (VNS) improvement
procedure is applied. A neighborhood is defined by the number k of postponable requests,
which are extracted from the current solution. These orders are labeled “tabu” and stored
in a pool of not assigned postponable orders. As many “non tabu” postponable orders as
possible are then attempted to be inserted into the current plan. Computational results
are not reported.

An algorithm much like “Variable Neighborhood Search” is also applied by Bock (2010).
The author focuses on a dynamic MLPDPTW, including several sources of dynamism:
requests, vehicle breakdown, vehicle deceleration, route blockage, and traffic congestion.
The main contribution, however, is the integration of multi-modal transport chains
and multiple transshipments. The author models four shipment scenarios for trans-
porting a load from a Pickup to a Delivery location (an exemplary visualization can be
found in Figure 3.6):

• direct transportation,

• transportation making use of one transshipment point (depot or hub),

• transportation making use of two transshipment points (two depots, or one depot
plus one hub), and

• transportation using several transshipment points (several depots, plus one hub if
necessary).
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delivery depot

P

D

starting depot

P

D

P
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depot 1

depot n

depot 2…

direct transportation one transshipment two transshipments multiple transshipments

Figure 3.6: Exemplary illustration of available shipment scenarios (cp. Bock, 2010)
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The framework also allows for a kind of en route diversion. A directly scheduled trans-
portation task, which is already loaded onto a vehicle, can be dynamically exchanged
at the next transshipment point, thus enabling the assignment of another task to this
vehicle. Construction and improvement procedures are based on Best Insertion. In the
improvement part, a specific number of requests is extracted and re-inserted, investigat-
ing all possible transshipment scenarios. If no improvement can be found, the number of
extracted requests is successively increased (VNS). As soon as an improvement has been
found, it is accepted and the procedure starts with the first step (=just extracting one
request).

For testing purposes, the author generates data sets whose structure is “derived from
practical applications”. He compares a time-based (continuous improvement with fixed
anticipation horizon) and an event-based simulation technique. Better performance is
achieved with the time-based approach. In addition, a rule-based benchmark procedure
is applied to the test data. As expected, this procedure is clearly outperformed by the
VNS-like procedure. Finally, it is proven that the availability of complex transshipment
structures results in more transportation options and therefore yields better overall re-
sults.

Ant Colony

The concept of Ant Colony optimization was proposed by Dorigo (1992), who was inspired
by the behavior of ants seeking a path between their colony and a source of food. Each
ant lays down a pheromone trail on the paths it travels. If other ants find such a path,
they are likely to follow the existing trail, thus reinforcing it. The concept is transferred
to Vehicle Routing in order to find “optimal” paths.

For this metaheuristic, two dynamic publications have been chosen that consider dynam-
ically occurring customers for a VRP (Montemanni et al., 2005), and dynamic changes in
customers locations for a TSP (Guntsch and Middendorf, 2002).

Montemanni et al. (2005) propose an Ant Colony approach for solving a capacitated
VRP with dynamically occurring requests. The objective is the minimization of total
travel time. In order to handle the dynamic requests, the working day is divided into
time slices of equal length, wherein new orders are batched. These new orders are incor-
porated during the planning run of the subsequent time slice. Over the period of each
time slice, the ant colony heuristic is run and the best solution that is found is realized
at the beginning of the next time slice.

The ant colony heuristic works as follows. Every ant produces a feasible VRP solution
by choosing customers successively according to given arc probabilities. The probability
of visiting customer j after customer i depends on two factors: the general attractiveness
of the arc (depending on travel time) and the pheromone level (indicating how proficient
it has been in the past to visit j after i). When an arc has been chosen within one gener-
ation of ants, its pheromone level may be locally reduced to favor exploration. Once all
ants of the colony have completed their computation, the best known solution is used to
globally modify the pheromone trail. In this way, a “preferred route” is memorized in the
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pheromone trail matrix and future ants will use this information to generate new solutions
in a neighborhood of this preferred route. To reduce the impact of “older” solutions, some
pheromone information is evaporated at the beginning of each time slice.

On the basis of dynamic test data from Kilby et al. (1998), the authors compare their
approach with an easy heuristic (Nearest Neighbor construction and Best Re-Insertion
improvement). Better performance is achieved by the new Ant Colony approach with an
average decrease in total travel time of 3.2%, compared to the easy benchmark heuristic.

Guntsch and Middendorf (2002) deal with a TSP with dynamically changing cities.
While the total number of cities is kept constant, a fixed number of random cities is
exchanged with other cities (from a pool of cities) every t time units. The objective is
the minimization of total traveled distance. The authors propose a population based Ant
Colony approach, which connects Ant Colony with aspects of a Genetic Algorithm. In-
stead of transferring pheromone information, a set of solutions is transferred from one
iteration of the algorithm to the next. This set of solutions is then used to compute the
pheromone information for the ants of the next iteration. A specified number of ants
generates TSP solutions, in which each routing decision depends on the probability of the
optional links. With a probability of 0.9, the arc with the highest probability is chosen.
With a probability of 0.1, one of the other arcs is chosen according to their individual
probability.

In order to update the pheromones, the authors investigate several strategies for replacing
an old solution by the best new generated solution. It turns out that the best strategy is
either to simply replace the oldest solution or to randomly choose a solution for exchange
(with higher probability for an inferior one). As a consequence of dynamic changes in
cities, the solutions in the population are altered infeasible. To overcome this problem,
the authors discuss a Complete Restart or a Repair by Best Insertion. Repair performs
better when only minor changes in data have to be included, while Restart is preferable
in situations with higher dynamism.

Second Objective Function

Finally, a last metaheuristic concept is considered (cp. Helay and Moll, 1995), which dif-
fers slightly from the others. In order to escape from local optima, a Second Objective
Function is introduced with the goal of temporarily deteriorating the primary objective
function. This secondary objective function should be rather different from the main one
in order to drive search far enough, but should also be partially dependent on the primary
one, in order to avoid worsening its value too strongly.

Xiang et al. (2008) consider a dynamic Dial-A-Ride problem with soft time windows.
Nearly all possible sources of dynamism are regarded: arrival of new requests, fluctuations
in travel speed and service time, no-shows of customers and cancelation of requests, traffic
jams and vehicle breakdown. An algorithmic solution concept based on Best Insertion,
supplemented by improvement with basic versions of intra- and intertour exchanges, is
proposed.
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The primary objective function minimizes a weighted cost function, including vehicle fixed
costs, distance, travel time, waiting, service time, violation of maximum travel time, over-
time and delay. The secondary objective function is chosen in a similar way, focusing
specifically on the costs of empty distance, empty travel time and empty waiting time.
For testing purposes, a data set is self-generated. Interestingly, not all possible sources of
dynamism are tested at once. Instead, the impact of each source is investigated separately
with the following findings: while long term traffic jam and vehicle breakdown cause se-
vere modifications in the schedule, cancelation of customers, travel time fluctuations and
service time variances induce only minor changes.

After the treatment of different metaheuristics, we will continue with the next “main
algorithmic solution concept”, which is based on exact procedures.

3.3.1.3 Heuristic Application of Exact Procedures

The third group of dynamic myopic approaches is based on exact procedures, which are
applied to the static subproblems of a dynamic instance (including all available informa-
tion up to a specific point in time). Since the dimension of those static subproblems is
usually quite big and due to limited computation time to solve a static subproblem, the
regular application of exact solution procedures is less suitable. Instead, the exact pro-
cedures are applied only to a relaxed subproblem combined with some subsequent repair
mechanism. Another option actually applies the original exact procedure, but interrupts
it after some time, using the best solution found so far.

Those approaches are called heuristic application of exact procedures. Due to the char-
acter of dynamic problems, “not finding the exact solution” of a static subproblem is
not dramatic. As explained in Section 2.1, a “better” solution of a subproblem may not
necessarily result in a better overall solution of the dynamic problem.

In the following, a Column Generation based approach and a procedure using Lagrange
relaxation are reviewed. Afterwards, three publications that try to solve the static sub-
problems with CPLEX solver are presented. Finally, the idea of using a linear assignment
procedure is explained, which is actually solved exactly for each static subproblem (but
with the input information for the assignment matrix including some heuristical calcula-
tions). Table 3.4 summarizes the properties of the selected publications.

Column Generation

Chen and Xu (2006) consider a capacitated VRP with hard time windows, where up
to 75% of customer requests occur dynamically and have to be completely served (no
rejection). To fulfill this task, an infinite number of vehicles is available. The objective is
the minimization of total distance traveled.

The planning horizon is equally divided into decision epochs (with a length of one or two
minutes, according to the scenario). Solutions are successively fixed on a rolling hori-
zon basis up to a prespecified point in time (anticipation horizon). The authors apply a
heuristic solution approach, based on Column Generation, where a column corresponds
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dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Column Generation

Chen and Xu, 2006 X (75%) cap. VRPTW hard local X Solomon, 1987

Lagrange Relaxation

Li et al., 2009 vehicle
break-
down

cap. VRPTW hard local Solomon, 1987

Application of CPLEX solver

Yang et al., 1999 X cap. SLPDPTW hard wide X self-generated
Mahmassani et al.,

2000
X cap. SLPDPTW hard wide X self-generated

Kim et al., 2002 X
(100%)

cap. SLPDPTW soft wide X self-generated

Linear Assignment

Fleischmann et al.,
2004

X (49%) travel
time

cap. SLPDPTW soft local real-life

Powell et al., 2000a X (70%) travel
time

cap. SLPDPTW soft wide real-life

Powell et al., 2002 X cap. SLPDPTW soft wide real-life

Table 3.4: Heuristic application of exact procedures

to a single vehicle trip. The algorithm consists of two levels. At the first level, a heuristic
is used to generate new columns and to update old columns (e.g. insertion of new orders).
At the second level, a set-partitioning-type formulation is exactly solved with CPLEX. In-
formation about dual values of orders is exchanged between both levels in order to guide
the local search heuristics. En route diversion is explicitly permitted.

For testing purposes, dynamic extensions to the VRPTW instances of Solomon (1987)
are generated. The authors first compare their new approach with the best known solu-
tions for the static Solomon instances. Results are inferior, by on average 3.97% for data
sets R1, C1, RC1 and 0.54% for data sets R2, C2, RC2. Afterwards, the new dynamic
solution approach is benchmarked with a Local Search Approach (Best Insertion plus
improvement with 2-Exchange and OR-opt, with unlimited time) and an “unlimited time
version” of the new dynamic Column Generation approach. The results show a 5% better
performance of the new approach, when compared to Local Descent. Interestingly, when
the new approach, having unlimited time available is compared to its version with limited
time, it produces better results only for 70% of the instances.

Lagrange Relaxation

Li et al. (2009) consider a capacitated VRP with hard time windows and dynamism
induced by vehicle breakdowns. It is observed that a VRP with Pickup tasks has to
be treated different from a VRP with Delivery tasks in the case of vehicle breakdown. In
the Pickup case, other vehicles can just change their routes to collect the packages from
the broken down vehicle’s customers. In the Delivery case, however, other vehicles have
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to change their routes to first Pickup the packages loaded on the broken down vehicle and
then deliver them to the corresponding customers (transshipment is only allowed from the
broken down vehicle, not between the other vehicles). For both cases, Pickup or Delivery,
the authors additionally model the option of having a backup car ready at the depot.
If available, this vehicle may be used to fulfill parts of the broken down car’s Pickup or
Delivery tasks.

The authors develop a Lagrange relaxation based heuristic, which is supplemented by a
Best Insertion algorithm to ensure feasible results. The approach is compared to a “naive
manual strategy” and to a pure “Best Insertion” heuristic. The “naive manual strategy”
just cancels the services if no extra truck is available at the depot. If such a backup
car is available, it is simply sent to continue the tasks of the broken down car. In the
case of Delivery, it has to drive first to the breakdown point to collect the loaded packages.

For testing purposes, the static Solomon (1987) instances are taken. The best-known
solutions are used as initial routes of the vehicle re-routing problem. Then, one vehicle
breakdown is introduced early in the schedule. Some instances are equipped with a backup
vehicle at the depot. Solutions show best results for the Lagrangian heuristic: total costs
are reduced by 8.53% compared to the “naive manual strategy” and by 4.46% compared
to “Best Insertion”. In addition, the authors observe generally more service cancelations
for Delivery services than for Pickup services if the same algorithm and settings are used.

Application of CPLEX Solver

Yang et al. (1999) consider an SLPDP with hard time windows, where new requests
occur dynamically. The objective is the minimization of a weighted cost function con-
sisting of empty distance traveled, delay (deviation from preferred time within hard time
windows) and lost revenue (for rejected orders). A mathematical problem formulation,
explicitly allowing en route diversion, is given and several strategies to find good insertion
positions of new orders are distinguished:

• the load is simply placed at the end of each truck’s current job queue,

• the load is placed at the best position in the queue,

• the load is placed at the best insertion position, considering re-sequencing and re-
assignment.

The third strategy is implemented with the help of a branch-and-cut procedure in CPLEX
and produces optimal solutions for the static subproblems. However, the computational
burden is quite high, so that the number of demands which can be reoptimized at any
given time has to be limited. As test data, the authors use some self-generated instances
of relatively small size. The best results are achieved by applying the “optimal” strategy
on a limited number of ten variable requests.

Mahmassani et al. (2000) consider the same problem, primarily discussing strategies
for how to reduce the number of variables for the “optimal” insertion strategy. They sug-
gest disregarding the vehicle’s next order and the shift of a “cut-off time” from the present
to the future, successively removing requests from the pool of potential re-assignment
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orders as long as the number of remaining orders after the “cut-off time” equals the pre-
defined maximum number of orders. In addition, the merging of spatially close orders is
discussed.

Kim et al. (2002) publish a related paper, which is also based on the mixed integer
model of Yang et al. (1999), where time windows of the SLPDPTW are now treated as
soft constraints. The authors investigate the task of maximizing revenue in an oversatu-
rated system, where half of the dynamic demands have to be rejected.

Several concepts for the acceptance/rejection decision are discussed:

• In the first concept, simply all requests are accepted, until a maximal holding ca-
pacity of 360 orders is reached.

• A second concept limits the number of accepted demands that have not been picked
up yet to a prespecified threshold of 270 (75% of holding capacity), in order to leave
more room for improvement operations to the existing demands.

• In the third concept, the minimal additional empty mileage to reach a new order’s
Pickup location is calculated with Best Insertion over all vehicles. If the empty
mileage is below 18 miles, the new order is accepted.

Improvement is based on the “optimal” CPLEX approach, specified in Yang et al. (1999).
To comply with a maximum computation time of 10 seconds, the problem size is reduced.
Initially, the vehicle to which the new demand was assigned is chosen, then the spatial
proximity of other vehicles’ orders is calculated (including a check for time window fea-
sibility). Finally, a subset of promising vehicles plus some random vehicles is chosen for
improvement. Every time optimization is restarted, a snapshot anticipating the planning
situation after 10 seconds is generated, which serves as starting point for the improvement
procedure.

For tests with self-generated test data, the authors introduce the following cost param-
eters: revenue per loaded mile ($1.2), variable cost per mile, including both empty and
loaded movements ($0.57), and daily fixed costs for driver and trucks ($45 + $45). The
results show that the acceptance strategy based on additional empty mileage produces
the highest revenue. The other strategies are inferior by 4.5% (threshold of 270 orders)
and 10.6% (maximum holding limit 360 orders). It is indicated that keeping the number
of waiting jobs in the queue below the holding capacity (at about 75%) is more benefi-
cial than accepting and holding as many demands as possible. Response time may be
improved significantly when the length of job queues is limited.

Linear Assignment Problems

Fleischmann et al. (2004) consider an SLPDP with soft time windows, where up to
49% of the customers occur dynamically. In addition, travel times are subject to a-priori
known time-dependent fluctuations (in intervals of one hour) and dynamic disturbances
occurring in 5-minute intervals. The objective is the minimization of a weighted cost
function including travel time, delay and overtime.
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The authors propose a solution approach, which is based on the optimal solution of a
Linear Assignment Problem, where all vehicles and all open orders are considered simul-
taneously. The associated assignment matrix additionally includes some dummy vehicles
and some dummy orders, which are introduced to enable postponement of orders (when
an open order is assigned to a dummy vehicle) and waiting of idle vehicles (when a dummy
order is assigned to a real vehicle). Each time a new event (e.g. new order, completion
of an order) occurs, the matrix is updated and the assignment problem is re-solved. An
order-to-vehicle assignment first becomes effective when the vehicle’s preceding order is
completed.

For tests, the authors use real-life data from a local area express service and travel time
data from a traffic management system in the city of Berlin, Germany. For comparison
purposes, (i) simple assignment rules and (ii) a Best Insertion procedure with improvement
(OR-opt and vehicle-to-tour re-assignment) are used. Procedures are run on test data with
varying degrees of dynamism, ranging from 0% to 49%. For the completely static case, the
Best Insertion procedure shows best results, while for test instances with 49% dynamic
customers, the new assignment procedure outperforms all the other approaches. The au-
thors determine an increasing advantage of the new assignment procedure for increasing
levels of dynamism and attribute these findings to the preservation of high flexibility that
is achieved by fixing the order-to-vehicle assignments at the latest possible time.

Further publications considering the SLPDPTW with solution approaches based on the
linear assignment problem are published by Powell et al. (2000a) and Powell et al.
(2002).

3.3.1.4 Rule-Based Decision Making

The fourth group of dynamic myopic approaches can be classified as “Rule-Based” pub-
lications, since easy decision rules are applied as a reaction to dynamically occurring
information. Some of the following papers also include some more advanced procedures
(e.g. Local Search) for comparison purposes. The concept of “Fuzzy Logic” is included
here, because it basically reproduces human decision making, by transferring it into a
form of rule-based computer decision making.

All of the selected papers consider dynamically occurring customers; in addition, one pa-
per also includes dynamic service times. The SLPDP(TW) is regarded three times; the
other two papers deal with a TRP and an MLPDPTW, respectively. Table 3.5 summa-
rizes the properties.

Rule-Based Decision Making

Regan et al. (1995) investigate the potential benefits of en route diversion for an SLPDP
under idealized conditions. The respective publication is also the first explicitly consid-
ering en route diversion. The objective is the minimization of empty distance traveled.
The authors first consider the idealized one vehicle and two requests case. In a circular
area with the depot in the center, a vehicle starts traveling to the first order’s Pickup
location. While the vehicle is on its way, the second order arrives (with Call-In time uni-
formly and randomly distributed within the vehicle’s travel time to the Pickup location).
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dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Rule-Based Decision Making

Regan et al., 1995 X cap. SLPDP X self-generated
Regan et al., 1996 X cap. SLPDPTW hard wide X self-generated
Regan et al., 1998 X cap. SLPDPTW hard wide X self-generated
Larsen et al., 2002 X

(100%)
service
time

TRP local self-generated

Fuzzy Logic Approach

Teodorovic and
Radivoj., 2000

X
(100%)

cap. MLPDPTW hard local self-generated

Table 3.5: Rule-based decision making

A first rule-based diversion strategy, “divert if the new Pickup location is closer to the
vehicle’s current position”, yields savings in traveled distance of less than 1%. When, in
addition, the potential empty distance, according to the sequence of both orders, is taken
into account, the average reduction in traveled distance is more than 6%.

In a second scenario, several dynamic orders occur, with an arrival rate rapid enough so
that more than one demand may arrive while the vehicle is en route to the Pickup loca-
tion. The authors introduce a benchmark solution approach, where optimal re-sequencing
is performed at the completion of each loaded movement. If en route diversion is allowed
in this approach, the results are improved by about 1% to 2%. However, diversion creates
a sort of “zig-zag” effect, where a vehicle is en route and then diverts and then diverts
again. Thus, the authors recommend limiting the number of times that one diverts before
some demand is serviced and not allowing diversion whenever it is locally better.

The exploration of idealized scenarios suggests that a reduction of traveled distance of
between 5% and 10% by applying en route diversion is not unreasonable.

In Regan et al. (1996), the authors extend their problem for profitability-based accep-
tance/rejection decisions, where a new load is only accepted if the empty-to-loaded ratio is
smaller than a prespecified threshold value. The ratio is calculated by creating an optimal
tour, including the candidate load and the already accepted loads. The additional empty
distance is set in relation to the new order’s loaded distance. Again, the advantage of
diversion strategies is proved, which result in a 5% to 7% reduction in overall empty-to-
loaded ratio.

Regan et al. (1998) describe a simulation framework to dynamic fleet management
systems for the SLPDPTW. They discuss three load acceptance and eight load-to-vehicle
assignment strategies.

The following load acceptance strategies are proposed:

(i) a new order is accepted if the number of loads waiting in the system is smaller than
a prespecified number (“capacity-based strategy”),

(ii) a new load is accepted if it can be feasibly inserted into the current plan (“feasibility-
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based strategy”),

(iii) a load is accepted if the empty-to-loaded ratio is smaller than a specified threshold
value (“profit-based strategy”).

For the task of assigning orders to vehicles, the following strategies are compared:

(i) First Come First Served,

(ii) Nearest Origin,

(iii) Bipartite Assignment of open orders to available vehicles, triggered by time,

(iv) Bipartite Assignment, triggered by the number of open orders and idle vehicles,

(v) Best Insertion plus Intraroute Changes,

(vi) Best Insertion/Intraroute Changes allowing for en route diversion,

(vii) Best Insertion/Intraroute Changes plus re-assignment of loads between vehicles,

(viii) Best Insertion/Intraroute Changes, allowing for en route diversion and re-assignment
of loads between vehicles.

The strategies are evaluated with self-generated test data, based on a circular geographic
region with a radius of 417 km. A comparison is made on the basis of the performance
indicators average empty distance, waiting time and operating profit for high, medium and
low demand environments. Somewhat different assumptions are used: while assignment
strategies (i) to (iv) are combined with the simple capacity-based acceptance strategy,
strategies (v) to (viii) are combined with the profit-based load acceptance including a
time window feasibility check.

When comparing assignment strategies (i) to (iv), the authors find the best results with
Nearest Origin in high demand environments, while Bipartite Assignment performs best
in moderate demand environments. The more flexible strategies (v) to (viii) produce
much lower waiting times and therefore better customer service for all demand intensi-
ties. However, good profit values can only be achieved for moderate demand environments;
the profit values for high demand environments in particular are not competitive. The
authors explain this finding with the fact that a significant fraction of requests is turned
away in strategies (v) to (viii) because of the time window feasibility check. In a final
suggestion, a hybrid system that chooses an assignment strategy based on the current
congestion level of the system is recommended.

Larsen et al. (2002) investigate a Traveling Repairman Problem (TRP) with up to
100% dynamic customers and completely dynamic service times. The objective is the
minimization of total traveled distance.

The authors propose four Rule-Based solution approaches :

(i) First Come First Served (FCFS),

(ii) First Come First Served with relocation to the geographic median when the vehicle
is idle,
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(iii) Nearest Neighbor, and

(iv) First Come First Served within four regions of the geographic area.

For testing purposes, the authors use some self-generated data sets with 20, 30 and 40 cus-
tomers, occurring in a 10km×10km unit square. The data are constructed with degrees of
dynamism ranging from 0% to 100% and with effective degree of dynamism ranging from
0% to 60%. When comparing the rule-based strategies, best results are achieved with
Nearest Neighbor. Strategy (iv) produced slightly higher route lengths and FCFS, as well
as FCFS with relocation to the median the longest. For increasing degree of dynamism,
the authors report a linear increase in route length across all policies. Interestingly, for
increasing edod between 48% and 57%, the results show decreasing total travel times.
Generally, the results of different rule-based strategies converge with higher levels of dy-
namism.

Fuzzy Logic Approach

Teodorovic and Radivojevic (2000) investigate a capacitated MLPDP with soft time
windows, where all orders occur dynamically. The associated decision problem is split
into the subproblems “assignment” and “routing/scheduling” with two different objective
functions. For the assignment decision, the objective is to minimize the sum of total
distance traveled and waiting time; for the routing/scheduling decision, the goal is to
minimize distance and time of detours for new customers.

The authors propose a “Fuzzy Logic” method that tries to replicate a human dispatcher’s
decision-making process, based on previous decisions taken by a skilled dispatcher. For
the assignment decision, in a first step a membership function is derived. This function
transforms (the explicitly calculated) additional vehicle distance and additional waiting
time into the categories “big”, “medium” or “small”.

Afterwards, an approximate reasoning algorithm translates the findings into a dispatcher’s
preference strength. When, for example, both the additional distance and the additional
waiting time are “small”, the preference for assigning the new order to the associated
vehicle is “very strong”. Within the pool of vehicles, those currently traveling are fa-
vored over idle vehicles. A similar procedure is also applied for the routing/scheduling
decision. The authors test their approach with some self-generated instances and report
“very promising results”.

3.3.1.5 Multi-Agent Systems

Since Multi-Agent Systems differ substantially from the previous approaches, they are
treated separately. In contrast to other procedures, there is no global view. Instead,
multiple interacting agents with specific objectives decide about subproblems. Solving
dynamic myopic SLPDPTW’s with a Multi-Agent system was considered by a publica-
tion of Mes et al. (2007), whose specifications are given in Table 3.6.

Mes et al. (2007) consider an SLPDP with soft time windows, which is in particular
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dynamic aspects capaci-
problem

TW
area

en route dynamic
orders other tated constr. diversion test data

Mes et al., 2007 X several cap. SLPDPTW soft local real-life and
self-generated

Table 3.6: Multi-agent systems

applicable for local area scheduling of Automated Guided Vehicles (AGV). Dynamism is
primarily induced by requests; in addition, a single random variable is modeled, spec-
ifying the total time from arrival at the Pickup location until completion of service at
the Delivery location. Since a vehicle moves empty immediately to the assigned Pickup
location and waits over there, the random time interval includes: waiting for Pickup,
loading at the Pickup location, driving from the Pickup to the Delivery location, waiting
for unloading and unloading at the Delivery location.

The major contribution of the paper is the development of a Multi-Agent Based Proce-
dure. Instead of a central planning instance, the authors model several agents (for every
vehicle and every request) that interact with the help of a market mechanism. The job
agent’s objective is to arrange transportation of the corresponding load before due time
at minimal costs, while vehicle agents try to maximize their profit by deploying capac-
ity. Both meet at the “marketplace”, where job agents request prices for their specific
transportation task. Each vehicle agent submits a quote, based on its current scheduling.
Afterwards, in a Vickrey auction manner, “the best (lowest) price vehicle agent” wins
the bid (getting a payment for transportation equal to the second lowest offer). If all
quotes are above a certain threshold (calculated with respect to the request urgency), the
assignment of the request may be postponed by the job agent.

Improvement is achieved by specific agents: A fleet agent is responsible for a subset of
vehicles and tries to re-assign jobs between these vehicles. A shipper agent is responsible
for a set of orders, he may re-allocate orders within the already acquired transportation
capacity of its job agents.

The procedure is tested with a data set derived from an AGV system at the Amsterdam
Airport, Schiphol. For benchmarking, the authors use hierarchical scheduling methods
(cp. Ebben et al., 2005), which distribute vehicles amongst nodes at the top level, while
actual load-to-vehicle assignment is performed at the node level. These simple approaches
are significantly outperformed by the proposed multi-agent procedure, especially in terms
of empty travel time and total costs.

The group of dynamic myopic approaches without knowledge of the future has now been
considered in detail. The approaches which are presented in the following section also
have not available any knowledge of the future. However, there is a decisive difference to
the previous ones: They try to identify and to apply ways of anticipating the future.

3.3.2 Strategies Anticipating the Future without Knowledge of
the Future

We now give attention to publications which propose strategies for how to construct my-
opic solutions in order to leave open space (route slack) for the viability of future yet
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unknown events. These strategies try to reduce the probability that an urgent request
(with tight time windows) arrives and the only vehicles that can serve it are already com-
mitted, so that servicing this new request may have to be delayed or the request may
even be rejected. These strategies also try to postpone final fixation of decisions for as
long as possible, in order to have more options to incorporate further new information.

Basically, three concepts have been proposed: vehicle waiting strategies, different objective
functions for short and long-term decisions and request postponement of non-urgent re-
quests. In addition, an extension to the Multi-Agent-based procedure by Mes et al. (2007)
is presented, which leaves open time slack by applying opportunity-based bid-pricing. In
a strict sense, the acceptance-rejection strategies by Regan et al. (1996, 1998) are also
directed to “leave open some slack” for profitable future requests.

The advantageousness of different waiting strategies, in order to efficiently dis-
tribute waiting time along a dynamically constructed route, was compared by Mitrovic-
Minic and Laporte (2004). The authors consider an MLPDP with hard time windows
for a local area courier service.

Waiting after service allows the accumulation of requests by the planner, which may
result in better routing and scheduling decisions. However, waiting may also result in
some wasted time that could have been used to serve additional requests. Four waiting
strategies are included in the comparison:

(i) “Drive First” - A vehicle leaves its current location at the earliest possible departure
time. This may result in waiting time at the next location if the vehicle arrives before
the time window opens.

(ii) “Wait First” - A vehicle leaves its current location at the latest possible departure
time, that means it arrives at the next location at the end of this location’s time
window. An advantage is that more requests are known at the time the vehicle
leaves, resulting in more potential for optimization. On the other hand, more ve-
hicles are required, because the strategy tends to concentrate long waiting time in
the first part of the route, leaving too little waiting time in the remainder.

(iii) “Dynamic Waiting” - The requests in a route are clustered to “service zones” (re-
lated to spatial and time distance). Within each service zone, vehicles drive accord-
ing to “Drive First”, between service zones according to the “Wait First” strategy.
The strategy is illustrated in Figure 3.7 (cp. Mitrovic-Minic and Laporte, 2004).

(iv) “Advanced Dynamic Waiting” - Identical to “Dynamic Waiting” with the extension
that total waiting time between service zones is spread proportionally.

The authors’ algorithmic approach uses Best Insertion to generate an initial solution,
supplemented by Tabu Search improvement, based on an ejection chain neighborhood.
Test data, with completely dynamic requests, were derived from two courier companies,
operating in Vancouver, Canada. Best results are achieved for the “Advanced Dynamic
Waiting” strategy, which produces solutions with up to 8% shorter route lengths compared
to “Drive First” and close to or shorter route lengths compared to “Wait First”. The
number of vehicles is either close to the number of vehicles used in “Drive First” or better.
“Advanced Dynamic Waiting” also outperforms “Dynamic Waiting” in all aspects.
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Figure 3.7: Waiting times generated by a Dynamic Waiting strategy

Another paper, considering the advantageousness of dynamic waiting strategies
was published by Branke et al. (2005). In contrast to Mitrovic-Minic and Laporte
(2004), the authors regard a VRP where only one dynamic customer occurs. The objec-
tive is to find a waiting strategy in order to maximize the probability that this customer
can be serviced within a feasible plan.

Several simple waiting strategies and an Evolutionary Algorithm are presented. The strat-
egy “variable” (“serve all known customers in a tour and finally wait at the last customer’s
location”) and the Evolutionary Algorithm perform best in simulations on a modified test
data set based on Beasly (1990). It is shown, compared to the reference strategy “not to
wait”, that the best waiting strategies are able to reduce the probability of not being able
to serve a customer by 10%, while the average length of the detour for a new customer
was reduced by approximately 35%.

In a second work, Mitrovic-Minic et al. (2004) consider the identical problem to
Mitrovic-Minic and Laporte (2004), but now investigate the application of a double hori-
zon based heuristic. By using different objective functions for short and long-term
decisions, the authors try to achieve better flexibility to incorporate future events. The
short-term goal is to reduce traveled distance, while the long-term goal in addition consid-
ers maintaining the routes in a state with plenty of options for future requests. Decisions
which restrict future planning options are penalized.

The authors compare the double horizon approach with a standard rolling horizon ap-
proach, applying the Tabu Search heuristic introduced in their preceding paper. Again,
two test data sets from Vancouver courier services are used, which both range over a
10-hour service period. The short-term horizon is empirically chosen as one hour and
two hours, respectively. The authors report superior behavior of the new double horizon
based approach, leading to improvements in total route length ranging from 3.6% up to
7.6%.
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Pureza and Laporte (2008) investigate a combined vehicle waiting and request
buffering strategy for a dynamic MLPDP with hard time windows, with the objec-
tive of minimizing a weighted cost function (including: number of lost requests, number
of used vehicles and total traveled distance). Customers occur dynamically, in addition
time-dependent travel times are considered. The authors first prove the advantageousness
of a basic waiting strategy (WE) compared to “Drive First”. A waiting time at the present
location is scheduled in order to avoid early arrival (and waiting) at the subsequent loca-
tion. The waiting time is determined to be just as long as to ensure punctual arrival at
the subsequent location’s EPT. This enables the consideration of new incoming events in
the short-term routing, which may change the decision of the next planned locations, or
leave it unchanged without delaying the beginning of service. This basic waiting strategy
was also successfully employed in Fleischmann et al. (2004).

Afterwards, WE is extended with a version making use of time-dependent travel times,
WE FP. It is evaluated whether indirect paths to reach a location yield shorter travel
times, thus allowing for a further increase in waiting time at the present location. For a
dynamized Li and Lim (2003) PDPTW data set, the authors report a reduction in lost
requests of 2% to 8.3% and a reduction of used vehicles by 1.9% to 4.3% when applying
WE FP (compared to the basic version of WE). In a further step, a request buffering
strategy (WE RB) is added, which postpones the assignment of some non-urgent new
requests to the next route planning cycle. This add-on achieves a further increase in
solution quality, especially the traveled distance can be systematically reduced.

Finally, the authors report best impacts of their combined waiting and buffering strategy
for a degree of dynamism between 0.4 and 0.6. If the dod is too low (<0.2), there is
actually no positive effect at all. Only minor positive effects are reported for high degrees
of dynamism. Due to dispersion of incoming requests over time, postponement activities
in the beginning do not result in a sufficient mass of decision options, thus diminishing
the strategy’s ability to produce improved results.

In a further Multi-Agent based publication, Mes et al. (2010) propose a concept of how
to improve the pricing technique of an individual vehicle agent. They introduce a time
slack measure, which indicates the maximum amount of time that a job can be postponed
by, without causing an increase in delay (for itself or one of the succeeding jobs). When
calculating a bid price for a possible new job, the decrease in time slack between already
accepted jobs is considered. With the help of historical demand data, the authors translate
the required time slack into an expected profit of future moves, which has to be at least
compensated by the reached bid-price of the possible new order. The authors test their
opportunity-based bid-pricing approach with a small self-generated data set with
up to nine nodes and ten vehicles and report a 10% reduction of system-wide logistical
costs if the new concept is used by all vehicle agents.

3.3.3 Dynamic Stochastic Approaches with Explicit Knowledge
of the Future

Information about the future is usually given in the form of probability distributions,
e.g. covering the spatial and temporal occurrence of new orders. A popular approach for
handling future information, which is applied in five of the subsequently twelve presented
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Table 3.7: Publications with dynamic stochastic solution approaches
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dynamic stochastic publications, is sampling : the algorithm generates a sufficient num-
ber of future scenarios (by drawing from the given probability distribution) and uses the
scenarios to approximate a decision’s impact on the future.

Another option is the direct usage of probability distributions, for example to decide
whether a vehicle should wait at its current location or whether it should be relocated to
another promising location. The given probabilities may also be used for calculation of
recourse functions, which include the costs that an assumed scenario does not occur.

Table 3.7 summarizes the main features of the selected dynamic stochastic publications.
As in the dynamic myopic case, the sources of dynamism are given in the first two columns.
Afterwards, the available stochastic information is specified (column 3). In columns 4-7,
the associated problem is defined, as well as the geographical extension. The subsequent
eighth column includes the solution approach, which is used to integrate the given stochas-
tic information. Finally, information about the used test data sets is provided (column 9).

Bent and van Hentenryck (2004) consider a VRP with hard time windows and with
up to 80% dynamic customers. As stochastic information, the algorithm knows the ex-
pected total number of customers, customer locations, and the probability distribution of
temporal request arrival per customer location. The objective is to maximize the number
of serviced customers.

As solution procedure, the authors propose a Multiple Scenario Approach: a pool of fea-
sible plans (sample scenarios) is maintained, each plan including known and unknown
future requests. Whenever a new plan needs to be generated, future requests are randomly
drawn out of the known probability distributions. So the resulting plan leaves room for
accommodating future requests if they materialize.

A dynamically occurring request is accepted if it can be feasibly inserted into at least one
plan in the pool. All plans are continuously kept up-to-date. A plan is deleted, if new
information makes it unrealizable. The plan for execution is chosen with the help of a
consensus function, which selects the plan most similar to the current pool of routings
(for every routing, it is calculated how often identical routing decisions, e.g. from location
A to B, can be found in other routings). So a preferably robust plan is selected, in order
to accommodate many dynamic customers in the future.

The authors use modified 100-customer Solomon (1987) test instances and compare the
cases of having information about the future available, or not. In the second case, the
average number of unserved customers for four different classes of test instances is 1.5,
3.5, 2.3, and 6 on average. In the first case, the average number of unserved customers de-
creases to 0.75, 1.2, 1, and 2. In general, dramatic improvements by exploiting stochastic
information are reported, observing more benefits in environments with a higher degree
of dynamism.

In a similar approach, van Hemert and La Poutre (2004) deal with a dynamic stochas-
tic VRP, where dynamic loads have to be picked up and transported to a depot within
hard time windows. As stochastic knowledge, probabilities are available about “fruitful
regions”, where dynamic loads are likely to occur. The objective is the maximization of
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transported loads.

The authors propose an Evolutionary Algorithm, with an initial population of 30 individ-
uals. In addition to known orders, probable orders, based on the probabilities for future
requests, are generated (sample scenarios). The fitness of the individuals is evaluated
by the number of real and probable orders which could be feasibly inserted, where the
weight of probable orders is decreased by a factor α.

When an event occurs, the best individual out of the population is chosen as plan in exe-
cution. This plan may include anticipated moves, that means vehicles may drive to nodes
that have not requested service. The performance of the approach is tested with some
self-generated test data. The authors report encouraging results and benefits by the use
of information about the future.

Ichoua et al. (2006) examine an uncapacitated VRP with soft time windows, represent-
ing an application of Express Mail Service, where parcels are picked up from customers
(75% of customer orders occur dynamically) and brought to a central office for further
processing. The operational area is partitioned into geographical zones. As information
about the future, it is known to the algorithm that orders occur according to a Poisson
process, with specified arrival rates depending on geographical region and on time period.

The authors expand the parallelized Tabu Search algorithm with Adaptive Memory, in-
troduced by Gendreau et al. (1999), for a waiting opportunity: (i) if the vehicle’s next
destination is far enough, (ii) if there are not too many other vehicles in the current zone,
and (iii) if a new customer is likely to unfold in the vehicle’s proximity within a specified
time period δk, a vehicle is required to wait at its current location for the specified time
period.

The approach is tested with self-generated customer data, with associated locations in a
5km×5km unit square. The advantageousness of the new waiting strategy is proved by
comparison with the original algorithm: total travel time and lateness can be reduced by
2.3% on average. It is also noted that the new strategy is more effective when it is applied
on harder problems (i.e., smaller fleet size or higher request arrival rates.).

Hvattum et al. (2006) observe a dynamic stochastic planning problem at “Linjegoods
AS”, a distribution company in Norway. The problem is traced back to a capacitated
VRP (Pickup), with 50% of the orders arriving dynamically. The geographical area is di-
vided into n×n sectors, where probabilities that a customer shows up in a specific sector
are described as a Poisson process. In contrast to Ichoua et al. (2006), the arrival rate
depends only on the geographic sector, not on the time of day.

To capture the stochastic elements, the authors first analyze the application of a two-
stage stochastic model with recourse function, where all unknown information is assumed
to be revealed at time t. However, computing the expected recourse cost for a particular
solution turns out, even for this simplified case, to be exceedingly difficult.

So the authors proceed with a rolling horizon based heuristic, which solves a set of sample
scenarios (Best Insertion is applied to known customers and to randomly drawn future
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requests) and then uses “common features” from the resulting solutions to build a prefer-
ably “good plan”. The decision to serve a customer in the interval under consideration
becomes more attractive if such a decision has also been taken in various sample scenario
solutions. The objective is to minimize the number of vehicles and total travel time, with
greater weight on the first factor.

For comparison purposes, the new approach is benchmarked with a myopic heuristic,
which ignores all probabilistic information. While routes produced by the new approach
are about 15% shorter, the average number of used vehicles increases slightly. Neverthe-
less, significant savings are yielded by the new heuristic using stochastic information.

In a subsequent publication, Hvattum et al. (2007) modify the selection process from
the pool with the sample scenario solutions. Instead of only counting the frequency
with which a decision can be found in the pool, the authors also include an evaluation
step, which tries to avoid overall poor effects. With respect to the objective function,
this step discloses the possibility to exclude a few customers with high (solution pool)
presence from service and to include a few customers with low (solution pool) presence
for service.

In addition, the authors extend their procedure for the case of customers with stochastic
demand which is revealed first at customer location arrival. If the vehicle discovers that
the demand of the customer is higher than the available vehicle capacity, it has to skip
the customer completely (split transportation of a load is not allowed) and follow the
remaining parts of its tour. The customer has to be serviced later by another vehicle.
Finally, the authors perform some tests for the new program version and report quite
good performance, even on problem instances that have radically different properties as
compared to the instances for which it was intended.

A similar procedure is proposed by Ghiani et al. (2009) for the dynamic stochastic
MLPDP with soft time windows. Stochastic information about customer arrivals is used
to generate a specified number of sample scenarios, which in contrast to Hvattum et al.
(2007), cover only a short-term horizon. After Best Insertion of randomly drawn requests,
the resulting sample scheduling is used for approximating the future impact of a new real
request’s insertion.

The authors benchmark their “anticipatory procedure” with a purely reactive algorithm
(not taking into account knowledge of the future) and achieve “dramatic benefits” with
the new procedure in objective function value. Since the objective function only covers
the minimization of user inconvenience (delay), it should also be mentioned that other
important aspects, such as average vehicle utilization, show significantly worse behavior
(a decrease of 19%).

Kim et al. (2004) investigate a truck dispatching problem (SLPDPTW) with two types
of orders: low price normal orders with wide time windows and high price priority orders
with narrow time windows. In an oversaturated system with more than enough requests
(100% dynamic), an acceptance/rejection decision has to be made in order to maximize
profit. Knowledge of the future is available in the form of spatial and temporal distribu-
tions for priority demands, as well as average haul length and required empty distance
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for this type of order.

Whenever a new request occurs, it is tested whether it can be feasibly inserted into the
current plan (allowing for en route diversion). If the test is positive, a priority order is
immediately accepted. For a normal order, a feasibility index is calculated, based on
the current state of the system and the potential inclusion of the normal order. The index
approximates the expected number of vehicles that would be able to serve future priority
demands. The normal order is only accepted if the feasibility index exceeds a prespecified
threshold.

Test data sets are self-generated, so that approx. 30% of the demands have to be rejected
with an efficient dispatching algorithm. The fraction of priority demands is between 6.25%
and 25%. The authors compare their new approach with the rule-based benchmark poli-
cies “accept if feasible” and “accept if current number of orders in the system is below a
threshold.” While the total number of accepted demands is quite similar with all three
policies, the number of accepted priority demands can actually be increased by the new
solution approach. This results in a significant improvement in total profit.

Yang et al. (2004) deal with an SLPDPTW, where all customer orders arrive dynam-
ically. As information about the future, customer locations are known to be uniformly
distributed in a unit square. The objective is the minimization of a weighted cost function
for empty movement, for delay, and for lost revenue from job rejections.

The authors propose five planning approaches to support the acceptance/rejection deci-
sion. All policies are used to calculate a new order’s marginal insertion cost. If marginal
insertion cost is smaller than prospective revenue, an order is accepted. In policy (i),
marginal cost of serving a new request is calculated over all vehicles by inserting the new
request at the end of each vehicle’s queue. In policy (ii), all possible insertion positions
in each vehicle’s queue are considered. Policy (iii) considers the possibility of re-ordering
waiting requests within each vehicle’s queue. Policy (iv) optimally solves the acceptance
and allocation decisions for all open orders with ILOG. Policy (v) in addition incorporates
knowledge of the future, by introducing the opportunity costs of serving new jobs. Based
on the uniform distribution, for a request with central Delivery location it is more likely
to find a subsequent order with little empty movement. Hence, central locations are
favoured and remote locations are penalized.

The paper reports on results obtained with self-generated test data. Optimization poli-
cies, simultaneously considering all open orders, appear to outperform the more limited
local policies by a significant margin. The worst performance is achieved by policy (i),
the best performance by taking into account the future job distribution in policy (v).
However, the size of instances which could be optimally solved with ILOG was limited to
twenty open orders.

Powell (1996) investigates a dynamic SLPDPTW, where information about the future
is available in the form of load distributions by origin, destination and Call-In time. In
addition to truck-to-load assignment, it has to be decided whether a driver should be held
in a region or whether he should be repositioned empty to a neighboring region (both, in
anticipation of future loads). The goal is the minimization of a weighted cost function,
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including cost for empty movement, cost for waiting, and cost for rejection of a load.

The author presents a solution approach, which is based on a stochastic network with
two components: an assignment network, including known loads, and a forecast network,
including forecasted loads as well as known loads lying in the future. Network arcs rep-
resent driver-to-task assignments (in the assignment network) and loaded moves, empty
moves or waiting times (in the forecast network). An approximate recourse function
is represented by a cluster of recourse links, which capture the expected marginal con-
tribution of each unit of flow into a region in a time period. An approximation of this
recourse function value is added to the arc cost and the resulting problem is then solved
with a network simplex algorithm on a rolling horizon basis.

The new approach is benchmarked with a completely myopic version of the algorithm,
using test data derived from a major truckload motor carrier. Results indicate that the
dynamic stochastic approach outperforms the dynamic myopic one by 15%. In addition
the author investigates the impact of the total number of trucks (density) on overall
profitability and reports substantial improvements ($0.05 per mile) when a larger fleet of
vehicles is used.

Spivey and Powell (2004) present a strategy to incorporate advance information into
a simple linear assignment model for the dynamic SLPDP. The assignment model ex-
plicitly allows “not assigning” a resource/order with the help of arcs connecting each
resource/order to a corresponding super-sink.

Information about the future is assumed to be completely available and is made known to
the solution approach in the form of different types of gradients. That means the assign-
ment problem’s arcs are manipulated in order to produce solutions anticipating future
information. To realize this task, three different types of gradients are defined: resource
gradients, task gradients, and arc gradients. A resource gradient, for example, can
be viewed as the contribution for not assigning the corresponding resource (vehicle). It
is added to the regular cost-value of each arc, which is connected to the specific resource,
thus decreasing the vehicle’s current attractiveness in anticipation of the future. Task
gradients work equally for open orders. An arc gradient is more specific and captures the
impact on the future for each specific arc.

For small problems the gradients are calculated by enumeration of future resources and
tasks, for bigger problems a hierarchical aggregation strategy is proposed. The authors
compare the solutions achieved with the application of gradients with simple myopic so-
lutions. As expected, all gradient solutions turn out superior to myopic solutions. The
best results are achieved with specific arc gradients, where solution quality reaches “near
optimal levels”. However, the computational burden for the arc gradients is the highest,
requiring a calculation for every arc, and not just for every node.

Based on a planning problem of a mail service provider in the US, Larsen et al. (2004)
investigate a dynamic TSPTW, where between 11% and 23% of customer requests and
all on-site service times are subject to dynamism. The geographical area is divided into
several sub-regions, in which orders occur according to a Poisson process with region
specific arrival rates. This information and the probability distribution of on-site service
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time is a-priori known to the planning approach. Decisions about routing and scheduling
for a single vehicle have to be made, with the objective of minimizing the weighted sum
of travel time and lateness.

A rolling horizon based solution approach is presented, which uses Best Insertion and
subsequent improvement with 3-opt. A-priori information is only utilized for potential
re-allocation of vehicles during idle time (in anticipation of a better location to serve
future loads). Three strategies are compared with a reference strategy of just waiting at
the current location:

(i) re-allocation to the nearest prespecified idle point,

(ii) re-allocation to the idle point with the highest arrival rate, and

(iii) re-allocation to the idle point with the highest expected number of immediate re-
quests, depending on vehicle idle time and chosen idle point.

The proposed re-allocation strategies are only executed if the probability of receiving
at least one new request within the vehicle’s idle time is sufficiently high in the chosen
idle point’s subregion.

The authors perform tests with two data sets, one self-generated, the other based on
real-world data. Interestingly, best results in terms of distance and lateness for the first
data set are achieved by the reference strategy of just waiting at the current location.
For real-world test data, however, strategy (ii) performs best, while the reference strategy
proves competitive as well. Results show that using information about the future in the
suggested way may not (!) lead to significant improvements.

Liao (2004) reports on a dynamic VRP in the Taichung network in Taiwan and focuses
on dynamic travel times. As information about the future, the planning system has avail-
able probable link travel times, depending on the time of the day. The objective is the
minimization of total travel time.

The author’s solution procedure consists of an initial route generation by a Nearest Neigh-
bor heuristic, which is followed by Tabu Search improvement with neighborhood 2-opt.
Each time, when changes in link travel times emerge, the travel time matrix is updated
with a shortest path algorithm. As result, a vehicle may be re-routed. Probabilistic in-
formation about the future is used to generate a temporal tabu list, in order to avoid
possibly congested links in the traffic network.

In tests based on real-life data, the impact of having available dynamic travel time infor-
mation is compared to just knowing static travel times. Results show that the objective
function value can be significantly improved by real time routing when considering infor-
mation about the future: decreases in travel time range from 19.74% up to 24.48%.

3.4 Dynamic Test Data

This section reviews the most frequently applied dynamic test instances. Interestingly
there are not so many publicly available dynamic data sets: many authors use “self-
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generated” or “real-life” data sets, but do not explicitly provide these data sets for other
authors. The same is true for the results: in many cases, only selected criteria of the
objective function are reported. In addition, the reported criteria are often highly ag-
gregated average values. Hence, these data are only partially applicable for comparison
purposes.

Figure 3.8 summarizes the selected dynamic test sets. The first column includes the basic
problems, the second column lists the associated sources, and the third column shows the
underlying static sources, if those have been used to derive the dynamic instances.

dynamic test instances

• Potvin et al., 2006

• Shieh and May, 1998

• Gendreau et al., 1999

• Tang and Hu, 2005

• Chen et al., 2006

• Bent and van Hentenryck, 2004

• Chen and Xu, 2006

cap. MLPDPTW
(hard TW)

• Pankratz, 2005

• Pureza and Laporte, 2008

• Fabri and Recht, 2006

• Mitrovic-Minic and Laporte, 2004
uncap. MLPDPTW
(hard TW)

• Gendreau et al., 2006(soft TW)

cap. VRPTW
(hard TW)

• Kilby et al., 1998cap. VRP

problem

Solomon, 1987

Li and Lim, 2003

Christophides and 
Beasley, 1984

Fisher et al., 1981

Taillard, 1994

static original

Figure 3.8: Dynamic test instances

Dynamic test data for the capacitated VRP were generated by Kilby et al. (1998): the
authors take the static instances, published by Christophides and Beasley (1984), Fisher
et al. (1981) and Taillard (1994) as a basis and extend them by Call-In times and ser-
vice times for each task. The Call-In times are chosen according to a uniform random
distribution throughout the whole planning horizon. The resulting dynamic data sets,
however, were used only by a few authors, e.g. by Montemanni et al. (2005).8

For testing the capacitated VRP with hard time windows, many authors propose
dynamic extensions to the test data published in Solomon (1987). Since the original data
set evokes so much interest, a detailed summary of the original static data set is given,
followed by seven approaches of bringing dynamism into the instances.

In the original 56 data sets, 100 customers are spread in a 100×100 unit square with vary-
ing geographical distributions: uniformly and randomly distributed (problem classes R1,
R2), clustered (C1, C2), and semi-clustered (RC1, RC2), the last representing a mixture
of uniformly and randomly distributed and clustered customers. The problem classes of

8 The Kilby et al. (1998) data sets are no longer available at the author’s homepage. Hence, we refer
to http://www.fernuni-hagen.de/WINF/menuefrm/publik.htm. Here the data sets can be found in the
folder “Montemanni et al. 2005”.
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type 1 possess narrow time windows at the depot, so that only a few customers can be
serviced in each route; in contrast, problem classes of type 2 possess wider time windows
at the depot. Travel times between the customers are taken to equal the correspond-
ing distances, which are calculated as Euclidean distances. Each customer requires an
individual service time (10 minutes for R1, R2, RC1, RC2 and 90 minutes for C1, C2).
For servicing the customers, an unlimited number of homogeneous capacity constrained
vehicles is available at a central depot. The vehicles have to return to the depot within
the specified opening time (hard constraint).

The Solomon instances have been employed for tests of many new static algorithms, which
have produced high quality and even optimal solutions. The availability of these solu-
tions is an advantage when solution quality of “dynamized” Solomon instances has to be
evaluated with optimal static solutions. For a discussion of advantages and disadvantages
of this kind of “performance analysis”, see Section 2.1.

Comparison of solution quality is also possible by relative comparison of two dynamic
approaches, applied to the same test data set. Unfortunately, this is complicated here
by the fact that every author generates his “own dynamic extension” to the Solomon
instances. Thus, the “same test data set” assumption is no longer fulfilled. Subsequently,
seven different ways of calculating the Call-In time for a specific request i are reported.
The “U” denotes a uniform random distribution within a given interval.

• Call-In(i) = EPT(i) · U(0,1). (Potvin et al., 2006)

• Call-In(i) = MAX(0, LPT(i) - constant - U(0, LPT(i))). (Shieh and May, 1998)

• Call-In(i) = U(0, MIN(EPT(i), ti−1)), where ti−1 is the departure time from i’s pre-
decessor in the best known solution for the static problem. (Gendreau et al., 1999)

• Call-In(i) = U(c1 · EPT(i), c2 · LPT(i)), where c1 and c2 (0 ≤ c1 ≤ c2 ≤ 1) are two
parameters. (Tang and Hu, 2005)

• Call-In(i) = MAX(0, EPT(i) - 1.5 · tOi - r), where tOi denotes the travel time be-
tween depot and node i, where r = U(0, EPT(i) - 1.5 · tOi). (Chen et al., 2006)

• Call-In(i) = U((k-1) · H/3, MIN(λi, k · (H/3) − 1), where k denotes an interval of
the planning horizon H, where λi denotes the latest time a vehicle can depart from
depot, service i and return to the depot. (Bent and van Hentenryck, 2004)

• Call-In(i) = U(0.5 · MIN(EPT(i), LPT - di−Δ−τ), MIN(EPT(i), LPT-di−Δ−τ)),
with di denoting the travel time from depot to customer i, with Δ denoting the time
between two consecutive decision epochs, with τ denoting the computational time.
(Chen and Xu, 2006)

Obviously, there are many different ways of calculating a Call-In time.

In a next step, test data for the dynamic capacitated MLPDPTW with hard time
windows are investigated. The available test sets are also based on the previous Solomon
instances. A transformation of the static VRPTW data into static MLPDPTW data is
accomplished by the following two authors: while Nanry and Barnes (2000) simply pair up
the customers appearing in the routes of the best known Solomon VRPTW solutions one
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by one (regarding the “optimal” order), Li and Lim (2003) randomly pair up customer
locations within routes of solutions obtained with their own heuristic solution approach.
Both approaches render 100 VRPTW requests into 50 MLPDPTW requests.

Dynamic components have been added to the Li and Lim (2003) instances in three different
ways:

• Pankratz (2005) first introduces the variable tlatest
r (i), which is calculated as follows:

tlatest
r (i) = MIN(LPT(i), LDT(i) - tPD − tService)− tDepot,P ,

where tPD denotes the direct travel time from Pickup to Delivery of request i, where
tService denotes the service time at the Pickup location, and where tDepot,P denotes
the direct travel time from depot to the Pickup location. Afterwards, based on
tlatest
r (i), dynamic instances are generated with the formula

Call-In(i) = a · tlatest
r (i),

with a varying from 0.1 to 1.0 in steps of 0.1.

• A second approach is proposed by Pureza and Laporte (2008). They calculate

Call-In(i) = MIN(EPT(i), MAX(U(1,5), LPT - tDepot,P − β)),

where U(1, 5) denotes an integer number uniformly randomly generated between
1 and 5, where tDepot,P denotes the direct travel time from depot to the Pickup
location of request i at time t=0 and where β is chosen to take one of the values
0, 100, 200, 300. According to the authors, the formula does not guarantee service
since the Delivery location restrictions are not taken into account and in the case
of time dependency, the travel time used in the computation belongs to the specific
first period.

• A third option was chosen by Fabri and Recht (2006). They generate dynamic ar-
rival times with the formula:

Call-In(i) = U(0, MIN(EPT(i), LPT(i) - tDepot,P )).

In contrast to the previous dynamic test data, the following two publications for unca-
pacitated MLPDP test data do not rely on any available static instances.

Dynamic test data for the uncapacitated MLPDP with hard time windows were
proposed by Mitrovic-Minic and Laporte (2004). The authors generate their own 40 test
instances, based on real-life data from two courier companies operating in Vancouver
(Canada). Up to 1000 requests (100% dynamic) occur in a 60km×60km geographical
area with Call-In time being calculated according to a uniform random distribution over
the whole planning horizon.

Finally, dynamic data sets for the uncapacitated MLPDP with soft time windows
published by Gendreau et al. (2006) have to be considered. The data generation process
as well as the achieved results stand out due to very detailed and convenient description.
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As this data set is used for benchmarking purposes of the later proposed algorithmic pro-
cedures, it is refered to Section 4.4.2 for further analysis.

At the end of this section, it can be noted that there are not many publicly available dy-
namic test instances. Most instances concentrate on local area VRP(TW) applications,
followed by some local area MLPDPTW instances. No dynamic instances at all are avail-
able in the category of wide area transportation problems, especially for the SLPDPTW.

3.5 Acceptance of Dynamic Planning Applications in

Real-Life

Most of the surveyed dynamic publications report “dramatic benefits” and “high cost
reductions”. However, most results are obtained in artificial test environments. In excep-
tional works, Powell et al. (2000b) and Powell et al. (2002) describe the challenging
experience of transferring a dynamic planning algorithm for a wide area SLPDPTW into
a running real-life application.

According to the authors, the real-life application of dynamic Decision Support Systems
often (and especially in their case) does NOT result in dramatic benefits. The relatively
small success of computer-based planning systems is particularly attributed to low “user
compliance” (the rate with which a human dispatcher accepts the recommendation of a
computer system), which is often below 60% in the truckload trucking area.

Reasons for this behavior can be discovered by comparing the different solution approaches
of human dispatchers and of mathematical optimization systems. A human’s decision is
state-action based, producing locally greedy optimizations mostly neglecting the effects
downstream in space and time. A mathematical model’s decision is cost minimization
based, producing a global solution.

Although producing a global solution (on a given data set), there are also some drawbacks
of the computer-based system. The accurateness of the model’s real world description may
be limited, in particular in dynamic situations, when subproblems are solved at a point
in time where availability of data is rather limited. In addition, the data in the computer
may be generally imperfect or incomplete. A human planner may possess information
(acquired by phone, conversation or visual inspection) that has not yet been entered into
the system. “Implicit information”, meaning general experience, for example based on
historical events, may also be hardly available to a computer system.

Many decisions are fairly obvious, meaning that human and computer will coincide in
these instances. Hence, a problem arises when the “higher reasoning” of the computer
produces decisions that differ from the pattern-based reasoning of the dispatcher. Then
the human has a dilemma: is the discrepancy a result of “higher reasoning” or a simple
data error? Especially in real time problems, where fast decisions are elementary, it is not
easy to find out if a computer’s decision is plausible. Often the dispatcher will go with
his own intuition.

The authors suggest a hybrid approach, generating a computer solution between “global”
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and “greedy”, in order to improve solution acceptance by human dispatchers. They intro-
duce a random variable, which decides if the computer-generated “truck-to-load assign-
ment” is accepted by the human dispatcher (this is more likely if the computer solution
exhibits more similarities to a greedy solution). Furthermore, a factor α is introduced,
which represents the degree of global optimization: for full global optimization its value
is 1, for full greedy optimization its value is 0, intermediate strategies are represented by
α-values in the interval (0,1).

In several simulations with dynamic orders and dynamic travel times, the authors evaluate
correlation of α and user compliance: when varying α for given compliance probabilities
(100%, 70%, 40%), best results are achieved for α-level 0.75, interestingly even in the
100% compliance case.

Figure 3.9: Impact of user-compliance and α on obj. function values (Powell et al., 2000b)

Figure 3.9 shows an original graph from Powell et al. (2000b), which includes the effects of
varying user-compliance probabilities (x-axis) for given α’s (1.0, 0.75, 0). The associated
objective values are plotted on the y-axis. The authors discover that as the level of user
compliance drops, the value of a globally optimal solution (α=1) over a greedy solution
drops dramatically. On the other hand, if user compliance is high (over 90%), the value
of global optimization (either α = 1.0 or α = 0.75) is quite high and demonstrates the
usefulness of optimization models.

In a comparison, Powell et al. (2002) contrast the hypothetical case of perfect user com-
pliance in global optimization (α-value = 1) with the case of perfect user compliance in
completely “manual” planning (α-value = 0). They achieve better results, in the range of
5% to 10%, when applying pure global optimization and assuming perfect user compliance.

The problem of user acceptance of computer-generated solutions is also reported in Bell
et al. (1983). The authors tackle the problem in a similar way as described in Powell et al.
(2000b): they replicate human decision patterns. Neighboring customers are aggregated
and treated as one single customer, which results in solutions similar to those the dis-
patcher is used to see. So the acceptance of computer solutions is increased. In addition,
it is reported that once dispatchers felt comfortable with the system, most schedulers
began to ask for size expansion of the neighborhoods to allow more options.



Chapter 4

Development and Evaluation of two
Dynamic Planning Procedures

In this chapter two dynamic planning approaches are developed: an Insertion based proce-
dure with Multiple Neighborhood Search (Section 4.1) and an Assignment based procedure
(Section 4.2). Both procedures are directed - as an intermediate step on the way to the
actual real-life planning situation - to the local area capacitated MLPDPTW, for which a
detailed problem specification has been given in Section 2.3. In Section 4.3 the procedures’
specific characteristics are compared, elaborating the main differences. Afterwards, some
test data sets - self-generated as well as taken from the literature - are introduced (Section
4.4). These data sets are used for a comparison of the procedures’ performance and also
to gain some general insights to dynamic problems (Section 4.5). Finally, one procedure
is chosen for adaptation to the actual real-life scenario (Section 4.6).

4.1 Multiple Neighborhood Search

The first procedure (coded in Eclipse 3.4.2 with Java version 1.6) basically consists of two
components: Best Insertion and Multiple Neighborhood Search (MNS). Best Insertion is
used (i) to construct a feasible initial solution out of the available static orders, (ii) to
incorporate new dynamically occurring orders as well as (iii) a basis for the improvement
procedure. The improvement part is named “Multiple Neighborhood Search” since it
investigates several structurally different neighborhoods in order to find solutions with
better objective function values.

Figure 4.1 visualizes the general program framework : During the planning horizon, new
orders arrive dynamically and have to be incorporated by the planning algorithm. At
first, a new feasible solution is constructed by Best Insertion, followed by a run of the
MNS component. When the replanning run is finished, new instructions are sent to the
vehicle fleet in operation.

4.1.1 General Planning Process and Synchronization

Since “plan execution” and “replanning” run simultaneously, some rules for synchroniza-
tion and for the general planning process have to be specified. Based on the idea of
rolling horizon planning, the following approach was chosen (cp. Figure 4.2):

Steffen Schorpp, Dynamic Fleet Management for International Truck Transportation,
DOI 10.1007/978-3-8349-6675-9_4,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011



78 Chapter 4. Development and Evaluation of two Dynamic Planning Procedures

execution replanning

dynamic new orders

periodical
instructions, 
fixed for one

interval

Best Insertion of 
new orders

improvement
by MNS

planning algorithm

P D

P D

P D

P D

P D

Figure 4.1: MNS: general program framework

The planning horizon is split into time intervals of equal length (here: 10 minutes). At
the beginning of each interval, all decisions within the current interval are fixed. Then
the current plan is transferred to the vehicles in execution, giving them planning certainty
at least for the following 10 minutes. In a next step, it is checked whether new orders
have arrived during the last time interval. If this is true, those newly arrived orders are
incorporated by Best Insertion. In Figure 4.2, for example, there are three orders, A, B
and C, that arrive in the time interval from 8:00 until 8:10. Accordingly, these orders
are incorporated at the beginning of the following time interval (8:10 until 8:20) by Best
Insertion.

8:00 8:10 8:20 8:30

arrival of 
orders A,B,C

arrival of 
orders D,E

arrival of 
orders F,G

events:

fixed

improve

scheduling:

fixed

improve
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fixed

improve
insert D,E

changeable changeable

changeable

Figure 4.2: MNS: rolling horizon planning

The remaining time in the interval is completely used to run the improvement procedure.
Both components, Best Insertion and MNS, have to observe the current interval’s fixed
decisions: changes in scheduling may be applied only in the subsequent intervals (denoted
as changeable).
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In the following, the term fixed is specified in more detail as time fixed and vehicle
fixed. The use of fixed up to now is synonymous with time fixed, which means a fixation
of scheduled events, due to a preceding rolling horizon. In addition, some “dependent”
parts of the schedule also have to be set to status time fixed : Let us suppose the case
of time fixation of a departure event. Due to the basic problem specifications, no more
re-scheduling is allowed until the associated target location is reached and serviced. Thus,
the total scheduling time until servicing of this target location is completed, has to be set
as time fixed. Therefore, in many cases the time fixed horizon will exceed the original 10
minutes.

An event is set to status vehicle fixed if it depends on irreversibly made decisions that
allow for further changes in scheduling, but do not allow for the event’s exchange to an-
other vehicle. This especially covers the situation of an order’s Delivery: If the associated
Pickup is set as time-fixed, then the Delivery task is no longer allowed to be transferred to
another vehicle. But nevertheless, it may be subject to re-scheduling within the current
vehicle’s tour.

If an event has the status time fixed, it is automatically vehicle fixed, but not vice versa.
The difference of time fixed and vehicle fixed is of special interest for the improvement
part.

4.1.2 Best Insertion

In a next step, the Best Insertion strategy is considered in detail: in the case of a
newly arrived order (with Pickup and Delivery location), the program investigates for
each vehicle the cost of all feasible insertion options. Finally, the best insertion option
over all vehicles is chosen.

An example is given in Figure 4.3: A vehicle is traveling towards the time fixed Delivery
location of order 1, hence there are no more changes allowed before arrival. Its current
tour additionally includes the vehicle fixed Delivery of order 2 as well as the unfixed
Pickup and Delivery of order 3. For inclusion of the new order’s Pickup and Delivery
locations, there are four possible positions: three between current tour locations and one
at the end. Since Pickup and Delivery may be scheduled at different positions, there are
10 possible scheduling options.

Generally, there are n·(n+1)
2

possible scheduling options, with n being the number of non
time fixed positions. However, depending on vehicle capacity and order size, the number
of investigated options can be considerably reduced by excluding infeasible cases.

Another important scheduling aspect is the use of a waiting strategy that prevents early
arrivals and thus waiting at the target location. Instead, waiting time is scheduled at the
current location. The vehicle departure time (and end of the waiting time) is calculated
so that it exactly results in an arrival at EPT or EDT at the target location:

departure time (P) = EPT - travel time to Pickup location from current vehicle position
departure time (D) = EDT - travel time to Delivery location from current vehicle position
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Figure 4.3: MNS: investigated insertion positions

This approach helps to postpone irreversible decisions (time fixation), hence generating
more flexibility to react to new possible dynamic information (cp. Section 3.3.2). In cases
in which immediate departure results in arrivals within the time window or even delayed,
no waiting strategy is applied.

4.1.3 Improvement Neighborhoods

After generation of a feasible solution, the remaining time is used to run the improve-
ment procedure, which applies multiple neighborhoods in an alternating manner: λ-1
Interchange with Tabu List, Intraroute Optimal Sequence and Complete Solution Rebuild.
The frequency a specific neighborhood comes into operation has to be initially specified
by percentage values.

In the following the main ideas behind these neighborhoods are outlined:

λ-1 Interchange with Tabu List selects two promising vehicle tours and investigates
the complete λ-1 neighborhood (cp. Osman, 1993), which means that the advantageous-
ness of all possible exchange operations according to the following scheme are evaluated,
with the best one being finally chosen:

• an exchangeable request is extracted from each selected tour and re-inserted into
the other vehicle’s tour (“1 ⇔ 1 exchange”),

• an exchangeable request is extracted from the first tour only and re-inserted into
the second vehicle’s tour (“1 ⇒ 0 exchange”), and

• an exchangeable request is extracted from the second tour only and re-inserted into
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the first vehicle’s tour (“0 ⇐ 1 exchange”).

An illustration is given in Figure 4.4.
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Figure 4.4: Illustration of neighborhood I: λ-1 interchange

The choice of vehicle pairs is performed in the following way: In a preprocessing step, a
decreasing cost ranking for all vehicle tours is calculated. When choosing a pair of vehicle
tours for exchange operations, preferably a high-cost and a low-cost vehicle are considered
together. This increases the probability of achieving an improvement in objective function
value by relieving the busy high-cost vehicle.

To avoid the recurring investigation of the same vehicle pairs, after each investigation
the associated vehicle pair and the system time is stored in a Tabu List that blocks the
vehicle pair for a prespecified time horizon tabu time.
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Figure 4.5: Illustration of neighborhood II: intraroute optimal sequence

The second neighborhood Intraroute Optimal Sequence extracts all exchangeable re-
quests k within a vehicle’s tour. Afterwards, these requests are re-inserted, examining
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all possible insertion sequences (permutations). Due to an increase in permutations with
k!, the number of exchangeable requests must be limited: k = 7 turned out to be the
maximum number that could be handled in acceptable computation time. The choice of
vehicles is triggered again by a preprocessing step, in which all vehicles’ tours are sorted
according to their cost value. The procedure starts with the highest cost vehicle tour.
The general idea is visualized in Figure 4.5.

The third neighborhood Complete Solution Rebuild does not consider only one or two
vehicle tours for exchange operations, it considers all tours. In a first step, the procedure
runs through all vehicle tours and extracts every exchangeable request. Afterwards, the
exchangeable requests are re-inserted successively at the best insertion positions calculated
over all vehicle tours. Again, in a preprocessing step, vehicle tours are ordered according
to their cost values, which are used to generate a re-insertion sequence beginning with
requests from expensive tours. The approach is illustrated in Figure 4.6.
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tour 2

…
.

D6
tour n

Best Re-Insertion
over all vehicle tours

= vehicle fixed

= unfixed

= time fixed

Figure 4.6: Illustration of neighborhood III: complete solution rebuild

Pseudocode notations of all three neighborhoods are given in Appendix A.

Now, all basic components and main ideas of the insertion based MNS procedure have
been outlined. In the following, the focus is set on the actual implementation and on the
interaction of the specific components. This can be performed best in the context of the
utilized simulation framework.

4.1.4 Simulation Framework

Best Insertion and MNS improvement are embedded into a simulation framework that
works as follows (cp. Program flow chart, in Figure 4.7):

In a first step, all input data is read from an Excel file and stored in the appropriate data
classes (vehicles, orders, parameters, etc.). The Excel file contains several worksheets. The
structure and contents of the most important order and vehicle worksheets are explained
in the following:

• Table 4.1 shows the typical structure of an order worksheet. The first line indicates
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Generate LinkedList of all requests and 
sort it according to Call-In times

Extract all static requests and apply
Best Insertion over all vehicles

Apply improvement neighborhoods I, II 
and III to initial vehicle tours, each

for prespecified time duration

Set anticipation horizon:
t_merk = simtime + 10min

Start

Read all input data from Excel file and 
store it in appropriate data classes

true

Apply fixation to all events
occurring until t_merk

Extract all dynamic requests with
Call-In simtime and apply

Best Insertion over all vehicles

Apply improvement procedures
I and II, until simtime = t_merk

while
simtime sim_end

Analyze and evaluate resulting
vehicle tours.

Write Excel-Logfile

End

false

Set simtime = sim_start

Figure 4.7: Program flow chart: MNS simulation framework
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the total number of orders to be read, afterwards each line contains a unique order
identifier (no.), followed by the order attributes Call-In, Pickup location (PL), De-
livery location (DL), time window characteristics (EPT, LPT, EDT, LDT ), required
capacity (weight, volume), loadtime, and unloadtime.

number of orders: 1000 in min in min
no. Call-In PL DL EPT LPT EDT LDT weight volume loadtime unloadtime

1 09:00 756 356 09:30 10:15 09:45 11:15 1 1 2 2
2 09:00 989 35 09:30 10:15 09:45 11:15 1 1 2 2
3 09:00 504 99 09:30 10:15 09:45 11:15 1 1 2 2
4 09:01 18 275 09:31 10:16 09:46 11:16 1 1 2 2
5 09:02 415 535 09:32 10:17 09:47 11:17 1 1 2 2
6 09:02 474 488 09:32 10:17 09:47 11:17 1 1 2 2
7 09:03 879 264 09:33 10:18 09:48 11:18 1 1 2 2
8 09:03 766 819 09:33 10:18 09:48 11:18 1 1 2 2
9 09:03 416 161 09:33 10:18 09:48 11:18 1 1 2 2
10 09:03 781 822 09:33 10:18 09:48 11:18 1 1 2 2
11 09:04 5 546 09:34 10:19 09:49 11:19 1 1 2 2
12 09:04 80 311 09:34 10:19 09:49 11:19 1 1 2 2
13 09:05 573 968 09:35 10:20 09:50 11:20 1 1 2 2
14 09:05 320 231 09:35 10:20 09:50 11:20 1 1 2 2
15 09:06 155 442 09:36 10:21 09:51 11:21 1 1 2 2
16 09:06 208 487 09:36 10:21 09:51 11:21 1 1 2 2
17 09:06 52 399 09:36 10:21 09:51 11:21 1 1 2 2
18 09:07 181 762 09:37 10:22 09:52 11:22 1 1 2 2
19 09:07 88 10 09:37 10:22 09:52 11:22 1 1 2 2
20 09:07 585 112 09:37 10:22 09:52 11:22 1 1 2 2
21 09:09 266 729 09:39 10:24 09:54 11:24 1 1 2 2
22 09:09 697 292 09:39 10:24 09:54 11:24 1 1 2 2
23 09:09 768 742 09:39 10:24 09:54 11:24 1 1 2 2
24 09:09 650 263 09:39 10:24 09:54 11:24 1 1 2 2

Table 4.1: Excel input file: orders

• Table 4.2 visualizes the typical structure of a vehicle worksheet: the first line indi-
cates the total number of (available) vehicles, afterwards each line contains a unique
vehicle identifier (no.), followed by the depot location, the vehicle capacity with re-
gard to weight (cap. weight) and volume (cap. volume), as well as information on
vehicle availability (available from, available to).

number of vehicles: 50
no. depot location cap. weight cap. volume available from available to
1 1001 3 3 09:00 19:00
2 1001 3 3 09:00 19:00
3 1001 3 3 09:00 19:00
4 1001 3 3 09:00 19:00
5 1001 3 3 09:00 19:00
6 1001 3 3 09:00 19:00
7 1001 3 3 09:00 19:00
8 1001 3 3 09:00 19:00
9 1001 3 3 09:00 19:00
10 1001 3 3 09:00 19:00
11 1001 3 3 09:00 19:00
12 1001 3 3 09:00 19:00

Table 4.2: Excel input file: vehicles

After reading this data, in a next step all available orders are sorted according to their
Call-In time and stored in a LinkedList. All static requests with Call-In time before the
official start of the planning horizon sim start are extracted from this LinkedList and are
inserted into the best positions over all vehicles, thus generating an initial feasible plan.
Then all three neighborhoods of the MNS improvement procedure are applied during a
prespecified calculation time.

After termination of this initial phase, the actual dynamic simulation is started. The
simulation time that is generated in the program class clock is set to the given initial
value sim start and runs with a prespecified simulation speed s.
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The dynamic simulation reflects the rolling horizon planning that is visualized in Figure
4.2: According to the anticipation horizon (here: 10 minutes), the time step t merk is set
to simtime + 10 minutes. Afterwards, fixation is applied to all events up to t merk, as
well as to all dependent activities scheduled later in time. Then, all dynamic orders with
Call-In time ≤ simtime are extracted from the LinkedList and are incorporated with Best
Insertion.

Finally, the remaining time up to t merk is used to apply the MNS improvement procedure
to the new feasible solution. In some pre-tests with the test instances of Section 4.4 Com-
plete Solution Rebuild required more than 10 minutes for the generation of a new feasible
solution, therefore, in the dynamic program part only the improvement neighborhoods
λ-1 Interchange with Tabu List and Intraroute Optimal Sequence come into operation.

The described steps are iterated until simulation time reaches the time step sim end,
which does not coincide with the latest Call-In time: the latest Call-In time is only a
lower bound for sim end, in order to make sure that all dynamic requests have been pro-
cessed. However, since plan execution continues beyond that time, further simulation
time results in the investigation of additional improvement options and should result in
a better overall solution.

The simulation ends with a final analysis: the generated vehicle tours that include all
static and dynamic orders are evaluated with the results being written into an Excel file.
This file includes the following information:

• The first worksheet (cp. Table 4.3) contains some general information (investigated
test data file, utilized computing time) and summarized results for the different
objective function criteria (travel time, waiting time, delay, and overtime).

In addition, the values of the objective function criteria are broken down into several
sources, in order to allow for a more detailed investigation: travel time is split into
travel time to Pickup, travel time to Delivery and travel time back to depot. Waiting
time is apportioned into waiting empty for return to depot, waiting empty otherwise
and waiting loaded. Delay is broken down into delay at Pickup and delay at Delivery
locations. As further information, the percentage values of different vehicle activities
during operating time are given, as well as average travel time to Pickup and Delivery
locations.

• The second worksheet consists of a detailed vehicle scheduling for each vehicle. Table
4.4 exemplarily shows the scheduling results for a single vehicle over a planning
horizon of approximately 9 hours. Vehicle activity is explained by the columns
activity-log, time interval and way.

In addition, for each approached location, the associated time window and the
actual arrival time is given. In the following three columns, the scheduled activity
times are assigned to one of the groups: waiting, traveling and loading. Afterwards,
potential delay is calculated, followed by two columns including information about
the vehicle’s capacity status weight and volume. At the end, some supplemental
information like capacity utilization and vehicle utilization over the whole simulated
planning horizon – temporal utilization (fraction of traveling and loading) – is stated.
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test data file: 3_40dyn-glv_TW45_Ab30_stat4h_OM2_ev.xls
computation time (in min): 660

total travel time (in min): 19185 vehicle activity:
travel time to Pickup (in min): 7486 operating time (in min): 26433
travel time to Delivery (in min): 10999 traveling (in min): 19185 72.57 %
travel time back to depot (in min): 700 waiting (in min): 3248 12.28 %

loading (in min): 4000 15.13 %
total waiting time (in min): 3248
waiting empty for return to depot (in min): 112
waiting empty otherwise (in min): 2044 further calculations:
waiting loaded (in min): 1092 avg. travel time to Pickup (in min): 7:29

avg. travel time to Delivery (in min): 10:59
total delay (in min): 39
delay Pickup (in min): 19
delay Delivery (in min): 20

total overtime (in min): 0

Table 4.3: Excel output file: general summary

vehicle activity-log time interval way time window arrival waiting traveling loading delay weight volume
5 waiting in location 1001 09:00:00 -- 09:28:49 28:49

traveling to Pickup of order no. 309 09:28:49 -- 09:37:00 1001 -- 325 09:37:00 -- 10:22:00 09:37:00 8:11 2:00 1,00 1,00
waiting in location 325 09:39:00 -- 09:40:57 1:57

traveling to Pickup of order no. 50 09:40:57 -- 09:42:00 325 -- 497 09:42:00 -- 13:42:00 09:42:00 1:03 2:00 2,00 2,00
traveling to Pickup of order no. 323 09:44:00 -- 09:57:58 497 -- 461 09:45:00 -- 10:30:00 09:57:58 13:58 2:00 3,00 3,00
traveling to Delivery of order no. 323 09:59:58 -- 10:24:27 461 -- 8 10:00:00 -- 11:30:00 10:24:27 24:29 2:00 2,00 2,00

waiting in location 8 10:26:27 -- 10:57:58 31:31
traveling to Pickup of order no. 155 10:57:58 -- 11:03:00 8 -- 530 11:03:00 -- 15:03:00 11:03:00 5:02 2:00 3,00 3,00
traveling to Delivery of order no. 309 11:05:00 -- 11:06:47 530 -- 152 09:52:00 -- 11:22:00 11:06:47 1:47 2:00 2,00 2,00

waiting in location 152 11:08:47 -- 11:12:31 3:44
traveling to Delivery of order no. 50 11:12:31 -- 11:19:22 152 -- 720 09:57:00 -- 13:57:00 11:19:22 6:51 2:00 1,00 1,00
traveling to Pickup of order no. 161 11:21:22 -- 11:24:50 720 -- 358 11:09:00 -- 15:09:00 11:24:50 3:28 2:00 2,00 2,00
traveling to Pickup of order no. 470 11:26:50 -- 11:31:09 358 -- 442 11:24:00 -- 12:09:00 11:31:09 4:19 2:00 3,00 3,00
traveling to Delivery of order no. 470 11:33:09 -- 11:46:49 442 -- 28 11:39:00 -- 13:09:00 11:46:49 13:40 2:00 2,00 2,00
traveling to Pickup of order no. 510 11:48:49 -- 11:56:38 28 -- 616 11:50:00 -- 12:35:00 11:56:38 7:49 2:00 3,00 3,00
traveling to Delivery of order no. 155 11:58:38 -- 12:09:40 616 -- 352 11:18:00 -- 15:18:00 12:09:40 11:02 2:00 2,00 2,00
traveling to Pickup of order no. 512 12:11:40 -- 12:15:42 352 -- 16 11:51:00 -- 12:36:00 12:15:42 4:02 2:00 3,00 3,00
traveling to Delivery of order no. 510 12:17:42 -- 12:45:43 16 -- 440 12:05:00 -- 13:35:00 12:45:43 28:01 2:00 2,00 2,00
traveling to Delivery of order no. 161 12:47:43 -- 12:52:24 440 -- 712 11:24:00 -- 15:24:00 12:52:24 4:41 2:00 1,00 1,00
traveling to Pickup of order no. 597 12:54:24 -- 12:58:10 712 -- 738 12:44:00 -- 13:29:00 12:58:10 3:46 2:00 2,00 2,00
traveling to Delivery of order no. 512 13:00:10 -- 13:03:49 738 -- 928 12:06:00 -- 13:36:00 13:03:49 3:39 2:00 1,00 1,00
traveling to Pickup of order no. 602 13:05:49 -- 13:08:25 928 -- 897 12:46:00 -- 13:31:00 13:08:25 2:36 2:00 2,00 2,00
traveling to Pickup of order no. 617 13:10:25 -- 13:13:17 897 -- 635 13:00:00 -- 13:45:00 13:13:17 2:52 2:00 3,00 3,00
traveling to Delivery of order no. 602 13:15:17 -- 13:20:07 635 -- 958 13:01:00 -- 14:31:00 13:20:07 4:50 2:00 2,00 2,00
traveling to Pickup of order no. 73 13:22:07 -- 13:24:20 958 -- 552 09:57:00 -- 13:57:00 13:24:20 2:13 2:00 3,00 3,00
traveling to Delivery of order no. 73 13:26:20 -- 13:35:28 552 -- 383 10:12:00 -- 14:12:00 13:35:28 9:08 2:00 2,00 2,00
traveling to Pickup of order no. 641 13:37:28 -- 13:49:50 383 -- 549 13:24:00 -- 14:09:00 13:49:50 12:22 2:00 3,00 3,00
traveling to Delivery of order no. 597 13:51:50 -- 14:10:29 549 -- 254 12:59:00 -- 14:29:00 14:10:29 18:39 2:00 2,00 2,00
traveling to Delivery of order no. 617 14:12:29 -- 14:23:44 254 -- 209 13:15:00 -- 14:45:00 14:23:44 11:15 2:00 1,00 1,00
traveling to Pickup of order no. 173 14:25:44 -- 14:27:46 209 -- 63 11:21:00 -- 15:21:00 14:27:46 2:02 2:00 2,00 2,00
traveling to Pickup of order no. 153 14:29:46 -- 14:32:41 63 -- 5 11:01:00 -- 15:01:00 14:32:41 2:55 2:00 3,00 3,00
traveling to Delivery of order no. 173 14:34:41 -- 14:41:35 5 -- 189 11:36:00 -- 15:36:00 14:41:35 6:54 2:00 2,00 2,00
traveling to Delivery of order no. 641 14:43:35 -- 14:55:14 189 -- 237 13:39:00 -- 15:09:00 14:55:14 11:39 2:00 1,00 1,00
traveling to Pickup of order no. 212 14:57:14 -- 15:02:33 237 -- 685 11:53:00 -- 15:53:00 15:02:33 5:19 2:00 2,00 2,00
traveling to Delivery of order no. 153 15:04:33 -- 15:07:24 685 -- 664 11:16:00 -- 15:16:00 15:07:24 2:51 2:00 1,00 1,00
traveling to Pickup of order no. 748 15:09:24 -- 15:16:03 664 -- 648 14:37:00 -- 15:22:00 15:16:03 6:39 2:00 2,00 2,00
traveling to Delivery of order no. 748 15:18:03 -- 15:19:52 648 -- 452 14:52:00 -- 16:22:00 15:19:52 1:49 2:00 1,00 1,00
traveling to Delivery of order no. 212 15:21:52 -- 15:26:45 452 -- 704 12:08:00 -- 16:08:00 15:26:45 4:53 2:00 0,00 0,00

waiting in location 704 15:28:45 -- 15:59:07 30:22
traveling to Pickup of order no. 876 15:59:07 -- 16:06:00 704 -- 854 16:06:00 -- 16:51:00 16:06:00 6:53 2:00 1,00 1,00
traveling to Pickup of order no. 879 16:08:00 -- 16:13:38 854 -- 711 16:08:00 -- 16:53:00 16:13:38 5:38 2:00 2,00 2,00
traveling to Delivery of order no. 879 16:15:38 -- 16:28:59 711 -- 346 16:23:00 -- 17:53:00 16:28:59 13:21 2:00 1,00 1,00
traveling to Pickup of order no. 882 16:30:59 -- 16:39:20 346 -- 755 16:10:00 -- 16:55:00 16:39:20 8:21 2:00 2,00 2,00
traveling to Pickup of order no. 881 16:41:20 -- 16:47:52 755 -- 25 16:09:00 -- 16:54:00 16:47:52 6:32 2:00 3,00 3,00
traveling to Delivery of order no. 876 16:49:52 -- 16:56:49 25 -- 354 16:21:00 -- 17:51:00 16:56:49 6:57 2:00 2,00 2,00
traveling to Pickup of order no. 901 16:58:49 -- 17:01:37 354 -- 519 16:25:00 -- 17:10:00 17:01:37 2:48 2:00 3,00 3,00
traveling to Delivery of order no. 882 17:03:37 -- 17:10:47 519 -- 731 16:25:00 -- 17:55:00 17:10:47 7:10 2:00 2,00 2,00
traveling to Pickup of order no. 947 17:12:47 -- 17:23:49 731 -- 746 16:56:00 -- 17:41:00 17:23:49 11:02 2:00 3,00 3,00
traveling to Delivery of order no. 881 17:25:49 -- 17:43:50 746 -- 824 16:24:00 -- 17:54:00 17:43:50 18:01 2:00 2,00 2,00
traveling to Delivery of order no. 901 17:45:50 -- 18:05:30 824 -- 133 16:40:00 -- 18:10:00 18:05:30 19:40 2:00 1,00 1,00
traveling to Delivery of order no. 947 18:07:30 -- 18:24:32 133 -- 369 17:11:00 -- 18:41:00 18:24:32 17:02 2:00 0,00 0,00
traveling back to depot location 1001 18:26:32 -- 18:37:57 369 -- 1001          -- 19:00:00 18:37:57 11:25

------- ------- ------- -------
temporal utilization: 83.32 % 96:23 389:34 92
(fraction of traveling and loading) waiting traveling loading delay

Table 4.4: Excel output file: vehicle scheduling
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• The third worksheet (cp. Table 4.5) includes a view of the planning results from
an order based perspective. For each order, some given facts, like Call-In time and
time window information (EPT, LPT, EDT, LDT ) is replicated, combined with the
planning results: assigned vehicle, actual Pickup time (PT ) and actual Delivery
time (DT ). In addition, the resulting delays at Pickup and Delivery location are
calculated.

order no. Call-In vehicle EPT LPT PT delay P EDT LDT DT delay D
299 08:00 43 13:00 17:00 13:00:00 13:15 17:15 14:00:25
300 08:00 16 13:00 17:00 14:26:47 13:15 17:15 14:55:46
301 09:01 3 09:31 10:16 09:31:00 09:46 11:16 10:59:37
302 09:04 14 09:34 10:19 10:17:36 09:49 11:19 11:11:22
303 09:05 2 09:35 10:20 10:08:34 09:50 11:20 10:20:22
304 09:05 36 09:35 10:20 09:59:37 09:50 11:20 10:05:26
305 09:05 10 09:35 10:20 09:35:00 09:50 11:20 09:55:51
306 09:06 13 09:36 10:21 09:36:00 09:51 11:21 10:23:52
307 09:06 1 09:36 10:21 09:55:26 09:51 11:21 10:41:36
308 09:06 3 09:36 10:21 10:11:50 09:51 11:21 10:37:04
309 09:07 5 09:37 10:22 09:37:00 09:52 11:22 11:06:47
310 09:07 4 09:37 10:22 10:17:03 09:52 11:22 10:44:18
311 09:08 17 09:38 10:23 09:38:00 09:53 11:23 11:22:20
312 09:09 35 09:39 10:24 10:12:21 09:54 11:24 11:00:54
313 09:11 1 09:41 10:26 10:15:22 09:56 11:26 10:25:36
314 09:11 19 09:41 10:26 10:10:47 09:56 11:26 11:21:35
315 09:11 19 09:41 10:26 10:03:53 09:56 11:26 10:40:48

Table 4.5: Excel output file: planning results from an order based perspective

Now, the general idea and the planning process of the Multiple Neighborhood Search
procedure have been explained. Subsequently, a second planning approach that is based
on completely different concepts is presented.

4.2 Assignment Based Procedure

The basic idea of the Assignment based procedure (coded in Eclipse 3.4.2 with Java ver-
sion 1.6) was proposed in Fleischmann et al. (2004) for a local area SLPDPTW. In the
following, the original approach is extended for the multi load case.

The procedure’s main feature is to trigger an order-to-vehicle assignment by the result
of a classical bipartite assignment problem. This allows for a simultaneous consideration
of all vehicles V and all open orders O. The objective is to minimize the overall costs of
carrying out all requested transportation tasks.

Every re-planning run has to be prepared in such a way that the underlying problem can
be solved for an equal number of n orders and n vehicles. Since the number of vehicles
and orders will usually not be identical and in order to allow for vehicle waiting and
order postponement, some dummy orders (o ∈ Od, denoting the set of dummy orders;
with |Od| = |V |) and dummy vehicles (v ∈ V d, denoting the set of dummy vehicles; with
|V d| = |O|) are introduced.

4.2.1 Bipartite Assignment Problem

Hence, a bipartite assignment problem has to be solved over all vehicles v ∈ {V ∪V d} and
all orders o ∈ {O ∪ Od}. The assignment costs for each order-vehicle pair are calculated
as cvo.
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A problem formulation is given as follows:

Model of the Bipartite Assignment Problem:

data:

V = set of real vehicles
V d = set of dummy vehicles
O = set of real orders
Od = set of dummy orders
cvo = assignment cost of vehicle v to order o

variables:

xvo =

{
1, if vehicle v is assigned to order o
0, otherwise

objective function:

minimize
∑

v ∈{V ∪V d}

∑
o∈{O∪Od}

cvo xvo

s.t. ∑
v ∈{V ∪V d}

xvo = 1 ∀ o ∈ {O ∪Od}
∑

o∈{O∪Od}
xvo = 1 ∀ v ∈ {V ∪ V d}

xvo ∈ { 0 , 1 } ∀ v ∈ {V ∪ V d} , ∀ o ∈ {O ∪Od}

The given problem formulation is recurringly solved by the exact procedure proposed in
Jonker and Volgenant (1987). Even in the case of major problem sizes, the calculation
time is far less than a second.

A resulting assignment of a real order to a real vehicle becomes effective immediately (in
the case of a waiting vehicle) or after completion of the vehicle’s current trip (in the case
of a traveling vehicle) and results in a trip to the order’s Pickup location. As in the MNS
procedure, early arrival (before the destination’s time window has opened) is prevented
by scheduling of some waiting time at the current location.

The length of such a waiting time is calculated identically to the previous procedure
so as to achieve exact arrival at the destination’s time window opening. Therefore, the
real order to real vehicle assignment (result of the bipartite assignment problem) is not
fixed until the actual departure of the vehicle has been carried out, thus allowing for
re-assignment during such a waiting period.

4.2.2 Assignment Matrix

The underlying assignment matrix contains four types of possible assignments:

• sector I: v ∈ V ∧ o ∈ Od assignment of real vehicle and dummy order



4.2. Assignment Based Procedure 89

→ waiting empty or execution of next scheduled Delivery (if available)

• sector II: v ∈ V ∧ o ∈ O assignment of real vehicle and real order
→ start traveling to real order’s Pickup at next time of availability

• sector III: v ∈ V d ∧ o ∈ Od assignment of dummy vehicle and dummy order
→ no impact

• sector IV: v ∈ V d ∧ o ∈ O assignment of dummy vehicle and real order
→ postponement of real order

The matrix configuration and the associated impact of possible assignments in the dif-
ferent sectors is visualized in Figure 4.8. The size of the first sector is stable since the
number of real vehicles and dummy orders is not subject to changes (|V | = |Od|). The
other sectors’ sizes increase if a new order occurs, and decrease if an order is removed
due to an ultimate assignment (departure to Pickup location). Generally, the relation
|V d| = |O| has to be maintained in order to keep the total matrix quadratic. Hence, a
newly occurring order does not only result in an additional “real order” column but also
in an additional “dummy vehicle” row; the departure to a Pickup location does not only
result in the deletion of the associated “real order” column but also in the deletion of a
“dummy vehicle” row.

real 
vehicles

v    V

dummy orders
o    Od

real orders
o    O

dummy
vehicles
v    Vd

• start traveling to
real order‘s Pickup
at next time of
vehicle availability

• postponement
of real order

• waiting empty

• execution of next
scheduled delivery 

• no impact

I II

III IV

Figure 4.8: Assignment matrix: general configuration and impact of assignment

In the following, the meaning and impact of assignments in different matrix sectors is
discussed in detail. Furthermore, it is explained how the respective cost values cvo are
chosen (cp. Figure 4.9):

Sector I

The assignment of a dummy order to a real vehicle may result in two possible effects
on the real vehicle: if there are further tasks (Delivery locations) in the vehicle’s current
schedule, these tasks are simply executed as planned. Otherwise, if there are no more tasks
available, the vehicle has to wait empty at its current location. Such an assignment occurs
in situations when the number of real orders is smaller than the number of real vehicles,
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and also when available orders possess far distant time windows, thus being postponed.

Cost values for further execution of scheduled Delivery tasks are set to zero, while waiting
empty is penalized with a given parameter c empty.

real 
vehicles

v    V

dummy orders
o    Od

real orders
o    O

dummy
vehicles
v    Vd

Best Insertion cost
• travel time
• delay
• waiting time
• overtime

urgency cost

cost for
waiting empty

0, otherwise

0

I II

III IV

Figure 4.9: Assignment matrix: choice of cost values

Sector II

Here, a real order is assigned to a real vehicle. This implies that the real vehicle starts
traveling to the Pickup location of the assigned real order at the next time of availability.
A waiting vehicle is available immediately, while a traveling vehicle reaches the status
available for the next time when it arrives at its current destination. As already men-
tioned, the departure and hence the ultimate order-to-vehicle assignment may be delayed
by some waiting time if immediate departure results in waiting time at the destination.

Cost values cvo are chosen according to the costs that result from inserting the order o at
the best position of vehicle v’s scheduling. These costs are calculated with respect to the
overall objective function, including weighted penalty costs for travel time, delay, waiting,
and overtime.

The applied Best Insertion procedure is illustrated in Figure 4.10. It differs slightly
from the Best Insertion applied at the MNS procedure, since it only allows for a Pickup’s
insertion at the first (unfixed) position. The associated Delivery, however, may be placed
at every subsequent position as long as this complies with the capacity constraints. In
Figure 4.10 there is one fixed event (arrival at Delivery 1), so the new order’s Pickup is
inserted right behind that Delivery. The further exemplary schedule includes three more
Deliveries (D2, D4 and D3), which induces four possible insertion positions for the new
Delivery: directly after the new Pickup, after D2, after D4, and after D3.

Generally, the number of investigated insertion positions is significantly lower than in the
previous MNS case. In total, only n + 1 positions have to be checked, with n being the
number of unfixed scheduled locations.
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D1 D4 D3

P Doption 1:

D4 D3
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new order

D2

D2

=  unfixed

=  fixed

D1 D4 D3

Poption 4:

D2

Figure 4.10: Assignment based procedure: investigated insertion positions

Sector III

The existence of this assignment type is a direct consequence of the demanded flexibility.
In order to generate the three other assignment sectors for every planning run, an appro-
priate size of the matrix is required, including dummy columns and dummy rows at any
time. The associated assignment cost are set to zero.

Sector IV

Results in this sector indicate the assignment of a dummy vehicle to a real order, which
can be interpreted as the order’s postponement. Such an assignment decision can have
two possible reasons. On the one hand, there may be less real vehicles available than real
orders. On the other hand, the order’s time window may lie in the far distant future, so
that a current assignment in sector II would just produce extensive waiting time.

The associated costs c urgencyo are individually calculated for each real order o according
to the following formula:

c urgencyo =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
deltamin,o − 1 if slack EPTo > a

deltamax,o + (b− slack LPTo)
2 if slack EPTo ≤ 0 & tw widtho < c

deltamedian,o otherwise

Before the meaning of these three options is explained, the calculation of the involved
variables slack EPTo, slack LPTo, tw widtho, deltamax,o, deltamin,o, deltamedian,o is de-
scribed (a, b and c are parameters):

(i) slack EPTo = EPTo − avg. travel time to P ickup − simtime

(ii) slack LPTo = LPTo − avg. travel time to P ickup − simtime
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(iii) tw widtho =

⎧⎨
⎩

LPTo−EPTo

avg. travel time to P ickup
, if simtime ≤ EPTo

LPTo−simtime
avg. travel time to P ickup

, otherwise.

(iv) deltamax,o = max {cvo − cvo′ , v ∈ V }, with o′ = |Od|
(v) deltamin,o = min {cvo − cvo′ , v ∈ V }, with o′ = |Od|

(vi) deltamedian,o = median {cvo − cvo′ , v ∈ V }, with o′ = |Od|

Variables (i) slack EPTo and (ii) slack LPTo measure the absolute temporal gap from
current simulation time to the beginning and ending of the Pickup time window of order
o, respectively. The calculation includes the average travel time to a Pickup location,
since the actual travel time to the specific Pickup location cannot be calculated exactly
(it depends on the vehicle to which the postponed order o will be assigned later on).

Variable (iii) tw widtho is a measure for the remaining width of the Pickup time window,
relative to the average travel time to a Pickup location. The calculation is visualized in
Figure 4.11. In the first case, the current simulation time is before EPT, hence the total
time window from EPT until LPT is still available. In the example, the average travel
time to Pickup fits six times into the remaining time window slot (tw width = 6). In
the second case, current simulation time exceeds EPT, hence the remaining time window
width is shorter (tw width = 4).

EPT LPT

simtime tw_width = 6
avg. travel time to Pickup

EPT LPT

simtime tw_width = 4

Figure 4.11: Exemplary calculation of tw width

Variables (iv) and (v) are determined in order to “enforce” or to “prevent” a real order’s
sector II assignment, respectively. If the cost value for order o in sector IV is chosen as
greater than deltamax,o, a certain assignment in sector II is enforced, at least in situations
with a higher (or equal) number of real vehicles than real orders. On the other hand,
if the cost value for order o is chosen as deltamin,o − 1, an assignment in sector II can
be prevented with certainty. Variable (vi) deltamedian,o is calculated in order to have an
intermediate value that allows “good” real order to real vehicle assignments (the better
50%) and postpones expensive assignments.

An example is given in Figure 4.12. Here, five real vehicles and two real orders are avail-
able. This results in a 7×7 - matrix. In sector I, four vehicles are assumed to have further
scheduled Deliveries, hence the chosen cost values are zero. Vehicle number 2 has no
further scheduled Deliveries, thus the cost values are set to c empty (here: 5). Sector II
shows exemplary Best Insertion cost values (e.g. cost values of 30 and 20, if real vehicle
number 1 is assigned to real order number 1 and 2, respectively) and sector III includes
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(as specified) only zero values.

In sector IV, the first order is assumed to be urgent, hence the cost values are set to
deltamax,o + 1 (=51), while the second order is assumed to be not urgent with a resulting
cost value of deltamin,o−1 (=14). The grey highlighted fields show an optimal assignment.
As intended, the first real order is assigned to a real vehicle (vehicle number 5 at the cost of
10), while the second real order will be postponed (assignment of dummy vehicle number
1 at the cost of 14).

real 
vehicles

v    V

dummy orders
o    Od

real orders
o    O

dummy
vehicles
v    Vd

1

2
3

4

5

1 2 3 4 5 1

0 0 0 0 0

5 5 5 5 5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

30

40

20

50

10

0 0 0 0 0 51

2

20

20

60

80

30

14

0 0 0 0 0 51 14

1

2

Figure 4.12: Assignment matrix with “urgent” (o=1) and “non urgent” (o=2) real order

Now, all auxiliary variables from (i) to (vi) have been defined and illustrated. Getting
back to the general formula chosen for c urgencyo, three urgency levels can be differen-
tiated. At the first level, the opening of the Pickup time window lies in the far distant
future (slack EPT > a). The value of a can be interpreted as a measure in minutes and
has to be chosen with a significant gap to zero: an assignment would result in more than
a minutes of waiting. Therefore, such an order is considered not urgent, with sector IV
costs being chosen low (deltamin,o − 1) to prevent a sector II assignment.

The second level depicts the situation of an urgent order. The time window is already
open (slack EPTo ≤ 0) and the remaining time window width is smaller than c times of
the average travel time to Pickup (tw widtho < c). Accordingly, the sector IV costs are
chosen high in order to enforce a sector II assignment.

As a first term, deltamax,o is selected, combined with a second term (b − slack LPTo)
2.

The first term enforces sector II assignments in the case of a smaller or equal number of
real orders to real vehicles. It also works if the number of real orders, considered urgent,
is smaller than or equal the number of real vehicles. The second term, depending on
slack LPTo, allows for a further differentiation of urgent orders if there are too many of
them (no. of urgent orders > number of vehicles). The constant b is chosen as a high
value in order to ensure b− slack LPTo > 0 for all possible scenarios.

The third level reflects the intermediate situation between not urgent and urgent. An
assignment in sector II is allowed if it belongs to the better 50% of possible assignments.
The other 50% of worse assignments are blocked by the cost value deltamedian,o, which
instead attracts an assignment in sector IV. A definite sector II assignment, however,
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cannot be guaranteed, since it depends on the current number of urgent orders. Possibly,
all “good” real vehicles are already “occupied”.

So far, the configuration of all assignment matrix sectors and the associated cost calcu-
lations have been explained. Next, the following questions are answered: by what kind
of events a matrix update is triggered and what sections of the matrix are affected in the
specific cases.

4.2.3 Events and Matrix Updates

The Assignment based planning procedure basically knows two kinds of events that trigger
a replanning run:

• first, the occurrence of a new order, and

• second, the event of departure to the next Pickup or Delivery location.

For the first event, an additional real order column is added to the assignment matrix,
including the sector II Best Insertion cost and the sector IV postponement cost. In
addition, a dummy vehicle row is added to keep the matrix quadratic (cp. Figure 4.13).

real
vehicles

v    V

dummy orders
o    Od

real orders
o    O

dummy
vehicles
v    Vd

1 2 …. Od Od+1 Od+2 …. Od+O
1
2

…
.

V

V+1

V+2

…
.

V+Vd

+

+

+

+

+

+

+

+

+

+

+

+

variable length

variable
length

+++++++++++++++

Figure 4.13: Assignment matrix update: occurrence of a new order

For the second event, departure to Pickup and departure to Delivery can be differentiated
(cp. Figure 4.14).

In the Pickup case, the associated real order that is still part of the matrix must no
longer be assigned to another vehicle. Hence, the real order column is completely re-
moved from the matrix together with one row of dummy vehicles. In addition, the Pickup
and the Delivery under consideration are actually inserted into the associated vehicle’s
scheduling, which requires a re-calculation of the complete vehicle row. Finally, all sector
IV postponement values have to be updated, due to their dependency on the vehicle’s row.

In the Delivery case, a fixation is applied to the scheduled Delivery event. This prevents
any more Pickups from other open orders from being inserted before this Delivery location.
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Hence, the complete vehicle row has to be re-calculated followed by an update of the sector
IV postponement values.

real 
vehicles

v    V

dummy orders
o    Od

real orders
o    O

dummy
vehicles
v    Vd

1 2 …. Od Od+1 Od+2 …. Od+O
1
2

…
.

V

V+1

V+2

…
.

V+Vd

-

-

-

-

-

-

-

-

-

-

-

-- - - - - - - - - - - - - -

re-calculation real 
vehicles

v    V

dummy orders
o    Od

real orders
o    O

dummy
vehicles
v    Vd

1 2 …. Od Od+1 Od+2 …. Od+O
1
2

…
.

V

V+1

V+2

…
.

V+Vd

re-calculation

re-calculationre-calculation

Figure 4.14: Assignment matrix update: start traveling to Pickup (left) or Delivery (right)

For better handling of the applied time discrete simulation, two additional events are
defined:

• new order-to-vehicle assignment/checkup after arrival, and

• end of simulation.

These events do not trigger a matrix replanning, but help to control the simulation. A
detailed description of the procedure’s workflow, embedded into a time discrete simulation
framework, is given subsequently.

4.2.4 Procedure Workflow and Simulation

The general procedure workflow is shown in Figure 4.15. In a first step, all input data
are read from an Excel input file and stored in the appropriate data classes. The Excel
file configuration is identical to the files used in Section 4.1 for the MNS procedure (see
Tables 4.1 and 4.2 for typical worksheets with order and vehicle data). There are only
some changes in parameter values that have to be handed to the program: instead of the
anticipation horizon, now the parameters c empty, average travel time to Pickup, aver-
age travel time to Delivery, and the postponement parameters (a, b, c) have to be specified.

Afterwards, a LinkedList, referred to as tasklist, is generated including all order entries
with Call-In time and a simulation endtime entry. After sorting this list by increasing
event time, the simulation time is set to the time of the first entry. Then all entries
with current simulation time are removed from tasklist, being subsequently written into
another LinkedList current events.

Now, all events are successively removed from current events, inducing different planning
steps. For internal processing and sorting, each event has a specific identifier, which is
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chosen as a single alphabetic character (“A”, “B”, “C”, and “D”). The events in cur-
rent events are sorted according to the alphabetic order of the internal identifiers, hence
all “A” events are processed first, followed by the “B” events, and so on:

• Occurrence of a new order (“A”-event): For the new real order, the insertion
costs into each real vehicle’s scheduling are calculated, then the assignment matrix
is updated accordingly. Afterwards, it is checked if there are further type “A”-events
in current events. If this is true, the same procedure is applied to the associated
new orders. Otherwise, the assignment problem is solved for the updated matrix.
The resulting assignments are analyzed by the method Check Assignment results,
which will be explained later.

• New order-to-vehicle assignment/Checkup after arrival (“B”-event): This
kind of event may be triggered by a new order-to-vehicle assignment (in such cases,
the routine Check Assignment results has written a “B”-event for a waiting vehicle
into current events), and also if a vehicle arrives at a Pickup or Delivery location.
In both cases, vehicles are available immediately.

In a first query, it is checked if a sector II assignment (real order and real vehicle)
is available. If this is true, it is calculated in a second query whether immediate
departure would result in any waiting time at the destination. If there is no such
waiting time, a type “C” event is written into current events, which initiates the
immediate departure to the Pickup. Otherwise, if there is any waiting time, the
vehicle status is changed to waiting. In addition, the vehicle variables waiting order
and end wait are updated. End wait is set exactly to the departure time that results
in an arrival at the destination’s time window opening. Finally, a type “C” event is
written into tasklist in order to initiate departure at the right time.

The second branching covers the case of no available sector II assignment. It is
checked if there are further scheduled activities (Deliveries) available for the con-
cerned vehicle. If this is true, the travel time to and possible waiting at this next
Delivery location is calculated. The results are handled identically to the new order
Pickup case above: if there is no waiting time, a type “C” event is written into cur-
rent events, initiating the immediate departure to the Delivery. If there is waiting
time, the associated vehicle attributes are updated (vehicle status = waiting, wait-
ing order and end wait, accordingly), followed by a type “C” entry being written
into tasklist to initiate departure at the right time.

Finally, there is the case of a vehicle having no sector II assignment and no further
scheduled activities. For such a vehicle, the status is changed to waiting. In addition,
the vehicle attributes waiting order and end wait are set to the default values “-1”
and “∞”, respectively.

• Start traveling to Pickup or Delivery location (“C”-event): This kind of
event is ultimately fixing a departure to a Pickup or Delivery location. It may be
an immediate departure, or a departure after some waiting time.

In a first step, it is checked if there is a current sector II assignment. If this is
true, the order’s Pickup and Delivery are ultimately inserted into the associated
vehicle’s scheduling. Then the vehicle status is set to driving and the attributes
waiting order and end wait are set to the default values “-1” and “∞”, respectively.
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Figure 4.15: Assignment based procedure: workflow
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Afterwards, a type “B” event is written into the tasklist with a specified event time
equal to the arrival time at the order’s Pickup. In the special case of a zero travel
time (Pickup location = current location), the type “B” event has to be written
into current events in order to ensure processing at the current simulation time.
Finally, the assignment matrix is updated (as already explained above), followed by
a run of the assignment procedure and an analysis of the results (method: Check
Assignment results).

If there is no current sector II assignment, the departure to the next scheduled
Delivery is initiated. Vehicle status is set to driving and the attributes waiting order
and end wait are set to the default values “-1” and “∞”, respectively. Afterwards,
a type “B” event is written into tasklist (or into current events, in the case of a zero
travel time) with a specified event time equal to the arrival time at the associated
Delivery location. Finally, the assignment matrix is updated (as explained above),
followed by a run of the assignment procedure and an analysis of the results (method:
Check Assignment results).

• Simulation end time event (“D”-event): This kind of event stops the simula-
tion. It is chosen with a sufficient time lag to the last possible Call-In time and also
to the latest time windows to ensure the processing of all events. This event triggers
analysis and evaluation of the resulting vehicle tours. The results are written into
an Excel logfile.

The output file has the same structure as in the MNS procedure. The first worksheet
contains a summary of results (cp. Table 4.3), the second worksheet contains a
detailed vehicle scheduling for each vehicle (cp. Table 4.4), and the third worksheet
shows the planning results from an order based perspective (cp. Table 4.5).

Now, the method Check Assignment results is considered in more detail. It is called
each time when a planning run of the solution procedure for the bipartite assignment
problem is finished. Its main objective is to analyze the planning results for waiting ve-
hicles that could be immediately affected by new assignment decisions.

Vehicles with status driving, however, are not considered, since they cannot be imme-
diately affected by the planning results. Current assignment decisions concerning those
(driving) vehicles may be updated several times until their next time of availability (ar-
rival at Pickup or Delivery location). Therefore, an early consideration does not make
any sense.

The pseudocode of the method Check Assignment results is given in Table 4.6.

Basically, three options are checked for each waiting vehicle:

• Case 1: A new real order is assigned to the real vehicle and the vehicle is not
waiting for another task.

Here, a “B” type event is written into current events to check the new order-to-
vehicle assignment and to initiate potential departure.

• Case 2: A new real order is assigned to the real vehicle and the vehicle is waiting
for a different task (departure to a new real order’s Pickup or to a Delivery).
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01: For (int i=1, i ≤ number of real vehicles, i++) {
02: If (vehicle status(i) == ‘‘waiting’’) {
03: If (real order is assigned to vehicle(i)) {
04: If (assigned order(i) �= ‘‘waiting order(i)’’) {

//hence: there was none or a different assignment before

05: Write a ‘‘B’’-type event into current events

06: If (‘‘end wait’’ �= ∞) { //hence: there was a different assignment before

07: Remove obsolete ‘‘C’’-type entry from tasklist or current events

08: Set variables: ‘‘waiting order(i)’’ = -1 and ‘‘end wait(i)’’ = ∞
09: }
10: }
11: }
12: Else { //hence: no real order is currently assigned to vehicle i

13: If (‘‘waiting order(i)’’ �= -1 & scheduled task = Pickup) {
//hence: there was an assignment before

14: Remove obsolete ‘‘C’’-type entry from tasklist or current events

15: Set variables: ‘‘waiting order(i)’’ = -1 and ‘‘end wait(i)’’ = ∞
16: If (further scheduled activities (Deliveries) are available for vehicle i) {
17: Apply re-scheduling for vehicle i, based on current simtime

18: Write a ‘‘B’’-type event into current events

19: }
20: }
21: }
22: }
23: }

Table 4.6: Pseudocode of method Check Assignment results

Here, also a “B” type event is written into current events to check the new order-
to-vehicle assignment and to initiate potential departure. In addition, an obsolete
“C” type event from the formerly scheduled task (end of the waiting time to arrive
punctually at the old order’s Pickup or Delivery location) has to be removed from
tasklist or current events. The vehicle attributes waiting order and end wait are
reset to the default values “-1” and “∞”, respectively.

• Case 3: No real order is assigned to the real vehicle, but there was a real order
assignment before.

Here, in a first step the obsolete “C” type event from the formerly assigned real
order has to be removed from tasklist or current events. In addition, the vehicle
attributes waiting order and end wait are reset to the default values “-1” and “∞”,
respectively.

Afterwards, it is checked if there are further scheduled Delivery events available for
the considered vehicle. If this is true, a re-scheduling is applied based on the current
simulation time. Then a type “B” event is written into current events to initiate
potential departure to the next Delivery location.

In the following section, a comparison of both procedures that have been introduced in
Section 4.1 and 4.2 is carried out.

4.3 A Comparison of Both Procedures

Both procedures, MNS and the Assignment based procedure, can be characterized ac-
cording to the configuration framework for dynamic algorithms that was proposed
in Section 2.1. The particular attributes are summarized in Tables 4.7 and 4.8 for MNS
and the Assignment based procedure, respectively.
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The first procedure uses a classical Best Insertion algorithm combined with improvement
measures making use of multiple neighborhoods as technique of adjustment. The second
procedure applies an optimal bipartite assignment algorithm that triggers order-to-vehicle
assignment. For calculation of the order-to-vehicle assignment costs, procedure one uses
a classical Best Insertion technique that investigates all possible insertion options. In
contrast, the second procedure applies a specific Best Insertion variant that only allows
for the insertion of a Pickup at the first scheduling position.

Insertion based procedure with Multiple Neighborhood Search
technique of adjustment - classical Best Insertion + Multiple Neighborhood Search
reaction of adjustment - constructive, updating former planning results
frequency of adjustment - time driven replanning
duration of adjustment - time limit based with fixed anticipation horizon
synchronisation of adjustment - extensive simultaneity of plan execution and planning
scope of adjustment - restricted, not all real-life options are allowed

Table 4.7: Characteristics of the first planning approach, according to the Dynamic Algo-
rithm Configuration Framework

Assignment Based Procedure
technique of adjustment - optimal bipartite assignment, based on specific Best Insertion
reaction of adjustment - from scratch
frequency of adjustment - event-based replanning
duration of adjustment - zero time
synchronisation of adjustment - extensive simultaneity of plan execution and planning
scope of adjustment - restricted, not all real-life options are allowed

Table 4.8: Characteristics of the second planning approach, according to the Dynamic
Algorithm Configuration Framework

The reaction of adjustment is developed as follows. In the first procedure, new dynamic
information is incorporated in a constructive way, simply updating the results of the last
planning run and not discarding the old solution. The second procedure actually performs
a from scratch re-planning. A new dynamic information may result in a complete change
of all prior assignment decisions as long as these decisions have not yet been ultimately
fixed.

The next characterizing attribute is the frequency of adjustment. In the first proce-
dure, a new replanning run is triggered periodically by elapsed time (time-based). Thus,
the time available to the algorithm for inclusion of new information and for improvement
operations is known to be at a prespecified constant level, equal to the anticipation hori-
zon (duration of adjustment).

The second procedure, however, performs an event-based replanning technique. This en-
sures immediate reaction, but, on the other hand, does not guarantee predictable infor-
mation on the time available for replanning runs. Consequently, an algorithm is chosen
that ensures a zero-time duration of adjustment.

Synchronization of adjustment is performed in a similar way in both approaches. Plan
execution and replanning run simultaneously, with the algorithm being allowed to change
all decisions which are not fixed. In the first approach, an anticipation horizon, which
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has to be chosen as > 0 time units, is introduced and triggers fixation of all events that
are due in the horizon, as well as fixation of all dependent events. The associated rolling
horizon approach produces planning certainty for the vehicles in execution and defines a
clear field of changeable scheduling options to the planning algorithm, thus keeping plan
in execution and plan updates consistent.

The second approach works without such an anticipation horizon. Since replanning time
is near zero, it is assumed that a decision can be executed immediately. Fixation is not
applied in order to achieve simultaneity, but only in the case of a departure event that
induces ultimate fixation to parts of the scheduling.

Since technically possible real-life options like “en route diversion” or “transshipment”
are not supported in both procedures, the scope of adjustment must be described as
restricted twice.

It can be concluded that both procedures use quite differing concepts to cope with dynamic
information. In order to prove and compare the performance of these planning approaches,
some suitable test data sets are needed.

4.4 Test Data

In the following, two test data sets for the dynamic MLPDP with soft time windows are
presented. The first one is self-generated with the help of an own data generator and covers
the originally intended “capacitated” dynamic MLPDPTW (real-life application: Dial-A-
Ride services). The second data set is adopted from the literature and was chosen because
of its good documentation and availability of detailed results. This data set covers the
slightly differing case of an “uncapacitated” dynamic MLPDPTW (real-life application:
Express Mail Delivery). Both procedures from Sections 4.1 and 4.2 are capable of solving
the uncapacitated problem version by simply setting each vehicle’s capacity to infinity.

4.4.1 Self-Generated Test Scenarios

The self-generated data sets (partially based on Ivankina, 2004) basically consist of three
components: an underlying node network, dynamic and static orders and available vehi-
cles. Subsequently, different specifications of these three components are presented, which
can be combined in all possible ways. A specific selection (node network, order charac-
teristic, vehicle characteristic) is handed as input information to a data generator, which
produces the desired test instance.

Node Network

Two node networks are available (cp. Figure 4.16). Each network contains 1000 possible
customer locations characterized by an x- and y- coordinate. The distance between these
nodes is calculated using the Euclidean metric. Vehicles are located at a central depot
with coordinates (x=0, y=0).

• network 1 is a circle with a radius of 15km. Within the circle, there is a randomly
located cluster, covering 20% of total circle area and containing 40% of all nodes.
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The remaining 60% of nodes are equally distributed across the remaining circle area.

• network 2 is also circle shaped, with a radius of 15km. However, the number of
randomly located clusters is increased to three, with two clusters covering 10% of
the circle area and incorporating 25% of nodes each. The third cluster covers 5%
of the circle area and possesses 20% of all nodes. Again, the remaining nodes are
equally distributed across the cluster free circle area.

Figure 4.16: Node network 1 (left) and node network 2 (right) - distribution of customers

Static and dynamic orders

The second choice concerns the order characteristic. For every instance, 1000 orders are
generated by randomly choosing Pickup and Delivery locations out of the available net-
work nodes. Each order is specified to consume one unit of available vehicle capacity.
Furthermore, at every Pickup and Delivery location, a loading/unloading time of 2 min-
utes has to be scheduled.

In the following, some basic settings for the dynamic and static order generation are ex-
plained:

The dynamic orders’ Call-In times are chosen as equally distributed in the time interval
[09:00, 17:00] with a 30-minute time gap between Call-In and EPT. Hence, the latest
time window opening may be scheduled at 17:30 (for an order with Call-In at 17:00). The
Pickup time window has a width of 45 minutes (LPT = EPT + 45 min), the Delivery
time window opens 15 minutes after EPT and has a width of 90 minutes (LDT = EDT
+ 90 min). This time window characteristic is denoted (45,15,90).

The static orders are assumed to be known before 9:00. Here, EPT is chosen to be equally
distributed in the interval [09:00, 13:00]. In contrast to the dynamic requests, the time
windows of static orders have a width of 4 hours, for both, Pickup and Delivery. As in the
dynamic case, the Delivery time window opens 15 minutes after EPT. This time window
characteristic is denoted (240,15,240)

These basic setting can be changed as follows:

• The time gap between Call-In and EPT may be varied. The basic setting with a
time gap of 30 minutes is supplemented by five additional options: 0 min, 5 min,
10 min, 15 min, 20 min, and 25 min.
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• The time window width of dynamic orders may be varied. The basic setting of
(45,15,90) is complemented by the options (15,15,30), (30,15,60) and (60,15,120).

In addition, the total share of dynamic and static orders has to be specified. Here, varying
degrees of dynamism between 0% and 100% can be chosen in steps of 10%.

Vehicles

At first, some basic assumptions, which are not subject to changes, are explained. Each
vehicle starts and ends its tour at the depot that is specified by the underlying network.
Regular operating time is defined as in the interval [09:00, 19:00]; afterwards penalty costs
for overtime are charged. It is assumed that a vehicle drives at an average speed of 30km/h.

There are two settings that can be changed:

• The number of vehicles may be varied in the interval between 42 and 50.

• The vehicle capacity may be varied between 1 and 7 units.

With the specified characteristics, the data generator is capable of producing 38 808 dif-
ferent instances (combinations of networks, order and vehicle characteristics). Table 4.9
shows six main scenarios and the associated number of instances that have been cho-
sen for detailed consideration in Section 4.5.

Scenarios 1 and 2 allow for an investigation of the impact of varying degrees of dynamism
on solution quality. In addition, it can be analyzed whether the use of the different un-
derlying networks 1 and 2 causes any variations in solution quality. In scenario 3, the
reaction time that is given to the procedure in order to handle new information is succes-
sively decreased. Scenario 4 focuses on the impact of reduced and increased time window
opening time. In scenario 5, the number of vehicles is successively reduced.

Finally, scenario 6 allows for an analysis of the two procedures’ behavior in the case of
varying vehicle capacity. This is of special interest for a comparison with the second test
scenario from the literature, which (as already mentioned) deals with the uncapacitated
problem version.

4.4.2 Benchmark Data from the Literature

The chosen data set created by Gendreau et al. (2006) is of special interest, since the
authors do not only publish average benchmark results, but also detailed objective func-
tion values for each of the 15 instances. In the following, the generation process of the
instances is explained in detail. Afterwards an analysis is conducted in order to compare
the specific characteristics of the data set scenarios. Finally the benchmark results, which
were reported by Gendreau et al. (2006) are listed.

The authors generate a 5km×5km unit square as underlying geographical area with depot
location at point (2.0km, 2.5km). The area is divided into 4×5 rectangular zones, each
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scenario 1 (11 instances)
node network: 1

order characteristics: variation of the degree of dynamism from 0% up to 100%,
dynamic time window characteristic (45,15,90),
time gap Call-In to EPT 30 min

vehicle characteristics: 50 vehicles, capacity 2

scenario 2 (11 instances)
node network: 2

order characteristics: variation of the degree of dynamism from 0% up to 100%,
dynamic time window characteristic (45,15,90),
time gap Call-In to EPT 30 min

vehicle characteristics: 50 vehicles, capacity 2

scenario 3 (7 instances)
node network: 2

order characteristics: degree of dynamism 100%,
dynamic time window characteristic (45,15,90),
variation of the time gap between Call-In and EPT

vehicle characteristics: 50 vehicles, capacity 2

scenario 4 (4 instances)
node network: 2

order characteristics: degree of dynamism 100%,
variation of dynamic time window characteristic,
time gap Call-In to EPT 30 min

vehicle characteristics: 50 vehicles, capacity 2

scenario 5 (9 instances)
node network: 1

order characteristics: degree of dynamism 100%,
dynamic time window characteristic (45,15,90),
time gap Call-In to EPT 30 min

vehicle characteristics: variation of number of vehicles from 42 to 50, capacity 3

scenario 6 (7 instances)
node network: 2

order characteristics: degree of dynamism 100%,
dynamic time window characteristic (45,15,90),
time gap Call-In to EPT 30 min

vehicle characteristics: 50 vehicles, variation of vehicle capacity from 1 to 7

Table 4.9: Investigated test scenarios generated with own data generator
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possessing a specific probability between 0.01 and 0.13. A fixed number of vehicles (10
or 20) is available at the depot. Those vehicles move with a constant average speed of 30
km/h and have to return to the depot at the end of their trips. Distances within the unit
square are calculated with the Euclidean metric.

For generation of dynamic requests (cp. Figure 4.17), the selected planning horizon (450
min or 240 min) is divided into five time periods: early morning, late morning, lunch
time, early afternoon, and late afternoon. The lunch time period is half the length of the
others, which are of equal length. Thus, for a 450 min planning horizon, a lunch time
period has a duration of 50 minutes, while the other time periods have a duration of 100
minutes.
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Figure 4.17: Generation process of dynamic requests

The arrival of new requests is modeled with a Poisson process, having different arrival
intensities for the respective time periods. Generally, two sets of intensity parameters λ
(requests per minute) are available: (0.75, 1.10, 0.25, 0.40, 0.10) and (0.55, 0.70, 0.10,
0.40, 0.10), which lead on average to 33 and 24 requests per hour, respectively. Each time
a new request occurs, its Pickup and Delivery locations are allocated to one of the zones
of the geographical area according to the associated probabilities.9

In addition, a service time of five minutes has to be scheduled at each location.

Under these basic conditions, the authors create three test scenarios with increasing stress
for the planning procedure:

• A 450-minute horizon with arrival intensity of 24 requests per hour and a vehicle
fleet size of 20 (“req rapide x 450 24”),

• a 240-minute horizon with arrival intensity of 24 requests per hour and a vehicle
fleet size of 10 (“req rapide x 240 24”), and

• a 240-minute horizon with arrival intensity of 33 requests per hour and a vehicle
fleet size of 10 (“req rapide x 240 33”).

9 The determination process of exact locations within the zones is not specified in the publication.
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scenario I: req_rapide_x_450_24

• run-time: 7.5 hours (8:00 – 15:30)
• Ø arrival intensity: 24 orders/h

• total number of orders (x=1..5):
(169, 176, 206, 215, 202)
Ø no. of orders/h (x=1..5):
(22.53, 23.47, 27.47, 28.67, 26.93)

• Ø arrival profile of orders:
(1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h) 
(33, 36, 42, 18, 21, 21, 6, 3, 0)

• width of time windows:
P: Ø 1h48, min: 0h00, max: 5h33
D: Ø 1h41, min: 0h00, max: 6h43

• gap Call-In to EPT and LPT:
EPT: Ø 1h32, min: 0h00, max: 6h53
LPT: Ø 3h21, min: 0h30, max: 7h13

• gap EPT to EDT:
Ø 1h13, min: 0h06, max: 6h25

• 20 vehicles

• operating time: 
9000 min (8:00 – 15:30)

• traveling: 180*(2+2)+ 20*2=760 min
• loading: 180*(5+5)= 1800 min
• waiting: 6440 min

• utilization: 28%

scenario II: req_rapide_x_240_24

• run-time: 4 hours (8:00 – 12:00)
• Ø arrival intensity: 24 orders/h

• total number of orders (x=1..5):
(84, 94, 93, 90, 85)
Ø no. of orders/hour (x=1..5):
(21, 23.5, 23.25, 22.5, 21.25)

• Ø arrival profile of orders:
(1h, 2h, 3h, 4h)
(34, 34, 20, 8)

• width of time windows:
P: Ø 0h58, min: 0h00, max: 2h40
D: Ø 0h55, min: 0h00, max: 2h53

• gap Call-In to EPT and LPT:
EPT: Ø 0h45, min: 0h00, max: 3h35
LPT: Ø 1h44, min: 0h30, max: 3h45

• gap EPT to EDT:
Ø 0h41, min: 0h06, max: 2h44

• 10 vehicles

• operating time: 
2400 min (8:00 – 12:00)

• traveling: 96*(2+2)+ 10*2=404 min
• loading: 96*(5+5)= 960 min
• waiting: 1036 min

• utilization: 56.8% 

scenario III: req_rapide_x_240_33

• run-time: 4 hours (8:00 – 12:00)
• Ø arrival intensity: 33 orders/h

• total number of orders (x=1..5):
(144, 112, 111, 119, 153)
Ø no. of orders/hour (x=1..5):
(36, 28, 27.75, 29.75, 38.25)

• Ø arrival profile of orders:
(1h, 2h, 3h, 4h)
(47.33, 54.66, 22.11, 8.04)

• width of time windows:
P: Ø 0h53, min: 0h01, max: 2h48
D: Ø 0h47, min: 0h00, max: 3h10

• gap Call-In to EPT and LPT:
EPT: Ø 0h39, min: 0h00, max: 3h20
LPT: Ø 1h33, min: 0h30, max: 3h44

• gap EPT to EDT:
Ø 0h35, min: 0h06, max: 3h01

• 10 vehicles

• operating time: 
2400 min (8:00 – 12:00)

• traveling: 132*(2+2)+10*2=548 min
• loading: 132*(5+5)= 1320 min
• waiting: 532 min

• utilization: 77.8%

Figure 4.18: Characteristic of three test scenarios, each including five instances (x=1...5)

For each of these scenarios, five instances are generated (x=1...5), resulting in an overall
number of 15 dynamic instances. Figure 4.18 shows a detailed analysis of the associated
data sets. The first column scenario entries are exemplarily explained in the following.

At the beginning, general information on the planning horizon (7.5 hours) and on the
average order arrival intensity (24 orders per hour) is repeated. Afterwards, the total
number of orders and the resulting average number of orders per hour are given for the
five instances. Due to stochasticity within the generation process, the numbers differ
slightly from instance to instance. In a next step, an average order arrival profile is
shown for all instances: e.g. indicating that in the third hour of the planning horizon, a
peak of 42 orders is assumed to arrive, whereas there are only 3 expected orders in the
seventh hour.

The average width of the time windows is analyzed to be 1h48min and 1h41min for Pickup
and Delivery, respectively. In addition, a range in form of minimum and maximum values
is given for both, Pickup and Delivery time window widths. Another interesting point
is the gap between Call-In and the Pickup time window (EPT and LPT), which is listed
subsequently. While average reaction time (LPT - Call-In) is 3h21min, the analysis also
shows the possibility of a very short reaction time of 30 minutes. Furthermore, the gap
between EPT and EDT is specified with an average length of 1h13min, a minimum value
of 0h06min and maximum value of 6h25min.
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In the next row, the number of available vehicles (20) is listed. This is followed by a cal-
culation of the approximate utilization if all requests were served in regular operating time:

The total regular operating time of 20 vehicles (each available for 7.5 hours) is 9000 min-
utes. The approximated total travel time is 760 minutes and consists of two minutes
for each trip to one of the 180 Pickup locations, of two minutes for each trip to the 180
Delivery locations and of two minutes for each of the vehicles to return to the depot at the
end of the day.10 The approximated total travel times11 and the loading times (1800 min)
are subtracted from the total regular operating time, which results in a vehicle waiting or
idle time of 6440 minutes. This induces an approximate vehicle utilization of 28%.

The increasing stress from scenario one up to three can be easily reconstructed by in-
creasing utilization values of 56.8% and 77.8%, in scenarios 2 and 3, respectively.

The solution approach that was applied to the proposed test data sets (Parallel Tabu
Search with Adaptive Memory) has already been explained in Section 3.3.1.2. The objec-
tive function includes travel time, delay and overtime, which are weighted equally. The
achieved benchmark results for all 15 instances are listed in Table 4.10: The first column
shows the declaration of the associated instance, the subsequent columns include objective
function values for travel time, delay and overtime (in minutes). These values are taken
as benchmarks.

req rapide x 450 24 travel time delay overtime
x = 1 539 min 1 min 0 min
x = 2 614 min 3 min 1 min
x = 3 629 min 2 min 1 min
x = 4 700 min 6 min 5 min
x = 5 694 min 0 min 0 min

req rapide x 240 24 travel time delay overtime
x = 1 336 min 65 min 55 min
x = 2 386 min 68 min 53 min
x = 3 352 min 139 min 98 min
x = 4 359 min 38 min 31 min
x = 5 348 min 75 min 52 min

req rapide x 240 33 travel time delay overtime
x = 1 473 min 4392 min 699 min
x = 2 402 min 867 min 297 min
x = 3 455 min 853 min 303 min
x = 4 434 min 1104 min 348 min
x = 5 495 min 4121 min 687 min

Table 4.10: Benchmark results for the 15 test instances of Gendreau et al. (2006)

10 The average travel times to Pickup locations, to Delivery locations and back to the depot are based
on an ex-post analysis of the planning results that have been achieved with the procedures from Sections
4.1 and 4.2.

11 The calculation of total travel time also includes empty travel times, e.g. the trip to the first Pickup
location or the last trip back to the depot. The ex-post analysis of the planning results shows that most
of the trips to Pickup locations are, however, performed by already loaded vehicles.



108 Chapter 4. Development and Evaluation of two Dynamic Planning Procedures

4.5 Computational Results and Performance Analy-

sis

This section contains computational results for the self-generated data set and the data
set from the literature. The first subsection 4.5.1, which includes the test results for the
self-generated data sets, focuses on the relative comparison of both introduced dynamic
procedures for varying dynamic test scenarios. The second subsection 4.5.2, which in-
cludes the test results for the data sets from the literature, does not only allow for a
relative comparison of both procedures, but also for a comparison with other benchmark
results. Finally, it is analyzed if the differences of the applied data sets (capacitated ve-
hicles, in the case of the self-generated instances and uncapacitated vehicles, in the case
of the instances from the literature) lead to major differences in the procedures’ planning
performance.

4.5.1 Computational Results for Self-Generated Test Scenarios

In Section 4.4.1, six main scenarios with different variations were generated. All associated
instances are solved with MNS and with the Assignment based procedure on a desktop
PC (Intel Core 2 CPU, 2.40 Ghz, 3 GB RAM). MNS simulations are run with simulation
speed s = 1 (real time), for the Assignment based procedure an event based simulation is
applied. In the following, the results of both procedures are visualized in three diagrams
per scenario, which include the three objective function criteria: travel time, delay and
overtime.

Table 4.11 shows the parameter and penalty cost settings that are chosen for MNS and
for the Assignment based procedure. Parameterization has been accomplished for a basic
scenario consisting of node network 2, 100% dynamic requests, time window characteristic
(45,15,90), and a vehicle capacity of 2.

MNS Assignment
internal parameters internal parameters
initial improvement avg. time to Pickup: 8 min
duration: 60 min avg. time to Delivery: 11 min
neighborhoods I:II:III 1:1:1 matrix calculations

general improvement: a: 150
neighborhoods I:II 2:1 b: 600

tabu time: 30 min c: 3
anticipation: 3 min c empty: 10 000
penalty costs penalty costs
c traveling (per min): 90 c traveling (per min): 300
c delay (per min): 10 000 c delay (per min): 1200
c wait (per min): 0 c wait (per min): 60
c overtime (per min): 10 000 c overtime (per min): 1200

Table 4.11: Parameter settings for self-generated test data sets

Figures 4.19, 4.20, and 4.21 exemplarily show the parameterization of the MNS antici-
pation horizon. The anticipation horizon is varied between 1 minute and 10 minutes in
steps of 1 minute. Figure 4.19 illustrates the resulting travel times, Figure 4.20 includes
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Figure 4.19: Travel time for diff. anticip. horizons (100% dyn. orders, netw. 2, cap. 2)
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Figure 4.20: Delay for diff. anticip. horizons (100% dyn. orders, netw. 2, cap. 2)
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Figure 4.21: Overtime for diff. anticip. horizons (100% dyn. orders, netw. 2, cap. 2)
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the resulting delay, and Figure 4.21 contains the resulting overtime. Best results in all
three categories are achieved with an anticipation horizon of 3 minutes. Therefore, this
parameter setting is chosen for the subsequent tests.

The other parameters are determined in analogical manner for the same basic scenario.
At this point, the question of whether it is sufficient to test all instances with the same
parameter settings may arise. Especially, in the case of a low degree of dynamism, other
parameter settings may perform better. However, since these tests are focused on a
relative comparison of both proposed dynamic procedures, such an individual parameter-
ization for every instance is not necessary. On the contrary, results for varying data set
characteristics, based on the basic parameterization, allow for additional insights into the
procedures’ robustness.

Scenarios 1 and 2 investigate the procedures’ performance for varying degrees of dy-
namism and different underlying node networks. The first column of Figure 4.22 shows
the results of the objective function criteria travel time, delay and overtime for network
1. The second column of Figure 4.22 illustrates the results for network 2.

In the first case (network 1), in eight of eleven instances (exceptions: degree of dynamism
70%, 80% and 90%) the Assignment based procedure generates significantly better results
in travel time (-3.8% on average) and delay (-47.5% on average). Overtime remains at
a relatively low level for both procedures. Due to an outlyer at a degree of dynamism
of 80%, the average overtime of the Assignment based procedure is worse compared to
MNS (+32.4%). In the second case (network 2), the situation is quite similar: for all
degrees of dynamism, except 90%, the Assignment based procedure performs better. In
comparison with MNS, an average reduction in travel time (-5.5%), delay (-53.1%) and
overtime (-12.7%) can be achieved.

The choice of the underlying node network induces some variations in the objective func-
tion values; the general conclusion of a better performing Assignment based procedure,
however, is identical for both node networks. Therefore, the choice of different node net-
works (within the range of the available test data) is not assumed to generate significant
changes to the overall conclusions.

A general behavior of solution quality in dependency of the degree of dynamism cannot
be observed. The intuitive assumption would be a better solution quality with decreasing
degree of dynamism, since there is more information available at an earlier time.

There may be several reasons for not discovering such a behavior. A dynamic algo-
rithm is specialized to run on a dynamic instance, thus its performance on a more or
less static instance may be worse. In addition, there is the question of the appropriate
parameterization of the dynamic algorithms when applying them on static instances. The
parameterization for a degree of dynamism of 100% may be not the best choice for a low
degree of dynamism.

Another aspect could be related to the workload that has to be handled by the algorithm.
In the static case, there is a huge initial workload with a huge solution space. In the
dynamic cases, however, the information is revealed little by little, which reduces the
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possible alternatives. In this way, the revealment of dynamic information may “guide”
the dynamic algorithm, by retaining some currently unimportant information. Similar
experiences have been noted by other authors. Larsen et al. (2004) find “high variability
over the entire dod spectrum” and conclude that “lower dod problems are harder to solve,
because they involve larger instances than their higher dod counterparts”.

In scenario 3, the time gap between Call-In and Earliest Pickup Time (EPT) is varied
between 0 minutes and 30 minutes, in steps of 5 minutes. The underlying basic scenario
contains the nodes of network 2, vehicles with a capacity of 2, the time window charac-
teristic (45,15,90), and 100% dynamic customers.

The results are shown in the third column of Figure 4.22. Travel time decreases slightly
for both procedures when the time gap is increased. The delay of the MNS procedure
can be reduced significantly when a higher time gap is chosen. The delay of the As-
signment based procedure remains on a permanently low level. The improved results
which are achieved with longer time gaps are plausible, since there is a longer reaction
time available to the algorithm. This especially benefits the improvement process of MNS.

Reductions in travel time and delay come along with a small increase in overtime for both
procedures. This negative effect, however, is outweighed by far through the improvements
in the other objective function criteria, and can be attributed to an internal trade off that
accepts a small worsening in overtime in order to achieve significant better results for
travel time and delay. In all instances of scenario 3, the better performance of the As-
signment based procedure is beyond question.

Scenario 4 deals with a variation of the time window characteristic. The original char-
acteristic (45,15,90) is changed to the shorter time window characteristics (15,15,30) and
(30,15,60), as well as to the longer time window characteristic (60,15,120). As further set-
tings, node network 2, vehicles with capacity 2 and 100% dynamic customers are chosen.

By trend, it can be observed that smaller time windows result in an increase in travel
time, delay and overtime (cp. Figure 4.23, column 1). When comparing the performance
of both dynamic procedures, an interesting behavior can be found. While the Assignment
based procedure produces better results for the two “longer” time window characteristics,
the picture changes for the two “shorter” characteristics. Here, the application of MNS
produces better results in all three objective function criteria.

In scenario 5, the impact of a reduced number of available vehicles is investigated. Start-
ing at the original number of 50 vehicles, the number is reduced successively to 42. As
further settings, node network 1, vehicles with capacity 3, time window characteristic
(45,15,90), and 100% dynamic customers are chosen.

The Assignment based procedure’s advantage in solution quality persists up to a level of 46
available vehicles (cp. Figure 4.23, column 2). Afterwards, for a smaller number of vehi-
cles, MNS achieves better solution quality. For a number of 44 down to 42 vehicles, there
is a dramatic worsening of the Assignment results in delay and overtime. An increase of
delay and overtime can also be recognized for MNS, but with a much more moderate rise.
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For the travel time criterion, an antithetic behavior of the procedures’ results can be ob-
served. With the reduction of the number of vehicles, the travel time generated by the
Assignment based procedure shows an increasing trend. Travel time generated by MNS,
however, shrinks with a decrease of available vehicles.

The first behavior is the intuitive one. However, there are some reasons the behavior of
the MNS results can be attributed to:

• With a sufficient number of vehicles, an urgent order is preferably transported by
an immediately available vehicle to ensure on time arrival. For this purpose, some
extra travel time may be accepted. However, if there is a situation of many urgent
orders, minimization of travel time may become the decisive aspect. Suppose two
orders, whose immediate execution results in an identically high level of penalty
costs for delay. MNS will schedule these orders according to travel time criteria,
since there is no more possible differentiation based on the urgency costs.

• There is also a second reason for the decrease in travel time: if the number of vehicles
is reduced, there is also a direct reduction in total travel time, since less vehicles
have to return from their last tour position back to the depot.

Generally, it can be concluded that MNS has the better capability to cope with a situa-
tion of a scarce number of vehicles.

Finally, in scenario 6, the vehicle capacity is varied in the interval from 1 to 7 (cp. Fig-
ure 4.23, column 3). As further settings, node network 2, vehicles with capacity 2, time
window characteristic (45,15,90), and 100% dynamic customers are chosen.

Considering the travel time results, a better performance of the Assignment based proce-
dure can be observed at the capacity levels from 1 to 4; afterwards, at capacity levels from
5 to 7, MNS produces better results. Delay and overtime results of Assignment and MNS
are not very different. From capacity levels 2 up to 7, the results are nearly identical.
Only at a capacity level of 1 there is a small variation: while MNS achieves a better result
in category delay, the Assignment based procedure produces a smaller overtime.

In summary, better results for the self-generated test data sets are achieved with the As-
signment based procedure. Nevertheless, in some scenarios (with major deviations from
the parameterized basic scenario), the Assignment based procedure shows a less robust
behavior with a significant decline in objective function value. Especially in the situation
of vehicle scarcity, the results in delay and overtime reach inacceptable levels.

When compared to the Assignment based procedure, MNS generates inferior results on
average. However, for some degrees of dynamism (around 90%), the produced results are
competitive or even better. In addition, a good adaptability to changing conditions is
exhibited: especially in situations of short time windows, scarcity of vehicles, and also for
less capacity restricted situations proper results can be observed.
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4.5.2 Computational Results for Benchmark Data from the Li-
terature

In Section 4.4.2, the three test scenarios published by Gendreau et al. (2006) are presented
and analyzed in detail. All associated 15 instances are solved with MNS and with the
Assignment based procedure on a desktop PC (Intel Core 2 CPU, 2.40 Ghz, 3 GB RAM).
MNS simulations are run with simulation speed s = 1 (realtime). In the following, the
results of both procedures are visualized in three diagrams per scenario, which include
the three objective function criteria: travel time, delay and overtime.

Table 4.12 shows the parameter and penalty cost settings that are chosen for MNS and
for the Assignment based procedure. Parameterization was accomplished for scenario
req rapide 1 240 33.

MNS Assignment
internal parameters internal parameters
initial improvement avg. time to Pickup: 2 min
duration: 60 min avg. time to Delivery: 2 min
neighborhoods I:II:III 1:1:1 matrix calculations

general improvement: a: 150
neighborhoods I:II 2:1 b: 600

tabu time: 30 min c: 3
anticipation: 1 min c empty: 10 000
penalty costs penalty costs
c traveling (per min): 90 c traveling (per min): 100
c delay (per min): 10 000 c delay (per min): 300
c wait (per min): 0 c wait (per min): 3
c overtime (per min): 10 000 c overtime (per min): 3

Table 4.12: Parameter settings for test data sets from the literature

The results for the first scenario req rapide x 450 24 with the lowest stress level are
visualized in Figures 4.24, 4.25 and 4.26. In all five instances (x = 1..5), a better per-
formance of MNS, compared with the Assignment based procedure, can be observed: on
average, travel time is reduced by 20%, delay by 68% and overtime by 59%.

In comparison with the benchmark results from literature, however, the results generated
by MNS are outperformed itself. Especially in travel time, the benchmark results are on
average 11% better than MNS. At least in categories delay and overtime, MNS achieves
three improvements of the benchmark results: for instances x = 1 and 2, delay and over-
time are reduced to zero; for instance x = 4, the benchmark result is undercut by 50% in
delay and by 60% in overtime.

The results for the second scenario req rapide x 240 24 - with medium stress level -
are visualized in Figures 4.27, 4.28 and 4.29. A comparison of MNS and the Assignment
based procedure again results in significant advantages of MNS: on average, travel time is
reduced by 15%, delay by 38% and overtime by 29%. The Assignment based procedure
only achieves slightly better delay and overtime values in one instance (x = 5); travel
time, however, remains on a definitely inferior level.
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Figure 4.24: Travel time for test scenarios req rapide x 450 24
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Figure 4.25: Delay for test scenarios req rapide x 450 24
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Figure 4.26: Overtime for test scenarios req rapide x 450 24
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Figure 4.27: Travel time for test scenarios req rapide x 240 24
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Figure 4.28: Delay for test scenarios req rapide x 240 24
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Figure 4.29: Overtime for test scenarios req rapide x 240 24
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Figure 4.30: Travel time for test scenarios req rapide x 240 33
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Figure 4.31: Delay for test scenarios req rapide x 240 33
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Figure 4.32: Overtime for test scenarios req rapide x 240 33
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As in the first scenario, the benchmark results cannot be reached on average. The travel
times reported by Gendreau et al. (2006) are still 7% better than the MNS results. For
instance x = 2, the MNS results for travel time, delay and overtime are at least on a par
with the benchmark.

The last scenario req rapide x 240 33 exhibits the highest stress level. The associated
results are presented in Figures 4.30, 4.31 and 4.32. The comparison of MNS and Assign-
ment results still shows better performance of MNS, but MNS’s advantage is diminishing.
On average, travel time is better by 17%, delay by 7% and overtime by 4%. In three
scenarios (x = 1,2 and 4), the Assignment results in delay and overtime reach the same
or a better level than MNS.

In comparison with the benchmark results, MNS generates absolutely competitive results
(cp. Figure 4.33). The average delay is 2.4% better (!) than the results published by
Gendreau et al. (2006). Average travel time and overtime are only 6% and 1% worse,
respectively. For instances x = 1,2,4, and 5, MNS achieves the same or even better results
in delay and overtime.

Figure 4.33: Relative comparison of results for test scenarios req rapide x 240 33

In summary, for the comparison of MNS and the Assignment based procedure, a clearly
better behavior of MNS can be observed. For all 15 instances, MNS produces much bet-
ter results in travel time and for 12 instances, there are also better results in delay and
overtime. The best results of the Assignment based procedure are achieved for scenario 3,
for which the parameterization was performed. The gap of the results between MNS and
Assignment increases all the more as the test data differ from the parameterized instance.
Consequently, the solution quality produced by Assignment drops from scenario 3, over
scenario 2, to scenario 1. MNS is much more capable of persisting on a data set with
differences to the parameterized one.

Beyond that, MNS is able to attain results on a par with the benchmark results. For the
parametrized scenario 3, competitive results or even better results are generated. To put
these results in perspective, it should be mentioned that Gendreau et al. (2006) applied
much more computation power (parallel computing network with 16 processors) to achieve
the benchmark results.
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4.6 Selection of a Procedure for the Real-Life Appli-

cation

At this point, the results of both data sets have been presented. Now, the question of
what procedure to adapt to the real-life scenario in Chapter 5 arises. In the following,
the pros and cons of both procedures are discussed, and one is finally selected.

Comparing the solution quality, the conclusions for the two test data sets do not coincide
exactly. For the self-generated data sets, better performance (in the objective func-
tion criteria travel time, delay and overtime) of the Assignment based procedure is
observed, while for the benchmark data from the literature, the contrary is true (better
performance of MNS). How can that be explained?

The most plausible reason is the use of capacitated vehicles in the first and of uncapaci-
tated vehicles in the second test data set. MNS seems to be better in the uncapacitated
context and the Assignment based procedure in the capacitated case. This assumption,
is supported by the findings of scenario 6 of the self-generated test data set. Here, MNS
is able to achieve superior results in the case of extended vehicle capacities of 6 and 7
units, whereas better results for the low capacity instances (1 up to 4 units) are achieved
by Assignment.

In terms of robustness, an advantage of MNS can be detected for both data sets. While
the Assignment based procedure generates better results on average for the self-generated
test scenarios, some data variations (e.g., reduction of available vehicles) result in an in-
acceptable worse solution quality of the Assignment results. In such cases, MNS shows a
clearly better adaptability. The same behavior can be observed for the data set from the
literature. The more different the scenario is from the scenario used for parameterization,
the more the solution quality decreases in comparison with MNS and the benchmark re-
sults.

A further aspect is the parameterization process itself. The time discrete simulation
of the Assignment based procedure is shorter than the MNS simulation runs that are
accomplished in real time. Nevertheless, the parameterization of the Assignment based
procedure necessitates more effort than the parameterization of MNS for both test data
sets. This is due to a higher number of parameters in Assignment, a strong mutual depen-
dency of the Assignment parameters and a high sensitivity of solution quality to changes
in parameter settings.

In addition, there is also the complexity aspect. Which procedure is better suited for
illustration in practice? This is a subjective assessment. In this work, lower complexity
is associated with MNS. This is attributed to its very intuitive planning steps and the
relatively insensitive parameters (compared to Assignment).

The discussed pros and cons are summarized in Table 4.13: Plus and minus signs indicate
better and worse assessment in the associated category, respectively.

Except for the category performance on self-generated data set (capacitated), MNS achieves
all pluses. This result makes the decision of which procedure to adapt to the real-life sce-
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MNS Assignment
self-generated test data set (capacitated)
performance (objective function criteria):

− +
robustness:

+ −

test data set from literature (uncapacitated)
performance (objective function criteria):

+ −
robustness:

+ −

parameterization effort
+ −

complexity of procedure
+ −

Table 4.13: MNS or Assignment? - pros and cons

nario rather difficult. In particular, because the real-life scenario is a strictly capacitated
problem (SLPDPTW).

Thus, the application of the Assignment based procedure, which performed very well for
such capacitated scenarios, seems to promise “better results”. On the other hand, there
may be some problems with robustness, especially in situations with changing time win-
dow characteristics, in situations of vehicle scarcity, or with general inhomogeneity in the
real-life data.

MNS, in contrast, is expected to produce only “good” results, inferior to the Assignment
ones. However, MNS promises a higher level of robustness. The risk of a complete failure,
due to unknown variations of the data set, is reduced. The aspects of an easier parame-
terization and of a better illustration to people in practice should also not be dismissed.

Finally, after a detailed weighing up of the arguments, the safe way is preferred, selecting
MNS for adaptation to the real-life scenario.



Chapter 5

Real-Life Application at an Interna-
tionally Operating Freight Forward-
ing Company

At the beginning of this chapter, a detailed analysis of the general requirements for long-
haul transportation in Europe is conducted (Section 5.1). Afterwards, the specific planning
situation at the cooperating freight forwarding company is investigated (Section 5.2). In
Section 5.3 the main adjustments applied to the existing MNS procedure are outlined.
In Section 5.4 the preprocessing of the available real-life test data set and the derivation
of benchmark objective function values are illustrated. Finally, computational results,
generated with the adapted MNS procedure for the real-life test data set are presented
(Section 5.5).

5.1 General Requirements for Long-Haul Transporta-

tion in Europe

This section introduces the main requirements that have to be considered for planning
long-haul transportation tasks in Europe. For this purpose, four important categories of
requirements are analyzed:

• Social Regulation12 EC 561/2006,

• Social Regulation AETR,

• Directive13 EC 2002/15 on working hours, and

• General Driving Bans.

The first three aspects are driver related, while the fourth aspect is of general type.

12 A regulation (German: Verordnung) immediately becomes effective, without explicit transfer to national
law. (Ministry of Social Affairs, Baden-Württemberg, 2010)

13 A directive (German: Richtlinie) does not become effective immediately. It has to be transferred to
national law first. (Ministry of Social Affairs, Baden-Württemberg, 2010)

Steffen Schorpp, Dynamic Fleet Management for International Truck Transportation,
DOI 10.1007/978-3-8349-6675-9_5,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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5.1.1 Social Regulation EC 561/2006

In March 2006 the European Parliament and the Council of the European Union passed
the new Social Regulation EC 561/2006 (in the following: EC 561) in order to harmonize
driving and rest period restrictions in the European Union. EC 561 came into effect on
11.04.2007. All subsequent article references refer to the document: European Union
(2006b).

EC 561 was motivated by the fact that it was possible with the former regulation “to
schedule daily driving periods and breaks so that a driver could drive for too long without
a full break, leading to reduced road safety and a deterioration in the driver’s working
conditions (legislation preamble (16)).” This is supported by findings of the European
Safety Council, whereupon driver over-fatigue is responsible for 20% of commercial road
transport crashes (Kok et al., 2009).

The new regulation is applied to carriage by road, when the gross vehicle weight, including
any trailer, exceeds 3.5 tonnes. It is applied to transports, undertaken either exclusively
within the European Union or between the European Union, Switzerland and the coun-
tries party to the Agreement on the European Economic Area (Norway, Liechtenstein and
Iceland).

However, for cross border transports between countries with EC social regulation and
countries having ratified the AETR (European Agreement concerning the Work of Crews
of Vehicles engaged in International Road Transport, e.g. Russia, Belarus, Albania, and
Turkey), AETR must be applied for the whole journey – and not EC 561. Figure 5.1
shows a map with the European countries and their respective membership in EC 561 or
in AETR.

EC 561: Agreement on the 
European Economic Area
and Switzerland

EC 561: European Union

AETR

Figure 5.1: Application of EC 561 and AETR
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The most important aspects of EC 561 will be introduced in the following, differentiated
between single and team driver mode. For this purpose, short definitions, basic rules and
exceptions are outlined for the categories daily driving time, weekly and fortnightly driving
time, breaks, daily rest period, and weekly rest period.

Single Driver Mode

• Daily driving time: The daily driving time is defined as the total accumulated
driving time (measured with a digital tachograph) between the end of one daily rest
period and the beginning of the following daily rest period. The word “daily” is
not necessarily congruent with a weekday. Therefore, the actual meaning would be
better represented by the word “interval”. Daily driving time is limited to 9 hours
(basic rule) and may be extended to 10 hours twice a week (exception).
(article 8(2), article 4k)

• Weekly and fortnightly driving time: The weekly driving time is counted for
a real week (from 0:00 on Monday until 24:00 on Sunday). It must not exceed
56 hours (basic rule). Furthermore, the total driving time during two consecutive
weeks must not exceed 90 hours (basic rule). There is no exception available.
(article 6(2,3))

• Breaks: A break is defined as a non driving period. After a driving period of 4.5
hours, a driver shall take an uninterrupted break of at least 45 minutes (basic rule),
unless he takes a rest period. The break may be split into a break of 15 minutes,
followed by a break of 30 minutes (exception).
(article 7)

• Daily rest period: The daily rest period is a time between two daily driving time
intervals, during which a driver may freely dispose of his time. It regularly has a
duration of at least 11 hours (regular daily rest period, basic rule). Three times
a week, however, it may be reduced to at least 9 hours (reduced daily rest period,
exception). For this reduction no compensation is required. The combination of
an uninterrupted 3-hour rest period with a subsequent 9-hour rest period is also
counted as a regular daily rest period.
(article 4,g)

In addition, a 24-hour-rule has to be considered: Within each period of 24 hours
after the end of the previous daily rest period, a driver shall have taken a new
daily rest period. This means that for a regular daily rest period (reduced daily rest
period) the daily rest period must be started after a 13-hour (15-hour) interval of
activities (driving, loading, breaks, waiting, etc.) at the latest.
(article 8(2))

Figure 5.2 shows two ways of scheduling driving times and daily rest periods:
scheduling with basic rules and scheduling with exceptions.

• Weekly rest period: The weekly rest period is a time in between two weekly se-
quences of driving intervals and daily rest periods, during which a driver may freely
dispose of his time. The weekly rest period has a regular duration of at least 45
hours (regular weekly rest period, basic rule), but may be shortened to a minimum
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Figure 5.2: Basic rule scheduling vs. scheduling with exceptions

of 24 hours (reduced weekly rest period, exception).

Full compensation is needed for this reduction, which means that a 21-hour rest
period has to be attached (en bloc) to another (either daily or weekly) rest period
of at least 9 hours. The compensation has to be accomplished before the end of the
third week after the reduced weekly rest period. See Figure 5.3 for illustration.

24 h 21 h reduced weekly rest period

week 1 after reduction 45 h regular weekly rest period

week 2 after reduction 45 h regular weekly rest period

week 3 after reduction 45 h
regular weekly rest period
with latest possible compensation
for reduced weekly rest period

21 h

Figure 5.3: Latest compensation for a reduced weekly rest period

In addition: two reduced weekly rest periods must not succeed each other. There-
fore, the maximum number of “open, not compensated” reduced weekly rest periods
may be two, before compensation of the first reduced weekly rest period has to be
accomplished at the latest. Generally, a weekly rest period shall not start later than
six 24-hour periods from the end of the previous weekly rest period.
(article 4h, article 8(6))

When the crew consists of two drivers, modified restrictions have to be considered for
the scheduling. The five previous categories are reviewed for this new adjusted situation,
focusing on the differences to the single driver mode.

Team Driver Mode

• Daily driving time: The maximum daily driving time is now 18 hours (9 hours
for each driver, basic rule). Again, each driver is allowed to use two weekly 10-hour
extensions (exception). This may result in an interval driving time of up to 20 hours
if both drivers use one 10-hour extension in the same interval.

• Weekly and fortnightly driving time: The weekly driving time must not exceed
112 hours (56 hours for each driver, basic rule) and the total driving time during
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two consecutive weeks must not exceed 180 hours (90 hours for each driver, basic
rule). Exceptions are not available for this category.

• Breaks: After each driving period of 4.5 hours, a change of driver operating the
steering wheel is required. Times as a co-driver in a moving vehicle are counted as
breaks, therefore an explicit vehicle stop of 45 minutes is no longer required.

• Daily rest period: Every daily rest period must have a duration of at least 9
hours. There is no more differentiation between regular and reduced, and hence, no
more exceptional rule.

The 24-hour-rule is changed to a 30-hour-rule: Within each period of 30 hours after
the end of the previous daily rest period, both drivers shall have taken a new daily
rest period. This means that the daily rest period has to be started after a 21-hour
interval of activities (driving, loading, breaks, waiting, etc.) at the latest.
(article 8(5))

• Weekly rest period: The rules are identical to the single driver mode.

Not all European transport activities are covered by EC 561, some are covered by AETR.
According to the Ministry of Social Affairs, Baden-Württemberg (2010), an adaptation
of AETR to EC 561 standards is planned. Nevertheless, AETR is still applied today and
will therefore be considered in the following.

5.1.2 Social Regulation AETR

AETR regulations are similar to EC 561. The following section summarizes the most
important aspects (cp. United Nations Economic Commission for Europe, 2006), in par-
ticular the differences to EC 561 (cp. Table 5.1). All aspects not explicitly mentioned are
identical to EC 561.

In AETR, a driving time limit per week is not given, just a 90-hour limit for the total
travel time of two subsequent weeks (article 6(1)). Regulation of breaks includes the
additional option of splitting a 45-minute break into three breaks of at least 15 minutes
(article 7(2)).

Daily rest periods have to be taken within each 24-hour interval with a duration of at
least 11 hours and may be reduced to 9 hours three times a week. In contrast to EC 561,
compensation before the end of the following week is mandatory. The daily rest period
may be split into three separate rest periods, with one part of at least 8 consecutive hours.
If the daily rest period is split, the total minimum length increases to 12 hours (article
8(1)). For team driver mode, AETR specifies just 8 consecutive hours of daily rest period
within a 30-hour period, instead of 9 hours in EC 561 (article 8(2)).

Weekly rest period regulation is less restrictive in comparison to EC 561: AETR just
says that within each week one rest period shall be extended to 45 hours. An explicit
maximum time gap between two subsequent weekly rest periods is not specified, just the
requirement that the next weekly rest period shall be scheduled after six daily driving
periods (article 6(1)).
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EC 561 AETR
Driving time limit per week:
56 hours, fortnightly 90 hours

No driving time limit per week,
fortnightly 90 hours

Splitting option for 45-minute
break: 15 min + 30 min

Splitting option for 45-minute
break: 3 · 15 min

Reduced daily rest period:
no compensation

Reduced daily rest period:
mandatory compensation, until
the end of the following week

Regular daily rest period:
splitting option
3 hours + 9 hours

Regular daily rest period:
splitting option into three parts
x + y + z = 12 hours, with one

part ≥ 8 hours
Team driver daily rest period:

9 hours
Team driver daily rest period:

8 hours
Maximum time gap between

weekly rest periods:
six 24-hour intervals

Maximum time gap between
weekly rest periods:

six daily driving periods
Not two subsequent reduced

weekly rest periods
Two subsequent reduced weekly

rest periods allowed
Maximum number of “open, not
compensated” reduced weekly

rest periods: 2

Maximum number of “open, not
compensated” reduced weekly

rest periods: 3

Table 5.1: Differences between EC 561 and the AETR

Suppose a truck in team driver mode: a daily driving period lasts 30 hours, which results
in six daily driving periods lasting 180 hours. In addition, between driving periods pos-
sibly some additional waiting times may be scheduled, so a weekly rest period may be
taken much later than six 24-hour intervals (144 hours) after the previous one.

A reduction of a weekly rest period to 24 hours is possible, requiring (identically to EC
561) a 21-hour compensation before the end of the third following week (article 8(3)).
However, scheduling two subsequent reduced weekly rest periods is not strictly prohibited,
which allows for a maximum number of three “open, not compensated” reduced weekly
rest periods.

Social regulations EC 561 and AETR in particular deal with driving time. However,
depending on the degree of other activities, it may be possible that restrictions on total
working time also become stringent.

5.1.3 Directive EC 2002/15 on Working Hours

Driving time regulations are supplemented by the general EC Directive on working hours
“for persons performing mobile road transport activities” (EC 2002/15, see European
Union, 2002), which is transferred to German law in §21a Working Time Act (Federal
Ministry for Labor and Social Affairs, Germany, 2009).

Here, working time does not only involve driving time, but also loading and unloading
time, cleaning and technical maintenance, and all other work intended to ensure the safety
of the vehicle and its cargo or to fulfil the legal or regulatory obligations (e.g., customs),
etc. In addition, the regulation also includes times during which a driver cannot dispose
freely of his time (e.g., during periods awaiting loading or unloading, where their foresee-
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able duration is not known in advance)”. (article 3,a)

The main aspects of regulation EC 2002/15 are outlined in the following:

• Weekly working time: A week is defined identically to EC 561, ranging from
Monday 0:00 to Sunday 24:00. Maximum weekly working time is limited to 60
hours. In addition, over a four-month horizon, the average weekly working time
shall not exceed 48 hours.
(article 4,a)

• Breaks: A break has to be scheduled after 6 hours of consecutive working time.
The length of the break must be 30 minutes, if working hours total between six and
nine hours. The length of the break must be 45 minutes, if working hours total more
than nine hours. Breaks may be subdivided into periods of at least 15 minutes each.
(article 5)

• Night work: The night is defined as the time between 0:00 and 7:00. If at least
four working hours fall during this time interval, it is referred to as night work. If
night work is performed, the daily working time shall not exceed ten hours in each
24-hour period.
(article 7,1)

Since 23.03.2009, EC 2002/15 also contains “self employed (independent) drivers” who
perform transports with their own vehicle. This modification, however, has not yet been
adapted to German law (Vogel, 2010).

5.1.4 Traffic Bans

The last main group of regulations for scheduling vehicles is traffic bans at weekends, pub-
lic holidays and special annual periods. This group is not covered by a common regulation
in the European Union. Instead, each country has its own regulation, from “relatively
strict” up to “nonexistent”, making the situation quite complex.

In Germany, for example, vehicles with more than 7.5 tonnes gross vehicle weight are not
allowed to drive on Sundays between 0:00 and 22:00. Exceptions only exist for vehicles
transporting fresh and perishable products, as well as pre- and post-carriage of multi-
modal transports. Additional traffic bans exist on public holidays from 0:00 until 22:00
and on Saturdays in the summertime (03.07.-28.08.) from 7:00 until 20:00 on selected
highways (cp. Vogel, 2010).

The European countries can be roughly classified into three groups:

(i) with general traffic bans,

(ii) with partial traffic bans, and

(iii) without traffic bans.

Figure 5.4 shows the ten countries (Germany, France, Czech Republic, Switzerland,
Liechtenstein, Austria, Slovakia, Croatia, Italy, and Slovenia) of group (i) and their main
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aspects of regulation. In order to keep track and due to the variety of individual rules
and exceptions, only a very aggregated view is chosen.

Germany
Sunday and public holidays
0:00 – 22:00, special summer
holiday restrictions

France
Sat 22:00 – Sun 22:00 and 
public holidays (previous day
22:00 – public holiday 22:00),
special route restrictions Paris

Austria
Sat 15:00 – Sun 22:00 and 
public holidays 0:00 – 22:00, 
special summer holiday
restrictions

Czech Republic
Sunday and public holidays
13:00 – 22:00, special summer
holiday restrictions

Italy
Sunday and public holidays
8:00 – 22:00 (Oct.-May), 7:00 –
24:00 (June-Sep.), special
summer holiday restrictions

Switzerland/Liechtenstein
Sunday and public holidays
0:00 – 24:00, general night
traffic ban 22:00 – 5:00

Slovakia
Sunday and public holidays
0:00 – 22:00, special summer
holiday restrictions

Croatia
Sunday and public holidays
12:00 – 23:00, previous day of 
public holiday 15:00 – 23:00

Slovenia
Sunday and public holidays
8:00 – 21:00, special summer
holiday restrictions

Figure 5.4: European countries with general traffic bans

Countries of group (ii) with less restrictive and less general partial traffic bans are: Poland,
Luxembourg, Hungary, Portugal, Spain, Bulgaria, Romania, Greece, and Turkey. These
countries only have traffic bans for public holidays, selected highways, special annual pe-
riods or for hazardous goods transportation.

In group (iii), there are (more or less) no such regulations at all. Countries belonging to
this group are: Sweden, Norway, Finland, Denmark, The Netherlands, Belgium, United
Kingdom, Ireland, Ukraine, Belarus, Russia, Estonia, Latvia, Lithuania, Malta, Cyprus,
Albania, Macedonia, Bosnia-Herzegovina, Serbia and Montenegro.

5.1.5 Inspection of Compliance

The driver-related restrictions are controlled with the help of a digital driver card (see
Figure 5.5). For every traveling activity of a vehicle, such a digital driver card has to be
logged in to the vehicle’s digital tachograph. The tachograph writes information about
driving time, breaks, other working time, and rest periods, etc. onto the digital driver
card. This information is stored on the card for 28 days, then it is overwritten by new
information. Thus, a freight forwarding company must download data from the digital
driver’s cards at least every 28 days and store each driver’s activity log for one year.

According to Directive EC 2006/22 (European Union, 2006a) “on minimum conditions
for the implementation of EC 561”, random checks have to be performed both at the
freight forwarding company and directly on-the-road. In Germany, checks at the freight
forwarding companies are performed by local commercial regulatory authorities (German:
Gewerbeaufsichtsämter), while checks on-the-road are carried out by the police and the
Federal Office for Goods Transport (German: Bundesamt fuer Güterverkehr - BAG).
Starting from 01.01.2010, at least 3% of days worked by drivers’ shall be controlled,
with not less than 30% of the total number (of checked working days) being checked at
the roadside and not less than 50% being checked at the premises of freight forwarding
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companies.

   

Figure 5.5: Digital driver card (Kraftfahrtbundesamt, 2010)

According to the Ministry of Social Affairs, Baden-Württemberg (2010), infringements
against EC social regulations are penalized in the range of e 5000 up to a maximum of
e 15000. However, this doesn’t mean that every small violation is penalized: especially
in situations where a driver cannot find a suitable stopping place or where a traffic jam
causes delay, this is handled with courtesy. In the most cases of penalty, systematically
recurring infringements are punished (Commercial Regulatory Authority, 2010).

In Germany, a non-compliance with the Sunday or public holiday traffic ban is penalized
with e 75 for the driver and e 380 for the vehicle owner (Vogel, 2010).

5.1.6 Some Recent Literature

The incorporation of the introduced general requirements for International Truck Trans-
portation into tour planning algorithms has only been considered, by some of the latest
publications. All of those publications deal with static problem definitions and only par-
tially include the actual real-life requirements.

One of the first publications considering EC 561 is Goel (2009). The author presents two
algorithms for the VRP with hard time windows which comply with the basic rules of EC
561 (only single driver mode). Exceptions are completely neglected “in order to increase
the robustness of the generated plan”: it is argued that exceptions are of particular im-
portance if delays, e.g., due to bad traffic conditions, result in longer driving times than
expected.

While the first algorithm uses “naive” scheduling (break and rest periods are scheduled
when the respective accumulated driving time is exhausted), the second procedure takes
into account the fact that it can be beneficial to schedule rest periods before the respective
accumulated driving time is exhausted. The primary objective of both approaches is to
minimize the number of vehicles, the secondary objective is to minimize total traveled
distance.

For testing purposes, Goel modifies the Solomon (1987) data set: the planning horizon is
extended to six days, a handling time of one hour per customer is introduced, and the av-
erage vehicle speed is increased to five units per hour. Results show a better performance
of the second procedure. However, a drawback of the used data set is its short planning
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horizon of only six days, excluding any tests of scheduling weekly rest periods.

Kok et al. (2009) also deal with the incorporation of EC 561 into a VRP with hard time
windows. They propose an extended Dynamic Programming Heuristic (only single driver
mode), with two implemented versions: one considers all basic rules of EC 561, but no
exceptions (basic method), the other additionally considers the exceptions. In a first step,
the authors benchmark the basic method with the results published by Goel (2009), us-
ing the same modified Solomon (1987) data set. Results show a significant reduction in
the average number of vehicles (-18.26%) and in the average traveled distance (-5.41%)
compared to Goel (2009).

In a second step, the authors compare the different versions of their algorithm with each
other. Further improvements are reported when considering the exceptions of EC 561:
the number of vehicles is reduced by 4.28% and the total distance traveled by 1.54% (in
comparison to the basic method). It is also mentioned that computation time more than
doubled when incorporating the exceptions, which is attributed to additional checks. Fi-
nally, a version of the algorithm is tested extending the basic method by EC 2002/15 on
working hours. This leads (in comparison to the basic method) to slightly worse results:
the average number of vehicles increases by 4% and the average distance traveled increases
by 1%. This is an intuitive finding, since additional restrictions are added to the planning
problem.

In the following section, the general restrictions for International Truck Transportation
are supplemented by a look at the actual planning situation at a freight forwarding com-
pany. This exemplary real-life planning situation is used as indication of how a practical
adaptation of the dynamic MNS procedure should look.

5.2 Exemplary Real-Life Planning Situation at a

Freight Forwarding Company

The considered freight forwarding company distinguishes national and international trans-
portation tasks and allocates the associated responsibilities to separate divisions. This
makes it easier to regard only the international activities which consist of transportation
tasks over the entire European territory.

Most of the company’s international requests belong to the group of occasional trans-
portation tasks (tramp transportation, independent of predefined networks), a smaller
part of recurring requests can be attributed to the group of line haul tasks. The majority
of requests are of type Full Truckload between a Pickup and a Delivery location (P →
D).

In addition, it is also possible that one request may possess several load and unload loca-
tions (subsequently labeled as “request bundle”). Such request bundles may be predefined
by a given customer order or created by a dispatcher, who merges two or more compati-
ble requests manually. The only logical requirement for request bundles is the precedence
constraint of scheduling a Pickup before the associated Delivery. Apart from that, all
combinations are allowed: e.g. P1 → P2 → D1 → D2, P1 → D1 → P2 → D2 or P1 →
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P2 → D1 → P3 → D3 → D2. In total, approx. 40% of all orders are part of a bundle.
The sequence within a bundle is fixed and shall not be changed in the optimization process.

Further request attributes are: soft time windows for Pickup and Delivery location, geo-
graphical coordinates for Pickup and Delivery location, required vehicle type, information
about the need for hazardous goods equipment in the vehicle, and duration of load and
unload process.

The company employs approximately 1200 vehicles of different type (see Section 5.4 for
details). The available vehicles are registered in different European countries. All vehi-
cles are equipped with a digital tachograph. Main vehicle attributes are the vehicle’s type
and the information about whether equipment for transportation of hazardous goods is
carried. Both aspects are crucial requirements for a feasible load-to-vehicle assignment.
A vehicle is operated by one or two drivers, which may be subject to change. On average,
approx. 70% of vehicles are operated in single driver mode and approx. 30% in team
driver mode.

The drivers come from 19 European countries, with a focus on Eastern Europe. Driver
scheduling directly influences the tour planning. This is explained as follows:

• An international driver, who usually spends several weeks en route, may want to
get home occasionally for a holiday. So, at the end of his operating time, the
dispatcher has to find a request with target location preferably near to the driver’s
home location. If this is not possible, drivers may also be exchanged at several
European meeting points alternatively, from where they are brought home by mini-
vans. However, unfavorable far away exchange points may cause higher costs for
bringing the driver home and may also result in driver dissatisfaction.

• Furthermore, EC social regulation has to be observed. Especially in the one driver
mode, fortnightly maximum driving time and the compensation for a reduced weekly
rest period can be quite restrictive. Therefore, it is an incentive for the freight for-
warding company to frequently exchange drivers (every two or three-week interval).

Each time, the new driver starts without any outstanding compensation time for
weekly rest periods and with an unconsumed travel time account. The old driver
takes his outstanding rest period near the meeting point or at home (by any means:
separated from the vehicle).

By performing this kind of driver exchange, the vehicle’s utilization can be signifi-
cantly increased.

Subsequently, the planning process is described in detail.

The planning process is subdivided (see Figure 5.6). In a first acquisition step, an accep-
tance/rejection decision is made (level 1). This also includes the active solicitation of re-
quests.14 In a second step, the actual tour planning including order-to-vehicle-assignment

14 In the literature, the acceptance/rejection decision is distinguished from the cost/pricing problem: in
the first case, the reward to be obtained is known and in the second case it is unknown. At the considered
freight forwarding company both types of problems occur. However, since this aspect is not the focus of
this work, we will only speak of an acceptance/rejection decision in the following.
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and detailed vehicle scheduling is performed (level 2).

Coordination between both planning steps is reached by pricing: level 2 (tour planning)
provides internal prices for transport relations, which, for example, include the probability
of getting an add-on request in a specific target region. Prices may be changed on a daily
basis, depending on the current planning situation. In addition, specific needs for add-on
requests may be communicated directly between both planning levels.

level 1: order acquisition level 2: tour planning

acceptance/rejection decision

active order solicitation

locally distributed in nearly   
each European country

order-to-vehicle assignment

vehicle scheduling

one central dispatching office

approx. 20 human dispatchers,   
each responsible for a specific 
geographical region 

rolling horizon planning   

actual „optimization“: manual  

prices

specific needs for add-on requests

coordination:

Figure 5.6: Planning process at the cooperating freight forwarding company

Acquisition is not performed at one central geographical place, but locally distributed in
nearly every European country. This involves the advantage of being close to the local
market with all its specific characteristics and languages. Tour planning, however, is exe-
cuted at a central dispatching office: here, approximately 20 human dispatchers perform
level 2 tasks, in which each dispatcher is reponsible for a specific geographical region co-
ordinating inbound and outbound flows (that means the dispatcher has to find suitable
add-on requests for incoming vehicles, e.g., with the objective of producing minimal un-
loaded traveled distance and minimal vehicle idle time).

Currently, “Decision Support” is contributed by only several “Information Systems”: a
database (handling order data, vehicle data, etc.), a route planner (proposing route op-
tions with shortest travel distance/shortest travel time), and a graphical representation
of vehicle scheduling. The actual “optimization” task of assigning orders to vehicles and
subsequent vehicle scheduling, however, is performed completely manually in a rolling
horizon approach.

While the first part of a day is basically used for monitoring the existing plan and conduct-
ing adjustments due to unforeseen events, like traffic jams, vehicle break downs, extended
loading times or changes in order specifications, the second part of the day is used for
incorporation of new requests into the plan. The specific scheduling for the following day
has to be completed by approx. 18:00. EC social regulations are only considered indi-
rectly, e.g. by maximum daily kilometer performances of 540 km - 600 km for a vehicle
in single driver mode and of 900 km - 920 km for a vehicle in team driver mode.
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The obtained insights at the considered freight forwarding company – planning data and
planning process – serve as guidelines for the adjustments that have to be applied to
the original MNS procedure of Section 4.1 in order to cover the real-life requirements for
International Truck Transportation.

5.3 Adjustment of Multiple Neighborhood Search

This section describes the main general and company specific requirements that are ac-
tually incorporated into MNS in order to handle the real-life planning problem. The
resulting adaptations primarily affect the MNS scheduling, whereupon the general plan-
ning process is not touched. To allow for a proper representation of the new scheduling
activities, the internal data structure is revised. In addition, the program modules Best
Insertion and Scheduling are adapted to the new planning requirements of the extended
real-life SLPDPTW.

5.3.1 Selected General Requirements

In a first step, the general requirements that have actually been chosen for inclusion in
the MNS procedure are presented. These are basically EC 561, EC 2002/15 on working
hours and traffic bans (see Table 5.2).

considered requirements
EC 561: basic rules and exceptions

Single Driver Mode
Team Driver Mode

EC 15/2002: working time restrictions
partial: Team Driver Mode

traffic bans
general Sunday traffic ban
0:00 - 24:00 for all countries

Table 5.2: Summary of general real-life restrictions included in MNS

Consideration of EC 561 is a mandatory task, since the legislator explicitly specifies in
article 10(4) (of EC 561 ) that “freightforwarders shall ensure that transport time sched-
ules respect this regulation.” In contrast to the actual planning at the cooperating freight
forwarding company, where a tour’s admissibility is only estimated, the adapted MNS
procedure will produce an explicit scheduling in accordance with the given requirements.

All basic rules of EC 561 are incorporated15. In addition, nearly all exceptions to EC
561 are also integrated, except for the splitting option of the 45-minute break. This is

15 We should point out that the fortnightly driving time restriction for single driver mode is relaxed for
the computation of our final results. This is due to driver exchanges in the manual benchmark planning
performed at our cooperating freight forwarding company, which lead to (permissible) fortnightly vehicle
driving times in single driver mode of over 90 hours. Real-life MNS does not include explicit driver
exchange and therefore performs planning with the same driver over the entire five-week planning horizon.
The resulting disadvantage is partially compensated by the specified relaxation.
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due to the fact that international (long distance) transportation tasks last two days on
average, involving only a few loading and unloading activities. Thus, the advantage of
scheduling split breaks seems to be negligible. While 93% of all transportation tasks (of
the cooperating company) fall in the category of EC 561, approximately 7% involve AETR
regulation. Since AETR regulations have been proved to be quite similar to EC 561 and
are to be adapted to EC 561 soon, EC 561 is applied for all transportation tasks.

Working time restrictions (EC 2002/15) are considered partially: in agreement with the
cooperating partner, an extra 30-minute break is scheduled in the team driver mode after
12 hours of driving. Table 5.3 visualizes all “driver-based” aspects for single driver and
team driver scheduling that have been integrated into the planning procedure.

Single Driver Mode Team Driver Mode

Daily driving time:
- regular: 9 hours
- exception: twice a week 10 hours

Breaks:
- regular: 45 min after 4.5 hours

Daily rest period:
- regular: 11 hours within

24-hour interval
- exceptions: reduction to 9 hours

three times a week (without
compensation), splitting option
3h+9h (as regular rest period)

Weekly rest period:
- regular: 45 hours
- exception: 24 hours

with 21-hour compensation

Weekly driving time:
- max. 56 hours a week
- fortnightly: 90 hours in total

Interval driving time:
- regular: 18 hours
- exception: 4 extra hours per week,

max. 2 extra hours per interval

Breaks:
- 30 min after a driving period

of 12 hours, due to working
hour regulation

Daily rest period:
- 9 hours within 30-hour interval

Weekly rest period:
- regular: 45 hours
- exception: 24 hours

with 21-hour compensation

Weekly driving time:
- max. 112 hours a week
- fortnightly: 180 hours in total

Table 5.3: Included restrictions for scheduling single and team driver mode

Furthermore, traffic bans are also considered: since the variability of such rules is very high
between European countries, a simplified approach is chosen, just assuming a complete
Sunday traffic ban (0:00 - 24:00) for all countries.

5.3.2 Selected Requirements based on the Real-Life Planning
Situation

In contrast to the original version of MNS, not every order is suitable any longer to be
transported by every vehicle. To handle these assignment restrictions, the new vari-
ables “load type” and “adr class” are introduced for both orders and vehicles. An order
may only be assigned to a vehicle if both variables are consistent or if there is a possible
substitution option. The first variable “load type” primarily provides information about
the required and offered vehicle size (for orders and vehicles, respectively). The second
variable “adr class” indicates whether hazardous goods equipment is needed (order) and
whether such equipment is available (vehicle).

Due to the consideration of a Full Truckload problem, original order information on
weight and volume consumption and vehicle information on weight and volume capacity is
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skipped. However, the real-life situation is not perfectly consistent to a classic Single Load
problem. Some orders arrive as request bundles, including transportation of more than
one order at the same time. In the strictest sense, this is “Multi Load” transportation.
However, due to the fixed sequence within such a request bundle, there are no remaining
planning options. Further load consolidation or changes in sequence are not allowed.

Hence, such a request bundle is treated as a single order. For such bundled orders, the
new attributes “bundle no”, “pos p” and “pos d” are introduced: “bundle no” indicates
whether an order is part of a bundle and also allows for identification of the other parts
of the same bundle; “pos p” and “pos d” indicate the positions of the order’s Pickup and
Delivery tasks within the request bundle’s sequence.

In addition, there is no more central depot from which a tour starts and finally ends.
Hence, some information about each vehicle’s initial geographical position is required
(“geo long initial” and “geo lat initial”). A final destination is not defined, since plan-
ning with open tours is performed. Initial geographical information is supplemented
by a specific time of availability (“av from”) that indicates from which point in time the
vehicle is ready for execution of the first planning task.

Furthermore, two new vehicle attributes are introduced which indicate whether a vehi-
cle is operated in Single or in Team Driver mode: “driver one” and “driver two”.
As we have seen in Section 5.1, a different number of available drivers results in com-
pletely different requirements for vehicle scheduling. The vehicle attributes “driver one”
and “driver two” allow for a direct reference to real drivers. In the chosen adaptation,
however, an exchange of the initial driver(s) is not explicitly considered.

Tables 5.4 and 5.5 summarize all request and vehicle attributes of the adapted MNS
version. The first column shows the internal abbreviation of an attribute, the second col-
umn includes a short description, and the third column contains a note on the internally
used data type.

Finally, it is also worth mentioning that in contrast to the original problem setting, a
delayed arrival at a Pickup or Delivery location can no longer be scheduled completely
freely. Instead, a core arrival time has to be considered. Such a core arrival time pre-
vents delayed arrivals at undesirable times, e.g. at 03:00. The core arrival time specifies
in which time interval (different to the order’s original time window) a delayed arrival
may occur.

The core interval at our cooperating company was chosen to be [7:00, 20:00]. Hence,
if there is a delayed arrival at 21:00, the vehicle has to wait until 7:00 the next day to
serve the location. The core interval, however, is extended if the location’s original time
window already contains a boundary outside of the core interval. Suppose the Delivery
time window [5:00, 9:00]: in such a case, the delayed vehicle would be allowed to service
the location already at 5:00 the next day.
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request attributes
req count unique request identifyer ∈ Integer
call in the time, the request is revealed to the decision

maker
∈ Date-Format

load type specification, what vehicle is needed for trans-
portation of the request

∈ String

adr class indication (0,1), if hazardous material equip-
ment is needed

∈ Binary

bundle no number, indicating, if a request is part of a
bundle

∈ String

pos p indication of the Pickup’s position within a
bundle

∈ Integer

pos d indication of the Delivery’s position within a
bundle

∈ Integer

EPT earliest Pickup time ∈ Date-Format
LPT latest Pickup time ∈ Date-Format
geo long Pickup geographical coordinate: longitude Pickup lo-

cation (deg
◦
mm’ss”)

∈ String

geo lat Pickup geographical coordinate: latitude Pickup lo-
cation (deg

◦
mm’ss”)

∈ String

loadtime time needed to perform loading procedure at
Pickup location (in minutes)

∈ Integer

EDT earliest Delivery time ∈ Date-Format
LDT latest Delivery time ∈ Date-Format
geo long Delivery geographical coordinate: longitude Delivery

location (deg
◦
mm’ss”)

∈ String

geo lat Delivery geographical coordinate: latitude Delivery lo-
cation (deg

◦
mm’ss”)

∈ String

unloadtime time needed to perform unloading procedure
at Delivery location (in minutes)

∈ Integer

Table 5.4: Attributes of a request in the real-life scenario

vehicle attributes
veh count unique vehicle identifyer ∈ Integer
load type specification, of a vehicle’s load type (relevant

for feasible assignment of a request)
∈ String

adr class indication (0,1), if vehicle carries hazardous
material equipment

∈ Binary

geo long initial geographical coordinate: longitude initial lo-
cation (deg

◦
mm’ss”)

∈ String

geo lat initial geographical coordinate: latitude initial loca-
tion (deg

◦
mm’ss”)

∈ String

av from time, a vehicle is available for new transporta-
tion tasks

∈ Date-Format

driver one number, of a first driver ∈ Integer
driver two (optional) number, of a second driver ∈ Integer

Table 5.5: Attributes of a vehicle in the real-life scenario
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5.3.3 Adjustment of Internal Data Structures

In the description of the original version of the MNS procedure, explaining details of the
data structure which was used for internal representation of the vehicle scheduling was
intentionally omitted. In the real-life case, however, the variety of planning options that
have to be covered, combined with the general dynamic planning situation, justify a short
consideration.

In this work a variably sized LinkedList is chosen for representation of each vehicle’s
scheduling. This list may include five scheduling elements: Pickup, Delivery, Break,
Wait, and Go. Each element contains time information accurate to the minute. Pickup
and Delivery elements additionally include information on the associated order number
and the order’s geographical position. Furthermore, two binary indicators (“time fixed”
and “vehicle fixed”) are stored with each Pickup and Delivery element, all the other ele-
ments only have a single binary indicator (“time fixed”). In a rolling horizon framework,
those indicators signal what parts of the planning are open for further changes and what
parts are permanently fixed.

Each element’s specific meaning and the information stored with the elements is explained
in the following.

• Pickup: This element is scheduled to indicate the arrival at a Pickup location. It
contains information about what request is picked up (“req count”), geographical
coordinates of the Pickup location (“geo long Pickup”, “geo lat Pickup”), actual
arrival time (start of service), end of service (start of service + loading time), drive-
on time, fixation indicator vehicle, and fixation indicator time.

P;15;100225;490746;600;660;660;1;1, for example, means that the vehicle arrives at
the Pickup location of request number 15 at geographical coordinate (10

◦
02’25”,

49
◦
07’46”) at system time 600. Service ends at system time 660 and the vehicle

immediately drives towards another location at system time 660. Since fixation
indicators are both equal to 1, this internal element must not be changed any more.

• Delivery: This element is scheduled to indicate the arrival at a Delivery location.
It contains information about what request is delivered (“req count”), geographical
coordinates of the Delivery location (“geo long Delivery”, “geo lat Delivery”), ac-
tual arrival time (start of service), end of service (start of service + unloading time),
drive-on time, fixation indicator vehicle, and fixation indicator time.

The example D;15;113240;472209;900;960;1000;1;0 means that the vehicle arrives
at the Delivery location of request number 15 at geographical coordinates (11

◦
32’40”,

47
◦
22’09”) at system time 900. Service ends at system time 960, the vehicle waits

40 minutes and subsequently drives towards another location at system time 1000.
Since the first fixation indicator (vehicle fixed) is equal to 1 and the second fixation
indicator (time fixed) is equal to 0, the Delivery element must not be exchanged to
another vehicle, but it may be rescheduled within the current vehicle’s tour.

• Break: This element is scheduled to indicate a non-driving period, primarily to
satisfy regulation EC 561 on breaks, daily rest periods and weekly rest periods. A
“Break” element is not penalized in the objective function. It contains a start time,
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an end time and a single fixation indicator.

B;700;745;0, for example, stands for a non-driving period, starting at system time
700 and ending at system time 745. Since the fixation indicator is equal to 0, this
internal element may be rescheduled by improvement procedures.

• Wait: This element is scheduled to indicate a waiting period. Such a period may
have several reasons: waiting time to avoid early arrival at a Pickup location, wait-
ing time at a (fixed) Delivery location until the time window opens, or waiting time
if the vehicle is idle. A “Wait” element is penalized in the objective function. Even
if times of “Waiting” have another intention than “Break”, they are certainly con-
sidered for compliance with EC social regulations.

W;800;900;0, for example, stands for a non-driving period, starting at system time
800 and ending at system time 900. Since fixation indicator is equal to 0, this
internal element may be changed by improvement procedures.

• Go: This element is scheduled to indicate a time of traveling. It is used in partic-
ular between “Break” elements. It contains a start time, an end time and a single
fixation indicator.

G;700;970;0, for example, stands for a driving period of 4.5 hours, starting at system
time 700, and ending at system time 970. Since fixation indicator is equal to 0, this
internal element may be changed by improvement procedures.

Certainly, there are some redundancies in this data structure. The chosen intuitive struc-
ture, however, helps to keep a clear perspective on intermediate planning results on com-
mand line level and therefore decisively simplifies the debugging process.

5.3.4 Adjustments to the MNS modules Best Insertion and Sche-
duling

Besides the underlying data structure, there are also major modifications to some pro-
gram modules of the original MNS version of Section 4.1. The new real-life requirements
result in updated versions of the modules Best Insertion and Scheduling. The applied
changes are reported in the following.

The adapted workflow of module Best Insertion is visualized in Figure 5.7. Compared
to the original Multi Load case, there are some simplifications: the number of possible
insertion positions in the new Single Load case is significantly smaller, since Pickup and
Delivery may be scheduled only in direct succession. Hereby, one loop is saved. In addi-
tion, recurring capacity checks within each tour have been substituted by an initial check
of order-to-vehicle compatibility.

The general workflow proceeds as follows: The program module Best Insertion is called
by the MNS main program, handing over a specific order number and the current fixation
time. Best Insertion runs through all vehicles in an outer loop. If a vehicle passes the
compatibility check, the number of open positions in this vehicle’s scheduling is deter-
mined. Afterwards, a loop is started that successively inserts the new order into each
possible position. For this purpose, the Scheduling submodule is called. If the associated
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Initialize variables:
best_tour=NULL and best_cost=

i=1 

Call of program module:
Best Insertion

Determine number N (and positions)
of unfixed orders, already

scheduled in tour of vehicle i  

Check
i <= number of 

vehicles?
true

false

Insert new order at position k and update
subsequent tasks with Scheduling module

• order number
input data:

• fixation time

End of module Best Insertion

Check
Compatibility of vehicle i 

with order?

false

true

Initialize variables:
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true

false
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and best_cost_i

true

false
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false
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and best_cost

i=i+1 

true

Figure 5.7: Program flow chart: Best Insertion
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costs for a new scheduling undercut the currently best scheduling’s cost, the vehicle’s best
scheduling is replaced by the new result. This investigation is repeated for all compatible
vehicles. Finally, the insertion position over all vehicles and all associated open insertion
positions is chosen, which generates the overall minimum insertion costs.

The workflow of the Scheduling module is summarized in Figure 5.8. The module is
called by Best Insertion in order to produce a feasible scheduling that includes a new or-
der at a specific position in a specific vehicle’s tour. For this purpose, the following input
data are handed from Best Insertion to the Scheduling module: request number, fixation
time, current vehicle tour, and insertion position. In a preprocessing step, the Scheduling
module analyzes, whether the vehicle is equipped with one or two drivers. Accordingly,
the scheduling rules are selected (cp. Table 5.3). In addition, some auxiliary variables
based on the driver’s travel time history are calculated: available travel time until the next
break is required, available travel time in the current travel time interval, available travel
time in the current week, remaining options for scheduling with exceptions, outstanding
compensations, etc.

Then, the earliest possible departure time for the new request’s Pickup is calculated. Af-
terwards, scheduling to the first Pickup is performed using basic regulation rules. This is
followed by a check whether the resulting arrival time conforms to the associated Pickup
time window. If this is true, the Pickup’s successor is scheduled. Otherwise, it is differ-
entiated between too early arrival and too late arrival. In the case of too early arrival, an
initial waiting time is scheduled at the Pickup’s predecessor, so that a prompt arrival at
EPT is ensured. In the case of too late arrival, re-scheduling is performed using excep-
tional regulation, thus trying to reduce delay.

In the following steps, the Pickup’s fixed successors are scheduled: In the basic P → D
case, this is just the trip to the associated Delivery location. In request bundles, there
may be a whole number of fixed successors (Pickups and Deliveries). Scheduling is again
executed according to basic rules. Then it is checked whether there is a “late arrival”.
If this is not true, scheduling is accepted and the algorithm turns towards the following
successors (if existent). However, if there is a late arrival, re-scheduling is started, using
all possible exceptions to the basic regulation rules.

In contrast to the Pickup case, prevention of too early arrival is not attempted by switch-
ing the waiting time to the predecessor. There would be no advantage: once processing of
an order has been started, the execution of the first Pickup and all remaining parts of the
respective order are fixed and cannot be exchanged by other tasks. Hence, it is irrelevant
where to schedule the waiting time.

Finally, the Scheduling module returns the achieved results to Best Insertion.
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Figure 5.8: Program flow chart: Vehicle Scheduling
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5.4 Real-Life Test Data Set: Preprocessing and Ana-

lysis

This section describes the preprocessing of a real-life test data set. First, the initially
available raw data set is relieved from inappropriate data. Then, the remaining data are
adjusted to a consistent notation. This is followed by some plausibility checks. Finally,
benchmark values for the objective function criteria are derived.

The real-life raw data set contains order data of approximately five weeks (Monday, 17.08.
2009 until Saturday, 19.09.2009). It includes a total of 23,305 orders and 1,600 vehicles.
In addition to the vehicle information, which is included in a separate table, the following
order-related information is given:

• basic customer requests (type 1),

• request bundles (type 2),

• order(or bundle)-to-vehicle assignment (type 3), and

• the associated empty trips (type 4).

Type 1 and type 2 information can be interpreted as input data to the planning problem.
Type 3 and type 4 information include the actual planning that was performed at the
freight forwarding company.

Selection of appropriate data

Due to the fact that not only international transportation tasks and not only occasional
transportation tasks without predefined networks are included, the data set has to be
revised. For this purpose, each vehicle’s actual tour (= planning result) is replicated with
the type 3 and type 4 tables. Based on the specific tours, all vehicles only doing national
transportation tasks are skipped. The same is applied to vehicles only performing regular
line transportation. In addition, vehicles performing requests with origin or destination
outside Europe (e.g. Afghanistan, Iran), as well as vehicles with nearly no activity are
deleted. Vehicles changing from one driver operation to team driver operation and vice
versa also have to be omitted. After this revision, there is a number of 953 remaining
vehicles (related to the initial number of vehicles: approx. 60%).

In a next step, the requests that were actually transported with those vehicles remaining
are selected. This results in a number of 14,025 requests (related to the initial number
of orders: approx. 60%, as well): 900 static, and 13,125 dynamic (degree of dynamism
= 93.6%). All the other requests – not transported with one of the remaining vehicles –
are eliminated. This results in a total workload of 2,805 requests/week, and an average
workload of 2.94 requests/week per available vehicle.

The remaining order and vehicle data, however, are not yet in a form that can be immedi-
ately handed to the adapted real-life MNS. Further preprocessing is required concerning
notation inconsistencies and plausibility checks.
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Adjustment of notation inconsistencies

Because of the use of inconsistent notation for load type in the request and the vehicle
database, the according entries have to be harmonized to give clear order-to-vehicle as-
signment rules to the algorithm. This step results in five load type categories for vehicles
(272∗M, 451∗P, 171∗K, 8∗V, and 51∗HZ) and six load type categories for orders (1450∗M,
9499∗P, 1840∗K, 294∗KP, 112∗V, and 830∗HZ). An illustration is given in Figure 5.9.

M

load-type of request

load-type of vehicleP K V HZ

M P K V HZKP

28.6% 47.3% 17.9% 0.8% 5.4%

10.4% 67.7% 13.1% 0.8% 5.9%2.1%

feasible matchings

percentage of all vehicles

percentage of all requests

Figure 5.9: Feasible load-to-vehicle assignments

A matching is only possible, if the load type of an order and the load type of a vehicle are
identical. This is symbolized by the direct connections between orders and vehicles with
the same load type. In the special case of request load type “KP”, the vehicle types “K”,
“P” and “M” are allowed for assignment. As a further exception, request load type “P”
may also be transported by vehicles with load type “M”.

To give a little more insight into the meaning of these load type shortcuts, the English
and also the German truck descriptions shall be listed: “M” (Megatrailer - mega truck),
“P” (LKW mit Plane - curtain side truck), “K” (Koffer/Kühler - box truck/refridgerated
truck), “HZ” (Hängerzug - road train), and “V” (Vario truck). In addition, some exem-
plary pictures of the associated trucks and some technical details are shown in Figure 5.10.

Finally, it is also worth mentioning that 461 orders (3.2%) are classified as hazardous
goods, therefore requiring a vehicle with special equipment for transportation of such
goods. Two hundred and thirty-four vehicles (24.5%) carry such hazardous goods equip-
ment.

Plausibility checks

After selection of the remaining basic customer requests (type 1), the following plausibility
checks and consequential modifications are executed:

(i) IF (EPT < Call-In) THEN {Call-In = EPT - 1 day}
(ii) IF (EPT=LPT=00:00) THEN {EPT=03:00 and LPT=14:00}
(iii) IF (EPT + 1 hour > LPT) THEN {LPT = EPT + 1 hour}
(iv) IF (EPT > EDT) THEN {EDT=EPT}
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• dimensions:  13.62 m (length)
2.48 m (breadth) 
2.78 m (height)

• workload:    26 000 kg
• number of pallets:  34

• dimensions:   13.41 m (length)
2.46 m (breadth) 
2.65 m (height)

• workload:     24 310 kg
• number of pallets:  33

• dimensions:  13.62 m (length)
2.48 m (breadth) 
3.00 m (height)

• workload:    25 400 kg
• number of pallets:  34+34

• dimensions (per swap-body):  
7.68 m (length)
2.48 m (breadth) 
3.00 m (height)

• workload:   13 250 kg * 2
• number of pallets:  19+19

mega truck (M) box truck, refridgerated truck (K)curtain side truck (P)

road train (HZ) vario truck (V)
• dimensions:   5.00 m (length)

2.45 m (breadth) 
2.40 m (height)

• workload:     2 700 kg

Figure 5.10: Different available vehicle types (Willi Betz Logistik, 2010)

(v) IF (EDT=LDT=00:00) THEN {EDT=07:00 and LDT=18:00}
(vi) IF (EDT + 1 hour > LDT) THEN {LDT = EDT + 1 hour}

The first check (i), ensures that an order’s Call-In occurs before the associated Pickup
time window opens. Checks (ii) and (v) catch a missing time window input. In such a
case, the standard time windows [03:00, 14:00] and [07:00, 18:00] are chosen for Pickup
and Delivery, respectively. Checks (iii) and (vi) make sure that all time windows possess
a sufficiently long opening time. Check (iv) ensures a correct relative position of Pickup
and Delivery time windows.

Furthermore, all times in an interval ranging from [23:00, 03:00] are set to 03:00 of the
following day to comply with real-life restrictions. In cases with EDT - LPT > ten days,
the time gap is set to exactly 10 days to avoid the need for storage.

Determination of initial vehicle position and availability

Finally, the vehicle data set is completed with the information of when and where each
vehicle is initially available for new transportation tasks. The vehicle attribute “av from”
is chosen as the beginning time of the first vehicle task that was actually performed in the
five-week horizon real-life planning (derived from type 3 and type 4 information). Initial
geographical coordinates “geo long initial” and “geo lat initial” are chosen respectively.
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In this way, the vehicles available for MNS planning start at the same time and at the
same geographical position as the vehicles do in the actual real-life planning. Since MNS
also gets the same orders as in the real-life planning, it could theoretically end up produc-
ing the same scheduling that human dispatchers have produced in real-life. On the other
hand, it also gets the chance to produce a completely different, maybe better, planning.

Derivation of benchmark objective function values

After finishing the preprocessing of the real-life data, some performance indicators of ac-
tually performed planning at the freight forwarding company can be derived.

First, total delay is determined for all Pickup and Delivery requests. This is performed
by calculating the gap between actual arrival time at a Pickup (Delivery) location and
LPT (LDT). All delays are added, resulting in a total delay of 2,260.52 days at Pickup
locations and of 4,391.44 days at Delivery locations. Hence, a total delay of 6,651.96 days
was generated.

Subsequently, the empty traveled distance has to be calculated. For the real-life orders and
the actual planning, however, there are only geographical coordinates of Pickup and De-
livery locations available, but no information on actually driven street distances. Hence,
some assumptions are required. We choose to calculate the actual traveled distances with
a Euclidean metric. The same metric, of course, is used for the calculation of distances
in the MNS procedure in order to ensure comparability.

Basic distance between two geographical coordinates A (xA, yA) and B (xB, yB) (with
xA, xB representing geographical longitude of location A and B, respectively; and yA,
yB representing geographical latitude of location A and B, respectively) is calculated as
follows:

dist(A,B) = 111.2 ·
√

(xA − xB)2 + (yA − yB)2 · cos(xA) · cos(xB) · 1.3

The formula contains an approximation of the air-line distance accounting for the curva-
ture of the earth (cp. Fleischmann, 2010). The resulting distance is multiplied by a street
factor of 1.3 in order to include deviations from the idealized air-line distance.

The distance formula is applied to all loaded and all unloaded trips which can be de-
rived from type 3 and type 4 information. In this way, a total traveled distance of
16,535,592 kilometers is calculated. This number consists of 1,858,752 empty kilometers
and 14,676,840 loaded kilometers. The associated empty-to-all ratio was:

empty driven kilometers

total number of driven kilometers (empty and loaded)
= 11.2%

The benchmark values which are used for comparison in Section 5.5 are summarized in
Table 5.6. All values are given in “hours”. The translation of traveled distance into
traveled time is performed with the assumption of a vehicle average speed of 72 km/h
(in agreement with our cooperating freight forwarding company). This vehicle speed
assumption is also applied to all travel time calculations in the modified MNS procedure.
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As explained above, values of delay are directly derived from the freight forwarding com-
pany’s data set. This is also true for empty and loaded travel time and total operating
time. Further assumptions, however, have to be made for the category loading time, which
includes the times of all loading and unloading processes. Each loading and each unload-
ing process is assumed to last one hour. In the specific case of several loading and/or
unloading processes at the same geographical position, however, only the last loading
process is assumed to have a duration of one hour. All previous loading processes are
scheduled with only a single minute of loading time.

delay 159,647 hours
travel time 229,661 hours
loaded 203,845 hours
unloaded 25,816 hours

loading time 24,000 hours
break/wait 496,471 hours

total operating time 750,132 hours

Table 5.6: Benchmark results for the five-week real-life test data set

In a last step, the break/wait value has to be calculated. This is performed indirectly, by
subtracting traveling time and loading time from total operating time.

At this point, the preprocessing and the analysis of the real-life data set is complete.
The derived benchmark values for the objective function criteria are used in the following
section to evaluate the performance of the adapted MNS procedure.

5.5 Computational Results

This section starts with the parameterization of the adapted MNS procedure with regard
to penalty cost, anticipation horizon and application of improvement neighborhoods. In
addition, some insights into the impact of simulation speed on solution quality are derived
(Section 5.5.1). Afterwards, an exemplary MNS generated tour for the five-week real-life
test data set is presented. This includes a detailed analysis of the generated scheduling
and an investigation of its compliance with the chosen general real-life requirements (Sec-
tion 5.5.2).

In a next step, some of the computational results are reported, pointing out the solution’s
dependency on the weighting of the objective function criteria delay and empty travel
time (Section 5.5.3). Finally, the pros and cons of the implementation of a dynamic Fleet
Management System for International Truck Transportation are discussed (Section 5.5.4).

5.5.1 Parameterization

Parameterization and all subsequent simulation runs are executed on a quad core PC
(Intel Core 2 Quad CPU, 2.83 GHz, 8 GB RAM), with each simulation running on one of
the four available cores. All detailed parameterization results can be found in Appendix
B. In the beginning, there is the open question of how to choose the penalty costs for
delay, empty travel time and waiting. From our cooperating freight forwarding com-
pany, there is only the general specification of weighting the reduction of empty travel
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time highest and the reduction of delay second highest. The parameterization is started
with a high simulation speed of s = 120, which is successively decreased to a real time
simulation (s = 1).

To get a first impression of the impact of the different penalty cost values and of mutual
dependency, several penalty cost combinations are investigated with a high simulation
speed of s = 120. For the five-week real-life data set, this results in a simulation time of
approximately seven hours for each cost combination. In total, 49 different penalty cost
variations are tested: due to the relatively lower importance of waiting, the associated
penalty costs are fixed at a value of 1 for all combinations. Penalty costs for delay and
empty travel time are both chosen from the penalty cost set {1, 5, 8, 10, 20, 30, 40}.
In the following, the chosen penalty cost pairs are denoted as “a,b”, with a representing
the penalty cost for empty travel time, and b representing the penalty cost for delay. As
further parameter settings, the initial improvement time is set to 180 minutes (neighbor-
hoods I:II:III = 1:1:1), for general improvement the neighborhoods I and II are chosen in
relation 66:33, the tabu time of neighborhood I is set to 30 minutes, and the anticipation
horizon is chosen to be 10 minutes.

The results are summarized in Table 5.7. For each penalty cost combination, the four
solution criteria empty travel time, delay, break/wait, and total operating time are given
in the form of the percentage deviation from the benchmark values derived in Section 5.4.
Here, a negative value indicates an improvement of solution quality, while a worsening
of solution quality is indicated by a positive value. For the penalty cost combination
(30,5), for example, an empty travel time of 26,025 hours (+0.8%), a delay of 217,675
hours (+36.3%), a break/wait time of 489,456 hours (-1.4%), and a total operating time
of 743,325 hours (-0.9%) are achieved. In total, the performance of the high simulation
speed results is very modest. All results are clearly inferior to the benchmark.

However, some general observations can be made. A higher weighting of the cost for
empty traveling induces a monotonous improvement in the associated empty travel time.
This monotonous behavior can also be found in most of the cases of delay, when the asso-
ciated penalty costs (for delay) are increased. The results indicate that there is antithetic
behavior between minimization of empty travel time and minimization of delay. Improve-
ments in one category are accompanied by a worsening in the other category. Therefore, a
parameterization has to be found that achieves preferably good planning results for both
requirements.

Fortunately, values of break/wait and total operating time seem to be less sensitive to
the penalty cost variations for empty travel time and delay. It can be observed that the
best break/wait result is achieved for a cost parameterization (1,1). This is an intuitive
finding, since the penalty cost value of break/wait that has been initially fixed to 1, is
relatively the highest for this cost combination. In addition, the results of break/wait and
total operating time are also slightly better when “better” results for empty travel time
are achieved.

The parameterization of delay and empty travel time penalty costs is continued with an
analysis of a slower simulation speed of s = 5. Since a slower simulation speed induces
longer simulation runs (for s = 5: approximately one week), we choose only a subset of
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Table 5.7: Parameterization of penalty costs (sim speed s: = 120, improvement neighbor-
hoods: I-II 66%-33%, anticipation horizon: 10 min)
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nine promising parameter combinations from the initial analysis for further investigation:
20,8; 30,10; 30,8; 20,5; 40,8; 30,5; 40,5; 8,1; 10,1. All other settings are kept the same as
in the first case.

The results are visualized in Figure 5.11 (black triangles). On the x-axis and the y-
axis, the actually achieved objective function values for delay and empty travel time are
outlined. For the penalty cost combination (30,10), for example, an empty travel time of
27,424 hours, a delay of 128,188 hours, a break/wait time of 489,660 hours, and a total
operating time of 744,927 hours is generated. The reproduction of detailed results for
break/wait and total operating time is skipped in this illustration to allow for a clear
representation of empty travel time and delay.
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Figure 5.11: Parameterization of penalty costs (sim speed: s = 5, improvement neighbor-
hoods: I:II 66:33, anticipation horizon: 10 min)

Furthermore, the relative location of the benchmark result is included (black square),
which allows for a division of the figure into four quadrants relative to the benchmark
result. In the upper-left quadrant, delay can be reduced in comparison to the benchmark,
but there is an increase in empty travel time. In the lower-right quadrant, empty travel
time can be reduced in comparison to the benchmark, but there is a increase in delay.
In the upper-right quadrant, there are no relative improvements at all. In the lower-left
quadrant, both categories, delay and empty travel time, can be improved. All achieved
results fall into the upper-left quadrant (penalty cost combinations: 20,8; 30,10; 30,8;
20,5) and into the lower-right quadrant (penalty cost combinations: 40,8; 30,5; 40,5; 8,1;
10,1). Hence, only one objective function criterion can be improved in each case, but not
both at the same time.

Since the reduction in simulation speed from s = 120 to s = 5 has caused significant
improvements in solution quality, we (again) select a subset of promising cost parameter
settings from the current s = 5 results (30,10; 20,5; 40,8; 30,5; 40,5) for a final analysis
with the simulation speed of s = 1 (real time simulation). Consequently, the sim-



152 Chapter 5. Real-Life Application at International Freight Forwarding Company

ulation time for a single real time simulation run is now approximately five weeks.

The s = 1 results are visualized in Figure 5.12. The gray triangles show the results that
are generated with a simulation speed of s = 1. In this case, two penalty cost combinations
– 40,8 and 30,5 – reach the preferred lower-left quadrant. With the penalty cost values
(40,8), an empty travel time of 24,817 hours and a delay of 150,976 hours is achieved.
In comparison to the benchmark, this is a significant reduction of 3.9% (empty travel
time) and of 5.4% (delay). With the penalty cost values (30,5) empty travel time is
reduced even further (-6.4%), but with the drawback of an only slightly reduced delay
(-0.1%). Nevertheless, the penalty cost combination (30,5) is chosen for the remaining
parameterizations.
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Figure 5.12: Parameterization of penalty costs (sim speed: s = 1, improvement neighbor-
hoods: I:II 66:33, anticipation horizon: 10 min), impact of solution speed

Figure 5.12 also allows for an analysis of the impact of simulation speed on the solution
quality. For the five penalty cost combinations that are simulated in real time, the results
that are achieved with simulation speeds s = 5 (black triangles) and s = 120 (blank trian-
gles) are also given. In this way, the improvement that is achieved by slower simulation
times can be tracked:

In the exemplary case of the penalty cost values (40,8), with a simulation speed of s =
120, an empty travel time of 26,707 hours and a delay of 210,785 hours is produced. This
is reduced to 25,364 hours of empty travel time (-5.1%) and to 161,562 hours of delay
(-23.4%) with simulation speed s = 5. Further improvements are achieved with the real
time simulation. Empty travel time is reduced once more by 2.2%, and delay is reduced
by 6.6%.

These results definitely indicate an advantage of the real time simulation. The extra time
that is given to applying the improvement neighborhoods of MNS seems to be beneficial.
A drawback, however, is the long calculation time that only allows for a limited number
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of parameterizations to be tested.

In a second step, the anticipation horizon is parameterized, investigating the following
values: 5 min, 10 min, 30 min, 60 min, 90 min, and 120 min. As further settings, the
penalty costs values (30,5) and the improvement neighborhoods I:II in relation 66:33 are
chosen. All other settings are the same as in the previous tests. The simulations are
executed twice: with a simulation speed of s = 5 and with a simulation speed of s = 1.
Figures 5.13 and 5.14 show the achieved results for the respective simulation speeds. The
results are grouped according to the objective function criteria empty travel time, delay,
break/wait, and total operating time. For each variation, the results that are achieved
with a specific anticipation horizon are given as percentage deviations from the bench-
mark.

For a simulation speed of s = 5, best performance in empty travel time is achieved for
an anticipation horizon of 10 minutes. Interestingly, the 30-minute horizon achieves the
worst result of all investigated anticipation horizons. In category delay, the anticipation
horizon of 30 minutes, however, shows the best performance and is slightly better than
the 10-minute horizon. For longer anticipation horizons (e.g., 90 min or 120 min), solu-
tion quality in delay drops significantly. Break/Wait and total operating time show quite
insensitive behavior to variations of the anticipation horizon. In total, the 10-minute an-
ticipation horizon shows the best performance for a simulation speed of s = 5.

For a simulation speed of s = 1, the situation changes. In terms of empty travel time
reduction, the 10-minute horizon is outperformed by all longer anticipation horizons. For
this category, best results are achieved with a horizon of 60 minutes, followed by a horizon
of 30 minutes. In category delay, the best result is achieved with a horizon of 30 minutes.
Like in the s = 5 simulation, break/wait and total operating time show quite insensitive
behavior to variations of the anticipation horizon. In total, the 30-minute anticipation
horizon now demonstrates the best performance (for s = 1).

It is interesting that parameterizations with different simulation speeds cause different re-
sults. This observation indicates that a proper parameterization for a real time simulation
should be also executed in real time, at least if there is enough time. For the calculation
of the final results, which is of course performed in real time, the anticipation horizon is
therefore chosen to be 30 minutes.

The last parameterization concerns the allocation of improvement time to available
neighborhood operations. For detection of the best combination, the following variations
are analyzed: 100:0, 75:25, 66:33, 50:50, 33:66, 25:75, and 0:100. These numbers can be
interpreted as percentage values and serve as a basis of how much computation time is
allocated to neighborhoods I and II. As further settings, the penalty cost values (30,5)
and an anticipation horizon of 10 minutes are chosen. All other settings are kept the
same as in the previous tests. As in the previous case, the simulation of the investigated
variations are executed twice: with a simulation speed of s = 5 and with a simulation
speed of s = 1.

Figures 5.15 and 5.16 show the achieved results for both simulations, respectively. The
results are grouped again according to the objective function criteria empty travel time,
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Figure 5.13: Parameterization of anticipation horizon, 5 min up to 120 min (penalty costs:
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Figure 5.15: Parameterization “allocation of improvement time”, neighborhood I : neigh-
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delay, break/wait, and total operating time. For each variation, the results that are
achieved with a specific allocation of improvement time are given as percentage devia-
tions from the benchmark.

For a simulation speed of s = 5, the best performance in empty travel time is achieved
by the allocation 50:50, which is followed by the allocation 66:33 with the second best
result. In terms of delay, the best result is generated by the allocation 100:0. The opposite
allocation 0:100 results in the worst level of delay. 50:50, here as well, is slightly better
than 66:33. Again, break/wait and total operating time show a quite insensitive reaction
to the applied variations. In conclusion, best overall performance is achieved with the
allocation 50:50 (for s = 5).

For a simulation speed of s = 1, however, differing results are generated. The best per-
formance in terms of empty travel time, and also delay, is achieved with the allocation
100:0. While the other allocations produce empty travel times at least in the same range
as 100:0, the picture changes in delay: here, a 3.1% reduction is generated by 100:0, with
the second best allocation 66:33 being stuck only at a 0.1% reduction.

The surprising success of allocation 100:0 can be explained as follows. The real time
simulation allocates a five times higher amount of calculation time to improvement pro-
cedure II (intraroute exchanges). In some cases, all exchange operations of improvement
procedure II are investigated before the allocated time is actually consumed. If such a
situation occurs, the excessive time is not used for any other calculation in order to keep
the percental allocation of improvement time at the specified levels. In contrast, improve-
ment procedure I has so many exchange operations available that it never “runs out of
work”. With the allocation 100:0, therefore, the available improvement time can be used
completely, which declares its better performance.

At this point, the main parameterizations of penalty costs, anticipation horizon and im-
provement procedure are finished. Table 5.8 summarizes all internal parameters and
penalty cost settings that are finally selected for the application of the real-life MNS on
the real-life data set.

Real-Life MNS
internal parameters
initial improvement
duration: 180 min
neighborhoods I:II:III 1:1:1

general improvement:
neighborhoods I:II 100:0

tabu time: 30 min
anticipation: 30 min
penalty costs
c traveling empty (per min): 30, 40, 40
c delay (per min): 5, 5, 8
c wait (per min): 1, 1, 1

Table 5.8: Parameter settings for real-life test data set

The results that are achieved with this “best” parameterization will be presented in
Section 5.5.3. However, before we come to the final results, the following section analyzes
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a typical vehicle tour that is produced with MNS.

5.5.2 Exemplary Real-Life Scheduling

In this subsection an exemplary real-life vehicle tour that is produced by MNS for the
five-week real-life data set is selected for detailed investigation. For this purpose, simply
the very first available vehicle (in single driver mode) with internal number “00001” is
chosen. The tour planning is generated with the parameter settings: penalty costs (40,8),
an anticipation horizon of 10 minutes and with the application of improvement neighbor-
hoods I:II in proportion 66:33. All other settings are kept the same as in the previous
tests. The simulation is executed in real time (simulation speed s = 1).

Figure 5.17 visualizes the course of the resulting five-week vehicle tour on a Eu-
ropean map. The vehicle starts its trip in Reutlingen (Germany) and finishes its tour in
Dieppe (France). The sequence of locations that are included in the tour is indicated in
capital letters from A (Reutlingen, Germany) to S (Dieppe, France). Furthermore, infor-
mation on Pickup and Delivery locations of every loaded trip is given. In the exemplary
tour, there are also some request bundles having more than one Pickup and/or Delivery
location. Due to the relative geographical proximity of these locations, they are treated
as a single location (only one capital letter).

The first loaded trip directs the vehicle from Reutlingen (Germany) at point A, to Miskolc
(Hungary) at point B. Afterwards, the vehicle has to perform an empty trip from Miskolc
(Hungary) at point B to Mosonszolnok (Hungary) at point C. Here, the vehicle gets
its second loaded trip from Mosonszolnok (Hungary) at point C, to Vienna (Austria) at
point D. In Vienna (Austria) at point D, the third loaded trip is directly available: Vienna
(Austria) at point D, to Mannheim (Germany) at point E. From Mannheim (Germany)
at point E, the vehicle has to perform a short empty traveling distance to Heidelberg
(Germany) at point F. From Heidelberg (Germany) at point F the fourth loaded trip is
started, which has its destination in Busalla (Italy) at point G. And so on... The resulting
vehicle tour has an empty-to-all ratio of 9.38% and an average travel time per week of
42.6 hours.

Figures 5.18, 5.19, 5.20, and 5.21 show the associated detailed scheduling (Excel out-
put file of MNS). The meaning of the available columns is explained as follows. In
the first column, an activity log is included that describes the vehicles respective activity
(e.g., “trip to Pickup of order 1307”, “break of journey”). In the second column, the
time interval for the respective activity is given (e.g., “Mo 24.8.2009 8:30 – Mo 24.8.2009
13:00”). Columns three and four include the geographical coordinates (longitude and lat-
itude) of Pickup and Delivery locations (in the format “degree,mmss”). This is followed
by column four, which is not originally included in the MNS output file. Column four
is created, in order to allow for a cross-reference to the European map in Figure 5.17:
The capital letters which are used to visualize the vehicle’s main Pickup and Delivery
locations in Figure 5.17 are included here in the detailed vehicle scheduling for a better
traceability of the vehicle’s tour.

Column six contains the Pickup or Delivery time window when a respective location is
reached (e.g., “Tu 18.8.2009 16:00 – Tu 18.8.2009 22:00”). Afterwards, the actually sched-
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uled arrival time is given in column seven (e.g., “Tu 18.8.2009 16:00”). Columns eight
to eleven include summary values for break time, wait time, travel time, and load time
for the current activity (in the format “hh:mm”). These values support the inspection of
whether all real-life restrictions have actually been complied with. If an arrival at Pickup
or Delivery occurs after LPT or LDT, the associated delay is given in the last column (in
the format “hh:mm”).

In the following, a detailed description of how to read the scheduling entries is
given.

In the beginning (line 1), the vehicle’s initial position (“9,1329, 48,3031”) is given. Af-
terwards (line 2), it is indicated that this specific vehicle is not available from the very
beginning of the simulation, but first at “Tu 18.8.2009 16:00”. In the scheduling of line
3, the vehicle is sent to the Pickup of order 1307. Since the associated Pickup location is
in very close proximity to the vehicles initial position, no travel time is scheduled. The
loading activity is started immediately, and takes one minute (line 4). This is due to the
fact that this Pickup is bundled with a second order at the same geographical position.
Line 5 contains the scheduling of the second order “trip to Pickup of order 1338”. This
Pickup location is also reached immediately. Since it is the last loading activity at the
same geographical location, it results in the scheduling of the regular one-hour loading
time (line 6).

At “Tu 18.8.2009 17:01”, the loading activities are finished and the vehicle starts its first
real trip towards Delivery of order 1307 (line 7). The first travel time interval lasts 4:30h
from “Tu 18.8.2009 17:01 – Tu 18.8.2009 21:31”. Then, a 45-minute break is scheduled
from “Tu 18.8.2009 21:31 – Tu 18.8.2009 22:16” (line 8). This is followed by the next
4:30h travel time interval from “Tu 18.8.2009 22:16 – We 19.8.2009 02:46” (line 9). After
a further 45-minute break (line 10), an exceptional extra driving hour is scheduled from
“We 18.8.2009 03:31 – We 19.8.2009 04:31” (line 11). At this point, the maximum daily
interval driving time of 10 hours is reached. Hence, a daily rest period is scheduled: in
the present case, a reduced daily rest period of 9 hours (line 12).

At “We 19.8.2009 13:31”, the journey is continued with the next 4:30h travel time in-
terval from “We 19.8.2009 13:31 – We 19.8.2009 18:01” (line 13). This is followed, by
a 45-minute break (line 14), a further 4:30h travel time interval (line 15), one more 45-
minute break (line 16), and a final driving hour from “Th 20.8.2009 00:01 – Th 20.8.2009
01:01” (line 17). Due to this second extension to 10 hours of daily travel time, this week’s
potential 10-hour travel time extensions are completely utilized. Afterwards, the next
reduced daily rest period is scheduled from “Th 20.8.2009 01:01 – Th 20.8.2009 10:01”
(line 18). This consumes the second of in total three reduced daily rest periods available
per week.

At “Th 20.8.2009 10:01”, the vehicle continues its trip for 3:55h and finally reaches the
Delivery location of order 1307 at “Th 20.8.2009 13:56” (line 19). This arrival time in-
volves a delay of 15:56h. Line 20 contains the associated one-hour unloading activity.
In a next step, the vehicle travels 0:49h from “Th 20.8.2009 14:56 – Th 20.8.2009 15:45”
to the request bundle’s second Delivery of order 1338 (line 21). This arrival time is also
delayed, in this case by 17:45h. After the unloading activity is finished (line 22), a weekly
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Figure 5.18: Exemplary results: five-week vehicle tour - scheduling I
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Figure 5.19: Exemplary results: five-week vehicle tour - scheduling II
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Figure 5.20: Exemplary results: five-week vehicle tour - scheduling III
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Figure 5.21: Exemplary results: five-week vehicle tour - scheduling IV
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rest period from “Th 20.8.2009 16:45 – Mo 24.8.2009 8:30”, lasting 87:45h, is started.

The subsequent scheduling instructions are of the same type as in the first 22 lines. There-
fore, the detailed description is finished at this point. In a next step, compliance with
the general restrictions for International Truck Transportation is considered.

To simplify the analysis of compliance, the cells of columns 8 to 11 vary in color.

• The yellow sections represent the activities performed in a daily driving time inter-
val. They include travel time, break time and load time.

• The orange sections contain daily rest periods, and

• the blue sections include weekly rest periods.

Exemplarily, the week from line 100 to line 132 (Mo 07.9.2009 08:00 until Mo 14.9.2009
15:30) is considered:

• Compliance with daily driving time restrictions : There are six travel time intervals
with associated total travel times of 8:31h, 9:00h, 10:00h, 10:00h, 9:00h, and 1:47h.
Twice (as allowed as a maximum) the total travel time was extended to 10 hours,
the remaining total travel times stay at or under a maximum of 9 hours per daily
driving interval.

• Compliance with weekly driving time: With a total of 48:18h, the maximum weekly
driving time of 56 hours is respected.

• Compliance with breaks : All traveling activities have a maximum duration of 4:30h
and are interrupted by “breaks of journey” of at least 0:45h (loading activities are
also counted as non-driving periods).

• Compliance with daily rest period : The week contains five daily rest periods: four
of reduced 9-hour length and one of regular 11-hour length. The interested reader
may notice that there seems to be one more reduced 9-hour daily rest period, as
it is allowed. This, however, can be attributed to the waiting time of 3:44h at line
103. This waiting time may be added to the subsequent 9-hour daily rest period
(3h+9h splitting option); therefore, the associated 9 hours are counted as a regular
11-hour daily rest period. Hence, there are only three reduced daily rest periods in
this week, which conforms to the restrictions.

Another interesting aspect occurs in line 108 : the vehicle starts a daily rest period,
even though it has only reached a total traveling time of 8:31h in the respective travel
time interval. The maximum travel time restriction would allow for 29 additional
minutes. In this case, however, the restriction “daily rest period has to be taken
within 24 hours after the last daily rest period (24-hour rule)” comes into effect. At
“Mo 07.9.2009 23:00” the end of the last daily rest period (here: weekly rest period)
is exactly 15 hours ago. Thus, it is the last possible time to start a daily rest period
(which in this case even has to be a reduced 9-hour one) to fulfill the 24-hour rule.

• Compliance with weekly rest period : In the scheduling, there are five weekly rest
periods with the lengths of 87:45h, 32:30h, 85:48h, 67:43h, and 64:02h. Four weekly
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rest periods reach the minimum regular duration of 45 hours, the second weekly rest
period (line 71) is reduced to 32:30h and needs a 21-hour compensation. This com-
pensation is accomplished directly with the subsequent weekly rest period, where
85:48h of weekly rest period are scheduled. Hereby, the required 45h+21h=66h are
more than fulfilled.

• Compliance with Sunday traffic ban: No activities are scheduled on Sundays.

The investigation of the exemplary five-week vehicle tour has provided some more insights
into how a solution of the MNS procedure looks. The next subsection presents the final
results that have actually been achieved with the best MNS parameter settings.

5.5.3 Final Results

The overall solution quality of the investigated real-life problem is clearly dependent on
several aspects, especially empty travel time and delay, but also waiting time and to-
tal operating time. Unfortunately, an antithetic behavior was detected for the objective
function criteria empty travel time and delay. There is no explicit specification how to
relatively weight both factors. There is only the preference to weight reduction in empty
travel time higher than reduction in delay and reduction in delay higher than reduction
in waiting time.

Therefore, it is not possible to present “one” best result. Instead, it makes sense to
present a choice of good solutions with different weighting of the preferences. The results
are generated with the best parameter settings of Section 5.5.1 for the three promising
penalty cost combinations: (40,8), (30,5) and (40,5). Detailed results for the objective
function criteria empty travel time, delay, break/wait, and overtime are outlined in Table
5.9. The percentage deviations from the manual planning benchmark are visualized in
Figure 5.22.

In the first case, a solution is presented that allocates improvements quite equally between
empty travel time and delay. This solution is generated by the penalty cost setting (40,8):
empty travel time is reduced by 3.9%, delay by 6.0% and break/wait by 1.6%. The
empty-to-all ratio which was 11.2% in the manual planning benchmark is reduced to a
level of 10.8%. Since there is a stronger reduction in delay as in empty travel time, some
additional “improvement” may be shifted from the reduction of delay to the reduction of
empty travel time which is – according to the given preferences – the primary focus.

penalty costs empty traveling delay break/wait operating time
40,8 24808 150122 488489 741140
30,5 23936 156915 485434 737213
40,5 22750 186175 485486 736079

Table 5.9: Final results for best parameter and penalty cost settings (in hours)

This is achieved in a second scenario with penalty cost setting (30,5): here, a reduction of
empty travel time of 7.3% is generated. Simultaneously, delay is improved by 1.7% and
break/wait by 2.2%. The empty-to-all ratio decreases to a level of 10.5%.
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In a third penalty cost setting (40,5), we try to achieve even further improvements of
empty travel time. And indeed, an improvement of 11.9% in terms of empty travel
time compared to the manual planning benchmark is produced. The empty-to-all ratio
decreases to a level of only 10.0%. However, this improvement comes along with a signif-
icant worsening in category delay (16.6%), while break/wait stays at a constant level in
comparison to the previous setting (-2.2%). Due to the worsening in delay, this penalty
cost setting seems to be only recommendable in situations with very strong preferences
for reduction of empty travel time (in relation to reduction of delay).

In total, the second solution with penalty cost setting (30,5) seems to fulfill the required
preferences for a “good solution” in the most suitable way: improvements are achieved
in comparison to the manual planning benchmark for all objective function criteria, with
highest improvements in category empty travel time and second highest improvements in
category delay. In the following, we will refer to this second penalty cost setting and the
associated results.

5.5.4 Discussion

The final results show that the application of a computer-based real-life planning system
is capable of producing planning results with significant reductions in empty travel time
and in delay. In the following, the pros and cons of an implementation of such a planning
system are discussed. An overview is given in Table 5.10.

In a first step, the possible benefits are summarized.

• In the five-week test horizon, 1,880 hours of empty travel time are saved compared to
the manual planning benchmark (scenario with penalty cost setting: 30,5). With the
assumed average speed of 72 km/h, this equates to 135,360 kilometers. Projected to
a whole year with 52 weeks, a saving of approx. 1.4 million empty kilometers would
be generated.

• Furthermore, there is an increase in customer service: total delay is reduced by 1.7%
compared to the manual planning benchmark (scenario with penalty cost setting:
30,5). This corresponds to a weekly reduction of delay of approx. 546 hours.

• In addition to the saving of empty kilometers and to the improvement in service
quality, the introduction of a computer-based Decision Support System for the dis-
patching of an international truck fleet will also cause a reduction in manual planning
effort. Such a dynamic Decision Support System, however, is not capable of replac-
ing a human dispatcher, it just supports human dispatchers with planning proposals.
Some unsystematical data errors or unexpected planning situations will always re-
quire the final approval of a human. Nevertheless, the time that a dispatcher needs
to perform the planning tasks considered in this work may be reduced. This, for
example, allows for a higher number of vehicles to be supervised per dispatcher or
for the taking on of other productive work in the freed up time.

• Independently of the quantifiable savings, the implementation of such a project
initiates a general improvement process (e.g., for the input data quality and con-
sistency), which may also result in general positive feedback for other parts and
planning tasks of the freight forwarding company.
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costs benefits
implementation costs operating costs reduction in empty traveled

distance of 7.3%
- guarantee of general and on
time data availability

- staff, to keep the system run-
ning and for maintainance

five-week horizon:
1,880 h · 72 km/h = 135,360 km

- measures, securing input
data quality and consistency

- energy, hardware → year-long horizon (approx.):
1.4 million km

- acquisition/development of
planning software

- ...

- acquisition of sufficient hard-
ware resources

imponderabilities reduction in delay of 1.7%

- management of data inter-
faces

- remaining real-life restric-
tions, not considered

reduction in manual planning
effort

- training of the dispatchers - user incompliance - time for other productive work

- ... - ...
-
general improvement process
positive feedback for other tasks

Table 5.10: Implementation of a dynamic Fleet Management System: costs and benefits

In a second step, the costs and risks that have to be set against the potential benefits
are outlined: initial implementation cost to acquire the new planning system and to get it
running; recurring operating and maintainance costs; and also imponderabilities (risks),
which may decrease the extent of actually generated savings.

Implementation costs :

• In the beginning, it has to be ensured that all information that is needed for the
planning process is digitally available (general data availability). Possibly, the ex-
isting information system has to be backed up with additional information. Hereby,
an on time data collection process is crucial (on time data availability). These
preliminary aspects may cause first introduction costs.

• Furthermore, measures for securing the input data quality and consistency are needed.
This is because a computer based planning system is not capable of finding unsys-
tematic errors in the input data by itself. Undetected data errors may render the
planning results partially useless. Such measures may include the installation of au-
tomatic checks of input data and also the raising of quality awareness of the people
who manually enter the input data (perhaps with a gratification system for error
free data handling).

• Introduction costs, furthermore, include the costs for acquisition/development of
planning software. A freight forwarding company will not usually have the resources
to build up a Decision Support System on its own. Hence, a planning solution should
be bought from a professional software provider. This provider should have sufficient
experience in the freight forwarding sector and also a skilled workforce that allows for
customer specific adaptations and prompt service in case of difficulties. However, to
avoid paying all the generated savings to the software company, the freight forwarder
should have own employees available who understand the planning program and who
are able to perform program adaptions themselves.

• Appropriate hardware equipment is needed for the planning software. It was shown
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in this study that even a conventional PC is able to perform the planning of a large
problem instance. Thus, the hardware costs should only be moderate.

• Some financial effort is also necessary to establish real time links between all existing
databases and the new planning system (management of data interfaces). With re-
gard to this, it could be advantageous to introduce a dynamic planning system from
the software company providing the associated database and information systems.

• Finally, there are introduction costs for the training of the dispatchers. This is not
only necessary in order to enable people to use the dynamic planning system, but
also to create general acceptance of the new planning system.

Operating and maintainance costs :

• In addition to the introduction costs, there are also some recurring operating and
maintainance costs for the planning system that have to be considered. These costs
specifically occur for the company’s own staff which keeps the planning system run-
ning and performs necessary program adaptations. Furthermore, permanent energy
costs or costs for the replacement of hardware resources must be accounted for.

Possible imponderabilities (risks):

• There may be the problem of user in-compliance. As explained in Section 3.5, the
usage of a computer based planning system may be significantly reduced if too many
(correct) computer suggestions are manually overwritten by human planners. The
only way to cope with this problem is the endeavor to create general acceptance of
the software by the human dispatchers.

• Furthermore, it should be mentioned that despite the adapted MNS procedure is
including many real-life restrictions, there are some aspects remaining that have
not been covered: e.g., explicit planning of driver exchange or further sources of
dynamism. The additional consideration of these aspects in a real-life planning,
may result in a less significant reduction in empty traveled distance.

After estimation of all savings and cost values, one approach of assessing the advanta-
geousness of an investment in a dynamic planning system could be the calculation of the
resulting net present value. Such a detailed quantification, however, is very company
specific and therefore shall not be a part of this work.



Chapter 6

Conclusion and Outlook

In this chapter, the methodology, achievements and main findings of this thesis are sum-
marized (Section 6.1). This is followed by some recommendations for further research in
the area of Dynamic Fleet Management (Section 6.2).

6.1 Conclusion

This work has investigated a dynamic real-life planning situation that has mostly been
neglected in the existing literature: Dynamic Fleet Management for International Truck
Transportation with occasional transportation tasks.

The goal of the study was outlined in the first chapter:

To design a Dynamic Fleet Management System for International Truck Trans-
portation focusing on occasional transportation tasks that is capable of improving
the planning process at a freight forwarding company in terms of empty traveled dis-
tance and service quality, hereby taking into account all important European real-life
requirements (EC social regulations, working time and traffic bans).

A number of research questions were posed to guide us in reaching the goal of the study.
With the reconsideration of these research questions, the methodology, achievements and
findings of this study shall be summarized.

What are the specific characteristics of dynamic planning problems?

This question is investigated in Section 2.1: the term “dynamic” and various sources of
dynamism are defined. The main differences between classical static planning and dy-
namic planning are presented. Afterwards, the degree of information availability and the
possible reactivity in dynamic planning situations are discussed. This is followed by the
investigation of potential measures for the “degree of dynamism”, a discussion of appropri-
ate simulation techniques for dynamic algorithms, and five possible ways of performance
evaluation.

Where do dynamic planning situations occur in real-life?

In Section 2.2 the most important dynamic real-life applications (Pickup Tour for Courier

Steffen Schorpp, Dynamic Fleet Management for International Truck Transportation,
DOI 10.1007/978-3-8349-6675-9_6,
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Services, Traveling Repairman Problem, Taxi/Dial-A-Ride services, Express Mail Deliv-
ery, and International Truck Transportation with occasional transportation tasks) are
introduced and connected to the associated theoretical problem definitions. Furthermore,
a classification scheme for these dynamic real-life problems is proposed using the charac-
terizing attributes “depot bound/depot free” and “local area/wide area”.

What is the state of the art in the literature on Dynamic Fleet Management?

Since the literature on dynamic wide area applications is scarce, the literature review in
Chapter 3 focuses on dynamic vehicle routing in general. It includes exemplary dynamic
real-life publications and algorithm orientated papers. The algorithm orientated publica-
tions are divided into three groups, depending on the knowledge of the future: the first
two groups do not have any knowledge of the future and therefore only perform “myopic”
planning; in contrast to the first group, the second group tries to anticipate the future
anyway. Stochastic information about the future is considered only in third group publi-
cations, which make explicit use of it.

The investigated algorithms are based on various concepts: local search approaches,
various metaheuristics (Tabu Search, Evolutionary Approaches, Variable Neighborhood
Search, Ant Colony, Second Objective Function), the heuristic application of exact pro-
cedures, rule-based approaches, and multi-agent systems. Most concepts apply classical
Best Insertion techniques. The literature review is finally complemented by a look at the
most popular dynamic test instances and by publications considering the acceptance of
dynamic planning applications in real-life.

What dynamic solution approaches are suitable for a Dynamic Fleet Manage-
ment System?

In Chapter 4 two dynamic planning approaches based on completely different planning
ideas are developed : an Assignment based procedure and an Insertion based procedure
with Multiple Neighborhood Search. First stage, both approaches are designed for a local
area MLPDPTW and not for the final real-life planning problem. The available test in-
stances for this local area problem are used, to perform extensive tests and to evaluate
the strengths and weaknesses of both procedures.

For a self-generated set of test instances, the Assignment based approach produces bet-
ter results. For some test instances from the literature, however, better performance is
observed with Insertion based MNS. Both procedures are suitable for the adaptation to
the actual real-life planning problem, nevertheless, the Insertion based MNS procedure is
finally chosen. This is due to its higher robustness, the smaller parameterization effort
and less overall complexity.

What general requirements come along with International Truck Transporta-
tion in Europe?

In Section 5.1 four important categories of general requirements are analyzed: Social Reg-
ulation EC 561/2006, Social Regulation AETR, Directive EC 2002/15 on working hours,
and general driving bans. The first three aspects are driver related, while the fourth
aspect is of general type. For the social regulations, we discuss the requirements for sin-
gle and team driver mode in detail (daily driving time, weekly and fortnightly driving
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time, breaks, daily and weekly rest periods). Hereby, we do not only focus on basic rule
scheduling, but also elaborate all possible exceptions. We notice that scheduling with
exceptions enables better planning results: the use of extended driving time and reduced
rest periods, for example, allows for better compliance with the time window restrictions
of an urgent order.

The working time requirements of Directive EC 2002/15 do not only include driving time,
but “all times during which a driver cannot dispose freely of his time.” The respective
requirements for weekly working time, breaks and night work are outlined. In terms of
general driving bans, a very heterogeneous situation is found, with nearly every European
country applying its own restrictions. The European countries can be roughly differenti-
ated into three groups: with general traffic bans, with partial traffic bans, and without
traffic bans. As the most common feature, various types of Sunday traffic bans can be
identified.

What specific requirements are necessary to cover the planning situation at
the cooperating freight forwarding company?

In Section 5.2 the planning requirements of our cooperating freight forwarding company
are outlined. An important aspect is the restricted order-to-vehicle assignment, which
only allows for a matching if the load type of orders and vehicles is identical. This is
complemented by some orders’ need for a vehicle with hazardous goods equipment. Some
vehicles are available in single driver mode (70%), some in team driver mode (30%).

Orders primarily occur as classical Full-Truckload requests with one Pickup and one De-
livery location. However, there may also be request bundles with several prespecified load
and unload locations whose sequence cannot be changed by the planning procedure. Fur-
ther real-life requirements concern the scheduling of delayed arrivals and the exchange of
drivers.

What simulation speed should be used to evaluate the real-life planning pro-
cedure’s performance?

It turns out that an appropriate simulation speed is of decisive impact on solution quality.
Results which are significantly better in all objective function criteria can be generated
with slower simulation speeds. This impact is exemplarily demonstrated in Section 5.5.1:
with a decrease of simulation speed from s = 120, over s = 5, to s = 1, the average
solution quality is remarkably increased. This better performance can be attributed to
the improvement components of the MNS real-life planning procedure, which are capa-
ble of investigating a larger scope of the solution space if there is more simulation time
available. The unequivocally best performance is achieved if a real time simulation (with
a simulation speed of s = 1) is applied.

The simulation speed is also an important aspect for the parameterization: the best param-
eters with a simulation speed of s = 5, are not necessarily identical to the best parameters
with a simulation speed of s = 1. This finding seems to be a good reason to also perform
the parameterization steps in real time. However, there is the drawback of the long sim-
ulation runs for real time simulations that only allow for a limited number of parameter
variations to be tested.
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How much potential savings can be generated with the application of a compu-
ter-based dynamic planning system for International Freight Transportation?
Is it reasonable to implement such a Decision Support System?

In Section 5.4 we analyse a five-week real-life test data set from our cooperating freight
forwarding company and derive benchmark values from the actually performed manual
planning. Afterwards, we apply our adapted MNS real-life procedure to the five-week test
data set and compare the computer-based results with the benchmark.

Generally, we discover an antithetic behavior of the objectives reduction of empty travel
time and reduction in delay. Therefore, we explore three penalty cost settings (30,5; 40,5;
40,8) that – for a simulation speed of s = 1 – generate promising results for both objective
function criteria at the same time.

With the penalty cost setting (40,8), we achieve a reduction in empty travel time of 3.9%
and a reduction in delay of 6.0%. With the penalty cost setting (30,5), we achieve a
reduction in empty travel time of 7.3% and a reduction in delay of 1.7%. The best results
in terms of empty travel time (reduction of 11.9%) are achieved with penalty costs (40,5);
however, in this case there is a significant worsening of delay (16.6%). Further objective
function criteria, like break/wait and total operating time, are slightly improved in all
three cases.

Whether these savings can justify the implementation of a Decision Support System is
discussed in Section 5.5.4. We contrast possible benefits and costs connected with such
an implementation. For our cooperating company, for example, we estimate that the
introduction of a computer-based planning system would result in a yearly saving of ap-
prox. 1.4 million empty traveled kilometers. In addition, the manual planning effort could
be reduced and a general improvement process could be initiated. On the other hand,
there are various introduction and operating costs for a dynamic planning system, as well
as possible imponderabilities (like user incompliance).

The comparison of pros and cons mostly contains qualitative aspects, since a detailed
monetary quantification would require too much company-specific information. Never-
theless, we assume that savings of the magnitude of 1.4 million empty kilometers per year
should make the investment in a computer-based planning system a beneficial decision.

6.2 Recommendations for Further Research

The investigated planning procedure covers many real-life restrictions. However, there
are further extending options, especially in terms of possible sources of dynamism.
With dynamically occurring orders, we have only considered the most important dynamic
aspect. Future works could also include cancelation or modification of already known cus-
tomer orders, changes in vehicle travel time and complete vehicle breakdown.

Another extension could be the inclusion of stochastic information of the future.
Section 3.3.3 has presented some promising ideas for incorporation of such extra informa-
tion into dynamic planning procedures. However, an important question in this context
concerns how this stochastic information could actually be gathered in real-life and also
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how reliable the gathered data would be.

It also materialized that there is a very close connection between vehicle routing and
driver scheduling in wide area Fleet Management. In this work, we took the information
on the vehicles’ crews as externally given and applied the resulting restrictions to our
tour planning. We did not treat driver exchange and the number of drivers per vehicle
as decision variables. However, the overall planning quality (concerning the total costs
of tour and driver scheduling) may be decisively improved, if coordinated tour and
driver planning were performed:

• Firstly, a driver has to get home from time to time, which generates extra costs for
the freight forwarding company. If it is possible in the tour planning, to assign an
order to the driver’s vehicle with a destination near to the driver’s home location or
close to another favourable exchange point, the costs of exchanging the driver could
be reduced.

• The second, even more important aspect, deals with the direct impact of a vehicle’s
crew (number of available drivers; time interval a vehicle is operated by the same
driver(s)) on vehicle routing restrictions (EC social regulations).

A vehicle in team driver mode can be operated for a much longer time per week (112
hours maximum/first week, instead of 56 hours maximum/first week) than a vehicle
in single driver mode. The resulting better vehicle utilization allows for more orders
to be transported and for better compliance with time windows (faster treatment
of urgent orders). In coordinated tour and driver planning, the decision to run
a vehicle in one or team driver mode could be handled flexibly: one driver mode
could be chosen in weeks with a small number of available requests and team driver
mode in weeks with many orders; a crew of two drivers could be assigned preferably
to vehicles carrying urgent orders. Of course, for this strategy, double personnel
costs (team driver mode) and also costs for frequent driver exchange have to be
taken into account: If the extra vehicle utilization necessary to justify these extra
expenses cannot be generated, it may be better to waive the team driver option.
This would be a question to be decided by coordinated tour and driver planning.

When drivers are exchanged frequently, a higher overall vehicle utilization with more
transported requests and better compliance with time windows can be achieved. A
“fresh driver”, whose driving time account is unconsumed and who has no outstand-
ing rest period compensations, is - in tendency - capable of performing a much longer
weekly driving time compared to a driver who has spent several weeks on the vehicle
and whose driving time is possibly subject to more stringent restrictions (especially
limitations due to maximum fortnightly driving time and outstanding rest period
compensation). Of course, a strategy with frequent driver changes also generates
higher costs for the exchanging procedure (empty kilometers to the exchange point,
getting the old driver home and the new driver to the vehicle, overnight accommo-
dation for rest periods away from the vehicle, etc.). The detection of the optimal
points in time to perform driver exchanges should be a result of coordinated tour
and driver planning.

As we have seen in Section 5.2, the planning problem of the cooperating freight for-
warding company consists of two levels: order acquisition (acceptance/rejection decision;
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cost/pricing problem) and tour planning. In this work, we have concentrated on tour
planning aspects and have excluded the acquisition. However, with our insertion based
MNS procedure, it would be a simple undertaking to evaluate possible new orders on
the basis of the current schedule. The associated incremental costs for the new order’s
insertion could be reported within seconds to the responsible human dispatcher, thus,
providing decision support for the acquisition process.

In future works, a revenue management system could be developed which makes use
of these dynamically calculated incremental insertion costs. Such a system should also
consider the change in future profits or opportunity costs associated with servicing a new
potential order. First works on pricing decisions in dynamic fleet management were pub-
lished by Figliozzi et al. (2007) and Topaloglu and Powell (2007).

Another potential extension to the tour planning problem is the grouping of customer
orders into priority classes, e.g., A and B. Customers who are willing to pay a little
more for an on time service (in compliance with the specified time windows) could choose
the tariff of priority level A, while customers with less restrictive demands on punctual-
ity could choose the cheaper tariff of priority level B. In this way, the overall profit of
the freight forwarding company may be increased. The service quality, in terms of time
window compliance, could be simply differentiated by different treatment of delays in the
objective function – with higher costs to penalize delays of priority A orders and smaller
costs to penalize delays of priority B orders.

In terms of the procedure’s performance, it would be interesting to analyze the impact
of yet a further increase in computational power. In Section 5.5.1 the approximate
quintuplication of the number of calculation steps (from a simulation speed of s = 5 to
a simulation speed of s = 1) effected an increase in solution quality in the dimension of
2.2% in empty travel time and of 6.6% in delay (for penalty costs settings (40,8), cp.
Figure 5.12). Would yet a further increase of computational power by a factor of five
result in similar improvements? An answer could be given, for example, with a paral-
lelized architecture with several processors. For the required problem decomposition, the
improvement neighborhoods of MNS with exchange operations between two vehicle tours
(neighborhood I) and within one vehicle tour (neighborhood II) seem to be particularly
suitable.
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A Pseudocode of MNS Improvement Neighborhoods

01: Refresh Tabu List according to actual system time

02: Calculate decreasing cost ranking for als vehicle tours

03: WHILE (simulation time < t fixtime) {
04: Identify feasible pair of vehicles for neighborhood operation, preferably a combination of a

05: ‘‘cheap’’ and an ‘‘expensive’’ vehicle tour, taking into account the Tabu list

06: -> vehicle a and vehicle b

07: Determine the exchangeable requests for vehicle a and vehicle b

08: -> exchangeable req a and exchangeable req b

09: Calculate the initial cost for the tours of vehicle a and vehicle b

10: -> initial cost

11: Set best cost = 999 999 999; best tourroute a = NULL; best tourroute b = NULL

12:

13: FOR (i=0; i<exchangeable req a; i++) {
14: FOR (j=0; j<exchangeable req b; j++) {
15: IF (request i is compatible with vehicle B && request j is compatible with vehicle A) {
16: Extract requests i and j from the tours of vehicle a and vehicle b, respectively

17: Apply Best-Reinsertion for request i into tour B

18: Apply Best-Reinsertion for request j into tour A

19: Calculate the new cost for the tours of vehicle a and vehicle b

20: -> new cost

21: IF (new cost < best cost) {
22: best cost = new cost

23: best tourroute a = new tour of vehicle A

24: best tourroute b = new tour of vehicle B

25: }
26: }
27: }
28: }

29: FOR (i=0; i<exchangeable req a; i++) {
30: IF (request i is compatible with vehicle B) {
31: Extract request i from the tour of vehicle a

32: Apply Best-Reinsertion for request i into tour B

33: Calculate the new cost for the tours of vehicle a and vehicle b

34: -> new cost

35: IF (new cost < best cost) {
36: best cost = new cost

37: best tourroute a = new tour of vehicle A

38: best tourroute b = new tour of vehicle B

39: }
40: }
41: }

42: FOR (j=0; j<exchangeable req b; j++) {
43: IF (request j is compatible with vehicle A) {
44: Extract request j from the tour of vehicle b

45: Apply Best-Reinsertion for request j into tour A

46: Calculate the new cost for the tours of vehicle a and vehicle b

47: -> new cost

48: IF (new cost < best cost) {
49: best cost = new cost

50: best tourroute a = new tour of vehicle A

51: best tourroute b = new tour of vehicle B

52: }
53: }
54: }

55: IF (best cost < initial cost) {
56: Set tour of vehicle A = best tourroute a

57: Set tour of vehicle B = best tourroute b

58: }
59: }

Table 1: Pseudocode: λ-1 interchange (neighborhood I)
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01: Calculate decreasing cost ranking for all vehicle tours

02: WHILE (simulation time < t fixtime) {
03: Choose a vehicle, according to decreasing cost ranking

04: -> current vehicle

05: Determine the exchangeable requests for current vehicle

06: -> exchangeable requests

07: Calculate the initial cost for the tour of current vehicle

08: -> initial cost

09: Extract the exchangeable requests from the vehicle’s tour

10: -> extracted tour

11: Generate all sequence permutations for possible re-insertion of the exchangeable requests

12: -> permutations

13: Set best cost = initial cost; best tourroute = initial tourroute

14: FOR (i=0; i<permutations; i++) {
15: Apply Best-Reinsertion of exchangeable requests into extracted tour

in the sequence of permutation i

16: -> new tour

17: Calculate the cost for new tour of current vehicle

18: -> new cost

19: IF (new cost < best cost) {
20: best cost = new cost

21: best tourroute = new tour

22: }
23: }

24: Set tour of current vehicle = best tourroute

25: }

Table 2: Pseudocode: intraroute optimal sequence (neighborhood II)

01: Calculate the current plan’s objective value

02: -> initial objective

03: Duplicate the current plan for back-up

04: -> initial solution

05: Calculate decreasing cost ranking for all vehicle tours

06: Initialize a list all exchangeable requests

07: WHILE (simulation time < t fixtime) {
08: FOR (i=0; i<number of vehicles; i++) {
09: Choose most expensive vehicle, according to decreasing cost ranking

10: -> current vehicle

11: Determine exchangeable requests for current vehicle

12: -> exchangeable requests

13: Append exchangeable requests to the list all exchangeable requests

14: Extract exchangeable requests from current vehicle’s tour

15: }
16: WHILE (size of all exchangeable requests > 0) {
17: Remove first request of all exchangeable requests

18: -> first request

19: Apply Best-Reinsertion for first request over all vehicle tours

20: }
21: BREAK

22: }

23: IF (Re-Insertion of all extracted requests was successful) {
24: Calculate the new plan’s objective value

25: -> new objective

26: IF (new objective > initial objective) {
27: Reconstruct initial solution

28: }
29: }
30: ELSE {
31: Reconstruct initial solution

32: }

Table 3: Pseudocode: complete solution rebuild (neighborhood III)



190 Appendix

B Parameterization - Detailed Results

Appendix B contains the detailed planning results of the parameterization process in
Section 5.5.1. The adapted MNS procedure is applied to the real-life test scenario.

b

a
empty travel time delay

break/wait operating time

penalty cost “delay”
1 5 8 10

p
en

al
ty

co
st

“
tr
av
el
in
g
em

p
ty
”

1
- - - - - - - -
- - - - - - - -

5
- - - - - - - -
- - - - - - - -

8
24133 221255 - - - - - -
465770 717746 - - - - - -

10
23246 243138 - - - - - -
465497 716586 - - - - - -

20
20281 350737 26135 139345 28174 118806 - -
467961 716086 484150 738128 487316 743333 - -

30
- - 24246 170913 26805 144508 27424 128188
- - 485496 737585 489000 743648 489660 744927

40
- - 23355 195087 25364 161562 26278 143374
- - 485167 736366 488883 742091 490328 744449

Table 4: Parameterization of penalty costs (simulation speed s = 5, improvement neigh-
borhoods I:II 66:33, anticipation horizon 10 min) - Detailed Results (in hours)

penalty cost “delay”
1 5 8 10

p
en

al
ty

co
st

“
tr
av
el
in
g
em

p
ty
”

1
- - - - - - - -
- - - - - - - -

5
- - - - - - - -
- - - - - - - -

8
- - - - - - - -
- - - - - - - -

10
- - - - - - - -
- - - - - - - -

20
- - 26157 136544 - - - -
- - 486986 740986 - - - -

30
- - 24171 159541 26319 135305 27242 123891
- - 485833 737847 486831 740994 488387 743472

40
- - 22969 193705 24817 150976 - -
- - 484724 735536 487621 740281 - -

Table 5: Parameterization of penalty costs (simulation speed s = 1, improvement neigh-
borhoods I:II 66:33, anticipation horizon 10 min) - Detailed Results (in hours)
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empty traveling delay break/wait operating time
an

ti
ci
p
.
h
or
iz
. 5 min 24450 175323 485956 738249

10 min 24246 170913 485496 737585
30 min 24610 170142 488326 740780
60 min 24545 173351 486564 738953
90 min 24561 177846 485891 738295
120 min 24591 187401 486199 738633

Table 6: Parameterization of anticipation horizon (simulation speed s = 5, improvement
neighborhoods I:II 66:33, penalty costs (30,5)) - Detailed Results (in hours)

empty traveling delay break/wait operating time

an
ti
ci
p
.
h
or
iz
. 5 min 24193 162010 484880 736916

10 min 24171 159541 485833 737847
30 min 23966 158126 485019 736828
60 min 23937 159509 485865 737646
90 min 24076 168449 486213 738133
120 min 24042 164628 485491 737377

Table 7: Parameterization of anticipation horizon (simulation speed s = 1, improvement
neighborhoods I:II 66:33, penalty costs (30,5)) - Detailed Results (in hours)

empty traveling delay break/wait operating time

%
I-

%
II

100-0 24455 164946 486402 738700
75-25 24581 168246 488889 741313
66-33 24246 170913 485496 737585
50-50 24165 169027 487310 739317
33-66 24579 177323 485439 737862
25-75 24407 170408 486550 738800
0-100 26193 220953 491455 745491

Table 8: Parameterization “allocation of improvement time” (simulation speed s = 5,
anticipation horizon 10 min, penalty costs (30,5)) - Detailed Results (in hours)

empty traveling delay break/wait operating time

%
I-

%
II

100-0 24008 154654 487019 738870
75-25 24071 167129 486340 738254
66-33 24171 159541 485833 737847
50-50 24164 166108 484947 736955
33-66 24081 161118 484747 736671
25-75 24152 166242 485971 737966
0-100 26055 214509 489198 743096

Table 9: Parameterization “allocation of improvement time” (simulation speed s = 1,
anticipation horizon 10 min, penalty costs (30,5)) - Detailed Results (in hours)
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