

Christian Herde

Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure

VIEWEG+TEUBNER RESEARCH

Christian Herde

Efficient Solving
of Large Arithmetic Constraint
Systems with Complex Boolean
Structure
Proof Engines for the Analysis
of Hybrid Discrete-Continuous Systems

With a foreword by Prof. Dr. Martin Fränzle

VIEWEG+TEUBNER RESEARCH

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Dissertation Universität Oldenburg, 2010

1st Edition 2011

All rights reserved
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Editorial Office: Ute Wrasmann | Anita Wilke

Vieweg+Teubner Verlag is a brand of Springer Fachmedien.
Springer Fachmedien is part of Springer Science+Business Media.
www.viewegteubner.de

No part of this publication may be reproduced, stored in a retrieval system
or transmitted, in any form or by any means, electronic, mechanical, pho-
to copying, recording, or otherwise, without the prior written permission of
the copyright holder.

Registered and/or industrial names, trade names, trade descriptions etc. cited in this publica-
tion are part of the law for trade-mark protection and may not be used free in any form or by
any means even if this is not specifically marked.

Cover design: KünkelLopka Medienentwicklung, Heidelberg
Printed on acid-free paper
Printed in Germany

ISBN 978-3-8348-1494-4

Foreword

Over the past decades, we have seen a slow, but steady popularization of automatic
verification technology — once the Holy Grail of formal methods in computer sci-
ence — that is indicative of the maturity the field has achieved. Only few universities
do still hesitate to expose undergraduates to the field’s basic methods, the pertinent
tools, and their underlying algorithms, and industrial takeover is undeniably gain-
ing impetus, following education with the natural phase delay. Over the years, some
basic techniques have become cornerstones of the field, forming identifiable and reap-
pearing building blocks of the plethora of tools that have been built. Among these
fundamentals are abstract interpretation, binary decision diagrams, and satisfiability
solving, to name just a few. Within this book, you will find an informed account of
a number of substantial contributions to the latter field, in particular addressing the
domain of satisfiability modulo theories, which has become instrumental to various
mechanic verification schemes in hardware and software validation. Despite being
based on a PhD thesis, which I had the pleasure to advise, the book elaborates in equal
detail on the underlying “folklore” ideas and techniques and on the author’s own con-
tributions, complementing both by extensive pointers to open problems and ideas for
further research. I hope you as a reader will find it helpful, no matter whether you
are a novice trying to understand satisfiability solving for complex-structured arith-
metic constraints or are an expert looking for a clear-cut delineation of the techniques
developed in the Transregional Collaborative Research Center AVACS (Automatic
Verification and Analysis of Complex Systems, funded by the Deutsche Forschungs-
gemeinschaft) from competing approaches.

Martin Fränzle

Acknowledgements

In a sense, nature has been continually computing the ‘next state’ of the
universe for billions of years; all we have to do – and, actually, all we can
do – is ‘hitch a ride’ on this huge ongoing computation, and try to discover
which parts of it happen to go near to where we want.

Tommaso Toffoli, 1982

This thesis marks a major waypoint on my excursion into the field of formal verifi-
cation and constraint solving, a pleasurable ride along a branch of the ‘huge ongoing
computation’ which turned out to be one of the more exciting ones. I would like to
thank all those who made this journey possible:

First and foremost, I would like to thank my supervisor Martin Fränzle. A big
thank you, Martin, for all I have learned from you, for your perpetual willingness to
discuss any questions and ideas I have had, for your valuable advice, and for giving
me the time I needed to finish this work.

Particular thanks go to Bernd Becker for kindly accepting to co-examine this the-
sis, and to him and the members of his research group for their hospitality and support
during my visits to Freiburg. I also extend my thanks to my other committee mem-
bers Sibylle Fröschle and Andreas Winter for taking time to participate in my defense.
Moreover, I would like to express my gratitude to Werner Damm for sparking my in-
terest in safety-critical systems and for offering me my first job in formal verification
during an oral exam many years ago.

I am particularly indebted to my friends and colleagues from the University of Ol-
denburg, from the Transregional Collaborative Research Center AVACS, and from the
OFFIS Institute for Information Technology for providing an inspiring and pleasant
working environment. I am especially grateful to Andreas Eggers and Tino Teige for
outstanding teamwork, for many discussions on research and life, and for the great
time we spent together.

Lastly, and most importantly, I am deeply thankful to my grandparents Anna and
Friedrich Bödeker who raised me and gave me loving care and support in difficult
times. To their memory, I dedicate this thesis.

Christian Herde

Abstract

Due to the increasing use of more and more complex computerized systems in safety-
critical applications, formal verification of such systems is of growing importance.
Among the most successful methods in formal verification of finite-state systems is
bounded model checking (BMC), a technique for checking whether an unsafe sys-
tem state is reachable within a fixed number of steps. BMC belongs to a class of
verification algorithms having in common that the verification task is reduced to the
problem of checking the satisfiability of a propositional formula or a series thereof.
Though originally formulated for discrete transition systems only, BMC is in princi-
ple also applicable to hybrid discrete-continuous systems, which naturally arise e.g.
in the field of embedded systems where digital (discrete) controllers are coupled with
analog (continuous) physical plants. The BMC formulae arising from such systems
are, however, no longer purely propositional, but usually comprise complex Boolean
combinations of arithmetic constraints over real-valued variables, thus entailing the
need for new decision procedures to solve them.

This thesis deals with the development of such procedures. A key component of
the algorithms we present is the DPLL procedure for solving Boolean formulae which
are in conjunctive normal form (CNF). As a first contribution, we demonstrate that the
acceleration techniques, which enabled the enormous performance gains of Boolean
SAT solvers in the recent past, generalize smoothly to DPLL-based procedures for
solving systems of pseudo-Boolean constraints, a much more concise representation
of Boolean functions than CNFs. Second, we investigate how to efficiently couple
a linear programming routine with a DPLL-based SAT solver in order to obtain a
solver which is tailored for BMC of hybrid systems with linear dynamics. In partic-
ular, we examine how to exploit the unique characteristics of BMC formulae and the
incremental nature of BMC for various optimizations inside the solver. Finally, we
present our main contribution, a tight integration of the DPLL procedure with inter-
val constraint solving, resulting in an algorithm, called ISAT, which generalizes the
DPLL procedure and is capable of solving arbitrary Boolean combinations of nonlin-

X Abstract

ear arithmetic constraints over the reals, even such involving transcendental functions.
We demonstrate the applicability of our methods using benchmarks from the envis-
aged application domain.

Zusammenfassung

Durch den zunehmenden Einsatz immer komplexerer computerbasierter Systeme in
sicherheitskritischen Anwendungen gewinnt die formale Verifikation derartiger Sys-
teme mehr und mehr an Bedeutung. Zu den erfolgreichsten Verifikationsmethoden für
zustandsendliche Systeme gehört das Bounded Model Checking (BMC), eine Technik
zur Prüfung der Erreichbarkeit unsicherer Systemzustände durch Abläufe mit einer
festen Anzahl von Schritten. BMC gehört zu einer Gruppe von Verifikationsmethoden,
die das Verifikationsproblem auf das Erfüllbarkeitsproblem einer Formel oder eine
Folge solcher Probleme reduzieren. Wenngleich BMC ursprünglich für diskrete Tran-
sitionssysteme formuliert wurde, ist die Technik auch auf hybride diskret-kontinuier-
liche Systeme übertragbar. Letztere ergeben sich auf natürliche Weise z.B. im Bereich
der eingebetteten Systeme, wo digitale (diskrete) Regler mit analogen (kontinuier-
lichen) physikalischen Umgebungen interagieren. Die Formeln, welche beim Bound-
ed Model Checking derartiger Systeme entstehen, sind jedoch nicht mehr rein
Boolesch, sondern beinhalten komplexe Boolesche Verknüpfungen arithmetischer
Constraints über reellwertigen Variablen, deren Lösung neuartige Entscheidungsver-
fahren erfordert.

Die Entwicklung solcher Verfahren ist Gegenstand dieser Arbeit. Eine Schlüssel-
komponente der vorzustellenden Verfahren ist die DPLL-Prozedur für das Lösen
Boolescher Formeln in konjunktiver Normalform (CNF). Als ersten Beitrag zeigen
wir, dass jene Optimierungen, denen der enorme Leistungszuwachs DPLL-basierter
Solver in der jüngeren Vergangenheit geschuldet ist, sich für das Lösen von Syste-
men pseudo-Boolescher Constraints, einer im Vergleich zur CNF sehr viel konziseren
Darstellungsform Boolescher Funktionen, verallgemeinern lassen. Zweitens betrach-
ten wir die Kopplung einer Linear-Programming-Routine mit einem DPLL-basierten
SAT Solver. Das Ergebnis ist ein Solver, welcher auf das Bounded Model Checking
hybrider Systeme mit linearer Dynamik zugeschnitten ist. Vor diesem Hintergrund
untersuchen wir insbesondere verschiedene Optimierungen, welche die besondere
Struktur von BMC-Formeln sowie die inkrementelle Vorgehensweise von BMC beim

XII Zusammenfassung

Lösen der Formeln ausnutzen. Als Hauptbeitrag stellen wir schließlich den ISAT-
Algorithmus vor, welcher die DPLL-Prozedur mit Techniken des intervallbasierten
Constraint-Lösens kombiniert. Der ISAT-Algorithmus ist eine Verallgemeinerung der
DPLL-Prozedur und erlaubt die Prüfung der Erfüllbarkeit Boolescher Kombinationen
nichtlinearer Constraints auf den reellen Zahlen, insbesondere auch von Constraints,
welche transzendente Funktionen beinhalten. Wir demonstrieren die Anwendbarkeit
unserer Methoden anhand von Benchmarks aus der genannten Anwendungsdomäne.

Contents

1 Introduction 1
1.1 Formal Verification Using Satisfiability Checking 1
1.2 Bounded Model Checking of Hybrid Systems 3
1.3 Solvers for Boolean Combinations of Numerical Constraints 5

1.3.1 Constraint Solving in a Nutshell 6
1.3.2 Contributions of the Thesis 9
1.3.3 Structure . 12
1.3.4 Sources . 12

2 Hybrid Dynamical Systems 15
2.1 Modeling Hybrid Systems with Hybrid Automata 16
2.2 Predicative Encodings of Hybrid Automata 23

2.2.1 A Basic Encoding Scheme 24
2.2.2 Hybridization of Continuous Dynamics 30
2.2.3 Encoding Flows Using Taylor Expansions 33

3 Extending DPLL for Pseudo-Boolean Constraints 37
3.1 The Logics . 39
3.2 State of the Art in SAT Solving . 40

3.2.1 Conversion into CNF . 42
3.2.2 SAT Checkers for CNFs . 45

3.3 Optimizing DPLL-Based Pseudo-Boolean Solvers 49
3.3.1 DPLL for Pseudo-Boolean Constraints 50
3.3.2 Generalization of Lazy Clause Evaluation 51
3.3.3 Learning in Presence of Pseudo-Boolean Constraints 53

3.4 Benchmark Results . 55
3.5 Discussion . 57

4 Integration of DPLL-SAT and Linear Programming 59
4.1 The Logics . 60
4.2 Lazy Approach to SMT . 62

XIV Contents

4.3 SAT Modulo the Theory of Linear Arithmetic 63
4.3.1 Feasibility Check Using LP 65
4.3.2 Extractions of Explanations 65
4.3.3 Learning from Feasible LPs 68
4.3.4 Putting It All Together: a Sample Run 68

4.4 Optimizations for BMC . 70
4.5 Benchmark Results . 72
4.6 Discussion . 74

5 Integration of DPLL and Interval Constraint Solving 81
5.1 The Logics . 85
5.2 Algorithmic Basis . 88
5.3 The ISAT Algorithm . 90

5.3.1 Definitional Translation into Conjunctive Form 90
5.3.2 Split-and-Deduce Search . 94
5.3.3 Arithmetic Deduction Rules 98
5.3.4 Correctness . 104
5.3.5 Algorithmic Enhancements 109
5.3.6 Progress and Termination 112

5.4 Benchmark Results . 114
5.4.1 Impact of Conflict-Driven Learning 114
5.4.2 Comparison to ABSOLVER 115
5.4.3 Comparison to HYSAT-1 119

5.5 Reachability Analysis with HYSAT-2: a Case Study 119
5.5.1 ETCS Model . 120
5.5.2 Encoding into HySAT . 124
5.5.3 Results . 128

5.6 Discussion . 130

6 Conclusion 133
6.1 Achievements . 133
6.2 Perspectives . 135
6.3 Final Thoughts . 143

Bibliography 145

Index 159

List of Figures

1.1 Standard set-up for a computer-controlled system. 4

2.1 Hybrid automaton model of a household freezer. 20

2.2 Sample execution of the freezer automaton. 22

2.3 Freezer automaton, modified for verification. 23

2.4 Error trace of the freezer automaton. 30

2.5 Hybridization of the dynamics in control mode OPEN. 35

3.1 Definitional translation of Boolean formulae. 43

3.2 Conflict analysis. 47

3.3 Modifications of the watch-set. 54

4.1 Translation into the internal format. 62

4.2 Solver interaction in the lazy SMT framework. 63

4.3 Backtrack search tree arising in a tight integration of DPLL proof
search with linear programming. 71

4.4 Performance of HYSAT-1 relative to ICS. 75

4.5 Impact of isomorphy inference. 76

4.6 Comparison of deletion filter method for extraction of irreducible in-
feasible subsystems with method using the dual LP. 77

4.7 Impact of constraint sharing on BMC runtimes. 77

4.8 Impact of tailored decision strategies. 77

5.1 Definitional translation of arithmetic formulae. 91

5.2 Snippet of an ISAT sample run. 97

5.3 Images and pre-images of intervals under the mapping A = Bn. . . . 100

5.4 Pre-images of an interval under the mapping A = cos(B). 104

XVI List of Figures

5.5 Performance impact of conflict-driven learning and non-chronological
backtracking. 116

5.6 Absolute braking distance. 120
5.7 Top-level view of the MATLAB/SIMULINK model. 121
5.8 Switching curves of the controller. 122
5.9 Implementation of the controller and train dynamics. 123
5.10 Simulation run of the SIMULINK model and error trace found by

HYSAT-2. 129
5.11 Impact of BMC-specific optimizations. 130

6.1 Linear relaxation of nonlinear constraints. 139
6.2 Deduction of differential inequations. 143

List of Tables

1.1 Solvability of numerical constraints. 7

3.1 Complexity of decision problems. 42
3.2 Results of scheduling benchmarks. 56
3.3 Integer arithmetic problems. 56
3.4 Results of integer problems. 57

5.1 Deduction rules for addition. 99
5.2 Deduction rules for exponentiation with odd exponent. 100
5.3 Deduction rules for exponentiation with even exponent. 101
5.4 Deduction rules for multiplication. 103
5.5 Deduction rules for cosine operation. 105
5.6 Performance of ISAT relative to ABSOLVER. 118
5.7 Parameters of the ETCS case study. 122

1 Introduction

Humans occasionally make mistakes, even
programmers do.

Gerard J. Holzmann

The steadily growing complexity of computerized systems makes the latter highly
susceptible to potentially critical design errors, ranging from simple programming
bugs to scenarios and use cases overlooked by the engineers and therefore not properly
handled by the system. The increasing use of computers in safety-critical applications
like cars, aircrafts, power plants, or medical devices is therefore becoming a major
concern. The risk entailed by delegating more and more safety-critical functions to
computers is only acceptable if computing science manages to come up with new
methods and tools which help to master the complexity of such systems and thus
ensure their safety.

1.1 Formal Verification Using Satisfiability Checking

Simulation and testing, currently still being the most commonly practiced methods
for design validation, allow to explore a relatively small number of executions of a
system only and may thus fail to detect scenarios that expose a fatal bug. Except for
trivial systems, simulation and testing are therefore insufficient to provide evidence
for the correctness of a design.

An alternative approach for checking whether a design conforms to a desired prop-
erty is formal verification. As opposed to simulation and testing, formal verification
performs an exhaustive exploration of all possible behaviours of a system and is there-
fore guaranteed to detect existing errors or prove their absence. During the last ten
years, formal verification of finite-state systems, such as digital circuits or commu-
nication protocols, has evolved from an academic subject to an approach accepted
by the industry, with a number of commercial tools now being available and used by
major companies.

The recent progress in SAT solving, i.e. the problem of deciding whether a given
propositional formula has a solution, has motivated intensive research on how to ex-
ploit the strength of modern SAT solvers for formal verification. The result of this

C. Herde, Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure , DOI 10.1007/978-3-8348-9949-1_1,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

2 1 Introduction

effort are various verification algorithms, having in common that the verification task
is reduced to the problem of checking the satisfiability of a propositional formula or a
series thereof.

Arguably the most successful method in SAT-based verification of discrete sys-
tems is bounded model checking (BMC), as suggested by Groote et al. in [67] and by
Biere et al. in [20]. In its most simple form, BMC is used to decide whether an un-
safe system state is reachable via executions whose length is bounded by some given
integer k. More precisely, BMC looks for a run of a finite transition system which
starts in an initial state of the system, obeys the system’s transition relation for k steps
and ends in a state violating the safety property to be checked. The idea of BMC is
to decide the existence of such a run, also referred to as error trace, by checking the
satisfiability of the propositional formula

φk =
k−1∧
i=0

T (�y i, �y i+1) ∧ I(�y 0) ∧ R(�y k)

where �y i is the system’s state-vector at step i of the run, T (�y i, �y i+1) encodes the
transition relation, describing all admissible state transitions between steps i and i+1,
and I(�y 0) and R(�y k) are formulae characterizing the set of initial states and the set
of unsafe states, respectively. By construction, φk is satisfiable if and only if an error
trace of length k exists. The latter is checked by translating φk into conjunctive normal
form (CNF) and solving it with a SAT solver. The solver not only outputs a yes/no
result, but in case of satisfiability also delivers a satisfying assignment which directly
corresponds to an error trace, i.e. a concrete scenario illustrating how the system can
enter an unsafe state, thus providing a valuable debugging aid for the designer. BMC is
usually carried out incrementally by constructing and solving φk for increasing values
of k until either an error trace is found or some user specified limit on k, the solver’s
runtime, or its memory consumption is reached.

For every finite-state design there is a number kc such that non-existence of an
error trace of length less or equal than kc implies that there is also no error trace of
length greater than kc. In theory, this indicates a way to make BMC complete, since
φk has to be checked for 0 ≤ k ≤ kc only. For this reason, kc is called completeness
threshold. In practice, however, kc is usually too large to be reached by BMC and,
moreover, cannot be computed efficiently [35]. BMC is therefore primarily seen as as
method for falsification, i.e. for detecting bugs, rather than for proving their absence.

To cure the incompleteness of BMC, several techniques for unbounded model
checking based on satisfiability checking have been proposed. Bjesse and Claessen

1.2 Bounded Model Checking of Hybrid Systems 3

[24] and Sheeran et al. [109] suggest checking of safety properties using (temporal)
induction schemes, where base case and induction step are encoded as Boolean for-
mulae whose validity is checked with a SAT solver. Another approach, proposed by
McMillan [89], uses Craig interpolants, which are derived from unsatisfiable BMC
instances, to iteratively compute a propositional formula characterizing an overap-
proximation of the reachable state set of the system to be verified. To prove the safety
of the system, it suffices to check whether the conjunction of this formula with a for-
mula describing the set of unsafe states is unsatisfiable.

Albeit being limited to checking behaviours of bounded depth, BMC has proven
to be a valuable tool for system validation. Its attractiveness is, amongst others, due
to the fact that it has been found to scale better with the problem size than verifi-
cation methods which use binary decision diagrams1 to characterize the reachable
state set [25], like classical symbolic model checking [31]. Enabled by the impressive
performance gains of propositional SAT checkers in recent years, BMC can now be
successfully applied even to very large finite-state designs [39].

1.2 Bounded Model Checking of Hybrid Systems

Often, safety-critical systems are not purely discrete, but their dynamics is character-
ized by an interaction of discrete and continuous behaviour. Such hybrid behaviour
is found e.g. in the field of embedded systems where digital controllers are coupled
with analog physical plants via sensors and actuators (see figure 1.1). Many proper-
ties of embedded controllers cannot be fully understood without taking into account
the physical environment they are supposed to control. An analysis of such properties
by means of formal verification requires a model of the combined hybrid discrete-
continuous system.

As an example for a hybrid system consider a process control system of a chemical
production process2. The state of the chemical plant is given by continuous variables,
describing e.g. the fill level of tanks or temperature and pressure in various parts of
the plant. Its evolution over time can be modeled by differential or difference equa-
tions. Each phase of the production process (e.g. evaporation of a fluid, draining
a tank) corresponds to a discrete mode in the controller. Depending on the current
mode, the controller opens or closes valves and activates or deactivates heaters and

1Binary decision diagram (BDDs) are graph-based data structures for efficient representation and
manipulation of Boolean functions. For more information on BDDs, we refer the reader to [29].

2For concrete models of this kind see [82] and [54].

4 1 Introduction

ac
tu

at
or

s

discrete inputs (e.g. task selection)

Discrete Controller

control signals

D/A A/D

part of observable state

se
ns

or
s

environmental influences

Continuous Plant

Figure 1.1: Standard set-up for a computer-controlled system.

pumps to control the respective phase of the process. Mode changes of the controller
are triggered by progress of time or by state variables crossing specific thresholds
(temperature of the fluid reaches boiling point, fluid level in the tank falls below a
certain value). The continuous evolution of the chemical process is thus interleaved
with discrete mode switches in the controller, yielding the typical discrete-continuous
dynamics of a hybrid dynamical system.

However, hybrid dynamics not only arises from the use of digital control laws in a
continuous physical environment. Often, a physical process itself has a natural hybrid
representation. A four-stroke combustion engine, for example, is naturally modeled
as a hybrid system3: While the four-stroke cycle of each piston can be described as a
finite-state machine with four control modes, the individual phases intake, compres-
sion, expansion, and exhaust can each be modeled as a continuous process. Discrete
and continuous dynamics are tightly coupled: The torque produced by each piston
depends on the mode it is in. Conversely, mode transitions are triggered by the con-
tinuous dynamics of the power-train which, in turn, is driven by the engine torque.

A mathematical framework for modeling hybrid systems are hybrid automata.
A hybrid automaton consists of a finite state machine where each control mode is
equipped with continuous dynamics, usually specified by a set of differential equa-
tions, and a mode invariant, describing a region of the continuous state space that
must not be left while staying in that mode. During a so-called flow, the continu-

3A detailed hybrid engine model like the one sketched here is described by Balluchi et al. in [8].

1.3 Solvers for Boolean Combinations of Numerical Constraints 5

ous state changes according to the differential equations associated with the current
control mode, while the discrete state (i.e. the control mode) remains unchanged. A
discrete transition between control modes (also called jump) requires satisfaction of
a certain guard condition and may also re-initialize continuous state variables. Guard
conditions and mode invariants are usually expressed in form of arithmetic constraints
over continuous state variables or inputs of the system.

Because of their relevance for industrial applications, hybrid systems have at-
tracted a lot of interest in recent years. While tools for building hybrid models and
for simulating their dynamics are commercially available (e.g. SIMULINK with the
STATEFLOW extension4), theories and tool support for verifying hybrid systems are
not yet mature. Current verification tools fall short with respect to both the dimen-
sionality of the continuous state spaces and the size of the discrete state spaces they
can handle. According to Asarin et al. [5] the ‘analysis of systems with more than few
continuous variables is considered very hard’.

A promising approach to reduce the gap we observe between hybrid systems that
can be specified and those that can be verified is to lift bounded model checking and
related SAT-based methods for unbounded model checking to the hybrid domain.
Though originally formulated for discrete transition systems only, the basic idea of
BMC to reduce the search for an error path to a satisfiability problem of a formula
also applies to hybrid discrete-continuous systems. However, the BMC formulae aris-
ing from such systems are no longer purely propositional. Encoding not only the
discrete switching behaviour of the hybrid system, but also solution functions of dif-
ferential equations, mode invariants and guard conditions, they usually comprise com-
plex Boolean combinations of arithmetic constraints over real-valued variables, thus
entailing the need for new decision procedures to solve them. The development of
such procedures is the subject of this thesis.

1.3 Solvers for Boolean Combinations of Numerical Constraints

We address the problem of solving mixed propositional-numerical formulae like those
arising as verification conditions from BMC of hybrid systems. We are thus aiming at
formulae with the following characteristics:

The formulae are quantifier free and built from numerical constraints and propo-
sitional variables using arbitrary Boolean connectives. Numerical constraints are lin-
ear and nonlinear equalities and inequalites (strict or non-strict) involving variables

4SIMULINK and STATEFLOW are registered trademarks of The MathWorks, Inc.

6 1 Introduction

of type real, integer and Boolean (the latter being interpreted as 0-1 variables when
occuring inside arithmetic expressions). Besides polynomials, numerical constraints
may involve transcendental functions, such as sine, cosine and the exponential func-
tion, which arise naturally e.g. in connection with solutions of differential equations.
The formulae we address typically contain thousands of variables and thousands of
constraints. Furthermore, they have a unique repetitive (we also say symmetric) struc-
ture since they comprise a k-fold unwinding of a transition relation.

Given such a formula, our algorithmic goals are to check the satisfiability of the
formula and, in case of satisfiability, determine a sample solution, i.e. a variable as-
signment under which the formula evaluates to true. In the context of BMC, the sam-
ple solution will provide us with an error trace, i.e. a scenario refuting the property
under verification.

1.3.1 Constraint Solving in a Nutshell

Solving formulae is a basic activity in mathematics and computing, yet one which
is inherently difficult for many formula classes of practical relevance. From an al-
gorithmic point of view, the problem of solving Boolean formulae and the problem
of solving arithmetic constraint systems have been treated separately for a long time,
resulting in specialized algorithms for the respective tasks. Solvers which combine
algorithms for Boolean and numerical constraints first appeared in the 1990s.

Boolean Formulae

The problem of deciding the satisfiability of a Boolean formula, also referred to as
SAT problem, was shown to be NP-complete by Stephen Cook in 1971 [38]. Most
modern SAT solvers implement variants of the Davis-Putnam-Logemann-Loveland
(DPLL) procedure which was devised already in the early 1960s [43, 42]. DPLL re-
quires the input formula to be in conjunctive normal form (CNF), i.e. a conjunction of
clauses, where a clause is a disjunction of literals, the latter being a Boolean variable or
its negation. Hence, the problem has to be translated into this format first. The DPLL
procedure aims at incrementally extending a partial variable assignment towards a
satisfying assignment by alternately performing logical deduction, which involves an
exhaustive application of the so-called unit propagation rule, and branching, i.e. tenta-
tively assigning a truth-value to a previously unassigned variable, thus providing new
input to the subsequent deduction phase. In case of a conflict, i.e. if the current partial
assignment violates the input formula, DPLL backtracks to an earlier choice point and
tries another branch. This is repeated until either a solution is found or backtracking

1.3 Solvers for Boolean Combinations of Numerical Constraints 7

Satisfiability over R over Z over N over B

Linear equations polynomial polynomial NP-compl. NP-compl.
Linear inequations polynomial NP-compl. NP-compl. NP-compl.
Polynomial equations decidable undecid. undecid. NP-compl.
Polynomial inequations decidable undecid. undecid. NP-compl.
Transcendental equations undecid. undecid. undecid. NP-compl.
Transcendental inequations undecid. undecid. undecid. NP-compl.

Table 1.1: Solvability of numerical constraints.

runs out of branches in which case the formula is unsatisfiable. State-of-the-art SAT
solvers enhance this basic procedure with numerous algorithmic improvements, such
as lazy clause evaluation for speeding up the deduction process and non-chronological
backtracking which involves an analysis of the reason for a conflict in order to back
up directly to the earliest choice which caused the conflict. The latter is typically used
in connection with conflict-driven learning, a technique which adds so-called conflict
clauses to the input formula in order to avoid repeated failures due to the same reason.
Modern SAT solvers which incorporate these enhancements are capable of solving
CNFs with hundreds of thousands of Boolean variables and clauses. See [126] for a
more detailed report on techniques employed in modern SAT solvers.

Numerical Constraints

Decision procedures for numerical constraints usually solve systems of simultaneous
constraints, i.e. sets of constraints which are implicitly assumed to be conjoined. An
extensive overview of solving algorithms for various classes of numerical constraints
is given in [26]. In terms of computational complexity, the problem of checking the
satisfiability of a set of simultaneous numerical constraints ranges from polynomial to
undecidable, depending on the domains of the variables and the operations involved.
Table 1.1 summarizes the state of affairs.

Systems of linear equations over the reals can be solved in polynomial time using
Gaussian elimination. If also linear inequalities over the reals are involved, proce-
dures for linear programming (LP) like the simplex algorithm can be used. The lin-
ear programming problem was shown to be solvable in polynomial time by Leonid
Khachiyan in 1979 [80]. Although the simplex algorithm is known to have a worst-
case exponential behaviour, this complexity does very rarely manifest itself in prac-
tice. Sophisticated implementations are capable of solving problems with tens of

8 1 Introduction

thousands constraints and millions of variables. If some or all variables of a linear
system are required to take integer values only, the complexity of deciding its satis-
fiability jumps from polynomial to NP-complete. Extensions of LP to mixed integer
linear programming (MILP), where not all variables are required to be integer, and to
pure integer linear programming (ILP) are typically limited to problems involving a
few hundred or thousand integer variables. We note that CNF-SAT is a special case of
solving linear systems over the integers, since each CNF clause can be translated into
a linear inequality over 0-1 variables. The clause x ∨ y, for example, can be written
as x+ (1− y) ≥ 1.

The solvability of systems of polynomials over the reals follows from the decid-
ability of elementary geometry which was proved by Tarski in 1948 [114]. The first
decision procedure with elementary complexity, called cylindrical algebraic decom-
position(CAD), was devised by Collins in 1975 [37]. The idea underlying CAD is to
decompose the solution space into a finite number of so-called cells such that every
polynomial has a constant sign in each cell. The worst-case number of cells, however,
is doubly exponential in the number of variables occuring in the input formula such
that CAD can only be applied to very small problems. Due to the undecidability of
Hilbert’s tenth problem [88], there is no similar solving algorithm for systems of poly-
nomials over the integers. For the very same reason, the satisfiability of transcenden-
tal constraints over the reals is undecidable, because the periodicity of trigonometric
functions can be used to filter out a model of the integers from the reals.

A more practical approach to tackle polynomial and transcendental constraints is
interval constraint solving (ICS) [17]. ICS calculates a finite set of interval boxes
whose union is an overapproximation of the solution set. To this end, ICS recursively
refines an initial box-covering of the search space by applying interval-arithmetic de-
duction rules to boxes, thereby pruning parts of the interval boxes which contain non-
solutions only, and by splitting boxes into sub-boxes if otherwise no further pruning
can be achieved. The minimal width of a box which is selected for splitting controls
the tightness of the overapproximation.

Boolean Combinations of Numerical Constraints

Checking the satisfiability of a propositional formula involving numerical constraints
is an instance of the so-called Satisfiability Modulo Theories (SMT) problem, i.e. the
problem of deciding the satisfiability of a quantifier-free formula which is a Boolean
combination of propositions and atomic formulae over some background theory T .

1.3 Solvers for Boolean Combinations of Numerical Constraints 9

Currently, the most effective approach to SMT is to combine a propositional SAT
solver with a decision procedure for conjunctions of atoms from the respective back-
ground theory as follows. The SAT engine enumerates satisfying assignments of a
Boolean abstraction of the input formula which is obtained by replacing each theory
constraint with a new propositional variable representing the truth value of the re-
spective constraint. A satisfying assignment of the Boolean abstraction thus defines a
set of T -atoms that have to be satisfied simultaneously in order to satisfy the original
formula. This is checked by the T -solver. If the set of T -constraints turns out to be
inconsistent, an explanation for the conflict (usually a subset of T -constraints which
causes the inconsistency) is used to refine the Boolean abstraction. The refinement
process is iterated until either the Boolean abstraction (and, hence, the input formula)
turns out to be unsatisfiable or a T -consistent satisfying Boolean assignment is found,
in which case the input formula is satisfiable as well. The use of a DPLL-based SAT
solver enables an optimization of the above scheme which exploits the incremental
construction of an assignment in the DPLL procedure. Instead of checking only com-
plete propositional assignments against the background theory, the T -consistency of a
truth assignment is already verified for partial assignments, e.g. after each deduction
phase of the DPLL solver. This allows an early pruning of the Boolean search tree.
The resultant solver architecture is called DPLL(T).

The solver integration sketched above is often referred to as the lazy approach to
SMT since inconsistencies between T -constraints are detected and learned on the fly
during DPLL proof search. As opposed to this, the eager approach uses the T -solver
prior to the SAT search in order to perform a satisfiability-preserving translation of
the input formula into a purely propositional formula which is then solved by a SAT
solver. The eager approach, however, often suffers from a massive blow-up of the
formula size during the translation. This is in particular true for arithmetic theories,
which renders the eager approach impractical for input formulae containing more than
a small number of theory constraints. In-depth surveys of current SMT technology are
given in [12] and, with a focus on the lazy approach, in [108].

1.3.2 Contributions of the Thesis

The research we report in this thesis contributes to the state-of-the-art in solving mixed
propositional-numerical formulae in a number of aspects. We present our contribu-
tions by addressing formula classes of increasing expressiveness, starting out with
purely propositional formulae, then advancing to Boolean combinations of linear
equalities and inequalites, and finally dealing with Boolean combinations of nonlinear

10 1 Introduction

(and transcendental) constraints. Although being dedicated to the task of verification
of hybrid systems, most of the techniques we describe are general purpose and have
applications in many other domains, like operations research, planning, software ver-
ification, and scheduling, for example.

Contribution 1: Acceleration of DPLL for Pseudo-Boolean Constraints

A key component in the solving algorithms we present in this thesis is the DPLL pro-
cedure for checking CNF satisfiability. The algorithms we propose extend and gener-
alize the DPLL procedure. Hence, any improvement made to DPLL directly carries
over to the performance of the solvers for mixed propositional-numerical formulae.
Our first contribution therefore addresses, as a start, propositional satisfiability and
investigates the problem of generalizing acceleration techniques as found in recent
satisfiability engines for conjunctive normal forms (CNFs) to systems of linear con-
straints over the Booleans, also called pseudo-Boolean constraints. The motivation for
this research is that compared to clauses of a CNF, pseudo-Boolean constraints allow
a significantly more compact description of many discrete problems. Their modeling
power has been widely used in the fields of logic synthesis, operations research, and
formal verification, see [3] and [30] for example. We demonstrate that acceleration
techniques like lazy clause evaluation, non-chronological backtracking and learning
techniques generalize smoothly to Davis-Putnam-like procedures for the very con-
cise propositional logic of linear constraint systems over the Booleans. Despite the
more expressive input language, the performance of our prototype implementation
comes surprisingly close to that of CNF-SAT engines like CHAFF [91]. Experiments
with bounded model-construction problems show that the overhead in the satisfiabil-
ity engine that can be attributed to the richer input language is often amortized by the
conciseness gained in the propositional encoding of the BMC problem.

Contribution 2: BMC-Specific Optimizations in a DPLL(LA) Solver

As a second step, we address the problem of solving Boolean combinations of con-
straints from the theory of linear arithmetic over the reals (LA). This subclass of for-
mulae is especially appealing because it is decidable, i.e. allows for a complete solving
algorithm, and it is powerful enough to model hybrid automata with linear dynamics.
The latter are of particular practical relevance since nonlinear physical systems can
often be approximated with sufficient accuracy by piecewise linear approximations.
We aim at providing a solver which is tailored for BMC of linear hybrid automata. To
this end, we propose a DPLL(T) architecture where the T -solver is instantiated with

1.3 Solvers for Boolean Combinations of Numerical Constraints 11

a linear programming (LP) routine which is used to decide the feasibility of sets of
linear constraints. We investigate how to take advantage of the specific properties of
linear programming to make the coupling of DPLL and LP as efficient as possible. In
particular, we study various methods for computing small (ideally minimal) infeasi-
ble subsystems of a conflicting linear constraint system which serve as explanations
for arithmetic conflicts. Explanations are learned by the SAT solver in form of con-
flict clauses which are used to resolve the conflict and in order to prevent the solver
from running into further arithmetic conflicts due to the same reason. We examine
empirically the impact of these methods on the runtime of the DPLL(LA) engine.
Furthermore, and most importantly, we exploit the unique characteristics of BMC for-
mulae (in particular their symmetry) and the incremental nature of BMC for a variety
of optimizations in the solver. We demonstrate that these optimization, which were
originally proposed by Ofer Strichman for BMC of purely discrete systems [113], pay
off even better in the hybrid domain. The reason is that an inference step involving
arithmetic constraints is computationally much more expensive than one involving
propositional logic only. To the best of our knowledge, our solver was the first to
make use of BMC-specific optimizations in order to accelerate solving of formulae
arising from verification of hybrid systems.

Contribution 3: Integration of DPLL and Interval Constraint Solving

Finally, we address the problem of solving large Boolean combinations of nonlinear
arithmetic constraints involving transcendental functions. For this purpose, we pro-
pose a tight integration of a DPLL-based SAT solver and interval-arithmetic constraint
solving. The undecidability of the arithmetic base theory, however, precludes the use
of a DPLL(T) approach since DPLL(T) heavily relies on the availability of a complete
theory solver. Instead, we exploit the algorithmic similarities between DPLL-based
propositional SAT solving and interval constraint solving for a much tighter integra-
tion, where the DPLL solver directly controls arithmetic constraint propagation rather
than delegating arithmetic inferences to a subordinated theory solver. The resulting
solving algorithm, which we refer to as ISAT, turns out to be an elegant general-
ization of the DPLL routine. It inherits the branch-and-deduce framework and the
unit propagation rule for logical deductions from DPLL and adds deduction rules for
arithmetic operators which are adopted from interval constraint solving. Through this
tight integration, all the algorithmic enhancements that were instrumental to the enor-
mous performance gains recently achieved in propositional SAT solving carry over
smoothly to the rich domain of nonlinear arithmetic constraints. We demonstrate that

12 1 Introduction

our approach is able to handle large constraint systems with complex Boolean struc-
ture, involving Boolean combinations of multiple thousand arithmetic constraints over
some thousands of variables. Having the structure of a DPLL routine, the ISAT al-
gorithm can be extended with all algorithmic contributions discussed in the previous
sections. It can be tuned for BMC using Strichman’s optimizations, it can be equipped
with a special deduction rule for pseudo-Boolean constraints, and a lazy integration
of linear programming, yielding an ISAT (LA) solver, will strengthen ISAT’s deduc-
tive power for linear constraints. We consider the ISAT algorithm to be the main
contribution of this thesis.

1.3.3 Structure

Subsequent to this introduction, chapter 2 sets out to give some insight into the origin
of the formulae we are concerned with. After recalling some basic definitions on
hybrid automata, we demonstrate by means of a running example various ways to
encode the next-state relation of a hybrid automaton as a formula involving Boolean
and arithmetic constraints.

The following three chapters present the contributions explicated above. Chapter 3
deals with extending DPLL for pseudo-Boolean constraints, chapter 4 investigates
the coupling of DPLL with linear programming and tuning the resulting solver for
BMC, and chapter 5 describes the ISAT algorithm for solving Boolean combinations
of nonlinear constraints. Each chapter first defines the formula class to be tackled and
thereafter reviews the preliminaries which are required to prepare the reader for the
subsequent exposition of the algorithmic contributions. A final section reports on the
benchmarks conducted to evaluate specific aspects and the overall performance of the
methods proposed in the respective chapter. In particular, a case study of a controller
for separation of trains being operated under a moving block principle is presented in
chapter 5 in order to demonstrate the applicability of the ISAT approach to designs
from the envisaged application domain.

Chapter 6 provides a summary of the results of the thesis, followed by suggestions
for future research.

1.3.4 Sources

This thesis draws from the following conference and journal publications of the au-
thor. Chapter 3 is based on a conference paper published at LPAR’03 [60]. The article
which forms the basis of chapter 4 received the EASST best paper award at FMICS’04

1.3 Solvers for Boolean Combinations of Numerical Constraints 13

and was published in Electronic Notes of Theoretical Computer Science in 2005 [61].
A blend of material from [60] and [61] appeared 2007 in Formal Methods in Systems
Design [62]. Chapter 5 is a revised and extended version of an article published in
2007 in the Journal on Satisfiability, Boolean Modeling and Computation [63]. The
train case study presented in chapter 5 was published at ICONS’08 [74].

The contributions and achievements of this thesis, though original work by myself,
have obviously been influenced and shaped in many discussions with the co-authors
of the above papers and many other researchers. In particular, I benefited a lot from
the exchange and tight collaboration with friends and colleagues from the University
of Freiburg, Saarland University, the Academy of Sciences of the Czech Republic, and
the University of Oldenburg within the Transregional Collaborative Research Center
‘Automatic Verification and Analysis of Complex Systems’ (AVACS), funded by the
DFG.

2 Hybrid Dynamical Systems

We aim at providing solver technology to be used in tools for formal verification of
hybrid dynamical systems. The verification methods we are going to support require
a precise mathematical model of the system under investigation in order to be appli-
cable.

The use of mathematical models has a long tradition in science and engineering,
since models allow the study of systems without actually constructing and operating
the latter, which might be impractical, expensive, time-consuming or even hazardous.
Mathematical modeling is a challenging task which requires a thorough understanding
of the system under consideration. The development of a model which is suitable for
verification is even more demanding because the model must not only adequately cap-
ture those aspects of the system which are relevant w.r.t. the properties to be checked,
but at the same time be simple enough to not go beyond the capabilities of the verifi-
cation methods to be applied.

The purpose of this chapter is to demonstrate how the dynamics of a hybrid system
can be encoded as a predicative formula and thereby to shed light onto the origins of
the specific characteristics of the formulae we have to deal with in the solving engines.
We intend this to be background information for the reader and do not claim originality
of the material presented here.

As modeling formalism for hybrid systems we use hybrid automata, which have
proven to be a useful framework for theoretical reasoning about hybrid systems, e.g.
for investigation of questions like decidability [73]. We opt for hybrid automata (rul-
ing out more practically-oriented languages like SIMULINK) because of their sim-
ple and well-defined semantics. The principle ideas underlying our encondings are,
however, easily transferable to different, potentially syntactically richer modeling lan-
guages.1

1See section 5.5, page 119 for the translation of a hybrid system modeled in the SIMULINK language
into a predicative formula.

C. Herde, Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure, DOI 10.1007/978-3-8348-9949-1_2,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

16 2 Hybrid Dynamical Systems

In section 2.1 we briefly recap hybrid automata as a modeling framework for hy-
brid systems and define their semantics. To illustrate the definitions and concepts, we
present a simple hybrid automaton model of a household freezer. Though being a toy
example, the freezer model shares many typical properties of more realistic hybrid
systems: It involves nondeterministic choices which are used to model uncontrollable
environment behaviour, nonlinear continuous dynamics yielding trajectories whose
description requires transcendental functions, and it is complex enough to give raise
to a nontrivial verification task.

We re-use this model in section 2.2 to explain various encodings of a hybrid au-
tomaton as a logical formula. In particular, we deal with different representations of
nonlinear flows in the BMC formulae. Using one such encoding, we demonstrate how
to solve the aforementioned verification task by bounded model checking. While en-
codings very similar to ours have been used by Audemard et al. [7] and Bemporad et
al. [15] for BMC of linear hybrid automata, we are not aware of of related work on
nonlinear BMC encodings. The latter can probably be attributed to the lack of decent
solvers for this domain.

2.1 Modeling Hybrid Systems with Hybrid Automata

A hybrid system is a special form of a dynamical system, i.e. a system which is char-
acterized by a system state and a dynamical rule which describes the evolution of the
state over time. It can be equipped with inputs and outputs for interaction with the
environment. At any point in time, the system state provides a description of the sys-
tem which together with the system’s current input is sufficient to determine the next
state of the system. In particular, no recourse to states prior to the present state is
required for the computation of the next state. The state is described by the valuation
of a set of state variables and can thus be interpreted as a point in the geometric space
defined by the Cartesian product of those variables, the state space. Typically, but not
necessarily, a hybrid system has not only real-valued (i.e. continuous) state variables,
but also discrete ones (i.e. state variables of type Boolean or integer). The dynamical
rule not only allows (Lipschitz-) continuous evolutions of the state (so-called flows),
but also discrete transitions (called jumps) between distant points in the state space.

In the following definitions (and throughout this thesis), we use arithmetic predi-
cates and Boolean combinations thereof to describe sets of system states.

2.1 Modeling Hybrid Systems with Hybrid Automata 17

Definition 2.1. Let Y = {y1, . . . , yn} be the set of state variables of a dynamical
system.

• A valuation or state is a mapping that assigns to each variable y ∈ Y a value
from its domain dom(y) ⊆ R. For notational convenience, we identify valua-
tions with points in the state space Σ = dom(y1)× . . .× dom(yn).

• An arithmetic predicate or constraint over Y is a Boolean-valued function of
the form θ ∼ c, where c ∈ R is a constant, ∼ ∈ {<,≤,=,≥, >} is a relational
operator, and θ is a term built from variables in V , constants in R, and arith-
metic operations (such as addition, multiplication, exponentiation, and trigono-
metric functions). The two 0-ary predicates are, as usual, denoted by true

and false. An arithmetic predicate θ ∼ c is called linear if θ is of the form
c1y1 + . . .+ cnyn, where the ci are rational numbers.

• A predicative formula or predicate over Y is built from arithmetic predicates
over Y using the standard Boolean connectives ¬,∧,∨,→, and ↔.

• Let σ be a state and φ a predicative formula. We say that σ satisfies φ, written
as σ |= φ, if φ evaluates to true when each y ∈ Y occuring in φ is replaced by
the value σ(y). Then σ is called solution of φ. The set of states defined by φ is
�φ� := {σ | σ ∈ Σ and σ |= φ}. In particular, �true� = Σ and �false� = ∅.

A hybrid automaton models a hybrid system as a graph whose edges describe dis-
crete transitions and whose nodes (called control modes or locations) represent con-
tinuous flows. Discrete transitions are assumed to be instantaneous, i.e. they happen
in zero time, while during a flow time elapses. Formally we define:

Definition 2.2. A hybrid automaton H = (X,V,E, inv, init, jump, flow) consists
of

• a finite set X = {x1, . . . , xn} of continuous (real-valued) state components,

• a finite set V = {v1, . . . , vm} of discrete control modes,

• a finite set E of discrete transitions, together with mappings

– s : E → V , assigning to each transition e ∈ E its source mode se

– p : E → V , assigning to each transition e ∈ E its target mode pe

18 2 Hybrid Dynamical Systems

• a family inv = (invv)v∈V assigning to each control mode v ∈ V an invariant
invv which is a predicate over the variables in X ,

• a family init = (initv)v∈V of initial state predicates, where initv is a predicate
over X which specifies for control mode v the admissible initial valuations of
the continuous state components,

• a family jump = (jumpe)e∈E assigning to each discrete transition a jump con-
dition which is defined by means of a predicate over variables in X ∪X ′, where
X ′ = {x′1, . . . , x′n} denotes primed variants of the state components in X ,

• a family flow = (flowv)v∈V assigning to each control mode a predicate over
variables in X ∪ Ẋ , where Ẋ = {ẋ1, . . . , ẋn} = {dx1

dt
, . . . , dxn

dt
} is the set of the

first derivatives of the continuous state components in X with respect to time.

The (hybrid) state of H is a point (v, z) ∈ V ×Rn consisting of the current mode
v and the current valuation z of the continuous state components of H . We refer to v

as the discrete state and to z as the continuous state of H . At any time, the continuous
state z must satisfy the mode invariant invv of the current control mode v. A state
(v, z) is initial if the predicate initv is satisfied by z. Control modes whose initial
state predicate is false may not be taken initially.

The jump condition describes a pre-post-relation, where undecorated state com-
ponents x ∈ X refer to the state immediately before the jump, while the primed
variant x′ ∈ X ′ refers to the state immediately thereafter. For a transition e ∈ E,
the predicate jumpe is a conjunction of a guard and a (potentially nondeterministic)
assignment. The guard is a predicate over X which specifies the continuous states
that enable a jump from mode se to mode pe. The assignment is a predicate over
X ∪X ′ which relates the values of the continuous state components before the jump
to possible values thereafter.

The flow predicate flowv of a mode v ∈ V describes the evolution of the con-
tinuous state while residing in v. Usually it has the form d�x

dt
= fv(�x), where �x =

(x1, . . . , xn) is the continuous state vector, i.e. it is given as a system of first order
differential equations.

Graphically, we depict a hybrid automaton as a directed graph with nodes V and
edges {(se, pe) | e ∈ E} ⊆ V × V . Each node v ∈ V is annotated with its flow
predicate flowv and its mode invariant invv. A node v that can be taken initially is
marked with an incoming edge which has no source node and which is labelled with

2.1 Modeling Hybrid Systems with Hybrid Automata 19

initv. Each edge (se, pe) is annotated with its jump condition jumpe. Mode invariants
and guards which equal true (and are therefore satisfied by any continuous state),
as well as assignments of the form x′ = x, which do not change the value of the
respective state component, are suppressed.

Example 2.3. We consider a simple hybrid model of a household freezer. The tem-
perature TI in the freezer cell evolves according to the differential equation ṪI =
η · (TE−TI)+c, where TE is the temperature of the environment, η is the heat transfer
coefficient, and c models the cooling capacity of the compressor. In consideration of
the slow dynamics of the system, we choose one hour (instead of one second) as time
unit. Hence, the unit of η is

[
1
h

]
, and the unit of c is

[
◦C
h

]
. We assume TE to be fixed

at 20◦C, η = 0.3 if the door of the freezer is closed, and η = 2.2 if the door is open.
If the compressor is running then c = −14, else c = 0. The freezer is controlled by
a conventional hysteresis controller: The compressor is switched on if TI reaches an
upper threshold of −16◦C, and it is switched off if TI drops below a lower thresh-
old of −20◦C. To prevent overheating, the compressor is automatically switched off
when the door is open. We assume that initially the door is shut.

Figure 2.1 on the following page shows a hybrid automaton model of the freezer
which has three discrete modes V = {ON, OFF, OPEN} and a single continuous state
component X = {TI}. The set of initial states is {(OFF, z) | z ≤ −16} ∪ {(ON, z) |
z ≥ −20}. At any time the door of the freezer can be opened, which is modeled by
unconditional transitions from OFF to OPEN and from ON to OPEN, respectively. The
system can stay in mode OPEN, where TI evolves as determined by the differential
equation ṪI = −2.2 TI+44, arbitrarily long, since invOPEN = true. It can jump, for
example, from mode OPEN to mode OFF along the edge (OPEN, OFF) if the continu-
ous state satisfies the guard predicate TI ≤ −16. If initially, or when being in mode
OPEN, −20 ≤ TI ≤ −16 holds, then the model can nondeterministically choose
whether to enter mode OFF or mode ON. No jump can change the continuous state,
i.e. all assignments have the form T ′I = TI and are therefore omitted in the graphical
representation.

A hybrid automaton engages in so-called executions.2 Intuitively, an execution is a
(not necessarily alternating) sequence of jumps and flows which is consistent with the
dynamics defined by the automaton. Hybrid systems usually model so-called reactive
systems, i.e. systems which continuously interact with an environment by reacting to
external disturbances or inputs, and by producing outputs that can be perceived by the

2Occasionally, we also use the terms run, trajectory, trace, and path instead of execution.

20 2 Hybrid Dynamical Systems

TI ≤ −16 TI ≥ −20

TI ≤ −20

TI ≥ −16

TI ≥ −20

ṪI = −0.3 TI + 6

TI ≤ −16

ṪI = −0.3 TI − 8

TI ≥ −20

OFF ON

ṪI = −2.2 TI + 44

OPEN

TI ≤ −16

Figure 2.1: Hybrid automaton model of a household freezer.

environment. They therefore engage, at least in principle, in executions which have
infinite length. Nonetheless, the following definitions will only consider executions of
finite length, since these are the only ones we will encounter in practice when doing
bounded model checking. To prepare a formal definition of executions, we first define
the concept of a hybrid time frame.

Definition 2.4. A hybrid time frame is a mapping τ : {0, . . . , k} → R≥0 with τ(0) =

0 and τ(i) ≤ τ(i + 1) for 0 ≤ i < k. We write τi instead of τ(i) and identify τ ′i with
τi+1. The set of all hybrid time frames is denoted by T .

The indices {0, . . . , k}, which we refer to as steps of the hybrid time frame, con-
secutively number states within an execution which are starting points and endpoints
of flows and jumps. The values τi are the points in time at which the execution tra-
verses these states. Since a jump is instantaneous, a pair of indices (i, i + 1) with
τi = τi+1 denotes a jump. If τi < τi+1, it represents a flow. We refer to k as length of
a hybrid time frame, and to τk as its duration.

The following definition of an execution associates with each step i of a hybrid
time frame two partially defined functions vi and xi which assign a discrete and a
continuous state to the time instance τi, and which specify the evolution of those
states over the time interval [τi, τ ′i] in case that i denotes the starting point of a flow.

2.1 Modeling Hybrid Systems with Hybrid Automata 21

Definition 2.5. Let H = (X,V,E, inv, init, jump, flow) be a hybrid automaton. An
execution of H is a collection E = (τ, (vn), (�x n)), where τ ∈ T is a hybrid time frame

of length k, (vn) is a sequence v : {0, . . . , k} → (R≥0
part.−→ V)with dom(vi) = [τi, τ ′i],

and (�x n) is a sequence �x : {0, . . . , k} → (R≥0
part.−→ Rn) with dom(�x i) = [τi, τ

′
i] such

that the following conditions are satisfied:

• E is grounded in an admissible initial state:

�x 0(τ0) |= initv0(τ0) and

�x 0(τ0) |= invv0(τ0).

• For each i ∈ {0, . . . , k − 1} with τi = τ ′i there exists a transition e ∈ E with
se = vi(τi), and pe = vi+1(τ

′
i) such that

– the pair of continuous states (�x i(τi), �x i+1(τ
′
i)) ∈ Rn × Rn is an element

of the relation induced by the jump condition jumpe, and

– pre- and post-state of the jump satisfy the respective mode invariant, i.e.
�x i(τi) |= invvi(τi) and �x i+1(τ

′
i) |= invvi+1(τ ′

i)
.

• For each i ∈ {0, . . . , k − 1} with τi < τ ′i

– vi is a constant function which satisfies vi+1(τ
′
i) = vi(τ

′
i), and

– �x i(t) is a solution to the differential equations d�x
dt
= fvi(τi)(�x) which pre-

serves the invariant of the current mode, i.e. �x i(t) |= invvi(τi) for each
t ∈ [τi, τ ′i], and which satisfies �x i+1(τ

′
i) = �x i(τ

′
i).

We lift the notions length, duration, and step from the hybrid time frame underlying
an execution to the execution itself.

Example 2.6. Figure 2.2 shows an execution of the freezer automaton depicted on
page 20. It starts in state (ON, 20), covers a duration of 24 hours, and has a length
of 29 steps. The upper chart shows the evolution of the continuous state, i.e. of the
temperature in the freezer cell. The three charts below show the switching behaviour
of the automaton: A function value of 1 indicates that control resides in the respective
mode. After 12.3 hours, the door of the freezer is opened for 30 minutes, causing a
steep increase of the temperature. The numbers on the topmost axis denote the steps
of the execution. For example, the jump of the automaton triggered by opening the
door starts at step 13 and ends at 14. Both steps are associated with the same point in
time: τ13 = τ14 = 12.3.

22 2 Hybrid Dynamical Systems

 5/6 9/10 13/14 17/18 21/22
 27/28

 25/26
 23/2419/20 7/8 11/12 15/16

 1/2
 3/40

29

−25
−20
−15
−10
−5
 0
 5

 10
 15
 20

 0 6 12 18

 0

 0

 1

 1

 0

 1

 0

 6 12 18

 18 12 6 0

 0 6 12 18

 24

 24

 24

 24

OFF

TI

OPEN

ON

Figure 2.2: Sample execution of the freezer automaton.

We can now give a formal definition of reachability:

Definition 2.7. A state (v, z) ∈ V × Rn is reachable by a hybrid automaton H =

(X,V,E, inv, init, jump, flow), if there exists an execution E = (τ, (vn), (�x n)) of
H with length k such that (vk(τk), �x k(τk)) = (v, z).

The notion of reachability is closely connected with safety verification, because
proving a safety property amounts to showing that the intersection of the reachable
state set with the set of unsafe system states is empty. Many verifications problems
can be reduced to checking the reachability of certain states.

Example 2.8. For the freezer automaton we wish to verify the claim that TI will never
exceed 0◦C if initially −20◦ ≤ TI ≤ −16◦C, provided that the door is never opened
for more than three minutes and remains closed thereafter for at least twice the open-
ing time before it’s opened again. To this end, we modify the hybrid automaton from
figure 2.1 in order to restrict its executions to such which obey the above policy for
opening and closing the freezer door. We equip the automaton with an additional con-
tinuous variable p which is used as a timer, i.e. it evolves with slope 1 in each mode.
Enforced by the new invariant p ≤ 3

60
, mode OPEN is left at latest after 3 minutes via

2.2 Predicative Encodings of Hybrid Automata 23

TI ≤ −20

TI ≥ −16

p ≥ 0 ∧
p′ = 0

p ≥ 0 ∧
p′ = 0

ṪI = −0.3 TI + 6
ṗ = 1

TI ≤ −16

ṪI = −0.3 TI − 8
ṗ = 1

TI ≥ −20

OFF ON

ṪI = −2.2 TI + 44
ṗ = 1

p ≤ 3
60

OPEN

TI ≤ −16
∧ p = 0

TI ≥ −20
∧ p = 0

TI ≤ −16
∧ p′ = −2p

TI ≥ −20
∧ p′ = −2p

Figure 2.3: Freezer automaton, modified for verification.

a jump which resets p to −2 times its current value. Because of the transition guards
p ≥ 0, mode OPEN cannot be re-entered until the accumulated time spent in modes
ON and OFF equals twice the time that has been spent in mode OPEN before. The
modified automaton, which is depicted in figure 2.3, allows us to formulate the above
verification task as a reachability problem: The alleged property holds if none of the
states {(v, z) ∈ V × R | z ≥ 0} is reachable from an initial state where TI = −18
holds.

2.2 Predicative Encodings of Hybrid Automata

In order to perform bounded model checking of hybrid automata, i.e. checking the
reachability of certain ‘unsafe’ states through executions of finite length, we employ
a reduction to SMT which encodes all executions of a given length k ∈ N as a pred-
icative formula. There are various ways of doing this, all with specific strengths and
weaknesses, and especially for systems with nonlinear dynamics the translation can
be a non-trivial task.

For a given hybrid automaton and a given k ∈ N we aim at constructing a formula
such that each execution of the automaton which ends in an unsafe state corresponds

24 2 Hybrid Dynamical Systems

to a satisfying valuation of the formula. Ideally, also the converse holds, so that satis-
fying valuations are in one-to-one correspondence with error traces. Some predicative
encoding schemes are, however, based on building safe approximations3 of the sys-
tem dynamics. The resulting BMC formulae can have solutions which translate back
to spurious error traces, i.e. traces which do not reflect actual system behaviour. On
the other hand they are safe w.r.t. verification, since unsatisfiability of such formulae
implies the non-existence of error traces of length k.

In the following, we will only deal with encodings of a single hybrid automaton.
Using standard techniques from predicative semantics [71], the translation scheme
can, however, be extended to both shared variable and synchronous message passing
parallelism, thereby yielding formulae of size linear in the number of parallel com-
ponents. The latter is due to the fact that a BMC formula for a parallel system is
essentially the conjunction of the formulae for the individual components. This high-
lights one of the main advantages of the BMC approach to hybrid systems verification:
By representing the continuous and the discrete state space of a system both symbol-
ically, BMC avoids the state-explosion problem arising from the construction of the
global product automaton, a step which is inevitable for tools like HYTECH [72] and
PHAVER [64], which use an explicit representation of the discrete state space.

2.2.1 A Basic Encoding Scheme

Let H = (X,V,E, inv, init, jump, flow) be a hybrid automaton. For the encoding
scheme to be presented in this section, we assume that for each control mode v ∈ V of
H a closed-form solution to the differential equations d�x

dt
= fv(�x) pertaining to that

mode is available. The solution is a predicate of the form �x (t) = Fv(t, �x (0)) which
relates the continuous state �x (0) at the time point of entering v to the continuous state
�x (t) after residing t time units in v. It is closed in the sense that it can be represented
explicitly in terms of known functions. In order to encode the executions of H of a
given length k ∈ N, we proceed as follows:

Encoding Step 1

For each continuous state component x ∈ X , we take k+1 real-valued variables
x0, . . . , xk. Variable xi encodes the value of x at step i of the execution. Using
vector notation, the continuous state �x = (x1, . . . , xn) of the automaton at step
i is represented in the encoding by �x i = (xi1, . . . , x

i
n).

3Safe approximations are also referred to as conservative approximations or overapproximations.

2.2 Predicative Encodings of Hybrid Automata 25

Encoding Step 2

For each discrete control mode v ∈ V we take k+1Boolean variables v0, . . . , vk.
Variable vi takes value true iff at step i of the execution control resides in
mode v. Hence, the vector �v i = (vi1, . . . , v

i
m) represents the discrete state v ∈ V

of H at step i. Through
k∧

i=0

(∑
v∈V

vi = 1

)

we express, that at any time the automaton is exactly in one control mode. Here,
as throughout this thesis, we identify Boolean variables with 0-1 integer vari-
ables which enables their use within arithmetic constraints.

Encoding Step 3

We introduce k Boolean variables j0, . . . jk−1. Variable ji takes value true if
step i of the execution is starting point of a jump, and false if it is starting
point of a flow. Furthermore, we take k real-valued variables t0, . . . , tk−1, where
the value of ti equals the time elapsing between execution steps i and i+ 1. By
adding the constraints

k−1∧
i=0

(
ji → (ti = 0)

)
∧

(
¬ji → (ti > 0)

)

we encode that jumps are instantaneous, whereas flows require passage of phys-
ical time.

Encoding Step 4

A jump requires that source mode and target mode of the jump are connected
by a control switch. Moreover, the continuous state before the jump and the
continuous state after the jump must satisfy the jump condition of the respective
control switch. This can be expressed by

k∧
i=0

ji →
∨
e∈E

sie∧pi+1
e ∧ jumpe[�x

i/�x][�x i+1/�x ′]∧ invse [�x i/�x]∧ invpe [�x i+1/�x].

26 2 Hybrid Dynamical Systems

Encoding Step 5

The effect of continuous flows on the state is encoded by the constraint system

k∧
i=0

¬ji →
∨
v∈V

vi ∧ vi+1 ∧ �x i+1 = Fv(t
i, �x i) ∧ invv[�x

i/�x] ∧ invv[�x
i+1/�x]

which expresses that a flow starts and ends in the same control mode, that the
inital state of the flow is connected to its final state by a solution to the differen-
tial equations of that mode, and that inital and final state both satisfy the modes’
invariant condition.

Encoding Step 6

In order to restrict the executions to those starting in an initial state of H , we
add the following constraints:∧

v∈V
v0 → initv[�x

0/�x]

Encoding Step 7

Finally, we complete the BMC formula by adding a predicate over {vk1 , . . . , vkm}
∪ {xk1, . . . , xkn} which specifies the unsafe hybrid states whose reachability we
want to check. By conjoining it to the formula, we confine the set of executions
to those which end in one of the states in question.

The conjunction of the constraints generated by the above translation scheme
yields a predicative formula φk whose external structure is identical with the one of
the formula for finite-state BMC given on page 2:

φk =
k−1∧
i=0

T (�y i, �y i+1) ∧ I(�y 0) ∧ R(�y k)

The k-fold unwinding of the transition relation T (�y i, �y i+1) is built by encoding steps 1
to 5, and the subformulae I(�y 0) and R(�y k), which characterize the set of initial states
and the set of unsafe states, are generated by encoding steps 6 and 7, respectively.
The hybrid state of H at step i of an execution is represented by the vector �y i =

(xi1, . . . , x
i
n, v

i
1, . . . , v

i
m) which contains all variables created in steps 1 and 2.

2.2 Predicative Encodings of Hybrid Automata 27

The construction of φk guarantees that each execution E = (τ, (vn), (�x n)) of H
which has length k and ends in an unsafe state corresponds to a solution σ of φk.
Given σ, we can reconstruct E as follows: The hybrid time frame τ of E is defined by

τi =

{
0 : i = 0∑i−1

j=0 σ(t
j) : 1 ≤ i ≤ k.

The valuation of the variables vi1, . . . , v
i
m and xi1, . . . , x

i
n provides the discrete state

v(τi) and the continuous state �x (τi) of H at step i of E . If σ(ji) equals true, then
a jump starts at step i. Otherwise, step i of the execution is starting point of a flow
whose duration is σ(ti). While σ only provides the initial and the final continuous
state of a flow, intermediate states can be easily obtained from the solution predicate
of the differential equations describing the flow.

Note that, except for step 6 and 7 of the encoding scheme, all steps generate multi-
ple copies of the same basic formula, where the k or k+1 individual copies differ just
in a consistent renaming of the variables. Therefore, a satisfiability checker tailored
towards BMC of hybrid automata should exploit such isomorphies between subfor-
mulae for accelerating satisfiability checking, which is a distinguishing feature of the
solvers presented in chapter 4 and 5. In order to simplify detection of isomorphic
copies, those solvers are in fact fed with just a single copy of the transition and evolu-
tion predicates and perform the unrolling themselves.

Example 2.9. In order to verify the property stated in example 2.8 on page 22, we
encode the hybrid automaton depicted in figure 2.3 using the above encoding scheme.

To represent the state of the freezer automaton at step i of an execution, we use
the vector �y i = (T i

I , p
i, off i, oni, openi), where the variables T i

I and pi are of type real
and off i, oni, and openi are of type Boolean. In addition, we use real-valued variables
ti and Boolean variables ji, as required by encoding step 3.

Instead of writing down the unwound transition relation of the hybrid automaton
in full, we only record the constraints describing a single step of the transition relation,
i.e. we leave out the outer conjunction in the constraints generated by encoding steps
2 to 5 and use unprimed and primed variables in place of variables with superscripts i
and i + 1. The closed-form solutions to dTI

dt
= η · (TE − TI) + c and dp

dt
= 1, which

we need in encoding step 5, are TI(t) = (TI(0)− b)e.η·t + b, where b := TE + c
η
, and

p(t) = p(0)+ t, respectively. Then the constraint system which encodes the transition
relation looks as follows:

28 2 Hybrid Dynamical Systems

T (�y , �y ′) := off + on + open = 1

∧ j → (t = 0) ∧ ¬j → (t > 0)

∧ j → ((off ∧ on′

∧ TI ≥ −16 ∧ T ′I = TI ∧ p′ = p

∧ TI ≤ −16 ∧ T ′I ≥ −20)

∨ (off ∧ open′

∧ p ≥ 0 ∧ T ′I = TI ∧ p′ = 0

∧ TI ≤ −16 ∧ p′ ≤ 3

60
)

∨ (on ∧ off ′

∧ TI ≤ −20 ∧ T ′I = TI ∧ p′ = p

∧ TI ≥ −20 ∧ T ′I ≤ −16)

∨ (on ∧ open′

∧ p ≥ 0 ∧ T ′I = TI ∧ p′ = 0

∧ TI ≥ −20 ∧ p′ ≤ 3

60
)

∨ (open ∧ off ′

∧ TI ≤ −16 ∧ T ′I = TI ∧ p′ = −2p

∧ p ≤ 3

60
∧ T ′I ≤ −16)

∨ (open ∧ on′

∧ TI ≥ −20 ∧ T ′I = TI ∧ p′ = −2p

∧ p ≤ 3

60
∧ T ′I ≥ −20))

∧ ¬j → ((off ∧ off′

∧ T ′I = (TI − 20)e−0.3t + 20 ∧ p′ = p+ t

∧ TI ≤ 16 ∧ T ′I ≤ 16)

∨ (on ∧ on′

∧ T ′I = (TI +
80

3
)e−0.3t − 80

3
∧ p′ = p+ t

∧ TI ≥ 20 ∧ T ′ ≥ 20)

∨ (open ∧ open′

∧ T ′I = (TI − 20)e−2.2t + 20 ∧ p′ = p+ t

∧ p ≤ 3

60
∧ p′ ≤ 3

60
))

2.2 Predicative Encodings of Hybrid Automata 29

To generate the subformulae I(�y 0) and R(�y k) of φk, we apply encoding steps
6 and 7. Being interested in the reachability of states where TI exceeds 0◦C, we
add T k

I ≥ 0 to R(�y k). Furthermore, we extend R(�y) by off k + onk + openk = 1,
because the transition predicate T (�y , �y ′) does not enforce mutual exclusion of discrete
control modes for the very last step of an execution. Doing so, we obtain the following
formulae:

I(�y 0) := off 0 → (T 0
I ≤ −16 ∧ p0 = 0)

∧ on0 → (T 0
I ≥ −20 ∧ p0 = 0)

∧ open0 → false

R(�y k) := T k
I ≥ 0

∧ off k + onk + openk = 1

The resultant system description, consisting of T (�y , �y ′), I(�y 0), and R(�y k), is very
close to the input format processed by the solvers which we present in the following
three chapters. When being fed with above formulae, the HYSAT-2 solver, which
will be introduced in chapter 5, will construct and solve φk for increasing values of
k, starting with k = 0. For 0 ≤ k ≤ 25, HYSAT-2 diagnoses the formula to be
unsatisfiable. For k ≥ 26, satisfying valuations, corresponding to executions refuting
the safety property under investigation, exist.

Figure 2.4 on the next page shows an error trace which was obtained from a so-
lution of φ27 found by HYSAT-2. Despite adherence to the prescribed policy for
opening and closing the door, the temperature inside the freezer cell evolves from
initially −18◦C to 0◦C within less than 1.2 hours.4

Because of the monotonicity of all continuous flows and the linearity of mode
invariants and transition guards, the encoding of the freezer example is exact in the
sense that satisfying valuations of the BMC formula are in one-to-one correspondance
with error traces. Note, however, that in general the formulae generated by the above
translation scheme overapproximate the dynamics of the encoded hybrid automaton.
This is due to the fact that the formulae only talk about starting points and endpoints of
flows and are thus blind to violations of mode invariants and enabledness of transition
guards which occur at intermediate time points. Solutions of such formulae may de-
scribe spurious traces where a flow of, e.g., parabolic shape starts in a state satisfying

4Note that although the evolution of TI during flows might appear linear in the chart, it is indeed
composed of moderately curved exponential function segments.

30 2 Hybrid Dynamical Systems

 0 0.2 0.4 0.6 0.8 1 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

 1.2 1 0.8 0.6 0.4 0.2 0

 0 0.2 0.4 0.6 0.8 1 1.2

 0

 1

 0

 1

 0

 1

−18
−16
−14
−12
−10
−8
−6
−4
−2
 0

0 3/4
 13/14

 27
 1/2 5/6

 7/8
 9/10

 11/12 15/16
 17/18

19/20 23/24
21/22 25/26

OFF

ON

TI

OPEN

Figure 2.4: Error trace of the freezer automaton.

the current mode invariant and finally returns to such a state, but temporarily leaves
the invariant region in between. This can also happen in case of monotonic flows if
the mode invariant describes a non-convex region in the state space. Often an en-
coding can be made exact, e.g. by adding constraints that confine flows to monotonic
segments. This requires however a thorough understanding of the system dynamics.

2.2.2 Hybridization of Continuous Dynamics

If the differential equations of a hybrid automaton do not permit the computation
of closed-form solutions, the above translation scheme is not applicable directly. In
this case we can resort to transforming the hybrid automaton into one which safely
approximates the original continuous dynamics with simpler dynamics that we can
deal with in the encoding. This is also the way to go if the closed-form solutions are
too complex to be handled by the verification backend, e.g. nonlinear, while the solver
to be used for BMC only supports linear arithmetic.

A method for automatically constructing an approximate system with guaranteed
error bound is hybridization. See [6] for a thorough introduction into the topic, in-
cluding a survey of related work.

2.2 Predicative Encodings of Hybrid Automata 31

The basic idea behind hybridization is to relax the flow predicate p of a control
mode v using a weaker predicate p′, such that p implies p′, where the dynamics de-
scribed by p′ is of simpler type than the one described by p. The overapproxima-
tion thus obtained can be refined by splitting the continuous state space into cells
Q1, . . . , Ql, and replacing v with new modes v1, . . . , vl, where each mode vi describes
v’s continuous dynamics within Qi. Each new mode inherits all incoming and outgo-
ing discrete transitions of v. Furthermore, discrete transitions are added which allow
to pass over between modes representing adjacent cells in the state space. The re-
striction of flows to smaller regions in the state space allows to strengthen the flow
predicates of the individual modes and thereby to tighten the approximation.

By refining the partitioning of the state space, i.e. by reducing the size of the cells
and at the same time increasing their number, the approximation can in principle be
made arbitrarily tight. However, tighter approximations yield hybrid automata with
more control modes, which renders analysis more expensive.

Example 2.10. Consider again the hybrid automaton depicted in figure 2.3 on page 23.
In order to simplify the dynamics of control mode OPEN, let us assume that for check-
ing the property in question it is sufficient to consider flows where TI does not leave
the interval [−20, 0]. We therefore conjoin −20 ≤ TI ≤ 0 to the mode invariant.
Since (ṪI = −2.2 TI + 44) ∧ (−20 ≤ TI ≤ 0) implies that the first derivative of
TI is bounded from below by 55 and bounded from above by 77, the original flow
predicate ṪI = −2.2 TI + 44 can be relaxed to 55 ≤ ṪI ≤ 77, yielding a first, yet
coarse, overapproximation of the continuous dynamics in mode OPEN.

The relaxed flow predicate is not a differential equation, but a differential inequal-
ity which specifies for each initial value TI(0) a bundle of trajectories. This bundle
is confined to a linear envelope which is bounded by the flows where TI evolves with
minimum or maximum slope throughout. Hence, the value of TI after residing t time
units in mode OPEN lies in the interval [TI(0) + 55t, TI(0) + 77t]. Using this, we
can amend the transition predicate T (�y , �y ′), given on page 28, in order to match the
changes in the automaton. To this end, we replace the last disjunct in the subformula
generated by encoding step 5 with

(open ∧ open′

∧ (TI + 55t) ≤ T ′I ≤ (TI + 77t) ∧ p′ = p+ t

∧ (−20 ≤ TI ≤ 0) ∧ (−20 ≤ T ′I ≤ 0) ∧ p ≤ 3

60
∧ p′ ≤ 3

60
).

32 2 Hybrid Dynamical Systems

In figure 2.5 on page 35, the initial approximation constructed above has been re-
fined by splitting control mode OPEN into four new modes, each of them representing
a strip of 10 degrees Celsius in the state space.5 The mode invariant of each submode
has been strengthened accordingly, which in turn enabled the deduction of stronger
flow predicates.

By applying hybridization in the same way to the control modes ON and OFF, we
can transform the freezer model into a so-called linear hybrid automaton.

Definition 2.11. A hybrid automaton H = (X,V,E, inv, init, jump, flow) is a lin-
ear hybrid automaton (LHA), if the following requirements are met.

• For every control mode v ∈ V , the flow predicate flowv is a conjunction of
linear arithmetic predicates over Ẋ .

• For every control mode v ∈ V , the predicates invv and initv are conjunctions
of linear arithmetic predicates over X .

• For every discrete transition e ∈ E, the jump condition jumpe is a Boolean
combination of linear arithmetic predicates over X ∪X ′.

Linear hybrid automata are a simple, yet powerful class of hybrid systems. They
are complex enough to be relevant for practical applications, and at the same time their
continuous dynamics is simple enough to be dealt with efficiently in verification algo-
rithms. Predicative encodings of LHAs are Boolean combinations of linear arithmetic
constraints. We address solving of such formulae in chapter 4.

Note that for linear hybrid automata the bounded reachability problem, i.e. the
problem whether a hybrid state is reachable in a fixed number of steps, is decidable,
which follows from the decidability of linear arithmetics over the reals. The general
reachability problem for linear hybrid automata is, however, undecidable [73].

In case of the freezer model only the flow predicates had to be relaxed in order to
obtain a LHA. If required, it is certainly possible to also replace the predicates definin-
ing the location invariants, initial states, and jump conditions with weaker predicates,
e.g. with piecewise linear overapproximations, if the desired target format is a linear
hybrid automaton.

So far, we presented hybridization as a transformation which is carried out on the
automaton level. Alternatively it is possible to construct an encoding which passes the
task of hybridizing flows to the solver.

5In order not to clutter the picture, we have drawn the new control modes as submodes of mode
OPEN. In- and outgoing transitions of the outer mode apply to all submodes.

2.2 Predicative Encodings of Hybrid Automata 33

Example 2.12. We extend the encoding of the freezer model by adding, for each step
i, continuous variables TI

i and TI
i
. Through TI ≤ TI ≤ TI they define a cell in the

state space that must not be left during a flow. By adding the constraint

¬j → (TI − TI ≤ δ)

to the transition predicate T (�y , �y ′) of the freezer model, we ensure that in case of a
flow starting at step i of the execution TI

i and TI
i

form an interval of width less or
equal than δ, where δ > 0 is a parameter which controls the tightness of the overap-
proximation. Exploiting that for TI ∈ [TI , TI] the first derivative of TI is bounded
by −2.2 TI + 44 from below and by −2.2 TI + 44 from above, we can encode the
flow dynamics of mode OPEN by

(open ∧ open′

∧ (TI + (−2.2 TI + 44) · t) ≤ T ′I ≤ (TI + (−2.2 TI + 44) · t) ∧ p′ = p+ t

∧ (TI ≤ TI ≤ TI) ∧ (TI ≤ T ′I ≤ TI) ∧ p ≤ 3

60
∧ p′ ≤ 3

60
)

which allows the solver to determine a suitable partition of the state space into cells at
runtime.

As opposed to hybridization performed on the automaton level, this approach
yields smaller formulae because it avoids an explicit construction and encoding of the
submodes arising from mode-splitting. The constraints occuring in the formula are,
however, more complex (polynomial instead of linear in the above example), since
they involve the computation of upper and lower bounds on the derivatives.

2.2.3 Encoding Flows Using Taylor Expansions

A systematic way to determine relaxations of flow curves as needed for hybridization,
is to use Taylor polynomials together with an interval bounded remainder term which
encloses the approximation error.

Example 2.13. To demonstrate the use of Taylor expansions, we consider again the
differential equation dTI

dt
= −2.2 TI + 44, i.e. the first derivative of the unknown

function describing the flow in control mode OPEN. By differentiation, we can easily
compute higher order derivatives, e.g.

34 2 Hybrid Dynamical Systems

d2TI
dt2

= −2.2 · dTI
dt

= 4.84 · TI − 96.8.

Using these derivatives, we can can approximate the solution function of the differen-
tial equation by the n-th order Taylor polynomial

pn(t0 + t) =
n∑

k=0

1

k!
· d

kTI
dtk

(t0) · tk,

where d0TI

dt0
(t0) = TI(t0) is the initial value of the flow. The approximation error

increases with increasing values of t. Taylor’s theorem provides that there exists a ξ

between t0 and t0 + t such that the error TI(t0 + t)− pn(t0 + t) is given by

rn(t) =
1

(n+ 1)!
· d

n+1TI
dtn+1

(ξ) · tn+1.

For n = 1, e.g., we obtain the Taylor polynomial p1(t0+t) = TI(t0)+(−2.2 TI(t0)+
44) · t. The corresponding remainder term is r1(t) = 1

2
· (4.84 TI(ξ) − 96.8) · t2 for

some ξ ∈ [t0, t0 + t].
If we constrain the flow, as in the previous example, to a cell defined by TI ≤ TI ≤

TI , then the remainder is bounded by r1(t) =
1
2
· (4.84 TI − 96.8) · t2 from below and

by r1(t) =
1
2
· (4.84 TI − 96.8) · t2 from above. Hence, the endpoint TI(t0 + t) of the

flow after t time units is enclosed in the interval [p1(t0+t)+r1(t), p1(t0+t)+r1(t)].
In the BMC formula we can therefore relate starting point and endpoint of the flow
through

T ′I ≥
(
TI + (−2.2 TI + 44) · t+ 1

2
· (4.84 TI − 96.8) · t2

)

∧ T ′I ≤
(
TI + (−2.2 TI + 44) · t+ 1

2
· (4.84 TI − 96.8) · t2

)
.

Note, that the relaxed flow constraints used in section 2.2.2 are in fact Taylor
expansions of order zero. Higher order Taylor expansions, like the one developed
above, define nonlinear boundary curves which enclose the flow more tightly for a
longer duration. As the order of the Taylor polynomial increases, the fit increases,
too. The higher accuracy of the approximation comes however (again) at the price of
more complex constraints to be solved.

2.2 Predicative Encodings of Hybrid Automata 35

TI ≤ −16
∧ p′ = −2p

TI ≥ −20
∧ p′ = −2p

Ti ≥ −15Ti ≤ −15

Ti ≤ −10

Ti ≤ −5

Ti ≥ −10

Ti ≥ −5

OPEN3

OPEN1

44 ≤ ṪI ≤ 55

ṗ = 1

p ≤ 3
60

−5 ≤ TI ≤ 0

55 ≤ ṪI ≤ 66

ṗ = 1

p ≤ 3
60

−10 ≤ TI ≤ −5

66 ≤ ṪI ≤ 77

ṗ = 1

p ≤ 3
60

−15 ≤ TI ≤ −10

77 ≤ ṪI ≤ 88

ṗ = 1

p ≤ 3
60

20 ≤ TI ≤ −15

OPEN4

OPEN2

TI ≤ −20

TI ≥ −16

p ≥ 0 ∧
p′ = 0

p ≥ 0 ∧
p′ = 0

ṪI = −0.3 TI + 6
ṗ = 1

TI ≤ −16

ṪI = −0.3 TI − 8
ṗ = 1

TI ≥ −20

OFF ON

TI ≤ −16
∧ p = 0

TI ≥ −20
∧ p = 0

OPEN

Figure 2.5: Hybridization of the dynamics in control mode OPEN.

3 Extending DPLL for Pseudo-Boolean Constraints

As many verification and design automation problems concerning finite state hard-
ware and software systems can be expressed as satisfiability problems for proposi-
tional logics, there is a growing demand for efficient satisfiability checkers for such
logics. Application domains include combinational and sequential equivalence check-
ing for circuits, test pattern generation, and bounded model checking . More recently,
SAT solvers have become essential components in SMT solvers, where they are cou-
pled with solvers for conjunctions of constraints over some background theory (e.g.
the theory of linear arithmetic over the reals) in order to solve arbitrary Boolean com-
binations of such constraints. SAT solvers thus take a key role in technologies which
help to master the complexity of ever larger circuits and ever more refined embedded
software, which has sparked much research on enhancing their capabilities.

Concerning performance, the most dramatic improvements have been achieved
on SAT solvers for conjunctive normal forms (CNFs) that implement variants of the
DPLL procedure. As in the classical DPLL procedure, the main algorithmic ingre-
dients of these solvers are unit propagation and backtrack search. These have, how-
ever, been enhanced by heuristics for finding a suitable traversal sequence through the
backtrack search tree, as well as by refined algorithms and data structures for prun-
ing the search tree and for accelerating unit propagation. Considerable search tree
pruning has been achieved through non-chronological backtracking [68, 112, 123, 91]
and conflict-driven learning [112, 123, 91], usually combined with random or peri-
odic restarts [9, 91]. Unit propagation is sped up through dedicated data structures
[124, 123] and through lazy clause evaluation [91], which delays re-evaluation of the
truth value of any clause that is definitely non-unit.

While these techniques actually yield a dramatic speedup in practice, now tackling
instances with hundreds of thousands of propositions, which would have been com-
pletely impractical a decade ago, they still reach their limits for state-of-the-art ver-
ification problems derived from high-level design models (e.g., STATEMATE models
[70]) of embedded software. Such models easily yield CNFs with millions of proposi-

C. Herde, Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure, DOI 10.1007/978-3-8348-9949-1_3,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

38 3 Extending DPLL for Pseudo-Boolean Constraints

tional variables under bounded model checking. While some of this complexity is in-
herent to the verification task, another part can be attributed to the low expressiveness
of conjunctive normal forms. Apart from improving CNF solvers performance-wise,
another line of research is therefore aiming at extending such procedures to handle
other, more expressive types of constraints.

In this chapter we will study how to extend a DPLL-based SAT solver to effi-
ciently solve conjunctions of pseudo-Boolean constraints. Compared to clauses of a
CNF, pseudo-Boolean constraints, i.e. linear inequalities on Boolean variables, allow
a significantly more compact description of many discrete problems. Pseudo-Boolean
constraints arise naturally in many application domains and have been used to effi-
ciently encode problems from electronic design automation, formal verification, and
operations research. Pseudo-Boolean problems have usually been handled by inte-
ger linear programming (ILP) solvers. The drawback is that the latter do not take
into account the Boolean nature of the problem and thus cannot apply the special-
ized methods exploited in SAT checkers. In principle, pseudo-Boolean constraints
can be encoded as pure CNF formulae and be solved by a conventional SAT solver.
However a naive conversion of a pseudo-Boolean constraint into CNF can require an
exponential number of clauses, thus preventing the solver from effectively processing
the search space. Actually, this increase in problem size can be reduced from expo-
nential to linear by introducing auxiliary variables, however leading to a worst-case
exponential blow-up in the size of the backtrack search tree.

It has been observed by Barth [13] that the DPLL procedure can easily be modified
to handle pseudo-Boolean constraints directly, although this clearly introduces some
overhead in the satisfiability engine caused by the more complex data structures it
uses for reasoning. Whittemore, Kim, and Sakallah tried to follow up on the advances
in the algorithmics of CNF-SAT solvers by adapting GRASP’s conflict analysis and
learning to zero-one linear constraint systems [120], and Aloul, Ramani, Markov,
and Sakallah ported CHAFF’s lazy clause evaluation to this setting [3]. Yet, they
simply mimicked CHAFF’s lazy evaluation scheme such that their type of lazy clause
evaluation is confined to the pure CNF part of the problem, i.e. applies only to those
clauses that are disjunctive. As all other clauses are evaluated eagerly, and as clause re-
evaluation is known to account for the major part of the runtime of a DPLL-based SAT
solver [91], this is far from optimal. In this chapter, we will show that it is possible
and effective to generalize lazy clause evaluation to arbitrary linear constraints under
a zero-one interpretation. Closely related techniques have been independently devised
and implemented by Chai and Kuehlmann [32].

3.1 The Logics 39

We will provide a brief introduction to pseudo-Boolean constraints in Section 3.1
and to the state of the art in CNF-SAT in Section 3.2. Section 3.3 explains the algo-
rithms and data structures underlying our SAT solver for pseudo-Boolean constraints,
which incorporates generalized DPLL, conflict-driven learning, and lazy clause eval-
uation for pseudo-Boolean constraints. Section 3.4 provides benchmark results, fol-
lowed by a conclusion in section 3.5.

3.1 The Logics

We aim at solving conjunctions of constraints which are linear inequalities over Bool-
ean variables, so-called pseudo-Boolean constraints. More precisely, a linear pseudo-
Boolean constraint is of the form

a1x1 + a2x2 + . . . anxn ≥ k ,

where the xi are literals, i.e. positive or negated propositional variables, the ai are nat-
ural numbers, called the weights of the individual literals, and k ∈ N is the threshold.
A special form are cardinality constraints, where all weights are 1.

We refer to conjunctions of pseudo-Boolean constraints as zero-one linear con-
straint systems (ZOLCS) or linear pseudo-Boolean constraint systems [13]. Let BV
be a countable set of Boolean variables. Then the syntax of zero-one linear constraint
systems is as follows.

formula ::= {linear PB constraint ∧}∗linear PB constraint

linear PB constraint ::= linear term ≥ threshold

linear term ::= {weight literal +}∗weight literal
weight ::∈ N

literal ::= boolean var | boolean var
boolean var ::∈ BV

threshold ::∈ N

Pseudo-Boolean constraints and conjunctions thereof are interpreted over Boolean

valuations σ : BV
total−→ B of the propositional variables. We say that σ satisfies a

zero-one linear constraint system φ, denoted σ |= φ, iff σ satisfies all pseudo-Boolean
constraints in φ. A Boolean valuation σ satisfies the pseudo-Boolean constraint a1x1+

40 3 Extending DPLL for Pseudo-Boolean Constraints

a2x2 + . . . anxn ≥ k iff a1χσ(x1) + a2χσ(x2) + . . . anχσ(xn) ≥ k, where

χσ(x) =

⎧⎨
⎩
0 if x ∈ BV and σ(x) = false,

1 if x ∈ BV and σ(x) = true,

1− χσ(y) if x ≡ y for some y ∈ BV ,

i.e. if the left-hand side of the inequality evaluates to a value exceeding the threshold
when the truth values false and true are identified with 0 and 1, respectively.

Example 3.1. The pseudo-Boolean constraint 5a+3b+3c+1d ≥ 7, where b denotes
the negation of b, is satisfied by the valuation a → false, b → false, c → true, d →
true, yet is not satisfied by the valuation a → true, b → true, c → false, d →
true.

Pseudo-Boolean constraints can represent a wide class of Boolean functions, e.g.
1a+1b+1c+1d ≥ 1 is equivalent to a∨b∨c∨d, 1a+1b+1c+1d ≥ 4 is equivalent
to a ∧ b ∧ c ∧ d, and 1a+ 1b+ 3c+ 1d ≥ 3 is equivalent to c→ (a ∧ b ∧ d). In fact,
zero-one linear constraint systems can be exponentially more concise than CNFs. A
CNF expressing that at least n out of k variables should be true requires

(
n

k

)
clauses of

length n each, i.e. is of size O
((

n

k

)
· n

)
, whereas the corresponding ZOLCS has size

linear in k and logarithmic in n.

When solving pseudo-Boolean satisfiability problems with Davis-Putnam-like pro-
cedures, we will build valuations incrementally such that we have to reason about par-

tial valuations ρ : BV
part.−→ B of the propositional variables. We say that a variable

v ∈ BV is unassigned in ρ iff v �∈ dom(ρ). A partial valuation ρ is called consistent

for a formula φ iff there exists a total extension σ : BV
total−→ B of ρ that satisfies φ.

Otherwise, we call ρ inconsistent for φ. Furthermore, a partial valuation ρ is said to
satisfy φ iff all its total extensions satisfy φ. As this definition of satisfaction agrees
with the previous one on total valuations, we will use the same notation ρ |= φ for
satisfaction by partial and by total valuations.

3.2 State of the Art in SAT Solving

Before reporting on the methods employed in modern SAT solvers, we recall some
basic facts and notions concerning Boolean formulae.

3.2 State of the Art in SAT Solving 41

Notation

Every Boolean function f : Bk → B can be expressed as a Boolean formula built
from k propositional variables and the Boolean operations conjunction, disjunction,
and negation, represented by the symbols ∧, ∨, and ¬, respectively. As usual, the
implication a→ b, which can also be written as b← a, is defined to mean (¬a ∨ b),
and the equivalence operation a ↔ b means (a → b) ∧ (a ← b). As we identify the
truth values with the natural numbers 0 and 1, we occasionally write a ≤ b instead of
a→ b, similarly a ≥ b instead of a← b, and a = b instead of a↔ b.

Satisfiability and Falsifiability

A Boolean formula is satisfiable if a valuation exists which makes the formula evalu-
ate to true. A formula which is satisfied by any valuation, is called valid or tautology.
Two formulae f and g are said to be logically equivalent, denoted by f ≡ g, if f ↔ g

is a tautology. The dual concept of satisfiability is falsifiability. A Boolean formula is
falsifiable if a valuation exists which makes the formula evaluate to false. A formula
which is falsified by any valuation, is called unsatisfiable or contradiction.

Normal Forms

A Boolean formula is said to be in conjunctive normal form (CNF) or clausal form if
it is a conjunction of clauses, where a clause is a disjunction of literals. As before, a
literal is a propositional variable or its negation. A formula is in disjunctive normal
form (DNF) if it is a disjunction of terms, the latter being conjunctions of literals.
Any Boolean formula can be transformed into an equivalent formula in CNF or DNF,
respectively.

A formula is in negation normal form (NNF) if negations only occur within liter-
als, and, apart from that, ∧ and ∨ are the only Boolean connectives, i.e. the formula
does not contain implications or equivalences. Obviously, CNF and DNF are special
cases of the negation normal form.

Complexity

Given a Boolean formula f , we refer to SAT as the problem to decide whether f is
satisfiable, to FAL as the problem to decide whether f is falsifiable, to VALID as
the problem to decide whether f is a tautology, and to UNSAT as the problem to
decide whether f is a contradiction. The SAT problem for Boolean formulae was
the first problem known to be NP-complete. The complementary problem UNSAT

42 3 Extending DPLL for Pseudo-Boolean Constraints

SAT VALID FAL UNSAT
arbitrary form NP coNP NP coNP
conjunctive normal form NP linear linear coNP
disjunctive normal form linear coNP NP linear

Table 3.1: Complexity of decision problems.

is coNP-complete. We can determine if a formula is falsifiable by checking whether
its negation is satisfiable. Therefore FAL is, like SAT, NP-complete. Likewise, we
can determine if a formula is valid by checking whether its negation is unsatisfiable.
Therefore VALID is, like UNSAT, coNP-complete. If the formulae are, however, in
conjunctive or disjunctive normal form, then the results are different. Validity (and
therefore falsifiability) of a CNF can be checked in time linear in the size of the for-
mula, because a CNF is a tautology iff each clause is a tautology, i.e. iff each clause
has a subclause of form (b ∨ ¬b). Unsatisfiability (and therefore satisfiability) of
a DNF is linear, because a DNF is a contradiction iff each term is a contradiction,
i.e. iff each term has a subterm of form (b ∧ ¬b). Table 3.1 summarizes the quoted
complexity results.

Given that any Boolean formula can be translated into an equivalent formula
in DNF and CNF, it may be surprising that checking DNF-satisfiability and CNF-
unsatisfiability can be done in linear time, while the corresponding problems for gen-
eral Boolean formulae are NP- and coNP-complete, respectively. The crucial point is
that presumably, unless P = NP, no equivalence-preserving translation with polyno-
mial time complexity exists.

3.2.1 Conversion into CNF

At present, the most powerful SAT solvers are based on the DPLL procedure which re-
quires its input to be in conjunctive normal form. An efficient translation of a Boolean
formula into clausal form is therefore essential for satisfiability checking.

Naive Translation

The standard conversion to CNF, which can be found in most textbooks on proposi-
tional logic, first transforms the input formula into NNF by using De Morgan’s laws
to push all negations down the expression tree until they only appear immediately
above variables, i.e. within literals. Then disjunctions are pushed towards the literals

3.2 State of the Art in SAT Solving 43

Clausal FormIntermediate FormDefinitional FormBoolean Formula

∧ (h1 ∨ ¬b ∨ ¬c)
∧ (¬h2 ∨ ¬h1)

h3

∧ (¬h3 ∨ a ∨ h2)

∧ (¬h1 ∨ c)

∧ (¬h1 ∨ b)

∧ (h2 ∨ h1)

∧ (h3 ∨ ¬h2)

∧ (h3 ∨ ¬a)

∧ (h1 ← b ∧ c)

∧ (h2 → ¬h1)

h3

∧ (h3 → a ∨ h2)

∧ (h1 → b ∧ c)

∧ (h2 ← ¬h1)

∧ (h3 ← a ∨ h2)

∧ (h1 ↔ b ∧ c)

∧ (h2 ↔ ¬h1)

h3

∧ (h3 ↔ a ∨ h2)∨

a

cb

¬

∧

Figure 3.1: Definitional translation.

by application of the distributivity laws of Boolean logic, resulting in a CNF which is
logically equivalent to the input formula, however potentially exponentially larger.

Definitional Translation

To avoid the exponential blow-up in formula size, the definitional translation drops
the goal of converting the input formula into a logically equivalent formula in clausal
form, but merely aims at constructing a CNF which is satisfiable if and only if the input
formula is satisfiable. It is therefore said to be satisfiability-preserving (rather than
equivalence-preserving). The definitional translation is often referred to as Tseitin
translation, because an early description was given by G. S. Tseitin [118].

The idea behind the definitional translation is that the satisfiability of a formula
f is not affected by replacing a subformula g in f with a fresh propositional variable
hg and conjoining the constraint (hg ↔ g), referred to as definition, to the resulting
formula f [hg/g]. The formulae f and f [hg/g] ∧ (hg ↔ g) are equisatisfiable, mean-
ing that each solution of the former corresponds to a solution of the latter and vice
versa. Moreover, satisfying valuations coincide on the variables which occur in both
formulae. The new variable hg, which acts as abbreviation for g within f , is called
Tseitin variable or Tseitin label of g.

By applying the above transformation-rule in a bottom-up fashion to all inner
nodes of the expression tree, the input formula is translated into a conjunction of
the Tseitin variable representing the top-node of the formula, and definitions whose
number is linear in the size of f . This representation of f — we refer to it as defi-

44 3 Extending DPLL for Pseudo-Boolean Constraints

nitional form — can be easily translated into CNF by rewriting each definition into a
small set of clauses.

It has been observed by Plaisted and Greenbaum [102], that the definitional trans-
lation can be made more succinct by taking the polarity of a subformula into account.
A subformula g is said to occur positively (or with positive polarity) in f if it occurs
below an even number of negation signs. Otherwise, g is said to occur negatively (or
with negative polarity) in f . Depending on the polarity of a subformula, only one of
the two implications involved in the definition is needed to constrain the corresponding
Tseitin variable: If g occurs positively in f , then f is rewritten to f [hg/g] ∧ (hg → g),
and to f [hg/g] ∧ (hg ← g) if g has negative polarity in f . Compared to the unop-
timized definitional translation, a translation with polarity optimization saves half of
the CNF clauses on average.

Example 3.2. Figure 3.1 on the previous page illustrates the definitional translation of
φ = a∨¬(b∧ c) into CNF. Using fresh propositional variables h1, h2, and h3, φ is first
converted into definitional form. Clausal form is obtained by splitting each definition
into two implications, and then rewriting each implication into (at most two) clauses.
Only the highlighted implications and clauses have to be kept according to polarity
optimization.

We use the definitional translation, enhanced with polarity optimization, in all
solvers described in this thesis. In addition, we apply several simple optimizations,
among them the following.

• For negation nodes in the expression tree, representing subformulae of shape
¬g, no separate Tseitin labels are introduced. Instead, the negation of the Tseitin
variable for g is used as label for ¬g.

• If there are multiple occurences of the same subformula, then all occurrences
share the same Tseitin variable. In particular, we ensure that the same Tseitin
variable is used for positive and negative occurences of a subformula, as well as
for subformulae which have same polarity but are, like (b ∧ c) and (¬b ∨ ¬c),
negations of each other.

• In order to optimize the potential for sharing of Tseitin labels, we apply (pre-
vious to the CNF conversion) various normalization rules to the input formula
which aim at transforming logically equivalent subformulae into syntactically
equivalent ones.

3.2 State of the Art in SAT Solving 45

Mixed Translation Schemes

It is not difficult to find cases where the definitional translation performs worse than
the standard conversion. The formula from the previous example, e.g., can be ex-
pressed as a single clause, namely (a ∨ ¬b ∨ ¬c), whereas the definitional translation
with polarity optimization generates a CNF consisting of four clauses. Boy de la
Tour [44], Nonnengart and Weidenbach [96], and Jackson and Sheridan [76] there-
fore proposed mixed translation schemes, which aim at introducing a definition for a
subformula only if doing so does not increase the number of clauses generated when
compared to the standard translation, and resort to the latter otherwise.

Experimental results presented by Jackson and Sheridan [77] demonstrate that
their translation scheme consistently generates smaller CNFs than a pure definitional
approach. Unsurprisingly, the results also indicate that a smaller CNF is not necessar-
ily solved faster — an observation which is in accordance with the finding in [103]. In
our solvers, we therefore opted for using a plain definitional translation.

3.2.2 SAT Checkers for CNFs

Because of their relevance for practical applications, and probably also since they
might provide a key to the fundamental question whether P= NP, algorithms for SAT
solving have been investigated for almost 50 years by now. Accordingly large is the
amount of literature covering the field. In this section, we can only give a brief survey
on the most important techniques employed in modern SAT solvers. In particular, we
focus on complete solvers based on the Davis-Putnam-Loveland-Logemann (DPLL)
procedure, which are the most efficient SAT solvers to date. Aiming at using SAT
solvers in formal verification, we ignore incomplete solvers, which are not guaranteed
to find existing satisfying valuation, and are therefore not suitable for applications like
bounded model checking. For more comprehensive accounts on SAT solving we refer
the reader to the survey articles by Zhang and Malik [126], and Gu et al. [69].

DPLL Procedure

Most modern implementations of complete satisfiability-search procedures are en-
hancements of the DPLL recursive search procedure, which is given in pseudo-code
in Listing 3.1 on the following page. Given a CNF φ and a partial valuation ρ, which
is empty at the start, the DPLL procedure incrementally extends ρ until either ρ |= φ

holds or ρ turns out to be inconsistent for φ, in which case another extension is tried
through backtracking. Extensions are constructed by either logical deduction based

46 3 Extending DPLL for Pseudo-Boolean Constraints

1 DPLL(φ, ρ)
2 ρ := DEDUCE(φ, ρ)

3 if φ contains conflicting clause then return
4 if no free variables left then print ρ ; stop
5 b := SELECT UNASSIGNED VARIABLE(φ)

6 v := ONE OF {false, true}
7 DPLL(φ, ρ ∪ {b → v})
8 DPLL(φ, ρ ∪ {b → ¬v})
9

10 DEDUCE(φ, ρ)

11 while unit-clause (x) exists in φ

12 if x ≡ b for some b ∈ V then ρ := ρ ∪ {b → true}
13 if x ≡ b for some b ∈ V then ρ := ρ ∪ {b → false}
14 return ρ

Listing 3.1: DPLL procedure in pseudo-code.

on unit propagation or by so-called decisions, which entail selecting an unassigned
variable and ‘blindly’ assigning a truth-value to it. The DPLL procedure alternates
between these two extension strategies, thereby using unit propagation whenever pos-
sible.

Unit propagation, as implemented by DEDUCE, checks for occurrence of so-called
unit clauses and extends the current partial valuation by their implications. A clause
is said to be unit iff all its literals, except for exactly one unassigned literal, are set
to false. To satisfy the CNF φ, the unassigned literal has to be assigned true. That
assignment is thus said to be propagated by the unit clause. Propagations may make
other clauses unit and thus entail further propagations. Unit propagation is iterated
until no further unit clauses exist. All assignments triggered by the same decision are
said to belong to the same decision level.

Deduction may yield a conflicting clause which has all its literals assigned false,
indicating a dead end in search. Backtracking then backs up to the most recently
assigned decision variable which has not yet been tried both ways, thereby undoes all
assignments made since assigning that variable, flips its truth-value, and resumes the
search. If no such decision variable exists then φ is unsatisfiable. If, on the other hand,

3.2 State of the Art in SAT Solving 47

c2

c1

c3Cut2 Cut1
d → false

d → truec → trueb → true

a → trueDL1:

DL2:

Figure 3.2: Conflict analysis.

all variables of φ can be assigned without a conflict, a satisfying valuation has been
found.

Being based on this recursive search procedure, actual implementations refine the
above scheme by using different strategies for selecting the variable and the truth-
value to be used at a decision step. See [111] for a detailed review of the impact of
different decision strategies on the solving process. Furthermore, state-of-the-art SAT
solvers enhance the basic procedure through various algorithmic modifications.

Conflict Analysis and Conflict-Driven Learning

Like all pure backtracking algorithms, the DPLL procedure suffers from thrashing,
i.e. repeated failure due to the same reason. To overcome this problem, sufficiently
general reasons for conflicts encountered have to be deduced and stored for future
guidance of the search procedure. The standard scheme traces the reason back to a
small (ideally minimal) number of assignments that triggered the particular conflict,
and stores this reason by adding the negation of that assignment as a clause — termed
conflict clause — to the clause database. Such reasons, also called explanation in this
context, can be inferred from cuts in the implication graph. The implication graph is
a directed graph recording the causal relationship between individual variable assign-
ments performed. It is obtained through relating, for each propagation performed, the
propagated literal to the previously assigned literals in the corresponding unit clause.
A cut in this graph constitutes a reason for all assignments occurring later in the graph.
A more general reason, i.e. an explanation mentioning fewer literals, for an individual
assignment can be derived by taking just those elements of a cut that actually have a
path to that particular assignment. Using this technique, a reason for the assignments
constituting a conflict can be inferred. The reason is, however, not unique, as different
cuts can be used. The interested reader is referred to Zhang et al. [125], who examine
several heuristics for deriving one or more conflict clauses from the implication graph.

48 3 Extending DPLL for Pseudo-Boolean Constraints

Example 3.3. Consider a CNF with clauses c1 = (¬a ∨ ¬c ∨ d), c2 = (¬a ∨ ¬b ∨ c),
and c3 = (¬c ∨ ¬d). Figure 3.2 on the previous page shows the implication graph
resulting from the decisions a → true, then b → true. Since a → true does not
trigger any propagations, decision level DL1 contains only the decision itself. After
assigning b → true on decision level DL2, clause c2 becomes unit and propagates
c → true. Unity of c2 is caused by the valuations a → true and b → true, which
are therefore linked in the implication graph to the propagated assignment c → true.
The latter, in turn, entails unity of clause c3 and, together with a → true, clause c1,
which propagate the conflicting assignments d → false and d → true, respectively.

Reasons for the conflict are given by Cut1 and Cut2. A cut generates a partition
of the graph into the conflict side, comprising at least the conflicting assignments, and
the reason side comprising at least all decisions. All vertices on the reason side which
have an outgoing edge crossing the cut, together define a partial valuation which is
a reason for the conflict. For example, Cut1 yields the valuation {a → true, c →
true}, which can be excluded from future search by learning the conflict clause (¬a∨
¬c). Another conflict clause can be derived from Cut2, namely (¬a ∨ ¬b).
Non-Chronological Backtracking

In addition to pruning the search space, the learned conflict clauses can also be used
to accelerate backtracking: instead of just backtracking to the most recent assignment
of a decision variable which has not been flipped, the algorithm may directly back
up to the maximum decision level on which the conflict clause still has at least one
unassigned literal. Doing so can save flipping numerous decisions which do not affect
the conflict at all. Because of this non-sequential way of backing up through the levels
of the search tree, this technique is referred to as non-chronological backtracking or
backjumping.

Restarts

Another enhancement which can be applied in presence of conflict-driven learning
is (random) restarts. Restarts abort an ongoing search, discard the partial valuation
which has been constructed so far, and resume solving from an empty valuation while
retaining the learned conflict clauses. This technique is intended to prevent the search
from getting lost in non-relevant regions of the search space which might have been
entered by early decisions. The restarted solver will not simply repeat its previous
run due to the learned conflict clauses, which guide the solver to different parts of the
search space. Note, however, that some care has to be taken to preserve completeness
of the search process [85], e.g. by limiting the number of restarts.

3.3 Optimizing DPLL-Based Pseudo-Boolean Solvers 49

Lazy Clause Evaluation

Concerning performance of DPLL-like procedures, probably the most important im-
provement in recent years can be attributed to a novel implementation of unit prop-
agation, introduced with the CHAFF SAT solver [91]. Unit propagation in general
accounts for the major fraction of the solver runtime.

Previous implementations of unit propagation identified unit clauses by visiting,
after each assignment, all clauses containing the literal falsified by that assignment,
as such clauses might have become unit. The key idea of the enhanced algorithm is to
watch only two literals in each clause, and not to visit the clause when any other literal
is assigned. This is sound, since the two watched literals provide evidence for the non-
unitness of the clause. If an assignment, however, sets a watched literal to false, then
this triggers a visit of the respective clause to evaluate its state. The algorithm then
tries to replace the watched literal that has been assigned false with another unassigned
or true literal occurring in the clause. If it succeeds then it has constructed a new
witness for non-unitness of the clause. Otherwise, the clause has become unit and the
watched literal which is yet unassigned is the one to be propagated. This technique,
often called lazy clause evaluation, has been shown to achieve significant performance
gains, especially on hard SAT instances [91].

3.3 Optimizing DPLL-Based Pseudo-Boolean Solvers

We will now generalize DPLL and its recent enhancements, in particular lazy clause
evaluation, to zero-one linear constraint systems. To simplify the exposition we as-
sume in the following that each pseudo-Boolean constraint is rewritten after each as-
signment according to the following simplification rules:

• A literal which has been set to false is removed from the left-hand side of the
constraint as it cannot contribute to its satisfaction any longer. For example,
after assigning b → true, the constraint 1a+1b+1c ≥ 2 becomes 1a+1c ≥ 2.

• A literal which has become true is also removed from the constraint, however
with its weight subtracted from the threshold of that constraint. For example,
after assigning b → false the constraint 1a+1b+1c ≥ 2 becomes 1a+1c ≥ 1.

Consequently, all literals appearing in constraints are yet unassigned, and indices
range over unassigned literals only.

50 3 Extending DPLL for Pseudo-Boolean Constraints

1 DEDUCE(φ, ρ)

2 while propagating constraint C exists in φ

3 for each literal x propagated by C
4 if x ≡ b for some b ∈ V then ρ := ρ ∪ {b → true}
5 if x ≡ b for some b ∈ V then ρ := ρ ∪ {b → false}
6 return ρ

Listing 3.2: Deduce procedure for ZOLCs.

3.3.1 DPLL for Pseudo-Boolean Constraints

Since the seminal work of Barth [13] it is well-known that the basic DPLL procedure
can easily be generalized to zero-one linear constraint systems through modification
of the deduction procedure.

As before, the task of the deduction routine is to detect propagating constraints and
to perform the corresponding assignments. A pseudo-Boolean constraint

∑
aixi ≥ k

propagates a literal xj iff setting this literal to false would make the constraint unsat-
isfiable, i.e. iff (

∑
ai)− aj < k.

In contrast to a CNF clause, a pseudo-Boolean constraint can propagate several
literals simultaneously. Furthermore, a pseudo-Boolean constraint is not necessarily
satisfied after propagation.

Example 3.4. When assigning a with false, the constraint

5a+ 3b+ 3c+ 1d+ 1e ≥ 7

propagates b and c. However, the assignments b := false and c := true do not
satisfy the constraint, but merely reduce it to

1d+ 1e ≥ 1.

We refer to a pseudo-Boolean constraint which propagates at least one literal as a
propagating constraint. With this notion, corresponding to the notion of a unit clause
in CNF-SAT, we can formulate a generalized DEDUCE procedure for zero-one linear
constraint systems as given in Listing 3.2.

Note that a propagating constraint propagates at least the literal with the largest
weight appearing in that constraint. If this is not unique because several literals with
the same largest weight exist, then all those literals are propagated.

3.3 Optimizing DPLL-Based Pseudo-Boolean Solvers 51

This can be demonstrated by the following argument: Let xp be the (not neces-
sarily unique) literal with the largest weight appearing in a constraint

∑
aixi ≥ k.

Suppose that some literal xq with q �= p is propagated by that constraint. Then
(
∑

ai) − aq < k holds due to the propagation rule given above. However, since
cp ≥ cq, also (

∑
ai)− ap < k holds, i.e. xp is propagated, too.

3.3.2 Generalization of Lazy Clause Evaluation

While the generalization of the DPLL procedure to ZOLCS has already been proposed
by Barth [13], its acceleration through lazy clause evaluation for arbitrary pseudo-
Boolean constraints is a novel contribution.

To apply lazy clause evaluation to pseudo-Boolean constraints we have to deter-
mine a subset of unassigned literals from each constraint such that watching these
literals is sufficient to detect that propagations are required to maintain satisfiability
of the constraint. Obviously, we are looking for minimal sets with this property in
order to avoid unnecessary constraint evaluations. To this end, we arrange the literals
in each constraint with respect to their weights, such that the literal with the largest
weight is the leftmost one. Then we read the constraint from left to right and select
the literals to be watched as follows:

1) The leftmost literal is selected.

2) The following literals are selected until the sum of their weights, not including
the weight of the leftmost literal, is greater than or equal to the threshold of the
constraint.

The set of literals chosen to be watched by these rules fulfills the above requirements:

a) Assignments which do not affect the watched literals will never make the con-
straint unsatisfiable as the literals selected by rule 2) are by themselves sufficient
to ensure satisfiability.

Furthermore, no such assignment will turn the constraint into a propagating one.
To see this, assume that an assignment to an unwatched literal does cause the
propagation of some literals. Then, as shown before, the watched literal with the
largest weight, selected by rule 1), is among those implications. However, ac-
cording to the propagation rule from section 3.3.1, this literal is not propagated
because the remaining watched literals, selected by rule 2), ensure satisfiability
of the constraint.

52 3 Extending DPLL for Pseudo-Boolean Constraints

Consequently, a visit of the constraint is unnecessary upon assignments affect-
ing unwatched literals only.

b) If, on the other hand, an assignment sets a watched literal to false, the corre-
sponding constraint may become propagating. Hence, such assignments trigger
an evaluation of the constraint. However, the set of watched literals guarantees
that the constraint is satisfiable when being visited as any single literal can be
assigned while preserving satisfiability of the constraint: if the literal with the
largest weight is set to false then the watched literals selected by rule 2) still
guarantee satisfiability. If a literal selected according to rule 2) is set to false,
the literal selected by rule 1) can compensate for it as its weight is greater than
or equal to the one of the literal which has been assigned.

c) The chosen literals form a minimal subset with these properties as we start se-
lecting from the largest weight towards the smallest.

Example 3.5. Consider the pseudo-Boolean constraint

4a+ 3b+ 2c+ 1d+ 1e+ 1f + 1g ≥ 5

whose literals have been ordered with respect to their weights from left to right in
descending order. According to rules 1) literal 4a is watched, because it is the leftmost
one. Furthermore, literals 3b and 2c are watched according to rule 2), because 3+2 ≥
5, i.e. the constraint can be satisfied solely by assigning appropriate values to b and c.

If a watched literal of a constraint is assigned false, our algorithm tries to re-
establish a set of literals which is in accordance with rule 1) and 2). This requires
the search for a minimal set of literals which are either unassigned or true and whose
weights sum up to a value that at least equals that of the watched literal which has
been assigned false. If such a set exists, then it is added to the set of watched literals
to replace the one which has dropped out. If no such set exists then this indicates that
the constraint has become propagating. The required propagations are determined by
application of the propagation rule from section 3.3.1.

In our implementation, we decided to continue to watch those literals which have
been assigned true as well as those which have been set to false but cannot be sub-
stituted, instead of really removing them from the watch-set. Clearly, these watched
literals will not trigger any constraint evaluation as long as the corresponding variables
keep their values, s.t. there is no need to really remove them. The desired side-effect

3.3 Optimizing DPLL-Based Pseudo-Boolean Solvers 53

is, however, that upon unassignment of the corresponding variables, these watched lit-
erals are implicitly reactivated. This form of lazy reactivation ensures that after back-
tracking an appropriate set of literals is watched in each clause. As this is achieved
without any computational burden, the time spent on backtracking is linear in the
number of unassignments that have to be performed, just as in CNF-SAT. The price
to be paid is, however, that after backtracking the watch-set of a clause may no longer
be minimal, because a single watched literal, which after backtracking is unassigned
again, might have previously been replaced by several literals with smaller weights.
In principle we could re-establish a minimal set of watched literals by recording the
changes in the watch-sets triggered by each decision and undoing these changes when
backtracking. Yet, this would make backtracking much more expensive and, fur-
thermore, we would abandon the advantage that reassigning a variable shortly after
unassigning it – due to the nature of tree-search algorithms a quite frequent case – is
usually faster than its previous assignment, as thereafter it is only watched in a small
subset of constraints.

Example 3.6. Consider again the pseudo-Boolean constraint from the previous exam-
ple. Figure 3.3 on the next page illustrates the changes of the set of watched literals
when successively setting g, c and b to false, then unassigning all variables.

3.3.3 Learning in Presence of Pseudo-Boolean Constraints

Just as in CNF-SAT, conflict-driven learning in our solver for ZOLCS is based on an
analysis of the implication graph as described in section 3.2.2.

For sake of efficiency, the implication graph is, exactly as e.g. in the ZCHAFF

solver [125], only maintained implicitly during the search by annotating each vari-
able assigned by propagation with a pointer to its propagating constraint, but it is not
constructed explicitly until a conflict is really encountered.

To construct the implication graph, the conflict diagnosis procedure has to deter-
mine, for each propagation involved in the conflict, a subset of literals of the cor-
responding propagating constraint whose assignment triggered the propagation. In
CNF-SAT, this subset is easy to identify as it consists of all literals of the unit clause,
except the one which has been propagated. In ZOLCS-SAT, however, we have to take
into account that a pseudo-Boolean constraint is not necessarily satisfied after prop-
agation and may even become propagating more than once. Hence, the state of its
literals at the time of conflict analysis may not coincide with the state at the time of

54 3 Extending DPLL for Pseudo-Boolean Constraints

g → false

c → false

b → false

+ + + + + 53b 2c 1d 1e 1f4a

+ + + + 53b 1e 1f ≥4a 1d

≥

+ + 11d 1e 1f ≥

+ + + + + + 53b 2c 1d 1e 1f 1g ≥4a

Unassign a, b, c, g

Propagate a → true

+ + + + + + 53b 2c 1d 1e 1f 1g ≥4a

+ + + 51d 1e 1f4a ≥

Figure 3.3: Assignments to variables trigger modifications of the watch-set.

propagation. Selecting an arbitrary set of assigned literals from a constraint to recon-
struct a cause for a specific propagation may thus introduce acausal relationships or
even cycles in the implication graph.

To avoid this, our implementation associates a timestamp with each variable as-
signment. The timestamp records the point in time when the variable was assigned; it
is reset to zero upon unassignment of the variable. Let

∑
i∈M aixi ≥ k, M ⊆ N be

a pseudo-Boolean constraint and xp a literal propagated by this constraint. For each
i ∈M let ti denote the timestamp associated with literal xi. To determine a reason for
the propagation of xp, our implementation chooses a minimal subset of literals with
indices R ⊆ M such that (

∑
i∈M\R ai) − ap < k and (

∑
i∈M\R ai) + ap ≥ k hold

and, furthermore, for each r ∈ R the literal xr has been assigned false with timestamp
tr ≤ tp.

The implication graph is built by recursively relating propagated literals to their
reasons, where the latter are determined according to the above rules. Once the impli-
cation graph has been constructed, the algorithm for conflict analysis and learning is
equal to the one used in CNF-SAT. In particular, the clauses learned are CNF clauses.

3.4 Benchmark Results 55

3.4 Benchmark Results

In order to evaluate the proposed methods, we have implemented GOBLIN, a SAT
solver for zero-one linear constraint systems, which employs lazy clause evaluation
and conflict-driven learning as explained in section 3.3.1. For some experiments we
used ZCHAFF, version 2001.2.17, as reference. GOBLIN, which is written in C++,
shares several algorithmic features of the ZCHAFF solver, however, as opposed to
ZCHAFF, it uses neither random restarts, nor deletion of learned conflict clauses to
avoid memory explosion, and it uses a less sophisticated decision strategy. All exper-
iments were performed on a 1 GHz Pentium III machine with 640 MByte physical
memory, running Linux.

The first group of experiments dealt with scheduling problems, originally formu-
lated in discrete-time Duration Calculus. The propositional formulae used as input
for the SAT engines are bounded model construction problems for Duration Calculus
formulae, generated by the method proposed in [59]. Each SAT instance entails the
search for a feasible schedule for three periodic tasks, where a feasible schedule cor-
responds to a satisfying valuation of the respective instance. The individual instances
only differ in the runtime n of the tasks involved in the corresponding task system.

The generation of the input formulae for GOBLIN exploits that a duration formula
of shape

∫
y ≥ k, which holds on an observation interval O = [m,n] iff the accumu-

lated duration of y being true over this interval exceeds k, can be directly translated
into the threshold clause

∑n

m yi ≥ k, where the yi represent the values of y in the
different time instants.

The results, presented in table 3.2, show that this encoding yields ZOLCS which
have size almost constant in n, whereas the size of the corresponding CNF-formulae
grows rapidly with n. The same holds for the solving time. In total, GOBLIN fin-
ished all instances in less than three seconds, whereas ZCHAFF required more than 23
minutes to complete them.

The second group of experiments was carried out to assess the effectiveness of
the proposed lazy clause evaluation scheme in terms of the average number of clause
evaluations that have to be executed after each assignment performed. To this end,
we translated integer arithmetic problems into ZOLCS, using a bit-wise encoding that
replaces each occurence of an integer variable a with

∑n−1
i=0 2

iai, where the ai are
propositional variables and n is the number of bits needed to represent a.

Consider for example the integer constraint a2 ≥ 4, where a is a 2-bit integer
variable. The encoding sketched above yields (2a1 + a0)(2a1 + a0) ≥ 4, i.e. 4a21 +
4a1a0 + a20 ≥ 4, which can easily be transformed into a ZOLCS by replacing each

56 3 Extending DPLL for Pseudo-Boolean Constraints

CNF ZOLCS
n Clauses Literals zChaff [s] Clauses Literals Goblin [s]

1 56758 140637 0.19 21638 109054 0.23
2 107350 273069 0.40 22501 108703 0.25
3 157942 405501 1.97 21467 108193 0.25
4 208534 537933 20.24 21386 107536 0.26
5 259126 670365 153.56 21308 106744 0.25
6 309718 802797 163.45 21233 105829 0.25
7 360310 935229 219.42 21161 104803 0.24
8 410902 1067661 250.35 21092 103678 0.24
9 461494 1200093 277.04 21026 102466 0.24

10 512086 1332525 307.26 20963 101179 0.24

Table 3.2: Results of scheduling benchmarks.

Formula Range Clauses Literals

a) a3 + b3 + c3 = d3 a, b, c, d ∈ [100; 200] 1103 5352
b) a3 + b3 = c3 a, b, c ∈ [100; 200] 827 3952
c) a3 + b3 = 352 ∗ a ∗ b a, b ∈ [100; 500] 1018 4872
d) a3 + b3 = 517 ∗ a ∗ b a, b ∈ [100; 500] 1018 4872
e) (416− a) ∗ b2 = a3 ∧ a �= b a, b ∈ [100; 500] 855 3915
f) (224− a) ∗ b2 = a3 ∧ a �= b a, b ∈ [100; 500] 855 3915

Table 3.3: Integer arithmetic problems.

nonlinear term aiaj with an auxiliary variable h and imposing the additional constraint
h→ ai ∧ aj , where the latter is expressed by 2h+ ai + aj ≥ 2.

Table 3.3 shows the integer formulae that were used in the experiments, as well as
the size of the corresponding ZOLCS.

As a reference for these benchmarks we used a modified version of GOBLIN that
watches all literals appearing in a threshold clause, thus mimicking the behaviour of a
naive implementation of the DPLL algorithm, that, after each assignment, re-evaluates
all constraints containing the literal falsified by that assignment.

The results of the experiments are summarized in table 3.4. ‘EpA’ denotes the
average number of clause evaluations per assignment required in the respective solver
run. For all benchmarks performed, lazy clause evaluation is able to significantly
reduce this value, as well as the runtime of the solver. The largest gain is obtained

3.5 Discussion 57

Naive Algorithm Lazy Clause Evaluation
Solver Result Time Assignments EpA Time Assignments EpA

[s] Evaluations [s] Evaluations

a) a = 108, b = 114, 94.32 2716535 239.78 25.88 2853381 8.39
c = 126, d = 168 651362897 23950767

b) UNSAT 105.25 2334859 313.59 21.97 2412304 10.25
732186876 24734089

c) a = 176, b = 176 38.35 1273108 166.69 14.12 1291765 9.42
212213069 12169638

d) UNSAT 268.96 2624583 483.36 37.10 2628195 15.47
1268553553 40664770

e) a = 288, b = 432 8.27 425303 88.42 3.68 437408 5.53
37606297 2420138

f) UNSAT 19.84 622024 157.63 6.47 647989 8.69
98046695 5633296

Table 3.4: Results of integer problems.

for benchmark d), where EpA is improved by a factor of 31.2, yielding a speed-up
factor of 7.2. The reduction of EpA demonstrates that keeping the observation sets
on backtracking does not lead to inefficiently large observation sets. It seems that
the lower cost of backtracking gained from this strategy in fact outweighs the clause
evaluation overhead caused by non-minimal observation sets, as our scheme provides
considerable speedups even on general ZOLCS, like the arithmetic benchmarks. In
contrast, Chai and Kuehlmann decided, based on benchmarking their implementation,
to constrain lazy clause evaluation to CNF and so-called cardinality constraints (i.e.
constraints having only weights of 1) only [32].

3.5 Discussion

Our experiments indicate that incorporating state-of-the-art SAT solver algorithmics,
in particular lazy clause evaluation, into a ZOLCS satisfiability checker is efficient,
with the overhead incurred from solving the more expressive source language often
being outweighed by the more concise input language. Especially promising are the
results obtained on integer arithmetic problems, a domain traditionally considered
to be extremely challenging for propositional solvers, be it BDD-based or DPLL-
based solvers. It is worth noting that most of the arithmetic operations involved were

58 3 Extending DPLL for Pseudo-Boolean Constraints

nonlinear such that they are out-of-scope of integer linear programming procedures,
unless bit-wise encoding is used, which yields poorly performing ILPs in general [98].

The work described in this chapter has been published back in 2003 already. Since
then, pseudo-Boolean constraint solving has become an active field of research, as
witnessed by the Pseudo-Boolean Evaluation, a competition of solvers for pseudo-
Boolean satisfiability and optimization problems, first organized in 2005 and held
again in 2006, 2007, and 2009. See [86] for a detailed report on the 2005 event.

The solvers, which participated in the competition so far, basically fall into two
groups. Adapting techniques from CNF-based SAT checking, solvers in the first group
handle pseudo-Boolean constraints natively. GALENA [32], BSOLO [87], PBS4 [4],
and PUEBLO [110] belong to this group. As our solver does, some of these solvers,
e.g. BSOLO and PBS4, learn CNF clauses only. Yet, there are meanwhile also solvers
which derive cardinality constraints [32] and general pseudo-Boolean constraints [87,
110] as explanations for conflicts, e.g. by adopting cutting plane techniques from ILP.

Solvers in the second group, among them MINISAT [51], translate pseudo-Boolean
constraints (e.g. by making use of BDDs as intermediate format) into CNF clauses
and use conventional CNF engines for satisfiability ecking. Pursuing a translation ap-
proach, Eén and Sörensson [51] state that their solver ‘can perform on par with the
best existing native pseudo-Boolean solvers’, especially if the problem is mostly in
CNF and contains few of pseudo-Boolean constraints only. Yet, they believe that do-
main specific solvers for pseudo-Boolean constraints are ‘likely to outperform trans-
lation based methods in many cases’. Indeed, the native solver PUEBLO won the
category of instances without optimization function in the 2005 competition. It is
worth noting, that PUEBLO was one of only two solvers in the competition which
were using lazy data structures, like those proposed in this chapter, not only for CNF
clauses, but also for general pseudo-Boolean constraints.

4 Integration of DPLL-SAT and Linear Programming

In this chapter, we present a decision procedure which is tailored to fit the needs of
BMC of infinite-state systems with piecewise linear variable updates, e.g. of linear
hybrid automata, as introduced in chapter 2. Our tool, we name it HYSAT-1, tightly
integrates a DPLL style SAT solver with a linear programming routine, combining the
virtues of both methods: Linear programming adds the capability of solving large con-
junctive systems of linear inequalities over the reals, whereas the SAT solver accounts
for fast Boolean search and efficient handling of disjunctions. Building on the work
presented in chapter 3, we use our pseudo-Boolean solver GOBLIN as SAT engine in
HYSAT-1.

The idea to combine algorithms for SAT with decision procedures for conjunctions
of numerical constraints in order to solve arbitrary Boolean combinations thereof has
been pursued by several groups. A tight integration of a resolution based SAT checker
with linear programming has first been proposed and successfully applied to planning
problems by Wolfman and Weld [121]. Tools supporting more general classes of for-
mulae are BARCELOGIC [27], CVC [11], ICS [46], MATHSAT [28], YICES [49] and
Z3 [45], all integrating decision procedures for various theories, including Boolean
logic, linear real arithmetic, uninterpreted function symbols, functional arrays, and
abstract data types, for example.

However, except for HYSAT-1, all tools mentioned above lack some or all of the
particular optimizations that arise naturally in the bounded model checking context.
As observed by Strichman [113], BMC yields SAT instances that are highly symmetric
as they comprise a k-fold unrolling of the systems transition relation. This special
structure can be exploited to accelerate solving, e.g. by copying the explanation for
a conflict which was encountered during the backtrack search performed by the SAT
solver, to all isomorphic parts of the formula in order to prune similar conflicts from
the search tree. This technique, in the following referred to as isomorphy inference,
has been shown to yield considerable performance gains when performing BMC with
propositional SAT engines. To the best of our knowledge, HYSAT-1 was the first

C. Herde, Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure, DOI 10.1007/978-3-8348-9949-1_4,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

60 4 Integration of DPLL-SAT and Linear Programming

solver that extends isomorphy inference accross transitions, as well as other domain-
specific optimizations detailed in [113], to the hybrid domain. Later, these techniques
were also employed in the solvers implemented and described by Ábrahám et al. in
[1, 2].

We will show that, compared to purely propositional BMC, similar or even higher
performance gains can be accomplished within this context. The reason is that an
inference step in the hybrid domain is computationally much more expensive than in
propositional logic, as now richer logics have to be dealt with. This result is consistent
with the findings of Ábrahám et al.

The chapter is organized as follows. In section 4.1 we introduce the logical lan-
guage solved by our satisfiability checker. Thereafter, we explain in section 4.2 the
lazy approach to the satisfiability modulo theory problem, which is the algorithmic
basis for our solver. In section 4.3 follows an explanation of our use of linear pro-
gramming as decision procedure for linear arithmetic. In section 4.4, we discuss the
BMC-specific optimizations implemented in our tool. Section 4.5 provides experi-
mental results, and section 4.6 draws conclusions and reviews more recent related
work.

4.1 The Logics

We address satisfiability problems in a two-sorted logics entailing Boolean-valued
and real-valued variables. When encoding properties of hybrid systems, the Boolean
variables are used for encoding the discrete state components, while the real variables
represent the continuous state components. Aiming at solving formulae which arise
as verification conditions in BMC of linear hybrid automata, we have to deal with
arbitrary Boolean combinations of propositional variables and linear arithmetic con-
straints over the reals. The internal format processed by our decision procedure is,
however, slightly more restrictive in syntax. The formulae are actually conjunctions
of linear pseudo-Boolean constraints (as defined on page 39) for the Boolean part and
of guarded linear constraints for the real-valued part:

formula ::= {clause ∧}∗clause
clause ::= linear PB constraint | literal → linear constraint

The reason for using pseudo-Boolean constraint clauses instead of ordinary dis-
junctive clauses (like in CNFs) is that linear pseudo-Boolean constraints are much

4.1 The Logics 61

more concise than disjunctive clauses and that we have a very efficient SAT solver for
pseudo-Boolean constraint systems, yielding the base engine for HYSAT-1. The use
of pseudo-Boolean constraints is, however, not essential for the workings of our algo-
rithms; we could use an ordinary CNF solver as well, provided that it is DPLL-based.

To express constraints between real-valued variables, as well as their dependencies
with the Boolean valuation, we use guarded linear constraints. A guarded linear con-
straint is an implication between a Boolean literal and a linear equation or inequation
over real-valued variables, the latter denoted by the non-terminal linear constraint in
above syntax-definition. The intended semantics is that satisfaction of the guard en-
forces that the linear constraint must be satisfied, too. We say that satisfaction of the
guard activates the linear constraint.

A formula φ, i.e. a conjunction of pseudo-Boolean constraints and of guarded
linear constraints, is interpreted over valuations

σ = (σB, σR) ∈ (BV total−→ B)× (RV total−→ R).

Obviously, φ is satisfied by σ = (σB, σR), denoted σ |= φ, iff all linear zero-one
constraints in φ are satisfied by σB and all guarded linear constraints in φ are satisfied
by (σB, σR). A guarded linear constraint v → c is satisfied by σ = (σB, σR) iff σR

satisfies the linear constraint c or if σB(v) = false.
Like in the chapter 3, we will build valuations incrementally using Davis-Putnam-

like procedures and have thus to reason about partial valuations ρ ∈ (BV
part.−→

B) × (RV part.−→ R) of variables. We define the notion of an unassigned variable,
as well as the notions consistency, inconsistency and satisfaction for a partial valu-
ation analogously to the definitions given on page 40. Furthermore, we will use the
same notation ρ |= φ for satisfaction by partial and by total valuations.

An arbitrary Boolean combination of linear constraints can be easily converted
into our internal syntax using a definitional translation as detailed in chapter 3, where
linear arithmetic constraints are treated like ordinary subformulae, i.e. definitions are
introduced for them. Definitions involving Boolean variables only are converted, in a
second translation step, into pseudo-Boolean constraints. We refer to the conjunction
of the latter as Boolean abstraction of the input formula in the following. All other
definition, i.e. those involving arithmetic predicates, are kept (either unmodified or in
contraposition) as guarded linear constraints, where the Tseitin labels act as guards.

Example 4.1. Figure 4.1 illustrates the definitional, satisfiability-preserving transla-
tion of φ = (3x + y ≥ 4) ∨ ¬(b ∨ (x < 5)) into our internal syntax. Like in the

62 4 Integration of DPLL-SAT and Linear Programming

Internal FormatOptimized Definitional FormInput Formula

h5

∧ (¬h5 + h1 + h4 ≥ 1)

∧ (2h3 + ¬b+ ¬h2 ≥ 2)

∧ (¬h2 → (x ≥ 5))

∧ (h1 → (3x+ y ≥ 4))

∧ (¬h4 + ¬h3 ≥ 1)

∧ (h1 → (3x+ y ≥ 4))

∧ (h2 ← (x < 5))

∧ (h4 → ¬h3)

∧ (h5 → h1 ∨ h4)

∧ (h3 ← b ∨ h2)

h5

∨

¬

∨

b x < 5

3x+ y ≥ 4

Figure 4.1: Translation into the internal format.

pure propositional case, we use the definitional translation with polarity optimization.
Note that the linear constraint x < 5 appears in negated form, i.e. as x ≥ 5, in the
guarded constraint, because it occurs with negative polarity in φ.

Furthermore, we apply all optimizations listed on page 44. If there were, for
example, a positive occurence of 3x + y < 4 in φ, then we would use ¬h1 as Tseitin
label (and guard) for it.

4.2 Lazy Approach to SMT

Our integration of the DPLL procedure and linear programming is an instance of
the lazy approach to the Satisfiability Modulo Theories (SMT) problem, which is
currently considered to be the most effective approach to SMT [108].

The basic idea of lazy SMT is to combine a DPLL-based SAT solver with a theory
solver that can decide the satisfiability of conjunctions of atoms over a given theory T

in order to obtain a DPLL(T) solver which can deal with complex Boolean combina-
tions of propositional atoms as well as atoms over T .

Figure 4.2 on the facing page depicts the interaction of the two solvers in a DPLL(T)
set-up. The DPLL engine solves a Boolean abstraction of the input formula φ which
is obtained, as demonstrated in section 4.1, by replacing each T -atom ci occuring in
φ with a fresh Boolean variable or its negation, i.e. with a literal bi, the latter serving
as guard literal for ci in the sense that ci is activated when bi becomes true.

In lock-step with the incremental assignment of truth values to Boolean variables,
the DPLL procedure builds a conjunctive constraint system over T which is given by

4.3 SAT Modulo the Theory of Linear Arithmetic 63

+ non−chronol. backtrack.
+ conflict−driven learning

DPLL−SAT

set of T−atoms

consistent:
yes / no

explanation:
inconsistent set

T−Solver

Figure 4.2: Solver interaction in the lazy SMT framework.

the set C := {ci | ρ(bi) = true} of T -atoms being activated by the current partial
Boolean valuation ρ. This constraint system is passed to a decision procedure for T to
decide its consistency, i.e. whether C is satisfiable or not. If C is consistent, the DPLL
procedure may continue to extend its truth-assignment. In case of inconsistency, a
conflict clause is constructed by

• extracting a small (ideally minimal) subset I from C which is inconsistent itself
and can therefore serve as an explanation for C’s inconsistency,

• building the disjunction
∨

ci∈I ¬bi which, when added to the clause database,
will prevent DPLL from simultaneously activating the conflicting atoms from I
again.

The DPLL solver then performs backjumping such that at least one literal of the con-
flict clause is freed (i.e. unassigned). By unassigning guard literals due to backjump-
ing, it deactivates T -atoms and resolves the conflict. Note that backjumping happens
in exactly the same way, irrespective of whether the conflict clause, which controls
backjumping, was derived from a propositional conflict or from a T -conflict.

4.3 SAT Modulo the Theory of Linear Arithmetic

Being interested in solving Boolean combinations of linear arithmetic equalities and
inequalities over the reals, we use a DPLL(T) framework where the T -solver is instan-
tiated with a linear programming routine. Linear programming (LP) is used to decide
the satisfiability (in this context usually called feasibility) of sets of linear constraints,
i.e. to check whether for a given system of inequations Ax ∼ b, where ∼ ∈ {≤, <},
the set of solutions {x ∈ Rn | Ax ∼ b} is non-empty, as well as a means for efficiently
deriving explanations for infeasibility.

64 4 Integration of DPLL-SAT and Linear Programming

Linear programming deals with finding extremal values of a linear objective func-
tion when the variables are constrained by linear (in)equations, i.e. with problems that
can be put in the general form

maximize cTx

subject to Ax ≤ b

x ∈ Rn

(4.1)

where x is the vector of variables to be solved for, A ∈ Rm×n is a maxtrix, and
b ∈ Rm and c ∈ Rn are column vectors. The linear expression cTx is called the
objective function, and (4.1) is referred to as a linear program.

Geometrically, the solution set P = {x ∈ Rn | Ax ≤ b} of the constraint part of
a linear program is an intersection of finitely many halfspaces, called polyhedron. If a
polyhedron is bounded, it is called polytope. It can be shown that the maximum of the
objective function cTx is attained at a vertex of P , provided that max{cTx | x ∈ P}
is not unbounded.

The main reason for preferring LP over other methods of detecting feasibility of
linear constraint systems (e.g., Fourier-Motzkin Elimination [58, 92, 23]) is that lin-
ear programming is known to be polynomial and scales extremely well in practice,
even though the most frequently used codes are actually based on the non-polynomial
Simplex algorithm [40, 107]. Commercial codes like CPLEX tackle instances with
more than 106 variables. In our solver, however, we use the free LP library GLPK1 by
Andrew Makhorin.

To find an optimal vertex of (4.1), the simplex algorithm proceeds as follows.
Starting at an initial vertex of P , the algorithm checks, whether the vertex has outgo-
ing edges along which the objective function increases. If no such edge exists, then
the current node is optimal. Otherwise, the algorithm follows one of these edges. Do-
ing so, it either reaches a neighbouring vertex, where it repeats the same procedure,
or the edge is infinite, indicating that the linear program is unbounded. The initial
vertex required by the simplex algorithm as starting point is computed by applying
the simplex method to the auxiliary linear program

maximize 1
Ty

subject to Ax− by ≤ 0

0 ≤ y ≤ 1

x ∈ Rn

y ∈ Rm

(4.2)

1http://www.gnu.org/software/glpk/glpk.html

4.3 SAT Modulo the Theory of Linear Arithmetic 65

using (0, . . . , 0) ∈ Rm+n as initial vertex. If the optimum value of (4.2) is 0, then
(4.1) is infeasible. Otherwise the optimum value is 1 and the solution values for x can
be used as initial vertex to solve (4.1). See [107] for a precise algebraic description of
the two-phase simplex method sketched above.

4.3.1 Feasibility Check Using LP

Checking the feasibility of a system of weak (i.e. non-strict) linear inequations by
linear programming is straightforward and requires only a hand-over of the unmod-
ified linear constraint system to the LP solver, plus generation of a trivial objective
function.

To cope with systems containing strict inequations, which cannot be handled by
LP directly, we use the standard trick of introducing a fresh real-valued variable ε

and of replacing each strict inequation
∑n

j=1Ai,j xj < bi by
∑n

j=1Ai,j xj + ε ≤ bi.
Instrumenting the resultant linear constraint system with the objective function ε to
be maximized yields an LP which is feasible with strictly positive optimum iff the
original constraint system is feasible.

During the search performed by the DPLL solver, the linear constraint system to
be checked for feasibility is growing (in phases when DPLL extends a partial solution)
and shrinking (upon backjumps) again and again. To avoid the overhead entailed by
actually adding (and retracting) linear constraints to (from) the LP, our implementation
uses the standard LP mechanism of just activating them on demand by enabling the
respective row bounds in the LP, thus allowing the simplex algorithm to restart solving
from the dual solution whose feasibility is not affected by changing bounds in the
primal LP.

4.3.2 Extractions of Explanations

In case of an arithmetic conflict, i.e. if a set C = {c1, . . . , cm} of (strict and non-strict)
linear constraints is infeasible, we want to obtain a a subset I ⊆ C that is infeasible
itself and which is irreducible in the sense that any proper subset is feasible. Such
an irreducible infeasible subsystem (IIS) is a prime implicant of all possible reasons
for the unsatisfiability of the constraint system C, and is thus a natural counterpart to
the conflict clauses in the propositional setting as it prevents the proof search from
visiting the same or related inconsistent constraint sets again.

Actually, irreducibility of the subsystem is not a necessity; any infeasible subsys-
tem can serve as explanation. The reason for preferring small subsystems is that these

66 4 Integration of DPLL-SAT and Linear Programming

1 DELETION FILTER(C)
2 for i := 1, . . . ,m do
3 C := C − {ci}
4 if is consistent(C) then
5 C := C ∪ {ci}
6 return C

Listing 4.1: Deletion filter algorithm.

provide more general reasons for conflicts, i.e. reasons which potentially eliminate a
bigger number of LP calls.

Deletion Filtering

A simple way to isolate an IIS is deletion filtering as proposed by Chinnek [34, 33].
Listing 4.1 displays the algorithm in pseudo-code. Given an infeasible system C =
{c1, . . . , cm}, deletion filtering temporarily removes, one by one, each individual con-
straint from C and checks if the reduced system is feasible. If so, the respective con-
straint is returned to the set; otherwise it is removed permanently. The constraints
finally remaining in C form an IIS. If C has more than one IIS, then the order in which
the constraints are tested determines which IIS is found.

The only prerequisite for implementing a deletion filter is the availability of a con-
sistency check for the given background theory, in our case for linear arithmetic over
the reals. No further theoretical insights concerning the background theory are re-
quired. Using the feasibility check from the previous section, deletion filtering can
thus be applied to systems of linear constraints, irrespective of whether the latter are
strict or non-strict. On the negative side, filtering a set of m constraints requires m

calls to linear programming. Isolation of an IIS using a deletion filter is thus compu-
tational quite expensive.

Some modern SAT engines not only learn reasons for conflicts, they occasion-
ally also forget learned clauses, e.g. in order not to clutter memory. In case of pure
propositional SAT solving this is acceptable, because a rediscovery of reasons for
propositional conflicts is relatively cheap. In view of the high computational cost
at which explanations for arithmetic conflicts are obtained, it seems however highly
recommendable to learn the latter persistently and only apply forgetting to conflict
clauses derived from propositional conflicts.

4.3 SAT Modulo the Theory of Linear Arithmetic 67

Exploiting Duality

In case that the constraint system C contains only non-strict inequations, it is a well-
known fact that extraction of irreducible infeasible subsystems can be reduced to find-
ing extremal solutions of a dual system of linear inequations [66, 100]. Given an
infeasible system of linear inequalities{

Ax ≤ b

x ∈ Rn
(4.3)

where A ∈ Rm×n and b ∈ Rm, Gleeson and Ryan [66] use a variant of Farkas’
Lemma [56] to obtain a polytope in which each vertex corresponds to an IIS of (4.3).
This polytope is defined by the following system of linear constraints:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
yTA = 0

yT b ≤ −1
y ≥ 0

y ∈ Rm

(4.4)

More precisely, the theorem of Gleeson and Ryan states the following: If (4.4) is
infeasible, then (4.3) is feasible. If, on the contrary, (4.3) is infeasible, then (4.4) is
feasible, and for each vertex y ∈ Rm of the polytope (4.4) the set

I = {
n∑

j=1

Ai,j xj ≤ bi | yi �= 0}

of linear inequalities identified by the non-zero components of y is an IIS of (4.3).
Therefore, checking the feasibility of (4.3) and, in case of infeasibility, locating one
of its IIS, both amounts to finding a vertex of a polyhedron, and can thus be solved by
linear programming.

In case that the infeasible system C contains strict inequations, we first relax these
to non-strict ones. If the relaxed systems C̃ turns out to be satisfiable, we resort to com-
puting an IIS of the original system using the deletion filter approach. Otherwise, we
apply the method of Gleeson and Ryan to C̃ in order to obtain an IIS Ĩ, corresponding
to an infeasible, yet not necessarily irreducible subsystem I of C. To possibly further
reduce I, we finally apply a deletion filter. By filtering only the (in general, substan-
tially) reduced subsystem I, we gain considerable performance compared to applying
a deletion filter to C directly.2

2Actually, in our implementation the final application of the deletion filter is optional, as the sub-
systems obtained from the relaxed system are often tight enough (i.e., only marginally larger than

68 4 Integration of DPLL-SAT and Linear Programming

4.3.3 Learning from Feasible LPs

Besides learning from arithmetic conflicts, HYSAT-1 is also able to perform forward
arithmetic inference, thereby deriving new arithmetic facts from feasible sets of linear
constraints. Given a feasible set C = {c1, . . . , cm} of linear constraints, HYSAT-1
employs linear programming to determine for each continuous variable x occurring
in C the minimum value xmin and the maximum value xmax consistent with

∧n

i=1 ci.
If either of these values exists, HYSAT-1 adds the respective bound constraint, i.e.
x ≥ xmin or x ≤ xmax, guarded by a fresh Boolean variable p, to its database, together
with a propositional clause which is responsible for triggering the activation of the new
constraint. To this end, the propositional clause is of form pci1 ∧ . . .∧pcik → p, where
the variables pcij are the guard variables of a minimal set of constraints cij ∈ C whose
conjunction implies the new bound constraint. It is noteworthy that the extraction of
the minimal set {cij | 1 ≤ j ≤ k} ⊆ C does not entail any computational overhead,
but is delivered by the LP solver as a byproduct of determining the bound on the
respective continuous variable.

When learning a new bound constraint, HYSAT-1 also adds Boolean clauses cap-
turing all propositional dependencies between bound constraints concerning the same
continuous variable, i.e. implicative dependencies between bounds as induced by the
linear order on the reals. If the solver e.g. learns that in a certain branch of the search
tree x ≥ 5 holds, it will therefore immediately exclude all combination of assign-
ments to guard variables that would cause the activation of bound constraints x ≤ c

with c < 5, thereby considerably pruning the search space.

4.3.4 Putting It All Together: a Sample Run

To finally demonstrate the resulting interaction between pseudo-Boolean DPLL-SAT
and linear programming within the HYSAT-1 solver, we consider solving of the for-
mula

(2e+ C +D ≥ 2) (4.5)

∧ (2f + A+B ≥ 2) (4.6)

∧ ¬f + g + e ≥ 1 (4.7)

∧ ¬g + ¬f ≥ 1 (4.8)

∧ 3¬e+ 2g + C +D ≥ 3 (4.9)

the prime implicants) such that the overhead incurred from deletion filtering is not amortized by the
reduction in search space of the SAT procedure.

4.3 SAT Modulo the Theory of Linear Arithmetic 69

∧ A→ (4x− 2y ≥ 9) (4.10)

∧ B → (2x− 4y ≤ −7) (4.11)

∧ C → (x+ y ≤ 5) (4.12)

∧ D → (x ≤ 7) (4.13)

consisting of pseudo-Boolean constraints (4.5) to (4.9) and guarded linear constraints
(4.10) to (4.13). Variables x and y are real-valued, variables A,B,C,D, e, f, g are of
type Boolean. A,B,C,D are furthermore guards for arithmetic constraints.

The backtrack search tree in figure 4.3 on page 71 illustrates the actions performed
by the solver. We assume in the following that the tree is traversed in preorder. For
convenience, we denote the arithmetic constraints with their guards, i.e. we refer to
(x ≤ 7) as constraint D, for example. Moreover, we write Boolean assignments in
form of literals, e.g. ¬e instead of e → false and f instead of f → true.

Solving starts with assigning ¬e by decision, thereby satisfying clause (4.9) and
triggering propagations C and D by clause (4.5) in the subsequent deduction phase.
Being guards, C and D activate their associated linear constraints, entailing a feasi-
bility check of the resulting linear constraint system. Because the latter is consistent,
the DPLL part continues with the next decision f , which satisfies (4.6) and causes
propagation of g and ¬g by clauses (4.7) and (4.8), respectively. The Boolean con-
flict arising from the conflicting propagations is resolved by flipping the last decision,
i.e. by assigning ¬f , thereby satisfying clauses (4.7) and (4.8) and causing the acti-
vation of the linear constraints A and B through propagations by clause (4.6). The
subsequent consistency check by linear programming fails, i.e. we have an arithmetic
conflict this time. Analysis (using deletion filtering, e.g.) identifies the irreducible
infeasible subsystem {A,B,C} as explanation, revealing that D is irrelevant for the
conflict. In order to avoid checking the conflicting subsystem again, DPLL learns the
conflict clause ¬A+¬B +¬C ≥ 1 and proceeds by backtracking, thereby unassign-
ing guards and deactivating linear constraints. By flipping the initial decision to e,
DPLL satisfies clauses (4.5) and (4.7) and triggers propagation of g by clause (4.9),
¬f by (4.8), then A and B by (4.6). Because constraints A and B are active now,
the conflict clause becomes unit and cuts off a conflicting branch in the search tree by
propagation of ¬C, the latter entailing activation of D through clause (4.9). There-
after, all Boolean clauses are satisfied and the system of activated linear constraints is
found to be consistent by a final feasibility check, i.e. the solver proved satisfiability
of the input formula.

70 4 Integration of DPLL-SAT and Linear Programming

Note that linear programming is called only after Boolean deduction is complete.
This is because a single call to LP typically requires as much time as multiple thou-
sands of Boolean propagations. It is therefore reasonable to delay LP calls, e.g. until
the end of the Boolean deduction phase or until the linear constraint system has sub-
stantially changed, and to look for Boolean conflicts first.

4.4 Optimizations for BMC

Compared to related tools like ICS which aim at being general-purpose decision
procedures suitable for arbitrary formulae, HYSAT-1’s decision procedure has been
tuned to exploit the unique characteristics of BMC formulae.

As observed by Strichman [113], the highly symmetric structure of the k-fold
unrolling (cf. chapter 2, section 2.2.1) as well as the incremental nature of BMC
can both be exploited for various optimizations in the underlying decision procedure.
HYSAT-1 implements three optimizations which are described below.

Isomorphy Inference

The learning scheme employed in propositional SAT solvers accounts for a substantial
fraction of the solver’s running time as it entails a non-trivial analysis of the implica-
tions that led to an inconsistent valuation. The creation of a conflict clause is in general
even considerably more expensive in a combined solver like HYSAT-1, as the analy-
sis of a conflict involving non-propositional constraints requires the computationally
expensive extraction of an IIS.

Isomorphy inference exploits the (almost) symmetric structure of a BMC formula
in order to add isomorphic copies of a conflict clause to the problem, thus multiplying
the benefit taken from the costly reasoning process which was required to derive the
original conflict clause.

The concept is best illustrated using an example. Suppose that the solver has
encountered a conflict which yields the conflict clause C0 = (xj13 ∨ xj24 ∨ xj39), relating
three variables from cycles j1, j2 and j3. The solver then not only adds C0 to φk, but
also all possible clauses Ci = (xj1±i3 ∨ xj2±i4 ∨ xj3±i9), i = 1, 2, . . ., obtained from C0
simply by index shifting.

Note, however, that BMC is not fully symmetric because of the initialization prop-
erties of runs and perhaps the verification goal. This implies that only conflict clauses
inferred from facts which are independent from such asymmetric formula parts may

4.4 Optimizations for BMC 71

Linear ProgrammingDPLL

y

xC

D

DPLL Linear Programming

y

x
B

A D

DPLL Linear Programming

y

Conflict !

xC

D

DPLL Linear Programming

y

x
B

C

A D

Conflict !

DPLL

y

x

Linear Programming

D

C

DPLL Linear Programming

y

x

D

C

DPLL

y

x

DPLL Linear Programming

y

x

Linear Programming

Linear Programming

y

x

DPLL

2f + A +B ≥ 2

¬f + g ≥ 1

¬g + ¬f ≥ 1

Deduce g,¬f,A,B
Deduce ¬C from conflict clause
Deduce D

Deduce C,D

g ≥ 1

¬g ≥ 1

A +B ≥ 2

C +D ≥ 2

2f + A +B ≥ 2

¬f + g ≥ 1

¬g + ¬f ≥ 1

2g + C +D ≥ 3

¬g + ¬f ≥ 1

2f + A +B ≥ 2

2e + C +D ≥ 2

2f + A +B ≥ 2

¬f + g + e ≥ 1

3¬e + 2g + C +D ≥ 3

¬g + ¬f ≥ 1

f ¬f

Deduce g,¬g Deduce A,B

Solver learns conflict clause
(¬A + ¬B + ¬C ≥ 1)

is {A,B,C}
Irreducible infeasible subsystem

¬e e

Figure 4.3: Backtrack search tree arising in a tight integration of DPLL proof search
with linear programming.

72 4 Integration of DPLL-SAT and Linear Programming

be soundly replicated. Such dependency can be traced cheaply by marking initializa-
tion and goal predicates and dominantly inheriting such marks upon all inferences,
inhibiting isomorphy inference whenever a mark is encountered.

Sharing of Conflict Clauses

When performing BMC incrementally for longer and longer unrollings, the consecu-
tive formulae passed to the solver share a large number of clauses. Thus, when moving
from the k-instance to the (k+1)-instance, we can simply conjoin the conflict clauses
derived when solving k-instance to the formula for step k + 1. However, this is only
sound for conflict clauses that were inferred from clauses which are common to both
instances. We do currently decide this based on simple syntactic criteria, namely that
the conflict clause was inferred purely from clauses stemming from the automaton. I.e.
the inference may not involve the verification goal, which tends to become a weaker
predicate on longer instances, as it usually entails reachability or recurrence. More
elaborate schemes have, however, been investigated for propositional BMC in [78].

Tailored Decision Strategies

When applying general-purpose decision strategies to BMC formulae one can observe
the phenomenon described in [113] that during the SAT search large sets of constraints
belonging to distant cycles of the transition relation are being satisfied independently,
until they finally turn out to be incompatible, often entailing the need for backtracking
over long distances in the search tree.

In HYSAT-1 we adopt the solution proposed by Strichman [113] to avoid this
problem: The heuristics of the SAT solver selects the decision variables in the natural
order induced by the variable dependency graph of the BMC formula, i.e. either using
a forward strategy, starting with variables from �x 0, then from �x 1, etc., or vice versa,
engaging in a backward strategy. This allows conflicts to be detected and resolved
more locally, speeding up the search, as witnessed by the results shown in figure 4.8.

4.5 Benchmark Results

To evaluate the methods proposed above, HYSAT-1’s main components are

• the solver core, consisting of a tight integration of a SAT solver with a lin-
ear programming routine, described in section 4.3, and enhanced with domain-
specific optimizations for BMC, as explained in section 4.4,

4.5 Benchmark Results 73

• an API to the solver core, providing methods for formula generation, simpli-
fication, common subexpression eliminiation, and for rewriting the resulting
formula into a conjunctive form, namely a conjunction of zero-one linear con-
straints and guarded linear constraints, which is the input format of the solver
core,

• a frontend, consisting of HYSAT-1’s input language and a bounded model
checker, which performs the unwinding of the transition relation and controls
the solver core via API calls.

To fit the needs of BMC, which involves checking the same system on different un-
rolling depths, the solver core and the API are designed to work in an incremental
fashion in the sense that they allow to add (as well as delete) successively sets of con-
straints to (from) an existing problem and then redo the satisfiability check without
starting SAT search from scratch each time.

We conducted a series of experiments on BMC problems of hybrid automata in
which we a) compared HYSAT-1 with the ICS solver [46], and b) investigated the
impact of the individual optimizations by comparing the computation times of our
tool when running with and without the respective optimization beeing enabled. The
unwindings fed to ICS were obtained through SRI’s infinite-state BMC frontend to
ICS as distributed in the SAL tool-set [47]. Our benchmarks are

• The “leaking gas burner” and “water-level monitor” included in the SAL dis-
tribution.

• An elastic approach to distance control of trains running on the same track,
similar to the car platooning system used in the PATH project. Here, trains
can accelerate or decelerate freely if they do not violate their mutual safety
envelopes, yet an automatic speed control takes authority over a train if another
train gets close, thereby controlling acceleration proportional (within physical
limits) to the front and/or back proximity of the neighboring trains.

• A hybrid model of a car equipped with robotized five-speed transmission and
a cruise control system which aims at maintaining a certain preset speed by
actuating throttle and brake using two PI controllers. We adopted the model
as reported by Torrisi in [117] and modified it by adding a realistic clutch be-
haviour in the initial acceleration phase.

74 4 Integration of DPLL-SAT and Linear Programming

The results of our experiments are shown in figures 4.4 – 4.8, with each data
point representing a single BMC instance solved by two engines. Points lying on the
diagonal, which is drawn as a solid line in all figures, indicate equal running times
of both tools; points lying above (below) the diagonal represent instances that were
solved faster by the engine whose running times can be read off from the x-axis (y-
axis). Note the logarithmic scaling of the axes in figures 4.4 and 4.5.

It can be seen that the individual optimizations yield consistent performance ben-
efits, with the merits becoming more evident with increasing unrolling depth, corre-
sponding to computationally more costly SAT instances.

With respect to the decision strategy it turns out that there is no single optimal
strategy. Depending on the specific shape of the initial state set and the target region,
forward or backward strategies, though in general both better than the standard strat-
egy, may be more beneficial. We are experimenting with randomized approaches to
on-the-fly strategy switch to overcome the problem of selecting an appropriate strat-
egy a priori.

4.6 Discussion

The benchmarks performed indicate a very competitive performance of HYSAT-1
when used for bounded model checking of linear hybrid systems. They do thus pro-
vide evidence for the effectiveness of HySAT’s basic design decisions, which are

1. the exploitation of structural properties of the formulae arising in BMC and

2. the use of a non-clausal and thus more concise base logics.

With the current case studies, which are reachability properties in hybrid automata,
measures of the first kind clearly have the predominant effect. Yet our experiments
with bounded model construction for the metric-time temporal logic Duration Cal-
culus (see chapter 3, section 3.4) provide evidence that the conciseness gain from
using linear zero-one constraint systems instead of CNF formulae will be essential
to tractability once observers for metric-time temporal-logic formulae come into play
[55].

HYSAT-1’s techniques for exploiting the particular structure of the verification
conditions arising in bounded model checking include inheritance of inference re-
sults along the temporal axis within an BMC instance, sharing of inference results
across BMC instances, and decision heuristics in the SAT-solver that pay attention

4.6 Discussion 75

a)

HySAT [s]

ICS [s]

HySAT with Isomorphy Inference

HySAT without Isomorphy Inference

Ratio < 200

Ratio < 100

Ratio < 50

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1

b)

Ratio < 10

Ratio < 40Ratio < 20

HySAT without Isomorphy Inference

HySAT with Isomorphy Inference

ICS [s]

HySAT [s] 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10

Figure 4.4: Performance of HYSAT-1 relative to ICS: BMC times for a) gasburner
model, b) water-level monitor.

to the causal relationship between problem variables by doing chaining along the
transition sequence. These algorithms have been inspired by similar optimizations
developed by Strichman for finite-state BMC [113]; however such optimizations ex-
hibit an even better payoff on the two-sorted logics used here, as the price for copying
inferences increases only marginally while the computational cost of the individual
inference grows dramatically in the hybrid-state case. Consequently, the individual
optimization yield speedups of up to, and sometimes even considerably exceeding,
an order of magnitude. An interesting aspect of isomorphically copying inference re-

76 4 Integration of DPLL-SAT and Linear Programming

a)
HySAT with Isom. Inf. [s]

HySAT without Isomorphy Inference [s]

Ratio < 20Ratio < 10

Ratio < 40

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10

b)

Ratio < 4

Ratio < 8

HySAT with Isom. Inf. [s]

HySAT without Isomorphy Inference [s]

Ratio < 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

Figure 4.5: Impact of isomorphy inference: BMC times for a) water-level monitor, b)
train distance control model, involving 5 trains.

sults, as in inheritance along the temporal axis or in sharing across BMC instances, is
that even extremely costly inferences may amortize, provided that their results can be
reused sufficiently often. It seems thus worthwile to investigate more general forms
of isomorphy inference, e.g. copying inference results across similar components in
a multi-component system. While this is in principle similar to exploiting temporal
symmetries, the possible forms of symmetry breaks are more diverse and harder to
detect, as witnessed by the extensive research on symmetry reduction.

4.6 Discussion 77

a)
HySAT, IIS via Dual LP [s]

HySAT, IIS via Deletion Filter [s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 b)
HySAT, IIS via Dual LP [s]

HySAT, IIS via Deletion Filter [s]

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160 180

Figure 4.6: Comparison of deletion filter method for extraction of irreducible infea-
sible subsystems with method using the dual LP. Graphics show results for a) train
distance control model, b) car model.

a)

HySAT without Sharing [s]

HySAT with Sharing [s]
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 b)

HySAT without Sharing [s]

HySAT with Sharing [s]
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140

Figure 4.7: Impact of constraint sharing on BMC runtimes for a) train distance control
model, b) car model.

a)

HySAT, General Purpose Strategy [s]

HySAT, Backward Strategy [s]
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 b)
HySAT, Forward Strategy [s]

HySAT, General Purpose Strategy [s]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70 80 90

Figure 4.8: Impact of tailored decision strategies: a) For the train model the backward
strategy clearly outperforms the general purpose decision strategy, whereas a forward
scheme (not shown) slows down the solver. b) Conversely, for the car model the
forward strategy is superior.

78 4 Integration of DPLL-SAT and Linear Programming

When we started to work on the integration of linear programming and SAT solv-
ing, we deliberately decided to use existing LP solvers instead of implementing an LP
solver ourselves. Given the long evolution such tools have undergone and given the
huge amount of work which has been done in this field, this seemed to be a reasonable
choice. We had to learn the hard way, however, that due to the imprecise floating-point
arithmetic used in most LP solvers, the answers given by off-the-shelf LP solvers may
simply be wrong. Dhiflaoui et al. state in [48]:

‘Existing LP-solvers do not claim to solve LPs to optimality. In fact, they
come with hardly any guarantee. Feasible problems may be classified
as infeasible and vice versa, a solution returned is not guaranteed to be
feasible, and the objective value returned comes with no approximation
guarantee.’

Even professionally maintained LP solvers like CPLEX occasionally fail on innocent
looking problems, as demonstrated by Neumaier and Shcherbina [95] and by Faure
et al. [57]. For applications in formal verification, where correctness of the solver
is essential for the validity of the verification results, this is certainly not acceptable.
In HYSAT-1 we have therefore implemented various forms of result checking for
LP, complemented with strategies for recovery in case of errors, in order to ensure
correctness of results. For example, we validate feasibility results, where needed, by
checking whether the solution values provided by LP actually satisfy all active linear
constraints. Similarly, infeasibility results are checked by validating the solution of
the dual (and thus feasible) problem. Yet in spite of such precautions, numerical
problems within the LP solver remained a source of instability in HYSAT-1. Another
disadvantage of using LP as black-box method is the overhead entailed by solving an
optimization problem where only a consistency check is required.

An elegant solution to both problems was presented by Dutertre and de Moura
[49, 50] in 2006, two years after we published the work presented in this chapter. For
solving systems of linear inequalities within their SMT solver YICES, they developed
a variant of the simplex algorithm, called general simplex in [83], which performs all
computations in exact rational arithmetic and which eliminates the objective function
from LP, thereby saving the second (i.e. optimization) phase of the two-phase simplex
algorithm. The latter is enabled by handling strictness of inequalities symbolically
within the simplex routine, rather than using the objective function to enforce strict-
ness of constraints, as we do. The runtime penalty incurred by using exact arithmetic
is apparently more than compensated by saving the optimization phase. The authors

4.6 Discussion 79

also provide a very efficient solution to the problem of identifying explanations for
infeasility, which are in fact generated as a byproduct of the feasibility check.

Faure et al. [57] present experimental results which indicate, too, that state-of-the-
art LP solvers, built for applications in operations research, tend to be less performant
than specialized exact solvers when applied in a DPLL(T) framework. They con-
jecture that the performance of such specialized solvers can be further improved by
implementing them in inexact arithmetic and add result checking and error recovery
policies, as we did in HYSAT-1, to guarantee correctness of results.

5 Integration of DPLL and Interval Constraint Solving

Having dealt with Boolean combinations of linear arithmetic constraints in the pre-
vious chapter, we now address the problem of solving Boolean combinations of non-
linear arithmetic constraints which may contain transcendental functions, like sine,
cosine, and the exponential function. This gives rise to a plethora of problems, in
particular (a) how to efficiently and sufficiently completely solve conjunctive combi-
nations of constraints in the undecidable domain of nonlinear constraints involving
transcendental functions and (b) how to efficiently maneuver the large search spaces
arising from the potentially rich Boolean structure of the overall formula.

While promising solutions for these two individual sub-problems exist, it seems
that their combination has hardly been attacked. Arithmetic constraint solving based
on interval constraint propagation (e.g., [41, 17]), on the one hand, has proven to
be an efficient means for solving conjunctions of nonlinear (in particular transcen-
dental) constraints, provided the latter are robust1 in the sense that their truth value
does not change under small perturbations of the occuring constants [104]. Modern
SAT solvers, on the other hand, can efficiently find satisfying valuations of very large
propositional formulae (cf. chapter 3), and, using the DPLL(T) framework, of com-
plex propositional combinations of atoms from various decidable theories (cf. chapter
4).

In this chapter, we describe a tight integration of SAT-based proof search with
interval-based arithmetic constraint propagation, thus providing an algorithm that rea-
sons over the undecidable formula class of Boolean combinations of nonlinear con-
straints involving transcendental functions. Undecidability of the arithmetic base the-
ory, however, precludes a DPLL(T)-style integration. Instead, we exploit the algo-
rithmic similarities between DPLL-based propositional SAT solving and constraint
solving based on constraint propagation for a much tighter integration, where the

1According to [104], robustness is a property which characterizes ‘exactly the problems that model
real-life problems in a meaningful way’.

C. Herde, Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure, DOI 10.1007/978-3-8348-9949-1_5,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

82 5 Integration of DPLL and Interval Constraint Solving

DPLL solver directly manipulates theory atoms instead of a propositional abstrac-
tion of the input formula. It has full introspection into and control over constraint
propagation within the theory T , and it directly integrates any new theory atoms gen-
erated by the constraint propagation into the search space of the DPLL solver. This
tight integration has a number of advantages. First, by sharing the common core
of the search algorithms between the propositional and the theory-related, interval-
constraint-propagation-based part of the solver, we are able to transfer algorithmic
enhancements from one domain to the other: in particular, we thus equip interval-
based constraint solving with all the algorithmic enhancements that were instrumental
to the enormous performance gains recently achieved in propositional SAT solving,
like watched-literal schemes or conflict-driven learning based on implication-graph
analysis. Second, the introspection into the constraint propagation process allows
fine-granular control over the necessarily incomplete arithmetic deduction process,
thus enabling a stringent extension of SMT to an undecidable theory. Finally, due to
the availability of learning, we are able to implement an almost lossless restart mech-
anism within an interval-based arithmetic constraint propagation framework.

In fact, our integration of DPLL and interval-based constraint solving gives a clean
generalization of the DPLL routine to Boolean combinations of arithmetic constraints,
which we refer to as ISAT algorithm. ISAT inherits the branch-and-deduce frame-
work with all its recent enhancements from DPLL. For Boolean deduction it uses the
unit-propagation rule from DPLL and adds deduction rules for arithmetic operators
taken from interval constraint solving. Due to the undecidability of the arithmetic
domain, ISAT is necessarily incomplete. This incompleteness manifests itself in the
fact that, strictly speaking, only UNSAT results delivered by ISAT are reliable. In
practice, however, this turns out to be no serious restriction, because if unsatisfiabil-
ity cannot be established, then ISAT returns a small box in the search space which it
cannot prune any further by deduction and which therefore is likely to either contain
genuine solutions or at least almost-solutions which violate arithmetic constraints at
most by a very small amount.

Related Work

In constrast to solvers adopting the DPLL(T) approach to SMT, our algorithm does
not feature the typical two-layered architecture of such tools, which consists of a
DPLL-based SAT solver and a subordinated theory solver. Instead, both engines are
inseparably interwoven in our algorithm and by this constitute a generalized form of
the DPLL routine itself.

5 Integration of DPLL and Interval Constraint Solving 83

From the extensive literature on SMT techniques, the approach coming closest to
ours is the splitting-on-demand technique in DPLL(T) of Barett, Nieuwenhuis, Oliv-
eras, and Tinelli [10]. There, the set of theory atoms manipulated by the DPLL solver
is made dynamic by a special split rule extending the formula with a tautologous
clause introducing new theory atoms. In contrast to this, our tighter integration does
not need such helper mechanisms modifying the formula, allows new theory atoms
to be generated by both splits and constraint propagations in the theory, and due to
its direct manipulation of theory atoms generates atoms on-the-fly and locally to the
different branches of the proof-search tree. We conjecture that the more direct in-
tegration helps the algorithm to perform stably even under the enormous number of
new theory atoms thus being generated. A further crucial distinction to DPLL(T) is
that our algorithm distinguishes between a large (and undecidable) theory that theory
propagation acts on (nonlinear arithmetic including transcendental functions) and a
small kernel thereof used in consistency checks (real-valued inequation systems). In
DPLL(T) approaches, the roles are generally reversed: consistency check has to cover
the full theory T , while theory propagation (forward inference) may be more confined,
covering a subset of T only, up to being completely missing.

Jussien’s and Lhomme’s dynamic domain splitting technique for numeric con-
straint satisfaction problems (numeric CSPs) [79] is related to our approach in that
both implement conflict-driven learning and non-chronological backtracking within
arithmetic constraint solving based on domain splitting and arithmetic constraint prop-
agation. Their approach extends dynamic backtracking (cf. [65]) and provides filtering
algorithms for domain reductions (i.e., constraint propagation) enhanced by nogood
learning and non-chronological backtracking. Nevertheless, the algorithm described
in [79] is not general enough for our problem domain, as it focuses on conjunctive
constraint systems. Our algorithm relaxes that limitation and handles nonlinear arith-
metic constraint systems with an arbitrary, complex Boolean structure. Another tech-
nical difference to [79] is the procedure applied for learning conflicts and the shape
of conflict clauses thus obtained. The explanations of conflicts in [79] are confined
to be sets of splitting constraints, i.e. of choice points decided in branch steps of the
branch-and-reduce algorithm. Our algorithm is able to generate more compact and
more general conflict clauses entailing both splitting constraints and arbitrary deduced
constraints. Like in modern propositional SAT solvers, this is achieved by maintain-
ing and analyzing an implication graph (cf. sect. 5.3.5) storing the immediate reasons
for each deduction. We are thus able to generalize all techniques for determining con-

84 5 Integration of DPLL and Interval Constraint Solving

flict clauses which have proven beneficial within propositional SAT, e.g. the 1 UIP
learning scheme [125].

Sharing our goal of checking satisfiability of large and complex-structured Boolean
combinations of nonlinear arithmetic constraints, Bauer, Pister, and Tautschnig have
recently presented the ABSOLVER tool [14]. ABSOLVER is an SMT solver address-
ing a blend of Boolean and polynomial arithmetic constraint problems. It is an ex-
tensible and modular implementation of the SMT scheme which permits integration
of various subordinate solvers for the Boolean, linear, and nonlinear parts of the in-
put formula. ABSOLVER itself coordinates the overall solving process and delegates
the currently active constraint sets to the corresponding subordinate solvers. The
currently reported implementation [14] uses the numerical optimization tool IPOPT
(https://projects.coin-or.org/Ipopt) for solving the nonlinear constraints. Consequently,
it may produce incorrect results due to the local nature of the solver, and due to round-
ing errors. Nonetheless, even though in our method we implement strictly correct
solving of nonlinear constraints, benchmarks reported in sect. 5.4.2 show that our
tighter integration consistently outperforms ABSOLVER, usually by orders of mag-
nitude when formulae with non-trivial Boolean structure are involved. Furthermore,
our solver uses interval constraint propagation to address a larger class of formulae
than polynomial constraints, admitting arbitrary smooth functions in the constraints,
including transcendental ones.

Compared to interval constraint solving (ICS, for a survey cf. [17]), our approach
is complementary: the interval constraint solving community is primarily concerned
with solving — often in the sense of ‘paving’ the solution set — intricate conjunctive
nonlinear constraint systems, and thus concentrates on powerful constraint propaga-
tion operators. Our focus is on satisfiability tests for extremely large formulae featur-
ing a complex Boolean structure, which we make feasible by mechanisms for track-
ing and exploiting the dependencies between subformulae within an SMT framework.
Thus, our approach could easily be enhanced by importing more powerful constraint
propagation operators, while our mechanisms for maneuvering through large Boolean
combinations of nonlinear constraint systems are a contribution to interval constraint
solving.

Structure of the Chapter

In section 5.1, we expose the syntax and semantics of the arithmetic satisfiability
problems our algorithm addresses. Section 5.2 provides a brief introduction to inter-
val constraint solving, which our development builds on. Thereafter, we provide a

5.1 The Logics 85

detailed explanation of our new algorithm in section 5.3. After reporting on bench-
marks conducted to evaluate various aspects of the ISAT algorithm in section 5.4, we
demonstrate its application to a case study from the railway domain in section 5.5.
In particular, we describe the complete workflow of analyzing the dynamic behaviour
of a safety-critical system with our HYSAT-2 solver, which implements the ISAT
algorithm. Finally, section 5.6 discusses the results achieved.

5.1 The Logics

Aiming at automated analysis of hybrid systems, our constraint solver addresses sat-
isfiability of nonlinear arithmetic constraints over real-valued variables plus Boolean
variables for encoding the control flow. The user thus may input constraint formu-
lae built from quantifier-free constraints over the reals and from propositional vari-
ables using arbitrary Boolean connectives. The atomic real-valued constraints are
relations between potentially nonlinear terms involving transcendental functions, like
sin(x+ωt)+ ye−t ≤ z+5. By the front-end of our constraint solver, these constraint
formulae are rewritten to equisatisfiable quantifier-free formulae in conjunctive form,
where arithmetic constraints are decomposed into a form resembling three-address
code.2 The internal syntax3 of the constraint formulae processed by our solver is

formula ::= {constraint ∧}∗ constraint
constraint ::= clause | definition

clause ::= ({bound ∨}∗ bound)
bound ::= variable relation rational const

definition ::= variable relation term

term ::= operator({variable, }∗ variable)
variable ::= real variable | boolean variable
relation ::= < | ≤ |= | ≥ |>

where operator stands for operation symbols, like +, −, ×, sin, and rational const
ranges over the rational constants. To simplify the exposition, we assume in the re-
mainder of this section that definitions are always equalities and that operator ::=
uop | bop, where uop, bop are unary and binary operation symbols. We refer to

2Confer section 5.3.1 for details on the formula conversion.
3For examples of the user-level syntax, consult the benchmark files and the manual on the HYSAT-2

website http://hysat.informatik.uni-oldenburg.de.

86 5 Integration of DPLL and Interval Constraint Solving

definitions with unary operators as pairs and to definitions with binary operators as
triplets.

While in the syntax given above only Boolean and real-valued variables are al-
lowed, the ISAT algorithm can be easily extended to also handle variables of type
integer. In fact, our solver HYSAT-2 implements this extension. For sake of clarity,
we decided, however, to restrict our presentation to formulae containing variables of
type real and Boolean only. Constraint formulae of above syntax are thus interpreted

over valuations σ ∈ (BV total−→ B) × (RV total−→ R), where BV is the set of Boolean
and RV the set of real-valued variables. B is identified with the subset {0, 1} of R,
so that literals v and ¬v can be encoded by appropriate rational-valued bounds, e.g.
v ≥ 1 or v ≤ 0. The definition of satisfaction is standard: a constraint formula φ

is satisfied by a valuation iff all its clauses are satisfied, that is, iff at least one atom
is satisfied in any clause. Satisfaction of atoms is w.r.t. the standard interpretation of
the arithmetic operators and the ordering relations over the reals. In order to make all
arithmetic operators total, we extend their codomain (as well as, for compositionality,
their domain) with a special value � �∈ R such that the operators manipulate values in
R� = R ∪ {�}. The comparison operations on R are extended to R� in such a way
that � is incomparable to any real number, that is, c �∼ � and � �∼ c for any c ∈ R
and any relation ∼ ∈ {<,≤,=,≥, >}.

Instead of real-valued valuations of variables, our constraint solving algorithm

manipulates interval-valued valuations ρ ∈ (BV
total−→ IB) × (RV total−→ IR), where

IB = 2B and IR is the set of convex subsets of R�.4 Slightly abusing notation, we
write ρ(l) for ρIB

(l) when ρ = (ρIB
, ρIR

) and l ∈ BV , and similarly ρ(x) for ρIR
(x)

when x ∈ RV . In the following, we occasionally use the term box synonymously for
interval valuation. If both σ and η are interval valuations then σ is called a refinement
of η iff σ(v) ⊆ η(v) for each v ∈ BV ∪ RV .

In order to lift a binary operation ◦ and its partial inverses to sets, we define

m •1 n = {x | ∃y ∈ m, z ∈ n : x = y ◦ z},
m •2 n = {y | ∃x ∈ m, z ∈ n : (x = y ◦ z ∨ ∀y′ ∈ R : (x �= y′ ◦ z ∧ y = �))},
m •3 n = {z | ∃x ∈ m, y ∈ n : (x = y ◦ z ∨ ∀z′ ∈ R : (x �= y ◦ z′ ∧ z = �))},

and similarly for unary ◦:

•1m = {x | ∃y ∈ m : x = ◦y},
•2m = {y | ∃x ∈ m : (x = ◦y ∨ ∀y′ ∈ R : (x �= ◦y′ ∧ y = �))}.

4Note that this definition covers the open, half-open, and closed intervals over R, including un-
bounded intervals, as well as the union of such intervals with {�}.

5.1 The Logics 87

These are essentially the images of the argument sets under the relation {(x, y, z) |
x = y ◦ z} (or {(x, y) | x = ◦y}, resp.) when substituting the respective arguments.
We lift these set-valued operators to (computer-representable) intervals by assigning
to each set-valued operation • a conservative interval approximation •̂ which satisfies
i1•̂i2 ∈ IR and i1•̂i2 ⊇ i1 • i2 for all intervals i1 and i2 [90]. Note that the definition of
an interval extension does not specify how to exactly lift a set operation • to intervals,
but leaves some design choice by permitting arbitrary overapproximations. For the
sake of reasoning power, i1•̂i2 should be chosen such that it provides an as tight
as possible overapproximation of i1 • i2. This means that in practice i1•̂i2 is the
interval hull of i1 • i2, that is,

⋂
i∈IR,i⊇i1•i2 i is extended by some outward rounding to

compensate for the imprecision of computer arithmetic and the finiteness of the set of
floating-point numbers. Now we define a notion that models the fact that an interval
valuation fulfills certain subset relations imposed by a formula, namely, those subset
relations that the reasoning steps of our algorithm will try to enforce.

For the manipulated interval valuations we adapt the common notion of hull con-
sistency (cf. [17]) from interval constraint propagation (cf. sect. 5.2) which our al-
gorithm will try to enforce by reasoning steps. We call an interval valuation ρ hull
consistently satisfying for a constraint formula φ, denoted ρ |=hc φ, iff each clause of
φ contains at least one hull consistently satisfied bound and all definitions (triplets and
pairs) are hull consistently satisfied. Hull consistent satisfaction of atoms is defined
as follows:

ρ |=hc x ∼ c iff ρ(x) ⊆ {u | u ∈ R, u ∼ c} for x ∈ RV ∪ BV , c ∈ Q
ρ |=hc x = y ◦ z iff ρ(x) ⊆ ρ(y)•̂1ρ(z),

ρ(y) ⊆ ρ(x)•̂2ρ(z),
ρ(z) ⊆ ρ(x)•̂3ρ(y) for x, y, z ∈ RV , ◦ ∈ bop

ρ |=hc x = ◦y iff ρ(x) ⊆ •̂1ρ(y),
ρ(y) ⊆ •̂2ρ(x) for x, y ∈ RV , ◦ ∈ uop.

We call a formula φ hull consistently satisfiable, denoted hcsat (φ), iff there is an
interval valuation ρ with ρ |=hc φ and ρ(v) �= ∅ for all v ∈ BV ∪ RV . Note that
hull consistent satisfiability is a necessary, yet not sufficient condition for real-valued
satisfiability, as can be seen from the example (x = x · x)∧ (x > 0)∧ (x < 1), which
is hull consistently satisfied by ρ(x) = (0, 1), yet not satisfiable over the reals.

When solving satisfiability problems of formulae with Davis-Putnam-like proce-
dures, we will build interval valuations incrementally by successively contracting in-
tervals through constraint propagation and branching. This may lead to situations

88 5 Integration of DPLL and Interval Constraint Solving

where an interval valuation does no longer contain any solution, in which case we
have to revert some branching decisions previously taken. In order to detect this — in
general undecidable — situation, we define a sufficient criterion for non-existence of
a solution within the interval valuation: We say that an interval valuation ρ is incon-
sistent with an atom a, denoted ρ � a, iff the left- and right-hand sides of the atom have
disjoint valuations under ρ, i.e.

ρ � x ∼ c iff ρ(x) ∩ {u | u ∈ R, u ∼ c} = ∅ for x ∈ RV ∪ BV , c ∈ Q
ρ � x = y ◦ z iff ρ(x) ∩ ρ(y)•̂1ρ(z) = ∅ for x, y, z ∈ RV , ◦ ∈ bop
ρ � x = ◦y iff ρ(x) ∩ •̂1ρ(y) = ∅ for x, y ∈ RV , ◦ ∈ uop

Note that deciding inconsistency of an interval valuation with an atom (and hence,
with a clause or a formula) is straightforward, as is deciding hull consistent satisfac-
tion of an atom (clause, formula) by an interval valuation. If ρ is neither hull consis-
tently satisfying for φ nor inconsistent with φ then we call φ inconclusive on ρ, which
is again decidable.

5.2 Algorithmic Basis

Our constraint solving approach builds upon the well-known techniques of interval
constraint propagation (ICP) and of propositional SAT solving by the DPLL procedure
plus its more recent algorithmic enhancements. An introduction to DPLL-based SAT
solving was already given in chapter 3. In the following we give a brief account on
ICP, focusing on those aspects which are relevant for understanding the remainder of
the chapter.

Interval constraint propagation is one of the sub-topics of the area of constraint
programming where constraint propagation techniques are studied in various, and
often discrete, domains. For the domain of the real numbers, given a constraint φ
and a floating-point box B, so-called contractors compute another floating-point box
C(φ,B) such that C(φ,B) ⊆ B and such that C(φ,B) contains all solutions of φ in
B (cf. the notion of narrowing operator [18, 16]). There are several methods for im-
plementing such contractors. The most basic method [41, 36] decomposes all atomic
constraints (i.e., constraints of the form t ≥ 0 or t = 0, where t is a term) into conjunc-
tions of so-called primitive constraints resembling three-address code (i.e., constraints
such as x + y = z, xy = z, z ∈ [a, a], or z ≥ 0) by introducing additional auxiliary
variables (e.g., decomposing x + sin y ≥ 0 to sin y = v1 ∧ x + v1 = v2 ∧ v2 ≥ 0).
Then it applies a contractor for these primitive constraints until a fixpoint is reached.

5.2 Algorithmic Basis 89

We illustrate contractors for primitive constraints using the example of a primitive
constraint x + y = z with the intervals [1, 4], [2, 3], and [0, 5] for x, y, and z, respec-
tively: We can solve the primitive constraint for each of the free variables, arriving at
x = z − y, y = z − x, and z = x + y. Each of these forms allows us to contract
the interval associated with the variable on the left-hand side of the equation: Using
the first solved form we subtract the interval [2, 3] for y from the interval [0, 5] for
z, concluding that x can only be in [−3, 3]. Intersecting this interval with the origi-
nal interval [1, 4], we know that x can only be in [1, 3]. Proceeding in a similar way
for the solved form y = z − x does not change any interval, and finally, using the
solved form z = x + y, we can conclude that z can only be in [3, 5]. Contractors for
other primitive constraints can be based on interval arithmetic in a similar way. There
is extensive literature [93, 75] providing precise formulae for interval arithmetic for
addition, subtraction, multiplication, division, and the most common transcendental
functions. The floating point results are always rounded outwards, such that the result
remains correct also under rounding errors.

There are several variants, alternatives and improvements of the approach de-
scribed above (cf. [17] for a survey of the literature). These do in particular deal
with stronger contractors based on non-decomposed constraints. While such could
easily be included into our approach, the description in the remainder will concentrate
on the simple contractors available on the decomposed form. The reasons for doing
so stem from our application context: while in merely conjunctive constraint systems,
non-decomposed constraints are clearly better due to their stronger contractors, com-
pletely different aspects become dominant in large and complex-structured Boolean
combinations of arithmetic constraints. Here, pruning of the intervals is no longer
the only forward inference mechanism, but pruning of the search space originating
from the Boolean structure based on inferences from the theory side becomes at least
equally important. There, decomposed constraints have their advantage, as they per-
mit generation of more concise reasons (cf. sect. 5.3.5). It would, however, be feasible
to have both the decomposed and non-decomposed forms of the constraints and their
respective contractors coexist in our system, joining their virtues.

Dealing with partial operations, our implementation associates to each constraint
x = y◦z in the three-address decomposition the contractor ρ′(x) := ρ(x)∩ρ(y)•̂1ρ(z)
as well as all the related solved-form contractors ρ′(y) := ρ(y) ∩ ρ(x)•̂2ρ(z) and
ρ′(z) := ρ(z) ∩ ρ(x)•̂3ρ(y). Together, this set of contractors is essentially equivalent
to the usual contractor for primitive constraints [36], yet we take the different solved
forms as being independent contractors in order to be able to trace the reasons for

90 5 Integration of DPLL and Interval Constraint Solving

contractions within conflict diagnosis. Note that each individual contraction B′ =
C(e, B) can be decomposed into a set of individual contractions affecting just one
face of B each, and each having a subset of the bounds describing the faces of B as
a reason. E.g., in the above example, the first interval contraction derives the new
bound x ≤ 3 from the reasons y ≥ 2 and z ≤ 5, using equation x + y = z in its
solved form x = z − y. In the sequel, we denote such an atomic derivation of ICP by
(y ≥ 2, z ≤ 5) x+ y = z−−−−−−−→ (x ≤ 3).

5.3 The ISAT Algorithm

In order to check the satisfiability of a given formula, our algorithm essentially per-
forms the same steps as a propositional DPLL-based SAT solver. First, it applies a
definitional translation to convert the input formula into a conjunctive form, then it
uses a split-and-deduce approach to solve the latter.

In section 5.3.1 we explain the definitional translation performed by our solver,
which in particular involves a generalized form of the polarity-based optimization
used in the pure propositional setting (see section 3.2.1). Thereafter, we present the
actual search algorithm, i.e. the split-and-deduce part of ISAT. In section 5.3.2 we do
so informally by means of an example, followed by an explanation of the arithmetic
deduction rules employed during search in section 5.3.3. In order to enable a proof of
correctness, section 5.3.4 provides a formal presentation of ISAT’s split-and-deduce
algorithm in form of transition-rules. Section 5.3.5 presents various optimizations of
the base algorithm, and section 5.3.6 finally explains the measures taken to enforce its
termination.

5.3.1 Definitional Translation into Conjunctive Form

Starting point for the translation is the syntax tree of the input formula whose leaves
are Boolean and real-valued variables and whose inner nodes are operators.

Definition 5.1. An operator is a function of the form

ω : X1 × . . .×Xn → Y. (5.1)

The integer n (the number of arguments or operands or inputs the operator takes) is
called the arity of the operator. The set X1×. . .×Xn is the domain of the operator, the
set Y is its codomain. We refer to 5.1 as signature of the operator. An operator whose

5.3 The ISAT Algorithm 91

Input Formula Internal FormatIntermediate FormDefinitional Form

∧ (h1 ≥ 2 ∗ y)

∧ (h2 ≥ x− h1)

∧ (h3 ≥ (h2 ≥ 5))

∧ (h2 ≤ x− h1)

∧ (h1 ≤ 2 ∗ y)

∧ (h3 ≤ (h2 ≥ 5))

∧ ((h4 ≤ 0) ∨ (b ≤ 0) ∨ (h3 ≥ 1))

∧ ((h4 ≥ 1) ∨ (b ≥ 1))
∧ ((h4 ≥ 1) ∨ (h3 ≤ 0))

h4h4

∧ (h1 ≥ 2 ∗ y)

∧ (h2 ≥ x− h1)

∧ (h3 ≥ (h2 ≥ 5))

∧ (h2 ≤ x− h1)

∧ (h1 ≤ 2 ∗ y)

∧ (h3 ≤ (h2 ≥ 5))

∧ (h4 ≥ ¬b ∨ h3)

∧ (h4 ≤ ¬b ∨ h3)

∧ (h1 = 2 ∗ y)

∧ (h2 = x− h1)

∧ (h3 = (h2 ≥ 5))

∧ (h4 = ¬b ∨ h3)

h4

≤

−

∗

y2

x

5

¬b

∨

Figure 5.1: Definitional translation.

signature is Rn → R is called arithmetic operator. It is called Boolean operator if its
signature is Bn → B, and relational operator if its signature is R2 → B.

Given an input formula f , we construct, just like in the propositional case, an
equisatisfiable formula by traversing the syntax tree of f in preorder, replacing each
subformula g upon visit of its top operator node ωg with a fresh auxiliary variable hg
whose type equals the codomain of ωg, and conjoining the definition hg = g to the
resulting formula f [hg/g]. Note, in particular, that we treat Boolean, relational and
arithmetic operators occuring in the syntax tree in exactly the same way.

Example 5.2. We consider the translation of φ = ¬b ∨ (x− 2y ≥ 5), where b ∈ BV
and x, y ∈ RV . The definitional form generated by the conversion explained above is
given in the leftmost box of figure 5.1. In the course of the translation four auxiliary
variables, corresponding to the four operator nodes of φ, were introduced. Variables
h1 and h2 are of type real, variables h3 and h4 of type Boolean.

Under certain conditions it is possible to relax the equality which constrains the
auxiliary variable in a definition, to an inequality. The idea is the same as the one be-
hind the polarity-based optimization proposed by Plaisted and Greenbaum for trans-
lation of propositional formulae (cf. sec. 3.2.1). In our setting, where we have to deal
not only with Boolean definitions, but also with arithmetic ones, the notion of polarity
is generalized by the concept of monotonicity. We therefore refer to the technique
described in the following as monotonicity relaxation.

Definition 5.3. An operator ω with the signature ω : X1 × . . . × Xn → Y is called
upward monotone or isotone (downward monotone or antitone) in its i-th argument iff

92 5 Integration of DPLL and Interval Constraint Solving

for all (a1, . . . , an) ∈ X1 × . . .×Xn the following holds: If bi ∈ Xi satisfies ai ≤ bi
(bi ≤ ai) then ω(a1, . . . , ai, . . . an) ≤ ω(a1, . . . , bi, . . . , an). If ω is neither isotone nor
antitone in its i-th argument, we call it non-monotone in this argument.

Example 5.4.

• Negation ¬ : B→ B is antitone because ¬0 ≥ ¬1.

• Implication →: B2 → B is antitone in its first operand because (0 → b) ≥
(1 → b) hold for all b ∈ {0, 1}. It is isotone in its second operand because
(b→ 0) ≤ (b→ 1) holds for all b ∈ {0, 1}.

• Exclusive-Or ↔: B2 → B is non-monotone in both operands. For the first
operand, non-monotonicity follows from the fact that (0 ↔ 0) ≤ (1 ↔ 0),
whereas (0 ↔ 1) > (1 ↔ 1). An analogue argument is used to show non-
monotonicity in the second operand.

• The greater-or-equal operator ≥: R2 → B is isotone in its first operand because
(x ≥ y) ≤ (x + d ≥ y) holds for all x, y, d ∈ R with d ≥ 0. It is antitone in
its second operand because (x ≥ y) ≤ (x, y − d) holds for all x, y, d ∈ R with
d ≥ 0.

• Multiplication with a constant ∗c : R → R, x → c · x, is isotone if c ≥ 0,
because then ∗c(x) ≤ ∗c(x + d) for x, d ∈ R and d ≥ 0. Otherwise, i.e. if
c < 0, it is antitone.

Similar arguments are used to show, for example, that conjunction ∧ : B2 → B,
disjunction ∨ : B2 → B, and addition + : R2 → R are isotone in both operands,
whereas subtraction − : R2 → R is isotone in its first operand, but antitone in its
second, and multiplication ∗ : R2 → R and sinus sin : R → R are non-monotone in
their operands.

Being composed of nested applications of operators, a formula itself is an operator
which relates the values of its subformulae to an output value. We can thus lift the
notions of isotony and antitony to formulae. Let g be a subformula of f . We say that
f is isotone (antitone) in g, if an increase of the value at the top node of g causes at
most an increase (a decrease) of the value at the root node of f , provided that all other
inputs of f are kept constant.

5.3 The ISAT Algorithm 93

Knowing the monotonicity of the operators occuring in the syntax tree of a for-
mula f , we can easily tell for a subformula g, whether f is isotone, antitone or non-
monotone in g. To this end we label each input edge of an operator node ω occuring
in f with ‘isotone’, ‘antitone’ or ‘non-monotone’, depending on the monotonicity of
ω in the respective argument. Then the monotonicity of f in a given subformula can
be decided by means of the following lemma, which can be easily proven by induc-
tion over the length of the path leading from the root node of f to the top node of the
subformula in question.

Lemma 5.5. Let g be a subformula of f , and let π be the path leading from the root
node of f to g. If there is an edge in π labelled with ‘non-monotone’ then f is non-
monotone in g. Otherwise f is isotone (antitone) in g iff π contains an even (odd)
number of ‘antitone’-labelled edges.

If f is monotone in the respective subformula g, only an inequality (instead of an
equation) is needed to constrain the auxiliary variable hg in the definition introduced
for g: If f is isotone in g, we rewrite f satisfiability-preserving to f [hg/g] ∧ (hg ≤ g).
If f is antitone in g, we rewrite it to f [hg/g] ∧ (hg ≥ g). Only if f is non-monotone
in g, we rewrite it to f [hg/g] ∧ (hg = g).

Example 5.6. In the middle box of figure 5.1 the equations generated by the defini-
tional translation have been split into pairs of inequalities. (In this example we use
the relational operators =,≤, and ≥ not only in arithmetic definitions, but also in def-
initions of Boolean operators, making use of the alternative notation for the Boolean
connectives ↔,→, and ← introduced on page 41). The highlighted inequalities are
those kept by monotonicity relaxation, i.e. their conjunction is equisatisfiable to the
input formula shown on the left. Note that the input formula is antitone in subformula
2 ∗ y, because the minus-operator is antitone in its second argument.

To complete the translation of the input formula into the internal format processed
by ISAT, we rewrite Boolean definitions, just as in the standard Tseitin translation,
into clauses. This is enabled by the fact that the Boolean operators =,≤, and ≥ can
be expressed in terms of conjunction, disjunction and negation, which obviously is
impossible for definitions involving real-valued variables.

Example 5.7. The rightmost box in figure 5.1 shows the result of the final translation
step. As explained in section 5.1, we use bounds on variables to represent literals that
occur within clauses and write, e.g., (b ≤ 0) instead of ¬b and (b ≥ 1) instead of b.

94 5 Integration of DPLL and Interval Constraint Solving

Actually, we not only allow bounds on Boolean variables within clauses, but also
bounds on real-valued variables. By this, we can save the introduction of h3 in above
example and use the bound (h2 ≥ 5) directly as operand of the disjunction, yielding
h4 = (b ≤ 0) ∨ (h2 ≥ 5) as definition for the top node of the input formula.
The more general format of literals is motivated by the learning scheme employed in
ISAT. As we will see in the following section, explanations for conflicts learned by
ISAT contain both, bounds on Boolean and on real-valued variables. In particular,
the bounds on real-valued variables occuring in explanations are derived dynamically
during the split-and-deduce search performed by the solver, i.e. they are not known
apriori. By allowing bounds on real-valued variables to be used directly as operands of
Boolean operators, we avoid the introduction of definitions (in particular of Boolean
auxiliary variables) for them at runtime.

From a conceptual point of view, ISAT treats Boolean operators just in the same
way as arithmetic operators. In fact, the final translation step, i.e. the conversion of
Boolean definitions into clauses, is not a neccessity for the solving algorithm to work.
We only perform the conversion because it enables a very simple and efficient imple-
mentation of Boolean deduction. With Boolean constraints given in clausal form, the
only Boolean deduction rule needed is unit propagation. Otherwise, we would have
to provide contractors for each type of Boolean definition, i.e. one for definitions of
∧-nodes, one for definitions of ∨-nodes, and so on. This said, it might well be ad-
vantageous to retain the Boolean part of the input formula in definitional form, since
the latter preserves the syntax tree structure of the formula and could thus enable the
use of structural SAT approaches which directly operate on the graph structure of the
input formula [99, 84, 101].5

Concluding this section, we remark that we again take advantage of the optimiza-
tions mentioned on page 44, adapted to the more general setting here. For example,
we apply elimination of common subexpressions through re-use of the auxiliary vari-
ables, thus reducing the search space of the solver and enhancing the reasoning power
of the interval contractors used in arithmetic reasoning [17].

5.3.2 Split-and-Deduce Search

Similar to the behaviour of a DPLL-based SAT solver, the search phase of the ISAT
algorithm operates by alternating between two steps:

5Albeit seemingly lost by translation into clausal form, the syntax tree of the input formula can be
recovered provided that information is kept whether a variable is a problem variable or an auxiliary
variable introduced for conversion into clauses.

5.3 The ISAT Algorithm 95

• The decision step involves selecting a variable, splitting its current interval (e.g.
at its midpoint) and temporarily discarding either the lower or the upper half of
the interval from search. The solver will ignore the discarded part of the search
space until the decision is undone by backjumping.

• Each decision is followed by a deduction step in which the solver applies a set of
deduction rules that explore all consequences of the previous decision. Essen-
tially, these deduction rules narrow the search space by carving away portions
that contain non-solutions only.

Deduction rules are applied over and over again until no further interval narrowing
is achieved or the changes become negligible. Deduction may also yield a conflict,
which manifests itself in that the range of a variable becomes empty, indicating the
need for backjumping in order to undo decisions and their consequences. Termination
of the split-and-deduce search is ensured by a) selecting a variable for splitting only
if the width of its interval is above a certain threshold, and b) dropping deductions
which yield negligible progress only.

It is important to understand, however, that ISAT does not manipulate intervals
explicitly, but internally only deals with bounds on variables, i.e. with constraints
of the form v ∼ c, where v ∈ BV ∪ RV , ∼ ∈ {<,≤,≥, >}, and c is a rational
constant. During solving, bounds are generated dynamically by deduction and by
taking decisions. The interval of a variable is, at any time, given by the strongest
upper and the strongest lower bound asserted for that variable.

Before providing a formal exposition of our satisfiability solving algorithm in the
following sections, we explain it by means of an example. Consider the formula

φ = ((a ≤ 0) ∨ (c ≤ 0) ∨ (d ≥ 1)) (c1)

∧ ((a ≤ 0) ∨ (b ≤ 0) ∨ (c ≥ 1)) (c2)

∧ ((c ≤ 0) ∨ (d ≤ 0)) (c3)

∧ ((b ≥ 1) ∨ (x ≥ −2)) (c4)

∧ ((x ≥ 4) ∨ (y ≤ 0) ∨ (h3 ≥ 6.2)) (c5)

∧ h1 = x2 (c6)

∧ h2 = −2 · y (c7)

∧ h3 = h1 + h2 (c8)

which already is in the internal format processed by ISAT. Variables a, b, c, d are of
type Boolean, i.e. their initial intervals are {0, 1}. Variables x, y, h1, h2, h3 are real-

96 5 Integration of DPLL and Interval Constraint Solving

valued, and we assume that their initial interval valuation is given by ρ(x) = ρ(y) =

[−10, 10], ρ(h1) = [0, 100], ρ(h2) = [−20, 20], and ρ(h3) = [−20, 120].
Like in DPLL-based SAT solving, ISAT maintains an implication graph which

relates deductions to their reasons, both being bounds on variables. Figure 5.2 on the
next page shows a series of snap-shots of the implication graph taken while solving φ.

We start reasoning performing a decision and split the interval of a by asserting
a ≥ 1, thus opening decision level DL1. Since a ≥ 1 does not trigger any deductions,
decision level DL1 contains only the decision itself, as shown in fig. 5.2 a). We are
thus set for the next decision, which we choose to be b ≥ 1, thereby entering DL2.
Under the new interval assignment ρ1, where ρ1(a) = ρ1(b) = {1} and ρ1(v) = ρ(v)
for all other variables v, clause c2 becomes unit and propagates c ≥ 1, which in turn
triggers propagation of d ≤ 0 by c3 and, together with a ≥ 1, of d ≤ 0 by c1, thus
yielding a conflict. By cutting the implication graph as shown in fig. 5.2 b), the solver
identifies the bounds a ≥ 1 and c ≥ 1 as explanation for the conflict and learns the
conflict clause

((a ≤ 0) ∨ (c ≤ 0)) (c9)

in order to avoid further conflicts due to the same reason. Note that all steps described
so far would be performed in the same way by a Boolean SAT solver. In fact, the
scenario described in example 3.3 (see page 48) in the background section on Boolean
SAT is identical to the one depicted in fig. 5.2 b).

After backtracking to DL1, the newly learned clause c9 is unit and propagates
c ≤ 0, which in turn triggers a series of unit propagations, ending with propagation of
x ≥ −2 by c4, as shown in fig. 5.2 c).

Since no further propagations are possible, the next decision is due. This time,
we split the range of a real-valued variable by deciding y ≥ 4, thereby re-entering
decision level DL2. Given the new lower bound on y, we can deduce h2 ≤ −8
from constraint c7 by ICP, see figure 5.2 d). We do not call a subordinate solver for
this, but instead apply the contractor for the ∗c-operator locally, just in the same way
as we apply the unit-propagation contractor for disjunctions. Thus, we are able to
combine interval constraint propagation and unit propagation in a single algorithmic
framework, permitting their uniform treatment within conflict detection and conflict-
driven learning.

After deciding x ≤ 3 on decision level DL3, we obtain the interval valuation ρ2,
where in particular ρ2(x) = [−2, 3] and ρ2(y) = [4, 10] holds. Since ρ2�(x ≥ 4) and
also ρ2�(y ≤ 0), clause c5 is unit and propagates h3 ≥ 6.2. Furthermore, we can de-
duce (x ≥ −2, x ≤ 3) c6−→ (h1 ≤ 9), and thereafter (h1 ≤ 9, h3 ≥ 6.2) c8−→ (h2 ≥ −2.8),

5.3 The ISAT Algorithm 97

c3

c2

c1

c9 c2 c4

c9 c2 c4

c7

c9 c2 c4

c7

c8

c6

c5

c9 c2 c4

c7

c6c10

d ≥ 1

d ≤ 0

c ≤ 0 b ≤ 0 x ≥ −2

c ≤ 0 b ≤ 0 x ≥ −2

c ≤ 0 b ≤ 0

h3 ≥ 6.2

h1 ≤ 9

h2 ≥ −2.8

c ≤ 0 b ≤ 0 x ≥ −2

x > 3

h2 ≤ −8

h1 > 9

a ≥ 1

b ≥ 1

a ≥ 1

a ≥ 1

y ≥ 4

a ≥ 1

a ≥ 1

y ≥ 4

c ≥ 1

y ≥ 4

x ≥ −2

a ≥ 1

x ≤ 3

h2 ≤ −8

h2 ≤ −8

DL2:

DL1:

DL3:

DL2:

DL1:

DL2:

DL1:

DL1:

DL2:

DL1:

DL1:a)

b)

c)

d)

e)

f)

Figure 5.2: Snippet of an ISAT sample run.

98 5 Integration of DPLL and Interval Constraint Solving

this way reaching an interval valuation ρ3 with ρ3(h2) = ∅. As in propositional SAT
solving, we analyze the conflict by scanning its reasons. As illustrated in figure 5.2 e),
we find, by cutting the implication graph, that bounds x ≥ −2, x ≤ 3, and y ≥ 4 are
a reason for the conflict. In order to avoid visiting the same branch again, we add a
disjunction of the negated reason-bounds as conflict clause

((x < −2) ∨ (x > 3) ∨ (y < 4)) (c10)

to the formula and perform backjumping to decision level DL2, this way resolving
the conflict. We use the unique implication point technique from [125] for cutting
the implication graph in order to guarantee that the conflict clause is always unit after
backjumping. As illustrated in figure 5.2 f), clause c10 propagates x > 3 immediately
after resuming decision level DL2, which in turn enables narrowing of the interval of
h1.

Splitting and deduction continues until either the formula turns out to be unsatis-
fiable or the solver is left with a ‘sufficiently small’ portion of the search space for
which it cannot derive a conflict. Unsatisfiability is detected if a conflict is encoun-
tered, which cannot be resolved by backjumping, and ‘sufficiently small’ is specified
by user-defined parameters controlling termination (see section 5.3.6 for details).

For equality-constraints we can only establish satisfaction if all variables occuring
in such equalities have point intervals in the interval valuation. Reaching point inter-
vals cannot be expected by naive splitting and ICP. Thus, unless unsatisfiability can
be proven, ISAT outputs ‘unknown’ instead of ‘satisfiable’ in general.

5.3.3 Arithmetic Deduction Rules

For each type of constraint occuring in the input formula, a set of deduction rules is
needed: clauses (disjunctions of bounds) are handled by unit propagation, arithmetic
definitions by narrowing operators derived from interval constraint solving. In this
section, we give some examples for the latter.

Deduction Rules for Operator ‘+’

The deduction rules for addition, listed in table 5.1, are used to compute inferences
for definitions of the form A = B + C (topmost chart) and their (by monotonicity
relaxation generated) relaxed forms A ≥ B+C and A ≤ B+C, respectively (charts
below).

Deduction is usually performed if bounds of variables involved in a definition
have changed. Assume that ρ(A) = [a1, a2] = [−4, 0], ρ(B) = [b1, b2] = [1, 4], and

5.3 The ISAT Algorithm 99

a)
Deduced Bounds Reason

A = B + C a1 = b1 + c1 {b1, c1}
a2 = b2 + c2 {b2, c2}

B = A− C b1 = a1 − c2 {a1, c2}
b2 = a2 − c1 {a2, c1}

C = A−B c1 = a1 − b2 {a1, b2}
c2 = a2 − b1 {a2, b1}

b)
Deduced Bounds Reason

A ≥ B + C a1 = b1 + c1 {b1, c1}
B ≤ A− C b2 = a2 − c1 {a2, c1}
C ≤ A−B c2 = a2 − b1 {a2, b1}

c)
Deduced Bounds Reason

A ≤ B + C a2 = b2 + c2 {b2, c2}
B ≥ A− C b1 = a1 − c2 {a1, c2}
C ≥ A−B c1 = a1 − b2 {a1, b2}

Table 5.1: Deduction rules for addition.

ρ(C) = [c1, c2] = [−3, 5] holds when deduction for the triplet A = B + C starts.
First, we apply the rules given in the top row of chart a) in order to potentially derive
new bounds for A. Indeed, a1 = b1 + c1 = 1 + (−3) = −2 gives us a lower bound of
−2 on A which is tighter than the previously known bound of −4. We thus assert the
newly deduced bound A ≥ −2 and record bounds b1 and c1 as reasons for it. Hence,
B ≥ 1 and C ≥ −3 will be antecedent nodes of A ≥ −2 in the implication graph.
The bounds to be used as reason are, for each deduction rule, given in the rightmost
column of the chart. Application of rule a2 = b2 + c2 yields 9 as upper bound of
A, which, however, is weaker than the current upper bound A ≤ 0, and is therefore
dropped.

Applying the remaining rules from chart a), we obtain b2 = a2−c1 = 0−(−3) = 3
as new upper bound for B, and c2 = a2 − b1 = 0 − 1 = −1 a new upper bound
for C. The lower bounds B and C are weaker than the ones already in place and
therefore ignored. Thus, the final interval valuation after deduction is ρ̂(A) = [−2, 0],
ρ̂(B) = [1, 3], and ρ̂(C) = [−3,−1].

Note that, in general, the deduction routine of our solver does not apply all rules
provided in table 5.1 a), but only those where the bound which triggered deduction

100 5 Integration of DPLL and Interval Constraint Solving

a1

b2b1

a2

0

0

−
n
√ a 1

−
n
√ a 2

n
√ a 1

n
√ a 2

a2

a1

0

Figure 5.3: Images and pre-images of intervals under the mapping A = Bn for odd
exponents (left) and for even exponents (right).

Deduced Bounds Reason

A = Bn a1 = bn

1 {b1}
a2 = bn

2 {b2}
B = n

√
A b1 = n

√
a1 {a1}

b2 = n

√
a2 {a2}

Table 5.2: Deduction rules for exponentiation with odd exponent n ∈ N.

occurs on the right-hand side. The newly computed bounds may then trigger further
visits of the same triplet, entailing more deductions.

Obviously, an inequality of form A ≥ B+C allows only the deduction of a lower
bound for A and of upper bounds for B and C. For inequalities of form A ≤ B + C

the situation is just reversed. The respective deduction rules are given in charts b) and
c) of table 5.1.

So far we have treated all bounds as if they were non-strict. Still, we have to take
strictness of bounds into account during deduction. As a rule of thumb one can say,
that a deduced bound is strict if a strict bound was involved in its computation.

Deduction Rules for Operator ‘xn’

Due to the monotonicity of functions of type A = Bn for odd exponents, the de-
duction rules for exponentiation are very simple in this case (see table 5.2). For even
exponents, the graph of A = Bn is non-monotone, however, which in particular means

5.3 The ISAT Algorithm 101

Condition Deduced Bounds Reason

A = Bn (b1 ≥ 0) a1 = bn

1 {b1}
a2 = bn

2 {b1, b2}
(b2 ≤ 0) a1 = bn

2 {b2}
a2 = bn

1 {b1, b2}
(b1 < 0 < b2) a1 = 0 {b2}

a2 = max(bn

1 , b
n

2) {b1, b2}
B = n

√
A (b2 > n

√
a2) b2 = n

√
a2 {a2, b2}

(b2 < n

√
a1) b2 = − n

√
a1 {a1, b2}

(b1 < − n

√
a2) b1 = − n

√
a2 {a2, b1}

(b1 > − n

√
a1) b1 = n

√
a1 {a1, b1}

Table 5.3: Deduction rules for exponentiation with even exponent n ∈ N.

that an interval of A can have two pre-images on the B-axis, as illustrated in figure
5.3. To enable optimal pruning of intervals, we have to resort to case splitting, i.e. the
deduction rules for even exponents come with application conditions, as can be seen
in table 5.3. We illustrate their use by means of an example. Assume that n = 2,
ρ(A) = [4, 16], and ρ(B) = [−3, 1]. Because b1 = −3 < 0 < 1 = b2, we can deduce
a1 = 0 and a2 = max((−3)2, 12) = 9, contracting the interval of A to ρ̂(A) = [4, 9].
A’s new interval has the pre-images [2, 3] and [−3,−2]. But since the upper bound of
B is stricly less than 2

√
4, i.e. condition b2 < n

√
a1 applies, we can exclude pre-image

[2, 3] and deduce b2 = − n
√
a1 = − 2

√
4 = −2 as new upper bound of B. The final

interval valuation is thus ρ̂(A) = [4, 9] and ρ̂(B) = [−3,−2].
An important point to note is that b2 is part of the reason of the last deduction,

although it does not occur on the right-hand side of the deduction rule b2 = − n
√
a1.

This is, because b2 occurs in the application condition of the deduction rule. Failing
to include b2 in the reason (and thus in the implication graph) would be an error,
because it may entail the derivation of conflict clauses which prune the search space
too aggressively, cutting off not only non-solutions but also potential solutions.

To simplify the presentation of the deduction rules, we have again treated all
bounds as if they were non-strict. This allowed us to express bounds, which are in fact
inequalities relating a variable to a constant, in form of a constant only. Of course,
an implementation of the rules has to take strictness into account. In particular, the
application conditions given in table 5.3 have to be interpreted correspondingly when
strictness comes into play. For example, condition b2 < n

√
a1 states that the upper

bound b2 and the lower bound n
√
a1 together define an empty interval. Taking into ac-

102 5 Integration of DPLL and Interval Constraint Solving

count strictness, the bounds involved in the condition are objects of the form B ∼1 b2
and B ∼2

n
√
a1, where ∼1 ∈ {<,≤} and ∼2 ∈ {>,≥}. Consequently, b2 < n

√
a1

translates to unsatisfiability of

(B ∼1 b2) ∧ (B ∼2
n
√
a1).

Similarly, the application condition b1 < − n
√
a2, stating that the lower bound − n

√
a2

is stronger than the lower bound b1, has to be interpreted as implication

(B ∼1 b1)← (B ∼2 − n
√
a2),

where ∼1,∼2 ∈ {>,≥}, if strictness is considered. For sake of clarity, we will con-
tinue to neglect the issue of strictness in the presentation of the remaining deduction
rules, and tacitly assume that rules and conditions are understood as if they were for-
mulated for general (potentially strict) bounds.

Deduction Rules for Operator ‘∗’

Table 5.4 on the facing page provides the deduction rules for multiplication of two
variables, i.e. for triplets of form A = B · C. The set of rules includes, like those
presented before, in particular deduction rules for the inverse operations, i.e. for B =

A/C and C = A/B, in order to enable narrowing of all variables occuring in the
triplet. Hence, we can use the same rules to implement a contractor for division6, and,
similarly, implement deduction for subtraction and extraction of roots using the rules
for addition and exponentiation.

Deduction Rules for the Cosine Operator

When generating a definition of type A = cos(B) in the solver frontend, we immedi-
ately constrain the range of A to the interval [−1, 1] by adding (A ≥ −1) ∧ (A ≤ 1)
to the formula. We cannot contract A’s interval any further unless the width of B’s
interval [b1, b2] falls below 2π. Hence, this is checked first when entering the deduc-
tion routine for cosine because of changes of b1 or b2. If b2 − b1 < 2π, we shift the
interval [b1, b2] such that the left interval border lies within [0, 2π]. We then apply the
deduction rules given in table 5.5 a) to the shifted interval [b′1, b

′
2], whose borders are

b′1 = b1 − 2π ·
⌊
b1
2π

⌋
(5.2)

b′2 = b2 − 2π ·
⌊
b1
2π

⌋
, (5.3)

6Alternatively, we could rewrite definitions of form A = B/C into B = A · C ∧ C �= 0 in the
frontend of the solver.

5.3 The ISAT Algorithm 103

Condition Deduced Bounds Reason

A = B · C (b1 ≥ 0) ∧ (c1 ≥ 0) a1 = b1 · c1 {b1, c1}
a2 = b2 · c2 {b1, b2, c1, c2}

(b1 ≥ 0) ∧ (c2 ≤ 0) a1 = b2 · c1 {b1, b2, c1, c2}
a2 = b1 · c2 {b1, c2}

(b1 ≥ 0) ∧ (c1 < 0 < c2) a1 = b2 · c1 {b1, b2, c1, c2}
a2 = b2 · c2 {b1, b2, c1, c2}

(b2 ≤ 0) ∧ (c1 ≥ 0) a1 = b1 · c2 {b1, b2, c1, c2}
a2 = b2 · c1 {b2, c1}

(b2 ≤ 0) ∧ (c2 ≤ 0) a1 = b2 · c2 {b2, c2}
a2 = b1 · c1 {b1, b2, c1, c2}

(b2 ≤ 0) ∧ (c1 < 0 < c2) a1 = b1 · c2 {b1, b2, c1, c2}
a2 = b1 · c1 {b1, b2, c1, c2}

(b1 < 0 < b2) ∧ (c1 ≥ 0) a1 = b1 · c2 {b1, b2, c1, c2}
a2 = b2 · c2 {b1, b2, c1, c2}

(b1 < 0 < b2) ∧ (c2 ≤ 0) a1 = b2 · c1 {b1, b2, c1, c2}
a2 = b1 · c1 {b1, b2, c1, c2}

(b1 < 0 < b2) ∧ (c1 < 0 < c2) a1 = min(b1 · c2, b2 · c1) {b1, b2, c1, c2}
a2 = max(b1 · c1, b2 · c2) {b1, b2, c1, c2}

C = A/B (a1 ≥ 0) ∧ (b1 > 0) c1 = a1/b2 {b1, b2, a1}
c2 = a2/b1 {b1, a1, a2}

(a1 ≥ 0) ∧ (b2 < 0) c1 = a2/b2 {b2, a1, a2}
c2 = a1/b1 {b1, b2, a1}

(a2 ≤ 0) ∧ (b1 > 0) c1 = a1/b1 {b1, a1, a2}
c2 = a2/b2 {b1, b2, a2}

(a2 ≤ 0) ∧ (b2 < 0) c1 = a2/b1 {b1, b2, a2}
c2 = a1/b2 {b2, a1, a2}

(a1 < 0 < a2) ∧ (b1 > 0) c1 = a1/b1 {b1, a1, a2}
c2 = a2/b1 {b1, a1, a2}

(a1 < 0 < a2) ∧ (b2 < 0) c1 = a2/b2 {b2, a1, a2}
c2 = a1/b2 {b2, a1, a2}

B = A/C (a1 ≥ 0) ∧ (c1 > 0) b1 = a1/c2 {c1, c2, a1}
b2 = a2/c1 {c1, a1, a2}

(a1 ≥ 0) ∧ (c2 < 0) b1 = a2/c2 {c2, a1, a2}
b2 = a1/c1 {c1, c2, a1}

(a2 ≤ 0) ∧ (c1 > 0) b1 = a1/c1 {c1, a1, a2}
b2 = a2/c2 {c1, c2, a2}

(a2 ≤ 0) ∧ (c2 < 0) b1 = a2/c1 {c1, c2, a2}
b2 = a1/c2 {c2, a1, a2}

(a1 < 0 < a2) ∧ (c1 > 0) b1 = a1/c1 {c1, a1, a2}
b2 = a2/c1 {c1, a1, a2}

(a1 < 0 < a2) ∧ (c2 < 0) b1 = a2/c2 {c2, a1, a2}
b2 = a1/c2 {c2, a1, a2}

Table 5.4: Deduction rules for multiplication.

104 5 Integration of DPLL and Interval Constraint Solving

ac
os
(a
2
)

ac
os
(a
1
)

2π
− a

co
s(
a1
)

2π
+
ac
os
(a
2
)

−a
co
s(
a 1
)

−a
co
s(
a 2
)

2π
− a

co
s(
a 2
)

2π
+
ac
os
(a
1
)

−π 0 π 2π 3π

a2

a1

Figure 5.4: The interval [a1, a2] has four pre-images in [−π, 3π].

in order to (potentially) obtain tightened bounds for variable A. The rules needed to
narrow the interval of B based on an interval of A are listed in table 5.5 b). Figure 5.4
illustrates the constants used in the rules. Before the rules can be applied, the current
bounds of B have to be shifted into the interval [0, 2π], i.e. application conditions and
deduction rules are evaluated w.r.t. the shifted bounds

b′1 = b1 − 2π ·
⌊
b1
2π

⌋
(5.4)

b′2 = b2 − 2π ·
⌊
b2
2π

⌋
. (5.5)

Note that (5.2) and (5.3) shift upper and lower bound of B by the same amount,
whereas (5.4) and (5.5) shift the bounds separately. Of course, the effect of shifting
has to be undone before asserting the tightened bounds determined by deduction.

5.3.4 Correctness

The underlying idea of ISAT is that the two central operations of ICP-based arithmetic
constraint solving — interval contraction by constraint propagation and by interval
splitting — correspond to asserting bounds on real-valued variables v ∼ c with v ∈
RV , ∼∈ {<,≤,≥, >} and c ∈ Q. Likewise, the decision steps and unit propagations
in DPLL proof search correspond to asserting literals. A unified DPLL- and ICP-
based proof search on a formula φ from the formula language of section 5.1 can thus
be based on asserting or retracting bounds, thereby in lockstep refining or widening
an interval valuation ρ that represents the current set of candidate solutions.

5.3 The ISAT Algorithm 105

a)
Condition Deduced Bounds Reason

A = cos(B) (0 ≤ b1 ≤ π) ∧ (0 ≤ b2 ≤ π) a1 = cos(b2) {b1, b2}
a2 = cos(b1) {b1, b2}

(π ≤ b1 ≤ 2π) ∧ (π ≤ b2 ≤ 2π) a1 = cos(b1) {b1, b2}
a2 = cos(b2) {b1, b2}

(0 ≤ b1 ≤ π) ∧ (π ≤ b2 ≤ 2π) a2 = max(cos(b1), cos(b2)) {b1, b2}
(π ≤ b1 ≤ 2π) ∧ (2π ≤ b2 ≤ 3π) a1 = min(cos(b1), cos(b2)) {b1, b2}

b)
Condition Deduced Bounds Reason

B = acos(A) 2π − acos(a2)< b1 b1 = 2π + acos(a2) {a2, b1}
acos(a1)< b1 < 2π − acos(a1) b1 = 2π − acos(a1) {a1, b1}

b1 < acos(a2) b1 = acos(a2) {b1, a2}
2π − acos(a2)< b2 b2 = 2π − acos(a2) {a2, b2}

acos(a1)< b2 < 2π − acos(a1) b2 = acos(a1) {a1, b2}
b2 < acos(a2) b2 = − acos(a2) {a2, b2}

Table 5.5: Deduction rules for cosine operation.

In our algorithm we use the letter M to denote the list of asserted bounds. In
order to allow backtracking on this data-structure, in addition, we intersperse a special
marker symbol | into this list M . The asserted bounds comprised in M induce an
interval assigment ρM which assigns to each variable v ∈ BV ∪RV an interval which
is defined by the tightest bounds on v occuring in M , i.e., ρM(v) :=

⋂
(v∼c)∈M{u |

u ∈ R, u ∼ c}.
The algorithm maintains a 2-tuple (M,φ) as its proof state, where M is the list

of asserted bounds, and φ a formula. For the basic procedure, φ will remain constant
and always be equal to the formula to be solved. It is not before introducing conflict-
driven learning that we will see changes to φ. The procedure searching for satisfying
valuations then proceeds as follows:

Step 1: Initialization

Proof search on the input formula φ starts from the inital state (M0, φ), where
M0 contains the bounds defining the inital ranges of the variables, i.e. {(v ≥
0), (v ≤ 1)} ⊆ M0 if v ∈ BV , and {(v ≥ l), (v ≤ u)} ⊆ M0 if v ∈ RV is a
problem variable with range [l, u].

Step 2: Deduction

Proof search continues with searching for unit clauses in φ, that is, clauses that
have all but one atoms being inconsistent with the current interval valuation ρM .

106 5 Integration of DPLL and Interval Constraint Solving

If such a clause is found then the remaining bound is asserted:

φ = φ′ ∧ (a1 ∨ . . . ∨ an),

∃j ∈ N≤n .∀i ∈ N≤n . (i �= j ⇒ (ρ � ai)), ρM �|=hc aj

(M,φ) −→ (M · 〈aj〉, φ)
(5.6)

Likewise, contractions obtained from definitions (by application of the deduc-
tion rules explained in section 5.3.3) are asserted as bounds:

φ = φ′ ∧ e,

∃ b1, . . . , bn ∈M . (b1, . . . , bn)
e−→ (v ∼ c) , ρM �|=hc v ∼ c

(M,φ) −→ (M · 〈v ∼ c〉, φ) (5.7)

where e is a definition and the bi are bounds. Note that rule (5.7) is differ-
ent in spirit from theory-related rules in DPLL(T), as it does neither analyze
consistency of the currently asserted set of theory atoms nor implicative rela-
tions between these and other theory atoms occurring in the input formula (as in
DPLL(T)). Instead, it applies purely local reasoning with respect to the single
theory atom e and the bounds (i.e., domain restrictions) b1 to bn, generating a
fresh bound v ∼ c not present in the original formula. Consistency is never
tested on the full set of (nonlinear) theory atoms, but only within the extremely
simple sub-theory of bound atoms through rules (5.9) and (5.10).

Step 2 is repeated until contraction detects a conflict in the sense of some inter-
val ρM(v) becoming empty, which is handled by continuing at step 4, or until
no further contraction is obtained.7

Step 3: Splitting

In the latter case, ISAT applies a splitting step: it selects a variable v ∈ BV ∪
RV that is interpreted by a non-point interval and splits its interval ρM(v) by
asserting a bound that contains v as a free variable and which is inconclusive
on ρM . Note that the complement of such an assertion also is a bound and
is inconclusive on ρM too. In our current implementation, we use the usual
strategy of bisection, i.e., the choice of c as the midpoint of ρM(v).

v ∼ c inconclusive on ρM , v occurs in φ

(M,φ) −→ (M · 〈|, v ∼ c〉, φ) (5.8)

7In practice, one stops as soon as the changes become negligible.

5.3 The ISAT Algorithm 107

Note that we use the marker symbol | to indicate the position where the new
decision level starts within M . After the split, the algorithm continues at step 2.

Step 4: Handling of Conflicts

In case of a conflict, some previous splits (cf. step 3) have to be reverted,
which is achieved by backtracking — thereby undoing all assertions being con-
sequences of the split — and by asserting the complement of the previous split.
In M , the split is marked by the special symbol | preceding the atom asserted
by the split.

ρ′M(w) = ∅ for some w ∈ BV ∪ RV , | �∈M ′

(M · 〈|, v ∼ c〉 ·M ′, φ) −→ (M · 〈v �∼ c〉, φ) (5.9)

Later (in section 5.3.5 below) we will see that, beyond backtracking, informa-
tion about the reason for the conflict can be recorded in the formula φ, thus
pruning the remaining search space. If rule (5.9) is applicable, i.e. if there is
an open backtracking point marked by the split marker ‘|’ in the list of asserted
atoms, then we apply the rule and proceed to step 2. Otherwise, i.e. if there is no
previous split with a yet unexplored alternative, then the algorithm stops with
result ‘unsatisfiable’.

ρM(w) = ∅ for some w ∈ BV ∪ RV , | �∈M

(M,φ) −→ unsat
(5.10)

The correctness of the algorithm rests on the following two invariance properties
preserved by rules (5.6) to (5.9):

Lemma 5.8. Assume (M0, φ) −→∗ (M,φ) −→ (M ′, φ). Then

1. η |=hc

(∧
a∈M a

)
implies that η is a (not necessarily proper) refinement of ρM ,

2. hcsat
(
φ ∧

(∧
a∈M a ∨ ¬

∧
b∈CM b

))
implies hcsat

(
φ ∧

(∧
a′∈M ′ a′ ∨ ¬

∧
b′∈CM′

b′
))

hold, where CN = {x ∼ c | N = N1 · 〈|, x ∼ c〉 ·N2} is the set of choice points in N .

108 5 Integration of DPLL and Interval Constraint Solving

Proof. Property 1 follows directly from the definitions, since η |=hc (
∧

a∈M a)

iff η |=hc a for all a ∈M

iff η |=hc (v ∼ c) for all (v ∼ c) ∈M

iff η(v) ⊆ {u | u ∈ R, u ∼ c} for all (v ∼ c) ∈M

iff η(v) ⊆
⋂

(v∼c)∈M
{u | u ∈ R, u ∼ c} = ρM(v) for all variables v.

Thus, η(v) ⊆ ρM(v) for all variables v, that is, η is a refinement of ρM .
Property 2 requires a case analysis w.r.t. the changes applied to M : Within rules

(5.6) and (5.7), M is expanded by deduced atoms a′ that the different contractors
(unit propagation, interval contraction) permit to be drawn from φ ∧

∧
a∈M a. Each

such atom a′ satisfies the contractor soundness condition η |=hc φ ∧
∧

a∈M a iff
η |=hc φ ∧

∧
a∈M a ∧ a′ for each refinement η of ρM . As property 1 shows that

φ ∧
∧

a∈M a can only be satisfied by refinements of ρM , the conjectured implication
follows for rules (5.6) and (5.7) from the fact that M ′ = M ∪ {a′} and CM ′ = CM .
The splitting rule (5.8) adds a split bound x ∼ c which occurs in both M ′ and CM ′

such that the conjectured implication holds due to absorption. For rule (5.9) we ob-
serve that due to the premise ρM(w) = ∅ of the rule, property 1 of the Lemma gives
η(w) = ∅ for each interval valuation η with η |=hc

∧
a∈M a. That is,

∧
a∈M a is

not hull consistently satisfiable. Consequently, either φ ∧
(∧

a∈M a ∨ ¬
∧

b∈CM b
)

is
not hull consistently satisfiable (in which case the implication trivially follows), or
φ ∧ ¬

∧
b∈CM b is hull consistently satisfiable. The latter implies hull consistent satis-

fiability of φ∧
(∧

a′∈M ′ a′ ∨ ¬
∧

b′∈CM′
b′
)

, as CM ′ = CM \ {v ∼ c} and v �∼ c ∈M ′

for some bound v ∼ c. Rule (5.10), finally, does not yield a configuration of the form
(M ′, φ) such that it trivially satisfies the conjecture.

Corollary 5.9. If (M0, φ) −→∗ (M,φ) −→ unsat then φ ∧
∧

a∈M0
, i.e. φ with its

variables confined to their initial ranges, is unsatisfiable.

Proof. We assume that (M0, φ) −→∗ (M,φ) −→ unsat. Then, according to the
premises of rule (5.10), ρM(w) = ∅ for some w ∈ BV ∪RV and, furthermore, | �∈M .
By induction over the length of the derivation sequence and Lemma 5.8, property
2, we obtain that hcsat

(
φ ∧

∧
a∈M0

a
)

implies hcsat
(
φ ∧

(∧
a∈M a ∨ ¬

∧
b∈CM b

))
.

Because | �∈ M and thus CM = ∅, this in turn gives: hcsat
(
φ ∧

∧
a∈M0

a
)

implies
hcsat

(
φ ∧

∧
a∈M a

)
. According to Lemma 5.8, property 1, any interval valuation η

with η |=hc φ∧
∧

a∈M a is a refinement of ρM , i.e. has η(w) = ∅. Thus, φ∧
∧

a∈M a is

5.3 The ISAT Algorithm 109

not hull consistently satisfiable, which implies that φ∧
∧

a∈M0
is not hull consistently

satisfiable. As hull consistent satisfiability is a necessary condition for satisfiability
over the reals, it follows that φ ∧

∧
a∈M0

is unsatisfiable.

5.3.5 Algorithmic Enhancements

By its similarity to DPLL algorithms, this base algorithms lends itself to all the algo-
rithmic enhancements and sophisticated data structures that were instrumental to the
impressive recent gains in propositional SAT solver performance.

Lazy Clause Evaluation

In order to save costly visits to and evaluations of disjunctive clauses, we extend the
lazy clause evaluation scheme of zChaff (cf. sec. 3.2.2, p. 49) to our more general
class of atoms: within each clause, we select two bounds which are inconclusive w.r.t.
the current valuation ρ, called the ‘watched bounds’ of the clause. Instead of scanning
the whole clause set for unit clauses in step 2 of the base algorithm, we only visit a
clause if one of its two watched bounds might be inconsistent with the bound which
has been asserted last. In this case, we evaluate the bounds’s truth value. If found to
be inconsistent w.r.t. the new interval assignment, the algorithm tries to substitute the
bound by a currently unwatched and not yet inconsistent bound to watch in the future.
If this substitution fails due to all remaining bounds in the clause being inconsistent,
the clause has become unit and the second watched bound has to be propagated using
rule (5.6).

Watched Bounds in Arithmetic Definitions

To save dispensable calls to contractors for arithmetic definitions (i.e. for triplets and
pairs), we apply the concept of ‘watched bounds’ also to the latter. Consider, for
example, the definition

x ≤ y − z (5.11)

which, due to the direction of its relational operator, may become violated if either x
increases or y − z decreases, i.e. if y decreases or z increases. Thus, satisfiability of
inequality (5.11) is endangered if the upper bound of y or the lower bounds of x and z

are tightened, which we watch therefore. Only if one of the watched bounds changes,
we have to evaluate the triplet (i.e., we have to call the corresponding contractor) in
order to be able to perform the required deductions.

110 5 Integration of DPLL and Interval Constraint Solving

Maintaining an Implication Graph

In order to be able to tell reasons for conflicts (i.e., empty interval valuations) en-
countered, our solver maintains an implication graph IG akin to that known from
propositional SAT solving [125]. As all asserted bounds are recorded in the stack-like
data structure M , the implication graph is implemented by way of pointers providing
backward references within M . Each asserted bound in M then has a set of pointers
naming the reasons (if any) for its assertion. That is, after application of rule (5.6), the
entry aj in M is decorated with pointers to the reasons for the entries ai with i �= j

being inconsistent. These reasons are bounds already asserted in M : if ai in rule (5.6)
is a bound v ∼ c then M contains another bound v ∼′ c′ with v ∼ c∧v ∼′ c′ being un-
satisfiable, in which case v ∼′ c′ can serve as a reason. When applying rule (5.7), the
reasons are apparent from the contraction enforced, as explained in section 5.3.3: in
the contraction (b1, . . . , bn)

e−→ (v ∼ c), b1, . . . , bn are the reasons for the bound v ∼ c.
The other rules do not record reasons because they either do not assert atoms (5.9)
or the asserted atoms originate in choices (rules 5.8), which is recorded by attaching
an empty set of reasons to the asserted bound. Note how the homogeneous treatment
of Boolean and theory-related reasoning in our framework simplifies extraction of the
implication graph: as both Boolean constraint propagations and theory-related con-
straint propagations are bound assignments in the same list M of asserted bounds,
rather than deferring the theory reasoning to a subordinate theory solver checking
theory consistency, the implication graph can be maintained via links in M only.

The aforementioned pointer structure is in one-to-one correspondence to an im-
plication graph IG ⊂ AM × AM relating reasons to consequences, where AM is the
set of bounds in M . IG collects all references to reasons occurring in M as follows:
(a, a′) ∈ IG iff the occurrence of a′ in M mentions a as its reason. Given the impli-
cation graph IG, the set RIG(a) of sufficient reasons for an atom a in M is defined
inductively as the smallest set satisfying the following three conditions.

1. {a} ∈ RIG(a).

2. Let r ∈ R ∈ RIG(a) and S = {q | (q, r) ∈ IG}.
If S �= ∅ then ((R \ {r}) ∪ S) ∈ RIG(a).

3. If R ∈ RIG(a) and S ⊃ R then S ∈ RIG(a).

The rationale of this definition is that (1.) a itself is a sufficient reason for a being
true, (2.) a sufficient reason of a can be obtained by replacing any reason r of a with

5.3 The ISAT Algorithm 111

a sufficient reason for r, (3.) any superset of a sufficient reason of a is a sufficient
reason of a.

Conflict-Driven Learning and Non-Chronological Backtracking

In case of a conflict encountered during the search, we can record a reason for the
conflict preventing us from constructing other interval valuations provoking a similar
conflict. Therefore, we traverse the implication graph IG to derive a reason for the
conflict encountered, and add this reason in negated form to the input formula. We
use the unique implication point technique [125] to derive a conflict clause which is
general in that it contains few bounds. This clause becomes asserting upon backjump-
ing to the second largest decision level contributing to the conflict, i.e. upon undoing
all decisions and constraint propagations younger than the chronologically youngest
but one decision among the antecedents of the conflict.

ρ′(v) = ∅,M =M ′ · 〈|〉 ·M ′′, b, b′ ∈M, |= ¬(b ∧ b′),
a1 ∈M ′′, a2, . . . , an ∈M ′, {a1, . . . , an} ∈ RIG(b) ∩RIG(b

′)

(M,φ) −→ (M ′ · 〈¬a1〉, φ ∧ (¬a1 ∨ . . . ∨ ¬an))
(5.12)

Note that the application conditions of the rule are always satisfied when the condi-
tions of the backtrack rule (5.9) apply, as ρ′(v) = ∅ can only arise if there are two
contradicting bounds b = v ∼ c and b′ = v ∼′ c′ in M . Hence, the learning rule
(5.12) can fully replace the backtrack rule (5.9). Applications of the rule are shown in
figure 5.2.

Note that, while adopting the conflict detection techniques from propositional SAT
solving, our conflict clauses are more general than those generated in propositional
SAT solving: as the antecedents of a contraction may involve arbitrary arithmetic
bounds, so do the conflict clauses. Furthermore, in contrast to nogood learning in
constraint propagation, we are not confined to learning forbidden combinations of
value assignments in the search space, which here would amount to learning disjunc-
tions of interval disequations x �∈ I with x being a problem variable and I an interval.
Instead, our algorithm may learn arbitrary combinations of atoms x ∼ c, which pro-
vides stronger pruning of the search space: while a nogood x �∈ I would only prevent
a future visit to any subinterval of I , a bound x ≥ c, for example, blocks visits to any
interval whose left endpoint is at least c, no matter how it is otherwise located relative
to the current interval valuation.

112 5 Integration of DPLL and Interval Constraint Solving

5.3.6 Progress and Termination

The naive base algorithm described above traverses the search tree until no further
splits are possible due to the search space being fully covered by conflict clauses. In
contrast to purely propositional SAT solving, where the split depth is bounded by the
number of variables in the SAT problem, this entails the risk of non-termination due
to infinite sequences of splits being possible on each real-valued interval.

We tackle this problem by selecting a heuristics for application of the rules which
guarantees a certain progress with respect to decided and deduced bounds. Therefore,
we fix a progress bound ε > 0 (to be refined iteratively later on) and demand that the
rule applications satisfy the following condition.

Condition 5.10. Rules (5.7), (5.9), and (5.12) are only applied if their asserted bound
v ∼ c narrows the remaining range of v by at least ε, i.e. if |c− c′| ≥ ε for all bounds
(v ∼ c′) ∈ N , where N = M for rules (5.7) and (5.9) and N = M ′ for rule (5.12).
Rule (5.8) is only applied if both the split bound v ∼ c and its negation v �∼ c narrow
the remaining range of v by at least ε.

We now define a strict partial ordering � on the list of asserted atoms M .

Definition 5.11. Let M = M1| . . . |Mn and M ′ = M ′
1| . . . |M ′

m, where the Mi and
M ′

i represent decision levels, i.e. they consist of all bounds asserted on decision level
i and contain no marker symbol. Then M �M ′ iff

a) n < m and ρMi
= ρM ′

i
for all i ≤ n, or

b) n ≥ m and there is a k ≤ m such that ρMi
= ρM ′

i
for all i < k and ρM ′

k
is a

proper refinement of ρMk
, that is ρM ′

k
(v) ⊆ ρMk

(v) for all variables v, where
the inclusion is strict for at least one variable.

Lemma 5.12. If (M,φ) −→ (M ′, φ′) by application of rule (5.6), (5.7), (5.8), (5.9),
or (5.12) then M �M ′.

Proof. Rules (5.6) and (5.7) only modify the decision level on top of M by adding a
new bound which is not implied by the bounds already in M . Thus, after one or more
applications of these rules, condition b) of definition 5.11 is satisfied, i.e. M � M ′

holds. The splitting rule (5.8) adds a new decision level to M , that is n equals m + 1

after application, but it does not modify already existing decision levels. Thus, by
condition a) of definition 5.11, M � M ′ holds. The backtracking rule (5.9) and the
learning rule (5.12) both discard decision levels. Hence, after application n ≥ m

5.3 The ISAT Algorithm 113

holds. Both rules revive decision level m by adding a new bound to it which is not
implied by the bounds in M1| . . . |Mm. Therefore, M � M ′ holds by condition b) of
definition 5.11, which is satisfied for k = m.

By lemma 5.12, we are able to prove termination of the algorithm if initially the
intervals of all auxiliary variables and of all problem variables are bounded. For an
interval I we define width (I) = sup(I)− inf(I) if supremum and infimum exist, and
width (I) =∞ otherwise.

Lemma 5.13. Let (M0, φ) be the initial state of the algorithm. Assume that all vari-
ables v are bounded, i.e. width (ρM0

(v)) �=∞. Then, after finitely many applications
of the rules (5.6) to (5.12) which are in compliance with condition 5.10, the algo-
rithm reaches either ‘unsat’ or a state (M,φ′) with width (ρM(v)) ≤ 2 · ε for all
v ∈ BV ∪ RV , where ε is the constant progress parameter of condition 5.10.

Proof. Proof state ‘unsat’ allows no further rule applications, i.e. the algorithm stops.
In the following we will therefore consider executions, where ‘unsat’ is not reached.
Assume, an infinite execution E := (M0, φ) → (M1, φ1) → (M2, φ2) → · · · exists.
Then, according to lemma 5.12, the sequence (Mi)i∈N is strictly decreasing, i.e. M0 �
M1 � M2 � · · · . Due to condition 5.10, the length of the sequence is, however,
bounded by O

(∏
v∈RV∪BV

1
ε
· width (ρM0

(v))
)
< ∞, contradicting the assumption

that E is infinite.

Achieving Almost-Completeness through Restarts

With a given progress parameter ε, the above procedure may terminate with inconclu-
sive result: it may fail to terminate with an ‘unsat’ result, because search in conflicting
branches of the search tree is stopped too early. Moreover, the interval valuation which
the solver outputs after termination — we refer to it as candidate solution box — , pos-
sibly contains no solution. However, if ε is chosen ‘small enough’, then any point
picked from the candidate solution box will violate the constraints occuring in the
formula at most by a very small amount.

To increase confidence in the result, the solver can simply be restarted with a
smaller progress parameter. As all the conflict clauses are preserved from the pre-
vious run, the new run essentially only visits those interval interpretations that were
previously left in an inconclusive state, and it extends the proof tree precisely at these
inconclusive leaves.

114 5 Integration of DPLL and Interval Constraint Solving

By iterating this scheme for incrementally smaller progress parameter converging
to zero, we obtain an ‘almost complete’ procedure being able to refute all robustly un-
satisfiable (robustly satisfiable, resp.) formulae, where robustness here means that the
corresponding property is stable under small perturbation of the constants in the prob-
lem. Note that such an iterative refinement of the progress parameter is considerably
different from not using a progress parameter, as it still prevents infinite digression
into a single branch of the search space, adding some breadth-first flavor.

5.4 Benchmark Results

In this section we provide experimental results obtained from benchmarking our tool
HYSAT-2 which implements the ISAT algorithm, including support for all customary
Boolean and arithmetic operators, in particular for sine, cosine, and exponentiation,
and which is equipped with the structural optimizations for bounded model checking
as explained in section 4.4.8 A feature not yet implemented in HYSAT-2 is mono-
tonicity relaxation for arithmetic constraints. Moreover, HYSAT-2 uses a simplified
and therefore less powerful version of the deduction rule for multiplication.

The benchmarks mentioned in section 5.4.1 were performed on a 2.5 GHz AMD
Opteron computer with 4 GByte physical memory, while those of sections 5.4.2 and
5.4.3 were executed on a 1.83 GHz Intel Core 2 Duo machine with 1 GByte physical
memory, both running Linux.

5.4.1 Impact of Conflict-Driven Learning

In order to demonstrate the potential of our approach, in particular the benefit of
conflict-driven learning adapted to interval constraint solving, we compare the per-
formance of ISAT to a stripped version thereof, where learning and backjumping are
disabled (but the optimized data structures, in particular watched atoms, remain func-
tional).

We consider bounded model checking problems, that is, proving a property of a
hybrid discrete-continuous transition system for a fixed unwinding depth k. Without
learning, the interval constraint solving system failed on every moderately interest-
ing hybrid system due to complexity problems exhausting memory and runtime. This

8A HYSAT-2 executable, a manual, and the input files for the benchmarks can be found on
http://hysat.informatik.uni-oldenburg.de.

5.4 Benchmark Results 115

is not surprising, because the number of boxes to be potentially visited grows expo-
nentially in the number of variables occuring in the constraint formula, which in turn
grows linearly in both the number of problem variables in the hybrid system and in the
unwinding depth k. When checking a model of an elastic approach to train distance
control (cf. p. 73), the version without learning exhausts the runtime limit of 3 days
already on unwinding depth 1, where formula size is 140 variables and 30 constraints.
In contrast, the version with conflict-driven learning solves all instances up to depth
10 in less than 3 minutes, thereby handling instances with more than 1100 variables,
a corresponding number of triplets and pairs, and 250 inequality constraints. For sim-
pler hybrid systems, like the model of a bouncing ball falling in a gravity field and
subject to non-ideal bouncing on the surface, the learning-free solver works due to the
deterministic nature of the system. Nevertheless, it fails for unwinding depths > 11,
essentially due to enormous numbers of conflicting assignments being constructed
(e.g., > 348 · 106 conflicts for k = 10), whereas learning prevents visits to most of
these assignments (only 68 conflicts remain for k = 10 when conflict-driven learning
is pursued). Consequently, the learning-enhanced solver traverses these problems in
fractions of a second; it is only from depth 40 that our solver needs more than one
minute to solve the bouncing ball problem (2400 variables, 500 constraints). Similar
effects were observed on chaotic real-valued maps, like the gingerbread map. Without
conflict-driven learning, the solver ran into approx. 43 · 106, 291 · 106, and 482 · 106
conflicts for k = 9 to 11, whereas only 253, 178, and 155 conflicts were encountered
in the conflict-driven approach, respectively. This clearly demonstrates that conflict-
driven learning is effective within interval constraint solving: it dramatically prunes
the search space, as witnessed by the drastic reduction in conflict situations encoun-
tered and by the frequency of backjumps of non-trivial depth, where depths of 47
and 55 decision levels were observed on the gingerbread and bouncing ball model,
respectively. Similar effects were observed on two further groups of benchmark ex-
amples: an oscillatory logistic map and some geometric decision problems dealing
with the intersection of n-dimensional geometric objects. On random formulae, we
even obtained backjump distances of more than 70000 levels. The results of the afore-
mentioned benchmarks, excluding the random formulae, are presented in figure 5.5.

5.4.2 Comparison to ABSOLVER

Next, we provide a comparison to ABSOLVER [14], which, to the best of our knowl-
edge, is the only other SMT-based solver addressing the domain of large Boolean

116 5 Integration of DPLL and Interval Constraint Solving

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

Figure 5.5: Performance impact of conflict-driven learning and non-chronological
backtracking: runtime in seconds (top) and number of conflicts encountered (bottom).

5.4 Benchmark Results 117

combinations of nonlinear arithmetic constraints over the reals. The currently re-
ported implementation [14] uses the numerical optimization tool IPOPT [119] for
solving the nonlinear constraints. IPOPT is a highly efficient tool for numerical local
optimization. However, in contrast to global optimization methods, it only searches
for local solutions, and hence may incorrectly claim a satisfiable set of constraints
inconsistent. Moreover, IPOPT may also produce incorrect results due to rounding
errors. Note that solving nonlinear constraints globally and without rounding errors is
considered a problem that is harder to solve by orders of magnitude.

The current implementation of ABSOLVER9 supports the arithmetic operations
of addition (and subtraction) and multiplication (and division) only. Therefore, the
respective benchmarks are restricted to polynomial arithmetic. We performed the
experiments on ABSOLVER with options sat:zchafflib, l:coin, nl:ipopt.

Table 5.6 on the following page lists the experimental results. The second column
contains the unwinding depth of bounded model checking problems, the third column
the number of arithmetic operators in the benchmark.

The first benchmark is described in [79, p. 5]. Benchmarks 2 to 4 can be found
in [14] as well as on ABSOLVER’s web page. The industrial case study of a mixed-
signal circuit in a car-steering control system (benchmark 5) is described in [14], yet
is not publicly available due to protection of intellectual property. The remaining
benchmarks are bounded model checking problems of hybrid systems and of iterated
chaotic maps. Except for the car-steering control system, all benchmarks are available
from the HYSAT-2 website.

For the first 4 benchmarks, which are very small numeric CSPs without complex
Boolean structure, the runtimes are almost equal. For all other benchmarks, ISAT
yields orders of magnitude of speedup compared to ABSOLVER, no matter whether
the benchmarks feature moderately complex Boolean structure, like the mixed-signal
circuit in car-steering, feature extremely complex Boolean structure, as in bounded
model-checking of the linear hybrid automata h3 train, renault clio, and aircraft and
the nonlinear bouncing ball, or are almost conjunctive (basically, one disjunction per
unwinding step), like the iterated duffing and tinkerbell maps. The comparable perfor-
mance on purely conjunctive problems, which is indicative of the relative performance
of the underlying arithmetic reasoning engines, together with the huge performance
gap on problems with more complex Boolean structure shows that the tight integra-
tion of Boolean and arithmetic constraint propagation pursued in ISAT saves overhead
incurred in an SMT approach deferring theory problems to subordinate theory solvers.

9Available from http://absolver.sourceforge.net.

118 5 Integration of DPLL and Interval Constraint Solving

Benchmark BMC depth �arith op ISAT ABSOLVER speedup

nonlinear CSP — 44 0m0.032s 0m0.072s 2.2
esat n11 m8 nonlinear — 7 0m0.028s 0m0.012s 0.4

nonlinear unsat — 2 0m0.004s 0m0.032s 8.0
div operator — 1 0m0.004s 0m0.028s 7.0

car steering — 138 0m0.268s 2m11.032s 488.9

h3 train 2 102 0m0.244s 0m2.968s 12.2
h3 train 3 153 0m0.304s 0m6.480s 21.3
h3 train 4 204 0m0.344s 0m10.401s 30.2
h3 train 5 255 0m0.348s 0m15.981s 45.9
h3 train 17 867 0m30.718s 3m22.769s 6.6
h3 train 18 918 0m33.346s 3m39.374s 6.6
h3 train 30 1530 0m46.519s 10m55.965s 14.1

renault clio 2 132 0m0.020s 0m0.764s 38.2
renault clio 3 198 0m0.024s 0m1.628s 67.8
renault clio 30 1980 0m0.300s 3m48.158s 760.5
renault clio 31 2046 0m0.344s 4m9.528s 725.4

aircraft 5 132 0m0.044s 2m30.113s 3,411.7
aircraft 6 157 0m0.056s 5m47.182s 6,199.7
aircraft 10 257 0m1.496s 50m43.594s 2,034.5

duffing map 3 21 0m0.004s 0m4.904s 1,226.0
duffing map 4 28 0m0.004s 1m58.571s 29,642.7
duffing map 5 35 0m0.004s 3m35.117s 53,779.2
duffing map 6 42 0m0.004s 5m52.822s 88,205.5
duffing map 7 49 0m0.001s 0m22.313s 22,313.0
duffing map 8 56 0m0.004s 1m16.849s 19,212.2
duffing map 20 140 0m0.008s 6m15.675s 46,959.4
duffing map 30 210 0m0.012s > 60m > 300,000

tinkerbell map 1 22 0m0.004s 0m1.292s 323.0
tinkerbell map 2 38 0m0.008s 3m12.052s 24,006.5
tinkerbell map 3 54 0m0.048s 7m58.210s 9,962.7
tinkerbell map 4 70 0m0.676s 15m49.495s 1,404.6
tinkerbell map 5 86 0m1.080s 27m37.548s 1,534.8
tinkerbell map 6 102 0m0.644s 46m42.739s 4,352.1
nonlinear ball 2 52 0m0.008s 9m8.538s 68,567.2
nonlinear ball 3 78 0m0.008s > 60m > 450,000
nonlinear ball 4 104 0m0.012s > 60m > 300,000

Table 5.6: Performance of ISAT relative to ABSOLVER.

5.5 Reachability Analysis with HYSAT-2: a Case Study 119

5.4.3 Comparison to HYSAT-1

We also did a comparison of HYSAT-2 with our LP-based solver HYSAT-1 (cf. chap-
ter 4), using BMC benchmarks comprising linear arithmetic only. HYSAT-2 passed
the back-to-back test with HYSAT-1 successfully: Given enough time and memory,
HYSAT-2 was able to solve all benchmarks with the expected result. In particular, it
found error traces at the same unwinding depth as HYSAT-1, but not earlier, as could
have been expected, since HYSAT-2 may fail to detect unsatisfiability of a formula
and instead report a candidate solution box (i.e. an ‘almost-solution’). However, we
also observed, that some problems which were relatively easy to solve for the lin-
ear programming based solver, turned out to be hard for HYSAT-2. An example is
the train distance control benchmark described on page 73. We quote some statistics
obtained from a version involving three trains, which has an error trace of 22 steps.
HYSAT-1 solves all 23 BMC instances in a total time of 5.3 seconds, thereby invoking
the linear programming solver 2235 times. As opposed to this, HYSAT-2 needs 139
minutes to complete all 23 instances, thereby performing 173500 decisions (i.e. split-
ting steps), analyzing 100628 conflicts, and deducing more than 2.2·109 bounds. Most
of the time is spent on instances near the satisfiability threshold, i.e. for BMC depths
near the point where the unwound formula undergoes the phase transition from being
unsatisfiable to satisfiability. While HYSAT-2 solves unwinding depths 0 ≤ k ≤ 19
in a total of 35.3 seconds, it needs 11.4 minutes for k = 20, 122.2 minutes to prove
unsatisfiability for k = 21, and 4.8 minutes for finding a candidate solution box for
k = 22. The slowdown compared to HYSAT-1 was not unexpected, since it is well-
known that linear programming provides a much stronger deduction mechanism than
interval constraint propagation. In fact, deduction based on ICP is fairly incomplete
(and has therefore to be complemented by interval-splitting to make a usable solving
algorithm), which can be demonstrated by the following example. Consider the for-
mula x+ y = 0 ∧ x− y = 0, where x, y ∈ [−1, 1]. Obviously, x = y = 0 is the only
solution of the formula, yet, the deduction rules given in section 5.3.3 fail do tighten
the intervals of x and y. Given this, it seems advisable to combine the ISAT algorithm
with linear programming in order to accelerate solving of problems involving linear
arithmetic.

5.5 Reachability Analysis with HYSAT-2: a Case Study

To demonstrate the use of HYSAT-2, we present a concrete application benchmark
from the transportation domain. The model was generated using the MATLAB/SIMU-

120 5 Integration of DPLL and Interval Constraint Solving

d

db S

Figure 5.6: The absolute braking distance d equals the sum of the braking distance db
of the following train and an additional safety distance S.

LINK tool. A structure-driven and compositional, currently manually applied transla-
tion — of which we show the most interesting aspects in the second subsection — then
allows for fully automatic bounded model checking. The retrieved error trace is sub-
sequently shown in a side-by-side comparison with a simulation run of the SIMULINK

model.

5.5.1 ETCS Model

The benchmark deals with analyzing the safety of a railway system when operated
under a moving block principle of operation. In contrast to conventional interlocking
schemes in the railway domain, where static track segments are locked in full, the
moving block principle applies headway control as required by the braking distance,
reserving a moving block ahead of the train depending on speed and braking capa-
bilities. There are two variants of this principle, namely train separation in relative
braking distance, where the spacing of two following trains depends on the current
speeds and braking capabilities of both trains, and train separation in absolute braking
distance, where the distance of two following trains equals the braking distance of the
second train plus an additional safety distance (figure 5.6). Within this case study we
apply the second variant which will also be used in the forthcoming European Train
Control System (ETCS) Level- 3. We consider an abstract model of ETCS Level 3.
Within this simplified version, all trains operate in obedience of the following proce-
dures and regulations:

• All trains run on the track travel in the same direction. In particular, the train
sequence is fixed (no overtaking) and a train must not change its direction.

• Each train broadcasts the position of its end to the following train every 8 sec-
onds via radio.

5.5 Reachability Analysis with HYSAT-2: a Case Study 121

• Whenever a train receives an update of the position of the train running ahead,
it computes its movement authority m, i.e. the stopping point it must not cross,
and the deceleration a which is required to meet that stopping point. These are
computed according to the formulae

m = xr − (xh+ S) and a =
v2

2m

where xr is the position of the rear end of the first train, xh is the position of
the head of the second train, and v is its velocity.

Braking is automatically applied whenever the value of a exceeds a certain
threshold bon. Automatic braking ends if a falls below boff.

• When a train is not in automatic braking mode, acceleration and deceleration are
freely controlled by the train operator within the physical bounds of the train.

[xr1][xr2] [a1][a2] [xh1][xh2] [v1][v2]

xr
_i

ni
t

v_
in

it

a_
fr

ee xr
_l

xr xh v a

xr
_i

ni
t

v_
in

it

a_
fr

ee xr
_l

xr xh v a

0.0 −0.7605000800 inf

Figure 5.7: Top-level view of the MATLAB/SIMULINK model.

Figure 5.7 shows the top-level view of the MATLAB/SIMULINK implementation of
the model in a version with two trains. Inputs of a train block are the initial position
of the train, its initial speed, the acceleration applied in free-running mode and the
position of the rear end of the train which is running ahead. Outputs are the position
of the rear end of the head of the train, its velocity and current acceleration.

122 5 Integration of DPLL and Interval Constraint Solving

le
av

e
br

ak
in

g
m

od
e

enter braking mode

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80

velocity
[
m
s

]

movement authority [m]

Figure 5.8: Switching curves of the controller.

Parameter Value

length of the train [m] 200
maximum velocity [m/s] 83.4

maximum acceleration [m/s2] 0.7
maximum deceleration [m/s2] -1.4

bon [m/s2] -0.7
boff [m/s2] -0.3

safety distance S [m] 400

Table 5.7: Parameters of the ETCS case study.

The implementation of a train block is shown in figure 5.9 on the next page. The
parameters of the model are given in table 5.7. We chose them to roughly match the
characteristics of an ICE 3 half-train. The switching curves of the controller resulting
from the choice of bon and boff are shown in figure 5.8. When crossing the lower curve
from above, automatic braking is applied because from this point on a deceleration
of at least bon is required to stop the train within the movement authority. Automatic
braking is released when the upper switching curve is traversed from below.

5.5 Reachability Analysis with HYSAT-2: a Case Study 123

a

a4 v3 xh2 xr1
tim

er

i1 i2 i3

o1 o2 o3

s
40

0

le
n

20
0 1 s

x
o

1 s x
o

−
1

2

xr
_l

4
a_

fr
ee

3
v_

in
it

2
xr

_i
ni

t
1

v

h

br
ak

e

a_
br

ak
e

A
ut

om
at

ic
 b

ra
ke

 c
on

tr
ol

In
pu

t s
am

pl
in

g
T

ra
in

 d
yn

am
ic

s

Fi
gu

re
5.

9:
Im

pl
em

en
ta

tio
n

of
th

e
co

nt
ro

lle
r

an
d

tr
ai

n
dy

na
m

ic
s.

124 5 Integration of DPLL and Interval Constraint Solving

The sample trace in figure 5.10 a) on page 129, which was obtained by simulation
of the model, seems to suggest that the controller works correctly: The trains start with
an initial distance of 5000 m, the second train being 20 m/s faster than the first train,
which is braking with a deceleration of -0.7 m/s2. The second train automatically
starts braking, adjusting its deceleration in intervals of 8 seconds, and comes to stop
exactly 400 m behind the first train.

Instead of performing a potentially unlimited number of simulations to cover all
possible traces of the system, we encode the model for HYSAT-2. This allows us to
check all traces (up to a certain unwinding depth) for collisions of the trains without
having to guess scenarios for the open inputs that may lead to these unsafe states.

1 DECL
2 define f = 2.0;
3 float [0, 1000] x;
4 boole jump;
5

6 INIT
7 x = 0.6;
8 !jump;
9

10 TRANS
11 jump’ <-> !jump;
12 jump -> f * x’ = x;
13 !jump -> x’ = x + 2;
14

15 TARGET
16 x > 3.5;

Listing 5.1: Sample input file for HYSAT-2.

5.5.2 Encoding into HySAT

In order to encode the model described above, we first introduce the input language
of the HYSAT-2 tool by means of the sample input file shown in listing 5.1. The file
consists of four parts10:

• DECL: All variables used in the mode have to be declared here. Types supported
by HYSAT-2 are float, int, and boole. For float and integer variables a
bounded range has to be specified. It is also possible to define symbolic con-
stants in this section (see the definition of f in line 2).

10Note, that HYSAT-2 has a second file format for solving single formulae. See the manual for
details.

5.5 Reachability Analysis with HYSAT-2: a Case Study 125

• INIT: This part contains a formula describing the initial state(s) of the system
to be investigated. In the example file, x is initialized to 0.6, and jump is set to
false, since this is the only valuation which satisfies the constraint !jump,
where ’!’ stands for ’not’.

• TRANS: This formula describes the transition relation of the system. Variables
may occur in primed or unprimed form. A primed variable represents the value
of that variable in the successor step, i.e. after the transition has taken place.
Thus, line 13 of the example states, that if jump is false in the current state,
then the value of x in the next state is given by its current value plus 2. The
semicolon which terminates each constraint can be read as an AND-operator.
Hence, TRANS is a conjunction of three constraints.

• TARGET: This formula characterizes the state(s) whose reachability is to be
checked. In the example, we want to find out if a state is reachable in which x
> 3.5 holds.

Note, that the file sections INIT, TRANS, and TARGET just correspond to the com-
ponents I(�y 0), T (�y , �y ′), and R(�y k) of the BMC formula constructed by the encoding
schemes given in chapter 2 (cf. page 26ff).

When calling HYSAT-2 with the input file above, it successively unwinds the tran-
sition relation k = 0, 1, 2, . . . times, conjoins the resulting formula with the formulae
describing the initial state and the target states, and thereafter solves the formula thus
obtained. For k = 0, 1, 2, 3, 4, the formulae are all unsatisfiable, for k = 5 however,
a solution is found. The output generated by HYSAT-2 for k = 4 and k = 5 is given
in listing 5.2 on the following page. For k = 5, HYSAT-2 reports the values of jump
and x for each step of the unwound transition relation. After the last transition, as
required, x > 3.5 holds.

If HYSAT-2 terminates with the result ‘unsatisfiable’, then the formula is
actually unsatisfiable. If the solver stops with the result ‘candidate solution

box found’, then the solver could not detect any conflicts within the reported in-
tervals. Recall, however, that this does not mean that the intervals are guaranteed to
actually contain a solution. Nevertheless, the sizes of the returned intervals do not
exceed a user-specified parameter ε. From a practical point of view, this means that
the solver returns a solution with precision ε.

126 5 Integration of DPLL and Interval Constraint Solving

1 SOLVING:
2 k = 4
3

4 RESULT:
5 unsatisfiable
6

7 SOLVING:
8 k = 5
9

10 RESULT:
11 candidate solution box found
12

13 SOLUTION:
14 jump (boole):
15 @0: [0, 0]
16 @1: [1, 1]
17 @2: [0, 0]
18 @3: [1, 1]
19 @4: [0, 0]
20 @5: [1, 1]
21

22 x (float):
23 @0: [0.6, 0.6]
24 @1: [2.6, 2.6]
25 @2: [1.3, 1.3]
26 @3: [3.3, 3.3]
27 @4: [1.65, 1.65]
28 @5: [3.65, 3.65]

Listing 5.2: Snippet of solver output.

For encoding the MATLAB/SIMULINK model of the ETCS case study (cf. fig-
ure 5.9 and 5.7) we first introduce a variable (of a corresponding type and domain)
for each connecting line of the SIMULINK model and declare them in the DECL

part. (Please note that by substitution of the invariants of some connected MAT-
LAB/SIMULINK blocks, we may save introduction of variables for some lines.) In
the INIT part we require that the trains are stopped and their distance is 1000meters.
Contrary to the initial state of the simulation, the initial values of the accelerations
are not fixed but may be chosen freely from their domain [−1.4, 0.7]. For the trans-
lation of the SIMULINK blocks into the TRANS part of HYSAT-2 we illustrate the
encodings of the most interesting blocks of figure 5.9, i.e. the relay, switch, and inte-
grator blocks. Simpler blocks, e.g. the sum block, can be encoded straightforwardly,
e.g. by o = i1 + i2 where o is the output and i1, i2 are the inputs of the sum
block. The predicative encodings of all blocks are conjoined by logical conjunction,
represented by a semicolon in concrete HYSAT-2 syntax.

5.5 Reachability Analysis with HYSAT-2: a Case Study 127

• Relay block. When the relay is ‘on’ (indicated by the Boolean variable is on),
it remains ‘on’ until the input drops below the value of the switch-off-point pa-
rameter param off. When the relay is ‘off’ (i.e. not is on or !is on holds),
it remains ‘off’ until the input exceeds the value of the switch-on-point param-
eter param on. The switch-on/off-point parameters are defined as symbolic
constants in the DECL part, i.e. define param on = 0.7; and define
param off = 0.3;.

(is_on and h > param_off) -> (is_on’ and brake);
(is_on and h <= param_off) -> (!is_on’ and !brake);
(!is_on and h < param_on) -> (!is_on’ and !brake);
(!is_on and h >= param_on) -> (is_on’ and brake);

• The switch block passes through the first input a brake or the third input
a free based on the value of the second input brake.

brake -> a = a_brake;
!brake -> a = a_free;

• Integrator block with saturation. The potentially new value v’ of the velocity
is determined by an Euler approximation with sampling time dt = 8, 2, and 1
seconds for the encodings A, B, and C, respectively, and stored temporarily in
the auxiliary variable aux. According to the saturation parameters, v’ is set
to its value as shown below. The lower and upper saturation limits are 0.0 and
v max = 83.4, respectively.

aux = v + dt * a;
aux <= 0.0 -> v’ = 0.0;
aux >= v_max -> v’ = v_max;
(aux > 0.0 and aux < v_max) -> v’ = aux;

Note that other (exact or safe) approximation methods are applicable here. For
the sake of clarity, we opt for the simple, in general inexact, Euler method. We
refer the reader to section 2.2.2 for approaches to safely approximate nonlinear
continuous behaviour.

Finally, completing the HYSAT-2 input we specify a target state, i.e. an undesired
property of the system to be checked. In our case study, we want to know whether
the controller is incorrect in the sense that collisions of the trains are possible. Hence,

128 5 Integration of DPLL and Interval Constraint Solving

we add the formula xr1 - (xr2 + length) <= 0.0; to the TARGET sec-
tion, meaning that the distance of the rear position of the first train xr1 and the head
position of the second train, i.e. rear position xr2 plus length of the train, is less than
or equal zero.

An automatic translation of a subset of SIMULINK models to HYSAT-2 has been
implemented in [97]. This translation follows the scheme sketched above. While not
currently being able to translate the above model due to some of its SIMULINK blocks
not being supported, it is supposed to cover all these blocks as well as a representative
subset of STATEFLOW statecharts, as embedded into SIMULINK, in the future.

5.5.3 Results

Running HYSAT-2 on the encoded models yields error traces of lengths 8 for en-
coding A, 33 for encoding B, and 66 for encoding C. Bounded model checking thus
revealed a simple bug of the controller that was yet subtle enough not to be noticed
when designing the model: If the moving authority m becomes zero or even negative
(which may happen since the controller re-computes the deceleration setting only ev-
ery 8 seconds), then instead of applying the maximum braking force, the controller
switches back to free-running mode, allowing the operator of the train to accelerate
and crash into the rear of the train ahead. While the simulation run depicted in figure
5.10 a) suggests that the distance controller works as intended, the error trace shown
in b), which was obtained from solving encoding C, exposes the bug.

The experiments were performed on a 2.5 GHz Opteron machine with 4 GByte
physical memory, running Linux. The total runtimes for solving all BMC instances
up to the error trace were about 10 seconds for encoding A (with sampling time dt
= 8 seconds), 1.8 minutes for encoding B (dt = 2 seconds) and 21.5 minutes for
encoding C (dt = 1 second). The runtime largely depends on the solver settings,
e.g. the splitting heuristics chosen, with the runtimes reported above being the best we
could obtain for the respective encoding.

The diagrams in figure 5.11 show the impact of conflict-clause sharing and BMC-
specific decision strategies, as discussed in section 4.4, on the runtime of the solver.
The measurements were taken using encoding C. The graphs plot the accumulated
runtime for solving the first n BMC instances against n, where 0 ≤ n ≤ 65. For
example, HYSAT-2 solves the first 40 unwindings of encoding C in about 10 seconds
if sharing of conflict clauses is enabled. Without sharing, HYSAT-2 needs more than
100 seconds to complete them all. Concerning decision strategies, the forward strat-

5.5 Reachability Analysis with HYSAT-2: a Case Study 129

a)
0

50
10

0
15

0
20

0
25

0
30

0
0

10
00

20
00

30
00

40
00

50
00

60
00

−
0.

8

−
0.

6

−
0.

4

−
0.

200204060800

20
00

40
00

60
00

80
00

b)

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0

 0 5 1
0

 1
5

 2
0

 2
5

 3
0 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

−
1.

5

−
1

−
0.

5

 0

 0
.5 1

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0

Fi
gu

re
5.

10
:

a)
Si

m
ul

at
io

n
ru

n
of

th
e

S
IM

U
L

IN
K

m
od

el
w

ith
fix

ed
pa

ra
m

et
er

s.
Fr

om
to

p
to

bo
tto

m
th

e
ch

ar
ts

sh
ow

th
e

po
si

tio
ns

,s
pe

ed
s,

ac
ce

le
ra

tio
ns

an
d

di
st

an
ce

of
th

e
tw

o
tr

ai
ns

ov
er

th
e

si
m

ul
at

ed
tim

e.
b)

E
rr

or
tr

ac
e

fo
un

d
by

H
Y

S
A

T
-2

.

130 5 Integration of DPLL and Interval Constraint Solving

number of solved instancesnumber of solved instances

CPU time used CPU time used

with
 sh

ar
ing

fo
rw

ar
d

he
ur

ist
ics

with
ou

t s
ha

rin
g

ba
ck

war
d

he
ur

ist
ics

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

Figure 5.11: Impact of BMC-specific optimizations.

egy performs significantly better than the backward strategy. Isomorphy inference did
not yield performance gains for this specific benchmarks.

The BMC formula solved to find the trace shown in figure 5.10 contains 7809
variables, thereof 4901 of type float, 2709 of type Boolean, and 2908 of type integer.
(The latter are used to model the timer subsystem appearing in figure 5.9.) Solving all
66 BMC instances required 69969 decisions, 27047 conflicts, and roughly 5.8 · 108
deductions of bounds in total.

5.6 Discussion

Within this chapter, we have demonstrated how a tight integration of DPLL-style SAT
solving and interval constraint propagation can reconcile the strengths of the SAT-
modulo-theory (SMT) approach with those of interval constraint propagation (ICP).
The particular strength of SMT in manipulating large and complex-structured Boolean
combinations of constraints over a (in general decidable) theory is thus lifted to the
undecidable domain of nonlinear arithmetic involving transcendental functions. In
particular, we were thus able to canonically lift to interval-based arithmetic con-
straint solving of massively disjunctive constraint problems the crucial algorithmic
enhancements of modern propositional SAT solvers, especially lazy clause evalua-
tion, conflict-driven learning, and non-chronological backtracking. Our benchmarks

5.6 Discussion 131

demonstrate significant performance gains up to multiple orders of magnitude com-
pared to a pure backtrack SMT+ICP algorithm. Equally important, the performance
gains were consistent throughout our set of benchmarks, with only one trivial instance
incurring a negligible performance penalty due to the more complex algorithms. Sim-
ilar results were observed in comparison with a nonlinear SMT solver (ABSOLVER)
employing classical deferring of theory problems to subordinate solvers, which sub-
stantiates the argument that tighter integration of DPLL and ICP is beneficial.

6 Conclusion

A great while ago the world began · With hey, ho, the wind
and the rain · But that’s all one, our play is done · And we’ll
strive to please you every day.

William Shakespeare

6.1 Achievements

Motivated by the need of solver technology for formal verification of hybrid discrete-
continuous systems, we have investigated algorithms for solving formulae which are
quantifier-free Boolean combinations of arithmetic constraints over the reals. Our
contributions to the state of the art in the field are, in brief, as follows:

• We have demonstrated that acceleration techniques employed in modern propo-
sitional SAT solvers, in particular lazy clause evaluation, learning, and back-
jumping, generalize smoothly to DPLL-like procedures for solving conjunc-
tions of pseudo-Boolean constraints, a much more succinct language for ex-
pressing Boolean functions than CNF.

• We have investigated how to efficiently couple a DPLL-based SAT solver with a
linear programming routine in a DPLL(T) framework in order to obtain a solver
which is tailored for BMC of hybrid systems with linear continuous dynamics.
To this end, we took advantage of BMC-specific optimizations previously only
employed in pure propositional solvers, and demonstrated that such optimiza-
tions, in particular sharing and isomorphic copying of conflict clauses, are even
more effective in solvers with support for real-valued arithmetic, since the com-
putational costs for conflict analysis are much higher in this domain.

• We have conceived a tight integration of the DPLL procedure for Boolean SAT
solving with interval constraint solving. The resulting algorithm, called ISAT,
generalizes the DPLL routine and is capable of solving Boolean combinations
of nonlinear arithmetic constraints which may even involve transcendental func-
tions. We have demonstrated that our approach can deal with formulae involv-
ing some ten thousands of Boolean and real-valued variables.

C. Herde, Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure, DOI 10.1007/978-3-8348-9949-1_6,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

134 6 Conclusion

All algorithms proposed in the preceding chapters have been implemented and eval-
uated using benchmarks from the envisaged application domain. Our work has been
presented at international conferences and has been published in renowned scientific
journals. Moreover, our contributions have been successfully evaluated by indepen-
dent experts from the field during the review meeting of the Transregional Collab-
orative Research Center ‘Automatic Verification and Analysis of Complex Systems’
(AVACS), funded by the DFG, in September 2007.

The relevance of our work for industrial applications is witnessed by inquiries
from Airbus UK1, who requested the source code of HYSAT-2, and Toyota Research
& Development2, who evaluated the tool for the purpose of test pattern generation for
an anti-lock braking system. Airbus UK has meanwhile allocated funding for an inte-
gration of ISAT into the KODKOD constraint solver for relational logic [116] in order
to equip the latter with numerical reasoning capabilities. Furthermore, Airbus UK3 is
currently evaluating the verification of MATLAB/SIMULINK designs with HYSAT-2.

Four ongoing PhD projects which investigate different extensions of the ISAT
algorithm give further evidence to the potential of the ISAT approach. See [53] for
a summary of these endeavours, which are carried out at the universities of Freiburg
and Oldenburg within the AVACS project.

While HYSAT-1 has predominantly been used internally in AVACS, HYSAT-2 is
publicly available since 2007 and has meanwhile been used by a number of researchers
for applications in various domains, e.g. for the analysis of signaling pathways in
biomolecular systems [105], for determination of bit-widths for finite precision im-
plementation of numerical calculations [81], and for the analysis of DC operating
points in analogue circuits [122]. Within the research project DEMS, conducted by
the OFFIS Institute for Information Technology, HYSAT-2 was employed to analyze
the risk of blackouts due to cascading failures in electric power distribution networks.

Moreover, HYSAT-1 and HYSAT-2 have been used within numerous student pro-
jects at the University of Oldenburg and at the Technical University of Denmark, e.g.
for inductive verification of hybrid systems [52, 106], for solving task allocation and
scheduling problems, for the computation of worst-case execution times, for verifica-
tion of a parking-assistance system, and for motion planning of a parallel robot.

1Marcelin Fortez Da Cruz, Airbus UK Systems Engineering, Bristol, UK. Personal communication
(email), March 31, 2008.

2Masakazu Adachi, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan. Personal communi-
cation (meeting in Oldenburg), February 16, 2009.

3Internship project ‘Hybrid function analysis using SAT/interval arithmetic constraint solving’ car-
ried out at Airbus UK in conjunction with the University of Edinburgh, started in September 2009.

6.2 Perspectives 135

The variety of different applications clearly demonstrates the versatility of tools
like those we dealt with in this thesis.

6.2 Perspectives

It seems to be an invariant truth of solver development that with every solver finished,
many ideas on how to do even better pop up. What just appeared to be the ultimate
engine, turns out to be the precursor of a presumably much more powerful algorithm
only. Hoping that solver evolution keeps up its current speed, we provide some start-
ing points for future work.

Improving Performance and Usability of HYSAT-2

The primary objective of our HYSAT-2 implementation was to evaluate the concepts
described in chapter 5, rather than to provide the most efficient code implementing
them. HYSAT-2 is an academic prototype which still lacks several important features,
which would probably make the tool much faster and improve its usability. We list
some extensions which we consider important in this regard, although they rather call
for an implementation effort than for research.

• Improve performance on Boolean problems. The ISAT algorithm employs the
same algorithmics for solving Boolean problems as a propositional SAT solver
does. Yet, HYSAT-2 would drastically fail when compared against such a tool
on purely Boolean benchmarks. The main reason is that the data structures
used in HYSAT-2 are fairly general and not optimized w.r.t. Boolean variables.
Boolean, integer, and real-valued variables are internally represented by the
same type of object which makes handling of Boolean subproblems much less
efficient than it could be. A future reimplementation should improve on this.

• Accuracy measure for almost-solutions. In case that HYSAT-2 cannot prove
an input formula to be unsatisfiable, it provides a small box in the search space
which contains if not genuine solutions, then at least almost-solutions, which
violate arithmetic constraints occuring in the formula at most by a very small
amount. Besides providing the interval valuation defining this box, HYSAT-2
should select an arbitrary point from each interval, report it to the user, pre-
ferrably in form of an exact rational value, and compute the violation of all
equalities and inequalities under this specific valuation. This would allow to

136 6 Conclusion

assess whether the accuracy achieved is sufficient or whether the solver should
be restarted with a smaller progress parameter.

• Individual progress parameter for each variable. The progress parameter ε used
to enforce termination of the ISAT algorithm in particular determines the width
of the intervals defining the candidate solution box delivered by the solver. It
therefore allows to control the accuracy of almost-solutions computed by ISAT.
In the current implementation the same ε applies to all variables, even though
the required accuracy might vary for different variables. Given that engineers
are usually well aware of the acceptable tolerances for the various quantities
occuring in their models, we believe that it would improve the usability of
HYSAT-2, if the progress parameter (and thus the precision of the result) could
be specified individually for each variable.

• Integration of linear programming. The comparison of HYSAT-2 and HYSAT-1
in section 5.4.3 shows that ISAT’s ICP-based reasoning can, in general, not
compete with linear programming. To accelerate reasoning for linear con-
straints, it is thus recommendable to integrate linear programming into ISAT.
Since ISAT is a generalization of the DPLL procedure, the integration can in
principle be carried out in DPLL(T)-style, as described in chapter 4, opening
up a variety of design options, e.g. whether to handle linear constraints only
by linear programming or to additionally decompose them into definitions and
apply ICP, and when to call the LP solver: before, during or after ICP. In the
following section about linear relaxations of nonlinear constraints, we describe
another form of integration which we consider superior to a DPLL(T) approach.

• Spezialized deduction rules for, e.g., pseudo-Boolean constraints. For very fre-
quent types of constraints it might be worthwhile to provide specialized con-
tractors which directly handle non-decomposed constraints and thus allow to
save the auxiliary variables needed for decomposition otherwise. For pseudo-
Boolean constraints, e.g., one could use the propagation rule given in section
3.3.1, and in addition take advantage of the watched literal scheme explained
in section 3.3.2, instead of decomposing and processing such constraints, using
the standard deduction rules of ISAT.

• Splitting heuristics. The current version of HYSAT-2 selects variables for split-
ting in a simple round robin fashion, using a static variable order. So far, hardly
any effort has been made to adapt, implement, and evaluate more elaborated,

6.2 Perspectives 137

dynamic schemes for decision making, like those successfully employed in
state-of-the-art propositional SAT solvers. Here, a wide field for experiments
opens. One could e.g. try heuristics which prefer variables for splitting which
actively contributed to recent conflicts, variables whose splitting has triggered
many deductions in the past, or variables whose interval is still large compared
to others. Currently, HYSAT-2 performs midpoint-splitting of intervals only.
An extension, which seems worthwhile to be explored, is to derive suitable
splitting points (or bounds) from the formula to be solved and store them, for
each variable, in a list which is consulted when the respective variable is chosen
for splitting. Assume, for example, that the input formula contains the con-
straint cos(x) + y2 ≥ 4. Then one could add ‘≥ 4’ to the list associated with
the auxiliary variable representing the left-hand side of the constraint. By using
this bound or its negation for splitting, the solver could, just like in a DPLL(T)
framework, explicitly activate or deactivate the constraint, which would other-
wise only happen by chance or by propagation. Suitable splitting points for x
are multiples of π, since these can restrict the cosine to monotone branches,
thereby enabling stronger deductions through satisfaction of the application
conditions of the respective deduction rules (see page 105).

• Bounded Cone of Influence (BCOI) reduction. BCOI reduction, introduced for
propositional BMC formulae in [21], is a technique which reduces the size of
a BMC formula by removing variables and constraints which cannot affect the
valuation of the variables occuring in the property expression. BCOI reduction
is based on a simple syntactical analysis of the BMC formula and in general
reduces the solving time. It should be performed as a standard preprocessing
step when applying HYSAT-2 to BMC problems.

• Support for optimization problems. In many practical applications it is not only
required to know whether a formula has a solution or not, but also to find a
solution which is optimal w.r.t. some cost function. One might e.g. be interested
in finding a mapping of tasks to processor nodes which minimizes the number of
communications on the bus, or in determining an execution of a hybrid system
which minimizes the consumption of some critical resource. Such problems
can be solved by calling ISAT repeatedly within a binary search scheme which
incrementally prunes the range of the auxiliary variable representing the value
of the cost function in ISAT until the optimal value is attained with sufficient
accuracy. Since ISAT’s input formula may be built from Boolean, integer, and

138 6 Conclusion

real-valued variables using all standard Boolean and arithmetic operations, the
class of optimization problems which can be tackled this way is very general
and in particular includes nonlinear, nonconvex, and mixed-integer problems.

Linear Relaxations of Nonlinear Constraints: PSAT

The general principle underlying ISAT is to apply branching and deduction in order
to reduce the complex problem of deciding the satisfiability of arithmetic constraint
formulae with arbitrary Boolean structure to a sequence of very simple problems,
each consisting in deciding the satisfiability of a conjunction of bound constraints.
Bounds are the basic objects manipulated by ISAT. They are dynamically created
by branching and by deduction, and — being input and output of deduction rules —
are the nodes of the implication graph. At any time, the conjunction of all asserted
bounds defines the portion of the search space which is currently investigated by the
algorithm.

The choice of bounds as atoms of logical reasoning arose naturally from the
attempt to integrate the DPLL procedure with interval constraint solving, because
bounds allow to express both, interval borders and Boolean literals. This notwith-
standing, it is certainly possible (and would be highly interesting) to build an ISAT
solver which is based on a more general class of atomic constraints. A natural choice
would be linear constraints, because satisfiability of conjunctions of linear constraints
can be efficiently decided using linear programming. In the resulting solver — let us
call it PSAT for the time being — linear constraints would take exactly the same role
as bounds do in ISAT. While ISAT encloses potential solutions sets in products of
intervals, the latter being defined by the set of asserted bounds, PSAT would enclose
them in polyhedra, i.e. intersections of the halfspaces defined by the set of asserted lin-
ear constraints. Instead of narrowing bounds, PSAT’s deduction rules would tighten
linear relaxations of solution sets of arithmetic definitions, i.e. they would compute
(locally, for each individual definition) linear inequalities which enclose the graph of
the respective definition from above and from below. By this, they would, in gen-
eral, achieve much tighter enclosings than the ones which could be obtained by using
bound constraints (see figure 6.1). Linear programming would then be used to check
the system of asserted linear constraints for consistency, and, in case of unsatisfiabil-
ity, to detect a minimal reason for the conflict.

Computing linear relaxations of nonlinear constraints is a well-known technique
in the field of nonlinear optimization [94, 115]. It seamlessly integrates with the ISAT
framework, and we believe that ISAT’s performance would considerably benefit from

6.2 Perspectives 139

b2b1

a1

a2

0

0

a1

a2

0

0

c2

c1

Figure 6.1: Given a definition A = Bn with odd n and an interval [a1, a2] for A, bound
deduction can enclose the graph of the definition only very coarsely in a box (left).
Compared to this, the volume enclosed by the polyhedron built from bounds a1 and
a2 and the linear constraints c1 and c2, which have been deduced from the bounds, is
much smaller (right).

the tighter enclosures obtained by the use of linear relaxations. We consider the pSAT
algorithm sketched above to be the most natural integration of linear programming
into ISAT.

Interval Newton Method for Certification of Candidate Solutions

The Interval Newton method is the interval analog of the classical Newton method for
finding roots of a continuously differentiable function f : R → R. The method aims
at iteratively contracting an initial interval I0 such that possible roots of f within I0 are
not removed. This is achieved by computing a sequence Ik+1 = Ik ∩ Nf (Ik), where
Nf is the so-called Newton operator. The latter is defined as Nf (I) = x−f(x)/F ′(I),
where x is some point from I , usually its midpoint, and F ′(I) is the range of f ’s first
derivative f ′ on I , which is computed using interval arithmetic. If 0 ∈ F ′(I), the
Newton operator is undefined. In this case I can be split into subintervals on which
f ′ has no zeros, which are then processed by the Interval Newton method recursively.
Remarkably, the following holds:

1. If Nf (Ik) ∩ Ik = ∅ for some k ∈ N, then f has no roots in I0.

2. If Nf (Ik) ⊆ Ik for some k ∈ N, then f has a root in Ik.

It would be interesting to investigate to what extent this result, which in the same form
holds for the multivariate Interval Newton method for multiple constraints (cf. [17],

140 6 Conclusion

page 585f), is useful to certify or refute the existence of solutions within candidate
solution boxes computed by ISAT. It may certainly happen that neither (1) nor (2)
applies, e.g. if the iteration fails to converge. Due to the undecidability of the formula
class we are dealing with, this has to be necessarily so. On the other hand, it is well-
known that the convergence of Newton’s method is particularly good if the starting
point of the iteration is close to the root. Given that the candidate solution boxes
delivered by ISAT should provide excellent enclosures of potential roots, there is
hope that in practice convergence occurs in many cases.

Propagators for Differential Equations

In section 2.2.2 we have explained hybridization as a method which transforms a
hybrid automaton into another one which safely approximates the original continuous
dynamics with simpler dynamics. This is achieved by

a) splitting control modes of the original automaton into submodes, where each
submode is assigned to a certain part of the state space (a so-called cell), and

b) replacing, within each submode v, the flow predicate p of the original control
mode with a weaker predicate p′, such that p conjoined with the contraints defin-
ing v’s cell implies p′.

Obviously, hybridization is a split-and-deduce method, just like the one employed in
ISAT, performed on the automaton level, however. The interesting point here is, that
the deduction mechanism directly deals with differential equations, not only with con-
ventional arithmetic operations, as interval constraint solving and ISAT do. Deduc-
tion derives, after each splitting step performed, new differential (in)equations whose
solution curves enclose the solution(s) of the original flow constraint.

This suggests to incorporate the same form of deduction directly into ISAT, and
by this enable ISAT to natively handle differential equations. To this end, ISAT would
support, besides ordinary arithmetic definitions, also definitions which contain dotted
variables, like ẋ = x − x2, for example.4 As usual when dealing with differential
equations, the x occuring in ẋ = x − x2 does not represent a variable, but a time-
dependent function x(t), which is a solution of the differential equation. Likewise, ẋ
denotes a function over t, namely the first derivative of x(t). Narrowing the interval of
x by splitting or deduction thus means that the range of x(t) is restricted accordingly
for the entire duration of the flow, i.e. x(t) is confined to a box (or cell) in the state

4The right-hand side x− x2 could be decomposed into further definitions.

6.2 Perspectives 141

space whose upper and lower bounds are given by the interval borders of x. Similarly,
bounds on ẋ apply to the entire flow. ISAT’s deduction rules would, however, treat ẋ
and x simply as names of interval-valued variables, and, given bounds on x, deduce
new bounds on ẋ and vice versa. As illustrated in figure 6.2 a), interval propagation
yields

(
x ≥ 1

2
, x ≤ 1

)
ẋ = x− x2−−−−−−−−→

(
ẋ ≥ 0, ẋ ≤ 1

4

)
, for example. The bounds deduced

for ẋ are interpreted by the component of ISAT which checks all asserted atoms for
consistency. To this end, it replaces bounds on ẋ with their corresponding closed-form
solutions, the latter being linear inequalities, relating inital and final values of the flow.
Figure 6.2 b) depicts the solution curves of ẋ ≥ 0 and ẋ ≤ 1

4
, which enclose the actual

solution of ẋ = x − x2 (printed as dashed line), where x(0) = 1
2

has been chosen as
initial condition. Since bounds on dotted variables have linear solution functions, this
method blends best with the PSAT solver proposed in the previous section, because
PSAT features a linear solver for checking the consistency of asserted atoms.

Given a consistency checker for constraints involving the exponential function, we
could carry the approach one step further and deduce linear differential inequalities
(instead of bounds) which are locally implied by a differential equation. In above
example, we could deduce

(
x ≥ 1

2
, x ≤ 1

)
ẋ = x− x2−−−−−−−−→

(
ẋ ≥ −1

2
x+ 1

2
, ẋ ≤ −1

2
x+ 9

16

)
for instance, as illustrated in figure 6.2 c). As can be seen from figure 6.2 d), the
nonlinear enclosure defined by the deduced linear differential inequations is much
tighter than the linear envelope obtained from deduction of bounds on ẋ.

In general, contraction of x’s interval will restrict the possible duration of the flow,
which has to end before it leaves its cell. In order to capture as much of the flow as
possible within a single BMC step, it is therefore desirable to keep the interval of x as
wide as possible. On the other hand, the width of x’s interval must be small enough
to yield a sufficiently accurate approximation of the flow. This can, for example, be
achieved by adding constraints which ensure that at the beginning and at the end of
the flow the difference between upper and lower boundary curve, i.e. the maximum
approximation error, does not exceed a user-specified limit. These constraints will in
turn entail a bound on the width of x’s interval and thus on the duration of the flow.
If the flow, with these restrictions, cannot connect its potential initial and target states
(i.e. the BMC formula is unsatisfiable), then the solver will be forced to unwind the
BMC formula one step further and thus to split the flow into two fragments, each
of which confined to its individual cell. Increasing the required accuracy thus yields
error traces of increasing length, because flows have to be divided into tiny segments
in order to keep the approximation error small.

142 6 Conclusion

According to the above description, deduction rules compute differential inequa-
tions which are implied by the current proof state and whose solution functions are
generated by the solver backend which performs the consistency check. Alternatively,
it would certainly be possible to build the deduction rules in such a way that they
directly assert the boundary functions enclosing the flow, i.e. propagate(

x ≥ 1
2
, x ≤ 1

)
ẋ = x− x2−−−−−−−−→

(
x(t) ≥ x(0), x(t) ≤ x(0) + 1

4
t
)
,

where x(0) and x(t) are initial and final value of the flow, instead of(
x ≥ 1

2
, x ≤ 1

)
ẋ = x− x2−−−−−−−−→

(
ẋ ≥ 0, ẋ ≤ 1

4

)
.

Moreover, the boundary functions need not necessarily be solutions of differential
inequations derived in a previous step, but could as well be Taylor expansions, like
those employed in section 2.2.3.

Parallelization of ISAT via Partitioning of the Implication Queue

It is well-known that the major part of the runtime of a propositional SAT solver
(more than 90% according to [91]) is consumed by deduction. This is even more true
for ISAT, because real-valued variables may be assigned many times during ISAT’s
deduction phase, not just once, like Boolean variables. Optimizations of the deduction
routine therefore have a strong impact on the overall performance of the solver.

A central data structure used to implement deduction in modern SAT engines is
the implication queue which stores all recent assignments whose deductive conse-
quences have not been explored yet. Deduction rules add asserted atoms (i.e. literals
in a SAT solver and bounds in ISAT) to the rear of the queue, while the inference
engine removes them from the front and checks (through application of deduction
rules) whether they yield further propagations. Deduction terminates if the implica-
tion queue runs empty.

Given that most CPUs today feature a multi-core architecture, a reasonable ap-
proach to speed up deduction would be to parallelize processing of the deduction
queue by partitioning the latter into multiple subqueues, where the entries of each
subqueue are processed by a separate process or thread. In particular, this would en-
able to run multiple specialized inference engines in parallel, e.g. one optimized for
purely Boolean deduction, another one for ICP-based deduction, and a third one for
LP-based reasoning. Each engine would be allocated on a different processor core and
consume inputs from a dedicated subqueue, containing entries of the sort processed
by the respective inference engine only.

6.3 Final Thoughts 143

−0.4

−0.8

 0

 0.4

−0.4

−0.8

 0

 0.4

 0 0.5 1 1.5 0 0.5 1 1.5

 0.9

 0.8

 0.7

 0.6

 0.5 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 0 0.5 1 1.5t t

x x

ẋ ≤ 1

4

ẋ ≥ 0

x x

dx

dt

dx

dt

ẋ ≤ − 1
2 x+

9
16

ẋ ≥ − 1
2 x+ 1

2

x1 x2 x1 x2

a)

b)

c)

d)

x(t) = 1

1+e−t

x(t) ≥ 1

2

x(
t)
≤

1
2

+
1
4
t

x(
t)
≤
−
5
8
e
−

1
2

t +
9
8

x(
t)
≥
−
1
2
e
−

1
2

t +
1

ẋ
=
x
−
x

2

ẋ
=
x
−
x

2

Figure 6.2: Deduction of differential inequations.

A common problem observed in solvers which combine different solving tech-
nologies, e.g. in DPLL(T) solvers, is the high runtime penalty incurred through cache
invalidation upon each handover between the different engines. Provided that the
individual processor cores are equipped with caches of sufficient size, the form of
parallelization proposed above would provide a neat solution to this problem, yield-
ing accelerations which go beyond the speed-ups achieved by parallel processing of
implication queue entries.

6.3 Final Thoughts

The work on proof engines for the analysis of hybrid systems is an appealing field of
research: On the one hand it touches problems, e.g. questions concerning complexity

144 6 Conclusion

and decidability, which lie at the heart of the theory of computation, and on the other
hand the resulting tools are of immediate practical use, as witnessed by the spectrum
of applications quoted in section 6.1.

Modern SAT and SMT solvers, like those we dealt with in this thesis, are highly
optimized, complex pieces of software. Their performance not only rests upon theo-
retical insights, but a good deal of it is based on clever implementation techniques and
low-level code optimizations which, unfortunately, hardly make their way into publi-
cations. The combination of theoretical work, good programming skills and practical
experience, which is indispensible for building efficient solvers, renders their devel-
opment a challenging and interesting task.

A rule of thumb quoted in many books on algorithms states that NP-completeness
marks the borderline between problems that can be efficiently solved and problems
which are computationally intractable. According to this rule, none of the problems
tackled in this thesis has an efficient solution — seemingly contradicting the title of
this work. This notwithstanding, we have demonstrated that our tools can handle
formulae with several ten-thousands of Boolean and continuous variables, even such
involving nonlinear arithmetic constraints.

Yet, the problems we are dealing with are inherently hard, as witnessed by the
fact that once in a while one discovers an innocent looking problem which has ex-
tremely long runtimes. An analysis of the reasons for such behaviour is usually intri-
cate and tedious, but occasionally yields insights which help to improve the solving
algorithms. Breakthroughs are rare, however, and one has to be prepared that a lot of
work might yield very little increase in performance only. If at all. In fact, the work in
a domain, where simple code optimization may yield bigger performance gains than
sophisticated theoretical work, can also be quite frustrating. Still, this kind of work is
mandatory to push technological development, even if progress comes in small steps
only, which is the case in propositional SAT solving for some years now.

It took more than 30 years from the invention of the Davis-Putnam algorithm
to the maturity of SAT solving for industrial applications. As to solvers for mixed
propositional-numerical formulae, we are just at the beginning and will hopefully
witness a similarly impressive development like in propositional SAT solving within
the next decades.

Bibliography

[1] Erika Ábrahám, Bernd Becker, Felix Klaedtke, and Martin Steffen. Optimizing
bounded model checking for linear hybrid systems. In Proceedings of VM-
CAI’05 (Verification, Model Checking, and Abstraction), volume 3385 of Lec-
ture Notes in Computer Science, pages 396–412, Paris, January 2005. Springer-
Verlag.

[2] Erika Ábrahám, Marc Herbstritt, Bernd Becker, and Martin Steffen. Memory-
aware bounded model checking for linear hybrid systems. In Bernd Straube,
editor, ITG/GI/GMM-Workshop “Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen”, pages 153–
162, February 2006. ISBN 3-9810287-1-6.

[3] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic
ILP versus specialized 0-1 ILP: An update. In Proceedings of the ACM/IEEE
Intl. Conf. Comp.-Aided Design (ICCAD), pages 450–457, November 2002.

[4] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. PBS: A
backtrack search pseudo–Boolean solver. In Proceedings of the International
Symposium on the theory and applications of satisfiability testing (SAT), pages
346–353, 2002.

[5] Eugene Asarin, Thao Dang, Goran Frehse, Antoine Girard, Colas Le Guernic,
and Oded Maler. Recent progress in continuous and hybrid reachability analy-
sis. In Proceedings of the IEEE International Symposium on Computer-Aided
Control Systems Design, pages 1582–1587, Munich, Germany, 2006.

[6] Eugene Asarin, Thao Dang, and Antoine Girard. Hybridization methods for
the analysis of nonlinear systems. Acta Informatica, 43(7):451–476, 2007.

[7] Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto Sebas-
tiani. Verifying industrial hybrid systems with MathSAT. ENTCS, 89(4), 2004.

C. Herde, Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure, DOI 10.1007/978-3-8348-9949-1,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

146 Bibliography

[8] Andrea Balluchi, Luca Benvenuti, Maria Domenica Di Benedetto, Tiziano
Villa, and Alberto L. Sangiovanni-Vincentelli. Idle speed control: A bench-
mark for hybrid system research. In Proceedings of the 2nd IFAC Conference
on Analysis and Design of Hybrid Systems (ADHS’06), Alghero, Italy, 2006.

[9] Luı́s Baptista and João P. Marques Silva. Using randomization and learning to
solve hard real-world instances of satisfiability. In Proceedings of the 6th Inter-
national Conference on Principles and Practice of Constraint Programming,
2000.

[10] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Split-
ting on Demand in SAT Modulo Theories. In M. Hermann and A. Voronkov,
editors, 13th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, LPAR’06, volume 4246 of LNCS, pages 512–526.
Springer, 2006.

[11] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Her-
manns, editors, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV’07), volume 4590 of Lecture Notes in Computer Sci-
ence, pages 298–302. Springer-Verlag, July 2007. Berlin, Germany.

[12] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Sat-
isfiability modulo theories. In Biere et al. [22], pages 825–885.

[13] Peter Barth. A Davis–Putnam based enumeration algorithm for linear pseudo–
Boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut
für Informatik, Saarbrücken, Germany, 1995.

[14] Andreas Bauer, Markus Pister, and Michael Tautschnig. Tool-support for the
analysis of hybrid systems and models. In Proceedings of the 2007 Confer-
ence on Design, Automation and Test in Europe (DATE’07), Los Alamitos,
CA, April 2007. IEEE Computer Society.

[15] Alberto Bemporad and Manfred Morari. Verification of hybrid systems via
mathematical programming. In Frits W. Vaandrager and Jan H. van Schuppen,
editors, Hybrid Systems: Computation and Control (HSCC’99), volume 1569
of Lecture Notes in Computer Science, pages 31–45. Springer-Verlag, 1999.

Bibliography 147

[16] Frédéric Benhamou. Heterogeneous constraint solving. In Proceedings of the
5th International Conf. on Algebraic and Logic Programming, volume 1139 of
LNCS. Springer, 1996.

[17] Frédéric Benhamou and Laurent Granvilliers. Continuous and interval con-
straints. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, Hand-
book of Constraint Programming, Foundations of Artificial Intelligence, chap-
ter 16. Elsevier Science Publishers, Amsterdam, The Netherlands, 2006.

[18] Frédéric Benhamou, David A. McAllester, and Pascal Van Hentenryck.
CLP (intervals) revisited. In Proceedings of the 1994 International Sympo-
sium on Logic programming (ILPS’94), pages 124–138, Cambridge, MA, USA,
1994. MIT Press.

[19] Gérard Berry, Hubert Comon, and Alain Finkel, editors. Computer Aided Ver-
ification, 13th International Conference, CAV 2001, Paris, France, July 18-
22, 2001, Proceedings, volume 2102 of Lecture Notes in Computer Science.
Springer, 2001.

[20] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. In Rance Cleaveland, editor, TACAS’99,
volume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer,
1999.

[21] Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan Zhu. Verifying
safety properties of a powerPC microprocessor using symbolic model check-
ing without BDDs. In Proceedings of the 11th International Conference on
Computer Aided Verification (CAV’99), pages 60–71. Springer-Verlag, 1999.

[22] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press, February 2009.

[23] Aart J. C. Bik and Harry A. G. Wijshoff. Implementation of Fourier-Motzkin
elimination. Technical Report TR94-42, Dpt. of Computer Science, University
of Leiden, The Netherlands, 1994.

[24] Per Bjesse and Koen Claessen. SAT-based verification without state space
traversal. In Proceedings of the 3rd International Conference on Formal Meth-

148 Bibliography

ods in Computer-Aided Design (FMCAD’00), pages 372–389, London, UK,
2000. Springer-Verlag.

[25] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in an alpha
microprocessor using satisfiability solvers. In Berry et al. [19], pages 454–464.

[26] Alexander Bockmayr and Volker Weispfenning. Solving numerical constraints.
In John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume 1, chapter 12, pages 751–842. Elsevier and MIT Press,
Amsterdam, the Netherlands, 2001.

[27] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-
Carbonell, and Albert Rubio. The barcelogic SMT solver. In Proceedings
of the 20th international conference on Computer Aided Verification (CAV’08),
pages 294–298, Berlin, Heidelberg, 2008. Springer-Verlag.

[28] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Antero
Junttila, Rossum Peter van, Stephan Peter Schulz, and Roberto Sebastiani.
An incremental and layered procedure for the satisfiability of linear arithmetic
logic. In 11th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’05), pages 317–333. Springer, 2005.

[29] Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[30] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deciding CLU
logic formulas via Boolean and pseudo–Boolean encodings. In In Proceedings
of the International Workshop on Constraints in Formal Verification (CFV’02),
2002.

[31] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states and beyond. In
Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’90), pages 428–439, Philadelphia, Pennsylvania, USA, 1990. IEEE
Computer Society.

[32] Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver.
In Proceedings of the 40th Design Automation Conference (DAC’03), pages
830–835, Anaheim (California, USA), June 2003. ACM.

Bibliography 149

[33] John W. Chinneck. Finding a useful subset of constraints for analysis in an
infeasible linear program. INFORMS Journal on Computing, 9(2):164–174,
1997.

[34] John W. Chinneck and E. W. Dravnieks. Locating minimal infeasible constraint
sets in linear programs. ORSA Journal on Computing, 3(2):157–168, 1991.

[35] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.
Computational challenges in bounded model checking. STTT, 7(2):174–183,
2005.

[36] John G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149,
1987.

[37] George E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In H. Barkhage, editor, Automata Theory and Formal
Languages, volume 33 of Lecture Notes in Computer Science, pages 134–183.
Springer, 1975.

[38] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the 3rd annual ACM symposium on Theory of computing (STOC’71),
pages 151–158, New York, NY, USA, 1971. ACM.

[39] Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila Kamhi, Ar-
mando Tacchella, and Moshe Y. Vardi. Benefits of bounded model checking at
an industrial setting. In Berry et al. [19], pages 436–453.

[40] George Bernhard Dantzig. Maximization of a linear function of variables sub-
ject to linear inequalities. In T. C. Koopmans, editor, Activity Analysis of Pro-
duction and Allocation - Proceedings of a Conference, volume 13 of Cowles
Commission Monograph, pages 339–347. Wiley, New York, 1951.

[41] Ernest Davis. Constraint propagation with interval labels. Artif. Intell.,
32(3):281–331, 1987.

[42] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[43] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, July 1960.

150 Bibliography

[44] Thierry Boy de la Tour. An optimality result for clause form translation. J.
Symb. Comput., 14(4):283–301, 1992.

[45] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08), volume 4963/2008 of Lecture Notes in Computer Science, pages
337–340. Springer Berlin, April 2008.

[46] Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, and N. Shankar.
The ICS decision procedures for embedded deduction. In 2nd International
Joint Conference on Automated Reasoning (IJCAR), volume 3097 of Lecture
Notes in Computer Science, pages 218–222, Cork, Ireland, July 2004. Springer-
Verlag.

[47] Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. In Rajeev Alur and Doron Peled, edi-
tors, Computer-Aided Verification, CAV 2004, volume 3114 of Lecture Notes in
Computer Science, pages 496–500, Boston, MA, July 2004. Springer-Verlag.

[48] Marcel Dhiflaoui, Stefan Funke, Carsten Kwappik, Kurt Mehlhorn, Michael
Seel, Elmar Schömer, Ralph Schulte, and Dennis Weber. Certifying and re-
pairing solutions to large LPs how good are LP-solvers? In SODA ’03: Pro-
ceedings of the 14th annual ACM-SIAM symposium on Discrete algorithms,
pages 255–256, Philadelphia, PA, USA, 2003. Society for Industrial and Ap-
plied Mathematics.

[49] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proceedings of the 18th Computer-Aided Verification conference,
volume 4144 of LNCS, pages 81–94. Springer-Verlag, 2006.

[50] Bruno Dutertre and Leonardo de Moura. Integrating simplex with DPLL(T).
Technical Report SRI-CSL-06-01, SRI International, 2006.

[51] Niklas Eén and Niklas Sörensson. Translating pseudo–Boolean constraints into
SAT. JSAT, 2(1-4):1–26, 2006.

[52] Andreas Eggers. Induktive Verifikation linearer Hybrider Systeme. BSc thesis,
Carl von Ossietzky Universität, Department of Computing Science, Oldenburg,
Germany, 2005.

Bibliography 151

[53] Andreas Eggers, Natalia Kalinnik, Stefan Kupferschmid, and Tino Teige. Chal-
lenges in constraint-based analysis of hybrid systems. In Angelo Oddi, François
Fages, and Francesca Rossi, editors, Recent Advances in Constraints – 13th
Annual ERCIM International Workshop on Constraint Solving and Constraint
Logic Programming, CSCLP 2008, Rome, Italy, June 18-20, 2008, Revised Se-
lected Papers, volume 5655 of Lecture Notes in Artificial Intelligence, pages
51–65, Berlin, Heidelberg, 2009. Springer.

[54] Sebastian Engell, Stefan Kowalewski, Christian Schulz, and Olaf Stursberg.
Continuous–discrete interactions in chemical processing plants. Proceedings
of the IEEE, 88(7):1050–1068, July 2000.

[55] Jacob Enslev, Anne-Sofie Nielsen, Martin Fränzle, and Michael R. Hansen.
Bounded model construction for duration calculus. In Neil Jones et al., editor,
Proceedings of the 17th Nordic Workshop on Programming Theory (NWPT 05).
Københavns Universitet, October 2005.

[56] Julius Farkas. Theorie der einfachen Ungleichungen. Journal für die reine und
angewandte Mathematik, 124:1–27, 1901.

[57] Germain Faure, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodrı́guez
Carbonell. SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and
Commercial Solvers. In Hans Kleine Buning and Xishun Zhao, editors, Pro-
ceedings of the 11th International Conference on Theory and Applications of
Satisfiability Testing, SAT’08, volume 4996 of Lecture Notes in Computer Sci-
ence, pages 77–90. Springer, 2008.

[58] Jean Baptiste Joseph Fourier. Solution d’une question particulière du calcul
des inégalités. Nouveau Bulletin des Sciences par la Société Philomatique de
Paris, pages 99–100, 1826.

[59] Martin Fränzle. Take it NP-easy: Bounded model construction for duration
calculus. In Ernst-Rüdiger Olderog and Werner Damm, editors, International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant systems
(FTRTFT 2002), volume 2469 of Lecture Notes in Computer Science, pages
245–264. Springer-Verlag, 2002.

[60] Martin Fränzle and Christian Herde. Efficient SAT engines for concise logics:
Accelerating proof search for zero-one linear constraint systems. In Andrei

152 Bibliography

Voronkov and Moshe Y. Vardi, editors, Logic for Programming, Artificial In-
telligence and Reasoning (LPAR 2003), volume 2850 of LNCS, subseries LNAI,
pages 302–316. Springer Verlag, 2003.

[61] Martin Fränzle and Christian Herde. Efficient proof engines for bounded model
checking of hybrid systems. In Proceedings of the 9th International Work-
shop on Formal Methods for Industrial Critical Systems (FMICS’04), Elec-
tronic Notes in Theoretical Computer Science (ENTCS). Elsevier, 2004.

[62] Martin Fränzle and Christian Herde. HySAT: An efficient proof engine for
bounded model checking of hybrid systems. Formal Methods in System Design,
30:179–198, 2007.

[63] Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert, and Tino
Teige. Efficient solving of large non-linear arithmetic constraint systems with
complex Boolean structure. JSAT Special Issue on Constraint Programming
and SAT, 1:209–236, 2007.

[64] Goran Frehse. PHAVer: algorithmic verification of hybrid systems past
HyTech. Int. J. Softw. Tools Technol. Transf., 10(3):263–279, 2008.

[65] Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, 1:25–46, 1993.

[66] John Gleeson and Jennifer Ryan. Identifying minimally infeasible subsystems
of inequalities. INFORMS Journal on Computing, 2(1):61–63, 1990.

[67] Jan Frisco Groote, Wilco Koorn, and Sebastian van Vlijmen. The safety
guaranteeing system at station Hoorn-Kersenboogerd. In Proceedings of the
10th Annual Conference on Computer Assurance (Compass’95), pages 57–68,
Gaithersburg, Maryland, 1995. National Institute of Standards and Technology.

[68] Jan Frisco Groote and Joost P. Warners. The propositional formula checker
HeerHugo. Technical report SEN-R9905, CWI, 1999.

[69] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms
for the satisfiability (SAT) problem: A survey. In DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pages 19–152. Amer-
ican Mathematical Society, 1996.

Bibliography 153

[70] David Harel and Michal Politi. Modeling Reactive Systems with Statecharts.
McGraw-Hill Inc., 1998.

[71] Eric C. R. Hehner. Predicative programming. Communications of the ACM,
27:134–151, 1984.

[72] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model
checker for hybrid systems. International Journal on Software Tools for Tech-
nology Transfer, 1(1-2):110–122, 1997.

[73] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? In Proceedings of the 27th annual ACM
symposium on Theory of computing (STOC’95), pages 373–382, New York,
USA, 1995. ACM.

[74] Christian Herde, Andreas Eggers, Martin Fränzle, and Tino Teige. Analysis of
hybrid systems using HySAT. In Proceedings of the 3rd International Confer-
ence on Systems (ICONS’08), pages 196–201, Los Alamitos, CA, USA, 2008.
IEEE Computer Society.

[75] Timothy J. Hickey, Qun Ju, and Maarten H. van Emden. Interval arithmetic:
from principles to implementation. Journal of the ACM, 48(5):1038–1068,
2001.

[76] Paul Jackson and Daniel Sheridan. Clause form conversions for Boolean cir-
cuits. In Holger H. Hoos and David G. Mitchell, editors, SAT (Selected Papers),
volume 3542 of Lecture Notes in Computer Science, pages 183–198. Springer,
2004.

[77] Paul Jackson and Daniel Sheridan. The optimality of a fast CNF conversion and
its use with SAT. Technical Report APES-82-2004, APES Research Group,
March 2004.

[78] Hoonsang Jin and Fabio Somenzi. An incremental algorithm to check satisfia-
bility for bounded model checking. ENTCS, 119, 2004.

[79] Narenda Jussien and Olivier Lhomme. Dynamic domain splitting for numeric
CSPs. In European Conference on Artificial Intelligence, pages 224–228, 1998.

[80] Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear program-
ming. Soviet Mathematics Doklady, 20:191–194, 1979.

154 Bibliography

[81] Adam B. Kinsman and Nicola Nicolici. Finite precision bit–width allocation
using SAT–modulo theory. In Proceedings of the 2009 Conference on Design,
Automation and Test in Europe (DATE’09), pages 1106–1111, 2009.

[82] Stefan Kowalewski and Olaf Stursberg. The batch evaporator: A benchmark
example for safety analysis of processing systems under logic control. In Pro-
ceedings 4th Workshop on Discrete Event Systems (WODES’98), pages 302–
307, London, 1998.

[83] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer, 2008.

[84] Andreas Kuehlmann, Malay K. Ganai, and Viresh Paruthi. Circuit-based
boolean reasoning. In Proceedings of the 38th Design Automation Conference
(DAC’01), pages 232–237, New York, NY, USA, 2001. ACM.

[85] Inês Lynce, Luı́s Baptista, and João P. Marques Silva. Complete search
restart strategies for satisfiability. In Proceedings of the IJCAI’01 Workshop
on Stochastic Search Algorithms (IJCAI-SSA), August 2001.

[86] Vasco M. Manquinho and Olivier Roussel. The first evaluation of pseudo–
Boolean solvers (PB’05). Journal on Satisfiability, Boolean Modeling and
Computation(JSAT), 2:103–143, 2006.

[87] Vasco M. Manquinho and João P. Marques Silva. On using cutting planes in
pseudo–Boolean optimization. JSAT, 2(1-4):209–219, 2006.

[88] Yuri Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Mas-
sachusetts, 1993.

[89] Kenneth L. McMillan. Interpolation and SAT-based model checking. In Warren
A. Hunt Jr. and Fabio Somenzi, editors, CAV, volume 2725 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2003.

[90] Ramon Edgar Moore. Interval Analysis. Prentice Hall, NJ, 1966.

[91] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of
the 38th Design Automation Conference (DAC’01), 2001.

Bibliography 155

[92] Theodore Samuel Motzkin. Beiträge zur Theorie der linearen Ungleichungen.
Doctoral dissertation, Universität Zürich, 1936.

[93] Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge Univ.
Press, Cambridge, 1990.

[94] Arnold Neumaier. Complete search in continuous global optimization and con-
straint satisfaction. Acta Numerica, 13:271–369, 2003.

[95] Arnold Neumaier and Oleg Shcherbina. Safe bounds in linear and mixed-
integer linear programming. Math. Program., 99(2):283–296, 2004.

[96] Andreas Nonnengart and Christoph Weidenbach. Computing small clause nor-
mal forms. In Alan Robinson and Andrei Voronkov, editors, Handbook of Au-
tomated Reasoning, chapter 6, pages 335–367. Elsevier, Amsterdam, Nether-
lands, 2001.

[97] Sören Ollhoff. Automatische Übersetzung von Simulink Modellen in HySAT-
Formeln. BSc thesis, Carl von Ossietzky Universität, Department of Comput-
ing Science, Oldenburg, Germany, 2007.

[98] Jonathan H. Owen and Sanjay Mehrotra. On the value of binary expansions for
general mixed-integer linear programs. Operations Research, 50(5):810–819,
2002.

[99] Viresh Paruthi and Andreas Kuehlmann. Equivalence checking combining a
structural SAT-solver, BDDs, and simulation. Computer Design, International
Conference on, 0:459, 2000.

[100] Marc E. Pfetsch. The Maximum Feasible Subsystem Problem and Vertex-Facet
Incidences of Polyhedra. Doctoral dissertation, TU Berlin, 2002.

[101] Florian Pigorsch, Christoph Scholl, and Stefan Disch. Advanced unbounded
model checking based on AIGs, BDD sweeping, and quantifier scheduling. In
Proceedings of the Formal Methods in Computer Aided Design (FMCAD’06),
pages 89–96, Washington, DC, USA, 2006. IEEE Computer Society.

[102] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form
translation. J. Symb. Comput., 2(3):293–304, 1986.

[103] Steven David Prestwich. CNF encodings. In Biere et al. [22], pages 75–97.

156 Bibliography

[104] Stefan Ratschan. Efficient solving of quantified inequality constraints over
the real numbers. ACM Transactions on Computational Logic, 7(4):723–748,
2006.

[105] Andreas Schäfer and Mathias John. Conceptional modeling and analysis of
spatio-temporal processes in biomolecular systems. In Sebastian Link and
Markus Kirchberg, editors, Proceedings of the 6th Asia-Pacific Conference on
Conceptual Modelling (APCCM 2009), volume 96 of CRPIT, pages 39–48,
Wellington, New Zealand, 2009. ACS.

[106] Carsten Schild. Anwendung induktiver Verifikation mittels DPLL–basierten
arithmetischen Constraint–Solvings auf eine ETCS–Fallstudie. Student re-
search project, Carl von Ossietzky Universität, Department of Computing Sci-
ence, Oldenburg, Germany, 2009.

[107] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, 1986.

[108] Roberto Sebastiani. Lazy satisfiability modulo theories. JSAT Special Issue on
Satisfiability Modulo Theories, 3:141–224, 2007.

[109] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety prop-
erties using induction and a SAT-solver. In Proceedings of the 3rd Inter-
national Conference on Formal Methods in Computer-Aided Design (FM-
CAD’00), pages 108–125, London, UK, 2000. Springer-Verlag.

[110] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo–Boolean
SAT solver. JSAT, 2(1-4):165–189, 2006.

[111] João P. Marques Silva. The impact of branching heuristics in propositional
satisfiability algorithms. In Proceedings of the 9th Portuguese Conference on
Artificial Intelligence (EPIA), September 1999.

[112] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521,
May 1999.

[113] Ofer Strichman. Tuning SAT checkers for bounded model checking. In Pro-
ceedings of the 12th International Conference on Computer Aided Verification
(CAV’00), pages 480–494, London, UK, 2000. Springer-Verlag.

Bibliography 157

[114] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, Berkely, California, 1951. Previous version pub-
lished as a technical report by the RAND Corporation, 1948.

[115] Mohit Tawarmalani and Nikolaos V. Sahinidis. Global optimization of mixed-
integer nonlinear programs: A theoretical and computational study. Math. Pro-
gram., 99(3):563–591, 2004.

[116] Emina Torlak. A Constraint Solver for Software Engineering: Finding Mod-
els and Cores of Large Relational Specifications. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 2009.

[117] Fabio Danilo Torrisi. Modeling and Reach-Set Computation for Analysis and
Optimal Control of Discrete Hybrid Automata. PhD thesis, ETH Zrich, 2003.

[118] Gregory S. Tseitin. On the complexity of derivations in propositional calculus.
In A. Slisenko, editor, Studies in Constructive Mathematics and Mathematical
Logics, 1968.

[119] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Math-
ematical Programming, pages 25–57, 2006.

[120] Jesse Whittemore, Joonyoung Kim, and Karem Sakallah. SATIRE: A new
incremental satisfiability engine. In Proceedings of the 38th Design Automation
Conference (DAC’01), pages 542–545, Las Vegas (Nevada, USA), June 2001.

[121] Steven A. Wolfman and Daniel S. Weld. The LPSAT engine & its application
to resource planning. In Proceedings of the 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI’99), pages 310–316, Stockholm, Sweden,
1999.

[122] Mohamed H. Zaki, Ian M. Mitchell, and Mark M. Greenstreet. DC operating
point analyis: a formal approach. Workshop on Formal Verification of Analog
Circuits (FAC’09), 2009.

[123] Hantao Zhang. SATO: An efficient propositional prover. In Proceedings of the
International Conference on Automated Deduction (CADE’97), volume 1249
of LNAI, pages 272–275. Springer, 1997.

158 Bibliography

[124] Hantao Zhang and Mark E. Stickel. An efficient algorithm for unit-propagation.
In Proceedings of the International Symposium on Artificial Intelligence and
Mathematics (AI-MATH’96), pages 166–169, Fort Lauderdale (Florida USA),
1996.

[125] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in a Boolean satisfiability solver. In Proceed-
ings of the International Conference on Computer-Aided Design (ICCAD’01),
pages 279–285, November 2001.

[126] Lintao Zhang and Sharad Malik. The quest for efficient Boolean satisfiability
solvers. In Proceedings of the 18th International Conference on Automated
Deduction (CADE’02), pages 295–313, London, UK, 2002. Springer-Verlag.

Index

A
absolute braking distance 120

ABsolver 115

almost-completeness 113

antitony 91

approximation 24

arithmetic conflict 65

arithmetic deduction rules 98

arithmetic operator 91

arithmetic predicate 17

arity 90

AVACS 13, 134

B
backjumping 48, 63, 95

backtracking 37

backward strategy 72, 130

Barcelogic 59

BCOI 137

BDD 3

binary decision diagram (BDD) 3

BMC 2

Boolean abstraction 61

Boolean formula 41

Boolean function 41

Boolean operator 91

bounded cone of influence (BCOI) 137

bounded model checking 37

bounded model checking (BMC) 2

C
CAD 8

cardinality constraints 39, 57

Chaff 10, 49

clausal form 41

clause 6, 41

closed-form solution 24

CNF 6, 41

codomain 90

COI 137

completeness threshold of BMC 2

cone of influence 137

conflict analysis 47

conflict clause 7, 47, 63, 96

conflict driven learning 96

conflict-driven learning 7, 37, 47, 111, 114

conflicting clause 46

conjunction 41

conjunctive normal form (CNF) 6, 41

coNP-completeness 42

conservative approximation 24

consistency 40, 61

constraint 17

constraint satisfaction problem (CSP) 83

contractor 88

contradiction 41

control mode 17

Cook, Stephen 6

cost function 137

C. Herde, Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure, DOI 10.1007/978-3-8348-9949-1,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

160 Index

CPLEX 64, 78
Craig interpolant 3
CSP 83
CVC 59
cylindrical algebraic decomp. (CAD) 8

D
decision 46, 95
decision level 46, 96
decision strategies for BMC 72, 128
deduction 45, 95, 98
definitional form 44
definitional translation 43, 61, 90
deletion filtering 66
dicrete transition 17
differential equations 18, 140
differential inequality 31
disjunction 41
disjunctive normal form (DNF) 41
DNF 41
domain 90
DPLL procedure 6, 45
DPLL(T) 9, 62, 82, 143
Duration Calculus 55
dynamic domain splitting 83
dynamical system 16

E
eager approach to SMT 9
early pruning 9
electronic design automation 38
elementary geometry 8
embedded systems 3
equisatisfiability 43, 85
equivalence 41
equivalence checking 37
equivalence-preserving translation 43
error recovery policies 78
error trace 2, 24

ETCS 120
European Train Control System (ETCS)

120
exact arithmetic in LP 78
execution 19
explanation for a conflict 47, 63, 65

F
falsifiability 41
Farkas’ Lemma 67
feasibility 63
flow 4
flow predicate 18
formal verification 1, 38
forward strategy 72, 130
Fourier-Motzkin elimination 64

G
Gaussian elimination 7
general simplex 78
GLPK 64
Goblin 55, 59
guard condition 5
guarded linear constraint 60

H
Hilbert’s tenth problem 8
hull consistency 87
hybrid automaton 4, 17
hybrid system 3, 16
hybrid time frame 20
hybridization 30
HySAT-1 59, 72, 119
HySAT-2 114, 119
hysteresis controller 19
HyTech 24

I
ICP 81, 88
ICS 59, 73, 84

Index 161

IIS 65
ILP 8
implication 41
implication graph 47, 96, 110
implication queue 142
inconsistency 40, 61
inductive verification 134
inexact arithmetic in LP 78
infeasibility 63
initial state predicate 18
integer linear programming (ILP) 8
interval constraint propagation (ICP) 81
interval constraint solving 8, 11
interval constraint solving (ICS) 84
interval contraint propagation (ICP) 88
interval extension 87
interval Newton method 139
interval-valued valuation 86
invariant 18
irreducible infeasible subsystem(IIS) 65
iSAT 11
iSAT algorithm 90
isomorphic subformulae 27
isomorphy inference 70, 130
isotony 91

J
jump 5
jump condition 18

K
Khachiyan, Leonid 7
Kodkod 134

L
lazy approach to SMT 9, 62
lazy clause evaluation 7, 37, 49, 109
lazy reactivation 53
LHA 32
linear arithmetic predicate 17

linear constraint 17
linear hybrid automaton (LHA) 32
linear program 64
linear programming (LP) 7, 63
literal 6, 39, 41
location 17
LP 7, 63

M
mathematical modeling 15
MathSAT 59
MILP 8
mixed integer linear programming (MILP)

8
mode invariant 4, 18
monotonicity 91
monotonicity relaxation 91
moving block principle 120

N
negation 41
negation normal form (NNF) 41
Newton method 139
NNF 41
non-chronological backtr. 7, 37, 48, 111
NP-completeness 41

O
objective function 64
operand 90
operations research 38
operator 90
optimization problem 137
optimizations for BMC 70, 114, 128
overapproximation 24

P
P ?
= NP problem 45

pair 86
parallelization of iSAT 142

162 Index

path 19
PHAVer 24
polarity optimization 44, 91
polyhedron 64
polytope 64
predicate 17
predicative formula 17
product automaton 24
progress parameter 112
propagation 46
pseudo-Boolean constraint 10, 38, 39, 60
pseudo-Boolean propagation 50

R
reachability 22
reactive system 19
reason for a conflict 47, 98
reasons for contractions 90
relational operator 91
relative braking distance 120
remainder term 33
restarts 37, 48
result checking 78
robot motion planning 134
run 19

S
safe approximation 24
safety property 22
safety-critical application 1
SAL 73
SAT problem 41
SAT solving 1
satisf. modulo theories (SMT) 8, 37, 82
satisfiability 41
satisfiability-preserving translation 43
scheduling problem 55
sharing of conflict clauses 72, 128
signature 90

simplex algorithm 7, 64

simulation 1

Simulink 5, 15, 120, 128, 134

SMT 8, 37, 82

solution of a formula 17

split-and-deduce search 94

splitting-on-demand 83

spurious error trace 24

standard conversion to CNF 42

state of a dynamical system 16

state space 16

state variable 16

state-explosion problem 24

Stateflow 5

Strichman, Ofer 11

structural SAT solving 94

symbolic model checking 3

symmetry in BMC formulae 6, 70

T
Tarski, Alfred 8

task allocation problem 134

tautology 41

Taylor polynomial 33

temporal induction 3

test pattern generation 37, 134

testing 1

thrashing 47

trace 19

train separation 120

trajectory 19

transcendental functions 85

translation into CNF 42

triplet 86

Tseitin label 43, 61

Tseitin translation 43

Tseitin variable 43

Tseitin, G. S. 43

Index 163

U
UIP 98
unique implication point (UIP) 98
unit clause 46
unit propagation 37, 46, 96
unity of a clause 46
unsatisfiability 41, 98

V
valid formula 41
validation of results 78
valuation 17, 61
verification 1, 22
vertex 64

W
watched bounds 109

watched literals 49

worst-case execution time 134

Y
Yices 59, 78

Z
Z3 59

zChaff 53

zero-one linear constraint system 39

ZOLCS 39

	Foreword
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Formal Verification Using Satisfiability Checking
	1.2 Bounded Model Checking of Hybrid Systems
	1.3 Solvers for Boolean Combinations of Numerical Constraints
	1.3.1 Constraint Solving in a Nutshell
	1.3.2 Contributions of the Thesis
	1.3.3 Structure
	1.3.4 Sources

	2 Hybrid Dynamical Systems
	2.1 Modeling Hybrid Systems with Hybrid Automata
	2.2 Predicative Encodings of Hybrid Automata
	2.2.1 A Basic Encoding Scheme
	2.2.2 Hybridization of Continuous Dynamics
	2.2.3 Encoding Flows Using Taylor Expansions

	3 Extending DPLL for Pseudo-Boolean Constraints
	3.1 The Logics
	3.2 State of the Art in SAT Solving
	3.2.1 Conversion into CNF
	3.2.2 SAT Checkers for CNFs

	3.3 Optimizing DPLL-Based Pseudo-Boolean Solvers
	3.3.1 DPLL for Pseudo-Boolean Constraints
	3.3.2 Generalization of Lazy Clause Evaluation
	3.3.3 Learning in Presence of Pseudo-Boolean Constraints

	3.4 Benchmark Results
	3.5 Discussion

	4 Integration of DPLL-SAT and Linear Programming
	4.1 The Logics
	4.2 Lazy Approach to SMT
	4.3 SAT Modulo the Theory of Linear Arithmetic
	4.3.1 Feasibility Check Using LP
	4.3.2 Extractions of Explanations
	4.3.3 Learning from Feasible LPs
	4.3.4 Putting It All Together: a Sample Run

	4.4 Optimizations for BMC
	4.5 Benchmark Results
	4.6 Discussion

	5 Integration of DPLL and Interval Constraint Solving
	5.1 The Logics
	5.2 Algorithmic Basis
	5.3 The ISAT Algorithm
	5.3.1 Definitional Translation into Conjunctive Form
	5.3.2 Split-and-Deduce Search
	5.3.3 Arithmetic Deduction Rules
	5.3.4 Correctness
	5.3.5 Algorithmic Enhancements
	5.3.6 Progress and Termination

	5.4 Benchmark Results
	5.4.1 Impact of Conflict-Driven Learning
	5.4.2 Comparison to ABSOLVER
	5.4.3 Comparison to HYSAT-1

	5.5 Reachability Analysis with HYSAT-2: a Case Study
	5.5.1 ETCS Model
	5.5.2 Encoding into HySAT
	5.5.3 Results

	5.6 Discussion

	6 Conclusion
	6.1 Achievements
	6.2 Perspectives
	6.3 Final Thoughts

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

