
8 Control Architectures

The generation of designated robot behavior is one of the most difficult prob-
lems when designing the control system for robotic applications with many
sensors and actuators. Due to the diversity of tasks an autonomous vehicle
has to fulfill, the control has to be embedded into a convenient framework.
The process of building up a control system should be supported by an
adequate methodology to help overcoming difficulties common to complex
robotic systems, e. g. ensuring secure operation, modularity, or handling a
system of growing complexity. Therefore, different types of control archi-
tectures have appeared with contrary approaches for tackling the emerging
problems.

A control architecture is a framework enabling a system to fulfill the
following tasks:

Fusion of sensor data into logical sensors Sensor data has to be pre-
processed for usage for localization, generation of obstacle maps, gener-
ation of maps for navigation and planning, object recognition, display
and representation of knowledge.

Motor controller Access to the hardware has to be provided by the re-
alization of a convenient motion control interface, e. g. velocity v and
angular velocity ω.

Pilot function A Pilot realizes the path control via specification of mo-
tion commands which are required for e. g. collision avoidance, driving
through narrow passages, turning in dead-end situations.

Navigation The navigator calculates accessible tracks to be traversed via
the pilot function. The plan includes avoidance of obstacles and requires
knowledge about the surrounding area.

Planning function A planning component generates actions and sets tar-
gets for the navigation component. This includes strategic decisions and
keeping the overview concerning given tasks.

User interaction Access to the control software has to be provided by a
suitable Human-Machine-Interface (HMI).

223

For all tasks mentioned above world knowledge has to be considered, which
has to be provided adequately.

In general, control architectures in the field of robotics can be distin-
guished into hierarchical vs. distributed and task-oriented vs. behavior-based
(see figure 8.1).

Figure 8.1 Overview over control architectures commonly used in the field of
robotics

Hierarchical architectures depend on the assumption that tasks can be
divided into subtasks which are arranged so that higher level components
generate subgoals for lower level components. In contrast to this, distributed
architectures allow the assignment of subtasks to independent components.
A suitable communication mechanism is required for data transfer between
the parts involved.

The distinction between task-oriented and behavior-based control ar-
chitectures is reflected in the decomposition of a given task. Task-oriented
architectures depend on a central world model which is manipulated and
evaluated by the different components (sensing, modeling, planning, execu-
tion). The tasks of processing sensor data as well as generating control values
for the robot are encapsulated into responsible components with exclusive
access. Behavior-based control architectures, however, are designed by de-
composing a given task into independent behaviors, each of which keeps its
own compact representation of the environment which is required for task
execution. Here all components have unlimited access to sensor data and to
the control interface. This, however, requires mechanisms for the coordina-
tion of conflicting data.

Besides the given distinction of control architectures into task-oriented
vs. behavior-based and hierarchical vs. distributed, [Mat97] emphasizes the
difference of architectures in respect to the degree of deliberation, see fig-
ure 8.2. Reactive architectures not supporting knowledge storage are con-
trasted with deliberative architectures with an elaborate model of the world.
The former supports immediate reaction on occurring situations but has

224 8 Control Architectures

weaknesses in respect to planning tasks requiring a certain degree of mem-
ory. The latter is suited to complex tasks but has drawbacks concerning
outdated knowledge, false sensor readings, or reaction time.

Figure 8.2 Properties of deliberative and reactive control

In order to combine the advantages of both characteristics, hybrid archi-
tectures have emerged with a lower reactive layer and a higher deliberative
one. This, however, breaks the control system into two inhomogeneous parts
with different characteristics. In contrast to this, behavior-based control sys-
tems store a representation of the environment which is distributed among
the single components and therefore can combine reactive and deliberative
components into one architectural design.

In the following, a task-oriented as well as several behavior-based control
architectures are discussed in more detail.

8.1 The hierarchical task-oriented control architecture RCS

As an example of a hierarchical task-oriented control architecture, the Real-
Time Control System (rcs) by James S. Albus [Alb92] is presented here.
Since its beginning in the 1970s at the NIST (National Institute of Standards
and Technology), the architecture has constantly advanced and been applied
to several projects, e. g. the DEMO III project [LMD02].

rcs is composed of hierarchically arranged layers consisting of one or
more rcs nodes. As depicted in figure 8.3, each of them has 4 modules:
Behavior Generation (BG), World Modeling (WM), Sensory Perception (SP)
and Value Judgment (VJ). Additionally, the Knowledge Database (KD) and
the Operator Interface (OI) are provided.

8.1 The hierarchical task-oriented control architecture RCS 225

Figure 8.3 A rcs-4 node and the data flow between the included modules [Alb92]

The BG module plans and controls the actions of the system. For this
purpose a complex plan is decomposed into simpler tasks by using the in-
formation provided by the higher layer as well as WM and VJ of the same
layer.

The SP module processes sensor data and compares them with predic-
tions of the WM module. Additionally, SP perceives objects, events, and
situations and transfers them to the WM module.

The WM module uses information given by SP to update the Knowledge
Database. Predictions of sensor values as well as the simulation of plans
proposed by the BG module are additional tasks of this module.

The VJ module calculates cost, risk, and benefit of simulated plans.
It distinguishes between important and irrelevant objects and events and
transfers the results to the BG module.

The Knowledge Database contains data about the environment. Each of
the modules has access to the KD, either directly or indirectly via the WM
module.

Finally, the OI is the interface for observing or manipulating the system
behavior by a human operator.

rcs supports two kinds of communication. On the one hand, commu-
nication between rcs nodes of different layers involves the transfer of new
tasks to the BG module of the lower layer and newly perceived objects and
events to the SP module of the higher layer. On the other hand, modules
inside a rcs node communicate as depicted in figure 8.3.

226 8 Control Architectures

This results in two main data flow directions: One top down information
flow consisting of tasks and goals between the BG modules and one bottom
up information flow consisting of processed sensor data. Due to the growing
complexity of higher layers, the higher a layer is, the longer the cycle takes.
An example for a timing diagram is depicted in figure 8.4

Figure 8.4 Example for the time horizon of different layers in rcs [Alb92]

8.2 Behavior-based control architectures 227

Here, seven layers are covering a time range between milliseconds and
days. The horizontal axis consists of historical traces (left) and future plans
(right). Both of them are processed within the same time scale.

While the applicability of hierarchical task-oriented control architectures
like rcs was shown in several applications, some disadvantages have emerged.
At first the control depends on a consistent world model. However, this
central representation of the environment is prone to errors due to false
sensor readings or outdated information. Here the immediate usage of sensor
data leads to a more responsive and correct behavior.

Second, the functionality of the whole system depends on the proper
operation of all components. A different approach, in which malfunctions
of single modules can be caught by others is the behavior-based approach,
presented in the next section.

Finally, hierarchical task-oriented control architectures tend to limit the
extensibility of the system as a new functionality is reflected in the change
of a multitude of existing components. Therefore, the scalability of these
systems is limited.

8.2 Behavior-based control architectures

The development of robotics was heavily influenced by paradigms in Arti-
ficial Intelligence (ai) like the following (Marvin Minsky [MMN55]): “[An
intelligent machine] would tend to build up within itself an abstract model
of the environment in which it is placed. If it were given a problem it could
first explore solutions within the internal abstract model of the environ-
ment and then attempt external experiment.” Therefore, knowledge repre-
sentation, planning reasoning and hierarchical composition were the main
fields of research reflecting the human understanding of intelligence (e. g.
strips [FN71], abstrips [Sac74], noah [Sac75]).

Inspired by observations in biology, these traditions were questioned.
According to Brooks, “planning is just a way of avoiding figuring out what
to do next” [Bro87]. Therefore, a shift in paradigm took place, moving from
sensing and acting to behavior-based robotics where preferably simple agents
show intelligence through coordinated behavior.

The motivations for this change were the following:

• Complex behavior does not necessarily arise from complex control sys-
tems.

• The real world is the best model.

228 8 Control Architectures

• Programming should be kept simple.

• Systems should show robustness at noisy sensor readings.

• Systems should provide the possibility of incremental design.

• All calculations should be performed on-board and therefore fit the
machine time available.

The motivation for the change from task-oriented to behavior-based control
would be best expressed by Thomas Huxley: “The great end of life is not
knowledge, but action”.

The following examples of behaviors could appear in wheel-driven or
legged mobile autonomous robots:

• Exploration (movement in a general direction)

• Targeted (movement in direction of attractors)

• Avoidance (avoid collision with objects and environment)

• Path following (e. g. wall, planned path, stripe)

• Posture control (balance, stability)

• Social behavior (e. g. parting, hives, flocks)

• Remote-autonomous behavior (user interaction, coordination)

• Perceptual behavior (visual search, . . .)

• Walking behavior

• Manipulator behavior, grip behavior

In contrast to task-oriented control architectures, behavior-based ap-
proaches have proven to handle emerging difficulties rather well. They do
not depend on the correctness of a central world model, make it easy to in-
crementally add functionality while handling increasing complexity and show
robustness to unknown sensor data due to an overall functionality emerging
from the interaction of multiple generalizing behaviors.

8.2 Behavior-based control architectures 229

Still, the problem of controlling complex robotic systems is not solved
by the behavior-based paradigm alone. Rather, while helping with some
common problems, behavior-based architectures introduce new difficulties.
Among those is the question of how to coordinate multiple and possibly
competing behaviors running in parallel and trying to act on the same ac-
tuators. Another issue is the identification of error sources in a control that
shows an emergent system behavior rather than an explicitly implemented
one. Also, there is the matter of how the architecture can help structuring
the design process, e. g. giving support in the process of selecting the best
set of behaviors and coordinating their action.

Several variants of behavior-based architectures have been developed
in order to tackle the presented problems. In the following section, the
Subsumption Architecture by R. Brooks [Bro86], reuse and temporal se-
quences of behaviors by Nicolescu and Mataric [NM00, NM02], and the
iB2C1 architecture of the Robotics Research Lab in Kaiserslautern are pre-
sented. Other behavior-based architectures include R. Arkin’s works [Ark89,
Ark98] on schema-based and potential field approaches, further methods
by M. Mataric [Mat92, Mat97], miscellaneous fuzzy approaches [LRM94,
SKR95, KS97, Ros97, SDC05], the Dynamical System Approach by Al-
thaus/Christensen [AC02], Behavior Oriented Design [Bry01], parallel be-
havior execution without action selection mechanism [Ste94], or activation-
based [BILM03, CA07] as well as neural-network-based architectures [FM96,
Bee96].

8.2.1 The Subsumption Architecture

The first architecture implementing the presented ideas was the Subsumption
Architecture developed by Rodney Brooks, MIT, 1986 [Bro86]. He proposed
the alignment of behaviors along horizontal layers, with all behaviors having
access to all sensor data to generate actions for all actuators. The interaction
of behaviors is carried out through interdiction of inputs and overruling of
outputs. The primary feedback between behaviors occurs via the environ-
ment. Using the special C derivative interactive C allows for system state
analysis during runtime. The approach was applied to several mobile vehicles
as well as to the walking machines Genghis and Attila.

This approach has many advantages. Inherently, the architecture sup-
ports running behaviors asynchronously in parallel while data connections
can be prone to errors and delays. Due to the independence of the compo-
nents, extending the system with sensors and behaviors is directly supported.
1 iB2C: integrated behavior-based control

230 8 Control Architectures

The implementation of the individual modules is kept simple and the sys-
tem shows a certain robustness in case of malfunction of behavior modules
or behavior levels. Finally, simultaneously achieving multiple goals can be
easily implemented.

The structure of the basic elements of the Subsumption Architecture is
shown in figure 8.5. Each of them has input and output lines. Via a suppress-
ing mechanism, input signals can be replaced by the suppressing signal given
into the circle. Output signals of modules can be inhibited, i. e. any output
signal is blocked for the given time. Each module internally implements a
finite state machine which can be reset to state NIL via the corresponding
input.

Figure 8.5 Basic module of the Subsumption Architecture

The system design follows the structure given in figure 8.6. Its control is
split up into layers with higher layers subsuming the functionality of lower
level layers when desired. The system can be partitioned at any layer so
that the lower layers form a complete operational system. An example of the
functionality of layers is depicted in figure 8.7.

Figure 8.6 Layout of the behavior levels in the Subsumption Architecture

This architecture has proven suitable for small systems and has suc-
cessfully managed navigation in an office environment with many obstacles.
However, this approach tends to run into scalability problems due to lim-
itations concerning the amount of internal representation. Also, the reuse

8.2 Behavior-based control architectures 231

of components is often not possible and weaknesses occur when behaviors
are added to an existing system. Therefore, further enhancements have been
undertaken in the years after the introduction of Subsumption Architecture.

Figure 8.7 Example for the functionality of layers in the Subsumption Architec-
ture

8.2.2 Reuse and temporal sequences of behaviors

The work of Nicolescu and Mataric (see [NM00, NM02]) identifies common
deficiencies of behavior-based architectures: the difficulties in reusing existing
behaviors for new tasks, the inability to easily realize temporal sequences of
behavior activations, and the lack of support for the automatic creation of
behavior networks.

The first problem is addressed by splitting up a behavior into an “ab-
stract” and a “primitive” part, with the former constituting the interface of
a behavior and the latter containing the actual functionality (see figure 8.8).
The abstract part also contains checks to ensure that the preconditions of the
behavior are fulfilled. So when using a behavior for different tasks with dif-
ferent preconditions, the primitive part can be reused and only the interface
part has to be altered.

Behavior networks can be created by connecting abstract behaviors. This
can either be done by hand or by an algorithm which analyzes the precon-
ditions and effects of behaviors and uses backtracking to create a network
for a specific task. Dealing with large networks containing many behaviors
is facilitated by the support for grouping behaviors and thus building hier-
archical networks. The architecture provides different types of connections
between behaviors, allowing the creation of temporal sequences. By encoding
task-specific aspects into behavior connections instead of directly into the
behaviors, behaviors can be built in a more general way and thus be reused
more easily.

232 8 Control Architectures

Figure 8.8 An abstract and a primitive behavior and the connection between the
two [NM02].

[NM03] describes an extension of the architecture that allows robots to
learn tasks from a robot or human teacher. During a demonstration phase,
the learning robot makes observations and logs which of his behaviors can
be used to achieve a certain situation. In a second phase, it uses these ob-
servations to build a behavior network for fulfilling the demonstrated task.
So what is learned is when to use which behavior. New behaviors are not
learned.

8.3 The integrated behavior-based control architecture iB2C

As an example for a behavior-based control architecture which addresses the
issues mentioned before, the iB2C architecture of the Robotics Research Lab
(University of Kaiserslautern) is presented here [PLB10]. The goal is to find a
behavior-based architecture of modular structure with control units ranging
from motor schemes up to deliberative planning layers. Common interfaces
help in reusing and easily adding modules, and the arbitration mechanism
allows for separating the control data from the coordination data flow.2 The
architecture is applicable to a wide range of robotic systems. It also shows
design guidelines to simplify the creation of a consistent, robust and main-
tainable system. Last but not least, a programming framework supports
the implementation by providing suitable tools for designing, debugging and
2 Here control data is referred to as values for actuators, e. g. velocity, while the coordi-
nation data flow provides information about behavior states and is used for the internal
behavior interaction of the system.

8.3 The integrated behavior-based control architecture iB2C 233

inspecting a control system of growing complexity. The proposed architec-
ture is a further development of the behavior-based control as previously
introduced in [ALBD03], where it has mainly been used to control walking
machines.

8.3.1 The basic behavior module

The fundamental unit of the proposed control architecture is the behavior
module (see figure 8.9) which is based on [Alb07] and [PLB05]. Each atomic
behavior is wrapped into such a module with a uniform interface.

s

�ı

�a

r

�e

�u

F (�e, ι)

Figure 8.9 Basic iB2C behavior module

Behaviors can be described as three-tuples of the form

B = (fa,fr,F) (8.1)

where fa is the activity function, fr is the target rating function, and F is the
transfer function of the behavior. These functions generate activity informa-
tion �a, a target rating r, and an output vector �u, respectively. Additionally,
each behavior receives an input vector �e, a stimulation s, and an inhibition
vector �ı. In the following, these characteristics are explained in more detail.

Behaviors receive data required for fulfilling their work via the input
vector �e ∈ Rm which can be composed of sensory data (e. g. distance mea-
surements) or information from other behaviors (e. g. their target rating).
The output vector �u ∈ Rn transmits data generated by the behavior (e. g.
intended velocity values). This output describes the data which is used for
actuator control or as input for other behaviors.

Each behavior provides standardized inputs for adjusting its relevance:

Definition 8.1 (Stimulation). The stimulation s ∈ [0,1] of a behavior B
is an input determining the intended relevance of B. In this notation, s =
0 indicates no stimulation and s = 1 a fully stimulated behavior. Values
between 0 and 1 refer to a partially stimulated behavior.

234 8 Control Architectures

Stimulation can be used to adjust the influence of competing behav-
iors or to allow higher-level behaviors to recruit lower-level behaviors and
their functionality by explicitly stimulating them. Certain behaviors require
constant stimulation, e. g. safety behaviors or reflexes. These behaviors are
depicted by a filled triangle at the stimulation port in the figures.

Definition 8.2 (Inhibition). Each behavior can be inhibited by k other
behaviors via its input �ı ∈ [0,1]k. The inhibition i ∈ [0,1],i = max

j=0,...,k−1
(ij) of

a behavior B reduces the relevance of B. Here i = 1 refers to full inhibition,
i = 0 to no inhibition. Values between 0 and 1 refer to a partially inhibited
behavior.

Therefore, inhibition has the inverse effect of stimulation.

Definition 8.3 (Activation). The activation ι of a behavior B indicates
the effective relevance of B in the behavior network. It is composed of the
stimulation s and the inhibition i, with

ι = s · (1− i) (8.2)

The calculation of the outputs of a behavior is implemented by the
transfer function F , the activity function fa, and the target rating function
fr. The transfer function F (�e,ι) determines the output vector �u, where

F : Rm × [0,1] → Rn, F (�e,ι) = �u (8.3)

F provides the intelligence of a behavior, calculating actions depending on
input values and internal representations. This can be a reactive response
to input values, but also a more complex calculation like a state machine or
sophisticated algorithms. This way, both reflexive sensor-actor coupling and
deliberative behaviors can be implemented (as postulated for behavior-based
architectures by [Mat97]).

Each behavior provides two behavior signals that allow for deducing
information about its state and its assessment of the current situation:

Definition 8.4 (Activity). The behavior signal activity a ∈ [0,1] of a be-
havior B represents the amount of influence of B in the current system state.
a = 1 refers to a state where all output values are intended to have highest
impact, whereas a = 0 indicates an inactive behavior. Values between 0 and
1 refer to a partially active behavior.

The activity a and the derived activities �a are defined by the activity
function fa with

8.3 The integrated behavior-based control architecture iB2C 235

fa : Rm × [0,1] → [0,1]× [0,1]q, fa (�e,ι) = �a = (a,�a)T (8.4)

where
�a =

(
a0,a1, . . . ,aq−1

)T (8.5)

with
ai ≤ a ∀i ∈ {0,1, . . . ,q − 1} (8.6)

The derived activities �a allow a behavior to transfer only a part of its
activity to other behaviors.

Definition 8.5 (Target rating). The behavior signal target rating r ∈ [0,1]
is an indicator for the contentment of a behavior. A value of r = 0 indicates
that the behavior is content with the actual state, while r = 1 shows maximal
dissatisfaction. Values between 0 and 1 refer to a partially content behavior.

To ensure a consistent behavior network during the development process,
some principles have to be complied with. Similar to [HA01] these principles
allow some basic assumptions about the structure of the control system.
These are required for the analysis of system properties.

As the activation defines the upper bound of a behavior’s influence, the
following principle must be observed:

Principle 8.1 (Activity limitation). The activity a of a behaviorB is limited
by the activation ι of B: a ≤ ι

Furthermore, if the system is in the goal state of a behavior (character-
ized by r = 0), it intends to maintain its adjusted influence. Therefore, the
following principle is postulated:

Principle 8.2 (Goal state activity). The activity a of a behavior B does
not change in case r = 0 and ι = const.

Usually a behavior’s activity is a = 0 in case it is situated in its goal
state, but there are cases where a constant influence is required, i. e. a > 0.
An example is a behavior generating torque for an arm joint. If, in this
case, the behavior’s activity was lowered in the goal state, external forces or
competing behaviors could change the adjusted joint angle.

In contrast to the influence of the activation on the activity, the target
rating only depends on the input vector and the behavior-internal state.
This way, the target rating is an indicator for a behavior’s state assessment,
leaving out external adjustments of its influence:

236 8 Control Architectures

Principle 8.3 (Target rating independence). There is no (direct, i. e. inside
a behavior) influence of the activation ι on r.

As described before, behavior-based architectures do not work with a
centralized world model. This is represented by the fact that actions of a be-
havior only depend on the input vector �e, their activation and the behavior-
internal representation of the current situation, which can be non-existent
for certain behaviors.

Example behavior Turn to object

In order to exemplify the calculation of the described behavior properties,
this section describes a showcase behavior rotating a vehicle to a detected
object in front. As input vector �e the behavior receives the angle β to the
object to be followed. The output �u is a normalized rotation value rot ∈
[−1,1]. As the rotation output shall point the robot into the direction of the
object, the transfer function can be defined as:

rot =

⎧⎨
⎩

−1 if β < −βmax
β

βmax
if − βmax ≤ β ≤ βmax

1 if β > βmax

(8.7)

The target rating indicates the contentment of the behavior with the current
situation. As the goal is to point the vehicle into the direction of the object,
the behavior becomes discontent according to the angle to the object:

r = h(β) (8.8)

with

h(β) =

{
|β|
βmax

if |β| ≤ βmax
1 else

(8.9)

As the behavior intends to reduce the deviation to the object, its activity
has to increase if the angle to the object grows. The activation ι limits a in
order to meet Principle 8.1:

a = ι · h(β) (8.10)

8.3.2 Fusion behavior module

A behavior-based system certainly is not completed with the implementation
of the single behaviors. As the influence of behaviors on control values or
on other behaviors interleaves, and as they can have contrary goals, their
outputs must be usefully combined. This question of behavior coordination
is often considered the main problem in developing such an architecture.

8.3 The integrated behavior-based control architecture iB2C 237

The behavior coordination within iB2C networks is achieved by so-called
fusion behaviors (see figure 8.10). These are integrated in the case of com-
peting behaviors.

s

�ı

�a

r

�e

�u

F (�e, ι)

Figure 8.10 Fusion behavior module in iB2C

Fusion behaviors have the same interface as defined by the basic behavior
module. For the coordination of p competing behaviors Bc, the input vector
�e is composed of

• the activities ac (or the derived activities aic of the vector �ac respec-
tively),

• the target ratings rc, and

• the output vectors �uc.

The transfer function F is the fusion function processing input values to a
merged output control vector �u.

An example of the fusion of three competing behaviors Bc, c ∈ {0,1,2} is
depicted in figure 8.11. Each of the Bc is connected to the fusion behavior by
its behavior signals ac and rc as well as the output vector �uc. For clarification,
the input vector of the fusion behavior is drawn separately.

Figure 8.11 Exemplary fusion of three behavior outputs

The underlying assumption of the fusion of output values is that behav-
iors with a high activity deserve a higher influence on the control output than

238 8 Control Architectures

those with a lower activity. By using the behavior signal activity as a means
for coordinating the behaviors, the control data flow and the coordination
data flow are separated.

The behavior signal calculation of fusion behaviors has to comply with
the following principle:

Principle 8.4 (Fusion behavior neutrality). The calculation of the activ-
ity a and the target rating r of a fusion behavior must keep the following
conditions:

min
c

(ac) · ι ≤ a ≤ min

⎛
⎝1,

p−1∑
j=0

aj

⎞
⎠ · ι (8.11)

min
c

(rc) ≤ r ≤ max
c

(rc) (8.12)

This way, it is guaranteed that a fusion behavior does not inject or
remove activity, as expected from a coordination component. Furthermore,
there is no improvement or deterioration of satisfaction. This accounts for
the fact that calculations concerning the assessment of state are only located
in non-fusion behavior modules.

The following sections describe the set of fusion function implementa-
tions being used.

Maximum fusion (winner takes all)

In the case of maximum fusion the control value of the most active behavior
is forwarded. Other behaviors obtain no influence. The transfer function F
is defined as:

�u = �us where s = argmax
c

(ac) (8.13)

Activity and target rating are set according to the most active behavior:

a = max
c

(ac) r = rs where s = argmax
c

(ac) (8.14)

The maximum fusion implements a switching between behaviors and is suit-
able when a combination of control outputs leads to unwanted results.

Weighted fusion

In the case of weighted fusion the control values of the competing behaviors
are weighted with the activity of the corresponding behavior. This way, a
subtle gradation of coordinating behavior control outputs regarding their
activity is achieved.

8.3 The integrated behavior-based control architecture iB2C 239

The transfer function F is defined as:

�u =

p−1∑
j=0

aj · �uj
p−1∑
k=0

ak

(8.15)

The activity is defined as:

a =

p−1∑
j=0

a2j

p−1∑
k=0

ak

· ι (8.16)

The target rating of a fusion behavior indicates its goal to satisfy highly
activated input behaviors and is calculated as follows:

r =

p−1∑
j=0

aj · rj
p−1∑
k=0

ak

(8.17)

Weighted sum fusion

The weighted sum fusion is used for summing up the control values of the
competing behaviors according to their activity. Applications for this fusion
function are cases where several behaviors contribute to a torque of a joint
or in cases where vectors are added up.

The transfer function F is defined as:

�u =
p−1∑
j=0

aj · �uj
max
c

(ac)
(8.18)

The activity is defined as:

a = min

⎛
⎝1,

p−1∑
j=0

a2j
max
c

(ac)

⎞
⎠ · ι (8.19)

The target rating calculation is the same as for the weighted fusion:

r =

p−1∑
j=0

aj · rj
p−1∑
k=0

ak

(8.20)

240 8 Control Architectures

8.3.3 Behavior interaction

Besides communication between behaviors through the environment or by
using arbitrary data, the behavior interaction mainly takes place by trans-
ferring activity data between behaviors. As activity defines the relevance
of behaviors and their outputs, the transfer inside the behavior network is
restricted as follows:

Principle 8.5 (Stimulation/inhibition restriction). Inside iB2C behavior
networks a behavior B may only be stimulated or inhibited by the activity
a or ai of the vector �a of other behaviors.

This way, it is clearly defined where activity is injected into the behav-
ior network and how it is transferred to other behaviors. Consequently, it is
impossible for a behavior to gain influence without being sufficiently stimu-
lated. The flow of activity through iB2C networks therefore allows statements
about the overall system behavior.

In contrast to the activity signal, the target rating of behaviors counts as
local situation assessment. It is used as abstract sensor value or for evaluating
regions of dissatisfaction but is not transferred through the whole behavior
network.

Due to the importance of the behavior signals activity and target rating,
these values must be present everywhere inside the behavior network:

Principle 8.6 (Behavior signal availability). Each control value entering
a behavior network must be provided with a suitable activity and target
rating value. Activity and target rating must not be dropped until control
values leave the behavior network, i. e. until they are transformed to actuator
commands.

This principle guarantees that for each control value an assessment of
the relevance is provided. This is a key aspect which allows further processing
of the data in the behavior network.

More precisely, the following sources and sinks of activity can be speci-
fied:

Sources of activity: Activity can enter the behavior network as follows:

1. Behaviors are stimulated from outside the behavior network.

2. Behaviors are constantly stimulated.

3. The activity of a behavior is used as stimulation for several other
behaviors.

8.3 The integrated behavior-based control architecture iB2C 241

Sinks of activity: Activity can be reduced inside the behavior network as
follows:

1. Fusion Behaviors combine several input activities to one output
activity.

2. An activated behavior can emit an activity a < ι or a derived
activity ai < ι of the vector �a.

3. A behavior which is inhibited reduces the amount of activity at
that place in the network.

4. If a behavior’s activity output is not connected to another behavior,
its activity is lost (e. g. in case a control value leaves the behavior
network).

The previously defined principles allow the usage of the flow of activity for
deriving each behavior’s influence on other parts of the behavior network.

8.3.4 Behavior coordination

The behavior-based approach implies that several behaviors can contribute
to the same control value. Therefore, the coordination of behaviors requires
suitable mechanisms. This is where behavior architectures differ most. The
following shows how a multitude of coordination mechanisms can be imple-
mented in iB2C based on the uniform behavior module model (including the
fusion behaviors).

A distinction of mechanisms for behavior coordination is presented in
[Pir99]. Here, the first criterion distinguishes if several behaviors are arbi-
trated, i. e. one behavior or a set of them has control for a period of time,
or if their commands are fused, i. e. a combination of control outputs of the
behaviors takes place.

Arbitration makes sense when behavior actions have to be transferred
without modification. The following types can be distinguished [Pir99]:

Priority-based mechanisms: Behaviors are selected according to priori-
ties assigned to each of them (e. g. [Bro86]).

Priority-based arbitration in iB2C is implemented using inhibition of
behaviors, see figure 8.12. The order of the behaviors determines the
priority of each component. The maximum fusion behavior selects the
most active behavior.

State-based mechanisms: Behaviors are selected in respect to the cur-
rent state and the competence of behaviors for handling the situation
(e. g. [KCB97]).

242 8 Control Architectures

Figure 8.12 Priority-based arbitration in iB2C

State-based arbitration is realized using a behavior containing state
evaluation mechanisms which stimulates action generating behaviors.
Coordination takes place using a maximum fusion behavior.

If the state evaluation relies on feedback of the action generating be-
haviors, the activity and the target rating of the respective behaviors
can be used.

Winner-takes-all mechanisms: One of the behaviors is selected as a re-
sult of a competition between them (e. g. [Mae89]).

The Winner-takes-all mechanism is directly supported in iB2C by the
maximum fusion. Here, the competition between the behaviors is im-
plemented as activity calculation.

In contrast to arbitration, command fusion supports the combination of be-
havior outputs. Several solutions for representing the desired commands and
for determining the relevance of commands have been developed [Pir99]. Be-
sides command fusion using the weighted sum fusion function, iB2C directly
supports the superposition and voting mechanisms.

Voting: Each behavior votes for different actions. After combining them, the
action receiving the highest number of votes is chosen (e. g. [PRK91]).

In iB2C, voting is implemented using a standard fusion behavior and
a mapping behavior (see figure 8.13). Each behavior involved provides
votes for each of the n possible options (e. g. driving directions) which

8.3 The integrated behavior-based control architecture iB2C 243

are transferred to the fusion behavior implementing the weighted fusion
function. The output of the fusion behavior consists of the weighted
votes for each voting option. A mapping behavior stimulated by the
fusion behavior then maps the maximal option rating to a command
for further processing.

Figure 8.13 Voting mechanism in iB2C

Superposition: Behavior actions are represented as vectors which are lin-
early combined (e. g. [Ark87]).

Superposition in iB2C is implemented by the weighted sum fusion,
where a component-wise fusion takes place with the activity represent-
ing the relative scale of each vector.

Fuzzy: Similar to voting mechanisms, here fuzzy inferencing techniques are
used (e. g. [SKR95]).

Multiple objective: Also similar to voting, the desirability of actions is
defined by each behavior’s objective function. Coordination is carried
out by looking for actions that sufficiently satisfy all objective functions
by using multiple objective decision theory methods (e. g. [PHTO+00]).

As fuzzy inferencing techniques and multiple objective mechanisms imple-
ment functionality similar to voting, they are not treated here.

8.3.5 Design guidelines

Designing a control system for robotic applications requires a systematic
methodology in order to cope with the complexity of sensor processing and

244 8 Control Architectures

control data generation. In iB2C, the development begins by figuring out the
relevant degrees of freedom (dof), e. g. rotation and velocity of a vehicle,
emotional actuators of a humanoid head, or joint motions of legs. Each of the
dof is divided into positive and negative direction, leading to two control
data paths for every motion possibility. The conflation of the data flow is
accomplished using a fusion behavior for each of the dof. Depending on the
mechanical construction, the described approach may be performed several
times for each kinematic chain involved, e. g. for a pan tilt unit of a camera
head or for a multitude of legs.

In order to fulfill basic safety requirements, the next step is introducing
behaviors reacting on safety related sensor input (e. g. stopping or turning
away a vehicle because of data provided by a proximity sensor). Each of the
safety behaviors influences a dof by using its activity output for inhibiting
fusion behaviors of the layer above and by propagating a new command to a
fusion behavior in the layer below. As each of the dof is divided into positive
and negative direction, behaviors can be integrated in such a way that only
the supervised direction is influenced.

This procedure results in an interface for higher level behaviors and
encapsulates the functionality of a safety behavior system. High-level be-
haviors are then added using a top-down task-oriented approach. Methods
like those proposed in [Bry01], asking for what to do how and when and
iteratively revising the structure can be applied here.

Hierarchical abstraction One advantage of the decomposition of tasks
into behaviors is the low complexity of each behavior. However, the result
of this approach often is a network with a large number of behaviors. In
order to simplify the structure and to clarify the functionality, a hierarchical
abstraction becomes necessary. In the case of iB2C this can be accomplished
using behavioral groups (see figure 8.14). These are groups in the sense of the
embedding programming framework3, i. e. a collection of modules or further
groups with a new interface and dedicated connections between group and
modules. A behavioral group acts as a new behavior, providing the same
standardized input and output signals described in section 8.3.1.

The challenge for the developer is finding sets of behaviors representing
new semantic groups. One approach is to reflect the implemented decom-
position in the hierarchical structure of groups. Another hint for grouping
behaviors stems from the influence of multiple behaviors on a dof. If several
behaviors work in the same domain and have an influence on the same data
3 in this case the modular control architecture mca, [SAG01]

8.3 The integrated behavior-based control architecture iB2C 245

path in the network (e. g. behaviors using different sensor systems for bring-
ing a vehicle to a halt), these behaviors are good candidates for forming a
new group.

When constructing a behavior network, the designer has to question
himself about the semantics behind behaviors and whether a group of be-
haviors separates from the individuals to form a new semantic unit. If this
is the case, a new behavioral group should be introduced.

Figure 8.14 Example for a behavioral group in iB2C with a fusion behavior pro-
viding the behavior signals for the group interface.

Behavior signal usage The main challenge when coping with systems
growing in complexity is making statements about the current system status.
This is not only necessary for a developer trying to find out if an implemented
feature works, but also for system components trying to reason about the
result of a given command. In this sense it becomes invaluable having a
common interface of behaviors representing their internal state in an abstract
way. In iB2C, behaviors generate the behavior signals activity (a) and target
rating (r) which can be used for detecting several important aspects of the
system (for examples see [HBB07]):

• deadlock detection (e. g. by supervising obstacle detection behaviors),

• risk determination (e. g. by supervising slope detection behaviors)

• effort (e. g. by supervising behaviors supervising current measurement
of motors)

• oscillation detection (e. g. by supervising behavior activities over time)

246 8 Control Architectures

8.3.6 Analysis of iB2C networks

Developing robotic systems requires some kind of support for system analy-
sis in order to tackle the complexity of the evolving structure. The aim is to
accelerate system development and to reduce time spent for testing. IB2C
makes extensive use of the Modular Controller Architecture (mca). Each be-
havior is derived from a mca-module with a standard interface as presented
in section 8.3, and with predefined methods for the transfer function and
behavior signal calculation. The behaviors are then arranged in a layered
network using defined behavior interfaces and interconnections.

Therefore, the behaviors form a graph of interconnected components
with a flow of activity which enables analysis using graph theory methods.
Figure 8.15 gives an example of an automatically generated iB2C graph
containing the flow of activity between behaviors influencing the forward
and backward motion of a vehicle. Within this graph, properties like cycles
as well as stimulation and inhibition successors and predecessors can be
automatically identified to retrieve static information about the influence
of behavior modules on the robot’s behavior. This way, possible sources of
oscillations inside the behavior and interconnections contradicting with the
introduced principles have successfully been spotted.

During runtime of the robotic system the software can be supervised by
the mca tools mcagui and MCABrowser. The mcagui serves as the user
interface for the robot which can be configured using predefined widgets and
plug-ins. The tool MCABrowser lets the developer have a detailed look at
the flow of data during runtime.

For iB2C, the user interface inside MCABrowser is complemented by
indicators for the behavior signals. While the robot performs its tasks, a
condensed view of the current distribution of activation, activity, and target
rating is given using colored bars (see figure 8.16). Additionally, the flow
of activity is indicated by colored edges between behavior modules. This
way, sources of the current robot behavior can be easily identified and an-
alyzed. The example depicted in figure 8.17 presents three snapshots of the
behavior signal visualization. At first the robot is in an idle state where no
command is to be executed (top left). Therefore, all behaviors remain inac-
tive. Afterwards, a normal forward motion situation (top right) is indicated
by a flow of activity from the top interface to the bottom interface pass-
ing through fusion behaviors of different layers. Finally, a situation where
the Forward Tactile Creep behavior inhibits slow down behaviors while FW
Limit Creep Vel maintains a minimal creep velocity in order to slowly move
into vegetated regions is presented (bottom). This serious situation is clearly
visualized by a high target rating of several behaviors as well as the massive

8.3 The integrated behavior-based control architecture iB2C 247

Legend:

behavior

fusion behavior

behavioral group

stimulation

inhibition

activity transfer

Figure 8.15 Example for an activity graph of an iB2C behavior network influ-
encing the forward and backward motion of a vehicle. The different styles of the
arrows indicate the type of interaction between behaviors, i. e. stimulation, inhibi-
tion, or activity transfer. This allows the evaluation of the activity flow through the
behavior network.

inhibitory interaction between behaviors. This way, several flaws in imple-
mented iB2C networks have been detected, e. g. behaviors showing no ac-
tivity due to missing sensor information or errors in the transfer function
resulting in contradictory values for activity and target rating.

Figure 8.16 Behavior signal visualization in MCABrowser

248 8 Control Architectures

Figure 8.17 Two exemplary snapshots of the on-line behavior signal visualization
in MCABrowser (Top: Normal forward motion is indicated by the course of activity
through the forward behaviors. Bottom: Obstacles in the robot’s proximity result
in a high activity of the Forward Tactile Creep behavior which inhibits the slow
down behaviors in order to move slowly forward)

In cases where it is necessary to guarantee certain system properties, an
approach for the formal verification of a subset of behaviors can be followed
as described in [PBSS07]. With this method a subset of interconnected be-
haviors is implemented in the synchronous language Quartz and verified con-
cerning given properties using model checking techniques. Afterwards, code
is generated which is periodically called inside a mca module and which is
proven to meet given specifications.

	8 Control Architectures
	8.1 The hierarchical task-oriented control architecture RCS
	8.2 Behavior-based control architectures
	8.2.1 The Subsumption Architecture
	8.2.2 Reuse and temporal sequences of behaviors

	8.3 The integrated behavior-based control architecture iB2C
	8.3.1 The basic behavior module
	8.3.2 Fusion behavior module
	8.3.3 Behavior interaction
	8.3.4 Behavior coordination
	8.3.5 Design guidelines
	8.3.6 Analysis of iB2C networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

