
5 Mapping

Whenever a mobile robot is required to navigate beyond its sensory hori-
zon, it must either rely on potentially ineffective or misleading local search
strategies (such as the ‘bug algorithms’ [Lum87]) or use some kind of world
model to store cues for navigation. Such a world model is generally called a
‘map’ and can either be provided a priori or built online using a mapping
algorithm. The mapping approaches can be separated into world-centric or
robot-centric. World-centric systems represent the pose of all objects includ-
ing the robot of the environment according to a fixed coordinate frame. In
indoor scenarios, a corner of a room or a fixed position in the entrance area
of an apartment is often used. To specify positions in the operational en-
vironment of the robot in outdoor applications, global coordinate systems
like the latitude, longitude, and height system, the Earth Centered, Earth
Fixed Cartesian coordinate system, the World Geographic Reference System
or WGS 84 (gps) are often used. World-centric mapping is mainly employed
for tasks like navigation or path planning while robot-centric approaches
are used for piloting tasks such as collision avoidance. Using matrix-based
coordinate transformations, it is possible to convert between these different
reference frames.

The main problem of generating maps is the inaccuracy of the sensor
systems being used for solving the localization problem and measuring ob-
jects in the environment of the robots. Therefore, it is very difficult to build
global maps based on local ones, to update existing maps or to correspond
the objects stored in the map with those measured in the environment of
the robot.

Concerning map types, there are numerous ways to model the environ-
ment of a vehicle. The data structures found in literature can be broadly
divided into the four classes of metrical, grid, topological and hybrid maps
(see figure 5.1).

Purely metrical maps are probably the most common type. Systems
relying on these maps are characterized by using one global, metrically con-
sistent frame of reference. The accuracy of the stored map is approximately
equal to the quality of available sensor data. Also, all metrical locations are
equally important. Metrical maps comprise geometric features and their spa-
tial locations. The features actually used can range from very basic (such
as 3D points calculated from range measurements) over geometrically more

107

expressive line or box features up to semantically very distinct landmarks,
which can be uniquely identified from a large body of sensor data.

y

x

Metrical maps

Grid maps

Hybrid maps

Topological maps

Abstra
ction level

Sector maps

Figure 5.1 Abstraction level of the different mapping approaches

Grid maps, which are very often used for mobile robots, are popular due
to their simplicity and intuitive representation. A grid map divides space
into adjacent portions of equal metrical sizes. For a two-dimensional map,
this results in a square grid, while the three-dimensional grid map resembles
a Rubic’s cube. Both dimensionalities have been used [Elf89, Mor96], but
three-dimensional grid maps are rare due to their excessive storage require-
ments. Two major variants of grid maps are occupancy grids and elevation
maps.

Unfortunately, the highly detailed metrical world representation requires
a lot of memory and leads to algorithms with high computational demands.
These properties limit the scalability of both grid and metrical maps [Bro87].

Motivated by these drawbacks, researchers aiming at large scale navi-
gation early on began looking at the topological world model, which repre-
sents the environment in a more compact, qualitative fashion. Topological
approaches focus on representing navigation-relevant places and their con-
nections on an abstract level rather than the exact metrical layout of the
surroundings. Thus, imprecise localization is less of a problem for topologi-
cal approaches and algorithms can run faster because they have to cope with

108 5 Mapping

much less data. Topological maps commonly use graphs as their underlying
data structure. Graph nodes identify locations of interest and their charac-
teristic features, while knowledge about travel between nodes is encoded in
the connecting graph edges.

More recently, many researchers have proposed to attack the problems
of autonomous mapping using combinations of the metrical and topological
methodologies. Generally, these hybrid approaches are designed to combine
the benefits of both representational forms, ideally allowing localization and
map building with the high precision of metrical maps while retaining the
computational tractability and compactness of topological data structures.

In the following, several successful examples of mapping techniques using
different map types are presented.

5.1 Metrical maps

In metrical maps, the environment is described with the help of geometrical
features. These geometrical features can be 2D or 3D points, lines, polygons
or 2D areas like rectangles. As an example for indoor scenarios, lines could
describe the walls of rooms. In outdoor scenarios, lines could denote streets
or highways.

Metrical mapping offers several advantages. Geometrical features can
be maintained over time even if their positions change. Thus it is obvious
that this type of map is also suited for dynamic environments. Another
advantage is that metrical feature maps offer a more compact description
of the surroundings than grid maps. Hence they are superior especially in a
scenario with a rather structured environment.

In the following the line-based and plane based metrical maps, which
can both be generated by a robot based on distance measurements, are
introduced.

5.1.1 Line based metrical maps

Lines extracted from distance measuring sensors form borders between re-
gions that can be divided into either free space, obstacles or unknown regions.
Obstacles may be represented by clusters or border lines. In the following, a
method is presented to extract both from (laser) distance measurements.

5.1 Metrical maps 109

Line segmentation The idea of the line segmentation technique is to
cluster a radar scan into groups of distance points that lie close together.
Let us take a radar scan {ri,ϕi} with i = 1, . . . ,n measured from position
Q = (x0,y0,ψ). Let Pi = (ri,ϕi). As results, corners Cj , segments Sk and
auxiliary clusters Hm will be formed.

The procedure is shown in algorithm 5.1.

Algorithm 5.1 Line segmentation
Initialization: i := 1; j := 1; k := 1; m := 1; H1 := (P1)
while i < n− 1 do
if |Pi+1 − Pi| < d then
Hm := Hm ∪ Pi+1; i := i+ 1;

else if |Pi+2 − Pi| < d then
Hm := Hm ∪ Pi+2;Cj := (Pi+1); j := j + 1; i := i+ 1;

else if |Pi+2 − Pi+1| < d then
m := m+ 1;Hm := (Pi+1,Pi+2); i := i+ 2;

else
Cj := (Pi+1); j := j + 1;m := m+ 1;Hm := (Pi+2);

end if
end while
while m > 0 do
if number in (Hm) ≤ c then
Cj := Hm; j := j + 1;m := m− 1;
(* c is the maximal number in a cluster*)

else
Sk := Hm; j := j + 1;m := m− 1;

end if
end while

Iterative end point fit [DH73]
Take a segment Sk with points Pq, . . . ,Pr according to figure 5.2 and

form the distances hr−1, . . . ,hq−1. They are calculated following figure 5.3
for two points Pq and Pr. Let ψ be the angle of the line connecting both
points with respect to the common coordinate system.

tanψ =
yq − yr
xq − xr

(5.1)

hi = ((yi − yq) − (xi − xq) tanψ) cosψ (5.2)

⇒ hi = (y − i− yq) cosψ − (xi − xq) sinψ (5.3)

110 5 Mapping

(xi - xq)tg

hi

Pi

Pq

Pr
yi - yq

Figure 5.2 Distance to line

Pq

Pr
Pi

hi

Figure 5.3 Iterative
endpoint fit

Take the line between Pq and Pr. If hj = max(hi) > ε for r < i < q; (*ε is
the allowed fuzziness in deviations from a line*) then form two lines (Pr,Pj)
and (Pj ,Pq) and repeat the calculation, else the line (Pr,Pq) is established.
The effort is equal to the number of lines to be inserted between Pq and Pr.

Regression line Find a line through N points Pq, . . . ,Pr so that the sum
of the squared distances to that line gets minimal. There are hi = (yi −
yq) cosψ − (xi − xq) sinψ the distances to that line. Set for a moment Pq =
(0,b), then the distances become hi = (yi − b) cosψ − xi sinψ.

The sum of the squares is∑
i

h2
i =
∑
i

(yi − b)2 cos2 γ − 2(yi − b)xi sin γ cos γ + x2
i sin2 γ (5.4)

This is to be minimized with respect to b:

∂(
∑

(. . .))
∂b

!= 0∑
i

−2(yi − b) cos2 γ + 2xi sin γ cos γ != 0 (5.5)∑
i

−(yi − b) cos γ + xi sin γ = 0 (5.6)∑
i

b− yi + xi tan γ = 0 (5.7)

N · b =
∑
i

yi − tan γ
∑
i

xi (5.8)

ys = tan γxs + b (5.9)

This is a line through the center of gravity of the points. The next step now
is to minimize the squares of distances: The squares of the distances are∑

i

h2
i =
∑
i

(yi − b)2 cos2 γ − 2(yi − b)xi sin γ cos γ + x2
i sin2 γ (5.10)

5.1 Metrical maps 111

The angle γ is to be minimized:
∂(
∑

(. . .))
∂γ

!= 0

N∑
i

−2(yi − b) cos γ sin γ−2(yi − ys)(xi − xs)(− sin2 γ + cos2 γ)

+
N∑
i

2(xi − xs)
2 sin γ cos γ !=0 (5.11)

N∑
i

(yi − ys)
2 tan γ + (xi − xs)(yi − ys)(1 − tan2 γ) + (xi − xs)

2 tan γ = 0

(5.12)
N∑
i

(yi − ys)(xi − xs) tan2 γ +
N∑
i

(−(yi − ys)
2 + (xi − xs)

2) tan γ

−
N∑
i

(yi − ys)(xi − xs) = 0 (5.13)

The last equation is a quadratic equation in z = tan γ:

a · z2 + b · z − a = 0 (5.14)

a =
N∑
i

(yi − ys)(xi − xs) b =
N∑
i

(yi − ys)(xi − xs) (5.15)

z1,2 = − b

2a
±
√

1 + b2/4a2 (5.16)

Shift of line end points Given a line through the center of gravity for
a couple of points, find proper endpoints Q and R in the vicinity of Pq and
Pr. Figure 5.4 shows the situation.
Let ψ ≈ γ. Then

hs = (ys − yq) cosψ − (xi − xs) sinψ (5.17)∑
hi − hs =

∑
(yi − ys) cosψ − (xi − xs) sinψ (5.18)∑

hi − hs = cosψ(
∑

yi −N · ys) − sinψ(
∑

xi −N · xs) = 0 (5.19)

This means a shift of the line end points by hs:

Pq −→ Q = (xq + Δx,yq + Δy) Δx = hs sinψ (5.20)
Pr −→ R = (xr + Δx,yr + Δy) Δy = hs cosψ (5.21)

112 5 Mapping

hi

Pi
(xs,ys)

Pq

b

y

x

median linePr

R

Q

Figure 5.4 Fitting the regression line

Fusion of lines Let the vehicle take radar pictures from different positions
P0 and P1. Let (Pi,Pk) be a line extracted from radar scan R1 at P0 and
(P ′i ,P

′
k) extracted from radar scan R2 at P1. Let the angles be ψ and ψ′ =

ψ + ε. Figure 5.5 shows two cases of fusions:

• Let h′i < δ for P ′i with respect to the line (Pi,Pk) and P ′i between Pi

and Pk and moreover |P ′i ,Pk| > |P ′i ,Pk| then both lines are condensed
into one line (Pi,P

′
k).

• Let |Pk,P
′
i | < d then both lines are fused into one line (Pi,P

′
k), too.

Pi

Pk

Pi´

Pk´

Pi

Pk´
hi´

Pi

Pk
Pi´

Pk´

Pi

Pk´

Figure 5.5 Fusion of lines

5.1 Metrical maps 113

Obstacles vs. free space Introducing a direction in a line allows to dif-
ferentiate between free space and possible obstacles for a vehicle, as shown
in figure 5.6: to the right of a line from P1 to P2 there is a free space open,
otherwise it could not have been constructed. To the left is unknown terri-
tory, possibly the line is the border of an obstacle. A room may be described
by a polygon with lines oriented clockwise; they might also describe isolated
obstacles if the lines are oriented counter clockwise.

P1

P2

P1

P2

P3

P4P5P1

P2

P3

P4P5

P6 P7

P8

Figure 5.6 Defining free space

Given a radar scan with some lines extracted, a certain amount of free
space is established. Driving around, this free space can be enlarged as shown
in figure 5.7. In general some parts of the environment remain unknown.

P1

P2
P3

P4

P5

free space P1 free space

P2
P3

P4 P5
? ?

after driving

P6

Figure 5.7 Enlarging free space by driving around

5.1.2 Plane based metrical maps

Planes are often used as features to define reliable landmarks such as floor,
ceiling, walls, doors and big objects of furniture like desks and cupboards.
The main problem of this environment representation is the extraction of
planes. A typical plane extraction algorithm [WGS03] is based on a 3D

114 5 Mapping

point cloud. The corresponding data acquisition is based on 3D sensor sys-
tems as rotating 2D laser scanners (see figure 5.8) or time-of-flight cameras.
Figure 5.9 shows a typical 3D point cloud of a real cluttered indoor scene.

Figure 5.8 3D data acquisition in a virtual indoor scene. The laser beams are
visualized as rays and the measurement points as black dots.

Figure 5.9 3D point cloud of a typical indoor scene

The goal is to approximate the input data by a set of planar patches so
that each set of points is optimally represented in a least square sense by
its plane. Features represented by a large amount of samples (e. g. corridor
walls) are reduced to one large planar patch. Figure 5.10 shows a result of
this process applied to the 3D point cloud shown in figure 5.9.

5.1 Metrical maps 115

Figure 5.10 Planes extracted from the 3D point cloud of figure 5.9. The ground
and ceiling plane are marked by a bounding box.

The following gives a summary of the different steps of the extraction
method. The complete strategy is described in more detail in [Ast07]. Fig-
ure 5.11 shows a flow chart of the whole procedure and algorithm 5.2 sketches
the different processing steps.

Figure 5.11 Flow chart of ransac based plane extraction

In step 1 and 2 the whole point cloud is split into a regular grid of cubic
cells (see figure 5.12) in order to perform plane fitting locally. In this way
smaller features as chairbacks and screens can be extracted. Big planes from
floor, walls and ceiling are detected via region growing in step 4. The ransac
algorithm in step 3 repeatedly calculates planes approximating the local set
of points within one cell. As the cells are handled independently, this step can
be executed in parallel on modern cpus. In each iteration three (not colinear)

116 5 Mapping

points are selected randomly within the local set. Then a plane through these
points is calculated and the number of inliers are counted (points in the cell
which lie within a certain distance threshold to this plane). This number of
supporting points is the maximization criterion: the calculated plane is used
as best plane when its number of supporting points is bigger than the one
of the best plane calculated during the previous iterations.

Algorithm 5.2 ransac algorithm for plane extraction
Given: a set of 3D distance measurement samples (data points)
Return: a set of planes approximating disjunctive subsets of the input
points
Step 1: split the whole 3D scene into a regular grid of cubic cells
Step 2: assign the input points to the corresponding cells
Step 3: calculate fitting plane for each cell:
for every cell do

find approximating plane using ransac algorithm (output: best fitting
plane after certain number of ransac iterations)
remove outliers with respect to the best ransac plane
calculate least-square fitting plane for inliers

end for
Step 4: region growing – fuse matching planes of neighboring cells:
for every cell do

compare plane parameters with those of all neighboring cells
if the angle between plane normals is below the angular threshold and
the distance of the center of gravity of points of neighboring cell to the
plane is below the distance threshold then

mark both cells as belonging to the same region
end if

end for
for all regions do

calculate best fitting plane for all points of cells belonging to the same
region

end for
Step 5: remove small planes supported only by a small amount of cells

This procedure is motivated by the fact that the repeated random selec-
tion of points and plane approximation converges to a “good” fitting plane
if such a plane exists at all (model valid) and the number of iterations is
high enough.

5.1 Metrical maps 117

Figure 5.12 Splitting of a 3D point cloud into local sets via cubic grid cells

The plane fitting for all inliers within one cell as well as for all samples
of one merged region is calculated via principal component analysis. A plane
is described by its normal −→n and distance from origin d (equation 5.22).

< −→n ,−→x >= d (5.22)

According to [WGS03], the normal of the least-square fitting plane is the
eigenvector of the smallest eigenvalue of covariance matrix A (equation 5.23).

A =

⎛⎝ ∑N
i=0wix

2
i

∑N
i=0wixiyi

∑N
i=0wixizi∑N

i=0wixiyi
∑N

i=0wiy
2
i

∑N
i=0wiyizi∑N

i=0wixizi
∑N

i=0wiyizi
∑N

i=0wiz
2
i

⎞⎠ (5.23)

Here, xi = xraw
i − x, yi = yraw

i − y and zi = zraw
i − z are input points

centered around mean and weights wi represent measurement uncertainty of
the samples (set to 1 as uncertainty is not yet taken into account). d is given
by equation 5.24

d =< −→cog,−→n > (5.24)

where −→cog = (x,y,z)T is the center of gravity of points belonging to the fitted
plane. As A is a square symmetric matrix, its eigenvalues can be computed
efficiently via singular value decomposition.

118 5 Mapping

Table 5.13 lists all adjustable parameters used by the described algo-
rithm. One question is how to choose reasonable values for the size of cubic
cells and the minimum number of points within each cell needed for ex-
tracting stable features. Naturally, the density of 3D samples decreases with
increasing distance between sensor and object (see figure 5.14). Assuming
an angular scan resolution of α = 0.5◦ horizontally and vertically and a
distance between adjacent laser beams of e =10 cm, a regular grid of 3×3
samples fits within a cell of 20×20×20 cm3. In this case the maximum dis-
tance between sensor and objects is d = e

tanα ≈ 11.5 m. This example shows
that objects which are further away than ≈ 11.5 m from the sensor gener-
ate too few samples for reliable plane extraction. Consequently, cell size and
minimum number of samples have to be chosen depending on sensor setup,
environmental conditions and size of features of interest.

step parameter value
1 cell size 200 mm
3 min. amount of points in a cell to start ransac alg. 10
3 number of ransac iterations 50
3 max. point-to-plane distance for inliers 50 mm
4 angular threshold for normals of neighboring planes 15◦
4 distance threshold for cog of one plane to neighb. plane 50 mm
5 min. amount of supporting cells for plane filtering 10

Figure 5.13 Parameters used for plane extraction

Figure 5.14 Distance between adjacent sampling points depends on distance be-
tween sensor and object

5.1 Metrical maps 119

An example run of the described algorithm is shown in figure 5.10, with
input data from figure 5.9. The scan resolution is 0.5◦ horizontally and 0.3◦
vertically and the number of samples is about 92000. The parameters have
been chosen as shown in table 5.13. The plane extraction procedure took
less than 2 seconds. For visualization, the resulting planes are clipped by
the bounding boxes of their supporting samples. As expected, most stable
features arise from floor and ceiling, followed by walls and cupboards. The
window frames in the central part of the figure are represented by several
small planes where region growing sometimes failed due to chosen plane
orientation thresholds.

The output of the presented algorithm is a collection of 3D planes. At a
higher level of environmental representation, these planes can now be used
to extract semantically meaningful features such as the walls of a room and
objects of furniture. However, corresponding strategies for this are beyond
the scope of this book.

5.1.3 Feature-based metrical maps

Geometric invariants of a scan At first, the regions of the map and the
current scans which can be matched must be determined as the algorithms
try to do partial matching. At least the extending information in the current
scan cannot be part of the global map and therefore cannot be matched. The
relative movement between two scans can be estimated using odometry, as
the typical error does not accumulate over time if we do not try to estimate
the global pose of the robot. This helps to identify the correct region. Another
way of finding a good initial estimate is the usage of invariant attributes,
that allow to compare two consecutive scans, despite to slight changes in
position.

An example of invariants is the afore mentioned box feature. Slight
variations in furniture or in the position of the vehicle in the room do not
change the boxes seen. Another invariant is the center of gravity of a
scan. Slight variations in the position and a turning at the same place will
not change the center of gravity.

Let (xi,yi) be a scan taken in an robot centered coordinate system, then
the center of gravity is given by

120 5 Mapping

xs = 1/N
i=1∑
N

xi (5.25)

ys = 1/N
i=1∑
N

yi (5.26)

The center of gravity is an example of the concept of general moments
Mp,q = 1/N

∑i=1
N (xi)

p(yi)
q. For instance M10 = xs and M01 = ys. Second

order moments are the moments of inertia with respect to an axis under
angle ψ through the center of gravity (xs,ys): Let di be the distance to the
axis from point Pi with coordinates (xi,yi) then

f(ψ) =
N∑
i=1

(di)
2 (5.27)

⇒ The line through (xs,ys) under an angle ψ is given by

y = m · x+ b (5.28)

Then the distance of the line to the point(xs,ys) is calculated as shown:

ys = m · xs + b (5.29)
m = tanψ (5.30)
b = ys −m · xs (5.31)
yq = m · xi + b (5.32)

cosψ = di/(yi − yq) (5.33)
di = (yi − y − q) · cosψ (5.34)

(di)
2 = (yi − tanψ · xi − ys − tanψ · xs)

2 · cos2 ψ (5.35)

Figure 5.15 shows the relation.
From here the moment of inertia through (xs,ys) with respect to angle

ψ is

f(ψ) =
N∑
i=1

(di)
2 (5.36)

5.1 Metrical maps 121

xs

ys

Pi (xi, yi)

di

(xs, ys)

xi

yi

yq

Figure 5.15 Distance with respect to the center of gravity and the angle psi

f()
(xs ,ys)

Figure 5.16 f (ψ) forming the inertia ellipsis

Running through all angles ψ f(ψ) forms an ellipsis, regardless of the
given point cloud. The quotient of the length of the small and the long axis
of the ellipsis as well as their direction are invariants of the point cloud as
sketched in figure 5.16.

As the influence of points far away from the center of gravity is rather
strong, a smoothing function is introduced: let d0 be the medium distance
to the center of gravity and di be calculated as above. Then di is smoothed
by a function as shown in figure 5.17.
Here, a parameter α defines the steepness of the function described by

d0 =
1
N

·
N∑
i=1

√
(xi − xs)

2 + (yi − ys)
2 (5.37)

di :=
di

1 + exp (α · (di − d0)/d0)
(5.38)

122 5 Mapping

d0

(xs, ys)

1

1/2

d0

di

g(di)

Figure 5.17 Left: center of gravity in a scan and medium distance of scan points
right: a smoothing function, a parameter α describes the steepness of the function

While analyzing the data gathered during a scan of a laser distance
sensor, one is able to distinguish four different kind of features as depicted
in figure 5.18:

1. false edges: a sudden change in distances but no real edge

2. limit wall/ round edge

3. edge between two walls

4. real jump edge

Scanner

1

2
3

4

-90° +90°0°

angle

scan
angle

Figure 5.18 Different types of anchor points

Other than that, virtual edges occur. They can be found by applying a
histogram based criterion. First of all, the scan image is rotated according
to the main preferential orientation. Afterwards histograms are generated
based on the scan data as illustrated in figure 5.19. Hence one is now able
to determine the virtual intersection points of wall segments. The edge ex-
traction process is presented in figure 5.20.

5.1 Metrical maps 123

Using a scan (ri,φi), segmentation can be performed according to algo-
rithm 5.3, assuming Δri = ri+1 − ri. Feature numbers 2 through 4 as well
as virtual edges serve as anchor points of a scan. The distance of two anchor
points Pi and Pj (with their coordinates (ri,φi) and respectively (rj ,φj)) can
be determined as shown in equation 5.39.

dij =
√

(ri)
2 + (rj)

2 − 2rirj cos(φj − φi) (5.39)

These distances are invariants of a scene.

y*
x*

i

direction || wall
y

ri

x

Figure 5.19 Anchor points from wall edges

ri

Figure 5.20 Finding edges in a radar scan

124 5 Mapping

Algorithm 5.3 Segmentation
for i = 1 to N do
if |Δri| ≤ s then

form segment of (ri,φi) and (ri+1,φi+1)
i := i+ 1

else if |Δri| > s and |(ri+2 − ri)| ≤ s then
add (ri+2,φi+2) to segment
mark (ri+1,φi+1) as singular point
i := i+ 2

else if |Δri| > s and |δri+1| < s then
start new segment for (ri+1,φi+1)
mark edge at (ri,φi)
i := i+ 1

else if |Δri| > s and |δri| > s then
false edge detected
mark (ri+1,φi+1) is a singular point
i := i+ 2

else
mark (ri,φi) is a singular point
i := i+ 1

end if
end for

Extraction of anchor point type Let us assume the segments α(φi)
are given. Parts that are parallel to the φ-axis correspond with parts with
a constant angle with respect to the orientation of the vehicle. Traversing
from one parallel part to another, one denotes an edge (type 3). Straight
parts not parallel to the φ-axis denote curved parts in the scene. Going from
one part to another denotes a (type 2) edge. A discontinuity in the ri-values
denotes a real jump-edge (type 4). Hence, the scan can be transformed into
a graph with vertices annotated with the type of edge and the edges with the
distances as shown in figure 5.21 taken from [Web02]. The graph at hand is
a compact description of a scene, invariant to slight changes in position and
the orientation of the vehicle. In order to find the location of the vehicle, a
graph corresponding to the scene just captured can be matched with graphs
generated earlier. This approach remains within manageable dimensions as
long as there are only a few graphs to be compared. This is the case if the
vehicle position is approximately known.

5.1 Metrical maps 125

anchor point

scanner anchor point
 graph

Figure 5.21 Generation of an Anchor Point graph (AP-graph) based on laser
scanner measurements

Graph comparison
As one can see in figure 5.21, the anchor points found earlier can be con-

nected in order to form a complete graph. This graph does not simply include
the anchor points, but rather their relation is expressed by the help of edges
that contain distance information as well. Assume two complete graphs G
and G∗ of a scene as given. Let us further assume that G features n an-
chor points and n(n − 1) distances and G∗ contains m anchor points and
m(m− 1) distances. The comparison of the two graphs can thus be reduced
to a subgraph matching problem.

The momentary scan may involve ‘ghost edges’: Those can be either
temporary object edges of obstacles (rather rare, only occurring with large
obstacles) or the more common case of real edges that are obscured by
obstacles.

In general only partial matching can be performed. In order to still
be able to assign corresponding scenes, a particular search beginning with
large distances in a data bank has to be implemented. Hence, if the number
of found matches exceeds a preset threshold, the scene can be assumed as
recognized.

Feature matching, continuous values Let there be two scenes with
invariant features Mi,. . . ,Mk and M∗

i ,. . . ,M∗
k . Further, let the range of pos-

sible values of each feature Mi be continuous and thus Mi ∈ [mia,mie].
Therefore, scenes are described by feature vectors MT = (M1, . . . ,Mk) and

126 5 Mapping

M∗T = (M∗
1 , . . . ,M

∗
k) interpreted as points in a room of k dimensions. A

comparison is then based on the distance of the end points. In order to do
that, the values have to be normalized Mi ∈ (mia,mie) →Mi ∈ [0,1]:

Mi −→ Mi −mia

mie −mia
(5.40)

This assures all features are treated equally and the vector end-points
define points in a k-dimensional unit cube. The Euclidean distance between
M and M∗ can be denoted as

d =

√√√√ k∑
i=1

(Mi −Mi∗)2 (5.41)

d ∈ [0,
√
k] (5.42)

Feature matching, discrete range of values Let us assume the exis-
tence of a discrete range of values for the features Mi ∈ (mi1,mi2, . . . ,min).
If a relation mi1 < mi2 < · · · < min exists, then mir −→ r and nor-
malized Mi −→ (Mi − 1)/(n − 1). If however this is not the case, only
complete equivalence is considered: let Mi = mir and M∗

i = mis then
di = (Mi − M∗

i) = (1 − δrs). If this equivalence is a condition sine qua
non then

d = δrs ·
√∑

j �=i

(Mj −M∗
j)2 +

√
k · (1 − δrs) (5.43)

and otherwise d = dmax.

5.2 Grid maps

Grid maps model the environment as a regular grid of cells with constant
areas. The cells are filled with information extracted from noisy sensors.
In order to produce consistent maps, this process requires either a known
robot pose or a good pose estimate. The sensors used are predominantly
ranging sensors like sonar or laser scanners. The lack of precise knowledge is
expressed through various kinds of regions: high occupancy regions indicate
objects, while lower values most likely represent free space. The advantage
of this specific kind of map is the robustness and easy implementation. Their
disadvantage is that they rely on exact pose estimation.

5.2 Grid maps 127

5.2.1 Occupancy grid maps

For many tasks it is useful to raster the environment. In general, a square
raster with tiles of d cm width is used. Each tile gets a pair of indices (i,k),
with d adjusted to the task at hand.

It is simple to build a grid map from laser radar distance readings. The
dimension of a tile should be the resolution of the grid map. With Δr ≈
±2.5 cm and a radar cone of 0.5◦ up to a distance of r = s · 360/(2π · 0.5) =
570 cm a radar point occupies one tile and the cone denotes free space as
shown in figure 5.22.

r

x

y

(xp,yq)

vehicle
position

k

i

Figure 5.22 Building a grid map from laser radar measurements

Let x = r cosϕ and y = r sinϕ be the coordinates of the radar point and
(xp,yq) the coordinates of the vehicle in a 2D scenario. The corresponding
tile with index i,k and center (xi,yk) is given by

xi − d

2
< x+ xp ≤ xi +

d

2
xi = i · d (5.44)

yk − d

2
< y + yq ≤ yk +

d

2
yk = k · d (5.45)

Each of the tiles described above is marked as free space (white) or
obstacle (hatched) or partly free space (gray). Figure 5.23 shows a typical
grid map with the mentioned parameters. If tiles are marked as occupied for
vehicle navigation, there should remain a safety clearance of n of free space
between the vehicle and the occupied region. E.g. suppose that n = 7 cm;
with d = n/

√
2 ⇒ d = 5 cm. In this case a grid map with 400 tiles/m2 will

be generated (for a field of 100 m×100 m, 4 · 106 tiles will be built up).
For a compact description of grid maps a quadtree representation can

be applied. The environment is split recursively into blocks of 2i× 2i tiles as
shown in figure 5.24.

A node in the tree represents a 2i × 2i square part of the environment.
It is either a free space or represents an obstacle or is a mixture of both. If a
node is marked as obstacle or free it will not be split any further. A mixed

128 5 Mapping

node will be recursively split in 4 equal areas, represented as 4 new nodes of
the tree. If the whole environment is made up of 2k×2k tiles, then in general
the quadtree will have much less than 22k nodes. The procedure is shown in
algorithm 5.4.

i

k

Figure 5.23 A typical grid map. White tiles represent free space, hatched tiles
obstacles, and gray ones mixed spaces.

0 1

2 3

64 tiles

38 inputs to Quadtree

Figure 5.24 Quadtree representation of a grid map with 64 tiles.

Algorithm 5.4 Quadtree representation of a grid map
if n = 0 then

it is a leaf node
else

the map becomes the root node of a quad tree
end if
if the map is not uniformly colored then

split the 2n × 2n tiles into four maps of 2n−1 × 2n−1 tiles each
handle them the same way

else if a map is uniformly colored then
it is a leaf node of the tree, denoting a block of 2k × 2k tiles

end if

5.3 Sector maps 129

The concept may also be extended to three dimensions: splitting a 3D-
space of 2n×2n×2n voxels recursively into blocks of 2k×2k×2k. In figure 5.25
a 3D object is represented in a grid map.

Figure 5.25 An object in a 3D grid

Probabilities Especially when using ultrasonic sensors with their rather
unreliable measurements, it makes sense to include obstacle probability in
the specification of the raster points. Performing more than one independent
measurement, the probability of the presence of an obstacle at the specified
location can be determined in a very simple manner. For each cell C(i,j) the
likelihood of occupancy can be computed as:

C(i,j) =
hits(i,j)

hits(i,j) + miss(i,j)
(5.46)

where hits(i,j) represents the number of scans that indicated the presence of
an obstacle at this cell while miss(i,j) stands for the times the cell appeared
to be empty. Thus the computation effort affiliated with e. g. Bayesian Filters
can be reduced to the simple counter approach above.

5.3 Sector maps

A sector map widens the rigid structure of a grid map and allows to partition
space in a more flexible way (see [AKSB07]). A sector map is divided up into

130 5 Mapping

one or more sectors, hence its name. The most common separations consist
of uniform polar or rectangular sectors. Typically, a sector then contains the
following information:

• polar sector: angle and distance to the closest obstacle in the area the
sector covers

• rectangular sector: x- and y-coordinates of the closest obstacle in the
area the sector covers

While this is information about the presence of obstacles (and used for col-
lision avoidance), a sector map can also contain other information, such as
the slope of the ground or overall terrain traversability.

In case of polar sector maps, space in front of an autonomous vehicle
is divided into sectors of some degree; e. g. Δϕ = 5◦ from −120◦ to +120◦.
Let the distance ri to an obstacle be measured from the kinematic center at
an angle ϕi and the distance to the border of the vehicle be ki. Then the
distance between vehicle and obstacle is di = ri − ki.

Figure 5.26 shows the sectors and figure 5.27 a typical sector map made
up of 24 sectors of 5◦ each, spanning 120◦.

90°

120°
180°

240°

sectors for an obstacle map

polar diagram

ri
i

ki

di

robot centered

Figure 5.26 Typical angle range in front of the mobile robot, used for sector maps
(left). Obstacle representation inside a sector (right).

A sector map can be transferred into a grid map. Figure 5.27 shows a
typical sector map and its transfer to a robot-centered grid map. Its trans-
formation into a world-centered grid map is presented in figure 5.28. In both
pictures free space and obstacles are marked in the tiles; blank tiles mark
unknown regions.

The transformation from a robot-centered sector map to world-centered
grid map is shown in figure 5.29.

5.3 Sector maps 131

sector map raster sector map robot centered

Figure 5.27 Transformation of a sector map to a grid map

robot centered raster raster in world coordinates

 robot
orientation

Figure 5.28 Robot-centered vs. world-centered grid map

i
ri

m

n

N

MM N

robot centered sectors

Figure 5.29 Transformation of a robot-centered sector map to a world-centered
grid map

132 5 Mapping

Let ψ
= 0 be the orientation and (x,y) = (M · δ+ εM ,N · δ+ εN) be the
position of the kinematic center of the vehicle in world coordinates. (M,N)
is the index of the tile in which the kinematic center is located. εM and εN
is the offset of the kinematic center in x- and y-direction due to the origin
of the tile. δ is the edge length of the tiles. Suppose there is an obstacle at
distance ri in the sector i with an opening angle Δϕ. Then all tiles with
index (n,m), which fulfill one of the 3 pairs of inequations listed below have
to be marked as obstacles and the space covered by the cone up ri as free
space.

(M +m) · δ − εM ≤ ri cos(ϕi + ψ) ≤ (M +m+ 1)δ − εM (5.47)
(N + n) · δ − εN ≤ ri sin(ϕi + ψ) ≤ (N + n+ 1)δ − εN (5.48)

(M +m) · δ − εM ≤ ri cos(ϕi + ψ + Δϕ/2) ≤ (M +m+ 1)δ − εM (5.49)
(N + n) · δ − εN ≤ ri sin(ϕi + ψ + Δϕ/2) ≤ (N + n+ 1)δ − εN (5.50)

(M +m) · δ − εM ≤ ri cos(ϕi + ψ − Δϕ/2) ≤ (M +m+ 1)δ − εM (5.51)
(N + n) · δ − εN ≤ ri sin(ϕi + ψ − Δϕ/2) ≤ (N + n+ 1)δ − εN (5.52)

For a sector up to 3 tiles may be marked as obstacles in the world-centered
grid map.

A sector map has an arbitrary position and orientation in terms of the
robot coordinate system. It is important to note that although the content
of a sector map is usually generated by the data of a specific sensor, a sector
map does not have to be aligned with this sensor. Instead, it can be placed
anywhere in the area around the robot as a so-called “virtual sensor”.

On the autonomous mobile robot artos [AKSB07] of the TU Kaiser-
slautern sector maps are not only used for collision avoidance, but also as
data source for an occupancy grid map built by the mapping system. The
data of a laser range finder and two chains of ultrasonic sensors is put into
three polar sector maps with uniform sectors. The two-step algorithm de-
scribed in the following is used to extract the information from the sector
maps and alter the occupancy counters of the grid map.

The first step of the algorithm deals with the grid cells whose counters
have to be increased and the second one deals with the grid cells whose
counters have to be decreased. The algorithm will be explained with the
following example. Figure 5.30(a) depicts four obstacles o1–o4, the grid of a
grid map and a sensor together with the sector boundaries of a sector map
belonging to it.

5.3 Sector maps 133

In the first step, all sectors are traversed and the occupancy counters of
the grid cells in which a sector’s obstacle lies are incremented. The sector in
which o1 lies is not marked as occupied as o1 is not in any of the sectors.
The resulting grid map is shown in figure 5.30(b).

Obstacle o2

Obstacle o3

Obstacle o4

Obstacle o5

Obstacle o1

(a) Five obstacles lie in the area around the
sensor. One of them, o1, is currently not seen.
The grid map is in its initial state.

(b) The cells in which visible obstacles lie
have been marked as occupied.

Figure 5.30 First part of the creation of a grid map using a polar sector map as
data source.

In the second step, the counters of the cells which are covered by a sector
and are closer to the sensor than the obstacle in this sector are decremented.
The problem is to determine the cells to which this applies. A comfortable
way would be to have a list of these cells. But then the problem would be
how to update this list when the robot’s pose changes. So instead of calcu-
lating for each sector a list of the cells it covers, all cells in a user-specified
rectangular area around the sensor are processed. For each of them the con-
taining sector is determined. If the center of the grid cell is closer to the
sensor than this sector’s obstacle, its counter is decremented. Figure 5.31(a)
shows an intermediate result of the map creation process, and figure 5.31(b)
depicts the final grid map.

134 5 Mapping

(a) The second step of the grid map cre-
ation algorithm is being executed. The
cell with the bold frame has just been
processed and marked as free.

(b) The second step of the grid map cre-
ation algorithm has been completed. All
cells between the sensor and visible ob-
stacles have been marked as free.

Figure 5.31 Second part of the creation of a grid map using a polar sector map
as data source.

Note that in the second step, the counter decrementation is not limited to
cells that are traversed by a sensor beam. Instead, the fact that the relevant
obstacle in a sector is also the closest one is utilized to update the counters
of more cells.

5.4 Topological maps

Compared to metrical maps, topological maps are more abstract descriptions
of large-scale structures of the environment. Topological maps are typically
represented as graphs in which navigation-relevant places are modeled as
graph nodes and connections between places are indicated by graph edges.
Often, some metrical information is also stored in a topological map, such as
the coordinates of a place or the metrical length of the topological edge. Even

5.4 Topological maps 135

if topological maps also contain such information, processing topological
maps (generation, path finding) need less computation than metrical maps.
Typical examples of topological maps are:

• bus lines and bus stops in a town,

• a highway network of a country,

• a network of stations and railway lines for a subway or railway system,

• a grid of the high voltage transmission lines of a country,

• the sewage system of a town.

Typical questions to be answered with help of a topological map are:

• Where do I change buses between stations A and B?

• Can I also drive from A to B via C or via D?

• How many stops are there on the way from A to B?

• If one transmission line fails, are there lines to circumvent the failed
one?

• Where is the entrance to a main sewage line?

These questions are difficult to answer using geometric maps only. There-
fore, for the solution of many mapping problems the transformation of a
geometric map into a topological one is necessary, as shown in figure 5.32
and figure 5.33. In figure 5.32 three rooms are presented which are connected
to each other by a passageway. Connecting the corners with edges which are
not crossing any objects is shown in figure 5.33. This decomposes the map
into regions free from objects.

This graph can easily be generated by visibility graph algorithms. The
emerging regions can be represented by a graph as shown in figure 5.33.
The nodes in this graph represent regions of the metrical map. The edges
between nodes denote a passageway between the regions. This graph can
be transformed into a decomposition tree. Here, all nodes belonging to
one room are mapped to subgraphs; interconnection graphs represent the
passageways between rooms. The decomposition tree algorithm divides the
whole graph into subgraphs, in which nodes exist with one connection to
another subgraph.

A possible interpretation of the generated decomposition tree is shown
in figure 5.34.

136 5 Mapping

1

2

4
3

15 16

7
8

6

5

9
11

10

14

12

13

20
19

17

21 18

geometric map connecting edges

Figure 5.32 Interconnecting edges in a map of 3 rooms

1

2
4

3

15
16

7

8

6

5

9
11

10

14

12

13

20

19

17

21 18

1

2
4

3

15
16

7

8

6

5

9
11

10

14

12

13

20

19

17

21 18

cell graph

Figure 5.33 Interconnecting regions and the corresponding graph

5.4 Topological maps 137

1

42

3

17
18

19

20

13
12

11

14

10

15

5

6

7
16

89

3

9

17

18
21

room

room

room

room

room

door

K1

K2

K3

K4

K5

K1

K2

K3

K4

K5

door

door

door

Figure 5.34 Decomposition tree

5.4.1 Growing neural gas net

Fritzke [Fri96] gave an algorithm to build a topological map of a scene from
multiple measurements by different sensors.

Let the representation be a net with m nodes Ki made up from n-
dimensional vectors Ki = (bn−1,i, . . . ,b0,i) with normalized components br,i ∈
[0,1]. The representation will be a net with m nodes Ki, i = 1, . . . ,m. In order
to keep the number of nodes manageable, relevant nodes Ki will have to be
calculated from many scene vectors S = (sn−1, . . . ,s0). Each scene vector
describes one set of normalized measured values sr ∈ [0,1]. If the components
of S are independent from each other – their covariance cr,q = δr,q – then
the Euclidean distance between a node Ki and S is well defined:

‖Ki,S‖ =

√√√√n−1∑
r=0

(br,i − sr)
2 (5.53)

Let a visiting counter zm be attached to each node Km and let D be
a critical distance. Building up a growing neural gas net runs as shown in
algorithm 5.5.

Having read in G scene vectors, then G =
∑m

i=1 zi and m = number of
nodes. There is still a difficulty to be solved: looking for the bmu in a large
net given a scene vector S.

138 5 Mapping

Algorithm 5.5 Growing Neural Gas Net
initialize: m := 1; take a first measurement Km = S; zm := 0
repeat

read S
for all j = 1, . . . ,m do

‖Kj ,S‖
end for
for all j
= i do

‖Ki,S‖ ≤ ‖Kj ,S‖ {– Ki is the node with minimum distance to S – }
end for
if ‖Ki,S‖ > D then

{a new node is inserted}
m := m+ 1
Km := S
zm := 0

else
{– Ki is the best matching unit – bmu – }
if zi < Z then
zi := zi + 1 {– the visiting counter is increased – }
for all r = 1, . . . ,n do
br,i := br,i + ε(sr − br,i)/zi {– the components of Ki are shifted
into the direction of S while the weight of Ki increased – }

end for
else if zi = Z then

{– the region around Ki is under represented and S gets a new
node – }
m := m+ 1; zi := Z/2; Km := S; zm := Z/2

end if
end if

until FOREVER

The number of nodes to be checked should be kept manageable. The
scene vectors as well as the nodes describe points in an n-dimensional unit
cube. The direct approach as described in the algorithm to calculate ‖Kj ,S‖
for all j = 1, . . . ,m and look for the minimum has an effort of (2 ·m ·n). The
idea is to preselect the nodes Ki, see figure 5.35.

• By multiplying the values of the components of the nodes by 2p, the
components of Ki = (b(n−1),i, . . . ,b0,i) become integer numbers br,i ∈
(0, . . . ,2p − 1).

5.4 Topological maps 139

• Chop the interval 0, . . . ,2p − 1 into 2k parts tq with q = 0, . . . ,2k − 1.
The interval tq contains the numbers q2p−k ≤ b < (q + 1)2p−k.

• The uppermost k bits of the values of br and br,i form the indices qr or
qr,i.

• Choose k such that D = 2p−k.

• Form a list at index q in dimension r of all Ki with (q− 1)2p−k ≤ bri <
(q + 2)2p−k under their number i. The list is ordered with respect to i.
The storage effort is (n2k) lists with indices j and the values br,j .

• Candidates for the bmu are only those Kj whose number is to be found
at all indices qr, belonging to br.

• If the search fails, then S is a new node; there is no node Kj at a
distance less than D around S.

• Let the indices j1,j2, . . . ,jl be found in all boxes qr then only the dis-
tances from S to Kj1,Kj2, . . . ,Kjl have to be calculated to find the
minimum, the bmu.

0 2p -1

q=0 q = 2k -1

q 2(p-k) ≤ b < (q +1) 2(p-k)

0 2p -1

q=0 q = 2k -1
br

br

qr

tq

Figure 5.35 Splitting the realm of possible values

There are three parameters to be adapted to the scene at hand:

• The distance D, describing the influence of a node,

• the maximum value Z of a visiting counter zj describing the number of
matches before a split at the node Kj occurs,

• and the shift ε describing how much the current scene vector affects the
bmu.

140 5 Mapping

steering
 motor

view from
 below

sensor
whisker

Figure 5.36 Sketch of alice

An example of building a topological map using a very simple vehicle, alice
is described in [ZvP94]. Figure 5.36 shows the structure of the vehicle.

The robot has a circular shape with a diameter of 30 cm and is actuated
by a synchro drive. alice is equipped with 24 photo sensors with an angle of
beam spread of 15◦ each. The same number of touch sensors detect contact
with walls as shown in figure 5.37.

 photo
 resistor

isolator
steel wire

metal tube

15°

F

Figure 5.37 The touch sensor and the photo sensor of alice. The touch sensor
is realized as a simple electrical switch. If the steel wire hits an obstacle the wire is
bended and closes the contacts of the switch.

The measurements of 24 photo sensor (I0, . . . ,I23) are normalized to
Ĩi = Ii/Imax ∈ [0,1]. The 24 touch sensor values (T1, . . . ,T24) ∈ [0,1] are
smoothed to cope with the rather large uncertainty of these sensors: T̃i =
(2Ti+Ti−1+Ti+1)/4, i = i mod 24. Only these 48 measurements describe the
environment around alice. For the calculation of position and orientation
of the vehicle the movement of the chain of the synchro drive is detected by
light barriers and the wheel velocity measured by optical encoders.

The alice scene vector has 48 components. They provide input for a
neural gas net modified slightly bit for the task of building a representation
of the environment alice finds itself in.

5.4 Topological maps 141

• A first modification is to use the position information to build a graph:
the vehicle actually has been driven from one best matching unit to the
next, so there a line is drawn. The node is annotated with the position.

• The line is annotated with a visiting counter. It is used to cope with
wrong measurements: once in a while a measurement gives wrong values.
The sensor situation becomes unique and becomes a new best matching
unit (bmu). From the last bmu to this new one a line is drawn and a
visiting counter counted up. All the other counters attached to edges
from that last bmu are diminished. It is highly improbable that a false
measurement will be repeated. So the line will never be driven again. If
the value of a visiting counter drops below the limit, the line is taken
from the graph. This eliminates wrong measurements after a while.

• In order to get a reliable representation of the environment, the in-
evitable drift in direction has to be corrected. To this end the light
impression of the photo sensors is used to correct a drift in direction.

Figure 5.38 shows a typical sensor situation of alice. Aside from the sensor
values, the position and an identifier for the bmu part of the sensor situation.
Figure 5.39 shows a test environment for alice and figure 5.40 a neural net
formed after a while. Despite the primitive sensors, the environment can be
recognized in form of the free space for alice.

0 0
0

0

0

0

0

0

0

16

16
35103102

100

121

53

16

15

16

0

0

0
0

190230
172

126

71

0

0

0

0
0

0

2
21

112

255

226

-106
-294

0

0

64

65
17

0

0

0

112

ID = 135

position

lightintensities

smoothed
tochsensor
 values

number of node

Figure 5.38 Example of sensor measurements (touch sensor values and light in-
tensities) at an estimated position

142 5 Mapping

3.78m

1.35m

1.05m

1.0m
1.0m

1.0m

2.20m

0.95m

0.25m

glas window 0.5m

lamp
1.10m

0.49m

illuminated

environment of ALICE

illuminated

Figure 5.39 alice test environment

Figure 5.40 Topological graph of environment

5.5 Hybrid maps 143

5.5 Hybrid maps

As discussed before, metrical and topological mapping algorithms feature
different characteristics (see figure 5.41). Hybrid approaches try to combine
both types, allowing localization and map building with the high precision
of metrical maps while retaining the compactness of topological maps.

Topological Maps Metrical Maps
Scale Large-scale space Small-scale space
Sensor inputs Abstracts sensor inputs Stores sensor inputs
Computational power Low High
Memory consumption Low High
Sensitive to noise Less More
Real-time mapping Yes Depends on

computational power
Figure 5.41 Comparison of features of metrical and topological maps

Hybrid maps found in literature can be classified as two main types:
abstraction-based and hierarchical hybrid maps. In abstraction-based hy-
brid maps, a metrical map of the environment is typically constructed as
a basis, and an abstraction of the map is performed in order to create a
compact topological representation. The benefit of this abstraction is more
efficient planning of an approximate path to a given goal location than a
detailed metrical map. However, the metrical map must often be kept for
relocalization and obstacle avoidance purposes.

An example of a hybrid mapping strategy that derives a Voronoi-graph
based topological map through abstraction of a long-lived, complete metrical
map is presented in [Thr98]. Here, topological map building is initiated by
thresholding an occupancy grid map built using Bayesian probability tech-
niques. Then, the Voronoi diagram is built by selecting all free grid cells, with
two nearest occupied grid cells (the base points) being equidistant. Cells on
the Voronoi diagram are termed critical points if the base point distance is
a local minimum. Lines between critical points and their base points divide
metrical space into separate topological regions at locally narrow passages.
From this regional decomposition, a topological graph can be generated.
Figure 5.42 shows an example of the procedure.

With the help of this graph, fast path planning is possible without re-
sorting to the detailed, underlying metrical map. During travel, however,
the arrival at a topological node can only be detected by using localiza-
tion techniques based on the detailed map, since the topological nodes are

144 5 Mapping

only characterized by their spatial position in the metrical map’s frame of
reference.

Figure 5.42 Steps in the topological abstraction scheme of [Thr98]. (a) Original
thresholded occupancy map (b) Overlaid Voronoi diagram (c) critical points (d)
critical lines (e) topological regions (f) resulting topological graph

Hierarchical hybrid maps on the other hand try to arrange the two map
methodologies in a hierarchical fashion. This is accomplished by creating
several local metrical maps with a limited scale and tying them together
using a global topological map (figure 5.42). This approach uses the clas-
sical divide-and-conquer paradigm to address the scalability problems that
are inherent in large metrical maps. Also, it prevents errors incurred dur-
ing metrical mapping from spreading over the entire mapped area. However,
one also has to pay a price for the segmented map structure, as informa-
tion contained in partially overlapping local maps cannot be used to enforce
global consistency. This can lead to increased uncertainty for each local map,
especially if they are closely spaced.

In [TNS03], a hierarchical hybrid map of an indoor environment is pre-
sented which combines a global topological map with local metrical maps.
On the global level, a topological map is constructed which contains interme-
diate nodes spanning the topological graph, leafs that signify metrical places
and corner lists on the links between nodes (see figure 5.43). The corners
can be extracted easily from the data of a 360◦ laser scanner and serve as
landmarks for localization on the topological scale.

While the landmark-based localization strategy is used during robot
travel along edges, the approach switches to a metrical method once the

5.5 Hybrid maps 145

robot has arrived at a leaf node marked ‘place’. The local map stored in
this leaf is a line-based metrical map. For each line segment a ‘line feature’
is generated that is described by the angle of the perpendicular to the line
and its length. The local feature map can be used for localization by mod-
eling all feature parameters and the current robot pose as the state vector
of an extended Kalman filter. With the use of this local metrical representa-
tion, the robot can travel freely in the vicinity of the leaf node, performing
navigational tasks with high metrical precision.

Figure 5.43 Hierarchical hybrid map of [TNS03]. (a) shows a portion of a hallway
with extracted corner and opening features. (b) represents the resulting topological
map with nodes and corner landmarks. Open arches either lead to metrical places
or other hallways.

	5 Mapping
	5.1 Metrical maps
	5.1.1 Line based metrical maps
	5.1.2 Plane based metrical maps
	5.1.3 Feature-based metrical maps

	5.2 Grid maps
	5.2.1 Occupancy grid maps

	5.3 Sector maps
	5.4 Topological maps
	5.4.1 Growing neural gas net

	5.5 Hybrid maps

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

